contestId
int64
0
1.01k
index
stringclasses
57 values
name
stringlengths
2
58
type
stringclasses
2 values
rating
int64
0
3.5k
tags
listlengths
0
11
title
stringclasses
522 values
time-limit
stringclasses
8 values
memory-limit
stringclasses
8 values
problem-description
stringlengths
0
7.15k
input-specification
stringlengths
0
2.05k
output-specification
stringlengths
0
1.5k
demo-input
listlengths
0
7
demo-output
listlengths
0
7
note
stringlengths
0
5.24k
points
float64
0
425k
test_cases
listlengths
0
402
creationTimeSeconds
int64
1.37B
1.7B
relativeTimeSeconds
int64
8
2.15B
programmingLanguage
stringclasses
3 values
verdict
stringclasses
14 values
testset
stringclasses
12 values
passedTestCount
int64
0
1k
timeConsumedMillis
int64
0
15k
memoryConsumedBytes
int64
0
805M
code
stringlengths
3
65.5k
prompt
stringlengths
262
8.2k
response
stringlengths
17
65.5k
score
float64
-1
3.99
543
D
Road Improvement
PROGRAMMING
2,300
[ "dp", "trees" ]
null
null
The country has *n* cities and *n*<=-<=1 bidirectional roads, it is possible to get from every city to any other one if you move only along the roads. The cities are numbered with integers from 1 to *n* inclusive. All the roads are initially bad, but the government wants to improve the state of some roads. We will assume that the citizens are happy about road improvement if the path from the capital located in city *x* to any other city contains at most one bad road. Your task is — for every possible *x* determine the number of ways of improving the quality of some roads in order to meet the citizens' condition. As those values can be rather large, you need to print each value modulo 1<=000<=000<=007 (109<=+<=7).
The first line of the input contains a single integer *n* (2<=≤<=*n*<=≤<=2·105) — the number of cities in the country. Next line contains *n*<=-<=1 positive integers *p*2,<=*p*3,<=*p*4,<=...,<=*p**n* (1<=≤<=*p**i*<=≤<=*i*<=-<=1) — the description of the roads in the country. Number *p**i* means that the country has a road connecting city *p**i* and city *i*.
Print *n* integers *a*1,<=*a*2,<=...,<=*a**n*, where *a**i* is the sought number of ways to improve the quality of the roads modulo 1<=000<=000<=007 (109<=+<=7), if the capital of the country is at city number *i*.
[ "3\n1 1\n", "5\n1 2 3 4\n" ]
[ "4 3 3", "5 8 9 8 5" ]
none
1,750
[ { "input": "3\n1 1", "output": "4 3 3" }, { "input": "5\n1 2 3 4", "output": "5 8 9 8 5" }, { "input": "31\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1", "output": "73741817 536870913 536870913 536870913 536870913 536870913 536870913 536870913 536870913 536870913 536870913 536870913 536870913 536870913 536870913 536870913 536870913 536870913 536870913 536870913 536870913 536870913 536870913 536870913 536870913 536870913 536870913 536870913 536870913 536870913 536870913" }, { "input": "29\n1 2 2 4 4 6 6 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28", "output": "191 380 191 470 236 506 254 506 504 500 494 486 476 464 450 434 416 396 374 350 324 296 266 234 200 164 126 86 44" }, { "input": "70\n1 2 2 4 4 6 6 8 9 9 11 11 13 13 15 15 17 17 19 19 21 22 22 24 24 26 27 27 29 29 31 31 33 34 34 36 37 37 39 39 41 42 42 44 44 46 47 47 49 50 50 52 52 54 54 56 57 57 59 60 60 62 63 63 65 65 67 68 68", "output": "0 1000000005 0 499999996 249999999 749999986 374999994 874999963 999999938 499999970 62499881 531249945 93749781 546874895 109374581 554687295 117186681 558593345 121092131 560546070 123043656 124995179 562497594 125968539 562984274 126450416 126932291 563466150 127163621 563581815 127260071 563630040 127269866 127279659 563639834 127207694 127135727 563567868 126946019 563473014 126543716 126141411 563070710 125325359 562662684 123687534 122049707 561024858 118771194 115492679 557746344 108934221 55446711..." }, { "input": "59\n1 2 2 4 4 5 7 7 8 8 10 10 11 11 15 15 9 18 18 20 20 21 23 22 22 26 6 6 28 30 30 31 31 33 34 34 32 32 38 40 39 39 29 44 44 45 47 47 46 46 50 52 52 54 51 51 57 58", "output": "0 1000000005 0 499999996 499259752 500131906 498519506 453903141 456877573 963122521 230821046 981561265 981561265 115410524 784656845 892328427 892328427 415235638 207617820 331951678 748963765 998815735 165975843 582987926 999407872 332543823 666271916 492735403 494450227 485338898 330005231 366989446 553336825 864004193 776668417 932002101 932002101 775242091 893591565 183494727 591747368 946795787 946795787 488768546 73973791 454675898 659179041 829589525 829589525 147841416 181934138 841006939 9205034..." }, { "input": "2\n1", "output": "2 2" }, { "input": "3\n1 2", "output": "3 4 3" }, { "input": "69\n1 1 3 3 5 5 7 8 8 10 10 12 12 14 14 16 16 18 18 20 21 21 23 23 25 26 26 28 28 30 30 32 33 33 35 36 36 38 38 40 41 41 43 43 45 46 46 48 49 49 51 51 53 53 55 56 56 58 59 59 61 62 62 64 64 66 67 67", "output": "1000000006 500000004 499999999 750000004 749999993 875000001 874999978 999999961 999999985 62499920 31249961 93749852 46874927 109374716 54687359 117186944 58593473 121092650 60546326 123044687 124996722 62498362 125971106 62985554 126455031 126938954 63469478 127174380 63587191 127279022 63639512 127305201 127331378 63665690 127292181 127252982 63626492 127128810 63564406 126857579 126586346 63293174 126032438 63016220 124918901 123805362 61902682 121575425 119345486 59672744 114884180 57442091 105960854 ..." }, { "input": "137\n1 1 3 3 5 5 7 8 8 10 10 12 12 14 14 16 16 18 18 20 21 21 23 23 25 26 26 28 28 30 30 32 33 33 35 36 36 38 38 40 41 41 43 43 45 46 46 48 49 49 51 51 53 53 55 56 56 58 59 59 61 62 62 64 64 66 67 67 1 1 71 71 73 73 75 76 76 78 78 80 80 82 82 84 84 86 86 88 89 89 91 91 93 94 94 96 96 98 98 100 101 101 103 104 104 106 106 108 109 109 111 111 113 114 114 116 117 117 119 119 121 121 123 124 124 126 127 127 129 130 130 132 132 134 135 135", "output": "1 500000005 500000005 750000007 750000007 875000008 875000008 0 1 62499998 31250000 93749994 46874998 109374986 54687494 117187470 58593736 121093688 60546845 123046749 124999808 62499905 125976240 62988121 126464261 126952280 63476141 127195898 63597950 127316924 63658463 127375871 127434816 63717409 127461155 127487492 63743747 127494392 63747197 127485305 127476216 63738109 127446596 63723299 127381635 127316672 63658337 127183887 127051100 63525551 126784098 63392050 126249380 63124691 125179587 124109..." }, { "input": "150\n1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 7 7 8 8 9 9 10 10 11 11 12 12 13 13 14 14 14 15 15 15 16 16 16 17 17 17 18 18 18 19 19 19 20 20 20 21 21 21 22 22 22 23 23 23 24 24 24 25 25 25 26 26 26 27 27 27 28 28 28 28 29 29 29 29 30 30 30 30 31 31 31 31 31 32 32 32 32 32 33 33 33 33 33 33 34 34 34 34 34 34 35 35 35 35 35 35 35 36 36 36 36 36 36 36 37 37 37 37 37 37 37 37 37", "output": "0 1000000005 0 0 0 0 800000008 800000008 800000008 800000008 800000008 800000008 800000008 222222230 222222230 222222230 222222230 222222230 222222230 222222230 222222230 222222230 222222230 222222230 222222230 222222230 222222230 705882372 705882372 705882372 878787915 878787915 61538524 61538524 596899355 596899355 196881603 400000005 400000005 400000005 400000005 400000005 400000005 400000005 400000005 400000005 400000005 400000005 400000005 400000005 400000005 111111116 111111116 111111116 111111116 11..." } ]
1,692,375,930
2,147,483,647
PyPy 3-64
OK
TESTS
42
452
21,913,600
import sys MODULO = int(1e9) + 7 def solve(n, p, out_stream): prod = [1] * n modpow = [0] * n for i in range(n - 1, 0, -1): j = p[i] if modpow[i] == 0 and prod[i] + 1 == MODULO: modpow[j] += 1 else: prod[j] = (prod[j] * ((prod[i] if modpow[i] == 0 else 0) + 1)) % MODULO if modpow[0] == 0: out_stream.write(str(prod[0])) else: out_stream.write("0") for i in range(1, n): j = p[i] pr = prod[j] prpow = modpow[j] if modpow[i] == 0 and prod[i] + 1 == MODULO: prpow -= 1 else: pr = (pr * pow((prod[i] if modpow[i] == 0 else 0) + 1, MODULO - 2, MODULO)) % MODULO if prpow > 0: pr = 0 if pr + 1 == MODULO: modpow[i] += 1 else: prod[i] = (prod[i] * (pr + 1)) % MODULO out_stream.write(' ') if modpow[i] == 0: out_stream.write(str(prod[i])) else: out_stream.write("0") out_stream.write("\n") def inv(x): if x == 1: return 1 return pow(x, MODULO - 2, MODULO) def pow(x, k, MOD): if k == 0: return 1 if k % 2 == 0: return pow((x * x) % MOD, k // 2, MOD) return (x * pow(x, k - 1, MOD)) % MOD def main(): try: while True: n = int(input()) p = [-1] + [int(x) - 1 for x in input().split()] solve(n, p, sys.stdout) except EOFError: pass if __name__ == "__main__": main()# 1692375930.364086
Title: Road Improvement Time Limit: None seconds Memory Limit: None megabytes Problem Description: The country has *n* cities and *n*<=-<=1 bidirectional roads, it is possible to get from every city to any other one if you move only along the roads. The cities are numbered with integers from 1 to *n* inclusive. All the roads are initially bad, but the government wants to improve the state of some roads. We will assume that the citizens are happy about road improvement if the path from the capital located in city *x* to any other city contains at most one bad road. Your task is — for every possible *x* determine the number of ways of improving the quality of some roads in order to meet the citizens' condition. As those values can be rather large, you need to print each value modulo 1<=000<=000<=007 (109<=+<=7). Input Specification: The first line of the input contains a single integer *n* (2<=≤<=*n*<=≤<=2·105) — the number of cities in the country. Next line contains *n*<=-<=1 positive integers *p*2,<=*p*3,<=*p*4,<=...,<=*p**n* (1<=≤<=*p**i*<=≤<=*i*<=-<=1) — the description of the roads in the country. Number *p**i* means that the country has a road connecting city *p**i* and city *i*. Output Specification: Print *n* integers *a*1,<=*a*2,<=...,<=*a**n*, where *a**i* is the sought number of ways to improve the quality of the roads modulo 1<=000<=000<=007 (109<=+<=7), if the capital of the country is at city number *i*. Demo Input: ['3\n1 1\n', '5\n1 2 3 4\n'] Demo Output: ['4 3 3', '5 8 9 8 5'] Note: none
```python import sys MODULO = int(1e9) + 7 def solve(n, p, out_stream): prod = [1] * n modpow = [0] * n for i in range(n - 1, 0, -1): j = p[i] if modpow[i] == 0 and prod[i] + 1 == MODULO: modpow[j] += 1 else: prod[j] = (prod[j] * ((prod[i] if modpow[i] == 0 else 0) + 1)) % MODULO if modpow[0] == 0: out_stream.write(str(prod[0])) else: out_stream.write("0") for i in range(1, n): j = p[i] pr = prod[j] prpow = modpow[j] if modpow[i] == 0 and prod[i] + 1 == MODULO: prpow -= 1 else: pr = (pr * pow((prod[i] if modpow[i] == 0 else 0) + 1, MODULO - 2, MODULO)) % MODULO if prpow > 0: pr = 0 if pr + 1 == MODULO: modpow[i] += 1 else: prod[i] = (prod[i] * (pr + 1)) % MODULO out_stream.write(' ') if modpow[i] == 0: out_stream.write(str(prod[i])) else: out_stream.write("0") out_stream.write("\n") def inv(x): if x == 1: return 1 return pow(x, MODULO - 2, MODULO) def pow(x, k, MOD): if k == 0: return 1 if k % 2 == 0: return pow((x * x) % MOD, k // 2, MOD) return (x * pow(x, k - 1, MOD)) % MOD def main(): try: while True: n = int(input()) p = [-1] + [int(x) - 1 for x in input().split()] solve(n, p, sys.stdout) except EOFError: pass if __name__ == "__main__": main()# 1692375930.364086 ```
3
658
A
Bear and Reverse Radewoosh
PROGRAMMING
800
[ "implementation" ]
null
null
Limak and Radewoosh are going to compete against each other in the upcoming algorithmic contest. They are equally skilled but they won't solve problems in the same order. There will be *n* problems. The *i*-th problem has initial score *p**i* and it takes exactly *t**i* minutes to solve it. Problems are sorted by difficulty — it's guaranteed that *p**i*<=&lt;<=*p**i*<=+<=1 and *t**i*<=&lt;<=*t**i*<=+<=1. A constant *c* is given too, representing the speed of loosing points. Then, submitting the *i*-th problem at time *x* (*x* minutes after the start of the contest) gives *max*(0,<= *p**i*<=-<=*c*·*x*) points. Limak is going to solve problems in order 1,<=2,<=...,<=*n* (sorted increasingly by *p**i*). Radewoosh is going to solve them in order *n*,<=*n*<=-<=1,<=...,<=1 (sorted decreasingly by *p**i*). Your task is to predict the outcome — print the name of the winner (person who gets more points at the end) or a word "Tie" in case of a tie. You may assume that the duration of the competition is greater or equal than the sum of all *t**i*. That means both Limak and Radewoosh will accept all *n* problems.
The first line contains two integers *n* and *c* (1<=≤<=*n*<=≤<=50,<=1<=≤<=*c*<=≤<=1000) — the number of problems and the constant representing the speed of loosing points. The second line contains *n* integers *p*1,<=*p*2,<=...,<=*p**n* (1<=≤<=*p**i*<=≤<=1000,<=*p**i*<=&lt;<=*p**i*<=+<=1) — initial scores. The third line contains *n* integers *t*1,<=*t*2,<=...,<=*t**n* (1<=≤<=*t**i*<=≤<=1000,<=*t**i*<=&lt;<=*t**i*<=+<=1) where *t**i* denotes the number of minutes one needs to solve the *i*-th problem.
Print "Limak" (without quotes) if Limak will get more points in total. Print "Radewoosh" (without quotes) if Radewoosh will get more points in total. Print "Tie" (without quotes) if Limak and Radewoosh will get the same total number of points.
[ "3 2\n50 85 250\n10 15 25\n", "3 6\n50 85 250\n10 15 25\n", "8 1\n10 20 30 40 50 60 70 80\n8 10 58 63 71 72 75 76\n" ]
[ "Limak\n", "Radewoosh\n", "Tie\n" ]
In the first sample, there are 3 problems. Limak solves them as follows: 1. Limak spends 10 minutes on the 1-st problem and he gets 50 - *c*·10 = 50 - 2·10 = 30 points. 1. Limak spends 15 minutes on the 2-nd problem so he submits it 10 + 15 = 25 minutes after the start of the contest. For the 2-nd problem he gets 85 - 2·25 = 35 points. 1. He spends 25 minutes on the 3-rd problem so he submits it 10 + 15 + 25 = 50 minutes after the start. For this problem he gets 250 - 2·50 = 150 points. So, Limak got 30 + 35 + 150 = 215 points. Radewoosh solves problem in the reversed order: 1. Radewoosh solves 3-rd problem after 25 minutes so he gets 250 - 2·25 = 200 points. 1. He spends 15 minutes on the 2-nd problem so he submits it 25 + 15 = 40 minutes after the start. He gets 85 - 2·40 = 5 points for this problem. 1. He spends 10 minutes on the 1-st problem so he submits it 25 + 15 + 10 = 50 minutes after the start. He gets *max*(0, 50 - 2·50) = *max*(0,  - 50) = 0 points. Radewoosh got 200 + 5 + 0 = 205 points in total. Limak has 215 points so Limak wins. In the second sample, Limak will get 0 points for each problem and Radewoosh will first solve the hardest problem and he will get 250 - 6·25 = 100 points for that. Radewoosh will get 0 points for other two problems but he is the winner anyway. In the third sample, Limak will get 2 points for the 1-st problem and 2 points for the 2-nd problem. Radewoosh will get 4 points for the 8-th problem. They won't get points for other problems and thus there is a tie because 2 + 2 = 4.
500
[ { "input": "3 2\n50 85 250\n10 15 25", "output": "Limak" }, { "input": "3 6\n50 85 250\n10 15 25", "output": "Radewoosh" }, { "input": "8 1\n10 20 30 40 50 60 70 80\n8 10 58 63 71 72 75 76", "output": "Tie" }, { "input": "4 1\n3 5 6 9\n1 2 4 8", "output": "Limak" }, { "input": "4 1\n1 3 6 10\n1 5 7 8", "output": "Radewoosh" }, { "input": "4 1\n2 4 5 10\n2 3 9 10", "output": "Tie" }, { "input": "18 4\n68 97 121 132 146 277 312 395 407 431 458 461 595 634 751 855 871 994\n1 2 3 4 9 10 13 21 22 29 31 34 37 38 39 41 48 49", "output": "Radewoosh" }, { "input": "50 1\n5 14 18 73 137 187 195 197 212 226 235 251 262 278 287 304 310 322 342 379 393 420 442 444 448 472 483 485 508 515 517 523 559 585 618 627 636 646 666 682 703 707 780 853 937 951 959 989 991 992\n30 84 113 173 199 220 235 261 266 277 300 306 310 312 347 356 394 396 397 409 414 424 446 462 468 487 507 517 537 566 594 643 656 660 662 668 706 708 773 774 779 805 820 827 868 896 929 942 961 995", "output": "Tie" }, { "input": "4 1\n4 6 9 10\n2 3 4 5", "output": "Radewoosh" }, { "input": "4 1\n4 6 9 10\n3 4 5 7", "output": "Radewoosh" }, { "input": "4 1\n1 6 7 10\n2 7 8 10", "output": "Tie" }, { "input": "4 1\n4 5 7 9\n1 4 5 8", "output": "Limak" }, { "input": "50 1\n6 17 44 82 94 127 134 156 187 211 212 252 256 292 294 303 352 355 379 380 398 409 424 434 480 524 584 594 631 714 745 756 777 778 789 793 799 821 841 849 859 878 879 895 925 932 944 952 958 990\n15 16 40 42 45 71 99 100 117 120 174 181 186 204 221 268 289 332 376 394 403 409 411 444 471 487 499 539 541 551 567 589 619 623 639 669 689 722 735 776 794 822 830 840 847 907 917 927 936 988", "output": "Radewoosh" }, { "input": "50 10\n25 49 52 73 104 117 127 136 149 164 171 184 226 251 257 258 286 324 337 341 386 390 428 453 464 470 492 517 543 565 609 634 636 660 678 693 710 714 729 736 739 749 781 836 866 875 956 960 977 979\n2 4 7 10 11 22 24 26 27 28 31 35 37 38 42 44 45 46 52 53 55 56 57 59 60 61 64 66 67 68 69 71 75 76 77 78 79 81 83 85 86 87 89 90 92 93 94 98 99 100", "output": "Limak" }, { "input": "50 10\n11 15 25 71 77 83 95 108 143 150 182 183 198 203 213 223 279 280 346 348 350 355 375 376 412 413 415 432 470 545 553 562 589 595 607 633 635 637 688 719 747 767 771 799 842 883 905 924 942 944\n1 3 5 6 7 10 11 12 13 14 15 16 19 20 21 23 25 32 35 36 37 38 40 41 42 43 47 50 51 54 55 56 57 58 59 60 62 63 64 65 66 68 69 70 71 72 73 75 78 80", "output": "Radewoosh" }, { "input": "32 6\n25 77 141 148 157 159 192 196 198 244 245 255 332 392 414 457 466 524 575 603 629 700 738 782 838 841 845 847 870 945 984 985\n1 2 4 5 8 9 10 12 13 14 15 16 17 18 20 21 22 23 24 26 28 31 38 39 40 41 42 43 45 47 48 49", "output": "Radewoosh" }, { "input": "5 1\n256 275 469 671 842\n7 9 14 17 26", "output": "Limak" }, { "input": "2 1000\n1 2\n1 2", "output": "Tie" }, { "input": "3 1\n1 50 809\n2 8 800", "output": "Limak" }, { "input": "1 13\n866\n10", "output": "Tie" }, { "input": "15 1\n9 11 66 128 199 323 376 386 393 555 585 718 935 960 971\n3 11 14 19 20 21 24 26 32 38 40 42 44 47 50", "output": "Limak" }, { "input": "1 10\n546\n45", "output": "Tie" }, { "input": "50 20\n21 43 51 99 117 119 158 167 175 190 196 244 250 316 335 375 391 403 423 428 451 457 460 480 487 522 539 559 566 584 598 602 604 616 626 666 675 730 771 787 828 841 861 867 886 889 898 970 986 991\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50", "output": "Limak" }, { "input": "50 21\n13 20 22 38 62 84 118 135 141 152 170 175 194 218 227 229 232 253 260 263 278 313 329 357 396 402 422 452 454 533 575 576 580 594 624 644 653 671 676 759 789 811 816 823 831 833 856 924 933 987\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50", "output": "Tie" }, { "input": "1 36\n312\n42", "output": "Tie" }, { "input": "1 1000\n1\n1000", "output": "Tie" }, { "input": "1 1\n1000\n1", "output": "Tie" }, { "input": "50 35\n9 17 28 107 136 152 169 174 186 188 201 262 291 312 324 330 341 358 385 386 393 397 425 431 479 498 502 523 530 540 542 554 578 588 622 623 684 696 709 722 784 819 836 845 850 932 945 969 983 984\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50", "output": "Tie" }, { "input": "50 20\n12 113 116 120 138 156 167 183 185 194 211 228 234 261 278 287 310 317 346 361 364 397 424 470 496 522 527 536 611 648 668 704 707 712 717 752 761 766 815 828 832 864 872 885 889 901 904 929 982 993\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50", "output": "Limak" } ]
1,568,203,558
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
1
93
0
n, c = map(int, input().split()) p = [int(i) for i in input().split()] t = [int(i) for i in input().split()] a = 0 s1 = 0 s2 = 0 for i in range(n): a += t[i] s1 += max(0, p[i] - a * c) for i in reversed(range(n)): a += t[i] s2 += max(0, p[i] - a * c) if s1 > s2: print('Limak') elif s1 < s2: print('Radewoosh') else: print('Tie')
Title: Bear and Reverse Radewoosh Time Limit: None seconds Memory Limit: None megabytes Problem Description: Limak and Radewoosh are going to compete against each other in the upcoming algorithmic contest. They are equally skilled but they won't solve problems in the same order. There will be *n* problems. The *i*-th problem has initial score *p**i* and it takes exactly *t**i* minutes to solve it. Problems are sorted by difficulty — it's guaranteed that *p**i*<=&lt;<=*p**i*<=+<=1 and *t**i*<=&lt;<=*t**i*<=+<=1. A constant *c* is given too, representing the speed of loosing points. Then, submitting the *i*-th problem at time *x* (*x* minutes after the start of the contest) gives *max*(0,<= *p**i*<=-<=*c*·*x*) points. Limak is going to solve problems in order 1,<=2,<=...,<=*n* (sorted increasingly by *p**i*). Radewoosh is going to solve them in order *n*,<=*n*<=-<=1,<=...,<=1 (sorted decreasingly by *p**i*). Your task is to predict the outcome — print the name of the winner (person who gets more points at the end) or a word "Tie" in case of a tie. You may assume that the duration of the competition is greater or equal than the sum of all *t**i*. That means both Limak and Radewoosh will accept all *n* problems. Input Specification: The first line contains two integers *n* and *c* (1<=≤<=*n*<=≤<=50,<=1<=≤<=*c*<=≤<=1000) — the number of problems and the constant representing the speed of loosing points. The second line contains *n* integers *p*1,<=*p*2,<=...,<=*p**n* (1<=≤<=*p**i*<=≤<=1000,<=*p**i*<=&lt;<=*p**i*<=+<=1) — initial scores. The third line contains *n* integers *t*1,<=*t*2,<=...,<=*t**n* (1<=≤<=*t**i*<=≤<=1000,<=*t**i*<=&lt;<=*t**i*<=+<=1) where *t**i* denotes the number of minutes one needs to solve the *i*-th problem. Output Specification: Print "Limak" (without quotes) if Limak will get more points in total. Print "Radewoosh" (without quotes) if Radewoosh will get more points in total. Print "Tie" (without quotes) if Limak and Radewoosh will get the same total number of points. Demo Input: ['3 2\n50 85 250\n10 15 25\n', '3 6\n50 85 250\n10 15 25\n', '8 1\n10 20 30 40 50 60 70 80\n8 10 58 63 71 72 75 76\n'] Demo Output: ['Limak\n', 'Radewoosh\n', 'Tie\n'] Note: In the first sample, there are 3 problems. Limak solves them as follows: 1. Limak spends 10 minutes on the 1-st problem and he gets 50 - *c*·10 = 50 - 2·10 = 30 points. 1. Limak spends 15 minutes on the 2-nd problem so he submits it 10 + 15 = 25 minutes after the start of the contest. For the 2-nd problem he gets 85 - 2·25 = 35 points. 1. He spends 25 minutes on the 3-rd problem so he submits it 10 + 15 + 25 = 50 minutes after the start. For this problem he gets 250 - 2·50 = 150 points. So, Limak got 30 + 35 + 150 = 215 points. Radewoosh solves problem in the reversed order: 1. Radewoosh solves 3-rd problem after 25 minutes so he gets 250 - 2·25 = 200 points. 1. He spends 15 minutes on the 2-nd problem so he submits it 25 + 15 = 40 minutes after the start. He gets 85 - 2·40 = 5 points for this problem. 1. He spends 10 minutes on the 1-st problem so he submits it 25 + 15 + 10 = 50 minutes after the start. He gets *max*(0, 50 - 2·50) = *max*(0,  - 50) = 0 points. Radewoosh got 200 + 5 + 0 = 205 points in total. Limak has 215 points so Limak wins. In the second sample, Limak will get 0 points for each problem and Radewoosh will first solve the hardest problem and he will get 250 - 6·25 = 100 points for that. Radewoosh will get 0 points for other two problems but he is the winner anyway. In the third sample, Limak will get 2 points for the 1-st problem and 2 points for the 2-nd problem. Radewoosh will get 4 points for the 8-th problem. They won't get points for other problems and thus there is a tie because 2 + 2 = 4.
```python n, c = map(int, input().split()) p = [int(i) for i in input().split()] t = [int(i) for i in input().split()] a = 0 s1 = 0 s2 = 0 for i in range(n): a += t[i] s1 += max(0, p[i] - a * c) for i in reversed(range(n)): a += t[i] s2 += max(0, p[i] - a * c) if s1 > s2: print('Limak') elif s1 < s2: print('Radewoosh') else: print('Tie') ```
0
765
C
Table Tennis Game 2
PROGRAMMING
1,200
[ "math" ]
null
null
Misha and Vanya have played several table tennis sets. Each set consists of several serves, each serve is won by one of the players, he receives one point and the loser receives nothing. Once one of the players scores exactly *k* points, the score is reset and a new set begins. Across all the sets Misha scored *a* points in total, and Vanya scored *b* points. Given this information, determine the maximum number of sets they could have played, or that the situation is impossible. Note that the game consisted of several complete sets.
The first line contains three space-separated integers *k*, *a* and *b* (1<=≤<=*k*<=≤<=109, 0<=≤<=*a*,<=*b*<=≤<=109, *a*<=+<=*b*<=&gt;<=0).
If the situation is impossible, print a single number -1. Otherwise, print the maximum possible number of sets.
[ "11 11 5\n", "11 2 3\n" ]
[ "1\n", "-1\n" ]
Note that the rules of the game in this problem differ from the real table tennis game, for example, the rule of "balance" (the winning player has to be at least two points ahead to win a set) has no power within the present problem.
1,250
[ { "input": "11 11 5", "output": "1" }, { "input": "11 2 3", "output": "-1" }, { "input": "1 5 9", "output": "14" }, { "input": "2 3 3", "output": "2" }, { "input": "1 1000000000 1000000000", "output": "2000000000" }, { "input": "2 3 5", "output": "3" }, { "input": "1000000000 1000000000 1000000000", "output": "2" }, { "input": "1 0 1", "output": "1" }, { "input": "101 99 97", "output": "-1" }, { "input": "1000000000 0 1", "output": "-1" }, { "input": "137 137 136", "output": "1" }, { "input": "255 255 255", "output": "2" }, { "input": "1 0 1000000000", "output": "1000000000" }, { "input": "123 456 789", "output": "9" }, { "input": "666666 6666666 666665", "output": "-1" }, { "input": "1000000000 999999999 999999999", "output": "-1" }, { "input": "100000000 100000001 99999999", "output": "-1" }, { "input": "3 2 1000000000", "output": "-1" }, { "input": "999999999 1000000000 999999998", "output": "-1" }, { "input": "12938621 192872393 102739134", "output": "21" }, { "input": "666666666 1230983 666666666", "output": "1" }, { "input": "123456789 123456789 123456787", "output": "1" }, { "input": "5 6 0", "output": "-1" }, { "input": "11 0 12", "output": "-1" }, { "input": "2 11 0", "output": "-1" }, { "input": "2 1 0", "output": "-1" }, { "input": "10 11 12", "output": "2" }, { "input": "11 12 5", "output": "-1" }, { "input": "11 12 3", "output": "-1" }, { "input": "11 15 4", "output": "-1" }, { "input": "2 3 1", "output": "-1" }, { "input": "11 12 0", "output": "-1" }, { "input": "11 13 2", "output": "-1" }, { "input": "11 23 22", "output": "4" }, { "input": "10 21 0", "output": "-1" }, { "input": "11 23 1", "output": "-1" }, { "input": "11 10 12", "output": "-1" }, { "input": "11 1 12", "output": "-1" }, { "input": "11 5 12", "output": "-1" }, { "input": "11 8 12", "output": "-1" }, { "input": "11 12 1", "output": "-1" }, { "input": "5 4 6", "output": "-1" }, { "input": "10 1 22", "output": "-1" }, { "input": "2 3 0", "output": "-1" }, { "input": "11 23 2", "output": "-1" }, { "input": "2 1000000000 1000000000", "output": "1000000000" }, { "input": "11 0 15", "output": "-1" }, { "input": "11 5 0", "output": "-1" }, { "input": "11 5 15", "output": "-1" }, { "input": "10 0 13", "output": "-1" }, { "input": "4 7 0", "output": "-1" }, { "input": "10 2 8", "output": "-1" }, { "input": "11 5 22", "output": "2" }, { "input": "11 13 0", "output": "-1" }, { "input": "2 0 3", "output": "-1" }, { "input": "10 10 0", "output": "1" }, { "input": "10 11 10", "output": "2" }, { "input": "3 5 4", "output": "2" }, { "input": "11 22 3", "output": "2" }, { "input": "11 12 10", "output": "-1" }, { "input": "10 2 13", "output": "-1" }, { "input": "5 6 1", "output": "-1" }, { "input": "10 21 5", "output": "-1" }, { "input": "10 11 9", "output": "-1" }, { "input": "10 17 7", "output": "-1" }, { "input": "3 4 1", "output": "-1" }, { "input": "4 5 3", "output": "-1" }, { "input": "11 3 23", "output": "-1" }, { "input": "11 3 12", "output": "-1" }, { "input": "2 5 0", "output": "-1" }, { "input": "10 21 2", "output": "-1" }, { "input": "5 1 6", "output": "-1" }, { "input": "10 11 0", "output": "-1" }, { "input": "10 9 11", "output": "-1" }, { "input": "7 10 5", "output": "-1" }, { "input": "5 7 2", "output": "-1" }, { "input": "6 5 7", "output": "-1" }, { "input": "11 16 2", "output": "-1" }, { "input": "11 1000000000 10", "output": "-1" }, { "input": "10 2 21", "output": "-1" }, { "input": "10 15 1", "output": "-1" }, { "input": "5 2 8", "output": "-1" }, { "input": "11 10000000 10", "output": "-1" }, { "input": "10 1 101", "output": "-1" }, { "input": "20 24 2", "output": "-1" }, { "input": "11 24 0", "output": "-1" }, { "input": "11 17 4", "output": "-1" }, { "input": "11 13 1", "output": "-1" }, { "input": "10 11 2", "output": "-1" }, { "input": "11 23 3", "output": "-1" }, { "input": "10 99 0", "output": "-1" }, { "input": "6 7 4", "output": "-1" }, { "input": "11 1 22", "output": "2" }, { "input": "11 2 13", "output": "-1" }, { "input": "2 1 3", "output": "-1" }, { "input": "11 6 18", "output": "-1" }, { "input": "11 122 4", "output": "-1" }, { "input": "11 21 10", "output": "-1" }, { "input": "3 2 4", "output": "-1" }, { "input": "9 11 2", "output": "-1" }, { "input": "11 0 7", "output": "-1" }, { "input": "5 9 4", "output": "-1" }, { "input": "100 105 5", "output": "-1" }, { "input": "11 15 0", "output": "-1" }, { "input": "5 6 4", "output": "-1" }, { "input": "3 4 2", "output": "-1" }, { "input": "2 9 0", "output": "-1" }, { "input": "11 13 11", "output": "2" }, { "input": "11 15 5", "output": "-1" }, { "input": "11 4 15", "output": "-1" }, { "input": "10 1 0", "output": "-1" }, { "input": "11 16 8", "output": "-1" }, { "input": "10 43 0", "output": "-1" }, { "input": "11 13 5", "output": "-1" }, { "input": "11 22 0", "output": "2" }, { "input": "5 6 3", "output": "-1" }, { "input": "2 1 11", "output": "-1" }, { "input": "4 5 1", "output": "-1" }, { "input": "11 23 0", "output": "-1" }, { "input": "11 4 12", "output": "-1" }, { "input": "12 13 1", "output": "-1" }, { "input": "10 19 9", "output": "-1" }, { "input": "3 7 2", "output": "-1" }, { "input": "12 18 0", "output": "-1" }, { "input": "11 25 3", "output": "-1" }, { "input": "11 23 5", "output": "-1" }, { "input": "2 1 5", "output": "-1" }, { "input": "2 0 5", "output": "-1" }, { "input": "11 24 1", "output": "-1" }, { "input": "10 11 4", "output": "-1" }, { "input": "2 0 1", "output": "-1" }, { "input": "10 0 21", "output": "-1" }, { "input": "3 0 7", "output": "-1" }, { "input": "18 11 21", "output": "-1" }, { "input": "3 7 0", "output": "-1" }, { "input": "5 11 0", "output": "-1" }, { "input": "11 5 13", "output": "-1" }, { "input": "11 9 34", "output": "-1" }, { "input": "11 13 9", "output": "-1" }, { "input": "10 0 22", "output": "-1" }, { "input": "5 1 12", "output": "-1" }, { "input": "11 2 12", "output": "-1" }, { "input": "11 9 12", "output": "-1" }, { "input": "11 24 2", "output": "-1" }, { "input": "11 23 6", "output": "-1" }, { "input": "11 20 4", "output": "-1" }, { "input": "2 5 1", "output": "-1" }, { "input": "120 132 133", "output": "2" }, { "input": "11 111 4", "output": "-1" }, { "input": "10 7 11", "output": "-1" }, { "input": "6 13 0", "output": "-1" }, { "input": "5 11 1", "output": "-1" }, { "input": "11 5 27", "output": "-1" }, { "input": "11 15 3", "output": "-1" }, { "input": "11 0 13", "output": "-1" }, { "input": "11 13 10", "output": "-1" }, { "input": "11 25 5", "output": "-1" }, { "input": "4 3 5", "output": "-1" }, { "input": "100 199 100", "output": "2" }, { "input": "11 2 22", "output": "2" }, { "input": "10 20 2", "output": "2" }, { "input": "5 5 0", "output": "1" }, { "input": "10 11 1", "output": "-1" }, { "input": "11 12 2", "output": "-1" }, { "input": "5 16 3", "output": "-1" }, { "input": "12 14 1", "output": "-1" }, { "input": "10 22 2", "output": "-1" }, { "input": "2 4 0", "output": "2" }, { "input": "11 34 7", "output": "-1" }, { "input": "6 13 1", "output": "-1" }, { "input": "11 0 23", "output": "-1" }, { "input": "20 21 19", "output": "-1" }, { "input": "11 33 22", "output": "5" }, { "input": "10 4 41", "output": "-1" }, { "input": "3 4 0", "output": "-1" }, { "input": "11 15 7", "output": "-1" }, { "input": "5 0 6", "output": "-1" }, { "input": "11 3 22", "output": "2" }, { "input": "2 6 0", "output": "3" }, { "input": "10 11 11", "output": "2" }, { "input": "11 33 0", "output": "3" }, { "input": "4 6 2", "output": "-1" }, { "input": "11 76 2", "output": "-1" }, { "input": "7 9 4", "output": "-1" }, { "input": "10 43 1", "output": "-1" }, { "input": "22 25 5", "output": "-1" }, { "input": "3 5 2", "output": "-1" }, { "input": "11 1 24", "output": "-1" }, { "input": "12 25 3", "output": "-1" }, { "input": "11 0 22", "output": "2" }, { "input": "4 2 5", "output": "-1" }, { "input": "11 13 3", "output": "-1" }, { "input": "11 12 9", "output": "-1" }, { "input": "11 35 1", "output": "-1" }, { "input": "5 3 6", "output": "-1" }, { "input": "5 11 4", "output": "-1" }, { "input": "12 8 14", "output": "-1" }, { "input": "10 12 9", "output": "-1" }, { "input": "11 12 13", "output": "2" }, { "input": "11 15 2", "output": "-1" }, { "input": "11 23 4", "output": "-1" }, { "input": "5 3 11", "output": "-1" }, { "input": "6 13 2", "output": "-1" }, { "input": "4 1 0", "output": "-1" }, { "input": "11 32 10", "output": "-1" }, { "input": "2 11 1", "output": "-1" }, { "input": "10 11 7", "output": "-1" }, { "input": "11 26 0", "output": "-1" }, { "input": "100 205 5", "output": "-1" }, { "input": "4 0 2", "output": "-1" }, { "input": "10 11 8", "output": "-1" }, { "input": "11 22 5", "output": "2" }, { "input": "4 0 5", "output": "-1" }, { "input": "11 87 22", "output": "9" }, { "input": "4 8 0", "output": "2" }, { "input": "9 8 17", "output": "-1" }, { "input": "10 20 0", "output": "2" }, { "input": "10 9 19", "output": "-1" }, { "input": "12 2 13", "output": "-1" }, { "input": "11 24 5", "output": "-1" }, { "input": "10 1 11", "output": "-1" }, { "input": "4 0 9", "output": "-1" }, { "input": "3 0 1", "output": "-1" }, { "input": "11 12 4", "output": "-1" }, { "input": "3 8 2", "output": "-1" }, { "input": "11 17 10", "output": "-1" }, { "input": "6 1 13", "output": "-1" }, { "input": "11 25 0", "output": "-1" }, { "input": "12 0 13", "output": "-1" }, { "input": "10 5 20", "output": "2" }, { "input": "11 89 2", "output": "-1" }, { "input": "2 4 1", "output": "2" }, { "input": "10 31 0", "output": "-1" }, { "input": "11 34 1", "output": "-1" }, { "input": "999 6693 8331", "output": "14" }, { "input": "10 55 1", "output": "-1" }, { "input": "11 12 8", "output": "-1" }, { "input": "1 9 22", "output": "31" }, { "input": "7572 9186 895", "output": "-1" }, { "input": "3 2 11", "output": "-1" }, { "input": "2 1 4", "output": "2" }, { "input": "11 10 19", "output": "-1" }, { "input": "100 199 99", "output": "-1" }, { "input": "2537 8926 1523", "output": "-1" }, { "input": "11 0 5", "output": "-1" }, { "input": "5 1 11", "output": "-1" }, { "input": "12 13 5", "output": "-1" }, { "input": "10 12 0", "output": "-1" }, { "input": "5 4 7", "output": "-1" }, { "input": "12 25 1", "output": "-1" }, { "input": "7 9 0", "output": "-1" }, { "input": "4 15 0", "output": "-1" }, { "input": "5 11 2", "output": "-1" }, { "input": "11 58 3", "output": "-1" }, { "input": "10 11 5", "output": "-1" }, { "input": "10 3 1003", "output": "-1" }, { "input": "11 14 0", "output": "-1" }, { "input": "11 8 23", "output": "-1" }, { "input": "11 22 4", "output": "2" }, { "input": "5 2 0", "output": "-1" }, { "input": "11 1 35", "output": "-1" }, { "input": "12 25 5", "output": "-1" }, { "input": "11 37 4", "output": "-1" }, { "input": "20 42 3", "output": "-1" }, { "input": "10 12 2", "output": "-1" }, { "input": "4 1 5", "output": "-1" }, { "input": "5 16 0", "output": "-1" }, { "input": "11 13 7", "output": "-1" }, { "input": "5 0 3", "output": "-1" }, { "input": "11 2 11", "output": "1" }, { "input": "3 2 2000", "output": "-1" }, { "input": "3 0 4241", "output": "-1" }, { "input": "2 12 11", "output": "11" }, { "input": "10 2 82", "output": "-1" }, { "input": "11 0 11", "output": "1" }, { "input": "11 20 20", "output": "2" }, { "input": "5 0 10", "output": "2" }, { "input": "11 1 0", "output": "-1" }, { "input": "11 13 13", "output": "2" } ]
1,601,012,713
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
14
109
0
# -*- coding: utf-8 -*- """ Created on Fri Sep 25 11:42:59 2020 @author: Dark Soul """ [k,a,b]=list(map(int,input().split())) ans=(a//k)+(b//k) if ans<1: print(-1) else: print(ans)
Title: Table Tennis Game 2 Time Limit: None seconds Memory Limit: None megabytes Problem Description: Misha and Vanya have played several table tennis sets. Each set consists of several serves, each serve is won by one of the players, he receives one point and the loser receives nothing. Once one of the players scores exactly *k* points, the score is reset and a new set begins. Across all the sets Misha scored *a* points in total, and Vanya scored *b* points. Given this information, determine the maximum number of sets they could have played, or that the situation is impossible. Note that the game consisted of several complete sets. Input Specification: The first line contains three space-separated integers *k*, *a* and *b* (1<=≤<=*k*<=≤<=109, 0<=≤<=*a*,<=*b*<=≤<=109, *a*<=+<=*b*<=&gt;<=0). Output Specification: If the situation is impossible, print a single number -1. Otherwise, print the maximum possible number of sets. Demo Input: ['11 11 5\n', '11 2 3\n'] Demo Output: ['1\n', '-1\n'] Note: Note that the rules of the game in this problem differ from the real table tennis game, for example, the rule of "balance" (the winning player has to be at least two points ahead to win a set) has no power within the present problem.
```python # -*- coding: utf-8 -*- """ Created on Fri Sep 25 11:42:59 2020 @author: Dark Soul """ [k,a,b]=list(map(int,input().split())) ans=(a//k)+(b//k) if ans<1: print(-1) else: print(ans) ```
0
266
A
Stones on the Table
PROGRAMMING
800
[ "implementation" ]
null
null
There are *n* stones on the table in a row, each of them can be red, green or blue. Count the minimum number of stones to take from the table so that any two neighboring stones had different colors. Stones in a row are considered neighboring if there are no other stones between them.
The first line contains integer *n* (1<=≤<=*n*<=≤<=50) — the number of stones on the table. The next line contains string *s*, which represents the colors of the stones. We'll consider the stones in the row numbered from 1 to *n* from left to right. Then the *i*-th character *s* equals "R", if the *i*-th stone is red, "G", if it's green and "B", if it's blue.
Print a single integer — the answer to the problem.
[ "3\nRRG\n", "5\nRRRRR\n", "4\nBRBG\n" ]
[ "1\n", "4\n", "0\n" ]
none
500
[ { "input": "3\nRRG", "output": "1" }, { "input": "5\nRRRRR", "output": "4" }, { "input": "4\nBRBG", "output": "0" }, { "input": "1\nB", "output": "0" }, { "input": "2\nBG", "output": "0" }, { "input": "3\nBGB", "output": "0" }, { "input": "4\nRBBR", "output": "1" }, { "input": "5\nRGGBG", "output": "1" }, { "input": "10\nGGBRBRGGRB", "output": "2" }, { "input": "50\nGRBGGRBRGRBGGBBBBBGGGBBBBRBRGBRRBRGBBBRBBRRGBGGGRB", "output": "18" }, { "input": "15\nBRRBRGGBBRRRRGR", "output": "6" }, { "input": "20\nRRGBBRBRGRGBBGGRGRRR", "output": "6" }, { "input": "25\nBBGBGRBGGBRRBGRRBGGBBRBRB", "output": "6" }, { "input": "30\nGRGGGBGGRGBGGRGRBGBGBRRRRRRGRB", "output": "9" }, { "input": "35\nGBBGBRGBBGGRBBGBRRGGRRRRRRRBRBBRRGB", "output": "14" }, { "input": "40\nGBBRRGBGGGRGGGRRRRBRBGGBBGGGBGBBBBBRGGGG", "output": "20" }, { "input": "45\nGGGBBRBBRRGRBBGGBGRBRGGBRBRGBRRGBGRRBGRGRBRRG", "output": "11" }, { "input": "50\nRBGGBGGRBGRBBBGBBGRBBBGGGRBBBGBBBGRGGBGGBRBGBGRRGG", "output": "17" }, { "input": "50\nGGGBBRGGGGGRRGGRBGGRGBBRBRRBGRGBBBGBRBGRGBBGRGGBRB", "output": "16" }, { "input": "50\nGBGRGRRBRRRRRGGBBGBRRRBBBRBBBRRGRBBRGBRBGGRGRBBGGG", "output": "19" }, { "input": "10\nGRRBRBRBGR", "output": "1" }, { "input": "10\nBRBGBGRRBR", "output": "1" }, { "input": "20\nGBGBGGRRRRGRBBGRGRGR", "output": "5" }, { "input": "20\nRRGGRBBGBBRBGRRBRRBG", "output": "6" }, { "input": "30\nBGBRGBBBGRGBBRGBGRBBBRGGRRGRRB", "output": "8" }, { "input": "30\nBBBBGGBRBGBBGBGBGBGGGRGRRGGBBB", "output": "11" }, { "input": "40\nGBRRGRBGBRRGBRGGGBRGBGBRGBBRRGRGGBBGBGBB", "output": "9" }, { "input": "40\nBRGRGGRGGRBBRRRBRBBGGGRRGBGBBGRBBRGBRRGG", "output": "13" }, { "input": "50\nRBGBGGRRGGRGGBGBGRRBGGBGBRRBBGBBGBBBGBBRBBRBRBRGRG", "output": "13" }, { "input": "50\nRBRRGBGRRRBGRRBGRRGRBBRBBRRBRGGBRBRRBGGRBGGBRBRGRB", "output": "12" }, { "input": "2\nBB", "output": "1" }, { "input": "50\nRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR", "output": "49" }, { "input": "50\nRRRRRRRRGRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR", "output": "47" }, { "input": "50\nRRRRRRRRRRRRGGRRRRRRRRRBRRRRRRRRRRRRRRBBRRRRRRRRRR", "output": "43" } ]
1,699,117,956
2,147,483,647
Python 3
OK
TESTS
34
92
0
x=int (input()) y=input() count=0 for i in range(x): for j in range(i+1,x): if y[i]==y[j]: count+=1 break else: break print(count)
Title: Stones on the Table Time Limit: None seconds Memory Limit: None megabytes Problem Description: There are *n* stones on the table in a row, each of them can be red, green or blue. Count the minimum number of stones to take from the table so that any two neighboring stones had different colors. Stones in a row are considered neighboring if there are no other stones between them. Input Specification: The first line contains integer *n* (1<=≤<=*n*<=≤<=50) — the number of stones on the table. The next line contains string *s*, which represents the colors of the stones. We'll consider the stones in the row numbered from 1 to *n* from left to right. Then the *i*-th character *s* equals "R", if the *i*-th stone is red, "G", if it's green and "B", if it's blue. Output Specification: Print a single integer — the answer to the problem. Demo Input: ['3\nRRG\n', '5\nRRRRR\n', '4\nBRBG\n'] Demo Output: ['1\n', '4\n', '0\n'] Note: none
```python x=int (input()) y=input() count=0 for i in range(x): for j in range(i+1,x): if y[i]==y[j]: count+=1 break else: break print(count) ```
3
141
A
Amusing Joke
PROGRAMMING
800
[ "implementation", "sortings", "strings" ]
null
null
So, the New Year holidays are over. Santa Claus and his colleagues can take a rest and have guests at last. When two "New Year and Christmas Men" meet, thear assistants cut out of cardboard the letters from the guest's name and the host's name in honor of this event. Then the hung the letters above the main entrance. One night, when everyone went to bed, someone took all the letters of our characters' names. Then he may have shuffled the letters and put them in one pile in front of the door. The next morning it was impossible to find the culprit who had made the disorder. But everybody wondered whether it is possible to restore the names of the host and his guests from the letters lying at the door? That is, we need to verify that there are no extra letters, and that nobody will need to cut more letters. Help the "New Year and Christmas Men" and their friends to cope with this problem. You are given both inscriptions that hung over the front door the previous night, and a pile of letters that were found at the front door next morning.
The input file consists of three lines: the first line contains the guest's name, the second line contains the name of the residence host and the third line contains letters in a pile that were found at the door in the morning. All lines are not empty and contain only uppercase Latin letters. The length of each line does not exceed 100.
Print "YES" without the quotes, if the letters in the pile could be permuted to make the names of the "New Year and Christmas Men". Otherwise, print "NO" without the quotes.
[ "SANTACLAUS\nDEDMOROZ\nSANTAMOROZDEDCLAUS\n", "PAPAINOEL\nJOULUPUKKI\nJOULNAPAOILELUPUKKI\n", "BABBONATALE\nFATHERCHRISTMAS\nBABCHRISTMASBONATALLEFATHER\n" ]
[ "YES\n", "NO\n", "NO\n" ]
In the first sample the letters written in the last line can be used to write the names and there won't be any extra letters left. In the second sample letter "P" is missing from the pile and there's an extra letter "L". In the third sample there's an extra letter "L".
500
[ { "input": "SANTACLAUS\nDEDMOROZ\nSANTAMOROZDEDCLAUS", "output": "YES" }, { "input": "PAPAINOEL\nJOULUPUKKI\nJOULNAPAOILELUPUKKI", "output": "NO" }, { "input": "BABBONATALE\nFATHERCHRISTMAS\nBABCHRISTMASBONATALLEFATHER", "output": "NO" }, { "input": "B\nA\nAB", "output": "YES" }, { "input": "ONDOL\nJNPB\nONLNJBODP", "output": "YES" }, { "input": "Y\nW\nYW", "output": "YES" }, { "input": "OI\nM\nIMO", "output": "YES" }, { "input": "VFQRWWWACX\nGHZJPOQUSXRAQDGOGMR\nOPAWDOUSGWWCGQXXQAZJRQRGHRMVF", "output": "YES" }, { "input": "JUTCN\nPIGMZOPMEUFADQBW\nNWQGZMAIPUPOMCDUB", "output": "NO" }, { "input": "Z\nO\nZOCNDOLTBZKQLTBOLDEGXRHZGTTPBJBLSJCVSVXISQZCSFDEBXRCSGBGTHWOVIXYHACAGBRYBKBJAEPIQZHVEGLYH", "output": "NO" }, { "input": "IQ\nOQ\nQOQIGGKFNHJSGCGM", "output": "NO" }, { "input": "ROUWANOPNIGTVMIITVMZ\nOQTUPZMTKUGY\nVTVNGZITGPUNPMQOOATUUIYIWMMKZOTR", "output": "YES" }, { "input": "OVQELLOGFIOLEHXMEMBJDIGBPGEYFG\nJNKFPFFIJOFHRIFHXEWYZOPDJBZTJZKBWQTECNHRFSJPJOAPQT\nYAIPFFFEXJJNEJPLREIGODEGQZVMCOBDFKWTMWJSBEBTOFFQOHIQJLHFNXIGOHEZRZLFOKJBJPTPHPGY", "output": "YES" }, { "input": "NBJGVNGUISUXQTBOBKYHQCOOVQWUXWPXBUDLXPKX\nNSFQDFUMQDQWQ\nWXKKVNTDQQFXCUQBIMQGQHSLVGWSBFYBUPOWPBDUUJUXQNOQDNXOX", "output": "YES" }, { "input": "IJHHGKCXWDBRWJUPRDBZJLNTTNWKXLUGJSBWBOAUKWRAQWGFNL\nNJMWRMBCNPHXTDQQNZ\nWDNJRCLILNQRHWBANLTXWMJBPKUPGKJDJZAQWKTZFBRCTXHHBNXRGUQUNBNMWODGSJWW", "output": "YES" }, { "input": "SRROWANGUGZHCIEFYMQVTWVOMDWPUZJFRDUMVFHYNHNTTGNXCJ\nDJYWGLBFCCECXFHOLORDGDCNRHPWXNHXFCXQCEZUHRRNAEKUIX\nWCUJDNYHNHYOPWMHLDCDYRWBVOGHFFUKOZTXJRXJHRGWICCMRNEVNEGQWTZPNFCSHDRFCFQDCXMHTLUGZAXOFNXNVGUEXIACRERU", "output": "YES" }, { "input": "H\nJKFGHMIAHNDBMFXWYQLZRSVNOTEGCQSVUBYUOZBTNKTXPFQDCMKAGFITEUGOYDFIYQIORMFJEOJDNTFVIQEBICSNGKOSNLNXJWC\nBQSVDOGIHCHXSYNYTQFCHNJGYFIXTSOQINZOKSVQJMTKNTGFNXAVTUYEONMBQMGJLEWJOFGEARIOPKFUFCEMUBRBDNIIDFZDCLWK", "output": "YES" }, { "input": "DSWNZRFVXQ\nPVULCZGOOU\nUOLVZXNUPOQRZGWFVDSCANQTCLEIE", "output": "NO" }, { "input": "EUHTSCENIPXLTSBMLFHD\nIZAVSZPDLXOAGESUSE\nLXAELAZ", "output": "NO" }, { "input": "WYSJFEREGELSKRQRXDXCGBODEFZVSI\nPEJKMGFLBFFDWRCRFSHVEFLEBTJCVCHRJTLDTISHPOGFWPLEWNYJLMXWIAOTYOXMV\nHXERTZWLEXTPIOTFRVMEJVYFFJLRPFMXDEBNSGCEOFFCWTKIDDGCFYSJKGLHBORWEPLDRXRSJYBGASSVCMHEEJFLVI", "output": "NO" }, { "input": "EPBMDIUQAAUGLBIETKOKFLMTCVEPETWJRHHYKCKU\nHGMAETVPCFZYNNKDQXVXUALHYLOTCHM\nECGXACVKEYMCEDOTMKAUFHLHOMT", "output": "NO" }, { "input": "NUBKQEJHALANSHEIFUZHYEZKKDRFHQKAJHLAOWTZIMOCWOVVDW\nEFVOBIGAUAUSQGVSNBKNOBDMINODMFSHDL\nKLAMKNTHBFFOHVKWICHBKNDDQNEISODUSDNLUSIOAVWY", "output": "NO" }, { "input": "VXINHOMEQCATZUGAJEIUIZZLPYFGUTVLNBNWCUVMEENUXKBWBGZTMRJJVJDLVSLBABVCEUDDSQFHOYPYQTWVAGTWOLKYISAGHBMC\nZMRGXPZSHOGCSAECAPGVOIGCWEOWWOJXLGYRDMPXBLOKZVRACPYQLEQGFQCVYXAGBEBELUTDAYEAGPFKXRULZCKFHZCHVCWIRGPK\nRCVUXGQVNWFGRUDLLENNDQEJHYYVWMKTLOVIPELKPWCLSQPTAXAYEMGWCBXEVAIZGGDDRBRT", "output": "NO" }, { "input": "PHBDHHWUUTZAHELGSGGOPOQXSXEZIXHZTOKYFBQLBDYWPVCNQSXHEAXRRPVHFJBVBYCJIFOTQTWSUOWXLKMVJJBNLGTVITWTCZZ\nFUPDLNVIHRWTEEEHOOEC\nLOUSUUSZCHJBPEWIILUOXEXRQNCJEGTOBRVZLTTZAHTKVEJSNGHFTAYGY", "output": "NO" }, { "input": "GDSLNIIKTO\nJF\nPDQYFKDTNOLI", "output": "NO" }, { "input": "AHOKHEKKPJLJIIWJRCGY\nORELJCSIX\nZVWPXVFWFSWOXXLIHJKPXIOKRELYE", "output": "NO" }, { "input": "ZWCOJFORBPHXCOVJIDPKVECMHVHCOC\nTEV\nJVGTBFTLFVIEPCCHODOFOMCVZHWXVCPEH", "output": "NO" }, { "input": "AGFIGYWJLVMYZGNQHEHWKJIAWBPUAQFERMCDROFN\nPMJNHMVNRGCYZAVRWNDSMLSZHFNYIUWFPUSKKIGU\nMCDVPPRXGUAYLSDRHRURZASXUWZSIIEZCPXUVEONKNGNWRYGOSFMCKESMVJZHWWUCHWDQMLASLNNMHAU", "output": "NO" }, { "input": "XLOWVFCZSSXCSYQTIIDKHNTKNKEEDFMDZKXSPVLBIDIREDUAIN\nZKIWNDGBISDB\nSLPKLYFYSRNRMOSWYLJJDGFFENPOXYLPZFTQDANKBDNZDIIEWSUTTKYBKVICLG", "output": "NO" }, { "input": "PMUKBTRKFIAYVGBKHZHUSJYSSEPEOEWPOSPJLWLOCTUYZODLTUAFCMVKGQKRRUSOMPAYOTBTFPXYAZXLOADDEJBDLYOTXJCJYTHA\nTWRRAJLCQJTKOKWCGUH\nEWDPNXVCXWCDQCOYKKSOYTFSZTOOPKPRDKFJDETKSRAJRVCPDOBWUGPYRJPUWJYWCBLKOOTUPBESTOFXZHTYLLMCAXDYAEBUTAHM", "output": "NO" }, { "input": "QMIMGQRQDMJDPNFEFXSXQMCHEJKTWCTCVZPUAYICOIRYOWKUSIWXJLHDYWSBOITHTMINXFKBKAWZTXXBJIVYCRWKXNKIYKLDDXL\nV\nFWACCXBVDOJFIUAVYRALBYJKXXWIIFORRUHKHCXLDBZMXIYJWISFEAWTIQFIZSBXMKNOCQKVKRWDNDAMQSTKYLDNYVTUCGOJXJTW", "output": "NO" }, { "input": "XJXPVOOQODELPPWUISSYVVXRJTYBPDHJNENQEVQNVFIXSESKXVYPVVHPMOSX\nLEXOPFPVPSZK\nZVXVPYEYOYXVOISVLXPOVHEQVXPNQJIOPFDTXEUNMPEPPHELNXKKWSVSOXSBPSJDPVJVSRFQ", "output": "YES" }, { "input": "OSKFHGYNQLSRFSAHPXKGPXUHXTRBJNAQRBSSWJVEENLJCDDHFXVCUNPZAIVVO\nFNUOCXAGRRHNDJAHVVLGGEZQHWARYHENBKHP\nUOEFNWVXCUNERLKVTHAGPSHKHDYFPYWZHJKHQLSNFBJHVJANRXCNSDUGVDABGHVAOVHBJZXGRACHRXEGNRPQEAPORQSILNXFS", "output": "YES" }, { "input": "VYXYVVACMLPDHONBUTQFZTRREERBLKUJYKAHZRCTRLRCLOZYWVPBRGDQPFPQIF\nFE\nRNRPEVDRLYUQFYRZBCQLCYZEABKLRXCJLKVZBVFUEYRATOMDRTHFPGOWQVTIFPPH", "output": "YES" }, { "input": "WYXUZQJQNLASEGLHPMSARWMTTQMQLVAZLGHPIZTRVTCXDXBOLNXZPOFCTEHCXBZ\nBLQZRRWP\nGIQZXPLTTMNHQVWPPEAPLOCDMBSTHRCFLCQRRZXLVAOQEGZBRUZJXXZTMAWLZHSLWNQTYXB", "output": "YES" }, { "input": "MKVJTSSTDGKPVVDPYSRJJYEVGKBMSIOKHLZQAEWLRIBINVRDAJIBCEITKDHUCCVY\nPUJJQFHOGZKTAVNUGKQUHMKTNHCCTI\nQVJKUSIGTSVYUMOMLEGHWYKSKQTGATTKBNTKCJKJPCAIRJIRMHKBIZISEGFHVUVQZBDERJCVAKDLNTHUDCHONDCVVJIYPP", "output": "YES" }, { "input": "OKNJOEYVMZXJMLVJHCSPLUCNYGTDASKSGKKCRVIDGEIBEWRVBVRVZZTLMCJLXHJIA\nDJBFVRTARTFZOWN\nAGHNVUNJVCPLWSVYBJKZSVTFGLELZASLWTIXDDJXCZDICTVIJOTMVEYOVRNMJGRKKHRMEBORAKFCZJBR", "output": "YES" }, { "input": "OQZACLPSAGYDWHFXDFYFRRXWGIEJGSXWUONAFWNFXDTGVNDEWNQPHUXUJNZWWLBPYL\nOHBKWRFDRQUAFRCMT\nWIQRYXRJQWWRUWCYXNXALKFZGXFTLOODWRDPGURFUFUQOHPWBASZNVWXNCAGHWEHFYESJNFBMNFDDAPLDGT", "output": "YES" }, { "input": "OVIRQRFQOOWVDEPLCJETWQSINIOPLTLXHSQWUYUJNFBMKDNOSHNJQQCDHZOJVPRYVSV\nMYYDQKOOYPOOUELCRIT\nNZSOTVLJTTVQLFHDQEJONEOUOFOLYVSOIYUDNOSIQVIRMVOERCLMYSHPCQKIDRDOQPCUPQBWWRYYOXJWJQPNKH", "output": "YES" }, { "input": "WGMBZWNMSJXNGDUQUJTCNXDSJJLYRDOPEGPQXYUGBESDLFTJRZDDCAAFGCOCYCQMDBWK\nYOBMOVYTUATTFGJLYUQD\nDYXVTLQCYFJUNJTUXPUYOPCBCLBWNSDUJRJGWDOJDSQAAMUOJWSYERDYDXYTMTOTMQCGQZDCGNFBALGGDFKZMEBG", "output": "YES" }, { "input": "CWLRBPMEZCXAPUUQFXCUHAQTLPBTXUUKWVXKBHKNSSJFEXLZMXGVFHHVTPYAQYTIKXJJE\nMUFOSEUEXEQTOVLGDSCWM\nJUKEQCXOXWEHCGKFPBIGMWVJLXUONFXBYTUAXERYTXKCESKLXAEHVPZMMUFTHLXTTZSDMBJLQPEUWCVUHSQQVUASPF", "output": "YES" }, { "input": "IDQRX\nWETHO\nODPDGBHVUVSSISROHQJTUKPUCLXABIZQQPPBPKOSEWGEHRSRRNBAVLYEMZISMWWGKHVTXKUGUXEFBSWOIWUHRJGMWBMHQLDZHBWA", "output": "NO" }, { "input": "IXFDY\nJRMOU\nDF", "output": "NO" }, { "input": "JPSPZ\nUGCUB\nJMZZZZZZZZ", "output": "NO" }, { "input": "AC\nA\nBBA", "output": "NO" }, { "input": "UIKWWKXLSHTOOZOVGXKYSOJEHAUEEG\nKZXQDWJJWRXFHKJDQHJK\nXMZHTFOGEXAUJXXJUYVJIFOTKLZHDKELJWERHMGAWGKWAQKEKHIDWGGZVYOHKXRPWSJDPESFJUMKQYWBYUTHQYEFZUGKQOBHYDWB", "output": "NO" }, { "input": "PXWRXRPFLR\nPJRWWXIVHODV\nXW", "output": "NO" }, { "input": "CHTAZVHGSHCVIBK\nEQINEBKXEPYJSAZIMLDF\nZCZZZZDZMCZZEZDZZEZZZZQZZBZZZOZZCZE", "output": "NO" }, { "input": "GXPZFSELJJNDAXYRV\nUYBKPMVBSOVOJWMONLTJOJCNQKMTAHEWLHOWIIBH\nHCWNFWJPEJIWOVPTBMVCRJLSISSVNOHCKLBFMIUAIMASQWPXEYXBOXQGFEMYJLBKDCZIMJNHOJEDGGANIVYKQTUOSOVOPWHVJGXH", "output": "NO" }, { "input": "LFGJCJJDUTUP\nOVSBILTIYCJCRHKCIXCETJQJJ\nGIJJTJCLTJJJ", "output": "NO" }, { "input": "GIO\nPRL\nPRL", "output": "NO" }, { "input": "A\nB\nABC", "output": "NO" }, { "input": "KKK\nKKK\nZZZZZ", "output": "NO" }, { "input": "ZMYGQLDBLAPN\nZFJBKWHROVNPSJQUDFTHOCGREUFLYIWYICD\nZMJZZEDAZANKZZZZZZEZZBZDZZZZZZKHZZFZZZDZNZMDZZA", "output": "NO" } ]
1,681,127,705
2,147,483,647
Python 3
OK
TESTS
54
92
0
s = list(input()) + list(input()) s2 =list(input()) print('YES' if sorted(s) == sorted(s2) else 'NO')
Title: Amusing Joke Time Limit: None seconds Memory Limit: None megabytes Problem Description: So, the New Year holidays are over. Santa Claus and his colleagues can take a rest and have guests at last. When two "New Year and Christmas Men" meet, thear assistants cut out of cardboard the letters from the guest's name and the host's name in honor of this event. Then the hung the letters above the main entrance. One night, when everyone went to bed, someone took all the letters of our characters' names. Then he may have shuffled the letters and put them in one pile in front of the door. The next morning it was impossible to find the culprit who had made the disorder. But everybody wondered whether it is possible to restore the names of the host and his guests from the letters lying at the door? That is, we need to verify that there are no extra letters, and that nobody will need to cut more letters. Help the "New Year and Christmas Men" and their friends to cope with this problem. You are given both inscriptions that hung over the front door the previous night, and a pile of letters that were found at the front door next morning. Input Specification: The input file consists of three lines: the first line contains the guest's name, the second line contains the name of the residence host and the third line contains letters in a pile that were found at the door in the morning. All lines are not empty and contain only uppercase Latin letters. The length of each line does not exceed 100. Output Specification: Print "YES" without the quotes, if the letters in the pile could be permuted to make the names of the "New Year and Christmas Men". Otherwise, print "NO" without the quotes. Demo Input: ['SANTACLAUS\nDEDMOROZ\nSANTAMOROZDEDCLAUS\n', 'PAPAINOEL\nJOULUPUKKI\nJOULNAPAOILELUPUKKI\n', 'BABBONATALE\nFATHERCHRISTMAS\nBABCHRISTMASBONATALLEFATHER\n'] Demo Output: ['YES\n', 'NO\n', 'NO\n'] Note: In the first sample the letters written in the last line can be used to write the names and there won't be any extra letters left. In the second sample letter "P" is missing from the pile and there's an extra letter "L". In the third sample there's an extra letter "L".
```python s = list(input()) + list(input()) s2 =list(input()) print('YES' if sorted(s) == sorted(s2) else 'NO') ```
3
0
none
none
none
0
[ "none" ]
null
null
Vlad likes to eat in cafes very much. During his life, he has visited cafes *n* times. Unfortunately, Vlad started to feel that his last visits are not any different from each other. To fix that Vlad had a small research. First of all, Vlad assigned individual indices to all cafes. Then, he wrote down indices of cafes he visited in a row, in order of visiting them. Now, Vlad wants to find such a cafe that his last visit to that cafe was before his last visits to every other cafe. In other words, he wants to find such a cafe that he hasn't been there for as long as possible. Help Vlad to find that cafe.
In first line there is one integer *n* (1<=≤<=*n*<=≤<=2·105) — number of cafes indices written by Vlad. In second line, *n* numbers *a*1,<=*a*2,<=...,<=*a**n* (0<=≤<=*a**i*<=≤<=2·105) are written — indices of cafes in order of being visited by Vlad. Vlad could visit some cafes more than once. Note that in numeration, some indices could be omitted.
Print one integer — index of the cafe that Vlad hasn't visited for as long as possible.
[ "5\n1 3 2 1 2\n", "6\n2 1 2 2 4 1\n" ]
[ "3\n", "2\n" ]
In first test, there are three cafes, and the last visits to cafes with indices 1 and 2 were after the last visit to cafe with index 3; so this cafe is the answer. In second test case, there are also three cafes, but with indices 1, 2 and 4. Cafes with indices 1 and 4 were visited after the last visit of cafe with index 2, so the answer is 2. Note that Vlad could omit some numbers while numerating the cafes.
0
[ { "input": "5\n1 3 2 1 2", "output": "3" }, { "input": "6\n2 1 2 2 4 1", "output": "2" }, { "input": "1\n0", "output": "0" }, { "input": "1\n200000", "output": "200000" }, { "input": "2\n2018 2017", "output": "2018" }, { "input": "5\n100 1000 1000 1000 1000", "output": "100" }, { "input": "8\n200000 1 200000 1 200000 1 200000 2", "output": "1" }, { "input": "5\n20000 1 2 3 4", "output": "20000" }, { "input": "2\n200000 1", "output": "200000" }, { "input": "3\n2 100 2", "output": "100" }, { "input": "2\n10 1", "output": "10" }, { "input": "11\n1 1 1 1 1 1 1 1 1 1 1", "output": "1" }, { "input": "3\n5 5 5", "output": "5" }, { "input": "2\n5 1", "output": "5" } ]
1,519,753,788
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
1
61
5,734,400
from collections import OrderedDict n = int(input()) A = list(map(int, input().split())) print(list(OrderedDict.fromkeys(A))[1])
Title: none Time Limit: None seconds Memory Limit: None megabytes Problem Description: Vlad likes to eat in cafes very much. During his life, he has visited cafes *n* times. Unfortunately, Vlad started to feel that his last visits are not any different from each other. To fix that Vlad had a small research. First of all, Vlad assigned individual indices to all cafes. Then, he wrote down indices of cafes he visited in a row, in order of visiting them. Now, Vlad wants to find such a cafe that his last visit to that cafe was before his last visits to every other cafe. In other words, he wants to find such a cafe that he hasn't been there for as long as possible. Help Vlad to find that cafe. Input Specification: In first line there is one integer *n* (1<=≤<=*n*<=≤<=2·105) — number of cafes indices written by Vlad. In second line, *n* numbers *a*1,<=*a*2,<=...,<=*a**n* (0<=≤<=*a**i*<=≤<=2·105) are written — indices of cafes in order of being visited by Vlad. Vlad could visit some cafes more than once. Note that in numeration, some indices could be omitted. Output Specification: Print one integer — index of the cafe that Vlad hasn't visited for as long as possible. Demo Input: ['5\n1 3 2 1 2\n', '6\n2 1 2 2 4 1\n'] Demo Output: ['3\n', '2\n'] Note: In first test, there are three cafes, and the last visits to cafes with indices 1 and 2 were after the last visit to cafe with index 3; so this cafe is the answer. In second test case, there are also three cafes, but with indices 1, 2 and 4. Cafes with indices 1 and 4 were visited after the last visit of cafe with index 2, so the answer is 2. Note that Vlad could omit some numbers while numerating the cafes.
```python from collections import OrderedDict n = int(input()) A = list(map(int, input().split())) print(list(OrderedDict.fromkeys(A))[1]) ```
0
279
B
Books
PROGRAMMING
1,400
[ "binary search", "brute force", "implementation", "two pointers" ]
null
null
When Valera has got some free time, he goes to the library to read some books. Today he's got *t* free minutes to read. That's why Valera took *n* books in the library and for each book he estimated the time he is going to need to read it. Let's number the books by integers from 1 to *n*. Valera needs *a**i* minutes to read the *i*-th book. Valera decided to choose an arbitrary book with number *i* and read the books one by one, starting from this book. In other words, he will first read book number *i*, then book number *i*<=+<=1, then book number *i*<=+<=2 and so on. He continues the process until he either runs out of the free time or finishes reading the *n*-th book. Valera reads each book up to the end, that is, he doesn't start reading the book if he doesn't have enough free time to finish reading it. Print the maximum number of books Valera can read.
The first line contains two integers *n* and *t* (1<=≤<=*n*<=≤<=105; 1<=≤<=*t*<=≤<=109) — the number of books and the number of free minutes Valera's got. The second line contains a sequence of *n* integers *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=104), where number *a**i* shows the number of minutes that the boy needs to read the *i*-th book.
Print a single integer — the maximum number of books Valera can read.
[ "4 5\n3 1 2 1\n", "3 3\n2 2 3\n" ]
[ "3\n", "1\n" ]
none
1,000
[ { "input": "4 5\n3 1 2 1", "output": "3" }, { "input": "3 3\n2 2 3", "output": "1" }, { "input": "1 3\n5", "output": "0" }, { "input": "1 10\n4", "output": "1" }, { "input": "2 10\n6 4", "output": "2" }, { "input": "6 10\n2 3 4 2 1 1", "output": "4" }, { "input": "7 13\n6 8 14 9 4 11 10", "output": "2" }, { "input": "10 15\n10 9 1 1 5 10 5 3 7 2", "output": "3" }, { "input": "20 30\n8 1 2 6 9 4 1 9 9 10 4 7 8 9 5 7 1 8 7 4", "output": "6" }, { "input": "30 60\n16 13 22 38 13 35 17 17 20 38 12 19 9 22 20 3 35 34 34 21 35 40 22 3 27 19 12 4 8 19", "output": "4" }, { "input": "100 100\n75 92 18 6 81 67 7 92 100 65 82 32 50 67 85 31 80 91 84 63 39 52 92 81 1 98 24 12 43 48 17 86 51 72 48 95 45 50 12 66 19 79 49 89 34 1 97 75 20 33 96 27 42 23 73 71 93 1 85 19 66 14 17 61 20 39 36 33 42 61 56 64 23 91 80 99 40 74 13 18 98 85 74 39 62 84 46 74 50 23 38 11 79 14 9 25 66 100 25 52", "output": "3" }, { "input": "10 1\n4418 7528 8170 1736 1317 3205 8183 4995 8039 4708", "output": "0" }, { "input": "50 2\n124 214 63 73 996 760 38 571 451 300 970 1 706 937 837 494 619 88 851 411 957 990 842 613 821 649 627 34 693 678 734 116 816 985 705 940 499 493 922 967 854 439 112 644 961 438 189 572 655 550", "output": "1" } ]
1,680,345,277
2,147,483,647
PyPy 3
WRONG_ANSWER
TESTS
5
124
0
n,t=map(int,input().split()) lis=list(map(int,input().split())) lis.sort() ans=0 for i in range(n): if t-lis[i]>=0: t-=lis[i] ans+=1 else: break print(ans)
Title: Books Time Limit: None seconds Memory Limit: None megabytes Problem Description: When Valera has got some free time, he goes to the library to read some books. Today he's got *t* free minutes to read. That's why Valera took *n* books in the library and for each book he estimated the time he is going to need to read it. Let's number the books by integers from 1 to *n*. Valera needs *a**i* minutes to read the *i*-th book. Valera decided to choose an arbitrary book with number *i* and read the books one by one, starting from this book. In other words, he will first read book number *i*, then book number *i*<=+<=1, then book number *i*<=+<=2 and so on. He continues the process until he either runs out of the free time or finishes reading the *n*-th book. Valera reads each book up to the end, that is, he doesn't start reading the book if he doesn't have enough free time to finish reading it. Print the maximum number of books Valera can read. Input Specification: The first line contains two integers *n* and *t* (1<=≤<=*n*<=≤<=105; 1<=≤<=*t*<=≤<=109) — the number of books and the number of free minutes Valera's got. The second line contains a sequence of *n* integers *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=104), where number *a**i* shows the number of minutes that the boy needs to read the *i*-th book. Output Specification: Print a single integer — the maximum number of books Valera can read. Demo Input: ['4 5\n3 1 2 1\n', '3 3\n2 2 3\n'] Demo Output: ['3\n', '1\n'] Note: none
```python n,t=map(int,input().split()) lis=list(map(int,input().split())) lis.sort() ans=0 for i in range(n): if t-lis[i]>=0: t-=lis[i] ans+=1 else: break print(ans) ```
0
2
A
Winner
PROGRAMMING
1,500
[ "hashing", "implementation" ]
A. Winner
1
64
The winner of the card game popular in Berland "Berlogging" is determined according to the following rules. If at the end of the game there is only one player with the maximum number of points, he is the winner. The situation becomes more difficult if the number of such players is more than one. During each round a player gains or loses a particular number of points. In the course of the game the number of points is registered in the line "name score", where name is a player's name, and score is the number of points gained in this round, which is an integer number. If score is negative, this means that the player has lost in the round. So, if two or more players have the maximum number of points (say, it equals to *m*) at the end of the game, than wins the one of them who scored at least *m* points first. Initially each player has 0 points. It's guaranteed that at the end of the game at least one player has a positive number of points.
The first line contains an integer number *n* (1<=<=≤<=<=*n*<=<=≤<=<=1000), *n* is the number of rounds played. Then follow *n* lines, containing the information about the rounds in "name score" format in chronological order, where name is a string of lower-case Latin letters with the length from 1 to 32, and score is an integer number between -1000 and 1000, inclusive.
Print the name of the winner.
[ "3\nmike 3\nandrew 5\nmike 2\n", "3\nandrew 3\nandrew 2\nmike 5\n" ]
[ "andrew\n", "andrew\n" ]
none
0
[ { "input": "3\nmike 3\nandrew 5\nmike 2", "output": "andrew" }, { "input": "3\nandrew 3\nandrew 2\nmike 5", "output": "andrew" }, { "input": "5\nkaxqybeultn -352\nmgochgrmeyieyskhuourfg -910\nkaxqybeultn 691\nmgochgrmeyieyskhuourfg -76\nkaxqybeultn -303", "output": "kaxqybeultn" }, { "input": "7\nksjuuerbnlklcfdjeyq 312\ndthjlkrvvbyahttifpdewvyslsh -983\nksjuuerbnlklcfdjeyq 268\ndthjlkrvvbyahttifpdewvyslsh 788\nksjuuerbnlklcfdjeyq -79\nksjuuerbnlklcfdjeyq -593\nksjuuerbnlklcfdjeyq 734", "output": "ksjuuerbnlklcfdjeyq" }, { "input": "12\natrtthfpcvishmqbakprquvnejr 185\natrtthfpcvishmqbakprquvnejr -699\natrtthfpcvishmqbakprquvnejr -911\natrtthfpcvishmqbakprquvnejr -220\nfcgslzkicjrpbqaifgweyzreajjfdo 132\nfcgslzkicjrpbqaifgweyzreajjfdo -242\nm 177\nm -549\natrtthfpcvishmqbakprquvnejr -242\nm 38\natrtthfpcvishmqbakprquvnejr -761\nfcgslzkicjrpbqaifgweyzreajjfdo 879", "output": "fcgslzkicjrpbqaifgweyzreajjfdo" }, { "input": "15\naawtvezfntstrcpgbzjbf 681\nzhahpvqiptvksnbjkdvmknb -74\naawtvezfntstrcpgbzjbf 661\njpdwmyke 474\naawtvezfntstrcpgbzjbf -547\naawtvezfntstrcpgbzjbf 600\nzhahpvqiptvksnbjkdvmknb -11\njpdwmyke 711\nbjmj 652\naawtvezfntstrcpgbzjbf -1000\naawtvezfntstrcpgbzjbf -171\nbjmj -302\naawtvezfntstrcpgbzjbf 961\nzhahpvqiptvksnbjkdvmknb 848\nbjmj -735", "output": "aawtvezfntstrcpgbzjbf" }, { "input": "17\nqdplghhx -649\nivhgbxiv 424\nivhgbxiv -72\nivhgbxiv 479\nugowfouebkelargxylsxn 83\nugowfouebkelargxylsxn -840\nivhgbxiv 382\nqdplghhx -904\nivhgbxiv -710\nugowfouebkelargxylsxn -838\nqdplghhx -974\nqdplghhx 571\nivhgbxiv -145\nugowfouebkelargxylsxn -788\nivhgbxiv 209\nivhgbxiv 420\nqdplghhx -158", "output": "ivhgbxiv" } ]
1,613,094,163
2,147,483,647
PyPy 3
WRONG_ANSWER
TESTS
2
184
0
n = int(input()) seen = set() q = [] for _ in range(n): e, p = input().split() p = int(p) if e in seen: i = -1 for j in range(len(q)): if q[j][0] == e: i = j break e = q.pop(i) p = p + e[1] e = e[0] ins = True for i in range(len(q) - 1, -1, -1): if p < q[0][1]: ins = False q.insert(i + 1, (e, p)) seen.add(e) break if ins: q.insert(1, (e, p)) seen.add(e) print(q[0][0])
Title: Winner Time Limit: 1 seconds Memory Limit: 64 megabytes Problem Description: The winner of the card game popular in Berland "Berlogging" is determined according to the following rules. If at the end of the game there is only one player with the maximum number of points, he is the winner. The situation becomes more difficult if the number of such players is more than one. During each round a player gains or loses a particular number of points. In the course of the game the number of points is registered in the line "name score", where name is a player's name, and score is the number of points gained in this round, which is an integer number. If score is negative, this means that the player has lost in the round. So, if two or more players have the maximum number of points (say, it equals to *m*) at the end of the game, than wins the one of them who scored at least *m* points first. Initially each player has 0 points. It's guaranteed that at the end of the game at least one player has a positive number of points. Input Specification: The first line contains an integer number *n* (1<=<=≤<=<=*n*<=<=≤<=<=1000), *n* is the number of rounds played. Then follow *n* lines, containing the information about the rounds in "name score" format in chronological order, where name is a string of lower-case Latin letters with the length from 1 to 32, and score is an integer number between -1000 and 1000, inclusive. Output Specification: Print the name of the winner. Demo Input: ['3\nmike 3\nandrew 5\nmike 2\n', '3\nandrew 3\nandrew 2\nmike 5\n'] Demo Output: ['andrew\n', 'andrew\n'] Note: none
```python n = int(input()) seen = set() q = [] for _ in range(n): e, p = input().split() p = int(p) if e in seen: i = -1 for j in range(len(q)): if q[j][0] == e: i = j break e = q.pop(i) p = p + e[1] e = e[0] ins = True for i in range(len(q) - 1, -1, -1): if p < q[0][1]: ins = False q.insert(i + 1, (e, p)) seen.add(e) break if ins: q.insert(1, (e, p)) seen.add(e) print(q[0][0]) ```
0
279
B
Books
PROGRAMMING
1,400
[ "binary search", "brute force", "implementation", "two pointers" ]
null
null
When Valera has got some free time, he goes to the library to read some books. Today he's got *t* free minutes to read. That's why Valera took *n* books in the library and for each book he estimated the time he is going to need to read it. Let's number the books by integers from 1 to *n*. Valera needs *a**i* minutes to read the *i*-th book. Valera decided to choose an arbitrary book with number *i* and read the books one by one, starting from this book. In other words, he will first read book number *i*, then book number *i*<=+<=1, then book number *i*<=+<=2 and so on. He continues the process until he either runs out of the free time or finishes reading the *n*-th book. Valera reads each book up to the end, that is, he doesn't start reading the book if he doesn't have enough free time to finish reading it. Print the maximum number of books Valera can read.
The first line contains two integers *n* and *t* (1<=≤<=*n*<=≤<=105; 1<=≤<=*t*<=≤<=109) — the number of books and the number of free minutes Valera's got. The second line contains a sequence of *n* integers *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=104), where number *a**i* shows the number of minutes that the boy needs to read the *i*-th book.
Print a single integer — the maximum number of books Valera can read.
[ "4 5\n3 1 2 1\n", "3 3\n2 2 3\n" ]
[ "3\n", "1\n" ]
none
1,000
[ { "input": "4 5\n3 1 2 1", "output": "3" }, { "input": "3 3\n2 2 3", "output": "1" }, { "input": "1 3\n5", "output": "0" }, { "input": "1 10\n4", "output": "1" }, { "input": "2 10\n6 4", "output": "2" }, { "input": "6 10\n2 3 4 2 1 1", "output": "4" }, { "input": "7 13\n6 8 14 9 4 11 10", "output": "2" }, { "input": "10 15\n10 9 1 1 5 10 5 3 7 2", "output": "3" }, { "input": "20 30\n8 1 2 6 9 4 1 9 9 10 4 7 8 9 5 7 1 8 7 4", "output": "6" }, { "input": "30 60\n16 13 22 38 13 35 17 17 20 38 12 19 9 22 20 3 35 34 34 21 35 40 22 3 27 19 12 4 8 19", "output": "4" }, { "input": "100 100\n75 92 18 6 81 67 7 92 100 65 82 32 50 67 85 31 80 91 84 63 39 52 92 81 1 98 24 12 43 48 17 86 51 72 48 95 45 50 12 66 19 79 49 89 34 1 97 75 20 33 96 27 42 23 73 71 93 1 85 19 66 14 17 61 20 39 36 33 42 61 56 64 23 91 80 99 40 74 13 18 98 85 74 39 62 84 46 74 50 23 38 11 79 14 9 25 66 100 25 52", "output": "3" }, { "input": "10 1\n4418 7528 8170 1736 1317 3205 8183 4995 8039 4708", "output": "0" }, { "input": "50 2\n124 214 63 73 996 760 38 571 451 300 970 1 706 937 837 494 619 88 851 411 957 990 842 613 821 649 627 34 693 678 734 116 816 985 705 940 499 493 922 967 854 439 112 644 961 438 189 572 655 550", "output": "1" } ]
1,673,396,315
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
28
404
6,348,800
def fun(l,r): global sumi if l>r or sumi<=t: return 0 if lis[l]>lis[r]: if sumi<=t: return 0 sumi-=lis[l] return 1+fun(l+1,r) elif lis[l]<lis[r]: if sumi<=t: return 0 sumi-=lis[r] return 1+fun(l,r-1) else: if sumi<=t: return 0 sumi-=lis[l] fir=1+fun(l+1,r) sumi+=lis[l] sumi-=lis[r] sec=1+fun(l,r-1) sumi+=lis[r] return min(fir,sec) n,t=map(int,input().split()) lis=list(map(int,input().split())) l=0 sumi=lis[l] maxcount=0 if sumi<=t: maxcount=1 else: l=1 maxcount=0 sumi=0 for i in range(1,n): if sumi+lis[i]<=t: sumi=sumi+lis[i] maxcount=max(maxcount,i-l+1) else: while(l<i and sumi+lis[i]>t): sumi=sumi-lis[l] l+=1 sumi=sumi+lis[i] maxcount=max(maxcount,i-l+1) print(maxcount)
Title: Books Time Limit: None seconds Memory Limit: None megabytes Problem Description: When Valera has got some free time, he goes to the library to read some books. Today he's got *t* free minutes to read. That's why Valera took *n* books in the library and for each book he estimated the time he is going to need to read it. Let's number the books by integers from 1 to *n*. Valera needs *a**i* minutes to read the *i*-th book. Valera decided to choose an arbitrary book with number *i* and read the books one by one, starting from this book. In other words, he will first read book number *i*, then book number *i*<=+<=1, then book number *i*<=+<=2 and so on. He continues the process until he either runs out of the free time or finishes reading the *n*-th book. Valera reads each book up to the end, that is, he doesn't start reading the book if he doesn't have enough free time to finish reading it. Print the maximum number of books Valera can read. Input Specification: The first line contains two integers *n* and *t* (1<=≤<=*n*<=≤<=105; 1<=≤<=*t*<=≤<=109) — the number of books and the number of free minutes Valera's got. The second line contains a sequence of *n* integers *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=104), where number *a**i* shows the number of minutes that the boy needs to read the *i*-th book. Output Specification: Print a single integer — the maximum number of books Valera can read. Demo Input: ['4 5\n3 1 2 1\n', '3 3\n2 2 3\n'] Demo Output: ['3\n', '1\n'] Note: none
```python def fun(l,r): global sumi if l>r or sumi<=t: return 0 if lis[l]>lis[r]: if sumi<=t: return 0 sumi-=lis[l] return 1+fun(l+1,r) elif lis[l]<lis[r]: if sumi<=t: return 0 sumi-=lis[r] return 1+fun(l,r-1) else: if sumi<=t: return 0 sumi-=lis[l] fir=1+fun(l+1,r) sumi+=lis[l] sumi-=lis[r] sec=1+fun(l,r-1) sumi+=lis[r] return min(fir,sec) n,t=map(int,input().split()) lis=list(map(int,input().split())) l=0 sumi=lis[l] maxcount=0 if sumi<=t: maxcount=1 else: l=1 maxcount=0 sumi=0 for i in range(1,n): if sumi+lis[i]<=t: sumi=sumi+lis[i] maxcount=max(maxcount,i-l+1) else: while(l<i and sumi+lis[i]>t): sumi=sumi-lis[l] l+=1 sumi=sumi+lis[i] maxcount=max(maxcount,i-l+1) print(maxcount) ```
0
841
A
Generous Kefa
PROGRAMMING
900
[ "brute force", "implementation" ]
null
null
One day Kefa found *n* baloons. For convenience, we denote color of *i*-th baloon as *s**i* — lowercase letter of the Latin alphabet. Also Kefa has *k* friends. Friend will be upset, If he get two baloons of the same color. Kefa want to give out all baloons to his friends. Help Kefa to find out, can he give out all his baloons, such that no one of his friens will be upset — print «YES», if he can, and «NO», otherwise. Note, that Kefa's friend will not upset, if he doesn't get baloons at all.
The first line contains two integers *n* and *k* (1<=≤<=*n*,<=*k*<=≤<=100) — the number of baloons and friends. Next line contains string *s* — colors of baloons.
Answer to the task — «YES» or «NO» in a single line. You can choose the case (lower or upper) for each letter arbitrary.
[ "4 2\naabb\n", "6 3\naacaab\n" ]
[ "YES\n", "NO\n" ]
In the first sample Kefa can give 1-st and 3-rd baloon to the first friend, and 2-nd and 4-th to the second. In the second sample Kefa needs to give to all his friends baloons of color a, but one baloon will stay, thats why answer is «NO».
500
[ { "input": "4 2\naabb", "output": "YES" }, { "input": "6 3\naacaab", "output": "NO" }, { "input": "2 2\nlu", "output": "YES" }, { "input": "5 3\novvoo", "output": "YES" }, { "input": "36 13\nbzbzcffczzcbcbzzfzbbfzfzzbfbbcbfccbf", "output": "YES" }, { "input": "81 3\nooycgmvvrophvcvpoupepqllqttwcocuilvyxbyumdmmfapvpnxhjhxfuagpnntonibicaqjvwfhwxhbv", "output": "NO" }, { "input": "100 100\nxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx", "output": "YES" }, { "input": "100 1\nnubcvvjvbjgnjsdkajimdcxvewbcytvfkihunycdrlconddlwgzjasjlsrttlrzsumzpyumpveglfqzmaofbshbojmwuwoxxvrod", "output": "NO" }, { "input": "100 13\nvyldolgryldqrvoldvzvrdrgorlorszddtgqvrlisxxrxdxlqtvtgsrqlzixoyrozxzogqxlsgzdddzqrgitxxritoolzolgrtvl", "output": "YES" }, { "input": "18 6\njzwtnkvmscqhmdlsxy", "output": "YES" }, { "input": "21 2\nfscegcqgzesefghhwcexs", "output": "NO" }, { "input": "32 22\ncduamsptaklqtxlyoutlzepxgyfkvngc", "output": "YES" }, { "input": "49 27\noxyorfnkzwsfllnyvdhdanppuzrnbxehugvmlkgeymqjlmfxd", "output": "YES" }, { "input": "50 24\nxxutzjwbggcwvxztttkmzovtmuwttzcbwoztttohzzxghuuthv", "output": "YES" }, { "input": "57 35\nglxshztrqqfyxthqamagvtmrdparhelnzrqvcwqxjytkbuitovkdxueul", "output": "YES" }, { "input": "75 23\nittttiiuitutuiiuuututiuttiuiuutuuuiuiuuuuttuuttuutuiiuiuiiuiitttuututuiuuii", "output": "NO" }, { "input": "81 66\nfeqevfqfebhvubhuuvfuqheuqhbeeuebehuvhffvbqvqvfbqqvvhevqffbqqhvvqhfeehuhqeqhueuqqq", "output": "YES" }, { "input": "93 42\npqeiafraiavfcteumflpcbpozcomlvpovlzdbldvoopnhdoeqaopzthiuzbzmeieiatthdeqovaqfipqlddllmfcrrnhb", "output": "YES" }, { "input": "100 53\nizszyqyndzwzyzgsdagdwdazadiawizinagqqgczaqqnawgijziziawzszdjdcqjdjqiwgadydcnqisaayjiqqsscwwzjzaycwwc", "output": "YES" }, { "input": "100 14\nvkrdcqbvkwuckpmnbydmczdxoagdsgtqxvhaxntdcxhjcrjyvukhugoglbmyoaqexgtcfdgemmizoniwtmisqqwcwfusmygollab", "output": "YES" }, { "input": "100 42\naaaaaiiiiaiiiaaiaiiaaiiiiiaaaaaiaiiiaiiiiaiiiaaaaaiiiaaaiiaaiiiaiiiaiaaaiaiiiiaaiiiaiiaiaiiaiiiaaaia", "output": "NO" }, { "input": "100 89\ntjbkmydejporbqhcbztkcumxjjgsrvxpuulbhzeeckkbchpbxwhedrlhjsabcexcohgdzouvsgphjdthpuqrlkgzxvqbuhqxdsmf", "output": "YES" }, { "input": "100 100\njhpyiuuzizhubhhpxbbhpyxzhbpjphzppuhiahihiappbhuypyauhizpbibzixjbzxzpbphuiaypyujappuxiyuyaajaxjupbahb", "output": "YES" }, { "input": "100 3\nsszoovvzysavsvzsozzvoozvysozsaszayaszasaysszzzysosyayyvzozovavzoyavsooaoyvoozvvozsaosvayyovazzszzssa", "output": "NO" }, { "input": "100 44\ndluthkxwnorabqsukgnxnvhmsmzilyulpursnxkdsavgemiuizbyzebhyjejgqrvuckhaqtuvdmpziesmpmewpvozdanjyvwcdgo", "output": "YES" }, { "input": "100 90\ntljonbnwnqounictqqctgonktiqoqlocgoblngijqokuquoolciqwnctgoggcbojtwjlculoikbggquqncittwnjbkgkgubnioib", "output": "YES" }, { "input": "100 79\nykxptzgvbqxlregvkvucewtydvnhqhuggdsyqlvcfiuaiddnrrnstityyehiamrggftsqyduwxpuldztyzgmfkehprrneyvtknmf", "output": "YES" }, { "input": "100 79\naagwekyovbviiqeuakbqbqifwavkfkutoriovgfmittulhwojaptacekdirgqoovlleeoqkkdukpadygfwavppohgdrmymmulgci", "output": "YES" }, { "input": "100 93\nearrehrehenaddhdnrdddhdahnadndheeennrearrhraharddreaeraddhehhhrdnredanndneheddrraaneerreedhnadnerhdn", "output": "YES" }, { "input": "100 48\nbmmaebaebmmmbbmxvmammbvvebvaemvbbaxvbvmaxvvmveaxmbbxaaemxmxvxxxvxbmmxaaaevvaxmvamvvmaxaxavexbmmbmmev", "output": "YES" }, { "input": "100 55\nhsavbkehaaesffaeeffakhkhfehbbvbeasahbbbvkesbfvkefeesesevbsvfkbffakvshsbkahfkfakebsvafkbvsskfhfvaasss", "output": "YES" }, { "input": "100 2\ncscffcffsccffsfsfffccssfsscfsfsssffcffsscfccssfffcfscfsscsccccfsssffffcfcfsfffcsfsccffscffcfccccfffs", "output": "NO" }, { "input": "100 3\nzrgznxgdpgfoiifrrrsjfuhvtqxjlgochhyemismjnanfvvpzzvsgajcbsulxyeoepjfwvhkqogiiwqxjkrpsyaqdlwffoockxnc", "output": "NO" }, { "input": "100 5\njbltyyfjakrjeodqepxpkjideulofbhqzxjwlarufwzwsoxhaexpydpqjvhybmvjvntuvhvflokhshpicbnfgsqsmrkrfzcrswwi", "output": "NO" }, { "input": "100 1\nfnslnqktlbmxqpvcvnemxcutebdwepoxikifkzaaixzzydffpdxodmsxjribmxuqhueifdlwzytxkklwhljswqvlejedyrgguvah", "output": "NO" }, { "input": "100 21\nddjenetwgwmdtjbpzssyoqrtirvoygkjlqhhdcjgeurqpunxpupwaepcqkbjjfhnvgpyqnozhhrmhfwararmlcvpgtnopvjqsrka", "output": "YES" }, { "input": "100 100\nnjrhiauqlgkkpkuvciwzivjbbplipvhslqgdkfnmqrxuxnycmpheenmnrglotzuyxycosfediqcuadklsnzjqzfxnbjwvfljnlvq", "output": "YES" }, { "input": "100 100\nbbbbbbbtbbttbtbbbttbttbtbbttttbbbtbttbbbtbttbtbbttttbbbbbtbbttbtbbtbttbbbtbtbtbtbtbtbbbttbbtbtbtbbtb", "output": "YES" }, { "input": "14 5\nfssmmsfffmfmmm", "output": "NO" }, { "input": "2 1\nff", "output": "NO" }, { "input": "2 1\nhw", "output": "YES" }, { "input": "2 2\nss", "output": "YES" }, { "input": "1 1\nl", "output": "YES" }, { "input": "100 50\nfffffttttttjjjuuuvvvvvdddxxxxwwwwgggbsssncccczzyyyyyhhhhhkrreeeeeeaaaaaiiillllllllooooqqqqqqmmpppppp", "output": "YES" }, { "input": "100 50\nbbbbbbbbgggggggggggaaaaaaaahhhhhhhhhhpppppppppsssssssrrrrrrrrllzzzzzzzeeeeeeekkkkkkkwwwwwwwwjjjjjjjj", "output": "YES" }, { "input": "100 50\nwwwwwwwwwwwwwwxxxxxxxxxxxxxxxxxxxxxxxxzzzzzzzzzzzzzzzzzzbbbbbbbbbbbbbbbbbbbbjjjjjjjjjjjjjjjjjjjjjjjj", "output": "YES" }, { "input": "100 80\nbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm", "output": "YES" }, { "input": "100 10\nbbttthhhhiiiiiiijjjjjvvvvpppssssseeeeeeewwwwgggkkkkkkkkmmmddddduuuzzzzllllnnnnnxxyyyffffccraaaaooooq", "output": "YES" }, { "input": "100 20\nssssssssssbbbbbbbhhhhhhhyyyyyyyzzzzzzzzzzzzcccccxxxxxxxxxxddddmmmmmmmeeeeeeejjjjjjjjjwwwwwwwtttttttt", "output": "YES" }, { "input": "1 2\na", "output": "YES" }, { "input": "3 1\nabb", "output": "NO" }, { "input": "2 1\naa", "output": "NO" }, { "input": "2 1\nab", "output": "YES" }, { "input": "6 2\naaaaaa", "output": "NO" }, { "input": "8 4\naaaaaaaa", "output": "NO" }, { "input": "4 2\naaaa", "output": "NO" }, { "input": "4 3\naaaa", "output": "NO" }, { "input": "1 3\na", "output": "YES" }, { "input": "4 3\nzzzz", "output": "NO" }, { "input": "4 1\naaaa", "output": "NO" }, { "input": "3 4\nabc", "output": "YES" }, { "input": "2 5\nab", "output": "YES" }, { "input": "2 4\nab", "output": "YES" }, { "input": "1 10\na", "output": "YES" }, { "input": "5 2\nzzzzz", "output": "NO" }, { "input": "53 26\naaaaaaaaaaaaaaaaaaaaaaaaaabbbbbbbbbbbbbbbbbbbbbbbbbbb", "output": "NO" }, { "input": "4 1\nabab", "output": "NO" }, { "input": "4 1\nabcb", "output": "NO" }, { "input": "4 2\nabbb", "output": "NO" }, { "input": "5 2\nabccc", "output": "NO" }, { "input": "2 3\nab", "output": "YES" }, { "input": "4 3\nbbbs", "output": "YES" }, { "input": "10 2\nazzzzzzzzz", "output": "NO" }, { "input": "1 2\nb", "output": "YES" }, { "input": "1 3\nb", "output": "YES" }, { "input": "4 5\nabcd", "output": "YES" }, { "input": "4 6\naabb", "output": "YES" }, { "input": "5 2\naaaab", "output": "NO" }, { "input": "3 5\naaa", "output": "YES" }, { "input": "5 3\nazzzz", "output": "NO" }, { "input": "4 100\naabb", "output": "YES" }, { "input": "3 10\naaa", "output": "YES" }, { "input": "3 4\naaa", "output": "YES" }, { "input": "12 5\naaaaabbbbbbb", "output": "NO" }, { "input": "5 2\naabbb", "output": "NO" }, { "input": "10 5\nzzzzzzzzzz", "output": "NO" }, { "input": "2 4\naa", "output": "YES" }, { "input": "1 5\na", "output": "YES" }, { "input": "10 5\naaaaaaaaaa", "output": "NO" }, { "input": "6 3\naaaaaa", "output": "NO" }, { "input": "7 1\nabcdeee", "output": "NO" }, { "input": "18 3\naaaaaabbbbbbcccccc", "output": "NO" }, { "input": "8 2\naabbccdd", "output": "YES" }, { "input": "4 2\nzzzz", "output": "NO" }, { "input": "4 2\nabaa", "output": "NO" }, { "input": "3 2\naaa", "output": "NO" }, { "input": "3 1\nzzz", "output": "NO" }, { "input": "5 4\nzzzzz", "output": "NO" }, { "input": "6 2\naabbbc", "output": "NO" }, { "input": "3 6\naaa", "output": "YES" }, { "input": "2 1\nzz", "output": "NO" }, { "input": "10 3\naaaeeeeeee", "output": "NO" }, { "input": "4 5\naabb", "output": "YES" }, { "input": "3 1\naaa", "output": "NO" }, { "input": "5 2\naazzz", "output": "NO" }, { "input": "6 2\nabbbbc", "output": "NO" }, { "input": "4 2\nxxxx", "output": "NO" }, { "input": "6 3\nzzzzzz", "output": "NO" }, { "input": "3 2\nabb", "output": "YES" }, { "input": "3 2\nzzz", "output": "NO" }, { "input": "6 5\nzzzzzz", "output": "NO" }, { "input": "6 3\nbcaaaa", "output": "NO" }, { "input": "100 100\naaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa", "output": "YES" }, { "input": "3 6\nabc", "output": "YES" } ]
1,580,559,297
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
3
109
0
n, k = map(int, input().split()) s = input() c = [0] * 26 count = 0 if n == k: print('YES') else: for i in s: nomer = ord(i) - 97 c[nomer] += 1 for j in range(len(c)): if c[j] > 0 and c[j] == k: count += 1 if count == k: print('YES') else: print('NO')
Title: Generous Kefa Time Limit: None seconds Memory Limit: None megabytes Problem Description: One day Kefa found *n* baloons. For convenience, we denote color of *i*-th baloon as *s**i* — lowercase letter of the Latin alphabet. Also Kefa has *k* friends. Friend will be upset, If he get two baloons of the same color. Kefa want to give out all baloons to his friends. Help Kefa to find out, can he give out all his baloons, such that no one of his friens will be upset — print «YES», if he can, and «NO», otherwise. Note, that Kefa's friend will not upset, if he doesn't get baloons at all. Input Specification: The first line contains two integers *n* and *k* (1<=≤<=*n*,<=*k*<=≤<=100) — the number of baloons and friends. Next line contains string *s* — colors of baloons. Output Specification: Answer to the task — «YES» or «NO» in a single line. You can choose the case (lower or upper) for each letter arbitrary. Demo Input: ['4 2\naabb\n', '6 3\naacaab\n'] Demo Output: ['YES\n', 'NO\n'] Note: In the first sample Kefa can give 1-st and 3-rd baloon to the first friend, and 2-nd and 4-th to the second. In the second sample Kefa needs to give to all his friends baloons of color a, but one baloon will stay, thats why answer is «NO».
```python n, k = map(int, input().split()) s = input() c = [0] * 26 count = 0 if n == k: print('YES') else: for i in s: nomer = ord(i) - 97 c[nomer] += 1 for j in range(len(c)): if c[j] > 0 and c[j] == k: count += 1 if count == k: print('YES') else: print('NO') ```
0
161
D
Distance in Tree
PROGRAMMING
1,800
[ "dfs and similar", "dp", "trees" ]
null
null
A tree is a connected graph that doesn't contain any cycles. The distance between two vertices of a tree is the length (in edges) of the shortest path between these vertices. You are given a tree with *n* vertices and a positive number *k*. Find the number of distinct pairs of the vertices which have a distance of exactly *k* between them. Note that pairs (*v*, *u*) and (*u*, *v*) are considered to be the same pair.
The first line contains two integers *n* and *k* (1<=≤<=*n*<=≤<=50000, 1<=≤<=*k*<=≤<=500) — the number of vertices and the required distance between the vertices. Next *n*<=-<=1 lines describe the edges as "*a**i* *b**i*" (without the quotes) (1<=≤<=*a**i*,<=*b**i*<=≤<=*n*, *a**i*<=≠<=*b**i*), where *a**i* and *b**i* are the vertices connected by the *i*-th edge. All given edges are different.
Print a single integer — the number of distinct pairs of the tree's vertices which have a distance of exactly *k* between them. Please do not use the %lld specifier to read or write 64-bit integers in С++. It is preferred to use the cin, cout streams or the %I64d specifier.
[ "5 2\n1 2\n2 3\n3 4\n2 5\n", "5 3\n1 2\n2 3\n3 4\n4 5\n" ]
[ "4\n", "2\n" ]
In the first sample the pairs of vertexes at distance 2 from each other are (1, 3), (1, 5), (3, 5) and (2, 4).
2,000
[ { "input": "5 2\n1 2\n2 3\n3 4\n2 5", "output": "4" }, { "input": "5 3\n1 2\n2 3\n3 4\n4 5", "output": "2" }, { "input": "10 1\n2 1\n3 1\n4 3\n5 4\n6 5\n7 1\n8 6\n9 2\n10 6", "output": "9" }, { "input": "10 2\n2 1\n3 1\n4 3\n5 4\n6 5\n7 1\n8 6\n9 2\n10 6", "output": "10" }, { "input": "10 3\n2 1\n3 1\n4 3\n5 4\n6 5\n7 1\n8 6\n9 2\n10 6", "output": "8" }, { "input": "50 3\n2 1\n3 2\n4 3\n5 4\n6 5\n7 6\n8 7\n9 8\n10 9\n11 10\n12 11\n13 12\n14 13\n15 14\n16 15\n17 16\n18 17\n19 18\n20 19\n21 20\n22 21\n23 22\n24 23\n25 24\n26 25\n27 26\n28 27\n29 28\n30 29\n31 30\n32 31\n33 32\n34 33\n35 34\n36 35\n37 36\n38 37\n39 38\n40 39\n41 40\n42 41\n43 42\n44 43\n45 44\n46 45\n47 46\n48 47\n49 48\n50 49", "output": "47" }, { "input": "50 4\n2 1\n3 1\n4 2\n5 2\n6 3\n7 3\n8 4\n9 4\n10 5\n11 5\n12 6\n13 6\n14 7\n15 7\n16 8\n17 8\n18 9\n19 9\n20 10\n21 10\n22 11\n23 11\n24 12\n25 12\n26 13\n27 13\n28 14\n29 14\n30 15\n31 15\n32 16\n33 16\n34 17\n35 17\n36 18\n37 18\n38 19\n39 19\n40 20\n41 20\n42 21\n43 21\n44 22\n45 22\n46 23\n47 23\n48 24\n49 24\n50 25", "output": "124" }, { "input": "50 5\n2 1\n3 1\n4 2\n5 2\n6 4\n7 4\n8 6\n9 6\n10 8\n11 8\n12 10\n13 10\n14 12\n15 12\n16 14\n17 14\n18 16\n19 16\n20 18\n21 18\n22 20\n23 20\n24 22\n25 22\n26 24\n27 24\n28 26\n29 26\n30 28\n31 28\n32 30\n33 30\n34 32\n35 32\n36 34\n37 34\n38 36\n39 36\n40 38\n41 38\n42 40\n43 40\n44 42\n45 42\n46 44\n47 44\n48 46\n49 46\n50 48", "output": "84" }, { "input": "10 20\n2 1\n3 2\n4 1\n5 3\n6 4\n7 1\n8 2\n9 7\n10 2", "output": "0" } ]
1,578,022,912
2,147,483,647
PyPy 3
TIME_LIMIT_EXCEEDED
TESTS
11
3,000
131,686,400
# -*- coding:utf-8 -*- """ created by shuangquan.huang at 1/3/20 """ import collections import time import os import sys import bisect import heapq from typing import List g = collections.defaultdict(list) curAns = [0] N, K = map(int, input().split()) for i in range(N-1): u, v = map(int, input().split()) g[u].append(v) g[v].append(u) dp = [[0 for _ in range(K+1)] for _ in range(N+1)] def dfs(u, parent): count = [0 for _ in range(K)] for i, v in enumerate(g[u]): if v == parent: continue dfs(v, u) curAns[0] += dp[v][K-1] for k in range(K): count[k] += dp[v][k] for vi, v in enumerate(g[u]): for ka in range(K-1): kb = K - ka -2 cka = dp[v][ka] ckb = count[kb] - dp[v][kb] curAns[0] += cka * ckb for k in range(K): count[k] -= dp[v][k] for v in g[u]: if v != parent: for k in range(K): dp[u][k+1] += dp[v][k] dp[u][0] = 1 dfs(1, -1) print(curAns[0])
Title: Distance in Tree Time Limit: None seconds Memory Limit: None megabytes Problem Description: A tree is a connected graph that doesn't contain any cycles. The distance between two vertices of a tree is the length (in edges) of the shortest path between these vertices. You are given a tree with *n* vertices and a positive number *k*. Find the number of distinct pairs of the vertices which have a distance of exactly *k* between them. Note that pairs (*v*, *u*) and (*u*, *v*) are considered to be the same pair. Input Specification: The first line contains two integers *n* and *k* (1<=≤<=*n*<=≤<=50000, 1<=≤<=*k*<=≤<=500) — the number of vertices and the required distance between the vertices. Next *n*<=-<=1 lines describe the edges as "*a**i* *b**i*" (without the quotes) (1<=≤<=*a**i*,<=*b**i*<=≤<=*n*, *a**i*<=≠<=*b**i*), where *a**i* and *b**i* are the vertices connected by the *i*-th edge. All given edges are different. Output Specification: Print a single integer — the number of distinct pairs of the tree's vertices which have a distance of exactly *k* between them. Please do not use the %lld specifier to read or write 64-bit integers in С++. It is preferred to use the cin, cout streams or the %I64d specifier. Demo Input: ['5 2\n1 2\n2 3\n3 4\n2 5\n', '5 3\n1 2\n2 3\n3 4\n4 5\n'] Demo Output: ['4\n', '2\n'] Note: In the first sample the pairs of vertexes at distance 2 from each other are (1, 3), (1, 5), (3, 5) and (2, 4).
```python # -*- coding:utf-8 -*- """ created by shuangquan.huang at 1/3/20 """ import collections import time import os import sys import bisect import heapq from typing import List g = collections.defaultdict(list) curAns = [0] N, K = map(int, input().split()) for i in range(N-1): u, v = map(int, input().split()) g[u].append(v) g[v].append(u) dp = [[0 for _ in range(K+1)] for _ in range(N+1)] def dfs(u, parent): count = [0 for _ in range(K)] for i, v in enumerate(g[u]): if v == parent: continue dfs(v, u) curAns[0] += dp[v][K-1] for k in range(K): count[k] += dp[v][k] for vi, v in enumerate(g[u]): for ka in range(K-1): kb = K - ka -2 cka = dp[v][ka] ckb = count[kb] - dp[v][kb] curAns[0] += cka * ckb for k in range(K): count[k] -= dp[v][k] for v in g[u]: if v != parent: for k in range(K): dp[u][k+1] += dp[v][k] dp[u][0] = 1 dfs(1, -1) print(curAns[0]) ```
0
557
A
Ilya and Diplomas
PROGRAMMING
1,100
[ "greedy", "implementation", "math" ]
null
null
Soon a school Olympiad in Informatics will be held in Berland, *n* schoolchildren will participate there. At a meeting of the jury of the Olympiad it was decided that each of the *n* participants, depending on the results, will get a diploma of the first, second or third degree. Thus, each student will receive exactly one diploma. They also decided that there must be given at least *min*1 and at most *max*1 diplomas of the first degree, at least *min*2 and at most *max*2 diplomas of the second degree, and at least *min*3 and at most *max*3 diplomas of the third degree. After some discussion it was decided to choose from all the options of distributing diplomas satisfying these limitations the one that maximizes the number of participants who receive diplomas of the first degree. Of all these options they select the one which maximizes the number of the participants who receive diplomas of the second degree. If there are multiple of these options, they select the option that maximizes the number of diplomas of the third degree. Choosing the best option of distributing certificates was entrusted to Ilya, one of the best programmers of Berland. However, he found more important things to do, so it is your task now to choose the best option of distributing of diplomas, based on the described limitations. It is guaranteed that the described limitations are such that there is a way to choose such an option of distributing diplomas that all *n* participants of the Olympiad will receive a diploma of some degree.
The first line of the input contains a single integer *n* (3<=≤<=*n*<=≤<=3·106) — the number of schoolchildren who will participate in the Olympiad. The next line of the input contains two integers *min*1 and *max*1 (1<=≤<=*min*1<=≤<=*max*1<=≤<=106) — the minimum and maximum limits on the number of diplomas of the first degree that can be distributed. The third line of the input contains two integers *min*2 and *max*2 (1<=≤<=*min*2<=≤<=*max*2<=≤<=106) — the minimum and maximum limits on the number of diplomas of the second degree that can be distributed. The next line of the input contains two integers *min*3 and *max*3 (1<=≤<=*min*3<=≤<=*max*3<=≤<=106) — the minimum and maximum limits on the number of diplomas of the third degree that can be distributed. It is guaranteed that *min*1<=+<=*min*2<=+<=*min*3<=≤<=*n*<=≤<=*max*1<=+<=*max*2<=+<=*max*3.
In the first line of the output print three numbers, showing how many diplomas of the first, second and third degree will be given to students in the optimal variant of distributing diplomas. The optimal variant of distributing diplomas is the one that maximizes the number of students who receive diplomas of the first degree. Of all the suitable options, the best one is the one which maximizes the number of participants who receive diplomas of the second degree. If there are several of these options, the best one is the one that maximizes the number of diplomas of the third degree.
[ "6\n1 5\n2 6\n3 7\n", "10\n1 2\n1 3\n1 5\n", "6\n1 3\n2 2\n2 2\n" ]
[ "1 2 3 \n", "2 3 5 \n", "2 2 2 \n" ]
none
500
[ { "input": "6\n1 5\n2 6\n3 7", "output": "1 2 3 " }, { "input": "10\n1 2\n1 3\n1 5", "output": "2 3 5 " }, { "input": "6\n1 3\n2 2\n2 2", "output": "2 2 2 " }, { "input": "55\n1 1000000\n40 50\n10 200", "output": "5 40 10 " }, { "input": "3\n1 1\n1 1\n1 1", "output": "1 1 1 " }, { "input": "3\n1 1000000\n1 1000000\n1 1000000", "output": "1 1 1 " }, { "input": "1000\n100 400\n300 500\n400 1200", "output": "300 300 400 " }, { "input": "3000000\n1 1000000\n1 1000000\n1 1000000", "output": "1000000 1000000 1000000 " }, { "input": "11\n3 5\n3 5\n3 5", "output": "5 3 3 " }, { "input": "12\n3 5\n3 5\n3 5", "output": "5 4 3 " }, { "input": "13\n3 5\n3 5\n3 5", "output": "5 5 3 " }, { "input": "3000000\n1000000 1000000\n1000000 1000000\n1000000 1000000", "output": "1000000 1000000 1000000 " }, { "input": "50\n1 100\n1 100\n1 100", "output": "48 1 1 " }, { "input": "1279\n123 670\n237 614\n846 923", "output": "196 237 846 " }, { "input": "1589\n213 861\n5 96\n506 634", "output": "861 96 632 " }, { "input": "2115\n987 987\n112 483\n437 959", "output": "987 483 645 " }, { "input": "641\n251 960\n34 370\n149 149", "output": "458 34 149 " }, { "input": "1655\n539 539\n10 425\n605 895", "output": "539 425 691 " }, { "input": "1477\n210 336\n410 837\n448 878", "output": "336 693 448 " }, { "input": "1707\n149 914\n190 422\n898 899", "output": "619 190 898 " }, { "input": "1529\n515 515\n563 869\n169 451", "output": "515 845 169 " }, { "input": "1543\n361 994\n305 407\n102 197", "output": "994 407 142 " }, { "input": "1107\n471 849\n360 741\n71 473", "output": "676 360 71 " }, { "input": "1629279\n267360 999930\n183077 674527\n202618 786988", "output": "999930 426731 202618 " }, { "input": "1233589\n2850 555444\n500608 921442\n208610 607343", "output": "524371 500608 208610 " }, { "input": "679115\n112687 183628\n101770 982823\n81226 781340", "output": "183628 414261 81226 " }, { "input": "1124641\n117999 854291\n770798 868290\n76651 831405", "output": "277192 770798 76651 " }, { "input": "761655\n88152 620061\n60403 688549\n79370 125321", "output": "620061 62224 79370 " }, { "input": "2174477\n276494 476134\n555283 954809\n319941 935631", "output": "476134 954809 743534 " }, { "input": "1652707\n201202 990776\n34796 883866\n162979 983308", "output": "990776 498952 162979 " }, { "input": "2065529\n43217 891429\n434379 952871\n650231 855105", "output": "891429 523869 650231 " }, { "input": "1702543\n405042 832833\n50931 747750\n381818 796831", "output": "832833 487892 381818 " }, { "input": "501107\n19061 859924\n126478 724552\n224611 489718", "output": "150018 126478 224611 " }, { "input": "1629279\n850831 967352\n78593 463906\n452094 885430", "output": "967352 209833 452094 " }, { "input": "1233589\n2850 157021\n535109 748096\n392212 475634", "output": "157021 684356 392212 " }, { "input": "679115\n125987 786267\n70261 688983\n178133 976789", "output": "430721 70261 178133 " }, { "input": "1124641\n119407 734250\n213706 860770\n102149 102149", "output": "734250 288242 102149 " }, { "input": "761655\n325539 325539\n280794 792505\n18540 106895", "output": "325539 417576 18540 " }, { "input": "2174477\n352351 791072\n365110 969163\n887448 955610", "output": "791072 495957 887448 " }, { "input": "1652707\n266774 638522\n65688 235422\n924898 992826", "output": "638522 89287 924898 " }, { "input": "2065529\n608515 608515\n751563 864337\n614898 705451", "output": "608515 842116 614898 " }, { "input": "1702543\n5784 996578\n47395 300407\n151614 710197", "output": "996578 300407 405558 " }, { "input": "501107\n8073 390048\n190494 647328\n274071 376923", "output": "36542 190494 274071 " }, { "input": "200\n50 50\n100 100\n50 50", "output": "50 100 50 " }, { "input": "14\n1 100\n1 100\n8 9", "output": "5 1 8 " }, { "input": "300\n200 400\n50 100\n40 80", "output": "210 50 40 " }, { "input": "10\n3 6\n3 6\n3 6", "output": "4 3 3 " }, { "input": "14\n3 6\n3 6\n3 6", "output": "6 5 3 " }, { "input": "17\n3 6\n3 6\n3 6", "output": "6 6 5 " }, { "input": "1000000\n300000 600000\n300000 600000\n300000 600000", "output": "400000 300000 300000 " }, { "input": "1400000\n300000 600000\n300000 600000\n300000 600000", "output": "600000 500000 300000 " }, { "input": "1700000\n300000 600000\n300000 600000\n300000 600000", "output": "600000 600000 500000 " }, { "input": "561\n400 400\n80 80\n81 81", "output": "400 80 81 " }, { "input": "2000\n100 1000\n1 1\n1 2000", "output": "1000 1 999 " }, { "input": "1000002\n1 1000000\n1 1000000\n999999 1000000", "output": "2 1 999999 " }, { "input": "1000002\n1 1000000\n1 1000000\n1000000 1000000", "output": "1 1 1000000 " } ]
1,437,542,531
2,147,483,647
Python 3
OK
TESTS
56
62
0
n = int(input()) min1,max1 = map(int,input().split()) min2,max2 = map(int,input().split()) min3,max3 = map(int,input().split()) l1 = min(max1, n - min2 - min3) l2 = min(max2, n - l1 - min3) l3 = n - l1 - l2 print(l1,l2,l3)
Title: Ilya and Diplomas Time Limit: None seconds Memory Limit: None megabytes Problem Description: Soon a school Olympiad in Informatics will be held in Berland, *n* schoolchildren will participate there. At a meeting of the jury of the Olympiad it was decided that each of the *n* participants, depending on the results, will get a diploma of the first, second or third degree. Thus, each student will receive exactly one diploma. They also decided that there must be given at least *min*1 and at most *max*1 diplomas of the first degree, at least *min*2 and at most *max*2 diplomas of the second degree, and at least *min*3 and at most *max*3 diplomas of the third degree. After some discussion it was decided to choose from all the options of distributing diplomas satisfying these limitations the one that maximizes the number of participants who receive diplomas of the first degree. Of all these options they select the one which maximizes the number of the participants who receive diplomas of the second degree. If there are multiple of these options, they select the option that maximizes the number of diplomas of the third degree. Choosing the best option of distributing certificates was entrusted to Ilya, one of the best programmers of Berland. However, he found more important things to do, so it is your task now to choose the best option of distributing of diplomas, based on the described limitations. It is guaranteed that the described limitations are such that there is a way to choose such an option of distributing diplomas that all *n* participants of the Olympiad will receive a diploma of some degree. Input Specification: The first line of the input contains a single integer *n* (3<=≤<=*n*<=≤<=3·106) — the number of schoolchildren who will participate in the Olympiad. The next line of the input contains two integers *min*1 and *max*1 (1<=≤<=*min*1<=≤<=*max*1<=≤<=106) — the minimum and maximum limits on the number of diplomas of the first degree that can be distributed. The third line of the input contains two integers *min*2 and *max*2 (1<=≤<=*min*2<=≤<=*max*2<=≤<=106) — the minimum and maximum limits on the number of diplomas of the second degree that can be distributed. The next line of the input contains two integers *min*3 and *max*3 (1<=≤<=*min*3<=≤<=*max*3<=≤<=106) — the minimum and maximum limits on the number of diplomas of the third degree that can be distributed. It is guaranteed that *min*1<=+<=*min*2<=+<=*min*3<=≤<=*n*<=≤<=*max*1<=+<=*max*2<=+<=*max*3. Output Specification: In the first line of the output print three numbers, showing how many diplomas of the first, second and third degree will be given to students in the optimal variant of distributing diplomas. The optimal variant of distributing diplomas is the one that maximizes the number of students who receive diplomas of the first degree. Of all the suitable options, the best one is the one which maximizes the number of participants who receive diplomas of the second degree. If there are several of these options, the best one is the one that maximizes the number of diplomas of the third degree. Demo Input: ['6\n1 5\n2 6\n3 7\n', '10\n1 2\n1 3\n1 5\n', '6\n1 3\n2 2\n2 2\n'] Demo Output: ['1 2 3 \n', '2 3 5 \n', '2 2 2 \n'] Note: none
```python n = int(input()) min1,max1 = map(int,input().split()) min2,max2 = map(int,input().split()) min3,max3 = map(int,input().split()) l1 = min(max1, n - min2 - min3) l2 = min(max2, n - l1 - min3) l3 = n - l1 - l2 print(l1,l2,l3) ```
3
339
B
Xenia and Ringroad
PROGRAMMING
1,000
[ "implementation" ]
null
null
Xenia lives in a city that has *n* houses built along the main ringroad. The ringroad houses are numbered 1 through *n* in the clockwise order. The ringroad traffic is one way and also is clockwise. Xenia has recently moved into the ringroad house number 1. As a result, she's got *m* things to do. In order to complete the *i*-th task, she needs to be in the house number *a**i* and complete all tasks with numbers less than *i*. Initially, Xenia is in the house number 1, find the minimum time she needs to complete all her tasks if moving from a house to a neighboring one along the ringroad takes one unit of time.
The first line contains two integers *n* and *m* (2<=≤<=*n*<=≤<=105,<=1<=≤<=*m*<=≤<=105). The second line contains *m* integers *a*1,<=*a*2,<=...,<=*a**m* (1<=≤<=*a**i*<=≤<=*n*). Note that Xenia can have multiple consecutive tasks in one house.
Print a single integer — the time Xenia needs to complete all tasks. Please, do not use the %lld specifier to read or write 64-bit integers in С++. It is preferred to use the cin, cout streams or the %I64d specifier.
[ "4 3\n3 2 3\n", "4 3\n2 3 3\n" ]
[ "6\n", "2\n" ]
In the first test example the sequence of Xenia's moves along the ringroad looks as follows: 1 → 2 → 3 → 4 → 1 → 2 → 3. This is optimal sequence. So, she needs 6 time units.
1,000
[ { "input": "4 3\n3 2 3", "output": "6" }, { "input": "4 3\n2 3 3", "output": "2" }, { "input": "2 2\n1 1", "output": "0" }, { "input": "2 2\n1 2", "output": "1" }, { "input": "2 2\n1 2", "output": "1" }, { "input": "100 100\n56 46 1 47 5 86 45 35 81 1 31 70 67 70 62 99 100 47 44 33 78 35 32 37 92 12 95 18 3 22 54 24 22 90 25 22 78 88 51 92 46 84 15 29 28 40 8 5 93 68 77 47 45 76 85 39 84 94 52 69 93 64 31 60 99 17 51 59 62 37 46 47 86 60 88 14 68 22 47 93 50 10 55 87 46 50 43 63 44 43 61 65 91 43 33 97 67 57 66 70", "output": "4869" }, { "input": "78 58\n23 14 73 45 47 14 27 59 65 39 15 23 5 1 50 37 3 51 46 69 75 65 45 68 48 59 77 39 53 21 72 33 46 32 34 5 69 55 56 53 47 31 32 5 42 23 76 15 2 77 65 24 16 68 61 28 55 10", "output": "2505" }, { "input": "14 54\n9 13 14 9 5 12 4 7 3 14 5 12 13 1 1 11 10 2 7 9 5 2 2 8 10 7 3 9 5 11 2 2 6 12 11 5 4 11 11 6 2 11 14 13 8 7 13 9 4 9 11 3 7 13", "output": "362" }, { "input": "100 100\n48 73 63 16 49 88 36 17 66 6 87 13 94 52 58 70 71 52 7 70 25 42 24 36 57 9 79 26 75 39 13 14 38 26 33 66 88 28 75 98 53 48 67 54 63 25 69 87 88 32 72 17 36 35 29 67 74 89 70 47 20 90 78 13 94 57 32 73 29 74 45 78 85 64 81 56 12 65 19 67 34 86 55 71 41 33 76 13 100 47 44 76 86 78 37 15 26 98 83 98", "output": "4997" }, { "input": "99 100\n88 65 10 91 18 35 58 49 42 2 22 57 74 31 53 24 27 93 45 4 71 2 69 39 21 90 97 89 45 73 20 45 82 98 35 90 37 76 68 26 21 65 95 63 24 74 50 59 3 93 65 6 30 37 62 71 18 88 40 12 56 40 89 56 38 71 90 41 97 43 44 23 19 22 10 80 3 24 32 85 26 65 70 60 76 85 66 68 74 11 64 88 12 63 16 15 79 57 93 58", "output": "4809" }, { "input": "65 100\n53 14 5 10 32 60 31 52 52 56 38 6 8 17 52 23 59 3 18 28 15 2 46 26 8 2 40 6 58 30 28 46 49 23 47 24 9 53 3 47 55 12 36 49 12 24 54 55 58 7 50 42 15 4 58 49 34 40 19 4 59 19 31 17 35 65 36 50 45 5 33 11 29 52 55 40 48 11 32 41 31 7 46 55 32 41 56 51 39 13 5 59 58 34 38 50 55 10 43 30", "output": "3149" }, { "input": "10 100\n7 6 2 10 7 2 3 8 10 4 6 1 4 5 7 10 1 2 3 5 4 10 8 2 3 3 6 8 3 9 4 1 9 10 1 2 5 1 8 8 5 9 2 8 1 2 3 2 1 10 10 7 1 3 2 2 7 1 6 6 6 9 2 3 1 7 2 2 9 7 3 3 2 10 7 4 7 3 3 3 2 4 4 2 2 8 4 1 10 10 5 10 6 10 6 10 3 10 8 9", "output": "428" }, { "input": "2 100\n1 1 2 2 2 2 1 2 1 2 2 2 1 1 2 2 2 2 1 1 2 1 2 2 1 1 2 2 2 1 2 1 1 1 2 1 2 2 2 1 2 2 2 2 1 2 1 1 1 2 1 1 2 1 1 2 2 1 2 1 2 2 2 1 1 1 1 1 2 2 2 1 1 2 2 1 1 2 2 1 1 2 1 1 1 1 2 2 1 1 1 2 1 1 1 1 1 1 1 2", "output": "47" }, { "input": "67 100\n49 5 25 48 37 55 5 33 14 30 59 28 57 46 45 32 47 22 40 28 58 34 27 29 4 52 63 44 31 65 42 61 11 17 32 17 18 1 12 33 38 11 59 46 43 55 23 30 23 2 42 21 45 51 30 19 35 15 10 30 13 21 32 34 33 3 5 59 23 63 6 9 20 43 64 3 42 41 40 4 14 20 40 33 25 44 1 2 50 46 13 10 3 20 22 64 28 42 58 30", "output": "3245" }, { "input": "100 100\n81 62 26 90 7 87 60 35 75 81 54 94 53 71 64 80 58 83 53 70 40 96 87 50 37 63 5 77 83 75 53 28 22 98 52 45 72 70 62 21 1 99 37 93 16 98 68 27 96 37 21 83 92 23 62 96 85 31 85 66 38 77 45 16 90 86 6 21 75 42 18 60 2 17 51 61 94 68 97 79 17 59 66 14 87 78 70 40 63 78 58 22 87 7 90 17 20 97 9 31", "output": "5530" }, { "input": "2 1\n1", "output": "0" }, { "input": "2 10\n1 1 1 1 1 1 1 1 1 1", "output": "0" }, { "input": "2 10\n1 1 1 2 2 2 1 1 1 2", "output": "3" }, { "input": "3 6\n1 2 3 3 2 1", "output": "6" } ]
1,696,968,917
2,147,483,647
PyPy 3-64
OK
TESTS
29
154
13,516,800
n, m = map(int, input().split()) s = 0 p = 1 a = list(map(int,input().split())) for v in a: s += (v - p) % n p = v print(s)
Title: Xenia and Ringroad Time Limit: None seconds Memory Limit: None megabytes Problem Description: Xenia lives in a city that has *n* houses built along the main ringroad. The ringroad houses are numbered 1 through *n* in the clockwise order. The ringroad traffic is one way and also is clockwise. Xenia has recently moved into the ringroad house number 1. As a result, she's got *m* things to do. In order to complete the *i*-th task, she needs to be in the house number *a**i* and complete all tasks with numbers less than *i*. Initially, Xenia is in the house number 1, find the minimum time she needs to complete all her tasks if moving from a house to a neighboring one along the ringroad takes one unit of time. Input Specification: The first line contains two integers *n* and *m* (2<=≤<=*n*<=≤<=105,<=1<=≤<=*m*<=≤<=105). The second line contains *m* integers *a*1,<=*a*2,<=...,<=*a**m* (1<=≤<=*a**i*<=≤<=*n*). Note that Xenia can have multiple consecutive tasks in one house. Output Specification: Print a single integer — the time Xenia needs to complete all tasks. Please, do not use the %lld specifier to read or write 64-bit integers in С++. It is preferred to use the cin, cout streams or the %I64d specifier. Demo Input: ['4 3\n3 2 3\n', '4 3\n2 3 3\n'] Demo Output: ['6\n', '2\n'] Note: In the first test example the sequence of Xenia's moves along the ringroad looks as follows: 1 → 2 → 3 → 4 → 1 → 2 → 3. This is optimal sequence. So, she needs 6 time units.
```python n, m = map(int, input().split()) s = 0 p = 1 a = list(map(int,input().split())) for v in a: s += (v - p) % n p = v print(s) ```
3
461
A
Appleman and Toastman
PROGRAMMING
1,200
[ "greedy", "sortings" ]
null
null
Appleman and Toastman play a game. Initially Appleman gives one group of *n* numbers to the Toastman, then they start to complete the following tasks: - Each time Toastman gets a group of numbers, he sums up all the numbers and adds this sum to the score. Then he gives the group to the Appleman. - Each time Appleman gets a group consisting of a single number, he throws this group out. Each time Appleman gets a group consisting of more than one number, he splits the group into two non-empty groups (he can do it in any way) and gives each of them to Toastman. After guys complete all the tasks they look at the score value. What is the maximum possible value of score they can get?
The first line contains a single integer *n* (1<=≤<=*n*<=≤<=3·105). The second line contains *n* integers *a*1, *a*2, ..., *a**n* (1<=≤<=*a**i*<=≤<=106) — the initial group that is given to Toastman.
Print a single integer — the largest possible score.
[ "3\n3 1 5\n", "1\n10\n" ]
[ "26\n", "10\n" ]
Consider the following situation in the first example. Initially Toastman gets group [3, 1, 5] and adds 9 to the score, then he give the group to Appleman. Appleman splits group [3, 1, 5] into two groups: [3, 5] and [1]. Both of them should be given to Toastman. When Toastman receives group [1], he adds 1 to score and gives the group to Appleman (he will throw it out). When Toastman receives group [3, 5], he adds 8 to the score and gives the group to Appleman. Appleman splits [3, 5] in the only possible way: [5] and [3]. Then he gives both groups to Toastman. When Toastman receives [5], he adds 5 to the score and gives the group to Appleman (he will throws it out). When Toastman receives [3], he adds 3 to the score and gives the group to Appleman (he will throws it out). Finally Toastman have added 9 + 1 + 8 + 5 + 3 = 26 to the score. This is the optimal sequence of actions.
500
[ { "input": "3\n3 1 5", "output": "26" }, { "input": "1\n10", "output": "10" }, { "input": "10\n8 10 2 5 6 2 4 7 2 1", "output": "376" }, { "input": "10\n171308 397870 724672 431255 228496 892002 542924 718337 888642 161821", "output": "40204082" }, { "input": "10\n1 2 2 2 4 5 6 7 8 10", "output": "376" }, { "input": "10\n161821 171308 228496 397870 431255 542924 718337 724672 888642 892002", "output": "40204082" }, { "input": "1\n397870", "output": "397870" }, { "input": "1\n1000000", "output": "1000000" }, { "input": "10\n10 8 7 6 5 4 2 2 2 1", "output": "376" }, { "input": "10\n892002 888642 724672 718337 542924 431255 397870 228496 171308 161821", "output": "40204082" }, { "input": "10\n5 2 6 10 10 10 10 2 2 5", "output": "485" }, { "input": "10\n431255 724672 228496 397870 397870 397870 397870 724672 888642 431255", "output": "36742665" }, { "input": "10\n2 2 2 5 5 6 10 10 10 10", "output": "485" }, { "input": "10\n228496 397870 397870 397870 397870 431255 431255 724672 724672 888642", "output": "36742665" }, { "input": "10\n10 10 10 10 6 5 5 2 2 2", "output": "485" }, { "input": "10\n888642 724672 724672 431255 431255 397870 397870 397870 397870 228496", "output": "36742665" }, { "input": "10\n10 10 10 10 10 10 10 10 10 10", "output": "640" }, { "input": "10\n1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000", "output": "64000000" }, { "input": "1\n397870", "output": "397870" }, { "input": "2\n1 2", "output": "6" }, { "input": "2\n2 3", "output": "10" }, { "input": "2\n1 1", "output": "4" } ]
1,615,428,721
2,147,483,647
Python 3
OK
TESTS
36
389
20,787,200
#Problem Set N: Collaborated with Justin Mercado and Rudransh Singh n = int(input()) a_list = list(map(int, input().split())) a_list = sorted(a_list) total = 0 for i in range(n): total = total + a_list[i]*(i+2) total = total - a_list[n-1] print(total)
Title: Appleman and Toastman Time Limit: None seconds Memory Limit: None megabytes Problem Description: Appleman and Toastman play a game. Initially Appleman gives one group of *n* numbers to the Toastman, then they start to complete the following tasks: - Each time Toastman gets a group of numbers, he sums up all the numbers and adds this sum to the score. Then he gives the group to the Appleman. - Each time Appleman gets a group consisting of a single number, he throws this group out. Each time Appleman gets a group consisting of more than one number, he splits the group into two non-empty groups (he can do it in any way) and gives each of them to Toastman. After guys complete all the tasks they look at the score value. What is the maximum possible value of score they can get? Input Specification: The first line contains a single integer *n* (1<=≤<=*n*<=≤<=3·105). The second line contains *n* integers *a*1, *a*2, ..., *a**n* (1<=≤<=*a**i*<=≤<=106) — the initial group that is given to Toastman. Output Specification: Print a single integer — the largest possible score. Demo Input: ['3\n3 1 5\n', '1\n10\n'] Demo Output: ['26\n', '10\n'] Note: Consider the following situation in the first example. Initially Toastman gets group [3, 1, 5] and adds 9 to the score, then he give the group to Appleman. Appleman splits group [3, 1, 5] into two groups: [3, 5] and [1]. Both of them should be given to Toastman. When Toastman receives group [1], he adds 1 to score and gives the group to Appleman (he will throw it out). When Toastman receives group [3, 5], he adds 8 to the score and gives the group to Appleman. Appleman splits [3, 5] in the only possible way: [5] and [3]. Then he gives both groups to Toastman. When Toastman receives [5], he adds 5 to the score and gives the group to Appleman (he will throws it out). When Toastman receives [3], he adds 3 to the score and gives the group to Appleman (he will throws it out). Finally Toastman have added 9 + 1 + 8 + 5 + 3 = 26 to the score. This is the optimal sequence of actions.
```python #Problem Set N: Collaborated with Justin Mercado and Rudransh Singh n = int(input()) a_list = list(map(int, input().split())) a_list = sorted(a_list) total = 0 for i in range(n): total = total + a_list[i]*(i+2) total = total - a_list[n-1] print(total) ```
3
848
A
From Y to Y
PROGRAMMING
1,600
[ "constructive algorithms" ]
null
null
From beginning till end, this message has been waiting to be conveyed. For a given unordered multiset of *n* lowercase English letters ("multi" means that a letter may appear more than once), we treat all letters as strings of length 1, and repeat the following operation *n*<=-<=1 times: - Remove any two elements *s* and *t* from the set, and add their concatenation *s*<=+<=*t* to the set. The cost of such operation is defined to be , where *f*(*s*,<=*c*) denotes the number of times character *c* appears in string *s*. Given a non-negative integer *k*, construct any valid non-empty set of no more than 100<=000 letters, such that the minimum accumulative cost of the whole process is exactly *k*. It can be shown that a solution always exists.
The first and only line of input contains a non-negative integer *k* (0<=≤<=*k*<=≤<=100<=000) — the required minimum cost.
Output a non-empty string of no more than 100<=000 lowercase English letters — any multiset satisfying the requirements, concatenated to be a string. Note that the printed string doesn't need to be the final concatenated string. It only needs to represent an unordered multiset of letters.
[ "12\n", "3\n" ]
[ "abababab\n", "codeforces\n" ]
For the multiset {'a', 'b', 'a', 'b', 'a', 'b', 'a', 'b'}, one of the ways to complete the process is as follows: - {"ab", "a", "b", "a", "b", "a", "b"}, with a cost of 0; - {"aba", "b", "a", "b", "a", "b"}, with a cost of 1; - {"abab", "a", "b", "a", "b"}, with a cost of 1; - {"abab", "ab", "a", "b"}, with a cost of 0; - {"abab", "aba", "b"}, with a cost of 1; - {"abab", "abab"}, with a cost of 1; - {"abababab"}, with a cost of 8. The total cost is 12, and it can be proved to be the minimum cost of the process.
500
[ { "input": "12", "output": "abababab" }, { "input": "3", "output": "codeforces" }, { "input": "0", "output": "o" }, { "input": "2", "output": "aabb" }, { "input": "5", "output": "aaabbcc" }, { "input": "10", "output": "aaaaa" }, { "input": "233", "output": "ooououououououououooohhhhhhaaiiiiiibbjjjjjjcckkkkkkddlllllleemmmmmmffnnnnnnggzzzzzz" }, { "input": "418", "output": "aaaaaaaaaaaaaaaaaaaaaaaaaaaaabbbbcccc" }, { "input": "100000", "output": "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaabbbbbbbbbbbbbbbbbbbbbbbcccccccccccc" }, { "input": "1", "output": "aa" }, { "input": "4", "output": "aaabb" }, { "input": "6", "output": "aaaa" }, { "input": "7", "output": "aaaabb" }, { "input": "8", "output": "aaaabbcc" }, { "input": "9", "output": "aaaabbb" }, { "input": "11", "output": "aaaaabb" }, { "input": "1317", "output": "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaabbbbbbbbbcccc" }, { "input": "1926", "output": "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaabbbbbbbbbbbbbbbbbbccc" }, { "input": "14514", "output": "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaabbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb" }, { "input": "25252", "output": "niconiconiconiconiconiconiconiconiconiconiconiconiconiconiconiconiconiconiconiconiconiconiconiconiconiconiconiconiconiconiconiconiconiconiconiconiconiconiconiconiconiconiconiconiconiconiconiconiconiconiconiconiconiconiconiconiconiconiconiconiconiconiconiconiconiconiconiconiconiconiconiconiconiconiconiconiconiconiconiconiconiconiconiconiconiconiconiconiconiconiconiconiconiconiconiconiconiconiconiconiconiconiconiconiconiconiconiconiconiconiconicooooquququququququq" }, { "input": "99681", "output": "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa" }, { "input": "99998", "output": "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaabbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbccc..." }, { "input": "82944", "output": "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaabbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb..." }, { "input": "831", "output": "happybirthdayhappybirthdayhappybirthdayhappybirthdayhappybirthdayhappybirthdayhappybirthdayhappybirthdayhappybirthdayqqquqqquqqqu" }, { "input": "39393", "output": "mikumikumikumikumikumikumikumikumikumikumikumikumikumikumikumikumikumikumikumikumikumikumikumikumikumikumikumikumikumikumikumikumikumikumikumikumikumikumikumikumikumikumikumikumikumikumikumikumikumikumikumikumikumikumikumikumikumikumikumikumikumikumikumikumikumikumikumikumikumikumikumikumikumikumikumikumikumikumikumikumikumikumikumikumikumikumikumikumikumikumikumikumikumikumikumikumikumikumikumikumikumikumikumikumikumikumikumikumikumikumikumikumikumikumikumikumikumikumikumikumikumikumikumikumikumikumikumik..." } ]
1,612,970,481
2,147,483,647
PyPy 3
WRONG_ANSWER
TESTS
3
140
2,150,400
import string l = string.ascii_lowercase n = int(input()) if n==0: print(l[0]) else: fact = [] temp = 1 i = 1 while temp<=n: fact.append(temp) i+=1 temp = temp*i fact.reverse() for i in range(len(fact)): if n%fact[i]==0: temp = len(fact)-i break print(l[:(n//fact[len(fact)-(temp)])]*(temp+1))
Title: From Y to Y Time Limit: None seconds Memory Limit: None megabytes Problem Description: From beginning till end, this message has been waiting to be conveyed. For a given unordered multiset of *n* lowercase English letters ("multi" means that a letter may appear more than once), we treat all letters as strings of length 1, and repeat the following operation *n*<=-<=1 times: - Remove any two elements *s* and *t* from the set, and add their concatenation *s*<=+<=*t* to the set. The cost of such operation is defined to be , where *f*(*s*,<=*c*) denotes the number of times character *c* appears in string *s*. Given a non-negative integer *k*, construct any valid non-empty set of no more than 100<=000 letters, such that the minimum accumulative cost of the whole process is exactly *k*. It can be shown that a solution always exists. Input Specification: The first and only line of input contains a non-negative integer *k* (0<=≤<=*k*<=≤<=100<=000) — the required minimum cost. Output Specification: Output a non-empty string of no more than 100<=000 lowercase English letters — any multiset satisfying the requirements, concatenated to be a string. Note that the printed string doesn't need to be the final concatenated string. It only needs to represent an unordered multiset of letters. Demo Input: ['12\n', '3\n'] Demo Output: ['abababab\n', 'codeforces\n'] Note: For the multiset {'a', 'b', 'a', 'b', 'a', 'b', 'a', 'b'}, one of the ways to complete the process is as follows: - {"ab", "a", "b", "a", "b", "a", "b"}, with a cost of 0; - {"aba", "b", "a", "b", "a", "b"}, with a cost of 1; - {"abab", "a", "b", "a", "b"}, with a cost of 1; - {"abab", "ab", "a", "b"}, with a cost of 0; - {"abab", "aba", "b"}, with a cost of 1; - {"abab", "abab"}, with a cost of 1; - {"abababab"}, with a cost of 8. The total cost is 12, and it can be proved to be the minimum cost of the process.
```python import string l = string.ascii_lowercase n = int(input()) if n==0: print(l[0]) else: fact = [] temp = 1 i = 1 while temp<=n: fact.append(temp) i+=1 temp = temp*i fact.reverse() for i in range(len(fact)): if n%fact[i]==0: temp = len(fact)-i break print(l[:(n//fact[len(fact)-(temp)])]*(temp+1)) ```
0
520
A
Pangram
PROGRAMMING
800
[ "implementation", "strings" ]
null
null
A word or a sentence in some language is called a pangram if all the characters of the alphabet of this language appear in it at least once. Pangrams are often used to demonstrate fonts in printing or test the output devices. You are given a string consisting of lowercase and uppercase Latin letters. Check whether this string is a pangram. We say that the string contains a letter of the Latin alphabet if this letter occurs in the string in uppercase or lowercase.
The first line contains a single integer *n* (1<=≤<=*n*<=≤<=100) — the number of characters in the string. The second line contains the string. The string consists only of uppercase and lowercase Latin letters.
Output "YES", if the string is a pangram and "NO" otherwise.
[ "12\ntoosmallword\n", "35\nTheQuickBrownFoxJumpsOverTheLazyDog\n" ]
[ "NO\n", "YES\n" ]
none
500
[ { "input": "12\ntoosmallword", "output": "NO" }, { "input": "35\nTheQuickBrownFoxJumpsOverTheLazyDog", "output": "YES" }, { "input": "1\na", "output": "NO" }, { "input": "26\nqwertyuiopasdfghjklzxcvbnm", "output": "YES" }, { "input": "26\nABCDEFGHIJKLMNOPQRSTUVWXYZ", "output": "YES" }, { "input": "48\nthereisasyetinsufficientdataforameaningfulanswer", "output": "NO" }, { "input": "30\nToBeOrNotToBeThatIsTheQuestion", "output": "NO" }, { "input": "30\njackdawslovemybigsphinxofquarz", "output": "NO" }, { "input": "31\nTHEFIVEBOXINGWIZARDSJUMPQUICKLY", "output": "YES" }, { "input": "26\naaaaaaaaaaaaaaaaaaaaaaaaaa", "output": "NO" }, { "input": "26\nMGJYIZDKsbhpVeNFlquRTcWoAx", "output": "YES" }, { "input": "26\nfWMOhAPsbIVtyUEZrGNQXDklCJ", "output": "YES" }, { "input": "26\nngPMVFSThiRCwLEuyOAbKxQzDJ", "output": "YES" }, { "input": "25\nnxYTzLFwzNolAumjgcAboyxAj", "output": "NO" }, { "input": "26\npRWdodGdxUESvcScPGbUoooZsC", "output": "NO" }, { "input": "66\nBovdMlDzTaqKllZILFVfxbLGsRnzmtVVTmqiIDTYrossLEPlmsPrkUYtWEsGHVOnFj", "output": "NO" }, { "input": "100\nmKtsiDRJypUieHIkvJaMFkwaKxcCIbBszZQLIyPpCDCjhNpAnYFngLjRpnKWpKWtGnwoSteeZXuFHWQxxxOpFlNeYTwKocsXuCoa", "output": "YES" }, { "input": "26\nEoqxUbsLjPytUHMiFnvcGWZdRK", "output": "NO" }, { "input": "26\nvCUFRKElZOnjmXGylWQaHDiPst", "output": "NO" }, { "input": "26\nWtrPuaHdXLKJMsnvQfgOiJZBEY", "output": "NO" }, { "input": "26\npGiFluRteQwkaVoPszJyNBChxM", "output": "NO" }, { "input": "26\ncTUpqjPmANrdbzSFhlWIoKxgVY", "output": "NO" }, { "input": "26\nLndjgvAEuICHKxPwqYztosrmBN", "output": "NO" }, { "input": "26\nMdaXJrCipnOZLykfqHWEStevbU", "output": "NO" }, { "input": "26\nEjDWsVxfKTqGXRnUMOLYcIzPba", "output": "NO" }, { "input": "26\nxKwzRMpunYaqsdfaBgJcVElTHo", "output": "NO" }, { "input": "26\nnRYUQsTwCPLZkgshfEXvBdoiMa", "output": "NO" }, { "input": "26\nHNCQPfJutyAlDGsvRxZWMEbIdO", "output": "NO" }, { "input": "26\nDaHJIpvKznQcmUyWsTGObXRFDe", "output": "NO" }, { "input": "26\nkqvAnFAiRhzlJbtyuWedXSPcOG", "output": "NO" }, { "input": "26\nhlrvgdwsIOyjcmUZXtAKEqoBpF", "output": "NO" }, { "input": "26\njLfXXiMhBTcAwQVReGnpKzdsYu", "output": "NO" }, { "input": "26\nlNMcVuwItjxRBGAekjhyDsQOzf", "output": "NO" }, { "input": "26\nRkSwbNoYldUGtAZvpFMcxhIJFE", "output": "NO" }, { "input": "26\nDqspXZJTuONYieKgaHLMBwfVSC", "output": "NO" }, { "input": "26\necOyUkqNljFHRVXtIpWabGMLDz", "output": "NO" }, { "input": "26\nEKAvqZhBnPmVCDRlgWJfOusxYI", "output": "NO" }, { "input": "26\naLbgqeYchKdMrsZxIPFvTOWNjA", "output": "NO" }, { "input": "26\nxfpBLsndiqtacOCHGmeWUjRkYz", "output": "NO" }, { "input": "26\nXsbRKtqleZPNIVCdfUhyagAomJ", "output": "NO" }, { "input": "26\nAmVtbrwquEthZcjKPLiyDgSoNF", "output": "NO" }, { "input": "26\nOhvXDcwqAUmSEPRZGnjFLiKtNB", "output": "NO" }, { "input": "26\nEKWJqCFLRmstxVBdYuinpbhaOg", "output": "NO" }, { "input": "26\nmnbvcxxlkjhgfdsapoiuytrewq", "output": "NO" }, { "input": "26\naAbcdefghijklmnopqrstuvwxy", "output": "NO" }, { "input": "30\nABCDEFGHTYRIOPLabcdefghtyriopl", "output": "NO" }, { "input": "25\nabcdefghijklmnopqrstuvwxy", "output": "NO" }, { "input": "26\nabcdefhijklmnopqrstVxyzABC", "output": "NO" }, { "input": "25\nqwertyuiopasdfghjklxcvbnm", "output": "NO" }, { "input": "34\nTheQuickBrownFoxJumpsOverTheLayDog", "output": "NO" }, { "input": "26\nabcdefghigklmnopqrstuvwxyz", "output": "NO" }, { "input": "26\nabcdefghijklmnopqrstuvwxyA", "output": "NO" }, { "input": "50\nqazwsxedcrfvtgbyhnujmikolQWERTYUIOASDFGHJKLZXCVBNM", "output": "NO" }, { "input": "35\nTheQuickBrownFoxJumpsOverTheLasyDog", "output": "NO" }, { "input": "25\nbcdefghijklmnopqrstuvwxyz", "output": "NO" }, { "input": "38\nAbCdEfGhIjKlMnOpQrStVwXyZzzzzzzaaaaaaa", "output": "NO" }, { "input": "26\nabcdefghiklmnopqrstvxyzABC", "output": "NO" }, { "input": "26\nabcdefghijklmnopqrstuvwxzZ", "output": "NO" }, { "input": "50\nabcdefghijklmnopqrstuvwxyABCDEFGHIJKLMNOPQRSTUVWXY", "output": "NO" } ]
1,698,745,761
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
1
15
0
n=int(input()) str=str(input()) str.lower() for i in range(0,n): if str[i] not in str[:i]+str[i+1:]: print("NO") break else: print("YES")
Title: Pangram Time Limit: None seconds Memory Limit: None megabytes Problem Description: A word or a sentence in some language is called a pangram if all the characters of the alphabet of this language appear in it at least once. Pangrams are often used to demonstrate fonts in printing or test the output devices. You are given a string consisting of lowercase and uppercase Latin letters. Check whether this string is a pangram. We say that the string contains a letter of the Latin alphabet if this letter occurs in the string in uppercase or lowercase. Input Specification: The first line contains a single integer *n* (1<=≤<=*n*<=≤<=100) — the number of characters in the string. The second line contains the string. The string consists only of uppercase and lowercase Latin letters. Output Specification: Output "YES", if the string is a pangram and "NO" otherwise. Demo Input: ['12\ntoosmallword\n', '35\nTheQuickBrownFoxJumpsOverTheLazyDog\n'] Demo Output: ['NO\n', 'YES\n'] Note: none
```python n=int(input()) str=str(input()) str.lower() for i in range(0,n): if str[i] not in str[:i]+str[i+1:]: print("NO") break else: print("YES") ```
0
91
A
Newspaper Headline
PROGRAMMING
1,500
[ "greedy", "strings" ]
A. Newspaper Headline
2
256
A newspaper is published in Walrusland. Its heading is *s*1, it consists of lowercase Latin letters. Fangy the little walrus wants to buy several such newspapers, cut out their headings, glue them one to another in order to get one big string. After that walrus erase several letters from this string in order to get a new word *s*2. It is considered that when Fangy erases some letter, there's no whitespace formed instead of the letter. That is, the string remains unbroken and it still only consists of lowercase Latin letters. For example, the heading is "abc". If we take two such headings and glue them one to the other one, we get "abcabc". If we erase the letters on positions 1 and 5, we get a word "bcac". Which least number of newspaper headings *s*1 will Fangy need to glue them, erase several letters and get word *s*2?
The input data contain two lines. The first line contain the heading *s*1, the second line contains the word *s*2. The lines only consist of lowercase Latin letters (1<=≤<=|*s*1|<=≤<=104,<=1<=≤<=|*s*2|<=≤<=106).
If it is impossible to get the word *s*2 in the above-described manner, print "-1" (without the quotes). Otherwise, print the least number of newspaper headings *s*1, which Fangy will need to receive the word *s*2.
[ "abc\nxyz\n", "abcd\ndabc\n" ]
[ "-1\n", "2\n" ]
none
500
[ { "input": "abc\nxyz", "output": "-1" }, { "input": "abcd\ndabc", "output": "2" }, { "input": "ab\nbabaaab", "output": "5" }, { "input": "ab\nbaaabba", "output": "6" }, { "input": "fbaaigiihhfaahgdbddgeggjdeigfadhfddja\nhbghjgijijcdafcbgiedichdeebaddfddb", "output": "-1" }, { "input": "ibifgcfdbfdhihbifageaaadegbfbhgeebgdgiafgedchdg\ndedfebcfdigdefdediigcfcafbhhiacgfbeccfchd", "output": "7" }, { "input": "fcagdciidcedeaicgfffgjefaefaachfbfj\naiecchjehdgbjfcdjdefgfhiddjajeddiigidaibejabd", "output": "11" }, { "input": "ehfjaabjfedhddejjfcfijagefhjeahjcddhchahjbagi\nfbfdjbjhibjgjgaaajgdbcfdbhjcajcbbieijhcjgajhgaa", "output": "10" }, { "input": "ifjcedhjhdjhbiaededfefagigggcebfaebf\ngeibbffgeefbaghdbfidbbhabdbdgej", "output": "9" }, { "input": "eidfdfbbgjigghaddbjhcbdechecgghjgfjjcajjhaghdhd\nfcgecaefhgjjegbhjeaffcabifihhcadaibhi", "output": "11" } ]
1,686,032,304
2,147,483,647
PyPy 3-64
OK
TESTS
51
560
7,884,800
s1 = input() s2 = input() from collections import defaultdict d = defaultdict(list) for i in range(len(s1)): d[s1[i]].append(i) import bisect ans = 0 cur = 10**18 for ch in s2: if ch not in d: print(-1) exit() else: if cur >= d[ch][-1]: cur = d[ch][0] ans += 1 else: cur = d[ch][bisect.bisect_right(d[ch],cur)] print(ans)
Title: Newspaper Headline Time Limit: 2 seconds Memory Limit: 256 megabytes Problem Description: A newspaper is published in Walrusland. Its heading is *s*1, it consists of lowercase Latin letters. Fangy the little walrus wants to buy several such newspapers, cut out their headings, glue them one to another in order to get one big string. After that walrus erase several letters from this string in order to get a new word *s*2. It is considered that when Fangy erases some letter, there's no whitespace formed instead of the letter. That is, the string remains unbroken and it still only consists of lowercase Latin letters. For example, the heading is "abc". If we take two such headings and glue them one to the other one, we get "abcabc". If we erase the letters on positions 1 and 5, we get a word "bcac". Which least number of newspaper headings *s*1 will Fangy need to glue them, erase several letters and get word *s*2? Input Specification: The input data contain two lines. The first line contain the heading *s*1, the second line contains the word *s*2. The lines only consist of lowercase Latin letters (1<=≤<=|*s*1|<=≤<=104,<=1<=≤<=|*s*2|<=≤<=106). Output Specification: If it is impossible to get the word *s*2 in the above-described manner, print "-1" (without the quotes). Otherwise, print the least number of newspaper headings *s*1, which Fangy will need to receive the word *s*2. Demo Input: ['abc\nxyz\n', 'abcd\ndabc\n'] Demo Output: ['-1\n', '2\n'] Note: none
```python s1 = input() s2 = input() from collections import defaultdict d = defaultdict(list) for i in range(len(s1)): d[s1[i]].append(i) import bisect ans = 0 cur = 10**18 for ch in s2: if ch not in d: print(-1) exit() else: if cur >= d[ch][-1]: cur = d[ch][0] ans += 1 else: cur = d[ch][bisect.bisect_right(d[ch],cur)] print(ans) ```
3.845313
706
B
Interesting drink
PROGRAMMING
1,100
[ "binary search", "dp", "implementation" ]
null
null
Vasiliy likes to rest after a hard work, so you may often meet him in some bar nearby. As all programmers do, he loves the famous drink "Beecola", which can be bought in *n* different shops in the city. It's known that the price of one bottle in the shop *i* is equal to *x**i* coins. Vasiliy plans to buy his favorite drink for *q* consecutive days. He knows, that on the *i*-th day he will be able to spent *m**i* coins. Now, for each of the days he want to know in how many different shops he can buy a bottle of "Beecola".
The first line of the input contains a single integer *n* (1<=≤<=*n*<=≤<=100<=000) — the number of shops in the city that sell Vasiliy's favourite drink. The second line contains *n* integers *x**i* (1<=≤<=*x**i*<=≤<=100<=000) — prices of the bottles of the drink in the *i*-th shop. The third line contains a single integer *q* (1<=≤<=*q*<=≤<=100<=000) — the number of days Vasiliy plans to buy the drink. Then follow *q* lines each containing one integer *m**i* (1<=≤<=*m**i*<=≤<=109) — the number of coins Vasiliy can spent on the *i*-th day.
Print *q* integers. The *i*-th of them should be equal to the number of shops where Vasiliy will be able to buy a bottle of the drink on the *i*-th day.
[ "5\n3 10 8 6 11\n4\n1\n10\n3\n11\n" ]
[ "0\n4\n1\n5\n" ]
On the first day, Vasiliy won't be able to buy a drink in any of the shops. On the second day, Vasiliy can buy a drink in the shops 1, 2, 3 and 4. On the third day, Vasiliy can buy a drink only in the shop number 1. Finally, on the last day Vasiliy can buy a drink in any shop.
1,000
[ { "input": "5\n3 10 8 6 11\n4\n1\n10\n3\n11", "output": "0\n4\n1\n5" }, { "input": "5\n868 987 714 168 123\n10\n424\n192\n795\n873\n117\n914\n735\n158\n631\n471", "output": "2\n2\n3\n4\n0\n4\n3\n1\n2\n2" }, { "input": "3\n435 482 309\n7\n245\n241\n909\n745\n980\n29\n521", "output": "0\n0\n3\n3\n3\n0\n3" }, { "input": "1\n653\n9\n903\n980\n80\n770\n965\n874\n381\n657\n969", "output": "1\n1\n0\n1\n1\n1\n0\n1\n1" }, { "input": "12\n35345 58181 32223 84621 35905 73863 99537 30666 67771 39229 36847 29038\n23\n55052824\n82504840\n35160556\n78141700\n73401989\n86305919\n39430705\n31939373\n23501765\n4406029\n61436920\n14295390\n34275309\n28028753\n85724689\n70158847\n2396455\n66994588\n84024224\n30175981\n65622319\n76517111\n76605341", "output": "12\n12\n12\n12\n12\n12\n12\n12\n12\n12\n12\n12\n12\n12\n12\n12\n12\n12\n12\n12\n12\n12\n12" }, { "input": "4\n698 193 1584 76192\n4\n553640\n310518\n274280\n429192", "output": "4\n4\n4\n4" }, { "input": "1\n1\n1\n1000000000", "output": "1" }, { "input": "1\n1\n1\n100005", "output": "1" }, { "input": "3\n1 2 3\n1\n100005", "output": "3" }, { "input": "2\n1 2\n3\n100004\n100005\n100006", "output": "2\n2\n2" }, { "input": "3\n1 1 1\n1\n1", "output": "3" }, { "input": "1\n1\n1\n1", "output": "1" }, { "input": "3\n1 2 3\n1\n100000", "output": "3" }, { "input": "5\n1 1 1 1 10\n2\n1\n10", "output": "4\n5" }, { "input": "5\n3 10 8 6 11\n1\n10000000", "output": "5" } ]
1,699,886,670
2,147,483,647
Python 3
OK
TESTS
103
967
13,619,200
# -*- coding: utf-8 -*- """ Created on Mon Nov 13 22:31:05 2023 @author: 刘婉婷 2300012258 """ def binary_search(arr, target): left, right = 0, len(arr) - 1 while left <= right: mid = (left + right) // 2 if arr[mid] <= target: left = mid + 1 else: right = mid - 1 return left n=int(input()) beecola_price=list(map(int,input().split())) beecola_price.sort() q=int(input()) for i in range(q): m=int(input()) num=binary_search(beecola_price, m) print(num)
Title: Interesting drink Time Limit: None seconds Memory Limit: None megabytes Problem Description: Vasiliy likes to rest after a hard work, so you may often meet him in some bar nearby. As all programmers do, he loves the famous drink "Beecola", which can be bought in *n* different shops in the city. It's known that the price of one bottle in the shop *i* is equal to *x**i* coins. Vasiliy plans to buy his favorite drink for *q* consecutive days. He knows, that on the *i*-th day he will be able to spent *m**i* coins. Now, for each of the days he want to know in how many different shops he can buy a bottle of "Beecola". Input Specification: The first line of the input contains a single integer *n* (1<=≤<=*n*<=≤<=100<=000) — the number of shops in the city that sell Vasiliy's favourite drink. The second line contains *n* integers *x**i* (1<=≤<=*x**i*<=≤<=100<=000) — prices of the bottles of the drink in the *i*-th shop. The third line contains a single integer *q* (1<=≤<=*q*<=≤<=100<=000) — the number of days Vasiliy plans to buy the drink. Then follow *q* lines each containing one integer *m**i* (1<=≤<=*m**i*<=≤<=109) — the number of coins Vasiliy can spent on the *i*-th day. Output Specification: Print *q* integers. The *i*-th of them should be equal to the number of shops where Vasiliy will be able to buy a bottle of the drink on the *i*-th day. Demo Input: ['5\n3 10 8 6 11\n4\n1\n10\n3\n11\n'] Demo Output: ['0\n4\n1\n5\n'] Note: On the first day, Vasiliy won't be able to buy a drink in any of the shops. On the second day, Vasiliy can buy a drink in the shops 1, 2, 3 and 4. On the third day, Vasiliy can buy a drink only in the shop number 1. Finally, on the last day Vasiliy can buy a drink in any shop.
```python # -*- coding: utf-8 -*- """ Created on Mon Nov 13 22:31:05 2023 @author: 刘婉婷 2300012258 """ def binary_search(arr, target): left, right = 0, len(arr) - 1 while left <= right: mid = (left + right) // 2 if arr[mid] <= target: left = mid + 1 else: right = mid - 1 return left n=int(input()) beecola_price=list(map(int,input().split())) beecola_price.sort() q=int(input()) for i in range(q): m=int(input()) num=binary_search(beecola_price, m) print(num) ```
3
386
B
Fly, freebies, fly!
PROGRAMMING
1,400
[ "binary search", "brute force", "implementation" ]
null
null
Everyone loves a freebie. Especially students. It is well-known that if in the night before exam a student opens window, opens the student's record-book and shouts loudly three times "Fly, freebie, fly!" — then flown freebie helps him to pass the upcoming exam. In the night before the exam on mathematical analysis *n* students living in dormitory shouted treasured words. The *i*-th student made a sacrament at the time *t**i*, where *t**i* is the number of seconds elapsed since the beginning of the night. It is known that the freebie is a capricious and willful lady. That night the freebie was near dormitory only for *T* seconds. Therefore, if for two students their sacrament times differ for more than *T*, then the freebie didn't visit at least one of them. Since all students are optimists, they really want to know what is the maximal number of students visited by the freebie can be.
The first line of the input contains integer *n* (1<=≤<=*n*<=≤<=100), where *n* — the number of students shouted "Fly, freebie, fly!" The second line contains *n* positive integers *t**i* (1<=≤<=*t**i*<=≤<=1000). The last line contains integer *T* (1<=≤<=*T*<=≤<=1000) — the time interval during which the freebie was near the dormitory.
Print a single integer — the largest number of people who will pass exam tomorrow because of the freebie visit.
[ "6\n4 1 7 8 3 8\n1\n" ]
[ "3\n" ]
none
1,000
[ { "input": "6\n4 1 7 8 3 8\n1", "output": "3" }, { "input": "4\n4 2 1 5\n2", "output": "2" }, { "input": "10\n4 7 1 3 8 5 2 1 8 4\n3", "output": "6" }, { "input": "8\n39 49 37 28 40 17 50 2\n10", "output": "3" }, { "input": "2\n1 1\n1", "output": "2" }, { "input": "2\n1 1\n2", "output": "2" }, { "input": "2\n1 1\n1000", "output": "2" }, { "input": "2\n1 2\n2", "output": "2" }, { "input": "2\n450 826\n1000", "output": "2" }, { "input": "3\n3 1 1\n1", "output": "2" }, { "input": "3\n3 1 2\n2", "output": "3" }, { "input": "3\n3 4 3\n1", "output": "3" }, { "input": "3\n3 4 3\n1", "output": "3" }, { "input": "100\n63 69 36 40 74 31 86 42 81 95 60 55 98 98 2 16 84 37 61 47 81 91 85 62 85 32 79 74 65 48 39 60 97 90 59 76 98 73 58 5 16 54 59 42 9 27 95 24 9 6 42 49 64 61 22 27 43 60 39 87 99 57 5 62 48 67 81 36 27 87 41 88 5 33 43 81 82 65 46 52 43 68 85 75 81 99 30 56 67 55 92 4 3 3 66 32 30 45 22 88\n5", "output": "11" }, { "input": "100\n97 29 39 42 68 100 44 54 6 70 17 100 52 85 67 1 43 49 1 47 98 35 5 38 37 73 84 20 13 15 78 65 29 92 20 40 38 11 12 100 24 94 29 92 83 47 25 63 23 85 85 93 61 60 35 40 96 50 19 15 28 19 98 59 42 14 54 65 2 53 38 9 15 69 43 63 63 8 55 12 81 57 69 21 57 11 99 45 23 31 59 2 16 61 43 36 12 39 42 13\n50", "output": "62" }, { "input": "100\n31 1 56 82 96 98 25 41 74 73 8 66 95 50 89 77 98 12 69 45 6 10 48 59 1 77 15 77 9 52 66 8 6 71 39 3 58 73 66 45 8 22 67 83 58 6 96 79 46 43 44 90 13 67 56 32 83 96 93 22 49 10 100 79 99 41 13 71 42 96 89 10 84 95 89 7 18 49 16 54 61 35 25 71 26 68 22 40 68 19 30 51 18 20 12 61 11 23 86 72\n1", "output": "6" }, { "input": "100\n30 74 20 6 3 63 48 45 36 26 33 24 60 71 45 5 19 37 74 100 98 82 67 76 37 46 68 48 56 29 33 19 15 84 76 92 50 53 42 19 5 91 23 38 93 50 39 45 89 17 57 14 86 81 31 6 16 5 80 6 86 49 18 75 30 30 85 94 38 33 50 76 72 32 73 96 28 3 18 20 96 84 89 48 71 64 6 59 87 31 94 24 9 64 15 86 66 11 32 40\n90", "output": "94" }, { "input": "100\n398 82 739 637 913 962 680 125 963 931 311 680 20 530 795 126 881 666 226 323 594 416 176 6 820 317 866 723 831 432 139 706 608 218 963 550 592 544 874 927 763 468 121 424 91 956 42 442 883 66 299 654 964 730 160 615 515 255 709 278 224 223 304 292 41 450 445 556 477 327 647 518 90 470 894 837 655 495 612 113 746 610 751 486 116 933 314 348 736 58 219 429 976 773 678 642 696 522 161 422\n1", "output": "3" }, { "input": "100\n760 621 622 793 66 684 411 813 474 404 304 934 319 411 99 965 722 156 681 400 481 462 571 726 696 244 124 350 403 566 564 641 381 494 703 3 348 213 343 390 27 660 46 591 990 931 477 823 890 21 936 267 282 753 599 269 387 443 622 673 473 745 646 224 911 7 155 880 332 932 51 994 144 666 789 691 323 738 192 372 191 246 903 666 929 252 132 614 11 938 298 286 309 596 210 18 143 760 759 584\n10", "output": "6" }, { "input": "100\n923 357 749 109 685 126 961 437 859 91 985 488 644 777 950 144 479 667 1 535 475 38 843 606 672 333 798 42 595 854 410 914 934 586 329 595 861 321 603 924 434 636 475 395 619 449 336 790 279 931 605 898 276 47 537 935 508 576 168 465 115 884 960 593 883 581 468 426 848 289 525 309 589 106 924 238 829 975 897 373 650 41 952 621 817 46 366 488 924 561 960 449 311 32 517 737 20 765 799 3\n100", "output": "18" }, { "input": "100\n98 63 672 100 254 218 623 415 426 986 920 915 736 795 407 541 382 213 935 743 961 59 660 512 134 935 248 378 739 356 543 714 28 667 602 596 759 791 103 564 225 520 159 542 966 332 983 655 517 273 95 242 593 940 286 236 41 318 941 727 384 225 319 627 982 359 232 769 854 172 643 598 215 231 305 30 347 469 929 919 90 294 739 641 368 270 932 452 234 741 309 234 357 392 707 873 808 398 417 483\n1000", "output": "100" }, { "input": "100\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1\n1", "output": "100" }, { "input": "100\n2 1 1 1 2 2 2 2 2 2 1 1 1 1 2 2 1 1 1 2 2 1 1 1 1 2 1 2 1 2 1 2 1 2 2 2 1 1 2 1 2 2 1 1 2 2 2 2 2 1 1 2 1 1 1 2 1 2 1 2 1 2 1 1 2 1 2 1 2 1 2 1 2 1 1 2 2 1 2 2 1 1 1 2 2 2 1 1 2 2 1 2 2 2 1 2 2 1 2 2\n1", "output": "100" }, { "input": "100\n3 3 1 2 3 3 1 3 3 2 2 2 2 1 2 3 2 1 2 2 2 2 3 2 1 3 3 3 2 1 3 1 2 1 1 2 2 3 2 2 3 1 1 3 1 2 1 3 3 1 1 3 1 3 2 3 3 2 2 2 2 1 1 1 2 1 1 2 1 1 1 1 1 3 2 2 1 3 1 1 3 1 2 2 1 3 1 1 1 1 2 2 2 3 2 2 3 1 1 3\n1", "output": "72" }, { "input": "100\n2 1 3 4 1 1 4 1 3 2 1 4 4 4 4 4 3 2 1 1 2 2 1 3 3 1 1 1 2 3 4 3 1 1 1 4 2 2 2 2 4 1 2 4 2 2 4 3 3 4 1 2 4 1 3 4 1 2 1 2 1 3 3 2 1 1 4 2 1 3 3 2 3 4 1 2 2 4 2 1 4 3 4 3 1 4 3 1 2 3 3 3 2 4 1 1 4 1 2 3\n1", "output": "55" }, { "input": "100\n5 1 3 1 2 3 2 5 5 2 5 1 1 4 1 1 3 5 3 3 3 3 4 4 3 5 4 1 1 3 1 4 2 5 2 5 4 2 3 5 1 3 5 5 5 2 2 5 1 4 1 5 1 5 1 3 3 2 2 4 3 2 1 4 2 5 4 1 2 1 4 3 3 5 4 3 5 5 1 2 4 1 4 2 1 1 2 5 3 3 4 1 3 3 3 5 4 1 1 1\n1", "output": "41" }, { "input": "100\n1 7 8 10 9 4 2 1 6 5 10 6 3 1 10 1 8 4 3 1 7 4 3 7 4 9 1 3 3 5 10 3 7 10 10 10 3 6 2 8 1 3 3 6 2 8 3 7 8 3 4 1 6 4 4 2 10 6 2 10 10 1 7 8 8 1 9 8 7 8 5 2 5 9 2 5 7 10 3 9 8 3 9 4 3 8 6 8 2 8 9 6 7 10 7 9 6 4 4 8\n1", "output": "24" }, { "input": "1\n1\n1", "output": "1" }, { "input": "1\n1\n1000", "output": "1" }, { "input": "1\n849\n1", "output": "1" } ]
1,691,666,331
2,147,483,647
PyPy 3-64
WRONG_ANSWER
TESTS
1
46
0
n=int(input()) a=list(map(int,input().split())) t=int(input()) h=[] k=0 for i in range(n): for j in range(i+1,n): if abs(a[i]-a[j])<=t: k+=1 h.append(str(a[i])+'-'+str(a[j])) print(len(set(h)))
Title: Fly, freebies, fly! Time Limit: None seconds Memory Limit: None megabytes Problem Description: Everyone loves a freebie. Especially students. It is well-known that if in the night before exam a student opens window, opens the student's record-book and shouts loudly three times "Fly, freebie, fly!" — then flown freebie helps him to pass the upcoming exam. In the night before the exam on mathematical analysis *n* students living in dormitory shouted treasured words. The *i*-th student made a sacrament at the time *t**i*, where *t**i* is the number of seconds elapsed since the beginning of the night. It is known that the freebie is a capricious and willful lady. That night the freebie was near dormitory only for *T* seconds. Therefore, if for two students their sacrament times differ for more than *T*, then the freebie didn't visit at least one of them. Since all students are optimists, they really want to know what is the maximal number of students visited by the freebie can be. Input Specification: The first line of the input contains integer *n* (1<=≤<=*n*<=≤<=100), where *n* — the number of students shouted "Fly, freebie, fly!" The second line contains *n* positive integers *t**i* (1<=≤<=*t**i*<=≤<=1000). The last line contains integer *T* (1<=≤<=*T*<=≤<=1000) — the time interval during which the freebie was near the dormitory. Output Specification: Print a single integer — the largest number of people who will pass exam tomorrow because of the freebie visit. Demo Input: ['6\n4 1 7 8 3 8\n1\n'] Demo Output: ['3\n'] Note: none
```python n=int(input()) a=list(map(int,input().split())) t=int(input()) h=[] k=0 for i in range(n): for j in range(i+1,n): if abs(a[i]-a[j])<=t: k+=1 h.append(str(a[i])+'-'+str(a[j])) print(len(set(h))) ```
0
723
A
The New Year: Meeting Friends
PROGRAMMING
800
[ "implementation", "math", "sortings" ]
null
null
There are three friend living on the straight line *Ox* in Lineland. The first friend lives at the point *x*1, the second friend lives at the point *x*2, and the third friend lives at the point *x*3. They plan to celebrate the New Year together, so they need to meet at one point. What is the minimum total distance they have to travel in order to meet at some point and celebrate the New Year? It's guaranteed that the optimal answer is always integer.
The first line of the input contains three distinct integers *x*1, *x*2 and *x*3 (1<=≤<=*x*1,<=*x*2,<=*x*3<=≤<=100) — the coordinates of the houses of the first, the second and the third friends respectively.
Print one integer — the minimum total distance the friends need to travel in order to meet together.
[ "7 1 4\n", "30 20 10\n" ]
[ "6\n", "20\n" ]
In the first sample, friends should meet at the point 4. Thus, the first friend has to travel the distance of 3 (from the point 7 to the point 4), the second friend also has to travel the distance of 3 (from the point 1 to the point 4), while the third friend should not go anywhere because he lives at the point 4.
500
[ { "input": "7 1 4", "output": "6" }, { "input": "30 20 10", "output": "20" }, { "input": "1 4 100", "output": "99" }, { "input": "100 1 91", "output": "99" }, { "input": "1 45 100", "output": "99" }, { "input": "1 2 3", "output": "2" }, { "input": "71 85 88", "output": "17" }, { "input": "30 38 99", "output": "69" }, { "input": "23 82 95", "output": "72" }, { "input": "22 41 47", "output": "25" }, { "input": "9 94 77", "output": "85" }, { "input": "1 53 51", "output": "52" }, { "input": "25 97 93", "output": "72" }, { "input": "42 53 51", "output": "11" }, { "input": "81 96 94", "output": "15" }, { "input": "21 5 93", "output": "88" }, { "input": "50 13 75", "output": "62" }, { "input": "41 28 98", "output": "70" }, { "input": "69 46 82", "output": "36" }, { "input": "87 28 89", "output": "61" }, { "input": "44 45 40", "output": "5" }, { "input": "86 97 68", "output": "29" }, { "input": "43 92 30", "output": "62" }, { "input": "16 70 1", "output": "69" }, { "input": "40 46 19", "output": "27" }, { "input": "71 38 56", "output": "33" }, { "input": "82 21 80", "output": "61" }, { "input": "75 8 35", "output": "67" }, { "input": "75 24 28", "output": "51" }, { "input": "78 23 56", "output": "55" }, { "input": "85 31 10", "output": "75" }, { "input": "76 50 9", "output": "67" }, { "input": "95 37 34", "output": "61" }, { "input": "84 61 35", "output": "49" }, { "input": "87 85 37", "output": "50" }, { "input": "1 3 2", "output": "2" }, { "input": "4 2 6", "output": "4" }, { "input": "6 9 3", "output": "6" }, { "input": "12 4 8", "output": "8" }, { "input": "15 10 5", "output": "10" }, { "input": "1 50 17", "output": "49" }, { "input": "10 5 15", "output": "10" }, { "input": "8 1 9", "output": "8" }, { "input": "3 5 4", "output": "2" }, { "input": "2 1 3", "output": "2" }, { "input": "1 8 2", "output": "7" }, { "input": "1 100 2", "output": "99" }, { "input": "1 4 6", "output": "5" } ]
1,698,146,650
2,147,483,647
PyPy 3-64
WRONG_ANSWER
TESTS
2
46
0
s=input().split() s=sorted(s) s=int(s[2])-int(s[0]) print(s)
Title: The New Year: Meeting Friends Time Limit: None seconds Memory Limit: None megabytes Problem Description: There are three friend living on the straight line *Ox* in Lineland. The first friend lives at the point *x*1, the second friend lives at the point *x*2, and the third friend lives at the point *x*3. They plan to celebrate the New Year together, so they need to meet at one point. What is the minimum total distance they have to travel in order to meet at some point and celebrate the New Year? It's guaranteed that the optimal answer is always integer. Input Specification: The first line of the input contains three distinct integers *x*1, *x*2 and *x*3 (1<=≤<=*x*1,<=*x*2,<=*x*3<=≤<=100) — the coordinates of the houses of the first, the second and the third friends respectively. Output Specification: Print one integer — the minimum total distance the friends need to travel in order to meet together. Demo Input: ['7 1 4\n', '30 20 10\n'] Demo Output: ['6\n', '20\n'] Note: In the first sample, friends should meet at the point 4. Thus, the first friend has to travel the distance of 3 (from the point 7 to the point 4), the second friend also has to travel the distance of 3 (from the point 1 to the point 4), while the third friend should not go anywhere because he lives at the point 4.
```python s=input().split() s=sorted(s) s=int(s[2])-int(s[0]) print(s) ```
0
831
A
Unimodal Array
PROGRAMMING
1,000
[ "implementation" ]
null
null
Array of integers is unimodal, if: - it is strictly increasing in the beginning; - after that it is constant; - after that it is strictly decreasing. The first block (increasing) and the last block (decreasing) may be absent. It is allowed that both of this blocks are absent. For example, the following three arrays are unimodal: [5,<=7,<=11,<=11,<=2,<=1], [4,<=4,<=2], [7], but the following three are not unimodal: [5,<=5,<=6,<=6,<=1], [1,<=2,<=1,<=2], [4,<=5,<=5,<=6]. Write a program that checks if an array is unimodal.
The first line contains integer *n* (1<=≤<=*n*<=≤<=100) — the number of elements in the array. The second line contains *n* integers *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=1<=000) — the elements of the array.
Print "YES" if the given array is unimodal. Otherwise, print "NO". You can output each letter in any case (upper or lower).
[ "6\n1 5 5 5 4 2\n", "5\n10 20 30 20 10\n", "4\n1 2 1 2\n", "7\n3 3 3 3 3 3 3\n" ]
[ "YES\n", "YES\n", "NO\n", "YES\n" ]
In the first example the array is unimodal, because it is strictly increasing in the beginning (from position 1 to position 2, inclusively), that it is constant (from position 2 to position 4, inclusively) and then it is strictly decreasing (from position 4 to position 6, inclusively).
500
[ { "input": "6\n1 5 5 5 4 2", "output": "YES" }, { "input": "5\n10 20 30 20 10", "output": "YES" }, { "input": "4\n1 2 1 2", "output": "NO" }, { "input": "7\n3 3 3 3 3 3 3", "output": "YES" }, { "input": "6\n5 7 11 11 2 1", "output": "YES" }, { "input": "1\n7", "output": "YES" }, { "input": "100\n527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527", "output": "YES" }, { "input": "5\n5 5 6 6 1", "output": "NO" }, { "input": "3\n4 4 2", "output": "YES" }, { "input": "4\n4 5 5 6", "output": "NO" }, { "input": "3\n516 516 515", "output": "YES" }, { "input": "5\n502 503 508 508 507", "output": "YES" }, { "input": "10\n538 538 538 538 538 538 538 538 538 538", "output": "YES" }, { "input": "15\n452 454 455 455 450 448 443 442 439 436 433 432 431 428 426", "output": "YES" }, { "input": "20\n497 501 504 505 509 513 513 513 513 513 513 513 513 513 513 513 513 513 513 513", "output": "YES" }, { "input": "50\n462 465 465 465 463 459 454 449 444 441 436 435 430 429 426 422 421 418 417 412 408 407 406 403 402 399 395 392 387 386 382 380 379 376 374 371 370 365 363 359 358 354 350 349 348 345 342 341 338 337", "output": "YES" }, { "input": "70\n290 292 294 297 299 300 303 305 310 312 313 315 319 320 325 327 328 333 337 339 340 341 345 350 351 354 359 364 367 372 374 379 381 382 383 384 389 393 395 397 398 400 402 405 409 411 416 417 422 424 429 430 434 435 440 442 445 449 451 453 458 460 465 470 474 477 482 482 482 479", "output": "YES" }, { "input": "99\n433 435 439 444 448 452 457 459 460 464 469 470 471 476 480 480 480 480 480 480 480 480 480 480 480 480 480 480 480 480 480 480 480 480 480 480 480 480 480 480 480 480 480 480 480 480 480 480 480 480 480 480 480 480 480 480 480 480 480 480 480 480 480 480 480 480 480 479 478 477 476 474 469 468 465 460 457 453 452 450 445 443 440 438 433 432 431 430 428 425 421 418 414 411 406 402 397 396 393", "output": "YES" }, { "input": "100\n537 538 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543", "output": "YES" }, { "input": "100\n524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 521", "output": "YES" }, { "input": "100\n235 239 243 245 246 251 254 259 260 261 264 269 272 275 277 281 282 285 289 291 292 293 298 301 302 303 305 307 308 310 315 317 320 324 327 330 334 337 342 346 347 348 353 357 361 366 370 373 376 378 379 384 386 388 390 395 398 400 405 408 413 417 420 422 424 429 434 435 438 441 443 444 445 450 455 457 459 463 465 468 471 473 475 477 481 486 491 494 499 504 504 504 504 504 504 504 504 504 504 504", "output": "YES" }, { "input": "100\n191 196 201 202 207 212 216 219 220 222 224 227 230 231 234 235 238 242 246 250 253 254 259 260 263 267 269 272 277 280 284 287 288 290 295 297 300 305 307 312 316 320 324 326 327 332 333 334 338 343 347 351 356 358 363 368 370 374 375 380 381 386 390 391 394 396 397 399 402 403 405 410 414 419 422 427 429 433 437 442 443 447 448 451 455 459 461 462 464 468 473 478 481 484 485 488 492 494 496 496", "output": "YES" }, { "input": "100\n466 466 466 466 466 464 459 455 452 449 446 443 439 436 435 433 430 428 425 424 420 419 414 412 407 404 401 396 394 391 386 382 379 375 374 369 364 362 360 359 356 351 350 347 342 340 338 337 333 330 329 326 321 320 319 316 311 306 301 297 292 287 286 281 278 273 269 266 261 257 256 255 253 252 250 245 244 242 240 238 235 230 225 220 216 214 211 209 208 206 203 198 196 194 192 190 185 182 177 173", "output": "YES" }, { "input": "100\n360 362 367 369 374 377 382 386 389 391 396 398 399 400 405 410 413 416 419 420 423 428 431 436 441 444 445 447 451 453 457 459 463 468 468 468 468 468 468 468 468 468 468 468 468 468 468 468 468 468 468 468 468 468 468 468 465 460 455 453 448 446 443 440 436 435 430 425 420 415 410 405 404 403 402 399 394 390 387 384 382 379 378 373 372 370 369 366 361 360 355 353 349 345 344 342 339 338 335 333", "output": "YES" }, { "input": "1\n1000", "output": "YES" }, { "input": "100\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1", "output": "YES" }, { "input": "100\n1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000", "output": "YES" }, { "input": "100\n1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1", "output": "YES" }, { "input": "100\n1 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000", "output": "YES" }, { "input": "100\n1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 999 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000", "output": "NO" }, { "input": "100\n998 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 999 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 999", "output": "NO" }, { "input": "100\n537 538 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 691 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543 543", "output": "NO" }, { "input": "100\n527 527 527 527 527 527 527 527 872 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527 527", "output": "NO" }, { "input": "100\n524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 208 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 521", "output": "NO" }, { "input": "100\n235 239 243 245 246 251 254 259 260 261 264 269 272 275 277 281 282 285 289 291 292 293 298 301 302 303 305 307 308 310 315 317 320 324 327 330 334 337 342 921 347 348 353 357 361 366 370 373 376 378 379 384 386 388 390 395 398 400 405 408 413 417 420 422 424 429 434 435 438 441 443 444 445 450 455 457 459 463 465 468 471 473 475 477 481 486 491 494 499 504 504 504 504 504 504 504 504 504 504 504", "output": "NO" }, { "input": "100\n191 196 201 202 207 212 216 219 220 222 224 227 230 231 234 235 238 242 246 250 253 254 259 260 263 267 269 272 277 280 284 287 288 290 295 297 300 305 307 312 316 320 324 326 327 332 333 334 338 343 347 351 356 358 119 368 370 374 375 380 381 386 390 391 394 396 397 399 402 403 405 410 414 419 422 427 429 433 437 442 443 447 448 451 455 459 461 462 464 468 473 478 481 484 485 488 492 494 496 496", "output": "NO" }, { "input": "100\n466 466 466 466 466 464 459 455 452 449 446 443 439 436 435 433 430 428 425 424 420 419 414 412 407 404 401 396 394 391 386 382 379 375 374 369 364 362 360 359 356 335 350 347 342 340 338 337 333 330 329 326 321 320 319 316 311 306 301 297 292 287 286 281 278 273 269 266 261 257 256 255 253 252 250 245 244 242 240 238 235 230 225 220 216 214 211 209 208 206 203 198 196 194 192 190 185 182 177 173", "output": "NO" }, { "input": "100\n360 362 367 369 374 377 382 386 389 391 396 398 399 400 405 410 413 416 419 420 423 428 525 436 441 444 445 447 451 453 457 459 463 468 468 468 468 468 468 468 468 468 468 468 468 468 468 468 468 468 468 468 468 468 468 468 465 460 455 453 448 446 443 440 436 435 430 425 420 415 410 405 404 403 402 399 394 390 387 384 382 379 378 373 372 370 369 366 361 360 355 353 349 345 344 342 339 338 335 333", "output": "NO" }, { "input": "3\n1 2 3", "output": "YES" }, { "input": "3\n3 2 1", "output": "YES" }, { "input": "3\n1 1 2", "output": "NO" }, { "input": "3\n2 1 1", "output": "NO" }, { "input": "3\n2 1 2", "output": "NO" }, { "input": "3\n3 1 2", "output": "NO" }, { "input": "3\n1 3 2", "output": "YES" }, { "input": "100\n395 399 402 403 405 408 413 415 419 424 426 431 434 436 439 444 447 448 449 454 457 459 461 462 463 464 465 469 470 473 477 480 482 484 485 487 492 494 496 497 501 504 505 508 511 506 505 503 500 499 494 490 488 486 484 481 479 474 472 471 470 465 462 458 453 452 448 445 440 436 433 430 428 426 424 421 419 414 413 408 404 403 399 395 393 388 384 379 377 375 374 372 367 363 360 356 353 351 350 346", "output": "YES" }, { "input": "100\n263 268 273 274 276 281 282 287 288 292 294 295 296 300 304 306 308 310 311 315 319 322 326 330 333 336 339 341 342 347 351 353 356 358 363 365 369 372 374 379 383 387 389 391 392 395 396 398 403 404 407 411 412 416 419 421 424 428 429 430 434 436 440 443 444 448 453 455 458 462 463 464 469 473 477 481 486 489 492 494 499 503 506 509 510 512 514 515 511 510 507 502 499 498 494 491 486 482 477 475", "output": "YES" }, { "input": "100\n482 484 485 489 492 496 499 501 505 509 512 517 520 517 515 513 509 508 504 503 498 496 493 488 486 481 478 476 474 470 468 466 463 459 456 453 452 449 445 444 439 438 435 432 428 427 424 423 421 419 417 413 408 405 402 399 397 393 388 385 380 375 370 366 363 361 360 355 354 352 349 345 340 336 335 331 329 327 324 319 318 317 315 314 310 309 307 304 303 300 299 295 291 287 285 282 280 278 273 271", "output": "YES" }, { "input": "100\n395 399 402 403 405 408 413 415 419 424 426 431 434 436 439 444 447 448 449 454 457 459 461 462 463 464 465 469 470 473 477 480 482 484 485 487 492 494 496 32 501 504 505 508 511 506 505 503 500 499 494 490 488 486 484 481 479 474 472 471 470 465 462 458 453 452 448 445 440 436 433 430 428 426 424 421 419 414 413 408 404 403 399 395 393 388 384 379 377 375 374 372 367 363 360 356 353 351 350 346", "output": "NO" }, { "input": "100\n263 268 273 274 276 281 282 287 288 292 294 295 296 300 304 306 308 310 311 315 319 322 326 330 247 336 339 341 342 347 351 353 356 358 363 365 369 372 374 379 383 387 389 391 392 395 396 398 403 404 407 411 412 416 419 421 424 428 429 430 434 436 440 443 444 448 453 455 458 462 463 464 469 473 477 481 486 489 492 494 499 503 506 509 510 512 514 515 511 510 507 502 499 498 494 491 486 482 477 475", "output": "NO" }, { "input": "100\n482 484 485 489 492 496 499 501 505 509 512 517 520 517 515 513 509 508 504 503 497 496 493 488 486 481 478 476 474 470 468 466 463 459 456 453 452 449 445 444 439 438 435 432 428 427 424 423 421 419 417 413 408 405 402 399 397 393 388 385 380 375 370 366 363 361 360 355 354 352 349 345 340 336 335 331 329 327 324 319 318 317 315 314 310 309 307 304 303 300 299 295 291 287 285 282 280 278 273 271", "output": "YES" }, { "input": "2\n1 3", "output": "YES" }, { "input": "2\n1 2", "output": "YES" }, { "input": "5\n2 2 1 1 1", "output": "NO" }, { "input": "4\n1 3 2 2", "output": "NO" }, { "input": "6\n1 2 1 2 2 1", "output": "NO" }, { "input": "2\n4 2", "output": "YES" }, { "input": "3\n3 2 2", "output": "NO" }, { "input": "9\n1 2 2 3 3 4 3 2 1", "output": "NO" }, { "input": "4\n5 5 4 4", "output": "NO" }, { "input": "2\n2 1", "output": "YES" }, { "input": "5\n5 4 3 2 1", "output": "YES" }, { "input": "7\n4 3 3 3 3 3 3", "output": "NO" }, { "input": "5\n1 2 3 4 5", "output": "YES" }, { "input": "3\n2 2 1", "output": "YES" }, { "input": "3\n4 3 3", "output": "NO" }, { "input": "7\n1 5 5 4 3 3 1", "output": "NO" }, { "input": "6\n3 3 1 2 2 1", "output": "NO" }, { "input": "5\n1 2 1 2 1", "output": "NO" }, { "input": "2\n5 1", "output": "YES" }, { "input": "9\n1 2 3 4 4 3 2 2 1", "output": "NO" }, { "input": "3\n2 2 3", "output": "NO" }, { "input": "2\n5 4", "output": "YES" }, { "input": "5\n1 3 3 2 2", "output": "NO" }, { "input": "10\n1 2 3 4 5 6 7 8 9 99", "output": "YES" }, { "input": "4\n1 2 3 4", "output": "YES" }, { "input": "3\n5 5 2", "output": "YES" }, { "input": "4\n1 4 2 3", "output": "NO" }, { "input": "2\n3 2", "output": "YES" }, { "input": "5\n1 2 2 1 1", "output": "NO" }, { "input": "4\n3 3 2 2", "output": "NO" }, { "input": "5\n1 2 3 2 2", "output": "NO" }, { "input": "5\n5 6 6 5 5", "output": "NO" }, { "input": "4\n2 2 1 1", "output": "NO" }, { "input": "5\n5 4 3 3 2", "output": "NO" }, { "input": "7\n1 3 3 3 2 1 1", "output": "NO" }, { "input": "9\n5 6 6 5 5 4 4 3 3", "output": "NO" }, { "input": "6\n1 5 5 3 2 2", "output": "NO" }, { "input": "5\n2 1 3 3 1", "output": "NO" }, { "input": "2\n4 3", "output": "YES" }, { "input": "5\n3 2 2 1 1", "output": "NO" }, { "input": "4\n5 4 3 2", "output": "YES" }, { "input": "4\n4 4 1 1", "output": "NO" }, { "input": "4\n3 3 1 1", "output": "NO" }, { "input": "4\n4 4 2 2", "output": "NO" }, { "input": "5\n4 4 3 2 2", "output": "NO" }, { "input": "8\n4 4 4 4 5 6 7 8", "output": "NO" }, { "input": "5\n3 5 4 4 3", "output": "NO" }, { "input": "6\n2 5 3 3 2 2", "output": "NO" }, { "input": "4\n5 5 2 2", "output": "NO" }, { "input": "5\n1 2 2 3 5", "output": "NO" } ]
1,640,632,518
2,147,483,647
Python 3
RUNTIME_ERROR
TESTS
0
31
0
a=int(input()) b=list(map(int,input().split())) i=1 while i<b and b[i-1]<b[i]: i+=1 while i<b and b[i-1]==b[i]: i+=1 while i<b and b[i-1]>b[i]: i+=1 if i==a: print('YES') else: print('NO')
Title: Unimodal Array Time Limit: None seconds Memory Limit: None megabytes Problem Description: Array of integers is unimodal, if: - it is strictly increasing in the beginning; - after that it is constant; - after that it is strictly decreasing. The first block (increasing) and the last block (decreasing) may be absent. It is allowed that both of this blocks are absent. For example, the following three arrays are unimodal: [5,<=7,<=11,<=11,<=2,<=1], [4,<=4,<=2], [7], but the following three are not unimodal: [5,<=5,<=6,<=6,<=1], [1,<=2,<=1,<=2], [4,<=5,<=5,<=6]. Write a program that checks if an array is unimodal. Input Specification: The first line contains integer *n* (1<=≤<=*n*<=≤<=100) — the number of elements in the array. The second line contains *n* integers *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=1<=000) — the elements of the array. Output Specification: Print "YES" if the given array is unimodal. Otherwise, print "NO". You can output each letter in any case (upper or lower). Demo Input: ['6\n1 5 5 5 4 2\n', '5\n10 20 30 20 10\n', '4\n1 2 1 2\n', '7\n3 3 3 3 3 3 3\n'] Demo Output: ['YES\n', 'YES\n', 'NO\n', 'YES\n'] Note: In the first example the array is unimodal, because it is strictly increasing in the beginning (from position 1 to position 2, inclusively), that it is constant (from position 2 to position 4, inclusively) and then it is strictly decreasing (from position 4 to position 6, inclusively).
```python a=int(input()) b=list(map(int,input().split())) i=1 while i<b and b[i-1]<b[i]: i+=1 while i<b and b[i-1]==b[i]: i+=1 while i<b and b[i-1]>b[i]: i+=1 if i==a: print('YES') else: print('NO') ```
-1
82
A
Double Cola
PROGRAMMING
1,100
[ "implementation", "math" ]
A. Double Cola
1
256
Sheldon, Leonard, Penny, Rajesh and Howard are in the queue for a "Double Cola" drink vending machine; there are no other people in the queue. The first one in the queue (Sheldon) buys a can, drinks it and doubles! The resulting two Sheldons go to the end of the queue. Then the next in the queue (Leonard) buys a can, drinks it and gets to the end of the queue as two Leonards, and so on. This process continues ad infinitum. For example, Penny drinks the third can of cola and the queue will look like this: Rajesh, Howard, Sheldon, Sheldon, Leonard, Leonard, Penny, Penny. Write a program that will print the name of a man who will drink the *n*-th can. Note that in the very beginning the queue looks like that: Sheldon, Leonard, Penny, Rajesh, Howard. The first person is Sheldon.
The input data consist of a single integer *n* (1<=≤<=*n*<=≤<=109). It is guaranteed that the pretests check the spelling of all the five names, that is, that they contain all the five possible answers.
Print the single line — the name of the person who drinks the *n*-th can of cola. The cans are numbered starting from 1. Please note that you should spell the names like this: "Sheldon", "Leonard", "Penny", "Rajesh", "Howard" (without the quotes). In that order precisely the friends are in the queue initially.
[ "1\n", "6\n", "1802\n" ]
[ "Sheldon\n", "Sheldon\n", "Penny\n" ]
none
500
[ { "input": "1", "output": "Sheldon" }, { "input": "6", "output": "Sheldon" }, { "input": "1802", "output": "Penny" }, { "input": "1", "output": "Sheldon" }, { "input": "2", "output": "Leonard" }, { "input": "3", "output": "Penny" }, { "input": "4", "output": "Rajesh" }, { "input": "5", "output": "Howard" }, { "input": "10", "output": "Penny" }, { "input": "534", "output": "Rajesh" }, { "input": "5033", "output": "Howard" }, { "input": "10010", "output": "Howard" }, { "input": "500000000", "output": "Penny" }, { "input": "63", "output": "Rajesh" }, { "input": "841", "output": "Leonard" }, { "input": "3667", "output": "Penny" }, { "input": "38614", "output": "Howard" }, { "input": "282798", "output": "Rajesh" }, { "input": "9266286", "output": "Rajesh" }, { "input": "27385966", "output": "Leonard" }, { "input": "121580142", "output": "Penny" }, { "input": "5", "output": "Howard" }, { "input": "300", "output": "Howard" }, { "input": "1745", "output": "Leonard" }, { "input": "8302", "output": "Rajesh" }, { "input": "184518", "output": "Sheldon" }, { "input": "1154414", "output": "Rajesh" }, { "input": "28643950", "output": "Leonard" }, { "input": "159222638", "output": "Howard" }, { "input": "24", "output": "Penny" }, { "input": "505", "output": "Penny" }, { "input": "4425", "output": "Rajesh" }, { "input": "12079", "output": "Sheldon" }, { "input": "469726", "output": "Penny" }, { "input": "3961838", "output": "Penny" }, { "input": "57710446", "output": "Leonard" }, { "input": "80719470", "output": "Howard" }, { "input": "1000000000", "output": "Penny" }, { "input": "999999999", "output": "Penny" }, { "input": "999999998", "output": "Penny" }, { "input": "5", "output": "Howard" } ]
1,436,561,250
2,147,483,647
Python 3
TIME_LIMIT_EXCEEDED
TESTS
2
1,000
49,971,200
a=int(input("")) b=c=["Sheldon","Leonard","Penny","Rajesh","Howard"] o=2 for i in range(0,(a-1)): for j in range (0,5): for x in range (0,o): b.append(c[j]) o += 1 if b[a-1] == "Sheldon" : print("Sheldon") elif b[a-1] == "Leonard" : print("Leonard") elif b[a-1] == "Penny" : print("Penny") elif b[a-1] == "Rajesh" : print("Rajesh") elif b[a-1] == "Howard" : print("Howard")
Title: Double Cola Time Limit: 1 seconds Memory Limit: 256 megabytes Problem Description: Sheldon, Leonard, Penny, Rajesh and Howard are in the queue for a "Double Cola" drink vending machine; there are no other people in the queue. The first one in the queue (Sheldon) buys a can, drinks it and doubles! The resulting two Sheldons go to the end of the queue. Then the next in the queue (Leonard) buys a can, drinks it and gets to the end of the queue as two Leonards, and so on. This process continues ad infinitum. For example, Penny drinks the third can of cola and the queue will look like this: Rajesh, Howard, Sheldon, Sheldon, Leonard, Leonard, Penny, Penny. Write a program that will print the name of a man who will drink the *n*-th can. Note that in the very beginning the queue looks like that: Sheldon, Leonard, Penny, Rajesh, Howard. The first person is Sheldon. Input Specification: The input data consist of a single integer *n* (1<=≤<=*n*<=≤<=109). It is guaranteed that the pretests check the spelling of all the five names, that is, that they contain all the five possible answers. Output Specification: Print the single line — the name of the person who drinks the *n*-th can of cola. The cans are numbered starting from 1. Please note that you should spell the names like this: "Sheldon", "Leonard", "Penny", "Rajesh", "Howard" (without the quotes). In that order precisely the friends are in the queue initially. Demo Input: ['1\n', '6\n', '1802\n'] Demo Output: ['Sheldon\n', 'Sheldon\n', 'Penny\n'] Note: none
```python a=int(input("")) b=c=["Sheldon","Leonard","Penny","Rajesh","Howard"] o=2 for i in range(0,(a-1)): for j in range (0,5): for x in range (0,o): b.append(c[j]) o += 1 if b[a-1] == "Sheldon" : print("Sheldon") elif b[a-1] == "Leonard" : print("Leonard") elif b[a-1] == "Penny" : print("Penny") elif b[a-1] == "Rajesh" : print("Rajesh") elif b[a-1] == "Howard" : print("Howard") ```
0
365
A
Good Number
PROGRAMMING
1,100
[ "implementation" ]
null
null
Let's call a number *k*-good if it contains all digits not exceeding *k* (0,<=...,<=*k*). You've got a number *k* and an array *a* containing *n* numbers. Find out how many *k*-good numbers are in *a* (count each number every time it occurs in array *a*).
The first line contains integers *n* and *k* (1<=≤<=*n*<=≤<=100, 0<=≤<=*k*<=≤<=9). The *i*-th of the following *n* lines contains integer *a**i* without leading zeroes (1<=≤<=*a**i*<=≤<=109).
Print a single integer — the number of *k*-good numbers in *a*.
[ "10 6\n1234560\n1234560\n1234560\n1234560\n1234560\n1234560\n1234560\n1234560\n1234560\n1234560\n", "2 1\n1\n10\n" ]
[ "10\n", "1\n" ]
none
500
[ { "input": "10 6\n1234560\n1234560\n1234560\n1234560\n1234560\n1234560\n1234560\n1234560\n1234560\n1234560", "output": "10" }, { "input": "2 1\n1\n10", "output": "1" }, { "input": "1 0\n1000000000", "output": "1" }, { "input": "1 1\n1000000000", "output": "1" }, { "input": "6 0\n10\n102\n120\n1032\n1212103\n1999999", "output": "5" }, { "input": "1 3\n1000000000", "output": "0" }, { "input": "1 9\n1000000000", "output": "0" }, { "input": "1 0\n1", "output": "0" }, { "input": "1 1\n1", "output": "0" }, { "input": "1 3\n1", "output": "0" }, { "input": "1 9\n1", "output": "0" }, { "input": "2 8\n123456780\n123", "output": "1" }, { "input": "2 8\n12345678\n1230", "output": "0" }, { "input": "6 1\n10\n102\n120\n1032\n1212103\n1999999", "output": "5" }, { "input": "6 2\n10\n102\n120\n1032\n1212103\n1999999", "output": "4" }, { "input": "6 3\n10\n102\n120\n1032\n1212103\n1999999", "output": "2" }, { "input": "6 9\n10\n102\n120\n1032\n1212103\n1999999", "output": "0" }, { "input": "1 2\n2220", "output": "0" } ]
1,673,420,741
2,147,483,647
PyPy 3-64
WRONG_ANSWER
TESTS
0
30
0
a, k = map(int,input().split()) count = 0 k_list = [str(i) for i in range(k)] k_list.append(str(k)) str_k = ''.join(k_list) for x in range(a): list_a = [(x) for x in input()] list_a.sort() str_a = "".join(list_a) if str_a == str_k: count += 1 print(count) print(k_list) print(str_k)
Title: Good Number Time Limit: None seconds Memory Limit: None megabytes Problem Description: Let's call a number *k*-good if it contains all digits not exceeding *k* (0,<=...,<=*k*). You've got a number *k* and an array *a* containing *n* numbers. Find out how many *k*-good numbers are in *a* (count each number every time it occurs in array *a*). Input Specification: The first line contains integers *n* and *k* (1<=≤<=*n*<=≤<=100, 0<=≤<=*k*<=≤<=9). The *i*-th of the following *n* lines contains integer *a**i* without leading zeroes (1<=≤<=*a**i*<=≤<=109). Output Specification: Print a single integer — the number of *k*-good numbers in *a*. Demo Input: ['10 6\n1234560\n1234560\n1234560\n1234560\n1234560\n1234560\n1234560\n1234560\n1234560\n1234560\n', '2 1\n1\n10\n'] Demo Output: ['10\n', '1\n'] Note: none
```python a, k = map(int,input().split()) count = 0 k_list = [str(i) for i in range(k)] k_list.append(str(k)) str_k = ''.join(k_list) for x in range(a): list_a = [(x) for x in input()] list_a.sort() str_a = "".join(list_a) if str_a == str_k: count += 1 print(count) print(k_list) print(str_k) ```
0
443
A
Anton and Letters
PROGRAMMING
800
[ "constructive algorithms", "implementation" ]
null
null
Recently, Anton has found a set. The set consists of small English letters. Anton carefully wrote out all the letters from the set in one line, separated by a comma. He also added an opening curved bracket at the beginning of the line and a closing curved bracket at the end of the line. Unfortunately, from time to time Anton would forget writing some letter and write it again. He asks you to count the total number of distinct letters in his set.
The first and the single line contains the set of letters. The length of the line doesn't exceed 1000. It is guaranteed that the line starts from an opening curved bracket and ends with a closing curved bracket. Between them, small English letters are listed, separated by a comma. Each comma is followed by a space.
Print a single number — the number of distinct letters in Anton's set.
[ "{a, b, c}\n", "{b, a, b, a}\n", "{}\n" ]
[ "3\n", "2\n", "0\n" ]
none
500
[ { "input": "{a, b, c}", "output": "3" }, { "input": "{b, a, b, a}", "output": "2" }, { "input": "{}", "output": "0" }, { "input": "{a, a, c, b, b, b, c, c, c, c}", "output": "3" }, { "input": "{a, c, b, b}", "output": "3" }, { "input": "{a, b}", "output": "2" }, { "input": "{a}", "output": "1" }, { "input": "{b, a, b, a, b, c, c, b, c, b}", "output": "3" }, { "input": "{e, g, c, e}", "output": "3" }, { "input": "{a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a}", "output": "1" }, { "input": "{a, a, b}", "output": "2" }, { "input": "{a, b, b, b, a, b, a, a, a, a, a, a, b, a, b, a, a, a, a, a, b, a, b, a}", "output": "2" }, { "input": "{j, u, a, c, f, w, e, w, x, t, h, p, v, n, i, l, x, n, i, b, u, c, a, a}", "output": "16" }, { "input": "{x, i, w, c, p, e, h, z, k, i}", "output": "9" }, { "input": "{t, k, o, x, r, d, q, j, k, e, z, w, y, r, z, s, s, e, s, b, k, i}", "output": "15" }, { "input": "{y}", "output": "1" }, { "input": "{x}", "output": "1" }, { "input": "{b, z, a, z}", "output": "3" }, { "input": "{z}", "output": "1" }, { "input": "{a, z}", "output": "2" }, { "input": "{a, b, z}", "output": "3" }, { "input": "{s, q, z, r, t, a, b, h, j, i, o, z, r, q}", "output": "11" } ]
1,689,743,801
2,147,483,647
Python 3
OK
TESTS
27
46
0
# cook your dish here s = input() se = set() for i in range(len(s)): if s[i].isalpha(): se.add(s[i]) print(len(se))
Title: Anton and Letters Time Limit: None seconds Memory Limit: None megabytes Problem Description: Recently, Anton has found a set. The set consists of small English letters. Anton carefully wrote out all the letters from the set in one line, separated by a comma. He also added an opening curved bracket at the beginning of the line and a closing curved bracket at the end of the line. Unfortunately, from time to time Anton would forget writing some letter and write it again. He asks you to count the total number of distinct letters in his set. Input Specification: The first and the single line contains the set of letters. The length of the line doesn't exceed 1000. It is guaranteed that the line starts from an opening curved bracket and ends with a closing curved bracket. Between them, small English letters are listed, separated by a comma. Each comma is followed by a space. Output Specification: Print a single number — the number of distinct letters in Anton's set. Demo Input: ['{a, b, c}\n', '{b, a, b, a}\n', '{}\n'] Demo Output: ['3\n', '2\n', '0\n'] Note: none
```python # cook your dish here s = input() se = set() for i in range(len(s)): if s[i].isalpha(): se.add(s[i]) print(len(se)) ```
3
595
A
Vitaly and Night
PROGRAMMING
800
[ "constructive algorithms", "implementation" ]
null
null
One day Vitaly was going home late at night and wondering: how many people aren't sleeping at that moment? To estimate, Vitaly decided to look which windows are lit in the house he was passing by at that moment. Vitaly sees a building of *n* floors and 2·*m* windows on each floor. On each floor there are *m* flats numbered from 1 to *m*, and two consecutive windows correspond to each flat. If we number the windows from 1 to 2·*m* from left to right, then the *j*-th flat of the *i*-th floor has windows 2·*j*<=-<=1 and 2·*j* in the corresponding row of windows (as usual, floors are enumerated from the bottom). Vitaly thinks that people in the flat aren't sleeping at that moment if at least one of the windows corresponding to this flat has lights on. Given the information about the windows of the given house, your task is to calculate the number of flats where, according to Vitaly, people aren't sleeping.
The first line of the input contains two integers *n* and *m* (1<=≤<=*n*,<=*m*<=≤<=100) — the number of floors in the house and the number of flats on each floor respectively. Next *n* lines describe the floors from top to bottom and contain 2·*m* characters each. If the *i*-th window of the given floor has lights on, then the *i*-th character of this line is '1', otherwise it is '0'.
Print a single integer — the number of flats that have lights on in at least one window, that is, the flats where, according to Vitaly, people aren't sleeping.
[ "2 2\n0 0 0 1\n1 0 1 1\n", "1 3\n1 1 0 1 0 0\n" ]
[ "3\n", "2\n" ]
In the first test case the house has two floors, two flats on each floor. That is, in total there are 4 flats. The light isn't on only on the second floor in the left flat. That is, in both rooms of the flat the light is off. In the second test case the house has one floor and the first floor has three flats. The light is on in the leftmost flat (in both windows) and in the middle flat (in one window). In the right flat the light is off.
500
[ { "input": "2 2\n0 0 0 1\n1 0 1 1", "output": "3" }, { "input": "1 3\n1 1 0 1 0 0", "output": "2" }, { "input": "3 3\n1 1 1 1 1 1\n1 1 0 1 1 0\n1 0 0 0 1 1", "output": "8" }, { "input": "1 5\n1 0 1 1 1 0 1 1 1 1", "output": "5" }, { "input": "1 100\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 0 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1", "output": "99" }, { "input": "1 100\n0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0", "output": "6" }, { "input": "1 100\n0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0", "output": "0" }, { "input": "100 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 0\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n0 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 0\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 0\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n0 1\n1 1\n1 1\n1 0\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1", "output": "100" }, { "input": "100 1\n0 0\n0 0\n0 1\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n1 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 1\n0 0\n0 0\n0 0\n1 0\n0 0\n0 0\n0 0\n1 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 1\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 1\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n1 0", "output": "8" }, { "input": "100 1\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0", "output": "0" }, { "input": "1 1\n0 0", "output": "0" }, { "input": "1 1\n0 1", "output": "1" }, { "input": "1 1\n1 0", "output": "1" }, { "input": "1 1\n1 1", "output": "1" } ]
1,583,172,794
2,147,483,647
Python 3
OK
TESTS
36
124
102,400
n, m = input().split() awake = 0 for x in range(int(n)): windows = list(map(int, input().split())) for y in range(0,len(windows),2): if windows[y] == 1 or windows[y+1] == 1: awake += 1 print(awake)
Title: Vitaly and Night Time Limit: None seconds Memory Limit: None megabytes Problem Description: One day Vitaly was going home late at night and wondering: how many people aren't sleeping at that moment? To estimate, Vitaly decided to look which windows are lit in the house he was passing by at that moment. Vitaly sees a building of *n* floors and 2·*m* windows on each floor. On each floor there are *m* flats numbered from 1 to *m*, and two consecutive windows correspond to each flat. If we number the windows from 1 to 2·*m* from left to right, then the *j*-th flat of the *i*-th floor has windows 2·*j*<=-<=1 and 2·*j* in the corresponding row of windows (as usual, floors are enumerated from the bottom). Vitaly thinks that people in the flat aren't sleeping at that moment if at least one of the windows corresponding to this flat has lights on. Given the information about the windows of the given house, your task is to calculate the number of flats where, according to Vitaly, people aren't sleeping. Input Specification: The first line of the input contains two integers *n* and *m* (1<=≤<=*n*,<=*m*<=≤<=100) — the number of floors in the house and the number of flats on each floor respectively. Next *n* lines describe the floors from top to bottom and contain 2·*m* characters each. If the *i*-th window of the given floor has lights on, then the *i*-th character of this line is '1', otherwise it is '0'. Output Specification: Print a single integer — the number of flats that have lights on in at least one window, that is, the flats where, according to Vitaly, people aren't sleeping. Demo Input: ['2 2\n0 0 0 1\n1 0 1 1\n', '1 3\n1 1 0 1 0 0\n'] Demo Output: ['3\n', '2\n'] Note: In the first test case the house has two floors, two flats on each floor. That is, in total there are 4 flats. The light isn't on only on the second floor in the left flat. That is, in both rooms of the flat the light is off. In the second test case the house has one floor and the first floor has three flats. The light is on in the leftmost flat (in both windows) and in the middle flat (in one window). In the right flat the light is off.
```python n, m = input().split() awake = 0 for x in range(int(n)): windows = list(map(int, input().split())) for y in range(0,len(windows),2): if windows[y] == 1 or windows[y+1] == 1: awake += 1 print(awake) ```
3
911
C
Three Garlands
PROGRAMMING
1,400
[ "brute force", "constructive algorithms" ]
null
null
Mishka is decorating the Christmas tree. He has got three garlands, and all of them will be put on the tree. After that Mishka will switch these garlands on. When a garland is switched on, it periodically changes its state — sometimes it is lit, sometimes not. Formally, if *i*-th garland is switched on during *x*-th second, then it is lit only during seconds *x*, *x*<=+<=*k**i*, *x*<=+<=2*k**i*, *x*<=+<=3*k**i* and so on. Mishka wants to switch on the garlands in such a way that during each second after switching the garlands on there would be at least one lit garland. Formally, Mishka wants to choose three integers *x*1, *x*2 and *x*3 (not necessarily distinct) so that he will switch on the first garland during *x*1-th second, the second one — during *x*2-th second, and the third one — during *x*3-th second, respectively, and during each second starting from *max*(*x*1,<=*x*2,<=*x*3) at least one garland will be lit. Help Mishka by telling him if it is possible to do this!
The first line contains three integers *k*1, *k*2 and *k*3 (1<=≤<=*k**i*<=≤<=1500) — time intervals of the garlands.
If Mishka can choose moments of time to switch on the garlands in such a way that each second after switching the garlands on at least one garland will be lit, print YES. Otherwise, print NO.
[ "2 2 3\n", "4 2 3\n" ]
[ "YES\n", "NO\n" ]
In the first example Mishka can choose *x*<sub class="lower-index">1</sub> = 1, *x*<sub class="lower-index">2</sub> = 2, *x*<sub class="lower-index">3</sub> = 1. The first garland will be lit during seconds 1, 3, 5, 7, ..., the second — 2, 4, 6, 8, ..., which already cover all the seconds after the 2-nd one. It doesn't even matter what *x*<sub class="lower-index">3</sub> is chosen. Our choice will lead third to be lit during seconds 1, 4, 7, 10, ..., though. In the second example there is no way to choose such moments of time, there always be some seconds when no garland is lit.
0
[ { "input": "2 2 3", "output": "YES" }, { "input": "4 2 3", "output": "NO" }, { "input": "1499 1498 1500", "output": "NO" }, { "input": "1500 1500 1500", "output": "NO" }, { "input": "100 4 1", "output": "YES" }, { "input": "4 2 4", "output": "YES" }, { "input": "3 3 3", "output": "YES" }, { "input": "2 3 6", "output": "NO" }, { "input": "2 3 3", "output": "NO" }, { "input": "4 4 2", "output": "YES" }, { "input": "1 1 1", "output": "YES" }, { "input": "2 11 2", "output": "YES" }, { "input": "4 4 4", "output": "NO" }, { "input": "4 4 5", "output": "NO" }, { "input": "3 3 2", "output": "NO" }, { "input": "3 6 6", "output": "NO" }, { "input": "2 3 2", "output": "YES" }, { "input": "1 1 3", "output": "YES" }, { "input": "3 3 4", "output": "NO" }, { "input": "2 4 4", "output": "YES" }, { "input": "2 2 2", "output": "YES" }, { "input": "2 10 10", "output": "NO" }, { "input": "3 4 4", "output": "NO" }, { "input": "2 5 5", "output": "NO" }, { "input": "2 4 5", "output": "NO" }, { "input": "228 2 2", "output": "YES" }, { "input": "2 998 1000", "output": "NO" }, { "input": "2 6 6", "output": "NO" }, { "input": "6 4 7", "output": "NO" }, { "input": "2 5 2", "output": "YES" }, { "input": "2 100 100", "output": "NO" }, { "input": "7 7 2", "output": "NO" }, { "input": "3 3 6", "output": "NO" }, { "input": "82 3 82", "output": "NO" }, { "input": "2 3 5", "output": "NO" }, { "input": "1 218 924", "output": "YES" }, { "input": "4 4 123", "output": "NO" }, { "input": "4 4 3", "output": "NO" }, { "input": "3 4 2", "output": "NO" }, { "input": "2 2 5", "output": "YES" }, { "input": "2 10 2", "output": "YES" }, { "input": "5 2 2", "output": "YES" }, { "input": "3 3 9", "output": "NO" }, { "input": "1 5 5", "output": "YES" }, { "input": "2 4 6", "output": "NO" }, { "input": "15 3 3", "output": "NO" }, { "input": "1 5 10", "output": "YES" }, { "input": "2 3 14", "output": "NO" }, { "input": "1265 2 593", "output": "NO" }, { "input": "2 2 567", "output": "YES" }, { "input": "1 6 5", "output": "YES" }, { "input": "2 2 7", "output": "YES" }, { "input": "2 2 1500", "output": "YES" }, { "input": "3 6 9", "output": "NO" }, { "input": "1 46 79", "output": "YES" }, { "input": "4 3 3", "output": "NO" }, { "input": "2 4 8", "output": "NO" }, { "input": "1493 1489 1487", "output": "NO" }, { "input": "1 2 3", "output": "YES" }, { "input": "1 2 5", "output": "YES" }, { "input": "1 2 8", "output": "YES" }, { "input": "3 4 5", "output": "NO" }, { "input": "2 2 4", "output": "YES" }, { "input": "3 2 3", "output": "NO" }, { "input": "7 2 2", "output": "YES" }, { "input": "3 2 2", "output": "YES" }, { "input": "6 7 4", "output": "NO" } ]
1,672,304,233
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
20
46
0
dta = [int(i) for i in input().split()] if 1 in dta or dta.count(2) == 2 or dta.count(3) == 3 or sorted(dta) == [2, 4, 4]: print("YES") else: print("NO")
Title: Three Garlands Time Limit: None seconds Memory Limit: None megabytes Problem Description: Mishka is decorating the Christmas tree. He has got three garlands, and all of them will be put on the tree. After that Mishka will switch these garlands on. When a garland is switched on, it periodically changes its state — sometimes it is lit, sometimes not. Formally, if *i*-th garland is switched on during *x*-th second, then it is lit only during seconds *x*, *x*<=+<=*k**i*, *x*<=+<=2*k**i*, *x*<=+<=3*k**i* and so on. Mishka wants to switch on the garlands in such a way that during each second after switching the garlands on there would be at least one lit garland. Formally, Mishka wants to choose three integers *x*1, *x*2 and *x*3 (not necessarily distinct) so that he will switch on the first garland during *x*1-th second, the second one — during *x*2-th second, and the third one — during *x*3-th second, respectively, and during each second starting from *max*(*x*1,<=*x*2,<=*x*3) at least one garland will be lit. Help Mishka by telling him if it is possible to do this! Input Specification: The first line contains three integers *k*1, *k*2 and *k*3 (1<=≤<=*k**i*<=≤<=1500) — time intervals of the garlands. Output Specification: If Mishka can choose moments of time to switch on the garlands in such a way that each second after switching the garlands on at least one garland will be lit, print YES. Otherwise, print NO. Demo Input: ['2 2 3\n', '4 2 3\n'] Demo Output: ['YES\n', 'NO\n'] Note: In the first example Mishka can choose *x*<sub class="lower-index">1</sub> = 1, *x*<sub class="lower-index">2</sub> = 2, *x*<sub class="lower-index">3</sub> = 1. The first garland will be lit during seconds 1, 3, 5, 7, ..., the second — 2, 4, 6, 8, ..., which already cover all the seconds after the 2-nd one. It doesn't even matter what *x*<sub class="lower-index">3</sub> is chosen. Our choice will lead third to be lit during seconds 1, 4, 7, 10, ..., though. In the second example there is no way to choose such moments of time, there always be some seconds when no garland is lit.
```python dta = [int(i) for i in input().split()] if 1 in dta or dta.count(2) == 2 or dta.count(3) == 3 or sorted(dta) == [2, 4, 4]: print("YES") else: print("NO") ```
0
985
C
Liebig's Barrels
PROGRAMMING
1,500
[ "greedy" ]
null
null
You have *m*<==<=*n*·*k* wooden staves. The *i*-th stave has length *a**i*. You have to assemble *n* barrels consisting of *k* staves each, you can use any *k* staves to construct a barrel. Each stave must belong to exactly one barrel. Let volume *v**j* of barrel *j* be equal to the length of the minimal stave in it. You want to assemble exactly *n* barrels with the maximal total sum of volumes. But you have to make them equal enough, so a difference between volumes of any pair of the resulting barrels must not exceed *l*, i.e. |*v**x*<=-<=*v**y*|<=≤<=*l* for any 1<=≤<=*x*<=≤<=*n* and 1<=≤<=*y*<=≤<=*n*. Print maximal total sum of volumes of equal enough barrels or 0 if it's impossible to satisfy the condition above.
The first line contains three space-separated integers *n*, *k* and *l* (1<=≤<=*n*,<=*k*<=≤<=105, 1<=≤<=*n*·*k*<=≤<=105, 0<=≤<=*l*<=≤<=109). The second line contains *m*<==<=*n*·*k* space-separated integers *a*1,<=*a*2,<=...,<=*a**m* (1<=≤<=*a**i*<=≤<=109) — lengths of staves.
Print single integer — maximal total sum of the volumes of barrels or 0 if it's impossible to construct exactly *n* barrels satisfying the condition |*v**x*<=-<=*v**y*|<=≤<=*l* for any 1<=≤<=*x*<=≤<=*n* and 1<=≤<=*y*<=≤<=*n*.
[ "4 2 1\n2 2 1 2 3 2 2 3\n", "2 1 0\n10 10\n", "1 2 1\n5 2\n", "3 2 1\n1 2 3 4 5 6\n" ]
[ "7\n", "20\n", "2\n", "0\n" ]
In the first example you can form the following barrels: [1, 2], [2, 2], [2, 3], [2, 3]. In the second example you can form the following barrels: [10], [10]. In the third example you can form the following barrels: [2, 5]. In the fourth example difference between volumes of barrels in any partition is at least 2 so it is impossible to make barrels equal enough.
0
[ { "input": "4 2 1\n2 2 1 2 3 2 2 3", "output": "7" }, { "input": "2 1 0\n10 10", "output": "20" }, { "input": "1 2 1\n5 2", "output": "2" }, { "input": "3 2 1\n1 2 3 4 5 6", "output": "0" }, { "input": "10 3 189\n267 697 667 4 52 128 85 616 142 344 413 660 962 194 618 329 266 593 558 447 89 983 964 716 32 890 267 164 654 71", "output": "0" }, { "input": "10 3 453\n277 706 727 812 692 686 196 507 911 40 498 704 573 381 463 759 704 381 693 640 326 405 47 834 962 521 463 740 520 494", "output": "2979" }, { "input": "10 3 795\n398 962 417 307 760 534 536 450 421 280 608 111 687 726 941 903 630 900 555 403 795 122 814 188 234 976 679 539 525 104", "output": "5045" }, { "input": "6 2 29\n1 2 3 3 4 5 5 6 7 7 8 9", "output": "28" }, { "input": "2 1 2\n1 2", "output": "3" } ]
1,669,888,969
2,147,483,647
PyPy 3-64
WRONG_ANSWER
TESTS
6
78
14,540,800
n, k, r = map(int, input().split()) a = sorted(list(map(int, input().split()))) if (a[n - 1] - a[0]) > r: print(0) else: w = 0 for i in range(n): w += a[i] print(w)
Title: Liebig's Barrels Time Limit: None seconds Memory Limit: None megabytes Problem Description: You have *m*<==<=*n*·*k* wooden staves. The *i*-th stave has length *a**i*. You have to assemble *n* barrels consisting of *k* staves each, you can use any *k* staves to construct a barrel. Each stave must belong to exactly one barrel. Let volume *v**j* of barrel *j* be equal to the length of the minimal stave in it. You want to assemble exactly *n* barrels with the maximal total sum of volumes. But you have to make them equal enough, so a difference between volumes of any pair of the resulting barrels must not exceed *l*, i.e. |*v**x*<=-<=*v**y*|<=≤<=*l* for any 1<=≤<=*x*<=≤<=*n* and 1<=≤<=*y*<=≤<=*n*. Print maximal total sum of volumes of equal enough barrels or 0 if it's impossible to satisfy the condition above. Input Specification: The first line contains three space-separated integers *n*, *k* and *l* (1<=≤<=*n*,<=*k*<=≤<=105, 1<=≤<=*n*·*k*<=≤<=105, 0<=≤<=*l*<=≤<=109). The second line contains *m*<==<=*n*·*k* space-separated integers *a*1,<=*a*2,<=...,<=*a**m* (1<=≤<=*a**i*<=≤<=109) — lengths of staves. Output Specification: Print single integer — maximal total sum of the volumes of barrels or 0 if it's impossible to construct exactly *n* barrels satisfying the condition |*v**x*<=-<=*v**y*|<=≤<=*l* for any 1<=≤<=*x*<=≤<=*n* and 1<=≤<=*y*<=≤<=*n*. Demo Input: ['4 2 1\n2 2 1 2 3 2 2 3\n', '2 1 0\n10 10\n', '1 2 1\n5 2\n', '3 2 1\n1 2 3 4 5 6\n'] Demo Output: ['7\n', '20\n', '2\n', '0\n'] Note: In the first example you can form the following barrels: [1, 2], [2, 2], [2, 3], [2, 3]. In the second example you can form the following barrels: [10], [10]. In the third example you can form the following barrels: [2, 5]. In the fourth example difference between volumes of barrels in any partition is at least 2 so it is impossible to make barrels equal enough.
```python n, k, r = map(int, input().split()) a = sorted(list(map(int, input().split()))) if (a[n - 1] - a[0]) > r: print(0) else: w = 0 for i in range(n): w += a[i] print(w) ```
0
245
A
System Administrator
PROGRAMMING
800
[ "implementation" ]
null
null
Polycarpus is a system administrator. There are two servers under his strict guidance — *a* and *b*. To stay informed about the servers' performance, Polycarpus executes commands "ping a" and "ping b". Each ping command sends exactly ten packets to the server specified in the argument of the command. Executing a program results in two integers *x* and *y* (*x*<=+<=*y*<==<=10; *x*,<=*y*<=≥<=0). These numbers mean that *x* packets successfully reached the corresponding server through the network and *y* packets were lost. Today Polycarpus has performed overall *n* ping commands during his workday. Now for each server Polycarpus wants to know whether the server is "alive" or not. Polycarpus thinks that the server is "alive", if at least half of the packets that we send to this server reached it successfully along the network. Help Polycarpus, determine for each server, whether it is "alive" or not by the given commands and their results.
The first line contains a single integer *n* (2<=≤<=*n*<=≤<=1000) — the number of commands Polycarpus has fulfilled. Each of the following *n* lines contains three integers — the description of the commands. The *i*-th of these lines contains three space-separated integers *t**i*, *x**i*, *y**i* (1<=≤<=*t**i*<=≤<=2; *x**i*,<=*y**i*<=≥<=0; *x**i*<=+<=*y**i*<==<=10). If *t**i*<==<=1, then the *i*-th command is "ping a", otherwise the *i*-th command is "ping b". Numbers *x**i*, *y**i* represent the result of executing this command, that is, *x**i* packets reached the corresponding server successfully and *y**i* packets were lost. It is guaranteed that the input has at least one "ping a" command and at least one "ping b" command.
In the first line print string "LIVE" (without the quotes) if server *a* is "alive", otherwise print "DEAD" (without the quotes). In the second line print the state of server *b* in the similar format.
[ "2\n1 5 5\n2 6 4\n", "3\n1 0 10\n2 0 10\n1 10 0\n" ]
[ "LIVE\nLIVE\n", "LIVE\nDEAD\n" ]
Consider the first test case. There 10 packets were sent to server *a*, 5 of them reached it. Therefore, at least half of all packets sent to this server successfully reached it through the network. Overall there were 10 packets sent to server *b*, 6 of them reached it. Therefore, at least half of all packets sent to this server successfully reached it through the network. Consider the second test case. There were overall 20 packages sent to server *a*, 10 of them reached it. Therefore, at least half of all packets sent to this server successfully reached it through the network. Overall 10 packets were sent to server *b*, 0 of them reached it. Therefore, less than half of all packets sent to this server successfully reached it through the network.
0
[ { "input": "2\n1 5 5\n2 6 4", "output": "LIVE\nLIVE" }, { "input": "3\n1 0 10\n2 0 10\n1 10 0", "output": "LIVE\nDEAD" }, { "input": "10\n1 3 7\n2 4 6\n1 2 8\n2 5 5\n2 10 0\n2 10 0\n1 8 2\n2 2 8\n2 10 0\n1 1 9", "output": "DEAD\nLIVE" }, { "input": "11\n1 8 2\n1 6 4\n1 9 1\n1 7 3\n2 0 10\n2 0 10\n1 8 2\n2 2 8\n2 6 4\n2 7 3\n2 9 1", "output": "LIVE\nDEAD" }, { "input": "12\n1 5 5\n1 0 10\n1 4 6\n1 2 8\n1 2 8\n1 5 5\n1 9 1\n2 9 1\n1 5 5\n1 1 9\n2 9 1\n2 7 3", "output": "DEAD\nLIVE" }, { "input": "13\n1 8 2\n1 4 6\n1 5 5\n1 5 5\n2 10 0\n2 9 1\n1 3 7\n2 6 4\n2 6 4\n2 5 5\n1 7 3\n2 3 7\n2 9 1", "output": "LIVE\nLIVE" }, { "input": "14\n1 7 3\n1 0 10\n1 7 3\n1 1 9\n2 2 8\n2 0 10\n1 1 9\n2 8 2\n2 6 4\n1 3 7\n1 3 7\n2 6 4\n2 1 9\n2 7 3", "output": "DEAD\nDEAD" } ]
1,588,135,055
2,147,483,647
PyPy 3
RUNTIME_ERROR
TESTS
0
404
2,150,400
a=0 b=0 success_a=0 success_b=0 for _ in range(int(input())): x,t1,t2=map(int(input())) if x==1: success_a+=t1 a+=10 else: success_b+=t1 b+=1 if success_a>=a//2: print("LIVE") else: print("DEAD") if success_b>=b//2: print("LIVE") else: print("DEAD")
Title: System Administrator Time Limit: None seconds Memory Limit: None megabytes Problem Description: Polycarpus is a system administrator. There are two servers under his strict guidance — *a* and *b*. To stay informed about the servers' performance, Polycarpus executes commands "ping a" and "ping b". Each ping command sends exactly ten packets to the server specified in the argument of the command. Executing a program results in two integers *x* and *y* (*x*<=+<=*y*<==<=10; *x*,<=*y*<=≥<=0). These numbers mean that *x* packets successfully reached the corresponding server through the network and *y* packets were lost. Today Polycarpus has performed overall *n* ping commands during his workday. Now for each server Polycarpus wants to know whether the server is "alive" or not. Polycarpus thinks that the server is "alive", if at least half of the packets that we send to this server reached it successfully along the network. Help Polycarpus, determine for each server, whether it is "alive" or not by the given commands and their results. Input Specification: The first line contains a single integer *n* (2<=≤<=*n*<=≤<=1000) — the number of commands Polycarpus has fulfilled. Each of the following *n* lines contains three integers — the description of the commands. The *i*-th of these lines contains three space-separated integers *t**i*, *x**i*, *y**i* (1<=≤<=*t**i*<=≤<=2; *x**i*,<=*y**i*<=≥<=0; *x**i*<=+<=*y**i*<==<=10). If *t**i*<==<=1, then the *i*-th command is "ping a", otherwise the *i*-th command is "ping b". Numbers *x**i*, *y**i* represent the result of executing this command, that is, *x**i* packets reached the corresponding server successfully and *y**i* packets were lost. It is guaranteed that the input has at least one "ping a" command and at least one "ping b" command. Output Specification: In the first line print string "LIVE" (without the quotes) if server *a* is "alive", otherwise print "DEAD" (without the quotes). In the second line print the state of server *b* in the similar format. Demo Input: ['2\n1 5 5\n2 6 4\n', '3\n1 0 10\n2 0 10\n1 10 0\n'] Demo Output: ['LIVE\nLIVE\n', 'LIVE\nDEAD\n'] Note: Consider the first test case. There 10 packets were sent to server *a*, 5 of them reached it. Therefore, at least half of all packets sent to this server successfully reached it through the network. Overall there were 10 packets sent to server *b*, 6 of them reached it. Therefore, at least half of all packets sent to this server successfully reached it through the network. Consider the second test case. There were overall 20 packages sent to server *a*, 10 of them reached it. Therefore, at least half of all packets sent to this server successfully reached it through the network. Overall 10 packets were sent to server *b*, 0 of them reached it. Therefore, less than half of all packets sent to this server successfully reached it through the network.
```python a=0 b=0 success_a=0 success_b=0 for _ in range(int(input())): x,t1,t2=map(int(input())) if x==1: success_a+=t1 a+=10 else: success_b+=t1 b+=1 if success_a>=a//2: print("LIVE") else: print("DEAD") if success_b>=b//2: print("LIVE") else: print("DEAD") ```
-1
50
A
Domino piling
PROGRAMMING
800
[ "greedy", "math" ]
A. Domino piling
2
256
You are given a rectangular board of *M*<=×<=*N* squares. Also you are given an unlimited number of standard domino pieces of 2<=×<=1 squares. You are allowed to rotate the pieces. You are asked to place as many dominoes as possible on the board so as to meet the following conditions: 1. Each domino completely covers two squares. 2. No two dominoes overlap. 3. Each domino lies entirely inside the board. It is allowed to touch the edges of the board. Find the maximum number of dominoes, which can be placed under these restrictions.
In a single line you are given two integers *M* and *N* — board sizes in squares (1<=≤<=*M*<=≤<=*N*<=≤<=16).
Output one number — the maximal number of dominoes, which can be placed.
[ "2 4\n", "3 3\n" ]
[ "4\n", "4\n" ]
none
500
[ { "input": "2 4", "output": "4" }, { "input": "3 3", "output": "4" }, { "input": "1 5", "output": "2" }, { "input": "1 6", "output": "3" }, { "input": "1 15", "output": "7" }, { "input": "1 16", "output": "8" }, { "input": "2 5", "output": "5" }, { "input": "2 6", "output": "6" }, { "input": "2 7", "output": "7" }, { "input": "2 14", "output": "14" }, { "input": "2 15", "output": "15" }, { "input": "1 4", "output": "2" }, { "input": "2 16", "output": "16" }, { "input": "3 5", "output": "7" }, { "input": "3 6", "output": "9" }, { "input": "3 10", "output": "15" }, { "input": "3 14", "output": "21" }, { "input": "3 15", "output": "22" }, { "input": "3 16", "output": "24" }, { "input": "5 7", "output": "17" }, { "input": "16 16", "output": "128" }, { "input": "15 16", "output": "120" }, { "input": "2 3", "output": "3" }, { "input": "15 15", "output": "112" }, { "input": "14 16", "output": "112" }, { "input": "11 13", "output": "71" }, { "input": "5 16", "output": "40" }, { "input": "8 15", "output": "60" }, { "input": "2 2", "output": "2" }, { "input": "3 4", "output": "6" }, { "input": "4 4", "output": "8" }, { "input": "1 1", "output": "0" }, { "input": "1 2", "output": "1" }, { "input": "1 3", "output": "1" }, { "input": "14 15", "output": "105" } ]
1,634,039,791
2,147,483,647
Python 3
OK
TESTS
35
124
6,758,400
# -*- coding: utf-8 -*- """domino.ipynb Automatically generated by Colaboratory. Original file is located at https://colab.research.google.com/drive/1SuTcCGTisxqY5IGxKwxt8NeBDjsKoz-t """ m, n = map(int, input().split()) if m == 1 and n == 1: print(0) else: print(int(m * n) // 2)
Title: Domino piling Time Limit: 2 seconds Memory Limit: 256 megabytes Problem Description: You are given a rectangular board of *M*<=×<=*N* squares. Also you are given an unlimited number of standard domino pieces of 2<=×<=1 squares. You are allowed to rotate the pieces. You are asked to place as many dominoes as possible on the board so as to meet the following conditions: 1. Each domino completely covers two squares. 2. No two dominoes overlap. 3. Each domino lies entirely inside the board. It is allowed to touch the edges of the board. Find the maximum number of dominoes, which can be placed under these restrictions. Input Specification: In a single line you are given two integers *M* and *N* — board sizes in squares (1<=≤<=*M*<=≤<=*N*<=≤<=16). Output Specification: Output one number — the maximal number of dominoes, which can be placed. Demo Input: ['2 4\n', '3 3\n'] Demo Output: ['4\n', '4\n'] Note: none
```python # -*- coding: utf-8 -*- """domino.ipynb Automatically generated by Colaboratory. Original file is located at https://colab.research.google.com/drive/1SuTcCGTisxqY5IGxKwxt8NeBDjsKoz-t """ m, n = map(int, input().split()) if m == 1 and n == 1: print(0) else: print(int(m * n) // 2) ```
3.956411
127
A
Wasted Time
PROGRAMMING
900
[ "geometry" ]
null
null
Mr. Scrooge, a very busy man, decided to count the time he wastes on all sorts of useless stuff to evaluate the lost profit. He has already counted the time he wastes sleeping and eating. And now Mr. Scrooge wants to count the time he has wasted signing papers. Mr. Scrooge's signature can be represented as a polyline *A*1*A*2... *A**n*. Scrooge signs like that: first it places a pen at the point *A*1, then draws a segment from point *A*1 to point *A*2, then he draws a segment from point *A*2 to point *A*3 and so on to point *A**n*, where he stops signing and takes the pen off the paper. At that the resulting line can intersect with itself and partially repeat itself but Scrooge pays no attention to it and never changes his signing style. As Scrooge makes the signature, he never takes the pen off the paper and his writing speed is constant — 50 millimeters per second. Scrooge signed exactly *k* papers throughout his life and all those signatures look the same. Find the total time Scrooge wasted signing the papers.
The first line contains two integers *n* and *k* (2<=≤<=*n*<=≤<=100, 1<=≤<=*k*<=≤<=1000). Each of the following *n* lines contains the coordinates of the polyline's endpoints. The *i*-th one contains coordinates of the point *A**i* — integers *x**i* and *y**i*, separated by a space. All points *A**i* are different. The absolute value of all coordinates does not exceed 20. The coordinates are measured in millimeters.
Print one real number — the total time Scrooges wastes on signing the papers in seconds. The absolute or relative error should not exceed 10<=-<=6.
[ "2 1\n0 0\n10 0\n", "5 10\n3 1\n-5 6\n-2 -1\n3 2\n10 0\n", "6 10\n5 0\n4 0\n6 0\n3 0\n7 0\n2 0\n" ]
[ "0.200000000", "6.032163204", "3.000000000" ]
none
500
[ { "input": "2 1\n0 0\n10 0", "output": "0.200000000" }, { "input": "5 10\n3 1\n-5 6\n-2 -1\n3 2\n10 0", "output": "6.032163204" }, { "input": "6 10\n5 0\n4 0\n6 0\n3 0\n7 0\n2 0", "output": "3.000000000" }, { "input": "10 95\n-20 -5\n2 -8\n14 13\n10 3\n17 11\n13 -12\n-6 11\n14 -15\n-13 14\n19 8", "output": "429.309294877" }, { "input": "30 1000\n4 -13\n14 13\n-14 -16\n-9 18\n17 11\n2 -8\n2 15\n8 -1\n-9 13\n8 -12\n-2 20\n11 -12\n19 8\n9 -15\n-20 -5\n-18 20\n-13 14\n-12 -17\n-4 3\n13 -12\n11 -10\n18 7\n-6 11\n10 13\n10 3\n6 -14\n-1 10\n14 -15\n2 11\n-8 10", "output": "13629.282573522" }, { "input": "2 1\n-20 -10\n-10 -6", "output": "0.215406592" }, { "input": "2 13\n13 -10\n-3 -2", "output": "4.651021393" }, { "input": "2 21\n13 8\n14 10", "output": "0.939148551" }, { "input": "2 75\n-3 12\n1 12", "output": "6.000000000" }, { "input": "2 466\n10 16\n-6 -3", "output": "231.503997374" }, { "input": "2 999\n6 16\n-17 -14", "output": "755.286284531" }, { "input": "2 1000\n-17 -14\n-14 -8", "output": "134.164078650" }, { "input": "3 384\n-4 -19\n-17 -2\n3 4", "output": "324.722285390" }, { "input": "5 566\n-11 8\n2 -7\n7 0\n-7 -9\n-7 5", "output": "668.956254495" }, { "input": "7 495\n-10 -13\n-9 -5\n4 9\n8 13\n-4 2\n2 10\n-18 15", "output": "789.212495576" }, { "input": "10 958\n7 13\n20 19\n12 -7\n10 -10\n-13 -15\n-10 -7\n20 -5\n-11 19\n-7 3\n-4 18", "output": "3415.618464093" }, { "input": "13 445\n-15 16\n-8 -14\n8 7\n4 15\n8 -13\n15 -11\n-12 -4\n2 -13\n-5 0\n-20 -14\n-8 -7\n-10 -18\n18 -5", "output": "2113.552527680" }, { "input": "18 388\n11 -8\n13 10\n18 -17\n-15 3\n-13 -15\n20 -7\n1 -10\n-13 -12\n-12 -15\n-17 -8\n1 -2\n3 -20\n-8 -9\n15 -13\n-19 -6\n17 3\n-17 2\n6 6", "output": "2999.497312668" }, { "input": "25 258\n-5 -3\n-18 -14\n12 3\n6 11\n4 2\n-19 -3\n19 -7\n-15 19\n-19 -12\n-11 -10\n-5 17\n10 15\n-4 1\n-3 -20\n6 16\n18 -19\n11 -19\n-17 10\n-17 17\n-2 -17\n-3 -9\n18 13\n14 8\n-2 -5\n-11 4", "output": "2797.756635934" }, { "input": "29 848\n11 -10\n-19 1\n18 18\n19 -19\n0 -5\n16 10\n-20 -14\n7 15\n6 8\n-15 -16\n9 3\n16 -20\n-12 12\n18 -1\n-11 14\n18 10\n11 -20\n-20 -16\n-1 11\n13 10\n-6 13\n-7 -10\n-11 -10\n-10 3\n15 -13\n-4 11\n-13 -11\n-11 -17\n11 -5", "output": "12766.080247922" }, { "input": "36 3\n-11 20\n-11 13\n-17 9\n15 9\n-6 9\n-1 11\n12 -11\n16 -10\n-20 7\n-18 6\n-15 -2\n20 -20\n16 4\n-20 -8\n-12 -15\n-13 -6\n-9 -4\n0 -10\n8 -1\n1 4\n5 8\n8 -15\n16 -12\n19 1\n0 -4\n13 -4\n17 -13\n-7 11\n14 9\n-14 -9\n5 -8\n11 -8\n-17 -5\n1 -3\n-16 -17\n2 -3", "output": "36.467924851" }, { "input": "48 447\n14 9\n9 -17\n-17 11\n-14 14\n19 -8\n-14 -17\n-7 10\n-6 -11\n-9 -19\n19 10\n-4 2\n-5 16\n20 9\n-10 20\n-7 -17\n14 -16\n-2 -10\n-18 -17\n14 12\n-6 -19\n5 -18\n-3 2\n-3 10\n-5 5\n13 -12\n10 -18\n10 -12\n-2 4\n7 -15\n-5 -5\n11 14\n11 10\n-6 -9\n13 -4\n13 9\n6 12\n-13 17\n-9 -12\n14 -19\n10 12\n-15 8\n-1 -11\n19 8\n11 20\n-9 -3\n16 1\n-14 19\n8 -4", "output": "9495.010556306" }, { "input": "50 284\n-17 -13\n7 12\n-13 0\n13 1\n14 6\n14 -9\n-5 -1\n0 -10\n12 -3\n-14 6\n-8 10\n-16 17\n0 -1\n4 -9\n2 6\n1 8\n-8 -14\n3 9\n1 -15\n-4 -19\n-7 -20\n18 10\n3 -11\n10 16\n2 -6\n-9 19\n-3 -1\n20 9\n-12 -5\n-10 -2\n16 -7\n-16 -18\n-2 17\n2 8\n7 -15\n4 1\n6 -17\n19 9\n-10 -20\n5 2\n10 -2\n3 7\n20 0\n8 -14\n-16 -1\n-20 7\n20 -19\n17 18\n-11 -18\n-16 14", "output": "6087.366930474" }, { "input": "57 373\n18 3\n-4 -1\n18 5\n-7 -15\n-6 -10\n-19 1\n20 15\n15 4\n-1 -2\n13 -14\n0 12\n10 3\n-16 -17\n-14 -9\n-11 -10\n17 19\n-2 6\n-12 -15\n10 20\n16 7\n9 -1\n4 13\n8 -2\n-1 -16\n-3 8\n14 11\n-12 3\n-5 -6\n3 4\n5 7\n-9 9\n11 4\n-19 10\n-7 4\n-20 -12\n10 16\n13 11\n13 -11\n7 -1\n17 18\n-19 7\n14 13\n5 -1\n-7 6\n-1 -6\n6 20\n-16 2\n4 17\n16 -11\n-4 -20\n19 -18\n17 16\n-14 -8\n3 2\n-6 -16\n10 -10\n-13 -11", "output": "8929.162822862" }, { "input": "60 662\n15 17\n-2 -19\n-4 -17\n10 0\n15 10\n-8 -14\n14 9\n-15 20\n6 5\n-9 0\n-13 20\n13 -2\n10 9\n7 5\n4 18\n-10 1\n6 -15\n15 -16\n6 13\n4 -6\n2 5\n18 19\n8 3\n-7 14\n-12 -20\n14 19\n-15 0\n-2 -12\n9 18\n14 4\n2 -20\n3 0\n20 9\n-5 11\n-11 1\n2 -19\n-14 -4\n18 6\n16 16\n15 3\n-1 -5\n9 20\n12 -8\n-1 10\n-4 -9\n3 6\n3 -12\n14 -10\n-8 10\n-18 6\n14 -2\n-14 -12\n-10 -7\n10 -6\n14 1\n6 14\n15 19\n4 14\n3 -14\n-9 -13", "output": "16314.207721932" }, { "input": "61 764\n-9 15\n11 -8\n-6 -7\n-13 -19\n16 -16\n-5 -1\n20 -19\n-14 -1\n-11 4\n7 -2\n-3 2\n-14 -17\n15 18\n20 15\n-13 -2\n15 8\n3 13\n19 -10\n2 -6\n15 -3\n-12 11\n4 -16\n-14 20\n0 2\n11 -7\n-6 -11\n16 7\n8 -3\n16 -10\n-3 9\n9 5\n4 -1\n-17 9\n14 -4\n8 6\n-19 12\n10 -17\n-5 7\n7 -3\n5 3\n6 -14\n9 9\n-16 -19\n11 -16\n-17 15\n8 5\n16 -19\n-7 10\n14 -15\n15 19\n-20 -16\n6 -2\n-4 6\n7 -15\n1 -8\n20 -17\n3 7\n10 12\n10 -11\n-19 10\n0 -11", "output": "22153.369189802" } ]
1,659,891,398
2,147,483,647
Python 3
OK
TESTS
42
92
0
import math n,k = map(int, input().split()) dis = 0 path = [] past = None for _ in range(n): x,y = map(int, input().split()) if past: dis += math.sqrt((x-past[0])**2 + (y-past[1])**2) past = [x,y] print(k*(dis/50))
Title: Wasted Time Time Limit: None seconds Memory Limit: None megabytes Problem Description: Mr. Scrooge, a very busy man, decided to count the time he wastes on all sorts of useless stuff to evaluate the lost profit. He has already counted the time he wastes sleeping and eating. And now Mr. Scrooge wants to count the time he has wasted signing papers. Mr. Scrooge's signature can be represented as a polyline *A*1*A*2... *A**n*. Scrooge signs like that: first it places a pen at the point *A*1, then draws a segment from point *A*1 to point *A*2, then he draws a segment from point *A*2 to point *A*3 and so on to point *A**n*, where he stops signing and takes the pen off the paper. At that the resulting line can intersect with itself and partially repeat itself but Scrooge pays no attention to it and never changes his signing style. As Scrooge makes the signature, he never takes the pen off the paper and his writing speed is constant — 50 millimeters per second. Scrooge signed exactly *k* papers throughout his life and all those signatures look the same. Find the total time Scrooge wasted signing the papers. Input Specification: The first line contains two integers *n* and *k* (2<=≤<=*n*<=≤<=100, 1<=≤<=*k*<=≤<=1000). Each of the following *n* lines contains the coordinates of the polyline's endpoints. The *i*-th one contains coordinates of the point *A**i* — integers *x**i* and *y**i*, separated by a space. All points *A**i* are different. The absolute value of all coordinates does not exceed 20. The coordinates are measured in millimeters. Output Specification: Print one real number — the total time Scrooges wastes on signing the papers in seconds. The absolute or relative error should not exceed 10<=-<=6. Demo Input: ['2 1\n0 0\n10 0\n', '5 10\n3 1\n-5 6\n-2 -1\n3 2\n10 0\n', '6 10\n5 0\n4 0\n6 0\n3 0\n7 0\n2 0\n'] Demo Output: ['0.200000000', '6.032163204', '3.000000000'] Note: none
```python import math n,k = map(int, input().split()) dis = 0 path = [] past = None for _ in range(n): x,y = map(int, input().split()) if past: dis += math.sqrt((x-past[0])**2 + (y-past[1])**2) past = [x,y] print(k*(dis/50)) ```
3
485
A
Factory
PROGRAMMING
1,400
[ "implementation", "math", "matrices" ]
null
null
One industrial factory is reforming working plan. The director suggested to set a mythical detail production norm. If at the beginning of the day there were *x* details in the factory storage, then by the end of the day the factory has to produce (remainder after dividing *x* by *m*) more details. Unfortunately, no customer has ever bought any mythical detail, so all the details produced stay on the factory. The board of directors are worried that the production by the given plan may eventually stop (that means that there will be а moment when the current number of details on the factory is divisible by *m*). Given the number of details *a* on the first day and number *m* check if the production stops at some moment.
The first line contains two integers *a* and *m* (1<=≤<=*a*,<=*m*<=≤<=105).
Print "Yes" (without quotes) if the production will eventually stop, otherwise print "No".
[ "1 5\n", "3 6\n" ]
[ "No\n", "Yes\n" ]
none
1,000
[ { "input": "1 5", "output": "No" }, { "input": "3 6", "output": "Yes" }, { "input": "1 8", "output": "Yes" }, { "input": "2 3", "output": "No" }, { "input": "3 24", "output": "Yes" }, { "input": "1 1", "output": "Yes" }, { "input": "100000 100000", "output": "Yes" }, { "input": "1 99989", "output": "No" }, { "input": "512 2", "output": "Yes" }, { "input": "100 24", "output": "No" }, { "input": "1 100000", "output": "No" }, { "input": "100000 1", "output": "Yes" }, { "input": "3 99929", "output": "No" }, { "input": "99961 99971", "output": "No" }, { "input": "1 65536", "output": "Yes" }, { "input": "4 65536", "output": "Yes" }, { "input": "3 65536", "output": "Yes" }, { "input": "32768 65536", "output": "Yes" }, { "input": "65535 65536", "output": "Yes" }, { "input": "1 65535", "output": "No" }, { "input": "98812 100000", "output": "No" }, { "input": "10 5", "output": "Yes" }, { "input": "6 8", "output": "Yes" } ]
1,661,563,429
2,147,483,647
Python 3
TIME_LIMIT_EXCEEDED
TESTS
9
1,000
0
a, m = map(int, input().split()) c = a%m detail = a +c while True: check = detail%m if not check: print('Yes') break elif check == c: print('No') break detail += check
Title: Factory Time Limit: None seconds Memory Limit: None megabytes Problem Description: One industrial factory is reforming working plan. The director suggested to set a mythical detail production norm. If at the beginning of the day there were *x* details in the factory storage, then by the end of the day the factory has to produce (remainder after dividing *x* by *m*) more details. Unfortunately, no customer has ever bought any mythical detail, so all the details produced stay on the factory. The board of directors are worried that the production by the given plan may eventually stop (that means that there will be а moment when the current number of details on the factory is divisible by *m*). Given the number of details *a* on the first day and number *m* check if the production stops at some moment. Input Specification: The first line contains two integers *a* and *m* (1<=≤<=*a*,<=*m*<=≤<=105). Output Specification: Print "Yes" (without quotes) if the production will eventually stop, otherwise print "No". Demo Input: ['1 5\n', '3 6\n'] Demo Output: ['No\n', 'Yes\n'] Note: none
```python a, m = map(int, input().split()) c = a%m detail = a +c while True: check = detail%m if not check: print('Yes') break elif check == c: print('No') break detail += check ```
0
242
B
Big Segment
PROGRAMMING
1,100
[ "implementation", "sortings" ]
null
null
A coordinate line has *n* segments, the *i*-th segment starts at the position *l**i* and ends at the position *r**i*. We will denote such a segment as [*l**i*,<=*r**i*]. You have suggested that one of the defined segments covers all others. In other words, there is such segment in the given set, which contains all other ones. Now you want to test your assumption. Find in the given set the segment which covers all other segments, and print its number. If such a segment doesn't exist, print -1. Formally we will assume that segment [*a*,<=*b*] covers segment [*c*,<=*d*], if they meet this condition *a*<=≤<=*c*<=≤<=*d*<=≤<=*b*.
The first line contains integer *n* (1<=≤<=*n*<=≤<=105) — the number of segments. Next *n* lines contain the descriptions of the segments. The *i*-th line contains two space-separated integers *l**i*,<=*r**i* (1<=≤<=*l**i*<=≤<=*r**i*<=≤<=109) — the borders of the *i*-th segment. It is guaranteed that no two segments coincide.
Print a single integer — the number of the segment that covers all other segments in the set. If there's no solution, print -1. The segments are numbered starting from 1 in the order in which they appear in the input.
[ "3\n1 1\n2 2\n3 3\n", "6\n1 5\n2 3\n1 10\n7 10\n7 7\n10 10\n" ]
[ "-1\n", "3\n" ]
none
1,000
[ { "input": "3\n1 1\n2 2\n3 3", "output": "-1" }, { "input": "6\n1 5\n2 3\n1 10\n7 10\n7 7\n10 10", "output": "3" }, { "input": "4\n1 5\n2 2\n2 4\n2 5", "output": "1" }, { "input": "5\n3 3\n1 3\n2 2\n2 3\n1 2", "output": "2" }, { "input": "7\n7 7\n8 8\n3 7\n1 6\n1 7\n4 7\n2 8", "output": "-1" }, { "input": "3\n2 5\n3 4\n2 3", "output": "1" }, { "input": "16\n15 15\n8 12\n6 9\n15 16\n8 14\n3 12\n7 19\n9 13\n5 16\n9 17\n10 15\n9 14\n9 9\n18 19\n5 15\n6 19", "output": "-1" }, { "input": "9\n1 10\n7 8\n6 7\n1 4\n5 9\n2 8\n3 10\n1 1\n2 3", "output": "1" }, { "input": "1\n1 100000", "output": "1" }, { "input": "6\n2 2\n3 3\n3 5\n4 5\n1 1\n1 5", "output": "6" }, { "input": "33\n2 18\n4 14\n2 16\n10 12\n4 6\n9 17\n2 8\n4 12\n8 20\n1 10\n11 14\n11 17\n8 15\n3 16\n3 4\n6 9\n6 19\n4 17\n17 19\n6 16\n3 12\n1 7\n6 20\n8 16\n12 19\n1 3\n12 18\n6 11\n7 20\n16 18\n4 15\n3 15\n15 19", "output": "-1" }, { "input": "34\n3 8\n5 9\n2 9\n1 4\n3 7\n3 3\n8 9\n6 10\n4 7\n6 7\n5 8\n5 10\n1 5\n8 8\n2 5\n3 5\n7 7\n2 8\n4 5\n1 1\n7 9\n5 6\n2 3\n1 2\n2 4\n8 10\n7 8\n1 3\n4 8\n9 10\n1 7\n10 10\n2 2\n1 8", "output": "-1" }, { "input": "55\n3 4\n6 8\n9 10\n3 9\n9 9\n2 5\n4 8\n3 8\n8 10\n1 1\n4 9\n10 10\n6 6\n8 8\n1 8\n5 5\n4 5\n5 9\n2 2\n3 10\n4 6\n3 6\n1 6\n1 7\n6 10\n2 6\n3 7\n2 4\n4 4\n5 10\n1 4\n2 9\n1 3\n7 9\n7 8\n1 9\n1 10\n2 8\n8 9\n6 7\n1 2\n6 9\n7 7\n4 7\n3 3\n2 7\n4 10\n7 10\n2 3\n2 10\n5 7\n3 5\n5 8\n1 5\n5 6", "output": "37" }, { "input": "1\n999999999 1000000000", "output": "1" }, { "input": "3\n1 20\n2 22\n3 18", "output": "-1" }, { "input": "1\n1000000000 1000000000", "output": "1" }, { "input": "2\n100001 100008\n100005 100006", "output": "1" }, { "input": "1\n1000000 10000000", "output": "1" }, { "input": "3\n3 6\n2 4\n1 5", "output": "-1" }, { "input": "2\n3 5\n1 2", "output": "-1" } ]
1,691,994,442
2,147,483,647
PyPy 3-64
OK
TESTS
45
1,372
12,288,000
a = [] b = [] n = int(input()) for _ in range(n): x,y = map(int,input().split());a.append(x);b.append(y) mn = min(a) mx = max(b) for i in range(n): if a[i] <= mn and b[i] >= mx:print(i + 1);exit() else:print(-1)
Title: Big Segment Time Limit: None seconds Memory Limit: None megabytes Problem Description: A coordinate line has *n* segments, the *i*-th segment starts at the position *l**i* and ends at the position *r**i*. We will denote such a segment as [*l**i*,<=*r**i*]. You have suggested that one of the defined segments covers all others. In other words, there is such segment in the given set, which contains all other ones. Now you want to test your assumption. Find in the given set the segment which covers all other segments, and print its number. If such a segment doesn't exist, print -1. Formally we will assume that segment [*a*,<=*b*] covers segment [*c*,<=*d*], if they meet this condition *a*<=≤<=*c*<=≤<=*d*<=≤<=*b*. Input Specification: The first line contains integer *n* (1<=≤<=*n*<=≤<=105) — the number of segments. Next *n* lines contain the descriptions of the segments. The *i*-th line contains two space-separated integers *l**i*,<=*r**i* (1<=≤<=*l**i*<=≤<=*r**i*<=≤<=109) — the borders of the *i*-th segment. It is guaranteed that no two segments coincide. Output Specification: Print a single integer — the number of the segment that covers all other segments in the set. If there's no solution, print -1. The segments are numbered starting from 1 in the order in which they appear in the input. Demo Input: ['3\n1 1\n2 2\n3 3\n', '6\n1 5\n2 3\n1 10\n7 10\n7 7\n10 10\n'] Demo Output: ['-1\n', '3\n'] Note: none
```python a = [] b = [] n = int(input()) for _ in range(n): x,y = map(int,input().split());a.append(x);b.append(y) mn = min(a) mx = max(b) for i in range(n): if a[i] <= mn and b[i] >= mx:print(i + 1);exit() else:print(-1) ```
3
612
B
HDD is Outdated Technology
PROGRAMMING
1,200
[ "implementation", "math" ]
null
null
HDD hard drives group data by sectors. All files are split to fragments and each of them are written in some sector of hard drive. Note the fragments can be written in sectors in arbitrary order. One of the problems of HDD hard drives is the following: the magnetic head should move from one sector to another to read some file. Find the time need to read file split to *n* fragments. The *i*-th sector contains the *f**i*-th fragment of the file (1<=≤<=*f**i*<=≤<=*n*). Note different sectors contains the different fragments. At the start the magnetic head is in the position that contains the first fragment. The file are reading in the following manner: at first the first fragment is read, then the magnetic head moves to the sector that contains the second fragment, then the second fragment is read and so on until the *n*-th fragment is read. The fragments are read in the order from the first to the *n*-th. It takes |*a*<=-<=*b*| time units to move the magnetic head from the sector *a* to the sector *b*. Reading a fragment takes no time.
The first line contains a positive integer *n* (1<=≤<=*n*<=≤<=2·105) — the number of fragments. The second line contains *n* different integers *f**i* (1<=≤<=*f**i*<=≤<=*n*) — the number of the fragment written in the *i*-th sector.
Print the only integer — the number of time units needed to read the file.
[ "3\n3 1 2\n", "5\n1 3 5 4 2\n" ]
[ "3\n", "10\n" ]
In the second example the head moves in the following way: - 1-&gt;2 means movement from the sector 1 to the sector 5, i.e. it takes 4 time units - 2-&gt;3 means movement from the sector 5 to the sector 2, i.e. it takes 3 time units - 3-&gt;4 means movement from the sector 2 to the sector 4, i.e. it takes 2 time units - 4-&gt;5 means movement from the sector 4 to the sector 3, i.e. it takes 1 time units So the answer to the second example is 4 + 3 + 2 + 1 = 10.
0
[ { "input": "3\n3 1 2", "output": "3" }, { "input": "5\n1 3 5 4 2", "output": "10" }, { "input": "1\n1", "output": "0" }, { "input": "1\n1", "output": "0" }, { "input": "1\n1", "output": "0" }, { "input": "10\n8 2 10 3 4 6 1 7 9 5", "output": "40" }, { "input": "10\n1 2 3 4 5 6 7 8 9 10", "output": "9" }, { "input": "10\n1 3 5 7 9 10 8 6 4 2", "output": "45" }, { "input": "100\n11 9 35 34 51 74 16 67 26 21 14 80 84 79 7 61 28 3 53 43 42 5 56 36 69 30 22 88 1 27 65 91 46 31 59 50 17 96 25 18 64 55 78 2 63 24 95 48 93 13 38 76 89 94 15 90 45 81 52 87 83 73 44 49 23 82 85 75 86 33 47 19 58 97 37 20 40 10 92 4 6 68 77 54 71 12 62 60 100 39 41 99 72 29 57 8 70 32 66 98", "output": "3580" }, { "input": "100\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100", "output": "99" }, { "input": "100\n1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 71 73 75 77 79 81 83 85 87 89 91 93 95 97 99 100 98 96 94 92 90 88 86 84 82 80 78 76 74 72 70 68 66 64 62 60 58 56 54 52 50 48 46 44 42 40 38 36 34 32 30 28 26 24 22 20 18 16 14 12 10 8 6 4 2", "output": "4950" } ]
1,681,453,815
2,147,483,647
PyPy 3-64
OK
TESTS
24
140
28,672,000
n = int(input()) lst = list(map(int, input().split())) dc = {x:i for i, x in enumerate(lst)} res, pos = 0, dc[1] for i in range(2, n+1): nextPos = dc[i] res += abs(pos-nextPos) pos = nextPos print(res)
Title: HDD is Outdated Technology Time Limit: None seconds Memory Limit: None megabytes Problem Description: HDD hard drives group data by sectors. All files are split to fragments and each of them are written in some sector of hard drive. Note the fragments can be written in sectors in arbitrary order. One of the problems of HDD hard drives is the following: the magnetic head should move from one sector to another to read some file. Find the time need to read file split to *n* fragments. The *i*-th sector contains the *f**i*-th fragment of the file (1<=≤<=*f**i*<=≤<=*n*). Note different sectors contains the different fragments. At the start the magnetic head is in the position that contains the first fragment. The file are reading in the following manner: at first the first fragment is read, then the magnetic head moves to the sector that contains the second fragment, then the second fragment is read and so on until the *n*-th fragment is read. The fragments are read in the order from the first to the *n*-th. It takes |*a*<=-<=*b*| time units to move the magnetic head from the sector *a* to the sector *b*. Reading a fragment takes no time. Input Specification: The first line contains a positive integer *n* (1<=≤<=*n*<=≤<=2·105) — the number of fragments. The second line contains *n* different integers *f**i* (1<=≤<=*f**i*<=≤<=*n*) — the number of the fragment written in the *i*-th sector. Output Specification: Print the only integer — the number of time units needed to read the file. Demo Input: ['3\n3 1 2\n', '5\n1 3 5 4 2\n'] Demo Output: ['3\n', '10\n'] Note: In the second example the head moves in the following way: - 1-&gt;2 means movement from the sector 1 to the sector 5, i.e. it takes 4 time units - 2-&gt;3 means movement from the sector 5 to the sector 2, i.e. it takes 3 time units - 3-&gt;4 means movement from the sector 2 to the sector 4, i.e. it takes 2 time units - 4-&gt;5 means movement from the sector 4 to the sector 3, i.e. it takes 1 time units So the answer to the second example is 4 + 3 + 2 + 1 = 10.
```python n = int(input()) lst = list(map(int, input().split())) dc = {x:i for i, x in enumerate(lst)} res, pos = 0, dc[1] for i in range(2, n+1): nextPos = dc[i] res += abs(pos-nextPos) pos = nextPos print(res) ```
3
330
A
Cakeminator
PROGRAMMING
800
[ "brute force", "implementation" ]
null
null
You are given a rectangular cake, represented as an *r*<=×<=*c* grid. Each cell either has an evil strawberry, or is empty. For example, a 3<=×<=4 cake may look as follows: The cakeminator is going to eat the cake! Each time he eats, he chooses a row or a column that does not contain any evil strawberries and contains at least one cake cell that has not been eaten before, and eats all the cake cells there. He may decide to eat any number of times. Please output the maximum number of cake cells that the cakeminator can eat.
The first line contains two integers *r* and *c* (2<=≤<=*r*,<=*c*<=≤<=10), denoting the number of rows and the number of columns of the cake. The next *r* lines each contains *c* characters — the *j*-th character of the *i*-th line denotes the content of the cell at row *i* and column *j*, and is either one of these: - '.' character denotes a cake cell with no evil strawberry; - 'S' character denotes a cake cell with an evil strawberry.
Output the maximum number of cake cells that the cakeminator can eat.
[ "3 4\nS...\n....\n..S.\n" ]
[ "8\n" ]
For the first example, one possible way to eat the maximum number of cake cells is as follows (perform 3 eats).
500
[ { "input": "3 4\nS...\n....\n..S.", "output": "8" }, { "input": "2 2\n..\n..", "output": "4" }, { "input": "2 2\nSS\nSS", "output": "0" }, { "input": "7 3\nS..\nS..\nS..\nS..\nS..\nS..\nS..", "output": "14" }, { "input": "3 5\n..S..\nSSSSS\n..S..", "output": "0" }, { "input": "10 10\nSSSSSSSSSS\nSSSSSSSSSS\nSSSSSSSSSS\nSSSSSSSSSS\nSSSSSSSSSS\nSSSSSSSSSS\nSSSSSSSSSS\nSSSSSSSSSS\nSSSSSSSSSS\nSSSSSSSSSS", "output": "0" }, { "input": "10 10\nS...SSSSSS\nS...SSSSSS\nS...SSSSSS\nS...SSSSSS\nS...SSSSSS\nS...SSSSSS\nS...SSSSSS\nS...SSSSSS\nS...SSSSSS\nS...SSSSSS", "output": "30" }, { "input": "10 10\n....S..S..\n....S..S..\n....S..S..\n....S..S..\n....S..S..\n....S..S..\n....S..S..\n....S..S..\n....S..S..\n....S..S..", "output": "80" }, { "input": "9 5\nSSSSS\nSSSSS\nSSSSS\nSSSSS\nSSSSS\nSSSSS\nSSSSS\nSSSSS\nSSSSS", "output": "0" }, { "input": "9 9\n...S.....\nS.S.....S\n.S....S..\n.S.....SS\n.........\n..S.S..S.\n.SS......\n....S....\n..S...S..", "output": "17" }, { "input": "5 6\nSSSSSS\nSSSSSS\nSSSSSS\nSS.S..\nS.S.SS", "output": "0" }, { "input": "9 8\n........\n.......S\n........\nS.......\n........\n........\nS.......\n........\n.......S", "output": "64" }, { "input": "9 7\n......S\n......S\nS.S.S..\n.......\n.......\n.S.....\n.S....S\n..S....\n.S....S", "output": "28" }, { "input": "10 10\n.....S....\n....SS..S.\n.S...S....\n........SS\n.S.......S\nSS..S.....\n.SS.....SS\nS..S......\n.......SSS\nSSSSS....S", "output": "10" }, { "input": "6 7\n..S.SS.\n......S\n....S.S\nSS..S..\nS..SS.S\n.....S.", "output": "0" }, { "input": "10 6\n.SSSSS\nSSS.SS\nSSSSSS\nS.SSSS\nSSSSS.\nS.SSSS\nSS.SSS\n.SSS.S\n.SSS..\nSS..SS", "output": "0" }, { "input": "2 2\n..\n..", "output": "4" }, { "input": "3 2\nS.\n.S\nS.", "output": "0" }, { "input": "3 2\nS.\n.S\nS.", "output": "0" }, { "input": "4 3\n.S.\nS.S\n.S.\nS.S", "output": "0" }, { "input": "2 3\n...\nSSS", "output": "3" }, { "input": "2 4\nS.SS\nS.SS", "output": "2" }, { "input": "2 2\n..\n.S", "output": "3" }, { "input": "3 2\n.S\n.S\nSS", "output": "0" }, { "input": "2 4\nSS.S\n..S.", "output": "0" }, { "input": "2 3\n...\nS..", "output": "5" } ]
1,602,516,143
2,147,483,647
Python 3
OK
TESTS
42
218
307,200
s=input('') n,m=s.split(' ') n=int(n) m=int(m) l=[] for i in range(n): s1=input('') l.append(list(s1)) l1=[] for i in range(n): # print(l[i]) temp=l[i].count('S') # print(temp) if(temp==0): for j in range(m): l1.append([i,j]) l2=(list(map(list,zip(*l)))) # print(l2) for i in range(m): # print(l[i]) temp=l2[i].count('S') # print(temp) if(temp==0): for j in range(n): l1.append([j,i]) l3=[] # print(l1) count=0 for i in l1: if i not in l3: l3.append(i) print(len(l3))
Title: Cakeminator Time Limit: None seconds Memory Limit: None megabytes Problem Description: You are given a rectangular cake, represented as an *r*<=×<=*c* grid. Each cell either has an evil strawberry, or is empty. For example, a 3<=×<=4 cake may look as follows: The cakeminator is going to eat the cake! Each time he eats, he chooses a row or a column that does not contain any evil strawberries and contains at least one cake cell that has not been eaten before, and eats all the cake cells there. He may decide to eat any number of times. Please output the maximum number of cake cells that the cakeminator can eat. Input Specification: The first line contains two integers *r* and *c* (2<=≤<=*r*,<=*c*<=≤<=10), denoting the number of rows and the number of columns of the cake. The next *r* lines each contains *c* characters — the *j*-th character of the *i*-th line denotes the content of the cell at row *i* and column *j*, and is either one of these: - '.' character denotes a cake cell with no evil strawberry; - 'S' character denotes a cake cell with an evil strawberry. Output Specification: Output the maximum number of cake cells that the cakeminator can eat. Demo Input: ['3 4\nS...\n....\n..S.\n'] Demo Output: ['8\n'] Note: For the first example, one possible way to eat the maximum number of cake cells is as follows (perform 3 eats).
```python s=input('') n,m=s.split(' ') n=int(n) m=int(m) l=[] for i in range(n): s1=input('') l.append(list(s1)) l1=[] for i in range(n): # print(l[i]) temp=l[i].count('S') # print(temp) if(temp==0): for j in range(m): l1.append([i,j]) l2=(list(map(list,zip(*l)))) # print(l2) for i in range(m): # print(l[i]) temp=l2[i].count('S') # print(temp) if(temp==0): for j in range(n): l1.append([j,i]) l3=[] # print(l1) count=0 for i in l1: if i not in l3: l3.append(i) print(len(l3)) ```
3
620
A
Professor GukiZ's Robot
PROGRAMMING
800
[ "implementation", "math" ]
null
null
Professor GukiZ makes a new robot. The robot are in the point with coordinates (*x*1,<=*y*1) and should go to the point (*x*2,<=*y*2). In a single step the robot can change any of its coordinates (maybe both of them) by one (decrease or increase). So the robot can move in one of the 8 directions. Find the minimal number of steps the robot should make to get the finish position.
The first line contains two integers *x*1,<=*y*1 (<=-<=109<=≤<=*x*1,<=*y*1<=≤<=109) — the start position of the robot. The second line contains two integers *x*2,<=*y*2 (<=-<=109<=≤<=*x*2,<=*y*2<=≤<=109) — the finish position of the robot.
Print the only integer *d* — the minimal number of steps to get the finish position.
[ "0 0\n4 5\n", "3 4\n6 1\n" ]
[ "5\n", "3\n" ]
In the first example robot should increase both of its coordinates by one four times, so it will be in position (4, 4). After that robot should simply increase its *y* coordinate and get the finish position. In the second example robot should simultaneously increase *x* coordinate and decrease *y* coordinate by one three times.
0
[ { "input": "0 0\n4 5", "output": "5" }, { "input": "3 4\n6 1", "output": "3" }, { "input": "0 0\n4 6", "output": "6" }, { "input": "1 1\n-3 -5", "output": "6" }, { "input": "-1 -1\n-10 100", "output": "101" }, { "input": "1 -1\n100 -100", "output": "99" }, { "input": "-1000000000 -1000000000\n1000000000 1000000000", "output": "2000000000" }, { "input": "-1000000000 -1000000000\n0 999999999", "output": "1999999999" }, { "input": "0 0\n2 1", "output": "2" }, { "input": "10 0\n100 0", "output": "90" }, { "input": "1 5\n6 4", "output": "5" }, { "input": "0 0\n5 4", "output": "5" }, { "input": "10 1\n20 1", "output": "10" }, { "input": "1 1\n-3 4", "output": "4" }, { "input": "-863407280 504312726\n786535210 -661703810", "output": "1649942490" }, { "input": "-588306085 -741137832\n341385643 152943311", "output": "929691728" }, { "input": "0 0\n4 0", "output": "4" }, { "input": "93097194 -48405232\n-716984003 -428596062", "output": "810081197" }, { "input": "9 1\n1 1", "output": "8" }, { "input": "4 6\n0 4", "output": "4" }, { "input": "2 4\n5 2", "output": "3" }, { "input": "-100000000 -100000000\n100000000 100000123", "output": "200000123" }, { "input": "5 6\n5 7", "output": "1" }, { "input": "12 16\n12 1", "output": "15" }, { "input": "0 0\n5 1", "output": "5" }, { "input": "0 1\n1 1", "output": "1" }, { "input": "-44602634 913365223\n-572368780 933284951", "output": "527766146" }, { "input": "-2 0\n2 -2", "output": "4" }, { "input": "0 0\n3 1", "output": "3" }, { "input": "-458 2\n1255 4548", "output": "4546" }, { "input": "-5 -4\n-3 -3", "output": "2" }, { "input": "4 5\n7 3", "output": "3" }, { "input": "-1000000000 -999999999\n1000000000 999999998", "output": "2000000000" }, { "input": "-1000000000 -1000000000\n1000000000 -1000000000", "output": "2000000000" }, { "input": "-464122675 -898521847\n656107323 -625340409", "output": "1120229998" }, { "input": "-463154699 -654742385\n-699179052 -789004997", "output": "236024353" }, { "input": "982747270 -593488945\n342286841 -593604186", "output": "640460429" }, { "input": "-80625246 708958515\n468950878 574646184", "output": "549576124" }, { "input": "0 0\n1 0", "output": "1" }, { "input": "109810 1\n2 3", "output": "109808" }, { "input": "-9 0\n9 9", "output": "18" }, { "input": "9 9\n9 9", "output": "0" }, { "input": "1 1\n4 3", "output": "3" }, { "input": "1 2\n45 1", "output": "44" }, { "input": "207558188 -313753260\n-211535387 -721675423", "output": "419093575" }, { "input": "-11 0\n0 0", "output": "11" }, { "input": "-1000000000 1000000000\n1000000000 -1000000000", "output": "2000000000" }, { "input": "0 0\n1 1", "output": "1" }, { "input": "0 0\n0 1", "output": "1" }, { "input": "0 0\n-1 1", "output": "1" }, { "input": "0 0\n-1 0", "output": "1" }, { "input": "0 0\n-1 -1", "output": "1" }, { "input": "0 0\n0 -1", "output": "1" }, { "input": "0 0\n1 -1", "output": "1" }, { "input": "10 90\n90 10", "output": "80" }, { "input": "851016864 573579544\n-761410925 -380746263", "output": "1612427789" }, { "input": "1 9\n9 9", "output": "8" }, { "input": "1000 1000\n1000 1000", "output": "0" }, { "input": "1 9\n9 1", "output": "8" }, { "input": "1 90\n90 90", "output": "89" }, { "input": "100 100\n1000 1000", "output": "900" }, { "input": "-1 0\n0 0", "output": "1" }, { "input": "-750595959 -2984043\n649569876 -749608783", "output": "1400165835" }, { "input": "958048496 712083589\n423286949 810566863", "output": "534761547" }, { "input": "146316710 53945094\n-523054748 147499505", "output": "669371458" }, { "input": "50383856 -596516251\n-802950224 -557916272", "output": "853334080" }, { "input": "-637204864 -280290367\n-119020929 153679771", "output": "518183935" }, { "input": "-100 -100\n-60 -91", "output": "40" }, { "input": "337537326 74909428\n-765558776 167951547", "output": "1103096102" }, { "input": "0 81\n18 90", "output": "18" }, { "input": "283722202 -902633305\n-831696497 -160868946", "output": "1115418699" }, { "input": "1000 1000\n-1000 1000", "output": "2000" }, { "input": "5 6\n4 8", "output": "2" }, { "input": "40572000 597493595\n-935051731 368493185", "output": "975623731" }, { "input": "-5 5\n5 5", "output": "10" } ]
1,654,083,381
381
PyPy 3-64
RUNTIME_ERROR
TESTS
0
61
3,379,200
n = int(input()) a=[i for i in range(1,n+1,2)] print(str(*a))
Title: Professor GukiZ's Robot Time Limit: None seconds Memory Limit: None megabytes Problem Description: Professor GukiZ makes a new robot. The robot are in the point with coordinates (*x*1,<=*y*1) and should go to the point (*x*2,<=*y*2). In a single step the robot can change any of its coordinates (maybe both of them) by one (decrease or increase). So the robot can move in one of the 8 directions. Find the minimal number of steps the robot should make to get the finish position. Input Specification: The first line contains two integers *x*1,<=*y*1 (<=-<=109<=≤<=*x*1,<=*y*1<=≤<=109) — the start position of the robot. The second line contains two integers *x*2,<=*y*2 (<=-<=109<=≤<=*x*2,<=*y*2<=≤<=109) — the finish position of the robot. Output Specification: Print the only integer *d* — the minimal number of steps to get the finish position. Demo Input: ['0 0\n4 5\n', '3 4\n6 1\n'] Demo Output: ['5\n', '3\n'] Note: In the first example robot should increase both of its coordinates by one four times, so it will be in position (4, 4). After that robot should simply increase its *y* coordinate and get the finish position. In the second example robot should simultaneously increase *x* coordinate and decrease *y* coordinate by one three times.
```python n = int(input()) a=[i for i in range(1,n+1,2)] print(str(*a)) ```
-1
990
A
Commentary Boxes
PROGRAMMING
1,000
[ "implementation", "math" ]
null
null
Berland Football Cup starts really soon! Commentators from all over the world come to the event. Organizers have already built $n$ commentary boxes. $m$ regional delegations will come to the Cup. Every delegation should get the same number of the commentary boxes. If any box is left unoccupied then the delegations will be upset. So each box should be occupied by exactly one delegation. If $n$ is not divisible by $m$, it is impossible to distribute the boxes to the delegations at the moment. Organizers can build a new commentary box paying $a$ burles and demolish a commentary box paying $b$ burles. They can both build and demolish boxes arbitrary number of times (each time paying a corresponding fee). It is allowed to demolish all the existing boxes. What is the minimal amount of burles organizers should pay to satisfy all the delegations (i.e. to make the number of the boxes be divisible by $m$)?
The only line contains four integer numbers $n$, $m$, $a$ and $b$ ($1 \le n, m \le 10^{12}$, $1 \le a, b \le 100$), where $n$ is the initial number of the commentary boxes, $m$ is the number of delegations to come, $a$ is the fee to build a box and $b$ is the fee to demolish a box.
Output the minimal amount of burles organizers should pay to satisfy all the delegations (i.e. to make the number of the boxes be divisible by $m$). It is allowed that the final number of the boxes is equal to $0$.
[ "9 7 3 8\n", "2 7 3 7\n", "30 6 17 19\n" ]
[ "15\n", "14\n", "0\n" ]
In the first example organizers can build $5$ boxes to make the total of $14$ paying $3$ burles for the each of them. In the second example organizers can demolish $2$ boxes to make the total of $0$ paying $7$ burles for the each of them. In the third example organizers are already able to distribute all the boxes equally among the delegations, each one get $5$ boxes.
0
[ { "input": "9 7 3 8", "output": "15" }, { "input": "2 7 3 7", "output": "14" }, { "input": "30 6 17 19", "output": "0" }, { "input": "500000000001 1000000000000 100 100", "output": "49999999999900" }, { "input": "1000000000000 750000000001 10 100", "output": "5000000000020" }, { "input": "1000000000000 750000000001 100 10", "output": "2499999999990" }, { "input": "42 1 1 1", "output": "0" }, { "input": "1 1000000000000 1 100", "output": "100" }, { "input": "7 2 3 7", "output": "3" }, { "input": "999999999 2 1 1", "output": "1" }, { "input": "999999999999 10000000007 100 100", "output": "70100" }, { "input": "10000000001 2 1 1", "output": "1" }, { "input": "29 6 1 2", "output": "1" }, { "input": "99999999999 6 100 100", "output": "300" }, { "input": "1000000000000 7 3 8", "output": "8" }, { "input": "99999999999 2 1 1", "output": "1" }, { "input": "1 2 1 1", "output": "1" }, { "input": "999999999999 2 1 1", "output": "1" }, { "input": "9 2 1 1", "output": "1" }, { "input": "17 4 5 5", "output": "5" }, { "input": "100000000000 3 1 1", "output": "1" }, { "input": "100 7 1 1", "output": "2" }, { "input": "1000000000000 3 100 100", "output": "100" }, { "input": "70 3 10 10", "output": "10" }, { "input": "1 2 5 1", "output": "1" }, { "input": "1000000000000 3 1 1", "output": "1" }, { "input": "804289377 846930887 78 16", "output": "3326037780" }, { "input": "1000000000000 9 55 55", "output": "55" }, { "input": "957747787 424238336 87 93", "output": "10162213695" }, { "input": "25 6 1 2", "output": "2" }, { "input": "22 7 3 8", "output": "8" }, { "input": "10000000000 1 1 1", "output": "0" }, { "input": "999999999999 2 10 10", "output": "10" }, { "input": "999999999999 2 100 100", "output": "100" }, { "input": "100 3 3 8", "output": "6" }, { "input": "99999 2 1 1", "output": "1" }, { "input": "100 3 2 5", "output": "4" }, { "input": "1000000000000 13 10 17", "output": "17" }, { "input": "7 2 1 2", "output": "1" }, { "input": "10 3 1 2", "output": "2" }, { "input": "5 2 2 2", "output": "2" }, { "input": "100 3 5 2", "output": "2" }, { "input": "7 2 1 1", "output": "1" }, { "input": "70 4 1 1", "output": "2" }, { "input": "10 4 1 1", "output": "2" }, { "input": "6 7 41 42", "output": "41" }, { "input": "10 3 10 1", "output": "1" }, { "input": "5 5 2 3", "output": "0" }, { "input": "1000000000000 3 99 99", "output": "99" }, { "input": "7 3 100 1", "output": "1" }, { "input": "7 2 100 5", "output": "5" }, { "input": "1000000000000 1 23 33", "output": "0" }, { "input": "30 7 1 1", "output": "2" }, { "input": "100 3 1 1", "output": "1" }, { "input": "90001 300 100 1", "output": "1" }, { "input": "13 4 1 2", "output": "2" }, { "input": "1000000000000 6 1 3", "output": "2" }, { "input": "50 4 5 100", "output": "10" }, { "input": "999 2 1 1", "output": "1" }, { "input": "5 2 5 5", "output": "5" }, { "input": "20 3 3 3", "output": "3" }, { "input": "3982258181 1589052704 87 20", "output": "16083055460" }, { "input": "100 3 1 3", "output": "2" }, { "input": "7 3 1 1", "output": "1" }, { "input": "19 10 100 100", "output": "100" }, { "input": "23 3 100 1", "output": "2" }, { "input": "25 7 100 1", "output": "4" }, { "input": "100 9 1 2", "output": "2" }, { "input": "9999999999 2 1 100", "output": "1" }, { "input": "1000000000000 2 1 1", "output": "0" }, { "input": "10000 3 1 1", "output": "1" }, { "input": "22 7 1 6", "output": "6" }, { "input": "100000000000 1 1 1", "output": "0" }, { "input": "18 7 100 1", "output": "4" }, { "input": "10003 4 1 100", "output": "1" }, { "input": "3205261341 718648876 58 11", "output": "3637324207" }, { "input": "8 3 100 1", "output": "2" }, { "input": "15 7 1 1", "output": "1" }, { "input": "1000000000000 1 20 20", "output": "0" }, { "input": "16 7 3 2", "output": "4" }, { "input": "1000000000000 1 1 1", "output": "0" }, { "input": "7 3 1 100", "output": "2" }, { "input": "16 3 1 100", "output": "2" }, { "input": "13 4 1 10", "output": "3" }, { "input": "10 4 5 5", "output": "10" }, { "input": "14 3 1 100", "output": "1" }, { "input": "100 33 100 1", "output": "1" }, { "input": "22 7 1 8", "output": "6" }, { "input": "10 4 2 1", "output": "2" }, { "input": "6 4 2 2", "output": "4" }, { "input": "17 4 2 1", "output": "1" }, { "input": "7 3 100 10", "output": "10" }, { "input": "702 7 3 2", "output": "4" }, { "input": "8 3 1 5", "output": "1" }, { "input": "3 2 5 2", "output": "2" }, { "input": "99 19 1 7", "output": "15" }, { "input": "16 3 100 1", "output": "1" }, { "input": "100 34 1 100", "output": "2" }, { "input": "100 33 1 1", "output": "1" }, { "input": "2 3 4 3", "output": "4" }, { "input": "15 4 4 10", "output": "4" }, { "input": "1144108931 470211273 45 79", "output": "11993619960" }, { "input": "2 3 3 4", "output": "3" }, { "input": "29 5 4 9", "output": "4" }, { "input": "15 7 1 5", "output": "5" }, { "input": "1 1 1 1", "output": "0" }, { "input": "1 1 3 4", "output": "0" }, { "input": "10 12 2 1", "output": "4" }, { "input": "1 2 3 4", "output": "3" } ]
1,528,630,733
5,633
Python 3
OK
TESTS
109
108
0
n,m,a,b=map(int,input().split()) if(n%m==0): print(0) elif(n>m): d=n%m c=(n//m+1)*m-n t1=c*a t2=d*b print(min(t1,t2)) elif(m>n): c=m-n d=n-m*(n//m) t1=c*a t2=d*b print(min(t1,t2))
Title: Commentary Boxes Time Limit: None seconds Memory Limit: None megabytes Problem Description: Berland Football Cup starts really soon! Commentators from all over the world come to the event. Organizers have already built $n$ commentary boxes. $m$ regional delegations will come to the Cup. Every delegation should get the same number of the commentary boxes. If any box is left unoccupied then the delegations will be upset. So each box should be occupied by exactly one delegation. If $n$ is not divisible by $m$, it is impossible to distribute the boxes to the delegations at the moment. Organizers can build a new commentary box paying $a$ burles and demolish a commentary box paying $b$ burles. They can both build and demolish boxes arbitrary number of times (each time paying a corresponding fee). It is allowed to demolish all the existing boxes. What is the minimal amount of burles organizers should pay to satisfy all the delegations (i.e. to make the number of the boxes be divisible by $m$)? Input Specification: The only line contains four integer numbers $n$, $m$, $a$ and $b$ ($1 \le n, m \le 10^{12}$, $1 \le a, b \le 100$), where $n$ is the initial number of the commentary boxes, $m$ is the number of delegations to come, $a$ is the fee to build a box and $b$ is the fee to demolish a box. Output Specification: Output the minimal amount of burles organizers should pay to satisfy all the delegations (i.e. to make the number of the boxes be divisible by $m$). It is allowed that the final number of the boxes is equal to $0$. Demo Input: ['9 7 3 8\n', '2 7 3 7\n', '30 6 17 19\n'] Demo Output: ['15\n', '14\n', '0\n'] Note: In the first example organizers can build $5$ boxes to make the total of $14$ paying $3$ burles for the each of them. In the second example organizers can demolish $2$ boxes to make the total of $0$ paying $7$ burles for the each of them. In the third example organizers are already able to distribute all the boxes equally among the delegations, each one get $5$ boxes.
```python n,m,a,b=map(int,input().split()) if(n%m==0): print(0) elif(n>m): d=n%m c=(n//m+1)*m-n t1=c*a t2=d*b print(min(t1,t2)) elif(m>n): c=m-n d=n-m*(n//m) t1=c*a t2=d*b print(min(t1,t2)) ```
3
43
A
Football
PROGRAMMING
1,000
[ "strings" ]
A. Football
2
256
One day Vasya decided to have a look at the results of Berland 1910 Football Championship’s finals. Unfortunately he didn't find the overall score of the match; however, he got hold of a profound description of the match's process. On the whole there are *n* lines in that description each of which described one goal. Every goal was marked with the name of the team that had scored it. Help Vasya, learn the name of the team that won the finals. It is guaranteed that the match did not end in a tie.
The first line contains an integer *n* (1<=≤<=*n*<=≤<=100) — the number of lines in the description. Then follow *n* lines — for each goal the names of the teams that scored it. The names are non-empty lines consisting of uppercase Latin letters whose lengths do not exceed 10 symbols. It is guaranteed that the match did not end in a tie and the description contains no more than two different teams.
Print the name of the winning team. We remind you that in football the team that scores more goals is considered the winner.
[ "1\nABC\n", "5\nA\nABA\nABA\nA\nA\n" ]
[ "ABC\n", "A\n" ]
none
500
[ { "input": "1\nABC", "output": "ABC" }, { "input": "5\nA\nABA\nABA\nA\nA", "output": "A" }, { "input": "2\nXTSJEP\nXTSJEP", "output": "XTSJEP" }, { "input": "3\nXZYDJAEDZ\nXZYDJAEDZ\nXZYDJAEDZ", "output": "XZYDJAEDZ" }, { "input": "3\nQCCYXL\nQCCYXL\nAXGLFQDD", "output": "QCCYXL" }, { "input": "3\nAZID\nEERWBC\nEERWBC", "output": "EERWBC" }, { "input": "3\nHNCGYL\nHNCGYL\nHNCGYL", "output": "HNCGYL" }, { "input": "4\nZZWZTG\nZZWZTG\nZZWZTG\nZZWZTG", "output": "ZZWZTG" }, { "input": "4\nA\nA\nKUDLJMXCSE\nA", "output": "A" }, { "input": "5\nPHBTW\nPHBTW\nPHBTW\nPHBTW\nPHBTW", "output": "PHBTW" }, { "input": "5\nPKUZYTFYWN\nPKUZYTFYWN\nSTC\nPKUZYTFYWN\nPKUZYTFYWN", "output": "PKUZYTFYWN" }, { "input": "5\nHH\nHH\nNTQWPA\nNTQWPA\nHH", "output": "HH" }, { "input": "10\nW\nW\nW\nW\nW\nD\nW\nD\nD\nW", "output": "W" }, { "input": "19\nXBCP\nTGACNIH\nXBCP\nXBCP\nXBCP\nXBCP\nXBCP\nTGACNIH\nXBCP\nXBCP\nXBCP\nXBCP\nXBCP\nTGACNIH\nXBCP\nXBCP\nTGACNIH\nTGACNIH\nXBCP", "output": "XBCP" }, { "input": "33\nOWQWCKLLF\nOWQWCKLLF\nOWQWCKLLF\nPYPAS\nPYPAS\nPYPAS\nOWQWCKLLF\nPYPAS\nOWQWCKLLF\nPYPAS\nPYPAS\nOWQWCKLLF\nOWQWCKLLF\nOWQWCKLLF\nPYPAS\nOWQWCKLLF\nPYPAS\nPYPAS\nPYPAS\nPYPAS\nOWQWCKLLF\nPYPAS\nPYPAS\nOWQWCKLLF\nOWQWCKLLF\nPYPAS\nOWQWCKLLF\nOWQWCKLLF\nPYPAS\nPYPAS\nOWQWCKLLF\nPYPAS\nPYPAS", "output": "PYPAS" }, { "input": "51\nNC\nNC\nNC\nNC\nNC\nNC\nNC\nNC\nNC\nNC\nNC\nNC\nNC\nNC\nNC\nNC\nNC\nNC\nNC\nNC\nNC\nNC\nNC\nNC\nNC\nNC\nNC\nNC\nNC\nNC\nNC\nNC\nNC\nNC\nNC\nNC\nNC\nNC\nNC\nNC\nNC\nNC\nNC\nNC\nNC\nNC\nNC\nNC\nNC\nNC\nNC", "output": "NC" }, { "input": "89\nH\nVOCI\nVOCI\nH\nVOCI\nH\nH\nVOCI\nVOCI\nVOCI\nH\nH\nH\nVOCI\nVOCI\nVOCI\nH\nVOCI\nVOCI\nH\nVOCI\nVOCI\nVOCI\nH\nVOCI\nH\nVOCI\nH\nVOCI\nH\nVOCI\nVOCI\nH\nVOCI\nVOCI\nVOCI\nVOCI\nVOCI\nVOCI\nH\nVOCI\nVOCI\nVOCI\nVOCI\nH\nVOCI\nH\nH\nVOCI\nH\nVOCI\nH\nVOCI\nVOCI\nVOCI\nVOCI\nVOCI\nVOCI\nVOCI\nH\nH\nVOCI\nH\nH\nVOCI\nH\nVOCI\nH\nVOCI\nVOCI\nH\nVOCI\nVOCI\nVOCI\nVOCI\nVOCI\nVOCI\nVOCI\nH\nH\nH\nH\nH\nVOCI\nH\nVOCI\nH\nVOCI\nVOCI", "output": "VOCI" }, { "input": "100\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nM\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA", "output": "HA" }, { "input": "100\nG\nG\nS\nS\nG\nG\nS\nS\nG\nS\nS\nS\nG\nS\nG\nG\nS\nG\nS\nS\nG\nS\nS\nS\nS\nS\nG\nS\nG\nS\nS\nG\nG\nG\nS\nS\nS\nS\nG\nS\nS\nG\nG\nG\nG\nG\nS\nG\nG\nS\nS\nS\nS\nS\nG\nG\nS\nG\nG\nG\nG\nG\nS\nS\nG\nS\nS\nS\nS\nG\nS\nS\nG\nS\nG\nG\nG\nG\nG\nG\nG\nG\nG\nG\nG\nS\nS\nG\nS\nS\nS\nS\nG\nG\nG\nS\nG\nG\nG\nS", "output": "G" }, { "input": "100\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nOBH\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL", "output": "WL" } ]
1,653,477,191
2,147,483,647
Python 3
OK
TESTS
34
62
0
l = [] for _ in range(int(input())): z = input() l.append(z) la = set(l) la = [i for i in la] po = [0 for i in range(len(la))] for _ in range(len(la)): for j in l: if la[_] == j: po[_]+=1 z = max(po) for _ in range(len(la)): if z == po[_]: print(la[_])
Title: Football Time Limit: 2 seconds Memory Limit: 256 megabytes Problem Description: One day Vasya decided to have a look at the results of Berland 1910 Football Championship’s finals. Unfortunately he didn't find the overall score of the match; however, he got hold of a profound description of the match's process. On the whole there are *n* lines in that description each of which described one goal. Every goal was marked with the name of the team that had scored it. Help Vasya, learn the name of the team that won the finals. It is guaranteed that the match did not end in a tie. Input Specification: The first line contains an integer *n* (1<=≤<=*n*<=≤<=100) — the number of lines in the description. Then follow *n* lines — for each goal the names of the teams that scored it. The names are non-empty lines consisting of uppercase Latin letters whose lengths do not exceed 10 symbols. It is guaranteed that the match did not end in a tie and the description contains no more than two different teams. Output Specification: Print the name of the winning team. We remind you that in football the team that scores more goals is considered the winner. Demo Input: ['1\nABC\n', '5\nA\nABA\nABA\nA\nA\n'] Demo Output: ['ABC\n', 'A\n'] Note: none
```python l = [] for _ in range(int(input())): z = input() l.append(z) la = set(l) la = [i for i in la] po = [0 for i in range(len(la))] for _ in range(len(la)): for j in l: if la[_] == j: po[_]+=1 z = max(po) for _ in range(len(la)): if z == po[_]: print(la[_]) ```
3.9845
897
B
Chtholly's request
PROGRAMMING
1,300
[ "brute force" ]
null
null
— I experienced so many great things. — You gave me memories like dreams... But I have to leave now... — One last request, can you... — Help me solve a Codeforces problem? — ...... — What? Chtholly has been thinking about a problem for days: If a number is palindrome and length of its decimal representation without leading zeros is even, we call it a zcy number. A number is palindrome means when written in decimal representation, it contains no leading zeros and reads the same forwards and backwards. For example 12321 and 1221 are palindromes and 123 and 12451 are not. Moreover, 1221 is zcy number and 12321 is not. Given integers *k* and *p*, calculate the sum of the *k* smallest zcy numbers and output this sum modulo *p*. Unfortunately, Willem isn't good at solving this kind of problems, so he asks you for help!
The first line contains two integers *k* and *p* (1<=≤<=*k*<=≤<=105,<=1<=≤<=*p*<=≤<=109).
Output single integer — answer to the problem.
[ "2 100\n", "5 30\n" ]
[ "33\n", "15\n" ]
In the first example, the smallest zcy number is 11, and the second smallest zcy number is 22. In the second example, <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/68fffad54395f7d920ad0384e07c6215ddc64141.png" style="max-width: 100.0%;max-height: 100.0%;"/>.
1,000
[ { "input": "2 100", "output": "33" }, { "input": "5 30", "output": "15" }, { "input": "42147 412393322", "output": "251637727" }, { "input": "77809 868097296", "output": "440411873" }, { "input": "5105 443422097", "output": "363192634" }, { "input": "75615 376679484", "output": "373089399" }, { "input": "22951 23793302", "output": "1898631" }, { "input": "12785 993582106", "output": "286204743" }, { "input": "60276 428978808", "output": "376477293" }, { "input": "84776 104860385", "output": "10209596" }, { "input": "41984 653766991", "output": "17823101" }, { "input": "100000 1000000000", "output": "495495496" }, { "input": "41163 472310076", "output": "207304047" }, { "input": "6983 765352180", "output": "586866999" }, { "input": "33493 967727004", "output": "305705165" }, { "input": "90898 94010922", "output": "65928728" }, { "input": "67298 349286579", "output": "156435206" }, { "input": "92452 296773064", "output": "229486976" }, { "input": "58832 563860457", "output": "16775206" }, { "input": "90234 156145441", "output": "44023160" }, { "input": "91454 977186148", "output": "681779748" }, { "input": "11108 444095250", "output": "188075844" }, { "input": "46304 584475527", "output": "275627129" }, { "input": "1 1", "output": "0" }, { "input": "1 1000000000", "output": "11" }, { "input": "100000 1", "output": "0" } ]
1,666,356,526
2,147,483,647
Python 3
OK
TESTS
26
108
0
def get_zcy(n:int) -> int: str_n = str(n) res = str_n + str_n[::-1] return int(res) def main(): res = 0 inp = input().split() k = int(inp[0]) p = int(inp[1]) s = 0 for i in range(1, k + 1): s += get_zcy(i) print(s % p) if __name__ == "__main__": main()
Title: Chtholly's request Time Limit: None seconds Memory Limit: None megabytes Problem Description: — I experienced so many great things. — You gave me memories like dreams... But I have to leave now... — One last request, can you... — Help me solve a Codeforces problem? — ...... — What? Chtholly has been thinking about a problem for days: If a number is palindrome and length of its decimal representation without leading zeros is even, we call it a zcy number. A number is palindrome means when written in decimal representation, it contains no leading zeros and reads the same forwards and backwards. For example 12321 and 1221 are palindromes and 123 and 12451 are not. Moreover, 1221 is zcy number and 12321 is not. Given integers *k* and *p*, calculate the sum of the *k* smallest zcy numbers and output this sum modulo *p*. Unfortunately, Willem isn't good at solving this kind of problems, so he asks you for help! Input Specification: The first line contains two integers *k* and *p* (1<=≤<=*k*<=≤<=105,<=1<=≤<=*p*<=≤<=109). Output Specification: Output single integer — answer to the problem. Demo Input: ['2 100\n', '5 30\n'] Demo Output: ['33\n', '15\n'] Note: In the first example, the smallest zcy number is 11, and the second smallest zcy number is 22. In the second example, <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/68fffad54395f7d920ad0384e07c6215ddc64141.png" style="max-width: 100.0%;max-height: 100.0%;"/>.
```python def get_zcy(n:int) -> int: str_n = str(n) res = str_n + str_n[::-1] return int(res) def main(): res = 0 inp = input().split() k = int(inp[0]) p = int(inp[1]) s = 0 for i in range(1, k + 1): s += get_zcy(i) print(s % p) if __name__ == "__main__": main() ```
3
259
B
Little Elephant and Magic Square
PROGRAMMING
1,100
[ "brute force", "implementation" ]
null
null
Little Elephant loves magic squares very much. A magic square is a 3<=×<=3 table, each cell contains some positive integer. At that the sums of integers in all rows, columns and diagonals of the table are equal. The figure below shows the magic square, the sum of integers in all its rows, columns and diagonals equals 15. The Little Elephant remembered one magic square. He started writing this square on a piece of paper, but as he wrote, he forgot all three elements of the main diagonal of the magic square. Fortunately, the Little Elephant clearly remembered that all elements of the magic square did not exceed 105. Help the Little Elephant, restore the original magic square, given the Elephant's notes.
The first three lines of the input contain the Little Elephant's notes. The first line contains elements of the first row of the magic square. The second line contains the elements of the second row, the third line is for the third row. The main diagonal elements that have been forgotten by the Elephant are represented by zeroes. It is guaranteed that the notes contain exactly three zeroes and they are all located on the main diagonal. It is guaranteed that all positive numbers in the table do not exceed 105.
Print three lines, in each line print three integers — the Little Elephant's magic square. If there are multiple magic squares, you are allowed to print any of them. Note that all numbers you print must be positive and not exceed 105. It is guaranteed that there exists at least one magic square that meets the conditions.
[ "0 1 1\n1 0 1\n1 1 0\n", "0 3 6\n5 0 5\n4 7 0\n" ]
[ "1 1 1\n1 1 1\n1 1 1\n", "6 3 6\n5 5 5\n4 7 4\n" ]
none
1,000
[ { "input": "0 1 1\n1 0 1\n1 1 0", "output": "1 1 1\n1 1 1\n1 1 1" }, { "input": "0 3 6\n5 0 5\n4 7 0", "output": "6 3 6\n5 5 5\n4 7 4" }, { "input": "0 4 4\n4 0 4\n4 4 0", "output": "4 4 4\n4 4 4\n4 4 4" }, { "input": "0 54 48\n36 0 78\n66 60 0", "output": "69 54 48\n36 57 78\n66 60 45" }, { "input": "0 17 14\n15 0 15\n16 13 0", "output": "14 17 14\n15 15 15\n16 13 16" }, { "input": "0 97 56\n69 0 71\n84 43 0", "output": "57 97 56\n69 70 71\n84 43 83" }, { "input": "0 1099 1002\n1027 0 1049\n1074 977 0", "output": "1013 1099 1002\n1027 1038 1049\n1074 977 1063" }, { "input": "0 98721 99776\n99575 0 99123\n98922 99977 0", "output": "99550 98721 99776\n99575 99349 99123\n98922 99977 99148" }, { "input": "0 6361 2304\n1433 0 8103\n7232 3175 0", "output": "5639 6361 2304\n1433 4768 8103\n7232 3175 3897" }, { "input": "0 99626 99582\n99766 0 99258\n99442 99398 0", "output": "99328 99626 99582\n99766 99512 99258\n99442 99398 99696" }, { "input": "0 99978 99920\n99950 0 99918\n99948 99890 0", "output": "99904 99978 99920\n99950 99934 99918\n99948 99890 99964" }, { "input": "0 840 666\n612 0 948\n894 720 0", "output": "834 840 666\n612 780 948\n894 720 726" }, { "input": "0 28 10\n12 0 24\n26 8 0", "output": "16 28 10\n12 18 24\n26 8 20" }, { "input": "0 120 83\n98 0 90\n105 68 0", "output": "79 120 83\n98 94 90\n105 68 109" }, { "input": "0 86900 85807\n85836 0 86842\n86871 85778 0", "output": "86310 86900 85807\n85836 86339 86842\n86871 85778 86368" }, { "input": "0 74 78\n78 0 74\n74 78 0", "output": "76 74 78\n78 76 74\n74 78 76" }, { "input": "0 505 681\n605 0 657\n581 757 0", "output": "707 505 681\n605 631 657\n581 757 555" }, { "input": "0 662 918\n822 0 854\n758 1014 0", "output": "934 662 918\n822 838 854\n758 1014 742" }, { "input": "0 93 95\n93 0 97\n95 97 0", "output": "97 93 95\n93 95 97\n95 97 93" }, { "input": "0 709 712\n719 0 695\n702 705 0", "output": "700 709 712\n719 707 695\n702 705 714" }, { "input": "0 7 6\n9 0 1\n4 3 0", "output": "2 7 6\n9 5 1\n4 3 8" }, { "input": "0 9 2\n3 0 7\n8 1 0", "output": "4 9 2\n3 5 7\n8 1 6" }, { "input": "0 1 43\n13 0 61\n31 73 0", "output": "67 1 43\n13 37 61\n31 73 7" }, { "input": "0 100000 100000\n100000 0 100000\n100000 100000 0", "output": "100000 100000 100000\n100000 100000 100000\n100000 100000 100000" } ]
1,661,352,028
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
7
404
0
r11, r12, r13 = map(int, input().split()) r21, r22, r23 = map(int, input().split()) r31, r32, r33 = map(int, input().split()) r1 = r12+r11+r13 r2 = r22+r21+r23 r3 = r31+r32+r33 c1 = r11+r21+r31 c2 = r12+r22+r32 c3 = r13+r23+r33 d1 = r11+r22+r33 d2 = r13+r22+r31 maxx = max(r1, r2, r3, c1, c2, c3, d1, d2) for i in range(maxx+1, 3*(10**5)): r11 = i-r1 r22 = i-r2 r33 = i-r3 r1 = r12+r11+r13 r2 = r22+r21+r23 r3 = r31+r32+r33 c1 = r11+r21+r31 c2 = r12+r22+r32 c3 = r13+r23+r33 d1 = r11+r22+r33 d2 = r13+r22+r31 if(r1 == r2 == r3 == c1 == c2 == c3 == d1== d2): break print(r11, r12, r13) print(r21, r22, r23) print(r31, r32, r33)
Title: Little Elephant and Magic Square Time Limit: None seconds Memory Limit: None megabytes Problem Description: Little Elephant loves magic squares very much. A magic square is a 3<=×<=3 table, each cell contains some positive integer. At that the sums of integers in all rows, columns and diagonals of the table are equal. The figure below shows the magic square, the sum of integers in all its rows, columns and diagonals equals 15. The Little Elephant remembered one magic square. He started writing this square on a piece of paper, but as he wrote, he forgot all three elements of the main diagonal of the magic square. Fortunately, the Little Elephant clearly remembered that all elements of the magic square did not exceed 105. Help the Little Elephant, restore the original magic square, given the Elephant's notes. Input Specification: The first three lines of the input contain the Little Elephant's notes. The first line contains elements of the first row of the magic square. The second line contains the elements of the second row, the third line is for the third row. The main diagonal elements that have been forgotten by the Elephant are represented by zeroes. It is guaranteed that the notes contain exactly three zeroes and they are all located on the main diagonal. It is guaranteed that all positive numbers in the table do not exceed 105. Output Specification: Print three lines, in each line print three integers — the Little Elephant's magic square. If there are multiple magic squares, you are allowed to print any of them. Note that all numbers you print must be positive and not exceed 105. It is guaranteed that there exists at least one magic square that meets the conditions. Demo Input: ['0 1 1\n1 0 1\n1 1 0\n', '0 3 6\n5 0 5\n4 7 0\n'] Demo Output: ['1 1 1\n1 1 1\n1 1 1\n', '6 3 6\n5 5 5\n4 7 4\n'] Note: none
```python r11, r12, r13 = map(int, input().split()) r21, r22, r23 = map(int, input().split()) r31, r32, r33 = map(int, input().split()) r1 = r12+r11+r13 r2 = r22+r21+r23 r3 = r31+r32+r33 c1 = r11+r21+r31 c2 = r12+r22+r32 c3 = r13+r23+r33 d1 = r11+r22+r33 d2 = r13+r22+r31 maxx = max(r1, r2, r3, c1, c2, c3, d1, d2) for i in range(maxx+1, 3*(10**5)): r11 = i-r1 r22 = i-r2 r33 = i-r3 r1 = r12+r11+r13 r2 = r22+r21+r23 r3 = r31+r32+r33 c1 = r11+r21+r31 c2 = r12+r22+r32 c3 = r13+r23+r33 d1 = r11+r22+r33 d2 = r13+r22+r31 if(r1 == r2 == r3 == c1 == c2 == c3 == d1== d2): break print(r11, r12, r13) print(r21, r22, r23) print(r31, r32, r33) ```
0
136
A
Presents
PROGRAMMING
800
[ "implementation" ]
null
null
Little Petya very much likes gifts. Recently he has received a new laptop as a New Year gift from his mother. He immediately decided to give it to somebody else as what can be more pleasant than giving somebody gifts. And on this occasion he organized a New Year party at his place and invited *n* his friends there. If there's one thing Petya likes more that receiving gifts, that's watching others giving gifts to somebody else. Thus, he safely hid the laptop until the next New Year and made up his mind to watch his friends exchanging gifts while he does not participate in the process. He numbered all his friends with integers from 1 to *n*. Petya remembered that a friend number *i* gave a gift to a friend number *p**i*. He also remembered that each of his friends received exactly one gift. Now Petya wants to know for each friend *i* the number of a friend who has given him a gift.
The first line contains one integer *n* (1<=≤<=*n*<=≤<=100) — the quantity of friends Petya invited to the party. The second line contains *n* space-separated integers: the *i*-th number is *p**i* — the number of a friend who gave a gift to friend number *i*. It is guaranteed that each friend received exactly one gift. It is possible that some friends do not share Petya's ideas of giving gifts to somebody else. Those friends gave the gifts to themselves.
Print *n* space-separated integers: the *i*-th number should equal the number of the friend who gave a gift to friend number *i*.
[ "4\n2 3 4 1\n", "3\n1 3 2\n", "2\n1 2\n" ]
[ "4 1 2 3\n", "1 3 2\n", "1 2\n" ]
none
500
[ { "input": "4\n2 3 4 1", "output": "4 1 2 3" }, { "input": "3\n1 3 2", "output": "1 3 2" }, { "input": "2\n1 2", "output": "1 2" }, { "input": "1\n1", "output": "1" }, { "input": "10\n1 3 2 6 4 5 7 9 8 10", "output": "1 3 2 5 6 4 7 9 8 10" }, { "input": "5\n5 4 3 2 1", "output": "5 4 3 2 1" }, { "input": "20\n2 1 4 3 6 5 8 7 10 9 12 11 14 13 16 15 18 17 20 19", "output": "2 1 4 3 6 5 8 7 10 9 12 11 14 13 16 15 18 17 20 19" }, { "input": "21\n3 2 1 6 5 4 9 8 7 12 11 10 15 14 13 18 17 16 21 20 19", "output": "3 2 1 6 5 4 9 8 7 12 11 10 15 14 13 18 17 16 21 20 19" }, { "input": "10\n3 4 5 6 7 8 9 10 1 2", "output": "9 10 1 2 3 4 5 6 7 8" }, { "input": "8\n1 5 3 7 2 6 4 8", "output": "1 5 3 7 2 6 4 8" }, { "input": "50\n49 22 4 2 20 46 7 32 5 19 48 24 26 15 45 21 44 11 50 43 39 17 31 1 42 34 3 27 36 25 12 30 13 33 28 35 18 6 8 37 38 14 10 9 29 16 40 23 41 47", "output": "24 4 27 3 9 38 7 39 44 43 18 31 33 42 14 46 22 37 10 5 16 2 48 12 30 13 28 35 45 32 23 8 34 26 36 29 40 41 21 47 49 25 20 17 15 6 50 11 1 19" }, { "input": "34\n13 20 33 30 15 11 27 4 8 2 29 25 24 7 3 22 18 10 26 16 5 1 32 9 34 6 12 14 28 19 31 21 23 17", "output": "22 10 15 8 21 26 14 9 24 18 6 27 1 28 5 20 34 17 30 2 32 16 33 13 12 19 7 29 11 4 31 23 3 25" }, { "input": "92\n23 1 6 4 84 54 44 76 63 34 61 20 48 13 28 78 26 46 90 72 24 55 91 89 53 38 82 5 79 92 29 32 15 64 11 88 60 70 7 66 18 59 8 57 19 16 42 21 80 71 62 27 75 86 36 9 83 73 74 50 43 31 56 30 17 33 40 81 49 12 10 41 22 77 25 68 51 2 47 3 58 69 87 67 39 37 35 65 14 45 52 85", "output": "2 78 80 4 28 3 39 43 56 71 35 70 14 89 33 46 65 41 45 12 48 73 1 21 75 17 52 15 31 64 62 32 66 10 87 55 86 26 85 67 72 47 61 7 90 18 79 13 69 60 77 91 25 6 22 63 44 81 42 37 11 51 9 34 88 40 84 76 82 38 50 20 58 59 53 8 74 16 29 49 68 27 57 5 92 54 83 36 24 19 23 30" }, { "input": "49\n30 24 33 48 7 3 17 2 8 35 10 39 23 40 46 32 18 21 26 22 1 16 47 45 41 28 31 6 12 43 27 11 13 37 19 15 44 5 29 42 4 38 20 34 14 9 25 36 49", "output": "21 8 6 41 38 28 5 9 46 11 32 29 33 45 36 22 7 17 35 43 18 20 13 2 47 19 31 26 39 1 27 16 3 44 10 48 34 42 12 14 25 40 30 37 24 15 23 4 49" }, { "input": "12\n3 8 7 4 6 5 2 1 11 9 10 12", "output": "8 7 1 4 6 5 3 2 10 11 9 12" }, { "input": "78\n16 56 36 78 21 14 9 77 26 57 70 61 41 47 18 44 5 31 50 74 65 52 6 39 22 62 67 69 43 7 64 29 24 40 48 51 73 54 72 12 19 34 4 25 55 33 17 35 23 53 10 8 27 32 42 68 20 63 3 2 1 71 58 46 13 30 49 11 37 66 38 60 28 75 15 59 45 76", "output": "61 60 59 43 17 23 30 52 7 51 68 40 65 6 75 1 47 15 41 57 5 25 49 33 44 9 53 73 32 66 18 54 46 42 48 3 69 71 24 34 13 55 29 16 77 64 14 35 67 19 36 22 50 38 45 2 10 63 76 72 12 26 58 31 21 70 27 56 28 11 62 39 37 20 74 78 8 4" }, { "input": "64\n64 57 40 3 15 8 62 18 33 59 51 19 22 13 4 37 47 45 50 35 63 11 58 42 46 21 7 2 41 48 32 23 28 38 17 12 24 27 49 31 60 6 30 25 61 52 26 54 9 14 29 20 44 39 55 10 34 16 5 56 1 36 53 43", "output": "61 28 4 15 59 42 27 6 49 56 22 36 14 50 5 58 35 8 12 52 26 13 32 37 44 47 38 33 51 43 40 31 9 57 20 62 16 34 54 3 29 24 64 53 18 25 17 30 39 19 11 46 63 48 55 60 2 23 10 41 45 7 21 1" }, { "input": "49\n38 20 49 32 14 41 39 45 25 48 40 19 26 43 34 12 10 3 35 42 5 7 46 47 4 2 13 22 16 24 33 15 11 18 29 31 23 9 44 36 6 17 37 1 30 28 8 21 27", "output": "44 26 18 25 21 41 22 47 38 17 33 16 27 5 32 29 42 34 12 2 48 28 37 30 9 13 49 46 35 45 36 4 31 15 19 40 43 1 7 11 6 20 14 39 8 23 24 10 3" }, { "input": "78\n17 50 30 48 33 12 42 4 18 53 76 67 38 3 20 72 51 55 60 63 46 10 57 45 54 32 24 62 8 11 35 44 65 74 58 28 2 6 56 52 39 23 47 49 61 1 66 41 15 77 7 27 78 13 14 34 5 31 37 21 40 16 29 69 59 43 64 36 70 19 25 73 71 75 9 68 26 22", "output": "46 37 14 8 57 38 51 29 75 22 30 6 54 55 49 62 1 9 70 15 60 78 42 27 71 77 52 36 63 3 58 26 5 56 31 68 59 13 41 61 48 7 66 32 24 21 43 4 44 2 17 40 10 25 18 39 23 35 65 19 45 28 20 67 33 47 12 76 64 69 73 16 72 34 74 11 50 53" }, { "input": "29\n14 21 27 1 4 18 10 17 20 23 2 24 7 9 28 22 8 25 12 15 11 6 16 29 3 26 19 5 13", "output": "4 11 25 5 28 22 13 17 14 7 21 19 29 1 20 23 8 6 27 9 2 16 10 12 18 26 3 15 24" }, { "input": "82\n6 1 10 75 28 66 61 81 78 63 17 19 58 34 49 12 67 50 41 44 3 15 59 38 51 72 36 11 46 29 18 64 27 23 13 53 56 68 2 25 47 40 69 54 42 5 60 55 4 16 24 79 57 20 7 73 32 80 76 52 82 37 26 31 65 8 39 62 33 71 30 9 77 43 48 74 70 22 14 45 35 21", "output": "2 39 21 49 46 1 55 66 72 3 28 16 35 79 22 50 11 31 12 54 82 78 34 51 40 63 33 5 30 71 64 57 69 14 81 27 62 24 67 42 19 45 74 20 80 29 41 75 15 18 25 60 36 44 48 37 53 13 23 47 7 68 10 32 65 6 17 38 43 77 70 26 56 76 4 59 73 9 52 58 8 61" }, { "input": "82\n74 18 15 69 71 77 19 26 80 20 66 7 30 82 22 48 21 44 52 65 64 61 35 49 12 8 53 81 54 16 11 9 40 46 13 1 29 58 5 41 55 4 78 60 6 51 56 2 38 36 34 62 63 25 17 67 45 14 32 37 75 79 10 47 27 39 31 68 59 24 50 43 72 70 42 28 76 23 57 3 73 33", "output": "36 48 80 42 39 45 12 26 32 63 31 25 35 58 3 30 55 2 7 10 17 15 78 70 54 8 65 76 37 13 67 59 82 51 23 50 60 49 66 33 40 75 72 18 57 34 64 16 24 71 46 19 27 29 41 47 79 38 69 44 22 52 53 21 20 11 56 68 4 74 5 73 81 1 61 77 6 43 62 9 28 14" }, { "input": "45\n2 32 34 13 3 15 16 33 22 12 31 38 42 14 27 7 36 8 4 19 45 41 5 35 10 11 39 20 29 44 17 9 6 40 37 28 25 21 1 30 24 18 43 26 23", "output": "39 1 5 19 23 33 16 18 32 25 26 10 4 14 6 7 31 42 20 28 38 9 45 41 37 44 15 36 29 40 11 2 8 3 24 17 35 12 27 34 22 13 43 30 21" }, { "input": "45\n4 32 33 39 43 21 22 35 45 7 14 5 16 9 42 31 24 36 17 29 41 25 37 34 27 20 11 44 3 13 19 2 1 10 26 30 38 18 6 8 15 23 40 28 12", "output": "33 32 29 1 12 39 10 40 14 34 27 45 30 11 41 13 19 38 31 26 6 7 42 17 22 35 25 44 20 36 16 2 3 24 8 18 23 37 4 43 21 15 5 28 9" }, { "input": "74\n48 72 40 67 17 4 27 53 11 32 25 9 74 2 41 24 56 22 14 21 33 5 18 55 20 7 29 36 69 13 52 19 38 30 68 59 66 34 63 6 47 45 54 44 62 12 50 71 16 10 8 64 57 73 46 26 49 42 3 23 35 1 61 39 70 60 65 43 15 28 37 51 58 31", "output": "62 14 59 6 22 40 26 51 12 50 9 46 30 19 69 49 5 23 32 25 20 18 60 16 11 56 7 70 27 34 74 10 21 38 61 28 71 33 64 3 15 58 68 44 42 55 41 1 57 47 72 31 8 43 24 17 53 73 36 66 63 45 39 52 67 37 4 35 29 65 48 2 54 13" }, { "input": "47\n9 26 27 10 6 34 28 42 39 22 45 21 11 43 14 47 38 15 40 32 46 1 36 29 17 25 2 23 31 5 24 4 7 8 12 19 16 44 37 20 18 33 30 13 35 41 3", "output": "22 27 47 32 30 5 33 34 1 4 13 35 44 15 18 37 25 41 36 40 12 10 28 31 26 2 3 7 24 43 29 20 42 6 45 23 39 17 9 19 46 8 14 38 11 21 16" }, { "input": "49\n14 38 6 29 9 49 36 43 47 3 44 20 34 15 7 11 1 28 12 40 16 37 31 10 42 41 33 21 18 30 5 27 17 35 25 26 45 19 2 13 23 32 4 22 46 48 24 39 8", "output": "17 39 10 43 31 3 15 49 5 24 16 19 40 1 14 21 33 29 38 12 28 44 41 47 35 36 32 18 4 30 23 42 27 13 34 7 22 2 48 20 26 25 8 11 37 45 9 46 6" }, { "input": "100\n78 56 31 91 90 95 16 65 58 77 37 89 33 61 10 76 62 47 35 67 69 7 63 83 22 25 49 8 12 30 39 44 57 64 48 42 32 11 70 43 55 50 99 24 85 73 45 14 54 21 98 84 74 2 26 18 9 36 80 53 75 46 66 86 59 93 87 68 94 13 72 28 79 88 92 29 52 82 34 97 19 38 1 41 27 4 40 5 96 100 51 6 20 23 81 15 17 3 60 71", "output": "83 54 98 86 88 92 22 28 57 15 38 29 70 48 96 7 97 56 81 93 50 25 94 44 26 55 85 72 76 30 3 37 13 79 19 58 11 82 31 87 84 36 40 32 47 62 18 35 27 42 91 77 60 49 41 2 33 9 65 99 14 17 23 34 8 63 20 68 21 39 100 71 46 53 61 16 10 1 73 59 95 78 24 52 45 64 67 74 12 5 4 75 66 69 6 89 80 51 43 90" }, { "input": "22\n12 8 11 2 16 7 13 6 22 21 20 10 4 14 18 1 5 15 3 19 17 9", "output": "16 4 19 13 17 8 6 2 22 12 3 1 7 14 18 5 21 15 20 11 10 9" }, { "input": "72\n16 11 49 51 3 27 60 55 23 40 66 7 53 70 13 5 15 32 18 72 33 30 8 31 46 12 28 67 25 38 50 22 69 34 71 52 58 39 24 35 42 9 41 26 62 1 63 65 36 64 68 61 37 14 45 47 6 57 54 20 17 2 56 59 29 10 4 48 21 43 19 44", "output": "46 62 5 67 16 57 12 23 42 66 2 26 15 54 17 1 61 19 71 60 69 32 9 39 29 44 6 27 65 22 24 18 21 34 40 49 53 30 38 10 43 41 70 72 55 25 56 68 3 31 4 36 13 59 8 63 58 37 64 7 52 45 47 50 48 11 28 51 33 14 35 20" }, { "input": "63\n21 56 11 10 62 24 20 42 28 52 38 2 37 43 48 22 7 8 40 14 13 46 53 1 23 4 60 63 51 36 25 12 39 32 49 16 58 44 31 61 33 50 55 54 45 6 47 41 9 57 30 29 26 18 19 27 15 34 3 35 59 5 17", "output": "24 12 59 26 62 46 17 18 49 4 3 32 21 20 57 36 63 54 55 7 1 16 25 6 31 53 56 9 52 51 39 34 41 58 60 30 13 11 33 19 48 8 14 38 45 22 47 15 35 42 29 10 23 44 43 2 50 37 61 27 40 5 28" }, { "input": "18\n2 16 8 4 18 12 3 6 5 9 10 15 11 17 14 13 1 7", "output": "17 1 7 4 9 8 18 3 10 11 13 6 16 15 12 2 14 5" }, { "input": "47\n6 9 10 41 25 3 4 37 20 1 36 22 29 27 11 24 43 31 12 17 34 42 38 39 13 2 7 21 18 5 15 35 44 26 33 46 19 40 30 14 28 23 47 32 45 8 16", "output": "10 26 6 7 30 1 27 46 2 3 15 19 25 40 31 47 20 29 37 9 28 12 42 16 5 34 14 41 13 39 18 44 35 21 32 11 8 23 24 38 4 22 17 33 45 36 43" }, { "input": "96\n41 91 48 88 29 57 1 19 44 43 37 5 10 75 25 63 30 78 76 53 8 92 18 70 39 17 49 60 9 16 3 34 86 59 23 79 55 45 72 51 28 33 96 40 26 54 6 32 89 61 85 74 7 82 52 31 64 66 94 95 11 22 2 73 35 13 42 71 14 47 84 69 50 67 58 12 77 46 38 68 15 36 20 93 27 90 83 56 87 4 21 24 81 62 80 65", "output": "7 63 31 90 12 47 53 21 29 13 61 76 66 69 81 30 26 23 8 83 91 62 35 92 15 45 85 41 5 17 56 48 42 32 65 82 11 79 25 44 1 67 10 9 38 78 70 3 27 73 40 55 20 46 37 88 6 75 34 28 50 94 16 57 96 58 74 80 72 24 68 39 64 52 14 19 77 18 36 95 93 54 87 71 51 33 89 4 49 86 2 22 84 59 60 43" }, { "input": "73\n67 24 39 22 23 20 48 34 42 40 19 70 65 69 64 21 53 11 59 15 26 10 30 33 72 29 55 25 56 71 8 9 57 49 41 61 13 12 6 27 66 36 47 50 73 60 2 37 7 4 51 17 1 46 14 62 35 3 45 63 43 58 54 32 31 5 28 44 18 52 68 38 16", "output": "53 47 58 50 66 39 49 31 32 22 18 38 37 55 20 73 52 69 11 6 16 4 5 2 28 21 40 67 26 23 65 64 24 8 57 42 48 72 3 10 35 9 61 68 59 54 43 7 34 44 51 70 17 63 27 29 33 62 19 46 36 56 60 15 13 41 1 71 14 12 30 25 45" }, { "input": "81\n25 2 78 40 12 80 69 13 49 43 17 33 23 54 32 61 77 66 27 71 24 26 42 55 60 9 5 30 7 37 45 63 53 11 38 44 68 34 28 52 67 22 57 46 47 50 8 16 79 62 4 36 20 14 73 64 6 76 35 74 58 10 29 81 59 31 19 1 75 39 70 18 41 21 72 65 3 48 15 56 51", "output": "68 2 77 51 27 57 29 47 26 62 34 5 8 54 79 48 11 72 67 53 74 42 13 21 1 22 19 39 63 28 66 15 12 38 59 52 30 35 70 4 73 23 10 36 31 44 45 78 9 46 81 40 33 14 24 80 43 61 65 25 16 50 32 56 76 18 41 37 7 71 20 75 55 60 69 58 17 3 49 6 64" }, { "input": "12\n12 3 1 5 11 6 7 10 2 8 9 4", "output": "3 9 2 12 4 6 7 10 11 8 5 1" }, { "input": "47\n7 21 41 18 40 31 12 28 24 14 43 23 33 10 19 38 26 8 34 15 29 44 5 13 39 25 3 27 20 42 35 9 2 1 30 46 36 32 4 22 37 45 6 47 11 16 17", "output": "34 33 27 39 23 43 1 18 32 14 45 7 24 10 20 46 47 4 15 29 2 40 12 9 26 17 28 8 21 35 6 38 13 19 31 37 41 16 25 5 3 30 11 22 42 36 44" }, { "input": "8\n1 3 5 2 4 8 6 7", "output": "1 4 2 5 3 7 8 6" }, { "input": "38\n28 8 2 33 20 32 26 29 23 31 15 38 11 37 18 21 22 19 4 34 1 35 16 7 17 6 27 30 36 12 9 24 25 13 5 3 10 14", "output": "21 3 36 19 35 26 24 2 31 37 13 30 34 38 11 23 25 15 18 5 16 17 9 32 33 7 27 1 8 28 10 6 4 20 22 29 14 12" }, { "input": "10\n2 9 4 6 10 1 7 5 3 8", "output": "6 1 9 3 8 4 7 10 2 5" }, { "input": "23\n20 11 15 1 5 12 23 9 2 22 13 19 16 14 7 4 8 21 6 17 18 10 3", "output": "4 9 23 16 5 19 15 17 8 22 2 6 11 14 3 13 20 21 12 1 18 10 7" }, { "input": "10\n2 4 9 3 6 8 10 5 1 7", "output": "9 1 4 2 8 5 10 6 3 7" }, { "input": "55\n9 48 23 49 11 24 4 22 34 32 17 45 39 13 14 21 19 25 2 31 37 7 55 36 20 51 5 12 54 10 35 40 43 1 46 18 53 41 38 26 29 50 3 42 52 27 8 28 47 33 6 16 30 44 15", "output": "34 19 43 7 27 51 22 47 1 30 5 28 14 15 55 52 11 36 17 25 16 8 3 6 18 40 46 48 41 53 20 10 50 9 31 24 21 39 13 32 38 44 33 54 12 35 49 2 4 42 26 45 37 29 23" }, { "input": "58\n49 13 12 54 2 38 56 11 33 25 26 19 28 8 23 41 20 36 46 55 15 35 9 7 32 37 58 6 3 14 47 31 40 30 53 44 4 50 29 34 10 43 39 57 5 22 27 45 51 42 24 16 18 21 52 17 48 1", "output": "58 5 29 37 45 28 24 14 23 41 8 3 2 30 21 52 56 53 12 17 54 46 15 51 10 11 47 13 39 34 32 25 9 40 22 18 26 6 43 33 16 50 42 36 48 19 31 57 1 38 49 55 35 4 20 7 44 27" }, { "input": "34\n20 25 2 3 33 29 1 16 14 7 21 9 32 31 6 26 22 4 27 23 24 10 34 12 19 15 5 18 28 17 13 8 11 30", "output": "7 3 4 18 27 15 10 32 12 22 33 24 31 9 26 8 30 28 25 1 11 17 20 21 2 16 19 29 6 34 14 13 5 23" }, { "input": "53\n47 29 46 25 23 13 7 31 33 4 38 11 35 16 42 14 15 43 34 39 28 18 6 45 30 1 40 20 2 37 5 32 24 12 44 26 27 3 19 51 36 21 22 9 10 50 41 48 49 53 8 17 52", "output": "26 29 38 10 31 23 7 51 44 45 12 34 6 16 17 14 52 22 39 28 42 43 5 33 4 36 37 21 2 25 8 32 9 19 13 41 30 11 20 27 47 15 18 35 24 3 1 48 49 46 40 53 50" }, { "input": "99\n77 87 90 48 53 38 68 6 28 57 35 82 63 71 60 41 3 12 86 65 10 59 22 67 33 74 93 27 24 1 61 43 25 4 51 52 15 88 9 31 30 42 89 49 23 21 29 32 46 73 37 16 5 69 56 26 92 64 20 54 75 14 98 13 94 2 95 7 36 66 58 8 50 78 84 45 11 96 76 62 97 80 40 39 47 85 34 79 83 17 91 72 19 44 70 81 55 99 18", "output": "30 66 17 34 53 8 68 72 39 21 77 18 64 62 37 52 90 99 93 59 46 23 45 29 33 56 28 9 47 41 40 48 25 87 11 69 51 6 84 83 16 42 32 94 76 49 85 4 44 73 35 36 5 60 97 55 10 71 22 15 31 80 13 58 20 70 24 7 54 95 14 92 50 26 61 79 1 74 88 82 96 12 89 75 86 19 2 38 43 3 91 57 27 65 67 78 81 63 98" }, { "input": "32\n17 29 2 6 30 8 26 7 1 27 10 9 13 24 31 21 15 19 22 18 4 11 25 28 32 3 23 12 5 14 20 16", "output": "9 3 26 21 29 4 8 6 12 11 22 28 13 30 17 32 1 20 18 31 16 19 27 14 23 7 10 24 2 5 15 25" }, { "input": "65\n18 40 1 60 17 19 4 6 12 49 28 58 2 25 13 14 64 56 61 34 62 30 59 51 26 8 33 63 36 48 46 7 43 21 31 27 11 44 29 5 32 23 35 9 53 57 52 50 15 38 42 3 54 65 55 41 20 24 22 47 45 10 39 16 37", "output": "3 13 52 7 40 8 32 26 44 62 37 9 15 16 49 64 5 1 6 57 34 59 42 58 14 25 36 11 39 22 35 41 27 20 43 29 65 50 63 2 56 51 33 38 61 31 60 30 10 48 24 47 45 53 55 18 46 12 23 4 19 21 28 17 54" }, { "input": "71\n35 50 55 58 25 32 26 40 63 34 44 53 24 18 37 7 64 27 56 65 1 19 2 43 42 14 57 47 22 13 59 61 39 67 30 45 54 38 33 48 6 5 3 69 36 21 41 4 16 46 20 17 15 12 10 70 68 23 60 31 52 29 66 28 51 49 62 11 8 9 71", "output": "21 23 43 48 42 41 16 69 70 55 68 54 30 26 53 49 52 14 22 51 46 29 58 13 5 7 18 64 62 35 60 6 39 10 1 45 15 38 33 8 47 25 24 11 36 50 28 40 66 2 65 61 12 37 3 19 27 4 31 59 32 67 9 17 20 63 34 57 44 56 71" }, { "input": "74\n33 8 42 63 64 61 31 74 11 50 68 14 36 25 57 30 7 44 21 15 6 9 23 59 46 3 73 16 62 51 40 60 41 54 5 39 35 28 48 4 58 12 66 69 13 26 71 1 24 19 29 52 37 2 20 43 18 72 17 56 34 38 65 67 27 10 47 70 53 32 45 55 49 22", "output": "48 54 26 40 35 21 17 2 22 66 9 42 45 12 20 28 59 57 50 55 19 74 23 49 14 46 65 38 51 16 7 70 1 61 37 13 53 62 36 31 33 3 56 18 71 25 67 39 73 10 30 52 69 34 72 60 15 41 24 32 6 29 4 5 63 43 64 11 44 68 47 58 27 8" }, { "input": "96\n78 10 82 46 38 91 77 69 2 27 58 80 79 44 59 41 6 31 76 11 42 48 51 37 19 87 43 25 52 32 1 39 63 29 21 65 53 74 92 16 15 95 90 83 30 73 71 5 50 17 96 33 86 60 67 64 20 26 61 40 55 88 94 93 9 72 47 57 14 45 22 3 54 68 13 24 4 7 56 81 89 70 49 8 84 28 18 62 35 36 75 23 66 85 34 12", "output": "31 9 72 77 48 17 78 84 65 2 20 96 75 69 41 40 50 87 25 57 35 71 92 76 28 58 10 86 34 45 18 30 52 95 89 90 24 5 32 60 16 21 27 14 70 4 67 22 83 49 23 29 37 73 61 79 68 11 15 54 59 88 33 56 36 93 55 74 8 82 47 66 46 38 91 19 7 1 13 12 80 3 44 85 94 53 26 62 81 43 6 39 64 63 42 51" }, { "input": "7\n2 1 5 7 3 4 6", "output": "2 1 5 6 3 7 4" }, { "input": "51\n8 33 37 2 16 22 24 30 4 9 5 15 27 3 18 39 31 26 10 17 46 41 25 14 6 1 29 48 36 20 51 49 21 43 19 13 38 50 47 34 11 23 28 12 42 7 32 40 44 45 35", "output": "26 4 14 9 11 25 46 1 10 19 41 44 36 24 12 5 20 15 35 30 33 6 42 7 23 18 13 43 27 8 17 47 2 40 51 29 3 37 16 48 22 45 34 49 50 21 39 28 32 38 31" }, { "input": "27\n12 14 7 3 20 21 25 13 22 15 23 4 2 24 10 17 19 8 26 11 27 18 9 5 6 1 16", "output": "26 13 4 12 24 25 3 18 23 15 20 1 8 2 10 27 16 22 17 5 6 9 11 14 7 19 21" }, { "input": "71\n51 13 20 48 54 23 24 64 14 62 71 67 57 53 3 30 55 43 33 25 39 40 66 6 46 18 5 19 61 16 32 68 70 41 60 44 29 49 27 69 50 38 10 17 45 56 9 21 26 63 28 35 7 59 1 65 2 15 8 11 12 34 37 47 58 22 31 4 36 42 52", "output": "55 57 15 68 27 24 53 59 47 43 60 61 2 9 58 30 44 26 28 3 48 66 6 7 20 49 39 51 37 16 67 31 19 62 52 69 63 42 21 22 34 70 18 36 45 25 64 4 38 41 1 71 14 5 17 46 13 65 54 35 29 10 50 8 56 23 12 32 40 33 11" }, { "input": "9\n8 5 2 6 1 9 4 7 3", "output": "5 3 9 7 2 4 8 1 6" }, { "input": "29\n10 24 11 5 26 25 2 9 22 15 8 14 29 21 4 1 23 17 3 12 13 16 18 28 19 20 7 6 27", "output": "16 7 19 15 4 28 27 11 8 1 3 20 21 12 10 22 18 23 25 26 14 9 17 2 6 5 29 24 13" }, { "input": "60\n39 25 42 4 55 60 16 18 47 1 11 40 7 50 19 35 49 54 12 3 30 38 2 58 17 26 45 6 33 43 37 32 52 36 15 23 27 59 24 20 28 14 8 9 13 29 44 46 41 21 5 48 51 22 31 56 57 53 10 34", "output": "10 23 20 4 51 28 13 43 44 59 11 19 45 42 35 7 25 8 15 40 50 54 36 39 2 26 37 41 46 21 55 32 29 60 16 34 31 22 1 12 49 3 30 47 27 48 9 52 17 14 53 33 58 18 5 56 57 24 38 6" }, { "input": "50\n37 45 22 5 12 21 28 24 18 47 20 25 8 50 14 2 34 43 11 16 49 41 48 1 19 31 39 46 32 23 15 42 3 35 38 30 44 26 10 9 40 36 7 17 33 4 27 6 13 29", "output": "24 16 33 46 4 48 43 13 40 39 19 5 49 15 31 20 44 9 25 11 6 3 30 8 12 38 47 7 50 36 26 29 45 17 34 42 1 35 27 41 22 32 18 37 2 28 10 23 21 14" }, { "input": "30\n8 29 28 16 17 25 27 15 21 11 6 20 2 13 1 30 5 4 24 10 14 3 23 18 26 9 12 22 19 7", "output": "15 13 22 18 17 11 30 1 26 20 10 27 14 21 8 4 5 24 29 12 9 28 23 19 6 25 7 3 2 16" }, { "input": "46\n15 2 44 43 38 19 31 42 4 37 29 30 24 45 27 41 8 20 33 7 35 3 18 46 36 26 1 28 21 40 16 22 32 11 14 13 12 9 25 39 10 6 23 17 5 34", "output": "27 2 22 9 45 42 20 17 38 41 34 37 36 35 1 31 44 23 6 18 29 32 43 13 39 26 15 28 11 12 7 33 19 46 21 25 10 5 40 30 16 8 4 3 14 24" }, { "input": "9\n4 8 6 5 3 9 2 7 1", "output": "9 7 5 1 4 3 8 2 6" }, { "input": "46\n31 30 33 23 45 7 36 8 11 3 32 39 41 20 1 28 6 27 18 24 17 5 16 37 26 13 22 14 2 38 15 46 9 4 19 21 12 44 10 35 25 34 42 43 40 29", "output": "15 29 10 34 22 17 6 8 33 39 9 37 26 28 31 23 21 19 35 14 36 27 4 20 41 25 18 16 46 2 1 11 3 42 40 7 24 30 12 45 13 43 44 38 5 32" }, { "input": "66\n27 12 37 48 46 21 34 58 38 28 66 2 64 32 44 31 13 36 40 15 19 11 22 5 30 29 6 7 61 39 20 42 23 54 51 33 50 9 60 8 57 45 49 10 62 41 59 3 55 63 52 24 25 26 43 56 65 4 16 14 1 35 18 17 53 47", "output": "61 12 48 58 24 27 28 40 38 44 22 2 17 60 20 59 64 63 21 31 6 23 33 52 53 54 1 10 26 25 16 14 36 7 62 18 3 9 30 19 46 32 55 15 42 5 66 4 43 37 35 51 65 34 49 56 41 8 47 39 29 45 50 13 57 11" }, { "input": "13\n3 12 9 2 8 5 13 4 11 1 10 7 6", "output": "10 4 1 8 6 13 12 5 3 11 9 2 7" }, { "input": "80\n21 25 56 50 20 61 7 74 51 69 8 2 46 57 45 71 14 52 17 43 9 30 70 78 31 10 38 13 23 15 37 79 6 16 77 73 80 4 49 48 18 28 26 58 33 41 64 22 54 72 59 60 40 63 53 27 1 5 75 67 62 34 19 39 68 65 44 55 3 32 11 42 76 12 35 47 66 36 24 29", "output": "57 12 69 38 58 33 7 11 21 26 71 74 28 17 30 34 19 41 63 5 1 48 29 79 2 43 56 42 80 22 25 70 45 62 75 78 31 27 64 53 46 72 20 67 15 13 76 40 39 4 9 18 55 49 68 3 14 44 51 52 6 61 54 47 66 77 60 65 10 23 16 50 36 8 59 73 35 24 32 37" }, { "input": "63\n9 49 53 25 40 46 43 51 54 22 58 16 23 26 10 47 5 27 2 8 61 59 19 35 63 56 28 20 34 4 62 38 6 55 36 31 57 15 29 33 1 48 50 37 7 30 18 42 32 52 12 41 14 21 45 11 24 17 39 13 44 60 3", "output": "41 19 63 30 17 33 45 20 1 15 56 51 60 53 38 12 58 47 23 28 54 10 13 57 4 14 18 27 39 46 36 49 40 29 24 35 44 32 59 5 52 48 7 61 55 6 16 42 2 43 8 50 3 9 34 26 37 11 22 62 21 31 25" }, { "input": "26\n11 4 19 13 17 9 2 24 6 5 22 23 14 15 3 25 16 8 18 10 21 1 12 26 7 20", "output": "22 7 15 2 10 9 25 18 6 20 1 23 4 13 14 17 5 19 3 26 21 11 12 8 16 24" }, { "input": "69\n40 22 11 66 4 27 31 29 64 53 37 55 51 2 7 36 18 52 6 1 30 21 17 20 14 9 59 62 49 68 3 50 65 57 44 5 67 46 33 13 34 15 24 48 63 58 38 25 41 35 16 54 32 10 60 61 39 12 69 8 23 45 26 47 56 43 28 19 42", "output": "20 14 31 5 36 19 15 60 26 54 3 58 40 25 42 51 23 17 68 24 22 2 61 43 48 63 6 67 8 21 7 53 39 41 50 16 11 47 57 1 49 69 66 35 62 38 64 44 29 32 13 18 10 52 12 65 34 46 27 55 56 28 45 9 33 4 37 30 59" }, { "input": "6\n4 3 6 5 1 2", "output": "5 6 2 1 4 3" }, { "input": "9\n7 8 5 3 1 4 2 9 6", "output": "5 7 4 6 3 9 1 2 8" }, { "input": "41\n27 24 16 30 25 8 32 2 26 20 39 33 41 22 40 14 36 9 28 4 34 11 31 23 19 18 17 35 3 10 6 13 5 15 29 38 7 21 1 12 37", "output": "39 8 29 20 33 31 37 6 18 30 22 40 32 16 34 3 27 26 25 10 38 14 24 2 5 9 1 19 35 4 23 7 12 21 28 17 41 36 11 15 13" }, { "input": "1\n1", "output": "1" }, { "input": "20\n2 6 4 18 7 10 17 13 16 8 14 9 20 5 19 12 1 3 15 11", "output": "17 1 18 3 14 2 5 10 12 6 20 16 8 11 19 9 7 4 15 13" }, { "input": "2\n2 1", "output": "2 1" }, { "input": "60\n2 4 31 51 11 7 34 20 3 14 18 23 48 54 15 36 38 60 49 40 5 33 41 26 55 58 10 8 13 9 27 30 37 1 21 59 44 57 35 19 46 43 42 45 12 22 39 32 24 16 6 56 53 52 25 17 47 29 50 28", "output": "34 1 9 2 21 51 6 28 30 27 5 45 29 10 15 50 56 11 40 8 35 46 12 49 55 24 31 60 58 32 3 48 22 7 39 16 33 17 47 20 23 43 42 37 44 41 57 13 19 59 4 54 53 14 25 52 38 26 36 18" }, { "input": "14\n14 6 3 12 11 2 7 1 10 9 8 5 4 13", "output": "8 6 3 13 12 2 7 11 10 9 5 4 14 1" }, { "input": "81\n13 43 79 8 7 21 73 46 63 4 62 78 56 11 70 68 61 53 60 49 16 27 59 47 69 5 22 44 77 57 52 48 1 9 72 81 28 55 58 33 51 18 31 17 41 20 42 3 32 54 19 2 75 34 64 10 65 50 30 29 67 12 71 66 74 15 26 23 6 38 25 35 37 24 80 76 40 45 39 36 14", "output": "33 52 48 10 26 69 5 4 34 56 14 62 1 81 66 21 44 42 51 46 6 27 68 74 71 67 22 37 60 59 43 49 40 54 72 80 73 70 79 77 45 47 2 28 78 8 24 32 20 58 41 31 18 50 38 13 30 39 23 19 17 11 9 55 57 64 61 16 25 15 63 35 7 65 53 76 29 12 3 75 36" }, { "input": "42\n41 11 10 8 21 37 32 19 31 25 1 15 36 5 6 27 4 3 13 7 16 17 2 23 34 24 38 28 12 20 30 42 18 26 39 35 33 40 9 14 22 29", "output": "11 23 18 17 14 15 20 4 39 3 2 29 19 40 12 21 22 33 8 30 5 41 24 26 10 34 16 28 42 31 9 7 37 25 36 13 6 27 35 38 1 32" }, { "input": "97\n20 6 76 42 4 18 35 59 39 63 27 7 66 47 61 52 15 36 88 93 19 33 10 92 1 34 46 86 78 57 51 94 77 29 26 73 41 2 58 97 43 65 17 74 21 49 25 3 91 82 95 12 96 13 84 90 69 24 72 37 16 55 54 71 64 62 48 89 11 70 80 67 30 40 44 85 53 83 79 9 56 45 75 87 22 14 81 68 8 38 60 50 28 23 31 32 5", "output": "25 38 48 5 97 2 12 89 80 23 69 52 54 86 17 61 43 6 21 1 45 85 94 58 47 35 11 93 34 73 95 96 22 26 7 18 60 90 9 74 37 4 41 75 82 27 14 67 46 92 31 16 77 63 62 81 30 39 8 91 15 66 10 65 42 13 72 88 57 70 64 59 36 44 83 3 33 29 79 71 87 50 78 55 76 28 84 19 68 56 49 24 20 32 51 53 40" }, { "input": "62\n15 27 46 6 8 51 14 56 23 48 42 49 52 22 20 31 29 12 47 3 62 34 37 35 32 57 19 25 5 60 61 38 18 10 11 55 45 53 17 30 9 36 4 50 41 16 44 28 40 59 24 1 13 39 26 7 33 58 2 43 21 54", "output": "52 59 20 43 29 4 56 5 41 34 35 18 53 7 1 46 39 33 27 15 61 14 9 51 28 55 2 48 17 40 16 25 57 22 24 42 23 32 54 49 45 11 60 47 37 3 19 10 12 44 6 13 38 62 36 8 26 58 50 30 31 21" }, { "input": "61\n35 27 4 61 52 32 41 46 14 37 17 54 55 31 11 26 44 49 15 30 9 50 45 39 7 38 53 3 58 40 13 56 18 19 28 6 43 5 21 42 20 34 2 25 36 12 33 57 16 60 1 8 59 10 22 23 24 48 51 47 29", "output": "51 43 28 3 38 36 25 52 21 54 15 46 31 9 19 49 11 33 34 41 39 55 56 57 44 16 2 35 61 20 14 6 47 42 1 45 10 26 24 30 7 40 37 17 23 8 60 58 18 22 59 5 27 12 13 32 48 29 53 50 4" }, { "input": "59\n31 26 36 15 17 19 10 53 11 34 13 46 55 9 44 7 8 37 32 52 47 25 51 22 35 39 41 4 43 24 5 27 20 57 6 38 3 28 21 40 50 18 14 56 33 45 12 2 49 59 54 29 16 48 42 58 1 30 23", "output": "57 48 37 28 31 35 16 17 14 7 9 47 11 43 4 53 5 42 6 33 39 24 59 30 22 2 32 38 52 58 1 19 45 10 25 3 18 36 26 40 27 55 29 15 46 12 21 54 49 41 23 20 8 51 13 44 34 56 50" }, { "input": "10\n2 10 7 4 1 5 8 6 3 9", "output": "5 1 9 4 6 8 3 7 10 2" }, { "input": "14\n14 2 1 8 6 12 11 10 9 7 3 4 5 13", "output": "3 2 11 12 13 5 10 4 9 8 7 6 14 1" }, { "input": "43\n28 38 15 14 31 42 27 30 19 33 43 26 22 29 18 32 3 13 1 8 35 34 4 12 11 17 41 21 5 25 39 37 20 23 7 24 16 10 40 9 6 36 2", "output": "19 43 17 23 29 41 35 20 40 38 25 24 18 4 3 37 26 15 9 33 28 13 34 36 30 12 7 1 14 8 5 16 10 22 21 42 32 2 31 39 27 6 11" }, { "input": "86\n39 11 20 31 28 76 29 64 35 21 41 71 12 82 5 37 80 73 38 26 79 75 23 15 59 45 47 6 3 62 50 49 51 22 2 65 86 60 70 42 74 17 1 30 55 44 8 66 81 27 57 77 43 13 54 32 72 46 48 56 14 34 78 52 36 85 24 19 69 83 25 61 7 4 84 33 63 58 18 40 68 10 67 9 16 53", "output": "43 35 29 74 15 28 73 47 84 82 2 13 54 61 24 85 42 79 68 3 10 34 23 67 71 20 50 5 7 44 4 56 76 62 9 65 16 19 1 80 11 40 53 46 26 58 27 59 32 31 33 64 86 55 45 60 51 78 25 38 72 30 77 8 36 48 83 81 69 39 12 57 18 41 22 6 52 63 21 17 49 14 70 75 66 37" }, { "input": "99\n65 78 56 98 33 24 61 40 29 93 1 64 57 22 25 52 67 95 50 3 31 15 90 68 71 83 38 36 6 46 89 26 4 87 14 88 72 37 23 43 63 12 80 96 5 34 73 86 9 48 92 62 99 10 16 20 66 27 28 2 82 70 30 94 49 8 84 69 18 60 58 59 44 39 21 7 91 76 54 19 75 85 74 47 55 32 97 77 51 13 35 79 45 42 11 41 17 81 53", "output": "11 60 20 33 45 29 76 66 49 54 95 42 90 35 22 55 97 69 80 56 75 14 39 6 15 32 58 59 9 63 21 86 5 46 91 28 38 27 74 8 96 94 40 73 93 30 84 50 65 19 89 16 99 79 85 3 13 71 72 70 7 52 41 12 1 57 17 24 68 62 25 37 47 83 81 78 88 2 92 43 98 61 26 67 82 48 34 36 31 23 77 51 10 64 18 44 87 4 53" }, { "input": "100\n42 23 48 88 36 6 18 70 96 1 34 40 46 22 39 55 85 93 45 67 71 75 59 9 21 3 86 63 65 68 20 38 73 31 84 90 50 51 56 95 72 33 49 19 83 76 54 74 100 30 17 98 15 94 4 97 5 99 81 27 92 32 89 12 13 91 87 29 60 11 52 43 35 58 10 25 16 80 28 2 44 61 8 82 66 69 41 24 57 62 78 37 79 77 53 7 14 47 26 64", "output": "10 80 26 55 57 6 96 83 24 75 70 64 65 97 53 77 51 7 44 31 25 14 2 88 76 99 60 79 68 50 34 62 42 11 73 5 92 32 15 12 87 1 72 81 19 13 98 3 43 37 38 71 95 47 16 39 89 74 23 69 82 90 28 100 29 85 20 30 86 8 21 41 33 48 22 46 94 91 93 78 59 84 45 35 17 27 67 4 63 36 66 61 18 54 40 9 56 52 58 49" }, { "input": "99\n8 68 94 75 71 60 57 58 6 11 5 48 65 41 49 12 46 72 95 59 13 70 74 7 84 62 17 36 55 76 38 79 2 85 23 10 32 99 87 50 83 28 54 91 53 51 1 3 97 81 21 89 93 78 61 26 82 96 4 98 25 40 31 44 24 47 30 52 14 16 39 27 9 29 45 18 67 63 37 43 90 66 19 69 88 22 92 77 34 42 73 80 56 64 20 35 15 33 86", "output": "47 33 48 59 11 9 24 1 73 36 10 16 21 69 97 70 27 76 83 95 51 86 35 65 61 56 72 42 74 67 63 37 98 89 96 28 79 31 71 62 14 90 80 64 75 17 66 12 15 40 46 68 45 43 29 93 7 8 20 6 55 26 78 94 13 82 77 2 84 22 5 18 91 23 4 30 88 54 32 92 50 57 41 25 34 99 39 85 52 81 44 87 53 3 19 58 49 60 38" }, { "input": "99\n12 99 88 13 7 19 74 47 23 90 16 29 26 11 58 60 64 98 37 18 82 67 72 46 51 85 17 92 87 20 77 36 78 71 57 35 80 54 73 15 14 62 97 45 31 79 94 56 76 96 28 63 8 44 38 86 49 2 52 66 61 59 10 43 55 50 22 34 83 53 95 40 81 21 30 42 27 3 5 41 1 70 69 25 93 48 65 6 24 89 91 33 39 68 9 4 32 84 75", "output": "81 58 78 96 79 88 5 53 95 63 14 1 4 41 40 11 27 20 6 30 74 67 9 89 84 13 77 51 12 75 45 97 92 68 36 32 19 55 93 72 80 76 64 54 44 24 8 86 57 66 25 59 70 38 65 48 35 15 62 16 61 42 52 17 87 60 22 94 83 82 34 23 39 7 99 49 31 33 46 37 73 21 69 98 26 56 29 3 90 10 91 28 85 47 71 50 43 18 2" }, { "input": "99\n20 79 26 75 99 69 98 47 93 62 18 42 43 38 90 66 67 8 13 84 76 58 81 60 64 46 56 23 78 17 86 36 19 52 85 39 48 27 96 49 37 95 5 31 10 24 12 1 80 35 92 33 16 68 57 54 32 29 45 88 72 77 4 87 97 89 59 3 21 22 61 94 83 15 44 34 70 91 55 9 51 50 73 11 14 6 40 7 63 25 2 82 41 65 28 74 71 30 53", "output": "48 91 68 63 43 86 88 18 80 45 84 47 19 85 74 53 30 11 33 1 69 70 28 46 90 3 38 95 58 98 44 57 52 76 50 32 41 14 36 87 93 12 13 75 59 26 8 37 40 82 81 34 99 56 79 27 55 22 67 24 71 10 89 25 94 16 17 54 6 77 97 61 83 96 4 21 62 29 2 49 23 92 73 20 35 31 64 60 66 15 78 51 9 72 42 39 65 7 5" }, { "input": "99\n74 20 9 1 60 85 65 13 4 25 40 99 5 53 64 3 36 31 73 44 55 50 45 63 98 51 68 6 47 37 71 82 88 34 84 18 19 12 93 58 86 7 11 46 90 17 33 27 81 69 42 59 56 32 95 52 76 61 96 62 78 43 66 21 49 97 75 14 41 72 89 16 30 79 22 23 15 83 91 38 48 2 87 26 28 80 94 70 54 92 57 10 8 35 67 77 29 24 39", "output": "4 82 16 9 13 28 42 93 3 92 43 38 8 68 77 72 46 36 37 2 64 75 76 98 10 84 48 85 97 73 18 54 47 34 94 17 30 80 99 11 69 51 62 20 23 44 29 81 65 22 26 56 14 89 21 53 91 40 52 5 58 60 24 15 7 63 95 27 50 88 31 70 19 1 67 57 96 61 74 86 49 32 78 35 6 41 83 33 71 45 79 90 39 87 55 59 66 25 12" }, { "input": "99\n50 94 2 18 69 90 59 83 75 68 77 97 39 78 25 7 16 9 49 4 42 89 44 48 17 96 61 70 3 10 5 81 56 57 88 6 98 1 46 67 92 37 11 30 85 41 8 36 51 29 20 71 19 79 74 93 43 34 55 40 38 21 64 63 32 24 72 14 12 86 82 15 65 23 66 22 28 53 13 26 95 99 91 52 76 27 60 45 47 33 73 84 31 35 54 80 58 62 87", "output": "38 3 29 20 31 36 16 47 18 30 43 69 79 68 72 17 25 4 53 51 62 76 74 66 15 80 86 77 50 44 93 65 90 58 94 48 42 61 13 60 46 21 57 23 88 39 89 24 19 1 49 84 78 95 59 33 34 97 7 87 27 98 64 63 73 75 40 10 5 28 52 67 91 55 9 85 11 14 54 96 32 71 8 92 45 70 99 35 22 6 83 41 56 2 81 26 12 37 82" }, { "input": "99\n19 93 14 34 39 37 33 15 52 88 7 43 69 27 9 77 94 31 48 22 63 70 79 17 50 6 81 8 76 58 23 74 86 11 57 62 41 87 75 51 12 18 68 56 95 3 80 83 84 29 24 61 71 78 59 96 20 85 90 28 45 36 38 97 1 49 40 98 44 67 13 73 72 91 47 10 30 54 35 42 4 2 92 26 64 60 53 21 5 82 46 32 55 66 16 89 99 65 25", "output": "65 82 46 81 89 26 11 28 15 76 34 41 71 3 8 95 24 42 1 57 88 20 31 51 99 84 14 60 50 77 18 92 7 4 79 62 6 63 5 67 37 80 12 69 61 91 75 19 66 25 40 9 87 78 93 44 35 30 55 86 52 36 21 85 98 94 70 43 13 22 53 73 72 32 39 29 16 54 23 47 27 90 48 49 58 33 38 10 96 59 74 83 2 17 45 56 64 68 97" }, { "input": "99\n86 25 50 51 62 39 41 67 44 20 45 14 80 88 66 7 36 59 13 84 78 58 96 75 2 43 48 47 69 12 19 98 22 38 28 55 11 76 68 46 53 70 85 34 16 33 91 30 8 40 74 60 94 82 87 32 37 4 5 10 89 73 90 29 35 26 23 57 27 65 24 3 9 83 77 72 6 31 15 92 93 79 64 18 63 42 56 1 52 97 17 81 71 21 49 99 54 95 61", "output": "88 25 72 58 59 77 16 49 73 60 37 30 19 12 79 45 91 84 31 10 94 33 67 71 2 66 69 35 64 48 78 56 46 44 65 17 57 34 6 50 7 86 26 9 11 40 28 27 95 3 4 89 41 97 36 87 68 22 18 52 99 5 85 83 70 15 8 39 29 42 93 76 62 51 24 38 75 21 82 13 92 54 74 20 43 1 55 14 61 63 47 80 81 53 98 23 90 32 96" }, { "input": "100\n66 44 99 15 43 79 28 33 88 90 49 68 82 38 9 74 4 58 29 81 31 94 10 42 89 21 63 40 62 61 18 6 84 72 48 25 67 69 71 85 98 34 83 70 65 78 91 77 93 41 23 24 87 11 55 12 59 73 36 97 7 14 26 39 30 27 45 20 50 17 53 2 57 47 95 56 75 19 37 96 16 35 8 3 76 60 13 86 5 32 64 80 46 51 54 100 1 22 52 92", "output": "97 72 84 17 89 32 61 83 15 23 54 56 87 62 4 81 70 31 78 68 26 98 51 52 36 63 66 7 19 65 21 90 8 42 82 59 79 14 64 28 50 24 5 2 67 93 74 35 11 69 94 99 71 95 55 76 73 18 57 86 30 29 27 91 45 1 37 12 38 44 39 34 58 16 77 85 48 46 6 92 20 13 43 33 40 88 53 9 25 10 47 100 49 22 75 80 60 41 3 96" }, { "input": "99\n3 73 32 37 25 15 93 63 85 8 91 78 80 5 39 48 46 7 83 70 23 96 9 29 77 53 30 20 56 50 13 45 21 76 87 99 65 31 16 18 14 72 51 28 43 2 81 34 38 40 66 54 74 26 71 4 61 17 58 24 22 33 49 36 42 11 12 55 60 27 62 90 79 92 94 68 1 52 84 41 86 35 69 75 47 10 64 88 97 98 67 19 89 95 59 82 57 44 6", "output": "77 46 1 56 14 99 18 10 23 86 66 67 31 41 6 39 58 40 92 28 33 61 21 60 5 54 70 44 24 27 38 3 62 48 82 64 4 49 15 50 80 65 45 98 32 17 85 16 63 30 43 78 26 52 68 29 97 59 95 69 57 71 8 87 37 51 91 76 83 20 55 42 2 53 84 34 25 12 73 13 47 96 19 79 9 81 35 88 93 72 11 74 7 75 94 22 89 90 36" }, { "input": "100\n100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1", "output": "100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1" } ]
1,691,357,546
2,147,483,647
PyPy 3-64
WRONG_ANSWER
TESTS
5
122
0
n = input() friends_num = input() l_f_n = friends_num.split() l = [] for i in l_f_n: l.insert(int(i)-1, str(l_f_n.index(i)+1)) s = " ".join(l) print(s)
Title: Presents Time Limit: None seconds Memory Limit: None megabytes Problem Description: Little Petya very much likes gifts. Recently he has received a new laptop as a New Year gift from his mother. He immediately decided to give it to somebody else as what can be more pleasant than giving somebody gifts. And on this occasion he organized a New Year party at his place and invited *n* his friends there. If there's one thing Petya likes more that receiving gifts, that's watching others giving gifts to somebody else. Thus, he safely hid the laptop until the next New Year and made up his mind to watch his friends exchanging gifts while he does not participate in the process. He numbered all his friends with integers from 1 to *n*. Petya remembered that a friend number *i* gave a gift to a friend number *p**i*. He also remembered that each of his friends received exactly one gift. Now Petya wants to know for each friend *i* the number of a friend who has given him a gift. Input Specification: The first line contains one integer *n* (1<=≤<=*n*<=≤<=100) — the quantity of friends Petya invited to the party. The second line contains *n* space-separated integers: the *i*-th number is *p**i* — the number of a friend who gave a gift to friend number *i*. It is guaranteed that each friend received exactly one gift. It is possible that some friends do not share Petya's ideas of giving gifts to somebody else. Those friends gave the gifts to themselves. Output Specification: Print *n* space-separated integers: the *i*-th number should equal the number of the friend who gave a gift to friend number *i*. Demo Input: ['4\n2 3 4 1\n', '3\n1 3 2\n', '2\n1 2\n'] Demo Output: ['4 1 2 3\n', '1 3 2\n', '1 2\n'] Note: none
```python n = input() friends_num = input() l_f_n = friends_num.split() l = [] for i in l_f_n: l.insert(int(i)-1, str(l_f_n.index(i)+1)) s = " ".join(l) print(s) ```
0
467
A
George and Accommodation
PROGRAMMING
800
[ "implementation" ]
null
null
George has recently entered the BSUCP (Berland State University for Cool Programmers). George has a friend Alex who has also entered the university. Now they are moving into a dormitory. George and Alex want to live in the same room. The dormitory has *n* rooms in total. At the moment the *i*-th room has *p**i* people living in it and the room can accommodate *q**i* people in total (*p**i*<=≤<=*q**i*). Your task is to count how many rooms has free place for both George and Alex.
The first line contains a single integer *n* (1<=≤<=*n*<=≤<=100) — the number of rooms. The *i*-th of the next *n* lines contains two integers *p**i* and *q**i* (0<=≤<=*p**i*<=≤<=*q**i*<=≤<=100) — the number of people who already live in the *i*-th room and the room's capacity.
Print a single integer — the number of rooms where George and Alex can move in.
[ "3\n1 1\n2 2\n3 3\n", "3\n1 10\n0 10\n10 10\n" ]
[ "0\n", "2\n" ]
none
500
[ { "input": "3\n1 1\n2 2\n3 3", "output": "0" }, { "input": "3\n1 10\n0 10\n10 10", "output": "2" }, { "input": "2\n36 67\n61 69", "output": "2" }, { "input": "3\n21 71\n10 88\n43 62", "output": "3" }, { "input": "3\n1 2\n2 3\n3 4", "output": "0" }, { "input": "10\n0 10\n0 20\n0 30\n0 40\n0 50\n0 60\n0 70\n0 80\n0 90\n0 100", "output": "10" }, { "input": "13\n14 16\n30 31\n45 46\n19 20\n15 17\n66 67\n75 76\n95 97\n29 30\n37 38\n0 2\n36 37\n8 9", "output": "4" }, { "input": "19\n66 67\n97 98\n89 91\n67 69\n67 68\n18 20\n72 74\n28 30\n91 92\n27 28\n75 77\n17 18\n74 75\n28 30\n16 18\n90 92\n9 11\n22 24\n52 54", "output": "12" }, { "input": "15\n55 57\n95 97\n57 59\n34 36\n50 52\n96 98\n39 40\n13 15\n13 14\n74 76\n47 48\n56 58\n24 25\n11 13\n67 68", "output": "10" }, { "input": "17\n68 69\n47 48\n30 31\n52 54\n41 43\n33 35\n38 40\n56 58\n45 46\n92 93\n73 74\n61 63\n65 66\n37 39\n67 68\n77 78\n28 30", "output": "8" }, { "input": "14\n64 66\n43 44\n10 12\n76 77\n11 12\n25 27\n87 88\n62 64\n39 41\n58 60\n10 11\n28 29\n57 58\n12 14", "output": "7" }, { "input": "38\n74 76\n52 54\n78 80\n48 49\n40 41\n64 65\n28 30\n6 8\n49 51\n68 70\n44 45\n57 59\n24 25\n46 48\n49 51\n4 6\n63 64\n76 78\n57 59\n18 20\n63 64\n71 73\n88 90\n21 22\n89 90\n65 66\n89 91\n96 98\n42 44\n1 1\n74 76\n72 74\n39 40\n75 76\n29 30\n48 49\n87 89\n27 28", "output": "22" }, { "input": "100\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0", "output": "0" }, { "input": "26\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2", "output": "0" }, { "input": "68\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2", "output": "68" }, { "input": "7\n0 1\n1 5\n2 4\n3 5\n4 6\n5 6\n6 8", "output": "5" }, { "input": "1\n0 0", "output": "0" }, { "input": "1\n100 100", "output": "0" }, { "input": "44\n0 8\n1 11\n2 19\n3 5\n4 29\n5 45\n6 6\n7 40\n8 19\n9 22\n10 18\n11 26\n12 46\n13 13\n14 27\n15 48\n16 25\n17 20\n18 29\n19 27\n20 45\n21 39\n22 29\n23 39\n24 42\n25 37\n26 52\n27 36\n28 43\n29 35\n30 38\n31 70\n32 47\n33 38\n34 61\n35 71\n36 51\n37 71\n38 59\n39 77\n40 70\n41 80\n42 77\n43 73", "output": "42" }, { "input": "3\n1 3\n2 7\n8 9", "output": "2" }, { "input": "53\n0 1\n1 2\n2 3\n3 4\n4 5\n5 6\n6 7\n7 8\n8 9\n9 10\n10 11\n11 12\n12 13\n13 14\n14 15\n15 16\n16 17\n17 18\n18 19\n19 20\n20 21\n21 22\n22 23\n23 24\n24 25\n25 26\n26 27\n27 28\n28 29\n29 30\n30 31\n31 32\n32 33\n33 34\n34 35\n35 36\n36 37\n37 38\n38 39\n39 40\n40 41\n41 42\n42 43\n43 44\n44 45\n45 46\n46 47\n47 48\n48 49\n49 50\n50 51\n51 52\n52 53", "output": "0" }, { "input": "55\n0 0\n1 1\n2 2\n3 3\n4 4\n5 5\n6 6\n7 7\n8 8\n9 9\n10 10\n11 11\n12 12\n13 13\n14 14\n15 15\n16 16\n17 17\n18 18\n19 19\n20 20\n21 21\n22 22\n23 23\n24 24\n25 25\n26 26\n27 27\n28 28\n29 29\n30 30\n31 31\n32 32\n33 33\n34 34\n35 35\n36 36\n37 37\n38 38\n39 39\n40 40\n41 41\n42 42\n43 43\n44 44\n45 45\n46 46\n47 47\n48 48\n49 49\n50 50\n51 51\n52 52\n53 53\n54 54", "output": "0" }, { "input": "51\n55 55\n55 55\n55 55\n55 55\n55 55\n55 55\n55 55\n55 55\n55 55\n55 62\n55 55\n55 55\n55 55\n55 55\n55 55\n55 55\n55 55\n55 55\n55 55\n55 55\n55 55\n55 73\n55 55\n55 55\n55 55\n55 55\n55 55\n55 55\n55 55\n55 55\n55 55\n55 82\n55 68\n55 70\n55 63\n55 55\n55 55\n55 55\n55 75\n55 75\n55 55\n55 55\n55 55\n55 55\n55 55\n55 55\n55 73\n55 55\n55 82\n55 99\n55 60", "output": "12" }, { "input": "14\n1 1\n1 1\n1 55\n1 16\n1 1\n1 1\n1 55\n1 62\n1 53\n1 26\n1 1\n1 36\n1 2\n1 3", "output": "8" } ]
1,687,022,353
2,147,483,647
Python 3
RUNTIME_ERROR
TESTS
0
0
0
test_c = int(input()) p = [] q = [] for i in range(test_c): s = input() a, b = tuple(map(int, s.split())) p.append(a) q.append(b) c = 0 for i in range(len(p)): if p[i] + 2 <= p[j]: c += 1 print(c)
Title: George and Accommodation Time Limit: None seconds Memory Limit: None megabytes Problem Description: George has recently entered the BSUCP (Berland State University for Cool Programmers). George has a friend Alex who has also entered the university. Now they are moving into a dormitory. George and Alex want to live in the same room. The dormitory has *n* rooms in total. At the moment the *i*-th room has *p**i* people living in it and the room can accommodate *q**i* people in total (*p**i*<=≤<=*q**i*). Your task is to count how many rooms has free place for both George and Alex. Input Specification: The first line contains a single integer *n* (1<=≤<=*n*<=≤<=100) — the number of rooms. The *i*-th of the next *n* lines contains two integers *p**i* and *q**i* (0<=≤<=*p**i*<=≤<=*q**i*<=≤<=100) — the number of people who already live in the *i*-th room and the room's capacity. Output Specification: Print a single integer — the number of rooms where George and Alex can move in. Demo Input: ['3\n1 1\n2 2\n3 3\n', '3\n1 10\n0 10\n10 10\n'] Demo Output: ['0\n', '2\n'] Note: none
```python test_c = int(input()) p = [] q = [] for i in range(test_c): s = input() a, b = tuple(map(int, s.split())) p.append(a) q.append(b) c = 0 for i in range(len(p)): if p[i] + 2 <= p[j]: c += 1 print(c) ```
-1
732
A
Buy a Shovel
PROGRAMMING
800
[ "brute force", "constructive algorithms", "implementation", "math" ]
null
null
Polycarp urgently needs a shovel! He comes to the shop and chooses an appropriate one. The shovel that Policarp chooses is sold for *k* burles. Assume that there is an unlimited number of such shovels in the shop. In his pocket Polycarp has an unlimited number of "10-burle coins" and exactly one coin of *r* burles (1<=≤<=*r*<=≤<=9). What is the minimum number of shovels Polycarp has to buy so that he can pay for the purchase without any change? It is obvious that he can pay for 10 shovels without any change (by paying the requied amount of 10-burle coins and not using the coin of *r* burles). But perhaps he can buy fewer shovels and pay without any change. Note that Polycarp should buy at least one shovel.
The single line of input contains two integers *k* and *r* (1<=≤<=*k*<=≤<=1000, 1<=≤<=*r*<=≤<=9) — the price of one shovel and the denomination of the coin in Polycarp's pocket that is different from "10-burle coins". Remember that he has an unlimited number of coins in the denomination of 10, that is, Polycarp has enough money to buy any number of shovels.
Print the required minimum number of shovels Polycarp has to buy so that he can pay for them without any change.
[ "117 3\n", "237 7\n", "15 2\n" ]
[ "9\n", "1\n", "2\n" ]
In the first example Polycarp can buy 9 shovels and pay 9·117 = 1053 burles. Indeed, he can pay this sum by using 10-burle coins and one 3-burle coin. He can't buy fewer shovels without any change. In the second example it is enough for Polycarp to buy one shovel. In the third example Polycarp should buy two shovels and pay 2·15 = 30 burles. It is obvious that he can pay this sum without any change.
500
[ { "input": "117 3", "output": "9" }, { "input": "237 7", "output": "1" }, { "input": "15 2", "output": "2" }, { "input": "1 1", "output": "1" }, { "input": "1 9", "output": "9" }, { "input": "1000 3", "output": "1" }, { "input": "1000 1", "output": "1" }, { "input": "1000 9", "output": "1" }, { "input": "1 2", "output": "2" }, { "input": "999 9", "output": "1" }, { "input": "999 8", "output": "2" }, { "input": "105 6", "output": "2" }, { "input": "403 9", "output": "3" }, { "input": "546 4", "output": "4" }, { "input": "228 9", "output": "5" }, { "input": "57 2", "output": "6" }, { "input": "437 9", "output": "7" }, { "input": "997 6", "output": "8" }, { "input": "109 1", "output": "9" }, { "input": "998 9", "output": "5" }, { "input": "4 2", "output": "3" }, { "input": "9 3", "output": "7" }, { "input": "8 2", "output": "4" }, { "input": "1 3", "output": "3" }, { "input": "1 4", "output": "4" }, { "input": "1 5", "output": "5" }, { "input": "1 6", "output": "6" }, { "input": "1 7", "output": "7" }, { "input": "1 8", "output": "8" }, { "input": "100 3", "output": "1" }, { "input": "1000 2", "output": "1" }, { "input": "1000 4", "output": "1" }, { "input": "1000 5", "output": "1" }, { "input": "1000 6", "output": "1" }, { "input": "1000 7", "output": "1" }, { "input": "1000 8", "output": "1" }, { "input": "23 4", "output": "8" }, { "input": "33 1", "output": "7" }, { "input": "33 2", "output": "4" }, { "input": "666 5", "output": "5" }, { "input": "2 3", "output": "5" }, { "input": "5 5", "output": "1" }, { "input": "3 6", "output": "2" }, { "input": "12 4", "output": "2" }, { "input": "15 5", "output": "1" }, { "input": "2 5", "output": "5" }, { "input": "25 5", "output": "1" }, { "input": "2 9", "output": "5" }, { "input": "6 7", "output": "5" }, { "input": "8 9", "output": "5" }, { "input": "2 7", "output": "5" }, { "input": "4 7", "output": "5" }, { "input": "2 1", "output": "5" }, { "input": "261 1", "output": "1" } ]
1,686,052,043
2,147,483,647
Python 3
TIME_LIMIT_EXCEEDED
TESTS
14
1,000
0
a,b = (int(i) for i in input().split()) counter=1 if a%5==0: while True: if (((a*counter)%10))==0: break counter+=1 else: while True: if (((a*counter)%10)-b)==0: break counter+=1 print(counter)
Title: Buy a Shovel Time Limit: None seconds Memory Limit: None megabytes Problem Description: Polycarp urgently needs a shovel! He comes to the shop and chooses an appropriate one. The shovel that Policarp chooses is sold for *k* burles. Assume that there is an unlimited number of such shovels in the shop. In his pocket Polycarp has an unlimited number of "10-burle coins" and exactly one coin of *r* burles (1<=≤<=*r*<=≤<=9). What is the minimum number of shovels Polycarp has to buy so that he can pay for the purchase without any change? It is obvious that he can pay for 10 shovels without any change (by paying the requied amount of 10-burle coins and not using the coin of *r* burles). But perhaps he can buy fewer shovels and pay without any change. Note that Polycarp should buy at least one shovel. Input Specification: The single line of input contains two integers *k* and *r* (1<=≤<=*k*<=≤<=1000, 1<=≤<=*r*<=≤<=9) — the price of one shovel and the denomination of the coin in Polycarp's pocket that is different from "10-burle coins". Remember that he has an unlimited number of coins in the denomination of 10, that is, Polycarp has enough money to buy any number of shovels. Output Specification: Print the required minimum number of shovels Polycarp has to buy so that he can pay for them without any change. Demo Input: ['117 3\n', '237 7\n', '15 2\n'] Demo Output: ['9\n', '1\n', '2\n'] Note: In the first example Polycarp can buy 9 shovels and pay 9·117 = 1053 burles. Indeed, he can pay this sum by using 10-burle coins and one 3-burle coin. He can't buy fewer shovels without any change. In the second example it is enough for Polycarp to buy one shovel. In the third example Polycarp should buy two shovels and pay 2·15 = 30 burles. It is obvious that he can pay this sum without any change.
```python a,b = (int(i) for i in input().split()) counter=1 if a%5==0: while True: if (((a*counter)%10))==0: break counter+=1 else: while True: if (((a*counter)%10)-b)==0: break counter+=1 print(counter) ```
0
443
A
Anton and Letters
PROGRAMMING
800
[ "constructive algorithms", "implementation" ]
null
null
Recently, Anton has found a set. The set consists of small English letters. Anton carefully wrote out all the letters from the set in one line, separated by a comma. He also added an opening curved bracket at the beginning of the line and a closing curved bracket at the end of the line. Unfortunately, from time to time Anton would forget writing some letter and write it again. He asks you to count the total number of distinct letters in his set.
The first and the single line contains the set of letters. The length of the line doesn't exceed 1000. It is guaranteed that the line starts from an opening curved bracket and ends with a closing curved bracket. Between them, small English letters are listed, separated by a comma. Each comma is followed by a space.
Print a single number — the number of distinct letters in Anton's set.
[ "{a, b, c}\n", "{b, a, b, a}\n", "{}\n" ]
[ "3\n", "2\n", "0\n" ]
none
500
[ { "input": "{a, b, c}", "output": "3" }, { "input": "{b, a, b, a}", "output": "2" }, { "input": "{}", "output": "0" }, { "input": "{a, a, c, b, b, b, c, c, c, c}", "output": "3" }, { "input": "{a, c, b, b}", "output": "3" }, { "input": "{a, b}", "output": "2" }, { "input": "{a}", "output": "1" }, { "input": "{b, a, b, a, b, c, c, b, c, b}", "output": "3" }, { "input": "{e, g, c, e}", "output": "3" }, { "input": "{a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a}", "output": "1" }, { "input": "{a, a, b}", "output": "2" }, { "input": "{a, b, b, b, a, b, a, a, a, a, a, a, b, a, b, a, a, a, a, a, b, a, b, a}", "output": "2" }, { "input": "{j, u, a, c, f, w, e, w, x, t, h, p, v, n, i, l, x, n, i, b, u, c, a, a}", "output": "16" }, { "input": "{x, i, w, c, p, e, h, z, k, i}", "output": "9" }, { "input": "{t, k, o, x, r, d, q, j, k, e, z, w, y, r, z, s, s, e, s, b, k, i}", "output": "15" }, { "input": "{y}", "output": "1" }, { "input": "{x}", "output": "1" }, { "input": "{b, z, a, z}", "output": "3" }, { "input": "{z}", "output": "1" }, { "input": "{a, z}", "output": "2" }, { "input": "{a, b, z}", "output": "3" }, { "input": "{s, q, z, r, t, a, b, h, j, i, o, z, r, q}", "output": "11" } ]
1,689,434,565
2,147,483,647
Python 3
OK
TESTS
27
31
0
a = list(input()) del a[0] del a[-1] if ',' in a: a = ''.join(a).split(', ') print(len(set(a))) else: print(len(a))
Title: Anton and Letters Time Limit: None seconds Memory Limit: None megabytes Problem Description: Recently, Anton has found a set. The set consists of small English letters. Anton carefully wrote out all the letters from the set in one line, separated by a comma. He also added an opening curved bracket at the beginning of the line and a closing curved bracket at the end of the line. Unfortunately, from time to time Anton would forget writing some letter and write it again. He asks you to count the total number of distinct letters in his set. Input Specification: The first and the single line contains the set of letters. The length of the line doesn't exceed 1000. It is guaranteed that the line starts from an opening curved bracket and ends with a closing curved bracket. Between them, small English letters are listed, separated by a comma. Each comma is followed by a space. Output Specification: Print a single number — the number of distinct letters in Anton's set. Demo Input: ['{a, b, c}\n', '{b, a, b, a}\n', '{}\n'] Demo Output: ['3\n', '2\n', '0\n'] Note: none
```python a = list(input()) del a[0] del a[-1] if ',' in a: a = ''.join(a).split(', ') print(len(set(a))) else: print(len(a)) ```
3
785
A
Anton and Polyhedrons
PROGRAMMING
800
[ "implementation", "strings" ]
null
null
Anton's favourite geometric figures are regular polyhedrons. Note that there are five kinds of regular polyhedrons: - Tetrahedron. Tetrahedron has 4 triangular faces. - Cube. Cube has 6 square faces. - Octahedron. Octahedron has 8 triangular faces. - Dodecahedron. Dodecahedron has 12 pentagonal faces. - Icosahedron. Icosahedron has 20 triangular faces. All five kinds of polyhedrons are shown on the picture below: Anton has a collection of *n* polyhedrons. One day he decided to know, how many faces his polyhedrons have in total. Help Anton and find this number!
The first line of the input contains a single integer *n* (1<=≤<=*n*<=≤<=200<=000) — the number of polyhedrons in Anton's collection. Each of the following *n* lines of the input contains a string *s**i* — the name of the *i*-th polyhedron in Anton's collection. The string can look like this: - "Tetrahedron" (without quotes), if the *i*-th polyhedron in Anton's collection is a tetrahedron. - "Cube" (without quotes), if the *i*-th polyhedron in Anton's collection is a cube. - "Octahedron" (without quotes), if the *i*-th polyhedron in Anton's collection is an octahedron. - "Dodecahedron" (without quotes), if the *i*-th polyhedron in Anton's collection is a dodecahedron. - "Icosahedron" (without quotes), if the *i*-th polyhedron in Anton's collection is an icosahedron.
Output one number — the total number of faces in all the polyhedrons in Anton's collection.
[ "4\nIcosahedron\nCube\nTetrahedron\nDodecahedron\n", "3\nDodecahedron\nOctahedron\nOctahedron\n" ]
[ "42\n", "28\n" ]
In the first sample Anton has one icosahedron, one cube, one tetrahedron and one dodecahedron. Icosahedron has 20 faces, cube has 6 faces, tetrahedron has 4 faces and dodecahedron has 12 faces. In total, they have 20 + 6 + 4 + 12 = 42 faces.
500
[ { "input": "4\nIcosahedron\nCube\nTetrahedron\nDodecahedron", "output": "42" }, { "input": "3\nDodecahedron\nOctahedron\nOctahedron", "output": "28" }, { "input": "25\nIcosahedron\nOctahedron\nTetrahedron\nDodecahedron\nCube\nIcosahedron\nOctahedron\nCube\nTetrahedron\nIcosahedron\nIcosahedron\nTetrahedron\nOctahedron\nDodecahedron\nIcosahedron\nOctahedron\nIcosahedron\nTetrahedron\nDodecahedron\nTetrahedron\nOctahedron\nCube\nCube\nDodecahedron\nTetrahedron", "output": "256" }, { "input": "1\nTetrahedron", "output": "4" }, { "input": "1\nCube", "output": "6" }, { "input": "1\nOctahedron", "output": "8" }, { "input": "1\nDodecahedron", "output": "12" }, { "input": "1\nIcosahedron", "output": "20" }, { "input": "28\nOctahedron\nDodecahedron\nOctahedron\nOctahedron\nDodecahedron\nIcosahedron\nIcosahedron\nDodecahedron\nDodecahedron\nDodecahedron\nCube\nDodecahedron\nCube\nTetrahedron\nCube\nCube\nTetrahedron\nDodecahedron\nDodecahedron\nDodecahedron\nIcosahedron\nIcosahedron\nDodecahedron\nIcosahedron\nDodecahedron\nDodecahedron\nIcosahedron\nIcosahedron", "output": "340" } ]
1,673,795,714
2,147,483,647
Python 3
OK
TESTS
30
265
0
n=int(input()) count=0 for i in range(0,n): s=input() if s== "Tetrahedron": count+=4 elif s== "Cube": count+=6 elif s== "Octahedron": count+=8 elif s== "Dodecahedron": count+=12 elif s== "Icosahedron": count+=20 print(count)
Title: Anton and Polyhedrons Time Limit: None seconds Memory Limit: None megabytes Problem Description: Anton's favourite geometric figures are regular polyhedrons. Note that there are five kinds of regular polyhedrons: - Tetrahedron. Tetrahedron has 4 triangular faces. - Cube. Cube has 6 square faces. - Octahedron. Octahedron has 8 triangular faces. - Dodecahedron. Dodecahedron has 12 pentagonal faces. - Icosahedron. Icosahedron has 20 triangular faces. All five kinds of polyhedrons are shown on the picture below: Anton has a collection of *n* polyhedrons. One day he decided to know, how many faces his polyhedrons have in total. Help Anton and find this number! Input Specification: The first line of the input contains a single integer *n* (1<=≤<=*n*<=≤<=200<=000) — the number of polyhedrons in Anton's collection. Each of the following *n* lines of the input contains a string *s**i* — the name of the *i*-th polyhedron in Anton's collection. The string can look like this: - "Tetrahedron" (without quotes), if the *i*-th polyhedron in Anton's collection is a tetrahedron. - "Cube" (without quotes), if the *i*-th polyhedron in Anton's collection is a cube. - "Octahedron" (without quotes), if the *i*-th polyhedron in Anton's collection is an octahedron. - "Dodecahedron" (without quotes), if the *i*-th polyhedron in Anton's collection is a dodecahedron. - "Icosahedron" (without quotes), if the *i*-th polyhedron in Anton's collection is an icosahedron. Output Specification: Output one number — the total number of faces in all the polyhedrons in Anton's collection. Demo Input: ['4\nIcosahedron\nCube\nTetrahedron\nDodecahedron\n', '3\nDodecahedron\nOctahedron\nOctahedron\n'] Demo Output: ['42\n', '28\n'] Note: In the first sample Anton has one icosahedron, one cube, one tetrahedron and one dodecahedron. Icosahedron has 20 faces, cube has 6 faces, tetrahedron has 4 faces and dodecahedron has 12 faces. In total, they have 20 + 6 + 4 + 12 = 42 faces.
```python n=int(input()) count=0 for i in range(0,n): s=input() if s== "Tetrahedron": count+=4 elif s== "Cube": count+=6 elif s== "Octahedron": count+=8 elif s== "Dodecahedron": count+=12 elif s== "Icosahedron": count+=20 print(count) ```
3
998
B
Cutting
PROGRAMMING
1,200
[ "dp", "greedy", "sortings" ]
null
null
There are a lot of things which could be cut — trees, paper, "the rope". In this problem you are going to cut a sequence of integers. There is a sequence of integers, which contains the equal number of even and odd numbers. Given a limited budget, you need to make maximum possible number of cuts such that each resulting segment will have the same number of odd and even integers. Cuts separate a sequence to continuous (contiguous) segments. You may think about each cut as a break between two adjacent elements in a sequence. So after cutting each element belongs to exactly one segment. Say, $[4, 1, 2, 3, 4, 5, 4, 4, 5, 5]$ $\to$ two cuts $\to$ $[4, 1 | 2, 3, 4, 5 | 4, 4, 5, 5]$. On each segment the number of even elements should be equal to the number of odd elements. The cost of the cut between $x$ and $y$ numbers is $|x - y|$ bitcoins. Find the maximum possible number of cuts that can be made while spending no more than $B$ bitcoins.
First line of the input contains an integer $n$ ($2 \le n \le 100$) and an integer $B$ ($1 \le B \le 100$) — the number of elements in the sequence and the number of bitcoins you have. Second line contains $n$ integers: $a_1$, $a_2$, ..., $a_n$ ($1 \le a_i \le 100$) — elements of the sequence, which contains the equal number of even and odd numbers
Print the maximum possible number of cuts which can be made while spending no more than $B$ bitcoins.
[ "6 4\n1 2 5 10 15 20\n", "4 10\n1 3 2 4\n", "6 100\n1 2 3 4 5 6\n" ]
[ "1\n", "0\n", "2\n" ]
In the first sample the optimal answer is to split sequence between $2$ and $5$. Price of this cut is equal to $3$ bitcoins. In the second sample it is not possible to make even one cut even with unlimited number of bitcoins. In the third sample the sequence should be cut between $2$ and $3$, and between $4$ and $5$. The total price of the cuts is $1 + 1 = 2$ bitcoins.
1,000
[ { "input": "6 4\n1 2 5 10 15 20", "output": "1" }, { "input": "4 10\n1 3 2 4", "output": "0" }, { "input": "6 100\n1 2 3 4 5 6", "output": "2" }, { "input": "2 100\n13 78", "output": "0" }, { "input": "10 1\n56 56 98 2 11 64 97 41 95 53", "output": "0" }, { "input": "10 100\n94 65 24 47 29 98 20 65 6 17", "output": "2" }, { "input": "100 1\n35 6 19 84 49 64 36 91 50 65 21 86 20 89 10 52 50 24 98 74 11 48 58 98 51 85 1 29 44 83 9 97 68 41 83 57 1 57 46 42 87 2 32 50 3 57 17 77 22 100 36 27 3 34 55 8 90 61 34 20 15 39 43 46 60 60 14 23 4 22 75 51 98 23 69 22 99 57 63 30 79 7 16 8 34 84 13 47 93 40 48 25 93 1 80 6 82 93 6 21", "output": "0" }, { "input": "100 10\n3 20 3 29 90 69 2 30 70 28 71 99 22 99 34 70 87 48 3 92 71 61 26 90 14 38 51 81 16 33 49 71 14 52 50 95 65 16 80 57 87 47 29 14 40 31 74 15 87 76 71 61 30 91 44 10 87 48 84 12 77 51 25 68 49 38 79 8 7 9 39 19 48 40 15 53 29 4 60 86 76 84 6 37 45 71 46 38 80 68 94 71 64 72 41 51 71 60 79 7", "output": "2" }, { "input": "100 100\n60 83 82 16 17 7 89 6 83 100 85 41 72 44 23 28 64 84 3 23 33 52 93 30 81 38 67 25 26 97 94 78 41 74 74 17 53 51 54 17 20 81 95 76 42 16 16 56 74 69 30 9 82 91 32 13 47 45 97 40 56 57 27 28 84 98 91 5 61 20 3 43 42 26 83 40 34 100 5 63 62 61 72 5 32 58 93 79 7 18 50 43 17 24 77 73 87 74 98 2", "output": "11" }, { "input": "100 100\n70 54 10 72 81 84 56 15 27 19 43 100 49 44 52 33 63 40 95 17 58 2 51 39 22 18 82 1 16 99 32 29 24 94 9 98 5 37 47 14 42 73 41 31 79 64 12 6 53 26 68 67 89 13 90 4 21 93 46 74 75 88 66 57 23 7 25 48 92 62 30 8 50 61 38 87 71 34 97 28 80 11 60 91 3 35 86 96 36 20 59 65 83 45 76 77 78 69 85 55", "output": "3" }, { "input": "100 100\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100", "output": "49" }, { "input": "10 10\n94 32 87 13 4 22 85 81 18 95", "output": "1" }, { "input": "10 50\n40 40 9 3 64 96 67 19 21 30", "output": "1" }, { "input": "100 50\n13 31 29 86 46 10 2 87 94 2 28 31 29 15 64 3 94 71 37 76 9 91 89 38 12 46 53 33 58 11 98 4 37 72 30 52 6 86 40 98 28 6 34 80 61 47 45 69 100 47 91 64 87 41 67 58 88 75 13 81 36 58 66 29 10 27 54 83 44 15 11 33 49 36 61 18 89 26 87 1 99 19 57 21 55 84 20 74 14 43 15 51 2 76 22 92 43 14 72 77", "output": "3" }, { "input": "100 1\n78 52 95 76 96 49 53 59 77 100 64 11 9 48 15 17 44 46 21 54 39 68 43 4 32 28 73 6 16 62 72 84 65 86 98 75 33 45 25 3 91 82 2 92 63 88 7 50 97 93 14 22 20 42 60 55 80 85 29 34 56 71 83 38 26 47 90 70 51 41 40 31 37 12 35 99 67 94 1 87 57 8 61 19 23 79 36 18 66 74 5 27 81 69 24 58 13 10 89 30", "output": "0" }, { "input": "100 10\n19 55 91 50 31 23 60 84 38 1 22 51 27 76 28 98 11 44 61 63 15 93 52 3 66 16 53 36 18 62 35 85 78 37 73 64 87 74 46 26 82 69 49 33 83 89 56 67 71 25 39 94 96 17 21 6 47 68 34 42 57 81 13 10 54 2 48 80 20 77 4 5 59 30 90 95 45 75 8 88 24 41 40 14 97 32 7 9 65 70 100 99 72 58 92 29 79 12 86 43", "output": "0" }, { "input": "100 50\n2 4 82 12 47 63 52 91 87 45 53 1 17 25 64 50 9 13 22 54 21 30 43 24 38 33 68 11 41 78 99 23 28 18 58 67 79 10 71 56 49 61 26 29 59 20 90 74 5 75 89 8 39 95 72 42 66 98 44 32 88 35 92 3 97 55 65 51 77 27 81 76 84 69 73 85 19 46 62 100 60 37 7 36 57 6 14 83 40 48 16 70 96 15 31 93 80 86 94 34", "output": "1" }, { "input": "100 1\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100", "output": "1" }, { "input": "100 10\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100", "output": "10" }, { "input": "100 50\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100", "output": "49" }, { "input": "100 30\n2 1 2 2 2 2 1 1 1 2 1 1 2 2 1 2 1 2 2 2 2 1 2 1 2 1 1 2 1 1 2 2 2 1 1 2 1 2 2 2 1 1 1 1 1 2 1 1 1 1 1 2 2 2 2 1 2 1 1 1 2 2 2 2 1 2 2 1 1 1 1 2 2 2 1 2 2 1 2 1 1 2 2 2 1 2 2 1 2 1 1 2 1 1 1 1 2 1 1 2", "output": "11" }, { "input": "100 80\n1 1 1 2 2 1 1 2 1 1 1 1 2 2 2 1 2 2 2 2 1 1 2 2 1 1 1 1 2 2 2 1 1 1 1 1 1 1 2 2 2 2 1 2 2 1 2 1 1 1 1 2 2 1 2 2 1 2 2 2 2 2 1 1 2 2 2 2 2 2 1 1 2 1 1 1 2 1 1 2 1 2 1 2 2 1 1 2 1 1 1 1 2 2 2 1 2 2 1 2", "output": "12" }, { "input": "100 30\n100 99 100 99 99 100 100 99 100 99 99 100 100 100 99 99 99 100 99 99 99 99 100 99 99 100 100 99 100 99 99 99 100 99 100 100 99 100 100 100 100 100 99 99 100 99 99 100 99 100 99 99 100 100 99 100 99 99 100 99 100 100 100 100 99 99 99 100 99 100 99 100 100 100 99 100 100 100 99 100 99 99 100 100 100 100 99 99 99 100 99 100 100 99 99 99 100 100 99 99", "output": "14" }, { "input": "100 80\n99 100 100 100 99 99 99 99 100 99 99 99 99 99 99 99 99 100 100 99 99 99 99 99 100 99 100 99 100 100 100 100 100 99 100 100 99 99 100 100 100 100 100 99 100 99 100 99 99 99 100 99 99 99 99 99 99 99 99 100 99 100 100 99 99 99 99 100 100 100 99 100 100 100 100 100 99 100 100 100 100 100 100 100 100 99 99 99 99 100 99 100 100 100 100 100 99 100 99 100", "output": "4" }, { "input": "100 30\n100 100 39 39 39 100 100 39 39 100 39 39 100 39 100 39 100 100 100 100 100 39 100 100 100 39 39 39 100 39 100 100 39 39 100 39 39 39 100 100 39 100 39 100 39 39 100 100 39 100 39 100 39 39 39 100 39 100 39 39 39 100 39 39 100 100 39 39 39 100 100 39 39 39 100 100 100 100 39 100 100 100 39 39 100 39 100 100 39 100 39 100 39 39 100 39 39 100 100 100", "output": "5" }, { "input": "100 80\n39 100 39 100 100 100 100 39 39 100 100 39 39 100 39 39 39 39 100 39 39 39 39 100 100 100 100 39 100 39 39 100 100 39 39 100 39 100 39 100 100 39 39 100 39 39 39 100 39 100 39 100 100 100 100 100 100 100 39 100 39 100 100 100 39 39 39 39 39 100 100 100 39 100 100 100 100 39 100 100 39 39 100 39 39 39 100 39 100 39 39 100 100 39 100 39 39 39 100 39", "output": "6" }, { "input": "4 1\n1 2 3 4", "output": "1" }, { "input": "4 1\n1 2 1 2", "output": "1" }, { "input": "4 4\n1 2 6 7", "output": "1" }, { "input": "4 8\n1 2 10 11", "output": "1" }, { "input": "6 2\n1 2 3 4 5 6", "output": "2" }, { "input": "6 1\n1 2 1 2 1 2", "output": "1" }, { "input": "6 4\n1 2 4 5 7 8", "output": "2" }, { "input": "6 3\n1 2 5 10 15 20", "output": "1" } ]
1,530,517,573
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
5
124
307,200
n,b=[int(x) for x in input().split()] a=[int(x) for x in input().split()] seg=[0] odd,ev,i=0,0,0 while(i<n): if(a[i]%2==0): ev+=1 else: odd+=1 if ev==odd: seg.append(i) i+=1 ans=0 k=b if len(seg)>2: for i in range(len(seg)-1): temp=0 k=b for j in range(i+1,len(seg)): if i==0 and j==len(seg)-1: continue elif i==0 and abs(a[seg[j]]-a[seg[i]])<=k: k-=abs(a[seg[j]]-a[seg[i]]) temp+=1 ans=max(ans,temp) ## print(a[seg[j]],a[seg[i]]) elif abs(a[seg[j]]-a[seg[i]+1])<=k: k-=abs(a[seg[j]]-a[seg[i]+1]) temp+=1 ans=max(ans,temp) ## print(a[seg[j]],a[seg[i]+1]) print(ans)
Title: Cutting Time Limit: None seconds Memory Limit: None megabytes Problem Description: There are a lot of things which could be cut — trees, paper, "the rope". In this problem you are going to cut a sequence of integers. There is a sequence of integers, which contains the equal number of even and odd numbers. Given a limited budget, you need to make maximum possible number of cuts such that each resulting segment will have the same number of odd and even integers. Cuts separate a sequence to continuous (contiguous) segments. You may think about each cut as a break between two adjacent elements in a sequence. So after cutting each element belongs to exactly one segment. Say, $[4, 1, 2, 3, 4, 5, 4, 4, 5, 5]$ $\to$ two cuts $\to$ $[4, 1 | 2, 3, 4, 5 | 4, 4, 5, 5]$. On each segment the number of even elements should be equal to the number of odd elements. The cost of the cut between $x$ and $y$ numbers is $|x - y|$ bitcoins. Find the maximum possible number of cuts that can be made while spending no more than $B$ bitcoins. Input Specification: First line of the input contains an integer $n$ ($2 \le n \le 100$) and an integer $B$ ($1 \le B \le 100$) — the number of elements in the sequence and the number of bitcoins you have. Second line contains $n$ integers: $a_1$, $a_2$, ..., $a_n$ ($1 \le a_i \le 100$) — elements of the sequence, which contains the equal number of even and odd numbers Output Specification: Print the maximum possible number of cuts which can be made while spending no more than $B$ bitcoins. Demo Input: ['6 4\n1 2 5 10 15 20\n', '4 10\n1 3 2 4\n', '6 100\n1 2 3 4 5 6\n'] Demo Output: ['1\n', '0\n', '2\n'] Note: In the first sample the optimal answer is to split sequence between $2$ and $5$. Price of this cut is equal to $3$ bitcoins. In the second sample it is not possible to make even one cut even with unlimited number of bitcoins. In the third sample the sequence should be cut between $2$ and $3$, and between $4$ and $5$. The total price of the cuts is $1 + 1 = 2$ bitcoins.
```python n,b=[int(x) for x in input().split()] a=[int(x) for x in input().split()] seg=[0] odd,ev,i=0,0,0 while(i<n): if(a[i]%2==0): ev+=1 else: odd+=1 if ev==odd: seg.append(i) i+=1 ans=0 k=b if len(seg)>2: for i in range(len(seg)-1): temp=0 k=b for j in range(i+1,len(seg)): if i==0 and j==len(seg)-1: continue elif i==0 and abs(a[seg[j]]-a[seg[i]])<=k: k-=abs(a[seg[j]]-a[seg[i]]) temp+=1 ans=max(ans,temp) ## print(a[seg[j]],a[seg[i]]) elif abs(a[seg[j]]-a[seg[i]+1])<=k: k-=abs(a[seg[j]]-a[seg[i]+1]) temp+=1 ans=max(ans,temp) ## print(a[seg[j]],a[seg[i]+1]) print(ans) ```
0
436
A
Feed with Candy
PROGRAMMING
1,500
[ "greedy" ]
null
null
The hero of the Cut the Rope game is a little monster named Om Nom. He loves candies. And what a coincidence! He also is the hero of today's problem. One day, Om Nom visited his friend Evan. Evan has *n* candies of two types (fruit drops and caramel drops), the *i*-th candy hangs at the height of *h**i* centimeters above the floor of the house, its mass is *m**i*. Om Nom wants to eat as many candies as possible. At the beginning Om Nom can make at most *x* centimeter high jumps. When Om Nom eats a candy of mass *y*, he gets stronger and the height of his jump increases by *y* centimeters. What maximum number of candies can Om Nom eat if he never eats two candies of the same type in a row (Om Nom finds it too boring)?
The first line contains two integers, *n* and *x* (1<=≤<=*n*,<=*x*<=≤<=2000) — the number of sweets Evan has and the initial height of Om Nom's jump. Each of the following *n* lines contains three integers *t**i*,<=*h**i*,<=*m**i* (0<=≤<=*t**i*<=≤<=1; 1<=≤<=*h**i*,<=*m**i*<=≤<=2000) — the type, height and the mass of the *i*-th candy. If number *t**i* equals 0, then the current candy is a caramel drop, otherwise it is a fruit drop.
Print a single integer — the maximum number of candies Om Nom can eat.
[ "5 3\n0 2 4\n1 3 1\n0 8 3\n0 20 10\n1 5 5\n" ]
[ "4\n" ]
One of the possible ways to eat 4 candies is to eat them in the order: 1, 5, 3, 2. Let's assume the following scenario: 1. Initially, the height of Om Nom's jump equals 3. He can reach candies 1 and 2. Let's assume that he eats candy 1. As the mass of this candy equals 4, the height of his jump will rise to 3 + 4 = 7. 1. Now Om Nom can reach candies 2 and 5. Let's assume that he eats candy 5. Then the height of his jump will be 7 + 5 = 12. 1. At this moment, Om Nom can reach two candies, 2 and 3. He won't eat candy 2 as its type matches the type of the previously eaten candy. Om Nom eats candy 3, the height of his jump is 12 + 3 = 15. 1. Om Nom eats candy 2, the height of his jump is 15 + 1 = 16. He cannot reach candy 4.
1,000
[ { "input": "5 3\n0 2 4\n1 3 1\n0 8 3\n0 20 10\n1 5 5", "output": "4" }, { "input": "5 2\n1 15 2\n1 11 2\n0 17 2\n0 16 1\n1 18 2", "output": "0" }, { "input": "6 2\n1 17 3\n1 6 1\n0 4 2\n1 10 1\n1 7 3\n1 5 1", "output": "0" }, { "input": "7 2\n1 14 1\n1 9 2\n0 6 3\n0 20 2\n0 4 2\n0 3 1\n0 9 2", "output": "0" }, { "input": "8 2\n0 20 3\n1 5 2\n1 4 1\n1 7 1\n0 1 3\n1 5 3\n1 7 2\n1 3 1", "output": "2" }, { "input": "9 2\n0 1 1\n1 8 2\n1 11 1\n0 9 1\n1 18 2\n1 7 3\n1 8 3\n0 16 1\n0 12 2", "output": "1" }, { "input": "10 2\n0 2 3\n1 5 2\n0 7 3\n1 15 2\n0 14 3\n1 19 1\n1 5 3\n0 2 2\n0 10 2\n0 10 3", "output": "9" }, { "input": "2 1\n0 1 1\n1 2 1", "output": "2" }, { "input": "2 1\n1 1 1\n0 2 1", "output": "2" }, { "input": "2 1\n0 1 1\n0 2 1", "output": "1" }, { "input": "2 1\n1 1 1\n1 2 1", "output": "1" }, { "input": "2 1\n0 1 1\n1 3 1", "output": "1" }, { "input": "2 1\n1 1 1\n0 3 1", "output": "1" }, { "input": "1 1\n1 2 1", "output": "0" }, { "input": "3 4\n1 1 2\n1 4 100\n0 104 1", "output": "3" }, { "input": "3 4\n1 1 100\n1 4 2\n0 104 1", "output": "3" }, { "input": "3 100\n0 1 1\n1 1 1\n1 1 1", "output": "3" }, { "input": "4 20\n0 10 10\n0 20 50\n1 40 1\n1 40 1", "output": "4" }, { "input": "4 2\n0 1 1\n0 2 3\n1 4 1\n1 5 1", "output": "4" }, { "input": "3 10\n0 9 1\n0 10 10\n1 20 1", "output": "3" }, { "input": "3 5\n0 4 1\n0 5 10\n1 15 5", "output": "3" }, { "input": "3 4\n0 2 1\n0 3 3\n1 6 5", "output": "3" }, { "input": "3 3\n0 1 1\n0 2 100\n1 10 1", "output": "3" }, { "input": "3 2\n0 1 1\n0 2 2\n1 4 4", "output": "3" }, { "input": "5 3\n0 1 5\n0 1 5\n0 1 5\n1 1 10\n1 1 1", "output": "5" }, { "input": "3 2\n0 1 1\n0 2 2\n1 4 2", "output": "3" }, { "input": "4 10\n0 20 1\n1 1 9\n1 2 11\n1 3 8", "output": "3" }, { "input": "7 1\n0 1 99\n1 100 1\n0 100 1\n0 101 1000\n1 1000 1\n0 1000 1\n1 1000 1", "output": "7" }, { "input": "4 3\n0 1 1\n0 2 100\n0 3 1\n1 100 1", "output": "3" }, { "input": "3 3\n0 1 100\n0 2 1\n1 100 100", "output": "3" }, { "input": "3 2\n0 1 1\n0 2 100\n1 10 1", "output": "3" }, { "input": "3 1\n0 1 1\n1 1 5\n0 7 1", "output": "3" }, { "input": "3 5\n0 2 3\n1 9 10\n0 4 4", "output": "3" }, { "input": "3 3\n0 2 1\n0 3 2\n1 5 10", "output": "3" } ]
1,402,675,096
1,696
Python 3
WRONG_ANSWER
PRETESTS
6
62
0
n,x=map(int,input().split()) a0=[] a1=[] for i in range(n): b=list(map(int,input().split())) if b[0]: a1.append(b[1:]) else: a0.append(b[1:]) a0.sort() a1.sort() k=0 i=0 l0=len(a0) l1=len(a1) y=x if a0[0][0]<=y: while i<l0 and i<l1: if a0[i][0]<=y: k+=1 y+=a0[i][1] if a1[i][0]<=y: k+=1 y+=a1[i][1] else: i=10**5 else: i=10**5 i+=1 if l1>l0 and i==l0 and a1[l0][0]<y: k+=1 ans=k k=0 i=0 y=x if a1[0][0]<=y: while i<l0 and i<l1: if a1[i][0]<=y: k+=1 y+=a1[i][1] if a0[i][0]<=y: k+=1 y+=a0[i][1] else: i=10**5 else: i=10**5 i+=1 if l0>l1 and i==l1 and a0[l1][0]<y: k+=1 print(max(ans,k))
Title: Feed with Candy Time Limit: None seconds Memory Limit: None megabytes Problem Description: The hero of the Cut the Rope game is a little monster named Om Nom. He loves candies. And what a coincidence! He also is the hero of today's problem. One day, Om Nom visited his friend Evan. Evan has *n* candies of two types (fruit drops and caramel drops), the *i*-th candy hangs at the height of *h**i* centimeters above the floor of the house, its mass is *m**i*. Om Nom wants to eat as many candies as possible. At the beginning Om Nom can make at most *x* centimeter high jumps. When Om Nom eats a candy of mass *y*, he gets stronger and the height of his jump increases by *y* centimeters. What maximum number of candies can Om Nom eat if he never eats two candies of the same type in a row (Om Nom finds it too boring)? Input Specification: The first line contains two integers, *n* and *x* (1<=≤<=*n*,<=*x*<=≤<=2000) — the number of sweets Evan has and the initial height of Om Nom's jump. Each of the following *n* lines contains three integers *t**i*,<=*h**i*,<=*m**i* (0<=≤<=*t**i*<=≤<=1; 1<=≤<=*h**i*,<=*m**i*<=≤<=2000) — the type, height and the mass of the *i*-th candy. If number *t**i* equals 0, then the current candy is a caramel drop, otherwise it is a fruit drop. Output Specification: Print a single integer — the maximum number of candies Om Nom can eat. Demo Input: ['5 3\n0 2 4\n1 3 1\n0 8 3\n0 20 10\n1 5 5\n'] Demo Output: ['4\n'] Note: One of the possible ways to eat 4 candies is to eat them in the order: 1, 5, 3, 2. Let's assume the following scenario: 1. Initially, the height of Om Nom's jump equals 3. He can reach candies 1 and 2. Let's assume that he eats candy 1. As the mass of this candy equals 4, the height of his jump will rise to 3 + 4 = 7. 1. Now Om Nom can reach candies 2 and 5. Let's assume that he eats candy 5. Then the height of his jump will be 7 + 5 = 12. 1. At this moment, Om Nom can reach two candies, 2 and 3. He won't eat candy 2 as its type matches the type of the previously eaten candy. Om Nom eats candy 3, the height of his jump is 12 + 3 = 15. 1. Om Nom eats candy 2, the height of his jump is 15 + 1 = 16. He cannot reach candy 4.
```python n,x=map(int,input().split()) a0=[] a1=[] for i in range(n): b=list(map(int,input().split())) if b[0]: a1.append(b[1:]) else: a0.append(b[1:]) a0.sort() a1.sort() k=0 i=0 l0=len(a0) l1=len(a1) y=x if a0[0][0]<=y: while i<l0 and i<l1: if a0[i][0]<=y: k+=1 y+=a0[i][1] if a1[i][0]<=y: k+=1 y+=a1[i][1] else: i=10**5 else: i=10**5 i+=1 if l1>l0 and i==l0 and a1[l0][0]<y: k+=1 ans=k k=0 i=0 y=x if a1[0][0]<=y: while i<l0 and i<l1: if a1[i][0]<=y: k+=1 y+=a1[i][1] if a0[i][0]<=y: k+=1 y+=a0[i][1] else: i=10**5 else: i=10**5 i+=1 if l0>l1 and i==l1 and a0[l1][0]<y: k+=1 print(max(ans,k)) ```
0
271
A
Beautiful Year
PROGRAMMING
800
[ "brute force" ]
null
null
It seems like the year of 2013 came only yesterday. Do you know a curious fact? The year of 2013 is the first year after the old 1987 with only distinct digits. Now you are suggested to solve the following problem: given a year number, find the minimum year number which is strictly larger than the given one and has only distinct digits.
The single line contains integer *y* (1000<=≤<=*y*<=≤<=9000) — the year number.
Print a single integer — the minimum year number that is strictly larger than *y* and all it's digits are distinct. It is guaranteed that the answer exists.
[ "1987\n", "2013\n" ]
[ "2013\n", "2014\n" ]
none
500
[ { "input": "1987", "output": "2013" }, { "input": "2013", "output": "2014" }, { "input": "1000", "output": "1023" }, { "input": "1001", "output": "1023" }, { "input": "1234", "output": "1235" }, { "input": "5555", "output": "5601" }, { "input": "9000", "output": "9012" }, { "input": "1111", "output": "1203" }, { "input": "8999", "output": "9012" }, { "input": "4572", "output": "4573" }, { "input": "6666", "output": "6701" }, { "input": "2001", "output": "2013" }, { "input": "3000", "output": "3012" }, { "input": "7712", "output": "7801" }, { "input": "8088", "output": "8091" }, { "input": "1594", "output": "1596" }, { "input": "6016", "output": "6017" }, { "input": "8800", "output": "8901" }, { "input": "3331", "output": "3401" }, { "input": "5090", "output": "5091" }, { "input": "2342", "output": "2345" }, { "input": "2334", "output": "2340" }, { "input": "1123", "output": "1203" }, { "input": "8989", "output": "9012" }, { "input": "8977", "output": "9012" }, { "input": "6869", "output": "6870" }, { "input": "8999", "output": "9012" } ]
1,693,126,435
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
2
62
0
y = int(input()) print(2013 if y == 1987 else y+1)
Title: Beautiful Year Time Limit: None seconds Memory Limit: None megabytes Problem Description: It seems like the year of 2013 came only yesterday. Do you know a curious fact? The year of 2013 is the first year after the old 1987 with only distinct digits. Now you are suggested to solve the following problem: given a year number, find the minimum year number which is strictly larger than the given one and has only distinct digits. Input Specification: The single line contains integer *y* (1000<=≤<=*y*<=≤<=9000) — the year number. Output Specification: Print a single integer — the minimum year number that is strictly larger than *y* and all it's digits are distinct. It is guaranteed that the answer exists. Demo Input: ['1987\n', '2013\n'] Demo Output: ['2013\n', '2014\n'] Note: none
```python y = int(input()) print(2013 if y == 1987 else y+1) ```
0
796
A
Buying A House
PROGRAMMING
800
[ "brute force", "implementation" ]
null
null
Zane the wizard had never loved anyone before, until he fell in love with a girl, whose name remains unknown to us. The girl lives in house *m* of a village. There are *n* houses in that village, lining in a straight line from left to right: house 1, house 2, ..., house *n*. The village is also well-structured: house *i* and house *i*<=+<=1 (1<=≤<=*i*<=&lt;<=*n*) are exactly 10 meters away. In this village, some houses are occupied, and some are not. Indeed, unoccupied houses can be purchased. You will be given *n* integers *a*1,<=*a*2,<=...,<=*a**n* that denote the availability and the prices of the houses. If house *i* is occupied, and therefore cannot be bought, then *a**i* equals 0. Otherwise, house *i* can be bought, and *a**i* represents the money required to buy it, in dollars. As Zane has only *k* dollars to spare, it becomes a challenge for him to choose the house to purchase, so that he could live as near as possible to his crush. Help Zane determine the minimum distance from his crush's house to some house he can afford, to help him succeed in his love.
The first line contains three integers *n*, *m*, and *k* (2<=≤<=*n*<=≤<=100, 1<=≤<=*m*<=≤<=*n*, 1<=≤<=*k*<=≤<=100) — the number of houses in the village, the house where the girl lives, and the amount of money Zane has (in dollars), respectively. The second line contains *n* integers *a*1,<=*a*2,<=...,<=*a**n* (0<=≤<=*a**i*<=≤<=100) — denoting the availability and the prices of the houses. It is guaranteed that *a**m*<==<=0 and that it is possible to purchase some house with no more than *k* dollars.
Print one integer — the minimum distance, in meters, from the house where the girl Zane likes lives to the house Zane can buy.
[ "5 1 20\n0 27 32 21 19\n", "7 3 50\n62 0 0 0 99 33 22\n", "10 5 100\n1 0 1 0 0 0 0 0 1 1\n" ]
[ "40", "30", "20" ]
In the first sample, with *k* = 20 dollars, Zane can buy only house 5. The distance from house *m* = 1 to house 5 is 10 + 10 + 10 + 10 = 40 meters. In the second sample, Zane can buy houses 6 and 7. It is better to buy house 6 than house 7, since house *m* = 3 and house 6 are only 30 meters away, while house *m* = 3 and house 7 are 40 meters away.
500
[ { "input": "5 1 20\n0 27 32 21 19", "output": "40" }, { "input": "7 3 50\n62 0 0 0 99 33 22", "output": "30" }, { "input": "10 5 100\n1 0 1 0 0 0 0 0 1 1", "output": "20" }, { "input": "5 3 1\n1 1 0 0 1", "output": "10" }, { "input": "5 5 5\n1 0 5 6 0", "output": "20" }, { "input": "15 10 50\n20 0 49 50 50 50 50 50 50 0 50 50 49 0 20", "output": "10" }, { "input": "7 5 1\n0 100 2 2 0 2 1", "output": "20" }, { "input": "100 50 100\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 0 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100", "output": "10" }, { "input": "100 50 1\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 0 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100", "output": "490" }, { "input": "100 77 50\n50 100 49 51 0 50 100 49 51 0 50 100 49 51 0 50 100 49 51 0 50 100 49 51 0 50 100 49 51 0 50 100 49 51 0 50 100 49 51 0 50 100 49 51 0 50 100 49 51 0 50 100 49 51 0 50 100 49 51 0 50 100 49 51 0 50 100 49 51 0 50 100 49 51 0 50 0 49 51 0 50 100 49 51 0 50 100 49 51 0 50 100 49 51 0 50 100 49 51 0", "output": "10" }, { "input": "100 1 1\n0 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0", "output": "980" }, { "input": "100 1 100\n0 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100", "output": "10" }, { "input": "100 10 99\n0 0 0 0 0 0 0 0 0 0 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 99 98", "output": "890" }, { "input": "7 4 5\n1 0 6 0 5 6 0", "output": "10" }, { "input": "7 4 5\n1 6 5 0 0 6 0", "output": "10" }, { "input": "100 42 59\n50 50 50 50 50 50 50 50 50 50 59 59 59 59 59 59 59 59 59 59 59 59 59 59 59 59 59 59 59 59 59 59 59 60 60 60 60 60 60 60 60 0 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 0", "output": "90" }, { "input": "2 1 100\n0 1", "output": "10" }, { "input": "2 2 100\n1 0", "output": "10" }, { "input": "10 1 88\n0 95 0 0 0 0 0 94 0 85", "output": "90" }, { "input": "10 2 14\n2 0 1 26 77 39 41 100 13 32", "output": "10" }, { "input": "10 3 11\n0 0 0 0 0 62 0 52 1 35", "output": "60" }, { "input": "20 12 44\n27 40 58 69 53 38 31 39 75 95 8 0 28 81 77 90 38 61 21 88", "output": "10" }, { "input": "30 29 10\n59 79 34 12 100 6 1 58 18 73 54 11 37 46 89 90 80 85 73 45 64 5 31 0 89 19 0 74 0 82", "output": "70" }, { "input": "40 22 1\n7 95 44 53 0 0 19 93 0 68 65 0 24 91 10 58 17 0 71 0 100 0 94 90 79 73 0 73 4 61 54 81 7 13 21 84 5 41 0 1", "output": "180" }, { "input": "40 22 99\n60 0 100 0 0 100 100 0 0 0 0 100 100 0 0 100 100 0 100 100 100 0 100 100 100 0 100 100 0 0 100 100 100 0 0 100 0 100 0 0", "output": "210" }, { "input": "50 10 82\n56 54 0 0 0 0 88 93 0 0 83 93 0 0 91 89 0 30 62 52 24 84 80 8 38 13 92 78 16 87 23 30 71 55 16 63 15 99 4 93 24 6 3 35 4 42 73 27 86 37", "output": "80" }, { "input": "63 49 22\n18 3 97 52 75 2 12 24 58 75 80 97 22 10 79 51 30 60 68 99 75 2 35 3 97 88 9 7 18 5 0 0 0 91 0 91 56 36 76 0 0 0 52 27 35 0 51 72 0 96 57 0 0 0 0 92 55 28 0 30 0 78 77", "output": "190" }, { "input": "74 38 51\n53 36 55 42 64 5 87 9 0 16 86 78 9 22 19 1 25 72 1 0 0 0 79 0 0 0 77 58 70 0 0 100 64 0 99 59 0 0 0 0 65 74 0 96 0 58 89 93 61 88 0 0 82 89 0 0 49 24 7 77 89 87 94 61 100 31 93 70 39 49 39 14 20 84", "output": "190" }, { "input": "89 22 11\n36 0 68 89 0 85 72 0 38 56 0 44 0 94 0 28 71 0 0 18 0 0 0 89 0 0 0 75 0 0 0 32 66 0 0 0 0 0 0 48 63 0 64 58 0 23 48 0 0 52 93 61 57 0 18 0 0 34 62 17 0 41 0 0 53 59 44 0 0 51 40 0 0 100 100 54 0 88 0 5 45 56 57 67 24 16 88 86 15", "output": "580" }, { "input": "97 44 100\n0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 51 19", "output": "520" }, { "input": "100 1 1\n0 0 0 0 10 54 84 6 17 94 65 82 34 0 61 46 42 0 2 16 56 0 100 0 82 0 0 0 89 78 96 56 0 0 0 0 0 0 0 0 77 70 0 96 67 0 0 32 44 1 72 50 14 11 24 61 100 64 19 5 67 69 44 82 93 22 67 93 22 61 53 64 79 41 84 48 43 97 7 24 8 49 23 16 72 52 97 29 69 47 29 49 64 91 4 73 17 18 51 67", "output": "490" }, { "input": "100 1 50\n0 0 0 60 0 0 54 0 80 0 0 0 97 0 68 97 84 0 0 93 0 0 0 0 68 0 0 62 0 0 55 68 65 87 0 69 0 0 0 0 0 52 61 100 0 71 0 82 88 78 0 81 0 95 0 57 0 67 0 0 0 55 86 0 60 72 0 0 73 0 83 0 0 60 64 0 56 0 0 77 84 0 58 63 84 0 0 67 0 16 3 88 0 98 31 52 40 35 85 23", "output": "890" }, { "input": "100 1 100\n0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 91 70 14", "output": "970" }, { "input": "100 1 29\n0 0 0 0 64 0 89 97 0 0 0 59 0 67 62 0 59 0 0 80 0 0 0 0 0 97 0 57 0 64 32 0 44 0 0 48 0 47 38 0 42 0 0 0 0 0 0 46 74 0 86 33 33 0 44 0 79 0 0 0 0 91 59 0 59 65 55 0 0 58 33 95 0 97 76 0 81 0 41 0 38 81 80 0 85 0 31 0 0 92 0 0 45 96 0 85 91 87 0 10", "output": "990" }, { "input": "100 50 20\n3 0 32 0 48 32 64 0 54 26 0 0 0 0 0 28 0 0 54 0 0 45 49 0 38 74 0 0 39 42 62 48 75 96 89 42 0 44 0 0 30 21 76 0 50 0 79 0 0 0 0 99 0 84 62 0 0 0 0 53 80 0 28 0 0 53 0 0 38 0 62 0 0 62 0 0 88 0 44 32 0 81 35 45 49 0 69 73 38 27 72 0 96 72 69 0 0 22 76 10", "output": "490" }, { "input": "100 50 20\n49 0 56 0 87 25 40 0 50 0 0 97 0 0 36 29 0 0 0 0 0 73 29 71 44 0 0 0 91 92 69 0 0 60 81 49 48 38 0 87 0 82 0 32 0 82 46 39 0 0 29 0 0 29 0 79 47 0 0 0 0 0 49 0 24 33 70 0 63 45 97 90 0 0 29 53 55 0 84 0 0 100 26 0 88 0 0 0 0 81 70 0 30 80 0 75 59 98 0 2", "output": "500" }, { "input": "100 2 2\n0 0 43 90 47 5 2 97 52 69 21 48 64 10 34 97 97 74 8 19 68 56 55 24 47 38 43 73 72 72 60 60 51 36 33 44 100 45 13 54 72 52 0 15 3 6 50 8 88 4 78 26 40 27 30 63 67 83 61 91 33 97 54 20 92 27 89 35 10 7 84 50 11 95 74 88 24 44 74 100 18 56 34 91 41 34 51 51 11 91 89 54 19 100 83 89 10 17 76 20", "output": "50" }, { "input": "100 100 34\n5 73 0 0 44 0 0 0 79 55 0 0 0 0 0 0 0 0 83 67 75 0 0 0 0 59 0 74 0 0 47 98 0 0 72 41 0 55 87 0 0 78 84 0 0 39 0 79 72 95 0 0 0 0 0 85 53 84 0 0 0 0 37 75 0 66 0 0 0 0 61 0 70 0 37 60 42 78 92 52 0 0 0 55 77 57 0 63 37 0 0 0 96 70 0 94 97 0 0 0", "output": "990" }, { "input": "100 100 100\n43 79 21 87 84 14 28 69 92 16 3 71 79 37 48 37 72 58 12 72 62 49 37 17 60 54 41 99 15 72 40 89 76 1 99 87 14 56 63 48 69 37 96 64 7 14 1 73 85 33 98 70 97 71 96 28 49 71 56 2 67 22 100 2 98 100 62 77 92 76 98 98 47 26 22 47 50 56 9 16 72 47 5 62 29 78 81 1 0 63 32 65 87 3 40 53 8 80 93 0", "output": "10" }, { "input": "100 38 1\n3 59 12 81 33 95 0 41 36 17 63 76 42 77 85 56 3 96 55 41 24 87 18 9 0 37 0 61 69 0 0 0 67 0 0 0 0 0 0 18 0 0 47 56 74 0 0 80 0 42 0 1 60 59 62 9 19 87 92 48 58 30 98 51 99 10 42 94 51 53 50 89 24 5 52 82 50 39 98 8 95 4 57 21 10 0 44 32 19 14 64 34 79 76 17 3 15 22 71 51", "output": "140" }, { "input": "100 72 1\n56 98 8 27 9 23 16 76 56 1 34 43 96 73 75 49 62 20 18 23 51 55 30 84 4 20 89 40 75 16 69 35 1 0 16 0 80 0 41 17 0 0 76 23 0 92 0 34 0 91 82 54 0 0 0 63 85 59 98 24 29 0 8 77 26 0 34 95 39 0 0 0 74 0 0 0 0 12 0 92 0 0 55 95 66 30 0 0 29 98 0 0 0 47 0 0 80 0 0 4", "output": "390" }, { "input": "100 66 1\n38 50 64 91 37 44 74 21 14 41 80 90 26 51 78 85 80 86 44 14 49 75 93 48 78 89 23 72 35 22 14 48 100 71 62 22 7 95 80 66 32 20 17 47 79 30 41 52 15 62 67 71 1 6 0 9 0 0 0 11 0 0 24 0 31 0 77 0 51 0 0 0 0 0 0 77 0 36 44 19 90 45 6 25 100 87 93 30 4 97 36 88 33 50 26 71 97 71 51 68", "output": "130" }, { "input": "100 55 1\n0 33 45 83 56 96 58 24 45 30 38 60 39 69 21 87 59 21 72 73 27 46 61 61 11 97 77 5 39 3 3 35 76 37 53 84 24 75 9 48 31 90 100 84 74 81 83 83 42 23 29 94 18 1 0 53 52 99 86 37 94 54 28 75 28 80 17 14 98 68 76 20 32 23 42 31 57 79 60 14 18 27 1 98 32 3 96 25 15 38 2 6 3 28 59 54 63 2 43 59", "output": "10" }, { "input": "100 55 1\n24 52 41 6 55 11 58 25 63 12 70 39 23 28 72 17 96 85 7 84 21 13 34 37 97 43 36 32 15 30 58 5 14 71 40 70 9 92 44 73 31 58 96 90 19 35 29 91 25 36 48 95 61 78 0 1 99 61 81 88 42 53 61 57 42 55 74 45 41 92 99 30 20 25 89 50 37 4 17 24 6 65 15 44 40 2 38 43 7 90 38 59 75 87 96 28 12 67 24 32", "output": "10" }, { "input": "100 21 1\n62 5 97 80 81 28 83 0 26 0 0 0 0 23 0 0 90 0 0 0 0 0 0 0 0 54 71 8 0 0 42 0 73 0 17 0 1 31 71 78 58 72 84 39 54 59 13 29 16 41 71 35 88 55 70 50 33 100 100 60 52 90 7 66 44 55 51 42 90 17 86 44 46 8 52 74 8 22 2 92 34 37 58 98 70 74 19 91 74 25 4 38 71 68 50 68 63 14 60 98", "output": "160" }, { "input": "5 2 20\n27 0 32 21 19", "output": "30" }, { "input": "6 4 10\n10 0 0 0 0 10", "output": "20" }, { "input": "8 7 100\n1 0 0 0 0 0 0 1", "output": "10" }, { "input": "5 3 20\n1 21 0 0 1", "output": "20" }, { "input": "4 3 1\n0 0 0 1", "output": "10" }, { "input": "5 2 3\n4 0 5 6 1", "output": "30" }, { "input": "5 3 87\n88 89 0 1 90", "output": "10" }, { "input": "5 3 20\n15 30 0 15 35", "output": "10" }, { "input": "6 3 50\n0 0 0 1 2 0", "output": "10" }, { "input": "6 4 9\n100 9 10 0 0 9", "output": "20" }, { "input": "5 4 20\n0 20 0 0 20", "output": "10" }, { "input": "6 3 3\n1 5 0 2 2 0", "output": "10" }, { "input": "5 4 100\n0 1 0 0 1", "output": "10" } ]
1,493,313,711
2,147,483,647
Python 3
OK
TESTS
58
62
5,529,600
n,m,k=map(int,input().split()) a=list(map(int,input().split())) b=n for i in range(n): if a[i]!=0 and a[i]<=k: c=abs(m - (i+1)) if c<b: b = c print(b * 10)
Title: Buying A House Time Limit: None seconds Memory Limit: None megabytes Problem Description: Zane the wizard had never loved anyone before, until he fell in love with a girl, whose name remains unknown to us. The girl lives in house *m* of a village. There are *n* houses in that village, lining in a straight line from left to right: house 1, house 2, ..., house *n*. The village is also well-structured: house *i* and house *i*<=+<=1 (1<=≤<=*i*<=&lt;<=*n*) are exactly 10 meters away. In this village, some houses are occupied, and some are not. Indeed, unoccupied houses can be purchased. You will be given *n* integers *a*1,<=*a*2,<=...,<=*a**n* that denote the availability and the prices of the houses. If house *i* is occupied, and therefore cannot be bought, then *a**i* equals 0. Otherwise, house *i* can be bought, and *a**i* represents the money required to buy it, in dollars. As Zane has only *k* dollars to spare, it becomes a challenge for him to choose the house to purchase, so that he could live as near as possible to his crush. Help Zane determine the minimum distance from his crush's house to some house he can afford, to help him succeed in his love. Input Specification: The first line contains three integers *n*, *m*, and *k* (2<=≤<=*n*<=≤<=100, 1<=≤<=*m*<=≤<=*n*, 1<=≤<=*k*<=≤<=100) — the number of houses in the village, the house where the girl lives, and the amount of money Zane has (in dollars), respectively. The second line contains *n* integers *a*1,<=*a*2,<=...,<=*a**n* (0<=≤<=*a**i*<=≤<=100) — denoting the availability and the prices of the houses. It is guaranteed that *a**m*<==<=0 and that it is possible to purchase some house with no more than *k* dollars. Output Specification: Print one integer — the minimum distance, in meters, from the house where the girl Zane likes lives to the house Zane can buy. Demo Input: ['5 1 20\n0 27 32 21 19\n', '7 3 50\n62 0 0 0 99 33 22\n', '10 5 100\n1 0 1 0 0 0 0 0 1 1\n'] Demo Output: ['40', '30', '20'] Note: In the first sample, with *k* = 20 dollars, Zane can buy only house 5. The distance from house *m* = 1 to house 5 is 10 + 10 + 10 + 10 = 40 meters. In the second sample, Zane can buy houses 6 and 7. It is better to buy house 6 than house 7, since house *m* = 3 and house 6 are only 30 meters away, while house *m* = 3 and house 7 are 40 meters away.
```python n,m,k=map(int,input().split()) a=list(map(int,input().split())) b=n for i in range(n): if a[i]!=0 and a[i]<=k: c=abs(m - (i+1)) if c<b: b = c print(b * 10) ```
3
20
C
Dijkstra?
PROGRAMMING
1,900
[ "graphs", "shortest paths" ]
C. Dijkstra?
1
64
You are given a weighted undirected graph. The vertices are enumerated from 1 to *n*. Your task is to find the shortest path between the vertex 1 and the vertex *n*.
The first line contains two integers *n* and *m* (2<=≤<=*n*<=≤<=105,<=0<=≤<=*m*<=≤<=105), where *n* is the number of vertices and *m* is the number of edges. Following *m* lines contain one edge each in form *a**i*, *b**i* and *w**i* (1<=≤<=*a**i*,<=*b**i*<=≤<=*n*,<=1<=≤<=*w**i*<=≤<=106), where *a**i*,<=*b**i* are edge endpoints and *w**i* is the length of the edge. It is possible that the graph has loops and multiple edges between pair of vertices.
Write the only integer -1 in case of no path. Write the shortest path in opposite case. If there are many solutions, print any of them.
[ "5 6\n1 2 2\n2 5 5\n2 3 4\n1 4 1\n4 3 3\n3 5 1\n", "5 6\n1 2 2\n2 5 5\n2 3 4\n1 4 1\n4 3 3\n3 5 1\n" ]
[ "1 4 3 5 ", "1 4 3 5 " ]
none
1,500
[ { "input": "5 6\n1 2 2\n2 5 5\n2 3 4\n1 4 1\n4 3 3\n3 5 1", "output": "1 4 3 5 " }, { "input": "5 6\n1 2 2\n2 5 5\n2 3 4\n1 4 1\n4 3 3\n3 5 1", "output": "1 4 3 5 " }, { "input": "2 1\n1 2 1", "output": "1 2 " }, { "input": "3 1\n1 2 1", "output": "-1" }, { "input": "3 3\n1 2 1\n1 3 2\n2 3 1", "output": "1 3 " }, { "input": "10 10\n1 5 12\n2 4 140\n2 10 149\n3 6 154\n3 7 9\n3 8 226\n3 10 132\n4 10 55\n5 8 33\n7 8 173", "output": "1 5 8 7 3 10 " }, { "input": "10 10\n1 5 178\n1 8 221\n2 7 92\n2 8 159\n3 5 55\n3 6 179\n3 10 237\n4 8 205\n5 6 191\n8 10 157", "output": "1 8 10 " }, { "input": "10 10\n1 4 200\n1 9 197\n3 4 79\n3 5 213\n3 6 149\n5 8 3\n5 9 189\n6 7 130\n6 9 51\n8 10 135", "output": "1 9 5 8 10 " }, { "input": "10 10\n1 4 201\n2 3 238\n3 4 40\n3 6 231\n3 8 45\n4 5 227\n4 6 58\n4 9 55\n5 7 14\n6 10 242", "output": "1 4 6 10 " } ]
1,569,156,722
2,147,483,647
PyPy 3
WRONG_ANSWER
TESTS
0
108
0
class Graph: def __init__(self): self.nodes = set() self.edges = defaultdict(list) self.distances = {} def add_node(self, value): self.nodes.add(value) def add_edge(self, from_node, to_node, distance): self.edges[from_node].append(to_node) self.edges[to_node].append(from_node) self.distances[(from_node, to_node)] = distance def dijsktra(graph, initial): visited = {initial: 0} path = {} nodes = set(graph.nodes) while nodes: min_node = None for node in nodes: if node in visited: if min_node is None: min_node = node elif visited[node] < visited[min_node]: min_node = node if min_node is None: break nodes.remove(min_node) current_weight = visited[min_node] for edge in graph.edges[min_node]: weight = current_weight + graph.distance[(min_node, edge)] if edge not in visited or weight < visited[edge]: visited[edge] = weight path[edge] = min_node return visited, path
Title: Dijkstra? Time Limit: 1 seconds Memory Limit: 64 megabytes Problem Description: You are given a weighted undirected graph. The vertices are enumerated from 1 to *n*. Your task is to find the shortest path between the vertex 1 and the vertex *n*. Input Specification: The first line contains two integers *n* and *m* (2<=≤<=*n*<=≤<=105,<=0<=≤<=*m*<=≤<=105), where *n* is the number of vertices and *m* is the number of edges. Following *m* lines contain one edge each in form *a**i*, *b**i* and *w**i* (1<=≤<=*a**i*,<=*b**i*<=≤<=*n*,<=1<=≤<=*w**i*<=≤<=106), where *a**i*,<=*b**i* are edge endpoints and *w**i* is the length of the edge. It is possible that the graph has loops and multiple edges between pair of vertices. Output Specification: Write the only integer -1 in case of no path. Write the shortest path in opposite case. If there are many solutions, print any of them. Demo Input: ['5 6\n1 2 2\n2 5 5\n2 3 4\n1 4 1\n4 3 3\n3 5 1\n', '5 6\n1 2 2\n2 5 5\n2 3 4\n1 4 1\n4 3 3\n3 5 1\n'] Demo Output: ['1 4 3 5 ', '1 4 3 5 '] Note: none
```python class Graph: def __init__(self): self.nodes = set() self.edges = defaultdict(list) self.distances = {} def add_node(self, value): self.nodes.add(value) def add_edge(self, from_node, to_node, distance): self.edges[from_node].append(to_node) self.edges[to_node].append(from_node) self.distances[(from_node, to_node)] = distance def dijsktra(graph, initial): visited = {initial: 0} path = {} nodes = set(graph.nodes) while nodes: min_node = None for node in nodes: if node in visited: if min_node is None: min_node = node elif visited[node] < visited[min_node]: min_node = node if min_node is None: break nodes.remove(min_node) current_weight = visited[min_node] for edge in graph.edges[min_node]: weight = current_weight + graph.distance[(min_node, edge)] if edge not in visited or weight < visited[edge]: visited[edge] = weight path[edge] = min_node return visited, path ```
0
68
E
Contact
PROGRAMMING
2,900
[ "geometry" ]
E. Contact
3
256
Little Petya is preparing for the first contact with aliens. He knows that alien spaceships have shapes of non-degenerate triangles and there will be exactly 4 ships. Landing platform for a ship can be made of 3 special columns located at some points of a Cartesian plane such that these 3 points form a triangle equal to the ship with respect to rotations, translations (parallel shifts along some vector) and reflections (symmetries along the edges). The ships can overlap after the landing. Each column can be used to land more than one ship, for example, if there are two equal ships, we don't need to build 6 columns to land both ships, 3 will be enough. Petya wants to know what minimum number of columns will be enough to land all ships.
Each of 4 lines will contain 6 integers *x*1 *y*1 *x*2 *y*2 *x*3 *y*3 (0<=≤<=*x*1,<=*y*1,<=*x*2,<=*y*2,<=*x*3,<=*y*3<=≤<=20), representing 3 points that describe the shape of each of 4 ships. It is guaranteed that 3 points in each line will represent a non-degenerate triangle.
First line should contain minimum number of columns enough to land all spaceships.
[ "0 0 1 0 1 2\n0 0 0 2 2 2\n0 0 3 0 1 2\n0 0 3 0 2 2\n", "0 0 0 1 1 1\n0 0 0 2 2 2\n0 0 0 5 5 5\n0 0 0 17 17 17\n" ]
[ "4\n", "9\n" ]
In the first test case columns can be put in these points: (0, 0), (1, 0), (3, 0), (1, 2). Note that the second ship can land using last 3 columns. In the second test case following points can be chosen: (0, 0), (0, 1), (1, 0), (0, 2), (2, 0), (0, 5), (5, 0), (0, 17), (17, 0). It is impossible to use less than 9 columns.
2,500
[]
1,689,420,682
2,147,483,647
PyPy 3-64
WRONG_ANSWER
TESTS
0
62
0
print("_RANDOM_GUESS_1689420680.5839827")# 1689420680.5840013
Title: Contact Time Limit: 3 seconds Memory Limit: 256 megabytes Problem Description: Little Petya is preparing for the first contact with aliens. He knows that alien spaceships have shapes of non-degenerate triangles and there will be exactly 4 ships. Landing platform for a ship can be made of 3 special columns located at some points of a Cartesian plane such that these 3 points form a triangle equal to the ship with respect to rotations, translations (parallel shifts along some vector) and reflections (symmetries along the edges). The ships can overlap after the landing. Each column can be used to land more than one ship, for example, if there are two equal ships, we don't need to build 6 columns to land both ships, 3 will be enough. Petya wants to know what minimum number of columns will be enough to land all ships. Input Specification: Each of 4 lines will contain 6 integers *x*1 *y*1 *x*2 *y*2 *x*3 *y*3 (0<=≤<=*x*1,<=*y*1,<=*x*2,<=*y*2,<=*x*3,<=*y*3<=≤<=20), representing 3 points that describe the shape of each of 4 ships. It is guaranteed that 3 points in each line will represent a non-degenerate triangle. Output Specification: First line should contain minimum number of columns enough to land all spaceships. Demo Input: ['0 0 1 0 1 2\n0 0 0 2 2 2\n0 0 3 0 1 2\n0 0 3 0 2 2\n', '0 0 0 1 1 1\n0 0 0 2 2 2\n0 0 0 5 5 5\n0 0 0 17 17 17\n'] Demo Output: ['4\n', '9\n'] Note: In the first test case columns can be put in these points: (0, 0), (1, 0), (3, 0), (1, 2). Note that the second ship can land using last 3 columns. In the second test case following points can be chosen: (0, 0), (0, 1), (1, 0), (0, 2), (2, 0), (0, 5), (5, 0), (0, 17), (17, 0). It is impossible to use less than 9 columns.
```python print("_RANDOM_GUESS_1689420680.5839827")# 1689420680.5840013 ```
0
474
D
Flowers
PROGRAMMING
1,700
[ "dp" ]
null
null
We saw the little game Marmot made for Mole's lunch. Now it's Marmot's dinner time and, as we all know, Marmot eats flowers. At every dinner he eats some red and white flowers. Therefore a dinner can be represented as a sequence of several flowers, some of them white and some of them red. But, for a dinner to be tasty, there is a rule: Marmot wants to eat white flowers only in groups of size *k*. Now Marmot wonders in how many ways he can eat between *a* and *b* flowers. As the number of ways could be very large, print it modulo 1000000007 (109<=+<=7).
Input contains several test cases. The first line contains two integers *t* and *k* (1<=≤<=*t*,<=*k*<=≤<=105), where *t* represents the number of test cases. The next *t* lines contain two integers *a**i* and *b**i* (1<=≤<=*a**i*<=≤<=*b**i*<=≤<=105), describing the *i*-th test.
Print *t* lines to the standard output. The *i*-th line should contain the number of ways in which Marmot can eat between *a**i* and *b**i* flowers at dinner modulo 1000000007 (109<=+<=7).
[ "3 2\n1 3\n2 3\n4 4\n" ]
[ "6\n5\n5\n" ]
- For *K* = 2 and length 1 Marmot can eat (*R*). - For *K* = 2 and length 2 Marmot can eat (*RR*) and (*WW*). - For *K* = 2 and length 3 Marmot can eat (*RRR*), (*RWW*) and (*WWR*). - For *K* = 2 and length 4 Marmot can eat, for example, (*WWWW*) or (*RWWR*), but for example he can't eat (*WWWR*).
2,000
[ { "input": "3 2\n1 3\n2 3\n4 4", "output": "6\n5\n5" }, { "input": "1 1\n1 3", "output": "14" }, { "input": "1 2\n64329 79425", "output": "0" } ]
1,677,259,346
2,147,483,647
PyPy 3-64
MEMORY_LIMIT_EXCEEDED
TESTS
0
498
268,390,400
def main(): t, k = input().split() mod = 1000000007 t = int(t) k = int(k) dp = [0] for i in range(1, k): dp.append(1) dp.append(2) for i in range(k+1, 100005): dp.append(dp[i-1]+dp[i-k]) for i in range(1, 100005): dp[i] = dp[i-1]+dp[i] for i in range(t): a, b = input().split() a = int(a) b = int(b) print((dp[b]-dp[a-1])%mod) main()
Title: Flowers Time Limit: None seconds Memory Limit: None megabytes Problem Description: We saw the little game Marmot made for Mole's lunch. Now it's Marmot's dinner time and, as we all know, Marmot eats flowers. At every dinner he eats some red and white flowers. Therefore a dinner can be represented as a sequence of several flowers, some of them white and some of them red. But, for a dinner to be tasty, there is a rule: Marmot wants to eat white flowers only in groups of size *k*. Now Marmot wonders in how many ways he can eat between *a* and *b* flowers. As the number of ways could be very large, print it modulo 1000000007 (109<=+<=7). Input Specification: Input contains several test cases. The first line contains two integers *t* and *k* (1<=≤<=*t*,<=*k*<=≤<=105), where *t* represents the number of test cases. The next *t* lines contain two integers *a**i* and *b**i* (1<=≤<=*a**i*<=≤<=*b**i*<=≤<=105), describing the *i*-th test. Output Specification: Print *t* lines to the standard output. The *i*-th line should contain the number of ways in which Marmot can eat between *a**i* and *b**i* flowers at dinner modulo 1000000007 (109<=+<=7). Demo Input: ['3 2\n1 3\n2 3\n4 4\n'] Demo Output: ['6\n5\n5\n'] Note: - For *K* = 2 and length 1 Marmot can eat (*R*). - For *K* = 2 and length 2 Marmot can eat (*RR*) and (*WW*). - For *K* = 2 and length 3 Marmot can eat (*RRR*), (*RWW*) and (*WWR*). - For *K* = 2 and length 4 Marmot can eat, for example, (*WWWW*) or (*RWWR*), but for example he can't eat (*WWWR*).
```python def main(): t, k = input().split() mod = 1000000007 t = int(t) k = int(k) dp = [0] for i in range(1, k): dp.append(1) dp.append(2) for i in range(k+1, 100005): dp.append(dp[i-1]+dp[i-k]) for i in range(1, 100005): dp[i] = dp[i-1]+dp[i] for i in range(t): a, b = input().split() a = int(a) b = int(b) print((dp[b]-dp[a-1])%mod) main() ```
0
452
A
Eevee
PROGRAMMING
1,000
[ "brute force", "implementation", "strings" ]
null
null
You are solving the crossword problem K from IPSC 2014. You solved all the clues except for one: who does Eevee evolve into? You are not very into pokemons, but quick googling helped you find out, that Eevee can evolve into eight different pokemons: Vaporeon, Jolteon, Flareon, Espeon, Umbreon, Leafeon, Glaceon, and Sylveon. You know the length of the word in the crossword, and you already know some letters. Designers of the crossword made sure that the answer is unambiguous, so you can assume that exactly one pokemon out of the 8 that Eevee evolves into fits the length and the letters given. Your task is to find it.
First line contains an integer *n* (6<=≤<=*n*<=≤<=8) – the length of the string. Next line contains a string consisting of *n* characters, each of which is either a lower case english letter (indicating a known letter) or a dot character (indicating an empty cell in the crossword).
Print a name of the pokemon that Eevee can evolve into that matches the pattern in the input. Use lower case letters only to print the name (in particular, do not capitalize the first letter).
[ "7\nj......\n", "7\n...feon\n", "7\n.l.r.o.\n" ]
[ "jolteon\n", "leafeon\n", "flareon\n" ]
Here's a set of names in a form you can paste into your solution: ["vaporeon", "jolteon", "flareon", "espeon", "umbreon", "leafeon", "glaceon", "sylveon"] {"vaporeon", "jolteon", "flareon", "espeon", "umbreon", "leafeon", "glaceon", "sylveon"}
500
[ { "input": "7\n...feon", "output": "leafeon" }, { "input": "7\n.l.r.o.", "output": "flareon" }, { "input": "6\n.s..o.", "output": "espeon" }, { "input": "7\nglaceon", "output": "glaceon" }, { "input": "8\n.a.o.e.n", "output": "vaporeon" }, { "input": "7\n.laceon", "output": "glaceon" }, { "input": "7\n..lveon", "output": "sylveon" }, { "input": "7\n.l.ceon", "output": "glaceon" }, { "input": "7\n..areon", "output": "flareon" } ]
1,633,096,035
2,147,483,647
PyPy 3
WRONG_ANSWER
TESTS
8
77
20,172,800
#!/usr/bin/env pypy3 from sys import stdin, stdout def input(): return stdin.readline().strip() def read_int_list(): return list(map(int, input().split())) def read_int_tuple(): return tuple(map(int, input().split())) def read_int(): return int(input()) ### CODE HERE def match(A, B): for a, b in zip(A, B): if a == b or b == "." or a == ".": continue return False return True def ans(s): choices = ["vaporeon", "jolteon", "flareon", "espeon", "umbreon", "leafeon", "glaceon", "sylveon"] for c in choices: if match(c, s): return c input() print(ans(input()))
Title: Eevee Time Limit: None seconds Memory Limit: None megabytes Problem Description: You are solving the crossword problem K from IPSC 2014. You solved all the clues except for one: who does Eevee evolve into? You are not very into pokemons, but quick googling helped you find out, that Eevee can evolve into eight different pokemons: Vaporeon, Jolteon, Flareon, Espeon, Umbreon, Leafeon, Glaceon, and Sylveon. You know the length of the word in the crossword, and you already know some letters. Designers of the crossword made sure that the answer is unambiguous, so you can assume that exactly one pokemon out of the 8 that Eevee evolves into fits the length and the letters given. Your task is to find it. Input Specification: First line contains an integer *n* (6<=≤<=*n*<=≤<=8) – the length of the string. Next line contains a string consisting of *n* characters, each of which is either a lower case english letter (indicating a known letter) or a dot character (indicating an empty cell in the crossword). Output Specification: Print a name of the pokemon that Eevee can evolve into that matches the pattern in the input. Use lower case letters only to print the name (in particular, do not capitalize the first letter). Demo Input: ['7\nj......\n', '7\n...feon\n', '7\n.l.r.o.\n'] Demo Output: ['jolteon\n', 'leafeon\n', 'flareon\n'] Note: Here's a set of names in a form you can paste into your solution: ["vaporeon", "jolteon", "flareon", "espeon", "umbreon", "leafeon", "glaceon", "sylveon"] {"vaporeon", "jolteon", "flareon", "espeon", "umbreon", "leafeon", "glaceon", "sylveon"}
```python #!/usr/bin/env pypy3 from sys import stdin, stdout def input(): return stdin.readline().strip() def read_int_list(): return list(map(int, input().split())) def read_int_tuple(): return tuple(map(int, input().split())) def read_int(): return int(input()) ### CODE HERE def match(A, B): for a, b in zip(A, B): if a == b or b == "." or a == ".": continue return False return True def ans(s): choices = ["vaporeon", "jolteon", "flareon", "espeon", "umbreon", "leafeon", "glaceon", "sylveon"] for c in choices: if match(c, s): return c input() print(ans(input())) ```
0
858
A
k-rounding
PROGRAMMING
1,100
[ "brute force", "math", "number theory" ]
null
null
For a given positive integer *n* denote its *k*-rounding as the minimum positive integer *x*, such that *x* ends with *k* or more zeros in base 10 and is divisible by *n*. For example, 4-rounding of 375 is 375·80<==<=30000. 30000 is the minimum integer such that it ends with 4 or more zeros and is divisible by 375. Write a program that will perform the *k*-rounding of *n*.
The only line contains two integers *n* and *k* (1<=≤<=*n*<=≤<=109, 0<=≤<=*k*<=≤<=8).
Print the *k*-rounding of *n*.
[ "375 4\n", "10000 1\n", "38101 0\n", "123456789 8\n" ]
[ "30000\n", "10000\n", "38101\n", "12345678900000000\n" ]
none
750
[ { "input": "375 4", "output": "30000" }, { "input": "10000 1", "output": "10000" }, { "input": "38101 0", "output": "38101" }, { "input": "123456789 8", "output": "12345678900000000" }, { "input": "1 0", "output": "1" }, { "input": "2 0", "output": "2" }, { "input": "100 0", "output": "100" }, { "input": "1000000000 0", "output": "1000000000" }, { "input": "160 2", "output": "800" }, { "input": "3 0", "output": "3" }, { "input": "10 0", "output": "10" }, { "input": "1 1", "output": "10" }, { "input": "2 1", "output": "10" }, { "input": "3 1", "output": "30" }, { "input": "4 1", "output": "20" }, { "input": "5 1", "output": "10" }, { "input": "6 1", "output": "30" }, { "input": "7 1", "output": "70" }, { "input": "8 1", "output": "40" }, { "input": "9 1", "output": "90" }, { "input": "10 1", "output": "10" }, { "input": "11 1", "output": "110" }, { "input": "12 1", "output": "60" }, { "input": "16 2", "output": "400" }, { "input": "2 2", "output": "100" }, { "input": "1 2", "output": "100" }, { "input": "5 2", "output": "100" }, { "input": "15 2", "output": "300" }, { "input": "36 2", "output": "900" }, { "input": "1 8", "output": "100000000" }, { "input": "8 8", "output": "100000000" }, { "input": "96 8", "output": "300000000" }, { "input": "175 8", "output": "700000000" }, { "input": "9999995 8", "output": "199999900000000" }, { "input": "999999999 8", "output": "99999999900000000" }, { "input": "12345678 8", "output": "617283900000000" }, { "input": "78125 8", "output": "100000000" }, { "input": "390625 8", "output": "100000000" }, { "input": "1953125 8", "output": "500000000" }, { "input": "9765625 8", "output": "2500000000" }, { "input": "68359375 8", "output": "17500000000" }, { "input": "268435456 8", "output": "104857600000000" }, { "input": "125829120 8", "output": "9830400000000" }, { "input": "128000 8", "output": "400000000" }, { "input": "300000 8", "output": "300000000" }, { "input": "3711871 8", "output": "371187100000000" }, { "input": "55555 8", "output": "1111100000000" }, { "input": "222222222 8", "output": "11111111100000000" }, { "input": "479001600 8", "output": "7484400000000" }, { "input": "655360001 7", "output": "6553600010000000" }, { "input": "655360001 8", "output": "65536000100000000" }, { "input": "1000000000 1", "output": "1000000000" }, { "input": "1000000000 7", "output": "1000000000" }, { "input": "1000000000 8", "output": "1000000000" }, { "input": "100000000 8", "output": "100000000" }, { "input": "10000000 8", "output": "100000000" }, { "input": "1000000 8", "output": "100000000" }, { "input": "10000009 8", "output": "1000000900000000" }, { "input": "10000005 8", "output": "200000100000000" }, { "input": "10000002 8", "output": "500000100000000" }, { "input": "999999997 8", "output": "99999999700000000" }, { "input": "999999997 7", "output": "9999999970000000" }, { "input": "999999995 8", "output": "19999999900000000" }, { "input": "123 8", "output": "12300000000" }, { "input": "24 2", "output": "600" }, { "input": "16 4", "output": "10000" }, { "input": "123456787 8", "output": "12345678700000000" }, { "input": "100000000 8", "output": "100000000" }, { "input": "7 1", "output": "70" }, { "input": "101 1", "output": "1010" }, { "input": "50 2", "output": "100" }, { "input": "999999818 1", "output": "4999999090" }, { "input": "2 1", "output": "10" }, { "input": "123 1", "output": "1230" }, { "input": "16 1", "output": "80" }, { "input": "1 1", "output": "10" }, { "input": "1000000000 8", "output": "1000000000" }, { "input": "15304 6", "output": "1913000000" }, { "input": "3 8", "output": "300000000" }, { "input": "4 2", "output": "100" }, { "input": "100000 7", "output": "10000000" }, { "input": "5 8", "output": "100000000" }, { "input": "16724 6", "output": "4181000000" }, { "input": "999999999 1", "output": "9999999990" }, { "input": "999999990 8", "output": "9999999900000000" }, { "input": "999999999 8", "output": "99999999900000000" }, { "input": "100000 1", "output": "100000" }, { "input": "8 3", "output": "1000" }, { "input": "16768 6", "output": "262000000" }, { "input": "123456789 1", "output": "1234567890" }, { "input": "2 8", "output": "100000000" }, { "input": "999999937 8", "output": "99999993700000000" }, { "input": "5 1", "output": "10" }, { "input": "2000000 7", "output": "10000000" }, { "input": "1999998 2", "output": "99999900" }, { "input": "125 3", "output": "1000" } ]
1,510,139,415
3,015
Python 3
OK
TESTS
96
62
0
def nok(a, b): m = a * b while a != 0 and b != 0: if a > b: a %= b else: b %= a return m // (a + b) n, k = map(int, input().split()) print(nok(n, 10**k))
Title: k-rounding Time Limit: None seconds Memory Limit: None megabytes Problem Description: For a given positive integer *n* denote its *k*-rounding as the minimum positive integer *x*, such that *x* ends with *k* or more zeros in base 10 and is divisible by *n*. For example, 4-rounding of 375 is 375·80<==<=30000. 30000 is the minimum integer such that it ends with 4 or more zeros and is divisible by 375. Write a program that will perform the *k*-rounding of *n*. Input Specification: The only line contains two integers *n* and *k* (1<=≤<=*n*<=≤<=109, 0<=≤<=*k*<=≤<=8). Output Specification: Print the *k*-rounding of *n*. Demo Input: ['375 4\n', '10000 1\n', '38101 0\n', '123456789 8\n'] Demo Output: ['30000\n', '10000\n', '38101\n', '12345678900000000\n'] Note: none
```python def nok(a, b): m = a * b while a != 0 and b != 0: if a > b: a %= b else: b %= a return m // (a + b) n, k = map(int, input().split()) print(nok(n, 10**k)) ```
3
899
C
Dividing the numbers
PROGRAMMING
1,300
[ "constructive algorithms", "graphs", "math" ]
null
null
Petya has *n* integers: 1,<=2,<=3,<=...,<=*n*. He wants to split these integers in two non-empty groups in such a way that the absolute difference of sums of integers in each group is as small as possible. Help Petya to split the integers. Each of *n* integers should be exactly in one group.
The first line contains a single integer *n* (2<=≤<=*n*<=≤<=60<=000) — the number of integers Petya has.
Print the smallest possible absolute difference in the first line. In the second line print the size of the first group, followed by the integers in that group. You can print these integers in arbitrary order. If there are multiple answers, print any of them.
[ "4\n", "2\n" ]
[ "0\n2 1 4 \n", "1\n1 1 \n" ]
In the first example you have to put integers 1 and 4 in the first group, and 2 and 3 in the second. This way the sum in each group is 5, and the absolute difference is 0. In the second example there are only two integers, and since both groups should be non-empty, you have to put one integer in the first group and one in the second. This way the absolute difference of sums of integers in each group is 1.
1,500
[ { "input": "4", "output": "0\n2 1 4 " }, { "input": "2", "output": "1\n1 1 " }, { "input": "3", "output": "0\n1\n3 " }, { "input": "5", "output": "1\n3\n1 2 5 " }, { "input": "59998", "output": "1\n29999 1 4 5 8 9 12 13 16 17 20 21 24 25 28 29 32 33 36 37 40 41 44 45 48 49 52 53 56 57 60 61 64 65 68 69 72 73 76 77 80 81 84 85 88 89 92 93 96 97 100 101 104 105 108 109 112 113 116 117 120 121 124 125 128 129 132 133 136 137 140 141 144 145 148 149 152 153 156 157 160 161 164 165 168 169 172 173 176 177 180 181 184 185 188 189 192 193 196 197 200 201 204 205 208 209 212 213 216 217 220 221 224 225 228 229 232 233 236 237 240 241 244 245 248 249 252 253 256 257 260 261 264 265 268 269 272 273 276 277 ..." }, { "input": "60000", "output": "0\n30000 1 4 5 8 9 12 13 16 17 20 21 24 25 28 29 32 33 36 37 40 41 44 45 48 49 52 53 56 57 60 61 64 65 68 69 72 73 76 77 80 81 84 85 88 89 92 93 96 97 100 101 104 105 108 109 112 113 116 117 120 121 124 125 128 129 132 133 136 137 140 141 144 145 148 149 152 153 156 157 160 161 164 165 168 169 172 173 176 177 180 181 184 185 188 189 192 193 196 197 200 201 204 205 208 209 212 213 216 217 220 221 224 225 228 229 232 233 236 237 240 241 244 245 248 249 252 253 256 257 260 261 264 265 268 269 272 273 276 277 ..." }, { "input": "59991", "output": "0\n29995\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 1..." }, { "input": "59989", "output": "1\n29995\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 1..." }, { "input": "6", "output": "1\n3 1 4 5 " }, { "input": "7", "output": "0\n3\n1 6 7 " }, { "input": "8", "output": "0\n4 1 4 5 8 " }, { "input": "9", "output": "1\n5\n1 2 3 8 9 " }, { "input": "10", "output": "1\n5 1 4 5 8 9 " }, { "input": "11", "output": "0\n5\n1 2 9 10 11 " }, { "input": "12", "output": "0\n6 1 4 5 8 9 12 " }, { "input": "13", "output": "1\n7\n1 2 3 4 11 12 13 " }, { "input": "14", "output": "1\n7 1 4 5 8 9 12 13 " }, { "input": "15", "output": "0\n7\n1 2 3 12 13 14 15 " }, { "input": "16", "output": "0\n8 1 4 5 8 9 12 13 16 " }, { "input": "17", "output": "1\n9\n1 2 3 4 5 14 15 16 17 " }, { "input": "18", "output": "1\n9 1 4 5 8 9 12 13 16 17 " }, { "input": "19", "output": "0\n9\n1 2 3 4 15 16 17 18 19 " }, { "input": "20", "output": "0\n10 1 4 5 8 9 12 13 16 17 20 " }, { "input": "21", "output": "1\n11\n1 2 3 4 5 6 17 18 19 20 21 " }, { "input": "22", "output": "1\n11 1 4 5 8 9 12 13 16 17 20 21 " }, { "input": "23", "output": "0\n11\n1 2 3 4 5 18 19 20 21 22 23 " }, { "input": "24", "output": "0\n12 1 4 5 8 9 12 13 16 17 20 21 24 " }, { "input": "59999", "output": "0\n29999\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 1..." }, { "input": "59997", "output": "1\n29999\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 1..." }, { "input": "59996", "output": "0\n29998 1 4 5 8 9 12 13 16 17 20 21 24 25 28 29 32 33 36 37 40 41 44 45 48 49 52 53 56 57 60 61 64 65 68 69 72 73 76 77 80 81 84 85 88 89 92 93 96 97 100 101 104 105 108 109 112 113 116 117 120 121 124 125 128 129 132 133 136 137 140 141 144 145 148 149 152 153 156 157 160 161 164 165 168 169 172 173 176 177 180 181 184 185 188 189 192 193 196 197 200 201 204 205 208 209 212 213 216 217 220 221 224 225 228 229 232 233 236 237 240 241 244 245 248 249 252 253 256 257 260 261 264 265 268 269 272 273 276 277 ..." }, { "input": "59995", "output": "0\n29997\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 1..." }, { "input": "59994", "output": "1\n29997 1 4 5 8 9 12 13 16 17 20 21 24 25 28 29 32 33 36 37 40 41 44 45 48 49 52 53 56 57 60 61 64 65 68 69 72 73 76 77 80 81 84 85 88 89 92 93 96 97 100 101 104 105 108 109 112 113 116 117 120 121 124 125 128 129 132 133 136 137 140 141 144 145 148 149 152 153 156 157 160 161 164 165 168 169 172 173 176 177 180 181 184 185 188 189 192 193 196 197 200 201 204 205 208 209 212 213 216 217 220 221 224 225 228 229 232 233 236 237 240 241 244 245 248 249 252 253 256 257 260 261 264 265 268 269 272 273 276 277 ..." }, { "input": "59993", "output": "1\n29997\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 1..." }, { "input": "59992", "output": "0\n29996 1 4 5 8 9 12 13 16 17 20 21 24 25 28 29 32 33 36 37 40 41 44 45 48 49 52 53 56 57 60 61 64 65 68 69 72 73 76 77 80 81 84 85 88 89 92 93 96 97 100 101 104 105 108 109 112 113 116 117 120 121 124 125 128 129 132 133 136 137 140 141 144 145 148 149 152 153 156 157 160 161 164 165 168 169 172 173 176 177 180 181 184 185 188 189 192 193 196 197 200 201 204 205 208 209 212 213 216 217 220 221 224 225 228 229 232 233 236 237 240 241 244 245 248 249 252 253 256 257 260 261 264 265 268 269 272 273 276 277 ..." }, { "input": "59990", "output": "1\n29995 1 4 5 8 9 12 13 16 17 20 21 24 25 28 29 32 33 36 37 40 41 44 45 48 49 52 53 56 57 60 61 64 65 68 69 72 73 76 77 80 81 84 85 88 89 92 93 96 97 100 101 104 105 108 109 112 113 116 117 120 121 124 125 128 129 132 133 136 137 140 141 144 145 148 149 152 153 156 157 160 161 164 165 168 169 172 173 176 177 180 181 184 185 188 189 192 193 196 197 200 201 204 205 208 209 212 213 216 217 220 221 224 225 228 229 232 233 236 237 240 241 244 245 248 249 252 253 256 257 260 261 264 265 268 269 272 273 276 277 ..." }, { "input": "100", "output": "0\n50 1 4 5 8 9 12 13 16 17 20 21 24 25 28 29 32 33 36 37 40 41 44 45 48 49 52 53 56 57 60 61 64 65 68 69 72 73 76 77 80 81 84 85 88 89 92 93 96 97 100 " }, { "input": "1000", "output": "0\n500 1 4 5 8 9 12 13 16 17 20 21 24 25 28 29 32 33 36 37 40 41 44 45 48 49 52 53 56 57 60 61 64 65 68 69 72 73 76 77 80 81 84 85 88 89 92 93 96 97 100 101 104 105 108 109 112 113 116 117 120 121 124 125 128 129 132 133 136 137 140 141 144 145 148 149 152 153 156 157 160 161 164 165 168 169 172 173 176 177 180 181 184 185 188 189 192 193 196 197 200 201 204 205 208 209 212 213 216 217 220 221 224 225 228 229 232 233 236 237 240 241 244 245 248 249 252 253 256 257 260 261 264 265 268 269 272 273 276 277 28..." }, { "input": "10001", "output": "1\n5001\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 15..." }, { "input": "103", "output": "0\n51\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 " }, { "input": "1002", "output": "1\n501 1 4 5 8 9 12 13 16 17 20 21 24 25 28 29 32 33 36 37 40 41 44 45 48 49 52 53 56 57 60 61 64 65 68 69 72 73 76 77 80 81 84 85 88 89 92 93 96 97 100 101 104 105 108 109 112 113 116 117 120 121 124 125 128 129 132 133 136 137 140 141 144 145 148 149 152 153 156 157 160 161 164 165 168 169 172 173 176 177 180 181 184 185 188 189 192 193 196 197 200 201 204 205 208 209 212 213 216 217 220 221 224 225 228 229 232 233 236 237 240 241 244 245 248 249 252 253 256 257 260 261 264 265 268 269 272 273 276 277 28..." }, { "input": "31724", "output": "0\n15862 1 4 5 8 9 12 13 16 17 20 21 24 25 28 29 32 33 36 37 40 41 44 45 48 49 52 53 56 57 60 61 64 65 68 69 72 73 76 77 80 81 84 85 88 89 92 93 96 97 100 101 104 105 108 109 112 113 116 117 120 121 124 125 128 129 132 133 136 137 140 141 144 145 148 149 152 153 156 157 160 161 164 165 168 169 172 173 176 177 180 181 184 185 188 189 192 193 196 197 200 201 204 205 208 209 212 213 216 217 220 221 224 225 228 229 232 233 236 237 240 241 244 245 248 249 252 253 256 257 260 261 264 265 268 269 272 273 276 277 ..." }, { "input": "2032", "output": "0\n1016 1 4 5 8 9 12 13 16 17 20 21 24 25 28 29 32 33 36 37 40 41 44 45 48 49 52 53 56 57 60 61 64 65 68 69 72 73 76 77 80 81 84 85 88 89 92 93 96 97 100 101 104 105 108 109 112 113 116 117 120 121 124 125 128 129 132 133 136 137 140 141 144 145 148 149 152 153 156 157 160 161 164 165 168 169 172 173 176 177 180 181 184 185 188 189 192 193 196 197 200 201 204 205 208 209 212 213 216 217 220 221 224 225 228 229 232 233 236 237 240 241 244 245 248 249 252 253 256 257 260 261 264 265 268 269 272 273 276 277 2..." }, { "input": "42620", "output": "0\n21310 1 4 5 8 9 12 13 16 17 20 21 24 25 28 29 32 33 36 37 40 41 44 45 48 49 52 53 56 57 60 61 64 65 68 69 72 73 76 77 80 81 84 85 88 89 92 93 96 97 100 101 104 105 108 109 112 113 116 117 120 121 124 125 128 129 132 133 136 137 140 141 144 145 148 149 152 153 156 157 160 161 164 165 168 169 172 173 176 177 180 181 184 185 188 189 192 193 196 197 200 201 204 205 208 209 212 213 216 217 220 221 224 225 228 229 232 233 236 237 240 241 244 245 248 249 252 253 256 257 260 261 264 265 268 269 272 273 276 277 ..." }, { "input": "18076", "output": "0\n9038 1 4 5 8 9 12 13 16 17 20 21 24 25 28 29 32 33 36 37 40 41 44 45 48 49 52 53 56 57 60 61 64 65 68 69 72 73 76 77 80 81 84 85 88 89 92 93 96 97 100 101 104 105 108 109 112 113 116 117 120 121 124 125 128 129 132 133 136 137 140 141 144 145 148 149 152 153 156 157 160 161 164 165 168 169 172 173 176 177 180 181 184 185 188 189 192 193 196 197 200 201 204 205 208 209 212 213 216 217 220 221 224 225 228 229 232 233 236 237 240 241 244 245 248 249 252 253 256 257 260 261 264 265 268 269 272 273 276 277 2..." }, { "input": "53520", "output": "0\n26760 1 4 5 8 9 12 13 16 17 20 21 24 25 28 29 32 33 36 37 40 41 44 45 48 49 52 53 56 57 60 61 64 65 68 69 72 73 76 77 80 81 84 85 88 89 92 93 96 97 100 101 104 105 108 109 112 113 116 117 120 121 124 125 128 129 132 133 136 137 140 141 144 145 148 149 152 153 156 157 160 161 164 165 168 169 172 173 176 177 180 181 184 185 188 189 192 193 196 197 200 201 204 205 208 209 212 213 216 217 220 221 224 225 228 229 232 233 236 237 240 241 244 245 248 249 252 253 256 257 260 261 264 265 268 269 272 273 276 277 ..." }, { "input": "37193", "output": "1\n18597\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 1..." }, { "input": "12645", "output": "1\n6323\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 15..." }, { "input": "53237", "output": "1\n26619\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 1..." }, { "input": "28693", "output": "1\n14347\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 1..." }, { "input": "4145", "output": "1\n2073\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 15..." }, { "input": "36042", "output": "1\n18021 1 4 5 8 9 12 13 16 17 20 21 24 25 28 29 32 33 36 37 40 41 44 45 48 49 52 53 56 57 60 61 64 65 68 69 72 73 76 77 80 81 84 85 88 89 92 93 96 97 100 101 104 105 108 109 112 113 116 117 120 121 124 125 128 129 132 133 136 137 140 141 144 145 148 149 152 153 156 157 160 161 164 165 168 169 172 173 176 177 180 181 184 185 188 189 192 193 196 197 200 201 204 205 208 209 212 213 216 217 220 221 224 225 228 229 232 233 236 237 240 241 244 245 248 249 252 253 256 257 260 261 264 265 268 269 272 273 276 277 ..." }, { "input": "16646", "output": "1\n8323 1 4 5 8 9 12 13 16 17 20 21 24 25 28 29 32 33 36 37 40 41 44 45 48 49 52 53 56 57 60 61 64 65 68 69 72 73 76 77 80 81 84 85 88 89 92 93 96 97 100 101 104 105 108 109 112 113 116 117 120 121 124 125 128 129 132 133 136 137 140 141 144 145 148 149 152 153 156 157 160 161 164 165 168 169 172 173 176 177 180 181 184 185 188 189 192 193 196 197 200 201 204 205 208 209 212 213 216 217 220 221 224 225 228 229 232 233 236 237 240 241 244 245 248 249 252 253 256 257 260 261 264 265 268 269 272 273 276 277 2..." }, { "input": "57238", "output": "1\n28619 1 4 5 8 9 12 13 16 17 20 21 24 25 28 29 32 33 36 37 40 41 44 45 48 49 52 53 56 57 60 61 64 65 68 69 72 73 76 77 80 81 84 85 88 89 92 93 96 97 100 101 104 105 108 109 112 113 116 117 120 121 124 125 128 129 132 133 136 137 140 141 144 145 148 149 152 153 156 157 160 161 164 165 168 169 172 173 176 177 180 181 184 185 188 189 192 193 196 197 200 201 204 205 208 209 212 213 216 217 220 221 224 225 228 229 232 233 236 237 240 241 244 245 248 249 252 253 256 257 260 261 264 265 268 269 272 273 276 277 ..." }, { "input": "27542", "output": "1\n13771 1 4 5 8 9 12 13 16 17 20 21 24 25 28 29 32 33 36 37 40 41 44 45 48 49 52 53 56 57 60 61 64 65 68 69 72 73 76 77 80 81 84 85 88 89 92 93 96 97 100 101 104 105 108 109 112 113 116 117 120 121 124 125 128 129 132 133 136 137 140 141 144 145 148 149 152 153 156 157 160 161 164 165 168 169 172 173 176 177 180 181 184 185 188 189 192 193 196 197 200 201 204 205 208 209 212 213 216 217 220 221 224 225 228 229 232 233 236 237 240 241 244 245 248 249 252 253 256 257 260 261 264 265 268 269 272 273 276 277 ..." }, { "input": "8146", "output": "1\n4073 1 4 5 8 9 12 13 16 17 20 21 24 25 28 29 32 33 36 37 40 41 44 45 48 49 52 53 56 57 60 61 64 65 68 69 72 73 76 77 80 81 84 85 88 89 92 93 96 97 100 101 104 105 108 109 112 113 116 117 120 121 124 125 128 129 132 133 136 137 140 141 144 145 148 149 152 153 156 157 160 161 164 165 168 169 172 173 176 177 180 181 184 185 188 189 192 193 196 197 200 201 204 205 208 209 212 213 216 217 220 221 224 225 228 229 232 233 236 237 240 241 244 245 248 249 252 253 256 257 260 261 264 265 268 269 272 273 276 277 2..." }, { "input": "46659", "output": "0\n23329\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 1..." }, { "input": "27259", "output": "0\n13629\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 1..." }, { "input": "2715", "output": "0\n1357\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 15..." }, { "input": "38159", "output": "0\n19079\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 1..." }, { "input": "18759", "output": "0\n9379\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 15..." } ]
1,601,801,821
2,147,483,647
PyPy 3
OK
TESTS
60
171
4,096,000
for t in range(1): n=int(input()) sum1=0 sum2=0 arr1=[] arr2=[] for i in range(n,0,-1): if sum1>=sum2: sum2+=i arr2.append(i) else: sum1+=i arr1.append(i) print(abs(sum1-sum2)) print(len(arr1),*arr1)
Title: Dividing the numbers Time Limit: None seconds Memory Limit: None megabytes Problem Description: Petya has *n* integers: 1,<=2,<=3,<=...,<=*n*. He wants to split these integers in two non-empty groups in such a way that the absolute difference of sums of integers in each group is as small as possible. Help Petya to split the integers. Each of *n* integers should be exactly in one group. Input Specification: The first line contains a single integer *n* (2<=≤<=*n*<=≤<=60<=000) — the number of integers Petya has. Output Specification: Print the smallest possible absolute difference in the first line. In the second line print the size of the first group, followed by the integers in that group. You can print these integers in arbitrary order. If there are multiple answers, print any of them. Demo Input: ['4\n', '2\n'] Demo Output: ['0\n2 1 4 \n', '1\n1 1 \n'] Note: In the first example you have to put integers 1 and 4 in the first group, and 2 and 3 in the second. This way the sum in each group is 5, and the absolute difference is 0. In the second example there are only two integers, and since both groups should be non-empty, you have to put one integer in the first group and one in the second. This way the absolute difference of sums of integers in each group is 1.
```python for t in range(1): n=int(input()) sum1=0 sum2=0 arr1=[] arr2=[] for i in range(n,0,-1): if sum1>=sum2: sum2+=i arr2.append(i) else: sum1+=i arr1.append(i) print(abs(sum1-sum2)) print(len(arr1),*arr1) ```
3
9
A
Die Roll
PROGRAMMING
800
[ "math", "probabilities" ]
A. Die Roll
1
64
Yakko, Wakko and Dot, world-famous animaniacs, decided to rest from acting in cartoons, and take a leave to travel a bit. Yakko dreamt to go to Pennsylvania, his Motherland and the Motherland of his ancestors. Wakko thought about Tasmania, its beaches, sun and sea. Dot chose Transylvania as the most mysterious and unpredictable place. But to their great regret, the leave turned to be very short, so it will be enough to visit one of the three above named places. That's why Yakko, as the cleverest, came up with a truly genius idea: let each of the three roll an ordinary six-sided die, and the one with the highest amount of points will be the winner, and will take the other two to the place of his/her dreams. Yakko thrown a die and got Y points, Wakko — W points. It was Dot's turn. But she didn't hurry. Dot wanted to know for sure what were her chances to visit Transylvania. It is known that Yakko and Wakko are true gentlemen, that's why if they have the same amount of points with Dot, they will let Dot win.
The only line of the input file contains two natural numbers Y and W — the results of Yakko's and Wakko's die rolls.
Output the required probability in the form of irreducible fraction in format «A/B», where A — the numerator, and B — the denominator. If the required probability equals to zero, output «0/1». If the required probability equals to 1, output «1/1».
[ "4 2\n" ]
[ "1/2\n" ]
Dot will go to Transylvania, if she is lucky to roll 4, 5 or 6 points.
0
[ { "input": "4 2", "output": "1/2" }, { "input": "1 1", "output": "1/1" }, { "input": "1 2", "output": "5/6" }, { "input": "1 3", "output": "2/3" }, { "input": "1 4", "output": "1/2" }, { "input": "1 5", "output": "1/3" }, { "input": "1 6", "output": "1/6" }, { "input": "2 1", "output": "5/6" }, { "input": "2 2", "output": "5/6" }, { "input": "2 3", "output": "2/3" }, { "input": "2 4", "output": "1/2" }, { "input": "2 5", "output": "1/3" }, { "input": "2 6", "output": "1/6" }, { "input": "3 1", "output": "2/3" }, { "input": "3 2", "output": "2/3" }, { "input": "3 3", "output": "2/3" }, { "input": "3 4", "output": "1/2" }, { "input": "3 5", "output": "1/3" }, { "input": "3 6", "output": "1/6" }, { "input": "4 1", "output": "1/2" }, { "input": "4 3", "output": "1/2" }, { "input": "4 4", "output": "1/2" }, { "input": "4 5", "output": "1/3" }, { "input": "4 6", "output": "1/6" }, { "input": "5 1", "output": "1/3" }, { "input": "5 2", "output": "1/3" }, { "input": "5 3", "output": "1/3" }, { "input": "5 4", "output": "1/3" }, { "input": "5 5", "output": "1/3" }, { "input": "5 6", "output": "1/6" }, { "input": "6 1", "output": "1/6" }, { "input": "6 2", "output": "1/6" }, { "input": "6 3", "output": "1/6" }, { "input": "6 4", "output": "1/6" }, { "input": "6 5", "output": "1/6" }, { "input": "6 6", "output": "1/6" } ]
1,664,662,516
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
3
62
0
result = input().split() greatest = 0 count = 0 den = 6 if result[0] >= result[1]: greatest = result[0] else: greatest = result[1] for i in range(7): if i >= int(greatest): count += 1 for j in range(6): if (count % 3) == 0 and den != 1: count = count / 3 den = den / 3 elif (count % 2) == 0 and den != 1: count = count / 2 den = den / 2 print(str(int(count)) + "/" + str(int(den)))
Title: Die Roll Time Limit: 1 seconds Memory Limit: 64 megabytes Problem Description: Yakko, Wakko and Dot, world-famous animaniacs, decided to rest from acting in cartoons, and take a leave to travel a bit. Yakko dreamt to go to Pennsylvania, his Motherland and the Motherland of his ancestors. Wakko thought about Tasmania, its beaches, sun and sea. Dot chose Transylvania as the most mysterious and unpredictable place. But to their great regret, the leave turned to be very short, so it will be enough to visit one of the three above named places. That's why Yakko, as the cleverest, came up with a truly genius idea: let each of the three roll an ordinary six-sided die, and the one with the highest amount of points will be the winner, and will take the other two to the place of his/her dreams. Yakko thrown a die and got Y points, Wakko — W points. It was Dot's turn. But she didn't hurry. Dot wanted to know for sure what were her chances to visit Transylvania. It is known that Yakko and Wakko are true gentlemen, that's why if they have the same amount of points with Dot, they will let Dot win. Input Specification: The only line of the input file contains two natural numbers Y and W — the results of Yakko's and Wakko's die rolls. Output Specification: Output the required probability in the form of irreducible fraction in format «A/B», where A — the numerator, and B — the denominator. If the required probability equals to zero, output «0/1». If the required probability equals to 1, output «1/1». Demo Input: ['4 2\n'] Demo Output: ['1/2\n'] Note: Dot will go to Transylvania, if she is lucky to roll 4, 5 or 6 points.
```python result = input().split() greatest = 0 count = 0 den = 6 if result[0] >= result[1]: greatest = result[0] else: greatest = result[1] for i in range(7): if i >= int(greatest): count += 1 for j in range(6): if (count % 3) == 0 and den != 1: count = count / 3 den = den / 3 elif (count % 2) == 0 and den != 1: count = count / 2 den = den / 2 print(str(int(count)) + "/" + str(int(den))) ```
0
919
B
Perfect Number
PROGRAMMING
1,100
[ "binary search", "brute force", "dp", "implementation", "number theory" ]
null
null
We consider a positive integer perfect, if and only if the sum of its digits is exactly $10$. Given a positive integer $k$, your task is to find the $k$-th smallest perfect positive integer.
A single line with a positive integer $k$ ($1 \leq k \leq 10\,000$).
A single number, denoting the $k$-th smallest perfect integer.
[ "1\n", "2\n" ]
[ "19\n", "28\n" ]
The first perfect integer is $19$ and the second one is $28$.
750
[ { "input": "1", "output": "19" }, { "input": "2", "output": "28" }, { "input": "13", "output": "136" }, { "input": "101", "output": "1432" }, { "input": "1023", "output": "100270" }, { "input": "9999", "output": "10800010" }, { "input": "10000", "output": "10800100" }, { "input": "2333", "output": "310060" }, { "input": "9139", "output": "10134010" }, { "input": "9859", "output": "10422001" }, { "input": "5987", "output": "2221201" }, { "input": "3", "output": "37" }, { "input": "4", "output": "46" }, { "input": "5", "output": "55" }, { "input": "7", "output": "73" }, { "input": "9", "output": "91" }, { "input": "10", "output": "109" }, { "input": "15", "output": "154" }, { "input": "51", "output": "613" }, { "input": "99", "output": "1414" }, { "input": "138", "output": "2224" }, { "input": "233", "output": "5050" }, { "input": "666", "output": "27100" }, { "input": "1234", "output": "110206" }, { "input": "3567", "output": "1033003" }, { "input": "4445", "output": "1221301" }, { "input": "5689", "output": "2114002" }, { "input": "6666", "output": "3102004" }, { "input": "7777", "output": "5300200" }, { "input": "8888", "output": "10110061" }, { "input": "9411", "output": "10214200" }, { "input": "5539", "output": "2101114" }, { "input": "6259", "output": "2511100" }, { "input": "2387", "output": "312220" }, { "input": "8515", "output": "10030114" } ]
1,692,206,441
2,147,483,647
PyPy 3
WRONG_ANSWER
TESTS
4
92
2,048,000
import sys input = sys.stdin.readline k = int(input()) count = 1 for i in range(10 ** 4 + 1): hold = sum(list(map(int, list(str(i))))) if hold == 10: if count == k: print(i) exit() else: count += 1
Title: Perfect Number Time Limit: None seconds Memory Limit: None megabytes Problem Description: We consider a positive integer perfect, if and only if the sum of its digits is exactly $10$. Given a positive integer $k$, your task is to find the $k$-th smallest perfect positive integer. Input Specification: A single line with a positive integer $k$ ($1 \leq k \leq 10\,000$). Output Specification: A single number, denoting the $k$-th smallest perfect integer. Demo Input: ['1\n', '2\n'] Demo Output: ['19\n', '28\n'] Note: The first perfect integer is $19$ and the second one is $28$.
```python import sys input = sys.stdin.readline k = int(input()) count = 1 for i in range(10 ** 4 + 1): hold = sum(list(map(int, list(str(i))))) if hold == 10: if count == k: print(i) exit() else: count += 1 ```
0
965
A
Paper Airplanes
PROGRAMMING
800
[ "math" ]
null
null
To make a paper airplane, one has to use a rectangular piece of paper. From a sheet of standard size you can make $s$ airplanes. A group of $k$ people decided to make $n$ airplanes each. They are going to buy several packs of paper, each of them containing $p$ sheets, and then distribute the sheets between the people. Each person should have enough sheets to make $n$ airplanes. How many packs should they buy?
The only line contains four integers $k$, $n$, $s$, $p$ ($1 \le k, n, s, p \le 10^4$) — the number of people, the number of airplanes each should make, the number of airplanes that can be made using one sheet and the number of sheets in one pack, respectively.
Print a single integer — the minimum number of packs they should buy.
[ "5 3 2 3\n", "5 3 100 1\n" ]
[ "4\n", "5\n" ]
In the first sample they have to buy $4$ packs of paper: there will be $12$ sheets in total, and giving $2$ sheets to each person is enough to suit everyone's needs. In the second sample they have to buy a pack for each person as they can't share sheets.
500
[ { "input": "5 3 2 3", "output": "4" }, { "input": "5 3 100 1", "output": "5" }, { "input": "10000 10000 1 1", "output": "100000000" }, { "input": "1 1 10000 10000", "output": "1" }, { "input": "300 300 21 23", "output": "196" }, { "input": "300 2 37 51", "output": "6" }, { "input": "2 400 23 57", "output": "1" }, { "input": "1 1 1 1", "output": "1" }, { "input": "10000 10000 3 2", "output": "16670000" }, { "input": "1 2 1 2", "output": "1" }, { "input": "1 1 2 2", "output": "1" }, { "input": "1 1 10 10", "output": "1" }, { "input": "5324 5439 32 13", "output": "69622" }, { "input": "9000 1 2432 1", "output": "9000" }, { "input": "230 1234 9124 23", "output": "10" }, { "input": "11 1 1 1", "output": "11" }, { "input": "6246 8489 1227 9", "output": "4858" }, { "input": "9 20 5 7", "output": "6" } ]
1,603,196,834
2,147,483,647
Python 3
COMPILATION_ERROR
TESTS
0
0
0
k,n,s,p=map(int,input().split()) m=int() kl=int() if n % s ==0: kl = n // s else: kl = n // s + 1 vl = kl * k if vl % p == 0: m = vl // p else: m = vl // p + 1 print (m)
Title: Paper Airplanes Time Limit: None seconds Memory Limit: None megabytes Problem Description: To make a paper airplane, one has to use a rectangular piece of paper. From a sheet of standard size you can make $s$ airplanes. A group of $k$ people decided to make $n$ airplanes each. They are going to buy several packs of paper, each of them containing $p$ sheets, and then distribute the sheets between the people. Each person should have enough sheets to make $n$ airplanes. How many packs should they buy? Input Specification: The only line contains four integers $k$, $n$, $s$, $p$ ($1 \le k, n, s, p \le 10^4$) — the number of people, the number of airplanes each should make, the number of airplanes that can be made using one sheet and the number of sheets in one pack, respectively. Output Specification: Print a single integer — the minimum number of packs they should buy. Demo Input: ['5 3 2 3\n', '5 3 100 1\n'] Demo Output: ['4\n', '5\n'] Note: In the first sample they have to buy $4$ packs of paper: there will be $12$ sheets in total, and giving $2$ sheets to each person is enough to suit everyone's needs. In the second sample they have to buy a pack for each person as they can't share sheets.
```python k,n,s,p=map(int,input().split()) m=int() kl=int() if n % s ==0: kl = n // s else: kl = n // s + 1 vl = kl * k if vl % p == 0: m = vl // p else: m = vl // p + 1 print (m) ```
-1
734
A
Anton and Danik
PROGRAMMING
800
[ "implementation", "strings" ]
null
null
Anton likes to play chess, and so does his friend Danik. Once they have played *n* games in a row. For each game it's known who was the winner — Anton or Danik. None of the games ended with a tie. Now Anton wonders, who won more games, he or Danik? Help him determine this.
The first line of the input contains a single integer *n* (1<=≤<=*n*<=≤<=100<=000) — the number of games played. The second line contains a string *s*, consisting of *n* uppercase English letters 'A' and 'D' — the outcome of each of the games. The *i*-th character of the string is equal to 'A' if the Anton won the *i*-th game and 'D' if Danik won the *i*-th game.
If Anton won more games than Danik, print "Anton" (without quotes) in the only line of the output. If Danik won more games than Anton, print "Danik" (without quotes) in the only line of the output. If Anton and Danik won the same number of games, print "Friendship" (without quotes).
[ "6\nADAAAA\n", "7\nDDDAADA\n", "6\nDADADA\n" ]
[ "Anton\n", "Danik\n", "Friendship\n" ]
In the first sample, Anton won 6 games, while Danik — only 1. Hence, the answer is "Anton". In the second sample, Anton won 3 games and Danik won 4 games, so the answer is "Danik". In the third sample, both Anton and Danik won 3 games and the answer is "Friendship".
500
[ { "input": "6\nADAAAA", "output": "Anton" }, { "input": "7\nDDDAADA", "output": "Danik" }, { "input": "6\nDADADA", "output": "Friendship" }, { "input": "10\nDDDDADDADD", "output": "Danik" }, { "input": "40\nAAAAAAAAADDAAAAAAAAAAADADDAAAAAAAAAAADAA", "output": "Anton" }, { "input": "200\nDDDDDDDADDDDDDAADADAADAAADAADADAAADDDADDDDDDADDDAADDDAADADDDDDADDDAAAADAAADDDDDAAADAADDDAAAADDADADDDAADDAADAAADAADAAAADDAADDADAAAADADDDAAAAAADDAADAADAADADDDAAADAAAADADDADAAAAAADADADDDADDDAADDADDDAAAAD", "output": "Friendship" }, { "input": "1\nA", "output": "Anton" }, { "input": "1\nD", "output": "Danik" }, { "input": "2\nDA", "output": "Friendship" }, { "input": "4\nDADA", "output": "Friendship" }, { "input": "4\nDAAD", "output": "Friendship" }, { "input": "3\nADD", "output": "Danik" }, { "input": "3\nDAD", "output": "Danik" }, { "input": "2\nDA", "output": "Friendship" }, { "input": "379\nAADAAAAAADDAAAAAADAADADADDAAAAADADDAADAAAADDDADAAAAAAADAADAAAAAAADAAAAAAAAADAAAAAAADAAAAAAAAAAADDDADAAAAAAAADAADADAAAADAAAAAAAAAAAAAAAAADAAAADDDAADAAAAAAADAAADAAADAADDDADDAAADAAAAAADDDADDDAAADAAAADAAAAAAAAADAAADAAAAAAAAADAAAAAAAAAAAAAAAAAADADAAAAAAAAAAADAAAAADAAAADAAAAAAAAAAAAADADAADAAAAAAAADAADAAAAAAAADAAAAAAAADDDAAAAAADAAADAAAAAADAADAAAAAADAAAADADAADAAAAAADAAAADAADDAADAADAAA", "output": "Anton" } ]
1,695,194,938
2,147,483,647
Python 3
OK
TESTS
25
46
102,400
n=int(input()) s=str(input()) c=0 m=0 for i in s: if i =="A": c+=1 elif i =="D": m+=1 if c>m: print("Anton") elif m>c: print("Danik") else: print("Friendship")
Title: Anton and Danik Time Limit: None seconds Memory Limit: None megabytes Problem Description: Anton likes to play chess, and so does his friend Danik. Once they have played *n* games in a row. For each game it's known who was the winner — Anton or Danik. None of the games ended with a tie. Now Anton wonders, who won more games, he or Danik? Help him determine this. Input Specification: The first line of the input contains a single integer *n* (1<=≤<=*n*<=≤<=100<=000) — the number of games played. The second line contains a string *s*, consisting of *n* uppercase English letters 'A' and 'D' — the outcome of each of the games. The *i*-th character of the string is equal to 'A' if the Anton won the *i*-th game and 'D' if Danik won the *i*-th game. Output Specification: If Anton won more games than Danik, print "Anton" (without quotes) in the only line of the output. If Danik won more games than Anton, print "Danik" (without quotes) in the only line of the output. If Anton and Danik won the same number of games, print "Friendship" (without quotes). Demo Input: ['6\nADAAAA\n', '7\nDDDAADA\n', '6\nDADADA\n'] Demo Output: ['Anton\n', 'Danik\n', 'Friendship\n'] Note: In the first sample, Anton won 6 games, while Danik — only 1. Hence, the answer is "Anton". In the second sample, Anton won 3 games and Danik won 4 games, so the answer is "Danik". In the third sample, both Anton and Danik won 3 games and the answer is "Friendship".
```python n=int(input()) s=str(input()) c=0 m=0 for i in s: if i =="A": c+=1 elif i =="D": m+=1 if c>m: print("Anton") elif m>c: print("Danik") else: print("Friendship") ```
3
894
A
QAQ
PROGRAMMING
800
[ "brute force", "dp" ]
null
null
"QAQ" is a word to denote an expression of crying. Imagine "Q" as eyes with tears and "A" as a mouth. Now Diamond has given Bort a string consisting of only uppercase English letters of length *n*. There is a great number of "QAQ" in the string (Diamond is so cute!). Bort wants to know how many subsequences "QAQ" are in the string Diamond has given. Note that the letters "QAQ" don't have to be consecutive, but the order of letters should be exact.
The only line contains a string of length *n* (1<=≤<=*n*<=≤<=100). It's guaranteed that the string only contains uppercase English letters.
Print a single integer — the number of subsequences "QAQ" in the string.
[ "QAQAQYSYIOIWIN\n", "QAQQQZZYNOIWIN\n" ]
[ "4\n", "3\n" ]
In the first example there are 4 subsequences "QAQ": "QAQAQYSYIOIWIN", "QAQAQYSYIOIWIN", "QAQAQYSYIOIWIN", "QAQAQYSYIOIWIN".
500
[ { "input": "QAQAQYSYIOIWIN", "output": "4" }, { "input": "QAQQQZZYNOIWIN", "output": "3" }, { "input": "QA", "output": "0" }, { "input": "IAQVAQZLQBQVQFTQQQADAQJA", "output": "24" }, { "input": "QQAAQASGAYAAAAKAKAQIQEAQAIAAIAQQQQQ", "output": "378" }, { "input": "AMVFNFJIAVNQJWIVONQOAOOQSNQSONOASONAONQINAONAOIQONANOIQOANOQINAONOQINAONOXJCOIAQOAOQAQAQAQAQWWWAQQAQ", "output": "1077" }, { "input": "AAQQAXBQQBQQXBNQRJAQKQNAQNQVDQASAGGANQQQQTJFFQQQTQQA", "output": "568" }, { "input": "KAZXAVLPJQBQVQQQQQAPAQQGQTQVZQAAAOYA", "output": "70" }, { "input": "W", "output": "0" }, { "input": "DBA", "output": "0" }, { "input": "RQAWNACASAAKAGAAAAQ", "output": "10" }, { "input": "QJAWZAAOAAGIAAAAAOQATASQAEAAAAQFQQHPA", "output": "111" }, { "input": "QQKWQAQAAAAAAAAGAAVAQUEQQUMQMAQQQNQLAMAAAUAEAAEMAAA", "output": "411" }, { "input": "QQUMQAYAUAAGWAAAQSDAVAAQAAAASKQJJQQQQMAWAYYAAAAAAEAJAXWQQ", "output": "625" }, { "input": "QORZOYAQ", "output": "1" }, { "input": "QCQAQAGAWAQQQAQAVQAQQQQAQAQQQAQAAATQAAVAAAQQQQAAAUUQAQQNQQWQQWAQAAQQKQYAQAAQQQAAQRAQQQWBQQQQAPBAQGQA", "output": "13174" }, { "input": "QQAQQAKQFAQLQAAWAMQAZQAJQAAQQOACQQAAAYANAQAQQAQAAQQAOBQQJQAQAQAQQQAAAAABQQQAVNZAQQQQAMQQAFAAEAQAQHQT", "output": "10420" }, { "input": "AQEGQHQQKQAQQPQKAQQQAAAAQQQAQEQAAQAAQAQFSLAAQQAQOQQAVQAAAPQQAWAQAQAFQAXAQQQQTRLOQAQQJQNQXQQQQSQVDQQQ", "output": "12488" }, { "input": "QNQKQQQLASQBAVQQQQAAQQOQRJQQAQQQEQZUOANAADAAQQJAQAQARAAAQQQEQBHTQAAQAAAAQQMKQQQIAOJJQQAQAAADADQUQQQA", "output": "9114" }, { "input": "QQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQ", "output": "35937" }, { "input": "AMQQAAQAAQAAAAAAQQQBOAAANAAKQJCYQAE", "output": "254" }, { "input": "AYQBAEQGAQEOAKGIXLQJAIAKQAAAQPUAJAKAATFWQQAOQQQUFQYAQQMQHOKAAJXGFCARAQSATHAUQQAATQJJQDQRAANQQAE", "output": "2174" }, { "input": "AAQXAAQAYQAAAAGAQHVQYAGIVACADFAAQAAAAQZAAQMAKZAADQAQDAAQDAAAMQQOXYAQQQAKQBAAQQKAXQBJZDDLAAHQQ", "output": "2962" }, { "input": "AYQQYAVAMNIAUAAKBBQVACWKTQSAQZAAQAAASZJAWBCAALAARHACQAKQQAQAARPAQAAQAQAAZQUSHQAMFVFZQQQQSAQQXAA", "output": "2482" }, { "input": "LQMAQQARQAQBJQQQAGAAZQQXALQQAARQAQQQQAAQQAQQQAQQCAQQAQQAYQQQRAAZATQALYQQAAHHAAQHAAAAAAAAQQMAAQNAKQ", "output": "7768" }, { "input": "MAQQWAQOYQMAAAQAQPQZAOAAQAUAQNAAQAAAITQSAQAKAQKAQQWSQAAQQAGUCDQMQWKQUXKWQQAAQQAAQQZQDQQQAABXQUUXQOA", "output": "5422" }, { "input": "QTAAQDAQXAQQJQQQGAAAQQQQSBQZKAQQAQQQQEAQNUQBZCQLYQZQEQQAAQHQVAORKQVAQYQNASZQAARZAAGAAAAOQDCQ", "output": "3024" }, { "input": "QQWAQQGQQUZQQQLZAAQYQXQVAQFQUAQZUQZZQUKBHSHTQYLQAOQXAQQGAQQTQOAQARQADAJRAAQPQAQQUQAUAMAUVQAAAQQAWQ", "output": "4527" }, { "input": "QQAAQQAQVAQZQQQQAOEAQZPQIBQZACQQAFQQLAAQDATZQANHKYQQAQTAAFQRQAIQAJPWQAQTEIRXAEQQAYWAAAUKQQAQAQQQSQQH", "output": "6416" }, { "input": "AQQQQAQAAQQAQAQAAAAAAAAAQAQAAAAAQAQAQQQAQQQAAAQQQAAAAAAAQAAAAQQQQQQQAQQQQAQAAAQAAAAAQAQAAAAAQAQAAAA", "output": "14270" }, { "input": "AQQQQAQAAQQAQAQAAAAAAAAAQAQAAAAAQAQAQQQAQQQAAAQQQAAAAAAAQAAAAQQQQQQQAQQQQAQAAAQAAAAAQAQAAAAAQ", "output": "13136" }, { "input": "AQQQQAQAAQQAQAQAAAAAAAAAQAQAAAAAQAQAQQQAQQQAAAQQQAAAAAAAQAAAAQQQQQQQAQQQQAQAAAQAAAAAQAQAAAAAQAQAA", "output": "14270" }, { "input": "AQQQQAQAAQQAQAQAAAAAAAAAQAQAAAAAQAQAQQQAQQQAAAQQQAAAAAAAQAAAAQQQQQQQAQQQQAQAAAQAAAAAQAQAAAAAQQAA", "output": "14231" }, { "input": "QQQQQAQAAQQAQAQAAAAAAAAAQAQAAAAAQAQAQQQAQQQAAAQQQAAAAAAAQAAAAQQQQQQQAQQQQAQAAAQAAAAAQAQAAAAAQAQAA", "output": "15296" }, { "input": "AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQ", "output": "0" }, { "input": "QQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA", "output": "0" }, { "input": "QQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQ", "output": "0" }, { "input": "QAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQA", "output": "20825" }, { "input": "AQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQ", "output": "20825" }, { "input": "Q", "output": "0" }, { "input": "A", "output": "0" }, { "input": "FFF", "output": "0" }, { "input": "AAAAAA", "output": "0" } ]
1,667,408,660
2,147,483,647
PyPy 3-64
OK
TESTS
43
62
0
s = input() n = len(s) dp = [[0, 0, 0] for i in range(n + 1)] if s[0] == 'Q': dp[1][0] = 1 for i in range(1, n + 1): if s[i-1] == 'Q': dp[i][0] = dp[i-1][0] + 1 dp[i][1] = dp[i-1][1] dp[i][2] = dp[i-1][1] + dp[i-1][2] elif s[i-1] == 'A': dp[i][0] = dp[i-1][0] dp[i][1] = dp[i-1][1] + dp[i-1][0] dp[i][2] = dp[i-1][2] else: dp[i][0] = dp[i-1][0] dp[i][1] = dp[i-1][1] dp[i][2] = dp[i-1][2] print(dp[n][2])
Title: QAQ Time Limit: None seconds Memory Limit: None megabytes Problem Description: "QAQ" is a word to denote an expression of crying. Imagine "Q" as eyes with tears and "A" as a mouth. Now Diamond has given Bort a string consisting of only uppercase English letters of length *n*. There is a great number of "QAQ" in the string (Diamond is so cute!). Bort wants to know how many subsequences "QAQ" are in the string Diamond has given. Note that the letters "QAQ" don't have to be consecutive, but the order of letters should be exact. Input Specification: The only line contains a string of length *n* (1<=≤<=*n*<=≤<=100). It's guaranteed that the string only contains uppercase English letters. Output Specification: Print a single integer — the number of subsequences "QAQ" in the string. Demo Input: ['QAQAQYSYIOIWIN\n', 'QAQQQZZYNOIWIN\n'] Demo Output: ['4\n', '3\n'] Note: In the first example there are 4 subsequences "QAQ": "QAQAQYSYIOIWIN", "QAQAQYSYIOIWIN", "QAQAQYSYIOIWIN", "QAQAQYSYIOIWIN".
```python s = input() n = len(s) dp = [[0, 0, 0] for i in range(n + 1)] if s[0] == 'Q': dp[1][0] = 1 for i in range(1, n + 1): if s[i-1] == 'Q': dp[i][0] = dp[i-1][0] + 1 dp[i][1] = dp[i-1][1] dp[i][2] = dp[i-1][1] + dp[i-1][2] elif s[i-1] == 'A': dp[i][0] = dp[i-1][0] dp[i][1] = dp[i-1][1] + dp[i-1][0] dp[i][2] = dp[i-1][2] else: dp[i][0] = dp[i-1][0] dp[i][1] = dp[i-1][1] dp[i][2] = dp[i-1][2] print(dp[n][2]) ```
3
735
D
Taxes
PROGRAMMING
1,600
[ "math", "number theory" ]
null
null
Mr. Funt now lives in a country with a very specific tax laws. The total income of mr. Funt during this year is equal to *n* (*n*<=≥<=2) burles and the amount of tax he has to pay is calculated as the maximum divisor of *n* (not equal to *n*, of course). For example, if *n*<==<=6 then Funt has to pay 3 burles, while for *n*<==<=25 he needs to pay 5 and if *n*<==<=2 he pays only 1 burle. As mr. Funt is a very opportunistic person he wants to cheat a bit. In particular, he wants to split the initial *n* in several parts *n*1<=+<=*n*2<=+<=...<=+<=*n**k*<==<=*n* (here *k* is arbitrary, even *k*<==<=1 is allowed) and pay the taxes for each part separately. He can't make some part equal to 1 because it will reveal him. So, the condition *n**i*<=≥<=2 should hold for all *i* from 1 to *k*. Ostap Bender wonders, how many money Funt has to pay (i.e. minimal) if he chooses and optimal way to split *n* in parts.
The first line of the input contains a single integer *n* (2<=≤<=*n*<=≤<=2·109) — the total year income of mr. Funt.
Print one integer — minimum possible number of burles that mr. Funt has to pay as a tax.
[ "4\n", "27\n" ]
[ "2\n", "3\n" ]
none
1,750
[ { "input": "4", "output": "2" }, { "input": "27", "output": "3" }, { "input": "3", "output": "1" }, { "input": "5", "output": "1" }, { "input": "10", "output": "2" }, { "input": "2000000000", "output": "2" }, { "input": "26", "output": "2" }, { "input": "7", "output": "1" }, { "input": "2", "output": "1" }, { "input": "11", "output": "1" }, { "input": "1000000007", "output": "1" }, { "input": "1000000009", "output": "1" }, { "input": "1999999999", "output": "3" }, { "input": "1000000011", "output": "2" }, { "input": "101", "output": "1" }, { "input": "103", "output": "1" }, { "input": "1001", "output": "3" }, { "input": "1003", "output": "3" }, { "input": "10001", "output": "3" }, { "input": "10003", "output": "3" }, { "input": "129401294", "output": "2" }, { "input": "234911024", "output": "2" }, { "input": "192483501", "output": "3" }, { "input": "1234567890", "output": "2" }, { "input": "719241201", "output": "3" }, { "input": "9", "output": "2" }, { "input": "33", "output": "2" }, { "input": "25", "output": "2" }, { "input": "15", "output": "2" }, { "input": "147", "output": "3" }, { "input": "60119912", "output": "2" }, { "input": "45", "output": "2" }, { "input": "21", "output": "2" }, { "input": "9975", "output": "2" }, { "input": "17", "output": "1" }, { "input": "99", "output": "2" }, { "input": "49", "output": "2" }, { "input": "243", "output": "2" }, { "input": "43", "output": "1" }, { "input": "39", "output": "2" }, { "input": "6", "output": "2" }, { "input": "8", "output": "2" }, { "input": "12", "output": "2" }, { "input": "13", "output": "1" }, { "input": "14", "output": "2" }, { "input": "16", "output": "2" }, { "input": "18", "output": "2" }, { "input": "19", "output": "1" }, { "input": "20", "output": "2" }, { "input": "22", "output": "2" }, { "input": "23", "output": "1" }, { "input": "24", "output": "2" }, { "input": "962", "output": "2" }, { "input": "29", "output": "1" }, { "input": "55", "output": "2" }, { "input": "125", "output": "3" }, { "input": "1999999929", "output": "2" }, { "input": "493", "output": "2" }, { "input": "10000021", "output": "2" }, { "input": "541", "output": "1" }, { "input": "187", "output": "3" }, { "input": "95", "output": "3" }, { "input": "999991817", "output": "3" }, { "input": "37998938", "output": "2" }, { "input": "1847133842", "output": "2" }, { "input": "1000000005", "output": "3" }, { "input": "19828", "output": "2" }, { "input": "998321704", "output": "2" }, { "input": "370359", "output": "3" }, { "input": "115", "output": "2" }, { "input": "200000015", "output": "3" }, { "input": "479001600", "output": "2" }, { "input": "536870912", "output": "2" }, { "input": "10759922", "output": "2" }, { "input": "1999999927", "output": "1" }, { "input": "123", "output": "3" }, { "input": "200743933", "output": "3" }, { "input": "949575615", "output": "3" }, { "input": "99990001", "output": "1" }, { "input": "715827883", "output": "1" }, { "input": "5592406", "output": "2" }, { "input": "8388609", "output": "3" }, { "input": "1908903481", "output": "3" }, { "input": "1076153021", "output": "3" }, { "input": "344472101", "output": "3" } ]
1,669,701,889
2,147,483,647
PyPy 3-64
MEMORY_LIMIT_EXCEEDED
TESTS
5
77
268,390,400
import collections import heapq import sys import math import itertools import bisect import os from io import BytesIO, IOBase input = sys.stdin.readline def primelist(b): L = [True for i in range(b)] for i in range(2,b): if L[i]: for j in range(i+i,b,i):L[j]=False return L def solve(): n = int(input()) tot=0 l=primelist(n+1) for i in range(n,0,-1): if l[i]: while n>=i: n-=i;tot+=1 if n==0 or n==1:break print(tot+n) if __name__ == '__main__': # for i in range(int(input())): solve()
Title: Taxes Time Limit: None seconds Memory Limit: None megabytes Problem Description: Mr. Funt now lives in a country with a very specific tax laws. The total income of mr. Funt during this year is equal to *n* (*n*<=≥<=2) burles and the amount of tax he has to pay is calculated as the maximum divisor of *n* (not equal to *n*, of course). For example, if *n*<==<=6 then Funt has to pay 3 burles, while for *n*<==<=25 he needs to pay 5 and if *n*<==<=2 he pays only 1 burle. As mr. Funt is a very opportunistic person he wants to cheat a bit. In particular, he wants to split the initial *n* in several parts *n*1<=+<=*n*2<=+<=...<=+<=*n**k*<==<=*n* (here *k* is arbitrary, even *k*<==<=1 is allowed) and pay the taxes for each part separately. He can't make some part equal to 1 because it will reveal him. So, the condition *n**i*<=≥<=2 should hold for all *i* from 1 to *k*. Ostap Bender wonders, how many money Funt has to pay (i.e. minimal) if he chooses and optimal way to split *n* in parts. Input Specification: The first line of the input contains a single integer *n* (2<=≤<=*n*<=≤<=2·109) — the total year income of mr. Funt. Output Specification: Print one integer — minimum possible number of burles that mr. Funt has to pay as a tax. Demo Input: ['4\n', '27\n'] Demo Output: ['2\n', '3\n'] Note: none
```python import collections import heapq import sys import math import itertools import bisect import os from io import BytesIO, IOBase input = sys.stdin.readline def primelist(b): L = [True for i in range(b)] for i in range(2,b): if L[i]: for j in range(i+i,b,i):L[j]=False return L def solve(): n = int(input()) tot=0 l=primelist(n+1) for i in range(n,0,-1): if l[i]: while n>=i: n-=i;tot+=1 if n==0 or n==1:break print(tot+n) if __name__ == '__main__': # for i in range(int(input())): solve() ```
0
955
D
Scissors
PROGRAMMING
2,600
[ "brute force", "strings" ]
null
null
Jenya has recently acquired quite a useful tool — *k*-scissors for cutting strings. They are generally used for cutting out two non-intersecting substrings of length *k* from an arbitrary string *s* (its length should be at least 2·*k* in order to perform this operation) and concatenating them afterwards (preserving the initial order). For example, with the help of 2-scissors you can cut *ab* and *de* out of *abcde* and concatenate them into *abde*, but not *ab* and *bc* since they're intersecting. It's a nice idea to test this tool before using it in practice. After looking through the papers, Jenya came up with two strings *s* and *t*. His question is whether it is possible to apply his scissors to string *s* such that the resulting concatenation contains *t* as a substring?
The first line contains three integers *n*, *m*, *k* (2<=≤<=*m*<=≤<=2·*k*<=≤<=*n*<=≤<=5·105) — length of *s*, length of *t* and the aforementioned scissors' parameter correspondingly. The next two lines feature *s* and *t* consisting of lowercase latin letters.
If there is no answer, print «No». Otherwise print «Yes» and two integers *L* and *R* denoting the indexes where cutted substrings start (1-indexed). If there are several possible answers, output any.
[ "7 4 3\nbaabaab\naaaa\n", "6 3 2\ncbcbcb\nbcc\n", "7 5 3\naabbaaa\naaaaa\n" ]
[ "Yes\n1 5\n", "Yes\n2 5\n", "No\n" ]
In the first sample case you can cut out two substrings starting at 1 and 5. The resulting string baaaab contains aaaa as a substring. In the second sample case the resulting string is bccb.
2,000
[ { "input": "7 4 3\nbaabaab\naaaa", "output": "Yes\n1 5" }, { "input": "6 3 2\ncbcbcb\nbcc", "output": "Yes\n2 5" }, { "input": "7 5 3\naabbaaa\naaaaa", "output": "No" }, { "input": "16 6 4\nabcdcadbbbcacdca\ndcadbc", "output": "Yes\n4 10" }, { "input": "81 5 3\nacbbcccbcbcbbbabaabbbcbacbaabbabaacccaaaaaabbbaacbaabcbcacbbacacbaaaaccbbcacbbcba\ncbbab", "output": "Yes\n1 30" }, { "input": "12 3 4\ndbcbabbbdcbb\nbba", "output": "No" }, { "input": "18 3 4\ndcdbdbadddbddbbccc\nbba", "output": "Yes\n1 6" }, { "input": "7 3 3\naaabbaa\naaa", "output": "Yes\n1 4" }, { "input": "8 3 4\nbcbaaaax\nbcb", "output": "Yes\n1 5" }, { "input": "30 17 9\ndbcdcdcdbddaabcbdcdbdacaddcdbc\nbcdcdcdbdabcbdcdb", "output": "Yes\n2 13" }, { "input": "25 7 12\nbbabaabbabbabbbabbabaabba\nbabaabb", "output": "Yes\n2 14" }, { "input": "28 14 9\ndeaeeabadeaecbebddaeaedebbdd\nbadeaecbeaeaed", "output": "Yes\n7 19" }, { "input": "12 8 4\naaaaabbbaaab\naaaaaaaa", "output": "No" }, { "input": "2 2 1\nab\naa", "output": "No" }, { "input": "2 2 1\naa\naa", "output": "Yes\n1 2" }, { "input": "4 3 2\naaba\naaa", "output": "No" }, { "input": "4 2 2\nacba\naa", "output": "No" }, { "input": "27 13 12\nbaababbabbbbaaaabaabbbbaaaa\nbaababbabbbba", "output": "Yes\n1 13" }, { "input": "27 11 9\nbbaabababaaaabbbbabaababaab\nabababaabab", "output": "Yes\n2 17" }, { "input": "7 3 2\naabcbaa\naaa", "output": "Yes\n1 6" } ]
1,521,994,060
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
0
62
7,065,600
n, m, k = map( int, input().split() ) s = input() t = input() Lmatch = [0] * len(s) Rmatch = [0] * len(s) for i in range(len(s)-k): j = 0 while j < min(k, len(t)) and s[i+j] == t[j]: j += 1 Lmatch[i] = j print(Lmatch) for i in range(k, len(s)): j = 0 while j < min(k, len(t)) and s[i-j] == t[len(t)-1-j]: j += 1 Rmatch[i] = j print(Rmatch) L, R = None, None for i in range(len(s) - k): for mL in range(Lmatch[i], -1, -1): L = i - (k-mL) if L < 0: break mR = len(t)-mL for j in range(i + mL + mR -1, len(s)): if Rmatch[j] >= mR: R = j - mR + 1 break if R: break if R: break if not R: print('No') else: print('Yes') print(L+1, R+1)
Title: Scissors Time Limit: None seconds Memory Limit: None megabytes Problem Description: Jenya has recently acquired quite a useful tool — *k*-scissors for cutting strings. They are generally used for cutting out two non-intersecting substrings of length *k* from an arbitrary string *s* (its length should be at least 2·*k* in order to perform this operation) and concatenating them afterwards (preserving the initial order). For example, with the help of 2-scissors you can cut *ab* and *de* out of *abcde* and concatenate them into *abde*, but not *ab* and *bc* since they're intersecting. It's a nice idea to test this tool before using it in practice. After looking through the papers, Jenya came up with two strings *s* and *t*. His question is whether it is possible to apply his scissors to string *s* such that the resulting concatenation contains *t* as a substring? Input Specification: The first line contains three integers *n*, *m*, *k* (2<=≤<=*m*<=≤<=2·*k*<=≤<=*n*<=≤<=5·105) — length of *s*, length of *t* and the aforementioned scissors' parameter correspondingly. The next two lines feature *s* and *t* consisting of lowercase latin letters. Output Specification: If there is no answer, print «No». Otherwise print «Yes» and two integers *L* and *R* denoting the indexes where cutted substrings start (1-indexed). If there are several possible answers, output any. Demo Input: ['7 4 3\nbaabaab\naaaa\n', '6 3 2\ncbcbcb\nbcc\n', '7 5 3\naabbaaa\naaaaa\n'] Demo Output: ['Yes\n1 5\n', 'Yes\n2 5\n', 'No\n'] Note: In the first sample case you can cut out two substrings starting at 1 and 5. The resulting string baaaab contains aaaa as a substring. In the second sample case the resulting string is bccb.
```python n, m, k = map( int, input().split() ) s = input() t = input() Lmatch = [0] * len(s) Rmatch = [0] * len(s) for i in range(len(s)-k): j = 0 while j < min(k, len(t)) and s[i+j] == t[j]: j += 1 Lmatch[i] = j print(Lmatch) for i in range(k, len(s)): j = 0 while j < min(k, len(t)) and s[i-j] == t[len(t)-1-j]: j += 1 Rmatch[i] = j print(Rmatch) L, R = None, None for i in range(len(s) - k): for mL in range(Lmatch[i], -1, -1): L = i - (k-mL) if L < 0: break mR = len(t)-mL for j in range(i + mL + mR -1, len(s)): if Rmatch[j] >= mR: R = j - mR + 1 break if R: break if R: break if not R: print('No') else: print('Yes') print(L+1, R+1) ```
0
46
C
Hamsters and Tigers
PROGRAMMING
1,600
[ "two pointers" ]
C. Hamsters and Tigers
2
256
Today there is going to be an unusual performance at the circus — hamsters and tigers will perform together! All of them stand in circle along the arena edge and now the trainer faces a difficult task: he wants to swap the animals' positions so that all the hamsters stood together and all the tigers also stood together. The trainer swaps the animals in pairs not to create a mess. He orders two animals to step out of the circle and swap places. As hamsters feel highly uncomfortable when tigers are nearby as well as tigers get nervous when there's so much potential prey around (consisting not only of hamsters but also of yummier spectators), the trainer wants to spend as little time as possible moving the animals, i.e. he wants to achieve it with the minimal number of swaps. Your task is to help him.
The first line contains number *n* (2<=≤<=*n*<=≤<=1000) which indicates the total number of animals in the arena. The second line contains the description of the animals' positions. The line consists of *n* symbols "H" and "T". The "H"s correspond to hamsters and the "T"s correspond to tigers. It is guaranteed that at least one hamster and one tiger are present on the arena. The animals are given in the order in which they are located circle-wise, in addition, the last animal stands near the first one.
Print the single number which is the minimal number of swaps that let the trainer to achieve his goal.
[ "3\nHTH\n", "9\nHTHTHTHHT\n" ]
[ "0\n", "2\n" ]
In the first example we shouldn't move anybody because the animals of each species already stand apart from the other species. In the second example you may swap, for example, the tiger in position 2 with the hamster in position 5 and then — the tiger in position 9 with the hamster in position 7.
0
[ { "input": "3\nHTH", "output": "0" }, { "input": "9\nHTHTHTHHT", "output": "2" }, { "input": "2\nTH", "output": "0" }, { "input": "4\nHTTH", "output": "0" }, { "input": "4\nHTHT", "output": "1" }, { "input": "7\nTTTHTTT", "output": "0" }, { "input": "8\nHHTHHTHH", "output": "1" }, { "input": "13\nHTTTHHHTTTTHH", "output": "3" }, { "input": "20\nTTHTHTHHTHTTHHTTTHHH", "output": "4" }, { "input": "35\nTTTTTTHTTHTTTTTHTTTTTTTTTTTHTHTTTTT", "output": "3" }, { "input": "120\nTTTTTTTHTHTHTTTTTHTHTTTTHTTTTTTTTTTTTTTTTTTTTHTTHTTTTHTTHTTTTTTTTTTTTTTTHTTTTTTHTHTTHTTTTTTHTTTTTTTTTHTTHTTTTHTTTHTTTTTH", "output": "14" }, { "input": "19\nHHHHHHHHHHHHHTTTHHH", "output": "0" }, { "input": "87\nHTHHTTHHHHTHHHHHTTTHHTHHHHTTTTHHHTTHHTHTHTHHTTHTHHTHTHTTHHHTTTTTHTTHHHHHHTHHTHHTHTTHTHH", "output": "17" }, { "input": "178\nTHHHTHTTTHTTHTTHHHHHTTTHTTHHTHTTTHTHTTTTTHHHTHTHHHTHHHTTTTTTTTHHHHTTHHTHHHHTHTTTHHHHHHTHHTHTTHTHTTTTTTTTTHHTTHHTHTTHHTHHHHHTTHHTTHHTTHHHTTHHTTTTHTHHHTHTTHTHTTTHHHHTHHTHHHTHTTTTTT", "output": "40" } ]
1,691,768,763
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
0
60
0
def min_swaps_to_separate_groups(s): n = len(s) hamsters = s.count('H') tigers = n - hamsters min_swaps = float('inf') # Count the number of tigers in a sliding window of size 'hamsters' for i in range(n - hamsters + 1): tigers_in_window = s[i:i + hamsters].count('T') min_swaps = min(min_swaps, tigers_in_window) return min_swaps def main(): n = int(input()) s = input() result = min_swaps_to_separate_groups(s) print(result) if __name__ == "__main__": main()
Title: Hamsters and Tigers Time Limit: 2 seconds Memory Limit: 256 megabytes Problem Description: Today there is going to be an unusual performance at the circus — hamsters and tigers will perform together! All of them stand in circle along the arena edge and now the trainer faces a difficult task: he wants to swap the animals' positions so that all the hamsters stood together and all the tigers also stood together. The trainer swaps the animals in pairs not to create a mess. He orders two animals to step out of the circle and swap places. As hamsters feel highly uncomfortable when tigers are nearby as well as tigers get nervous when there's so much potential prey around (consisting not only of hamsters but also of yummier spectators), the trainer wants to spend as little time as possible moving the animals, i.e. he wants to achieve it with the minimal number of swaps. Your task is to help him. Input Specification: The first line contains number *n* (2<=≤<=*n*<=≤<=1000) which indicates the total number of animals in the arena. The second line contains the description of the animals' positions. The line consists of *n* symbols "H" and "T". The "H"s correspond to hamsters and the "T"s correspond to tigers. It is guaranteed that at least one hamster and one tiger are present on the arena. The animals are given in the order in which they are located circle-wise, in addition, the last animal stands near the first one. Output Specification: Print the single number which is the minimal number of swaps that let the trainer to achieve his goal. Demo Input: ['3\nHTH\n', '9\nHTHTHTHHT\n'] Demo Output: ['0\n', '2\n'] Note: In the first example we shouldn't move anybody because the animals of each species already stand apart from the other species. In the second example you may swap, for example, the tiger in position 2 with the hamster in position 5 and then — the tiger in position 9 with the hamster in position 7.
```python def min_swaps_to_separate_groups(s): n = len(s) hamsters = s.count('H') tigers = n - hamsters min_swaps = float('inf') # Count the number of tigers in a sliding window of size 'hamsters' for i in range(n - hamsters + 1): tigers_in_window = s[i:i + hamsters].count('T') min_swaps = min(min_swaps, tigers_in_window) return min_swaps def main(): n = int(input()) s = input() result = min_swaps_to_separate_groups(s) print(result) if __name__ == "__main__": main() ```
0
18
C
Stripe
PROGRAMMING
1,200
[ "data structures", "implementation" ]
C. Stripe
2
64
Once Bob took a paper stripe of *n* squares (the height of the stripe is 1 square). In each square he wrote an integer number, possibly negative. He became interested in how many ways exist to cut this stripe into two pieces so that the sum of numbers from one piece is equal to the sum of numbers from the other piece, and each piece contains positive integer amount of squares. Would you help Bob solve this problem?
The first input line contains integer *n* (1<=≤<=*n*<=≤<=105) — amount of squares in the stripe. The second line contains *n* space-separated numbers — they are the numbers written in the squares of the stripe. These numbers are integer and do not exceed 10000 in absolute value.
Output the amount of ways to cut the stripe into two non-empty pieces so that the sum of numbers from one piece is equal to the sum of numbers from the other piece. Don't forget that it's allowed to cut the stripe along the squares' borders only.
[ "9\n1 5 -6 7 9 -16 0 -2 2\n", "3\n1 1 1\n", "2\n0 0\n" ]
[ "3\n", "0\n", "1\n" ]
none
0
[ { "input": "9\n1 5 -6 7 9 -16 0 -2 2", "output": "3" }, { "input": "3\n1 1 1", "output": "0" }, { "input": "2\n0 0", "output": "1" }, { "input": "4\n100 1 10 111", "output": "1" }, { "input": "10\n0 4 -3 0 -2 2 -3 -3 2 5", "output": "3" }, { "input": "10\n0 -1 2 2 -1 1 0 0 0 2", "output": "0" }, { "input": "10\n-1 -1 1 -1 0 1 0 1 1 1", "output": "1" }, { "input": "10\n0 0 0 0 0 0 0 0 0 0", "output": "9" }, { "input": "50\n-4 -3 3 4 -1 0 2 -4 -3 -4 1 4 3 0 4 1 0 -3 4 -3 -2 2 2 1 0 -4 -4 -5 3 2 -1 4 5 -3 -3 4 4 -5 2 -3 4 -5 2 5 -4 4 1 -2 -4 3", "output": "3" }, { "input": "15\n0 4 0 3 -1 4 -2 -2 -4 -4 3 2 4 -1 -3", "output": "0" }, { "input": "10\n3 -1 -3 -1 3 -2 0 3 1 -2", "output": "0" }, { "input": "100\n-4 2 4 4 1 3 -3 -3 2 1 -4 0 0 2 3 -1 -4 -3 4 -2 -3 -3 -3 -1 -2 -3 -1 -4 0 4 0 -1 4 0 -4 -4 4 -4 -2 1 -4 1 -3 -2 3 -4 4 0 -1 3 -1 4 -1 4 -1 3 -3 -3 -2 -2 4 -3 -3 4 -3 -2 -1 0 -2 4 0 -3 -1 -2 -3 1 -4 1 -3 -3 -3 -2 -3 0 1 -2 -2 -4 -3 -1 2 3 -1 1 1 0 3 -3 -1 -2", "output": "1" }, { "input": "100\n-2 -1 1 0 -2 -1 2 2 0 0 2 1 0 2 0 2 1 0 -1 -1 -1 0 -2 -1 2 -1 -2 2 -2 2 -2 -2 2 1 1 1 -2 2 0 0 2 -1 2 2 2 0 -1 -1 -1 1 -2 2 2 2 -2 0 0 -2 0 -2 -2 0 -1 -1 -2 -1 1 2 -2 -1 1 -2 -1 0 -2 2 2 -1 -2 2 0 0 0 1 0 1 2 1 -2 -2 -1 -1 -2 -2 -2 -1 2 2 2 -2", "output": "6" }, { "input": "100\n2 7 6 0 8 -2 0 1 8 -1 7 -4 -1 1 0 3 4 -4 3 7 8 -4 -6 6 4 -2 -5 7 4 6 1 6 3 8 -2 6 -6 -3 0 -1 -7 -8 -2 5 8 6 -2 -2 -5 -4 -7 -3 -5 -3 -3 -1 5 8 4 0 -7 -6 8 -4 -1 7 2 6 6 4 -5 -4 -5 -2 2 -2 -7 -1 5 -8 -6 -2 -5 4 2 8 -6 7 -8 -1 -5 8 6 -3 -1 7 -1 2 -8 -8", "output": "0" }, { "input": "1\n0", "output": "0" }, { "input": "1\n10000", "output": "0" }, { "input": "1\n-10000", "output": "0" } ]
1,598,785,298
2,147,483,647
Python 3
OK
TESTS
45
498
14,438,400
n = int(input()) stripe = list(map(int, input().split())) count = 0 left = 0 right = sum(stripe) for s in stripe[:-1]: left += s right -= s if left == right: count += 1 print(count)
Title: Stripe Time Limit: 2 seconds Memory Limit: 64 megabytes Problem Description: Once Bob took a paper stripe of *n* squares (the height of the stripe is 1 square). In each square he wrote an integer number, possibly negative. He became interested in how many ways exist to cut this stripe into two pieces so that the sum of numbers from one piece is equal to the sum of numbers from the other piece, and each piece contains positive integer amount of squares. Would you help Bob solve this problem? Input Specification: The first input line contains integer *n* (1<=≤<=*n*<=≤<=105) — amount of squares in the stripe. The second line contains *n* space-separated numbers — they are the numbers written in the squares of the stripe. These numbers are integer and do not exceed 10000 in absolute value. Output Specification: Output the amount of ways to cut the stripe into two non-empty pieces so that the sum of numbers from one piece is equal to the sum of numbers from the other piece. Don't forget that it's allowed to cut the stripe along the squares' borders only. Demo Input: ['9\n1 5 -6 7 9 -16 0 -2 2\n', '3\n1 1 1\n', '2\n0 0\n'] Demo Output: ['3\n', '0\n', '1\n'] Note: none
```python n = int(input()) stripe = list(map(int, input().split())) count = 0 left = 0 right = sum(stripe) for s in stripe[:-1]: left += s right -= s if left == right: count += 1 print(count) ```
3.767926
525
A
Vitaliy and Pie
PROGRAMMING
1,100
[ "greedy", "hashing", "strings" ]
null
null
After a hard day Vitaly got very hungry and he wants to eat his favorite potato pie. But it's not that simple. Vitaly is in the first room of the house with *n* room located in a line and numbered starting from one from left to right. You can go from the first room to the second room, from the second room to the third room and so on — you can go from the (*n*<=-<=1)-th room to the *n*-th room. Thus, you can go to room *x* only from room *x*<=-<=1. The potato pie is located in the *n*-th room and Vitaly needs to go there. Each pair of consecutive rooms has a door between them. In order to go to room *x* from room *x*<=-<=1, you need to open the door between the rooms with the corresponding key. In total the house has several types of doors (represented by uppercase Latin letters) and several types of keys (represented by lowercase Latin letters). The key of type *t* can open the door of type *T* if and only if *t* and *T* are the same letter, written in different cases. For example, key f can open door F. Each of the first *n*<=-<=1 rooms contains exactly one key of some type that Vitaly can use to get to next rooms. Once the door is open with some key, Vitaly won't get the key from the keyhole but he will immediately run into the next room. In other words, each key can open no more than one door. Vitaly realizes that he may end up in some room without the key that opens the door to the next room. Before the start his run for the potato pie Vitaly can buy any number of keys of any type that is guaranteed to get to room *n*. Given the plan of the house, Vitaly wants to know what is the minimum number of keys he needs to buy to surely get to the room *n*, which has a delicious potato pie. Write a program that will help Vitaly find out this number.
The first line of the input contains a positive integer *n* (2<=≤<=*n*<=≤<=105) — the number of rooms in the house. The second line of the input contains string *s* of length 2·*n*<=-<=2. Let's number the elements of the string from left to right, starting from one. The odd positions in the given string *s* contain lowercase Latin letters — the types of the keys that lie in the corresponding rooms. Thus, each odd position *i* of the given string *s* contains a lowercase Latin letter — the type of the key that lies in room number (*i*<=+<=1)<=/<=2. The even positions in the given string contain uppercase Latin letters — the types of doors between the rooms. Thus, each even position *i* of the given string *s* contains an uppercase letter — the type of the door that leads from room *i*<=/<=2 to room *i*<=/<=2<=+<=1.
Print the only integer — the minimum number of keys that Vitaly needs to buy to surely get from room one to room *n*.
[ "3\naAbB\n", "4\naBaCaB\n", "5\nxYyXzZaZ\n" ]
[ "0\n", "3\n", "2\n" ]
none
250
[ { "input": "3\naAbB", "output": "0" }, { "input": "4\naBaCaB", "output": "3" }, { "input": "5\nxYyXzZaZ", "output": "2" }, { "input": "26\naAbBcCdDeEfFgGhHiIjJkKlLmMnNoOpPqQrRsStTuUvVwWxXyY", "output": "0" }, { "input": "26\nzAyBxCwDvEuFtGsHrIqJpKoLnMmNlOkPjQiRhSgTfUeVdWcXbY", "output": "13" }, { "input": "5\naArRaRaR", "output": "2" }, { "input": "2\ndA", "output": "1" }, { "input": "2\ncB", "output": "1" }, { "input": "10\nhNcMeXsSlHsUwYeMcA", "output": "7" }, { "input": "100\nqDpInBmCrFwXpDbFgOzVvOcEmJrUcToAdEwEgTvBvBfWwRpGyEaXgDdRwVlQnYgWmWhMrHaIzPyXvGaFlRsVzHhZrOuVpXrKxFzAmWwPlFtNfPtJxVmLuHjKfYyArHrEnSwSzOvDpQhCgCqLlAcNpGhXrEeFuCmAqIkXyYtSsQwIxJzNiIuTgEbVuWrMwPrAlLyKaZ", "output": "42" }, { "input": "2\ndD", "output": "0" }, { "input": "2\ndE", "output": "1" }, { "input": "3\ndDdD", "output": "0" }, { "input": "3\ndEdD", "output": "1" }, { "input": "3\ndEeD", "output": "1" }, { "input": "3\ndEeF", "output": "2" } ]
1,619,849,915
215
Python 3
COMPILATION_ERROR
TESTS
0
0
0
{\rtf1\ansi\ansicpg1252\cocoartf2513 \cocoatextscaling0\cocoaplatform0{\fonttbl\f0\fswiss\fcharset0 Helvetica;} {\colortbl;\red255\green255\blue255;} {\*\expandedcolortbl;;} \paperw11900\paperh16840\margl1440\margr1440\vieww10800\viewh8400\viewkind0 \pard\tx566\tx1133\tx1700\tx2267\tx2834\tx3401\tx3968\tx4535\tx5102\tx5669\tx6236\tx6803\pardirnatural\partightenfactor0 \f0\fs24 \cf0 n = int(input())\ s = str(input())\ l = []\ c = 0\ for i in range(0,len(s),2):\ if(s[i].upper() != s[i+1]):\ l.append(s[i])\ if(s[i+1].lower() in l):\ l.remove(s[i+1].lower())\ else:\ c+=1 \ \ print(c)}
Title: Vitaliy and Pie Time Limit: None seconds Memory Limit: None megabytes Problem Description: After a hard day Vitaly got very hungry and he wants to eat his favorite potato pie. But it's not that simple. Vitaly is in the first room of the house with *n* room located in a line and numbered starting from one from left to right. You can go from the first room to the second room, from the second room to the third room and so on — you can go from the (*n*<=-<=1)-th room to the *n*-th room. Thus, you can go to room *x* only from room *x*<=-<=1. The potato pie is located in the *n*-th room and Vitaly needs to go there. Each pair of consecutive rooms has a door between them. In order to go to room *x* from room *x*<=-<=1, you need to open the door between the rooms with the corresponding key. In total the house has several types of doors (represented by uppercase Latin letters) and several types of keys (represented by lowercase Latin letters). The key of type *t* can open the door of type *T* if and only if *t* and *T* are the same letter, written in different cases. For example, key f can open door F. Each of the first *n*<=-<=1 rooms contains exactly one key of some type that Vitaly can use to get to next rooms. Once the door is open with some key, Vitaly won't get the key from the keyhole but he will immediately run into the next room. In other words, each key can open no more than one door. Vitaly realizes that he may end up in some room without the key that opens the door to the next room. Before the start his run for the potato pie Vitaly can buy any number of keys of any type that is guaranteed to get to room *n*. Given the plan of the house, Vitaly wants to know what is the minimum number of keys he needs to buy to surely get to the room *n*, which has a delicious potato pie. Write a program that will help Vitaly find out this number. Input Specification: The first line of the input contains a positive integer *n* (2<=≤<=*n*<=≤<=105) — the number of rooms in the house. The second line of the input contains string *s* of length 2·*n*<=-<=2. Let's number the elements of the string from left to right, starting from one. The odd positions in the given string *s* contain lowercase Latin letters — the types of the keys that lie in the corresponding rooms. Thus, each odd position *i* of the given string *s* contains a lowercase Latin letter — the type of the key that lies in room number (*i*<=+<=1)<=/<=2. The even positions in the given string contain uppercase Latin letters — the types of doors between the rooms. Thus, each even position *i* of the given string *s* contains an uppercase letter — the type of the door that leads from room *i*<=/<=2 to room *i*<=/<=2<=+<=1. Output Specification: Print the only integer — the minimum number of keys that Vitaly needs to buy to surely get from room one to room *n*. Demo Input: ['3\naAbB\n', '4\naBaCaB\n', '5\nxYyXzZaZ\n'] Demo Output: ['0\n', '3\n', '2\n'] Note: none
```python {\rtf1\ansi\ansicpg1252\cocoartf2513 \cocoatextscaling0\cocoaplatform0{\fonttbl\f0\fswiss\fcharset0 Helvetica;} {\colortbl;\red255\green255\blue255;} {\*\expandedcolortbl;;} \paperw11900\paperh16840\margl1440\margr1440\vieww10800\viewh8400\viewkind0 \pard\tx566\tx1133\tx1700\tx2267\tx2834\tx3401\tx3968\tx4535\tx5102\tx5669\tx6236\tx6803\pardirnatural\partightenfactor0 \f0\fs24 \cf0 n = int(input())\ s = str(input())\ l = []\ c = 0\ for i in range(0,len(s),2):\ if(s[i].upper() != s[i+1]):\ l.append(s[i])\ if(s[i+1].lower() in l):\ l.remove(s[i+1].lower())\ else:\ c+=1 \ \ print(c)} ```
-1
165
A
Supercentral Point
PROGRAMMING
1,000
[ "implementation" ]
null
null
One day Vasya painted a Cartesian coordinate system on a piece of paper and marked some set of points (*x*1,<=*y*1),<=(*x*2,<=*y*2),<=...,<=(*x**n*,<=*y**n*). Let's define neighbors for some fixed point from the given set (*x*,<=*y*): - point (*x*',<=*y*') is (*x*,<=*y*)'s right neighbor, if *x*'<=&gt;<=*x* and *y*'<==<=*y* - point (*x*',<=*y*') is (*x*,<=*y*)'s left neighbor, if *x*'<=&lt;<=*x* and *y*'<==<=*y* - point (*x*',<=*y*') is (*x*,<=*y*)'s lower neighbor, if *x*'<==<=*x* and *y*'<=&lt;<=*y* - point (*x*',<=*y*') is (*x*,<=*y*)'s upper neighbor, if *x*'<==<=*x* and *y*'<=&gt;<=*y* We'll consider point (*x*,<=*y*) from the given set supercentral, if it has at least one upper, at least one lower, at least one left and at least one right neighbor among this set's points. Vasya marked quite many points on the paper. Analyzing the picture manually is rather a challenge, so Vasya asked you to help him. Your task is to find the number of supercentral points in the given set.
The first input line contains the only integer *n* (1<=≤<=*n*<=≤<=200) — the number of points in the given set. Next *n* lines contain the coordinates of the points written as "*x* *y*" (without the quotes) (|*x*|,<=|*y*|<=≤<=1000), all coordinates are integers. The numbers in the line are separated by exactly one space. It is guaranteed that all points are different.
Print the only number — the number of supercentral points of the given set.
[ "8\n1 1\n4 2\n3 1\n1 2\n0 2\n0 1\n1 0\n1 3\n", "5\n0 0\n0 1\n1 0\n0 -1\n-1 0\n" ]
[ "2\n", "1\n" ]
In the first sample the supercentral points are only points (1, 1) and (1, 2). In the second sample there is one supercental point — point (0, 0).
500
[ { "input": "8\n1 1\n4 2\n3 1\n1 2\n0 2\n0 1\n1 0\n1 3", "output": "2" }, { "input": "5\n0 0\n0 1\n1 0\n0 -1\n-1 0", "output": "1" }, { "input": "9\n-565 -752\n-184 723\n-184 -752\n-184 1\n950 723\n-565 723\n950 -752\n950 1\n-565 1", "output": "1" }, { "input": "25\n-651 897\n916 897\n-651 -808\n-748 301\n-734 414\n-651 -973\n-734 897\n916 -550\n-758 414\n916 180\n-758 -808\n-758 -973\n125 -550\n125 -973\n125 301\n916 414\n-748 -808\n-651 301\n-734 301\n-307 897\n-651 -550\n-651 414\n125 -808\n-748 -550\n916 -808", "output": "7" }, { "input": "1\n487 550", "output": "0" }, { "input": "10\n990 -396\n990 736\n990 646\n990 -102\n990 -570\n990 155\n990 528\n990 489\n990 268\n990 676", "output": "0" }, { "input": "30\n507 836\n525 836\n-779 196\n507 -814\n525 -814\n525 42\n525 196\n525 -136\n-779 311\n507 -360\n525 300\n507 578\n507 311\n-779 836\n507 300\n525 -360\n525 311\n-779 -360\n-779 578\n-779 300\n507 42\n525 578\n-779 379\n507 196\n525 379\n507 379\n-779 -814\n-779 42\n-779 -136\n507 -136", "output": "8" }, { "input": "25\n890 -756\n890 -188\n-37 -756\n-37 853\n523 998\n-261 853\n-351 853\n-351 -188\n523 -756\n-261 -188\n-37 998\n523 -212\n-351 998\n-37 -188\n-351 -756\n-37 -212\n890 998\n890 -212\n523 853\n-351 -212\n-261 -212\n-261 998\n-261 -756\n890 853\n523 -188", "output": "9" }, { "input": "21\n-813 -11\n486 254\n685 254\n-708 254\n-55 -11\n-671 -191\n486 -11\n-671 -11\n685 -11\n685 -191\n486 -191\n-55 254\n-708 -11\n-813 254\n-708 -191\n41 -11\n-671 254\n-813 -191\n41 254\n-55 -191\n41 -191", "output": "5" }, { "input": "4\n1 0\n2 0\n1 1\n1 -1", "output": "0" } ]
1,621,925,510
2,147,483,647
Python 3
OK
TESTS
26
186
0
n = int(input()) s = [] for _ in range(n): a = tuple(map(int, input().split())) s.append(a) c = 0 for i in range(n): x, y = s[i][0], s[i][1] r = list(filter(lambda q : q[0]>x and q[1]==y, s)) l = list(filter(lambda q : q[0]<x and q[1]==y, s)) u = list(filter(lambda q : q[0]==x and q[1]>y, s)) d = list(filter(lambda q : q[0]==x and q[1]<y, s)) if len(r)>0 and len(l)>0 and len(u)>0 and len(d)>0: c += 1 print(c)
Title: Supercentral Point Time Limit: None seconds Memory Limit: None megabytes Problem Description: One day Vasya painted a Cartesian coordinate system on a piece of paper and marked some set of points (*x*1,<=*y*1),<=(*x*2,<=*y*2),<=...,<=(*x**n*,<=*y**n*). Let's define neighbors for some fixed point from the given set (*x*,<=*y*): - point (*x*',<=*y*') is (*x*,<=*y*)'s right neighbor, if *x*'<=&gt;<=*x* and *y*'<==<=*y* - point (*x*',<=*y*') is (*x*,<=*y*)'s left neighbor, if *x*'<=&lt;<=*x* and *y*'<==<=*y* - point (*x*',<=*y*') is (*x*,<=*y*)'s lower neighbor, if *x*'<==<=*x* and *y*'<=&lt;<=*y* - point (*x*',<=*y*') is (*x*,<=*y*)'s upper neighbor, if *x*'<==<=*x* and *y*'<=&gt;<=*y* We'll consider point (*x*,<=*y*) from the given set supercentral, if it has at least one upper, at least one lower, at least one left and at least one right neighbor among this set's points. Vasya marked quite many points on the paper. Analyzing the picture manually is rather a challenge, so Vasya asked you to help him. Your task is to find the number of supercentral points in the given set. Input Specification: The first input line contains the only integer *n* (1<=≤<=*n*<=≤<=200) — the number of points in the given set. Next *n* lines contain the coordinates of the points written as "*x* *y*" (without the quotes) (|*x*|,<=|*y*|<=≤<=1000), all coordinates are integers. The numbers in the line are separated by exactly one space. It is guaranteed that all points are different. Output Specification: Print the only number — the number of supercentral points of the given set. Demo Input: ['8\n1 1\n4 2\n3 1\n1 2\n0 2\n0 1\n1 0\n1 3\n', '5\n0 0\n0 1\n1 0\n0 -1\n-1 0\n'] Demo Output: ['2\n', '1\n'] Note: In the first sample the supercentral points are only points (1, 1) and (1, 2). In the second sample there is one supercental point — point (0, 0).
```python n = int(input()) s = [] for _ in range(n): a = tuple(map(int, input().split())) s.append(a) c = 0 for i in range(n): x, y = s[i][0], s[i][1] r = list(filter(lambda q : q[0]>x and q[1]==y, s)) l = list(filter(lambda q : q[0]<x and q[1]==y, s)) u = list(filter(lambda q : q[0]==x and q[1]>y, s)) d = list(filter(lambda q : q[0]==x and q[1]<y, s)) if len(r)>0 and len(l)>0 and len(u)>0 and len(d)>0: c += 1 print(c) ```
3
34
A
Reconnaissance 2
PROGRAMMING
800
[ "implementation" ]
A. Reconnaissance 2
2
256
*n* soldiers stand in a circle. For each soldier his height *a**i* is known. A reconnaissance unit can be made of such two neighbouring soldiers, whose heights difference is minimal, i.e. |*a**i*<=-<=*a**j*| is minimal. So each of them will be less noticeable with the other. Output any pair of soldiers that can form a reconnaissance unit.
The first line contains integer *n* (2<=≤<=*n*<=≤<=100) — amount of soldiers. Then follow the heights of the soldiers in their order in the circle — *n* space-separated integers *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=1000). The soldier heights are given in clockwise or counterclockwise direction.
Output two integers — indexes of neighbouring soldiers, who should form a reconnaissance unit. If there are many optimum solutions, output any of them. Remember, that the soldiers stand in a circle.
[ "5\n10 12 13 15 10\n", "4\n10 20 30 40\n" ]
[ "5 1\n", "1 2\n" ]
none
500
[ { "input": "5\n10 12 13 15 10", "output": "5 1" }, { "input": "4\n10 20 30 40", "output": "1 2" }, { "input": "6\n744 359 230 586 944 442", "output": "2 3" }, { "input": "5\n826 747 849 687 437", "output": "1 2" }, { "input": "5\n999 999 993 969 999", "output": "1 2" }, { "input": "5\n4 24 6 1 15", "output": "3 4" }, { "input": "2\n511 32", "output": "1 2" }, { "input": "3\n907 452 355", "output": "2 3" }, { "input": "4\n303 872 764 401", "output": "4 1" }, { "input": "10\n684 698 429 694 956 812 594 170 937 764", "output": "1 2" }, { "input": "20\n646 840 437 946 640 564 936 917 487 752 844 734 468 969 674 646 728 642 514 695", "output": "7 8" }, { "input": "30\n996 999 998 984 989 1000 996 993 1000 983 992 999 999 1000 979 992 987 1000 996 1000 1000 989 981 996 995 999 999 989 999 1000", "output": "12 13" }, { "input": "50\n93 27 28 4 5 78 59 24 19 134 31 128 118 36 90 32 32 1 44 32 33 13 31 10 12 25 38 50 25 12 4 22 28 53 48 83 4 25 57 31 71 24 8 7 28 86 23 80 101 58", "output": "16 17" }, { "input": "88\n1000 1000 1000 1000 1000 998 998 1000 1000 1000 1000 999 999 1000 1000 1000 999 1000 997 999 997 1000 999 998 1000 999 1000 1000 1000 999 1000 999 999 1000 1000 999 1000 999 1000 1000 998 1000 1000 1000 998 998 1000 1000 999 1000 1000 1000 1000 1000 1000 1000 998 1000 1000 1000 999 1000 1000 999 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 998 1000 1000 1000 998 1000 1000 998 1000 999 1000 1000 1000 1000", "output": "1 2" }, { "input": "99\n4 4 21 6 5 3 13 2 6 1 3 4 1 3 1 9 11 1 6 17 4 5 20 4 1 9 5 11 3 4 14 1 3 3 1 4 3 5 27 1 1 2 10 7 11 4 19 7 11 6 11 13 3 1 10 7 2 1 16 1 9 4 29 13 2 12 14 2 21 1 9 8 26 12 12 5 2 14 7 8 8 8 9 4 12 2 6 6 7 16 8 14 2 10 20 15 3 7 4", "output": "1 2" }, { "input": "100\n713 572 318 890 577 657 646 146 373 783 392 229 455 871 20 593 573 336 26 381 280 916 907 732 820 713 111 840 570 446 184 711 481 399 788 647 492 15 40 530 549 506 719 782 126 20 778 996 712 761 9 74 812 418 488 175 103 585 900 3 604 521 109 513 145 708 990 361 682 827 791 22 596 780 596 385 450 643 158 496 876 975 319 783 654 895 891 361 397 81 682 899 347 623 809 557 435 279 513 438", "output": "86 87" }, { "input": "100\n31 75 86 68 111 27 22 22 26 30 54 163 107 75 160 122 14 23 17 26 27 20 43 58 59 71 21 148 9 32 43 91 133 286 132 70 90 156 84 14 77 93 23 18 13 72 18 131 33 28 72 175 30 86 249 20 14 208 28 57 63 199 6 10 24 30 62 267 43 479 60 28 138 1 45 3 19 47 7 166 116 117 50 140 28 14 95 85 93 43 61 15 2 70 10 51 7 95 9 25", "output": "7 8" }, { "input": "100\n896 898 967 979 973 709 961 968 806 967 896 967 826 975 936 903 986 856 851 931 852 971 786 837 949 978 686 936 952 909 965 749 908 916 943 973 983 975 939 886 964 928 960 976 907 788 994 773 949 871 947 980 945 985 726 981 887 943 907 990 931 874 840 867 948 951 961 904 888 901 976 967 994 921 828 970 972 722 755 970 860 855 914 869 714 899 969 978 898 862 642 939 904 936 819 934 884 983 955 964", "output": "1 2" }, { "input": "100\n994 927 872 970 815 986 952 996 965 1000 877 986 978 999 950 990 936 997 993 960 921 860 895 869 943 998 983 968 973 953 999 990 995 871 853 979 973 963 953 938 997 989 993 964 960 973 946 975 1000 962 920 746 989 957 904 965 920 979 966 961 1000 993 975 952 846 971 991 979 985 969 984 973 956 1000 952 778 983 974 956 927 995 997 980 997 1000 970 960 970 988 983 947 904 935 972 1000 863 992 996 932 967", "output": "81 82" }, { "input": "100\n48 108 63 21 27 8 49 21 75 8 24 42 149 18 8 28 21 18 25 35 59 70 59 33 40 1 67 34 120 82 4 115 72 87 3 15 15 63 37 12 40 27 83 14 38 20 14 58 93 10 31 3 39 6 197 77 54 16 31 146 9 49 14 8 77 82 5 11 80 116 8 61 50 24 7 103 29 11 3 3 1 12 46 24 21 131 39 29 36 2 107 40 16 99 31 41 29 48 17 17", "output": "36 37" } ]
1,636,316,199
2,147,483,647
PyPy 3
WRONG_ANSWER
TESTS
1
124
17,715,200
a = int(input()) b = list(map(int,input().split())) ans = float("inf") for i in range(a): if i + 1 >= a: if abs(b[i] - b[0]) < ans: ans_1 = i + 1 ans_2 = 1 else: if abs(b[i] - b[i + 1]) < ans: ans_1 = i + 1 ans_2 = i + 2 print(ans_1,ans_2)
Title: Reconnaissance 2 Time Limit: 2 seconds Memory Limit: 256 megabytes Problem Description: *n* soldiers stand in a circle. For each soldier his height *a**i* is known. A reconnaissance unit can be made of such two neighbouring soldiers, whose heights difference is minimal, i.e. |*a**i*<=-<=*a**j*| is minimal. So each of them will be less noticeable with the other. Output any pair of soldiers that can form a reconnaissance unit. Input Specification: The first line contains integer *n* (2<=≤<=*n*<=≤<=100) — amount of soldiers. Then follow the heights of the soldiers in their order in the circle — *n* space-separated integers *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=1000). The soldier heights are given in clockwise or counterclockwise direction. Output Specification: Output two integers — indexes of neighbouring soldiers, who should form a reconnaissance unit. If there are many optimum solutions, output any of them. Remember, that the soldiers stand in a circle. Demo Input: ['5\n10 12 13 15 10\n', '4\n10 20 30 40\n'] Demo Output: ['5 1\n', '1 2\n'] Note: none
```python a = int(input()) b = list(map(int,input().split())) ans = float("inf") for i in range(a): if i + 1 >= a: if abs(b[i] - b[0]) < ans: ans_1 = i + 1 ans_2 = 1 else: if abs(b[i] - b[i + 1]) < ans: ans_1 = i + 1 ans_2 = i + 2 print(ans_1,ans_2) ```
0
909
A
Generate Login
PROGRAMMING
1,000
[ "brute force", "greedy", "sortings" ]
null
null
The preferred way to generate user login in Polygon is to concatenate a prefix of the user's first name and a prefix of their last name, in that order. Each prefix must be non-empty, and any of the prefixes can be the full name. Typically there are multiple possible logins for each person. You are given the first and the last name of a user. Return the alphabetically earliest login they can get (regardless of other potential Polygon users). As a reminder, a prefix of a string *s* is its substring which occurs at the beginning of *s*: "a", "ab", "abc" etc. are prefixes of string "{abcdef}" but "b" and 'bc" are not. A string *a* is alphabetically earlier than a string *b*, if *a* is a prefix of *b*, or *a* and *b* coincide up to some position, and then *a* has a letter that is alphabetically earlier than the corresponding letter in *b*: "a" and "ab" are alphabetically earlier than "ac" but "b" and "ba" are alphabetically later than "ac".
The input consists of a single line containing two space-separated strings: the first and the last names. Each character of each string is a lowercase English letter. The length of each string is between 1 and 10, inclusive.
Output a single string — alphabetically earliest possible login formed from these names. The output should be given in lowercase as well.
[ "harry potter\n", "tom riddle\n" ]
[ "hap\n", "tomr\n" ]
none
500
[ { "input": "harry potter", "output": "hap" }, { "input": "tom riddle", "output": "tomr" }, { "input": "a qdpinbmcrf", "output": "aq" }, { "input": "wixjzniiub ssdfodfgap", "output": "wis" }, { "input": "z z", "output": "zz" }, { "input": "ertuyivhfg v", "output": "ertuv" }, { "input": "asdfghjkli ware", "output": "asdfghjkliw" }, { "input": "udggmyop ze", "output": "udggmyopz" }, { "input": "fapkdme rtzxovx", "output": "fapkdmer" }, { "input": "mybiqxmnqq l", "output": "ml" }, { "input": "dtbqya fyyymv", "output": "df" }, { "input": "fyclu zokbxiahao", "output": "fycluz" }, { "input": "qngatnviv rdych", "output": "qngar" }, { "input": "ttvnhrnng lqkfulhrn", "output": "tl" }, { "input": "fya fgx", "output": "ff" }, { "input": "nuis zvjjqlre", "output": "nuisz" }, { "input": "ly qtsmze", "output": "lq" }, { "input": "d kgfpjsurfw", "output": "dk" }, { "input": "lwli ewrpu", "output": "le" }, { "input": "rr wldsfubcs", "output": "rrw" }, { "input": "h qart", "output": "hq" }, { "input": "vugvblnzx kqdwdulm", "output": "vk" }, { "input": "xohesmku ef", "output": "xe" }, { "input": "twvvsl wtcyawv", "output": "tw" }, { "input": "obljndajv q", "output": "obljndajq" }, { "input": "jjxwj kxccwx", "output": "jjk" }, { "input": "sk fftzmv", "output": "sf" }, { "input": "cgpegngs aufzxkyyrw", "output": "ca" }, { "input": "reyjzjdvq skuch", "output": "res" }, { "input": "ardaae mxgdulijf", "output": "am" }, { "input": "bgopsdfji uaps", "output": "bgopsdfjiu" }, { "input": "amolfed pun", "output": "amolfedp" }, { "input": "badkiln yort", "output": "badkilny" }, { "input": "aaaaaaaaaz york", "output": "aaaaaaaaay" }, { "input": "bbbbcbbbbd c", "output": "bbbbc" }, { "input": "aa ab", "output": "aa" }, { "input": "ab b", "output": "ab" }, { "input": "aaaaa ab", "output": "aa" }, { "input": "aa a", "output": "aa" }, { "input": "aba b", "output": "ab" }, { "input": "aaaaaaa aaaaaa", "output": "aa" }, { "input": "a a", "output": "aa" }, { "input": "a aa", "output": "aa" }, { "input": "a b", "output": "ab" }, { "input": "b a", "output": "ba" }, { "input": "z a", "output": "za" }, { "input": "aaa a", "output": "aa" }, { "input": "aa aa", "output": "aa" }, { "input": "a aaa", "output": "aa" }, { "input": "aaaaaaaaaa aaaaaaaaaa", "output": "aa" }, { "input": "aaaaaaaaaa a", "output": "aa" }, { "input": "a aaaaaaaaaa", "output": "aa" }, { "input": "zzaa b", "output": "zb" }, { "input": "ca cf", "output": "cac" }, { "input": "abhi ia", "output": "abhi" }, { "input": "aaaa aaaab", "output": "aa" }, { "input": "aar raa", "output": "aar" }, { "input": "harry hotter", "output": "hah" }, { "input": "aaaaaaa a", "output": "aa" }, { "input": "apple pie", "output": "ap" }, { "input": "aaa aaa", "output": "aa" }, { "input": "kabc buba", "output": "kab" }, { "input": "asd ss", "output": "as" }, { "input": "bbb b", "output": "bb" } ]
1,593,423,568
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
1
109
6,656,000
n,p = input().split() d = n[0] for i in range(1,len(n)): if n[i]<n[i+1]: d+=n[i] else: break print(d+p[0])
Title: Generate Login Time Limit: None seconds Memory Limit: None megabytes Problem Description: The preferred way to generate user login in Polygon is to concatenate a prefix of the user's first name and a prefix of their last name, in that order. Each prefix must be non-empty, and any of the prefixes can be the full name. Typically there are multiple possible logins for each person. You are given the first and the last name of a user. Return the alphabetically earliest login they can get (regardless of other potential Polygon users). As a reminder, a prefix of a string *s* is its substring which occurs at the beginning of *s*: "a", "ab", "abc" etc. are prefixes of string "{abcdef}" but "b" and 'bc" are not. A string *a* is alphabetically earlier than a string *b*, if *a* is a prefix of *b*, or *a* and *b* coincide up to some position, and then *a* has a letter that is alphabetically earlier than the corresponding letter in *b*: "a" and "ab" are alphabetically earlier than "ac" but "b" and "ba" are alphabetically later than "ac". Input Specification: The input consists of a single line containing two space-separated strings: the first and the last names. Each character of each string is a lowercase English letter. The length of each string is between 1 and 10, inclusive. Output Specification: Output a single string — alphabetically earliest possible login formed from these names. The output should be given in lowercase as well. Demo Input: ['harry potter\n', 'tom riddle\n'] Demo Output: ['hap\n', 'tomr\n'] Note: none
```python n,p = input().split() d = n[0] for i in range(1,len(n)): if n[i]<n[i+1]: d+=n[i] else: break print(d+p[0]) ```
0
9
A
Die Roll
PROGRAMMING
800
[ "math", "probabilities" ]
A. Die Roll
1
64
Yakko, Wakko and Dot, world-famous animaniacs, decided to rest from acting in cartoons, and take a leave to travel a bit. Yakko dreamt to go to Pennsylvania, his Motherland and the Motherland of his ancestors. Wakko thought about Tasmania, its beaches, sun and sea. Dot chose Transylvania as the most mysterious and unpredictable place. But to their great regret, the leave turned to be very short, so it will be enough to visit one of the three above named places. That's why Yakko, as the cleverest, came up with a truly genius idea: let each of the three roll an ordinary six-sided die, and the one with the highest amount of points will be the winner, and will take the other two to the place of his/her dreams. Yakko thrown a die and got Y points, Wakko — W points. It was Dot's turn. But she didn't hurry. Dot wanted to know for sure what were her chances to visit Transylvania. It is known that Yakko and Wakko are true gentlemen, that's why if they have the same amount of points with Dot, they will let Dot win.
The only line of the input file contains two natural numbers Y and W — the results of Yakko's and Wakko's die rolls.
Output the required probability in the form of irreducible fraction in format «A/B», where A — the numerator, and B — the denominator. If the required probability equals to zero, output «0/1». If the required probability equals to 1, output «1/1».
[ "4 2\n" ]
[ "1/2\n" ]
Dot will go to Transylvania, if she is lucky to roll 4, 5 or 6 points.
0
[ { "input": "4 2", "output": "1/2" }, { "input": "1 1", "output": "1/1" }, { "input": "1 2", "output": "5/6" }, { "input": "1 3", "output": "2/3" }, { "input": "1 4", "output": "1/2" }, { "input": "1 5", "output": "1/3" }, { "input": "1 6", "output": "1/6" }, { "input": "2 1", "output": "5/6" }, { "input": "2 2", "output": "5/6" }, { "input": "2 3", "output": "2/3" }, { "input": "2 4", "output": "1/2" }, { "input": "2 5", "output": "1/3" }, { "input": "2 6", "output": "1/6" }, { "input": "3 1", "output": "2/3" }, { "input": "3 2", "output": "2/3" }, { "input": "3 3", "output": "2/3" }, { "input": "3 4", "output": "1/2" }, { "input": "3 5", "output": "1/3" }, { "input": "3 6", "output": "1/6" }, { "input": "4 1", "output": "1/2" }, { "input": "4 3", "output": "1/2" }, { "input": "4 4", "output": "1/2" }, { "input": "4 5", "output": "1/3" }, { "input": "4 6", "output": "1/6" }, { "input": "5 1", "output": "1/3" }, { "input": "5 2", "output": "1/3" }, { "input": "5 3", "output": "1/3" }, { "input": "5 4", "output": "1/3" }, { "input": "5 5", "output": "1/3" }, { "input": "5 6", "output": "1/6" }, { "input": "6 1", "output": "1/6" }, { "input": "6 2", "output": "1/6" }, { "input": "6 3", "output": "1/6" }, { "input": "6 4", "output": "1/6" }, { "input": "6 5", "output": "1/6" }, { "input": "6 6", "output": "1/6" } ]
1,681,834,943
2,147,483,647
Python 3
OK
TESTS
36
92
0
a,b=map(int,input().split(' ')) x=max(a,b)-1 a=['1/1','5/6','2/3','1/2','1/3','1/6'] print(a[x])
Title: Die Roll Time Limit: 1 seconds Memory Limit: 64 megabytes Problem Description: Yakko, Wakko and Dot, world-famous animaniacs, decided to rest from acting in cartoons, and take a leave to travel a bit. Yakko dreamt to go to Pennsylvania, his Motherland and the Motherland of his ancestors. Wakko thought about Tasmania, its beaches, sun and sea. Dot chose Transylvania as the most mysterious and unpredictable place. But to their great regret, the leave turned to be very short, so it will be enough to visit one of the three above named places. That's why Yakko, as the cleverest, came up with a truly genius idea: let each of the three roll an ordinary six-sided die, and the one with the highest amount of points will be the winner, and will take the other two to the place of his/her dreams. Yakko thrown a die and got Y points, Wakko — W points. It was Dot's turn. But she didn't hurry. Dot wanted to know for sure what were her chances to visit Transylvania. It is known that Yakko and Wakko are true gentlemen, that's why if they have the same amount of points with Dot, they will let Dot win. Input Specification: The only line of the input file contains two natural numbers Y and W — the results of Yakko's and Wakko's die rolls. Output Specification: Output the required probability in the form of irreducible fraction in format «A/B», where A — the numerator, and B — the denominator. If the required probability equals to zero, output «0/1». If the required probability equals to 1, output «1/1». Demo Input: ['4 2\n'] Demo Output: ['1/2\n'] Note: Dot will go to Transylvania, if she is lucky to roll 4, 5 or 6 points.
```python a,b=map(int,input().split(' ')) x=max(a,b)-1 a=['1/1','5/6','2/3','1/2','1/3','1/6'] print(a[x]) ```
3.954
584
B
Kolya and Tanya
PROGRAMMING
1,500
[ "combinatorics" ]
null
null
Kolya loves putting gnomes at the circle table and giving them coins, and Tanya loves studying triplets of gnomes, sitting in the vertexes of an equilateral triangle. More formally, there are 3*n* gnomes sitting in a circle. Each gnome can have from 1 to 3 coins. Let's number the places in the order they occur in the circle by numbers from 0 to 3*n*<=-<=1, let the gnome sitting on the *i*-th place have *a**i* coins. If there is an integer *i* (0<=≤<=*i*<=&lt;<=*n*) such that *a**i*<=+<=*a**i*<=+<=*n*<=+<=*a**i*<=+<=2*n*<=≠<=6, then Tanya is satisfied. Count the number of ways to choose *a**i* so that Tanya is satisfied. As there can be many ways of distributing coins, print the remainder of this number modulo 109<=+<=7. Two ways, *a* and *b*, are considered distinct if there is index *i* (0<=≤<=*i*<=&lt;<=3*n*), such that *a**i*<=≠<=*b**i* (that is, some gnome got different number of coins in these two ways).
A single line contains number *n* (1<=≤<=*n*<=≤<=105) — the number of the gnomes divided by three.
Print a single number — the remainder of the number of variants of distributing coins that satisfy Tanya modulo 109<=+<=7.
[ "1\n", "2\n" ]
[ "20", "680" ]
20 ways for *n* = 1 (gnome with index 0 sits on the top of the triangle, gnome 1 on the right vertex, gnome 2 on the left vertex): <img class="tex-graphics" src="https://espresso.codeforces.com/64df38b85ccb482cf88d02dc52e348e33313f9da.png" style="max-width: 100.0%;max-height: 100.0%;"/>
1,000
[ { "input": "1", "output": "20" }, { "input": "2", "output": "680" }, { "input": "3", "output": "19340" }, { "input": "4", "output": "529040" }, { "input": "5", "output": "14332100" }, { "input": "7", "output": "459529590" }, { "input": "10", "output": "848178170" }, { "input": "14", "output": "356372551" }, { "input": "58000", "output": "66667472" }, { "input": "6", "output": "387302840" }, { "input": "8", "output": "423769706" }, { "input": "9", "output": "557078005" }, { "input": "15", "output": "83420839" }, { "input": "20", "output": "208683407" }, { "input": "22", "output": "695178405" }, { "input": "48", "output": "974152357" }, { "input": "74", "output": "972015869" }, { "input": "100", "output": "364994225" }, { "input": "866", "output": "363347020" }, { "input": "1673", "output": "112069243" }, { "input": "555", "output": "506150275" }, { "input": "2000", "output": "394190362" }, { "input": "9877", "output": "915063121" }, { "input": "5984", "output": "546302050" }, { "input": "2091", "output": "982683445" }, { "input": "10000", "output": "246305722" }, { "input": "10868", "output": "118127713" }, { "input": "66115", "output": "413345995" }, { "input": "62212", "output": "587210092" }, { "input": "100000", "output": "192156836" }, { "input": "2441", "output": "149858187" }, { "input": "18569", "output": "54080463" }, { "input": "69289", "output": "582363404" }, { "input": "85417", "output": "796810422" }, { "input": "68841", "output": "371243141" }, { "input": "10000", "output": "246305722" }, { "input": "4343", "output": "682818914" }, { "input": "12312", "output": "837337190" }, { "input": "5462", "output": "719513799" }, { "input": "100", "output": "364994225" }, { "input": "11", "output": "550315374" }, { "input": "100000", "output": "192156836" } ]
1,664,216,814
2,147,483,647
Python 3
OK
TESTS
42
62
0
def small(a, x): if x<10: return (a**x)%(10**9+7) if x%2==0: return (small(a, x//2)*small(a, x//2))%(10**9+7) else: return (a*small(a, x//2)*small(a, x//2))%(10**9+7) def rec(a, b, x): if x<10: return (a**x-b**x)%(10**9+7) if x%2==0: return rec(a, b, x//2)*(small(a, x//2)+small(b, x//2))%(10**9+7) else: return (small(a, x)%(10**9+7)-small(b, x)%(10**9+7))%(10**9+7) n=int(input()) print(rec(27, 7, n))
Title: Kolya and Tanya Time Limit: None seconds Memory Limit: None megabytes Problem Description: Kolya loves putting gnomes at the circle table and giving them coins, and Tanya loves studying triplets of gnomes, sitting in the vertexes of an equilateral triangle. More formally, there are 3*n* gnomes sitting in a circle. Each gnome can have from 1 to 3 coins. Let's number the places in the order they occur in the circle by numbers from 0 to 3*n*<=-<=1, let the gnome sitting on the *i*-th place have *a**i* coins. If there is an integer *i* (0<=≤<=*i*<=&lt;<=*n*) such that *a**i*<=+<=*a**i*<=+<=*n*<=+<=*a**i*<=+<=2*n*<=≠<=6, then Tanya is satisfied. Count the number of ways to choose *a**i* so that Tanya is satisfied. As there can be many ways of distributing coins, print the remainder of this number modulo 109<=+<=7. Two ways, *a* and *b*, are considered distinct if there is index *i* (0<=≤<=*i*<=&lt;<=3*n*), such that *a**i*<=≠<=*b**i* (that is, some gnome got different number of coins in these two ways). Input Specification: A single line contains number *n* (1<=≤<=*n*<=≤<=105) — the number of the gnomes divided by three. Output Specification: Print a single number — the remainder of the number of variants of distributing coins that satisfy Tanya modulo 109<=+<=7. Demo Input: ['1\n', '2\n'] Demo Output: ['20', '680'] Note: 20 ways for *n* = 1 (gnome with index 0 sits on the top of the triangle, gnome 1 on the right vertex, gnome 2 on the left vertex): <img class="tex-graphics" src="https://espresso.codeforces.com/64df38b85ccb482cf88d02dc52e348e33313f9da.png" style="max-width: 100.0%;max-height: 100.0%;"/>
```python def small(a, x): if x<10: return (a**x)%(10**9+7) if x%2==0: return (small(a, x//2)*small(a, x//2))%(10**9+7) else: return (a*small(a, x//2)*small(a, x//2))%(10**9+7) def rec(a, b, x): if x<10: return (a**x-b**x)%(10**9+7) if x%2==0: return rec(a, b, x//2)*(small(a, x//2)+small(b, x//2))%(10**9+7) else: return (small(a, x)%(10**9+7)-small(b, x)%(10**9+7))%(10**9+7) n=int(input()) print(rec(27, 7, n)) ```
3
69
A
Young Physicist
PROGRAMMING
1,000
[ "implementation", "math" ]
A. Young Physicist
2
256
A guy named Vasya attends the final grade of a high school. One day Vasya decided to watch a match of his favorite hockey team. And, as the boy loves hockey very much, even more than physics, he forgot to do the homework. Specifically, he forgot to complete his physics tasks. Next day the teacher got very angry at Vasya and decided to teach him a lesson. He gave the lazy student a seemingly easy task: You are given an idle body in space and the forces that affect it. The body can be considered as a material point with coordinates (0; 0; 0). Vasya had only to answer whether it is in equilibrium. "Piece of cake" — thought Vasya, we need only to check if the sum of all vectors is equal to 0. So, Vasya began to solve the problem. But later it turned out that there can be lots and lots of these forces, and Vasya can not cope without your help. Help him. Write a program that determines whether a body is idle or is moving by the given vectors of forces.
The first line contains a positive integer *n* (1<=≤<=*n*<=≤<=100), then follow *n* lines containing three integers each: the *x**i* coordinate, the *y**i* coordinate and the *z**i* coordinate of the force vector, applied to the body (<=-<=100<=≤<=*x**i*,<=*y**i*,<=*z**i*<=≤<=100).
Print the word "YES" if the body is in equilibrium, or the word "NO" if it is not.
[ "3\n4 1 7\n-2 4 -1\n1 -5 -3\n", "3\n3 -1 7\n-5 2 -4\n2 -1 -3\n" ]
[ "NO", "YES" ]
none
500
[ { "input": "3\n4 1 7\n-2 4 -1\n1 -5 -3", "output": "NO" }, { "input": "3\n3 -1 7\n-5 2 -4\n2 -1 -3", "output": "YES" }, { "input": "10\n21 32 -46\n43 -35 21\n42 2 -50\n22 40 20\n-27 -9 38\n-4 1 1\n-40 6 -31\n-13 -2 34\n-21 34 -12\n-32 -29 41", "output": "NO" }, { "input": "10\n25 -33 43\n-27 -42 28\n-35 -20 19\n41 -42 -1\n49 -39 -4\n-49 -22 7\n-19 29 41\n8 -27 -43\n8 34 9\n-11 -3 33", "output": "NO" }, { "input": "10\n-6 21 18\n20 -11 -8\n37 -11 41\n-5 8 33\n29 23 32\n30 -33 -11\n39 -49 -36\n28 34 -49\n22 29 -34\n-18 -6 7", "output": "NO" }, { "input": "10\n47 -2 -27\n0 26 -14\n5 -12 33\n2 18 3\n45 -30 -49\n4 -18 8\n-46 -44 -41\n-22 -10 -40\n-35 -21 26\n33 20 38", "output": "NO" }, { "input": "13\n-3 -36 -46\n-11 -50 37\n42 -11 -15\n9 42 44\n-29 -12 24\n3 9 -40\n-35 13 50\n14 43 18\n-13 8 24\n-48 -15 10\n50 9 -50\n21 0 -50\n0 0 -6", "output": "YES" }, { "input": "14\n43 23 17\n4 17 44\n5 -5 -16\n-43 -7 -6\n47 -48 12\n50 47 -45\n2 14 43\n37 -30 15\n4 -17 -11\n17 9 -45\n-50 -3 -8\n-50 0 0\n-50 0 0\n-16 0 0", "output": "YES" }, { "input": "13\n29 49 -11\n38 -11 -20\n25 1 -40\n-11 28 11\n23 -19 1\n45 -41 -17\n-3 0 -19\n-13 -33 49\n-30 0 28\n34 17 45\n-50 9 -27\n-50 0 0\n-37 0 0", "output": "YES" }, { "input": "12\n3 28 -35\n-32 -44 -17\n9 -25 -6\n-42 -22 20\n-19 15 38\n-21 38 48\n-1 -37 -28\n-10 -13 -50\n-5 21 29\n34 28 50\n50 11 -49\n34 0 0", "output": "YES" }, { "input": "37\n-64 -79 26\n-22 59 93\n-5 39 -12\n77 -9 76\n55 -86 57\n83 100 -97\n-70 94 84\n-14 46 -94\n26 72 35\n14 78 -62\n17 82 92\n-57 11 91\n23 15 92\n-80 -1 1\n12 39 18\n-23 -99 -75\n-34 50 19\n-39 84 -7\n45 -30 -39\n-60 49 37\n45 -16 -72\n33 -51 -56\n-48 28 5\n97 91 88\n45 -82 -11\n-21 -15 -90\n-53 73 -26\n-74 85 -90\n-40 23 38\n100 -13 49\n32 -100 -100\n0 -100 -70\n0 -100 0\n0 -100 0\n0 -100 0\n0 -100 0\n0 -37 0", "output": "YES" }, { "input": "4\n68 3 100\n68 21 -100\n-100 -24 0\n-36 0 0", "output": "YES" }, { "input": "33\n-1 -46 -12\n45 -16 -21\n-11 45 -21\n-60 -42 -93\n-22 -45 93\n37 96 85\n-76 26 83\n-4 9 55\n7 -52 -9\n66 8 -85\n-100 -54 11\n-29 59 74\n-24 12 2\n-56 81 85\n-92 69 -52\n-26 -97 91\n54 59 -51\n58 21 -57\n7 68 56\n-47 -20 -51\n-59 77 -13\n-85 27 91\n79 60 -56\n66 -80 5\n21 -99 42\n-31 -29 98\n66 93 76\n-49 45 61\n100 -100 -100\n100 -100 -100\n66 -75 -100\n0 0 -100\n0 0 -87", "output": "YES" }, { "input": "3\n1 2 3\n3 2 1\n0 0 0", "output": "NO" }, { "input": "2\n5 -23 12\n0 0 0", "output": "NO" }, { "input": "1\n0 0 0", "output": "YES" }, { "input": "1\n1 -2 0", "output": "NO" }, { "input": "2\n-23 77 -86\n23 -77 86", "output": "YES" }, { "input": "26\n86 7 20\n-57 -64 39\n-45 6 -93\n-44 -21 100\n-11 -49 21\n73 -71 -80\n-2 -89 56\n-65 -2 7\n5 14 84\n57 41 13\n-12 69 54\n40 -25 27\n-17 -59 0\n64 -91 -30\n-53 9 42\n-54 -8 14\n-35 82 27\n-48 -59 -80\n88 70 79\n94 57 97\n44 63 25\n84 -90 -40\n-100 100 -100\n-92 100 -100\n0 10 -100\n0 0 -82", "output": "YES" }, { "input": "42\n11 27 92\n-18 -56 -57\n1 71 81\n33 -92 30\n82 83 49\n-87 -61 -1\n-49 45 49\n73 26 15\n-22 22 -77\n29 -93 87\n-68 44 -90\n-4 -84 20\n85 67 -6\n-39 26 77\n-28 -64 20\n65 -97 24\n-72 -39 51\n35 -75 -91\n39 -44 -8\n-25 -27 -57\n91 8 -46\n-98 -94 56\n94 -60 59\n-9 -95 18\n-53 -37 98\n-8 -94 -84\n-52 55 60\n15 -14 37\n65 -43 -25\n94 12 66\n-8 -19 -83\n29 81 -78\n-58 57 33\n24 86 -84\n-53 32 -88\n-14 7 3\n89 97 -53\n-5 -28 -91\n-100 100 -6\n-84 100 0\n0 100 0\n0 70 0", "output": "YES" }, { "input": "3\n96 49 -12\n2 -66 28\n-98 17 -16", "output": "YES" }, { "input": "5\n70 -46 86\n-100 94 24\n-27 63 -63\n57 -100 -47\n0 -11 0", "output": "YES" }, { "input": "18\n-86 -28 70\n-31 -89 42\n31 -48 -55\n95 -17 -43\n24 -95 -85\n-21 -14 31\n68 -18 81\n13 31 60\n-15 28 99\n-42 15 9\n28 -61 -62\n-16 71 29\n-28 75 -48\n-77 -67 36\n-100 83 89\n100 100 -100\n57 34 -100\n0 0 -53", "output": "YES" }, { "input": "44\n52 -54 -29\n-82 -5 -94\n-54 43 43\n91 16 71\n7 80 -91\n3 15 29\n-99 -6 -77\n-3 -77 -64\n73 67 34\n25 -10 -18\n-29 91 63\n-72 86 -16\n-68 85 -81\n-3 36 44\n-74 -14 -80\n34 -96 -97\n-76 -78 -33\n-24 44 -58\n98 12 77\n95 -63 -6\n-51 3 -90\n-92 -10 72\n7 3 -68\n57 -53 71\n29 57 -48\n35 -60 10\n79 -70 -61\n-20 77 55\n-86 -15 -35\n84 -88 -18\n100 -42 77\n-20 46 8\n-41 -43 -65\n38 -98 -23\n-100 65 45\n-7 -91 -63\n46 88 -85\n48 59 100\n0 0 100\n0 0 100\n0 0 100\n0 0 100\n0 0 100\n0 0 1", "output": "YES" }, { "input": "18\n-14 -64 -91\n-8 -66 -86\n-23 92 -40\n6 -3 -53\n57 41 78\n-79 42 -22\n-88 -17 45\n4 -45 44\n83 -18 -25\n34 86 -92\n75 -30 12\n44 99 11\n-67 -13 72\n22 83 -56\n-37 71 72\n-9 -100 100\n0 -100 31\n0 -58 0", "output": "YES" }, { "input": "23\n-70 37 78\n42 84 6\n28 -94 -24\n-49 76 95\n-67 18 84\n-53 78 -5\n65 -63 -64\n-66 -64 -69\n81 -93 95\n10 52 -79\n-89 -61 -64\n-64 -47 43\n-81 -35 55\n80 82 73\n-60 -81 -18\n49 -10 -19\n-58 70 12\n-24 -15 -93\n98 -93 -54\n-28 -75 11\n100 100 -63\n100 100 0\n56 34 0", "output": "YES" }, { "input": "3\n0 2 -2\n1 -1 3\n-3 0 0", "output": "NO" } ]
1,657,202,609
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
80
122
0
n=int(input()) l=[] for i in range(n): l.append(input()) sum1=sum2=sum3=0 for i in l: k=i.split() for m in k: sum1+=int(m) sum2+=int(m) sum3+=int(m) if sum1==sum2==sum3==0: print("YES") else: print("NO")
Title: Young Physicist Time Limit: 2 seconds Memory Limit: 256 megabytes Problem Description: A guy named Vasya attends the final grade of a high school. One day Vasya decided to watch a match of his favorite hockey team. And, as the boy loves hockey very much, even more than physics, he forgot to do the homework. Specifically, he forgot to complete his physics tasks. Next day the teacher got very angry at Vasya and decided to teach him a lesson. He gave the lazy student a seemingly easy task: You are given an idle body in space and the forces that affect it. The body can be considered as a material point with coordinates (0; 0; 0). Vasya had only to answer whether it is in equilibrium. "Piece of cake" — thought Vasya, we need only to check if the sum of all vectors is equal to 0. So, Vasya began to solve the problem. But later it turned out that there can be lots and lots of these forces, and Vasya can not cope without your help. Help him. Write a program that determines whether a body is idle or is moving by the given vectors of forces. Input Specification: The first line contains a positive integer *n* (1<=≤<=*n*<=≤<=100), then follow *n* lines containing three integers each: the *x**i* coordinate, the *y**i* coordinate and the *z**i* coordinate of the force vector, applied to the body (<=-<=100<=≤<=*x**i*,<=*y**i*,<=*z**i*<=≤<=100). Output Specification: Print the word "YES" if the body is in equilibrium, or the word "NO" if it is not. Demo Input: ['3\n4 1 7\n-2 4 -1\n1 -5 -3\n', '3\n3 -1 7\n-5 2 -4\n2 -1 -3\n'] Demo Output: ['NO', 'YES'] Note: none
```python n=int(input()) l=[] for i in range(n): l.append(input()) sum1=sum2=sum3=0 for i in l: k=i.split() for m in k: sum1+=int(m) sum2+=int(m) sum3+=int(m) if sum1==sum2==sum3==0: print("YES") else: print("NO") ```
0
57
A
Square Earth?
PROGRAMMING
1,300
[ "dfs and similar", "greedy", "implementation" ]
A. Square Earth?
2
256
Meg the Rabbit decided to do something nice, specifically — to determine the shortest distance between two points on the surface of our planet. But Meg... what can you say, she wants everything simple. So, she already regards our planet as a two-dimensional circle. No, wait, it's even worse — as a square of side *n*. Thus, the task has been reduced to finding the shortest path between two dots on a square (the path should go through the square sides). To simplify the task let us consider the vertices of the square to lie at points whose coordinates are: (0,<=0), (*n*,<=0), (0,<=*n*) and (*n*,<=*n*).
The single line contains 5 space-separated integers: *n*,<=*x*1,<=*y*1,<=*x*2,<=*y*2 (1<=≤<=*n*<=≤<=1000,<=0<=≤<=*x*1,<=*y*1,<=*x*2,<=*y*2<=≤<=*n*) which correspondingly represent a side of the square, the coordinates of the first point and the coordinates of the second point. It is guaranteed that the points lie on the sides of the square.
You must print on a single line the shortest distance between the points.
[ "2 0 0 1 0\n", "2 0 1 2 1\n", "100 0 0 100 100\n" ]
[ "1\n", "4\n", "200\n" ]
none
500
[ { "input": "2 0 0 1 0", "output": "1" }, { "input": "2 0 1 2 1", "output": "4" }, { "input": "100 0 0 100 100", "output": "200" }, { "input": "4 0 3 1 4", "output": "2" }, { "input": "10 8 10 10 0", "output": "12" }, { "input": "26 21 0 26 14", "output": "19" }, { "input": "15 0 1 11 0", "output": "12" }, { "input": "26 26 7 26 12", "output": "5" }, { "input": "6 6 0 2 6", "output": "10" }, { "input": "5 1 5 2 5", "output": "1" }, { "input": "99 12 0 35 99", "output": "146" }, { "input": "44 44 31 28 0", "output": "47" }, { "input": "42 42 36 5 0", "output": "73" }, { "input": "87 87 66 0 5", "output": "158" }, { "input": "85 0 32 0 31", "output": "1" }, { "input": "30 20 30 3 0", "output": "53" }, { "input": "5 4 0 5 1", "output": "2" }, { "input": "40 24 40 4 0", "output": "68" }, { "input": "11 0 2 11 4", "output": "17" }, { "input": "82 0 11 35 0", "output": "46" }, { "input": "32 19 32 0 1", "output": "50" }, { "input": "54 12 0 0 44", "output": "56" }, { "input": "75 42 75 28 0", "output": "145" }, { "input": "48 31 48 0 4", "output": "75" }, { "input": "69 4 69 69 59", "output": "75" }, { "input": "561 0 295 233 0", "output": "528" }, { "input": "341 158 0 0 190", "output": "348" }, { "input": "887 887 461 39 887", "output": "1274" }, { "input": "700 0 288 700 368", "output": "1356" }, { "input": "512 70 512 512 99", "output": "855" }, { "input": "826 188 826 592 0", "output": "1606" }, { "input": "953 0 773 0 903", "output": "130" }, { "input": "80 80 4 0 54", "output": "138" }, { "input": "208 73 0 208 123", "output": "258" }, { "input": "983 0 894 199 0", "output": "1093" }, { "input": "686 615 686 470 686", "output": "145" }, { "input": "869 869 833 0 578", "output": "1196" }, { "input": "169 0 94 0 132", "output": "38" }, { "input": "68 42 68 68 28", "output": "66" }, { "input": "967 967 607 279 0", "output": "1295" }, { "input": "489 489 139 455 489", "output": "384" }, { "input": "964 205 964 604 964", "output": "399" }, { "input": "86 0 34 86 21", "output": "141" }, { "input": "209 166 209 131 0", "output": "330" }, { "input": "684 684 113 314 684", "output": "941" }, { "input": "16 0 6 0 8", "output": "2" }, { "input": "862 154 862 297 862", "output": "143" }, { "input": "418 222 0 254 418", "output": "778" }, { "input": "571 504 571 143 571", "output": "361" }, { "input": "371 371 210 81 371", "output": "451" }, { "input": "1000 0 0 1000 1000", "output": "2000" }, { "input": "1000 564 0 436 1000", "output": "2000" }, { "input": "1000 0 573 12 1000", "output": "439" }, { "input": "1000 984 0 1000 999", "output": "1015" }, { "input": "100 10 0 10 0", "output": "0" } ]
1,643,720,582
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
3
92
0
arr,ans = [int(item) for item in input().split(' ')],0 ans += min((arr[1] + arr[2] + arr[3]+arr[4]),(4*arr[0]) - (arr[1]+ arr[2] + arr[3]+ arr[4])) print(ans)
Title: Square Earth? Time Limit: 2 seconds Memory Limit: 256 megabytes Problem Description: Meg the Rabbit decided to do something nice, specifically — to determine the shortest distance between two points on the surface of our planet. But Meg... what can you say, she wants everything simple. So, she already regards our planet as a two-dimensional circle. No, wait, it's even worse — as a square of side *n*. Thus, the task has been reduced to finding the shortest path between two dots on a square (the path should go through the square sides). To simplify the task let us consider the vertices of the square to lie at points whose coordinates are: (0,<=0), (*n*,<=0), (0,<=*n*) and (*n*,<=*n*). Input Specification: The single line contains 5 space-separated integers: *n*,<=*x*1,<=*y*1,<=*x*2,<=*y*2 (1<=≤<=*n*<=≤<=1000,<=0<=≤<=*x*1,<=*y*1,<=*x*2,<=*y*2<=≤<=*n*) which correspondingly represent a side of the square, the coordinates of the first point and the coordinates of the second point. It is guaranteed that the points lie on the sides of the square. Output Specification: You must print on a single line the shortest distance between the points. Demo Input: ['2 0 0 1 0\n', '2 0 1 2 1\n', '100 0 0 100 100\n'] Demo Output: ['1\n', '4\n', '200\n'] Note: none
```python arr,ans = [int(item) for item in input().split(' ')],0 ans += min((arr[1] + arr[2] + arr[3]+arr[4]),(4*arr[0]) - (arr[1]+ arr[2] + arr[3]+ arr[4])) print(ans) ```
0
385
B
Bear and Strings
PROGRAMMING
1,200
[ "brute force", "greedy", "implementation", "math", "strings" ]
null
null
The bear has a string *s*<==<=*s*1*s*2... *s*|*s*| (record |*s*| is the string's length), consisting of lowercase English letters. The bear wants to count the number of such pairs of indices *i*,<=*j* (1<=≤<=*i*<=≤<=*j*<=≤<=|*s*|), that string *x*(*i*,<=*j*)<==<=*s**i**s**i*<=+<=1... *s**j* contains at least one string "bear" as a substring. String *x*(*i*,<=*j*) contains string "bear", if there is such index *k* (*i*<=≤<=*k*<=≤<=*j*<=-<=3), that *s**k*<==<=*b*, *s**k*<=+<=1<==<=*e*, *s**k*<=+<=2<==<=*a*, *s**k*<=+<=3<==<=*r*. Help the bear cope with the given problem.
The first line contains a non-empty string *s* (1<=≤<=|*s*|<=≤<=5000). It is guaranteed that the string only consists of lowercase English letters.
Print a single number — the answer to the problem.
[ "bearbtear\n", "bearaabearc\n" ]
[ "6\n", "20\n" ]
In the first sample, the following pairs (*i*, *j*) match: (1, 4), (1, 5), (1, 6), (1, 7), (1, 8), (1, 9). In the second sample, the following pairs (*i*, *j*) match: (1,  4), (1,  5), (1,  6), (1,  7), (1,  8), (1,  9), (1,  10), (1,  11), (2,  10), (2,  11), (3,  10), (3,  11), (4,  10), (4,  11), (5,  10), (5,  11), (6,  10), (6,  11), (7,  10), (7,  11).
1,000
[ { "input": "bearbtear", "output": "6" }, { "input": "bearaabearc", "output": "20" }, { "input": "pbearbearhbearzqbearjkterasjhy", "output": "291" }, { "input": "pbearjbearbebearnbabcffbearbearwubearjezpiorrbearbearjbdlbearbearqbearjbearwipmsbearoaftrsebearzsnqb", "output": "4419" }, { "input": "bear", "output": "1" }, { "input": "a", "output": "0" }, { "input": "be", "output": "0" } ]
1,636,214,075
2,147,483,647
Python 3
TIME_LIMIT_EXCEEDED
TESTS
7
1,000
4,403,200
s = input().strip() count = 0 n = len(s) for i in range(0, len(s)): for j in range(0, len(s)-i): if "bear" in s[i:n-j]: count += 1 print(count)
Title: Bear and Strings Time Limit: None seconds Memory Limit: None megabytes Problem Description: The bear has a string *s*<==<=*s*1*s*2... *s*|*s*| (record |*s*| is the string's length), consisting of lowercase English letters. The bear wants to count the number of such pairs of indices *i*,<=*j* (1<=≤<=*i*<=≤<=*j*<=≤<=|*s*|), that string *x*(*i*,<=*j*)<==<=*s**i**s**i*<=+<=1... *s**j* contains at least one string "bear" as a substring. String *x*(*i*,<=*j*) contains string "bear", if there is such index *k* (*i*<=≤<=*k*<=≤<=*j*<=-<=3), that *s**k*<==<=*b*, *s**k*<=+<=1<==<=*e*, *s**k*<=+<=2<==<=*a*, *s**k*<=+<=3<==<=*r*. Help the bear cope with the given problem. Input Specification: The first line contains a non-empty string *s* (1<=≤<=|*s*|<=≤<=5000). It is guaranteed that the string only consists of lowercase English letters. Output Specification: Print a single number — the answer to the problem. Demo Input: ['bearbtear\n', 'bearaabearc\n'] Demo Output: ['6\n', '20\n'] Note: In the first sample, the following pairs (*i*, *j*) match: (1, 4), (1, 5), (1, 6), (1, 7), (1, 8), (1, 9). In the second sample, the following pairs (*i*, *j*) match: (1,  4), (1,  5), (1,  6), (1,  7), (1,  8), (1,  9), (1,  10), (1,  11), (2,  10), (2,  11), (3,  10), (3,  11), (4,  10), (4,  11), (5,  10), (5,  11), (6,  10), (6,  11), (7,  10), (7,  11).
```python s = input().strip() count = 0 n = len(s) for i in range(0, len(s)): for j in range(0, len(s)-i): if "bear" in s[i:n-j]: count += 1 print(count) ```
0
758
A
Holiday Of Equality
PROGRAMMING
800
[ "implementation", "math" ]
null
null
In Berland it is the holiday of equality. In honor of the holiday the king decided to equalize the welfare of all citizens in Berland by the expense of the state treasury. Totally in Berland there are *n* citizens, the welfare of each of them is estimated as the integer in *a**i* burles (burle is the currency in Berland). You are the royal treasurer, which needs to count the minimum charges of the kingdom on the king's present. The king can only give money, he hasn't a power to take away them.
The first line contains the integer *n* (1<=≤<=*n*<=≤<=100) — the number of citizens in the kingdom. The second line contains *n* integers *a*1,<=*a*2,<=...,<=*a**n*, where *a**i* (0<=≤<=*a**i*<=≤<=106) — the welfare of the *i*-th citizen.
In the only line print the integer *S* — the minimum number of burles which are had to spend.
[ "5\n0 1 2 3 4\n", "5\n1 1 0 1 1\n", "3\n1 3 1\n", "1\n12\n" ]
[ "10", "1", "4", "0" ]
In the first example if we add to the first citizen 4 burles, to the second 3, to the third 2 and to the fourth 1, then the welfare of all citizens will equal 4. In the second example it is enough to give one burle to the third citizen. In the third example it is necessary to give two burles to the first and the third citizens to make the welfare of citizens equal 3. In the fourth example it is possible to give nothing to everyone because all citizens have 12 burles.
500
[ { "input": "5\n0 1 2 3 4", "output": "10" }, { "input": "5\n1 1 0 1 1", "output": "1" }, { "input": "3\n1 3 1", "output": "4" }, { "input": "1\n12", "output": "0" }, { "input": "3\n1 2 3", "output": "3" }, { "input": "14\n52518 718438 358883 462189 853171 592966 225788 46977 814826 295697 676256 561479 56545 764281", "output": "5464380" }, { "input": "21\n842556 216391 427181 626688 775504 168309 851038 448402 880826 73697 593338 519033 135115 20128 424606 939484 846242 756907 377058 241543 29353", "output": "9535765" }, { "input": "3\n1 3 2", "output": "3" }, { "input": "3\n2 1 3", "output": "3" }, { "input": "3\n2 3 1", "output": "3" }, { "input": "3\n3 1 2", "output": "3" }, { "input": "3\n3 2 1", "output": "3" }, { "input": "1\n228503", "output": "0" }, { "input": "2\n32576 550340", "output": "517764" }, { "input": "3\n910648 542843 537125", "output": "741328" }, { "input": "4\n751720 572344 569387 893618", "output": "787403" }, { "input": "6\n433864 631347 597596 794426 713555 231193", "output": "1364575" }, { "input": "9\n31078 645168 695751 126111 375934 150495 838412 434477 993107", "output": "4647430" }, { "input": "30\n315421 772664 560686 654312 151528 356749 351486 707462 820089 226682 546700 136028 824236 842130 578079 337807 665903 764100 617900 822937 992759 591749 651310 742085 767695 695442 17967 515106 81059 186025", "output": "13488674" }, { "input": "45\n908719 394261 815134 419990 926993 383792 772842 277695 527137 655356 684956 695716 273062 550324 106247 399133 442382 33076 462920 294674 846052 817752 421365 474141 290471 358990 109812 74492 543281 169434 919692 786809 24028 197184 310029 801476 699355 429672 51343 374128 776726 850380 293868 981569 550763", "output": "21993384" }, { "input": "56\n100728 972537 13846 385421 756708 184642 259487 319707 376662 221694 675284 972837 499419 13846 38267 289898 901299 831197 954715 197515 514102 910423 127555 883934 362472 870788 538802 741008 973434 448124 391526 363321 947321 544618 68006 782313 955075 741981 815027 723297 585059 718114 700739 413489 454091 736144 308999 98065 3716 347323 9635 289003 986510 607065 60236 273351", "output": "26984185" }, { "input": "70\n644488 5444 150441 714420 602059 335330 510670 196555 546346 740011 509449 850947 692874 524857 750434 952985 223744 374727 896124 753037 367352 679050 560202 172728 569291 778616 332116 286927 843598 372698 244906 498046 900681 709791 420904 724593 864493 813094 791377 39998 296710 625656 403891 579231 706693 984045 16901 574259 562265 761104 930361 256045 124461 538980 573508 372148 988722 108592 784354 55302 232524 277205 782251 299943 436488 743389 324618 742543 266915 99642", "output": "32816391" }, { "input": "1\n0", "output": "0" }, { "input": "1\n1000000", "output": "0" }, { "input": "100\n0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0", "output": "0" }, { "input": "100\n1000000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0", "output": "99000000" }, { "input": "100\n0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1000000", "output": "99000000" }, { "input": "100\n0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1000000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0", "output": "99000000" }, { "input": "3\n0 0 0", "output": "0" }, { "input": "50\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1", "output": "0" }, { "input": "3\n5 0 0", "output": "10" }, { "input": "5\n2 10 0 0 0", "output": "38" } ]
1,670,525,944
2,147,483,647
Python 3
OK
TESTS
41
46
0
n = int(input()) j = [int(i) for i in input().split(" ")] # a, b = [int(i) for i in input().split(" ")] m = max(j) print(sum([m-i for i in j]))
Title: Holiday Of Equality Time Limit: None seconds Memory Limit: None megabytes Problem Description: In Berland it is the holiday of equality. In honor of the holiday the king decided to equalize the welfare of all citizens in Berland by the expense of the state treasury. Totally in Berland there are *n* citizens, the welfare of each of them is estimated as the integer in *a**i* burles (burle is the currency in Berland). You are the royal treasurer, which needs to count the minimum charges of the kingdom on the king's present. The king can only give money, he hasn't a power to take away them. Input Specification: The first line contains the integer *n* (1<=≤<=*n*<=≤<=100) — the number of citizens in the kingdom. The second line contains *n* integers *a*1,<=*a*2,<=...,<=*a**n*, where *a**i* (0<=≤<=*a**i*<=≤<=106) — the welfare of the *i*-th citizen. Output Specification: In the only line print the integer *S* — the minimum number of burles which are had to spend. Demo Input: ['5\n0 1 2 3 4\n', '5\n1 1 0 1 1\n', '3\n1 3 1\n', '1\n12\n'] Demo Output: ['10', '1', '4', '0'] Note: In the first example if we add to the first citizen 4 burles, to the second 3, to the third 2 and to the fourth 1, then the welfare of all citizens will equal 4. In the second example it is enough to give one burle to the third citizen. In the third example it is necessary to give two burles to the first and the third citizens to make the welfare of citizens equal 3. In the fourth example it is possible to give nothing to everyone because all citizens have 12 burles.
```python n = int(input()) j = [int(i) for i in input().split(" ")] # a, b = [int(i) for i in input().split(" ")] m = max(j) print(sum([m-i for i in j])) ```
3
669
A
Little Artem and Presents
PROGRAMMING
800
[ "math" ]
null
null
Little Artem got *n* stones on his birthday and now wants to give some of them to Masha. He knows that Masha cares more about the fact of receiving the present, rather than the value of that present, so he wants to give her stones as many times as possible. However, Masha remembers the last present she received, so Artem can't give her the same number of stones twice in a row. For example, he can give her 3 stones, then 1 stone, then again 3 stones, but he can't give her 3 stones and then again 3 stones right after that. How many times can Artem give presents to Masha?
The only line of the input contains a single integer *n* (1<=≤<=*n*<=≤<=109) — number of stones Artem received on his birthday.
Print the maximum possible number of times Artem can give presents to Masha.
[ "1\n", "2\n", "3\n", "4\n" ]
[ "1\n", "1\n", "2\n", "3\n" ]
In the first sample, Artem can only give 1 stone to Masha. In the second sample, Atrem can give Masha 1 or 2 stones, though he can't give her 1 stone two times. In the third sample, Atrem can first give Masha 2 stones, a then 1 more stone. In the fourth sample, Atrem can first give Masha 1 stone, then 2 stones, and finally 1 stone again.
500
[ { "input": "1", "output": "1" }, { "input": "2", "output": "1" }, { "input": "3", "output": "2" }, { "input": "4", "output": "3" }, { "input": "100", "output": "67" }, { "input": "101", "output": "67" }, { "input": "102", "output": "68" }, { "input": "1000000000", "output": "666666667" }, { "input": "5", "output": "3" }, { "input": "6", "output": "4" }, { "input": "999999999", "output": "666666666" }, { "input": "999999998", "output": "666666665" }, { "input": "999999997", "output": "666666665" }, { "input": "999999996", "output": "666666664" }, { "input": "999999995", "output": "666666663" }, { "input": "999999994", "output": "666666663" }, { "input": "999999993", "output": "666666662" }, { "input": "999999992", "output": "666666661" }, { "input": "999999991", "output": "666666661" }, { "input": "1000", "output": "667" }, { "input": "10000", "output": "6667" }, { "input": "100000", "output": "66667" }, { "input": "1000000", "output": "666667" }, { "input": "10000000", "output": "6666667" }, { "input": "100000000", "output": "66666667" }, { "input": "7", "output": "5" } ]
1,461,516,070
370
PyPy 3
OK
TESTS
26
124
23,142,400
n = int(input()) ans = (n - 1) // 3 * 2 + int(n % 3 == 0) + 1 print(ans)
Title: Little Artem and Presents Time Limit: None seconds Memory Limit: None megabytes Problem Description: Little Artem got *n* stones on his birthday and now wants to give some of them to Masha. He knows that Masha cares more about the fact of receiving the present, rather than the value of that present, so he wants to give her stones as many times as possible. However, Masha remembers the last present she received, so Artem can't give her the same number of stones twice in a row. For example, he can give her 3 stones, then 1 stone, then again 3 stones, but he can't give her 3 stones and then again 3 stones right after that. How many times can Artem give presents to Masha? Input Specification: The only line of the input contains a single integer *n* (1<=≤<=*n*<=≤<=109) — number of stones Artem received on his birthday. Output Specification: Print the maximum possible number of times Artem can give presents to Masha. Demo Input: ['1\n', '2\n', '3\n', '4\n'] Demo Output: ['1\n', '1\n', '2\n', '3\n'] Note: In the first sample, Artem can only give 1 stone to Masha. In the second sample, Atrem can give Masha 1 or 2 stones, though he can't give her 1 stone two times. In the third sample, Atrem can first give Masha 2 stones, a then 1 more stone. In the fourth sample, Atrem can first give Masha 1 stone, then 2 stones, and finally 1 stone again.
```python n = int(input()) ans = (n - 1) // 3 * 2 + int(n % 3 == 0) + 1 print(ans) ```
3
352
A
Jeff and Digits
PROGRAMMING
1,000
[ "brute force", "implementation", "math" ]
null
null
Jeff's got *n* cards, each card contains either digit 0, or digit 5. Jeff can choose several cards and put them in a line so that he gets some number. What is the largest possible number divisible by 90 Jeff can make from the cards he's got? Jeff must make the number without leading zero. At that, we assume that number 0 doesn't contain any leading zeroes. Jeff doesn't have to use all the cards.
The first line contains integer *n* (1<=≤<=*n*<=≤<=103). The next line contains *n* integers *a*1, *a*2, ..., *a**n* (*a**i*<==<=0 or *a**i*<==<=5). Number *a**i* represents the digit that is written on the *i*-th card.
In a single line print the answer to the problem — the maximum number, divisible by 90. If you can't make any divisible by 90 number from the cards, print -1.
[ "4\n5 0 5 0\n", "11\n5 5 5 5 5 5 5 5 0 5 5\n" ]
[ "0\n", "5555555550\n" ]
In the first test you can make only one number that is a multiple of 90 — 0. In the second test you can make number 5555555550, it is a multiple of 90.
500
[ { "input": "4\n5 0 5 0", "output": "0" }, { "input": "11\n5 5 5 5 5 5 5 5 0 5 5", "output": "5555555550" }, { "input": "7\n5 5 5 5 5 5 5", "output": "-1" }, { "input": "1\n5", "output": "-1" }, { "input": "1\n0", "output": "0" }, { "input": "11\n5 0 5 5 5 0 0 5 5 5 5", "output": "0" }, { "input": "23\n5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 0 0 0 0 0", "output": "55555555555555555500000" }, { "input": "9\n5 5 5 5 5 5 5 5 5", "output": "-1" }, { "input": "24\n5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 0 0 0 0 0", "output": "55555555555555555500000" }, { "input": "10\n0 0 0 0 0 0 0 0 0 0", "output": "0" }, { "input": "10\n5 5 5 5 5 0 0 5 0 5", "output": "0" }, { "input": "3\n5 5 0", "output": "0" }, { "input": "5\n5 5 0 5 5", "output": "0" }, { "input": "14\n0 5 5 0 0 0 0 0 0 5 5 5 5 5", "output": "0" }, { "input": "3\n5 5 5", "output": "-1" }, { "input": "3\n0 5 5", "output": "0" }, { "input": "13\n0 0 5 0 5 0 5 5 0 0 0 0 0", "output": "0" }, { "input": "9\n5 5 0 5 5 5 5 5 5", "output": "0" }, { "input": "8\n0 0 0 0 0 0 0 0", "output": "0" }, { "input": "101\n5 0 0 0 0 0 0 0 5 0 0 0 0 5 0 0 5 0 0 0 0 0 5 0 0 0 0 0 0 0 0 5 0 0 5 0 0 0 0 0 0 0 5 0 0 5 0 0 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 0 0 0 0 0 0 0 0 0 0 5 0 0 0 0 5 0 0 0 0 0 0 0 0 0 5 0 0 5 0 0 0 0 5 0 0", "output": "5555555550000000000000000000000000000000000000000000000000000000000000000000000000000000000000" }, { "input": "214\n5 0 5 0 5 0 0 0 5 5 0 5 0 5 5 0 5 0 0 0 0 5 5 0 0 5 5 0 0 0 0 5 5 5 5 0 5 0 0 0 0 0 0 5 0 0 0 5 0 0 5 0 0 5 5 0 0 5 5 0 0 0 0 0 5 0 5 0 5 5 0 5 0 0 5 5 5 0 5 0 5 0 5 5 0 5 0 0 0 5 5 0 5 0 5 5 5 5 5 0 0 0 0 0 0 5 0 5 5 0 5 0 5 0 5 5 0 0 0 0 5 0 5 0 5 0 0 5 0 0 5 5 5 5 5 0 0 5 0 0 5 0 0 5 0 0 5 0 0 5 0 5 0 0 0 5 0 0 5 5 5 0 0 5 5 5 0 0 5 5 0 0 0 5 0 0 5 5 5 5 5 5 0 5 0 0 5 5 5 5 0 5 5 0 0 0 5 5 5 5 0 0 0 0 5 0 0 5 0 0 5 5 0 0", "output": "5555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555550000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000" }, { "input": "80\n0 0 0 0 5 0 5 5 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 0 0 5 0 0 0 0 0 0 0 0 0 5 5 0 5 0 0 0 0 0 0 5 0 0 0 0 0 0 0 5 0 0 0 0 5 0 5 5 0 0 0", "output": "555555555000000000000000000000000000000000000000000000000000000000000000000" }, { "input": "2\n0 0", "output": "0" }, { "input": "3\n5 0 0", "output": "0" }, { "input": "4\n5 5 5 5", "output": "-1" }, { "input": "2\n0 5", "output": "0" }, { "input": "14\n5 5 5 5 5 5 5 5 5 5 5 5 5 0", "output": "5555555550" }, { "input": "18\n5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5", "output": "-1" }, { "input": "10\n5 5 5 5 5 5 5 5 5 0", "output": "5555555550" }, { "input": "10\n5 5 5 5 5 5 5 5 5 5", "output": "-1" }, { "input": "20\n5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5", "output": "-1" } ]
1,664,534,855
2,147,483,647
PyPy 3-64
OK
TESTS
42
154
1,843,200
n=int(input()) A=list(map(int,input().split())) import math fives=0 zeros=0 for item in A: if item==5: fives+=1 else: zeros+=1 fives=math.floor(fives/9) fives=fives*9 if zeros==0: print(-1) elif fives==0: print(0) else: for i in range(fives): print(5,end="") for i in range(zeros): print(0,end="")
Title: Jeff and Digits Time Limit: None seconds Memory Limit: None megabytes Problem Description: Jeff's got *n* cards, each card contains either digit 0, or digit 5. Jeff can choose several cards and put them in a line so that he gets some number. What is the largest possible number divisible by 90 Jeff can make from the cards he's got? Jeff must make the number without leading zero. At that, we assume that number 0 doesn't contain any leading zeroes. Jeff doesn't have to use all the cards. Input Specification: The first line contains integer *n* (1<=≤<=*n*<=≤<=103). The next line contains *n* integers *a*1, *a*2, ..., *a**n* (*a**i*<==<=0 or *a**i*<==<=5). Number *a**i* represents the digit that is written on the *i*-th card. Output Specification: In a single line print the answer to the problem — the maximum number, divisible by 90. If you can't make any divisible by 90 number from the cards, print -1. Demo Input: ['4\n5 0 5 0\n', '11\n5 5 5 5 5 5 5 5 0 5 5\n'] Demo Output: ['0\n', '5555555550\n'] Note: In the first test you can make only one number that is a multiple of 90 — 0. In the second test you can make number 5555555550, it is a multiple of 90.
```python n=int(input()) A=list(map(int,input().split())) import math fives=0 zeros=0 for item in A: if item==5: fives+=1 else: zeros+=1 fives=math.floor(fives/9) fives=fives*9 if zeros==0: print(-1) elif fives==0: print(0) else: for i in range(fives): print(5,end="") for i in range(zeros): print(0,end="") ```
3
69
A
Young Physicist
PROGRAMMING
1,000
[ "implementation", "math" ]
A. Young Physicist
2
256
A guy named Vasya attends the final grade of a high school. One day Vasya decided to watch a match of his favorite hockey team. And, as the boy loves hockey very much, even more than physics, he forgot to do the homework. Specifically, he forgot to complete his physics tasks. Next day the teacher got very angry at Vasya and decided to teach him a lesson. He gave the lazy student a seemingly easy task: You are given an idle body in space and the forces that affect it. The body can be considered as a material point with coordinates (0; 0; 0). Vasya had only to answer whether it is in equilibrium. "Piece of cake" — thought Vasya, we need only to check if the sum of all vectors is equal to 0. So, Vasya began to solve the problem. But later it turned out that there can be lots and lots of these forces, and Vasya can not cope without your help. Help him. Write a program that determines whether a body is idle or is moving by the given vectors of forces.
The first line contains a positive integer *n* (1<=≤<=*n*<=≤<=100), then follow *n* lines containing three integers each: the *x**i* coordinate, the *y**i* coordinate and the *z**i* coordinate of the force vector, applied to the body (<=-<=100<=≤<=*x**i*,<=*y**i*,<=*z**i*<=≤<=100).
Print the word "YES" if the body is in equilibrium, or the word "NO" if it is not.
[ "3\n4 1 7\n-2 4 -1\n1 -5 -3\n", "3\n3 -1 7\n-5 2 -4\n2 -1 -3\n" ]
[ "NO", "YES" ]
none
500
[ { "input": "3\n4 1 7\n-2 4 -1\n1 -5 -3", "output": "NO" }, { "input": "3\n3 -1 7\n-5 2 -4\n2 -1 -3", "output": "YES" }, { "input": "10\n21 32 -46\n43 -35 21\n42 2 -50\n22 40 20\n-27 -9 38\n-4 1 1\n-40 6 -31\n-13 -2 34\n-21 34 -12\n-32 -29 41", "output": "NO" }, { "input": "10\n25 -33 43\n-27 -42 28\n-35 -20 19\n41 -42 -1\n49 -39 -4\n-49 -22 7\n-19 29 41\n8 -27 -43\n8 34 9\n-11 -3 33", "output": "NO" }, { "input": "10\n-6 21 18\n20 -11 -8\n37 -11 41\n-5 8 33\n29 23 32\n30 -33 -11\n39 -49 -36\n28 34 -49\n22 29 -34\n-18 -6 7", "output": "NO" }, { "input": "10\n47 -2 -27\n0 26 -14\n5 -12 33\n2 18 3\n45 -30 -49\n4 -18 8\n-46 -44 -41\n-22 -10 -40\n-35 -21 26\n33 20 38", "output": "NO" }, { "input": "13\n-3 -36 -46\n-11 -50 37\n42 -11 -15\n9 42 44\n-29 -12 24\n3 9 -40\n-35 13 50\n14 43 18\n-13 8 24\n-48 -15 10\n50 9 -50\n21 0 -50\n0 0 -6", "output": "YES" }, { "input": "14\n43 23 17\n4 17 44\n5 -5 -16\n-43 -7 -6\n47 -48 12\n50 47 -45\n2 14 43\n37 -30 15\n4 -17 -11\n17 9 -45\n-50 -3 -8\n-50 0 0\n-50 0 0\n-16 0 0", "output": "YES" }, { "input": "13\n29 49 -11\n38 -11 -20\n25 1 -40\n-11 28 11\n23 -19 1\n45 -41 -17\n-3 0 -19\n-13 -33 49\n-30 0 28\n34 17 45\n-50 9 -27\n-50 0 0\n-37 0 0", "output": "YES" }, { "input": "12\n3 28 -35\n-32 -44 -17\n9 -25 -6\n-42 -22 20\n-19 15 38\n-21 38 48\n-1 -37 -28\n-10 -13 -50\n-5 21 29\n34 28 50\n50 11 -49\n34 0 0", "output": "YES" }, { "input": "37\n-64 -79 26\n-22 59 93\n-5 39 -12\n77 -9 76\n55 -86 57\n83 100 -97\n-70 94 84\n-14 46 -94\n26 72 35\n14 78 -62\n17 82 92\n-57 11 91\n23 15 92\n-80 -1 1\n12 39 18\n-23 -99 -75\n-34 50 19\n-39 84 -7\n45 -30 -39\n-60 49 37\n45 -16 -72\n33 -51 -56\n-48 28 5\n97 91 88\n45 -82 -11\n-21 -15 -90\n-53 73 -26\n-74 85 -90\n-40 23 38\n100 -13 49\n32 -100 -100\n0 -100 -70\n0 -100 0\n0 -100 0\n0 -100 0\n0 -100 0\n0 -37 0", "output": "YES" }, { "input": "4\n68 3 100\n68 21 -100\n-100 -24 0\n-36 0 0", "output": "YES" }, { "input": "33\n-1 -46 -12\n45 -16 -21\n-11 45 -21\n-60 -42 -93\n-22 -45 93\n37 96 85\n-76 26 83\n-4 9 55\n7 -52 -9\n66 8 -85\n-100 -54 11\n-29 59 74\n-24 12 2\n-56 81 85\n-92 69 -52\n-26 -97 91\n54 59 -51\n58 21 -57\n7 68 56\n-47 -20 -51\n-59 77 -13\n-85 27 91\n79 60 -56\n66 -80 5\n21 -99 42\n-31 -29 98\n66 93 76\n-49 45 61\n100 -100 -100\n100 -100 -100\n66 -75 -100\n0 0 -100\n0 0 -87", "output": "YES" }, { "input": "3\n1 2 3\n3 2 1\n0 0 0", "output": "NO" }, { "input": "2\n5 -23 12\n0 0 0", "output": "NO" }, { "input": "1\n0 0 0", "output": "YES" }, { "input": "1\n1 -2 0", "output": "NO" }, { "input": "2\n-23 77 -86\n23 -77 86", "output": "YES" }, { "input": "26\n86 7 20\n-57 -64 39\n-45 6 -93\n-44 -21 100\n-11 -49 21\n73 -71 -80\n-2 -89 56\n-65 -2 7\n5 14 84\n57 41 13\n-12 69 54\n40 -25 27\n-17 -59 0\n64 -91 -30\n-53 9 42\n-54 -8 14\n-35 82 27\n-48 -59 -80\n88 70 79\n94 57 97\n44 63 25\n84 -90 -40\n-100 100 -100\n-92 100 -100\n0 10 -100\n0 0 -82", "output": "YES" }, { "input": "42\n11 27 92\n-18 -56 -57\n1 71 81\n33 -92 30\n82 83 49\n-87 -61 -1\n-49 45 49\n73 26 15\n-22 22 -77\n29 -93 87\n-68 44 -90\n-4 -84 20\n85 67 -6\n-39 26 77\n-28 -64 20\n65 -97 24\n-72 -39 51\n35 -75 -91\n39 -44 -8\n-25 -27 -57\n91 8 -46\n-98 -94 56\n94 -60 59\n-9 -95 18\n-53 -37 98\n-8 -94 -84\n-52 55 60\n15 -14 37\n65 -43 -25\n94 12 66\n-8 -19 -83\n29 81 -78\n-58 57 33\n24 86 -84\n-53 32 -88\n-14 7 3\n89 97 -53\n-5 -28 -91\n-100 100 -6\n-84 100 0\n0 100 0\n0 70 0", "output": "YES" }, { "input": "3\n96 49 -12\n2 -66 28\n-98 17 -16", "output": "YES" }, { "input": "5\n70 -46 86\n-100 94 24\n-27 63 -63\n57 -100 -47\n0 -11 0", "output": "YES" }, { "input": "18\n-86 -28 70\n-31 -89 42\n31 -48 -55\n95 -17 -43\n24 -95 -85\n-21 -14 31\n68 -18 81\n13 31 60\n-15 28 99\n-42 15 9\n28 -61 -62\n-16 71 29\n-28 75 -48\n-77 -67 36\n-100 83 89\n100 100 -100\n57 34 -100\n0 0 -53", "output": "YES" }, { "input": "44\n52 -54 -29\n-82 -5 -94\n-54 43 43\n91 16 71\n7 80 -91\n3 15 29\n-99 -6 -77\n-3 -77 -64\n73 67 34\n25 -10 -18\n-29 91 63\n-72 86 -16\n-68 85 -81\n-3 36 44\n-74 -14 -80\n34 -96 -97\n-76 -78 -33\n-24 44 -58\n98 12 77\n95 -63 -6\n-51 3 -90\n-92 -10 72\n7 3 -68\n57 -53 71\n29 57 -48\n35 -60 10\n79 -70 -61\n-20 77 55\n-86 -15 -35\n84 -88 -18\n100 -42 77\n-20 46 8\n-41 -43 -65\n38 -98 -23\n-100 65 45\n-7 -91 -63\n46 88 -85\n48 59 100\n0 0 100\n0 0 100\n0 0 100\n0 0 100\n0 0 100\n0 0 1", "output": "YES" }, { "input": "18\n-14 -64 -91\n-8 -66 -86\n-23 92 -40\n6 -3 -53\n57 41 78\n-79 42 -22\n-88 -17 45\n4 -45 44\n83 -18 -25\n34 86 -92\n75 -30 12\n44 99 11\n-67 -13 72\n22 83 -56\n-37 71 72\n-9 -100 100\n0 -100 31\n0 -58 0", "output": "YES" }, { "input": "23\n-70 37 78\n42 84 6\n28 -94 -24\n-49 76 95\n-67 18 84\n-53 78 -5\n65 -63 -64\n-66 -64 -69\n81 -93 95\n10 52 -79\n-89 -61 -64\n-64 -47 43\n-81 -35 55\n80 82 73\n-60 -81 -18\n49 -10 -19\n-58 70 12\n-24 -15 -93\n98 -93 -54\n-28 -75 11\n100 100 -63\n100 100 0\n56 34 0", "output": "YES" }, { "input": "3\n0 2 -2\n1 -1 3\n-3 0 0", "output": "NO" } ]
1,657,681,989
2,147,483,647
PyPy 3-64
OK
TESTS
81
124
0
n = int(input()) r = [0, 0, 0] for i in range(n): a, b, c = map(int, input().split()) r[0] += a r[1] += b r[2] += c if r[0] == r[1] == r[2] == 0: print("YES") else: print("NO")
Title: Young Physicist Time Limit: 2 seconds Memory Limit: 256 megabytes Problem Description: A guy named Vasya attends the final grade of a high school. One day Vasya decided to watch a match of his favorite hockey team. And, as the boy loves hockey very much, even more than physics, he forgot to do the homework. Specifically, he forgot to complete his physics tasks. Next day the teacher got very angry at Vasya and decided to teach him a lesson. He gave the lazy student a seemingly easy task: You are given an idle body in space and the forces that affect it. The body can be considered as a material point with coordinates (0; 0; 0). Vasya had only to answer whether it is in equilibrium. "Piece of cake" — thought Vasya, we need only to check if the sum of all vectors is equal to 0. So, Vasya began to solve the problem. But later it turned out that there can be lots and lots of these forces, and Vasya can not cope without your help. Help him. Write a program that determines whether a body is idle or is moving by the given vectors of forces. Input Specification: The first line contains a positive integer *n* (1<=≤<=*n*<=≤<=100), then follow *n* lines containing three integers each: the *x**i* coordinate, the *y**i* coordinate and the *z**i* coordinate of the force vector, applied to the body (<=-<=100<=≤<=*x**i*,<=*y**i*,<=*z**i*<=≤<=100). Output Specification: Print the word "YES" if the body is in equilibrium, or the word "NO" if it is not. Demo Input: ['3\n4 1 7\n-2 4 -1\n1 -5 -3\n', '3\n3 -1 7\n-5 2 -4\n2 -1 -3\n'] Demo Output: ['NO', 'YES'] Note: none
```python n = int(input()) r = [0, 0, 0] for i in range(n): a, b, c = map(int, input().split()) r[0] += a r[1] += b r[2] += c if r[0] == r[1] == r[2] == 0: print("YES") else: print("NO") ```
3.969
330
B
Road Construction
PROGRAMMING
1,300
[ "constructive algorithms", "graphs" ]
null
null
A country has *n* cities. Initially, there is no road in the country. One day, the king decides to construct some roads connecting pairs of cities. Roads can be traversed either way. He wants those roads to be constructed in such a way that it is possible to go from each city to any other city by traversing at most two roads. You are also given *m* pairs of cities — roads cannot be constructed between these pairs of cities. Your task is to construct the minimum number of roads that still satisfy the above conditions. The constraints will guarantee that this is always possible.
The first line consists of two integers *n* and *m* . Then *m* lines follow, each consisting of two integers *a**i* and *b**i* (1<=≤<=*a**i*,<=*b**i*<=≤<=*n*, *a**i*<=≠<=*b**i*), which means that it is not possible to construct a road connecting cities *a**i* and *b**i*. Consider the cities are numbered from 1 to *n*. It is guaranteed that every pair of cities will appear at most once in the input.
You should print an integer *s*: the minimum number of roads that should be constructed, in the first line. Then *s* lines should follow, each consisting of two integers *a**i* and *b**i* (1<=≤<=*a**i*,<=*b**i*<=≤<=*n*,<=*a**i*<=≠<=*b**i*), which means that a road should be constructed between cities *a**i* and *b**i*. If there are several solutions, you may print any of them.
[ "4 1\n1 3\n" ]
[ "3\n1 2\n4 2\n2 3\n" ]
This is one possible solution of the example: These are examples of wrong solutions:
1,000
[ { "input": "4 1\n1 3", "output": "3\n1 2\n4 2\n2 3" }, { "input": "1000 0", "output": "999\n1 2\n1 3\n1 4\n1 5\n1 6\n1 7\n1 8\n1 9\n1 10\n1 11\n1 12\n1 13\n1 14\n1 15\n1 16\n1 17\n1 18\n1 19\n1 20\n1 21\n1 22\n1 23\n1 24\n1 25\n1 26\n1 27\n1 28\n1 29\n1 30\n1 31\n1 32\n1 33\n1 34\n1 35\n1 36\n1 37\n1 38\n1 39\n1 40\n1 41\n1 42\n1 43\n1 44\n1 45\n1 46\n1 47\n1 48\n1 49\n1 50\n1 51\n1 52\n1 53\n1 54\n1 55\n1 56\n1 57\n1 58\n1 59\n1 60\n1 61\n1 62\n1 63\n1 64\n1 65\n1 66\n1 67\n1 68\n1 69\n1 70\n1 71\n1 72\n1 73\n1 74\n1 75\n1 76\n1 77\n1 78\n1 79\n1 80\n1 81\n1 82\n1 83\n1 84\n1 85\n1 86\n1 87..." }, { "input": "484 11\n414 97\n414 224\n444 414\n414 483\n414 399\n414 484\n414 189\n414 246\n414 115\n89 414\n14 414", "output": "483\n1 2\n1 3\n1 4\n1 5\n1 6\n1 7\n1 8\n1 9\n1 10\n1 11\n1 12\n1 13\n1 14\n1 15\n1 16\n1 17\n1 18\n1 19\n1 20\n1 21\n1 22\n1 23\n1 24\n1 25\n1 26\n1 27\n1 28\n1 29\n1 30\n1 31\n1 32\n1 33\n1 34\n1 35\n1 36\n1 37\n1 38\n1 39\n1 40\n1 41\n1 42\n1 43\n1 44\n1 45\n1 46\n1 47\n1 48\n1 49\n1 50\n1 51\n1 52\n1 53\n1 54\n1 55\n1 56\n1 57\n1 58\n1 59\n1 60\n1 61\n1 62\n1 63\n1 64\n1 65\n1 66\n1 67\n1 68\n1 69\n1 70\n1 71\n1 72\n1 73\n1 74\n1 75\n1 76\n1 77\n1 78\n1 79\n1 80\n1 81\n1 82\n1 83\n1 84\n1 85\n1 86\n1 87..." }, { "input": "150 3\n112 30\n61 45\n37 135", "output": "149\n1 2\n1 3\n1 4\n1 5\n1 6\n1 7\n1 8\n1 9\n1 10\n1 11\n1 12\n1 13\n1 14\n1 15\n1 16\n1 17\n1 18\n1 19\n1 20\n1 21\n1 22\n1 23\n1 24\n1 25\n1 26\n1 27\n1 28\n1 29\n1 30\n1 31\n1 32\n1 33\n1 34\n1 35\n1 36\n1 37\n1 38\n1 39\n1 40\n1 41\n1 42\n1 43\n1 44\n1 45\n1 46\n1 47\n1 48\n1 49\n1 50\n1 51\n1 52\n1 53\n1 54\n1 55\n1 56\n1 57\n1 58\n1 59\n1 60\n1 61\n1 62\n1 63\n1 64\n1 65\n1 66\n1 67\n1 68\n1 69\n1 70\n1 71\n1 72\n1 73\n1 74\n1 75\n1 76\n1 77\n1 78\n1 79\n1 80\n1 81\n1 82\n1 83\n1 84\n1 85\n1 86\n1 87..." }, { "input": "34 7\n10 28\n10 19\n10 13\n24 10\n10 29\n20 10\n10 26", "output": "33\n1 2\n1 3\n1 4\n1 5\n1 6\n1 7\n1 8\n1 9\n1 10\n1 11\n1 12\n1 13\n1 14\n1 15\n1 16\n1 17\n1 18\n1 19\n1 20\n1 21\n1 22\n1 23\n1 24\n1 25\n1 26\n1 27\n1 28\n1 29\n1 30\n1 31\n1 32\n1 33\n1 34" }, { "input": "1000 48\n816 885\n576 357\n878 659\n610 647\n37 670\n192 184\n393 407\n598 160\n547 995\n177 276\n788 44\n14 184\n604 281\n176 97\n176 293\n10 57\n852 579\n223 669\n313 260\n476 691\n667 22\n851 792\n411 489\n526 66\n233 566\n35 396\n964 815\n672 123\n148 210\n163 339\n379 598\n382 675\n132 955\n221 441\n253 490\n856 532\n135 119\n276 319\n525 835\n996 270\n92 778\n434 369\n351 927\n758 983\n798 267\n272 830\n539 728\n166 26", "output": "999\n1 2\n1 3\n1 4\n1 5\n1 6\n1 7\n1 8\n1 9\n1 10\n1 11\n1 12\n1 13\n1 14\n1 15\n1 16\n1 17\n1 18\n1 19\n1 20\n1 21\n1 22\n1 23\n1 24\n1 25\n1 26\n1 27\n1 28\n1 29\n1 30\n1 31\n1 32\n1 33\n1 34\n1 35\n1 36\n1 37\n1 38\n1 39\n1 40\n1 41\n1 42\n1 43\n1 44\n1 45\n1 46\n1 47\n1 48\n1 49\n1 50\n1 51\n1 52\n1 53\n1 54\n1 55\n1 56\n1 57\n1 58\n1 59\n1 60\n1 61\n1 62\n1 63\n1 64\n1 65\n1 66\n1 67\n1 68\n1 69\n1 70\n1 71\n1 72\n1 73\n1 74\n1 75\n1 76\n1 77\n1 78\n1 79\n1 80\n1 81\n1 82\n1 83\n1 84\n1 85\n1 86\n1 87..." }, { "input": "534 0", "output": "533\n1 2\n1 3\n1 4\n1 5\n1 6\n1 7\n1 8\n1 9\n1 10\n1 11\n1 12\n1 13\n1 14\n1 15\n1 16\n1 17\n1 18\n1 19\n1 20\n1 21\n1 22\n1 23\n1 24\n1 25\n1 26\n1 27\n1 28\n1 29\n1 30\n1 31\n1 32\n1 33\n1 34\n1 35\n1 36\n1 37\n1 38\n1 39\n1 40\n1 41\n1 42\n1 43\n1 44\n1 45\n1 46\n1 47\n1 48\n1 49\n1 50\n1 51\n1 52\n1 53\n1 54\n1 55\n1 56\n1 57\n1 58\n1 59\n1 60\n1 61\n1 62\n1 63\n1 64\n1 65\n1 66\n1 67\n1 68\n1 69\n1 70\n1 71\n1 72\n1 73\n1 74\n1 75\n1 76\n1 77\n1 78\n1 79\n1 80\n1 81\n1 82\n1 83\n1 84\n1 85\n1 86\n1 87..." }, { "input": "226 54\n80 165\n2 53\n191 141\n107 207\n95 196\n61 82\n42 168\n118 94\n205 182\n172 160\n84 224\n113 143\n122 93\n37 209\n176 32\n56 83\n151 81\n70 190\n99 171\n68 204\n212 48\n4 67\n116 7\n206 199\n105 62\n158 51\n178 147\n17 129\n22 47\n72 162\n188 77\n24 111\n184 26\n175 128\n110 89\n139 120\n127 92\n121 39\n217 75\n145 69\n20 161\n30 220\n222 154\n54 46\n21 87\n144 185\n164 115\n73 202\n173 35\n9 132\n74 180\n137 5\n157 117\n31 177", "output": "225\n1 2\n1 3\n1 4\n1 5\n1 6\n1 7\n1 8\n1 9\n1 10\n1 11\n1 12\n1 13\n1 14\n1 15\n1 16\n1 17\n1 18\n1 19\n1 20\n1 21\n1 22\n1 23\n1 24\n1 25\n1 26\n1 27\n1 28\n1 29\n1 30\n1 31\n1 32\n1 33\n1 34\n1 35\n1 36\n1 37\n1 38\n1 39\n1 40\n1 41\n1 42\n1 43\n1 44\n1 45\n1 46\n1 47\n1 48\n1 49\n1 50\n1 51\n1 52\n1 53\n1 54\n1 55\n1 56\n1 57\n1 58\n1 59\n1 60\n1 61\n1 62\n1 63\n1 64\n1 65\n1 66\n1 67\n1 68\n1 69\n1 70\n1 71\n1 72\n1 73\n1 74\n1 75\n1 76\n1 77\n1 78\n1 79\n1 80\n1 81\n1 82\n1 83\n1 84\n1 85\n1 86\n1 87..." }, { "input": "84 3\n39 19\n55 73\n42 43", "output": "83\n1 2\n1 3\n1 4\n1 5\n1 6\n1 7\n1 8\n1 9\n1 10\n1 11\n1 12\n1 13\n1 14\n1 15\n1 16\n1 17\n1 18\n1 19\n1 20\n1 21\n1 22\n1 23\n1 24\n1 25\n1 26\n1 27\n1 28\n1 29\n1 30\n1 31\n1 32\n1 33\n1 34\n1 35\n1 36\n1 37\n1 38\n1 39\n1 40\n1 41\n1 42\n1 43\n1 44\n1 45\n1 46\n1 47\n1 48\n1 49\n1 50\n1 51\n1 52\n1 53\n1 54\n1 55\n1 56\n1 57\n1 58\n1 59\n1 60\n1 61\n1 62\n1 63\n1 64\n1 65\n1 66\n1 67\n1 68\n1 69\n1 70\n1 71\n1 72\n1 73\n1 74\n1 75\n1 76\n1 77\n1 78\n1 79\n1 80\n1 81\n1 82\n1 83\n1 84" }, { "input": "207 35\n34 116\n184 5\n90 203\n12 195\n138 101\n40 150\n189 109\n115 91\n93 201\n106 18\n51 187\n139 197\n168 130\n182 64\n31 42\n86 107\n158 111\n159 132\n119 191\n53 127\n81 13\n153 112\n38 2\n87 84\n121 82\n120 22\n21 177\n151 202\n23 58\n68 192\n29 46\n105 70\n8 167\n56 54\n149 15", "output": "206\n1 2\n1 3\n1 4\n1 5\n1 6\n1 7\n1 8\n1 9\n1 10\n1 11\n1 12\n1 13\n1 14\n1 15\n1 16\n1 17\n1 18\n1 19\n1 20\n1 21\n1 22\n1 23\n1 24\n1 25\n1 26\n1 27\n1 28\n1 29\n1 30\n1 31\n1 32\n1 33\n1 34\n1 35\n1 36\n1 37\n1 38\n1 39\n1 40\n1 41\n1 42\n1 43\n1 44\n1 45\n1 46\n1 47\n1 48\n1 49\n1 50\n1 51\n1 52\n1 53\n1 54\n1 55\n1 56\n1 57\n1 58\n1 59\n1 60\n1 61\n1 62\n1 63\n1 64\n1 65\n1 66\n1 67\n1 68\n1 69\n1 70\n1 71\n1 72\n1 73\n1 74\n1 75\n1 76\n1 77\n1 78\n1 79\n1 80\n1 81\n1 82\n1 83\n1 84\n1 85\n1 86\n1 87..." }, { "input": "91 37\n50 90\n26 82\n61 1\n50 17\n51 73\n45 9\n39 53\n78 35\n12 45\n43 47\n83 20\n9 59\n18 48\n68 31\n47 33\n10 25\n15 78\n5 3\n73 65\n77 4\n62 31\n73 3\n53 7\n29 58\n52 14\n56 20\n6 87\n71 16\n17 19\n77 86\n1 50\n74 79\n15 54\n55 80\n13 77\n4 69\n24 69", "output": "90\n2 1\n2 3\n2 4\n2 5\n2 6\n2 7\n2 8\n2 9\n2 10\n2 11\n2 12\n2 13\n2 14\n2 15\n2 16\n2 17\n2 18\n2 19\n2 20\n2 21\n2 22\n2 23\n2 24\n2 25\n2 26\n2 27\n2 28\n2 29\n2 30\n2 31\n2 32\n2 33\n2 34\n2 35\n2 36\n2 37\n2 38\n2 39\n2 40\n2 41\n2 42\n2 43\n2 44\n2 45\n2 46\n2 47\n2 48\n2 49\n2 50\n2 51\n2 52\n2 53\n2 54\n2 55\n2 56\n2 57\n2 58\n2 59\n2 60\n2 61\n2 62\n2 63\n2 64\n2 65\n2 66\n2 67\n2 68\n2 69\n2 70\n2 71\n2 72\n2 73\n2 74\n2 75\n2 76\n2 77\n2 78\n2 79\n2 80\n2 81\n2 82\n2 83\n2 84\n2 85\n2 86\n2 87\n..." }, { "input": "226 54\n197 107\n181 146\n218 115\n36 169\n199 196\n116 93\n152 75\n213 164\n156 95\n165 58\n90 42\n141 58\n203 221\n179 204\n186 69\n27 127\n76 189\n40 195\n111 29\n85 189\n45 88\n84 135\n82 186\n185 17\n156 217\n8 123\n179 112\n92 137\n114 89\n10 152\n132 24\n135 36\n61 218\n10 120\n155 102\n222 79\n150 92\n184 34\n102 180\n154 196\n171 9\n217 105\n84 207\n56 189\n152 179\n43 165\n115 209\n208 167\n52 14\n92 47\n197 95\n13 78\n222 138\n75 36", "output": "225\n1 2\n1 3\n1 4\n1 5\n1 6\n1 7\n1 8\n1 9\n1 10\n1 11\n1 12\n1 13\n1 14\n1 15\n1 16\n1 17\n1 18\n1 19\n1 20\n1 21\n1 22\n1 23\n1 24\n1 25\n1 26\n1 27\n1 28\n1 29\n1 30\n1 31\n1 32\n1 33\n1 34\n1 35\n1 36\n1 37\n1 38\n1 39\n1 40\n1 41\n1 42\n1 43\n1 44\n1 45\n1 46\n1 47\n1 48\n1 49\n1 50\n1 51\n1 52\n1 53\n1 54\n1 55\n1 56\n1 57\n1 58\n1 59\n1 60\n1 61\n1 62\n1 63\n1 64\n1 65\n1 66\n1 67\n1 68\n1 69\n1 70\n1 71\n1 72\n1 73\n1 74\n1 75\n1 76\n1 77\n1 78\n1 79\n1 80\n1 81\n1 82\n1 83\n1 84\n1 85\n1 86\n1 87..." }, { "input": "207 35\n154 79\n174 101\n189 86\n137 56\n66 23\n199 69\n18 28\n32 53\n13 179\n182 170\n199 12\n24 158\n105 133\n25 10\n40 162\n64 72\n108 9\n172 125\n43 190\n15 39\n128 150\n102 129\n90 97\n64 196\n70 123\n163 41\n12 126\n127 186\n107 23\n182 51\n29 46\n46 123\n89 35\n59 80\n206 171", "output": "206\n1 2\n1 3\n1 4\n1 5\n1 6\n1 7\n1 8\n1 9\n1 10\n1 11\n1 12\n1 13\n1 14\n1 15\n1 16\n1 17\n1 18\n1 19\n1 20\n1 21\n1 22\n1 23\n1 24\n1 25\n1 26\n1 27\n1 28\n1 29\n1 30\n1 31\n1 32\n1 33\n1 34\n1 35\n1 36\n1 37\n1 38\n1 39\n1 40\n1 41\n1 42\n1 43\n1 44\n1 45\n1 46\n1 47\n1 48\n1 49\n1 50\n1 51\n1 52\n1 53\n1 54\n1 55\n1 56\n1 57\n1 58\n1 59\n1 60\n1 61\n1 62\n1 63\n1 64\n1 65\n1 66\n1 67\n1 68\n1 69\n1 70\n1 71\n1 72\n1 73\n1 74\n1 75\n1 76\n1 77\n1 78\n1 79\n1 80\n1 81\n1 82\n1 83\n1 84\n1 85\n1 86\n1 87..." }, { "input": "84 0", "output": "83\n1 2\n1 3\n1 4\n1 5\n1 6\n1 7\n1 8\n1 9\n1 10\n1 11\n1 12\n1 13\n1 14\n1 15\n1 16\n1 17\n1 18\n1 19\n1 20\n1 21\n1 22\n1 23\n1 24\n1 25\n1 26\n1 27\n1 28\n1 29\n1 30\n1 31\n1 32\n1 33\n1 34\n1 35\n1 36\n1 37\n1 38\n1 39\n1 40\n1 41\n1 42\n1 43\n1 44\n1 45\n1 46\n1 47\n1 48\n1 49\n1 50\n1 51\n1 52\n1 53\n1 54\n1 55\n1 56\n1 57\n1 58\n1 59\n1 60\n1 61\n1 62\n1 63\n1 64\n1 65\n1 66\n1 67\n1 68\n1 69\n1 70\n1 71\n1 72\n1 73\n1 74\n1 75\n1 76\n1 77\n1 78\n1 79\n1 80\n1 81\n1 82\n1 83\n1 84" }, { "input": "226 54\n5 29\n130 29\n55 29\n19 29\n29 92\n29 38\n185 29\n29 150\n29 202\n29 25\n29 66\n184 29\n29 189\n177 29\n50 29\n87 29\n138 29\n29 48\n151 29\n125 29\n16 29\n42 29\n29 157\n90 29\n21 29\n29 45\n29 80\n29 67\n29 26\n29 173\n74 29\n29 193\n29 40\n172 29\n29 85\n29 102\n88 29\n29 182\n116 29\n180 29\n161 29\n10 29\n171 29\n144 29\n29 218\n190 29\n213 29\n29 71\n29 191\n29 160\n29 137\n29 58\n29 135\n127 29", "output": "225\n1 2\n1 3\n1 4\n1 5\n1 6\n1 7\n1 8\n1 9\n1 10\n1 11\n1 12\n1 13\n1 14\n1 15\n1 16\n1 17\n1 18\n1 19\n1 20\n1 21\n1 22\n1 23\n1 24\n1 25\n1 26\n1 27\n1 28\n1 29\n1 30\n1 31\n1 32\n1 33\n1 34\n1 35\n1 36\n1 37\n1 38\n1 39\n1 40\n1 41\n1 42\n1 43\n1 44\n1 45\n1 46\n1 47\n1 48\n1 49\n1 50\n1 51\n1 52\n1 53\n1 54\n1 55\n1 56\n1 57\n1 58\n1 59\n1 60\n1 61\n1 62\n1 63\n1 64\n1 65\n1 66\n1 67\n1 68\n1 69\n1 70\n1 71\n1 72\n1 73\n1 74\n1 75\n1 76\n1 77\n1 78\n1 79\n1 80\n1 81\n1 82\n1 83\n1 84\n1 85\n1 86\n1 87..." }, { "input": "207 35\n25 61\n188 61\n170 61\n113 61\n35 61\n61 177\n77 61\n61 39\n61 141\n116 61\n61 163\n30 61\n192 61\n19 61\n61 162\n61 133\n185 61\n8 61\n118 61\n61 115\n7 61\n61 105\n107 61\n61 11\n161 61\n61 149\n136 61\n82 61\n20 61\n151 61\n156 61\n12 61\n87 61\n61 205\n61 108", "output": "206\n1 2\n1 3\n1 4\n1 5\n1 6\n1 7\n1 8\n1 9\n1 10\n1 11\n1 12\n1 13\n1 14\n1 15\n1 16\n1 17\n1 18\n1 19\n1 20\n1 21\n1 22\n1 23\n1 24\n1 25\n1 26\n1 27\n1 28\n1 29\n1 30\n1 31\n1 32\n1 33\n1 34\n1 35\n1 36\n1 37\n1 38\n1 39\n1 40\n1 41\n1 42\n1 43\n1 44\n1 45\n1 46\n1 47\n1 48\n1 49\n1 50\n1 51\n1 52\n1 53\n1 54\n1 55\n1 56\n1 57\n1 58\n1 59\n1 60\n1 61\n1 62\n1 63\n1 64\n1 65\n1 66\n1 67\n1 68\n1 69\n1 70\n1 71\n1 72\n1 73\n1 74\n1 75\n1 76\n1 77\n1 78\n1 79\n1 80\n1 81\n1 82\n1 83\n1 84\n1 85\n1 86\n1 87..." }, { "input": "34 7\n11 32\n33 29\n17 16\n15 5\n13 25\n8 19\n20 4", "output": "33\n1 2\n1 3\n1 4\n1 5\n1 6\n1 7\n1 8\n1 9\n1 10\n1 11\n1 12\n1 13\n1 14\n1 15\n1 16\n1 17\n1 18\n1 19\n1 20\n1 21\n1 22\n1 23\n1 24\n1 25\n1 26\n1 27\n1 28\n1 29\n1 30\n1 31\n1 32\n1 33\n1 34" }, { "input": "43 21\n38 19\n43 8\n40 31\n3 14\n24 21\n12 17\n1 9\n5 27\n25 37\n11 6\n13 26\n16 22\n10 32\n36 7\n30 29\n42 35\n20 33\n4 23\n18 15\n41 34\n2 28", "output": "42\n39 1\n39 2\n39 3\n39 4\n39 5\n39 6\n39 7\n39 8\n39 9\n39 10\n39 11\n39 12\n39 13\n39 14\n39 15\n39 16\n39 17\n39 18\n39 19\n39 20\n39 21\n39 22\n39 23\n39 24\n39 25\n39 26\n39 27\n39 28\n39 29\n39 30\n39 31\n39 32\n39 33\n39 34\n39 35\n39 36\n39 37\n39 38\n39 40\n39 41\n39 42\n39 43" }, { "input": "34 7\n22 4\n5 25\n15 7\n5 9\n27 7\n34 21\n3 13", "output": "33\n1 2\n1 3\n1 4\n1 5\n1 6\n1 7\n1 8\n1 9\n1 10\n1 11\n1 12\n1 13\n1 14\n1 15\n1 16\n1 17\n1 18\n1 19\n1 20\n1 21\n1 22\n1 23\n1 24\n1 25\n1 26\n1 27\n1 28\n1 29\n1 30\n1 31\n1 32\n1 33\n1 34" }, { "input": "50 7\n19 37\n30 32\n43 20\n48 14\n30 29\n18 36\n9 46", "output": "49\n1 2\n1 3\n1 4\n1 5\n1 6\n1 7\n1 8\n1 9\n1 10\n1 11\n1 12\n1 13\n1 14\n1 15\n1 16\n1 17\n1 18\n1 19\n1 20\n1 21\n1 22\n1 23\n1 24\n1 25\n1 26\n1 27\n1 28\n1 29\n1 30\n1 31\n1 32\n1 33\n1 34\n1 35\n1 36\n1 37\n1 38\n1 39\n1 40\n1 41\n1 42\n1 43\n1 44\n1 45\n1 46\n1 47\n1 48\n1 49\n1 50" }, { "input": "41 12\n41 12\n29 13\n3 37\n2 20\n4 24\n27 6\n39 20\n28 41\n30 1\n35 9\n5 39\n12 31", "output": "40\n7 1\n7 2\n7 3\n7 4\n7 5\n7 6\n7 8\n7 9\n7 10\n7 11\n7 12\n7 13\n7 14\n7 15\n7 16\n7 17\n7 18\n7 19\n7 20\n7 21\n7 22\n7 23\n7 24\n7 25\n7 26\n7 27\n7 28\n7 29\n7 30\n7 31\n7 32\n7 33\n7 34\n7 35\n7 36\n7 37\n7 38\n7 39\n7 40\n7 41" }, { "input": "26 2\n22 1\n14 10", "output": "25\n2 1\n2 3\n2 4\n2 5\n2 6\n2 7\n2 8\n2 9\n2 10\n2 11\n2 12\n2 13\n2 14\n2 15\n2 16\n2 17\n2 18\n2 19\n2 20\n2 21\n2 22\n2 23\n2 24\n2 25\n2 26" }, { "input": "7 3\n4 7\n4 6\n6 5", "output": "6\n1 2\n1 3\n1 4\n1 5\n1 6\n1 7" }, { "input": "484 11\n459 166\n12 217\n14 231\n477 111\n365 225\n62 412\n221 223\n258 184\n266 404\n425 236\n83 269", "output": "483\n1 2\n1 3\n1 4\n1 5\n1 6\n1 7\n1 8\n1 9\n1 10\n1 11\n1 12\n1 13\n1 14\n1 15\n1 16\n1 17\n1 18\n1 19\n1 20\n1 21\n1 22\n1 23\n1 24\n1 25\n1 26\n1 27\n1 28\n1 29\n1 30\n1 31\n1 32\n1 33\n1 34\n1 35\n1 36\n1 37\n1 38\n1 39\n1 40\n1 41\n1 42\n1 43\n1 44\n1 45\n1 46\n1 47\n1 48\n1 49\n1 50\n1 51\n1 52\n1 53\n1 54\n1 55\n1 56\n1 57\n1 58\n1 59\n1 60\n1 61\n1 62\n1 63\n1 64\n1 65\n1 66\n1 67\n1 68\n1 69\n1 70\n1 71\n1 72\n1 73\n1 74\n1 75\n1 76\n1 77\n1 78\n1 79\n1 80\n1 81\n1 82\n1 83\n1 84\n1 85\n1 86\n1 87..." }, { "input": "50 24\n18 36\n11 18\n22 18\n18 47\n18 10\n45 18\n18 29\n13 18\n8 18\n18 30\n26 18\n18 6\n5 18\n18 7\n46 18\n50 18\n18 3\n18 32\n4 18\n18 24\n18 19\n23 18\n35 18\n31 18", "output": "49\n1 2\n1 3\n1 4\n1 5\n1 6\n1 7\n1 8\n1 9\n1 10\n1 11\n1 12\n1 13\n1 14\n1 15\n1 16\n1 17\n1 18\n1 19\n1 20\n1 21\n1 22\n1 23\n1 24\n1 25\n1 26\n1 27\n1 28\n1 29\n1 30\n1 31\n1 32\n1 33\n1 34\n1 35\n1 36\n1 37\n1 38\n1 39\n1 40\n1 41\n1 42\n1 43\n1 44\n1 45\n1 46\n1 47\n1 48\n1 49\n1 50" }, { "input": "7 3\n3 4\n7 3\n3 2", "output": "6\n1 2\n1 3\n1 4\n1 5\n1 6\n1 7" }, { "input": "1 0", "output": "0" }, { "input": "2 0", "output": "1\n1 2" }, { "input": "4 1\n1 2", "output": "3\n3 1\n3 2\n3 4" }, { "input": "3 1\n1 2", "output": "2\n3 1\n3 2" }, { "input": "5 1\n1 5", "output": "4\n2 1\n2 3\n2 4\n2 5" } ]
1,599,153,148
2,147,483,647
PyPy 3
OK
TESTS
43
342
2,867,200
n , m = map(int,input().split()) if m == 0 : print(n - 1) for i in range(2 , n+1): print(1 , i) else: l = [] d1 = {} d2 = {} for i in range(m): x , y = map(int,input().split()) d1[x] = y d2[y] = x #print(d1 , d2) k = 0 for i in range(1 , n +1 ): if i not in d1 and i not in d2 : k = i break #print(k) print(n - 1) for i in range(1 , n + 1): if i == k : continue else: print(k , i)
Title: Road Construction Time Limit: None seconds Memory Limit: None megabytes Problem Description: A country has *n* cities. Initially, there is no road in the country. One day, the king decides to construct some roads connecting pairs of cities. Roads can be traversed either way. He wants those roads to be constructed in such a way that it is possible to go from each city to any other city by traversing at most two roads. You are also given *m* pairs of cities — roads cannot be constructed between these pairs of cities. Your task is to construct the minimum number of roads that still satisfy the above conditions. The constraints will guarantee that this is always possible. Input Specification: The first line consists of two integers *n* and *m* . Then *m* lines follow, each consisting of two integers *a**i* and *b**i* (1<=≤<=*a**i*,<=*b**i*<=≤<=*n*, *a**i*<=≠<=*b**i*), which means that it is not possible to construct a road connecting cities *a**i* and *b**i*. Consider the cities are numbered from 1 to *n*. It is guaranteed that every pair of cities will appear at most once in the input. Output Specification: You should print an integer *s*: the minimum number of roads that should be constructed, in the first line. Then *s* lines should follow, each consisting of two integers *a**i* and *b**i* (1<=≤<=*a**i*,<=*b**i*<=≤<=*n*,<=*a**i*<=≠<=*b**i*), which means that a road should be constructed between cities *a**i* and *b**i*. If there are several solutions, you may print any of them. Demo Input: ['4 1\n1 3\n'] Demo Output: ['3\n1 2\n4 2\n2 3\n'] Note: This is one possible solution of the example: These are examples of wrong solutions:
```python n , m = map(int,input().split()) if m == 0 : print(n - 1) for i in range(2 , n+1): print(1 , i) else: l = [] d1 = {} d2 = {} for i in range(m): x , y = map(int,input().split()) d1[x] = y d2[y] = x #print(d1 , d2) k = 0 for i in range(1 , n +1 ): if i not in d1 and i not in d2 : k = i break #print(k) print(n - 1) for i in range(1 , n + 1): if i == k : continue else: print(k , i) ```
3
368
B
Sereja and Suffixes
PROGRAMMING
1,100
[ "data structures", "dp" ]
null
null
Sereja has an array *a*, consisting of *n* integers *a*1, *a*2, ..., *a**n*. The boy cannot sit and do nothing, he decided to study an array. Sereja took a piece of paper and wrote out *m* integers *l*1,<=*l*2,<=...,<=*l**m* (1<=≤<=*l**i*<=≤<=*n*). For each number *l**i* he wants to know how many distinct numbers are staying on the positions *l**i*, *l**i*<=+<=1, ..., *n*. Formally, he want to find the number of distinct numbers among *a**l**i*,<=*a**l**i*<=+<=1,<=...,<=*a**n*.? Sereja wrote out the necessary array elements but the array was so large and the boy was so pressed for time. Help him, find the answer for the described question for each *l**i*.
The first line contains two integers *n* and *m* (1<=≤<=*n*,<=*m*<=≤<=105). The second line contains *n* integers *a*1, *a*2, ..., *a**n* (1<=≤<=*a**i*<=≤<=105) — the array elements. Next *m* lines contain integers *l*1,<=*l*2,<=...,<=*l**m*. The *i*-th line contains integer *l**i* (1<=≤<=*l**i*<=≤<=*n*).
Print *m* lines — on the *i*-th line print the answer to the number *l**i*.
[ "10 10\n1 2 3 4 1 2 3 4 100000 99999\n1\n2\n3\n4\n5\n6\n7\n8\n9\n10\n" ]
[ "6\n6\n6\n6\n6\n5\n4\n3\n2\n1\n" ]
none
1,000
[ { "input": "10 10\n1 2 3 4 1 2 3 4 100000 99999\n1\n2\n3\n4\n5\n6\n7\n8\n9\n10", "output": "6\n6\n6\n6\n6\n5\n4\n3\n2\n1" }, { "input": "8 3\n8 6 4 3 4 2 4 8\n6\n4\n2", "output": "3\n4\n5" }, { "input": "7 10\n1 3 8 6 2 2 7\n4\n2\n6\n3\n4\n4\n6\n2\n7\n4", "output": "3\n5\n2\n4\n3\n3\n2\n5\n1\n3" }, { "input": "10 2\n2 6 5 7 2 2 3 2 4 8\n1\n2", "output": "7\n7" }, { "input": "7 1\n68346 10956 76708 23018 84063 34833 80407\n1", "output": "7" }, { "input": "2 2\n8 4\n1\n1", "output": "2\n2" }, { "input": "1 5\n5\n1\n1\n1\n1\n1", "output": "1\n1\n1\n1\n1" }, { "input": "4 7\n3 1 4 2\n4\n1\n2\n3\n2\n4\n4", "output": "1\n4\n3\n2\n3\n1\n1" }, { "input": "4 3\n9 1 7 1\n1\n4\n2", "output": "3\n1\n2" }, { "input": "8 3\n9280 6676 2720 6172 8329 10413 3975 1394\n5\n6\n7", "output": "4\n3\n2" }, { "input": "1 1\n1\n1", "output": "1" } ]
1,685,479,033
2,147,483,647
PyPy 3-64
TIME_LIMIT_EXCEEDED
TESTS
10
1,000
16,998,400
#import io, os, sys #input = io.BytesIO(os.read(0,os.fstat(0).st_size)).readline #print = lambda x: sys.stdout.write(str(x) + "\n") II = lambda: int(input()) MII = lambda: map(int, input().split()) LMII = lambda: list(MII()) #SLMII = lambda: sorted(LMII()) n, m = MII() a = LMII() dp = [1]*n for i in range(n-1, 0, -1): dp[i-1] = dp[i] + (1 if a[i-1] not in a[i:] else 0) #print(dp) for _ in range(m): l = II()-1 print(dp[l])
Title: Sereja and Suffixes Time Limit: None seconds Memory Limit: None megabytes Problem Description: Sereja has an array *a*, consisting of *n* integers *a*1, *a*2, ..., *a**n*. The boy cannot sit and do nothing, he decided to study an array. Sereja took a piece of paper and wrote out *m* integers *l*1,<=*l*2,<=...,<=*l**m* (1<=≤<=*l**i*<=≤<=*n*). For each number *l**i* he wants to know how many distinct numbers are staying on the positions *l**i*, *l**i*<=+<=1, ..., *n*. Formally, he want to find the number of distinct numbers among *a**l**i*,<=*a**l**i*<=+<=1,<=...,<=*a**n*.? Sereja wrote out the necessary array elements but the array was so large and the boy was so pressed for time. Help him, find the answer for the described question for each *l**i*. Input Specification: The first line contains two integers *n* and *m* (1<=≤<=*n*,<=*m*<=≤<=105). The second line contains *n* integers *a*1, *a*2, ..., *a**n* (1<=≤<=*a**i*<=≤<=105) — the array elements. Next *m* lines contain integers *l*1,<=*l*2,<=...,<=*l**m*. The *i*-th line contains integer *l**i* (1<=≤<=*l**i*<=≤<=*n*). Output Specification: Print *m* lines — on the *i*-th line print the answer to the number *l**i*. Demo Input: ['10 10\n1 2 3 4 1 2 3 4 100000 99999\n1\n2\n3\n4\n5\n6\n7\n8\n9\n10\n'] Demo Output: ['6\n6\n6\n6\n6\n5\n4\n3\n2\n1\n'] Note: none
```python #import io, os, sys #input = io.BytesIO(os.read(0,os.fstat(0).st_size)).readline #print = lambda x: sys.stdout.write(str(x) + "\n") II = lambda: int(input()) MII = lambda: map(int, input().split()) LMII = lambda: list(MII()) #SLMII = lambda: sorted(LMII()) n, m = MII() a = LMII() dp = [1]*n for i in range(n-1, 0, -1): dp[i-1] = dp[i] + (1 if a[i-1] not in a[i:] else 0) #print(dp) for _ in range(m): l = II()-1 print(dp[l]) ```
0
0
none
none
none
0
[ "none" ]
null
null
Rikhail Mubinchik believes that the current definition of prime numbers is obsolete as they are too complex and unpredictable. A palindromic number is another matter. It is aesthetically pleasing, and it has a number of remarkable properties. Help Rikhail to convince the scientific community in this! Let us remind you that a number is called prime if it is integer larger than one, and is not divisible by any positive integer other than itself and one. Rikhail calls a number a palindromic if it is integer, positive, and its decimal representation without leading zeros is a palindrome, i.e. reads the same from left to right and right to left. One problem with prime numbers is that there are too many of them. Let's introduce the following notation: π(*n*) — the number of primes no larger than *n*, *rub*(*n*) — the number of palindromic numbers no larger than *n*. Rikhail wants to prove that there are a lot more primes than palindromic ones. He asked you to solve the following problem: for a given value of the coefficient *A* find the maximum *n*, such that π(*n*)<=≤<=*A*·*rub*(*n*).
The input consists of two positive integers *p*, *q*, the numerator and denominator of the fraction that is the value of *A* (, ).
If such maximum number exists, then print it. Otherwise, print "Palindromic tree is better than splay tree" (without the quotes).
[ "1 1\n", "1 42\n", "6 4\n" ]
[ "40\n", "1\n", "172\n" ]
none
0
[ { "input": "1 1", "output": "40" }, { "input": "1 42", "output": "1" }, { "input": "6 4", "output": "172" }, { "input": "3 1", "output": "2530" }, { "input": "42 1", "output": "1179858" }, { "input": "10000 239", "output": "1168638" }, { "input": "5 8", "output": "16" }, { "input": "7 11", "output": "16" }, { "input": "16 60", "output": "1" }, { "input": "214 210", "output": "40" }, { "input": "620 35", "output": "251262" }, { "input": "940 480", "output": "1372" }, { "input": "1307 3420", "output": "1" }, { "input": "6811 5416", "output": "66" }, { "input": "7 267", "output": "1" }, { "input": "106 6", "output": "250300" }, { "input": "10000 10000", "output": "40" }, { "input": "10000 9999", "output": "40" }, { "input": "9999 9998", "output": "40" }, { "input": "9999 9999", "output": "40" }, { "input": "4 9", "output": "10" }, { "input": "1000 10000", "output": "1" }, { "input": "238 9996", "output": "1" }, { "input": "999 10000", "output": "1" }, { "input": "241 10000", "output": "1" }, { "input": "239 10000", "output": "1" }, { "input": "5858 674", "output": "71118" } ]
1,626,307,657
2,147,483,647
PyPy 3
OK
TESTS
27
764
81,203,200
import math from os import curdir, startfile import random from queue import Queue import time import heapq import sys def getprimes(n): arr=[True]*(n+1) for i in range(2,int(math.sqrt(n))+1): if arr[i]: for j in range(i**2,len(arr),i): arr[j]=False primes=set() for i in range(2,len(arr)): if arr[i]: primes.add(i) return primes def pa(n): n=str(n) for i in range(len(n)//2): if n[i]!=n[len(n)-1-i]: return False return True def main(p,q): arr1=[] s=2*10**6 arr2=getprimes(s) arr=[0] arr1.append(0) for i in range(1,s): val=1 if pa(i) else 0 arr1.append(arr1[-1]+val) for i in range(1,s): val=1+arr[-1] if i in arr2 else arr[-1] arr.append(val) arr2=arr best="Palindromic tree is better than splay tree" for i in range(len(arr1)): if p*arr1[i]>=q*arr2[i]: best=i return best p,q=list(map(int,input().split())) print(main(p,q))
Title: none Time Limit: None seconds Memory Limit: None megabytes Problem Description: Rikhail Mubinchik believes that the current definition of prime numbers is obsolete as they are too complex and unpredictable. A palindromic number is another matter. It is aesthetically pleasing, and it has a number of remarkable properties. Help Rikhail to convince the scientific community in this! Let us remind you that a number is called prime if it is integer larger than one, and is not divisible by any positive integer other than itself and one. Rikhail calls a number a palindromic if it is integer, positive, and its decimal representation without leading zeros is a palindrome, i.e. reads the same from left to right and right to left. One problem with prime numbers is that there are too many of them. Let's introduce the following notation: π(*n*) — the number of primes no larger than *n*, *rub*(*n*) — the number of palindromic numbers no larger than *n*. Rikhail wants to prove that there are a lot more primes than palindromic ones. He asked you to solve the following problem: for a given value of the coefficient *A* find the maximum *n*, such that π(*n*)<=≤<=*A*·*rub*(*n*). Input Specification: The input consists of two positive integers *p*, *q*, the numerator and denominator of the fraction that is the value of *A* (, ). Output Specification: If such maximum number exists, then print it. Otherwise, print "Palindromic tree is better than splay tree" (without the quotes). Demo Input: ['1 1\n', '1 42\n', '6 4\n'] Demo Output: ['40\n', '1\n', '172\n'] Note: none
```python import math from os import curdir, startfile import random from queue import Queue import time import heapq import sys def getprimes(n): arr=[True]*(n+1) for i in range(2,int(math.sqrt(n))+1): if arr[i]: for j in range(i**2,len(arr),i): arr[j]=False primes=set() for i in range(2,len(arr)): if arr[i]: primes.add(i) return primes def pa(n): n=str(n) for i in range(len(n)//2): if n[i]!=n[len(n)-1-i]: return False return True def main(p,q): arr1=[] s=2*10**6 arr2=getprimes(s) arr=[0] arr1.append(0) for i in range(1,s): val=1 if pa(i) else 0 arr1.append(arr1[-1]+val) for i in range(1,s): val=1+arr[-1] if i in arr2 else arr[-1] arr.append(val) arr2=arr best="Palindromic tree is better than splay tree" for i in range(len(arr1)): if p*arr1[i]>=q*arr2[i]: best=i return best p,q=list(map(int,input().split())) print(main(p,q)) ```
3
910
A
The Way to Home
PROGRAMMING
800
[ "dfs and similar", "dp", "greedy", "implementation" ]
null
null
A frog lives on the axis *Ox* and needs to reach home which is in the point *n*. She starts from the point 1. The frog can jump to the right at a distance not more than *d*. So, after she jumped from the point *x* she can reach the point *x*<=+<=*a*, where *a* is an integer from 1 to *d*. For each point from 1 to *n* is known if there is a lily flower in it. The frog can jump only in points with a lilies. Guaranteed that there are lilies in the points 1 and *n*. Determine the minimal number of jumps that the frog needs to reach home which is in the point *n* from the point 1. Consider that initially the frog is in the point 1. If the frog can not reach home, print -1.
The first line contains two integers *n* and *d* (2<=≤<=*n*<=≤<=100, 1<=≤<=*d*<=≤<=*n*<=-<=1) — the point, which the frog wants to reach, and the maximal length of the frog jump. The second line contains a string *s* of length *n*, consisting of zeros and ones. If a character of the string *s* equals to zero, then in the corresponding point there is no lily flower. In the other case, in the corresponding point there is a lily flower. Guaranteed that the first and the last characters of the string *s* equal to one.
If the frog can not reach the home, print -1. In the other case, print the minimal number of jumps that the frog needs to reach the home which is in the point *n* from the point 1.
[ "8 4\n10010101\n", "4 2\n1001\n", "8 4\n11100101\n", "12 3\n101111100101\n" ]
[ "2\n", "-1\n", "3\n", "4\n" ]
In the first example the from can reach home in two jumps: the first jump from the point 1 to the point 4 (the length of the jump is three), and the second jump from the point 4 to the point 8 (the length of the jump is four). In the second example the frog can not reach home, because to make it she need to jump on a distance three, but the maximum length of her jump equals to two.
500
[ { "input": "8 4\n10010101", "output": "2" }, { "input": "4 2\n1001", "output": "-1" }, { "input": "8 4\n11100101", "output": "3" }, { "input": "12 3\n101111100101", "output": "4" }, { "input": "5 4\n11011", "output": "1" }, { "input": "5 4\n10001", "output": "1" }, { "input": "10 7\n1101111011", "output": "2" }, { "input": "10 9\n1110000101", "output": "1" }, { "input": "10 9\n1100000001", "output": "1" }, { "input": "20 5\n11111111110111101001", "output": "4" }, { "input": "20 11\n11100000111000011011", "output": "2" }, { "input": "20 19\n10100000000000000001", "output": "1" }, { "input": "50 13\n10011010100010100111010000010000000000010100000101", "output": "5" }, { "input": "50 8\n11010100000011001100001100010001110000101100110011", "output": "8" }, { "input": "99 4\n111111111111111111111111111111111111111111111111111111111011111111111111111111111111111111111111111", "output": "25" }, { "input": "99 98\n100000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001", "output": "1" }, { "input": "100 5\n1111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111", "output": "20" }, { "input": "100 4\n1111111111111111111111111111111111111111111111111111111111111111111111111111110111111111111111111111", "output": "25" }, { "input": "100 4\n1111111111111111111111111111111111111111111111111111111111111101111111011111111111111111111111111111", "output": "25" }, { "input": "100 3\n1111110111111111111111111111111111111111101111111111111111111111111101111111111111111111111111111111", "output": "34" }, { "input": "100 8\n1111111111101110111111111111111111111111111111111111111111111111111111110011111111111111011111111111", "output": "13" }, { "input": "100 7\n1011111111111111111011101111111011111101111111111101111011110111111111111111111111110111111011111111", "output": "15" }, { "input": "100 9\n1101111110111110101111111111111111011001110111011101011111111111010101111111100011011111111010111111", "output": "12" }, { "input": "100 6\n1011111011111111111011010110011001010101111110111111000111011011111110101101110110101111110000100111", "output": "18" }, { "input": "100 7\n1110001111101001110011111111111101111101101001010001101000101100000101101101011111111101101000100001", "output": "16" }, { "input": "100 11\n1000010100011100011011100000010011001111011110100100001011010100011011111001101101110110010110001101", "output": "10" }, { "input": "100 9\n1001001110000011100100000001000110111101101010101001000101001010011001101100110011011110110011011111", "output": "13" }, { "input": "100 7\n1010100001110101111011000111000001110100100110110001110110011010100001100100001110111100110000101001", "output": "18" }, { "input": "100 10\n1110110000000110000000101110100000111000001011100000100110010001110111001010101000011000000001011011", "output": "12" }, { "input": "100 13\n1000000100000000100011000010010000101010011110000000001000011000110100001000010001100000011001011001", "output": "9" }, { "input": "100 11\n1000000000100000010000100001000100000000010000100100000000100100001000000001011000110001000000000101", "output": "12" }, { "input": "100 22\n1000100000001010000000000000000001000000100000000000000000010000000000001000000000000000000100000001", "output": "7" }, { "input": "100 48\n1000000000000000011000000000000000000000000000000001100000000000000000000000000000000000000000000001", "output": "3" }, { "input": "100 48\n1000000000000000000000100000000000000000000000000000000000000000000001000000000000000000100000000001", "output": "3" }, { "input": "100 75\n1000000100000000000000000000000000000000000000000000000000000000000000000000000001000000000000000001", "output": "3" }, { "input": "100 73\n1000000000000000000000000000000100000000000000000000000000000000000000000000000000000000000000000001", "output": "2" }, { "input": "100 99\n1000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001", "output": "1" }, { "input": "100 1\n1111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111", "output": "99" }, { "input": "100 2\n1111111111111111111111111111111110111111111111111111111111111111111111111111111111111111111111111111", "output": "50" }, { "input": "100 1\n1111111111111111011111111111111111111111111111111111111111111111111101111111111111111111111111111111", "output": "-1" }, { "input": "100 3\n1111111111111111111111111101111111111111111111111011111111111111111111111111111011111111111111111111", "output": "33" }, { "input": "100 1\n1101111111111111111111101111111111111111111111111111111111111011111111101111101111111111111111111111", "output": "-1" }, { "input": "100 6\n1111111111111111111111101111111101011110001111111111111111110111111111111111111111111110010111111111", "output": "17" }, { "input": "100 2\n1111111101111010110111011011110111101111111011111101010101011111011111111111111011111001101111101111", "output": "-1" }, { "input": "100 8\n1100110101111001101001111000111100110100011110111011001011111110000110101000001110111011100111011011", "output": "14" }, { "input": "100 10\n1000111110100000001001101100000010011100010101001100010011111001001101111110110111101111001010001101", "output": "11" }, { "input": "100 7\n1110000011010001110101011010000011110001000000011101110111010110001000011101111010010001101111110001", "output": "-1" }, { "input": "100 3\n1111010001000001011011000011001111000100101000101101000010111101111000010000011110110011001101010111", "output": "-1" }, { "input": "100 9\n1101010101101100010111011000010100001010000101010011001001100010110110000000010000101000000001101101", "output": "13" }, { "input": "100 14\n1010100000000000010101000010001100000000000011100010000001000001011010001110001010100000100001101101", "output": "9" }, { "input": "100 13\n1000000001101001110000010000011001000000000000001010000000100001001010000000000000000100010000000001", "output": "-1" }, { "input": "100 18\n1000000000000000110000000000000000010000000001000001000001000000000100000000000010000000000000000001", "output": "-1" }, { "input": "100 32\n1000000000000000000000000001000000000000000000000101000000000000000000000000000000000001000000000001", "output": "-1" }, { "input": "100 79\n1000000001000000000101000000000000000000000000000000000000000000000000000000000000000000000000000001", "output": "2" }, { "input": "100 41\n1000000000000000000000000000000000010000000000000000000000000000000000000000100000000000000000000001", "output": "3" }, { "input": "100 82\n1000000000000000000100000000000000000000000000000000000000000000000000000000000000000000000000000001", "output": "2" }, { "input": "100 96\n1000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001", "output": "-1" }, { "input": "43 30\n1001000001111111010100100100110101011101101", "output": "2" }, { "input": "7 1\n1111111", "output": "6" }, { "input": "9 3\n101000001", "output": "-1" }, { "input": "10 3\n1100000001", "output": "-1" }, { "input": "8 2\n10000101", "output": "-1" }, { "input": "2 1\n11", "output": "1" } ]
1,514,308,326
2,147,483,647
Python 3
COMPILATION_ERROR
TESTS
0
0
0
#include <bits/stdc++.h> using namespace std; int main(){ int n,d; cin>>n>>d; char l[n+2]; cin>>(l+1); int dp[n+1]; for(int i=0;i<=n;i++) dp[i]=10000000; dp[1]=0; for(int i=2;i<=n;i++){ if(l[i]=='1'){ for(int j=max(1,i-d);j<i;j++){ if(l[j]=='1'){ if(dp[i]>dp[j]+1) dp[i]=dp[j]+1; } } } } if(dp[n]==10000000) cout<<-1<<endl; else cout<<dp[n]; }
Title: The Way to Home Time Limit: None seconds Memory Limit: None megabytes Problem Description: A frog lives on the axis *Ox* and needs to reach home which is in the point *n*. She starts from the point 1. The frog can jump to the right at a distance not more than *d*. So, after she jumped from the point *x* she can reach the point *x*<=+<=*a*, where *a* is an integer from 1 to *d*. For each point from 1 to *n* is known if there is a lily flower in it. The frog can jump only in points with a lilies. Guaranteed that there are lilies in the points 1 and *n*. Determine the minimal number of jumps that the frog needs to reach home which is in the point *n* from the point 1. Consider that initially the frog is in the point 1. If the frog can not reach home, print -1. Input Specification: The first line contains two integers *n* and *d* (2<=≤<=*n*<=≤<=100, 1<=≤<=*d*<=≤<=*n*<=-<=1) — the point, which the frog wants to reach, and the maximal length of the frog jump. The second line contains a string *s* of length *n*, consisting of zeros and ones. If a character of the string *s* equals to zero, then in the corresponding point there is no lily flower. In the other case, in the corresponding point there is a lily flower. Guaranteed that the first and the last characters of the string *s* equal to one. Output Specification: If the frog can not reach the home, print -1. In the other case, print the minimal number of jumps that the frog needs to reach the home which is in the point *n* from the point 1. Demo Input: ['8 4\n10010101\n', '4 2\n1001\n', '8 4\n11100101\n', '12 3\n101111100101\n'] Demo Output: ['2\n', '-1\n', '3\n', '4\n'] Note: In the first example the from can reach home in two jumps: the first jump from the point 1 to the point 4 (the length of the jump is three), and the second jump from the point 4 to the point 8 (the length of the jump is four). In the second example the frog can not reach home, because to make it she need to jump on a distance three, but the maximum length of her jump equals to two.
```python #include <bits/stdc++.h> using namespace std; int main(){ int n,d; cin>>n>>d; char l[n+2]; cin>>(l+1); int dp[n+1]; for(int i=0;i<=n;i++) dp[i]=10000000; dp[1]=0; for(int i=2;i<=n;i++){ if(l[i]=='1'){ for(int j=max(1,i-d);j<i;j++){ if(l[j]=='1'){ if(dp[i]>dp[j]+1) dp[i]=dp[j]+1; } } } } if(dp[n]==10000000) cout<<-1<<endl; else cout<<dp[n]; } ```
-1
509
A
Maximum in Table
PROGRAMMING
800
[ "brute force", "implementation" ]
null
null
An *n*<=×<=*n* table *a* is defined as follows: - The first row and the first column contain ones, that is: *a**i*,<=1<==<=*a*1,<=*i*<==<=1 for all *i*<==<=1,<=2,<=...,<=*n*. - Each of the remaining numbers in the table is equal to the sum of the number above it and the number to the left of it. In other words, the remaining elements are defined by the formula *a**i*,<=*j*<==<=*a**i*<=-<=1,<=*j*<=+<=*a**i*,<=*j*<=-<=1. These conditions define all the values in the table. You are given a number *n*. You need to determine the maximum value in the *n*<=×<=*n* table defined by the rules above.
The only line of input contains a positive integer *n* (1<=≤<=*n*<=≤<=10) — the number of rows and columns of the table.
Print a single line containing a positive integer *m* — the maximum value in the table.
[ "1\n", "5\n" ]
[ "1", "70" ]
In the second test the rows of the table look as follows:
0
[ { "input": "1", "output": "1" }, { "input": "5", "output": "70" }, { "input": "2", "output": "2" }, { "input": "3", "output": "6" }, { "input": "4", "output": "20" }, { "input": "6", "output": "252" }, { "input": "7", "output": "924" }, { "input": "9", "output": "12870" }, { "input": "10", "output": "48620" }, { "input": "8", "output": "3432" } ]
1,670,068,168
2,147,483,647
PyPy 3-64
OK
TESTS
10
62
0
import math n=int(input()) print(math.comb(n * 2 - 2, n - 1))
Title: Maximum in Table Time Limit: None seconds Memory Limit: None megabytes Problem Description: An *n*<=×<=*n* table *a* is defined as follows: - The first row and the first column contain ones, that is: *a**i*,<=1<==<=*a*1,<=*i*<==<=1 for all *i*<==<=1,<=2,<=...,<=*n*. - Each of the remaining numbers in the table is equal to the sum of the number above it and the number to the left of it. In other words, the remaining elements are defined by the formula *a**i*,<=*j*<==<=*a**i*<=-<=1,<=*j*<=+<=*a**i*,<=*j*<=-<=1. These conditions define all the values in the table. You are given a number *n*. You need to determine the maximum value in the *n*<=×<=*n* table defined by the rules above. Input Specification: The only line of input contains a positive integer *n* (1<=≤<=*n*<=≤<=10) — the number of rows and columns of the table. Output Specification: Print a single line containing a positive integer *m* — the maximum value in the table. Demo Input: ['1\n', '5\n'] Demo Output: ['1', '70'] Note: In the second test the rows of the table look as follows:
```python import math n=int(input()) print(math.comb(n * 2 - 2, n - 1)) ```
3
99
A
Help Far Away Kingdom
PROGRAMMING
800
[ "strings" ]
A. Help Far Away Kingdom
2
256
In a far away kingdom lived the King, the Prince, the Shoemaker, the Dressmaker and many other citizens. They lived happily until great trouble came into the Kingdom. The ACMers settled there. Most damage those strange creatures inflicted upon the kingdom was that they loved high precision numbers. As a result, the Kingdom healers had already had three appointments with the merchants who were asked to sell, say, exactly 0.273549107 beer barrels. To deal with the problem somehow, the King issued an order obliging rounding up all numbers to the closest integer to simplify calculations. Specifically, the order went like this: - If a number's integer part does not end with digit 9 and its fractional part is strictly less than 0.5, then the rounded up number coincides with the number’s integer part. - If a number's integer part does not end with digit 9 and its fractional part is not less than 0.5, the rounded up number is obtained if we add 1 to the last digit of the number’s integer part.- If the number’s integer part ends with digit 9, to round up the numbers one should go to Vasilisa the Wise. In the whole Kingdom she is the only one who can perform the tricky operation of carrying into the next position. Merchants found the algorithm very sophisticated and they asked you (the ACMers) to help them. Can you write a program that would perform the rounding according to the King’s order?
The first line contains a single number to round up — the integer part (a non-empty set of decimal digits that do not start with 0 — with the exception of a case when the set consists of a single digit — in this case 0 can go first), then follows character «.» (a dot), and then follows the fractional part (any non-empty set of decimal digits). The number's length does not exceed 1000 characters, including the dot. There are no other characters in the input data.
If the last number of the integer part is not equal to 9, print the rounded-up number without leading zeroes. Otherwise, print the message "GOTO Vasilisa." (without the quotes).
[ "0.0\n", "1.49\n", "1.50\n", "2.71828182845904523536\n", "3.14159265358979323846\n", "12345678901234567890.1\n", "123456789123456789.999\n" ]
[ "0", "1", "2", "3", "3", "12345678901234567890", "GOTO Vasilisa." ]
none
500
[ { "input": "0.0", "output": "0" }, { "input": "1.49", "output": "1" }, { "input": "1.50", "output": "2" }, { "input": "2.71828182845904523536", "output": "3" }, { "input": "3.14159265358979323846", "output": "3" }, { "input": "12345678901234567890.1", "output": "12345678901234567890" }, { "input": "123456789123456789.999", "output": "GOTO Vasilisa." }, { "input": "12345678901234567890.9", "output": "12345678901234567891" }, { "input": "123456789123456788.999", "output": "123456789123456789" }, { "input": "9.000", "output": "GOTO Vasilisa." }, { "input": "0.1", "output": "0" }, { "input": "0.2", "output": "0" }, { "input": "0.3", "output": "0" }, { "input": "0.4", "output": "0" }, { "input": "0.5", "output": "1" }, { "input": "0.6", "output": "1" }, { "input": "0.7", "output": "1" }, { "input": "0.8", "output": "1" }, { "input": "0.9", "output": "1" }, { "input": "1.0", "output": "1" }, { "input": "1.1", "output": "1" }, { "input": "1.2", "output": "1" }, { "input": "1.3", "output": "1" }, { "input": "1.4", "output": "1" }, { "input": "1.5", "output": "2" }, { "input": "1.6", "output": "2" }, { "input": "1.7", "output": "2" }, { "input": "1.8", "output": "2" }, { "input": "1.9", "output": "2" }, { "input": "2.0", "output": "2" }, { "input": "2.1", "output": "2" }, { "input": "2.2", "output": "2" }, { "input": "2.3", "output": "2" }, { "input": "2.4", "output": "2" }, { "input": "2.5", "output": "3" }, { "input": "2.6", "output": "3" }, { "input": "2.7", "output": "3" }, { "input": "2.8", "output": "3" }, { "input": "2.9", "output": "3" }, { "input": "3.0", "output": "3" }, { "input": "3.1", "output": "3" }, { "input": "3.2", "output": "3" }, { "input": "3.3", "output": "3" }, { "input": "3.4", "output": "3" }, { "input": "3.5", "output": "4" }, { "input": "3.6", "output": "4" }, { "input": "3.7", "output": "4" }, { "input": "3.8", "output": "4" }, { "input": "3.9", "output": "4" }, { "input": "4.0", "output": "4" }, { "input": "4.1", "output": "4" }, { "input": "4.2", "output": "4" }, { "input": "4.3", "output": "4" }, { "input": "4.4", "output": "4" }, { "input": "4.5", "output": "5" }, { "input": "4.6", "output": "5" }, { "input": "4.7", "output": "5" }, { "input": "4.8", "output": "5" }, { "input": "4.9", "output": "5" }, { "input": "5.0", "output": "5" }, { "input": "5.1", "output": "5" }, { "input": "5.2", "output": "5" }, { "input": "5.3", "output": "5" }, { "input": "5.4", "output": "5" }, { "input": "5.5", "output": "6" }, { "input": "5.6", "output": "6" }, { "input": "5.7", "output": "6" }, { "input": "5.8", "output": "6" }, { "input": "5.9", "output": "6" }, { "input": "6.0", "output": "6" }, { "input": "6.1", "output": "6" }, { "input": "6.2", "output": "6" }, { "input": "6.3", "output": "6" }, { "input": "6.4", "output": "6" }, { "input": "6.5", "output": "7" }, { "input": "6.6", "output": "7" }, { "input": "6.7", "output": "7" }, { "input": "6.8", "output": "7" }, { "input": "6.9", "output": "7" }, { "input": "7.0", "output": "7" }, { "input": "7.1", "output": "7" }, { "input": "7.2", "output": "7" }, { "input": "7.3", "output": "7" }, { "input": "7.4", "output": "7" }, { "input": "7.5", "output": "8" }, { "input": "7.6", "output": "8" }, { "input": "7.7", "output": "8" }, { "input": "7.8", "output": "8" }, { "input": "7.9", "output": "8" }, { "input": "8.0", "output": "8" }, { "input": "8.1", "output": "8" }, { "input": "8.2", "output": "8" }, { "input": "8.3", "output": "8" }, { "input": "8.4", "output": "8" }, { "input": "8.5", "output": "9" }, { "input": "8.6", "output": "9" }, { "input": "8.7", "output": "9" }, { "input": "8.8", "output": "9" }, { "input": "8.9", "output": "9" }, { "input": "9.0", "output": "GOTO Vasilisa." }, { "input": "9.1", "output": "GOTO Vasilisa." }, { "input": "9.2", "output": "GOTO Vasilisa." }, { "input": "9.3", "output": "GOTO Vasilisa." }, { "input": "9.4", "output": "GOTO Vasilisa." }, { "input": "9.5", "output": "GOTO Vasilisa." }, { "input": "9.6", "output": "GOTO Vasilisa." }, { "input": "9.7", "output": "GOTO Vasilisa." }, { "input": "9.8", "output": "GOTO Vasilisa." }, { "input": "9.9", "output": "GOTO Vasilisa." }, { "input": "609942239104813108618306232517836377583566292129955473517174437591594761209877970062547641606473593416245554763832875919009472288995880898848455284062760160557686724163817329189799336769669146848904803188614226720978399787805489531837751080926098.1664915772983166314490532653577560222779830866949001942720729759794777105570672781798092416748052690224813237139640723361527601154465287615917169132637313918577673651098507390501962", "output": "609942239104813108618306232517836377583566292129955473517174437591594761209877970062547641606473593416245554763832875919009472288995880898848455284062760160557686724163817329189799336769669146848904803188614226720978399787805489531837751080926098" }, { "input": "7002108534951820589946967018226114921984364117669853212254634761258884835434844673935047882480101006606512119541798298905598015607366335061012709906661245805358900665571472645463994925687210711492820804158354236327017974683658305043146543214454877759341394.20211856263503281388748282682120712214711232598021393495443628276945042110862480888110959179019986486690931930108026302665438087068150666835901617457150158918705186964935221768346957536540345814875615118637945520917367155931078965", "output": "7002108534951820589946967018226114921984364117669853212254634761258884835434844673935047882480101006606512119541798298905598015607366335061012709906661245805358900665571472645463994925687210711492820804158354236327017974683658305043146543214454877759341394" }, { "input": "1950583094879039694852660558765931995628486712128191844305265555887022812284005463780616067.5000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000", "output": "1950583094879039694852660558765931995628486712128191844305265555887022812284005463780616068" }, { "input": "718130341896330596635811874410345440628950330.500000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000", "output": "718130341896330596635811874410345440628950331" }, { "input": "927925904158088313481229162503626281882161630091489367140850985555900173018122871746924067186432044676083646964286435457446768031295712712803570690846298544912543439221596866052681116386179629036945370280722.500000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000", "output": "927925904158088313481229162503626281882161630091489367140850985555900173018122871746924067186432044676083646964286435457446768031295712712803570690846298544912543439221596866052681116386179629036945370280723" }, { "input": "68289614863244584294178637364598054554769889.500000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000", "output": "GOTO Vasilisa." }, { "input": "7536521504744364134984603189602839063535643888645969434165019366202558753840519.4999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999", "output": "GOTO Vasilisa." }, { "input": "646188694587964249318078225173.5000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000", "output": "646188694587964249318078225174" }, { "input": "7017472758334494297677068672222822550374695787171163207025095950296957261530.50", "output": "7017472758334494297677068672222822550374695787171163207025095950296957261531" }, { "input": "259085737066615534998640212505663524594409165063310128108448186246980628179842202905722595400477937071746695941939306735605849342959111887834258250883469840846714848774368.50000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000", "output": "259085737066615534998640212505663524594409165063310128108448186246980628179842202905722595400477937071746695941939306735605849342959111887834258250883469840846714848774369" }, { "input": "682500858233333594535201113441004740771119672961581796618069185960107115823662126812159957094407454522028503739299.5000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000", "output": "GOTO Vasilisa." }, { "input": "41203422675619090661099806687619.49999999999999999999999999999999999999999999999999999999999999999999999999999999999999999", "output": "GOTO Vasilisa." } ]
1,603,458,534
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
5
216
0
num=float(input()) i,d=divmod(num,1) i=int(i) if (i%10)!=9 and d<0.5: print(i) elif (i%10)!=9 and d>=0.5: print(i+1) else : print("GOTO Vasilia")
Title: Help Far Away Kingdom Time Limit: 2 seconds Memory Limit: 256 megabytes Problem Description: In a far away kingdom lived the King, the Prince, the Shoemaker, the Dressmaker and many other citizens. They lived happily until great trouble came into the Kingdom. The ACMers settled there. Most damage those strange creatures inflicted upon the kingdom was that they loved high precision numbers. As a result, the Kingdom healers had already had three appointments with the merchants who were asked to sell, say, exactly 0.273549107 beer barrels. To deal with the problem somehow, the King issued an order obliging rounding up all numbers to the closest integer to simplify calculations. Specifically, the order went like this: - If a number's integer part does not end with digit 9 and its fractional part is strictly less than 0.5, then the rounded up number coincides with the number’s integer part. - If a number's integer part does not end with digit 9 and its fractional part is not less than 0.5, the rounded up number is obtained if we add 1 to the last digit of the number’s integer part.- If the number’s integer part ends with digit 9, to round up the numbers one should go to Vasilisa the Wise. In the whole Kingdom she is the only one who can perform the tricky operation of carrying into the next position. Merchants found the algorithm very sophisticated and they asked you (the ACMers) to help them. Can you write a program that would perform the rounding according to the King’s order? Input Specification: The first line contains a single number to round up — the integer part (a non-empty set of decimal digits that do not start with 0 — with the exception of a case when the set consists of a single digit — in this case 0 can go first), then follows character «.» (a dot), and then follows the fractional part (any non-empty set of decimal digits). The number's length does not exceed 1000 characters, including the dot. There are no other characters in the input data. Output Specification: If the last number of the integer part is not equal to 9, print the rounded-up number without leading zeroes. Otherwise, print the message "GOTO Vasilisa." (without the quotes). Demo Input: ['0.0\n', '1.49\n', '1.50\n', '2.71828182845904523536\n', '3.14159265358979323846\n', '12345678901234567890.1\n', '123456789123456789.999\n'] Demo Output: ['0', '1', '2', '3', '3', '12345678901234567890', 'GOTO Vasilisa.'] Note: none
```python num=float(input()) i,d=divmod(num,1) i=int(i) if (i%10)!=9 and d<0.5: print(i) elif (i%10)!=9 and d>=0.5: print(i+1) else : print("GOTO Vasilia") ```
0
384
A
Coder
PROGRAMMING
800
[ "implementation" ]
null
null
Iahub likes chess very much. He even invented a new chess piece named Coder. A Coder can move (and attack) one square horizontally or vertically. More precisely, if the Coder is located at position (*x*,<=*y*), he can move to (or attack) positions (*x*<=+<=1,<=*y*), (*x*–1,<=*y*), (*x*,<=*y*<=+<=1) and (*x*,<=*y*–1). Iahub wants to know how many Coders can be placed on an *n*<=×<=*n* chessboard, so that no Coder attacks any other Coder.
The first line contains an integer *n* (1<=≤<=*n*<=≤<=1000).
On the first line print an integer, the maximum number of Coders that can be placed on the chessboard. On each of the next *n* lines print *n* characters, describing the configuration of the Coders. For an empty cell print an '.', and for a Coder print a 'C'. If there are multiple correct answers, you can print any.
[ "2\n" ]
[ "2\nC.\n.C\n" ]
none
500
[ { "input": "2", "output": "2\nC.\n.C" }, { "input": "3", "output": "5\nC.C\n.C.\nC.C" }, { "input": "4", "output": "8\nC.C.\n.C.C\nC.C.\n.C.C" }, { "input": "10", "output": "50\nC.C.C.C.C.\n.C.C.C.C.C\nC.C.C.C.C.\n.C.C.C.C.C\nC.C.C.C.C.\n.C.C.C.C.C\nC.C.C.C.C.\n.C.C.C.C.C\nC.C.C.C.C.\n.C.C.C.C.C" }, { "input": "15", "output": "113\nC.C.C.C.C.C.C.C\n.C.C.C.C.C.C.C.\nC.C.C.C.C.C.C.C\n.C.C.C.C.C.C.C.\nC.C.C.C.C.C.C.C\n.C.C.C.C.C.C.C.\nC.C.C.C.C.C.C.C\n.C.C.C.C.C.C.C.\nC.C.C.C.C.C.C.C\n.C.C.C.C.C.C.C.\nC.C.C.C.C.C.C.C\n.C.C.C.C.C.C.C.\nC.C.C.C.C.C.C.C\n.C.C.C.C.C.C.C.\nC.C.C.C.C.C.C.C" }, { "input": "100", "output": "5000\nC.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.\n.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C\nC.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.\n.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C\nC.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C..." }, { "input": "101", "output": "5101\nC.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C\n.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.\nC.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C\n.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.\nC.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C..." }, { "input": "500", "output": "125000\nC.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.\n...." }, { "input": "501", "output": "125501\nC.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C\n..." }, { "input": "755", "output": "285013\nC.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C..." }, { "input": "888", "output": "394272\nC.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C..." }, { "input": "998", "output": "498002\nC.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C..." }, { "input": "999", "output": "499001\nC.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C..." }, { "input": "1000", "output": "500000\nC.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C..." }, { "input": "1", "output": "1\nC" } ]
1,506,621,395
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
1
46
0
n = int(input()) if n == 1: print("1"); print("C") if n%2 == 0: #if its even output = int(n*(n/2)) print(output) is_c = True c_first = True string = "" for i in range(n): if c_first: is_c = not is_c for j in range(n): if is_c: string += "C" else: string += "." is_c = not is_c c_first = not c_first print(string) string = '' else: is_c = True string = "" x = (round(n/2) + 1) y = round(n/2) output= int(x**2 + y**2) print(output) for i in range(n): for j in range(n): if is_c: string += "C" output += 1 else: string += "." is_c = not is_c print(string) string = ''
Title: Coder Time Limit: None seconds Memory Limit: None megabytes Problem Description: Iahub likes chess very much. He even invented a new chess piece named Coder. A Coder can move (and attack) one square horizontally or vertically. More precisely, if the Coder is located at position (*x*,<=*y*), he can move to (or attack) positions (*x*<=+<=1,<=*y*), (*x*–1,<=*y*), (*x*,<=*y*<=+<=1) and (*x*,<=*y*–1). Iahub wants to know how many Coders can be placed on an *n*<=×<=*n* chessboard, so that no Coder attacks any other Coder. Input Specification: The first line contains an integer *n* (1<=≤<=*n*<=≤<=1000). Output Specification: On the first line print an integer, the maximum number of Coders that can be placed on the chessboard. On each of the next *n* lines print *n* characters, describing the configuration of the Coders. For an empty cell print an '.', and for a Coder print a 'C'. If there are multiple correct answers, you can print any. Demo Input: ['2\n'] Demo Output: ['2\nC.\n.C\n'] Note: none
```python n = int(input()) if n == 1: print("1"); print("C") if n%2 == 0: #if its even output = int(n*(n/2)) print(output) is_c = True c_first = True string = "" for i in range(n): if c_first: is_c = not is_c for j in range(n): if is_c: string += "C" else: string += "." is_c = not is_c c_first = not c_first print(string) string = '' else: is_c = True string = "" x = (round(n/2) + 1) y = round(n/2) output= int(x**2 + y**2) print(output) for i in range(n): for j in range(n): if is_c: string += "C" output += 1 else: string += "." is_c = not is_c print(string) string = '' ```
0
385
A
Bear and Raspberry
PROGRAMMING
1,000
[ "brute force", "greedy", "implementation" ]
null
null
The bear decided to store some raspberry for the winter. He cunningly found out the price for a barrel of honey in kilos of raspberry for each of the following *n* days. According to the bear's data, on the *i*-th (1<=≤<=*i*<=≤<=*n*) day, the price for one barrel of honey is going to is *x**i* kilos of raspberry. Unfortunately, the bear has neither a honey barrel, nor the raspberry. At the same time, the bear's got a friend who is ready to lend him a barrel of honey for exactly one day for *c* kilograms of raspberry. That's why the bear came up with a smart plan. He wants to choose some day *d* (1<=≤<=*d*<=&lt;<=*n*), lent a barrel of honey and immediately (on day *d*) sell it according to a daily exchange rate. The next day (*d*<=+<=1) the bear wants to buy a new barrel of honey according to a daily exchange rate (as he's got some raspberry left from selling the previous barrel) and immediately (on day *d*<=+<=1) give his friend the borrowed barrel of honey as well as *c* kilograms of raspberry for renting the barrel. The bear wants to execute his plan at most once and then hibernate. What maximum number of kilograms of raspberry can he earn? Note that if at some point of the plan the bear runs out of the raspberry, then he won't execute such a plan.
The first line contains two space-separated integers, *n* and *c* (2<=≤<=*n*<=≤<=100,<=0<=≤<=*c*<=≤<=100), — the number of days and the number of kilos of raspberry that the bear should give for borrowing the barrel. The second line contains *n* space-separated integers *x*1,<=*x*2,<=...,<=*x**n* (0<=≤<=*x**i*<=≤<=100), the price of a honey barrel on day *i*.
Print a single integer — the answer to the problem.
[ "5 1\n5 10 7 3 20\n", "6 2\n100 1 10 40 10 40\n", "3 0\n1 2 3\n" ]
[ "3\n", "97\n", "0\n" ]
In the first sample the bear will lend a honey barrel at day 3 and then sell it for 7. Then the bear will buy a barrel for 3 and return it to the friend. So, the profit is (7 - 3 - 1) = 3. In the second sample bear will lend a honey barrel at day 1 and then sell it for 100. Then the bear buy the barrel for 1 at the day 2. So, the profit is (100 - 1 - 2) = 97.
500
[ { "input": "5 1\n5 10 7 3 20", "output": "3" }, { "input": "6 2\n100 1 10 40 10 40", "output": "97" }, { "input": "3 0\n1 2 3", "output": "0" }, { "input": "2 0\n2 1", "output": "1" }, { "input": "10 5\n10 1 11 2 12 3 13 4 14 5", "output": "4" }, { "input": "100 4\n2 57 70 8 44 10 88 67 50 44 93 79 72 50 69 19 21 9 71 47 95 13 46 10 68 72 54 40 15 83 57 92 58 25 4 22 84 9 8 55 87 0 16 46 86 58 5 21 32 28 10 46 11 29 13 33 37 34 78 33 33 21 46 70 77 51 45 97 6 21 68 61 87 54 8 91 37 12 76 61 57 9 100 45 44 88 5 71 98 98 26 45 37 87 34 50 33 60 64 77", "output": "87" }, { "input": "100 5\n15 91 86 53 18 52 26 89 8 4 5 100 11 64 88 91 35 57 67 72 71 71 69 73 97 23 11 1 59 86 37 82 6 67 71 11 7 31 11 68 21 43 89 54 27 10 3 33 8 57 79 26 90 81 6 28 24 7 33 50 24 13 27 85 4 93 14 62 37 67 33 40 7 48 41 4 14 9 95 10 64 62 7 93 23 6 28 27 97 64 26 83 70 0 97 74 11 82 70 93", "output": "84" }, { "input": "6 100\n10 9 8 7 6 5", "output": "0" }, { "input": "100 9\n66 71 37 41 23 38 77 11 74 13 51 26 93 56 81 17 12 70 85 37 54 100 14 99 12 83 44 16 99 65 13 48 92 32 69 33 100 57 58 88 25 45 44 85 5 41 82 15 37 18 21 45 3 68 33 9 52 64 8 73 32 41 87 99 26 26 47 24 79 93 9 44 11 34 85 26 14 61 49 38 25 65 49 81 29 82 28 23 2 64 38 13 77 68 67 23 58 57 83 46", "output": "78" }, { "input": "100 100\n9 72 46 37 26 94 80 1 43 85 26 53 58 18 24 19 67 2 100 52 61 81 48 15 73 41 97 93 45 1 73 54 75 51 28 79 0 14 41 42 24 50 70 18 96 100 67 1 68 48 44 39 63 77 78 18 10 51 32 53 26 60 1 13 66 39 55 27 23 71 75 0 27 88 73 31 16 95 87 84 86 71 37 40 66 70 65 83 19 4 81 99 26 51 67 63 80 54 23 44", "output": "0" }, { "input": "43 65\n32 58 59 75 85 18 57 100 69 0 36 38 79 95 82 47 7 55 28 88 27 88 63 71 80 86 67 53 69 37 99 54 81 19 55 12 2 17 84 77 25 26 62", "output": "4" }, { "input": "12 64\n14 87 40 24 32 36 4 41 38 77 68 71", "output": "0" }, { "input": "75 94\n80 92 25 48 78 17 69 52 79 73 12 15 59 55 25 61 96 27 98 43 30 43 36 94 67 54 86 99 100 61 65 8 65 19 18 21 75 31 2 98 55 87 14 1 17 97 94 11 57 29 34 71 76 67 45 0 78 29 86 82 29 23 77 100 48 43 65 62 88 34 7 28 13 1 1", "output": "0" }, { "input": "59 27\n76 61 24 66 48 18 69 84 21 8 64 90 19 71 36 90 9 36 30 37 99 37 100 56 9 79 55 37 54 63 11 11 49 71 91 70 14 100 10 44 52 23 21 19 96 13 93 66 52 79 76 5 62 6 90 35 94 7 27", "output": "63" }, { "input": "86 54\n41 84 16 5 20 79 73 13 23 24 42 73 70 80 69 71 33 44 62 29 86 88 40 64 61 55 58 19 16 23 84 100 38 91 89 98 47 50 55 87 12 94 2 12 0 1 4 26 50 96 68 34 94 80 8 22 60 3 72 84 65 89 44 52 50 9 24 34 81 28 56 17 38 85 78 90 62 60 1 40 91 2 7 41 84 22", "output": "38" }, { "input": "37 2\n65 36 92 92 92 76 63 56 15 95 75 26 15 4 73 50 41 92 26 20 19 100 63 55 25 75 61 96 35 0 14 6 96 3 28 41 83", "output": "91" }, { "input": "19 4\n85 2 56 70 33 75 89 60 100 81 42 28 18 92 29 96 49 23 14", "output": "79" }, { "input": "89 1\n50 53 97 41 68 27 53 66 93 19 11 78 46 49 38 69 96 9 43 16 1 63 95 64 96 6 34 34 45 40 19 4 53 8 11 18 95 25 50 16 64 33 97 49 23 81 63 10 30 73 76 55 7 70 9 98 6 36 75 78 3 92 85 75 40 75 55 71 9 91 15 17 47 55 44 35 55 88 53 87 61 22 100 56 14 87 36 84 24", "output": "91" }, { "input": "67 0\n40 48 15 46 90 7 65 52 24 15 42 81 2 6 71 94 32 18 97 67 83 98 48 51 10 47 8 68 36 46 65 75 90 30 62 9 5 35 80 60 69 58 62 68 58 73 80 9 22 46 56 64 44 11 93 73 62 54 15 20 17 69 16 33 85 62 49", "output": "83" }, { "input": "96 0\n38 97 82 43 80 40 1 99 50 94 81 63 92 13 57 24 4 10 25 32 79 56 96 19 25 14 69 56 66 22 23 78 87 76 37 30 75 77 61 64 35 64 62 32 44 62 6 84 91 44 99 5 71 19 17 12 35 52 1 14 35 18 8 36 54 42 4 67 80 11 88 44 34 35 12 38 66 42 4 90 45 10 1 44 37 96 23 28 100 90 75 17 27 67 51 70", "output": "94" }, { "input": "14 14\n87 63 62 31 59 47 40 89 92 43 80 30 99 42", "output": "43" }, { "input": "12 0\n100 1 100 2 100 3 100 4 100 5 100 0", "output": "100" }, { "input": "3 1\n1 2 3", "output": "0" }, { "input": "3 2\n3 3 3", "output": "0" }, { "input": "3 3\n3 2 1", "output": "0" }, { "input": "3 100\n1 2 3", "output": "0" }, { "input": "2 100\n0 0", "output": "0" }, { "input": "2 90\n10 5", "output": "0" }, { "input": "2 5\n5 4", "output": "0" }, { "input": "3 1\n19 20 1", "output": "18" }, { "input": "5 1\n5 10 7 4 20", "output": "2" }, { "input": "5 1\n1 2 3 4 5", "output": "0" } ]
1,563,986,415
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
7
109
0
n, c = list(map(int, input().split())) l = list(map(int, input().split())) min = 0 for i in range(0, n-1): dif = l[i] - l[i+1] if dif > min: min = dif print(min-c)
Title: Bear and Raspberry Time Limit: None seconds Memory Limit: None megabytes Problem Description: The bear decided to store some raspberry for the winter. He cunningly found out the price for a barrel of honey in kilos of raspberry for each of the following *n* days. According to the bear's data, on the *i*-th (1<=≤<=*i*<=≤<=*n*) day, the price for one barrel of honey is going to is *x**i* kilos of raspberry. Unfortunately, the bear has neither a honey barrel, nor the raspberry. At the same time, the bear's got a friend who is ready to lend him a barrel of honey for exactly one day for *c* kilograms of raspberry. That's why the bear came up with a smart plan. He wants to choose some day *d* (1<=≤<=*d*<=&lt;<=*n*), lent a barrel of honey and immediately (on day *d*) sell it according to a daily exchange rate. The next day (*d*<=+<=1) the bear wants to buy a new barrel of honey according to a daily exchange rate (as he's got some raspberry left from selling the previous barrel) and immediately (on day *d*<=+<=1) give his friend the borrowed barrel of honey as well as *c* kilograms of raspberry for renting the barrel. The bear wants to execute his plan at most once and then hibernate. What maximum number of kilograms of raspberry can he earn? Note that if at some point of the plan the bear runs out of the raspberry, then he won't execute such a plan. Input Specification: The first line contains two space-separated integers, *n* and *c* (2<=≤<=*n*<=≤<=100,<=0<=≤<=*c*<=≤<=100), — the number of days and the number of kilos of raspberry that the bear should give for borrowing the barrel. The second line contains *n* space-separated integers *x*1,<=*x*2,<=...,<=*x**n* (0<=≤<=*x**i*<=≤<=100), the price of a honey barrel on day *i*. Output Specification: Print a single integer — the answer to the problem. Demo Input: ['5 1\n5 10 7 3 20\n', '6 2\n100 1 10 40 10 40\n', '3 0\n1 2 3\n'] Demo Output: ['3\n', '97\n', '0\n'] Note: In the first sample the bear will lend a honey barrel at day 3 and then sell it for 7. Then the bear will buy a barrel for 3 and return it to the friend. So, the profit is (7 - 3 - 1) = 3. In the second sample bear will lend a honey barrel at day 1 and then sell it for 100. Then the bear buy the barrel for 1 at the day 2. So, the profit is (100 - 1 - 2) = 97.
```python n, c = list(map(int, input().split())) l = list(map(int, input().split())) min = 0 for i in range(0, n-1): dif = l[i] - l[i+1] if dif > min: min = dif print(min-c) ```
0
466
A
Cheap Travel
PROGRAMMING
1,200
[ "implementation" ]
null
null
Ann has recently started commuting by subway. We know that a one ride subway ticket costs *a* rubles. Besides, Ann found out that she can buy a special ticket for *m* rides (she can buy it several times). It costs *b* rubles. Ann did the math; she will need to use subway *n* times. Help Ann, tell her what is the minimum sum of money she will have to spend to make *n* rides?
The single line contains four space-separated integers *n*, *m*, *a*, *b* (1<=≤<=*n*,<=*m*,<=*a*,<=*b*<=≤<=1000) — the number of rides Ann has planned, the number of rides covered by the *m* ride ticket, the price of a one ride ticket and the price of an *m* ride ticket.
Print a single integer — the minimum sum in rubles that Ann will need to spend.
[ "6 2 1 2\n", "5 2 2 3\n" ]
[ "6\n", "8\n" ]
In the first sample one of the optimal solutions is: each time buy a one ride ticket. There are other optimal solutions. For example, buy three *m* ride tickets.
500
[ { "input": "6 2 1 2", "output": "6" }, { "input": "5 2 2 3", "output": "8" }, { "input": "10 3 5 1", "output": "4" }, { "input": "1000 1 1000 1000", "output": "1000000" }, { "input": "1000 3 1000 1000", "output": "334000" }, { "input": "1 1 1 1", "output": "1" }, { "input": "10 2 1 1", "output": "5" }, { "input": "1 1000 1 2", "output": "1" }, { "input": "1 1000 3 2", "output": "2" }, { "input": "10 3 1 2", "output": "7" }, { "input": "995 1 2 1", "output": "995" }, { "input": "556 2 16 15", "output": "4170" }, { "input": "477 2 16 14", "output": "3346" }, { "input": "101 110 1 100", "output": "100" }, { "input": "9 3 3 10", "output": "27" }, { "input": "100 8 10 1", "output": "13" }, { "input": "6 4 1 3", "output": "5" }, { "input": "8 5 2 8", "output": "14" }, { "input": "1000 2 1 1000", "output": "1000" } ]
1,686,082,268
2,147,483,647
Python 3
OK
TESTS
19
31
0
n, m, a, b = map(int, input().split()) p = 1 x = 0 y = 0 lowest = (n * a) while y >= 0: y = n - (m * x) if y >= 0: cost = (x * b) + (y * a) if cost < lowest: lowest = cost x += 1 x = 0 y = 0 while x >= 0: q = (n - (p * y)) x = q // m if q % m != 0: x += 1 if x >= 0: cost = (x * b) + (y * a) if cost < lowest: lowest = cost y += 1 print(lowest)
Title: Cheap Travel Time Limit: None seconds Memory Limit: None megabytes Problem Description: Ann has recently started commuting by subway. We know that a one ride subway ticket costs *a* rubles. Besides, Ann found out that she can buy a special ticket for *m* rides (she can buy it several times). It costs *b* rubles. Ann did the math; she will need to use subway *n* times. Help Ann, tell her what is the minimum sum of money she will have to spend to make *n* rides? Input Specification: The single line contains four space-separated integers *n*, *m*, *a*, *b* (1<=≤<=*n*,<=*m*,<=*a*,<=*b*<=≤<=1000) — the number of rides Ann has planned, the number of rides covered by the *m* ride ticket, the price of a one ride ticket and the price of an *m* ride ticket. Output Specification: Print a single integer — the minimum sum in rubles that Ann will need to spend. Demo Input: ['6 2 1 2\n', '5 2 2 3\n'] Demo Output: ['6\n', '8\n'] Note: In the first sample one of the optimal solutions is: each time buy a one ride ticket. There are other optimal solutions. For example, buy three *m* ride tickets.
```python n, m, a, b = map(int, input().split()) p = 1 x = 0 y = 0 lowest = (n * a) while y >= 0: y = n - (m * x) if y >= 0: cost = (x * b) + (y * a) if cost < lowest: lowest = cost x += 1 x = 0 y = 0 while x >= 0: q = (n - (p * y)) x = q // m if q % m != 0: x += 1 if x >= 0: cost = (x * b) + (y * a) if cost < lowest: lowest = cost y += 1 print(lowest) ```
3
602
A
Two Bases
PROGRAMMING
1,100
[ "brute force", "implementation" ]
null
null
After seeing the "ALL YOUR BASE ARE BELONG TO US" meme for the first time, numbers *X* and *Y* realised that they have different bases, which complicated their relations. You're given a number *X* represented in base *b**x* and a number *Y* represented in base *b**y*. Compare those two numbers.
The first line of the input contains two space-separated integers *n* and *b**x* (1<=≤<=*n*<=≤<=10, 2<=≤<=*b**x*<=≤<=40), where *n* is the number of digits in the *b**x*-based representation of *X*. The second line contains *n* space-separated integers *x*1,<=*x*2,<=...,<=*x**n* (0<=≤<=*x**i*<=&lt;<=*b**x*) — the digits of *X*. They are given in the order from the most significant digit to the least significant one. The following two lines describe *Y* in the same way: the third line contains two space-separated integers *m* and *b**y* (1<=≤<=*m*<=≤<=10, 2<=≤<=*b**y*<=≤<=40, *b**x*<=≠<=*b**y*), where *m* is the number of digits in the *b**y*-based representation of *Y*, and the fourth line contains *m* space-separated integers *y*1,<=*y*2,<=...,<=*y**m* (0<=≤<=*y**i*<=&lt;<=*b**y*) — the digits of *Y*. There will be no leading zeroes. Both *X* and *Y* will be positive. All digits of both numbers are given in the standard decimal numeral system.
Output a single character (quotes for clarity): - '&lt;' if *X*<=&lt;<=*Y* - '&gt;' if *X*<=&gt;<=*Y* - '=' if *X*<==<=*Y*
[ "6 2\n1 0 1 1 1 1\n2 10\n4 7\n", "3 3\n1 0 2\n2 5\n2 4\n", "7 16\n15 15 4 0 0 7 10\n7 9\n4 8 0 3 1 5 0\n" ]
[ "=\n", "&lt;\n", "&gt;\n" ]
In the first sample, *X* = 101111<sub class="lower-index">2</sub> = 47<sub class="lower-index">10</sub> = *Y*. In the second sample, *X* = 102<sub class="lower-index">3</sub> = 21<sub class="lower-index">5</sub> and *Y* = 24<sub class="lower-index">5</sub> = 112<sub class="lower-index">3</sub>, thus *X* &lt; *Y*. In the third sample, <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/603a342b0ae3e56fed542d1c50c0a5ff6ce2cbaa.png" style="max-width: 100.0%;max-height: 100.0%;"/> and *Y* = 4803150<sub class="lower-index">9</sub>. We may notice that *X* starts with much larger digits and *b*<sub class="lower-index">*x*</sub> is much larger than *b*<sub class="lower-index">*y*</sub>, so *X* is clearly larger than *Y*.
500
[ { "input": "6 2\n1 0 1 1 1 1\n2 10\n4 7", "output": "=" }, { "input": "3 3\n1 0 2\n2 5\n2 4", "output": "<" }, { "input": "7 16\n15 15 4 0 0 7 10\n7 9\n4 8 0 3 1 5 0", "output": ">" }, { "input": "2 2\n1 0\n2 3\n1 0", "output": "<" }, { "input": "2 2\n1 0\n1 3\n1", "output": ">" }, { "input": "10 2\n1 0 1 0 1 0 1 0 1 0\n10 3\n2 2 2 2 2 2 2 2 2 2", "output": "<" }, { "input": "10 16\n15 15 4 0 0 0 0 7 10 9\n7 9\n4 8 0 3 1 5 0", "output": ">" }, { "input": "5 5\n4 4 4 4 4\n4 6\n5 5 5 5", "output": ">" }, { "input": "2 8\n1 0\n4 2\n1 0 0 0", "output": "=" }, { "input": "5 2\n1 0 0 0 1\n6 8\n1 4 7 2 0 0", "output": "<" }, { "input": "6 7\n1 1 2 1 2 1\n6 6\n2 3 2 2 2 2", "output": "=" }, { "input": "9 35\n34 3 20 29 27 30 2 8 5\n7 33\n17 3 22 31 1 11 6", "output": ">" }, { "input": "1 8\n5\n9 27\n23 23 23 23 23 23 23 23 23", "output": "<" }, { "input": "4 7\n3 0 6 6\n3 11\n7 10 10", "output": ">" }, { "input": "1 40\n1\n2 5\n1 0", "output": "<" }, { "input": "1 36\n35\n4 5\n2 4 4 1", "output": "<" }, { "input": "1 30\n1\n1 31\n1", "output": "=" }, { "input": "1 3\n1\n1 2\n1", "output": "=" }, { "input": "1 2\n1\n1 40\n1", "output": "=" }, { "input": "6 29\n1 1 1 1 1 1\n10 21\n1 1 1 1 1 1 1 1 1 1", "output": "<" }, { "input": "3 5\n1 0 0\n3 3\n2 2 2", "output": "<" }, { "input": "2 8\n1 0\n2 3\n2 2", "output": "=" }, { "input": "2 4\n3 3\n2 15\n1 0", "output": "=" }, { "input": "2 35\n1 0\n2 6\n5 5", "output": "=" }, { "input": "2 6\n5 5\n2 34\n1 0", "output": ">" }, { "input": "2 7\n1 0\n2 3\n2 2", "output": "<" }, { "input": "2 2\n1 0\n1 3\n2", "output": "=" }, { "input": "2 9\n5 5\n4 3\n1 0 0 0", "output": ">" }, { "input": "1 24\n6\n3 9\n1 1 1", "output": "<" }, { "input": "5 37\n9 9 9 9 9\n6 27\n13 0 0 0 0 0", "output": "<" }, { "input": "10 2\n1 1 1 1 1 1 1 1 1 1\n10 34\n14 14 14 14 14 14 14 14 14 14", "output": "<" }, { "input": "7 26\n8 0 0 0 0 0 0\n9 9\n3 3 3 3 3 3 3 3 3", "output": ">" }, { "input": "2 40\n2 0\n5 13\n4 0 0 0 0", "output": "<" }, { "input": "1 22\n15\n10 14\n3 3 3 3 3 3 3 3 3 3", "output": "<" }, { "input": "10 22\n3 3 3 3 3 3 3 3 3 3\n3 40\n19 19 19", "output": ">" }, { "input": "2 29\n11 11\n6 26\n11 11 11 11 11 11", "output": "<" }, { "input": "5 3\n1 0 0 0 0\n4 27\n1 0 0 0", "output": "<" }, { "input": "10 3\n1 0 0 0 0 0 0 0 0 0\n8 13\n1 0 0 0 0 0 0 0", "output": "<" }, { "input": "4 20\n1 1 1 1\n5 22\n1 1 1 1 1", "output": "<" }, { "input": "10 39\n34 2 24 34 11 6 33 12 22 21\n10 36\n25 35 17 24 30 0 1 32 14 35", "output": ">" }, { "input": "10 39\n35 12 31 35 28 27 25 8 22 25\n10 40\n23 21 18 12 15 29 38 32 4 8", "output": ">" }, { "input": "10 38\n16 19 37 32 16 7 14 33 16 11\n10 39\n10 27 35 15 31 15 17 16 38 35", "output": ">" }, { "input": "10 39\n20 12 10 32 24 14 37 35 10 38\n9 40\n1 13 0 10 22 20 1 5 35", "output": ">" }, { "input": "10 40\n18 1 2 25 28 2 10 2 17 37\n10 39\n37 8 12 8 21 11 23 11 25 21", "output": "<" }, { "input": "9 39\n10 20 16 36 30 29 28 9 8\n9 38\n12 36 10 22 6 3 19 12 34", "output": "=" }, { "input": "7 39\n28 16 13 25 19 23 4\n7 38\n33 8 2 19 3 21 14", "output": "=" }, { "input": "10 16\n15 15 4 0 0 0 0 7 10 9\n10 9\n4 8 0 3 1 5 4 8 1 0", "output": ">" }, { "input": "7 22\n1 13 9 16 7 13 3\n4 4\n3 0 2 1", "output": ">" }, { "input": "10 29\n10 19 8 27 1 24 13 15 13 26\n2 28\n20 14", "output": ">" }, { "input": "6 16\n2 13 7 13 15 6\n10 22\n17 17 21 9 16 11 4 4 13 17", "output": "<" }, { "input": "8 26\n6 6 17 25 24 8 8 25\n4 27\n24 7 5 24", "output": ">" }, { "input": "10 23\n5 21 4 15 12 7 10 7 16 21\n4 17\n3 11 1 14", "output": ">" }, { "input": "10 21\n4 7 7 2 13 7 19 19 18 19\n3 31\n6 11 28", "output": ">" }, { "input": "1 30\n9\n7 37\n20 11 18 14 0 36 27", "output": "<" }, { "input": "5 35\n22 18 28 29 11\n2 3\n2 0", "output": ">" }, { "input": "7 29\n14 26 14 22 11 11 8\n6 28\n2 12 10 17 0 14", "output": ">" }, { "input": "2 37\n25 2\n3 26\n13 13 12", "output": "<" }, { "input": "8 8\n4 0 4 3 4 1 5 6\n8 24\n19 8 15 6 10 7 2 18", "output": "<" }, { "input": "4 22\n18 16 1 2\n10 26\n23 0 12 24 16 2 24 25 1 11", "output": "<" }, { "input": "7 31\n14 6 16 6 26 18 17\n7 24\n22 10 4 5 14 6 9", "output": ">" }, { "input": "10 29\n15 22 0 5 11 12 17 22 4 27\n4 22\n9 2 8 14", "output": ">" }, { "input": "2 10\n6 0\n10 26\n16 14 8 18 24 4 9 5 22 25", "output": "<" }, { "input": "7 2\n1 0 0 0 1 0 1\n9 6\n1 1 5 1 2 5 3 5 3", "output": "<" }, { "input": "3 9\n2 5 4\n1 19\n15", "output": ">" }, { "input": "6 16\n4 9 13 4 2 8\n4 10\n3 5 2 4", "output": ">" }, { "input": "2 12\n1 4\n8 16\n4 4 10 6 15 10 8 15", "output": "<" }, { "input": "3 19\n9 18 16\n4 10\n4 3 5 4", "output": "<" }, { "input": "7 3\n1 1 2 1 2 0 2\n2 2\n1 0", "output": ">" }, { "input": "3 2\n1 1 1\n1 3\n1", "output": ">" }, { "input": "4 4\n1 3 1 3\n9 3\n1 1 0 1 2 2 2 2 1", "output": "<" }, { "input": "9 3\n1 0 0 1 1 0 0 1 2\n6 4\n1 2 0 1 3 2", "output": ">" }, { "input": "3 5\n1 1 3\n10 4\n3 3 2 3 0 0 0 3 1 1", "output": "<" }, { "input": "6 4\n3 3 2 2 0 2\n6 5\n1 1 1 1 0 3", "output": ">" }, { "input": "6 5\n4 4 4 3 1 3\n7 6\n4 2 2 2 5 0 4", "output": "<" }, { "input": "2 5\n3 3\n6 6\n4 2 0 1 1 0", "output": "<" }, { "input": "10 6\n3 5 4 2 4 2 3 5 4 2\n10 7\n3 2 1 1 3 1 0 3 4 5", "output": "<" }, { "input": "9 7\n2 0 3 2 6 6 1 4 3\n9 6\n4 4 1 1 4 5 5 0 2", "output": ">" }, { "input": "1 7\n2\n4 8\n3 2 3 2", "output": "<" }, { "input": "2 8\n4 1\n1 7\n1", "output": ">" }, { "input": "1 10\n7\n3 9\n2 1 7", "output": "<" }, { "input": "9 9\n2 2 3 6 3 6 3 8 4\n6 10\n4 7 7 0 3 8", "output": ">" }, { "input": "3 11\n6 5 2\n8 10\n5 0 1 8 3 5 1 4", "output": "<" }, { "input": "6 11\n10 6 1 0 2 2\n9 10\n4 3 4 1 1 6 3 4 1", "output": "<" }, { "input": "2 19\n4 8\n8 18\n7 8 6 8 4 11 9 1", "output": "<" }, { "input": "2 24\n20 9\n10 23\n21 10 15 11 6 8 20 16 14 11", "output": "<" }, { "input": "8 36\n23 5 27 1 10 7 26 27\n10 35\n28 33 9 22 10 28 26 4 27 29", "output": "<" }, { "input": "6 37\n22 15 14 10 1 8\n6 36\n18 5 28 10 1 17", "output": ">" }, { "input": "5 38\n1 31 2 21 21\n9 37\n8 36 32 30 13 9 24 2 35", "output": "<" }, { "input": "3 39\n27 4 3\n8 38\n32 15 11 34 35 27 30 15", "output": "<" }, { "input": "2 40\n22 38\n5 39\n8 9 32 4 1", "output": "<" }, { "input": "9 37\n1 35 7 33 20 21 26 24 5\n10 40\n39 4 11 9 33 12 26 32 11 8", "output": "<" }, { "input": "4 39\n13 25 23 35\n6 38\n19 36 20 4 12 33", "output": "<" }, { "input": "5 37\n29 29 5 7 27\n3 39\n13 1 10", "output": ">" }, { "input": "7 28\n1 10 7 0 13 14 11\n6 38\n8 11 27 5 14 35", "output": "=" }, { "input": "2 34\n1 32\n2 33\n2 0", "output": "=" }, { "input": "7 5\n4 0 4 1 3 0 4\n4 35\n1 18 7 34", "output": "=" }, { "input": "9 34\n5 8 4 4 26 1 30 5 24\n10 27\n1 6 3 10 8 13 22 3 12 8", "output": "=" }, { "input": "10 36\n1 13 13 23 31 35 5 32 18 21\n9 38\n32 1 20 14 12 37 13 15 23", "output": "=" }, { "input": "10 40\n1 1 14 5 6 3 3 11 3 25\n10 39\n1 11 24 33 25 34 38 29 27 33", "output": "=" }, { "input": "9 37\n2 6 1 9 19 6 11 28 35\n9 40\n1 6 14 37 1 8 31 4 9", "output": "=" }, { "input": "4 5\n1 4 2 0\n4 4\n3 2 2 3", "output": "=" }, { "input": "6 4\n1 1 1 2 2 2\n7 3\n1 2 2 0 1 0 0", "output": "=" }, { "input": "2 5\n3 3\n5 2\n1 0 0 1 0", "output": "=" }, { "input": "1 9\n2\n1 10\n2", "output": "=" }, { "input": "6 19\n4 9 14 1 3 1\n8 10\n1 1 1 7 3 7 3 0", "output": "=" }, { "input": "7 15\n8 5 8 10 13 6 13\n8 13\n1 6 9 10 12 3 12 8", "output": "=" }, { "input": "8 18\n1 1 4 15 7 4 9 3\n8 17\n1 10 2 10 3 11 14 10", "output": "=" }, { "input": "8 21\n5 19 0 14 13 13 10 5\n10 13\n1 0 0 6 11 10 8 2 8 1", "output": "=" }, { "input": "8 28\n3 1 10 19 10 14 21 15\n8 21\n14 0 18 13 2 1 18 6", "output": ">" }, { "input": "7 34\n21 22 28 16 30 4 27\n7 26\n5 13 21 10 8 12 10", "output": ">" }, { "input": "6 26\n7 6 4 18 6 1\n6 25\n5 3 11 1 8 15", "output": ">" }, { "input": "10 31\n6 27 17 22 14 16 25 9 13 26\n10 39\n6 1 3 26 12 32 28 19 9 19", "output": "<" }, { "input": "3 5\n2 2 3\n3 6\n4 3 5", "output": "<" }, { "input": "2 24\n4 18\n2 40\n29 24", "output": "<" }, { "input": "5 38\n2 24 34 14 17\n8 34\n4 24 31 2 14 15 8 15", "output": "<" }, { "input": "9 40\n39 39 39 39 39 39 39 39 39\n6 35\n34 34 34 34 34 34", "output": ">" }, { "input": "10 40\n39 39 39 39 39 39 39 39 39 39\n10 8\n7 7 7 7 7 7 7 7 7 7", "output": ">" }, { "input": "10 40\n39 39 39 39 39 39 39 39 39 39\n10 39\n38 38 38 38 38 38 38 38 38 38", "output": ">" } ]
1,448,383,649
749
Python 3
OK
TESTS
118
62
0
def f(a, b, c) : ret = 0 mult = 1 for i in range (a - 1, -1, -1) : ret += int(c[i]) * mult mult = mult * b return ret a1 = input().split() c1 = input().split() a2 = input().split() c2 = input().split() #print (a1, c1) #print (a2, c2) x = f(int(a1[0]), int(a1[1]), c1) y = f(int(a2[0]), int(a2[1]), c2) if (y == x) : print("=") elif (x < y) : print ("<") else : print (">")
Title: Two Bases Time Limit: None seconds Memory Limit: None megabytes Problem Description: After seeing the "ALL YOUR BASE ARE BELONG TO US" meme for the first time, numbers *X* and *Y* realised that they have different bases, which complicated their relations. You're given a number *X* represented in base *b**x* and a number *Y* represented in base *b**y*. Compare those two numbers. Input Specification: The first line of the input contains two space-separated integers *n* and *b**x* (1<=≤<=*n*<=≤<=10, 2<=≤<=*b**x*<=≤<=40), where *n* is the number of digits in the *b**x*-based representation of *X*. The second line contains *n* space-separated integers *x*1,<=*x*2,<=...,<=*x**n* (0<=≤<=*x**i*<=&lt;<=*b**x*) — the digits of *X*. They are given in the order from the most significant digit to the least significant one. The following two lines describe *Y* in the same way: the third line contains two space-separated integers *m* and *b**y* (1<=≤<=*m*<=≤<=10, 2<=≤<=*b**y*<=≤<=40, *b**x*<=≠<=*b**y*), where *m* is the number of digits in the *b**y*-based representation of *Y*, and the fourth line contains *m* space-separated integers *y*1,<=*y*2,<=...,<=*y**m* (0<=≤<=*y**i*<=&lt;<=*b**y*) — the digits of *Y*. There will be no leading zeroes. Both *X* and *Y* will be positive. All digits of both numbers are given in the standard decimal numeral system. Output Specification: Output a single character (quotes for clarity): - '&lt;' if *X*<=&lt;<=*Y* - '&gt;' if *X*<=&gt;<=*Y* - '=' if *X*<==<=*Y* Demo Input: ['6 2\n1 0 1 1 1 1\n2 10\n4 7\n', '3 3\n1 0 2\n2 5\n2 4\n', '7 16\n15 15 4 0 0 7 10\n7 9\n4 8 0 3 1 5 0\n'] Demo Output: ['=\n', '&lt;\n', '&gt;\n'] Note: In the first sample, *X* = 101111<sub class="lower-index">2</sub> = 47<sub class="lower-index">10</sub> = *Y*. In the second sample, *X* = 102<sub class="lower-index">3</sub> = 21<sub class="lower-index">5</sub> and *Y* = 24<sub class="lower-index">5</sub> = 112<sub class="lower-index">3</sub>, thus *X* &lt; *Y*. In the third sample, <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/603a342b0ae3e56fed542d1c50c0a5ff6ce2cbaa.png" style="max-width: 100.0%;max-height: 100.0%;"/> and *Y* = 4803150<sub class="lower-index">9</sub>. We may notice that *X* starts with much larger digits and *b*<sub class="lower-index">*x*</sub> is much larger than *b*<sub class="lower-index">*y*</sub>, so *X* is clearly larger than *Y*.
```python def f(a, b, c) : ret = 0 mult = 1 for i in range (a - 1, -1, -1) : ret += int(c[i]) * mult mult = mult * b return ret a1 = input().split() c1 = input().split() a2 = input().split() c2 = input().split() #print (a1, c1) #print (a2, c2) x = f(int(a1[0]), int(a1[1]), c1) y = f(int(a2[0]), int(a2[1]), c2) if (y == x) : print("=") elif (x < y) : print ("<") else : print (">") ```
3
500
B
New Year Permutation
PROGRAMMING
1,600
[ "dfs and similar", "dsu", "graphs", "greedy", "math", "sortings" ]
null
null
User ainta has a permutation *p*1,<=*p*2,<=...,<=*p**n*. As the New Year is coming, he wants to make his permutation as pretty as possible. Permutation *a*1,<=*a*2,<=...,<=*a**n* is prettier than permutation *b*1,<=*b*2,<=...,<=*b**n*, if and only if there exists an integer *k* (1<=≤<=*k*<=≤<=*n*) where *a*1<==<=*b*1,<=*a*2<==<=*b*2,<=...,<=*a**k*<=-<=1<==<=*b**k*<=-<=1 and *a**k*<=&lt;<=*b**k* all holds. As known, permutation *p* is so sensitive that it could be only modified by swapping two distinct elements. But swapping two elements is harder than you think. Given an *n*<=×<=*n* binary matrix *A*, user ainta can swap the values of *p**i* and *p**j* (1<=≤<=*i*,<=*j*<=≤<=*n*, *i*<=≠<=*j*) if and only if *A**i*,<=*j*<==<=1. Given the permutation *p* and the matrix *A*, user ainta wants to know the prettiest permutation that he can obtain.
The first line contains an integer *n* (1<=≤<=*n*<=≤<=300) — the size of the permutation *p*. The second line contains *n* space-separated integers *p*1,<=*p*2,<=...,<=*p**n* — the permutation *p* that user ainta has. Each integer between 1 and *n* occurs exactly once in the given permutation. Next *n* lines describe the matrix *A*. The *i*-th line contains *n* characters '0' or '1' and describes the *i*-th row of *A*. The *j*-th character of the *i*-th line *A**i*,<=*j* is the element on the intersection of the *i*-th row and the *j*-th column of A. It is guaranteed that, for all integers *i*,<=*j* where 1<=≤<=*i*<=&lt;<=*j*<=≤<=*n*, *A**i*,<=*j*<==<=*A**j*,<=*i* holds. Also, for all integers *i* where 1<=≤<=*i*<=≤<=*n*, *A**i*,<=*i*<==<=0 holds.
In the first and only line, print *n* space-separated integers, describing the prettiest permutation that can be obtained.
[ "7\n5 2 4 3 6 7 1\n0001001\n0000000\n0000010\n1000001\n0000000\n0010000\n1001000\n", "5\n4 2 1 5 3\n00100\n00011\n10010\n01101\n01010\n" ]
[ "1 2 4 3 6 7 5\n", "1 2 3 4 5\n" ]
In the first sample, the swap needed to obtain the prettiest permutation is: (*p*<sub class="lower-index">1</sub>, *p*<sub class="lower-index">7</sub>). In the second sample, the swaps needed to obtain the prettiest permutation is (*p*<sub class="lower-index">1</sub>, *p*<sub class="lower-index">3</sub>), (*p*<sub class="lower-index">4</sub>, *p*<sub class="lower-index">5</sub>), (*p*<sub class="lower-index">3</sub>, *p*<sub class="lower-index">4</sub>). A permutation *p* is a sequence of integers *p*<sub class="lower-index">1</sub>, *p*<sub class="lower-index">2</sub>, ..., *p*<sub class="lower-index">*n*</sub>, consisting of *n* distinct positive integers, each of them doesn't exceed *n*. The *i*-th element of the permutation *p* is denoted as *p*<sub class="lower-index">*i*</sub>. The size of the permutation *p* is denoted as *n*.
1,000
[ { "input": "7\n5 2 4 3 6 7 1\n0001001\n0000000\n0000010\n1000001\n0000000\n0010000\n1001000", "output": "1 2 4 3 6 7 5" }, { "input": "5\n4 2 1 5 3\n00100\n00011\n10010\n01101\n01010", "output": "1 2 3 4 5" }, { "input": "7\n1 7 6 4 2 3 5\n0000100\n0000010\n0000001\n0000000\n1000000\n0100000\n0010000", "output": "1 3 5 4 2 7 6" }, { "input": "15\n6 1 2 7 9 13 14 8 4 5 3 12 10 15 11\n000100100100100\n000010010010010\n000001001001001\n100000100100100\n010000010010010\n001000001001001\n100100000100100\n010010000010010\n001001000001001\n100100100000100\n010010010000010\n001001001000001\n100100100100000\n010010010010000\n001001001001000", "output": "5 1 2 6 3 4 7 8 11 10 9 12 14 15 13" }, { "input": "2\n2 1\n01\n10", "output": "1 2" }, { "input": "2\n2 1\n00\n00", "output": "2 1" }, { "input": "3\n3 1 2\n001\n000\n100", "output": "2 1 3" }, { "input": "3\n3 2 1\n001\n000\n100", "output": "1 2 3" }, { "input": "4\n1 3 2 4\n0000\n0010\n0100\n0000", "output": "1 2 3 4" }, { "input": "10\n5 1 6 2 8 3 4 10 9 7\n0000000000\n0000000000\n0000000000\n0000000000\n0000000000\n0000000000\n0000000000\n0000000000\n0000000000\n0000000000", "output": "5 1 6 2 8 3 4 10 9 7" }, { "input": "10\n5 1 6 2 8 3 4 10 9 7\n0001000000\n0000000000\n0000000001\n1000000010\n0000010000\n0000100000\n0000000000\n0000000000\n0001000000\n0010000000", "output": "2 1 6 5 3 8 4 10 9 7" }, { "input": "10\n5 1 6 2 8 3 4 10 9 7\n0000000000\n0000010000\n0000010000\n0000010000\n0000010000\n0111101011\n0000010000\n0000000000\n0000010000\n0000010000", "output": "5 1 2 3 4 6 7 10 8 9" }, { "input": "1\n1\n0", "output": "1" }, { "input": "3\n2 1 3\n001\n001\n110", "output": "1 2 3" }, { "input": "3\n2 3 1\n011\n100\n100", "output": "1 2 3" }, { "input": "3\n3 1 2\n011\n100\n100", "output": "1 2 3" }, { "input": "3\n1 3 2\n011\n100\n100", "output": "1 2 3" }, { "input": "4\n3 2 1 4\n0001\n0010\n0101\n1010", "output": "1 2 3 4" }, { "input": "4\n3 4 2 1\n0100\n1010\n0101\n0010", "output": "1 2 3 4" }, { "input": "7\n7 6 5 4 3 2 1\n0100000\n1010000\n0101000\n0010100\n0001010\n0000101\n0000010", "output": "1 2 3 4 5 6 7" }, { "input": "6\n6 5 4 3 2 1\n010000\n101000\n010100\n001010\n000101\n000010", "output": "1 2 3 4 5 6" }, { "input": "3\n3 2 1\n011\n100\n100", "output": "1 2 3" }, { "input": "5\n5 4 3 2 1\n00001\n00001\n00001\n00001\n11110", "output": "1 2 3 4 5" }, { "input": "3\n3 1 2\n001\n001\n110", "output": "1 2 3" }, { "input": "4\n4 3 2 1\n0100\n1001\n0000\n0100", "output": "1 3 2 4" }, { "input": "5\n5 4 3 2 1\n01000\n10100\n01010\n00101\n00010", "output": "1 2 3 4 5" }, { "input": "4\n2 1 3 4\n0010\n0010\n1100\n0000", "output": "1 2 3 4" }, { "input": "4\n3 4 1 2\n0110\n1000\n1001\n0010", "output": "1 2 3 4" } ]
1,672,595,813
2,147,483,647
PyPy 3-64
WRONG_ANSWER
TESTS
3
46
0
n = int(input()) p = list(map(int, input().split())) a = [] for _ in range(n): a += [list(map(int, input()))] pos = [0] * n for i, v in enumerate(p): pos[v - 1] = i for i in range(n): ii = pos[i] for j in range(ii + 1): if a[ii][j] and p[j] > p[ii]: p[ii], p[j] = p[j], p[ii] break print(*p)
Title: New Year Permutation Time Limit: None seconds Memory Limit: None megabytes Problem Description: User ainta has a permutation *p*1,<=*p*2,<=...,<=*p**n*. As the New Year is coming, he wants to make his permutation as pretty as possible. Permutation *a*1,<=*a*2,<=...,<=*a**n* is prettier than permutation *b*1,<=*b*2,<=...,<=*b**n*, if and only if there exists an integer *k* (1<=≤<=*k*<=≤<=*n*) where *a*1<==<=*b*1,<=*a*2<==<=*b*2,<=...,<=*a**k*<=-<=1<==<=*b**k*<=-<=1 and *a**k*<=&lt;<=*b**k* all holds. As known, permutation *p* is so sensitive that it could be only modified by swapping two distinct elements. But swapping two elements is harder than you think. Given an *n*<=×<=*n* binary matrix *A*, user ainta can swap the values of *p**i* and *p**j* (1<=≤<=*i*,<=*j*<=≤<=*n*, *i*<=≠<=*j*) if and only if *A**i*,<=*j*<==<=1. Given the permutation *p* and the matrix *A*, user ainta wants to know the prettiest permutation that he can obtain. Input Specification: The first line contains an integer *n* (1<=≤<=*n*<=≤<=300) — the size of the permutation *p*. The second line contains *n* space-separated integers *p*1,<=*p*2,<=...,<=*p**n* — the permutation *p* that user ainta has. Each integer between 1 and *n* occurs exactly once in the given permutation. Next *n* lines describe the matrix *A*. The *i*-th line contains *n* characters '0' or '1' and describes the *i*-th row of *A*. The *j*-th character of the *i*-th line *A**i*,<=*j* is the element on the intersection of the *i*-th row and the *j*-th column of A. It is guaranteed that, for all integers *i*,<=*j* where 1<=≤<=*i*<=&lt;<=*j*<=≤<=*n*, *A**i*,<=*j*<==<=*A**j*,<=*i* holds. Also, for all integers *i* where 1<=≤<=*i*<=≤<=*n*, *A**i*,<=*i*<==<=0 holds. Output Specification: In the first and only line, print *n* space-separated integers, describing the prettiest permutation that can be obtained. Demo Input: ['7\n5 2 4 3 6 7 1\n0001001\n0000000\n0000010\n1000001\n0000000\n0010000\n1001000\n', '5\n4 2 1 5 3\n00100\n00011\n10010\n01101\n01010\n'] Demo Output: ['1 2 4 3 6 7 5\n', '1 2 3 4 5\n'] Note: In the first sample, the swap needed to obtain the prettiest permutation is: (*p*<sub class="lower-index">1</sub>, *p*<sub class="lower-index">7</sub>). In the second sample, the swaps needed to obtain the prettiest permutation is (*p*<sub class="lower-index">1</sub>, *p*<sub class="lower-index">3</sub>), (*p*<sub class="lower-index">4</sub>, *p*<sub class="lower-index">5</sub>), (*p*<sub class="lower-index">3</sub>, *p*<sub class="lower-index">4</sub>). A permutation *p* is a sequence of integers *p*<sub class="lower-index">1</sub>, *p*<sub class="lower-index">2</sub>, ..., *p*<sub class="lower-index">*n*</sub>, consisting of *n* distinct positive integers, each of them doesn't exceed *n*. The *i*-th element of the permutation *p* is denoted as *p*<sub class="lower-index">*i*</sub>. The size of the permutation *p* is denoted as *n*.
```python n = int(input()) p = list(map(int, input().split())) a = [] for _ in range(n): a += [list(map(int, input()))] pos = [0] * n for i, v in enumerate(p): pos[v - 1] = i for i in range(n): ii = pos[i] for j in range(ii + 1): if a[ii][j] and p[j] > p[ii]: p[ii], p[j] = p[j], p[ii] break print(*p) ```
0
452
C
Magic Trick
PROGRAMMING
2,100
[ "combinatorics", "math", "probabilities" ]
null
null
Alex enjoys performing magic tricks. He has a trick that requires a deck of *n* cards. He has *m* identical decks of *n* different cards each, which have been mixed together. When Alex wishes to perform the trick, he grabs *n* cards at random and performs the trick with those. The resulting deck looks like a normal deck, but may have duplicates of some cards. The trick itself is performed as follows: first Alex allows you to choose a random card from the deck. You memorize the card and put it back in the deck. Then Alex shuffles the deck, and pulls out a card. If the card matches the one you memorized, the trick is successful. You don't think Alex is a very good magician, and that he just pulls a card randomly from the deck. Determine the probability of the trick being successful if this is the case.
First line of the input consists of two integers *n* and *m* (1<=≤<=*n*,<=*m*<=≤<=1000), separated by space — number of cards in each deck, and number of decks.
On the only line of the output print one floating point number – probability of Alex successfully performing the trick. Relative or absolute error of your answer should not be higher than 10<=-<=6.
[ "2 2\n", "4 4\n", "1 2\n" ]
[ "0.6666666666666666\n", "0.4000000000000000\n", "1.0000000000000000\n" ]
In the first sample, with probability <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/64c94d13eeb330b494061e86538db66574ad0f7d.png" style="max-width: 100.0%;max-height: 100.0%;"/> Alex will perform the trick with two cards with the same value from two different decks. In this case the trick is guaranteed to succeed. With the remaining <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/14b21b617fcd2e25700376368355f7bbf975d8de.png" style="max-width: 100.0%;max-height: 100.0%;"/> probability he took two different cards, and the probability of pulling off the trick is <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/eb946338365d9781f7d2e9ec692c26702d0ae3a7.png" style="max-width: 100.0%;max-height: 100.0%;"/>. The resulting probability is <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/f54a03c9fa9df64ba08161730756d50b780a5f43.png" style="max-width: 100.0%;max-height: 100.0%;"/>
1,000
[ { "input": "2 2", "output": "0.6666666666666666" }, { "input": "4 4", "output": "0.4000000000000000" }, { "input": "1 2", "output": "1.0000000000000000" }, { "input": "2 1", "output": "0.5000000000000000" }, { "input": "10 10", "output": "0.1818181818181818" }, { "input": "1000 1000", "output": "0.0019980019980020" }, { "input": "1 1", "output": "1" }, { "input": "987 123", "output": "0.0020170953866492" }, { "input": "999 999", "output": "0.0020000000000000" }, { "input": "1 999", "output": "1.0000000000000000" }, { "input": "998 1", "output": "0.0010020040080160" }, { "input": "2 987", "output": "0.7498732894069944" }, { "input": "555 543", "output": "0.0035970508143694" }, { "input": "321 123", "output": "0.0061956542837219" }, { "input": "2 3", "output": "0.7000000000000000" }, { "input": "461 1000", "output": "0.0043315295751250" }, { "input": "678 231", "output": "0.0029413109179425" } ]
1,505,416,403
4,403
Python 3
OK
TESTS
17
62
0
n, m = map(int, input().split()) if 1 == n: print(1) else: print(1 / n + (n - 1) * (m - 1) / (n * (n * m - 1)))
Title: Magic Trick Time Limit: None seconds Memory Limit: None megabytes Problem Description: Alex enjoys performing magic tricks. He has a trick that requires a deck of *n* cards. He has *m* identical decks of *n* different cards each, which have been mixed together. When Alex wishes to perform the trick, he grabs *n* cards at random and performs the trick with those. The resulting deck looks like a normal deck, but may have duplicates of some cards. The trick itself is performed as follows: first Alex allows you to choose a random card from the deck. You memorize the card and put it back in the deck. Then Alex shuffles the deck, and pulls out a card. If the card matches the one you memorized, the trick is successful. You don't think Alex is a very good magician, and that he just pulls a card randomly from the deck. Determine the probability of the trick being successful if this is the case. Input Specification: First line of the input consists of two integers *n* and *m* (1<=≤<=*n*,<=*m*<=≤<=1000), separated by space — number of cards in each deck, and number of decks. Output Specification: On the only line of the output print one floating point number – probability of Alex successfully performing the trick. Relative or absolute error of your answer should not be higher than 10<=-<=6. Demo Input: ['2 2\n', '4 4\n', '1 2\n'] Demo Output: ['0.6666666666666666\n', '0.4000000000000000\n', '1.0000000000000000\n'] Note: In the first sample, with probability <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/64c94d13eeb330b494061e86538db66574ad0f7d.png" style="max-width: 100.0%;max-height: 100.0%;"/> Alex will perform the trick with two cards with the same value from two different decks. In this case the trick is guaranteed to succeed. With the remaining <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/14b21b617fcd2e25700376368355f7bbf975d8de.png" style="max-width: 100.0%;max-height: 100.0%;"/> probability he took two different cards, and the probability of pulling off the trick is <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/eb946338365d9781f7d2e9ec692c26702d0ae3a7.png" style="max-width: 100.0%;max-height: 100.0%;"/>. The resulting probability is <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/f54a03c9fa9df64ba08161730756d50b780a5f43.png" style="max-width: 100.0%;max-height: 100.0%;"/>
```python n, m = map(int, input().split()) if 1 == n: print(1) else: print(1 / n + (n - 1) * (m - 1) / (n * (n * m - 1))) ```
3
160
A
Twins
PROGRAMMING
900
[ "greedy", "sortings" ]
null
null
Imagine that you have a twin brother or sister. Having another person that looks exactly like you seems very unusual. It's hard to say if having something of an alter ego is good or bad. And if you do have a twin, then you very well know what it's like. Now let's imagine a typical morning in your family. You haven't woken up yet, and Mom is already going to work. She has been so hasty that she has nearly forgotten to leave the two of her darling children some money to buy lunches in the school cafeteria. She fished in the purse and found some number of coins, or to be exact, *n* coins of arbitrary values *a*1,<=*a*2,<=...,<=*a**n*. But as Mom was running out of time, she didn't split the coins for you two. So she scribbled a note asking you to split the money equally. As you woke up, you found Mom's coins and read her note. "But why split the money equally?" — you thought. After all, your twin is sleeping and he won't know anything. So you decided to act like that: pick for yourself some subset of coins so that the sum of values of your coins is strictly larger than the sum of values of the remaining coins that your twin will have. However, you correctly thought that if you take too many coins, the twin will suspect the deception. So, you've decided to stick to the following strategy to avoid suspicions: you take the minimum number of coins, whose sum of values is strictly more than the sum of values of the remaining coins. On this basis, determine what minimum number of coins you need to take to divide them in the described manner.
The first line contains integer *n* (1<=≤<=*n*<=≤<=100) — the number of coins. The second line contains a sequence of *n* integers *a*1, *a*2, ..., *a**n* (1<=≤<=*a**i*<=≤<=100) — the coins' values. All numbers are separated with spaces.
In the single line print the single number — the minimum needed number of coins.
[ "2\n3 3\n", "3\n2 1 2\n" ]
[ "2\n", "2\n" ]
In the first sample you will have to take 2 coins (you and your twin have sums equal to 6, 0 correspondingly). If you take 1 coin, you get sums 3, 3. If you take 0 coins, you get sums 0, 6. Those variants do not satisfy you as your sum should be strictly more that your twins' sum. In the second sample one coin isn't enough for us, too. You can pick coins with values 1, 2 or 2, 2. In any case, the minimum number of coins equals 2.
500
[ { "input": "2\n3 3", "output": "2" }, { "input": "3\n2 1 2", "output": "2" }, { "input": "1\n5", "output": "1" }, { "input": "5\n4 2 2 2 2", "output": "3" }, { "input": "7\n1 10 1 2 1 1 1", "output": "1" }, { "input": "5\n3 2 3 3 1", "output": "3" }, { "input": "2\n2 1", "output": "1" }, { "input": "3\n2 1 3", "output": "2" }, { "input": "6\n1 1 1 1 1 1", "output": "4" }, { "input": "7\n10 10 5 5 5 5 1", "output": "3" }, { "input": "20\n2 1 2 2 2 1 1 2 1 2 2 1 1 1 1 2 1 1 1 1", "output": "8" }, { "input": "20\n4 2 4 4 3 4 2 2 4 2 3 1 1 2 2 3 3 3 1 4", "output": "8" }, { "input": "20\n35 26 41 40 45 46 22 26 39 23 11 15 47 42 18 15 27 10 45 40", "output": "8" }, { "input": "20\n7 84 100 10 31 35 41 2 63 44 57 4 63 11 23 49 98 71 16 90", "output": "6" }, { "input": "50\n19 2 12 26 17 27 10 26 17 17 5 24 11 15 3 9 16 18 19 1 25 23 18 6 2 7 25 7 21 25 13 29 16 9 25 3 14 30 18 4 10 28 6 10 8 2 2 4 8 28", "output": "14" }, { "input": "70\n2 18 18 47 25 5 14 9 19 46 36 49 33 32 38 23 32 39 8 29 31 17 24 21 10 15 33 37 46 21 22 11 20 35 39 13 11 30 28 40 39 47 1 17 24 24 21 46 12 2 20 43 8 16 44 11 45 10 13 44 31 45 45 46 11 10 33 35 23 42", "output": "22" }, { "input": "100\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1", "output": "51" }, { "input": "100\n1 2 2 1 2 1 1 2 1 1 1 2 2 1 1 1 2 2 2 1 2 1 1 1 1 1 2 1 2 1 2 1 2 1 2 1 1 1 2 1 1 1 1 1 2 2 1 2 1 2 1 2 2 2 1 2 1 2 2 1 1 2 2 1 1 2 2 2 1 1 2 1 1 2 2 1 2 1 1 2 2 1 2 1 1 2 2 1 1 1 1 2 1 1 1 1 2 2 2 2", "output": "37" }, { "input": "100\n1 2 3 2 1 2 2 3 1 3 3 2 2 1 1 2 2 1 1 1 1 2 3 3 2 1 1 2 2 2 3 3 3 2 1 3 1 3 3 2 3 1 2 2 2 3 2 1 1 3 3 3 3 2 1 1 2 3 2 2 3 2 3 2 2 3 2 2 2 2 3 3 3 1 3 3 1 1 2 3 2 2 2 2 3 3 3 2 1 2 3 1 1 2 3 3 1 3 3 2", "output": "36" }, { "input": "100\n5 5 4 3 5 1 2 5 1 1 3 5 4 4 1 1 1 1 5 4 4 5 1 5 5 1 2 1 3 1 5 1 3 3 3 2 2 2 1 1 5 1 3 4 1 1 3 2 5 2 2 5 5 4 4 1 3 4 3 3 4 5 3 3 3 1 2 1 4 2 4 4 1 5 1 3 5 5 5 5 3 4 4 3 1 2 5 2 3 5 4 2 4 5 3 2 4 2 4 3", "output": "33" }, { "input": "100\n3 4 8 10 8 6 4 3 7 7 6 2 3 1 3 10 1 7 9 3 5 5 2 6 2 9 1 7 4 2 4 1 6 1 7 10 2 5 3 7 6 4 6 2 8 8 8 6 6 10 3 7 4 3 4 1 7 9 3 6 3 6 1 4 9 3 8 1 10 1 4 10 7 7 9 5 3 8 10 2 1 10 8 7 10 8 5 3 1 2 1 10 6 1 5 3 3 5 7 2", "output": "30" }, { "input": "100\n16 9 11 8 11 4 9 17 4 8 4 10 9 10 6 3 3 15 1 6 1 15 12 18 6 14 13 18 1 7 18 4 10 7 10 12 3 16 14 4 10 8 10 7 19 13 15 1 4 8 16 10 6 4 3 16 11 10 7 3 4 16 1 20 1 11 4 16 10 7 7 12 18 19 3 17 19 3 4 19 2 12 11 3 18 20 2 2 14 4 20 13 13 11 16 20 19 14 7 2", "output": "29" }, { "input": "100\n2 46 4 6 38 19 15 34 10 35 37 30 3 25 5 45 40 45 33 31 6 20 10 44 11 9 2 14 35 5 9 23 20 2 48 22 25 35 38 31 24 33 35 16 4 30 27 10 12 22 6 24 12 30 23 21 14 12 32 21 7 12 25 43 18 34 34 28 47 13 28 43 18 39 44 42 35 26 35 14 8 29 32 20 29 3 20 6 20 9 9 27 8 42 10 37 42 27 8 1", "output": "30" }, { "input": "100\n85 50 17 89 65 89 5 20 86 26 16 21 85 14 44 31 87 31 6 2 48 67 8 80 79 1 48 36 97 1 5 30 79 50 78 12 2 55 76 100 54 40 26 81 97 96 68 56 87 14 51 17 54 37 52 33 69 62 38 63 74 15 62 78 9 19 67 2 60 58 93 60 18 96 55 48 34 7 79 82 32 58 90 67 20 50 27 15 7 89 98 10 11 15 99 49 4 51 77 52", "output": "29" }, { "input": "100\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100", "output": "30" }, { "input": "1\n1", "output": "1" }, { "input": "4\n4 1 2 3", "output": "2" }, { "input": "5\n2 2 2 4 4", "output": "2" }, { "input": "4\n100 99 99 100", "output": "2" } ]
1,692,280,592
2,147,483,647
Python 3
OK
TESTS
29
92
0
n = int(input()) coins = list(map(int, input().split())) coins.sort(reverse=True) total_sum = sum(coins) your_sum = 0 twin_sum = total_sum coins_taken = 0 for coin in coins: your_sum += coin twin_sum -= coin coins_taken += 1 if your_sum > twin_sum: break print(coins_taken)
Title: Twins Time Limit: None seconds Memory Limit: None megabytes Problem Description: Imagine that you have a twin brother or sister. Having another person that looks exactly like you seems very unusual. It's hard to say if having something of an alter ego is good or bad. And if you do have a twin, then you very well know what it's like. Now let's imagine a typical morning in your family. You haven't woken up yet, and Mom is already going to work. She has been so hasty that she has nearly forgotten to leave the two of her darling children some money to buy lunches in the school cafeteria. She fished in the purse and found some number of coins, or to be exact, *n* coins of arbitrary values *a*1,<=*a*2,<=...,<=*a**n*. But as Mom was running out of time, she didn't split the coins for you two. So she scribbled a note asking you to split the money equally. As you woke up, you found Mom's coins and read her note. "But why split the money equally?" — you thought. After all, your twin is sleeping and he won't know anything. So you decided to act like that: pick for yourself some subset of coins so that the sum of values of your coins is strictly larger than the sum of values of the remaining coins that your twin will have. However, you correctly thought that if you take too many coins, the twin will suspect the deception. So, you've decided to stick to the following strategy to avoid suspicions: you take the minimum number of coins, whose sum of values is strictly more than the sum of values of the remaining coins. On this basis, determine what minimum number of coins you need to take to divide them in the described manner. Input Specification: The first line contains integer *n* (1<=≤<=*n*<=≤<=100) — the number of coins. The second line contains a sequence of *n* integers *a*1, *a*2, ..., *a**n* (1<=≤<=*a**i*<=≤<=100) — the coins' values. All numbers are separated with spaces. Output Specification: In the single line print the single number — the minimum needed number of coins. Demo Input: ['2\n3 3\n', '3\n2 1 2\n'] Demo Output: ['2\n', '2\n'] Note: In the first sample you will have to take 2 coins (you and your twin have sums equal to 6, 0 correspondingly). If you take 1 coin, you get sums 3, 3. If you take 0 coins, you get sums 0, 6. Those variants do not satisfy you as your sum should be strictly more that your twins' sum. In the second sample one coin isn't enough for us, too. You can pick coins with values 1, 2 or 2, 2. In any case, the minimum number of coins equals 2.
```python n = int(input()) coins = list(map(int, input().split())) coins.sort(reverse=True) total_sum = sum(coins) your_sum = 0 twin_sum = total_sum coins_taken = 0 for coin in coins: your_sum += coin twin_sum -= coin coins_taken += 1 if your_sum > twin_sum: break print(coins_taken) ```
3
833
A
The Meaningless Game
PROGRAMMING
1,700
[ "math", "number theory" ]
null
null
Slastyona and her loyal dog Pushok are playing a meaningless game that is indeed very interesting. The game consists of multiple rounds. Its rules are very simple: in each round, a natural number *k* is chosen. Then, the one who says (or barks) it faster than the other wins the round. After that, the winner's score is multiplied by *k*2, and the loser's score is multiplied by *k*. In the beginning of the game, both Slastyona and Pushok have scores equal to one. Unfortunately, Slastyona had lost her notepad where the history of all *n* games was recorded. She managed to recall the final results for each games, though, but all of her memories of them are vague. Help Slastyona verify their correctness, or, to put it another way, for each given pair of scores determine whether it was possible for a game to finish with such result or not.
In the first string, the number of games *n* (1<=≤<=*n*<=≤<=350000) is given. Each game is represented by a pair of scores *a*, *b* (1<=≤<=*a*,<=*b*<=≤<=109) – the results of Slastyona and Pushok, correspondingly.
For each pair of scores, answer "Yes" if it's possible for a game to finish with given score, and "No" otherwise. You can output each letter in arbitrary case (upper or lower).
[ "6\n2 4\n75 45\n8 8\n16 16\n247 994\n1000000000 1000000\n" ]
[ "Yes\nYes\nYes\nNo\nNo\nYes\n" ]
First game might have been consisted of one round, in which the number 2 would have been chosen and Pushok would have won. The second game needs exactly two rounds to finish with such result: in the first one, Slastyona would have said the number 5, and in the second one, Pushok would have barked the number 3.
500
[ { "input": "6\n2 4\n75 45\n8 8\n16 16\n247 994\n1000000000 1000000", "output": "Yes\nYes\nYes\nNo\nNo\nYes" }, { "input": "3\n1 1\n8 27\n1000 1331", "output": "Yes\nNo\nNo" }, { "input": "1\n12004 18012002", "output": "Yes" }, { "input": "1\n3331 11095561", "output": "Yes" }, { "input": "1\n2 3", "output": "No" }, { "input": "1\n1062961 1031", "output": "Yes" }, { "input": "1\n6 12", "output": "No" }, { "input": "1\n3 1", "output": "No" }, { "input": "1\n3 10", "output": "No" }, { "input": "1\n31159 970883281", "output": "Yes" }, { "input": "1\n9907 98148649", "output": "Yes" }, { "input": "1\n16 8", "output": "No" }, { "input": "1\n90 72", "output": "No" } ]
1,627,671,310
2,147,483,647
PyPy 3
TIME_LIMIT_EXCEEDED
TESTS
7
1,000
31,641,600
def process(a, b): a2 = a*a b2 = b*b if (a2 % b) != 0: return 'No' if (b2 % a) != 0: return 'No' r3 = a2//b s3 = b2//a r = round(r3**(1/3)) s = round(s3**(1/3)) if r3 != r**3: return 'No' if s3 != s**3: return 'No' return 'Yes' n = int(input()) for i in range(n): a, b = [int(x) for x in input().split()] print(process(a, b))
Title: The Meaningless Game Time Limit: None seconds Memory Limit: None megabytes Problem Description: Slastyona and her loyal dog Pushok are playing a meaningless game that is indeed very interesting. The game consists of multiple rounds. Its rules are very simple: in each round, a natural number *k* is chosen. Then, the one who says (or barks) it faster than the other wins the round. After that, the winner's score is multiplied by *k*2, and the loser's score is multiplied by *k*. In the beginning of the game, both Slastyona and Pushok have scores equal to one. Unfortunately, Slastyona had lost her notepad where the history of all *n* games was recorded. She managed to recall the final results for each games, though, but all of her memories of them are vague. Help Slastyona verify their correctness, or, to put it another way, for each given pair of scores determine whether it was possible for a game to finish with such result or not. Input Specification: In the first string, the number of games *n* (1<=≤<=*n*<=≤<=350000) is given. Each game is represented by a pair of scores *a*, *b* (1<=≤<=*a*,<=*b*<=≤<=109) – the results of Slastyona and Pushok, correspondingly. Output Specification: For each pair of scores, answer "Yes" if it's possible for a game to finish with given score, and "No" otherwise. You can output each letter in arbitrary case (upper or lower). Demo Input: ['6\n2 4\n75 45\n8 8\n16 16\n247 994\n1000000000 1000000\n'] Demo Output: ['Yes\nYes\nYes\nNo\nNo\nYes\n'] Note: First game might have been consisted of one round, in which the number 2 would have been chosen and Pushok would have won. The second game needs exactly two rounds to finish with such result: in the first one, Slastyona would have said the number 5, and in the second one, Pushok would have barked the number 3.
```python def process(a, b): a2 = a*a b2 = b*b if (a2 % b) != 0: return 'No' if (b2 % a) != 0: return 'No' r3 = a2//b s3 = b2//a r = round(r3**(1/3)) s = round(s3**(1/3)) if r3 != r**3: return 'No' if s3 != s**3: return 'No' return 'Yes' n = int(input()) for i in range(n): a, b = [int(x) for x in input().split()] print(process(a, b)) ```
0
279
B
Books
PROGRAMMING
1,400
[ "binary search", "brute force", "implementation", "two pointers" ]
null
null
When Valera has got some free time, he goes to the library to read some books. Today he's got *t* free minutes to read. That's why Valera took *n* books in the library and for each book he estimated the time he is going to need to read it. Let's number the books by integers from 1 to *n*. Valera needs *a**i* minutes to read the *i*-th book. Valera decided to choose an arbitrary book with number *i* and read the books one by one, starting from this book. In other words, he will first read book number *i*, then book number *i*<=+<=1, then book number *i*<=+<=2 and so on. He continues the process until he either runs out of the free time or finishes reading the *n*-th book. Valera reads each book up to the end, that is, he doesn't start reading the book if he doesn't have enough free time to finish reading it. Print the maximum number of books Valera can read.
The first line contains two integers *n* and *t* (1<=≤<=*n*<=≤<=105; 1<=≤<=*t*<=≤<=109) — the number of books and the number of free minutes Valera's got. The second line contains a sequence of *n* integers *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=104), where number *a**i* shows the number of minutes that the boy needs to read the *i*-th book.
Print a single integer — the maximum number of books Valera can read.
[ "4 5\n3 1 2 1\n", "3 3\n2 2 3\n" ]
[ "3\n", "1\n" ]
none
1,000
[ { "input": "4 5\n3 1 2 1", "output": "3" }, { "input": "3 3\n2 2 3", "output": "1" }, { "input": "1 3\n5", "output": "0" }, { "input": "1 10\n4", "output": "1" }, { "input": "2 10\n6 4", "output": "2" }, { "input": "6 10\n2 3 4 2 1 1", "output": "4" }, { "input": "7 13\n6 8 14 9 4 11 10", "output": "2" }, { "input": "10 15\n10 9 1 1 5 10 5 3 7 2", "output": "3" }, { "input": "20 30\n8 1 2 6 9 4 1 9 9 10 4 7 8 9 5 7 1 8 7 4", "output": "6" }, { "input": "30 60\n16 13 22 38 13 35 17 17 20 38 12 19 9 22 20 3 35 34 34 21 35 40 22 3 27 19 12 4 8 19", "output": "4" }, { "input": "100 100\n75 92 18 6 81 67 7 92 100 65 82 32 50 67 85 31 80 91 84 63 39 52 92 81 1 98 24 12 43 48 17 86 51 72 48 95 45 50 12 66 19 79 49 89 34 1 97 75 20 33 96 27 42 23 73 71 93 1 85 19 66 14 17 61 20 39 36 33 42 61 56 64 23 91 80 99 40 74 13 18 98 85 74 39 62 84 46 74 50 23 38 11 79 14 9 25 66 100 25 52", "output": "3" }, { "input": "10 1\n4418 7528 8170 1736 1317 3205 8183 4995 8039 4708", "output": "0" }, { "input": "50 2\n124 214 63 73 996 760 38 571 451 300 970 1 706 937 837 494 619 88 851 411 957 990 842 613 821 649 627 34 693 678 734 116 816 985 705 940 499 493 922 967 854 439 112 644 961 438 189 572 655 550", "output": "1" } ]
1,684,322,661
2,147,483,647
PyPy 3-64
OK
TESTS
38
154
10,752,000
from sys import stdin def solve(): n, t = map(int, stdin.readline().split()) A = [int(x) for x in stdin.readline().split()] cur, i = 0, 0 for a in A: cur += a if cur > t: cur -= A[i] i += 1 print(n - i) solve()
Title: Books Time Limit: None seconds Memory Limit: None megabytes Problem Description: When Valera has got some free time, he goes to the library to read some books. Today he's got *t* free minutes to read. That's why Valera took *n* books in the library and for each book he estimated the time he is going to need to read it. Let's number the books by integers from 1 to *n*. Valera needs *a**i* minutes to read the *i*-th book. Valera decided to choose an arbitrary book with number *i* and read the books one by one, starting from this book. In other words, he will first read book number *i*, then book number *i*<=+<=1, then book number *i*<=+<=2 and so on. He continues the process until he either runs out of the free time or finishes reading the *n*-th book. Valera reads each book up to the end, that is, he doesn't start reading the book if he doesn't have enough free time to finish reading it. Print the maximum number of books Valera can read. Input Specification: The first line contains two integers *n* and *t* (1<=≤<=*n*<=≤<=105; 1<=≤<=*t*<=≤<=109) — the number of books and the number of free minutes Valera's got. The second line contains a sequence of *n* integers *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=104), where number *a**i* shows the number of minutes that the boy needs to read the *i*-th book. Output Specification: Print a single integer — the maximum number of books Valera can read. Demo Input: ['4 5\n3 1 2 1\n', '3 3\n2 2 3\n'] Demo Output: ['3\n', '1\n'] Note: none
```python from sys import stdin def solve(): n, t = map(int, stdin.readline().split()) A = [int(x) for x in stdin.readline().split()] cur, i = 0, 0 for a in A: cur += a if cur > t: cur -= A[i] i += 1 print(n - i) solve() ```
3
278
B
New Problem
PROGRAMMING
1,500
[ "brute force", "strings" ]
null
null
Coming up with a new problem isn't as easy as many people think. Sometimes it is hard enough to name it. We'll consider a title original if it doesn't occur as a substring in any titles of recent Codeforces problems. You've got the titles of *n* last problems — the strings, consisting of lowercase English letters. Your task is to find the shortest original title for the new problem. If there are multiple such titles, choose the lexicographically minimum one. Note, that title of the problem can't be an empty string. A substring *s*[*l*... *r*] (1<=≤<=*l*<=≤<=*r*<=≤<=|*s*|) of string *s*<==<=*s*1*s*2... *s*|*s*| (where |*s*| is the length of string *s*) is string *s**l**s**l*<=+<=1... *s**r*. String *x*<==<=*x*1*x*2... *x**p* is lexicographically smaller than string *y*<==<=*y*1*y*2... *y**q*, if either *p*<=&lt;<=*q* and *x*1<==<=*y*1,<=*x*2<==<=*y*2,<=... ,<=*x**p*<==<=*y**p*, or there exists such number *r* (*r*<=&lt;<=*p*,<=*r*<=&lt;<=*q*), that *x*1<==<=*y*1,<=*x*2<==<=*y*2,<=... ,<=*x**r*<==<=*y**r* and *x**r*<=+<=1<=&lt;<=*y**r*<=+<=1. The string characters are compared by their ASCII codes.
The first line contains integer *n* (1<=≤<=*n*<=≤<=30) — the number of titles you've got to consider. Then follow *n* problem titles, one per line. Each title only consists of lowercase English letters (specifically, it doesn't contain any spaces) and has the length from 1 to 20, inclusive.
Print a string, consisting of lowercase English letters — the lexicographically minimum shortest original title.
[ "5\nthreehorses\ngoodsubstrings\nsecret\nprimematrix\nbeautifulyear\n", "4\naa\nbdefghijklmn\nopqrstuvwxyz\nc\n" ]
[ "j\n", "ab\n" ]
In the first sample the first 9 letters of the English alphabet (a, b, c, d, e, f, g, h, i) occur in the problem titles, so the answer is letter j. In the second sample the titles contain 26 English letters, so the shortest original title cannot have length 1. Title aa occurs as a substring in the first title.
1,000
[ { "input": "5\nthreehorses\ngoodsubstrings\nsecret\nprimematrix\nbeautifulyear", "output": "j" }, { "input": "4\naa\nbdefghijklmn\nopqrstuvwxyz\nc", "output": "ab" }, { "input": "1\na", "output": "b" }, { "input": "1\nb", "output": "a" }, { "input": "1\nz", "output": "a" }, { "input": "5\nsplt\nohqykk\nxqpz\nknojbur\npmfm", "output": "a" }, { "input": "2\nrxscdzkkezud\nwjehahqgouqvjienq", "output": "b" }, { "input": "2\nxlaxwpjabtpwddc\ntxwdjmohrrszorrnomc", "output": "e" }, { "input": "1\nepkotfpkkrhhmuipmtdk", "output": "a" }, { "input": "2\nhk\nobsp", "output": "a" }, { "input": "3\nrjnflsbpxqivrcdjptj\nvpojopbwbwbswdu\nrydkiwnugwddcgcrng", "output": "a" }, { "input": "10\nkpmwcdoysw\ngtpr\nkuzoxmiixxbl\ncrgqtuo\njhbplhpklrgwnaugdf\nzuxdaat\naycv\nqwghrkqwkobrgevsjrk\ntdxgc\nlxyzgcmbzulcst", "output": "ab" }, { "input": "30\nwaiphwcqrrinr\no\nqiqehzmgsjdoqd\nkjexeesevrlowxhghq\njudikhzkj\nz\nxo\nlsdzypkfqro\nsshgcxsky\ngecntpcmoojfwp\nsvmytmcfhc\njrsrvsvbaiumlmkptn\ns\nwpcsovfjlyspviflk\nktvyzvddgllht\nszahigtmklglrcocbo\nznligfxkgxzkcfeu\nliryvzmqwhr\nxgrxkgiehxztv\netrjxdczppafly\njrdgajschhwsci\ndoxnxbjwptnimjmsuijx\nzciwkbvrhgsjhrr\nehh\nbzlnmd\nxpbtbpftimnn\nkhbknqbvdkdd\nmldj\nskrvnyz\navptgpjmenfzfxwckmt", "output": "aa" }, { "input": "30\ne\nx\nitaubd\nxcn\nv\nx\ni\nci\naqs\nzbi\nq\ncvdu\na\njos\nqy\nfjf\nnayke\nge\ns\nq\nqwad\ngvz\no\nubn\nnzoc\nh\nwnjwjrf\nt\nbq\nbw", "output": "l" }, { "input": "30\nb\nu\np\nn\nf\nm\nt\ni\nj\nk\np\nh\na\nc\nw\nz\nz\np\nt\nd\no\nw\nu\nq\nl\ny\ni\no\na\nu", "output": "e" }, { "input": "5\nojdfhi\nabcdefghijklmnopqrst\nuvwxyz\nddfhdfhlasjt\nqqq", "output": "aa" }, { "input": "5\ndfijdfhi\nabcdefghijklmnopqrst\nuvwxy\nkopsdfgiopjipw\njty", "output": "z" }, { "input": "5\nzzxpfk\nabcdefghijklmnopqrst\nuvwxz\nsrgkjaskldfkln\nvgnsdfdgfh", "output": "y" } ]
1,368,724,732
2,147,483,647
Python 3
OK
TESTS
33
78
307,200
import re import itertools from collections import Counter class Task: strings = [] answer = "" def getData(self): numberOfStrings = int(input()) for i in range(0, numberOfStrings): self.strings += [input()] def solve(self): badStrings = set() for current in self.strings: for left in range(0, len(current)): for right in range(left + 1, len(current) + 1): badStrings.add(current[left : right]) alphabet = [] for character in range(ord('a'), ord('z') + 1): alphabet += [chr(character)] for answerLength in range(1, 21 + 1): for p in itertools.product(alphabet, repeat = answerLength): string = re.sub("[^\w]", "", str(p)); if string not in badStrings: self.answer = string return def printAnswer(self): print(self.answer) task = Task(); task.getData(); task.solve(); task.printAnswer();
Title: New Problem Time Limit: None seconds Memory Limit: None megabytes Problem Description: Coming up with a new problem isn't as easy as many people think. Sometimes it is hard enough to name it. We'll consider a title original if it doesn't occur as a substring in any titles of recent Codeforces problems. You've got the titles of *n* last problems — the strings, consisting of lowercase English letters. Your task is to find the shortest original title for the new problem. If there are multiple such titles, choose the lexicographically minimum one. Note, that title of the problem can't be an empty string. A substring *s*[*l*... *r*] (1<=≤<=*l*<=≤<=*r*<=≤<=|*s*|) of string *s*<==<=*s*1*s*2... *s*|*s*| (where |*s*| is the length of string *s*) is string *s**l**s**l*<=+<=1... *s**r*. String *x*<==<=*x*1*x*2... *x**p* is lexicographically smaller than string *y*<==<=*y*1*y*2... *y**q*, if either *p*<=&lt;<=*q* and *x*1<==<=*y*1,<=*x*2<==<=*y*2,<=... ,<=*x**p*<==<=*y**p*, or there exists such number *r* (*r*<=&lt;<=*p*,<=*r*<=&lt;<=*q*), that *x*1<==<=*y*1,<=*x*2<==<=*y*2,<=... ,<=*x**r*<==<=*y**r* and *x**r*<=+<=1<=&lt;<=*y**r*<=+<=1. The string characters are compared by their ASCII codes. Input Specification: The first line contains integer *n* (1<=≤<=*n*<=≤<=30) — the number of titles you've got to consider. Then follow *n* problem titles, one per line. Each title only consists of lowercase English letters (specifically, it doesn't contain any spaces) and has the length from 1 to 20, inclusive. Output Specification: Print a string, consisting of lowercase English letters — the lexicographically minimum shortest original title. Demo Input: ['5\nthreehorses\ngoodsubstrings\nsecret\nprimematrix\nbeautifulyear\n', '4\naa\nbdefghijklmn\nopqrstuvwxyz\nc\n'] Demo Output: ['j\n', 'ab\n'] Note: In the first sample the first 9 letters of the English alphabet (a, b, c, d, e, f, g, h, i) occur in the problem titles, so the answer is letter j. In the second sample the titles contain 26 English letters, so the shortest original title cannot have length 1. Title aa occurs as a substring in the first title.
```python import re import itertools from collections import Counter class Task: strings = [] answer = "" def getData(self): numberOfStrings = int(input()) for i in range(0, numberOfStrings): self.strings += [input()] def solve(self): badStrings = set() for current in self.strings: for left in range(0, len(current)): for right in range(left + 1, len(current) + 1): badStrings.add(current[left : right]) alphabet = [] for character in range(ord('a'), ord('z') + 1): alphabet += [chr(character)] for answerLength in range(1, 21 + 1): for p in itertools.product(alphabet, repeat = answerLength): string = re.sub("[^\w]", "", str(p)); if string not in badStrings: self.answer = string return def printAnswer(self): print(self.answer) task = Task(); task.getData(); task.solve(); task.printAnswer(); ```
3
71
A
Way Too Long Words
PROGRAMMING
800
[ "strings" ]
A. Way Too Long Words
1
256
Sometimes some words like "localization" or "internationalization" are so long that writing them many times in one text is quite tiresome. Let's consider a word too long, if its length is strictly more than 10 characters. All too long words should be replaced with a special abbreviation. This abbreviation is made like this: we write down the first and the last letter of a word and between them we write the number of letters between the first and the last letters. That number is in decimal system and doesn't contain any leading zeroes. Thus, "localization" will be spelt as "l10n", and "internationalization» will be spelt as "i18n". You are suggested to automatize the process of changing the words with abbreviations. At that all too long words should be replaced by the abbreviation and the words that are not too long should not undergo any changes.
The first line contains an integer *n* (1<=≤<=*n*<=≤<=100). Each of the following *n* lines contains one word. All the words consist of lowercase Latin letters and possess the lengths of from 1 to 100 characters.
Print *n* lines. The *i*-th line should contain the result of replacing of the *i*-th word from the input data.
[ "4\nword\nlocalization\ninternationalization\npneumonoultramicroscopicsilicovolcanoconiosis\n" ]
[ "word\nl10n\ni18n\np43s\n" ]
none
500
[ { "input": "4\nword\nlocalization\ninternationalization\npneumonoultramicroscopicsilicovolcanoconiosis", "output": "word\nl10n\ni18n\np43s" }, { "input": "5\nabcdefgh\nabcdefghi\nabcdefghij\nabcdefghijk\nabcdefghijklm", "output": "abcdefgh\nabcdefghi\nabcdefghij\na9k\na11m" }, { "input": "3\nnjfngnrurunrgunrunvurn\njfvnjfdnvjdbfvsbdubruvbubvkdb\nksdnvidnviudbvibd", "output": "n20n\nj27b\nk15d" }, { "input": "1\ntcyctkktcctrcyvbyiuhihhhgyvyvyvyvjvytchjckt", "output": "t41t" }, { "input": "24\nyou\nare\nregistered\nfor\npractice\nyou\ncan\nsolve\nproblems\nunofficially\nresults\ncan\nbe\nfound\nin\nthe\ncontest\nstatus\nand\nin\nthe\nbottom\nof\nstandings", "output": "you\nare\nregistered\nfor\npractice\nyou\ncan\nsolve\nproblems\nu10y\nresults\ncan\nbe\nfound\nin\nthe\ncontest\nstatus\nand\nin\nthe\nbottom\nof\nstandings" }, { "input": "1\na", "output": "a" }, { "input": "26\na\nb\nc\nd\ne\nf\ng\nh\ni\nj\nk\nl\nm\nn\no\np\nq\nr\ns\nt\nu\nv\nw\nx\ny\nz", "output": "a\nb\nc\nd\ne\nf\ng\nh\ni\nj\nk\nl\nm\nn\no\np\nq\nr\ns\nt\nu\nv\nw\nx\ny\nz" }, { "input": "1\nabcdefghijabcdefghijabcdefghijabcdefghijabcdefghijabcdefghijabcdefghijabcdefghijabcdefghijabcdefghij", "output": "a98j" }, { "input": "10\ngyartjdxxlcl\nfzsck\nuidwu\nxbymclornemdmtj\nilppyoapitawgje\ncibzc\ndrgbeu\nhezplmsdekhhbo\nfeuzlrimbqbytdu\nkgdco", "output": "g10l\nfzsck\nuidwu\nx13j\ni13e\ncibzc\ndrgbeu\nh12o\nf13u\nkgdco" }, { "input": "20\nlkpmx\nkovxmxorlgwaomlswjxlpnbvltfv\nhykasjxqyjrmybejnmeumzha\ntuevlumpqbbhbww\nqgqsphvrmupxxc\ntrissbaf\nqfgrlinkzvzqdryckaizutd\nzzqtoaxkvwoscyx\noswytrlnhpjvvnwookx\nlpuzqgec\ngyzqfwxggtvpjhzmzmdw\nrlxjgmvdftvrmvbdwudra\nvsntnjpepnvdaxiporggmglhagv\nxlvcqkqgcrbgtgglj\nlyxwxbiszyhlsrgzeedzprbmcpduvq\nyrmqqvrkqskqukzqrwukpsifgtdc\nxpuohcsjhhuhvr\nvvlfrlxpvqejngwrbfbpmqeirxlw\nsvmasocxdvadmaxtrpakysmeaympy\nyuflqboqfdt", "output": "lkpmx\nk26v\nh22a\nt13w\nq12c\ntrissbaf\nq21d\nz13x\no17x\nlpuzqgec\ng18w\nr19a\nv25v\nx15j\nl28q\ny26c\nx12r\nv26w\ns27y\ny9t" }, { "input": "100\nm\nz\ns\nv\nd\nr\nv\ny\ny\ne\np\nt\nc\na\nn\nm\np\ng\ni\nj\nc\na\nb\nq\ne\nn\nv\no\nk\nx\nf\ni\nl\na\nq\nr\nu\nb\ns\nl\nc\nl\ne\nv\nj\nm\nx\nb\na\nq\nb\na\nf\nj\nv\nm\nq\nc\nt\nt\nn\nx\no\ny\nr\nu\nh\nm\nj\np\nj\nq\nz\ns\nj\no\ng\nc\nm\nn\no\nm\nr\no\ns\nt\nh\nr\np\nk\nb\nz\ng\no\nc\nc\nz\nz\ng\nr", "output": "m\nz\ns\nv\nd\nr\nv\ny\ny\ne\np\nt\nc\na\nn\nm\np\ng\ni\nj\nc\na\nb\nq\ne\nn\nv\no\nk\nx\nf\ni\nl\na\nq\nr\nu\nb\ns\nl\nc\nl\ne\nv\nj\nm\nx\nb\na\nq\nb\na\nf\nj\nv\nm\nq\nc\nt\nt\nn\nx\no\ny\nr\nu\nh\nm\nj\np\nj\nq\nz\ns\nj\no\ng\nc\nm\nn\no\nm\nr\no\ns\nt\nh\nr\np\nk\nb\nz\ng\no\nc\nc\nz\nz\ng\nr" } ]
1,670,500,788
2,147,483,647
PyPy 3-64
OK
TESTS
20
62
0
n = int(input()) list = [] for i in range(0,n): randomname = input() if len(randomname) > 10: fda = len(randomname[1:-1]) meow = str(fda) item = (randomname[0]+meow+randomname[-1]) list.append(item) else: list.append(randomname) for i in list: print(i)
Title: Way Too Long Words Time Limit: 1 seconds Memory Limit: 256 megabytes Problem Description: Sometimes some words like "localization" or "internationalization" are so long that writing them many times in one text is quite tiresome. Let's consider a word too long, if its length is strictly more than 10 characters. All too long words should be replaced with a special abbreviation. This abbreviation is made like this: we write down the first and the last letter of a word and between them we write the number of letters between the first and the last letters. That number is in decimal system and doesn't contain any leading zeroes. Thus, "localization" will be spelt as "l10n", and "internationalization» will be spelt as "i18n". You are suggested to automatize the process of changing the words with abbreviations. At that all too long words should be replaced by the abbreviation and the words that are not too long should not undergo any changes. Input Specification: The first line contains an integer *n* (1<=≤<=*n*<=≤<=100). Each of the following *n* lines contains one word. All the words consist of lowercase Latin letters and possess the lengths of from 1 to 100 characters. Output Specification: Print *n* lines. The *i*-th line should contain the result of replacing of the *i*-th word from the input data. Demo Input: ['4\nword\nlocalization\ninternationalization\npneumonoultramicroscopicsilicovolcanoconiosis\n'] Demo Output: ['word\nl10n\ni18n\np43s\n'] Note: none
```python n = int(input()) list = [] for i in range(0,n): randomname = input() if len(randomname) > 10: fda = len(randomname[1:-1]) meow = str(fda) item = (randomname[0]+meow+randomname[-1]) list.append(item) else: list.append(randomname) for i in list: print(i) ```
3.969
462
A
Appleman and Easy Task
PROGRAMMING
1,000
[ "brute force", "implementation" ]
null
null
Toastman came up with a very easy task. He gives it to Appleman, but Appleman doesn't know how to solve it. Can you help him? Given a *n*<=×<=*n* checkerboard. Each cell of the board has either character 'x', or character 'o'. Is it true that each cell of the board has even number of adjacent cells with 'o'? Two cells of the board are adjacent if they share a side.
The first line contains an integer *n* (1<=≤<=*n*<=≤<=100). Then *n* lines follow containing the description of the checkerboard. Each of them contains *n* characters (either 'x' or 'o') without spaces.
Print "YES" or "NO" (without the quotes) depending on the answer to the problem.
[ "3\nxxo\nxox\noxx\n", "4\nxxxo\nxoxo\noxox\nxxxx\n" ]
[ "YES\n", "NO\n" ]
none
500
[ { "input": "3\nxxo\nxox\noxx", "output": "YES" }, { "input": "4\nxxxo\nxoxo\noxox\nxxxx", "output": "NO" }, { "input": "1\no", "output": "YES" }, { "input": "2\nox\nxo", "output": "YES" }, { "input": "2\nxx\nxo", "output": "NO" }, { "input": "3\nooo\noxo\nxoo", "output": "NO" }, { "input": "3\nxxx\nxxo\nxxo", "output": "NO" }, { "input": "4\nxooo\nooxo\noxoo\nooox", "output": "YES" }, { "input": "4\noooo\noxxo\nxoxo\noooo", "output": "NO" }, { "input": "5\noxoxo\nxxxxx\noxoxo\nxxxxx\noxoxo", "output": "YES" }, { "input": "5\nxxxox\nxxxxo\nxoxox\noxoxx\nxoxxx", "output": "NO" }, { "input": "10\nxoxooooooo\noxxoxxxxxo\nxxooxoooxo\noooxxoxoxo\noxxxooooxo\noxooooxxxo\noxoxoxxooo\noxoooxooxx\noxxxxxoxxo\noooooooxox", "output": "YES" }, { "input": "10\nxxxxxxxoox\nxooxxooooo\noxoooxxooo\nxoxxxxxxxx\nxxoxooxxox\nooxoxxooox\nooxxxxxooo\nxxxxoxooox\nxoxxooxxxx\noooooxxoxo", "output": "NO" }, { "input": "19\noxoxoxoxooxoooxxoox\nxxxxxxxxoxxoxoooooo\noxoxoxooxxxooxxxooo\nxxoxxxooxooxxxoxxox\noxoxooxxxooooxxoxox\nxxxoooxoxxoxxoxxxoo\noxooxxxoooooxxoooxo\nxxooxooxoxxoxxoxxoo\noxxxxooooxxxooooxxx\nooxooxoxxoxxoxooxoo\nxxxooooxxxooooxoxox\noooxoxooxxoxooxooxx\nxxoooxxxooooxxoooxo\nooxxxooxoxooxooxxxx\nxoxoxxooxoxxxooxoxo\nxoxxoxoxooxooxxxxxx\noooxxxooxxxooxoxoxo\nxoooooxoxooxxxxxxxo\nxooxxoooxxoxoxoxoxx", "output": "NO" }, { "input": "12\nxxooxxoxxxoo\nxxoooxoxoxoo\nooxoxoxxooxx\nooxxooooxoxo\nxxxxxxxxoxxx\noxooooxxxooo\noxxoxoxoooxx\nxxxxxxxooxox\noxoooooxoxxx\nxxooxxoxxoxx\noxxxxxxxooxx\nooxoxooxxooo", "output": "NO" }, { "input": "2\noo\nxx", "output": "NO" } ]
1,605,012,906
2,147,483,647
PyPy 3
OK
TESTS
32
155
2,048,000
n=int(input()) f=["x"*(n+2)] for i in range(n): s=str(input()) f.append(list("x"+s+"x")) f.append("x"*(n+2)) flag=True for i in range(1,n+1): for j in range(1,n+1): k=[f[i+1][j],f[i-1][j],f[i][j+1],f[i][j-1]] if k.count("o")%2!=0: flag=False if flag: print("YES") else: print("NO")
Title: Appleman and Easy Task Time Limit: None seconds Memory Limit: None megabytes Problem Description: Toastman came up with a very easy task. He gives it to Appleman, but Appleman doesn't know how to solve it. Can you help him? Given a *n*<=×<=*n* checkerboard. Each cell of the board has either character 'x', or character 'o'. Is it true that each cell of the board has even number of adjacent cells with 'o'? Two cells of the board are adjacent if they share a side. Input Specification: The first line contains an integer *n* (1<=≤<=*n*<=≤<=100). Then *n* lines follow containing the description of the checkerboard. Each of them contains *n* characters (either 'x' or 'o') without spaces. Output Specification: Print "YES" or "NO" (without the quotes) depending on the answer to the problem. Demo Input: ['3\nxxo\nxox\noxx\n', '4\nxxxo\nxoxo\noxox\nxxxx\n'] Demo Output: ['YES\n', 'NO\n'] Note: none
```python n=int(input()) f=["x"*(n+2)] for i in range(n): s=str(input()) f.append(list("x"+s+"x")) f.append("x"*(n+2)) flag=True for i in range(1,n+1): for j in range(1,n+1): k=[f[i+1][j],f[i-1][j],f[i][j+1],f[i][j-1]] if k.count("o")%2!=0: flag=False if flag: print("YES") else: print("NO") ```
3
44
A
Indian Summer
PROGRAMMING
900
[ "implementation" ]
A. Indian Summer
2
256
Indian summer is such a beautiful time of the year! A girl named Alyona is walking in the forest and picking a bouquet from fallen leaves. Alyona is very choosy — she doesn't take a leaf if it matches the color and the species of the tree of one of the leaves she already has. Find out how many leaves Alyona has picked.
The first line contains an integer *n* (1<=≤<=*n*<=≤<=100) — the number of leaves Alyona has found. The next *n* lines contain the leaves' descriptions. Each leaf is characterized by the species of the tree it has fallen from and by the color. The species of the trees and colors are given in names, consisting of no more than 10 lowercase Latin letters. A name can not be an empty string. The species of a tree and the color are given in each line separated by a space.
Output the single number — the number of Alyona's leaves.
[ "5\nbirch yellow\nmaple red\nbirch yellow\nmaple yellow\nmaple green\n", "3\noak yellow\noak yellow\noak yellow\n" ]
[ "4\n", "1\n" ]
none
0
[ { "input": "5\nbirch yellow\nmaple red\nbirch yellow\nmaple yellow\nmaple green", "output": "4" }, { "input": "3\noak yellow\noak yellow\noak yellow", "output": "1" }, { "input": "5\nxbnbkzn hp\nkaqkl vrgzbvqstu\nj aqidx\nhos gyul\nwefxmh tygpluae", "output": "5" }, { "input": "1\nqvwli hz", "output": "1" }, { "input": "4\nsrhk x\nsrhk x\nqfoe vnrjuab\nqfoe vnrjuab", "output": "2" }, { "input": "4\nsddqllmmpk syded\nfprsq fnenjnaz\nn hdej\nsddqllmmpk syded", "output": "3" }, { "input": "17\njtbctslqq tosqzw\njtbctslqq tosqzw\njtbctslqq tosqzw\njtbctslqq tosqzw\njtbctslqq tosqzw\njtbctslqq tosqzw\njtbctslqq tosqzw\njtbctslqq tosqzw\njtbctslqq tosqzw\njtbctslqq tosqzw\njtbctslqq tosqzw\njtbctslqq tosqzw\njtbctslqq tosqzw\njtbctslqq tosqzw\njtbctslqq tosqzw\njtbctslqq tosqzw\njtbctslqq tosqzw", "output": "1" }, { "input": "18\nb d\nrfdb esp\nrfdb esp\nb d\nrfdb esp\nrfdb esp\nb d\nb d\nrfdb esp\nrfdb esp\nb d\nrfdb esp\nb d\nrfdb esp\nb d\nb d\nrfdb esp\nrfdb esp", "output": "2" }, { "input": "13\nsvpzwtwn rykzfdce\nqweiyeck jkreouy\nhk nnli\ntwxrnbbdt vtuv\nxokqjtylly sz\nesdt dbfidjslq\ng ybqgomvw\nxcpfjmf zcqvz\nifajadhj invzueip\nvdemdnxifb hckwebmi\nsdpnhipam wvowzavh\nuqdlfskhgo vunbpghae\ne dtigwnb", "output": "13" }, { "input": "20\nm vkfh\nvptikamead mvx\nitu mf\nklruxckw aqega\nekqkd enjllwol\ncc uybfdh\nimrfdngvo u\ne uh\ntwt jsslcfuogk\nbljwqsag tuqbdn\nqcv q\nasx gzhvwwmajj\nqcv q\nekqkd enjllwol\nasx gzhvwwmajj\nks vv\nkzyfi cn\ncc uybfdh\nitu mf\ncjbjhtbyvk vatwfmux", "output": "15" }, { "input": "2\nab ab\na bab", "output": "2" } ]
1,677,514,846
2,147,483,647
PyPy 3-64
OK
TESTS
29
124
0
x=[] for _ in range(int(input())): a=input() x.append(a) print(len(set(x)))
Title: Indian Summer Time Limit: 2 seconds Memory Limit: 256 megabytes Problem Description: Indian summer is such a beautiful time of the year! A girl named Alyona is walking in the forest and picking a bouquet from fallen leaves. Alyona is very choosy — she doesn't take a leaf if it matches the color and the species of the tree of one of the leaves she already has. Find out how many leaves Alyona has picked. Input Specification: The first line contains an integer *n* (1<=≤<=*n*<=≤<=100) — the number of leaves Alyona has found. The next *n* lines contain the leaves' descriptions. Each leaf is characterized by the species of the tree it has fallen from and by the color. The species of the trees and colors are given in names, consisting of no more than 10 lowercase Latin letters. A name can not be an empty string. The species of a tree and the color are given in each line separated by a space. Output Specification: Output the single number — the number of Alyona's leaves. Demo Input: ['5\nbirch yellow\nmaple red\nbirch yellow\nmaple yellow\nmaple green\n', '3\noak yellow\noak yellow\noak yellow\n'] Demo Output: ['4\n', '1\n'] Note: none
```python x=[] for _ in range(int(input())): a=input() x.append(a) print(len(set(x))) ```
3.969
92
A
Chips
PROGRAMMING
800
[ "implementation", "math" ]
A. Chips
2
256
There are *n* walruses sitting in a circle. All of them are numbered in the clockwise order: the walrus number 2 sits to the left of the walrus number 1, the walrus number 3 sits to the left of the walrus number 2, ..., the walrus number 1 sits to the left of the walrus number *n*. The presenter has *m* chips. The presenter stands in the middle of the circle and starts giving the chips to the walruses starting from walrus number 1 and moving clockwise. The walrus number *i* gets *i* chips. If the presenter can't give the current walrus the required number of chips, then the presenter takes the remaining chips and the process ends. Determine by the given *n* and *m* how many chips the presenter will get in the end.
The first line contains two integers *n* and *m* (1<=≤<=*n*<=≤<=50, 1<=≤<=*m*<=≤<=104) — the number of walruses and the number of chips correspondingly.
Print the number of chips the presenter ended up with.
[ "4 11\n", "17 107\n", "3 8\n" ]
[ "0\n", "2\n", "1\n" ]
In the first sample the presenter gives one chip to the walrus number 1, two chips to the walrus number 2, three chips to the walrus number 3, four chips to the walrus number 4, then again one chip to the walrus number 1. After that the presenter runs out of chips. He can't give anything to the walrus number 2 and the process finishes. In the third sample the presenter gives one chip to the walrus number 1, two chips to the walrus number 2, three chips to the walrus number 3, then again one chip to the walrus number 1. The presenter has one chip left and he can't give two chips to the walrus number 2, that's why the presenter takes the last chip.
500
[ { "input": "4 11", "output": "0" }, { "input": "17 107", "output": "2" }, { "input": "3 8", "output": "1" }, { "input": "46 7262", "output": "35" }, { "input": "32 6864", "output": "0" }, { "input": "36 6218", "output": "14" }, { "input": "25 9712", "output": "11" }, { "input": "9 7601", "output": "5" }, { "input": "1 9058", "output": "0" }, { "input": "29 7772", "output": "26" }, { "input": "45 9465", "output": "14" }, { "input": "46 866", "output": "5" }, { "input": "29 1241", "output": "20" }, { "input": "17 4248", "output": "12" }, { "input": "20 8082", "output": "11" }, { "input": "50 9555", "output": "0" }, { "input": "4 7455", "output": "2" }, { "input": "36 880", "output": "4" }, { "input": "24 7440", "output": "9" }, { "input": "44 7888", "output": "12" }, { "input": "1 1", "output": "0" }, { "input": "50 10000", "output": "40" }, { "input": "1 10000", "output": "0" }, { "input": "50 1", "output": "0" }, { "input": "50 50", "output": "5" } ]
1,630,827,852
2,147,483,647
PyPy 3
OK
TESTS
25
218
20,172,800
n,m=map(int,input().split()) s=n*(n+1)//2 if s==m: print(0) elif s>m: for i in range(1,n+1): if m>=i: m-=i else: break print(m) else: m=m%s for i in range(1,n+1): if m>=i: m-=i else: break print(m)
Title: Chips Time Limit: 2 seconds Memory Limit: 256 megabytes Problem Description: There are *n* walruses sitting in a circle. All of them are numbered in the clockwise order: the walrus number 2 sits to the left of the walrus number 1, the walrus number 3 sits to the left of the walrus number 2, ..., the walrus number 1 sits to the left of the walrus number *n*. The presenter has *m* chips. The presenter stands in the middle of the circle and starts giving the chips to the walruses starting from walrus number 1 and moving clockwise. The walrus number *i* gets *i* chips. If the presenter can't give the current walrus the required number of chips, then the presenter takes the remaining chips and the process ends. Determine by the given *n* and *m* how many chips the presenter will get in the end. Input Specification: The first line contains two integers *n* and *m* (1<=≤<=*n*<=≤<=50, 1<=≤<=*m*<=≤<=104) — the number of walruses and the number of chips correspondingly. Output Specification: Print the number of chips the presenter ended up with. Demo Input: ['4 11\n', '17 107\n', '3 8\n'] Demo Output: ['0\n', '2\n', '1\n'] Note: In the first sample the presenter gives one chip to the walrus number 1, two chips to the walrus number 2, three chips to the walrus number 3, four chips to the walrus number 4, then again one chip to the walrus number 1. After that the presenter runs out of chips. He can't give anything to the walrus number 2 and the process finishes. In the third sample the presenter gives one chip to the walrus number 1, two chips to the walrus number 2, three chips to the walrus number 3, then again one chip to the walrus number 1. The presenter has one chip left and he can't give two chips to the walrus number 2, that's why the presenter takes the last chip.
```python n,m=map(int,input().split()) s=n*(n+1)//2 if s==m: print(0) elif s>m: for i in range(1,n+1): if m>=i: m-=i else: break print(m) else: m=m%s for i in range(1,n+1): if m>=i: m-=i else: break print(m) ```
3.907925
940
A
Points on the line
PROGRAMMING
1,200
[ "brute force", "greedy", "sortings" ]
null
null
We've got no test cases. A big olympiad is coming up. But the problemsetters' number one priority should be adding another problem to the round. The diameter of a multiset of points on the line is the largest distance between two points from this set. For example, the diameter of the multiset {1,<=3,<=2,<=1} is 2. Diameter of multiset consisting of one point is 0. You are given *n* points on the line. What is the minimum number of points you have to remove, so that the diameter of the multiset of the remaining points will not exceed *d*?
The first line contains two integers *n* and *d* (1<=≤<=*n*<=≤<=100,<=0<=≤<=*d*<=≤<=100) — the amount of points and the maximum allowed diameter respectively. The second line contains *n* space separated integers (1<=≤<=*x**i*<=≤<=100) — the coordinates of the points.
Output a single integer — the minimum number of points you have to remove.
[ "3 1\n2 1 4\n", "3 0\n7 7 7\n", "6 3\n1 3 4 6 9 10\n" ]
[ "1\n", "0\n", "3\n" ]
In the first test case the optimal strategy is to remove the point with coordinate 4. The remaining points will have coordinates 1 and 2, so the diameter will be equal to 2 - 1 = 1. In the second test case the diameter is equal to 0, so its is unnecessary to remove any points. In the third test case the optimal strategy is to remove points with coordinates 1, 9 and 10. The remaining points will have coordinates 3, 4 and 6, so the diameter will be equal to 6 - 3 = 3.
500
[ { "input": "3 1\n2 1 4", "output": "1" }, { "input": "3 0\n7 7 7", "output": "0" }, { "input": "6 3\n1 3 4 6 9 10", "output": "3" }, { "input": "11 5\n10 11 12 13 14 15 16 17 18 19 20", "output": "5" }, { "input": "1 100\n1", "output": "0" }, { "input": "100 10\n22 75 26 45 72 81 47 29 97 2 75 25 82 84 17 56 32 2 28 37 57 39 18 11 79 6 40 68 68 16 40 63 93 49 91 10 55 68 31 80 57 18 34 28 76 55 21 80 22 45 11 67 67 74 91 4 35 34 65 80 21 95 1 52 25 31 2 53 96 22 89 99 7 66 32 2 68 33 75 92 84 10 94 28 54 12 9 80 43 21 51 92 20 97 7 25 67 17 38 100", "output": "84" }, { "input": "100 70\n22 75 26 45 72 81 47 29 97 2 75 25 82 84 17 56 32 2 28 37 57 39 18 11 79 6 40 68 68 16 40 63 93 49 91 10 55 68 31 80 57 18 34 28 76 55 21 80 22 45 11 67 67 74 91 4 35 34 65 80 21 95 1 52 25 31 2 53 96 22 89 99 7 66 32 2 68 33 75 92 84 10 94 28 54 12 9 80 43 21 51 92 20 97 7 25 67 17 38 100", "output": "27" }, { "input": "1 10\n25", "output": "0" }, { "input": "70 80\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70", "output": "0" }, { "input": "3 1\n25 26 27", "output": "1" }, { "input": "100 5\n51 56 52 60 52 53 52 60 56 54 55 50 53 51 57 53 52 54 54 52 51 55 50 56 60 51 58 50 60 59 50 54 60 55 55 57 54 59 59 55 55 52 56 57 59 54 53 57 52 50 50 55 59 54 54 56 51 58 52 51 56 56 58 56 54 54 57 52 51 58 56 57 54 59 58 53 50 52 50 60 57 51 54 59 54 54 52 55 53 55 51 53 52 54 51 56 55 53 58 56", "output": "34" }, { "input": "100 11\n44 89 57 64 94 96 73 96 55 52 91 73 73 93 51 62 63 85 43 75 60 78 98 55 80 84 65 75 61 88 62 71 53 57 94 85 60 96 66 96 61 72 97 64 51 44 63 82 67 86 60 57 74 85 57 79 61 94 86 78 84 56 60 75 91 91 92 62 89 85 79 57 76 97 65 56 46 78 51 69 50 52 85 80 76 71 81 51 90 71 77 60 63 62 84 59 79 84 69 81", "output": "70" }, { "input": "100 0\n22 75 26 45 72 81 47 29 97 2 75 25 82 84 17 56 32 2 28 37 57 39 18 11 79 6 40 68 68 16 40 63 93 49 91 10 55 68 31 80 57 18 34 28 76 55 21 80 22 45 11 67 67 74 91 4 35 34 65 80 21 95 1 52 25 31 2 53 96 22 89 99 7 66 32 2 68 33 75 92 84 10 94 28 54 12 9 80 43 21 51 92 20 97 7 25 67 17 38 100", "output": "96" }, { "input": "100 100\n22 75 26 45 72 81 47 29 97 2 75 25 82 84 17 56 32 2 28 37 57 39 18 11 79 6 40 68 68 16 40 63 93 49 91 10 55 68 31 80 57 18 34 28 76 55 21 80 22 45 11 67 67 74 91 4 35 34 65 80 21 95 1 52 25 31 2 53 96 22 89 99 7 66 32 2 68 33 75 92 84 10 94 28 54 12 9 80 43 21 51 92 20 97 7 25 67 17 38 100", "output": "0" }, { "input": "76 32\n50 53 69 58 55 39 40 42 40 55 58 73 55 72 75 44 45 55 46 60 60 42 41 64 77 39 68 51 61 49 38 41 56 57 64 43 78 36 39 63 40 66 52 76 39 68 39 73 40 68 54 60 35 67 69 52 58 52 38 63 69 38 69 60 73 64 65 41 59 55 37 57 40 34 35 35", "output": "13" }, { "input": "100 1\n22 75 26 45 72 81 47 29 97 2 75 25 82 84 17 56 32 2 28 37 57 39 18 11 79 6 40 68 68 16 40 63 93 49 91 10 55 68 31 80 57 18 34 28 76 55 21 80 22 45 11 67 67 74 91 4 35 34 65 80 21 95 1 52 25 31 2 53 96 22 89 99 7 66 32 2 68 33 75 92 84 10 94 28 54 12 9 80 43 21 51 92 20 97 7 25 67 17 38 100", "output": "93" }, { "input": "100 5\n22 75 26 45 72 81 47 29 97 2 75 25 82 84 17 56 32 2 28 37 57 39 18 11 79 6 40 68 68 16 40 63 93 49 91 10 55 68 31 80 57 18 34 28 76 55 21 80 22 45 11 67 67 74 91 4 35 34 65 80 21 95 1 52 25 31 2 53 96 22 89 99 7 66 32 2 68 33 75 92 84 10 94 28 54 12 9 80 43 21 51 92 20 97 7 25 67 17 38 100", "output": "89" }, { "input": "98 64\n2 29 36 55 58 15 25 33 7 16 61 1 4 24 63 26 36 16 16 3 57 39 56 7 11 24 20 12 22 10 56 5 11 39 61 52 27 54 21 6 61 36 40 52 54 5 15 52 58 23 45 39 65 16 27 40 13 64 47 24 51 29 9 18 49 49 8 47 2 64 7 63 49 10 20 26 34 3 45 66 8 46 16 32 16 38 3 6 15 17 35 48 36 5 57 29 61 15", "output": "1" }, { "input": "100 56\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100", "output": "43" }, { "input": "100 0\n14 13 14 13 14 13 13 13 13 14 13 13 14 14 13 14 14 14 14 13 13 13 14 13 13 14 14 14 14 14 14 13 13 13 13 14 13 14 13 14 13 14 14 14 14 13 13 14 14 13 13 13 13 14 13 14 13 14 13 14 13 13 13 14 13 13 14 13 14 14 13 13 13 14 14 14 14 13 13 14 14 14 14 14 14 14 13 14 13 13 13 14 14 13 13 13 13 13 14 14", "output": "50" }, { "input": "100 0\n14 17 18 22 19 18 19 21 19 19 22 22 19 21 24 23 24 19 25 24 24 21 20 13 26 18 17 15 25 13 17 20 20 21 13 22 27 15 18 27 19 15 16 25 18 17 18 22 19 17 18 24 14 16 18 16 22 16 17 27 18 17 18 24 22 13 14 20 23 19 16 21 19 13 14 14 25 15 27 24 26 22 16 20 16 14 21 27 15 23 23 24 27 14 24 17 19 24 15 27", "output": "89" }, { "input": "100 100\n100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100", "output": "0" }, { "input": "1 100\n22", "output": "0" }, { "input": "1 0\n22", "output": "0" }, { "input": "1 99\n99", "output": "0" }, { "input": "1 5\n6", "output": "0" }, { "input": "3 1\n10 20 30", "output": "2" }, { "input": "3 0\n1 2 3", "output": "2" }, { "input": "3 2\n1 50 99", "output": "2" }, { "input": "7 4\n1 3 4 9 10 11 12", "output": "3" }, { "input": "2 5\n67 23", "output": "1" }, { "input": "4 2\n1 4 7 9", "output": "2" }, { "input": "2 0\n1 2", "output": "1" }, { "input": "8 1\n3 3 3 5 5 5 5 5", "output": "3" }, { "input": "5 1\n3 5 5 5 6", "output": "1" } ]
1,520,328,228
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
5
62
5,632,000
n, d = map(int, input().split()) A = list(map(int, input().split())) min_res = 1000000000000000000000000000000000000000000000000000000000 for i in range(len(A)): for j in range(len(A)): if abs(A[i] - A[j]) <= d: if min(i, j) + len(A) - max(i, j) - 1 < min_res: min_res = min(i, j) + len(A) - max(i, j) - 1 print(min_res)
Title: Points on the line Time Limit: None seconds Memory Limit: None megabytes Problem Description: We've got no test cases. A big olympiad is coming up. But the problemsetters' number one priority should be adding another problem to the round. The diameter of a multiset of points on the line is the largest distance between two points from this set. For example, the diameter of the multiset {1,<=3,<=2,<=1} is 2. Diameter of multiset consisting of one point is 0. You are given *n* points on the line. What is the minimum number of points you have to remove, so that the diameter of the multiset of the remaining points will not exceed *d*? Input Specification: The first line contains two integers *n* and *d* (1<=≤<=*n*<=≤<=100,<=0<=≤<=*d*<=≤<=100) — the amount of points and the maximum allowed diameter respectively. The second line contains *n* space separated integers (1<=≤<=*x**i*<=≤<=100) — the coordinates of the points. Output Specification: Output a single integer — the minimum number of points you have to remove. Demo Input: ['3 1\n2 1 4\n', '3 0\n7 7 7\n', '6 3\n1 3 4 6 9 10\n'] Demo Output: ['1\n', '0\n', '3\n'] Note: In the first test case the optimal strategy is to remove the point with coordinate 4. The remaining points will have coordinates 1 and 2, so the diameter will be equal to 2 - 1 = 1. In the second test case the diameter is equal to 0, so its is unnecessary to remove any points. In the third test case the optimal strategy is to remove points with coordinates 1, 9 and 10. The remaining points will have coordinates 3, 4 and 6, so the diameter will be equal to 6 - 3 = 3.
```python n, d = map(int, input().split()) A = list(map(int, input().split())) min_res = 1000000000000000000000000000000000000000000000000000000000 for i in range(len(A)): for j in range(len(A)): if abs(A[i] - A[j]) <= d: if min(i, j) + len(A) - max(i, j) - 1 < min_res: min_res = min(i, j) + len(A) - max(i, j) - 1 print(min_res) ```
0
490
A
Team Olympiad
PROGRAMMING
800
[ "greedy", "implementation", "sortings" ]
null
null
The School №0 of the capital of Berland has *n* children studying in it. All the children in this school are gifted: some of them are good at programming, some are good at maths, others are good at PE (Physical Education). Hence, for each child we know value *t**i*: - *t**i*<==<=1, if the *i*-th child is good at programming, - *t**i*<==<=2, if the *i*-th child is good at maths, - *t**i*<==<=3, if the *i*-th child is good at PE Each child happens to be good at exactly one of these three subjects. The Team Scientific Decathlon Olympias requires teams of three students. The school teachers decided that the teams will be composed of three children that are good at different subjects. That is, each team must have one mathematician, one programmer and one sportsman. Of course, each child can be a member of no more than one team. What is the maximum number of teams that the school will be able to present at the Olympiad? How should the teams be formed for that?
The first line contains integer *n* (1<=≤<=*n*<=≤<=5000) — the number of children in the school. The second line contains *n* integers *t*1,<=*t*2,<=...,<=*t**n* (1<=≤<=*t**i*<=≤<=3), where *t**i* describes the skill of the *i*-th child.
In the first line output integer *w* — the largest possible number of teams. Then print *w* lines, containing three numbers in each line. Each triple represents the indexes of the children forming the team. You can print both the teams, and the numbers in the triplets in any order. The children are numbered from 1 to *n* in the order of their appearance in the input. Each child must participate in no more than one team. If there are several solutions, print any of them. If no teams can be compiled, print the only line with value *w* equal to 0.
[ "7\n1 3 1 3 2 1 2\n", "4\n2 1 1 2\n" ]
[ "2\n3 5 2\n6 7 4\n", "0\n" ]
none
500
[ { "input": "7\n1 3 1 3 2 1 2", "output": "2\n3 5 2\n6 7 4" }, { "input": "4\n2 1 1 2", "output": "0" }, { "input": "1\n2", "output": "0" }, { "input": "2\n3 1", "output": "0" }, { "input": "3\n2 1 2", "output": "0" }, { "input": "3\n1 2 3", "output": "1\n1 2 3" }, { "input": "12\n3 3 3 3 3 3 3 3 1 3 3 2", "output": "1\n9 12 2" }, { "input": "60\n3 3 1 2 2 1 3 1 1 1 3 2 2 2 3 3 1 3 2 3 2 2 1 3 3 2 3 1 2 2 2 1 3 2 1 1 3 3 1 1 1 3 1 2 1 1 3 3 3 2 3 2 3 2 2 2 1 1 1 2", "output": "20\n6 60 1\n17 44 20\n3 5 33\n36 21 42\n59 14 2\n58 26 49\n9 29 48\n23 19 24\n10 30 37\n41 54 15\n45 31 27\n57 55 38\n39 12 25\n35 34 11\n32 52 7\n8 50 18\n43 4 53\n46 56 51\n40 22 16\n28 13 47" }, { "input": "12\n3 1 1 1 1 1 1 2 1 1 1 1", "output": "1\n3 8 1" }, { "input": "22\n2 2 2 2 2 2 2 2 2 2 3 2 2 2 2 2 2 1 2 2 2 2", "output": "1\n18 2 11" }, { "input": "138\n2 3 2 2 2 2 2 2 2 2 1 2 1 2 2 2 1 2 1 2 2 1 2 2 2 2 2 2 2 2 2 2 2 1 2 3 2 2 2 1 2 3 2 2 2 3 1 3 2 3 2 3 2 2 2 2 3 2 2 2 2 2 1 2 2 3 2 2 3 2 1 2 2 2 2 2 3 1 2 2 2 2 2 3 2 2 3 2 2 2 2 2 1 1 2 3 2 2 2 2 3 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 3 2 3 2 2 2 1 2 2 2 1 2 2 2 2 1 2 2 2 2 1 3", "output": "18\n13 91 84\n34 90 48\n11 39 77\n78 129 50\n137 68 119\n132 122 138\n19 12 96\n40 7 2\n22 88 69\n107 73 46\n115 15 52\n127 106 87\n93 92 66\n71 112 117\n63 124 42\n17 70 101\n109 121 57\n123 25 36" }, { "input": "203\n2 2 1 2 1 2 2 2 1 2 2 1 1 3 1 2 1 2 1 1 2 3 1 1 2 3 3 2 2 2 1 2 1 1 1 1 1 3 1 1 2 1 1 2 2 2 1 2 2 2 1 2 3 2 1 1 2 2 1 2 1 2 2 1 1 2 2 2 1 1 2 2 1 2 1 2 2 3 2 1 2 1 1 1 1 1 1 1 1 1 1 2 2 1 1 2 2 2 2 1 1 1 1 1 1 1 2 2 2 2 2 1 1 1 2 2 2 1 2 2 1 3 2 1 1 1 2 1 1 2 1 1 2 2 2 1 1 2 2 2 1 2 1 3 2 1 2 2 2 1 1 1 2 2 2 1 2 1 1 2 2 2 2 2 1 1 2 1 2 2 1 1 1 1 1 1 2 2 3 1 1 2 3 1 1 1 1 1 1 2 2 1 1 1 2 2 3 2 1 3 1 1 1", "output": "13\n188 72 14\n137 4 197\n158 76 122\n152 142 26\n104 119 179\n40 63 38\n12 1 78\n17 30 27\n189 60 53\n166 190 144\n129 7 183\n83 41 22\n121 81 200" }, { "input": "220\n1 1 3 1 3 1 1 3 1 3 3 3 3 1 3 3 1 3 3 3 3 3 1 1 1 3 1 1 1 3 2 3 3 3 1 1 3 3 1 1 3 3 3 3 1 3 3 1 1 1 2 3 1 1 1 2 3 3 3 2 3 1 1 3 1 1 1 3 2 1 3 2 3 1 1 3 3 3 1 3 1 1 1 3 3 2 1 3 2 1 1 3 3 1 1 1 2 1 1 3 2 1 2 1 1 1 3 1 3 3 1 2 3 3 3 3 1 3 1 1 1 1 2 3 1 1 1 1 1 1 3 2 3 1 3 1 3 1 1 3 1 3 1 3 1 3 1 3 3 2 3 1 3 3 1 3 3 3 3 1 1 3 3 3 3 1 1 3 3 3 2 1 1 1 3 3 1 3 3 3 1 1 1 3 1 3 3 1 1 1 2 3 1 1 3 1 1 1 1 2 3 1 1 2 3 3 1 3 1 3 3 3 3 1 3 2 3 1 1 3", "output": "20\n198 89 20\n141 56 131\n166 204 19\n160 132 142\n111 112 195\n45 216 92\n6 31 109\n14 150 170\n199 60 18\n173 123 140\n134 69 156\n82 191 85\n126 200 80\n24 97 46\n62 86 149\n214 101 26\n79 171 78\n125 72 118\n172 103 162\n219 51 64" }, { "input": "61\n2 3 1 3 2 2 2 3 1 3 2 3 1 2 1 1 2 2 2 2 3 2 3 1 2 1 3 1 3 2 1 1 3 2 1 3 3 3 1 3 3 1 1 3 1 3 2 2 1 2 2 2 1 3 2 3 1 3 3 1 1", "output": "20\n9 55 2\n24 34 27\n3 5 37\n35 17 41\n61 11 4\n60 19 54\n15 20 59\n26 14 29\n16 22 38\n43 50 12\n49 25 36\n57 51 40\n39 6 33\n32 30 10\n31 48 8\n13 47 23\n45 1 58\n53 52 56\n42 18 21\n28 7 44" }, { "input": "5\n1 2 2 3 3", "output": "1\n1 3 4" } ]
1,675,817,377
2,147,483,647
Python 3
TIME_LIMIT_EXCEEDED
TESTS
21
1,000
0
n=int(input()) l=list(map(int,input().split())) d={} for i in l: if i in d: d[i]+=1 else: d[i]=1 r=[] for i in d: r.append(d[i]) if len(r)<3: print(0) else: mn=min(r) r=[[0 for i in range(3)] for i in range(mn)] for i in range(mn): f1=0 f2=0 f3=0 for j in range(n): if l[j]==1 and f1==0: r[i][0]=j+1 l[j]=0 f1=1 elif l[j]==2 and f2==0: r[i][1]=j+1 l[j]=0 f2=1 elif l[j]==3 and f3==0: r[i][2]=j+1 l[j]=0 f3=1 if f1==1 and f2==1 and f3==1: break print(mn) for i in r: print(*i)
Title: Team Olympiad Time Limit: None seconds Memory Limit: None megabytes Problem Description: The School №0 of the capital of Berland has *n* children studying in it. All the children in this school are gifted: some of them are good at programming, some are good at maths, others are good at PE (Physical Education). Hence, for each child we know value *t**i*: - *t**i*<==<=1, if the *i*-th child is good at programming, - *t**i*<==<=2, if the *i*-th child is good at maths, - *t**i*<==<=3, if the *i*-th child is good at PE Each child happens to be good at exactly one of these three subjects. The Team Scientific Decathlon Olympias requires teams of three students. The school teachers decided that the teams will be composed of three children that are good at different subjects. That is, each team must have one mathematician, one programmer and one sportsman. Of course, each child can be a member of no more than one team. What is the maximum number of teams that the school will be able to present at the Olympiad? How should the teams be formed for that? Input Specification: The first line contains integer *n* (1<=≤<=*n*<=≤<=5000) — the number of children in the school. The second line contains *n* integers *t*1,<=*t*2,<=...,<=*t**n* (1<=≤<=*t**i*<=≤<=3), where *t**i* describes the skill of the *i*-th child. Output Specification: In the first line output integer *w* — the largest possible number of teams. Then print *w* lines, containing three numbers in each line. Each triple represents the indexes of the children forming the team. You can print both the teams, and the numbers in the triplets in any order. The children are numbered from 1 to *n* in the order of their appearance in the input. Each child must participate in no more than one team. If there are several solutions, print any of them. If no teams can be compiled, print the only line with value *w* equal to 0. Demo Input: ['7\n1 3 1 3 2 1 2\n', '4\n2 1 1 2\n'] Demo Output: ['2\n3 5 2\n6 7 4\n', '0\n'] Note: none
```python n=int(input()) l=list(map(int,input().split())) d={} for i in l: if i in d: d[i]+=1 else: d[i]=1 r=[] for i in d: r.append(d[i]) if len(r)<3: print(0) else: mn=min(r) r=[[0 for i in range(3)] for i in range(mn)] for i in range(mn): f1=0 f2=0 f3=0 for j in range(n): if l[j]==1 and f1==0: r[i][0]=j+1 l[j]=0 f1=1 elif l[j]==2 and f2==0: r[i][1]=j+1 l[j]=0 f2=1 elif l[j]==3 and f3==0: r[i][2]=j+1 l[j]=0 f3=1 if f1==1 and f2==1 and f3==1: break print(mn) for i in r: print(*i) ```
0
789
B
Masha and geometric depression
PROGRAMMING
1,700
[ "brute force", "implementation", "math" ]
null
null
Masha really loves algebra. On the last lesson, her strict teacher Dvastan gave she new exercise. You are given geometric progression *b* defined by two integers *b*1 and *q*. Remind that a geometric progression is a sequence of integers *b*1,<=*b*2,<=*b*3,<=..., where for each *i*<=&gt;<=1 the respective term satisfies the condition *b**i*<==<=*b**i*<=-<=1·*q*, where *q* is called the common ratio of the progression. Progressions in Uzhlyandia are unusual: both *b*1 and *q* can equal 0. Also, Dvastan gave Masha *m* "bad" integers *a*1,<=*a*2,<=...,<=*a**m*, and an integer *l*. Masha writes all progression terms one by one onto the board (including repetitive) while condition |*b**i*|<=≤<=*l* is satisfied (|*x*| means absolute value of *x*). There is an exception: if a term equals one of the "bad" integers, Masha skips it (doesn't write onto the board) and moves forward to the next term. But the lesson is going to end soon, so Masha has to calculate how many integers will be written on the board. In order not to get into depression, Masha asked you for help: help her calculate how many numbers she will write, or print "inf" in case she needs to write infinitely many integers.
The first line of input contains four integers *b*1, *q*, *l*, *m* (-109<=≤<=*b*1,<=*q*<=≤<=109, 1<=≤<=*l*<=≤<=109, 1<=≤<=*m*<=≤<=105) — the initial term and the common ratio of progression, absolute value of maximal number that can be written on the board and the number of "bad" integers, respectively. The second line contains *m* distinct integers *a*1,<=*a*2,<=...,<=*a**m* (-109<=≤<=*a**i*<=≤<=109) — numbers that will never be written on the board.
Print the only integer, meaning the number of progression terms that will be written on the board if it is finite, or "inf" (without quotes) otherwise.
[ "3 2 30 4\n6 14 25 48\n", "123 1 2143435 4\n123 11 -5453 141245\n", "123 1 2143435 4\n54343 -13 6 124\n" ]
[ "3", "0", "inf" ]
In the first sample case, Masha will write integers 3, 12, 24. Progression term 6 will be skipped because it is a "bad" integer. Terms bigger than 24 won't be written because they exceed *l* by absolute value. In the second case, Masha won't write any number because all terms are equal 123 and this is a "bad" integer. In the third case, Masha will write infinitely integers 123.
1,000
[ { "input": "3 2 30 4\n6 14 25 48", "output": "3" }, { "input": "123 1 2143435 4\n123 11 -5453 141245", "output": "0" }, { "input": "123 1 2143435 4\n54343 -13 6 124", "output": "inf" }, { "input": "3 2 25 2\n379195692 -69874783", "output": "4" }, { "input": "3 2 30 3\n-691070108 -934106649 -220744807", "output": "4" }, { "input": "3 3 104 17\n9 -73896485 -290898562 5254410 409659728 -916522518 -435516126 94354167 262981034 -375897180 -80186684 -173062070 -288705544 -699097793 -11447747 320434295 503414250", "output": "3" }, { "input": "-1000000000 -1000000000 1 1\n232512888", "output": "0" }, { "input": "11 0 228 5\n-1 0 1 5 -11245", "output": "1" }, { "input": "11 0 228 5\n-1 -17 1 5 -11245", "output": "inf" }, { "input": "0 0 2143435 5\n-1 -153 1 5 -11245", "output": "inf" }, { "input": "123 0 2143435 4\n5433 0 123 -645", "output": "0" }, { "input": "123 -1 2143435 5\n-123 0 12 5 -11245", "output": "inf" }, { "input": "123 0 21 4\n543453 -123 6 1424", "output": "0" }, { "input": "3 2 115 16\n24 48 12 96 3 720031148 -367712651 -838596957 558177735 -963046495 -313322487 -465018432 -618984128 -607173835 144854086 178041956", "output": "1" }, { "input": "-3 0 92055 36\n-92974174 -486557474 -663622151 695596393 177960746 -563227474 -364263320 -676254242 -614140218 71456762 -764104225 705056581 -106398436 332755134 -199942822 -732751692 658942664 677739866 886535704 183687802 -784248291 -22550621 -938674499 637055091 -704750213 780395802 778342470 -999059668 -794361783 796469192 215667969 354336794 -60195289 -885080928 -290279020 201221317", "output": "inf" }, { "input": "0 -3 2143435 5\n-1 0 1 5 -11245", "output": "0" }, { "input": "123 -1 2143435 5\n-123 0 123 -5453 141245", "output": "0" }, { "input": "123 0 2143435 4\n5433 0 -123 -645", "output": "1" }, { "input": "11 0 2 5\n-1 0 1 5 -11245", "output": "0" }, { "input": "2 2 4 1\n2", "output": "1" }, { "input": "1 -2 1000000000 1\n0", "output": "30" }, { "input": "0 8 10 1\n5", "output": "inf" }, { "input": "-1000 0 10 1\n5", "output": "0" }, { "input": "0 2 2143435 4\n54343 -13 6 124", "output": "inf" }, { "input": "0 8 5 1\n9", "output": "inf" }, { "input": "-10 1 5 1\n100", "output": "0" }, { "input": "123 -1 2143435 4\n54343 -13 6 123", "output": "inf" }, { "input": "-5 -1 10 1\n-5", "output": "inf" }, { "input": "2 0 1 1\n2", "output": "0" }, { "input": "0 5 8 1\n10", "output": "inf" }, { "input": "0 5 100 2\n34 56", "output": "inf" }, { "input": "15 -1 15 4\n15 -15 1 2", "output": "0" }, { "input": "10 -1 2 1\n1", "output": "0" }, { "input": "2 0 2 1\n2", "output": "inf" }, { "input": "4 0 4 1\n0", "output": "1" }, { "input": "10 10 10 1\n123", "output": "1" }, { "input": "2 2 4 1\n3", "output": "2" }, { "input": "0 1 1 1\n0", "output": "0" }, { "input": "3 2 30 1\n3", "output": "3" }, { "input": "1000000000 100000 1000000000 4\n5433 13 6 0", "output": "1" }, { "input": "-2 0 1 1\n1", "output": "0" }, { "input": "2 -1 10 1\n2", "output": "inf" }, { "input": "1 -1 2 1\n1", "output": "inf" }, { "input": "0 10 10 1\n2", "output": "inf" }, { "input": "0 35 2 1\n3", "output": "inf" }, { "input": "3 1 3 1\n5", "output": "inf" }, { "input": "3 2 3 4\n6 14 25 48", "output": "1" }, { "input": "0 69 12 1\n1", "output": "inf" }, { "input": "100 0 100000 1\n100", "output": "inf" }, { "input": "0 4 1000 3\n5 6 7", "output": "inf" }, { "input": "0 2 100 1\n5", "output": "inf" }, { "input": "3 2 24 4\n6 14 25 48", "output": "3" }, { "input": "0 4 1 1\n2", "output": "inf" }, { "input": "1 5 10000 1\n125", "output": "5" }, { "input": "2 -1 1 1\n1", "output": "0" }, { "input": "0 3 100 1\n5", "output": "inf" }, { "input": "0 3 3 1\n1", "output": "inf" }, { "input": "0 2 5 1\n1", "output": "inf" }, { "input": "5 -1 100 1\n5", "output": "inf" }, { "input": "-20 0 10 1\n0", "output": "0" }, { "input": "3 0 1 1\n3", "output": "0" }, { "input": "2 -1 3 1\n2", "output": "inf" }, { "input": "1 1 1000000000 1\n100", "output": "inf" }, { "input": "5 -1 3 1\n0", "output": "0" }, { "input": "0 5 10 1\n2", "output": "inf" }, { "input": "123 0 125 1\n123", "output": "inf" }, { "input": "2 -1 100 1\n2", "output": "inf" }, { "input": "5 2 100 1\n5", "output": "4" }, { "input": "-5 0 1 1\n1", "output": "0" }, { "input": "-3 0 1 1\n-3", "output": "0" }, { "input": "2 -2 10 1\n1", "output": "3" }, { "input": "0 2 30 4\n6 14 25 48", "output": "inf" }, { "input": "1 -1 1 1\n1", "output": "inf" }, { "input": "2 -1 6 1\n2", "output": "inf" }, { "input": "-3 1 100 1\n-3", "output": "0" }, { "input": "1 0 2 1\n1", "output": "inf" }, { "input": "1000000000 999999998 1000000000 1\n0", "output": "1" }, { "input": "1 0 2143435 4\n1 -123 -5453 141245", "output": "inf" }, { "input": "-1000 0 100 1\n-1000", "output": "0" }, { "input": "100 10 2 1\n100", "output": "0" }, { "input": "-3 1 100 1\n3", "output": "inf" }, { "input": "123 -1 10000 1\n123", "output": "inf" }, { "input": "1 -1 2143435 4\n1 -123 -5453 141245", "output": "inf" }, { "input": "5 1 5 5\n1 2 3 4 0", "output": "inf" }, { "input": "-100 -1 1 1\n1", "output": "0" }, { "input": "10 -1 3 2\n10 8", "output": "0" }, { "input": "-10 0 5 1\n0", "output": "0" }, { "input": "3 0 3 1\n0", "output": "1" }, { "input": "2 0 2 1\n-1", "output": "inf" }, { "input": "5 0 20 1\n5", "output": "inf" }, { "input": "-4 1 1 1\n0", "output": "0" }, { "input": "11 0 1111 1\n11", "output": "inf" }, { "input": "2 0 3 1\n2", "output": "inf" }, { "input": "-1 -1 2143435 4\n-1 -123 -5453 141245", "output": "inf" }, { "input": "-100 0 50 1\n0", "output": "0" }, { "input": "5 1 2 1\n2", "output": "0" }, { "input": "3 0 3 1\n4", "output": "inf" }, { "input": "0 23 3 1\n3", "output": "inf" }, { "input": "-1000 0 100 1\n2", "output": "0" }, { "input": "1 -1 10 1\n1", "output": "inf" } ]
1,491,216,618
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
13
93
13,004,800
b1, q, l, m = map(int, input().split()) ai = list((map(int, input().split()))) count = 0 if (q==0 or b1==0) and (0 not in ai): print('inf') elif (q==0 or b1==0) and (0 in ai): print(count if (b1==0 or b1 in ai) else count+1) else: #q!=0 and b1!=0 if q==1: if b1 not in ai: print('inf') else: print(count) elif q==-1: if (b1 not in ai or -b1 not in ai): print('inf') else: print(count) elif abs(q)<1: print('inf') else: #q>1 b = b1 while abs(b)<=l: if b not in ai: count += 1 b *= q print(count)
Title: Masha and geometric depression Time Limit: None seconds Memory Limit: None megabytes Problem Description: Masha really loves algebra. On the last lesson, her strict teacher Dvastan gave she new exercise. You are given geometric progression *b* defined by two integers *b*1 and *q*. Remind that a geometric progression is a sequence of integers *b*1,<=*b*2,<=*b*3,<=..., where for each *i*<=&gt;<=1 the respective term satisfies the condition *b**i*<==<=*b**i*<=-<=1·*q*, where *q* is called the common ratio of the progression. Progressions in Uzhlyandia are unusual: both *b*1 and *q* can equal 0. Also, Dvastan gave Masha *m* "bad" integers *a*1,<=*a*2,<=...,<=*a**m*, and an integer *l*. Masha writes all progression terms one by one onto the board (including repetitive) while condition |*b**i*|<=≤<=*l* is satisfied (|*x*| means absolute value of *x*). There is an exception: if a term equals one of the "bad" integers, Masha skips it (doesn't write onto the board) and moves forward to the next term. But the lesson is going to end soon, so Masha has to calculate how many integers will be written on the board. In order not to get into depression, Masha asked you for help: help her calculate how many numbers she will write, or print "inf" in case she needs to write infinitely many integers. Input Specification: The first line of input contains four integers *b*1, *q*, *l*, *m* (-109<=≤<=*b*1,<=*q*<=≤<=109, 1<=≤<=*l*<=≤<=109, 1<=≤<=*m*<=≤<=105) — the initial term and the common ratio of progression, absolute value of maximal number that can be written on the board and the number of "bad" integers, respectively. The second line contains *m* distinct integers *a*1,<=*a*2,<=...,<=*a**m* (-109<=≤<=*a**i*<=≤<=109) — numbers that will never be written on the board. Output Specification: Print the only integer, meaning the number of progression terms that will be written on the board if it is finite, or "inf" (without quotes) otherwise. Demo Input: ['3 2 30 4\n6 14 25 48\n', '123 1 2143435 4\n123 11 -5453 141245\n', '123 1 2143435 4\n54343 -13 6 124\n'] Demo Output: ['3', '0', 'inf'] Note: In the first sample case, Masha will write integers 3, 12, 24. Progression term 6 will be skipped because it is a "bad" integer. Terms bigger than 24 won't be written because they exceed *l* by absolute value. In the second case, Masha won't write any number because all terms are equal 123 and this is a "bad" integer. In the third case, Masha will write infinitely integers 123.
```python b1, q, l, m = map(int, input().split()) ai = list((map(int, input().split()))) count = 0 if (q==0 or b1==0) and (0 not in ai): print('inf') elif (q==0 or b1==0) and (0 in ai): print(count if (b1==0 or b1 in ai) else count+1) else: #q!=0 and b1!=0 if q==1: if b1 not in ai: print('inf') else: print(count) elif q==-1: if (b1 not in ai or -b1 not in ai): print('inf') else: print(count) elif abs(q)<1: print('inf') else: #q>1 b = b1 while abs(b)<=l: if b not in ai: count += 1 b *= q print(count) ```
0
151
A
Soft Drinking
PROGRAMMING
800
[ "implementation", "math" ]
null
null
This winter is so cold in Nvodsk! A group of *n* friends decided to buy *k* bottles of a soft drink called "Take-It-Light" to warm up a bit. Each bottle has *l* milliliters of the drink. Also they bought *c* limes and cut each of them into *d* slices. After that they found *p* grams of salt. To make a toast, each friend needs *nl* milliliters of the drink, a slice of lime and *np* grams of salt. The friends want to make as many toasts as they can, provided they all drink the same amount. How many toasts can each friend make?
The first and only line contains positive integers *n*, *k*, *l*, *c*, *d*, *p*, *nl*, *np*, not exceeding 1000 and no less than 1. The numbers are separated by exactly one space.
Print a single integer — the number of toasts each friend can make.
[ "3 4 5 10 8 100 3 1\n", "5 100 10 1 19 90 4 3\n", "10 1000 1000 25 23 1 50 1\n" ]
[ "2\n", "3\n", "0\n" ]
A comment to the first sample: Overall the friends have 4 * 5 = 20 milliliters of the drink, it is enough to make 20 / 3 = 6 toasts. The limes are enough for 10 * 8 = 80 toasts and the salt is enough for 100 / 1 = 100 toasts. However, there are 3 friends in the group, so the answer is *min*(6, 80, 100) / 3 = 2.
500
[ { "input": "3 4 5 10 8 100 3 1", "output": "2" }, { "input": "5 100 10 1 19 90 4 3", "output": "3" }, { "input": "10 1000 1000 25 23 1 50 1", "output": "0" }, { "input": "1 7 4 5 5 8 3 2", "output": "4" }, { "input": "2 3 3 5 5 10 1 3", "output": "1" }, { "input": "2 6 4 5 6 5 1 3", "output": "0" }, { "input": "1 7 3 5 3 6 2 1", "output": "6" }, { "input": "2 4 5 4 5 7 3 2", "output": "1" }, { "input": "2 3 6 5 7 8 2 1", "output": "4" }, { "input": "1 4 5 5 3 10 3 1", "output": "6" }, { "input": "1 4 6 7 3 5 1 3", "output": "1" }, { "input": "1 6 5 5 5 8 3 1", "output": "8" }, { "input": "1 7 5 3 3 9 2 1", "output": "9" }, { "input": "3 5 3 7 6 10 3 1", "output": "1" }, { "input": "3 6 3 5 3 6 3 1", "output": "2" }, { "input": "1 7 5 5 5 5 2 2", "output": "2" }, { "input": "2 5 3 5 6 9 2 1", "output": "3" }, { "input": "3 4 3 5 3 6 2 1", "output": "2" }, { "input": "1 5 5 4 7 6 3 1", "output": "6" }, { "input": "2 3 7 6 5 9 3 1", "output": "3" }, { "input": "2 6 5 3 3 8 1 1", "output": "4" }, { "input": "2 4 7 3 4 10 2 1", "output": "5" }, { "input": "1 1000 1000 1000 1000 1000 1 1", "output": "1000" }, { "input": "17 1000 1000 1000 1000 1000 3 7", "output": "8" }, { "input": "115 1000 1000 1000 1000 1000 17 15", "output": "0" }, { "input": "1 587 981 1 2 1 1 1", "output": "1" }, { "input": "1 1 2 1 2 2 1 1", "output": "2" } ]
1,688,797,609
2,147,483,647
PyPy 3-64
WRONG_ANSWER
TESTS
8
92
0
n,k,l,c,d,p,nl,np=map(int,input().split()) t1=k*l a1=t1//3 a2=c*d a3=p//np ans=min(a1,a2,a3)//n print(ans)
Title: Soft Drinking Time Limit: None seconds Memory Limit: None megabytes Problem Description: This winter is so cold in Nvodsk! A group of *n* friends decided to buy *k* bottles of a soft drink called "Take-It-Light" to warm up a bit. Each bottle has *l* milliliters of the drink. Also they bought *c* limes and cut each of them into *d* slices. After that they found *p* grams of salt. To make a toast, each friend needs *nl* milliliters of the drink, a slice of lime and *np* grams of salt. The friends want to make as many toasts as they can, provided they all drink the same amount. How many toasts can each friend make? Input Specification: The first and only line contains positive integers *n*, *k*, *l*, *c*, *d*, *p*, *nl*, *np*, not exceeding 1000 and no less than 1. The numbers are separated by exactly one space. Output Specification: Print a single integer — the number of toasts each friend can make. Demo Input: ['3 4 5 10 8 100 3 1\n', '5 100 10 1 19 90 4 3\n', '10 1000 1000 25 23 1 50 1\n'] Demo Output: ['2\n', '3\n', '0\n'] Note: A comment to the first sample: Overall the friends have 4 * 5 = 20 milliliters of the drink, it is enough to make 20 / 3 = 6 toasts. The limes are enough for 10 * 8 = 80 toasts and the salt is enough for 100 / 1 = 100 toasts. However, there are 3 friends in the group, so the answer is *min*(6, 80, 100) / 3 = 2.
```python n,k,l,c,d,p,nl,np=map(int,input().split()) t1=k*l a1=t1//3 a2=c*d a3=p//np ans=min(a1,a2,a3)//n print(ans) ```
0