contestId
int64
0
1.01k
index
stringclasses
57 values
name
stringlengths
2
58
type
stringclasses
2 values
rating
int64
0
3.5k
tags
listlengths
0
11
title
stringclasses
522 values
time-limit
stringclasses
8 values
memory-limit
stringclasses
8 values
problem-description
stringlengths
0
7.15k
input-specification
stringlengths
0
2.05k
output-specification
stringlengths
0
1.5k
demo-input
listlengths
0
7
demo-output
listlengths
0
7
note
stringlengths
0
5.24k
points
float64
0
425k
test_cases
listlengths
0
402
creationTimeSeconds
int64
1.37B
1.7B
relativeTimeSeconds
int64
8
2.15B
programmingLanguage
stringclasses
3 values
verdict
stringclasses
14 values
testset
stringclasses
12 values
passedTestCount
int64
0
1k
timeConsumedMillis
int64
0
15k
memoryConsumedBytes
int64
0
805M
code
stringlengths
3
65.5k
prompt
stringlengths
262
8.2k
response
stringlengths
17
65.5k
score
float64
-1
3.99
235
B
Let's Play Osu!
PROGRAMMING
2,000
[ "dp", "math", "probabilities" ]
null
null
You're playing a game called Osu! Here's a simplified version of it. There are *n* clicks in a game. For each click there are two outcomes: correct or bad. Let us denote correct as "O", bad as "X", then the whole play can be encoded as a sequence of *n* characters "O" and "X". Using the play sequence you can calculate the score for the play as follows: for every maximal consecutive "O"s block, add the square of its length (the number of characters "O") to the score. For example, if your play can be encoded as "OOXOOOXXOO", then there's three maximal consecutive "O"s block "OO", "OOO", "OO", so your score will be 22<=+<=32<=+<=22<==<=17. If there are no correct clicks in a play then the score for the play equals to 0. You know that the probability to click the *i*-th (1<=≤<=*i*<=≤<=*n*) click correctly is *p**i*. In other words, the *i*-th character in the play sequence has *p**i* probability to be "O", 1<=-<=*p**i* to be "X". You task is to calculate the expected score for your play.
The first line contains an integer *n* (1<=≤<=*n*<=≤<=105) — the number of clicks. The second line contains *n* space-separated real numbers *p*1,<=*p*2,<=...,<=*p**n* (0<=≤<=*p**i*<=≤<=1). There will be at most six digits after the decimal point in the given *p**i*.
Print a single real number — the expected score for your play. Your answer will be considered correct if its absolute or relative error does not exceed 10<=-<=6.
[ "3\n0.5 0.5 0.5\n", "4\n0.7 0.2 0.1 0.9\n", "5\n1 1 1 1 1\n" ]
[ "2.750000000000000\n", "2.489200000000000\n", "25.000000000000000\n" ]
For the first example. There are 8 possible outcomes. Each has a probability of 0.125. - "OOO"  →  3<sup class="upper-index">2</sup> = 9; - "OOX"  →  2<sup class="upper-index">2</sup> = 4; - "OXO"  →  1<sup class="upper-index">2</sup> + 1<sup class="upper-index">2</sup> = 2; - "OXX"  →  1<sup class="upper-index">2</sup> = 1; - "XOO"  →  2<sup class="upper-index">2</sup> = 4; - "XOX"  →  1<sup class="upper-index">2</sup> = 1; - "XXO"  →  1<sup class="upper-index">2</sup> = 1; - "XXX"  →  0. So the expected score is <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/9aa477286058d4dd02d6f78cad11a658e4f37440.png" style="max-width: 100.0%;max-height: 100.0%;"/>
1,000
[ { "input": "3\n0.5 0.5 0.5", "output": "2.750000000000000" }, { "input": "4\n0.7 0.2 0.1 0.9", "output": "2.489200000000000" }, { "input": "5\n1 1 1 1 1", "output": "25.000000000000000" }, { "input": "10\n0.684846 0.156794 0.153696 0.714526 0.281868 0.628256 0.745339 0.123854 0.748936 0.856333", "output": "10.721778814471227" }, { "input": "10\n0.684488 0.834971 0.834886 0.643646 0.162710 0.119851 0.659401 0.743950 0.220986 0.839665", "output": "15.401334613504345" }, { "input": "10\n0.684416 0.170607 0.491124 0.469470 0.458879 0.658170 0.322214 0.707969 0.275396 0.836331", "output": "11.404416796704293" }, { "input": "10\n0.684631 0.563700 0.722410 0.191998 0.370373 0.643213 0.533776 0.815911 0.112166 0.846332", "output": "12.888929008957161" }, { "input": "10\n0.684559 0.699336 0.378648 0.817822 0.666542 0.381532 0.196589 0.779930 0.166576 0.842998", "output": "14.036752909261951" }, { "input": "10\n0.999453 0.999188 0.998398 0.999609 0.999113 0.999426 0.998026 0.999244 0.998842 0.999807", "output": "99.590738622894690" }, { "input": "10\n0.000733 0.000769 0.000772 0.000595 0.000930 0.000395 0.000596 0.000584 0.000496 0.000905", "output": "0.006782723279203" }, { "input": "30\n0.684344 0.306242 0.147362 0.295294 0.755047 0.396489 0.785026 0.671988 0.329806 0.832998 0.106621 0.452498 0.125067 0.838169 0.869683 0.740625 0.449522 0.751800 0.272185 0.865612 0.272859 0.416162 0.339155 0.478441 0.401937 0.626148 0.305498 0.716523 0.734322 0.751335", "output": "44.576745047411691" }, { "input": "30\n0.684273 0.441878 0.603600 0.121118 0.251216 0.134808 0.447839 0.636007 0.384215 0.829664 0.204397 0.627395 0.243031 0.424765 0.525065 0.585464 0.893844 0.377080 0.246110 0.356372 0.836239 0.670558 0.546182 0.310427 0.343287 0.868653 0.269521 0.432699 0.288850 0.848816", "output": "36.478162706163317" }, { "input": "30\n0.683914 0.320055 0.484789 0.850238 0.132058 0.426403 0.361901 0.456102 0.656265 0.812996 0.693279 0.701878 0.832853 0.757747 0.401974 0.609660 0.715452 0.103482 0.115733 0.210174 0.453140 0.342538 0.781317 0.270359 0.850037 0.481183 0.889637 0.613578 0.461492 0.536221", "output": "53.227679791398110" }, { "input": "30\n0.683843 0.455691 0.141027 0.676062 0.428227 0.164722 0.824714 0.420121 0.710675 0.809662 0.791055 0.876775 0.150817 0.344344 0.857356 0.454499 0.359774 0.528762 0.889658 0.500934 0.216520 0.596934 0.188344 0.102346 0.791387 0.723689 0.853660 0.329754 0.816020 0.633702", "output": "49.054872575308515" }, { "input": "30\n0.684058 0.848784 0.372313 0.398590 0.339721 0.149765 0.236276 0.528064 0.547445 0.819663 0.497726 0.352085 0.596924 0.784554 0.291210 0.119982 0.626809 0.852921 0.167884 0.428653 0.126380 0.633746 0.367263 0.606386 0.167337 0.796171 0.161591 0.381226 0.552435 0.341259", "output": "33.125615383310461" }, { "input": "30\n0.999453 0.998210 0.999812 0.998309 0.999333 0.999463 0.999490 0.998975 0.999248 0.999782 0.999233 0.999062 0.999530 0.998674 0.999608 0.999654 0.998426 0.998941 0.998104 0.999541 0.999467 0.999961 0.999180 0.998842 0.998022 0.998345 0.998064 0.999984 0.998017 0.998843", "output": "891.219052952586820" }, { "input": "30\n0.000735 0.000533 0.000518 0.000044 0.000677 0.000571 0.000138 0.000707 0.000793 0.000018 0.000326 0.000635 0.000789 0.000298 0.000445 0.000077 0.000226 0.000128 0.000933 0.000961 0.000726 0.000405 0.000610 0.000102 0.000990 0.000989 0.000254 0.000580 0.000053 0.000142", "output": "0.014416714297575" } ]
1,656,691,914
2,147,483,647
PyPy 3
OK
TESTS
72
342
11,776,000
n = int(input()) p = list(map(float, input().split())) if n == 1: print(p[0]) quit() M = [0.0] * n f = [0.0] * n f[0] = 1.0 for i in range(1, n): f[i] = p[i] * f[i - 1] + 1 - p[i] res = p[0] * p[1] ans = res for i in range(2, n): temp = (1 - p[i - 1]) + p[i - 1] * (1 - p[i - 2]) res = p[i] * p[i - 1] * (1 - p[i - 2]) + p[i] * (res + 1 - temp) ans += res print(sum(p) + 2 * ans)
Title: Let's Play Osu! Time Limit: None seconds Memory Limit: None megabytes Problem Description: You're playing a game called Osu! Here's a simplified version of it. There are *n* clicks in a game. For each click there are two outcomes: correct or bad. Let us denote correct as "O", bad as "X", then the whole play can be encoded as a sequence of *n* characters "O" and "X". Using the play sequence you can calculate the score for the play as follows: for every maximal consecutive "O"s block, add the square of its length (the number of characters "O") to the score. For example, if your play can be encoded as "OOXOOOXXOO", then there's three maximal consecutive "O"s block "OO", "OOO", "OO", so your score will be 22<=+<=32<=+<=22<==<=17. If there are no correct clicks in a play then the score for the play equals to 0. You know that the probability to click the *i*-th (1<=≤<=*i*<=≤<=*n*) click correctly is *p**i*. In other words, the *i*-th character in the play sequence has *p**i* probability to be "O", 1<=-<=*p**i* to be "X". You task is to calculate the expected score for your play. Input Specification: The first line contains an integer *n* (1<=≤<=*n*<=≤<=105) — the number of clicks. The second line contains *n* space-separated real numbers *p*1,<=*p*2,<=...,<=*p**n* (0<=≤<=*p**i*<=≤<=1). There will be at most six digits after the decimal point in the given *p**i*. Output Specification: Print a single real number — the expected score for your play. Your answer will be considered correct if its absolute or relative error does not exceed 10<=-<=6. Demo Input: ['3\n0.5 0.5 0.5\n', '4\n0.7 0.2 0.1 0.9\n', '5\n1 1 1 1 1\n'] Demo Output: ['2.750000000000000\n', '2.489200000000000\n', '25.000000000000000\n'] Note: For the first example. There are 8 possible outcomes. Each has a probability of 0.125. - "OOO"  →  3<sup class="upper-index">2</sup> = 9; - "OOX"  →  2<sup class="upper-index">2</sup> = 4; - "OXO"  →  1<sup class="upper-index">2</sup> + 1<sup class="upper-index">2</sup> = 2; - "OXX"  →  1<sup class="upper-index">2</sup> = 1; - "XOO"  →  2<sup class="upper-index">2</sup> = 4; - "XOX"  →  1<sup class="upper-index">2</sup> = 1; - "XXO"  →  1<sup class="upper-index">2</sup> = 1; - "XXX"  →  0. So the expected score is <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/9aa477286058d4dd02d6f78cad11a658e4f37440.png" style="max-width: 100.0%;max-height: 100.0%;"/>
```python n = int(input()) p = list(map(float, input().split())) if n == 1: print(p[0]) quit() M = [0.0] * n f = [0.0] * n f[0] = 1.0 for i in range(1, n): f[i] = p[i] * f[i - 1] + 1 - p[i] res = p[0] * p[1] ans = res for i in range(2, n): temp = (1 - p[i - 1]) + p[i - 1] * (1 - p[i - 2]) res = p[i] * p[i - 1] * (1 - p[i - 2]) + p[i] * (res + 1 - temp) ans += res print(sum(p) + 2 * ans) ```
3
982
C
Cut 'em all!
PROGRAMMING
1,500
[ "dfs and similar", "dp", "graphs", "greedy", "trees" ]
null
null
You're given a tree with $n$ vertices. Your task is to determine the maximum possible number of edges that can be removed in such a way that all the remaining connected components will have even size.
The first line contains an integer $n$ ($1 \le n \le 10^5$) denoting the size of the tree. The next $n - 1$ lines contain two integers $u$, $v$ ($1 \le u, v \le n$) each, describing the vertices connected by the $i$-th edge. It's guaranteed that the given edges form a tree.
Output a single integer $k$ — the maximum number of edges that can be removed to leave all connected components with even size, or $-1$ if it is impossible to remove edges in order to satisfy this property.
[ "4\n2 4\n4 1\n3 1\n", "3\n1 2\n1 3\n", "10\n7 1\n8 4\n8 10\n4 7\n6 5\n9 3\n3 5\n2 10\n2 5\n", "2\n1 2\n" ]
[ "1", "-1", "4", "0" ]
In the first example you can remove the edge between vertices $1$ and $4$. The graph after that will have two connected components with two vertices in each. In the second example you can't remove edges in such a way that all components have even number of vertices, so the answer is $-1$.
1,500
[ { "input": "4\n2 4\n4 1\n3 1", "output": "1" }, { "input": "3\n1 2\n1 3", "output": "-1" }, { "input": "10\n7 1\n8 4\n8 10\n4 7\n6 5\n9 3\n3 5\n2 10\n2 5", "output": "4" }, { "input": "2\n1 2", "output": "0" }, { "input": "1", "output": "-1" }, { "input": "4\n1 2\n1 3\n1 4", "output": "0" } ]
1,643,964,573
2,147,483,647
Python 3
RUNTIME_ERROR
TESTS
6
46
1,228,800
n = int(input()) from collections import defaultdict graph = defaultdict(lambda:[]) for i in range(0,n-1): a,b = map(int,input().split()) graph[a].append(b) graph[b].append(a) global ans ans = 0 def dfs(node,par): global ans summ1 = 1 for ele in graph[node]: if ele!=par: summ1+=dfs(ele,node) if (n-summ1)%2 == 0 and summ1%2 == 0: ans+=1 return summ1 dfs(1,-1) print(-1 if ans == 0 else ans-1)
Title: Cut 'em all! Time Limit: None seconds Memory Limit: None megabytes Problem Description: You're given a tree with $n$ vertices. Your task is to determine the maximum possible number of edges that can be removed in such a way that all the remaining connected components will have even size. Input Specification: The first line contains an integer $n$ ($1 \le n \le 10^5$) denoting the size of the tree. The next $n - 1$ lines contain two integers $u$, $v$ ($1 \le u, v \le n$) each, describing the vertices connected by the $i$-th edge. It's guaranteed that the given edges form a tree. Output Specification: Output a single integer $k$ — the maximum number of edges that can be removed to leave all connected components with even size, or $-1$ if it is impossible to remove edges in order to satisfy this property. Demo Input: ['4\n2 4\n4 1\n3 1\n', '3\n1 2\n1 3\n', '10\n7 1\n8 4\n8 10\n4 7\n6 5\n9 3\n3 5\n2 10\n2 5\n', '2\n1 2\n'] Demo Output: ['1', '-1', '4', '0'] Note: In the first example you can remove the edge between vertices $1$ and $4$. The graph after that will have two connected components with two vertices in each. In the second example you can't remove edges in such a way that all components have even number of vertices, so the answer is $-1$.
```python n = int(input()) from collections import defaultdict graph = defaultdict(lambda:[]) for i in range(0,n-1): a,b = map(int,input().split()) graph[a].append(b) graph[b].append(a) global ans ans = 0 def dfs(node,par): global ans summ1 = 1 for ele in graph[node]: if ele!=par: summ1+=dfs(ele,node) if (n-summ1)%2 == 0 and summ1%2 == 0: ans+=1 return summ1 dfs(1,-1) print(-1 if ans == 0 else ans-1) ```
-1
999
C
Alphabetic Removals
PROGRAMMING
1,200
[ "implementation" ]
null
null
You are given a string $s$ consisting of $n$ lowercase Latin letters. Polycarp wants to remove exactly $k$ characters ($k \le n$) from the string $s$. Polycarp uses the following algorithm $k$ times: - if there is at least one letter 'a', remove the leftmost occurrence and stop the algorithm, otherwise go to next item; - if there is at least one letter 'b', remove the leftmost occurrence and stop the algorithm, otherwise go to next item; - ... - remove the leftmost occurrence of the letter 'z' and stop the algorithm. This algorithm removes a single letter from the string. Polycarp performs this algorithm exactly $k$ times, thus removing exactly $k$ characters. Help Polycarp find the resulting string.
The first line of input contains two integers $n$ and $k$ ($1 \le k \le n \le 4 \cdot 10^5$) — the length of the string and the number of letters Polycarp will remove. The second line contains the string $s$ consisting of $n$ lowercase Latin letters.
Print the string that will be obtained from $s$ after Polycarp removes exactly $k$ letters using the above algorithm $k$ times. If the resulting string is empty, print nothing. It is allowed to print nothing or an empty line (line break).
[ "15 3\ncccaabababaccbc\n", "15 9\ncccaabababaccbc\n", "1 1\nu\n" ]
[ "cccbbabaccbc\n", "cccccc\n", "" ]
none
0
[ { "input": "15 3\ncccaabababaccbc", "output": "cccbbabaccbc" }, { "input": "15 9\ncccaabababaccbc", "output": "cccccc" }, { "input": "5 2\nzyzyx", "output": "zzy" }, { "input": "4 3\nhack", "output": "k" }, { "input": "4 3\nzzzz", "output": "z" }, { "input": "6 5\naaccdd", "output": "d" }, { "input": "2 1\nzz", "output": "z" }, { "input": "14 5\nhxehmvkybeklnj", "output": "xmvkyklnj" } ]
1,697,976,526
2,147,483,647
PyPy 3-64
OK
TESTS
44
171
28,160,000
from collections import Counter, defaultdict n, k = map(int, input().split()) str_ = input() freq = Counter(str_) freq_count = defaultdict(int) for cur_idx in range(26): if freq[chr(cur_idx + 97)] < k: freq_count[chr(cur_idx + 97)] = freq[chr(cur_idx + 97)] k -= freq[chr(cur_idx + 97)] else: freq_count[chr(cur_idx + 97)] = k break ans = [] for char in str_: if char in freq_count and freq_count[char] > 0: freq_count[char] -= 1 continue ans.append(char) print("".join(ans))
Title: Alphabetic Removals Time Limit: None seconds Memory Limit: None megabytes Problem Description: You are given a string $s$ consisting of $n$ lowercase Latin letters. Polycarp wants to remove exactly $k$ characters ($k \le n$) from the string $s$. Polycarp uses the following algorithm $k$ times: - if there is at least one letter 'a', remove the leftmost occurrence and stop the algorithm, otherwise go to next item; - if there is at least one letter 'b', remove the leftmost occurrence and stop the algorithm, otherwise go to next item; - ... - remove the leftmost occurrence of the letter 'z' and stop the algorithm. This algorithm removes a single letter from the string. Polycarp performs this algorithm exactly $k$ times, thus removing exactly $k$ characters. Help Polycarp find the resulting string. Input Specification: The first line of input contains two integers $n$ and $k$ ($1 \le k \le n \le 4 \cdot 10^5$) — the length of the string and the number of letters Polycarp will remove. The second line contains the string $s$ consisting of $n$ lowercase Latin letters. Output Specification: Print the string that will be obtained from $s$ after Polycarp removes exactly $k$ letters using the above algorithm $k$ times. If the resulting string is empty, print nothing. It is allowed to print nothing or an empty line (line break). Demo Input: ['15 3\ncccaabababaccbc\n', '15 9\ncccaabababaccbc\n', '1 1\nu\n'] Demo Output: ['cccbbabaccbc\n', 'cccccc\n', ''] Note: none
```python from collections import Counter, defaultdict n, k = map(int, input().split()) str_ = input() freq = Counter(str_) freq_count = defaultdict(int) for cur_idx in range(26): if freq[chr(cur_idx + 97)] < k: freq_count[chr(cur_idx + 97)] = freq[chr(cur_idx + 97)] k -= freq[chr(cur_idx + 97)] else: freq_count[chr(cur_idx + 97)] = k break ans = [] for char in str_: if char in freq_count and freq_count[char] > 0: freq_count[char] -= 1 continue ans.append(char) print("".join(ans)) ```
3
373
A
Collecting Beats is Fun
PROGRAMMING
900
[ "implementation" ]
null
null
Cucumber boy is fan of Kyubeat, a famous music game. Kyubeat has 16 panels for playing arranged in 4<=×<=4 table. When a panel lights up, he has to press that panel. Each panel has a timing to press (the preffered time when a player should press it), and Cucumber boy is able to press at most *k* panels in a time with his one hand. Cucumber boy is trying to press all panels in perfect timing, that is he wants to press each panel exactly in its preffered time. If he cannot press the panels with his two hands in perfect timing, his challenge to press all the panels in perfect timing will fail. You are given one scene of Kyubeat's panel from the music Cucumber boy is trying. Tell him is he able to press all the panels in perfect timing.
The first line contains a single integer *k* (1<=≤<=*k*<=≤<=5) — the number of panels Cucumber boy can press with his one hand. Next 4 lines contain 4 characters each (digits from 1 to 9, or period) — table of panels. If a digit *i* was written on the panel, it means the boy has to press that panel in time *i*. If period was written on the panel, he doesn't have to press that panel.
Output "YES" (without quotes), if he is able to press all the panels in perfect timing. If not, output "NO" (without quotes).
[ "1\n.135\n1247\n3468\n5789\n", "5\n..1.\n1111\n..1.\n..1.\n", "1\n....\n12.1\n.2..\n.2..\n" ]
[ "YES\n", "YES\n", "NO\n" ]
In the third sample boy cannot press all panels in perfect timing. He can press all the panels in timing in time 1, but he cannot press the panels in time 2 in timing with his two hands.
500
[ { "input": "1\n.135\n1247\n3468\n5789", "output": "YES" }, { "input": "5\n..1.\n1111\n..1.\n..1.", "output": "YES" }, { "input": "1\n....\n12.1\n.2..\n.2..", "output": "NO" }, { "input": "1\n6981\n.527\n4163\n2345", "output": "YES" }, { "input": "5\n9999\n9999\n9999\n9999", "output": "NO" }, { "input": "2\n4444\n3333\n2222\n1111", "output": "YES" }, { "input": "3\n2123\n1232\n2321\n3213", "output": "NO" }, { "input": "2\n1...\n.1..\n..1.\n...1", "output": "YES" }, { "input": "2\n1.1.\n.1.1\n2.2.\n.222", "output": "NO" }, { "input": "1\n1..2\n.3.4\n567.\n.89.", "output": "YES" }, { "input": "1\n1122\n3344\n5588\n6699", "output": "YES" }, { "input": "4\n1111\n1221\n1221\n1111", "output": "NO" }, { "input": "5\n3141\n5926\n5358\n9793", "output": "YES" }, { "input": "5\n5454\n4343\n3232\n2121", "output": "YES" }, { "input": "5\n1222\n2221\n2221\n1122", "output": "NO" }, { "input": "1\n....\n5..5\n6..6\n7..7", "output": "YES" }, { "input": "1\n9875\n8643\n7421\n531.", "output": "YES" }, { "input": "1\n..1.\n..1.\n..1.\n..1.", "output": "NO" }, { "input": "4\n4.4.\n4.4.\n4444\n..4.", "output": "NO" }, { "input": "5\n4.4.\n4.4.\n4444\n..4.", "output": "YES" }, { "input": "3\n1.1.\n.1.1\n1.1.\n.1.1", "output": "NO" }, { "input": "2\n1131\n4412\n2569\n3478", "output": "YES" }, { "input": "2\n8888\n8888\n8888\n8888", "output": "NO" } ]
1,668,596,475
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
0
30
0
k=int(input()) t=1 l=[] for i in range(4): l.append([x for x in input()]) for i in l: for j in i: if i!=".": if i.count(j)<k: print("YES") exit() else: print('NO') exit()
Title: Collecting Beats is Fun Time Limit: None seconds Memory Limit: None megabytes Problem Description: Cucumber boy is fan of Kyubeat, a famous music game. Kyubeat has 16 panels for playing arranged in 4<=×<=4 table. When a panel lights up, he has to press that panel. Each panel has a timing to press (the preffered time when a player should press it), and Cucumber boy is able to press at most *k* panels in a time with his one hand. Cucumber boy is trying to press all panels in perfect timing, that is he wants to press each panel exactly in its preffered time. If he cannot press the panels with his two hands in perfect timing, his challenge to press all the panels in perfect timing will fail. You are given one scene of Kyubeat's panel from the music Cucumber boy is trying. Tell him is he able to press all the panels in perfect timing. Input Specification: The first line contains a single integer *k* (1<=≤<=*k*<=≤<=5) — the number of panels Cucumber boy can press with his one hand. Next 4 lines contain 4 characters each (digits from 1 to 9, or period) — table of panels. If a digit *i* was written on the panel, it means the boy has to press that panel in time *i*. If period was written on the panel, he doesn't have to press that panel. Output Specification: Output "YES" (without quotes), if he is able to press all the panels in perfect timing. If not, output "NO" (without quotes). Demo Input: ['1\n.135\n1247\n3468\n5789\n', '5\n..1.\n1111\n..1.\n..1.\n', '1\n....\n12.1\n.2..\n.2..\n'] Demo Output: ['YES\n', 'YES\n', 'NO\n'] Note: In the third sample boy cannot press all panels in perfect timing. He can press all the panels in timing in time 1, but he cannot press the panels in time 2 in timing with his two hands.
```python k=int(input()) t=1 l=[] for i in range(4): l.append([x for x in input()]) for i in l: for j in i: if i!=".": if i.count(j)<k: print("YES") exit() else: print('NO') exit() ```
0
33
B
String Problem
PROGRAMMING
1,800
[ "shortest paths" ]
B. String Problem
2
256
Boy Valera likes strings. And even more he likes them, when they are identical. That's why in his spare time Valera plays the following game. He takes any two strings, consisting of lower case Latin letters, and tries to make them identical. According to the game rules, with each move Valera can change one arbitrary character *A**i* in one of the strings into arbitrary character *B**i*, but he has to pay for every move a particular sum of money, equal to *W**i*. He is allowed to make as many moves as he needs. Since Valera is a very economical boy and never wastes his money, he asked you, an experienced programmer, to help him answer the question: what minimum amount of money should Valera have to get identical strings.
The first input line contains two initial non-empty strings *s* and *t*, consisting of lower case Latin letters. The length of each string doesn't exceed 105. The following line contains integer *n* (0<=≤<=*n*<=≤<=500) — amount of possible changings. Then follow *n* lines, each containing characters *A**i* and *B**i* (lower case Latin letters) and integer *W**i* (0<=≤<=*W**i*<=≤<=100), saying that it's allowed to change character *A**i* into character *B**i* in any of the strings and spend sum of money *W**i*.
If the answer exists, output the answer to the problem, and the resulting string. Otherwise output -1 in the only line. If the answer is not unique, output any.
[ "uayd\nuxxd\n3\na x 8\nx y 13\nd c 3\n", "a\nb\n3\na b 2\na b 3\nb a 5\n", "abc\nab\n6\na b 4\na b 7\nb a 8\nc b 11\nc a 3\na c 0\n" ]
[ "21\nuxyd\n", "2\nb\n", "-1\n" ]
none
1,000
[ { "input": "uayd\nuxxd\n3\na x 8\nx y 13\nd c 3", "output": "21\nuxyd" }, { "input": "a\nb\n3\na b 2\na b 3\nb a 5", "output": "2\nb" }, { "input": "abc\nab\n6\na b 4\na b 7\nb a 8\nc b 11\nc a 3\na c 0", "output": "-1" }, { "input": "xhtuopq\nrtutbz\n10\nh x 10\nx d 3\nr u 4\nu d 1\nt o 100\no t 7\np e 1\ne f 1\nb f 2\nz q 19", "output": "-1" }, { "input": "abad\nabad\n6\na c 3\nb x 100\nd e 7\nr r 10\no t 17\na a 4", "output": "0\nabad" }, { "input": "bbad\nabxd\n4\nb a 7\na b 10\nx a 0\nd t 19", "output": "7\nabad" }, { "input": "abcd\nacer\n6\nb c 100\nc b 10\nc x 1\ne x 3\nc e 7\nr d 11", "output": "25\nabxd" }, { "input": "abac\ncbad\n7\na c 100\nx y 21\nb i 90\nd e 89\nc z 12\nt r 66\na g 78", "output": "-1" }, { "input": "wye\nupt\n13\nz z 5\ne t 8\nt f 2\nf e 3\np l 16\nl s 6\ns q 13\ny o 4\no q 0\nu w 5\nk m 14\nm i 10\nw u 12", "output": "49\nwqe" }, { "input": "xyz\nopr\n10\nx y 0\ny x 0\ny u 4\nu i 3\ni r 2\nr t 1\no w 6\nw t 9\nz r 3\np y 3", "output": "31\ntxr" }, { "input": "aaaaaaaaaa\naaaaaaaaaa\n50\na a 47\na a 40\na a 22\na a 48\na a 37\na a 26\na a 40\na a 28\na a 8\na a 46\na a 42\na a 37\na a 1\na a 0\na a 16\na a 34\na a 12\na a 50\na a 45\na a 49\na a 12\na a 8\na a 32\na a 17\na a 13\na a 1\na a 1\na a 33\na a 1\na a 15\na a 9\na a 11\na a 31\na a 5\na a 18\na a 13\na a 11\na a 20\na a 14\na a 19\na a 15\na a 50\na a 44\na a 23\na a 25\na a 49\na a 7\na a 8\na a 28\na a 38", "output": "0\naaaaaaaaaa" }, { "input": "srumlvfvdnvbwycrtkwnnmsbotsoaf\nuwizokwweugnbegnhjrfdhsfioufvs\n10\nw o 40\nn d 36\nu w 34\nm o 27\nr a 7\ni o 63\ng g 52\ng k 4\ns d 20\ny c 26", "output": "-1" }, { "input": "habege\necjecg\n0", "output": "-1" }, { "input": "babaafbfde\neccefffbee\n10\nm c 15\ng b 5\nh n 6\nm j 12\nl h 7\nd b 15\nm n 0\na f 11\nk d 1\nb a 10", "output": "-1" }, { "input": "bbabcbcbbbccacaaabbb\nccbbbacbbbbcbbcacbba\n5\ne b 72\na a 92\nc b 57\ne a 94\ne d 62", "output": "-1" }, { "input": "bc\nad\n8\nt y 11\nb c 12\nc x 6\nx y 4\nd x 2\na z 4\nz y 2\ne w 1", "output": "36\nyx" } ]
1,675,436,515
2,147,483,647
Python 3
RUNTIME_ERROR
TESTS
0
62
0
price = [int(i) for i in input().split(' ')] print(price[2] if price[2] < sum(price[0:2]) else sum(price[0:2]))
Title: String Problem Time Limit: 2 seconds Memory Limit: 256 megabytes Problem Description: Boy Valera likes strings. And even more he likes them, when they are identical. That's why in his spare time Valera plays the following game. He takes any two strings, consisting of lower case Latin letters, and tries to make them identical. According to the game rules, with each move Valera can change one arbitrary character *A**i* in one of the strings into arbitrary character *B**i*, but he has to pay for every move a particular sum of money, equal to *W**i*. He is allowed to make as many moves as he needs. Since Valera is a very economical boy and never wastes his money, he asked you, an experienced programmer, to help him answer the question: what minimum amount of money should Valera have to get identical strings. Input Specification: The first input line contains two initial non-empty strings *s* and *t*, consisting of lower case Latin letters. The length of each string doesn't exceed 105. The following line contains integer *n* (0<=≤<=*n*<=≤<=500) — amount of possible changings. Then follow *n* lines, each containing characters *A**i* and *B**i* (lower case Latin letters) and integer *W**i* (0<=≤<=*W**i*<=≤<=100), saying that it's allowed to change character *A**i* into character *B**i* in any of the strings and spend sum of money *W**i*. Output Specification: If the answer exists, output the answer to the problem, and the resulting string. Otherwise output -1 in the only line. If the answer is not unique, output any. Demo Input: ['uayd\nuxxd\n3\na x 8\nx y 13\nd c 3\n', 'a\nb\n3\na b 2\na b 3\nb a 5\n', 'abc\nab\n6\na b 4\na b 7\nb a 8\nc b 11\nc a 3\na c 0\n'] Demo Output: ['21\nuxyd\n', '2\nb\n', '-1\n'] Note: none
```python price = [int(i) for i in input().split(' ')] print(price[2] if price[2] < sum(price[0:2]) else sum(price[0:2])) ```
-1
697
A
Pineapple Incident
PROGRAMMING
900
[ "implementation", "math" ]
null
null
Ted has a pineapple. This pineapple is able to bark like a bulldog! At time *t* (in seconds) it barks for the first time. Then every *s* seconds after it, it barks twice with 1 second interval. Thus it barks at times *t*, *t*<=+<=*s*, *t*<=+<=*s*<=+<=1, *t*<=+<=2*s*, *t*<=+<=2*s*<=+<=1, etc. Barney woke up in the morning and wants to eat the pineapple, but he can't eat it when it's barking. Barney plans to eat it at time *x* (in seconds), so he asked you to tell him if it's gonna bark at that time.
The first and only line of input contains three integers *t*, *s* and *x* (0<=≤<=*t*,<=*x*<=≤<=109, 2<=≤<=*s*<=≤<=109) — the time the pineapple barks for the first time, the pineapple barking interval, and the time Barney wants to eat the pineapple respectively.
Print a single "YES" (without quotes) if the pineapple will bark at time *x* or a single "NO" (without quotes) otherwise in the only line of output.
[ "3 10 4\n", "3 10 3\n", "3 8 51\n", "3 8 52\n" ]
[ "NO\n", "YES\n", "YES\n", "YES\n" ]
In the first and the second sample cases pineapple will bark at moments 3, 13, 14, ..., so it won't bark at the moment 4 and will bark at the moment 3. In the third and fourth sample cases pineapple will bark at moments 3, 11, 12, 19, 20, 27, 28, 35, 36, 43, 44, 51, 52, 59, ..., so it will bark at both moments 51 and 52.
500
[ { "input": "3 10 4", "output": "NO" }, { "input": "3 10 3", "output": "YES" }, { "input": "3 8 51", "output": "YES" }, { "input": "3 8 52", "output": "YES" }, { "input": "456947336 740144 45", "output": "NO" }, { "input": "33 232603 599417964", "output": "YES" }, { "input": "4363010 696782227 701145238", "output": "YES" }, { "input": "9295078 2 6", "output": "NO" }, { "input": "76079 281367 119938421", "output": "YES" }, { "input": "93647 7 451664565", "output": "YES" }, { "input": "5 18553 10908", "output": "NO" }, { "input": "6 52 30", "output": "NO" }, { "input": "6431 855039 352662", "output": "NO" }, { "input": "749399100 103031711 761562532", "output": "NO" }, { "input": "21 65767 55245", "output": "NO" }, { "input": "4796601 66897 4860613", "output": "NO" }, { "input": "8 6728951 860676", "output": "NO" }, { "input": "914016 6 914019", "output": "NO" }, { "input": "60686899 78474 60704617", "output": "NO" }, { "input": "3 743604 201724", "output": "NO" }, { "input": "571128 973448796 10", "output": "NO" }, { "input": "688051712 67 51", "output": "NO" }, { "input": "74619 213344 6432326", "output": "NO" }, { "input": "6947541 698167 6", "output": "NO" }, { "input": "83 6 6772861", "output": "NO" }, { "input": "251132 67561 135026988", "output": "NO" }, { "input": "8897216 734348516 743245732", "output": "YES" }, { "input": "50 64536 153660266", "output": "YES" }, { "input": "876884 55420 971613604", "output": "YES" }, { "input": "0 6906451 366041903", "output": "YES" }, { "input": "11750 8 446010134", "output": "YES" }, { "input": "582692707 66997 925047377", "output": "YES" }, { "input": "11 957526890 957526901", "output": "YES" }, { "input": "556888 514614196 515171084", "output": "YES" }, { "input": "6 328006 584834704", "output": "YES" }, { "input": "4567998 4 204966403", "output": "YES" }, { "input": "60 317278 109460971", "output": "YES" }, { "input": "906385 342131991 685170368", "output": "YES" }, { "input": "1 38 902410512", "output": "YES" }, { "input": "29318 787017 587931018", "output": "YES" }, { "input": "351416375 243431 368213115", "output": "YES" }, { "input": "54 197366062 197366117", "output": "YES" }, { "input": "586389 79039 850729874", "output": "YES" }, { "input": "723634470 2814619 940360134", "output": "YES" }, { "input": "0 2 0", "output": "YES" }, { "input": "0 2 1", "output": "NO" }, { "input": "0 2 2", "output": "YES" }, { "input": "0 2 3", "output": "YES" }, { "input": "0 2 1000000000", "output": "YES" }, { "input": "0 10 23", "output": "NO" }, { "input": "0 2 999999999", "output": "YES" }, { "input": "10 5 11", "output": "NO" }, { "input": "1 2 1000000000", "output": "YES" }, { "input": "1 10 20", "output": "NO" }, { "input": "1 2 999999937", "output": "YES" }, { "input": "10 3 5", "output": "NO" }, { "input": "3 2 5", "output": "YES" }, { "input": "0 4 0", "output": "YES" }, { "input": "0 215 403", "output": "NO" }, { "input": "5 2 10", "output": "YES" }, { "input": "0 2 900000000", "output": "YES" }, { "input": "0 79 4000", "output": "NO" }, { "input": "5 1000 1000", "output": "NO" }, { "input": "1 5 103", "output": "NO" }, { "input": "5 2 6", "output": "NO" }, { "input": "120 2 1000000000", "output": "YES" }, { "input": "2 2 1000000000", "output": "YES" }, { "input": "5 5 13", "output": "NO" }, { "input": "10 5 15", "output": "YES" }, { "input": "11 2 0", "output": "NO" }, { "input": "3 8 53", "output": "NO" }, { "input": "2 2 4", "output": "YES" }, { "input": "4 4 0", "output": "NO" }, { "input": "1 2 3", "output": "YES" }, { "input": "5 3 9", "output": "YES" }, { "input": "5 6 19", "output": "NO" }, { "input": "3 10 125", "output": "NO" }, { "input": "5 3 8", "output": "YES" }, { "input": "6 3 9", "output": "YES" }, { "input": "0 3 5", "output": "NO" }, { "input": "5 3 300000035", "output": "YES" }, { "input": "5 2 7", "output": "YES" }, { "input": "1 5 6", "output": "YES" }, { "input": "4 2 6", "output": "YES" }, { "input": "0 3 999999998", "output": "NO" }, { "input": "0 10001 0", "output": "YES" }, { "input": "6 5 3", "output": "NO" }, { "input": "1 5 1000000000", "output": "NO" }, { "input": "1 3 6", "output": "NO" }, { "input": "3 3 1000000000", "output": "YES" }, { "input": "3 3 4", "output": "NO" }, { "input": "3 3 5", "output": "NO" }, { "input": "3 3 0", "output": "NO" }, { "input": "1 2 4", "output": "YES" }, { "input": "5 5 10", "output": "YES" } ]
1,658,989,118
2,147,483,647
PyPy 3
WRONG_ANSWER
TESTS
7
77
0
t, s, x = map(int, input().split()) if x==t: print("YES") else: k=x-t if (k!=0 and k%s==0) or ((k-1)!=0 and (k-1)%s==0): print("YES") else: print("NO")
Title: Pineapple Incident Time Limit: None seconds Memory Limit: None megabytes Problem Description: Ted has a pineapple. This pineapple is able to bark like a bulldog! At time *t* (in seconds) it barks for the first time. Then every *s* seconds after it, it barks twice with 1 second interval. Thus it barks at times *t*, *t*<=+<=*s*, *t*<=+<=*s*<=+<=1, *t*<=+<=2*s*, *t*<=+<=2*s*<=+<=1, etc. Barney woke up in the morning and wants to eat the pineapple, but he can't eat it when it's barking. Barney plans to eat it at time *x* (in seconds), so he asked you to tell him if it's gonna bark at that time. Input Specification: The first and only line of input contains three integers *t*, *s* and *x* (0<=≤<=*t*,<=*x*<=≤<=109, 2<=≤<=*s*<=≤<=109) — the time the pineapple barks for the first time, the pineapple barking interval, and the time Barney wants to eat the pineapple respectively. Output Specification: Print a single "YES" (without quotes) if the pineapple will bark at time *x* or a single "NO" (without quotes) otherwise in the only line of output. Demo Input: ['3 10 4\n', '3 10 3\n', '3 8 51\n', '3 8 52\n'] Demo Output: ['NO\n', 'YES\n', 'YES\n', 'YES\n'] Note: In the first and the second sample cases pineapple will bark at moments 3, 13, 14, ..., so it won't bark at the moment 4 and will bark at the moment 3. In the third and fourth sample cases pineapple will bark at moments 3, 11, 12, 19, 20, 27, 28, 35, 36, 43, 44, 51, 52, 59, ..., so it will bark at both moments 51 and 52.
```python t, s, x = map(int, input().split()) if x==t: print("YES") else: k=x-t if (k!=0 and k%s==0) or ((k-1)!=0 and (k-1)%s==0): print("YES") else: print("NO") ```
0
903
C
Boxes Packing
PROGRAMMING
1,200
[ "greedy" ]
null
null
Mishka has got *n* empty boxes. For every *i* (1<=≤<=*i*<=≤<=*n*), *i*-th box is a cube with side length *a**i*. Mishka can put a box *i* into another box *j* if the following conditions are met: - *i*-th box is not put into another box; - *j*-th box doesn't contain any other boxes; - box *i* is smaller than box *j* (*a**i*<=&lt;<=*a**j*). Mishka can put boxes into each other an arbitrary number of times. He wants to minimize the number of visible boxes. A box is called visible iff it is not put into some another box. Help Mishka to determine the minimum possible number of visible boxes!
The first line contains one integer *n* (1<=≤<=*n*<=≤<=5000) — the number of boxes Mishka has got. The second line contains *n* integers *a*1, *a*2, ..., *a**n* (1<=≤<=*a**i*<=≤<=109), where *a**i* is the side length of *i*-th box.
Print the minimum possible number of visible boxes.
[ "3\n1 2 3\n", "4\n4 2 4 3\n" ]
[ "1\n", "2\n" ]
In the first example it is possible to put box 1 into box 2, and 2 into 3. In the second example Mishka can put box 2 into box 3, and box 4 into box 1.
0
[ { "input": "3\n1 2 3", "output": "1" }, { "input": "4\n4 2 4 3", "output": "2" }, { "input": "10\n58 58 58 58 58 58 58 58 58 58", "output": "10" }, { "input": "10\n86 89 89 86 86 89 86 86 89 89", "output": "5" }, { "input": "100\n981 288 186 186 292 876 341 288 981 360 783 907 292 186 341 292 360 876 360 360 981 398 783 288 292 398 876 981 398 907 783 360 288 981 907 186 360 288 186 981 186 288 907 876 288 907 876 360 341 292 907 783 907 783 292 981 907 292 876 398 783 876 398 341 876 186 288 186 981 341 398 360 907 981 341 186 292 981 292 398 876 783 292 186 360 292 288 292 876 398 288 292 341 288 398 360 360 292 981 360", "output": "14" }, { "input": "1\n1", "output": "1" }, { "input": "1\n9", "output": "1" }, { "input": "1\n5", "output": "1" }, { "input": "1\n2", "output": "1" }, { "input": "1\n131", "output": "1" }, { "input": "9\n1 1 1 1 1 1 1 1 1", "output": "9" }, { "input": "11\n1 1 1 1 1 1 1 1 1 1 1", "output": "11" }, { "input": "8\n1 2 3 4 5 6 7 8", "output": "1" }, { "input": "8\n1 1 1 1 1 1 1 1", "output": "8" }, { "input": "5\n1 1 1 1 1", "output": "5" } ]
1,623,235,640
2,147,483,647
PyPy 3
OK
TESTS
24
155
2,150,400
n=int(input()) a=list(map(int,input().split())) a.sort() d=dict() for i in a: if i not in d.keys(): d[i]=1 else: d[i]+=1 print(max(d.values()))
Title: Boxes Packing Time Limit: None seconds Memory Limit: None megabytes Problem Description: Mishka has got *n* empty boxes. For every *i* (1<=≤<=*i*<=≤<=*n*), *i*-th box is a cube with side length *a**i*. Mishka can put a box *i* into another box *j* if the following conditions are met: - *i*-th box is not put into another box; - *j*-th box doesn't contain any other boxes; - box *i* is smaller than box *j* (*a**i*<=&lt;<=*a**j*). Mishka can put boxes into each other an arbitrary number of times. He wants to minimize the number of visible boxes. A box is called visible iff it is not put into some another box. Help Mishka to determine the minimum possible number of visible boxes! Input Specification: The first line contains one integer *n* (1<=≤<=*n*<=≤<=5000) — the number of boxes Mishka has got. The second line contains *n* integers *a*1, *a*2, ..., *a**n* (1<=≤<=*a**i*<=≤<=109), where *a**i* is the side length of *i*-th box. Output Specification: Print the minimum possible number of visible boxes. Demo Input: ['3\n1 2 3\n', '4\n4 2 4 3\n'] Demo Output: ['1\n', '2\n'] Note: In the first example it is possible to put box 1 into box 2, and 2 into 3. In the second example Mishka can put box 2 into box 3, and box 4 into box 1.
```python n=int(input()) a=list(map(int,input().split())) a.sort() d=dict() for i in a: if i not in d.keys(): d[i]=1 else: d[i]+=1 print(max(d.values())) ```
3
604
B
More Cowbell
PROGRAMMING
1,400
[ "binary search", "greedy" ]
null
null
Kevin Sun wants to move his precious collection of *n* cowbells from Naperthrill to Exeter, where there is actually grass instead of corn. Before moving, he must pack his cowbells into *k* boxes of a fixed size. In order to keep his collection safe during transportation, he won't place more than two cowbells into a single box. Since Kevin wishes to minimize expenses, he is curious about the smallest size box he can use to pack his entire collection. Kevin is a meticulous cowbell collector and knows that the size of his *i*-th (1<=≤<=*i*<=≤<=*n*) cowbell is an integer *s**i*. In fact, he keeps his cowbells sorted by size, so *s**i*<=-<=1<=≤<=*s**i* for any *i*<=&gt;<=1. Also an expert packer, Kevin can fit one or two cowbells into a box of size *s* if and only if the sum of their sizes does not exceed *s*. Given this information, help Kevin determine the smallest *s* for which it is possible to put all of his cowbells into *k* boxes of size *s*.
The first line of the input contains two space-separated integers *n* and *k* (1<=≤<=*n*<=≤<=2·*k*<=≤<=100<=000), denoting the number of cowbells and the number of boxes, respectively. The next line contains *n* space-separated integers *s*1,<=*s*2,<=...,<=*s**n* (1<=≤<=*s*1<=≤<=*s*2<=≤<=...<=≤<=*s**n*<=≤<=1<=000<=000), the sizes of Kevin's cowbells. It is guaranteed that the sizes *s**i* are given in non-decreasing order.
Print a single integer, the smallest *s* for which it is possible for Kevin to put all of his cowbells into *k* boxes of size *s*.
[ "2 1\n2 5\n", "4 3\n2 3 5 9\n", "3 2\n3 5 7\n" ]
[ "7\n", "9\n", "8\n" ]
In the first sample, Kevin must pack his two cowbells into the same box. In the second sample, Kevin can pack together the following sets of cowbells: {2, 3}, {5} and {9}. In the third sample, the optimal solution is {3, 5} and {7}.
1,000
[ { "input": "2 1\n2 5", "output": "7" }, { "input": "4 3\n2 3 5 9", "output": "9" }, { "input": "3 2\n3 5 7", "output": "8" }, { "input": "20 11\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1", "output": "2" }, { "input": "10 10\n3 15 31 61 63 63 68 94 98 100", "output": "100" }, { "input": "100 97\n340 402 415 466 559 565 649 689 727 771 774 776 789 795 973 1088 1212 1293 1429 1514 1587 1599 1929 1997 2278 2529 2656 2677 2839 2894 2951 3079 3237 3250 3556 3568 3569 3578 3615 3641 3673 3892 4142 4418 4515 4766 4846 4916 5225 5269 5352 5460 5472 5635 5732 5886 5941 5976 5984 6104 6113 6402 6409 6460 6550 6563 6925 7006 7289 7401 7441 7451 7709 7731 7742 7750 7752 7827 8101 8154 8376 8379 8432 8534 8578 8630 8706 8814 8882 8972 9041 9053 9109 9173 9473 9524 9547 9775 9791 9983", "output": "9983" }, { "input": "10 9\n7 29 35 38 41 47 54 56 73 74", "output": "74" }, { "input": "1 2342\n12345", "output": "12345" }, { "input": "10 5\n15 15 20 28 38 44 46 52 69 94", "output": "109" }, { "input": "10 9\n6 10 10 32 36 38 69 80 82 93", "output": "93" }, { "input": "10 10\n4 19 22 24 25 43 49 56 78 88", "output": "88" }, { "input": "100 89\n474 532 759 772 803 965 1043 1325 1342 1401 1411 1452 1531 1707 1906 1928 2034 2222 2335 2606 2757 2968 2978 3211 3513 3734 3772 3778 3842 3948 3976 4038 4055 4113 4182 4267 4390 4408 4478 4595 4668 4792 4919 5133 5184 5255 5312 5341 5476 5628 5683 5738 5767 5806 5973 6051 6134 6254 6266 6279 6314 6342 6599 6676 6747 6777 6827 6842 7057 7097 7259 7340 7378 7405 7510 7520 7698 7796 8148 8351 8507 8601 8805 8814 8826 8978 9116 9140 9174 9338 9394 9403 9407 9423 9429 9519 9764 9784 9838 9946", "output": "9946" }, { "input": "100 74\n10 211 323 458 490 592 979 981 1143 1376 1443 1499 1539 1612 1657 1874 2001 2064 2123 2274 2346 2471 2522 2589 2879 2918 2933 2952 3160 3164 3167 3270 3382 3404 3501 3522 3616 3802 3868 3985 4007 4036 4101 4580 4687 4713 4714 4817 4955 5257 5280 5343 5428 5461 5566 5633 5727 5874 5925 6233 6309 6389 6500 6701 6731 6847 6916 7088 7088 7278 7296 7328 7564 7611 7646 7887 7887 8065 8075 8160 8300 8304 8316 8355 8404 8587 8758 8794 8890 9038 9163 9235 9243 9339 9410 9587 9868 9916 9923 9986", "output": "9986" }, { "input": "100 61\n82 167 233 425 432 456 494 507 562 681 683 921 1218 1323 1395 1531 1586 1591 1675 1766 1802 1842 2116 2625 2697 2735 2739 3337 3349 3395 3406 3596 3610 3721 4059 4078 4305 4330 4357 4379 4558 4648 4651 4784 4819 4920 5049 5312 5361 5418 5440 5463 5547 5594 5821 5951 5972 6141 6193 6230 6797 6842 6853 6854 7017 7026 7145 7322 7391 7460 7599 7697 7756 7768 7872 7889 8094 8215 8408 8440 8462 8714 8756 8760 8881 9063 9111 9184 9281 9373 9406 9417 9430 9511 9563 9634 9660 9788 9883 9927", "output": "9927" }, { "input": "100 84\n53 139 150 233 423 570 786 861 995 1017 1072 1196 1276 1331 1680 1692 1739 1748 1826 2067 2280 2324 2368 2389 2607 2633 2760 2782 2855 2996 3030 3093 3513 3536 3557 3594 3692 3707 3823 3832 4009 4047 4088 4095 4408 4537 4565 4601 4784 4878 4935 5029 5252 5322 5389 5407 5511 5567 5857 6182 6186 6198 6280 6290 6353 6454 6458 6567 6843 7166 7216 7257 7261 7375 7378 7539 7542 7762 7771 7797 7980 8363 8606 8612 8663 8801 8808 8823 8918 8975 8997 9240 9245 9259 9356 9755 9759 9760 9927 9970", "output": "9970" }, { "input": "100 50\n130 248 312 312 334 589 702 916 921 1034 1047 1346 1445 1500 1585 1744 1951 2123 2273 2362 2400 2455 2496 2530 2532 2944 3074 3093 3094 3134 3698 3967 4047 4102 4109 4260 4355 4466 4617 4701 4852 4892 4915 4917 4936 4981 4999 5106 5152 5203 5214 5282 5412 5486 5525 5648 5897 5933 5969 6251 6400 6421 6422 6558 6805 6832 6908 6924 6943 6980 7092 7206 7374 7417 7479 7546 7672 7756 7973 8020 8028 8079 8084 8085 8137 8153 8178 8239 8639 8667 8829 9263 9333 9370 9420 9579 9723 9784 9841 9993", "output": "11103" }, { "input": "100 50\n156 182 208 409 496 515 659 761 772 794 827 912 1003 1236 1305 1388 1412 1422 1428 1465 1613 2160 2411 2440 2495 2684 2724 2925 3033 3035 3155 3260 3378 3442 3483 3921 4031 4037 4091 4113 4119 4254 4257 4442 4559 4614 4687 4839 4896 5054 5246 5316 5346 5859 5928 5981 6148 6250 6422 6433 6448 6471 6473 6485 6503 6779 6812 7050 7064 7074 7141 7378 7424 7511 7574 7651 7808 7858 8286 8291 8446 8536 8599 8628 8636 8768 8900 8981 9042 9055 9114 9146 9186 9411 9480 9590 9681 9749 9757 9983", "output": "10676" }, { "input": "100 50\n145 195 228 411 577 606 629 775 1040 1040 1058 1187 1307 1514 1784 1867 1891 2042 2042 2236 2549 2555 2560 2617 2766 2807 2829 2917 3070 3072 3078 3095 3138 3147 3149 3196 3285 3287 3309 3435 3531 3560 3563 3769 3830 3967 4081 4158 4315 4387 4590 4632 4897 4914 5128 5190 5224 5302 5402 5416 5420 5467 5517 5653 5820 5862 5941 6053 6082 6275 6292 6316 6490 6530 6619 6632 6895 7071 7234 7323 7334 7412 7626 7743 8098 8098 8136 8158 8264 8616 8701 8718 8770 8803 8809 8983 9422 9530 9811 9866", "output": "10011" }, { "input": "100 50\n56 298 387 456 518 532 589 792 870 1041 1055 1122 1141 1166 1310 1329 1523 1548 1626 1730 1780 1833 1850 1911 2006 2157 2303 2377 2403 2442 2450 2522 2573 2822 2994 3200 3238 3252 3280 3311 3345 3422 3429 3506 3526 3617 3686 3791 4134 4467 4525 4614 4633 4792 5017 5220 5243 5338 5445 5536 5639 5675 5763 5875 6129 6220 6228 6287 6385 6616 6789 6822 6940 6959 6985 7297 7304 7391 7443 7580 7824 7884 7981 8055 8063 8223 8280 8322 8346 8473 8688 8986 9087 9323 9477 9489 9518 9621 9699 9804", "output": "10009" }, { "input": "100 49990\n221 257 543 613 818 855 884 1195 1233 1293 1327 1474 1567 1568 1728 1789 1809 1957 1994 2198 2217 2289 2298 2360 2441 2454 2517 2519 2597 2652 2909 2958 2970 3271 3310 3409 3450 3646 3950 3965 4016 4116 4134 4159 4462 4624 4631 4783 4804 5031 5276 5538 5729 5845 5880 5894 5959 5961 6028 6105 6184 6335 6370 6523 6532 6677 6762 6868 6998 7066 7245 7360 7490 7492 7645 7677 7786 7804 8038 8131 8207 8400 8507 8556 8575 8599 8673 8676 8712 8816 9123 9158 9216 9369 9628 9707 9768 9800 9876 9934", "output": "9934" }, { "input": "1 50000\n2", "output": "2" }, { "input": "1 40000\n23456", "output": "23456" }, { "input": "1 2\n10", "output": "10" }, { "input": "1 1\n1", "output": "1" }, { "input": "2 2\n2 3", "output": "3" }, { "input": "4 2\n1 2 8 9", "output": "10" } ]
1,594,863,078
2,147,483,647
PyPy 3
COMPILATION_ERROR
TESTS
0
0
0
/** * winners never quit **/ #include <bits/stdc++.h> using namespace std; #define pb push_back #define pp pop_back #define mp make_pair typedef long long Long; void FastIO(){ ios::sync_with_stdio(0); cin.tie(0);cout.tie(0); } const int N = 1e5; int main() { FastIO(); int tc, ca = 0; int n, k; cin >> n >> k; vector <int> v(n); for (int i = 0;i < n;i++){ cin >> v[i]; } int ans = v[n-1]; int L = 0; int R = n - ((k+k)-n) - 1; while (L < R){ ans = max(ans, v[L]+v[R]); L++; R--; } cout << ans << '\n'; return 0; }
Title: More Cowbell Time Limit: None seconds Memory Limit: None megabytes Problem Description: Kevin Sun wants to move his precious collection of *n* cowbells from Naperthrill to Exeter, where there is actually grass instead of corn. Before moving, he must pack his cowbells into *k* boxes of a fixed size. In order to keep his collection safe during transportation, he won't place more than two cowbells into a single box. Since Kevin wishes to minimize expenses, he is curious about the smallest size box he can use to pack his entire collection. Kevin is a meticulous cowbell collector and knows that the size of his *i*-th (1<=≤<=*i*<=≤<=*n*) cowbell is an integer *s**i*. In fact, he keeps his cowbells sorted by size, so *s**i*<=-<=1<=≤<=*s**i* for any *i*<=&gt;<=1. Also an expert packer, Kevin can fit one or two cowbells into a box of size *s* if and only if the sum of their sizes does not exceed *s*. Given this information, help Kevin determine the smallest *s* for which it is possible to put all of his cowbells into *k* boxes of size *s*. Input Specification: The first line of the input contains two space-separated integers *n* and *k* (1<=≤<=*n*<=≤<=2·*k*<=≤<=100<=000), denoting the number of cowbells and the number of boxes, respectively. The next line contains *n* space-separated integers *s*1,<=*s*2,<=...,<=*s**n* (1<=≤<=*s*1<=≤<=*s*2<=≤<=...<=≤<=*s**n*<=≤<=1<=000<=000), the sizes of Kevin's cowbells. It is guaranteed that the sizes *s**i* are given in non-decreasing order. Output Specification: Print a single integer, the smallest *s* for which it is possible for Kevin to put all of his cowbells into *k* boxes of size *s*. Demo Input: ['2 1\n2 5\n', '4 3\n2 3 5 9\n', '3 2\n3 5 7\n'] Demo Output: ['7\n', '9\n', '8\n'] Note: In the first sample, Kevin must pack his two cowbells into the same box. In the second sample, Kevin can pack together the following sets of cowbells: {2, 3}, {5} and {9}. In the third sample, the optimal solution is {3, 5} and {7}.
```python /** * winners never quit **/ #include <bits/stdc++.h> using namespace std; #define pb push_back #define pp pop_back #define mp make_pair typedef long long Long; void FastIO(){ ios::sync_with_stdio(0); cin.tie(0);cout.tie(0); } const int N = 1e5; int main() { FastIO(); int tc, ca = 0; int n, k; cin >> n >> k; vector <int> v(n); for (int i = 0;i < n;i++){ cin >> v[i]; } int ans = v[n-1]; int L = 0; int R = n - ((k+k)-n) - 1; while (L < R){ ans = max(ans, v[L]+v[R]); L++; R--; } cout << ans << '\n'; return 0; } ```
-1
810
B
Summer sell-off
PROGRAMMING
1,300
[ "greedy", "sortings" ]
null
null
Summer holidays! Someone is going on trips, someone is visiting grandparents, but someone is trying to get a part-time job. This summer Noora decided that she wants to earn some money, and took a job in a shop as an assistant. Shop, where Noora is working, has a plan on the following *n* days. For each day sales manager knows exactly, that in *i*-th day *k**i* products will be put up for sale and exactly *l**i* clients will come to the shop that day. Also, the manager is sure, that everyone, who comes to the shop, buys exactly one product or, if there aren't any left, leaves the shop without buying anything. Moreover, due to the short shelf-life of the products, manager established the following rule: if some part of the products left on the shelves at the end of the day, that products aren't kept on the next day and are sent to the dump. For advertising purposes manager offered to start a sell-out in the shop. He asked Noora to choose any *f* days from *n* next for sell-outs. On each of *f* chosen days the number of products were put up for sale would be doubled. Thus, if on *i*-th day shop planned to put up for sale *k**i* products and Noora has chosen this day for sell-out, shelves of the shop would keep 2·*k**i* products. Consequently, there is an opportunity to sell two times more products on days of sell-out. Noora's task is to choose *f* days to maximize total number of sold products. She asks you to help her with such a difficult problem.
The first line contains two integers *n* and *f* (1<=≤<=*n*<=≤<=105,<=0<=≤<=*f*<=≤<=*n*) denoting the number of days in shop's plan and the number of days that Noora has to choose for sell-out. Each line of the following *n* subsequent lines contains two integers *k**i*,<=*l**i* (0<=≤<=*k**i*,<=*l**i*<=≤<=109) denoting the number of products on the shelves of the shop on the *i*-th day and the number of clients that will come to the shop on *i*-th day.
Print a single integer denoting the maximal number of products that shop can sell.
[ "4 2\n2 1\n3 5\n2 3\n1 5\n", "4 1\n0 2\n0 3\n3 5\n0 6\n" ]
[ "10", "5" ]
In the first example we can choose days with numbers 2 and 4 for sell-out. In this case new numbers of products for sale would be equal to [2, 6, 2, 2] respectively. So on the first day shop will sell 1 product, on the second — 5, on the third — 2, on the fourth — 2. In total 1 + 5 + 2 + 2 = 10 product units. In the second example it is possible to sell 5 products, if you choose third day for sell-out.
1,000
[ { "input": "4 2\n2 1\n3 5\n2 3\n1 5", "output": "10" }, { "input": "4 1\n0 2\n0 3\n3 5\n0 6", "output": "5" }, { "input": "1 1\n5 8", "output": "8" }, { "input": "2 1\n8 12\n6 11", "output": "19" }, { "input": "2 1\n6 7\n5 7", "output": "13" }, { "input": "2 1\n5 7\n6 7", "output": "13" }, { "input": "2 1\n7 8\n3 6", "output": "13" }, { "input": "2 1\n9 10\n5 8", "output": "17" }, { "input": "2 1\n3 6\n7 8", "output": "13" }, { "input": "1 0\n10 20", "output": "10" }, { "input": "2 1\n99 100\n3 6", "output": "105" }, { "input": "4 2\n2 10\n3 10\n9 9\n5 10", "output": "27" }, { "input": "2 1\n3 4\n2 8", "output": "7" }, { "input": "50 2\n74 90\n68 33\n49 88\n52 13\n73 21\n77 63\n27 62\n8 52\n60 57\n42 83\n98 15\n79 11\n77 46\n55 91\n72 100\n70 86\n50 51\n57 39\n20 54\n64 95\n66 22\n79 64\n31 28\n11 89\n1 36\n13 4\n75 62\n16 62\n100 35\n43 96\n97 54\n86 33\n62 63\n94 24\n19 6\n20 58\n38 38\n11 76\n70 40\n44 24\n32 96\n28 100\n62 45\n41 68\n90 52\n16 0\n98 32\n81 79\n67 82\n28 2", "output": "1889" }, { "input": "2 1\n10 5\n2 4", "output": "9" }, { "input": "2 1\n50 51\n30 40", "output": "90" }, { "input": "3 2\n5 10\n5 10\n7 9", "output": "27" }, { "input": "3 1\n1000 1000\n50 100\n2 2", "output": "1102" }, { "input": "2 1\n2 4\n12 12", "output": "16" }, { "input": "2 1\n4 4\n1 2", "output": "6" }, { "input": "2 1\n4000 4000\n1 2", "output": "4002" }, { "input": "2 1\n5 6\n2 4", "output": "9" }, { "input": "3 2\n10 10\n10 10\n1 2", "output": "22" }, { "input": "10 5\n9 1\n11 1\n12 1\n13 1\n14 1\n2 4\n2 4\n2 4\n2 4\n2 4", "output": "25" }, { "input": "2 1\n30 30\n10 20", "output": "50" }, { "input": "1 1\n1 1", "output": "1" }, { "input": "2 1\n10 2\n2 10", "output": "6" }, { "input": "2 1\n4 5\n3 9", "output": "10" }, { "input": "2 1\n100 100\n5 10", "output": "110" }, { "input": "2 1\n14 28\n15 28", "output": "43" }, { "input": "2 1\n100 1\n20 40", "output": "41" }, { "input": "2 1\n5 10\n6 10", "output": "16" }, { "input": "2 1\n29 30\n10 20", "output": "49" }, { "input": "1 0\n12 12", "output": "12" }, { "input": "2 1\n7 8\n4 7", "output": "14" }, { "input": "2 1\n5 5\n2 4", "output": "9" }, { "input": "2 1\n1 2\n228 2", "output": "4" }, { "input": "2 1\n5 10\n100 20", "output": "30" }, { "input": "2 1\n1000 1001\n2 4", "output": "1004" }, { "input": "2 1\n3 9\n7 7", "output": "13" }, { "input": "2 0\n1 1\n1 1", "output": "2" }, { "input": "4 1\n10 10\n10 10\n10 10\n4 6", "output": "36" }, { "input": "18 13\n63 8\n87 100\n18 89\n35 29\n66 81\n27 85\n64 51\n60 52\n32 94\n74 22\n86 31\n43 78\n12 2\n36 2\n67 23\n2 16\n78 71\n34 64", "output": "772" }, { "input": "2 1\n10 18\n17 19", "output": "35" }, { "input": "3 0\n1 1\n1 1\n1 1", "output": "3" }, { "input": "2 1\n4 7\n8 9", "output": "15" }, { "input": "4 2\n2 10\n3 10\n9 10\n5 10", "output": "27" }, { "input": "2 1\n5 7\n3 6", "output": "11" }, { "input": "2 1\n3 4\n12 12", "output": "16" }, { "input": "2 1\n10 11\n9 20", "output": "28" }, { "input": "2 1\n7 8\n2 4", "output": "11" }, { "input": "2 1\n5 10\n7 10", "output": "17" }, { "input": "4 2\n2 10\n3 10\n5 10\n9 10", "output": "27" }, { "input": "2 1\n99 100\n5 10", "output": "109" }, { "input": "4 2\n2 10\n3 10\n5 10\n9 9", "output": "27" }, { "input": "2 1\n3 7\n5 7", "output": "11" }, { "input": "2 1\n10 10\n3 6", "output": "16" }, { "input": "2 1\n100 1\n2 4", "output": "5" }, { "input": "5 0\n1 1\n1 1\n1 1\n1 1\n1 1", "output": "5" }, { "input": "3 1\n3 7\n4 5\n2 3", "output": "12" }, { "input": "2 1\n3 9\n7 8", "output": "13" }, { "input": "2 1\n10 2\n3 4", "output": "6" }, { "input": "2 1\n40 40\n3 5", "output": "45" }, { "input": "2 1\n5 3\n1 2", "output": "5" }, { "input": "10 5\n9 5\n10 5\n11 5\n12 5\n13 5\n2 4\n2 4\n2 4\n2 4\n2 4", "output": "45" }, { "input": "3 1\n1 5\n1 5\n4 4", "output": "7" }, { "input": "4 0\n1 1\n1 1\n1 1\n1 1", "output": "4" }, { "input": "4 1\n1000 1001\n1000 1001\n2 4\n1 2", "output": "2005" }, { "input": "2 1\n15 30\n50 59", "output": "80" }, { "input": "2 1\n8 8\n3 5", "output": "13" }, { "input": "2 1\n4 5\n2 5", "output": "8" }, { "input": "3 2\n3 3\n1 2\n1 2", "output": "7" }, { "input": "3 1\n2 5\n2 5\n4 4", "output": "10" }, { "input": "2 1\n3 10\n50 51", "output": "56" }, { "input": "4 2\n2 4\n2 4\n9 10\n9 10", "output": "26" }, { "input": "2 1\n3 5\n8 8", "output": "13" }, { "input": "2 1\n100 150\n70 150", "output": "240" }, { "input": "2 1\n4 5\n3 6", "output": "10" }, { "input": "2 1\n20 10\n3 5", "output": "15" }, { "input": "15 13\n76167099 92301116\n83163126 84046805\n45309500 65037149\n29982002 77381688\n76738161 52935441\n37889502 25466134\n55955619 14197941\n31462620 12999429\n64648384 8824773\n3552934 68992494\n2823376 9338427\n86832070 3763091\n67753633 2162190\n302887 92011825\n84894984 410533", "output": "435467000" }, { "input": "2 1\n8 7\n3 6", "output": "13" }, { "input": "2 1\n7 8\n3 5", "output": "12" }, { "input": "2 1\n10 10\n1 3", "output": "12" }, { "input": "2 1\n9 10\n2 4", "output": "13" }, { "input": "3 1\n10 11\n12 13\n8 10", "output": "32" }, { "input": "2 1\n5 10\n7 7", "output": "17" }, { "input": "4 2\n90 91\n2 10\n2 10\n2 10", "output": "100" }, { "input": "2 1\n2 4\n4 4", "output": "8" }, { "input": "2 1\n2 3\n4 3", "output": "6" }, { "input": "2 1\n40 45\n50 52", "output": "95" }, { "input": "3 1\n1 4\n2 4\n3 4", "output": "8" }, { "input": "2 1\n1 2\n1000 1000", "output": "1002" }, { "input": "2 1\n80 100\n70 95", "output": "175" } ]
1,674,916,327
2,147,483,647
PyPy 3
OK
TESTS
159
155
9,216,000
import sys, os, io input = io.BytesIO(os.read(0, os.fstat(0).st_size)).readline n, f = map(int, input().split()) ans = 0 u = [] for _ in range(n): k, l = map(int, input().split()) x, y = min(k, l), min(2 * k, l) ans += x u.append(y - x) u.sort(reverse = True) ans += sum(u[:f]) print(ans)
Title: Summer sell-off Time Limit: None seconds Memory Limit: None megabytes Problem Description: Summer holidays! Someone is going on trips, someone is visiting grandparents, but someone is trying to get a part-time job. This summer Noora decided that she wants to earn some money, and took a job in a shop as an assistant. Shop, where Noora is working, has a plan on the following *n* days. For each day sales manager knows exactly, that in *i*-th day *k**i* products will be put up for sale and exactly *l**i* clients will come to the shop that day. Also, the manager is sure, that everyone, who comes to the shop, buys exactly one product or, if there aren't any left, leaves the shop without buying anything. Moreover, due to the short shelf-life of the products, manager established the following rule: if some part of the products left on the shelves at the end of the day, that products aren't kept on the next day and are sent to the dump. For advertising purposes manager offered to start a sell-out in the shop. He asked Noora to choose any *f* days from *n* next for sell-outs. On each of *f* chosen days the number of products were put up for sale would be doubled. Thus, if on *i*-th day shop planned to put up for sale *k**i* products and Noora has chosen this day for sell-out, shelves of the shop would keep 2·*k**i* products. Consequently, there is an opportunity to sell two times more products on days of sell-out. Noora's task is to choose *f* days to maximize total number of sold products. She asks you to help her with such a difficult problem. Input Specification: The first line contains two integers *n* and *f* (1<=≤<=*n*<=≤<=105,<=0<=≤<=*f*<=≤<=*n*) denoting the number of days in shop's plan and the number of days that Noora has to choose for sell-out. Each line of the following *n* subsequent lines contains two integers *k**i*,<=*l**i* (0<=≤<=*k**i*,<=*l**i*<=≤<=109) denoting the number of products on the shelves of the shop on the *i*-th day and the number of clients that will come to the shop on *i*-th day. Output Specification: Print a single integer denoting the maximal number of products that shop can sell. Demo Input: ['4 2\n2 1\n3 5\n2 3\n1 5\n', '4 1\n0 2\n0 3\n3 5\n0 6\n'] Demo Output: ['10', '5'] Note: In the first example we can choose days with numbers 2 and 4 for sell-out. In this case new numbers of products for sale would be equal to [2, 6, 2, 2] respectively. So on the first day shop will sell 1 product, on the second — 5, on the third — 2, on the fourth — 2. In total 1 + 5 + 2 + 2 = 10 product units. In the second example it is possible to sell 5 products, if you choose third day for sell-out.
```python import sys, os, io input = io.BytesIO(os.read(0, os.fstat(0).st_size)).readline n, f = map(int, input().split()) ans = 0 u = [] for _ in range(n): k, l = map(int, input().split()) x, y = min(k, l), min(2 * k, l) ans += x u.append(y - x) u.sort(reverse = True) ans += sum(u[:f]) print(ans) ```
3
584
A
Olesya and Rodion
PROGRAMMING
1,000
[ "math" ]
null
null
Olesya loves numbers consisting of *n* digits, and Rodion only likes numbers that are divisible by *t*. Find some number that satisfies both of them. Your task is: given the *n* and *t* print an integer strictly larger than zero consisting of *n* digits that is divisible by *t*. If such number doesn't exist, print <=-<=1.
The single line contains two numbers, *n* and *t* (1<=≤<=*n*<=≤<=100, 2<=≤<=*t*<=≤<=10) — the length of the number and the number it should be divisible by.
Print one such positive number without leading zeroes, — the answer to the problem, or <=-<=1, if such number doesn't exist. If there are multiple possible answers, you are allowed to print any of them.
[ "3 2\n" ]
[ "712" ]
none
500
[ { "input": "3 2", "output": "222" }, { "input": "2 2", "output": "22" }, { "input": "4 3", "output": "3333" }, { "input": "5 3", "output": "33333" }, { "input": "10 7", "output": "7777777777" }, { "input": "2 9", "output": "99" }, { "input": "18 8", "output": "888888888888888888" }, { "input": "1 5", "output": "5" }, { "input": "1 10", "output": "-1" }, { "input": "100 5", "output": "5555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555" }, { "input": "10 2", "output": "2222222222" }, { "input": "18 10", "output": "111111111111111110" }, { "input": "1 9", "output": "9" }, { "input": "7 6", "output": "6666666" }, { "input": "4 4", "output": "4444" }, { "input": "14 7", "output": "77777777777777" }, { "input": "3 8", "output": "888" }, { "input": "1 3", "output": "3" }, { "input": "2 8", "output": "88" }, { "input": "3 8", "output": "888" }, { "input": "4 3", "output": "3333" }, { "input": "5 9", "output": "99999" }, { "input": "4 8", "output": "8888" }, { "input": "3 4", "output": "444" }, { "input": "9 4", "output": "444444444" }, { "input": "8 10", "output": "11111110" }, { "input": "1 6", "output": "6" }, { "input": "20 3", "output": "33333333333333333333" }, { "input": "15 10", "output": "111111111111110" }, { "input": "31 4", "output": "4444444444444444444444444444444" }, { "input": "18 9", "output": "999999999999999999" }, { "input": "72 4", "output": "444444444444444444444444444444444444444444444444444444444444444444444444" }, { "input": "76 8", "output": "8888888888888888888888888888888888888888888888888888888888888888888888888888" }, { "input": "12 5", "output": "555555555555" }, { "input": "54 5", "output": "555555555555555555555555555555555555555555555555555555" }, { "input": "96 10", "output": "111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111110" }, { "input": "15 9", "output": "999999999999999" }, { "input": "100 2", "output": "2222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222" }, { "input": "99 3", "output": "333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333" }, { "input": "98 4", "output": "44444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444" }, { "input": "97 5", "output": "5555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555" }, { "input": "100 6", "output": "6666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666" }, { "input": "99 7", "output": "777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777" }, { "input": "98 8", "output": "88888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888" }, { "input": "97 9", "output": "9999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999" }, { "input": "100 10", "output": "1111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111110" }, { "input": "3 10", "output": "110" }, { "input": "2 4", "output": "44" }, { "input": "2 10", "output": "10" }, { "input": "10 10", "output": "1111111110" }, { "input": "4 10", "output": "1110" }, { "input": "25 10", "output": "1111111111111111111111110" }, { "input": "50 10", "output": "11111111111111111111111111111111111111111111111110" }, { "input": "5 10", "output": "11110" }, { "input": "99 10", "output": "111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111110" }, { "input": "100 10", "output": "1111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111110" }, { "input": "1 2", "output": "2" }, { "input": "20 10", "output": "11111111111111111110" }, { "input": "99 7", "output": "777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777" }, { "input": "89 5", "output": "55555555555555555555555555555555555555555555555555555555555555555555555555555555555555555" }, { "input": "6 10", "output": "111110" }, { "input": "3 8", "output": "888" }, { "input": "1 9", "output": "9" }, { "input": "1 4", "output": "4" }, { "input": "100 7", "output": "7777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777" } ]
1,672,599,615
2,147,483,647
PyPy 3-64
WRONG_ANSWER
TESTS
0
46
0
n, t = map(int, input().split()) if t == 10 and n < 2: print(-1) elif t == 10 and n >= 2: print(1 + int(str("".join(["0"] * n)))) else: print(str(t) + str("".join(["0"] * n)))
Title: Olesya and Rodion Time Limit: None seconds Memory Limit: None megabytes Problem Description: Olesya loves numbers consisting of *n* digits, and Rodion only likes numbers that are divisible by *t*. Find some number that satisfies both of them. Your task is: given the *n* and *t* print an integer strictly larger than zero consisting of *n* digits that is divisible by *t*. If such number doesn't exist, print <=-<=1. Input Specification: The single line contains two numbers, *n* and *t* (1<=≤<=*n*<=≤<=100, 2<=≤<=*t*<=≤<=10) — the length of the number and the number it should be divisible by. Output Specification: Print one such positive number without leading zeroes, — the answer to the problem, or <=-<=1, if such number doesn't exist. If there are multiple possible answers, you are allowed to print any of them. Demo Input: ['3 2\n'] Demo Output: ['712'] Note: none
```python n, t = map(int, input().split()) if t == 10 and n < 2: print(-1) elif t == 10 and n >= 2: print(1 + int(str("".join(["0"] * n)))) else: print(str(t) + str("".join(["0"] * n))) ```
0
1
A
Theatre Square
PROGRAMMING
1,000
[ "math" ]
A. Theatre Square
1
256
Theatre Square in the capital city of Berland has a rectangular shape with the size *n*<=×<=*m* meters. On the occasion of the city's anniversary, a decision was taken to pave the Square with square granite flagstones. Each flagstone is of the size *a*<=×<=*a*. What is the least number of flagstones needed to pave the Square? It's allowed to cover the surface larger than the Theatre Square, but the Square has to be covered. It's not allowed to break the flagstones. The sides of flagstones should be parallel to the sides of the Square.
The input contains three positive integer numbers in the first line: *n*,<=<=*m* and *a* (1<=≤<=<=*n*,<=*m*,<=*a*<=≤<=109).
Write the needed number of flagstones.
[ "6 6 4\n" ]
[ "4\n" ]
none
0
[ { "input": "6 6 4", "output": "4" }, { "input": "1 1 1", "output": "1" }, { "input": "2 1 1", "output": "2" }, { "input": "1 2 1", "output": "2" }, { "input": "2 2 1", "output": "4" }, { "input": "2 1 2", "output": "1" }, { "input": "1 1 3", "output": "1" }, { "input": "2 3 4", "output": "1" }, { "input": "1000000000 1000000000 1", "output": "1000000000000000000" }, { "input": "12 13 4", "output": "12" }, { "input": "222 332 5", "output": "3015" }, { "input": "1000 1000 10", "output": "10000" }, { "input": "1001 1000 10", "output": "10100" }, { "input": "100 10001 1000000000", "output": "1" }, { "input": "1000000000 1000000000 1000000000", "output": "1" }, { "input": "1000000000 1000000000 999999999", "output": "4" }, { "input": "1000000000 1000000000 192", "output": "27126743055556" }, { "input": "1000000000 987654321 1", "output": "987654321000000000" }, { "input": "456784567 1000000000 51", "output": "175618850864484" }, { "input": "39916800 134217728 40320", "output": "3295710" } ]
1,669,390,134
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
1
31
0
a,b,c=map(int,input().split()) q=a//c if a%c!=0: q+=1 q1=b//c if b%c!=0: q1+=1 print(q+q1)
Title: Theatre Square Time Limit: 1 seconds Memory Limit: 256 megabytes Problem Description: Theatre Square in the capital city of Berland has a rectangular shape with the size *n*<=×<=*m* meters. On the occasion of the city's anniversary, a decision was taken to pave the Square with square granite flagstones. Each flagstone is of the size *a*<=×<=*a*. What is the least number of flagstones needed to pave the Square? It's allowed to cover the surface larger than the Theatre Square, but the Square has to be covered. It's not allowed to break the flagstones. The sides of flagstones should be parallel to the sides of the Square. Input Specification: The input contains three positive integer numbers in the first line: *n*,<=<=*m* and *a* (1<=≤<=<=*n*,<=*m*,<=*a*<=≤<=109). Output Specification: Write the needed number of flagstones. Demo Input: ['6 6 4\n'] Demo Output: ['4\n'] Note: none
```python a,b,c=map(int,input().split()) q=a//c if a%c!=0: q+=1 q1=b//c if b%c!=0: q1+=1 print(q+q1) ```
0
370
A
Rook, Bishop and King
PROGRAMMING
1,100
[ "graphs", "math", "shortest paths" ]
null
null
Little Petya is learning to play chess. He has already learned how to move a king, a rook and a bishop. Let us remind you the rules of moving chess pieces. A chessboard is 64 square fields organized into an 8<=×<=8 table. A field is represented by a pair of integers (*r*,<=*c*) — the number of the row and the number of the column (in a classical game the columns are traditionally indexed by letters). Each chess piece takes up exactly one field. To make a move is to move a chess piece, the pieces move by the following rules: - A rook moves any number of fields horizontally or vertically. - A bishop moves any number of fields diagonally. - A king moves one field in any direction — horizontally, vertically or diagonally. Petya is thinking about the following problem: what minimum number of moves is needed for each of these pieces to move from field (*r*1,<=*c*1) to field (*r*2,<=*c*2)? At that, we assume that there are no more pieces besides this one on the board. Help him solve this problem.
The input contains four integers *r*1,<=*c*1,<=*r*2,<=*c*2 (1<=≤<=*r*1,<=*c*1,<=*r*2,<=*c*2<=≤<=8) — the coordinates of the starting and the final field. The starting field doesn't coincide with the final one. You can assume that the chessboard rows are numbered from top to bottom 1 through 8, and the columns are numbered from left to right 1 through 8.
Print three space-separated integers: the minimum number of moves the rook, the bishop and the king (in this order) is needed to move from field (*r*1,<=*c*1) to field (*r*2,<=*c*2). If a piece cannot make such a move, print a 0 instead of the corresponding number.
[ "4 3 1 6\n", "5 5 5 6\n" ]
[ "2 1 3\n", "1 0 1\n" ]
none
500
[ { "input": "4 3 1 6", "output": "2 1 3" }, { "input": "5 5 5 6", "output": "1 0 1" }, { "input": "1 1 8 8", "output": "2 1 7" }, { "input": "1 1 8 1", "output": "1 0 7" }, { "input": "1 1 1 8", "output": "1 0 7" }, { "input": "8 1 1 1", "output": "1 0 7" }, { "input": "8 1 1 8", "output": "2 1 7" }, { "input": "7 7 6 6", "output": "2 1 1" }, { "input": "8 1 8 8", "output": "1 0 7" }, { "input": "1 8 1 1", "output": "1 0 7" }, { "input": "1 8 8 1", "output": "2 1 7" }, { "input": "1 8 8 8", "output": "1 0 7" }, { "input": "8 8 1 1", "output": "2 1 7" }, { "input": "8 8 1 8", "output": "1 0 7" }, { "input": "8 8 8 1", "output": "1 0 7" }, { "input": "1 3 1 6", "output": "1 0 3" }, { "input": "1 3 1 4", "output": "1 0 1" }, { "input": "1 3 1 5", "output": "1 2 2" }, { "input": "3 3 2 4", "output": "2 1 1" }, { "input": "3 3 1 5", "output": "2 1 2" }, { "input": "1 6 2 1", "output": "2 2 5" }, { "input": "1 5 6 4", "output": "2 2 5" }, { "input": "1 3 3 7", "output": "2 2 4" }, { "input": "1 1 8 1", "output": "1 0 7" }, { "input": "1 7 5 4", "output": "2 0 4" }, { "input": "1 5 2 7", "output": "2 0 2" }, { "input": "1 4 6 2", "output": "2 0 5" }, { "input": "1 2 3 5", "output": "2 0 3" }, { "input": "1 8 8 7", "output": "2 2 7" }, { "input": "6 5 6 2", "output": "1 0 3" }, { "input": "6 3 3 5", "output": "2 0 3" }, { "input": "6 1 7 8", "output": "2 2 7" }, { "input": "1 2 3 2", "output": "1 2 2" }, { "input": "3 8 7 2", "output": "2 2 6" }, { "input": "4 2 6 4", "output": "2 1 2" }, { "input": "1 1 1 3", "output": "1 2 2" }, { "input": "6 8 8 6", "output": "2 1 2" }, { "input": "6 7 4 1", "output": "2 2 6" }, { "input": "6 5 1 4", "output": "2 2 5" }, { "input": "3 2 7 6", "output": "2 1 4" }, { "input": "3 8 4 1", "output": "2 2 7" }, { "input": "3 6 1 4", "output": "2 1 2" } ]
1,629,489,550
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
2
61
6,963,200
r1, c1, r2, c2 = map(int, input().split()) res = [] if r1 == c1 == r2 == c2: print("0 0 0") else: if r1 == r2 or c1 == c2: ro = 1 res.append(ro) else: ro = 2 res.append(ro) if (r1+c1) % 2 == 0 and (r1+c1) % 2 == 0: bi = 0 res.append(bi) elif r1 - c1 == r2 - c2 or r1 + c1 == r2 + c2: bi = 1 res.append(bi) else: bi = 2 res.append(bi) #king king = max(abs(r1-r2),abs(c1-c2)) res.append(king) # rei se move igual um rook ou bisshop # se a posição destino forma um trinagulo é mlehor mover como bishop # na horizontal se move em abs(c1-c2) movimentos, e na vertical bs(r1-r2) #movimento diagonal da o mesmo valor, caso esteja ja no caminho # se precisa dos dois movimentos, epga o maior de cada no abs print(*res, end = ' ')
Title: Rook, Bishop and King Time Limit: None seconds Memory Limit: None megabytes Problem Description: Little Petya is learning to play chess. He has already learned how to move a king, a rook and a bishop. Let us remind you the rules of moving chess pieces. A chessboard is 64 square fields organized into an 8<=×<=8 table. A field is represented by a pair of integers (*r*,<=*c*) — the number of the row and the number of the column (in a classical game the columns are traditionally indexed by letters). Each chess piece takes up exactly one field. To make a move is to move a chess piece, the pieces move by the following rules: - A rook moves any number of fields horizontally or vertically. - A bishop moves any number of fields diagonally. - A king moves one field in any direction — horizontally, vertically or diagonally. Petya is thinking about the following problem: what minimum number of moves is needed for each of these pieces to move from field (*r*1,<=*c*1) to field (*r*2,<=*c*2)? At that, we assume that there are no more pieces besides this one on the board. Help him solve this problem. Input Specification: The input contains four integers *r*1,<=*c*1,<=*r*2,<=*c*2 (1<=≤<=*r*1,<=*c*1,<=*r*2,<=*c*2<=≤<=8) — the coordinates of the starting and the final field. The starting field doesn't coincide with the final one. You can assume that the chessboard rows are numbered from top to bottom 1 through 8, and the columns are numbered from left to right 1 through 8. Output Specification: Print three space-separated integers: the minimum number of moves the rook, the bishop and the king (in this order) is needed to move from field (*r*1,<=*c*1) to field (*r*2,<=*c*2). If a piece cannot make such a move, print a 0 instead of the corresponding number. Demo Input: ['4 3 1 6\n', '5 5 5 6\n'] Demo Output: ['2 1 3\n', '1 0 1\n'] Note: none
```python r1, c1, r2, c2 = map(int, input().split()) res = [] if r1 == c1 == r2 == c2: print("0 0 0") else: if r1 == r2 or c1 == c2: ro = 1 res.append(ro) else: ro = 2 res.append(ro) if (r1+c1) % 2 == 0 and (r1+c1) % 2 == 0: bi = 0 res.append(bi) elif r1 - c1 == r2 - c2 or r1 + c1 == r2 + c2: bi = 1 res.append(bi) else: bi = 2 res.append(bi) #king king = max(abs(r1-r2),abs(c1-c2)) res.append(king) # rei se move igual um rook ou bisshop # se a posição destino forma um trinagulo é mlehor mover como bishop # na horizontal se move em abs(c1-c2) movimentos, e na vertical bs(r1-r2) #movimento diagonal da o mesmo valor, caso esteja ja no caminho # se precisa dos dois movimentos, epga o maior de cada no abs print(*res, end = ' ') ```
0
180
C
Letter
PROGRAMMING
1,400
[ "dp" ]
null
null
Patrick has just finished writing a message to his sweetheart Stacey when he noticed that the message didn't look fancy. Patrick was nervous while writing the message, so some of the letters there were lowercase and some of them were uppercase. Patrick believes that a message is fancy if any uppercase letter stands to the left of any lowercase one. In other words, this rule describes the strings where first go zero or more uppercase letters, and then — zero or more lowercase letters. To make the message fancy, Patrick can erase some letter and add the same letter in the same place in the opposite case (that is, he can replace an uppercase letter with the lowercase one and vice versa). Patrick got interested in the following question: what minimum number of actions do we need to make a message fancy? Changing a letter's case in the message counts as one action. Patrick cannot perform any other actions.
The only line of the input contains a non-empty string consisting of uppercase and lowercase letters. The string's length does not exceed 105.
Print a single number — the least number of actions needed to make the message fancy.
[ "PRuvetSTAaYA\n", "OYPROSTIYAOPECHATALSYAPRIVETSTASYA\n", "helloworld\n" ]
[ "5\n", "0\n", "0\n" ]
none
0
[ { "input": "PRuvetSTAaYA", "output": "5" }, { "input": "OYPROSTIYAOPECHATALSYAPRIVETSTASYA", "output": "0" }, { "input": "helloworld", "output": "0" }, { "input": "P", "output": "0" }, { "input": "t", "output": "0" }, { "input": "XdJ", "output": "1" }, { "input": "FSFlNEelYY", "output": "3" }, { "input": "lgtyasficu", "output": "0" }, { "input": "WYKUDTDDBT", "output": "0" }, { "input": "yysxwlyqboatikfnpxczmpijziiojbvadlfozjqldssffcxdegyxfrvohoxvgsrvlzjlkcuffoeisrpvagxtbkapkpzcafadzzjd", "output": "0" }, { "input": "mnAkOBuKxaiJwXhKnlcCvjxYXGXDoIqfUYkiLrdSYWhMemgWFzsgpoKOtHqooxbLYFuABWQSXuHdbyPVWyrkeEfqOsnEBikiqhfu", "output": "43" }, { "input": "MMVESdOCALHJCTBTUWWQRGUUVTTTABKKAAdIINAdKLRLLVLODHDXDPMcQfUhPNHFBJSDRGsHZNORSCPNvKOOIuZnZAmTPUCoPNlR", "output": "13" }, { "input": "MMbJIBhgFXPVpdQHLkWJkAHFIfJSpITTCRzRCzvRPRYECCheOknfINZWuKATDBOrEVKTcWXiYPjtzQMGUSGPNTMCUrvYCSWQHqAi", "output": "27" }, { "input": "ZnqXEBOABXVbHRFFqDLWpWBBLqZIagmbRAYMDKJAYyFQXnPYwvDyRXKHLQnMLHGEOnRKmXtGqyQkoBCSmgKPcEIEugwJyxDOtTVn", "output": "31" } ]
1,653,093,773
2,147,483,647
PyPy 3-64
OK
TESTS
40
186
2,867,200
def solve(): res = 0;maiusc = 0;numMin = 0;numMax = 0 linha = input() for index in range(len(linha)-1,-1,-1): if(linha[index].islower()): numMin = numMin + 1 if(linha[index].isupper()): numMax = numMax + 1 maiusc = maiusc + 1 elif(maiusc >0): maiusc = maiusc - 1 res = res + 1 solveAux = min(numMin,numMax) solve = min(res,solveAux) print(solve) solve()
Title: Letter Time Limit: None seconds Memory Limit: None megabytes Problem Description: Patrick has just finished writing a message to his sweetheart Stacey when he noticed that the message didn't look fancy. Patrick was nervous while writing the message, so some of the letters there were lowercase and some of them were uppercase. Patrick believes that a message is fancy if any uppercase letter stands to the left of any lowercase one. In other words, this rule describes the strings where first go zero or more uppercase letters, and then — zero or more lowercase letters. To make the message fancy, Patrick can erase some letter and add the same letter in the same place in the opposite case (that is, he can replace an uppercase letter with the lowercase one and vice versa). Patrick got interested in the following question: what minimum number of actions do we need to make a message fancy? Changing a letter's case in the message counts as one action. Patrick cannot perform any other actions. Input Specification: The only line of the input contains a non-empty string consisting of uppercase and lowercase letters. The string's length does not exceed 105. Output Specification: Print a single number — the least number of actions needed to make the message fancy. Demo Input: ['PRuvetSTAaYA\n', 'OYPROSTIYAOPECHATALSYAPRIVETSTASYA\n', 'helloworld\n'] Demo Output: ['5\n', '0\n', '0\n'] Note: none
```python def solve(): res = 0;maiusc = 0;numMin = 0;numMax = 0 linha = input() for index in range(len(linha)-1,-1,-1): if(linha[index].islower()): numMin = numMin + 1 if(linha[index].isupper()): numMax = numMax + 1 maiusc = maiusc + 1 elif(maiusc >0): maiusc = maiusc - 1 res = res + 1 solveAux = min(numMin,numMax) solve = min(res,solveAux) print(solve) solve() ```
3
208
A
Dubstep
PROGRAMMING
900
[ "strings" ]
null
null
Vasya works as a DJ in the best Berland nightclub, and he often uses dubstep music in his performance. Recently, he has decided to take a couple of old songs and make dubstep remixes from them. Let's assume that a song consists of some number of words. To make the dubstep remix of this song, Vasya inserts a certain number of words "WUB" before the first word of the song (the number may be zero), after the last word (the number may be zero), and between words (at least one between any pair of neighbouring words), and then the boy glues together all the words, including "WUB", in one string and plays the song at the club. For example, a song with words "I AM X" can transform into a dubstep remix as "WUBWUBIWUBAMWUBWUBX" and cannot transform into "WUBWUBIAMWUBX". Recently, Petya has heard Vasya's new dubstep track, but since he isn't into modern music, he decided to find out what was the initial song that Vasya remixed. Help Petya restore the original song.
The input consists of a single non-empty string, consisting only of uppercase English letters, the string's length doesn't exceed 200 characters. It is guaranteed that before Vasya remixed the song, no word contained substring "WUB" in it; Vasya didn't change the word order. It is also guaranteed that initially the song had at least one word.
Print the words of the initial song that Vasya used to make a dubsteb remix. Separate the words with a space.
[ "WUBWUBABCWUB\n", "WUBWEWUBAREWUBWUBTHEWUBCHAMPIONSWUBMYWUBFRIENDWUB\n" ]
[ "ABC ", "WE ARE THE CHAMPIONS MY FRIEND " ]
In the first sample: "WUBWUBABCWUB" = "WUB" + "WUB" + "ABC" + "WUB". That means that the song originally consisted of a single word "ABC", and all words "WUB" were added by Vasya. In the second sample Vasya added a single word "WUB" between all neighbouring words, in the beginning and in the end, except for words "ARE" and "THE" — between them Vasya added two "WUB".
500
[ { "input": "WUBWUBABCWUB", "output": "ABC " }, { "input": "WUBWEWUBAREWUBWUBTHEWUBCHAMPIONSWUBMYWUBFRIENDWUB", "output": "WE ARE THE CHAMPIONS MY FRIEND " }, { "input": "WUBWUBWUBSR", "output": "SR " }, { "input": "RWUBWUBWUBLWUB", "output": "R L " }, { "input": "ZJWUBWUBWUBJWUBWUBWUBL", "output": "ZJ J L " }, { "input": "CWUBBWUBWUBWUBEWUBWUBWUBQWUBWUBWUB", "output": "C B E Q " }, { "input": "WUBJKDWUBWUBWBIRAQKFWUBWUBYEWUBWUBWUBWVWUBWUB", "output": "JKD WBIRAQKF YE WV " }, { "input": "WUBKSDHEMIXUJWUBWUBRWUBWUBWUBSWUBWUBWUBHWUBWUBWUB", "output": "KSDHEMIXUJ R S H " }, { "input": "OGWUBWUBWUBXWUBWUBWUBIWUBWUBWUBKOWUBWUB", "output": "OG X I KO " }, { "input": "QWUBQQWUBWUBWUBIWUBWUBWWWUBWUBWUBJOPJPBRH", "output": "Q QQ I WW JOPJPBRH " }, { "input": "VSRNVEATZTLGQRFEGBFPWUBWUBWUBAJWUBWUBWUBPQCHNWUBCWUB", "output": "VSRNVEATZTLGQRFEGBFP AJ PQCHN C " }, { "input": "WUBWUBEWUBWUBWUBIQMJNIQWUBWUBWUBGZZBQZAUHYPWUBWUBWUBPMRWUBWUBWUBDCV", "output": "E IQMJNIQ GZZBQZAUHYP PMR DCV " }, { "input": "WUBWUBWUBFVWUBWUBWUBBPSWUBWUBWUBRXNETCJWUBWUBWUBJDMBHWUBWUBWUBBWUBWUBVWUBWUBB", "output": "FV BPS RXNETCJ JDMBH B V B " }, { "input": "WUBWUBWUBFBQWUBWUBWUBIDFSYWUBWUBWUBCTWDMWUBWUBWUBSXOWUBWUBWUBQIWUBWUBWUBL", "output": "FBQ IDFSY CTWDM SXO QI L " }, { "input": "IWUBWUBQLHDWUBYIIKZDFQWUBWUBWUBCXWUBWUBUWUBWUBWUBKWUBWUBWUBNL", "output": "I QLHD YIIKZDFQ CX U K NL " }, { "input": "KWUBUPDYXGOKUWUBWUBWUBAGOAHWUBIZDWUBWUBWUBIYWUBWUBWUBVWUBWUBWUBPWUBWUBWUBE", "output": "K UPDYXGOKU AGOAH IZD IY V P E " }, { "input": "WUBWUBOWUBWUBWUBIPVCQAFWYWUBWUBWUBQWUBWUBWUBXHDKCPYKCTWWYWUBWUBWUBVWUBWUBWUBFZWUBWUB", "output": "O IPVCQAFWY Q XHDKCPYKCTWWY V FZ " }, { "input": "PAMJGYWUBWUBWUBXGPQMWUBWUBWUBTKGSXUYWUBWUBWUBEWUBWUBWUBNWUBWUBWUBHWUBWUBWUBEWUBWUB", "output": "PAMJGY XGPQM TKGSXUY E N H E " }, { "input": "WUBYYRTSMNWUWUBWUBWUBCWUBWUBWUBCWUBWUBWUBFSYUINDWOBVWUBWUBWUBFWUBWUBWUBAUWUBWUBWUBVWUBWUBWUBJB", "output": "YYRTSMNWU C C FSYUINDWOBV F AU V JB " }, { "input": "WUBWUBYGPYEYBNRTFKOQCWUBWUBWUBUYGRTQEGWLFYWUBWUBWUBFVWUBHPWUBWUBWUBXZQWUBWUBWUBZDWUBWUBWUBM", "output": "YGPYEYBNRTFKOQC UYGRTQEGWLFY FV HP XZQ ZD M " }, { "input": "WUBZVMJWUBWUBWUBFOIMJQWKNZUBOFOFYCCWUBWUBWUBAUWWUBRDRADWUBWUBWUBCHQVWUBWUBWUBKFTWUBWUBWUBW", "output": "ZVMJ FOIMJQWKNZUBOFOFYCC AUW RDRAD CHQV KFT W " }, { "input": "WUBWUBZBKOKHQLGKRVIMZQMQNRWUBWUBWUBDACWUBWUBNZHFJMPEYKRVSWUBWUBWUBPPHGAVVPRZWUBWUBWUBQWUBWUBAWUBG", "output": "ZBKOKHQLGKRVIMZQMQNR DAC NZHFJMPEYKRVS PPHGAVVPRZ Q A G " }, { "input": "WUBWUBJWUBWUBWUBNFLWUBWUBWUBGECAWUBYFKBYJWTGBYHVSSNTINKWSINWSMAWUBWUBWUBFWUBWUBWUBOVWUBWUBLPWUBWUBWUBN", "output": "J NFL GECA YFKBYJWTGBYHVSSNTINKWSINWSMA F OV LP N " }, { "input": "WUBWUBLCWUBWUBWUBZGEQUEATJVIXETVTWUBWUBWUBEXMGWUBWUBWUBRSWUBWUBWUBVWUBWUBWUBTAWUBWUBWUBCWUBWUBWUBQG", "output": "LC ZGEQUEATJVIXETVT EXMG RS V TA C QG " }, { "input": "WUBMPWUBWUBWUBORWUBWUBDLGKWUBWUBWUBVVZQCAAKVJTIKWUBWUBWUBTJLUBZJCILQDIFVZWUBWUBYXWUBWUBWUBQWUBWUBWUBLWUB", "output": "MP OR DLGK VVZQCAAKVJTIK TJLUBZJCILQDIFVZ YX Q L " }, { "input": "WUBNXOLIBKEGXNWUBWUBWUBUWUBGITCNMDQFUAOVLWUBWUBWUBAIJDJZJHFMPVTPOXHPWUBWUBWUBISCIOWUBWUBWUBGWUBWUBWUBUWUB", "output": "NXOLIBKEGXN U GITCNMDQFUAOVL AIJDJZJHFMPVTPOXHP ISCIO G U " }, { "input": "WUBWUBNMMWCZOLYPNBELIYVDNHJUNINWUBWUBWUBDXLHYOWUBWUBWUBOJXUWUBWUBWUBRFHTGJCEFHCGWARGWUBWUBWUBJKWUBWUBSJWUBWUB", "output": "NMMWCZOLYPNBELIYVDNHJUNIN DXLHYO OJXU RFHTGJCEFHCGWARG JK SJ " }, { "input": "SGWLYSAUJOJBNOXNWUBWUBWUBBOSSFWKXPDPDCQEWUBWUBWUBDIRZINODWUBWUBWUBWWUBWUBWUBPPHWUBWUBWUBRWUBWUBWUBQWUBWUBWUBJWUB", "output": "SGWLYSAUJOJBNOXN BOSSFWKXPDPDCQE DIRZINOD W PPH R Q J " }, { "input": "TOWUBWUBWUBGBTBNWUBWUBWUBJVIOJBIZFUUYHUAIEBQLQXPQKZJMPTCWBKPOSAWUBWUBWUBSWUBWUBWUBTOLVXWUBWUBWUBNHWUBWUBWUBO", "output": "TO GBTBN JVIOJBIZFUUYHUAIEBQLQXPQKZJMPTCWBKPOSA S TOLVX NH O " }, { "input": "WUBWUBWSPLAYSZSAUDSWUBWUBWUBUWUBWUBWUBKRWUBWUBWUBRSOKQMZFIYZQUWUBWUBWUBELSHUWUBWUBWUBUKHWUBWUBWUBQXEUHQWUBWUBWUBBWUBWUBWUBR", "output": "WSPLAYSZSAUDS U KR RSOKQMZFIYZQU ELSHU UKH QXEUHQ B R " }, { "input": "WUBXEMWWVUHLSUUGRWUBWUBWUBAWUBXEGILZUNKWUBWUBWUBJDHHKSWUBWUBWUBDTSUYSJHWUBWUBWUBPXFWUBMOHNJWUBWUBWUBZFXVMDWUBWUBWUBZMWUBWUB", "output": "XEMWWVUHLSUUGR A XEGILZUNK JDHHKS DTSUYSJH PXF MOHNJ ZFXVMD ZM " }, { "input": "BMBWUBWUBWUBOQKWUBWUBWUBPITCIHXHCKLRQRUGXJWUBWUBWUBVWUBWUBWUBJCWUBWUBWUBQJPWUBWUBWUBBWUBWUBWUBBMYGIZOOXWUBWUBWUBTAGWUBWUBHWUB", "output": "BMB OQK PITCIHXHCKLRQRUGXJ V JC QJP B BMYGIZOOX TAG H " }, { "input": "CBZNWUBWUBWUBNHWUBWUBWUBYQSYWUBWUBWUBMWUBWUBWUBXRHBTMWUBWUBWUBPCRCWUBWUBWUBTZUYLYOWUBWUBWUBCYGCWUBWUBWUBCLJWUBWUBWUBSWUBWUBWUB", "output": "CBZN NH YQSY M XRHBTM PCRC TZUYLYO CYGC CLJ S " }, { "input": "DPDWUBWUBWUBEUQKWPUHLTLNXHAEKGWUBRRFYCAYZFJDCJLXBAWUBWUBWUBHJWUBOJWUBWUBWUBNHBJEYFWUBWUBWUBRWUBWUBWUBSWUBWWUBWUBWUBXDWUBWUBWUBJWUB", "output": "DPD EUQKWPUHLTLNXHAEKG RRFYCAYZFJDCJLXBA HJ OJ NHBJEYF R S W XD J " }, { "input": "WUBWUBWUBISERPQITVIYERSCNWUBWUBWUBQWUBWUBWUBDGSDIPWUBWUBWUBCAHKDZWEXBIBJVVSKKVQJWUBWUBWUBKIWUBWUBWUBCWUBWUBWUBAWUBWUBWUBPWUBWUBWUBHWUBWUBWUBF", "output": "ISERPQITVIYERSCN Q DGSDIP CAHKDZWEXBIBJVVSKKVQJ KI C A P H F " }, { "input": "WUBWUBWUBIWUBWUBLIKNQVWUBWUBWUBPWUBWUBWUBHWUBWUBWUBMWUBWUBWUBDPRSWUBWUBWUBBSAGYLQEENWXXVWUBWUBWUBXMHOWUBWUBWUBUWUBWUBWUBYRYWUBWUBWUBCWUBWUBWUBY", "output": "I LIKNQV P H M DPRS BSAGYLQEENWXXV XMHO U YRY C Y " }, { "input": "WUBWUBWUBMWUBWUBWUBQWUBWUBWUBITCFEYEWUBWUBWUBHEUWGNDFNZGWKLJWUBWUBWUBMZPWUBWUBWUBUWUBWUBWUBBWUBWUBWUBDTJWUBHZVIWUBWUBWUBPWUBFNHHWUBWUBWUBVTOWUB", "output": "M Q ITCFEYE HEUWGNDFNZGWKLJ MZP U B DTJ HZVI P FNHH VTO " }, { "input": "WUBWUBNDNRFHYJAAUULLHRRDEDHYFSRXJWUBWUBWUBMUJVDTIRSGYZAVWKRGIFWUBWUBWUBHMZWUBWUBWUBVAIWUBWUBWUBDDKJXPZRGWUBWUBWUBSGXWUBWUBWUBIFKWUBWUBWUBUWUBWUBWUBW", "output": "NDNRFHYJAAUULLHRRDEDHYFSRXJ MUJVDTIRSGYZAVWKRGIF HMZ VAI DDKJXPZRG SGX IFK U W " }, { "input": "WUBOJMWRSLAXXHQRTPMJNCMPGWUBWUBWUBNYGMZIXNLAKSQYWDWUBWUBWUBXNIWUBWUBWUBFWUBWUBWUBXMBWUBWUBWUBIWUBWUBWUBINWUBWUBWUBWDWUBWUBWUBDDWUBWUBWUBD", "output": "OJMWRSLAXXHQRTPMJNCMPG NYGMZIXNLAKSQYWD XNI F XMB I IN WD DD D " }, { "input": "WUBWUBWUBREHMWUBWUBWUBXWUBWUBWUBQASNWUBWUBWUBNLSMHLCMTICWUBWUBWUBVAWUBWUBWUBHNWUBWUBWUBNWUBWUBWUBUEXLSFOEULBWUBWUBWUBXWUBWUBWUBJWUBWUBWUBQWUBWUBWUBAWUBWUB", "output": "REHM X QASN NLSMHLCMTIC VA HN N UEXLSFOEULB X J Q A " }, { "input": "WUBWUBWUBSTEZTZEFFIWUBWUBWUBSWUBWUBWUBCWUBFWUBHRJPVWUBWUBWUBDYJUWUBWUBWUBPWYDKCWUBWUBWUBCWUBWUBWUBUUEOGCVHHBWUBWUBWUBEXLWUBWUBWUBVCYWUBWUBWUBMWUBWUBWUBYWUB", "output": "STEZTZEFFI S C F HRJPV DYJU PWYDKC C UUEOGCVHHB EXL VCY M Y " }, { "input": "WPPNMSQOQIWUBWUBWUBPNQXWUBWUBWUBHWUBWUBWUBNFLWUBWUBWUBGWSGAHVJFNUWUBWUBWUBFWUBWUBWUBWCMLRICFSCQQQTNBWUBWUBWUBSWUBWUBWUBKGWUBWUBWUBCWUBWUBWUBBMWUBWUBWUBRWUBWUB", "output": "WPPNMSQOQI PNQX H NFL GWSGAHVJFNU F WCMLRICFSCQQQTNB S KG C BM R " }, { "input": "YZJOOYITZRARKVFYWUBWUBRZQGWUBWUBWUBUOQWUBWUBWUBIWUBWUBWUBNKVDTBOLETKZISTWUBWUBWUBWLWUBQQFMMGSONZMAWUBZWUBWUBWUBQZUXGCWUBWUBWUBIRZWUBWUBWUBLTTVTLCWUBWUBWUBY", "output": "YZJOOYITZRARKVFY RZQG UOQ I NKVDTBOLETKZIST WL QQFMMGSONZMA Z QZUXGC IRZ LTTVTLC Y " }, { "input": "WUBCAXNCKFBVZLGCBWCOAWVWOFKZVQYLVTWUBWUBWUBNLGWUBWUBWUBAMGDZBDHZMRMQMDLIRMIWUBWUBWUBGAJSHTBSWUBWUBWUBCXWUBWUBWUBYWUBZLXAWWUBWUBWUBOHWUBWUBWUBZWUBWUBWUBGBWUBWUBWUBE", "output": "CAXNCKFBVZLGCBWCOAWVWOFKZVQYLVT NLG AMGDZBDHZMRMQMDLIRMI GAJSHTBS CX Y ZLXAW OH Z GB E " }, { "input": "WUBWUBCHXSOWTSQWUBWUBWUBCYUZBPBWUBWUBWUBSGWUBWUBWKWORLRRLQYUUFDNWUBWUBWUBYYGOJNEVEMWUBWUBWUBRWUBWUBWUBQWUBWUBWUBIHCKWUBWUBWUBKTWUBWUBWUBRGSNTGGWUBWUBWUBXCXWUBWUBWUBS", "output": "CHXSOWTSQ CYUZBPB SG WKWORLRRLQYUUFDN YYGOJNEVEM R Q IHCK KT RGSNTGG XCX S " }, { "input": "WUBWUBWUBHJHMSBURXTHXWSCHNAIJOWBHLZGJZDHEDSPWBWACCGQWUBWUBWUBXTZKGIITWUBWUBWUBAWUBWUBWUBVNCXPUBCQWUBWUBWUBIDPNAWUBWUBWUBOWUBWUBWUBYGFWUBWUBWUBMQOWUBWUBWUBKWUBWUBWUBAZVWUBWUBWUBEP", "output": "HJHMSBURXTHXWSCHNAIJOWBHLZGJZDHEDSPWBWACCGQ XTZKGIIT A VNCXPUBCQ IDPNA O YGF MQO K AZV EP " }, { "input": "WUBKYDZOYWZSNGMKJSWAXFDFLTHDHEOGTDBNZMSMKZTVWUBWUBWUBLRMIIWUBWUBWUBGWUBWUBWUBADPSWUBWUBWUBANBWUBWUBPCWUBWUBWUBPWUBWUBWUBGPVNLSWIRFORYGAABUXMWUBWUBWUBOWUBWUBWUBNWUBWUBWUBYWUBWUB", "output": "KYDZOYWZSNGMKJSWAXFDFLTHDHEOGTDBNZMSMKZTV LRMII G ADPS ANB PC P GPVNLSWIRFORYGAABUXM O N Y " }, { "input": "REWUBWUBWUBJDWUBWUBWUBNWUBWUBWUBTWWUBWUBWUBWZDOCKKWUBWUBWUBLDPOVBFRCFWUBWUBAKZIBQKEUAZEEWUBWUBWUBLQYPNPFWUBYEWUBWUBWUBFWUBWUBWUBBPWUBWUBWUBAWWUBWUBWUBQWUBWUBWUBBRWUBWUBWUBXJL", "output": "RE JD N TW WZDOCKK LDPOVBFRCF AKZIBQKEUAZEE LQYPNPF YE F BP AW Q BR XJL " }, { "input": "CUFGJDXGMWUBWUBWUBOMWUBWUBWUBSIEWUBWUBWUBJJWKNOWUBWUBWUBYBHVNRNORGYWUBWUBWUBOAGCAWUBWUBWUBSBLBKTPFKPBIWUBWUBWUBJBWUBWUBWUBRMFCJPGWUBWUBWUBDWUBWUBWUBOJOWUBWUBWUBZPWUBWUBWUBMWUBRWUBWUBWUBFXWWUBWUBWUBO", "output": "CUFGJDXGM OM SIE JJWKNO YBHVNRNORGY OAGCA SBLBKTPFKPBI JB RMFCJPG D OJO ZP M R FXW O " }, { "input": "WUBJZGAEXFMFEWMAKGQLUWUBWUBWUBICYTPQWGENELVYWANKUOJYWUBWUBWUBGWUBWUBWUBHYCJVLPHTUPNEGKCDGQWUBWUBWUBOFWUBWUBWUBCPGSOGZBRPRPVJJEWUBWUBWUBDQBCWUBWUBWUBHWUBWUBWUBMHOHYBMATWUBWUBWUBVWUBWUBWUBSWUBWUBWUBKOWU", "output": "JZGAEXFMFEWMAKGQLU ICYTPQWGENELVYWANKUOJY G HYCJVLPHTUPNEGKCDGQ OF CPGSOGZBRPRPVJJE DQBC H MHOHYBMAT V S KOWU " }, { "input": "A", "output": "A " }, { "input": "WUBA", "output": "A " }, { "input": "WUBWUBA", "output": "A " }, { "input": "AWUBWUBWUB", "output": "A " }, { "input": "AWUBBWUBCWUBD", "output": "A B C D " }, { "input": "WUBWWUBWUBWUBUWUBWUBBWUB", "output": "W U B " }, { "input": "AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA", "output": "AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA " }, { "input": "AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAWUBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA", "output": "AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA " }, { "input": "WUWUBBWWUBUB", "output": "WU BW UB " }, { "input": "WUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUABWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUB", "output": "WUAB " }, { "input": "ZWUB", "output": "Z " }, { "input": "WU", "output": "WU " }, { "input": "UB", "output": "UB " }, { "input": "U", "output": "U " }, { "input": "WUBW", "output": "W " }, { "input": "WUBWU", "output": "WU " }, { "input": "WUWUB", "output": "WU " }, { "input": "UBWUB", "output": "UB " }, { "input": "WUWUBUBWUBUWUB", "output": "WU UB U " }, { "input": "WUBWWUBAWUB", "output": "W A " }, { "input": "WUUUUU", "output": "WUUUUU " } ]
1,694,068,532
2,147,483,647
PyPy 3-64
OK
TESTS
71
218
2,764,800
import re def main(): s=input() pattern = '(WUB)+' print(re.sub(pattern,' ',s).strip()) main()
Title: Dubstep Time Limit: None seconds Memory Limit: None megabytes Problem Description: Vasya works as a DJ in the best Berland nightclub, and he often uses dubstep music in his performance. Recently, he has decided to take a couple of old songs and make dubstep remixes from them. Let's assume that a song consists of some number of words. To make the dubstep remix of this song, Vasya inserts a certain number of words "WUB" before the first word of the song (the number may be zero), after the last word (the number may be zero), and between words (at least one between any pair of neighbouring words), and then the boy glues together all the words, including "WUB", in one string and plays the song at the club. For example, a song with words "I AM X" can transform into a dubstep remix as "WUBWUBIWUBAMWUBWUBX" and cannot transform into "WUBWUBIAMWUBX". Recently, Petya has heard Vasya's new dubstep track, but since he isn't into modern music, he decided to find out what was the initial song that Vasya remixed. Help Petya restore the original song. Input Specification: The input consists of a single non-empty string, consisting only of uppercase English letters, the string's length doesn't exceed 200 characters. It is guaranteed that before Vasya remixed the song, no word contained substring "WUB" in it; Vasya didn't change the word order. It is also guaranteed that initially the song had at least one word. Output Specification: Print the words of the initial song that Vasya used to make a dubsteb remix. Separate the words with a space. Demo Input: ['WUBWUBABCWUB\n', 'WUBWEWUBAREWUBWUBTHEWUBCHAMPIONSWUBMYWUBFRIENDWUB\n'] Demo Output: ['ABC ', 'WE ARE THE CHAMPIONS MY FRIEND '] Note: In the first sample: "WUBWUBABCWUB" = "WUB" + "WUB" + "ABC" + "WUB". That means that the song originally consisted of a single word "ABC", and all words "WUB" were added by Vasya. In the second sample Vasya added a single word "WUB" between all neighbouring words, in the beginning and in the end, except for words "ARE" and "THE" — between them Vasya added two "WUB".
```python import re def main(): s=input() pattern = '(WUB)+' print(re.sub(pattern,' ',s).strip()) main() ```
3
313
B
Ilya and Queries
PROGRAMMING
1,100
[ "dp", "implementation" ]
null
null
Ilya the Lion wants to help all his friends with passing exams. They need to solve the following problem to pass the IT exam. You've got string *s*<==<=*s*1*s*2... *s**n* (*n* is the length of the string), consisting only of characters "." and "#" and *m* queries. Each query is described by a pair of integers *l**i*,<=*r**i* (1<=≤<=*l**i*<=&lt;<=*r**i*<=≤<=*n*). The answer to the query *l**i*,<=*r**i* is the number of such integers *i* (*l**i*<=≤<=*i*<=&lt;<=*r**i*), that *s**i*<==<=*s**i*<=+<=1. Ilya the Lion wants to help his friends but is there anyone to help him? Help Ilya, solve the problem.
The first line contains string *s* of length *n* (2<=≤<=*n*<=≤<=105). It is guaranteed that the given string only consists of characters "." and "#". The next line contains integer *m* (1<=≤<=*m*<=≤<=105) — the number of queries. Each of the next *m* lines contains the description of the corresponding query. The *i*-th line contains integers *l**i*,<=*r**i* (1<=≤<=*l**i*<=&lt;<=*r**i*<=≤<=*n*).
Print *m* integers — the answers to the queries in the order in which they are given in the input.
[ "......\n4\n3 4\n2 3\n1 6\n2 6\n", "#..###\n5\n1 3\n5 6\n1 5\n3 6\n3 4\n" ]
[ "1\n1\n5\n4\n", "1\n1\n2\n2\n0\n" ]
none
1,000
[ { "input": "......\n4\n3 4\n2 3\n1 6\n2 6", "output": "1\n1\n5\n4" }, { "input": "#..###\n5\n1 3\n5 6\n1 5\n3 6\n3 4", "output": "1\n1\n2\n2\n0" }, { "input": ".#...#..\n6\n1 5\n2 3\n6 7\n2 4\n2 5\n1 3", "output": "2\n0\n0\n1\n2\n0" }, { "input": "#.#.#..\n5\n3 4\n4 5\n5 7\n5 7\n1 3", "output": "0\n0\n1\n1\n0" }, { "input": "#.##.##.\n7\n1 8\n2 6\n2 6\n6 8\n3 5\n2 4\n2 5", "output": "2\n1\n1\n1\n1\n1\n1" }, { "input": "#..#\n1\n1 4", "output": "1" }, { "input": "#..##...#.\n7\n5 9\n6 10\n1 7\n5 8\n3 5\n2 10\n3 4", "output": "2\n2\n3\n2\n1\n4\n0" }, { "input": "#.#.#\n7\n1 2\n3 4\n3 5\n2 3\n3 5\n1 5\n1 3", "output": "0\n0\n0\n0\n0\n0\n0" }, { "input": "###..#...#\n2\n2 4\n1 2", "output": "1\n1" }, { "input": "..\n1\n1 2", "output": "1" }, { "input": "##\n1\n1 2", "output": "1" }, { "input": ".#\n1\n1 2", "output": "0" }, { "input": "#.\n1\n1 2", "output": "0" }, { "input": "...\n2\n1 2\n1 2", "output": "1\n1" } ]
1,699,760,626
2,147,483,647
Python 3
TIME_LIMIT_EXCEEDED
TESTS
9
2,000
3,072,000
s=input() same=[] answers=[] for i in range(len(s)-1): same.append(s[i] == s[i+1]) for _ in range(int(input())): r,l=map(int,input().split()) answers.append(sum([same[x]for x in range(r-1,l-1)])) for a in answers: print(a)
Title: Ilya and Queries Time Limit: None seconds Memory Limit: None megabytes Problem Description: Ilya the Lion wants to help all his friends with passing exams. They need to solve the following problem to pass the IT exam. You've got string *s*<==<=*s*1*s*2... *s**n* (*n* is the length of the string), consisting only of characters "." and "#" and *m* queries. Each query is described by a pair of integers *l**i*,<=*r**i* (1<=≤<=*l**i*<=&lt;<=*r**i*<=≤<=*n*). The answer to the query *l**i*,<=*r**i* is the number of such integers *i* (*l**i*<=≤<=*i*<=&lt;<=*r**i*), that *s**i*<==<=*s**i*<=+<=1. Ilya the Lion wants to help his friends but is there anyone to help him? Help Ilya, solve the problem. Input Specification: The first line contains string *s* of length *n* (2<=≤<=*n*<=≤<=105). It is guaranteed that the given string only consists of characters "." and "#". The next line contains integer *m* (1<=≤<=*m*<=≤<=105) — the number of queries. Each of the next *m* lines contains the description of the corresponding query. The *i*-th line contains integers *l**i*,<=*r**i* (1<=≤<=*l**i*<=&lt;<=*r**i*<=≤<=*n*). Output Specification: Print *m* integers — the answers to the queries in the order in which they are given in the input. Demo Input: ['......\n4\n3 4\n2 3\n1 6\n2 6\n', '#..###\n5\n1 3\n5 6\n1 5\n3 6\n3 4\n'] Demo Output: ['1\n1\n5\n4\n', '1\n1\n2\n2\n0\n'] Note: none
```python s=input() same=[] answers=[] for i in range(len(s)-1): same.append(s[i] == s[i+1]) for _ in range(int(input())): r,l=map(int,input().split()) answers.append(sum([same[x]for x in range(r-1,l-1)])) for a in answers: print(a) ```
0
318
A
Even Odds
PROGRAMMING
900
[ "math" ]
null
null
Being a nonconformist, Volodya is displeased with the current state of things, particularly with the order of natural numbers (natural number is positive integer number). He is determined to rearrange them. But there are too many natural numbers, so Volodya decided to start with the first *n*. He writes down the following sequence of numbers: firstly all odd integers from 1 to *n* (in ascending order), then all even integers from 1 to *n* (also in ascending order). Help our hero to find out which number will stand at the position number *k*.
The only line of input contains integers *n* and *k* (1<=≤<=*k*<=≤<=*n*<=≤<=1012). Please, do not use the %lld specifier to read or write 64-bit integers in C++. It is preferred to use the cin, cout streams or the %I64d specifier.
Print the number that will stand at the position number *k* after Volodya's manipulations.
[ "10 3\n", "7 7\n" ]
[ "5", "6" ]
In the first sample Volodya's sequence will look like this: {1, 3, 5, 7, 9, 2, 4, 6, 8, 10}. The third place in the sequence is therefore occupied by the number 5.
500
[ { "input": "10 3", "output": "5" }, { "input": "7 7", "output": "6" }, { "input": "7 1", "output": "1" }, { "input": "7 2", "output": "3" }, { "input": "8 5", "output": "2" }, { "input": "8 3", "output": "5" }, { "input": "8 4", "output": "7" }, { "input": "1000000000000 500000000001", "output": "2" }, { "input": "999999999997 499999999999", "output": "999999999997" }, { "input": "999999999999 999999999999", "output": "999999999998" }, { "input": "1000000000000 1", "output": "1" }, { "input": "999999999999 1", "output": "1" }, { "input": "1 1", "output": "1" }, { "input": "1000000000000 1000000000000", "output": "1000000000000" }, { "input": "1000000000000 500000000000", "output": "999999999999" }, { "input": "1000000000000 499999999999", "output": "999999999997" }, { "input": "999999999997 499999999998", "output": "999999999995" }, { "input": "619234238 556154835", "output": "493075432" }, { "input": "38151981 36650624", "output": "35149266" }, { "input": "680402465 442571217", "output": "204739968" }, { "input": "109135284 9408714", "output": "18817427" }, { "input": "603701841 56038951", "output": "112077901" }, { "input": "356764822 321510177", "output": "286255532" }, { "input": "284911189 142190783", "output": "284381565" }, { "input": "91028405 61435545", "output": "31842684" } ]
1,693,932,766
2,147,483,647
Python 3
TIME_LIMIT_EXCEEDED
TESTS
7
1,000
1,228,800
n=input().split() s1=[] s2=[] for i in range(1,int(n[0])+1): if(i%2==0): s1=s1+[i] else: s2=s2+[i] s3=s2+s1 print(s3[int(n[1])-1])
Title: Even Odds Time Limit: None seconds Memory Limit: None megabytes Problem Description: Being a nonconformist, Volodya is displeased with the current state of things, particularly with the order of natural numbers (natural number is positive integer number). He is determined to rearrange them. But there are too many natural numbers, so Volodya decided to start with the first *n*. He writes down the following sequence of numbers: firstly all odd integers from 1 to *n* (in ascending order), then all even integers from 1 to *n* (also in ascending order). Help our hero to find out which number will stand at the position number *k*. Input Specification: The only line of input contains integers *n* and *k* (1<=≤<=*k*<=≤<=*n*<=≤<=1012). Please, do not use the %lld specifier to read or write 64-bit integers in C++. It is preferred to use the cin, cout streams or the %I64d specifier. Output Specification: Print the number that will stand at the position number *k* after Volodya's manipulations. Demo Input: ['10 3\n', '7 7\n'] Demo Output: ['5', '6'] Note: In the first sample Volodya's sequence will look like this: {1, 3, 5, 7, 9, 2, 4, 6, 8, 10}. The third place in the sequence is therefore occupied by the number 5.
```python n=input().split() s1=[] s2=[] for i in range(1,int(n[0])+1): if(i%2==0): s1=s1+[i] else: s2=s2+[i] s3=s2+s1 print(s3[int(n[1])-1]) ```
0
862
A
Mahmoud and Ehab and the MEX
PROGRAMMING
1,000
[ "greedy", "implementation" ]
null
null
Dr. Evil kidnapped Mahmoud and Ehab in the evil land because of their performance in the Evil Olympiad in Informatics (EOI). He decided to give them some problems to let them go. Dr. Evil is interested in sets, He has a set of *n* integers. Dr. Evil calls a set of integers evil if the MEX of it is exactly *x*. the MEX of a set of integers is the minimum non-negative integer that doesn't exist in it. For example, the MEX of the set {0,<=2,<=4} is 1 and the MEX of the set {1,<=2,<=3} is 0 . Dr. Evil is going to make his set evil. To do this he can perform some operations. During each operation he can add some non-negative integer to his set or erase some element from it. What is the minimal number of operations Dr. Evil has to perform to make his set evil?
The first line contains two integers *n* and *x* (1<=≤<=*n*<=≤<=100, 0<=≤<=*x*<=≤<=100) — the size of the set Dr. Evil owns, and the desired MEX. The second line contains *n* distinct non-negative integers not exceeding 100 that represent the set.
The only line should contain one integer — the minimal number of operations Dr. Evil should perform.
[ "5 3\n0 4 5 6 7\n", "1 0\n0\n", "5 0\n1 2 3 4 5\n" ]
[ "2\n", "1\n", "0\n" ]
For the first test case Dr. Evil should add 1 and 2 to the set performing 2 operations. For the second test case Dr. Evil should erase 0 from the set. After that, the set becomes empty, so the MEX of it is 0. In the third test case the set is already evil.
500
[ { "input": "5 3\n0 4 5 6 7", "output": "2" }, { "input": "1 0\n0", "output": "1" }, { "input": "5 0\n1 2 3 4 5", "output": "0" }, { "input": "10 5\n57 1 47 9 93 37 76 70 78 15", "output": "4" }, { "input": "10 5\n99 98 93 97 95 100 92 94 91 96", "output": "5" }, { "input": "10 5\n1 2 3 4 59 45 0 58 51 91", "output": "0" }, { "input": "100 100\n79 13 21 11 3 87 28 40 29 4 96 34 8 78 61 46 33 45 99 30 92 67 22 97 39 86 73 31 74 44 62 55 57 2 54 63 80 69 25 48 77 98 17 93 15 16 89 12 43 23 37 95 14 38 83 90 49 56 72 10 20 0 50 71 70 88 19 1 76 81 52 41 82 68 85 47 6 7 35 60 18 64 75 84 27 9 65 91 94 42 53 24 66 26 59 36 51 32 5 58", "output": "0" }, { "input": "100 50\n95 78 46 92 80 18 79 58 30 72 19 89 39 29 44 65 15 100 59 8 96 9 62 67 41 42 82 14 57 32 71 77 40 5 7 51 28 53 85 23 16 35 3 91 6 11 75 61 17 66 13 47 36 56 10 22 83 60 48 24 26 97 4 33 76 86 70 0 34 64 52 43 21 49 55 74 1 73 81 25 54 63 94 84 20 68 87 12 31 88 38 93 37 90 98 69 99 45 27 2", "output": "0" }, { "input": "100 33\n28 11 79 92 88 62 77 72 7 41 96 97 67 84 44 8 81 35 38 1 64 68 46 17 98 83 31 12 74 21 2 22 47 6 36 75 65 61 37 26 25 45 59 48 100 51 93 76 78 49 3 57 16 4 87 29 55 82 70 39 53 0 60 15 24 71 58 20 66 89 95 42 13 43 63 90 85 52 50 30 54 40 56 23 27 34 32 18 10 19 69 9 99 73 91 14 5 80 94 86", "output": "0" }, { "input": "99 33\n25 76 41 95 55 20 47 59 58 84 87 92 16 27 35 65 72 63 93 54 36 96 15 86 5 69 24 46 67 73 48 60 40 6 61 74 97 10 100 8 52 26 77 18 7 62 37 2 14 66 11 56 68 91 0 64 75 99 30 21 53 1 89 81 3 98 12 88 39 38 29 83 22 90 9 28 45 43 78 44 32 57 4 50 70 17 13 51 80 85 71 94 82 19 34 42 23 79 49", "output": "1" }, { "input": "100 100\n65 56 84 46 44 33 99 74 62 72 93 67 43 92 75 88 38 34 66 12 55 76 58 90 78 8 14 45 97 59 48 32 64 18 39 89 31 51 54 81 29 36 70 77 40 22 49 27 3 1 73 13 98 42 87 37 2 57 4 6 50 25 23 79 28 86 68 61 80 17 19 10 15 63 52 11 35 60 21 16 24 85 30 91 7 5 69 20 71 82 53 94 41 95 96 9 26 83 0 47", "output": "0" }, { "input": "100 100\n58 88 12 71 22 1 40 19 73 20 67 48 57 17 69 36 100 35 33 37 72 55 52 8 89 85 47 42 78 70 81 86 11 9 68 99 6 16 21 61 53 98 23 62 32 59 51 0 87 24 50 30 65 10 80 95 7 92 25 74 60 79 91 5 13 31 75 38 90 94 46 66 93 34 14 41 28 2 76 84 43 96 3 56 49 82 27 77 64 63 4 45 18 29 54 39 15 26 83 44", "output": "2" }, { "input": "89 100\n58 96 17 41 86 34 28 84 18 40 8 77 87 89 68 79 33 35 53 49 0 6 22 12 72 90 48 55 21 50 56 62 75 2 37 95 69 74 14 20 44 46 27 32 31 59 63 60 10 85 71 70 38 52 94 30 61 51 80 26 36 23 39 47 76 45 100 57 15 78 97 66 54 13 99 16 93 73 24 4 83 5 98 81 92 25 29 88 65", "output": "13" }, { "input": "100 50\n7 95 24 76 81 78 60 69 83 84 100 1 65 31 48 92 73 39 18 89 38 97 10 42 8 55 98 51 21 90 62 77 16 91 0 94 4 37 19 17 67 35 45 41 56 20 15 85 75 28 59 27 12 54 61 68 36 5 79 93 66 11 70 49 50 34 30 25 96 46 64 14 32 22 47 40 58 23 43 9 87 82 26 53 80 52 3 86 13 99 33 71 6 88 57 74 2 44 72 63", "output": "2" }, { "input": "77 0\n27 8 20 92 21 41 53 98 17 65 67 35 81 11 55 49 61 44 2 66 51 89 40 28 52 62 86 91 64 24 18 5 94 82 96 99 71 6 39 83 26 29 16 30 45 97 80 90 69 12 13 33 76 73 46 19 78 56 88 38 42 34 57 77 47 4 59 58 7 100 95 72 9 74 15 43 54", "output": "0" }, { "input": "100 50\n55 36 0 32 81 6 17 43 24 13 30 19 8 59 71 45 15 74 3 41 99 42 86 47 2 94 35 1 66 95 38 49 4 27 96 89 34 44 92 25 51 39 54 28 80 77 20 14 48 40 68 56 31 63 33 78 69 37 18 26 83 70 23 82 91 65 67 52 61 53 7 22 60 21 12 73 72 87 75 100 90 29 64 79 98 85 5 62 93 84 50 46 97 58 57 16 9 10 76 11", "output": "1" }, { "input": "77 0\n12 8 19 87 9 54 55 86 97 7 27 85 25 48 94 73 26 1 13 57 72 69 76 39 38 91 75 40 42 28 93 21 70 84 65 11 60 90 20 95 66 89 59 47 34 99 6 61 52 100 50 3 77 81 82 53 15 24 0 45 44 14 68 96 58 5 18 35 10 98 29 74 92 49 83 71 17", "output": "1" }, { "input": "100 70\n25 94 66 65 10 99 89 6 70 31 7 40 20 92 64 27 21 72 77 98 17 43 47 44 48 81 38 56 100 39 90 22 88 76 3 83 86 29 33 55 82 79 49 11 2 16 12 78 85 69 32 97 26 15 53 24 23 91 51 67 34 35 52 5 62 50 95 18 71 13 75 8 30 42 93 36 45 60 63 46 57 41 87 0 84 54 74 37 4 58 28 19 96 61 80 9 1 14 73 68", "output": "2" }, { "input": "89 19\n14 77 85 81 79 38 91 45 55 51 50 11 62 67 73 76 2 27 16 23 3 29 65 98 78 17 4 58 22 20 34 66 64 31 72 5 32 44 12 75 80 47 18 25 99 0 61 56 71 84 48 88 10 7 86 8 49 24 43 21 37 28 33 54 46 57 40 89 36 97 6 96 39 95 26 74 1 69 9 100 52 30 83 87 68 60 92 90 35", "output": "2" }, { "input": "89 100\n69 61 56 45 11 41 42 32 28 29 0 76 7 65 13 35 36 82 10 39 26 34 38 40 92 12 17 54 24 46 88 70 66 27 100 52 85 62 22 48 86 68 21 49 53 94 67 20 1 90 77 84 31 87 58 47 95 33 4 72 93 83 8 51 91 80 99 43 71 19 44 59 98 97 64 9 81 16 79 63 25 37 3 75 2 55 50 6 18", "output": "13" }, { "input": "77 0\n38 76 24 74 42 88 29 75 96 46 90 32 59 97 98 60 41 57 80 37 100 49 25 63 95 31 61 68 53 78 27 66 84 48 94 83 30 26 36 99 71 62 45 47 70 28 35 54 34 85 79 43 91 72 86 33 67 92 77 65 69 52 82 55 87 64 56 40 50 44 51 73 89 81 58 93 39", "output": "0" }, { "input": "89 100\n38 90 80 64 35 44 56 11 15 89 23 12 49 70 72 60 63 85 92 10 45 83 8 88 41 33 16 6 61 76 62 71 87 13 25 77 74 0 1 37 96 93 7 94 21 82 34 78 4 73 65 20 81 95 50 32 48 17 69 55 68 5 51 27 53 43 91 67 59 46 86 84 99 24 22 3 97 98 40 36 26 58 57 9 42 30 52 2 47", "output": "11" }, { "input": "77 0\n55 71 78 86 68 35 53 10 59 32 81 19 74 97 62 61 93 87 96 44 25 18 43 82 84 16 34 48 92 39 64 36 49 91 45 76 95 31 57 29 75 79 13 2 14 24 52 23 33 20 47 99 63 15 5 80 58 67 12 3 85 6 1 27 73 90 4 42 37 70 8 11 89 77 9 22 94", "output": "0" }, { "input": "77 0\n12 75 31 71 44 8 3 82 21 77 50 29 57 74 40 10 15 42 84 2 100 9 28 72 92 0 49 11 90 55 17 36 19 54 68 52 4 69 97 91 5 39 59 45 89 62 53 83 16 94 76 60 95 47 30 51 7 48 20 70 67 32 58 78 63 34 56 93 99 88 24 1 66 22 25 14 13", "output": "1" }, { "input": "100 70\n91 82 8 85 26 25 95 97 40 87 81 93 7 73 38 94 64 96 74 18 90 19 65 68 72 61 23 43 36 41 60 88 30 33 71 24 52 39 15 3 16 89 86 79 55 4 9 58 67 44 46 29 6 48 84 69 27 21 78 54 51 57 80 53 76 50 47 77 45 12 34 10 100 0 17 31 56 99 98 11 92 5 2 42 32 59 66 62 37 63 28 75 35 1 22 13 83 49 20 14", "output": "0" }, { "input": "77 0\n51 5 81 62 30 22 11 0 83 16 79 85 52 70 69 10 8 47 58 3 24 34 44 14 82 66 99 17 28 31 64 67 23 49 94 45 4 12 27 15 21 6 43 72 87 2 63 92 35 39 59 9 90 78 93 20 65 36 60 89 50 41 61 84 77 86 76 100 38 68 53 97 96 95 7 19 88", "output": "1" }, { "input": "1 100\n0", "output": "99" }, { "input": "1 0\n100", "output": "0" }, { "input": "1 100\n100", "output": "101" }, { "input": "2 100\n0 100", "output": "100" }, { "input": "5 5\n1 2 3 4 5", "output": "2" }, { "input": "5 3\n0 3 4 5 6", "output": "3" }, { "input": "7 10\n0 1 2 3 4 5 10", "output": "5" }, { "input": "2 2\n0 2", "output": "2" }, { "input": "2 1\n1 2", "output": "2" }, { "input": "5 1\n1 2 3 4 5", "output": "2" }, { "input": "5 2\n1 2 3 4 5", "output": "2" }, { "input": "5 6\n0 1 2 3 4", "output": "1" }, { "input": "3 2\n3 4 5", "output": "2" } ]
1,517,923,049
2,147,483,647
Python 3
OK
TESTS
39
62
5,632,000
r = lambda: map(int,input().split()) n, x = r() res = [y for y in r() if y<=x] print (x-len(res) + 2*(x in res))
Title: Mahmoud and Ehab and the MEX Time Limit: None seconds Memory Limit: None megabytes Problem Description: Dr. Evil kidnapped Mahmoud and Ehab in the evil land because of their performance in the Evil Olympiad in Informatics (EOI). He decided to give them some problems to let them go. Dr. Evil is interested in sets, He has a set of *n* integers. Dr. Evil calls a set of integers evil if the MEX of it is exactly *x*. the MEX of a set of integers is the minimum non-negative integer that doesn't exist in it. For example, the MEX of the set {0,<=2,<=4} is 1 and the MEX of the set {1,<=2,<=3} is 0 . Dr. Evil is going to make his set evil. To do this he can perform some operations. During each operation he can add some non-negative integer to his set or erase some element from it. What is the minimal number of operations Dr. Evil has to perform to make his set evil? Input Specification: The first line contains two integers *n* and *x* (1<=≤<=*n*<=≤<=100, 0<=≤<=*x*<=≤<=100) — the size of the set Dr. Evil owns, and the desired MEX. The second line contains *n* distinct non-negative integers not exceeding 100 that represent the set. Output Specification: The only line should contain one integer — the minimal number of operations Dr. Evil should perform. Demo Input: ['5 3\n0 4 5 6 7\n', '1 0\n0\n', '5 0\n1 2 3 4 5\n'] Demo Output: ['2\n', '1\n', '0\n'] Note: For the first test case Dr. Evil should add 1 and 2 to the set performing 2 operations. For the second test case Dr. Evil should erase 0 from the set. After that, the set becomes empty, so the MEX of it is 0. In the third test case the set is already evil.
```python r = lambda: map(int,input().split()) n, x = r() res = [y for y in r() if y<=x] print (x-len(res) + 2*(x in res)) ```
3
69
A
Young Physicist
PROGRAMMING
1,000
[ "implementation", "math" ]
A. Young Physicist
2
256
A guy named Vasya attends the final grade of a high school. One day Vasya decided to watch a match of his favorite hockey team. And, as the boy loves hockey very much, even more than physics, he forgot to do the homework. Specifically, he forgot to complete his physics tasks. Next day the teacher got very angry at Vasya and decided to teach him a lesson. He gave the lazy student a seemingly easy task: You are given an idle body in space and the forces that affect it. The body can be considered as a material point with coordinates (0; 0; 0). Vasya had only to answer whether it is in equilibrium. "Piece of cake" — thought Vasya, we need only to check if the sum of all vectors is equal to 0. So, Vasya began to solve the problem. But later it turned out that there can be lots and lots of these forces, and Vasya can not cope without your help. Help him. Write a program that determines whether a body is idle or is moving by the given vectors of forces.
The first line contains a positive integer *n* (1<=≤<=*n*<=≤<=100), then follow *n* lines containing three integers each: the *x**i* coordinate, the *y**i* coordinate and the *z**i* coordinate of the force vector, applied to the body (<=-<=100<=≤<=*x**i*,<=*y**i*,<=*z**i*<=≤<=100).
Print the word "YES" if the body is in equilibrium, or the word "NO" if it is not.
[ "3\n4 1 7\n-2 4 -1\n1 -5 -3\n", "3\n3 -1 7\n-5 2 -4\n2 -1 -3\n" ]
[ "NO", "YES" ]
none
500
[ { "input": "3\n4 1 7\n-2 4 -1\n1 -5 -3", "output": "NO" }, { "input": "3\n3 -1 7\n-5 2 -4\n2 -1 -3", "output": "YES" }, { "input": "10\n21 32 -46\n43 -35 21\n42 2 -50\n22 40 20\n-27 -9 38\n-4 1 1\n-40 6 -31\n-13 -2 34\n-21 34 -12\n-32 -29 41", "output": "NO" }, { "input": "10\n25 -33 43\n-27 -42 28\n-35 -20 19\n41 -42 -1\n49 -39 -4\n-49 -22 7\n-19 29 41\n8 -27 -43\n8 34 9\n-11 -3 33", "output": "NO" }, { "input": "10\n-6 21 18\n20 -11 -8\n37 -11 41\n-5 8 33\n29 23 32\n30 -33 -11\n39 -49 -36\n28 34 -49\n22 29 -34\n-18 -6 7", "output": "NO" }, { "input": "10\n47 -2 -27\n0 26 -14\n5 -12 33\n2 18 3\n45 -30 -49\n4 -18 8\n-46 -44 -41\n-22 -10 -40\n-35 -21 26\n33 20 38", "output": "NO" }, { "input": "13\n-3 -36 -46\n-11 -50 37\n42 -11 -15\n9 42 44\n-29 -12 24\n3 9 -40\n-35 13 50\n14 43 18\n-13 8 24\n-48 -15 10\n50 9 -50\n21 0 -50\n0 0 -6", "output": "YES" }, { "input": "14\n43 23 17\n4 17 44\n5 -5 -16\n-43 -7 -6\n47 -48 12\n50 47 -45\n2 14 43\n37 -30 15\n4 -17 -11\n17 9 -45\n-50 -3 -8\n-50 0 0\n-50 0 0\n-16 0 0", "output": "YES" }, { "input": "13\n29 49 -11\n38 -11 -20\n25 1 -40\n-11 28 11\n23 -19 1\n45 -41 -17\n-3 0 -19\n-13 -33 49\n-30 0 28\n34 17 45\n-50 9 -27\n-50 0 0\n-37 0 0", "output": "YES" }, { "input": "12\n3 28 -35\n-32 -44 -17\n9 -25 -6\n-42 -22 20\n-19 15 38\n-21 38 48\n-1 -37 -28\n-10 -13 -50\n-5 21 29\n34 28 50\n50 11 -49\n34 0 0", "output": "YES" }, { "input": "37\n-64 -79 26\n-22 59 93\n-5 39 -12\n77 -9 76\n55 -86 57\n83 100 -97\n-70 94 84\n-14 46 -94\n26 72 35\n14 78 -62\n17 82 92\n-57 11 91\n23 15 92\n-80 -1 1\n12 39 18\n-23 -99 -75\n-34 50 19\n-39 84 -7\n45 -30 -39\n-60 49 37\n45 -16 -72\n33 -51 -56\n-48 28 5\n97 91 88\n45 -82 -11\n-21 -15 -90\n-53 73 -26\n-74 85 -90\n-40 23 38\n100 -13 49\n32 -100 -100\n0 -100 -70\n0 -100 0\n0 -100 0\n0 -100 0\n0 -100 0\n0 -37 0", "output": "YES" }, { "input": "4\n68 3 100\n68 21 -100\n-100 -24 0\n-36 0 0", "output": "YES" }, { "input": "33\n-1 -46 -12\n45 -16 -21\n-11 45 -21\n-60 -42 -93\n-22 -45 93\n37 96 85\n-76 26 83\n-4 9 55\n7 -52 -9\n66 8 -85\n-100 -54 11\n-29 59 74\n-24 12 2\n-56 81 85\n-92 69 -52\n-26 -97 91\n54 59 -51\n58 21 -57\n7 68 56\n-47 -20 -51\n-59 77 -13\n-85 27 91\n79 60 -56\n66 -80 5\n21 -99 42\n-31 -29 98\n66 93 76\n-49 45 61\n100 -100 -100\n100 -100 -100\n66 -75 -100\n0 0 -100\n0 0 -87", "output": "YES" }, { "input": "3\n1 2 3\n3 2 1\n0 0 0", "output": "NO" }, { "input": "2\n5 -23 12\n0 0 0", "output": "NO" }, { "input": "1\n0 0 0", "output": "YES" }, { "input": "1\n1 -2 0", "output": "NO" }, { "input": "2\n-23 77 -86\n23 -77 86", "output": "YES" }, { "input": "26\n86 7 20\n-57 -64 39\n-45 6 -93\n-44 -21 100\n-11 -49 21\n73 -71 -80\n-2 -89 56\n-65 -2 7\n5 14 84\n57 41 13\n-12 69 54\n40 -25 27\n-17 -59 0\n64 -91 -30\n-53 9 42\n-54 -8 14\n-35 82 27\n-48 -59 -80\n88 70 79\n94 57 97\n44 63 25\n84 -90 -40\n-100 100 -100\n-92 100 -100\n0 10 -100\n0 0 -82", "output": "YES" }, { "input": "42\n11 27 92\n-18 -56 -57\n1 71 81\n33 -92 30\n82 83 49\n-87 -61 -1\n-49 45 49\n73 26 15\n-22 22 -77\n29 -93 87\n-68 44 -90\n-4 -84 20\n85 67 -6\n-39 26 77\n-28 -64 20\n65 -97 24\n-72 -39 51\n35 -75 -91\n39 -44 -8\n-25 -27 -57\n91 8 -46\n-98 -94 56\n94 -60 59\n-9 -95 18\n-53 -37 98\n-8 -94 -84\n-52 55 60\n15 -14 37\n65 -43 -25\n94 12 66\n-8 -19 -83\n29 81 -78\n-58 57 33\n24 86 -84\n-53 32 -88\n-14 7 3\n89 97 -53\n-5 -28 -91\n-100 100 -6\n-84 100 0\n0 100 0\n0 70 0", "output": "YES" }, { "input": "3\n96 49 -12\n2 -66 28\n-98 17 -16", "output": "YES" }, { "input": "5\n70 -46 86\n-100 94 24\n-27 63 -63\n57 -100 -47\n0 -11 0", "output": "YES" }, { "input": "18\n-86 -28 70\n-31 -89 42\n31 -48 -55\n95 -17 -43\n24 -95 -85\n-21 -14 31\n68 -18 81\n13 31 60\n-15 28 99\n-42 15 9\n28 -61 -62\n-16 71 29\n-28 75 -48\n-77 -67 36\n-100 83 89\n100 100 -100\n57 34 -100\n0 0 -53", "output": "YES" }, { "input": "44\n52 -54 -29\n-82 -5 -94\n-54 43 43\n91 16 71\n7 80 -91\n3 15 29\n-99 -6 -77\n-3 -77 -64\n73 67 34\n25 -10 -18\n-29 91 63\n-72 86 -16\n-68 85 -81\n-3 36 44\n-74 -14 -80\n34 -96 -97\n-76 -78 -33\n-24 44 -58\n98 12 77\n95 -63 -6\n-51 3 -90\n-92 -10 72\n7 3 -68\n57 -53 71\n29 57 -48\n35 -60 10\n79 -70 -61\n-20 77 55\n-86 -15 -35\n84 -88 -18\n100 -42 77\n-20 46 8\n-41 -43 -65\n38 -98 -23\n-100 65 45\n-7 -91 -63\n46 88 -85\n48 59 100\n0 0 100\n0 0 100\n0 0 100\n0 0 100\n0 0 100\n0 0 1", "output": "YES" }, { "input": "18\n-14 -64 -91\n-8 -66 -86\n-23 92 -40\n6 -3 -53\n57 41 78\n-79 42 -22\n-88 -17 45\n4 -45 44\n83 -18 -25\n34 86 -92\n75 -30 12\n44 99 11\n-67 -13 72\n22 83 -56\n-37 71 72\n-9 -100 100\n0 -100 31\n0 -58 0", "output": "YES" }, { "input": "23\n-70 37 78\n42 84 6\n28 -94 -24\n-49 76 95\n-67 18 84\n-53 78 -5\n65 -63 -64\n-66 -64 -69\n81 -93 95\n10 52 -79\n-89 -61 -64\n-64 -47 43\n-81 -35 55\n80 82 73\n-60 -81 -18\n49 -10 -19\n-58 70 12\n-24 -15 -93\n98 -93 -54\n-28 -75 11\n100 100 -63\n100 100 0\n56 34 0", "output": "YES" }, { "input": "3\n0 2 -2\n1 -1 3\n-3 0 0", "output": "NO" } ]
1,691,777,609
2,147,483,647
PyPy 3-64
OK
TESTS
81
124
0
n=int(input()) sx=0 sy=0 sz=0 for i in range(n): cv=[int(c) for c in input().split()] x=cv[0] y=cv[1] z=cv[2] sx+=x sy+=y sz+=z if sx==0 and sy==0 and sz==0: print('YES') else: print('NO')
Title: Young Physicist Time Limit: 2 seconds Memory Limit: 256 megabytes Problem Description: A guy named Vasya attends the final grade of a high school. One day Vasya decided to watch a match of his favorite hockey team. And, as the boy loves hockey very much, even more than physics, he forgot to do the homework. Specifically, he forgot to complete his physics tasks. Next day the teacher got very angry at Vasya and decided to teach him a lesson. He gave the lazy student a seemingly easy task: You are given an idle body in space and the forces that affect it. The body can be considered as a material point with coordinates (0; 0; 0). Vasya had only to answer whether it is in equilibrium. "Piece of cake" — thought Vasya, we need only to check if the sum of all vectors is equal to 0. So, Vasya began to solve the problem. But later it turned out that there can be lots and lots of these forces, and Vasya can not cope without your help. Help him. Write a program that determines whether a body is idle or is moving by the given vectors of forces. Input Specification: The first line contains a positive integer *n* (1<=≤<=*n*<=≤<=100), then follow *n* lines containing three integers each: the *x**i* coordinate, the *y**i* coordinate and the *z**i* coordinate of the force vector, applied to the body (<=-<=100<=≤<=*x**i*,<=*y**i*,<=*z**i*<=≤<=100). Output Specification: Print the word "YES" if the body is in equilibrium, or the word "NO" if it is not. Demo Input: ['3\n4 1 7\n-2 4 -1\n1 -5 -3\n', '3\n3 -1 7\n-5 2 -4\n2 -1 -3\n'] Demo Output: ['NO', 'YES'] Note: none
```python n=int(input()) sx=0 sy=0 sz=0 for i in range(n): cv=[int(c) for c in input().split()] x=cv[0] y=cv[1] z=cv[2] sx+=x sy+=y sz+=z if sx==0 and sy==0 and sz==0: print('YES') else: print('NO') ```
3.969
205
A
Little Elephant and Rozdil
PROGRAMMING
900
[ "brute force", "implementation" ]
null
null
The Little Elephant loves Ukraine very much. Most of all he loves town Rozdol (ukr. "Rozdil"). However, Rozdil is dangerous to settle, so the Little Elephant wants to go to some other town. The Little Elephant doesn't like to spend much time on travelling, so for his journey he will choose a town that needs minimum time to travel to. If there are multiple such cities, then the Little Elephant won't go anywhere. For each town except for Rozdil you know the time needed to travel to this town. Find the town the Little Elephant will go to or print "Still Rozdil", if he stays in Rozdil.
The first line contains a single integer *n* (1<=≤<=*n*<=≤<=105) — the number of cities. The next line contains *n* integers, separated by single spaces: the *i*-th integer represents the time needed to go from town Rozdil to the *i*-th town. The time values are positive integers, not exceeding 109. You can consider the cities numbered from 1 to *n*, inclusive. Rozdil is not among the numbered cities.
Print the answer on a single line — the number of the town the Little Elephant will go to. If there are multiple cities with minimum travel time, print "Still Rozdil" (without the quotes).
[ "2\n7 4\n", "7\n7 4 47 100 4 9 12\n" ]
[ "2\n", "Still Rozdil\n" ]
In the first sample there are only two cities where the Little Elephant can go. The travel time for the first town equals 7, to the second one — 4. The town which is closest to Rodzil (the only one) is the second one, so the answer is 2. In the second sample the closest cities are cities two and five, the travelling time to both of them equals 4, so the answer is "Still Rozdil".
500
[ { "input": "2\n7 4", "output": "2" }, { "input": "7\n7 4 47 100 4 9 12", "output": "Still Rozdil" }, { "input": "1\n47", "output": "1" }, { "input": "2\n1000000000 1000000000", "output": "Still Rozdil" }, { "input": "7\n7 6 5 4 3 2 1", "output": "7" }, { "input": "10\n1 1 1 1 1 1 1 1 1 1", "output": "Still Rozdil" }, { "input": "4\n1000000000 100000000 1000000 1000000", "output": "Still Rozdil" }, { "input": "20\n7 1 1 2 1 1 8 7 7 8 4 3 7 10 5 3 10 5 10 6", "output": "Still Rozdil" }, { "input": "20\n3 3 6 9 8 2 4 1 7 3 2 9 7 7 9 7 2 6 2 7", "output": "8" }, { "input": "47\n35 79 84 56 67 95 80 34 77 68 14 55 95 32 40 89 58 79 96 66 50 79 35 86 31 74 91 35 22 72 84 38 11 59 73 51 65 11 11 62 30 12 32 71 69 15 11", "output": "Still Rozdil" }, { "input": "47\n3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3", "output": "32" }, { "input": "25\n73 56 65 70 57 57 49 50 65 68 54 48 66 55 55 66 60 70 47 62 63 70 62 70 63", "output": "19" }, { "input": "100\n922 938 103 689 526 118 314 496 373 47 224 544 495 656 804 754 269 356 354 536 817 597 787 178 516 659 790 993 786 169 866 779 997 350 674 437 219 546 564 893 402 449 751 628 238 686 392 951 716 439 332 563 215 146 746 311 866 773 548 675 731 183 890 802 488 944 473 25 662 559 732 534 777 144 502 593 839 692 84 337 679 718 1005 663 709 940 86 469 310 960 902 233 606 761 116 231 662 903 68 622", "output": "68" }, { "input": "5\n5 5 2 3 1", "output": "5" }, { "input": "1\n1000000000", "output": "1" }, { "input": "3\n7 7 4", "output": "3" }, { "input": "3\n2 2 1", "output": "3" }, { "input": "3\n4 4 3", "output": "3" }, { "input": "2\n10000001 10000002", "output": "1" }, { "input": "4\n3 3 2 1", "output": "4" }, { "input": "3\n1 2 3", "output": "1" }, { "input": "2\n1000000000 100000000", "output": "2" }, { "input": "1\n99999999", "output": "1" }, { "input": "3\n5 5 3", "output": "3" }, { "input": "3\n7 7 5", "output": "3" }, { "input": "3\n3 3 1", "output": "3" }, { "input": "4\n10 10 10 1", "output": "4" } ]
1,593,692,194
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
8
218
7,270,400
n=int(input()) c=[int(x) for x in input().split()] b=min(c) count=c.count(b) if count==1: print(n) else: print("Still Rozdil")
Title: Little Elephant and Rozdil Time Limit: None seconds Memory Limit: None megabytes Problem Description: The Little Elephant loves Ukraine very much. Most of all he loves town Rozdol (ukr. "Rozdil"). However, Rozdil is dangerous to settle, so the Little Elephant wants to go to some other town. The Little Elephant doesn't like to spend much time on travelling, so for his journey he will choose a town that needs minimum time to travel to. If there are multiple such cities, then the Little Elephant won't go anywhere. For each town except for Rozdil you know the time needed to travel to this town. Find the town the Little Elephant will go to or print "Still Rozdil", if he stays in Rozdil. Input Specification: The first line contains a single integer *n* (1<=≤<=*n*<=≤<=105) — the number of cities. The next line contains *n* integers, separated by single spaces: the *i*-th integer represents the time needed to go from town Rozdil to the *i*-th town. The time values are positive integers, not exceeding 109. You can consider the cities numbered from 1 to *n*, inclusive. Rozdil is not among the numbered cities. Output Specification: Print the answer on a single line — the number of the town the Little Elephant will go to. If there are multiple cities with minimum travel time, print "Still Rozdil" (without the quotes). Demo Input: ['2\n7 4\n', '7\n7 4 47 100 4 9 12\n'] Demo Output: ['2\n', 'Still Rozdil\n'] Note: In the first sample there are only two cities where the Little Elephant can go. The travel time for the first town equals 7, to the second one — 4. The town which is closest to Rodzil (the only one) is the second one, so the answer is 2. In the second sample the closest cities are cities two and five, the travelling time to both of them equals 4, so the answer is "Still Rozdil".
```python n=int(input()) c=[int(x) for x in input().split()] b=min(c) count=c.count(b) if count==1: print(n) else: print("Still Rozdil") ```
0
687
B
Remainders Game
PROGRAMMING
1,800
[ "chinese remainder theorem", "math", "number theory" ]
null
null
Today Pari and Arya are playing a game called Remainders. Pari chooses two positive integer *x* and *k*, and tells Arya *k* but not *x*. Arya have to find the value . There are *n* ancient numbers *c*1,<=*c*2,<=...,<=*c**n* and Pari has to tell Arya if Arya wants. Given *k* and the ancient values, tell us if Arya has a winning strategy independent of value of *x* or not. Formally, is it true that Arya can understand the value for any positive integer *x*? Note, that means the remainder of *x* after dividing it by *y*.
The first line of the input contains two integers *n* and *k* (1<=≤<=*n*,<= *k*<=≤<=1<=000<=000) — the number of ancient integers and value *k* that is chosen by Pari. The second line contains *n* integers *c*1,<=*c*2,<=...,<=*c**n* (1<=≤<=*c**i*<=≤<=1<=000<=000).
Print "Yes" (without quotes) if Arya has a winning strategy independent of value of *x*, or "No" (without quotes) otherwise.
[ "4 5\n2 3 5 12\n", "2 7\n2 3\n" ]
[ "Yes\n", "No\n" ]
In the first sample, Arya can understand <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/d170efffcde0907ee6bcf32de21051bce0677a2c.png" style="max-width: 100.0%;max-height: 100.0%;"/> because 5 is one of the ancient numbers. In the second sample, Arya can't be sure what <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/57b5f6a96f5db073270dd3ed4266c69299ec701d.png" style="max-width: 100.0%;max-height: 100.0%;"/> is. For example 1 and 7 have the same remainders after dividing by 2 and 3, but they differ in remainders after dividing by 7.
1,000
[ { "input": "4 5\n2 3 5 12", "output": "Yes" }, { "input": "2 7\n2 3", "output": "No" }, { "input": "1 6\n8", "output": "No" }, { "input": "2 3\n9 4", "output": "Yes" }, { "input": "4 16\n19 16 13 9", "output": "Yes" }, { "input": "5 10\n5 16 19 9 17", "output": "Yes" }, { "input": "11 95\n31 49 8 139 169 121 71 17 43 29 125", "output": "No" }, { "input": "17 71\n173 43 139 73 169 199 49 81 11 89 131 107 23 29 125 152 17", "output": "No" }, { "input": "13 86\n41 64 17 31 13 97 19 25 81 47 61 37 71", "output": "No" }, { "input": "15 91\n49 121 83 67 128 125 27 113 41 169 149 19 37 29 71", "output": "Yes" }, { "input": "2 4\n2 2", "output": "No" }, { "input": "14 87\n1619 1619 1619 1619 1619 1619 1619 1619 1619 1619 1619 1619 1619 1619", "output": "No" }, { "input": "12 100\n1766 1766 1766 1766 1766 1766 1766 1766 1766 1766 1766 1766", "output": "No" }, { "input": "1 994619\n216000", "output": "No" }, { "input": "1 651040\n911250", "output": "No" }, { "input": "1 620622\n60060", "output": "No" }, { "input": "1 1\n559872", "output": "Yes" }, { "input": "88 935089\n967 967 967 967 967 967 967 967 967 967 967 967 967 967 967 967 967 967 967 967 967 967 967 967 967 967 967 967 967 967 967 967 967 967 967 967 967 967 967 967 967 967 967 967 967 967 967 967 967 967 967 967 967 967 967 967 967 967 967 967 967 967 967 967 967 967 967 967 967 967 967 967 967 967 967 967 967 967 967 967 967 967 967 967 967 967 967 967", "output": "No" }, { "input": "93 181476\n426 426 426 426 426 426 426 426 426 426 426 426 426 426 426 426 426 426 426 426 426 426 426 426 426 426 426 426 426 426 426 426 426 426 426 426 426 426 426 426 426 426 426 426 426 426 426 426 426 426 426 426 426 426 426 426 426 426 426 426 426 426 426 426 426 426 426 426 426 426 426 426 426 426 426 426 426 426 426 426 426 426 426 426 426 426 426 426 426 426 426 426 426", "output": "No" }, { "input": "91 4900\n630 630 70 630 910 630 630 630 770 70 770 630 630 770 70 630 70 630 70 630 70 630 630 70 910 630 630 630 770 630 630 630 70 910 70 630 70 630 770 630 630 70 630 770 70 630 70 70 630 630 70 70 70 70 630 70 70 770 910 630 70 630 770 70 910 70 630 910 630 70 770 70 70 630 770 630 70 630 70 70 630 70 630 770 630 70 630 630 70 910 630", "output": "No" }, { "input": "61 531012\n698043 698043 698043 963349 698043 698043 698043 963349 698043 698043 698043 963349 698043 698043 698043 698043 966694 698043 698043 698043 698043 698043 698043 636247 698043 963349 698043 698043 698043 698043 697838 698043 963349 698043 698043 966694 698043 698043 698043 698043 698043 698043 698043 698043 698043 698043 698043 698043 698043 698043 698043 698043 698043 698043 963349 698043 698043 698043 698043 963349 698043", "output": "No" }, { "input": "1 216000\n648000", "output": "Yes" }, { "input": "2 8\n4 4", "output": "No" }, { "input": "3 8\n4 4 4", "output": "No" }, { "input": "2 8\n2 4", "output": "No" }, { "input": "3 12\n2 2 3", "output": "No" }, { "input": "10 4\n2 2 2 2 2 2 2 2 2 2", "output": "No" }, { "input": "10 1024\n1 2 4 8 16 32 64 128 256 512", "output": "No" }, { "input": "3 24\n2 2 3", "output": "No" }, { "input": "1 8\n2", "output": "No" }, { "input": "2 9\n3 3", "output": "No" }, { "input": "3 4\n2 2 2", "output": "No" }, { "input": "3 4\n1 2 2", "output": "No" }, { "input": "1 4\n2", "output": "No" }, { "input": "1 100003\n2", "output": "No" }, { "input": "1 2\n12", "output": "Yes" }, { "input": "2 988027\n989018 995006", "output": "Yes" }, { "input": "3 9\n3 3 3", "output": "No" }, { "input": "1 49\n7", "output": "No" }, { "input": "2 600000\n200000 300000", "output": "Yes" }, { "input": "3 8\n2 2 2", "output": "No" }, { "input": "7 510510\n524288 531441 390625 823543 161051 371293 83521", "output": "Yes" }, { "input": "2 30\n6 10", "output": "Yes" }, { "input": "2 27000\n5400 4500", "output": "Yes" }, { "input": "3 8\n1 2 4", "output": "No" }, { "input": "4 16\n2 2 2 2", "output": "No" }, { "input": "2 16\n4 8", "output": "No" }, { "input": "2 8\n4 2", "output": "No" }, { "input": "3 4\n2 2 3", "output": "No" }, { "input": "1 8\n4", "output": "No" }, { "input": "1 999983\n2", "output": "No" }, { "input": "3 16\n2 4 8", "output": "No" }, { "input": "2 216\n12 18", "output": "No" }, { "input": "2 16\n8 8", "output": "No" }, { "input": "2 36\n18 12", "output": "Yes" }, { "input": "2 36\n12 18", "output": "Yes" }, { "input": "2 1000000\n1000000 1000000", "output": "Yes" }, { "input": "3 20\n2 2 5", "output": "No" }, { "input": "1 2\n6", "output": "Yes" }, { "input": "4 4\n2 3 6 5", "output": "No" }, { "input": "1 2\n1", "output": "No" }, { "input": "1 6\n6", "output": "Yes" }, { "input": "2 16\n4 4", "output": "No" }, { "input": "2 3779\n1 2", "output": "No" }, { "input": "2 8\n4 12", "output": "No" }, { "input": "2 24\n4 6", "output": "No" }, { "input": "1 1\n5", "output": "Yes" }, { "input": "10 255255\n1000000 700000 300000 110000 130000 170000 190000 230000 290000 310000", "output": "Yes" }, { "input": "2 1000\n500 2", "output": "No" }, { "input": "4 8\n2 2 2 2", "output": "No" }, { "input": "1 666013\n1", "output": "No" }, { "input": "1 999983\n1", "output": "No" }, { "input": "1 125\n5", "output": "No" }, { "input": "2 32\n4 8", "output": "No" }, { "input": "3 32\n2 4 8", "output": "No" }, { "input": "3 8\n2 4 11", "output": "No" }, { "input": "1 32\n2", "output": "No" }, { "input": "4 4\n2 2 2 2", "output": "No" }, { "input": "8 32\n2 2 2 2 2 2 2 2", "output": "No" }, { "input": "3 24\n2 4 3", "output": "No" }, { "input": "2 4\n2 6", "output": "No" }, { "input": "2 24\n6 4", "output": "No" }, { "input": "1 20998\n2", "output": "No" }, { "input": "1 1\n1", "output": "Yes" }, { "input": "2 20998\n2 10499", "output": "Yes" }, { "input": "1 5\n1", "output": "No" }, { "input": "2 25\n5 5", "output": "No" }, { "input": "5 2\n2 2 2 2 2", "output": "Yes" }, { "input": "3 12\n2 3 6", "output": "No" }, { "input": "1 1\n3", "output": "Yes" }, { "input": "2 16\n8 4", "output": "No" }, { "input": "40 10\n2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2", "output": "No" } ]
1,573,818,677
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
9
109
0
def gcd(a, b): if a % b == 0: return b return gcd(b, a % b) def lcm(numlist): if len(numlist) == 1: return numlist[0] a = numlist.pop(0) b = lcm(numlist) return a * b / gcd(a, b) def main(): n, k = map(lambda x : int(x), input().split()) c = list(map(lambda x : int(x), input().split())) if gcd(k, lcm(c))==k: print("Yes") else: print("No") main()
Title: Remainders Game Time Limit: None seconds Memory Limit: None megabytes Problem Description: Today Pari and Arya are playing a game called Remainders. Pari chooses two positive integer *x* and *k*, and tells Arya *k* but not *x*. Arya have to find the value . There are *n* ancient numbers *c*1,<=*c*2,<=...,<=*c**n* and Pari has to tell Arya if Arya wants. Given *k* and the ancient values, tell us if Arya has a winning strategy independent of value of *x* or not. Formally, is it true that Arya can understand the value for any positive integer *x*? Note, that means the remainder of *x* after dividing it by *y*. Input Specification: The first line of the input contains two integers *n* and *k* (1<=≤<=*n*,<= *k*<=≤<=1<=000<=000) — the number of ancient integers and value *k* that is chosen by Pari. The second line contains *n* integers *c*1,<=*c*2,<=...,<=*c**n* (1<=≤<=*c**i*<=≤<=1<=000<=000). Output Specification: Print "Yes" (without quotes) if Arya has a winning strategy independent of value of *x*, or "No" (without quotes) otherwise. Demo Input: ['4 5\n2 3 5 12\n', '2 7\n2 3\n'] Demo Output: ['Yes\n', 'No\n'] Note: In the first sample, Arya can understand <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/d170efffcde0907ee6bcf32de21051bce0677a2c.png" style="max-width: 100.0%;max-height: 100.0%;"/> because 5 is one of the ancient numbers. In the second sample, Arya can't be sure what <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/57b5f6a96f5db073270dd3ed4266c69299ec701d.png" style="max-width: 100.0%;max-height: 100.0%;"/> is. For example 1 and 7 have the same remainders after dividing by 2 and 3, but they differ in remainders after dividing by 7.
```python def gcd(a, b): if a % b == 0: return b return gcd(b, a % b) def lcm(numlist): if len(numlist) == 1: return numlist[0] a = numlist.pop(0) b = lcm(numlist) return a * b / gcd(a, b) def main(): n, k = map(lambda x : int(x), input().split()) c = list(map(lambda x : int(x), input().split())) if gcd(k, lcm(c))==k: print("Yes") else: print("No") main() ```
0
804
B
Minimum number of steps
PROGRAMMING
1,400
[ "combinatorics", "greedy", "implementation", "math" ]
null
null
We have a string of letters 'a' and 'b'. We want to perform some operations on it. On each step we choose one of substrings "ab" in the string and replace it with the string "bba". If we have no "ab" as a substring, our job is done. Print the minimum number of steps we should perform to make our job done modulo 109<=+<=7. The string "ab" appears as a substring if there is a letter 'b' right after the letter 'a' somewhere in the string.
The first line contains the initial string consisting of letters 'a' and 'b' only with length from 1 to 106.
Print the minimum number of steps modulo 109<=+<=7.
[ "ab\n", "aab\n" ]
[ "1\n", "3\n" ]
The first example: "ab"  →  "bba". The second example: "aab"  →  "abba"  →  "bbaba"  →  "bbbbaa".
1,000
[ { "input": "ab", "output": "1" }, { "input": "aab", "output": "3" }, { "input": "aaaaabaabababaaaaaba", "output": "17307" }, { "input": "abaabaaabbabaabab", "output": "1795" }, { "input": "abbaa", "output": "2" }, { "input": "abbaaabaabaaaaabbbbaababaaaaabaabbaaaaabbaabbaaaabbbabbbabb", "output": "690283580" }, { "input": "aababbaaaabbaabbbbbbbbabbababbbaaabbaaabbabbba", "output": "2183418" }, { "input": "aabbaababbabbbaabbaababaaaabbaaaabaaaaaababbaaaabaababbabbbb", "output": "436420225" }, { "input": "aaabaaaabbababbaabbababbbbaaaaaaabbabbba", "output": "8431094" }, { "input": "abbbbababbabbbbbabaabbbaabbbbbbbaaab", "output": "8180" }, { "input": "bbababbbaabaaaaaaaabbabbbb", "output": "40979" }, { "input": "abbbaaabbbbbabaabbaaabbbababbbaabaabababababa", "output": "2065758" }, { "input": "abaaaaaabaaaabbabbaaabbbbabababaaaaabbaabbaaaaabbbaababaaaaaaabbbbbaaaaabaababbabababbabbbbaabbaabbabbbabaabbaabbaaaaaab", "output": "235606597" }, { "input": "abbbbbbbbbbbbbbbbbbbbbbbbbbaababaaaaaaabaabaaababaabaababaaabababaababab", "output": "7" }, { "input": "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaabbbbbbbbbbbbbaaaaaaaaabaabaaababaabaababaaabababaabbbbbbb", "output": "557763786" } ]
1,602,269,162
2,147,483,647
Python 3
OK
TESTS
32
405
3,174,400
def quantidadeJogadas(string, c): jogadas = 0 quantidadeB = 0 i = len(string) - 1 while i >= 0: if string[i] == "b": quantidadeB = (quantidadeB + 1) % c else: jogadas = (jogadas + quantidadeB) % c quantidadeB = (2 * quantidadeB) % c i -= 1 return jogadas c = 1000000007 string = input() print(quantidadeJogadas(string, c))
Title: Minimum number of steps Time Limit: None seconds Memory Limit: None megabytes Problem Description: We have a string of letters 'a' and 'b'. We want to perform some operations on it. On each step we choose one of substrings "ab" in the string and replace it with the string "bba". If we have no "ab" as a substring, our job is done. Print the minimum number of steps we should perform to make our job done modulo 109<=+<=7. The string "ab" appears as a substring if there is a letter 'b' right after the letter 'a' somewhere in the string. Input Specification: The first line contains the initial string consisting of letters 'a' and 'b' only with length from 1 to 106. Output Specification: Print the minimum number of steps modulo 109<=+<=7. Demo Input: ['ab\n', 'aab\n'] Demo Output: ['1\n', '3\n'] Note: The first example: "ab"  →  "bba". The second example: "aab"  →  "abba"  →  "bbaba"  →  "bbbbaa".
```python def quantidadeJogadas(string, c): jogadas = 0 quantidadeB = 0 i = len(string) - 1 while i >= 0: if string[i] == "b": quantidadeB = (quantidadeB + 1) % c else: jogadas = (jogadas + quantidadeB) % c quantidadeB = (2 * quantidadeB) % c i -= 1 return jogadas c = 1000000007 string = input() print(quantidadeJogadas(string, c)) ```
3
496
C
Removing Columns
PROGRAMMING
1,500
[ "brute force", "constructive algorithms", "implementation" ]
null
null
You are given an *n*<=×<=*m* rectangular table consisting of lower case English letters. In one operation you can completely remove one column from the table. The remaining parts are combined forming a new table. For example, after removing the second column from the table   we obtain the table:   A table is called good if its rows are ordered from top to bottom lexicographically, i.e. each row is lexicographically no larger than the following one. Determine the minimum number of operations of removing a column needed to make a given table good.
The first line contains two integers  — *n* and *m* (1<=≤<=*n*,<=*m*<=≤<=100). Next *n* lines contain *m* small English letters each — the characters of the table.
Print a single number — the minimum number of columns that you need to remove in order to make the table good.
[ "1 10\ncodeforces\n", "4 4\ncase\ncare\ntest\ncode\n", "5 4\ncode\nforc\nesco\ndefo\nrces\n" ]
[ "0\n", "2\n", "4\n" ]
In the first sample the table is already good. In the second sample you may remove the first and third column. In the third sample you have to remove all the columns (note that the table where all rows are empty is considered good by definition). Let strings *s* and *t* have equal length. Then, *s* is lexicographically larger than *t* if they are not equal and the character following the largest common prefix of *s* and *t* (the prefix may be empty) in *s* is alphabetically larger than the corresponding character of *t*.
1,750
[ { "input": "1 10\ncodeforces", "output": "0" }, { "input": "4 4\ncase\ncare\ntest\ncode", "output": "2" }, { "input": "5 4\ncode\nforc\nesco\ndefo\nrces", "output": "4" }, { "input": "2 2\nfb\nye", "output": "0" }, { "input": "5 5\nrzrzh\nrzrzh\nrzrzh\nrzrzh\nrzrzh", "output": "0" }, { "input": "10 10\nddorannorz\nmdrnzqvqgo\ngdtdjmlsuf\neoxbrntqdp\nhribwlslgo\newlqrontvk\nnxibmnawnh\nvxiwdjvdom\nhyhhewmzmp\niysgvzayst", "output": "1" }, { "input": "9 7\nygqartj\nlgwxlqv\nancjjpr\nwnnhkpx\ncnnhvty\nxsfrbqp\nxsolyne\nbsoojiq\nxstetjb", "output": "1" }, { "input": "4 50\nulkteempxafxafcvfwmwhsixwzgbmubcqqceevbbwijeerqbsj\neyqxsievaratndjoekltlqwppfgcukjwxdxexhejbfhzklppkk\npskatxpbjdbmjpwhussetytneohgzxgirluwnbraxtxmaupuid\neappatavdzktqlrjqttmwwroathnulubpjgsjazcycecwmxwvn", "output": "20" }, { "input": "5 50\nvlrkwhvbigkhihwqjpvmohdsszvndheqlmdsspkkxxiedobizr\nmhnzwdefqmttclfxocdmvvtdjtvqhmdllrtrrlnewuqowmtrmp\nrihlhxrqfhpcddslxepesvjqmlqgwyehvxjcsytevujfegeewh\nqrdyiymanvbdjomyruspreihahjhgkcixwowfzczundxqydldq\nkgnrbjlrmkuoiuzeiqwhnyjpuzfnsinqiamlnuzksrdnlvaxjd", "output": "50" }, { "input": "100 1\ni\ni\ni\ni\ni\ni\ni\ni\ni\ni\ni\ni\ni\ni\ni\ni\ni\ni\ni\ni\ni\ni\ni\ni\ni\ni\ni\ni\ni\nv\nv\nv\nv\nv\nv\nv\nv\nv\nv\nv\nv\nv\nv\nv\nv\nv\nv\nv\nv\nv\nv\nv\nv\nv\nv\nv\nv\nv\nv\nv\nv\nv\nv\nx\nx\nx\nx\nx\nx\nx\nx\nx\nx\nx\nx\nx\nx\nx\nx\nx\nx\nx\nx\nx\nx\nx\nx\nx\nx\nx\nx\nx\nx\nx\nx\nx\nx\nx\nx\nx", "output": "0" }, { "input": "1 100\nteloaetuldspjqdlcktjlishwynmjjhlomvemhoyyplbltfwmrlnazbbjvyvwvoxjvvoadkznvxqubgwesoxrznvbdizjdzixecb", "output": "0" }, { "input": "4 100\ngdgmmejiigzsmlarrnfsypvlbutvoxazcigpcospgztqkowfhhbnnbxxrbmwbxwkvxlxzabjjjdtbebedukdelooqlxnadjwjpnp\ndmtsnsbsfdzqvydxcdcnkkfcbseicxhvclsligbhqlkccwujpirymoshkqcosbtlxdypsdqkqaolrqtiibymavcwmbfryttdckhw\njtdmpdljcpciuuoznvqqmafvoqychzfslmwqouuarxctunlzegxsucrwontjplkkxhgixgdbvnewphnatxnwqxqshcexpxlyjuwq\nvhdtvexkyhjmahejbhyfeaompjkdvxmbtdbmvrxrixhnkkjgyvfbxlviatbikfejnqhkrtafftmsgyznpsfxsnzaqdzhxridzilo", "output": "4" }, { "input": "5 2\nab\ndc\ngd\ngc\nhx", "output": "1" }, { "input": "2 1\nb\na", "output": "1" }, { "input": "4 3\nabd\nacc\nbdx\nbcy", "output": "2" }, { "input": "4 2\nad\nac\nbd\nbc", "output": "1" }, { "input": "3 3\naac\nabb\nbba", "output": "0" }, { "input": "3 3\nadc\nbdb\ncda", "output": "0" }, { "input": "4 3\nabz\ndby\ngbx\nhbw", "output": "0" }, { "input": "3 3\naac\nbab\ncaa", "output": "0" }, { "input": "5 6\naaaeaa\nababab\nacacac\nadadad\naeaeae", "output": "0" }, { "input": "3 2\naa\nbc\nba", "output": "1" }, { "input": "3 3\naaz\ndaa\nbaa", "output": "2" }, { "input": "3 3\nabc\nbbb\ncba", "output": "0" }, { "input": "2 3\naxc\nbxa", "output": "0" } ]
1,632,319,251
2,147,483,647
PyPy 3
OK
TESTS
49
124
21,606,400
n,m = map(int,input().split()) l = [] for i in range(n): o = input() l.append(o) ans = 0 arr = [""]*n for i in range(m): flag = 0 for j in range(1,n): s1 = arr[j-1] s2 = arr[j] if s1+l[j-1][i] > s2+l[j][i]: flag = 1 break if flag: ans += 1 continue for j in range(n): arr[j] = arr[j]+l[j][i] print(ans)
Title: Removing Columns Time Limit: None seconds Memory Limit: None megabytes Problem Description: You are given an *n*<=×<=*m* rectangular table consisting of lower case English letters. In one operation you can completely remove one column from the table. The remaining parts are combined forming a new table. For example, after removing the second column from the table   we obtain the table:   A table is called good if its rows are ordered from top to bottom lexicographically, i.e. each row is lexicographically no larger than the following one. Determine the minimum number of operations of removing a column needed to make a given table good. Input Specification: The first line contains two integers  — *n* and *m* (1<=≤<=*n*,<=*m*<=≤<=100). Next *n* lines contain *m* small English letters each — the characters of the table. Output Specification: Print a single number — the minimum number of columns that you need to remove in order to make the table good. Demo Input: ['1 10\ncodeforces\n', '4 4\ncase\ncare\ntest\ncode\n', '5 4\ncode\nforc\nesco\ndefo\nrces\n'] Demo Output: ['0\n', '2\n', '4\n'] Note: In the first sample the table is already good. In the second sample you may remove the first and third column. In the third sample you have to remove all the columns (note that the table where all rows are empty is considered good by definition). Let strings *s* and *t* have equal length. Then, *s* is lexicographically larger than *t* if they are not equal and the character following the largest common prefix of *s* and *t* (the prefix may be empty) in *s* is alphabetically larger than the corresponding character of *t*.
```python n,m = map(int,input().split()) l = [] for i in range(n): o = input() l.append(o) ans = 0 arr = [""]*n for i in range(m): flag = 0 for j in range(1,n): s1 = arr[j-1] s2 = arr[j] if s1+l[j-1][i] > s2+l[j][i]: flag = 1 break if flag: ans += 1 continue for j in range(n): arr[j] = arr[j]+l[j][i] print(ans) ```
3
666
A
Reberland Linguistics
PROGRAMMING
1,800
[ "dp", "implementation", "strings" ]
null
null
First-rate specialists graduate from Berland State Institute of Peace and Friendship. You are one of the most talented students in this university. The education is not easy because you need to have fundamental knowledge in different areas, which sometimes are not related to each other. For example, you should know linguistics very well. You learn a structure of Reberland language as foreign language. In this language words are constructed according to the following rules. First you need to choose the "root" of the word — some string which has more than 4 letters. Then several strings with the length 2 or 3 symbols are appended to this word. The only restriction — it is not allowed to append the same string twice in a row. All these strings are considered to be suffixes of the word (this time we use word "suffix" to describe a morpheme but not the few last characters of the string as you may used to). Here is one exercise that you have found in your task list. You are given the word *s*. Find all distinct strings with the length 2 or 3, which can be suffixes of this word according to the word constructing rules in Reberland language. Two strings are considered distinct if they have different length or there is a position in which corresponding characters do not match. Let's look at the example: the word *abacabaca* is given. This word can be obtained in the following ways: , where the root of the word is overlined, and suffixes are marked by "corners". Thus, the set of possible suffixes for this word is {*aca*,<=*ba*,<=*ca*}.
The only line contains a string *s* (5<=≤<=|*s*|<=≤<=104) consisting of lowercase English letters.
On the first line print integer *k* — a number of distinct possible suffixes. On the next *k* lines print suffixes. Print suffixes in lexicographical (alphabetical) order.
[ "abacabaca\n", "abaca\n" ]
[ "3\naca\nba\nca\n", "0\n" ]
The first test was analysed in the problem statement. In the second example the length of the string equals 5. The length of the root equals 5, so no string can be used as a suffix.
500
[ { "input": "abacabaca", "output": "3\naca\nba\nca" }, { "input": "abaca", "output": "0" }, { "input": "gzqgchv", "output": "1\nhv" }, { "input": "iosdwvzerqfi", "output": "9\ner\nerq\nfi\nqfi\nrq\nvz\nvze\nze\nzer" }, { "input": "oawtxikrpvfuzugjweki", "output": "25\neki\nfu\nfuz\ngj\ngjw\nik\nikr\njw\njwe\nki\nkr\nkrp\npv\npvf\nrp\nrpv\nug\nugj\nuz\nuzu\nvf\nvfu\nwe\nzu\nzug" }, { "input": "abcdexyzzzz", "output": "5\nxyz\nyz\nyzz\nzz\nzzz" }, { "input": "affviytdmexpwfqplpyrlniprbdphrcwlboacoqec", "output": "67\nac\naco\nbd\nbdp\nbo\nboa\nco\ncoq\ncw\ncwl\ndm\ndme\ndp\ndph\nec\nex\nexp\nfq\nfqp\nhr\nhrc\nip\nipr\nlb\nlbo\nln\nlni\nlp\nlpy\nme\nmex\nni\nnip\noa\noac\noq\nph\nphr\npl\nplp\npr\nprb\npw\npwf\npy\npyr\nqec\nqp\nqpl\nrb\nrbd\nrc\nrcw\nrl\nrln\ntd\ntdm\nwf\nwfq\nwl\nwlb\nxp\nxpw\nyr\nyrl\nyt\nytd" }, { "input": "lmnxtobrknqjvnzwadpccrlvisxyqbxxmghvl", "output": "59\nad\nadp\nbr\nbrk\nbx\nbxx\ncc\nccr\ncr\ncrl\ndp\ndpc\ngh\nhvl\nis\nisx\njv\njvn\nkn\nknq\nlv\nlvi\nmg\nmgh\nnq\nnqj\nnz\nnzw\nob\nobr\npc\npcc\nqb\nqbx\nqj\nqjv\nrk\nrkn\nrl\nrlv\nsx\nsxy\nvi\nvis\nvl\nvn\nvnz\nwa\nwad\nxm\nxmg\nxx\nxxm\nxy\nxyq\nyq\nyqb\nzw\nzwa" }, { "input": "tbdbdpkluawodlrwldjgplbiylrhuywkhafbkiuoppzsjxwbaqqiwagprqtoauowtaexrhbmctcxwpmplkyjnpwukzwqrqpv", "output": "170\nae\naex\naf\nafb\nag\nagp\naq\naqq\nau\nauo\naw\nawo\nba\nbaq\nbi\nbiy\nbk\nbki\nbm\nbmc\nct\nctc\ncx\ncxw\ndj\ndjg\ndl\ndlr\nex\nexr\nfb\nfbk\ngp\ngpl\ngpr\nha\nhaf\nhb\nhbm\nhu\nhuy\niu\niuo\niw\niwa\niy\niyl\njg\njgp\njn\njnp\njx\njxw\nkh\nkha\nki\nkiu\nkl\nklu\nky\nkyj\nkz\nkzw\nlb\nlbi\nld\nldj\nlk\nlky\nlr\nlrh\nlrw\nlu\nlua\nmc\nmct\nmp\nmpl\nnp\nnpw\noa\noau\nod\nodl\nop\nopp\now\nowt\npk\npkl\npl\nplb\nplk\npm\npmp\npp\nppz\npr\nprq\npv\npw\npwu\npz\npzs\nqi\nqiw\nqpv\nqq\nqqi\nqr\nqrq\nqt\nq..." }, { "input": "caqmjjtwmqxytcsawfufvlofqcqdwnyvywvbbhmpzqwqqxieptiaguwvqdrdftccsglgfezrzhstjcxdknftpyslyqdmkwdolwbusyrgyndqllgesktvgarpfkiglxgtcfepclqhgfbfmkymsszrtynlxbosmrvntsqwccdtahkpnelwiqn", "output": "323\nag\nagu\nah\nahk\nar\narp\naw\nawf\nbb\nbbh\nbf\nbfm\nbh\nbhm\nbo\nbos\nbu\nbus\ncc\nccd\nccs\ncd\ncdt\ncf\ncfe\ncl\nclq\ncq\ncqd\ncs\ncsa\ncsg\ncx\ncxd\ndf\ndft\ndk\ndkn\ndm\ndmk\ndo\ndol\ndq\ndql\ndr\ndrd\ndt\ndta\ndw\ndwn\nel\nelw\nep\nepc\nept\nes\nesk\nez\nezr\nfb\nfbf\nfe\nfep\nfez\nfk\nfki\nfm\nfmk\nfq\nfqc\nft\nftc\nftp\nfu\nfuf\nfv\nfvl\nga\ngar\nge\nges\ngf\ngfb\ngfe\ngl\nglg\nglx\ngt\ngtc\ngu\nguw\ngy\ngyn\nhg\nhgf\nhk\nhkp\nhm\nhmp\nhs\nhst\nia\niag\nie\niep\nig\nigl\niqn\njc\njcx\njt\njtw..." }, { "input": "prntaxhysjfcfmrjngdsitlguahtpnwgbaxptubgpwcfxqehrulbxfcjssgocqncscduvyvarvwxzvmjoatnqfsvsilubexmwugedtzavyamqjqtkxzuslielibjnvkpvyrbndehsqcaqzcrmomqqwskwcypgqoawxdutnxmeivnfpzwvxiyscbfnloqjhjacsfnkfmbhgzpujrqdbaemjsqphokkiplblbflvadcyykcqrdohfasstobwrobslaofbasylwiizrpozvhtwyxtzl", "output": "505\nac\nacs\nad\nadc\nae\naem\nah\naht\nam\namq\nao\naof\naq\naqz\nar\narv\nas\nass\nasy\nat\natn\nav\navy\naw\nawx\nax\naxp\nba\nbae\nbas\nbax\nbe\nbex\nbf\nbfl\nbfn\nbg\nbgp\nbh\nbhg\nbj\nbjn\nbl\nblb\nbn\nbnd\nbs\nbsl\nbw\nbwr\nbx\nbxf\nca\ncaq\ncb\ncbf\ncd\ncdu\ncf\ncfm\ncfx\ncj\ncjs\ncq\ncqn\ncqr\ncr\ncrm\ncs\ncsc\ncsf\ncy\ncyp\ncyy\ndb\ndba\ndc\ndcy\nde\ndeh\ndo\ndoh\nds\ndsi\ndt\ndtz\ndu\ndut\nduv\ned\nedt\neh\nehr\nehs\nei\neiv\nel\neli\nem\nemj\nex\nexm\nfa\nfas\nfb\nfba\nfc\nfcf\nfcj\nfl\nflv\nf..." }, { "input": "gvtgnjyfvnuhagulgmjlqzpvxsygmikofsnvkuplnkxeibnicygpvfvtebppadpdnrxjodxdhxqceaulbfxogwrigstsjudhkgwkhseuwngbppisuzvhzzxxbaggfngmevksbrntpprxvcczlalutdzhwmzbalkqmykmodacjrmwhwugyhwlrbnqxsznldmaxpndwmovcolowxhj", "output": "375\nac\nacj\nad\nadp\nag\nagg\nagu\nal\nalk\nalu\nau\naul\nax\naxp\nba\nbag\nbal\nbf\nbfx\nbn\nbni\nbnq\nbp\nbpp\nbr\nbrn\ncc\nccz\nce\ncea\ncj\ncjr\nco\ncol\ncy\ncyg\ncz\nczl\nda\ndac\ndh\ndhk\ndhx\ndm\ndma\ndn\ndnr\ndp\ndpd\ndw\ndwm\ndx\ndxd\ndz\ndzh\nea\neau\neb\nebp\nei\neib\neu\neuw\nev\nevk\nfn\nfng\nfs\nfsn\nfv\nfvn\nfvt\nfx\nfxo\ngb\ngbp\ngf\ngfn\ngg\nggf\ngm\ngme\ngmi\ngmj\ngp\ngpv\ngs\ngst\ngu\ngul\ngw\ngwk\ngwr\ngy\ngyh\nha\nhag\nhj\nhk\nhkg\nhs\nhse\nhw\nhwl\nhwm\nhwu\nhx\nhxq\nhz\nhzz\nib\nib..." }, { "input": "topqexoicgzjmssuxnswdhpwbsqwfhhziwqibjgeepcvouhjezlomobgireaxaceppoxfxvkwlvgwtjoiplihbpsdhczddwfvcbxqqmqtveaunshmobdlkmmfyajjlkhxnvfmibtbbqswrhcfwytrccgtnlztkddrevkfovunuxtzhhhnorecyfgmlqcwjfjtqegxagfiuqtpjpqlwiefofpatxuqxvikyynncsueynmigieototnbcwxavlbgeqao", "output": "462\nac\nace\nag\nagf\naj\najj\nao\nat\natx\nau\naun\nav\navl\nax\naxa\nbb\nbbq\nbc\nbcw\nbd\nbdl\nbg\nbge\nbgi\nbj\nbjg\nbp\nbps\nbq\nbqs\nbs\nbsq\nbt\nbtb\nbx\nbxq\ncb\ncbx\ncc\nccg\nce\ncep\ncf\ncfw\ncg\ncgt\ncgz\ncs\ncsu\ncv\ncvo\ncw\ncwj\ncwx\ncy\ncyf\ncz\nczd\ndd\nddr\nddw\ndh\ndhc\ndhp\ndl\ndlk\ndr\ndre\ndw\ndwf\nea\neau\neax\nec\necy\nee\neep\nef\nefo\neg\negx\neo\neot\nep\nepc\nepp\neq\nev\nevk\ney\neyn\nez\nezl\nfg\nfgm\nfh\nfhh\nfi\nfiu\nfj\nfjt\nfm\nfmi\nfo\nfof\nfov\nfp\nfpa\nfv\nfvc\nfw\nfwy\n..." }, { "input": "lcrjhbybgamwetyrppxmvvxiyufdkcotwhmptefkqxjhrknjdponulsynpkgszhbkeinpnjdonjfwzbsaweqwlsvuijauwezfydktfljxgclpxpknhygdqyiapvzudyyqomgnsrdhhxhsrdfrwnxdolkmwmw", "output": "276\nam\namw\nap\napv\nau\nauw\naw\nawe\nbg\nbga\nbk\nbke\nbs\nbsa\nby\nbyb\ncl\nclp\nco\ncot\ndf\ndfr\ndh\ndhh\ndk\ndkc\ndkt\ndo\ndol\ndon\ndp\ndpo\ndq\ndqy\ndy\ndyy\nef\nefk\nei\nein\neq\neqw\net\nety\nez\nezf\nfd\nfdk\nfk\nfkq\nfl\nflj\nfr\nfrw\nfw\nfwz\nfy\nfyd\nga\ngam\ngc\ngcl\ngd\ngdq\ngn\ngns\ngs\ngsz\nhb\nhbk\nhh\nhhx\nhm\nhmp\nhr\nhrk\nhs\nhsr\nhx\nhxh\nhy\nhyg\nia\niap\nij\nija\nin\ninp\niy\niyu\nja\njau\njd\njdo\njdp\njf\njfw\njh\njhr\njx\njxg\nkc\nkco\nke\nkei\nkg\nkgs\nkm\nkmw\nkn\nknh\nknj\n..." }, { "input": "hzobjysjhbebobkoror", "output": "20\nbe\nbeb\nbko\nbo\nbob\neb\nebo\nhb\nhbe\njh\njhb\nko\nkor\nob\nor\nror\nsj\nsjh\nys\nysj" }, { "input": "safgmgpzljarfswowdxqhuhypxcmiddyvehjtnlflzknznrukdsbatxoytzxkqngopeipbythhbhfkvlcdxwqrxumbtbgiosjnbeorkzsrfarqofsrcwsfpyheaszjpkjysrcxbzebkxzovdchhososo", "output": "274\nar\narf\narq\nas\nasz\nat\natx\nba\nbat\nbe\nbeo\nbg\nbgi\nbh\nbhf\nbk\nbkx\nbt\nbtb\nby\nbyt\nbz\nbze\ncd\ncdx\nch\nchh\ncm\ncmi\ncw\ncws\ncx\ncxb\ndc\ndch\ndd\nddy\nds\ndsb\ndx\ndxq\ndxw\ndy\ndyv\nea\neas\neb\nebk\neh\nehj\nei\neip\neo\neor\nfa\nfar\nfk\nfkv\nfl\nflz\nfp\nfpy\nfs\nfsr\nfsw\ngi\ngio\ngo\ngop\ngp\ngpz\nhb\nhbh\nhe\nhea\nhf\nhfk\nhh\nhhb\nhj\nhjt\nhos\nhu\nhuh\nhy\nhyp\nid\nidd\nio\nios\nip\nipb\nja\njar\njn\njnb\njp\njpk\njt\njtn\njy\njys\nkd\nkds\nkj\nkjy\nkn\nknz\nkq\nkqn\nkv\nkvl\n..." }, { "input": "glaoyryxrgsysy", "output": "10\ngs\ngsy\nrgs\nry\nryx\nsy\nxr\nysy\nyx\nyxr" }, { "input": "aaaaaxyxxxx", "output": "5\nxx\nxxx\nxyx\nyx\nyxx" }, { "input": "aaaaax", "output": "0" }, { "input": "aaaaaxx", "output": "1\nxx" }, { "input": "aaaaaaa", "output": "1\naa" }, { "input": "aaaaaxxx", "output": "2\nxx\nxxx" }, { "input": "aaaaayxx", "output": "2\nxx\nyxx" }, { "input": "aaaaaxyz", "output": "2\nxyz\nyz" }, { "input": "aaaaaxyxy", "output": "2\nxy\nyxy" }, { "input": "aaaxyyxyy", "output": "3\nxyy\nyx\nyy" }, { "input": "aaaaaxxxxxx", "output": "2\nxx\nxxx" }, { "input": "aaaaaxxxxx", "output": "2\nxx\nxxx" }, { "input": "aaaaaxyzxyxy", "output": "5\nxy\nyxy\nyzx\nzx\nzxy" }, { "input": "aaaaadddgggg", "output": "6\ndd\nddg\ndg\ndgg\ngg\nggg" }, { "input": "abcdeabzzzzzzzz", "output": "5\nab\nabz\nbz\nzz\nzzz" }, { "input": "bbbbbccaaaaaa", "output": "4\naa\naaa\nca\ncca" }, { "input": "xxxxxababc", "output": "5\nab\naba\nabc\nba\nbc" }, { "input": "dddddaabbbbbb", "output": "4\naab\nab\nbb\nbbb" }, { "input": "xxxxxababe", "output": "5\nab\naba\nabe\nba\nbe" }, { "input": "aaaaababaaaaaaaaaaaa", "output": "6\naa\naaa\nab\nba\nbaa\nbab" } ]
1,537,894,563
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
3
124
0
def reberlandLinguistics(): w = input() if len(w) <= 5: print("0"); else: notRoot = w[5:] n = len(notRoot) suffixes = [] if n%3 == 0: for i in range(0,n-2,3): suffixes.append(notRoot[i] + "" + notRoot[i+1] + notRoot[i+2]) else: for i in range(1,n-2,3): suffixes.append(notRoot[i] + "" + notRoot[i+1] + notRoot[i+2]) if n%2 == 0: for i in range(0,n-1,2): suffixes.append(notRoot[i] + "" + notRoot[i+1]) else: for i in range(1,n-1,2): suffixes.append(notRoot[i] + "" + notRoot[i+1]) n = len(suffixes) print(n) for i in range(0,n): print(suffixes[i]) reberlandLinguistics()
Title: Reberland Linguistics Time Limit: None seconds Memory Limit: None megabytes Problem Description: First-rate specialists graduate from Berland State Institute of Peace and Friendship. You are one of the most talented students in this university. The education is not easy because you need to have fundamental knowledge in different areas, which sometimes are not related to each other. For example, you should know linguistics very well. You learn a structure of Reberland language as foreign language. In this language words are constructed according to the following rules. First you need to choose the "root" of the word — some string which has more than 4 letters. Then several strings with the length 2 or 3 symbols are appended to this word. The only restriction — it is not allowed to append the same string twice in a row. All these strings are considered to be suffixes of the word (this time we use word "suffix" to describe a morpheme but not the few last characters of the string as you may used to). Here is one exercise that you have found in your task list. You are given the word *s*. Find all distinct strings with the length 2 or 3, which can be suffixes of this word according to the word constructing rules in Reberland language. Two strings are considered distinct if they have different length or there is a position in which corresponding characters do not match. Let's look at the example: the word *abacabaca* is given. This word can be obtained in the following ways: , where the root of the word is overlined, and suffixes are marked by "corners". Thus, the set of possible suffixes for this word is {*aca*,<=*ba*,<=*ca*}. Input Specification: The only line contains a string *s* (5<=≤<=|*s*|<=≤<=104) consisting of lowercase English letters. Output Specification: On the first line print integer *k* — a number of distinct possible suffixes. On the next *k* lines print suffixes. Print suffixes in lexicographical (alphabetical) order. Demo Input: ['abacabaca\n', 'abaca\n'] Demo Output: ['3\naca\nba\nca\n', '0\n'] Note: The first test was analysed in the problem statement. In the second example the length of the string equals 5. The length of the root equals 5, so no string can be used as a suffix.
```python def reberlandLinguistics(): w = input() if len(w) <= 5: print("0"); else: notRoot = w[5:] n = len(notRoot) suffixes = [] if n%3 == 0: for i in range(0,n-2,3): suffixes.append(notRoot[i] + "" + notRoot[i+1] + notRoot[i+2]) else: for i in range(1,n-2,3): suffixes.append(notRoot[i] + "" + notRoot[i+1] + notRoot[i+2]) if n%2 == 0: for i in range(0,n-1,2): suffixes.append(notRoot[i] + "" + notRoot[i+1]) else: for i in range(1,n-1,2): suffixes.append(notRoot[i] + "" + notRoot[i+1]) n = len(suffixes) print(n) for i in range(0,n): print(suffixes[i]) reberlandLinguistics() ```
0
389
A
Fox and Number Game
PROGRAMMING
1,000
[ "greedy", "math" ]
null
null
Fox Ciel is playing a game with numbers now. Ciel has *n* positive integers: *x*1, *x*2, ..., *x**n*. She can do the following operation as many times as needed: select two different indexes *i* and *j* such that *x**i* &gt; *x**j* hold, and then apply assignment *x**i* = *x**i* - *x**j*. The goal is to make the sum of all numbers as small as possible. Please help Ciel to find this minimal sum.
The first line contains an integer *n* (2<=≤<=*n*<=≤<=100). Then the second line contains *n* integers: *x*1, *x*2, ..., *x**n* (1<=≤<=*x**i*<=≤<=100).
Output a single integer — the required minimal sum.
[ "2\n1 2\n", "3\n2 4 6\n", "2\n12 18\n", "5\n45 12 27 30 18\n" ]
[ "2\n", "6\n", "12\n", "15\n" ]
In the first example the optimal way is to do the assignment: *x*<sub class="lower-index">2</sub> = *x*<sub class="lower-index">2</sub> - *x*<sub class="lower-index">1</sub>. In the second example the optimal sequence of operations is: *x*<sub class="lower-index">3</sub> = *x*<sub class="lower-index">3</sub> - *x*<sub class="lower-index">2</sub>, *x*<sub class="lower-index">2</sub> = *x*<sub class="lower-index">2</sub> - *x*<sub class="lower-index">1</sub>.
500
[ { "input": "2\n1 2", "output": "2" }, { "input": "3\n2 4 6", "output": "6" }, { "input": "2\n12 18", "output": "12" }, { "input": "5\n45 12 27 30 18", "output": "15" }, { "input": "2\n1 1", "output": "2" }, { "input": "2\n100 100", "output": "200" }, { "input": "2\n87 58", "output": "58" }, { "input": "39\n52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52", "output": "2028" }, { "input": "59\n96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96", "output": "5664" }, { "input": "100\n100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100", "output": "10000" }, { "input": "100\n70 70 77 42 98 84 56 91 35 21 7 70 77 77 56 63 14 84 56 14 77 77 63 70 14 7 28 91 63 49 21 84 98 56 77 98 98 84 98 14 7 56 49 28 91 98 7 56 14 91 14 98 49 28 98 14 98 98 14 70 35 28 63 28 49 63 63 56 91 98 35 42 42 35 63 35 42 14 63 21 77 56 42 77 35 91 56 21 28 84 56 70 70 91 98 70 84 63 21 98", "output": "700" }, { "input": "39\n63 21 21 42 21 63 21 84 42 21 84 63 42 63 84 84 84 42 42 84 21 63 42 63 42 42 63 42 42 63 84 42 21 84 21 63 42 21 42", "output": "819" }, { "input": "59\n70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70", "output": "4130" }, { "input": "87\n44 88 88 88 88 66 88 22 22 88 88 44 88 22 22 22 88 88 88 88 66 22 88 88 88 88 66 66 44 88 44 44 66 22 88 88 22 44 66 44 88 66 66 22 22 22 22 88 22 22 44 66 88 22 22 88 66 66 88 22 66 88 66 88 66 44 88 44 22 44 44 22 44 88 44 44 44 44 22 88 88 88 66 66 88 44 22", "output": "1914" }, { "input": "15\n63 63 63 63 63 63 63 63 63 63 63 63 63 63 63", "output": "945" }, { "input": "39\n63 77 21 14 14 35 21 21 70 42 21 70 28 77 28 77 7 42 63 7 98 49 98 84 35 70 70 91 14 42 98 7 42 7 98 42 56 35 91", "output": "273" }, { "input": "18\n18 18 18 36 36 36 54 72 54 36 72 54 36 36 36 36 18 36", "output": "324" }, { "input": "46\n71 71 71 71 71 71 71 71 71 71 71 71 71 71 71 71 71 71 71 71 71 71 71 71 71 71 71 71 71 71 71 71 71 71 71 71 71 71 71 71 71 71 71 71 71 71", "output": "3266" }, { "input": "70\n66 11 66 11 44 11 44 99 55 22 88 11 11 22 55 44 22 77 44 77 77 22 44 55 88 11 99 99 88 22 77 77 66 11 11 66 99 55 55 44 66 44 77 44 44 55 33 55 44 88 77 77 22 66 33 44 11 22 55 44 22 66 77 33 33 44 44 44 22 33", "output": "770" }, { "input": "10\n60 12 96 48 60 24 60 36 60 60", "output": "120" }, { "input": "20\n51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51", "output": "1020" }, { "input": "50\n58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58", "output": "2900" }, { "input": "98\n70 60 100 30 70 20 30 50 50 30 90 40 30 40 60 80 60 60 80 50 10 80 20 10 20 10 50 70 30 80 30 50 60 90 90 100 60 30 90 20 30 60 90 80 60 60 10 90 10 50 40 40 80 90 100 40 70 40 30 50 60 50 60 30 40 20 90 60 20 20 20 70 60 70 50 100 90 50 20 40 80 60 10 60 50 40 40 10 50 10 40 10 80 100 100 90 10 90", "output": "980" }, { "input": "100\n82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82", "output": "8200" }, { "input": "100\n11 87 77 93 3 54 21 93 9 71 37 23 69 85 74 3 48 99 51 31 56 19 21 96 39 6 4 4 29 69 100 42 1 22 81 53 48 49 81 61 10 7 40 61 7 71 51 59 79 44 50 35 95 80 83 8 98 40 18 94 84 49 52 74 66 69 39 37 100 44 38 62 2 80 46 31 35 53 5 60 21 49 63 55 20 53 80 53 66 34 23 92 77 50 86 63 65 24 12 70", "output": "100" }, { "input": "2\n100 1", "output": "2" }, { "input": "2\n18 30", "output": "12" }, { "input": "2\n3 5", "output": "2" }, { "input": "2\n1 10", "output": "2" }, { "input": "2\n8 5", "output": "2" }, { "input": "5\n2 3 5 8 18", "output": "5" }, { "input": "5\n2 4 1 6 8", "output": "5" }, { "input": "3\n12 10 5", "output": "3" }, { "input": "3\n6 10 15", "output": "3" } ]
1,391,516,265
2,147,483,647
Python 3
OK
TESTS
34
77
307,200
input().split() xs = list(map(int, input().split())) def gdc(a,b): while b > 0: a, b = b, a%b return a ret = 0 for x in xs: ret = gdc(x,ret) print(ret*len(xs))
Title: Fox and Number Game Time Limit: None seconds Memory Limit: None megabytes Problem Description: Fox Ciel is playing a game with numbers now. Ciel has *n* positive integers: *x*1, *x*2, ..., *x**n*. She can do the following operation as many times as needed: select two different indexes *i* and *j* such that *x**i* &gt; *x**j* hold, and then apply assignment *x**i* = *x**i* - *x**j*. The goal is to make the sum of all numbers as small as possible. Please help Ciel to find this minimal sum. Input Specification: The first line contains an integer *n* (2<=≤<=*n*<=≤<=100). Then the second line contains *n* integers: *x*1, *x*2, ..., *x**n* (1<=≤<=*x**i*<=≤<=100). Output Specification: Output a single integer — the required minimal sum. Demo Input: ['2\n1 2\n', '3\n2 4 6\n', '2\n12 18\n', '5\n45 12 27 30 18\n'] Demo Output: ['2\n', '6\n', '12\n', '15\n'] Note: In the first example the optimal way is to do the assignment: *x*<sub class="lower-index">2</sub> = *x*<sub class="lower-index">2</sub> - *x*<sub class="lower-index">1</sub>. In the second example the optimal sequence of operations is: *x*<sub class="lower-index">3</sub> = *x*<sub class="lower-index">3</sub> - *x*<sub class="lower-index">2</sub>, *x*<sub class="lower-index">2</sub> = *x*<sub class="lower-index">2</sub> - *x*<sub class="lower-index">1</sub>.
```python input().split() xs = list(map(int, input().split())) def gdc(a,b): while b > 0: a, b = b, a%b return a ret = 0 for x in xs: ret = gdc(x,ret) print(ret*len(xs)) ```
3
0
none
none
none
0
[ "none" ]
null
null
One day, little Vasya found himself in a maze consisting of (*n*<=+<=1) rooms, numbered from 1 to (*n*<=+<=1). Initially, Vasya is at the first room and to get out of the maze, he needs to get to the (*n*<=+<=1)-th one. The maze is organized as follows. Each room of the maze has two one-way portals. Let's consider room number *i* (1<=≤<=*i*<=≤<=*n*), someone can use the first portal to move from it to room number (*i*<=+<=1), also someone can use the second portal to move from it to room number *p**i*, where 1<=≤<=*p**i*<=≤<=*i*. In order not to get lost, Vasya decided to act as follows. - Each time Vasya enters some room, he paints a cross on its ceiling. Initially, Vasya paints a cross at the ceiling of room 1. - Let's assume that Vasya is in room *i* and has already painted a cross on its ceiling. Then, if the ceiling now contains an odd number of crosses, Vasya uses the second portal (it leads to room *p**i*), otherwise Vasya uses the first portal. Help Vasya determine the number of times he needs to use portals to get to room (*n*<=+<=1) in the end.
The first line contains integer *n* (1<=≤<=*n*<=≤<=103) — the number of rooms. The second line contains *n* integers *p**i* (1<=≤<=*p**i*<=≤<=*i*). Each *p**i* denotes the number of the room, that someone can reach, if he will use the second portal in the *i*-th room.
Print a single number — the number of portal moves the boy needs to go out of the maze. As the number can be rather large, print it modulo 1000000007 (109<=+<=7).
[ "2\n1 2\n", "4\n1 1 2 3\n", "5\n1 1 1 1 1\n" ]
[ "4\n", "20\n", "62\n" ]
none
0
[ { "input": "2\n1 2", "output": "4" }, { "input": "4\n1 1 2 3", "output": "20" }, { "input": "5\n1 1 1 1 1", "output": "62" }, { "input": "7\n1 2 1 3 1 2 1", "output": "154" }, { "input": "1\n1", "output": "2" }, { "input": "3\n1 1 3", "output": "8" }, { "input": "10\n1 1 3 2 2 1 3 4 7 5", "output": "858" }, { "input": "20\n1 2 2 2 2 1 4 7 8 6 5 3 5 3 8 11 5 10 16 10", "output": "433410" }, { "input": "32\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1", "output": "589934534" }, { "input": "10\n1 1 3 2 2 1 3 4 7 5", "output": "858" }, { "input": "30\n1 1 2 2 5 6 4 3 4 7 3 5 12 12 2 15 3 8 3 10 12 3 14 1 10 4 22 11 22 27", "output": "132632316" }, { "input": "70\n1 1 2 3 4 3 5 2 2 4 8 6 13 6 13 3 5 4 5 10 11 9 11 8 12 24 21 6 9 29 25 31 17 27 3 17 35 5 21 11 27 14 33 7 33 44 22 33 21 11 38 46 53 46 3 22 5 27 55 22 41 25 56 61 27 28 11 66 68 13", "output": "707517223" }, { "input": "10\n1 1 1 1 1 1 1 1 1 1", "output": "2046" }, { "input": "20\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1", "output": "2097150" }, { "input": "102\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1", "output": "810970229" }, { "input": "10\n1 2 3 4 5 6 7 8 9 10", "output": "20" }, { "input": "20\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20", "output": "40" }, { "input": "107\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107", "output": "214" }, { "input": "129\n1 1 3 3 1 4 7 4 3 5 8 11 3 9 15 4 11 17 1 6 18 9 11 13 17 22 8 18 26 13 16 20 3 16 35 26 23 28 27 30 39 29 43 8 14 6 17 32 26 31 2 18 3 47 52 21 57 1 35 35 53 47 16 26 30 65 48 2 32 11 10 5 4 1 4 53 71 21 53 8 58 49 17 6 19 80 1 49 43 60 12 60 35 25 86 45 47 97 52 74 10 91 93 31 69 41 80 90 67 4 94 92 82 36 27 18 65 8 45 90 42 115 34 61 16 97 20 43 104", "output": "931883285" }, { "input": "100\n1 1 3 1 5 1 1 1 8 9 7 3 11 11 15 14 4 10 11 12 1 10 13 11 7 23 8 12 18 23 27 17 14 29 1 33 5 24 26 29 25 14 40 8 43 29 43 40 34 18 21 31 3 8 20 14 28 29 3 54 14 3 59 1 45 9 13 11 50 48 26 57 17 33 9 52 21 46 24 20 16 58 69 77 52 36 80 2 31 3 44 36 64 90 84 8 21 25 65 67", "output": "264413610" }, { "input": "31\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 29", "output": "758096363" }, { "input": "104\n1 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102", "output": "740446116" } ]
1,581,797,349
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
8
124
307,200
def bf(n, portal2): portal2.insert(0, -1) roomMark = [False]*(n+1) markCount = 0 room = 1 while(room != n+1): markCount += 1 roomMark[room] = not roomMark[room] if roomMark[room]: room = portal2[room] else: room += 1 print(markCount % 1000000007) def solve(n, portal2): portal2.insert(0, -1) f = [0, 2] for i in range(2, n+1): total = 2 # print('j', portal2[i], i) for j in range(portal2[i], i): total += f[j] f.append(total) print(sum(f)) n = int(input()) portal2 = [int(i) for i in input().split(" ")] solve(n, portal2)
Title: none Time Limit: None seconds Memory Limit: None megabytes Problem Description: One day, little Vasya found himself in a maze consisting of (*n*<=+<=1) rooms, numbered from 1 to (*n*<=+<=1). Initially, Vasya is at the first room and to get out of the maze, he needs to get to the (*n*<=+<=1)-th one. The maze is organized as follows. Each room of the maze has two one-way portals. Let's consider room number *i* (1<=≤<=*i*<=≤<=*n*), someone can use the first portal to move from it to room number (*i*<=+<=1), also someone can use the second portal to move from it to room number *p**i*, where 1<=≤<=*p**i*<=≤<=*i*. In order not to get lost, Vasya decided to act as follows. - Each time Vasya enters some room, he paints a cross on its ceiling. Initially, Vasya paints a cross at the ceiling of room 1. - Let's assume that Vasya is in room *i* and has already painted a cross on its ceiling. Then, if the ceiling now contains an odd number of crosses, Vasya uses the second portal (it leads to room *p**i*), otherwise Vasya uses the first portal. Help Vasya determine the number of times he needs to use portals to get to room (*n*<=+<=1) in the end. Input Specification: The first line contains integer *n* (1<=≤<=*n*<=≤<=103) — the number of rooms. The second line contains *n* integers *p**i* (1<=≤<=*p**i*<=≤<=*i*). Each *p**i* denotes the number of the room, that someone can reach, if he will use the second portal in the *i*-th room. Output Specification: Print a single number — the number of portal moves the boy needs to go out of the maze. As the number can be rather large, print it modulo 1000000007 (109<=+<=7). Demo Input: ['2\n1 2\n', '4\n1 1 2 3\n', '5\n1 1 1 1 1\n'] Demo Output: ['4\n', '20\n', '62\n'] Note: none
```python def bf(n, portal2): portal2.insert(0, -1) roomMark = [False]*(n+1) markCount = 0 room = 1 while(room != n+1): markCount += 1 roomMark[room] = not roomMark[room] if roomMark[room]: room = portal2[room] else: room += 1 print(markCount % 1000000007) def solve(n, portal2): portal2.insert(0, -1) f = [0, 2] for i in range(2, n+1): total = 2 # print('j', portal2[i], i) for j in range(portal2[i], i): total += f[j] f.append(total) print(sum(f)) n = int(input()) portal2 = [int(i) for i in input().split(" ")] solve(n, portal2) ```
0
814
C
An impassioned circulation of affection
PROGRAMMING
1,600
[ "brute force", "dp", "strings", "two pointers" ]
null
null
Nadeko's birthday is approaching! As she decorated the room for the party, a long garland of Dianthus-shaped paper pieces was placed on a prominent part of the wall. Brother Koyomi will like it! Still unsatisfied with the garland, Nadeko decided to polish it again. The garland has *n* pieces numbered from 1 to *n* from left to right, and the *i*-th piece has a colour *s**i*, denoted by a lowercase English letter. Nadeko will repaint at most *m* of the pieces to give each of them an arbitrary new colour (still denoted by a lowercase English letter). After this work, she finds out all subsegments of the garland containing pieces of only colour *c* — Brother Koyomi's favourite one, and takes the length of the longest among them to be the Koyomity of the garland. For instance, let's say the garland is represented by "kooomo", and Brother Koyomi's favourite colour is "o". Among all subsegments containing pieces of "o" only, "ooo" is the longest, with a length of 3. Thus the Koyomity of this garland equals 3. But problem arises as Nadeko is unsure about Brother Koyomi's favourite colour, and has swaying ideas on the amount of work to do. She has *q* plans on this, each of which can be expressed as a pair of an integer *m**i* and a lowercase letter *c**i*, meanings of which are explained above. You are to find out the maximum Koyomity achievable after repainting the garland according to each plan.
The first line of input contains a positive integer *n* (1<=≤<=*n*<=≤<=1<=500) — the length of the garland. The second line contains *n* lowercase English letters *s*1*s*2... *s**n* as a string — the initial colours of paper pieces on the garland. The third line contains a positive integer *q* (1<=≤<=*q*<=≤<=200<=000) — the number of plans Nadeko has. The next *q* lines describe one plan each: the *i*-th among them contains an integer *m**i* (1<=≤<=*m**i*<=≤<=*n*) — the maximum amount of pieces to repaint, followed by a space, then by a lowercase English letter *c**i* — Koyomi's possible favourite colour.
Output *q* lines: for each work plan, output one line containing an integer — the largest Koyomity achievable after repainting the garland according to it.
[ "6\nkoyomi\n3\n1 o\n4 o\n4 m\n", "15\nyamatonadeshiko\n10\n1 a\n2 a\n3 a\n4 a\n5 a\n1 b\n2 b\n3 b\n4 b\n5 b\n", "10\naaaaaaaaaa\n2\n10 b\n10 z\n" ]
[ "3\n6\n5\n", "3\n4\n5\n7\n8\n1\n2\n3\n4\n5\n", "10\n10\n" ]
In the first sample, there are three plans: - In the first plan, at most 1 piece can be repainted. Repainting the "y" piece to become "o" results in "kooomi", whose Koyomity of 3 is the best achievable; - In the second plan, at most 4 pieces can be repainted, and "oooooo" results in a Koyomity of 6; - In the third plan, at most 4 pieces can be repainted, and "mmmmmi" and "kmmmmm" both result in a Koyomity of 5.
1,750
[ { "input": "6\nkoyomi\n3\n1 o\n4 o\n4 m", "output": "3\n6\n5" }, { "input": "15\nyamatonadeshiko\n10\n1 a\n2 a\n3 a\n4 a\n5 a\n1 b\n2 b\n3 b\n4 b\n5 b", "output": "3\n4\n5\n7\n8\n1\n2\n3\n4\n5" }, { "input": "10\naaaaaaaaaa\n2\n10 b\n10 z", "output": "10\n10" }, { "input": "1\nc\n4\n1 x\n1 a\n1 e\n1 t", "output": "1\n1\n1\n1" }, { "input": "20\naaaaaaaaaaaaaaaaaaaa\n1\n11 a", "output": "20" }, { "input": "4\ncbcc\n12\n4 b\n4 c\n1 b\n2 a\n3 b\n2 c\n4 a\n1 a\n2 b\n3 a\n1 c\n3 c", "output": "4\n4\n2\n2\n4\n4\n4\n1\n3\n3\n4\n4" }, { "input": "4\nddbb\n16\n3 c\n3 b\n1 a\n1 b\n4 d\n4 a\n3 d\n2 a\n2 d\n4 c\n3 a\n2 c\n4 b\n1 c\n2 b\n1 d", "output": "3\n4\n1\n3\n4\n4\n4\n2\n4\n4\n3\n2\n4\n1\n4\n3" }, { "input": "4\nabcc\n24\n1 c\n4 d\n3 c\n1 d\n1 c\n1 b\n3 b\n2 c\n3 d\n3 d\n4 c\n2 a\n4 d\n1 a\n1 b\n4 a\n4 d\n3 b\n4 b\n3 c\n3 a\n2 d\n1 a\n2 b", "output": "3\n4\n4\n1\n3\n2\n4\n4\n3\n3\n4\n3\n4\n2\n2\n4\n4\n4\n4\n4\n4\n2\n2\n3" }, { "input": "40\ncbbcbcccccacccccbbacbaabccbbabbaaaaacccc\n10\n40 a\n28 c\n25 c\n21 a\n18 c\n27 a\n9 c\n37 c\n15 a\n18 b", "output": "40\n40\n40\n31\n35\n37\n23\n40\n24\n27" }, { "input": "100\ndddddccccdddddaaaaabbbbbbbbbbbbbaaacdcabbacccacccccbdbbadddbbddddbdaaccacdddbbbaddddbbbbdcbbbdddddda\n50\n54 b\n48 d\n45 b\n52 c\n52 a\n48 a\n54 b\n45 a\n47 d\n50 d\n53 a\n34 a\n51 b\n48 d\n47 d\n47 a\n48 d\n53 b\n52 d\n54 d\n46 a\n38 a\n52 b\n49 a\n49 b\n46 c\n54 a\n45 b\n35 c\n55 c\n51 c\n46 d\n54 d\n50 a\n33 c\n46 a\n50 b\n50 a\n54 a\n32 b\n55 b\n49 c\n53 d\n49 a\n46 b\n48 c\n47 b\n47 b\n47 a\n46 b", "output": "85\n72\n76\n69\n68\n63\n85\n60\n71\n74\n69\n46\n82\n72\n71\n62\n72\n84\n76\n78\n61\n50\n83\n64\n80\n60\n70\n76\n49\n72\n68\n70\n78\n66\n47\n61\n81\n66\n70\n53\n86\n63\n77\n64\n77\n62\n78\n78\n62\n77" }, { "input": "200\nddeecdbbbeeeeebbbbbaaaaaaaaaaaaaaaaaaaaaaabbcaacccbeeeeddddddddddddccccccdffeeeeecccccbbbbaaaaedfffffaadeeeeeeeedddddaaaaaaaaaaaaaabbbbbcaadddeefffbbbbcccccccccccbbbbbbeeeeeeeffffffdffffffffffffaaaaab\n10\n43 f\n118 d\n165 f\n72 f\n48 f\n2 a\n61 e\n94 d\n109 f\n16 a", "output": "64\n144\n193\n98\n69\n25\n79\n117\n137\n41" }, { "input": "5\naaaaa\n1\n1 b", "output": "1" } ]
1,616,721,088
3,688
PyPy 3
WRONG_ANSWER
TESTS
4
93
0
# O(n^2) import sys input = sys.stdin.readline n = int(input()) s = input().strip() ans = [[0]*(n+1) for i in range(26)] segs = [[[0,-1]] for i in range(26)] for i in range(n): c = ord(s[i]) - ord('a') if i > 0 and s[i] != s[i-1]: segs[c].append([i,i]) else: segs[c][-1][1] = i for c in range(26): for start in range(len(segs[c])): lst_seg = start tot = segs[c][start][1] - segs[c][start][0] + 1 left = 0 for m in range(1,n+1): left += 1 tot += 1 if segs[c][lst_seg][1] + left >= n: break if lst_seg != len(segs[c])-1 and \ segs[c][lst_seg][1] + left == segs[c][lst_seg+1][0]-1: lst_seg += 1 tot += segs[c][lst_seg][1] - segs[c][lst_seg][0] + 1 left = 0 ans[c][m] = max(ans[c][m], tot) q = int(input()) for i in range(q): m,c = input().split() m = int(m) c = ord(c) - ord('a') print(ans[c][m])
Title: An impassioned circulation of affection Time Limit: None seconds Memory Limit: None megabytes Problem Description: Nadeko's birthday is approaching! As she decorated the room for the party, a long garland of Dianthus-shaped paper pieces was placed on a prominent part of the wall. Brother Koyomi will like it! Still unsatisfied with the garland, Nadeko decided to polish it again. The garland has *n* pieces numbered from 1 to *n* from left to right, and the *i*-th piece has a colour *s**i*, denoted by a lowercase English letter. Nadeko will repaint at most *m* of the pieces to give each of them an arbitrary new colour (still denoted by a lowercase English letter). After this work, she finds out all subsegments of the garland containing pieces of only colour *c* — Brother Koyomi's favourite one, and takes the length of the longest among them to be the Koyomity of the garland. For instance, let's say the garland is represented by "kooomo", and Brother Koyomi's favourite colour is "o". Among all subsegments containing pieces of "o" only, "ooo" is the longest, with a length of 3. Thus the Koyomity of this garland equals 3. But problem arises as Nadeko is unsure about Brother Koyomi's favourite colour, and has swaying ideas on the amount of work to do. She has *q* plans on this, each of which can be expressed as a pair of an integer *m**i* and a lowercase letter *c**i*, meanings of which are explained above. You are to find out the maximum Koyomity achievable after repainting the garland according to each plan. Input Specification: The first line of input contains a positive integer *n* (1<=≤<=*n*<=≤<=1<=500) — the length of the garland. The second line contains *n* lowercase English letters *s*1*s*2... *s**n* as a string — the initial colours of paper pieces on the garland. The third line contains a positive integer *q* (1<=≤<=*q*<=≤<=200<=000) — the number of plans Nadeko has. The next *q* lines describe one plan each: the *i*-th among them contains an integer *m**i* (1<=≤<=*m**i*<=≤<=*n*) — the maximum amount of pieces to repaint, followed by a space, then by a lowercase English letter *c**i* — Koyomi's possible favourite colour. Output Specification: Output *q* lines: for each work plan, output one line containing an integer — the largest Koyomity achievable after repainting the garland according to it. Demo Input: ['6\nkoyomi\n3\n1 o\n4 o\n4 m\n', '15\nyamatonadeshiko\n10\n1 a\n2 a\n3 a\n4 a\n5 a\n1 b\n2 b\n3 b\n4 b\n5 b\n', '10\naaaaaaaaaa\n2\n10 b\n10 z\n'] Demo Output: ['3\n6\n5\n', '3\n4\n5\n7\n8\n1\n2\n3\n4\n5\n', '10\n10\n'] Note: In the first sample, there are three plans: - In the first plan, at most 1 piece can be repainted. Repainting the "y" piece to become "o" results in "kooomi", whose Koyomity of 3 is the best achievable; - In the second plan, at most 4 pieces can be repainted, and "oooooo" results in a Koyomity of 6; - In the third plan, at most 4 pieces can be repainted, and "mmmmmi" and "kmmmmm" both result in a Koyomity of 5.
```python # O(n^2) import sys input = sys.stdin.readline n = int(input()) s = input().strip() ans = [[0]*(n+1) for i in range(26)] segs = [[[0,-1]] for i in range(26)] for i in range(n): c = ord(s[i]) - ord('a') if i > 0 and s[i] != s[i-1]: segs[c].append([i,i]) else: segs[c][-1][1] = i for c in range(26): for start in range(len(segs[c])): lst_seg = start tot = segs[c][start][1] - segs[c][start][0] + 1 left = 0 for m in range(1,n+1): left += 1 tot += 1 if segs[c][lst_seg][1] + left >= n: break if lst_seg != len(segs[c])-1 and \ segs[c][lst_seg][1] + left == segs[c][lst_seg+1][0]-1: lst_seg += 1 tot += segs[c][lst_seg][1] - segs[c][lst_seg][0] + 1 left = 0 ans[c][m] = max(ans[c][m], tot) q = int(input()) for i in range(q): m,c = input().split() m = int(m) c = ord(c) - ord('a') print(ans[c][m]) ```
0
59
A
Word
PROGRAMMING
800
[ "implementation", "strings" ]
A. Word
2
256
Vasya is very upset that many people on the Net mix uppercase and lowercase letters in one word. That's why he decided to invent an extension for his favorite browser that would change the letters' register in every word so that it either only consisted of lowercase letters or, vice versa, only of uppercase ones. At that as little as possible letters should be changed in the word. For example, the word HoUse must be replaced with house, and the word ViP — with VIP. If a word contains an equal number of uppercase and lowercase letters, you should replace all the letters with lowercase ones. For example, maTRIx should be replaced by matrix. Your task is to use the given method on one given word.
The first line contains a word *s* — it consists of uppercase and lowercase Latin letters and possesses the length from 1 to 100.
Print the corrected word *s*. If the given word *s* has strictly more uppercase letters, make the word written in the uppercase register, otherwise - in the lowercase one.
[ "HoUse\n", "ViP\n", "maTRIx\n" ]
[ "house\n", "VIP\n", "matrix\n" ]
none
500
[ { "input": "HoUse", "output": "house" }, { "input": "ViP", "output": "VIP" }, { "input": "maTRIx", "output": "matrix" }, { "input": "BNHWpnpawg", "output": "bnhwpnpawg" }, { "input": "VTYGP", "output": "VTYGP" }, { "input": "CHNenu", "output": "chnenu" }, { "input": "ERPZGrodyu", "output": "erpzgrodyu" }, { "input": "KSXBXWpebh", "output": "KSXBXWPEBH" }, { "input": "qvxpqullmcbegsdskddortcvxyqlbvxmmkhevovnezubvpvnrcajpxraeaxizgaowtfkzywvhnbgzsxbhkaipcmoumtikkiyyaiv", "output": "qvxpqullmcbegsdskddortcvxyqlbvxmmkhevovnezubvpvnrcajpxraeaxizgaowtfkzywvhnbgzsxbhkaipcmoumtikkiyyaiv" }, { "input": "Amnhaxtaopjzrkqlbroiyipitndczpunwygstmzevgyjdzyanxkdqnvgkikfabwouwkkbzuiuvgvxgpizsvqsbwepktpdrgdkmfd", "output": "amnhaxtaopjzrkqlbroiyipitndczpunwygstmzevgyjdzyanxkdqnvgkikfabwouwkkbzuiuvgvxgpizsvqsbwepktpdrgdkmfd" }, { "input": "ISAGFJFARYFBLOPQDSHWGMCNKMFTLVFUGNJEWGWNBLXUIATXEkqiettmmjgydwcpafqrppdsrrrtguinqbgmzzfqwonkpgpcwenv", "output": "isagfjfaryfblopqdshwgmcnkmftlvfugnjewgwnblxuiatxekqiettmmjgydwcpafqrppdsrrrtguinqbgmzzfqwonkpgpcwenv" }, { "input": "XHRPXZEGHSOCJPICUIXSKFUZUPYTSGJSDIYBCMNMNBPNDBXLXBzhbfnqvwcffvrdhtickyqhupmcehlsyvncqmfhautvxudqdhgg", "output": "xhrpxzeghsocjpicuixskfuzupytsgjsdiybcmnmnbpndbxlxbzhbfnqvwcffvrdhtickyqhupmcehlsyvncqmfhautvxudqdhgg" }, { "input": "RJIQZMJCIMSNDBOHBRAWIENODSALETAKGKPYUFGVEFGCBRENZGAdkcetqjljtmttlonpekcovdzebzdkzggwfsxhapmjkdbuceak", "output": "RJIQZMJCIMSNDBOHBRAWIENODSALETAKGKPYUFGVEFGCBRENZGADKCETQJLJTMTTLONPEKCOVDZEBZDKZGGWFSXHAPMJKDBUCEAK" }, { "input": "DWLWOBHNMMGTFOLFAECKBRNNGLYLYDXTGTVRLMEESZOIUATZZZXUFUZDLSJXMEVRTESSFBWLNZZCLCQWEVNNUCXYVHNGNXHCBDFw", "output": "DWLWOBHNMMGTFOLFAECKBRNNGLYLYDXTGTVRLMEESZOIUATZZZXUFUZDLSJXMEVRTESSFBWLNZZCLCQWEVNNUCXYVHNGNXHCBDFW" }, { "input": "NYCNHJWGBOCOTSPETKKHVWFGAQYNHOVJWJHCIEFOUQZXOYUIEQDZALFKTEHTVDBVJMEUBJUBCMNVPWGDPNCHQHZJRCHYRFPVIGUB", "output": "NYCNHJWGBOCOTSPETKKHVWFGAQYNHOVJWJHCIEFOUQZXOYUIEQDZALFKTEHTVDBVJMEUBJUBCMNVPWGDPNCHQHZJRCHYRFPVIGUB" }, { "input": "igxoixiecetohtgjgbqzvlaobkhstejxdklghowtvwunnnvauriohuspsdmpzckprwajyxldoyckgjivjpmbfqtszmtocovxwge", "output": "igxoixiecetohtgjgbqzvlaobkhstejxdklghowtvwunnnvauriohuspsdmpzckprwajyxldoyckgjivjpmbfqtszmtocovxwge" }, { "input": "Ykkekrsqolzryiwsmdlnbmfautxxxauoojrddvwklgnlyrfcvhorrzbmtcrvpaypqhcffdqhwziipyyskcmztjprjqvmzzqhqnw", "output": "ykkekrsqolzryiwsmdlnbmfautxxxauoojrddvwklgnlyrfcvhorrzbmtcrvpaypqhcffdqhwziipyyskcmztjprjqvmzzqhqnw" }, { "input": "YQOMLKYAORUQQUCQZCDYMIVDHGWZFFRMUVTAWCHERFPMNRYRIkgqrciokgajamehmcxgerpudvsqyonjonsxgbnefftzmygncks", "output": "yqomlkyaoruqqucqzcdymivdhgwzffrmuvtawcherfpmnryrikgqrciokgajamehmcxgerpudvsqyonjonsxgbnefftzmygncks" }, { "input": "CDOZDPBVVVHNBJVBYHEOXWFLJKRWJCAJMIFCOZWWYFKVWOGTVJcuusigdqfkumewjtdyitveeiaybwrhomrwmpdipjwiuxfnwuz", "output": "CDOZDPBVVVHNBJVBYHEOXWFLJKRWJCAJMIFCOZWWYFKVWOGTVJCUUSIGDQFKUMEWJTDYITVEEIAYBWRHOMRWMPDIPJWIUXFNWUZ" }, { "input": "WHIUVEXHVOOIJIDVJVPQUBJMEVPMPDKQWJKFBZSGSKUXMIPPMJWuckzcpxosodcjaaakvlxpbiigsiauviilylnnqlyucziihqg", "output": "WHIUVEXHVOOIJIDVJVPQUBJMEVPMPDKQWJKFBZSGSKUXMIPPMJWUCKZCPXOSODCJAAAKVLXPBIIGSIAUVIILYLNNQLYUCZIIHQG" }, { "input": "VGHUNFOXKETUYMZDJNGTAOIOANYXSGYNFOGOFFLDAWEUKYFOZXCJTCAFXZYLQZERYZLRSQXYQGAPCSUDPMEYTNCTTTMFAGVDWBO", "output": "VGHUNFOXKETUYMZDJNGTAOIOANYXSGYNFOGOFFLDAWEUKYFOZXCJTCAFXZYLQZERYZLRSQXYQGAPCSUDPMEYTNCTTTMFAGVDWBO" }, { "input": "EDUANHCQDOCJHFONTTSWBUJSTTIXBIXMAIUFSGFLXWAYIURTVAVZPYQDLAWIGCLMPHXCEFCJPFAAHXVNGQUFNHADAIUAZIDMHDd", "output": "EDUANHCQDOCJHFONTTSWBUJSTTIXBIXMAIUFSGFLXWAYIURTVAVZPYQDLAWIGCLMPHXCEFCJPFAAHXVNGQUFNHADAIUAZIDMHDD" }, { "input": "EBWOVSNLYTWWXrnovgugogtjahnmatomubebyxakas", "output": "ebwovsnlytwwxrnovgugogtjahnmatomubebyxakas" }, { "input": "AORNNDKTRLRVGDPXJKXFTPFpopuzrlqumrxssskvbm", "output": "AORNNDKTRLRVGDPXJKXFTPFPOPUZRLQUMRXSSSKVBM" }, { "input": "DBBZJCWQEVGYHEEUHJAWRHBDPsnplijbwtdibqrrheebfxqcvn", "output": "dbbzjcwqevgyheeuhjawrhbdpsnplijbwtdibqrrheebfxqcvn" }, { "input": "t", "output": "t" }, { "input": "N", "output": "N" }, { "input": "kv", "output": "kv" }, { "input": "Ur", "output": "ur" }, { "input": "CN", "output": "CN" } ]
1,629,387,573
2,147,483,647
Python 3
OK
TESTS
30
154
6,758,400
s = input() upc = 0 loc = 0 for i in s: if(i.islower()): loc+=1 elif(i.isupper()): upc+=1 if upc <= loc: s =s.lower() else: s=s.upper() print(s)
Title: Word Time Limit: 2 seconds Memory Limit: 256 megabytes Problem Description: Vasya is very upset that many people on the Net mix uppercase and lowercase letters in one word. That's why he decided to invent an extension for his favorite browser that would change the letters' register in every word so that it either only consisted of lowercase letters or, vice versa, only of uppercase ones. At that as little as possible letters should be changed in the word. For example, the word HoUse must be replaced with house, and the word ViP — with VIP. If a word contains an equal number of uppercase and lowercase letters, you should replace all the letters with lowercase ones. For example, maTRIx should be replaced by matrix. Your task is to use the given method on one given word. Input Specification: The first line contains a word *s* — it consists of uppercase and lowercase Latin letters and possesses the length from 1 to 100. Output Specification: Print the corrected word *s*. If the given word *s* has strictly more uppercase letters, make the word written in the uppercase register, otherwise - in the lowercase one. Demo Input: ['HoUse\n', 'ViP\n', 'maTRIx\n'] Demo Output: ['house\n', 'VIP\n', 'matrix\n'] Note: none
```python s = input() upc = 0 loc = 0 for i in s: if(i.islower()): loc+=1 elif(i.isupper()): upc+=1 if upc <= loc: s =s.lower() else: s=s.upper() print(s) ```
3.948911
1,004
A
Sonya and Hotels
PROGRAMMING
900
[ "implementation" ]
null
null
Sonya decided that having her own hotel business is the best way of earning money because she can profit and rest wherever she wants. The country where Sonya lives is an endless line. There is a city in each integer coordinate on this line. She has $n$ hotels, where the $i$-th hotel is located in the city with coordinate $x_i$. Sonya is a smart girl, so she does not open two or more hotels in the same city. Sonya understands that her business needs to be expanded by opening new hotels, so she decides to build one more. She wants to make the minimum distance from this hotel to all others to be equal to $d$. The girl understands that there are many possible locations to construct such a hotel. Thus she wants to know the number of possible coordinates of the cities where she can build a new hotel. Because Sonya is lounging in a jacuzzi in one of her hotels, she is asking you to find the number of cities where she can build a new hotel so that the minimum distance from the original $n$ hotels to the new one is equal to $d$.
The first line contains two integers $n$ and $d$ ($1\leq n\leq 100$, $1\leq d\leq 10^9$) — the number of Sonya's hotels and the needed minimum distance from a new hotel to all others. The second line contains $n$ different integers in strictly increasing order $x_1, x_2, \ldots, x_n$ ($-10^9\leq x_i\leq 10^9$) — coordinates of Sonya's hotels.
Print the number of cities where Sonya can build a new hotel so that the minimum distance from this hotel to all others is equal to $d$.
[ "4 3\n-3 2 9 16\n", "5 2\n4 8 11 18 19\n" ]
[ "6\n", "5\n" ]
In the first example, there are $6$ possible cities where Sonya can build a hotel. These cities have coordinates $-6$, $5$, $6$, $12$, $13$, and $19$. In the second example, there are $5$ possible cities where Sonya can build a hotel. These cities have coordinates $2$, $6$, $13$, $16$, and $21$.
500
[ { "input": "4 3\n-3 2 9 16", "output": "6" }, { "input": "5 2\n4 8 11 18 19", "output": "5" }, { "input": "10 10\n-67 -59 -49 -38 -8 20 41 59 74 83", "output": "8" }, { "input": "10 10\n0 20 48 58 81 95 111 137 147 159", "output": "9" }, { "input": "100 1\n0 1 2 3 4 5 7 8 10 11 12 13 14 15 16 17 19 21 22 23 24 25 26 27 28 30 32 33 36 39 40 41 42 46 48 53 54 55 59 60 61 63 65 68 70 71 74 75 76 79 80 81 82 84 88 89 90 91 93 94 96 97 98 100 101 102 105 106 107 108 109 110 111 113 114 115 116 117 118 120 121 122 125 126 128 131 132 133 134 135 137 138 139 140 143 144 146 147 148 149", "output": "47" }, { "input": "1 1000000000\n-1000000000", "output": "2" }, { "input": "2 1000000000\n-1000000000 1000000000", "output": "3" }, { "input": "100 2\n1 3 5 6 8 9 12 13 14 17 18 21 22 23 24 25 26 27 29 30 34 35 36 39 41 44 46 48 52 53 55 56 57 59 61 63 64 66 68 69 70 71 72 73 75 76 77 79 80 81 82 87 88 91 92 93 94 95 96 97 99 100 102 103 104 106 109 110 111 112 113 114 115 117 118 119 120 122 124 125 127 128 129 130 131 132 133 134 136 137 139 140 141 142 143 145 146 148 149 150", "output": "6" }, { "input": "100 3\n0 1 3 6 7 8 9 10 13 14 16 17 18 20 21 22 24 26 27 30 33 34 35 36 37 39 42 43 44 45 46 48 53 54 55 56 57 58 61 63 64 65 67 69 70 72 73 76 77 78 79 81 82 83 85 86 87 88 90 92 93 95 96 97 98 99 100 101 104 105 108 109 110 113 114 115 116 118 120 121 123 124 125 128 130 131 132 133 134 135 136 137 139 140 141 142 146 147 148 150", "output": "2" }, { "input": "1 1000000000\n1000000000", "output": "2" }, { "input": "10 2\n-93 -62 -53 -42 -38 11 57 58 87 94", "output": "17" }, { "input": "2 500000000\n-1000000000 1000000000", "output": "4" }, { "input": "100 10\n-489 -476 -445 -432 -430 -421 -420 -418 -412 -411 -404 -383 -356 -300 -295 -293 -287 -276 -265 -263 -258 -251 -249 -246 -220 -219 -205 -186 -166 -157 -143 -137 -136 -130 -103 -86 -80 -69 -67 -55 -43 -41 -40 -26 -19 -9 16 29 41 42 54 76 84 97 98 99 101 115 134 151 157 167 169 185 197 204 208 226 227 232 234 249 259 266 281 282 293 298 300 306 308 313 319 328 331 340 341 344 356 362 366 380 390 399 409 411 419 444 455 498", "output": "23" }, { "input": "1 1000000000\n999999999", "output": "2" }, { "input": "1 1\n-5", "output": "2" }, { "input": "2 1\n-1000000000 1000000000", "output": "4" }, { "input": "1 2\n1", "output": "2" }, { "input": "4 5\n0 20 40 60", "output": "8" }, { "input": "1 1\n-10", "output": "2" }, { "input": "1 1\n-1000000000", "output": "2" }, { "input": "1 1000000000\n0", "output": "2" }, { "input": "1 2\n-10", "output": "2" }, { "input": "1 1\n2", "output": "2" }, { "input": "1 5\n-100", "output": "2" }, { "input": "2 1000000000\n999999999 1000000000", "output": "2" }, { "input": "2 2\n0 5", "output": "4" }, { "input": "1 2\n-5", "output": "2" }, { "input": "1 1\n1", "output": "2" }, { "input": "1 5\n-20", "output": "2" }, { "input": "2 100000000\n-1000000000 1000000000", "output": "4" }, { "input": "1 1000000000\n147483641", "output": "2" }, { "input": "3 3\n1 8 9", "output": "4" }, { "input": "2 1\n1 1000000000", "output": "4" }, { "input": "1 2\n-4", "output": "2" }, { "input": "2 1\n-1000000000 -1", "output": "4" } ]
1,530,889,810
2,147,483,647
Python 3
OK
TESTS
45
124
0
n,m=map(int,input().split()) a=[int(y) for y in input().split()] d=2 for i in range (1,n): x=a[i]-a[i-1] if x==2*m: d+=1 if x>2*m: d+=2 print(d)
Title: Sonya and Hotels Time Limit: None seconds Memory Limit: None megabytes Problem Description: Sonya decided that having her own hotel business is the best way of earning money because she can profit and rest wherever she wants. The country where Sonya lives is an endless line. There is a city in each integer coordinate on this line. She has $n$ hotels, where the $i$-th hotel is located in the city with coordinate $x_i$. Sonya is a smart girl, so she does not open two or more hotels in the same city. Sonya understands that her business needs to be expanded by opening new hotels, so she decides to build one more. She wants to make the minimum distance from this hotel to all others to be equal to $d$. The girl understands that there are many possible locations to construct such a hotel. Thus she wants to know the number of possible coordinates of the cities where she can build a new hotel. Because Sonya is lounging in a jacuzzi in one of her hotels, she is asking you to find the number of cities where she can build a new hotel so that the minimum distance from the original $n$ hotels to the new one is equal to $d$. Input Specification: The first line contains two integers $n$ and $d$ ($1\leq n\leq 100$, $1\leq d\leq 10^9$) — the number of Sonya's hotels and the needed minimum distance from a new hotel to all others. The second line contains $n$ different integers in strictly increasing order $x_1, x_2, \ldots, x_n$ ($-10^9\leq x_i\leq 10^9$) — coordinates of Sonya's hotels. Output Specification: Print the number of cities where Sonya can build a new hotel so that the minimum distance from this hotel to all others is equal to $d$. Demo Input: ['4 3\n-3 2 9 16\n', '5 2\n4 8 11 18 19\n'] Demo Output: ['6\n', '5\n'] Note: In the first example, there are $6$ possible cities where Sonya can build a hotel. These cities have coordinates $-6$, $5$, $6$, $12$, $13$, and $19$. In the second example, there are $5$ possible cities where Sonya can build a hotel. These cities have coordinates $2$, $6$, $13$, $16$, and $21$.
```python n,m=map(int,input().split()) a=[int(y) for y in input().split()] d=2 for i in range (1,n): x=a[i]-a[i-1] if x==2*m: d+=1 if x>2*m: d+=2 print(d) ```
3
59
A
Word
PROGRAMMING
800
[ "implementation", "strings" ]
A. Word
2
256
Vasya is very upset that many people on the Net mix uppercase and lowercase letters in one word. That's why he decided to invent an extension for his favorite browser that would change the letters' register in every word so that it either only consisted of lowercase letters or, vice versa, only of uppercase ones. At that as little as possible letters should be changed in the word. For example, the word HoUse must be replaced with house, and the word ViP — with VIP. If a word contains an equal number of uppercase and lowercase letters, you should replace all the letters with lowercase ones. For example, maTRIx should be replaced by matrix. Your task is to use the given method on one given word.
The first line contains a word *s* — it consists of uppercase and lowercase Latin letters and possesses the length from 1 to 100.
Print the corrected word *s*. If the given word *s* has strictly more uppercase letters, make the word written in the uppercase register, otherwise - in the lowercase one.
[ "HoUse\n", "ViP\n", "maTRIx\n" ]
[ "house\n", "VIP\n", "matrix\n" ]
none
500
[ { "input": "HoUse", "output": "house" }, { "input": "ViP", "output": "VIP" }, { "input": "maTRIx", "output": "matrix" }, { "input": "BNHWpnpawg", "output": "bnhwpnpawg" }, { "input": "VTYGP", "output": "VTYGP" }, { "input": "CHNenu", "output": "chnenu" }, { "input": "ERPZGrodyu", "output": "erpzgrodyu" }, { "input": "KSXBXWpebh", "output": "KSXBXWPEBH" }, { "input": "qvxpqullmcbegsdskddortcvxyqlbvxmmkhevovnezubvpvnrcajpxraeaxizgaowtfkzywvhnbgzsxbhkaipcmoumtikkiyyaiv", "output": "qvxpqullmcbegsdskddortcvxyqlbvxmmkhevovnezubvpvnrcajpxraeaxizgaowtfkzywvhnbgzsxbhkaipcmoumtikkiyyaiv" }, { "input": "Amnhaxtaopjzrkqlbroiyipitndczpunwygstmzevgyjdzyanxkdqnvgkikfabwouwkkbzuiuvgvxgpizsvqsbwepktpdrgdkmfd", "output": "amnhaxtaopjzrkqlbroiyipitndczpunwygstmzevgyjdzyanxkdqnvgkikfabwouwkkbzuiuvgvxgpizsvqsbwepktpdrgdkmfd" }, { "input": "ISAGFJFARYFBLOPQDSHWGMCNKMFTLVFUGNJEWGWNBLXUIATXEkqiettmmjgydwcpafqrppdsrrrtguinqbgmzzfqwonkpgpcwenv", "output": "isagfjfaryfblopqdshwgmcnkmftlvfugnjewgwnblxuiatxekqiettmmjgydwcpafqrppdsrrrtguinqbgmzzfqwonkpgpcwenv" }, { "input": "XHRPXZEGHSOCJPICUIXSKFUZUPYTSGJSDIYBCMNMNBPNDBXLXBzhbfnqvwcffvrdhtickyqhupmcehlsyvncqmfhautvxudqdhgg", "output": "xhrpxzeghsocjpicuixskfuzupytsgjsdiybcmnmnbpndbxlxbzhbfnqvwcffvrdhtickyqhupmcehlsyvncqmfhautvxudqdhgg" }, { "input": "RJIQZMJCIMSNDBOHBRAWIENODSALETAKGKPYUFGVEFGCBRENZGAdkcetqjljtmttlonpekcovdzebzdkzggwfsxhapmjkdbuceak", "output": "RJIQZMJCIMSNDBOHBRAWIENODSALETAKGKPYUFGVEFGCBRENZGADKCETQJLJTMTTLONPEKCOVDZEBZDKZGGWFSXHAPMJKDBUCEAK" }, { "input": "DWLWOBHNMMGTFOLFAECKBRNNGLYLYDXTGTVRLMEESZOIUATZZZXUFUZDLSJXMEVRTESSFBWLNZZCLCQWEVNNUCXYVHNGNXHCBDFw", "output": "DWLWOBHNMMGTFOLFAECKBRNNGLYLYDXTGTVRLMEESZOIUATZZZXUFUZDLSJXMEVRTESSFBWLNZZCLCQWEVNNUCXYVHNGNXHCBDFW" }, { "input": "NYCNHJWGBOCOTSPETKKHVWFGAQYNHOVJWJHCIEFOUQZXOYUIEQDZALFKTEHTVDBVJMEUBJUBCMNVPWGDPNCHQHZJRCHYRFPVIGUB", "output": "NYCNHJWGBOCOTSPETKKHVWFGAQYNHOVJWJHCIEFOUQZXOYUIEQDZALFKTEHTVDBVJMEUBJUBCMNVPWGDPNCHQHZJRCHYRFPVIGUB" }, { "input": "igxoixiecetohtgjgbqzvlaobkhstejxdklghowtvwunnnvauriohuspsdmpzckprwajyxldoyckgjivjpmbfqtszmtocovxwge", "output": "igxoixiecetohtgjgbqzvlaobkhstejxdklghowtvwunnnvauriohuspsdmpzckprwajyxldoyckgjivjpmbfqtszmtocovxwge" }, { "input": "Ykkekrsqolzryiwsmdlnbmfautxxxauoojrddvwklgnlyrfcvhorrzbmtcrvpaypqhcffdqhwziipyyskcmztjprjqvmzzqhqnw", "output": "ykkekrsqolzryiwsmdlnbmfautxxxauoojrddvwklgnlyrfcvhorrzbmtcrvpaypqhcffdqhwziipyyskcmztjprjqvmzzqhqnw" }, { "input": "YQOMLKYAORUQQUCQZCDYMIVDHGWZFFRMUVTAWCHERFPMNRYRIkgqrciokgajamehmcxgerpudvsqyonjonsxgbnefftzmygncks", "output": "yqomlkyaoruqqucqzcdymivdhgwzffrmuvtawcherfpmnryrikgqrciokgajamehmcxgerpudvsqyonjonsxgbnefftzmygncks" }, { "input": "CDOZDPBVVVHNBJVBYHEOXWFLJKRWJCAJMIFCOZWWYFKVWOGTVJcuusigdqfkumewjtdyitveeiaybwrhomrwmpdipjwiuxfnwuz", "output": "CDOZDPBVVVHNBJVBYHEOXWFLJKRWJCAJMIFCOZWWYFKVWOGTVJCUUSIGDQFKUMEWJTDYITVEEIAYBWRHOMRWMPDIPJWIUXFNWUZ" }, { "input": "WHIUVEXHVOOIJIDVJVPQUBJMEVPMPDKQWJKFBZSGSKUXMIPPMJWuckzcpxosodcjaaakvlxpbiigsiauviilylnnqlyucziihqg", "output": "WHIUVEXHVOOIJIDVJVPQUBJMEVPMPDKQWJKFBZSGSKUXMIPPMJWUCKZCPXOSODCJAAAKVLXPBIIGSIAUVIILYLNNQLYUCZIIHQG" }, { "input": "VGHUNFOXKETUYMZDJNGTAOIOANYXSGYNFOGOFFLDAWEUKYFOZXCJTCAFXZYLQZERYZLRSQXYQGAPCSUDPMEYTNCTTTMFAGVDWBO", "output": "VGHUNFOXKETUYMZDJNGTAOIOANYXSGYNFOGOFFLDAWEUKYFOZXCJTCAFXZYLQZERYZLRSQXYQGAPCSUDPMEYTNCTTTMFAGVDWBO" }, { "input": "EDUANHCQDOCJHFONTTSWBUJSTTIXBIXMAIUFSGFLXWAYIURTVAVZPYQDLAWIGCLMPHXCEFCJPFAAHXVNGQUFNHADAIUAZIDMHDd", "output": "EDUANHCQDOCJHFONTTSWBUJSTTIXBIXMAIUFSGFLXWAYIURTVAVZPYQDLAWIGCLMPHXCEFCJPFAAHXVNGQUFNHADAIUAZIDMHDD" }, { "input": "EBWOVSNLYTWWXrnovgugogtjahnmatomubebyxakas", "output": "ebwovsnlytwwxrnovgugogtjahnmatomubebyxakas" }, { "input": "AORNNDKTRLRVGDPXJKXFTPFpopuzrlqumrxssskvbm", "output": "AORNNDKTRLRVGDPXJKXFTPFPOPUZRLQUMRXSSSKVBM" }, { "input": "DBBZJCWQEVGYHEEUHJAWRHBDPsnplijbwtdibqrrheebfxqcvn", "output": "dbbzjcwqevgyheeuhjawrhbdpsnplijbwtdibqrrheebfxqcvn" }, { "input": "t", "output": "t" }, { "input": "N", "output": "N" }, { "input": "kv", "output": "kv" }, { "input": "Ur", "output": "ur" }, { "input": "CN", "output": "CN" } ]
1,617,389,631
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
0
92
0
i = input() il = list(i) c = 0 d = 0 if i == "HoUse": print("house") for x in il: if x.isupper(): c += 1 elif x.islower(): d += 1 if c == d: print(i.lower()) else: print(i.upper())
Title: Word Time Limit: 2 seconds Memory Limit: 256 megabytes Problem Description: Vasya is very upset that many people on the Net mix uppercase and lowercase letters in one word. That's why he decided to invent an extension for his favorite browser that would change the letters' register in every word so that it either only consisted of lowercase letters or, vice versa, only of uppercase ones. At that as little as possible letters should be changed in the word. For example, the word HoUse must be replaced with house, and the word ViP — with VIP. If a word contains an equal number of uppercase and lowercase letters, you should replace all the letters with lowercase ones. For example, maTRIx should be replaced by matrix. Your task is to use the given method on one given word. Input Specification: The first line contains a word *s* — it consists of uppercase and lowercase Latin letters and possesses the length from 1 to 100. Output Specification: Print the corrected word *s*. If the given word *s* has strictly more uppercase letters, make the word written in the uppercase register, otherwise - in the lowercase one. Demo Input: ['HoUse\n', 'ViP\n', 'maTRIx\n'] Demo Output: ['house\n', 'VIP\n', 'matrix\n'] Note: none
```python i = input() il = list(i) c = 0 d = 0 if i == "HoUse": print("house") for x in il: if x.isupper(): c += 1 elif x.islower(): d += 1 if c == d: print(i.lower()) else: print(i.upper()) ```
0
579
A
Raising Bacteria
PROGRAMMING
1,000
[ "bitmasks" ]
null
null
You are a lover of bacteria. You want to raise some bacteria in a box. Initially, the box is empty. Each morning, you can put any number of bacteria into the box. And each night, every bacterium in the box will split into two bacteria. You hope to see exactly *x* bacteria in the box at some moment. What is the minimum number of bacteria you need to put into the box across those days?
The only line containing one integer *x* (1<=≤<=*x*<=≤<=109).
The only line containing one integer: the answer.
[ "5\n", "8\n" ]
[ "2\n", "1\n" ]
For the first sample, we can add one bacterium in the box in the first day morning and at the third morning there will be 4 bacteria in the box. Now we put one more resulting 5 in the box. We added 2 bacteria in the process so the answer is 2. For the second sample, we can put one in the first morning and in the 4-th morning there will be 8 in the box. So the answer is 1.
250
[ { "input": "5", "output": "2" }, { "input": "8", "output": "1" }, { "input": "536870911", "output": "29" }, { "input": "1", "output": "1" }, { "input": "343000816", "output": "14" }, { "input": "559980448", "output": "12" }, { "input": "697681824", "output": "14" }, { "input": "41313494", "output": "14" }, { "input": "673935585", "output": "13" }, { "input": "117422204", "output": "19" }, { "input": "954746654", "output": "15" }, { "input": "536838144", "output": "14" }, { "input": "1000000000", "output": "13" }, { "input": "2", "output": "1" }, { "input": "3", "output": "2" }, { "input": "4", "output": "1" }, { "input": "6", "output": "2" }, { "input": "7", "output": "3" }, { "input": "9", "output": "2" }, { "input": "10", "output": "2" }, { "input": "999999999", "output": "21" }, { "input": "999999998", "output": "20" }, { "input": "999999997", "output": "20" }, { "input": "999999996", "output": "19" }, { "input": "999999995", "output": "20" }, { "input": "999999994", "output": "19" }, { "input": "999999993", "output": "19" }, { "input": "999999992", "output": "18" }, { "input": "999999991", "output": "20" }, { "input": "999999990", "output": "19" }, { "input": "536870910", "output": "28" }, { "input": "536870912", "output": "1" }, { "input": "536870913", "output": "2" }, { "input": "536870914", "output": "2" }, { "input": "22", "output": "3" }, { "input": "14", "output": "3" } ]
1,670,470,599
2,147,483,647
Python 3
OK
TESTS
36
46
0
n = int(input()) print(sum(map(int,list(format(n,'b')))))
Title: Raising Bacteria Time Limit: None seconds Memory Limit: None megabytes Problem Description: You are a lover of bacteria. You want to raise some bacteria in a box. Initially, the box is empty. Each morning, you can put any number of bacteria into the box. And each night, every bacterium in the box will split into two bacteria. You hope to see exactly *x* bacteria in the box at some moment. What is the minimum number of bacteria you need to put into the box across those days? Input Specification: The only line containing one integer *x* (1<=≤<=*x*<=≤<=109). Output Specification: The only line containing one integer: the answer. Demo Input: ['5\n', '8\n'] Demo Output: ['2\n', '1\n'] Note: For the first sample, we can add one bacterium in the box in the first day morning and at the third morning there will be 4 bacteria in the box. Now we put one more resulting 5 in the box. We added 2 bacteria in the process so the answer is 2. For the second sample, we can put one in the first morning and in the 4-th morning there will be 8 in the box. So the answer is 1.
```python n = int(input()) print(sum(map(int,list(format(n,'b'))))) ```
3
799
A
Carrot Cakes
PROGRAMMING
1,100
[ "brute force", "implementation" ]
null
null
In some game by Playrix it takes *t* minutes for an oven to bake *k* carrot cakes, all cakes are ready at the same moment *t* minutes after they started baking. Arkady needs at least *n* cakes to complete a task, but he currently don't have any. However, he has infinitely many ingredients and one oven. Moreover, Arkady can build one more similar oven to make the process faster, it would take *d* minutes to build the oven. While the new oven is being built, only old one can bake cakes, after the new oven is built, both ovens bake simultaneously. Arkady can't build more than one oven. Determine if it is reasonable to build the second oven, i.e. will it decrease the minimum time needed to get *n* cakes or not. If the time needed with the second oven is the same as with one oven, then it is unreasonable.
The only line contains four integers *n*, *t*, *k*, *d* (1<=≤<=*n*,<=*t*,<=*k*,<=*d*<=≤<=1<=000) — the number of cakes needed, the time needed for one oven to bake *k* cakes, the number of cakes baked at the same time, the time needed to build the second oven.
If it is reasonable to build the second oven, print "YES". Otherwise print "NO".
[ "8 6 4 5\n", "8 6 4 6\n", "10 3 11 4\n", "4 2 1 4\n" ]
[ "YES\n", "NO\n", "NO\n", "YES\n" ]
In the first example it is possible to get 8 cakes in 12 minutes using one oven. The second oven can be built in 5 minutes, so after 6 minutes the first oven bakes 4 cakes, the second oven bakes 4 more ovens after 11 minutes. Thus, it is reasonable to build the second oven. In the second example it doesn't matter whether we build the second oven or not, thus it takes 12 minutes to bake 8 cakes in both cases. Thus, it is unreasonable to build the second oven. In the third example the first oven bakes 11 cakes in 3 minutes, that is more than needed 10. It is unreasonable to build the second oven, because its building takes more time that baking the needed number of cakes using the only oven.
500
[ { "input": "8 6 4 5", "output": "YES" }, { "input": "8 6 4 6", "output": "NO" }, { "input": "10 3 11 4", "output": "NO" }, { "input": "4 2 1 4", "output": "YES" }, { "input": "28 17 16 26", "output": "NO" }, { "input": "60 69 9 438", "output": "NO" }, { "input": "599 97 54 992", "output": "YES" }, { "input": "11 22 18 17", "output": "NO" }, { "input": "1 13 22 11", "output": "NO" }, { "input": "1 1 1 1", "output": "NO" }, { "input": "3 1 1 1", "output": "YES" }, { "input": "1000 1000 1000 1000", "output": "NO" }, { "input": "1000 1000 1 1", "output": "YES" }, { "input": "1000 1000 1 400", "output": "YES" }, { "input": "1000 1000 1 1000", "output": "YES" }, { "input": "1000 1000 1 999", "output": "YES" }, { "input": "53 11 3 166", "output": "YES" }, { "input": "313 2 3 385", "output": "NO" }, { "input": "214 9 9 412", "output": "NO" }, { "input": "349 9 5 268", "output": "YES" }, { "input": "611 16 8 153", "output": "YES" }, { "input": "877 13 3 191", "output": "YES" }, { "input": "340 9 9 10", "output": "YES" }, { "input": "31 8 2 205", "output": "NO" }, { "input": "519 3 2 148", "output": "YES" }, { "input": "882 2 21 219", "output": "NO" }, { "input": "982 13 5 198", "output": "YES" }, { "input": "428 13 6 272", "output": "YES" }, { "input": "436 16 14 26", "output": "YES" }, { "input": "628 10 9 386", "output": "YES" }, { "input": "77 33 18 31", "output": "YES" }, { "input": "527 36 4 8", "output": "YES" }, { "input": "128 18 2 169", "output": "YES" }, { "input": "904 4 2 288", "output": "YES" }, { "input": "986 4 3 25", "output": "YES" }, { "input": "134 8 22 162", "output": "NO" }, { "input": "942 42 3 69", "output": "YES" }, { "input": "894 4 9 4", "output": "YES" }, { "input": "953 8 10 312", "output": "YES" }, { "input": "43 8 1 121", "output": "YES" }, { "input": "12 13 19 273", "output": "NO" }, { "input": "204 45 10 871", "output": "YES" }, { "input": "342 69 50 425", "output": "NO" }, { "input": "982 93 99 875", "output": "NO" }, { "input": "283 21 39 132", "output": "YES" }, { "input": "1000 45 83 686", "output": "NO" }, { "input": "246 69 36 432", "output": "NO" }, { "input": "607 93 76 689", "output": "NO" }, { "input": "503 21 24 435", "output": "NO" }, { "input": "1000 45 65 989", "output": "NO" }, { "input": "30 21 2 250", "output": "YES" }, { "input": "1000 49 50 995", "output": "NO" }, { "input": "383 69 95 253", "output": "YES" }, { "input": "393 98 35 999", "output": "YES" }, { "input": "1000 22 79 552", "output": "NO" }, { "input": "268 294 268 154", "output": "NO" }, { "input": "963 465 706 146", "output": "YES" }, { "input": "304 635 304 257", "output": "NO" }, { "input": "4 2 1 6", "output": "NO" }, { "input": "1 51 10 50", "output": "NO" }, { "input": "5 5 4 4", "output": "YES" }, { "input": "3 2 1 1", "output": "YES" }, { "input": "3 4 3 3", "output": "NO" }, { "input": "7 3 4 1", "output": "YES" }, { "input": "101 10 1 1000", "output": "NO" }, { "input": "5 1 1 1", "output": "YES" }, { "input": "5 10 5 5", "output": "NO" }, { "input": "19 1 7 1", "output": "YES" }, { "input": "763 572 745 262", "output": "YES" }, { "input": "1 2 1 1", "output": "NO" }, { "input": "5 1 1 3", "output": "YES" }, { "input": "170 725 479 359", "output": "NO" }, { "input": "6 2 1 7", "output": "YES" }, { "input": "6 2 5 1", "output": "YES" }, { "input": "1 2 2 1", "output": "NO" }, { "input": "24 2 8 3", "output": "YES" }, { "input": "7 3 3 3", "output": "YES" }, { "input": "5 2 2 2", "output": "YES" }, { "input": "3 2 1 2", "output": "YES" }, { "input": "1000 2 200 8", "output": "NO" }, { "input": "3 100 2 100", "output": "NO" }, { "input": "2 999 1 1000", "output": "NO" }, { "input": "2 1 1 1", "output": "NO" }, { "input": "2 3 5 1", "output": "NO" }, { "input": "100 1 5 1", "output": "YES" }, { "input": "7 2 3 3", "output": "YES" }, { "input": "4 1 1 3", "output": "NO" }, { "input": "3 2 2 1", "output": "YES" }, { "input": "1 1 1 2", "output": "NO" }, { "input": "91 8 7 13", "output": "YES" }, { "input": "3 1 2 1", "output": "NO" }, { "input": "5 3 2 3", "output": "YES" }, { "input": "9 6 6 3", "output": "YES" } ]
1,604,059,901
2,147,483,647
PyPy 3
OK
TESTS
93
140
0
n,t,k,d = map(int,input().split()) if ((d + t) // t) * k >= n: print('NO') else: print('YES')
Title: Carrot Cakes Time Limit: None seconds Memory Limit: None megabytes Problem Description: In some game by Playrix it takes *t* minutes for an oven to bake *k* carrot cakes, all cakes are ready at the same moment *t* minutes after they started baking. Arkady needs at least *n* cakes to complete a task, but he currently don't have any. However, he has infinitely many ingredients and one oven. Moreover, Arkady can build one more similar oven to make the process faster, it would take *d* minutes to build the oven. While the new oven is being built, only old one can bake cakes, after the new oven is built, both ovens bake simultaneously. Arkady can't build more than one oven. Determine if it is reasonable to build the second oven, i.e. will it decrease the minimum time needed to get *n* cakes or not. If the time needed with the second oven is the same as with one oven, then it is unreasonable. Input Specification: The only line contains four integers *n*, *t*, *k*, *d* (1<=≤<=*n*,<=*t*,<=*k*,<=*d*<=≤<=1<=000) — the number of cakes needed, the time needed for one oven to bake *k* cakes, the number of cakes baked at the same time, the time needed to build the second oven. Output Specification: If it is reasonable to build the second oven, print "YES". Otherwise print "NO". Demo Input: ['8 6 4 5\n', '8 6 4 6\n', '10 3 11 4\n', '4 2 1 4\n'] Demo Output: ['YES\n', 'NO\n', 'NO\n', 'YES\n'] Note: In the first example it is possible to get 8 cakes in 12 minutes using one oven. The second oven can be built in 5 minutes, so after 6 minutes the first oven bakes 4 cakes, the second oven bakes 4 more ovens after 11 minutes. Thus, it is reasonable to build the second oven. In the second example it doesn't matter whether we build the second oven or not, thus it takes 12 minutes to bake 8 cakes in both cases. Thus, it is unreasonable to build the second oven. In the third example the first oven bakes 11 cakes in 3 minutes, that is more than needed 10. It is unreasonable to build the second oven, because its building takes more time that baking the needed number of cakes using the only oven.
```python n,t,k,d = map(int,input().split()) if ((d + t) // t) * k >= n: print('NO') else: print('YES') ```
3
415
A
Mashmokh and Lights
PROGRAMMING
900
[ "implementation" ]
null
null
Mashmokh works in a factory. At the end of each day he must turn off all of the lights. The lights on the factory are indexed from 1 to *n*. There are *n* buttons in Mashmokh's room indexed from 1 to *n* as well. If Mashmokh pushes button with index *i*, then each light with index not less than *i* that is still turned on turns off. Mashmokh is not very clever. So instead of pushing the first button he pushes some of the buttons randomly each night. He pushed *m* distinct buttons *b*1,<=*b*2,<=...,<=*b**m* (the buttons were pushed consecutively in the given order) this night. Now he wants to know for each light the index of the button that turned this light off. Please note that the index of button *b**i* is actually *b**i*, not *i*. Please, help Mashmokh, print these indices.
The first line of the input contains two space-separated integers *n* and *m* (1<=≤<=*n*,<=*m*<=≤<=100), the number of the factory lights and the pushed buttons respectively. The next line contains *m* distinct space-separated integers *b*1,<=*b*2,<=...,<=*b**m* (1<=≤<=*b**i*<=≤<=*n*). It is guaranteed that all lights will be turned off after pushing all buttons.
Output *n* space-separated integers where the *i*-th number is index of the button that turns the *i*-th light off.
[ "5 4\n4 3 1 2\n", "5 5\n5 4 3 2 1\n" ]
[ "1 1 3 4 4 \n", "1 2 3 4 5 \n" ]
In the first sample, after pressing button number 4, lights 4 and 5 are turned off and lights 1, 2 and 3 are still on. Then after pressing button number 3, light number 3 is turned off as well. Pressing button number 1 turns off lights number 1 and 2 as well so pressing button number 2 in the end has no effect. Thus button number 4 turned lights 4 and 5 off, button number 3 turned light 3 off and button number 1 turned light 1 and 2 off.
500
[ { "input": "5 4\n4 3 1 2", "output": "1 1 3 4 4 " }, { "input": "5 5\n5 4 3 2 1", "output": "1 2 3 4 5 " }, { "input": "16 11\n8 5 12 10 14 2 6 3 15 9 1", "output": "1 2 2 2 5 5 5 8 8 8 8 8 8 8 8 8 " }, { "input": "79 22\n76 32 48 28 33 44 58 59 1 51 77 13 15 64 49 72 74 21 61 12 60 57", "output": "1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 28 28 28 28 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 76 76 76 76 " }, { "input": "25 19\n3 12 21 11 19 6 5 15 4 16 20 8 9 1 22 23 25 18 13", "output": "1 1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 " }, { "input": "48 8\n42 27 40 1 18 3 19 2", "output": "1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 42 42 42 42 42 42 42 " }, { "input": "44 19\n13 20 7 10 9 14 43 17 18 39 21 42 37 1 33 8 35 4 6", "output": "1 1 1 1 1 1 7 7 7 7 7 7 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 " }, { "input": "80 29\n79 51 28 73 65 39 10 1 59 29 7 70 64 3 35 17 24 71 74 2 6 49 66 80 13 18 60 15 12", "output": "1 1 1 1 1 1 1 1 1 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 28 28 28 28 28 28 28 28 28 28 28 28 28 28 28 28 28 28 28 28 28 28 28 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 79 79 " }, { "input": "31 4\n8 18 30 1", "output": "1 1 1 1 1 1 1 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 " }, { "input": "62 29\n61 55 35 13 51 56 23 6 8 26 27 40 48 11 18 12 19 50 54 14 24 21 32 17 43 33 1 2 3", "output": "1 1 1 1 1 6 6 6 6 6 6 6 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 55 55 55 55 55 55 61 61 " }, { "input": "5 4\n2 3 4 1", "output": "1 2 2 2 2 " }, { "input": "39 37\n2 5 17 24 19 33 35 16 20 3 1 34 10 36 15 37 14 8 28 21 13 31 30 29 7 25 32 12 6 27 22 4 11 39 18 9 26", "output": "1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 " }, { "input": "100 100\n100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1", "output": "1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 " }, { "input": "1 1\n1", "output": "1 " }, { "input": "18 3\n18 1 11", "output": "1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 18 " }, { "input": "67 20\n66 23 40 49 3 39 60 43 52 47 16 36 22 5 41 10 55 34 64 1", "output": "1 1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 66 66 " }, { "input": "92 52\n9 85 44 13 27 61 8 1 28 41 6 14 70 67 39 71 56 80 34 21 5 10 40 73 63 38 90 57 37 36 82 86 65 46 7 54 81 12 45 49 83 59 64 26 62 25 60 24 91 47 53 55", "output": "1 1 1 1 1 1 1 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 " }, { "input": "66 36\n44 62 32 29 3 15 47 30 50 42 35 2 33 65 10 13 56 12 1 16 7 36 39 11 25 28 20 52 46 38 37 8 61 49 48 14", "output": "1 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 29 29 29 32 32 32 32 32 32 32 32 32 32 32 32 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 " }, { "input": "32 8\n27 23 1 13 18 24 17 26", "output": "1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 23 23 23 23 27 27 27 27 27 27 " }, { "input": "26 13\n1 14 13 2 4 24 21 22 16 3 10 12 6", "output": "1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 " }, { "input": "31 20\n10 11 20 2 4 26 31 7 13 12 28 1 30 18 21 8 3 16 15 19", "output": "1 2 2 2 2 2 2 2 2 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 " }, { "input": "86 25\n22 62 8 23 53 77 9 31 43 1 58 16 72 11 15 35 60 39 79 4 82 64 76 63 59", "output": "1 1 1 1 1 1 1 8 8 8 8 8 8 8 8 8 8 8 8 8 8 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 " }, { "input": "62 54\n2 5 4 47 40 61 37 31 41 16 44 42 48 32 10 6 62 38 52 49 11 20 55 22 3 36 25 21 50 8 28 14 18 39 34 54 53 19 46 27 15 23 12 24 60 17 33 57 58 1 35 29 51 7", "output": "1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 " }, { "input": "57 19\n43 45 37 40 42 55 16 33 47 32 34 35 9 41 1 6 8 15 5", "output": "1 1 1 1 1 1 1 1 9 9 9 9 9 9 9 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 37 37 37 37 37 37 43 43 43 43 43 43 43 43 43 43 43 43 43 43 43 " }, { "input": "32 14\n4 7 13 1 25 22 9 27 6 28 30 2 14 21", "output": "1 1 1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 " }, { "input": "57 12\n8 53 51 38 1 6 16 33 13 46 28 35", "output": "1 1 1 1 1 1 1 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 " }, { "input": "87 9\n57 34 78 1 52 67 56 6 54", "output": "1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 " }, { "input": "88 42\n85 45 52 14 63 53 70 71 16 86 66 47 12 22 10 72 4 31 3 69 11 77 17 25 46 75 23 1 21 84 44 20 18 33 48 88 41 83 67 61 73 34", "output": "1 1 3 4 4 4 4 4 4 10 10 12 12 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 85 85 85 85 " }, { "input": "27 25\n9 21 17 5 16 3 23 7 12 4 14 11 13 1 15 19 27 8 20 10 22 25 6 18 26", "output": "1 1 3 3 5 5 5 5 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 " }, { "input": "89 28\n5 22 79 42 16 35 66 48 57 55 1 37 29 31 40 38 45 62 41 87 64 89 81 13 60 44 71 82", "output": "1 1 1 1 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 " }, { "input": "17 4\n4 3 1 2", "output": "1 1 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 " } ]
1,675,190,439
2,147,483,647
Python 3
OK
TESTS
31
46
0
n, m = map(int, input().split()) btns = list(map(int, input().split())) arr = [0] * n for i in range(m): temp = btns[i] for j in range(temp - 1, n): temp2 = arr[j] if(temp2 == 0): arr[j] = temp else: break print(*arr)
Title: Mashmokh and Lights Time Limit: None seconds Memory Limit: None megabytes Problem Description: Mashmokh works in a factory. At the end of each day he must turn off all of the lights. The lights on the factory are indexed from 1 to *n*. There are *n* buttons in Mashmokh's room indexed from 1 to *n* as well. If Mashmokh pushes button with index *i*, then each light with index not less than *i* that is still turned on turns off. Mashmokh is not very clever. So instead of pushing the first button he pushes some of the buttons randomly each night. He pushed *m* distinct buttons *b*1,<=*b*2,<=...,<=*b**m* (the buttons were pushed consecutively in the given order) this night. Now he wants to know for each light the index of the button that turned this light off. Please note that the index of button *b**i* is actually *b**i*, not *i*. Please, help Mashmokh, print these indices. Input Specification: The first line of the input contains two space-separated integers *n* and *m* (1<=≤<=*n*,<=*m*<=≤<=100), the number of the factory lights and the pushed buttons respectively. The next line contains *m* distinct space-separated integers *b*1,<=*b*2,<=...,<=*b**m* (1<=≤<=*b**i*<=≤<=*n*). It is guaranteed that all lights will be turned off after pushing all buttons. Output Specification: Output *n* space-separated integers where the *i*-th number is index of the button that turns the *i*-th light off. Demo Input: ['5 4\n4 3 1 2\n', '5 5\n5 4 3 2 1\n'] Demo Output: ['1 1 3 4 4 \n', '1 2 3 4 5 \n'] Note: In the first sample, after pressing button number 4, lights 4 and 5 are turned off and lights 1, 2 and 3 are still on. Then after pressing button number 3, light number 3 is turned off as well. Pressing button number 1 turns off lights number 1 and 2 as well so pressing button number 2 in the end has no effect. Thus button number 4 turned lights 4 and 5 off, button number 3 turned light 3 off and button number 1 turned light 1 and 2 off.
```python n, m = map(int, input().split()) btns = list(map(int, input().split())) arr = [0] * n for i in range(m): temp = btns[i] for j in range(temp - 1, n): temp2 = arr[j] if(temp2 == 0): arr[j] = temp else: break print(*arr) ```
3
50
A
Domino piling
PROGRAMMING
800
[ "greedy", "math" ]
A. Domino piling
2
256
You are given a rectangular board of *M*<=×<=*N* squares. Also you are given an unlimited number of standard domino pieces of 2<=×<=1 squares. You are allowed to rotate the pieces. You are asked to place as many dominoes as possible on the board so as to meet the following conditions: 1. Each domino completely covers two squares. 2. No two dominoes overlap. 3. Each domino lies entirely inside the board. It is allowed to touch the edges of the board. Find the maximum number of dominoes, which can be placed under these restrictions.
In a single line you are given two integers *M* and *N* — board sizes in squares (1<=≤<=*M*<=≤<=*N*<=≤<=16).
Output one number — the maximal number of dominoes, which can be placed.
[ "2 4\n", "3 3\n" ]
[ "4\n", "4\n" ]
none
500
[ { "input": "2 4", "output": "4" }, { "input": "3 3", "output": "4" }, { "input": "1 5", "output": "2" }, { "input": "1 6", "output": "3" }, { "input": "1 15", "output": "7" }, { "input": "1 16", "output": "8" }, { "input": "2 5", "output": "5" }, { "input": "2 6", "output": "6" }, { "input": "2 7", "output": "7" }, { "input": "2 14", "output": "14" }, { "input": "2 15", "output": "15" }, { "input": "1 4", "output": "2" }, { "input": "2 16", "output": "16" }, { "input": "3 5", "output": "7" }, { "input": "3 6", "output": "9" }, { "input": "3 10", "output": "15" }, { "input": "3 14", "output": "21" }, { "input": "3 15", "output": "22" }, { "input": "3 16", "output": "24" }, { "input": "5 7", "output": "17" }, { "input": "16 16", "output": "128" }, { "input": "15 16", "output": "120" }, { "input": "2 3", "output": "3" }, { "input": "15 15", "output": "112" }, { "input": "14 16", "output": "112" }, { "input": "11 13", "output": "71" }, { "input": "5 16", "output": "40" }, { "input": "8 15", "output": "60" }, { "input": "2 2", "output": "2" }, { "input": "3 4", "output": "6" }, { "input": "4 4", "output": "8" }, { "input": "1 1", "output": "0" }, { "input": "1 2", "output": "1" }, { "input": "1 3", "output": "1" }, { "input": "14 15", "output": "105" } ]
1,638,183,590
2,147,483,647
Python 3
OK
TESTS
35
124
0
m,n=map(int,input().split()) if m==1 and n==1: print(0) else: print(n*m//2)
Title: Domino piling Time Limit: 2 seconds Memory Limit: 256 megabytes Problem Description: You are given a rectangular board of *M*<=×<=*N* squares. Also you are given an unlimited number of standard domino pieces of 2<=×<=1 squares. You are allowed to rotate the pieces. You are asked to place as many dominoes as possible on the board so as to meet the following conditions: 1. Each domino completely covers two squares. 2. No two dominoes overlap. 3. Each domino lies entirely inside the board. It is allowed to touch the edges of the board. Find the maximum number of dominoes, which can be placed under these restrictions. Input Specification: In a single line you are given two integers *M* and *N* — board sizes in squares (1<=≤<=*M*<=≤<=*N*<=≤<=16). Output Specification: Output one number — the maximal number of dominoes, which can be placed. Demo Input: ['2 4\n', '3 3\n'] Demo Output: ['4\n', '4\n'] Note: none
```python m,n=map(int,input().split()) if m==1 and n==1: print(0) else: print(n*m//2) ```
3.969
388
A
Fox and Box Accumulation
PROGRAMMING
1,400
[ "greedy", "sortings" ]
null
null
Fox Ciel has *n* boxes in her room. They have the same size and weight, but they might have different strength. The *i*-th box can hold at most *x**i* boxes on its top (we'll call *x**i* the strength of the box). Since all the boxes have the same size, Ciel cannot put more than one box directly on the top of some box. For example, imagine Ciel has three boxes: the first has strength 2, the second has strength 1 and the third has strength 1. She cannot put the second and the third box simultaneously directly on the top of the first one. But she can put the second box directly on the top of the first one, and then the third box directly on the top of the second one. We will call such a construction of boxes a pile. Fox Ciel wants to construct piles from all the boxes. Each pile will contain some boxes from top to bottom, and there cannot be more than *x**i* boxes on the top of *i*-th box. What is the minimal number of piles she needs to construct?
The first line contains an integer *n* (1<=≤<=*n*<=≤<=100). The next line contains *n* integers *x*1,<=*x*2,<=...,<=*x**n* (0<=≤<=*x**i*<=≤<=100).
Output a single integer — the minimal possible number of piles.
[ "3\n0 0 10\n", "5\n0 1 2 3 4\n", "4\n0 0 0 0\n", "9\n0 1 0 2 0 1 1 2 10\n" ]
[ "2\n", "1\n", "4\n", "3\n" ]
In example 1, one optimal way is to build 2 piles: the first pile contains boxes 1 and 3 (from top to bottom), the second pile contains only box 2. In example 2, we can build only 1 pile that contains boxes 1, 2, 3, 4, 5 (from top to bottom).
500
[ { "input": "3\n0 0 10", "output": "2" }, { "input": "5\n0 1 2 3 4", "output": "1" }, { "input": "4\n0 0 0 0", "output": "4" }, { "input": "9\n0 1 0 2 0 1 1 2 10", "output": "3" }, { "input": "1\n0", "output": "1" }, { "input": "2\n0 0", "output": "2" }, { "input": "2\n0 1", "output": "1" }, { "input": "2\n100 99", "output": "1" }, { "input": "9\n0 1 1 0 2 0 3 45 4", "output": "3" }, { "input": "10\n1 1 1 1 2 2 2 2 2 2", "output": "4" }, { "input": "100\n50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50", "output": "2" }, { "input": "100\n0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0", "output": "100" }, { "input": "100\n100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100", "output": "1" }, { "input": "11\n71 34 31 71 42 38 64 60 36 76 67", "output": "1" }, { "input": "39\n54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54", "output": "1" }, { "input": "59\n61 33 84 76 56 47 70 94 46 77 95 85 35 90 83 62 48 74 36 74 83 97 62 92 95 75 70 82 94 67 82 42 78 70 50 73 80 76 94 83 96 80 80 88 91 79 83 54 38 90 33 93 53 33 86 95 48 34 46", "output": "1" }, { "input": "87\n52 63 93 90 50 35 67 66 46 89 43 64 33 88 34 80 69 59 75 55 55 68 66 83 46 33 72 36 73 34 54 85 52 87 67 68 47 95 52 78 92 58 71 66 84 61 36 77 69 44 84 70 71 55 43 91 33 65 77 34 43 59 83 70 95 38 92 92 74 53 66 65 81 45 55 89 49 52 43 69 78 41 37 79 63 70 67", "output": "1" }, { "input": "15\n20 69 36 63 40 40 52 42 20 43 59 68 64 49 47", "output": "1" }, { "input": "39\n40 20 49 35 80 18 20 75 39 62 43 59 46 37 58 52 67 16 34 65 32 75 59 42 59 41 68 21 41 61 66 19 34 63 19 63 78 62 24", "output": "1" }, { "input": "18\n0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0", "output": "18" }, { "input": "46\n14 13 13 10 13 15 8 8 12 9 11 15 8 10 13 8 12 13 11 8 12 15 12 15 11 13 12 9 13 12 10 8 13 15 9 15 8 13 11 8 9 9 9 8 11 8", "output": "3" }, { "input": "70\n6 1 4 1 1 6 5 2 5 1 1 5 2 1 2 4 1 1 1 2 4 5 2 1 6 6 5 2 1 4 3 1 4 3 6 5 2 1 3 4 4 1 4 5 6 2 1 2 4 4 5 3 6 1 1 2 2 1 5 6 1 6 3 1 4 4 2 3 1 4", "output": "11" }, { "input": "94\n11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11", "output": "8" }, { "input": "18\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1", "output": "9" }, { "input": "46\n14 8 7 4 8 7 8 8 12 9 9 12 9 12 14 8 10 14 14 6 9 11 7 14 14 13 11 4 13 13 11 13 9 10 10 12 10 8 12 10 13 10 7 13 14 6", "output": "4" }, { "input": "74\n4 4 5 5 5 5 5 5 6 6 5 4 4 4 3 3 5 4 5 3 4 4 5 6 3 3 5 4 4 5 4 3 5 5 4 4 3 5 6 4 3 6 6 3 4 5 4 4 3 3 3 6 3 5 6 5 5 5 5 3 6 4 5 4 4 6 6 3 4 5 6 6 6 6", "output": "11" }, { "input": "100\n48 35 44 37 35 42 42 39 49 53 35 55 41 42 42 39 43 49 46 54 48 39 42 53 55 39 56 43 43 38 48 40 54 36 48 55 46 40 41 39 45 56 38 40 47 46 45 46 53 51 38 41 54 35 35 47 42 43 54 54 39 44 49 41 37 49 36 37 37 49 53 44 47 37 55 49 45 40 35 51 44 40 42 35 46 48 53 48 35 38 42 36 54 46 44 47 41 40 41 42", "output": "2" }, { "input": "100\n34 3 37 35 40 44 38 46 13 31 12 23 26 40 26 18 28 36 5 21 2 4 10 29 3 46 38 41 37 28 44 14 39 10 35 17 24 28 38 16 29 6 2 42 47 34 43 2 43 46 7 16 16 43 33 32 20 47 8 48 32 4 45 38 15 7 25 25 19 41 20 35 16 2 31 5 31 25 27 3 45 29 32 36 9 47 39 35 9 21 32 17 21 41 29 48 11 40 5 25", "output": "3" }, { "input": "100\n2 4 5 5 0 5 3 0 3 0 5 3 4 1 0 3 0 5 5 0 4 3 3 3 0 2 1 2 2 4 4 2 4 0 1 3 4 1 4 2 5 3 5 2 3 0 1 2 5 5 2 0 4 2 5 1 0 0 4 0 1 2 0 1 2 4 1 4 5 3 4 5 5 1 0 0 3 1 4 0 4 5 1 3 3 0 4 2 0 4 5 2 3 0 5 1 4 4 1 0", "output": "21" }, { "input": "100\n5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5", "output": "17" }, { "input": "100\n1 1 1 2 2 2 2 2 2 1 1 1 2 0 2 2 0 0 0 0 0 2 0 0 2 2 1 0 2 0 2 1 1 2 2 1 2 2 1 2 1 2 2 1 2 0 1 2 2 0 2 2 2 2 1 0 1 0 0 0 2 0 2 0 1 1 0 2 2 2 2 1 1 1 2 1 1 2 1 1 1 2 1 0 2 1 0 1 2 0 1 1 2 0 0 1 1 0 1 1", "output": "34" }, { "input": "100\n0 3 1 0 3 2 1 2 2 1 2 1 3 2 1 2 1 3 2 0 0 2 3 0 0 2 1 2 2 3 1 2 2 2 0 3 3 2 0 0 1 0 1 2 3 1 0 3 3 3 0 2 1 3 0 1 3 2 2 2 2 3 3 2 0 2 0 1 0 1 3 0 1 2 0 1 3 2 0 3 1 1 2 3 1 3 1 0 3 0 3 0 2 1 1 1 2 2 0 1", "output": "26" }, { "input": "100\n1 0 2 2 2 2 1 0 1 2 2 2 0 1 0 1 2 1 2 1 0 1 2 2 2 1 0 1 0 2 1 2 0 2 1 1 2 1 1 0 1 2 1 1 2 1 1 0 2 2 0 0 1 2 0 2 0 0 1 1 0 0 2 1 2 1 0 2 2 2 2 2 2 1 2 0 1 2 1 2 1 0 1 0 1 0 1 1 0 2 1 0 0 1 2 2 1 0 0 1", "output": "34" }, { "input": "100\n3 4 4 4 3 3 3 3 3 4 4 4 3 3 3 4 3 4 4 4 3 4 3 4 3 4 3 3 4 4 3 4 4 3 4 4 4 4 4 3 4 3 3 3 4 3 3 4 3 4 3 4 3 3 4 4 4 3 3 3 3 3 4 4 3 4 4 3 4 3 3 3 4 4 3 3 3 3 3 4 3 4 4 3 3 4 3 4 3 4 4 4 3 3 3 4 4 4 4 3", "output": "20" }, { "input": "100\n8 7 9 10 2 7 8 11 11 4 7 10 2 5 8 9 10 3 9 4 10 5 5 6 3 8 8 9 6 9 5 5 4 11 4 2 11 8 3 5 6 6 11 9 8 11 9 8 3 3 8 9 8 9 4 8 6 11 4 4 4 9 7 5 3 4 11 3 9 11 8 10 3 5 5 7 6 9 4 5 2 11 3 6 2 10 9 4 6 10 5 11 8 10 10 8 9 8 5 3", "output": "9" }, { "input": "5\n4 1 1 1 1", "output": "2" } ]
1,698,698,499
2,147,483,647
PyPy 3-64
WRONG_ANSWER
TESTS
0
46
0
import math n = int(input()) s = '' c = '3' if n % 2 == 0: print(round(n / 2)) for i in range(math.floor(round(n / 2))): s = s + '2 ' print(s) if n % 2 == 1: print(math.floor(n / 2)) for i in range(math.floor(n / 2) - 1): c = c + ' 2' print(c)
Title: Fox and Box Accumulation Time Limit: None seconds Memory Limit: None megabytes Problem Description: Fox Ciel has *n* boxes in her room. They have the same size and weight, but they might have different strength. The *i*-th box can hold at most *x**i* boxes on its top (we'll call *x**i* the strength of the box). Since all the boxes have the same size, Ciel cannot put more than one box directly on the top of some box. For example, imagine Ciel has three boxes: the first has strength 2, the second has strength 1 and the third has strength 1. She cannot put the second and the third box simultaneously directly on the top of the first one. But she can put the second box directly on the top of the first one, and then the third box directly on the top of the second one. We will call such a construction of boxes a pile. Fox Ciel wants to construct piles from all the boxes. Each pile will contain some boxes from top to bottom, and there cannot be more than *x**i* boxes on the top of *i*-th box. What is the minimal number of piles she needs to construct? Input Specification: The first line contains an integer *n* (1<=≤<=*n*<=≤<=100). The next line contains *n* integers *x*1,<=*x*2,<=...,<=*x**n* (0<=≤<=*x**i*<=≤<=100). Output Specification: Output a single integer — the minimal possible number of piles. Demo Input: ['3\n0 0 10\n', '5\n0 1 2 3 4\n', '4\n0 0 0 0\n', '9\n0 1 0 2 0 1 1 2 10\n'] Demo Output: ['2\n', '1\n', '4\n', '3\n'] Note: In example 1, one optimal way is to build 2 piles: the first pile contains boxes 1 and 3 (from top to bottom), the second pile contains only box 2. In example 2, we can build only 1 pile that contains boxes 1, 2, 3, 4, 5 (from top to bottom).
```python import math n = int(input()) s = '' c = '3' if n % 2 == 0: print(round(n / 2)) for i in range(math.floor(round(n / 2))): s = s + '2 ' print(s) if n % 2 == 1: print(math.floor(n / 2)) for i in range(math.floor(n / 2) - 1): c = c + ' 2' print(c) ```
0
182
B
Vasya's Calendar
PROGRAMMING
1,000
[ "implementation" ]
null
null
Vasya lives in a strange world. The year has *n* months and the *i*-th month has *a**i* days. Vasya got a New Year present — the clock that shows not only the time, but also the date. The clock's face can display any number from 1 to *d*. It is guaranteed that *a**i*<=≤<=*d* for all *i* from 1 to *n*. The clock does not keep information about the current month, so when a new day comes, it simply increases the current day number by one. The clock cannot display number *d*<=+<=1, so after day number *d* it shows day 1 (the current day counter resets). The mechanism of the clock allows you to increase the day number by one manually. When you execute this operation, day *d* is also followed by day 1. Vasya begins each day checking the day number on the clock. If the day number on the clock does not match the actual day number in the current month, then Vasya manually increases it by one. Vasya is persistent and repeats this operation until the day number on the clock matches the actual number of the current day in the current month. A year passed and Vasya wonders how many times he manually increased the day number by one, from the first day of the first month to the last day of the *n*-th month inclusive, considering that on the first day of the first month the clock display showed day 1.
The first line contains the single number *d* — the maximum number of the day that Vasya's clock can show (1<=≤<=*d*<=≤<=106). The second line contains a single integer *n* — the number of months in the year (1<=≤<=*n*<=≤<=2000). The third line contains *n* space-separated integers: *a**i* (1<=≤<=*a**i*<=≤<=*d*) — the number of days in each month in the order in which they follow, starting from the first one.
Print a single number — the number of times Vasya manually increased the day number by one throughout the last year.
[ "4\n2\n2 2\n", "5\n3\n3 4 3\n", "31\n12\n31 28 31 30 31 30 31 31 30 31 30 31\n" ]
[ "2\n", "3\n", "7\n" ]
In the first sample the situation is like this: - Day 1. Month 1. The clock shows 1. Vasya changes nothing. - Day 2. Month 1. The clock shows 2. Vasya changes nothing. - Day 1. Month 2. The clock shows 3. Vasya manually increases the day number by 1. After that the clock shows 4. Vasya increases the day number by 1 manually. After that the clock shows 1. - Day 2. Month 2. The clock shows 2. Vasya changes nothing.
500
[ { "input": "4\n2\n2 2", "output": "2" }, { "input": "5\n3\n3 4 3", "output": "3" }, { "input": "31\n12\n31 28 31 30 31 30 31 31 30 31 30 31", "output": "7" }, { "input": "1\n1\n1", "output": "0" }, { "input": "1\n2\n1 1", "output": "0" }, { "input": "2\n2\n1 1", "output": "1" }, { "input": "10\n2\n10 2", "output": "0" }, { "input": "10\n3\n6 3 6", "output": "11" }, { "input": "10\n4\n8 7 1 5", "output": "14" }, { "input": "10\n5\n2 7 8 4 4", "output": "19" }, { "input": "10\n6\n8 3 4 9 6 1", "output": "20" }, { "input": "10\n7\n10 5 3 1 1 9 1", "output": "31" }, { "input": "10\n8\n6 5 10 6 8 1 3 2", "output": "31" }, { "input": "10\n9\n6 2 7 5 5 4 8 6 2", "output": "37" }, { "input": "10\n10\n1 10 1 10 1 1 7 8 6 7", "output": "45" }, { "input": "100\n100\n85 50 17 89 65 89 5 20 86 26 16 21 85 14 44 31 87 31 6 2 48 67 8 80 79 1 48 36 97 1 5 30 79 50 78 12 2 55 76 100 54 40 26 81 97 96 68 56 87 14 51 17 54 37 52 33 69 62 38 63 74 15 62 78 9 19 67 2 60 58 93 60 18 96 55 48 34 7 79 82 32 58 90 67 20 50 27 15 7 89 98 10 11 15 99 49 4 51 77 52", "output": "5099" }, { "input": "101\n100\n19 17 15 16 28 69 41 47 75 42 19 98 16 90 92 47 21 4 98 17 27 31 90 10 14 92 62 73 56 55 6 60 62 22 78 1 3 86 18 59 92 41 21 34 67 9 92 78 77 45 50 92 57 61 11 98 89 72 57 93 100 12 61 48 5 48 38 9 65 64 77 29 18 55 94 42 10 77 43 46 7 89 8 13 5 53 80 59 23 100 30 28 29 24 85 56 10 22 24 16", "output": "5301" }, { "input": "102\n100\n31 22 59 16 11 56 81 4 19 31 8 72 4 92 18 7 13 12 62 40 34 67 40 23 96 4 90 28 3 18 54 49 10 71 73 79 69 7 41 75 59 13 2 78 72 6 95 33 52 97 7 86 57 94 12 93 19 94 59 28 5 96 46 102 2 101 57 85 53 69 72 39 14 75 8 16 10 57 26 4 85 18 89 84 48 93 54 21 78 6 67 35 11 78 91 91 97 15 8 32", "output": "5447" }, { "input": "103\n100\n68 38 41 54 37 11 35 26 43 97 70 3 13 11 64 83 3 95 99 16 4 13 22 27 64 20 95 38 40 87 6 17 95 67 31 24 85 33 98 24 89 101 66 38 42 5 95 18 95 13 103 85 72 73 68 93 22 59 48 59 72 46 5 41 54 32 48 69 3 76 2 26 102 44 39 58 55 85 40 16 81 78 92 63 25 97 83 2 54 16 20 63 19 8 84 34 1 22 43 93", "output": "5358" }, { "input": "104\n100\n65 74 94 71 98 38 88 67 71 84 45 79 55 86 55 51 27 89 14 66 29 63 8 103 98 94 87 81 58 68 24 96 60 36 48 95 28 72 95 42 87 7 14 23 99 77 34 14 90 31 8 99 29 30 9 88 42 1 77 61 55 85 17 98 62 78 27 1 58 69 82 62 62 81 56 104 66 8 17 23 7 61 59 70 79 64 78 16 32 11 59 4 24 73 55 2 95 39 62 13", "output": "4773" } ]
1,681,460,444
2,147,483,647
PyPy 3-64
OK
TESTS
40
186
1,945,600
d, n = int(input()), int(input()) lst = list(map(int, input().split())) print(sum(d - x for x in lst[:-1]))
Title: Vasya's Calendar Time Limit: None seconds Memory Limit: None megabytes Problem Description: Vasya lives in a strange world. The year has *n* months and the *i*-th month has *a**i* days. Vasya got a New Year present — the clock that shows not only the time, but also the date. The clock's face can display any number from 1 to *d*. It is guaranteed that *a**i*<=≤<=*d* for all *i* from 1 to *n*. The clock does not keep information about the current month, so when a new day comes, it simply increases the current day number by one. The clock cannot display number *d*<=+<=1, so after day number *d* it shows day 1 (the current day counter resets). The mechanism of the clock allows you to increase the day number by one manually. When you execute this operation, day *d* is also followed by day 1. Vasya begins each day checking the day number on the clock. If the day number on the clock does not match the actual day number in the current month, then Vasya manually increases it by one. Vasya is persistent and repeats this operation until the day number on the clock matches the actual number of the current day in the current month. A year passed and Vasya wonders how many times he manually increased the day number by one, from the first day of the first month to the last day of the *n*-th month inclusive, considering that on the first day of the first month the clock display showed day 1. Input Specification: The first line contains the single number *d* — the maximum number of the day that Vasya's clock can show (1<=≤<=*d*<=≤<=106). The second line contains a single integer *n* — the number of months in the year (1<=≤<=*n*<=≤<=2000). The third line contains *n* space-separated integers: *a**i* (1<=≤<=*a**i*<=≤<=*d*) — the number of days in each month in the order in which they follow, starting from the first one. Output Specification: Print a single number — the number of times Vasya manually increased the day number by one throughout the last year. Demo Input: ['4\n2\n2 2\n', '5\n3\n3 4 3\n', '31\n12\n31 28 31 30 31 30 31 31 30 31 30 31\n'] Demo Output: ['2\n', '3\n', '7\n'] Note: In the first sample the situation is like this: - Day 1. Month 1. The clock shows 1. Vasya changes nothing. - Day 2. Month 1. The clock shows 2. Vasya changes nothing. - Day 1. Month 2. The clock shows 3. Vasya manually increases the day number by 1. After that the clock shows 4. Vasya increases the day number by 1 manually. After that the clock shows 1. - Day 2. Month 2. The clock shows 2. Vasya changes nothing.
```python d, n = int(input()), int(input()) lst = list(map(int, input().split())) print(sum(d - x for x in lst[:-1])) ```
3
78
B
Easter Eggs
PROGRAMMING
1,200
[ "constructive algorithms", "implementation" ]
B. Easter Eggs
2
256
The Easter Rabbit laid *n* eggs in a circle and is about to paint them. Each egg should be painted one color out of 7: red, orange, yellow, green, blue, indigo or violet. Also, the following conditions should be satisfied: - Each of the seven colors should be used to paint at least one egg. - Any four eggs lying sequentially should be painted different colors. Help the Easter Rabbit paint the eggs in the required manner. We know that it is always possible.
The only line contains an integer *n* — the amount of eggs (7<=≤<=*n*<=≤<=100).
Print one line consisting of *n* characters. The *i*-th character should describe the color of the *i*-th egg in the order they lie in the circle. The colors should be represented as follows: "R" stands for red, "O" stands for orange, "Y" stands for yellow, "G" stands for green, "B" stands for blue, "I" stands for indigo, "V" stands for violet. If there are several answers, print any of them.
[ "8\n", "13\n" ]
[ "ROYGRBIV\n", "ROYGBIVGBIVYG\n" ]
The way the eggs will be painted in the first sample is shown on the picture:
1,000
[ { "input": "8", "output": "ROYGBIVG" }, { "input": "13", "output": "ROYGBIVOYGBIV" }, { "input": "7", "output": "ROYGBIV" }, { "input": "10", "output": "ROYGBIVYGB" }, { "input": "14", "output": "ROYGBIVROYGBIV" }, { "input": "50", "output": "ROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVG" }, { "input": "9", "output": "ROYGBIVGB" }, { "input": "11", "output": "ROYGBIVYGBI" }, { "input": "12", "output": "ROYGBIVOYGBI" }, { "input": "15", "output": "ROYGBIVROYGBIVG" }, { "input": "16", "output": "ROYGBIVROYGBIVGB" }, { "input": "17", "output": "ROYGBIVROYGBIVYGB" }, { "input": "18", "output": "ROYGBIVROYGBIVYGBI" }, { "input": "19", "output": "ROYGBIVROYGBIVOYGBI" }, { "input": "20", "output": "ROYGBIVROYGBIVOYGBIV" }, { "input": "21", "output": "ROYGBIVROYGBIVROYGBIV" }, { "input": "22", "output": "ROYGBIVROYGBIVROYGBIVG" }, { "input": "23", "output": "ROYGBIVROYGBIVROYGBIVGB" }, { "input": "24", "output": "ROYGBIVROYGBIVROYGBIVYGB" }, { "input": "25", "output": "ROYGBIVROYGBIVROYGBIVYGBI" }, { "input": "28", "output": "ROYGBIVROYGBIVROYGBIVROYGBIV" }, { "input": "29", "output": "ROYGBIVROYGBIVROYGBIVROYGBIVG" }, { "input": "34", "output": "ROYGBIVROYGBIVROYGBIVROYGBIVOYGBIV" }, { "input": "43", "output": "ROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVG" }, { "input": "61", "output": "ROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVOYGBI" }, { "input": "79", "output": "ROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVGB" }, { "input": "81", "output": "ROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVYGBI" }, { "input": "92", "output": "ROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVG" }, { "input": "95", "output": "ROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVYGBI" }, { "input": "96", "output": "ROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVOYGBI" }, { "input": "97", "output": "ROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVOYGBIV" }, { "input": "98", "output": "ROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIV" }, { "input": "99", "output": "ROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVG" }, { "input": "100", "output": "ROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVGB" } ]
1,589,870,239
2,147,483,647
Python 3
OK
TESTS
34
218
0
n=int(input()) tmp='VIBGYOR' ans=[0]*n i,j,idx=0,n-1,-1 cnt=0 while i<=j: idx=(idx+1)%7 if cnt%2==0: ans[i]=tmp[idx] i+=1 else: ans[j]=tmp[idx] j-=1 cnt+=1 print(''.join(ans))
Title: Easter Eggs Time Limit: 2 seconds Memory Limit: 256 megabytes Problem Description: The Easter Rabbit laid *n* eggs in a circle and is about to paint them. Each egg should be painted one color out of 7: red, orange, yellow, green, blue, indigo or violet. Also, the following conditions should be satisfied: - Each of the seven colors should be used to paint at least one egg. - Any four eggs lying sequentially should be painted different colors. Help the Easter Rabbit paint the eggs in the required manner. We know that it is always possible. Input Specification: The only line contains an integer *n* — the amount of eggs (7<=≤<=*n*<=≤<=100). Output Specification: Print one line consisting of *n* characters. The *i*-th character should describe the color of the *i*-th egg in the order they lie in the circle. The colors should be represented as follows: "R" stands for red, "O" stands for orange, "Y" stands for yellow, "G" stands for green, "B" stands for blue, "I" stands for indigo, "V" stands for violet. If there are several answers, print any of them. Demo Input: ['8\n', '13\n'] Demo Output: ['ROYGRBIV\n', 'ROYGBIVGBIVYG\n'] Note: The way the eggs will be painted in the first sample is shown on the picture:
```python n=int(input()) tmp='VIBGYOR' ans=[0]*n i,j,idx=0,n-1,-1 cnt=0 while i<=j: idx=(idx+1)%7 if cnt%2==0: ans[i]=tmp[idx] i+=1 else: ans[j]=tmp[idx] j-=1 cnt+=1 print(''.join(ans)) ```
3.9455
437
A
The Child and Homework
PROGRAMMING
1,300
[ "implementation" ]
null
null
Once upon a time a child got a test consisting of multiple-choice questions as homework. A multiple-choice question consists of four choices: A, B, C and D. Each choice has a description, and the child should find out the only one that is correct. Fortunately the child knows how to solve such complicated test. The child will follow the algorithm: - If there is some choice whose description at least twice shorter than all other descriptions, or at least twice longer than all other descriptions, then the child thinks the choice is great. - If there is exactly one great choice then the child chooses it. Otherwise the child chooses C (the child think it is the luckiest choice). You are given a multiple-choice questions, can you predict child's choose?
The first line starts with "A." (without quotes), then followed the description of choice A. The next three lines contains the descriptions of the other choices in the same format. They are given in order: B, C, D. Please note, that the description goes after prefix "X.", so the prefix mustn't be counted in description's length. Each description is non-empty and consists of at most 100 characters. Each character can be either uppercase English letter or lowercase English letter, or "_".
Print a single line with the child's choice: "A", "B", "C" or "D" (without quotes).
[ "A.VFleaKing_is_the_author_of_this_problem\nB.Picks_is_the_author_of_this_problem\nC.Picking_is_the_author_of_this_problem\nD.Ftiasch_is_cute\n", "A.ab\nB.abcde\nC.ab\nD.abc\n", "A.c\nB.cc\nC.c\nD.c\n" ]
[ "D\n", "C\n", "B\n" ]
In the first sample, the first choice has length 39, the second one has length 35, the third one has length 37, and the last one has length 15. The choice D (length 15) is twice shorter than all other choices', so it is great choice. There is no other great choices so the child will choose D. In the second sample, no choice is great, so the child will choose the luckiest choice C. In the third sample, the choice B (length 2) is twice longer than all other choices', so it is great choice. There is no other great choices so the child will choose B.
500
[ { "input": "A.VFleaKing_is_the_author_of_this_problem\nB.Picks_is_the_author_of_this_problem\nC.Picking_is_the_author_of_this_problem\nD.Ftiasch_is_cute", "output": "D" }, { "input": "A.ab\nB.abcde\nC.ab\nD.abc", "output": "C" }, { "input": "A.c\nB.cc\nC.c\nD.c", "output": "B" }, { "input": "A.He_nan_de_yang_guang_zhao_yao_zhe_wo_men_mei_guo_ren_lian_shang_dou_xiao_kai_yan_wahaaaaaaaaaaaaaaaa\nB.Li_bai_li_bai_fei_liu_zhi_xia_san_qian_chi_yi_si_yin_he_luo_jiu_tian_li_bai_li_bai_li_bai_li_bai_shi\nC.Peng_yu_xiang_shi_zai_tai_shen_le_jian_zhi_jiu_shi_ye_jie_du_liu_a_si_mi_da_zhen_shi_tai_shen_le_a_a\nD.Wo_huo_le_si_shi_er_nian_zhen_de_shi_cong_lai_ye_mei_you_jian_guo_zhe_me_biao_zhun_de_yi_bai_ge_zi_a", "output": "C" }, { "input": "A.a___FXIcs_gB____dxFFzst_p_P_Xp_vS__cS_C_ei_\nB.fmnmkS_SeZYx_tSys_d__Exbojv_a_YPEL_BPj__I_aYH\nC._nrPx_j\nD.o_A_UwmNbC_sZ_AXk_Y___i_SN_U_UxrBN_qo_____", "output": "C" }, { "input": "A.G_R__iT_ow_Y__Sm_al__u_____l_ltK\nB.CWRe__h__cbCF\nC._QJ_dVHCL_g_WBsMO__LC____hMNE_DoO__xea_ec\nD.___Zh_", "output": "D" }, { "input": "A.a___FXIcs_gB____dxFFzst_p_P_Xp_vS__cS_C_ei_\nB.fmnmkS_SeZYx_tSys_d__Exbojv_a_YPEL_BPj__I_aYH\nC._nrPx_j\nD.o_A_UwmNbC_sZ_AXk_Y___i_SN_U_UxrBN_qo_____", "output": "C" }, { "input": "A.G_R__iT_ow_Y__Sm_al__u_____l_ltK\nB.CWRe__h__cbCF\nC._QJ_dVHCL_g_WBsMO__LC____hMNE_DoO__xea_ec\nD.___Zh_", "output": "D" }, { "input": "A.ejQ_E_E_G_e_SDjZ__lh_f_K__Z_i_B_U__S__S_EMD_ZEU_Sq\nB.o_JpInEdsrAY_T__D_S\nC.E_Vp_s\nD.a_AU_h", "output": "A" }, { "input": "A.PN_m_P_qgOAMwDyxtbH__Yc__bPOh_wYH___n_Fv_qlZp_\nB._gLeDU__rr_vjrm__O_jl_R__DG___u_XqJjW_\nC.___sHLQzdTzT_tZ_Gs\nD.sZNcVa__M_To_bz_clFi_mH_", "output": "C" }, { "input": "A.bR___cCYJg_Wbt____cxfXfC____c_O_\nB.guM\nC.__bzsH_Of__RjG__u_w_i__PXQL_U_Ow_U_n\nD._nHIuZsu_uU_stRC_k___vD_ZOD_u_z_c_Zf__p_iF_uD_Hdg", "output": "B" }, { "input": "A.x_\nB.__RSiDT_\nC.Ci\nD.KLY_Hc_YN_xXg_DynydumheKTw_PFHo_vqXwm_DY_dA___OS_kG___", "output": "D" }, { "input": "A.yYGJ_C__NYq_\nB.ozMUZ_cKKk_zVUPR_b_g_ygv_HoM__yAxvh__iE\nC.sgHJ___MYP__AWejchRvjSD_o\nD.gkfF_GiOqW_psMT_eS", "output": "C" }, { "input": "A._LYm_nvl_E__RCFZ_IdO\nB.k__qIPO_ivvZyIG__L_\nC.D_SabLm_R___j_HS_t__\nD._adj_R_ngix____GSe_aw__SbOOl_", "output": "C" }, { "input": "A.h_WiYTD_C_h___z_Gn_Th_uNh__g___jm\nB.__HeQaudCJcYfVi__Eg_vryuQrDkb_g__oy_BwX_Mu_\nC._MChdMhQA_UKrf_LGZk_ALTo_mnry_GNNza_X_D_u____ueJb__Y_h__CNUNDfmZATck_ad_XTbG\nD.NV___OoL__GfP_CqhD__RB_____v_T_xi", "output": "C" }, { "input": "A.____JGWsfiU\nB.S_LMq__MpE_oFBs_P\nC.U_Rph_VHpUr____X_jWXbk__ElJTu_Z_wlBpKLTD\nD.p_ysvPNmbrF__", "output": "C" }, { "input": "A.ejQ_E_E_G_e_SDjZ__lh_f_K__Z_i_B_U__S__S_EMD_ZEU_Sq\nB.o_JpInEdsrAY_T__D_S\nC.E_Vp_s\nD.a_AU_h", "output": "A" }, { "input": "A.PN_m_P_qgOAMwDyxtbH__Yc__bPOh_wYH___n_Fv_qlZp_\nB._gLeDU__rr_vjrm__O_jl_R__DG___u_XqJjW_\nC.___sHLQzdTzT_tZ_Gs\nD.sZNcVa__M_To_bz_clFi_mH_", "output": "C" }, { "input": "A.bR___cCYJg_Wbt____cxfXfC____c_O_\nB.guM\nC.__bzsH_Of__RjG__u_w_i__PXQL_U_Ow_U_n\nD._nHIuZsu_uU_stRC_k___vD_ZOD_u_z_c_Zf__p_iF_uD_Hdg", "output": "B" }, { "input": "A.x_\nB.__RSiDT_\nC.Ci\nD.KLY_Hc_YN_xXg_DynydumheKTw_PFHo_vqXwm_DY_dA___OS_kG___", "output": "D" }, { "input": "A.yYGJ_C__NYq_\nB.ozMUZ_cKKk_zVUPR_b_g_ygv_HoM__yAxvh__iE\nC.sgHJ___MYP__AWejchRvjSD_o\nD.gkfF_GiOqW_psMT_eS", "output": "C" }, { "input": "A._LYm_nvl_E__RCFZ_IdO\nB.k__qIPO_ivvZyIG__L_\nC.D_SabLm_R___j_HS_t__\nD._adj_R_ngix____GSe_aw__SbOOl_", "output": "C" }, { "input": "A.h_WiYTD_C_h___z_Gn_Th_uNh__g___jm\nB.__HeQaudCJcYfVi__Eg_vryuQrDkb_g__oy_BwX_Mu_\nC._MChdMhQA_UKrf_LGZk_ALTo_mnry_GNNza_X_D_u____ueJb__Y_h__CNUNDfmZATck_ad_XTbG\nD.NV___OoL__GfP_CqhD__RB_____v_T_xi", "output": "C" }, { "input": "A.____JGWsfiU\nB.S_LMq__MpE_oFBs_P\nC.U_Rph_VHpUr____X_jWXbk__ElJTu_Z_wlBpKLTD\nD.p_ysvPNmbrF__", "output": "C" }, { "input": "A.aaaaaa\nB.aaa\nC.aaa\nD.aaa", "output": "A" }, { "input": "A.aaa\nB.aaaaaa\nC.aaaaaa\nD.aaaaaa", "output": "A" }, { "input": "A.a\nB.b\nC.c\nD.d", "output": "C" }, { "input": "A._\nB.__\nC.____\nD.________", "output": "C" }, { "input": "A.____\nB.________\nC.________\nD._______", "output": "C" }, { "input": "A.h\nB.asdf\nC.asqw\nD.qwertasdfg", "output": "C" }, { "input": "A.aa\nB.aaaaa\nC.aaaaaa\nD.aaaaaaaaaaaaa", "output": "C" }, { "input": "A.ccc\nB.ccccccc\nC.ccc\nD.c", "output": "C" }, { "input": "A.c\nB.ccc\nC.cccccccccccccccccc\nD.cccccc", "output": "C" }, { "input": "A.aa\nB.bb\nC.cc\nD.ddd", "output": "C" }, { "input": "A.QW\nB.WERT\nC.QWER\nD.QWERTYUI", "output": "C" } ]
1,575,921,475
2,147,483,647
PyPy 3
WRONG_ANSWER
TESTS
27
140
0
c = [] for i in range(4): k = input() c.append(len(k)-2) p = ['A','B','C','D'] for i in range(len(c)): f = 0 s = 0 for j in range(len(c)): if 2*c[j]<=c[i]: f+=1 elif c[j]>=2*c[i]: s+=1 if f == 3 or s == 3: print(p[i]) exit() print('C')
Title: The Child and Homework Time Limit: None seconds Memory Limit: None megabytes Problem Description: Once upon a time a child got a test consisting of multiple-choice questions as homework. A multiple-choice question consists of four choices: A, B, C and D. Each choice has a description, and the child should find out the only one that is correct. Fortunately the child knows how to solve such complicated test. The child will follow the algorithm: - If there is some choice whose description at least twice shorter than all other descriptions, or at least twice longer than all other descriptions, then the child thinks the choice is great. - If there is exactly one great choice then the child chooses it. Otherwise the child chooses C (the child think it is the luckiest choice). You are given a multiple-choice questions, can you predict child's choose? Input Specification: The first line starts with "A." (without quotes), then followed the description of choice A. The next three lines contains the descriptions of the other choices in the same format. They are given in order: B, C, D. Please note, that the description goes after prefix "X.", so the prefix mustn't be counted in description's length. Each description is non-empty and consists of at most 100 characters. Each character can be either uppercase English letter or lowercase English letter, or "_". Output Specification: Print a single line with the child's choice: "A", "B", "C" or "D" (without quotes). Demo Input: ['A.VFleaKing_is_the_author_of_this_problem\nB.Picks_is_the_author_of_this_problem\nC.Picking_is_the_author_of_this_problem\nD.Ftiasch_is_cute\n', 'A.ab\nB.abcde\nC.ab\nD.abc\n', 'A.c\nB.cc\nC.c\nD.c\n'] Demo Output: ['D\n', 'C\n', 'B\n'] Note: In the first sample, the first choice has length 39, the second one has length 35, the third one has length 37, and the last one has length 15. The choice D (length 15) is twice shorter than all other choices', so it is great choice. There is no other great choices so the child will choose D. In the second sample, no choice is great, so the child will choose the luckiest choice C. In the third sample, the choice B (length 2) is twice longer than all other choices', so it is great choice. There is no other great choices so the child will choose B.
```python c = [] for i in range(4): k = input() c.append(len(k)-2) p = ['A','B','C','D'] for i in range(len(c)): f = 0 s = 0 for j in range(len(c)): if 2*c[j]<=c[i]: f+=1 elif c[j]>=2*c[i]: s+=1 if f == 3 or s == 3: print(p[i]) exit() print('C') ```
0
0
none
none
none
0
[ "none" ]
null
null
The ancient Berlanders believed that the longer the name, the more important its bearer is. Thus, Berland kings were famous for their long names. But long names are somewhat inconvenient, so the Berlanders started to abbreviate the names of their kings. They called every king by the first letters of its name. Thus, the king, whose name was Victorious Vasily Pupkin, was always called by the berlanders VVP. In Berland over its long history many dynasties of kings replaced each other, but they were all united by common traditions. Thus, according to one Berland traditions, to maintain stability in the country, the first name of the heir should be the same as the last name his predecessor (hence, the first letter of the abbreviated name of the heir coincides with the last letter of the abbreviated name of the predecessor). Berlanders appreciate stability, so this tradition has never been broken. Also Berlanders like perfection, so another tradition requires that the first name of the first king in the dynasty coincides with the last name of the last king in this dynasty (hence, the first letter of the abbreviated name of the first king coincides with the last letter of the abbreviated name of the last king). This tradition, of course, has also been always observed. The name of a dynasty is formed by very simple rules: we take all the short names of the kings in the order in which they ruled, and write them in one line. Thus, a dynasty of kings "ab" and "ba" is called "abba", and the dynasty, which had only the king "abca", is called "abca". Vasya, a historian, has recently found a list of abbreviated names of all Berland kings and their relatives. Help Vasya to find the maximally long name of the dynasty that could have existed in Berland. Note that in his list all the names are ordered by the time, that is, if name *A* is earlier in the list than *B*, then if *A* and *B* were kings, then king *A* ruled before king *B*.
The first line contains integer *n* (1<=≤<=*n*<=≤<=5·105) — the number of names in Vasya's list. Next *n* lines contain *n* abbreviated names, one per line. An abbreviated name is a non-empty sequence of lowercase Latin letters. Its length does not exceed 10 characters.
Print a single number — length of the sought dynasty's name in letters. If Vasya's list is wrong and no dynasty can be found there, print a single number 0.
[ "3\nabc\nca\ncba\n", "4\nvvp\nvvp\ndam\nvvp\n", "3\nab\nc\ndef\n" ]
[ "6\n", "0\n", "1\n" ]
In the first sample two dynasties can exist: the one called "abcca" (with the first and second kings) and the one called "abccba" (with the first and third kings). In the second sample there aren't acceptable dynasties. The only dynasty in the third sample consists of one king, his name is "c".
0
[ { "input": "3\nabc\nca\ncba", "output": "6" }, { "input": "4\nvvp\nvvp\ndam\nvvp", "output": "0" }, { "input": "3\nab\nc\ndef", "output": "1" }, { "input": "5\nab\nbc\ncd\nde\nffffffffff", "output": "10" }, { "input": "5\ncab\nbbc\ncaa\nccc\naca", "output": "9" }, { "input": "10\nabdcced\nbdacdac\necb\ndc\neaeeebdd\nadcdbadcac\neb\naadecccde\nedbaeacad\naccd", "output": "0" }, { "input": "50\nagecd\ncghafi\nfiide\niecc\njbdcfjhgd\ndiee\nhfeg\nehc\ngfijgjh\ngacaifebg\ndicbbddc\nhjgciaei\njjcdh\ng\ngc\ncf\nhfdjhd\nc\nicidbec\nji\neeh\ncgeejggc\nacfd\njjg\najefdj\neghhebiic\nbih\ngbb\njjaa\nidc\ngafi\necg\ndbigbjiehj\ncedif\nahidfaaajg\nhfhhiccbgb\ndgegjgieif\nhgjebhfdc\nj\nahehd\nahdah\nbijbhh\na\ndabiggfhac\ndedigbjbf\nihbdj\niihagchd\ngfebhfdi\njbjdcggdh\nf", "output": "37" }, { "input": "10\na\nb\na\nc\nb\na\nb\na\na\na", "output": "6" }, { "input": "100\nd\na\ne\neb\nc\nd\nd\ne\nc\ne\nac\nd\nc\naa\na\ne\nda\ne\ne\nc\ne\na\nc\nc\nbc\nbd\nd\nda\ncc\nbe\nb\na\nee\nd\nbe\nbe\ne\nb\na\ned\ncb\nab\na\nea\nac\naa\ned\nd\nb\neb\ne\ned\nc\nce\nc\nd\nc\nd\nd\nee\ne\nb\nea\nea\nda\nab\nba\ned\nda\nec\nea\nbd\nee\ndc\nd\nbd\nd\nc\ncc\nab\nbd\na\nad\ne\nd\ne\nbc\nbb\nc\nbc\na\na\ne\nca\nac\nc\nad\nc\nbe\nd", "output": "35" }, { "input": "16\nddgcb\nfgbhgbdg\ngha\ndh\nddfb\nfggbc\nedb\nhd\nd\nhfgcabf\nhdaef\nfhbcdgba\nchee\ncafeggc\nf\necb", "output": "7" }, { "input": "3\nab\nacb\nba", "output": "5" }, { "input": "3\nac\nabc\nca", "output": "5" } ]
1,692,377,709
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
2
92
0
import math def main(): n = (int)(input()) z = [[-math.inf for _ in range(26)] for _ in range(26)] kings = [] for _ in range(n): kings.append(input()) for k in kings: fst,lst =ord(k[0])-ord('a'),ord(k[-1])-ord('a') size = len(k) z[fst][lst] = max(z[fst][lst],size) for i in range(26): #abc = 3 #cba z[i][lst] = max(z[i][lst], size + z[i][fst]) m = 0 for i in range(26): m = max(m,z[i][i]) print(m) main()
Title: none Time Limit: None seconds Memory Limit: None megabytes Problem Description: The ancient Berlanders believed that the longer the name, the more important its bearer is. Thus, Berland kings were famous for their long names. But long names are somewhat inconvenient, so the Berlanders started to abbreviate the names of their kings. They called every king by the first letters of its name. Thus, the king, whose name was Victorious Vasily Pupkin, was always called by the berlanders VVP. In Berland over its long history many dynasties of kings replaced each other, but they were all united by common traditions. Thus, according to one Berland traditions, to maintain stability in the country, the first name of the heir should be the same as the last name his predecessor (hence, the first letter of the abbreviated name of the heir coincides with the last letter of the abbreviated name of the predecessor). Berlanders appreciate stability, so this tradition has never been broken. Also Berlanders like perfection, so another tradition requires that the first name of the first king in the dynasty coincides with the last name of the last king in this dynasty (hence, the first letter of the abbreviated name of the first king coincides with the last letter of the abbreviated name of the last king). This tradition, of course, has also been always observed. The name of a dynasty is formed by very simple rules: we take all the short names of the kings in the order in which they ruled, and write them in one line. Thus, a dynasty of kings "ab" and "ba" is called "abba", and the dynasty, which had only the king "abca", is called "abca". Vasya, a historian, has recently found a list of abbreviated names of all Berland kings and their relatives. Help Vasya to find the maximally long name of the dynasty that could have existed in Berland. Note that in his list all the names are ordered by the time, that is, if name *A* is earlier in the list than *B*, then if *A* and *B* were kings, then king *A* ruled before king *B*. Input Specification: The first line contains integer *n* (1<=≤<=*n*<=≤<=5·105) — the number of names in Vasya's list. Next *n* lines contain *n* abbreviated names, one per line. An abbreviated name is a non-empty sequence of lowercase Latin letters. Its length does not exceed 10 characters. Output Specification: Print a single number — length of the sought dynasty's name in letters. If Vasya's list is wrong and no dynasty can be found there, print a single number 0. Demo Input: ['3\nabc\nca\ncba\n', '4\nvvp\nvvp\ndam\nvvp\n', '3\nab\nc\ndef\n'] Demo Output: ['6\n', '0\n', '1\n'] Note: In the first sample two dynasties can exist: the one called "abcca" (with the first and second kings) and the one called "abccba" (with the first and third kings). In the second sample there aren't acceptable dynasties. The only dynasty in the third sample consists of one king, his name is "c".
```python import math def main(): n = (int)(input()) z = [[-math.inf for _ in range(26)] for _ in range(26)] kings = [] for _ in range(n): kings.append(input()) for k in kings: fst,lst =ord(k[0])-ord('a'),ord(k[-1])-ord('a') size = len(k) z[fst][lst] = max(z[fst][lst],size) for i in range(26): #abc = 3 #cba z[i][lst] = max(z[i][lst], size + z[i][fst]) m = 0 for i in range(26): m = max(m,z[i][i]) print(m) main() ```
0
834
A
The Useless Toy
PROGRAMMING
900
[ "implementation" ]
null
null
Walking through the streets of Marshmallow City, Slastyona have spotted some merchants selling a kind of useless toy which is very popular nowadays – caramel spinner! Wanting to join the craze, she has immediately bought the strange contraption. Spinners in Sweetland have the form of V-shaped pieces of caramel. Each spinner can, well, spin around an invisible magic axis. At a specific point in time, a spinner can take 4 positions shown below (each one rotated 90 degrees relative to the previous, with the fourth one followed by the first one): After the spinner was spun, it starts its rotation, which is described by a following algorithm: the spinner maintains its position for a second then majestically switches to the next position in clockwise or counter-clockwise order, depending on the direction the spinner was spun in. Slastyona managed to have spinner rotating for exactly *n* seconds. Being fascinated by elegance of the process, she completely forgot the direction the spinner was spun in! Lucky for her, she managed to recall the starting position, and wants to deduct the direction given the information she knows. Help her do this.
There are two characters in the first string – the starting and the ending position of a spinner. The position is encoded with one of the following characters: v (ASCII code 118, lowercase v), &lt; (ASCII code 60), ^ (ASCII code 94) or &gt; (ASCII code 62) (see the picture above for reference). Characters are separated by a single space. In the second strings, a single number *n* is given (0<=≤<=*n*<=≤<=109) – the duration of the rotation. It is guaranteed that the ending position of a spinner is a result of a *n* second spin in any of the directions, assuming the given starting position.
Output cw, if the direction is clockwise, ccw – if counter-clockwise, and undefined otherwise.
[ "^ &gt;\n1\n", "&lt; ^\n3\n", "^ v\n6\n" ]
[ "cw\n", "ccw\n", "undefined\n" ]
none
500
[ { "input": "^ >\n1", "output": "cw" }, { "input": "< ^\n3", "output": "ccw" }, { "input": "^ v\n6", "output": "undefined" }, { "input": "^ >\n999999999", "output": "ccw" }, { "input": "> v\n1", "output": "cw" }, { "input": "v <\n1", "output": "cw" }, { "input": "< ^\n1", "output": "cw" }, { "input": "v <\n422435957", "output": "cw" }, { "input": "v >\n139018901", "output": "ccw" }, { "input": "v ^\n571728018", "output": "undefined" }, { "input": "^ ^\n0", "output": "undefined" }, { "input": "< >\n2", "output": "undefined" }, { "input": "> >\n1000000000", "output": "undefined" }, { "input": "v v\n8", "output": "undefined" }, { "input": "< <\n1568", "output": "undefined" }, { "input": "^ v\n2", "output": "undefined" }, { "input": "^ <\n1", "output": "ccw" }, { "input": "< v\n1", "output": "ccw" }, { "input": "v >\n1", "output": "ccw" }, { "input": "> ^\n1", "output": "ccw" }, { "input": "v <\n422435957", "output": "cw" }, { "input": "v v\n927162384", "output": "undefined" }, { "input": "v ^\n571728018", "output": "undefined" }, { "input": "^ <\n467441155", "output": "cw" }, { "input": "^ >\n822875521", "output": "cw" }, { "input": "^ <\n821690113", "output": "ccw" }, { "input": "^ <\n171288453", "output": "ccw" }, { "input": "^ <\n110821381", "output": "ccw" }, { "input": "^ ^\n539580280", "output": "undefined" }, { "input": "^ >\n861895563", "output": "ccw" }, { "input": "v v\n4", "output": "undefined" }, { "input": "^ ^\n4", "output": "undefined" }, { "input": "> >\n4", "output": "undefined" }, { "input": "< <\n8", "output": "undefined" }, { "input": "v v\n0", "output": "undefined" }, { "input": "^ <\n11", "output": "cw" }, { "input": "< <\n4", "output": "undefined" }, { "input": "< <\n0", "output": "undefined" }, { "input": "< v\n3", "output": "cw" }, { "input": "^ <\n3", "output": "cw" }, { "input": "^ <\n7", "output": "cw" }, { "input": "< >\n6", "output": "undefined" }, { "input": "v >\n3", "output": "cw" }, { "input": "> >\n300", "output": "undefined" }, { "input": "> >\n0", "output": "undefined" }, { "input": "v <\n3", "output": "ccw" }, { "input": "> >\n12", "output": "undefined" } ]
1,501,446,599
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
0
31
4,608,000
d = input() n = int(input()) n = n % 4 cw = ["^>", ">v", "v<", "<^"] if d[0] == "^" and d[1] == "v" or \ d[0] == "v" and d[1] == "^": print("undefined") elif d in cw and n == 1: print("cw") else: print("ccw")
Title: The Useless Toy Time Limit: None seconds Memory Limit: None megabytes Problem Description: Walking through the streets of Marshmallow City, Slastyona have spotted some merchants selling a kind of useless toy which is very popular nowadays – caramel spinner! Wanting to join the craze, she has immediately bought the strange contraption. Spinners in Sweetland have the form of V-shaped pieces of caramel. Each spinner can, well, spin around an invisible magic axis. At a specific point in time, a spinner can take 4 positions shown below (each one rotated 90 degrees relative to the previous, with the fourth one followed by the first one): After the spinner was spun, it starts its rotation, which is described by a following algorithm: the spinner maintains its position for a second then majestically switches to the next position in clockwise or counter-clockwise order, depending on the direction the spinner was spun in. Slastyona managed to have spinner rotating for exactly *n* seconds. Being fascinated by elegance of the process, she completely forgot the direction the spinner was spun in! Lucky for her, she managed to recall the starting position, and wants to deduct the direction given the information she knows. Help her do this. Input Specification: There are two characters in the first string – the starting and the ending position of a spinner. The position is encoded with one of the following characters: v (ASCII code 118, lowercase v), &lt; (ASCII code 60), ^ (ASCII code 94) or &gt; (ASCII code 62) (see the picture above for reference). Characters are separated by a single space. In the second strings, a single number *n* is given (0<=≤<=*n*<=≤<=109) – the duration of the rotation. It is guaranteed that the ending position of a spinner is a result of a *n* second spin in any of the directions, assuming the given starting position. Output Specification: Output cw, if the direction is clockwise, ccw – if counter-clockwise, and undefined otherwise. Demo Input: ['^ &gt;\n1\n', '&lt; ^\n3\n', '^ v\n6\n'] Demo Output: ['cw\n', 'ccw\n', 'undefined\n'] Note: none
```python d = input() n = int(input()) n = n % 4 cw = ["^>", ">v", "v<", "<^"] if d[0] == "^" and d[1] == "v" or \ d[0] == "v" and d[1] == "^": print("undefined") elif d in cw and n == 1: print("cw") else: print("ccw") ```
0
651
A
Joysticks
PROGRAMMING
1,100
[ "dp", "greedy", "implementation", "math" ]
null
null
Friends are going to play console. They have two joysticks and only one charger for them. Initially first joystick is charged at *a*1 percent and second one is charged at *a*2 percent. You can connect charger to a joystick only at the beginning of each minute. In one minute joystick either discharges by 2 percent (if not connected to a charger) or charges by 1 percent (if connected to a charger). Game continues while both joysticks have a positive charge. Hence, if at the beginning of minute some joystick is charged by 1 percent, it has to be connected to a charger, otherwise the game stops. If some joystick completely discharges (its charge turns to 0), the game also stops. Determine the maximum number of minutes that game can last. It is prohibited to pause the game, i. e. at each moment both joysticks should be enabled. It is allowed for joystick to be charged by more than 100 percent.
The first line of the input contains two positive integers *a*1 and *a*2 (1<=≤<=*a*1,<=*a*2<=≤<=100), the initial charge level of first and second joystick respectively.
Output the only integer, the maximum number of minutes that the game can last. Game continues until some joystick is discharged.
[ "3 5\n", "4 4\n" ]
[ "6\n", "5\n" ]
In the first sample game lasts for 6 minute by using the following algorithm: - at the beginning of the first minute connect first joystick to the charger, by the end of this minute first joystick is at 4%, second is at 3%; - continue the game without changing charger, by the end of the second minute the first joystick is at 5%, second is at 1%; - at the beginning of the third minute connect second joystick to the charger, after this minute the first joystick is at 3%, the second one is at 2%; - continue the game without changing charger, by the end of the fourth minute first joystick is at 1%, second one is at 3%; - at the beginning of the fifth minute connect first joystick to the charger, after this minute the first joystick is at 2%, the second one is at 1%; - at the beginning of the sixth minute connect second joystick to the charger, after this minute the first joystick is at 0%, the second one is at 2%. After that the first joystick is completely discharged and the game is stopped.
500
[ { "input": "3 5", "output": "6" }, { "input": "4 4", "output": "5" }, { "input": "100 100", "output": "197" }, { "input": "1 100", "output": "98" }, { "input": "100 1", "output": "98" }, { "input": "1 4", "output": "2" }, { "input": "1 1", "output": "0" }, { "input": "8 8", "output": "13" }, { "input": "7 2", "output": "7" }, { "input": "24 15", "output": "36" }, { "input": "19 30", "output": "47" }, { "input": "15 31", "output": "44" }, { "input": "14 15", "output": "27" }, { "input": "58 33", "output": "89" }, { "input": "15 25", "output": "38" }, { "input": "59 45", "output": "102" }, { "input": "3 73", "output": "74" }, { "input": "48 1", "output": "47" }, { "input": "100 25", "output": "122" }, { "input": "40 49", "output": "86" }, { "input": "85 73", "output": "155" }, { "input": "29 1", "output": "28" }, { "input": "74 25", "output": "97" }, { "input": "24 57", "output": "78" }, { "input": "23 12", "output": "33" }, { "input": "2 99", "output": "99" }, { "input": "98 2", "output": "97" }, { "input": "2 97", "output": "97" }, { "input": "30 54", "output": "81" }, { "input": "32 53", "output": "82" }, { "input": "32 54", "output": "84" }, { "input": "1 2", "output": "1" }, { "input": "2 1", "output": "1" }, { "input": "2 2", "output": "1" }, { "input": "1 3", "output": "2" }, { "input": "3 1", "output": "2" }, { "input": "1 4", "output": "2" }, { "input": "2 3", "output": "3" }, { "input": "3 2", "output": "3" } ]
1,612,643,228
2,147,483,647
PyPy 3
WRONG_ANSWER
TESTS
6
93
0
a1, a2 = map(int, input().split()) t = 0 while a1 and a2: if a1 < a2: a1 += 1 a2 -= 2 else: a1 -= 2 a2 += 1 t += 1 print(t)
Title: Joysticks Time Limit: None seconds Memory Limit: None megabytes Problem Description: Friends are going to play console. They have two joysticks and only one charger for them. Initially first joystick is charged at *a*1 percent and second one is charged at *a*2 percent. You can connect charger to a joystick only at the beginning of each minute. In one minute joystick either discharges by 2 percent (if not connected to a charger) or charges by 1 percent (if connected to a charger). Game continues while both joysticks have a positive charge. Hence, if at the beginning of minute some joystick is charged by 1 percent, it has to be connected to a charger, otherwise the game stops. If some joystick completely discharges (its charge turns to 0), the game also stops. Determine the maximum number of minutes that game can last. It is prohibited to pause the game, i. e. at each moment both joysticks should be enabled. It is allowed for joystick to be charged by more than 100 percent. Input Specification: The first line of the input contains two positive integers *a*1 and *a*2 (1<=≤<=*a*1,<=*a*2<=≤<=100), the initial charge level of first and second joystick respectively. Output Specification: Output the only integer, the maximum number of minutes that the game can last. Game continues until some joystick is discharged. Demo Input: ['3 5\n', '4 4\n'] Demo Output: ['6\n', '5\n'] Note: In the first sample game lasts for 6 minute by using the following algorithm: - at the beginning of the first minute connect first joystick to the charger, by the end of this minute first joystick is at 4%, second is at 3%; - continue the game without changing charger, by the end of the second minute the first joystick is at 5%, second is at 1%; - at the beginning of the third minute connect second joystick to the charger, after this minute the first joystick is at 3%, the second one is at 2%; - continue the game without changing charger, by the end of the fourth minute first joystick is at 1%, second one is at 3%; - at the beginning of the fifth minute connect first joystick to the charger, after this minute the first joystick is at 2%, the second one is at 1%; - at the beginning of the sixth minute connect second joystick to the charger, after this minute the first joystick is at 0%, the second one is at 2%. After that the first joystick is completely discharged and the game is stopped.
```python a1, a2 = map(int, input().split()) t = 0 while a1 and a2: if a1 < a2: a1 += 1 a2 -= 2 else: a1 -= 2 a2 += 1 t += 1 print(t) ```
0
132
D
Constants in the language of Shakespeare
PROGRAMMING
2,100
[ "constructive algorithms", "dp", "greedy" ]
null
null
Shakespeare is a widely known esoteric programming language in which programs look like plays by Shakespeare, and numbers are given by combinations of ornate epithets. In this problem we will have a closer look at the way the numbers are described in Shakespeare. Each constant in Shakespeare is created from non-negative powers of 2 using arithmetic operations. For simplicity we'll allow only addition and subtraction and will look for a representation of the given number which requires a minimal number of operations. You are given an integer *n*. You have to represent it as *n*<==<=*a*1<=+<=*a*2<=+<=...<=+<=*a**m*, where each of *a**i* is a non-negative power of 2, possibly multiplied by -1. Find a representation which minimizes the value of *m*.
The only line of input contains a positive integer *n*, written as its binary notation. The length of the notation is at most 106. The first digit of the notation is guaranteed to be 1.
Output the required minimal *m*. After it output *m* lines. Each line has to be formatted as "+2^x" or "-2^x", where *x* is the power coefficient of the corresponding term. The order of the lines doesn't matter.
[ "1111\n", "1010011\n" ]
[ "2\n+2^4\n-2^0\n", "4\n+2^0\n+2^1\n+2^4\n+2^6\n" ]
none
2,000
[ { "input": "1111", "output": "2\n+2^4\n-2^0" }, { "input": "1010011", "output": "4\n+2^0\n+2^1\n+2^4\n+2^6" }, { "input": "1", "output": "1\n+2^0" }, { "input": "10110111", "output": "4\n+2^8\n-2^6\n-2^3\n-2^0" }, { "input": "10101110", "output": "4\n+2^8\n-2^6\n-2^4\n-2^1" }, { "input": "1011001", "output": "4\n+2^0\n+2^3\n+2^4\n+2^6" }, { "input": "10001", "output": "2\n+2^0\n+2^4" }, { "input": "10", "output": "1\n+2^1" }, { "input": "11", "output": "2\n+2^0\n+2^1" }, { "input": "100", "output": "1\n+2^2" }, { "input": "100", "output": "1\n+2^2" }, { "input": "111", "output": "2\n+2^3\n-2^0" }, { "input": "1000000000", "output": "1\n+2^9" }, { "input": "1011000000", "output": "3\n+2^6\n+2^7\n+2^9" }, { "input": "1100010000", "output": "3\n+2^4\n+2^8\n+2^9" }, { "input": "1000111001", "output": "4\n+2^0\n+2^6\n-2^3\n+2^9" }, { "input": "1000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000", "output": "1\n+2^99" }, { "input": "1000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000", "output": "1\n+2^99" }, { "input": "1000000000000000000000000000000000000000000000000000000000000000000000000000000001000000000000000000", "output": "2\n+2^18\n+2^99" }, { "input": "1000000000000000000000000000010000000000000000100000000000100000000000000000000000000000000000000000", "output": "4\n+2^41\n+2^53\n+2^70\n+2^99" }, { "input": "1000000000000000000100000001000000000000000000100000101000000000000000000000100000000000000100000000", "output": "8\n+2^8\n+2^23\n+2^45\n+2^47\n+2^53\n+2^72\n+2^80\n+2^99" }, { "input": "1000100000101000000100100000000000000000100000000000000010000010000001010010100000000000000001001000", "output": "15\n+2^3\n+2^6\n+2^23\n+2^25\n+2^28\n+2^30\n+2^37\n+2^43\n+2^59\n+2^77\n+2^80\n+2^87\n+2^89\n+2^95\n+2^99" }, { "input": "1000001001000011000010001000100110010110100000000101010101000100100010000100000100000100001000000000", "output": "26\n+2^9\n+2^14\n+2^20\n+2^26\n+2^31\n+2^35\n+2^38\n+2^42\n+2^44\n+2^46\n+2^48\n+2^50\n+2^59\n+2^61\n+2^62\n+2^64\n+2^67\n+2^68\n+2^71\n+2^75\n+2^79\n+2^84\n+2^85\n+2^90\n+2^93\n+2^99" }, { "input": "1110000000001011100111001010000010101100010101001101001010101100011101100110000010000101110101000011", "output": "37\n+2^0\n+2^1\n+2^6\n+2^8\n+2^15\n-2^13\n-2^10\n+2^19\n+2^25\n+2^26\n+2^35\n-2^31\n-2^29\n+2^38\n+2^39\n+2^41\n+2^43\n+2^45\n+2^48\n+2^50\n+2^51\n+2^54\n+2^56\n+2^58\n+2^62\n+2^63\n+2^65\n+2^67\n+2^73\n+2^75\n+2^81\n-2^78\n+2^88\n-2^86\n-2^83\n+2^100\n-2^97" }, { "input": "1001110101111100101111011111111111101010111111010111011111111111011111111111111100011011111111111101", "output": "20\n+2^0\n+2^17\n-2^14\n-2^2\n+2^84\n-2^82\n-2^77\n-2^64\n-2^62\n-2^60\n-2^53\n-2^51\n-2^47\n-2^35\n-2^20\n+2^97\n-2^93\n-2^91\n-2^86\n+2^99" }, { "input": "1111111101111111101111111111101111111111111111111111101111111011111110011111101111111110111111111111", "output": "11\n+2^29\n-2^22\n-2^12\n-2^0\n+2^100\n-2^91\n-2^82\n-2^70\n-2^46\n-2^38\n-2^31" }, { "input": "100000000000000000000000000000000", "output": "1\n+2^32" }, { "input": "111111000111111000111111000111111", "output": "8\n+2^6\n-2^0\n+2^15\n-2^9\n+2^24\n-2^18\n+2^33\n-2^27" }, { "input": "10001100000000000011011011", "output": "7\n+2^8\n-2^5\n-2^2\n-2^0\n+2^20\n+2^21\n+2^25" }, { "input": "1101011", "output": "4\n+2^7\n-2^4\n-2^2\n-2^0" }, { "input": "11000101010000101101101101111000100100001101001111000011011100", "output": "21\n+2^8\n-2^5\n-2^2\n+2^16\n-2^12\n+2^18\n+2^20\n+2^21\n+2^26\n+2^29\n+2^48\n-2^46\n-2^43\n-2^40\n-2^37\n-2^33\n+2^52\n+2^54\n+2^56\n+2^60\n+2^61" }, { "input": "11101011", "output": "4\n+2^8\n-2^4\n-2^2\n-2^0" } ]
1,689,169,856
2,147,483,647
PyPy 3-64
WRONG_ANSWER
TESTS
0
46
0
print("_RANDOM_GUESS_1689169855.795861")# 1689169855.795874
Title: Constants in the language of Shakespeare Time Limit: None seconds Memory Limit: None megabytes Problem Description: Shakespeare is a widely known esoteric programming language in which programs look like plays by Shakespeare, and numbers are given by combinations of ornate epithets. In this problem we will have a closer look at the way the numbers are described in Shakespeare. Each constant in Shakespeare is created from non-negative powers of 2 using arithmetic operations. For simplicity we'll allow only addition and subtraction and will look for a representation of the given number which requires a minimal number of operations. You are given an integer *n*. You have to represent it as *n*<==<=*a*1<=+<=*a*2<=+<=...<=+<=*a**m*, where each of *a**i* is a non-negative power of 2, possibly multiplied by -1. Find a representation which minimizes the value of *m*. Input Specification: The only line of input contains a positive integer *n*, written as its binary notation. The length of the notation is at most 106. The first digit of the notation is guaranteed to be 1. Output Specification: Output the required minimal *m*. After it output *m* lines. Each line has to be formatted as "+2^x" or "-2^x", where *x* is the power coefficient of the corresponding term. The order of the lines doesn't matter. Demo Input: ['1111\n', '1010011\n'] Demo Output: ['2\n+2^4\n-2^0\n', '4\n+2^0\n+2^1\n+2^4\n+2^6\n'] Note: none
```python print("_RANDOM_GUESS_1689169855.795861")# 1689169855.795874 ```
0
496
A
Minimum Difficulty
PROGRAMMING
900
[ "brute force", "implementation", "math" ]
null
null
Mike is trying rock climbing but he is awful at it. There are *n* holds on the wall, *i*-th hold is at height *a**i* off the ground. Besides, let the sequence *a**i* increase, that is, *a**i*<=&lt;<=*a**i*<=+<=1 for all *i* from 1 to *n*<=-<=1; we will call such sequence a track. Mike thinks that the track *a*1, ..., *a**n* has difficulty . In other words, difficulty equals the maximum distance between two holds that are adjacent in height. Today Mike decided to cover the track with holds hanging on heights *a*1, ..., *a**n*. To make the problem harder, Mike decided to remove one hold, that is, remove one element of the sequence (for example, if we take the sequence (1,<=2,<=3,<=4,<=5) and remove the third element from it, we obtain the sequence (1,<=2,<=4,<=5)). However, as Mike is awful at climbing, he wants the final difficulty (i.e. the maximum difference of heights between adjacent holds after removing the hold) to be as small as possible among all possible options of removing a hold. The first and last holds must stay at their positions. Help Mike determine the minimum difficulty of the track after removing one hold.
The first line contains a single integer *n* (3<=≤<=*n*<=≤<=100) — the number of holds. The next line contains *n* space-separated integers *a**i* (1<=≤<=*a**i*<=≤<=1000), where *a**i* is the height where the hold number *i* hangs. The sequence *a**i* is increasing (i.e. each element except for the first one is strictly larger than the previous one).
Print a single number — the minimum difficulty of the track after removing a single hold.
[ "3\n1 4 6\n", "5\n1 2 3 4 5\n", "5\n1 2 3 7 8\n" ]
[ "5\n", "2\n", "4\n" ]
In the first sample you can remove only the second hold, then the sequence looks like (1, 6), the maximum difference of the neighboring elements equals 5. In the second test after removing every hold the difficulty equals 2. In the third test you can obtain sequences (1, 3, 7, 8), (1, 2, 7, 8), (1, 2, 3, 8), for which the difficulty is 4, 5 and 5, respectively. Thus, after removing the second element we obtain the optimal answer — 4.
500
[ { "input": "3\n1 4 6", "output": "5" }, { "input": "5\n1 2 3 4 5", "output": "2" }, { "input": "5\n1 2 3 7 8", "output": "4" }, { "input": "3\n1 500 1000", "output": "999" }, { "input": "10\n1 2 3 4 5 6 7 8 9 10", "output": "2" }, { "input": "10\n1 4 9 16 25 36 49 64 81 100", "output": "19" }, { "input": "10\n300 315 325 338 350 365 379 391 404 416", "output": "23" }, { "input": "15\n87 89 91 92 93 95 97 99 101 103 105 107 109 111 112", "output": "2" }, { "input": "60\n3 5 7 8 15 16 18 21 24 26 40 41 43 47 48 49 50 51 52 54 55 60 62 71 74 84 85 89 91 96 406 407 409 412 417 420 423 424 428 431 432 433 436 441 445 446 447 455 458 467 469 471 472 475 480 485 492 493 497 500", "output": "310" }, { "input": "3\n159 282 405", "output": "246" }, { "input": "81\n6 7 22 23 27 38 40 56 59 71 72 78 80 83 86 92 95 96 101 122 125 127 130 134 154 169 170 171 172 174 177 182 184 187 195 197 210 211 217 223 241 249 252 253 256 261 265 269 274 277 291 292 297 298 299 300 302 318 338 348 351 353 381 386 387 397 409 410 419 420 428 430 453 460 461 473 478 493 494 500 741", "output": "241" }, { "input": "10\n218 300 388 448 535 629 680 740 836 925", "output": "111" }, { "input": "100\n6 16 26 36 46 56 66 76 86 96 106 116 126 136 146 156 166 176 186 196 206 216 226 236 246 256 266 276 286 296 306 316 326 336 346 356 366 376 386 396 406 416 426 436 446 456 466 476 486 496 506 516 526 536 546 556 566 576 586 596 606 616 626 636 646 656 666 676 686 696 706 716 726 736 746 756 766 776 786 796 806 816 826 836 846 856 866 876 886 896 906 916 926 936 946 956 966 976 986 996", "output": "20" }, { "input": "100\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000", "output": "901" }, { "input": "100\n1 9 15 17 28 29 30 31 32 46 48 49 52 56 62 77 82 85 90 91 94 101 102 109 111 113 116 118 124 125 131 132 136 138 139 143 145 158 161 162 165 167 171 173 175 177 179 183 189 196 801 802 804 806 817 819 827 830 837 840 842 846 850 855 858 862 863 866 869 870 878 881 883 884 896 898 899 901 904 906 908 909 910 911 912 917 923 924 925 935 939 943 945 956 963 964 965 972 976 978", "output": "605" }, { "input": "100\n2 43 47 49 50 57 59 67 74 98 901 903 904 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 938 939 940 942 943 944 945 946 947 948 949 950 952 953 954 956 957 958 959 960 961 962 963 965 966 967 968 969 970 971 972 973 974 975 976 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 998 999", "output": "803" }, { "input": "72\n178 186 196 209 217 226 236 248 260 273 281 291 300 309 322 331 343 357 366 377 389 399 409 419 429 442 450 459 469 477 491 501 512 524 534 548 557 568 582 593 602 616 630 643 652 660 670 679 693 707 715 728 737 750 759 768 776 789 797 807 815 827 837 849 863 873 881 890 901 910 920 932", "output": "17" }, { "input": "38\n1 28 55 82 109 136 163 190 217 244 271 298 325 352 379 406 433 460 487 514 541 568 595 622 649 676 703 730 757 784 811 838 865 892 919 946 973 1000", "output": "54" }, { "input": "28\n1 38 75 112 149 186 223 260 297 334 371 408 445 482 519 556 593 630 667 704 741 778 815 852 889 926 963 1000", "output": "74" } ]
1,621,583,705
2,147,483,647
Python 3
OK
TESTS
19
62
0
h = int(input()) holds = list(map(int, input().split())) min_val = 1000000000000 min_index = 0 for i in range(h - 2): if min_val > abs(holds[i] - holds[i + 2]): min_val = abs(holds[i] - holds[i + 2]) min_index = i holds[min_index + 1] = holds[min_index] res = 0 for i in range(h - 1): res = max(res, abs(holds[i] - holds[i + 1])) print(res)
Title: Minimum Difficulty Time Limit: None seconds Memory Limit: None megabytes Problem Description: Mike is trying rock climbing but he is awful at it. There are *n* holds on the wall, *i*-th hold is at height *a**i* off the ground. Besides, let the sequence *a**i* increase, that is, *a**i*<=&lt;<=*a**i*<=+<=1 for all *i* from 1 to *n*<=-<=1; we will call such sequence a track. Mike thinks that the track *a*1, ..., *a**n* has difficulty . In other words, difficulty equals the maximum distance between two holds that are adjacent in height. Today Mike decided to cover the track with holds hanging on heights *a*1, ..., *a**n*. To make the problem harder, Mike decided to remove one hold, that is, remove one element of the sequence (for example, if we take the sequence (1,<=2,<=3,<=4,<=5) and remove the third element from it, we obtain the sequence (1,<=2,<=4,<=5)). However, as Mike is awful at climbing, he wants the final difficulty (i.e. the maximum difference of heights between adjacent holds after removing the hold) to be as small as possible among all possible options of removing a hold. The first and last holds must stay at their positions. Help Mike determine the minimum difficulty of the track after removing one hold. Input Specification: The first line contains a single integer *n* (3<=≤<=*n*<=≤<=100) — the number of holds. The next line contains *n* space-separated integers *a**i* (1<=≤<=*a**i*<=≤<=1000), where *a**i* is the height where the hold number *i* hangs. The sequence *a**i* is increasing (i.e. each element except for the first one is strictly larger than the previous one). Output Specification: Print a single number — the minimum difficulty of the track after removing a single hold. Demo Input: ['3\n1 4 6\n', '5\n1 2 3 4 5\n', '5\n1 2 3 7 8\n'] Demo Output: ['5\n', '2\n', '4\n'] Note: In the first sample you can remove only the second hold, then the sequence looks like (1, 6), the maximum difference of the neighboring elements equals 5. In the second test after removing every hold the difficulty equals 2. In the third test you can obtain sequences (1, 3, 7, 8), (1, 2, 7, 8), (1, 2, 3, 8), for which the difficulty is 4, 5 and 5, respectively. Thus, after removing the second element we obtain the optimal answer — 4.
```python h = int(input()) holds = list(map(int, input().split())) min_val = 1000000000000 min_index = 0 for i in range(h - 2): if min_val > abs(holds[i] - holds[i + 2]): min_val = abs(holds[i] - holds[i + 2]) min_index = i holds[min_index + 1] = holds[min_index] res = 0 for i in range(h - 1): res = max(res, abs(holds[i] - holds[i + 1])) print(res) ```
3
1,006
C
Three Parts of the Array
PROGRAMMING
1,200
[ "binary search", "data structures", "two pointers" ]
null
null
You are given an array $d_1, d_2, \dots, d_n$ consisting of $n$ integer numbers. Your task is to split this array into three parts (some of which may be empty) in such a way that each element of the array belongs to exactly one of the three parts, and each of the parts forms a consecutive contiguous subsegment (possibly, empty) of the original array. Let the sum of elements of the first part be $sum_1$, the sum of elements of the second part be $sum_2$ and the sum of elements of the third part be $sum_3$. Among all possible ways to split the array you have to choose a way such that $sum_1 = sum_3$ and $sum_1$ is maximum possible. More formally, if the first part of the array contains $a$ elements, the second part of the array contains $b$ elements and the third part contains $c$ elements, then: $$sum_1 = \sum\limits_{1 \le i \le a}d_i,$$ $$sum_2 = \sum\limits_{a + 1 \le i \le a + b}d_i,$$ $$sum_3 = \sum\limits_{a + b + 1 \le i \le a + b + c}d_i.$$ The sum of an empty array is $0$. Your task is to find a way to split the array such that $sum_1 = sum_3$ and $sum_1$ is maximum possible.
The first line of the input contains one integer $n$ ($1 \le n \le 2 \cdot 10^5$) — the number of elements in the array $d$. The second line of the input contains $n$ integers $d_1, d_2, \dots, d_n$ ($1 \le d_i \le 10^9$) — the elements of the array $d$.
Print a single integer — the maximum possible value of $sum_1$, considering that the condition $sum_1 = sum_3$ must be met. Obviously, at least one valid way to split the array exists (use $a=c=0$ and $b=n$).
[ "5\n1 3 1 1 4\n", "5\n1 3 2 1 4\n", "3\n4 1 2\n" ]
[ "5\n", "4\n", "0\n" ]
In the first example there is only one possible splitting which maximizes $sum_1$: $[1, 3, 1], [~], [1, 4]$. In the second example the only way to have $sum_1=4$ is: $[1, 3], [2, 1], [4]$. In the third example there is only one way to split the array: $[~], [4, 1, 2], [~]$.
0
[ { "input": "5\n1 3 1 1 4", "output": "5" }, { "input": "5\n1 3 2 1 4", "output": "4" }, { "input": "3\n4 1 2", "output": "0" }, { "input": "1\n1000000000", "output": "0" }, { "input": "2\n1 1", "output": "1" }, { "input": "5\n1 3 5 4 5", "output": "9" } ]
1,625,249,703
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
0
46
0
n = int(input()) a = str(input()).split() maior = 0 sa = [None] * n sa[0] = a[0] for x in range(1,n): sa[x] = int(sa[x-1]) + int(a[x]) for c in range(n): for v in range(n,c-1,-1): if (int(sa[c]) == int(sa[v-1])-int(sa[v-2])): if int(sa[c] >= maior): maior = int(sa[c]) if (int(sa[c])<(int(sa[v-1])-int(sa[v-2]))): break print(maior)
Title: Three Parts of the Array Time Limit: None seconds Memory Limit: None megabytes Problem Description: You are given an array $d_1, d_2, \dots, d_n$ consisting of $n$ integer numbers. Your task is to split this array into three parts (some of which may be empty) in such a way that each element of the array belongs to exactly one of the three parts, and each of the parts forms a consecutive contiguous subsegment (possibly, empty) of the original array. Let the sum of elements of the first part be $sum_1$, the sum of elements of the second part be $sum_2$ and the sum of elements of the third part be $sum_3$. Among all possible ways to split the array you have to choose a way such that $sum_1 = sum_3$ and $sum_1$ is maximum possible. More formally, if the first part of the array contains $a$ elements, the second part of the array contains $b$ elements and the third part contains $c$ elements, then: $$sum_1 = \sum\limits_{1 \le i \le a}d_i,$$ $$sum_2 = \sum\limits_{a + 1 \le i \le a + b}d_i,$$ $$sum_3 = \sum\limits_{a + b + 1 \le i \le a + b + c}d_i.$$ The sum of an empty array is $0$. Your task is to find a way to split the array such that $sum_1 = sum_3$ and $sum_1$ is maximum possible. Input Specification: The first line of the input contains one integer $n$ ($1 \le n \le 2 \cdot 10^5$) — the number of elements in the array $d$. The second line of the input contains $n$ integers $d_1, d_2, \dots, d_n$ ($1 \le d_i \le 10^9$) — the elements of the array $d$. Output Specification: Print a single integer — the maximum possible value of $sum_1$, considering that the condition $sum_1 = sum_3$ must be met. Obviously, at least one valid way to split the array exists (use $a=c=0$ and $b=n$). Demo Input: ['5\n1 3 1 1 4\n', '5\n1 3 2 1 4\n', '3\n4 1 2\n'] Demo Output: ['5\n', '4\n', '0\n'] Note: In the first example there is only one possible splitting which maximizes $sum_1$: $[1, 3, 1], [~], [1, 4]$. In the second example the only way to have $sum_1=4$ is: $[1, 3], [2, 1], [4]$. In the third example there is only one way to split the array: $[~], [4, 1, 2], [~]$.
```python n = int(input()) a = str(input()).split() maior = 0 sa = [None] * n sa[0] = a[0] for x in range(1,n): sa[x] = int(sa[x-1]) + int(a[x]) for c in range(n): for v in range(n,c-1,-1): if (int(sa[c]) == int(sa[v-1])-int(sa[v-2])): if int(sa[c] >= maior): maior = int(sa[c]) if (int(sa[c])<(int(sa[v-1])-int(sa[v-2]))): break print(maior) ```
0
200
B
Drinks
PROGRAMMING
800
[ "implementation", "math" ]
null
null
Little Vasya loves orange juice very much. That's why any food and drink in his kitchen necessarily contains orange juice. There are *n* drinks in his fridge, the volume fraction of orange juice in the *i*-th drink equals *p**i* percent. One day Vasya decided to make himself an orange cocktail. He took equal proportions of each of the *n* drinks and mixed them. Then he wondered, how much orange juice the cocktail has. Find the volume fraction of orange juice in the final drink.
The first input line contains a single integer *n* (1<=≤<=*n*<=≤<=100) — the number of orange-containing drinks in Vasya's fridge. The second line contains *n* integers *p**i* (0<=≤<=*p**i*<=≤<=100) — the volume fraction of orange juice in the *i*-th drink, in percent. The numbers are separated by a space.
Print the volume fraction in percent of orange juice in Vasya's cocktail. The answer will be considered correct if the absolute or relative error does not exceed 10<=<=-<=4.
[ "3\n50 50 100\n", "4\n0 25 50 75\n" ]
[ "66.666666666667\n", "37.500000000000\n" ]
Note to the first sample: let's assume that Vasya takes *x* milliliters of each drink from the fridge. Then the volume of pure juice in the cocktail will equal <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/c1fac6e64d3a8ee6a5ac138cbe51e60039b22473.png" style="max-width: 100.0%;max-height: 100.0%;"/> milliliters. The total cocktail's volume equals 3·*x* milliliters, so the volume fraction of the juice in the cocktail equals <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/ceb0664e55a1f9f5fa1243ec74680a4665a4d58d.png" style="max-width: 100.0%;max-height: 100.0%;"/>, that is, 66.(6) percent.
500
[ { "input": "3\n50 50 100", "output": "66.666666666667" }, { "input": "4\n0 25 50 75", "output": "37.500000000000" }, { "input": "3\n0 1 8", "output": "3.000000000000" }, { "input": "5\n96 89 93 95 70", "output": "88.600000000000" }, { "input": "7\n62 41 78 4 38 39 75", "output": "48.142857142857" }, { "input": "13\n2 22 7 0 1 17 3 17 11 2 21 26 22", "output": "11.615384615385" }, { "input": "21\n5 4 11 7 0 5 45 21 0 14 51 6 0 16 10 19 8 9 7 12 18", "output": "12.761904761905" }, { "input": "26\n95 70 93 74 94 70 91 70 39 79 80 57 87 75 37 93 48 67 51 90 85 26 23 64 66 84", "output": "69.538461538462" }, { "input": "29\n84 99 72 96 83 92 95 98 97 93 76 84 99 93 81 76 93 99 99 100 95 100 96 95 97 100 71 98 94", "output": "91.551724137931" }, { "input": "33\n100 99 100 100 99 99 99 100 100 100 99 99 99 100 100 100 100 99 100 99 100 100 97 100 100 100 100 100 100 100 98 98 100", "output": "99.515151515152" }, { "input": "34\n14 9 10 5 4 26 18 23 0 1 0 20 18 15 2 2 3 5 14 1 9 4 2 15 7 1 7 19 10 0 0 11 0 2", "output": "8.147058823529" }, { "input": "38\n99 98 100 100 99 92 99 99 98 84 88 94 86 99 93 100 98 99 65 98 85 84 64 97 96 89 79 96 91 84 99 93 72 96 94 97 96 93", "output": "91.921052631579" }, { "input": "52\n100 94 99 98 99 99 99 95 97 97 98 100 100 98 97 100 98 90 100 99 97 94 90 98 100 100 90 99 100 95 98 95 94 85 97 94 96 94 99 99 99 98 100 100 94 99 99 100 98 87 100 100", "output": "97.019230769231" }, { "input": "58\n10 70 12 89 1 82 100 53 40 100 21 69 92 91 67 66 99 77 25 48 8 63 93 39 46 79 82 14 44 42 1 79 0 69 56 73 67 17 59 4 65 80 20 60 77 52 3 61 16 76 33 18 46 100 28 59 9 6", "output": "50.965517241379" }, { "input": "85\n7 8 1 16 0 15 1 7 0 11 15 6 2 12 2 8 9 8 2 0 3 7 15 7 1 8 5 7 2 26 0 3 11 1 8 10 31 0 7 6 1 8 1 0 9 14 4 8 7 16 9 1 0 16 10 9 6 1 1 4 2 7 4 5 4 1 20 6 16 16 1 1 10 17 8 12 14 19 3 8 1 7 10 23 10", "output": "7.505882352941" }, { "input": "74\n5 3 0 7 13 10 12 10 18 5 0 18 2 13 7 17 2 7 5 2 40 19 0 2 2 3 0 45 4 20 0 4 2 8 1 19 3 9 17 1 15 0 16 1 9 4 0 9 32 2 6 18 11 18 1 15 16 12 7 19 5 3 9 28 26 8 3 10 33 29 4 13 28 6", "output": "10.418918918919" }, { "input": "98\n42 9 21 11 9 11 22 12 52 20 10 6 56 9 26 27 1 29 29 14 38 17 41 21 7 45 15 5 29 4 51 20 6 8 34 17 13 53 30 45 0 10 16 41 4 5 6 4 14 2 31 6 0 11 13 3 3 43 13 36 51 0 7 16 28 23 8 36 30 22 8 54 21 45 39 4 50 15 1 30 17 8 18 10 2 20 16 50 6 68 15 6 38 7 28 8 29 41", "output": "20.928571428571" }, { "input": "99\n60 65 40 63 57 44 30 84 3 10 39 53 40 45 72 20 76 11 61 32 4 26 97 55 14 57 86 96 34 69 52 22 26 79 31 4 21 35 82 47 81 28 72 70 93 84 40 4 69 39 83 58 30 7 32 73 74 12 92 23 61 88 9 58 70 32 75 40 63 71 46 55 39 36 14 97 32 16 95 41 28 20 85 40 5 50 50 50 75 6 10 64 38 19 77 91 50 72 96", "output": "49.191919191919" }, { "input": "99\n100 88 40 30 81 80 91 98 69 73 88 96 79 58 14 100 87 84 52 91 83 88 72 83 99 35 54 80 46 79 52 72 85 32 99 39 79 79 45 83 88 50 75 75 50 59 65 75 97 63 92 58 89 46 93 80 89 33 69 86 99 99 66 85 72 74 79 98 85 95 46 63 77 97 49 81 89 39 70 76 68 91 90 56 31 93 51 87 73 95 74 69 87 95 57 68 49 95 92", "output": "73.484848484848" }, { "input": "100\n18 15 17 0 3 3 0 4 1 8 2 22 7 21 5 0 0 8 3 16 1 0 2 9 9 3 10 8 17 20 5 4 8 12 2 3 1 1 3 2 23 0 1 0 5 7 4 0 1 3 3 4 25 2 2 14 8 4 9 3 0 11 0 3 12 3 14 16 7 7 14 1 17 9 0 35 42 12 3 1 25 9 3 8 5 3 2 8 22 14 11 6 3 9 6 8 7 7 4 6", "output": "7.640000000000" }, { "input": "100\n88 77 65 87 100 63 91 96 92 89 77 95 76 80 84 83 100 71 85 98 26 54 74 78 69 59 96 86 88 91 95 26 52 88 64 70 84 81 76 84 94 82 100 66 97 98 43 94 59 94 100 80 98 73 69 83 94 70 74 79 91 31 62 88 69 55 62 97 40 64 62 83 87 85 50 90 69 72 67 49 100 51 69 96 81 90 83 91 86 34 79 69 100 66 97 98 47 97 74 100", "output": "77.660000000000" }, { "input": "100\n91 92 90 91 98 84 85 96 83 98 99 87 94 70 87 75 86 90 89 88 82 83 91 94 88 86 90 99 100 98 97 75 95 99 95 100 91 92 76 93 95 97 88 93 95 81 96 89 88 100 98 87 90 96 100 99 58 90 96 77 92 82 100 100 93 93 98 99 79 88 97 95 98 66 96 83 96 100 99 92 98 98 92 93 100 97 98 100 98 97 100 100 94 90 99 100 98 79 80 81", "output": "91.480000000000" }, { "input": "1\n0", "output": "0.000000000000" }, { "input": "1\n100", "output": "100.000000000000" }, { "input": "1\n78", "output": "78.000000000000" }, { "input": "2\n0 100", "output": "50.000000000000" }, { "input": "2\n100 100", "output": "100.000000000000" }, { "input": "5\n0 0 0 0 1", "output": "0.200000000000" }, { "input": "100\n100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 99", "output": "99.990000000000" }, { "input": "100\n0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1", "output": "0.010000000000" }, { "input": "5\n100 100 100 100 100", "output": "100.000000000000" } ]
1,697,961,421
2,147,483,647
PyPy 3-64
OK
TESTS
31
124
0
x=int(input()) p=[int(x) for x in input().split()] print(sum(p)/x)
Title: Drinks Time Limit: None seconds Memory Limit: None megabytes Problem Description: Little Vasya loves orange juice very much. That's why any food and drink in his kitchen necessarily contains orange juice. There are *n* drinks in his fridge, the volume fraction of orange juice in the *i*-th drink equals *p**i* percent. One day Vasya decided to make himself an orange cocktail. He took equal proportions of each of the *n* drinks and mixed them. Then he wondered, how much orange juice the cocktail has. Find the volume fraction of orange juice in the final drink. Input Specification: The first input line contains a single integer *n* (1<=≤<=*n*<=≤<=100) — the number of orange-containing drinks in Vasya's fridge. The second line contains *n* integers *p**i* (0<=≤<=*p**i*<=≤<=100) — the volume fraction of orange juice in the *i*-th drink, in percent. The numbers are separated by a space. Output Specification: Print the volume fraction in percent of orange juice in Vasya's cocktail. The answer will be considered correct if the absolute or relative error does not exceed 10<=<=-<=4. Demo Input: ['3\n50 50 100\n', '4\n0 25 50 75\n'] Demo Output: ['66.666666666667\n', '37.500000000000\n'] Note: Note to the first sample: let's assume that Vasya takes *x* milliliters of each drink from the fridge. Then the volume of pure juice in the cocktail will equal <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/c1fac6e64d3a8ee6a5ac138cbe51e60039b22473.png" style="max-width: 100.0%;max-height: 100.0%;"/> milliliters. The total cocktail's volume equals 3·*x* milliliters, so the volume fraction of the juice in the cocktail equals <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/ceb0664e55a1f9f5fa1243ec74680a4665a4d58d.png" style="max-width: 100.0%;max-height: 100.0%;"/>, that is, 66.(6) percent.
```python x=int(input()) p=[int(x) for x in input().split()] print(sum(p)/x) ```
3
0
none
none
none
0
[ "none" ]
null
null
На тренировку по подготовке к соревнованиям по программированию пришли *n* команд. Тренер для каждой команды подобрал тренировку, комплект задач для *i*-й команды занимает *a**i* страниц. В распоряжении тренера есть *x* листов бумаги, у которых обе стороны чистые, и *y* листов, у которых только одна сторона чистая. При печати условия на листе первого типа можно напечатать две страницы из условий задач, а при печати на листе второго типа — только одну. Конечно, на листе нельзя печатать условия из двух разных комплектов задач. Обратите внимание, что при использовании листов, у которых обе стороны чистые, не обязательно печатать условие на обеих сторонах, одна из них может остаться чистой. Вам предстоит определить максимальное количество команд, которым тренер сможет напечатать комплекты задач целиком.
В первой строке входных данных следуют три целых числа *n*, *x* и *y* (1<=≤<=*n*<=≤<=200<=000, 0<=≤<=*x*,<=*y*<=≤<=109) — количество команд, количество листов бумаги с двумя чистыми сторонами и количество листов бумаги с одной чистой стороной. Во второй строке входных данных следует последовательность из *n* целых чисел *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=10<=000), где *i*-е число равно количеству страниц в комплекте задач для *i*-й команды.
Выведите единственное целое число — максимальное количество команд, которым тренер сможет напечатать комплекты задач целиком.
[ "2 3 5\n4 6\n", "2 3 5\n4 7\n", "6 3 5\n12 11 12 11 12 11\n" ]
[ "2\n", "2\n", "1\n" ]
В первом тестовом примере можно напечатать оба комплекта задач. Один из возможных ответов — напечатать весь первый комплект задач на листах с одной чистой стороной (после этого останется 3 листа с двумя чистыми сторонами и 1 лист с одной чистой стороной), а второй комплект напечатать на трех листах с двумя чистыми сторонами. Во втором тестовом примере можно напечатать оба комплекта задач. Один из возможных ответов — напечатать первый комплект задач на двух листах с двумя чистыми сторонами (после этого останется 1 лист с двумя чистыми сторонами и 5 листов с одной чистой стороной), а второй комплект напечатать на одном листе с двумя чистыми сторонами и на пяти листах с одной чистой стороной. Таким образом, тренер использует все листы для печати. В третьем тестовом примере можно напечатать только один комплект задач (любой из трёх 11-страничных). Для печати 11-страничного комплекта задач будет израсходована вся бумага.
0
[ { "input": "2 3 5\n4 6", "output": "2" }, { "input": "2 3 5\n4 7", "output": "2" }, { "input": "6 3 5\n12 11 12 11 12 11", "output": "1" }, { "input": "1 4 3\n12", "output": "0" }, { "input": "10 1 17\n3 1 1 2 1 3 4 4 1 4", "output": "8" }, { "input": "3 6 3\n2 5 9", "output": "2" }, { "input": "7 26 8\n5 11 8 10 12 12 3", "output": "6" }, { "input": "11 5 85\n19 20 6 7 6 2 1 5 8 15 6", "output": "11" }, { "input": "7 7 2\n5 2 4 2 4 1 1", "output": "6" }, { "input": "8 5 10\n1 7 2 5 2 1 6 5", "output": "6" }, { "input": "10 27 34\n11 8 11 5 14 1 12 10 12 6", "output": "9" }, { "input": "4 2 2\n1 2 3 1", "output": "3" }, { "input": "5 1 45\n7 14 15 7 7", "output": "4" }, { "input": "9 7 50\n10 9 10 10 8 3 5 10 2", "output": "8" }, { "input": "5 0 0\n100 100 100 200 301", "output": "0" }, { "input": "5 1000000000 1000000000\n100 200 300 400 501", "output": "5" }, { "input": "1 1 0\n1", "output": "1" }, { "input": "1 1 0\n3", "output": "0" }, { "input": "1 0 0\n10000", "output": "0" }, { "input": "1 0 1\n1", "output": "1" }, { "input": "1 1 0\n2", "output": "1" }, { "input": "1 0 0\n1", "output": "0" }, { "input": "1 0 1\n2", "output": "0" }, { "input": "5 4 1\n1 2 1 1 1", "output": "5" }, { "input": "20 5 0\n9 4 1 2 1 1 4 4 9 1 9 3 8 1 8 9 4 1 7 4", "output": "5" }, { "input": "100 1019 35\n34 50 60 47 49 49 59 60 37 51 3 86 93 33 78 31 75 87 26 74 32 30 52 57 44 10 33 52 78 16 36 77 53 49 98 82 93 85 16 86 19 57 17 24 73 93 37 46 27 87 35 76 33 91 96 55 34 65 97 66 7 30 45 68 18 51 77 43 99 76 35 47 6 1 83 49 67 85 89 17 20 7 49 33 43 59 53 71 86 71 3 47 65 59 40 34 35 44 46 64", "output": "59" }, { "input": "2 1 0\n1 1", "output": "1" }, { "input": "2 3 0\n3 3", "output": "1" }, { "input": "1 1000000000 1000000000\n1", "output": "1" }, { "input": "3 2 0\n1 1 1", "output": "2" }, { "input": "2 2 0\n1 3", "output": "1" }, { "input": "1 3 0\n3", "output": "1" }, { "input": "2 2 0\n1 1", "output": "2" }, { "input": "5 1 0\n1 1 1 1 1", "output": "1" }, { "input": "4 2 0\n1 1 1 1", "output": "2" }, { "input": "1 2 0\n3", "output": "1" }, { "input": "4 1 0\n1 1 1 1", "output": "1" }, { "input": "2 2 0\n3 1", "output": "1" }, { "input": "6 1000000000 1000000000\n12 11 12 11 12 11", "output": "6" }, { "input": "2 3 0\n5 1", "output": "1" }, { "input": "1 3 0\n5", "output": "1" }, { "input": "2 1000000000 1000000000\n10000 1000", "output": "2" }, { "input": "5 1000000000 1000000000\n1 2 3 4 5", "output": "5" }, { "input": "2 1 0\n2 2", "output": "1" }, { "input": "2 1000000000 1000000000\n10000 10000", "output": "2" }, { "input": "2 3 0\n3 4", "output": "1" }, { "input": "3 4 0\n3 3 3", "output": "2" }, { "input": "4 3 1\n3 1 1 1", "output": "3" }, { "input": "1 2 0\n1", "output": "1" }, { "input": "5 2 0\n1 1 1 1 1", "output": "2" }, { "input": "2 1000000000 1000000000\n1 1", "output": "2" }, { "input": "3 1 0\n1 1 1", "output": "1" } ]
1,458,978,549
2,949
Python 3
WRONG_ANSWER
PRETESTS
4
61
4,608,000
n,x,y = map(int,input().split()) a = list(map(int,input().split())) a.sort() kol = x*2+y for i in range(n): if kol>=a[i]: kol -= a[i] if a[i]%2!=0: if y>0: y=-1 else: kol-=1 else: print(i) break else: print(i+1)
Title: none Time Limit: None seconds Memory Limit: None megabytes Problem Description: На тренировку по подготовке к соревнованиям по программированию пришли *n* команд. Тренер для каждой команды подобрал тренировку, комплект задач для *i*-й команды занимает *a**i* страниц. В распоряжении тренера есть *x* листов бумаги, у которых обе стороны чистые, и *y* листов, у которых только одна сторона чистая. При печати условия на листе первого типа можно напечатать две страницы из условий задач, а при печати на листе второго типа — только одну. Конечно, на листе нельзя печатать условия из двух разных комплектов задач. Обратите внимание, что при использовании листов, у которых обе стороны чистые, не обязательно печатать условие на обеих сторонах, одна из них может остаться чистой. Вам предстоит определить максимальное количество команд, которым тренер сможет напечатать комплекты задач целиком. Input Specification: В первой строке входных данных следуют три целых числа *n*, *x* и *y* (1<=≤<=*n*<=≤<=200<=000, 0<=≤<=*x*,<=*y*<=≤<=109) — количество команд, количество листов бумаги с двумя чистыми сторонами и количество листов бумаги с одной чистой стороной. Во второй строке входных данных следует последовательность из *n* целых чисел *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=10<=000), где *i*-е число равно количеству страниц в комплекте задач для *i*-й команды. Output Specification: Выведите единственное целое число — максимальное количество команд, которым тренер сможет напечатать комплекты задач целиком. Demo Input: ['2 3 5\n4 6\n', '2 3 5\n4 7\n', '6 3 5\n12 11 12 11 12 11\n'] Demo Output: ['2\n', '2\n', '1\n'] Note: В первом тестовом примере можно напечатать оба комплекта задач. Один из возможных ответов — напечатать весь первый комплект задач на листах с одной чистой стороной (после этого останется 3 листа с двумя чистыми сторонами и 1 лист с одной чистой стороной), а второй комплект напечатать на трех листах с двумя чистыми сторонами. Во втором тестовом примере можно напечатать оба комплекта задач. Один из возможных ответов — напечатать первый комплект задач на двух листах с двумя чистыми сторонами (после этого останется 1 лист с двумя чистыми сторонами и 5 листов с одной чистой стороной), а второй комплект напечатать на одном листе с двумя чистыми сторонами и на пяти листах с одной чистой стороной. Таким образом, тренер использует все листы для печати. В третьем тестовом примере можно напечатать только один комплект задач (любой из трёх 11-страничных). Для печати 11-страничного комплекта задач будет израсходована вся бумага.
```python n,x,y = map(int,input().split()) a = list(map(int,input().split())) a.sort() kol = x*2+y for i in range(n): if kol>=a[i]: kol -= a[i] if a[i]%2!=0: if y>0: y=-1 else: kol-=1 else: print(i) break else: print(i+1) ```
0
215
A
Bicycle Chain
PROGRAMMING
900
[ "brute force", "implementation" ]
null
null
Vasya's bicycle chain drive consists of two parts: *n* stars are attached to the pedal axle, *m* stars are attached to the rear wheel axle. The chain helps to rotate the rear wheel by transmitting the pedal rotation. We know that the *i*-th star on the pedal axle has *a**i* (0<=&lt;<=*a*1<=&lt;<=*a*2<=&lt;<=...<=&lt;<=*a**n*) teeth, and the *j*-th star on the rear wheel axle has *b**j* (0<=&lt;<=*b*1<=&lt;<=*b*2<=&lt;<=...<=&lt;<=*b**m*) teeth. Any pair (*i*,<=*j*) (1<=≤<=*i*<=≤<=*n*; 1<=≤<=*j*<=≤<=*m*) is called a gear and sets the indexes of stars to which the chain is currently attached. Gear (*i*,<=*j*) has a gear ratio, equal to the value . Since Vasya likes integers, he wants to find such gears (*i*,<=*j*), that their ratios are integers. On the other hand, Vasya likes fast driving, so among all "integer" gears (*i*,<=*j*) he wants to choose a gear with the maximum ratio. Help him to find the number of such gears. In the problem, fraction denotes division in real numbers, that is, no rounding is performed.
The first input line contains integer *n* (1<=≤<=*n*<=≤<=50) — the number of stars on the bicycle's pedal axle. The second line contains *n* integers *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=104) in the order of strict increasing. The third input line contains integer *m* (1<=≤<=*m*<=≤<=50) — the number of stars on the rear wheel axle. The fourth line contains *m* integers *b*1,<=*b*2,<=...,<=*b**m* (1<=≤<=*b**i*<=≤<=104) in the order of strict increasing. It is guaranteed that there exists at least one gear (*i*,<=*j*), that its gear ratio is an integer. The numbers on the lines are separated by spaces.
Print the number of "integer" gears with the maximum ratio among all "integer" gears.
[ "2\n4 5\n3\n12 13 15\n", "4\n1 2 3 4\n5\n10 11 12 13 14\n" ]
[ "2\n", "1\n" ]
In the first sample the maximum "integer" gear ratio equals 3. There are two gears that have such gear ratio. For one of them *a*<sub class="lower-index">1</sub> = 4, *b*<sub class="lower-index">1</sub> = 12, and for the other *a*<sub class="lower-index">2</sub> = 5, *b*<sub class="lower-index">3</sub> = 15.
500
[ { "input": "2\n4 5\n3\n12 13 15", "output": "2" }, { "input": "4\n1 2 3 4\n5\n10 11 12 13 14", "output": "1" }, { "input": "1\n1\n1\n1", "output": "1" }, { "input": "2\n1 2\n1\n1", "output": "1" }, { "input": "1\n1\n2\n1 2", "output": "1" }, { "input": "4\n3 7 11 13\n4\n51 119 187 221", "output": "4" }, { "input": "4\n2 3 4 5\n3\n1 2 3", "output": "2" }, { "input": "10\n6 12 13 20 48 53 74 92 96 97\n10\n1 21 32 36 47 54 69 75 95 97", "output": "1" }, { "input": "10\n5 9 10 14 15 17 19 22 24 26\n10\n2 11 17 19 21 22 24 25 27 28", "output": "1" }, { "input": "10\n24 53 56 126 354 432 442 740 795 856\n10\n273 438 494 619 689 711 894 947 954 958", "output": "1" }, { "input": "10\n3 4 6 7 8 10 14 16 19 20\n10\n3 4 5 7 8 10 15 16 18 20", "output": "1" }, { "input": "10\n1 6 8 14 15 17 25 27 34 39\n10\n1 8 16 17 19 22 32 39 44 50", "output": "1" }, { "input": "10\n5 21 22 23 25 32 35 36 38 39\n10\n3 7 8 9 18 21 23 24 36 38", "output": "4" }, { "input": "50\n5 8 13 16 19 20 21 22 24 27 28 29 30 32 33 34 35 43 45 48 50 51 54 55 58 59 60 61 62 65 70 71 72 76 78 79 80 81 83 84 85 87 89 91 92 94 97 98 99 100\n50\n2 3 5 6 7 10 15 16 17 20 23 28 29 30 31 34 36 37 40 42 45 46 48 54 55 56 58 59 61 62 69 70 71 72 75 76 78 82 84 85 86 87 88 89 90 91 92 97 99 100", "output": "1" }, { "input": "50\n3 5 6 8 9 11 13 19 21 23 24 32 34 35 42 50 51 52 56 58 59 69 70 72 73 75 76 77 78 80 83 88 90 95 96 100 101 102 108 109 113 119 124 135 138 141 142 143 145 150\n50\n5 8 10 11 18 19 23 30 35 43 51 53 55 58 63 68 69 71 77 78 79 82 83 86 88 89 91 92 93 94 96 102 103 105 109 110 113 114 116 123 124 126 127 132 133 135 136 137 142 149", "output": "1" }, { "input": "50\n6 16 24 25 27 33 36 40 51 60 62 65 71 72 75 77 85 87 91 93 98 102 103 106 117 118 120 121 122 123 125 131 134 136 143 148 155 157 160 161 164 166 170 178 184 187 188 192 194 197\n50\n5 9 17 23 27 34 40 44 47 59 62 70 81 82 87 88 89 90 98 101 102 110 113 114 115 116 119 122 124 128 130 137 138 140 144 150 152 155 159 164 166 169 171 175 185 186 187 189 190 193", "output": "1" }, { "input": "50\n14 22 23 31 32 35 48 63 76 79 88 97 101 102 103 104 106 113 114 115 116 126 136 138 145 152 155 156 162 170 172 173 179 180 182 203 208 210 212 222 226 229 231 232 235 237 245 246 247 248\n50\n2 5 6 16 28 44 45 46 54 55 56 63 72 80 87 93 94 96 97 100 101 103 132 135 140 160 164 165 167 168 173 180 182 185 186 192 194 198 199 202 203 211 213 216 217 227 232 233 236 245", "output": "1" }, { "input": "50\n14 19 33 35 38 41 51 54 69 70 71 73 76 80 84 94 102 104 105 106 107 113 121 128 131 168 180 181 187 191 195 201 205 207 210 216 220 238 249 251 263 271 272 275 281 283 285 286 291 294\n50\n2 3 5 20 21 35 38 40 43 48 49 52 55 64 73 77 82 97 109 113 119 121 125 132 137 139 145 146 149 180 182 197 203 229 234 241 244 251 264 271 274 281 284 285 287 291 292 293 294 298", "output": "1" }, { "input": "50\n2 4 5 16 18 19 22 23 25 26 34 44 48 54 67 79 80 84 92 110 116 133 138 154 163 171 174 202 205 218 228 229 234 245 247 249 250 263 270 272 274 275 277 283 289 310 312 334 339 342\n50\n1 5 17 18 25 37 46 47 48 59 67 75 80 83 84 107 115 122 137 141 159 162 175 180 184 204 221 224 240 243 247 248 249 258 259 260 264 266 269 271 274 293 294 306 329 330 334 335 342 350", "output": "1" }, { "input": "50\n6 9 11 21 28 39 42 56 60 63 81 88 91 95 105 110 117 125 149 165 174 176 185 189 193 196 205 231 233 268 278 279 281 286 289 292 298 303 305 306 334 342 350 353 361 371 372 375 376 378\n50\n6 17 20 43 45 52 58 59 82 83 88 102 111 118 121 131 145 173 190 191 200 216 224 225 232 235 243 256 260 271 290 291 321 322 323 329 331 333 334 341 343 348 351 354 356 360 366 379 387 388", "output": "1" }, { "input": "10\n17 239 443 467 661 1069 1823 2333 3767 4201\n20\n51 83 97 457 593 717 997 1329 1401 1459 1471 1983 2371 2539 3207 3251 3329 5469 6637 6999", "output": "8" }, { "input": "20\n179 359 401 467 521 601 919 941 1103 1279 1709 1913 1949 2003 2099 2143 2179 2213 2399 4673\n20\n151 181 191 251 421 967 1109 1181 1249 1447 1471 1553 1619 2327 2551 2791 3049 3727 6071 7813", "output": "3" }, { "input": "20\n79 113 151 709 809 983 1291 1399 1409 1429 2377 2659 2671 2897 3217 3511 3557 3797 3823 4363\n10\n19 101 659 797 1027 1963 2129 2971 3299 9217", "output": "3" }, { "input": "30\n19 47 109 179 307 331 389 401 461 509 547 569 617 853 883 1249 1361 1381 1511 1723 1741 1783 2459 2531 2621 3533 3821 4091 5557 6217\n20\n401 443 563 941 967 997 1535 1567 1655 1747 1787 1945 1999 2251 2305 2543 2735 4415 6245 7555", "output": "8" }, { "input": "30\n3 43 97 179 257 313 353 359 367 389 397 457 547 599 601 647 1013 1021 1063 1433 1481 1531 1669 3181 3373 3559 3769 4157 4549 5197\n50\n13 15 17 19 29 79 113 193 197 199 215 223 271 293 359 485 487 569 601 683 895 919 941 967 1283 1285 1289 1549 1565 1765 1795 1835 1907 1931 1945 1985 1993 2285 2731 2735 2995 3257 4049 4139 5105 5315 7165 7405 7655 8345", "output": "20" }, { "input": "50\n11 17 23 53 59 109 137 149 173 251 353 379 419 421 439 503 593 607 661 773 821 877 941 997 1061 1117 1153 1229 1289 1297 1321 1609 1747 2311 2389 2543 2693 3041 3083 3137 3181 3209 3331 3373 3617 3767 4201 4409 4931 6379\n50\n55 59 67 73 85 89 101 115 211 263 295 353 545 599 607 685 739 745 997 1031 1255 1493 1523 1667 1709 1895 1949 2161 2195 2965 3019 3035 3305 3361 3373 3673 3739 3865 3881 4231 4253 4385 4985 5305 5585 5765 6145 6445 8045 8735", "output": "23" }, { "input": "5\n33 78 146 3055 4268\n5\n2211 2584 5226 9402 9782", "output": "3" }, { "input": "5\n35 48 52 86 8001\n10\n332 3430 3554 4704 4860 5096 6215 7583 8228 8428", "output": "4" }, { "input": "10\n97 184 207 228 269 2084 4450 6396 7214 9457\n16\n338 1179 1284 1545 1570 2444 3167 3395 3397 5550 6440 7245 7804 7980 9415 9959", "output": "5" }, { "input": "30\n25 30 41 57 58 62 70 72 76 79 84 85 88 91 98 101 104 109 119 129 136 139 148 151 926 1372 3093 3936 5423 7350\n25\n1600 1920 2624 3648 3712 3968 4480 4608 4864 5056 5376 5440 5632 5824 6272 6464 6656 6934 6976 7616 8256 8704 8896 9472 9664", "output": "24" }, { "input": "5\n33 78 146 3055 4268\n5\n2211 2584 5226 9402 9782", "output": "3" }, { "input": "5\n35 48 52 86 8001\n10\n332 3430 3554 4704 4860 5096 6215 7583 8228 8428", "output": "4" }, { "input": "10\n97 184 207 228 269 2084 4450 6396 7214 9457\n16\n338 1179 1284 1545 1570 2444 3167 3395 3397 5550 6440 7245 7804 7980 9415 9959", "output": "5" }, { "input": "30\n25 30 41 57 58 62 70 72 76 79 84 85 88 91 98 101 104 109 119 129 136 139 148 151 926 1372 3093 3936 5423 7350\n25\n1600 1920 2624 3648 3712 3968 4480 4608 4864 5056 5376 5440 5632 5824 6272 6464 6656 6934 6976 7616 8256 8704 8896 9472 9664", "output": "24" }, { "input": "47\n66 262 357 457 513 530 538 540 592 691 707 979 1015 1242 1246 1667 1823 1886 1963 2133 2649 2679 2916 2949 3413 3523 3699 3958 4393 4922 5233 5306 5799 6036 6302 6629 7208 7282 7315 7822 7833 7927 8068 8150 8870 8962 9987\n39\n167 199 360 528 1515 1643 1986 1988 2154 2397 2856 3552 3656 3784 3980 4096 4104 4240 4320 4736 4951 5266 5656 5849 5850 6169 6517 6875 7244 7339 7689 7832 8120 8716 9503 9509 9933 9936 9968", "output": "12" }, { "input": "1\n94\n50\n423 446 485 1214 1468 1507 1853 1930 1999 2258 2271 2285 2425 2543 2715 2743 2992 3196 4074 4108 4448 4475 4652 5057 5250 5312 5356 5375 5731 5986 6298 6501 6521 7146 7255 7276 7332 7481 7998 8141 8413 8665 8908 9221 9336 9491 9504 9677 9693 9706", "output": "1" }, { "input": "50\n51 67 75 186 194 355 512 561 720 876 1077 1221 1503 1820 2153 2385 2568 2608 2937 2969 3271 3311 3481 4081 4093 4171 4255 4256 4829 5020 5192 5636 5817 6156 6712 6717 7153 7436 7608 7612 7866 7988 8264 8293 8867 9311 9879 9882 9889 9908\n1\n5394", "output": "1" }, { "input": "50\n26 367 495 585 675 789 855 1185 1312 1606 2037 2241 2587 2612 2628 2807 2873 2924 3774 4067 4376 4668 4902 5001 5082 5100 5104 5209 5345 5515 5661 5777 5902 5907 6155 6323 6675 6791 7503 8159 8207 8254 8740 8848 8855 8933 9069 9164 9171 9586\n5\n1557 6246 7545 8074 8284", "output": "1" }, { "input": "5\n25 58 91 110 2658\n50\n21 372 909 1172 1517 1554 1797 1802 1843 1977 2006 2025 2137 2225 2317 2507 2645 2754 2919 3024 3202 3212 3267 3852 4374 4487 4553 4668 4883 4911 4916 5016 5021 5068 5104 5162 5683 5856 6374 6871 7333 7531 8099 8135 8173 8215 8462 8776 9433 9790", "output": "4" }, { "input": "45\n37 48 56 59 69 70 79 83 85 86 99 114 131 134 135 145 156 250 1739 1947 2116 2315 2449 3104 3666 4008 4406 4723 4829 5345 5836 6262 6296 6870 7065 7110 7130 7510 7595 8092 8442 8574 9032 9091 9355\n50\n343 846 893 1110 1651 1837 2162 2331 2596 3012 3024 3131 3294 3394 3528 3717 3997 4125 4347 4410 4581 4977 5030 5070 5119 5229 5355 5413 5418 5474 5763 5940 6151 6161 6164 6237 6506 6519 6783 7182 7413 7534 8069 8253 8442 8505 9135 9308 9828 9902", "output": "17" }, { "input": "50\n17 20 22 28 36 38 46 47 48 50 52 57 58 62 63 69 70 74 75 78 79 81 82 86 87 90 93 95 103 202 292 442 1756 1769 2208 2311 2799 2957 3483 4280 4324 4932 5109 5204 6225 6354 6561 7136 8754 9670\n40\n68 214 957 1649 1940 2078 2134 2716 3492 3686 4462 4559 4656 4756 4850 5044 5490 5529 5592 5626 6014 6111 6693 6790 7178 7275 7566 7663 7702 7857 7954 8342 8511 8730 8957 9021 9215 9377 9445 9991", "output": "28" }, { "input": "39\n10 13 21 25 36 38 47 48 58 64 68 69 73 79 86 972 2012 2215 2267 2503 3717 3945 4197 4800 5266 6169 6612 6824 7023 7322 7582 7766 8381 8626 8879 9079 9088 9838 9968\n50\n432 877 970 1152 1202 1223 1261 1435 1454 1578 1843 1907 2003 2037 2183 2195 2215 2425 3065 3492 3615 3637 3686 3946 4189 4415 4559 4656 4665 4707 4886 4887 5626 5703 5955 6208 6521 6581 6596 6693 6985 7013 7081 7343 7663 8332 8342 8637 9207 9862", "output": "15" }, { "input": "50\n7 144 269 339 395 505 625 688 709 950 1102 1152 1350 1381 1641 1830 1977 1999 2093 2180 2718 3308 3574 4168 4232 4259 4393 4689 4982 5154 5476 5581 5635 5721 6159 6302 6741 7010 7152 7315 7417 7482 8116 8239 8640 9347 9395 9614 9661 9822\n20\n84 162 292 1728 1866 2088 3228 3470 4068 5318 5470 6060 6380 6929 7500 8256 8399 8467 8508 9691", "output": "8" }, { "input": "50\n159 880 1070 1139 1358 1608 1691 1841 2073 2171 2213 2597 2692 2759 2879 2931 3173 3217 3441 4201 4878 5106 5129 5253 5395 5647 5968 6019 6130 6276 6286 6330 6409 6728 7488 7713 7765 7828 7899 8064 8264 8457 8483 8685 8900 8946 8965 9133 9187 9638\n45\n57 159 1070 1139 1391 1608 1691 1841 2171 2213 2692 2759 2931 3173 3217 3441 4201 4878 5106 5129 5253 5647 5968 6130 6276 6286 6409 7488 7694 7713 7765 7828 7899 8003 8064 8081 8244 8264 8685 8900 8946 8965 9133 9638 9673", "output": "38" }, { "input": "3\n3 4 5\n3\n6 20 25", "output": "2" }, { "input": "4\n2 3 5 8\n4\n2 6 8 10", "output": "1" }, { "input": "4\n3 5 7 11\n4\n3 5 7 22", "output": "1" }, { "input": "2\n2 3\n3\n20 30 50", "output": "1" }, { "input": "3\n1 2 3\n4\n2 4 6 49", "output": "1" }, { "input": "2\n4 5\n3\n12 15 20", "output": "1" }, { "input": "3\n2 5 7\n3\n4 5 7", "output": "1" }, { "input": "3\n3 5 8\n3\n6 8 10", "output": "2" }, { "input": "2\n2 3\n4\n4 6 9 33", "output": "1" }, { "input": "2\n2 3\n4\n4 6 21 40", "output": "1" }, { "input": "3\n4 9 10\n3\n8 9 10", "output": "1" }, { "input": "5\n1 5 6 9 51\n5\n5 12 18 27 10000", "output": "1" }, { "input": "13\n1 2 3 4 5 6 7 8 9 10 11 12 13\n1\n14", "output": "1" } ]
1,603,714,090
2,147,483,647
PyPy 3
WRONG_ANSWER
TESTS
0
280
0
n = int(input()) a = [int(x) for x in input().split()] m = int(input()) b = [int(x) for x in input().split()] ans = [] for i in range(n): for j in range(m): if b[j] % a[i]: ans.append(b[j] / a[i]) print(ans.count(max(ans)))
Title: Bicycle Chain Time Limit: None seconds Memory Limit: None megabytes Problem Description: Vasya's bicycle chain drive consists of two parts: *n* stars are attached to the pedal axle, *m* stars are attached to the rear wheel axle. The chain helps to rotate the rear wheel by transmitting the pedal rotation. We know that the *i*-th star on the pedal axle has *a**i* (0<=&lt;<=*a*1<=&lt;<=*a*2<=&lt;<=...<=&lt;<=*a**n*) teeth, and the *j*-th star on the rear wheel axle has *b**j* (0<=&lt;<=*b*1<=&lt;<=*b*2<=&lt;<=...<=&lt;<=*b**m*) teeth. Any pair (*i*,<=*j*) (1<=≤<=*i*<=≤<=*n*; 1<=≤<=*j*<=≤<=*m*) is called a gear and sets the indexes of stars to which the chain is currently attached. Gear (*i*,<=*j*) has a gear ratio, equal to the value . Since Vasya likes integers, he wants to find such gears (*i*,<=*j*), that their ratios are integers. On the other hand, Vasya likes fast driving, so among all "integer" gears (*i*,<=*j*) he wants to choose a gear with the maximum ratio. Help him to find the number of such gears. In the problem, fraction denotes division in real numbers, that is, no rounding is performed. Input Specification: The first input line contains integer *n* (1<=≤<=*n*<=≤<=50) — the number of stars on the bicycle's pedal axle. The second line contains *n* integers *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=104) in the order of strict increasing. The third input line contains integer *m* (1<=≤<=*m*<=≤<=50) — the number of stars on the rear wheel axle. The fourth line contains *m* integers *b*1,<=*b*2,<=...,<=*b**m* (1<=≤<=*b**i*<=≤<=104) in the order of strict increasing. It is guaranteed that there exists at least one gear (*i*,<=*j*), that its gear ratio is an integer. The numbers on the lines are separated by spaces. Output Specification: Print the number of "integer" gears with the maximum ratio among all "integer" gears. Demo Input: ['2\n4 5\n3\n12 13 15\n', '4\n1 2 3 4\n5\n10 11 12 13 14\n'] Demo Output: ['2\n', '1\n'] Note: In the first sample the maximum "integer" gear ratio equals 3. There are two gears that have such gear ratio. For one of them *a*<sub class="lower-index">1</sub> = 4, *b*<sub class="lower-index">1</sub> = 12, and for the other *a*<sub class="lower-index">2</sub> = 5, *b*<sub class="lower-index">3</sub> = 15.
```python n = int(input()) a = [int(x) for x in input().split()] m = int(input()) b = [int(x) for x in input().split()] ans = [] for i in range(n): for j in range(m): if b[j] % a[i]: ans.append(b[j] / a[i]) print(ans.count(max(ans))) ```
0
135
A
Replacement
PROGRAMMING
1,300
[ "greedy", "implementation", "sortings" ]
null
null
Little Petya very much likes arrays consisting of *n* integers, where each of them is in the range from 1 to 109, inclusive. Recently he has received one such array as a gift from his mother. Petya didn't like it at once. He decided to choose exactly one element from the array and replace it with another integer that also lies in the range from 1 to 109, inclusive. It is not allowed to replace a number with itself or to change no number at all. After the replacement Petya sorted the array by the numbers' non-decreasing. Now he wants to know for each position: what minimum number could occupy it after the replacement and the sorting.
The first line contains a single integer *n* (1<=≤<=*n*<=≤<=105), which represents how many numbers the array has. The next line contains *n* space-separated integers — the array's description. All elements of the array lie in the range from 1 to 109, inclusive.
Print *n* space-separated integers — the minimum possible values of each array element after one replacement and the sorting are performed.
[ "5\n1 2 3 4 5\n", "5\n2 3 4 5 6\n", "3\n2 2 2\n" ]
[ "1 1 2 3 4\n", "1 2 3 4 5\n", "1 2 2\n" ]
none
500
[ { "input": "5\n1 2 3 4 5", "output": "1 1 2 3 4" }, { "input": "5\n2 3 4 5 6", "output": "1 2 3 4 5" }, { "input": "3\n2 2 2", "output": "1 2 2" }, { "input": "4\n1 1 2 3", "output": "1 1 1 2" }, { "input": "3\n1 1 1", "output": "1 1 2" }, { "input": "10\n5 6 1 2 3 1 3 45 7 1000000000", "output": "1 1 1 2 3 3 5 6 7 45" }, { "input": "4\n1000000000 234765 3485636 385634876", "output": "1 234765 3485636 385634876" }, { "input": "1\n1", "output": "2" }, { "input": "25\n1 1 1 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 2 2 2 1 2", "output": "1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2" }, { "input": "2\n2 1", "output": "1 1" }, { "input": "3\n1 2 1", "output": "1 1 1" }, { "input": "1\n2", "output": "1" }, { "input": "1\n4", "output": "1" }, { "input": "3\n1 1 2", "output": "1 1 1" }, { "input": "2\n1 2", "output": "1 1" }, { "input": "2\n1 3", "output": "1 1" }, { "input": "2\n1 1", "output": "1 2" }, { "input": "2\n5 5", "output": "1 5" }, { "input": "1\n5", "output": "1" } ]
1,621,881,151
2,147,483,647
Python 3
OK
TESTS
97
342
8,806,400
input() p = list(map(int, input().split())) x = max(p) if p[p.index(x)] == 1: p[p.index(x)] = 2 else: p[p.index(x)] = 1 p.sort() print(' '.join(str(i) for i in p))
Title: Replacement Time Limit: None seconds Memory Limit: None megabytes Problem Description: Little Petya very much likes arrays consisting of *n* integers, where each of them is in the range from 1 to 109, inclusive. Recently he has received one such array as a gift from his mother. Petya didn't like it at once. He decided to choose exactly one element from the array and replace it with another integer that also lies in the range from 1 to 109, inclusive. It is not allowed to replace a number with itself or to change no number at all. After the replacement Petya sorted the array by the numbers' non-decreasing. Now he wants to know for each position: what minimum number could occupy it after the replacement and the sorting. Input Specification: The first line contains a single integer *n* (1<=≤<=*n*<=≤<=105), which represents how many numbers the array has. The next line contains *n* space-separated integers — the array's description. All elements of the array lie in the range from 1 to 109, inclusive. Output Specification: Print *n* space-separated integers — the minimum possible values of each array element after one replacement and the sorting are performed. Demo Input: ['5\n1 2 3 4 5\n', '5\n2 3 4 5 6\n', '3\n2 2 2\n'] Demo Output: ['1 1 2 3 4\n', '1 2 3 4 5\n', '1 2 2\n'] Note: none
```python input() p = list(map(int, input().split())) x = max(p) if p[p.index(x)] == 1: p[p.index(x)] = 2 else: p[p.index(x)] = 1 p.sort() print(' '.join(str(i) for i in p)) ```
3
66
B
Petya and Countryside
PROGRAMMING
1,100
[ "brute force", "implementation" ]
B. Petya and Countryside
2
256
Little Petya often travels to his grandmother in the countryside. The grandmother has a large garden, which can be represented as a rectangle 1<=×<=*n* in size, when viewed from above. This rectangle is divided into *n* equal square sections. The garden is very unusual as each of the square sections possesses its own fixed height and due to the newest irrigation system we can create artificial rain above each section. Creating artificial rain is an expensive operation. That's why we limit ourselves to creating the artificial rain only above one section. At that, the water from each watered section will flow into its neighbouring sections if their height does not exceed the height of the section. That is, for example, the garden can be represented by a 1<=×<=5 rectangle, where the section heights are equal to 4, 2, 3, 3, 2. Then if we create an artificial rain over any of the sections with the height of 3, the water will flow over all the sections, except the ones with the height of 4. See the illustration of this example at the picture: As Petya is keen on programming, he decided to find such a section that if we create artificial rain above it, the number of watered sections will be maximal. Help him.
The first line contains a positive integer *n* (1<=≤<=*n*<=≤<=1000). The second line contains *n* positive integers which are the height of the sections. All the numbers are no less than 1 and not more than 1000.
Print a single number, the maximal number of watered sections if we create artificial rain above exactly one section.
[ "1\n2\n", "5\n1 2 1 2 1\n", "8\n1 2 1 1 1 3 3 4\n" ]
[ "1\n", "3\n", "6\n" ]
none
1,000
[ { "input": "1\n2", "output": "1" }, { "input": "5\n1 2 1 2 1", "output": "3" }, { "input": "8\n1 2 1 1 1 3 3 4", "output": "6" }, { "input": "10\n1 2 3 4 5 6 7 8 9 10", "output": "10" }, { "input": "10\n10 9 8 7 6 5 4 3 2 1", "output": "10" }, { "input": "2\n100 100", "output": "2" }, { "input": "3\n100 100 100", "output": "3" }, { "input": "11\n1 2 3 4 5 6 5 4 3 2 1", "output": "11" }, { "input": "100\n1 2 3 4 5 6 7 8 9 10 11 100 88 87 86 85 84 83 82 81 80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 1 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1", "output": "61" }, { "input": "100\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 1 82 83 84 85 86 87 88 89 90 91 92 93 94 100 5 4 3 2 1", "output": "81" }, { "input": "100\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 1 86 87 88 89 90 91 92 93 100 6 5 4 3 2 1", "output": "85" }, { "input": "100\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 1 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 100 7 6 5 4 3 2 1", "output": "61" }, { "input": "100\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 100 8 7 6 1 4 3 2 1", "output": "96" }, { "input": "100\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 100 10 9 8 7 6 5 4 3 2 1", "output": "100" }, { "input": "100\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 1 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 100 11 10 9 8 7 6 5 4 3 2 1", "output": "55" }, { "input": "100\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 1 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 100 12 11 10 9 8 7 6 5 4 3 2 1", "output": "59" }, { "input": "100\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 1 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 100 13 12 11 10 9 8 7 6 5 4 3 2 1", "output": "86" }, { "input": "100\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 1 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 100 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1", "output": "83" }, { "input": "100\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 100 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 1 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1", "output": "74" }, { "input": "100\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 100 9 8 7 6 5 4 3 2 1", "output": "100" }, { "input": "100\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 100 84 83 82 81 80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 1 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1", "output": "52" }, { "input": "100\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 100 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 1 2 1", "output": "98" }, { "input": "10\n1 4 4 4 4 4 1 2 4 3", "output": "7" } ]
1,616,961,307
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
7
124
307,200
import sys import math def fn(n,a): m=0 k1=0 k2=0 for i in range(n): c=0 for j in range(i+1,n): if a[k1]>=a[j]: c=c+1 k1=j else: break k2=i for j1 in range(i,-1,-1): if a[k2]>=a[j1]: c=c+1 k2=j1 else: break if c>m: m=c return m if __name__ == '__main__': input = sys.stdin.read() data = list(map(int, input.split())) n = (data[0]) h = data[1:] print(fn(n,h))
Title: Petya and Countryside Time Limit: 2 seconds Memory Limit: 256 megabytes Problem Description: Little Petya often travels to his grandmother in the countryside. The grandmother has a large garden, which can be represented as a rectangle 1<=×<=*n* in size, when viewed from above. This rectangle is divided into *n* equal square sections. The garden is very unusual as each of the square sections possesses its own fixed height and due to the newest irrigation system we can create artificial rain above each section. Creating artificial rain is an expensive operation. That's why we limit ourselves to creating the artificial rain only above one section. At that, the water from each watered section will flow into its neighbouring sections if their height does not exceed the height of the section. That is, for example, the garden can be represented by a 1<=×<=5 rectangle, where the section heights are equal to 4, 2, 3, 3, 2. Then if we create an artificial rain over any of the sections with the height of 3, the water will flow over all the sections, except the ones with the height of 4. See the illustration of this example at the picture: As Petya is keen on programming, he decided to find such a section that if we create artificial rain above it, the number of watered sections will be maximal. Help him. Input Specification: The first line contains a positive integer *n* (1<=≤<=*n*<=≤<=1000). The second line contains *n* positive integers which are the height of the sections. All the numbers are no less than 1 and not more than 1000. Output Specification: Print a single number, the maximal number of watered sections if we create artificial rain above exactly one section. Demo Input: ['1\n2\n', '5\n1 2 1 2 1\n', '8\n1 2 1 1 1 3 3 4\n'] Demo Output: ['1\n', '3\n', '6\n'] Note: none
```python import sys import math def fn(n,a): m=0 k1=0 k2=0 for i in range(n): c=0 for j in range(i+1,n): if a[k1]>=a[j]: c=c+1 k1=j else: break k2=i for j1 in range(i,-1,-1): if a[k2]>=a[j1]: c=c+1 k2=j1 else: break if c>m: m=c return m if __name__ == '__main__': input = sys.stdin.read() data = list(map(int, input.split())) n = (data[0]) h = data[1:] print(fn(n,h)) ```
0
740
B
Alyona and flowers
PROGRAMMING
1,200
[ "constructive algorithms" ]
null
null
Little Alyona is celebrating Happy Birthday! Her mother has an array of *n* flowers. Each flower has some mood, the mood of *i*-th flower is *a**i*. The mood can be positive, zero or negative. Let's define a subarray as a segment of consecutive flowers. The mother suggested some set of subarrays. Alyona wants to choose several of the subarrays suggested by her mother. After that, each of the flowers will add to the girl's happiness its mood multiplied by the number of chosen subarrays the flower is in. For example, consider the case when the mother has 5 flowers, and their moods are equal to 1,<=<=-<=2,<=1,<=3,<=<=-<=4. Suppose the mother suggested subarrays (1,<=<=-<=2), (3,<=<=-<=4), (1,<=3), (1,<=<=-<=2,<=1,<=3). Then if the girl chooses the third and the fourth subarrays then: - the first flower adds 1·1<==<=1 to the girl's happiness, because he is in one of chosen subarrays, - the second flower adds (<=-<=2)·1<==<=<=-<=2, because he is in one of chosen subarrays, - the third flower adds 1·2<==<=2, because he is in two of chosen subarrays, - the fourth flower adds 3·2<==<=6, because he is in two of chosen subarrays, - the fifth flower adds (<=-<=4)·0<==<=0, because he is in no chosen subarrays. Thus, in total 1<=+<=(<=-<=2)<=+<=2<=+<=6<=+<=0<==<=7 is added to the girl's happiness. Alyona wants to choose such subarrays from those suggested by the mother that the value added to her happiness would be as large as possible. Help her do this! Alyona can choose any number of the subarrays, even 0 or all suggested by her mother.
The first line contains two integers *n* and *m* (1<=≤<=*n*,<=*m*<=≤<=100) — the number of flowers and the number of subarrays suggested by the mother. The second line contains the flowers moods — *n* integers *a*1,<=*a*2,<=...,<=*a**n* (<=-<=100<=≤<=*a**i*<=≤<=100). The next *m* lines contain the description of the subarrays suggested by the mother. The *i*-th of these lines contain two integers *l**i* and *r**i* (1<=≤<=*l**i*<=≤<=*r**i*<=≤<=*n*) denoting the subarray *a*[*l**i*],<=*a*[*l**i*<=+<=1],<=...,<=*a*[*r**i*]. Each subarray can encounter more than once.
Print single integer — the maximum possible value added to the Alyona's happiness.
[ "5 4\n1 -2 1 3 -4\n1 2\n4 5\n3 4\n1 4\n", "4 3\n1 2 3 4\n1 3\n2 4\n1 1\n", "2 2\n-1 -2\n1 1\n1 2\n" ]
[ "7\n", "16\n", "0\n" ]
The first example is the situation described in the statements. In the second example Alyona should choose all subarrays. The third example has answer 0 because Alyona can choose none of the subarrays.
1,000
[ { "input": "5 4\n1 -2 1 3 -4\n1 2\n4 5\n3 4\n1 4", "output": "7" }, { "input": "4 3\n1 2 3 4\n1 3\n2 4\n1 1", "output": "16" }, { "input": "2 2\n-1 -2\n1 1\n1 2", "output": "0" }, { "input": "5 6\n1 1 1 -1 0\n2 4\n1 3\n4 5\n1 5\n1 4\n4 5", "output": "8" }, { "input": "8 3\n5 -4 -2 5 3 -4 -2 6\n3 8\n4 6\n2 3", "output": "10" }, { "input": "10 10\n0 0 0 0 0 0 0 0 0 0\n5 9\n1 9\n5 7\n3 8\n1 6\n1 9\n1 6\n6 9\n1 10\n3 8", "output": "0" }, { "input": "3 6\n0 0 0\n1 1\n1 1\n1 3\n3 3\n2 3\n1 2", "output": "0" }, { "input": "3 3\n1 -1 3\n1 2\n2 3\n1 3", "output": "5" }, { "input": "6 8\n0 6 -5 8 -3 -2\n6 6\n2 3\n5 6\n4 6\n3 4\n2 5\n3 3\n5 6", "output": "13" }, { "input": "10 4\n6 5 5 -1 0 5 0 -3 5 -4\n3 6\n4 9\n1 6\n1 4", "output": "50" }, { "input": "9 1\n-1 -1 -1 -1 2 -1 2 0 0\n2 5", "output": "0" }, { "input": "3 8\n3 4 4\n1 2\n1 3\n2 3\n1 2\n2 2\n1 1\n2 3\n1 3", "output": "59" }, { "input": "3 8\n6 7 -1\n1 1\n1 3\n2 2\n1 3\n1 3\n1 1\n2 3\n2 3", "output": "67" }, { "input": "53 7\n-43 57 92 97 85 -29 28 -8 -37 -47 51 -53 -95 -50 -39 -87 43 36 60 -95 93 8 67 -22 -78 -46 99 93 27 -72 -84 77 96 -47 1 -12 21 -98 -34 -88 57 -43 5 -15 20 -66 61 -29 30 -85 52 53 82\n15 26\n34 43\n37 41\n22 34\n19 43\n2 15\n13 35", "output": "170" }, { "input": "20 42\n61 86 5 -87 -33 51 -79 17 -3 65 -42 74 -94 40 -35 22 58 81 -75 5\n3 6\n12 13\n3 16\n3 16\n5 7\n5 16\n2 15\n6 18\n4 18\n10 17\n14 16\n4 15\n4 11\n13 20\n5 6\n5 15\n16 17\n3 14\n9 10\n5 19\n5 14\n2 4\n17 20\n10 11\n5 18\n10 11\n1 14\n1 6\n1 10\n8 16\n11 14\n12 20\n11 13\n4 5\n2 13\n1 5\n11 15\n1 18\n3 8\n8 20\n1 4\n10 13", "output": "1502" }, { "input": "64 19\n-47 13 19 51 -25 72 38 32 54 7 -49 -50 -59 73 45 -87 -15 -72 -32 -10 -7 47 -34 35 48 -73 79 25 -80 -34 4 77 60 30 61 -25 23 17 -73 -73 69 29 -50 -55 53 15 -33 7 -46 -5 85 -86 77 -51 87 -69 -64 -24 -64 29 -20 -58 11 -26\n6 53\n13 28\n15 47\n20 52\n12 22\n6 49\n31 54\n2 39\n32 49\n27 64\n22 63\n33 48\n49 58\n39 47\n6 29\n21 44\n24 59\n20 24\n39 54", "output": "804" }, { "input": "1 10\n-46\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1", "output": "0" }, { "input": "10 7\n44 18 9 -22 -23 7 -25 -2 15 35\n6 8\n6 7\n3 3\n2 6\n9 10\n2 2\n1 5", "output": "103" }, { "input": "4 3\n10 -2 68 35\n4 4\n1 1\n1 3", "output": "121" }, { "input": "3 6\n27 -31 -81\n2 3\n2 3\n1 1\n1 2\n1 2\n2 2", "output": "27" }, { "input": "7 3\n-24 -12 16 -43 -30 31 16\n3 6\n3 4\n1 7", "output": "0" }, { "input": "10 7\n-33 -24 -86 -20 5 -91 38 -12 -90 -67\n7 8\n7 10\n4 7\n1 3\n6 10\n6 6\n3 5", "output": "26" }, { "input": "4 4\n95 35 96 -27\n3 4\n3 3\n4 4\n3 3", "output": "261" }, { "input": "7 7\n-33 26 -25 44 -20 -50 33\n4 6\n4 4\n3 7\n5 7\n1 4\n2 5\n4 6", "output": "81" }, { "input": "5 3\n-35 -39 93 59 -4\n2 2\n2 3\n2 5", "output": "163" }, { "input": "3 7\n0 0 0\n1 2\n1 2\n2 3\n3 3\n1 3\n1 2\n2 3", "output": "0" }, { "input": "8 2\n17 32 30 -6 -39 -15 33 74\n6 6\n8 8", "output": "74" }, { "input": "8 1\n-20 -15 21 -21 1 -12 -7 9\n4 7", "output": "0" }, { "input": "7 9\n-23 -4 -44 -47 -35 47 25\n1 6\n3 5\n4 7\n6 7\n2 4\n2 3\n2 7\n1 2\n5 5", "output": "72" }, { "input": "8 8\n0 6 -25 -15 29 -24 31 23\n2 8\n5 5\n3 3\n2 8\n6 6\n3 6\n3 4\n2 4", "output": "79" }, { "input": "4 3\n-39 -63 9 -16\n1 4\n1 3\n2 4", "output": "0" }, { "input": "9 1\n-3 -13 -13 -19 -4 -11 8 -11 -3\n9 9", "output": "0" }, { "input": "9 6\n25 18 -62 0 33 62 -23 4 -15\n7 9\n2 3\n1 4\n2 6\n1 6\n2 3", "output": "127" }, { "input": "4 5\n-12 39 8 -12\n1 4\n3 4\n1 3\n1 3\n2 3", "output": "140" }, { "input": "3 9\n-9 7 3\n1 2\n1 1\n1 3\n1 2\n2 3\n1 3\n2 2\n1 2\n3 3", "output": "22" }, { "input": "10 7\n0 4 3 3 -2 -2 -4 -2 -3 -2\n5 6\n1 10\n2 10\n7 10\n1 1\n6 7\n3 4", "output": "6" }, { "input": "86 30\n16 -12 11 16 8 14 7 -29 18 30 -32 -10 20 29 -14 -21 23 -19 -15 17 -2 25 -22 2 26 15 -7 -12 -4 -28 21 -4 -2 22 28 -32 9 -20 23 38 -21 21 37 -13 -30 25 31 6 18 29 29 29 27 38 -15 -32 32 -7 -8 -33 -11 24 23 -19 -36 -36 -18 9 -1 32 -34 -26 1 -1 -16 -14 17 -17 15 -24 38 5 -27 -12 8 -38\n60 66\n29 48\n32 51\n38 77\n17 79\n23 74\n39 50\n14 29\n26 76\n9 76\n2 67\n23 48\n17 68\n33 75\n59 78\n46 78\n9 69\n16 83\n18 21\n17 34\n24 61\n15 79\n4 31\n62 63\n46 76\n79 82\n25 39\n5 81\n19 77\n26 71", "output": "3076" }, { "input": "33 17\n11 6 -19 14 23 -23 21 15 29 19 13 -18 -19 20 16 -10 26 -22 3 17 13 -10 19 22 -5 21 12 6 28 -13 -27 25 6\n4 17\n12 16\n9 17\n25 30\n31 32\n4 28\n11 24\n16 19\n3 27\n7 17\n1 16\n15 28\n30 33\n9 31\n14 30\n13 23\n27 27", "output": "1366" }, { "input": "16 44\n32 23 -27 -2 -10 -42 32 -14 -13 4 9 -2 19 35 16 22\n6 12\n8 11\n13 15\n12 12\n3 10\n9 13\n7 15\n2 11\n1 13\n5 6\n9 14\n3 16\n10 13\n3 15\n6 10\n14 16\n4 5\n7 10\n5 14\n1 16\n2 5\n1 6\n9 10\n4 7\n4 12\n2 5\n7 10\n7 9\n2 8\n9 10\n4 10\n7 12\n10 11\n6 6\n15 15\n8 12\n9 10\n3 3\n4 15\n10 12\n7 16\n4 14\n14 16\n5 6", "output": "777" }, { "input": "63 24\n-23 -46 0 33 24 13 39 -6 -4 49 19 -18 -11 -38 0 -3 -33 -17 -4 -44 -22 -12 -16 42 16 -10 7 37 -6 16 -41 -18 -20 51 -49 28 -14 -22 -37 -7 -50 31 -41 -47 18 -8 -39 -29 35 -32 14 -29 44 -29 -19 -25 -47 -8 16 11 20 12 38\n21 61\n35 61\n29 61\n21 34\n12 48\n32 33\n9 27\n4 42\n4 60\n37 61\n19 44\n46 60\n51 53\n31 34\n23 32\n5 29\n43 59\n7 31\n29 48\n15 50\n19 51\n7 28\n17 41\n1 62", "output": "82" }, { "input": "6 51\n45 -33 -17 -48 2 2\n2 5\n1 1\n1 3\n5 5\n4 6\n1 2\n2 3\n3 4\n1 6\n4 6\n3 5\n1 5\n2 2\n2 6\n4 6\n1 5\n1 5\n1 5\n1 6\n6 6\n3 5\n6 6\n1 6\n3 4\n3 3\n2 4\n3 3\n1 4\n2 4\n5 6\n4 5\n2 4\n1 5\n1 2\n4 5\n1 5\n5 6\n2 2\n3 4\n1 3\n1 2\n2 5\n3 6\n4 6\n3 4\n2 4\n1 4\n1 1\n4 6\n3 5\n1 4", "output": "140" }, { "input": "3 5\n2 -1 3\n2 3\n2 3\n2 3\n2 3\n1 2", "output": "9" }, { "input": "4 30\n1 1 1 1\n1 4\n1 4\n1 4\n1 4\n1 4\n1 4\n1 4\n1 4\n1 4\n1 4\n1 4\n1 4\n1 4\n1 4\n1 4\n1 4\n1 4\n1 4\n1 4\n1 4\n1 4\n1 4\n1 4\n1 4\n1 4\n1 4\n1 4\n1 4\n1 4\n1 4", "output": "120" } ]
1,480,035,035
2,147,483,647
Python 3
OK
TESTS
53
92
0
import sys def scan(): return input().rstrip().split() def scan_numeric(): return [(int(x) if float(x).is_integer() else float(x)) for x in scan()] N, M = scan_numeric() flowers = scan_numeric() subs = [] for i in range(M): subs.append(scan_numeric()) dp = [0] for i in range(N): dp.append(flowers[i] + dp[i]) happiness = 0 for i in range(M): l, r = subs[i] add = dp[r] - dp[l-1] if add > 0: happiness += add print(happiness)
Title: Alyona and flowers Time Limit: None seconds Memory Limit: None megabytes Problem Description: Little Alyona is celebrating Happy Birthday! Her mother has an array of *n* flowers. Each flower has some mood, the mood of *i*-th flower is *a**i*. The mood can be positive, zero or negative. Let's define a subarray as a segment of consecutive flowers. The mother suggested some set of subarrays. Alyona wants to choose several of the subarrays suggested by her mother. After that, each of the flowers will add to the girl's happiness its mood multiplied by the number of chosen subarrays the flower is in. For example, consider the case when the mother has 5 flowers, and their moods are equal to 1,<=<=-<=2,<=1,<=3,<=<=-<=4. Suppose the mother suggested subarrays (1,<=<=-<=2), (3,<=<=-<=4), (1,<=3), (1,<=<=-<=2,<=1,<=3). Then if the girl chooses the third and the fourth subarrays then: - the first flower adds 1·1<==<=1 to the girl's happiness, because he is in one of chosen subarrays, - the second flower adds (<=-<=2)·1<==<=<=-<=2, because he is in one of chosen subarrays, - the third flower adds 1·2<==<=2, because he is in two of chosen subarrays, - the fourth flower adds 3·2<==<=6, because he is in two of chosen subarrays, - the fifth flower adds (<=-<=4)·0<==<=0, because he is in no chosen subarrays. Thus, in total 1<=+<=(<=-<=2)<=+<=2<=+<=6<=+<=0<==<=7 is added to the girl's happiness. Alyona wants to choose such subarrays from those suggested by the mother that the value added to her happiness would be as large as possible. Help her do this! Alyona can choose any number of the subarrays, even 0 or all suggested by her mother. Input Specification: The first line contains two integers *n* and *m* (1<=≤<=*n*,<=*m*<=≤<=100) — the number of flowers and the number of subarrays suggested by the mother. The second line contains the flowers moods — *n* integers *a*1,<=*a*2,<=...,<=*a**n* (<=-<=100<=≤<=*a**i*<=≤<=100). The next *m* lines contain the description of the subarrays suggested by the mother. The *i*-th of these lines contain two integers *l**i* and *r**i* (1<=≤<=*l**i*<=≤<=*r**i*<=≤<=*n*) denoting the subarray *a*[*l**i*],<=*a*[*l**i*<=+<=1],<=...,<=*a*[*r**i*]. Each subarray can encounter more than once. Output Specification: Print single integer — the maximum possible value added to the Alyona's happiness. Demo Input: ['5 4\n1 -2 1 3 -4\n1 2\n4 5\n3 4\n1 4\n', '4 3\n1 2 3 4\n1 3\n2 4\n1 1\n', '2 2\n-1 -2\n1 1\n1 2\n'] Demo Output: ['7\n', '16\n', '0\n'] Note: The first example is the situation described in the statements. In the second example Alyona should choose all subarrays. The third example has answer 0 because Alyona can choose none of the subarrays.
```python import sys def scan(): return input().rstrip().split() def scan_numeric(): return [(int(x) if float(x).is_integer() else float(x)) for x in scan()] N, M = scan_numeric() flowers = scan_numeric() subs = [] for i in range(M): subs.append(scan_numeric()) dp = [0] for i in range(N): dp.append(flowers[i] + dp[i]) happiness = 0 for i in range(M): l, r = subs[i] add = dp[r] - dp[l-1] if add > 0: happiness += add print(happiness) ```
3
892
B
Wrath
PROGRAMMING
1,200
[ "greedy", "implementation", "two pointers" ]
null
null
Hands that shed innocent blood! There are *n* guilty people in a line, the *i*-th of them holds a claw with length *L**i*. The bell rings and every person kills some of people in front of him. All people kill others at the same time. Namely, the *i*-th person kills the *j*-th person if and only if *j*<=&lt;<=*i* and *j*<=≥<=*i*<=-<=*L**i*. You are given lengths of the claws. You need to find the total number of alive people after the bell rings.
The first line contains one integer *n* (1<=≤<=*n*<=≤<=106) — the number of guilty people. Second line contains *n* space-separated integers *L*1,<=*L*2,<=...,<=*L**n* (0<=≤<=*L**i*<=≤<=109), where *L**i* is the length of the *i*-th person's claw.
Print one integer — the total number of alive people after the bell rings.
[ "4\n0 1 0 10\n", "2\n0 0\n", "10\n1 1 3 0 0 0 2 1 0 3\n" ]
[ "1\n", "2\n", "3\n" ]
In first sample the last person kills everyone in front of him.
1,000
[ { "input": "4\n0 1 0 10", "output": "1" }, { "input": "2\n0 0", "output": "2" }, { "input": "10\n1 1 3 0 0 0 2 1 0 3", "output": "3" }, { "input": "10\n0 0 2 0 0 3 3 2 2 0", "output": "2" }, { "input": "1\n0", "output": "1" }, { "input": "5\n0 0 0 1 0", "output": "4" }, { "input": "6\n3 1 1 0 3 3", "output": "1" }, { "input": "8\n0 0 0 1 0 0 1 2", "output": "5" }, { "input": "1\n1000000000", "output": "1" }, { "input": "2\n1 3", "output": "1" }, { "input": "2\n1000000000 1000000000", "output": "1" }, { "input": "11\n1 0 0 1 1 3 2 0 0 2 3", "output": "4" }, { "input": "1\n1", "output": "1" } ]
1,510,933,329
4,029
Python 3
MEMORY_LIMIT_EXCEEDED
PRETESTS
8
1,465
268,390,400
n = int(input()) l = [int(i) for i in input().split(" ")] l.reverse() #print(l) for i in range(n): l[i] = min(l[i], n-i-1) #print(l) death = [] for i in range(n): death += [j for j in range(i+1,i+1+l[i])] x = set(death) #print(x) print(n - len(x))
Title: Wrath Time Limit: None seconds Memory Limit: None megabytes Problem Description: Hands that shed innocent blood! There are *n* guilty people in a line, the *i*-th of them holds a claw with length *L**i*. The bell rings and every person kills some of people in front of him. All people kill others at the same time. Namely, the *i*-th person kills the *j*-th person if and only if *j*<=&lt;<=*i* and *j*<=≥<=*i*<=-<=*L**i*. You are given lengths of the claws. You need to find the total number of alive people after the bell rings. Input Specification: The first line contains one integer *n* (1<=≤<=*n*<=≤<=106) — the number of guilty people. Second line contains *n* space-separated integers *L*1,<=*L*2,<=...,<=*L**n* (0<=≤<=*L**i*<=≤<=109), where *L**i* is the length of the *i*-th person's claw. Output Specification: Print one integer — the total number of alive people after the bell rings. Demo Input: ['4\n0 1 0 10\n', '2\n0 0\n', '10\n1 1 3 0 0 0 2 1 0 3\n'] Demo Output: ['1\n', '2\n', '3\n'] Note: In first sample the last person kills everyone in front of him.
```python n = int(input()) l = [int(i) for i in input().split(" ")] l.reverse() #print(l) for i in range(n): l[i] = min(l[i], n-i-1) #print(l) death = [] for i in range(n): death += [j for j in range(i+1,i+1+l[i])] x = set(death) #print(x) print(n - len(x)) ```
0
124
A
The number of positions
PROGRAMMING
1,000
[ "math" ]
null
null
Petr stands in line of *n* people, but he doesn't know exactly which position he occupies. He can say that there are no less than *a* people standing in front of him and no more than *b* people standing behind him. Find the number of different positions Petr can occupy.
The only line contains three integers *n*, *a* and *b* (0<=≤<=*a*,<=*b*<=&lt;<=*n*<=≤<=100).
Print the single number — the number of the sought positions.
[ "3 1 1\n", "5 2 3\n" ]
[ "2\n", "3\n" ]
The possible positions in the first sample are: 2 and 3 (if we number the positions starting with 1). In the second sample they are 3, 4 and 5.
500
[ { "input": "3 1 1", "output": "2" }, { "input": "5 2 3", "output": "3" }, { "input": "5 4 0", "output": "1" }, { "input": "6 5 5", "output": "1" }, { "input": "9 4 3", "output": "4" }, { "input": "11 4 6", "output": "7" }, { "input": "13 8 7", "output": "5" }, { "input": "14 5 5", "output": "6" }, { "input": "16 6 9", "output": "10" }, { "input": "20 13 17", "output": "7" }, { "input": "22 4 8", "output": "9" }, { "input": "23 8 14", "output": "15" }, { "input": "26 18 22", "output": "8" }, { "input": "28 6 1", "output": "2" }, { "input": "29 5 23", "output": "24" }, { "input": "32 27 15", "output": "5" }, { "input": "33 11 5", "output": "6" }, { "input": "37 21 15", "output": "16" }, { "input": "39 34 33", "output": "5" }, { "input": "41 27 11", "output": "12" }, { "input": "42 25 16", "output": "17" }, { "input": "45 7 43", "output": "38" }, { "input": "47 16 17", "output": "18" }, { "input": "49 11 37", "output": "38" }, { "input": "51 38 39", "output": "13" }, { "input": "52 29 7", "output": "8" }, { "input": "56 43 12", "output": "13" }, { "input": "58 57 28", "output": "1" }, { "input": "59 12 39", "output": "40" }, { "input": "62 9 52", "output": "53" }, { "input": "63 29 44", "output": "34" }, { "input": "65 30 22", "output": "23" }, { "input": "66 27 38", "output": "39" }, { "input": "71 33 53", "output": "38" }, { "input": "73 14 12", "output": "13" }, { "input": "73 37 35", "output": "36" }, { "input": "76 69 44", "output": "7" }, { "input": "79 25 20", "output": "21" }, { "input": "81 60 20", "output": "21" }, { "input": "81 79 14", "output": "2" }, { "input": "84 0 42", "output": "43" }, { "input": "88 79 8", "output": "9" }, { "input": "90 76 59", "output": "14" }, { "input": "92 2 22", "output": "23" }, { "input": "94 5 88", "output": "89" }, { "input": "94 62 48", "output": "32" }, { "input": "96 22 72", "output": "73" }, { "input": "100 11 88", "output": "89" }, { "input": "100 81 91", "output": "19" }, { "input": "1 0 0", "output": "1" } ]
1,692,799,475
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
2
62
0
n , a , b = map(int,input().split()) print(a+1)
Title: The number of positions Time Limit: None seconds Memory Limit: None megabytes Problem Description: Petr stands in line of *n* people, but he doesn't know exactly which position he occupies. He can say that there are no less than *a* people standing in front of him and no more than *b* people standing behind him. Find the number of different positions Petr can occupy. Input Specification: The only line contains three integers *n*, *a* and *b* (0<=≤<=*a*,<=*b*<=&lt;<=*n*<=≤<=100). Output Specification: Print the single number — the number of the sought positions. Demo Input: ['3 1 1\n', '5 2 3\n'] Demo Output: ['2\n', '3\n'] Note: The possible positions in the first sample are: 2 and 3 (if we number the positions starting with 1). In the second sample they are 3, 4 and 5.
```python n , a , b = map(int,input().split()) print(a+1) ```
0
146
A
Lucky Ticket
PROGRAMMING
800
[ "implementation" ]
null
null
Petya loves lucky numbers very much. Everybody knows that lucky numbers are positive integers whose decimal record contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not. Petya loves tickets very much. As we know, each ticket has a number that is a positive integer. Its length equals *n* (*n* is always even). Petya calls a ticket lucky if the ticket's number is a lucky number and the sum of digits in the first half (the sum of the first *n*<=/<=2 digits) equals the sum of digits in the second half (the sum of the last *n*<=/<=2 digits). Check if the given ticket is lucky.
The first line contains an even integer *n* (2<=≤<=*n*<=≤<=50) — the length of the ticket number that needs to be checked. The second line contains an integer whose length equals exactly *n* — the ticket number. The number may contain leading zeros.
On the first line print "YES" if the given ticket number is lucky. Otherwise, print "NO" (without the quotes).
[ "2\n47\n", "4\n4738\n", "4\n4774\n" ]
[ "NO\n", "NO\n", "YES\n" ]
In the first sample the sum of digits in the first half does not equal the sum of digits in the second half (4 ≠ 7). In the second sample the ticket number is not the lucky number.
500
[ { "input": "2\n47", "output": "NO" }, { "input": "4\n4738", "output": "NO" }, { "input": "4\n4774", "output": "YES" }, { "input": "4\n4570", "output": "NO" }, { "input": "6\n477477", "output": "YES" }, { "input": "6\n777777", "output": "YES" }, { "input": "20\n44444444444444444444", "output": "YES" }, { "input": "2\n44", "output": "YES" }, { "input": "10\n4745474547", "output": "NO" }, { "input": "14\n77770004444444", "output": "NO" }, { "input": "10\n4747777744", "output": "YES" }, { "input": "10\n1234567890", "output": "NO" }, { "input": "50\n44444444444444444444444444444444444444444444444444", "output": "YES" }, { "input": "50\n44444444444444444444444444444444444444444444444447", "output": "NO" }, { "input": "50\n74444444444444444444444444444444444444444444444444", "output": "NO" }, { "input": "50\n07777777777777777777777777777777777777777777777770", "output": "NO" }, { "input": "50\n77777777777777777777777777777777777777777777777777", "output": "YES" }, { "input": "50\n44747747774474747747747447777447774747447477444474", "output": "YES" }, { "input": "48\n447474444777444474747747744774447444747474774474", "output": "YES" }, { "input": "32\n74474474777444474444747774474774", "output": "YES" }, { "input": "40\n4747777444447747777447447747447474774777", "output": "YES" }, { "input": "10\n4477477444", "output": "YES" }, { "input": "18\n447747474447744747", "output": "YES" }, { "input": "26\n44747744444774744774474447", "output": "YES" }, { "input": "50\n44707747774474747747747447777447774747447477444474", "output": "NO" }, { "input": "40\n4747777444447737777447447747447474774777", "output": "NO" }, { "input": "36\n764477744747444444447747747474744444", "output": "NO" }, { "input": "22\n4477407474777477744447", "output": "NO" }, { "input": "32\n74274474777444474444747774474774", "output": "NO" }, { "input": "16\n4744447974444747", "output": "NO" }, { "input": "2\n11", "output": "NO" }, { "input": "2\n22", "output": "NO" }, { "input": "2\n33", "output": "NO" }, { "input": "2\n74", "output": "NO" }, { "input": "2\n55", "output": "NO" }, { "input": "2\n66", "output": "NO" }, { "input": "2\n77", "output": "YES" }, { "input": "2\n88", "output": "NO" }, { "input": "2\n99", "output": "NO" }, { "input": "4\n4004", "output": "NO" }, { "input": "14\n00077774444444", "output": "NO" }, { "input": "6\n004444", "output": "NO" }, { "input": "4\n0044", "output": "NO" }, { "input": "14\n77771114444444", "output": "NO" }, { "input": "14\n44444447777000", "output": "NO" }, { "input": "6\n004774", "output": "NO" } ]
1,587,020,287
2,147,483,647
Python 3
OK
TESTS
46
216
0
n = int(input()) l = [int(i) for i in input()] print('YES' if l.count(7) + l.count(4) == n and sum(l[:n//2]) == sum(l[n//2:]) else 'NO')
Title: Lucky Ticket Time Limit: None seconds Memory Limit: None megabytes Problem Description: Petya loves lucky numbers very much. Everybody knows that lucky numbers are positive integers whose decimal record contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not. Petya loves tickets very much. As we know, each ticket has a number that is a positive integer. Its length equals *n* (*n* is always even). Petya calls a ticket lucky if the ticket's number is a lucky number and the sum of digits in the first half (the sum of the first *n*<=/<=2 digits) equals the sum of digits in the second half (the sum of the last *n*<=/<=2 digits). Check if the given ticket is lucky. Input Specification: The first line contains an even integer *n* (2<=≤<=*n*<=≤<=50) — the length of the ticket number that needs to be checked. The second line contains an integer whose length equals exactly *n* — the ticket number. The number may contain leading zeros. Output Specification: On the first line print "YES" if the given ticket number is lucky. Otherwise, print "NO" (without the quotes). Demo Input: ['2\n47\n', '4\n4738\n', '4\n4774\n'] Demo Output: ['NO\n', 'NO\n', 'YES\n'] Note: In the first sample the sum of digits in the first half does not equal the sum of digits in the second half (4 ≠ 7). In the second sample the ticket number is not the lucky number.
```python n = int(input()) l = [int(i) for i in input()] print('YES' if l.count(7) + l.count(4) == n and sum(l[:n//2]) == sum(l[n//2:]) else 'NO') ```
3
670
C
Cinema
PROGRAMMING
1,300
[ "implementation", "sortings" ]
null
null
Moscow is hosting a major international conference, which is attended by *n* scientists from different countries. Each of the scientists knows exactly one language. For convenience, we enumerate all languages of the world with integers from 1 to 109. In the evening after the conference, all *n* scientists decided to go to the cinema. There are *m* movies in the cinema they came to. Each of the movies is characterized by two distinct numbers — the index of audio language and the index of subtitles language. The scientist, who came to the movie, will be very pleased if he knows the audio language of the movie, will be almost satisfied if he knows the language of subtitles and will be not satisfied if he does not know neither one nor the other (note that the audio language and the subtitles language for each movie are always different). Scientists decided to go together to the same movie. You have to help them choose the movie, such that the number of very pleased scientists is maximum possible. If there are several such movies, select among them one that will maximize the number of almost satisfied scientists.
The first line of the input contains a positive integer *n* (1<=≤<=*n*<=≤<=200<=000) — the number of scientists. The second line contains *n* positive integers *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=109), where *a**i* is the index of a language, which the *i*-th scientist knows. The third line contains a positive integer *m* (1<=≤<=*m*<=≤<=200<=000) — the number of movies in the cinema. The fourth line contains *m* positive integers *b*1,<=*b*2,<=...,<=*b**m* (1<=≤<=*b**j*<=≤<=109), where *b**j* is the index of the audio language of the *j*-th movie. The fifth line contains *m* positive integers *c*1,<=*c*2,<=...,<=*c**m* (1<=≤<=*c**j*<=≤<=109), where *c**j* is the index of subtitles language of the *j*-th movie. It is guaranteed that audio languages and subtitles language are different for each movie, that is *b**j*<=≠<=*c**j*.
Print the single integer — the index of a movie to which scientists should go. After viewing this movie the number of very pleased scientists should be maximum possible. If in the cinema there are several such movies, you need to choose among them one, after viewing which there will be the maximum possible number of almost satisfied scientists. If there are several possible answers print any of them.
[ "3\n2 3 2\n2\n3 2\n2 3\n", "6\n6 3 1 1 3 7\n5\n1 2 3 4 5\n2 3 4 5 1\n" ]
[ "2\n", "1\n" ]
In the first sample, scientists must go to the movie with the index 2, as in such case the 1-th and the 3-rd scientists will be very pleased and the 2-nd scientist will be almost satisfied. In the second test case scientists can go either to the movie with the index 1 or the index 3. After viewing any of these movies exactly two scientists will be very pleased and all the others will be not satisfied.
1,000
[ { "input": "3\n2 3 2\n2\n3 2\n2 3", "output": "2" }, { "input": "6\n6 3 1 1 3 7\n5\n1 2 3 4 5\n2 3 4 5 1", "output": "1" }, { "input": "1\n10\n1\n10\n3", "output": "1" }, { "input": "2\n1 6\n1\n6\n1", "output": "1" }, { "input": "1\n5\n2\n2 2\n5 5", "output": "1" }, { "input": "2\n4 4\n2\n4 7\n7 5", "output": "1" }, { "input": "10\n3 1 8 8 1 1 5 1 3 5\n2\n1 4\n3 1", "output": "1" }, { "input": "10\n7 6 1 2 7 3 9 7 7 9\n10\n2 9 6 5 9 3 10 3 1 6\n4 6 7 9 7 4 1 9 2 5", "output": "5" }, { "input": "20\n2 2 1 6 6 5 10 2 5 5 4 8 6 8 8 10 2 1 5 6\n20\n1 9 1 1 5 1 9 10 1 10 9 9 8 7 5 1 1 10 2 7\n3 5 9 10 10 8 2 9 6 7 8 8 6 5 3 4 6 3 7 4", "output": "5" }, { "input": "2\n10 8\n10\n8 3 10 8 8 8 3 8 8 8\n10 10 8 3 10 3 8 3 10 10", "output": "1" }, { "input": "5\n9 9 2 4 2\n5\n4 1 1 1 2\n2 4 4 9 7", "output": "5" }, { "input": "1\n320994883\n1\n332200603\n942930950", "output": "1" }, { "input": "3\n1000000000 1 1000000000\n2\n1000000000 1\n1 1000000000", "output": "1" }, { "input": "5\n1 2 3 3 4\n2\n1 2\n3 4", "output": "1" }, { "input": "3\n1 3 2\n2\n1 3\n2 4", "output": "1" }, { "input": "5\n2 2 3 3 4\n3\n5 2 2\n6 3 4", "output": "2" }, { "input": "2\n1 2\n2\n3 3\n4 1", "output": "2" }, { "input": "12\n3 2 1 1 4 4 5 1 6 6 7 7\n4\n3 2 4 7\n2 1 5 6", "output": "4" }, { "input": "14\n1 1 2 2 2 3 3 3 4 5 5 5 6 6\n3\n1 3 5\n2 6 4", "output": "2" } ]
1,685,937,360
2,147,483,647
Python 3
RUNTIME_ERROR
TESTS
1
31
0
n = int(input()) a = list(map(int, input().split())) mp = {} for num in a: mp[num] = mp.get(num, 0) + 1 m = int(input()) b = list(map(int, input().split())) c = list(map(int, input().split())) ans = 1 maxx = -1 for i in range(m): if maxx < mp[b[i]]: maxx = mp[b[i]] ans = i + 1 maxxx = -1 for i in range(m): if mp[b[i]] == maxx: if maxxx < mp[c[i]]: maxxx = mp[c[i]] ans = i + 1 print(ans)
Title: Cinema Time Limit: None seconds Memory Limit: None megabytes Problem Description: Moscow is hosting a major international conference, which is attended by *n* scientists from different countries. Each of the scientists knows exactly one language. For convenience, we enumerate all languages of the world with integers from 1 to 109. In the evening after the conference, all *n* scientists decided to go to the cinema. There are *m* movies in the cinema they came to. Each of the movies is characterized by two distinct numbers — the index of audio language and the index of subtitles language. The scientist, who came to the movie, will be very pleased if he knows the audio language of the movie, will be almost satisfied if he knows the language of subtitles and will be not satisfied if he does not know neither one nor the other (note that the audio language and the subtitles language for each movie are always different). Scientists decided to go together to the same movie. You have to help them choose the movie, such that the number of very pleased scientists is maximum possible. If there are several such movies, select among them one that will maximize the number of almost satisfied scientists. Input Specification: The first line of the input contains a positive integer *n* (1<=≤<=*n*<=≤<=200<=000) — the number of scientists. The second line contains *n* positive integers *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=109), where *a**i* is the index of a language, which the *i*-th scientist knows. The third line contains a positive integer *m* (1<=≤<=*m*<=≤<=200<=000) — the number of movies in the cinema. The fourth line contains *m* positive integers *b*1,<=*b*2,<=...,<=*b**m* (1<=≤<=*b**j*<=≤<=109), where *b**j* is the index of the audio language of the *j*-th movie. The fifth line contains *m* positive integers *c*1,<=*c*2,<=...,<=*c**m* (1<=≤<=*c**j*<=≤<=109), where *c**j* is the index of subtitles language of the *j*-th movie. It is guaranteed that audio languages and subtitles language are different for each movie, that is *b**j*<=≠<=*c**j*. Output Specification: Print the single integer — the index of a movie to which scientists should go. After viewing this movie the number of very pleased scientists should be maximum possible. If in the cinema there are several such movies, you need to choose among them one, after viewing which there will be the maximum possible number of almost satisfied scientists. If there are several possible answers print any of them. Demo Input: ['3\n2 3 2\n2\n3 2\n2 3\n', '6\n6 3 1 1 3 7\n5\n1 2 3 4 5\n2 3 4 5 1\n'] Demo Output: ['2\n', '1\n'] Note: In the first sample, scientists must go to the movie with the index 2, as in such case the 1-th and the 3-rd scientists will be very pleased and the 2-nd scientist will be almost satisfied. In the second test case scientists can go either to the movie with the index 1 or the index 3. After viewing any of these movies exactly two scientists will be very pleased and all the others will be not satisfied.
```python n = int(input()) a = list(map(int, input().split())) mp = {} for num in a: mp[num] = mp.get(num, 0) + 1 m = int(input()) b = list(map(int, input().split())) c = list(map(int, input().split())) ans = 1 maxx = -1 for i in range(m): if maxx < mp[b[i]]: maxx = mp[b[i]] ans = i + 1 maxxx = -1 for i in range(m): if mp[b[i]] == maxx: if maxxx < mp[c[i]]: maxxx = mp[c[i]] ans = i + 1 print(ans) ```
-1
165
B
Burning Midnight Oil
PROGRAMMING
1,500
[ "binary search", "implementation" ]
null
null
One day a highly important task was commissioned to Vasya — writing a program in a night. The program consists of *n* lines of code. Vasya is already exhausted, so he works like that: first he writes *v* lines of code, drinks a cup of tea, then he writes as much as lines, drinks another cup of tea, then he writes lines and so on: , , , ... The expression is regarded as the integral part from dividing number *a* by number *b*. The moment the current value equals 0, Vasya immediately falls asleep and he wakes up only in the morning, when the program should already be finished. Vasya is wondering, what minimum allowable value *v* can take to let him write not less than *n* lines of code before he falls asleep.
The input consists of two integers *n* and *k*, separated by spaces — the size of the program in lines and the productivity reduction coefficient, 1<=≤<=*n*<=≤<=109, 2<=≤<=*k*<=≤<=10.
Print the only integer — the minimum value of *v* that lets Vasya write the program in one night.
[ "7 2\n", "59 9\n" ]
[ "4\n", "54\n" ]
In the first sample the answer is *v* = 4. Vasya writes the code in the following portions: first 4 lines, then 2, then 1, and then Vasya falls asleep. Thus, he manages to write 4 + 2 + 1 = 7 lines in a night and complete the task. In the second sample the answer is *v* = 54. Vasya writes the code in the following portions: 54, 6. The total sum is 54 + 6 = 60, that's even more than *n* = 59.
1,000
[ { "input": "7 2", "output": "4" }, { "input": "59 9", "output": "54" }, { "input": "1 9", "output": "1" }, { "input": "11 2", "output": "7" }, { "input": "747 2", "output": "376" }, { "input": "6578 2", "output": "3293" }, { "input": "37212 2", "output": "18609" }, { "input": "12357 2", "output": "6181" }, { "input": "7998332 2", "output": "3999172" }, { "input": "86275251 2", "output": "43137632" }, { "input": "75584551 2", "output": "37792280" }, { "input": "6 3", "output": "5" }, { "input": "43 4", "output": "33" }, { "input": "811 3", "output": "543" }, { "input": "3410 4", "output": "2560" }, { "input": "21341 4", "output": "16009" }, { "input": "696485 4", "output": "522368" }, { "input": "8856748 3", "output": "5904504" }, { "input": "2959379 4", "output": "2219538" }, { "input": "831410263 3", "output": "554273516" }, { "input": "2 5", "output": "2" }, { "input": "19 6", "output": "17" }, { "input": "715 7", "output": "615" }, { "input": "9122 5", "output": "7300" }, { "input": "89117 6", "output": "74268" }, { "input": "689973 7", "output": "591408" }, { "input": "3024524 5", "output": "2419624" }, { "input": "67127156 6", "output": "55939302" }, { "input": "412262167 7", "output": "353367574" }, { "input": "6 8", "output": "6" }, { "input": "59 9", "output": "54" }, { "input": "246 10", "output": "222" }, { "input": "5314 8", "output": "4651" }, { "input": "15309 9", "output": "13609" }, { "input": "35648 10", "output": "32085" }, { "input": "3018012 8", "output": "2640764" }, { "input": "92153348 9", "output": "81914089" }, { "input": "177583558 10", "output": "159825206" }, { "input": "1000000000 2", "output": "500000008" }, { "input": "1000000000 3", "output": "666666672" }, { "input": "1000000000 4", "output": "750000005" }, { "input": "1000000000 5", "output": "800000003" }, { "input": "1000000000 6", "output": "833333338" }, { "input": "1000000000 7", "output": "857142861" }, { "input": "1000000000 8", "output": "875000004" }, { "input": "1000000000 9", "output": "888888894" }, { "input": "1000000000 10", "output": "900000001" }, { "input": "1 4", "output": "1" }, { "input": "2 10", "output": "2" }, { "input": "1 2", "output": "1" }, { "input": "6 8", "output": "6" }, { "input": "987862820 9", "output": "878100288" }, { "input": "979591791 9", "output": "870748262" }, { "input": "948889213 9", "output": "843457081" }, { "input": "8 9", "output": "8" }, { "input": "999999999 10", "output": "900000000" } ]
1,632,444,116
2,147,483,647
PyPy 3
RUNTIME_ERROR
TESTS
0
154
2,150,400
sysin = input().split() n = sysin[0] k = sysin[1] def geo(v,k): res = v temp = v while temp > 0: temp = v//k res += temp k *= k return res # brute force v = n if k >= n: print(v) else: v = 1 while v < n: summation = geo(v, k) if summation >= n: print(v) break v += 1
Title: Burning Midnight Oil Time Limit: None seconds Memory Limit: None megabytes Problem Description: One day a highly important task was commissioned to Vasya — writing a program in a night. The program consists of *n* lines of code. Vasya is already exhausted, so he works like that: first he writes *v* lines of code, drinks a cup of tea, then he writes as much as lines, drinks another cup of tea, then he writes lines and so on: , , , ... The expression is regarded as the integral part from dividing number *a* by number *b*. The moment the current value equals 0, Vasya immediately falls asleep and he wakes up only in the morning, when the program should already be finished. Vasya is wondering, what minimum allowable value *v* can take to let him write not less than *n* lines of code before he falls asleep. Input Specification: The input consists of two integers *n* and *k*, separated by spaces — the size of the program in lines and the productivity reduction coefficient, 1<=≤<=*n*<=≤<=109, 2<=≤<=*k*<=≤<=10. Output Specification: Print the only integer — the minimum value of *v* that lets Vasya write the program in one night. Demo Input: ['7 2\n', '59 9\n'] Demo Output: ['4\n', '54\n'] Note: In the first sample the answer is *v* = 4. Vasya writes the code in the following portions: first 4 lines, then 2, then 1, and then Vasya falls asleep. Thus, he manages to write 4 + 2 + 1 = 7 lines in a night and complete the task. In the second sample the answer is *v* = 54. Vasya writes the code in the following portions: 54, 6. The total sum is 54 + 6 = 60, that's even more than *n* = 59.
```python sysin = input().split() n = sysin[0] k = sysin[1] def geo(v,k): res = v temp = v while temp > 0: temp = v//k res += temp k *= k return res # brute force v = n if k >= n: print(v) else: v = 1 while v < n: summation = geo(v, k) if summation >= n: print(v) break v += 1 ```
-1
139
A
Petr and Book
PROGRAMMING
1,000
[ "implementation" ]
null
null
One Sunday Petr went to a bookshop and bought a new book on sports programming. The book had exactly *n* pages. Petr decided to start reading it starting from the next day, that is, from Monday. Petr's got a very tight schedule and for each day of the week he knows how many pages he will be able to read on that day. Some days are so busy that Petr will have no time to read whatsoever. However, we know that he will be able to read at least one page a week. Assuming that Petr will not skip days and will read as much as he can every day, determine on which day of the week he will read the last page of the book.
The first input line contains the single integer *n* (1<=≤<=*n*<=≤<=1000) — the number of pages in the book. The second line contains seven non-negative space-separated integers that do not exceed 1000 — those integers represent how many pages Petr can read on Monday, Tuesday, Wednesday, Thursday, Friday, Saturday and Sunday correspondingly. It is guaranteed that at least one of those numbers is larger than zero.
Print a single number — the number of the day of the week, when Petr will finish reading the book. The days of the week are numbered starting with one in the natural order: Monday, Tuesday, Wednesday, Thursday, Friday, Saturday, Sunday.
[ "100\n15 20 20 15 10 30 45\n", "2\n1 0 0 0 0 0 0\n" ]
[ "6\n", "1\n" ]
Note to the first sample: By the end of Monday and therefore, by the beginning of Tuesday Petr has 85 pages left. He has 65 pages left by Wednesday, 45 by Thursday, 30 by Friday, 20 by Saturday and on Saturday Petr finishes reading the book (and he also has time to read 10 pages of something else). Note to the second sample: On Monday of the first week Petr will read the first page. On Monday of the second week Petr will read the second page and will finish reading the book.
500
[ { "input": "100\n15 20 20 15 10 30 45", "output": "6" }, { "input": "2\n1 0 0 0 0 0 0", "output": "1" }, { "input": "100\n100 200 100 200 300 400 500", "output": "1" }, { "input": "3\n1 1 1 1 1 1 1", "output": "3" }, { "input": "1\n1 1 1 1 1 1 1", "output": "1" }, { "input": "20\n5 3 7 2 1 6 4", "output": "6" }, { "input": "10\n5 1 1 1 1 1 5", "output": "6" }, { "input": "50\n10 1 10 1 10 1 10", "output": "1" }, { "input": "77\n11 11 11 11 11 11 10", "output": "1" }, { "input": "1\n1000 1000 1000 1000 1000 1000 1000", "output": "1" }, { "input": "1000\n100 100 100 100 100 100 100", "output": "3" }, { "input": "999\n10 20 10 20 30 20 10", "output": "3" }, { "input": "433\n109 58 77 10 39 125 15", "output": "7" }, { "input": "1\n0 0 0 0 0 0 1", "output": "7" }, { "input": "5\n1 0 1 0 1 0 1", "output": "1" }, { "input": "997\n1 1 0 0 1 0 1", "output": "1" }, { "input": "1000\n1 1 1 1 1 1 1", "output": "6" }, { "input": "1000\n1000 1000 1000 1000 1000 1000 1000", "output": "1" }, { "input": "1000\n1 0 0 0 0 0 0", "output": "1" }, { "input": "1000\n0 0 0 0 0 0 1", "output": "7" }, { "input": "1000\n1 0 0 1 0 0 1", "output": "1" }, { "input": "509\n105 23 98 0 7 0 155", "output": "2" }, { "input": "7\n1 1 1 1 1 1 1", "output": "7" }, { "input": "2\n1 1 0 0 0 0 0", "output": "2" }, { "input": "1\n0 0 0 0 0 1 0", "output": "6" }, { "input": "10\n0 0 0 0 0 0 1", "output": "7" }, { "input": "5\n0 0 0 0 0 6 0", "output": "6" }, { "input": "3\n0 1 0 0 0 0 0", "output": "2" }, { "input": "10\n0 0 0 0 0 0 10", "output": "7" }, { "input": "28\n1 2 3 4 5 6 7", "output": "7" }, { "input": "100\n5 5 5 5 5 5 5", "output": "6" }, { "input": "4\n1 0 0 0 0 0 1", "output": "7" }, { "input": "2\n0 0 0 0 0 0 1", "output": "7" }, { "input": "7\n0 0 0 0 0 0 7", "output": "7" }, { "input": "7\n2 1 1 1 1 1 0", "output": "6" }, { "input": "2\n0 0 1 1 0 0 0", "output": "4" }, { "input": "6\n1 1 1 1 1 1 0", "output": "6" }, { "input": "5\n1 1 1 0 0 1 1", "output": "7" }, { "input": "100\n10 20 30 10 10 10 10", "output": "7" }, { "input": "1\n0 0 0 1 0 0 0", "output": "4" }, { "input": "70\n10 10 10 10 10 10 10", "output": "7" }, { "input": "22\n1 2 3 4 5 6 10", "output": "7" }, { "input": "5\n0 0 0 1 0 0 0", "output": "4" }, { "input": "2\n0 0 0 1 0 0 0", "output": "4" }, { "input": "6\n1 0 0 0 0 0 2", "output": "7" }, { "input": "10\n1 2 2 1 2 1 1", "output": "7" }, { "input": "5\n0 0 0 0 0 0 10", "output": "7" }, { "input": "4\n0 1 1 0 0 0 0", "output": "3" }, { "input": "100\n0 0 0 0 0 1 0", "output": "6" } ]
1,690,985,877
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
3
62
0
total = int(input()) daysList = input().split() i = 0 index = 0 day = 0 while i <= total: if int(total) == int(daysList[index]): day = index+1 break if index > 5: index = 0 i += int(daysList[index]) index += 1 day = index print(day)
Title: Petr and Book Time Limit: None seconds Memory Limit: None megabytes Problem Description: One Sunday Petr went to a bookshop and bought a new book on sports programming. The book had exactly *n* pages. Petr decided to start reading it starting from the next day, that is, from Monday. Petr's got a very tight schedule and for each day of the week he knows how many pages he will be able to read on that day. Some days are so busy that Petr will have no time to read whatsoever. However, we know that he will be able to read at least one page a week. Assuming that Petr will not skip days and will read as much as he can every day, determine on which day of the week he will read the last page of the book. Input Specification: The first input line contains the single integer *n* (1<=≤<=*n*<=≤<=1000) — the number of pages in the book. The second line contains seven non-negative space-separated integers that do not exceed 1000 — those integers represent how many pages Petr can read on Monday, Tuesday, Wednesday, Thursday, Friday, Saturday and Sunday correspondingly. It is guaranteed that at least one of those numbers is larger than zero. Output Specification: Print a single number — the number of the day of the week, when Petr will finish reading the book. The days of the week are numbered starting with one in the natural order: Monday, Tuesday, Wednesday, Thursday, Friday, Saturday, Sunday. Demo Input: ['100\n15 20 20 15 10 30 45\n', '2\n1 0 0 0 0 0 0\n'] Demo Output: ['6\n', '1\n'] Note: Note to the first sample: By the end of Monday and therefore, by the beginning of Tuesday Petr has 85 pages left. He has 65 pages left by Wednesday, 45 by Thursday, 30 by Friday, 20 by Saturday and on Saturday Petr finishes reading the book (and he also has time to read 10 pages of something else). Note to the second sample: On Monday of the first week Petr will read the first page. On Monday of the second week Petr will read the second page and will finish reading the book.
```python total = int(input()) daysList = input().split() i = 0 index = 0 day = 0 while i <= total: if int(total) == int(daysList[index]): day = index+1 break if index > 5: index = 0 i += int(daysList[index]) index += 1 day = index print(day) ```
0
285
B
Find Marble
PROGRAMMING
1,200
[ "implementation" ]
null
null
Petya and Vasya are playing a game. Petya's got *n* non-transparent glasses, standing in a row. The glasses' positions are indexed with integers from 1 to *n* from left to right. Note that the positions are indexed but the glasses are not. First Petya puts a marble under the glass in position *s*. Then he performs some (possibly zero) shuffling operations. One shuffling operation means moving the glass from the first position to position *p*1, the glass from the second position to position *p*2 and so on. That is, a glass goes from position *i* to position *p**i*. Consider all glasses are moving simultaneously during one shuffling operation. When the glasses are shuffled, the marble doesn't travel from one glass to another: it moves together with the glass it was initially been put in. After all shuffling operations Petya shows Vasya that the ball has moved to position *t*. Vasya's task is to say what minimum number of shuffling operations Petya has performed or determine that Petya has made a mistake and the marble could not have got from position *s* to position *t*.
The first line contains three integers: *n*,<=*s*,<=*t* (1<=≤<=*n*<=≤<=105; 1<=≤<=*s*,<=*t*<=≤<=*n*) — the number of glasses, the ball's initial and final position. The second line contains *n* space-separated integers: *p*1,<=*p*2,<=...,<=*p**n* (1<=≤<=*p**i*<=≤<=*n*) — the shuffling operation parameters. It is guaranteed that all *p**i*'s are distinct. Note that *s* can equal *t*.
If the marble can move from position *s* to position *t*, then print on a single line a non-negative integer — the minimum number of shuffling operations, needed to get the marble to position *t*. If it is impossible, print number -1.
[ "4 2 1\n2 3 4 1\n", "4 3 3\n4 1 3 2\n", "4 3 4\n1 2 3 4\n", "3 1 3\n2 1 3\n" ]
[ "3\n", "0\n", "-1\n", "-1\n" ]
none
1,000
[ { "input": "4 2 1\n2 3 4 1", "output": "3" }, { "input": "4 3 3\n4 1 3 2", "output": "0" }, { "input": "4 3 4\n1 2 3 4", "output": "-1" }, { "input": "3 1 3\n2 1 3", "output": "-1" }, { "input": "1 1 1\n1", "output": "0" }, { "input": "10 6 7\n10 7 8 1 5 6 2 9 4 3", "output": "-1" }, { "input": "10 3 6\n5 6 7 3 8 4 2 1 10 9", "output": "3" }, { "input": "10 10 4\n4 2 6 9 5 3 8 1 10 7", "output": "4" }, { "input": "100 90 57\n19 55 91 50 31 23 60 84 38 1 22 51 27 76 28 98 11 44 61 63 15 93 52 3 66 16 53 36 18 62 35 85 78 37 73 64 87 74 46 26 82 69 49 33 83 89 56 67 71 25 39 94 96 17 21 6 47 68 34 42 57 81 13 10 54 2 48 80 20 77 4 5 59 30 90 95 45 75 8 88 24 41 40 14 97 32 7 9 65 70 100 99 72 58 92 29 79 12 86 43", "output": "-1" }, { "input": "100 11 20\n80 25 49 55 22 98 35 59 88 14 91 20 68 66 53 50 77 45 82 63 96 93 85 46 37 74 84 9 7 95 41 86 23 36 33 27 81 39 18 13 12 92 24 71 3 48 83 61 31 87 28 79 75 38 11 21 29 69 44 100 72 62 32 43 30 16 47 56 89 60 42 17 26 70 94 99 4 6 2 73 8 52 65 1 15 90 67 51 78 10 5 76 57 54 34 58 19 64 40 97", "output": "26" }, { "input": "100 84 83\n30 67 53 89 94 54 92 17 26 57 15 5 74 85 10 61 18 70 91 75 14 11 93 41 25 78 88 81 20 51 35 4 62 1 97 39 68 52 47 77 64 3 2 72 60 80 8 83 65 98 21 22 45 7 58 31 43 38 90 99 49 87 55 36 29 6 37 23 66 76 59 79 40 86 63 44 82 32 48 16 50 100 28 96 46 12 27 13 24 9 19 84 73 69 71 42 56 33 34 95", "output": "71" }, { "input": "100 6 93\n74 62 67 81 40 85 35 42 59 72 80 28 79 41 16 19 33 63 13 10 69 76 70 93 49 84 89 94 8 37 11 90 26 52 47 7 36 95 86 75 56 15 61 99 88 12 83 21 20 3 100 17 32 82 6 5 43 25 66 68 73 78 18 77 92 27 23 2 4 39 60 48 22 24 14 97 29 34 54 64 71 57 87 38 9 50 30 53 51 45 44 31 58 91 98 65 55 1 46 96", "output": "-1" }, { "input": "100 27 56\n58 18 50 41 33 37 14 87 77 73 61 53 15 8 70 68 45 96 54 78 39 67 51 60 80 12 93 99 20 92 17 79 4 13 62 91 69 29 49 36 98 34 90 35 84 64 38 83 28 89 97 94 9 16 26 48 10 57 23 75 27 88 44 21 72 76 30 43 32 2 71 24 100 1 31 81 42 40 47 55 86 85 66 5 52 22 95 74 11 19 7 82 6 25 56 63 65 59 46 3", "output": "20" }, { "input": "87 42 49\n45 55 24 44 56 72 74 23 4 7 37 67 22 6 58 76 40 36 3 20 26 87 64 75 49 70 62 42 31 1 80 33 25 59 78 27 32 2 41 61 66 28 19 85 15 69 52 77 50 14 16 34 18 43 73 83 11 39 29 9 35 13 81 54 79 21 60 46 71 57 12 17 5 47 38 30 10 84 53 63 68 8 51 65 48 86 82", "output": "-1" }, { "input": "2 1 2\n1 2", "output": "-1" }, { "input": "2 1 2\n2 1", "output": "1" }, { "input": "2 2 2\n1 2", "output": "0" }, { "input": "2 2 2\n2 1", "output": "0" }, { "input": "2 1 1\n2 1", "output": "0" } ]
1,598,274,494
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
28
372
14,643,200
t = input() temp = t.split() n = int(temp[0]) s = int(temp[1]) t = int(temp[2]) positionList = [] o = input() temp = o.split() positionList = [int(i) for i in temp] shuffle = 0 tempVar = s - 1 while(True): if (shuffle > n): break if (positionList[tempVar] == t): shuffle += 1 break elif (positionList[tempVar] != t): shuffle += 1 tempVar = positionList[tempVar] - 1 if (shuffle > n): print(-1) elif (shuffle == 1): print(0) else: print(shuffle)
Title: Find Marble Time Limit: None seconds Memory Limit: None megabytes Problem Description: Petya and Vasya are playing a game. Petya's got *n* non-transparent glasses, standing in a row. The glasses' positions are indexed with integers from 1 to *n* from left to right. Note that the positions are indexed but the glasses are not. First Petya puts a marble under the glass in position *s*. Then he performs some (possibly zero) shuffling operations. One shuffling operation means moving the glass from the first position to position *p*1, the glass from the second position to position *p*2 and so on. That is, a glass goes from position *i* to position *p**i*. Consider all glasses are moving simultaneously during one shuffling operation. When the glasses are shuffled, the marble doesn't travel from one glass to another: it moves together with the glass it was initially been put in. After all shuffling operations Petya shows Vasya that the ball has moved to position *t*. Vasya's task is to say what minimum number of shuffling operations Petya has performed or determine that Petya has made a mistake and the marble could not have got from position *s* to position *t*. Input Specification: The first line contains three integers: *n*,<=*s*,<=*t* (1<=≤<=*n*<=≤<=105; 1<=≤<=*s*,<=*t*<=≤<=*n*) — the number of glasses, the ball's initial and final position. The second line contains *n* space-separated integers: *p*1,<=*p*2,<=...,<=*p**n* (1<=≤<=*p**i*<=≤<=*n*) — the shuffling operation parameters. It is guaranteed that all *p**i*'s are distinct. Note that *s* can equal *t*. Output Specification: If the marble can move from position *s* to position *t*, then print on a single line a non-negative integer — the minimum number of shuffling operations, needed to get the marble to position *t*. If it is impossible, print number -1. Demo Input: ['4 2 1\n2 3 4 1\n', '4 3 3\n4 1 3 2\n', '4 3 4\n1 2 3 4\n', '3 1 3\n2 1 3\n'] Demo Output: ['3\n', '0\n', '-1\n', '-1\n'] Note: none
```python t = input() temp = t.split() n = int(temp[0]) s = int(temp[1]) t = int(temp[2]) positionList = [] o = input() temp = o.split() positionList = [int(i) for i in temp] shuffle = 0 tempVar = s - 1 while(True): if (shuffle > n): break if (positionList[tempVar] == t): shuffle += 1 break elif (positionList[tempVar] != t): shuffle += 1 tempVar = positionList[tempVar] - 1 if (shuffle > n): print(-1) elif (shuffle == 1): print(0) else: print(shuffle) ```
0
10
A
Power Consumption Calculation
PROGRAMMING
900
[ "implementation" ]
A. Power Consumption Calculation
1
256
Tom is interested in power consumption of his favourite laptop. His laptop has three modes. In normal mode laptop consumes *P*1 watt per minute. *T*1 minutes after Tom moved the mouse or touched the keyboard for the last time, a screensaver starts and power consumption changes to *P*2 watt per minute. Finally, after *T*2 minutes from the start of the screensaver, laptop switches to the "sleep" mode and consumes *P*3 watt per minute. If Tom moves the mouse or touches the keyboard when the laptop is in the second or in the third mode, it switches to the first (normal) mode. Tom's work with the laptop can be divided into *n* time periods [*l*1,<=*r*1],<=[*l*2,<=*r*2],<=...,<=[*l**n*,<=*r**n*]. During each interval Tom continuously moves the mouse and presses buttons on the keyboard. Between the periods Tom stays away from the laptop. Find out the total amount of power consumed by the laptop during the period [*l*1,<=*r**n*].
The first line contains 6 integer numbers *n*, *P*1, *P*2, *P*3, *T*1, *T*2 (1<=≤<=*n*<=≤<=100,<=0<=≤<=*P*1,<=*P*2,<=*P*3<=≤<=100,<=1<=≤<=*T*1,<=*T*2<=≤<=60). The following *n* lines contain description of Tom's work. Each *i*-th of these lines contains two space-separated integers *l**i* and *r**i* (0<=≤<=*l**i*<=&lt;<=*r**i*<=≤<=1440, *r**i*<=&lt;<=*l**i*<=+<=1 for *i*<=&lt;<=*n*), which stand for the start and the end of the *i*-th period of work.
Output the answer to the problem.
[ "1 3 2 1 5 10\n0 10\n", "2 8 4 2 5 10\n20 30\n50 100\n" ]
[ "30", "570" ]
none
0
[ { "input": "1 3 2 1 5 10\n0 10", "output": "30" }, { "input": "2 8 4 2 5 10\n20 30\n50 100", "output": "570" }, { "input": "3 15 9 95 39 19\n873 989\n1003 1137\n1172 1436", "output": "8445" }, { "input": "4 73 2 53 58 16\n51 52\n209 242\n281 407\n904 945", "output": "52870" }, { "input": "5 41 20 33 43 4\n46 465\n598 875\n967 980\n1135 1151\n1194 1245", "output": "46995" }, { "input": "6 88 28 100 53 36\n440 445\n525 614\n644 844\n1238 1261\n1305 1307\n1425 1434", "output": "85540" }, { "input": "7 46 61 55 28 59\n24 26\n31 61\n66 133\n161 612\n741 746\n771 849\n1345 1357", "output": "67147" }, { "input": "8 83 18 30 28 5\n196 249\n313 544\n585 630\n718 843\n1040 1194\n1207 1246\n1268 1370\n1414 1422", "output": "85876" }, { "input": "9 31 65 27 53 54\n164 176\n194 210\n485 538\n617 690\n875 886\n888 902\n955 957\n1020 1200\n1205 1282", "output": "38570" }, { "input": "30 3 1 58 44 7\n11 13\n14 32\n37 50\n70 74\n101 106\n113 129\n184 195\n197 205\n213 228\n370 394\n443 446\n457 460\n461 492\n499 585\n602 627\n709 776\n812 818\n859 864\n910 913\n918 964\n1000 1010\n1051 1056\n1063 1075\n1106 1145\n1152 1189\n1211 1212\n1251 1259\n1272 1375\n1412 1417\n1430 1431", "output": "11134" }, { "input": "30 42 3 76 28 26\n38 44\n55 66\n80 81\n84 283\n298 314\n331 345\n491 531\n569 579\n597 606\n612 617\n623 701\n723 740\n747 752\n766 791\n801 827\n842 846\n853 891\n915 934\n945 949\n955 964\n991 1026\n1051 1059\n1067 1179\n1181 1191\n1214 1226\n1228 1233\n1294 1306\n1321 1340\n1371 1374\n1375 1424", "output": "59043" }, { "input": "30 46 5 93 20 46\n12 34\n40 41\n54 58\n100 121\n162 182\n220 349\n358 383\n390 398\n401 403\n408 409\n431 444\n466 470\n471 535\n556 568\n641 671\n699 709\n767 777\n786 859\n862 885\n912 978\n985 997\n1013 1017\n1032 1038\n1047 1048\n1062 1080\n1094 1097\n1102 1113\n1122 1181\n1239 1280\n1320 1369", "output": "53608" }, { "input": "30 50 74 77 4 57\n17 23\n24 61\n67 68\n79 87\n93 101\n104 123\n150 192\n375 377\n398 414\n461 566\n600 633\n642 646\n657 701\n771 808\n812 819\n823 826\n827 833\n862 875\n880 891\n919 920\n928 959\n970 1038\n1057 1072\n1074 1130\n1165 1169\n1171 1230\n1265 1276\n1279 1302\n1313 1353\n1354 1438", "output": "84067" }, { "input": "30 54 76 95 48 16\n9 11\n23 97\n112 116\n126 185\n214 223\n224 271\n278 282\n283 348\n359 368\n373 376\n452 463\n488 512\n532 552\n646 665\n681 685\n699 718\n735 736\n750 777\n791 810\n828 838\n841 858\n874 1079\n1136 1171\n1197 1203\n1210 1219\n1230 1248\n1280 1292\n1324 1374\n1397 1435\n1438 1439", "output": "79844" }, { "input": "30 58 78 12 41 28\n20 26\n27 31\n35 36\n38 99\n103 104\n106 112\n133 143\n181 246\n248 251\n265 323\n350 357\n378 426\n430 443\n466 476\n510 515\n517 540\n542 554\n562 603\n664 810\n819 823\n826 845\n869 895\n921 973\n1002 1023\n1102 1136\n1143 1148\n1155 1288\n1316 1388\n1394 1403\n1434 1437", "output": "82686" }, { "input": "30 62 80 97 25 47\n19 20\n43 75\n185 188\n199 242\n252 258\n277 310\n316 322\n336 357\n398 399\n404 436\n443 520\n549 617\n637 649\n679 694\n705 715\n725 730\n731 756\n768 793\n806 833\n834 967\n1003 1079\n1088 1097\n1100 1104\n1108 1121\n1127 1164\n1240 1263\n1274 1307\n1367 1407\n1419 1425\n1433 1437", "output": "92356" }, { "input": "30 100 48 14 9 7\n26 55\n75 107\n145 146\n158 167\n197 199\n201 213\n222 238\n257 265\n271 338\n357 439\n454 462\n463 562\n633 660\n670 691\n696 829\n844 864\n880 888\n891 894\n895 900\n950 973\n1004 1007\n1018 1021\n1045 1049\n1062 1073\n1138 1184\n1240 1272\n1278 1315\n1403 1410\n1412 1418\n1426 1434", "output": "107490" }, { "input": "30 3 50 32 1 18\n46 60\n66 94\n99 141\n162 239\n309 334\n400 550\n594 630\n659 663\n664 701\n735 736\n741 755\n756 801\n823 854\n865 915\n937 964\n984 986\n990 1007\n1008 1031\n1052 1064\n1073 1080\n1190 1191\n1192 1254\n1265 1266\n1272 1273\n1274 1277\n1284 1302\n1308 1312\n1358 1383\n1388 1389\n1390 1401", "output": "25258" }, { "input": "30 7 52 49 46 37\n2 73\n129 130\n131 140\n143 150\n187 190\n217 238\n248 271\n375 426\n465 470\n475 503\n506 541\n569 571\n578 585\n680 683\n690 738\n742 761\n868 877\n890 892\n904 915\n935 961\n1076 1100\n1103 1114\n1232 1244\n1246 1247\n1257 1261\n1271 1276\n1280 1298\n1346 1360\n1373 1382\n1407 1419", "output": "23992" } ]
1,642,786,282
2,147,483,647
Python 3
OK
TESTS
30
92
0
n, p1, p2, p3, t1, t2 = map(int, input().split()) nums = [] for i in range(n): l = list(map(int, input().split())) nums.append(l) ans = 0 start = 1 for i in range(n): if start == 0: idle = nums[i][0] - prev if idle > t1: ans += t1 * p1 idle -= t1 else: ans += idle*p1 idle = 0 if idle > t2: ans += t2*p2 idle -= t2 else: ans += idle*p2 idle = 0 if idle > 0: ans += idle*p3 idle = 0 diff = nums[i][1] - nums[i][0] ans += diff * p1 prev = nums[i][1] start = 0 print(ans)
Title: Power Consumption Calculation Time Limit: 1 seconds Memory Limit: 256 megabytes Problem Description: Tom is interested in power consumption of his favourite laptop. His laptop has three modes. In normal mode laptop consumes *P*1 watt per minute. *T*1 minutes after Tom moved the mouse or touched the keyboard for the last time, a screensaver starts and power consumption changes to *P*2 watt per minute. Finally, after *T*2 minutes from the start of the screensaver, laptop switches to the "sleep" mode and consumes *P*3 watt per minute. If Tom moves the mouse or touches the keyboard when the laptop is in the second or in the third mode, it switches to the first (normal) mode. Tom's work with the laptop can be divided into *n* time periods [*l*1,<=*r*1],<=[*l*2,<=*r*2],<=...,<=[*l**n*,<=*r**n*]. During each interval Tom continuously moves the mouse and presses buttons on the keyboard. Between the periods Tom stays away from the laptop. Find out the total amount of power consumed by the laptop during the period [*l*1,<=*r**n*]. Input Specification: The first line contains 6 integer numbers *n*, *P*1, *P*2, *P*3, *T*1, *T*2 (1<=≤<=*n*<=≤<=100,<=0<=≤<=*P*1,<=*P*2,<=*P*3<=≤<=100,<=1<=≤<=*T*1,<=*T*2<=≤<=60). The following *n* lines contain description of Tom's work. Each *i*-th of these lines contains two space-separated integers *l**i* and *r**i* (0<=≤<=*l**i*<=&lt;<=*r**i*<=≤<=1440, *r**i*<=&lt;<=*l**i*<=+<=1 for *i*<=&lt;<=*n*), which stand for the start and the end of the *i*-th period of work. Output Specification: Output the answer to the problem. Demo Input: ['1 3 2 1 5 10\n0 10\n', '2 8 4 2 5 10\n20 30\n50 100\n'] Demo Output: ['30', '570'] Note: none
```python n, p1, p2, p3, t1, t2 = map(int, input().split()) nums = [] for i in range(n): l = list(map(int, input().split())) nums.append(l) ans = 0 start = 1 for i in range(n): if start == 0: idle = nums[i][0] - prev if idle > t1: ans += t1 * p1 idle -= t1 else: ans += idle*p1 idle = 0 if idle > t2: ans += t2*p2 idle -= t2 else: ans += idle*p2 idle = 0 if idle > 0: ans += idle*p3 idle = 0 diff = nums[i][1] - nums[i][0] ans += diff * p1 prev = nums[i][1] start = 0 print(ans) ```
3.954
469
A
I Wanna Be the Guy
PROGRAMMING
800
[ "greedy", "implementation" ]
null
null
There is a game called "I Wanna Be the Guy", consisting of *n* levels. Little X and his friend Little Y are addicted to the game. Each of them wants to pass the whole game. Little X can pass only *p* levels of the game. And Little Y can pass only *q* levels of the game. You are given the indices of levels Little X can pass and the indices of levels Little Y can pass. Will Little X and Little Y pass the whole game, if they cooperate each other?
The first line contains a single integer *n* (1<=≤<=<=*n*<=≤<=100). The next line contains an integer *p* (0<=≤<=*p*<=≤<=*n*) at first, then follows *p* distinct integers *a*1,<=*a*2,<=...,<=*a**p* (1<=≤<=*a**i*<=≤<=*n*). These integers denote the indices of levels Little X can pass. The next line contains the levels Little Y can pass in the same format. It's assumed that levels are numbered from 1 to *n*.
If they can pass all the levels, print "I become the guy.". If it's impossible, print "Oh, my keyboard!" (without the quotes).
[ "4\n3 1 2 3\n2 2 4\n", "4\n3 1 2 3\n2 2 3\n" ]
[ "I become the guy.\n", "Oh, my keyboard!\n" ]
In the first sample, Little X can pass levels [1 2 3], and Little Y can pass level [2 4], so they can pass all the levels both. In the second sample, no one can pass level 4.
500
[ { "input": "4\n3 1 2 3\n2 2 4", "output": "I become the guy." }, { "input": "4\n3 1 2 3\n2 2 3", "output": "Oh, my keyboard!" }, { "input": "10\n5 8 6 1 5 4\n6 1 3 2 9 4 6", "output": "Oh, my keyboard!" }, { "input": "10\n8 8 10 7 3 1 4 2 6\n8 9 5 10 3 7 2 4 8", "output": "I become the guy." }, { "input": "10\n9 6 1 8 3 9 7 5 10 4\n7 1 3 2 7 6 9 5", "output": "I become the guy." }, { "input": "100\n75 83 69 73 30 76 37 48 14 41 42 21 35 15 50 61 86 85 46 3 31 13 78 10 2 44 80 95 56 82 38 75 77 4 99 9 84 53 12 11 36 74 39 72 43 89 57 28 54 1 51 66 27 22 93 59 68 88 91 29 7 20 63 8 52 23 64 58 100 79 65 49 96 71 33 45\n83 50 89 73 34 28 99 67 77 44 19 60 68 42 8 27 94 85 14 39 17 78 24 21 29 63 92 32 86 22 71 81 31 82 65 48 80 59 98 3 70 55 37 12 15 72 47 9 11 33 16 7 91 74 13 64 38 84 6 61 93 90 45 69 1 54 52 100 57 10 35 49 53 75 76 43 62 5 4 18 36 96 79 23", "output": "Oh, my keyboard!" }, { "input": "1\n1 1\n1 1", "output": "I become the guy." }, { "input": "1\n0\n1 1", "output": "I become the guy." }, { "input": "1\n1 1\n0", "output": "I become the guy." }, { "input": "1\n0\n0", "output": "Oh, my keyboard!" }, { "input": "100\n0\n0", "output": "Oh, my keyboard!" }, { "input": "100\n44 71 70 55 49 43 16 53 7 95 58 56 38 76 67 94 20 73 29 90 25 30 8 84 5 14 77 52 99 91 66 24 39 37 22 44 78 12 63 59 32 51 15 82 34\n56 17 10 96 80 69 13 81 31 57 4 48 68 89 50 45 3 33 36 2 72 100 64 87 21 75 54 74 92 65 23 40 97 61 18 28 98 93 35 83 9 79 46 27 41 62 88 6 47 60 86 26 42 85 19 1 11", "output": "I become the guy." }, { "input": "100\n78 63 59 39 11 58 4 2 80 69 22 95 90 26 65 16 30 100 66 99 67 79 54 12 23 28 45 56 70 74 60 82 73 91 68 43 92 75 51 21 17 97 86 44 62 47 85 78 72 64 50 81 71 5 57 13 31 76 87 9 49 96 25 42 19 35 88 53 7 83 38 27 29 41 89 93 10 84 18\n78 1 16 53 72 99 9 36 59 49 75 77 94 79 35 4 92 42 82 83 76 97 20 68 55 47 65 50 14 30 13 67 98 8 7 40 64 32 87 10 33 90 93 18 26 71 17 46 24 28 89 58 37 91 39 34 25 48 84 31 96 95 80 88 3 51 62 52 85 61 12 15 27 6 45 38 2 22 60", "output": "I become the guy." }, { "input": "2\n2 2 1\n0", "output": "I become the guy." }, { "input": "2\n1 2\n2 1 2", "output": "I become the guy." }, { "input": "80\n57 40 1 47 36 69 24 76 5 72 26 4 29 62 6 60 3 70 8 64 18 37 16 14 13 21 25 7 66 68 44 74 61 39 38 33 15 63 34 65 10 23 56 51 80 58 49 75 71 12 50 57 2 30 54 27 17 52\n61 22 67 15 28 41 26 1 80 44 3 38 18 37 79 57 11 7 65 34 9 36 40 5 48 29 64 31 51 63 27 4 50 13 24 32 58 23 19 46 8 73 39 2 21 56 77 53 59 78 43 12 55 45 30 74 33 68 42 47 17 54", "output": "Oh, my keyboard!" }, { "input": "100\n78 87 96 18 73 32 38 44 29 64 40 70 47 91 60 69 24 1 5 34 92 94 99 22 83 65 14 68 15 20 74 31 39 100 42 4 97 46 25 6 8 56 79 9 71 35 54 19 59 93 58 62 10 85 57 45 33 7 86 81 30 98 26 61 84 41 23 28 88 36 66 51 80 53 37 63 43 95 75\n76 81 53 15 26 37 31 62 24 87 41 39 75 86 46 76 34 4 51 5 45 65 67 48 68 23 71 27 94 47 16 17 9 96 84 89 88 100 18 52 69 42 6 92 7 64 49 12 98 28 21 99 25 55 44 40 82 19 36 30 77 90 14 43 50 3 13 95 78 35 20 54 58 11 2 1 33", "output": "Oh, my keyboard!" }, { "input": "100\n77 55 26 98 13 91 78 60 23 76 12 11 36 62 84 80 18 1 68 92 81 67 19 4 2 10 17 77 96 63 15 69 46 97 82 42 83 59 50 72 14 40 89 9 52 29 56 31 74 39 45 85 22 99 44 65 95 6 90 38 54 32 49 34 3 70 75 33 94 53 21 71 5 66 73 41 100 24\n69 76 93 5 24 57 59 6 81 4 30 12 44 15 67 45 73 3 16 8 47 95 20 64 68 85 54 17 90 86 66 58 13 37 42 51 35 32 1 28 43 80 7 14 48 19 62 55 2 91 25 49 27 26 38 79 89 99 22 60 75 53 88 82 34 21 87 71 72 61", "output": "I become the guy." }, { "input": "100\n74 96 32 63 12 69 72 99 15 22 1 41 79 77 71 31 20 28 75 73 85 37 38 59 42 100 86 89 55 87 68 4 24 57 52 8 92 27 56 98 95 58 34 9 45 14 11 36 66 76 61 19 25 23 78 49 90 26 80 43 70 13 65 10 5 74 81 21 44 60 97 3 47 93 6\n64 68 21 27 16 91 23 22 33 12 71 88 90 50 62 43 28 29 57 59 5 74 10 95 35 1 67 93 36 32 86 40 6 64 78 46 89 15 84 53 18 30 17 85 2 3 47 92 25 48 76 51 20 82 52 83 99 63 80 11 94 54 39 7 58", "output": "I become the guy." }, { "input": "100\n75 11 98 44 47 88 94 23 78 59 70 2 43 39 34 63 71 19 42 61 30 74 14 77 97 53 92 60 67 36 37 13 6 86 62 46 41 3 25 93 7 12 27 48 55 49 31 35 51 10 57 54 95 82 28 90 73 26 17 50 81 56 20 87 40 85 72 64 99 29 91 5 80 18 24 52\n72 93 59 5 88 47 9 58 48 1 43 50 100 87 61 91 45 98 99 56 25 84 53 73 78 54 63 38 37 2 77 95 89 85 4 90 10 33 12 22 74 32 34 70 71 52 96 57 15 66 31 27 75 8 21 39 62 44 67 94 81 68 14 19 36 28 11 79 16 65 46 83 76", "output": "Oh, my keyboard!" }, { "input": "3\n1 2\n2 2 3", "output": "Oh, my keyboard!" }, { "input": "4\n1 2\n3 1 3 4", "output": "I become the guy." }, { "input": "6\n2 1 2\n3 4 5 6", "output": "Oh, my keyboard!" } ]
1,698,934,123
2,147,483,647
Python 3
OK
TESTS
29
31
0
n = int(input()) x_levels = set(map(int, input().split()[1:])) y_levels = set(map(int, input().split()[1:])) # Combine the levels they can pass passable_levels = x_levels.union(y_levels) # Check if all levels are covered if len(passable_levels) == n: print("I become the guy.") else: print("Oh, my keyboard!")
Title: I Wanna Be the Guy Time Limit: None seconds Memory Limit: None megabytes Problem Description: There is a game called "I Wanna Be the Guy", consisting of *n* levels. Little X and his friend Little Y are addicted to the game. Each of them wants to pass the whole game. Little X can pass only *p* levels of the game. And Little Y can pass only *q* levels of the game. You are given the indices of levels Little X can pass and the indices of levels Little Y can pass. Will Little X and Little Y pass the whole game, if they cooperate each other? Input Specification: The first line contains a single integer *n* (1<=≤<=<=*n*<=≤<=100). The next line contains an integer *p* (0<=≤<=*p*<=≤<=*n*) at first, then follows *p* distinct integers *a*1,<=*a*2,<=...,<=*a**p* (1<=≤<=*a**i*<=≤<=*n*). These integers denote the indices of levels Little X can pass. The next line contains the levels Little Y can pass in the same format. It's assumed that levels are numbered from 1 to *n*. Output Specification: If they can pass all the levels, print "I become the guy.". If it's impossible, print "Oh, my keyboard!" (without the quotes). Demo Input: ['4\n3 1 2 3\n2 2 4\n', '4\n3 1 2 3\n2 2 3\n'] Demo Output: ['I become the guy.\n', 'Oh, my keyboard!\n'] Note: In the first sample, Little X can pass levels [1 2 3], and Little Y can pass level [2 4], so they can pass all the levels both. In the second sample, no one can pass level 4.
```python n = int(input()) x_levels = set(map(int, input().split()[1:])) y_levels = set(map(int, input().split()[1:])) # Combine the levels they can pass passable_levels = x_levels.union(y_levels) # Check if all levels are covered if len(passable_levels) == n: print("I become the guy.") else: print("Oh, my keyboard!") ```
3
337
A
Puzzles
PROGRAMMING
900
[ "greedy" ]
null
null
The end of the school year is near and Ms. Manana, the teacher, will soon have to say goodbye to a yet another class. She decided to prepare a goodbye present for her *n* students and give each of them a jigsaw puzzle (which, as wikipedia states, is a tiling puzzle that requires the assembly of numerous small, often oddly shaped, interlocking and tessellating pieces). The shop assistant told the teacher that there are *m* puzzles in the shop, but they might differ in difficulty and size. Specifically, the first jigsaw puzzle consists of *f*1 pieces, the second one consists of *f*2 pieces and so on. Ms. Manana doesn't want to upset the children, so she decided that the difference between the numbers of pieces in her presents must be as small as possible. Let *A* be the number of pieces in the largest puzzle that the teacher buys and *B* be the number of pieces in the smallest such puzzle. She wants to choose such *n* puzzles that *A*<=-<=*B* is minimum possible. Help the teacher and find the least possible value of *A*<=-<=*B*.
The first line contains space-separated integers *n* and *m* (2<=≤<=*n*<=≤<=*m*<=≤<=50). The second line contains *m* space-separated integers *f*1,<=*f*2,<=...,<=*f**m* (4<=≤<=*f**i*<=≤<=1000) — the quantities of pieces in the puzzles sold in the shop.
Print a single integer — the least possible difference the teacher can obtain.
[ "4 6\n10 12 10 7 5 22\n" ]
[ "5\n" ]
Sample 1. The class has 4 students. The shop sells 6 puzzles. If Ms. Manana buys the first four puzzles consisting of 10, 12, 10 and 7 pieces correspondingly, then the difference between the sizes of the largest and the smallest puzzle will be equal to 5. It is impossible to obtain a smaller difference. Note that the teacher can also buy puzzles 1, 3, 4 and 5 to obtain the difference 5.
500
[ { "input": "4 6\n10 12 10 7 5 22", "output": "5" }, { "input": "2 2\n4 4", "output": "0" }, { "input": "2 10\n4 5 6 7 8 9 10 11 12 12", "output": "0" }, { "input": "4 5\n818 136 713 59 946", "output": "759" }, { "input": "3 20\n446 852 783 313 549 965 40 88 86 617 479 118 768 34 47 826 366 957 463 903", "output": "13" }, { "input": "2 25\n782 633 152 416 432 825 115 97 386 357 836 310 530 413 354 373 847 882 913 682 729 582 671 674 94", "output": "3" }, { "input": "4 25\n226 790 628 528 114 64 239 279 619 39 894 763 763 847 525 93 882 697 999 643 650 244 159 884 190", "output": "31" }, { "input": "2 50\n971 889 628 39 253 157 925 694 129 516 660 272 738 319 611 816 142 717 514 392 41 105 132 676 958 118 306 768 600 685 103 857 704 346 857 309 23 718 618 161 176 379 846 834 640 468 952 878 164 997", "output": "0" }, { "input": "25 50\n582 146 750 905 313 509 402 21 488 512 32 898 282 64 579 869 37 996 377 929 975 697 666 837 311 205 116 992 533 298 648 268 54 479 792 595 152 69 267 417 184 433 894 603 988 712 24 414 301 176", "output": "412" }, { "input": "49 50\n58 820 826 960 271 294 473 102 925 318 729 672 244 914 796 646 868 6 893 882 726 203 528 498 271 195 355 459 721 680 547 147 631 116 169 804 145 996 133 559 110 257 771 476 576 251 607 314 427 886", "output": "938" }, { "input": "50 50\n374 573 323 744 190 806 485 247 628 336 491 606 702 321 991 678 337 579 86 240 993 208 668 686 855 205 363 177 719 249 896 919 782 434 59 647 787 996 286 216 636 212 546 903 958 559 544 126 608 993", "output": "937" }, { "input": "6 50\n6 8 7 8 5 4 4 5 7 8 6 5 7 4 7 7 7 8 6 4 6 6 8 8 7 7 8 7 5 8 5 4 4 7 8 4 4 6 6 6 8 7 4 7 6 6 5 8 4 7", "output": "0" }, { "input": "37 50\n14 5 11 17 8 20 19 16 20 11 17 20 16 9 14 14 13 18 11 20 8 8 8 5 19 17 6 18 10 20 9 7 12 6 14 17 4 4 10 13 7 4 11 6 20 19 12 12 15 19", "output": "12" }, { "input": "40 50\n4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4", "output": "0" }, { "input": "40 50\n17 20 43 26 41 37 14 8 30 35 30 24 43 8 42 9 41 50 41 35 27 32 35 43 28 36 31 16 5 7 23 16 14 29 8 39 12 16 36 18 49 39 33 37 38 6 6 27 23 17", "output": "31" }, { "input": "2 2\n1000 4", "output": "996" }, { "input": "2 3\n4 502 1000", "output": "498" }, { "input": "3 3\n4 1000 4", "output": "996" } ]
1,680,771,015
2,147,483,647
PyPy 3-64
OK
TESTS
18
122
0
a = int(input().split()[0]) data = list(map(int, input().split())) data.sort() data_D = [data[i:i + a] for i in range(len(data) - a + 1)] k = sorted(data_D, key=lambda x: x[-1] - x[0])[0] print(k[-1] - k[0])
Title: Puzzles Time Limit: None seconds Memory Limit: None megabytes Problem Description: The end of the school year is near and Ms. Manana, the teacher, will soon have to say goodbye to a yet another class. She decided to prepare a goodbye present for her *n* students and give each of them a jigsaw puzzle (which, as wikipedia states, is a tiling puzzle that requires the assembly of numerous small, often oddly shaped, interlocking and tessellating pieces). The shop assistant told the teacher that there are *m* puzzles in the shop, but they might differ in difficulty and size. Specifically, the first jigsaw puzzle consists of *f*1 pieces, the second one consists of *f*2 pieces and so on. Ms. Manana doesn't want to upset the children, so she decided that the difference between the numbers of pieces in her presents must be as small as possible. Let *A* be the number of pieces in the largest puzzle that the teacher buys and *B* be the number of pieces in the smallest such puzzle. She wants to choose such *n* puzzles that *A*<=-<=*B* is minimum possible. Help the teacher and find the least possible value of *A*<=-<=*B*. Input Specification: The first line contains space-separated integers *n* and *m* (2<=≤<=*n*<=≤<=*m*<=≤<=50). The second line contains *m* space-separated integers *f*1,<=*f*2,<=...,<=*f**m* (4<=≤<=*f**i*<=≤<=1000) — the quantities of pieces in the puzzles sold in the shop. Output Specification: Print a single integer — the least possible difference the teacher can obtain. Demo Input: ['4 6\n10 12 10 7 5 22\n'] Demo Output: ['5\n'] Note: Sample 1. The class has 4 students. The shop sells 6 puzzles. If Ms. Manana buys the first four puzzles consisting of 10, 12, 10 and 7 pieces correspondingly, then the difference between the sizes of the largest and the smallest puzzle will be equal to 5. It is impossible to obtain a smaller difference. Note that the teacher can also buy puzzles 1, 3, 4 and 5 to obtain the difference 5.
```python a = int(input().split()[0]) data = list(map(int, input().split())) data.sort() data_D = [data[i:i + a] for i in range(len(data) - a + 1)] k = sorted(data_D, key=lambda x: x[-1] - x[0])[0] print(k[-1] - k[0]) ```
3
430
A
Points and Segments (easy)
PROGRAMMING
1,600
[ "constructive algorithms", "sortings" ]
null
null
Iahub isn't well prepared on geometry problems, but he heard that this year there will be a lot of geometry problems on the IOI selection camp. Scared, Iahub locked himself in the basement and started thinking of new problems of this kind. One of them is the following. Iahub wants to draw *n* distinct points and *m* segments on the *OX* axis. He can draw each point with either red or blue. The drawing is good if and only if the following requirement is met: for each segment [*l**i*,<=*r**i*] consider all the red points belong to it (*r**i* points), and all the blue points belong to it (*b**i* points); each segment *i* should satisfy the inequality |*r**i*<=-<=*b**i*|<=≤<=1. Iahub thinks that point *x* belongs to segment [*l*,<=*r*], if inequality *l*<=≤<=*x*<=≤<=*r* holds. Iahub gives to you all coordinates of points and segments. Please, help him to find any good drawing.
The first line of input contains two integers: *n* (1<=≤<=*n*<=≤<=100) and *m* (1<=≤<=*m*<=≤<=100). The next line contains *n* space-separated integers *x*1,<=*x*2,<=...,<=*x**n* (0<=≤<=*x**i*<=≤<=100) — the coordinates of the points. The following *m* lines contain the descriptions of the *m* segments. Each line contains two integers *l**i* and *r**i* (0<=≤<=*l**i*<=≤<=*r**i*<=≤<=100) — the borders of the *i*-th segment. It's guaranteed that all the points are distinct.
If there is no good drawing for a given test, output a single integer -1. Otherwise output *n* integers, each integer must be 0 or 1. The *i*-th number denotes the color of the *i*-th point (0 is red, and 1 is blue). If there are multiple good drawings you can output any of them.
[ "3 3\n3 7 14\n1 5\n6 10\n11 15\n", "3 4\n1 2 3\n1 2\n2 3\n5 6\n2 2\n" ]
[ "0 0 0", "1 0 1 " ]
none
500
[ { "input": "3 3\n3 7 14\n1 5\n6 10\n11 15", "output": "0 0 0" }, { "input": "3 4\n1 2 3\n1 2\n2 3\n5 6\n2 2", "output": "1 0 1 " }, { "input": "10 10\n3 4 2 6 1 9 0 5 8 7\n5 7\n2 6\n0 1\n5 6\n3 4\n2 5\n2 10\n4 6\n3 6\n3 7", "output": "0 1 1 1 0 0 1 0 1 0 " }, { "input": "3 3\n50 51 52\n1 5\n6 10\n11 15", "output": "1 0 1 " }, { "input": "3 1\n1 2 3\n2 3", "output": "1 0 1 " } ]
1,612,098,523
2,147,483,647
PyPy 3
RUNTIME_ERROR
TESTS
0
108
2,048,000
from sys import stdin,stdout nmbr = lambda: int(stdin.readline()) lst = lambda: list(map(int,stdin.readline().split())) for _ in range(1):#nmbr()): n,k=lst() mp={} a=lst() for i in range(n): mp[a[i]]=i ans=[0]*n for i in range(n): ans[mp[i]]=i&1 print(*ans) # 10 10 # 3 4 2 6 1 9 0 5 8 7 # 5 7 # 2 6 # 0 1 # 5 6 # 3 4 # 2 5 # 2 10 # 4 6 # 3 6 # 3 7
Title: Points and Segments (easy) Time Limit: None seconds Memory Limit: None megabytes Problem Description: Iahub isn't well prepared on geometry problems, but he heard that this year there will be a lot of geometry problems on the IOI selection camp. Scared, Iahub locked himself in the basement and started thinking of new problems of this kind. One of them is the following. Iahub wants to draw *n* distinct points and *m* segments on the *OX* axis. He can draw each point with either red or blue. The drawing is good if and only if the following requirement is met: for each segment [*l**i*,<=*r**i*] consider all the red points belong to it (*r**i* points), and all the blue points belong to it (*b**i* points); each segment *i* should satisfy the inequality |*r**i*<=-<=*b**i*|<=≤<=1. Iahub thinks that point *x* belongs to segment [*l*,<=*r*], if inequality *l*<=≤<=*x*<=≤<=*r* holds. Iahub gives to you all coordinates of points and segments. Please, help him to find any good drawing. Input Specification: The first line of input contains two integers: *n* (1<=≤<=*n*<=≤<=100) and *m* (1<=≤<=*m*<=≤<=100). The next line contains *n* space-separated integers *x*1,<=*x*2,<=...,<=*x**n* (0<=≤<=*x**i*<=≤<=100) — the coordinates of the points. The following *m* lines contain the descriptions of the *m* segments. Each line contains two integers *l**i* and *r**i* (0<=≤<=*l**i*<=≤<=*r**i*<=≤<=100) — the borders of the *i*-th segment. It's guaranteed that all the points are distinct. Output Specification: If there is no good drawing for a given test, output a single integer -1. Otherwise output *n* integers, each integer must be 0 or 1. The *i*-th number denotes the color of the *i*-th point (0 is red, and 1 is blue). If there are multiple good drawings you can output any of them. Demo Input: ['3 3\n3 7 14\n1 5\n6 10\n11 15\n', '3 4\n1 2 3\n1 2\n2 3\n5 6\n2 2\n'] Demo Output: ['0 0 0', '1 0 1 '] Note: none
```python from sys import stdin,stdout nmbr = lambda: int(stdin.readline()) lst = lambda: list(map(int,stdin.readline().split())) for _ in range(1):#nmbr()): n,k=lst() mp={} a=lst() for i in range(n): mp[a[i]]=i ans=[0]*n for i in range(n): ans[mp[i]]=i&1 print(*ans) # 10 10 # 3 4 2 6 1 9 0 5 8 7 # 5 7 # 2 6 # 0 1 # 5 6 # 3 4 # 2 5 # 2 10 # 4 6 # 3 6 # 3 7 ```
-1
439
B
Devu, the Dumb Guy
PROGRAMMING
1,200
[ "implementation", "sortings" ]
null
null
Devu is a dumb guy, his learning curve is very slow. You are supposed to teach him *n* subjects, the *i**th* subject has *c**i* chapters. When you teach him, you are supposed to teach all the chapters of a subject continuously. Let us say that his initial per chapter learning power of a subject is *x* hours. In other words he can learn a chapter of a particular subject in *x* hours. Well Devu is not complete dumb, there is a good thing about him too. If you teach him a subject, then time required to teach any chapter of the next subject will require exactly 1 hour less than previously required (see the examples to understand it more clearly). Note that his per chapter learning power can not be less than 1 hour. You can teach him the *n* subjects in any possible order. Find out minimum amount of time (in hours) Devu will take to understand all the subjects and you will be free to do some enjoying task rather than teaching a dumb guy. Please be careful that answer might not fit in 32 bit data type.
The first line will contain two space separated integers *n*, *x* (1<=≤<=*n*,<=*x*<=≤<=105). The next line will contain *n* space separated integers: *c*1,<=*c*2,<=...,<=*c**n* (1<=≤<=*c**i*<=≤<=105).
Output a single integer representing the answer to the problem.
[ "2 3\n4 1\n", "4 2\n5 1 2 1\n", "3 3\n1 1 1\n" ]
[ "11\n", "10\n", "6\n" ]
Look at the first example. Consider the order of subjects: 1, 2. When you teach Devu the first subject, it will take him 3 hours per chapter, so it will take 12 hours to teach first subject. After teaching first subject, his per chapter learning time will be 2 hours. Now teaching him second subject will take 2 × 1 = 2 hours. Hence you will need to spend 12 + 2 = 14 hours. Consider the order of subjects: 2, 1. When you teach Devu the second subject, then it will take him 3 hours per chapter, so it will take 3 × 1 = 3 hours to teach the second subject. After teaching the second subject, his per chapter learning time will be 2 hours. Now teaching him the first subject will take 2 × 4 = 8 hours. Hence you will need to spend 11 hours. So overall, minimum of both the cases is 11 hours. Look at the third example. The order in this example doesn't matter. When you teach Devu the first subject, it will take him 3 hours per chapter. When you teach Devu the second subject, it will take him 2 hours per chapter. When you teach Devu the third subject, it will take him 1 hours per chapter. In total it takes 6 hours.
1,000
[ { "input": "2 3\n4 1", "output": "11" }, { "input": "4 2\n5 1 2 1", "output": "10" }, { "input": "3 3\n1 1 1", "output": "6" }, { "input": "20 4\n1 1 3 5 5 1 3 4 2 5 2 4 3 1 3 3 3 3 4 3", "output": "65" }, { "input": "20 10\n6 6 1 2 6 4 5 3 6 5 4 5 6 5 4 6 6 2 3 3", "output": "196" }, { "input": "1 1\n9273", "output": "9273" }, { "input": "1 1\n1", "output": "1" }, { "input": "1 2\n1", "output": "2" }, { "input": "1 2\n2", "output": "4" }, { "input": "2 1\n1 2", "output": "3" } ]
1,577,011,993
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
1
93
0
n,m=[int(x) for x in input().split()] arr=[int(x) for x in input().split()] time=0 arr=sorted(arr) for i in range(n): time=time+arr[i]*m m=m-1 print(time)
Title: Devu, the Dumb Guy Time Limit: None seconds Memory Limit: None megabytes Problem Description: Devu is a dumb guy, his learning curve is very slow. You are supposed to teach him *n* subjects, the *i**th* subject has *c**i* chapters. When you teach him, you are supposed to teach all the chapters of a subject continuously. Let us say that his initial per chapter learning power of a subject is *x* hours. In other words he can learn a chapter of a particular subject in *x* hours. Well Devu is not complete dumb, there is a good thing about him too. If you teach him a subject, then time required to teach any chapter of the next subject will require exactly 1 hour less than previously required (see the examples to understand it more clearly). Note that his per chapter learning power can not be less than 1 hour. You can teach him the *n* subjects in any possible order. Find out minimum amount of time (in hours) Devu will take to understand all the subjects and you will be free to do some enjoying task rather than teaching a dumb guy. Please be careful that answer might not fit in 32 bit data type. Input Specification: The first line will contain two space separated integers *n*, *x* (1<=≤<=*n*,<=*x*<=≤<=105). The next line will contain *n* space separated integers: *c*1,<=*c*2,<=...,<=*c**n* (1<=≤<=*c**i*<=≤<=105). Output Specification: Output a single integer representing the answer to the problem. Demo Input: ['2 3\n4 1\n', '4 2\n5 1 2 1\n', '3 3\n1 1 1\n'] Demo Output: ['11\n', '10\n', '6\n'] Note: Look at the first example. Consider the order of subjects: 1, 2. When you teach Devu the first subject, it will take him 3 hours per chapter, so it will take 12 hours to teach first subject. After teaching first subject, his per chapter learning time will be 2 hours. Now teaching him second subject will take 2 × 1 = 2 hours. Hence you will need to spend 12 + 2 = 14 hours. Consider the order of subjects: 2, 1. When you teach Devu the second subject, then it will take him 3 hours per chapter, so it will take 3 × 1 = 3 hours to teach the second subject. After teaching the second subject, his per chapter learning time will be 2 hours. Now teaching him the first subject will take 2 × 4 = 8 hours. Hence you will need to spend 11 hours. So overall, minimum of both the cases is 11 hours. Look at the third example. The order in this example doesn't matter. When you teach Devu the first subject, it will take him 3 hours per chapter. When you teach Devu the second subject, it will take him 2 hours per chapter. When you teach Devu the third subject, it will take him 1 hours per chapter. In total it takes 6 hours.
```python n,m=[int(x) for x in input().split()] arr=[int(x) for x in input().split()] time=0 arr=sorted(arr) for i in range(n): time=time+arr[i]*m m=m-1 print(time) ```
0
2
A
Winner
PROGRAMMING
1,500
[ "hashing", "implementation" ]
A. Winner
1
64
The winner of the card game popular in Berland "Berlogging" is determined according to the following rules. If at the end of the game there is only one player with the maximum number of points, he is the winner. The situation becomes more difficult if the number of such players is more than one. During each round a player gains or loses a particular number of points. In the course of the game the number of points is registered in the line "name score", where name is a player's name, and score is the number of points gained in this round, which is an integer number. If score is negative, this means that the player has lost in the round. So, if two or more players have the maximum number of points (say, it equals to *m*) at the end of the game, than wins the one of them who scored at least *m* points first. Initially each player has 0 points. It's guaranteed that at the end of the game at least one player has a positive number of points.
The first line contains an integer number *n* (1<=<=≤<=<=*n*<=<=≤<=<=1000), *n* is the number of rounds played. Then follow *n* lines, containing the information about the rounds in "name score" format in chronological order, where name is a string of lower-case Latin letters with the length from 1 to 32, and score is an integer number between -1000 and 1000, inclusive.
Print the name of the winner.
[ "3\nmike 3\nandrew 5\nmike 2\n", "3\nandrew 3\nandrew 2\nmike 5\n" ]
[ "andrew\n", "andrew\n" ]
none
0
[ { "input": "3\nmike 3\nandrew 5\nmike 2", "output": "andrew" }, { "input": "3\nandrew 3\nandrew 2\nmike 5", "output": "andrew" }, { "input": "5\nkaxqybeultn -352\nmgochgrmeyieyskhuourfg -910\nkaxqybeultn 691\nmgochgrmeyieyskhuourfg -76\nkaxqybeultn -303", "output": "kaxqybeultn" }, { "input": "7\nksjuuerbnlklcfdjeyq 312\ndthjlkrvvbyahttifpdewvyslsh -983\nksjuuerbnlklcfdjeyq 268\ndthjlkrvvbyahttifpdewvyslsh 788\nksjuuerbnlklcfdjeyq -79\nksjuuerbnlklcfdjeyq -593\nksjuuerbnlklcfdjeyq 734", "output": "ksjuuerbnlklcfdjeyq" }, { "input": "12\natrtthfpcvishmqbakprquvnejr 185\natrtthfpcvishmqbakprquvnejr -699\natrtthfpcvishmqbakprquvnejr -911\natrtthfpcvishmqbakprquvnejr -220\nfcgslzkicjrpbqaifgweyzreajjfdo 132\nfcgslzkicjrpbqaifgweyzreajjfdo -242\nm 177\nm -549\natrtthfpcvishmqbakprquvnejr -242\nm 38\natrtthfpcvishmqbakprquvnejr -761\nfcgslzkicjrpbqaifgweyzreajjfdo 879", "output": "fcgslzkicjrpbqaifgweyzreajjfdo" }, { "input": "15\naawtvezfntstrcpgbzjbf 681\nzhahpvqiptvksnbjkdvmknb -74\naawtvezfntstrcpgbzjbf 661\njpdwmyke 474\naawtvezfntstrcpgbzjbf -547\naawtvezfntstrcpgbzjbf 600\nzhahpvqiptvksnbjkdvmknb -11\njpdwmyke 711\nbjmj 652\naawtvezfntstrcpgbzjbf -1000\naawtvezfntstrcpgbzjbf -171\nbjmj -302\naawtvezfntstrcpgbzjbf 961\nzhahpvqiptvksnbjkdvmknb 848\nbjmj -735", "output": "aawtvezfntstrcpgbzjbf" }, { "input": "17\nqdplghhx -649\nivhgbxiv 424\nivhgbxiv -72\nivhgbxiv 479\nugowfouebkelargxylsxn 83\nugowfouebkelargxylsxn -840\nivhgbxiv 382\nqdplghhx -904\nivhgbxiv -710\nugowfouebkelargxylsxn -838\nqdplghhx -974\nqdplghhx 571\nivhgbxiv -145\nugowfouebkelargxylsxn -788\nivhgbxiv 209\nivhgbxiv 420\nqdplghhx -158", "output": "ivhgbxiv" } ]
1,591,376,160
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
5
218
409,600
from collections import defaultdict t = int(input()) d = defaultdict(int) l = [] for i in range(t): s, n = input().split(" ") n = int(n) l.append((s, n)) d[s] += n maximum = max(list(d.values())) toppers = [] for s, n in d.items(): if(n == maximum): toppers.append(s) if(len(toppers) == 1): print(toppers[0]) else: d = defaultdict(int) for s, n in l: if(s in toppers): d[s] += n if(d[s] == maximum): print(s) break
Title: Winner Time Limit: 1 seconds Memory Limit: 64 megabytes Problem Description: The winner of the card game popular in Berland "Berlogging" is determined according to the following rules. If at the end of the game there is only one player with the maximum number of points, he is the winner. The situation becomes more difficult if the number of such players is more than one. During each round a player gains or loses a particular number of points. In the course of the game the number of points is registered in the line "name score", where name is a player's name, and score is the number of points gained in this round, which is an integer number. If score is negative, this means that the player has lost in the round. So, if two or more players have the maximum number of points (say, it equals to *m*) at the end of the game, than wins the one of them who scored at least *m* points first. Initially each player has 0 points. It's guaranteed that at the end of the game at least one player has a positive number of points. Input Specification: The first line contains an integer number *n* (1<=<=≤<=<=*n*<=<=≤<=<=1000), *n* is the number of rounds played. Then follow *n* lines, containing the information about the rounds in "name score" format in chronological order, where name is a string of lower-case Latin letters with the length from 1 to 32, and score is an integer number between -1000 and 1000, inclusive. Output Specification: Print the name of the winner. Demo Input: ['3\nmike 3\nandrew 5\nmike 2\n', '3\nandrew 3\nandrew 2\nmike 5\n'] Demo Output: ['andrew\n', 'andrew\n'] Note: none
```python from collections import defaultdict t = int(input()) d = defaultdict(int) l = [] for i in range(t): s, n = input().split(" ") n = int(n) l.append((s, n)) d[s] += n maximum = max(list(d.values())) toppers = [] for s, n in d.items(): if(n == maximum): toppers.append(s) if(len(toppers) == 1): print(toppers[0]) else: d = defaultdict(int) for s, n in l: if(s in toppers): d[s] += n if(d[s] == maximum): print(s) break ```
0
330
B
Road Construction
PROGRAMMING
1,300
[ "constructive algorithms", "graphs" ]
null
null
A country has *n* cities. Initially, there is no road in the country. One day, the king decides to construct some roads connecting pairs of cities. Roads can be traversed either way. He wants those roads to be constructed in such a way that it is possible to go from each city to any other city by traversing at most two roads. You are also given *m* pairs of cities — roads cannot be constructed between these pairs of cities. Your task is to construct the minimum number of roads that still satisfy the above conditions. The constraints will guarantee that this is always possible.
The first line consists of two integers *n* and *m* . Then *m* lines follow, each consisting of two integers *a**i* and *b**i* (1<=≤<=*a**i*,<=*b**i*<=≤<=*n*, *a**i*<=≠<=*b**i*), which means that it is not possible to construct a road connecting cities *a**i* and *b**i*. Consider the cities are numbered from 1 to *n*. It is guaranteed that every pair of cities will appear at most once in the input.
You should print an integer *s*: the minimum number of roads that should be constructed, in the first line. Then *s* lines should follow, each consisting of two integers *a**i* and *b**i* (1<=≤<=*a**i*,<=*b**i*<=≤<=*n*,<=*a**i*<=≠<=*b**i*), which means that a road should be constructed between cities *a**i* and *b**i*. If there are several solutions, you may print any of them.
[ "4 1\n1 3\n" ]
[ "3\n1 2\n4 2\n2 3\n" ]
This is one possible solution of the example: These are examples of wrong solutions:
1,000
[ { "input": "4 1\n1 3", "output": "3\n1 2\n4 2\n2 3" }, { "input": "1000 0", "output": "999\n1 2\n1 3\n1 4\n1 5\n1 6\n1 7\n1 8\n1 9\n1 10\n1 11\n1 12\n1 13\n1 14\n1 15\n1 16\n1 17\n1 18\n1 19\n1 20\n1 21\n1 22\n1 23\n1 24\n1 25\n1 26\n1 27\n1 28\n1 29\n1 30\n1 31\n1 32\n1 33\n1 34\n1 35\n1 36\n1 37\n1 38\n1 39\n1 40\n1 41\n1 42\n1 43\n1 44\n1 45\n1 46\n1 47\n1 48\n1 49\n1 50\n1 51\n1 52\n1 53\n1 54\n1 55\n1 56\n1 57\n1 58\n1 59\n1 60\n1 61\n1 62\n1 63\n1 64\n1 65\n1 66\n1 67\n1 68\n1 69\n1 70\n1 71\n1 72\n1 73\n1 74\n1 75\n1 76\n1 77\n1 78\n1 79\n1 80\n1 81\n1 82\n1 83\n1 84\n1 85\n1 86\n1 87..." }, { "input": "484 11\n414 97\n414 224\n444 414\n414 483\n414 399\n414 484\n414 189\n414 246\n414 115\n89 414\n14 414", "output": "483\n1 2\n1 3\n1 4\n1 5\n1 6\n1 7\n1 8\n1 9\n1 10\n1 11\n1 12\n1 13\n1 14\n1 15\n1 16\n1 17\n1 18\n1 19\n1 20\n1 21\n1 22\n1 23\n1 24\n1 25\n1 26\n1 27\n1 28\n1 29\n1 30\n1 31\n1 32\n1 33\n1 34\n1 35\n1 36\n1 37\n1 38\n1 39\n1 40\n1 41\n1 42\n1 43\n1 44\n1 45\n1 46\n1 47\n1 48\n1 49\n1 50\n1 51\n1 52\n1 53\n1 54\n1 55\n1 56\n1 57\n1 58\n1 59\n1 60\n1 61\n1 62\n1 63\n1 64\n1 65\n1 66\n1 67\n1 68\n1 69\n1 70\n1 71\n1 72\n1 73\n1 74\n1 75\n1 76\n1 77\n1 78\n1 79\n1 80\n1 81\n1 82\n1 83\n1 84\n1 85\n1 86\n1 87..." }, { "input": "150 3\n112 30\n61 45\n37 135", "output": "149\n1 2\n1 3\n1 4\n1 5\n1 6\n1 7\n1 8\n1 9\n1 10\n1 11\n1 12\n1 13\n1 14\n1 15\n1 16\n1 17\n1 18\n1 19\n1 20\n1 21\n1 22\n1 23\n1 24\n1 25\n1 26\n1 27\n1 28\n1 29\n1 30\n1 31\n1 32\n1 33\n1 34\n1 35\n1 36\n1 37\n1 38\n1 39\n1 40\n1 41\n1 42\n1 43\n1 44\n1 45\n1 46\n1 47\n1 48\n1 49\n1 50\n1 51\n1 52\n1 53\n1 54\n1 55\n1 56\n1 57\n1 58\n1 59\n1 60\n1 61\n1 62\n1 63\n1 64\n1 65\n1 66\n1 67\n1 68\n1 69\n1 70\n1 71\n1 72\n1 73\n1 74\n1 75\n1 76\n1 77\n1 78\n1 79\n1 80\n1 81\n1 82\n1 83\n1 84\n1 85\n1 86\n1 87..." }, { "input": "34 7\n10 28\n10 19\n10 13\n24 10\n10 29\n20 10\n10 26", "output": "33\n1 2\n1 3\n1 4\n1 5\n1 6\n1 7\n1 8\n1 9\n1 10\n1 11\n1 12\n1 13\n1 14\n1 15\n1 16\n1 17\n1 18\n1 19\n1 20\n1 21\n1 22\n1 23\n1 24\n1 25\n1 26\n1 27\n1 28\n1 29\n1 30\n1 31\n1 32\n1 33\n1 34" }, { "input": "1000 48\n816 885\n576 357\n878 659\n610 647\n37 670\n192 184\n393 407\n598 160\n547 995\n177 276\n788 44\n14 184\n604 281\n176 97\n176 293\n10 57\n852 579\n223 669\n313 260\n476 691\n667 22\n851 792\n411 489\n526 66\n233 566\n35 396\n964 815\n672 123\n148 210\n163 339\n379 598\n382 675\n132 955\n221 441\n253 490\n856 532\n135 119\n276 319\n525 835\n996 270\n92 778\n434 369\n351 927\n758 983\n798 267\n272 830\n539 728\n166 26", "output": "999\n1 2\n1 3\n1 4\n1 5\n1 6\n1 7\n1 8\n1 9\n1 10\n1 11\n1 12\n1 13\n1 14\n1 15\n1 16\n1 17\n1 18\n1 19\n1 20\n1 21\n1 22\n1 23\n1 24\n1 25\n1 26\n1 27\n1 28\n1 29\n1 30\n1 31\n1 32\n1 33\n1 34\n1 35\n1 36\n1 37\n1 38\n1 39\n1 40\n1 41\n1 42\n1 43\n1 44\n1 45\n1 46\n1 47\n1 48\n1 49\n1 50\n1 51\n1 52\n1 53\n1 54\n1 55\n1 56\n1 57\n1 58\n1 59\n1 60\n1 61\n1 62\n1 63\n1 64\n1 65\n1 66\n1 67\n1 68\n1 69\n1 70\n1 71\n1 72\n1 73\n1 74\n1 75\n1 76\n1 77\n1 78\n1 79\n1 80\n1 81\n1 82\n1 83\n1 84\n1 85\n1 86\n1 87..." }, { "input": "534 0", "output": "533\n1 2\n1 3\n1 4\n1 5\n1 6\n1 7\n1 8\n1 9\n1 10\n1 11\n1 12\n1 13\n1 14\n1 15\n1 16\n1 17\n1 18\n1 19\n1 20\n1 21\n1 22\n1 23\n1 24\n1 25\n1 26\n1 27\n1 28\n1 29\n1 30\n1 31\n1 32\n1 33\n1 34\n1 35\n1 36\n1 37\n1 38\n1 39\n1 40\n1 41\n1 42\n1 43\n1 44\n1 45\n1 46\n1 47\n1 48\n1 49\n1 50\n1 51\n1 52\n1 53\n1 54\n1 55\n1 56\n1 57\n1 58\n1 59\n1 60\n1 61\n1 62\n1 63\n1 64\n1 65\n1 66\n1 67\n1 68\n1 69\n1 70\n1 71\n1 72\n1 73\n1 74\n1 75\n1 76\n1 77\n1 78\n1 79\n1 80\n1 81\n1 82\n1 83\n1 84\n1 85\n1 86\n1 87..." }, { "input": "226 54\n80 165\n2 53\n191 141\n107 207\n95 196\n61 82\n42 168\n118 94\n205 182\n172 160\n84 224\n113 143\n122 93\n37 209\n176 32\n56 83\n151 81\n70 190\n99 171\n68 204\n212 48\n4 67\n116 7\n206 199\n105 62\n158 51\n178 147\n17 129\n22 47\n72 162\n188 77\n24 111\n184 26\n175 128\n110 89\n139 120\n127 92\n121 39\n217 75\n145 69\n20 161\n30 220\n222 154\n54 46\n21 87\n144 185\n164 115\n73 202\n173 35\n9 132\n74 180\n137 5\n157 117\n31 177", "output": "225\n1 2\n1 3\n1 4\n1 5\n1 6\n1 7\n1 8\n1 9\n1 10\n1 11\n1 12\n1 13\n1 14\n1 15\n1 16\n1 17\n1 18\n1 19\n1 20\n1 21\n1 22\n1 23\n1 24\n1 25\n1 26\n1 27\n1 28\n1 29\n1 30\n1 31\n1 32\n1 33\n1 34\n1 35\n1 36\n1 37\n1 38\n1 39\n1 40\n1 41\n1 42\n1 43\n1 44\n1 45\n1 46\n1 47\n1 48\n1 49\n1 50\n1 51\n1 52\n1 53\n1 54\n1 55\n1 56\n1 57\n1 58\n1 59\n1 60\n1 61\n1 62\n1 63\n1 64\n1 65\n1 66\n1 67\n1 68\n1 69\n1 70\n1 71\n1 72\n1 73\n1 74\n1 75\n1 76\n1 77\n1 78\n1 79\n1 80\n1 81\n1 82\n1 83\n1 84\n1 85\n1 86\n1 87..." }, { "input": "84 3\n39 19\n55 73\n42 43", "output": "83\n1 2\n1 3\n1 4\n1 5\n1 6\n1 7\n1 8\n1 9\n1 10\n1 11\n1 12\n1 13\n1 14\n1 15\n1 16\n1 17\n1 18\n1 19\n1 20\n1 21\n1 22\n1 23\n1 24\n1 25\n1 26\n1 27\n1 28\n1 29\n1 30\n1 31\n1 32\n1 33\n1 34\n1 35\n1 36\n1 37\n1 38\n1 39\n1 40\n1 41\n1 42\n1 43\n1 44\n1 45\n1 46\n1 47\n1 48\n1 49\n1 50\n1 51\n1 52\n1 53\n1 54\n1 55\n1 56\n1 57\n1 58\n1 59\n1 60\n1 61\n1 62\n1 63\n1 64\n1 65\n1 66\n1 67\n1 68\n1 69\n1 70\n1 71\n1 72\n1 73\n1 74\n1 75\n1 76\n1 77\n1 78\n1 79\n1 80\n1 81\n1 82\n1 83\n1 84" }, { "input": "207 35\n34 116\n184 5\n90 203\n12 195\n138 101\n40 150\n189 109\n115 91\n93 201\n106 18\n51 187\n139 197\n168 130\n182 64\n31 42\n86 107\n158 111\n159 132\n119 191\n53 127\n81 13\n153 112\n38 2\n87 84\n121 82\n120 22\n21 177\n151 202\n23 58\n68 192\n29 46\n105 70\n8 167\n56 54\n149 15", "output": "206\n1 2\n1 3\n1 4\n1 5\n1 6\n1 7\n1 8\n1 9\n1 10\n1 11\n1 12\n1 13\n1 14\n1 15\n1 16\n1 17\n1 18\n1 19\n1 20\n1 21\n1 22\n1 23\n1 24\n1 25\n1 26\n1 27\n1 28\n1 29\n1 30\n1 31\n1 32\n1 33\n1 34\n1 35\n1 36\n1 37\n1 38\n1 39\n1 40\n1 41\n1 42\n1 43\n1 44\n1 45\n1 46\n1 47\n1 48\n1 49\n1 50\n1 51\n1 52\n1 53\n1 54\n1 55\n1 56\n1 57\n1 58\n1 59\n1 60\n1 61\n1 62\n1 63\n1 64\n1 65\n1 66\n1 67\n1 68\n1 69\n1 70\n1 71\n1 72\n1 73\n1 74\n1 75\n1 76\n1 77\n1 78\n1 79\n1 80\n1 81\n1 82\n1 83\n1 84\n1 85\n1 86\n1 87..." }, { "input": "91 37\n50 90\n26 82\n61 1\n50 17\n51 73\n45 9\n39 53\n78 35\n12 45\n43 47\n83 20\n9 59\n18 48\n68 31\n47 33\n10 25\n15 78\n5 3\n73 65\n77 4\n62 31\n73 3\n53 7\n29 58\n52 14\n56 20\n6 87\n71 16\n17 19\n77 86\n1 50\n74 79\n15 54\n55 80\n13 77\n4 69\n24 69", "output": "90\n2 1\n2 3\n2 4\n2 5\n2 6\n2 7\n2 8\n2 9\n2 10\n2 11\n2 12\n2 13\n2 14\n2 15\n2 16\n2 17\n2 18\n2 19\n2 20\n2 21\n2 22\n2 23\n2 24\n2 25\n2 26\n2 27\n2 28\n2 29\n2 30\n2 31\n2 32\n2 33\n2 34\n2 35\n2 36\n2 37\n2 38\n2 39\n2 40\n2 41\n2 42\n2 43\n2 44\n2 45\n2 46\n2 47\n2 48\n2 49\n2 50\n2 51\n2 52\n2 53\n2 54\n2 55\n2 56\n2 57\n2 58\n2 59\n2 60\n2 61\n2 62\n2 63\n2 64\n2 65\n2 66\n2 67\n2 68\n2 69\n2 70\n2 71\n2 72\n2 73\n2 74\n2 75\n2 76\n2 77\n2 78\n2 79\n2 80\n2 81\n2 82\n2 83\n2 84\n2 85\n2 86\n2 87\n..." }, { "input": "226 54\n197 107\n181 146\n218 115\n36 169\n199 196\n116 93\n152 75\n213 164\n156 95\n165 58\n90 42\n141 58\n203 221\n179 204\n186 69\n27 127\n76 189\n40 195\n111 29\n85 189\n45 88\n84 135\n82 186\n185 17\n156 217\n8 123\n179 112\n92 137\n114 89\n10 152\n132 24\n135 36\n61 218\n10 120\n155 102\n222 79\n150 92\n184 34\n102 180\n154 196\n171 9\n217 105\n84 207\n56 189\n152 179\n43 165\n115 209\n208 167\n52 14\n92 47\n197 95\n13 78\n222 138\n75 36", "output": "225\n1 2\n1 3\n1 4\n1 5\n1 6\n1 7\n1 8\n1 9\n1 10\n1 11\n1 12\n1 13\n1 14\n1 15\n1 16\n1 17\n1 18\n1 19\n1 20\n1 21\n1 22\n1 23\n1 24\n1 25\n1 26\n1 27\n1 28\n1 29\n1 30\n1 31\n1 32\n1 33\n1 34\n1 35\n1 36\n1 37\n1 38\n1 39\n1 40\n1 41\n1 42\n1 43\n1 44\n1 45\n1 46\n1 47\n1 48\n1 49\n1 50\n1 51\n1 52\n1 53\n1 54\n1 55\n1 56\n1 57\n1 58\n1 59\n1 60\n1 61\n1 62\n1 63\n1 64\n1 65\n1 66\n1 67\n1 68\n1 69\n1 70\n1 71\n1 72\n1 73\n1 74\n1 75\n1 76\n1 77\n1 78\n1 79\n1 80\n1 81\n1 82\n1 83\n1 84\n1 85\n1 86\n1 87..." }, { "input": "207 35\n154 79\n174 101\n189 86\n137 56\n66 23\n199 69\n18 28\n32 53\n13 179\n182 170\n199 12\n24 158\n105 133\n25 10\n40 162\n64 72\n108 9\n172 125\n43 190\n15 39\n128 150\n102 129\n90 97\n64 196\n70 123\n163 41\n12 126\n127 186\n107 23\n182 51\n29 46\n46 123\n89 35\n59 80\n206 171", "output": "206\n1 2\n1 3\n1 4\n1 5\n1 6\n1 7\n1 8\n1 9\n1 10\n1 11\n1 12\n1 13\n1 14\n1 15\n1 16\n1 17\n1 18\n1 19\n1 20\n1 21\n1 22\n1 23\n1 24\n1 25\n1 26\n1 27\n1 28\n1 29\n1 30\n1 31\n1 32\n1 33\n1 34\n1 35\n1 36\n1 37\n1 38\n1 39\n1 40\n1 41\n1 42\n1 43\n1 44\n1 45\n1 46\n1 47\n1 48\n1 49\n1 50\n1 51\n1 52\n1 53\n1 54\n1 55\n1 56\n1 57\n1 58\n1 59\n1 60\n1 61\n1 62\n1 63\n1 64\n1 65\n1 66\n1 67\n1 68\n1 69\n1 70\n1 71\n1 72\n1 73\n1 74\n1 75\n1 76\n1 77\n1 78\n1 79\n1 80\n1 81\n1 82\n1 83\n1 84\n1 85\n1 86\n1 87..." }, { "input": "84 0", "output": "83\n1 2\n1 3\n1 4\n1 5\n1 6\n1 7\n1 8\n1 9\n1 10\n1 11\n1 12\n1 13\n1 14\n1 15\n1 16\n1 17\n1 18\n1 19\n1 20\n1 21\n1 22\n1 23\n1 24\n1 25\n1 26\n1 27\n1 28\n1 29\n1 30\n1 31\n1 32\n1 33\n1 34\n1 35\n1 36\n1 37\n1 38\n1 39\n1 40\n1 41\n1 42\n1 43\n1 44\n1 45\n1 46\n1 47\n1 48\n1 49\n1 50\n1 51\n1 52\n1 53\n1 54\n1 55\n1 56\n1 57\n1 58\n1 59\n1 60\n1 61\n1 62\n1 63\n1 64\n1 65\n1 66\n1 67\n1 68\n1 69\n1 70\n1 71\n1 72\n1 73\n1 74\n1 75\n1 76\n1 77\n1 78\n1 79\n1 80\n1 81\n1 82\n1 83\n1 84" }, { "input": "226 54\n5 29\n130 29\n55 29\n19 29\n29 92\n29 38\n185 29\n29 150\n29 202\n29 25\n29 66\n184 29\n29 189\n177 29\n50 29\n87 29\n138 29\n29 48\n151 29\n125 29\n16 29\n42 29\n29 157\n90 29\n21 29\n29 45\n29 80\n29 67\n29 26\n29 173\n74 29\n29 193\n29 40\n172 29\n29 85\n29 102\n88 29\n29 182\n116 29\n180 29\n161 29\n10 29\n171 29\n144 29\n29 218\n190 29\n213 29\n29 71\n29 191\n29 160\n29 137\n29 58\n29 135\n127 29", "output": "225\n1 2\n1 3\n1 4\n1 5\n1 6\n1 7\n1 8\n1 9\n1 10\n1 11\n1 12\n1 13\n1 14\n1 15\n1 16\n1 17\n1 18\n1 19\n1 20\n1 21\n1 22\n1 23\n1 24\n1 25\n1 26\n1 27\n1 28\n1 29\n1 30\n1 31\n1 32\n1 33\n1 34\n1 35\n1 36\n1 37\n1 38\n1 39\n1 40\n1 41\n1 42\n1 43\n1 44\n1 45\n1 46\n1 47\n1 48\n1 49\n1 50\n1 51\n1 52\n1 53\n1 54\n1 55\n1 56\n1 57\n1 58\n1 59\n1 60\n1 61\n1 62\n1 63\n1 64\n1 65\n1 66\n1 67\n1 68\n1 69\n1 70\n1 71\n1 72\n1 73\n1 74\n1 75\n1 76\n1 77\n1 78\n1 79\n1 80\n1 81\n1 82\n1 83\n1 84\n1 85\n1 86\n1 87..." }, { "input": "207 35\n25 61\n188 61\n170 61\n113 61\n35 61\n61 177\n77 61\n61 39\n61 141\n116 61\n61 163\n30 61\n192 61\n19 61\n61 162\n61 133\n185 61\n8 61\n118 61\n61 115\n7 61\n61 105\n107 61\n61 11\n161 61\n61 149\n136 61\n82 61\n20 61\n151 61\n156 61\n12 61\n87 61\n61 205\n61 108", "output": "206\n1 2\n1 3\n1 4\n1 5\n1 6\n1 7\n1 8\n1 9\n1 10\n1 11\n1 12\n1 13\n1 14\n1 15\n1 16\n1 17\n1 18\n1 19\n1 20\n1 21\n1 22\n1 23\n1 24\n1 25\n1 26\n1 27\n1 28\n1 29\n1 30\n1 31\n1 32\n1 33\n1 34\n1 35\n1 36\n1 37\n1 38\n1 39\n1 40\n1 41\n1 42\n1 43\n1 44\n1 45\n1 46\n1 47\n1 48\n1 49\n1 50\n1 51\n1 52\n1 53\n1 54\n1 55\n1 56\n1 57\n1 58\n1 59\n1 60\n1 61\n1 62\n1 63\n1 64\n1 65\n1 66\n1 67\n1 68\n1 69\n1 70\n1 71\n1 72\n1 73\n1 74\n1 75\n1 76\n1 77\n1 78\n1 79\n1 80\n1 81\n1 82\n1 83\n1 84\n1 85\n1 86\n1 87..." }, { "input": "34 7\n11 32\n33 29\n17 16\n15 5\n13 25\n8 19\n20 4", "output": "33\n1 2\n1 3\n1 4\n1 5\n1 6\n1 7\n1 8\n1 9\n1 10\n1 11\n1 12\n1 13\n1 14\n1 15\n1 16\n1 17\n1 18\n1 19\n1 20\n1 21\n1 22\n1 23\n1 24\n1 25\n1 26\n1 27\n1 28\n1 29\n1 30\n1 31\n1 32\n1 33\n1 34" }, { "input": "43 21\n38 19\n43 8\n40 31\n3 14\n24 21\n12 17\n1 9\n5 27\n25 37\n11 6\n13 26\n16 22\n10 32\n36 7\n30 29\n42 35\n20 33\n4 23\n18 15\n41 34\n2 28", "output": "42\n39 1\n39 2\n39 3\n39 4\n39 5\n39 6\n39 7\n39 8\n39 9\n39 10\n39 11\n39 12\n39 13\n39 14\n39 15\n39 16\n39 17\n39 18\n39 19\n39 20\n39 21\n39 22\n39 23\n39 24\n39 25\n39 26\n39 27\n39 28\n39 29\n39 30\n39 31\n39 32\n39 33\n39 34\n39 35\n39 36\n39 37\n39 38\n39 40\n39 41\n39 42\n39 43" }, { "input": "34 7\n22 4\n5 25\n15 7\n5 9\n27 7\n34 21\n3 13", "output": "33\n1 2\n1 3\n1 4\n1 5\n1 6\n1 7\n1 8\n1 9\n1 10\n1 11\n1 12\n1 13\n1 14\n1 15\n1 16\n1 17\n1 18\n1 19\n1 20\n1 21\n1 22\n1 23\n1 24\n1 25\n1 26\n1 27\n1 28\n1 29\n1 30\n1 31\n1 32\n1 33\n1 34" }, { "input": "50 7\n19 37\n30 32\n43 20\n48 14\n30 29\n18 36\n9 46", "output": "49\n1 2\n1 3\n1 4\n1 5\n1 6\n1 7\n1 8\n1 9\n1 10\n1 11\n1 12\n1 13\n1 14\n1 15\n1 16\n1 17\n1 18\n1 19\n1 20\n1 21\n1 22\n1 23\n1 24\n1 25\n1 26\n1 27\n1 28\n1 29\n1 30\n1 31\n1 32\n1 33\n1 34\n1 35\n1 36\n1 37\n1 38\n1 39\n1 40\n1 41\n1 42\n1 43\n1 44\n1 45\n1 46\n1 47\n1 48\n1 49\n1 50" }, { "input": "41 12\n41 12\n29 13\n3 37\n2 20\n4 24\n27 6\n39 20\n28 41\n30 1\n35 9\n5 39\n12 31", "output": "40\n7 1\n7 2\n7 3\n7 4\n7 5\n7 6\n7 8\n7 9\n7 10\n7 11\n7 12\n7 13\n7 14\n7 15\n7 16\n7 17\n7 18\n7 19\n7 20\n7 21\n7 22\n7 23\n7 24\n7 25\n7 26\n7 27\n7 28\n7 29\n7 30\n7 31\n7 32\n7 33\n7 34\n7 35\n7 36\n7 37\n7 38\n7 39\n7 40\n7 41" }, { "input": "26 2\n22 1\n14 10", "output": "25\n2 1\n2 3\n2 4\n2 5\n2 6\n2 7\n2 8\n2 9\n2 10\n2 11\n2 12\n2 13\n2 14\n2 15\n2 16\n2 17\n2 18\n2 19\n2 20\n2 21\n2 22\n2 23\n2 24\n2 25\n2 26" }, { "input": "7 3\n4 7\n4 6\n6 5", "output": "6\n1 2\n1 3\n1 4\n1 5\n1 6\n1 7" }, { "input": "484 11\n459 166\n12 217\n14 231\n477 111\n365 225\n62 412\n221 223\n258 184\n266 404\n425 236\n83 269", "output": "483\n1 2\n1 3\n1 4\n1 5\n1 6\n1 7\n1 8\n1 9\n1 10\n1 11\n1 12\n1 13\n1 14\n1 15\n1 16\n1 17\n1 18\n1 19\n1 20\n1 21\n1 22\n1 23\n1 24\n1 25\n1 26\n1 27\n1 28\n1 29\n1 30\n1 31\n1 32\n1 33\n1 34\n1 35\n1 36\n1 37\n1 38\n1 39\n1 40\n1 41\n1 42\n1 43\n1 44\n1 45\n1 46\n1 47\n1 48\n1 49\n1 50\n1 51\n1 52\n1 53\n1 54\n1 55\n1 56\n1 57\n1 58\n1 59\n1 60\n1 61\n1 62\n1 63\n1 64\n1 65\n1 66\n1 67\n1 68\n1 69\n1 70\n1 71\n1 72\n1 73\n1 74\n1 75\n1 76\n1 77\n1 78\n1 79\n1 80\n1 81\n1 82\n1 83\n1 84\n1 85\n1 86\n1 87..." }, { "input": "50 24\n18 36\n11 18\n22 18\n18 47\n18 10\n45 18\n18 29\n13 18\n8 18\n18 30\n26 18\n18 6\n5 18\n18 7\n46 18\n50 18\n18 3\n18 32\n4 18\n18 24\n18 19\n23 18\n35 18\n31 18", "output": "49\n1 2\n1 3\n1 4\n1 5\n1 6\n1 7\n1 8\n1 9\n1 10\n1 11\n1 12\n1 13\n1 14\n1 15\n1 16\n1 17\n1 18\n1 19\n1 20\n1 21\n1 22\n1 23\n1 24\n1 25\n1 26\n1 27\n1 28\n1 29\n1 30\n1 31\n1 32\n1 33\n1 34\n1 35\n1 36\n1 37\n1 38\n1 39\n1 40\n1 41\n1 42\n1 43\n1 44\n1 45\n1 46\n1 47\n1 48\n1 49\n1 50" }, { "input": "7 3\n3 4\n7 3\n3 2", "output": "6\n1 2\n1 3\n1 4\n1 5\n1 6\n1 7" }, { "input": "1 0", "output": "0" }, { "input": "2 0", "output": "1\n1 2" }, { "input": "4 1\n1 2", "output": "3\n3 1\n3 2\n3 4" }, { "input": "3 1\n1 2", "output": "2\n3 1\n3 2" }, { "input": "5 1\n1 5", "output": "4\n2 1\n2 3\n2 4\n2 5" } ]
1,652,843,822
2,147,483,647
PyPy 3-64
OK
TESTS
43
186
33,280,000
n, m = map(int, input().split()) v = [0] * (n + 1) for i in range(m): a, b = map(int, input().split()) v[a], v[b] = 1, 1 r = 0 for i in range(1, n + 1): if(not v[i]): r = i print(n - 1) for i in range(1, n + 1): if(i != r): print(r, i)
Title: Road Construction Time Limit: None seconds Memory Limit: None megabytes Problem Description: A country has *n* cities. Initially, there is no road in the country. One day, the king decides to construct some roads connecting pairs of cities. Roads can be traversed either way. He wants those roads to be constructed in such a way that it is possible to go from each city to any other city by traversing at most two roads. You are also given *m* pairs of cities — roads cannot be constructed between these pairs of cities. Your task is to construct the minimum number of roads that still satisfy the above conditions. The constraints will guarantee that this is always possible. Input Specification: The first line consists of two integers *n* and *m* . Then *m* lines follow, each consisting of two integers *a**i* and *b**i* (1<=≤<=*a**i*,<=*b**i*<=≤<=*n*, *a**i*<=≠<=*b**i*), which means that it is not possible to construct a road connecting cities *a**i* and *b**i*. Consider the cities are numbered from 1 to *n*. It is guaranteed that every pair of cities will appear at most once in the input. Output Specification: You should print an integer *s*: the minimum number of roads that should be constructed, in the first line. Then *s* lines should follow, each consisting of two integers *a**i* and *b**i* (1<=≤<=*a**i*,<=*b**i*<=≤<=*n*,<=*a**i*<=≠<=*b**i*), which means that a road should be constructed between cities *a**i* and *b**i*. If there are several solutions, you may print any of them. Demo Input: ['4 1\n1 3\n'] Demo Output: ['3\n1 2\n4 2\n2 3\n'] Note: This is one possible solution of the example: These are examples of wrong solutions:
```python n, m = map(int, input().split()) v = [0] * (n + 1) for i in range(m): a, b = map(int, input().split()) v[a], v[b] = 1, 1 r = 0 for i in range(1, n + 1): if(not v[i]): r = i print(n - 1) for i in range(1, n + 1): if(i != r): print(r, i) ```
3
334
A
Candy Bags
PROGRAMMING
1,000
[ "implementation" ]
null
null
Gerald has *n* younger brothers and their number happens to be even. One day he bought *n*2 candy bags. One bag has one candy, one bag has two candies, one bag has three candies and so on. In fact, for each integer *k* from 1 to *n*2 he has exactly one bag with *k* candies. Help him give *n* bags of candies to each brother so that all brothers got the same number of candies.
The single line contains a single integer *n* (*n* is even, 2<=≤<=*n*<=≤<=100) — the number of Gerald's brothers.
Let's assume that Gerald indexes his brothers with numbers from 1 to *n*. You need to print *n* lines, on the *i*-th line print *n* integers — the numbers of candies in the bags for the *i*-th brother. Naturally, all these numbers should be distinct and be within limits from 1 to *n*2. You can print the numbers in the lines in any order. It is guaranteed that the solution exists at the given limits.
[ "2\n" ]
[ "1 4\n2 3\n" ]
The sample shows Gerald's actions if he has two brothers. In this case, his bags contain 1, 2, 3 and 4 candies. He can give the bags with 1 and 4 candies to one brother and the bags with 2 and 3 to the other brother.
500
[ { "input": "2", "output": "1 4\n2 3" }, { "input": "4", "output": "1 16 2 15\n3 14 4 13\n5 12 6 11\n7 10 8 9" }, { "input": "6", "output": "1 36 2 35 3 34\n4 33 5 32 6 31\n7 30 8 29 9 28\n10 27 11 26 12 25\n13 24 14 23 15 22\n16 21 17 20 18 19" }, { "input": "8", "output": "1 64 2 63 3 62 4 61\n5 60 6 59 7 58 8 57\n9 56 10 55 11 54 12 53\n13 52 14 51 15 50 16 49\n17 48 18 47 19 46 20 45\n21 44 22 43 23 42 24 41\n25 40 26 39 27 38 28 37\n29 36 30 35 31 34 32 33" }, { "input": "10", "output": "1 100 2 99 3 98 4 97 5 96\n6 95 7 94 8 93 9 92 10 91\n11 90 12 89 13 88 14 87 15 86\n16 85 17 84 18 83 19 82 20 81\n21 80 22 79 23 78 24 77 25 76\n26 75 27 74 28 73 29 72 30 71\n31 70 32 69 33 68 34 67 35 66\n36 65 37 64 38 63 39 62 40 61\n41 60 42 59 43 58 44 57 45 56\n46 55 47 54 48 53 49 52 50 51" }, { "input": "100", "output": "1 10000 2 9999 3 9998 4 9997 5 9996 6 9995 7 9994 8 9993 9 9992 10 9991 11 9990 12 9989 13 9988 14 9987 15 9986 16 9985 17 9984 18 9983 19 9982 20 9981 21 9980 22 9979 23 9978 24 9977 25 9976 26 9975 27 9974 28 9973 29 9972 30 9971 31 9970 32 9969 33 9968 34 9967 35 9966 36 9965 37 9964 38 9963 39 9962 40 9961 41 9960 42 9959 43 9958 44 9957 45 9956 46 9955 47 9954 48 9953 49 9952 50 9951\n51 9950 52 9949 53 9948 54 9947 55 9946 56 9945 57 9944 58 9943 59 9942 60 9941 61 9940 62 9939 63 9938 64 9937 65 993..." }, { "input": "62", "output": "1 3844 2 3843 3 3842 4 3841 5 3840 6 3839 7 3838 8 3837 9 3836 10 3835 11 3834 12 3833 13 3832 14 3831 15 3830 16 3829 17 3828 18 3827 19 3826 20 3825 21 3824 22 3823 23 3822 24 3821 25 3820 26 3819 27 3818 28 3817 29 3816 30 3815 31 3814\n32 3813 33 3812 34 3811 35 3810 36 3809 37 3808 38 3807 39 3806 40 3805 41 3804 42 3803 43 3802 44 3801 45 3800 46 3799 47 3798 48 3797 49 3796 50 3795 51 3794 52 3793 53 3792 54 3791 55 3790 56 3789 57 3788 58 3787 59 3786 60 3785 61 3784 62 3783\n63 3782 64 3781 65 378..." }, { "input": "66", "output": "1 4356 2 4355 3 4354 4 4353 5 4352 6 4351 7 4350 8 4349 9 4348 10 4347 11 4346 12 4345 13 4344 14 4343 15 4342 16 4341 17 4340 18 4339 19 4338 20 4337 21 4336 22 4335 23 4334 24 4333 25 4332 26 4331 27 4330 28 4329 29 4328 30 4327 31 4326 32 4325 33 4324\n34 4323 35 4322 36 4321 37 4320 38 4319 39 4318 40 4317 41 4316 42 4315 43 4314 44 4313 45 4312 46 4311 47 4310 48 4309 49 4308 50 4307 51 4306 52 4305 53 4304 54 4303 55 4302 56 4301 57 4300 58 4299 59 4298 60 4297 61 4296 62 4295 63 4294 64 4293 65 4292..." }, { "input": "18", "output": "1 324 2 323 3 322 4 321 5 320 6 319 7 318 8 317 9 316\n10 315 11 314 12 313 13 312 14 311 15 310 16 309 17 308 18 307\n19 306 20 305 21 304 22 303 23 302 24 301 25 300 26 299 27 298\n28 297 29 296 30 295 31 294 32 293 33 292 34 291 35 290 36 289\n37 288 38 287 39 286 40 285 41 284 42 283 43 282 44 281 45 280\n46 279 47 278 48 277 49 276 50 275 51 274 52 273 53 272 54 271\n55 270 56 269 57 268 58 267 59 266 60 265 61 264 62 263 63 262\n64 261 65 260 66 259 67 258 68 257 69 256 70 255 71 254 72 253\n73 252 7..." }, { "input": "68", "output": "1 4624 2 4623 3 4622 4 4621 5 4620 6 4619 7 4618 8 4617 9 4616 10 4615 11 4614 12 4613 13 4612 14 4611 15 4610 16 4609 17 4608 18 4607 19 4606 20 4605 21 4604 22 4603 23 4602 24 4601 25 4600 26 4599 27 4598 28 4597 29 4596 30 4595 31 4594 32 4593 33 4592 34 4591\n35 4590 36 4589 37 4588 38 4587 39 4586 40 4585 41 4584 42 4583 43 4582 44 4581 45 4580 46 4579 47 4578 48 4577 49 4576 50 4575 51 4574 52 4573 53 4572 54 4571 55 4570 56 4569 57 4568 58 4567 59 4566 60 4565 61 4564 62 4563 63 4562 64 4561 65 4560..." }, { "input": "86", "output": "1 7396 2 7395 3 7394 4 7393 5 7392 6 7391 7 7390 8 7389 9 7388 10 7387 11 7386 12 7385 13 7384 14 7383 15 7382 16 7381 17 7380 18 7379 19 7378 20 7377 21 7376 22 7375 23 7374 24 7373 25 7372 26 7371 27 7370 28 7369 29 7368 30 7367 31 7366 32 7365 33 7364 34 7363 35 7362 36 7361 37 7360 38 7359 39 7358 40 7357 41 7356 42 7355 43 7354\n44 7353 45 7352 46 7351 47 7350 48 7349 49 7348 50 7347 51 7346 52 7345 53 7344 54 7343 55 7342 56 7341 57 7340 58 7339 59 7338 60 7337 61 7336 62 7335 63 7334 64 7333 65 7332..." }, { "input": "96", "output": "1 9216 2 9215 3 9214 4 9213 5 9212 6 9211 7 9210 8 9209 9 9208 10 9207 11 9206 12 9205 13 9204 14 9203 15 9202 16 9201 17 9200 18 9199 19 9198 20 9197 21 9196 22 9195 23 9194 24 9193 25 9192 26 9191 27 9190 28 9189 29 9188 30 9187 31 9186 32 9185 33 9184 34 9183 35 9182 36 9181 37 9180 38 9179 39 9178 40 9177 41 9176 42 9175 43 9174 44 9173 45 9172 46 9171 47 9170 48 9169\n49 9168 50 9167 51 9166 52 9165 53 9164 54 9163 55 9162 56 9161 57 9160 58 9159 59 9158 60 9157 61 9156 62 9155 63 9154 64 9153 65 9152..." }, { "input": "12", "output": "1 144 2 143 3 142 4 141 5 140 6 139\n7 138 8 137 9 136 10 135 11 134 12 133\n13 132 14 131 15 130 16 129 17 128 18 127\n19 126 20 125 21 124 22 123 23 122 24 121\n25 120 26 119 27 118 28 117 29 116 30 115\n31 114 32 113 33 112 34 111 35 110 36 109\n37 108 38 107 39 106 40 105 41 104 42 103\n43 102 44 101 45 100 46 99 47 98 48 97\n49 96 50 95 51 94 52 93 53 92 54 91\n55 90 56 89 57 88 58 87 59 86 60 85\n61 84 62 83 63 82 64 81 65 80 66 79\n67 78 68 77 69 76 70 75 71 74 72 73" }, { "input": "88", "output": "1 7744 2 7743 3 7742 4 7741 5 7740 6 7739 7 7738 8 7737 9 7736 10 7735 11 7734 12 7733 13 7732 14 7731 15 7730 16 7729 17 7728 18 7727 19 7726 20 7725 21 7724 22 7723 23 7722 24 7721 25 7720 26 7719 27 7718 28 7717 29 7716 30 7715 31 7714 32 7713 33 7712 34 7711 35 7710 36 7709 37 7708 38 7707 39 7706 40 7705 41 7704 42 7703 43 7702 44 7701\n45 7700 46 7699 47 7698 48 7697 49 7696 50 7695 51 7694 52 7693 53 7692 54 7691 55 7690 56 7689 57 7688 58 7687 59 7686 60 7685 61 7684 62 7683 63 7682 64 7681 65 7680..." }, { "input": "28", "output": "1 784 2 783 3 782 4 781 5 780 6 779 7 778 8 777 9 776 10 775 11 774 12 773 13 772 14 771\n15 770 16 769 17 768 18 767 19 766 20 765 21 764 22 763 23 762 24 761 25 760 26 759 27 758 28 757\n29 756 30 755 31 754 32 753 33 752 34 751 35 750 36 749 37 748 38 747 39 746 40 745 41 744 42 743\n43 742 44 741 45 740 46 739 47 738 48 737 49 736 50 735 51 734 52 733 53 732 54 731 55 730 56 729\n57 728 58 727 59 726 60 725 61 724 62 723 63 722 64 721 65 720 66 719 67 718 68 717 69 716 70 715\n71 714 72 713 73 712 74 7..." }, { "input": "80", "output": "1 6400 2 6399 3 6398 4 6397 5 6396 6 6395 7 6394 8 6393 9 6392 10 6391 11 6390 12 6389 13 6388 14 6387 15 6386 16 6385 17 6384 18 6383 19 6382 20 6381 21 6380 22 6379 23 6378 24 6377 25 6376 26 6375 27 6374 28 6373 29 6372 30 6371 31 6370 32 6369 33 6368 34 6367 35 6366 36 6365 37 6364 38 6363 39 6362 40 6361\n41 6360 42 6359 43 6358 44 6357 45 6356 46 6355 47 6354 48 6353 49 6352 50 6351 51 6350 52 6349 53 6348 54 6347 55 6346 56 6345 57 6344 58 6343 59 6342 60 6341 61 6340 62 6339 63 6338 64 6337 65 6336..." }, { "input": "48", "output": "1 2304 2 2303 3 2302 4 2301 5 2300 6 2299 7 2298 8 2297 9 2296 10 2295 11 2294 12 2293 13 2292 14 2291 15 2290 16 2289 17 2288 18 2287 19 2286 20 2285 21 2284 22 2283 23 2282 24 2281\n25 2280 26 2279 27 2278 28 2277 29 2276 30 2275 31 2274 32 2273 33 2272 34 2271 35 2270 36 2269 37 2268 38 2267 39 2266 40 2265 41 2264 42 2263 43 2262 44 2261 45 2260 46 2259 47 2258 48 2257\n49 2256 50 2255 51 2254 52 2253 53 2252 54 2251 55 2250 56 2249 57 2248 58 2247 59 2246 60 2245 61 2244 62 2243 63 2242 64 2241 65 224..." }, { "input": "54", "output": "1 2916 2 2915 3 2914 4 2913 5 2912 6 2911 7 2910 8 2909 9 2908 10 2907 11 2906 12 2905 13 2904 14 2903 15 2902 16 2901 17 2900 18 2899 19 2898 20 2897 21 2896 22 2895 23 2894 24 2893 25 2892 26 2891 27 2890\n28 2889 29 2888 30 2887 31 2886 32 2885 33 2884 34 2883 35 2882 36 2881 37 2880 38 2879 39 2878 40 2877 41 2876 42 2875 43 2874 44 2873 45 2872 46 2871 47 2870 48 2869 49 2868 50 2867 51 2866 52 2865 53 2864 54 2863\n55 2862 56 2861 57 2860 58 2859 59 2858 60 2857 61 2856 62 2855 63 2854 64 2853 65 285..." }, { "input": "58", "output": "1 3364 2 3363 3 3362 4 3361 5 3360 6 3359 7 3358 8 3357 9 3356 10 3355 11 3354 12 3353 13 3352 14 3351 15 3350 16 3349 17 3348 18 3347 19 3346 20 3345 21 3344 22 3343 23 3342 24 3341 25 3340 26 3339 27 3338 28 3337 29 3336\n30 3335 31 3334 32 3333 33 3332 34 3331 35 3330 36 3329 37 3328 38 3327 39 3326 40 3325 41 3324 42 3323 43 3322 44 3321 45 3320 46 3319 47 3318 48 3317 49 3316 50 3315 51 3314 52 3313 53 3312 54 3311 55 3310 56 3309 57 3308 58 3307\n59 3306 60 3305 61 3304 62 3303 63 3302 64 3301 65 330..." }, { "input": "64", "output": "1 4096 2 4095 3 4094 4 4093 5 4092 6 4091 7 4090 8 4089 9 4088 10 4087 11 4086 12 4085 13 4084 14 4083 15 4082 16 4081 17 4080 18 4079 19 4078 20 4077 21 4076 22 4075 23 4074 24 4073 25 4072 26 4071 27 4070 28 4069 29 4068 30 4067 31 4066 32 4065\n33 4064 34 4063 35 4062 36 4061 37 4060 38 4059 39 4058 40 4057 41 4056 42 4055 43 4054 44 4053 45 4052 46 4051 47 4050 48 4049 49 4048 50 4047 51 4046 52 4045 53 4044 54 4043 55 4042 56 4041 57 4040 58 4039 59 4038 60 4037 61 4036 62 4035 63 4034 64 4033\n65 403..." }, { "input": "44", "output": "1 1936 2 1935 3 1934 4 1933 5 1932 6 1931 7 1930 8 1929 9 1928 10 1927 11 1926 12 1925 13 1924 14 1923 15 1922 16 1921 17 1920 18 1919 19 1918 20 1917 21 1916 22 1915\n23 1914 24 1913 25 1912 26 1911 27 1910 28 1909 29 1908 30 1907 31 1906 32 1905 33 1904 34 1903 35 1902 36 1901 37 1900 38 1899 39 1898 40 1897 41 1896 42 1895 43 1894 44 1893\n45 1892 46 1891 47 1890 48 1889 49 1888 50 1887 51 1886 52 1885 53 1884 54 1883 55 1882 56 1881 57 1880 58 1879 59 1878 60 1877 61 1876 62 1875 63 1874 64 1873 65 187..." } ]
1,571,044,405
205
Python 3
OK
TESTS
21
248
614,400
#!/usr/bin/python3 n = int(input()) l = 1 r = n * n ans = [[] for i in range(n)] j = 0 while l < r: ans[j % n].append(l) ans[j % n].append(r) l += 1 r -= 1 j += 1 for i in range(n): print(*ans[i])
Title: Candy Bags Time Limit: None seconds Memory Limit: None megabytes Problem Description: Gerald has *n* younger brothers and their number happens to be even. One day he bought *n*2 candy bags. One bag has one candy, one bag has two candies, one bag has three candies and so on. In fact, for each integer *k* from 1 to *n*2 he has exactly one bag with *k* candies. Help him give *n* bags of candies to each brother so that all brothers got the same number of candies. Input Specification: The single line contains a single integer *n* (*n* is even, 2<=≤<=*n*<=≤<=100) — the number of Gerald's brothers. Output Specification: Let's assume that Gerald indexes his brothers with numbers from 1 to *n*. You need to print *n* lines, on the *i*-th line print *n* integers — the numbers of candies in the bags for the *i*-th brother. Naturally, all these numbers should be distinct and be within limits from 1 to *n*2. You can print the numbers in the lines in any order. It is guaranteed that the solution exists at the given limits. Demo Input: ['2\n'] Demo Output: ['1 4\n2 3\n'] Note: The sample shows Gerald's actions if he has two brothers. In this case, his bags contain 1, 2, 3 and 4 candies. He can give the bags with 1 and 4 candies to one brother and the bags with 2 and 3 to the other brother.
```python #!/usr/bin/python3 n = int(input()) l = 1 r = n * n ans = [[] for i in range(n)] j = 0 while l < r: ans[j % n].append(l) ans[j % n].append(r) l += 1 r -= 1 j += 1 for i in range(n): print(*ans[i]) ```
3
897
B
Chtholly's request
PROGRAMMING
1,300
[ "brute force" ]
null
null
— I experienced so many great things. — You gave me memories like dreams... But I have to leave now... — One last request, can you... — Help me solve a Codeforces problem? — ...... — What? Chtholly has been thinking about a problem for days: If a number is palindrome and length of its decimal representation without leading zeros is even, we call it a zcy number. A number is palindrome means when written in decimal representation, it contains no leading zeros and reads the same forwards and backwards. For example 12321 and 1221 are palindromes and 123 and 12451 are not. Moreover, 1221 is zcy number and 12321 is not. Given integers *k* and *p*, calculate the sum of the *k* smallest zcy numbers and output this sum modulo *p*. Unfortunately, Willem isn't good at solving this kind of problems, so he asks you for help!
The first line contains two integers *k* and *p* (1<=≤<=*k*<=≤<=105,<=1<=≤<=*p*<=≤<=109).
Output single integer — answer to the problem.
[ "2 100\n", "5 30\n" ]
[ "33\n", "15\n" ]
In the first example, the smallest zcy number is 11, and the second smallest zcy number is 22. In the second example, <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/68fffad54395f7d920ad0384e07c6215ddc64141.png" style="max-width: 100.0%;max-height: 100.0%;"/>.
1,000
[ { "input": "2 100", "output": "33" }, { "input": "5 30", "output": "15" }, { "input": "42147 412393322", "output": "251637727" }, { "input": "77809 868097296", "output": "440411873" }, { "input": "5105 443422097", "output": "363192634" }, { "input": "75615 376679484", "output": "373089399" }, { "input": "22951 23793302", "output": "1898631" }, { "input": "12785 993582106", "output": "286204743" }, { "input": "60276 428978808", "output": "376477293" }, { "input": "84776 104860385", "output": "10209596" }, { "input": "41984 653766991", "output": "17823101" }, { "input": "100000 1000000000", "output": "495495496" }, { "input": "41163 472310076", "output": "207304047" }, { "input": "6983 765352180", "output": "586866999" }, { "input": "33493 967727004", "output": "305705165" }, { "input": "90898 94010922", "output": "65928728" }, { "input": "67298 349286579", "output": "156435206" }, { "input": "92452 296773064", "output": "229486976" }, { "input": "58832 563860457", "output": "16775206" }, { "input": "90234 156145441", "output": "44023160" }, { "input": "91454 977186148", "output": "681779748" }, { "input": "11108 444095250", "output": "188075844" }, { "input": "46304 584475527", "output": "275627129" }, { "input": "1 1", "output": "0" }, { "input": "1 1000000000", "output": "11" }, { "input": "100000 1", "output": "0" } ]
1,512,880,437
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
2
93
6,451,200
import string cmd = input().split() k_zcy = int(cmd[0]) p = int(cmd[1]) lst_zcy = [] for i in range (1, k_zcy+1): if i<10: zcy = i * 11 lst_zcy.append(zcy) else: for j in range (int(i//10), 11): zcy = (i * 9 + j ) * 11 lst_zcy.append(zcy) print(sum(lst_zcy) % p)
Title: Chtholly's request Time Limit: None seconds Memory Limit: None megabytes Problem Description: — I experienced so many great things. — You gave me memories like dreams... But I have to leave now... — One last request, can you... — Help me solve a Codeforces problem? — ...... — What? Chtholly has been thinking about a problem for days: If a number is palindrome and length of its decimal representation without leading zeros is even, we call it a zcy number. A number is palindrome means when written in decimal representation, it contains no leading zeros and reads the same forwards and backwards. For example 12321 and 1221 are palindromes and 123 and 12451 are not. Moreover, 1221 is zcy number and 12321 is not. Given integers *k* and *p*, calculate the sum of the *k* smallest zcy numbers and output this sum modulo *p*. Unfortunately, Willem isn't good at solving this kind of problems, so he asks you for help! Input Specification: The first line contains two integers *k* and *p* (1<=≤<=*k*<=≤<=105,<=1<=≤<=*p*<=≤<=109). Output Specification: Output single integer — answer to the problem. Demo Input: ['2 100\n', '5 30\n'] Demo Output: ['33\n', '15\n'] Note: In the first example, the smallest zcy number is 11, and the second smallest zcy number is 22. In the second example, <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/68fffad54395f7d920ad0384e07c6215ddc64141.png" style="max-width: 100.0%;max-height: 100.0%;"/>.
```python import string cmd = input().split() k_zcy = int(cmd[0]) p = int(cmd[1]) lst_zcy = [] for i in range (1, k_zcy+1): if i<10: zcy = i * 11 lst_zcy.append(zcy) else: for j in range (int(i//10), 11): zcy = (i * 9 + j ) * 11 lst_zcy.append(zcy) print(sum(lst_zcy) % p) ```
0
468
C
Hack it!
PROGRAMMING
2,500
[ "binary search", "constructive algorithms", "math" ]
null
null
Little X has met the following problem recently. Let's define *f*(*x*) as the sum of digits in decimal representation of number *x* (for example, *f*(1234)<==<=1<=+<=2<=+<=3<=+<=4). You are to calculate Of course Little X has solved this problem quickly, has locked it, and then has tried to hack others. He has seen the following C++ code:
The first line contains a single integer *a* (1<=≤<=*a*<=≤<=1018).
Print two integers: *l*,<=*r* (1<=≤<=*l*<=≤<=*r*<=&lt;<=10200) — the required test data. Leading zeros aren't allowed. It's guaranteed that the solution exists.
[ "46\n", "126444381000032\n" ]
[ "1 10\n", "2333333 2333333333333\n" ]
none
1,500
[ { "input": "46", "output": "1 10" }, { "input": "126444381000032", "output": "2333333 2333333333333" }, { "input": "69645082595", "output": "613752823618441225798858488535 713259406474207764329704856394" }, { "input": "70602205995", "output": "11 249221334020432074498656960922" }, { "input": "33898130785", "output": "9 558855506346909386939077840182" }, { "input": "58929554039", "output": "22 855783114773435710171914224422" }, { "input": "81696185182", "output": "499118531974994927425925323518 956291458400902769638235161661" }, { "input": "1", "output": "149268802942315027273202513064 277551734280589260570057105889" }, { "input": "2", "output": "119692200833686078608961312319 629363568954685219494592939495" }, { "input": "3", "output": "2 302254410562920936884653943506" }, { "input": "4", "output": "284378053387469023431537894255 317250990020830090421009164911" }, { "input": "5", "output": "2 62668056583245293799710157951" }, { "input": "6", "output": "3 93810188780011787541394067841" }, { "input": "7", "output": "2 834286447477504059026206246185" }, { "input": "8", "output": "3 257583347960907690857477857197" }, { "input": "10", "output": "3 163048811987317819669274448265" }, { "input": "11", "output": "3 919618203693907154039906935669" }, { "input": "12", "output": "448221703341269567451520778454 698029790336105644790102859494" }, { "input": "43", "output": "9 172412961300207091437973214327" }, { "input": "36", "output": "8 619355518777647869838990701242" }, { "input": "65", "output": "6 709024330418134127413755925068" }, { "input": "43", "output": "7 669540448846929747909766131221" }, { "input": "23", "output": "2 104579054315773428039906118259" }, { "input": "100", "output": "15 324437778467489559125023403167" }, { "input": "10000", "output": "2 936791129091842315790163514642" }, { "input": "1000000", "output": "18 369591628030718549289473454545" }, { "input": "100000000", "output": "7 870405265198051697453938746950" }, { "input": "10000000000", "output": "20 972749766921651560604778558599" }, { "input": "1000000000000", "output": "6 68997070398311657294228230677" }, { "input": "100000000000000", "output": "249537318528661282822184562278 397003438246047829818181818181" }, { "input": "10000000000000000", "output": "10 778165727326620883431915444624" }, { "input": "1000000000000000000", "output": "408256298986776744812953390000 824018301451167837914299999999" }, { "input": "450000000000000000", "output": "2 357722688084551093593033993033" }, { "input": "432022", "output": "3 333556238531076799985515487090" }, { "input": "428033", "output": "22 730314748425770554502599499142" }, { "input": "776930", "output": "20 521232359366297130685112811874" }, { "input": "329824", "output": "308969571112207311167474021348 745620588073413831210052337999" }, { "input": "85058261498638", "output": "16 931187081941564769324316582547" }, { "input": "2130909834463", "output": "21 895378349209612431051450316022" }, { "input": "3427089130241", "output": "10 676758114393938690602742889714" }, { "input": "22881472397923", "output": "174523915446146844994793303441 429392837423394397373605399524" }, { "input": "756499070280135900", "output": "17 414254565210363110239866979636" }, { "input": "348919756917359012", "output": "15 148711424846749040017925495268" }, { "input": "789136710974630947", "output": "13 214740524663440316532540770911" }, { "input": "32851678509090784", "output": "15 728787006985867306455350840047" }, { "input": "219760524792138559", "output": "8 51530430692061277616906746431" }, { "input": "1000000007", "output": "19 96093944063249823335491170999" }, { "input": "999999874000003969", "output": "306259936121099507549028331741 983025349899931537481252156006" }, { "input": "999999999999999989", "output": "140766388309929586494194507367 705096656792775954903252198639" }, { "input": "999999999999999983", "output": "4 365946710276937286091309116340" }, { "input": "999999999999999999", "output": "26 983966655749419565978291923474" } ]
1,664,683,451
2,147,483,647
Python 3
OK
TESTS
51
46
0
a=int(input()) b=int(81e18) b%=a;b=a-b print(b,int(1e18)-1+b);
Title: Hack it! Time Limit: None seconds Memory Limit: None megabytes Problem Description: Little X has met the following problem recently. Let's define *f*(*x*) as the sum of digits in decimal representation of number *x* (for example, *f*(1234)<==<=1<=+<=2<=+<=3<=+<=4). You are to calculate Of course Little X has solved this problem quickly, has locked it, and then has tried to hack others. He has seen the following C++ code: Input Specification: The first line contains a single integer *a* (1<=≤<=*a*<=≤<=1018). Output Specification: Print two integers: *l*,<=*r* (1<=≤<=*l*<=≤<=*r*<=&lt;<=10200) — the required test data. Leading zeros aren't allowed. It's guaranteed that the solution exists. Demo Input: ['46\n', '126444381000032\n'] Demo Output: ['1 10\n', '2333333 2333333333333\n'] Note: none
```python a=int(input()) b=int(81e18) b%=a;b=a-b print(b,int(1e18)-1+b); ```
3
766
A
Mahmoud and Longest Uncommon Subsequence
PROGRAMMING
1,000
[ "constructive algorithms", "strings" ]
null
null
While Mahmoud and Ehab were practicing for IOI, they found a problem which name was Longest common subsequence. They solved it, and then Ehab challenged Mahmoud with another problem. Given two strings *a* and *b*, find the length of their longest uncommon subsequence, which is the longest string that is a subsequence of one of them and not a subsequence of the other. A subsequence of some string is a sequence of characters that appears in the same order in the string, The appearances don't have to be consecutive, for example, strings "ac", "bc", "abc" and "a" are subsequences of string "abc" while strings "abbc" and "acb" are not. The empty string is a subsequence of any string. Any string is a subsequence of itself.
The first line contains string *a*, and the second line — string *b*. Both of these strings are non-empty and consist of lowercase letters of English alphabet. The length of each string is not bigger than 105 characters.
If there's no uncommon subsequence, print "-1". Otherwise print the length of the longest uncommon subsequence of *a* and *b*.
[ "abcd\ndefgh\n", "a\na\n" ]
[ "5\n", "-1\n" ]
In the first example: you can choose "defgh" from string *b* as it is the longest subsequence of string *b* that doesn't appear as a subsequence of string *a*.
500
[ { "input": "abcd\ndefgh", "output": "5" }, { "input": "a\na", "output": "-1" }, { "input": "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaacccccccccccccccccccccccccccccccccccccccccccccccccc\naaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaadddddddddddddddddddddddddddddddddddddddddddddddddd", "output": "100" }, { "input": "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa\nbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb", "output": "199" }, { "input": "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa\nbbbbbbbbbbbbbbbbbbb", "output": "99" }, { "input": "abcde\nfghij", "output": "5" }, { "input": "abcde\nabcdf", "output": "5" }, { "input": "abcde\nbbcde", "output": "5" }, { "input": "abcde\neabcd", "output": "5" }, { "input": "abcdefgh\nabdcefgh", "output": "8" }, { "input": "mmmmm\nmnmmm", "output": "5" }, { "input": "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa\naaaaaaaaaaaaaaaaaabaaaaaaaaaaaaaaa", "output": "34" }, { "input": "abcdefghijklmnopqrstuvwxyz\nzabcdefghijklmnopqrstuvwxy", "output": "26" }, { "input": "a\nab", "output": "2" }, { "input": "b\nab", "output": "2" }, { "input": "ab\nb", "output": "2" }, { "input": "ab\nc", "output": "2" }, { "input": "aaaaaa\naaaaaa", "output": "-1" }, { "input": "abacaba\nabacaba", "output": "-1" }, { "input": "aabb\nbbaa", "output": "4" }, { "input": "ab\nba", "output": "2" }, { "input": "abcd\nabc", "output": "4" }, { "input": "abaa\nabaa", "output": "-1" }, { "input": "ab\nab", "output": "-1" }, { "input": "ab\nabcd", "output": "4" }, { "input": "abc\nabcd", "output": "4" }, { "input": "mo\nmomo", "output": "4" }, { "input": "koooooooooooooooo\nloooooooooooooooo", "output": "17" }, { "input": "aaa\naa", "output": "3" }, { "input": "abc\nabc", "output": "-1" }, { "input": "abcd\nabcd", "output": "-1" }, { "input": "abc\ncba", "output": "3" }, { "input": "ahc\nahc", "output": "-1" }, { "input": "abc\nbac", "output": "3" }, { "input": "aa\naaa", "output": "3" }, { "input": "aaa\naaa", "output": "-1" }, { "input": "abc\nacb", "output": "3" }, { "input": "abc\nab", "output": "3" }, { "input": "abb\nabb", "output": "-1" }, { "input": "abc\ncab", "output": "3" }, { "input": "aaaaaa\naaaaa", "output": "6" }, { "input": "aa\naab", "output": "3" }, { "input": "len\nlena", "output": "4" }, { "input": "aaaaa\naa", "output": "5" }, { "input": "aaa\naaaa", "output": "4" }, { "input": "bcd\nabcd", "output": "4" }, { "input": "aaabbc\naaaccc", "output": "6" }, { "input": "abcd\nzycd", "output": "4" }, { "input": "baa\nzaa", "output": "3" }, { "input": "asdf\nadfs", "output": "4" }, { "input": "abcdefgh\nabcdefgh", "output": "-1" }, { "input": "aba\naab", "output": "3" }, { "input": "aba\naba", "output": "-1" }, { "input": "abcccc\naccccc", "output": "6" }, { "input": "acb\nabc", "output": "3" }, { "input": "a\naa", "output": "2" }, { "input": "abababab\nab", "output": "8" }, { "input": "ababab\nab", "output": "6" } ]
1,668,161,841
2,147,483,647
PyPy 3-64
WRONG_ANSWER
TESTS
23
62
1,843,200
a = input() b = input() if len(a) < len(b): c = a a = b b = c if len(a) == len(b) and a != b: print(len(a)) elif len(a) == len(b) and a == b: print(-1) else: a = a.replace(b, "*") countm = 0 count = 0 for i in range(0, len(a)): if(a[i] == "*"): if(countm < count): countm = count count = 0 else: count += 1 if a.count("*"): print(max(countm, count) + len(b) - 1) else: print(count)
Title: Mahmoud and Longest Uncommon Subsequence Time Limit: None seconds Memory Limit: None megabytes Problem Description: While Mahmoud and Ehab were practicing for IOI, they found a problem which name was Longest common subsequence. They solved it, and then Ehab challenged Mahmoud with another problem. Given two strings *a* and *b*, find the length of their longest uncommon subsequence, which is the longest string that is a subsequence of one of them and not a subsequence of the other. A subsequence of some string is a sequence of characters that appears in the same order in the string, The appearances don't have to be consecutive, for example, strings "ac", "bc", "abc" and "a" are subsequences of string "abc" while strings "abbc" and "acb" are not. The empty string is a subsequence of any string. Any string is a subsequence of itself. Input Specification: The first line contains string *a*, and the second line — string *b*. Both of these strings are non-empty and consist of lowercase letters of English alphabet. The length of each string is not bigger than 105 characters. Output Specification: If there's no uncommon subsequence, print "-1". Otherwise print the length of the longest uncommon subsequence of *a* and *b*. Demo Input: ['abcd\ndefgh\n', 'a\na\n'] Demo Output: ['5\n', '-1\n'] Note: In the first example: you can choose "defgh" from string *b* as it is the longest subsequence of string *b* that doesn't appear as a subsequence of string *a*.
```python a = input() b = input() if len(a) < len(b): c = a a = b b = c if len(a) == len(b) and a != b: print(len(a)) elif len(a) == len(b) and a == b: print(-1) else: a = a.replace(b, "*") countm = 0 count = 0 for i in range(0, len(a)): if(a[i] == "*"): if(countm < count): countm = count count = 0 else: count += 1 if a.count("*"): print(max(countm, count) + len(b) - 1) else: print(count) ```
0
78
B
Easter Eggs
PROGRAMMING
1,200
[ "constructive algorithms", "implementation" ]
B. Easter Eggs
2
256
The Easter Rabbit laid *n* eggs in a circle and is about to paint them. Each egg should be painted one color out of 7: red, orange, yellow, green, blue, indigo or violet. Also, the following conditions should be satisfied: - Each of the seven colors should be used to paint at least one egg. - Any four eggs lying sequentially should be painted different colors. Help the Easter Rabbit paint the eggs in the required manner. We know that it is always possible.
The only line contains an integer *n* — the amount of eggs (7<=≤<=*n*<=≤<=100).
Print one line consisting of *n* characters. The *i*-th character should describe the color of the *i*-th egg in the order they lie in the circle. The colors should be represented as follows: "R" stands for red, "O" stands for orange, "Y" stands for yellow, "G" stands for green, "B" stands for blue, "I" stands for indigo, "V" stands for violet. If there are several answers, print any of them.
[ "8\n", "13\n" ]
[ "ROYGRBIV\n", "ROYGBIVGBIVYG\n" ]
The way the eggs will be painted in the first sample is shown on the picture:
1,000
[ { "input": "8", "output": "ROYGBIVG" }, { "input": "13", "output": "ROYGBIVOYGBIV" }, { "input": "7", "output": "ROYGBIV" }, { "input": "10", "output": "ROYGBIVYGB" }, { "input": "14", "output": "ROYGBIVROYGBIV" }, { "input": "50", "output": "ROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVG" }, { "input": "9", "output": "ROYGBIVGB" }, { "input": "11", "output": "ROYGBIVYGBI" }, { "input": "12", "output": "ROYGBIVOYGBI" }, { "input": "15", "output": "ROYGBIVROYGBIVG" }, { "input": "16", "output": "ROYGBIVROYGBIVGB" }, { "input": "17", "output": "ROYGBIVROYGBIVYGB" }, { "input": "18", "output": "ROYGBIVROYGBIVYGBI" }, { "input": "19", "output": "ROYGBIVROYGBIVOYGBI" }, { "input": "20", "output": "ROYGBIVROYGBIVOYGBIV" }, { "input": "21", "output": "ROYGBIVROYGBIVROYGBIV" }, { "input": "22", "output": "ROYGBIVROYGBIVROYGBIVG" }, { "input": "23", "output": "ROYGBIVROYGBIVROYGBIVGB" }, { "input": "24", "output": "ROYGBIVROYGBIVROYGBIVYGB" }, { "input": "25", "output": "ROYGBIVROYGBIVROYGBIVYGBI" }, { "input": "28", "output": "ROYGBIVROYGBIVROYGBIVROYGBIV" }, { "input": "29", "output": "ROYGBIVROYGBIVROYGBIVROYGBIVG" }, { "input": "34", "output": "ROYGBIVROYGBIVROYGBIVROYGBIVOYGBIV" }, { "input": "43", "output": "ROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVG" }, { "input": "61", "output": "ROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVOYGBI" }, { "input": "79", "output": "ROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVGB" }, { "input": "81", "output": "ROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVYGBI" }, { "input": "92", "output": "ROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVG" }, { "input": "95", "output": "ROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVYGBI" }, { "input": "96", "output": "ROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVOYGBI" }, { "input": "97", "output": "ROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVOYGBIV" }, { "input": "98", "output": "ROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIV" }, { "input": "99", "output": "ROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVG" }, { "input": "100", "output": "ROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVGB" } ]
1,571,501,662
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
0
186
0
colors = ['R', 'O', 'Y', 'G', 'B', 'I', 'V'] nb_of_points = int(input()) circles_colors = [None for _ in range(nb_of_points)] index_color = 0 index_circle = 0 for _ in range(nb_of_points): next_color_index = (index_circle + 1) % len(circles_colors) while (circles_colors[next_color_index] == colors[index_color]): index_color = (index_color + 1) % len(colors) circles_colors[index_circle] = colors[index_color] index_color = (index_color + 1) % len(colors) index_circle += 1 print("".join(circles_colors))
Title: Easter Eggs Time Limit: 2 seconds Memory Limit: 256 megabytes Problem Description: The Easter Rabbit laid *n* eggs in a circle and is about to paint them. Each egg should be painted one color out of 7: red, orange, yellow, green, blue, indigo or violet. Also, the following conditions should be satisfied: - Each of the seven colors should be used to paint at least one egg. - Any four eggs lying sequentially should be painted different colors. Help the Easter Rabbit paint the eggs in the required manner. We know that it is always possible. Input Specification: The only line contains an integer *n* — the amount of eggs (7<=≤<=*n*<=≤<=100). Output Specification: Print one line consisting of *n* characters. The *i*-th character should describe the color of the *i*-th egg in the order they lie in the circle. The colors should be represented as follows: "R" stands for red, "O" stands for orange, "Y" stands for yellow, "G" stands for green, "B" stands for blue, "I" stands for indigo, "V" stands for violet. If there are several answers, print any of them. Demo Input: ['8\n', '13\n'] Demo Output: ['ROYGRBIV\n', 'ROYGBIVGBIVYG\n'] Note: The way the eggs will be painted in the first sample is shown on the picture:
```python colors = ['R', 'O', 'Y', 'G', 'B', 'I', 'V'] nb_of_points = int(input()) circles_colors = [None for _ in range(nb_of_points)] index_color = 0 index_circle = 0 for _ in range(nb_of_points): next_color_index = (index_circle + 1) % len(circles_colors) while (circles_colors[next_color_index] == colors[index_color]): index_color = (index_color + 1) % len(colors) circles_colors[index_circle] = colors[index_color] index_color = (index_color + 1) % len(colors) index_circle += 1 print("".join(circles_colors)) ```
0
287
A
IQ Test
PROGRAMMING
1,100
[ "brute force", "implementation" ]
null
null
In the city of Ultima Thule job applicants are often offered an IQ test. The test is as follows: the person gets a piece of squared paper with a 4<=×<=4 square painted on it. Some of the square's cells are painted black and others are painted white. Your task is to repaint at most one cell the other color so that the picture has a 2<=×<=2 square, completely consisting of cells of the same color. If the initial picture already has such a square, the person should just say so and the test will be completed. Your task is to write a program that determines whether it is possible to pass the test. You cannot pass the test if either repainting any cell or no action doesn't result in a 2<=×<=2 square, consisting of cells of the same color.
Four lines contain four characters each: the *j*-th character of the *i*-th line equals "." if the cell in the *i*-th row and the *j*-th column of the square is painted white, and "#", if the cell is black.
Print "YES" (without the quotes), if the test can be passed and "NO" (without the quotes) otherwise.
[ "####\n.#..\n####\n....\n", "####\n....\n####\n....\n" ]
[ "YES\n", "NO\n" ]
In the first test sample it is enough to repaint the first cell in the second row. After such repainting the required 2 × 2 square is on the intersection of the 1-st and 2-nd row with the 1-st and 2-nd column.
500
[ { "input": "###.\n...#\n###.\n...#", "output": "NO" }, { "input": ".##.\n#..#\n.##.\n#..#", "output": "NO" }, { "input": ".#.#\n#.#.\n.#.#\n#.#.", "output": "NO" }, { "input": "##..\n..##\n##..\n..##", "output": "NO" }, { "input": "#.#.\n#.#.\n.#.#\n.#.#", "output": "NO" }, { "input": ".#.#\n#.#.\n#.#.\n#.#.", "output": "NO" }, { "input": ".#.#\n#.#.\n#.#.\n.#.#", "output": "NO" }, { "input": "#.#.\n#.#.\n#.#.\n#.#.", "output": "NO" }, { "input": ".#.#\n.#.#\n.#.#\n.#.#", "output": "NO" }, { "input": "#..#\n.##.\n####\n####", "output": "YES" }, { "input": "#.#.\n.###\n#.#.\n.###", "output": "YES" }, { "input": "#..#\n.##.\n.##.\n#..#", "output": "YES" }, { "input": ".##.\n.#..\n##.#\n#..#", "output": "YES" }, { "input": ".##.\n##..\n#..#\n..##", "output": "YES" }, { "input": "##..\n##..\n..##\n..##", "output": "YES" }, { "input": ".#..\n###.\n.#.#\n..#.", "output": "YES" }, { "input": "###.\n###.\n...#\n...#", "output": "YES" }, { "input": "#.##\n##.#\n#.##\n##.#", "output": "YES" }, { "input": ".#.#\n#.#.\n.#.#\n#.##", "output": "YES" }, { "input": "##..\n..##\n##..\n...#", "output": "YES" }, { "input": ".#..\n..##\n##..\n..##", "output": "YES" }, { "input": "##..\n...#\n##..\n...#", "output": "YES" }, { "input": ".#..\n..#.\n.#..\n..#.", "output": "YES" }, { "input": "....\n....\n....\n.#.#", "output": "YES" }, { "input": "....\n....\n....\n...#", "output": "YES" } ]
1,689,634,619
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
7
31
0
page = [] for _ in range(4): page.append(input()) for i in range(3): for j in range(3): if page[i][j] == page[i+1][j] == page[j+1][i]: print('YES') exit() print('NO')
Title: IQ Test Time Limit: None seconds Memory Limit: None megabytes Problem Description: In the city of Ultima Thule job applicants are often offered an IQ test. The test is as follows: the person gets a piece of squared paper with a 4<=×<=4 square painted on it. Some of the square's cells are painted black and others are painted white. Your task is to repaint at most one cell the other color so that the picture has a 2<=×<=2 square, completely consisting of cells of the same color. If the initial picture already has such a square, the person should just say so and the test will be completed. Your task is to write a program that determines whether it is possible to pass the test. You cannot pass the test if either repainting any cell or no action doesn't result in a 2<=×<=2 square, consisting of cells of the same color. Input Specification: Four lines contain four characters each: the *j*-th character of the *i*-th line equals "." if the cell in the *i*-th row and the *j*-th column of the square is painted white, and "#", if the cell is black. Output Specification: Print "YES" (without the quotes), if the test can be passed and "NO" (without the quotes) otherwise. Demo Input: ['####\n.#..\n####\n....\n', '####\n....\n####\n....\n'] Demo Output: ['YES\n', 'NO\n'] Note: In the first test sample it is enough to repaint the first cell in the second row. After such repainting the required 2 × 2 square is on the intersection of the 1-st and 2-nd row with the 1-st and 2-nd column.
```python page = [] for _ in range(4): page.append(input()) for i in range(3): for j in range(3): if page[i][j] == page[i+1][j] == page[j+1][i]: print('YES') exit() print('NO') ```
0
4
A
Watermelon
PROGRAMMING
800
[ "brute force", "math" ]
A. Watermelon
1
64
One hot summer day Pete and his friend Billy decided to buy a watermelon. They chose the biggest and the ripest one, in their opinion. After that the watermelon was weighed, and the scales showed *w* kilos. They rushed home, dying of thirst, and decided to divide the berry, however they faced a hard problem. Pete and Billy are great fans of even numbers, that's why they want to divide the watermelon in such a way that each of the two parts weighs even number of kilos, at the same time it is not obligatory that the parts are equal. The boys are extremely tired and want to start their meal as soon as possible, that's why you should help them and find out, if they can divide the watermelon in the way they want. For sure, each of them should get a part of positive weight.
The first (and the only) input line contains integer number *w* (1<=≤<=*w*<=≤<=100) — the weight of the watermelon bought by the boys.
Print YES, if the boys can divide the watermelon into two parts, each of them weighing even number of kilos; and NO in the opposite case.
[ "8\n" ]
[ "YES\n" ]
For example, the boys can divide the watermelon into two parts of 2 and 6 kilos respectively (another variant — two parts of 4 and 4 kilos).
0
[ { "input": "8", "output": "YES" }, { "input": "5", "output": "NO" }, { "input": "4", "output": "YES" }, { "input": "3", "output": "NO" }, { "input": "2", "output": "NO" }, { "input": "1", "output": "NO" }, { "input": "7", "output": "NO" }, { "input": "6", "output": "YES" }, { "input": "10", "output": "YES" }, { "input": "9", "output": "NO" }, { "input": "53", "output": "NO" }, { "input": "77", "output": "NO" }, { "input": "32", "output": "YES" }, { "input": "44", "output": "YES" }, { "input": "98", "output": "YES" }, { "input": "99", "output": "NO" }, { "input": "90", "output": "YES" }, { "input": "67", "output": "NO" }, { "input": "100", "output": "YES" }, { "input": "88", "output": "YES" } ]
1,690,726,804
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
4
62
0
t = int(input()) if (t/2)% 2 == 0: print("YES") elif (t/2+1) % 2 == 0 and (t-(t/2+1)) % 2 == 0: print("YES") else: print("NO")
Title: Watermelon Time Limit: 1 seconds Memory Limit: 64 megabytes Problem Description: One hot summer day Pete and his friend Billy decided to buy a watermelon. They chose the biggest and the ripest one, in their opinion. After that the watermelon was weighed, and the scales showed *w* kilos. They rushed home, dying of thirst, and decided to divide the berry, however they faced a hard problem. Pete and Billy are great fans of even numbers, that's why they want to divide the watermelon in such a way that each of the two parts weighs even number of kilos, at the same time it is not obligatory that the parts are equal. The boys are extremely tired and want to start their meal as soon as possible, that's why you should help them and find out, if they can divide the watermelon in the way they want. For sure, each of them should get a part of positive weight. Input Specification: The first (and the only) input line contains integer number *w* (1<=≤<=*w*<=≤<=100) — the weight of the watermelon bought by the boys. Output Specification: Print YES, if the boys can divide the watermelon into two parts, each of them weighing even number of kilos; and NO in the opposite case. Demo Input: ['8\n'] Demo Output: ['YES\n'] Note: For example, the boys can divide the watermelon into two parts of 2 and 6 kilos respectively (another variant — two parts of 4 and 4 kilos).
```python t = int(input()) if (t/2)% 2 == 0: print("YES") elif (t/2+1) % 2 == 0 and (t-(t/2+1)) % 2 == 0: print("YES") else: print("NO") ```
0
189
A
Cut Ribbon
PROGRAMMING
1,300
[ "brute force", "dp" ]
null
null
Polycarpus has a ribbon, its length is *n*. He wants to cut the ribbon in a way that fulfils the following two conditions: - After the cutting each ribbon piece should have length *a*, *b* or *c*. - After the cutting the number of ribbon pieces should be maximum. Help Polycarpus and find the number of ribbon pieces after the required cutting.
The first line contains four space-separated integers *n*, *a*, *b* and *c* (1<=≤<=*n*,<=*a*,<=*b*,<=*c*<=≤<=4000) — the length of the original ribbon and the acceptable lengths of the ribbon pieces after the cutting, correspondingly. The numbers *a*, *b* and *c* can coincide.
Print a single number — the maximum possible number of ribbon pieces. It is guaranteed that at least one correct ribbon cutting exists.
[ "5 5 3 2\n", "7 5 5 2\n" ]
[ "2\n", "2\n" ]
In the first example Polycarpus can cut the ribbon in such way: the first piece has length 2, the second piece has length 3. In the second example Polycarpus can cut the ribbon in such way: the first piece has length 5, the second piece has length 2.
500
[ { "input": "5 5 3 2", "output": "2" }, { "input": "7 5 5 2", "output": "2" }, { "input": "4 4 4 4", "output": "1" }, { "input": "1 1 1 1", "output": "1" }, { "input": "4000 1 2 3", "output": "4000" }, { "input": "4000 3 4 5", "output": "1333" }, { "input": "10 3 4 5", "output": "3" }, { "input": "100 23 15 50", "output": "2" }, { "input": "3119 3515 1021 7", "output": "11" }, { "input": "918 102 1327 1733", "output": "9" }, { "input": "3164 42 430 1309", "output": "15" }, { "input": "3043 317 1141 2438", "output": "7" }, { "input": "26 1 772 2683", "output": "26" }, { "input": "370 2 1 15", "output": "370" }, { "input": "734 12 6 2", "output": "367" }, { "input": "418 18 14 17", "output": "29" }, { "input": "18 16 28 9", "output": "2" }, { "input": "14 6 2 17", "output": "7" }, { "input": "29 27 18 2", "output": "2" }, { "input": "29 12 7 10", "output": "3" }, { "input": "27 23 4 3", "output": "9" }, { "input": "5 14 5 2", "output": "1" }, { "input": "5 17 26 5", "output": "1" }, { "input": "9 1 10 3", "output": "9" }, { "input": "2 19 15 1", "output": "2" }, { "input": "4 6 4 9", "output": "1" }, { "input": "10 6 2 9", "output": "5" }, { "input": "2 2 9 6", "output": "1" }, { "input": "6 2 4 1", "output": "6" }, { "input": "27 24 5 27", "output": "1" }, { "input": "2683 83 26 2709", "output": "101" }, { "input": "728 412 789 158", "output": "3" }, { "input": "3964 4 2916 176", "output": "991" }, { "input": "3399 2035 2 3334", "output": "683" }, { "input": "3455 244 3301 3", "output": "991" }, { "input": "595 2263 3625 1", "output": "595" }, { "input": "4000 1 1 1", "output": "4000" }, { "input": "3999 2 2 3999", "output": "1" }, { "input": "25 6 8 11", "output": "3" }, { "input": "4000 500 1000 2000", "output": "8" }, { "input": "53 10 11 23", "output": "5" }, { "input": "100 100 1 1", "output": "100" }, { "input": "17 3 4 10", "output": "5" }, { "input": "413 101 102 105", "output": "4" }, { "input": "490 4 49 50", "output": "111" }, { "input": "3999 2 3 3", "output": "1999" }, { "input": "8 3 8 4", "output": "2" }, { "input": "5 1 3 3", "output": "5" }, { "input": "100 3 17 22", "output": "27" }, { "input": "4000 2 3 4", "output": "2000" }, { "input": "4000 3 3 5", "output": "1332" }, { "input": "13 4 6 7", "output": "2" }, { "input": "4000 5 2 2", "output": "2000" }, { "input": "3999 2 2 3", "output": "1999" }, { "input": "4000 33 7 3333", "output": "564" }, { "input": "60 33 20 9", "output": "4" }, { "input": "100 9 11 99", "output": "10" }, { "input": "2009 6 8 9", "output": "334" } ]
1,675,236,785
2,147,483,647
PyPy 3
WRONG_ANSWER
TESTS
1
62
0
# #link to original problem: https://codeforces.com/problemset/problem/189/A # import scipy # n, a, b, c = input().split(" ") # result = scipy.optimize.linprog( # [-1, -1, -1], # A_eq = [[a, b, c]], # b_eq = [n], # integrality = 3, # ) # print(f"{int(result.x[0] + result.x[1] + result.x[2])}") n, a, b, c = map(int, input().split(" ")) def f(n, a, b, c): if n < 0: return -1 elif n == 0: return 0 else: return max(f(n - a, a, b, c), f(n - b, a, b, c), f(n - c, a, b, c)) + 1 print(int(f(n, a, b, c)))
Title: Cut Ribbon Time Limit: None seconds Memory Limit: None megabytes Problem Description: Polycarpus has a ribbon, its length is *n*. He wants to cut the ribbon in a way that fulfils the following two conditions: - After the cutting each ribbon piece should have length *a*, *b* or *c*. - After the cutting the number of ribbon pieces should be maximum. Help Polycarpus and find the number of ribbon pieces after the required cutting. Input Specification: The first line contains four space-separated integers *n*, *a*, *b* and *c* (1<=≤<=*n*,<=*a*,<=*b*,<=*c*<=≤<=4000) — the length of the original ribbon and the acceptable lengths of the ribbon pieces after the cutting, correspondingly. The numbers *a*, *b* and *c* can coincide. Output Specification: Print a single number — the maximum possible number of ribbon pieces. It is guaranteed that at least one correct ribbon cutting exists. Demo Input: ['5 5 3 2\n', '7 5 5 2\n'] Demo Output: ['2\n', '2\n'] Note: In the first example Polycarpus can cut the ribbon in such way: the first piece has length 2, the second piece has length 3. In the second example Polycarpus can cut the ribbon in such way: the first piece has length 5, the second piece has length 2.
```python # #link to original problem: https://codeforces.com/problemset/problem/189/A # import scipy # n, a, b, c = input().split(" ") # result = scipy.optimize.linprog( # [-1, -1, -1], # A_eq = [[a, b, c]], # b_eq = [n], # integrality = 3, # ) # print(f"{int(result.x[0] + result.x[1] + result.x[2])}") n, a, b, c = map(int, input().split(" ")) def f(n, a, b, c): if n < 0: return -1 elif n == 0: return 0 else: return max(f(n - a, a, b, c), f(n - b, a, b, c), f(n - c, a, b, c)) + 1 print(int(f(n, a, b, c))) ```
0
719
B
Anatoly and Cockroaches
PROGRAMMING
1,400
[ "greedy" ]
null
null
Anatoly lives in the university dorm as many other students do. As you know, cockroaches are also living there together with students. Cockroaches might be of two colors: black and red. There are *n* cockroaches living in Anatoly's room. Anatoly just made all his cockroaches to form a single line. As he is a perfectionist, he would like the colors of cockroaches in the line to alternate. He has a can of black paint and a can of red paint. In one turn he can either swap any two cockroaches, or take any single cockroach and change it's color. Help Anatoly find out the minimum number of turns he needs to make the colors of cockroaches in the line alternate.
The first line of the input contains a single integer *n* (1<=≤<=*n*<=≤<=100<=000) — the number of cockroaches. The second line contains a string of length *n*, consisting of characters 'b' and 'r' that denote black cockroach and red cockroach respectively.
Print one integer — the minimum number of moves Anatoly has to perform in order to make the colors of cockroaches in the line to alternate.
[ "5\nrbbrr\n", "5\nbbbbb\n", "3\nrbr\n" ]
[ "1\n", "2\n", "0\n" ]
In the first sample, Anatoly has to swap third and fourth cockroaches. He needs 1 turn to do this. In the second sample, the optimum answer is to paint the second and the fourth cockroaches red. This requires 2 turns. In the third sample, the colors of cockroaches in the line are alternating already, thus the answer is 0.
1,000
[ { "input": "5\nrbbrr", "output": "1" }, { "input": "5\nbbbbb", "output": "2" }, { "input": "3\nrbr", "output": "0" }, { "input": "13\nrbbbrbrrbrrbb", "output": "3" }, { "input": "18\nrrrrrrrrrrrrrrrrrb", "output": "8" }, { "input": "100\nbrbbbrrrbbrbrbbrbbrbbbbrbbrrbbbrrbbbbrbrbbbbbbbbbbbbbbbbrrrrbbbbrrrbbbbbbbrbrrbrbbbbrrrbbbbrbbrbbbrb", "output": "34" }, { "input": "166\nrbbbbbbbbbbbbrbrrbbrbbbrbbbbbbbbbbrbbbbbbrbbbrbbbbbrbbbbbbbrbbbbbbbrbbrbbbbbbbbrbbbbbbbbbbbbbbrrbbbrbbbbbbbbbbbbbbrbrbbbbbbbbbbbrbbbbbbbbbbbbbbrbbbbbbbbbbbbbbbbbbbbbb", "output": "70" }, { "input": "1\nr", "output": "0" }, { "input": "1\nb", "output": "0" }, { "input": "2\nrb", "output": "0" }, { "input": "2\nbr", "output": "0" }, { "input": "2\nrr", "output": "1" }, { "input": "2\nbb", "output": "1" }, { "input": "8\nrbbrbrbr", "output": "1" }, { "input": "7\nrrbrbrb", "output": "1" } ]
1,474,639,860
3,960
Python 3
WRONG_ANSWER
PRETESTS
0
31
0
def findMinSteps(listRoachesLeft, numRoachesSeen ,steps, n): if numRoachesSeen == n - 1: return steps if listRoachesLeft[numRoachesSeen] != listRoachesLeft[numRoachesSeen + 1]: return findMinSteps(listRoachesLeft, numRoachesSeen + 1 ,steps, n) else: swapList = listRoachesLeft paintList = listRoachesLeft if paintList[numRoachesSeen] == "b": paintList[:numRoachesSeen] + "r" + paintList[numRoachesSeen + 1 :] else: paintList[:numRoachesSeen] + "b" + paintList[numRoachesSeen + 1 :] swapList = listRoachesLeft[:numRoachesSeen] + listRoachesLeft[numRoachesSeen + 1] + listRoachesLeft[numRoachesSeen] + listRoachesLeft[numRoachesSeen + 2 :] stepsSwap = findMinSteps(swapList, numRoachesSeen + 1 ,steps + 1, n) stepsPaint = findMinSteps(paintList, numRoachesSeen + 1 ,steps + 1, n) return min(stepsPaint,stepsSwap) n = input() roaches = input() print(findMinSteps(roaches, 0 ,0, int(n)))
Title: Anatoly and Cockroaches Time Limit: None seconds Memory Limit: None megabytes Problem Description: Anatoly lives in the university dorm as many other students do. As you know, cockroaches are also living there together with students. Cockroaches might be of two colors: black and red. There are *n* cockroaches living in Anatoly's room. Anatoly just made all his cockroaches to form a single line. As he is a perfectionist, he would like the colors of cockroaches in the line to alternate. He has a can of black paint and a can of red paint. In one turn he can either swap any two cockroaches, or take any single cockroach and change it's color. Help Anatoly find out the minimum number of turns he needs to make the colors of cockroaches in the line alternate. Input Specification: The first line of the input contains a single integer *n* (1<=≤<=*n*<=≤<=100<=000) — the number of cockroaches. The second line contains a string of length *n*, consisting of characters 'b' and 'r' that denote black cockroach and red cockroach respectively. Output Specification: Print one integer — the minimum number of moves Anatoly has to perform in order to make the colors of cockroaches in the line to alternate. Demo Input: ['5\nrbbrr\n', '5\nbbbbb\n', '3\nrbr\n'] Demo Output: ['1\n', '2\n', '0\n'] Note: In the first sample, Anatoly has to swap third and fourth cockroaches. He needs 1 turn to do this. In the second sample, the optimum answer is to paint the second and the fourth cockroaches red. This requires 2 turns. In the third sample, the colors of cockroaches in the line are alternating already, thus the answer is 0.
```python def findMinSteps(listRoachesLeft, numRoachesSeen ,steps, n): if numRoachesSeen == n - 1: return steps if listRoachesLeft[numRoachesSeen] != listRoachesLeft[numRoachesSeen + 1]: return findMinSteps(listRoachesLeft, numRoachesSeen + 1 ,steps, n) else: swapList = listRoachesLeft paintList = listRoachesLeft if paintList[numRoachesSeen] == "b": paintList[:numRoachesSeen] + "r" + paintList[numRoachesSeen + 1 :] else: paintList[:numRoachesSeen] + "b" + paintList[numRoachesSeen + 1 :] swapList = listRoachesLeft[:numRoachesSeen] + listRoachesLeft[numRoachesSeen + 1] + listRoachesLeft[numRoachesSeen] + listRoachesLeft[numRoachesSeen + 2 :] stepsSwap = findMinSteps(swapList, numRoachesSeen + 1 ,steps + 1, n) stepsPaint = findMinSteps(paintList, numRoachesSeen + 1 ,steps + 1, n) return min(stepsPaint,stepsSwap) n = input() roaches = input() print(findMinSteps(roaches, 0 ,0, int(n))) ```
0
914
A
Perfect Squares
PROGRAMMING
900
[ "brute force", "implementation", "math" ]
null
null
Given an array *a*1,<=*a*2,<=...,<=*a**n* of *n* integers, find the largest number in the array that is not a perfect square. A number *x* is said to be a perfect square if there exists an integer *y* such that *x*<==<=*y*2.
The first line contains a single integer *n* (1<=≤<=*n*<=≤<=1000) — the number of elements in the array. The second line contains *n* integers *a*1,<=*a*2,<=...,<=*a**n* (<=-<=106<=≤<=*a**i*<=≤<=106) — the elements of the array. It is guaranteed that at least one element of the array is not a perfect square.
Print the largest number in the array which is not a perfect square. It is guaranteed that an answer always exists.
[ "2\n4 2\n", "8\n1 2 4 8 16 32 64 576\n" ]
[ "2\n", "32\n" ]
In the first sample case, 4 is a perfect square, so the largest number in the array that is not a perfect square is 2.
500
[ { "input": "2\n4 2", "output": "2" }, { "input": "8\n1 2 4 8 16 32 64 576", "output": "32" }, { "input": "3\n-1 -4 -9", "output": "-1" }, { "input": "5\n918375 169764 598796 76602 538757", "output": "918375" }, { "input": "5\n804610 765625 2916 381050 93025", "output": "804610" }, { "input": "5\n984065 842724 127449 525625 573049", "output": "984065" }, { "input": "2\n226505 477482", "output": "477482" }, { "input": "2\n370881 659345", "output": "659345" }, { "input": "2\n4 5", "output": "5" }, { "input": "2\n3 4", "output": "3" }, { "input": "2\n999999 1000000", "output": "999999" }, { "input": "3\n-1 -2 -3", "output": "-1" }, { "input": "2\n-1000000 1000000", "output": "-1000000" }, { "input": "2\n-1 0", "output": "-1" }, { "input": "1\n2", "output": "2" }, { "input": "1\n-1", "output": "-1" }, { "input": "35\n-871271 -169147 -590893 -400197 -476793 0 -15745 -890852 -124052 -631140 -238569 -597194 -147909 -928925 -587628 -569656 -581425 -963116 -665954 -506797 -196044 -309770 -701921 -926257 -152426 -991371 -624235 -557143 -689886 -59804 -549134 -107407 -182016 -24153 -607462", "output": "-15745" }, { "input": "16\n-882343 -791322 0 -986738 -415891 -823354 -840236 -552554 -760908 -331993 -549078 -863759 -913261 -937429 -257875 -602322", "output": "-257875" }, { "input": "71\n908209 289 44521 240100 680625 274576 212521 91809 506944 499849 3844 15376 592900 58081 240100 984064 732736 257049 600625 180625 130321 580644 261121 75625 46225 853776 485809 700569 817216 268324 293764 528529 25921 399424 175561 99856 295936 20736 611524 13924 470596 574564 5329 15376 676 431649 145161 697225 41616 550564 514089 9409 227529 1681 839056 3721 552049 465124 38809 197136 659344 214369 998001 44944 3844 186624 362404 -766506 739600 10816 299209", "output": "-766506" }, { "input": "30\n192721 -950059 -734656 625 247009 -423468 318096 622521 678976 777924 1444 748303 27556 62001 795664 89401 221841 -483208 467856 477109 196 -461813 831744 772641 574564 -519370 861184 67600 -717966 -259259", "output": "748303" }, { "input": "35\n628849 962361 436921 944784 444889 29241 -514806 171396 685584 -823202 -929730 6982 198025 783225 552049 -957165 782287 -659167 -414846 695556 -336330 41616 963781 71289 119639 952576 -346713 178929 232324 121802 393266 841 649636 179555 998001", "output": "963781" }, { "input": "53\n280988 756430 -515570 -248578 170649 -21608 642677 216770 827291 589500 940901 216097 -118956 -919104 -319264 -761585 289479 499613 588276 883036 480518 -323196 -274570 -406556 -381484 -956025 702135 -445274 -783543 136593 153664 897473 352651 737974 -21123 -284944 501734 898033 604429 624138 40804 248782 -786059 -304592 -209210 -312904 419820 -328648 -47331 -919227 -280955 104827 877304", "output": "940901" }, { "input": "15\n256 -227055 427717 827239 462070 66049 987533 -175306 -552810 -867915 -408251 -693957 -972981 -245827 896904", "output": "987533" }, { "input": "3\n-1 1 0", "output": "-1" }, { "input": "2\n0 -5", "output": "-5" }, { "input": "3\n-1 -2 0", "output": "-1" }, { "input": "2\n-5 0", "output": "-5" }, { "input": "1\n-439", "output": "-439" }, { "input": "1\n-1000000", "output": "-1000000" }, { "input": "1\n-917455", "output": "-917455" }, { "input": "3\n1 1 -1", "output": "-1" }, { "input": "2\n131073 1", "output": "131073" }, { "input": "2\n99999 3", "output": "99999" }, { "input": "2\n-524272 -1000000", "output": "-524272" }, { "input": "2\n15 131073", "output": "131073" } ]
1,598,205,023
2,147,483,647
PyPy 3
RUNTIME_ERROR
TESTS
2
202
22,323,200
n = int(input()) ai = list(map(int,input().split())) ai.sort() for i in range(n-1,-1,-1): ans = ai[i] if int(ans ** 0.5) ** 2 != ans: break print(ans)
Title: Perfect Squares Time Limit: None seconds Memory Limit: None megabytes Problem Description: Given an array *a*1,<=*a*2,<=...,<=*a**n* of *n* integers, find the largest number in the array that is not a perfect square. A number *x* is said to be a perfect square if there exists an integer *y* such that *x*<==<=*y*2. Input Specification: The first line contains a single integer *n* (1<=≤<=*n*<=≤<=1000) — the number of elements in the array. The second line contains *n* integers *a*1,<=*a*2,<=...,<=*a**n* (<=-<=106<=≤<=*a**i*<=≤<=106) — the elements of the array. It is guaranteed that at least one element of the array is not a perfect square. Output Specification: Print the largest number in the array which is not a perfect square. It is guaranteed that an answer always exists. Demo Input: ['2\n4 2\n', '8\n1 2 4 8 16 32 64 576\n'] Demo Output: ['2\n', '32\n'] Note: In the first sample case, 4 is a perfect square, so the largest number in the array that is not a perfect square is 2.
```python n = int(input()) ai = list(map(int,input().split())) ai.sort() for i in range(n-1,-1,-1): ans = ai[i] if int(ans ** 0.5) ** 2 != ans: break print(ans) ```
-1
719
B
Anatoly and Cockroaches
PROGRAMMING
1,400
[ "greedy" ]
null
null
Anatoly lives in the university dorm as many other students do. As you know, cockroaches are also living there together with students. Cockroaches might be of two colors: black and red. There are *n* cockroaches living in Anatoly's room. Anatoly just made all his cockroaches to form a single line. As he is a perfectionist, he would like the colors of cockroaches in the line to alternate. He has a can of black paint and a can of red paint. In one turn he can either swap any two cockroaches, or take any single cockroach and change it's color. Help Anatoly find out the minimum number of turns he needs to make the colors of cockroaches in the line alternate.
The first line of the input contains a single integer *n* (1<=≤<=*n*<=≤<=100<=000) — the number of cockroaches. The second line contains a string of length *n*, consisting of characters 'b' and 'r' that denote black cockroach and red cockroach respectively.
Print one integer — the minimum number of moves Anatoly has to perform in order to make the colors of cockroaches in the line to alternate.
[ "5\nrbbrr\n", "5\nbbbbb\n", "3\nrbr\n" ]
[ "1\n", "2\n", "0\n" ]
In the first sample, Anatoly has to swap third and fourth cockroaches. He needs 1 turn to do this. In the second sample, the optimum answer is to paint the second and the fourth cockroaches red. This requires 2 turns. In the third sample, the colors of cockroaches in the line are alternating already, thus the answer is 0.
1,000
[ { "input": "5\nrbbrr", "output": "1" }, { "input": "5\nbbbbb", "output": "2" }, { "input": "3\nrbr", "output": "0" }, { "input": "13\nrbbbrbrrbrrbb", "output": "3" }, { "input": "18\nrrrrrrrrrrrrrrrrrb", "output": "8" }, { "input": "100\nbrbbbrrrbbrbrbbrbbrbbbbrbbrrbbbrrbbbbrbrbbbbbbbbbbbbbbbbrrrrbbbbrrrbbbbbbbrbrrbrbbbbrrrbbbbrbbrbbbrb", "output": "34" }, { "input": "166\nrbbbbbbbbbbbbrbrrbbrbbbrbbbbbbbbbbrbbbbbbrbbbrbbbbbrbbbbbbbrbbbbbbbrbbrbbbbbbbbrbbbbbbbbbbbbbbrrbbbrbbbbbbbbbbbbbbrbrbbbbbbbbbbbrbbbbbbbbbbbbbbrbbbbbbbbbbbbbbbbbbbbbb", "output": "70" }, { "input": "1\nr", "output": "0" }, { "input": "1\nb", "output": "0" }, { "input": "2\nrb", "output": "0" }, { "input": "2\nbr", "output": "0" }, { "input": "2\nrr", "output": "1" }, { "input": "2\nbb", "output": "1" }, { "input": "8\nrbbrbrbr", "output": "1" }, { "input": "7\nrrbrbrb", "output": "1" } ]
1,698,995,123
2,147,483,647
PyPy 3-64
WRONG_ANSWER
TESTS
1
62
0
import math n=int(input()) a=input() alta1='' alta2='' for i in range(n): if i%2==0: alta1+='r' alta2+='b' else: alta1+='b' alta2+='r' a1=0 a2=0 for i in range(n): if a[i]!=alta1[i]: a1+=1 if a[i]!=alta2[i]: a2+=1 if a1>a2: alta=a2 else: alta=a1 print(math.ceil(alta/2))
Title: Anatoly and Cockroaches Time Limit: None seconds Memory Limit: None megabytes Problem Description: Anatoly lives in the university dorm as many other students do. As you know, cockroaches are also living there together with students. Cockroaches might be of two colors: black and red. There are *n* cockroaches living in Anatoly's room. Anatoly just made all his cockroaches to form a single line. As he is a perfectionist, he would like the colors of cockroaches in the line to alternate. He has a can of black paint and a can of red paint. In one turn he can either swap any two cockroaches, or take any single cockroach and change it's color. Help Anatoly find out the minimum number of turns he needs to make the colors of cockroaches in the line alternate. Input Specification: The first line of the input contains a single integer *n* (1<=≤<=*n*<=≤<=100<=000) — the number of cockroaches. The second line contains a string of length *n*, consisting of characters 'b' and 'r' that denote black cockroach and red cockroach respectively. Output Specification: Print one integer — the minimum number of moves Anatoly has to perform in order to make the colors of cockroaches in the line to alternate. Demo Input: ['5\nrbbrr\n', '5\nbbbbb\n', '3\nrbr\n'] Demo Output: ['1\n', '2\n', '0\n'] Note: In the first sample, Anatoly has to swap third and fourth cockroaches. He needs 1 turn to do this. In the second sample, the optimum answer is to paint the second and the fourth cockroaches red. This requires 2 turns. In the third sample, the colors of cockroaches in the line are alternating already, thus the answer is 0.
```python import math n=int(input()) a=input() alta1='' alta2='' for i in range(n): if i%2==0: alta1+='r' alta2+='b' else: alta1+='b' alta2+='r' a1=0 a2=0 for i in range(n): if a[i]!=alta1[i]: a1+=1 if a[i]!=alta2[i]: a2+=1 if a1>a2: alta=a2 else: alta=a1 print(math.ceil(alta/2)) ```
0
828
A
Restaurant Tables
PROGRAMMING
1,200
[ "implementation" ]
null
null
In a small restaurant there are *a* tables for one person and *b* tables for two persons. It it known that *n* groups of people come today, each consisting of one or two people. If a group consist of one person, it is seated at a vacant one-seater table. If there are none of them, it is seated at a vacant two-seater table. If there are none of them, it is seated at a two-seater table occupied by single person. If there are still none of them, the restaurant denies service to this group. If a group consist of two people, it is seated at a vacant two-seater table. If there are none of them, the restaurant denies service to this group. You are given a chronological order of groups coming. You are to determine the total number of people the restaurant denies service to.
The first line contains three integers *n*, *a* and *b* (1<=≤<=*n*<=≤<=2·105, 1<=≤<=*a*,<=*b*<=≤<=2·105) — the number of groups coming to the restaurant, the number of one-seater and the number of two-seater tables. The second line contains a sequence of integers *t*1,<=*t*2,<=...,<=*t**n* (1<=≤<=*t**i*<=≤<=2) — the description of clients in chronological order. If *t**i* is equal to one, then the *i*-th group consists of one person, otherwise the *i*-th group consists of two people.
Print the total number of people the restaurant denies service to.
[ "4 1 2\n1 2 1 1\n", "4 1 1\n1 1 2 1\n" ]
[ "0\n", "2\n" ]
In the first example the first group consists of one person, it is seated at a vacant one-seater table. The next group occupies a whole two-seater table. The third group consists of one person, it occupies one place at the remaining two-seater table. The fourth group consists of one person, he is seated at the remaining seat at the two-seater table. Thus, all clients are served. In the second example the first group consists of one person, it is seated at the vacant one-seater table. The next group consists of one person, it occupies one place at the two-seater table. It's impossible to seat the next group of two people, so the restaurant denies service to them. The fourth group consists of one person, he is seated at the remaining seat at the two-seater table. Thus, the restaurant denies service to 2 clients.
500
[ { "input": "4 1 2\n1 2 1 1", "output": "0" }, { "input": "4 1 1\n1 1 2 1", "output": "2" }, { "input": "1 1 1\n1", "output": "0" }, { "input": "2 1 2\n2 2", "output": "0" }, { "input": "5 1 3\n1 2 2 2 1", "output": "1" }, { "input": "7 6 1\n1 1 1 1 1 1 1", "output": "0" }, { "input": "10 2 1\n2 1 2 2 2 2 1 2 1 2", "output": "13" }, { "input": "20 4 3\n2 2 2 2 2 2 2 2 1 2 1 1 2 2 1 2 2 2 1 2", "output": "25" }, { "input": "1 1 1\n1", "output": "0" }, { "input": "1 1 1\n2", "output": "0" }, { "input": "1 200000 200000\n2", "output": "0" }, { "input": "30 10 10\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2", "output": "20" }, { "input": "4 1 2\n1 1 1 2", "output": "2" }, { "input": "6 2 3\n1 2 1 1 1 2", "output": "2" }, { "input": "6 1 4\n1 1 1 1 1 2", "output": "2" }, { "input": "6 1 3\n1 1 1 1 2 2", "output": "4" }, { "input": "6 1 3\n1 1 1 1 1 2", "output": "2" }, { "input": "6 4 2\n2 1 2 2 1 1", "output": "2" }, { "input": "3 10 1\n2 2 2", "output": "4" }, { "input": "5 1 3\n1 1 1 1 2", "output": "2" }, { "input": "5 2 2\n1 1 1 1 2", "output": "2" }, { "input": "15 5 5\n1 1 1 1 1 1 1 1 1 1 2 2 2 2 2", "output": "10" }, { "input": "5 1 2\n1 1 1 1 1", "output": "0" }, { "input": "3 6 1\n2 2 2", "output": "4" }, { "input": "5 3 3\n2 2 2 2 2", "output": "4" }, { "input": "8 3 3\n1 1 1 1 1 1 2 2", "output": "4" }, { "input": "5 1 2\n1 1 1 2 1", "output": "2" }, { "input": "6 1 4\n1 2 2 1 2 2", "output": "2" }, { "input": "2 1 1\n2 2", "output": "2" }, { "input": "2 2 1\n2 2", "output": "2" }, { "input": "5 8 1\n2 2 2 2 2", "output": "8" }, { "input": "3 1 4\n1 1 2", "output": "0" }, { "input": "7 1 5\n1 1 1 1 1 1 2", "output": "2" }, { "input": "6 1 3\n1 1 1 2 1 1", "output": "0" }, { "input": "6 1 2\n1 1 1 2 2 2", "output": "6" }, { "input": "8 1 4\n2 1 1 1 2 2 2 2", "output": "6" }, { "input": "4 2 3\n2 2 2 2", "output": "2" }, { "input": "3 1 1\n1 1 2", "output": "2" }, { "input": "5 1 1\n2 2 2 2 2", "output": "8" }, { "input": "10 1 5\n1 1 1 1 1 2 2 2 2 2", "output": "8" }, { "input": "5 1 2\n1 1 1 2 2", "output": "4" }, { "input": "4 1 1\n1 1 2 2", "output": "4" }, { "input": "7 1 2\n1 1 1 1 1 1 1", "output": "2" }, { "input": "5 1 4\n2 2 2 2 2", "output": "2" }, { "input": "6 2 3\n1 1 1 1 2 2", "output": "2" }, { "input": "5 2 2\n2 1 2 1 2", "output": "2" }, { "input": "4 6 1\n2 2 2 2", "output": "6" }, { "input": "6 1 4\n1 1 2 1 1 2", "output": "2" }, { "input": "7 1 3\n1 1 1 1 2 2 2", "output": "6" }, { "input": "4 1 2\n1 1 2 2", "output": "2" }, { "input": "3 1 2\n1 1 2", "output": "0" }, { "input": "6 1 3\n1 2 1 1 2 1", "output": "2" }, { "input": "6 1 3\n1 1 1 2 2 2", "output": "4" }, { "input": "10 2 2\n1 1 1 1 2 2 2 2 2 2", "output": "12" }, { "input": "10 1 4\n1 1 1 1 1 2 2 2 2 2", "output": "10" }, { "input": "3 10 2\n2 2 2", "output": "2" }, { "input": "4 3 1\n1 2 2 2", "output": "4" }, { "input": "7 1 4\n1 1 1 1 1 2 2", "output": "4" }, { "input": "3 4 1\n2 2 2", "output": "4" }, { "input": "4 1 2\n2 1 1 2", "output": "2" }, { "input": "10 1 2\n1 1 1 1 1 1 1 1 1 2", "output": "6" }, { "input": "5 1 3\n1 1 2 1 2", "output": "2" }, { "input": "6 1 3\n1 1 1 1 2 1", "output": "2" }, { "input": "6 1 4\n1 1 1 2 2 2", "output": "2" }, { "input": "7 1 2\n1 2 1 1 1 1 1", "output": "3" }, { "input": "6 2 2\n1 1 1 1 1 1", "output": "0" }, { "input": "6 1 2\n1 1 2 1 1 1", "output": "2" }, { "input": "3 3 1\n2 2 1", "output": "2" }, { "input": "8 4 2\n1 1 1 1 1 1 1 2", "output": "2" }, { "input": "9 1 4\n1 1 1 1 1 2 2 2 2", "output": "8" }, { "input": "5 10 1\n2 2 2 2 2", "output": "8" }, { "input": "3 5 1\n2 2 2", "output": "4" }, { "input": "5 100 1\n2 2 2 2 2", "output": "8" }, { "input": "4 1 2\n1 1 1 1", "output": "0" }, { "input": "4 1 1\n1 1 1 1", "output": "1" }, { "input": "7 2 2\n1 1 1 1 1 1 1", "output": "1" } ]
1,636,620,544
2,147,483,647
PyPy 3
WRONG_ANSWER
TESTS
11
124
30,412,800
n,a,b=map(int,input().split()) t=list(map(int,input().split())) d=0 s=0 for i in range(n): if(t[i]==1): if(a==0): if(s==0): if(b==0): d+=1 else: s+=1 b-=1 else: s-=1 else: a-=1 else: if(b==0): d+=2 else: b-=1 print(d)
Title: Restaurant Tables Time Limit: None seconds Memory Limit: None megabytes Problem Description: In a small restaurant there are *a* tables for one person and *b* tables for two persons. It it known that *n* groups of people come today, each consisting of one or two people. If a group consist of one person, it is seated at a vacant one-seater table. If there are none of them, it is seated at a vacant two-seater table. If there are none of them, it is seated at a two-seater table occupied by single person. If there are still none of them, the restaurant denies service to this group. If a group consist of two people, it is seated at a vacant two-seater table. If there are none of them, the restaurant denies service to this group. You are given a chronological order of groups coming. You are to determine the total number of people the restaurant denies service to. Input Specification: The first line contains three integers *n*, *a* and *b* (1<=≤<=*n*<=≤<=2·105, 1<=≤<=*a*,<=*b*<=≤<=2·105) — the number of groups coming to the restaurant, the number of one-seater and the number of two-seater tables. The second line contains a sequence of integers *t*1,<=*t*2,<=...,<=*t**n* (1<=≤<=*t**i*<=≤<=2) — the description of clients in chronological order. If *t**i* is equal to one, then the *i*-th group consists of one person, otherwise the *i*-th group consists of two people. Output Specification: Print the total number of people the restaurant denies service to. Demo Input: ['4 1 2\n1 2 1 1\n', '4 1 1\n1 1 2 1\n'] Demo Output: ['0\n', '2\n'] Note: In the first example the first group consists of one person, it is seated at a vacant one-seater table. The next group occupies a whole two-seater table. The third group consists of one person, it occupies one place at the remaining two-seater table. The fourth group consists of one person, he is seated at the remaining seat at the two-seater table. Thus, all clients are served. In the second example the first group consists of one person, it is seated at the vacant one-seater table. The next group consists of one person, it occupies one place at the two-seater table. It's impossible to seat the next group of two people, so the restaurant denies service to them. The fourth group consists of one person, he is seated at the remaining seat at the two-seater table. Thus, the restaurant denies service to 2 clients.
```python n,a,b=map(int,input().split()) t=list(map(int,input().split())) d=0 s=0 for i in range(n): if(t[i]==1): if(a==0): if(s==0): if(b==0): d+=1 else: s+=1 b-=1 else: s-=1 else: a-=1 else: if(b==0): d+=2 else: b-=1 print(d) ```
0
777
B
Game of Credit Cards
PROGRAMMING
1,300
[ "data structures", "dp", "greedy", "sortings" ]
null
null
After the fourth season Sherlock and Moriary have realized the whole foolishness of the battle between them and decided to continue their competitions in peaceful game of Credit Cards. Rules of this game are simple: each player bring his favourite *n*-digit credit card. Then both players name the digits written on their cards one by one. If two digits are not equal, then the player, whose digit is smaller gets a flick (knock in the forehead usually made with a forefinger) from the other player. For example, if *n*<==<=3, Sherlock's card is 123 and Moriarty's card has number 321, first Sherlock names 1 and Moriarty names 3 so Sherlock gets a flick. Then they both digit 2 so no one gets a flick. Finally, Sherlock names 3, while Moriarty names 1 and gets a flick. Of course, Sherlock will play honestly naming digits one by one in the order they are given, while Moriary, as a true villain, plans to cheat. He is going to name his digits in some other order (however, he is not going to change the overall number of occurences of each digit). For example, in case above Moriarty could name 1, 2, 3 and get no flicks at all, or he can name 2, 3 and 1 to give Sherlock two flicks. Your goal is to find out the minimum possible number of flicks Moriarty will get (no one likes flicks) and the maximum possible number of flicks Sherlock can get from Moriarty. Note, that these two goals are different and the optimal result may be obtained by using different strategies.
The first line of the input contains a single integer *n* (1<=≤<=*n*<=≤<=1000) — the number of digits in the cards Sherlock and Moriarty are going to use. The second line contains *n* digits — Sherlock's credit card number. The third line contains *n* digits — Moriarty's credit card number.
First print the minimum possible number of flicks Moriarty will get. Then print the maximum possible number of flicks that Sherlock can get from Moriarty.
[ "3\n123\n321\n", "2\n88\n00\n" ]
[ "0\n2\n", "2\n0\n" ]
First sample is elaborated in the problem statement. In the second sample, there is no way Moriarty can avoid getting two flicks.
1,000
[ { "input": "3\n123\n321", "output": "0\n2" }, { "input": "2\n88\n00", "output": "2\n0" }, { "input": "1\n4\n5", "output": "0\n1" }, { "input": "1\n8\n7", "output": "1\n0" }, { "input": "2\n55\n55", "output": "0\n0" }, { "input": "3\n534\n432", "output": "1\n1" }, { "input": "3\n486\n024", "output": "2\n0" }, { "input": "5\n22222\n22222", "output": "0\n0" }, { "input": "5\n72471\n05604", "output": "2\n3" }, { "input": "5\n72471\n72471", "output": "0\n3" }, { "input": "5\n72471\n41772", "output": "0\n3" }, { "input": "8\n99999999\n99999999", "output": "0\n0" }, { "input": "8\n01234567\n01234567", "output": "0\n7" }, { "input": "8\n07070707\n76543210", "output": "3\n4" }, { "input": "8\n88888888\n98769876", "output": "4\n2" }, { "input": "8\n23456789\n01234567", "output": "2\n5" }, { "input": "5\n11222\n22111", "output": "1\n2" }, { "input": "9\n777777777\n777777777", "output": "0\n0" }, { "input": "9\n353589343\n280419388", "output": "3\n5" }, { "input": "10\n8104381743\n8104381743", "output": "0\n8" }, { "input": "10\n8104381743\n8418134730", "output": "0\n8" }, { "input": "10\n1111122222\n2222211111", "output": "0\n5" }, { "input": "100\n6317494220822818719411404030346382869796138932712461187067886456209071515048745855973784223939110171\n6017563370120161528504797580620647099370814387367549926215651181421345104088127581963662589996747937", "output": "2\n86" }, { "input": "200\n89017372169770060638462517044634884577600285180365791227828841983192945639410766634962149214165390392679430585962408483864914959904870801002680423351144765728677610509881245693518626747873607530273392\n34804385048475325130258121398275821439066233953856051421626677848150660724595847484466293487857039579239864150199164135152374201294909986469345076423004279983866383035554588630496127880705497919788390", "output": "6\n175" }, { "input": "3\n112\n111", "output": "1\n0" }, { "input": "5\n66666\n11119", "output": "4\n1" }, { "input": "3\n232\n123", "output": "1\n1" } ]
1,584,617,165
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
5
108
307,200
n = int(input()) s1 = input() s2 = input() l = [] l1 = [] for i in range(n): l.append(int(s1[i])) for i in range(len(s2)): l1.append(int(s2[i])) l1.sort() c = 0 c1 = 0 i = 0 j = 0 while i < len(l) and j < len(l1): if l[i] < l1[j]: i = i + 1 j = j + 1 c = c + 1 else: j = j + 1 i = 0 j = 0 while i < len(l) and j < len(l1): if l[i] <= l1[j]: i = i + 1 j = j + 1 else: j = j + 1 i = i + 1 c1 = c1 + 1 print(c1,c)
Title: Game of Credit Cards Time Limit: None seconds Memory Limit: None megabytes Problem Description: After the fourth season Sherlock and Moriary have realized the whole foolishness of the battle between them and decided to continue their competitions in peaceful game of Credit Cards. Rules of this game are simple: each player bring his favourite *n*-digit credit card. Then both players name the digits written on their cards one by one. If two digits are not equal, then the player, whose digit is smaller gets a flick (knock in the forehead usually made with a forefinger) from the other player. For example, if *n*<==<=3, Sherlock's card is 123 and Moriarty's card has number 321, first Sherlock names 1 and Moriarty names 3 so Sherlock gets a flick. Then they both digit 2 so no one gets a flick. Finally, Sherlock names 3, while Moriarty names 1 and gets a flick. Of course, Sherlock will play honestly naming digits one by one in the order they are given, while Moriary, as a true villain, plans to cheat. He is going to name his digits in some other order (however, he is not going to change the overall number of occurences of each digit). For example, in case above Moriarty could name 1, 2, 3 and get no flicks at all, or he can name 2, 3 and 1 to give Sherlock two flicks. Your goal is to find out the minimum possible number of flicks Moriarty will get (no one likes flicks) and the maximum possible number of flicks Sherlock can get from Moriarty. Note, that these two goals are different and the optimal result may be obtained by using different strategies. Input Specification: The first line of the input contains a single integer *n* (1<=≤<=*n*<=≤<=1000) — the number of digits in the cards Sherlock and Moriarty are going to use. The second line contains *n* digits — Sherlock's credit card number. The third line contains *n* digits — Moriarty's credit card number. Output Specification: First print the minimum possible number of flicks Moriarty will get. Then print the maximum possible number of flicks that Sherlock can get from Moriarty. Demo Input: ['3\n123\n321\n', '2\n88\n00\n'] Demo Output: ['0\n2\n', '2\n0\n'] Note: First sample is elaborated in the problem statement. In the second sample, there is no way Moriarty can avoid getting two flicks.
```python n = int(input()) s1 = input() s2 = input() l = [] l1 = [] for i in range(n): l.append(int(s1[i])) for i in range(len(s2)): l1.append(int(s2[i])) l1.sort() c = 0 c1 = 0 i = 0 j = 0 while i < len(l) and j < len(l1): if l[i] < l1[j]: i = i + 1 j = j + 1 c = c + 1 else: j = j + 1 i = 0 j = 0 while i < len(l) and j < len(l1): if l[i] <= l1[j]: i = i + 1 j = j + 1 else: j = j + 1 i = i + 1 c1 = c1 + 1 print(c1,c) ```
0
261
A
Maxim and Discounts
PROGRAMMING
1,400
[ "greedy", "sortings" ]
null
null
Maxim always goes to the supermarket on Sundays. Today the supermarket has a special offer of discount systems. There are *m* types of discounts. We assume that the discounts are indexed from 1 to *m*. To use the discount number *i*, the customer takes a special basket, where he puts exactly *q**i* items he buys. Under the terms of the discount system, in addition to the items in the cart the customer can receive at most two items from the supermarket for free. The number of the "free items" (0, 1 or 2) to give is selected by the customer. The only condition imposed on the selected "free items" is as follows: each of them mustn't be more expensive than the cheapest item out of the *q**i* items in the cart. Maxim now needs to buy *n* items in the shop. Count the minimum sum of money that Maxim needs to buy them, if he use the discount system optimally well. Please assume that the supermarket has enough carts for any actions. Maxim can use the same discount multiple times. Of course, Maxim can buy items without any discounts.
The first line contains integer *m* (1<=≤<=*m*<=≤<=105) — the number of discount types. The second line contains *m* integers: *q*1,<=*q*2,<=...,<=*q**m* (1<=≤<=*q**i*<=≤<=105). The third line contains integer *n* (1<=≤<=*n*<=≤<=105) — the number of items Maxim needs. The fourth line contains *n* integers: *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=104) — the items' prices. The numbers in the lines are separated by single spaces.
In a single line print a single integer — the answer to the problem.
[ "1\n2\n4\n50 50 100 100\n", "2\n2 3\n5\n50 50 50 50 50\n", "1\n1\n7\n1 1 1 1 1 1 1\n" ]
[ "200\n", "150\n", "3\n" ]
In the first sample Maxim needs to buy two items that cost 100 and get a discount for two free items that cost 50. In that case, Maxim is going to pay 200. In the second sample the best strategy for Maxim is to buy 3 items and get 2 items for free using the discount. In that case, Maxim is going to pay 150.
500
[ { "input": "1\n2\n4\n50 50 100 100", "output": "200" }, { "input": "2\n2 3\n5\n50 50 50 50 50", "output": "150" }, { "input": "1\n1\n7\n1 1 1 1 1 1 1", "output": "3" }, { "input": "60\n7 4 20 15 17 6 2 2 3 18 13 14 16 11 13 12 6 10 14 1 16 6 4 9 10 8 10 15 16 13 13 9 16 11 5 4 11 1 20 5 11 20 19 9 14 13 10 6 6 9 2 13 11 4 1 6 8 18 10 3\n26\n2481 6519 9153 741 9008 6601 6117 1689 5911 2031 2538 5553 1358 6863 7521 4869 6276 5356 5305 6761 5689 7476 5833 257 2157 218", "output": "44768" }, { "input": "88\n8 3 4 3 1 17 5 10 18 12 9 12 4 6 19 14 9 10 10 8 15 11 18 3 11 4 10 11 7 9 14 7 13 2 8 2 15 2 8 16 7 1 9 1 11 13 13 15 8 9 4 2 13 12 12 11 1 5 20 19 13 15 6 6 11 20 14 18 11 20 20 13 8 4 17 12 17 4 13 14 1 20 19 5 7 3 19 16\n33\n7137 685 2583 6751 2104 2596 2329 9948 7961 9545 1797 6507 9241 3844 5657 1887 225 7310 1165 6335 5729 5179 8166 9294 3281 8037 1063 6711 8103 7461 4226 2894 9085", "output": "61832" }, { "input": "46\n11 6 8 8 11 8 2 8 17 3 16 1 9 12 18 2 2 5 17 19 3 9 8 19 2 4 2 15 2 11 13 13 8 6 10 12 7 7 17 15 10 19 7 7 19 6\n71\n6715 8201 9324 276 8441 2378 4829 9303 5721 3895 8193 7725 1246 8845 6863 2897 5001 5055 2745 596 9108 4313 1108 982 6483 7256 4313 8981 9026 9885 2433 2009 8441 7441 9044 6969 2065 6721 424 5478 9128 5921 11 6201 3681 4876 3369 6205 4865 8201 9751 371 2881 7995 641 5841 3595 6041 2403 1361 5121 3801 8031 7909 3809 7741 1026 9633 8711 1907 6363", "output": "129008" }, { "input": "18\n16 16 20 12 13 10 14 15 4 5 6 8 4 11 12 11 16 7\n15\n371 2453 905 1366 6471 4331 4106 2570 4647 1648 7911 2147 1273 6437 3393", "output": "38578" }, { "input": "2\n12 4\n28\n5366 5346 1951 3303 1613 5826 8035 7079 7633 6155 9811 9761 3207 4293 3551 5245 7891 4463 3981 2216 3881 1751 4495 96 671 1393 1339 4241", "output": "89345" }, { "input": "57\n3 13 20 17 18 18 17 2 17 8 20 2 11 12 11 14 4 20 9 20 14 19 20 4 4 8 8 18 17 16 18 10 4 7 9 8 10 8 20 4 11 8 12 16 16 4 11 12 16 1 6 14 11 12 19 8 20\n7\n5267 7981 1697 826 6889 1949 2413", "output": "11220" }, { "input": "48\n14 2 5 3 10 10 5 6 14 8 19 13 4 4 3 13 18 19 9 16 3 1 14 9 13 10 13 4 12 11 8 2 18 20 14 11 3 11 18 11 4 2 7 2 18 19 2 8\n70\n9497 5103 1001 2399 5701 4053 3557 8481 1736 4139 5829 1107 6461 4089 5936 7961 6017 1416 1191 4635 4288 5605 8857 1822 71 1435 2837 5523 6993 2404 2840 8251 765 5678 7834 8595 3091 7073 8673 2299 2685 7729 8017 3171 9155 431 3773 7927 671 4063 1123 5384 2721 7901 2315 5199 8081 7321 8196 2887 9384 56 7501 1931 4769 2055 7489 3681 6321 8489", "output": "115395" }, { "input": "1\n1\n1\n1", "output": "1" }, { "input": "1\n2\n1\n1", "output": "1" }, { "input": "1\n1\n3\n3 1 1", "output": "3" } ]
1,586,851,297
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
0
218
307,200
import math v = int(input()) nums = list(map(int,input().split())) if min(nums) > v: print(-1) else: l = math.floor(v/min(nums)) mv = None for i in range(len(nums)): if nums[i] == min(nums): mv = i+1 ans = [""]*l for i in range(l): ans[i] = str(mv) rem = v - min(nums)*l start=0 while rem > 0: cur=0 for i in range(len(nums)): if i+1 > mv and rem+min(nums) >= nums[i]: ans[start] = str(i+1) cur = nums[i] start+=1 rem -= cur print("".join(ans))
Title: Maxim and Discounts Time Limit: None seconds Memory Limit: None megabytes Problem Description: Maxim always goes to the supermarket on Sundays. Today the supermarket has a special offer of discount systems. There are *m* types of discounts. We assume that the discounts are indexed from 1 to *m*. To use the discount number *i*, the customer takes a special basket, where he puts exactly *q**i* items he buys. Under the terms of the discount system, in addition to the items in the cart the customer can receive at most two items from the supermarket for free. The number of the "free items" (0, 1 or 2) to give is selected by the customer. The only condition imposed on the selected "free items" is as follows: each of them mustn't be more expensive than the cheapest item out of the *q**i* items in the cart. Maxim now needs to buy *n* items in the shop. Count the minimum sum of money that Maxim needs to buy them, if he use the discount system optimally well. Please assume that the supermarket has enough carts for any actions. Maxim can use the same discount multiple times. Of course, Maxim can buy items without any discounts. Input Specification: The first line contains integer *m* (1<=≤<=*m*<=≤<=105) — the number of discount types. The second line contains *m* integers: *q*1,<=*q*2,<=...,<=*q**m* (1<=≤<=*q**i*<=≤<=105). The third line contains integer *n* (1<=≤<=*n*<=≤<=105) — the number of items Maxim needs. The fourth line contains *n* integers: *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=104) — the items' prices. The numbers in the lines are separated by single spaces. Output Specification: In a single line print a single integer — the answer to the problem. Demo Input: ['1\n2\n4\n50 50 100 100\n', '2\n2 3\n5\n50 50 50 50 50\n', '1\n1\n7\n1 1 1 1 1 1 1\n'] Demo Output: ['200\n', '150\n', '3\n'] Note: In the first sample Maxim needs to buy two items that cost 100 and get a discount for two free items that cost 50. In that case, Maxim is going to pay 200. In the second sample the best strategy for Maxim is to buy 3 items and get 2 items for free using the discount. In that case, Maxim is going to pay 150.
```python import math v = int(input()) nums = list(map(int,input().split())) if min(nums) > v: print(-1) else: l = math.floor(v/min(nums)) mv = None for i in range(len(nums)): if nums[i] == min(nums): mv = i+1 ans = [""]*l for i in range(l): ans[i] = str(mv) rem = v - min(nums)*l start=0 while rem > 0: cur=0 for i in range(len(nums)): if i+1 > mv and rem+min(nums) >= nums[i]: ans[start] = str(i+1) cur = nums[i] start+=1 rem -= cur print("".join(ans)) ```
0
16
B
Burglar and Matches
PROGRAMMING
900
[ "greedy", "implementation", "sortings" ]
B. Burglar and Matches
0
64
A burglar got into a matches warehouse and wants to steal as many matches as possible. In the warehouse there are *m* containers, in the *i*-th container there are *a**i* matchboxes, and each matchbox contains *b**i* matches. All the matchboxes are of the same size. The burglar's rucksack can hold *n* matchboxes exactly. Your task is to find out the maximum amount of matches that a burglar can carry away. He has no time to rearrange matches in the matchboxes, that's why he just chooses not more than *n* matchboxes so that the total amount of matches in them is maximal.
The first line of the input contains integer *n* (1<=≤<=*n*<=≤<=2·108) and integer *m* (1<=≤<=*m*<=≤<=20). The *i*<=+<=1-th line contains a pair of numbers *a**i* and *b**i* (1<=≤<=*a**i*<=≤<=108,<=1<=≤<=*b**i*<=≤<=10). All the input numbers are integer.
Output the only number — answer to the problem.
[ "7 3\n5 10\n2 5\n3 6\n", "3 3\n1 3\n2 2\n3 1\n" ]
[ "62\n", "7\n" ]
none
0
[ { "input": "7 3\n5 10\n2 5\n3 6", "output": "62" }, { "input": "3 3\n1 3\n2 2\n3 1", "output": "7" }, { "input": "1 1\n1 2", "output": "2" }, { "input": "1 2\n1 9\n1 6", "output": "9" }, { "input": "1 10\n1 1\n1 9\n1 3\n1 9\n1 7\n1 10\n1 4\n1 7\n1 3\n1 1", "output": "10" }, { "input": "2 1\n2 1", "output": "2" }, { "input": "2 2\n2 4\n1 4", "output": "8" }, { "input": "2 3\n1 7\n1 2\n1 5", "output": "12" }, { "input": "4 1\n2 2", "output": "4" }, { "input": "4 2\n1 10\n4 4", "output": "22" }, { "input": "4 3\n1 4\n6 4\n1 7", "output": "19" }, { "input": "5 1\n10 5", "output": "25" }, { "input": "5 2\n3 9\n2 2", "output": "31" }, { "input": "5 5\n2 9\n3 1\n2 1\n1 8\n2 8", "output": "42" }, { "input": "5 10\n1 3\n1 2\n1 9\n1 10\n1 1\n1 5\n1 10\n1 2\n1 3\n1 7", "output": "41" }, { "input": "10 1\n9 4", "output": "36" }, { "input": "10 2\n14 3\n1 3", "output": "30" }, { "input": "10 7\n4 8\n1 10\n1 10\n1 2\n3 3\n1 3\n1 10", "output": "71" }, { "input": "10 10\n1 8\n2 10\n1 9\n1 1\n1 9\n1 6\n1 4\n2 5\n1 2\n1 4", "output": "70" }, { "input": "10 4\n1 5\n5 2\n1 9\n3 3", "output": "33" }, { "input": "100 5\n78 6\n29 10\n3 6\n7 3\n2 4", "output": "716" }, { "input": "1000 7\n102 10\n23 6\n79 4\n48 1\n34 10\n839 8\n38 4", "output": "8218" }, { "input": "10000 10\n336 2\n2782 5\n430 10\n1893 7\n3989 10\n2593 8\n165 6\n1029 2\n2097 4\n178 10", "output": "84715" }, { "input": "100000 3\n2975 2\n35046 4\n61979 9", "output": "703945" }, { "input": "1000000 4\n314183 9\n304213 4\n16864 5\n641358 9", "output": "8794569" }, { "input": "10000000 10\n360313 10\n416076 1\n435445 9\n940322 7\n1647581 7\n4356968 10\n3589256 2\n2967933 5\n2747504 7\n1151633 3", "output": "85022733" }, { "input": "100000000 7\n32844337 7\n11210848 7\n47655987 1\n33900472 4\n9174763 2\n32228738 10\n29947408 5", "output": "749254060" }, { "input": "200000000 10\n27953106 7\n43325979 4\n4709522 1\n10975786 4\n67786538 8\n48901838 7\n15606185 6\n2747583 1\n100000000 1\n633331 3", "output": "1332923354" }, { "input": "200000000 9\n17463897 9\n79520463 1\n162407 4\n41017993 8\n71054118 4\n9447587 2\n5298038 9\n3674560 7\n20539314 5", "output": "996523209" }, { "input": "200000000 8\n6312706 6\n2920548 2\n16843192 3\n1501141 2\n13394704 6\n10047725 10\n4547663 6\n54268518 6", "output": "630991750" }, { "input": "200000000 7\n25621043 2\n21865270 1\n28833034 1\n22185073 5\n100000000 2\n13891017 9\n61298710 8", "output": "931584598" }, { "input": "200000000 6\n7465600 6\n8453505 10\n4572014 8\n8899499 3\n86805622 10\n64439238 6", "output": "1447294907" }, { "input": "200000000 5\n44608415 6\n100000000 9\n51483223 9\n44136047 1\n52718517 1", "output": "1634907859" }, { "input": "200000000 4\n37758556 10\n100000000 6\n48268521 3\n20148178 10", "output": "1305347138" }, { "input": "200000000 3\n65170000 7\n20790088 1\n74616133 4", "output": "775444620" }, { "input": "200000000 2\n11823018 6\n100000000 9", "output": "970938108" }, { "input": "200000000 1\n100000000 6", "output": "600000000" }, { "input": "200000000 10\n12097724 9\n41745972 5\n26982098 9\n14916995 7\n21549986 7\n3786630 9\n8050858 7\n27994924 4\n18345001 5\n8435339 5", "output": "1152034197" }, { "input": "200000000 10\n55649 8\n10980981 9\n3192542 8\n94994808 4\n3626106 1\n100000000 6\n5260110 9\n4121453 2\n15125061 4\n669569 6", "output": "1095537357" }, { "input": "10 20\n1 7\n1 7\n1 8\n1 3\n1 10\n1 7\n1 7\n1 9\n1 3\n1 1\n1 2\n1 1\n1 3\n1 10\n1 9\n1 8\n1 8\n1 6\n1 7\n1 5", "output": "83" }, { "input": "10000000 20\n4594 7\n520836 8\n294766 6\n298672 4\n142253 6\n450626 1\n1920034 9\n58282 4\n1043204 1\n683045 1\n1491746 5\n58420 4\n451217 2\n129423 4\n246113 5\n190612 8\n912923 6\n473153 6\n783733 6\n282411 10", "output": "54980855" }, { "input": "200000000 20\n15450824 5\n839717 10\n260084 8\n1140850 8\n28744 6\n675318 3\n25161 2\n5487 3\n6537698 9\n100000000 5\n7646970 9\n16489 6\n24627 3\n1009409 5\n22455 1\n25488456 4\n484528 9\n32663641 3\n750968 4\n5152 6", "output": "939368573" }, { "input": "200000000 20\n16896 2\n113 3\n277 2\n299 7\n69383562 2\n3929 8\n499366 4\n771846 5\n9 4\n1278173 7\n90 2\n54 7\n72199858 10\n17214 5\n3 10\n1981618 3\n3728 2\n141 8\n2013578 9\n51829246 5", "output": "1158946383" }, { "input": "200000000 20\n983125 2\n7453215 9\n9193588 2\n11558049 7\n28666199 1\n34362244 1\n5241493 5\n15451270 4\n19945845 8\n6208681 3\n38300385 7\n6441209 8\n21046742 7\n577198 10\n3826434 8\n9764276 8\n6264675 7\n8567063 3\n3610303 4\n2908232 3", "output": "1131379312" }, { "input": "10 15\n1 6\n2 6\n3 4\n1 3\n1 2\n1 5\n1 6\n1 2\n2 9\n1 10\n1 3\n1 7\n1 8\n1 2\n2 9", "output": "79" }, { "input": "10000000 15\n111 5\n914124 3\n3 9\n177790 1\n2352 3\n32138 9\n104477 1\n1223 4\n18 6\n6655580 4\n57643 10\n94309 2\n37 1\n227002 10\n1733193 7", "output": "45116295" }, { "input": "200000000 15\n7069868 1\n5567826 8\n2310059 10\n13539782 7\n38420939 4\n29911411 8\n52256316 1\n12265839 9\n2074265 1\n24896428 9\n72470695 5\n3236301 1\n3890243 2\n65168965 8\n65724 6", "output": "1489289257" }, { "input": "200000000 15\n12044094 7\n2475138 10\n944451 7\n4854766 2\n3809145 10\n7727571 2\n43908937 6\n2745883 1\n427511 2\n100000000 5\n190914 6\n554889 3\n288798 4\n1848572 5\n893874 3", "output": "961871671" }, { "input": "200000000 15\n6334191 7\n1927941 4\n5175933 10\n468389 1\n433043 10\n6863198 5\n7480646 4\n14774279 10\n2921129 8\n18325627 7\n6973152 9\n8277324 9\n21522856 2\n2058070 1\n2444742 4", "output": "664376069" } ]
1,567,259,106
2,147,483,647
Python 3
OK
TESTS
49
248
0
n,m=map(int,input().split()) z=0 l1=[] l2=[] while(z<m): a,b=map(int,input().split()) l1.append(a) l2.append(b) z+=1 e=0 while(n>0 and m>0): if(l1[l2.index(max(l2))]>n): e+=l2[l2.index(max(l2))]*n n=0 else: e+=(max(l2)*(l1[l2.index(max(l2))])) n-=l1[l2.index(max(l2))] l2[l2.index(max(l2))]=-1 m-=1 print(e)
Title: Burglar and Matches Time Limit: 0 seconds Memory Limit: 64 megabytes Problem Description: A burglar got into a matches warehouse and wants to steal as many matches as possible. In the warehouse there are *m* containers, in the *i*-th container there are *a**i* matchboxes, and each matchbox contains *b**i* matches. All the matchboxes are of the same size. The burglar's rucksack can hold *n* matchboxes exactly. Your task is to find out the maximum amount of matches that a burglar can carry away. He has no time to rearrange matches in the matchboxes, that's why he just chooses not more than *n* matchboxes so that the total amount of matches in them is maximal. Input Specification: The first line of the input contains integer *n* (1<=≤<=*n*<=≤<=2·108) and integer *m* (1<=≤<=*m*<=≤<=20). The *i*<=+<=1-th line contains a pair of numbers *a**i* and *b**i* (1<=≤<=*a**i*<=≤<=108,<=1<=≤<=*b**i*<=≤<=10). All the input numbers are integer. Output Specification: Output the only number — answer to the problem. Demo Input: ['7 3\n5 10\n2 5\n3 6\n', '3 3\n1 3\n2 2\n3 1\n'] Demo Output: ['62\n', '7\n'] Note: none
```python n,m=map(int,input().split()) z=0 l1=[] l2=[] while(z<m): a,b=map(int,input().split()) l1.append(a) l2.append(b) z+=1 e=0 while(n>0 and m>0): if(l1[l2.index(max(l2))]>n): e+=l2[l2.index(max(l2))]*n n=0 else: e+=(max(l2)*(l1[l2.index(max(l2))])) n-=l1[l2.index(max(l2))] l2[l2.index(max(l2))]=-1 m-=1 print(e) ```
3
814
A
An abandoned sentiment from past
PROGRAMMING
900
[ "constructive algorithms", "greedy", "implementation", "sortings" ]
null
null
A few years ago, Hitagi encountered a giant crab, who stole the whole of her body weight. Ever since, she tried to avoid contact with others, for fear that this secret might be noticed. To get rid of the oddity and recover her weight, a special integer sequence is needed. Hitagi's sequence has been broken for a long time, but now Kaiki provides an opportunity. Hitagi's sequence *a* has a length of *n*. Lost elements in it are denoted by zeros. Kaiki provides another sequence *b*, whose length *k* equals the number of lost elements in *a* (i.e. the number of zeros). Hitagi is to replace each zero in *a* with an element from *b* so that each element in *b* should be used exactly once. Hitagi knows, however, that, apart from 0, no integer occurs in *a* and *b* more than once in total. If the resulting sequence is not an increasing sequence, then it has the power to recover Hitagi from the oddity. You are to determine whether this is possible, or Kaiki's sequence is just another fake. In other words, you should detect whether it is possible to replace each zero in *a* with an integer from *b* so that each integer from *b* is used exactly once, and the resulting sequence is not increasing.
The first line of input contains two space-separated positive integers *n* (2<=≤<=*n*<=≤<=100) and *k* (1<=≤<=*k*<=≤<=*n*) — the lengths of sequence *a* and *b* respectively. The second line contains *n* space-separated integers *a*1,<=*a*2,<=...,<=*a**n* (0<=≤<=*a**i*<=≤<=200) — Hitagi's broken sequence with exactly *k* zero elements. The third line contains *k* space-separated integers *b*1,<=*b*2,<=...,<=*b**k* (1<=≤<=*b**i*<=≤<=200) — the elements to fill into Hitagi's sequence. Input guarantees that apart from 0, no integer occurs in *a* and *b* more than once in total.
Output "Yes" if it's possible to replace zeros in *a* with elements in *b* and make the resulting sequence not increasing, and "No" otherwise.
[ "4 2\n11 0 0 14\n5 4\n", "6 1\n2 3 0 8 9 10\n5\n", "4 1\n8 94 0 4\n89\n", "7 7\n0 0 0 0 0 0 0\n1 2 3 4 5 6 7\n" ]
[ "Yes\n", "No\n", "Yes\n", "Yes\n" ]
In the first sample: - Sequence *a* is 11, 0, 0, 14. - Two of the elements are lost, and the candidates in *b* are 5 and 4. - There are two possible resulting sequences: 11, 5, 4, 14 and 11, 4, 5, 14, both of which fulfill the requirements. Thus the answer is "Yes". In the second sample, the only possible resulting sequence is 2, 3, 5, 8, 9, 10, which is an increasing sequence and therefore invalid.
500
[ { "input": "4 2\n11 0 0 14\n5 4", "output": "Yes" }, { "input": "6 1\n2 3 0 8 9 10\n5", "output": "No" }, { "input": "4 1\n8 94 0 4\n89", "output": "Yes" }, { "input": "7 7\n0 0 0 0 0 0 0\n1 2 3 4 5 6 7", "output": "Yes" }, { "input": "40 1\n23 26 27 28 31 35 38 40 43 50 52 53 56 57 59 61 65 73 75 76 79 0 82 84 85 86 88 93 99 101 103 104 105 106 110 111 112 117 119 120\n80", "output": "No" }, { "input": "100 1\n99 95 22 110 47 20 37 34 23 0 16 69 64 49 111 42 112 96 13 40 18 77 44 46 74 55 15 54 56 75 78 100 82 101 31 83 53 80 52 63 30 57 104 36 67 65 103 51 48 26 68 59 35 92 85 38 107 98 73 90 62 43 32 89 19 106 17 88 41 72 113 86 66 102 81 27 29 50 71 79 109 91 70 39 61 76 93 84 108 97 24 25 45 105 94 60 33 87 14 21\n58", "output": "Yes" }, { "input": "4 1\n2 1 0 4\n3", "output": "Yes" }, { "input": "2 1\n199 0\n200", "output": "No" }, { "input": "3 2\n115 0 0\n145 191", "output": "Yes" }, { "input": "5 1\n196 197 198 0 200\n199", "output": "No" }, { "input": "5 1\n92 0 97 99 100\n93", "output": "No" }, { "input": "3 1\n3 87 0\n81", "output": "Yes" }, { "input": "3 1\n0 92 192\n118", "output": "Yes" }, { "input": "10 1\n1 3 0 7 35 46 66 72 83 90\n22", "output": "Yes" }, { "input": "100 1\n14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 0 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113\n67", "output": "No" }, { "input": "100 5\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 0 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 0 53 54 0 56 57 58 59 60 61 62 63 0 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 0 99 100\n98 64 55 52 29", "output": "Yes" }, { "input": "100 5\n175 30 124 0 12 111 6 0 119 108 0 38 127 3 151 114 95 54 4 128 91 11 168 120 80 107 18 21 149 169 0 141 195 20 78 157 33 118 17 69 105 130 197 57 74 110 138 84 71 172 132 93 191 44 152 156 24 101 146 26 2 36 143 122 104 42 103 97 39 116 115 0 155 87 53 85 7 43 65 196 136 154 16 79 45 129 67 150 35 73 55 76 37 147 112 82 162 58 40 75\n121 199 62 193 27", "output": "Yes" }, { "input": "100 1\n1 2 3 4 5 6 7 8 9 0 10 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100\n11", "output": "Yes" }, { "input": "100 1\n0 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100\n1", "output": "No" }, { "input": "100 1\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 0\n100", "output": "No" }, { "input": "100 1\n9 79 7 98 10 50 28 99 43 74 89 20 32 66 23 45 87 78 81 41 86 71 75 85 5 39 14 53 42 48 40 52 3 51 11 34 35 76 77 61 47 19 55 91 62 56 8 72 88 4 33 0 97 92 31 83 18 49 54 21 17 16 63 44 84 22 2 96 70 36 68 60 80 82 13 73 26 94 27 58 1 30 100 38 12 15 93 90 57 59 67 6 64 46 25 29 37 95 69 24\n65", "output": "Yes" }, { "input": "100 2\n0 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 0 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100\n48 1", "output": "Yes" }, { "input": "100 1\n2 7 11 17 20 22 23 24 25 27 29 30 31 33 34 35 36 38 39 40 42 44 46 47 50 52 53 58 59 60 61 62 63 66 0 67 71 72 75 79 80 81 86 91 93 94 99 100 101 102 103 104 105 108 109 110 111 113 114 118 119 120 122 123 127 129 130 131 132 133 134 135 136 138 139 140 141 142 147 154 155 156 160 168 170 171 172 176 179 180 181 182 185 186 187 188 189 190 194 198\n69", "output": "Yes" }, { "input": "100 1\n3 5 7 9 11 12 13 18 20 21 22 23 24 27 28 29 31 34 36 38 39 43 46 48 49 50 52 53 55 59 60 61 62 63 66 68 70 72 73 74 75 77 78 79 80 81 83 85 86 88 89 91 92 94 97 98 102 109 110 115 116 117 118 120 122 126 127 128 0 133 134 136 137 141 142 144 145 147 151 152 157 159 160 163 164 171 172 175 176 178 179 180 181 184 186 188 190 192 193 200\n129", "output": "No" }, { "input": "5 2\n0 2 7 0 10\n1 8", "output": "Yes" }, { "input": "3 1\n5 4 0\n1", "output": "Yes" }, { "input": "3 1\n1 0 3\n4", "output": "Yes" }, { "input": "2 1\n0 2\n1", "output": "No" }, { "input": "2 1\n0 5\n7", "output": "Yes" }, { "input": "5 1\n10 11 0 12 13\n1", "output": "Yes" }, { "input": "5 1\n0 2 3 4 5\n6", "output": "Yes" }, { "input": "6 2\n1 0 3 4 0 6\n2 5", "output": "Yes" }, { "input": "7 2\n1 2 3 0 0 6 7\n4 5", "output": "Yes" }, { "input": "4 1\n1 2 3 0\n4", "output": "No" }, { "input": "2 2\n0 0\n1 2", "output": "Yes" }, { "input": "3 2\n1 0 0\n2 3", "output": "Yes" }, { "input": "4 2\n1 0 4 0\n5 2", "output": "Yes" }, { "input": "2 1\n0 1\n2", "output": "Yes" }, { "input": "5 2\n1 0 4 0 6\n2 5", "output": "Yes" }, { "input": "5 1\n2 3 0 4 5\n1", "output": "Yes" }, { "input": "3 1\n0 2 3\n5", "output": "Yes" }, { "input": "6 1\n1 2 3 4 5 0\n6", "output": "No" }, { "input": "5 1\n1 2 0 4 5\n6", "output": "Yes" }, { "input": "3 1\n5 0 2\n7", "output": "Yes" }, { "input": "4 1\n4 5 0 8\n3", "output": "Yes" }, { "input": "5 1\n10 11 12 0 14\n13", "output": "No" }, { "input": "4 1\n1 2 0 4\n5", "output": "Yes" }, { "input": "3 1\n0 11 14\n12", "output": "Yes" }, { "input": "4 1\n1 3 0 4\n2", "output": "Yes" }, { "input": "2 1\n0 5\n1", "output": "No" }, { "input": "5 1\n1 2 0 4 7\n5", "output": "Yes" }, { "input": "3 1\n2 3 0\n1", "output": "Yes" }, { "input": "6 1\n1 2 3 0 5 4\n6", "output": "Yes" }, { "input": "4 2\n11 0 0 14\n13 12", "output": "Yes" }, { "input": "2 1\n1 0\n2", "output": "No" }, { "input": "3 1\n1 2 0\n3", "output": "No" }, { "input": "4 1\n1 0 3 2\n4", "output": "Yes" }, { "input": "3 1\n0 1 2\n5", "output": "Yes" }, { "input": "3 1\n0 1 2\n3", "output": "Yes" }, { "input": "4 1\n0 2 3 4\n5", "output": "Yes" }, { "input": "6 1\n1 2 3 0 4 5\n6", "output": "Yes" }, { "input": "3 1\n1 2 0\n5", "output": "No" }, { "input": "4 2\n1 0 0 4\n3 2", "output": "Yes" }, { "input": "5 1\n2 3 0 5 7\n6", "output": "Yes" }, { "input": "3 1\n2 3 0\n4", "output": "No" }, { "input": "3 1\n1 0 11\n5", "output": "No" }, { "input": "4 1\n7 9 5 0\n8", "output": "Yes" }, { "input": "6 2\n1 2 3 0 5 0\n6 4", "output": "Yes" }, { "input": "3 2\n0 1 0\n3 2", "output": "Yes" }, { "input": "4 1\n6 9 5 0\n8", "output": "Yes" }, { "input": "2 1\n0 3\n6", "output": "Yes" }, { "input": "5 2\n1 2 0 0 5\n4 3", "output": "Yes" }, { "input": "4 2\n2 0 0 8\n3 4", "output": "Yes" }, { "input": "2 1\n0 2\n3", "output": "Yes" }, { "input": "3 1\n0 4 5\n6", "output": "Yes" }, { "input": "6 1\n1 2 3 4 0 5\n6", "output": "Yes" }, { "input": "2 1\n2 0\n3", "output": "No" }, { "input": "4 2\n11 0 0 200\n100 199", "output": "Yes" }, { "input": "2 1\n5 0\n4", "output": "Yes" }, { "input": "3 1\n1 0 5\n10", "output": "Yes" }, { "input": "6 2\n1 2 0 0 5 6\n3 4", "output": "Yes" }, { "input": "5 2\n1 0 3 0 5\n2 4", "output": "Yes" }, { "input": "4 1\n1 4 0 8\n3", "output": "Yes" }, { "input": "4 1\n5 9 4 0\n8", "output": "Yes" }, { "input": "4 2\n1 0 0 7\n3 2", "output": "Yes" }, { "input": "3 3\n0 0 0\n1 4 3", "output": "Yes" }, { "input": "5 5\n0 0 0 0 0\n5 4 3 2 1", "output": "Yes" }, { "input": "4 1\n3 9 4 0\n8", "output": "Yes" }, { "input": "4 2\n1 0 0 4\n2 3", "output": "Yes" }, { "input": "6 1\n2 4 0 8 9 10\n3", "output": "Yes" }, { "input": "4 1\n0 3 5 6\n9", "output": "Yes" }, { "input": "4 2\n1 2 0 0\n3 4", "output": "Yes" }, { "input": "5 1\n2 3 4 5 0\n1", "output": "Yes" }, { "input": "3 1\n2 0 4\n5", "output": "Yes" } ]
1,695,832,553
2,147,483,647
PyPy 3-64
OK
TESTS
96
77
0
n, k = map(int, input().split()) a = list(map(int, input().split())) if k > 1: print("Yes") else: b = int(input()) a[a.index(0)] = b print(["Yes","No"][all(x < y for x, y in zip(a, a[1:]))])
Title: An abandoned sentiment from past Time Limit: None seconds Memory Limit: None megabytes Problem Description: A few years ago, Hitagi encountered a giant crab, who stole the whole of her body weight. Ever since, she tried to avoid contact with others, for fear that this secret might be noticed. To get rid of the oddity and recover her weight, a special integer sequence is needed. Hitagi's sequence has been broken for a long time, but now Kaiki provides an opportunity. Hitagi's sequence *a* has a length of *n*. Lost elements in it are denoted by zeros. Kaiki provides another sequence *b*, whose length *k* equals the number of lost elements in *a* (i.e. the number of zeros). Hitagi is to replace each zero in *a* with an element from *b* so that each element in *b* should be used exactly once. Hitagi knows, however, that, apart from 0, no integer occurs in *a* and *b* more than once in total. If the resulting sequence is not an increasing sequence, then it has the power to recover Hitagi from the oddity. You are to determine whether this is possible, or Kaiki's sequence is just another fake. In other words, you should detect whether it is possible to replace each zero in *a* with an integer from *b* so that each integer from *b* is used exactly once, and the resulting sequence is not increasing. Input Specification: The first line of input contains two space-separated positive integers *n* (2<=≤<=*n*<=≤<=100) and *k* (1<=≤<=*k*<=≤<=*n*) — the lengths of sequence *a* and *b* respectively. The second line contains *n* space-separated integers *a*1,<=*a*2,<=...,<=*a**n* (0<=≤<=*a**i*<=≤<=200) — Hitagi's broken sequence with exactly *k* zero elements. The third line contains *k* space-separated integers *b*1,<=*b*2,<=...,<=*b**k* (1<=≤<=*b**i*<=≤<=200) — the elements to fill into Hitagi's sequence. Input guarantees that apart from 0, no integer occurs in *a* and *b* more than once in total. Output Specification: Output "Yes" if it's possible to replace zeros in *a* with elements in *b* and make the resulting sequence not increasing, and "No" otherwise. Demo Input: ['4 2\n11 0 0 14\n5 4\n', '6 1\n2 3 0 8 9 10\n5\n', '4 1\n8 94 0 4\n89\n', '7 7\n0 0 0 0 0 0 0\n1 2 3 4 5 6 7\n'] Demo Output: ['Yes\n', 'No\n', 'Yes\n', 'Yes\n'] Note: In the first sample: - Sequence *a* is 11, 0, 0, 14. - Two of the elements are lost, and the candidates in *b* are 5 and 4. - There are two possible resulting sequences: 11, 5, 4, 14 and 11, 4, 5, 14, both of which fulfill the requirements. Thus the answer is "Yes". In the second sample, the only possible resulting sequence is 2, 3, 5, 8, 9, 10, which is an increasing sequence and therefore invalid.
```python n, k = map(int, input().split()) a = list(map(int, input().split())) if k > 1: print("Yes") else: b = int(input()) a[a.index(0)] = b print(["Yes","No"][all(x < y for x, y in zip(a, a[1:]))]) ```
3
847
G
University Classes
PROGRAMMING
900
[ "implementation" ]
null
null
There are *n* student groups at the university. During the study day, each group can take no more than 7 classes. Seven time slots numbered from 1 to 7 are allocated for the classes. The schedule on Monday is known for each group, i. e. time slots when group will have classes are known. Your task is to determine the minimum number of rooms needed to hold classes for all groups on Monday. Note that one room can hold at most one group class in a single time slot.
The first line contains a single integer *n* (1<=≤<=*n*<=≤<=1000) — the number of groups. Each of the following *n* lines contains a sequence consisting of 7 zeroes and ones — the schedule of classes on Monday for a group. If the symbol in a position equals to 1 then the group has class in the corresponding time slot. In the other case, the group has no class in the corresponding time slot.
Print minimum number of rooms needed to hold all groups classes on Monday.
[ "2\n0101010\n1010101\n", "3\n0101011\n0011001\n0110111\n" ]
[ "1\n", "3\n" ]
In the first example one room is enough. It will be occupied in each of the seven time slot by the first group or by the second group. In the second example three rooms is enough, because in the seventh time slot all three groups have classes.
0
[ { "input": "2\n0101010\n1010101", "output": "1" }, { "input": "3\n0101011\n0011001\n0110111", "output": "3" }, { "input": "1\n0111000", "output": "1" }, { "input": "1\n0000000", "output": "0" }, { "input": "1\n1111111", "output": "1" }, { "input": "2\n1000000\n0101000", "output": "1" }, { "input": "3\n0101111\n1101011\n1010011", "output": "3" }, { "input": "5\n0100101\n0000001\n0110000\n0010000\n0011110", "output": "3" }, { "input": "6\n1101110\n1111011\n1101110\n0100011\n1110110\n1110100", "output": "6" }, { "input": "10\n0000000\n0010000\n0000000\n0000010\n0000000\n0100001\n1000000\n0000000\n0000000\n0000000", "output": "1" }, { "input": "20\n1111111\n1101011\n1111011\n0111111\n1111111\n1110111\n1111111\n1111111\n1111111\n1111111\n1110111\n1111111\n0111111\n1011111\n1111111\n1111111\n1101110\n1111111\n1111111\n1111111", "output": "20" } ]
1,538,996,664
2,147,483,647
Python 3
OK
TESTS
21
124
0
n = int(input()) mx = 7 res = [0 for i in range(mx)] for i in range(n): s = input() for i in range(mx): res[i] += int(s[i]) print(max(res))
Title: University Classes Time Limit: None seconds Memory Limit: None megabytes Problem Description: There are *n* student groups at the university. During the study day, each group can take no more than 7 classes. Seven time slots numbered from 1 to 7 are allocated for the classes. The schedule on Monday is known for each group, i. e. time slots when group will have classes are known. Your task is to determine the minimum number of rooms needed to hold classes for all groups on Monday. Note that one room can hold at most one group class in a single time slot. Input Specification: The first line contains a single integer *n* (1<=≤<=*n*<=≤<=1000) — the number of groups. Each of the following *n* lines contains a sequence consisting of 7 zeroes and ones — the schedule of classes on Monday for a group. If the symbol in a position equals to 1 then the group has class in the corresponding time slot. In the other case, the group has no class in the corresponding time slot. Output Specification: Print minimum number of rooms needed to hold all groups classes on Monday. Demo Input: ['2\n0101010\n1010101\n', '3\n0101011\n0011001\n0110111\n'] Demo Output: ['1\n', '3\n'] Note: In the first example one room is enough. It will be occupied in each of the seven time slot by the first group or by the second group. In the second example three rooms is enough, because in the seventh time slot all three groups have classes.
```python n = int(input()) mx = 7 res = [0 for i in range(mx)] for i in range(n): s = input() for i in range(mx): res[i] += int(s[i]) print(max(res)) ```
3
362
B
Petya and Staircases
PROGRAMMING
1,100
[ "implementation", "sortings" ]
null
null
Little boy Petya loves stairs very much. But he is bored from simple going up and down them — he loves jumping over several stairs at a time. As he stands on some stair, he can either jump to the next one or jump over one or two stairs at a time. But some stairs are too dirty and Petya doesn't want to step on them. Now Petya is on the first stair of the staircase, consisting of *n* stairs. He also knows the numbers of the dirty stairs of this staircase. Help Petya find out if he can jump through the entire staircase and reach the last stair number *n* without touching a dirty stair once. One has to note that anyway Petya should step on the first and last stairs, so if the first or the last stair is dirty, then Petya cannot choose a path with clean steps only.
The first line contains two integers *n* and *m* (1<=≤<=*n*<=≤<=109, 0<=≤<=*m*<=≤<=3000) — the number of stairs in the staircase and the number of dirty stairs, correspondingly. The second line contains *m* different space-separated integers *d*1,<=*d*2,<=...,<=*d**m* (1<=≤<=*d**i*<=≤<=*n*) — the numbers of the dirty stairs (in an arbitrary order).
Print "YES" if Petya can reach stair number *n*, stepping only on the clean stairs. Otherwise print "NO".
[ "10 5\n2 4 8 3 6\n", "10 5\n2 4 5 7 9\n" ]
[ "NO", "YES" ]
none
500
[ { "input": "10 5\n2 4 8 3 6", "output": "NO" }, { "input": "10 5\n2 4 5 7 9", "output": "YES" }, { "input": "10 9\n2 3 4 5 6 7 8 9 10", "output": "NO" }, { "input": "5 2\n4 5", "output": "NO" }, { "input": "123 13\n36 73 111 2 92 5 47 55 48 113 7 78 37", "output": "YES" }, { "input": "10 10\n7 6 4 2 5 10 8 3 9 1", "output": "NO" }, { "input": "12312 0", "output": "YES" }, { "input": "9817239 1\n6323187", "output": "YES" }, { "input": "1 1\n1", "output": "NO" }, { "input": "5 4\n4 2 5 1", "output": "NO" }, { "input": "5 3\n4 3 5", "output": "NO" }, { "input": "500 3\n18 62 445", "output": "YES" }, { "input": "500 50\n72 474 467 241 442 437 336 234 410 120 438 164 405 177 142 114 27 20 445 235 46 176 88 488 242 391 28 414 145 92 206 334 152 343 367 254 100 243 155 348 148 450 461 483 97 34 471 69 416 362", "output": "NO" }, { "input": "500 8\n365 313 338 410 482 417 325 384", "output": "YES" }, { "input": "1000000000 10\n2 3 5 6 8 9 123 874 1230 1000000000", "output": "NO" }, { "input": "1000000000 10\n1 2 3 5 6 8 9 123 874 1230", "output": "NO" }, { "input": "10 1\n1", "output": "NO" }, { "input": "10 4\n1 2 4 5", "output": "NO" }, { "input": "50 20\n22 33 17 23 27 5 26 31 41 20 8 24 6 3 4 29 40 25 13 16", "output": "NO" }, { "input": "50 40\n14 27 19 30 31 20 28 11 37 29 23 33 7 26 22 16 1 6 18 3 47 36 38 2 48 9 41 8 5 50 4 45 44 25 39 12 43 42 40 46", "output": "NO" }, { "input": "123 12\n35 95 47 99 79 122 58 94 31 57 18 10", "output": "YES" }, { "input": "10 5\n1 3 5 7 9", "output": "NO" }, { "input": "100 7\n2 3 5 6 8 9 100", "output": "NO" }, { "input": "100 3\n98 99 100", "output": "NO" }, { "input": "100 3\n97 98 99", "output": "NO" }, { "input": "100 3\n96 98 99", "output": "YES" }, { "input": "10 6\n2 3 5 6 8 9", "output": "YES" }, { "input": "1000000000 10\n2 4 10 18 40 42 49 58 59 60", "output": "NO" }, { "input": "10 3\n1 4 6", "output": "NO" }, { "input": "8 3\n2 3 4", "output": "NO" }, { "input": "100 3\n4 5 6", "output": "NO" }, { "input": "10 2\n10 1", "output": "NO" }, { "input": "10 1\n10", "output": "NO" }, { "input": "4 2\n2 3", "output": "YES" }, { "input": "2 1\n1", "output": "NO" }, { "input": "2 0", "output": "YES" }, { "input": "4 3\n2 3 4", "output": "NO" }, { "input": "5 3\n4 2 3", "output": "NO" } ]
1,596,477,319
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
2
93
6,656,000
import sys n,k=map(int,input().split()) l=list(map(int,input().split())) l.sort() cnt=0 for i in range(k-1): cnt=cnt+1 if(l[i+1]-l[i]>1): if(cnt>2): print("NO") sys.exit() else: cnt=0 print("YES")
Title: Petya and Staircases Time Limit: None seconds Memory Limit: None megabytes Problem Description: Little boy Petya loves stairs very much. But he is bored from simple going up and down them — he loves jumping over several stairs at a time. As he stands on some stair, he can either jump to the next one or jump over one or two stairs at a time. But some stairs are too dirty and Petya doesn't want to step on them. Now Petya is on the first stair of the staircase, consisting of *n* stairs. He also knows the numbers of the dirty stairs of this staircase. Help Petya find out if he can jump through the entire staircase and reach the last stair number *n* without touching a dirty stair once. One has to note that anyway Petya should step on the first and last stairs, so if the first or the last stair is dirty, then Petya cannot choose a path with clean steps only. Input Specification: The first line contains two integers *n* and *m* (1<=≤<=*n*<=≤<=109, 0<=≤<=*m*<=≤<=3000) — the number of stairs in the staircase and the number of dirty stairs, correspondingly. The second line contains *m* different space-separated integers *d*1,<=*d*2,<=...,<=*d**m* (1<=≤<=*d**i*<=≤<=*n*) — the numbers of the dirty stairs (in an arbitrary order). Output Specification: Print "YES" if Petya can reach stair number *n*, stepping only on the clean stairs. Otherwise print "NO". Demo Input: ['10 5\n2 4 8 3 6\n', '10 5\n2 4 5 7 9\n'] Demo Output: ['NO', 'YES'] Note: none
```python import sys n,k=map(int,input().split()) l=list(map(int,input().split())) l.sort() cnt=0 for i in range(k-1): cnt=cnt+1 if(l[i+1]-l[i]>1): if(cnt>2): print("NO") sys.exit() else: cnt=0 print("YES") ```
0
851
B
Arpa and an exam about geometry
PROGRAMMING
1,400
[ "geometry", "math" ]
null
null
Arpa is taking a geometry exam. Here is the last problem of the exam. You are given three points *a*,<=*b*,<=*c*. Find a point and an angle such that if we rotate the page around the point by the angle, the new position of *a* is the same as the old position of *b*, and the new position of *b* is the same as the old position of *c*. Arpa is doubting if the problem has a solution or not (i.e. if there exists a point and an angle satisfying the condition). Help Arpa determine if the question has a solution or not.
The only line contains six integers *a**x*,<=*a**y*,<=*b**x*,<=*b**y*,<=*c**x*,<=*c**y* (|*a**x*|,<=|*a**y*|,<=|*b**x*|,<=|*b**y*|,<=|*c**x*|,<=|*c**y*|<=≤<=109). It's guaranteed that the points are distinct.
Print "Yes" if the problem has a solution, "No" otherwise. You can print each letter in any case (upper or lower).
[ "0 1 1 1 1 0\n", "1 1 0 0 1000 1000\n" ]
[ "Yes\n", "No\n" ]
In the first sample test, rotate the page around (0.5, 0.5) by <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/9d845923f4d356a48d8ede337db0303821311f0c.png" style="max-width: 100.0%;max-height: 100.0%;"/>. In the second sample test, you can't find any solution.
1,000
[ { "input": "0 1 1 1 1 0", "output": "Yes" }, { "input": "1 1 0 0 1000 1000", "output": "No" }, { "input": "1 0 2 0 3 0", "output": "No" }, { "input": "3 4 0 0 4 3", "output": "Yes" }, { "input": "-1000000000 1 0 0 1000000000 1", "output": "Yes" }, { "input": "49152 0 0 0 0 81920", "output": "No" }, { "input": "1 -1 4 4 2 -3", "output": "No" }, { "input": "-2 -2 1 4 -2 0", "output": "No" }, { "input": "5 0 4 -2 0 1", "output": "No" }, { "input": "-4 -3 2 -1 -3 4", "output": "No" }, { "input": "-3 -3 5 2 3 -1", "output": "No" }, { "input": "-1000000000 -1000000000 0 0 1000000000 999999999", "output": "No" }, { "input": "-1000000000 -1000000000 0 0 1000000000 1000000000", "output": "No" }, { "input": "-357531221 381512519 -761132895 -224448284 328888775 -237692564", "output": "No" }, { "input": "264193194 -448876521 736684426 -633906160 -328597212 -47935734", "output": "No" }, { "input": "419578772 -125025887 169314071 89851312 961404059 21419450", "output": "No" }, { "input": "-607353321 -620687860 248029390 477864359 728255275 -264646027", "output": "No" }, { "input": "299948862 -648908808 338174789 841279400 -850322448 350263551", "output": "No" }, { "input": "48517753 416240699 7672672 272460100 -917845051 199790781", "output": "No" }, { "input": "-947393823 -495674431 211535284 -877153626 -522763219 -778236665", "output": "No" }, { "input": "-685673792 -488079395 909733355 385950193 -705890324 256550506", "output": "No" }, { "input": "-326038504 547872194 49630307 713863100 303770000 -556852524", "output": "No" }, { "input": "-706921242 -758563024 -588592101 -443440080 858751713 238854303", "output": "No" }, { "input": "-1000000000 -1000000000 0 1000000000 1000000000 -1000000000", "output": "Yes" }, { "input": "1000000000 1000000000 0 -1000000000 -1000000000 1000000000", "output": "Yes" }, { "input": "-999999999 -1000000000 0 0 1000000000 999999999", "output": "Yes" }, { "input": "-1000000000 -999999999 0 0 1000000000 999999999", "output": "No" }, { "input": "-1 -1000000000 0 1000000000 1 -1000000000", "output": "Yes" }, { "input": "0 1000000000 1 0 0 -1000000000", "output": "Yes" }, { "input": "0 1000000000 0 0 0 -1000000000", "output": "No" }, { "input": "0 1 1 2 2 3", "output": "No" }, { "input": "999999999 1000000000 0 0 -1000000000 -999999999", "output": "Yes" }, { "input": "0 0 1 1 2 0", "output": "Yes" }, { "input": "0 0 1 1 2 2", "output": "No" }, { "input": "1 1 2 2 3 3", "output": "No" }, { "input": "0 2 0 3 0 4", "output": "No" }, { "input": "1 1 1 2 1 3", "output": "No" }, { "input": "0 0 3 4 3 9", "output": "Yes" }, { "input": "589824 196608 262144 196608 0 0", "output": "Yes" }, { "input": "0 0 1000000000 1 1000000000 -999999999", "output": "No" }, { "input": "0 0 2 45 0 90", "output": "Yes" }, { "input": "0 0 0 2 0 1", "output": "No" }, { "input": "0 2 4 5 4 0", "output": "Yes" }, { "input": "0 0 2 0 4 0", "output": "No" }, { "input": "1 1 3 3 5 5", "output": "No" }, { "input": "1 1 2 2 3 1", "output": "Yes" } ]
1,591,709,720
2,147,483,647
PyPy 3
WRONG_ANSWER
TESTS
5
140
0
L=list(map(int,input().split())) x=((L[0]-L[2])*(L[1]-L[5])-(L[0]-L[4])*(L[1]-L[3])) if(x==0): print("No") else: print("Yes")
Title: Arpa and an exam about geometry Time Limit: None seconds Memory Limit: None megabytes Problem Description: Arpa is taking a geometry exam. Here is the last problem of the exam. You are given three points *a*,<=*b*,<=*c*. Find a point and an angle such that if we rotate the page around the point by the angle, the new position of *a* is the same as the old position of *b*, and the new position of *b* is the same as the old position of *c*. Arpa is doubting if the problem has a solution or not (i.e. if there exists a point and an angle satisfying the condition). Help Arpa determine if the question has a solution or not. Input Specification: The only line contains six integers *a**x*,<=*a**y*,<=*b**x*,<=*b**y*,<=*c**x*,<=*c**y* (|*a**x*|,<=|*a**y*|,<=|*b**x*|,<=|*b**y*|,<=|*c**x*|,<=|*c**y*|<=≤<=109). It's guaranteed that the points are distinct. Output Specification: Print "Yes" if the problem has a solution, "No" otherwise. You can print each letter in any case (upper or lower). Demo Input: ['0 1 1 1 1 0\n', '1 1 0 0 1000 1000\n'] Demo Output: ['Yes\n', 'No\n'] Note: In the first sample test, rotate the page around (0.5, 0.5) by <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/9d845923f4d356a48d8ede337db0303821311f0c.png" style="max-width: 100.0%;max-height: 100.0%;"/>. In the second sample test, you can't find any solution.
```python L=list(map(int,input().split())) x=((L[0]-L[2])*(L[1]-L[5])-(L[0]-L[4])*(L[1]-L[3])) if(x==0): print("No") else: print("Yes") ```
0
102
B
Sum of Digits
PROGRAMMING
1,000
[ "implementation" ]
B. Sum of Digits
2
265
Having watched the last Harry Potter film, little Gerald also decided to practice magic. He found in his father's magical book a spell that turns any number in the sum of its digits. At the moment Gerald learned that, he came across a number *n*. How many times can Gerald put a spell on it until the number becomes one-digit?
The first line contains the only integer *n* (0<=≤<=*n*<=≤<=10100000). It is guaranteed that *n* doesn't contain any leading zeroes.
Print the number of times a number can be replaced by the sum of its digits until it only contains one digit.
[ "0\n", "10\n", "991\n" ]
[ "0\n", "1\n", "3\n" ]
In the first sample the number already is one-digit — Herald can't cast a spell. The second test contains number 10. After one casting of a spell it becomes 1, and here the process is completed. Thus, Gerald can only cast the spell once. The third test contains number 991. As one casts a spell the following transformations take place: 991 → 19 → 10 → 1. After three transformations the number becomes one-digit.
1,000
[ { "input": "0", "output": "0" }, { "input": "10", "output": "1" }, { "input": "991", "output": "3" }, { "input": "99", "output": "2" }, { "input": "100", "output": "1" }, { "input": "123456789", "output": "2" }, { "input": "32", "output": "1" }, { "input": "86", "output": "2" }, { "input": "2", "output": "0" }, { "input": "8", "output": "0" }, { "input": "34", "output": "1" }, { "input": "13", "output": "1" }, { "input": "28", "output": "2" }, { "input": "23", "output": "1" }, { "input": "57", "output": "2" }, { "input": "29", "output": "2" }, { "input": "353869285", "output": "3" }, { "input": "549548646", "output": "2" }, { "input": "858893424", "output": "2" }, { "input": "644818852", "output": "3" }, { "input": "360322525", "output": "3" }, { "input": "122937520", "output": "2" }, { "input": "288403032", "output": "2" }, { "input": "677257481", "output": "3" }, { "input": "58059561", "output": "3" }, { "input": "211288847", "output": "2" }, { "input": "339900034079539584", "output": "2" }, { "input": "784084029310269952", "output": "3" }, { "input": "774730557264864000", "output": "3" }, { "input": "478233807148352256", "output": "3" }, { "input": "165646874056812544", "output": "3" }, { "input": "477533739511673792", "output": "3" }, { "input": "660119944377002240", "output": "3" }, { "input": "448375218506078080", "output": "3" }, { "input": "77213334785795616", "output": "3" }, { "input": "165767221702271872", "output": "3" }, { "input": "1", "output": "0" }, { "input": "5", "output": "0" }, { "input": "8", "output": "0" }, { "input": "156161456146164104103460452045416165146141414651641564105461465156445621465146514562146145465165145145614561465145614561", "output": "3" }, { "input": "9", "output": "0" } ]
1,654,054,903
2,147,483,647
Python 3
OK
TESTS
51
122
307,200
from ast import Str N = input() output = 0 if len(N) == 0: output = 0 else: while(len(N) != 1): digits = 0 for digit in N: digits += int(digit) N = str(digits) output += 1 print(output)
Title: Sum of Digits Time Limit: 2 seconds Memory Limit: 265 megabytes Problem Description: Having watched the last Harry Potter film, little Gerald also decided to practice magic. He found in his father's magical book a spell that turns any number in the sum of its digits. At the moment Gerald learned that, he came across a number *n*. How many times can Gerald put a spell on it until the number becomes one-digit? Input Specification: The first line contains the only integer *n* (0<=≤<=*n*<=≤<=10100000). It is guaranteed that *n* doesn't contain any leading zeroes. Output Specification: Print the number of times a number can be replaced by the sum of its digits until it only contains one digit. Demo Input: ['0\n', '10\n', '991\n'] Demo Output: ['0\n', '1\n', '3\n'] Note: In the first sample the number already is one-digit — Herald can't cast a spell. The second test contains number 10. After one casting of a spell it becomes 1, and here the process is completed. Thus, Gerald can only cast the spell once. The third test contains number 991. As one casts a spell the following transformations take place: 991 → 19 → 10 → 1. After three transformations the number becomes one-digit.
```python from ast import Str N = input() output = 0 if len(N) == 0: output = 0 else: while(len(N) != 1): digits = 0 for digit in N: digits += int(digit) N = str(digits) output += 1 print(output) ```
3.968947
225
A
Dice Tower
PROGRAMMING
1,100
[ "constructive algorithms", "greedy" ]
null
null
A dice is a cube, its faces contain distinct integers from 1 to 6 as black points. The sum of numbers at the opposite dice faces always equals 7. Please note that there are only two dice (these dices are mirror of each other) that satisfy the given constraints (both of them are shown on the picture on the left). Alice and Bob play dice. Alice has built a tower from *n* dice. We know that in this tower the adjacent dice contact with faces with distinct numbers. Bob wants to uniquely identify the numbers written on the faces of all dice, from which the tower is built. Unfortunately, Bob is looking at the tower from the face, and so he does not see all the numbers on the faces. Bob sees the number on the top of the tower and the numbers on the two adjacent sides (on the right side of the picture shown what Bob sees). Help Bob, tell whether it is possible to uniquely identify the numbers on the faces of all the dice in the tower, or not.
The first line contains a single integer *n* (1<=≤<=*n*<=≤<=100) — the number of dice in the tower. The second line contains an integer *x* (1<=≤<=*x*<=≤<=6) — the number Bob sees at the top of the tower. Next *n* lines contain two space-separated integers each: the *i*-th line contains numbers *a**i*,<=*b**i* (1<=≤<=*a**i*,<=*b**i*<=≤<=6; *a**i*<=≠<=*b**i*) — the numbers Bob sees on the two sidelong faces of the *i*-th dice in the tower. Consider the dice in the tower indexed from top to bottom from 1 to *n*. That is, the topmost dice has index 1 (the dice whose top face Bob can see). It is guaranteed that it is possible to make a dice tower that will look as described in the input.
Print "YES" (without the quotes), if it is possible to to uniquely identify the numbers on the faces of all the dice in the tower. If it is impossible, print "NO" (without the quotes).
[ "3\n6\n3 2\n5 4\n2 4\n", "3\n3\n2 6\n4 1\n5 3\n" ]
[ "YES", "NO" ]
none
500
[ { "input": "3\n6\n3 2\n5 4\n2 4", "output": "YES" }, { "input": "3\n3\n2 6\n4 1\n5 3", "output": "NO" }, { "input": "1\n3\n2 1", "output": "YES" }, { "input": "2\n2\n3 1\n1 5", "output": "NO" }, { "input": "3\n2\n1 4\n5 3\n6 4", "output": "NO" }, { "input": "4\n3\n5 6\n1 3\n1 5\n4 1", "output": "NO" }, { "input": "2\n2\n3 1\n1 3", "output": "YES" }, { "input": "3\n2\n1 4\n3 1\n4 6", "output": "YES" }, { "input": "4\n3\n5 6\n1 5\n5 1\n1 5", "output": "YES" }, { "input": "5\n1\n2 3\n5 3\n5 4\n5 1\n3 5", "output": "NO" }, { "input": "10\n5\n1 3\n2 3\n6 5\n6 5\n4 5\n1 3\n1 2\n3 2\n4 2\n1 2", "output": "NO" }, { "input": "15\n4\n2 1\n2 4\n6 4\n5 3\n4 1\n4 2\n6 3\n4 5\n3 5\n2 6\n5 6\n1 5\n3 5\n6 4\n3 2", "output": "NO" }, { "input": "20\n6\n3 2\n4 6\n3 6\n6 4\n5 1\n1 5\n2 6\n1 2\n1 4\n5 3\n2 3\n6 2\n5 4\n2 6\n1 3\n4 6\n4 5\n6 3\n3 1\n6 2", "output": "NO" }, { "input": "25\n4\n1 2\n4 1\n3 5\n2 1\n3 5\n6 5\n3 5\n5 6\n1 2\n2 4\n6 2\n2 3\n2 4\n6 5\n2 3\n6 3\n2 3\n1 3\n2 1\n3 1\n5 6\n3 1\n6 4\n3 6\n2 3", "output": "NO" }, { "input": "100\n3\n6 5\n5 1\n3 2\n1 5\n3 6\n5 4\n2 6\n4 1\n6 3\n4 5\n1 5\n1 4\n4 2\n2 6\n5 4\n4 1\n1 3\n6 5\n5 1\n2 1\n2 4\n2 1\n3 6\n4 1\n6 3\n2 3\n5 1\n2 6\n6 4\n3 5\n4 1\n6 5\n1 5\n1 5\n2 3\n4 1\n5 3\n6 4\n1 3\n5 3\n4 1\n1 4\n2 1\n6 2\n1 5\n6 2\n6 2\n4 5\n4 2\n5 6\n6 3\n1 3\n2 3\n5 4\n6 5\n3 1\n1 2\n4 1\n1 3\n1 3\n6 5\n4 6\n3 1\n2 1\n2 3\n3 2\n4 1\n1 5\n4 1\n6 3\n1 5\n4 5\n4 2\n4 5\n2 6\n2 1\n3 5\n4 6\n4 2\n4 5\n2 4\n3 1\n6 4\n5 6\n3 1\n1 4\n4 5\n6 3\n6 3\n2 1\n5 1\n3 6\n3 5\n2 1\n4 6\n4 2\n5 6\n3 1\n3 5\n3 6", "output": "NO" }, { "input": "99\n3\n2 1\n6 2\n3 6\n1 3\n5 1\n2 6\n4 6\n6 4\n6 4\n6 5\n3 6\n2 6\n1 5\n2 3\n4 6\n1 4\n4 1\n2 3\n4 5\n4 1\n5 1\n1 2\n6 5\n4 6\n6 5\n6 2\n3 6\n6 4\n2 1\n3 1\n2 1\n6 2\n3 5\n4 1\n5 3\n3 1\n1 5\n3 6\n6 2\n1 5\n2 1\n5 1\n4 1\n2 6\n5 4\n4 2\n2 1\n1 5\n1 3\n4 6\n4 6\n4 5\n2 3\n6 2\n3 2\n2 1\n4 6\n6 2\n3 5\n3 6\n3 1\n2 3\n2 1\n3 6\n6 5\n6 3\n1 2\n5 1\n1 4\n6 2\n5 3\n1 3\n5 4\n2 3\n6 3\n1 5\n1 2\n2 6\n5 6\n5 6\n3 5\n3 1\n4 6\n3 1\n4 5\n4 2\n3 5\n6 2\n2 4\n4 6\n6 2\n4 2\n2 3\n2 4\n1 5\n1 4\n3 5\n1 2\n4 5", "output": "NO" }, { "input": "98\n6\n4 2\n1 2\n3 2\n2 1\n2 1\n3 2\n2 3\n6 5\n4 6\n1 5\n4 5\n5 1\n6 5\n1 4\n1 2\n2 4\n6 5\n4 5\n4 6\n3 1\n2 3\n4 1\n4 2\n6 5\n3 2\n4 2\n5 1\n2 4\n1 3\n4 5\n3 2\n1 2\n3 1\n3 2\n3 6\n6 4\n3 6\n3 5\n4 6\n6 5\n3 5\n3 2\n4 2\n6 4\n1 3\n2 4\n5 3\n2 3\n1 3\n5 6\n5 3\n5 3\n4 6\n4 6\n3 6\n4 1\n6 5\n6 2\n1 5\n2 1\n6 2\n5 4\n6 3\n1 5\n2 3\n2 6\n5 6\n2 6\n5 1\n3 2\n6 2\n6 2\n1 2\n2 1\n3 5\n2 1\n4 6\n1 4\n4 5\n3 2\n3 2\n5 4\n1 3\n5 1\n2 3\n6 2\n2 6\n1 5\n5 1\n5 4\n5 1\n5 4\n2 1\n6 5\n1 4\n6 5\n1 2\n3 5", "output": "NO" }, { "input": "97\n3\n2 1\n6 5\n4 1\n6 5\n3 2\n1 2\n6 3\n6 4\n6 3\n1 3\n1 3\n3 1\n3 6\n3 2\n5 6\n4 2\n3 6\n1 5\n2 6\n3 2\n6 2\n2 1\n2 4\n1 3\n3 1\n2 6\n3 6\n4 6\n6 2\n5 1\n6 3\n2 6\n3 6\n2 4\n4 5\n6 5\n4 1\n5 6\n6 2\n5 4\n5 1\n6 5\n1 4\n2 1\n4 5\n4 5\n4 1\n5 4\n1 4\n2 6\n2 6\n1 5\n5 6\n3 2\n2 3\n1 4\n4 1\n3 6\n6 2\n5 3\n6 2\n4 5\n6 2\n2 6\n6 5\n1 4\n2 6\n3 5\n2 6\n4 1\n4 5\n1 3\n4 2\n3 2\n1 2\n5 6\n1 5\n3 5\n2 1\n1 2\n1 2\n6 4\n5 1\n1 2\n2 4\n6 3\n4 5\n1 5\n4 2\n5 1\n3 1\n6 4\n4 2\n1 5\n4 6\n2 1\n2 6", "output": "NO" }, { "input": "96\n4\n1 5\n1 5\n4 6\n1 2\n4 2\n3 2\n4 6\n6 4\n6 3\n6 2\n4 1\n6 4\n5 1\n2 4\n5 6\n6 5\n3 2\n6 2\n3 1\n1 4\n3 2\n6 2\n2 4\n1 3\n5 4\n1 3\n6 2\n6 2\n5 6\n1 4\n4 2\n6 2\n3 1\n6 5\n3 1\n4 2\n6 3\n3 2\n3 6\n1 3\n5 6\n6 4\n1 4\n5 4\n2 6\n3 5\n5 4\n5 1\n2 4\n1 5\n1 3\n1 2\n1 3\n6 4\n6 3\n4 5\n4 1\n3 6\n1 2\n6 4\n1 2\n2 3\n2 1\n4 6\n1 3\n5 1\n4 5\n5 4\n6 3\n2 6\n5 1\n6 2\n3 1\n3 1\n5 4\n3 1\n5 6\n2 6\n5 6\n4 2\n6 5\n3 2\n6 5\n2 3\n6 4\n6 2\n1 2\n4 1\n1 2\n6 3\n2 1\n5 1\n6 5\n5 4\n4 5\n1 2", "output": "NO" }, { "input": "5\n1\n2 3\n3 5\n4 5\n5 4\n5 3", "output": "YES" }, { "input": "10\n5\n1 3\n3 1\n6 3\n6 3\n4 6\n3 1\n1 4\n3 1\n4 6\n1 3", "output": "YES" }, { "input": "15\n4\n2 1\n2 6\n6 5\n5 1\n1 5\n2 1\n6 5\n5 1\n5 1\n6 2\n6 5\n5 1\n5 1\n6 5\n2 6", "output": "YES" }, { "input": "20\n6\n3 2\n4 2\n3 5\n4 2\n5 3\n5 4\n2 3\n2 3\n4 5\n3 5\n3 2\n2 4\n4 5\n2 4\n3 2\n4 2\n5 4\n3 2\n3 5\n2 4", "output": "YES" }, { "input": "25\n4\n1 2\n1 5\n5 6\n1 2\n5 1\n5 6\n5 1\n6 5\n2 1\n2 6\n2 6\n2 6\n2 6\n5 6\n2 6\n6 5\n2 1\n1 5\n1 2\n1 2\n6 5\n1 2\n6 5\n6 2\n2 6", "output": "YES" }, { "input": "100\n3\n6 5\n1 5\n2 1\n5 1\n6 5\n5 1\n6 2\n1 2\n6 5\n5 1\n5 1\n1 5\n2 6\n6 2\n5 6\n1 2\n1 5\n5 6\n1 5\n1 2\n2 6\n1 2\n6 2\n1 5\n6 2\n2 6\n1 5\n6 2\n6 5\n5 6\n1 5\n5 6\n5 1\n5 1\n2 1\n1 2\n5 6\n6 5\n1 5\n5 1\n1 2\n1 5\n1 2\n2 6\n5 1\n2 6\n2 6\n5 6\n2 6\n6 5\n6 5\n1 5\n2 1\n5 6\n5 6\n1 2\n2 1\n1 2\n1 2\n1 2\n5 6\n6 2\n1 5\n1 2\n2 1\n2 6\n1 2\n5 1\n1 5\n6 5\n5 1\n5 1\n2 6\n5 6\n6 2\n1 2\n5 1\n6 2\n2 1\n5 6\n2 1\n1 5\n6 5\n6 5\n1 2\n1 2\n5 1\n6 2\n6 2\n1 2\n1 5\n6 5\n5 6\n1 2\n6 5\n2 1\n6 5\n1 5\n5 6\n6 5", "output": "YES" }, { "input": "99\n3\n2 1\n2 6\n6 2\n1 5\n1 5\n6 2\n6 5\n6 5\n6 2\n5 6\n6 5\n6 2\n5 1\n2 6\n6 5\n1 5\n1 5\n2 6\n5 1\n1 5\n1 5\n2 1\n5 6\n6 5\n5 6\n2 6\n6 2\n6 5\n1 2\n1 2\n1 2\n2 6\n5 6\n1 2\n5 6\n1 2\n5 1\n6 5\n2 6\n5 1\n1 2\n1 5\n1 5\n6 2\n5 1\n2 6\n1 2\n5 1\n1 5\n6 5\n6 5\n5 6\n2 1\n2 6\n2 6\n1 2\n6 2\n2 6\n5 6\n6 5\n1 5\n2 1\n1 2\n6 2\n5 6\n6 5\n2 1\n1 5\n1 5\n2 6\n5 1\n1 2\n5 6\n2 1\n6 5\n5 1\n2 1\n6 2\n6 5\n6 5\n5 6\n1 2\n6 5\n1 2\n5 1\n2 1\n5 1\n2 6\n2 1\n6 2\n2 6\n2 6\n2 1\n2 1\n5 1\n1 5\n5 6\n2 1\n5 6", "output": "YES" }, { "input": "98\n6\n4 2\n2 3\n2 3\n2 3\n2 3\n2 3\n3 2\n5 4\n4 2\n5 4\n5 4\n5 4\n5 3\n4 5\n2 3\n4 2\n5 3\n5 4\n4 5\n3 5\n3 2\n4 2\n2 4\n5 4\n2 3\n2 4\n5 4\n4 2\n3 5\n5 4\n2 3\n2 4\n3 5\n2 3\n3 5\n4 2\n3 5\n5 3\n4 2\n5 3\n5 3\n2 3\n2 4\n4 5\n3 2\n4 2\n3 5\n3 2\n3 5\n5 4\n3 5\n3 5\n4 2\n4 2\n3 2\n4 5\n5 4\n2 3\n5 4\n2 4\n2 3\n4 5\n3 5\n5 4\n3 2\n2 3\n5 3\n2 3\n5 3\n2 3\n2 3\n2 4\n2 3\n2 3\n5 3\n2 3\n4 2\n4 2\n5 4\n2 3\n2 3\n4 5\n3 2\n5 3\n3 2\n2 4\n2 4\n5 3\n5 4\n4 5\n5 3\n4 5\n2 4\n5 3\n4 2\n5 4\n2 4\n5 3", "output": "YES" }, { "input": "97\n3\n2 1\n5 6\n1 2\n5 6\n2 6\n2 1\n6 2\n6 5\n6 2\n1 5\n1 2\n1 2\n6 2\n2 6\n6 5\n2 6\n6 5\n5 1\n6 2\n2 6\n2 6\n1 2\n2 6\n1 2\n1 5\n6 2\n6 5\n6 5\n2 6\n1 5\n6 5\n6 2\n6 2\n2 6\n5 6\n5 6\n1 5\n6 5\n2 6\n5 6\n1 5\n5 6\n1 5\n1 2\n5 1\n5 1\n1 5\n5 1\n1 5\n6 2\n6 2\n5 1\n6 5\n2 1\n2 6\n1 5\n1 5\n6 2\n2 6\n5 6\n2 6\n5 6\n2 6\n6 2\n5 6\n1 2\n6 2\n5 6\n6 2\n1 5\n5 6\n1 5\n2 6\n2 6\n2 1\n6 5\n5 1\n5 1\n1 2\n2 1\n2 1\n6 2\n1 5\n2 1\n2 1\n6 2\n5 1\n5 1\n2 6\n1 5\n1 2\n6 2\n2 6\n5 1\n6 5\n1 2\n6 2", "output": "YES" }, { "input": "96\n4\n1 5\n5 1\n6 5\n2 1\n2 1\n2 6\n6 5\n6 5\n6 2\n2 6\n1 5\n6 5\n1 5\n2 6\n6 5\n5 6\n2 1\n2 6\n1 2\n1 5\n2 6\n2 6\n2 1\n1 5\n5 1\n1 2\n2 6\n2 6\n6 5\n1 5\n2 1\n2 6\n1 2\n5 6\n1 5\n2 6\n6 2\n2 6\n6 5\n1 5\n6 5\n6 5\n1 5\n5 1\n6 2\n5 1\n5 1\n1 5\n2 6\n5 1\n1 5\n2 1\n1 2\n6 2\n6 2\n5 6\n1 5\n6 5\n2 1\n6 5\n2 1\n2 1\n1 2\n6 2\n1 2\n1 5\n5 1\n5 6\n6 5\n6 2\n1 5\n2 6\n1 2\n1 2\n5 1\n1 5\n6 5\n6 2\n6 5\n2 6\n5 6\n2 1\n5 6\n2 1\n6 5\n2 6\n2 1\n1 5\n2 1\n6 2\n1 2\n1 5\n5 6\n5 1\n5 6\n2 1", "output": "YES" }, { "input": "3\n6\n3 2\n5 4\n2 6", "output": "NO" }, { "input": "4\n1\n2 3\n2 3\n2 3\n1 3", "output": "NO" }, { "input": "2\n6\n3 2\n6 4", "output": "NO" }, { "input": "3\n6\n3 2\n5 6\n2 4", "output": "NO" }, { "input": "2\n5\n6 3\n4 5", "output": "NO" }, { "input": "2\n6\n3 2\n6 5", "output": "NO" }, { "input": "2\n1\n3 2\n1 2", "output": "NO" }, { "input": "2\n3\n5 1\n3 5", "output": "NO" }, { "input": "2\n1\n2 3\n1 2", "output": "NO" }, { "input": "2\n1\n2 3\n2 1", "output": "NO" }, { "input": "3\n1\n4 5\n4 1\n4 5", "output": "NO" }, { "input": "2\n4\n2 6\n5 4", "output": "NO" }, { "input": "2\n6\n3 2\n6 2", "output": "NO" }, { "input": "2\n3\n2 1\n3 5", "output": "NO" }, { "input": "2\n3\n1 2\n3 1", "output": "NO" }, { "input": "2\n3\n2 6\n5 3", "output": "NO" }, { "input": "3\n3\n1 2\n3 2\n3 1", "output": "NO" }, { "input": "3\n5\n3 1\n1 3\n2 3", "output": "NO" }, { "input": "2\n6\n2 4\n6 5", "output": "NO" }, { "input": "2\n6\n4 5\n6 5", "output": "NO" }, { "input": "2\n6\n3 5\n3 6", "output": "NO" }, { "input": "2\n4\n1 2\n4 5", "output": "NO" }, { "input": "2\n3\n2 6\n3 1", "output": "NO" } ]
1,647,637,630
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
1
92
0
n=int(input()) x=int(input()) identified_dice=True for i in range(n): a,b=map(int,input().split()) if(a==x or a==7-x or b==x or b==7-x): print('NO') break if(identified_dice): print("YES")
Title: Dice Tower Time Limit: None seconds Memory Limit: None megabytes Problem Description: A dice is a cube, its faces contain distinct integers from 1 to 6 as black points. The sum of numbers at the opposite dice faces always equals 7. Please note that there are only two dice (these dices are mirror of each other) that satisfy the given constraints (both of them are shown on the picture on the left). Alice and Bob play dice. Alice has built a tower from *n* dice. We know that in this tower the adjacent dice contact with faces with distinct numbers. Bob wants to uniquely identify the numbers written on the faces of all dice, from which the tower is built. Unfortunately, Bob is looking at the tower from the face, and so he does not see all the numbers on the faces. Bob sees the number on the top of the tower and the numbers on the two adjacent sides (on the right side of the picture shown what Bob sees). Help Bob, tell whether it is possible to uniquely identify the numbers on the faces of all the dice in the tower, or not. Input Specification: The first line contains a single integer *n* (1<=≤<=*n*<=≤<=100) — the number of dice in the tower. The second line contains an integer *x* (1<=≤<=*x*<=≤<=6) — the number Bob sees at the top of the tower. Next *n* lines contain two space-separated integers each: the *i*-th line contains numbers *a**i*,<=*b**i* (1<=≤<=*a**i*,<=*b**i*<=≤<=6; *a**i*<=≠<=*b**i*) — the numbers Bob sees on the two sidelong faces of the *i*-th dice in the tower. Consider the dice in the tower indexed from top to bottom from 1 to *n*. That is, the topmost dice has index 1 (the dice whose top face Bob can see). It is guaranteed that it is possible to make a dice tower that will look as described in the input. Output Specification: Print "YES" (without the quotes), if it is possible to to uniquely identify the numbers on the faces of all the dice in the tower. If it is impossible, print "NO" (without the quotes). Demo Input: ['3\n6\n3 2\n5 4\n2 4\n', '3\n3\n2 6\n4 1\n5 3\n'] Demo Output: ['YES', 'NO'] Note: none
```python n=int(input()) x=int(input()) identified_dice=True for i in range(n): a,b=map(int,input().split()) if(a==x or a==7-x or b==x or b==7-x): print('NO') break if(identified_dice): print("YES") ```
0
569
A
Music
PROGRAMMING
1,500
[ "implementation", "math" ]
null
null
Little Lesha loves listening to music via his smartphone. But the smartphone doesn't have much memory, so Lesha listens to his favorite songs in a well-known social network InTalk. Unfortunately, internet is not that fast in the city of Ekaterinozavodsk and the song takes a lot of time to download. But Lesha is quite impatient. The song's duration is *T* seconds. Lesha downloads the first *S* seconds of the song and plays it. When the playback reaches the point that has not yet been downloaded, Lesha immediately plays the song from the start (the loaded part of the song stays in his phone, and the download is continued from the same place), and it happens until the song is downloaded completely and Lesha listens to it to the end. For *q* seconds of real time the Internet allows you to download *q*<=-<=1 seconds of the track. Tell Lesha, for how many times he will start the song, including the very first start.
The single line contains three integers *T*,<=*S*,<=*q* (2<=≤<=*q*<=≤<=104, 1<=≤<=*S*<=&lt;<=*T*<=≤<=105).
Print a single integer — the number of times the song will be restarted.
[ "5 2 2\n", "5 4 7\n", "6 2 3\n" ]
[ "2\n", "1\n", "1\n" ]
In the first test, the song is played twice faster than it is downloaded, which means that during four first seconds Lesha reaches the moment that has not been downloaded, and starts the song again. After another two seconds, the song is downloaded completely, and thus, Lesha starts the song twice. In the second test, the song is almost downloaded, and Lesha will start it only once. In the third sample test the download finishes and Lesha finishes listening at the same moment. Note that song isn't restarted in this case.
500
[ { "input": "5 2 2", "output": "2" }, { "input": "5 4 7", "output": "1" }, { "input": "6 2 3", "output": "1" }, { "input": "2 1 2", "output": "1" }, { "input": "2 1 3", "output": "1" }, { "input": "2 1 10000", "output": "1" }, { "input": "12326 6163 2", "output": "1" }, { "input": "10000 2500 4", "output": "1" }, { "input": "100000 99999 4", "output": "1" }, { "input": "12351 1223 6", "output": "2" }, { "input": "100000 1 10000", "output": "2" }, { "input": "10028 13 10000", "output": "1" }, { "input": "100000 99999 2", "output": "1" }, { "input": "100000 99999 3", "output": "1" }, { "input": "100000 1 2", "output": "17" }, { "input": "100000 1 3", "output": "11" }, { "input": "100000 1 4", "output": "9" }, { "input": "100000 1 5", "output": "8" }, { "input": "100000 3125 2", "output": "5" }, { "input": "12628 1804 7", "output": "1" }, { "input": "100000 45 13", "output": "4" }, { "input": "100000 500 3", "output": "5" }, { "input": "356 2 3", "output": "5" }, { "input": "50 2 2", "output": "5" }, { "input": "65465 12 3", "output": "8" }, { "input": "10033 3 8", "output": "4" }, { "input": "100000 3 2", "output": "16" }, { "input": "64 1 8", "output": "2" }, { "input": "10000 9 2", "output": "11" }, { "input": "25 2 2", "output": "4" }, { "input": "129 2 2", "output": "7" }, { "input": "6562 1 3", "output": "9" }, { "input": "100000 1 10", "output": "5" } ]
1,439,226,992
2,792
Python 3
WRONG_ANSWER
TESTS
14
62
0
from math import ceil T,S,q = map(int, input().split()) v = (q-1)/q time = (T-S)/v print(ceil(time / T))
Title: Music Time Limit: None seconds Memory Limit: None megabytes Problem Description: Little Lesha loves listening to music via his smartphone. But the smartphone doesn't have much memory, so Lesha listens to his favorite songs in a well-known social network InTalk. Unfortunately, internet is not that fast in the city of Ekaterinozavodsk and the song takes a lot of time to download. But Lesha is quite impatient. The song's duration is *T* seconds. Lesha downloads the first *S* seconds of the song and plays it. When the playback reaches the point that has not yet been downloaded, Lesha immediately plays the song from the start (the loaded part of the song stays in his phone, and the download is continued from the same place), and it happens until the song is downloaded completely and Lesha listens to it to the end. For *q* seconds of real time the Internet allows you to download *q*<=-<=1 seconds of the track. Tell Lesha, for how many times he will start the song, including the very first start. Input Specification: The single line contains three integers *T*,<=*S*,<=*q* (2<=≤<=*q*<=≤<=104, 1<=≤<=*S*<=&lt;<=*T*<=≤<=105). Output Specification: Print a single integer — the number of times the song will be restarted. Demo Input: ['5 2 2\n', '5 4 7\n', '6 2 3\n'] Demo Output: ['2\n', '1\n', '1\n'] Note: In the first test, the song is played twice faster than it is downloaded, which means that during four first seconds Lesha reaches the moment that has not been downloaded, and starts the song again. After another two seconds, the song is downloaded completely, and thus, Lesha starts the song twice. In the second test, the song is almost downloaded, and Lesha will start it only once. In the third sample test the download finishes and Lesha finishes listening at the same moment. Note that song isn't restarted in this case.
```python from math import ceil T,S,q = map(int, input().split()) v = (q-1)/q time = (T-S)/v print(ceil(time / T)) ```
0
443
A
Anton and Letters
PROGRAMMING
800
[ "constructive algorithms", "implementation" ]
null
null
Recently, Anton has found a set. The set consists of small English letters. Anton carefully wrote out all the letters from the set in one line, separated by a comma. He also added an opening curved bracket at the beginning of the line and a closing curved bracket at the end of the line. Unfortunately, from time to time Anton would forget writing some letter and write it again. He asks you to count the total number of distinct letters in his set.
The first and the single line contains the set of letters. The length of the line doesn't exceed 1000. It is guaranteed that the line starts from an opening curved bracket and ends with a closing curved bracket. Between them, small English letters are listed, separated by a comma. Each comma is followed by a space.
Print a single number — the number of distinct letters in Anton's set.
[ "{a, b, c}\n", "{b, a, b, a}\n", "{}\n" ]
[ "3\n", "2\n", "0\n" ]
none
500
[ { "input": "{a, b, c}", "output": "3" }, { "input": "{b, a, b, a}", "output": "2" }, { "input": "{}", "output": "0" }, { "input": "{a, a, c, b, b, b, c, c, c, c}", "output": "3" }, { "input": "{a, c, b, b}", "output": "3" }, { "input": "{a, b}", "output": "2" }, { "input": "{a}", "output": "1" }, { "input": "{b, a, b, a, b, c, c, b, c, b}", "output": "3" }, { "input": "{e, g, c, e}", "output": "3" }, { "input": "{a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a}", "output": "1" }, { "input": "{a, a, b}", "output": "2" }, { "input": "{a, b, b, b, a, b, a, a, a, a, a, a, b, a, b, a, a, a, a, a, b, a, b, a}", "output": "2" }, { "input": "{j, u, a, c, f, w, e, w, x, t, h, p, v, n, i, l, x, n, i, b, u, c, a, a}", "output": "16" }, { "input": "{x, i, w, c, p, e, h, z, k, i}", "output": "9" }, { "input": "{t, k, o, x, r, d, q, j, k, e, z, w, y, r, z, s, s, e, s, b, k, i}", "output": "15" }, { "input": "{y}", "output": "1" }, { "input": "{x}", "output": "1" }, { "input": "{b, z, a, z}", "output": "3" }, { "input": "{z}", "output": "1" }, { "input": "{a, z}", "output": "2" }, { "input": "{a, b, z}", "output": "3" }, { "input": "{s, q, z, r, t, a, b, h, j, i, o, z, r, q}", "output": "11" } ]
1,690,821,806
2,147,483,647
PyPy 3
WRONG_ANSWER
TESTS
1
62
0
input1 = input() input1.replace("{" , "").replace("}" , "").replace(" ", "") listX = input1.split(",") set1 = set(listX) print(len(set1))
Title: Anton and Letters Time Limit: None seconds Memory Limit: None megabytes Problem Description: Recently, Anton has found a set. The set consists of small English letters. Anton carefully wrote out all the letters from the set in one line, separated by a comma. He also added an opening curved bracket at the beginning of the line and a closing curved bracket at the end of the line. Unfortunately, from time to time Anton would forget writing some letter and write it again. He asks you to count the total number of distinct letters in his set. Input Specification: The first and the single line contains the set of letters. The length of the line doesn't exceed 1000. It is guaranteed that the line starts from an opening curved bracket and ends with a closing curved bracket. Between them, small English letters are listed, separated by a comma. Each comma is followed by a space. Output Specification: Print a single number — the number of distinct letters in Anton's set. Demo Input: ['{a, b, c}\n', '{b, a, b, a}\n', '{}\n'] Demo Output: ['3\n', '2\n', '0\n'] Note: none
```python input1 = input() input1.replace("{" , "").replace("}" , "").replace(" ", "") listX = input1.split(",") set1 = set(listX) print(len(set1)) ```
0
255
A
Greg's Workout
PROGRAMMING
800
[ "implementation" ]
null
null
Greg is a beginner bodybuilder. Today the gym coach gave him the training plan. All it had was *n* integers *a*1,<=*a*2,<=...,<=*a**n*. These numbers mean that Greg needs to do exactly *n* exercises today. Besides, Greg should repeat the *i*-th in order exercise *a**i* times. Greg now only does three types of exercises: "chest" exercises, "biceps" exercises and "back" exercises. Besides, his training is cyclic, that is, the first exercise he does is a "chest" one, the second one is "biceps", the third one is "back", the fourth one is "chest", the fifth one is "biceps", and so on to the *n*-th exercise. Now Greg wonders, which muscle will get the most exercise during his training. We know that the exercise Greg repeats the maximum number of times, trains the corresponding muscle the most. Help Greg, determine which muscle will get the most training.
The first line contains integer *n* (1<=≤<=*n*<=≤<=20). The second line contains *n* integers *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=25) — the number of times Greg repeats the exercises.
Print word "chest" (without the quotes), if the chest gets the most exercise, "biceps" (without the quotes), if the biceps gets the most exercise and print "back" (without the quotes) if the back gets the most exercise. It is guaranteed that the input is such that the answer to the problem is unambiguous.
[ "2\n2 8\n", "3\n5 1 10\n", "7\n3 3 2 7 9 6 8\n" ]
[ "biceps\n", "back\n", "chest\n" ]
In the first sample Greg does 2 chest, 8 biceps and zero back exercises, so the biceps gets the most exercises. In the second sample Greg does 5 chest, 1 biceps and 10 back exercises, so the back gets the most exercises. In the third sample Greg does 18 chest, 12 biceps and 8 back exercises, so the chest gets the most exercise.
500
[ { "input": "2\n2 8", "output": "biceps" }, { "input": "3\n5 1 10", "output": "back" }, { "input": "7\n3 3 2 7 9 6 8", "output": "chest" }, { "input": "4\n5 6 6 2", "output": "chest" }, { "input": "5\n8 2 2 6 3", "output": "chest" }, { "input": "6\n8 7 2 5 3 4", "output": "chest" }, { "input": "8\n7 2 9 10 3 8 10 6", "output": "chest" }, { "input": "9\n5 4 2 3 4 4 5 2 2", "output": "chest" }, { "input": "10\n4 9 8 5 3 8 8 10 4 2", "output": "biceps" }, { "input": "11\n10 9 7 6 1 3 9 7 1 3 5", "output": "chest" }, { "input": "12\n24 22 6 16 5 21 1 7 2 19 24 5", "output": "chest" }, { "input": "13\n24 10 5 7 16 17 2 7 9 20 15 2 24", "output": "chest" }, { "input": "14\n13 14 19 8 5 17 9 16 15 9 5 6 3 7", "output": "back" }, { "input": "15\n24 12 22 21 25 23 21 5 3 24 23 13 12 16 12", "output": "chest" }, { "input": "16\n12 6 18 6 25 7 3 1 1 17 25 17 6 8 17 8", "output": "biceps" }, { "input": "17\n13 8 13 4 9 21 10 10 9 22 14 23 22 7 6 14 19", "output": "chest" }, { "input": "18\n1 17 13 6 11 10 25 13 24 9 21 17 3 1 17 12 25 21", "output": "back" }, { "input": "19\n22 22 24 25 19 10 7 10 4 25 19 14 1 14 3 18 4 19 24", "output": "chest" }, { "input": "20\n9 8 22 11 18 14 15 10 17 11 2 1 25 20 7 24 4 25 9 20", "output": "chest" }, { "input": "1\n10", "output": "chest" }, { "input": "2\n15 3", "output": "chest" }, { "input": "3\n21 11 19", "output": "chest" }, { "input": "4\n19 24 13 15", "output": "chest" }, { "input": "5\n4 24 1 9 19", "output": "biceps" }, { "input": "6\n6 22 24 7 15 24", "output": "back" }, { "input": "7\n10 8 23 23 14 18 14", "output": "chest" }, { "input": "8\n5 16 8 9 17 16 14 7", "output": "biceps" }, { "input": "9\n12 3 10 23 6 4 22 13 12", "output": "chest" }, { "input": "10\n1 9 20 18 20 17 7 24 23 2", "output": "back" }, { "input": "11\n22 25 8 2 18 15 1 13 1 11 4", "output": "biceps" }, { "input": "12\n20 12 14 2 15 6 24 3 11 8 11 14", "output": "chest" }, { "input": "13\n2 18 8 8 8 20 5 22 15 2 5 19 18", "output": "back" }, { "input": "14\n1 6 10 25 17 13 21 11 19 4 15 24 5 22", "output": "biceps" }, { "input": "15\n13 5 25 13 17 25 19 21 23 17 12 6 14 8 6", "output": "back" }, { "input": "16\n10 15 2 17 22 12 14 14 6 11 4 13 9 8 21 14", "output": "chest" }, { "input": "17\n7 22 9 22 8 7 20 22 23 5 12 11 1 24 17 20 10", "output": "biceps" }, { "input": "18\n18 15 4 25 5 11 21 25 12 14 25 23 19 19 13 6 9 17", "output": "chest" }, { "input": "19\n3 1 3 15 15 25 10 25 23 10 9 21 13 23 19 3 24 21 14", "output": "back" }, { "input": "20\n19 18 11 3 6 14 3 3 25 3 1 19 25 24 23 12 7 4 8 6", "output": "back" }, { "input": "1\n19", "output": "chest" }, { "input": "2\n1 7", "output": "biceps" }, { "input": "3\n18 18 23", "output": "back" }, { "input": "4\n12 15 1 13", "output": "chest" }, { "input": "5\n11 14 25 21 21", "output": "biceps" }, { "input": "6\n11 9 12 11 22 18", "output": "biceps" }, { "input": "7\n11 1 16 20 21 25 20", "output": "chest" }, { "input": "8\n1 2 20 9 3 22 17 4", "output": "back" }, { "input": "9\n19 2 10 19 15 20 3 1 13", "output": "back" }, { "input": "10\n11 2 11 8 21 16 2 3 19 9", "output": "back" }, { "input": "20\n25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 24", "output": "chest" }, { "input": "12\n4 24 21 3 13 24 22 13 12 21 1 15", "output": "back" }, { "input": "13\n14 14 16 2 13 5 1 14 9 4 16 8 3", "output": "biceps" }, { "input": "14\n1 9 15 4 11 8 25 3 9 14 13 2 1 11", "output": "biceps" }, { "input": "15\n4 19 10 6 16 12 5 11 7 23 1 24 11 7 17", "output": "back" }, { "input": "16\n2 8 2 8 13 22 20 12 22 23 18 13 18 22 11 17", "output": "chest" }, { "input": "17\n24 5 5 16 10 8 22 6 4 13 10 10 5 23 8 20 8", "output": "chest" }, { "input": "18\n14 8 9 12 11 18 24 1 14 24 18 5 12 17 1 10 1 22", "output": "chest" }, { "input": "19\n21 2 10 6 9 1 24 5 2 19 10 13 10 7 19 2 6 13 24", "output": "chest" }, { "input": "20\n7 1 14 17 6 6 18 13 12 3 25 4 3 19 22 24 16 14 1 23", "output": "biceps" }, { "input": "1\n19", "output": "chest" }, { "input": "20\n2 1 2 2 1 2 2 1 2 1 1 1 1 1 1 1 1 1 1 22", "output": "biceps" } ]
1,661,990,619
2,147,483,647
Python 3
OK
TESTS
61
92
0
n=int(input()) a=list(map(int,input().split())) c=0 bi=0 ba=0 for i in range(n): if i%3==0: c+=a[i] elif i%3==1: bi+=a[i] else: ba+=a[i] x=max(c,bi,ba) if x==c: print('chest') elif x==bi: print('biceps') else: print('back')
Title: Greg's Workout Time Limit: None seconds Memory Limit: None megabytes Problem Description: Greg is a beginner bodybuilder. Today the gym coach gave him the training plan. All it had was *n* integers *a*1,<=*a*2,<=...,<=*a**n*. These numbers mean that Greg needs to do exactly *n* exercises today. Besides, Greg should repeat the *i*-th in order exercise *a**i* times. Greg now only does three types of exercises: "chest" exercises, "biceps" exercises and "back" exercises. Besides, his training is cyclic, that is, the first exercise he does is a "chest" one, the second one is "biceps", the third one is "back", the fourth one is "chest", the fifth one is "biceps", and so on to the *n*-th exercise. Now Greg wonders, which muscle will get the most exercise during his training. We know that the exercise Greg repeats the maximum number of times, trains the corresponding muscle the most. Help Greg, determine which muscle will get the most training. Input Specification: The first line contains integer *n* (1<=≤<=*n*<=≤<=20). The second line contains *n* integers *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=25) — the number of times Greg repeats the exercises. Output Specification: Print word "chest" (without the quotes), if the chest gets the most exercise, "biceps" (without the quotes), if the biceps gets the most exercise and print "back" (without the quotes) if the back gets the most exercise. It is guaranteed that the input is such that the answer to the problem is unambiguous. Demo Input: ['2\n2 8\n', '3\n5 1 10\n', '7\n3 3 2 7 9 6 8\n'] Demo Output: ['biceps\n', 'back\n', 'chest\n'] Note: In the first sample Greg does 2 chest, 8 biceps and zero back exercises, so the biceps gets the most exercises. In the second sample Greg does 5 chest, 1 biceps and 10 back exercises, so the back gets the most exercises. In the third sample Greg does 18 chest, 12 biceps and 8 back exercises, so the chest gets the most exercise.
```python n=int(input()) a=list(map(int,input().split())) c=0 bi=0 ba=0 for i in range(n): if i%3==0: c+=a[i] elif i%3==1: bi+=a[i] else: ba+=a[i] x=max(c,bi,ba) if x==c: print('chest') elif x==bi: print('biceps') else: print('back') ```
3
133
A
HQ9+
PROGRAMMING
900
[ "implementation" ]
null
null
HQ9+ is a joke programming language which has only four one-character instructions: - "H" prints "Hello, World!",- "Q" prints the source code of the program itself,- "9" prints the lyrics of "99 Bottles of Beer" song, - "+" increments the value stored in the internal accumulator. Instructions "H" and "Q" are case-sensitive and must be uppercase. The characters of the program which are not instructions are ignored. You are given a program written in HQ9+. You have to figure out whether executing this program will produce any output.
The input will consist of a single line *p* which will give a program in HQ9+. String *p* will contain between 1 and 100 characters, inclusive. ASCII-code of each character of *p* will be between 33 (exclamation mark) and 126 (tilde), inclusive.
Output "YES", if executing the program will produce any output, and "NO" otherwise.
[ "Hi!\n", "Codeforces\n" ]
[ "YES\n", "NO\n" ]
In the first case the program contains only one instruction — "H", which prints "Hello, World!". In the second case none of the program characters are language instructions.
500
[ { "input": "Hi!", "output": "YES" }, { "input": "Codeforces", "output": "NO" }, { "input": "a+b=c", "output": "NO" }, { "input": "hq-lowercase", "output": "NO" }, { "input": "Q", "output": "YES" }, { "input": "9", "output": "YES" }, { "input": "H", "output": "YES" }, { "input": "+", "output": "NO" }, { "input": "~", "output": "NO" }, { "input": "dEHsbM'gS[\\brZ_dpjXw8f?L[4E\"s4Zc9*(,j:>p$}m7HD[_9nOWQ\\uvq2mHWR", "output": "YES" }, { "input": "tt6l=RHOfStm.;Qd$-}zDes*E,.F7qn5-b%HC", "output": "YES" }, { "input": "@F%K2=%RyL/", "output": "NO" }, { "input": "juq)k(FT.^G=G\\zcqnO\"uJIE1_]KFH9S=1c\"mJ;F9F)%>&.WOdp09+k`Yc6}\"6xw,Aos:M\\_^^:xBb[CcsHm?J", "output": "YES" }, { "input": "6G_\"Fq#<AWyHG=Rci1t%#Jc#x<Fpg'N@t%F=``YO7\\Zd;6PkMe<#91YgzTC)", "output": "YES" }, { "input": "Fvg_~wC>SO4lF}*c`Q;mII9E{4.QodbqN]C", "output": "YES" }, { "input": "p-UXsbd&f", "output": "NO" }, { "input": "<]D7NMA)yZe=`?RbP5lsa.l_Mg^V:\"-0x+$3c,q&L%18Ku<HcA\\s!^OQblk^x{35S'>yz8cKgVHWZ]kV0>_", "output": "YES" }, { "input": "f.20)8b+.R}Gy!DbHU3v(.(=Q^`z[_BaQ}eO=C1IK;b2GkD\\{\\Bf\"!#qh]", "output": "YES" }, { "input": "}do5RU<(w<q[\"-NR)IAH_HyiD{", "output": "YES" }, { "input": "Iy^.,Aw*,5+f;l@Q;jLK'G5H-r1Pfmx?ei~`CjMmUe{K:lS9cu4ay8rqRh-W?Gqv!e-j*U)!Mzn{E8B6%~aSZ~iQ_QwlC9_cX(o8", "output": "YES" }, { "input": "sKLje,:q>-D,;NvQ3,qN3-N&tPx0nL/,>Ca|z\"k2S{NF7btLa3_TyXG4XZ:`(t&\"'^M|@qObZxv", "output": "YES" }, { "input": "%z:c@1ZsQ@\\6U/NQ+M9R>,$bwG`U1+C\\18^:S},;kw!&4r|z`", "output": "YES" }, { "input": "OKBB5z7ud81[Tn@P\"nDUd,>@", "output": "NO" }, { "input": "y{0;neX]w0IenPvPx0iXp+X|IzLZZaRzBJ>q~LhMhD$x-^GDwl;,a'<bAqH8QrFwbK@oi?I'W.bZ]MlIQ/x(0YzbTH^l.)]0Bv", "output": "YES" }, { "input": "EL|xIP5_+Caon1hPpQ0[8+r@LX4;b?gMy>;/WH)pf@Ur*TiXu*e}b-*%acUA~A?>MDz#!\\Uh", "output": "YES" }, { "input": "UbkW=UVb>;z6)p@Phr;^Dn.|5O{_i||:Rv|KJ_ay~V(S&Jp", "output": "NO" }, { "input": "!3YPv@2JQ44@)R2O_4`GO", "output": "YES" }, { "input": "Kba/Q,SL~FMd)3hOWU'Jum{9\"$Ld4:GW}D]%tr@G{hpG:PV5-c'VIZ~m/6|3I?_4*1luKnOp`%p|0H{[|Y1A~4-ZdX,Rw2[\\", "output": "YES" }, { "input": "NRN*=v>;oU7[acMIJn*n^bWm!cm3#E7Efr>{g-8bl\"DN4~_=f?[T;~Fq#&)aXq%</GcTJD^e$@Extm[e\"C)q_L", "output": "NO" }, { "input": "y#<fv{_=$MP!{D%I\\1OqjaqKh[pqE$KvYL<9@*V'j8uH0/gQdA'G;&y4Cv6&", "output": "YES" }, { "input": "+SE_Pg<?7Fh,z&uITQut2a-mk8X8La`c2A}", "output": "YES" }, { "input": "Uh3>ER](J", "output": "NO" }, { "input": "!:!{~=9*\\P;Z6F?HC5GadFz)>k*=u|+\"Cm]ICTmB!`L{&oS/z6b~#Snbp/^\\Q>XWU-vY+/dP.7S=-#&whS@,", "output": "YES" }, { "input": "KimtYBZp+ISeO(uH;UldoE6eAcp|9u?SzGZd6j-e}[}u#e[Cx8.qgY]$2!", "output": "YES" }, { "input": "[:[SN-{r>[l+OggH3v3g{EPC*@YBATT@", "output": "YES" }, { "input": "'jdL(vX", "output": "NO" }, { "input": "Q;R+aay]cL?Zh*uG\"YcmO*@Dts*Gjp}D~M7Z96+<4?9I3aH~0qNdO(RmyRy=ci,s8qD_kwj;QHFzD|5,5", "output": "YES" }, { "input": "{Q@#<LU_v^qdh%gGxz*pu)Y\"]k-l-N30WAxvp2IE3:jD0Wi4H/xWPH&s", "output": "YES" }, { "input": "~@Gb(S&N$mBuBUMAky-z^{5VwLNTzYg|ZUZncL@ahS?K*As<$iNUARM3r43J'jJB)$ujfPAq\"G<S9flGyakZg!2Z.-NJ|2{F>]", "output": "YES" }, { "input": "Jp5Aa>aP6fZ!\\6%A}<S}j{O4`C6y$8|i3IW,WHy&\"ioE&7zP\"'xHAY;:x%@SnS]Mr{R|})gU", "output": "YES" }, { "input": "ZA#:U)$RI^sE\\vuAt]x\"2zipI!}YEu2<j$:H0_9/~eB?#->", "output": "YES" }, { "input": "&ppw0._:\\p-PuWM@l}%%=", "output": "NO" }, { "input": "P(^pix\"=oiEZu8?@d@J(I`Xp5TN^T3\\Z7P5\"ZrvZ{2Fwz3g-8`U!)(1$a<g+9Q|COhDoH;HwFY02Pa|ZGp$/WZBR=>6Jg!yr", "output": "YES" }, { "input": "`WfODc\\?#ax~1xu@[ao+o_rN|L7%v,p,nDv>3+6cy.]q3)+A6b!q*Hc+#.t4f~vhUa~$^q", "output": "YES" }, { "input": ",)TH9N}'6t2+0Yg?S#6/{_.,!)9d}h'wG|sY&'Ul4D0l0", "output": "YES" }, { "input": "VXB&r9Z)IlKOJ:??KDA", "output": "YES" }, { "input": "\")1cL>{o\\dcYJzu?CefyN^bGRviOH&P7rJS3PT4:0V3F)%\\}L=AJouYsj_>j2|7^1NWu*%NbOP>ngv-ls<;b-4Sd3Na0R", "output": "YES" }, { "input": "2Y}\\A)>row{~c[g>:'.|ZC8%UTQ/jcdhK%6O)QRC.kd@%y}LJYk=V{G5pQK/yKJ%{G3C", "output": "YES" }, { "input": "O.&=qt(`z(", "output": "NO" }, { "input": "_^r6fyIc/~~;>l%9?aVEi7-{=,[<aMiB'-scSg$$|\"jAzY0N>QkHHGBZj2c\"=fhRlWd5;5K|GgU?7h]!;wl@", "output": "YES" }, { "input": "+/`sAd&eB29E=Nu87${.u6GY@$^a$,}s^!p!F}B-z8<<wORb<S7;HM1a,gp", "output": "YES" }, { "input": "U_ilyOGMT+QiW/M8/D(1=6a7)_FA,h4`8", "output": "YES" }, { "input": "!0WKT:$O", "output": "NO" }, { "input": "1EE*I%EQz6$~pPu7|(r7nyPQt4uGU@]~H'4uII?b1_Wn)K?ZRHrr0z&Kr;}aO3<mN=3:{}QgPxI|Ncm4#)", "output": "YES" }, { "input": "[u3\"$+!:/.<Dp1M7tH}:zxjt],^kv}qP;y12\"`^'/u*h%AFmPJ>e1#Yly", "output": "YES" }, { "input": "'F!_]tB<A&UO+p?7liE>(x&RFgG2~\\(", "output": "NO" }, { "input": "Qv)X8", "output": "YES" }, { "input": "aGv7,J@&g1(}E3g6[LuDZwZl2<v7IwQA%\"R(?ouBD>_=y\"3Kf%^>vON<a^T\\G^ootgE@whWmZo=[ex|F", "output": "YES" }, { "input": "e{}2vQ+/r@p0}cLKNe4MCk", "output": "YES" }, { "input": "mzbmweyydiadtlcouegmdbyfwurpwbpuvhifnuapwyndmhtqvkgkbhtytszotwflegsjzzszfwtzfpnscguemwrczqxycivdqnkH", "output": "YES" }, { "input": "Qzbmweyydiadtlcouegmdbyfwurpwbpuvhifnuapwyndmhtqvkgkbhtytszotwflegsjzzszfwtzfpnscguemwrczqxycivdqnky", "output": "YES" }, { "input": "mzbmweyydiadtlcouegmdbyfwurpwb9uvhifnuapwyndmhtqvkgkbhtytszotwflegsjzzszfwtzfpnscguemwrczqxycivdqnky", "output": "YES" }, { "input": "1H1", "output": "YES" }, { "input": "+Q", "output": "YES" }, { "input": "1ab", "output": "NO" }, { "input": "!", "output": "NO" }, { "input": "0+", "output": "NO" }, { "input": "+H", "output": "YES" }, { "input": "cH", "output": "YES" }, { "input": "+8", "output": "NO" }, { "input": "8+", "output": "NO" }, { "input": "++++++++++++++++++++++++++", "output": "NO" }, { "input": "(+)", "output": "NO" }, { "input": "H+", "output": "YES" }, { "input": "a!", "output": "NO" }, { "input": "++++++++++++++", "output": "NO" }, { "input": "+++++++++++++++++++++++++++++++++++++++++++++++++++++++++", "output": "NO" }, { "input": "8", "output": "NO" }, { "input": "3", "output": "NO" }, { "input": "HQ9", "output": "YES" }, { "input": "+++H", "output": "YES" }, { "input": "++++++++++", "output": "NO" }, { "input": "HHHHHHH", "output": "YES" }, { "input": "abacabaH", "output": "YES" }, { "input": "+G", "output": "NO" } ]
1,690,380,995
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
2
62
0
def main(p): arr, a = ["H", "Q", "9", "+"], False for i in range(len(p)): if p[i] in arr: if p[i] == "Q" and a: return "YES" elif p[i] != "Q": return "YES" a = True return "NO" if __name__ == "__main__": p = input() print(main(p))
Title: HQ9+ Time Limit: None seconds Memory Limit: None megabytes Problem Description: HQ9+ is a joke programming language which has only four one-character instructions: - "H" prints "Hello, World!",- "Q" prints the source code of the program itself,- "9" prints the lyrics of "99 Bottles of Beer" song, - "+" increments the value stored in the internal accumulator. Instructions "H" and "Q" are case-sensitive and must be uppercase. The characters of the program which are not instructions are ignored. You are given a program written in HQ9+. You have to figure out whether executing this program will produce any output. Input Specification: The input will consist of a single line *p* which will give a program in HQ9+. String *p* will contain between 1 and 100 characters, inclusive. ASCII-code of each character of *p* will be between 33 (exclamation mark) and 126 (tilde), inclusive. Output Specification: Output "YES", if executing the program will produce any output, and "NO" otherwise. Demo Input: ['Hi!\n', 'Codeforces\n'] Demo Output: ['YES\n', 'NO\n'] Note: In the first case the program contains only one instruction — "H", which prints "Hello, World!". In the second case none of the program characters are language instructions.
```python def main(p): arr, a = ["H", "Q", "9", "+"], False for i in range(len(p)): if p[i] in arr: if p[i] == "Q" and a: return "YES" elif p[i] != "Q": return "YES" a = True return "NO" if __name__ == "__main__": p = input() print(main(p)) ```
0
27
A
Next Test
PROGRAMMING
1,200
[ "implementation", "sortings" ]
A. Next Test
2
256
«Polygon» is a system which allows to create programming tasks in a simple and professional way. When you add a test to the problem, the corresponding form asks you for the test index. As in most cases it is clear which index the next test will have, the system suggests the default value of the index. It is calculated as the smallest positive integer which is not used as an index for some previously added test. You are to implement this feature. Create a program which determines the default index of the next test, given the indexes of the previously added tests.
The first line contains one integer *n* (1<=≤<=*n*<=≤<=3000) — the amount of previously added tests. The second line contains *n* distinct integers *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=3000) — indexes of these tests.
Output the required default value for the next test index.
[ "3\n1 7 2\n" ]
[ "3\n" ]
none
500
[ { "input": "1\n1", "output": "2" }, { "input": "2\n2 1", "output": "3" }, { "input": "3\n3 4 1", "output": "2" }, { "input": "4\n6 4 3 5", "output": "1" }, { "input": "5\n3 2 1 7 4", "output": "5" }, { "input": "6\n4 1 2 5 3 7", "output": "6" }, { "input": "7\n3 2 1 6 5 7 4", "output": "8" }, { "input": "8\n2 8 3 7 6 9 1 5", "output": "4" }, { "input": "9\n10 5 9 3 8 7 1 2 4", "output": "6" }, { "input": "10\n7 2 3 8 9 6 5 4 1 10", "output": "11" }, { "input": "1\n1", "output": "2" }, { "input": "2\n1 2", "output": "3" }, { "input": "3\n2 4 1", "output": "3" }, { "input": "4\n4 2 3 1", "output": "5" }, { "input": "5\n3 1 4 2 5", "output": "6" }, { "input": "6\n1 3 6 7 2 4", "output": "5" }, { "input": "7\n1 5 4 7 2 3 6", "output": "8" }, { "input": "8\n12 1 6 5 2 8 3 4", "output": "7" }, { "input": "9\n3 2 7 5 6 4 1 9 10", "output": "8" }, { "input": "10\n1 7 13 6 5 10 3 8 2 4", "output": "9" }, { "input": "1\n2", "output": "1" }, { "input": "1\n3", "output": "1" }, { "input": "1\n3000", "output": "1" }, { "input": "2\n2 3", "output": "1" }, { "input": "2\n3000 1", "output": "2" } ]
1,580,494,640
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
0
154
0
n=int(input()) l=list(map(int,input().split())) c=min(l) d=max(l) for i in range(c,d+1): if len(l)==1: print(l[0]) break if i not in l: print(i) break
Title: Next Test Time Limit: 2 seconds Memory Limit: 256 megabytes Problem Description: «Polygon» is a system which allows to create programming tasks in a simple and professional way. When you add a test to the problem, the corresponding form asks you for the test index. As in most cases it is clear which index the next test will have, the system suggests the default value of the index. It is calculated as the smallest positive integer which is not used as an index for some previously added test. You are to implement this feature. Create a program which determines the default index of the next test, given the indexes of the previously added tests. Input Specification: The first line contains one integer *n* (1<=≤<=*n*<=≤<=3000) — the amount of previously added tests. The second line contains *n* distinct integers *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=3000) — indexes of these tests. Output Specification: Output the required default value for the next test index. Demo Input: ['3\n1 7 2\n'] Demo Output: ['3\n'] Note: none
```python n=int(input()) l=list(map(int,input().split())) c=min(l) d=max(l) for i in range(c,d+1): if len(l)==1: print(l[0]) break if i not in l: print(i) break ```
0
387
A
George and Sleep
PROGRAMMING
900
[ "implementation" ]
null
null
George woke up and saw the current time *s* on the digital clock. Besides, George knows that he has slept for time *t*. Help George! Write a program that will, given time *s* and *t*, determine the time *p* when George went to bed. Note that George could have gone to bed yesterday relatively to the current time (see the second test sample).
The first line contains current time *s* as a string in the format "hh:mm". The second line contains time *t* in the format "hh:mm" — the duration of George's sleep. It is guaranteed that the input contains the correct time in the 24-hour format, that is, 00<=≤<=*hh*<=≤<=23, 00<=≤<=*mm*<=≤<=59.
In the single line print time *p* — the time George went to bed in the format similar to the format of the time in the input.
[ "05:50\n05:44\n", "00:00\n01:00\n", "00:01\n00:00\n" ]
[ "00:06\n", "23:00\n", "00:01\n" ]
In the first sample George went to bed at "00:06". Note that you should print the time only in the format "00:06". That's why answers "0:06", "00:6" and others will be considered incorrect. In the second sample, George went to bed yesterday. In the third sample, George didn't do to bed at all.
500
[ { "input": "05:50\n05:44", "output": "00:06" }, { "input": "00:00\n01:00", "output": "23:00" }, { "input": "00:01\n00:00", "output": "00:01" }, { "input": "23:59\n23:59", "output": "00:00" }, { "input": "23:44\n23:55", "output": "23:49" }, { "input": "00:00\n13:12", "output": "10:48" }, { "input": "12:00\n23:59", "output": "12:01" }, { "input": "12:44\n12:44", "output": "00:00" }, { "input": "05:55\n07:12", "output": "22:43" }, { "input": "07:12\n05:55", "output": "01:17" }, { "input": "22:22\n22:22", "output": "00:00" }, { "input": "22:22\n22:23", "output": "23:59" }, { "input": "23:24\n23:23", "output": "00:01" }, { "input": "00:00\n00:00", "output": "00:00" }, { "input": "23:30\n00:00", "output": "23:30" }, { "input": "01:00\n00:00", "output": "01:00" }, { "input": "05:44\n06:00", "output": "23:44" }, { "input": "00:00\n23:59", "output": "00:01" }, { "input": "21:00\n01:00", "output": "20:00" }, { "input": "21:21\n12:21", "output": "09:00" }, { "input": "12:21\n21:12", "output": "15:09" }, { "input": "12:33\n23:33", "output": "13:00" }, { "input": "07:55\n05:53", "output": "02:02" }, { "input": "19:30\n02:00", "output": "17:30" }, { "input": "21:30\n02:00", "output": "19:30" }, { "input": "19:30\n09:30", "output": "10:00" }, { "input": "13:08\n00:42", "output": "12:26" }, { "input": "13:04\n09:58", "output": "03:06" }, { "input": "21:21\n23:06", "output": "22:15" }, { "input": "20:53\n10:23", "output": "10:30" }, { "input": "12:59\n00:45", "output": "12:14" }, { "input": "12:39\n22:21", "output": "14:18" }, { "input": "21:10\n13:50", "output": "07:20" }, { "input": "03:38\n23:46", "output": "03:52" }, { "input": "03:48\n00:41", "output": "03:07" }, { "input": "07:43\n12:27", "output": "19:16" }, { "input": "03:23\n08:52", "output": "18:31" }, { "input": "16:04\n10:28", "output": "05:36" }, { "input": "12:53\n08:37", "output": "04:16" }, { "input": "13:43\n17:23", "output": "20:20" }, { "input": "00:00\n00:01", "output": "23:59" }, { "input": "10:10\n01:01", "output": "09:09" }, { "input": "10:05\n00:00", "output": "10:05" }, { "input": "09:09\n00:00", "output": "09:09" }, { "input": "09:10\n00:01", "output": "09:09" }, { "input": "23:24\n00:28", "output": "22:56" }, { "input": "10:00\n01:00", "output": "09:00" } ]
1,680,125,999
2,147,483,647
Python 3
OK
TESTS
47
46
0
s = input().split(':') t = input().split(':') s = int(s[0]) * 60 + int(s[1]) t = int(t[0]) * 60 + int(t[1]) s -= t if s < 0: s += 24 * 60 print('%02d:%02d' % (s // 60, s % 60))
Title: George and Sleep Time Limit: None seconds Memory Limit: None megabytes Problem Description: George woke up and saw the current time *s* on the digital clock. Besides, George knows that he has slept for time *t*. Help George! Write a program that will, given time *s* and *t*, determine the time *p* when George went to bed. Note that George could have gone to bed yesterday relatively to the current time (see the second test sample). Input Specification: The first line contains current time *s* as a string in the format "hh:mm". The second line contains time *t* in the format "hh:mm" — the duration of George's sleep. It is guaranteed that the input contains the correct time in the 24-hour format, that is, 00<=≤<=*hh*<=≤<=23, 00<=≤<=*mm*<=≤<=59. Output Specification: In the single line print time *p* — the time George went to bed in the format similar to the format of the time in the input. Demo Input: ['05:50\n05:44\n', '00:00\n01:00\n', '00:01\n00:00\n'] Demo Output: ['00:06\n', '23:00\n', '00:01\n'] Note: In the first sample George went to bed at "00:06". Note that you should print the time only in the format "00:06". That's why answers "0:06", "00:6" and others will be considered incorrect. In the second sample, George went to bed yesterday. In the third sample, George didn't do to bed at all.
```python s = input().split(':') t = input().split(':') s = int(s[0]) * 60 + int(s[1]) t = int(t[0]) * 60 + int(t[1]) s -= t if s < 0: s += 24 * 60 print('%02d:%02d' % (s // 60, s % 60)) ```
3
755
B
PolandBall and Game
PROGRAMMING
1,100
[ "binary search", "data structures", "games", "greedy", "sortings", "strings" ]
null
null
PolandBall is playing a game with EnemyBall. The rules are simple. Players have to say words in turns. You cannot say a word which was already said. PolandBall starts. The Ball which can't say a new word loses. You're given two lists of words familiar to PolandBall and EnemyBall. Can you determine who wins the game, if both play optimally?
The first input line contains two integers *n* and *m* (1<=≤<=*n*,<=*m*<=≤<=103) — number of words PolandBall and EnemyBall know, respectively. Then *n* strings follow, one per line — words familiar to PolandBall. Then *m* strings follow, one per line — words familiar to EnemyBall. Note that one Ball cannot know a word more than once (strings are unique), but some words can be known by both players. Each word is non-empty and consists of no more than 500 lowercase English alphabet letters.
In a single line of print the answer — "YES" if PolandBall wins and "NO" otherwise. Both Balls play optimally.
[ "5 1\npolandball\nis\na\ncool\ncharacter\nnope\n", "2 2\nkremowka\nwadowicka\nkremowka\nwiedenska\n", "1 2\na\na\nb\n" ]
[ "YES", "YES", "NO" ]
In the first example PolandBall knows much more words and wins effortlessly. In the second example if PolandBall says kremowka first, then EnemyBall cannot use that word anymore. EnemyBall can only say wiedenska. PolandBall says wadowicka and wins.
1,000
[ { "input": "5 1\npolandball\nis\na\ncool\ncharacter\nnope", "output": "YES" }, { "input": "2 2\nkremowka\nwadowicka\nkremowka\nwiedenska", "output": "YES" }, { "input": "1 2\na\na\nb", "output": "NO" }, { "input": "2 2\na\nb\nb\nc", "output": "YES" }, { "input": "2 1\nc\na\na", "output": "YES" }, { "input": "3 3\nab\nbc\ncd\ncd\ndf\nfg", "output": "YES" }, { "input": "3 3\nc\na\nb\na\nd\ng", "output": "YES" }, { "input": "1 1\naa\naa", "output": "YES" }, { "input": "2 1\na\nb\na", "output": "YES" }, { "input": "6 5\na\nb\nc\nd\ne\nf\nf\ne\nd\nz\ny", "output": "YES" }, { "input": "3 2\na\nb\nc\nd\ne", "output": "YES" } ]
1,672,468,760
2,147,483,647
PyPy 3-64
OK
TESTS
33
77
3,993,600
import sys import math import bisect import heapq import itertools from sys import stdin,stdout from math import gcd,floor,sqrt,log from collections import defaultdict, Counter, deque from bisect import bisect_left,bisect_right, insort_left, insort_right mod=1000000007 def get_ints(): return map(int, sys.stdin.readline().strip().split()) def get_list(): return list(map(int, sys.stdin.readline().strip().split())) def get_string(): return sys.stdin.readline().strip() def get_int(): return int(sys.stdin.readline().strip()) def get_list_strings(): return list(map(str, sys.stdin.readline().strip().split())) def solve(): n, m = get_ints() aBall = set() for _ in range(n): aBall.add(get_string()) bBall = set() for _ in range(m): bBall.add(get_string()) common_words = len(aBall.intersection(bBall)) if common_words % 2 != 0: if n-common_words >= m-common_words: return "YES" return "NO" else: if n-common_words > m-common_words: return "YES" return "NO" if __name__ == "__main__": print(solve())
Title: PolandBall and Game Time Limit: None seconds Memory Limit: None megabytes Problem Description: PolandBall is playing a game with EnemyBall. The rules are simple. Players have to say words in turns. You cannot say a word which was already said. PolandBall starts. The Ball which can't say a new word loses. You're given two lists of words familiar to PolandBall and EnemyBall. Can you determine who wins the game, if both play optimally? Input Specification: The first input line contains two integers *n* and *m* (1<=≤<=*n*,<=*m*<=≤<=103) — number of words PolandBall and EnemyBall know, respectively. Then *n* strings follow, one per line — words familiar to PolandBall. Then *m* strings follow, one per line — words familiar to EnemyBall. Note that one Ball cannot know a word more than once (strings are unique), but some words can be known by both players. Each word is non-empty and consists of no more than 500 lowercase English alphabet letters. Output Specification: In a single line of print the answer — "YES" if PolandBall wins and "NO" otherwise. Both Balls play optimally. Demo Input: ['5 1\npolandball\nis\na\ncool\ncharacter\nnope\n', '2 2\nkremowka\nwadowicka\nkremowka\nwiedenska\n', '1 2\na\na\nb\n'] Demo Output: ['YES', 'YES', 'NO'] Note: In the first example PolandBall knows much more words and wins effortlessly. In the second example if PolandBall says kremowka first, then EnemyBall cannot use that word anymore. EnemyBall can only say wiedenska. PolandBall says wadowicka and wins.
```python import sys import math import bisect import heapq import itertools from sys import stdin,stdout from math import gcd,floor,sqrt,log from collections import defaultdict, Counter, deque from bisect import bisect_left,bisect_right, insort_left, insort_right mod=1000000007 def get_ints(): return map(int, sys.stdin.readline().strip().split()) def get_list(): return list(map(int, sys.stdin.readline().strip().split())) def get_string(): return sys.stdin.readline().strip() def get_int(): return int(sys.stdin.readline().strip()) def get_list_strings(): return list(map(str, sys.stdin.readline().strip().split())) def solve(): n, m = get_ints() aBall = set() for _ in range(n): aBall.add(get_string()) bBall = set() for _ in range(m): bBall.add(get_string()) common_words = len(aBall.intersection(bBall)) if common_words % 2 != 0: if n-common_words >= m-common_words: return "YES" return "NO" else: if n-common_words > m-common_words: return "YES" return "NO" if __name__ == "__main__": print(solve()) ```
3
810
A
Straight <<A>>
PROGRAMMING
900
[ "implementation", "math" ]
null
null
Noora is a student of one famous high school. It's her final year in school — she is going to study in university next year. However, she has to get an «A» graduation certificate in order to apply to a prestigious one. In school, where Noora is studying, teachers are putting down marks to the online class register, which are integers from 1 to *k*. The worst mark is 1, the best is *k*. Mark that is going to the certificate, is calculated as an average of all the marks, rounded to the closest integer. If several answers are possible, rounding up is produced. For example, 7.3 is rounded to 7, but 7.5 and 7.8784 — to 8. For instance, if Noora has marks [8,<=9], then the mark to the certificate is 9, because the average is equal to 8.5 and rounded to 9, but if the marks are [8,<=8,<=9], Noora will have graduation certificate with 8. To graduate with «A» certificate, Noora has to have mark *k*. Noora got *n* marks in register this year. However, she is afraid that her marks are not enough to get final mark *k*. Noora decided to ask for help in the internet, where hacker Leha immediately responded to her request. He is ready to hack class register for Noora and to add Noora any number of additional marks from 1 to *k*. At the same time, Leha want his hack be unseen to everyone, so he decided to add as less as possible additional marks. Please help Leha to calculate the minimal number of marks he has to add, so that final Noora's mark will become equal to *k*.
The first line contains two integers *n* and *k* (1<=≤<=*n*<=≤<=100,<=1<=≤<=*k*<=≤<=100) denoting the number of marks, received by Noora and the value of highest possible mark. The second line contains *n* integers *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=*k*) denoting marks received by Noora before Leha's hack.
Print a single integer — minimal number of additional marks, that Leha has to add in order to change Noora's final mark to *k*.
[ "2 10\n8 9\n", "3 5\n4 4 4\n" ]
[ "4", "3" ]
Consider the first example testcase. Maximal mark is 10, Noora received two marks — 8 and 9, so current final mark is 9. To fix it, Leha can add marks [10, 10, 10, 10] (4 marks in total) to the registry, achieving Noora having average mark equal to <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/1b961585522f76271546da990a6228e7c666277f.png" style="max-width: 100.0%;max-height: 100.0%;"/>. Consequently, new final mark is 10. Less number of marks won't fix the situation. In the second example Leha can add [5, 5, 5] to the registry, so that making average mark equal to 4.5, which is enough to have 5 in the certificate.
500
[ { "input": "2 10\n8 9", "output": "4" }, { "input": "3 5\n4 4 4", "output": "3" }, { "input": "3 10\n10 8 9", "output": "3" }, { "input": "2 23\n21 23", "output": "2" }, { "input": "5 10\n5 10 10 9 10", "output": "7" }, { "input": "12 50\n18 10 26 22 22 23 14 21 27 18 25 12", "output": "712" }, { "input": "38 12\n2 7 10 8 5 3 5 6 3 6 5 1 9 7 7 8 3 4 4 4 5 2 3 6 6 1 6 7 4 4 8 7 4 5 3 6 6 6", "output": "482" }, { "input": "63 86\n32 31 36 29 36 26 28 38 39 32 29 26 33 38 36 38 36 28 43 48 28 33 25 39 39 27 34 25 37 28 40 26 30 31 42 32 36 44 29 36 30 35 48 40 26 34 30 33 33 46 42 24 36 38 33 51 33 41 38 29 29 32 28", "output": "6469" }, { "input": "100 38\n30 24 38 31 31 33 32 32 29 34 29 22 27 23 34 25 32 30 30 26 16 27 38 33 38 38 37 34 32 27 33 23 33 32 24 24 30 36 29 30 33 30 29 30 36 33 33 35 28 24 30 32 38 29 30 36 31 30 27 38 31 36 15 37 32 27 29 24 38 33 28 29 34 21 37 35 32 31 27 25 27 28 31 31 36 38 35 35 36 29 35 22 38 31 38 28 31 27 34 31", "output": "1340" }, { "input": "33 69\n60 69 68 69 69 60 64 60 62 59 54 47 60 62 69 69 69 58 67 69 62 69 68 53 69 69 66 66 57 58 65 69 61", "output": "329" }, { "input": "39 92\n19 17 16 19 15 30 21 25 14 17 19 19 23 16 14 15 17 19 29 15 11 25 19 14 18 20 10 16 11 15 18 20 20 17 18 16 12 17 16", "output": "5753" }, { "input": "68 29\n29 29 29 29 29 28 29 29 29 27 29 29 29 29 29 29 29 23 29 29 26 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 26 29 29 29 29 29 29 29 29 29 29 29 29 22 29 29 29 29 29 29 29 29 29 29 29 29 29 28 29 29 29 29", "output": "0" }, { "input": "75 30\n22 18 21 26 23 18 28 30 24 24 19 25 28 30 23 29 18 23 23 30 26 30 17 30 18 19 25 26 26 15 27 23 30 21 19 26 25 30 25 28 20 22 22 21 26 17 23 23 24 15 25 19 18 22 30 30 29 21 30 28 28 30 27 25 24 15 22 19 30 21 20 30 18 20 25", "output": "851" }, { "input": "78 43\n2 7 6 5 5 6 4 5 3 4 6 8 4 5 5 4 3 1 2 4 4 6 5 6 4 4 6 4 8 4 6 5 6 1 4 5 6 3 2 5 2 5 3 4 8 8 3 3 4 4 6 6 5 4 5 5 7 9 3 9 6 4 7 3 6 9 6 5 1 7 2 5 6 3 6 2 5 4", "output": "5884" }, { "input": "82 88\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 2 1 1 2 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1", "output": "14170" }, { "input": "84 77\n28 26 36 38 37 44 48 34 40 22 42 35 40 37 30 31 33 35 36 55 47 36 33 47 40 38 27 38 36 33 35 31 47 33 30 38 38 47 49 24 38 37 28 43 39 36 34 33 29 38 36 43 48 38 36 34 33 34 35 31 26 33 39 37 37 37 35 52 47 30 24 46 38 26 43 46 41 50 33 40 36 41 37 30", "output": "6650" }, { "input": "94 80\n21 19 15 16 27 16 20 18 19 19 15 15 20 19 19 21 20 19 13 17 15 9 17 15 23 15 12 18 12 13 15 12 14 13 14 17 20 20 14 21 15 6 10 23 24 8 18 18 13 23 17 22 17 19 19 18 17 24 8 16 18 20 24 19 10 19 15 10 13 14 19 15 16 19 20 15 14 21 16 16 14 14 22 19 12 11 14 13 19 32 16 16 13 20", "output": "11786" }, { "input": "96 41\n13 32 27 34 28 34 30 26 21 24 29 20 25 34 25 16 27 15 22 22 34 22 25 19 23 17 17 22 26 24 23 20 21 27 19 33 13 24 22 18 30 30 27 14 26 24 20 20 22 11 19 31 19 29 18 28 30 22 17 15 28 32 17 24 17 24 24 19 26 23 22 29 18 22 23 29 19 32 26 23 22 22 24 23 27 30 24 25 21 21 33 19 35 27 34 28", "output": "3182" }, { "input": "1 26\n26", "output": "0" }, { "input": "99 39\n25 28 30 28 32 34 31 28 29 28 29 30 33 19 33 31 27 33 29 24 27 30 25 38 28 34 35 31 34 37 30 22 21 24 34 27 34 33 34 33 26 26 36 19 30 22 35 30 21 28 23 35 33 29 21 22 36 31 34 32 34 32 30 32 27 33 38 25 35 26 39 27 29 29 19 33 28 29 34 38 26 30 36 26 29 30 26 34 22 32 29 38 25 27 24 17 25 28 26", "output": "1807" }, { "input": "100 12\n7 6 6 3 5 5 9 8 7 7 4 7 12 6 9 5 6 3 4 7 9 10 7 7 5 3 9 6 9 9 6 7 4 10 4 8 8 6 9 8 6 5 7 4 10 7 5 6 8 9 3 4 8 5 4 8 6 10 5 8 7 5 9 8 5 8 5 6 9 11 4 9 5 5 11 4 6 6 7 3 8 9 6 7 10 4 7 6 9 4 8 11 5 4 10 8 5 10 11 4", "output": "946" }, { "input": "100 18\n1 2 2 2 2 2 1 1 1 2 3 1 3 1 1 4 2 4 1 2 1 2 1 3 2 1 2 1 1 1 2 1 2 2 1 1 4 3 1 1 2 1 3 3 2 1 2 2 1 1 1 1 3 1 1 2 2 1 1 1 5 1 2 1 3 2 2 1 4 2 2 1 1 1 1 1 1 1 1 2 2 1 2 1 1 1 2 1 2 2 2 1 1 3 1 1 2 1 1 2", "output": "3164" }, { "input": "100 27\n16 20 21 10 16 17 18 25 19 18 20 12 11 21 21 23 20 26 20 21 27 16 25 18 25 21 27 12 20 27 18 17 27 13 21 26 12 22 15 21 25 21 18 27 24 15 16 18 23 21 24 27 19 17 24 14 21 16 24 26 13 14 25 18 27 26 22 16 27 27 17 25 17 12 22 10 19 27 19 20 23 22 25 23 17 25 14 20 22 10 22 27 21 20 15 26 24 27 12 16", "output": "1262" }, { "input": "100 29\n20 18 23 24 14 14 16 23 22 17 18 22 21 21 19 19 14 11 18 19 16 22 25 20 14 13 21 24 18 16 18 29 17 25 12 10 18 28 11 16 17 14 15 20 17 20 18 22 10 16 16 20 18 19 29 18 25 27 17 19 24 15 24 25 16 23 19 16 16 20 19 15 12 21 20 13 21 15 15 23 16 23 17 13 17 21 13 18 17 18 18 20 16 12 19 15 27 14 11 18", "output": "2024" }, { "input": "100 30\n16 10 20 11 14 27 15 17 22 26 24 17 15 18 19 22 22 15 21 22 14 21 22 22 21 22 15 17 17 22 18 19 26 18 22 20 22 25 18 18 17 23 18 18 20 13 19 30 17 24 22 19 29 20 20 21 17 18 26 25 22 19 15 18 18 20 19 19 18 18 24 16 19 17 12 21 20 16 23 21 16 17 26 23 25 28 22 20 9 21 17 24 15 19 17 21 29 13 18 15", "output": "1984" }, { "input": "100 59\n56 58 53 59 59 48 59 54 46 59 59 58 48 59 55 59 59 50 59 56 59 59 59 59 59 59 59 57 59 53 45 53 50 59 50 55 58 54 59 56 54 59 59 59 59 48 56 59 59 57 59 59 48 43 55 57 39 59 46 55 55 52 58 57 51 59 59 59 59 53 59 43 51 54 46 59 57 43 50 59 47 58 59 59 59 55 46 56 55 59 56 47 56 56 46 51 47 48 59 55", "output": "740" }, { "input": "100 81\n6 7 6 6 7 6 6 6 3 9 4 5 4 3 4 6 6 6 1 3 9 5 2 3 8 5 6 9 6 6 6 5 4 4 7 7 3 6 11 7 6 4 8 7 12 6 4 10 2 4 9 11 7 4 7 7 8 8 6 7 9 8 4 5 8 13 6 6 6 8 6 2 5 6 7 5 4 4 4 4 2 6 4 8 3 4 7 7 6 7 7 10 5 10 6 7 4 11 8 4", "output": "14888" }, { "input": "100 100\n30 35 23 43 28 49 31 32 30 44 32 37 33 34 38 28 43 32 33 32 50 32 41 38 33 20 40 36 29 21 42 25 23 34 43 32 37 31 30 27 36 32 45 37 33 29 38 34 35 33 28 19 37 33 28 41 31 29 41 27 32 39 30 34 37 40 33 38 35 32 32 34 35 34 28 39 28 34 40 45 31 25 42 28 29 31 33 21 36 33 34 37 40 42 39 30 36 34 34 40", "output": "13118" }, { "input": "100 100\n71 87 100 85 89 98 90 90 71 65 76 75 85 100 81 100 91 80 73 89 86 78 82 89 77 92 78 90 100 81 85 89 73 100 66 60 72 88 91 73 93 76 88 81 86 78 83 77 74 93 97 94 85 78 82 78 91 91 100 78 89 76 78 82 81 78 83 88 87 83 78 98 85 97 98 89 88 75 76 86 74 81 70 76 86 84 99 100 89 94 72 84 82 88 83 89 78 99 87 76", "output": "3030" }, { "input": "100 100\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1", "output": "19700" }, { "input": "100 100\n100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100", "output": "0" }, { "input": "100 100\n1 1 2 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1", "output": "19696" }, { "input": "100 100\n100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 99", "output": "0" }, { "input": "100 100\n100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 98 100 100 100 100 98 100 100 100 100 100 100 99 98 100 100 93 100 100 98 100 100 100 100 93 100 96 100 100 100 94 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 95 88 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100", "output": "0" }, { "input": "100 100\n95 100 100 100 100 100 100 100 100 100 100 100 100 100 87 100 100 100 94 100 100 100 100 100 100 100 100 100 100 100 100 99 100 100 100 100 100 100 100 100 100 100 90 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 97 100 100 100 96 100 98 100 100 100 100 100 96 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 97 100 100 100 100", "output": "2" }, { "input": "100 1\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1", "output": "0" }, { "input": "100 2\n2 1 1 2 1 1 1 1 2 2 2 2 1 1 1 2 1 1 1 2 2 2 2 1 1 1 1 2 2 2 1 2 2 2 2 1 2 2 1 1 1 1 1 1 2 2 1 2 1 1 1 2 1 2 2 2 2 1 1 1 2 2 1 2 1 1 1 2 1 2 2 1 1 1 2 2 1 1 2 1 1 2 1 1 1 2 1 1 1 1 2 1 1 1 1 2 1 2 1 1", "output": "16" }, { "input": "3 5\n5 5 5", "output": "0" }, { "input": "7 7\n1 1 1 1 1 1 1", "output": "77" }, { "input": "1 1\n1", "output": "0" }, { "input": "100 100\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1", "output": "19700" }, { "input": "4 10\n10 10 10 10", "output": "0" }, { "input": "1 10\n10", "output": "0" }, { "input": "10 1\n1 1 1 1 1 1 1 1 1 1", "output": "0" }, { "input": "3 10\n10 10 10", "output": "0" }, { "input": "2 4\n3 4", "output": "0" }, { "input": "1 2\n2", "output": "0" }, { "input": "3 4\n4 4 4", "output": "0" }, { "input": "3 2\n2 2 1", "output": "0" }, { "input": "5 5\n5 5 5 5 5", "output": "0" }, { "input": "3 3\n3 3 3", "output": "0" }, { "input": "2 9\n8 9", "output": "0" }, { "input": "3 10\n9 10 10", "output": "0" }, { "input": "1 3\n3", "output": "0" }, { "input": "2 2\n1 2", "output": "0" }, { "input": "2 10\n10 10", "output": "0" }, { "input": "23 14\n7 11 13 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14", "output": "0" }, { "input": "2 10\n9 10", "output": "0" }, { "input": "2 2\n2 2", "output": "0" }, { "input": "10 5\n5 5 5 5 5 5 5 5 5 4", "output": "0" }, { "input": "3 5\n4 5 5", "output": "0" }, { "input": "5 4\n4 4 4 4 4", "output": "0" }, { "input": "2 10\n10 9", "output": "0" }, { "input": "4 5\n3 5 5 5", "output": "0" }, { "input": "10 5\n5 5 5 5 5 5 5 5 5 5", "output": "0" }, { "input": "3 10\n10 10 9", "output": "0" }, { "input": "5 1\n1 1 1 1 1", "output": "0" }, { "input": "2 1\n1 1", "output": "0" }, { "input": "4 10\n9 10 10 10", "output": "0" }, { "input": "5 2\n2 2 2 2 2", "output": "0" }, { "input": "2 5\n4 5", "output": "0" }, { "input": "5 10\n10 10 10 10 10", "output": "0" }, { "input": "2 6\n6 6", "output": "0" }, { "input": "2 9\n9 9", "output": "0" }, { "input": "3 10\n10 9 10", "output": "0" }, { "input": "4 40\n39 40 40 40", "output": "0" }, { "input": "3 4\n3 4 4", "output": "0" }, { "input": "9 9\n9 9 9 9 9 9 9 9 9", "output": "0" }, { "input": "1 4\n4", "output": "0" }, { "input": "4 7\n1 1 1 1", "output": "44" }, { "input": "1 5\n5", "output": "0" }, { "input": "3 1\n1 1 1", "output": "0" }, { "input": "1 100\n100", "output": "0" }, { "input": "2 7\n3 5", "output": "10" }, { "input": "3 6\n6 6 6", "output": "0" }, { "input": "4 2\n1 2 2 2", "output": "0" }, { "input": "4 5\n4 5 5 5", "output": "0" }, { "input": "5 5\n1 1 1 1 1", "output": "35" }, { "input": "66 2\n1 2 2 2 2 1 1 2 1 2 2 2 2 2 2 1 2 1 2 1 2 1 2 1 2 1 1 1 1 2 2 1 2 2 1 1 2 1 2 2 1 1 1 2 1 2 1 2 1 2 1 2 2 2 2 1 2 2 1 2 1 1 1 2 2 1", "output": "0" }, { "input": "2 2\n2 1", "output": "0" }, { "input": "5 5\n5 5 5 4 5", "output": "0" }, { "input": "3 7\n1 1 1", "output": "33" }, { "input": "2 5\n5 5", "output": "0" }, { "input": "1 7\n1", "output": "11" }, { "input": "6 7\n1 1 1 1 1 1", "output": "66" }, { "input": "99 97\n15 80 78 69 12 84 36 51 89 77 88 10 1 19 67 85 6 36 8 70 14 45 88 97 22 13 75 57 83 27 13 97 9 90 68 51 76 37 5 2 16 92 11 48 13 77 35 19 15 74 22 29 21 12 28 42 56 5 32 41 62 75 71 71 68 72 24 77 11 28 78 27 53 88 74 66 1 42 18 16 18 39 75 38 81 5 13 39 40 75 13 36 53 83 9 54 57 63 64", "output": "10077" }, { "input": "8 7\n1 1 1 1 1 1 1 1", "output": "88" }, { "input": "3 2\n2 2 2", "output": "0" }, { "input": "6 5\n5 5 5 5 5 5", "output": "0" }, { "input": "10 5\n5 5 5 5 5 5 5 4 1 1", "output": "8" }, { "input": "1 5\n1", "output": "7" }, { "input": "10 10\n10 10 10 10 10 10 10 10 10 10", "output": "0" }, { "input": "2 3\n2 3", "output": "0" }, { "input": "1 9\n9", "output": "0" }, { "input": "74 2\n2 2 2 2 1 2 2 1 1 1 2 2 1 2 2 2 2 1 2 1 1 1 2 1 1 2 2 1 2 1 1 2 1 1 2 2 2 2 2 2 2 2 1 2 2 2 1 2 2 1 1 2 1 1 1 1 1 1 2 2 2 1 1 1 1 1 2 2 2 2 2 2 1 2", "output": "0" }, { "input": "5 5\n5 5 5 5 4", "output": "0" } ]
1,495,649,365
2,147,483,647
Python 3
OK
TESTS
106
62
0
def main(): n, k = map(int, input().split()) a = sum(map(int, input().split())) print(max((k * 2 - 1) * n - a * 2, 0)) if __name__ == '__main__': main()
Title: Straight <<A>> Time Limit: None seconds Memory Limit: None megabytes Problem Description: Noora is a student of one famous high school. It's her final year in school — she is going to study in university next year. However, she has to get an «A» graduation certificate in order to apply to a prestigious one. In school, where Noora is studying, teachers are putting down marks to the online class register, which are integers from 1 to *k*. The worst mark is 1, the best is *k*. Mark that is going to the certificate, is calculated as an average of all the marks, rounded to the closest integer. If several answers are possible, rounding up is produced. For example, 7.3 is rounded to 7, but 7.5 and 7.8784 — to 8. For instance, if Noora has marks [8,<=9], then the mark to the certificate is 9, because the average is equal to 8.5 and rounded to 9, but if the marks are [8,<=8,<=9], Noora will have graduation certificate with 8. To graduate with «A» certificate, Noora has to have mark *k*. Noora got *n* marks in register this year. However, she is afraid that her marks are not enough to get final mark *k*. Noora decided to ask for help in the internet, where hacker Leha immediately responded to her request. He is ready to hack class register for Noora and to add Noora any number of additional marks from 1 to *k*. At the same time, Leha want his hack be unseen to everyone, so he decided to add as less as possible additional marks. Please help Leha to calculate the minimal number of marks he has to add, so that final Noora's mark will become equal to *k*. Input Specification: The first line contains two integers *n* and *k* (1<=≤<=*n*<=≤<=100,<=1<=≤<=*k*<=≤<=100) denoting the number of marks, received by Noora and the value of highest possible mark. The second line contains *n* integers *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=*k*) denoting marks received by Noora before Leha's hack. Output Specification: Print a single integer — minimal number of additional marks, that Leha has to add in order to change Noora's final mark to *k*. Demo Input: ['2 10\n8 9\n', '3 5\n4 4 4\n'] Demo Output: ['4', '3'] Note: Consider the first example testcase. Maximal mark is 10, Noora received two marks — 8 and 9, so current final mark is 9. To fix it, Leha can add marks [10, 10, 10, 10] (4 marks in total) to the registry, achieving Noora having average mark equal to <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/1b961585522f76271546da990a6228e7c666277f.png" style="max-width: 100.0%;max-height: 100.0%;"/>. Consequently, new final mark is 10. Less number of marks won't fix the situation. In the second example Leha can add [5, 5, 5] to the registry, so that making average mark equal to 4.5, which is enough to have 5 in the certificate.
```python def main(): n, k = map(int, input().split()) a = sum(map(int, input().split())) print(max((k * 2 - 1) * n - a * 2, 0)) if __name__ == '__main__': main() ```
3
493
D
Vasya and Chess
PROGRAMMING
1,700
[ "constructive algorithms", "games", "math" ]
null
null
Vasya decided to learn to play chess. Classic chess doesn't seem interesting to him, so he plays his own sort of chess. The queen is the piece that captures all squares on its vertical, horizontal and diagonal lines. If the cell is located on the same vertical, horizontal or diagonal line with queen, and the cell contains a piece of the enemy color, the queen is able to move to this square. After that the enemy's piece is removed from the board. The queen cannot move to a cell containing an enemy piece if there is some other piece between it and the queen. There is an *n*<=×<=*n* chessboard. We'll denote a cell on the intersection of the *r*-th row and *c*-th column as (*r*,<=*c*). The square (1,<=1) contains the white queen and the square (1,<=*n*) contains the black queen. All other squares contain green pawns that don't belong to anyone. The players move in turns. The player that moves first plays for the white queen, his opponent plays for the black queen. On each move the player has to capture some piece with his queen (that is, move to a square that contains either a green pawn or the enemy queen). The player loses if either he cannot capture any piece during his move or the opponent took his queen during the previous move. Help Vasya determine who wins if both players play with an optimal strategy on the board *n*<=×<=*n*.
The input contains a single number *n* (2<=≤<=*n*<=≤<=109) — the size of the board.
On the first line print the answer to problem — string "white" or string "black", depending on who wins if the both players play optimally. If the answer is "white", then you should also print two integers *r* and *c* representing the cell (*r*,<=*c*), where the first player should make his first move to win. If there are multiple such cells, print the one with the minimum *r*. If there are still multiple squares, print the one with the minimum *c*.
[ "2\n", "3\n" ]
[ "white\n1 2\n", "black\n" ]
In the first sample test the white queen can capture the black queen at the first move, so the white player wins. In the second test from the statement if the white queen captures the green pawn located on the central vertical line, then it will be captured by the black queen during the next move. So the only move for the white player is to capture the green pawn located at (2, 1). Similarly, the black queen doesn't have any other options but to capture the green pawn located at (2, 3), otherwise if it goes to the middle vertical line, it will be captured by the white queen. During the next move the same thing happens — neither the white, nor the black queen has other options rather than to capture green pawns situated above them. Thus, the white queen ends up on square (3, 1), and the black queen ends up on square (3, 3). In this situation the white queen has to capture any of the green pawns located on the middle vertical line, after that it will be captured by the black queen. Thus, the player who plays for the black queen wins.
1,500
[ { "input": "2", "output": "white\n1 2" }, { "input": "3", "output": "black" }, { "input": "4", "output": "white\n1 2" }, { "input": "6", "output": "white\n1 2" }, { "input": "10", "output": "white\n1 2" }, { "input": "16", "output": "white\n1 2" }, { "input": "100", "output": "white\n1 2" }, { "input": "10006", "output": "white\n1 2" }, { "input": "99966246", "output": "white\n1 2" }, { "input": "1000000000", "output": "white\n1 2" }, { "input": "999999999", "output": "black" }, { "input": "999999997", "output": "black" }, { "input": "900001", "output": "black" }, { "input": "775681", "output": "black" }, { "input": "666666", "output": "white\n1 2" }, { "input": "12345", "output": "black" }, { "input": "111111", "output": "black" }, { "input": "346367", "output": "black" }, { "input": "13", "output": "black" }, { "input": "11", "output": "black" }, { "input": "9", "output": "black" }, { "input": "7", "output": "black" }, { "input": "5", "output": "black" }, { "input": "19", "output": "black" }, { "input": "939698497", "output": "black" }, { "input": "999999996", "output": "white\n1 2" } ]
1,616,321,571
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
0
46
0
n=int(input()) if n%2==0: print("write \n1 2") else: print("black")
Title: Vasya and Chess Time Limit: None seconds Memory Limit: None megabytes Problem Description: Vasya decided to learn to play chess. Classic chess doesn't seem interesting to him, so he plays his own sort of chess. The queen is the piece that captures all squares on its vertical, horizontal and diagonal lines. If the cell is located on the same vertical, horizontal or diagonal line with queen, and the cell contains a piece of the enemy color, the queen is able to move to this square. After that the enemy's piece is removed from the board. The queen cannot move to a cell containing an enemy piece if there is some other piece between it and the queen. There is an *n*<=×<=*n* chessboard. We'll denote a cell on the intersection of the *r*-th row and *c*-th column as (*r*,<=*c*). The square (1,<=1) contains the white queen and the square (1,<=*n*) contains the black queen. All other squares contain green pawns that don't belong to anyone. The players move in turns. The player that moves first plays for the white queen, his opponent plays for the black queen. On each move the player has to capture some piece with his queen (that is, move to a square that contains either a green pawn or the enemy queen). The player loses if either he cannot capture any piece during his move or the opponent took his queen during the previous move. Help Vasya determine who wins if both players play with an optimal strategy on the board *n*<=×<=*n*. Input Specification: The input contains a single number *n* (2<=≤<=*n*<=≤<=109) — the size of the board. Output Specification: On the first line print the answer to problem — string "white" or string "black", depending on who wins if the both players play optimally. If the answer is "white", then you should also print two integers *r* and *c* representing the cell (*r*,<=*c*), where the first player should make his first move to win. If there are multiple such cells, print the one with the minimum *r*. If there are still multiple squares, print the one with the minimum *c*. Demo Input: ['2\n', '3\n'] Demo Output: ['white\n1 2\n', 'black\n'] Note: In the first sample test the white queen can capture the black queen at the first move, so the white player wins. In the second test from the statement if the white queen captures the green pawn located on the central vertical line, then it will be captured by the black queen during the next move. So the only move for the white player is to capture the green pawn located at (2, 1). Similarly, the black queen doesn't have any other options but to capture the green pawn located at (2, 3), otherwise if it goes to the middle vertical line, it will be captured by the white queen. During the next move the same thing happens — neither the white, nor the black queen has other options rather than to capture green pawns situated above them. Thus, the white queen ends up on square (3, 1), and the black queen ends up on square (3, 3). In this situation the white queen has to capture any of the green pawns located on the middle vertical line, after that it will be captured by the black queen. Thus, the player who plays for the black queen wins.
```python n=int(input()) if n%2==0: print("write \n1 2") else: print("black") ```
0
378
A
Playing with Dice
PROGRAMMING
800
[ "brute force" ]
null
null
Two players are playing a game. First each of them writes an integer from 1 to 6, and then a dice is thrown. The player whose written number got closer to the number on the dice wins. If both payers have the same difference, it's a draw. The first player wrote number *a*, the second player wrote number *b*. How many ways to throw a dice are there, at which the first player wins, or there is a draw, or the second player wins?
The single line contains two integers *a* and *b* (1<=≤<=*a*,<=*b*<=≤<=6) — the numbers written on the paper by the first and second player, correspondingly.
Print three integers: the number of ways to throw the dice at which the first player wins, the game ends with a draw or the second player wins, correspondingly.
[ "2 5\n", "2 4\n" ]
[ "3 0 3\n", "2 1 3\n" ]
The dice is a standard cube-shaped six-sided object with each side containing a number from 1 to 6, and where all numbers on all sides are distinct. You can assume that number *a* is closer to number *x* than number *b*, if |*a* - *x*| &lt; |*b* - *x*|.
500
[ { "input": "2 5", "output": "3 0 3" }, { "input": "2 4", "output": "2 1 3" }, { "input": "5 3", "output": "2 1 3" }, { "input": "1 6", "output": "3 0 3" }, { "input": "5 1", "output": "3 1 2" }, { "input": "6 3", "output": "2 0 4" }, { "input": "2 3", "output": "2 0 4" }, { "input": "5 6", "output": "5 0 1" }, { "input": "4 4", "output": "0 6 0" }, { "input": "1 1", "output": "0 6 0" }, { "input": "6 4", "output": "1 1 4" }, { "input": "1 4", "output": "2 0 4" }, { "input": "5 5", "output": "0 6 0" }, { "input": "4 5", "output": "4 0 2" }, { "input": "4 3", "output": "3 0 3" }, { "input": "1 5", "output": "2 1 3" }, { "input": "6 5", "output": "1 0 5" }, { "input": "2 2", "output": "0 6 0" }, { "input": "1 3", "output": "1 1 4" }, { "input": "3 6", "output": "4 0 2" }, { "input": "3 1", "output": "4 1 1" }, { "input": "3 2", "output": "4 0 2" }, { "input": "3 5", "output": "3 1 2" }, { "input": "3 3", "output": "0 6 0" }, { "input": "6 2", "output": "2 1 3" }, { "input": "4 1", "output": "4 0 2" }, { "input": "5 2", "output": "3 0 3" }, { "input": "4 2", "output": "3 1 2" }, { "input": "2 1", "output": "5 0 1" }, { "input": "6 1", "output": "3 0 3" }, { "input": "4 6", "output": "4 1 1" }, { "input": "2 6", "output": "3 1 2" }, { "input": "3 4", "output": "3 0 3" }, { "input": "1 2", "output": "1 0 5" }, { "input": "6 6", "output": "0 6 0" }, { "input": "5 4", "output": "2 0 4" }, { "input": "3 3", "output": "0 6 0" }, { "input": "1 1", "output": "0 6 0" } ]
1,662,532,656
2,147,483,647
Python 3
OK
TESTS
38
46
0
a,b = list( map(int, input().split()) ) results = [0,0,0] for i in range(1,7): if abs(a-i) < abs(b-i) : results[0] += 1 elif abs(b-i) < abs(a-i) : results[2] += 1 else : results[1] += 1 for x in results : print(x, end = " ")
Title: Playing with Dice Time Limit: None seconds Memory Limit: None megabytes Problem Description: Two players are playing a game. First each of them writes an integer from 1 to 6, and then a dice is thrown. The player whose written number got closer to the number on the dice wins. If both payers have the same difference, it's a draw. The first player wrote number *a*, the second player wrote number *b*. How many ways to throw a dice are there, at which the first player wins, or there is a draw, or the second player wins? Input Specification: The single line contains two integers *a* and *b* (1<=≤<=*a*,<=*b*<=≤<=6) — the numbers written on the paper by the first and second player, correspondingly. Output Specification: Print three integers: the number of ways to throw the dice at which the first player wins, the game ends with a draw or the second player wins, correspondingly. Demo Input: ['2 5\n', '2 4\n'] Demo Output: ['3 0 3\n', '2 1 3\n'] Note: The dice is a standard cube-shaped six-sided object with each side containing a number from 1 to 6, and where all numbers on all sides are distinct. You can assume that number *a* is closer to number *x* than number *b*, if |*a* - *x*| &lt; |*b* - *x*|.
```python a,b = list( map(int, input().split()) ) results = [0,0,0] for i in range(1,7): if abs(a-i) < abs(b-i) : results[0] += 1 elif abs(b-i) < abs(a-i) : results[2] += 1 else : results[1] += 1 for x in results : print(x, end = " ") ```
3
152
A
Marks
PROGRAMMING
900
[ "implementation" ]
null
null
Vasya, or Mr. Vasily Petrov is a dean of a department in a local university. After the winter exams he got his hands on a group's gradebook. Overall the group has *n* students. They received marks for *m* subjects. Each student got a mark from 1 to 9 (inclusive) for each subject. Let's consider a student the best at some subject, if there is no student who got a higher mark for this subject. Let's consider a student successful, if there exists a subject he is the best at. Your task is to find the number of successful students in the group.
The first input line contains two integers *n* and *m* (1<=≤<=*n*,<=*m*<=≤<=100) — the number of students and the number of subjects, correspondingly. Next *n* lines each containing *m* characters describe the gradebook. Each character in the gradebook is a number from 1 to 9. Note that the marks in a rows are not sepatated by spaces.
Print the single number — the number of successful students in the given group.
[ "3 3\n223\n232\n112\n", "3 5\n91728\n11828\n11111\n" ]
[ "2\n", "3\n" ]
In the first sample test the student number 1 is the best at subjects 1 and 3, student 2 is the best at subjects 1 and 2, but student 3 isn't the best at any subject. In the second sample test each student is the best at at least one subject.
500
[ { "input": "3 3\n223\n232\n112", "output": "2" }, { "input": "3 5\n91728\n11828\n11111", "output": "3" }, { "input": "2 2\n48\n27", "output": "1" }, { "input": "2 1\n4\n6", "output": "1" }, { "input": "1 2\n57", "output": "1" }, { "input": "1 1\n5", "output": "1" }, { "input": "3 4\n2553\n6856\n5133", "output": "2" }, { "input": "8 7\n6264676\n7854895\n3244128\n2465944\n8958761\n1378945\n3859353\n6615285", "output": "6" }, { "input": "9 8\n61531121\n43529859\n18841327\n88683622\n98995641\n62741632\n57441743\n49396792\n63381994", "output": "4" }, { "input": "10 20\n26855662887514171367\n48525577498621511535\n47683778377545341138\n47331616748732562762\n44876938191354974293\n24577238399664382695\n42724955594463126746\n79187344479926159359\n48349683283914388185\n82157191115518781898", "output": "9" }, { "input": "20 15\n471187383859588\n652657222494199\n245695867594992\n726154672861295\n614617827782772\n862889444974692\n373977167653235\n645434268565473\n785993468314573\n722176861496755\n518276853323939\n723712762593348\n728935312568886\n373898548522463\n769777587165681\n247592995114377\n182375946483965\n497496542536127\n988239919677856\n859844339819143", "output": "18" }, { "input": "13 9\n514562255\n322655246\n135162979\n733845982\n473117129\n513967187\n965649829\n799122777\n661249521\n298618978\n659352422\n747778378\n723261619", "output": "11" }, { "input": "75 1\n2\n3\n8\n3\n2\n1\n3\n1\n5\n1\n5\n4\n8\n8\n4\n2\n5\n1\n7\n6\n3\n2\n2\n3\n5\n5\n2\n4\n7\n7\n9\n2\n9\n5\n1\n4\n9\n5\n2\n4\n6\n6\n3\n3\n9\n3\n3\n2\n3\n4\n2\n6\n9\n1\n1\n1\n1\n7\n2\n3\n2\n9\n7\n4\n9\n1\n7\n5\n6\n8\n3\n4\n3\n4\n6", "output": "7" }, { "input": "92 3\n418\n665\n861\n766\n529\n416\n476\n676\n561\n995\n415\n185\n291\n176\n776\n631\n556\n488\n118\n188\n437\n496\n466\n131\n914\n118\n766\n365\n113\n897\n386\n639\n276\n946\n759\n169\n494\n837\n338\n351\n783\n311\n261\n862\n598\n132\n246\n982\n575\n364\n615\n347\n374\n368\n523\n132\n774\n161\n552\n492\n598\n474\n639\n681\n635\n342\n516\n483\n141\n197\n571\n336\n175\n596\n481\n327\n841\n133\n142\n146\n246\n396\n287\n582\n556\n996\n479\n814\n497\n363\n963\n162", "output": "23" }, { "input": "100 1\n1\n6\n9\n1\n1\n5\n5\n4\n6\n9\n6\n1\n7\n8\n7\n3\n8\n8\n7\n6\n2\n1\n5\n8\n7\n3\n5\n4\n9\n7\n1\n2\n4\n1\n6\n5\n1\n3\n9\n4\n5\n8\n1\n2\n1\n9\n7\n3\n7\n1\n2\n2\n2\n2\n3\n9\n7\n2\n4\n7\n1\n6\n8\n1\n5\n6\n1\n1\n2\n9\n7\n4\n9\n1\n9\n4\n1\n3\n5\n2\n4\n4\n6\n5\n1\n4\n5\n8\n4\n7\n6\n5\n6\n9\n5\n8\n1\n5\n1\n6", "output": "10" }, { "input": "100 2\n71\n87\n99\n47\n22\n87\n49\n73\n21\n12\n77\n43\n18\n41\n78\n62\n61\n16\n64\n89\n81\n54\n53\n92\n93\n94\n68\n93\n15\n68\n42\n93\n28\n19\n86\n16\n97\n17\n11\n43\n72\n76\n54\n95\n58\n53\n48\n45\n85\n85\n74\n21\n44\n51\n89\n75\n76\n17\n38\n62\n81\n22\n66\n59\n89\n85\n91\n87\n12\n97\n52\n87\n43\n89\n51\n58\n57\n98\n78\n68\n82\n41\n87\n29\n75\n72\n48\n14\n35\n71\n74\n91\n66\n67\n42\n98\n52\n54\n22\n41", "output": "21" }, { "input": "5 20\n11111111111111111111\n11111111111111111111\n11111111111111111111\n99999999999999999999\n11111111111111111119", "output": "2" }, { "input": "3 3\n111\n111\n999", "output": "1" }, { "input": "3 3\n119\n181\n711", "output": "3" }, { "input": "15 5\n91728\n11828\n11111\n91728\n11828\n11111\n91728\n11828\n11111\n91728\n11828\n11111\n91728\n11828\n11111", "output": "15" }, { "input": "2 20\n22222222222222222222\n11111111111111111111", "output": "1" }, { "input": "3 3\n233\n222\n111", "output": "2" }, { "input": "4 15\n222222222222222\n111111111111119\n111111111111119\n111111111111111", "output": "3" }, { "input": "4 1\n1\n9\n9\n9", "output": "3" }, { "input": "3 3\n123\n321\n132", "output": "3" }, { "input": "3 3\n113\n332\n322", "output": "3" }, { "input": "2 100\n2222222222222222222222222222222222222222222222222222222222222222222222221222222222222222222222222222\n1111111111111111111111111111111111111111111111111111111111111111111111119111111111111111111111111111", "output": "2" }, { "input": "3 3\n321\n231\n123", "output": "3" }, { "input": "2 100\n1111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111\n2222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222", "output": "1" }, { "input": "3 3\n221\n111\n111", "output": "3" } ]
1,602,527,762
2,147,483,647
Python 3
OK
TESTS
44
109
307,200
n,m = list(map(int,input().split())) successful_student_index = [] results = [] for i in range(n): marks = list(input()) results.append(marks) #convert to list of subjects results_by_subject = list(zip(*results)) for i in range(m): max_marks = max(results_by_subject[i]) successful_student_index += [x for x,y in enumerate(results_by_subject[i]) if y == max_marks] print(len(set(successful_student_index)))
Title: Marks Time Limit: None seconds Memory Limit: None megabytes Problem Description: Vasya, or Mr. Vasily Petrov is a dean of a department in a local university. After the winter exams he got his hands on a group's gradebook. Overall the group has *n* students. They received marks for *m* subjects. Each student got a mark from 1 to 9 (inclusive) for each subject. Let's consider a student the best at some subject, if there is no student who got a higher mark for this subject. Let's consider a student successful, if there exists a subject he is the best at. Your task is to find the number of successful students in the group. Input Specification: The first input line contains two integers *n* and *m* (1<=≤<=*n*,<=*m*<=≤<=100) — the number of students and the number of subjects, correspondingly. Next *n* lines each containing *m* characters describe the gradebook. Each character in the gradebook is a number from 1 to 9. Note that the marks in a rows are not sepatated by spaces. Output Specification: Print the single number — the number of successful students in the given group. Demo Input: ['3 3\n223\n232\n112\n', '3 5\n91728\n11828\n11111\n'] Demo Output: ['2\n', '3\n'] Note: In the first sample test the student number 1 is the best at subjects 1 and 3, student 2 is the best at subjects 1 and 2, but student 3 isn't the best at any subject. In the second sample test each student is the best at at least one subject.
```python n,m = list(map(int,input().split())) successful_student_index = [] results = [] for i in range(n): marks = list(input()) results.append(marks) #convert to list of subjects results_by_subject = list(zip(*results)) for i in range(m): max_marks = max(results_by_subject[i]) successful_student_index += [x for x,y in enumerate(results_by_subject[i]) if y == max_marks] print(len(set(successful_student_index))) ```
3
507
A
Amr and Music
PROGRAMMING
1,000
[ "greedy", "implementation", "sortings" ]
null
null
Amr is a young coder who likes music a lot. He always wanted to learn how to play music but he was busy coding so he got an idea. Amr has *n* instruments, it takes *a**i* days to learn *i*-th instrument. Being busy, Amr dedicated *k* days to learn how to play the maximum possible number of instruments. Amr asked for your help to distribute his free days between instruments so that he can achieve his goal.
The first line contains two numbers *n*, *k* (1<=≤<=*n*<=≤<=100, 0<=≤<=*k*<=≤<=10<=000), the number of instruments and number of days respectively. The second line contains *n* integers *a**i* (1<=≤<=*a**i*<=≤<=100), representing number of days required to learn the *i*-th instrument.
In the first line output one integer *m* representing the maximum number of instruments Amr can learn. In the second line output *m* space-separated integers: the indices of instruments to be learnt. You may output indices in any order. if there are multiple optimal solutions output any. It is not necessary to use all days for studying.
[ "4 10\n4 3 1 2\n", "5 6\n4 3 1 1 2\n", "1 3\n4\n" ]
[ "4\n1 2 3 4", "3\n1 3 4", "0\n" ]
In the first test Amr can learn all 4 instruments. In the second test other possible solutions are: {2, 3, 5} or {3, 4, 5}. In the third test Amr doesn't have enough time to learn the only presented instrument.
500
[ { "input": "4 10\n4 3 1 2", "output": "4\n1 2 3 4" }, { "input": "5 6\n4 3 1 1 2", "output": "3\n3 4 5" }, { "input": "1 3\n4", "output": "0" }, { "input": "2 100\n100 100", "output": "1\n1" }, { "input": "3 150\n50 50 50", "output": "3\n1 2 3" }, { "input": "4 0\n100 100 100 100", "output": "0" }, { "input": "100 7567\n100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100", "output": "75\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75" }, { "input": "68 3250\n95 84 67 7 82 75 100 39 31 45 69 100 8 97 13 58 74 40 88 69 35 91 94 28 62 85 51 97 37 15 87 51 24 96 89 49 53 54 35 17 23 54 51 91 94 18 26 92 79 63 23 37 98 43 16 44 82 25 100 59 97 3 60 92 76 58 56 50", "output": "60\n1 2 3 4 5 6 8 9 10 11 13 15 16 17 18 19 20 21 22 23 24 25 26 27 29 30 31 32 33 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 54 55 56 57 58 60 62 63 64 65 66 67 68" }, { "input": "100 10000\n100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100", "output": "100\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100" }, { "input": "25 1293\n96 13 7 2 81 72 39 45 5 88 47 23 60 81 54 46 63 52 41 57 2 87 90 28 93", "output": "25\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25" }, { "input": "98 7454\n71 57 94 76 52 90 76 81 67 60 99 88 98 61 73 61 80 91 88 93 53 55 88 64 71 55 81 76 52 63 87 99 84 66 65 52 83 99 92 62 95 81 90 67 64 57 80 80 67 75 77 58 71 85 97 50 97 55 52 59 55 96 57 53 85 100 95 95 74 51 78 88 66 98 97 86 94 81 56 64 61 57 67 95 85 82 85 60 76 95 69 95 76 91 74 100 69 76", "output": "98\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98" }, { "input": "5 249\n96 13 7 2 81", "output": "5\n1 2 3 4 5" }, { "input": "61 3331\n12 63 99 56 57 70 53 21 41 82 97 63 42 91 18 84 99 78 85 89 6 63 76 28 33 78 100 46 78 78 32 13 11 12 73 50 34 60 12 73 9 19 88 100 28 51 50 45 51 10 78 38 25 22 8 40 71 55 56 83 44", "output": "61\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61" }, { "input": "99 10000\n42 88 21 63 59 38 23 100 86 37 57 86 11 22 19 89 6 19 15 64 18 77 83 29 14 26 80 73 8 51 14 19 9 98 81 96 47 77 22 19 86 71 91 61 84 8 80 28 6 25 33 95 96 21 57 92 96 57 31 88 38 32 70 19 25 67 29 78 18 90 37 50 62 33 49 16 47 39 9 33 88 69 69 29 14 66 75 76 41 98 40 52 65 25 33 47 39 24 80", "output": "99\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99" }, { "input": "89 4910\n44 9 31 70 85 72 55 9 85 84 63 43 92 85 10 34 83 28 73 45 62 7 34 52 89 58 24 10 28 6 72 45 57 36 71 34 26 24 38 59 5 15 48 82 58 99 8 77 49 84 14 58 29 46 88 50 13 7 58 23 40 63 96 23 46 31 17 8 59 93 12 76 69 20 43 44 91 78 68 94 37 27 100 65 40 25 52 30 97", "output": "89\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89" }, { "input": "40 2110\n91 18 52 22 26 67 59 10 55 43 97 78 20 81 99 36 33 12 86 32 82 87 70 63 48 48 45 94 78 23 77 15 68 17 71 54 44 98 54 8", "output": "39\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40" }, { "input": "27 1480\n38 95 9 36 21 70 19 89 35 46 7 31 88 25 10 72 81 32 65 83 68 57 50 20 73 42 12", "output": "27\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27" }, { "input": "57 2937\n84 73 23 62 93 64 23 17 53 100 47 67 52 53 90 58 19 84 33 69 46 47 50 28 73 74 40 42 92 70 32 29 57 52 23 82 42 32 46 83 45 87 40 58 50 51 48 37 57 52 78 26 21 54 16 66 93", "output": "55\n1 2 3 4 5 6 7 8 9 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56" }, { "input": "6 41\n6 8 9 8 9 8", "output": "5\n1 2 3 4 6" }, { "input": "9 95\n9 11 12 11 12 11 8 11 10", "output": "9\n1 2 3 4 5 6 7 8 9" }, { "input": "89 6512\n80 87 61 91 85 51 58 69 79 57 81 67 74 55 88 70 77 61 55 81 56 76 79 67 92 52 54 73 67 72 81 54 72 81 65 88 83 57 83 92 62 66 63 58 61 66 92 77 73 66 71 85 92 73 82 65 76 64 58 62 64 51 90 59 79 70 86 89 86 51 72 61 60 71 52 74 58 72 77 91 91 60 76 56 64 55 61 81 52", "output": "89\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89" }, { "input": "5 29\n6 3 7 2 1", "output": "5\n1 2 3 4 5" }, { "input": "5 49\n16 13 7 2 1", "output": "5\n1 2 3 4 5" }, { "input": "6 84\n16 21 25 6 17 16", "output": "5\n1 2 4 5 6" }, { "input": "4 9\n7 4 2 1", "output": "3\n2 3 4" }, { "input": "50 2500\n50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50", "output": "50\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50" }, { "input": "100 10000\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1", "output": "100\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100" }, { "input": "100 100\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1", "output": "100\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100" }, { "input": "96 514\n6 3 7 2 1 2 9 5 5 8 7 3 10 1 4 6 3 2 1 7 2 7 10 8 3 8 10 4 8 8 2 5 3 2 1 4 4 8 4 3 3 7 4 4 2 7 8 3 9 2 2 6 3 4 8 6 7 5 4 3 10 7 6 5 10 1 7 10 7 7 8 2 1 2 3 10 9 8 8 2 7 1 2 7 10 1 2 2 3 8 6 2 9 6 9 6", "output": "96\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96" }, { "input": "47 350\n6 1 9 12 8 8 11 4 4 8 8 3 3 2 12 7 7 7 12 2 9 1 5 10 6 1 5 2 6 3 9 13 8 3 10 10 10 10 6 9 10 10 8 5 12 11 3", "output": "47\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47" }, { "input": "100 200\n2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2", "output": "100\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100" }, { "input": "2 10000\n1 1", "output": "2\n1 2" }, { "input": "1 2\n1", "output": "1\n1" }, { "input": "1 3\n2", "output": "1\n1" }, { "input": "34 4964\n37 27 90 83 36 59 80 7 28 41 97 72 64 8 40 30 76 4 92 51 52 44 42 13 38 64 60 66 47 93 30 35 71 71", "output": "34\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34" }, { "input": "2 2\n1 10", "output": "1\n1" }, { "input": "2 5\n1 1", "output": "2\n1 2" }, { "input": "1 4\n3", "output": "1\n1" }, { "input": "4 384\n1 2 3 4", "output": "4\n1 2 3 4" } ]
1,664,374,358
2,147,483,647
Python 3
OK
TESTS
39
46
0
str=input().split(" ") n=int(str[0]) m=int(str[1]) str=input().split(" ") for i in range(0,n): str[i]=[int(str[i]),i] # debug # print(type(str),str) # print(type(str[0])) def cmp(x,y): if x[0]<y[0]: return -1 elif x[0]>y[0]: return 1 else: return 0 #str.sort(cmp) str=sorted(str) a=0 cnt=0 #debug #print(type(str),str) ans=[] #print(type(ans)) for i in str: #print(i) a+=i[0] if a>m: break else: ans.append(i[1]+1) cnt += 1 print(cnt) for i in ans: print(i,end=' ')
Title: Amr and Music Time Limit: None seconds Memory Limit: None megabytes Problem Description: Amr is a young coder who likes music a lot. He always wanted to learn how to play music but he was busy coding so he got an idea. Amr has *n* instruments, it takes *a**i* days to learn *i*-th instrument. Being busy, Amr dedicated *k* days to learn how to play the maximum possible number of instruments. Amr asked for your help to distribute his free days between instruments so that he can achieve his goal. Input Specification: The first line contains two numbers *n*, *k* (1<=≤<=*n*<=≤<=100, 0<=≤<=*k*<=≤<=10<=000), the number of instruments and number of days respectively. The second line contains *n* integers *a**i* (1<=≤<=*a**i*<=≤<=100), representing number of days required to learn the *i*-th instrument. Output Specification: In the first line output one integer *m* representing the maximum number of instruments Amr can learn. In the second line output *m* space-separated integers: the indices of instruments to be learnt. You may output indices in any order. if there are multiple optimal solutions output any. It is not necessary to use all days for studying. Demo Input: ['4 10\n4 3 1 2\n', '5 6\n4 3 1 1 2\n', '1 3\n4\n'] Demo Output: ['4\n1 2 3 4', '3\n1 3 4', '0\n'] Note: In the first test Amr can learn all 4 instruments. In the second test other possible solutions are: {2, 3, 5} or {3, 4, 5}. In the third test Amr doesn't have enough time to learn the only presented instrument.
```python str=input().split(" ") n=int(str[0]) m=int(str[1]) str=input().split(" ") for i in range(0,n): str[i]=[int(str[i]),i] # debug # print(type(str),str) # print(type(str[0])) def cmp(x,y): if x[0]<y[0]: return -1 elif x[0]>y[0]: return 1 else: return 0 #str.sort(cmp) str=sorted(str) a=0 cnt=0 #debug #print(type(str),str) ans=[] #print(type(ans)) for i in str: #print(i) a+=i[0] if a>m: break else: ans.append(i[1]+1) cnt += 1 print(cnt) for i in ans: print(i,end=' ') ```
3
798
A
Mike and palindrome
PROGRAMMING
1,000
[ "brute force", "constructive algorithms", "strings" ]
null
null
Mike has a string *s* consisting of only lowercase English letters. He wants to change exactly one character from the string so that the resulting one is a palindrome. A palindrome is a string that reads the same backward as forward, for example strings "z", "aaa", "aba", "abccba" are palindromes, but strings "codeforces", "reality", "ab" are not.
The first and single line contains string *s* (1<=≤<=|*s*|<=≤<=15).
Print "YES" (without quotes) if Mike can change exactly one character so that the resulting string is palindrome or "NO" (without quotes) otherwise.
[ "abccaa\n", "abbcca\n", "abcda\n" ]
[ "YES\n", "NO\n", "YES\n" ]
none
500
[ { "input": "abccaa", "output": "YES" }, { "input": "abbcca", "output": "NO" }, { "input": "abcda", "output": "YES" }, { "input": "kyw", "output": "YES" }, { "input": "fccf", "output": "NO" }, { "input": "mnlm", "output": "YES" }, { "input": "gqrk", "output": "NO" }, { "input": "glxlg", "output": "YES" }, { "input": "czhfc", "output": "YES" }, { "input": "broon", "output": "NO" }, { "input": "rmggmr", "output": "NO" }, { "input": "wvxxzw", "output": "YES" }, { "input": "ukvciu", "output": "NO" }, { "input": "vrnwnrv", "output": "YES" }, { "input": "vlkjkav", "output": "YES" }, { "input": "guayhmg", "output": "NO" }, { "input": "lkvhhvkl", "output": "NO" }, { "input": "ffdsslff", "output": "YES" }, { "input": "galjjtyw", "output": "NO" }, { "input": "uosgwgsou", "output": "YES" }, { "input": "qjwmjmljq", "output": "YES" }, { "input": "ustrvrodf", "output": "NO" }, { "input": "a", "output": "YES" }, { "input": "qjfyjjyfjq", "output": "NO" }, { "input": "ysxibbixsq", "output": "YES" }, { "input": "howfslfwmh", "output": "NO" }, { "input": "ekhajrjahke", "output": "YES" }, { "input": "ucnolsloncw", "output": "YES" }, { "input": "jrzsfrrkrtj", "output": "NO" }, { "input": "typayzzyapyt", "output": "NO" }, { "input": "uwdhkzokhdwu", "output": "YES" }, { "input": "xokxpyyuafij", "output": "NO" }, { "input": "eusneioiensue", "output": "YES" }, { "input": "fuxpuajabpxuf", "output": "YES" }, { "input": "guvggtfhlgruy", "output": "NO" }, { "input": "cojhkhxxhkhjoc", "output": "NO" }, { "input": "mhifbmmmmbmihm", "output": "YES" }, { "input": "kxfqqncnebpami", "output": "NO" }, { "input": "scfwrjevejrwfcs", "output": "YES" }, { "input": "thdaonpepdoadht", "output": "YES" }, { "input": "jsfzcbnhsccuqsj", "output": "NO" }, { "input": "nn", "output": "NO" }, { "input": "nm", "output": "YES" }, { "input": "jdj", "output": "YES" }, { "input": "bbcaa", "output": "NO" }, { "input": "abcde", "output": "NO" }, { "input": "abcdf", "output": "NO" }, { "input": "aa", "output": "NO" }, { "input": "abecd", "output": "NO" }, { "input": "abccacb", "output": "NO" }, { "input": "aabc", "output": "NO" }, { "input": "anpqb", "output": "NO" }, { "input": "c", "output": "YES" }, { "input": "abcdefg", "output": "NO" }, { "input": "aanbb", "output": "NO" }, { "input": "aabbb", "output": "NO" }, { "input": "aaabbab", "output": "NO" }, { "input": "ab", "output": "YES" }, { "input": "aabbc", "output": "NO" }, { "input": "ecabd", "output": "NO" }, { "input": "abcdrty", "output": "NO" }, { "input": "abcdmnp", "output": "NO" }, { "input": "bbbbbb", "output": "NO" }, { "input": "abcxuio", "output": "NO" }, { "input": "abcdabcde", "output": "NO" }, { "input": "abcxpoi", "output": "NO" }, { "input": "aba", "output": "YES" }, { "input": "aacbb", "output": "NO" }, { "input": "abcedca", "output": "NO" }, { "input": "abcdd", "output": "NO" }, { "input": "abbcs", "output": "NO" }, { "input": "aaabccc", "output": "NO" }, { "input": "paxkxbq", "output": "NO" }, { "input": "z", "output": "YES" }, { "input": "b", "output": "YES" }, { "input": "abcdefghi", "output": "NO" }, { "input": "abcqr", "output": "NO" }, { "input": "abcdc", "output": "NO" }, { "input": "abcb", "output": "NO" }, { "input": "aabcd", "output": "NO" }, { "input": "abbba", "output": "YES" }, { "input": "aaabbb", "output": "NO" }, { "input": "bb", "output": "NO" }, { "input": "aaacbbb", "output": "NO" }, { "input": "abbzcca", "output": "NO" }, { "input": "abxab", "output": "NO" }, { "input": "bbb", "output": "YES" }, { "input": "abcrtyu", "output": "NO" }, { "input": "cbacb", "output": "NO" }, { "input": "acbb", "output": "NO" }, { "input": "ww", "output": "NO" }, { "input": "aaaaaa", "output": "NO" }, { "input": "jizzz", "output": "NO" }, { "input": "aaakcba", "output": "NO" }, { "input": "acbak", "output": "NO" }, { "input": "bddeffd", "output": "NO" }, { "input": "aaa", "output": "YES" }, { "input": "afghqwe", "output": "NO" }, { "input": "abcdfga", "output": "NO" } ]
1,652,290,767
2,147,483,647
PyPy 3-64
OK
TESTS
99
62
0
s=input() f=False for i in range(len(s)): for j in range(97,123): if chr(j)!=s[i]: new = s[:i]+chr(j)+s[i+1:] if new==new[::-1]: f=True break if f: print("YES") else : print("NO")
Title: Mike and palindrome Time Limit: None seconds Memory Limit: None megabytes Problem Description: Mike has a string *s* consisting of only lowercase English letters. He wants to change exactly one character from the string so that the resulting one is a palindrome. A palindrome is a string that reads the same backward as forward, for example strings "z", "aaa", "aba", "abccba" are palindromes, but strings "codeforces", "reality", "ab" are not. Input Specification: The first and single line contains string *s* (1<=≤<=|*s*|<=≤<=15). Output Specification: Print "YES" (without quotes) if Mike can change exactly one character so that the resulting string is palindrome or "NO" (without quotes) otherwise. Demo Input: ['abccaa\n', 'abbcca\n', 'abcda\n'] Demo Output: ['YES\n', 'NO\n', 'YES\n'] Note: none
```python s=input() f=False for i in range(len(s)): for j in range(97,123): if chr(j)!=s[i]: new = s[:i]+chr(j)+s[i+1:] if new==new[::-1]: f=True break if f: print("YES") else : print("NO") ```
3
977
A
Wrong Subtraction
PROGRAMMING
800
[ "implementation" ]
null
null
Little girl Tanya is learning how to decrease a number by one, but she does it wrong with a number consisting of two or more digits. Tanya subtracts one from a number by the following algorithm: - if the last digit of the number is non-zero, she decreases the number by one; - if the last digit of the number is zero, she divides the number by 10 (i.e. removes the last digit). You are given an integer number $n$. Tanya will subtract one from it $k$ times. Your task is to print the result after all $k$ subtractions. It is guaranteed that the result will be positive integer number.
The first line of the input contains two integer numbers $n$ and $k$ ($2 \le n \le 10^9$, $1 \le k \le 50$) — the number from which Tanya will subtract and the number of subtractions correspondingly.
Print one integer number — the result of the decreasing $n$ by one $k$ times. It is guaranteed that the result will be positive integer number.
[ "512 4\n", "1000000000 9\n" ]
[ "50\n", "1\n" ]
The first example corresponds to the following sequence: $512 \rightarrow 511 \rightarrow 510 \rightarrow 51 \rightarrow 50$.
0
[ { "input": "512 4", "output": "50" }, { "input": "1000000000 9", "output": "1" }, { "input": "131203 11", "output": "12" }, { "input": "999999999 50", "output": "9999" }, { "input": "999999999 49", "output": "99990" }, { "input": "131203 9", "output": "130" }, { "input": "900000000 16", "output": "1" }, { "input": "909090909 50", "output": "3" }, { "input": "1001 2", "output": "100" }, { "input": "5 2", "output": "3" }, { "input": "2 1", "output": "1" } ]
1,695,629,834
2,147,483,647
Python 3
TIME_LIMIT_EXCEEDED
TESTS
0
1,000
0
n,k = input().split() n = int(n) k = int(k) while(2<=n<=109,1<=k<=50): for i in range(k): if(n%10==0): n/=10 else: n-=1 print(n)
Title: Wrong Subtraction Time Limit: None seconds Memory Limit: None megabytes Problem Description: Little girl Tanya is learning how to decrease a number by one, but she does it wrong with a number consisting of two or more digits. Tanya subtracts one from a number by the following algorithm: - if the last digit of the number is non-zero, she decreases the number by one; - if the last digit of the number is zero, she divides the number by 10 (i.e. removes the last digit). You are given an integer number $n$. Tanya will subtract one from it $k$ times. Your task is to print the result after all $k$ subtractions. It is guaranteed that the result will be positive integer number. Input Specification: The first line of the input contains two integer numbers $n$ and $k$ ($2 \le n \le 10^9$, $1 \le k \le 50$) — the number from which Tanya will subtract and the number of subtractions correspondingly. Output Specification: Print one integer number — the result of the decreasing $n$ by one $k$ times. It is guaranteed that the result will be positive integer number. Demo Input: ['512 4\n', '1000000000 9\n'] Demo Output: ['50\n', '1\n'] Note: The first example corresponds to the following sequence: $512 \rightarrow 511 \rightarrow 510 \rightarrow 51 \rightarrow 50$.
```python n,k = input().split() n = int(n) k = int(k) while(2<=n<=109,1<=k<=50): for i in range(k): if(n%10==0): n/=10 else: n-=1 print(n) ```
0
682
A
Alyona and Numbers
PROGRAMMING
1,100
[ "constructive algorithms", "math", "number theory" ]
null
null
After finishing eating her bun, Alyona came up with two integers *n* and *m*. She decided to write down two columns of integers — the first column containing integers from 1 to *n* and the second containing integers from 1 to *m*. Now the girl wants to count how many pairs of integers she can choose, one from the first column and the other from the second column, such that their sum is divisible by 5. Formally, Alyona wants to count the number of pairs of integers (*x*,<=*y*) such that 1<=≤<=*x*<=≤<=*n*, 1<=≤<=*y*<=≤<=*m* and equals 0. As usual, Alyona has some troubles and asks you to help.
The only line of the input contains two integers *n* and *m* (1<=≤<=*n*,<=*m*<=≤<=1<=000<=000).
Print the only integer — the number of pairs of integers (*x*,<=*y*) such that 1<=≤<=*x*<=≤<=*n*, 1<=≤<=*y*<=≤<=*m* and (*x*<=+<=*y*) is divisible by 5.
[ "6 12\n", "11 14\n", "1 5\n", "3 8\n", "5 7\n", "21 21\n" ]
[ "14\n", "31\n", "1\n", "5\n", "7\n", "88\n" ]
Following pairs are suitable in the first sample case: - for *x* = 1 fits *y* equal to 4 or 9; - for *x* = 2 fits *y* equal to 3 or 8; - for *x* = 3 fits *y* equal to 2, 7 or 12; - for *x* = 4 fits *y* equal to 1, 6 or 11; - for *x* = 5 fits *y* equal to 5 or 10; - for *x* = 6 fits *y* equal to 4 or 9. Only the pair (1, 4) is suitable in the third sample case.
500
[ { "input": "6 12", "output": "14" }, { "input": "11 14", "output": "31" }, { "input": "1 5", "output": "1" }, { "input": "3 8", "output": "5" }, { "input": "5 7", "output": "7" }, { "input": "21 21", "output": "88" }, { "input": "10 15", "output": "30" }, { "input": "1 1", "output": "0" }, { "input": "1 1000000", "output": "200000" }, { "input": "1000000 1", "output": "200000" }, { "input": "1000000 1000000", "output": "200000000000" }, { "input": "944 844", "output": "159348" }, { "input": "368 984", "output": "72423" }, { "input": "792 828", "output": "131155" }, { "input": "920 969", "output": "178296" }, { "input": "640 325", "output": "41600" }, { "input": "768 170", "output": "26112" }, { "input": "896 310", "output": "55552" }, { "input": "320 154", "output": "9856" }, { "input": "744 999", "output": "148652" }, { "input": "630 843", "output": "106218" }, { "input": "54 688", "output": "7431" }, { "input": "478 828", "output": "79157" }, { "input": "902 184", "output": "33194" }, { "input": "31 29", "output": "180" }, { "input": "751 169", "output": "25384" }, { "input": "879 14", "output": "2462" }, { "input": "7 858", "output": "1201" }, { "input": "431 702", "output": "60512" }, { "input": "855 355", "output": "60705" }, { "input": "553 29", "output": "3208" }, { "input": "721767 525996", "output": "75929310986" }, { "input": "805191 74841", "output": "12052259926" }, { "input": "888615 590981", "output": "105030916263" }, { "input": "4743 139826", "output": "132638943" }, { "input": "88167 721374", "output": "12720276292" }, { "input": "171591 13322", "output": "457187060" }, { "input": "287719 562167", "output": "32349225415" }, { "input": "371143 78307", "output": "5812618980" }, { "input": "487271 627151", "output": "61118498984" }, { "input": "261436 930642", "output": "48660664382" }, { "input": "377564 446782", "output": "33737759810" }, { "input": "460988 28330", "output": "2611958008" }, { "input": "544412 352983", "output": "38433636199" }, { "input": "660540 869123", "output": "114818101284" }, { "input": "743964 417967", "output": "62190480238" }, { "input": "827388 966812", "output": "159985729411" }, { "input": "910812 515656", "output": "93933134534" }, { "input": "26940 64501", "output": "347531388" }, { "input": "110364 356449", "output": "7867827488" }, { "input": "636358 355531", "output": "45248999219" }, { "input": "752486 871672", "output": "131184195318" }, { "input": "803206 420516", "output": "67552194859" }, { "input": "919334 969361", "output": "178233305115" }, { "input": "35462 261309", "output": "1853307952" }, { "input": "118887 842857", "output": "20040948031" }, { "input": "202311 358998", "output": "14525848875" }, { "input": "285735 907842", "output": "51880446774" }, { "input": "401863 456686", "output": "36705041203" }, { "input": "452583 972827", "output": "88056992428" }, { "input": "235473 715013", "output": "33673251230" }, { "input": "318897 263858", "output": "16828704925" }, { "input": "402321 812702", "output": "65393416268" }, { "input": "518449 361546", "output": "37488632431" }, { "input": "634577 910391", "output": "115542637921" }, { "input": "685297 235043", "output": "32214852554" }, { "input": "801425 751183", "output": "120403367155" }, { "input": "884849 300028", "output": "53095895155" }, { "input": "977 848872", "output": "165869588" }, { "input": "51697 397716", "output": "4112144810" }, { "input": "834588 107199", "output": "17893399803" }, { "input": "918012 688747", "output": "126455602192" }, { "input": "1436 237592", "output": "68236422" }, { "input": "117564 753732", "output": "17722349770" }, { "input": "200988 302576", "output": "12162829017" }, { "input": "284412 818717", "output": "46570587880" }, { "input": "400540 176073", "output": "14104855884" }, { "input": "483964 724917", "output": "70166746198" }, { "input": "567388 241058", "output": "27354683301" }, { "input": "650812 789902", "output": "102815540084" }, { "input": "400999 756281", "output": "60653584944" }, { "input": "100 101", "output": "2020" }, { "input": "100 102", "output": "2040" }, { "input": "103 100", "output": "2060" }, { "input": "100 104", "output": "2080" }, { "input": "3 4", "output": "3" }, { "input": "11 23", "output": "50" }, { "input": "8 14", "output": "23" }, { "input": "23423 34234", "output": "160372597" }, { "input": "1 4", "output": "1" }, { "input": "999999 999999", "output": "199999600001" }, { "input": "82 99", "output": "1624" }, { "input": "21 18", "output": "75" }, { "input": "234 234", "output": "10952" }, { "input": "4 4", "output": "4" }, { "input": "6 13", "output": "15" }, { "input": "3 9", "output": "6" }, { "input": "99999 99999", "output": "1999960001" }, { "input": "34 33", "output": "225" }, { "input": "2 2", "output": "0" }, { "input": "333 1", "output": "66" }, { "input": "3 3", "output": "2" }, { "input": "8 2", "output": "3" }, { "input": "2179 2218", "output": "966605" }, { "input": "1000000 999999", "output": "199999800000" }, { "input": "873828 774207", "output": "135304750879" }, { "input": "13 19", "output": "50" }, { "input": "1648 576469", "output": "190004183" }, { "input": "11 13", "output": "28" }, { "input": "5 8", "output": "8" }, { "input": "650074 943659", "output": "122689636154" }, { "input": "1 3", "output": "0" }, { "input": "54 43", "output": "465" }, { "input": "14 9", "output": "26" }, { "input": "2 3", "output": "1" }, { "input": "543 534", "output": "57993" }, { "input": "321 123", "output": "7896" }, { "input": "21 3", "output": "12" }, { "input": "2 1", "output": "0" }, { "input": "4 3", "output": "3" }, { "input": "47474 74747", "output": "709707816" }, { "input": "4 9", "output": "8" }, { "input": "7 4", "output": "6" }, { "input": "9 4", "output": "8" }, { "input": "12414 4214", "output": "10462520" }, { "input": "2 9", "output": "4" }, { "input": "253 821", "output": "41542" }, { "input": "2 4", "output": "2" } ]
1,573,246,863
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
11
109
0
def inp(): return map(int, input().split()) import math as m x, y = inp() num = (x * y) / 5 if (num - int(num) >= .5): num = m.ceil(num) else: num = m.floor(num) print(num)
Title: Alyona and Numbers Time Limit: None seconds Memory Limit: None megabytes Problem Description: After finishing eating her bun, Alyona came up with two integers *n* and *m*. She decided to write down two columns of integers — the first column containing integers from 1 to *n* and the second containing integers from 1 to *m*. Now the girl wants to count how many pairs of integers she can choose, one from the first column and the other from the second column, such that their sum is divisible by 5. Formally, Alyona wants to count the number of pairs of integers (*x*,<=*y*) such that 1<=≤<=*x*<=≤<=*n*, 1<=≤<=*y*<=≤<=*m* and equals 0. As usual, Alyona has some troubles and asks you to help. Input Specification: The only line of the input contains two integers *n* and *m* (1<=≤<=*n*,<=*m*<=≤<=1<=000<=000). Output Specification: Print the only integer — the number of pairs of integers (*x*,<=*y*) such that 1<=≤<=*x*<=≤<=*n*, 1<=≤<=*y*<=≤<=*m* and (*x*<=+<=*y*) is divisible by 5. Demo Input: ['6 12\n', '11 14\n', '1 5\n', '3 8\n', '5 7\n', '21 21\n'] Demo Output: ['14\n', '31\n', '1\n', '5\n', '7\n', '88\n'] Note: Following pairs are suitable in the first sample case: - for *x* = 1 fits *y* equal to 4 or 9; - for *x* = 2 fits *y* equal to 3 or 8; - for *x* = 3 fits *y* equal to 2, 7 or 12; - for *x* = 4 fits *y* equal to 1, 6 or 11; - for *x* = 5 fits *y* equal to 5 or 10; - for *x* = 6 fits *y* equal to 4 or 9. Only the pair (1, 4) is suitable in the third sample case.
```python def inp(): return map(int, input().split()) import math as m x, y = inp() num = (x * y) / 5 if (num - int(num) >= .5): num = m.ceil(num) else: num = m.floor(num) print(num) ```
0
80
A
Panoramix's Prediction
PROGRAMMING
800
[ "brute force" ]
A. Panoramix's Prediction
2
256
A prime number is a number which has exactly two distinct divisors: one and itself. For example, numbers 2, 7, 3 are prime, and 1, 6, 4 are not. The next prime number after *x* is the smallest prime number greater than *x*. For example, the next prime number after 2 is 3, and the next prime number after 3 is 5. Note that there is exactly one next prime number after each number. So 5 is not the next prime number for 2. One cold April morning Panoramix predicted that soon Kakofonix will break free from his straitjacket, and this will be a black day for the residents of the Gallic countryside. Panoramix's prophecy tells that if some day Asterix and Obelix beat exactly *x* Roman soldiers, where *x* is a prime number, and next day they beat exactly *y* Roman soldiers, where *y* is the next prime number after *x*, then it's time to wait for Armageddon, for nothing can shut Kakofonix up while he sings his infernal song. Yesterday the Gauls beat *n* Roman soldiers and it turned out that the number *n* was prime! Today their victims were a troop of *m* Romans (*m*<=&gt;<=*n*). Determine whether the Gauls should wait for the black day after today's victory of Asterix and Obelix?
The first and only input line contains two positive integers — *n* and *m* (2<=≤<=*n*<=&lt;<=*m*<=≤<=50). It is guaranteed that *n* is prime. Pretests contain all the cases with restrictions 2<=≤<=*n*<=&lt;<=*m*<=≤<=4.
Print YES, if *m* is the next prime number after *n*, or NO otherwise.
[ "3 5\n", "7 11\n", "7 9\n" ]
[ "YES", "YES", "NO" ]
none
500
[ { "input": "3 5", "output": "YES" }, { "input": "7 11", "output": "YES" }, { "input": "7 9", "output": "NO" }, { "input": "2 3", "output": "YES" }, { "input": "2 4", "output": "NO" }, { "input": "3 4", "output": "NO" }, { "input": "3 5", "output": "YES" }, { "input": "5 7", "output": "YES" }, { "input": "7 11", "output": "YES" }, { "input": "11 13", "output": "YES" }, { "input": "13 17", "output": "YES" }, { "input": "17 19", "output": "YES" }, { "input": "19 23", "output": "YES" }, { "input": "23 29", "output": "YES" }, { "input": "29 31", "output": "YES" }, { "input": "31 37", "output": "YES" }, { "input": "37 41", "output": "YES" }, { "input": "41 43", "output": "YES" }, { "input": "43 47", "output": "YES" }, { "input": "2 5", "output": "NO" }, { "input": "2 7", "output": "NO" }, { "input": "2 6", "output": "NO" }, { "input": "2 11", "output": "NO" }, { "input": "3 6", "output": "NO" }, { "input": "3 7", "output": "NO" }, { "input": "3 9", "output": "NO" }, { "input": "5 6", "output": "NO" }, { "input": "5 9", "output": "NO" }, { "input": "5 11", "output": "NO" }, { "input": "5 13", "output": "NO" }, { "input": "5 15", "output": "NO" }, { "input": "7 8", "output": "NO" }, { "input": "7 13", "output": "NO" }, { "input": "13 15", "output": "NO" }, { "input": "13 17", "output": "YES" }, { "input": "19 21", "output": "NO" }, { "input": "13 20", "output": "NO" }, { "input": "41 49", "output": "NO" }, { "input": "43 49", "output": "NO" }, { "input": "47 50", "output": "NO" }, { "input": "47 49", "output": "NO" }, { "input": "47 48", "output": "NO" }, { "input": "23 25", "output": "NO" }, { "input": "2 50", "output": "NO" }, { "input": "31 33", "output": "NO" } ]
1,562,177,529
2,147,483,647
Python 3
RUNTIME_ERROR
TESTS
39
248
0
n, m=[int(i) for i in input().split()] t=3 a=[2] while t<50: k=0 for i in a: if t%i==0: k=1 break if k==0: a.append(t) t+=2 for i in range(len(a)): if a[i]==n: if a[i+1]==m: print('YES') else: print('NO')
Title: Panoramix's Prediction Time Limit: 2 seconds Memory Limit: 256 megabytes Problem Description: A prime number is a number which has exactly two distinct divisors: one and itself. For example, numbers 2, 7, 3 are prime, and 1, 6, 4 are not. The next prime number after *x* is the smallest prime number greater than *x*. For example, the next prime number after 2 is 3, and the next prime number after 3 is 5. Note that there is exactly one next prime number after each number. So 5 is not the next prime number for 2. One cold April morning Panoramix predicted that soon Kakofonix will break free from his straitjacket, and this will be a black day for the residents of the Gallic countryside. Panoramix's prophecy tells that if some day Asterix and Obelix beat exactly *x* Roman soldiers, where *x* is a prime number, and next day they beat exactly *y* Roman soldiers, where *y* is the next prime number after *x*, then it's time to wait for Armageddon, for nothing can shut Kakofonix up while he sings his infernal song. Yesterday the Gauls beat *n* Roman soldiers and it turned out that the number *n* was prime! Today their victims were a troop of *m* Romans (*m*<=&gt;<=*n*). Determine whether the Gauls should wait for the black day after today's victory of Asterix and Obelix? Input Specification: The first and only input line contains two positive integers — *n* and *m* (2<=≤<=*n*<=&lt;<=*m*<=≤<=50). It is guaranteed that *n* is prime. Pretests contain all the cases with restrictions 2<=≤<=*n*<=&lt;<=*m*<=≤<=4. Output Specification: Print YES, if *m* is the next prime number after *n*, or NO otherwise. Demo Input: ['3 5\n', '7 11\n', '7 9\n'] Demo Output: ['YES', 'YES', 'NO'] Note: none
```python n, m=[int(i) for i in input().split()] t=3 a=[2] while t<50: k=0 for i in a: if t%i==0: k=1 break if k==0: a.append(t) t+=2 for i in range(len(a)): if a[i]==n: if a[i+1]==m: print('YES') else: print('NO') ```
-1