RoboInter-Data / README.md
JeasLee's picture
Upload README.md with huggingface_hub
4ad5cc9 verified
|
raw
history blame
16.2 kB
# RoboInter-Data: Intermediate Representation Annotations for Robot Manipulation
Rich, dense, per-frame **intermediate representation annotations** for robot manipulation, built on top of [DROID](https://droid-dataset.github.io/) and [RH20T](https://rh20t.github.io/). Developed as part of the [RoboInter](https://github.com/InternRobotics/RoboInter) project. You can try our [**Online demo**](https://huggingface.co/spaces/wz7in/robointer-demo).
The annotations cover 230k episodes and include: subtasks,
primitive skills, segmentation, gripper/object bounding boxes, placement proposals, affordance boxes,
grasp poses, traces, contact points, etc. And each with a quality rating (Primary / Secondary).
## Dataset Structure
```
RoboInter-Data/
├── Annotation_with_action_lerobotv21/ # [Main] LeRobot v2.1 format (actions + annotations + videos)
│ ├── lerobot_droid_anno/ # DROID: 152,986 episodes
│ └── lerobot_rh20t_anno/ # RH20T: 82,894 episodes
├── Annotation_pure/ # Annotation-only LMDB (no actions/videos)
│ └── annotations/ # 35 GB, all 235,920 episodes
├── Annotation_raw/ # Original unprocessed annotations
│ ├── droid_annotation.pkl # Raw DROID annotations (~20 GB)
│ ├── rh20t_annotation.pkl # Raw RH20T annotations (~11 GB)
│ └── segmentation_npz.zip.* # Segmentation masks (~50 GB, split archives)
├── Annotation_demo_app/ # Small demo subset for online visualization
│ ├── demo_data/ # LMDB annotations for 20 sampled videos
│ └── videos/ # 20 MP4 videos
├── Annotation_demo_larger/ # Larger demo subset for local visualization
│ ├── demo_annotations/ # LMDB annotations for 120 videos
│ └── videos/ # 120 MP4 videos
├── All_Keys_of_Primary.json # Episode names where all annotations are Primary quality
├── RoboInter_Data_Qsheet.json # Per-episode quality ratings for each annotation type
├── RoboInter_Data_Qsheet_value_stats.json# Distribution statistics of quality ratings
├── RoboInter_Data_RawPath_Qmapping.json # Mapping: original data source path -> episode splits & quality
├── range_nop.json # Non-idle frame ranges for all 230k episodes
├── range_nop_droid_all.json # Non-idle frame ranges (DROID only)
├── range_nop_rh20t_all.json # Non-idle frame ranges (RH20T only)
├── val_video.json # Validation set: 7,246 episode names
└── VideoID_2_SegmentationNPZ.json # Episode video ID -> segmentation NPZ file path mapping
```
---
## 1. Annotation_with_action_lerobotv21 (Recommended)
The primary data format. Contains **actions + observations + annotations** in [LeRobot v2.1](https://github.com/huggingface/lerobot) format (parquet + MP4 videos), ready for policy training.
### Directory Layout
```
lerobot_droid_anno/ (or lerobot_rh20t_anno/)
├── meta/
│ ├── info.json # Dataset metadata (fps=10, features, etc.)
│ ├── episodes.jsonl # Episode information
│ └── tasks.jsonl # Task/instruction mapping
├── data/
│ └── chunk-{NNN}/ # Parquet files (1,000 episodes per chunk)
│ └── episode_{NNNNNN}.parquet
└── videos/
└── chunk-{NNN}/
├── observation.images.primary/
│ └── episode_{NNNNNN}.mp4
└── observation.images.wrist/
└── episode_{NNNNNN}.mp4
```
### Data Fields
| Category | Field | Shape / Type | Description |
|----------|-------|-------------|-------------|
| **Core** | `action` | (7,) float64 | Delta EEF: [dx, dy, dz, drx, dry, drz, gripper] |
| | `state` | (7,) float64 | EEF state: [x, y, z, rx, ry, rz, gripper] |
| | `observation.images.primary` | (180, 320, 3) video | Primary camera RGB |
| | `observation.images.wrist` | (180, 320, 3) video | Wrist camera RGB |
| **Annotation** | `annotation.instruction_add` | string | Structured task language instruction |
| | `annotation.substask` | string | Current subtask description |
| | `annotation.primitive_skill` | string | Primitive skill label (pick, place, push, ...) |
| | `annotation.object_box` | JSON `[[x1,y1],[x2,y2]]` | Manipulated object bounding box |
| | `annotation.gripper_box` | JSON `[[x1,y1],[x2,y2]]` | Gripper bounding box |
| | `annotation.trace` | JSON `[[x,y], ...]` | Future 10-step gripper trajectory |
| | `annotation.contact_frame` | JSON int | Frame index when gripper contacts object |
| | `annotation.contact_points` | JSON `[x, y]` | Contact point pixel coordinates |
| | `annotation.affordance_box` | JSON `[[x1,y1],[x2,y2]]` | Gripper box at contact frame |
| | `annotation.state_affordance` | JSON `[x,y,z,rx,ry,rz]` | 6D EEF state at contact frame |
| | `annotation.placement_proposal` | JSON `[[x1,y1],[x2,y2]]` | Target placement bounding box |
| | `annotation.time_clip` | JSON `[[s,e], ...]` | Subtask temporal segments |
| **Quality** | `Q_annotation.*` | string | Quality rating: `"Primary"` / `"Secondary"` / `""` |
### Quick Start
The dataloader is located at our RoboInter [Codebase](https://github.com/InternRobotics/RoboInter/blob/main/RoboInterData/lerobot_dataloader).
```python
from lerobot_dataloader import create_dataloader
# Single dataset
dataloader = create_dataloader(
"path/to/Annotation_with_action_lerobotv21/lerobot_droid_anno",
batch_size=32,
action_horizon=16,
)
for batch in dataloader:
images = batch["observation.images.primary"] # (B, H, W, 3)
actions = batch["action"] # (B, 16, 7)
trace = batch["annotation.trace"] # JSON strings
skill = batch["annotation.primitive_skill"] # List[str]
break
# Multiple datasets (DROID + RH20T)
dataloader = create_dataloader(
[
"path/to/lerobot_droid_anno",
"path/to/lerobot_rh20t_anno",
],
batch_size=32,
action_horizon=16,
)
```
### Filtering by Quality & Frame Range
```python
from lerobot_dataloader import create_dataloader, QAnnotationFilter
dataloader = create_dataloader(
"path/to/lerobot_droid_anno",
batch_size=32,
range_nop_path="path/to/range_nop.json", # Remove idle frames
q_filters=[
QAnnotationFilter("Q_annotation.trace", ["Primary"]),
QAnnotationFilter("Q_annotation.gripper_box", ["Primary", "Secondary"]),
],
)
```
For full dataloader documentation and transforms, see: [RoboInterData/lerobot_dataloader](https://github.com/InternRobotics/RoboInter/tree/main/RoboInterData/lerobot_dataloader).
### Format Conversion Scripts
The LeRobot v2.1 data was converted using:
- **DROID**: [convert_droid_to_lerobot_anno_fast.py](https://github.com/InternRobotics/RoboInter/blob/main/RoboInterData/convert_to_lerobot/convert_droid_to_lerobot_anno_fast.py)
- **RH20T**: [convert_rh20t_to_lerobot_anno_fast.py](https://github.com/InternRobotics/RoboInter/blob/main/RoboInterData/convert_to_lerobot/convert_rh20t_to_lerobot_anno_fast.py)
---
## 2. Annotation_pure (Annotation-Only LMDB)
Contains **only the intermediate representation annotations** (no action data, no videos) stored as a single LMDB database. Useful for lightweight access to annotations or as input for the LeRobot conversion pipeline. The format conversion scripts and corresponding lightweight dataloader functions are provided in [lmdb_tool](https://github.com/InternRobotics/RoboInter/blob/main/RoboInterData/lmdb_tool). You can downloade high-resolution
videos by following [Droid hr_video_reader](https://github.com/InternRobotics/RoboInter/blob/main/RoboInterData/hr_video_reader) and [RH20T API](https://github.com/rh20t/rh20t_api).
### Data Format
Each LMDB key is an episode name (e.g., `"3072_exterior_image_1_left"`). The value is a dict mapping frame indices to per-frame annotation dicts:
```python
{
0: { # frame_id
"time_clip": [[0, 132], [132, 197], [198, 224]], # subtask segments
"instruction_add": "pick up the red cup", # language instruction
"substask": "reach for the cup", # current subtask
"primitive_skill": "reach", # skill label
"segmentation": None, # (stored separately in Annotation_raw)
"object_box": [[45, 30], [120, 95]], # manipulated object bbox
"placement_proposal": [[150, 80], [220, 140]], # target placement bbox
"trace": [[x, y], ...], # next 10 gripper waypoints
"gripper_box": [[60, 50], [100, 80]], # gripper bbox
"contact_frame": 101, # contact event frame (−1 if past contact)
"state_affordance": [0.1, 0.2, 0.3, 0.4, 0.5, 0.6],# 6D EEF state at contact
"affordance_box": [[62, 48], [98, 82]], # gripper bbox at contact frame
"contact_points": [[75, 65], [85, 65]], # contact pixel coordinates
...
},
1: { ... },
...
}
```
### Reading LMDB
```python
import lmdb
import pickle
lmdb_path = "Annotation_pure/annotations"
env = lmdb.open(lmdb_path, readonly=True, lock=False, readahead=False)
with env.begin() as txn:
# List all episode keys
cursor = txn.cursor()
for key, value in cursor:
episode_name = key.decode("utf-8")
episode_data = pickle.loads(value)
# Access frame 0
frame_0 = episode_data[0]
print(f"{episode_name}: {frame_0['instruction_add']}")
print(f" object_box: {frame_0['object_box']}")
print(f" trace: {frame_0['trace'][:3]}...") # first 3 waypoints
break
env.close()
```
### CLI Inspection Tool
```bash
cd RoboInter/RoboInterData/lmdb_tool
# Basic info
python read_lmdb.py --lmdb_path Annotation_pure/annotations --action info
# View a specific episode
python read_lmdb.py --lmdb_path Annotation_pure/annotations --action item --key "3072_exterior_image_1_left"
# Field coverage statistics
python read_lmdb.py --lmdb_path Annotation_pure/annotations --action stats --key "3072_exterior_image_1_left"
# Multi-episode summary
python read_lmdb.py --lmdb_path Annotation_pure/annotations --action summary --limit 100
```
---
## 3. Annotation_raw (Original Annotations)
The original, unprocessed annotation files before conversion to LMDB format. These files are large and slow to load.
| File | Size | Description |
|------|------|-------------|
| `droid_annotation.pkl` | ~20 GB | Raw DROID intermediate representation annotations |
| `rh20t_annotation.pkl` | ~11 GB | Raw RH20T intermediate representation annotations |
| `segmentation_npz.zip.*` | ~50 GB | Object segmentation masks (split archives) |
### Reading Raw PKL
```bash
cd /RoboInter-Data/Annotation_raw
cat segmentation_npz.zip.* > segmentation_npz.zip
unzip segmentation_npz.zip
```
```python
import pickle
with open("Annotation_raw/droid_annotation.pkl", "rb") as f:
droid_data = pickle.load(f) # Warning: ~20 GB, takes several minutes
# droid_data[episode_key] contains raw intermediate representation data
# including: all_language, all_gripper_box, all_grounding_box, all_contact_point, all_traj, etc.
```
> To convert raw PKL to the LMDB format used in `Annotation_pure`, see the conversion script in the [RoboInter repository](https://github.com/InternRobotics/RoboInter).
---
## 4. Demo Subsets (Annotation_demo_app & Annotation_demo_larger)
Pre-packaged subsets for quick visualization using the [RoboInterData-Demo](https://github.com/InternRobotics/RoboInter/tree/main/RoboInterData-Demo) Gradio app. Both subsets share the same LMDB annotation format + MP4 video structure.
| Subset | Videos | Size | Use Case |
|--------|--------|------|----------|
| `Annotation_demo_app` | 20 | ~929 MB | HuggingFace Spaces [online demo](https://huggingface.co/spaces/wz7in/robointer-demo) |
| `Annotation_demo_larger` | 120 | ~12 GB | Local visualization with more examples |
### Running the Visualizer
```bash
git clone https://github.com/InternRobotics/RoboInter.git
cd RoboInter/RoboInterData-Demo
# Option A: Use the small demo subset (for Spaces)
ln -s /path/to/Annotation_demo_app/demo_data ./demo_data
ln -s /path/to/Annotation_demo_app/videos ./videos
# Option B: Use the larger demo subset (for local)
ln -s /path/to/Annotation_demo_larger/demo_annotations ./demo_data
ln -s /path/to/Annotation_demo_larger/videos ./videos
pip install -r requirements.txt
python app.py
# Open http://localhost:7860
```
The visualizer supports all annotation types: object segmentation masks, gripper/object/affordance bounding boxes, trajectory traces, contact points, grasp poses, and language annotations (instructions, subtasks, primitive skills).
---
## 5. Metadata JSON Files
### Quality & Filtering
| File | Description |
|------|-------------|
| `All_Keys_of_Primary.json` | List of 65,515 episode names where **all** annotation types are rated Primary quality. |
| `RoboInter_Data_Qsheet.json` | Per-episode quality ratings for every annotation type. Each entry contains `Q_instruction_add`, `Q_substask`, `Q_trace`, etc. with values `"Primary"`, `"Secondary"`, or `null`. |
| `RoboInter_Data_Qsheet_value_stats.json` | Distribution of quality ratings across all episodes. |
| `RoboInter_Data_RawPath_Qmapping.json` | Mapping from original data source paths to episode splits and their quality ratings. |
### Frame Ranges (Idle Frame Removal)
| File | Description |
|------|-------------|
| `range_nop.json` | Non-idle frame ranges for all 235,920 episodes (DROID + RH20T). |
| `range_nop_droid_all.json` | Non-idle frame ranges for DROID episodes only. |
| `range_nop_rh20t_all.json` | Non-idle frame ranges for RH20T episodes only. |
Format: `{ "episode_name": [start_frame, end_frame, valid_length] }`
```python
import json
with open("range_nop.json") as f:
range_nop = json.load(f)
# Example: "3072_exterior_image_1_left": [12, 217, 206]
# Means: valid action frames are 12~217, total 206 valid frames
# (frames 0~11 and 218+ are idle/stationary)
```
### Other
| File | Description |
|------|-------------|
| `val_video.json` | List of 7,246 episode names reserved for the validation set. |
| `VideoID_2_SegmentationNPZ.json` | Mapping from episode video ID to the corresponding segmentation NPZ file path in `Annotation_raw/segmentation_npz`. `null` if no segmentation is available. |
---
## Related Resources
| Resource | Link |
|----------|------|
| Project | [RoboInter](https://github.com/InternRobotics/RoboInter) |
| VQA Dataset | [RoboInter-VQA](https://huggingface.co/datasets/InternRobotics/RoboInter-VQA) |
| VLM Checkpoints | [RoboInter-VLM](https://huggingface.co/InternRobotics/RoboInter-VLM) |
| LMDB Tool | [RoboInterData/lmdb_tool](https://github.com/InternRobotics/RoboInter/tree/main/RoboInterData/lmdb_tool) |
| High-Resolution Video Reader | [RoboInterData/hr_video_reader](https://github.com/InternRobotics/RoboInter/tree/main/RoboInterData/hr_video_reader) |
| LeRobot DataLoader | [RoboInterData/lerobot_dataloader](https://github.com/InternRobotics/RoboInter/tree/main/RoboInterData/lerobot_dataloader) |
| LeRobot Conversion | [RoboInterData/convert_to_lerobot](https://github.com/InternRobotics/RoboInter/tree/main/RoboInterData/convert_to_lerobot) |
| Demo Visualizer | [RoboInterData-Demo](https://github.com/InternRobotics/RoboInter/tree/main/RoboInterData-Demo) |
| Online Demo | [HuggingFace Space](https://huggingface.co/spaces/wz7in/robointer-demo) |
| Raw DROID Dataset | [droid-dataset.github.io](https://droid-dataset.github.io/) |
| Raw RH20T Dataset | [rh20t.github.io](https://rh20t.github.io/) |
## License
Please refer to the original dataset licenses for [RoboInter](https://github.com/InternRobotics/RoboInter), [DROID](https://droid-dataset.github.io/), and [RH20T](https://rh20t.github.io/).