| # RoboInter-Data: Intermediate Representation Annotations for Robot Manipulation | |
| Rich, dense, per-frame **intermediate representation annotations** for robot manipulation, built on top of [DROID](https://droid-dataset.github.io/) and [RH20T](https://rh20t.github.io/). Developed as part of the [RoboInter](https://github.com/InternRobotics/RoboInter) project. You can try our [**Online demo**](https://huggingface.co/spaces/wz7in/robointer-demo). | |
| The annotations cover 230k episodes and include: subtasks, | |
| primitive skills, segmentation, gripper/object bounding boxes, placement proposals, affordance boxes, | |
| grasp poses, traces, contact points, etc. And each with a quality rating (Primary / Secondary). | |
| ## Dataset Structure | |
| ``` | |
| RoboInter-Data/ | |
| │ | |
| ├── Annotation_with_action_lerobotv21/ # [Main] LeRobot v2.1 format (actions + annotations + videos) | |
| │ ├── lerobot_droid_anno/ # DROID: 152,986 episodes | |
| │ └── lerobot_rh20t_anno/ # RH20T: 82,894 episodes | |
| │ | |
| ├── Annotation_pure/ # Annotation-only LMDB (no actions/videos) | |
| │ └── annotations/ # 35 GB, all 235,920 episodes | |
| │ | |
| ├── Annotation_raw/ # Original unprocessed annotations | |
| │ ├── droid_annotation.pkl # Raw DROID annotations (~20 GB) | |
| │ ├── rh20t_annotation.pkl # Raw RH20T annotations (~11 GB) | |
| │ └── segmentation_npz.zip.* # Segmentation masks (~50 GB, split archives) | |
| │ | |
| ├── Annotation_demo_app/ # Small demo subset for online visualization | |
| │ ├── demo_data/ # LMDB annotations for 20 sampled videos | |
| │ └── videos/ # 20 MP4 videos | |
| │ | |
| ├── Annotation_demo_larger/ # Larger demo subset for local visualization | |
| │ ├── demo_annotations/ # LMDB annotations for 120 videos | |
| │ └── videos/ # 120 MP4 videos | |
| │ | |
| ├── All_Keys_of_Primary.json # Episode names where all annotations are Primary quality | |
| ├── RoboInter_Data_Qsheet.json # Per-episode quality ratings for each annotation type | |
| ├── RoboInter_Data_Qsheet_value_stats.json# Distribution statistics of quality ratings | |
| ├── RoboInter_Data_RawPath_Qmapping.json # Mapping: original data source path -> episode splits & quality | |
| ├── range_nop.json # Non-idle frame ranges for all 230k episodes | |
| ├── range_nop_droid_all.json # Non-idle frame ranges (DROID only) | |
| ├── range_nop_rh20t_all.json # Non-idle frame ranges (RH20T only) | |
| ├── val_video.json # Validation set: 7,246 episode names | |
| └── VideoID_2_SegmentationNPZ.json # Episode video ID -> segmentation NPZ file path mapping | |
| ``` | |
| --- | |
| ## 1. Annotation_with_action_lerobotv21 (Recommended) | |
| The primary data format. Contains **actions + observations + annotations** in [LeRobot v2.1](https://github.com/huggingface/lerobot) format (parquet + MP4 videos), ready for policy training. | |
| ### Directory Layout | |
| ``` | |
| lerobot_droid_anno/ (or lerobot_rh20t_anno/) | |
| ├── meta/ | |
| │ ├── info.json # Dataset metadata (fps=10, features, etc.) | |
| │ ├── episodes.jsonl # Episode information | |
| │ └── tasks.jsonl # Task/instruction mapping | |
| ├── data/ | |
| │ └── chunk-{NNN}/ # Parquet files (1,000 episodes per chunk) | |
| │ └── episode_{NNNNNN}.parquet | |
| └── videos/ | |
| └── chunk-{NNN}/ | |
| ├── observation.images.primary/ | |
| │ └── episode_{NNNNNN}.mp4 | |
| └── observation.images.wrist/ | |
| └── episode_{NNNNNN}.mp4 | |
| ``` | |
| ### Data Fields | |
| | Category | Field | Shape / Type | Description | | |
| |----------|-------|-------------|-------------| | |
| | **Core** | `action` | (7,) float64 | Delta EEF: [dx, dy, dz, drx, dry, drz, gripper] | | |
| | | `state` | (7,) float64 | EEF state: [x, y, z, rx, ry, rz, gripper] | | |
| | | `observation.images.primary` | (180, 320, 3) video | Primary camera RGB | | |
| | | `observation.images.wrist` | (180, 320, 3) video | Wrist camera RGB | | |
| | **Annotation** | `annotation.instruction_add` | string | Structured task language instruction | | |
| | | `annotation.substask` | string | Current subtask description | | |
| | | `annotation.primitive_skill` | string | Primitive skill label (pick, place, push, ...) | | |
| | | `annotation.object_box` | JSON `[[x1,y1],[x2,y2]]` | Manipulated object bounding box | | |
| | | `annotation.gripper_box` | JSON `[[x1,y1],[x2,y2]]` | Gripper bounding box | | |
| | | `annotation.trace` | JSON `[[x,y], ...]` | Future 10-step gripper trajectory | | |
| | | `annotation.contact_frame` | JSON int | Frame index when gripper contacts object | | |
| | | `annotation.contact_points` | JSON `[x, y]` | Contact point pixel coordinates | | |
| | | `annotation.affordance_box` | JSON `[[x1,y1],[x2,y2]]` | Gripper box at contact frame | | |
| | | `annotation.state_affordance` | JSON `[x,y,z,rx,ry,rz]` | 6D EEF state at contact frame | | |
| | | `annotation.placement_proposal` | JSON `[[x1,y1],[x2,y2]]` | Target placement bounding box | | |
| | | `annotation.time_clip` | JSON `[[s,e], ...]` | Subtask temporal segments | | |
| | **Quality** | `Q_annotation.*` | string | Quality rating: `"Primary"` / `"Secondary"` / `""` | | |
| ### Quick Start | |
| The dataloader is located at our RoboInter [Codebase](https://github.com/InternRobotics/RoboInter/blob/main/RoboInterData/lerobot_dataloader). | |
| ```python | |
| from lerobot_dataloader import create_dataloader | |
| # Single dataset | |
| dataloader = create_dataloader( | |
| "path/to/Annotation_with_action_lerobotv21/lerobot_droid_anno", | |
| batch_size=32, | |
| action_horizon=16, | |
| ) | |
| for batch in dataloader: | |
| images = batch["observation.images.primary"] # (B, H, W, 3) | |
| actions = batch["action"] # (B, 16, 7) | |
| trace = batch["annotation.trace"] # JSON strings | |
| skill = batch["annotation.primitive_skill"] # List[str] | |
| break | |
| # Multiple datasets (DROID + RH20T) | |
| dataloader = create_dataloader( | |
| [ | |
| "path/to/lerobot_droid_anno", | |
| "path/to/lerobot_rh20t_anno", | |
| ], | |
| batch_size=32, | |
| action_horizon=16, | |
| ) | |
| ``` | |
| ### Filtering by Quality & Frame Range | |
| ```python | |
| from lerobot_dataloader import create_dataloader, QAnnotationFilter | |
| dataloader = create_dataloader( | |
| "path/to/lerobot_droid_anno", | |
| batch_size=32, | |
| range_nop_path="path/to/range_nop.json", # Remove idle frames | |
| q_filters=[ | |
| QAnnotationFilter("Q_annotation.trace", ["Primary"]), | |
| QAnnotationFilter("Q_annotation.gripper_box", ["Primary", "Secondary"]), | |
| ], | |
| ) | |
| ``` | |
| For full dataloader documentation and transforms, see: [RoboInterData/lerobot_dataloader](https://github.com/InternRobotics/RoboInter/tree/main/RoboInterData/lerobot_dataloader). | |
| ### Format Conversion Scripts | |
| The LeRobot v2.1 data was converted using: | |
| - **DROID**: [convert_droid_to_lerobot_anno_fast.py](https://github.com/InternRobotics/RoboInter/blob/main/RoboInterData/convert_to_lerobot/convert_droid_to_lerobot_anno_fast.py) | |
| - **RH20T**: [convert_rh20t_to_lerobot_anno_fast.py](https://github.com/InternRobotics/RoboInter/blob/main/RoboInterData/convert_to_lerobot/convert_rh20t_to_lerobot_anno_fast.py) | |
| --- | |
| ## 2. Annotation_pure (Annotation-Only LMDB) | |
| Contains **only the intermediate representation annotations** (no action data, no videos) stored as a single LMDB database. Useful for lightweight access to annotations or as input for the LeRobot conversion pipeline. The format conversion scripts and corresponding lightweight dataloader functions are provided in [lmdb_tool](https://github.com/InternRobotics/RoboInter/blob/main/RoboInterData/lmdb_tool). You can downloade high-resolution | |
| videos by following [Droid hr_video_reader](https://github.com/InternRobotics/RoboInter/blob/main/RoboInterData/hr_video_reader) and [RH20T API](https://github.com/rh20t/rh20t_api). | |
| ### Data Format | |
| Each LMDB key is an episode name (e.g., `"3072_exterior_image_1_left"`). The value is a dict mapping frame indices to per-frame annotation dicts: | |
| ```python | |
| { | |
| 0: { # frame_id | |
| "time_clip": [[0, 132], [132, 197], [198, 224]], # subtask segments | |
| "instruction_add": "pick up the red cup", # language instruction | |
| "substask": "reach for the cup", # current subtask | |
| "primitive_skill": "reach", # skill label | |
| "segmentation": None, # (stored separately in Annotation_raw) | |
| "object_box": [[45, 30], [120, 95]], # manipulated object bbox | |
| "placement_proposal": [[150, 80], [220, 140]], # target placement bbox | |
| "trace": [[x, y], ...], # next 10 gripper waypoints | |
| "gripper_box": [[60, 50], [100, 80]], # gripper bbox | |
| "contact_frame": 101, # contact event frame (−1 if past contact) | |
| "state_affordance": [0.1, 0.2, 0.3, 0.4, 0.5, 0.6],# 6D EEF state at contact | |
| "affordance_box": [[62, 48], [98, 82]], # gripper bbox at contact frame | |
| "contact_points": [[75, 65], [85, 65]], # contact pixel coordinates | |
| ... | |
| }, | |
| 1: { ... }, | |
| ... | |
| } | |
| ``` | |
| ### Reading LMDB | |
| ```python | |
| import lmdb | |
| import pickle | |
| lmdb_path = "Annotation_pure/annotations" | |
| env = lmdb.open(lmdb_path, readonly=True, lock=False, readahead=False) | |
| with env.begin() as txn: | |
| # List all episode keys | |
| cursor = txn.cursor() | |
| for key, value in cursor: | |
| episode_name = key.decode("utf-8") | |
| episode_data = pickle.loads(value) | |
| # Access frame 0 | |
| frame_0 = episode_data[0] | |
| print(f"{episode_name}: {frame_0['instruction_add']}") | |
| print(f" object_box: {frame_0['object_box']}") | |
| print(f" trace: {frame_0['trace'][:3]}...") # first 3 waypoints | |
| break | |
| env.close() | |
| ``` | |
| ### CLI Inspection Tool | |
| ```bash | |
| cd RoboInter/RoboInterData/lmdb_tool | |
| # Basic info | |
| python read_lmdb.py --lmdb_path Annotation_pure/annotations --action info | |
| # View a specific episode | |
| python read_lmdb.py --lmdb_path Annotation_pure/annotations --action item --key "3072_exterior_image_1_left" | |
| # Field coverage statistics | |
| python read_lmdb.py --lmdb_path Annotation_pure/annotations --action stats --key "3072_exterior_image_1_left" | |
| # Multi-episode summary | |
| python read_lmdb.py --lmdb_path Annotation_pure/annotations --action summary --limit 100 | |
| ``` | |
| --- | |
| ## 3. Annotation_raw (Original Annotations) | |
| The original, unprocessed annotation files before conversion to LMDB format. These files are large and slow to load. | |
| | File | Size | Description | | |
| |------|------|-------------| | |
| | `droid_annotation.pkl` | ~20 GB | Raw DROID intermediate representation annotations | | |
| | `rh20t_annotation.pkl` | ~11 GB | Raw RH20T intermediate representation annotations | | |
| | `segmentation_npz.zip.*` | ~50 GB | Object segmentation masks (split archives) | | |
| ### Reading Raw PKL | |
| ```bash | |
| cd /RoboInter-Data/Annotation_raw | |
| cat segmentation_npz.zip.* > segmentation_npz.zip | |
| unzip segmentation_npz.zip | |
| ``` | |
| ```python | |
| import pickle | |
| with open("Annotation_raw/droid_annotation.pkl", "rb") as f: | |
| droid_data = pickle.load(f) # Warning: ~20 GB, takes several minutes | |
| # droid_data[episode_key] contains raw intermediate representation data | |
| # including: all_language, all_gripper_box, all_grounding_box, all_contact_point, all_traj, etc. | |
| ``` | |
| > To convert raw PKL to the LMDB format used in `Annotation_pure`, see the conversion script in the [RoboInter repository](https://github.com/InternRobotics/RoboInter). | |
| --- | |
| ## 4. Demo Subsets (Annotation_demo_app & Annotation_demo_larger) | |
| Pre-packaged subsets for quick visualization using the [RoboInterData-Demo](https://github.com/InternRobotics/RoboInter/tree/main/RoboInterData-Demo) Gradio app. Both subsets share the same LMDB annotation format + MP4 video structure. | |
| | Subset | Videos | Size | Use Case | | |
| |--------|--------|------|----------| | |
| | `Annotation_demo_app` | 20 | ~929 MB | HuggingFace Spaces [online demo](https://huggingface.co/spaces/wz7in/robointer-demo) | | |
| | `Annotation_demo_larger` | 120 | ~12 GB | Local visualization with more examples | | |
| ### Running the Visualizer | |
| ```bash | |
| git clone https://github.com/InternRobotics/RoboInter.git | |
| cd RoboInter/RoboInterData-Demo | |
| # Option A: Use the small demo subset (for Spaces) | |
| ln -s /path/to/Annotation_demo_app/demo_data ./demo_data | |
| ln -s /path/to/Annotation_demo_app/videos ./videos | |
| # Option B: Use the larger demo subset (for local) | |
| ln -s /path/to/Annotation_demo_larger/demo_annotations ./demo_data | |
| ln -s /path/to/Annotation_demo_larger/videos ./videos | |
| pip install -r requirements.txt | |
| python app.py | |
| # Open http://localhost:7860 | |
| ``` | |
| The visualizer supports all annotation types: object segmentation masks, gripper/object/affordance bounding boxes, trajectory traces, contact points, grasp poses, and language annotations (instructions, subtasks, primitive skills). | |
| --- | |
| ## 5. Metadata JSON Files | |
| ### Quality & Filtering | |
| | File | Description | | |
| |------|-------------| | |
| | `All_Keys_of_Primary.json` | List of 65,515 episode names where **all** annotation types are rated Primary quality. | | |
| | `RoboInter_Data_Qsheet.json` | Per-episode quality ratings for every annotation type. Each entry contains `Q_instruction_add`, `Q_substask`, `Q_trace`, etc. with values `"Primary"`, `"Secondary"`, or `null`. | | |
| | `RoboInter_Data_Qsheet_value_stats.json` | Distribution of quality ratings across all episodes. | | |
| | `RoboInter_Data_RawPath_Qmapping.json` | Mapping from original data source paths to episode splits and their quality ratings. | | |
| ### Frame Ranges (Idle Frame Removal) | |
| | File | Description | | |
| |------|-------------| | |
| | `range_nop.json` | Non-idle frame ranges for all 235,920 episodes (DROID + RH20T). | | |
| | `range_nop_droid_all.json` | Non-idle frame ranges for DROID episodes only. | | |
| | `range_nop_rh20t_all.json` | Non-idle frame ranges for RH20T episodes only. | | |
| Format: `{ "episode_name": [start_frame, end_frame, valid_length] }` | |
| ```python | |
| import json | |
| with open("range_nop.json") as f: | |
| range_nop = json.load(f) | |
| # Example: "3072_exterior_image_1_left": [12, 217, 206] | |
| # Means: valid action frames are 12~217, total 206 valid frames | |
| # (frames 0~11 and 218+ are idle/stationary) | |
| ``` | |
| ### Other | |
| | File | Description | | |
| |------|-------------| | |
| | `val_video.json` | List of 7,246 episode names reserved for the validation set. | | |
| | `VideoID_2_SegmentationNPZ.json` | Mapping from episode video ID to the corresponding segmentation NPZ file path in `Annotation_raw/segmentation_npz`. `null` if no segmentation is available. | | |
| --- | |
| ## Related Resources | |
| | Resource | Link | | |
| |----------|------| | |
| | Project | [RoboInter](https://github.com/InternRobotics/RoboInter) | | |
| | VQA Dataset | [RoboInter-VQA](https://huggingface.co/datasets/InternRobotics/RoboInter-VQA) | | |
| | VLM Checkpoints | [RoboInter-VLM](https://huggingface.co/InternRobotics/RoboInter-VLM) | | |
| | LMDB Tool | [RoboInterData/lmdb_tool](https://github.com/InternRobotics/RoboInter/tree/main/RoboInterData/lmdb_tool) | | |
| | High-Resolution Video Reader | [RoboInterData/hr_video_reader](https://github.com/InternRobotics/RoboInter/tree/main/RoboInterData/hr_video_reader) | | |
| | LeRobot DataLoader | [RoboInterData/lerobot_dataloader](https://github.com/InternRobotics/RoboInter/tree/main/RoboInterData/lerobot_dataloader) | | |
| | LeRobot Conversion | [RoboInterData/convert_to_lerobot](https://github.com/InternRobotics/RoboInter/tree/main/RoboInterData/convert_to_lerobot) | | |
| | Demo Visualizer | [RoboInterData-Demo](https://github.com/InternRobotics/RoboInter/tree/main/RoboInterData-Demo) | | |
| | Online Demo | [HuggingFace Space](https://huggingface.co/spaces/wz7in/robointer-demo) | | |
| | Raw DROID Dataset | [droid-dataset.github.io](https://droid-dataset.github.io/) | | |
| | Raw RH20T Dataset | [rh20t.github.io](https://rh20t.github.io/) | | |
| ## License | |
| Please refer to the original dataset licenses for [RoboInter](https://github.com/InternRobotics/RoboInter), [DROID](https://droid-dataset.github.io/), and [RH20T](https://rh20t.github.io/). | |