# RoboInter-Data: Intermediate Representation Annotations for Robot Manipulation Rich, dense, per-frame **intermediate representation annotations** for robot manipulation, built on top of [DROID](https://droid-dataset.github.io/) and [RH20T](https://rh20t.github.io/). Developed as part of the [RoboInter](https://github.com/InternRobotics/RoboInter) project. You can try our [**Online demo**](https://huggingface.co/spaces/wz7in/robointer-demo). The annotations cover 230k episodes and include: subtasks, primitive skills, segmentation, gripper/object bounding boxes, placement proposals, affordance boxes, grasp poses, traces, contact points, etc. And each with a quality rating (Primary / Secondary). ## Dataset Structure ``` RoboInter-Data/ │ ├── Annotation_with_action_lerobotv21/ # [Main] LeRobot v2.1 format (actions + annotations + videos) │ ├── lerobot_droid_anno/ # DROID: 152,986 episodes │ └── lerobot_rh20t_anno/ # RH20T: 82,894 episodes │ ├── Annotation_pure/ # Annotation-only LMDB (no actions/videos) │ └── annotations/ # 35 GB, all 235,920 episodes │ ├── Annotation_raw/ # Original unprocessed annotations │ ├── droid_annotation.pkl # Raw DROID annotations (~20 GB) │ ├── rh20t_annotation.pkl # Raw RH20T annotations (~11 GB) │ └── segmentation_npz.zip.* # Segmentation masks (~50 GB, split archives) │ ├── Annotation_demo_app/ # Small demo subset for online visualization │ ├── demo_data/ # LMDB annotations for 20 sampled videos │ └── videos/ # 20 MP4 videos │ ├── Annotation_demo_larger/ # Larger demo subset for local visualization │ ├── demo_annotations/ # LMDB annotations for 120 videos │ └── videos/ # 120 MP4 videos │ ├── All_Keys_of_Primary.json # Episode names where all annotations are Primary quality ├── RoboInter_Data_Qsheet.json # Per-episode quality ratings for each annotation type ├── RoboInter_Data_Qsheet_value_stats.json# Distribution statistics of quality ratings ├── RoboInter_Data_RawPath_Qmapping.json # Mapping: original data source path -> episode splits & quality ├── range_nop.json # Non-idle frame ranges for all 230k episodes ├── range_nop_droid_all.json # Non-idle frame ranges (DROID only) ├── range_nop_rh20t_all.json # Non-idle frame ranges (RH20T only) ├── val_video.json # Validation set: 7,246 episode names └── VideoID_2_SegmentationNPZ.json # Episode video ID -> segmentation NPZ file path mapping ``` --- ## 1. Annotation_with_action_lerobotv21 (Recommended) The primary data format. Contains **actions + observations + annotations** in [LeRobot v2.1](https://github.com/huggingface/lerobot) format (parquet + MP4 videos), ready for policy training. ### Directory Layout ``` lerobot_droid_anno/ (or lerobot_rh20t_anno/) ├── meta/ │ ├── info.json # Dataset metadata (fps=10, features, etc.) │ ├── episodes.jsonl # Episode information │ └── tasks.jsonl # Task/instruction mapping ├── data/ │ └── chunk-{NNN}/ # Parquet files (1,000 episodes per chunk) │ └── episode_{NNNNNN}.parquet └── videos/ └── chunk-{NNN}/ ├── observation.images.primary/ │ └── episode_{NNNNNN}.mp4 └── observation.images.wrist/ └── episode_{NNNNNN}.mp4 ``` ### Data Fields | Category | Field | Shape / Type | Description | |----------|-------|-------------|-------------| | **Core** | `action` | (7,) float64 | Delta EEF: [dx, dy, dz, drx, dry, drz, gripper] | | | `state` | (7,) float64 | EEF state: [x, y, z, rx, ry, rz, gripper] | | | `observation.images.primary` | (180, 320, 3) video | Primary camera RGB | | | `observation.images.wrist` | (180, 320, 3) video | Wrist camera RGB | | **Annotation** | `annotation.instruction_add` | string | Structured task language instruction | | | `annotation.substask` | string | Current subtask description | | | `annotation.primitive_skill` | string | Primitive skill label (pick, place, push, ...) | | | `annotation.object_box` | JSON `[[x1,y1],[x2,y2]]` | Manipulated object bounding box | | | `annotation.gripper_box` | JSON `[[x1,y1],[x2,y2]]` | Gripper bounding box | | | `annotation.trace` | JSON `[[x,y], ...]` | Future 10-step gripper trajectory | | | `annotation.contact_frame` | JSON int | Frame index when gripper contacts object | | | `annotation.contact_points` | JSON `[x, y]` | Contact point pixel coordinates | | | `annotation.affordance_box` | JSON `[[x1,y1],[x2,y2]]` | Gripper box at contact frame | | | `annotation.state_affordance` | JSON `[x,y,z,rx,ry,rz]` | 6D EEF state at contact frame | | | `annotation.placement_proposal` | JSON `[[x1,y1],[x2,y2]]` | Target placement bounding box | | | `annotation.time_clip` | JSON `[[s,e], ...]` | Subtask temporal segments | | **Quality** | `Q_annotation.*` | string | Quality rating: `"Primary"` / `"Secondary"` / `""` | ### Quick Start The dataloader is located at our RoboInter [Codebase](https://github.com/InternRobotics/RoboInter/blob/main/RoboInterData/lerobot_dataloader). ```python from lerobot_dataloader import create_dataloader # Single dataset dataloader = create_dataloader( "path/to/Annotation_with_action_lerobotv21/lerobot_droid_anno", batch_size=32, action_horizon=16, ) for batch in dataloader: images = batch["observation.images.primary"] # (B, H, W, 3) actions = batch["action"] # (B, 16, 7) trace = batch["annotation.trace"] # JSON strings skill = batch["annotation.primitive_skill"] # List[str] break # Multiple datasets (DROID + RH20T) dataloader = create_dataloader( [ "path/to/lerobot_droid_anno", "path/to/lerobot_rh20t_anno", ], batch_size=32, action_horizon=16, ) ``` ### Filtering by Quality & Frame Range ```python from lerobot_dataloader import create_dataloader, QAnnotationFilter dataloader = create_dataloader( "path/to/lerobot_droid_anno", batch_size=32, range_nop_path="path/to/range_nop.json", # Remove idle frames q_filters=[ QAnnotationFilter("Q_annotation.trace", ["Primary"]), QAnnotationFilter("Q_annotation.gripper_box", ["Primary", "Secondary"]), ], ) ``` For full dataloader documentation and transforms, see: [RoboInterData/lerobot_dataloader](https://github.com/InternRobotics/RoboInter/tree/main/RoboInterData/lerobot_dataloader). ### Format Conversion Scripts The LeRobot v2.1 data was converted using: - **DROID**: [convert_droid_to_lerobot_anno_fast.py](https://github.com/InternRobotics/RoboInter/blob/main/RoboInterData/convert_to_lerobot/convert_droid_to_lerobot_anno_fast.py) - **RH20T**: [convert_rh20t_to_lerobot_anno_fast.py](https://github.com/InternRobotics/RoboInter/blob/main/RoboInterData/convert_to_lerobot/convert_rh20t_to_lerobot_anno_fast.py) --- ## 2. Annotation_pure (Annotation-Only LMDB) Contains **only the intermediate representation annotations** (no action data, no videos) stored as a single LMDB database. Useful for lightweight access to annotations or as input for the LeRobot conversion pipeline. The format conversion scripts and corresponding lightweight dataloader functions are provided in [lmdb_tool](https://github.com/InternRobotics/RoboInter/blob/main/RoboInterData/lmdb_tool). You can downloade high-resolution videos by following [Droid hr_video_reader](https://github.com/InternRobotics/RoboInter/blob/main/RoboInterData/hr_video_reader) and [RH20T API](https://github.com/rh20t/rh20t_api). ### Data Format Each LMDB key is an episode name (e.g., `"3072_exterior_image_1_left"`). The value is a dict mapping frame indices to per-frame annotation dicts: ```python { 0: { # frame_id "time_clip": [[0, 132], [132, 197], [198, 224]], # subtask segments "instruction_add": "pick up the red cup", # language instruction "substask": "reach for the cup", # current subtask "primitive_skill": "reach", # skill label "segmentation": None, # (stored separately in Annotation_raw) "object_box": [[45, 30], [120, 95]], # manipulated object bbox "placement_proposal": [[150, 80], [220, 140]], # target placement bbox "trace": [[x, y], ...], # next 10 gripper waypoints "gripper_box": [[60, 50], [100, 80]], # gripper bbox "contact_frame": 101, # contact event frame (−1 if past contact) "state_affordance": [0.1, 0.2, 0.3, 0.4, 0.5, 0.6],# 6D EEF state at contact "affordance_box": [[62, 48], [98, 82]], # gripper bbox at contact frame "contact_points": [[75, 65], [85, 65]], # contact pixel coordinates ... }, 1: { ... }, ... } ``` ### Reading LMDB ```python import lmdb import pickle lmdb_path = "Annotation_pure/annotations" env = lmdb.open(lmdb_path, readonly=True, lock=False, readahead=False) with env.begin() as txn: # List all episode keys cursor = txn.cursor() for key, value in cursor: episode_name = key.decode("utf-8") episode_data = pickle.loads(value) # Access frame 0 frame_0 = episode_data[0] print(f"{episode_name}: {frame_0['instruction_add']}") print(f" object_box: {frame_0['object_box']}") print(f" trace: {frame_0['trace'][:3]}...") # first 3 waypoints break env.close() ``` ### CLI Inspection Tool ```bash cd RoboInter/RoboInterData/lmdb_tool # Basic info python read_lmdb.py --lmdb_path Annotation_pure/annotations --action info # View a specific episode python read_lmdb.py --lmdb_path Annotation_pure/annotations --action item --key "3072_exterior_image_1_left" # Field coverage statistics python read_lmdb.py --lmdb_path Annotation_pure/annotations --action stats --key "3072_exterior_image_1_left" # Multi-episode summary python read_lmdb.py --lmdb_path Annotation_pure/annotations --action summary --limit 100 ``` --- ## 3. Annotation_raw (Original Annotations) The original, unprocessed annotation files before conversion to LMDB format. These files are large and slow to load. | File | Size | Description | |------|------|-------------| | `droid_annotation.pkl` | ~20 GB | Raw DROID intermediate representation annotations | | `rh20t_annotation.pkl` | ~11 GB | Raw RH20T intermediate representation annotations | | `segmentation_npz.zip.*` | ~50 GB | Object segmentation masks (split archives) | ### Reading Raw PKL ```bash cd /RoboInter-Data/Annotation_raw cat segmentation_npz.zip.* > segmentation_npz.zip unzip segmentation_npz.zip ``` ```python import pickle with open("Annotation_raw/droid_annotation.pkl", "rb") as f: droid_data = pickle.load(f) # Warning: ~20 GB, takes several minutes # droid_data[episode_key] contains raw intermediate representation data # including: all_language, all_gripper_box, all_grounding_box, all_contact_point, all_traj, etc. ``` > To convert raw PKL to the LMDB format used in `Annotation_pure`, see the conversion script in the [RoboInter repository](https://github.com/InternRobotics/RoboInter). --- ## 4. Demo Subsets (Annotation_demo_app & Annotation_demo_larger) Pre-packaged subsets for quick visualization using the [RoboInterData-Demo](https://github.com/InternRobotics/RoboInter/tree/main/RoboInterData-Demo) Gradio app. Both subsets share the same LMDB annotation format + MP4 video structure. | Subset | Videos | Size | Use Case | |--------|--------|------|----------| | `Annotation_demo_app` | 20 | ~929 MB | HuggingFace Spaces [online demo](https://huggingface.co/spaces/wz7in/robointer-demo) | | `Annotation_demo_larger` | 120 | ~12 GB | Local visualization with more examples | ### Running the Visualizer ```bash git clone https://github.com/InternRobotics/RoboInter.git cd RoboInter/RoboInterData-Demo # Option A: Use the small demo subset (for Spaces) ln -s /path/to/Annotation_demo_app/demo_data ./demo_data ln -s /path/to/Annotation_demo_app/videos ./videos # Option B: Use the larger demo subset (for local) ln -s /path/to/Annotation_demo_larger/demo_annotations ./demo_data ln -s /path/to/Annotation_demo_larger/videos ./videos pip install -r requirements.txt python app.py # Open http://localhost:7860 ``` The visualizer supports all annotation types: object segmentation masks, gripper/object/affordance bounding boxes, trajectory traces, contact points, grasp poses, and language annotations (instructions, subtasks, primitive skills). --- ## 5. Metadata JSON Files ### Quality & Filtering | File | Description | |------|-------------| | `All_Keys_of_Primary.json` | List of 65,515 episode names where **all** annotation types are rated Primary quality. | | `RoboInter_Data_Qsheet.json` | Per-episode quality ratings for every annotation type. Each entry contains `Q_instruction_add`, `Q_substask`, `Q_trace`, etc. with values `"Primary"`, `"Secondary"`, or `null`. | | `RoboInter_Data_Qsheet_value_stats.json` | Distribution of quality ratings across all episodes. | | `RoboInter_Data_RawPath_Qmapping.json` | Mapping from original data source paths to episode splits and their quality ratings. | ### Frame Ranges (Idle Frame Removal) | File | Description | |------|-------------| | `range_nop.json` | Non-idle frame ranges for all 235,920 episodes (DROID + RH20T). | | `range_nop_droid_all.json` | Non-idle frame ranges for DROID episodes only. | | `range_nop_rh20t_all.json` | Non-idle frame ranges for RH20T episodes only. | Format: `{ "episode_name": [start_frame, end_frame, valid_length] }` ```python import json with open("range_nop.json") as f: range_nop = json.load(f) # Example: "3072_exterior_image_1_left": [12, 217, 206] # Means: valid action frames are 12~217, total 206 valid frames # (frames 0~11 and 218+ are idle/stationary) ``` ### Other | File | Description | |------|-------------| | `val_video.json` | List of 7,246 episode names reserved for the validation set. | | `VideoID_2_SegmentationNPZ.json` | Mapping from episode video ID to the corresponding segmentation NPZ file path in `Annotation_raw/segmentation_npz`. `null` if no segmentation is available. | --- ## Related Resources | Resource | Link | |----------|------| | Project | [RoboInter](https://github.com/InternRobotics/RoboInter) | | VQA Dataset | [RoboInter-VQA](https://huggingface.co/datasets/InternRobotics/RoboInter-VQA) | | VLM Checkpoints | [RoboInter-VLM](https://huggingface.co/InternRobotics/RoboInter-VLM) | | LMDB Tool | [RoboInterData/lmdb_tool](https://github.com/InternRobotics/RoboInter/tree/main/RoboInterData/lmdb_tool) | | High-Resolution Video Reader | [RoboInterData/hr_video_reader](https://github.com/InternRobotics/RoboInter/tree/main/RoboInterData/hr_video_reader) | | LeRobot DataLoader | [RoboInterData/lerobot_dataloader](https://github.com/InternRobotics/RoboInter/tree/main/RoboInterData/lerobot_dataloader) | | LeRobot Conversion | [RoboInterData/convert_to_lerobot](https://github.com/InternRobotics/RoboInter/tree/main/RoboInterData/convert_to_lerobot) | | Demo Visualizer | [RoboInterData-Demo](https://github.com/InternRobotics/RoboInter/tree/main/RoboInterData-Demo) | | Online Demo | [HuggingFace Space](https://huggingface.co/spaces/wz7in/robointer-demo) | | Raw DROID Dataset | [droid-dataset.github.io](https://droid-dataset.github.io/) | | Raw RH20T Dataset | [rh20t.github.io](https://rh20t.github.io/) | ## License Please refer to the original dataset licenses for [RoboInter](https://github.com/InternRobotics/RoboInter), [DROID](https://droid-dataset.github.io/), and [RH20T](https://rh20t.github.io/).