_id
stringlengths 2
7
| title
stringlengths 1
88
| partition
stringclasses 3
values | text
stringlengths 75
19.8k
| language
stringclasses 1
value | meta_information
dict |
|---|---|---|---|---|---|
q12200
|
get_namespace_keys
|
train
|
def get_namespace_keys(app, limit):
"""Get namespace keys."""
ns_query = datastore.Query('__namespace__', keys_only=True, _app=app)
return list(ns_query.Run(limit=limit, batch_size=limit))
|
python
|
{
"resource": ""
}
|
q12201
|
NamespaceRange.split_range
|
train
|
def split_range(self):
"""Splits the NamespaceRange into two nearly equal-sized ranges.
Returns:
If this NamespaceRange contains a single namespace then a list containing
this NamespaceRange is returned. Otherwise a two-element list containing
two NamespaceRanges whose total range is identical to this
NamespaceRange's is returned.
"""
if self.is_single_namespace:
return [self]
mid_point = (_namespace_to_ord(self.namespace_start) +
_namespace_to_ord(self.namespace_end)) // 2
return [NamespaceRange(self.namespace_start,
_ord_to_namespace(mid_point),
_app=self.app),
NamespaceRange(_ord_to_namespace(mid_point+1),
self.namespace_end,
_app=self.app)]
|
python
|
{
"resource": ""
}
|
q12202
|
NamespaceRange.with_start_after
|
train
|
def with_start_after(self, after_namespace):
"""Returns a copy of this NamespaceName with a new namespace_start.
Args:
after_namespace: A namespace string.
Returns:
A NamespaceRange object whose namespace_start is the lexographically next
namespace after the given namespace string.
Raises:
ValueError: if the NamespaceRange includes only a single namespace.
"""
namespace_start = _ord_to_namespace(_namespace_to_ord(after_namespace) + 1)
return NamespaceRange(namespace_start, self.namespace_end, _app=self.app)
|
python
|
{
"resource": ""
}
|
q12203
|
NamespaceRange.make_datastore_query
|
train
|
def make_datastore_query(self, cursor=None):
"""Returns a datastore.Query that generates all namespaces in the range.
Args:
cursor: start cursor for the query.
Returns:
A datastore.Query instance that generates db.Keys for each namespace in
the NamespaceRange.
"""
filters = {}
filters['__key__ >= '] = _key_for_namespace(
self.namespace_start, self.app)
filters['__key__ <= '] = _key_for_namespace(
self.namespace_end, self.app)
return datastore.Query('__namespace__',
filters=filters,
keys_only=True,
cursor=cursor,
_app=self.app)
|
python
|
{
"resource": ""
}
|
q12204
|
NamespaceRange.normalized_start
|
train
|
def normalized_start(self):
"""Returns a NamespaceRange with leading non-existant namespaces removed.
Returns:
A copy of this NamespaceRange whose namespace_start is adjusted to exclude
the portion of the range that contains no actual namespaces in the
datastore. None is returned if the NamespaceRange contains no actual
namespaces in the datastore.
"""
namespaces_after_key = list(self.make_datastore_query().Run(limit=1))
if not namespaces_after_key:
return None
namespace_after_key = namespaces_after_key[0].name() or ''
return NamespaceRange(namespace_after_key,
self.namespace_end,
_app=self.app)
|
python
|
{
"resource": ""
}
|
q12205
|
NamespaceRange.to_json_object
|
train
|
def to_json_object(self):
"""Returns a dict representation that can be serialized to JSON."""
obj_dict = dict(namespace_start=self.namespace_start,
namespace_end=self.namespace_end)
if self.app is not None:
obj_dict['app'] = self.app
return obj_dict
|
python
|
{
"resource": ""
}
|
q12206
|
NamespaceRange.split
|
train
|
def split(cls,
n,
contiguous,
can_query=itertools.chain(itertools.repeat(True, 50),
itertools.repeat(False)).next,
_app=None):
# pylint: disable=g-doc-args
"""Splits the complete NamespaceRange into n equally-sized NamespaceRanges.
Args:
n: The maximum number of NamespaceRanges to return. Fewer than n
namespaces may be returned.
contiguous: If True then the returned NamespaceRanges will cover the
entire space of possible namespaces (i.e. from MIN_NAMESPACE to
MAX_NAMESPACE) without gaps. If False then the returned
NamespaceRanges may exclude namespaces that don't appear in the
datastore.
can_query: A function that returns True if split() can query the datastore
to generate more fair namespace range splits, and False otherwise.
If not set then split() is allowed to make 50 datastore queries.
Returns:
A list of at most n NamespaceRanges representing a near-equal distribution
of actual existant datastore namespaces. The returned list will be sorted
lexographically.
Raises:
ValueError: if n is < 1.
"""
if n < 1:
raise ValueError('n must be >= 1')
ranges = None
if can_query():
if not contiguous:
ns_keys = get_namespace_keys(_app, n + 1)
if not ns_keys:
return []
else:
if len(ns_keys) <= n:
# If you have less actual namespaces than number of NamespaceRanges
# to return, then just return the list of those namespaces.
ns_range = []
for ns_key in ns_keys:
ns_range.append(NamespaceRange(ns_key.name() or '',
ns_key.name() or '',
_app=_app))
return sorted(ns_range,
key=lambda ns_range: ns_range.namespace_start)
# Use the first key and save the initial normalized_start() call.
ranges = [NamespaceRange(ns_keys[0].name() or '', _app=_app)]
else:
ns_range = NamespaceRange(_app=_app).normalized_start()
if ns_range is None:
return [NamespaceRange(_app=_app)]
ranges = [ns_range]
else:
ranges = [NamespaceRange(_app=_app)]
singles = []
while ranges and (len(ranges) + len(singles)) < n:
namespace_range = ranges.pop(0)
if namespace_range.is_single_namespace:
singles.append(namespace_range)
else:
left, right = namespace_range.split_range()
if can_query():
right = right.normalized_start()
if right is not None:
ranges.append(right)
ranges.append(left)
ns_ranges = sorted(singles + ranges,
key=lambda ns_range: ns_range.namespace_start)
if contiguous:
if not ns_ranges:
# This condition is possible if every namespace was deleted after the
# first call to ns_range.normalized_start().
return [NamespaceRange(_app=_app)]
continuous_ns_ranges = []
for i in range(len(ns_ranges)):
if i == 0:
namespace_start = MIN_NAMESPACE
else:
namespace_start = ns_ranges[i].namespace_start
if i == len(ns_ranges) - 1:
namespace_end = MAX_NAMESPACE
else:
namespace_end = _ord_to_namespace(
_namespace_to_ord(ns_ranges[i+1].namespace_start) - 1)
continuous_ns_ranges.append(NamespaceRange(namespace_start,
namespace_end,
_app=_app))
return continuous_ns_ranges
else:
return ns_ranges
|
python
|
{
"resource": ""
}
|
q12207
|
_RecordsPoolBase.append
|
train
|
def append(self, data):
"""Append data to a file."""
data_length = len(data)
if self._size + data_length > self._flush_size:
self.flush()
if not self._exclusive and data_length > _FILE_POOL_MAX_SIZE:
raise errors.Error(
"Too big input %s (%s)." % (data_length, _FILE_POOL_MAX_SIZE))
else:
self._buffer.append(data)
self._size += data_length
if self._size > self._flush_size:
self.flush()
|
python
|
{
"resource": ""
}
|
q12208
|
GCSRecordsPool._write
|
train
|
def _write(self, str_buf):
"""Uses the filehandle to the file in GCS to write to it."""
self._filehandle.write(str_buf)
self._buf_size += len(str_buf)
|
python
|
{
"resource": ""
}
|
q12209
|
_GoogleCloudStorageBase._get_tmp_gcs_bucket
|
train
|
def _get_tmp_gcs_bucket(cls, writer_spec):
"""Returns bucket used for writing tmp files."""
if cls.TMP_BUCKET_NAME_PARAM in writer_spec:
return writer_spec[cls.TMP_BUCKET_NAME_PARAM]
return cls._get_gcs_bucket(writer_spec)
|
python
|
{
"resource": ""
}
|
q12210
|
_GoogleCloudStorageBase._get_tmp_account_id
|
train
|
def _get_tmp_account_id(cls, writer_spec):
"""Returns the account id to use with tmp bucket."""
# pick tmp id iff tmp bucket is set explicitly
if cls.TMP_BUCKET_NAME_PARAM in writer_spec:
return writer_spec.get(cls._TMP_ACCOUNT_ID_PARAM, None)
return cls._get_account_id(writer_spec)
|
python
|
{
"resource": ""
}
|
q12211
|
_GoogleCloudStorageOutputWriterBase._generate_filename
|
train
|
def _generate_filename(cls, writer_spec, name, job_id, num,
attempt=None, seg_index=None):
"""Generates a filename for a particular output.
Args:
writer_spec: specification dictionary for the output writer.
name: name of the job.
job_id: the ID number assigned to the job.
num: shard number.
attempt: the shard attempt number.
seg_index: index of the seg. None means the final output.
Returns:
a string containing the filename.
Raises:
BadWriterParamsError: if the template contains any errors such as invalid
syntax or contains unknown substitution placeholders.
"""
naming_format = cls._TMP_FILE_NAMING_FORMAT
if seg_index is None:
naming_format = writer_spec.get(cls.NAMING_FORMAT_PARAM,
cls._DEFAULT_NAMING_FORMAT)
template = string.Template(naming_format)
try:
# Check that template doesn't use undefined mappings and is formatted well
if seg_index is None:
return template.substitute(name=name, id=job_id, num=num)
else:
return template.substitute(name=name, id=job_id, num=num,
attempt=attempt,
seg=seg_index)
except ValueError, error:
raise errors.BadWriterParamsError("Naming template is bad, %s" % (error))
except KeyError, error:
raise errors.BadWriterParamsError("Naming template '%s' has extra "
"mappings, %s" % (naming_format, error))
|
python
|
{
"resource": ""
}
|
q12212
|
_GoogleCloudStorageOutputWriterBase._open_file
|
train
|
def _open_file(cls, writer_spec, filename_suffix, use_tmp_bucket=False):
"""Opens a new gcs file for writing."""
if use_tmp_bucket:
bucket = cls._get_tmp_gcs_bucket(writer_spec)
account_id = cls._get_tmp_account_id(writer_spec)
else:
bucket = cls._get_gcs_bucket(writer_spec)
account_id = cls._get_account_id(writer_spec)
# GoogleCloudStorage format for filenames, Initial slash is required
filename = "/%s/%s" % (bucket, filename_suffix)
content_type = writer_spec.get(cls.CONTENT_TYPE_PARAM, None)
options = {}
if cls.ACL_PARAM in writer_spec:
options["x-goog-acl"] = writer_spec.get(cls.ACL_PARAM)
return cloudstorage.open(filename, mode="w", content_type=content_type,
options=options, _account_id=account_id)
|
python
|
{
"resource": ""
}
|
q12213
|
_GoogleCloudStorageOutputWriterBase.write
|
train
|
def write(self, data):
"""Write data to the GoogleCloudStorage file.
Args:
data: string containing the data to be written.
"""
start_time = time.time()
self._get_write_buffer().write(data)
ctx = context.get()
operation.counters.Increment(COUNTER_IO_WRITE_BYTES, len(data))(ctx)
operation.counters.Increment(
COUNTER_IO_WRITE_MSEC, int((time.time() - start_time) * 1000))(ctx)
|
python
|
{
"resource": ""
}
|
q12214
|
_GoogleCloudStorageOutputWriter._create
|
train
|
def _create(cls, writer_spec, filename_suffix):
"""Helper method that actually creates the file in cloud storage."""
writer = cls._open_file(writer_spec, filename_suffix)
return cls(writer, writer_spec=writer_spec)
|
python
|
{
"resource": ""
}
|
q12215
|
GoogleCloudStorageConsistentOutputWriter._create_tmpfile
|
train
|
def _create_tmpfile(cls, status):
"""Creates a new random-named tmpfile."""
# We can't put the tmpfile in the same directory as the output. There are
# rare circumstances when we leave trash behind and we don't want this trash
# to be loaded into bigquery and/or used for restore.
#
# We used mapreduce id, shard number and attempt and 128 random bits to make
# collisions virtually impossible.
tmpl = string.Template(cls._TMPFILE_PATTERN)
filename = tmpl.substitute(
id=status.mapreduce_id, shard=status.shard,
random=random.getrandbits(cls._RAND_BITS))
return cls._open_file(status.writer_spec, filename, use_tmp_bucket=True)
|
python
|
{
"resource": ""
}
|
q12216
|
GoogleCloudStorageConsistentOutputWriter._try_to_clean_garbage
|
train
|
def _try_to_clean_garbage(self, writer_spec, exclude_list=()):
"""Tries to remove any files created by this shard that aren't needed.
Args:
writer_spec: writer_spec for the MR.
exclude_list: A list of filenames (strings) that should not be
removed.
"""
# Try to remove garbage (if any). Note that listbucket is not strongly
# consistent so something might survive.
tmpl = string.Template(self._TMPFILE_PREFIX)
prefix = tmpl.substitute(
id=self.status.mapreduce_id, shard=self.status.shard)
bucket = self._get_tmp_gcs_bucket(writer_spec)
account_id = self._get_tmp_account_id(writer_spec)
for f in cloudstorage.listbucket("/%s/%s" % (bucket, prefix),
_account_id=account_id):
if f.filename not in exclude_list:
self._remove_tmpfile(f.filename, self.status.writer_spec)
|
python
|
{
"resource": ""
}
|
q12217
|
_get_weights
|
train
|
def _get_weights(max_length):
"""Get weights for each offset in str of certain max length.
Args:
max_length: max length of the strings.
Returns:
A list of ints as weights.
Example:
If max_length is 2 and alphabet is "ab", then we have order "", "a", "aa",
"ab", "b", "ba", "bb". So the weight for the first char is 3.
"""
weights = [1]
for i in range(1, max_length):
weights.append(weights[i-1] * len(_ALPHABET) + 1)
weights.reverse()
return weights
|
python
|
{
"resource": ""
}
|
q12218
|
_str_to_ord
|
train
|
def _str_to_ord(content, weights):
"""Converts a string to its lexicographical order.
Args:
content: the string to convert. Of type str.
weights: weights from _get_weights.
Returns:
an int or long that represents the order of this string. "" has order 0.
"""
ordinal = 0
for i, c in enumerate(content):
ordinal += weights[i] * _ALPHABET.index(c) + 1
return ordinal
|
python
|
{
"resource": ""
}
|
q12219
|
_ord_to_str
|
train
|
def _ord_to_str(ordinal, weights):
"""Reverse function of _str_to_ord."""
chars = []
for weight in weights:
if ordinal == 0:
return "".join(chars)
ordinal -= 1
index, ordinal = divmod(ordinal, weight)
chars.append(_ALPHABET[index])
return "".join(chars)
|
python
|
{
"resource": ""
}
|
q12220
|
PropertyRange._get_range_from_filters
|
train
|
def _get_range_from_filters(cls, filters, model_class):
"""Get property range from filters user provided.
This method also validates there is one and only one closed range on a
single property.
Args:
filters: user supplied filters. Each filter should be a list or tuple of
format (<property_name_as_str>, <query_operator_as_str>,
<value_of_certain_type>). Value type should satisfy the property's type.
model_class: the model class for the entity type to apply filters on.
Returns:
a tuple of (property, start_filter, end_filter). property is the model's
field that the range is about. start_filter and end_filter define the
start and the end of the range. (None, None, None) if no range is found.
Raises:
BadReaderParamsError: if any filter is invalid in any way.
"""
if not filters:
return None, None, None
range_property = None
start_val = None
end_val = None
start_filter = None
end_filter = None
for f in filters:
prop, op, val = f
if op in [">", ">=", "<", "<="]:
if range_property and range_property != prop:
raise errors.BadReaderParamsError(
"Range on only one property is supported.")
range_property = prop
if val is None:
raise errors.BadReaderParamsError(
"Range can't be None in filter %s", f)
if op in [">", ">="]:
if start_val is not None:
raise errors.BadReaderParamsError(
"Operation %s is specified more than once.", op)
start_val = val
start_filter = f
else:
if end_val is not None:
raise errors.BadReaderParamsError(
"Operation %s is specified more than once.", op)
end_val = val
end_filter = f
elif op != "=":
raise errors.BadReaderParamsError(
"Only < <= > >= = are supported as operation. Got %s", op)
if not range_property:
return None, None, None
if start_val is None or end_val is None:
raise errors.BadReaderParamsError(
"Filter should contains a complete range on property %s",
range_property)
if issubclass(model_class, db.Model):
property_obj = model_class.properties()[range_property]
else:
property_obj = (
model_class._properties[ # pylint: disable=protected-access
range_property])
supported_properties = (
_DISCRETE_PROPERTY_SPLIT_FUNCTIONS.keys() +
_CONTINUOUS_PROPERTY_SPLIT_FUNCTIONS.keys())
if not isinstance(property_obj, tuple(supported_properties)):
raise errors.BadReaderParamsError(
"Filtered property %s is not supported by sharding.", range_property)
if not start_val < end_val:
raise errors.BadReaderParamsError(
"Start value %s should be smaller than end value %s",
start_val, end_val)
return property_obj, start_filter, end_filter
|
python
|
{
"resource": ""
}
|
q12221
|
PropertyRange.split
|
train
|
def split(self, n):
"""Evenly split this range into contiguous, non overlapping subranges.
Args:
n: number of splits.
Returns:
a list of contiguous, non overlapping sub PropertyRanges. Maybe less than
n when not enough subranges.
"""
new_range_filters = []
name = self.start[0]
prop_cls = self.prop.__class__
if prop_cls in _DISCRETE_PROPERTY_SPLIT_FUNCTIONS:
splitpoints = _DISCRETE_PROPERTY_SPLIT_FUNCTIONS[prop_cls](
self.start[2], self.end[2], n,
self.start[1] == ">=", self.end[1] == "<=")
start_filter = (name, ">=", splitpoints[0])
for p in splitpoints[1:]:
end_filter = (name, "<", p)
new_range_filters.append([start_filter, end_filter])
start_filter = (name, ">=", p)
else:
splitpoints = _CONTINUOUS_PROPERTY_SPLIT_FUNCTIONS[prop_cls](
self.start[2], self.end[2], n)
start_filter = self.start
for p in splitpoints:
end_filter = (name, "<", p)
new_range_filters.append([start_filter, end_filter])
start_filter = (name, ">=", p)
new_range_filters.append([start_filter, self.end])
for f in new_range_filters:
f.extend(self._equality_filters)
return [self.__class__(f, self.model_class_path) for f in new_range_filters]
|
python
|
{
"resource": ""
}
|
q12222
|
PropertyRange.make_query
|
train
|
def make_query(self, ns):
"""Make a query of entities within this range.
Query options are not supported. They should be specified when the query
is run.
Args:
ns: namespace of this query.
Returns:
a db.Query or ndb.Query, depends on the model class's type.
"""
if issubclass(self.model_class, db.Model):
query = db.Query(self.model_class, namespace=ns)
for f in self.filters:
query.filter("%s %s" % (f[0], f[1]), f[2])
else:
query = self.model_class.query(namespace=ns)
for f in self.filters:
query = query.filter(ndb.FilterNode(*f))
return query
|
python
|
{
"resource": ""
}
|
q12223
|
OutputWriter.commit_output
|
train
|
def commit_output(cls, shard_ctx, iterator):
"""Saves output references when a shard finishes.
Inside end_shard(), an output writer can optionally use this method
to persist some references to the outputs from this shard
(e.g a list of filenames)
Args:
shard_ctx: map_job_context.ShardContext for this shard.
iterator: an iterator that yields json serializable
references to the outputs from this shard.
Contents from the iterator can be accessible later via
map_job.Job.get_outputs.
"""
# We accept an iterator just in case output references get too big.
outs = tuple(iterator)
shard_ctx._state.writer_state["outs"] = outs
|
python
|
{
"resource": ""
}
|
q12224
|
KeyRangesFactory.from_json
|
train
|
def from_json(cls, json):
"""Deserialize from json.
Args:
json: a dict of json compatible fields.
Returns:
a KeyRanges object.
Raises:
ValueError: if the json is invalid.
"""
if json["name"] in _KEYRANGES_CLASSES:
return _KEYRANGES_CLASSES[json["name"]].from_json(json)
raise ValueError("Invalid json %s", json)
|
python
|
{
"resource": ""
}
|
q12225
|
split_into_sentences
|
train
|
def split_into_sentences(s):
"""Split text into list of sentences."""
s = re.sub(r"\s+", " ", s)
s = re.sub(r"[\\.\\?\\!]", "\n", s)
return s.split("\n")
|
python
|
{
"resource": ""
}
|
q12226
|
split_into_words
|
train
|
def split_into_words(s):
"""Split a sentence into list of words."""
s = re.sub(r"\W+", " ", s)
s = re.sub(r"[_0-9]+", " ", s)
return s.split()
|
python
|
{
"resource": ""
}
|
q12227
|
index_map
|
train
|
def index_map(data):
"""Index demo map function."""
(entry, text_fn) = data
text = text_fn()
logging.debug("Got %s", entry.filename)
for s in split_into_sentences(text):
for w in split_into_words(s.lower()):
yield (w, entry.filename)
|
python
|
{
"resource": ""
}
|
q12228
|
phrases_map
|
train
|
def phrases_map(data):
"""Phrases demo map function."""
(entry, text_fn) = data
text = text_fn()
filename = entry.filename
logging.debug("Got %s", filename)
for s in split_into_sentences(text):
words = split_into_words(s.lower())
if len(words) < PHRASE_LENGTH:
yield (":".join(words), filename)
continue
for i in range(0, len(words) - PHRASE_LENGTH):
yield (":".join(words[i:i+PHRASE_LENGTH]), filename)
|
python
|
{
"resource": ""
}
|
q12229
|
phrases_reduce
|
train
|
def phrases_reduce(key, values):
"""Phrases demo reduce function."""
if len(values) < 10:
return
counts = {}
for filename in values:
counts[filename] = counts.get(filename, 0) + 1
words = re.sub(r":", " ", key)
threshold = len(values) / 2
for filename, count in counts.items():
if count > threshold:
yield "%s:%s\n" % (words, filename)
|
python
|
{
"resource": ""
}
|
q12230
|
FileMetadata.getKeyName
|
train
|
def getKeyName(username, date, blob_key):
"""Returns the internal key for a particular item in the database.
Our items are stored with keys of the form 'user/date/blob_key' ('/' is
not the real separator, but __SEP is).
Args:
username: The given user's e-mail address.
date: A datetime object representing the date and time that an input
file was uploaded to this app.
blob_key: The blob key corresponding to the location of the input file
in the Blobstore.
Returns:
The internal key for the item specified by (username, date, blob_key).
"""
sep = FileMetadata.__SEP
return str(username + sep + str(date) + sep + blob_key)
|
python
|
{
"resource": ""
}
|
q12231
|
Custodian.from_spec
|
train
|
def from_spec(cls, spec):
"""
Load a Custodian instance where the jobs are specified from a
structure and a spec dict. This allows simple
custom job sequences to be constructed quickly via a YAML file.
Args:
spec (dict): A dict specifying job. A sample of the dict in
YAML format for the usual MP workflow is given as follows
```
jobs:
- jb: custodian.vasp.jobs.VaspJob
params:
final: False
suffix: .relax1
- jb: custodian.vasp.jobs.VaspJob
params:
final: True
suffix: .relax2
settings_override: {"file": "CONTCAR", "action": {"_file_copy": {"dest": "POSCAR"}}
jobs_common_params:
vasp_cmd: /opt/vasp
handlers:
- hdlr: custodian.vasp.handlers.VaspErrorHandler
- hdlr: custodian.vasp.handlers.AliasingErrorHandler
- hdlr: custodian.vasp.handlers.MeshSymmetryHandler
validators:
- vldr: custodian.vasp.validators.VasprunXMLValidator
custodian_params:
scratch_dir: /tmp
```
The `jobs` key is a list of jobs. Each job is
specified via "job": <explicit path>, and all parameters are
specified via `params` which is a dict.
`common_params` specify a common set of parameters that are
passed to all jobs, e.g., vasp_cmd.
Returns:
Custodian instance.
"""
dec = MontyDecoder()
def load_class(dotpath):
modname, classname = dotpath.rsplit(".", 1)
mod = __import__(modname, globals(), locals(), [classname], 0)
return getattr(mod, classname)
def process_params(d):
decoded = {}
for k, v in d.items():
if k.startswith("$"):
if isinstance(v, list):
v = [os.path.expandvars(i) for i in v]
elif isinstance(v, dict):
v = {k2: os.path.expandvars(v2) for k2, v2 in v.items()}
else:
v = os.path.expandvars(v)
decoded[k.strip("$")] = dec.process_decoded(v)
return decoded
jobs = []
common_params = process_params(spec.get("jobs_common_params", {}))
for d in spec["jobs"]:
cls_ = load_class(d["jb"])
params = process_params(d.get("params", {}))
params.update(common_params)
jobs.append(cls_(**params))
handlers = []
for d in spec.get("handlers", []):
cls_ = load_class(d["hdlr"])
params = process_params(d.get("params", {}))
handlers.append(cls_(**params))
validators = []
for d in spec.get("validators", []):
cls_ = load_class(d["vldr"])
params = process_params(d.get("params", {}))
validators.append(cls_(**params))
custodian_params = process_params(spec.get("custodian_params", {}))
return cls(jobs=jobs, handlers=handlers, validators=validators,
**custodian_params)
|
python
|
{
"resource": ""
}
|
q12232
|
Custodian.run
|
train
|
def run(self):
"""
Runs all jobs.
Returns:
All errors encountered as a list of list.
[[error_dicts for job 1], [error_dicts for job 2], ....]
Raises:
ValidationError: if a job fails validation
ReturnCodeError: if the process has a return code different from 0
NonRecoverableError: if an unrecoverable occurs
MaxCorrectionsPerJobError: if max_errors_per_job is reached
MaxCorrectionsError: if max_errors is reached
MaxCorrectionsPerHandlerError: if max_errors_per_handler is reached
"""
cwd = os.getcwd()
with ScratchDir(self.scratch_dir, create_symbolic_link=True,
copy_to_current_on_exit=True,
copy_from_current_on_enter=True) as temp_dir:
self.total_errors = 0
start = datetime.datetime.now()
logger.info("Run started at {} in {}.".format(
start, temp_dir))
v = sys.version.replace("\n", " ")
logger.info("Custodian running on Python version {}".format(v))
logger.info("Hostname: {}, Cluster: {}".format(
*get_execution_host_info()))
try:
# skip jobs until the restart
for job_n, job in islice(enumerate(self.jobs, 1),
self.restart, None):
self._run_job(job_n, job)
# We do a dump of the run log after each job.
dumpfn(self.run_log, Custodian.LOG_FILE, cls=MontyEncoder,
indent=4)
# Checkpoint after each job so that we can recover from last
# point and remove old checkpoints
if self.checkpoint:
self.restart = job_n
Custodian._save_checkpoint(cwd, job_n)
except CustodianError as ex:
logger.error(ex.message)
if ex.raises:
raise
finally:
# Log the corrections to a json file.
logger.info("Logging to {}...".format(Custodian.LOG_FILE))
dumpfn(self.run_log, Custodian.LOG_FILE, cls=MontyEncoder,
indent=4)
end = datetime.datetime.now()
logger.info("Run ended at {}.".format(end))
run_time = end - start
logger.info("Run completed. Total time taken = {}."
.format(run_time))
if self.gzipped_output:
gzip_dir(".")
# Cleanup checkpoint files (if any) if run is successful.
Custodian._delete_checkpoints(cwd)
return self.run_log
|
python
|
{
"resource": ""
}
|
q12233
|
Custodian._do_check
|
train
|
def _do_check(self, handlers, terminate_func=None):
"""
checks the specified handlers. Returns True iff errors caught
"""
corrections = []
for h in handlers:
try:
if h.check():
if h.max_num_corrections is not None \
and h.n_applied_corrections >= h.max_num_corrections:
msg = "Maximum number of corrections {} reached " \
"for handler {}".format(h.max_num_corrections, h)
if h.raise_on_max:
self.run_log[-1]["handler"] = h
self.run_log[-1]["max_errors_per_handler"] = True
raise MaxCorrectionsPerHandlerError(msg, True, h.max_num_corrections, h)
else:
logger.warning(msg+" Correction not applied.")
continue
if terminate_func is not None and h.is_terminating:
logger.info("Terminating job")
terminate_func()
# make sure we don't terminate twice
terminate_func = None
d = h.correct()
d["handler"] = h
logger.error("\n" + pformat(d, indent=2, width=-1))
corrections.append(d)
h.n_applied_corrections += 1
except Exception:
if not self.skip_over_errors:
raise
else:
import traceback
logger.error("Bad handler %s " % h)
logger.error(traceback.format_exc())
corrections.append(
{"errors": ["Bad handler %s " % h],
"actions": []})
self.total_errors += len(corrections)
self.errors_current_job += len(corrections)
self.run_log[-1]["corrections"].extend(corrections)
# We do a dump of the run log after each check.
dumpfn(self.run_log, Custodian.LOG_FILE, cls=MontyEncoder,
indent=4)
return len(corrections) > 0
|
python
|
{
"resource": ""
}
|
q12234
|
FeffModder.apply_actions
|
train
|
def apply_actions(self, actions):
"""
Applies a list of actions to the FEFF Input Set and rewrites modified
files.
Args:
actions [dict]: A list of actions of the form {'file': filename,
'action': moddermodification} or {'dict': feffinput_key,
'action': moddermodification}
"""
modified = []
for a in actions:
if "dict" in a:
k = a["dict"]
modified.append(k)
self.feffinp[k] = self.modify_object(a["action"], self.feffinp[k])
elif "file" in a:
self.modify(a["action"], a["file"])
else:
raise ValueError("Unrecognized format: {}".format(a))
if modified:
feff = self.feffinp
feff_input = "\n\n".join(str(feff[k]) for k in
["HEADER", "PARAMETERS", "POTENTIALS", "ATOMS"]
if k in feff)
for k, v in six.iteritems(feff):
with open(os.path.join('.', k), "w") as f:
f.write(str(v))
with open(os.path.join('.', "feff.inp"), "w") as f:
f.write(feff_input)
|
python
|
{
"resource": ""
}
|
q12235
|
FileActions.file_modify
|
train
|
def file_modify(filename, settings):
"""
Modifies file access
Args:
filename (str): Filename.
settings (dict): Can be "mode" or "owners"
"""
for k, v in settings.items():
if k == "mode":
os.chmod(filename,v)
if k == "owners":
os.chown(filename,v)
|
python
|
{
"resource": ""
}
|
q12236
|
Modder.modify
|
train
|
def modify(self, modification, obj):
"""
Note that modify makes actual in-place modifications. It does not
return a copy.
Args:
modification (dict): Modification must be {action_keyword :
settings}. E.g., {'_set': {'Hello':'Universe', 'Bye': 'World'}}
obj (dict/str/object): Object to modify depending on actions. For
example, for DictActions, obj will be a dict to be modified.
For FileActions, obj will be a string with a full pathname to a
file.
"""
for action, settings in modification.items():
if action in self.supported_actions:
self.supported_actions[action].__call__(obj, settings)
elif self.strict:
raise ValueError("{} is not a supported action!"
.format(action))
|
python
|
{
"resource": ""
}
|
q12237
|
backup
|
train
|
def backup(filenames, prefix="error"):
"""
Backup files to a tar.gz file. Used, for example, in backing up the
files of an errored run before performing corrections.
Args:
filenames ([str]): List of files to backup. Supports wildcards, e.g.,
*.*.
prefix (str): prefix to the files. Defaults to error, which means a
series of error.1.tar.gz, error.2.tar.gz, ... will be generated.
"""
num = max([0] + [int(f.split(".")[1])
for f in glob("{}.*.tar.gz".format(prefix))])
filename = "{}.{}.tar.gz".format(prefix, num + 1)
logging.info("Backing up run to {}.".format(filename))
with tarfile.open(filename, "w:gz") as tar:
for fname in filenames:
for f in glob(fname):
tar.add(f)
|
python
|
{
"resource": ""
}
|
q12238
|
get_execution_host_info
|
train
|
def get_execution_host_info():
"""
Tries to return a tuple describing the execution host.
Doesn't work for all queueing systems
Returns:
(HOSTNAME, CLUSTER_NAME)
"""
host = os.environ.get('HOSTNAME', None)
cluster = os.environ.get('SGE_O_HOST', None)
if host is None:
try:
import socket
host = host or socket.gethostname()
except:
pass
return host or 'unknown', cluster or 'unknown'
|
python
|
{
"resource": ""
}
|
q12239
|
QCJob.run
|
train
|
def run(self):
"""
Perform the actual QChem run.
Returns:
(subprocess.Popen) Used for monitoring.
"""
qclog = open(self.qclog_file, 'w')
p = subprocess.Popen(self.current_command, stdout=qclog)
return p
|
python
|
{
"resource": ""
}
|
q12240
|
VaspJob.setup
|
train
|
def setup(self):
"""
Performs initial setup for VaspJob, including overriding any settings
and backing up.
"""
decompress_dir('.')
if self.backup:
for f in VASP_INPUT_FILES:
shutil.copy(f, "{}.orig".format(f))
if self.auto_npar:
try:
incar = Incar.from_file("INCAR")
# Only optimized NPAR for non-HF and non-RPA calculations.
if not (incar.get("LHFCALC") or incar.get("LRPA") or
incar.get("LEPSILON")):
if incar.get("IBRION") in [5, 6, 7, 8]:
# NPAR should not be set for Hessian matrix
# calculations, whether in DFPT or otherwise.
del incar["NPAR"]
else:
import multiprocessing
# try sge environment variable first
# (since multiprocessing counts cores on the current
# machine only)
ncores = os.environ.get('NSLOTS') or \
multiprocessing.cpu_count()
ncores = int(ncores)
for npar in range(int(math.sqrt(ncores)),
ncores):
if ncores % npar == 0:
incar["NPAR"] = npar
break
incar.write_file("INCAR")
except:
pass
if self.auto_continue:
if os.path.exists("continue.json"):
actions = loadfn("continue.json").get("actions")
logger.info("Continuing previous VaspJob. Actions: {}".format(actions))
backup(VASP_BACKUP_FILES, prefix="prev_run")
VaspModder().apply_actions(actions)
else:
# Default functionality is to copy CONTCAR to POSCAR and set
# ISTART to 1 in the INCAR, but other actions can be specified
if self.auto_continue is True:
actions = [{"file": "CONTCAR",
"action": {"_file_copy": {"dest": "POSCAR"}}},
{"dict": "INCAR",
"action": {"_set": {"ISTART": 1}}}]
else:
actions = self.auto_continue
dumpfn({"actions": actions}, "continue.json")
if self.settings_override is not None:
VaspModder().apply_actions(self.settings_override)
|
python
|
{
"resource": ""
}
|
q12241
|
VaspJob.run
|
train
|
def run(self):
"""
Perform the actual VASP run.
Returns:
(subprocess.Popen) Used for monitoring.
"""
cmd = list(self.vasp_cmd)
if self.auto_gamma:
vi = VaspInput.from_directory(".")
kpts = vi["KPOINTS"]
if kpts.style == Kpoints.supported_modes.Gamma \
and tuple(kpts.kpts[0]) == (1, 1, 1):
if self.gamma_vasp_cmd is not None and which(
self.gamma_vasp_cmd[-1]):
cmd = self.gamma_vasp_cmd
elif which(cmd[-1] + ".gamma"):
cmd[-1] += ".gamma"
logger.info("Running {}".format(" ".join(cmd)))
with open(self.output_file, 'w') as f_std, \
open(self.stderr_file, "w", buffering=1) as f_err:
# use line buffering for stderr
p = subprocess.Popen(cmd, stdout=f_std, stderr=f_err)
return p
|
python
|
{
"resource": ""
}
|
q12242
|
VaspJob.postprocess
|
train
|
def postprocess(self):
"""
Postprocessing includes renaming and gzipping where necessary.
Also copies the magmom to the incar if necessary
"""
for f in VASP_OUTPUT_FILES + [self.output_file]:
if os.path.exists(f):
if self.final and self.suffix != "":
shutil.move(f, "{}{}".format(f, self.suffix))
elif self.suffix != "":
shutil.copy(f, "{}{}".format(f, self.suffix))
if self.copy_magmom and not self.final:
try:
outcar = Outcar("OUTCAR")
magmom = [m['tot'] for m in outcar.magnetization]
incar = Incar.from_file("INCAR")
incar['MAGMOM'] = magmom
incar.write_file("INCAR")
except:
logger.error('MAGMOM copy from OUTCAR to INCAR failed')
# Remove continuation so if a subsequent job is run in
# the same directory, will not restart this job.
if os.path.exists("continue.json"):
os.remove("continue.json")
|
python
|
{
"resource": ""
}
|
q12243
|
VaspJob.double_relaxation_run
|
train
|
def double_relaxation_run(cls, vasp_cmd, auto_npar=True, ediffg=-0.05,
half_kpts_first_relax=False, auto_continue=False):
"""
Returns a list of two jobs corresponding to an AFLOW style double
relaxation run.
Args:
vasp_cmd (str): Command to run vasp as a list of args. For example,
if you are using mpirun, it can be something like
["mpirun", "pvasp.5.2.11"]
auto_npar (bool): Whether to automatically tune NPAR to be sqrt(
number of cores) as recommended by VASP for DFT calculations.
Generally, this results in significant speedups. Defaults to
True. Set to False for HF, GW and RPA calculations.
ediffg (float): Force convergence criteria for subsequent runs (
ignored for the initial run.)
half_kpts_first_relax (bool): Whether to halve the kpoint grid
for the first relaxation. Speeds up difficult convergence
considerably. Defaults to False.
Returns:
List of two jobs corresponding to an AFLOW style run.
"""
incar_update = {"ISTART": 1}
if ediffg:
incar_update["EDIFFG"] = ediffg
settings_overide_1 = None
settings_overide_2 = [
{"dict": "INCAR",
"action": {"_set": incar_update}},
{"file": "CONTCAR",
"action": {"_file_copy": {"dest": "POSCAR"}}}]
if half_kpts_first_relax and os.path.exists("KPOINTS") and \
os.path.exists("POSCAR"):
kpts = Kpoints.from_file("KPOINTS")
orig_kpts_dict = kpts.as_dict()
# lattice vectors with length < 8 will get >1 KPOINT
kpts.kpts = np.round(np.maximum(np.array(kpts.kpts) / 2,
1)).astype(int).tolist()
low_kpts_dict = kpts.as_dict()
settings_overide_1 = [
{"dict": "KPOINTS",
"action": {"_set": low_kpts_dict}}
]
settings_overide_2.append(
{"dict": "KPOINTS",
"action": {"_set": orig_kpts_dict}}
)
return [VaspJob(vasp_cmd, final=False, suffix=".relax1",
auto_npar=auto_npar, auto_continue=auto_continue,
settings_override=settings_overide_1),
VaspJob(vasp_cmd, final=True, backup=False, suffix=".relax2",
auto_npar=auto_npar, auto_continue=auto_continue,
settings_override=settings_overide_2)]
|
python
|
{
"resource": ""
}
|
q12244
|
VaspJob.metagga_opt_run
|
train
|
def metagga_opt_run(cls, vasp_cmd, auto_npar=True, ediffg=-0.05,
half_kpts_first_relax=False, auto_continue=False):
"""
Returns a list of thres jobs to perform an optimization for any
metaGGA functional. There is an initial calculation of the
GGA wavefunction which is fed into the initial metaGGA optimization
to precondition the electronic structure optimizer. The metaGGA
optimization is performed using the double relaxation scheme
"""
incar = Incar.from_file("INCAR")
# Defaults to using the SCAN metaGGA
metaGGA = incar.get("METAGGA", "SCAN")
# Pre optimze WAVECAR and structure using regular GGA
pre_opt_setings = [{"dict": "INCAR",
"action": {"_set": {"METAGGA": None,
"LWAVE": True,
"NSW": 0}}}]
jobs = [VaspJob(vasp_cmd, auto_npar=auto_npar,
final=False, suffix=".precondition",
settings_override=pre_opt_setings)]
# Finish with regular double relaxation style run using SCAN
jobs.extend(VaspJob.double_relaxation_run(vasp_cmd, auto_npar=auto_npar,
ediffg=ediffg,
half_kpts_first_relax=half_kpts_first_relax))
# Ensure the first relaxation doesn't overwrite the original inputs
jobs[1].backup = False
# Update double_relaxation job to start from pre-optimized run
post_opt_settings = [{"dict": "INCAR",
"action": {"_set": {"METAGGA": metaGGA, "ISTART": 1,
"NSW": incar.get("NSW", 99),
"LWAVE": incar.get("LWAVE", False)}}},
{"file": "CONTCAR",
"action": {"_file_copy": {"dest": "POSCAR"}}}]
if jobs[1].settings_override:
post_opt_settings = jobs[1].settings_override + post_opt_settings
jobs[1].settings_override = post_opt_settings
return jobs
|
python
|
{
"resource": ""
}
|
q12245
|
VaspJob.full_opt_run
|
train
|
def full_opt_run(cls, vasp_cmd, vol_change_tol=0.02,
max_steps=10, ediffg=-0.05, half_kpts_first_relax=False,
**vasp_job_kwargs):
"""
Returns a generator of jobs for a full optimization run. Basically,
this runs an infinite series of geometry optimization jobs until the
% vol change in a particular optimization is less than vol_change_tol.
Args:
vasp_cmd (str): Command to run vasp as a list of args. For example,
if you are using mpirun, it can be something like
["mpirun", "pvasp.5.2.11"]
vol_change_tol (float): The tolerance at which to stop a run.
Defaults to 0.05, i.e., 5%.
max_steps (int): The maximum number of runs. Defaults to 10 (
highly unlikely that this limit is ever reached).
ediffg (float): Force convergence criteria for subsequent runs (
ignored for the initial run.)
half_kpts_first_relax (bool): Whether to halve the kpoint grid
for the first relaxation. Speeds up difficult convergence
considerably. Defaults to False.
\*\*vasp_job_kwargs: Passthrough kwargs to VaspJob. See
:class:`custodian.vasp.jobs.VaspJob`.
Returns:
Generator of jobs.
"""
for i in range(max_steps):
if i == 0:
settings = None
backup = True
if half_kpts_first_relax and os.path.exists("KPOINTS") and \
os.path.exists("POSCAR"):
kpts = Kpoints.from_file("KPOINTS")
orig_kpts_dict = kpts.as_dict()
kpts.kpts = np.maximum(np.array(kpts.kpts) / 2, 1).tolist()
low_kpts_dict = kpts.as_dict()
settings = [
{"dict": "KPOINTS",
"action": {"_set": low_kpts_dict}}
]
else:
backup = False
initial = Poscar.from_file("POSCAR").structure
final = Poscar.from_file("CONTCAR").structure
vol_change = (final.volume - initial.volume) / initial.volume
logger.info("Vol change = %.1f %%!" % (vol_change * 100))
if abs(vol_change) < vol_change_tol:
logger.info("Stopping optimization!")
break
else:
incar_update = {"ISTART": 1}
if ediffg:
incar_update["EDIFFG"] = ediffg
settings = [
{"dict": "INCAR",
"action": {"_set": incar_update}},
{"file": "CONTCAR",
"action": {"_file_copy": {"dest": "POSCAR"}}}]
if i == 1 and half_kpts_first_relax:
settings.append({"dict": "KPOINTS",
"action": {"_set": orig_kpts_dict}})
logger.info("Generating job = %d!" % (i+1))
yield VaspJob(vasp_cmd, final=False, backup=backup,
suffix=".relax%d" % (i+1), settings_override=settings,
**vasp_job_kwargs)
|
python
|
{
"resource": ""
}
|
q12246
|
VaspNEBJob.setup
|
train
|
def setup(self):
"""
Performs initial setup for VaspNEBJob, including overriding any settings
and backing up.
"""
neb_dirs = self.neb_dirs
if self.backup:
# Back up KPOINTS, INCAR, POTCAR
for f in VASP_NEB_INPUT_FILES:
shutil.copy(f, "{}.orig".format(f))
# Back up POSCARs
for path in neb_dirs:
poscar = os.path.join(path, "POSCAR")
shutil.copy(poscar, "{}.orig".format(poscar))
if self.half_kpts and os.path.exists("KPOINTS"):
kpts = Kpoints.from_file("KPOINTS")
kpts.kpts = np.maximum(np.array(kpts.kpts) / 2, 1)
kpts.kpts = kpts.kpts.astype(int).tolist()
if tuple(kpts.kpts[0]) == (1, 1, 1):
kpt_dic = kpts.as_dict()
kpt_dic["generation_style"] = 'Gamma'
kpts = Kpoints.from_dict(kpt_dic)
kpts.write_file("KPOINTS")
if self.auto_npar:
try:
incar = Incar.from_file("INCAR")
import multiprocessing
# Try sge environment variable first
# (since multiprocessing counts cores on the current
# machine only)
ncores = os.environ.get('NSLOTS') or multiprocessing.cpu_count()
ncores = int(ncores)
for npar in range(int(math.sqrt(ncores)),
ncores):
if ncores % npar == 0:
incar["NPAR"] = npar
break
incar.write_file("INCAR")
except:
pass
if self.auto_continue and \
os.path.exists("STOPCAR") and \
not os.access("STOPCAR", os.W_OK):
# Remove STOPCAR
os.chmod("STOPCAR", 0o644)
os.remove("STOPCAR")
# Copy CONTCAR to POSCAR
for path in self.neb_sub:
contcar = os.path.join(path, "CONTCAR")
poscar = os.path.join(path, "POSCAR")
shutil.copy(contcar, poscar)
if self.settings_override is not None:
VaspModder().apply_actions(self.settings_override)
|
python
|
{
"resource": ""
}
|
q12247
|
VaspNEBJob.postprocess
|
train
|
def postprocess(self):
"""
Postprocessing includes renaming and gzipping where necessary.
"""
# Add suffix to all sub_dir/{items}
for path in self.neb_dirs:
for f in VASP_NEB_OUTPUT_SUB_FILES:
f = os.path.join(path, f)
if os.path.exists(f):
if self.final and self.suffix != "":
shutil.move(f, "{}{}".format(f, self.suffix))
elif self.suffix != "":
shutil.copy(f, "{}{}".format(f, self.suffix))
# Add suffix to all output files
for f in VASP_NEB_OUTPUT_FILES + [self.output_file]:
if os.path.exists(f):
if self.final and self.suffix != "":
shutil.move(f, "{}{}".format(f, self.suffix))
elif self.suffix != "":
shutil.copy(f, "{}{}".format(f, self.suffix))
|
python
|
{
"resource": ""
}
|
q12248
|
NwchemJob.setup
|
train
|
def setup(self):
"""
Performs backup if necessary.
"""
if self.backup:
shutil.copy(self.input_file, "{}.orig".format(self.input_file))
|
python
|
{
"resource": ""
}
|
q12249
|
NwchemJob.run
|
train
|
def run(self):
"""
Performs actual nwchem run.
"""
with zopen(self.output_file, 'w') as fout:
return subprocess.Popen(self.nwchem_cmd + [self.input_file],
stdout=fout)
|
python
|
{
"resource": ""
}
|
q12250
|
valid_GC
|
train
|
def valid_GC(x):
"""type function for argparse to check GC values.
Check if the supplied value for minGC and maxGC is a valid input, being between 0 and 1
"""
x = float(x)
if x < 0.0 or x > 1.0:
raise ArgumentTypeError("{} not in range [0.0, 1.0]".format(x))
return x
|
python
|
{
"resource": ""
}
|
q12251
|
filter_stream
|
train
|
def filter_stream(fq, args):
"""Filter a fastq file on stdin.
Print fastq record to stdout if it passes
- quality filter (optional)
- length filter (optional)
- min/maxGC filter (optional)
Optionally trim a number of nucleotides from beginning and end.
Record has to be longer than args.length (default 1) after trimming
Use a faster silent quality_check if no filtering on quality is required
"""
if args.quality:
quality_check = ave_qual
else:
quality_check = silent_quality_check
minlen = args.length + int(args.headcrop or 0) - (int(args.tailcrop or 0))
for rec in SeqIO.parse(fq, "fastq"):
if args.GC_filter:
gc = (rec.seq.upper().count("C") + rec.seq.upper().count("G")) / len(rec)
else:
gc = 0.50 # dummy variable
if quality_check(rec.letter_annotations["phred_quality"]) > args.quality \
and minlen <= len(rec) <= args.maxlength \
and args.minGC <= gc <= args.maxGC:
print(rec[args.headcrop:args.tailcrop].format("fastq"), end="")
|
python
|
{
"resource": ""
}
|
q12252
|
filter_using_summary
|
train
|
def filter_using_summary(fq, args):
"""Use quality scores from albacore summary file for filtering
Use the summary file from albacore for more accurate quality estimate
Get the dataframe from nanoget, convert to dictionary
"""
data = {entry[0]: entry[1] for entry in process_summary(
summaryfile=args.summary,
threads="NA",
readtype=args.readtype,
barcoded=False)[
["readIDs", "quals"]].itertuples(index=False)}
try:
for record in SeqIO.parse(fq, "fastq"):
if data[record.id] > args.quality \
and args.length <= len(record) <= args.maxlength:
print(record[args.headcrop:args.tailcrop].format("fastq"), end="")
except KeyError:
logging.error("mismatch between summary and fastq: \
{} was not found in the summary file.".format(record.id))
sys.exit('\nERROR: mismatch between sequencing_summary and fastq file: \
{} was not found in the summary file.\nQuitting.'.format(record.id))
|
python
|
{
"resource": ""
}
|
q12253
|
master_key_required
|
train
|
def master_key_required(func):
'''decorator describing methods that require the master key'''
def ret(obj, *args, **kw):
conn = ACCESS_KEYS
if not (conn and conn.get('master_key')):
message = '%s requires the master key' % func.__name__
raise core.ParseError(message)
func(obj, *args, **kw)
return ret
|
python
|
{
"resource": ""
}
|
q12254
|
ParseBase.execute
|
train
|
def execute(cls, uri, http_verb, extra_headers=None, batch=False, _body=None, **kw):
"""
if batch == False, execute a command with the given parameters and
return the response JSON.
If batch == True, return the dictionary that would be used in a batch
command.
"""
if batch:
urlsplitter = urlparse(API_ROOT).netloc
ret = {"method": http_verb, "path": uri.split(urlsplitter, 1)[1]}
if kw:
ret["body"] = kw
return ret
if not ('app_id' in ACCESS_KEYS and 'rest_key' in ACCESS_KEYS):
raise core.ParseError('Missing connection credentials')
app_id = ACCESS_KEYS.get('app_id')
rest_key = ACCESS_KEYS.get('rest_key')
master_key = ACCESS_KEYS.get('master_key')
url = uri if uri.startswith(API_ROOT) else cls.ENDPOINT_ROOT + uri
if _body is None:
data = kw and json.dumps(kw, default=date_handler) or "{}"
else:
data = _body
if http_verb == 'GET' and data:
url += '?%s' % urlencode(kw)
data = None
else:
if cls.__name__ == 'File':
data = data
else:
data = data.encode('utf-8')
headers = {
'Content-type': 'application/json',
'X-Parse-Application-Id': app_id,
'X-Parse-REST-API-Key': rest_key
}
headers.update(extra_headers or {})
if cls.__name__ == 'File':
request = Request(url.encode('utf-8'), data, headers)
else:
request = Request(url, data, headers)
if ACCESS_KEYS.get('session_token'):
request.add_header('X-Parse-Session-Token', ACCESS_KEYS.get('session_token'))
elif master_key:
request.add_header('X-Parse-Master-Key', master_key)
request.get_method = lambda: http_verb
try:
response = urlopen(request, timeout=CONNECTION_TIMEOUT)
except HTTPError as e:
exc = {
400: core.ResourceRequestBadRequest,
401: core.ResourceRequestLoginRequired,
403: core.ResourceRequestForbidden,
404: core.ResourceRequestNotFound
}.get(e.code, core.ParseError)
raise exc(e.read())
return json.loads(response.read().decode('utf-8'))
|
python
|
{
"resource": ""
}
|
q12255
|
ParseBatcher.batch
|
train
|
def batch(self, methods):
"""
Given a list of create, update or delete methods to call, call all
of them in a single batch operation.
"""
methods = list(methods) # methods can be iterator
if not methods:
#accepts also empty list (or generator) - it allows call batch directly with query result (eventually empty)
return
queries, callbacks = list(zip(*[m(batch=True) for m in methods]))
# perform all the operations in one batch
responses = self.execute("", "POST", requests=queries)
# perform the callbacks with the response data (updating the existing
# objets, etc)
batched_errors = []
for callback, response in zip(callbacks, responses):
if "success" in response:
callback(response["success"])
else:
batched_errors.append(response["error"])
if batched_errors:
raise core.ParseBatchError(batched_errors)
|
python
|
{
"resource": ""
}
|
q12256
|
Installation.update_channels
|
train
|
def update_channels(cls, installation_id, channels_to_add=set(),
channels_to_remove=set(), **kw):
"""
Allow an application to manually subscribe or unsubscribe an
installation to a certain push channel in a unified operation.
this is based on:
https://www.parse.com/docs/rest#installations-updating
installation_id: the installation id you'd like to add a channel to
channels_to_add: the name of the channel you'd like to subscribe the user to
channels_to_remove: the name of the channel you'd like to unsubscribe the user from
"""
installation_url = cls._get_installation_url(installation_id)
current_config = cls.GET(installation_url)
new_channels = list(set(current_config['channels']).union(channels_to_add).difference(channels_to_remove))
cls.PUT(installation_url, channels=new_channels)
|
python
|
{
"resource": ""
}
|
q12257
|
Queryset._fetch
|
train
|
def _fetch(self, count=False):
if self._result_cache is not None:
return len(self._result_cache) if count else self._result_cache
"""
Return a list of objects matching query, or if count == True return
only the number of objects matching.
"""
options = dict(self._options) # make a local copy
if self._where:
# JSON encode WHERE values
options['where'] = json.dumps(self._where)
if self._select_related:
options['include'] = ','.join(self._select_related)
if count:
return self._manager._count(**options)
self._result_cache = self._manager._fetch(**options)
return self._result_cache
|
python
|
{
"resource": ""
}
|
q12258
|
complex_type
|
train
|
def complex_type(name=None):
'''Decorator for registering complex types'''
def wrapped(cls):
ParseType.type_mapping[name or cls.__name__] = cls
return cls
return wrapped
|
python
|
{
"resource": ""
}
|
q12259
|
Object.schema
|
train
|
def schema(cls):
"""Retrieves the class' schema."""
root = '/'.join([API_ROOT, 'schemas', cls.__name__])
schema = cls.GET(root)
return schema
|
python
|
{
"resource": ""
}
|
q12260
|
Object.schema_delete_field
|
train
|
def schema_delete_field(cls, key):
"""Deletes a field."""
root = '/'.join([API_ROOT, 'schemas', cls.__name__])
payload = {
'className': cls.__name__,
'fields': {
key: {
'__op': 'Delete'
}
}
}
cls.PUT(root, **payload)
|
python
|
{
"resource": ""
}
|
q12261
|
login_required
|
train
|
def login_required(func):
'''decorator describing User methods that need to be logged in'''
def ret(obj, *args, **kw):
if not hasattr(obj, 'sessionToken'):
message = '%s requires a logged-in session' % func.__name__
raise ResourceRequestLoginRequired(message)
return func(obj, *args, **kw)
return ret
|
python
|
{
"resource": ""
}
|
q12262
|
parse
|
train
|
def parse(d):
"""Convert iso formatted timestamps found as values in the dict d to datetime objects.
:return: A shallow copy of d with converted timestamps.
"""
res = {}
for k, v in iteritems(d):
if isinstance(v, string_types) and DATETIME_ISO_FORMAT.match(v):
v = dateutil.parser.parse(v)
res[k] = v
return res
|
python
|
{
"resource": ""
}
|
q12263
|
dump
|
train
|
def dump(obj, path, **kw):
"""Python 2 + 3 compatible version of json.dump.
:param obj: The object to be dumped.
:param path: The path of the JSON file to be written.
:param kw: Keyword parameters are passed to json.dump
"""
open_kw = {'mode': 'w'}
if PY3: # pragma: no cover
open_kw['encoding'] = 'utf-8'
# avoid indented lines ending with ", " on PY2
if kw.get('indent') and kw.get('separators') is None:
kw['separators'] = (',', ': ')
with open(str(path), **open_kw) as fp:
return json.dump(obj, fp, **kw)
|
python
|
{
"resource": ""
}
|
q12264
|
strip_brackets
|
train
|
def strip_brackets(text, brackets=None):
"""Strip brackets and what is inside brackets from text.
.. note::
If the text contains only one opening bracket, the rest of the text
will be ignored. This is a feature, not a bug, as we want to avoid that
this function raises errors too easily.
"""
res = []
for c, type_ in _tokens(text, brackets=brackets):
if type_ == TextType.text:
res.append(c)
return ''.join(res).strip()
|
python
|
{
"resource": ""
}
|
q12265
|
split_text_with_context
|
train
|
def split_text_with_context(text, separators=WHITESPACE, brackets=None):
"""Splits text at separators outside of brackets.
:param text:
:param separators: An iterable of single character tokens.
:param brackets:
:return: A `list` of non-empty chunks.
.. note:: This function leaves content in brackets in the chunks.
"""
res, chunk = [], []
for c, type_ in _tokens(text, brackets=brackets):
if type_ == TextType.text and c in separators:
res.append(''.join(chunk).strip())
chunk = []
else:
chunk.append(c)
res.append(''.join(chunk).strip())
return nfilter(res)
|
python
|
{
"resource": ""
}
|
q12266
|
split_text
|
train
|
def split_text(text, separators=re.compile('\s'), brackets=None, strip=False):
"""Split text along the separators unless they appear within brackets.
:param separators: An iterable single characters or a compiled regex pattern.
:param brackets: `dict` mapping start tokens to end tokens of what is to be \
recognized as brackets.
.. note:: This function will also strip content within brackets.
"""
if not isinstance(separators, PATTERN_TYPE):
separators = re.compile(
'[{0}]'.format(''.join('\{0}'.format(c) for c in separators)))
return nfilter(
s.strip() if strip else s for s in
separators.split(strip_brackets(text, brackets=brackets)))
|
python
|
{
"resource": ""
}
|
q12267
|
Entry.get
|
train
|
def get(self, key, default=None):
"""Retrieve the first value for a marker or None."""
for k, v in self:
if k == key:
return v
return default
|
python
|
{
"resource": ""
}
|
q12268
|
SFM.read
|
train
|
def read(self,
filename,
encoding='utf-8',
marker_map=None,
entry_impl=Entry,
entry_sep='\n\n',
entry_prefix=None,
keep_empty=False):
"""Extend the list by parsing new entries from a file.
:param filename:
:param encoding:
:param marker_map: A dict used to map marker names.
:param entry_impl: Subclass of Entry or None
:param entry_sep:
:param entry_prefix:
"""
marker_map = marker_map or {}
for entry in parse(
filename,
encoding,
entry_sep,
entry_prefix or entry_sep,
keep_empty=keep_empty):
if entry:
self.append(entry_impl([(marker_map.get(k, k), v) for k, v in entry]))
|
python
|
{
"resource": ""
}
|
q12269
|
SFM.write
|
train
|
def write(self, filename, encoding='utf-8'):
"""Write the list of entries to a file.
:param filename:
:param encoding:
:return:
"""
with io.open(str(filename), 'w', encoding=encoding) as fp:
for entry in self:
fp.write(entry.__unicode__())
fp.write('\n\n')
|
python
|
{
"resource": ""
}
|
q12270
|
data_url
|
train
|
def data_url(content, mimetype=None):
"""
Returns content encoded as base64 Data URI.
:param content: bytes or str or Path
:param mimetype: mimetype for
:return: str object (consisting only of ASCII, though)
.. seealso:: https://en.wikipedia.org/wiki/Data_URI_scheme
"""
if isinstance(content, pathlib.Path):
if not mimetype:
mimetype = guess_type(content.name)[0]
with content.open('rb') as fp:
content = fp.read()
else:
if isinstance(content, text_type):
content = content.encode('utf8')
return "data:{0};base64,{1}".format(
mimetype or 'application/octet-stream', b64encode(content).decode())
|
python
|
{
"resource": ""
}
|
q12271
|
to_binary
|
train
|
def to_binary(s, encoding='utf8'):
"""Portable cast function.
In python 2 the ``str`` function which is used to coerce objects to bytes does not
accept an encoding argument, whereas python 3's ``bytes`` function requires one.
:param s: object to be converted to binary_type
:return: binary_type instance, representing s.
"""
if PY3: # pragma: no cover
return s if isinstance(s, binary_type) else binary_type(s, encoding=encoding)
return binary_type(s)
|
python
|
{
"resource": ""
}
|
q12272
|
dict_merged
|
train
|
def dict_merged(d, _filter=None, **kw):
"""Update dictionary d with the items passed as kw if the value passes _filter."""
def f(s):
if _filter:
return _filter(s)
return s is not None
d = d or {}
for k, v in iteritems(kw):
if f(v):
d[k] = v
return d
|
python
|
{
"resource": ""
}
|
q12273
|
xmlchars
|
train
|
def xmlchars(text):
"""Not all of UTF-8 is considered valid character data in XML ...
Thus, this function can be used to remove illegal characters from ``text``.
"""
invalid = list(range(0x9))
invalid.extend([0xb, 0xc])
invalid.extend(range(0xe, 0x20))
return re.sub('|'.join('\\x%0.2X' % i for i in invalid), '', text)
|
python
|
{
"resource": ""
}
|
q12274
|
slug
|
train
|
def slug(s, remove_whitespace=True, lowercase=True):
"""Condensed version of s, containing only lowercase alphanumeric characters."""
res = ''.join(c for c in unicodedata.normalize('NFD', s)
if unicodedata.category(c) != 'Mn')
if lowercase:
res = res.lower()
for c in string.punctuation:
res = res.replace(c, '')
res = re.sub('\s+', '' if remove_whitespace else ' ', res)
res = res.encode('ascii', 'ignore').decode('ascii')
assert re.match('[ A-Za-z0-9]*$', res)
return res
|
python
|
{
"resource": ""
}
|
q12275
|
encoded
|
train
|
def encoded(string, encoding='utf-8'):
"""Cast string to binary_type.
:param string: six.binary_type or six.text_type
:param encoding: encoding which the object is forced to
:return: six.binary_type
"""
assert isinstance(string, string_types) or isinstance(string, binary_type)
if isinstance(string, text_type):
return string.encode(encoding)
try:
# make sure the string can be decoded in the specified encoding ...
string.decode(encoding)
return string
except UnicodeDecodeError:
# ... if not use latin1 as best guess to decode the string before encoding as
# specified.
return string.decode('latin1').encode(encoding)
|
python
|
{
"resource": ""
}
|
q12276
|
readlines
|
train
|
def readlines(p,
encoding=None,
strip=False,
comment=None,
normalize=None,
linenumbers=False):
"""
Read a `list` of lines from a text file.
:param p: File path (or `list` or `tuple` of text)
:param encoding: Registered codec.
:param strip: If `True`, strip leading and trailing whitespace.
:param comment: String used as syntax to mark comment lines. When not `None`, \
commented lines will be stripped. This implies `strip=True`.
:param normalize: 'NFC', 'NFKC', 'NFD', 'NFKD'
:param linenumbers: return also line numbers.
:return: `list` of text lines or pairs (`int`, text or `None`).
"""
if comment:
strip = True
if isinstance(p, (list, tuple)):
res = [l.decode(encoding) if encoding else l for l in p]
else:
with Path(p).open(encoding=encoding or 'utf-8') as fp:
res = fp.readlines()
if strip:
res = [l.strip() or None for l in res]
if comment:
res = [None if l and l.startswith(comment) else l for l in res]
if normalize:
res = [unicodedata.normalize(normalize, l) if l else l for l in res]
if linenumbers:
return [(n, l) for n, l in enumerate(res, 1)]
return [l for l in res if l is not None]
|
python
|
{
"resource": ""
}
|
q12277
|
walk
|
train
|
def walk(p, mode='all', **kw):
"""Wrapper for `os.walk`, yielding `Path` objects.
:param p: root of the directory tree to walk.
:param mode: 'all|dirs|files', defaulting to 'all'.
:param kw: Keyword arguments are passed to `os.walk`.
:return: Generator for the requested Path objects.
"""
for dirpath, dirnames, filenames in os.walk(as_posix(p), **kw):
if mode in ('all', 'dirs'):
for dirname in dirnames:
yield Path(dirpath).joinpath(dirname)
if mode in ('all', 'files'):
for fname in filenames:
yield Path(dirpath).joinpath(fname)
|
python
|
{
"resource": ""
}
|
q12278
|
Source.bibtex
|
train
|
def bibtex(self):
"""Represent the source in BibTeX format.
:return: string encoding the source in BibTeX syntax.
"""
m = max(itertools.chain(map(len, self), [0]))
fields = (" %s = {%s}" % (k.ljust(m), self[k]) for k in self)
return "@%s{%s,\n%s\n}" % (
getattr(self.genre, 'value', self.genre), self.id, ",\n".join(fields))
|
python
|
{
"resource": ""
}
|
q12279
|
Client.request
|
train
|
def request(self, path, method='GET', params=None, type=REST_TYPE):
"""Builds a request, gets a response and decodes it."""
response_text = self._get_http_client(type).request(path, method, params)
if not response_text:
return response_text
response_json = json.loads(response_text)
if 'errors' in response_json:
raise (ErrorException([Error().load(e) for e in response_json['errors']]))
return response_json
|
python
|
{
"resource": ""
}
|
q12280
|
Client.message_create
|
train
|
def message_create(self, originator, recipients, body, params=None):
"""Create a new message."""
if params is None: params = {}
if type(recipients) == list:
recipients = ','.join(recipients)
params.update({'originator': originator, 'body': body, 'recipients': recipients})
return Message().load(self.request('messages', 'POST', params))
|
python
|
{
"resource": ""
}
|
q12281
|
Client.voice_message_create
|
train
|
def voice_message_create(self, recipients, body, params=None):
"""Create a new voice message."""
if params is None: params = {}
if type(recipients) == list:
recipients = ','.join(recipients)
params.update({'recipients': recipients, 'body': body})
return VoiceMessage().load(self.request('voicemessages', 'POST', params))
|
python
|
{
"resource": ""
}
|
q12282
|
Client.lookup
|
train
|
def lookup(self, phonenumber, params=None):
"""Do a new lookup."""
if params is None: params = {}
return Lookup().load(self.request('lookup/' + str(phonenumber), 'GET', params))
|
python
|
{
"resource": ""
}
|
q12283
|
Client.lookup_hlr
|
train
|
def lookup_hlr(self, phonenumber, params=None):
"""Retrieve the information of a specific HLR lookup."""
if params is None: params = {}
return HLR().load(self.request('lookup/' + str(phonenumber) + '/hlr', 'GET', params))
|
python
|
{
"resource": ""
}
|
q12284
|
Client.verify_create
|
train
|
def verify_create(self, recipient, params=None):
"""Create a new verification."""
if params is None: params = {}
params.update({'recipient': recipient})
return Verify().load(self.request('verify', 'POST', params))
|
python
|
{
"resource": ""
}
|
q12285
|
Client.verify_verify
|
train
|
def verify_verify(self, id, token):
"""Verify the token of a specific verification."""
return Verify().load(self.request('verify/' + str(id), params={'token': token}))
|
python
|
{
"resource": ""
}
|
q12286
|
BaseList.items
|
train
|
def items(self, value):
"""Create typed objects from the dicts."""
items = []
for item in value:
items.append(self.itemType().load(item))
self._items = items
|
python
|
{
"resource": ""
}
|
q12287
|
HttpClient.request
|
train
|
def request(self, path, method='GET', params=None):
"""Builds a request and gets a response."""
if params is None: params = {}
url = urljoin(self.endpoint, path)
headers = {
'Accept': 'application/json',
'Authorization': 'AccessKey ' + self.access_key,
'User-Agent': self.user_agent,
'Content-Type': 'application/json'
}
if method == 'DELETE':
response = requests.delete(url, verify=True, headers=headers, data=json.dumps(params))
elif method == 'GET':
response = requests.get(url, verify=True, headers=headers, params=params)
elif method == 'PATCH':
response = requests.patch(url, verify=True, headers=headers, data=json.dumps(params))
elif method == 'POST':
response = requests.post(url, verify=True, headers=headers, data=json.dumps(params))
elif method == 'PUT':
response = requests.put(url, verify=True, headers=headers, data=json.dumps(params))
else:
raise ValueError(str(method) + ' is not a supported HTTP method')
if response.status_code in self.__supported_status_codes:
response_text = response.text
else:
response.raise_for_status()
return response_text
|
python
|
{
"resource": ""
}
|
q12288
|
cython_debug_files
|
train
|
def cython_debug_files():
"""
Cython extra debug information files
"""
# Search all subdirectories of sys.path directories for a
# "cython_debug" directory. Note that sys_path is a variable set by
# cysignals-CSI. It may differ from sys.path if GDB is run with a
# different Python interpreter.
files = []
for path in sys_path: # noqa
pattern = os.path.join(path, '*', 'cython_debug', 'cython_debug_info_*')
files.extend(glob.glob(pattern))
return files
|
python
|
{
"resource": ""
}
|
q12289
|
ColorizedPhoXiSensor._colorize
|
train
|
def _colorize(self, depth_im, color_im):
"""Colorize a depth image from the PhoXi using a color image from the webcam.
Parameters
----------
depth_im : DepthImage
The PhoXi depth image.
color_im : ColorImage
Corresponding color image.
Returns
-------
ColorImage
A colorized image corresponding to the PhoXi depth image.
"""
# Project the point cloud into the webcam's frame
target_shape = (depth_im.data.shape[0], depth_im.data.shape[1], 3)
pc_depth = self._phoxi.ir_intrinsics.deproject(depth_im)
pc_color = self._T_webcam_world.inverse().dot(self._T_phoxi_world).apply(pc_depth)
# Sort the points by their distance from the webcam's apeture
pc_data = pc_color.data.T
dists = np.linalg.norm(pc_data, axis=1)
order = np.argsort(dists)
pc_data = pc_data[order]
pc_color = PointCloud(pc_data.T, frame=self._webcam.color_intrinsics.frame)
sorted_dists = dists[order]
sorted_depths = depth_im.data.flatten()[order]
# Generate image coordinates for each sorted point
icds = self._webcam.color_intrinsics.project(pc_color).data.T
# Create mask for points that are masked by others
rounded_icds = np.array(icds / 3.0, dtype=np.uint32)
unique_icds, unique_inds, unique_inv = np.unique(rounded_icds, axis=0, return_index=True, return_inverse=True)
icd_depths = sorted_dists[unique_inds]
min_depths_pp = icd_depths[unique_inv]
depth_delta_mask = np.abs(min_depths_pp - sorted_dists) < 5e-3
# Create mask for points with missing depth or that lie outside the image
valid_mask = np.logical_and(np.logical_and(icds[:,0] >= 0, icds[:,0] < self._webcam.color_intrinsics.width),
np.logical_and(icds[:,1] >= 0, icds[:,1] < self._webcam.color_intrinsics.height))
valid_mask = np.logical_and(valid_mask, sorted_depths != 0.0)
valid_mask = np.logical_and(valid_mask, depth_delta_mask)
valid_icds = icds[valid_mask]
colors = color_im.data[valid_icds[:,1],valid_icds[:,0],:]
color_im_data = np.zeros((target_shape[0] * target_shape[1], target_shape[2]), dtype=np.uint8)
color_im_data[valid_mask] = colors
color_im_data[order] = color_im_data.copy()
color_im_data = color_im_data.reshape(target_shape)
return ColorImage(color_im_data, frame=self._frame)
|
python
|
{
"resource": ""
}
|
q12290
|
RgbdSensorFactory.sensor
|
train
|
def sensor(sensor_type, cfg):
""" Creates a camera sensor of the specified type.
Parameters
----------
sensor_type : :obj:`str`
the type of the sensor (real or virtual)
cfg : :obj:`YamlConfig`
dictionary of parameters for sensor initialization
"""
sensor_type = sensor_type.lower()
if sensor_type == 'kinect2':
s = Kinect2Sensor(packet_pipeline_mode=cfg['pipeline_mode'],
device_num=cfg['device_num'],
frame=cfg['frame'])
elif sensor_type == 'bridged_kinect2':
s = KinectSensorBridged(quality=cfg['quality'], frame=cfg['frame'])
elif sensor_type == 'primesense':
flip_images = True
if 'flip_images' in cfg.keys():
flip_images = cfg['flip_images']
s = PrimesenseSensor(auto_white_balance=cfg['auto_white_balance'],
flip_images=flip_images,
frame=cfg['frame'])
elif sensor_type == 'virtual':
s = VirtualSensor(cfg['image_dir'],
frame=cfg['frame'])
elif sensor_type == 'tensor_dataset':
s = TensorDatasetVirtualSensor(cfg['dataset_dir'],
frame=cfg['frame'])
elif sensor_type == 'primesense_ros':
s = PrimesenseSensor_ROS(frame=cfg['frame'])
elif sensor_type == 'ensenso':
s = EnsensoSensor(frame=cfg['frame'])
elif sensor_type == 'phoxi':
s = PhoXiSensor(frame=cfg['frame'],
device_name=cfg['device_name'],
size=cfg['size'])
elif sensor_type == 'webcam':
s = WebcamSensor(frame=cfg['frame'],
device_id=cfg['device_id'])
elif sensor_type == 'colorized_phoxi':
s = ColorizedPhoXiSensor(frame=cfg['frame'], phoxi_config=cfg['phoxi_config'],
webcam_config=cfg['webcam_config'], calib_dir=cfg['calib_dir'])
elif sensor_type == 'realsense':
s = RealSenseSensor(
cam_id=cfg['cam_id'],
filter_depth=cfg['filter_depth'],
frame=cfg['frame'],
)
else:
raise ValueError('RGBD sensor type %s not supported' %(sensor_type))
return s
|
python
|
{
"resource": ""
}
|
q12291
|
FeatureMatcher.get_point_index
|
train
|
def get_point_index(point, all_points, eps = 1e-4):
""" Get the index of a point in an array """
inds = np.where(np.linalg.norm(point - all_points, axis=1) < eps)
if inds[0].shape[0] == 0:
return -1
return inds[0][0]
|
python
|
{
"resource": ""
}
|
q12292
|
RawDistanceFeatureMatcher.match
|
train
|
def match(self, source_obj_features, target_obj_features):
"""
Matches features between two graspable objects based on a full distance matrix.
Parameters
----------
source_obj_features : :obj:`BagOfFeatures`
bag of the source objects features
target_obj_features : :obj:`BagOfFeatures`
bag of the target objects features
Returns
-------
corrs : :obj:`Correspondences`
the correspondences between source and target
"""
if not isinstance(source_obj_features, f.BagOfFeatures):
raise ValueError('Must supply source bag of object features')
if not isinstance(target_obj_features, f.BagOfFeatures):
raise ValueError('Must supply target bag of object features')
# source feature descriptors and keypoints
source_descriptors = source_obj_features.descriptors
target_descriptors = target_obj_features.descriptors
source_keypoints = source_obj_features.keypoints
target_keypoints = target_obj_features.keypoints
#calculate distance between this model's descriptors and each of the other_model's descriptors
dists = spatial.distance.cdist(source_descriptors, target_descriptors)
#calculate the indices of the target_model that minimize the distance to the descriptors in this model
source_closest_descriptors = dists.argmin(axis=1)
target_closest_descriptors = dists.argmin(axis=0)
match_indices = []
source_matched_points = np.zeros((0,3))
target_matched_points = np.zeros((0,3))
#calculate which points/indices the closest descriptors correspond to
for i, j in enumerate(source_closest_descriptors):
# for now, only keep correspondences that are a 2-way match
if target_closest_descriptors[j] == i:
match_indices.append(j)
source_matched_points = np.r_[source_matched_points, source_keypoints[i:i+1, :]]
target_matched_points = np.r_[target_matched_points, target_keypoints[j:j+1, :]]
else:
match_indices.append(-1)
return Correspondences(match_indices, source_matched_points, target_matched_points)
|
python
|
{
"resource": ""
}
|
q12293
|
PointToPlaneFeatureMatcher.match
|
train
|
def match(self, source_points, target_points, source_normals, target_normals):
"""
Matches points between two point-normal sets. Uses the closest ip to choose matches, with distance for thresholding only.
Parameters
----------
source_point_cloud : Nx3 :obj:`numpy.ndarray`
source object points
target_point_cloud : Nx3 :obj:`numpy.ndarray`
target object points
source_normal_cloud : Nx3 :obj:`numpy.ndarray`
source object outward-pointing normals
target_normal_cloud : Nx3 :obj`numpy.ndarray`
target object outward-pointing normals
Returns
-------
:obj`Correspondences`
the correspondences between source and target
"""
# compute the distances and inner products between the point sets
dists = ssd.cdist(source_points, target_points, 'euclidean')
ip = source_normals.dot(target_normals.T) # abs because we don't have correct orientations
source_ip = source_points.dot(target_normals.T)
target_ip = target_points.dot(target_normals.T)
target_ip = np.diag(target_ip)
target_ip = np.tile(target_ip, [source_points.shape[0], 1])
abs_diff = np.abs(source_ip - target_ip) # difference in inner products
# mark invalid correspondences
invalid_dists = np.where(dists > self.dist_thresh_)
abs_diff[invalid_dists[0], invalid_dists[1]] = np.inf
invalid_norms = np.where(ip < self.norm_thresh_)
abs_diff[invalid_norms[0], invalid_norms[1]] = np.inf
# choose the closest matches
match_indices = np.argmin(abs_diff, axis=1)
match_vals = np.min(abs_diff, axis=1)
invalid_matches = np.where(match_vals == np.inf)
match_indices[invalid_matches[0]] = -1
return NormalCorrespondences(match_indices, source_points, target_points, source_normals, target_normals)
|
python
|
{
"resource": ""
}
|
q12294
|
RealSenseSensor._config_pipe
|
train
|
def _config_pipe(self):
"""Configures the pipeline to stream color and depth.
"""
self._cfg.enable_device(self.id)
# configure the color stream
self._cfg.enable_stream(
rs.stream.color,
RealSenseSensor.COLOR_IM_WIDTH,
RealSenseSensor.COLOR_IM_HEIGHT,
rs.format.bgr8,
RealSenseSensor.FPS
)
# configure the depth stream
self._cfg.enable_stream(
rs.stream.depth,
RealSenseSensor.DEPTH_IM_WIDTH,
360 if self._depth_align else RealSenseSensor.DEPTH_IM_HEIGHT,
rs.format.z16,
RealSenseSensor.FPS
)
|
python
|
{
"resource": ""
}
|
q12295
|
RealSenseSensor._set_depth_scale
|
train
|
def _set_depth_scale(self):
"""Retrieve the scale of the depth sensor.
"""
sensor = self._profile.get_device().first_depth_sensor()
self._depth_scale = sensor.get_depth_scale()
|
python
|
{
"resource": ""
}
|
q12296
|
RealSenseSensor._set_intrinsics
|
train
|
def _set_intrinsics(self):
"""Read the intrinsics matrix from the stream.
"""
strm = self._profile.get_stream(rs.stream.color)
obj = strm.as_video_stream_profile().get_intrinsics()
self._intrinsics[0, 0] = obj.fx
self._intrinsics[1, 1] = obj.fy
self._intrinsics[0, 2] = obj.ppx
self._intrinsics[1, 2] = obj.ppy
|
python
|
{
"resource": ""
}
|
q12297
|
RealSenseSensor._read_color_and_depth_image
|
train
|
def _read_color_and_depth_image(self):
"""Read a color and depth image from the device.
"""
frames = self._pipe.wait_for_frames()
if self._depth_align:
frames = self._align.process(frames)
depth_frame = frames.get_depth_frame()
color_frame = frames.get_color_frame()
if not depth_frame or not color_frame:
logging.warning('Could not retrieve frames.')
return None, None
if self._filter_depth:
depth_frame = self._filter_depth_frame(depth_frame)
# convert to numpy arrays
depth_image = self._to_numpy(depth_frame, np.float32)
color_image = self._to_numpy(color_frame, np.uint8)
# convert depth to meters
depth_image *= self._depth_scale
# bgr to rgb
color_image = color_image[..., ::-1]
depth = DepthImage(depth_image, frame=self._frame)
color = ColorImage(color_image, frame=self._frame)
return color, depth
|
python
|
{
"resource": ""
}
|
q12298
|
EnsensoSensor._set_format
|
train
|
def _set_format(self, msg):
""" Set the buffer formatting. """
num_points = msg.height * msg.width
self._format = '<' + num_points * 'ffff'
|
python
|
{
"resource": ""
}
|
q12299
|
EnsensoSensor._set_camera_properties
|
train
|
def _set_camera_properties(self, msg):
""" Set the camera intrinsics from an info msg. """
focal_x = msg.K[0]
focal_y = msg.K[4]
center_x = msg.K[2]
center_y = msg.K[5]
im_height = msg.height
im_width = msg.width
self._camera_intr = CameraIntrinsics(self._frame, focal_x, focal_y,
center_x, center_y,
height=im_height,
width=im_width)
|
python
|
{
"resource": ""
}
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.