_id
stringlengths
2
7
title
stringlengths
1
88
partition
stringclasses
3 values
text
stringlengths
75
19.8k
language
stringclasses
1 value
meta_information
dict
q12400
PointCloudImage.open
train
def open(filename, frame='unspecified'): """Creates a PointCloudImage from a file. Parameters ---------- filename : :obj:`str` The file to load the data from. Must be one of .png, .jpg, .npy, or .npz. frame : :obj:`str` A string representing the frame of reference in which the new image lies. Returns ------- :obj:`PointCloudImage` The new PointCloudImage. """ data = Image.load_data(filename) return PointCloudImage(data, frame)
python
{ "resource": "" }
q12401
NormalCloudImage.to_normal_cloud
train
def to_normal_cloud(self): """Convert the image to a NormalCloud object. Returns ------- :obj:`autolab_core.NormalCloud` The corresponding NormalCloud. """ return NormalCloud( data=self._data.reshape( self.height * self.width, 3).T, frame=self._frame)
python
{ "resource": "" }
q12402
NormalCloudImage.open
train
def open(filename, frame='unspecified'): """Creates a NormalCloudImage from a file. Parameters ---------- filename : :obj:`str` The file to load the data from. Must be one of .png, .jpg, .npy, or .npz. frame : :obj:`str` A string representing the frame of reference in which the new image lies. Returns ------- :obj:`NormalCloudImage` The new NormalCloudImage. """ data = Image.load_data(filename) return NormalCloudImage(data, frame)
python
{ "resource": "" }
q12403
OrthographicIntrinsics.deproject
train
def deproject(self, depth_image): """Deprojects a DepthImage into a PointCloud. Parameters ---------- depth_image : :obj:`DepthImage` The 2D depth image to projet into a point cloud. Returns ------- :obj:`autolab_core.PointCloud` A 3D point cloud created from the depth image. Raises ------ ValueError If depth_image is not a valid DepthImage in the same reference frame as the camera. """ # check valid input if not isinstance(depth_image, DepthImage): raise ValueError('Must provide DepthImage object for projection') if depth_image.frame != self._frame: raise ValueError('Cannot deproject points in frame %s from camera with frame %s' %(depth_image.frame, self._frame)) # create homogeneous pixels row_indices = np.arange(depth_image.height) col_indices = np.arange(depth_image.width) pixel_grid = np.meshgrid(col_indices, row_indices) pixels = np.c_[pixel_grid[0].flatten(), pixel_grid[1].flatten()].T depth_data = depth_image.data.flatten() pixels_homog = np.r_[pixels, depth_data.reshape(1, depth_data.shape[0])] # deproject points_3d = np.linalg.inv(self.S).dot(pixels_homog - np.tile(self.t.reshape(3,1), [1, pixels_homog.shape[1]])) return PointCloud(data=points_3d, frame=self._frame)
python
{ "resource": "" }
q12404
OrthographicIntrinsics.deproject_pixel
train
def deproject_pixel(self, depth, pixel): """Deprojects a single pixel with a given depth into a 3D point. Parameters ---------- depth : float The depth value at the given pixel location. pixel : :obj:`autolab_core.Point` A 2D point representing the pixel's location in the camera image. Returns ------- :obj:`autolab_core.Point` The projected 3D point. Raises ------ ValueError If pixel is not a valid 2D Point in the same reference frame as the camera. """ if not isinstance(pixel, Point) and not pixel.dim == 2: raise ValueError('Must provide 2D Point object for pixel projection') if pixel.frame != self._frame: raise ValueError('Cannot deproject pixel in frame %s from camera with frame %s' %(pixel.frame, self._frame)) point = np.r_[pixel.data, depth] point_3d = np.linalg.inv(self.S).dot(point - self.t) return Point(data=point_3d, frame=self._frame)
python
{ "resource": "" }
q12405
OrthographicIntrinsics.save
train
def save(self, filename): """Save the CameraIntrinsics object to a .intr file. Parameters ---------- filename : :obj:`str` The .intr file to save the object to. Raises ------ ValueError If filename does not have the .intr extension. """ file_root, file_ext = os.path.splitext(filename) if file_ext.lower() != INTR_EXTENSION: raise ValueError('Extension %s not supported for OrhtographicIntrinsics. Must be stored with extension %s' %(file_ext, INTR_EXTENSION)) camera_intr_dict = copy.deepcopy(self.__dict__) f = open(filename, 'w') json.dump(camera_intr_dict, f) f.close()
python
{ "resource": "" }
q12406
PhoXiSensor._connect_to_sensor
train
def _connect_to_sensor(self): """Connect to the sensor. """ name = self._device_name try: # Check if device is actively in list rospy.wait_for_service('phoxi_camera/get_device_list') device_list = rospy.ServiceProxy('phoxi_camera/get_device_list', GetDeviceList)().out if not str(name) in device_list: logging.error('PhoXi sensor {} not in list of active devices'.format(name)) return False success = rospy.ServiceProxy('phoxi_camera/connect_camera', ConnectCamera)(name).success if not success: logging.error('Could not connect to PhoXi sensor {}'.format(name)) return False logging.debug('Connected to PhoXi Sensor {}'.format(name)) return True except rospy.ServiceException as e: logging.error('Service call failed: {}'.format(e)) return False
python
{ "resource": "" }
q12407
PhoXiSensor._depth_im_callback
train
def _depth_im_callback(self, msg): """Callback for handling depth images. """ try: self._cur_depth_im = DepthImage(self._bridge.imgmsg_to_cv2(msg) / 1000.0, frame=self._frame) except: self._cur_depth_im = None
python
{ "resource": "" }
q12408
PhoXiSensor._normal_map_callback
train
def _normal_map_callback(self, msg): """Callback for handling normal maps. """ try: self._cur_normal_map = self._bridge.imgmsg_to_cv2(msg) except: self._cur_normal_map = None
python
{ "resource": "" }
q12409
RgbdDetection.image
train
def image(self, render_mode): """ Get the image associated with a particular render mode """ if render_mode == RenderMode.SEGMASK: return self.query_im elif render_mode == RenderMode.COLOR: return self.color_im elif render_mode == RenderMode.DEPTH: return self.depth_im else: raise ValueError('Render mode %s not supported' %(render_mode))
python
{ "resource": "" }
q12410
RgbdDetectorFactory.detector
train
def detector(detector_type): """ Returns a detector of the specified type. """ if detector_type == 'point_cloud_box': return PointCloudBoxDetector() elif detector_type == 'rgbd_foreground_mask_query': return RgbdForegroundMaskQueryImageDetector() elif detector_type == 'rgbd_foreground_mask': return RgbdForegroundMaskDetector() raise ValueError('Detector type %s not understood' %(detector_type))
python
{ "resource": "" }
q12411
AlexNet._parse_config
train
def _parse_config(self, config): """ Parses a tensorflow configuration """ self._batch_size = config['batch_size'] self._im_height = config['im_height'] self._im_width = config['im_width'] self._num_channels = config['channels'] self._output_layer = config['out_layer'] self._feature_layer = config['feature_layer'] self._out_size = None if 'out_size' in config.keys(): self._out_size = config['out_size'] self._input_arr = np.zeros([self._batch_size, self._im_height, self._im_width, self._num_channels]) if self._model_dir is None: self._net_data = np.load(config['caffe_weights']).item() self._mean = np.load(config['mean_file']) self._model_filename = None else: self._net_data = None self._mean = np.load(os.path.join(self._model_dir, 'mean.npy')) self._model_filename = os.path.join(self._model_dir, 'model.ckpt')
python
{ "resource": "" }
q12412
AlexNet._load
train
def _load(self): """ Loads a model into weights """ if self._model_filename is None: raise ValueError('Model filename not specified') # read the input image self._graph = tf.Graph() with self._graph.as_default(): # read in filenames reader = tf.train.NewCheckpointReader(self._model_filename) # load AlexNet weights weights = AlexNetWeights() weights.conv1W = tf.Variable(reader.get_tensor("Variable")) weights.conv1b = tf.Variable(reader.get_tensor("Variable_1")) weights.conv2W = tf.Variable(reader.get_tensor("Variable_2")) weights.conv2b = tf.Variable(reader.get_tensor("Variable_3")) weights.conv3W = tf.Variable(reader.get_tensor("Variable_4")) weights.conv3b = tf.Variable(reader.get_tensor("Variable_5")) weights.conv4W = tf.Variable(reader.get_tensor("Variable_6")) weights.conv4b = tf.Variable(reader.get_tensor("Variable_7")) weights.conv5W = tf.Variable(reader.get_tensor("Variable_8")) weights.conv5b = tf.Variable(reader.get_tensor("Variable_9")) weights.fc6W = tf.Variable(reader.get_tensor("Variable_10")) weights.fc6b = tf.Variable(reader.get_tensor("Variable_11")) weights.fc7W = tf.Variable(reader.get_tensor("Variable_12")) weights.fc7b = tf.Variable(reader.get_tensor("Variable_13")) weights.fc8W = tf.Variable(reader.get_tensor("Variable_14")) weights.fc8b = tf.Variable(reader.get_tensor("Variable_15")) # form network self._input_node = tf.placeholder(tf.float32, (self._batch_size, self._im_height, self._im_width, self._num_channels)) self._output_tensor = self.build_alexnet(weights) self._feature_tensor = self.build_alexnet(weights, output_layer=self._feature_layer) self._initialized = True
python
{ "resource": "" }
q12413
AlexNet._initialize
train
def _initialize(self): """ Open from caffe weights """ self._graph = tf.Graph() with self._graph.as_default(): self._input_node = tf.placeholder(tf.float32, (self._batch_size, self._im_height, self._im_width, self._num_channels)) weights = self.build_alexnet_weights() self._output_tensor = self.build_alexnet(weights) self._feature_tensor = self.build_alexnet(weights, output_layer=self._feature_layer) self._initialized = True
python
{ "resource": "" }
q12414
AlexNet.open_session
train
def open_session(self): """ Open tensorflow session. Exposed for memory management. """ with self._graph.as_default(): init = tf.initialize_all_variables() self._sess = tf.Session() self._sess.run(init)
python
{ "resource": "" }
q12415
AlexNet.close_session
train
def close_session(self): """ Close tensorflow session. Exposes for memory management. """ with self._graph.as_default(): self._sess.close() self._sess = None
python
{ "resource": "" }
q12416
AlexNet.predict
train
def predict(self, image_arr, featurize=False): """ Predict a set of images in batches. Parameters ---------- image_arr : NxHxWxC :obj:`numpy.ndarray` input set of images in a num_images x image height x image width x image channels array (must match parameters of network) featurize : bool whether or not to use the featurization layer or classification output layer Returns ------- :obj:`numpy.ndarray` num_images x feature_dim containing the output values for each input image """ # setup prediction num_images = image_arr.shape[0] output_arr = None # predict by filling in image array in batches close_sess = False if not self._initialized and self._dynamic_load: self._load() with self._graph.as_default(): if self._sess is None: close_sess = True self.open_session() i = 0 while i < num_images: dim = min(self._batch_size, num_images-i) cur_ind = i end_ind = cur_ind + dim self._input_arr[:dim,:,:,:] = image_arr[cur_ind:end_ind,:,:,:] - self._mean if featurize: output = self._sess.run(self._feature_tensor, feed_dict={self._input_node: self._input_arr}) else: output = self._sess.run(self._output_tensor, feed_dict={self._input_node: self._input_arr}) if output_arr is None: output_arr = output else: output_arr = np.r_[output_arr, output] i = end_ind if close_sess: self.close_session() return output_arr[:num_images,...]
python
{ "resource": "" }
q12417
AlexNet.build_alexnet_weights
train
def build_alexnet_weights(self): """ Build a set of convnet weights for AlexNet """ net_data = self._net_data #conv1 #conv(11, 11, 96, 4, 4, padding='VALID', name='conv1') k_h = 11; k_w = 11; c_o = 96; s_h = 4; s_w = 4 conv1W = tf.Variable(net_data["conv1"][0]) conv1b = tf.Variable(net_data["conv1"][1]) #conv2 #conv(5, 5, 256, 1, 1, group=2, name='conv2') k_h = 5; k_w = 5; c_o = 256; s_h = 1; s_w = 1; group = 2 conv2W = tf.Variable(net_data["conv2"][0]) conv2b = tf.Variable(net_data["conv2"][1]) #conv3 #conv(3, 3, 384, 1, 1, name='conv3') k_h = 3; k_w = 3; c_o = 384; s_h = 1; s_w = 1; group = 1 conv3W = tf.Variable(net_data["conv3"][0]) conv3b = tf.Variable(net_data["conv3"][1]) #conv4 #conv(3, 3, 384, 1, 1, group=2, name='conv4') k_h = 3; k_w = 3; c_o = 384; s_h = 1; s_w = 1; group = 2 conv4W = tf.Variable(net_data["conv4"][0]) conv4b = tf.Variable(net_data["conv4"][1]) #conv5 #conv(3, 3, 256, 1, 1, group=2, name='conv5') k_h = 3; k_w = 3; c_o = 256; s_h = 1; s_w = 1; group = 2 conv5W = tf.Variable(net_data["conv5"][0]) conv5b = tf.Variable(net_data["conv5"][1]) #fc6 #fc(4096, name='fc6') fc6_in_size = net_data["fc6"][0].shape[0] fc6_out_size = net_data["fc6"][0].shape[1] fc6W = tf.Variable(net_data["fc6"][0]) fc6b = tf.Variable(net_data["fc6"][1]) #fc7 #fc(4096, name='fc7') fc7_in_size = fc6_out_size fc7_out_size = net_data["fc7"][0].shape[1] fc7W = tf.Variable(net_data["fc7"][0]) fc7b = tf.Variable(net_data["fc7"][1]) #fc8 #fc(num_cats, relu=False, name='fc8') fc8_in_size = fc7_out_size fc8_out_size = self._out_size fc8W = tf.Variable(tf.truncated_normal([fc8_in_size, fc8_out_size], stddev=0.01, seed=None)) fc8b = tf.Variable(tf.constant(0.0, shape=[fc8_out_size])) # make return object weights = AlexNetWeights() weights.conv1W = conv1W weights.conv1b = conv1b weights.conv2W = conv2W weights.conv2b = conv2b weights.conv3W = conv3W weights.conv3b = conv3b weights.conv4W = conv4W weights.conv4b = conv4b weights.conv5W = conv5W weights.conv5b = conv5b weights.fc6W = fc6W weights.fc6b = fc6b weights.fc7W = fc7W weights.fc7b = fc7b weights.fc8W = fc8W weights.fc8b = fc8b return weights
python
{ "resource": "" }
q12418
CNNBatchFeatureExtractor._forward_pass
train
def _forward_pass(self, images): """ Forward pass a list of images through the CNN """ # form image array num_images = len(images) if num_images == 0: return None for image in images: if not isinstance(image, Image): new_images = [] for image in images: if len(image.shape) > 2: new_images.append(ColorImage(image, frame='unspecified')) elif image.dtype == np.float32 or image.dtype == np.float64: new_images.append(DepthImage(image, frame='unspecified')) else: raise ValueError('Image type not understood') images = new_images break im_height = images[0].height im_width = images[0].width channels = images[0].channels tensor_channels = 3 image_arr = np.zeros([num_images, im_height, im_width, tensor_channels]) for j, image in enumerate(images): if channels == 3: image_arr[j,:,:,:] = image.raw_data else: image_arr[j,:,:,:] = np.tile(image.raw_data, [1,1,1,3]) # predict fp_start = time.time() final_blobs = self.cnn_.featurize(image_arr) fp_stop = time.time() logging.debug('Featurization took %f sec per image' %((fp_stop - fp_start) / len(images))) return final_blobs.reshape(final_blobs.shape[0], -1)
python
{ "resource": "" }
q12419
Engine.repositories
train
def repositories(self): """ Returns a DataFrame with the data about the repositories found at the specified repositories path in the form of siva files. >>> repos_df = engine.repositories :rtype: RepositoriesDataFrame """ return RepositoriesDataFrame(self.__engine.getRepositories(), self.session, self.__implicits)
python
{ "resource": "" }
q12420
Engine.blobs
train
def blobs(self, repository_ids=[], reference_names=[], commit_hashes=[]): """ Retrieves the blobs of a list of repositories, reference names and commit hashes. So the result will be a DataFrame of all the blobs in the given commits that are in the given references that belong to the given repositories. >>> blobs_df = engine.blobs(repo_ids, ref_names, hashes) Calling this function with no arguments is the same as: >>> engine.repositories.references.commits.tree_entries.blobs :param repository_ids: list of repository ids to filter by (optional) :type repository_ids: list of strings :param reference_names: list of reference names to filter by (optional) :type reference_names: list of strings :param commit_hashes: list of hashes to filter by (optional) :type commit_hashes: list of strings :rtype: BlobsDataFrame """ if not isinstance(repository_ids, list): raise Exception("repository_ids must be a list") if not isinstance(reference_names, list): raise Exception("reference_names must be a list") if not isinstance(commit_hashes, list): raise Exception("commit_hashes must be a list") return BlobsDataFrame(self.__engine.getBlobs(repository_ids, reference_names, commit_hashes), self.session, self.__implicits)
python
{ "resource": "" }
q12421
Engine.from_metadata
train
def from_metadata(self, db_path, db_name='engine_metadata.db'): """ Registers in the current session the views of the MetadataSource so the data is obtained from the metadata database instead of reading the repositories with the DefaultSource. :param db_path: path to the folder that contains the database. :type db_path: str :param db_name: name of the database file (engine_metadata.db) by default. :type db_name: str :returns: the same instance of the engine :rtype: Engine """ self.__engine.fromMetadata(db_path, db_name) return self
python
{ "resource": "" }
q12422
SourcedDataFrame.__generate_method
train
def __generate_method(name): """ Wraps the DataFrame's original method by name to return the derived class instance. """ try: func = getattr(DataFrame, name) except AttributeError as e: # PySpark version is too old def func(self, *args, **kwargs): raise e return func wraps = getattr(functools, "wraps", lambda _: lambda f: f) # py3.4+ @wraps(func) def _wrapper(self, *args, **kwargs): dataframe = func(self, *args, **kwargs) if self.__class__ != SourcedDataFrame \ and isinstance(self, SourcedDataFrame) \ and isinstance(dataframe, DataFrame): return self.__class__(dataframe._jdf, self._session, self._implicits) return dataframe return _wrapper
python
{ "resource": "" }
q12423
RepositoriesDataFrame.references
train
def references(self): """ Returns the joined DataFrame of references and repositories. >>> refs_df = repos_df.references :rtype: ReferencesDataFrame """ return ReferencesDataFrame(self._engine_dataframe.getReferences(), self._session, self._implicits)
python
{ "resource": "" }
q12424
RepositoriesDataFrame.remote_references
train
def remote_references(self): """ Returns a new DataFrame with only the remote references of the current repositories. >>> remote_refs_df = repos_df.remote_references :rtype: ReferencesDataFrame """ return ReferencesDataFrame(self._engine_dataframe.getRemoteReferences(), self._session, self._implicits)
python
{ "resource": "" }
q12425
RepositoriesDataFrame.master_ref
train
def master_ref(self): """ Filters the current DataFrame references to only contain those rows whose reference is master. >>> master_df = repos_df.master_ref :rtype: ReferencesDataFrame """ return ReferencesDataFrame(self._engine_dataframe.getReferences().getHEAD(), self._session, self._implicits)
python
{ "resource": "" }
q12426
ReferencesDataFrame.head_ref
train
def head_ref(self): """ Filters the current DataFrame to only contain those rows whose reference is HEAD. >>> heads_df = refs_df.head_ref :rtype: ReferencesDataFrame """ return ReferencesDataFrame(self._engine_dataframe.getHEAD(), self._session, self._implicits)
python
{ "resource": "" }
q12427
ReferencesDataFrame.master_ref
train
def master_ref(self): """ Filters the current DataFrame to only contain those rows whose reference is master. >>> master_df = refs_df.master_ref :rtype: ReferencesDataFrame """ return ReferencesDataFrame(self._engine_dataframe.getMaster(), self._session, self._implicits) return self.ref('refs/heads/master')
python
{ "resource": "" }
q12428
ReferencesDataFrame.ref
train
def ref(self, ref): """ Filters the current DataFrame to only contain those rows whose reference is the given reference name. >>> heads_df = refs_df.ref('refs/heads/HEAD') :param ref: Reference to get :type ref: str :rtype: ReferencesDataFrame """ return ReferencesDataFrame(self.filter(self.name == ref)._jdf, self._session, self._implicits)
python
{ "resource": "" }
q12429
ReferencesDataFrame.all_reference_commits
train
def all_reference_commits(self): """ Returns the current DataFrame joined with the commits DataFrame, with all of the commits in all references. >>> commits_df = refs_df.all_reference_commits Take into account that getting all the commits will lead to a lot of repeated tree entries and blobs, thus making your query very slow. Most of the time, you just want the HEAD commit of each reference: >>> commits_df = refs_df.commits :rtype: CommitsDataFrame """ return CommitsDataFrame(self._engine_dataframe.getAllReferenceCommits(), self._session, self._implicits)
python
{ "resource": "" }
q12430
ReferencesDataFrame.blobs
train
def blobs(self): """ Returns this DataFrame joined with the blobs DataSource. >>> blobs_df = refs_df.blobs :rtype: BlobsDataFrame """ return BlobsDataFrame(self._engine_dataframe.getBlobs(), self._session, self._implicits)
python
{ "resource": "" }
q12431
CommitsDataFrame.tree_entries
train
def tree_entries(self): """ Returns this DataFrame joined with the tree entries DataSource. >>> entries_df = commits_df.tree_entries :rtype: TreeEntriesDataFrame """ return TreeEntriesDataFrame(self._engine_dataframe.getTreeEntries(), self._session, self._implicits)
python
{ "resource": "" }
q12432
BlobsDataFrame.classify_languages
train
def classify_languages(self): """ Returns a new DataFrame with the language data of any blob added to its row. >>> blobs_lang_df = blobs_df.classify_languages :rtype: BlobsWithLanguageDataFrame """ return BlobsWithLanguageDataFrame(self._engine_dataframe.classifyLanguages(), self._session, self._implicits)
python
{ "resource": "" }
q12433
BlobsDataFrame.extract_uasts
train
def extract_uasts(self): """ Returns a new DataFrame with the parsed UAST data of any blob added to its row. >>> blobs_df.extract_uasts :rtype: UASTsDataFrame """ return UASTsDataFrame(self._engine_dataframe.extractUASTs(), self._session, self._implicits)
python
{ "resource": "" }
q12434
UASTsDataFrame.query_uast
train
def query_uast(self, query, query_col='uast', output_col='result'): """ Queries the UAST of a file with the given query to get specific nodes. >>> rows = uasts_df.query_uast('//*[@roleIdentifier]').collect() >>> rows = uasts_df.query_uast('//*[@roleIdentifier]', 'foo', 'bar') :param query: xpath query :type query: str :param query_col: column containing the list of nodes to query :type query_col: str :param output_col: column to place the result of the query :type output_col: str :rtype: UASTsDataFrame """ return UASTsDataFrame(self._engine_dataframe.queryUAST(query, query_col, output_col), self._session, self._implicits)
python
{ "resource": "" }
q12435
UASTsDataFrame.extract_tokens
train
def extract_tokens(self, input_col='result', output_col='tokens'): """ Extracts the tokens from UAST nodes. >>> rows = uasts_df.query_uast('//*[@roleIdentifier]').extract_tokens().collect() >>> rows = uasts_df.query_uast('//*[@roleIdentifier]', output_col='foo').extract_tokens('foo', 'bar') :param input_col: column containing the list of nodes to extract tokens from :type input_col: str :param output_col: column to place the resultant tokens :type output_col: str :rtype: UASTsDataFrame """ return UASTsDataFrame(self._engine_dataframe.extractTokens(input_col, output_col), self._session, self._implicits)
python
{ "resource": "" }
q12436
GSBlobStore.delete
train
def delete(self, bucket: str, key: str): """ Deletes an object in a bucket. If the operation definitely did not delete anything, return False. Any other return value is treated as something was possibly deleted. """ bucket_obj = self._ensure_bucket_loaded(bucket) try: bucket_obj.delete_blob(key) except NotFound: return False
python
{ "resource": "" }
q12437
API_WRAPPER.request
train
def request(self, shards, full_response, return_status_tuple=False): """Request the API This method is wrapped by similar functions """ try: resp = self._request(shards) if return_status_tuple: return (self._parser(resp, full_response), True) else: return self._parser(resp, full_response) except (ConflictError, CloudflareServerError, InternalServerError) as exc: # The Retry system if return_status_tuple: return (None, False) elif self.api_mother.do_retry: # TODO # request_limit = 0 sleep(self.api_mother.retry_sleep) resp = self.request(shards, full_response, True) while not resp[1]: sleep(self.api_mother.retry_sleep) resp = self.request(shards, full_response, True) return resp[0] else: raise exc
python
{ "resource": "" }
q12438
API_WRAPPER.command
train
def command(self, command, full_response=False, **kwargs): # pragma: no cover """Method Interface to the command API for Nationstates""" command = Shard(c=command) return self.get_shards(*(command, Shard(**kwargs)), full_response=full_response)
python
{ "resource": "" }
q12439
Nation.send_telegram
train
def send_telegram(telegram=None, client_key=None, tgid=None, key=None): # pragma: no cover """Sends Telegram. Can either provide a telegram directly, or provide the api details and created internally """ if telegram: pass else: telegram = self.api_mother.telegram(client_key, tgid, key) telegram.send_telegram(self.nation_name)
python
{ "resource": "" }
q12440
Nation.verify
train
def verify(self, checksum=None, token=None, full_response=False): """Wraps around the verify API""" payload = {"checksum":checksum, "a":"verify"} if token: payload.update({"token":token}) return self.get_shards(Shard(**payload), full_response=True)
python
{ "resource": "" }
q12441
BlobStore.upload_file_handle
train
def upload_file_handle( self, bucket: str, key: str, src_file_handle: typing.BinaryIO, content_type: str=None, metadata: dict=None): """ Saves the contents of a file handle as the contents of an object in a bucket. """ raise NotImplementedError()
python
{ "resource": "" }
q12442
S3BlobStore.find_next_missing_parts
train
def find_next_missing_parts( self, bucket: str, key: str, upload_id: str, part_count: int, search_start: int=1, return_count: int=1) -> typing.Sequence[int]: """ Given a `bucket`, `key`, and `upload_id`, find the next N missing parts of a multipart upload, where N=`return_count`. If `search_start` is provided, start the search at part M, where M=`search_start`. `part_count` is the number of parts expected for the upload. Note that the return value may contain fewer than N parts. """ if part_count < search_start: raise ValueError("") result = list() while True: kwargs = dict(Bucket=bucket, Key=key, UploadId=upload_id) # type: dict if search_start > 1: kwargs['PartNumberMarker'] = search_start - 1 # retrieve all the parts after the one we *think* we need to start from. parts_resp = self.s3_client.list_parts(**kwargs) # build a set of all the parts known to be uploaded, detailed in this request. parts_map = set() # type: typing.Set[int] for part_detail in parts_resp.get('Parts', []): parts_map.add(part_detail['PartNumber']) while True: if search_start not in parts_map: # not found, add it to the list of parts we still need. result.append(search_start) # have we met our requirements? if len(result) == return_count or search_start == part_count: return result search_start += 1 if parts_resp['IsTruncated'] and search_start == parts_resp['NextPartNumberMarker']: # finished examining the results of this batch, move onto the next one break
python
{ "resource": "" }
q12443
scanf_compile
train
def scanf_compile(format, collapseWhitespace=True): """ Translate the format into a regular expression For example: >>> format_re, casts = scanf_compile('%s - %d errors, %d warnings') >>> print format_re.pattern (\S+) \- ([+-]?\d+) errors, ([+-]?\d+) warnings Translated formats are cached for faster reuse """ format_pat = "" cast_list = [] i = 0 length = len(format) while i < length: found = None for token, pattern, cast in scanf_translate: found = token.match(format, i) if found: if cast: # cast != None cast_list.append(cast) groups = found.groupdict() or found.groups() if groups: pattern = pattern % groups format_pat += pattern i = found.end() break if not found: char = format[i] # escape special characters if char in "|^$()[]-.+*?{}<>\\": format_pat += "\\" format_pat += char i += 1 if DEBUG: print("DEBUG: %r -> %s" % (format, format_pat)) if collapseWhitespace: format_pat = re.sub(r'\s+', r'\\s+', format_pat) format_re = re.compile(format_pat) return format_re, cast_list
python
{ "resource": "" }
q12444
extractdata
train
def extractdata(pattern, text=None, filepath=None): """ Read through an entire file or body of text one line at a time. Parse each line that matches the supplied pattern string and ignore the rest. If *text* is supplied, it will be parsed according to the *pattern* string. If *text* is not supplied, the file at *filepath* will be opened and parsed. """ y = [] if text is None: textsource = open(filepath, 'r') else: textsource = text.splitlines() for line in textsource: match = scanf(pattern, line) if match: if len(y) == 0: y = [[s] for s in match] else: for i, ydata in enumerate(y): ydata.append(match[i]) if text is None: textsource.close() return y
python
{ "resource": "" }
q12445
Nationstates.nation
train
def nation(self, nation_name, password=None, autologin=None): """Setup access to the Nation API with the Nation object :param nation_name: Name of the nation :param password: (Optional) password for this nation :param autologin (Optional) autologin for this nation :type nation_name: str :type password: str :type autologin: str :returns: Nation Object based off nation_name :rtype: Nation """ return Nation(nation_name, self, password=password, autologin=autologin)
python
{ "resource": "" }
q12446
Nationstates.wa
train
def wa(self, chamber): """Setup access to the World Assembly API with the WorldAssembly object :param chamber: Chamber of the WA :type chamber: str, int :returns: WorldAssembly Object based off region_name :rtype: WorldAssembly """ if isinstance(chamber, int): chamber = str(chamber) return WorldAssembly(chamber, self)
python
{ "resource": "" }
q12447
apply_patch
train
def apply_patch(diffs): """ Not ready for use yet """ pass if isinstance(diffs, patch.diff): diffs = [diffs] for diff in diffs: if diff.header.old_path == '/dev/null': text = [] else: with open(diff.header.old_path) as f: text = f.read() new_text = apply_diff(diff, text) with open(diff.header.new_path, 'w') as f: f.write(new_text)
python
{ "resource": "" }
q12448
b64decode_url
train
def b64decode_url(istr): """ JWT Tokens may be truncated without the usual trailing padding '=' symbols. Compensate by padding to the nearest 4 bytes. """ istr = encode_safe(istr) try: return urlsafe_b64decode(istr + '=' * (4 - (len(istr) % 4))) except TypeError as e: raise Error('Unable to decode base64: %s' % (e))
python
{ "resource": "" }
q12449
_validate
train
def _validate(claims, validate_claims, expiry_seconds): """ Validate expiry related claims. If validate_claims is False, do nothing. Otherwise, validate the exp and nbf claims if they are present, and validate the iat claim if expiry_seconds is provided. """ if not validate_claims: return now = time() # TODO: implement support for clock skew # The exp (expiration time) claim identifies the expiration time on or # after which the JWT MUST NOT be accepted for processing. The # processing of the exp claim requires that the current date/time MUST # be before the expiration date/time listed in the exp claim. try: expiration_time = claims[CLAIM_EXPIRATION_TIME] except KeyError: pass else: _check_expiration_time(now, expiration_time) # The iat (issued at) claim identifies the time at which the JWT was # issued. This claim can be used to determine the age of the JWT. # If expiry_seconds is provided, and the iat claims is present, # determine the age of the token and check if it has expired. try: issued_at = claims[CLAIM_ISSUED_AT] except KeyError: pass else: if expiry_seconds is not None: _check_expiration_time(now, issued_at + expiry_seconds) # The nbf (not before) claim identifies the time before which the JWT # MUST NOT be accepted for processing. The processing of the nbf claim # requires that the current date/time MUST be after or equal to the # not-before date/time listed in the nbf claim. try: not_before = claims[CLAIM_NOT_BEFORE] except KeyError: pass else: _check_not_before(now, not_before)
python
{ "resource": "" }
q12450
gauge
train
def gauge(key, gauge=None, default=float("nan"), **dims): """Adds gauge with dimensions to the global pyformance registry""" return global_registry().gauge(key, gauge=gauge, default=default, **dims)
python
{ "resource": "" }
q12451
count_calls_with_dims
train
def count_calls_with_dims(**dims): """Decorator to track the number of times a function is called with with dimensions. """ def counter_wrapper(fn): @functools.wraps(fn) def fn_wrapper(*args, **kwargs): counter("%s_calls" % pyformance.registry.get_qualname(fn), **dims).inc() return fn(*args, **kwargs) return fn_wrapper return counter_wrapper
python
{ "resource": "" }
q12452
meter_calls_with_dims
train
def meter_calls_with_dims(**dims): """Decorator to track the rate at which a function is called with dimensions. """ def meter_wrapper(fn): @functools.wraps(fn) def fn_wrapper(*args, **kwargs): meter("%s_calls" % pyformance.registry.get_qualname(fn), **dims).mark() return fn(*args, **kwargs) return fn_wrapper return meter_wrapper
python
{ "resource": "" }
q12453
hist_calls
train
def hist_calls(fn): """ Decorator to check the distribution of return values of a function. """ @functools.wraps(fn) def wrapper(*args, **kwargs): _histogram = histogram( "%s_calls" % pyformance.registry.get_qualname(fn)) rtn = fn(*args, **kwargs) if type(rtn) in (int, float): _histogram.add(rtn) return rtn return wrapper
python
{ "resource": "" }
q12454
hist_calls_with_dims
train
def hist_calls_with_dims(**dims): """Decorator to check the distribution of return values of a function with dimensions. """ def hist_wrapper(fn): @functools.wraps(fn) def fn_wrapper(*args, **kwargs): _histogram = histogram( "%s_calls" % pyformance.registry.get_qualname(fn), **dims) rtn = fn(*args, **kwargs) if type(rtn) in (int, float): _histogram.add(rtn) return rtn return fn_wrapper return hist_wrapper
python
{ "resource": "" }
q12455
time_calls_with_dims
train
def time_calls_with_dims(**dims): """Decorator to time the execution of the function with dimensions.""" def time_wrapper(fn): @functools.wraps(fn) def fn_wrapper(*args, **kwargs): _timer = timer("%s_calls" % pyformance.registry.get_qualname(fn), **dims) with _timer.time(fn=pyformance.registry.get_qualname(fn)): return fn(*args, **kwargs) return fn_wrapper return time_wrapper
python
{ "resource": "" }
q12456
MetricsRegistry.add
train
def add(self, key, metric, **dims): """Adds custom metric instances to the registry with dimensions which are not created with their constructors default arguments """ return super(MetricsRegistry, self).add( self.metadata.register(key, **dims), metric)
python
{ "resource": "" }
q12457
_BaseSignalFxIngestClient.send
train
def send(self, cumulative_counters=None, gauges=None, counters=None): """Send the given metrics to SignalFx. Args: cumulative_counters (list): a list of dictionaries representing the cumulative counters to report. gauges (list): a list of dictionaries representing the gauges to report. counters (list): a list of dictionaries representing the counters to report. """ if not gauges and not cumulative_counters and not counters: return data = { 'cumulative_counter': cumulative_counters, 'gauge': gauges, 'counter': counters, } _logger.debug('Sending datapoints to SignalFx: %s', data) for metric_type, datapoints in data.items(): if not datapoints: continue if not isinstance(datapoints, list): raise TypeError('Datapoints not of type list %s', datapoints) for datapoint in datapoints: self._add_extra_dimensions(datapoint) self._add_to_queue(metric_type, datapoint) # Ensure the sending thread is running. self._start_thread()
python
{ "resource": "" }
q12458
_BaseSignalFxIngestClient.send_event
train
def send_event(self, event_type, category=None, dimensions=None, properties=None, timestamp=None): """Send an event to SignalFx. Args: event_type (string): the event type (name of the event time series). category (string): the category of the event. dimensions (dict): a map of event dimensions. properties (dict): a map of extra properties on that event. timestamp (float): timestamp when the event has occured """ if category and category not in SUPPORTED_EVENT_CATEGORIES: raise ValueError('Event category is not one of the supported' + 'types: {' + ', '.join(SUPPORTED_EVENT_CATEGORIES) + '}') data = { 'eventType': event_type, 'category': category, 'dimensions': dimensions or {}, 'properties': properties or {}, 'timestamp': int(timestamp) if timestamp else None, } _logger.debug('Sending event to SignalFx: %s', data) self._add_extra_dimensions(data) return self._send_event(event_data=data, url='{0}/{1}'.format( self._endpoint, self._INGEST_ENDPOINT_EVENT_SUFFIX), session=self._session)
python
{ "resource": "" }
q12459
_BaseSignalFxIngestClient.stop
train
def stop(self, msg='Thread stopped'): """Stop send thread and flush points for a safe exit.""" with self._lock: if not self._thread_running: return self._thread_running = False self._queue.put(_BaseSignalFxIngestClient._QUEUE_STOP) self._send_thread.join() _logger.debug(msg)
python
{ "resource": "" }
q12460
ProtoBufSignalFxIngestClient._assign_value_by_type
train
def _assign_value_by_type(self, pbuf_obj, value, _bool=True, _float=True, _integer=True, _string=True, error_prefix=''): """Assigns the supplied value to the appropriate protobuf value type""" # bool inherits int, so bool instance check must be executed prior to # checking for integer types if isinstance(value, bool) and _bool is True: pbuf_obj.value.boolValue = value elif isinstance(value, six.integer_types) and \ not isinstance(value, bool) and _integer is True: if value < INTEGER_MIN or value > INTEGER_MAX: raise ValueError( ('{}: {} exceeds signed 64 bit integer range ' 'as defined by ProtocolBuffers ({} to {})') .format(error_prefix, str(value), str(INTEGER_MIN), str(INTEGER_MAX))) pbuf_obj.value.intValue = value elif isinstance(value, float) and _float is True: pbuf_obj.value.doubleValue = value elif isinstance(value, six.string_types) and _string is True: pbuf_obj.value.strValue = value else: raise ValueError( '{}: {} is of invalid type {}' .format(error_prefix, str(value), str(type(value))))
python
{ "resource": "" }
q12461
ProtoBufSignalFxIngestClient._assign_value
train
def _assign_value(self, pbuf_dp, value): """Assigns a value to the protobuf obj""" self._assign_value_by_type(pbuf_dp, value, _bool=False, error_prefix='Invalid value')
python
{ "resource": "" }
q12462
Computation.stream
train
def stream(self): """Iterate over the messages from the computation's output. Control and metadata messages are intercepted and interpreted to enhance this Computation's object knowledge of the computation's context. Data and event messages are yielded back to the caller as a generator. """ iterator = iter(self._stream) while self._state < Computation.STATE_COMPLETED: try: message = next(iterator) except StopIteration: if self._state < Computation.STATE_COMPLETED: self._stream = self._execute() iterator = iter(self._stream) continue if isinstance(message, messages.StreamStartMessage): self._state = Computation.STATE_STREAM_STARTED continue if isinstance(message, messages.JobStartMessage): self._state = Computation.STATE_COMPUTATION_STARTED self._id = message.handle yield message continue if isinstance(message, messages.JobProgressMessage): yield message continue if isinstance(message, messages.ChannelAbortMessage): self._state = Computation.STATE_ABORTED raise errors.ComputationAborted(message.abort_info) if isinstance(message, messages.EndOfChannelMessage): self._state = Computation.STATE_COMPLETED continue # Intercept metadata messages to accumulate received metadata... if isinstance(message, messages.MetadataMessage): self._metadata[message.tsid] = message.properties yield message continue # ...as well as expired-tsid messages to clean it up. if isinstance(message, messages.ExpiredTsIdMessage): if message.tsid in self._metadata: del self._metadata[message.tsid] yield message continue if isinstance(message, messages.InfoMessage): self._process_info_message(message.message) self._batch_count_detected = True if self._current_batch_message: yield self._get_batch_to_yield() continue # Accumulate data messages and release them when we have received # all batches for the same logical timestamp. if isinstance(message, messages.DataMessage): self._state = Computation.STATE_DATA_RECEIVED if not self._batch_count_detected: self._expected_batches += 1 if not self._current_batch_message: self._current_batch_message = message self._current_batch_count = 1 elif (message.logical_timestamp_ms == self._current_batch_message.logical_timestamp_ms): self._current_batch_message.add_data(message.data) self._current_batch_count += 1 else: self._batch_count_detected = True if (self._batch_count_detected and self._current_batch_count == self._expected_batches): yield self._get_batch_to_yield() continue if isinstance(message, messages.EventMessage): yield message continue if isinstance(message, messages.ErrorMessage): raise errors.ComputationFailed(message.errors) # Yield last batch, even if potentially incomplete. if self._current_batch_message: yield self._get_batch_to_yield()
python
{ "resource": "" }
q12463
Computation._process_info_message
train
def _process_info_message(self, message): """Process an information message received from the computation.""" # Extract the output resolution from the appropriate message, if # it's present. if message['messageCode'] == 'JOB_RUNNING_RESOLUTION': self._resolution = message['contents']['resolutionMs'] elif message['messageCode'] == 'FETCH_NUM_TIMESERIES': self._num_input_timeseries += int(message['numInputTimeSeries'])
python
{ "resource": "" }
q12464
SignalFlowClient.execute
train
def execute(self, program, start=None, stop=None, resolution=None, max_delay=None, persistent=False, immediate=False, disable_all_metric_publishes=None): """Execute the given SignalFlow program and stream the output back.""" params = self._get_params(start=start, stop=stop, resolution=resolution, maxDelay=max_delay, persistent=persistent, immediate=immediate, disableAllMetricPublishes=disable_all_metric_publishes) def exec_fn(since=None): if since: params['start'] = since return self._transport.execute(program, params) c = computation.Computation(exec_fn) self._computations.add(c) return c
python
{ "resource": "" }
q12465
SignalFlowClient.preflight
train
def preflight(self, program, start, stop, resolution=None, max_delay=None): """Preflight the given SignalFlow program and stream the output back.""" params = self._get_params(start=start, stop=stop, resolution=resolution, maxDelay=max_delay) def exec_fn(since=None): if since: params['start'] = since return self._transport.preflight(program, params) c = computation.Computation(exec_fn) self._computations.add(c) return c
python
{ "resource": "" }
q12466
SignalFlowClient.start
train
def start(self, program, start=None, stop=None, resolution=None, max_delay=None): """Start executing the given SignalFlow program without being attached to the output of the computation.""" params = self._get_params(start=start, stop=stop, resolution=resolution, maxDelay=max_delay) self._transport.start(program, params)
python
{ "resource": "" }
q12467
SignalFlowClient.attach
train
def attach(self, handle, filters=None, resolution=None): """Attach to an existing SignalFlow computation.""" params = self._get_params(filters=filters, resolution=resolution) c = computation.Computation( lambda since: self._transport.attach(handle, params)) self._computations.add(c) return c
python
{ "resource": "" }
q12468
SignalFlowClient.stop
train
def stop(self, handle, reason=None): """Stop a SignalFlow computation.""" params = self._get_params(reason=reason) self._transport.stop(handle, params)
python
{ "resource": "" }
q12469
SignalFxRestClient.get_metric_by_name
train
def get_metric_by_name(self, metric_name, **kwargs): """ get a metric by name Args: metric_name (string): name of metric Returns: dictionary of response """ return self._get_object_by_name(self._METRIC_ENDPOINT_SUFFIX, metric_name, **kwargs)
python
{ "resource": "" }
q12470
SignalFxRestClient.update_metric_by_name
train
def update_metric_by_name(self, metric_name, metric_type, description=None, custom_properties=None, tags=None, **kwargs): """ Create or update a metric object Args: metric_name (string): name of metric type (string): metric type, must be one of 'gauge', 'counter', 'cumulative_counter' description (optional[string]): a description custom_properties (optional[dict]): dictionary of custom properties tags (optional[list of strings]): list of tags associated with metric """ data = {'type': metric_type.upper(), 'description': description or '', 'customProperties': custom_properties or {}, 'tags': tags or []} resp = self._put(self._u(self._METRIC_ENDPOINT_SUFFIX, str(metric_name)), data=data, **kwargs) resp.raise_for_status() return resp.json()
python
{ "resource": "" }
q12471
SignalFxRestClient.get_dimension
train
def get_dimension(self, key, value, **kwargs): """ get a dimension by key and value Args: key (string): key of the dimension value (string): value of the dimension Returns: dictionary of response """ return self._get_object_by_name(self._DIMENSION_ENDPOINT_SUFFIX, '{0}/{1}'.format(key, value), **kwargs)
python
{ "resource": "" }
q12472
SignalFxRestClient.get_metric_time_series
train
def get_metric_time_series(self, mts_id, **kwargs): """get a metric time series by id""" return self._get_object_by_name(self._MTS_ENDPOINT_SUFFIX, mts_id, **kwargs)
python
{ "resource": "" }
q12473
SignalFxRestClient.get_tag
train
def get_tag(self, tag_name, **kwargs): """get a tag by name Args: tag_name (string): name of tag to get Returns: dictionary of the response """ return self._get_object_by_name(self._TAG_ENDPOINT_SUFFIX, tag_name, **kwargs)
python
{ "resource": "" }
q12474
SignalFxRestClient.update_tag
train
def update_tag(self, tag_name, description=None, custom_properties=None, **kwargs): """update a tag by name Args: tag_name (string): name of tag to update description (optional[string]): a description custom_properties (optional[dict]): dictionary of custom properties """ data = {'description': description or '', 'customProperties': custom_properties or {}} resp = self._put(self._u(self._TAG_ENDPOINT_SUFFIX, tag_name), data=data, **kwargs) resp.raise_for_status() return resp.json()
python
{ "resource": "" }
q12475
SignalFxRestClient.delete_tag
train
def delete_tag(self, tag_name, **kwargs): """delete a tag by name Args: tag_name (string): name of tag to delete """ resp = self._delete(self._u(self._TAG_ENDPOINT_SUFFIX, tag_name), **kwargs) resp.raise_for_status() # successful delete returns 204, which has no associated json return resp
python
{ "resource": "" }
q12476
SignalFxRestClient.get_organization
train
def get_organization(self, **kwargs): """Get the organization to which the user belongs Returns: dictionary of the response """ resp = self._get(self._u(self._ORGANIZATION_ENDPOINT_SUFFIX), **kwargs) resp.raise_for_status() return resp.json()
python
{ "resource": "" }
q12477
SignalFxRestClient.validate_detector
train
def validate_detector(self, detector): """Validate a detector. Validates the given detector; throws a 400 Bad Request HTTP error if the detector is invalid; otherwise doesn't return or throw anything. Args: detector (object): the detector model object. Will be serialized as JSON. """ resp = self._post(self._u(self._DETECTOR_ENDPOINT_SUFFIX, 'validate'), data=detector) resp.raise_for_status()
python
{ "resource": "" }
q12478
SignalFxRestClient.create_detector
train
def create_detector(self, detector): """Creates a new detector. Args: detector (object): the detector model object. Will be serialized as JSON. Returns: dictionary of the response (created detector model). """ resp = self._post(self._u(self._DETECTOR_ENDPOINT_SUFFIX), data=detector) resp.raise_for_status() return resp.json()
python
{ "resource": "" }
q12479
SignalFxRestClient.update_detector
train
def update_detector(self, detector_id, detector): """Update an existing detector. Args: detector_id (string): the ID of the detector. detector (object): the detector model object. Will be serialized as JSON. Returns: dictionary of the response (updated detector model). """ resp = self._put(self._u(self._DETECTOR_ENDPOINT_SUFFIX, detector_id), data=detector) resp.raise_for_status() return resp.json()
python
{ "resource": "" }
q12480
SignalFxRestClient.delete_detector
train
def delete_detector(self, detector_id, **kwargs): """Remove a detector. Args: detector_id (string): the ID of the detector. """ resp = self._delete(self._u(self._DETECTOR_ENDPOINT_SUFFIX, detector_id), **kwargs) resp.raise_for_status() # successful delete returns 204, which has no response json return resp
python
{ "resource": "" }
q12481
SignalFxRestClient.get_detector_incidents
train
def get_detector_incidents(self, id, **kwargs): """Gets all incidents for a detector """ resp = self._get( self._u(self._DETECTOR_ENDPOINT_SUFFIX, id, 'incidents'), None, **kwargs ) resp.raise_for_status() return resp.json()
python
{ "resource": "" }
q12482
SignalFxRestClient.clear_incident
train
def clear_incident(self, id, **kwargs): """Clear an incident. """ resp = self._put( self._u(self._INCIDENT_ENDPOINT_SUFFIX, id, 'clear'), None, **kwargs ) resp.raise_for_status() return resp
python
{ "resource": "" }
q12483
SignalFx.login
train
def login(self, email, password): """Authenticate a user with SignalFx to acquire a session token. Note that data ingest can only be done with an organization or team API access token, not with a user token obtained via this method. Args: email (string): the email login password (string): the password Returns a new, immediately-usable session token for the logged in user. """ r = requests.post('{0}/v2/session'.format(self._api_endpoint), json={'email': email, 'password': password}) r.raise_for_status() return r.json()['accessToken']
python
{ "resource": "" }
q12484
SignalFx.rest
train
def rest(self, token, endpoint=None, timeout=None): """Obtain a metadata REST API client.""" from . import rest return rest.SignalFxRestClient( token=token, endpoint=endpoint or self._api_endpoint, timeout=timeout or self._timeout)
python
{ "resource": "" }
q12485
SignalFx.ingest
train
def ingest(self, token, endpoint=None, timeout=None, compress=None): """Obtain a datapoint and event ingest client.""" from . import ingest if ingest.sf_pbuf: client = ingest.ProtoBufSignalFxIngestClient else: _logger.warn('Protocol Buffers not installed properly; ' 'falling back to JSON.') client = ingest.JsonSignalFxIngestClient compress = compress if compress is not None else self._compress return client( token=token, endpoint=endpoint or self._ingest_endpoint, timeout=timeout or self._timeout, compress=compress)
python
{ "resource": "" }
q12486
SignalFx.signalflow
train
def signalflow(self, token, endpoint=None, timeout=None, compress=None): """Obtain a SignalFlow API client.""" from . import signalflow compress = compress if compress is not None else self._compress return signalflow.SignalFlowClient( token=token, endpoint=endpoint or self._stream_endpoint, timeout=timeout or self._timeout, compress=compress)
python
{ "resource": "" }
q12487
MetricMetadata.register
train
def register(self, key, **kwargs): """Registers metadata for a metric and returns a composite key""" dimensions = dict((k, str(v)) for k, v in kwargs.items()) composite_key = self._composite_name(key, dimensions) self._metadata[composite_key] = { 'metric': key, 'dimensions': dimensions } return composite_key
python
{ "resource": "" }
q12488
WebSocketTransport.opened
train
def opened(self): """Handler called when the WebSocket connection is opened. The first thing to do then is to authenticate ourselves.""" request = { 'type': 'authenticate', 'token': self._token, 'userAgent': '{} ws4py/{}'.format(version.user_agent, ws4py.__version__), } self.send(json.dumps(request))
python
{ "resource": "" }
q12489
WebSocketTransport.closed
train
def closed(self, code, reason=None): """Handler called when the WebSocket is closed. Status code 1000 denotes a normal close; all others are errors.""" if code != 1000: self._error = errors.SignalFlowException(code, reason) _logger.info('Lost WebSocket connection with %s (%s: %s).', self, code, reason) for c in self._channels.values(): c.offer(WebSocketComputationChannel.END_SENTINEL) self._channels.clear() with self._connection_cv: self._connected = False self._connection_cv.notify()
python
{ "resource": "" }
q12490
get_aws_unique_id
train
def get_aws_unique_id(timeout=DEFAULT_AWS_TIMEOUT): """Determine the current AWS unique ID Args: timeout (int): How long to wait for a response from AWS metadata IP """ try: resp = requests.get(AWS_ID_URL, timeout=timeout).json() except requests.exceptions.ConnectTimeout: _logger.warning('Connection timeout when determining AWS unique ' 'ID. Not using AWS unique ID.') return None else: aws_id = "{0}_{1}_{2}".format(resp['instanceId'], resp['region'], resp['accountId']) _logger.debug('Using AWS unique ID %s.', aws_id) return aws_id
python
{ "resource": "" }
q12491
fft
train
def fft(a, n=None, axis=-1, norm=None): """ Compute the one-dimensional discrete Fourier Transform. This function computes the one-dimensional *n*-point discrete Fourier Transform (DFT) with the efficient Fast Fourier Transform (FFT) algorithm [CT]. Parameters ---------- a : array_like Input array, can be complex. n : int, optional Length of the transformed axis of the output. If `n` is smaller than the length of the input, the input is cropped. If it is larger, the input is padded with zeros. If `n` is not given, the length of the input along the axis specified by `axis` is used. axis : int, optional Axis over which to compute the FFT. If not given, the last axis is used. norm : {None, "ortho"}, optional .. versionadded:: 1.10.0 Normalization mode (see `numpy.fft`). Default is None. Returns ------- out : complex ndarray The truncated or zero-padded input, transformed along the axis indicated by `axis`, or the last one if `axis` is not specified. Raises ------ IndexError if `axes` is larger than the last axis of `a`. See Also -------- numpy.fft : for definition of the DFT and conventions used. ifft : The inverse of `fft`. fft2 : The two-dimensional FFT. fftn : The *n*-dimensional FFT. rfftn : The *n*-dimensional FFT of real input. fftfreq : Frequency bins for given FFT parameters. Notes ----- FFT (Fast Fourier Transform) refers to a way the discrete Fourier Transform (DFT) can be calculated efficiently, by using symmetries in the calculated terms. The symmetry is highest when `n` is a power of 2, and the transform is therefore most efficient for these sizes. The DFT is defined, with the conventions used in this implementation, in the documentation for the `numpy.fft` module. References ---------- .. [CT] Cooley, James W., and John W. Tukey, 1965, "An algorithm for the machine calculation of complex Fourier series," *Math. Comput.* 19: 297-301. Examples -------- >>> np.fft.fft(np.exp(2j * np.pi * np.arange(8) / 8)) array([ -3.44505240e-16 +1.14383329e-17j, 8.00000000e+00 -5.71092652e-15j, 2.33482938e-16 +1.22460635e-16j, 1.64863782e-15 +1.77635684e-15j, 9.95839695e-17 +2.33482938e-16j, 0.00000000e+00 +1.66837030e-15j, 1.14383329e-17 +1.22460635e-16j, -1.64863782e-15 +1.77635684e-15j]) >>> import matplotlib.pyplot as plt >>> t = np.arange(256) >>> sp = np.fft.fft(np.sin(t)) >>> freq = np.fft.fftfreq(t.shape[-1]) >>> plt.plot(freq, sp.real, freq, sp.imag) [<matplotlib.lines.Line2D object at 0x...>, <matplotlib.lines.Line2D object at 0x...>] >>> plt.show() In this example, real input has an FFT which is Hermitian, i.e., symmetric in the real part and anti-symmetric in the imaginary part, as described in the `numpy.fft` documentation. """ output = mkl_fft.fft(a, n, axis) if _unitary(norm): output *= 1 / sqrt(output.shape[axis]) return output
python
{ "resource": "" }
q12492
ifft
train
def ifft(a, n=None, axis=-1, norm=None): """ Compute the one-dimensional inverse discrete Fourier Transform. This function computes the inverse of the one-dimensional *n*-point discrete Fourier transform computed by `fft`. In other words, ``ifft(fft(a)) == a`` to within numerical accuracy. For a general description of the algorithm and definitions, see `numpy.fft`. The input should be ordered in the same way as is returned by `fft`, i.e., * ``a[0]`` should contain the zero frequency term, * ``a[1:n//2]`` should contain the positive-frequency terms, * ``a[n//2 + 1:]`` should contain the negative-frequency terms, in increasing order starting from the most negative frequency. Parameters ---------- a : array_like Input array, can be complex. n : int, optional Length of the transformed axis of the output. If `n` is smaller than the length of the input, the input is cropped. If it is larger, the input is padded with zeros. If `n` is not given, the length of the input along the axis specified by `axis` is used. See notes about padding issues. axis : int, optional Axis over which to compute the inverse DFT. If not given, the last axis is used. norm : {None, "ortho"}, optional .. versionadded:: 1.10.0 Normalization mode (see `numpy.fft`). Default is None. Returns ------- out : complex ndarray The truncated or zero-padded input, transformed along the axis indicated by `axis`, or the last one if `axis` is not specified. Raises ------ IndexError If `axes` is larger than the last axis of `a`. See Also -------- numpy.fft : An introduction, with definitions and general explanations. fft : The one-dimensional (forward) FFT, of which `ifft` is the inverse ifft2 : The two-dimensional inverse FFT. ifftn : The n-dimensional inverse FFT. Notes ----- If the input parameter `n` is larger than the size of the input, the input is padded by appending zeros at the end. Even though this is the common approach, it might lead to surprising results. If a different padding is desired, it must be performed before calling `ifft`. Examples -------- >>> np.fft.ifft([0, 4, 0, 0]) array([ 1.+0.j, 0.+1.j, -1.+0.j, 0.-1.j]) Create and plot a band-limited signal with random phases: >>> import matplotlib.pyplot as plt >>> t = np.arange(400) >>> n = np.zeros((400,), dtype=complex) >>> n[40:60] = np.exp(1j*np.random.uniform(0, 2*np.pi, (20,))) >>> s = np.fft.ifft(n) >>> plt.plot(t, s.real, 'b-', t, s.imag, 'r--') ... >>> plt.legend(('real', 'imaginary')) ... >>> plt.show() """ unitary = _unitary(norm) output = mkl_fft.ifft(a, n, axis) if unitary: output *= sqrt(output.shape[axis]) return output
python
{ "resource": "" }
q12493
rfft
train
def rfft(a, n=None, axis=-1, norm=None): """ Compute the one-dimensional discrete Fourier Transform for real input. This function computes the one-dimensional *n*-point discrete Fourier Transform (DFT) of a real-valued array by means of an efficient algorithm called the Fast Fourier Transform (FFT). Parameters ---------- a : array_like Input array n : int, optional Number of points along transformation axis in the input to use. If `n` is smaller than the length of the input, the input is cropped. If it is larger, the input is padded with zeros. If `n` is not given, the length of the input along the axis specified by `axis` is used. axis : int, optional Axis over which to compute the FFT. If not given, the last axis is used. norm : {None, "ortho"}, optional .. versionadded:: 1.10.0 Normalization mode (see `numpy.fft`). Default is None. Returns ------- out : complex ndarray The truncated or zero-padded input, transformed along the axis indicated by `axis`, or the last one if `axis` is not specified. If `n` is even, the length of the transformed axis is ``(n/2)+1``. If `n` is odd, the length is ``(n+1)/2``. Raises ------ IndexError If `axis` is larger than the last axis of `a`. See Also -------- numpy.fft : For definition of the DFT and conventions used. irfft : The inverse of `rfft`. fft : The one-dimensional FFT of general (complex) input. fftn : The *n*-dimensional FFT. rfftn : The *n*-dimensional FFT of real input. Notes ----- When the DFT is computed for purely real input, the output is Hermitian-symmetric, i.e. the negative frequency terms are just the complex conjugates of the corresponding positive-frequency terms, and the negative-frequency terms are therefore redundant. This function does not compute the negative frequency terms, and the length of the transformed axis of the output is therefore ``n//2 + 1``. When ``A = rfft(a)`` and fs is the sampling frequency, ``A[0]`` contains the zero-frequency term 0*fs, which is real due to Hermitian symmetry. If `n` is even, ``A[-1]`` contains the term representing both positive and negative Nyquist frequency (+fs/2 and -fs/2), and must also be purely real. If `n` is odd, there is no term at fs/2; ``A[-1]`` contains the largest positive frequency (fs/2*(n-1)/n), and is complex in the general case. If the input `a` contains an imaginary part, it is silently discarded. Examples -------- >>> np.fft.fft([0, 1, 0, 0]) array([ 1.+0.j, 0.-1.j, -1.+0.j, 0.+1.j]) >>> np.fft.rfft([0, 1, 0, 0]) array([ 1.+0.j, 0.-1.j, -1.+0.j]) Notice how the final element of the `fft` output is the complex conjugate of the second element, for real input. For `rfft`, this symmetry is exploited to compute only the non-negative frequency terms. """ unitary = _unitary(norm) if unitary and n is None: a = asarray(a) n = a.shape[axis] output = mkl_fft.rfft_numpy(a, n=n, axis=axis) if unitary: output *= 1 / sqrt(n) return output
python
{ "resource": "" }
q12494
irfft
train
def irfft(a, n=None, axis=-1, norm=None): """ Compute the inverse of the n-point DFT for real input. This function computes the inverse of the one-dimensional *n*-point discrete Fourier Transform of real input computed by `rfft`. In other words, ``irfft(rfft(a), len(a)) == a`` to within numerical accuracy. (See Notes below for why ``len(a)`` is necessary here.) The input is expected to be in the form returned by `rfft`, i.e. the real zero-frequency term followed by the complex positive frequency terms in order of increasing frequency. Since the discrete Fourier Transform of real input is Hermitian-symmetric, the negative frequency terms are taken to be the complex conjugates of the corresponding positive frequency terms. Parameters ---------- a : array_like The input array. n : int, optional Length of the transformed axis of the output. For `n` output points, ``n//2+1`` input points are necessary. If the input is longer than this, it is cropped. If it is shorter than this, it is padded with zeros. If `n` is not given, it is determined from the length of the input along the axis specified by `axis`. axis : int, optional Axis over which to compute the inverse FFT. If not given, the last axis is used. norm : {None, "ortho"}, optional .. versionadded:: 1.10.0 Normalization mode (see `numpy.fft`). Default is None. Returns ------- out : ndarray The truncated or zero-padded input, transformed along the axis indicated by `axis`, or the last one if `axis` is not specified. The length of the transformed axis is `n`, or, if `n` is not given, ``2*(m-1)`` where ``m`` is the length of the transformed axis of the input. To get an odd number of output points, `n` must be specified. Raises ------ IndexError If `axis` is larger than the last axis of `a`. See Also -------- numpy.fft : For definition of the DFT and conventions used. rfft : The one-dimensional FFT of real input, of which `irfft` is inverse. fft : The one-dimensional FFT. irfft2 : The inverse of the two-dimensional FFT of real input. irfftn : The inverse of the *n*-dimensional FFT of real input. Notes ----- Returns the real valued `n`-point inverse discrete Fourier transform of `a`, where `a` contains the non-negative frequency terms of a Hermitian-symmetric sequence. `n` is the length of the result, not the input. If you specify an `n` such that `a` must be zero-padded or truncated, the extra/removed values will be added/removed at high frequencies. One can thus resample a series to `m` points via Fourier interpolation by: ``a_resamp = irfft(rfft(a), m)``. Examples -------- >>> np.fft.ifft([1, -1j, -1, 1j]) array([ 0.+0.j, 1.+0.j, 0.+0.j, 0.+0.j]) >>> np.fft.irfft([1, -1j, -1]) array([ 0., 1., 0., 0.]) Notice how the last term in the input to the ordinary `ifft` is the complex conjugate of the second term, and the output has zero imaginary part everywhere. When calling `irfft`, the negative frequencies are not specified, and the output array is purely real. """ output = mkl_fft.irfft_numpy(a, n=n, axis=axis) if _unitary(norm): output *= sqrt(output.shape[axis]) return output
python
{ "resource": "" }
q12495
ihfft
train
def ihfft(a, n=None, axis=-1, norm=None): """ Compute the inverse FFT of a signal which has Hermitian symmetry. Parameters ---------- a : array_like Input array. n : int, optional Length of the inverse FFT. Number of points along transformation axis in the input to use. If `n` is smaller than the length of the input, the input is cropped. If it is larger, the input is padded with zeros. If `n` is not given, the length of the input along the axis specified by `axis` is used. axis : int, optional Axis over which to compute the inverse FFT. If not given, the last axis is used. norm : {None, "ortho"}, optional .. versionadded:: 1.10.0 Normalization mode (see `numpy.fft`). Default is None. Returns ------- out : complex ndarray The truncated or zero-padded input, transformed along the axis indicated by `axis`, or the last one if `axis` is not specified. If `n` is even, the length of the transformed axis is ``(n/2)+1``. If `n` is odd, the length is ``(n+1)/2``. See also -------- hfft, irfft Notes ----- `hfft`/`ihfft` are a pair analogous to `rfft`/`irfft`, but for the opposite case: here the signal has Hermitian symmetry in the time domain and is real in the frequency domain. So here it's `hfft` for which you must supply the length of the result if it is to be odd: ``ihfft(hfft(a), len(a)) == a``, within numerical accuracy. Examples -------- >>> spectrum = np.array([ 15, -4, 0, -1, 0, -4]) >>> np.fft.ifft(spectrum) array([ 1.+0.j, 2.-0.j, 3.+0.j, 4.+0.j, 3.+0.j, 2.-0.j]) >>> np.fft.ihfft(spectrum) array([ 1.-0.j, 2.-0.j, 3.-0.j, 4.-0.j]) """ # The copy may be required for multithreading. a = array(a, copy=True, dtype=float) if n is None: n = a.shape[axis] unitary = _unitary(norm) output = conjugate(rfft(a, n, axis)) return output * (1 / (sqrt(n) if unitary else n))
python
{ "resource": "" }
q12496
fftn
train
def fftn(a, s=None, axes=None, norm=None): """ Compute the N-dimensional discrete Fourier Transform. This function computes the *N*-dimensional discrete Fourier Transform over any number of axes in an *M*-dimensional array by means of the Fast Fourier Transform (FFT). Parameters ---------- a : array_like Input array, can be complex. s : sequence of ints, optional Shape (length of each transformed axis) of the output (`s[0]` refers to axis 0, `s[1]` to axis 1, etc.). This corresponds to `n` for `fft(x, n)`. Along any axis, if the given shape is smaller than that of the input, the input is cropped. If it is larger, the input is padded with zeros. if `s` is not given, the shape of the input along the axes specified by `axes` is used. axes : sequence of ints, optional Axes over which to compute the FFT. If not given, the last ``len(s)`` axes are used, or all axes if `s` is also not specified. Repeated indices in `axes` means that the transform over that axis is performed multiple times. norm : {None, "ortho"}, optional .. versionadded:: 1.10.0 Normalization mode (see `numpy.fft`). Default is None. Returns ------- out : complex ndarray The truncated or zero-padded input, transformed along the axes indicated by `axes`, or by a combination of `s` and `a`, as explained in the parameters section above. Raises ------ ValueError If `s` and `axes` have different length. IndexError If an element of `axes` is larger than than the number of axes of `a`. See Also -------- numpy.fft : Overall view of discrete Fourier transforms, with definitions and conventions used. ifftn : The inverse of `fftn`, the inverse *n*-dimensional FFT. fft : The one-dimensional FFT, with definitions and conventions used. rfftn : The *n*-dimensional FFT of real input. fft2 : The two-dimensional FFT. fftshift : Shifts zero-frequency terms to centre of array Notes ----- The output, analogously to `fft`, contains the term for zero frequency in the low-order corner of all axes, the positive frequency terms in the first half of all axes, the term for the Nyquist frequency in the middle of all axes and the negative frequency terms in the second half of all axes, in order of decreasingly negative frequency. See `numpy.fft` for details, definitions and conventions used. Examples -------- >>> a = np.mgrid[:3, :3, :3][0] >>> np.fft.fftn(a, axes=(1, 2)) array([[[ 0.+0.j, 0.+0.j, 0.+0.j], [ 0.+0.j, 0.+0.j, 0.+0.j], [ 0.+0.j, 0.+0.j, 0.+0.j]], [[ 9.+0.j, 0.+0.j, 0.+0.j], [ 0.+0.j, 0.+0.j, 0.+0.j], [ 0.+0.j, 0.+0.j, 0.+0.j]], [[ 18.+0.j, 0.+0.j, 0.+0.j], [ 0.+0.j, 0.+0.j, 0.+0.j], [ 0.+0.j, 0.+0.j, 0.+0.j]]]) >>> np.fft.fftn(a, (2, 2), axes=(0, 1)) array([[[ 2.+0.j, 2.+0.j, 2.+0.j], [ 0.+0.j, 0.+0.j, 0.+0.j]], [[-2.+0.j, -2.+0.j, -2.+0.j], [ 0.+0.j, 0.+0.j, 0.+0.j]]]) >>> import matplotlib.pyplot as plt >>> [X, Y] = np.meshgrid(2 * np.pi * np.arange(200) / 12, ... 2 * np.pi * np.arange(200) / 34) >>> S = np.sin(X) + np.cos(Y) + np.random.uniform(0, 1, X.shape) >>> FS = np.fft.fftn(S) >>> plt.imshow(np.log(np.abs(np.fft.fftshift(FS))**2)) <matplotlib.image.AxesImage object at 0x...> >>> plt.show() """ output = mkl_fft.fftn(a, s, axes) if _unitary(norm): output *= 1 / sqrt(_tot_size(output, axes)) return output
python
{ "resource": "" }
q12497
ifftn
train
def ifftn(a, s=None, axes=None, norm=None): """ Compute the N-dimensional inverse discrete Fourier Transform. This function computes the inverse of the N-dimensional discrete Fourier Transform over any number of axes in an M-dimensional array by means of the Fast Fourier Transform (FFT). In other words, ``ifftn(fftn(a)) == a`` to within numerical accuracy. For a description of the definitions and conventions used, see `numpy.fft`. The input, analogously to `ifft`, should be ordered in the same way as is returned by `fftn`, i.e. it should have the term for zero frequency in all axes in the low-order corner, the positive frequency terms in the first half of all axes, the term for the Nyquist frequency in the middle of all axes and the negative frequency terms in the second half of all axes, in order of decreasingly negative frequency. Parameters ---------- a : array_like Input array, can be complex. s : sequence of ints, optional Shape (length of each transformed axis) of the output (``s[0]`` refers to axis 0, ``s[1]`` to axis 1, etc.). This corresponds to ``n`` for ``ifft(x, n)``. Along any axis, if the given shape is smaller than that of the input, the input is cropped. If it is larger, the input is padded with zeros. if `s` is not given, the shape of the input along the axes specified by `axes` is used. See notes for issue on `ifft` zero padding. axes : sequence of ints, optional Axes over which to compute the IFFT. If not given, the last ``len(s)`` axes are used, or all axes if `s` is also not specified. Repeated indices in `axes` means that the inverse transform over that axis is performed multiple times. norm : {None, "ortho"}, optional .. versionadded:: 1.10.0 Normalization mode (see `numpy.fft`). Default is None. Returns ------- out : complex ndarray The truncated or zero-padded input, transformed along the axes indicated by `axes`, or by a combination of `s` or `a`, as explained in the parameters section above. Raises ------ ValueError If `s` and `axes` have different length. IndexError If an element of `axes` is larger than than the number of axes of `a`. See Also -------- numpy.fft : Overall view of discrete Fourier transforms, with definitions and conventions used. fftn : The forward *n*-dimensional FFT, of which `ifftn` is the inverse. ifft : The one-dimensional inverse FFT. ifft2 : The two-dimensional inverse FFT. ifftshift : Undoes `fftshift`, shifts zero-frequency terms to beginning of array. Notes ----- See `numpy.fft` for definitions and conventions used. Zero-padding, analogously with `ifft`, is performed by appending zeros to the input along the specified dimension. Although this is the common approach, it might lead to surprising results. If another form of zero padding is desired, it must be performed before `ifftn` is called. Examples -------- >>> a = np.eye(4) >>> np.fft.ifftn(np.fft.fftn(a, axes=(0,)), axes=(1,)) array([[ 1.+0.j, 0.+0.j, 0.+0.j, 0.+0.j], [ 0.+0.j, 1.+0.j, 0.+0.j, 0.+0.j], [ 0.+0.j, 0.+0.j, 1.+0.j, 0.+0.j], [ 0.+0.j, 0.+0.j, 0.+0.j, 1.+0.j]]) Create and plot an image with band-limited frequency content: >>> import matplotlib.pyplot as plt >>> n = np.zeros((200,200), dtype=complex) >>> n[60:80, 20:40] = np.exp(1j*np.random.uniform(0, 2*np.pi, (20, 20))) >>> im = np.fft.ifftn(n).real >>> plt.imshow(im) <matplotlib.image.AxesImage object at 0x...> >>> plt.show() """ unitary = _unitary(norm) output = mkl_fft.ifftn(a, s, axes) if unitary: output *= sqrt(_tot_size(output, axes)) return output
python
{ "resource": "" }
q12498
fft2
train
def fft2(a, s=None, axes=(-2, -1), norm=None): """ Compute the 2-dimensional discrete Fourier Transform This function computes the *n*-dimensional discrete Fourier Transform over any axes in an *M*-dimensional array by means of the Fast Fourier Transform (FFT). By default, the transform is computed over the last two axes of the input array, i.e., a 2-dimensional FFT. Parameters ---------- a : array_like Input array, can be complex s : sequence of ints, optional Shape (length of each transformed axis) of the output (`s[0]` refers to axis 0, `s[1]` to axis 1, etc.). This corresponds to `n` for `fft(x, n)`. Along each axis, if the given shape is smaller than that of the input, the input is cropped. If it is larger, the input is padded with zeros. if `s` is not given, the shape of the input along the axes specified by `axes` is used. axes : sequence of ints, optional Axes over which to compute the FFT. If not given, the last two axes are used. A repeated index in `axes` means the transform over that axis is performed multiple times. A one-element sequence means that a one-dimensional FFT is performed. norm : {None, "ortho"}, optional .. versionadded:: 1.10.0 Normalization mode (see `numpy.fft`). Default is None. Returns ------- out : complex ndarray The truncated or zero-padded input, transformed along the axes indicated by `axes`, or the last two axes if `axes` is not given. Raises ------ ValueError If `s` and `axes` have different length, or `axes` not given and ``len(s) != 2``. IndexError If an element of `axes` is larger than than the number of axes of `a`. See Also -------- numpy.fft : Overall view of discrete Fourier transforms, with definitions and conventions used. ifft2 : The inverse two-dimensional FFT. fft : The one-dimensional FFT. fftn : The *n*-dimensional FFT. fftshift : Shifts zero-frequency terms to the center of the array. For two-dimensional input, swaps first and third quadrants, and second and fourth quadrants. Notes ----- `fft2` is just `fftn` with a different default for `axes`. The output, analogously to `fft`, contains the term for zero frequency in the low-order corner of the transformed axes, the positive frequency terms in the first half of these axes, the term for the Nyquist frequency in the middle of the axes and the negative frequency terms in the second half of the axes, in order of decreasingly negative frequency. See `fftn` for details and a plotting example, and `numpy.fft` for definitions and conventions used. Examples -------- >>> a = np.mgrid[:5, :5][0] >>> np.fft.fft2(a) array([[ 50.0 +0.j , 0.0 +0.j , 0.0 +0.j , 0.0 +0.j , 0.0 +0.j ], [-12.5+17.20477401j, 0.0 +0.j , 0.0 +0.j , 0.0 +0.j , 0.0 +0.j ], [-12.5 +4.0614962j , 0.0 +0.j , 0.0 +0.j , 0.0 +0.j , 0.0 +0.j ], [-12.5 -4.0614962j , 0.0 +0.j , 0.0 +0.j , 0.0 +0.j , 0.0 +0.j ], [-12.5-17.20477401j, 0.0 +0.j , 0.0 +0.j , 0.0 +0.j , 0.0 +0.j ]]) """ return fftn(a, s=s, axes=axes, norm=norm)
python
{ "resource": "" }
q12499
ifft2
train
def ifft2(a, s=None, axes=(-2, -1), norm=None): """ Compute the 2-dimensional inverse discrete Fourier Transform. This function computes the inverse of the 2-dimensional discrete Fourier Transform over any number of axes in an M-dimensional array by means of the Fast Fourier Transform (FFT). In other words, ``ifft2(fft2(a)) == a`` to within numerical accuracy. By default, the inverse transform is computed over the last two axes of the input array. The input, analogously to `ifft`, should be ordered in the same way as is returned by `fft2`, i.e. it should have the term for zero frequency in the low-order corner of the two axes, the positive frequency terms in the first half of these axes, the term for the Nyquist frequency in the middle of the axes and the negative frequency terms in the second half of both axes, in order of decreasingly negative frequency. Parameters ---------- a : array_like Input array, can be complex. s : sequence of ints, optional Shape (length of each axis) of the output (``s[0]`` refers to axis 0, ``s[1]`` to axis 1, etc.). This corresponds to `n` for ``ifft(x, n)``. Along each axis, if the given shape is smaller than that of the input, the input is cropped. If it is larger, the input is padded with zeros. if `s` is not given, the shape of the input along the axes specified by `axes` is used. See notes for issue on `ifft` zero padding. axes : sequence of ints, optional Axes over which to compute the FFT. If not given, the last two axes are used. A repeated index in `axes` means the transform over that axis is performed multiple times. A one-element sequence means that a one-dimensional FFT is performed. norm : {None, "ortho"}, optional .. versionadded:: 1.10.0 Normalization mode (see `numpy.fft`). Default is None. Returns ------- out : complex ndarray The truncated or zero-padded input, transformed along the axes indicated by `axes`, or the last two axes if `axes` is not given. Raises ------ ValueError If `s` and `axes` have different length, or `axes` not given and ``len(s) != 2``. IndexError If an element of `axes` is larger than than the number of axes of `a`. See Also -------- numpy.fft : Overall view of discrete Fourier transforms, with definitions and conventions used. fft2 : The forward 2-dimensional FFT, of which `ifft2` is the inverse. ifftn : The inverse of the *n*-dimensional FFT. fft : The one-dimensional FFT. ifft : The one-dimensional inverse FFT. Notes ----- `ifft2` is just `ifftn` with a different default for `axes`. See `ifftn` for details and a plotting example, and `numpy.fft` for definition and conventions used. Zero-padding, analogously with `ifft`, is performed by appending zeros to the input along the specified dimension. Although this is the common approach, it might lead to surprising results. If another form of zero padding is desired, it must be performed before `ifft2` is called. Examples -------- >>> a = 4 * np.eye(4) >>> np.fft.ifft2(a) array([[ 1.+0.j, 0.+0.j, 0.+0.j, 0.+0.j], [ 0.+0.j, 0.+0.j, 0.+0.j, 1.+0.j], [ 0.+0.j, 0.+0.j, 1.+0.j, 0.+0.j], [ 0.+0.j, 1.+0.j, 0.+0.j, 0.+0.j]]) """ return ifftn(a, s=s, axes=axes, norm=norm)
python
{ "resource": "" }