_id
stringlengths
2
7
title
stringlengths
1
88
partition
stringclasses
3 values
text
stringlengths
75
19.8k
language
stringclasses
1 value
meta_information
dict
q12100
HugeTask.add
train
def add(self, queue_name, transactional=False): """Add task to the queue.""" task = self.to_task() task.add(queue_name, transactional)
python
{ "resource": "" }
q12101
HugeTask.to_task
train
def to_task(self): """Convert to a taskqueue task.""" # Never pass params to taskqueue.Task. Use payload instead. Otherwise, # it's up to a particular taskqueue implementation to generate # payload from params. It could blow up payload size over limit. return taskqueue.Task( url=self.url, payload=self._payload, name=self.name, eta=self.eta, countdown=self.countdown, headers=self._headers)
python
{ "resource": "" }
q12102
HugeTask.decode_payload
train
def decode_payload(cls, request): """Decode task payload. HugeTask controls its own payload entirely including urlencoding. It doesn't depend on any particular web framework. Args: request: a webapp Request instance. Returns: A dict of str to str. The same as the params argument to __init__. Raises: DeprecationWarning: When task payload constructed from an older incompatible version of mapreduce. """ # TODO(user): Pass mr_id into headers. Otherwise when payload decoding # failed, we can't abort a mr. if request.headers.get(cls.PAYLOAD_VERSION_HEADER) != cls.PAYLOAD_VERSION: raise DeprecationWarning( "Task is generated by an older incompatible version of mapreduce. " "Please kill this job manually") return cls._decode_payload(request.body)
python
{ "resource": "" }
q12103
CountersMap.add_map
train
def add_map(self, counters_map): """Add all counters from the map. For each counter in the passed map, adds its value to the counter in this map. Args: counters_map: CounterMap instance to add. """ for counter_name in counters_map.counters: self.increment(counter_name, counters_map.counters[counter_name])
python
{ "resource": "" }
q12104
CountersMap.sub_map
train
def sub_map(self, counters_map): """Subtracts all counters from the map. For each counter in the passed map, subtracts its value to the counter in this map. Args: counters_map: CounterMap instance to subtract. """ for counter_name in counters_map.counters: self.increment(counter_name, -counters_map.counters[counter_name])
python
{ "resource": "" }
q12105
MapperSpec.to_json
train
def to_json(self): """Serializes this MapperSpec into a json-izable object.""" result = { "mapper_handler_spec": self.handler_spec, "mapper_input_reader": self.input_reader_spec, "mapper_params": self.params, "mapper_shard_count": self.shard_count } if self.output_writer_spec: result["mapper_output_writer"] = self.output_writer_spec return result
python
{ "resource": "" }
q12106
MapreduceSpec.get_hooks
train
def get_hooks(self): """Returns a hooks.Hooks class or None if no hooks class has been set.""" if self.__hooks is None and self.hooks_class_name is not None: hooks_class = util.for_name(self.hooks_class_name) if not isinstance(hooks_class, type): raise ValueError("hooks_class_name must refer to a class, got %s" % type(hooks_class).__name__) if not issubclass(hooks_class, hooks.Hooks): raise ValueError( "hooks_class_name must refer to a hooks.Hooks subclass") self.__hooks = hooks_class(self) return self.__hooks
python
{ "resource": "" }
q12107
MapreduceSpec.to_json
train
def to_json(self): """Serializes all data in this mapreduce spec into json form. Returns: data in json format. """ mapper_spec = self.mapper.to_json() return { "name": self.name, "mapreduce_id": self.mapreduce_id, "mapper_spec": mapper_spec, "params": self.params, "hooks_class_name": self.hooks_class_name, }
python
{ "resource": "" }
q12108
MapreduceSpec.from_json
train
def from_json(cls, json): """Create new MapreduceSpec from the json, encoded by to_json. Args: json: json representation of MapreduceSpec. Returns: an instance of MapreduceSpec with all data deserialized from json. """ mapreduce_spec = cls(json["name"], json["mapreduce_id"], json["mapper_spec"], json.get("params"), json.get("hooks_class_name")) return mapreduce_spec
python
{ "resource": "" }
q12109
MapreduceSpec._get_mapreduce_spec
train
def _get_mapreduce_spec(cls, mr_id): """Get Mapreduce spec from mr id.""" key = 'GAE-MR-spec: %s' % mr_id spec_json = memcache.get(key) if spec_json: return cls.from_json(spec_json) state = MapreduceState.get_by_job_id(mr_id) spec = state.mapreduce_spec spec_json = spec.to_json() memcache.set(key, spec_json) return spec
python
{ "resource": "" }
q12110
MapreduceState.get_key_by_job_id
train
def get_key_by_job_id(cls, mapreduce_id): """Retrieves the Key for a Job. Args: mapreduce_id: The job to retrieve. Returns: Datastore Key that can be used to fetch the MapreduceState. """ return db.Key.from_path(cls.kind(), str(mapreduce_id))
python
{ "resource": "" }
q12111
MapreduceState.set_processed_counts
train
def set_processed_counts(self, shards_processed, shards_status): """Updates a chart url to display processed count for each shard. Args: shards_processed: list of integers with number of processed entities in each shard """ chart = google_chart_api.BarChart() def filter_status(status_to_filter): return [count if status == status_to_filter else 0 for count, status in zip(shards_processed, shards_status)] if shards_status: # Each index will have only one non-zero count, so stack them to color- # code the bars by status # These status values are computed in _update_state_from_shard_states, # in mapreduce/handlers.py. chart.stacked = True chart.AddBars(filter_status("unknown"), color="404040") chart.AddBars(filter_status("success"), color="00ac42") chart.AddBars(filter_status("running"), color="3636a9") chart.AddBars(filter_status("aborted"), color="e29e24") chart.AddBars(filter_status("failed"), color="f6350f") else: chart.AddBars(shards_processed) shard_count = len(shards_processed) if shard_count > 95: # Auto-spacing does not work for large numbers of shards. pixels_per_shard = 700.0 / shard_count bar_thickness = int(pixels_per_shard * .9) chart.style = bar_chart.BarChartStyle(bar_thickness=bar_thickness, bar_gap=0.1, use_fractional_gap_spacing=True) if shards_processed and shard_count <= 95: # Adding labels puts us in danger of exceeding the URL length, only # do it when we have a small amount of data to plot. # Only 16 labels on the whole chart. stride_length = max(1, shard_count / 16) chart.bottom.labels = [] for x in xrange(shard_count): if (x % stride_length == 0 or x == shard_count - 1): chart.bottom.labels.append(x) else: chart.bottom.labels.append("") chart.left.labels = ["0", str(max(shards_processed))] chart.left.min = 0 self.chart_width = min(700, max(300, shard_count * 20)) self.chart_url = chart.display.Url(self.chart_width, 200)
python
{ "resource": "" }
q12112
MapreduceState.create_new
train
def create_new(mapreduce_id=None, gettime=datetime.datetime.now): """Create a new MapreduceState. Args: mapreduce_id: Mapreduce id as string. gettime: Used for testing. """ if not mapreduce_id: mapreduce_id = MapreduceState.new_mapreduce_id() state = MapreduceState(key_name=mapreduce_id, last_poll_time=gettime()) state.set_processed_counts([], []) return state
python
{ "resource": "" }
q12113
TransientShardState.advance_for_next_slice
train
def advance_for_next_slice(self, recovery_slice=False): """Advance relavent states for next slice. Args: recovery_slice: True if this slice is running recovery logic. See handlers.MapperWorkerCallbackHandler._attempt_slice_recovery for more info. """ if recovery_slice: self.slice_id += 2 # Restore input reader to the beginning of the slice. self.input_reader = self.input_reader.from_json(self._input_reader_json) else: self.slice_id += 1
python
{ "resource": "" }
q12114
TransientShardState.to_dict
train
def to_dict(self): """Convert state to dictionary to save in task payload.""" result = {"mapreduce_spec": self.mapreduce_spec.to_json_str(), "shard_id": self.shard_id, "slice_id": str(self.slice_id), "input_reader_state": self.input_reader.to_json_str(), "initial_input_reader_state": self.initial_input_reader.to_json_str(), "retries": str(self.retries)} if self.output_writer: result["output_writer_state"] = self.output_writer.to_json_str() serialized_handler = util.try_serialize_handler(self.handler) if serialized_handler: result["serialized_handler"] = serialized_handler return result
python
{ "resource": "" }
q12115
TransientShardState.from_request
train
def from_request(cls, request): """Create new TransientShardState from webapp request.""" mapreduce_spec = MapreduceSpec.from_json_str(request.get("mapreduce_spec")) mapper_spec = mapreduce_spec.mapper input_reader_spec_dict = json.loads(request.get("input_reader_state"), cls=json_util.JsonDecoder) input_reader = mapper_spec.input_reader_class().from_json( input_reader_spec_dict) initial_input_reader_spec_dict = json.loads( request.get("initial_input_reader_state"), cls=json_util.JsonDecoder) initial_input_reader = mapper_spec.input_reader_class().from_json( initial_input_reader_spec_dict) output_writer = None if mapper_spec.output_writer_class(): output_writer = mapper_spec.output_writer_class().from_json( json.loads(request.get("output_writer_state", "{}"), cls=json_util.JsonDecoder)) assert isinstance(output_writer, mapper_spec.output_writer_class()), ( "%s.from_json returned an instance of wrong class: %s" % ( mapper_spec.output_writer_class(), output_writer.__class__)) handler = util.try_deserialize_handler(request.get("serialized_handler")) if not handler: handler = mapreduce_spec.mapper.handler return cls(mapreduce_spec.params["base_path"], mapreduce_spec, str(request.get("shard_id")), int(request.get("slice_id")), input_reader, initial_input_reader, output_writer=output_writer, retries=int(request.get("retries")), handler=handler)
python
{ "resource": "" }
q12116
ShardState.advance_for_next_slice
train
def advance_for_next_slice(self, recovery_slice=False): """Advance self for next slice. Args: recovery_slice: True if this slice is running recovery logic. See handlers.MapperWorkerCallbackHandler._attempt_slice_recovery for more info. """ self.slice_start_time = None self.slice_request_id = None self.slice_retries = 0 self.acquired_once = False if recovery_slice: self.slice_id += 2 else: self.slice_id += 1
python
{ "resource": "" }
q12117
ShardState.copy_from
train
def copy_from(self, other_state): """Copy data from another shard state entity to self.""" for prop in self.properties().values(): setattr(self, prop.name, getattr(other_state, prop.name))
python
{ "resource": "" }
q12118
ShardState.find_all_by_mapreduce_state
train
def find_all_by_mapreduce_state(cls, mapreduce_state): """Find all shard states for given mapreduce. Args: mapreduce_state: MapreduceState instance Yields: shard states sorted by shard id. """ keys = cls.calculate_keys_by_mapreduce_state(mapreduce_state) i = 0 while i < len(keys): @db.non_transactional def no_tx_get(i): return db.get(keys[i:i+cls._MAX_STATES_IN_MEMORY]) # We need a separate function to so that we can mix non-transactional and # use be a generator states = no_tx_get(i) for s in states: i += 1 if s is not None: yield s
python
{ "resource": "" }
q12119
ShardState.calculate_keys_by_mapreduce_state
train
def calculate_keys_by_mapreduce_state(cls, mapreduce_state): """Calculate all shard states keys for given mapreduce. Args: mapreduce_state: MapreduceState instance Returns: A list of keys for shard states, sorted by shard id. The corresponding shard states may not exist. """ if mapreduce_state is None: return [] keys = [] for i in range(mapreduce_state.mapreduce_spec.mapper.shard_count): shard_id = cls.shard_id_from_number(mapreduce_state.key().name(), i) keys.append(cls.get_key_by_shard_id(shard_id)) return keys
python
{ "resource": "" }
q12120
ShardState.create_new
train
def create_new(cls, mapreduce_id, shard_number): """Create new shard state. Args: mapreduce_id: unique mapreduce id as string. shard_number: shard number for which to create shard state. Returns: new instance of ShardState ready to put into datastore. """ shard_id = cls.shard_id_from_number(mapreduce_id, shard_number) state = cls(key_name=shard_id, mapreduce_id=mapreduce_id) return state
python
{ "resource": "" }
q12121
MapreduceControl.get_key_by_job_id
train
def get_key_by_job_id(cls, mapreduce_id): """Retrieves the Key for a mapreduce ID. Args: mapreduce_id: The job to fetch. Returns: Datastore Key for the command for the given job ID. """ return db.Key.from_path(cls.kind(), "%s:%s" % (mapreduce_id, cls._KEY_NAME))
python
{ "resource": "" }
q12122
MapreduceControl.abort
train
def abort(cls, mapreduce_id, **kwargs): """Causes a job to abort. Args: mapreduce_id: The job to abort. Not verified as a valid job. """ cls(key_name="%s:%s" % (mapreduce_id, cls._KEY_NAME), command=cls.ABORT).put(**kwargs)
python
{ "resource": "" }
q12123
TaskQueueHandler.retry_task
train
def retry_task(self): """Ask taskqueue to retry this task. Even though raising an exception can cause a task retry, it will flood logs with highly visible ERROR logs. Handlers should uses this method to perform controlled task retries. Only raise exceptions for those deserve ERROR log entries. """ self.response.set_status(httplib.SERVICE_UNAVAILABLE, "Retry task") self.response.clear()
python
{ "resource": "" }
q12124
JsonHandler.base_path
train
def base_path(self): """Base path for all mapreduce-related urls. JSON handlers are mapped to /base_path/command/command_name thus they require special treatment. Raises: BadRequestPathError: if the path does not end with "/command". Returns: The base path. """ path = self.request.path base_path = path[:path.rfind("/")] if not base_path.endswith("/command"): raise BadRequestPathError( "Json handlers should have /command path prefix") return base_path[:base_path.rfind("/")]
python
{ "resource": "" }
q12125
JsonHandler._handle_wrapper
train
def _handle_wrapper(self): """The helper method for handling JSON Post and Get requests.""" if self.request.headers.get("X-Requested-With") != "XMLHttpRequest": logging.error("Got JSON request with no X-Requested-With header") self.response.set_status( 403, message="Got JSON request with no X-Requested-With header") return self.json_response.clear() try: self.handle() except errors.MissingYamlError: logging.debug("Could not find 'mapreduce.yaml' file.") self.json_response.clear() self.json_response["error_class"] = "Notice" self.json_response["error_message"] = "Could not find 'mapreduce.yaml'" except Exception, e: logging.exception("Error in JsonHandler, returning exception.") # TODO(user): Include full traceback here for the end-user. self.json_response.clear() self.json_response["error_class"] = e.__class__.__name__ self.json_response["error_message"] = str(e) self.response.headers["Content-Type"] = "text/javascript" try: output = json.dumps(self.json_response, cls=json_util.JsonEncoder) # pylint: disable=broad-except except Exception, e: logging.exception("Could not serialize to JSON") self.response.set_status(500, message="Could not serialize to JSON") return else: self.response.out.write(output)
python
{ "resource": "" }
q12126
_GCSFileSegReader.read
train
def read(self, n): """Read data from file segs. Args: n: max bytes to read. Must be positive. Returns: some bytes. May be smaller than n bytes. "" when no more data is left. """ if self._EOF: return "" while self._seg_index <= self._last_seg_index: result = self._read_from_seg(n) if result != "": return result else: self._next_seg() self._EOF = True return ""
python
{ "resource": "" }
q12127
_GCSFileSegReader._next_seg
train
def _next_seg(self): """Get next seg.""" if self._seg: self._seg.close() self._seg_index += 1 if self._seg_index > self._last_seg_index: self._seg = None return filename = self._seg_prefix + str(self._seg_index) stat = cloudstorage.stat(filename) writer = output_writers._GoogleCloudStorageOutputWriter if writer._VALID_LENGTH not in stat.metadata: raise ValueError( "Expect %s in metadata for file %s." % (writer._VALID_LENGTH, filename)) self._seg_valid_length = int(stat.metadata[writer._VALID_LENGTH]) if self._seg_valid_length > stat.st_size: raise ValueError( "Valid length %s is too big for file %s of length %s" % (self._seg_valid_length, filename, stat.st_size)) self._seg = cloudstorage.open(filename)
python
{ "resource": "" }
q12128
_GCSFileSegReader._read_from_seg
train
def _read_from_seg(self, n): """Read from current seg. Args: n: max number of bytes to read. Returns: valid bytes from the current seg. "" if no more is left. """ result = self._seg.read(size=n) if result == "": return result offset = self._seg.tell() if offset > self._seg_valid_length: extra = offset - self._seg_valid_length result = result[:-1*extra] self._offset += len(result) return result
python
{ "resource": "" }
q12129
_get_descending_key
train
def _get_descending_key(gettime=time.time): """Returns a key name lexically ordered by time descending. This lets us have a key name for use with Datastore entities which returns rows in time descending order when it is scanned in lexically ascending order, allowing us to bypass index building for descending indexes. Args: gettime: Used for testing. Returns: A string with a time descending key. """ now_descending = int((_FUTURE_TIME - gettime()) * 100) request_id_hash = os.environ.get("REQUEST_ID_HASH") if not request_id_hash: request_id_hash = str(random.getrandbits(32)) return "%d%s" % (now_descending, request_id_hash)
python
{ "resource": "" }
q12130
_get_task_host
train
def _get_task_host(): """Get the Host header value for all mr tasks. Task Host header determines which instance this task would be routed to. Current version id format is: v7.368834058928280579 Current module id is just the module's name. It could be "default" Default version hostname is app_id.appspot.com Returns: A complete host name is of format version.module.app_id.appspot.com If module is the default module, just version.app_id.appspot.com. The reason is if an app doesn't have modules enabled and the url is "version.default.app_id", "version" is ignored and "default" is used as version. If "default" version doesn't exist, the url is routed to the default version. """ version = os.environ["CURRENT_VERSION_ID"].split(".")[0] default_host = os.environ["DEFAULT_VERSION_HOSTNAME"] module = os.environ["CURRENT_MODULE_ID"] if os.environ["CURRENT_MODULE_ID"] == "default": return "%s.%s" % (version, default_host) return "%s.%s.%s" % (version, module, default_host)
python
{ "resource": "" }
q12131
get_queue_name
train
def get_queue_name(queue_name): """Determine which queue MR should run on. How to choose the queue: 1. If user provided one, use that. 2. If we are starting a mr from taskqueue, inherit that queue. If it's a special queue, fall back to the default queue. 3. Default queue. If user is using any MR pipeline interface, pipeline.start takes a "queue_name" argument. The pipeline will run on that queue and MR will simply inherit the queue_name. Args: queue_name: queue_name from user. Maybe None. Returns: The queue name to run on. """ if queue_name: return queue_name queue_name = os.environ.get("HTTP_X_APPENGINE_QUEUENAME", parameters.config.QUEUE_NAME) if len(queue_name) > 1 and queue_name[0:2] == "__": # We are currently in some special queue. E.g. __cron. return parameters.config.QUEUE_NAME else: return queue_name
python
{ "resource": "" }
q12132
total_seconds
train
def total_seconds(td): """convert a timedelta to seconds. This is patterned after timedelta.total_seconds, which is only available in python 27. Args: td: a timedelta object. Returns: total seconds within a timedelta. Rounded up to seconds. """ secs = td.seconds + td.days * 24 * 3600 if td.microseconds: secs += 1 return secs
python
{ "resource": "" }
q12133
handler_for_name
train
def handler_for_name(fq_name): """Resolves and instantiates handler by fully qualified name. First resolves the name using for_name call. Then if it resolves to a class, instantiates a class, if it resolves to a method - instantiates the class and binds method to the instance. Args: fq_name: fully qualified name of something to find. Returns: handler instance which is ready to be called. """ resolved_name = for_name(fq_name) if isinstance(resolved_name, (type, types.ClassType)): # create new instance if this is type return resolved_name() elif isinstance(resolved_name, types.MethodType): # bind the method return getattr(resolved_name.im_class(), resolved_name.__name__) else: return resolved_name
python
{ "resource": "" }
q12134
is_generator
train
def is_generator(obj): """Return true if the object is generator or generator function. Generator function objects provides same attributes as functions. See isfunction.__doc__ for attributes listing. Adapted from Python 2.6. Args: obj: an object to test. Returns: true if the object is generator function. """ if isinstance(obj, types.GeneratorType): return True CO_GENERATOR = 0x20 return bool(((inspect.isfunction(obj) or inspect.ismethod(obj)) and obj.func_code.co_flags & CO_GENERATOR))
python
{ "resource": "" }
q12135
parse_bool
train
def parse_bool(obj): """Return true if the object represents a truth value, false otherwise. For bool and numeric objects, uses Python's built-in bool function. For str objects, checks string against a list of possible truth values. Args: obj: object to determine boolean value of; expected Returns: Boolean value according to 5.1 of Python docs if object is not a str object. For str objects, return True if str is in TRUTH_VALUE_SET and False otherwise. http://docs.python.org/library/stdtypes.html """ if type(obj) is str: TRUTH_VALUE_SET = ["true", "1", "yes", "t", "on"] return obj.lower() in TRUTH_VALUE_SET else: return bool(obj)
python
{ "resource": "" }
q12136
create_datastore_write_config
train
def create_datastore_write_config(mapreduce_spec): """Creates datastore config to use in write operations. Args: mapreduce_spec: current mapreduce specification as MapreduceSpec. Returns: an instance of datastore_rpc.Configuration to use for all write operations in the mapreduce. """ force_writes = parse_bool(mapreduce_spec.params.get("force_writes", "false")) if force_writes: return datastore_rpc.Configuration(force_writes=force_writes) else: # dev server doesn't support force_writes. return datastore_rpc.Configuration()
python
{ "resource": "" }
q12137
_set_ndb_cache_policy
train
def _set_ndb_cache_policy(): """Tell NDB to never cache anything in memcache or in-process. This ensures that entities fetched from Datastore input_readers via NDB will not bloat up the request memory size and Datastore Puts will avoid doing calls to memcache. Without this you get soft memory limit exits, which hurts overall throughput. """ ndb_ctx = ndb.get_context() ndb_ctx.set_cache_policy(lambda key: False) ndb_ctx.set_memcache_policy(lambda key: False)
python
{ "resource": "" }
q12138
_obj_to_path
train
def _obj_to_path(obj): """Returns the fully qualified path to the object. Args: obj: obj must be a new style top level class, or a top level function. No inner function or static method. Returns: Fully qualified path to the object. Raises: TypeError: when argument obj has unsupported type. ValueError: when obj can't be discovered on the top level. """ if obj is None: return obj if inspect.isclass(obj) or inspect.isfunction(obj): fetched = getattr(sys.modules[obj.__module__], obj.__name__, None) if fetched is None: raise ValueError( "Object %r must be defined on the top level of a module." % obj) return "%s.%s" % (obj.__module__, obj.__name__) raise TypeError("Unexpected type %s." % type(obj))
python
{ "resource": "" }
q12139
strip_prefix_from_items
train
def strip_prefix_from_items(prefix, items): """Strips out the prefix from each of the items if it is present. Args: prefix: the string for that you wish to strip from the beginning of each of the items. items: a list of strings that may or may not contain the prefix you want to strip out. Returns: items_no_prefix: a copy of the list of items (same order) without the prefix (if present). """ items_no_prefix = [] for item in items: if item.startswith(prefix): items_no_prefix.append(item[len(prefix):]) else: items_no_prefix.append(item) return items_no_prefix
python
{ "resource": "" }
q12140
MapperWorkerCallbackHandler._drop_gracefully
train
def _drop_gracefully(self): """Drop worker task gracefully. Set current shard_state to failed. Controller logic will take care of other shards and the entire MR. """ shard_id = self.request.headers[util._MR_SHARD_ID_TASK_HEADER] mr_id = self.request.headers[util._MR_ID_TASK_HEADER] shard_state, mr_state = db.get([ model.ShardState.get_key_by_shard_id(shard_id), model.MapreduceState.get_key_by_job_id(mr_id)]) if shard_state and shard_state.active: shard_state.set_for_failure() config = util.create_datastore_write_config(mr_state.mapreduce_spec) shard_state.put(config=config)
python
{ "resource": "" }
q12141
MapperWorkerCallbackHandler._has_old_request_ended
train
def _has_old_request_ended(self, shard_state): """Whether previous slice retry has ended according to Logs API. Args: shard_state: shard state. Returns: True if the request of previous slice retry has ended. False if it has not or unknown. """ assert shard_state.slice_start_time is not None assert shard_state.slice_request_id is not None request_ids = [shard_state.slice_request_id] logs = None try: logs = list(logservice.fetch(request_ids=request_ids)) except (apiproxy_errors.FeatureNotEnabledError, apiproxy_errors.CapabilityDisabledError) as e: # Managed VMs do not have access to the logservice API # See https://groups.google.com/forum/#!topic/app-engine-managed-vms/r8i65uiFW0w logging.warning("Ignoring exception: %s", e) if not logs or not logs[0].finished: return False return True
python
{ "resource": "" }
q12142
MapperWorkerCallbackHandler._wait_time
train
def _wait_time(self, shard_state, secs, now=datetime.datetime.now): """Time to wait until slice_start_time is secs ago from now. Args: shard_state: shard state. secs: duration in seconds. now: a func that gets now. Returns: 0 if no wait. A positive int in seconds otherwise. Always around up. """ assert shard_state.slice_start_time is not None delta = now() - shard_state.slice_start_time duration = datetime.timedelta(seconds=secs) if delta < duration: return util.total_seconds(duration - delta) else: return 0
python
{ "resource": "" }
q12143
MapperWorkerCallbackHandler._try_free_lease
train
def _try_free_lease(self, shard_state, slice_retry=False): """Try to free lease. A lightweight transaction to update shard_state and unset slice_start_time to allow the next retry to happen without blocking. We don't care if this fails or not because the lease will expire anyway. Under normal execution, _save_state_and_schedule_next is the exit point. It updates/saves shard state and schedules the next slice or returns. Other exit points are: 1. _are_states_consistent: at the beginning of handle, checks if datastore states and the task are in sync. If not, raise or return. 2. _attempt_slice_retry: may raise exception to taskqueue. 3. _save_state_and_schedule_next: may raise exception when taskqueue/db unreachable. This handler should try to free the lease on every exceptional exit point. Args: shard_state: model.ShardState. slice_retry: whether to count this as a failed slice execution. """ @db.transactional def _tx(): fresh_state = model.ShardState.get_by_shard_id(shard_state.shard_id) if fresh_state and fresh_state.active: # Free lease. fresh_state.slice_start_time = None fresh_state.slice_request_id = None if slice_retry: fresh_state.slice_retries += 1 fresh_state.put() try: _tx() # pylint: disable=broad-except except Exception, e: logging.warning(e) logging.warning( "Release lock for shard %s failed. Wait for lease to expire.", shard_state.shard_id)
python
{ "resource": "" }
q12144
MapperWorkerCallbackHandler._maintain_LC
train
def _maintain_LC(self, obj, slice_id, last_slice=False, begin_slice=True, shard_ctx=None, slice_ctx=None): """Makes sure shard life cycle interface are respected. Args: obj: the obj that may have implemented _ShardLifeCycle. slice_id: current slice_id last_slice: whether this is the last slice. begin_slice: whether this is the beginning or the end of a slice. shard_ctx: shard ctx for dependency injection. If None, it will be read from self. slice_ctx: slice ctx for dependency injection. If None, it will be read from self. """ if obj is None or not isinstance(obj, shard_life_cycle._ShardLifeCycle): return shard_context = shard_ctx or self.shard_context slice_context = slice_ctx or self.slice_context if begin_slice: if slice_id == 0: obj.begin_shard(shard_context) obj.begin_slice(slice_context) else: obj.end_slice(slice_context) if last_slice: obj.end_shard(shard_context)
python
{ "resource": "" }
q12145
MapperWorkerCallbackHandler.__return
train
def __return(self, shard_state, tstate, task_directive): """Handler should always call this as the last statement.""" task_directive = self._set_state(shard_state, tstate, task_directive) self._save_state_and_schedule_next(shard_state, tstate, task_directive) context.Context._set(None)
python
{ "resource": "" }
q12146
MapperWorkerCallbackHandler._process_inputs
train
def _process_inputs(self, input_reader, shard_state, tstate, ctx): """Read inputs, process them, and write out outputs. This is the core logic of MapReduce. It reads inputs from input reader, invokes user specified mapper function, and writes output with output writer. It also updates shard_state accordingly. e.g. if shard processing is done, set shard_state.active to False. If errors.FailJobError is caught, it will fail this MR job. All other exceptions will be logged and raised to taskqueue for retry until the number of retries exceeds a limit. Args: input_reader: input reader. shard_state: shard state. tstate: transient shard state. ctx: mapreduce context. Returns: Whether this shard has finished processing all its input split. """ processing_limit = self._processing_limit(tstate.mapreduce_spec) if processing_limit == 0: return finished_shard = True # Input reader may not be an iterator. It is only a container. iterator = iter(input_reader) while True: try: entity = iterator.next() except StopIteration: break # Reading input got exception. If we assume # 1. The input reader have done enough retries. # 2. The input reader can still serialize correctly after this exception. # 3. The input reader, upon resume, will try to re-read this failed # record. # 4. This exception doesn't imply the input reader is permanently stuck. # we can serialize current slice immediately to avoid duplicated # outputs. # TODO(user): Validate these assumptions on all readers. MR should # also have a way to detect fake forward progress. if isinstance(entity, db.Model): shard_state.last_work_item = repr(entity.key()) elif isinstance(entity, ndb.Model): shard_state.last_work_item = repr(entity.key) else: shard_state.last_work_item = repr(entity)[:100] processing_limit -= 1 if not self._process_datum( entity, input_reader, ctx, tstate): finished_shard = False break elif processing_limit == 0: finished_shard = False break # Flush context and its pools. self.slice_context.incr( context.COUNTER_MAPPER_WALLTIME_MS, int((self._time() - self._start_time)*1000)) return finished_shard
python
{ "resource": "" }
q12147
MapperWorkerCallbackHandler._process_datum
train
def _process_datum(self, data, input_reader, ctx, transient_shard_state): """Process a single data piece. Call mapper handler on the data. Args: data: a datum to process. input_reader: input reader. ctx: mapreduce context transient_shard_state: transient shard state. Returns: True if scan should be continued, False if scan should be stopped. """ if data is not input_readers.ALLOW_CHECKPOINT: self.slice_context.incr(context.COUNTER_MAPPER_CALLS) handler = transient_shard_state.handler if isinstance(handler, map_job.Mapper): handler(self.slice_context, data) else: if input_reader.expand_parameters: result = handler(*data) else: result = handler(data) if util.is_generator(result): for output in result: if isinstance(output, operation.Operation): output(ctx) else: output_writer = transient_shard_state.output_writer if not output_writer: logging.warning( "Handler yielded %s, but no output writer is set.", output) else: output_writer.write(output) if self._time() - self._start_time >= parameters.config._SLICE_DURATION_SEC: return False return True
python
{ "resource": "" }
q12148
MapperWorkerCallbackHandler._set_state
train
def _set_state(self, shard_state, tstate, task_directive): """Set shard_state and tstate based on task_directive. Args: shard_state: model.ShardState for current shard. tstate: model.TransientShardState for current shard. task_directive: self._TASK_DIRECTIVE for current shard. Returns: A _TASK_DIRECTIVE enum. PROCEED_TASK if task should proceed normally. RETRY_SHARD if shard should be retried. RETRY_SLICE if slice should be retried. FAIL_TASK if sahrd should fail. RECOVER_SLICE if slice should be recovered. ABORT_SHARD if shard should be aborted. RETRY_TASK if task should be retried. DROP_TASK if task should be dropped. """ if task_directive in (self._TASK_DIRECTIVE.RETRY_TASK, self._TASK_DIRECTIVE.DROP_TASK): return task_directive if task_directive == self._TASK_DIRECTIVE.ABORT_SHARD: shard_state.set_for_abort() return task_directive if task_directive == self._TASK_DIRECTIVE.PROCEED_TASK: shard_state.advance_for_next_slice() tstate.advance_for_next_slice() return task_directive if task_directive == self._TASK_DIRECTIVE.RECOVER_SLICE: tstate.advance_for_next_slice(recovery_slice=True) shard_state.advance_for_next_slice(recovery_slice=True) return task_directive if task_directive == self._TASK_DIRECTIVE.RETRY_SLICE: task_directive = self._attempt_slice_retry(shard_state, tstate) if task_directive == self._TASK_DIRECTIVE.RETRY_SHARD: task_directive = self._attempt_shard_retry(shard_state, tstate) if task_directive == self._TASK_DIRECTIVE.FAIL_TASK: shard_state.set_for_failure() return task_directive
python
{ "resource": "" }
q12149
MapperWorkerCallbackHandler._save_state_and_schedule_next
train
def _save_state_and_schedule_next(self, shard_state, tstate, task_directive): """Save state and schedule task. Save shard state to datastore. Schedule next slice if needed. Set HTTP response code. No modification to any shard_state or tstate. Args: shard_state: model.ShardState for current shard. tstate: model.TransientShardState for current shard. task_directive: enum _TASK_DIRECTIVE. Returns: The task to retry if applicable. """ spec = tstate.mapreduce_spec if task_directive == self._TASK_DIRECTIVE.DROP_TASK: return if task_directive in (self._TASK_DIRECTIVE.RETRY_SLICE, self._TASK_DIRECTIVE.RETRY_TASK): # Set HTTP code to 500. return self.retry_task() elif task_directive == self._TASK_DIRECTIVE.ABORT_SHARD: logging.info("Aborting shard %d of job '%s'", shard_state.shard_number, shard_state.mapreduce_id) task = None elif task_directive == self._TASK_DIRECTIVE.FAIL_TASK: logging.critical("Shard %s failed permanently.", shard_state.shard_id) task = None elif task_directive == self._TASK_DIRECTIVE.RETRY_SHARD: logging.warning("Shard %s is going to be attempted for the %s time.", shard_state.shard_id, shard_state.retries + 1) task = self._state_to_task(tstate, shard_state) elif task_directive == self._TASK_DIRECTIVE.RECOVER_SLICE: logging.warning("Shard %s slice %s is being recovered.", shard_state.shard_id, shard_state.slice_id) task = self._state_to_task(tstate, shard_state) else: assert task_directive == self._TASK_DIRECTIVE.PROCEED_TASK countdown = self._get_countdown_for_next_slice(spec) task = self._state_to_task(tstate, shard_state, countdown=countdown) # Prepare parameters for db transaction and taskqueue. queue_name = os.environ.get("HTTP_X_APPENGINE_QUEUENAME", # For test only. # TODO(user): Remove this. "default") config = util.create_datastore_write_config(spec) @db.transactional(retries=5) def _tx(): """The Transaction helper.""" fresh_shard_state = model.ShardState.get_by_shard_id(tstate.shard_id) if not fresh_shard_state: raise db.Rollback() if (not fresh_shard_state.active or "worker_active_state_collision" in _TEST_INJECTED_FAULTS): logging.warning("Shard %s is not active. Possible spurious task " "execution. Dropping this task.", tstate.shard_id) logging.warning("Datastore's %s", str(fresh_shard_state)) logging.warning("Slice's %s", str(shard_state)) return fresh_shard_state.copy_from(shard_state) fresh_shard_state.put(config=config) # Add task in the same datastore transaction. # This way we guarantee taskqueue is never behind datastore states. # Old tasks will be dropped. # Future task won't run until datastore states catches up. if fresh_shard_state.active: # Not adding task transactionally. # transactional enqueue requires tasks with no name. self._add_task(task, spec, queue_name) try: _tx() except (datastore_errors.Error, taskqueue.Error, runtime.DeadlineExceededError, apiproxy_errors.Error), e: logging.warning( "Can't transactionally continue shard. " "Will retry slice %s %s for the %s time.", tstate.shard_id, tstate.slice_id, self.task_retry_count() + 1) self._try_free_lease(shard_state) raise e
python
{ "resource": "" }
q12150
MapperWorkerCallbackHandler._attempt_slice_recovery
train
def _attempt_slice_recovery(self, shard_state, tstate): """Recover a slice. This is run when a slice had been previously attempted and output may have been written. If an output writer requires slice recovery, we run those logic to remove output duplicates. Otherwise we just retry the slice. If recovery is needed, then the entire slice will be dedicated to recovery logic. No data processing will take place. Thus we call the slice "recovery slice". This is needed for correctness: An output writer instance can be out of sync from its physical medium only when the slice dies after acquring the shard lock but before committing shard state to db. The worst failure case is when shard state failed to commit after the NAMED task for the next slice was added. Thus, recovery slice has a special logic to increment current slice_id n to n+2. If the task for n+1 had been added, it will be dropped because it is behind shard state. Args: shard_state: an instance of Model.ShardState. tstate: an instance of Model.TransientShardState. Returns: _TASK_DIRECTIVE.PROCEED_TASK to continue with this retry. _TASK_DIRECTIVE.RECOVER_SLICE to recover this slice. The next slice will start at the same input as this slice but output to a new instance of output writer. Combining outputs from all writer instances is up to implementation. """ mapper_spec = tstate.mapreduce_spec.mapper if not (tstate.output_writer and tstate.output_writer._supports_slice_recovery(mapper_spec)): return self._TASK_DIRECTIVE.PROCEED_TASK tstate.output_writer = tstate.output_writer._recover( tstate.mapreduce_spec, shard_state.shard_number, shard_state.retries + 1) return self._TASK_DIRECTIVE.RECOVER_SLICE
python
{ "resource": "" }
q12151
MapperWorkerCallbackHandler._attempt_shard_retry
train
def _attempt_shard_retry(self, shard_state, tstate): """Whether to retry shard. This method may modify shard_state and tstate to prepare for retry or fail. Args: shard_state: model.ShardState for current shard. tstate: model.TransientShardState for current shard. Returns: A _TASK_DIRECTIVE enum. RETRY_SHARD if shard should be retried. FAIL_TASK otherwise. """ shard_attempts = shard_state.retries + 1 if shard_attempts >= parameters.config.SHARD_MAX_ATTEMPTS: logging.warning( "Shard attempt %s exceeded %s max attempts.", shard_attempts, parameters.config.SHARD_MAX_ATTEMPTS) return self._TASK_DIRECTIVE.FAIL_TASK if tstate.output_writer and ( not tstate.output_writer._supports_shard_retry(tstate)): logging.warning("Output writer %s does not support shard retry.", tstate.output_writer.__class__.__name__) return self._TASK_DIRECTIVE.FAIL_TASK shard_state.reset_for_retry() logging.warning("Shard %s attempt %s failed with up to %s attempts.", shard_state.shard_id, shard_state.retries, parameters.config.SHARD_MAX_ATTEMPTS) output_writer = None if tstate.output_writer: output_writer = tstate.output_writer.create( tstate.mapreduce_spec, shard_state.shard_number, shard_attempts + 1) tstate.reset_for_retry(output_writer) return self._TASK_DIRECTIVE.RETRY_SHARD
python
{ "resource": "" }
q12152
MapperWorkerCallbackHandler._attempt_slice_retry
train
def _attempt_slice_retry(self, shard_state, tstate): """Attempt to retry this slice. This method may modify shard_state and tstate to prepare for retry or fail. Args: shard_state: model.ShardState for current shard. tstate: model.TransientShardState for current shard. Returns: A _TASK_DIRECTIVE enum. RETRY_SLICE if slice should be retried. RETRY_SHARD if shard retry should be attempted. """ if (shard_state.slice_retries + 1 < parameters.config.TASK_MAX_DATA_PROCESSING_ATTEMPTS): logging.warning( "Slice %s %s failed for the %s of up to %s attempts " "(%s of %s taskqueue execution attempts). " "Will retry now.", tstate.shard_id, tstate.slice_id, shard_state.slice_retries + 1, parameters.config.TASK_MAX_DATA_PROCESSING_ATTEMPTS, self.task_retry_count() + 1, parameters.config.TASK_MAX_ATTEMPTS) # Clear info related to current exception. Otherwise, the real # callstack that includes a frame for this method will show up # in log. sys.exc_clear() self._try_free_lease(shard_state, slice_retry=True) return self._TASK_DIRECTIVE.RETRY_SLICE if parameters.config.TASK_MAX_DATA_PROCESSING_ATTEMPTS > 0: logging.warning("Slice attempt %s exceeded %s max attempts.", self.task_retry_count() + 1, parameters.config.TASK_MAX_DATA_PROCESSING_ATTEMPTS) return self._TASK_DIRECTIVE.RETRY_SHARD
python
{ "resource": "" }
q12153
MapperWorkerCallbackHandler._get_countdown_for_next_slice
train
def _get_countdown_for_next_slice(self, spec): """Get countdown for next slice's task. When user sets processing rate, we set countdown to delay task execution. Args: spec: model.MapreduceSpec Returns: countdown in int. """ countdown = 0 if self._processing_limit(spec) != -1: countdown = max( int(parameters.config._SLICE_DURATION_SEC - (self._time() - self._start_time)), 0) return countdown
python
{ "resource": "" }
q12154
MapperWorkerCallbackHandler._state_to_task
train
def _state_to_task(cls, tstate, shard_state, eta=None, countdown=None): """Generate task for slice according to current states. Args: tstate: An instance of TransientShardState. shard_state: An instance of ShardState. eta: Absolute time when the MR should execute. May not be specified if 'countdown' is also supplied. This may be timezone-aware or timezone-naive. countdown: Time in seconds into the future that this MR should execute. Defaults to zero. Returns: A model.HugeTask instance for the slice specified by current states. """ base_path = tstate.base_path task_name = MapperWorkerCallbackHandler.get_task_name( tstate.shard_id, tstate.slice_id, tstate.retries) headers = util._get_task_headers(tstate.mapreduce_spec.mapreduce_id) headers[util._MR_SHARD_ID_TASK_HEADER] = tstate.shard_id worker_task = model.HugeTask( url=base_path + "/worker_callback/" + tstate.shard_id, params=tstate.to_dict(), name=task_name, eta=eta, countdown=countdown, parent=shard_state, headers=headers) return worker_task
python
{ "resource": "" }
q12155
MapperWorkerCallbackHandler._processing_limit
train
def _processing_limit(self, spec): """Get the limit on the number of map calls allowed by this slice. Args: spec: a Mapreduce spec. Returns: The limit as a positive int if specified by user. -1 otherwise. """ processing_rate = float(spec.mapper.params.get("processing_rate", 0)) slice_processing_limit = -1 if processing_rate > 0: slice_processing_limit = int(math.ceil( parameters.config._SLICE_DURATION_SEC*processing_rate/ int(spec.mapper.shard_count))) return slice_processing_limit
python
{ "resource": "" }
q12156
ControllerCallbackHandler._drop_gracefully
train
def _drop_gracefully(self): """Gracefully drop controller task. This method is called when decoding controller task payload failed. Upon this we mark ShardState and MapreduceState as failed so all tasks can stop. Writing to datastore is forced (ignore read-only mode) because we want the tasks to stop badly, and if force_writes was False, the job would have never been started. """ mr_id = self.request.headers[util._MR_ID_TASK_HEADER] state = model.MapreduceState.get_by_job_id(mr_id) if not state or not state.active: return state.active = False state.result_status = model.MapreduceState.RESULT_FAILED config = util.create_datastore_write_config(state.mapreduce_spec) puts = [] for ss in model.ShardState.find_all_by_mapreduce_state(state): if ss.active: ss.set_for_failure() puts.append(ss) # Avoid having too many shard states in memory. if len(puts) > model.ShardState._MAX_STATES_IN_MEMORY: db.put(puts, config=config) puts = [] db.put(puts, config=config) # Put mr_state only after all shard_states are put. db.put(state, config=config)
python
{ "resource": "" }
q12157
ControllerCallbackHandler._update_state_from_shard_states
train
def _update_state_from_shard_states(self, state, shard_states, control): """Update mr state by examing shard states. Args: state: current mapreduce state as MapreduceState. shard_states: an iterator over shard states. control: model.MapreduceControl entity. """ # Initialize vars. state.active_shards, state.aborted_shards, state.failed_shards = 0, 0, 0 total_shards = 0 processed_counts = [] processed_status = [] state.counters_map.clear() # Tally across shard states once. for s in shard_states: total_shards += 1 status = 'unknown' if s.active: state.active_shards += 1 status = 'running' if s.result_status == model.ShardState.RESULT_SUCCESS: status = 'success' elif s.result_status == model.ShardState.RESULT_ABORTED: state.aborted_shards += 1 status = 'aborted' elif s.result_status == model.ShardState.RESULT_FAILED: state.failed_shards += 1 status = 'failed' # Update stats in mapreduce state by aggregating stats from shard states. state.counters_map.add_map(s.counters_map) processed_counts.append(s.counters_map.get(context.COUNTER_MAPPER_CALLS)) processed_status.append(status) state.set_processed_counts(processed_counts, processed_status) state.last_poll_time = datetime.datetime.utcfromtimestamp(self._time()) spec = state.mapreduce_spec if total_shards != spec.mapper.shard_count: logging.error("Found %d shard states. Expect %d. " "Issuing abort command to job '%s'", total_shards, spec.mapper.shard_count, spec.mapreduce_id) # We issue abort command to allow shards to stop themselves. model.MapreduceControl.abort(spec.mapreduce_id) # If any shard is active then the mr is active. # This way, controller won't prematurely stop before all the shards have. state.active = bool(state.active_shards) if not control and (state.failed_shards or state.aborted_shards): # Issue abort command if there are failed shards. model.MapreduceControl.abort(spec.mapreduce_id) if not state.active: # Set final result status derived from shard states. if state.failed_shards or not total_shards: state.result_status = model.MapreduceState.RESULT_FAILED # It's important failed shards is checked before aborted shards # because failed shards will trigger other shards to abort. elif state.aborted_shards: state.result_status = model.MapreduceState.RESULT_ABORTED else: state.result_status = model.MapreduceState.RESULT_SUCCESS self._finalize_outputs(spec, state) self._finalize_job(spec, state) else: @db.transactional(retries=5) def _put_state(): """The helper for storing the state.""" fresh_state = model.MapreduceState.get_by_job_id(spec.mapreduce_id) # We don't check anything other than active because we are only # updating stats. It's OK if they are briefly inconsistent. if not fresh_state.active: logging.warning( "Job %s is not active. Looks like spurious task execution. " "Dropping controller task.", spec.mapreduce_id) return config = util.create_datastore_write_config(spec) state.put(config=config) _put_state()
python
{ "resource": "" }
q12158
ControllerCallbackHandler._finalize_outputs
train
def _finalize_outputs(cls, mapreduce_spec, mapreduce_state): """Finalize outputs. Args: mapreduce_spec: an instance of MapreduceSpec. mapreduce_state: an instance of MapreduceState. """ # Only finalize the output writers if the job is successful. if (mapreduce_spec.mapper.output_writer_class() and mapreduce_state.result_status == model.MapreduceState.RESULT_SUCCESS): mapreduce_spec.mapper.output_writer_class().finalize_job(mapreduce_state)
python
{ "resource": "" }
q12159
ControllerCallbackHandler._finalize_job
train
def _finalize_job(cls, mapreduce_spec, mapreduce_state): """Finalize job execution. Invokes done callback and save mapreduce state in a transaction, and schedule necessary clean ups. This method is idempotent. Args: mapreduce_spec: an instance of MapreduceSpec mapreduce_state: an instance of MapreduceState """ config = util.create_datastore_write_config(mapreduce_spec) queue_name = util.get_queue_name(mapreduce_spec.params.get( model.MapreduceSpec.PARAM_DONE_CALLBACK_QUEUE)) done_callback = mapreduce_spec.params.get( model.MapreduceSpec.PARAM_DONE_CALLBACK) done_task = None if done_callback: done_task = taskqueue.Task( url=done_callback, headers=util._get_task_headers(mapreduce_spec.mapreduce_id, util.CALLBACK_MR_ID_TASK_HEADER), method=mapreduce_spec.params.get("done_callback_method", "POST")) @db.transactional(retries=5) def _put_state(): """Helper to store state.""" fresh_state = model.MapreduceState.get_by_job_id( mapreduce_spec.mapreduce_id) if not fresh_state.active: logging.warning( "Job %s is not active. Looks like spurious task execution. " "Dropping task.", mapreduce_spec.mapreduce_id) return mapreduce_state.put(config=config) # Enqueue done_callback if needed. if done_task and not _run_task_hook( mapreduce_spec.get_hooks(), "enqueue_done_task", done_task, queue_name): done_task.add(queue_name, transactional=True) _put_state() logging.info("Final result for job '%s' is '%s'", mapreduce_spec.mapreduce_id, mapreduce_state.result_status) cls._clean_up_mr(mapreduce_spec)
python
{ "resource": "" }
q12160
ControllerCallbackHandler.reschedule
train
def reschedule(cls, mapreduce_state, mapreduce_spec, serial_id, queue_name=None): """Schedule new update status callback task. Args: mapreduce_state: mapreduce state as model.MapreduceState mapreduce_spec: mapreduce specification as MapreduceSpec. serial_id: id of the invocation as int. queue_name: The queue to schedule this task on. Will use the current queue of execution if not supplied. """ task_name = ControllerCallbackHandler.get_task_name( mapreduce_spec, serial_id) task_params = ControllerCallbackHandler.controller_parameters( mapreduce_spec, serial_id) if not queue_name: queue_name = os.environ.get("HTTP_X_APPENGINE_QUEUENAME", "default") controller_callback_task = model.HugeTask( url=(mapreduce_spec.params["base_path"] + "/controller_callback/" + mapreduce_spec.mapreduce_id), name=task_name, params=task_params, countdown=parameters.config._CONTROLLER_PERIOD_SEC, parent=mapreduce_state, headers=util._get_task_headers(mapreduce_spec.mapreduce_id)) if not _run_task_hook(mapreduce_spec.get_hooks(), "enqueue_controller_task", controller_callback_task, queue_name): try: controller_callback_task.add(queue_name) except (taskqueue.TombstonedTaskError, taskqueue.TaskAlreadyExistsError), e: logging.warning("Task %r with params %r already exists. %s: %s", task_name, task_params, e.__class__, e)
python
{ "resource": "" }
q12161
KickOffJobHandler.handle
train
def handle(self): """Handles kick off request.""" # Get and verify mr state. mr_id = self.request.get("mapreduce_id") # Log the mr_id since this is started in an unnamed task logging.info("Processing kickoff for job %s", mr_id) state = model.MapreduceState.get_by_job_id(mr_id) if not self._check_mr_state(state, mr_id): return # Create input readers. readers, serialized_readers_entity = self._get_input_readers(state) if readers is None: # We don't have any data. Finish map. logging.warning("Found no mapper input data to process.") state.active = False state.result_status = model.MapreduceState.RESULT_SUCCESS ControllerCallbackHandler._finalize_job( state.mapreduce_spec, state) return False # Create output writers. self._setup_output_writer(state) # Save states and make sure we use the saved input readers for # subsequent operations. result = self._save_states(state, serialized_readers_entity) if result is None: readers, _ = self._get_input_readers(state) elif not result: return queue_name = self.request.headers.get("X-AppEngine-QueueName") KickOffJobHandler._schedule_shards(state.mapreduce_spec, readers, queue_name, state.mapreduce_spec.params["base_path"], state) ControllerCallbackHandler.reschedule( state, state.mapreduce_spec, serial_id=0, queue_name=queue_name)
python
{ "resource": "" }
q12162
KickOffJobHandler._drop_gracefully
train
def _drop_gracefully(self): """See parent.""" mr_id = self.request.get("mapreduce_id") logging.error("Failed to kick off job %s", mr_id) state = model.MapreduceState.get_by_job_id(mr_id) if not self._check_mr_state(state, mr_id): return # Issue abort command just in case there are running tasks. config = util.create_datastore_write_config(state.mapreduce_spec) model.MapreduceControl.abort(mr_id, config=config) # Finalize job and invoke callback. state.active = False state.result_status = model.MapreduceState.RESULT_FAILED ControllerCallbackHandler._finalize_job(state.mapreduce_spec, state)
python
{ "resource": "" }
q12163
KickOffJobHandler._get_input_readers
train
def _get_input_readers(self, state): """Get input readers. Args: state: a MapreduceState model. Returns: A tuple: (a list of input readers, a model._HugeTaskPayload entity). The payload entity contains the json serialized input readers. (None, None) when input reader inplitting returned no data to process. """ serialized_input_readers_key = (self._SERIALIZED_INPUT_READERS_KEY % state.key().id_or_name()) serialized_input_readers = model._HugeTaskPayload.get_by_key_name( serialized_input_readers_key, parent=state) # Initialize input readers. input_reader_class = state.mapreduce_spec.mapper.input_reader_class() split_param = state.mapreduce_spec.mapper if issubclass(input_reader_class, map_job.InputReader): split_param = map_job.JobConfig._to_map_job_config( state.mapreduce_spec, os.environ.get("HTTP_X_APPENGINE_QUEUENAME")) if serialized_input_readers is None: readers = input_reader_class.split_input(split_param) else: readers = [input_reader_class.from_json_str(_json) for _json in json.loads(zlib.decompress( serialized_input_readers.payload))] if not readers: return None, None # Update state and spec with actual shard count. state.mapreduce_spec.mapper.shard_count = len(readers) state.active_shards = len(readers) # Prepare to save serialized input readers. if serialized_input_readers is None: # Use mr_state as parent so it can be easily cleaned up later. serialized_input_readers = model._HugeTaskPayload( key_name=serialized_input_readers_key, parent=state) readers_json_str = [i.to_json_str() for i in readers] serialized_input_readers.payload = zlib.compress(json.dumps( readers_json_str)) return readers, serialized_input_readers
python
{ "resource": "" }
q12164
KickOffJobHandler._save_states
train
def _save_states(self, state, serialized_readers_entity): """Run transaction to save state. Args: state: a model.MapreduceState entity. serialized_readers_entity: a model._HugeTaskPayload entity containing json serialized input readers. Returns: False if a fatal error is encountered and this task should be dropped immediately. True if transaction is successful. None if a previous attempt of this same transaction has already succeeded. """ mr_id = state.key().id_or_name() fresh_state = model.MapreduceState.get_by_job_id(mr_id) if not self._check_mr_state(fresh_state, mr_id): return False if fresh_state.active_shards != 0: logging.warning( "Mapreduce %s already has active shards. Looks like spurious task " "execution.", mr_id) return None config = util.create_datastore_write_config(state.mapreduce_spec) db.put([state, serialized_readers_entity], config=config) return True
python
{ "resource": "" }
q12165
KickOffJobHandler._schedule_shards
train
def _schedule_shards(cls, spec, readers, queue_name, base_path, mr_state): """Prepares shard states and schedules their execution. Even though this method does not schedule shard task and save shard state transactionally, it's safe for taskqueue to retry this logic because the initial shard_state for each shard is the same from any retry. This is an important yet reasonable assumption on model.ShardState. Args: spec: mapreduce specification as MapreduceSpec. readers: list of InputReaders describing shard splits. queue_name: The queue to run this job on. base_path: The base url path of mapreduce callbacks. mr_state: The MapReduceState of current job. """ # Create shard states. shard_states = [] for shard_number, input_reader in enumerate(readers): shard_state = model.ShardState.create_new(spec.mapreduce_id, shard_number) shard_state.shard_description = str(input_reader) shard_states.append(shard_state) # Retrieves already existing shard states. existing_shard_states = db.get(shard.key() for shard in shard_states) existing_shard_keys = set(shard.key() for shard in existing_shard_states if shard is not None) # Save non existent shard states. # Note: we could do this transactionally if necessary. db.put((shard for shard in shard_states if shard.key() not in existing_shard_keys), config=util.create_datastore_write_config(spec)) # Create output writers. writer_class = spec.mapper.output_writer_class() writers = [None] * len(readers) if writer_class: for shard_number, shard_state in enumerate(shard_states): writers[shard_number] = writer_class.create( mr_state.mapreduce_spec, shard_state.shard_number, shard_state.retries + 1, mr_state.writer_state) # Schedule ALL shard tasks. # Since each task is named, _add_task will fall back gracefully if a # task already exists. for shard_number, (input_reader, output_writer) in enumerate( zip(readers, writers)): shard_id = model.ShardState.shard_id_from_number( spec.mapreduce_id, shard_number) task = MapperWorkerCallbackHandler._state_to_task( model.TransientShardState( base_path, spec, shard_id, 0, input_reader, input_reader, output_writer=output_writer, handler=spec.mapper.handler), shard_states[shard_number]) MapperWorkerCallbackHandler._add_task(task, spec, queue_name)
python
{ "resource": "" }
q12166
KickOffJobHandler._check_mr_state
train
def _check_mr_state(cls, state, mr_id): """Check MapreduceState. Args: state: an MapreduceState instance. mr_id: mapreduce id. Returns: True if state is valid. False if not and this task should be dropped. """ if state is None: logging.warning( "Mapreduce State for job %s is missing. Dropping Task.", mr_id) return False if not state.active: logging.warning( "Mapreduce %s is not active. Looks like spurious task " "execution. Dropping Task.", mr_id) return False return True
python
{ "resource": "" }
q12167
StartJobHandler.handle
train
def handle(self): """Handles start request.""" # Mapper spec as form arguments. mapreduce_name = self._get_required_param("name") mapper_input_reader_spec = self._get_required_param("mapper_input_reader") mapper_handler_spec = self._get_required_param("mapper_handler") mapper_output_writer_spec = self.request.get("mapper_output_writer") mapper_params = self._get_params( "mapper_params_validator", "mapper_params.") params = self._get_params( "params_validator", "params.") # Default values. mr_params = map_job.JobConfig._get_default_mr_params() mr_params.update(params) if "queue_name" in mapper_params: mr_params["queue_name"] = mapper_params["queue_name"] # Set some mapper param defaults if not present. mapper_params["processing_rate"] = int(mapper_params.get( "processing_rate") or parameters.config.PROCESSING_RATE_PER_SEC) # Validate the Mapper spec, handler, and input reader. mapper_spec = model.MapperSpec( mapper_handler_spec, mapper_input_reader_spec, mapper_params, int(mapper_params.get("shard_count", parameters.config.SHARD_COUNT)), output_writer_spec=mapper_output_writer_spec) mapreduce_id = self._start_map( mapreduce_name, mapper_spec, mr_params, queue_name=mr_params["queue_name"], _app=mapper_params.get("_app")) self.json_response["mapreduce_id"] = mapreduce_id
python
{ "resource": "" }
q12168
StartJobHandler._get_params
train
def _get_params(self, validator_parameter, name_prefix): """Retrieves additional user-supplied params for the job and validates them. Args: validator_parameter: name of the request parameter which supplies validator for this parameter set. name_prefix: common prefix for all parameter names in the request. Raises: Any exception raised by the 'params_validator' request parameter if the params fail to validate. Returns: The user parameters. """ params_validator = self.request.get(validator_parameter) user_params = {} for key in self.request.arguments(): if key.startswith(name_prefix): values = self.request.get_all(key) adjusted_key = key[len(name_prefix):] if len(values) == 1: user_params[adjusted_key] = values[0] else: user_params[adjusted_key] = values if params_validator: resolved_validator = util.for_name(params_validator) resolved_validator(user_params) return user_params
python
{ "resource": "" }
q12169
StartJobHandler._get_required_param
train
def _get_required_param(self, param_name): """Get a required request parameter. Args: param_name: name of request parameter to fetch. Returns: parameter value Raises: errors.NotEnoughArgumentsError: if parameter is not specified. """ value = self.request.get(param_name) if not value: raise errors.NotEnoughArgumentsError(param_name + " not specified") return value
python
{ "resource": "" }
q12170
StartJobHandler._start_map
train
def _start_map(cls, name, mapper_spec, mapreduce_params, queue_name, eta=None, countdown=None, hooks_class_name=None, _app=None, in_xg_transaction=False): # pylint: disable=g-doc-args # pylint: disable=g-doc-return-or-yield """See control.start_map. Requirements for this method: 1. The request that invokes this method can either be regular or from taskqueue. So taskqueue specific headers can not be used. 2. Each invocation transactionally starts an isolated mapreduce job with a unique id. MapreduceState should be immediately available after returning. See control.start_map's doc on transactional. 3. Method should be lightweight. """ # Validate input reader. mapper_input_reader_class = mapper_spec.input_reader_class() mapper_input_reader_class.validate(mapper_spec) # Validate output writer. mapper_output_writer_class = mapper_spec.output_writer_class() if mapper_output_writer_class: mapper_output_writer_class.validate(mapper_spec) # Create a new id and mr spec. mapreduce_id = model.MapreduceState.new_mapreduce_id() mapreduce_spec = model.MapreduceSpec( name, mapreduce_id, mapper_spec.to_json(), mapreduce_params, hooks_class_name) # Validate mapper handler. ctx = context.Context(mapreduce_spec, None) context.Context._set(ctx) try: # pylint: disable=pointless-statement mapper_spec.handler finally: context.Context._set(None) # Save states and enqueue task. if in_xg_transaction: propagation = db.MANDATORY else: propagation = db.INDEPENDENT @db.transactional(propagation=propagation) def _txn(): cls._create_and_save_state(mapreduce_spec, _app) cls._add_kickoff_task(mapreduce_params["base_path"], mapreduce_spec, eta, countdown, queue_name) _txn() return mapreduce_id
python
{ "resource": "" }
q12171
StartJobHandler._create_and_save_state
train
def _create_and_save_state(cls, mapreduce_spec, _app): """Save mapreduce state to datastore. Save state to datastore so that UI can see it immediately. Args: mapreduce_spec: model.MapreduceSpec, _app: app id if specified. None otherwise. Returns: The saved Mapreduce state. """ state = model.MapreduceState.create_new(mapreduce_spec.mapreduce_id) state.mapreduce_spec = mapreduce_spec state.active = True state.active_shards = 0 if _app: state.app_id = _app config = util.create_datastore_write_config(mapreduce_spec) state.put(config=config) return state
python
{ "resource": "" }
q12172
StartJobHandler._add_kickoff_task
train
def _add_kickoff_task(cls, base_path, mapreduce_spec, eta, countdown, queue_name): """Enqueues a new kickoff task.""" params = {"mapreduce_id": mapreduce_spec.mapreduce_id} # Task is not named so that it can be added within a transaction. kickoff_task = taskqueue.Task( url=base_path + "/kickoffjob_callback/" + mapreduce_spec.mapreduce_id, headers=util._get_task_headers(mapreduce_spec.mapreduce_id), params=params, eta=eta, countdown=countdown) hooks = mapreduce_spec.get_hooks() if hooks is not None: try: hooks.enqueue_kickoff_task(kickoff_task, queue_name) return except NotImplementedError: pass kickoff_task.add(queue_name, transactional=True)
python
{ "resource": "" }
q12173
FinalizeJobHandler.schedule
train
def schedule(cls, mapreduce_spec): """Schedule finalize task. Args: mapreduce_spec: mapreduce specification as MapreduceSpec. """ task_name = mapreduce_spec.mapreduce_id + "-finalize" finalize_task = taskqueue.Task( name=task_name, url=(mapreduce_spec.params["base_path"] + "/finalizejob_callback/" + mapreduce_spec.mapreduce_id), params={"mapreduce_id": mapreduce_spec.mapreduce_id}, headers=util._get_task_headers(mapreduce_spec.mapreduce_id)) queue_name = util.get_queue_name(None) if not _run_task_hook(mapreduce_spec.get_hooks(), "enqueue_controller_task", finalize_task, queue_name): try: finalize_task.add(queue_name) except (taskqueue.TombstonedTaskError, taskqueue.TaskAlreadyExistsError), e: logging.warning("Task %r already exists. %s: %s", task_name, e.__class__, e)
python
{ "resource": "" }
q12174
_get_params
train
def _get_params(mapper_spec, allowed_keys=None, allow_old=True): """Obtain input reader parameters. Utility function for input readers implementation. Fetches parameters from mapreduce specification giving appropriate usage warnings. Args: mapper_spec: The MapperSpec for the job allowed_keys: set of all allowed keys in parameters as strings. If it is not None, then parameters are expected to be in a separate "input_reader" subdictionary of mapper_spec parameters. allow_old: Allow parameters to exist outside of the input_reader subdictionary for compatability. Returns: mapper parameters as dict Raises: BadReaderParamsError: if parameters are invalid/missing or not allowed. """ if "input_reader" not in mapper_spec.params: message = ("Input reader's parameters should be specified in " "input_reader subdictionary.") if not allow_old or allowed_keys: raise errors.BadReaderParamsError(message) params = mapper_spec.params params = dict((str(n), v) for n, v in params.iteritems()) else: if not isinstance(mapper_spec.params.get("input_reader"), dict): raise errors.BadReaderParamsError( "Input reader parameters should be a dictionary") params = mapper_spec.params.get("input_reader") params = dict((str(n), v) for n, v in params.iteritems()) if allowed_keys: params_diff = set(params.keys()) - allowed_keys if params_diff: raise errors.BadReaderParamsError( "Invalid input_reader parameters: %s" % ",".join(params_diff)) return params
python
{ "resource": "" }
q12175
AbstractDatastoreInputReader._choose_split_points
train
def _choose_split_points(cls, sorted_keys, shard_count): """Returns the best split points given a random set of datastore.Keys.""" assert len(sorted_keys) >= shard_count index_stride = len(sorted_keys) / float(shard_count) return [sorted_keys[int(round(index_stride * i))] for i in range(1, shard_count)]
python
{ "resource": "" }
q12176
_OldAbstractDatastoreInputReader._split_input_from_namespace
train
def _split_input_from_namespace(cls, app, namespace, entity_kind, shard_count): """Helper for _split_input_from_params. If there are not enough Entities to make all of the given shards, the returned list of KeyRanges will include Nones. The returned list will contain KeyRanges ordered lexographically with any Nones appearing at the end. Args: app: the app. namespace: the namespace. entity_kind: entity kind as string. shard_count: the number of shards. Returns: KeyRange objects. """ raw_entity_kind = cls._get_raw_entity_kind(entity_kind) if shard_count == 1: # With one shard we don't need to calculate any splitpoints at all. return [key_range.KeyRange(namespace=namespace, _app=app)] ds_query = datastore.Query(kind=raw_entity_kind, namespace=namespace, _app=app, keys_only=True) ds_query.Order("__scatter__") random_keys = ds_query.Get(shard_count * cls._OVERSAMPLING_FACTOR) if not random_keys: # There are no entities with scatter property. We have no idea # how to split. return ([key_range.KeyRange(namespace=namespace, _app=app)] + [None] * (shard_count - 1)) random_keys.sort() if len(random_keys) >= shard_count: # We've got a lot of scatter values. Sample them down. random_keys = cls._choose_split_points(random_keys, shard_count) # pylint: disable=redefined-outer-name key_ranges = [] key_ranges.append(key_range.KeyRange( key_start=None, key_end=random_keys[0], direction=key_range.KeyRange.ASC, include_start=False, include_end=False, namespace=namespace, _app=app)) for i in range(0, len(random_keys) - 1): key_ranges.append(key_range.KeyRange( key_start=random_keys[i], key_end=random_keys[i+1], direction=key_range.KeyRange.ASC, include_start=True, include_end=False, namespace=namespace, _app=app)) key_ranges.append(key_range.KeyRange( key_start=random_keys[-1], key_end=None, direction=key_range.KeyRange.ASC, include_start=True, include_end=False, namespace=namespace, _app=app)) if len(key_ranges) < shard_count: # We need to have as many shards as it was requested. Add some Nones. key_ranges += [None] * (shard_count - len(key_ranges)) return key_ranges
python
{ "resource": "" }
q12177
_OldAbstractDatastoreInputReader._split_input_from_params
train
def _split_input_from_params(cls, app, namespaces, entity_kind_name, params, shard_count): """Return input reader objects. Helper for split_input.""" # pylint: disable=redefined-outer-name key_ranges = [] # KeyRanges for all namespaces for namespace in namespaces: key_ranges.extend( cls._split_input_from_namespace(app, namespace, entity_kind_name, shard_count)) # Divide the KeyRanges into shard_count shards. The KeyRanges for different # namespaces might be very different in size so the assignment of KeyRanges # to shards is done round-robin. shared_ranges = [[] for _ in range(shard_count)] for i, k_range in enumerate(key_ranges): shared_ranges[i % shard_count].append(k_range) batch_size = int(params.get(cls.BATCH_SIZE_PARAM, cls._BATCH_SIZE)) return [cls(entity_kind_name, key_ranges=key_ranges, ns_range=None, batch_size=batch_size) for key_ranges in shared_ranges if key_ranges]
python
{ "resource": "" }
q12178
_OldAbstractDatastoreInputReader.split_input
train
def split_input(cls, mapper_spec): """Splits query into shards without fetching query results. Tries as best as it can to split the whole query result set into equal shards. Due to difficulty of making the perfect split, resulting shards' sizes might differ significantly from each other. Args: mapper_spec: MapperSpec with params containing 'entity_kind'. May have 'namespace' in the params as a string containing a single namespace. If specified then the input reader will only yield values in the given namespace. If 'namespace' is not given then values from all namespaces will be yielded. May also have 'batch_size' in the params to specify the number of entities to process in each batch. Returns: A list of InputReader objects. If the query results are empty then the empty list will be returned. Otherwise, the list will always have a length equal to number_of_shards but may be padded with Nones if there are too few results for effective sharding. """ params = _get_params(mapper_spec) entity_kind_name = params[cls.ENTITY_KIND_PARAM] batch_size = int(params.get(cls.BATCH_SIZE_PARAM, cls._BATCH_SIZE)) shard_count = mapper_spec.shard_count namespace = params.get(cls.NAMESPACE_PARAM) app = params.get(cls._APP_PARAM) filters = params.get(cls.FILTERS_PARAM) if namespace is None: # It is difficult to efficiently shard large numbers of namespaces because # there can be an arbitrary number of them. So the strategy is: # 1. if there are a small number of namespaces in the datastore then # generate one KeyRange per namespace per shard and assign each shard a # KeyRange for every namespace. This should lead to nearly perfect # sharding. # 2. if there are a large number of namespaces in the datastore then # generate one NamespaceRange per worker. This can lead to very bad # sharding because namespaces can contain very different numbers of # entities and each NamespaceRange may contain very different numbers # of namespaces. namespace_query = datastore.Query("__namespace__", keys_only=True, _app=app) namespace_keys = namespace_query.Get( limit=cls.MAX_NAMESPACES_FOR_KEY_SHARD+1) if len(namespace_keys) > cls.MAX_NAMESPACES_FOR_KEY_SHARD: ns_ranges = namespace_range.NamespaceRange.split(n=shard_count, contiguous=True, _app=app) return [cls(entity_kind_name, key_ranges=None, ns_range=ns_range, batch_size=batch_size, filters=filters) for ns_range in ns_ranges] elif not namespace_keys: return [cls(entity_kind_name, key_ranges=None, ns_range=namespace_range.NamespaceRange(_app=app), batch_size=shard_count, filters=filters)] else: namespaces = [namespace_key.name() or "" for namespace_key in namespace_keys] else: namespaces = [namespace] readers = cls._split_input_from_params( app, namespaces, entity_kind_name, params, shard_count) if filters: for reader in readers: reader._filters = filters return readers
python
{ "resource": "" }
q12179
BlobstoreLineInputReader.to_json
train
def to_json(self): """Returns an json-compatible input shard spec for remaining inputs.""" new_pos = self._blob_reader.tell() if self._has_iterated: new_pos -= 1 return {self.BLOB_KEY_PARAM: self._blob_key, self.INITIAL_POSITION_PARAM: new_pos, self.END_POSITION_PARAM: self._end_position}
python
{ "resource": "" }
q12180
BlobstoreLineInputReader.from_json
train
def from_json(cls, json): """Instantiates an instance of this InputReader for the given shard spec.""" return cls(json[cls.BLOB_KEY_PARAM], json[cls.INITIAL_POSITION_PARAM], json[cls.END_POSITION_PARAM])
python
{ "resource": "" }
q12181
BlobstoreLineInputReader.split_input
train
def split_input(cls, mapper_spec): """Returns a list of shard_count input_spec_shards for input_spec. Args: mapper_spec: The mapper specification to split from. Must contain 'blob_keys' parameter with one or more blob keys. Returns: A list of BlobstoreInputReaders corresponding to the specified shards. """ params = _get_params(mapper_spec) blob_keys = params[cls.BLOB_KEYS_PARAM] if isinstance(blob_keys, basestring): # This is a mechanism to allow multiple blob keys (which do not contain # commas) in a single string. It may go away. blob_keys = blob_keys.split(",") blob_sizes = {} for blob_key in blob_keys: blob_info = blobstore.BlobInfo.get(blobstore.BlobKey(blob_key)) blob_sizes[blob_key] = blob_info.size shard_count = min(cls._MAX_SHARD_COUNT, mapper_spec.shard_count) shards_per_blob = shard_count // len(blob_keys) if shards_per_blob == 0: shards_per_blob = 1 chunks = [] for blob_key, blob_size in blob_sizes.items(): blob_chunk_size = blob_size // shards_per_blob for i in xrange(shards_per_blob - 1): chunks.append(BlobstoreLineInputReader.from_json( {cls.BLOB_KEY_PARAM: blob_key, cls.INITIAL_POSITION_PARAM: blob_chunk_size * i, cls.END_POSITION_PARAM: blob_chunk_size * (i + 1)})) chunks.append(BlobstoreLineInputReader.from_json( {cls.BLOB_KEY_PARAM: blob_key, cls.INITIAL_POSITION_PARAM: blob_chunk_size * (shards_per_blob - 1), cls.END_POSITION_PARAM: blob_size})) return chunks
python
{ "resource": "" }
q12182
BlobstoreZipInputReader._read
train
def _read(self, entry): """Read entry content. Args: entry: zip file entry as zipfile.ZipInfo. Returns: Entry content as string. """ start_time = time.time() content = self._zip.read(entry.filename) ctx = context.get() if ctx: operation.counters.Increment(COUNTER_IO_READ_BYTES, len(content))(ctx) operation.counters.Increment( COUNTER_IO_READ_MSEC, int((time.time() - start_time) * 1000))(ctx) return content
python
{ "resource": "" }
q12183
BlobstoreZipInputReader.split_input
train
def split_input(cls, mapper_spec, _reader=blobstore.BlobReader): """Returns a list of input shard states for the input spec. Args: mapper_spec: The MapperSpec for this InputReader. Must contain 'blob_key' parameter with one blob key. _reader: a callable that returns a file-like object for reading blobs. Used for dependency injection. Returns: A list of InputReaders spanning files within the zip. """ params = _get_params(mapper_spec) blob_key = params[cls.BLOB_KEY_PARAM] zip_input = zipfile.ZipFile(_reader(blob_key)) zfiles = zip_input.infolist() total_size = sum(x.file_size for x in zfiles) num_shards = min(mapper_spec.shard_count, cls._MAX_SHARD_COUNT) size_per_shard = total_size // num_shards # Break the list of files into sublists, each of approximately # size_per_shard bytes. shard_start_indexes = [0] current_shard_size = 0 for i, fileinfo in enumerate(zfiles): current_shard_size += fileinfo.file_size if current_shard_size >= size_per_shard: shard_start_indexes.append(i + 1) current_shard_size = 0 if shard_start_indexes[-1] != len(zfiles): shard_start_indexes.append(len(zfiles)) return [cls(blob_key, start_index, end_index, _reader) for start_index, end_index in zip(shard_start_indexes, shard_start_indexes[1:])]
python
{ "resource": "" }
q12184
BlobstoreZipLineInputReader._next_offset
train
def _next_offset(self): """Return the offset of the next line to read.""" if self._filestream: offset = self._filestream.tell() if offset: offset -= 1 else: offset = self._initial_offset return offset
python
{ "resource": "" }
q12185
NamespaceInputReader.validate
train
def validate(cls, mapper_spec): """Validates mapper spec. Args: mapper_spec: The MapperSpec for this InputReader. Raises: BadReaderParamsError: required parameters are missing or invalid. """ if mapper_spec.input_reader_class() != cls: raise BadReaderParamsError("Input reader class mismatch") params = _get_params(mapper_spec) if cls.BATCH_SIZE_PARAM in params: try: batch_size = int(params[cls.BATCH_SIZE_PARAM]) if batch_size < 1: raise BadReaderParamsError("Bad batch size: %s" % batch_size) except ValueError, e: raise BadReaderParamsError("Bad batch size: %s" % e)
python
{ "resource": "" }
q12186
LogInputReader.from_json
train
def from_json(cls, json): """Creates an instance of the InputReader for the given input shard's state. Args: json: The InputReader state as a dict-like object. Returns: An instance of the InputReader configured using the given JSON parameters. """ # Strip out unrecognized parameters, as introduced by b/5960884. params = dict((str(k), v) for k, v in json.iteritems() if k in cls._PARAMS) # This is not symmetric with to_json() wrt. PROTOTYPE_REQUEST_PARAM because # the constructor parameters need to be JSON-encodable, so the decoding # needs to happen there anyways. if cls._OFFSET_PARAM in params: params[cls._OFFSET_PARAM] = base64.b64decode(params[cls._OFFSET_PARAM]) return cls(**params)
python
{ "resource": "" }
q12187
LogInputReader.split_input
train
def split_input(cls, mapper_spec): """Returns a list of input readers for the given input specification. Args: mapper_spec: The MapperSpec for this InputReader. Returns: A list of InputReaders. """ params = _get_params(mapper_spec) shard_count = mapper_spec.shard_count # Pick out the overall start and end times and time step per shard. start_time = params[cls.START_TIME_PARAM] end_time = params[cls.END_TIME_PARAM] seconds_per_shard = (end_time - start_time) / shard_count # Create a LogInputReader for each shard, modulating the params as we go. shards = [] for _ in xrange(shard_count - 1): params[cls.END_TIME_PARAM] = (params[cls.START_TIME_PARAM] + seconds_per_shard) shards.append(LogInputReader(**params)) params[cls.START_TIME_PARAM] = params[cls.END_TIME_PARAM] # Create a final shard to complete the time range. params[cls.END_TIME_PARAM] = end_time return shards + [LogInputReader(**params)]
python
{ "resource": "" }
q12188
LogInputReader.validate
train
def validate(cls, mapper_spec): """Validates the mapper's specification and all necessary parameters. Args: mapper_spec: The MapperSpec to be used with this InputReader. Raises: BadReaderParamsError: If the user fails to specify both a starting time and an ending time, or if the starting time is later than the ending time. """ if mapper_spec.input_reader_class() != cls: raise errors.BadReaderParamsError("Input reader class mismatch") params = _get_params(mapper_spec, allowed_keys=cls._PARAMS) if (cls.VERSION_IDS_PARAM not in params and cls.MODULE_VERSIONS_PARAM not in params): raise errors.BadReaderParamsError("Must specify a list of version ids or " "module/version ids for mapper input") if (cls.VERSION_IDS_PARAM in params and cls.MODULE_VERSIONS_PARAM in params): raise errors.BadReaderParamsError("Can not supply both version ids or " "module/version ids. Use only one.") if (cls.START_TIME_PARAM not in params or params[cls.START_TIME_PARAM] is None): raise errors.BadReaderParamsError("Must specify a starting time for " "mapper input") if cls.END_TIME_PARAM not in params or params[cls.END_TIME_PARAM] is None: params[cls.END_TIME_PARAM] = time.time() if params[cls.START_TIME_PARAM] >= params[cls.END_TIME_PARAM]: raise errors.BadReaderParamsError("The starting time cannot be later " "than or the same as the ending time.") if cls._PROTOTYPE_REQUEST_PARAM in params: try: params[cls._PROTOTYPE_REQUEST_PARAM] = log_service_pb.LogReadRequest( params[cls._PROTOTYPE_REQUEST_PARAM]) except (TypeError, ProtocolBuffer.ProtocolBufferDecodeError): raise errors.BadReaderParamsError("The prototype request must be " "parseable as a LogReadRequest.") # Pass the parameters to logservice.fetch() to verify any underlying # constraints on types or values. This only constructs an iterator, it # doesn't trigger any requests for actual log records. try: logservice.fetch(**params) except logservice.InvalidArgumentError, e: raise errors.BadReaderParamsError("One or more parameters are not valid " "inputs to logservice.fetch(): %s" % e)
python
{ "resource": "" }
q12189
_GoogleCloudStorageInputReader._next_file
train
def _next_file(self): """Find next filename. self._filenames may need to be expanded via listbucket. Returns: None if no more file is left. Filename otherwise. """ while True: if self._bucket_iter: try: return self._bucket_iter.next().filename except StopIteration: self._bucket_iter = None self._bucket = None if self._index >= len(self._filenames): return filename = self._filenames[self._index] self._index += 1 if self._delimiter is None or not filename.endswith(self._delimiter): return filename self._bucket = cloudstorage.listbucket(filename, delimiter=self._delimiter) self._bucket_iter = iter(self._bucket)
python
{ "resource": "" }
q12190
_GoogleCloudStorageInputReader.next
train
def next(self): """Returns the next input from this input reader, a block of bytes. Non existent files will be logged and skipped. The file might have been removed after input splitting. Returns: The next input from this input reader in the form of a cloudstorage ReadBuffer that supports a File-like interface (read, readline, seek, tell, and close). An error may be raised if the file can not be opened. Raises: StopIteration: The list of files has been exhausted. """ options = {} if self._buffer_size: options["read_buffer_size"] = self._buffer_size if self._account_id: options["_account_id"] = self._account_id while True: filename = self._next_file() if filename is None: raise StopIteration() try: start_time = time.time() handle = cloudstorage.open(filename, **options) ctx = context.get() if ctx: operation.counters.Increment( COUNTER_IO_READ_MSEC, int((time.time() - start_time) * 1000))(ctx) return handle except cloudstorage.NotFoundError: # Fail the job if we're strict on missing input. if getattr(self, "_fail_on_missing_input", False): raise errors.FailJobError( "File missing in GCS, aborting: %s" % filename) # Move on otherwise. logging.warning("File %s may have been removed. Skipping file.", filename)
python
{ "resource": "" }
q12191
ShardContext.incr
train
def incr(self, counter_name, delta=1): """Changes counter by delta. Args: counter_name: the name of the counter to change. str. delta: int. """ self._state.counters_map.increment(counter_name, delta)
python
{ "resource": "" }
q12192
ShardContext.counter
train
def counter(self, counter_name, default=0): """Get the current counter value. Args: counter_name: name of the counter in string. default: default value in int if one doesn't exist. Returns: Current value of the counter. """ return self._state.counters_map.get(counter_name, default)
python
{ "resource": "" }
q12193
SliceContext.emit
train
def emit(self, value): """Emits a value to output writer. Args: value: a value of type expected by the output writer. """ if not self._tstate.output_writer: logging.error("emit is called, but no output writer is set.") return self._tstate.output_writer.write(value)
python
{ "resource": "" }
q12194
GCSInputReader.next
train
def next(self): """Returns a handler to the next file. Non existent files will be logged and skipped. The file might have been removed after input splitting. Returns: The next input from this input reader in the form of a cloudstorage ReadBuffer that supports a File-like interface (read, readline, seek, tell, and close). An error may be raised if the file can not be opened. Raises: StopIteration: The list of files has been exhausted. """ options = {} if self._buffer_size: options["read_buffer_size"] = self._buffer_size if self._account_id: options["_account_id"] = self._account_id while True: filename = self._next_file() if filename is None: raise StopIteration() if (self._path_filter and not self._path_filter.accept(self._slice_ctx, filename)): continue try: start_time = time.time() handle = cloudstorage.open(filename, **options) self._slice_ctx.incr(self.COUNTER_IO_READ_MSEC, int(time.time() - start_time) * 1000) self._slice_ctx.incr(self.COUNTER_FILE_READ) return handle except cloudstorage.NotFoundError: logging.warning("File %s may have been removed. Skipping file.", filename) self._slice_ctx.incr(self.COUNTER_FILE_MISSING)
python
{ "resource": "" }
q12195
AbstractDatastoreInputReader._get_query_spec
train
def _get_query_spec(cls, params): """Construct a model.QuerySpec from model.MapperSpec.""" entity_kind = params[cls.ENTITY_KIND_PARAM] filters = params.get(cls.FILTERS_PARAM) app = params.get(cls._APP_PARAM) ns = params.get(cls.NAMESPACE_PARAM) return model.QuerySpec( entity_kind=cls._get_raw_entity_kind(entity_kind), keys_only=bool(params.get(cls.KEYS_ONLY_PARAM, False)), filters=filters, batch_size=int(params.get(cls.BATCH_SIZE_PARAM, cls._BATCH_SIZE)), model_class_path=entity_kind, app=app, ns=ns)
python
{ "resource": "" }
q12196
AbstractDatastoreInputReader._to_key_ranges_by_shard
train
def _to_key_ranges_by_shard(cls, app, namespaces, shard_count, query_spec): """Get a list of key_ranges.KeyRanges objects, one for each shard. This method uses scatter index to split each namespace into pieces and assign those pieces to shards. Args: app: app_id in str. namespaces: a list of namespaces in str. shard_count: number of shards to split. query_spec: model.QuerySpec. Returns: a list of key_ranges.KeyRanges objects. """ key_ranges_by_ns = [] # Split each ns into n splits. If a ns doesn't have enough scatter to # split into n, the last few splits are None. for namespace in namespaces: ranges = cls._split_ns_by_scatter( shard_count, namespace, query_spec.entity_kind, app) # The nth split of each ns will be assigned to the nth shard. # Shuffle so that None are not all by the end. random.shuffle(ranges) key_ranges_by_ns.append(ranges) # KeyRanges from different namespaces might be very different in size. # Use round robin to make sure each shard can have at most one split # or a None from a ns. ranges_by_shard = [[] for _ in range(shard_count)] for ranges in key_ranges_by_ns: for i, k_range in enumerate(ranges): if k_range: ranges_by_shard[i].append(k_range) key_ranges_by_shard = [] for ranges in ranges_by_shard: if ranges: key_ranges_by_shard.append(key_ranges.KeyRangesFactory.create_from_list( ranges)) return key_ranges_by_shard
python
{ "resource": "" }
q12197
_setup_constants
train
def _setup_constants(alphabet=NAMESPACE_CHARACTERS, max_length=MAX_NAMESPACE_LENGTH, batch_size=NAMESPACE_BATCH_SIZE): """Calculate derived constant values. Only useful for testing.""" global NAMESPACE_CHARACTERS global MAX_NAMESPACE_LENGTH # pylint: disable=global-variable-undefined global MAX_NAMESPACE global _LEX_DISTANCE global NAMESPACE_BATCH_SIZE NAMESPACE_CHARACTERS = alphabet MAX_NAMESPACE_LENGTH = max_length MAX_NAMESPACE = NAMESPACE_CHARACTERS[-1] * MAX_NAMESPACE_LENGTH NAMESPACE_BATCH_SIZE = batch_size # _LEX_DISTANCE will contain the lexical distance between two adjacent # characters in NAMESPACE_CHARACTERS at each character index. This is used # to calculate the ordinal for each string. Example: # NAMESPACE_CHARACTERS = 'ab' # MAX_NAMESPACE_LENGTH = 3 # _LEX_DISTANCE = [1, 3, 7] # '' => 0 # 'a' => 1 # 'aa' => 2 # 'aaa' => 3 # 'aab' => 4 - Distance between 'aaa' and 'aab' is 1. # 'ab' => 5 - Distance between 'aa' and 'ab' is 3. # 'aba' => 6 # 'abb' => 7 # 'b' => 8 - Distance between 'a' and 'b' is 7. # 'ba' => 9 # 'baa' => 10 # 'bab' => 11 # ... # _namespace_to_ord('bab') = (1 * 7 + 1) + (0 * 3 + 1) + (1 * 1 + 1) = 11 _LEX_DISTANCE = [1] for i in range(1, MAX_NAMESPACE_LENGTH): _LEX_DISTANCE.append( _LEX_DISTANCE[i-1] * len(NAMESPACE_CHARACTERS) + 1) # pylint: disable=undefined-loop-variable del i
python
{ "resource": "" }
q12198
_ord_to_namespace
train
def _ord_to_namespace(n, _max_length=None): """Convert a namespace ordinal to a namespace string. Converts an int, representing the sequence number of a namespace ordered lexographically, into a namespace string. >>> _ord_to_namespace(0) '' >>> _ord_to_namespace(1) '-' >>> _ord_to_namespace(2) '--' >>> _ord_to_namespace(3) '---' Args: n: A number representing the lexographical ordering of a namespace. _max_length: The maximum namespace length. Returns: A string representing the nth namespace in lexographical order. """ if _max_length is None: _max_length = MAX_NAMESPACE_LENGTH length = _LEX_DISTANCE[_max_length - 1] if n == 0: return '' n -= 1 return (NAMESPACE_CHARACTERS[n / length] + _ord_to_namespace(n % length, _max_length - 1))
python
{ "resource": "" }
q12199
_namespace_to_ord
train
def _namespace_to_ord(namespace): """Converts a namespace string into an int representing its lexographic order. >>> _namespace_to_ord('') '' >>> _namespace_to_ord('_') 1 >>> _namespace_to_ord('__') 2 Args: namespace: A namespace string. Returns: An int representing the lexographical order of the given namespace string. """ n = 0 for i, c in enumerate(namespace): n += (_LEX_DISTANCE[MAX_NAMESPACE_LENGTH - i- 1] * NAMESPACE_CHARACTERS.index(c) + 1) return n
python
{ "resource": "" }