id
int32
0
252k
repo
stringlengths
7
55
path
stringlengths
4
127
func_name
stringlengths
1
88
original_string
stringlengths
75
19.8k
language
stringclasses
1 value
code
stringlengths
75
19.8k
code_tokens
list
docstring
stringlengths
3
17.3k
docstring_tokens
list
sha
stringlengths
40
40
url
stringlengths
87
242
19,900
pandas-dev/pandas
pandas/io/parsers.py
_validate_names
def _validate_names(names): """ Check if the `names` parameter contains duplicates. If duplicates are found, we issue a warning before returning. Parameters ---------- names : array-like or None An array containing a list of the names used for the output DataFrame. Returns ------- names : array-like or None The original `names` parameter. """ if names is not None: if len(names) != len(set(names)): msg = ("Duplicate names specified. This " "will raise an error in the future.") warnings.warn(msg, UserWarning, stacklevel=3) return names
python
def _validate_names(names): """ Check if the `names` parameter contains duplicates. If duplicates are found, we issue a warning before returning. Parameters ---------- names : array-like or None An array containing a list of the names used for the output DataFrame. Returns ------- names : array-like or None The original `names` parameter. """ if names is not None: if len(names) != len(set(names)): msg = ("Duplicate names specified. This " "will raise an error in the future.") warnings.warn(msg, UserWarning, stacklevel=3) return names
[ "def", "_validate_names", "(", "names", ")", ":", "if", "names", "is", "not", "None", ":", "if", "len", "(", "names", ")", "!=", "len", "(", "set", "(", "names", ")", ")", ":", "msg", "=", "(", "\"Duplicate names specified. This \"", "\"will raise an error in the future.\"", ")", "warnings", ".", "warn", "(", "msg", ",", "UserWarning", ",", "stacklevel", "=", "3", ")", "return", "names" ]
Check if the `names` parameter contains duplicates. If duplicates are found, we issue a warning before returning. Parameters ---------- names : array-like or None An array containing a list of the names used for the output DataFrame. Returns ------- names : array-like or None The original `names` parameter.
[ "Check", "if", "the", "names", "parameter", "contains", "duplicates", "." ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/io/parsers.py#L379-L402
19,901
pandas-dev/pandas
pandas/io/parsers.py
_read
def _read(filepath_or_buffer: FilePathOrBuffer, kwds): """Generic reader of line files.""" encoding = kwds.get('encoding', None) if encoding is not None: encoding = re.sub('_', '-', encoding).lower() kwds['encoding'] = encoding compression = kwds.get('compression', 'infer') compression = _infer_compression(filepath_or_buffer, compression) # TODO: get_filepath_or_buffer could return # Union[FilePathOrBuffer, s3fs.S3File, gcsfs.GCSFile] # though mypy handling of conditional imports is difficult. # See https://github.com/python/mypy/issues/1297 fp_or_buf, _, compression, should_close = get_filepath_or_buffer( filepath_or_buffer, encoding, compression) kwds['compression'] = compression if kwds.get('date_parser', None) is not None: if isinstance(kwds['parse_dates'], bool): kwds['parse_dates'] = True # Extract some of the arguments (pass chunksize on). iterator = kwds.get('iterator', False) chunksize = _validate_integer('chunksize', kwds.get('chunksize', None), 1) nrows = kwds.get('nrows', None) # Check for duplicates in names. _validate_names(kwds.get("names", None)) # Create the parser. parser = TextFileReader(fp_or_buf, **kwds) if chunksize or iterator: return parser try: data = parser.read(nrows) finally: parser.close() if should_close: try: fp_or_buf.close() except ValueError: pass return data
python
def _read(filepath_or_buffer: FilePathOrBuffer, kwds): """Generic reader of line files.""" encoding = kwds.get('encoding', None) if encoding is not None: encoding = re.sub('_', '-', encoding).lower() kwds['encoding'] = encoding compression = kwds.get('compression', 'infer') compression = _infer_compression(filepath_or_buffer, compression) # TODO: get_filepath_or_buffer could return # Union[FilePathOrBuffer, s3fs.S3File, gcsfs.GCSFile] # though mypy handling of conditional imports is difficult. # See https://github.com/python/mypy/issues/1297 fp_or_buf, _, compression, should_close = get_filepath_or_buffer( filepath_or_buffer, encoding, compression) kwds['compression'] = compression if kwds.get('date_parser', None) is not None: if isinstance(kwds['parse_dates'], bool): kwds['parse_dates'] = True # Extract some of the arguments (pass chunksize on). iterator = kwds.get('iterator', False) chunksize = _validate_integer('chunksize', kwds.get('chunksize', None), 1) nrows = kwds.get('nrows', None) # Check for duplicates in names. _validate_names(kwds.get("names", None)) # Create the parser. parser = TextFileReader(fp_or_buf, **kwds) if chunksize or iterator: return parser try: data = parser.read(nrows) finally: parser.close() if should_close: try: fp_or_buf.close() except ValueError: pass return data
[ "def", "_read", "(", "filepath_or_buffer", ":", "FilePathOrBuffer", ",", "kwds", ")", ":", "encoding", "=", "kwds", ".", "get", "(", "'encoding'", ",", "None", ")", "if", "encoding", "is", "not", "None", ":", "encoding", "=", "re", ".", "sub", "(", "'_'", ",", "'-'", ",", "encoding", ")", ".", "lower", "(", ")", "kwds", "[", "'encoding'", "]", "=", "encoding", "compression", "=", "kwds", ".", "get", "(", "'compression'", ",", "'infer'", ")", "compression", "=", "_infer_compression", "(", "filepath_or_buffer", ",", "compression", ")", "# TODO: get_filepath_or_buffer could return", "# Union[FilePathOrBuffer, s3fs.S3File, gcsfs.GCSFile]", "# though mypy handling of conditional imports is difficult.", "# See https://github.com/python/mypy/issues/1297", "fp_or_buf", ",", "_", ",", "compression", ",", "should_close", "=", "get_filepath_or_buffer", "(", "filepath_or_buffer", ",", "encoding", ",", "compression", ")", "kwds", "[", "'compression'", "]", "=", "compression", "if", "kwds", ".", "get", "(", "'date_parser'", ",", "None", ")", "is", "not", "None", ":", "if", "isinstance", "(", "kwds", "[", "'parse_dates'", "]", ",", "bool", ")", ":", "kwds", "[", "'parse_dates'", "]", "=", "True", "# Extract some of the arguments (pass chunksize on).", "iterator", "=", "kwds", ".", "get", "(", "'iterator'", ",", "False", ")", "chunksize", "=", "_validate_integer", "(", "'chunksize'", ",", "kwds", ".", "get", "(", "'chunksize'", ",", "None", ")", ",", "1", ")", "nrows", "=", "kwds", ".", "get", "(", "'nrows'", ",", "None", ")", "# Check for duplicates in names.", "_validate_names", "(", "kwds", ".", "get", "(", "\"names\"", ",", "None", ")", ")", "# Create the parser.", "parser", "=", "TextFileReader", "(", "fp_or_buf", ",", "*", "*", "kwds", ")", "if", "chunksize", "or", "iterator", ":", "return", "parser", "try", ":", "data", "=", "parser", ".", "read", "(", "nrows", ")", "finally", ":", "parser", ".", "close", "(", ")", "if", "should_close", ":", "try", ":", "fp_or_buf", ".", "close", "(", ")", "except", "ValueError", ":", "pass", "return", "data" ]
Generic reader of line files.
[ "Generic", "reader", "of", "line", "files", "." ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/io/parsers.py#L405-L452
19,902
pandas-dev/pandas
pandas/io/parsers.py
read_fwf
def read_fwf(filepath_or_buffer: FilePathOrBuffer, colspecs='infer', widths=None, infer_nrows=100, **kwds): r""" Read a table of fixed-width formatted lines into DataFrame. Also supports optionally iterating or breaking of the file into chunks. Additional help can be found in the `online docs for IO Tools <http://pandas.pydata.org/pandas-docs/stable/io.html>`_. Parameters ---------- filepath_or_buffer : str, path object, or file-like object Any valid string path is acceptable. The string could be a URL. Valid URL schemes include http, ftp, s3, and file. For file URLs, a host is expected. A local file could be: file://localhost/path/to/table.csv. If you want to pass in a path object, pandas accepts either ``pathlib.Path`` or ``py._path.local.LocalPath``. By file-like object, we refer to objects with a ``read()`` method, such as a file handler (e.g. via builtin ``open`` function) or ``StringIO``. colspecs : list of tuple (int, int) or 'infer'. optional A list of tuples giving the extents of the fixed-width fields of each line as half-open intervals (i.e., [from, to[ ). String value 'infer' can be used to instruct the parser to try detecting the column specifications from the first 100 rows of the data which are not being skipped via skiprows (default='infer'). widths : list of int, optional A list of field widths which can be used instead of 'colspecs' if the intervals are contiguous. infer_nrows : int, default 100 The number of rows to consider when letting the parser determine the `colspecs`. .. versionadded:: 0.24.0 **kwds : optional Optional keyword arguments can be passed to ``TextFileReader``. Returns ------- DataFrame or TextParser A comma-separated values (csv) file is returned as two-dimensional data structure with labeled axes. See Also -------- to_csv : Write DataFrame to a comma-separated values (csv) file. read_csv : Read a comma-separated values (csv) file into DataFrame. Examples -------- >>> pd.read_fwf('data.csv') # doctest: +SKIP """ # Check input arguments. if colspecs is None and widths is None: raise ValueError("Must specify either colspecs or widths") elif colspecs not in (None, 'infer') and widths is not None: raise ValueError("You must specify only one of 'widths' and " "'colspecs'") # Compute 'colspecs' from 'widths', if specified. if widths is not None: colspecs, col = [], 0 for w in widths: colspecs.append((col, col + w)) col += w kwds['colspecs'] = colspecs kwds['infer_nrows'] = infer_nrows kwds['engine'] = 'python-fwf' return _read(filepath_or_buffer, kwds)
python
def read_fwf(filepath_or_buffer: FilePathOrBuffer, colspecs='infer', widths=None, infer_nrows=100, **kwds): r""" Read a table of fixed-width formatted lines into DataFrame. Also supports optionally iterating or breaking of the file into chunks. Additional help can be found in the `online docs for IO Tools <http://pandas.pydata.org/pandas-docs/stable/io.html>`_. Parameters ---------- filepath_or_buffer : str, path object, or file-like object Any valid string path is acceptable. The string could be a URL. Valid URL schemes include http, ftp, s3, and file. For file URLs, a host is expected. A local file could be: file://localhost/path/to/table.csv. If you want to pass in a path object, pandas accepts either ``pathlib.Path`` or ``py._path.local.LocalPath``. By file-like object, we refer to objects with a ``read()`` method, such as a file handler (e.g. via builtin ``open`` function) or ``StringIO``. colspecs : list of tuple (int, int) or 'infer'. optional A list of tuples giving the extents of the fixed-width fields of each line as half-open intervals (i.e., [from, to[ ). String value 'infer' can be used to instruct the parser to try detecting the column specifications from the first 100 rows of the data which are not being skipped via skiprows (default='infer'). widths : list of int, optional A list of field widths which can be used instead of 'colspecs' if the intervals are contiguous. infer_nrows : int, default 100 The number of rows to consider when letting the parser determine the `colspecs`. .. versionadded:: 0.24.0 **kwds : optional Optional keyword arguments can be passed to ``TextFileReader``. Returns ------- DataFrame or TextParser A comma-separated values (csv) file is returned as two-dimensional data structure with labeled axes. See Also -------- to_csv : Write DataFrame to a comma-separated values (csv) file. read_csv : Read a comma-separated values (csv) file into DataFrame. Examples -------- >>> pd.read_fwf('data.csv') # doctest: +SKIP """ # Check input arguments. if colspecs is None and widths is None: raise ValueError("Must specify either colspecs or widths") elif colspecs not in (None, 'infer') and widths is not None: raise ValueError("You must specify only one of 'widths' and " "'colspecs'") # Compute 'colspecs' from 'widths', if specified. if widths is not None: colspecs, col = [], 0 for w in widths: colspecs.append((col, col + w)) col += w kwds['colspecs'] = colspecs kwds['infer_nrows'] = infer_nrows kwds['engine'] = 'python-fwf' return _read(filepath_or_buffer, kwds)
[ "def", "read_fwf", "(", "filepath_or_buffer", ":", "FilePathOrBuffer", ",", "colspecs", "=", "'infer'", ",", "widths", "=", "None", ",", "infer_nrows", "=", "100", ",", "*", "*", "kwds", ")", ":", "# Check input arguments.", "if", "colspecs", "is", "None", "and", "widths", "is", "None", ":", "raise", "ValueError", "(", "\"Must specify either colspecs or widths\"", ")", "elif", "colspecs", "not", "in", "(", "None", ",", "'infer'", ")", "and", "widths", "is", "not", "None", ":", "raise", "ValueError", "(", "\"You must specify only one of 'widths' and \"", "\"'colspecs'\"", ")", "# Compute 'colspecs' from 'widths', if specified.", "if", "widths", "is", "not", "None", ":", "colspecs", ",", "col", "=", "[", "]", ",", "0", "for", "w", "in", "widths", ":", "colspecs", ".", "append", "(", "(", "col", ",", "col", "+", "w", ")", ")", "col", "+=", "w", "kwds", "[", "'colspecs'", "]", "=", "colspecs", "kwds", "[", "'infer_nrows'", "]", "=", "infer_nrows", "kwds", "[", "'engine'", "]", "=", "'python-fwf'", "return", "_read", "(", "filepath_or_buffer", ",", "kwds", ")" ]
r""" Read a table of fixed-width formatted lines into DataFrame. Also supports optionally iterating or breaking of the file into chunks. Additional help can be found in the `online docs for IO Tools <http://pandas.pydata.org/pandas-docs/stable/io.html>`_. Parameters ---------- filepath_or_buffer : str, path object, or file-like object Any valid string path is acceptable. The string could be a URL. Valid URL schemes include http, ftp, s3, and file. For file URLs, a host is expected. A local file could be: file://localhost/path/to/table.csv. If you want to pass in a path object, pandas accepts either ``pathlib.Path`` or ``py._path.local.LocalPath``. By file-like object, we refer to objects with a ``read()`` method, such as a file handler (e.g. via builtin ``open`` function) or ``StringIO``. colspecs : list of tuple (int, int) or 'infer'. optional A list of tuples giving the extents of the fixed-width fields of each line as half-open intervals (i.e., [from, to[ ). String value 'infer' can be used to instruct the parser to try detecting the column specifications from the first 100 rows of the data which are not being skipped via skiprows (default='infer'). widths : list of int, optional A list of field widths which can be used instead of 'colspecs' if the intervals are contiguous. infer_nrows : int, default 100 The number of rows to consider when letting the parser determine the `colspecs`. .. versionadded:: 0.24.0 **kwds : optional Optional keyword arguments can be passed to ``TextFileReader``. Returns ------- DataFrame or TextParser A comma-separated values (csv) file is returned as two-dimensional data structure with labeled axes. See Also -------- to_csv : Write DataFrame to a comma-separated values (csv) file. read_csv : Read a comma-separated values (csv) file into DataFrame. Examples -------- >>> pd.read_fwf('data.csv') # doctest: +SKIP
[ "r", "Read", "a", "table", "of", "fixed", "-", "width", "formatted", "lines", "into", "DataFrame", "." ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/io/parsers.py#L735-L813
19,903
pandas-dev/pandas
pandas/io/parsers.py
_is_potential_multi_index
def _is_potential_multi_index(columns): """ Check whether or not the `columns` parameter could be converted into a MultiIndex. Parameters ---------- columns : array-like Object which may or may not be convertible into a MultiIndex Returns ------- boolean : Whether or not columns could become a MultiIndex """ return (len(columns) and not isinstance(columns, MultiIndex) and all(isinstance(c, tuple) for c in columns))
python
def _is_potential_multi_index(columns): """ Check whether or not the `columns` parameter could be converted into a MultiIndex. Parameters ---------- columns : array-like Object which may or may not be convertible into a MultiIndex Returns ------- boolean : Whether or not columns could become a MultiIndex """ return (len(columns) and not isinstance(columns, MultiIndex) and all(isinstance(c, tuple) for c in columns))
[ "def", "_is_potential_multi_index", "(", "columns", ")", ":", "return", "(", "len", "(", "columns", ")", "and", "not", "isinstance", "(", "columns", ",", "MultiIndex", ")", "and", "all", "(", "isinstance", "(", "c", ",", "tuple", ")", "for", "c", "in", "columns", ")", ")" ]
Check whether or not the `columns` parameter could be converted into a MultiIndex. Parameters ---------- columns : array-like Object which may or may not be convertible into a MultiIndex Returns ------- boolean : Whether or not columns could become a MultiIndex
[ "Check", "whether", "or", "not", "the", "columns", "parameter", "could", "be", "converted", "into", "a", "MultiIndex", "." ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/io/parsers.py#L1190-L1205
19,904
pandas-dev/pandas
pandas/io/parsers.py
_evaluate_usecols
def _evaluate_usecols(usecols, names): """ Check whether or not the 'usecols' parameter is a callable. If so, enumerates the 'names' parameter and returns a set of indices for each entry in 'names' that evaluates to True. If not a callable, returns 'usecols'. """ if callable(usecols): return {i for i, name in enumerate(names) if usecols(name)} return usecols
python
def _evaluate_usecols(usecols, names): """ Check whether or not the 'usecols' parameter is a callable. If so, enumerates the 'names' parameter and returns a set of indices for each entry in 'names' that evaluates to True. If not a callable, returns 'usecols'. """ if callable(usecols): return {i for i, name in enumerate(names) if usecols(name)} return usecols
[ "def", "_evaluate_usecols", "(", "usecols", ",", "names", ")", ":", "if", "callable", "(", "usecols", ")", ":", "return", "{", "i", "for", "i", ",", "name", "in", "enumerate", "(", "names", ")", "if", "usecols", "(", "name", ")", "}", "return", "usecols" ]
Check whether or not the 'usecols' parameter is a callable. If so, enumerates the 'names' parameter and returns a set of indices for each entry in 'names' that evaluates to True. If not a callable, returns 'usecols'.
[ "Check", "whether", "or", "not", "the", "usecols", "parameter", "is", "a", "callable", ".", "If", "so", "enumerates", "the", "names", "parameter", "and", "returns", "a", "set", "of", "indices", "for", "each", "entry", "in", "names", "that", "evaluates", "to", "True", ".", "If", "not", "a", "callable", "returns", "usecols", "." ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/io/parsers.py#L1208-L1218
19,905
pandas-dev/pandas
pandas/io/parsers.py
_validate_usecols_names
def _validate_usecols_names(usecols, names): """ Validates that all usecols are present in a given list of names. If not, raise a ValueError that shows what usecols are missing. Parameters ---------- usecols : iterable of usecols The columns to validate are present in names. names : iterable of names The column names to check against. Returns ------- usecols : iterable of usecols The `usecols` parameter if the validation succeeds. Raises ------ ValueError : Columns were missing. Error message will list them. """ missing = [c for c in usecols if c not in names] if len(missing) > 0: raise ValueError( "Usecols do not match columns, " "columns expected but not found: {missing}".format(missing=missing) ) return usecols
python
def _validate_usecols_names(usecols, names): """ Validates that all usecols are present in a given list of names. If not, raise a ValueError that shows what usecols are missing. Parameters ---------- usecols : iterable of usecols The columns to validate are present in names. names : iterable of names The column names to check against. Returns ------- usecols : iterable of usecols The `usecols` parameter if the validation succeeds. Raises ------ ValueError : Columns were missing. Error message will list them. """ missing = [c for c in usecols if c not in names] if len(missing) > 0: raise ValueError( "Usecols do not match columns, " "columns expected but not found: {missing}".format(missing=missing) ) return usecols
[ "def", "_validate_usecols_names", "(", "usecols", ",", "names", ")", ":", "missing", "=", "[", "c", "for", "c", "in", "usecols", "if", "c", "not", "in", "names", "]", "if", "len", "(", "missing", ")", ">", "0", ":", "raise", "ValueError", "(", "\"Usecols do not match columns, \"", "\"columns expected but not found: {missing}\"", ".", "format", "(", "missing", "=", "missing", ")", ")", "return", "usecols" ]
Validates that all usecols are present in a given list of names. If not, raise a ValueError that shows what usecols are missing. Parameters ---------- usecols : iterable of usecols The columns to validate are present in names. names : iterable of names The column names to check against. Returns ------- usecols : iterable of usecols The `usecols` parameter if the validation succeeds. Raises ------ ValueError : Columns were missing. Error message will list them.
[ "Validates", "that", "all", "usecols", "are", "present", "in", "a", "given", "list", "of", "names", ".", "If", "not", "raise", "a", "ValueError", "that", "shows", "what", "usecols", "are", "missing", "." ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/io/parsers.py#L1221-L1250
19,906
pandas-dev/pandas
pandas/io/parsers.py
_validate_usecols_arg
def _validate_usecols_arg(usecols): """ Validate the 'usecols' parameter. Checks whether or not the 'usecols' parameter contains all integers (column selection by index), strings (column by name) or is a callable. Raises a ValueError if that is not the case. Parameters ---------- usecols : list-like, callable, or None List of columns to use when parsing or a callable that can be used to filter a list of table columns. Returns ------- usecols_tuple : tuple A tuple of (verified_usecols, usecols_dtype). 'verified_usecols' is either a set if an array-like is passed in or 'usecols' if a callable or None is passed in. 'usecols_dtype` is the inferred dtype of 'usecols' if an array-like is passed in or None if a callable or None is passed in. """ msg = ("'usecols' must either be list-like of all strings, all unicode, " "all integers or a callable.") if usecols is not None: if callable(usecols): return usecols, None if not is_list_like(usecols): # see gh-20529 # # Ensure it is iterable container but not string. raise ValueError(msg) usecols_dtype = lib.infer_dtype(usecols, skipna=False) if usecols_dtype not in ("empty", "integer", "string", "unicode"): raise ValueError(msg) usecols = set(usecols) return usecols, usecols_dtype return usecols, None
python
def _validate_usecols_arg(usecols): """ Validate the 'usecols' parameter. Checks whether or not the 'usecols' parameter contains all integers (column selection by index), strings (column by name) or is a callable. Raises a ValueError if that is not the case. Parameters ---------- usecols : list-like, callable, or None List of columns to use when parsing or a callable that can be used to filter a list of table columns. Returns ------- usecols_tuple : tuple A tuple of (verified_usecols, usecols_dtype). 'verified_usecols' is either a set if an array-like is passed in or 'usecols' if a callable or None is passed in. 'usecols_dtype` is the inferred dtype of 'usecols' if an array-like is passed in or None if a callable or None is passed in. """ msg = ("'usecols' must either be list-like of all strings, all unicode, " "all integers or a callable.") if usecols is not None: if callable(usecols): return usecols, None if not is_list_like(usecols): # see gh-20529 # # Ensure it is iterable container but not string. raise ValueError(msg) usecols_dtype = lib.infer_dtype(usecols, skipna=False) if usecols_dtype not in ("empty", "integer", "string", "unicode"): raise ValueError(msg) usecols = set(usecols) return usecols, usecols_dtype return usecols, None
[ "def", "_validate_usecols_arg", "(", "usecols", ")", ":", "msg", "=", "(", "\"'usecols' must either be list-like of all strings, all unicode, \"", "\"all integers or a callable.\"", ")", "if", "usecols", "is", "not", "None", ":", "if", "callable", "(", "usecols", ")", ":", "return", "usecols", ",", "None", "if", "not", "is_list_like", "(", "usecols", ")", ":", "# see gh-20529", "#", "# Ensure it is iterable container but not string.", "raise", "ValueError", "(", "msg", ")", "usecols_dtype", "=", "lib", ".", "infer_dtype", "(", "usecols", ",", "skipna", "=", "False", ")", "if", "usecols_dtype", "not", "in", "(", "\"empty\"", ",", "\"integer\"", ",", "\"string\"", ",", "\"unicode\"", ")", ":", "raise", "ValueError", "(", "msg", ")", "usecols", "=", "set", "(", "usecols", ")", "return", "usecols", ",", "usecols_dtype", "return", "usecols", ",", "None" ]
Validate the 'usecols' parameter. Checks whether or not the 'usecols' parameter contains all integers (column selection by index), strings (column by name) or is a callable. Raises a ValueError if that is not the case. Parameters ---------- usecols : list-like, callable, or None List of columns to use when parsing or a callable that can be used to filter a list of table columns. Returns ------- usecols_tuple : tuple A tuple of (verified_usecols, usecols_dtype). 'verified_usecols' is either a set if an array-like is passed in or 'usecols' if a callable or None is passed in. 'usecols_dtype` is the inferred dtype of 'usecols' if an array-like is passed in or None if a callable or None is passed in.
[ "Validate", "the", "usecols", "parameter", "." ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/io/parsers.py#L1284-L1330
19,907
pandas-dev/pandas
pandas/io/parsers.py
_validate_parse_dates_arg
def _validate_parse_dates_arg(parse_dates): """ Check whether or not the 'parse_dates' parameter is a non-boolean scalar. Raises a ValueError if that is the case. """ msg = ("Only booleans, lists, and " "dictionaries are accepted " "for the 'parse_dates' parameter") if parse_dates is not None: if is_scalar(parse_dates): if not lib.is_bool(parse_dates): raise TypeError(msg) elif not isinstance(parse_dates, (list, dict)): raise TypeError(msg) return parse_dates
python
def _validate_parse_dates_arg(parse_dates): """ Check whether or not the 'parse_dates' parameter is a non-boolean scalar. Raises a ValueError if that is the case. """ msg = ("Only booleans, lists, and " "dictionaries are accepted " "for the 'parse_dates' parameter") if parse_dates is not None: if is_scalar(parse_dates): if not lib.is_bool(parse_dates): raise TypeError(msg) elif not isinstance(parse_dates, (list, dict)): raise TypeError(msg) return parse_dates
[ "def", "_validate_parse_dates_arg", "(", "parse_dates", ")", ":", "msg", "=", "(", "\"Only booleans, lists, and \"", "\"dictionaries are accepted \"", "\"for the 'parse_dates' parameter\"", ")", "if", "parse_dates", "is", "not", "None", ":", "if", "is_scalar", "(", "parse_dates", ")", ":", "if", "not", "lib", ".", "is_bool", "(", "parse_dates", ")", ":", "raise", "TypeError", "(", "msg", ")", "elif", "not", "isinstance", "(", "parse_dates", ",", "(", "list", ",", "dict", ")", ")", ":", "raise", "TypeError", "(", "msg", ")", "return", "parse_dates" ]
Check whether or not the 'parse_dates' parameter is a non-boolean scalar. Raises a ValueError if that is the case.
[ "Check", "whether", "or", "not", "the", "parse_dates", "parameter", "is", "a", "non", "-", "boolean", "scalar", ".", "Raises", "a", "ValueError", "if", "that", "is", "the", "case", "." ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/io/parsers.py#L1333-L1351
19,908
pandas-dev/pandas
pandas/io/parsers.py
_stringify_na_values
def _stringify_na_values(na_values): """ return a stringified and numeric for these values """ result = [] for x in na_values: result.append(str(x)) result.append(x) try: v = float(x) # we are like 999 here if v == int(v): v = int(v) result.append("{value}.0".format(value=v)) result.append(str(v)) result.append(v) except (TypeError, ValueError, OverflowError): pass try: result.append(int(x)) except (TypeError, ValueError, OverflowError): pass return set(result)
python
def _stringify_na_values(na_values): """ return a stringified and numeric for these values """ result = [] for x in na_values: result.append(str(x)) result.append(x) try: v = float(x) # we are like 999 here if v == int(v): v = int(v) result.append("{value}.0".format(value=v)) result.append(str(v)) result.append(v) except (TypeError, ValueError, OverflowError): pass try: result.append(int(x)) except (TypeError, ValueError, OverflowError): pass return set(result)
[ "def", "_stringify_na_values", "(", "na_values", ")", ":", "result", "=", "[", "]", "for", "x", "in", "na_values", ":", "result", ".", "append", "(", "str", "(", "x", ")", ")", "result", ".", "append", "(", "x", ")", "try", ":", "v", "=", "float", "(", "x", ")", "# we are like 999 here", "if", "v", "==", "int", "(", "v", ")", ":", "v", "=", "int", "(", "v", ")", "result", ".", "append", "(", "\"{value}.0\"", ".", "format", "(", "value", "=", "v", ")", ")", "result", ".", "append", "(", "str", "(", "v", ")", ")", "result", ".", "append", "(", "v", ")", "except", "(", "TypeError", ",", "ValueError", ",", "OverflowError", ")", ":", "pass", "try", ":", "result", ".", "append", "(", "int", "(", "x", ")", ")", "except", "(", "TypeError", ",", "ValueError", ",", "OverflowError", ")", ":", "pass", "return", "set", "(", "result", ")" ]
return a stringified and numeric for these values
[ "return", "a", "stringified", "and", "numeric", "for", "these", "values" ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/io/parsers.py#L3425-L3447
19,909
pandas-dev/pandas
pandas/io/parsers.py
_get_na_values
def _get_na_values(col, na_values, na_fvalues, keep_default_na): """ Get the NaN values for a given column. Parameters ---------- col : str The name of the column. na_values : array-like, dict The object listing the NaN values as strings. na_fvalues : array-like, dict The object listing the NaN values as floats. keep_default_na : bool If `na_values` is a dict, and the column is not mapped in the dictionary, whether to return the default NaN values or the empty set. Returns ------- nan_tuple : A length-two tuple composed of 1) na_values : the string NaN values for that column. 2) na_fvalues : the float NaN values for that column. """ if isinstance(na_values, dict): if col in na_values: return na_values[col], na_fvalues[col] else: if keep_default_na: return _NA_VALUES, set() return set(), set() else: return na_values, na_fvalues
python
def _get_na_values(col, na_values, na_fvalues, keep_default_na): """ Get the NaN values for a given column. Parameters ---------- col : str The name of the column. na_values : array-like, dict The object listing the NaN values as strings. na_fvalues : array-like, dict The object listing the NaN values as floats. keep_default_na : bool If `na_values` is a dict, and the column is not mapped in the dictionary, whether to return the default NaN values or the empty set. Returns ------- nan_tuple : A length-two tuple composed of 1) na_values : the string NaN values for that column. 2) na_fvalues : the float NaN values for that column. """ if isinstance(na_values, dict): if col in na_values: return na_values[col], na_fvalues[col] else: if keep_default_na: return _NA_VALUES, set() return set(), set() else: return na_values, na_fvalues
[ "def", "_get_na_values", "(", "col", ",", "na_values", ",", "na_fvalues", ",", "keep_default_na", ")", ":", "if", "isinstance", "(", "na_values", ",", "dict", ")", ":", "if", "col", "in", "na_values", ":", "return", "na_values", "[", "col", "]", ",", "na_fvalues", "[", "col", "]", "else", ":", "if", "keep_default_na", ":", "return", "_NA_VALUES", ",", "set", "(", ")", "return", "set", "(", ")", ",", "set", "(", ")", "else", ":", "return", "na_values", ",", "na_fvalues" ]
Get the NaN values for a given column. Parameters ---------- col : str The name of the column. na_values : array-like, dict The object listing the NaN values as strings. na_fvalues : array-like, dict The object listing the NaN values as floats. keep_default_na : bool If `na_values` is a dict, and the column is not mapped in the dictionary, whether to return the default NaN values or the empty set. Returns ------- nan_tuple : A length-two tuple composed of 1) na_values : the string NaN values for that column. 2) na_fvalues : the float NaN values for that column.
[ "Get", "the", "NaN", "values", "for", "a", "given", "column", "." ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/io/parsers.py#L3450-L3483
19,910
pandas-dev/pandas
pandas/io/parsers.py
ParserBase._extract_multi_indexer_columns
def _extract_multi_indexer_columns(self, header, index_names, col_names, passed_names=False): """ extract and return the names, index_names, col_names header is a list-of-lists returned from the parsers """ if len(header) < 2: return header[0], index_names, col_names, passed_names # the names are the tuples of the header that are not the index cols # 0 is the name of the index, assuming index_col is a list of column # numbers ic = self.index_col if ic is None: ic = [] if not isinstance(ic, (list, tuple, np.ndarray)): ic = [ic] sic = set(ic) # clean the index_names index_names = header.pop(-1) index_names, names, index_col = _clean_index_names(index_names, self.index_col, self.unnamed_cols) # extract the columns field_count = len(header[0]) def extract(r): return tuple(r[i] for i in range(field_count) if i not in sic) columns = lzip(*[extract(r) for r in header]) names = ic + columns # If we find unnamed columns all in a single # level, then our header was too long. for n in range(len(columns[0])): if all(compat.to_str(c[n]) in self.unnamed_cols for c in columns): raise ParserError( "Passed header=[{header}] are too many rows for this " "multi_index of columns" .format(header=','.join(str(x) for x in self.header)) ) # Clean the column names (if we have an index_col). if len(ic): col_names = [r[0] if (len(r[0]) and r[0] not in self.unnamed_cols) else None for r in header] else: col_names = [None] * len(header) passed_names = True return names, index_names, col_names, passed_names
python
def _extract_multi_indexer_columns(self, header, index_names, col_names, passed_names=False): """ extract and return the names, index_names, col_names header is a list-of-lists returned from the parsers """ if len(header) < 2: return header[0], index_names, col_names, passed_names # the names are the tuples of the header that are not the index cols # 0 is the name of the index, assuming index_col is a list of column # numbers ic = self.index_col if ic is None: ic = [] if not isinstance(ic, (list, tuple, np.ndarray)): ic = [ic] sic = set(ic) # clean the index_names index_names = header.pop(-1) index_names, names, index_col = _clean_index_names(index_names, self.index_col, self.unnamed_cols) # extract the columns field_count = len(header[0]) def extract(r): return tuple(r[i] for i in range(field_count) if i not in sic) columns = lzip(*[extract(r) for r in header]) names = ic + columns # If we find unnamed columns all in a single # level, then our header was too long. for n in range(len(columns[0])): if all(compat.to_str(c[n]) in self.unnamed_cols for c in columns): raise ParserError( "Passed header=[{header}] are too many rows for this " "multi_index of columns" .format(header=','.join(str(x) for x in self.header)) ) # Clean the column names (if we have an index_col). if len(ic): col_names = [r[0] if (len(r[0]) and r[0] not in self.unnamed_cols) else None for r in header] else: col_names = [None] * len(header) passed_names = True return names, index_names, col_names, passed_names
[ "def", "_extract_multi_indexer_columns", "(", "self", ",", "header", ",", "index_names", ",", "col_names", ",", "passed_names", "=", "False", ")", ":", "if", "len", "(", "header", ")", "<", "2", ":", "return", "header", "[", "0", "]", ",", "index_names", ",", "col_names", ",", "passed_names", "# the names are the tuples of the header that are not the index cols", "# 0 is the name of the index, assuming index_col is a list of column", "# numbers", "ic", "=", "self", ".", "index_col", "if", "ic", "is", "None", ":", "ic", "=", "[", "]", "if", "not", "isinstance", "(", "ic", ",", "(", "list", ",", "tuple", ",", "np", ".", "ndarray", ")", ")", ":", "ic", "=", "[", "ic", "]", "sic", "=", "set", "(", "ic", ")", "# clean the index_names", "index_names", "=", "header", ".", "pop", "(", "-", "1", ")", "index_names", ",", "names", ",", "index_col", "=", "_clean_index_names", "(", "index_names", ",", "self", ".", "index_col", ",", "self", ".", "unnamed_cols", ")", "# extract the columns", "field_count", "=", "len", "(", "header", "[", "0", "]", ")", "def", "extract", "(", "r", ")", ":", "return", "tuple", "(", "r", "[", "i", "]", "for", "i", "in", "range", "(", "field_count", ")", "if", "i", "not", "in", "sic", ")", "columns", "=", "lzip", "(", "*", "[", "extract", "(", "r", ")", "for", "r", "in", "header", "]", ")", "names", "=", "ic", "+", "columns", "# If we find unnamed columns all in a single", "# level, then our header was too long.", "for", "n", "in", "range", "(", "len", "(", "columns", "[", "0", "]", ")", ")", ":", "if", "all", "(", "compat", ".", "to_str", "(", "c", "[", "n", "]", ")", "in", "self", ".", "unnamed_cols", "for", "c", "in", "columns", ")", ":", "raise", "ParserError", "(", "\"Passed header=[{header}] are too many rows for this \"", "\"multi_index of columns\"", ".", "format", "(", "header", "=", "','", ".", "join", "(", "str", "(", "x", ")", "for", "x", "in", "self", ".", "header", ")", ")", ")", "# Clean the column names (if we have an index_col).", "if", "len", "(", "ic", ")", ":", "col_names", "=", "[", "r", "[", "0", "]", "if", "(", "len", "(", "r", "[", "0", "]", ")", "and", "r", "[", "0", "]", "not", "in", "self", ".", "unnamed_cols", ")", "else", "None", "for", "r", "in", "header", "]", "else", ":", "col_names", "=", "[", "None", "]", "*", "len", "(", "header", ")", "passed_names", "=", "True", "return", "names", ",", "index_names", ",", "col_names", ",", "passed_names" ]
extract and return the names, index_names, col_names header is a list-of-lists returned from the parsers
[ "extract", "and", "return", "the", "names", "index_names", "col_names", "header", "is", "a", "list", "-", "of", "-", "lists", "returned", "from", "the", "parsers" ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/io/parsers.py#L1451-L1504
19,911
pandas-dev/pandas
pandas/io/parsers.py
ParserBase._infer_types
def _infer_types(self, values, na_values, try_num_bool=True): """ Infer types of values, possibly casting Parameters ---------- values : ndarray na_values : set try_num_bool : bool, default try try to cast values to numeric (first preference) or boolean Returns: -------- converted : ndarray na_count : int """ na_count = 0 if issubclass(values.dtype.type, (np.number, np.bool_)): mask = algorithms.isin(values, list(na_values)) na_count = mask.sum() if na_count > 0: if is_integer_dtype(values): values = values.astype(np.float64) np.putmask(values, mask, np.nan) return values, na_count if try_num_bool: try: result = lib.maybe_convert_numeric(values, na_values, False) na_count = isna(result).sum() except Exception: result = values if values.dtype == np.object_: na_count = parsers.sanitize_objects(result, na_values, False) else: result = values if values.dtype == np.object_: na_count = parsers.sanitize_objects(values, na_values, False) if result.dtype == np.object_ and try_num_bool: result = libops.maybe_convert_bool(np.asarray(values), true_values=self.true_values, false_values=self.false_values) return result, na_count
python
def _infer_types(self, values, na_values, try_num_bool=True): """ Infer types of values, possibly casting Parameters ---------- values : ndarray na_values : set try_num_bool : bool, default try try to cast values to numeric (first preference) or boolean Returns: -------- converted : ndarray na_count : int """ na_count = 0 if issubclass(values.dtype.type, (np.number, np.bool_)): mask = algorithms.isin(values, list(na_values)) na_count = mask.sum() if na_count > 0: if is_integer_dtype(values): values = values.astype(np.float64) np.putmask(values, mask, np.nan) return values, na_count if try_num_bool: try: result = lib.maybe_convert_numeric(values, na_values, False) na_count = isna(result).sum() except Exception: result = values if values.dtype == np.object_: na_count = parsers.sanitize_objects(result, na_values, False) else: result = values if values.dtype == np.object_: na_count = parsers.sanitize_objects(values, na_values, False) if result.dtype == np.object_ and try_num_bool: result = libops.maybe_convert_bool(np.asarray(values), true_values=self.true_values, false_values=self.false_values) return result, na_count
[ "def", "_infer_types", "(", "self", ",", "values", ",", "na_values", ",", "try_num_bool", "=", "True", ")", ":", "na_count", "=", "0", "if", "issubclass", "(", "values", ".", "dtype", ".", "type", ",", "(", "np", ".", "number", ",", "np", ".", "bool_", ")", ")", ":", "mask", "=", "algorithms", ".", "isin", "(", "values", ",", "list", "(", "na_values", ")", ")", "na_count", "=", "mask", ".", "sum", "(", ")", "if", "na_count", ">", "0", ":", "if", "is_integer_dtype", "(", "values", ")", ":", "values", "=", "values", ".", "astype", "(", "np", ".", "float64", ")", "np", ".", "putmask", "(", "values", ",", "mask", ",", "np", ".", "nan", ")", "return", "values", ",", "na_count", "if", "try_num_bool", ":", "try", ":", "result", "=", "lib", ".", "maybe_convert_numeric", "(", "values", ",", "na_values", ",", "False", ")", "na_count", "=", "isna", "(", "result", ")", ".", "sum", "(", ")", "except", "Exception", ":", "result", "=", "values", "if", "values", ".", "dtype", "==", "np", ".", "object_", ":", "na_count", "=", "parsers", ".", "sanitize_objects", "(", "result", ",", "na_values", ",", "False", ")", "else", ":", "result", "=", "values", "if", "values", ".", "dtype", "==", "np", ".", "object_", ":", "na_count", "=", "parsers", ".", "sanitize_objects", "(", "values", ",", "na_values", ",", "False", ")", "if", "result", ".", "dtype", "==", "np", ".", "object_", "and", "try_num_bool", ":", "result", "=", "libops", ".", "maybe_convert_bool", "(", "np", ".", "asarray", "(", "values", ")", ",", "true_values", "=", "self", ".", "true_values", ",", "false_values", "=", "self", ".", "false_values", ")", "return", "result", ",", "na_count" ]
Infer types of values, possibly casting Parameters ---------- values : ndarray na_values : set try_num_bool : bool, default try try to cast values to numeric (first preference) or boolean Returns: -------- converted : ndarray na_count : int
[ "Infer", "types", "of", "values", "possibly", "casting" ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/io/parsers.py#L1719-L1764
19,912
pandas-dev/pandas
pandas/io/parsers.py
ParserBase._cast_types
def _cast_types(self, values, cast_type, column): """ Cast values to specified type Parameters ---------- values : ndarray cast_type : string or np.dtype dtype to cast values to column : string column name - used only for error reporting Returns ------- converted : ndarray """ if is_categorical_dtype(cast_type): known_cats = (isinstance(cast_type, CategoricalDtype) and cast_type.categories is not None) if not is_object_dtype(values) and not known_cats: # XXX this is for consistency with # c-parser which parses all categories # as strings values = astype_nansafe(values, str) cats = Index(values).unique().dropna() values = Categorical._from_inferred_categories( cats, cats.get_indexer(values), cast_type, true_values=self.true_values) # use the EA's implementation of casting elif is_extension_array_dtype(cast_type): # ensure cast_type is an actual dtype and not a string cast_type = pandas_dtype(cast_type) array_type = cast_type.construct_array_type() try: return array_type._from_sequence_of_strings(values, dtype=cast_type) except NotImplementedError: raise NotImplementedError( "Extension Array: {ea} must implement " "_from_sequence_of_strings in order " "to be used in parser methods".format(ea=array_type)) else: try: values = astype_nansafe(values, cast_type, copy=True, skipna=True) except ValueError: raise ValueError( "Unable to convert column {column} to type " "{cast_type}".format( column=column, cast_type=cast_type)) return values
python
def _cast_types(self, values, cast_type, column): """ Cast values to specified type Parameters ---------- values : ndarray cast_type : string or np.dtype dtype to cast values to column : string column name - used only for error reporting Returns ------- converted : ndarray """ if is_categorical_dtype(cast_type): known_cats = (isinstance(cast_type, CategoricalDtype) and cast_type.categories is not None) if not is_object_dtype(values) and not known_cats: # XXX this is for consistency with # c-parser which parses all categories # as strings values = astype_nansafe(values, str) cats = Index(values).unique().dropna() values = Categorical._from_inferred_categories( cats, cats.get_indexer(values), cast_type, true_values=self.true_values) # use the EA's implementation of casting elif is_extension_array_dtype(cast_type): # ensure cast_type is an actual dtype and not a string cast_type = pandas_dtype(cast_type) array_type = cast_type.construct_array_type() try: return array_type._from_sequence_of_strings(values, dtype=cast_type) except NotImplementedError: raise NotImplementedError( "Extension Array: {ea} must implement " "_from_sequence_of_strings in order " "to be used in parser methods".format(ea=array_type)) else: try: values = astype_nansafe(values, cast_type, copy=True, skipna=True) except ValueError: raise ValueError( "Unable to convert column {column} to type " "{cast_type}".format( column=column, cast_type=cast_type)) return values
[ "def", "_cast_types", "(", "self", ",", "values", ",", "cast_type", ",", "column", ")", ":", "if", "is_categorical_dtype", "(", "cast_type", ")", ":", "known_cats", "=", "(", "isinstance", "(", "cast_type", ",", "CategoricalDtype", ")", "and", "cast_type", ".", "categories", "is", "not", "None", ")", "if", "not", "is_object_dtype", "(", "values", ")", "and", "not", "known_cats", ":", "# XXX this is for consistency with", "# c-parser which parses all categories", "# as strings", "values", "=", "astype_nansafe", "(", "values", ",", "str", ")", "cats", "=", "Index", "(", "values", ")", ".", "unique", "(", ")", ".", "dropna", "(", ")", "values", "=", "Categorical", ".", "_from_inferred_categories", "(", "cats", ",", "cats", ".", "get_indexer", "(", "values", ")", ",", "cast_type", ",", "true_values", "=", "self", ".", "true_values", ")", "# use the EA's implementation of casting", "elif", "is_extension_array_dtype", "(", "cast_type", ")", ":", "# ensure cast_type is an actual dtype and not a string", "cast_type", "=", "pandas_dtype", "(", "cast_type", ")", "array_type", "=", "cast_type", ".", "construct_array_type", "(", ")", "try", ":", "return", "array_type", ".", "_from_sequence_of_strings", "(", "values", ",", "dtype", "=", "cast_type", ")", "except", "NotImplementedError", ":", "raise", "NotImplementedError", "(", "\"Extension Array: {ea} must implement \"", "\"_from_sequence_of_strings in order \"", "\"to be used in parser methods\"", ".", "format", "(", "ea", "=", "array_type", ")", ")", "else", ":", "try", ":", "values", "=", "astype_nansafe", "(", "values", ",", "cast_type", ",", "copy", "=", "True", ",", "skipna", "=", "True", ")", "except", "ValueError", ":", "raise", "ValueError", "(", "\"Unable to convert column {column} to type \"", "\"{cast_type}\"", ".", "format", "(", "column", "=", "column", ",", "cast_type", "=", "cast_type", ")", ")", "return", "values" ]
Cast values to specified type Parameters ---------- values : ndarray cast_type : string or np.dtype dtype to cast values to column : string column name - used only for error reporting Returns ------- converted : ndarray
[ "Cast", "values", "to", "specified", "type" ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/io/parsers.py#L1766-L1821
19,913
pandas-dev/pandas
pandas/io/parsers.py
CParserWrapper._set_noconvert_columns
def _set_noconvert_columns(self): """ Set the columns that should not undergo dtype conversions. Currently, any column that is involved with date parsing will not undergo such conversions. """ names = self.orig_names if self.usecols_dtype == 'integer': # A set of integers will be converted to a list in # the correct order every single time. usecols = list(self.usecols) usecols.sort() elif (callable(self.usecols) or self.usecols_dtype not in ('empty', None)): # The names attribute should have the correct columns # in the proper order for indexing with parse_dates. usecols = self.names[:] else: # Usecols is empty. usecols = None def _set(x): if usecols is not None and is_integer(x): x = usecols[x] if not is_integer(x): x = names.index(x) self._reader.set_noconvert(x) if isinstance(self.parse_dates, list): for val in self.parse_dates: if isinstance(val, list): for k in val: _set(k) else: _set(val) elif isinstance(self.parse_dates, dict): for val in self.parse_dates.values(): if isinstance(val, list): for k in val: _set(k) else: _set(val) elif self.parse_dates: if isinstance(self.index_col, list): for k in self.index_col: _set(k) elif self.index_col is not None: _set(self.index_col)
python
def _set_noconvert_columns(self): """ Set the columns that should not undergo dtype conversions. Currently, any column that is involved with date parsing will not undergo such conversions. """ names = self.orig_names if self.usecols_dtype == 'integer': # A set of integers will be converted to a list in # the correct order every single time. usecols = list(self.usecols) usecols.sort() elif (callable(self.usecols) or self.usecols_dtype not in ('empty', None)): # The names attribute should have the correct columns # in the proper order for indexing with parse_dates. usecols = self.names[:] else: # Usecols is empty. usecols = None def _set(x): if usecols is not None and is_integer(x): x = usecols[x] if not is_integer(x): x = names.index(x) self._reader.set_noconvert(x) if isinstance(self.parse_dates, list): for val in self.parse_dates: if isinstance(val, list): for k in val: _set(k) else: _set(val) elif isinstance(self.parse_dates, dict): for val in self.parse_dates.values(): if isinstance(val, list): for k in val: _set(k) else: _set(val) elif self.parse_dates: if isinstance(self.index_col, list): for k in self.index_col: _set(k) elif self.index_col is not None: _set(self.index_col)
[ "def", "_set_noconvert_columns", "(", "self", ")", ":", "names", "=", "self", ".", "orig_names", "if", "self", ".", "usecols_dtype", "==", "'integer'", ":", "# A set of integers will be converted to a list in", "# the correct order every single time.", "usecols", "=", "list", "(", "self", ".", "usecols", ")", "usecols", ".", "sort", "(", ")", "elif", "(", "callable", "(", "self", ".", "usecols", ")", "or", "self", ".", "usecols_dtype", "not", "in", "(", "'empty'", ",", "None", ")", ")", ":", "# The names attribute should have the correct columns", "# in the proper order for indexing with parse_dates.", "usecols", "=", "self", ".", "names", "[", ":", "]", "else", ":", "# Usecols is empty.", "usecols", "=", "None", "def", "_set", "(", "x", ")", ":", "if", "usecols", "is", "not", "None", "and", "is_integer", "(", "x", ")", ":", "x", "=", "usecols", "[", "x", "]", "if", "not", "is_integer", "(", "x", ")", ":", "x", "=", "names", ".", "index", "(", "x", ")", "self", ".", "_reader", ".", "set_noconvert", "(", "x", ")", "if", "isinstance", "(", "self", ".", "parse_dates", ",", "list", ")", ":", "for", "val", "in", "self", ".", "parse_dates", ":", "if", "isinstance", "(", "val", ",", "list", ")", ":", "for", "k", "in", "val", ":", "_set", "(", "k", ")", "else", ":", "_set", "(", "val", ")", "elif", "isinstance", "(", "self", ".", "parse_dates", ",", "dict", ")", ":", "for", "val", "in", "self", ".", "parse_dates", ".", "values", "(", ")", ":", "if", "isinstance", "(", "val", ",", "list", ")", ":", "for", "k", "in", "val", ":", "_set", "(", "k", ")", "else", ":", "_set", "(", "val", ")", "elif", "self", ".", "parse_dates", ":", "if", "isinstance", "(", "self", ".", "index_col", ",", "list", ")", ":", "for", "k", "in", "self", ".", "index_col", ":", "_set", "(", "k", ")", "elif", "self", ".", "index_col", "is", "not", "None", ":", "_set", "(", "self", ".", "index_col", ")" ]
Set the columns that should not undergo dtype conversions. Currently, any column that is involved with date parsing will not undergo such conversions.
[ "Set", "the", "columns", "that", "should", "not", "undergo", "dtype", "conversions", "." ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/io/parsers.py#L1951-L2003
19,914
pandas-dev/pandas
pandas/io/parsers.py
PythonParser._handle_usecols
def _handle_usecols(self, columns, usecols_key): """ Sets self._col_indices usecols_key is used if there are string usecols. """ if self.usecols is not None: if callable(self.usecols): col_indices = _evaluate_usecols(self.usecols, usecols_key) elif any(isinstance(u, str) for u in self.usecols): if len(columns) > 1: raise ValueError("If using multiple headers, usecols must " "be integers.") col_indices = [] for col in self.usecols: if isinstance(col, str): try: col_indices.append(usecols_key.index(col)) except ValueError: _validate_usecols_names(self.usecols, usecols_key) else: col_indices.append(col) else: col_indices = self.usecols columns = [[n for i, n in enumerate(column) if i in col_indices] for column in columns] self._col_indices = col_indices return columns
python
def _handle_usecols(self, columns, usecols_key): """ Sets self._col_indices usecols_key is used if there are string usecols. """ if self.usecols is not None: if callable(self.usecols): col_indices = _evaluate_usecols(self.usecols, usecols_key) elif any(isinstance(u, str) for u in self.usecols): if len(columns) > 1: raise ValueError("If using multiple headers, usecols must " "be integers.") col_indices = [] for col in self.usecols: if isinstance(col, str): try: col_indices.append(usecols_key.index(col)) except ValueError: _validate_usecols_names(self.usecols, usecols_key) else: col_indices.append(col) else: col_indices = self.usecols columns = [[n for i, n in enumerate(column) if i in col_indices] for column in columns] self._col_indices = col_indices return columns
[ "def", "_handle_usecols", "(", "self", ",", "columns", ",", "usecols_key", ")", ":", "if", "self", ".", "usecols", "is", "not", "None", ":", "if", "callable", "(", "self", ".", "usecols", ")", ":", "col_indices", "=", "_evaluate_usecols", "(", "self", ".", "usecols", ",", "usecols_key", ")", "elif", "any", "(", "isinstance", "(", "u", ",", "str", ")", "for", "u", "in", "self", ".", "usecols", ")", ":", "if", "len", "(", "columns", ")", ">", "1", ":", "raise", "ValueError", "(", "\"If using multiple headers, usecols must \"", "\"be integers.\"", ")", "col_indices", "=", "[", "]", "for", "col", "in", "self", ".", "usecols", ":", "if", "isinstance", "(", "col", ",", "str", ")", ":", "try", ":", "col_indices", ".", "append", "(", "usecols_key", ".", "index", "(", "col", ")", ")", "except", "ValueError", ":", "_validate_usecols_names", "(", "self", ".", "usecols", ",", "usecols_key", ")", "else", ":", "col_indices", ".", "append", "(", "col", ")", "else", ":", "col_indices", "=", "self", ".", "usecols", "columns", "=", "[", "[", "n", "for", "i", ",", "n", "in", "enumerate", "(", "column", ")", "if", "i", "in", "col_indices", "]", "for", "column", "in", "columns", "]", "self", ".", "_col_indices", "=", "col_indices", "return", "columns" ]
Sets self._col_indices usecols_key is used if there are string usecols.
[ "Sets", "self", ".", "_col_indices" ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/io/parsers.py#L2678-L2707
19,915
pandas-dev/pandas
pandas/io/parsers.py
PythonParser._check_for_bom
def _check_for_bom(self, first_row): """ Checks whether the file begins with the BOM character. If it does, remove it. In addition, if there is quoting in the field subsequent to the BOM, remove it as well because it technically takes place at the beginning of the name, not the middle of it. """ # first_row will be a list, so we need to check # that that list is not empty before proceeding. if not first_row: return first_row # The first element of this row is the one that could have the # BOM that we want to remove. Check that the first element is a # string before proceeding. if not isinstance(first_row[0], str): return first_row # Check that the string is not empty, as that would # obviously not have a BOM at the start of it. if not first_row[0]: return first_row # Since the string is non-empty, check that it does # in fact begin with a BOM. first_elt = first_row[0][0] if first_elt != _BOM: return first_row first_row = first_row[0] if len(first_row) > 1 and first_row[1] == self.quotechar: start = 2 quote = first_row[1] end = first_row[2:].index(quote) + 2 # Extract the data between the quotation marks new_row = first_row[start:end] # Extract any remaining data after the second # quotation mark. if len(first_row) > end + 1: new_row += first_row[end + 1:] return [new_row] elif len(first_row) > 1: return [first_row[1:]] else: # First row is just the BOM, so we # return an empty string. return [""]
python
def _check_for_bom(self, first_row): """ Checks whether the file begins with the BOM character. If it does, remove it. In addition, if there is quoting in the field subsequent to the BOM, remove it as well because it technically takes place at the beginning of the name, not the middle of it. """ # first_row will be a list, so we need to check # that that list is not empty before proceeding. if not first_row: return first_row # The first element of this row is the one that could have the # BOM that we want to remove. Check that the first element is a # string before proceeding. if not isinstance(first_row[0], str): return first_row # Check that the string is not empty, as that would # obviously not have a BOM at the start of it. if not first_row[0]: return first_row # Since the string is non-empty, check that it does # in fact begin with a BOM. first_elt = first_row[0][0] if first_elt != _BOM: return first_row first_row = first_row[0] if len(first_row) > 1 and first_row[1] == self.quotechar: start = 2 quote = first_row[1] end = first_row[2:].index(quote) + 2 # Extract the data between the quotation marks new_row = first_row[start:end] # Extract any remaining data after the second # quotation mark. if len(first_row) > end + 1: new_row += first_row[end + 1:] return [new_row] elif len(first_row) > 1: return [first_row[1:]] else: # First row is just the BOM, so we # return an empty string. return [""]
[ "def", "_check_for_bom", "(", "self", ",", "first_row", ")", ":", "# first_row will be a list, so we need to check", "# that that list is not empty before proceeding.", "if", "not", "first_row", ":", "return", "first_row", "# The first element of this row is the one that could have the", "# BOM that we want to remove. Check that the first element is a", "# string before proceeding.", "if", "not", "isinstance", "(", "first_row", "[", "0", "]", ",", "str", ")", ":", "return", "first_row", "# Check that the string is not empty, as that would", "# obviously not have a BOM at the start of it.", "if", "not", "first_row", "[", "0", "]", ":", "return", "first_row", "# Since the string is non-empty, check that it does", "# in fact begin with a BOM.", "first_elt", "=", "first_row", "[", "0", "]", "[", "0", "]", "if", "first_elt", "!=", "_BOM", ":", "return", "first_row", "first_row", "=", "first_row", "[", "0", "]", "if", "len", "(", "first_row", ")", ">", "1", "and", "first_row", "[", "1", "]", "==", "self", ".", "quotechar", ":", "start", "=", "2", "quote", "=", "first_row", "[", "1", "]", "end", "=", "first_row", "[", "2", ":", "]", ".", "index", "(", "quote", ")", "+", "2", "# Extract the data between the quotation marks", "new_row", "=", "first_row", "[", "start", ":", "end", "]", "# Extract any remaining data after the second", "# quotation mark.", "if", "len", "(", "first_row", ")", ">", "end", "+", "1", ":", "new_row", "+=", "first_row", "[", "end", "+", "1", ":", "]", "return", "[", "new_row", "]", "elif", "len", "(", "first_row", ")", ">", "1", ":", "return", "[", "first_row", "[", "1", ":", "]", "]", "else", ":", "# First row is just the BOM, so we", "# return an empty string.", "return", "[", "\"\"", "]" ]
Checks whether the file begins with the BOM character. If it does, remove it. In addition, if there is quoting in the field subsequent to the BOM, remove it as well because it technically takes place at the beginning of the name, not the middle of it.
[ "Checks", "whether", "the", "file", "begins", "with", "the", "BOM", "character", ".", "If", "it", "does", "remove", "it", ".", "In", "addition", "if", "there", "is", "quoting", "in", "the", "field", "subsequent", "to", "the", "BOM", "remove", "it", "as", "well", "because", "it", "technically", "takes", "place", "at", "the", "beginning", "of", "the", "name", "not", "the", "middle", "of", "it", "." ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/io/parsers.py#L2718-L2768
19,916
pandas-dev/pandas
pandas/io/parsers.py
PythonParser._alert_malformed
def _alert_malformed(self, msg, row_num): """ Alert a user about a malformed row. If `self.error_bad_lines` is True, the alert will be `ParserError`. If `self.warn_bad_lines` is True, the alert will be printed out. Parameters ---------- msg : The error message to display. row_num : The row number where the parsing error occurred. Because this row number is displayed, we 1-index, even though we 0-index internally. """ if self.error_bad_lines: raise ParserError(msg) elif self.warn_bad_lines: base = 'Skipping line {row_num}: '.format(row_num=row_num) sys.stderr.write(base + msg + '\n')
python
def _alert_malformed(self, msg, row_num): """ Alert a user about a malformed row. If `self.error_bad_lines` is True, the alert will be `ParserError`. If `self.warn_bad_lines` is True, the alert will be printed out. Parameters ---------- msg : The error message to display. row_num : The row number where the parsing error occurred. Because this row number is displayed, we 1-index, even though we 0-index internally. """ if self.error_bad_lines: raise ParserError(msg) elif self.warn_bad_lines: base = 'Skipping line {row_num}: '.format(row_num=row_num) sys.stderr.write(base + msg + '\n')
[ "def", "_alert_malformed", "(", "self", ",", "msg", ",", "row_num", ")", ":", "if", "self", ".", "error_bad_lines", ":", "raise", "ParserError", "(", "msg", ")", "elif", "self", ".", "warn_bad_lines", ":", "base", "=", "'Skipping line {row_num}: '", ".", "format", "(", "row_num", "=", "row_num", ")", "sys", ".", "stderr", ".", "write", "(", "base", "+", "msg", "+", "'\\n'", ")" ]
Alert a user about a malformed row. If `self.error_bad_lines` is True, the alert will be `ParserError`. If `self.warn_bad_lines` is True, the alert will be printed out. Parameters ---------- msg : The error message to display. row_num : The row number where the parsing error occurred. Because this row number is displayed, we 1-index, even though we 0-index internally.
[ "Alert", "a", "user", "about", "a", "malformed", "row", "." ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/io/parsers.py#L2837-L2856
19,917
pandas-dev/pandas
pandas/io/parsers.py
PythonParser._remove_empty_lines
def _remove_empty_lines(self, lines): """ Iterate through the lines and remove any that are either empty or contain only one whitespace value Parameters ---------- lines : array-like The array of lines that we are to filter. Returns ------- filtered_lines : array-like The same array of lines with the "empty" ones removed. """ ret = [] for l in lines: # Remove empty lines and lines with only one whitespace value if (len(l) > 1 or len(l) == 1 and (not isinstance(l[0], str) or l[0].strip())): ret.append(l) return ret
python
def _remove_empty_lines(self, lines): """ Iterate through the lines and remove any that are either empty or contain only one whitespace value Parameters ---------- lines : array-like The array of lines that we are to filter. Returns ------- filtered_lines : array-like The same array of lines with the "empty" ones removed. """ ret = [] for l in lines: # Remove empty lines and lines with only one whitespace value if (len(l) > 1 or len(l) == 1 and (not isinstance(l[0], str) or l[0].strip())): ret.append(l) return ret
[ "def", "_remove_empty_lines", "(", "self", ",", "lines", ")", ":", "ret", "=", "[", "]", "for", "l", "in", "lines", ":", "# Remove empty lines and lines with only one whitespace value", "if", "(", "len", "(", "l", ")", ">", "1", "or", "len", "(", "l", ")", "==", "1", "and", "(", "not", "isinstance", "(", "l", "[", "0", "]", ",", "str", ")", "or", "l", "[", "0", "]", ".", "strip", "(", ")", ")", ")", ":", "ret", ".", "append", "(", "l", ")", "return", "ret" ]
Iterate through the lines and remove any that are either empty or contain only one whitespace value Parameters ---------- lines : array-like The array of lines that we are to filter. Returns ------- filtered_lines : array-like The same array of lines with the "empty" ones removed.
[ "Iterate", "through", "the", "lines", "and", "remove", "any", "that", "are", "either", "empty", "or", "contain", "only", "one", "whitespace", "value" ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/io/parsers.py#L2912-L2934
19,918
pandas-dev/pandas
pandas/io/parsers.py
FixedWidthReader.get_rows
def get_rows(self, infer_nrows, skiprows=None): """ Read rows from self.f, skipping as specified. We distinguish buffer_rows (the first <= infer_nrows lines) from the rows returned to detect_colspecs because it's simpler to leave the other locations with skiprows logic alone than to modify them to deal with the fact we skipped some rows here as well. Parameters ---------- infer_nrows : int Number of rows to read from self.f, not counting rows that are skipped. skiprows: set, optional Indices of rows to skip. Returns ------- detect_rows : list of str A list containing the rows to read. """ if skiprows is None: skiprows = set() buffer_rows = [] detect_rows = [] for i, row in enumerate(self.f): if i not in skiprows: detect_rows.append(row) buffer_rows.append(row) if len(detect_rows) >= infer_nrows: break self.buffer = iter(buffer_rows) return detect_rows
python
def get_rows(self, infer_nrows, skiprows=None): """ Read rows from self.f, skipping as specified. We distinguish buffer_rows (the first <= infer_nrows lines) from the rows returned to detect_colspecs because it's simpler to leave the other locations with skiprows logic alone than to modify them to deal with the fact we skipped some rows here as well. Parameters ---------- infer_nrows : int Number of rows to read from self.f, not counting rows that are skipped. skiprows: set, optional Indices of rows to skip. Returns ------- detect_rows : list of str A list containing the rows to read. """ if skiprows is None: skiprows = set() buffer_rows = [] detect_rows = [] for i, row in enumerate(self.f): if i not in skiprows: detect_rows.append(row) buffer_rows.append(row) if len(detect_rows) >= infer_nrows: break self.buffer = iter(buffer_rows) return detect_rows
[ "def", "get_rows", "(", "self", ",", "infer_nrows", ",", "skiprows", "=", "None", ")", ":", "if", "skiprows", "is", "None", ":", "skiprows", "=", "set", "(", ")", "buffer_rows", "=", "[", "]", "detect_rows", "=", "[", "]", "for", "i", ",", "row", "in", "enumerate", "(", "self", ".", "f", ")", ":", "if", "i", "not", "in", "skiprows", ":", "detect_rows", ".", "append", "(", "row", ")", "buffer_rows", ".", "append", "(", "row", ")", "if", "len", "(", "detect_rows", ")", ">=", "infer_nrows", ":", "break", "self", ".", "buffer", "=", "iter", "(", "buffer_rows", ")", "return", "detect_rows" ]
Read rows from self.f, skipping as specified. We distinguish buffer_rows (the first <= infer_nrows lines) from the rows returned to detect_colspecs because it's simpler to leave the other locations with skiprows logic alone than to modify them to deal with the fact we skipped some rows here as well. Parameters ---------- infer_nrows : int Number of rows to read from self.f, not counting rows that are skipped. skiprows: set, optional Indices of rows to skip. Returns ------- detect_rows : list of str A list containing the rows to read.
[ "Read", "rows", "from", "self", ".", "f", "skipping", "as", "specified", "." ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/io/parsers.py#L3535-L3571
19,919
pandas-dev/pandas
pandas/io/msgpack/__init__.py
pack
def pack(o, stream, **kwargs): """ Pack object `o` and write it to `stream` See :class:`Packer` for options. """ packer = Packer(**kwargs) stream.write(packer.pack(o))
python
def pack(o, stream, **kwargs): """ Pack object `o` and write it to `stream` See :class:`Packer` for options. """ packer = Packer(**kwargs) stream.write(packer.pack(o))
[ "def", "pack", "(", "o", ",", "stream", ",", "*", "*", "kwargs", ")", ":", "packer", "=", "Packer", "(", "*", "*", "kwargs", ")", "stream", ".", "write", "(", "packer", ".", "pack", "(", "o", ")", ")" ]
Pack object `o` and write it to `stream` See :class:`Packer` for options.
[ "Pack", "object", "o", "and", "write", "it", "to", "stream" ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/io/msgpack/__init__.py#L26-L33
19,920
pandas-dev/pandas
pandas/core/internals/concat.py
get_mgr_concatenation_plan
def get_mgr_concatenation_plan(mgr, indexers): """ Construct concatenation plan for given block manager and indexers. Parameters ---------- mgr : BlockManager indexers : dict of {axis: indexer} Returns ------- plan : list of (BlockPlacement, JoinUnit) tuples """ # Calculate post-reindex shape , save for item axis which will be separate # for each block anyway. mgr_shape = list(mgr.shape) for ax, indexer in indexers.items(): mgr_shape[ax] = len(indexer) mgr_shape = tuple(mgr_shape) if 0 in indexers: ax0_indexer = indexers.pop(0) blknos = algos.take_1d(mgr._blknos, ax0_indexer, fill_value=-1) blklocs = algos.take_1d(mgr._blklocs, ax0_indexer, fill_value=-1) else: if mgr._is_single_block: blk = mgr.blocks[0] return [(blk.mgr_locs, JoinUnit(blk, mgr_shape, indexers))] ax0_indexer = None blknos = mgr._blknos blklocs = mgr._blklocs plan = [] for blkno, placements in libinternals.get_blkno_placements(blknos, mgr.nblocks, group=False): assert placements.is_slice_like join_unit_indexers = indexers.copy() shape = list(mgr_shape) shape[0] = len(placements) shape = tuple(shape) if blkno == -1: unit = JoinUnit(None, shape) else: blk = mgr.blocks[blkno] ax0_blk_indexer = blklocs[placements.indexer] unit_no_ax0_reindexing = (len(placements) == len(blk.mgr_locs) and # Fastpath detection of join unit not # needing to reindex its block: no ax0 # reindexing took place and block # placement was sequential before. ((ax0_indexer is None and blk.mgr_locs.is_slice_like and blk.mgr_locs.as_slice.step == 1) or # Slow-ish detection: all indexer locs # are sequential (and length match is # checked above). (np.diff(ax0_blk_indexer) == 1).all())) # Omit indexer if no item reindexing is required. if unit_no_ax0_reindexing: join_unit_indexers.pop(0, None) else: join_unit_indexers[0] = ax0_blk_indexer unit = JoinUnit(blk, shape, join_unit_indexers) plan.append((placements, unit)) return plan
python
def get_mgr_concatenation_plan(mgr, indexers): """ Construct concatenation plan for given block manager and indexers. Parameters ---------- mgr : BlockManager indexers : dict of {axis: indexer} Returns ------- plan : list of (BlockPlacement, JoinUnit) tuples """ # Calculate post-reindex shape , save for item axis which will be separate # for each block anyway. mgr_shape = list(mgr.shape) for ax, indexer in indexers.items(): mgr_shape[ax] = len(indexer) mgr_shape = tuple(mgr_shape) if 0 in indexers: ax0_indexer = indexers.pop(0) blknos = algos.take_1d(mgr._blknos, ax0_indexer, fill_value=-1) blklocs = algos.take_1d(mgr._blklocs, ax0_indexer, fill_value=-1) else: if mgr._is_single_block: blk = mgr.blocks[0] return [(blk.mgr_locs, JoinUnit(blk, mgr_shape, indexers))] ax0_indexer = None blknos = mgr._blknos blklocs = mgr._blklocs plan = [] for blkno, placements in libinternals.get_blkno_placements(blknos, mgr.nblocks, group=False): assert placements.is_slice_like join_unit_indexers = indexers.copy() shape = list(mgr_shape) shape[0] = len(placements) shape = tuple(shape) if blkno == -1: unit = JoinUnit(None, shape) else: blk = mgr.blocks[blkno] ax0_blk_indexer = blklocs[placements.indexer] unit_no_ax0_reindexing = (len(placements) == len(blk.mgr_locs) and # Fastpath detection of join unit not # needing to reindex its block: no ax0 # reindexing took place and block # placement was sequential before. ((ax0_indexer is None and blk.mgr_locs.is_slice_like and blk.mgr_locs.as_slice.step == 1) or # Slow-ish detection: all indexer locs # are sequential (and length match is # checked above). (np.diff(ax0_blk_indexer) == 1).all())) # Omit indexer if no item reindexing is required. if unit_no_ax0_reindexing: join_unit_indexers.pop(0, None) else: join_unit_indexers[0] = ax0_blk_indexer unit = JoinUnit(blk, shape, join_unit_indexers) plan.append((placements, unit)) return plan
[ "def", "get_mgr_concatenation_plan", "(", "mgr", ",", "indexers", ")", ":", "# Calculate post-reindex shape , save for item axis which will be separate", "# for each block anyway.", "mgr_shape", "=", "list", "(", "mgr", ".", "shape", ")", "for", "ax", ",", "indexer", "in", "indexers", ".", "items", "(", ")", ":", "mgr_shape", "[", "ax", "]", "=", "len", "(", "indexer", ")", "mgr_shape", "=", "tuple", "(", "mgr_shape", ")", "if", "0", "in", "indexers", ":", "ax0_indexer", "=", "indexers", ".", "pop", "(", "0", ")", "blknos", "=", "algos", ".", "take_1d", "(", "mgr", ".", "_blknos", ",", "ax0_indexer", ",", "fill_value", "=", "-", "1", ")", "blklocs", "=", "algos", ".", "take_1d", "(", "mgr", ".", "_blklocs", ",", "ax0_indexer", ",", "fill_value", "=", "-", "1", ")", "else", ":", "if", "mgr", ".", "_is_single_block", ":", "blk", "=", "mgr", ".", "blocks", "[", "0", "]", "return", "[", "(", "blk", ".", "mgr_locs", ",", "JoinUnit", "(", "blk", ",", "mgr_shape", ",", "indexers", ")", ")", "]", "ax0_indexer", "=", "None", "blknos", "=", "mgr", ".", "_blknos", "blklocs", "=", "mgr", ".", "_blklocs", "plan", "=", "[", "]", "for", "blkno", ",", "placements", "in", "libinternals", ".", "get_blkno_placements", "(", "blknos", ",", "mgr", ".", "nblocks", ",", "group", "=", "False", ")", ":", "assert", "placements", ".", "is_slice_like", "join_unit_indexers", "=", "indexers", ".", "copy", "(", ")", "shape", "=", "list", "(", "mgr_shape", ")", "shape", "[", "0", "]", "=", "len", "(", "placements", ")", "shape", "=", "tuple", "(", "shape", ")", "if", "blkno", "==", "-", "1", ":", "unit", "=", "JoinUnit", "(", "None", ",", "shape", ")", "else", ":", "blk", "=", "mgr", ".", "blocks", "[", "blkno", "]", "ax0_blk_indexer", "=", "blklocs", "[", "placements", ".", "indexer", "]", "unit_no_ax0_reindexing", "=", "(", "len", "(", "placements", ")", "==", "len", "(", "blk", ".", "mgr_locs", ")", "and", "# Fastpath detection of join unit not", "# needing to reindex its block: no ax0", "# reindexing took place and block", "# placement was sequential before.", "(", "(", "ax0_indexer", "is", "None", "and", "blk", ".", "mgr_locs", ".", "is_slice_like", "and", "blk", ".", "mgr_locs", ".", "as_slice", ".", "step", "==", "1", ")", "or", "# Slow-ish detection: all indexer locs", "# are sequential (and length match is", "# checked above).", "(", "np", ".", "diff", "(", "ax0_blk_indexer", ")", "==", "1", ")", ".", "all", "(", ")", ")", ")", "# Omit indexer if no item reindexing is required.", "if", "unit_no_ax0_reindexing", ":", "join_unit_indexers", ".", "pop", "(", "0", ",", "None", ")", "else", ":", "join_unit_indexers", "[", "0", "]", "=", "ax0_blk_indexer", "unit", "=", "JoinUnit", "(", "blk", ",", "shape", ",", "join_unit_indexers", ")", "plan", ".", "append", "(", "(", "placements", ",", "unit", ")", ")", "return", "plan" ]
Construct concatenation plan for given block manager and indexers. Parameters ---------- mgr : BlockManager indexers : dict of {axis: indexer} Returns ------- plan : list of (BlockPlacement, JoinUnit) tuples
[ "Construct", "concatenation", "plan", "for", "given", "block", "manager", "and", "indexers", "." ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/internals/concat.py#L21-L98
19,921
pandas-dev/pandas
pandas/core/internals/concat.py
concatenate_join_units
def concatenate_join_units(join_units, concat_axis, copy): """ Concatenate values from several join units along selected axis. """ if concat_axis == 0 and len(join_units) > 1: # Concatenating join units along ax0 is handled in _merge_blocks. raise AssertionError("Concatenating join units along axis0") empty_dtype, upcasted_na = get_empty_dtype_and_na(join_units) to_concat = [ju.get_reindexed_values(empty_dtype=empty_dtype, upcasted_na=upcasted_na) for ju in join_units] if len(to_concat) == 1: # Only one block, nothing to concatenate. concat_values = to_concat[0] if copy: if isinstance(concat_values, np.ndarray): # non-reindexed (=not yet copied) arrays are made into a view # in JoinUnit.get_reindexed_values if concat_values.base is not None: concat_values = concat_values.copy() else: concat_values = concat_values.copy() else: concat_values = _concat._concat_compat(to_concat, axis=concat_axis) return concat_values
python
def concatenate_join_units(join_units, concat_axis, copy): """ Concatenate values from several join units along selected axis. """ if concat_axis == 0 and len(join_units) > 1: # Concatenating join units along ax0 is handled in _merge_blocks. raise AssertionError("Concatenating join units along axis0") empty_dtype, upcasted_na = get_empty_dtype_and_na(join_units) to_concat = [ju.get_reindexed_values(empty_dtype=empty_dtype, upcasted_na=upcasted_na) for ju in join_units] if len(to_concat) == 1: # Only one block, nothing to concatenate. concat_values = to_concat[0] if copy: if isinstance(concat_values, np.ndarray): # non-reindexed (=not yet copied) arrays are made into a view # in JoinUnit.get_reindexed_values if concat_values.base is not None: concat_values = concat_values.copy() else: concat_values = concat_values.copy() else: concat_values = _concat._concat_compat(to_concat, axis=concat_axis) return concat_values
[ "def", "concatenate_join_units", "(", "join_units", ",", "concat_axis", ",", "copy", ")", ":", "if", "concat_axis", "==", "0", "and", "len", "(", "join_units", ")", ">", "1", ":", "# Concatenating join units along ax0 is handled in _merge_blocks.", "raise", "AssertionError", "(", "\"Concatenating join units along axis0\"", ")", "empty_dtype", ",", "upcasted_na", "=", "get_empty_dtype_and_na", "(", "join_units", ")", "to_concat", "=", "[", "ju", ".", "get_reindexed_values", "(", "empty_dtype", "=", "empty_dtype", ",", "upcasted_na", "=", "upcasted_na", ")", "for", "ju", "in", "join_units", "]", "if", "len", "(", "to_concat", ")", "==", "1", ":", "# Only one block, nothing to concatenate.", "concat_values", "=", "to_concat", "[", "0", "]", "if", "copy", ":", "if", "isinstance", "(", "concat_values", ",", "np", ".", "ndarray", ")", ":", "# non-reindexed (=not yet copied) arrays are made into a view", "# in JoinUnit.get_reindexed_values", "if", "concat_values", ".", "base", "is", "not", "None", ":", "concat_values", "=", "concat_values", ".", "copy", "(", ")", "else", ":", "concat_values", "=", "concat_values", ".", "copy", "(", ")", "else", ":", "concat_values", "=", "_concat", ".", "_concat_compat", "(", "to_concat", ",", "axis", "=", "concat_axis", ")", "return", "concat_values" ]
Concatenate values from several join units along selected axis.
[ "Concatenate", "values", "from", "several", "join", "units", "along", "selected", "axis", "." ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/internals/concat.py#L229-L257
19,922
pandas-dev/pandas
pandas/core/internals/concat.py
trim_join_unit
def trim_join_unit(join_unit, length): """ Reduce join_unit's shape along item axis to length. Extra items that didn't fit are returned as a separate block. """ if 0 not in join_unit.indexers: extra_indexers = join_unit.indexers if join_unit.block is None: extra_block = None else: extra_block = join_unit.block.getitem_block(slice(length, None)) join_unit.block = join_unit.block.getitem_block(slice(length)) else: extra_block = join_unit.block extra_indexers = copy.copy(join_unit.indexers) extra_indexers[0] = extra_indexers[0][length:] join_unit.indexers[0] = join_unit.indexers[0][:length] extra_shape = (join_unit.shape[0] - length,) + join_unit.shape[1:] join_unit.shape = (length,) + join_unit.shape[1:] return JoinUnit(block=extra_block, indexers=extra_indexers, shape=extra_shape)
python
def trim_join_unit(join_unit, length): """ Reduce join_unit's shape along item axis to length. Extra items that didn't fit are returned as a separate block. """ if 0 not in join_unit.indexers: extra_indexers = join_unit.indexers if join_unit.block is None: extra_block = None else: extra_block = join_unit.block.getitem_block(slice(length, None)) join_unit.block = join_unit.block.getitem_block(slice(length)) else: extra_block = join_unit.block extra_indexers = copy.copy(join_unit.indexers) extra_indexers[0] = extra_indexers[0][length:] join_unit.indexers[0] = join_unit.indexers[0][:length] extra_shape = (join_unit.shape[0] - length,) + join_unit.shape[1:] join_unit.shape = (length,) + join_unit.shape[1:] return JoinUnit(block=extra_block, indexers=extra_indexers, shape=extra_shape)
[ "def", "trim_join_unit", "(", "join_unit", ",", "length", ")", ":", "if", "0", "not", "in", "join_unit", ".", "indexers", ":", "extra_indexers", "=", "join_unit", ".", "indexers", "if", "join_unit", ".", "block", "is", "None", ":", "extra_block", "=", "None", "else", ":", "extra_block", "=", "join_unit", ".", "block", ".", "getitem_block", "(", "slice", "(", "length", ",", "None", ")", ")", "join_unit", ".", "block", "=", "join_unit", ".", "block", ".", "getitem_block", "(", "slice", "(", "length", ")", ")", "else", ":", "extra_block", "=", "join_unit", ".", "block", "extra_indexers", "=", "copy", ".", "copy", "(", "join_unit", ".", "indexers", ")", "extra_indexers", "[", "0", "]", "=", "extra_indexers", "[", "0", "]", "[", "length", ":", "]", "join_unit", ".", "indexers", "[", "0", "]", "=", "join_unit", ".", "indexers", "[", "0", "]", "[", ":", "length", "]", "extra_shape", "=", "(", "join_unit", ".", "shape", "[", "0", "]", "-", "length", ",", ")", "+", "join_unit", ".", "shape", "[", "1", ":", "]", "join_unit", ".", "shape", "=", "(", "length", ",", ")", "+", "join_unit", ".", "shape", "[", "1", ":", "]", "return", "JoinUnit", "(", "block", "=", "extra_block", ",", "indexers", "=", "extra_indexers", ",", "shape", "=", "extra_shape", ")" ]
Reduce join_unit's shape along item axis to length. Extra items that didn't fit are returned as a separate block.
[ "Reduce", "join_unit", "s", "shape", "along", "item", "axis", "to", "length", "." ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/internals/concat.py#L395-L421
19,923
pandas-dev/pandas
pandas/core/internals/concat.py
combine_concat_plans
def combine_concat_plans(plans, concat_axis): """ Combine multiple concatenation plans into one. existing_plan is updated in-place. """ if len(plans) == 1: for p in plans[0]: yield p[0], [p[1]] elif concat_axis == 0: offset = 0 for plan in plans: last_plc = None for plc, unit in plan: yield plc.add(offset), [unit] last_plc = plc if last_plc is not None: offset += last_plc.as_slice.stop else: num_ended = [0] def _next_or_none(seq): retval = next(seq, None) if retval is None: num_ended[0] += 1 return retval plans = list(map(iter, plans)) next_items = list(map(_next_or_none, plans)) while num_ended[0] != len(next_items): if num_ended[0] > 0: raise ValueError("Plan shapes are not aligned") placements, units = zip(*next_items) lengths = list(map(len, placements)) min_len, max_len = min(lengths), max(lengths) if min_len == max_len: yield placements[0], units next_items[:] = map(_next_or_none, plans) else: yielded_placement = None yielded_units = [None] * len(next_items) for i, (plc, unit) in enumerate(next_items): yielded_units[i] = unit if len(plc) > min_len: # trim_join_unit updates unit in place, so only # placement needs to be sliced to skip min_len. next_items[i] = (plc[min_len:], trim_join_unit(unit, min_len)) else: yielded_placement = plc next_items[i] = _next_or_none(plans[i]) yield yielded_placement, yielded_units
python
def combine_concat_plans(plans, concat_axis): """ Combine multiple concatenation plans into one. existing_plan is updated in-place. """ if len(plans) == 1: for p in plans[0]: yield p[0], [p[1]] elif concat_axis == 0: offset = 0 for plan in plans: last_plc = None for plc, unit in plan: yield plc.add(offset), [unit] last_plc = plc if last_plc is not None: offset += last_plc.as_slice.stop else: num_ended = [0] def _next_or_none(seq): retval = next(seq, None) if retval is None: num_ended[0] += 1 return retval plans = list(map(iter, plans)) next_items = list(map(_next_or_none, plans)) while num_ended[0] != len(next_items): if num_ended[0] > 0: raise ValueError("Plan shapes are not aligned") placements, units = zip(*next_items) lengths = list(map(len, placements)) min_len, max_len = min(lengths), max(lengths) if min_len == max_len: yield placements[0], units next_items[:] = map(_next_or_none, plans) else: yielded_placement = None yielded_units = [None] * len(next_items) for i, (plc, unit) in enumerate(next_items): yielded_units[i] = unit if len(plc) > min_len: # trim_join_unit updates unit in place, so only # placement needs to be sliced to skip min_len. next_items[i] = (plc[min_len:], trim_join_unit(unit, min_len)) else: yielded_placement = plc next_items[i] = _next_or_none(plans[i]) yield yielded_placement, yielded_units
[ "def", "combine_concat_plans", "(", "plans", ",", "concat_axis", ")", ":", "if", "len", "(", "plans", ")", "==", "1", ":", "for", "p", "in", "plans", "[", "0", "]", ":", "yield", "p", "[", "0", "]", ",", "[", "p", "[", "1", "]", "]", "elif", "concat_axis", "==", "0", ":", "offset", "=", "0", "for", "plan", "in", "plans", ":", "last_plc", "=", "None", "for", "plc", ",", "unit", "in", "plan", ":", "yield", "plc", ".", "add", "(", "offset", ")", ",", "[", "unit", "]", "last_plc", "=", "plc", "if", "last_plc", "is", "not", "None", ":", "offset", "+=", "last_plc", ".", "as_slice", ".", "stop", "else", ":", "num_ended", "=", "[", "0", "]", "def", "_next_or_none", "(", "seq", ")", ":", "retval", "=", "next", "(", "seq", ",", "None", ")", "if", "retval", "is", "None", ":", "num_ended", "[", "0", "]", "+=", "1", "return", "retval", "plans", "=", "list", "(", "map", "(", "iter", ",", "plans", ")", ")", "next_items", "=", "list", "(", "map", "(", "_next_or_none", ",", "plans", ")", ")", "while", "num_ended", "[", "0", "]", "!=", "len", "(", "next_items", ")", ":", "if", "num_ended", "[", "0", "]", ">", "0", ":", "raise", "ValueError", "(", "\"Plan shapes are not aligned\"", ")", "placements", ",", "units", "=", "zip", "(", "*", "next_items", ")", "lengths", "=", "list", "(", "map", "(", "len", ",", "placements", ")", ")", "min_len", ",", "max_len", "=", "min", "(", "lengths", ")", ",", "max", "(", "lengths", ")", "if", "min_len", "==", "max_len", ":", "yield", "placements", "[", "0", "]", ",", "units", "next_items", "[", ":", "]", "=", "map", "(", "_next_or_none", ",", "plans", ")", "else", ":", "yielded_placement", "=", "None", "yielded_units", "=", "[", "None", "]", "*", "len", "(", "next_items", ")", "for", "i", ",", "(", "plc", ",", "unit", ")", "in", "enumerate", "(", "next_items", ")", ":", "yielded_units", "[", "i", "]", "=", "unit", "if", "len", "(", "plc", ")", ">", "min_len", ":", "# trim_join_unit updates unit in place, so only", "# placement needs to be sliced to skip min_len.", "next_items", "[", "i", "]", "=", "(", "plc", "[", "min_len", ":", "]", ",", "trim_join_unit", "(", "unit", ",", "min_len", ")", ")", "else", ":", "yielded_placement", "=", "plc", "next_items", "[", "i", "]", "=", "_next_or_none", "(", "plans", "[", "i", "]", ")", "yield", "yielded_placement", ",", "yielded_units" ]
Combine multiple concatenation plans into one. existing_plan is updated in-place.
[ "Combine", "multiple", "concatenation", "plans", "into", "one", "." ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/internals/concat.py#L424-L484
19,924
pandas-dev/pandas
pandas/plotting/_style.py
_Options.use
def use(self, key, value): """ Temporarily set a parameter value using the with statement. Aliasing allowed. """ old_value = self[key] try: self[key] = value yield self finally: self[key] = old_value
python
def use(self, key, value): """ Temporarily set a parameter value using the with statement. Aliasing allowed. """ old_value = self[key] try: self[key] = value yield self finally: self[key] = old_value
[ "def", "use", "(", "self", ",", "key", ",", "value", ")", ":", "old_value", "=", "self", "[", "key", "]", "try", ":", "self", "[", "key", "]", "=", "value", "yield", "self", "finally", ":", "self", "[", "key", "]", "=", "old_value" ]
Temporarily set a parameter value using the with statement. Aliasing allowed.
[ "Temporarily", "set", "a", "parameter", "value", "using", "the", "with", "statement", ".", "Aliasing", "allowed", "." ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/plotting/_style.py#L151-L161
19,925
pandas-dev/pandas
pandas/io/stata.py
_dtype_to_stata_type
def _dtype_to_stata_type(dtype, column): """ Convert dtype types to stata types. Returns the byte of the given ordinal. See TYPE_MAP and comments for an explanation. This is also explained in the dta spec. 1 - 244 are strings of this length Pandas Stata 251 - for int8 byte 252 - for int16 int 253 - for int32 long 254 - for float32 float 255 - for double double If there are dates to convert, then dtype will already have the correct type inserted. """ # TODO: expand to handle datetime to integer conversion if dtype.type == np.object_: # try to coerce it to the biggest string # not memory efficient, what else could we # do? itemsize = max_len_string_array(ensure_object(column.values)) return max(itemsize, 1) elif dtype == np.float64: return 255 elif dtype == np.float32: return 254 elif dtype == np.int32: return 253 elif dtype == np.int16: return 252 elif dtype == np.int8: return 251 else: # pragma : no cover raise NotImplementedError( "Data type {dtype} not supported.".format(dtype=dtype))
python
def _dtype_to_stata_type(dtype, column): """ Convert dtype types to stata types. Returns the byte of the given ordinal. See TYPE_MAP and comments for an explanation. This is also explained in the dta spec. 1 - 244 are strings of this length Pandas Stata 251 - for int8 byte 252 - for int16 int 253 - for int32 long 254 - for float32 float 255 - for double double If there are dates to convert, then dtype will already have the correct type inserted. """ # TODO: expand to handle datetime to integer conversion if dtype.type == np.object_: # try to coerce it to the biggest string # not memory efficient, what else could we # do? itemsize = max_len_string_array(ensure_object(column.values)) return max(itemsize, 1) elif dtype == np.float64: return 255 elif dtype == np.float32: return 254 elif dtype == np.int32: return 253 elif dtype == np.int16: return 252 elif dtype == np.int8: return 251 else: # pragma : no cover raise NotImplementedError( "Data type {dtype} not supported.".format(dtype=dtype))
[ "def", "_dtype_to_stata_type", "(", "dtype", ",", "column", ")", ":", "# TODO: expand to handle datetime to integer conversion", "if", "dtype", ".", "type", "==", "np", ".", "object_", ":", "# try to coerce it to the biggest string", "# not memory efficient, what else could we", "# do?", "itemsize", "=", "max_len_string_array", "(", "ensure_object", "(", "column", ".", "values", ")", ")", "return", "max", "(", "itemsize", ",", "1", ")", "elif", "dtype", "==", "np", ".", "float64", ":", "return", "255", "elif", "dtype", "==", "np", ".", "float32", ":", "return", "254", "elif", "dtype", "==", "np", ".", "int32", ":", "return", "253", "elif", "dtype", "==", "np", ".", "int16", ":", "return", "252", "elif", "dtype", "==", "np", ".", "int8", ":", "return", "251", "else", ":", "# pragma : no cover", "raise", "NotImplementedError", "(", "\"Data type {dtype} not supported.\"", ".", "format", "(", "dtype", "=", "dtype", ")", ")" ]
Convert dtype types to stata types. Returns the byte of the given ordinal. See TYPE_MAP and comments for an explanation. This is also explained in the dta spec. 1 - 244 are strings of this length Pandas Stata 251 - for int8 byte 252 - for int16 int 253 - for int32 long 254 - for float32 float 255 - for double double If there are dates to convert, then dtype will already have the correct type inserted.
[ "Convert", "dtype", "types", "to", "stata", "types", ".", "Returns", "the", "byte", "of", "the", "given", "ordinal", ".", "See", "TYPE_MAP", "and", "comments", "for", "an", "explanation", ".", "This", "is", "also", "explained", "in", "the", "dta", "spec", ".", "1", "-", "244", "are", "strings", "of", "this", "length", "Pandas", "Stata", "251", "-", "for", "int8", "byte", "252", "-", "for", "int16", "int", "253", "-", "for", "int32", "long", "254", "-", "for", "float32", "float", "255", "-", "for", "double", "double" ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/io/stata.py#L1832-L1866
19,926
pandas-dev/pandas
pandas/io/stata.py
_dtype_to_default_stata_fmt
def _dtype_to_default_stata_fmt(dtype, column, dta_version=114, force_strl=False): """ Map numpy dtype to stata's default format for this type. Not terribly important since users can change this in Stata. Semantics are object -> "%DDs" where DD is the length of the string. If not a string, raise ValueError float64 -> "%10.0g" float32 -> "%9.0g" int64 -> "%9.0g" int32 -> "%12.0g" int16 -> "%8.0g" int8 -> "%8.0g" strl -> "%9s" """ # TODO: Refactor to combine type with format # TODO: expand this to handle a default datetime format? if dta_version < 117: max_str_len = 244 else: max_str_len = 2045 if force_strl: return '%9s' if dtype.type == np.object_: inferred_dtype = infer_dtype(column, skipna=True) if not (inferred_dtype in ('string', 'unicode') or len(column) == 0): raise ValueError('Column `{col}` cannot be exported.\n\nOnly ' 'string-like object arrays containing all ' 'strings or a mix of strings and None can be ' 'exported. Object arrays containing only null ' 'values are prohibited. Other object types' 'cannot be exported and must first be converted ' 'to one of the supported ' 'types.'.format(col=column.name)) itemsize = max_len_string_array(ensure_object(column.values)) if itemsize > max_str_len: if dta_version >= 117: return '%9s' else: raise ValueError(excessive_string_length_error % column.name) return "%" + str(max(itemsize, 1)) + "s" elif dtype == np.float64: return "%10.0g" elif dtype == np.float32: return "%9.0g" elif dtype == np.int32: return "%12.0g" elif dtype == np.int8 or dtype == np.int16: return "%8.0g" else: # pragma : no cover raise NotImplementedError( "Data type {dtype} not supported.".format(dtype=dtype))
python
def _dtype_to_default_stata_fmt(dtype, column, dta_version=114, force_strl=False): """ Map numpy dtype to stata's default format for this type. Not terribly important since users can change this in Stata. Semantics are object -> "%DDs" where DD is the length of the string. If not a string, raise ValueError float64 -> "%10.0g" float32 -> "%9.0g" int64 -> "%9.0g" int32 -> "%12.0g" int16 -> "%8.0g" int8 -> "%8.0g" strl -> "%9s" """ # TODO: Refactor to combine type with format # TODO: expand this to handle a default datetime format? if dta_version < 117: max_str_len = 244 else: max_str_len = 2045 if force_strl: return '%9s' if dtype.type == np.object_: inferred_dtype = infer_dtype(column, skipna=True) if not (inferred_dtype in ('string', 'unicode') or len(column) == 0): raise ValueError('Column `{col}` cannot be exported.\n\nOnly ' 'string-like object arrays containing all ' 'strings or a mix of strings and None can be ' 'exported. Object arrays containing only null ' 'values are prohibited. Other object types' 'cannot be exported and must first be converted ' 'to one of the supported ' 'types.'.format(col=column.name)) itemsize = max_len_string_array(ensure_object(column.values)) if itemsize > max_str_len: if dta_version >= 117: return '%9s' else: raise ValueError(excessive_string_length_error % column.name) return "%" + str(max(itemsize, 1)) + "s" elif dtype == np.float64: return "%10.0g" elif dtype == np.float32: return "%9.0g" elif dtype == np.int32: return "%12.0g" elif dtype == np.int8 or dtype == np.int16: return "%8.0g" else: # pragma : no cover raise NotImplementedError( "Data type {dtype} not supported.".format(dtype=dtype))
[ "def", "_dtype_to_default_stata_fmt", "(", "dtype", ",", "column", ",", "dta_version", "=", "114", ",", "force_strl", "=", "False", ")", ":", "# TODO: Refactor to combine type with format", "# TODO: expand this to handle a default datetime format?", "if", "dta_version", "<", "117", ":", "max_str_len", "=", "244", "else", ":", "max_str_len", "=", "2045", "if", "force_strl", ":", "return", "'%9s'", "if", "dtype", ".", "type", "==", "np", ".", "object_", ":", "inferred_dtype", "=", "infer_dtype", "(", "column", ",", "skipna", "=", "True", ")", "if", "not", "(", "inferred_dtype", "in", "(", "'string'", ",", "'unicode'", ")", "or", "len", "(", "column", ")", "==", "0", ")", ":", "raise", "ValueError", "(", "'Column `{col}` cannot be exported.\\n\\nOnly '", "'string-like object arrays containing all '", "'strings or a mix of strings and None can be '", "'exported. Object arrays containing only null '", "'values are prohibited. Other object types'", "'cannot be exported and must first be converted '", "'to one of the supported '", "'types.'", ".", "format", "(", "col", "=", "column", ".", "name", ")", ")", "itemsize", "=", "max_len_string_array", "(", "ensure_object", "(", "column", ".", "values", ")", ")", "if", "itemsize", ">", "max_str_len", ":", "if", "dta_version", ">=", "117", ":", "return", "'%9s'", "else", ":", "raise", "ValueError", "(", "excessive_string_length_error", "%", "column", ".", "name", ")", "return", "\"%\"", "+", "str", "(", "max", "(", "itemsize", ",", "1", ")", ")", "+", "\"s\"", "elif", "dtype", "==", "np", ".", "float64", ":", "return", "\"%10.0g\"", "elif", "dtype", "==", "np", ".", "float32", ":", "return", "\"%9.0g\"", "elif", "dtype", "==", "np", ".", "int32", ":", "return", "\"%12.0g\"", "elif", "dtype", "==", "np", ".", "int8", "or", "dtype", "==", "np", ".", "int16", ":", "return", "\"%8.0g\"", "else", ":", "# pragma : no cover", "raise", "NotImplementedError", "(", "\"Data type {dtype} not supported.\"", ".", "format", "(", "dtype", "=", "dtype", ")", ")" ]
Map numpy dtype to stata's default format for this type. Not terribly important since users can change this in Stata. Semantics are object -> "%DDs" where DD is the length of the string. If not a string, raise ValueError float64 -> "%10.0g" float32 -> "%9.0g" int64 -> "%9.0g" int32 -> "%12.0g" int16 -> "%8.0g" int8 -> "%8.0g" strl -> "%9s"
[ "Map", "numpy", "dtype", "to", "stata", "s", "default", "format", "for", "this", "type", ".", "Not", "terribly", "important", "since", "users", "can", "change", "this", "in", "Stata", ".", "Semantics", "are" ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/io/stata.py#L1869-L1922
19,927
pandas-dev/pandas
pandas/io/stata.py
_pad_bytes_new
def _pad_bytes_new(name, length): """ Takes a bytes instance and pads it with null bytes until it's length chars. """ if isinstance(name, str): name = bytes(name, 'utf-8') return name + b'\x00' * (length - len(name))
python
def _pad_bytes_new(name, length): """ Takes a bytes instance and pads it with null bytes until it's length chars. """ if isinstance(name, str): name = bytes(name, 'utf-8') return name + b'\x00' * (length - len(name))
[ "def", "_pad_bytes_new", "(", "name", ",", "length", ")", ":", "if", "isinstance", "(", "name", ",", "str", ")", ":", "name", "=", "bytes", "(", "name", ",", "'utf-8'", ")", "return", "name", "+", "b'\\x00'", "*", "(", "length", "-", "len", "(", "name", ")", ")" ]
Takes a bytes instance and pads it with null bytes until it's length chars.
[ "Takes", "a", "bytes", "instance", "and", "pads", "it", "with", "null", "bytes", "until", "it", "s", "length", "chars", "." ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/io/stata.py#L2477-L2483
19,928
pandas-dev/pandas
pandas/io/stata.py
StataReader._setup_dtype
def _setup_dtype(self): """Map between numpy and state dtypes""" if self._dtype is not None: return self._dtype dtype = [] # Convert struct data types to numpy data type for i, typ in enumerate(self.typlist): if typ in self.NUMPY_TYPE_MAP: dtype.append(('s' + str(i), self.byteorder + self.NUMPY_TYPE_MAP[typ])) else: dtype.append(('s' + str(i), 'S' + str(typ))) dtype = np.dtype(dtype) self._dtype = dtype return self._dtype
python
def _setup_dtype(self): """Map between numpy and state dtypes""" if self._dtype is not None: return self._dtype dtype = [] # Convert struct data types to numpy data type for i, typ in enumerate(self.typlist): if typ in self.NUMPY_TYPE_MAP: dtype.append(('s' + str(i), self.byteorder + self.NUMPY_TYPE_MAP[typ])) else: dtype.append(('s' + str(i), 'S' + str(typ))) dtype = np.dtype(dtype) self._dtype = dtype return self._dtype
[ "def", "_setup_dtype", "(", "self", ")", ":", "if", "self", ".", "_dtype", "is", "not", "None", ":", "return", "self", ".", "_dtype", "dtype", "=", "[", "]", "# Convert struct data types to numpy data type", "for", "i", ",", "typ", "in", "enumerate", "(", "self", ".", "typlist", ")", ":", "if", "typ", "in", "self", ".", "NUMPY_TYPE_MAP", ":", "dtype", ".", "append", "(", "(", "'s'", "+", "str", "(", "i", ")", ",", "self", ".", "byteorder", "+", "self", ".", "NUMPY_TYPE_MAP", "[", "typ", "]", ")", ")", "else", ":", "dtype", ".", "append", "(", "(", "'s'", "+", "str", "(", "i", ")", ",", "'S'", "+", "str", "(", "typ", ")", ")", ")", "dtype", "=", "np", ".", "dtype", "(", "dtype", ")", "self", ".", "_dtype", "=", "dtype", "return", "self", ".", "_dtype" ]
Map between numpy and state dtypes
[ "Map", "between", "numpy", "and", "state", "dtypes" ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/io/stata.py#L1307-L1322
19,929
pandas-dev/pandas
pandas/io/stata.py
StataWriter._write
def _write(self, to_write): """ Helper to call encode before writing to file for Python 3 compat. """ self._file.write(to_write.encode(self._encoding or self._default_encoding))
python
def _write(self, to_write): """ Helper to call encode before writing to file for Python 3 compat. """ self._file.write(to_write.encode(self._encoding or self._default_encoding))
[ "def", "_write", "(", "self", ",", "to_write", ")", ":", "self", ".", "_file", ".", "write", "(", "to_write", ".", "encode", "(", "self", ".", "_encoding", "or", "self", ".", "_default_encoding", ")", ")" ]
Helper to call encode before writing to file for Python 3 compat.
[ "Helper", "to", "call", "encode", "before", "writing", "to", "file", "for", "Python", "3", "compat", "." ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/io/stata.py#L2018-L2023
19,930
pandas-dev/pandas
pandas/io/stata.py
StataWriter._prepare_categoricals
def _prepare_categoricals(self, data): """Check for categorical columns, retain categorical information for Stata file and convert categorical data to int""" is_cat = [is_categorical_dtype(data[col]) for col in data] self._is_col_cat = is_cat self._value_labels = [] if not any(is_cat): return data get_base_missing_value = StataMissingValue.get_base_missing_value data_formatted = [] for col, col_is_cat in zip(data, is_cat): if col_is_cat: self._value_labels.append(StataValueLabel(data[col])) dtype = data[col].cat.codes.dtype if dtype == np.int64: raise ValueError('It is not possible to export ' 'int64-based categorical data to Stata.') values = data[col].cat.codes.values.copy() # Upcast if needed so that correct missing values can be set if values.max() >= get_base_missing_value(dtype): if dtype == np.int8: dtype = np.int16 elif dtype == np.int16: dtype = np.int32 else: dtype = np.float64 values = np.array(values, dtype=dtype) # Replace missing values with Stata missing value for type values[values == -1] = get_base_missing_value(dtype) data_formatted.append((col, values)) else: data_formatted.append((col, data[col])) return DataFrame.from_dict(OrderedDict(data_formatted))
python
def _prepare_categoricals(self, data): """Check for categorical columns, retain categorical information for Stata file and convert categorical data to int""" is_cat = [is_categorical_dtype(data[col]) for col in data] self._is_col_cat = is_cat self._value_labels = [] if not any(is_cat): return data get_base_missing_value = StataMissingValue.get_base_missing_value data_formatted = [] for col, col_is_cat in zip(data, is_cat): if col_is_cat: self._value_labels.append(StataValueLabel(data[col])) dtype = data[col].cat.codes.dtype if dtype == np.int64: raise ValueError('It is not possible to export ' 'int64-based categorical data to Stata.') values = data[col].cat.codes.values.copy() # Upcast if needed so that correct missing values can be set if values.max() >= get_base_missing_value(dtype): if dtype == np.int8: dtype = np.int16 elif dtype == np.int16: dtype = np.int32 else: dtype = np.float64 values = np.array(values, dtype=dtype) # Replace missing values with Stata missing value for type values[values == -1] = get_base_missing_value(dtype) data_formatted.append((col, values)) else: data_formatted.append((col, data[col])) return DataFrame.from_dict(OrderedDict(data_formatted))
[ "def", "_prepare_categoricals", "(", "self", ",", "data", ")", ":", "is_cat", "=", "[", "is_categorical_dtype", "(", "data", "[", "col", "]", ")", "for", "col", "in", "data", "]", "self", ".", "_is_col_cat", "=", "is_cat", "self", ".", "_value_labels", "=", "[", "]", "if", "not", "any", "(", "is_cat", ")", ":", "return", "data", "get_base_missing_value", "=", "StataMissingValue", ".", "get_base_missing_value", "data_formatted", "=", "[", "]", "for", "col", ",", "col_is_cat", "in", "zip", "(", "data", ",", "is_cat", ")", ":", "if", "col_is_cat", ":", "self", ".", "_value_labels", ".", "append", "(", "StataValueLabel", "(", "data", "[", "col", "]", ")", ")", "dtype", "=", "data", "[", "col", "]", ".", "cat", ".", "codes", ".", "dtype", "if", "dtype", "==", "np", ".", "int64", ":", "raise", "ValueError", "(", "'It is not possible to export '", "'int64-based categorical data to Stata.'", ")", "values", "=", "data", "[", "col", "]", ".", "cat", ".", "codes", ".", "values", ".", "copy", "(", ")", "# Upcast if needed so that correct missing values can be set", "if", "values", ".", "max", "(", ")", ">=", "get_base_missing_value", "(", "dtype", ")", ":", "if", "dtype", "==", "np", ".", "int8", ":", "dtype", "=", "np", ".", "int16", "elif", "dtype", "==", "np", ".", "int16", ":", "dtype", "=", "np", ".", "int32", "else", ":", "dtype", "=", "np", ".", "float64", "values", "=", "np", ".", "array", "(", "values", ",", "dtype", "=", "dtype", ")", "# Replace missing values with Stata missing value for type", "values", "[", "values", "==", "-", "1", "]", "=", "get_base_missing_value", "(", "dtype", ")", "data_formatted", ".", "append", "(", "(", "col", ",", "values", ")", ")", "else", ":", "data_formatted", ".", "append", "(", "(", "col", ",", "data", "[", "col", "]", ")", ")", "return", "DataFrame", ".", "from_dict", "(", "OrderedDict", "(", "data_formatted", ")", ")" ]
Check for categorical columns, retain categorical information for Stata file and convert categorical data to int
[ "Check", "for", "categorical", "columns", "retain", "categorical", "information", "for", "Stata", "file", "and", "convert", "categorical", "data", "to", "int" ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/io/stata.py#L2025-L2061
19,931
pandas-dev/pandas
pandas/io/stata.py
StataWriter._close
def _close(self): """ Close the file if it was created by the writer. If a buffer or file-like object was passed in, for example a GzipFile, then leave this file open for the caller to close. In either case, attempt to flush the file contents to ensure they are written to disk (if supported) """ # Some file-like objects might not support flush try: self._file.flush() except AttributeError: pass if self._own_file: self._file.close()
python
def _close(self): """ Close the file if it was created by the writer. If a buffer or file-like object was passed in, for example a GzipFile, then leave this file open for the caller to close. In either case, attempt to flush the file contents to ensure they are written to disk (if supported) """ # Some file-like objects might not support flush try: self._file.flush() except AttributeError: pass if self._own_file: self._file.close()
[ "def", "_close", "(", "self", ")", ":", "# Some file-like objects might not support flush", "try", ":", "self", ".", "_file", ".", "flush", "(", ")", "except", "AttributeError", ":", "pass", "if", "self", ".", "_own_file", ":", "self", ".", "_file", ".", "close", "(", ")" ]
Close the file if it was created by the writer. If a buffer or file-like object was passed in, for example a GzipFile, then leave this file open for the caller to close. In either case, attempt to flush the file contents to ensure they are written to disk (if supported)
[ "Close", "the", "file", "if", "it", "was", "created", "by", "the", "writer", "." ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/io/stata.py#L2249-L2264
19,932
pandas-dev/pandas
pandas/io/stata.py
StataStrLWriter.generate_table
def generate_table(self): """ Generates the GSO lookup table for the DataFRame Returns ------- gso_table : OrderedDict Ordered dictionary using the string found as keys and their lookup position (v,o) as values gso_df : DataFrame DataFrame where strl columns have been converted to (v,o) values Notes ----- Modifies the DataFrame in-place. The DataFrame returned encodes the (v,o) values as uint64s. The encoding depends on teh dta version, and can be expressed as enc = v + o * 2 ** (o_size * 8) so that v is stored in the lower bits and o is in the upper bits. o_size is * 117: 4 * 118: 6 * 119: 5 """ gso_table = self._gso_table gso_df = self.df columns = list(gso_df.columns) selected = gso_df[self.columns] col_index = [(col, columns.index(col)) for col in self.columns] keys = np.empty(selected.shape, dtype=np.uint64) for o, (idx, row) in enumerate(selected.iterrows()): for j, (col, v) in enumerate(col_index): val = row[col] # Allow columns with mixed str and None (GH 23633) val = '' if val is None else val key = gso_table.get(val, None) if key is None: # Stata prefers human numbers key = (v + 1, o + 1) gso_table[val] = key keys[o, j] = self._convert_key(key) for i, col in enumerate(self.columns): gso_df[col] = keys[:, i] return gso_table, gso_df
python
def generate_table(self): """ Generates the GSO lookup table for the DataFRame Returns ------- gso_table : OrderedDict Ordered dictionary using the string found as keys and their lookup position (v,o) as values gso_df : DataFrame DataFrame where strl columns have been converted to (v,o) values Notes ----- Modifies the DataFrame in-place. The DataFrame returned encodes the (v,o) values as uint64s. The encoding depends on teh dta version, and can be expressed as enc = v + o * 2 ** (o_size * 8) so that v is stored in the lower bits and o is in the upper bits. o_size is * 117: 4 * 118: 6 * 119: 5 """ gso_table = self._gso_table gso_df = self.df columns = list(gso_df.columns) selected = gso_df[self.columns] col_index = [(col, columns.index(col)) for col in self.columns] keys = np.empty(selected.shape, dtype=np.uint64) for o, (idx, row) in enumerate(selected.iterrows()): for j, (col, v) in enumerate(col_index): val = row[col] # Allow columns with mixed str and None (GH 23633) val = '' if val is None else val key = gso_table.get(val, None) if key is None: # Stata prefers human numbers key = (v + 1, o + 1) gso_table[val] = key keys[o, j] = self._convert_key(key) for i, col in enumerate(self.columns): gso_df[col] = keys[:, i] return gso_table, gso_df
[ "def", "generate_table", "(", "self", ")", ":", "gso_table", "=", "self", ".", "_gso_table", "gso_df", "=", "self", ".", "df", "columns", "=", "list", "(", "gso_df", ".", "columns", ")", "selected", "=", "gso_df", "[", "self", ".", "columns", "]", "col_index", "=", "[", "(", "col", ",", "columns", ".", "index", "(", "col", ")", ")", "for", "col", "in", "self", ".", "columns", "]", "keys", "=", "np", ".", "empty", "(", "selected", ".", "shape", ",", "dtype", "=", "np", ".", "uint64", ")", "for", "o", ",", "(", "idx", ",", "row", ")", "in", "enumerate", "(", "selected", ".", "iterrows", "(", ")", ")", ":", "for", "j", ",", "(", "col", ",", "v", ")", "in", "enumerate", "(", "col_index", ")", ":", "val", "=", "row", "[", "col", "]", "# Allow columns with mixed str and None (GH 23633)", "val", "=", "''", "if", "val", "is", "None", "else", "val", "key", "=", "gso_table", ".", "get", "(", "val", ",", "None", ")", "if", "key", "is", "None", ":", "# Stata prefers human numbers", "key", "=", "(", "v", "+", "1", ",", "o", "+", "1", ")", "gso_table", "[", "val", "]", "=", "key", "keys", "[", "o", ",", "j", "]", "=", "self", ".", "_convert_key", "(", "key", ")", "for", "i", ",", "col", "in", "enumerate", "(", "self", ".", "columns", ")", ":", "gso_df", "[", "col", "]", "=", "keys", "[", ":", ",", "i", "]", "return", "gso_table", ",", "gso_df" ]
Generates the GSO lookup table for the DataFRame Returns ------- gso_table : OrderedDict Ordered dictionary using the string found as keys and their lookup position (v,o) as values gso_df : DataFrame DataFrame where strl columns have been converted to (v,o) values Notes ----- Modifies the DataFrame in-place. The DataFrame returned encodes the (v,o) values as uint64s. The encoding depends on teh dta version, and can be expressed as enc = v + o * 2 ** (o_size * 8) so that v is stored in the lower bits and o is in the upper bits. o_size is * 117: 4 * 118: 6 * 119: 5
[ "Generates", "the", "GSO", "lookup", "table", "for", "the", "DataFRame" ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/io/stata.py#L2546-L2596
19,933
pandas-dev/pandas
pandas/io/stata.py
StataStrLWriter.generate_blob
def generate_blob(self, gso_table): """ Generates the binary blob of GSOs that is written to the dta file. Parameters ---------- gso_table : OrderedDict Ordered dictionary (str, vo) Returns ------- gso : bytes Binary content of dta file to be placed between strl tags Notes ----- Output format depends on dta version. 117 uses two uint32s to express v and o while 118+ uses a uint32 for v and a uint64 for o. """ # Format information # Length includes null term # 117 # GSOvvvvooootllllxxxxxxxxxxxxxxx...x # 3 u4 u4 u1 u4 string + null term # # 118, 119 # GSOvvvvooooooootllllxxxxxxxxxxxxxxx...x # 3 u4 u8 u1 u4 string + null term bio = BytesIO() gso = bytes('GSO', 'ascii') gso_type = struct.pack(self._byteorder + 'B', 130) null = struct.pack(self._byteorder + 'B', 0) v_type = self._byteorder + self._gso_v_type o_type = self._byteorder + self._gso_o_type len_type = self._byteorder + 'I' for strl, vo in gso_table.items(): if vo == (0, 0): continue v, o = vo # GSO bio.write(gso) # vvvv bio.write(struct.pack(v_type, v)) # oooo / oooooooo bio.write(struct.pack(o_type, o)) # t bio.write(gso_type) # llll utf8_string = bytes(strl, 'utf-8') bio.write(struct.pack(len_type, len(utf8_string) + 1)) # xxx...xxx bio.write(utf8_string) bio.write(null) bio.seek(0) return bio.read()
python
def generate_blob(self, gso_table): """ Generates the binary blob of GSOs that is written to the dta file. Parameters ---------- gso_table : OrderedDict Ordered dictionary (str, vo) Returns ------- gso : bytes Binary content of dta file to be placed between strl tags Notes ----- Output format depends on dta version. 117 uses two uint32s to express v and o while 118+ uses a uint32 for v and a uint64 for o. """ # Format information # Length includes null term # 117 # GSOvvvvooootllllxxxxxxxxxxxxxxx...x # 3 u4 u4 u1 u4 string + null term # # 118, 119 # GSOvvvvooooooootllllxxxxxxxxxxxxxxx...x # 3 u4 u8 u1 u4 string + null term bio = BytesIO() gso = bytes('GSO', 'ascii') gso_type = struct.pack(self._byteorder + 'B', 130) null = struct.pack(self._byteorder + 'B', 0) v_type = self._byteorder + self._gso_v_type o_type = self._byteorder + self._gso_o_type len_type = self._byteorder + 'I' for strl, vo in gso_table.items(): if vo == (0, 0): continue v, o = vo # GSO bio.write(gso) # vvvv bio.write(struct.pack(v_type, v)) # oooo / oooooooo bio.write(struct.pack(o_type, o)) # t bio.write(gso_type) # llll utf8_string = bytes(strl, 'utf-8') bio.write(struct.pack(len_type, len(utf8_string) + 1)) # xxx...xxx bio.write(utf8_string) bio.write(null) bio.seek(0) return bio.read()
[ "def", "generate_blob", "(", "self", ",", "gso_table", ")", ":", "# Format information", "# Length includes null term", "# 117", "# GSOvvvvooootllllxxxxxxxxxxxxxxx...x", "# 3 u4 u4 u1 u4 string + null term", "#", "# 118, 119", "# GSOvvvvooooooootllllxxxxxxxxxxxxxxx...x", "# 3 u4 u8 u1 u4 string + null term", "bio", "=", "BytesIO", "(", ")", "gso", "=", "bytes", "(", "'GSO'", ",", "'ascii'", ")", "gso_type", "=", "struct", ".", "pack", "(", "self", ".", "_byteorder", "+", "'B'", ",", "130", ")", "null", "=", "struct", ".", "pack", "(", "self", ".", "_byteorder", "+", "'B'", ",", "0", ")", "v_type", "=", "self", ".", "_byteorder", "+", "self", ".", "_gso_v_type", "o_type", "=", "self", ".", "_byteorder", "+", "self", ".", "_gso_o_type", "len_type", "=", "self", ".", "_byteorder", "+", "'I'", "for", "strl", ",", "vo", "in", "gso_table", ".", "items", "(", ")", ":", "if", "vo", "==", "(", "0", ",", "0", ")", ":", "continue", "v", ",", "o", "=", "vo", "# GSO", "bio", ".", "write", "(", "gso", ")", "# vvvv", "bio", ".", "write", "(", "struct", ".", "pack", "(", "v_type", ",", "v", ")", ")", "# oooo / oooooooo", "bio", ".", "write", "(", "struct", ".", "pack", "(", "o_type", ",", "o", ")", ")", "# t", "bio", ".", "write", "(", "gso_type", ")", "# llll", "utf8_string", "=", "bytes", "(", "strl", ",", "'utf-8'", ")", "bio", ".", "write", "(", "struct", ".", "pack", "(", "len_type", ",", "len", "(", "utf8_string", ")", "+", "1", ")", ")", "# xxx...xxx", "bio", ".", "write", "(", "utf8_string", ")", "bio", ".", "write", "(", "null", ")", "bio", ".", "seek", "(", "0", ")", "return", "bio", ".", "read", "(", ")" ]
Generates the binary blob of GSOs that is written to the dta file. Parameters ---------- gso_table : OrderedDict Ordered dictionary (str, vo) Returns ------- gso : bytes Binary content of dta file to be placed between strl tags Notes ----- Output format depends on dta version. 117 uses two uint32s to express v and o while 118+ uses a uint32 for v and a uint64 for o.
[ "Generates", "the", "binary", "blob", "of", "GSOs", "that", "is", "written", "to", "the", "dta", "file", "." ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/io/stata.py#L2604-L2666
19,934
pandas-dev/pandas
pandas/io/stata.py
StataWriter117._write_header
def _write_header(self, data_label=None, time_stamp=None): """Write the file header""" byteorder = self._byteorder self._file.write(bytes('<stata_dta>', 'utf-8')) bio = BytesIO() # ds_format - 117 bio.write(self._tag(bytes('117', 'utf-8'), 'release')) # byteorder bio.write(self._tag(byteorder == ">" and "MSF" or "LSF", 'byteorder')) # number of vars, 2 bytes assert self.nvar < 2 ** 16 bio.write(self._tag(struct.pack(byteorder + "H", self.nvar), 'K')) # number of obs, 4 bytes bio.write(self._tag(struct.pack(byteorder + "I", self.nobs), 'N')) # data label 81 bytes, char, null terminated label = data_label[:80] if data_label is not None else '' label_len = struct.pack(byteorder + "B", len(label)) label = label_len + bytes(label, 'utf-8') bio.write(self._tag(label, 'label')) # time stamp, 18 bytes, char, null terminated # format dd Mon yyyy hh:mm if time_stamp is None: time_stamp = datetime.datetime.now() elif not isinstance(time_stamp, datetime.datetime): raise ValueError("time_stamp should be datetime type") # Avoid locale-specific month conversion months = ['Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun', 'Jul', 'Aug', 'Sep', 'Oct', 'Nov', 'Dec'] month_lookup = {i + 1: month for i, month in enumerate(months)} ts = (time_stamp.strftime("%d ") + month_lookup[time_stamp.month] + time_stamp.strftime(" %Y %H:%M")) # '\x11' added due to inspection of Stata file ts = b'\x11' + bytes(ts, 'utf8') bio.write(self._tag(ts, 'timestamp')) bio.seek(0) self._file.write(self._tag(bio.read(), 'header'))
python
def _write_header(self, data_label=None, time_stamp=None): """Write the file header""" byteorder = self._byteorder self._file.write(bytes('<stata_dta>', 'utf-8')) bio = BytesIO() # ds_format - 117 bio.write(self._tag(bytes('117', 'utf-8'), 'release')) # byteorder bio.write(self._tag(byteorder == ">" and "MSF" or "LSF", 'byteorder')) # number of vars, 2 bytes assert self.nvar < 2 ** 16 bio.write(self._tag(struct.pack(byteorder + "H", self.nvar), 'K')) # number of obs, 4 bytes bio.write(self._tag(struct.pack(byteorder + "I", self.nobs), 'N')) # data label 81 bytes, char, null terminated label = data_label[:80] if data_label is not None else '' label_len = struct.pack(byteorder + "B", len(label)) label = label_len + bytes(label, 'utf-8') bio.write(self._tag(label, 'label')) # time stamp, 18 bytes, char, null terminated # format dd Mon yyyy hh:mm if time_stamp is None: time_stamp = datetime.datetime.now() elif not isinstance(time_stamp, datetime.datetime): raise ValueError("time_stamp should be datetime type") # Avoid locale-specific month conversion months = ['Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun', 'Jul', 'Aug', 'Sep', 'Oct', 'Nov', 'Dec'] month_lookup = {i + 1: month for i, month in enumerate(months)} ts = (time_stamp.strftime("%d ") + month_lookup[time_stamp.month] + time_stamp.strftime(" %Y %H:%M")) # '\x11' added due to inspection of Stata file ts = b'\x11' + bytes(ts, 'utf8') bio.write(self._tag(ts, 'timestamp')) bio.seek(0) self._file.write(self._tag(bio.read(), 'header'))
[ "def", "_write_header", "(", "self", ",", "data_label", "=", "None", ",", "time_stamp", "=", "None", ")", ":", "byteorder", "=", "self", ".", "_byteorder", "self", ".", "_file", ".", "write", "(", "bytes", "(", "'<stata_dta>'", ",", "'utf-8'", ")", ")", "bio", "=", "BytesIO", "(", ")", "# ds_format - 117", "bio", ".", "write", "(", "self", ".", "_tag", "(", "bytes", "(", "'117'", ",", "'utf-8'", ")", ",", "'release'", ")", ")", "# byteorder", "bio", ".", "write", "(", "self", ".", "_tag", "(", "byteorder", "==", "\">\"", "and", "\"MSF\"", "or", "\"LSF\"", ",", "'byteorder'", ")", ")", "# number of vars, 2 bytes", "assert", "self", ".", "nvar", "<", "2", "**", "16", "bio", ".", "write", "(", "self", ".", "_tag", "(", "struct", ".", "pack", "(", "byteorder", "+", "\"H\"", ",", "self", ".", "nvar", ")", ",", "'K'", ")", ")", "# number of obs, 4 bytes", "bio", ".", "write", "(", "self", ".", "_tag", "(", "struct", ".", "pack", "(", "byteorder", "+", "\"I\"", ",", "self", ".", "nobs", ")", ",", "'N'", ")", ")", "# data label 81 bytes, char, null terminated", "label", "=", "data_label", "[", ":", "80", "]", "if", "data_label", "is", "not", "None", "else", "''", "label_len", "=", "struct", ".", "pack", "(", "byteorder", "+", "\"B\"", ",", "len", "(", "label", ")", ")", "label", "=", "label_len", "+", "bytes", "(", "label", ",", "'utf-8'", ")", "bio", ".", "write", "(", "self", ".", "_tag", "(", "label", ",", "'label'", ")", ")", "# time stamp, 18 bytes, char, null terminated", "# format dd Mon yyyy hh:mm", "if", "time_stamp", "is", "None", ":", "time_stamp", "=", "datetime", ".", "datetime", ".", "now", "(", ")", "elif", "not", "isinstance", "(", "time_stamp", ",", "datetime", ".", "datetime", ")", ":", "raise", "ValueError", "(", "\"time_stamp should be datetime type\"", ")", "# Avoid locale-specific month conversion", "months", "=", "[", "'Jan'", ",", "'Feb'", ",", "'Mar'", ",", "'Apr'", ",", "'May'", ",", "'Jun'", ",", "'Jul'", ",", "'Aug'", ",", "'Sep'", ",", "'Oct'", ",", "'Nov'", ",", "'Dec'", "]", "month_lookup", "=", "{", "i", "+", "1", ":", "month", "for", "i", ",", "month", "in", "enumerate", "(", "months", ")", "}", "ts", "=", "(", "time_stamp", ".", "strftime", "(", "\"%d \"", ")", "+", "month_lookup", "[", "time_stamp", ".", "month", "]", "+", "time_stamp", ".", "strftime", "(", "\" %Y %H:%M\"", ")", ")", "# '\\x11' added due to inspection of Stata file", "ts", "=", "b'\\x11'", "+", "bytes", "(", "ts", ",", "'utf8'", ")", "bio", ".", "write", "(", "self", ".", "_tag", "(", "ts", ",", "'timestamp'", ")", ")", "bio", ".", "seek", "(", "0", ")", "self", ".", "_file", ".", "write", "(", "self", ".", "_tag", "(", "bio", ".", "read", "(", ")", ",", "'header'", ")", ")" ]
Write the file header
[ "Write", "the", "file", "header" ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/io/stata.py#L2772-L2808
19,935
pandas-dev/pandas
pandas/io/stata.py
StataWriter117._write_map
def _write_map(self): """Called twice during file write. The first populates the values in the map with 0s. The second call writes the final map locations when all blocks have been written.""" if self._map is None: self._map = OrderedDict((('stata_data', 0), ('map', self._file.tell()), ('variable_types', 0), ('varnames', 0), ('sortlist', 0), ('formats', 0), ('value_label_names', 0), ('variable_labels', 0), ('characteristics', 0), ('data', 0), ('strls', 0), ('value_labels', 0), ('stata_data_close', 0), ('end-of-file', 0))) # Move to start of map self._file.seek(self._map['map']) bio = BytesIO() for val in self._map.values(): bio.write(struct.pack(self._byteorder + 'Q', val)) bio.seek(0) self._file.write(self._tag(bio.read(), 'map'))
python
def _write_map(self): """Called twice during file write. The first populates the values in the map with 0s. The second call writes the final map locations when all blocks have been written.""" if self._map is None: self._map = OrderedDict((('stata_data', 0), ('map', self._file.tell()), ('variable_types', 0), ('varnames', 0), ('sortlist', 0), ('formats', 0), ('value_label_names', 0), ('variable_labels', 0), ('characteristics', 0), ('data', 0), ('strls', 0), ('value_labels', 0), ('stata_data_close', 0), ('end-of-file', 0))) # Move to start of map self._file.seek(self._map['map']) bio = BytesIO() for val in self._map.values(): bio.write(struct.pack(self._byteorder + 'Q', val)) bio.seek(0) self._file.write(self._tag(bio.read(), 'map'))
[ "def", "_write_map", "(", "self", ")", ":", "if", "self", ".", "_map", "is", "None", ":", "self", ".", "_map", "=", "OrderedDict", "(", "(", "(", "'stata_data'", ",", "0", ")", ",", "(", "'map'", ",", "self", ".", "_file", ".", "tell", "(", ")", ")", ",", "(", "'variable_types'", ",", "0", ")", ",", "(", "'varnames'", ",", "0", ")", ",", "(", "'sortlist'", ",", "0", ")", ",", "(", "'formats'", ",", "0", ")", ",", "(", "'value_label_names'", ",", "0", ")", ",", "(", "'variable_labels'", ",", "0", ")", ",", "(", "'characteristics'", ",", "0", ")", ",", "(", "'data'", ",", "0", ")", ",", "(", "'strls'", ",", "0", ")", ",", "(", "'value_labels'", ",", "0", ")", ",", "(", "'stata_data_close'", ",", "0", ")", ",", "(", "'end-of-file'", ",", "0", ")", ")", ")", "# Move to start of map", "self", ".", "_file", ".", "seek", "(", "self", ".", "_map", "[", "'map'", "]", ")", "bio", "=", "BytesIO", "(", ")", "for", "val", "in", "self", ".", "_map", ".", "values", "(", ")", ":", "bio", ".", "write", "(", "struct", ".", "pack", "(", "self", ".", "_byteorder", "+", "'Q'", ",", "val", ")", ")", "bio", ".", "seek", "(", "0", ")", "self", ".", "_file", ".", "write", "(", "self", ".", "_tag", "(", "bio", ".", "read", "(", ")", ",", "'map'", ")", ")" ]
Called twice during file write. The first populates the values in the map with 0s. The second call writes the final map locations when all blocks have been written.
[ "Called", "twice", "during", "file", "write", ".", "The", "first", "populates", "the", "values", "in", "the", "map", "with", "0s", ".", "The", "second", "call", "writes", "the", "final", "map", "locations", "when", "all", "blocks", "have", "been", "written", "." ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/io/stata.py#L2810-L2835
19,936
pandas-dev/pandas
pandas/io/stata.py
StataWriter117._update_strl_names
def _update_strl_names(self): """Update column names for conversion to strl if they might have been changed to comply with Stata naming rules""" # Update convert_strl if names changed for orig, new in self._converted_names.items(): if orig in self._convert_strl: idx = self._convert_strl.index(orig) self._convert_strl[idx] = new
python
def _update_strl_names(self): """Update column names for conversion to strl if they might have been changed to comply with Stata naming rules""" # Update convert_strl if names changed for orig, new in self._converted_names.items(): if orig in self._convert_strl: idx = self._convert_strl.index(orig) self._convert_strl[idx] = new
[ "def", "_update_strl_names", "(", "self", ")", ":", "# Update convert_strl if names changed", "for", "orig", ",", "new", "in", "self", ".", "_converted_names", ".", "items", "(", ")", ":", "if", "orig", "in", "self", ".", "_convert_strl", ":", "idx", "=", "self", ".", "_convert_strl", ".", "index", "(", "orig", ")", "self", ".", "_convert_strl", "[", "idx", "]", "=", "new" ]
Update column names for conversion to strl if they might have been changed to comply with Stata naming rules
[ "Update", "column", "names", "for", "conversion", "to", "strl", "if", "they", "might", "have", "been", "changed", "to", "comply", "with", "Stata", "naming", "rules" ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/io/stata.py#L2948-L2955
19,937
pandas-dev/pandas
pandas/io/stata.py
StataWriter117._convert_strls
def _convert_strls(self, data): """Convert columns to StrLs if either very large or in the convert_strl variable""" convert_cols = [ col for i, col in enumerate(data) if self.typlist[i] == 32768 or col in self._convert_strl] if convert_cols: ssw = StataStrLWriter(data, convert_cols) tab, new_data = ssw.generate_table() data = new_data self._strl_blob = ssw.generate_blob(tab) return data
python
def _convert_strls(self, data): """Convert columns to StrLs if either very large or in the convert_strl variable""" convert_cols = [ col for i, col in enumerate(data) if self.typlist[i] == 32768 or col in self._convert_strl] if convert_cols: ssw = StataStrLWriter(data, convert_cols) tab, new_data = ssw.generate_table() data = new_data self._strl_blob = ssw.generate_blob(tab) return data
[ "def", "_convert_strls", "(", "self", ",", "data", ")", ":", "convert_cols", "=", "[", "col", "for", "i", ",", "col", "in", "enumerate", "(", "data", ")", "if", "self", ".", "typlist", "[", "i", "]", "==", "32768", "or", "col", "in", "self", ".", "_convert_strl", "]", "if", "convert_cols", ":", "ssw", "=", "StataStrLWriter", "(", "data", ",", "convert_cols", ")", "tab", ",", "new_data", "=", "ssw", ".", "generate_table", "(", ")", "data", "=", "new_data", "self", ".", "_strl_blob", "=", "ssw", ".", "generate_blob", "(", "tab", ")", "return", "data" ]
Convert columns to StrLs if either very large or in the convert_strl variable
[ "Convert", "columns", "to", "StrLs", "if", "either", "very", "large", "or", "in", "the", "convert_strl", "variable" ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/io/stata.py#L2957-L2969
19,938
pandas-dev/pandas
pandas/plotting/_converter.py
register
def register(explicit=True): """ Register Pandas Formatters and Converters with matplotlib This function modifies the global ``matplotlib.units.registry`` dictionary. Pandas adds custom converters for * pd.Timestamp * pd.Period * np.datetime64 * datetime.datetime * datetime.date * datetime.time See Also -------- deregister_matplotlib_converter """ # Renamed in pandas.plotting.__init__ global _WARN if explicit: _WARN = False pairs = get_pairs() for type_, cls in pairs: converter = cls() if type_ in units.registry: previous = units.registry[type_] _mpl_units[type_] = previous units.registry[type_] = converter
python
def register(explicit=True): """ Register Pandas Formatters and Converters with matplotlib This function modifies the global ``matplotlib.units.registry`` dictionary. Pandas adds custom converters for * pd.Timestamp * pd.Period * np.datetime64 * datetime.datetime * datetime.date * datetime.time See Also -------- deregister_matplotlib_converter """ # Renamed in pandas.plotting.__init__ global _WARN if explicit: _WARN = False pairs = get_pairs() for type_, cls in pairs: converter = cls() if type_ in units.registry: previous = units.registry[type_] _mpl_units[type_] = previous units.registry[type_] = converter
[ "def", "register", "(", "explicit", "=", "True", ")", ":", "# Renamed in pandas.plotting.__init__", "global", "_WARN", "if", "explicit", ":", "_WARN", "=", "False", "pairs", "=", "get_pairs", "(", ")", "for", "type_", ",", "cls", "in", "pairs", ":", "converter", "=", "cls", "(", ")", "if", "type_", "in", "units", ".", "registry", ":", "previous", "=", "units", ".", "registry", "[", "type_", "]", "_mpl_units", "[", "type_", "]", "=", "previous", "units", ".", "registry", "[", "type_", "]", "=", "converter" ]
Register Pandas Formatters and Converters with matplotlib This function modifies the global ``matplotlib.units.registry`` dictionary. Pandas adds custom converters for * pd.Timestamp * pd.Period * np.datetime64 * datetime.datetime * datetime.date * datetime.time See Also -------- deregister_matplotlib_converter
[ "Register", "Pandas", "Formatters", "and", "Converters", "with", "matplotlib" ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/plotting/_converter.py#L54-L84
19,939
pandas-dev/pandas
pandas/plotting/_converter.py
deregister
def deregister(): """ Remove pandas' formatters and converters Removes the custom converters added by :func:`register`. This attempts to set the state of the registry back to the state before pandas registered its own units. Converters for pandas' own types like Timestamp and Period are removed completely. Converters for types pandas overwrites, like ``datetime.datetime``, are restored to their original value. See Also -------- deregister_matplotlib_converters """ # Renamed in pandas.plotting.__init__ for type_, cls in get_pairs(): # We use type to catch our classes directly, no inheritance if type(units.registry.get(type_)) is cls: units.registry.pop(type_) # restore the old keys for unit, formatter in _mpl_units.items(): if type(formatter) not in {DatetimeConverter, PeriodConverter, TimeConverter}: # make it idempotent by excluding ours. units.registry[unit] = formatter
python
def deregister(): """ Remove pandas' formatters and converters Removes the custom converters added by :func:`register`. This attempts to set the state of the registry back to the state before pandas registered its own units. Converters for pandas' own types like Timestamp and Period are removed completely. Converters for types pandas overwrites, like ``datetime.datetime``, are restored to their original value. See Also -------- deregister_matplotlib_converters """ # Renamed in pandas.plotting.__init__ for type_, cls in get_pairs(): # We use type to catch our classes directly, no inheritance if type(units.registry.get(type_)) is cls: units.registry.pop(type_) # restore the old keys for unit, formatter in _mpl_units.items(): if type(formatter) not in {DatetimeConverter, PeriodConverter, TimeConverter}: # make it idempotent by excluding ours. units.registry[unit] = formatter
[ "def", "deregister", "(", ")", ":", "# Renamed in pandas.plotting.__init__", "for", "type_", ",", "cls", "in", "get_pairs", "(", ")", ":", "# We use type to catch our classes directly, no inheritance", "if", "type", "(", "units", ".", "registry", ".", "get", "(", "type_", ")", ")", "is", "cls", ":", "units", ".", "registry", ".", "pop", "(", "type_", ")", "# restore the old keys", "for", "unit", ",", "formatter", "in", "_mpl_units", ".", "items", "(", ")", ":", "if", "type", "(", "formatter", ")", "not", "in", "{", "DatetimeConverter", ",", "PeriodConverter", ",", "TimeConverter", "}", ":", "# make it idempotent by excluding ours.", "units", ".", "registry", "[", "unit", "]", "=", "formatter" ]
Remove pandas' formatters and converters Removes the custom converters added by :func:`register`. This attempts to set the state of the registry back to the state before pandas registered its own units. Converters for pandas' own types like Timestamp and Period are removed completely. Converters for types pandas overwrites, like ``datetime.datetime``, are restored to their original value. See Also -------- deregister_matplotlib_converters
[ "Remove", "pandas", "formatters", "and", "converters" ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/plotting/_converter.py#L87-L113
19,940
pandas-dev/pandas
pandas/plotting/_converter.py
_get_default_annual_spacing
def _get_default_annual_spacing(nyears): """ Returns a default spacing between consecutive ticks for annual data. """ if nyears < 11: (min_spacing, maj_spacing) = (1, 1) elif nyears < 20: (min_spacing, maj_spacing) = (1, 2) elif nyears < 50: (min_spacing, maj_spacing) = (1, 5) elif nyears < 100: (min_spacing, maj_spacing) = (5, 10) elif nyears < 200: (min_spacing, maj_spacing) = (5, 25) elif nyears < 600: (min_spacing, maj_spacing) = (10, 50) else: factor = nyears // 1000 + 1 (min_spacing, maj_spacing) = (factor * 20, factor * 100) return (min_spacing, maj_spacing)
python
def _get_default_annual_spacing(nyears): """ Returns a default spacing between consecutive ticks for annual data. """ if nyears < 11: (min_spacing, maj_spacing) = (1, 1) elif nyears < 20: (min_spacing, maj_spacing) = (1, 2) elif nyears < 50: (min_spacing, maj_spacing) = (1, 5) elif nyears < 100: (min_spacing, maj_spacing) = (5, 10) elif nyears < 200: (min_spacing, maj_spacing) = (5, 25) elif nyears < 600: (min_spacing, maj_spacing) = (10, 50) else: factor = nyears // 1000 + 1 (min_spacing, maj_spacing) = (factor * 20, factor * 100) return (min_spacing, maj_spacing)
[ "def", "_get_default_annual_spacing", "(", "nyears", ")", ":", "if", "nyears", "<", "11", ":", "(", "min_spacing", ",", "maj_spacing", ")", "=", "(", "1", ",", "1", ")", "elif", "nyears", "<", "20", ":", "(", "min_spacing", ",", "maj_spacing", ")", "=", "(", "1", ",", "2", ")", "elif", "nyears", "<", "50", ":", "(", "min_spacing", ",", "maj_spacing", ")", "=", "(", "1", ",", "5", ")", "elif", "nyears", "<", "100", ":", "(", "min_spacing", ",", "maj_spacing", ")", "=", "(", "5", ",", "10", ")", "elif", "nyears", "<", "200", ":", "(", "min_spacing", ",", "maj_spacing", ")", "=", "(", "5", ",", "25", ")", "elif", "nyears", "<", "600", ":", "(", "min_spacing", ",", "maj_spacing", ")", "=", "(", "10", ",", "50", ")", "else", ":", "factor", "=", "nyears", "//", "1000", "+", "1", "(", "min_spacing", ",", "maj_spacing", ")", "=", "(", "factor", "*", "20", ",", "factor", "*", "100", ")", "return", "(", "min_spacing", ",", "maj_spacing", ")" ]
Returns a default spacing between consecutive ticks for annual data.
[ "Returns", "a", "default", "spacing", "between", "consecutive", "ticks", "for", "annual", "data", "." ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/plotting/_converter.py#L537-L556
19,941
pandas-dev/pandas
pandas/plotting/_converter.py
period_break
def period_break(dates, period): """ Returns the indices where the given period changes. Parameters ---------- dates : PeriodIndex Array of intervals to monitor. period : string Name of the period to monitor. """ current = getattr(dates, period) previous = getattr(dates - 1 * dates.freq, period) return np.nonzero(current - previous)[0]
python
def period_break(dates, period): """ Returns the indices where the given period changes. Parameters ---------- dates : PeriodIndex Array of intervals to monitor. period : string Name of the period to monitor. """ current = getattr(dates, period) previous = getattr(dates - 1 * dates.freq, period) return np.nonzero(current - previous)[0]
[ "def", "period_break", "(", "dates", ",", "period", ")", ":", "current", "=", "getattr", "(", "dates", ",", "period", ")", "previous", "=", "getattr", "(", "dates", "-", "1", "*", "dates", ".", "freq", ",", "period", ")", "return", "np", ".", "nonzero", "(", "current", "-", "previous", ")", "[", "0", "]" ]
Returns the indices where the given period changes. Parameters ---------- dates : PeriodIndex Array of intervals to monitor. period : string Name of the period to monitor.
[ "Returns", "the", "indices", "where", "the", "given", "period", "changes", "." ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/plotting/_converter.py#L559-L572
19,942
pandas-dev/pandas
pandas/plotting/_converter.py
has_level_label
def has_level_label(label_flags, vmin): """ Returns true if the ``label_flags`` indicate there is at least one label for this level. if the minimum view limit is not an exact integer, then the first tick label won't be shown, so we must adjust for that. """ if label_flags.size == 0 or (label_flags.size == 1 and label_flags[0] == 0 and vmin % 1 > 0.0): return False else: return True
python
def has_level_label(label_flags, vmin): """ Returns true if the ``label_flags`` indicate there is at least one label for this level. if the minimum view limit is not an exact integer, then the first tick label won't be shown, so we must adjust for that. """ if label_flags.size == 0 or (label_flags.size == 1 and label_flags[0] == 0 and vmin % 1 > 0.0): return False else: return True
[ "def", "has_level_label", "(", "label_flags", ",", "vmin", ")", ":", "if", "label_flags", ".", "size", "==", "0", "or", "(", "label_flags", ".", "size", "==", "1", "and", "label_flags", "[", "0", "]", "==", "0", "and", "vmin", "%", "1", ">", "0.0", ")", ":", "return", "False", "else", ":", "return", "True" ]
Returns true if the ``label_flags`` indicate there is at least one label for this level. if the minimum view limit is not an exact integer, then the first tick label won't be shown, so we must adjust for that.
[ "Returns", "true", "if", "the", "label_flags", "indicate", "there", "is", "at", "least", "one", "label", "for", "this", "level", "." ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/plotting/_converter.py#L575-L588
19,943
pandas-dev/pandas
pandas/plotting/_converter.py
PandasAutoDateLocator.get_locator
def get_locator(self, dmin, dmax): 'Pick the best locator based on a distance.' _check_implicitly_registered() delta = relativedelta(dmax, dmin) num_days = (delta.years * 12.0 + delta.months) * 31.0 + delta.days num_sec = (delta.hours * 60.0 + delta.minutes) * 60.0 + delta.seconds tot_sec = num_days * 86400. + num_sec if abs(tot_sec) < self.minticks: self._freq = -1 locator = MilliSecondLocator(self.tz) locator.set_axis(self.axis) locator.set_view_interval(*self.axis.get_view_interval()) locator.set_data_interval(*self.axis.get_data_interval()) return locator return dates.AutoDateLocator.get_locator(self, dmin, dmax)
python
def get_locator(self, dmin, dmax): 'Pick the best locator based on a distance.' _check_implicitly_registered() delta = relativedelta(dmax, dmin) num_days = (delta.years * 12.0 + delta.months) * 31.0 + delta.days num_sec = (delta.hours * 60.0 + delta.minutes) * 60.0 + delta.seconds tot_sec = num_days * 86400. + num_sec if abs(tot_sec) < self.minticks: self._freq = -1 locator = MilliSecondLocator(self.tz) locator.set_axis(self.axis) locator.set_view_interval(*self.axis.get_view_interval()) locator.set_data_interval(*self.axis.get_data_interval()) return locator return dates.AutoDateLocator.get_locator(self, dmin, dmax)
[ "def", "get_locator", "(", "self", ",", "dmin", ",", "dmax", ")", ":", "_check_implicitly_registered", "(", ")", "delta", "=", "relativedelta", "(", "dmax", ",", "dmin", ")", "num_days", "=", "(", "delta", ".", "years", "*", "12.0", "+", "delta", ".", "months", ")", "*", "31.0", "+", "delta", ".", "days", "num_sec", "=", "(", "delta", ".", "hours", "*", "60.0", "+", "delta", ".", "minutes", ")", "*", "60.0", "+", "delta", ".", "seconds", "tot_sec", "=", "num_days", "*", "86400.", "+", "num_sec", "if", "abs", "(", "tot_sec", ")", "<", "self", ".", "minticks", ":", "self", ".", "_freq", "=", "-", "1", "locator", "=", "MilliSecondLocator", "(", "self", ".", "tz", ")", "locator", ".", "set_axis", "(", "self", ".", "axis", ")", "locator", ".", "set_view_interval", "(", "*", "self", ".", "axis", ".", "get_view_interval", "(", ")", ")", "locator", ".", "set_data_interval", "(", "*", "self", ".", "axis", ".", "get_data_interval", "(", ")", ")", "return", "locator", "return", "dates", ".", "AutoDateLocator", ".", "get_locator", "(", "self", ",", "dmin", ",", "dmax", ")" ]
Pick the best locator based on a distance.
[ "Pick", "the", "best", "locator", "based", "on", "a", "distance", "." ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/plotting/_converter.py#L369-L387
19,944
pandas-dev/pandas
pandas/plotting/_converter.py
MilliSecondLocator.autoscale
def autoscale(self): """ Set the view limits to include the data range. """ dmin, dmax = self.datalim_to_dt() if dmin > dmax: dmax, dmin = dmin, dmax # We need to cap at the endpoints of valid datetime # TODO(wesm): unused? # delta = relativedelta(dmax, dmin) # try: # start = dmin - delta # except ValueError: # start = _from_ordinal(1.0) # try: # stop = dmax + delta # except ValueError: # # The magic number! # stop = _from_ordinal(3652059.9999999) dmin, dmax = self.datalim_to_dt() vmin = dates.date2num(dmin) vmax = dates.date2num(dmax) return self.nonsingular(vmin, vmax)
python
def autoscale(self): """ Set the view limits to include the data range. """ dmin, dmax = self.datalim_to_dt() if dmin > dmax: dmax, dmin = dmin, dmax # We need to cap at the endpoints of valid datetime # TODO(wesm): unused? # delta = relativedelta(dmax, dmin) # try: # start = dmin - delta # except ValueError: # start = _from_ordinal(1.0) # try: # stop = dmax + delta # except ValueError: # # The magic number! # stop = _from_ordinal(3652059.9999999) dmin, dmax = self.datalim_to_dt() vmin = dates.date2num(dmin) vmax = dates.date2num(dmax) return self.nonsingular(vmin, vmax)
[ "def", "autoscale", "(", "self", ")", ":", "dmin", ",", "dmax", "=", "self", ".", "datalim_to_dt", "(", ")", "if", "dmin", ">", "dmax", ":", "dmax", ",", "dmin", "=", "dmin", ",", "dmax", "# We need to cap at the endpoints of valid datetime", "# TODO(wesm): unused?", "# delta = relativedelta(dmax, dmin)", "# try:", "# start = dmin - delta", "# except ValueError:", "# start = _from_ordinal(1.0)", "# try:", "# stop = dmax + delta", "# except ValueError:", "# # The magic number!", "# stop = _from_ordinal(3652059.9999999)", "dmin", ",", "dmax", "=", "self", ".", "datalim_to_dt", "(", ")", "vmin", "=", "dates", ".", "date2num", "(", "dmin", ")", "vmax", "=", "dates", ".", "date2num", "(", "dmax", ")", "return", "self", ".", "nonsingular", "(", "vmin", ",", "vmax", ")" ]
Set the view limits to include the data range.
[ "Set", "the", "view", "limits", "to", "include", "the", "data", "range", "." ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/plotting/_converter.py#L478-L507
19,945
pandas-dev/pandas
pandas/plotting/_converter.py
TimeSeries_DateLocator._get_default_locs
def _get_default_locs(self, vmin, vmax): "Returns the default locations of ticks." if self.plot_obj.date_axis_info is None: self.plot_obj.date_axis_info = self.finder(vmin, vmax, self.freq) locator = self.plot_obj.date_axis_info if self.isminor: return np.compress(locator['min'], locator['val']) return np.compress(locator['maj'], locator['val'])
python
def _get_default_locs(self, vmin, vmax): "Returns the default locations of ticks." if self.plot_obj.date_axis_info is None: self.plot_obj.date_axis_info = self.finder(vmin, vmax, self.freq) locator = self.plot_obj.date_axis_info if self.isminor: return np.compress(locator['min'], locator['val']) return np.compress(locator['maj'], locator['val'])
[ "def", "_get_default_locs", "(", "self", ",", "vmin", ",", "vmax", ")", ":", "if", "self", ".", "plot_obj", ".", "date_axis_info", "is", "None", ":", "self", ".", "plot_obj", ".", "date_axis_info", "=", "self", ".", "finder", "(", "vmin", ",", "vmax", ",", "self", ".", "freq", ")", "locator", "=", "self", ".", "plot_obj", ".", "date_axis_info", "if", "self", ".", "isminor", ":", "return", "np", ".", "compress", "(", "locator", "[", "'min'", "]", ",", "locator", "[", "'val'", "]", ")", "return", "np", ".", "compress", "(", "locator", "[", "'maj'", "]", ",", "locator", "[", "'val'", "]", ")" ]
Returns the default locations of ticks.
[ "Returns", "the", "default", "locations", "of", "ticks", "." ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/plotting/_converter.py#L1002-L1012
19,946
pandas-dev/pandas
pandas/plotting/_converter.py
TimeSeries_DateLocator.autoscale
def autoscale(self): """ Sets the view limits to the nearest multiples of base that contain the data. """ # requires matplotlib >= 0.98.0 (vmin, vmax) = self.axis.get_data_interval() locs = self._get_default_locs(vmin, vmax) (vmin, vmax) = locs[[0, -1]] if vmin == vmax: vmin -= 1 vmax += 1 return nonsingular(vmin, vmax)
python
def autoscale(self): """ Sets the view limits to the nearest multiples of base that contain the data. """ # requires matplotlib >= 0.98.0 (vmin, vmax) = self.axis.get_data_interval() locs = self._get_default_locs(vmin, vmax) (vmin, vmax) = locs[[0, -1]] if vmin == vmax: vmin -= 1 vmax += 1 return nonsingular(vmin, vmax)
[ "def", "autoscale", "(", "self", ")", ":", "# requires matplotlib >= 0.98.0", "(", "vmin", ",", "vmax", ")", "=", "self", ".", "axis", ".", "get_data_interval", "(", ")", "locs", "=", "self", ".", "_get_default_locs", "(", "vmin", ",", "vmax", ")", "(", "vmin", ",", "vmax", ")", "=", "locs", "[", "[", "0", ",", "-", "1", "]", "]", "if", "vmin", "==", "vmax", ":", "vmin", "-=", "1", "vmax", "+=", "1", "return", "nonsingular", "(", "vmin", ",", "vmax", ")" ]
Sets the view limits to the nearest multiples of base that contain the data.
[ "Sets", "the", "view", "limits", "to", "the", "nearest", "multiples", "of", "base", "that", "contain", "the", "data", "." ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/plotting/_converter.py#L1035-L1048
19,947
pandas-dev/pandas
pandas/plotting/_converter.py
TimeSeries_DateFormatter._set_default_format
def _set_default_format(self, vmin, vmax): "Returns the default ticks spacing." if self.plot_obj.date_axis_info is None: self.plot_obj.date_axis_info = self.finder(vmin, vmax, self.freq) info = self.plot_obj.date_axis_info if self.isminor: format = np.compress(info['min'] & np.logical_not(info['maj']), info) else: format = np.compress(info['maj'], info) self.formatdict = {x: f for (x, _, _, f) in format} return self.formatdict
python
def _set_default_format(self, vmin, vmax): "Returns the default ticks spacing." if self.plot_obj.date_axis_info is None: self.plot_obj.date_axis_info = self.finder(vmin, vmax, self.freq) info = self.plot_obj.date_axis_info if self.isminor: format = np.compress(info['min'] & np.logical_not(info['maj']), info) else: format = np.compress(info['maj'], info) self.formatdict = {x: f for (x, _, _, f) in format} return self.formatdict
[ "def", "_set_default_format", "(", "self", ",", "vmin", ",", "vmax", ")", ":", "if", "self", ".", "plot_obj", ".", "date_axis_info", "is", "None", ":", "self", ".", "plot_obj", ".", "date_axis_info", "=", "self", ".", "finder", "(", "vmin", ",", "vmax", ",", "self", ".", "freq", ")", "info", "=", "self", ".", "plot_obj", ".", "date_axis_info", "if", "self", ".", "isminor", ":", "format", "=", "np", ".", "compress", "(", "info", "[", "'min'", "]", "&", "np", ".", "logical_not", "(", "info", "[", "'maj'", "]", ")", ",", "info", ")", "else", ":", "format", "=", "np", ".", "compress", "(", "info", "[", "'maj'", "]", ",", "info", ")", "self", ".", "formatdict", "=", "{", "x", ":", "f", "for", "(", "x", ",", "_", ",", "_", ",", "f", ")", "in", "format", "}", "return", "self", ".", "formatdict" ]
Returns the default ticks spacing.
[ "Returns", "the", "default", "ticks", "spacing", "." ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/plotting/_converter.py#L1084-L1097
19,948
pandas-dev/pandas
pandas/plotting/_converter.py
TimeSeries_DateFormatter.set_locs
def set_locs(self, locs): 'Sets the locations of the ticks' # don't actually use the locs. This is just needed to work with # matplotlib. Force to use vmin, vmax _check_implicitly_registered() self.locs = locs (vmin, vmax) = vi = tuple(self.axis.get_view_interval()) if vi != self.plot_obj.view_interval: self.plot_obj.date_axis_info = None self.plot_obj.view_interval = vi if vmax < vmin: (vmin, vmax) = (vmax, vmin) self._set_default_format(vmin, vmax)
python
def set_locs(self, locs): 'Sets the locations of the ticks' # don't actually use the locs. This is just needed to work with # matplotlib. Force to use vmin, vmax _check_implicitly_registered() self.locs = locs (vmin, vmax) = vi = tuple(self.axis.get_view_interval()) if vi != self.plot_obj.view_interval: self.plot_obj.date_axis_info = None self.plot_obj.view_interval = vi if vmax < vmin: (vmin, vmax) = (vmax, vmin) self._set_default_format(vmin, vmax)
[ "def", "set_locs", "(", "self", ",", "locs", ")", ":", "# don't actually use the locs. This is just needed to work with", "# matplotlib. Force to use vmin, vmax", "_check_implicitly_registered", "(", ")", "self", ".", "locs", "=", "locs", "(", "vmin", ",", "vmax", ")", "=", "vi", "=", "tuple", "(", "self", ".", "axis", ".", "get_view_interval", "(", ")", ")", "if", "vi", "!=", "self", ".", "plot_obj", ".", "view_interval", ":", "self", ".", "plot_obj", ".", "date_axis_info", "=", "None", "self", ".", "plot_obj", ".", "view_interval", "=", "vi", "if", "vmax", "<", "vmin", ":", "(", "vmin", ",", "vmax", ")", "=", "(", "vmax", ",", "vmin", ")", "self", ".", "_set_default_format", "(", "vmin", ",", "vmax", ")" ]
Sets the locations of the ticks
[ "Sets", "the", "locations", "of", "the", "ticks" ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/plotting/_converter.py#L1099-L1113
19,949
pandas-dev/pandas
pandas/io/json/table_schema.py
build_table_schema
def build_table_schema(data, index=True, primary_key=None, version=True): """ Create a Table schema from ``data``. Parameters ---------- data : Series, DataFrame index : bool, default True Whether to include ``data.index`` in the schema. primary_key : bool or None, default True column names to designate as the primary key. The default `None` will set `'primaryKey'` to the index level or levels if the index is unique. version : bool, default True Whether to include a field `pandas_version` with the version of pandas that generated the schema. Returns ------- schema : dict Notes ----- See `_as_json_table_type` for conversion types. Timedeltas as converted to ISO8601 duration format with 9 decimal places after the seconds field for nanosecond precision. Categoricals are converted to the `any` dtype, and use the `enum` field constraint to list the allowed values. The `ordered` attribute is included in an `ordered` field. Examples -------- >>> df = pd.DataFrame( ... {'A': [1, 2, 3], ... 'B': ['a', 'b', 'c'], ... 'C': pd.date_range('2016-01-01', freq='d', periods=3), ... }, index=pd.Index(range(3), name='idx')) >>> build_table_schema(df) {'fields': [{'name': 'idx', 'type': 'integer'}, {'name': 'A', 'type': 'integer'}, {'name': 'B', 'type': 'string'}, {'name': 'C', 'type': 'datetime'}], 'pandas_version': '0.20.0', 'primaryKey': ['idx']} """ if index is True: data = set_default_names(data) schema = {} fields = [] if index: if data.index.nlevels > 1: for level in data.index.levels: fields.append(convert_pandas_type_to_json_field(level)) else: fields.append(convert_pandas_type_to_json_field(data.index)) if data.ndim > 1: for column, s in data.iteritems(): fields.append(convert_pandas_type_to_json_field(s)) else: fields.append(convert_pandas_type_to_json_field(data)) schema['fields'] = fields if index and data.index.is_unique and primary_key is None: if data.index.nlevels == 1: schema['primaryKey'] = [data.index.name] else: schema['primaryKey'] = data.index.names elif primary_key is not None: schema['primaryKey'] = primary_key if version: schema['pandas_version'] = '0.20.0' return schema
python
def build_table_schema(data, index=True, primary_key=None, version=True): """ Create a Table schema from ``data``. Parameters ---------- data : Series, DataFrame index : bool, default True Whether to include ``data.index`` in the schema. primary_key : bool or None, default True column names to designate as the primary key. The default `None` will set `'primaryKey'` to the index level or levels if the index is unique. version : bool, default True Whether to include a field `pandas_version` with the version of pandas that generated the schema. Returns ------- schema : dict Notes ----- See `_as_json_table_type` for conversion types. Timedeltas as converted to ISO8601 duration format with 9 decimal places after the seconds field for nanosecond precision. Categoricals are converted to the `any` dtype, and use the `enum` field constraint to list the allowed values. The `ordered` attribute is included in an `ordered` field. Examples -------- >>> df = pd.DataFrame( ... {'A': [1, 2, 3], ... 'B': ['a', 'b', 'c'], ... 'C': pd.date_range('2016-01-01', freq='d', periods=3), ... }, index=pd.Index(range(3), name='idx')) >>> build_table_schema(df) {'fields': [{'name': 'idx', 'type': 'integer'}, {'name': 'A', 'type': 'integer'}, {'name': 'B', 'type': 'string'}, {'name': 'C', 'type': 'datetime'}], 'pandas_version': '0.20.0', 'primaryKey': ['idx']} """ if index is True: data = set_default_names(data) schema = {} fields = [] if index: if data.index.nlevels > 1: for level in data.index.levels: fields.append(convert_pandas_type_to_json_field(level)) else: fields.append(convert_pandas_type_to_json_field(data.index)) if data.ndim > 1: for column, s in data.iteritems(): fields.append(convert_pandas_type_to_json_field(s)) else: fields.append(convert_pandas_type_to_json_field(data)) schema['fields'] = fields if index and data.index.is_unique and primary_key is None: if data.index.nlevels == 1: schema['primaryKey'] = [data.index.name] else: schema['primaryKey'] = data.index.names elif primary_key is not None: schema['primaryKey'] = primary_key if version: schema['pandas_version'] = '0.20.0' return schema
[ "def", "build_table_schema", "(", "data", ",", "index", "=", "True", ",", "primary_key", "=", "None", ",", "version", "=", "True", ")", ":", "if", "index", "is", "True", ":", "data", "=", "set_default_names", "(", "data", ")", "schema", "=", "{", "}", "fields", "=", "[", "]", "if", "index", ":", "if", "data", ".", "index", ".", "nlevels", ">", "1", ":", "for", "level", "in", "data", ".", "index", ".", "levels", ":", "fields", ".", "append", "(", "convert_pandas_type_to_json_field", "(", "level", ")", ")", "else", ":", "fields", ".", "append", "(", "convert_pandas_type_to_json_field", "(", "data", ".", "index", ")", ")", "if", "data", ".", "ndim", ">", "1", ":", "for", "column", ",", "s", "in", "data", ".", "iteritems", "(", ")", ":", "fields", ".", "append", "(", "convert_pandas_type_to_json_field", "(", "s", ")", ")", "else", ":", "fields", ".", "append", "(", "convert_pandas_type_to_json_field", "(", "data", ")", ")", "schema", "[", "'fields'", "]", "=", "fields", "if", "index", "and", "data", ".", "index", ".", "is_unique", "and", "primary_key", "is", "None", ":", "if", "data", ".", "index", ".", "nlevels", "==", "1", ":", "schema", "[", "'primaryKey'", "]", "=", "[", "data", ".", "index", ".", "name", "]", "else", ":", "schema", "[", "'primaryKey'", "]", "=", "data", ".", "index", ".", "names", "elif", "primary_key", "is", "not", "None", ":", "schema", "[", "'primaryKey'", "]", "=", "primary_key", "if", "version", ":", "schema", "[", "'pandas_version'", "]", "=", "'0.20.0'", "return", "schema" ]
Create a Table schema from ``data``. Parameters ---------- data : Series, DataFrame index : bool, default True Whether to include ``data.index`` in the schema. primary_key : bool or None, default True column names to designate as the primary key. The default `None` will set `'primaryKey'` to the index level or levels if the index is unique. version : bool, default True Whether to include a field `pandas_version` with the version of pandas that generated the schema. Returns ------- schema : dict Notes ----- See `_as_json_table_type` for conversion types. Timedeltas as converted to ISO8601 duration format with 9 decimal places after the seconds field for nanosecond precision. Categoricals are converted to the `any` dtype, and use the `enum` field constraint to list the allowed values. The `ordered` attribute is included in an `ordered` field. Examples -------- >>> df = pd.DataFrame( ... {'A': [1, 2, 3], ... 'B': ['a', 'b', 'c'], ... 'C': pd.date_range('2016-01-01', freq='d', periods=3), ... }, index=pd.Index(range(3), name='idx')) >>> build_table_schema(df) {'fields': [{'name': 'idx', 'type': 'integer'}, {'name': 'A', 'type': 'integer'}, {'name': 'B', 'type': 'string'}, {'name': 'C', 'type': 'datetime'}], 'pandas_version': '0.20.0', 'primaryKey': ['idx']}
[ "Create", "a", "Table", "schema", "from", "data", "." ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/io/json/table_schema.py#L183-L259
19,950
pandas-dev/pandas
pandas/io/json/table_schema.py
parse_table_schema
def parse_table_schema(json, precise_float): """ Builds a DataFrame from a given schema Parameters ---------- json : A JSON table schema precise_float : boolean Flag controlling precision when decoding string to double values, as dictated by ``read_json`` Returns ------- df : DataFrame Raises ------ NotImplementedError If the JSON table schema contains either timezone or timedelta data Notes ----- Because :func:`DataFrame.to_json` uses the string 'index' to denote a name-less :class:`Index`, this function sets the name of the returned :class:`DataFrame` to ``None`` when said string is encountered with a normal :class:`Index`. For a :class:`MultiIndex`, the same limitation applies to any strings beginning with 'level_'. Therefore, an :class:`Index` name of 'index' and :class:`MultiIndex` names starting with 'level_' are not supported. See Also -------- build_table_schema : Inverse function. pandas.read_json """ table = loads(json, precise_float=precise_float) col_order = [field['name'] for field in table['schema']['fields']] df = DataFrame(table['data'], columns=col_order)[col_order] dtypes = {field['name']: convert_json_field_to_pandas_type(field) for field in table['schema']['fields']} # Cannot directly use as_type with timezone data on object; raise for now if any(str(x).startswith('datetime64[ns, ') for x in dtypes.values()): raise NotImplementedError('table="orient" can not yet read timezone ' 'data') # No ISO constructor for Timedelta as of yet, so need to raise if 'timedelta64' in dtypes.values(): raise NotImplementedError('table="orient" can not yet read ' 'ISO-formatted Timedelta data') df = df.astype(dtypes) if 'primaryKey' in table['schema']: df = df.set_index(table['schema']['primaryKey']) if len(df.index.names) == 1: if df.index.name == 'index': df.index.name = None else: df.index.names = [None if x.startswith('level_') else x for x in df.index.names] return df
python
def parse_table_schema(json, precise_float): """ Builds a DataFrame from a given schema Parameters ---------- json : A JSON table schema precise_float : boolean Flag controlling precision when decoding string to double values, as dictated by ``read_json`` Returns ------- df : DataFrame Raises ------ NotImplementedError If the JSON table schema contains either timezone or timedelta data Notes ----- Because :func:`DataFrame.to_json` uses the string 'index' to denote a name-less :class:`Index`, this function sets the name of the returned :class:`DataFrame` to ``None`` when said string is encountered with a normal :class:`Index`. For a :class:`MultiIndex`, the same limitation applies to any strings beginning with 'level_'. Therefore, an :class:`Index` name of 'index' and :class:`MultiIndex` names starting with 'level_' are not supported. See Also -------- build_table_schema : Inverse function. pandas.read_json """ table = loads(json, precise_float=precise_float) col_order = [field['name'] for field in table['schema']['fields']] df = DataFrame(table['data'], columns=col_order)[col_order] dtypes = {field['name']: convert_json_field_to_pandas_type(field) for field in table['schema']['fields']} # Cannot directly use as_type with timezone data on object; raise for now if any(str(x).startswith('datetime64[ns, ') for x in dtypes.values()): raise NotImplementedError('table="orient" can not yet read timezone ' 'data') # No ISO constructor for Timedelta as of yet, so need to raise if 'timedelta64' in dtypes.values(): raise NotImplementedError('table="orient" can not yet read ' 'ISO-formatted Timedelta data') df = df.astype(dtypes) if 'primaryKey' in table['schema']: df = df.set_index(table['schema']['primaryKey']) if len(df.index.names) == 1: if df.index.name == 'index': df.index.name = None else: df.index.names = [None if x.startswith('level_') else x for x in df.index.names] return df
[ "def", "parse_table_schema", "(", "json", ",", "precise_float", ")", ":", "table", "=", "loads", "(", "json", ",", "precise_float", "=", "precise_float", ")", "col_order", "=", "[", "field", "[", "'name'", "]", "for", "field", "in", "table", "[", "'schema'", "]", "[", "'fields'", "]", "]", "df", "=", "DataFrame", "(", "table", "[", "'data'", "]", ",", "columns", "=", "col_order", ")", "[", "col_order", "]", "dtypes", "=", "{", "field", "[", "'name'", "]", ":", "convert_json_field_to_pandas_type", "(", "field", ")", "for", "field", "in", "table", "[", "'schema'", "]", "[", "'fields'", "]", "}", "# Cannot directly use as_type with timezone data on object; raise for now", "if", "any", "(", "str", "(", "x", ")", ".", "startswith", "(", "'datetime64[ns, '", ")", "for", "x", "in", "dtypes", ".", "values", "(", ")", ")", ":", "raise", "NotImplementedError", "(", "'table=\"orient\" can not yet read timezone '", "'data'", ")", "# No ISO constructor for Timedelta as of yet, so need to raise", "if", "'timedelta64'", "in", "dtypes", ".", "values", "(", ")", ":", "raise", "NotImplementedError", "(", "'table=\"orient\" can not yet read '", "'ISO-formatted Timedelta data'", ")", "df", "=", "df", ".", "astype", "(", "dtypes", ")", "if", "'primaryKey'", "in", "table", "[", "'schema'", "]", ":", "df", "=", "df", ".", "set_index", "(", "table", "[", "'schema'", "]", "[", "'primaryKey'", "]", ")", "if", "len", "(", "df", ".", "index", ".", "names", ")", "==", "1", ":", "if", "df", ".", "index", ".", "name", "==", "'index'", ":", "df", ".", "index", ".", "name", "=", "None", "else", ":", "df", ".", "index", ".", "names", "=", "[", "None", "if", "x", ".", "startswith", "(", "'level_'", ")", "else", "x", "for", "x", "in", "df", ".", "index", ".", "names", "]", "return", "df" ]
Builds a DataFrame from a given schema Parameters ---------- json : A JSON table schema precise_float : boolean Flag controlling precision when decoding string to double values, as dictated by ``read_json`` Returns ------- df : DataFrame Raises ------ NotImplementedError If the JSON table schema contains either timezone or timedelta data Notes ----- Because :func:`DataFrame.to_json` uses the string 'index' to denote a name-less :class:`Index`, this function sets the name of the returned :class:`DataFrame` to ``None`` when said string is encountered with a normal :class:`Index`. For a :class:`MultiIndex`, the same limitation applies to any strings beginning with 'level_'. Therefore, an :class:`Index` name of 'index' and :class:`MultiIndex` names starting with 'level_' are not supported. See Also -------- build_table_schema : Inverse function. pandas.read_json
[ "Builds", "a", "DataFrame", "from", "a", "given", "schema" ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/io/json/table_schema.py#L262-L326
19,951
pandas-dev/pandas
pandas/core/ops.py
get_op_result_name
def get_op_result_name(left, right): """ Find the appropriate name to pin to an operation result. This result should always be either an Index or a Series. Parameters ---------- left : {Series, Index} right : object Returns ------- name : object Usually a string """ # `left` is always a pd.Series when called from within ops if isinstance(right, (ABCSeries, pd.Index)): name = _maybe_match_name(left, right) else: name = left.name return name
python
def get_op_result_name(left, right): """ Find the appropriate name to pin to an operation result. This result should always be either an Index or a Series. Parameters ---------- left : {Series, Index} right : object Returns ------- name : object Usually a string """ # `left` is always a pd.Series when called from within ops if isinstance(right, (ABCSeries, pd.Index)): name = _maybe_match_name(left, right) else: name = left.name return name
[ "def", "get_op_result_name", "(", "left", ",", "right", ")", ":", "# `left` is always a pd.Series when called from within ops", "if", "isinstance", "(", "right", ",", "(", "ABCSeries", ",", "pd", ".", "Index", ")", ")", ":", "name", "=", "_maybe_match_name", "(", "left", ",", "right", ")", "else", ":", "name", "=", "left", ".", "name", "return", "name" ]
Find the appropriate name to pin to an operation result. This result should always be either an Index or a Series. Parameters ---------- left : {Series, Index} right : object Returns ------- name : object Usually a string
[ "Find", "the", "appropriate", "name", "to", "pin", "to", "an", "operation", "result", ".", "This", "result", "should", "always", "be", "either", "an", "Index", "or", "a", "Series", "." ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/ops.py#L38-L58
19,952
pandas-dev/pandas
pandas/core/ops.py
_maybe_match_name
def _maybe_match_name(a, b): """ Try to find a name to attach to the result of an operation between a and b. If only one of these has a `name` attribute, return that name. Otherwise return a consensus name if they match of None if they have different names. Parameters ---------- a : object b : object Returns ------- name : str or None See Also -------- pandas.core.common.consensus_name_attr """ a_has = hasattr(a, 'name') b_has = hasattr(b, 'name') if a_has and b_has: if a.name == b.name: return a.name else: # TODO: what if they both have np.nan for their names? return None elif a_has: return a.name elif b_has: return b.name return None
python
def _maybe_match_name(a, b): """ Try to find a name to attach to the result of an operation between a and b. If only one of these has a `name` attribute, return that name. Otherwise return a consensus name if they match of None if they have different names. Parameters ---------- a : object b : object Returns ------- name : str or None See Also -------- pandas.core.common.consensus_name_attr """ a_has = hasattr(a, 'name') b_has = hasattr(b, 'name') if a_has and b_has: if a.name == b.name: return a.name else: # TODO: what if they both have np.nan for their names? return None elif a_has: return a.name elif b_has: return b.name return None
[ "def", "_maybe_match_name", "(", "a", ",", "b", ")", ":", "a_has", "=", "hasattr", "(", "a", ",", "'name'", ")", "b_has", "=", "hasattr", "(", "b", ",", "'name'", ")", "if", "a_has", "and", "b_has", ":", "if", "a", ".", "name", "==", "b", ".", "name", ":", "return", "a", ".", "name", "else", ":", "# TODO: what if they both have np.nan for their names?", "return", "None", "elif", "a_has", ":", "return", "a", ".", "name", "elif", "b_has", ":", "return", "b", ".", "name", "return", "None" ]
Try to find a name to attach to the result of an operation between a and b. If only one of these has a `name` attribute, return that name. Otherwise return a consensus name if they match of None if they have different names. Parameters ---------- a : object b : object Returns ------- name : str or None See Also -------- pandas.core.common.consensus_name_attr
[ "Try", "to", "find", "a", "name", "to", "attach", "to", "the", "result", "of", "an", "operation", "between", "a", "and", "b", ".", "If", "only", "one", "of", "these", "has", "a", "name", "attribute", "return", "that", "name", ".", "Otherwise", "return", "a", "consensus", "name", "if", "they", "match", "of", "None", "if", "they", "have", "different", "names", "." ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/ops.py#L61-L93
19,953
pandas-dev/pandas
pandas/core/ops.py
maybe_upcast_for_op
def maybe_upcast_for_op(obj): """ Cast non-pandas objects to pandas types to unify behavior of arithmetic and comparison operations. Parameters ---------- obj: object Returns ------- out : object Notes ----- Be careful to call this *after* determining the `name` attribute to be attached to the result of the arithmetic operation. """ if type(obj) is datetime.timedelta: # GH#22390 cast up to Timedelta to rely on Timedelta # implementation; otherwise operation against numeric-dtype # raises TypeError return pd.Timedelta(obj) elif isinstance(obj, np.timedelta64) and not isna(obj): # In particular non-nanosecond timedelta64 needs to be cast to # nanoseconds, or else we get undesired behavior like # np.timedelta64(3, 'D') / 2 == np.timedelta64(1, 'D') # The isna check is to avoid casting timedelta64("NaT"), which would # return NaT and incorrectly be treated as a datetime-NaT. return pd.Timedelta(obj) elif isinstance(obj, np.ndarray) and is_timedelta64_dtype(obj): # GH#22390 Unfortunately we need to special-case right-hand # timedelta64 dtypes because numpy casts integer dtypes to # timedelta64 when operating with timedelta64 return pd.TimedeltaIndex(obj) return obj
python
def maybe_upcast_for_op(obj): """ Cast non-pandas objects to pandas types to unify behavior of arithmetic and comparison operations. Parameters ---------- obj: object Returns ------- out : object Notes ----- Be careful to call this *after* determining the `name` attribute to be attached to the result of the arithmetic operation. """ if type(obj) is datetime.timedelta: # GH#22390 cast up to Timedelta to rely on Timedelta # implementation; otherwise operation against numeric-dtype # raises TypeError return pd.Timedelta(obj) elif isinstance(obj, np.timedelta64) and not isna(obj): # In particular non-nanosecond timedelta64 needs to be cast to # nanoseconds, or else we get undesired behavior like # np.timedelta64(3, 'D') / 2 == np.timedelta64(1, 'D') # The isna check is to avoid casting timedelta64("NaT"), which would # return NaT and incorrectly be treated as a datetime-NaT. return pd.Timedelta(obj) elif isinstance(obj, np.ndarray) and is_timedelta64_dtype(obj): # GH#22390 Unfortunately we need to special-case right-hand # timedelta64 dtypes because numpy casts integer dtypes to # timedelta64 when operating with timedelta64 return pd.TimedeltaIndex(obj) return obj
[ "def", "maybe_upcast_for_op", "(", "obj", ")", ":", "if", "type", "(", "obj", ")", "is", "datetime", ".", "timedelta", ":", "# GH#22390 cast up to Timedelta to rely on Timedelta", "# implementation; otherwise operation against numeric-dtype", "# raises TypeError", "return", "pd", ".", "Timedelta", "(", "obj", ")", "elif", "isinstance", "(", "obj", ",", "np", ".", "timedelta64", ")", "and", "not", "isna", "(", "obj", ")", ":", "# In particular non-nanosecond timedelta64 needs to be cast to", "# nanoseconds, or else we get undesired behavior like", "# np.timedelta64(3, 'D') / 2 == np.timedelta64(1, 'D')", "# The isna check is to avoid casting timedelta64(\"NaT\"), which would", "# return NaT and incorrectly be treated as a datetime-NaT.", "return", "pd", ".", "Timedelta", "(", "obj", ")", "elif", "isinstance", "(", "obj", ",", "np", ".", "ndarray", ")", "and", "is_timedelta64_dtype", "(", "obj", ")", ":", "# GH#22390 Unfortunately we need to special-case right-hand", "# timedelta64 dtypes because numpy casts integer dtypes to", "# timedelta64 when operating with timedelta64", "return", "pd", ".", "TimedeltaIndex", "(", "obj", ")", "return", "obj" ]
Cast non-pandas objects to pandas types to unify behavior of arithmetic and comparison operations. Parameters ---------- obj: object Returns ------- out : object Notes ----- Be careful to call this *after* determining the `name` attribute to be attached to the result of the arithmetic operation.
[ "Cast", "non", "-", "pandas", "objects", "to", "pandas", "types", "to", "unify", "behavior", "of", "arithmetic", "and", "comparison", "operations", "." ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/ops.py#L96-L131
19,954
pandas-dev/pandas
pandas/core/ops.py
make_invalid_op
def make_invalid_op(name): """ Return a binary method that always raises a TypeError. Parameters ---------- name : str Returns ------- invalid_op : function """ def invalid_op(self, other=None): raise TypeError("cannot perform {name} with this index type: " "{typ}".format(name=name, typ=type(self).__name__)) invalid_op.__name__ = name return invalid_op
python
def make_invalid_op(name): """ Return a binary method that always raises a TypeError. Parameters ---------- name : str Returns ------- invalid_op : function """ def invalid_op(self, other=None): raise TypeError("cannot perform {name} with this index type: " "{typ}".format(name=name, typ=type(self).__name__)) invalid_op.__name__ = name return invalid_op
[ "def", "make_invalid_op", "(", "name", ")", ":", "def", "invalid_op", "(", "self", ",", "other", "=", "None", ")", ":", "raise", "TypeError", "(", "\"cannot perform {name} with this index type: \"", "\"{typ}\"", ".", "format", "(", "name", "=", "name", ",", "typ", "=", "type", "(", "self", ")", ".", "__name__", ")", ")", "invalid_op", ".", "__name__", "=", "name", "return", "invalid_op" ]
Return a binary method that always raises a TypeError. Parameters ---------- name : str Returns ------- invalid_op : function
[ "Return", "a", "binary", "method", "that", "always", "raises", "a", "TypeError", "." ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/ops.py#L195-L212
19,955
pandas-dev/pandas
pandas/core/ops.py
_gen_eval_kwargs
def _gen_eval_kwargs(name): """ Find the keyword arguments to pass to numexpr for the given operation. Parameters ---------- name : str Returns ------- eval_kwargs : dict Examples -------- >>> _gen_eval_kwargs("__add__") {} >>> _gen_eval_kwargs("rtruediv") {'reversed': True, 'truediv': True} """ kwargs = {} # Series and Panel appear to only pass __add__, __radd__, ... # but DataFrame gets both these dunder names _and_ non-dunder names # add, radd, ... name = name.replace('__', '') if name.startswith('r'): if name not in ['radd', 'rand', 'ror', 'rxor']: # Exclude commutative operations kwargs['reversed'] = True if name in ['truediv', 'rtruediv']: kwargs['truediv'] = True if name in ['ne']: kwargs['masker'] = True return kwargs
python
def _gen_eval_kwargs(name): """ Find the keyword arguments to pass to numexpr for the given operation. Parameters ---------- name : str Returns ------- eval_kwargs : dict Examples -------- >>> _gen_eval_kwargs("__add__") {} >>> _gen_eval_kwargs("rtruediv") {'reversed': True, 'truediv': True} """ kwargs = {} # Series and Panel appear to only pass __add__, __radd__, ... # but DataFrame gets both these dunder names _and_ non-dunder names # add, radd, ... name = name.replace('__', '') if name.startswith('r'): if name not in ['radd', 'rand', 'ror', 'rxor']: # Exclude commutative operations kwargs['reversed'] = True if name in ['truediv', 'rtruediv']: kwargs['truediv'] = True if name in ['ne']: kwargs['masker'] = True return kwargs
[ "def", "_gen_eval_kwargs", "(", "name", ")", ":", "kwargs", "=", "{", "}", "# Series and Panel appear to only pass __add__, __radd__, ...", "# but DataFrame gets both these dunder names _and_ non-dunder names", "# add, radd, ...", "name", "=", "name", ".", "replace", "(", "'__'", ",", "''", ")", "if", "name", ".", "startswith", "(", "'r'", ")", ":", "if", "name", "not", "in", "[", "'radd'", ",", "'rand'", ",", "'ror'", ",", "'rxor'", "]", ":", "# Exclude commutative operations", "kwargs", "[", "'reversed'", "]", "=", "True", "if", "name", "in", "[", "'truediv'", ",", "'rtruediv'", "]", ":", "kwargs", "[", "'truediv'", "]", "=", "True", "if", "name", "in", "[", "'ne'", "]", ":", "kwargs", "[", "'masker'", "]", "=", "True", "return", "kwargs" ]
Find the keyword arguments to pass to numexpr for the given operation. Parameters ---------- name : str Returns ------- eval_kwargs : dict Examples -------- >>> _gen_eval_kwargs("__add__") {} >>> _gen_eval_kwargs("rtruediv") {'reversed': True, 'truediv': True}
[ "Find", "the", "keyword", "arguments", "to", "pass", "to", "numexpr", "for", "the", "given", "operation", "." ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/ops.py#L215-L253
19,956
pandas-dev/pandas
pandas/core/ops.py
_get_opstr
def _get_opstr(op, cls): """ Find the operation string, if any, to pass to numexpr for this operation. Parameters ---------- op : binary operator cls : class Returns ------- op_str : string or None """ # numexpr is available for non-sparse classes subtyp = getattr(cls, '_subtyp', '') use_numexpr = 'sparse' not in subtyp if not use_numexpr: # if we're not using numexpr, then don't pass a str_rep return None return {operator.add: '+', radd: '+', operator.mul: '*', rmul: '*', operator.sub: '-', rsub: '-', operator.truediv: '/', rtruediv: '/', operator.floordiv: '//', rfloordiv: '//', operator.mod: None, # TODO: Why None for mod but '%' for rmod? rmod: '%', operator.pow: '**', rpow: '**', operator.eq: '==', operator.ne: '!=', operator.le: '<=', operator.lt: '<', operator.ge: '>=', operator.gt: '>', operator.and_: '&', rand_: '&', operator.or_: '|', ror_: '|', operator.xor: '^', rxor: '^', divmod: None, rdivmod: None}[op]
python
def _get_opstr(op, cls): """ Find the operation string, if any, to pass to numexpr for this operation. Parameters ---------- op : binary operator cls : class Returns ------- op_str : string or None """ # numexpr is available for non-sparse classes subtyp = getattr(cls, '_subtyp', '') use_numexpr = 'sparse' not in subtyp if not use_numexpr: # if we're not using numexpr, then don't pass a str_rep return None return {operator.add: '+', radd: '+', operator.mul: '*', rmul: '*', operator.sub: '-', rsub: '-', operator.truediv: '/', rtruediv: '/', operator.floordiv: '//', rfloordiv: '//', operator.mod: None, # TODO: Why None for mod but '%' for rmod? rmod: '%', operator.pow: '**', rpow: '**', operator.eq: '==', operator.ne: '!=', operator.le: '<=', operator.lt: '<', operator.ge: '>=', operator.gt: '>', operator.and_: '&', rand_: '&', operator.or_: '|', ror_: '|', operator.xor: '^', rxor: '^', divmod: None, rdivmod: None}[op]
[ "def", "_get_opstr", "(", "op", ",", "cls", ")", ":", "# numexpr is available for non-sparse classes", "subtyp", "=", "getattr", "(", "cls", ",", "'_subtyp'", ",", "''", ")", "use_numexpr", "=", "'sparse'", "not", "in", "subtyp", "if", "not", "use_numexpr", ":", "# if we're not using numexpr, then don't pass a str_rep", "return", "None", "return", "{", "operator", ".", "add", ":", "'+'", ",", "radd", ":", "'+'", ",", "operator", ".", "mul", ":", "'*'", ",", "rmul", ":", "'*'", ",", "operator", ".", "sub", ":", "'-'", ",", "rsub", ":", "'-'", ",", "operator", ".", "truediv", ":", "'/'", ",", "rtruediv", ":", "'/'", ",", "operator", ".", "floordiv", ":", "'//'", ",", "rfloordiv", ":", "'//'", ",", "operator", ".", "mod", ":", "None", ",", "# TODO: Why None for mod but '%' for rmod?", "rmod", ":", "'%'", ",", "operator", ".", "pow", ":", "'**'", ",", "rpow", ":", "'**'", ",", "operator", ".", "eq", ":", "'=='", ",", "operator", ".", "ne", ":", "'!='", ",", "operator", ".", "le", ":", "'<='", ",", "operator", ".", "lt", ":", "'<'", ",", "operator", ".", "ge", ":", "'>='", ",", "operator", ".", "gt", ":", "'>'", ",", "operator", ".", "and_", ":", "'&'", ",", "rand_", ":", "'&'", ",", "operator", ".", "or_", ":", "'|'", ",", "ror_", ":", "'|'", ",", "operator", ".", "xor", ":", "'^'", ",", "rxor", ":", "'^'", ",", "divmod", ":", "None", ",", "rdivmod", ":", "None", "}", "[", "op", "]" ]
Find the operation string, if any, to pass to numexpr for this operation. Parameters ---------- op : binary operator cls : class Returns ------- op_str : string or None
[ "Find", "the", "operation", "string", "if", "any", "to", "pass", "to", "numexpr", "for", "this", "operation", "." ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/ops.py#L307-L356
19,957
pandas-dev/pandas
pandas/core/ops.py
_get_op_name
def _get_op_name(op, special): """ Find the name to attach to this method according to conventions for special and non-special methods. Parameters ---------- op : binary operator special : bool Returns ------- op_name : str """ opname = op.__name__.strip('_') if special: opname = '__{opname}__'.format(opname=opname) return opname
python
def _get_op_name(op, special): """ Find the name to attach to this method according to conventions for special and non-special methods. Parameters ---------- op : binary operator special : bool Returns ------- op_name : str """ opname = op.__name__.strip('_') if special: opname = '__{opname}__'.format(opname=opname) return opname
[ "def", "_get_op_name", "(", "op", ",", "special", ")", ":", "opname", "=", "op", ".", "__name__", ".", "strip", "(", "'_'", ")", "if", "special", ":", "opname", "=", "'__{opname}__'", ".", "format", "(", "opname", "=", "opname", ")", "return", "opname" ]
Find the name to attach to this method according to conventions for special and non-special methods. Parameters ---------- op : binary operator special : bool Returns ------- op_name : str
[ "Find", "the", "name", "to", "attach", "to", "this", "method", "according", "to", "conventions", "for", "special", "and", "non", "-", "special", "methods", "." ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/ops.py#L359-L376
19,958
pandas-dev/pandas
pandas/core/ops.py
_make_flex_doc
def _make_flex_doc(op_name, typ): """ Make the appropriate substitutions for the given operation and class-typ into either _flex_doc_SERIES or _flex_doc_FRAME to return the docstring to attach to a generated method. Parameters ---------- op_name : str {'__add__', '__sub__', ... '__eq__', '__ne__', ...} typ : str {series, 'dataframe']} Returns ------- doc : str """ op_name = op_name.replace('__', '') op_desc = _op_descriptions[op_name] if op_desc['reversed']: equiv = 'other ' + op_desc['op'] + ' ' + typ else: equiv = typ + ' ' + op_desc['op'] + ' other' if typ == 'series': base_doc = _flex_doc_SERIES doc_no_examples = base_doc.format( desc=op_desc['desc'], op_name=op_name, equiv=equiv, reverse=op_desc['reverse'] ) if op_desc['series_examples']: doc = doc_no_examples + op_desc['series_examples'] else: doc = doc_no_examples elif typ == 'dataframe': base_doc = _flex_doc_FRAME doc = base_doc.format( desc=op_desc['desc'], op_name=op_name, equiv=equiv, reverse=op_desc['reverse'] ) elif typ == 'panel': base_doc = _flex_doc_PANEL doc = base_doc.format( desc=op_desc['desc'], op_name=op_name, equiv=equiv, reverse=op_desc['reverse'] ) else: raise AssertionError('Invalid typ argument.') return doc
python
def _make_flex_doc(op_name, typ): """ Make the appropriate substitutions for the given operation and class-typ into either _flex_doc_SERIES or _flex_doc_FRAME to return the docstring to attach to a generated method. Parameters ---------- op_name : str {'__add__', '__sub__', ... '__eq__', '__ne__', ...} typ : str {series, 'dataframe']} Returns ------- doc : str """ op_name = op_name.replace('__', '') op_desc = _op_descriptions[op_name] if op_desc['reversed']: equiv = 'other ' + op_desc['op'] + ' ' + typ else: equiv = typ + ' ' + op_desc['op'] + ' other' if typ == 'series': base_doc = _flex_doc_SERIES doc_no_examples = base_doc.format( desc=op_desc['desc'], op_name=op_name, equiv=equiv, reverse=op_desc['reverse'] ) if op_desc['series_examples']: doc = doc_no_examples + op_desc['series_examples'] else: doc = doc_no_examples elif typ == 'dataframe': base_doc = _flex_doc_FRAME doc = base_doc.format( desc=op_desc['desc'], op_name=op_name, equiv=equiv, reverse=op_desc['reverse'] ) elif typ == 'panel': base_doc = _flex_doc_PANEL doc = base_doc.format( desc=op_desc['desc'], op_name=op_name, equiv=equiv, reverse=op_desc['reverse'] ) else: raise AssertionError('Invalid typ argument.') return doc
[ "def", "_make_flex_doc", "(", "op_name", ",", "typ", ")", ":", "op_name", "=", "op_name", ".", "replace", "(", "'__'", ",", "''", ")", "op_desc", "=", "_op_descriptions", "[", "op_name", "]", "if", "op_desc", "[", "'reversed'", "]", ":", "equiv", "=", "'other '", "+", "op_desc", "[", "'op'", "]", "+", "' '", "+", "typ", "else", ":", "equiv", "=", "typ", "+", "' '", "+", "op_desc", "[", "'op'", "]", "+", "' other'", "if", "typ", "==", "'series'", ":", "base_doc", "=", "_flex_doc_SERIES", "doc_no_examples", "=", "base_doc", ".", "format", "(", "desc", "=", "op_desc", "[", "'desc'", "]", ",", "op_name", "=", "op_name", ",", "equiv", "=", "equiv", ",", "reverse", "=", "op_desc", "[", "'reverse'", "]", ")", "if", "op_desc", "[", "'series_examples'", "]", ":", "doc", "=", "doc_no_examples", "+", "op_desc", "[", "'series_examples'", "]", "else", ":", "doc", "=", "doc_no_examples", "elif", "typ", "==", "'dataframe'", ":", "base_doc", "=", "_flex_doc_FRAME", "doc", "=", "base_doc", ".", "format", "(", "desc", "=", "op_desc", "[", "'desc'", "]", ",", "op_name", "=", "op_name", ",", "equiv", "=", "equiv", ",", "reverse", "=", "op_desc", "[", "'reverse'", "]", ")", "elif", "typ", "==", "'panel'", ":", "base_doc", "=", "_flex_doc_PANEL", "doc", "=", "base_doc", ".", "format", "(", "desc", "=", "op_desc", "[", "'desc'", "]", ",", "op_name", "=", "op_name", ",", "equiv", "=", "equiv", ",", "reverse", "=", "op_desc", "[", "'reverse'", "]", ")", "else", ":", "raise", "AssertionError", "(", "'Invalid typ argument.'", ")", "return", "doc" ]
Make the appropriate substitutions for the given operation and class-typ into either _flex_doc_SERIES or _flex_doc_FRAME to return the docstring to attach to a generated method. Parameters ---------- op_name : str {'__add__', '__sub__', ... '__eq__', '__ne__', ...} typ : str {series, 'dataframe']} Returns ------- doc : str
[ "Make", "the", "appropriate", "substitutions", "for", "the", "given", "operation", "and", "class", "-", "typ", "into", "either", "_flex_doc_SERIES", "or", "_flex_doc_FRAME", "to", "return", "the", "docstring", "to", "attach", "to", "a", "generated", "method", "." ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/ops.py#L1029-L1082
19,959
pandas-dev/pandas
pandas/core/ops.py
mask_cmp_op
def mask_cmp_op(x, y, op, allowed_types): """ Apply the function `op` to only non-null points in x and y. Parameters ---------- x : array-like y : array-like op : binary operation allowed_types : class or tuple of classes Returns ------- result : ndarray[bool] """ # TODO: Can we make the allowed_types arg unnecessary? xrav = x.ravel() result = np.empty(x.size, dtype=bool) if isinstance(y, allowed_types): yrav = y.ravel() mask = notna(xrav) & notna(yrav) result[mask] = op(np.array(list(xrav[mask])), np.array(list(yrav[mask]))) else: mask = notna(xrav) result[mask] = op(np.array(list(xrav[mask])), y) if op == operator.ne: # pragma: no cover np.putmask(result, ~mask, True) else: np.putmask(result, ~mask, False) result = result.reshape(x.shape) return result
python
def mask_cmp_op(x, y, op, allowed_types): """ Apply the function `op` to only non-null points in x and y. Parameters ---------- x : array-like y : array-like op : binary operation allowed_types : class or tuple of classes Returns ------- result : ndarray[bool] """ # TODO: Can we make the allowed_types arg unnecessary? xrav = x.ravel() result = np.empty(x.size, dtype=bool) if isinstance(y, allowed_types): yrav = y.ravel() mask = notna(xrav) & notna(yrav) result[mask] = op(np.array(list(xrav[mask])), np.array(list(yrav[mask]))) else: mask = notna(xrav) result[mask] = op(np.array(list(xrav[mask])), y) if op == operator.ne: # pragma: no cover np.putmask(result, ~mask, True) else: np.putmask(result, ~mask, False) result = result.reshape(x.shape) return result
[ "def", "mask_cmp_op", "(", "x", ",", "y", ",", "op", ",", "allowed_types", ")", ":", "# TODO: Can we make the allowed_types arg unnecessary?", "xrav", "=", "x", ".", "ravel", "(", ")", "result", "=", "np", ".", "empty", "(", "x", ".", "size", ",", "dtype", "=", "bool", ")", "if", "isinstance", "(", "y", ",", "allowed_types", ")", ":", "yrav", "=", "y", ".", "ravel", "(", ")", "mask", "=", "notna", "(", "xrav", ")", "&", "notna", "(", "yrav", ")", "result", "[", "mask", "]", "=", "op", "(", "np", ".", "array", "(", "list", "(", "xrav", "[", "mask", "]", ")", ")", ",", "np", ".", "array", "(", "list", "(", "yrav", "[", "mask", "]", ")", ")", ")", "else", ":", "mask", "=", "notna", "(", "xrav", ")", "result", "[", "mask", "]", "=", "op", "(", "np", ".", "array", "(", "list", "(", "xrav", "[", "mask", "]", ")", ")", ",", "y", ")", "if", "op", "==", "operator", ".", "ne", ":", "# pragma: no cover", "np", ".", "putmask", "(", "result", ",", "~", "mask", ",", "True", ")", "else", ":", "np", ".", "putmask", "(", "result", ",", "~", "mask", ",", "False", ")", "result", "=", "result", ".", "reshape", "(", "x", ".", "shape", ")", "return", "result" ]
Apply the function `op` to only non-null points in x and y. Parameters ---------- x : array-like y : array-like op : binary operation allowed_types : class or tuple of classes Returns ------- result : ndarray[bool]
[ "Apply", "the", "function", "op", "to", "only", "non", "-", "null", "points", "in", "x", "and", "y", "." ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/ops.py#L1123-L1155
19,960
pandas-dev/pandas
pandas/core/ops.py
should_series_dispatch
def should_series_dispatch(left, right, op): """ Identify cases where a DataFrame operation should dispatch to its Series counterpart. Parameters ---------- left : DataFrame right : DataFrame op : binary operator Returns ------- override : bool """ if left._is_mixed_type or right._is_mixed_type: return True if not len(left.columns) or not len(right.columns): # ensure obj.dtypes[0] exists for each obj return False ldtype = left.dtypes.iloc[0] rdtype = right.dtypes.iloc[0] if ((is_timedelta64_dtype(ldtype) and is_integer_dtype(rdtype)) or (is_timedelta64_dtype(rdtype) and is_integer_dtype(ldtype))): # numpy integer dtypes as timedelta64 dtypes in this scenario return True if is_datetime64_dtype(ldtype) and is_object_dtype(rdtype): # in particular case where right is an array of DateOffsets return True return False
python
def should_series_dispatch(left, right, op): """ Identify cases where a DataFrame operation should dispatch to its Series counterpart. Parameters ---------- left : DataFrame right : DataFrame op : binary operator Returns ------- override : bool """ if left._is_mixed_type or right._is_mixed_type: return True if not len(left.columns) or not len(right.columns): # ensure obj.dtypes[0] exists for each obj return False ldtype = left.dtypes.iloc[0] rdtype = right.dtypes.iloc[0] if ((is_timedelta64_dtype(ldtype) and is_integer_dtype(rdtype)) or (is_timedelta64_dtype(rdtype) and is_integer_dtype(ldtype))): # numpy integer dtypes as timedelta64 dtypes in this scenario return True if is_datetime64_dtype(ldtype) and is_object_dtype(rdtype): # in particular case where right is an array of DateOffsets return True return False
[ "def", "should_series_dispatch", "(", "left", ",", "right", ",", "op", ")", ":", "if", "left", ".", "_is_mixed_type", "or", "right", ".", "_is_mixed_type", ":", "return", "True", "if", "not", "len", "(", "left", ".", "columns", ")", "or", "not", "len", "(", "right", ".", "columns", ")", ":", "# ensure obj.dtypes[0] exists for each obj", "return", "False", "ldtype", "=", "left", ".", "dtypes", ".", "iloc", "[", "0", "]", "rdtype", "=", "right", ".", "dtypes", ".", "iloc", "[", "0", "]", "if", "(", "(", "is_timedelta64_dtype", "(", "ldtype", ")", "and", "is_integer_dtype", "(", "rdtype", ")", ")", "or", "(", "is_timedelta64_dtype", "(", "rdtype", ")", "and", "is_integer_dtype", "(", "ldtype", ")", ")", ")", ":", "# numpy integer dtypes as timedelta64 dtypes in this scenario", "return", "True", "if", "is_datetime64_dtype", "(", "ldtype", ")", "and", "is_object_dtype", "(", "rdtype", ")", ":", "# in particular case where right is an array of DateOffsets", "return", "True", "return", "False" ]
Identify cases where a DataFrame operation should dispatch to its Series counterpart. Parameters ---------- left : DataFrame right : DataFrame op : binary operator Returns ------- override : bool
[ "Identify", "cases", "where", "a", "DataFrame", "operation", "should", "dispatch", "to", "its", "Series", "counterpart", "." ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/ops.py#L1248-L1282
19,961
pandas-dev/pandas
pandas/core/ops.py
dispatch_to_index_op
def dispatch_to_index_op(op, left, right, index_class): """ Wrap Series left in the given index_class to delegate the operation op to the index implementation. DatetimeIndex and TimedeltaIndex perform type checking, timezone handling, overflow checks, etc. Parameters ---------- op : binary operator (operator.add, operator.sub, ...) left : Series right : object index_class : DatetimeIndex or TimedeltaIndex Returns ------- result : object, usually DatetimeIndex, TimedeltaIndex, or Series """ left_idx = index_class(left) # avoid accidentally allowing integer add/sub. For datetime64[tz] dtypes, # left_idx may inherit a freq from a cached DatetimeIndex. # See discussion in GH#19147. if getattr(left_idx, 'freq', None) is not None: left_idx = left_idx._shallow_copy(freq=None) try: result = op(left_idx, right) except NullFrequencyError: # DatetimeIndex and TimedeltaIndex with freq == None raise ValueError # on add/sub of integers (or int-like). We re-raise as a TypeError. raise TypeError('incompatible type for a datetime/timedelta ' 'operation [{name}]'.format(name=op.__name__)) return result
python
def dispatch_to_index_op(op, left, right, index_class): """ Wrap Series left in the given index_class to delegate the operation op to the index implementation. DatetimeIndex and TimedeltaIndex perform type checking, timezone handling, overflow checks, etc. Parameters ---------- op : binary operator (operator.add, operator.sub, ...) left : Series right : object index_class : DatetimeIndex or TimedeltaIndex Returns ------- result : object, usually DatetimeIndex, TimedeltaIndex, or Series """ left_idx = index_class(left) # avoid accidentally allowing integer add/sub. For datetime64[tz] dtypes, # left_idx may inherit a freq from a cached DatetimeIndex. # See discussion in GH#19147. if getattr(left_idx, 'freq', None) is not None: left_idx = left_idx._shallow_copy(freq=None) try: result = op(left_idx, right) except NullFrequencyError: # DatetimeIndex and TimedeltaIndex with freq == None raise ValueError # on add/sub of integers (or int-like). We re-raise as a TypeError. raise TypeError('incompatible type for a datetime/timedelta ' 'operation [{name}]'.format(name=op.__name__)) return result
[ "def", "dispatch_to_index_op", "(", "op", ",", "left", ",", "right", ",", "index_class", ")", ":", "left_idx", "=", "index_class", "(", "left", ")", "# avoid accidentally allowing integer add/sub. For datetime64[tz] dtypes,", "# left_idx may inherit a freq from a cached DatetimeIndex.", "# See discussion in GH#19147.", "if", "getattr", "(", "left_idx", ",", "'freq'", ",", "None", ")", "is", "not", "None", ":", "left_idx", "=", "left_idx", ".", "_shallow_copy", "(", "freq", "=", "None", ")", "try", ":", "result", "=", "op", "(", "left_idx", ",", "right", ")", "except", "NullFrequencyError", ":", "# DatetimeIndex and TimedeltaIndex with freq == None raise ValueError", "# on add/sub of integers (or int-like). We re-raise as a TypeError.", "raise", "TypeError", "(", "'incompatible type for a datetime/timedelta '", "'operation [{name}]'", ".", "format", "(", "name", "=", "op", ".", "__name__", ")", ")", "return", "result" ]
Wrap Series left in the given index_class to delegate the operation op to the index implementation. DatetimeIndex and TimedeltaIndex perform type checking, timezone handling, overflow checks, etc. Parameters ---------- op : binary operator (operator.add, operator.sub, ...) left : Series right : object index_class : DatetimeIndex or TimedeltaIndex Returns ------- result : object, usually DatetimeIndex, TimedeltaIndex, or Series
[ "Wrap", "Series", "left", "in", "the", "given", "index_class", "to", "delegate", "the", "operation", "op", "to", "the", "index", "implementation", ".", "DatetimeIndex", "and", "TimedeltaIndex", "perform", "type", "checking", "timezone", "handling", "overflow", "checks", "etc", "." ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/ops.py#L1349-L1380
19,962
pandas-dev/pandas
pandas/core/ops.py
dispatch_to_extension_op
def dispatch_to_extension_op(op, left, right): """ Assume that left or right is a Series backed by an ExtensionArray, apply the operator defined by op. """ # The op calls will raise TypeError if the op is not defined # on the ExtensionArray # unbox Series and Index to arrays if isinstance(left, (ABCSeries, ABCIndexClass)): new_left = left._values else: new_left = left if isinstance(right, (ABCSeries, ABCIndexClass)): new_right = right._values else: new_right = right res_values = op(new_left, new_right) res_name = get_op_result_name(left, right) if op.__name__ in ['divmod', 'rdivmod']: return _construct_divmod_result( left, res_values, left.index, res_name) return _construct_result(left, res_values, left.index, res_name)
python
def dispatch_to_extension_op(op, left, right): """ Assume that left or right is a Series backed by an ExtensionArray, apply the operator defined by op. """ # The op calls will raise TypeError if the op is not defined # on the ExtensionArray # unbox Series and Index to arrays if isinstance(left, (ABCSeries, ABCIndexClass)): new_left = left._values else: new_left = left if isinstance(right, (ABCSeries, ABCIndexClass)): new_right = right._values else: new_right = right res_values = op(new_left, new_right) res_name = get_op_result_name(left, right) if op.__name__ in ['divmod', 'rdivmod']: return _construct_divmod_result( left, res_values, left.index, res_name) return _construct_result(left, res_values, left.index, res_name)
[ "def", "dispatch_to_extension_op", "(", "op", ",", "left", ",", "right", ")", ":", "# The op calls will raise TypeError if the op is not defined", "# on the ExtensionArray", "# unbox Series and Index to arrays", "if", "isinstance", "(", "left", ",", "(", "ABCSeries", ",", "ABCIndexClass", ")", ")", ":", "new_left", "=", "left", ".", "_values", "else", ":", "new_left", "=", "left", "if", "isinstance", "(", "right", ",", "(", "ABCSeries", ",", "ABCIndexClass", ")", ")", ":", "new_right", "=", "right", ".", "_values", "else", ":", "new_right", "=", "right", "res_values", "=", "op", "(", "new_left", ",", "new_right", ")", "res_name", "=", "get_op_result_name", "(", "left", ",", "right", ")", "if", "op", ".", "__name__", "in", "[", "'divmod'", ",", "'rdivmod'", "]", ":", "return", "_construct_divmod_result", "(", "left", ",", "res_values", ",", "left", ".", "index", ",", "res_name", ")", "return", "_construct_result", "(", "left", ",", "res_values", ",", "left", ".", "index", ",", "res_name", ")" ]
Assume that left or right is a Series backed by an ExtensionArray, apply the operator defined by op.
[ "Assume", "that", "left", "or", "right", "is", "a", "Series", "backed", "by", "an", "ExtensionArray", "apply", "the", "operator", "defined", "by", "op", "." ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/ops.py#L1383-L1410
19,963
pandas-dev/pandas
pandas/core/ops.py
_align_method_SERIES
def _align_method_SERIES(left, right, align_asobject=False): """ align lhs and rhs Series """ # ToDo: Different from _align_method_FRAME, list, tuple and ndarray # are not coerced here # because Series has inconsistencies described in #13637 if isinstance(right, ABCSeries): # avoid repeated alignment if not left.index.equals(right.index): if align_asobject: # to keep original value's dtype for bool ops left = left.astype(object) right = right.astype(object) left, right = left.align(right, copy=False) return left, right
python
def _align_method_SERIES(left, right, align_asobject=False): """ align lhs and rhs Series """ # ToDo: Different from _align_method_FRAME, list, tuple and ndarray # are not coerced here # because Series has inconsistencies described in #13637 if isinstance(right, ABCSeries): # avoid repeated alignment if not left.index.equals(right.index): if align_asobject: # to keep original value's dtype for bool ops left = left.astype(object) right = right.astype(object) left, right = left.align(right, copy=False) return left, right
[ "def", "_align_method_SERIES", "(", "left", ",", "right", ",", "align_asobject", "=", "False", ")", ":", "# ToDo: Different from _align_method_FRAME, list, tuple and ndarray", "# are not coerced here", "# because Series has inconsistencies described in #13637", "if", "isinstance", "(", "right", ",", "ABCSeries", ")", ":", "# avoid repeated alignment", "if", "not", "left", ".", "index", ".", "equals", "(", "right", ".", "index", ")", ":", "if", "align_asobject", ":", "# to keep original value's dtype for bool ops", "left", "=", "left", ".", "astype", "(", "object", ")", "right", "=", "right", ".", "astype", "(", "object", ")", "left", ",", "right", "=", "left", ".", "align", "(", "right", ",", "copy", "=", "False", ")", "return", "left", ",", "right" ]
align lhs and rhs Series
[ "align", "lhs", "and", "rhs", "Series" ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/ops.py#L1628-L1646
19,964
pandas-dev/pandas
pandas/core/ops.py
_construct_divmod_result
def _construct_divmod_result(left, result, index, name, dtype=None): """divmod returns a tuple of like indexed series instead of a single series. """ return ( _construct_result(left, result[0], index=index, name=name, dtype=dtype), _construct_result(left, result[1], index=index, name=name, dtype=dtype), )
python
def _construct_divmod_result(left, result, index, name, dtype=None): """divmod returns a tuple of like indexed series instead of a single series. """ return ( _construct_result(left, result[0], index=index, name=name, dtype=dtype), _construct_result(left, result[1], index=index, name=name, dtype=dtype), )
[ "def", "_construct_divmod_result", "(", "left", ",", "result", ",", "index", ",", "name", ",", "dtype", "=", "None", ")", ":", "return", "(", "_construct_result", "(", "left", ",", "result", "[", "0", "]", ",", "index", "=", "index", ",", "name", "=", "name", ",", "dtype", "=", "dtype", ")", ",", "_construct_result", "(", "left", ",", "result", "[", "1", "]", ",", "index", "=", "index", ",", "name", "=", "name", ",", "dtype", "=", "dtype", ")", ",", ")" ]
divmod returns a tuple of like indexed series instead of a single series.
[ "divmod", "returns", "a", "tuple", "of", "like", "indexed", "series", "instead", "of", "a", "single", "series", "." ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/ops.py#L1661-L1669
19,965
pandas-dev/pandas
pandas/core/ops.py
_combine_series_frame
def _combine_series_frame(self, other, func, fill_value=None, axis=None, level=None): """ Apply binary operator `func` to self, other using alignment and fill conventions determined by the fill_value, axis, and level kwargs. Parameters ---------- self : DataFrame other : Series func : binary operator fill_value : object, default None axis : {0, 1, 'columns', 'index', None}, default None level : int or None, default None Returns ------- result : DataFrame """ if fill_value is not None: raise NotImplementedError("fill_value {fill} not supported." .format(fill=fill_value)) if axis is not None: axis = self._get_axis_number(axis) if axis == 0: return self._combine_match_index(other, func, level=level) else: return self._combine_match_columns(other, func, level=level) else: if not len(other): return self * np.nan if not len(self): # Ambiguous case, use _series so works with DataFrame return self._constructor(data=self._series, index=self.index, columns=self.columns) # default axis is columns return self._combine_match_columns(other, func, level=level)
python
def _combine_series_frame(self, other, func, fill_value=None, axis=None, level=None): """ Apply binary operator `func` to self, other using alignment and fill conventions determined by the fill_value, axis, and level kwargs. Parameters ---------- self : DataFrame other : Series func : binary operator fill_value : object, default None axis : {0, 1, 'columns', 'index', None}, default None level : int or None, default None Returns ------- result : DataFrame """ if fill_value is not None: raise NotImplementedError("fill_value {fill} not supported." .format(fill=fill_value)) if axis is not None: axis = self._get_axis_number(axis) if axis == 0: return self._combine_match_index(other, func, level=level) else: return self._combine_match_columns(other, func, level=level) else: if not len(other): return self * np.nan if not len(self): # Ambiguous case, use _series so works with DataFrame return self._constructor(data=self._series, index=self.index, columns=self.columns) # default axis is columns return self._combine_match_columns(other, func, level=level)
[ "def", "_combine_series_frame", "(", "self", ",", "other", ",", "func", ",", "fill_value", "=", "None", ",", "axis", "=", "None", ",", "level", "=", "None", ")", ":", "if", "fill_value", "is", "not", "None", ":", "raise", "NotImplementedError", "(", "\"fill_value {fill} not supported.\"", ".", "format", "(", "fill", "=", "fill_value", ")", ")", "if", "axis", "is", "not", "None", ":", "axis", "=", "self", ".", "_get_axis_number", "(", "axis", ")", "if", "axis", "==", "0", ":", "return", "self", ".", "_combine_match_index", "(", "other", ",", "func", ",", "level", "=", "level", ")", "else", ":", "return", "self", ".", "_combine_match_columns", "(", "other", ",", "func", ",", "level", "=", "level", ")", "else", ":", "if", "not", "len", "(", "other", ")", ":", "return", "self", "*", "np", ".", "nan", "if", "not", "len", "(", "self", ")", ":", "# Ambiguous case, use _series so works with DataFrame", "return", "self", ".", "_constructor", "(", "data", "=", "self", ".", "_series", ",", "index", "=", "self", ".", "index", ",", "columns", "=", "self", ".", "columns", ")", "# default axis is columns", "return", "self", ".", "_combine_match_columns", "(", "other", ",", "func", ",", "level", "=", "level", ")" ]
Apply binary operator `func` to self, other using alignment and fill conventions determined by the fill_value, axis, and level kwargs. Parameters ---------- self : DataFrame other : Series func : binary operator fill_value : object, default None axis : {0, 1, 'columns', 'index', None}, default None level : int or None, default None Returns ------- result : DataFrame
[ "Apply", "binary", "operator", "func", "to", "self", "other", "using", "alignment", "and", "fill", "conventions", "determined", "by", "the", "fill_value", "axis", "and", "level", "kwargs", "." ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/ops.py#L2073-L2112
19,966
pandas-dev/pandas
pandas/core/ops.py
_align_method_FRAME
def _align_method_FRAME(left, right, axis): """ convert rhs to meet lhs dims if input is list, tuple or np.ndarray """ def to_series(right): msg = ('Unable to coerce to Series, length must be {req_len}: ' 'given {given_len}') if axis is not None and left._get_axis_name(axis) == 'index': if len(left.index) != len(right): raise ValueError(msg.format(req_len=len(left.index), given_len=len(right))) right = left._constructor_sliced(right, index=left.index) else: if len(left.columns) != len(right): raise ValueError(msg.format(req_len=len(left.columns), given_len=len(right))) right = left._constructor_sliced(right, index=left.columns) return right if isinstance(right, np.ndarray): if right.ndim == 1: right = to_series(right) elif right.ndim == 2: if right.shape == left.shape: right = left._constructor(right, index=left.index, columns=left.columns) elif right.shape[0] == left.shape[0] and right.shape[1] == 1: # Broadcast across columns right = np.broadcast_to(right, left.shape) right = left._constructor(right, index=left.index, columns=left.columns) elif right.shape[1] == left.shape[1] and right.shape[0] == 1: # Broadcast along rows right = to_series(right[0, :]) else: raise ValueError("Unable to coerce to DataFrame, shape " "must be {req_shape}: given {given_shape}" .format(req_shape=left.shape, given_shape=right.shape)) elif right.ndim > 2: raise ValueError('Unable to coerce to Series/DataFrame, dim ' 'must be <= 2: {dim}'.format(dim=right.shape)) elif (is_list_like(right) and not isinstance(right, (ABCSeries, ABCDataFrame))): # GH17901 right = to_series(right) return right
python
def _align_method_FRAME(left, right, axis): """ convert rhs to meet lhs dims if input is list, tuple or np.ndarray """ def to_series(right): msg = ('Unable to coerce to Series, length must be {req_len}: ' 'given {given_len}') if axis is not None and left._get_axis_name(axis) == 'index': if len(left.index) != len(right): raise ValueError(msg.format(req_len=len(left.index), given_len=len(right))) right = left._constructor_sliced(right, index=left.index) else: if len(left.columns) != len(right): raise ValueError(msg.format(req_len=len(left.columns), given_len=len(right))) right = left._constructor_sliced(right, index=left.columns) return right if isinstance(right, np.ndarray): if right.ndim == 1: right = to_series(right) elif right.ndim == 2: if right.shape == left.shape: right = left._constructor(right, index=left.index, columns=left.columns) elif right.shape[0] == left.shape[0] and right.shape[1] == 1: # Broadcast across columns right = np.broadcast_to(right, left.shape) right = left._constructor(right, index=left.index, columns=left.columns) elif right.shape[1] == left.shape[1] and right.shape[0] == 1: # Broadcast along rows right = to_series(right[0, :]) else: raise ValueError("Unable to coerce to DataFrame, shape " "must be {req_shape}: given {given_shape}" .format(req_shape=left.shape, given_shape=right.shape)) elif right.ndim > 2: raise ValueError('Unable to coerce to Series/DataFrame, dim ' 'must be <= 2: {dim}'.format(dim=right.shape)) elif (is_list_like(right) and not isinstance(right, (ABCSeries, ABCDataFrame))): # GH17901 right = to_series(right) return right
[ "def", "_align_method_FRAME", "(", "left", ",", "right", ",", "axis", ")", ":", "def", "to_series", "(", "right", ")", ":", "msg", "=", "(", "'Unable to coerce to Series, length must be {req_len}: '", "'given {given_len}'", ")", "if", "axis", "is", "not", "None", "and", "left", ".", "_get_axis_name", "(", "axis", ")", "==", "'index'", ":", "if", "len", "(", "left", ".", "index", ")", "!=", "len", "(", "right", ")", ":", "raise", "ValueError", "(", "msg", ".", "format", "(", "req_len", "=", "len", "(", "left", ".", "index", ")", ",", "given_len", "=", "len", "(", "right", ")", ")", ")", "right", "=", "left", ".", "_constructor_sliced", "(", "right", ",", "index", "=", "left", ".", "index", ")", "else", ":", "if", "len", "(", "left", ".", "columns", ")", "!=", "len", "(", "right", ")", ":", "raise", "ValueError", "(", "msg", ".", "format", "(", "req_len", "=", "len", "(", "left", ".", "columns", ")", ",", "given_len", "=", "len", "(", "right", ")", ")", ")", "right", "=", "left", ".", "_constructor_sliced", "(", "right", ",", "index", "=", "left", ".", "columns", ")", "return", "right", "if", "isinstance", "(", "right", ",", "np", ".", "ndarray", ")", ":", "if", "right", ".", "ndim", "==", "1", ":", "right", "=", "to_series", "(", "right", ")", "elif", "right", ".", "ndim", "==", "2", ":", "if", "right", ".", "shape", "==", "left", ".", "shape", ":", "right", "=", "left", ".", "_constructor", "(", "right", ",", "index", "=", "left", ".", "index", ",", "columns", "=", "left", ".", "columns", ")", "elif", "right", ".", "shape", "[", "0", "]", "==", "left", ".", "shape", "[", "0", "]", "and", "right", ".", "shape", "[", "1", "]", "==", "1", ":", "# Broadcast across columns", "right", "=", "np", ".", "broadcast_to", "(", "right", ",", "left", ".", "shape", ")", "right", "=", "left", ".", "_constructor", "(", "right", ",", "index", "=", "left", ".", "index", ",", "columns", "=", "left", ".", "columns", ")", "elif", "right", ".", "shape", "[", "1", "]", "==", "left", ".", "shape", "[", "1", "]", "and", "right", ".", "shape", "[", "0", "]", "==", "1", ":", "# Broadcast along rows", "right", "=", "to_series", "(", "right", "[", "0", ",", ":", "]", ")", "else", ":", "raise", "ValueError", "(", "\"Unable to coerce to DataFrame, shape \"", "\"must be {req_shape}: given {given_shape}\"", ".", "format", "(", "req_shape", "=", "left", ".", "shape", ",", "given_shape", "=", "right", ".", "shape", ")", ")", "elif", "right", ".", "ndim", ">", "2", ":", "raise", "ValueError", "(", "'Unable to coerce to Series/DataFrame, dim '", "'must be <= 2: {dim}'", ".", "format", "(", "dim", "=", "right", ".", "shape", ")", ")", "elif", "(", "is_list_like", "(", "right", ")", "and", "not", "isinstance", "(", "right", ",", "(", "ABCSeries", ",", "ABCDataFrame", ")", ")", ")", ":", "# GH17901", "right", "=", "to_series", "(", "right", ")", "return", "right" ]
convert rhs to meet lhs dims if input is list, tuple or np.ndarray
[ "convert", "rhs", "to", "meet", "lhs", "dims", "if", "input", "is", "list", "tuple", "or", "np", ".", "ndarray" ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/ops.py#L2115-L2169
19,967
pandas-dev/pandas
pandas/core/ops.py
_cast_sparse_series_op
def _cast_sparse_series_op(left, right, opname): """ For SparseSeries operation, coerce to float64 if the result is expected to have NaN or inf values Parameters ---------- left : SparseArray right : SparseArray opname : str Returns ------- left : SparseArray right : SparseArray """ from pandas.core.sparse.api import SparseDtype opname = opname.strip('_') # TODO: This should be moved to the array? if is_integer_dtype(left) and is_integer_dtype(right): # series coerces to float64 if result should have NaN/inf if opname in ('floordiv', 'mod') and (right.values == 0).any(): left = left.astype(SparseDtype(np.float64, left.fill_value)) right = right.astype(SparseDtype(np.float64, right.fill_value)) elif opname in ('rfloordiv', 'rmod') and (left.values == 0).any(): left = left.astype(SparseDtype(np.float64, left.fill_value)) right = right.astype(SparseDtype(np.float64, right.fill_value)) return left, right
python
def _cast_sparse_series_op(left, right, opname): """ For SparseSeries operation, coerce to float64 if the result is expected to have NaN or inf values Parameters ---------- left : SparseArray right : SparseArray opname : str Returns ------- left : SparseArray right : SparseArray """ from pandas.core.sparse.api import SparseDtype opname = opname.strip('_') # TODO: This should be moved to the array? if is_integer_dtype(left) and is_integer_dtype(right): # series coerces to float64 if result should have NaN/inf if opname in ('floordiv', 'mod') and (right.values == 0).any(): left = left.astype(SparseDtype(np.float64, left.fill_value)) right = right.astype(SparseDtype(np.float64, right.fill_value)) elif opname in ('rfloordiv', 'rmod') and (left.values == 0).any(): left = left.astype(SparseDtype(np.float64, left.fill_value)) right = right.astype(SparseDtype(np.float64, right.fill_value)) return left, right
[ "def", "_cast_sparse_series_op", "(", "left", ",", "right", ",", "opname", ")", ":", "from", "pandas", ".", "core", ".", "sparse", ".", "api", "import", "SparseDtype", "opname", "=", "opname", ".", "strip", "(", "'_'", ")", "# TODO: This should be moved to the array?", "if", "is_integer_dtype", "(", "left", ")", "and", "is_integer_dtype", "(", "right", ")", ":", "# series coerces to float64 if result should have NaN/inf", "if", "opname", "in", "(", "'floordiv'", ",", "'mod'", ")", "and", "(", "right", ".", "values", "==", "0", ")", ".", "any", "(", ")", ":", "left", "=", "left", ".", "astype", "(", "SparseDtype", "(", "np", ".", "float64", ",", "left", ".", "fill_value", ")", ")", "right", "=", "right", ".", "astype", "(", "SparseDtype", "(", "np", ".", "float64", ",", "right", ".", "fill_value", ")", ")", "elif", "opname", "in", "(", "'rfloordiv'", ",", "'rmod'", ")", "and", "(", "left", ".", "values", "==", "0", ")", ".", "any", "(", ")", ":", "left", "=", "left", ".", "astype", "(", "SparseDtype", "(", "np", ".", "float64", ",", "left", ".", "fill_value", ")", ")", "right", "=", "right", ".", "astype", "(", "SparseDtype", "(", "np", ".", "float64", ",", "right", ".", "fill_value", ")", ")", "return", "left", ",", "right" ]
For SparseSeries operation, coerce to float64 if the result is expected to have NaN or inf values Parameters ---------- left : SparseArray right : SparseArray opname : str Returns ------- left : SparseArray right : SparseArray
[ "For", "SparseSeries", "operation", "coerce", "to", "float64", "if", "the", "result", "is", "expected", "to", "have", "NaN", "or", "inf", "values" ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/ops.py#L2389-L2419
19,968
pandas-dev/pandas
pandas/core/arrays/datetimelike.py
validate_inferred_freq
def validate_inferred_freq(freq, inferred_freq, freq_infer): """ If the user passes a freq and another freq is inferred from passed data, require that they match. Parameters ---------- freq : DateOffset or None inferred_freq : DateOffset or None freq_infer : bool Returns ------- freq : DateOffset or None freq_infer : bool Notes ----- We assume at this point that `maybe_infer_freq` has been called, so `freq` is either a DateOffset object or None. """ if inferred_freq is not None: if freq is not None and freq != inferred_freq: raise ValueError('Inferred frequency {inferred} from passed ' 'values does not conform to passed frequency ' '{passed}' .format(inferred=inferred_freq, passed=freq.freqstr)) elif freq is None: freq = inferred_freq freq_infer = False return freq, freq_infer
python
def validate_inferred_freq(freq, inferred_freq, freq_infer): """ If the user passes a freq and another freq is inferred from passed data, require that they match. Parameters ---------- freq : DateOffset or None inferred_freq : DateOffset or None freq_infer : bool Returns ------- freq : DateOffset or None freq_infer : bool Notes ----- We assume at this point that `maybe_infer_freq` has been called, so `freq` is either a DateOffset object or None. """ if inferred_freq is not None: if freq is not None and freq != inferred_freq: raise ValueError('Inferred frequency {inferred} from passed ' 'values does not conform to passed frequency ' '{passed}' .format(inferred=inferred_freq, passed=freq.freqstr)) elif freq is None: freq = inferred_freq freq_infer = False return freq, freq_infer
[ "def", "validate_inferred_freq", "(", "freq", ",", "inferred_freq", ",", "freq_infer", ")", ":", "if", "inferred_freq", "is", "not", "None", ":", "if", "freq", "is", "not", "None", "and", "freq", "!=", "inferred_freq", ":", "raise", "ValueError", "(", "'Inferred frequency {inferred} from passed '", "'values does not conform to passed frequency '", "'{passed}'", ".", "format", "(", "inferred", "=", "inferred_freq", ",", "passed", "=", "freq", ".", "freqstr", ")", ")", "elif", "freq", "is", "None", ":", "freq", "=", "inferred_freq", "freq_infer", "=", "False", "return", "freq", ",", "freq_infer" ]
If the user passes a freq and another freq is inferred from passed data, require that they match. Parameters ---------- freq : DateOffset or None inferred_freq : DateOffset or None freq_infer : bool Returns ------- freq : DateOffset or None freq_infer : bool Notes ----- We assume at this point that `maybe_infer_freq` has been called, so `freq` is either a DateOffset object or None.
[ "If", "the", "user", "passes", "a", "freq", "and", "another", "freq", "is", "inferred", "from", "passed", "data", "require", "that", "they", "match", "." ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/arrays/datetimelike.py#L1501-L1533
19,969
pandas-dev/pandas
pandas/core/arrays/datetimelike.py
maybe_infer_freq
def maybe_infer_freq(freq): """ Comparing a DateOffset to the string "infer" raises, so we need to be careful about comparisons. Make a dummy variable `freq_infer` to signify the case where the given freq is "infer" and set freq to None to avoid comparison trouble later on. Parameters ---------- freq : {DateOffset, None, str} Returns ------- freq : {DateOffset, None} freq_infer : bool """ freq_infer = False if not isinstance(freq, DateOffset): # if a passed freq is None, don't infer automatically if freq != 'infer': freq = frequencies.to_offset(freq) else: freq_infer = True freq = None return freq, freq_infer
python
def maybe_infer_freq(freq): """ Comparing a DateOffset to the string "infer" raises, so we need to be careful about comparisons. Make a dummy variable `freq_infer` to signify the case where the given freq is "infer" and set freq to None to avoid comparison trouble later on. Parameters ---------- freq : {DateOffset, None, str} Returns ------- freq : {DateOffset, None} freq_infer : bool """ freq_infer = False if not isinstance(freq, DateOffset): # if a passed freq is None, don't infer automatically if freq != 'infer': freq = frequencies.to_offset(freq) else: freq_infer = True freq = None return freq, freq_infer
[ "def", "maybe_infer_freq", "(", "freq", ")", ":", "freq_infer", "=", "False", "if", "not", "isinstance", "(", "freq", ",", "DateOffset", ")", ":", "# if a passed freq is None, don't infer automatically", "if", "freq", "!=", "'infer'", ":", "freq", "=", "frequencies", ".", "to_offset", "(", "freq", ")", "else", ":", "freq_infer", "=", "True", "freq", "=", "None", "return", "freq", ",", "freq_infer" ]
Comparing a DateOffset to the string "infer" raises, so we need to be careful about comparisons. Make a dummy variable `freq_infer` to signify the case where the given freq is "infer" and set freq to None to avoid comparison trouble later on. Parameters ---------- freq : {DateOffset, None, str} Returns ------- freq : {DateOffset, None} freq_infer : bool
[ "Comparing", "a", "DateOffset", "to", "the", "string", "infer", "raises", "so", "we", "need", "to", "be", "careful", "about", "comparisons", ".", "Make", "a", "dummy", "variable", "freq_infer", "to", "signify", "the", "case", "where", "the", "given", "freq", "is", "infer", "and", "set", "freq", "to", "None", "to", "avoid", "comparison", "trouble", "later", "on", "." ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/arrays/datetimelike.py#L1536-L1560
19,970
pandas-dev/pandas
pandas/core/arrays/datetimelike.py
_ensure_datetimelike_to_i8
def _ensure_datetimelike_to_i8(other, to_utc=False): """ Helper for coercing an input scalar or array to i8. Parameters ---------- other : 1d array to_utc : bool, default False If True, convert the values to UTC before extracting the i8 values If False, extract the i8 values directly. Returns ------- i8 1d array """ from pandas import Index from pandas.core.arrays import PeriodArray if lib.is_scalar(other) and isna(other): return iNaT elif isinstance(other, (PeriodArray, ABCIndexClass, DatetimeLikeArrayMixin)): # convert tz if needed if getattr(other, 'tz', None) is not None: if to_utc: other = other.tz_convert('UTC') else: other = other.tz_localize(None) else: try: return np.array(other, copy=False).view('i8') except TypeError: # period array cannot be coerced to int other = Index(other) return other.asi8
python
def _ensure_datetimelike_to_i8(other, to_utc=False): """ Helper for coercing an input scalar or array to i8. Parameters ---------- other : 1d array to_utc : bool, default False If True, convert the values to UTC before extracting the i8 values If False, extract the i8 values directly. Returns ------- i8 1d array """ from pandas import Index from pandas.core.arrays import PeriodArray if lib.is_scalar(other) and isna(other): return iNaT elif isinstance(other, (PeriodArray, ABCIndexClass, DatetimeLikeArrayMixin)): # convert tz if needed if getattr(other, 'tz', None) is not None: if to_utc: other = other.tz_convert('UTC') else: other = other.tz_localize(None) else: try: return np.array(other, copy=False).view('i8') except TypeError: # period array cannot be coerced to int other = Index(other) return other.asi8
[ "def", "_ensure_datetimelike_to_i8", "(", "other", ",", "to_utc", "=", "False", ")", ":", "from", "pandas", "import", "Index", "from", "pandas", ".", "core", ".", "arrays", "import", "PeriodArray", "if", "lib", ".", "is_scalar", "(", "other", ")", "and", "isna", "(", "other", ")", ":", "return", "iNaT", "elif", "isinstance", "(", "other", ",", "(", "PeriodArray", ",", "ABCIndexClass", ",", "DatetimeLikeArrayMixin", ")", ")", ":", "# convert tz if needed", "if", "getattr", "(", "other", ",", "'tz'", ",", "None", ")", "is", "not", "None", ":", "if", "to_utc", ":", "other", "=", "other", ".", "tz_convert", "(", "'UTC'", ")", "else", ":", "other", "=", "other", ".", "tz_localize", "(", "None", ")", "else", ":", "try", ":", "return", "np", ".", "array", "(", "other", ",", "copy", "=", "False", ")", ".", "view", "(", "'i8'", ")", "except", "TypeError", ":", "# period array cannot be coerced to int", "other", "=", "Index", "(", "other", ")", "return", "other", ".", "asi8" ]
Helper for coercing an input scalar or array to i8. Parameters ---------- other : 1d array to_utc : bool, default False If True, convert the values to UTC before extracting the i8 values If False, extract the i8 values directly. Returns ------- i8 1d array
[ "Helper", "for", "coercing", "an", "input", "scalar", "or", "array", "to", "i8", "." ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/arrays/datetimelike.py#L1563-L1597
19,971
pandas-dev/pandas
pandas/core/arrays/datetimelike.py
AttributesMixin._scalar_from_string
def _scalar_from_string( self, value: str, ) -> Union[Period, Timestamp, Timedelta, NaTType]: """ Construct a scalar type from a string. Parameters ---------- value : str Returns ------- Period, Timestamp, or Timedelta, or NaT Whatever the type of ``self._scalar_type`` is. Notes ----- This should call ``self._check_compatible_with`` before unboxing the result. """ raise AbstractMethodError(self)
python
def _scalar_from_string( self, value: str, ) -> Union[Period, Timestamp, Timedelta, NaTType]: """ Construct a scalar type from a string. Parameters ---------- value : str Returns ------- Period, Timestamp, or Timedelta, or NaT Whatever the type of ``self._scalar_type`` is. Notes ----- This should call ``self._check_compatible_with`` before unboxing the result. """ raise AbstractMethodError(self)
[ "def", "_scalar_from_string", "(", "self", ",", "value", ":", "str", ",", ")", "->", "Union", "[", "Period", ",", "Timestamp", ",", "Timedelta", ",", "NaTType", "]", ":", "raise", "AbstractMethodError", "(", "self", ")" ]
Construct a scalar type from a string. Parameters ---------- value : str Returns ------- Period, Timestamp, or Timedelta, or NaT Whatever the type of ``self._scalar_type`` is. Notes ----- This should call ``self._check_compatible_with`` before unboxing the result.
[ "Construct", "a", "scalar", "type", "from", "a", "string", "." ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/arrays/datetimelike.py#L68-L89
19,972
pandas-dev/pandas
pandas/core/arrays/datetimelike.py
AttributesMixin._unbox_scalar
def _unbox_scalar( self, value: Union[Period, Timestamp, Timedelta, NaTType], ) -> int: """ Unbox the integer value of a scalar `value`. Parameters ---------- value : Union[Period, Timestamp, Timedelta] Returns ------- int Examples -------- >>> self._unbox_scalar(Timedelta('10s')) # DOCTEST: +SKIP 10000000000 """ raise AbstractMethodError(self)
python
def _unbox_scalar( self, value: Union[Period, Timestamp, Timedelta, NaTType], ) -> int: """ Unbox the integer value of a scalar `value`. Parameters ---------- value : Union[Period, Timestamp, Timedelta] Returns ------- int Examples -------- >>> self._unbox_scalar(Timedelta('10s')) # DOCTEST: +SKIP 10000000000 """ raise AbstractMethodError(self)
[ "def", "_unbox_scalar", "(", "self", ",", "value", ":", "Union", "[", "Period", ",", "Timestamp", ",", "Timedelta", ",", "NaTType", "]", ",", ")", "->", "int", ":", "raise", "AbstractMethodError", "(", "self", ")" ]
Unbox the integer value of a scalar `value`. Parameters ---------- value : Union[Period, Timestamp, Timedelta] Returns ------- int Examples -------- >>> self._unbox_scalar(Timedelta('10s')) # DOCTEST: +SKIP 10000000000
[ "Unbox", "the", "integer", "value", "of", "a", "scalar", "value", "." ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/arrays/datetimelike.py#L91-L111
19,973
pandas-dev/pandas
pandas/core/arrays/datetimelike.py
AttributesMixin._check_compatible_with
def _check_compatible_with( self, other: Union[Period, Timestamp, Timedelta, NaTType], ) -> None: """ Verify that `self` and `other` are compatible. * DatetimeArray verifies that the timezones (if any) match * PeriodArray verifies that the freq matches * Timedelta has no verification In each case, NaT is considered compatible. Parameters ---------- other Raises ------ Exception """ raise AbstractMethodError(self)
python
def _check_compatible_with( self, other: Union[Period, Timestamp, Timedelta, NaTType], ) -> None: """ Verify that `self` and `other` are compatible. * DatetimeArray verifies that the timezones (if any) match * PeriodArray verifies that the freq matches * Timedelta has no verification In each case, NaT is considered compatible. Parameters ---------- other Raises ------ Exception """ raise AbstractMethodError(self)
[ "def", "_check_compatible_with", "(", "self", ",", "other", ":", "Union", "[", "Period", ",", "Timestamp", ",", "Timedelta", ",", "NaTType", "]", ",", ")", "->", "None", ":", "raise", "AbstractMethodError", "(", "self", ")" ]
Verify that `self` and `other` are compatible. * DatetimeArray verifies that the timezones (if any) match * PeriodArray verifies that the freq matches * Timedelta has no verification In each case, NaT is considered compatible. Parameters ---------- other Raises ------ Exception
[ "Verify", "that", "self", "and", "other", "are", "compatible", "." ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/arrays/datetimelike.py#L113-L134
19,974
pandas-dev/pandas
pandas/core/arrays/datetimelike.py
DatelikeOps.strftime
def strftime(self, date_format): """ Convert to Index using specified date_format. Return an Index of formatted strings specified by date_format, which supports the same string format as the python standard library. Details of the string format can be found in `python string format doc <%(URL)s>`__. Parameters ---------- date_format : str Date format string (e.g. "%%Y-%%m-%%d"). Returns ------- Index Index of formatted strings. See Also -------- to_datetime : Convert the given argument to datetime. DatetimeIndex.normalize : Return DatetimeIndex with times to midnight. DatetimeIndex.round : Round the DatetimeIndex to the specified freq. DatetimeIndex.floor : Floor the DatetimeIndex to the specified freq. Examples -------- >>> rng = pd.date_range(pd.Timestamp("2018-03-10 09:00"), ... periods=3, freq='s') >>> rng.strftime('%%B %%d, %%Y, %%r') Index(['March 10, 2018, 09:00:00 AM', 'March 10, 2018, 09:00:01 AM', 'March 10, 2018, 09:00:02 AM'], dtype='object') """ from pandas import Index return Index(self._format_native_types(date_format=date_format))
python
def strftime(self, date_format): """ Convert to Index using specified date_format. Return an Index of formatted strings specified by date_format, which supports the same string format as the python standard library. Details of the string format can be found in `python string format doc <%(URL)s>`__. Parameters ---------- date_format : str Date format string (e.g. "%%Y-%%m-%%d"). Returns ------- Index Index of formatted strings. See Also -------- to_datetime : Convert the given argument to datetime. DatetimeIndex.normalize : Return DatetimeIndex with times to midnight. DatetimeIndex.round : Round the DatetimeIndex to the specified freq. DatetimeIndex.floor : Floor the DatetimeIndex to the specified freq. Examples -------- >>> rng = pd.date_range(pd.Timestamp("2018-03-10 09:00"), ... periods=3, freq='s') >>> rng.strftime('%%B %%d, %%Y, %%r') Index(['March 10, 2018, 09:00:00 AM', 'March 10, 2018, 09:00:01 AM', 'March 10, 2018, 09:00:02 AM'], dtype='object') """ from pandas import Index return Index(self._format_native_types(date_format=date_format))
[ "def", "strftime", "(", "self", ",", "date_format", ")", ":", "from", "pandas", "import", "Index", "return", "Index", "(", "self", ".", "_format_native_types", "(", "date_format", "=", "date_format", ")", ")" ]
Convert to Index using specified date_format. Return an Index of formatted strings specified by date_format, which supports the same string format as the python standard library. Details of the string format can be found in `python string format doc <%(URL)s>`__. Parameters ---------- date_format : str Date format string (e.g. "%%Y-%%m-%%d"). Returns ------- Index Index of formatted strings. See Also -------- to_datetime : Convert the given argument to datetime. DatetimeIndex.normalize : Return DatetimeIndex with times to midnight. DatetimeIndex.round : Round the DatetimeIndex to the specified freq. DatetimeIndex.floor : Floor the DatetimeIndex to the specified freq. Examples -------- >>> rng = pd.date_range(pd.Timestamp("2018-03-10 09:00"), ... periods=3, freq='s') >>> rng.strftime('%%B %%d, %%Y, %%r') Index(['March 10, 2018, 09:00:00 AM', 'March 10, 2018, 09:00:01 AM', 'March 10, 2018, 09:00:02 AM'], dtype='object')
[ "Convert", "to", "Index", "using", "specified", "date_format", "." ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/arrays/datetimelike.py#L144-L180
19,975
pandas-dev/pandas
pandas/core/arrays/datetimelike.py
DatetimeLikeArrayMixin.repeat
def repeat(self, repeats, *args, **kwargs): """ Repeat elements of an array. See Also -------- numpy.ndarray.repeat """ nv.validate_repeat(args, kwargs) values = self._data.repeat(repeats) return type(self)(values.view('i8'), dtype=self.dtype)
python
def repeat(self, repeats, *args, **kwargs): """ Repeat elements of an array. See Also -------- numpy.ndarray.repeat """ nv.validate_repeat(args, kwargs) values = self._data.repeat(repeats) return type(self)(values.view('i8'), dtype=self.dtype)
[ "def", "repeat", "(", "self", ",", "repeats", ",", "*", "args", ",", "*", "*", "kwargs", ")", ":", "nv", ".", "validate_repeat", "(", "args", ",", "kwargs", ")", "values", "=", "self", ".", "_data", ".", "repeat", "(", "repeats", ")", "return", "type", "(", "self", ")", "(", "values", ".", "view", "(", "'i8'", ")", ",", "dtype", "=", "self", ".", "dtype", ")" ]
Repeat elements of an array. See Also -------- numpy.ndarray.repeat
[ "Repeat", "elements", "of", "an", "array", "." ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/arrays/datetimelike.py#L668-L678
19,976
pandas-dev/pandas
pandas/core/arrays/datetimelike.py
DatetimeLikeArrayMixin._add_delta
def _add_delta(self, other): """ Add a timedelta-like, Tick or TimedeltaIndex-like object to self, yielding an int64 numpy array Parameters ---------- delta : {timedelta, np.timedelta64, Tick, TimedeltaIndex, ndarray[timedelta64]} Returns ------- result : ndarray[int64] Notes ----- The result's name is set outside of _add_delta by the calling method (__add__ or __sub__), if necessary (i.e. for Indexes). """ if isinstance(other, (Tick, timedelta, np.timedelta64)): new_values = self._add_timedeltalike_scalar(other) elif is_timedelta64_dtype(other): # ndarray[timedelta64] or TimedeltaArray/index new_values = self._add_delta_tdi(other) return new_values
python
def _add_delta(self, other): """ Add a timedelta-like, Tick or TimedeltaIndex-like object to self, yielding an int64 numpy array Parameters ---------- delta : {timedelta, np.timedelta64, Tick, TimedeltaIndex, ndarray[timedelta64]} Returns ------- result : ndarray[int64] Notes ----- The result's name is set outside of _add_delta by the calling method (__add__ or __sub__), if necessary (i.e. for Indexes). """ if isinstance(other, (Tick, timedelta, np.timedelta64)): new_values = self._add_timedeltalike_scalar(other) elif is_timedelta64_dtype(other): # ndarray[timedelta64] or TimedeltaArray/index new_values = self._add_delta_tdi(other) return new_values
[ "def", "_add_delta", "(", "self", ",", "other", ")", ":", "if", "isinstance", "(", "other", ",", "(", "Tick", ",", "timedelta", ",", "np", ".", "timedelta64", ")", ")", ":", "new_values", "=", "self", ".", "_add_timedeltalike_scalar", "(", "other", ")", "elif", "is_timedelta64_dtype", "(", "other", ")", ":", "# ndarray[timedelta64] or TimedeltaArray/index", "new_values", "=", "self", ".", "_add_delta_tdi", "(", "other", ")", "return", "new_values" ]
Add a timedelta-like, Tick or TimedeltaIndex-like object to self, yielding an int64 numpy array Parameters ---------- delta : {timedelta, np.timedelta64, Tick, TimedeltaIndex, ndarray[timedelta64]} Returns ------- result : ndarray[int64] Notes ----- The result's name is set outside of _add_delta by the calling method (__add__ or __sub__), if necessary (i.e. for Indexes).
[ "Add", "a", "timedelta", "-", "like", "Tick", "or", "TimedeltaIndex", "-", "like", "object", "to", "self", "yielding", "an", "int64", "numpy", "array" ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/arrays/datetimelike.py#L942-L967
19,977
pandas-dev/pandas
pandas/core/arrays/datetimelike.py
DatetimeLikeArrayMixin._add_timedeltalike_scalar
def _add_timedeltalike_scalar(self, other): """ Add a delta of a timedeltalike return the i8 result view """ if isna(other): # i.e np.timedelta64("NaT"), not recognized by delta_to_nanoseconds new_values = np.empty(len(self), dtype='i8') new_values[:] = iNaT return new_values inc = delta_to_nanoseconds(other) new_values = checked_add_with_arr(self.asi8, inc, arr_mask=self._isnan).view('i8') new_values = self._maybe_mask_results(new_values) return new_values.view('i8')
python
def _add_timedeltalike_scalar(self, other): """ Add a delta of a timedeltalike return the i8 result view """ if isna(other): # i.e np.timedelta64("NaT"), not recognized by delta_to_nanoseconds new_values = np.empty(len(self), dtype='i8') new_values[:] = iNaT return new_values inc = delta_to_nanoseconds(other) new_values = checked_add_with_arr(self.asi8, inc, arr_mask=self._isnan).view('i8') new_values = self._maybe_mask_results(new_values) return new_values.view('i8')
[ "def", "_add_timedeltalike_scalar", "(", "self", ",", "other", ")", ":", "if", "isna", "(", "other", ")", ":", "# i.e np.timedelta64(\"NaT\"), not recognized by delta_to_nanoseconds", "new_values", "=", "np", ".", "empty", "(", "len", "(", "self", ")", ",", "dtype", "=", "'i8'", ")", "new_values", "[", ":", "]", "=", "iNaT", "return", "new_values", "inc", "=", "delta_to_nanoseconds", "(", "other", ")", "new_values", "=", "checked_add_with_arr", "(", "self", ".", "asi8", ",", "inc", ",", "arr_mask", "=", "self", ".", "_isnan", ")", ".", "view", "(", "'i8'", ")", "new_values", "=", "self", ".", "_maybe_mask_results", "(", "new_values", ")", "return", "new_values", ".", "view", "(", "'i8'", ")" ]
Add a delta of a timedeltalike return the i8 result view
[ "Add", "a", "delta", "of", "a", "timedeltalike", "return", "the", "i8", "result", "view" ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/arrays/datetimelike.py#L969-L984
19,978
pandas-dev/pandas
pandas/core/arrays/datetimelike.py
DatetimeLikeArrayMixin._add_delta_tdi
def _add_delta_tdi(self, other): """ Add a delta of a TimedeltaIndex return the i8 result view """ if len(self) != len(other): raise ValueError("cannot add indices of unequal length") if isinstance(other, np.ndarray): # ndarray[timedelta64]; wrap in TimedeltaIndex for op from pandas import TimedeltaIndex other = TimedeltaIndex(other) self_i8 = self.asi8 other_i8 = other.asi8 new_values = checked_add_with_arr(self_i8, other_i8, arr_mask=self._isnan, b_mask=other._isnan) if self._hasnans or other._hasnans: mask = (self._isnan) | (other._isnan) new_values[mask] = iNaT return new_values.view('i8')
python
def _add_delta_tdi(self, other): """ Add a delta of a TimedeltaIndex return the i8 result view """ if len(self) != len(other): raise ValueError("cannot add indices of unequal length") if isinstance(other, np.ndarray): # ndarray[timedelta64]; wrap in TimedeltaIndex for op from pandas import TimedeltaIndex other = TimedeltaIndex(other) self_i8 = self.asi8 other_i8 = other.asi8 new_values = checked_add_with_arr(self_i8, other_i8, arr_mask=self._isnan, b_mask=other._isnan) if self._hasnans or other._hasnans: mask = (self._isnan) | (other._isnan) new_values[mask] = iNaT return new_values.view('i8')
[ "def", "_add_delta_tdi", "(", "self", ",", "other", ")", ":", "if", "len", "(", "self", ")", "!=", "len", "(", "other", ")", ":", "raise", "ValueError", "(", "\"cannot add indices of unequal length\"", ")", "if", "isinstance", "(", "other", ",", "np", ".", "ndarray", ")", ":", "# ndarray[timedelta64]; wrap in TimedeltaIndex for op", "from", "pandas", "import", "TimedeltaIndex", "other", "=", "TimedeltaIndex", "(", "other", ")", "self_i8", "=", "self", ".", "asi8", "other_i8", "=", "other", ".", "asi8", "new_values", "=", "checked_add_with_arr", "(", "self_i8", ",", "other_i8", ",", "arr_mask", "=", "self", ".", "_isnan", ",", "b_mask", "=", "other", ".", "_isnan", ")", "if", "self", ".", "_hasnans", "or", "other", ".", "_hasnans", ":", "mask", "=", "(", "self", ".", "_isnan", ")", "|", "(", "other", ".", "_isnan", ")", "new_values", "[", "mask", "]", "=", "iNaT", "return", "new_values", ".", "view", "(", "'i8'", ")" ]
Add a delta of a TimedeltaIndex return the i8 result view
[ "Add", "a", "delta", "of", "a", "TimedeltaIndex", "return", "the", "i8", "result", "view" ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/arrays/datetimelike.py#L986-L1007
19,979
pandas-dev/pandas
pandas/core/arrays/datetimelike.py
DatetimeLikeArrayMixin._add_nat
def _add_nat(self): """ Add pd.NaT to self """ if is_period_dtype(self): raise TypeError('Cannot add {cls} and {typ}' .format(cls=type(self).__name__, typ=type(NaT).__name__)) # GH#19124 pd.NaT is treated like a timedelta for both timedelta # and datetime dtypes result = np.zeros(len(self), dtype=np.int64) result.fill(iNaT) return type(self)(result, dtype=self.dtype, freq=None)
python
def _add_nat(self): """ Add pd.NaT to self """ if is_period_dtype(self): raise TypeError('Cannot add {cls} and {typ}' .format(cls=type(self).__name__, typ=type(NaT).__name__)) # GH#19124 pd.NaT is treated like a timedelta for both timedelta # and datetime dtypes result = np.zeros(len(self), dtype=np.int64) result.fill(iNaT) return type(self)(result, dtype=self.dtype, freq=None)
[ "def", "_add_nat", "(", "self", ")", ":", "if", "is_period_dtype", "(", "self", ")", ":", "raise", "TypeError", "(", "'Cannot add {cls} and {typ}'", ".", "format", "(", "cls", "=", "type", "(", "self", ")", ".", "__name__", ",", "typ", "=", "type", "(", "NaT", ")", ".", "__name__", ")", ")", "# GH#19124 pd.NaT is treated like a timedelta for both timedelta", "# and datetime dtypes", "result", "=", "np", ".", "zeros", "(", "len", "(", "self", ")", ",", "dtype", "=", "np", ".", "int64", ")", "result", ".", "fill", "(", "iNaT", ")", "return", "type", "(", "self", ")", "(", "result", ",", "dtype", "=", "self", ".", "dtype", ",", "freq", "=", "None", ")" ]
Add pd.NaT to self
[ "Add", "pd", ".", "NaT", "to", "self" ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/arrays/datetimelike.py#L1009-L1022
19,980
pandas-dev/pandas
pandas/core/arrays/datetimelike.py
DatetimeLikeArrayMixin._sub_nat
def _sub_nat(self): """ Subtract pd.NaT from self """ # GH#19124 Timedelta - datetime is not in general well-defined. # We make an exception for pd.NaT, which in this case quacks # like a timedelta. # For datetime64 dtypes by convention we treat NaT as a datetime, so # this subtraction returns a timedelta64 dtype. # For period dtype, timedelta64 is a close-enough return dtype. result = np.zeros(len(self), dtype=np.int64) result.fill(iNaT) return result.view('timedelta64[ns]')
python
def _sub_nat(self): """ Subtract pd.NaT from self """ # GH#19124 Timedelta - datetime is not in general well-defined. # We make an exception for pd.NaT, which in this case quacks # like a timedelta. # For datetime64 dtypes by convention we treat NaT as a datetime, so # this subtraction returns a timedelta64 dtype. # For period dtype, timedelta64 is a close-enough return dtype. result = np.zeros(len(self), dtype=np.int64) result.fill(iNaT) return result.view('timedelta64[ns]')
[ "def", "_sub_nat", "(", "self", ")", ":", "# GH#19124 Timedelta - datetime is not in general well-defined.", "# We make an exception for pd.NaT, which in this case quacks", "# like a timedelta.", "# For datetime64 dtypes by convention we treat NaT as a datetime, so", "# this subtraction returns a timedelta64 dtype.", "# For period dtype, timedelta64 is a close-enough return dtype.", "result", "=", "np", ".", "zeros", "(", "len", "(", "self", ")", ",", "dtype", "=", "np", ".", "int64", ")", "result", ".", "fill", "(", "iNaT", ")", "return", "result", ".", "view", "(", "'timedelta64[ns]'", ")" ]
Subtract pd.NaT from self
[ "Subtract", "pd", ".", "NaT", "from", "self" ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/arrays/datetimelike.py#L1024-L1036
19,981
pandas-dev/pandas
pandas/core/arrays/datetimelike.py
DatetimeLikeArrayMixin._addsub_int_array
def _addsub_int_array(self, other, op): """ Add or subtract array-like of integers equivalent to applying `_time_shift` pointwise. Parameters ---------- other : Index, ExtensionArray, np.ndarray integer-dtype op : {operator.add, operator.sub} Returns ------- result : same class as self """ # _addsub_int_array is overriden by PeriodArray assert not is_period_dtype(self) assert op in [operator.add, operator.sub] if self.freq is None: # GH#19123 raise NullFrequencyError("Cannot shift with no freq") elif isinstance(self.freq, Tick): # easy case where we can convert to timedelta64 operation td = Timedelta(self.freq) return op(self, td * other) # We should only get here with DatetimeIndex; dispatch # to _addsub_offset_array assert not is_timedelta64_dtype(self) return op(self, np.array(other) * self.freq)
python
def _addsub_int_array(self, other, op): """ Add or subtract array-like of integers equivalent to applying `_time_shift` pointwise. Parameters ---------- other : Index, ExtensionArray, np.ndarray integer-dtype op : {operator.add, operator.sub} Returns ------- result : same class as self """ # _addsub_int_array is overriden by PeriodArray assert not is_period_dtype(self) assert op in [operator.add, operator.sub] if self.freq is None: # GH#19123 raise NullFrequencyError("Cannot shift with no freq") elif isinstance(self.freq, Tick): # easy case where we can convert to timedelta64 operation td = Timedelta(self.freq) return op(self, td * other) # We should only get here with DatetimeIndex; dispatch # to _addsub_offset_array assert not is_timedelta64_dtype(self) return op(self, np.array(other) * self.freq)
[ "def", "_addsub_int_array", "(", "self", ",", "other", ",", "op", ")", ":", "# _addsub_int_array is overriden by PeriodArray", "assert", "not", "is_period_dtype", "(", "self", ")", "assert", "op", "in", "[", "operator", ".", "add", ",", "operator", ".", "sub", "]", "if", "self", ".", "freq", "is", "None", ":", "# GH#19123", "raise", "NullFrequencyError", "(", "\"Cannot shift with no freq\"", ")", "elif", "isinstance", "(", "self", ".", "freq", ",", "Tick", ")", ":", "# easy case where we can convert to timedelta64 operation", "td", "=", "Timedelta", "(", "self", ".", "freq", ")", "return", "op", "(", "self", ",", "td", "*", "other", ")", "# We should only get here with DatetimeIndex; dispatch", "# to _addsub_offset_array", "assert", "not", "is_timedelta64_dtype", "(", "self", ")", "return", "op", "(", "self", ",", "np", ".", "array", "(", "other", ")", "*", "self", ".", "freq", ")" ]
Add or subtract array-like of integers equivalent to applying `_time_shift` pointwise. Parameters ---------- other : Index, ExtensionArray, np.ndarray integer-dtype op : {operator.add, operator.sub} Returns ------- result : same class as self
[ "Add", "or", "subtract", "array", "-", "like", "of", "integers", "equivalent", "to", "applying", "_time_shift", "pointwise", "." ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/arrays/datetimelike.py#L1077-L1108
19,982
pandas-dev/pandas
pandas/core/arrays/datetimelike.py
DatetimeLikeArrayMixin._addsub_offset_array
def _addsub_offset_array(self, other, op): """ Add or subtract array-like of DateOffset objects Parameters ---------- other : Index, np.ndarray object-dtype containing pd.DateOffset objects op : {operator.add, operator.sub} Returns ------- result : same class as self """ assert op in [operator.add, operator.sub] if len(other) == 1: return op(self, other[0]) warnings.warn("Adding/subtracting array of DateOffsets to " "{cls} not vectorized" .format(cls=type(self).__name__), PerformanceWarning) # For EA self.astype('O') returns a numpy array, not an Index left = lib.values_from_object(self.astype('O')) res_values = op(left, np.array(other)) kwargs = {} if not is_period_dtype(self): kwargs['freq'] = 'infer' return self._from_sequence(res_values, **kwargs)
python
def _addsub_offset_array(self, other, op): """ Add or subtract array-like of DateOffset objects Parameters ---------- other : Index, np.ndarray object-dtype containing pd.DateOffset objects op : {operator.add, operator.sub} Returns ------- result : same class as self """ assert op in [operator.add, operator.sub] if len(other) == 1: return op(self, other[0]) warnings.warn("Adding/subtracting array of DateOffsets to " "{cls} not vectorized" .format(cls=type(self).__name__), PerformanceWarning) # For EA self.astype('O') returns a numpy array, not an Index left = lib.values_from_object(self.astype('O')) res_values = op(left, np.array(other)) kwargs = {} if not is_period_dtype(self): kwargs['freq'] = 'infer' return self._from_sequence(res_values, **kwargs)
[ "def", "_addsub_offset_array", "(", "self", ",", "other", ",", "op", ")", ":", "assert", "op", "in", "[", "operator", ".", "add", ",", "operator", ".", "sub", "]", "if", "len", "(", "other", ")", "==", "1", ":", "return", "op", "(", "self", ",", "other", "[", "0", "]", ")", "warnings", ".", "warn", "(", "\"Adding/subtracting array of DateOffsets to \"", "\"{cls} not vectorized\"", ".", "format", "(", "cls", "=", "type", "(", "self", ")", ".", "__name__", ")", ",", "PerformanceWarning", ")", "# For EA self.astype('O') returns a numpy array, not an Index", "left", "=", "lib", ".", "values_from_object", "(", "self", ".", "astype", "(", "'O'", ")", ")", "res_values", "=", "op", "(", "left", ",", "np", ".", "array", "(", "other", ")", ")", "kwargs", "=", "{", "}", "if", "not", "is_period_dtype", "(", "self", ")", ":", "kwargs", "[", "'freq'", "]", "=", "'infer'", "return", "self", ".", "_from_sequence", "(", "res_values", ",", "*", "*", "kwargs", ")" ]
Add or subtract array-like of DateOffset objects Parameters ---------- other : Index, np.ndarray object-dtype containing pd.DateOffset objects op : {operator.add, operator.sub} Returns ------- result : same class as self
[ "Add", "or", "subtract", "array", "-", "like", "of", "DateOffset", "objects" ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/arrays/datetimelike.py#L1110-L1139
19,983
pandas-dev/pandas
pandas/core/arrays/datetimelike.py
DatetimeLikeArrayMixin._ensure_localized
def _ensure_localized(self, arg, ambiguous='raise', nonexistent='raise', from_utc=False): """ Ensure that we are re-localized. This is for compat as we can then call this on all datetimelike arrays generally (ignored for Period/Timedelta) Parameters ---------- arg : Union[DatetimeLikeArray, DatetimeIndexOpsMixin, ndarray] ambiguous : str, bool, or bool-ndarray, default 'raise' nonexistent : str, default 'raise' from_utc : bool, default False If True, localize the i8 ndarray to UTC first before converting to the appropriate tz. If False, localize directly to the tz. Returns ------- localized array """ # reconvert to local tz tz = getattr(self, 'tz', None) if tz is not None: if not isinstance(arg, type(self)): arg = self._simple_new(arg) if from_utc: arg = arg.tz_localize('UTC').tz_convert(self.tz) else: arg = arg.tz_localize( self.tz, ambiguous=ambiguous, nonexistent=nonexistent ) return arg
python
def _ensure_localized(self, arg, ambiguous='raise', nonexistent='raise', from_utc=False): """ Ensure that we are re-localized. This is for compat as we can then call this on all datetimelike arrays generally (ignored for Period/Timedelta) Parameters ---------- arg : Union[DatetimeLikeArray, DatetimeIndexOpsMixin, ndarray] ambiguous : str, bool, or bool-ndarray, default 'raise' nonexistent : str, default 'raise' from_utc : bool, default False If True, localize the i8 ndarray to UTC first before converting to the appropriate tz. If False, localize directly to the tz. Returns ------- localized array """ # reconvert to local tz tz = getattr(self, 'tz', None) if tz is not None: if not isinstance(arg, type(self)): arg = self._simple_new(arg) if from_utc: arg = arg.tz_localize('UTC').tz_convert(self.tz) else: arg = arg.tz_localize( self.tz, ambiguous=ambiguous, nonexistent=nonexistent ) return arg
[ "def", "_ensure_localized", "(", "self", ",", "arg", ",", "ambiguous", "=", "'raise'", ",", "nonexistent", "=", "'raise'", ",", "from_utc", "=", "False", ")", ":", "# reconvert to local tz", "tz", "=", "getattr", "(", "self", ",", "'tz'", ",", "None", ")", "if", "tz", "is", "not", "None", ":", "if", "not", "isinstance", "(", "arg", ",", "type", "(", "self", ")", ")", ":", "arg", "=", "self", ".", "_simple_new", "(", "arg", ")", "if", "from_utc", ":", "arg", "=", "arg", ".", "tz_localize", "(", "'UTC'", ")", ".", "tz_convert", "(", "self", ".", "tz", ")", "else", ":", "arg", "=", "arg", ".", "tz_localize", "(", "self", ".", "tz", ",", "ambiguous", "=", "ambiguous", ",", "nonexistent", "=", "nonexistent", ")", "return", "arg" ]
Ensure that we are re-localized. This is for compat as we can then call this on all datetimelike arrays generally (ignored for Period/Timedelta) Parameters ---------- arg : Union[DatetimeLikeArray, DatetimeIndexOpsMixin, ndarray] ambiguous : str, bool, or bool-ndarray, default 'raise' nonexistent : str, default 'raise' from_utc : bool, default False If True, localize the i8 ndarray to UTC first before converting to the appropriate tz. If False, localize directly to the tz. Returns ------- localized array
[ "Ensure", "that", "we", "are", "re", "-", "localized", "." ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/arrays/datetimelike.py#L1340-L1373
19,984
pandas-dev/pandas
pandas/core/arrays/datetimelike.py
DatetimeLikeArrayMixin.min
def min(self, axis=None, skipna=True, *args, **kwargs): """ Return the minimum value of the Array or minimum along an axis. See Also -------- numpy.ndarray.min Index.min : Return the minimum value in an Index. Series.min : Return the minimum value in a Series. """ nv.validate_min(args, kwargs) nv.validate_minmax_axis(axis) result = nanops.nanmin(self.asi8, skipna=skipna, mask=self.isna()) if isna(result): # Period._from_ordinal does not handle np.nan gracefully return NaT return self._box_func(result)
python
def min(self, axis=None, skipna=True, *args, **kwargs): """ Return the minimum value of the Array or minimum along an axis. See Also -------- numpy.ndarray.min Index.min : Return the minimum value in an Index. Series.min : Return the minimum value in a Series. """ nv.validate_min(args, kwargs) nv.validate_minmax_axis(axis) result = nanops.nanmin(self.asi8, skipna=skipna, mask=self.isna()) if isna(result): # Period._from_ordinal does not handle np.nan gracefully return NaT return self._box_func(result)
[ "def", "min", "(", "self", ",", "axis", "=", "None", ",", "skipna", "=", "True", ",", "*", "args", ",", "*", "*", "kwargs", ")", ":", "nv", ".", "validate_min", "(", "args", ",", "kwargs", ")", "nv", ".", "validate_minmax_axis", "(", "axis", ")", "result", "=", "nanops", ".", "nanmin", "(", "self", ".", "asi8", ",", "skipna", "=", "skipna", ",", "mask", "=", "self", ".", "isna", "(", ")", ")", "if", "isna", "(", "result", ")", ":", "# Period._from_ordinal does not handle np.nan gracefully", "return", "NaT", "return", "self", ".", "_box_func", "(", "result", ")" ]
Return the minimum value of the Array or minimum along an axis. See Also -------- numpy.ndarray.min Index.min : Return the minimum value in an Index. Series.min : Return the minimum value in a Series.
[ "Return", "the", "minimum", "value", "of", "the", "Array", "or", "minimum", "along", "an", "axis", "." ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/arrays/datetimelike.py#L1385-L1403
19,985
pandas-dev/pandas
pandas/core/arrays/datetimelike.py
DatetimeLikeArrayMixin.max
def max(self, axis=None, skipna=True, *args, **kwargs): """ Return the maximum value of the Array or maximum along an axis. See Also -------- numpy.ndarray.max Index.max : Return the maximum value in an Index. Series.max : Return the maximum value in a Series. """ # TODO: skipna is broken with max. # See https://github.com/pandas-dev/pandas/issues/24265 nv.validate_max(args, kwargs) nv.validate_minmax_axis(axis) mask = self.isna() if skipna: values = self[~mask].asi8 elif mask.any(): return NaT else: values = self.asi8 if not len(values): # short-circut for empty max / min return NaT result = nanops.nanmax(values, skipna=skipna) # Don't have to worry about NA `result`, since no NA went in. return self._box_func(result)
python
def max(self, axis=None, skipna=True, *args, **kwargs): """ Return the maximum value of the Array or maximum along an axis. See Also -------- numpy.ndarray.max Index.max : Return the maximum value in an Index. Series.max : Return the maximum value in a Series. """ # TODO: skipna is broken with max. # See https://github.com/pandas-dev/pandas/issues/24265 nv.validate_max(args, kwargs) nv.validate_minmax_axis(axis) mask = self.isna() if skipna: values = self[~mask].asi8 elif mask.any(): return NaT else: values = self.asi8 if not len(values): # short-circut for empty max / min return NaT result = nanops.nanmax(values, skipna=skipna) # Don't have to worry about NA `result`, since no NA went in. return self._box_func(result)
[ "def", "max", "(", "self", ",", "axis", "=", "None", ",", "skipna", "=", "True", ",", "*", "args", ",", "*", "*", "kwargs", ")", ":", "# TODO: skipna is broken with max.", "# See https://github.com/pandas-dev/pandas/issues/24265", "nv", ".", "validate_max", "(", "args", ",", "kwargs", ")", "nv", ".", "validate_minmax_axis", "(", "axis", ")", "mask", "=", "self", ".", "isna", "(", ")", "if", "skipna", ":", "values", "=", "self", "[", "~", "mask", "]", ".", "asi8", "elif", "mask", ".", "any", "(", ")", ":", "return", "NaT", "else", ":", "values", "=", "self", ".", "asi8", "if", "not", "len", "(", "values", ")", ":", "# short-circut for empty max / min", "return", "NaT", "result", "=", "nanops", ".", "nanmax", "(", "values", ",", "skipna", "=", "skipna", ")", "# Don't have to worry about NA `result`, since no NA went in.", "return", "self", ".", "_box_func", "(", "result", ")" ]
Return the maximum value of the Array or maximum along an axis. See Also -------- numpy.ndarray.max Index.max : Return the maximum value in an Index. Series.max : Return the maximum value in a Series.
[ "Return", "the", "maximum", "value", "of", "the", "Array", "or", "maximum", "along", "an", "axis", "." ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/arrays/datetimelike.py#L1405-L1435
19,986
pandas-dev/pandas
pandas/core/arrays/period.py
_period_array_cmp
def _period_array_cmp(cls, op): """ Wrap comparison operations to convert Period-like to PeriodDtype """ opname = '__{name}__'.format(name=op.__name__) nat_result = opname == '__ne__' def wrapper(self, other): op = getattr(self.asi8, opname) if isinstance(other, (ABCDataFrame, ABCSeries, ABCIndexClass)): return NotImplemented if is_list_like(other) and len(other) != len(self): raise ValueError("Lengths must match") if isinstance(other, Period): self._check_compatible_with(other) result = op(other.ordinal) elif isinstance(other, cls): self._check_compatible_with(other) result = op(other.asi8) mask = self._isnan | other._isnan if mask.any(): result[mask] = nat_result return result elif other is NaT: result = np.empty(len(self.asi8), dtype=bool) result.fill(nat_result) else: other = Period(other, freq=self.freq) result = op(other.ordinal) if self._hasnans: result[self._isnan] = nat_result return result return compat.set_function_name(wrapper, opname, cls)
python
def _period_array_cmp(cls, op): """ Wrap comparison operations to convert Period-like to PeriodDtype """ opname = '__{name}__'.format(name=op.__name__) nat_result = opname == '__ne__' def wrapper(self, other): op = getattr(self.asi8, opname) if isinstance(other, (ABCDataFrame, ABCSeries, ABCIndexClass)): return NotImplemented if is_list_like(other) and len(other) != len(self): raise ValueError("Lengths must match") if isinstance(other, Period): self._check_compatible_with(other) result = op(other.ordinal) elif isinstance(other, cls): self._check_compatible_with(other) result = op(other.asi8) mask = self._isnan | other._isnan if mask.any(): result[mask] = nat_result return result elif other is NaT: result = np.empty(len(self.asi8), dtype=bool) result.fill(nat_result) else: other = Period(other, freq=self.freq) result = op(other.ordinal) if self._hasnans: result[self._isnan] = nat_result return result return compat.set_function_name(wrapper, opname, cls)
[ "def", "_period_array_cmp", "(", "cls", ",", "op", ")", ":", "opname", "=", "'__{name}__'", ".", "format", "(", "name", "=", "op", ".", "__name__", ")", "nat_result", "=", "opname", "==", "'__ne__'", "def", "wrapper", "(", "self", ",", "other", ")", ":", "op", "=", "getattr", "(", "self", ".", "asi8", ",", "opname", ")", "if", "isinstance", "(", "other", ",", "(", "ABCDataFrame", ",", "ABCSeries", ",", "ABCIndexClass", ")", ")", ":", "return", "NotImplemented", "if", "is_list_like", "(", "other", ")", "and", "len", "(", "other", ")", "!=", "len", "(", "self", ")", ":", "raise", "ValueError", "(", "\"Lengths must match\"", ")", "if", "isinstance", "(", "other", ",", "Period", ")", ":", "self", ".", "_check_compatible_with", "(", "other", ")", "result", "=", "op", "(", "other", ".", "ordinal", ")", "elif", "isinstance", "(", "other", ",", "cls", ")", ":", "self", ".", "_check_compatible_with", "(", "other", ")", "result", "=", "op", "(", "other", ".", "asi8", ")", "mask", "=", "self", ".", "_isnan", "|", "other", ".", "_isnan", "if", "mask", ".", "any", "(", ")", ":", "result", "[", "mask", "]", "=", "nat_result", "return", "result", "elif", "other", "is", "NaT", ":", "result", "=", "np", ".", "empty", "(", "len", "(", "self", ".", "asi8", ")", ",", "dtype", "=", "bool", ")", "result", ".", "fill", "(", "nat_result", ")", "else", ":", "other", "=", "Period", "(", "other", ",", "freq", "=", "self", ".", "freq", ")", "result", "=", "op", "(", "other", ".", "ordinal", ")", "if", "self", ".", "_hasnans", ":", "result", "[", "self", ".", "_isnan", "]", "=", "nat_result", "return", "result", "return", "compat", ".", "set_function_name", "(", "wrapper", ",", "opname", ",", "cls", ")" ]
Wrap comparison operations to convert Period-like to PeriodDtype
[ "Wrap", "comparison", "operations", "to", "convert", "Period", "-", "like", "to", "PeriodDtype" ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/arrays/period.py#L44-L86
19,987
pandas-dev/pandas
pandas/core/arrays/period.py
_raise_on_incompatible
def _raise_on_incompatible(left, right): """ Helper function to render a consistent error message when raising IncompatibleFrequency. Parameters ---------- left : PeriodArray right : DateOffset, Period, ndarray, or timedelta-like Raises ------ IncompatibleFrequency """ # GH#24283 error message format depends on whether right is scalar if isinstance(right, np.ndarray): other_freq = None elif isinstance(right, (ABCPeriodIndex, PeriodArray, Period, DateOffset)): other_freq = right.freqstr else: other_freq = _delta_to_tick(Timedelta(right)).freqstr msg = DIFFERENT_FREQ.format(cls=type(left).__name__, own_freq=left.freqstr, other_freq=other_freq) raise IncompatibleFrequency(msg)
python
def _raise_on_incompatible(left, right): """ Helper function to render a consistent error message when raising IncompatibleFrequency. Parameters ---------- left : PeriodArray right : DateOffset, Period, ndarray, or timedelta-like Raises ------ IncompatibleFrequency """ # GH#24283 error message format depends on whether right is scalar if isinstance(right, np.ndarray): other_freq = None elif isinstance(right, (ABCPeriodIndex, PeriodArray, Period, DateOffset)): other_freq = right.freqstr else: other_freq = _delta_to_tick(Timedelta(right)).freqstr msg = DIFFERENT_FREQ.format(cls=type(left).__name__, own_freq=left.freqstr, other_freq=other_freq) raise IncompatibleFrequency(msg)
[ "def", "_raise_on_incompatible", "(", "left", ",", "right", ")", ":", "# GH#24283 error message format depends on whether right is scalar", "if", "isinstance", "(", "right", ",", "np", ".", "ndarray", ")", ":", "other_freq", "=", "None", "elif", "isinstance", "(", "right", ",", "(", "ABCPeriodIndex", ",", "PeriodArray", ",", "Period", ",", "DateOffset", ")", ")", ":", "other_freq", "=", "right", ".", "freqstr", "else", ":", "other_freq", "=", "_delta_to_tick", "(", "Timedelta", "(", "right", ")", ")", ".", "freqstr", "msg", "=", "DIFFERENT_FREQ", ".", "format", "(", "cls", "=", "type", "(", "left", ")", ".", "__name__", ",", "own_freq", "=", "left", ".", "freqstr", ",", "other_freq", "=", "other_freq", ")", "raise", "IncompatibleFrequency", "(", "msg", ")" ]
Helper function to render a consistent error message when raising IncompatibleFrequency. Parameters ---------- left : PeriodArray right : DateOffset, Period, ndarray, or timedelta-like Raises ------ IncompatibleFrequency
[ "Helper", "function", "to", "render", "a", "consistent", "error", "message", "when", "raising", "IncompatibleFrequency", "." ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/arrays/period.py#L681-L706
19,988
pandas-dev/pandas
pandas/core/arrays/period.py
period_array
def period_array( data: Sequence[Optional[Period]], freq: Optional[Tick] = None, copy: bool = False, ) -> PeriodArray: """ Construct a new PeriodArray from a sequence of Period scalars. Parameters ---------- data : Sequence of Period objects A sequence of Period objects. These are required to all have the same ``freq.`` Missing values can be indicated by ``None`` or ``pandas.NaT``. freq : str, Tick, or Offset The frequency of every element of the array. This can be specified to avoid inferring the `freq` from `data`. copy : bool, default False Whether to ensure a copy of the data is made. Returns ------- PeriodArray See Also -------- PeriodArray pandas.PeriodIndex Examples -------- >>> period_array([pd.Period('2017', freq='A'), ... pd.Period('2018', freq='A')]) <PeriodArray> ['2017', '2018'] Length: 2, dtype: period[A-DEC] >>> period_array([pd.Period('2017', freq='A'), ... pd.Period('2018', freq='A'), ... pd.NaT]) <PeriodArray> ['2017', '2018', 'NaT'] Length: 3, dtype: period[A-DEC] Integers that look like years are handled >>> period_array([2000, 2001, 2002], freq='D') ['2000-01-01', '2001-01-01', '2002-01-01'] Length: 3, dtype: period[D] Datetime-like strings may also be passed >>> period_array(['2000-Q1', '2000-Q2', '2000-Q3', '2000-Q4'], freq='Q') <PeriodArray> ['2000Q1', '2000Q2', '2000Q3', '2000Q4'] Length: 4, dtype: period[Q-DEC] """ if is_datetime64_dtype(data): return PeriodArray._from_datetime64(data, freq) if isinstance(data, (ABCPeriodIndex, ABCSeries, PeriodArray)): return PeriodArray(data, freq) # other iterable of some kind if not isinstance(data, (np.ndarray, list, tuple)): data = list(data) data = np.asarray(data) if freq: dtype = PeriodDtype(freq) else: dtype = None if is_float_dtype(data) and len(data) > 0: raise TypeError("PeriodIndex does not allow " "floating point in construction") data = ensure_object(data) return PeriodArray._from_sequence(data, dtype=dtype)
python
def period_array( data: Sequence[Optional[Period]], freq: Optional[Tick] = None, copy: bool = False, ) -> PeriodArray: """ Construct a new PeriodArray from a sequence of Period scalars. Parameters ---------- data : Sequence of Period objects A sequence of Period objects. These are required to all have the same ``freq.`` Missing values can be indicated by ``None`` or ``pandas.NaT``. freq : str, Tick, or Offset The frequency of every element of the array. This can be specified to avoid inferring the `freq` from `data`. copy : bool, default False Whether to ensure a copy of the data is made. Returns ------- PeriodArray See Also -------- PeriodArray pandas.PeriodIndex Examples -------- >>> period_array([pd.Period('2017', freq='A'), ... pd.Period('2018', freq='A')]) <PeriodArray> ['2017', '2018'] Length: 2, dtype: period[A-DEC] >>> period_array([pd.Period('2017', freq='A'), ... pd.Period('2018', freq='A'), ... pd.NaT]) <PeriodArray> ['2017', '2018', 'NaT'] Length: 3, dtype: period[A-DEC] Integers that look like years are handled >>> period_array([2000, 2001, 2002], freq='D') ['2000-01-01', '2001-01-01', '2002-01-01'] Length: 3, dtype: period[D] Datetime-like strings may also be passed >>> period_array(['2000-Q1', '2000-Q2', '2000-Q3', '2000-Q4'], freq='Q') <PeriodArray> ['2000Q1', '2000Q2', '2000Q3', '2000Q4'] Length: 4, dtype: period[Q-DEC] """ if is_datetime64_dtype(data): return PeriodArray._from_datetime64(data, freq) if isinstance(data, (ABCPeriodIndex, ABCSeries, PeriodArray)): return PeriodArray(data, freq) # other iterable of some kind if not isinstance(data, (np.ndarray, list, tuple)): data = list(data) data = np.asarray(data) if freq: dtype = PeriodDtype(freq) else: dtype = None if is_float_dtype(data) and len(data) > 0: raise TypeError("PeriodIndex does not allow " "floating point in construction") data = ensure_object(data) return PeriodArray._from_sequence(data, dtype=dtype)
[ "def", "period_array", "(", "data", ":", "Sequence", "[", "Optional", "[", "Period", "]", "]", ",", "freq", ":", "Optional", "[", "Tick", "]", "=", "None", ",", "copy", ":", "bool", "=", "False", ",", ")", "->", "PeriodArray", ":", "if", "is_datetime64_dtype", "(", "data", ")", ":", "return", "PeriodArray", ".", "_from_datetime64", "(", "data", ",", "freq", ")", "if", "isinstance", "(", "data", ",", "(", "ABCPeriodIndex", ",", "ABCSeries", ",", "PeriodArray", ")", ")", ":", "return", "PeriodArray", "(", "data", ",", "freq", ")", "# other iterable of some kind", "if", "not", "isinstance", "(", "data", ",", "(", "np", ".", "ndarray", ",", "list", ",", "tuple", ")", ")", ":", "data", "=", "list", "(", "data", ")", "data", "=", "np", ".", "asarray", "(", "data", ")", "if", "freq", ":", "dtype", "=", "PeriodDtype", "(", "freq", ")", "else", ":", "dtype", "=", "None", "if", "is_float_dtype", "(", "data", ")", "and", "len", "(", "data", ")", ">", "0", ":", "raise", "TypeError", "(", "\"PeriodIndex does not allow \"", "\"floating point in construction\"", ")", "data", "=", "ensure_object", "(", "data", ")", "return", "PeriodArray", ".", "_from_sequence", "(", "data", ",", "dtype", "=", "dtype", ")" ]
Construct a new PeriodArray from a sequence of Period scalars. Parameters ---------- data : Sequence of Period objects A sequence of Period objects. These are required to all have the same ``freq.`` Missing values can be indicated by ``None`` or ``pandas.NaT``. freq : str, Tick, or Offset The frequency of every element of the array. This can be specified to avoid inferring the `freq` from `data`. copy : bool, default False Whether to ensure a copy of the data is made. Returns ------- PeriodArray See Also -------- PeriodArray pandas.PeriodIndex Examples -------- >>> period_array([pd.Period('2017', freq='A'), ... pd.Period('2018', freq='A')]) <PeriodArray> ['2017', '2018'] Length: 2, dtype: period[A-DEC] >>> period_array([pd.Period('2017', freq='A'), ... pd.Period('2018', freq='A'), ... pd.NaT]) <PeriodArray> ['2017', '2018', 'NaT'] Length: 3, dtype: period[A-DEC] Integers that look like years are handled >>> period_array([2000, 2001, 2002], freq='D') ['2000-01-01', '2001-01-01', '2002-01-01'] Length: 3, dtype: period[D] Datetime-like strings may also be passed >>> period_array(['2000-Q1', '2000-Q2', '2000-Q3', '2000-Q4'], freq='Q') <PeriodArray> ['2000Q1', '2000Q2', '2000Q3', '2000Q4'] Length: 4, dtype: period[Q-DEC]
[ "Construct", "a", "new", "PeriodArray", "from", "a", "sequence", "of", "Period", "scalars", "." ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/arrays/period.py#L712-L791
19,989
pandas-dev/pandas
pandas/core/arrays/period.py
validate_dtype_freq
def validate_dtype_freq(dtype, freq): """ If both a dtype and a freq are available, ensure they match. If only dtype is available, extract the implied freq. Parameters ---------- dtype : dtype freq : DateOffset or None Returns ------- freq : DateOffset Raises ------ ValueError : non-period dtype IncompatibleFrequency : mismatch between dtype and freq """ if freq is not None: freq = frequencies.to_offset(freq) if dtype is not None: dtype = pandas_dtype(dtype) if not is_period_dtype(dtype): raise ValueError('dtype must be PeriodDtype') if freq is None: freq = dtype.freq elif freq != dtype.freq: raise IncompatibleFrequency('specified freq and dtype ' 'are different') return freq
python
def validate_dtype_freq(dtype, freq): """ If both a dtype and a freq are available, ensure they match. If only dtype is available, extract the implied freq. Parameters ---------- dtype : dtype freq : DateOffset or None Returns ------- freq : DateOffset Raises ------ ValueError : non-period dtype IncompatibleFrequency : mismatch between dtype and freq """ if freq is not None: freq = frequencies.to_offset(freq) if dtype is not None: dtype = pandas_dtype(dtype) if not is_period_dtype(dtype): raise ValueError('dtype must be PeriodDtype') if freq is None: freq = dtype.freq elif freq != dtype.freq: raise IncompatibleFrequency('specified freq and dtype ' 'are different') return freq
[ "def", "validate_dtype_freq", "(", "dtype", ",", "freq", ")", ":", "if", "freq", "is", "not", "None", ":", "freq", "=", "frequencies", ".", "to_offset", "(", "freq", ")", "if", "dtype", "is", "not", "None", ":", "dtype", "=", "pandas_dtype", "(", "dtype", ")", "if", "not", "is_period_dtype", "(", "dtype", ")", ":", "raise", "ValueError", "(", "'dtype must be PeriodDtype'", ")", "if", "freq", "is", "None", ":", "freq", "=", "dtype", ".", "freq", "elif", "freq", "!=", "dtype", ".", "freq", ":", "raise", "IncompatibleFrequency", "(", "'specified freq and dtype '", "'are different'", ")", "return", "freq" ]
If both a dtype and a freq are available, ensure they match. If only dtype is available, extract the implied freq. Parameters ---------- dtype : dtype freq : DateOffset or None Returns ------- freq : DateOffset Raises ------ ValueError : non-period dtype IncompatibleFrequency : mismatch between dtype and freq
[ "If", "both", "a", "dtype", "and", "a", "freq", "are", "available", "ensure", "they", "match", ".", "If", "only", "dtype", "is", "available", "extract", "the", "implied", "freq", "." ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/arrays/period.py#L794-L825
19,990
pandas-dev/pandas
pandas/core/arrays/period.py
dt64arr_to_periodarr
def dt64arr_to_periodarr(data, freq, tz=None): """ Convert an datetime-like array to values Period ordinals. Parameters ---------- data : Union[Series[datetime64[ns]], DatetimeIndex, ndarray[datetime64ns]] freq : Optional[Union[str, Tick]] Must match the `freq` on the `data` if `data` is a DatetimeIndex or Series. tz : Optional[tzinfo] Returns ------- ordinals : ndarray[int] freq : Tick The frequencey extracted from the Series or DatetimeIndex if that's used. """ if data.dtype != np.dtype('M8[ns]'): raise ValueError('Wrong dtype: {dtype}'.format(dtype=data.dtype)) if freq is None: if isinstance(data, ABCIndexClass): data, freq = data._values, data.freq elif isinstance(data, ABCSeries): data, freq = data._values, data.dt.freq freq = Period._maybe_convert_freq(freq) if isinstance(data, (ABCIndexClass, ABCSeries)): data = data._values base, mult = libfrequencies.get_freq_code(freq) return libperiod.dt64arr_to_periodarr(data.view('i8'), base, tz), freq
python
def dt64arr_to_periodarr(data, freq, tz=None): """ Convert an datetime-like array to values Period ordinals. Parameters ---------- data : Union[Series[datetime64[ns]], DatetimeIndex, ndarray[datetime64ns]] freq : Optional[Union[str, Tick]] Must match the `freq` on the `data` if `data` is a DatetimeIndex or Series. tz : Optional[tzinfo] Returns ------- ordinals : ndarray[int] freq : Tick The frequencey extracted from the Series or DatetimeIndex if that's used. """ if data.dtype != np.dtype('M8[ns]'): raise ValueError('Wrong dtype: {dtype}'.format(dtype=data.dtype)) if freq is None: if isinstance(data, ABCIndexClass): data, freq = data._values, data.freq elif isinstance(data, ABCSeries): data, freq = data._values, data.dt.freq freq = Period._maybe_convert_freq(freq) if isinstance(data, (ABCIndexClass, ABCSeries)): data = data._values base, mult = libfrequencies.get_freq_code(freq) return libperiod.dt64arr_to_periodarr(data.view('i8'), base, tz), freq
[ "def", "dt64arr_to_periodarr", "(", "data", ",", "freq", ",", "tz", "=", "None", ")", ":", "if", "data", ".", "dtype", "!=", "np", ".", "dtype", "(", "'M8[ns]'", ")", ":", "raise", "ValueError", "(", "'Wrong dtype: {dtype}'", ".", "format", "(", "dtype", "=", "data", ".", "dtype", ")", ")", "if", "freq", "is", "None", ":", "if", "isinstance", "(", "data", ",", "ABCIndexClass", ")", ":", "data", ",", "freq", "=", "data", ".", "_values", ",", "data", ".", "freq", "elif", "isinstance", "(", "data", ",", "ABCSeries", ")", ":", "data", ",", "freq", "=", "data", ".", "_values", ",", "data", ".", "dt", ".", "freq", "freq", "=", "Period", ".", "_maybe_convert_freq", "(", "freq", ")", "if", "isinstance", "(", "data", ",", "(", "ABCIndexClass", ",", "ABCSeries", ")", ")", ":", "data", "=", "data", ".", "_values", "base", ",", "mult", "=", "libfrequencies", ".", "get_freq_code", "(", "freq", ")", "return", "libperiod", ".", "dt64arr_to_periodarr", "(", "data", ".", "view", "(", "'i8'", ")", ",", "base", ",", "tz", ")", ",", "freq" ]
Convert an datetime-like array to values Period ordinals. Parameters ---------- data : Union[Series[datetime64[ns]], DatetimeIndex, ndarray[datetime64ns]] freq : Optional[Union[str, Tick]] Must match the `freq` on the `data` if `data` is a DatetimeIndex or Series. tz : Optional[tzinfo] Returns ------- ordinals : ndarray[int] freq : Tick The frequencey extracted from the Series or DatetimeIndex if that's used.
[ "Convert", "an", "datetime", "-", "like", "array", "to", "values", "Period", "ordinals", "." ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/arrays/period.py#L828-L863
19,991
pandas-dev/pandas
pandas/core/arrays/period.py
PeriodArray._from_datetime64
def _from_datetime64(cls, data, freq, tz=None): """ Construct a PeriodArray from a datetime64 array Parameters ---------- data : ndarray[datetime64[ns], datetime64[ns, tz]] freq : str or Tick tz : tzinfo, optional Returns ------- PeriodArray[freq] """ data, freq = dt64arr_to_periodarr(data, freq, tz) return cls(data, freq=freq)
python
def _from_datetime64(cls, data, freq, tz=None): """ Construct a PeriodArray from a datetime64 array Parameters ---------- data : ndarray[datetime64[ns], datetime64[ns, tz]] freq : str or Tick tz : tzinfo, optional Returns ------- PeriodArray[freq] """ data, freq = dt64arr_to_periodarr(data, freq, tz) return cls(data, freq=freq)
[ "def", "_from_datetime64", "(", "cls", ",", "data", ",", "freq", ",", "tz", "=", "None", ")", ":", "data", ",", "freq", "=", "dt64arr_to_periodarr", "(", "data", ",", "freq", ",", "tz", ")", "return", "cls", "(", "data", ",", "freq", "=", "freq", ")" ]
Construct a PeriodArray from a datetime64 array Parameters ---------- data : ndarray[datetime64[ns], datetime64[ns, tz]] freq : str or Tick tz : tzinfo, optional Returns ------- PeriodArray[freq]
[ "Construct", "a", "PeriodArray", "from", "a", "datetime64", "array" ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/arrays/period.py#L211-L226
19,992
pandas-dev/pandas
pandas/core/arrays/period.py
PeriodArray._format_native_types
def _format_native_types(self, na_rep='NaT', date_format=None, **kwargs): """ actually format my specific types """ values = self.astype(object) if date_format: formatter = lambda dt: dt.strftime(date_format) else: formatter = lambda dt: '%s' % dt if self._hasnans: mask = self._isnan values[mask] = na_rep imask = ~mask values[imask] = np.array([formatter(dt) for dt in values[imask]]) else: values = np.array([formatter(dt) for dt in values]) return values
python
def _format_native_types(self, na_rep='NaT', date_format=None, **kwargs): """ actually format my specific types """ values = self.astype(object) if date_format: formatter = lambda dt: dt.strftime(date_format) else: formatter = lambda dt: '%s' % dt if self._hasnans: mask = self._isnan values[mask] = na_rep imask = ~mask values[imask] = np.array([formatter(dt) for dt in values[imask]]) else: values = np.array([formatter(dt) for dt in values]) return values
[ "def", "_format_native_types", "(", "self", ",", "na_rep", "=", "'NaT'", ",", "date_format", "=", "None", ",", "*", "*", "kwargs", ")", ":", "values", "=", "self", ".", "astype", "(", "object", ")", "if", "date_format", ":", "formatter", "=", "lambda", "dt", ":", "dt", ".", "strftime", "(", "date_format", ")", "else", ":", "formatter", "=", "lambda", "dt", ":", "'%s'", "%", "dt", "if", "self", ".", "_hasnans", ":", "mask", "=", "self", ".", "_isnan", "values", "[", "mask", "]", "=", "na_rep", "imask", "=", "~", "mask", "values", "[", "imask", "]", "=", "np", ".", "array", "(", "[", "formatter", "(", "dt", ")", "for", "dt", "in", "values", "[", "imask", "]", "]", ")", "else", ":", "values", "=", "np", ".", "array", "(", "[", "formatter", "(", "dt", ")", "for", "dt", "in", "values", "]", ")", "return", "values" ]
actually format my specific types
[ "actually", "format", "my", "specific", "types" ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/arrays/period.py#L477-L496
19,993
pandas-dev/pandas
pandas/core/arrays/period.py
PeriodArray._add_delta
def _add_delta(self, other): """ Add a timedelta-like, Tick, or TimedeltaIndex-like object to self, yielding a new PeriodArray Parameters ---------- other : {timedelta, np.timedelta64, Tick, TimedeltaIndex, ndarray[timedelta64]} Returns ------- result : PeriodArray """ if not isinstance(self.freq, Tick): # We cannot add timedelta-like to non-tick PeriodArray _raise_on_incompatible(self, other) new_ordinals = super()._add_delta(other) return type(self)(new_ordinals, freq=self.freq)
python
def _add_delta(self, other): """ Add a timedelta-like, Tick, or TimedeltaIndex-like object to self, yielding a new PeriodArray Parameters ---------- other : {timedelta, np.timedelta64, Tick, TimedeltaIndex, ndarray[timedelta64]} Returns ------- result : PeriodArray """ if not isinstance(self.freq, Tick): # We cannot add timedelta-like to non-tick PeriodArray _raise_on_incompatible(self, other) new_ordinals = super()._add_delta(other) return type(self)(new_ordinals, freq=self.freq)
[ "def", "_add_delta", "(", "self", ",", "other", ")", ":", "if", "not", "isinstance", "(", "self", ".", "freq", ",", "Tick", ")", ":", "# We cannot add timedelta-like to non-tick PeriodArray", "_raise_on_incompatible", "(", "self", ",", "other", ")", "new_ordinals", "=", "super", "(", ")", ".", "_add_delta", "(", "other", ")", "return", "type", "(", "self", ")", "(", "new_ordinals", ",", "freq", "=", "self", ".", "freq", ")" ]
Add a timedelta-like, Tick, or TimedeltaIndex-like object to self, yielding a new PeriodArray Parameters ---------- other : {timedelta, np.timedelta64, Tick, TimedeltaIndex, ndarray[timedelta64]} Returns ------- result : PeriodArray
[ "Add", "a", "timedelta", "-", "like", "Tick", "or", "TimedeltaIndex", "-", "like", "object", "to", "self", "yielding", "a", "new", "PeriodArray" ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/arrays/period.py#L604-L623
19,994
pandas-dev/pandas
pandas/core/arrays/period.py
PeriodArray._check_timedeltalike_freq_compat
def _check_timedeltalike_freq_compat(self, other): """ Arithmetic operations with timedelta-like scalars or array `other` are only valid if `other` is an integer multiple of `self.freq`. If the operation is valid, find that integer multiple. Otherwise, raise because the operation is invalid. Parameters ---------- other : timedelta, np.timedelta64, Tick, ndarray[timedelta64], TimedeltaArray, TimedeltaIndex Returns ------- multiple : int or ndarray[int64] Raises ------ IncompatibleFrequency """ assert isinstance(self.freq, Tick) # checked by calling function own_offset = frequencies.to_offset(self.freq.rule_code) base_nanos = delta_to_nanoseconds(own_offset) if isinstance(other, (timedelta, np.timedelta64, Tick)): nanos = delta_to_nanoseconds(other) elif isinstance(other, np.ndarray): # numpy timedelta64 array; all entries must be compatible assert other.dtype.kind == 'm' if other.dtype != _TD_DTYPE: # i.e. non-nano unit # TODO: disallow unit-less timedelta64 other = other.astype(_TD_DTYPE) nanos = other.view('i8') else: # TimedeltaArray/Index nanos = other.asi8 if np.all(nanos % base_nanos == 0): # nanos being added is an integer multiple of the # base-frequency to self.freq delta = nanos // base_nanos # delta is the integer (or integer-array) number of periods # by which will be added to self. return delta _raise_on_incompatible(self, other)
python
def _check_timedeltalike_freq_compat(self, other): """ Arithmetic operations with timedelta-like scalars or array `other` are only valid if `other` is an integer multiple of `self.freq`. If the operation is valid, find that integer multiple. Otherwise, raise because the operation is invalid. Parameters ---------- other : timedelta, np.timedelta64, Tick, ndarray[timedelta64], TimedeltaArray, TimedeltaIndex Returns ------- multiple : int or ndarray[int64] Raises ------ IncompatibleFrequency """ assert isinstance(self.freq, Tick) # checked by calling function own_offset = frequencies.to_offset(self.freq.rule_code) base_nanos = delta_to_nanoseconds(own_offset) if isinstance(other, (timedelta, np.timedelta64, Tick)): nanos = delta_to_nanoseconds(other) elif isinstance(other, np.ndarray): # numpy timedelta64 array; all entries must be compatible assert other.dtype.kind == 'm' if other.dtype != _TD_DTYPE: # i.e. non-nano unit # TODO: disallow unit-less timedelta64 other = other.astype(_TD_DTYPE) nanos = other.view('i8') else: # TimedeltaArray/Index nanos = other.asi8 if np.all(nanos % base_nanos == 0): # nanos being added is an integer multiple of the # base-frequency to self.freq delta = nanos // base_nanos # delta is the integer (or integer-array) number of periods # by which will be added to self. return delta _raise_on_incompatible(self, other)
[ "def", "_check_timedeltalike_freq_compat", "(", "self", ",", "other", ")", ":", "assert", "isinstance", "(", "self", ".", "freq", ",", "Tick", ")", "# checked by calling function", "own_offset", "=", "frequencies", ".", "to_offset", "(", "self", ".", "freq", ".", "rule_code", ")", "base_nanos", "=", "delta_to_nanoseconds", "(", "own_offset", ")", "if", "isinstance", "(", "other", ",", "(", "timedelta", ",", "np", ".", "timedelta64", ",", "Tick", ")", ")", ":", "nanos", "=", "delta_to_nanoseconds", "(", "other", ")", "elif", "isinstance", "(", "other", ",", "np", ".", "ndarray", ")", ":", "# numpy timedelta64 array; all entries must be compatible", "assert", "other", ".", "dtype", ".", "kind", "==", "'m'", "if", "other", ".", "dtype", "!=", "_TD_DTYPE", ":", "# i.e. non-nano unit", "# TODO: disallow unit-less timedelta64", "other", "=", "other", ".", "astype", "(", "_TD_DTYPE", ")", "nanos", "=", "other", ".", "view", "(", "'i8'", ")", "else", ":", "# TimedeltaArray/Index", "nanos", "=", "other", ".", "asi8", "if", "np", ".", "all", "(", "nanos", "%", "base_nanos", "==", "0", ")", ":", "# nanos being added is an integer multiple of the", "# base-frequency to self.freq", "delta", "=", "nanos", "//", "base_nanos", "# delta is the integer (or integer-array) number of periods", "# by which will be added to self.", "return", "delta", "_raise_on_incompatible", "(", "self", ",", "other", ")" ]
Arithmetic operations with timedelta-like scalars or array `other` are only valid if `other` is an integer multiple of `self.freq`. If the operation is valid, find that integer multiple. Otherwise, raise because the operation is invalid. Parameters ---------- other : timedelta, np.timedelta64, Tick, ndarray[timedelta64], TimedeltaArray, TimedeltaIndex Returns ------- multiple : int or ndarray[int64] Raises ------ IncompatibleFrequency
[ "Arithmetic", "operations", "with", "timedelta", "-", "like", "scalars", "or", "array", "other", "are", "only", "valid", "if", "other", "is", "an", "integer", "multiple", "of", "self", ".", "freq", ".", "If", "the", "operation", "is", "valid", "find", "that", "integer", "multiple", ".", "Otherwise", "raise", "because", "the", "operation", "is", "invalid", "." ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/arrays/period.py#L625-L672
19,995
pandas-dev/pandas
pandas/core/dtypes/missing.py
_isna_old
def _isna_old(obj): """Detect missing values. Treat None, NaN, INF, -INF as null. Parameters ---------- arr: ndarray or object value Returns ------- boolean ndarray or boolean """ if is_scalar(obj): return libmissing.checknull_old(obj) # hack (for now) because MI registers as ndarray elif isinstance(obj, ABCMultiIndex): raise NotImplementedError("isna is not defined for MultiIndex") elif isinstance(obj, (ABCSeries, np.ndarray, ABCIndexClass)): return _isna_ndarraylike_old(obj) elif isinstance(obj, ABCGeneric): return obj._constructor(obj._data.isna(func=_isna_old)) elif isinstance(obj, list): return _isna_ndarraylike_old(np.asarray(obj, dtype=object)) elif hasattr(obj, '__array__'): return _isna_ndarraylike_old(np.asarray(obj)) else: return obj is None
python
def _isna_old(obj): """Detect missing values. Treat None, NaN, INF, -INF as null. Parameters ---------- arr: ndarray or object value Returns ------- boolean ndarray or boolean """ if is_scalar(obj): return libmissing.checknull_old(obj) # hack (for now) because MI registers as ndarray elif isinstance(obj, ABCMultiIndex): raise NotImplementedError("isna is not defined for MultiIndex") elif isinstance(obj, (ABCSeries, np.ndarray, ABCIndexClass)): return _isna_ndarraylike_old(obj) elif isinstance(obj, ABCGeneric): return obj._constructor(obj._data.isna(func=_isna_old)) elif isinstance(obj, list): return _isna_ndarraylike_old(np.asarray(obj, dtype=object)) elif hasattr(obj, '__array__'): return _isna_ndarraylike_old(np.asarray(obj)) else: return obj is None
[ "def", "_isna_old", "(", "obj", ")", ":", "if", "is_scalar", "(", "obj", ")", ":", "return", "libmissing", ".", "checknull_old", "(", "obj", ")", "# hack (for now) because MI registers as ndarray", "elif", "isinstance", "(", "obj", ",", "ABCMultiIndex", ")", ":", "raise", "NotImplementedError", "(", "\"isna is not defined for MultiIndex\"", ")", "elif", "isinstance", "(", "obj", ",", "(", "ABCSeries", ",", "np", ".", "ndarray", ",", "ABCIndexClass", ")", ")", ":", "return", "_isna_ndarraylike_old", "(", "obj", ")", "elif", "isinstance", "(", "obj", ",", "ABCGeneric", ")", ":", "return", "obj", ".", "_constructor", "(", "obj", ".", "_data", ".", "isna", "(", "func", "=", "_isna_old", ")", ")", "elif", "isinstance", "(", "obj", ",", "list", ")", ":", "return", "_isna_ndarraylike_old", "(", "np", ".", "asarray", "(", "obj", ",", "dtype", "=", "object", ")", ")", "elif", "hasattr", "(", "obj", ",", "'__array__'", ")", ":", "return", "_isna_ndarraylike_old", "(", "np", ".", "asarray", "(", "obj", ")", ")", "else", ":", "return", "obj", "is", "None" ]
Detect missing values. Treat None, NaN, INF, -INF as null. Parameters ---------- arr: ndarray or object value Returns ------- boolean ndarray or boolean
[ "Detect", "missing", "values", ".", "Treat", "None", "NaN", "INF", "-", "INF", "as", "null", "." ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/dtypes/missing.py#L126-L151
19,996
pandas-dev/pandas
pandas/core/dtypes/missing.py
_maybe_fill
def _maybe_fill(arr, fill_value=np.nan): """ if we have a compatible fill_value and arr dtype, then fill """ if _isna_compat(arr, fill_value): arr.fill(fill_value) return arr
python
def _maybe_fill(arr, fill_value=np.nan): """ if we have a compatible fill_value and arr dtype, then fill """ if _isna_compat(arr, fill_value): arr.fill(fill_value) return arr
[ "def", "_maybe_fill", "(", "arr", ",", "fill_value", "=", "np", ".", "nan", ")", ":", "if", "_isna_compat", "(", "arr", ",", "fill_value", ")", ":", "arr", ".", "fill", "(", "fill_value", ")", "return", "arr" ]
if we have a compatible fill_value and arr dtype, then fill
[ "if", "we", "have", "a", "compatible", "fill_value", "and", "arr", "dtype", "then", "fill" ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/dtypes/missing.py#L470-L476
19,997
pandas-dev/pandas
pandas/core/dtypes/missing.py
na_value_for_dtype
def na_value_for_dtype(dtype, compat=True): """ Return a dtype compat na value Parameters ---------- dtype : string / dtype compat : boolean, default True Returns ------- np.dtype or a pandas dtype Examples -------- >>> na_value_for_dtype(np.dtype('int64')) 0 >>> na_value_for_dtype(np.dtype('int64'), compat=False) nan >>> na_value_for_dtype(np.dtype('float64')) nan >>> na_value_for_dtype(np.dtype('bool')) False >>> na_value_for_dtype(np.dtype('datetime64[ns]')) NaT """ dtype = pandas_dtype(dtype) if is_extension_array_dtype(dtype): return dtype.na_value if (is_datetime64_dtype(dtype) or is_datetime64tz_dtype(dtype) or is_timedelta64_dtype(dtype) or is_period_dtype(dtype)): return NaT elif is_float_dtype(dtype): return np.nan elif is_integer_dtype(dtype): if compat: return 0 return np.nan elif is_bool_dtype(dtype): return False return np.nan
python
def na_value_for_dtype(dtype, compat=True): """ Return a dtype compat na value Parameters ---------- dtype : string / dtype compat : boolean, default True Returns ------- np.dtype or a pandas dtype Examples -------- >>> na_value_for_dtype(np.dtype('int64')) 0 >>> na_value_for_dtype(np.dtype('int64'), compat=False) nan >>> na_value_for_dtype(np.dtype('float64')) nan >>> na_value_for_dtype(np.dtype('bool')) False >>> na_value_for_dtype(np.dtype('datetime64[ns]')) NaT """ dtype = pandas_dtype(dtype) if is_extension_array_dtype(dtype): return dtype.na_value if (is_datetime64_dtype(dtype) or is_datetime64tz_dtype(dtype) or is_timedelta64_dtype(dtype) or is_period_dtype(dtype)): return NaT elif is_float_dtype(dtype): return np.nan elif is_integer_dtype(dtype): if compat: return 0 return np.nan elif is_bool_dtype(dtype): return False return np.nan
[ "def", "na_value_for_dtype", "(", "dtype", ",", "compat", "=", "True", ")", ":", "dtype", "=", "pandas_dtype", "(", "dtype", ")", "if", "is_extension_array_dtype", "(", "dtype", ")", ":", "return", "dtype", ".", "na_value", "if", "(", "is_datetime64_dtype", "(", "dtype", ")", "or", "is_datetime64tz_dtype", "(", "dtype", ")", "or", "is_timedelta64_dtype", "(", "dtype", ")", "or", "is_period_dtype", "(", "dtype", ")", ")", ":", "return", "NaT", "elif", "is_float_dtype", "(", "dtype", ")", ":", "return", "np", ".", "nan", "elif", "is_integer_dtype", "(", "dtype", ")", ":", "if", "compat", ":", "return", "0", "return", "np", ".", "nan", "elif", "is_bool_dtype", "(", "dtype", ")", ":", "return", "False", "return", "np", ".", "nan" ]
Return a dtype compat na value Parameters ---------- dtype : string / dtype compat : boolean, default True Returns ------- np.dtype or a pandas dtype Examples -------- >>> na_value_for_dtype(np.dtype('int64')) 0 >>> na_value_for_dtype(np.dtype('int64'), compat=False) nan >>> na_value_for_dtype(np.dtype('float64')) nan >>> na_value_for_dtype(np.dtype('bool')) False >>> na_value_for_dtype(np.dtype('datetime64[ns]')) NaT
[ "Return", "a", "dtype", "compat", "na", "value" ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/dtypes/missing.py#L479-L520
19,998
pandas-dev/pandas
pandas/plotting/_tools.py
table
def table(ax, data, rowLabels=None, colLabels=None, **kwargs): """ Helper function to convert DataFrame and Series to matplotlib.table Parameters ---------- ax : Matplotlib axes object data : DataFrame or Series data for table contents kwargs : keywords, optional keyword arguments which passed to matplotlib.table.table. If `rowLabels` or `colLabels` is not specified, data index or column name will be used. Returns ------- matplotlib table object """ if isinstance(data, ABCSeries): data = data.to_frame() elif isinstance(data, ABCDataFrame): pass else: raise ValueError('Input data must be DataFrame or Series') if rowLabels is None: rowLabels = data.index if colLabels is None: colLabels = data.columns cellText = data.values import matplotlib.table table = matplotlib.table.table(ax, cellText=cellText, rowLabels=rowLabels, colLabels=colLabels, **kwargs) return table
python
def table(ax, data, rowLabels=None, colLabels=None, **kwargs): """ Helper function to convert DataFrame and Series to matplotlib.table Parameters ---------- ax : Matplotlib axes object data : DataFrame or Series data for table contents kwargs : keywords, optional keyword arguments which passed to matplotlib.table.table. If `rowLabels` or `colLabels` is not specified, data index or column name will be used. Returns ------- matplotlib table object """ if isinstance(data, ABCSeries): data = data.to_frame() elif isinstance(data, ABCDataFrame): pass else: raise ValueError('Input data must be DataFrame or Series') if rowLabels is None: rowLabels = data.index if colLabels is None: colLabels = data.columns cellText = data.values import matplotlib.table table = matplotlib.table.table(ax, cellText=cellText, rowLabels=rowLabels, colLabels=colLabels, **kwargs) return table
[ "def", "table", "(", "ax", ",", "data", ",", "rowLabels", "=", "None", ",", "colLabels", "=", "None", ",", "*", "*", "kwargs", ")", ":", "if", "isinstance", "(", "data", ",", "ABCSeries", ")", ":", "data", "=", "data", ".", "to_frame", "(", ")", "elif", "isinstance", "(", "data", ",", "ABCDataFrame", ")", ":", "pass", "else", ":", "raise", "ValueError", "(", "'Input data must be DataFrame or Series'", ")", "if", "rowLabels", "is", "None", ":", "rowLabels", "=", "data", ".", "index", "if", "colLabels", "is", "None", ":", "colLabels", "=", "data", ".", "columns", "cellText", "=", "data", ".", "values", "import", "matplotlib", ".", "table", "table", "=", "matplotlib", ".", "table", ".", "table", "(", "ax", ",", "cellText", "=", "cellText", ",", "rowLabels", "=", "rowLabels", ",", "colLabels", "=", "colLabels", ",", "*", "*", "kwargs", ")", "return", "table" ]
Helper function to convert DataFrame and Series to matplotlib.table Parameters ---------- ax : Matplotlib axes object data : DataFrame or Series data for table contents kwargs : keywords, optional keyword arguments which passed to matplotlib.table.table. If `rowLabels` or `colLabels` is not specified, data index or column name will be used. Returns ------- matplotlib table object
[ "Helper", "function", "to", "convert", "DataFrame", "and", "Series", "to", "matplotlib", ".", "table" ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/plotting/_tools.py#L23-L60
19,999
pandas-dev/pandas
pandas/plotting/_tools.py
_subplots
def _subplots(naxes=None, sharex=False, sharey=False, squeeze=True, subplot_kw=None, ax=None, layout=None, layout_type='box', **fig_kw): """Create a figure with a set of subplots already made. This utility wrapper makes it convenient to create common layouts of subplots, including the enclosing figure object, in a single call. Keyword arguments: naxes : int Number of required axes. Exceeded axes are set invisible. Default is nrows * ncols. sharex : bool If True, the X axis will be shared amongst all subplots. sharey : bool If True, the Y axis will be shared amongst all subplots. squeeze : bool If True, extra dimensions are squeezed out from the returned axis object: - if only one subplot is constructed (nrows=ncols=1), the resulting single Axis object is returned as a scalar. - for Nx1 or 1xN subplots, the returned object is a 1-d numpy object array of Axis objects are returned as numpy 1-d arrays. - for NxM subplots with N>1 and M>1 are returned as a 2d array. If False, no squeezing is done: the returned axis object is always a 2-d array containing Axis instances, even if it ends up being 1x1. subplot_kw : dict Dict with keywords passed to the add_subplot() call used to create each subplots. ax : Matplotlib axis object, optional layout : tuple Number of rows and columns of the subplot grid. If not specified, calculated from naxes and layout_type layout_type : {'box', 'horziontal', 'vertical'}, default 'box' Specify how to layout the subplot grid. fig_kw : Other keyword arguments to be passed to the figure() call. Note that all keywords not recognized above will be automatically included here. Returns: fig, ax : tuple - fig is the Matplotlib Figure object - ax can be either a single axis object or an array of axis objects if more than one subplot was created. The dimensions of the resulting array can be controlled with the squeeze keyword, see above. **Examples:** x = np.linspace(0, 2*np.pi, 400) y = np.sin(x**2) # Just a figure and one subplot f, ax = plt.subplots() ax.plot(x, y) ax.set_title('Simple plot') # Two subplots, unpack the output array immediately f, (ax1, ax2) = plt.subplots(1, 2, sharey=True) ax1.plot(x, y) ax1.set_title('Sharing Y axis') ax2.scatter(x, y) # Four polar axes plt.subplots(2, 2, subplot_kw=dict(polar=True)) """ import matplotlib.pyplot as plt if subplot_kw is None: subplot_kw = {} if ax is None: fig = plt.figure(**fig_kw) else: if is_list_like(ax): ax = _flatten(ax) if layout is not None: warnings.warn("When passing multiple axes, layout keyword is " "ignored", UserWarning) if sharex or sharey: warnings.warn("When passing multiple axes, sharex and sharey " "are ignored. These settings must be specified " "when creating axes", UserWarning, stacklevel=4) if len(ax) == naxes: fig = ax[0].get_figure() return fig, ax else: raise ValueError("The number of passed axes must be {0}, the " "same as the output plot".format(naxes)) fig = ax.get_figure() # if ax is passed and a number of subplots is 1, return ax as it is if naxes == 1: if squeeze: return fig, ax else: return fig, _flatten(ax) else: warnings.warn("To output multiple subplots, the figure containing " "the passed axes is being cleared", UserWarning, stacklevel=4) fig.clear() nrows, ncols = _get_layout(naxes, layout=layout, layout_type=layout_type) nplots = nrows * ncols # Create empty object array to hold all axes. It's easiest to make it 1-d # so we can just append subplots upon creation, and then axarr = np.empty(nplots, dtype=object) # Create first subplot separately, so we can share it if requested ax0 = fig.add_subplot(nrows, ncols, 1, **subplot_kw) if sharex: subplot_kw['sharex'] = ax0 if sharey: subplot_kw['sharey'] = ax0 axarr[0] = ax0 # Note off-by-one counting because add_subplot uses the MATLAB 1-based # convention. for i in range(1, nplots): kwds = subplot_kw.copy() # Set sharex and sharey to None for blank/dummy axes, these can # interfere with proper axis limits on the visible axes if # they share axes e.g. issue #7528 if i >= naxes: kwds['sharex'] = None kwds['sharey'] = None ax = fig.add_subplot(nrows, ncols, i + 1, **kwds) axarr[i] = ax if naxes != nplots: for ax in axarr[naxes:]: ax.set_visible(False) _handle_shared_axes(axarr, nplots, naxes, nrows, ncols, sharex, sharey) if squeeze: # Reshape the array to have the final desired dimension (nrow,ncol), # though discarding unneeded dimensions that equal 1. If we only have # one subplot, just return it instead of a 1-element array. if nplots == 1: axes = axarr[0] else: axes = axarr.reshape(nrows, ncols).squeeze() else: # returned axis array will be always 2-d, even if nrows=ncols=1 axes = axarr.reshape(nrows, ncols) return fig, axes
python
def _subplots(naxes=None, sharex=False, sharey=False, squeeze=True, subplot_kw=None, ax=None, layout=None, layout_type='box', **fig_kw): """Create a figure with a set of subplots already made. This utility wrapper makes it convenient to create common layouts of subplots, including the enclosing figure object, in a single call. Keyword arguments: naxes : int Number of required axes. Exceeded axes are set invisible. Default is nrows * ncols. sharex : bool If True, the X axis will be shared amongst all subplots. sharey : bool If True, the Y axis will be shared amongst all subplots. squeeze : bool If True, extra dimensions are squeezed out from the returned axis object: - if only one subplot is constructed (nrows=ncols=1), the resulting single Axis object is returned as a scalar. - for Nx1 or 1xN subplots, the returned object is a 1-d numpy object array of Axis objects are returned as numpy 1-d arrays. - for NxM subplots with N>1 and M>1 are returned as a 2d array. If False, no squeezing is done: the returned axis object is always a 2-d array containing Axis instances, even if it ends up being 1x1. subplot_kw : dict Dict with keywords passed to the add_subplot() call used to create each subplots. ax : Matplotlib axis object, optional layout : tuple Number of rows and columns of the subplot grid. If not specified, calculated from naxes and layout_type layout_type : {'box', 'horziontal', 'vertical'}, default 'box' Specify how to layout the subplot grid. fig_kw : Other keyword arguments to be passed to the figure() call. Note that all keywords not recognized above will be automatically included here. Returns: fig, ax : tuple - fig is the Matplotlib Figure object - ax can be either a single axis object or an array of axis objects if more than one subplot was created. The dimensions of the resulting array can be controlled with the squeeze keyword, see above. **Examples:** x = np.linspace(0, 2*np.pi, 400) y = np.sin(x**2) # Just a figure and one subplot f, ax = plt.subplots() ax.plot(x, y) ax.set_title('Simple plot') # Two subplots, unpack the output array immediately f, (ax1, ax2) = plt.subplots(1, 2, sharey=True) ax1.plot(x, y) ax1.set_title('Sharing Y axis') ax2.scatter(x, y) # Four polar axes plt.subplots(2, 2, subplot_kw=dict(polar=True)) """ import matplotlib.pyplot as plt if subplot_kw is None: subplot_kw = {} if ax is None: fig = plt.figure(**fig_kw) else: if is_list_like(ax): ax = _flatten(ax) if layout is not None: warnings.warn("When passing multiple axes, layout keyword is " "ignored", UserWarning) if sharex or sharey: warnings.warn("When passing multiple axes, sharex and sharey " "are ignored. These settings must be specified " "when creating axes", UserWarning, stacklevel=4) if len(ax) == naxes: fig = ax[0].get_figure() return fig, ax else: raise ValueError("The number of passed axes must be {0}, the " "same as the output plot".format(naxes)) fig = ax.get_figure() # if ax is passed and a number of subplots is 1, return ax as it is if naxes == 1: if squeeze: return fig, ax else: return fig, _flatten(ax) else: warnings.warn("To output multiple subplots, the figure containing " "the passed axes is being cleared", UserWarning, stacklevel=4) fig.clear() nrows, ncols = _get_layout(naxes, layout=layout, layout_type=layout_type) nplots = nrows * ncols # Create empty object array to hold all axes. It's easiest to make it 1-d # so we can just append subplots upon creation, and then axarr = np.empty(nplots, dtype=object) # Create first subplot separately, so we can share it if requested ax0 = fig.add_subplot(nrows, ncols, 1, **subplot_kw) if sharex: subplot_kw['sharex'] = ax0 if sharey: subplot_kw['sharey'] = ax0 axarr[0] = ax0 # Note off-by-one counting because add_subplot uses the MATLAB 1-based # convention. for i in range(1, nplots): kwds = subplot_kw.copy() # Set sharex and sharey to None for blank/dummy axes, these can # interfere with proper axis limits on the visible axes if # they share axes e.g. issue #7528 if i >= naxes: kwds['sharex'] = None kwds['sharey'] = None ax = fig.add_subplot(nrows, ncols, i + 1, **kwds) axarr[i] = ax if naxes != nplots: for ax in axarr[naxes:]: ax.set_visible(False) _handle_shared_axes(axarr, nplots, naxes, nrows, ncols, sharex, sharey) if squeeze: # Reshape the array to have the final desired dimension (nrow,ncol), # though discarding unneeded dimensions that equal 1. If we only have # one subplot, just return it instead of a 1-element array. if nplots == 1: axes = axarr[0] else: axes = axarr.reshape(nrows, ncols).squeeze() else: # returned axis array will be always 2-d, even if nrows=ncols=1 axes = axarr.reshape(nrows, ncols) return fig, axes
[ "def", "_subplots", "(", "naxes", "=", "None", ",", "sharex", "=", "False", ",", "sharey", "=", "False", ",", "squeeze", "=", "True", ",", "subplot_kw", "=", "None", ",", "ax", "=", "None", ",", "layout", "=", "None", ",", "layout_type", "=", "'box'", ",", "*", "*", "fig_kw", ")", ":", "import", "matplotlib", ".", "pyplot", "as", "plt", "if", "subplot_kw", "is", "None", ":", "subplot_kw", "=", "{", "}", "if", "ax", "is", "None", ":", "fig", "=", "plt", ".", "figure", "(", "*", "*", "fig_kw", ")", "else", ":", "if", "is_list_like", "(", "ax", ")", ":", "ax", "=", "_flatten", "(", "ax", ")", "if", "layout", "is", "not", "None", ":", "warnings", ".", "warn", "(", "\"When passing multiple axes, layout keyword is \"", "\"ignored\"", ",", "UserWarning", ")", "if", "sharex", "or", "sharey", ":", "warnings", ".", "warn", "(", "\"When passing multiple axes, sharex and sharey \"", "\"are ignored. These settings must be specified \"", "\"when creating axes\"", ",", "UserWarning", ",", "stacklevel", "=", "4", ")", "if", "len", "(", "ax", ")", "==", "naxes", ":", "fig", "=", "ax", "[", "0", "]", ".", "get_figure", "(", ")", "return", "fig", ",", "ax", "else", ":", "raise", "ValueError", "(", "\"The number of passed axes must be {0}, the \"", "\"same as the output plot\"", ".", "format", "(", "naxes", ")", ")", "fig", "=", "ax", ".", "get_figure", "(", ")", "# if ax is passed and a number of subplots is 1, return ax as it is", "if", "naxes", "==", "1", ":", "if", "squeeze", ":", "return", "fig", ",", "ax", "else", ":", "return", "fig", ",", "_flatten", "(", "ax", ")", "else", ":", "warnings", ".", "warn", "(", "\"To output multiple subplots, the figure containing \"", "\"the passed axes is being cleared\"", ",", "UserWarning", ",", "stacklevel", "=", "4", ")", "fig", ".", "clear", "(", ")", "nrows", ",", "ncols", "=", "_get_layout", "(", "naxes", ",", "layout", "=", "layout", ",", "layout_type", "=", "layout_type", ")", "nplots", "=", "nrows", "*", "ncols", "# Create empty object array to hold all axes. It's easiest to make it 1-d", "# so we can just append subplots upon creation, and then", "axarr", "=", "np", ".", "empty", "(", "nplots", ",", "dtype", "=", "object", ")", "# Create first subplot separately, so we can share it if requested", "ax0", "=", "fig", ".", "add_subplot", "(", "nrows", ",", "ncols", ",", "1", ",", "*", "*", "subplot_kw", ")", "if", "sharex", ":", "subplot_kw", "[", "'sharex'", "]", "=", "ax0", "if", "sharey", ":", "subplot_kw", "[", "'sharey'", "]", "=", "ax0", "axarr", "[", "0", "]", "=", "ax0", "# Note off-by-one counting because add_subplot uses the MATLAB 1-based", "# convention.", "for", "i", "in", "range", "(", "1", ",", "nplots", ")", ":", "kwds", "=", "subplot_kw", ".", "copy", "(", ")", "# Set sharex and sharey to None for blank/dummy axes, these can", "# interfere with proper axis limits on the visible axes if", "# they share axes e.g. issue #7528", "if", "i", ">=", "naxes", ":", "kwds", "[", "'sharex'", "]", "=", "None", "kwds", "[", "'sharey'", "]", "=", "None", "ax", "=", "fig", ".", "add_subplot", "(", "nrows", ",", "ncols", ",", "i", "+", "1", ",", "*", "*", "kwds", ")", "axarr", "[", "i", "]", "=", "ax", "if", "naxes", "!=", "nplots", ":", "for", "ax", "in", "axarr", "[", "naxes", ":", "]", ":", "ax", ".", "set_visible", "(", "False", ")", "_handle_shared_axes", "(", "axarr", ",", "nplots", ",", "naxes", ",", "nrows", ",", "ncols", ",", "sharex", ",", "sharey", ")", "if", "squeeze", ":", "# Reshape the array to have the final desired dimension (nrow,ncol),", "# though discarding unneeded dimensions that equal 1. If we only have", "# one subplot, just return it instead of a 1-element array.", "if", "nplots", "==", "1", ":", "axes", "=", "axarr", "[", "0", "]", "else", ":", "axes", "=", "axarr", ".", "reshape", "(", "nrows", ",", "ncols", ")", ".", "squeeze", "(", ")", "else", ":", "# returned axis array will be always 2-d, even if nrows=ncols=1", "axes", "=", "axarr", ".", "reshape", "(", "nrows", ",", "ncols", ")", "return", "fig", ",", "axes" ]
Create a figure with a set of subplots already made. This utility wrapper makes it convenient to create common layouts of subplots, including the enclosing figure object, in a single call. Keyword arguments: naxes : int Number of required axes. Exceeded axes are set invisible. Default is nrows * ncols. sharex : bool If True, the X axis will be shared amongst all subplots. sharey : bool If True, the Y axis will be shared amongst all subplots. squeeze : bool If True, extra dimensions are squeezed out from the returned axis object: - if only one subplot is constructed (nrows=ncols=1), the resulting single Axis object is returned as a scalar. - for Nx1 or 1xN subplots, the returned object is a 1-d numpy object array of Axis objects are returned as numpy 1-d arrays. - for NxM subplots with N>1 and M>1 are returned as a 2d array. If False, no squeezing is done: the returned axis object is always a 2-d array containing Axis instances, even if it ends up being 1x1. subplot_kw : dict Dict with keywords passed to the add_subplot() call used to create each subplots. ax : Matplotlib axis object, optional layout : tuple Number of rows and columns of the subplot grid. If not specified, calculated from naxes and layout_type layout_type : {'box', 'horziontal', 'vertical'}, default 'box' Specify how to layout the subplot grid. fig_kw : Other keyword arguments to be passed to the figure() call. Note that all keywords not recognized above will be automatically included here. Returns: fig, ax : tuple - fig is the Matplotlib Figure object - ax can be either a single axis object or an array of axis objects if more than one subplot was created. The dimensions of the resulting array can be controlled with the squeeze keyword, see above. **Examples:** x = np.linspace(0, 2*np.pi, 400) y = np.sin(x**2) # Just a figure and one subplot f, ax = plt.subplots() ax.plot(x, y) ax.set_title('Simple plot') # Two subplots, unpack the output array immediately f, (ax1, ax2) = plt.subplots(1, 2, sharey=True) ax1.plot(x, y) ax1.set_title('Sharing Y axis') ax2.scatter(x, y) # Four polar axes plt.subplots(2, 2, subplot_kw=dict(polar=True))
[ "Create", "a", "figure", "with", "a", "set", "of", "subplots", "already", "made", "." ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/plotting/_tools.py#L110-L271