id
int32
0
252k
repo
stringlengths
7
55
path
stringlengths
4
127
func_name
stringlengths
1
88
original_string
stringlengths
75
19.8k
language
stringclasses
1 value
code
stringlengths
75
19.8k
code_tokens
list
docstring
stringlengths
3
17.3k
docstring_tokens
list
sha
stringlengths
40
40
url
stringlengths
87
242
20,100
pandas-dev/pandas
pandas/io/pytables.py
IndexCol.write_metadata
def write_metadata(self, handler): """ set the meta data """ if self.metadata is not None: handler.write_metadata(self.cname, self.metadata)
python
def write_metadata(self, handler): """ set the meta data """ if self.metadata is not None: handler.write_metadata(self.cname, self.metadata)
[ "def", "write_metadata", "(", "self", ",", "handler", ")", ":", "if", "self", ".", "metadata", "is", "not", "None", ":", "handler", ".", "write_metadata", "(", "self", ".", "cname", ",", "self", ".", "metadata", ")" ]
set the meta data
[ "set", "the", "meta", "data" ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/io/pytables.py#L1794-L1797
20,101
pandas-dev/pandas
pandas/io/pytables.py
DataCol.create_for_block
def create_for_block( cls, i=None, name=None, cname=None, version=None, **kwargs): """ return a new datacol with the block i """ if cname is None: cname = name or 'values_block_{idx}'.format(idx=i) if name is None: name = cname # prior to 0.10.1, we named values blocks like: values_block_0 an the # name values_0 try: if version[0] == 0 and version[1] <= 10 and version[2] == 0: m = re.search(r"values_block_(\d+)", name) if m: name = "values_{group}".format(group=m.groups()[0]) except IndexError: pass return cls(name=name, cname=cname, **kwargs)
python
def create_for_block( cls, i=None, name=None, cname=None, version=None, **kwargs): """ return a new datacol with the block i """ if cname is None: cname = name or 'values_block_{idx}'.format(idx=i) if name is None: name = cname # prior to 0.10.1, we named values blocks like: values_block_0 an the # name values_0 try: if version[0] == 0 and version[1] <= 10 and version[2] == 0: m = re.search(r"values_block_(\d+)", name) if m: name = "values_{group}".format(group=m.groups()[0]) except IndexError: pass return cls(name=name, cname=cname, **kwargs)
[ "def", "create_for_block", "(", "cls", ",", "i", "=", "None", ",", "name", "=", "None", ",", "cname", "=", "None", ",", "version", "=", "None", ",", "*", "*", "kwargs", ")", ":", "if", "cname", "is", "None", ":", "cname", "=", "name", "or", "'values_block_{idx}'", ".", "format", "(", "idx", "=", "i", ")", "if", "name", "is", "None", ":", "name", "=", "cname", "# prior to 0.10.1, we named values blocks like: values_block_0 an the", "# name values_0", "try", ":", "if", "version", "[", "0", "]", "==", "0", "and", "version", "[", "1", "]", "<=", "10", "and", "version", "[", "2", "]", "==", "0", ":", "m", "=", "re", ".", "search", "(", "r\"values_block_(\\d+)\"", ",", "name", ")", "if", "m", ":", "name", "=", "\"values_{group}\"", ".", "format", "(", "group", "=", "m", ".", "groups", "(", ")", "[", "0", "]", ")", "except", "IndexError", ":", "pass", "return", "cls", "(", "name", "=", "name", ",", "cname", "=", "cname", ",", "*", "*", "kwargs", ")" ]
return a new datacol with the block i
[ "return", "a", "new", "datacol", "with", "the", "block", "i" ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/io/pytables.py#L1839-L1858
20,102
pandas-dev/pandas
pandas/io/pytables.py
DataCol.set_metadata
def set_metadata(self, metadata): """ record the metadata """ if metadata is not None: metadata = np.array(metadata, copy=False).ravel() self.metadata = metadata
python
def set_metadata(self, metadata): """ record the metadata """ if metadata is not None: metadata = np.array(metadata, copy=False).ravel() self.metadata = metadata
[ "def", "set_metadata", "(", "self", ",", "metadata", ")", ":", "if", "metadata", "is", "not", "None", ":", "metadata", "=", "np", ".", "array", "(", "metadata", ",", "copy", "=", "False", ")", ".", "ravel", "(", ")", "self", ".", "metadata", "=", "metadata" ]
record the metadata
[ "record", "the", "metadata" ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/io/pytables.py#L1904-L1908
20,103
pandas-dev/pandas
pandas/io/pytables.py
DataCol.set_atom
def set_atom(self, block, block_items, existing_col, min_itemsize, nan_rep, info, encoding=None, errors='strict'): """ create and setup my atom from the block b """ self.values = list(block_items) # short-cut certain block types if block.is_categorical: return self.set_atom_categorical(block, items=block_items, info=info) elif block.is_datetimetz: return self.set_atom_datetime64tz(block, info=info) elif block.is_datetime: return self.set_atom_datetime64(block) elif block.is_timedelta: return self.set_atom_timedelta64(block) elif block.is_complex: return self.set_atom_complex(block) dtype = block.dtype.name inferred_type = lib.infer_dtype(block.values, skipna=False) if inferred_type == 'date': raise TypeError( "[date] is not implemented as a table column") elif inferred_type == 'datetime': # after 8260 # this only would be hit for a mutli-timezone dtype # which is an error raise TypeError( "too many timezones in this block, create separate " "data columns" ) elif inferred_type == 'unicode': raise TypeError( "[unicode] is not implemented as a table column") # this is basically a catchall; if say a datetime64 has nans then will # end up here ### elif inferred_type == 'string' or dtype == 'object': self.set_atom_string( block, block_items, existing_col, min_itemsize, nan_rep, encoding, errors) # set as a data block else: self.set_atom_data(block)
python
def set_atom(self, block, block_items, existing_col, min_itemsize, nan_rep, info, encoding=None, errors='strict'): """ create and setup my atom from the block b """ self.values = list(block_items) # short-cut certain block types if block.is_categorical: return self.set_atom_categorical(block, items=block_items, info=info) elif block.is_datetimetz: return self.set_atom_datetime64tz(block, info=info) elif block.is_datetime: return self.set_atom_datetime64(block) elif block.is_timedelta: return self.set_atom_timedelta64(block) elif block.is_complex: return self.set_atom_complex(block) dtype = block.dtype.name inferred_type = lib.infer_dtype(block.values, skipna=False) if inferred_type == 'date': raise TypeError( "[date] is not implemented as a table column") elif inferred_type == 'datetime': # after 8260 # this only would be hit for a mutli-timezone dtype # which is an error raise TypeError( "too many timezones in this block, create separate " "data columns" ) elif inferred_type == 'unicode': raise TypeError( "[unicode] is not implemented as a table column") # this is basically a catchall; if say a datetime64 has nans then will # end up here ### elif inferred_type == 'string' or dtype == 'object': self.set_atom_string( block, block_items, existing_col, min_itemsize, nan_rep, encoding, errors) # set as a data block else: self.set_atom_data(block)
[ "def", "set_atom", "(", "self", ",", "block", ",", "block_items", ",", "existing_col", ",", "min_itemsize", ",", "nan_rep", ",", "info", ",", "encoding", "=", "None", ",", "errors", "=", "'strict'", ")", ":", "self", ".", "values", "=", "list", "(", "block_items", ")", "# short-cut certain block types", "if", "block", ".", "is_categorical", ":", "return", "self", ".", "set_atom_categorical", "(", "block", ",", "items", "=", "block_items", ",", "info", "=", "info", ")", "elif", "block", ".", "is_datetimetz", ":", "return", "self", ".", "set_atom_datetime64tz", "(", "block", ",", "info", "=", "info", ")", "elif", "block", ".", "is_datetime", ":", "return", "self", ".", "set_atom_datetime64", "(", "block", ")", "elif", "block", ".", "is_timedelta", ":", "return", "self", ".", "set_atom_timedelta64", "(", "block", ")", "elif", "block", ".", "is_complex", ":", "return", "self", ".", "set_atom_complex", "(", "block", ")", "dtype", "=", "block", ".", "dtype", ".", "name", "inferred_type", "=", "lib", ".", "infer_dtype", "(", "block", ".", "values", ",", "skipna", "=", "False", ")", "if", "inferred_type", "==", "'date'", ":", "raise", "TypeError", "(", "\"[date] is not implemented as a table column\"", ")", "elif", "inferred_type", "==", "'datetime'", ":", "# after 8260", "# this only would be hit for a mutli-timezone dtype", "# which is an error", "raise", "TypeError", "(", "\"too many timezones in this block, create separate \"", "\"data columns\"", ")", "elif", "inferred_type", "==", "'unicode'", ":", "raise", "TypeError", "(", "\"[unicode] is not implemented as a table column\"", ")", "# this is basically a catchall; if say a datetime64 has nans then will", "# end up here ###", "elif", "inferred_type", "==", "'string'", "or", "dtype", "==", "'object'", ":", "self", ".", "set_atom_string", "(", "block", ",", "block_items", ",", "existing_col", ",", "min_itemsize", ",", "nan_rep", ",", "encoding", ",", "errors", ")", "# set as a data block", "else", ":", "self", ".", "set_atom_data", "(", "block", ")" ]
create and setup my atom from the block b
[ "create", "and", "setup", "my", "atom", "from", "the", "block", "b" ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/io/pytables.py#L1939-L1990
20,104
pandas-dev/pandas
pandas/io/pytables.py
DataCol.get_atom_coltype
def get_atom_coltype(self, kind=None): """ return the PyTables column class for this column """ if kind is None: kind = self.kind if self.kind.startswith('uint'): col_name = "UInt{name}Col".format(name=kind[4:]) else: col_name = "{name}Col".format(name=kind.capitalize()) return getattr(_tables(), col_name)
python
def get_atom_coltype(self, kind=None): """ return the PyTables column class for this column """ if kind is None: kind = self.kind if self.kind.startswith('uint'): col_name = "UInt{name}Col".format(name=kind[4:]) else: col_name = "{name}Col".format(name=kind.capitalize()) return getattr(_tables(), col_name)
[ "def", "get_atom_coltype", "(", "self", ",", "kind", "=", "None", ")", ":", "if", "kind", "is", "None", ":", "kind", "=", "self", ".", "kind", "if", "self", ".", "kind", ".", "startswith", "(", "'uint'", ")", ":", "col_name", "=", "\"UInt{name}Col\"", ".", "format", "(", "name", "=", "kind", "[", "4", ":", "]", ")", "else", ":", "col_name", "=", "\"{name}Col\"", ".", "format", "(", "name", "=", "kind", ".", "capitalize", "(", ")", ")", "return", "getattr", "(", "_tables", "(", ")", ",", "col_name", ")" ]
return the PyTables column class for this column
[ "return", "the", "PyTables", "column", "class", "for", "this", "column" ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/io/pytables.py#L2043-L2052
20,105
pandas-dev/pandas
pandas/io/pytables.py
DataCol.validate_attr
def validate_attr(self, append): """validate that we have the same order as the existing & same dtype""" if append: existing_fields = getattr(self.attrs, self.kind_attr, None) if (existing_fields is not None and existing_fields != list(self.values)): raise ValueError("appended items do not match existing items" " in table!") existing_dtype = getattr(self.attrs, self.dtype_attr, None) if (existing_dtype is not None and existing_dtype != self.dtype): raise ValueError("appended items dtype do not match existing " "items dtype in table!")
python
def validate_attr(self, append): """validate that we have the same order as the existing & same dtype""" if append: existing_fields = getattr(self.attrs, self.kind_attr, None) if (existing_fields is not None and existing_fields != list(self.values)): raise ValueError("appended items do not match existing items" " in table!") existing_dtype = getattr(self.attrs, self.dtype_attr, None) if (existing_dtype is not None and existing_dtype != self.dtype): raise ValueError("appended items dtype do not match existing " "items dtype in table!")
[ "def", "validate_attr", "(", "self", ",", "append", ")", ":", "if", "append", ":", "existing_fields", "=", "getattr", "(", "self", ".", "attrs", ",", "self", ".", "kind_attr", ",", "None", ")", "if", "(", "existing_fields", "is", "not", "None", "and", "existing_fields", "!=", "list", "(", "self", ".", "values", ")", ")", ":", "raise", "ValueError", "(", "\"appended items do not match existing items\"", "\" in table!\"", ")", "existing_dtype", "=", "getattr", "(", "self", ".", "attrs", ",", "self", ".", "dtype_attr", ",", "None", ")", "if", "(", "existing_dtype", "is", "not", "None", "and", "existing_dtype", "!=", "self", ".", "dtype", ")", ":", "raise", "ValueError", "(", "\"appended items dtype do not match existing \"", "\"items dtype in table!\"", ")" ]
validate that we have the same order as the existing & same dtype
[ "validate", "that", "we", "have", "the", "same", "order", "as", "the", "existing", "&", "same", "dtype" ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/io/pytables.py#L2139-L2152
20,106
pandas-dev/pandas
pandas/io/pytables.py
DataCol.get_attr
def get_attr(self): """ get the data for this column """ self.values = getattr(self.attrs, self.kind_attr, None) self.dtype = getattr(self.attrs, self.dtype_attr, None) self.meta = getattr(self.attrs, self.meta_attr, None) self.set_kind()
python
def get_attr(self): """ get the data for this column """ self.values = getattr(self.attrs, self.kind_attr, None) self.dtype = getattr(self.attrs, self.dtype_attr, None) self.meta = getattr(self.attrs, self.meta_attr, None) self.set_kind()
[ "def", "get_attr", "(", "self", ")", ":", "self", ".", "values", "=", "getattr", "(", "self", ".", "attrs", ",", "self", ".", "kind_attr", ",", "None", ")", "self", ".", "dtype", "=", "getattr", "(", "self", ".", "attrs", ",", "self", ".", "dtype_attr", ",", "None", ")", "self", ".", "meta", "=", "getattr", "(", "self", ".", "attrs", ",", "self", ".", "meta_attr", ",", "None", ")", "self", ".", "set_kind", "(", ")" ]
get the data for this column
[ "get", "the", "data", "for", "this", "column" ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/io/pytables.py#L2232-L2237
20,107
pandas-dev/pandas
pandas/io/pytables.py
DataCol.set_attr
def set_attr(self): """ set the data for this column """ setattr(self.attrs, self.kind_attr, self.values) setattr(self.attrs, self.meta_attr, self.meta) if self.dtype is not None: setattr(self.attrs, self.dtype_attr, self.dtype)
python
def set_attr(self): """ set the data for this column """ setattr(self.attrs, self.kind_attr, self.values) setattr(self.attrs, self.meta_attr, self.meta) if self.dtype is not None: setattr(self.attrs, self.dtype_attr, self.dtype)
[ "def", "set_attr", "(", "self", ")", ":", "setattr", "(", "self", ".", "attrs", ",", "self", ".", "kind_attr", ",", "self", ".", "values", ")", "setattr", "(", "self", ".", "attrs", ",", "self", ".", "meta_attr", ",", "self", ".", "meta", ")", "if", "self", ".", "dtype", "is", "not", "None", ":", "setattr", "(", "self", ".", "attrs", ",", "self", ".", "dtype_attr", ",", "self", ".", "dtype", ")" ]
set the data for this column
[ "set", "the", "data", "for", "this", "column" ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/io/pytables.py#L2239-L2244
20,108
pandas-dev/pandas
pandas/io/pytables.py
Fixed.set_version
def set_version(self): """ compute and set our version """ version = _ensure_decoded( getattr(self.group._v_attrs, 'pandas_version', None)) try: self.version = tuple(int(x) for x in version.split('.')) if len(self.version) == 2: self.version = self.version + (0,) except AttributeError: self.version = (0, 0, 0)
python
def set_version(self): """ compute and set our version """ version = _ensure_decoded( getattr(self.group._v_attrs, 'pandas_version', None)) try: self.version = tuple(int(x) for x in version.split('.')) if len(self.version) == 2: self.version = self.version + (0,) except AttributeError: self.version = (0, 0, 0)
[ "def", "set_version", "(", "self", ")", ":", "version", "=", "_ensure_decoded", "(", "getattr", "(", "self", ".", "group", ".", "_v_attrs", ",", "'pandas_version'", ",", "None", ")", ")", "try", ":", "self", ".", "version", "=", "tuple", "(", "int", "(", "x", ")", "for", "x", "in", "version", ".", "split", "(", "'.'", ")", ")", "if", "len", "(", "self", ".", "version", ")", "==", "2", ":", "self", ".", "version", "=", "self", ".", "version", "+", "(", "0", ",", ")", "except", "AttributeError", ":", "self", ".", "version", "=", "(", "0", ",", "0", ",", "0", ")" ]
compute and set our version
[ "compute", "and", "set", "our", "version" ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/io/pytables.py#L2307-L2316
20,109
pandas-dev/pandas
pandas/io/pytables.py
Fixed.set_object_info
def set_object_info(self): """ set my pandas type & version """ self.attrs.pandas_type = str(self.pandas_kind) self.attrs.pandas_version = str(_version) self.set_version()
python
def set_object_info(self): """ set my pandas type & version """ self.attrs.pandas_type = str(self.pandas_kind) self.attrs.pandas_version = str(_version) self.set_version()
[ "def", "set_object_info", "(", "self", ")", ":", "self", ".", "attrs", ".", "pandas_type", "=", "str", "(", "self", ".", "pandas_kind", ")", "self", ".", "attrs", ".", "pandas_version", "=", "str", "(", "_version", ")", "self", ".", "set_version", "(", ")" ]
set my pandas type & version
[ "set", "my", "pandas", "type", "&", "version" ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/io/pytables.py#L2339-L2343
20,110
pandas-dev/pandas
pandas/io/pytables.py
Fixed.infer_axes
def infer_axes(self): """ infer the axes of my storer return a boolean indicating if we have a valid storer or not """ s = self.storable if s is None: return False self.get_attrs() return True
python
def infer_axes(self): """ infer the axes of my storer return a boolean indicating if we have a valid storer or not """ s = self.storable if s is None: return False self.get_attrs() return True
[ "def", "infer_axes", "(", "self", ")", ":", "s", "=", "self", ".", "storable", "if", "s", "is", "None", ":", "return", "False", "self", ".", "get_attrs", "(", ")", "return", "True" ]
infer the axes of my storer return a boolean indicating if we have a valid storer or not
[ "infer", "the", "axes", "of", "my", "storer", "return", "a", "boolean", "indicating", "if", "we", "have", "a", "valid", "storer", "or", "not" ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/io/pytables.py#L2416-L2424
20,111
pandas-dev/pandas
pandas/io/pytables.py
GenericFixed.validate_read
def validate_read(self, kwargs): """ remove table keywords from kwargs and return raise if any keywords are passed which are not-None """ kwargs = copy.copy(kwargs) columns = kwargs.pop('columns', None) if columns is not None: raise TypeError("cannot pass a column specification when reading " "a Fixed format store. this store must be " "selected in its entirety") where = kwargs.pop('where', None) if where is not None: raise TypeError("cannot pass a where specification when reading " "from a Fixed format store. this store must be " "selected in its entirety") return kwargs
python
def validate_read(self, kwargs): """ remove table keywords from kwargs and return raise if any keywords are passed which are not-None """ kwargs = copy.copy(kwargs) columns = kwargs.pop('columns', None) if columns is not None: raise TypeError("cannot pass a column specification when reading " "a Fixed format store. this store must be " "selected in its entirety") where = kwargs.pop('where', None) if where is not None: raise TypeError("cannot pass a where specification when reading " "from a Fixed format store. this store must be " "selected in its entirety") return kwargs
[ "def", "validate_read", "(", "self", ",", "kwargs", ")", ":", "kwargs", "=", "copy", ".", "copy", "(", "kwargs", ")", "columns", "=", "kwargs", ".", "pop", "(", "'columns'", ",", "None", ")", "if", "columns", "is", "not", "None", ":", "raise", "TypeError", "(", "\"cannot pass a column specification when reading \"", "\"a Fixed format store. this store must be \"", "\"selected in its entirety\"", ")", "where", "=", "kwargs", ".", "pop", "(", "'where'", ",", "None", ")", "if", "where", "is", "not", "None", ":", "raise", "TypeError", "(", "\"cannot pass a where specification when reading \"", "\"from a Fixed format store. this store must be \"", "\"selected in its entirety\"", ")", "return", "kwargs" ]
remove table keywords from kwargs and return raise if any keywords are passed which are not-None
[ "remove", "table", "keywords", "from", "kwargs", "and", "return", "raise", "if", "any", "keywords", "are", "passed", "which", "are", "not", "-", "None" ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/io/pytables.py#L2480-L2497
20,112
pandas-dev/pandas
pandas/io/pytables.py
GenericFixed.set_attrs
def set_attrs(self): """ set our object attributes """ self.attrs.encoding = self.encoding self.attrs.errors = self.errors
python
def set_attrs(self): """ set our object attributes """ self.attrs.encoding = self.encoding self.attrs.errors = self.errors
[ "def", "set_attrs", "(", "self", ")", ":", "self", ".", "attrs", ".", "encoding", "=", "self", ".", "encoding", "self", ".", "attrs", ".", "errors", "=", "self", ".", "errors" ]
set our object attributes
[ "set", "our", "object", "attributes" ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/io/pytables.py#L2503-L2506
20,113
pandas-dev/pandas
pandas/io/pytables.py
GenericFixed.read_array
def read_array(self, key, start=None, stop=None): """ read an array for the specified node (off of group """ import tables node = getattr(self.group, key) attrs = node._v_attrs transposed = getattr(attrs, 'transposed', False) if isinstance(node, tables.VLArray): ret = node[0][start:stop] else: dtype = getattr(attrs, 'value_type', None) shape = getattr(attrs, 'shape', None) if shape is not None: # length 0 axis ret = np.empty(shape, dtype=dtype) else: ret = node[start:stop] if dtype == 'datetime64': # reconstruct a timezone if indicated ret = _set_tz(ret, getattr(attrs, 'tz', None), coerce=True) elif dtype == 'timedelta64': ret = np.asarray(ret, dtype='m8[ns]') if transposed: return ret.T else: return ret
python
def read_array(self, key, start=None, stop=None): """ read an array for the specified node (off of group """ import tables node = getattr(self.group, key) attrs = node._v_attrs transposed = getattr(attrs, 'transposed', False) if isinstance(node, tables.VLArray): ret = node[0][start:stop] else: dtype = getattr(attrs, 'value_type', None) shape = getattr(attrs, 'shape', None) if shape is not None: # length 0 axis ret = np.empty(shape, dtype=dtype) else: ret = node[start:stop] if dtype == 'datetime64': # reconstruct a timezone if indicated ret = _set_tz(ret, getattr(attrs, 'tz', None), coerce=True) elif dtype == 'timedelta64': ret = np.asarray(ret, dtype='m8[ns]') if transposed: return ret.T else: return ret
[ "def", "read_array", "(", "self", ",", "key", ",", "start", "=", "None", ",", "stop", "=", "None", ")", ":", "import", "tables", "node", "=", "getattr", "(", "self", ".", "group", ",", "key", ")", "attrs", "=", "node", ".", "_v_attrs", "transposed", "=", "getattr", "(", "attrs", ",", "'transposed'", ",", "False", ")", "if", "isinstance", "(", "node", ",", "tables", ".", "VLArray", ")", ":", "ret", "=", "node", "[", "0", "]", "[", "start", ":", "stop", "]", "else", ":", "dtype", "=", "getattr", "(", "attrs", ",", "'value_type'", ",", "None", ")", "shape", "=", "getattr", "(", "attrs", ",", "'shape'", ",", "None", ")", "if", "shape", "is", "not", "None", ":", "# length 0 axis", "ret", "=", "np", ".", "empty", "(", "shape", ",", "dtype", "=", "dtype", ")", "else", ":", "ret", "=", "node", "[", "start", ":", "stop", "]", "if", "dtype", "==", "'datetime64'", ":", "# reconstruct a timezone if indicated", "ret", "=", "_set_tz", "(", "ret", ",", "getattr", "(", "attrs", ",", "'tz'", ",", "None", ")", ",", "coerce", "=", "True", ")", "elif", "dtype", "==", "'timedelta64'", ":", "ret", "=", "np", ".", "asarray", "(", "ret", ",", "dtype", "=", "'m8[ns]'", ")", "if", "transposed", ":", "return", "ret", ".", "T", "else", ":", "return", "ret" ]
read an array for the specified node (off of group
[ "read", "an", "array", "for", "the", "specified", "node", "(", "off", "of", "group" ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/io/pytables.py#L2518-L2549
20,114
pandas-dev/pandas
pandas/io/pytables.py
GenericFixed.write_array_empty
def write_array_empty(self, key, value): """ write a 0-len array """ # ugly hack for length 0 axes arr = np.empty((1,) * value.ndim) self._handle.create_array(self.group, key, arr) getattr(self.group, key)._v_attrs.value_type = str(value.dtype) getattr(self.group, key)._v_attrs.shape = value.shape
python
def write_array_empty(self, key, value): """ write a 0-len array """ # ugly hack for length 0 axes arr = np.empty((1,) * value.ndim) self._handle.create_array(self.group, key, arr) getattr(self.group, key)._v_attrs.value_type = str(value.dtype) getattr(self.group, key)._v_attrs.shape = value.shape
[ "def", "write_array_empty", "(", "self", ",", "key", ",", "value", ")", ":", "# ugly hack for length 0 axes", "arr", "=", "np", ".", "empty", "(", "(", "1", ",", ")", "*", "value", ".", "ndim", ")", "self", ".", "_handle", ".", "create_array", "(", "self", ".", "group", ",", "key", ",", "arr", ")", "getattr", "(", "self", ".", "group", ",", "key", ")", ".", "_v_attrs", ".", "value_type", "=", "str", "(", "value", ".", "dtype", ")", "getattr", "(", "self", ".", "group", ",", "key", ")", ".", "_v_attrs", ".", "shape", "=", "value", ".", "shape" ]
write a 0-len array
[ "write", "a", "0", "-", "len", "array" ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/io/pytables.py#L2702-L2709
20,115
pandas-dev/pandas
pandas/io/pytables.py
SparseFixed.validate_read
def validate_read(self, kwargs): """ we don't support start, stop kwds in Sparse """ kwargs = super().validate_read(kwargs) if 'start' in kwargs or 'stop' in kwargs: raise NotImplementedError("start and/or stop are not supported " "in fixed Sparse reading") return kwargs
python
def validate_read(self, kwargs): """ we don't support start, stop kwds in Sparse """ kwargs = super().validate_read(kwargs) if 'start' in kwargs or 'stop' in kwargs: raise NotImplementedError("start and/or stop are not supported " "in fixed Sparse reading") return kwargs
[ "def", "validate_read", "(", "self", ",", "kwargs", ")", ":", "kwargs", "=", "super", "(", ")", ".", "validate_read", "(", "kwargs", ")", "if", "'start'", "in", "kwargs", "or", "'stop'", "in", "kwargs", ":", "raise", "NotImplementedError", "(", "\"start and/or stop are not supported \"", "\"in fixed Sparse reading\"", ")", "return", "kwargs" ]
we don't support start, stop kwds in Sparse
[ "we", "don", "t", "support", "start", "stop", "kwds", "in", "Sparse" ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/io/pytables.py#L2859-L2867
20,116
pandas-dev/pandas
pandas/io/pytables.py
SparseFrameFixed.write
def write(self, obj, **kwargs): """ write it as a collection of individual sparse series """ super().write(obj, **kwargs) for name, ss in obj.items(): key = 'sparse_series_{name}'.format(name=name) if key not in self.group._v_children: node = self._handle.create_group(self.group, key) else: node = getattr(self.group, key) s = SparseSeriesFixed(self.parent, node) s.write(ss) self.attrs.default_fill_value = obj.default_fill_value self.attrs.default_kind = obj.default_kind self.write_index('columns', obj.columns)
python
def write(self, obj, **kwargs): """ write it as a collection of individual sparse series """ super().write(obj, **kwargs) for name, ss in obj.items(): key = 'sparse_series_{name}'.format(name=name) if key not in self.group._v_children: node = self._handle.create_group(self.group, key) else: node = getattr(self.group, key) s = SparseSeriesFixed(self.parent, node) s.write(ss) self.attrs.default_fill_value = obj.default_fill_value self.attrs.default_kind = obj.default_kind self.write_index('columns', obj.columns)
[ "def", "write", "(", "self", ",", "obj", ",", "*", "*", "kwargs", ")", ":", "super", "(", ")", ".", "write", "(", "obj", ",", "*", "*", "kwargs", ")", "for", "name", ",", "ss", "in", "obj", ".", "items", "(", ")", ":", "key", "=", "'sparse_series_{name}'", ".", "format", "(", "name", "=", "name", ")", "if", "key", "not", "in", "self", ".", "group", ".", "_v_children", ":", "node", "=", "self", ".", "_handle", ".", "create_group", "(", "self", ".", "group", ",", "key", ")", "else", ":", "node", "=", "getattr", "(", "self", ".", "group", ",", "key", ")", "s", "=", "SparseSeriesFixed", "(", "self", ".", "parent", ",", "node", ")", "s", ".", "write", "(", "ss", ")", "self", ".", "attrs", ".", "default_fill_value", "=", "obj", ".", "default_fill_value", "self", ".", "attrs", ".", "default_kind", "=", "obj", ".", "default_kind", "self", ".", "write_index", "(", "'columns'", ",", "obj", ".", "columns", ")" ]
write it as a collection of individual sparse series
[ "write", "it", "as", "a", "collection", "of", "individual", "sparse", "series" ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/io/pytables.py#L2911-L2924
20,117
pandas-dev/pandas
pandas/io/pytables.py
Table.validate
def validate(self, other): """ validate against an existing table """ if other is None: return if other.table_type != self.table_type: raise TypeError( "incompatible table_type with existing " "[{other} - {self}]".format( other=other.table_type, self=self.table_type)) for c in ['index_axes', 'non_index_axes', 'values_axes']: sv = getattr(self, c, None) ov = getattr(other, c, None) if sv != ov: # show the error for the specific axes for i, sax in enumerate(sv): oax = ov[i] if sax != oax: raise ValueError( "invalid combinate of [{c}] on appending data " "[{sax}] vs current table [{oax}]".format( c=c, sax=sax, oax=oax)) # should never get here raise Exception( "invalid combinate of [{c}] on appending data [{sv}] vs " "current table [{ov}]".format(c=c, sv=sv, ov=ov))
python
def validate(self, other): """ validate against an existing table """ if other is None: return if other.table_type != self.table_type: raise TypeError( "incompatible table_type with existing " "[{other} - {self}]".format( other=other.table_type, self=self.table_type)) for c in ['index_axes', 'non_index_axes', 'values_axes']: sv = getattr(self, c, None) ov = getattr(other, c, None) if sv != ov: # show the error for the specific axes for i, sax in enumerate(sv): oax = ov[i] if sax != oax: raise ValueError( "invalid combinate of [{c}] on appending data " "[{sax}] vs current table [{oax}]".format( c=c, sax=sax, oax=oax)) # should never get here raise Exception( "invalid combinate of [{c}] on appending data [{sv}] vs " "current table [{ov}]".format(c=c, sv=sv, ov=ov))
[ "def", "validate", "(", "self", ",", "other", ")", ":", "if", "other", "is", "None", ":", "return", "if", "other", ".", "table_type", "!=", "self", ".", "table_type", ":", "raise", "TypeError", "(", "\"incompatible table_type with existing \"", "\"[{other} - {self}]\"", ".", "format", "(", "other", "=", "other", ".", "table_type", ",", "self", "=", "self", ".", "table_type", ")", ")", "for", "c", "in", "[", "'index_axes'", ",", "'non_index_axes'", ",", "'values_axes'", "]", ":", "sv", "=", "getattr", "(", "self", ",", "c", ",", "None", ")", "ov", "=", "getattr", "(", "other", ",", "c", ",", "None", ")", "if", "sv", "!=", "ov", ":", "# show the error for the specific axes", "for", "i", ",", "sax", "in", "enumerate", "(", "sv", ")", ":", "oax", "=", "ov", "[", "i", "]", "if", "sax", "!=", "oax", ":", "raise", "ValueError", "(", "\"invalid combinate of [{c}] on appending data \"", "\"[{sax}] vs current table [{oax}]\"", ".", "format", "(", "c", "=", "c", ",", "sax", "=", "sax", ",", "oax", "=", "oax", ")", ")", "# should never get here", "raise", "Exception", "(", "\"invalid combinate of [{c}] on appending data [{sv}] vs \"", "\"current table [{ov}]\"", ".", "format", "(", "c", "=", "c", ",", "sv", "=", "sv", ",", "ov", "=", "ov", ")", ")" ]
validate against an existing table
[ "validate", "against", "an", "existing", "table" ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/io/pytables.py#L3095-L3123
20,118
pandas-dev/pandas
pandas/io/pytables.py
Table.validate_multiindex
def validate_multiindex(self, obj): """validate that we can store the multi-index; reset and return the new object """ levels = [l if l is not None else "level_{0}".format(i) for i, l in enumerate(obj.index.names)] try: return obj.reset_index(), levels except ValueError: raise ValueError("duplicate names/columns in the multi-index when " "storing as a table")
python
def validate_multiindex(self, obj): """validate that we can store the multi-index; reset and return the new object """ levels = [l if l is not None else "level_{0}".format(i) for i, l in enumerate(obj.index.names)] try: return obj.reset_index(), levels except ValueError: raise ValueError("duplicate names/columns in the multi-index when " "storing as a table")
[ "def", "validate_multiindex", "(", "self", ",", "obj", ")", ":", "levels", "=", "[", "l", "if", "l", "is", "not", "None", "else", "\"level_{0}\"", ".", "format", "(", "i", ")", "for", "i", ",", "l", "in", "enumerate", "(", "obj", ".", "index", ".", "names", ")", "]", "try", ":", "return", "obj", ".", "reset_index", "(", ")", ",", "levels", "except", "ValueError", ":", "raise", "ValueError", "(", "\"duplicate names/columns in the multi-index when \"", "\"storing as a table\"", ")" ]
validate that we can store the multi-index; reset and return the new object
[ "validate", "that", "we", "can", "store", "the", "multi", "-", "index", ";", "reset", "and", "return", "the", "new", "object" ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/io/pytables.py#L3135-L3145
20,119
pandas-dev/pandas
pandas/io/pytables.py
Table.nrows_expected
def nrows_expected(self): """ based on our axes, compute the expected nrows """ return np.prod([i.cvalues.shape[0] for i in self.index_axes])
python
def nrows_expected(self): """ based on our axes, compute the expected nrows """ return np.prod([i.cvalues.shape[0] for i in self.index_axes])
[ "def", "nrows_expected", "(", "self", ")", ":", "return", "np", ".", "prod", "(", "[", "i", ".", "cvalues", ".", "shape", "[", "0", "]", "for", "i", "in", "self", ".", "index_axes", "]", ")" ]
based on our axes, compute the expected nrows
[ "based", "on", "our", "axes", "compute", "the", "expected", "nrows" ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/io/pytables.py#L3148-L3150
20,120
pandas-dev/pandas
pandas/io/pytables.py
Table.data_orientation
def data_orientation(self): """return a tuple of my permutated axes, non_indexable at the front""" return tuple(itertools.chain([int(a[0]) for a in self.non_index_axes], [int(a.axis) for a in self.index_axes]))
python
def data_orientation(self): """return a tuple of my permutated axes, non_indexable at the front""" return tuple(itertools.chain([int(a[0]) for a in self.non_index_axes], [int(a.axis) for a in self.index_axes]))
[ "def", "data_orientation", "(", "self", ")", ":", "return", "tuple", "(", "itertools", ".", "chain", "(", "[", "int", "(", "a", "[", "0", "]", ")", "for", "a", "in", "self", ".", "non_index_axes", "]", ",", "[", "int", "(", "a", ".", "axis", ")", "for", "a", "in", "self", ".", "index_axes", "]", ")", ")" ]
return a tuple of my permutated axes, non_indexable at the front
[ "return", "a", "tuple", "of", "my", "permutated", "axes", "non_indexable", "at", "the", "front" ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/io/pytables.py#L3188-L3191
20,121
pandas-dev/pandas
pandas/io/pytables.py
Table.queryables
def queryables(self): """ return a dict of the kinds allowable columns for this object """ # compute the values_axes queryables return dict( [(a.cname, a) for a in self.index_axes] + [(self.storage_obj_type._AXIS_NAMES[axis], None) for axis, values in self.non_index_axes] + [(v.cname, v) for v in self.values_axes if v.name in set(self.data_columns)] )
python
def queryables(self): """ return a dict of the kinds allowable columns for this object """ # compute the values_axes queryables return dict( [(a.cname, a) for a in self.index_axes] + [(self.storage_obj_type._AXIS_NAMES[axis], None) for axis, values in self.non_index_axes] + [(v.cname, v) for v in self.values_axes if v.name in set(self.data_columns)] )
[ "def", "queryables", "(", "self", ")", ":", "# compute the values_axes queryables", "return", "dict", "(", "[", "(", "a", ".", "cname", ",", "a", ")", "for", "a", "in", "self", ".", "index_axes", "]", "+", "[", "(", "self", ".", "storage_obj_type", ".", "_AXIS_NAMES", "[", "axis", "]", ",", "None", ")", "for", "axis", ",", "values", "in", "self", ".", "non_index_axes", "]", "+", "[", "(", "v", ".", "cname", ",", "v", ")", "for", "v", "in", "self", ".", "values_axes", "if", "v", ".", "name", "in", "set", "(", "self", ".", "data_columns", ")", "]", ")" ]
return a dict of the kinds allowable columns for this object
[ "return", "a", "dict", "of", "the", "kinds", "allowable", "columns", "for", "this", "object" ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/io/pytables.py#L3193-L3203
20,122
pandas-dev/pandas
pandas/io/pytables.py
Table._get_metadata_path
def _get_metadata_path(self, key): """ return the metadata pathname for this key """ return "{group}/meta/{key}/meta".format(group=self.group._v_pathname, key=key)
python
def _get_metadata_path(self, key): """ return the metadata pathname for this key """ return "{group}/meta/{key}/meta".format(group=self.group._v_pathname, key=key)
[ "def", "_get_metadata_path", "(", "self", ",", "key", ")", ":", "return", "\"{group}/meta/{key}/meta\"", ".", "format", "(", "group", "=", "self", ".", "group", ".", "_v_pathname", ",", "key", "=", "key", ")" ]
return the metadata pathname for this key
[ "return", "the", "metadata", "pathname", "for", "this", "key" ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/io/pytables.py#L3213-L3216
20,123
pandas-dev/pandas
pandas/io/pytables.py
Table.write_metadata
def write_metadata(self, key, values): """ write out a meta data array to the key as a fixed-format Series Parameters ---------- key : string values : ndarray """ values = Series(values) self.parent.put(self._get_metadata_path(key), values, format='table', encoding=self.encoding, errors=self.errors, nan_rep=self.nan_rep)
python
def write_metadata(self, key, values): """ write out a meta data array to the key as a fixed-format Series Parameters ---------- key : string values : ndarray """ values = Series(values) self.parent.put(self._get_metadata_path(key), values, format='table', encoding=self.encoding, errors=self.errors, nan_rep=self.nan_rep)
[ "def", "write_metadata", "(", "self", ",", "key", ",", "values", ")", ":", "values", "=", "Series", "(", "values", ")", "self", ".", "parent", ".", "put", "(", "self", ".", "_get_metadata_path", "(", "key", ")", ",", "values", ",", "format", "=", "'table'", ",", "encoding", "=", "self", ".", "encoding", ",", "errors", "=", "self", ".", "errors", ",", "nan_rep", "=", "self", ".", "nan_rep", ")" ]
write out a meta data array to the key as a fixed-format Series Parameters ---------- key : string values : ndarray
[ "write", "out", "a", "meta", "data", "array", "to", "the", "key", "as", "a", "fixed", "-", "format", "Series" ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/io/pytables.py#L3218-L3231
20,124
pandas-dev/pandas
pandas/io/pytables.py
Table.read_metadata
def read_metadata(self, key): """ return the meta data array for this key """ if getattr(getattr(self.group, 'meta', None), key, None) is not None: return self.parent.select(self._get_metadata_path(key)) return None
python
def read_metadata(self, key): """ return the meta data array for this key """ if getattr(getattr(self.group, 'meta', None), key, None) is not None: return self.parent.select(self._get_metadata_path(key)) return None
[ "def", "read_metadata", "(", "self", ",", "key", ")", ":", "if", "getattr", "(", "getattr", "(", "self", ".", "group", ",", "'meta'", ",", "None", ")", ",", "key", ",", "None", ")", "is", "not", "None", ":", "return", "self", ".", "parent", ".", "select", "(", "self", ".", "_get_metadata_path", "(", "key", ")", ")", "return", "None" ]
return the meta data array for this key
[ "return", "the", "meta", "data", "array", "for", "this", "key" ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/io/pytables.py#L3233-L3237
20,125
pandas-dev/pandas
pandas/io/pytables.py
Table.set_attrs
def set_attrs(self): """ set our table type & indexables """ self.attrs.table_type = str(self.table_type) self.attrs.index_cols = self.index_cols() self.attrs.values_cols = self.values_cols() self.attrs.non_index_axes = self.non_index_axes self.attrs.data_columns = self.data_columns self.attrs.nan_rep = self.nan_rep self.attrs.encoding = self.encoding self.attrs.errors = self.errors self.attrs.levels = self.levels self.attrs.metadata = self.metadata self.set_info()
python
def set_attrs(self): """ set our table type & indexables """ self.attrs.table_type = str(self.table_type) self.attrs.index_cols = self.index_cols() self.attrs.values_cols = self.values_cols() self.attrs.non_index_axes = self.non_index_axes self.attrs.data_columns = self.data_columns self.attrs.nan_rep = self.nan_rep self.attrs.encoding = self.encoding self.attrs.errors = self.errors self.attrs.levels = self.levels self.attrs.metadata = self.metadata self.set_info()
[ "def", "set_attrs", "(", "self", ")", ":", "self", ".", "attrs", ".", "table_type", "=", "str", "(", "self", ".", "table_type", ")", "self", ".", "attrs", ".", "index_cols", "=", "self", ".", "index_cols", "(", ")", "self", ".", "attrs", ".", "values_cols", "=", "self", ".", "values_cols", "(", ")", "self", ".", "attrs", ".", "non_index_axes", "=", "self", ".", "non_index_axes", "self", ".", "attrs", ".", "data_columns", "=", "self", ".", "data_columns", "self", ".", "attrs", ".", "nan_rep", "=", "self", ".", "nan_rep", "self", ".", "attrs", ".", "encoding", "=", "self", ".", "encoding", "self", ".", "attrs", ".", "errors", "=", "self", ".", "errors", "self", ".", "attrs", ".", "levels", "=", "self", ".", "levels", "self", ".", "attrs", ".", "metadata", "=", "self", ".", "metadata", "self", ".", "set_info", "(", ")" ]
set our table type & indexables
[ "set", "our", "table", "type", "&", "indexables" ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/io/pytables.py#L3243-L3255
20,126
pandas-dev/pandas
pandas/io/pytables.py
Table.validate_version
def validate_version(self, where=None): """ are we trying to operate on an old version? """ if where is not None: if (self.version[0] <= 0 and self.version[1] <= 10 and self.version[2] < 1): ws = incompatibility_doc % '.'.join( [str(x) for x in self.version]) warnings.warn(ws, IncompatibilityWarning)
python
def validate_version(self, where=None): """ are we trying to operate on an old version? """ if where is not None: if (self.version[0] <= 0 and self.version[1] <= 10 and self.version[2] < 1): ws = incompatibility_doc % '.'.join( [str(x) for x in self.version]) warnings.warn(ws, IncompatibilityWarning)
[ "def", "validate_version", "(", "self", ",", "where", "=", "None", ")", ":", "if", "where", "is", "not", "None", ":", "if", "(", "self", ".", "version", "[", "0", "]", "<=", "0", "and", "self", ".", "version", "[", "1", "]", "<=", "10", "and", "self", ".", "version", "[", "2", "]", "<", "1", ")", ":", "ws", "=", "incompatibility_doc", "%", "'.'", ".", "join", "(", "[", "str", "(", "x", ")", "for", "x", "in", "self", ".", "version", "]", ")", "warnings", ".", "warn", "(", "ws", ",", "IncompatibilityWarning", ")" ]
are we trying to operate on an old version?
[ "are", "we", "trying", "to", "operate", "on", "an", "old", "version?" ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/io/pytables.py#L3280-L3287
20,127
pandas-dev/pandas
pandas/io/pytables.py
Table.validate_min_itemsize
def validate_min_itemsize(self, min_itemsize): """validate the min_itemisze doesn't contain items that are not in the axes this needs data_columns to be defined """ if min_itemsize is None: return if not isinstance(min_itemsize, dict): return q = self.queryables() for k, v in min_itemsize.items(): # ok, apply generally if k == 'values': continue if k not in q: raise ValueError( "min_itemsize has the key [{key}] which is not an axis or " "data_column".format(key=k))
python
def validate_min_itemsize(self, min_itemsize): """validate the min_itemisze doesn't contain items that are not in the axes this needs data_columns to be defined """ if min_itemsize is None: return if not isinstance(min_itemsize, dict): return q = self.queryables() for k, v in min_itemsize.items(): # ok, apply generally if k == 'values': continue if k not in q: raise ValueError( "min_itemsize has the key [{key}] which is not an axis or " "data_column".format(key=k))
[ "def", "validate_min_itemsize", "(", "self", ",", "min_itemsize", ")", ":", "if", "min_itemsize", "is", "None", ":", "return", "if", "not", "isinstance", "(", "min_itemsize", ",", "dict", ")", ":", "return", "q", "=", "self", ".", "queryables", "(", ")", "for", "k", ",", "v", "in", "min_itemsize", ".", "items", "(", ")", ":", "# ok, apply generally", "if", "k", "==", "'values'", ":", "continue", "if", "k", "not", "in", "q", ":", "raise", "ValueError", "(", "\"min_itemsize has the key [{key}] which is not an axis or \"", "\"data_column\"", ".", "format", "(", "key", "=", "k", ")", ")" ]
validate the min_itemisze doesn't contain items that are not in the axes this needs data_columns to be defined
[ "validate", "the", "min_itemisze", "doesn", "t", "contain", "items", "that", "are", "not", "in", "the", "axes", "this", "needs", "data_columns", "to", "be", "defined" ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/io/pytables.py#L3289-L3307
20,128
pandas-dev/pandas
pandas/io/pytables.py
Table.validate_data_columns
def validate_data_columns(self, data_columns, min_itemsize): """take the input data_columns and min_itemize and create a data columns spec """ if not len(self.non_index_axes): return [] axis, axis_labels = self.non_index_axes[0] info = self.info.get(axis, dict()) if info.get('type') == 'MultiIndex' and data_columns: raise ValueError("cannot use a multi-index on axis [{0}] with " "data_columns {1}".format(axis, data_columns)) # evaluate the passed data_columns, True == use all columns # take only valide axis labels if data_columns is True: data_columns = list(axis_labels) elif data_columns is None: data_columns = [] # if min_itemsize is a dict, add the keys (exclude 'values') if isinstance(min_itemsize, dict): existing_data_columns = set(data_columns) data_columns.extend([ k for k in min_itemsize.keys() if k != 'values' and k not in existing_data_columns ]) # return valid columns in the order of our axis return [c for c in data_columns if c in axis_labels]
python
def validate_data_columns(self, data_columns, min_itemsize): """take the input data_columns and min_itemize and create a data columns spec """ if not len(self.non_index_axes): return [] axis, axis_labels = self.non_index_axes[0] info = self.info.get(axis, dict()) if info.get('type') == 'MultiIndex' and data_columns: raise ValueError("cannot use a multi-index on axis [{0}] with " "data_columns {1}".format(axis, data_columns)) # evaluate the passed data_columns, True == use all columns # take only valide axis labels if data_columns is True: data_columns = list(axis_labels) elif data_columns is None: data_columns = [] # if min_itemsize is a dict, add the keys (exclude 'values') if isinstance(min_itemsize, dict): existing_data_columns = set(data_columns) data_columns.extend([ k for k in min_itemsize.keys() if k != 'values' and k not in existing_data_columns ]) # return valid columns in the order of our axis return [c for c in data_columns if c in axis_labels]
[ "def", "validate_data_columns", "(", "self", ",", "data_columns", ",", "min_itemsize", ")", ":", "if", "not", "len", "(", "self", ".", "non_index_axes", ")", ":", "return", "[", "]", "axis", ",", "axis_labels", "=", "self", ".", "non_index_axes", "[", "0", "]", "info", "=", "self", ".", "info", ".", "get", "(", "axis", ",", "dict", "(", ")", ")", "if", "info", ".", "get", "(", "'type'", ")", "==", "'MultiIndex'", "and", "data_columns", ":", "raise", "ValueError", "(", "\"cannot use a multi-index on axis [{0}] with \"", "\"data_columns {1}\"", ".", "format", "(", "axis", ",", "data_columns", ")", ")", "# evaluate the passed data_columns, True == use all columns", "# take only valide axis labels", "if", "data_columns", "is", "True", ":", "data_columns", "=", "list", "(", "axis_labels", ")", "elif", "data_columns", "is", "None", ":", "data_columns", "=", "[", "]", "# if min_itemsize is a dict, add the keys (exclude 'values')", "if", "isinstance", "(", "min_itemsize", ",", "dict", ")", ":", "existing_data_columns", "=", "set", "(", "data_columns", ")", "data_columns", ".", "extend", "(", "[", "k", "for", "k", "in", "min_itemsize", ".", "keys", "(", ")", "if", "k", "!=", "'values'", "and", "k", "not", "in", "existing_data_columns", "]", ")", "# return valid columns in the order of our axis", "return", "[", "c", "for", "c", "in", "data_columns", "if", "c", "in", "axis_labels", "]" ]
take the input data_columns and min_itemize and create a data columns spec
[ "take", "the", "input", "data_columns", "and", "min_itemize", "and", "create", "a", "data", "columns", "spec" ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/io/pytables.py#L3435-L3466
20,129
pandas-dev/pandas
pandas/io/pytables.py
Table.process_axes
def process_axes(self, obj, columns=None): """ process axes filters """ # make a copy to avoid side effects if columns is not None: columns = list(columns) # make sure to include levels if we have them if columns is not None and self.is_multi_index: for n in self.levels: if n not in columns: columns.insert(0, n) # reorder by any non_index_axes & limit to the select columns for axis, labels in self.non_index_axes: obj = _reindex_axis(obj, axis, labels, columns) # apply the selection filters (but keep in the same order) if self.selection.filter is not None: for field, op, filt in self.selection.filter.format(): def process_filter(field, filt): for axis_name in obj._AXIS_NAMES.values(): axis_number = obj._get_axis_number(axis_name) axis_values = obj._get_axis(axis_name) # see if the field is the name of an axis if field == axis_name: # if we have a multi-index, then need to include # the levels if self.is_multi_index: filt = filt.union(Index(self.levels)) takers = op(axis_values, filt) return obj.loc._getitem_axis(takers, axis=axis_number) # this might be the name of a file IN an axis elif field in axis_values: # we need to filter on this dimension values = ensure_index(getattr(obj, field).values) filt = ensure_index(filt) # hack until we support reversed dim flags if isinstance(obj, DataFrame): axis_number = 1 - axis_number takers = op(values, filt) return obj.loc._getitem_axis(takers, axis=axis_number) raise ValueError("cannot find the field [{field}] for " "filtering!".format(field=field)) obj = process_filter(field, filt) return obj
python
def process_axes(self, obj, columns=None): """ process axes filters """ # make a copy to avoid side effects if columns is not None: columns = list(columns) # make sure to include levels if we have them if columns is not None and self.is_multi_index: for n in self.levels: if n not in columns: columns.insert(0, n) # reorder by any non_index_axes & limit to the select columns for axis, labels in self.non_index_axes: obj = _reindex_axis(obj, axis, labels, columns) # apply the selection filters (but keep in the same order) if self.selection.filter is not None: for field, op, filt in self.selection.filter.format(): def process_filter(field, filt): for axis_name in obj._AXIS_NAMES.values(): axis_number = obj._get_axis_number(axis_name) axis_values = obj._get_axis(axis_name) # see if the field is the name of an axis if field == axis_name: # if we have a multi-index, then need to include # the levels if self.is_multi_index: filt = filt.union(Index(self.levels)) takers = op(axis_values, filt) return obj.loc._getitem_axis(takers, axis=axis_number) # this might be the name of a file IN an axis elif field in axis_values: # we need to filter on this dimension values = ensure_index(getattr(obj, field).values) filt = ensure_index(filt) # hack until we support reversed dim flags if isinstance(obj, DataFrame): axis_number = 1 - axis_number takers = op(values, filt) return obj.loc._getitem_axis(takers, axis=axis_number) raise ValueError("cannot find the field [{field}] for " "filtering!".format(field=field)) obj = process_filter(field, filt) return obj
[ "def", "process_axes", "(", "self", ",", "obj", ",", "columns", "=", "None", ")", ":", "# make a copy to avoid side effects", "if", "columns", "is", "not", "None", ":", "columns", "=", "list", "(", "columns", ")", "# make sure to include levels if we have them", "if", "columns", "is", "not", "None", "and", "self", ".", "is_multi_index", ":", "for", "n", "in", "self", ".", "levels", ":", "if", "n", "not", "in", "columns", ":", "columns", ".", "insert", "(", "0", ",", "n", ")", "# reorder by any non_index_axes & limit to the select columns", "for", "axis", ",", "labels", "in", "self", ".", "non_index_axes", ":", "obj", "=", "_reindex_axis", "(", "obj", ",", "axis", ",", "labels", ",", "columns", ")", "# apply the selection filters (but keep in the same order)", "if", "self", ".", "selection", ".", "filter", "is", "not", "None", ":", "for", "field", ",", "op", ",", "filt", "in", "self", ".", "selection", ".", "filter", ".", "format", "(", ")", ":", "def", "process_filter", "(", "field", ",", "filt", ")", ":", "for", "axis_name", "in", "obj", ".", "_AXIS_NAMES", ".", "values", "(", ")", ":", "axis_number", "=", "obj", ".", "_get_axis_number", "(", "axis_name", ")", "axis_values", "=", "obj", ".", "_get_axis", "(", "axis_name", ")", "# see if the field is the name of an axis", "if", "field", "==", "axis_name", ":", "# if we have a multi-index, then need to include", "# the levels", "if", "self", ".", "is_multi_index", ":", "filt", "=", "filt", ".", "union", "(", "Index", "(", "self", ".", "levels", ")", ")", "takers", "=", "op", "(", "axis_values", ",", "filt", ")", "return", "obj", ".", "loc", ".", "_getitem_axis", "(", "takers", ",", "axis", "=", "axis_number", ")", "# this might be the name of a file IN an axis", "elif", "field", "in", "axis_values", ":", "# we need to filter on this dimension", "values", "=", "ensure_index", "(", "getattr", "(", "obj", ",", "field", ")", ".", "values", ")", "filt", "=", "ensure_index", "(", "filt", ")", "# hack until we support reversed dim flags", "if", "isinstance", "(", "obj", ",", "DataFrame", ")", ":", "axis_number", "=", "1", "-", "axis_number", "takers", "=", "op", "(", "values", ",", "filt", ")", "return", "obj", ".", "loc", ".", "_getitem_axis", "(", "takers", ",", "axis", "=", "axis_number", ")", "raise", "ValueError", "(", "\"cannot find the field [{field}] for \"", "\"filtering!\"", ".", "format", "(", "field", "=", "field", ")", ")", "obj", "=", "process_filter", "(", "field", ",", "filt", ")", "return", "obj" ]
process axes filters
[ "process", "axes", "filters" ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/io/pytables.py#L3683-L3741
20,130
pandas-dev/pandas
pandas/io/pytables.py
Table.create_description
def create_description(self, complib=None, complevel=None, fletcher32=False, expectedrows=None): """ create the description of the table from the axes & values """ # provided expected rows if its passed if expectedrows is None: expectedrows = max(self.nrows_expected, 10000) d = dict(name='table', expectedrows=expectedrows) # description from the axes & values d['description'] = {a.cname: a.typ for a in self.axes} if complib: if complevel is None: complevel = self._complevel or 9 filters = _tables().Filters( complevel=complevel, complib=complib, fletcher32=fletcher32 or self._fletcher32) d['filters'] = filters elif self._filters is not None: d['filters'] = self._filters return d
python
def create_description(self, complib=None, complevel=None, fletcher32=False, expectedrows=None): """ create the description of the table from the axes & values """ # provided expected rows if its passed if expectedrows is None: expectedrows = max(self.nrows_expected, 10000) d = dict(name='table', expectedrows=expectedrows) # description from the axes & values d['description'] = {a.cname: a.typ for a in self.axes} if complib: if complevel is None: complevel = self._complevel or 9 filters = _tables().Filters( complevel=complevel, complib=complib, fletcher32=fletcher32 or self._fletcher32) d['filters'] = filters elif self._filters is not None: d['filters'] = self._filters return d
[ "def", "create_description", "(", "self", ",", "complib", "=", "None", ",", "complevel", "=", "None", ",", "fletcher32", "=", "False", ",", "expectedrows", "=", "None", ")", ":", "# provided expected rows if its passed", "if", "expectedrows", "is", "None", ":", "expectedrows", "=", "max", "(", "self", ".", "nrows_expected", ",", "10000", ")", "d", "=", "dict", "(", "name", "=", "'table'", ",", "expectedrows", "=", "expectedrows", ")", "# description from the axes & values", "d", "[", "'description'", "]", "=", "{", "a", ".", "cname", ":", "a", ".", "typ", "for", "a", "in", "self", ".", "axes", "}", "if", "complib", ":", "if", "complevel", "is", "None", ":", "complevel", "=", "self", ".", "_complevel", "or", "9", "filters", "=", "_tables", "(", ")", ".", "Filters", "(", "complevel", "=", "complevel", ",", "complib", "=", "complib", ",", "fletcher32", "=", "fletcher32", "or", "self", ".", "_fletcher32", ")", "d", "[", "'filters'", "]", "=", "filters", "elif", "self", ".", "_filters", "is", "not", "None", ":", "d", "[", "'filters'", "]", "=", "self", ".", "_filters", "return", "d" ]
create the description of the table from the axes & values
[ "create", "the", "description", "of", "the", "table", "from", "the", "axes", "&", "values" ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/io/pytables.py#L3743-L3766
20,131
pandas-dev/pandas
pandas/io/pytables.py
Table.read_column
def read_column(self, column, where=None, start=None, stop=None): """return a single column from the table, generally only indexables are interesting """ # validate the version self.validate_version() # infer the data kind if not self.infer_axes(): return False if where is not None: raise TypeError("read_column does not currently accept a where " "clause") # find the axes for a in self.axes: if column == a.name: if not a.is_data_indexable: raise ValueError( "column [{column}] can not be extracted individually; " "it is not data indexable".format(column=column)) # column must be an indexable or a data column c = getattr(self.table.cols, column) a.set_info(self.info) return Series(_set_tz(a.convert(c[start:stop], nan_rep=self.nan_rep, encoding=self.encoding, errors=self.errors ).take_data(), a.tz, True), name=column) raise KeyError( "column [{column}] not found in the table".format(column=column))
python
def read_column(self, column, where=None, start=None, stop=None): """return a single column from the table, generally only indexables are interesting """ # validate the version self.validate_version() # infer the data kind if not self.infer_axes(): return False if where is not None: raise TypeError("read_column does not currently accept a where " "clause") # find the axes for a in self.axes: if column == a.name: if not a.is_data_indexable: raise ValueError( "column [{column}] can not be extracted individually; " "it is not data indexable".format(column=column)) # column must be an indexable or a data column c = getattr(self.table.cols, column) a.set_info(self.info) return Series(_set_tz(a.convert(c[start:stop], nan_rep=self.nan_rep, encoding=self.encoding, errors=self.errors ).take_data(), a.tz, True), name=column) raise KeyError( "column [{column}] not found in the table".format(column=column))
[ "def", "read_column", "(", "self", ",", "column", ",", "where", "=", "None", ",", "start", "=", "None", ",", "stop", "=", "None", ")", ":", "# validate the version", "self", ".", "validate_version", "(", ")", "# infer the data kind", "if", "not", "self", ".", "infer_axes", "(", ")", ":", "return", "False", "if", "where", "is", "not", "None", ":", "raise", "TypeError", "(", "\"read_column does not currently accept a where \"", "\"clause\"", ")", "# find the axes", "for", "a", "in", "self", ".", "axes", ":", "if", "column", "==", "a", ".", "name", ":", "if", "not", "a", ".", "is_data_indexable", ":", "raise", "ValueError", "(", "\"column [{column}] can not be extracted individually; \"", "\"it is not data indexable\"", ".", "format", "(", "column", "=", "column", ")", ")", "# column must be an indexable or a data column", "c", "=", "getattr", "(", "self", ".", "table", ".", "cols", ",", "column", ")", "a", ".", "set_info", "(", "self", ".", "info", ")", "return", "Series", "(", "_set_tz", "(", "a", ".", "convert", "(", "c", "[", "start", ":", "stop", "]", ",", "nan_rep", "=", "self", ".", "nan_rep", ",", "encoding", "=", "self", ".", "encoding", ",", "errors", "=", "self", ".", "errors", ")", ".", "take_data", "(", ")", ",", "a", ".", "tz", ",", "True", ")", ",", "name", "=", "column", ")", "raise", "KeyError", "(", "\"column [{column}] not found in the table\"", ".", "format", "(", "column", "=", "column", ")", ")" ]
return a single column from the table, generally only indexables are interesting
[ "return", "a", "single", "column", "from", "the", "table", "generally", "only", "indexables", "are", "interesting" ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/io/pytables.py#L3793-L3829
20,132
pandas-dev/pandas
pandas/io/pytables.py
LegacyTable.read
def read(self, where=None, columns=None, **kwargs): """we have n indexable columns, with an arbitrary number of data axes """ if not self.read_axes(where=where, **kwargs): return None raise NotImplementedError("Panel is removed in pandas 0.25.0")
python
def read(self, where=None, columns=None, **kwargs): """we have n indexable columns, with an arbitrary number of data axes """ if not self.read_axes(where=where, **kwargs): return None raise NotImplementedError("Panel is removed in pandas 0.25.0")
[ "def", "read", "(", "self", ",", "where", "=", "None", ",", "columns", "=", "None", ",", "*", "*", "kwargs", ")", ":", "if", "not", "self", ".", "read_axes", "(", "where", "=", "where", ",", "*", "*", "kwargs", ")", ":", "return", "None", "raise", "NotImplementedError", "(", "\"Panel is removed in pandas 0.25.0\"", ")" ]
we have n indexable columns, with an arbitrary number of data axes
[ "we", "have", "n", "indexable", "columns", "with", "an", "arbitrary", "number", "of", "data", "axes" ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/io/pytables.py#L3872-L3880
20,133
pandas-dev/pandas
pandas/io/pytables.py
AppendableTable.write_data
def write_data(self, chunksize, dropna=False): """ we form the data into a 2-d including indexes,values,mask write chunk-by-chunk """ names = self.dtype.names nrows = self.nrows_expected # if dropna==True, then drop ALL nan rows masks = [] if dropna: for a in self.values_axes: # figure the mask: only do if we can successfully process this # column, otherwise ignore the mask mask = isna(a.data).all(axis=0) if isinstance(mask, np.ndarray): masks.append(mask.astype('u1', copy=False)) # consolidate masks if len(masks): mask = masks[0] for m in masks[1:]: mask = mask & m mask = mask.ravel() else: mask = None # broadcast the indexes if needed indexes = [a.cvalues for a in self.index_axes] nindexes = len(indexes) bindexes = [] for i, idx in enumerate(indexes): # broadcast to all other indexes except myself if i > 0 and i < nindexes: repeater = np.prod( [indexes[bi].shape[0] for bi in range(0, i)]) idx = np.tile(idx, repeater) if i < nindexes - 1: repeater = np.prod([indexes[bi].shape[0] for bi in range(i + 1, nindexes)]) idx = np.repeat(idx, repeater) bindexes.append(idx) # transpose the values so first dimension is last # reshape the values if needed values = [a.take_data() for a in self.values_axes] values = [v.transpose(np.roll(np.arange(v.ndim), v.ndim - 1)) for v in values] bvalues = [] for i, v in enumerate(values): new_shape = (nrows,) + self.dtype[names[nindexes + i]].shape bvalues.append(values[i].reshape(new_shape)) # write the chunks if chunksize is None: chunksize = 100000 rows = np.empty(min(chunksize, nrows), dtype=self.dtype) chunks = int(nrows / chunksize) + 1 for i in range(chunks): start_i = i * chunksize end_i = min((i + 1) * chunksize, nrows) if start_i >= end_i: break self.write_data_chunk( rows, indexes=[a[start_i:end_i] for a in bindexes], mask=mask[start_i:end_i] if mask is not None else None, values=[v[start_i:end_i] for v in bvalues])
python
def write_data(self, chunksize, dropna=False): """ we form the data into a 2-d including indexes,values,mask write chunk-by-chunk """ names = self.dtype.names nrows = self.nrows_expected # if dropna==True, then drop ALL nan rows masks = [] if dropna: for a in self.values_axes: # figure the mask: only do if we can successfully process this # column, otherwise ignore the mask mask = isna(a.data).all(axis=0) if isinstance(mask, np.ndarray): masks.append(mask.astype('u1', copy=False)) # consolidate masks if len(masks): mask = masks[0] for m in masks[1:]: mask = mask & m mask = mask.ravel() else: mask = None # broadcast the indexes if needed indexes = [a.cvalues for a in self.index_axes] nindexes = len(indexes) bindexes = [] for i, idx in enumerate(indexes): # broadcast to all other indexes except myself if i > 0 and i < nindexes: repeater = np.prod( [indexes[bi].shape[0] for bi in range(0, i)]) idx = np.tile(idx, repeater) if i < nindexes - 1: repeater = np.prod([indexes[bi].shape[0] for bi in range(i + 1, nindexes)]) idx = np.repeat(idx, repeater) bindexes.append(idx) # transpose the values so first dimension is last # reshape the values if needed values = [a.take_data() for a in self.values_axes] values = [v.transpose(np.roll(np.arange(v.ndim), v.ndim - 1)) for v in values] bvalues = [] for i, v in enumerate(values): new_shape = (nrows,) + self.dtype[names[nindexes + i]].shape bvalues.append(values[i].reshape(new_shape)) # write the chunks if chunksize is None: chunksize = 100000 rows = np.empty(min(chunksize, nrows), dtype=self.dtype) chunks = int(nrows / chunksize) + 1 for i in range(chunks): start_i = i * chunksize end_i = min((i + 1) * chunksize, nrows) if start_i >= end_i: break self.write_data_chunk( rows, indexes=[a[start_i:end_i] for a in bindexes], mask=mask[start_i:end_i] if mask is not None else None, values=[v[start_i:end_i] for v in bvalues])
[ "def", "write_data", "(", "self", ",", "chunksize", ",", "dropna", "=", "False", ")", ":", "names", "=", "self", ".", "dtype", ".", "names", "nrows", "=", "self", ".", "nrows_expected", "# if dropna==True, then drop ALL nan rows", "masks", "=", "[", "]", "if", "dropna", ":", "for", "a", "in", "self", ".", "values_axes", ":", "# figure the mask: only do if we can successfully process this", "# column, otherwise ignore the mask", "mask", "=", "isna", "(", "a", ".", "data", ")", ".", "all", "(", "axis", "=", "0", ")", "if", "isinstance", "(", "mask", ",", "np", ".", "ndarray", ")", ":", "masks", ".", "append", "(", "mask", ".", "astype", "(", "'u1'", ",", "copy", "=", "False", ")", ")", "# consolidate masks", "if", "len", "(", "masks", ")", ":", "mask", "=", "masks", "[", "0", "]", "for", "m", "in", "masks", "[", "1", ":", "]", ":", "mask", "=", "mask", "&", "m", "mask", "=", "mask", ".", "ravel", "(", ")", "else", ":", "mask", "=", "None", "# broadcast the indexes if needed", "indexes", "=", "[", "a", ".", "cvalues", "for", "a", "in", "self", ".", "index_axes", "]", "nindexes", "=", "len", "(", "indexes", ")", "bindexes", "=", "[", "]", "for", "i", ",", "idx", "in", "enumerate", "(", "indexes", ")", ":", "# broadcast to all other indexes except myself", "if", "i", ">", "0", "and", "i", "<", "nindexes", ":", "repeater", "=", "np", ".", "prod", "(", "[", "indexes", "[", "bi", "]", ".", "shape", "[", "0", "]", "for", "bi", "in", "range", "(", "0", ",", "i", ")", "]", ")", "idx", "=", "np", ".", "tile", "(", "idx", ",", "repeater", ")", "if", "i", "<", "nindexes", "-", "1", ":", "repeater", "=", "np", ".", "prod", "(", "[", "indexes", "[", "bi", "]", ".", "shape", "[", "0", "]", "for", "bi", "in", "range", "(", "i", "+", "1", ",", "nindexes", ")", "]", ")", "idx", "=", "np", ".", "repeat", "(", "idx", ",", "repeater", ")", "bindexes", ".", "append", "(", "idx", ")", "# transpose the values so first dimension is last", "# reshape the values if needed", "values", "=", "[", "a", ".", "take_data", "(", ")", "for", "a", "in", "self", ".", "values_axes", "]", "values", "=", "[", "v", ".", "transpose", "(", "np", ".", "roll", "(", "np", ".", "arange", "(", "v", ".", "ndim", ")", ",", "v", ".", "ndim", "-", "1", ")", ")", "for", "v", "in", "values", "]", "bvalues", "=", "[", "]", "for", "i", ",", "v", "in", "enumerate", "(", "values", ")", ":", "new_shape", "=", "(", "nrows", ",", ")", "+", "self", ".", "dtype", "[", "names", "[", "nindexes", "+", "i", "]", "]", ".", "shape", "bvalues", ".", "append", "(", "values", "[", "i", "]", ".", "reshape", "(", "new_shape", ")", ")", "# write the chunks", "if", "chunksize", "is", "None", ":", "chunksize", "=", "100000", "rows", "=", "np", ".", "empty", "(", "min", "(", "chunksize", ",", "nrows", ")", ",", "dtype", "=", "self", ".", "dtype", ")", "chunks", "=", "int", "(", "nrows", "/", "chunksize", ")", "+", "1", "for", "i", "in", "range", "(", "chunks", ")", ":", "start_i", "=", "i", "*", "chunksize", "end_i", "=", "min", "(", "(", "i", "+", "1", ")", "*", "chunksize", ",", "nrows", ")", "if", "start_i", ">=", "end_i", ":", "break", "self", ".", "write_data_chunk", "(", "rows", ",", "indexes", "=", "[", "a", "[", "start_i", ":", "end_i", "]", "for", "a", "in", "bindexes", "]", ",", "mask", "=", "mask", "[", "start_i", ":", "end_i", "]", "if", "mask", "is", "not", "None", "else", "None", ",", "values", "=", "[", "v", "[", "start_i", ":", "end_i", "]", "for", "v", "in", "bvalues", "]", ")" ]
we form the data into a 2-d including indexes,values,mask write chunk-by-chunk
[ "we", "form", "the", "data", "into", "a", "2", "-", "d", "including", "indexes", "values", "mask", "write", "chunk", "-", "by", "-", "chunk" ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/io/pytables.py#L3930-L4003
20,134
pandas-dev/pandas
pandas/io/pytables.py
GenericTable.indexables
def indexables(self): """ create the indexables from the table description """ if self._indexables is None: d = self.description # the index columns is just a simple index self._indexables = [GenericIndexCol(name='index', axis=0)] for i, n in enumerate(d._v_names): dc = GenericDataIndexableCol( name=n, pos=i, values=[n], version=self.version) self._indexables.append(dc) return self._indexables
python
def indexables(self): """ create the indexables from the table description """ if self._indexables is None: d = self.description # the index columns is just a simple index self._indexables = [GenericIndexCol(name='index', axis=0)] for i, n in enumerate(d._v_names): dc = GenericDataIndexableCol( name=n, pos=i, values=[n], version=self.version) self._indexables.append(dc) return self._indexables
[ "def", "indexables", "(", "self", ")", ":", "if", "self", ".", "_indexables", "is", "None", ":", "d", "=", "self", ".", "description", "# the index columns is just a simple index", "self", ".", "_indexables", "=", "[", "GenericIndexCol", "(", "name", "=", "'index'", ",", "axis", "=", "0", ")", "]", "for", "i", ",", "n", "in", "enumerate", "(", "d", ".", "_v_names", ")", ":", "dc", "=", "GenericDataIndexableCol", "(", "name", "=", "n", ",", "pos", "=", "i", ",", "values", "=", "[", "n", "]", ",", "version", "=", "self", ".", "version", ")", "self", ".", "_indexables", ".", "append", "(", "dc", ")", "return", "self", ".", "_indexables" ]
create the indexables from the table description
[ "create", "the", "indexables", "from", "the", "table", "description" ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/io/pytables.py#L4267-L4282
20,135
pandas-dev/pandas
pandas/core/arrays/base.py
ExtensionArray.astype
def astype(self, dtype, copy=True): """ Cast to a NumPy array with 'dtype'. Parameters ---------- dtype : str or dtype Typecode or data-type to which the array is cast. copy : bool, default True Whether to copy the data, even if not necessary. If False, a copy is made only if the old dtype does not match the new dtype. Returns ------- array : ndarray NumPy ndarray with 'dtype' for its dtype. """ return np.array(self, dtype=dtype, copy=copy)
python
def astype(self, dtype, copy=True): """ Cast to a NumPy array with 'dtype'. Parameters ---------- dtype : str or dtype Typecode or data-type to which the array is cast. copy : bool, default True Whether to copy the data, even if not necessary. If False, a copy is made only if the old dtype does not match the new dtype. Returns ------- array : ndarray NumPy ndarray with 'dtype' for its dtype. """ return np.array(self, dtype=dtype, copy=copy)
[ "def", "astype", "(", "self", ",", "dtype", ",", "copy", "=", "True", ")", ":", "return", "np", ".", "array", "(", "self", ",", "dtype", "=", "dtype", ",", "copy", "=", "copy", ")" ]
Cast to a NumPy array with 'dtype'. Parameters ---------- dtype : str or dtype Typecode or data-type to which the array is cast. copy : bool, default True Whether to copy the data, even if not necessary. If False, a copy is made only if the old dtype does not match the new dtype. Returns ------- array : ndarray NumPy ndarray with 'dtype' for its dtype.
[ "Cast", "to", "a", "NumPy", "array", "with", "dtype", "." ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/arrays/base.py#L322-L340
20,136
pandas-dev/pandas
pandas/core/arrays/base.py
ExtensionArray.argsort
def argsort(self, ascending=True, kind='quicksort', *args, **kwargs): """ Return the indices that would sort this array. Parameters ---------- ascending : bool, default True Whether the indices should result in an ascending or descending sort. kind : {'quicksort', 'mergesort', 'heapsort'}, optional Sorting algorithm. *args, **kwargs: passed through to :func:`numpy.argsort`. Returns ------- index_array : ndarray Array of indices that sort ``self``. See Also -------- numpy.argsort : Sorting implementation used internally. """ # Implementor note: You have two places to override the behavior of # argsort. # 1. _values_for_argsort : construct the values passed to np.argsort # 2. argsort : total control over sorting. ascending = nv.validate_argsort_with_ascending(ascending, args, kwargs) values = self._values_for_argsort() result = np.argsort(values, kind=kind, **kwargs) if not ascending: result = result[::-1] return result
python
def argsort(self, ascending=True, kind='quicksort', *args, **kwargs): """ Return the indices that would sort this array. Parameters ---------- ascending : bool, default True Whether the indices should result in an ascending or descending sort. kind : {'quicksort', 'mergesort', 'heapsort'}, optional Sorting algorithm. *args, **kwargs: passed through to :func:`numpy.argsort`. Returns ------- index_array : ndarray Array of indices that sort ``self``. See Also -------- numpy.argsort : Sorting implementation used internally. """ # Implementor note: You have two places to override the behavior of # argsort. # 1. _values_for_argsort : construct the values passed to np.argsort # 2. argsort : total control over sorting. ascending = nv.validate_argsort_with_ascending(ascending, args, kwargs) values = self._values_for_argsort() result = np.argsort(values, kind=kind, **kwargs) if not ascending: result = result[::-1] return result
[ "def", "argsort", "(", "self", ",", "ascending", "=", "True", ",", "kind", "=", "'quicksort'", ",", "*", "args", ",", "*", "*", "kwargs", ")", ":", "# Implementor note: You have two places to override the behavior of", "# argsort.", "# 1. _values_for_argsort : construct the values passed to np.argsort", "# 2. argsort : total control over sorting.", "ascending", "=", "nv", ".", "validate_argsort_with_ascending", "(", "ascending", ",", "args", ",", "kwargs", ")", "values", "=", "self", ".", "_values_for_argsort", "(", ")", "result", "=", "np", ".", "argsort", "(", "values", ",", "kind", "=", "kind", ",", "*", "*", "kwargs", ")", "if", "not", "ascending", ":", "result", "=", "result", "[", ":", ":", "-", "1", "]", "return", "result" ]
Return the indices that would sort this array. Parameters ---------- ascending : bool, default True Whether the indices should result in an ascending or descending sort. kind : {'quicksort', 'mergesort', 'heapsort'}, optional Sorting algorithm. *args, **kwargs: passed through to :func:`numpy.argsort`. Returns ------- index_array : ndarray Array of indices that sort ``self``. See Also -------- numpy.argsort : Sorting implementation used internally.
[ "Return", "the", "indices", "that", "would", "sort", "this", "array", "." ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/arrays/base.py#L381-L413
20,137
pandas-dev/pandas
pandas/core/arrays/base.py
ExtensionArray.shift
def shift( self, periods: int = 1, fill_value: object = None, ) -> ABCExtensionArray: """ Shift values by desired number. Newly introduced missing values are filled with ``self.dtype.na_value``. .. versionadded:: 0.24.0 Parameters ---------- periods : int, default 1 The number of periods to shift. Negative values are allowed for shifting backwards. fill_value : object, optional The scalar value to use for newly introduced missing values. The default is ``self.dtype.na_value`` .. versionadded:: 0.24.0 Returns ------- shifted : ExtensionArray Notes ----- If ``self`` is empty or ``periods`` is 0, a copy of ``self`` is returned. If ``periods > len(self)``, then an array of size len(self) is returned, with all values filled with ``self.dtype.na_value``. """ # Note: this implementation assumes that `self.dtype.na_value` can be # stored in an instance of your ExtensionArray with `self.dtype`. if not len(self) or periods == 0: return self.copy() if isna(fill_value): fill_value = self.dtype.na_value empty = self._from_sequence( [fill_value] * min(abs(periods), len(self)), dtype=self.dtype ) if periods > 0: a = empty b = self[:-periods] else: a = self[abs(periods):] b = empty return self._concat_same_type([a, b])
python
def shift( self, periods: int = 1, fill_value: object = None, ) -> ABCExtensionArray: """ Shift values by desired number. Newly introduced missing values are filled with ``self.dtype.na_value``. .. versionadded:: 0.24.0 Parameters ---------- periods : int, default 1 The number of periods to shift. Negative values are allowed for shifting backwards. fill_value : object, optional The scalar value to use for newly introduced missing values. The default is ``self.dtype.na_value`` .. versionadded:: 0.24.0 Returns ------- shifted : ExtensionArray Notes ----- If ``self`` is empty or ``periods`` is 0, a copy of ``self`` is returned. If ``periods > len(self)``, then an array of size len(self) is returned, with all values filled with ``self.dtype.na_value``. """ # Note: this implementation assumes that `self.dtype.na_value` can be # stored in an instance of your ExtensionArray with `self.dtype`. if not len(self) or periods == 0: return self.copy() if isna(fill_value): fill_value = self.dtype.na_value empty = self._from_sequence( [fill_value] * min(abs(periods), len(self)), dtype=self.dtype ) if periods > 0: a = empty b = self[:-periods] else: a = self[abs(periods):] b = empty return self._concat_same_type([a, b])
[ "def", "shift", "(", "self", ",", "periods", ":", "int", "=", "1", ",", "fill_value", ":", "object", "=", "None", ",", ")", "->", "ABCExtensionArray", ":", "# Note: this implementation assumes that `self.dtype.na_value` can be", "# stored in an instance of your ExtensionArray with `self.dtype`.", "if", "not", "len", "(", "self", ")", "or", "periods", "==", "0", ":", "return", "self", ".", "copy", "(", ")", "if", "isna", "(", "fill_value", ")", ":", "fill_value", "=", "self", ".", "dtype", ".", "na_value", "empty", "=", "self", ".", "_from_sequence", "(", "[", "fill_value", "]", "*", "min", "(", "abs", "(", "periods", ")", ",", "len", "(", "self", ")", ")", ",", "dtype", "=", "self", ".", "dtype", ")", "if", "periods", ">", "0", ":", "a", "=", "empty", "b", "=", "self", "[", ":", "-", "periods", "]", "else", ":", "a", "=", "self", "[", "abs", "(", "periods", ")", ":", "]", "b", "=", "empty", "return", "self", ".", "_concat_same_type", "(", "[", "a", ",", "b", "]", ")" ]
Shift values by desired number. Newly introduced missing values are filled with ``self.dtype.na_value``. .. versionadded:: 0.24.0 Parameters ---------- periods : int, default 1 The number of periods to shift. Negative values are allowed for shifting backwards. fill_value : object, optional The scalar value to use for newly introduced missing values. The default is ``self.dtype.na_value`` .. versionadded:: 0.24.0 Returns ------- shifted : ExtensionArray Notes ----- If ``self`` is empty or ``periods`` is 0, a copy of ``self`` is returned. If ``periods > len(self)``, then an array of size len(self) is returned, with all values filled with ``self.dtype.na_value``.
[ "Shift", "values", "by", "desired", "number", "." ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/arrays/base.py#L479-L535
20,138
pandas-dev/pandas
pandas/core/arrays/base.py
ExtensionArray.unique
def unique(self): """ Compute the ExtensionArray of unique values. Returns ------- uniques : ExtensionArray """ from pandas import unique uniques = unique(self.astype(object)) return self._from_sequence(uniques, dtype=self.dtype)
python
def unique(self): """ Compute the ExtensionArray of unique values. Returns ------- uniques : ExtensionArray """ from pandas import unique uniques = unique(self.astype(object)) return self._from_sequence(uniques, dtype=self.dtype)
[ "def", "unique", "(", "self", ")", ":", "from", "pandas", "import", "unique", "uniques", "=", "unique", "(", "self", ".", "astype", "(", "object", ")", ")", "return", "self", ".", "_from_sequence", "(", "uniques", ",", "dtype", "=", "self", ".", "dtype", ")" ]
Compute the ExtensionArray of unique values. Returns ------- uniques : ExtensionArray
[ "Compute", "the", "ExtensionArray", "of", "unique", "values", "." ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/arrays/base.py#L537-L548
20,139
pandas-dev/pandas
pandas/core/arrays/base.py
ExtensionArray._values_for_factorize
def _values_for_factorize(self) -> Tuple[np.ndarray, Any]: """ Return an array and missing value suitable for factorization. Returns ------- values : ndarray An array suitable for factorization. This should maintain order and be a supported dtype (Float64, Int64, UInt64, String, Object). By default, the extension array is cast to object dtype. na_value : object The value in `values` to consider missing. This will be treated as NA in the factorization routines, so it will be coded as `na_sentinal` and not included in `uniques`. By default, ``np.nan`` is used. Notes ----- The values returned by this method are also used in :func:`pandas.util.hash_pandas_object`. """ return self.astype(object), np.nan
python
def _values_for_factorize(self) -> Tuple[np.ndarray, Any]: """ Return an array and missing value suitable for factorization. Returns ------- values : ndarray An array suitable for factorization. This should maintain order and be a supported dtype (Float64, Int64, UInt64, String, Object). By default, the extension array is cast to object dtype. na_value : object The value in `values` to consider missing. This will be treated as NA in the factorization routines, so it will be coded as `na_sentinal` and not included in `uniques`. By default, ``np.nan`` is used. Notes ----- The values returned by this method are also used in :func:`pandas.util.hash_pandas_object`. """ return self.astype(object), np.nan
[ "def", "_values_for_factorize", "(", "self", ")", "->", "Tuple", "[", "np", ".", "ndarray", ",", "Any", "]", ":", "return", "self", ".", "astype", "(", "object", ")", ",", "np", ".", "nan" ]
Return an array and missing value suitable for factorization. Returns ------- values : ndarray An array suitable for factorization. This should maintain order and be a supported dtype (Float64, Int64, UInt64, String, Object). By default, the extension array is cast to object dtype. na_value : object The value in `values` to consider missing. This will be treated as NA in the factorization routines, so it will be coded as `na_sentinal` and not included in `uniques`. By default, ``np.nan`` is used. Notes ----- The values returned by this method are also used in :func:`pandas.util.hash_pandas_object`.
[ "Return", "an", "array", "and", "missing", "value", "suitable", "for", "factorization", "." ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/arrays/base.py#L598-L620
20,140
pandas-dev/pandas
pandas/core/arrays/base.py
ExtensionArray.factorize
def factorize( self, na_sentinel: int = -1, ) -> Tuple[np.ndarray, ABCExtensionArray]: """ Encode the extension array as an enumerated type. Parameters ---------- na_sentinel : int, default -1 Value to use in the `labels` array to indicate missing values. Returns ------- labels : ndarray An integer NumPy array that's an indexer into the original ExtensionArray. uniques : ExtensionArray An ExtensionArray containing the unique values of `self`. .. note:: uniques will *not* contain an entry for the NA value of the ExtensionArray if there are any missing values present in `self`. See Also -------- pandas.factorize : Top-level factorize method that dispatches here. Notes ----- :meth:`pandas.factorize` offers a `sort` keyword as well. """ # Impelmentor note: There are two ways to override the behavior of # pandas.factorize # 1. _values_for_factorize and _from_factorize. # Specify the values passed to pandas' internal factorization # routines, and how to convert from those values back to the # original ExtensionArray. # 2. ExtensionArray.factorize. # Complete control over factorization. from pandas.core.algorithms import _factorize_array arr, na_value = self._values_for_factorize() labels, uniques = _factorize_array(arr, na_sentinel=na_sentinel, na_value=na_value) uniques = self._from_factorized(uniques, self) return labels, uniques
python
def factorize( self, na_sentinel: int = -1, ) -> Tuple[np.ndarray, ABCExtensionArray]: """ Encode the extension array as an enumerated type. Parameters ---------- na_sentinel : int, default -1 Value to use in the `labels` array to indicate missing values. Returns ------- labels : ndarray An integer NumPy array that's an indexer into the original ExtensionArray. uniques : ExtensionArray An ExtensionArray containing the unique values of `self`. .. note:: uniques will *not* contain an entry for the NA value of the ExtensionArray if there are any missing values present in `self`. See Also -------- pandas.factorize : Top-level factorize method that dispatches here. Notes ----- :meth:`pandas.factorize` offers a `sort` keyword as well. """ # Impelmentor note: There are two ways to override the behavior of # pandas.factorize # 1. _values_for_factorize and _from_factorize. # Specify the values passed to pandas' internal factorization # routines, and how to convert from those values back to the # original ExtensionArray. # 2. ExtensionArray.factorize. # Complete control over factorization. from pandas.core.algorithms import _factorize_array arr, na_value = self._values_for_factorize() labels, uniques = _factorize_array(arr, na_sentinel=na_sentinel, na_value=na_value) uniques = self._from_factorized(uniques, self) return labels, uniques
[ "def", "factorize", "(", "self", ",", "na_sentinel", ":", "int", "=", "-", "1", ",", ")", "->", "Tuple", "[", "np", ".", "ndarray", ",", "ABCExtensionArray", "]", ":", "# Impelmentor note: There are two ways to override the behavior of", "# pandas.factorize", "# 1. _values_for_factorize and _from_factorize.", "# Specify the values passed to pandas' internal factorization", "# routines, and how to convert from those values back to the", "# original ExtensionArray.", "# 2. ExtensionArray.factorize.", "# Complete control over factorization.", "from", "pandas", ".", "core", ".", "algorithms", "import", "_factorize_array", "arr", ",", "na_value", "=", "self", ".", "_values_for_factorize", "(", ")", "labels", ",", "uniques", "=", "_factorize_array", "(", "arr", ",", "na_sentinel", "=", "na_sentinel", ",", "na_value", "=", "na_value", ")", "uniques", "=", "self", ".", "_from_factorized", "(", "uniques", ",", "self", ")", "return", "labels", ",", "uniques" ]
Encode the extension array as an enumerated type. Parameters ---------- na_sentinel : int, default -1 Value to use in the `labels` array to indicate missing values. Returns ------- labels : ndarray An integer NumPy array that's an indexer into the original ExtensionArray. uniques : ExtensionArray An ExtensionArray containing the unique values of `self`. .. note:: uniques will *not* contain an entry for the NA value of the ExtensionArray if there are any missing values present in `self`. See Also -------- pandas.factorize : Top-level factorize method that dispatches here. Notes ----- :meth:`pandas.factorize` offers a `sort` keyword as well.
[ "Encode", "the", "extension", "array", "as", "an", "enumerated", "type", "." ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/arrays/base.py#L622-L672
20,141
pandas-dev/pandas
pandas/core/arrays/base.py
ExtensionArray._formatter
def _formatter( self, boxed: bool = False, ) -> Callable[[Any], Optional[str]]: """Formatting function for scalar values. This is used in the default '__repr__'. The returned formatting function receives instances of your scalar type. Parameters ---------- boxed: bool, default False An indicated for whether or not your array is being printed within a Series, DataFrame, or Index (True), or just by itself (False). This may be useful if you want scalar values to appear differently within a Series versus on its own (e.g. quoted or not). Returns ------- Callable[[Any], str] A callable that gets instances of the scalar type and returns a string. By default, :func:`repr` is used when ``boxed=False`` and :func:`str` is used when ``boxed=True``. """ if boxed: return str return repr
python
def _formatter( self, boxed: bool = False, ) -> Callable[[Any], Optional[str]]: """Formatting function for scalar values. This is used in the default '__repr__'. The returned formatting function receives instances of your scalar type. Parameters ---------- boxed: bool, default False An indicated for whether or not your array is being printed within a Series, DataFrame, or Index (True), or just by itself (False). This may be useful if you want scalar values to appear differently within a Series versus on its own (e.g. quoted or not). Returns ------- Callable[[Any], str] A callable that gets instances of the scalar type and returns a string. By default, :func:`repr` is used when ``boxed=False`` and :func:`str` is used when ``boxed=True``. """ if boxed: return str return repr
[ "def", "_formatter", "(", "self", ",", "boxed", ":", "bool", "=", "False", ",", ")", "->", "Callable", "[", "[", "Any", "]", ",", "Optional", "[", "str", "]", "]", ":", "if", "boxed", ":", "return", "str", "return", "repr" ]
Formatting function for scalar values. This is used in the default '__repr__'. The returned formatting function receives instances of your scalar type. Parameters ---------- boxed: bool, default False An indicated for whether or not your array is being printed within a Series, DataFrame, or Index (True), or just by itself (False). This may be useful if you want scalar values to appear differently within a Series versus on its own (e.g. quoted or not). Returns ------- Callable[[Any], str] A callable that gets instances of the scalar type and returns a string. By default, :func:`repr` is used when ``boxed=False`` and :func:`str` is used when ``boxed=True``.
[ "Formatting", "function", "for", "scalar", "values", "." ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/arrays/base.py#L857-L885
20,142
pandas-dev/pandas
pandas/core/arrays/base.py
ExtensionArray._reduce
def _reduce(self, name, skipna=True, **kwargs): """ Return a scalar result of performing the reduction operation. Parameters ---------- name : str Name of the function, supported values are: { any, all, min, max, sum, mean, median, prod, std, var, sem, kurt, skew }. skipna : bool, default True If True, skip NaN values. **kwargs Additional keyword arguments passed to the reduction function. Currently, `ddof` is the only supported kwarg. Returns ------- scalar Raises ------ TypeError : subclass does not define reductions """ raise TypeError("cannot perform {name} with type {dtype}".format( name=name, dtype=self.dtype))
python
def _reduce(self, name, skipna=True, **kwargs): """ Return a scalar result of performing the reduction operation. Parameters ---------- name : str Name of the function, supported values are: { any, all, min, max, sum, mean, median, prod, std, var, sem, kurt, skew }. skipna : bool, default True If True, skip NaN values. **kwargs Additional keyword arguments passed to the reduction function. Currently, `ddof` is the only supported kwarg. Returns ------- scalar Raises ------ TypeError : subclass does not define reductions """ raise TypeError("cannot perform {name} with type {dtype}".format( name=name, dtype=self.dtype))
[ "def", "_reduce", "(", "self", ",", "name", ",", "skipna", "=", "True", ",", "*", "*", "kwargs", ")", ":", "raise", "TypeError", "(", "\"cannot perform {name} with type {dtype}\"", ".", "format", "(", "name", "=", "name", ",", "dtype", "=", "self", ".", "dtype", ")", ")" ]
Return a scalar result of performing the reduction operation. Parameters ---------- name : str Name of the function, supported values are: { any, all, min, max, sum, mean, median, prod, std, var, sem, kurt, skew }. skipna : bool, default True If True, skip NaN values. **kwargs Additional keyword arguments passed to the reduction function. Currently, `ddof` is the only supported kwarg. Returns ------- scalar Raises ------ TypeError : subclass does not define reductions
[ "Return", "a", "scalar", "result", "of", "performing", "the", "reduction", "operation", "." ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/arrays/base.py#L939-L964
20,143
pandas-dev/pandas
pandas/core/arrays/base.py
ExtensionScalarOpsMixin._create_method
def _create_method(cls, op, coerce_to_dtype=True): """ A class method that returns a method that will correspond to an operator for an ExtensionArray subclass, by dispatching to the relevant operator defined on the individual elements of the ExtensionArray. Parameters ---------- op : function An operator that takes arguments op(a, b) coerce_to_dtype : bool, default True boolean indicating whether to attempt to convert the result to the underlying ExtensionArray dtype. If it's not possible to create a new ExtensionArray with the values, an ndarray is returned instead. Returns ------- Callable[[Any, Any], Union[ndarray, ExtensionArray]] A method that can be bound to a class. When used, the method receives the two arguments, one of which is the instance of this class, and should return an ExtensionArray or an ndarray. Returning an ndarray may be necessary when the result of the `op` cannot be stored in the ExtensionArray. The dtype of the ndarray uses NumPy's normal inference rules. Example ------- Given an ExtensionArray subclass called MyExtensionArray, use >>> __add__ = cls._create_method(operator.add) in the class definition of MyExtensionArray to create the operator for addition, that will be based on the operator implementation of the underlying elements of the ExtensionArray """ def _binop(self, other): def convert_values(param): if isinstance(param, ExtensionArray) or is_list_like(param): ovalues = param else: # Assume its an object ovalues = [param] * len(self) return ovalues if isinstance(other, (ABCSeries, ABCIndexClass)): # rely on pandas to unbox and dispatch to us return NotImplemented lvalues = self rvalues = convert_values(other) # If the operator is not defined for the underlying objects, # a TypeError should be raised res = [op(a, b) for (a, b) in zip(lvalues, rvalues)] def _maybe_convert(arr): if coerce_to_dtype: # https://github.com/pandas-dev/pandas/issues/22850 # We catch all regular exceptions here, and fall back # to an ndarray. try: res = self._from_sequence(arr) except Exception: res = np.asarray(arr) else: res = np.asarray(arr) return res if op.__name__ in {'divmod', 'rdivmod'}: a, b = zip(*res) res = _maybe_convert(a), _maybe_convert(b) else: res = _maybe_convert(res) return res op_name = ops._get_op_name(op, True) return set_function_name(_binop, op_name, cls)
python
def _create_method(cls, op, coerce_to_dtype=True): """ A class method that returns a method that will correspond to an operator for an ExtensionArray subclass, by dispatching to the relevant operator defined on the individual elements of the ExtensionArray. Parameters ---------- op : function An operator that takes arguments op(a, b) coerce_to_dtype : bool, default True boolean indicating whether to attempt to convert the result to the underlying ExtensionArray dtype. If it's not possible to create a new ExtensionArray with the values, an ndarray is returned instead. Returns ------- Callable[[Any, Any], Union[ndarray, ExtensionArray]] A method that can be bound to a class. When used, the method receives the two arguments, one of which is the instance of this class, and should return an ExtensionArray or an ndarray. Returning an ndarray may be necessary when the result of the `op` cannot be stored in the ExtensionArray. The dtype of the ndarray uses NumPy's normal inference rules. Example ------- Given an ExtensionArray subclass called MyExtensionArray, use >>> __add__ = cls._create_method(operator.add) in the class definition of MyExtensionArray to create the operator for addition, that will be based on the operator implementation of the underlying elements of the ExtensionArray """ def _binop(self, other): def convert_values(param): if isinstance(param, ExtensionArray) or is_list_like(param): ovalues = param else: # Assume its an object ovalues = [param] * len(self) return ovalues if isinstance(other, (ABCSeries, ABCIndexClass)): # rely on pandas to unbox and dispatch to us return NotImplemented lvalues = self rvalues = convert_values(other) # If the operator is not defined for the underlying objects, # a TypeError should be raised res = [op(a, b) for (a, b) in zip(lvalues, rvalues)] def _maybe_convert(arr): if coerce_to_dtype: # https://github.com/pandas-dev/pandas/issues/22850 # We catch all regular exceptions here, and fall back # to an ndarray. try: res = self._from_sequence(arr) except Exception: res = np.asarray(arr) else: res = np.asarray(arr) return res if op.__name__ in {'divmod', 'rdivmod'}: a, b = zip(*res) res = _maybe_convert(a), _maybe_convert(b) else: res = _maybe_convert(res) return res op_name = ops._get_op_name(op, True) return set_function_name(_binop, op_name, cls)
[ "def", "_create_method", "(", "cls", ",", "op", ",", "coerce_to_dtype", "=", "True", ")", ":", "def", "_binop", "(", "self", ",", "other", ")", ":", "def", "convert_values", "(", "param", ")", ":", "if", "isinstance", "(", "param", ",", "ExtensionArray", ")", "or", "is_list_like", "(", "param", ")", ":", "ovalues", "=", "param", "else", ":", "# Assume its an object", "ovalues", "=", "[", "param", "]", "*", "len", "(", "self", ")", "return", "ovalues", "if", "isinstance", "(", "other", ",", "(", "ABCSeries", ",", "ABCIndexClass", ")", ")", ":", "# rely on pandas to unbox and dispatch to us", "return", "NotImplemented", "lvalues", "=", "self", "rvalues", "=", "convert_values", "(", "other", ")", "# If the operator is not defined for the underlying objects,", "# a TypeError should be raised", "res", "=", "[", "op", "(", "a", ",", "b", ")", "for", "(", "a", ",", "b", ")", "in", "zip", "(", "lvalues", ",", "rvalues", ")", "]", "def", "_maybe_convert", "(", "arr", ")", ":", "if", "coerce_to_dtype", ":", "# https://github.com/pandas-dev/pandas/issues/22850", "# We catch all regular exceptions here, and fall back", "# to an ndarray.", "try", ":", "res", "=", "self", ".", "_from_sequence", "(", "arr", ")", "except", "Exception", ":", "res", "=", "np", ".", "asarray", "(", "arr", ")", "else", ":", "res", "=", "np", ".", "asarray", "(", "arr", ")", "return", "res", "if", "op", ".", "__name__", "in", "{", "'divmod'", ",", "'rdivmod'", "}", ":", "a", ",", "b", "=", "zip", "(", "*", "res", ")", "res", "=", "_maybe_convert", "(", "a", ")", ",", "_maybe_convert", "(", "b", ")", "else", ":", "res", "=", "_maybe_convert", "(", "res", ")", "return", "res", "op_name", "=", "ops", ".", "_get_op_name", "(", "op", ",", "True", ")", "return", "set_function_name", "(", "_binop", ",", "op_name", ",", "cls", ")" ]
A class method that returns a method that will correspond to an operator for an ExtensionArray subclass, by dispatching to the relevant operator defined on the individual elements of the ExtensionArray. Parameters ---------- op : function An operator that takes arguments op(a, b) coerce_to_dtype : bool, default True boolean indicating whether to attempt to convert the result to the underlying ExtensionArray dtype. If it's not possible to create a new ExtensionArray with the values, an ndarray is returned instead. Returns ------- Callable[[Any, Any], Union[ndarray, ExtensionArray]] A method that can be bound to a class. When used, the method receives the two arguments, one of which is the instance of this class, and should return an ExtensionArray or an ndarray. Returning an ndarray may be necessary when the result of the `op` cannot be stored in the ExtensionArray. The dtype of the ndarray uses NumPy's normal inference rules. Example ------- Given an ExtensionArray subclass called MyExtensionArray, use >>> __add__ = cls._create_method(operator.add) in the class definition of MyExtensionArray to create the operator for addition, that will be based on the operator implementation of the underlying elements of the ExtensionArray
[ "A", "class", "method", "that", "returns", "a", "method", "that", "will", "correspond", "to", "an", "operator", "for", "an", "ExtensionArray", "subclass", "by", "dispatching", "to", "the", "relevant", "operator", "defined", "on", "the", "individual", "elements", "of", "the", "ExtensionArray", "." ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/arrays/base.py#L1034-L1113
20,144
pandas-dev/pandas
pandas/core/indexes/datetimelike.py
ea_passthrough
def ea_passthrough(array_method): """ Make an alias for a method of the underlying ExtensionArray. Parameters ---------- array_method : method on an Array class Returns ------- method """ def method(self, *args, **kwargs): return array_method(self._data, *args, **kwargs) method.__name__ = array_method.__name__ method.__doc__ = array_method.__doc__ return method
python
def ea_passthrough(array_method): """ Make an alias for a method of the underlying ExtensionArray. Parameters ---------- array_method : method on an Array class Returns ------- method """ def method(self, *args, **kwargs): return array_method(self._data, *args, **kwargs) method.__name__ = array_method.__name__ method.__doc__ = array_method.__doc__ return method
[ "def", "ea_passthrough", "(", "array_method", ")", ":", "def", "method", "(", "self", ",", "*", "args", ",", "*", "*", "kwargs", ")", ":", "return", "array_method", "(", "self", ".", "_data", ",", "*", "args", ",", "*", "*", "kwargs", ")", "method", ".", "__name__", "=", "array_method", ".", "__name__", "method", ".", "__doc__", "=", "array_method", ".", "__doc__", "return", "method" ]
Make an alias for a method of the underlying ExtensionArray. Parameters ---------- array_method : method on an Array class Returns ------- method
[ "Make", "an", "alias", "for", "a", "method", "of", "the", "underlying", "ExtensionArray", "." ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/indexes/datetimelike.py#L34-L52
20,145
pandas-dev/pandas
pandas/core/indexes/datetimelike.py
DatetimeIndexOpsMixin._create_comparison_method
def _create_comparison_method(cls, op): """ Create a comparison method that dispatches to ``cls.values``. """ def wrapper(self, other): if isinstance(other, ABCSeries): # the arrays defer to Series for comparison ops but the indexes # don't, so we have to unwrap here. other = other._values result = op(self._data, maybe_unwrap_index(other)) return result wrapper.__doc__ = op.__doc__ wrapper.__name__ = '__{}__'.format(op.__name__) return wrapper
python
def _create_comparison_method(cls, op): """ Create a comparison method that dispatches to ``cls.values``. """ def wrapper(self, other): if isinstance(other, ABCSeries): # the arrays defer to Series for comparison ops but the indexes # don't, so we have to unwrap here. other = other._values result = op(self._data, maybe_unwrap_index(other)) return result wrapper.__doc__ = op.__doc__ wrapper.__name__ = '__{}__'.format(op.__name__) return wrapper
[ "def", "_create_comparison_method", "(", "cls", ",", "op", ")", ":", "def", "wrapper", "(", "self", ",", "other", ")", ":", "if", "isinstance", "(", "other", ",", "ABCSeries", ")", ":", "# the arrays defer to Series for comparison ops but the indexes", "# don't, so we have to unwrap here.", "other", "=", "other", ".", "_values", "result", "=", "op", "(", "self", ".", "_data", ",", "maybe_unwrap_index", "(", "other", ")", ")", "return", "result", "wrapper", ".", "__doc__", "=", "op", ".", "__doc__", "wrapper", ".", "__name__", "=", "'__{}__'", ".", "format", "(", "op", ".", "__name__", ")", "return", "wrapper" ]
Create a comparison method that dispatches to ``cls.values``.
[ "Create", "a", "comparison", "method", "that", "dispatches", "to", "cls", ".", "values", "." ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/indexes/datetimelike.py#L107-L122
20,146
pandas-dev/pandas
pandas/core/indexes/datetimelike.py
DatetimeIndexOpsMixin._join_i8_wrapper
def _join_i8_wrapper(joinf, dtype, with_indexers=True): """ Create the join wrapper methods. """ from pandas.core.arrays.datetimelike import DatetimeLikeArrayMixin @staticmethod def wrapper(left, right): if isinstance(left, (np.ndarray, ABCIndex, ABCSeries, DatetimeLikeArrayMixin)): left = left.view('i8') if isinstance(right, (np.ndarray, ABCIndex, ABCSeries, DatetimeLikeArrayMixin)): right = right.view('i8') results = joinf(left, right) if with_indexers: join_index, left_indexer, right_indexer = results join_index = join_index.view(dtype) return join_index, left_indexer, right_indexer return results return wrapper
python
def _join_i8_wrapper(joinf, dtype, with_indexers=True): """ Create the join wrapper methods. """ from pandas.core.arrays.datetimelike import DatetimeLikeArrayMixin @staticmethod def wrapper(left, right): if isinstance(left, (np.ndarray, ABCIndex, ABCSeries, DatetimeLikeArrayMixin)): left = left.view('i8') if isinstance(right, (np.ndarray, ABCIndex, ABCSeries, DatetimeLikeArrayMixin)): right = right.view('i8') results = joinf(left, right) if with_indexers: join_index, left_indexer, right_indexer = results join_index = join_index.view(dtype) return join_index, left_indexer, right_indexer return results return wrapper
[ "def", "_join_i8_wrapper", "(", "joinf", ",", "dtype", ",", "with_indexers", "=", "True", ")", ":", "from", "pandas", ".", "core", ".", "arrays", ".", "datetimelike", "import", "DatetimeLikeArrayMixin", "@", "staticmethod", "def", "wrapper", "(", "left", ",", "right", ")", ":", "if", "isinstance", "(", "left", ",", "(", "np", ".", "ndarray", ",", "ABCIndex", ",", "ABCSeries", ",", "DatetimeLikeArrayMixin", ")", ")", ":", "left", "=", "left", ".", "view", "(", "'i8'", ")", "if", "isinstance", "(", "right", ",", "(", "np", ".", "ndarray", ",", "ABCIndex", ",", "ABCSeries", ",", "DatetimeLikeArrayMixin", ")", ")", ":", "right", "=", "right", ".", "view", "(", "'i8'", ")", "results", "=", "joinf", "(", "left", ",", "right", ")", "if", "with_indexers", ":", "join_index", ",", "left_indexer", ",", "right_indexer", "=", "results", "join_index", "=", "join_index", ".", "view", "(", "dtype", ")", "return", "join_index", ",", "left_indexer", ",", "right_indexer", "return", "results", "return", "wrapper" ]
Create the join wrapper methods.
[ "Create", "the", "join", "wrapper", "methods", "." ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/indexes/datetimelike.py#L171-L192
20,147
pandas-dev/pandas
pandas/core/indexes/datetimelike.py
DatetimeIndexOpsMixin.sort_values
def sort_values(self, return_indexer=False, ascending=True): """ Return sorted copy of Index. """ if return_indexer: _as = self.argsort() if not ascending: _as = _as[::-1] sorted_index = self.take(_as) return sorted_index, _as else: sorted_values = np.sort(self._ndarray_values) attribs = self._get_attributes_dict() freq = attribs['freq'] if freq is not None and not is_period_dtype(self): if freq.n > 0 and not ascending: freq = freq * -1 elif freq.n < 0 and ascending: freq = freq * -1 attribs['freq'] = freq if not ascending: sorted_values = sorted_values[::-1] return self._simple_new(sorted_values, **attribs)
python
def sort_values(self, return_indexer=False, ascending=True): """ Return sorted copy of Index. """ if return_indexer: _as = self.argsort() if not ascending: _as = _as[::-1] sorted_index = self.take(_as) return sorted_index, _as else: sorted_values = np.sort(self._ndarray_values) attribs = self._get_attributes_dict() freq = attribs['freq'] if freq is not None and not is_period_dtype(self): if freq.n > 0 and not ascending: freq = freq * -1 elif freq.n < 0 and ascending: freq = freq * -1 attribs['freq'] = freq if not ascending: sorted_values = sorted_values[::-1] return self._simple_new(sorted_values, **attribs)
[ "def", "sort_values", "(", "self", ",", "return_indexer", "=", "False", ",", "ascending", "=", "True", ")", ":", "if", "return_indexer", ":", "_as", "=", "self", ".", "argsort", "(", ")", "if", "not", "ascending", ":", "_as", "=", "_as", "[", ":", ":", "-", "1", "]", "sorted_index", "=", "self", ".", "take", "(", "_as", ")", "return", "sorted_index", ",", "_as", "else", ":", "sorted_values", "=", "np", ".", "sort", "(", "self", ".", "_ndarray_values", ")", "attribs", "=", "self", ".", "_get_attributes_dict", "(", ")", "freq", "=", "attribs", "[", "'freq'", "]", "if", "freq", "is", "not", "None", "and", "not", "is_period_dtype", "(", "self", ")", ":", "if", "freq", ".", "n", ">", "0", "and", "not", "ascending", ":", "freq", "=", "freq", "*", "-", "1", "elif", "freq", ".", "n", "<", "0", "and", "ascending", ":", "freq", "=", "freq", "*", "-", "1", "attribs", "[", "'freq'", "]", "=", "freq", "if", "not", "ascending", ":", "sorted_values", "=", "sorted_values", "[", ":", ":", "-", "1", "]", "return", "self", ".", "_simple_new", "(", "sorted_values", ",", "*", "*", "attribs", ")" ]
Return sorted copy of Index.
[ "Return", "sorted", "copy", "of", "Index", "." ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/indexes/datetimelike.py#L236-L261
20,148
pandas-dev/pandas
pandas/core/indexes/datetimelike.py
DatetimeIndexOpsMixin.min
def min(self, axis=None, skipna=True, *args, **kwargs): """ Return the minimum value of the Index or minimum along an axis. See Also -------- numpy.ndarray.min Series.min : Return the minimum value in a Series. """ nv.validate_min(args, kwargs) nv.validate_minmax_axis(axis) if not len(self): return self._na_value i8 = self.asi8 try: # quick check if len(i8) and self.is_monotonic: if i8[0] != iNaT: return self._box_func(i8[0]) if self.hasnans: if skipna: min_stamp = self[~self._isnan].asi8.min() else: return self._na_value else: min_stamp = i8.min() return self._box_func(min_stamp) except ValueError: return self._na_value
python
def min(self, axis=None, skipna=True, *args, **kwargs): """ Return the minimum value of the Index or minimum along an axis. See Also -------- numpy.ndarray.min Series.min : Return the minimum value in a Series. """ nv.validate_min(args, kwargs) nv.validate_minmax_axis(axis) if not len(self): return self._na_value i8 = self.asi8 try: # quick check if len(i8) and self.is_monotonic: if i8[0] != iNaT: return self._box_func(i8[0]) if self.hasnans: if skipna: min_stamp = self[~self._isnan].asi8.min() else: return self._na_value else: min_stamp = i8.min() return self._box_func(min_stamp) except ValueError: return self._na_value
[ "def", "min", "(", "self", ",", "axis", "=", "None", ",", "skipna", "=", "True", ",", "*", "args", ",", "*", "*", "kwargs", ")", ":", "nv", ".", "validate_min", "(", "args", ",", "kwargs", ")", "nv", ".", "validate_minmax_axis", "(", "axis", ")", "if", "not", "len", "(", "self", ")", ":", "return", "self", ".", "_na_value", "i8", "=", "self", ".", "asi8", "try", ":", "# quick check", "if", "len", "(", "i8", ")", "and", "self", ".", "is_monotonic", ":", "if", "i8", "[", "0", "]", "!=", "iNaT", ":", "return", "self", ".", "_box_func", "(", "i8", "[", "0", "]", ")", "if", "self", ".", "hasnans", ":", "if", "skipna", ":", "min_stamp", "=", "self", "[", "~", "self", ".", "_isnan", "]", ".", "asi8", ".", "min", "(", ")", "else", ":", "return", "self", ".", "_na_value", "else", ":", "min_stamp", "=", "i8", ".", "min", "(", ")", "return", "self", ".", "_box_func", "(", "min_stamp", ")", "except", "ValueError", ":", "return", "self", ".", "_na_value" ]
Return the minimum value of the Index or minimum along an axis. See Also -------- numpy.ndarray.min Series.min : Return the minimum value in a Series.
[ "Return", "the", "minimum", "value", "of", "the", "Index", "or", "minimum", "along", "an", "axis", "." ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/indexes/datetimelike.py#L315-L347
20,149
pandas-dev/pandas
pandas/core/indexes/datetimelike.py
DatetimeIndexOpsMixin.argmin
def argmin(self, axis=None, skipna=True, *args, **kwargs): """ Returns the indices of the minimum values along an axis. See `numpy.ndarray.argmin` for more information on the `axis` parameter. See Also -------- numpy.ndarray.argmin """ nv.validate_argmin(args, kwargs) nv.validate_minmax_axis(axis) i8 = self.asi8 if self.hasnans: mask = self._isnan if mask.all() or not skipna: return -1 i8 = i8.copy() i8[mask] = np.iinfo('int64').max return i8.argmin()
python
def argmin(self, axis=None, skipna=True, *args, **kwargs): """ Returns the indices of the minimum values along an axis. See `numpy.ndarray.argmin` for more information on the `axis` parameter. See Also -------- numpy.ndarray.argmin """ nv.validate_argmin(args, kwargs) nv.validate_minmax_axis(axis) i8 = self.asi8 if self.hasnans: mask = self._isnan if mask.all() or not skipna: return -1 i8 = i8.copy() i8[mask] = np.iinfo('int64').max return i8.argmin()
[ "def", "argmin", "(", "self", ",", "axis", "=", "None", ",", "skipna", "=", "True", ",", "*", "args", ",", "*", "*", "kwargs", ")", ":", "nv", ".", "validate_argmin", "(", "args", ",", "kwargs", ")", "nv", ".", "validate_minmax_axis", "(", "axis", ")", "i8", "=", "self", ".", "asi8", "if", "self", ".", "hasnans", ":", "mask", "=", "self", ".", "_isnan", "if", "mask", ".", "all", "(", ")", "or", "not", "skipna", ":", "return", "-", "1", "i8", "=", "i8", ".", "copy", "(", ")", "i8", "[", "mask", "]", "=", "np", ".", "iinfo", "(", "'int64'", ")", ".", "max", "return", "i8", ".", "argmin", "(", ")" ]
Returns the indices of the minimum values along an axis. See `numpy.ndarray.argmin` for more information on the `axis` parameter. See Also -------- numpy.ndarray.argmin
[ "Returns", "the", "indices", "of", "the", "minimum", "values", "along", "an", "axis", "." ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/indexes/datetimelike.py#L349-L370
20,150
pandas-dev/pandas
pandas/core/indexes/datetimelike.py
DatetimeIndexOpsMixin.max
def max(self, axis=None, skipna=True, *args, **kwargs): """ Return the maximum value of the Index or maximum along an axis. See Also -------- numpy.ndarray.max Series.max : Return the maximum value in a Series. """ nv.validate_max(args, kwargs) nv.validate_minmax_axis(axis) if not len(self): return self._na_value i8 = self.asi8 try: # quick check if len(i8) and self.is_monotonic: if i8[-1] != iNaT: return self._box_func(i8[-1]) if self.hasnans: if skipna: max_stamp = self[~self._isnan].asi8.max() else: return self._na_value else: max_stamp = i8.max() return self._box_func(max_stamp) except ValueError: return self._na_value
python
def max(self, axis=None, skipna=True, *args, **kwargs): """ Return the maximum value of the Index or maximum along an axis. See Also -------- numpy.ndarray.max Series.max : Return the maximum value in a Series. """ nv.validate_max(args, kwargs) nv.validate_minmax_axis(axis) if not len(self): return self._na_value i8 = self.asi8 try: # quick check if len(i8) and self.is_monotonic: if i8[-1] != iNaT: return self._box_func(i8[-1]) if self.hasnans: if skipna: max_stamp = self[~self._isnan].asi8.max() else: return self._na_value else: max_stamp = i8.max() return self._box_func(max_stamp) except ValueError: return self._na_value
[ "def", "max", "(", "self", ",", "axis", "=", "None", ",", "skipna", "=", "True", ",", "*", "args", ",", "*", "*", "kwargs", ")", ":", "nv", ".", "validate_max", "(", "args", ",", "kwargs", ")", "nv", ".", "validate_minmax_axis", "(", "axis", ")", "if", "not", "len", "(", "self", ")", ":", "return", "self", ".", "_na_value", "i8", "=", "self", ".", "asi8", "try", ":", "# quick check", "if", "len", "(", "i8", ")", "and", "self", ".", "is_monotonic", ":", "if", "i8", "[", "-", "1", "]", "!=", "iNaT", ":", "return", "self", ".", "_box_func", "(", "i8", "[", "-", "1", "]", ")", "if", "self", ".", "hasnans", ":", "if", "skipna", ":", "max_stamp", "=", "self", "[", "~", "self", ".", "_isnan", "]", ".", "asi8", ".", "max", "(", ")", "else", ":", "return", "self", ".", "_na_value", "else", ":", "max_stamp", "=", "i8", ".", "max", "(", ")", "return", "self", ".", "_box_func", "(", "max_stamp", ")", "except", "ValueError", ":", "return", "self", ".", "_na_value" ]
Return the maximum value of the Index or maximum along an axis. See Also -------- numpy.ndarray.max Series.max : Return the maximum value in a Series.
[ "Return", "the", "maximum", "value", "of", "the", "Index", "or", "maximum", "along", "an", "axis", "." ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/indexes/datetimelike.py#L372-L404
20,151
pandas-dev/pandas
pandas/core/indexes/datetimelike.py
DatetimeIndexOpsMixin.argmax
def argmax(self, axis=None, skipna=True, *args, **kwargs): """ Returns the indices of the maximum values along an axis. See `numpy.ndarray.argmax` for more information on the `axis` parameter. See Also -------- numpy.ndarray.argmax """ nv.validate_argmax(args, kwargs) nv.validate_minmax_axis(axis) i8 = self.asi8 if self.hasnans: mask = self._isnan if mask.all() or not skipna: return -1 i8 = i8.copy() i8[mask] = 0 return i8.argmax()
python
def argmax(self, axis=None, skipna=True, *args, **kwargs): """ Returns the indices of the maximum values along an axis. See `numpy.ndarray.argmax` for more information on the `axis` parameter. See Also -------- numpy.ndarray.argmax """ nv.validate_argmax(args, kwargs) nv.validate_minmax_axis(axis) i8 = self.asi8 if self.hasnans: mask = self._isnan if mask.all() or not skipna: return -1 i8 = i8.copy() i8[mask] = 0 return i8.argmax()
[ "def", "argmax", "(", "self", ",", "axis", "=", "None", ",", "skipna", "=", "True", ",", "*", "args", ",", "*", "*", "kwargs", ")", ":", "nv", ".", "validate_argmax", "(", "args", ",", "kwargs", ")", "nv", ".", "validate_minmax_axis", "(", "axis", ")", "i8", "=", "self", ".", "asi8", "if", "self", ".", "hasnans", ":", "mask", "=", "self", ".", "_isnan", "if", "mask", ".", "all", "(", ")", "or", "not", "skipna", ":", "return", "-", "1", "i8", "=", "i8", ".", "copy", "(", ")", "i8", "[", "mask", "]", "=", "0", "return", "i8", ".", "argmax", "(", ")" ]
Returns the indices of the maximum values along an axis. See `numpy.ndarray.argmax` for more information on the `axis` parameter. See Also -------- numpy.ndarray.argmax
[ "Returns", "the", "indices", "of", "the", "maximum", "values", "along", "an", "axis", "." ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/indexes/datetimelike.py#L406-L427
20,152
pandas-dev/pandas
pandas/core/indexes/datetimelike.py
DatetimeIndexOpsMixin._convert_scalar_indexer
def _convert_scalar_indexer(self, key, kind=None): """ We don't allow integer or float indexing on datetime-like when using loc. Parameters ---------- key : label of the slice bound kind : {'ix', 'loc', 'getitem', 'iloc'} or None """ assert kind in ['ix', 'loc', 'getitem', 'iloc', None] # we don't allow integer/float indexing for loc # we don't allow float indexing for ix/getitem if is_scalar(key): is_int = is_integer(key) is_flt = is_float(key) if kind in ['loc'] and (is_int or is_flt): self._invalid_indexer('index', key) elif kind in ['ix', 'getitem'] and is_flt: self._invalid_indexer('index', key) return super()._convert_scalar_indexer(key, kind=kind)
python
def _convert_scalar_indexer(self, key, kind=None): """ We don't allow integer or float indexing on datetime-like when using loc. Parameters ---------- key : label of the slice bound kind : {'ix', 'loc', 'getitem', 'iloc'} or None """ assert kind in ['ix', 'loc', 'getitem', 'iloc', None] # we don't allow integer/float indexing for loc # we don't allow float indexing for ix/getitem if is_scalar(key): is_int = is_integer(key) is_flt = is_float(key) if kind in ['loc'] and (is_int or is_flt): self._invalid_indexer('index', key) elif kind in ['ix', 'getitem'] and is_flt: self._invalid_indexer('index', key) return super()._convert_scalar_indexer(key, kind=kind)
[ "def", "_convert_scalar_indexer", "(", "self", ",", "key", ",", "kind", "=", "None", ")", ":", "assert", "kind", "in", "[", "'ix'", ",", "'loc'", ",", "'getitem'", ",", "'iloc'", ",", "None", "]", "# we don't allow integer/float indexing for loc", "# we don't allow float indexing for ix/getitem", "if", "is_scalar", "(", "key", ")", ":", "is_int", "=", "is_integer", "(", "key", ")", "is_flt", "=", "is_float", "(", "key", ")", "if", "kind", "in", "[", "'loc'", "]", "and", "(", "is_int", "or", "is_flt", ")", ":", "self", ".", "_invalid_indexer", "(", "'index'", ",", "key", ")", "elif", "kind", "in", "[", "'ix'", ",", "'getitem'", "]", "and", "is_flt", ":", "self", ".", "_invalid_indexer", "(", "'index'", ",", "key", ")", "return", "super", "(", ")", ".", "_convert_scalar_indexer", "(", "key", ",", "kind", "=", "kind", ")" ]
We don't allow integer or float indexing on datetime-like when using loc. Parameters ---------- key : label of the slice bound kind : {'ix', 'loc', 'getitem', 'iloc'} or None
[ "We", "don", "t", "allow", "integer", "or", "float", "indexing", "on", "datetime", "-", "like", "when", "using", "loc", "." ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/indexes/datetimelike.py#L454-L477
20,153
pandas-dev/pandas
pandas/core/indexes/datetimelike.py
DatetimeIndexOpsMixin.isin
def isin(self, values): """ Compute boolean array of whether each index value is found in the passed set of values. Parameters ---------- values : set or sequence of values Returns ------- is_contained : ndarray (boolean dtype) """ if not isinstance(values, type(self)): try: values = type(self)(values) except ValueError: return self.astype(object).isin(values) return algorithms.isin(self.asi8, values.asi8)
python
def isin(self, values): """ Compute boolean array of whether each index value is found in the passed set of values. Parameters ---------- values : set or sequence of values Returns ------- is_contained : ndarray (boolean dtype) """ if not isinstance(values, type(self)): try: values = type(self)(values) except ValueError: return self.astype(object).isin(values) return algorithms.isin(self.asi8, values.asi8)
[ "def", "isin", "(", "self", ",", "values", ")", ":", "if", "not", "isinstance", "(", "values", ",", "type", "(", "self", ")", ")", ":", "try", ":", "values", "=", "type", "(", "self", ")", "(", "values", ")", "except", "ValueError", ":", "return", "self", ".", "astype", "(", "object", ")", ".", "isin", "(", "values", ")", "return", "algorithms", ".", "isin", "(", "self", ".", "asi8", ",", "values", ".", "asi8", ")" ]
Compute boolean array of whether each index value is found in the passed set of values. Parameters ---------- values : set or sequence of values Returns ------- is_contained : ndarray (boolean dtype)
[ "Compute", "boolean", "array", "of", "whether", "each", "index", "value", "is", "found", "in", "the", "passed", "set", "of", "values", "." ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/indexes/datetimelike.py#L511-L530
20,154
pandas-dev/pandas
pandas/core/indexes/datetimelike.py
DatetimeIndexOpsMixin._concat_same_dtype
def _concat_same_dtype(self, to_concat, name): """ Concatenate to_concat which has the same class. """ attribs = self._get_attributes_dict() attribs['name'] = name # do not pass tz to set because tzlocal cannot be hashed if len({str(x.dtype) for x in to_concat}) != 1: raise ValueError('to_concat must have the same tz') new_data = type(self._values)._concat_same_type(to_concat).asi8 # GH 3232: If the concat result is evenly spaced, we can retain the # original frequency is_diff_evenly_spaced = len(unique_deltas(new_data)) == 1 if not is_period_dtype(self) and not is_diff_evenly_spaced: # reset freq attribs['freq'] = None return self._simple_new(new_data, **attribs)
python
def _concat_same_dtype(self, to_concat, name): """ Concatenate to_concat which has the same class. """ attribs = self._get_attributes_dict() attribs['name'] = name # do not pass tz to set because tzlocal cannot be hashed if len({str(x.dtype) for x in to_concat}) != 1: raise ValueError('to_concat must have the same tz') new_data = type(self._values)._concat_same_type(to_concat).asi8 # GH 3232: If the concat result is evenly spaced, we can retain the # original frequency is_diff_evenly_spaced = len(unique_deltas(new_data)) == 1 if not is_period_dtype(self) and not is_diff_evenly_spaced: # reset freq attribs['freq'] = None return self._simple_new(new_data, **attribs)
[ "def", "_concat_same_dtype", "(", "self", ",", "to_concat", ",", "name", ")", ":", "attribs", "=", "self", ".", "_get_attributes_dict", "(", ")", "attribs", "[", "'name'", "]", "=", "name", "# do not pass tz to set because tzlocal cannot be hashed", "if", "len", "(", "{", "str", "(", "x", ".", "dtype", ")", "for", "x", "in", "to_concat", "}", ")", "!=", "1", ":", "raise", "ValueError", "(", "'to_concat must have the same tz'", ")", "new_data", "=", "type", "(", "self", ".", "_values", ")", ".", "_concat_same_type", "(", "to_concat", ")", ".", "asi8", "# GH 3232: If the concat result is evenly spaced, we can retain the", "# original frequency", "is_diff_evenly_spaced", "=", "len", "(", "unique_deltas", "(", "new_data", ")", ")", "==", "1", "if", "not", "is_period_dtype", "(", "self", ")", "and", "not", "is_diff_evenly_spaced", ":", "# reset freq", "attribs", "[", "'freq'", "]", "=", "None", "return", "self", ".", "_simple_new", "(", "new_data", ",", "*", "*", "attribs", ")" ]
Concatenate to_concat which has the same class.
[ "Concatenate", "to_concat", "which", "has", "the", "same", "class", "." ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/indexes/datetimelike.py#L578-L597
20,155
pandas-dev/pandas
pandas/core/indexes/datetimelike.py
DatetimeIndexOpsMixin.shift
def shift(self, periods, freq=None): """ Shift index by desired number of time frequency increments. This method is for shifting the values of datetime-like indexes by a specified time increment a given number of times. Parameters ---------- periods : int Number of periods (or increments) to shift by, can be positive or negative. .. versionchanged:: 0.24.0 freq : pandas.DateOffset, pandas.Timedelta or string, optional Frequency increment to shift by. If None, the index is shifted by its own `freq` attribute. Offset aliases are valid strings, e.g., 'D', 'W', 'M' etc. Returns ------- pandas.DatetimeIndex Shifted index. See Also -------- Index.shift : Shift values of Index. PeriodIndex.shift : Shift values of PeriodIndex. """ result = self._data._time_shift(periods, freq=freq) return type(self)(result, name=self.name)
python
def shift(self, periods, freq=None): """ Shift index by desired number of time frequency increments. This method is for shifting the values of datetime-like indexes by a specified time increment a given number of times. Parameters ---------- periods : int Number of periods (or increments) to shift by, can be positive or negative. .. versionchanged:: 0.24.0 freq : pandas.DateOffset, pandas.Timedelta or string, optional Frequency increment to shift by. If None, the index is shifted by its own `freq` attribute. Offset aliases are valid strings, e.g., 'D', 'W', 'M' etc. Returns ------- pandas.DatetimeIndex Shifted index. See Also -------- Index.shift : Shift values of Index. PeriodIndex.shift : Shift values of PeriodIndex. """ result = self._data._time_shift(periods, freq=freq) return type(self)(result, name=self.name)
[ "def", "shift", "(", "self", ",", "periods", ",", "freq", "=", "None", ")", ":", "result", "=", "self", ".", "_data", ".", "_time_shift", "(", "periods", ",", "freq", "=", "freq", ")", "return", "type", "(", "self", ")", "(", "result", ",", "name", "=", "self", ".", "name", ")" ]
Shift index by desired number of time frequency increments. This method is for shifting the values of datetime-like indexes by a specified time increment a given number of times. Parameters ---------- periods : int Number of periods (or increments) to shift by, can be positive or negative. .. versionchanged:: 0.24.0 freq : pandas.DateOffset, pandas.Timedelta or string, optional Frequency increment to shift by. If None, the index is shifted by its own `freq` attribute. Offset aliases are valid strings, e.g., 'D', 'W', 'M' etc. Returns ------- pandas.DatetimeIndex Shifted index. See Also -------- Index.shift : Shift values of Index. PeriodIndex.shift : Shift values of PeriodIndex.
[ "Shift", "index", "by", "desired", "number", "of", "time", "frequency", "increments", "." ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/indexes/datetimelike.py#L613-L644
20,156
pandas-dev/pandas
pandas/core/generic.py
_single_replace
def _single_replace(self, to_replace, method, inplace, limit): """ Replaces values in a Series using the fill method specified when no replacement value is given in the replace method """ if self.ndim != 1: raise TypeError('cannot replace {0} with method {1} on a {2}' .format(to_replace, method, type(self).__name__)) orig_dtype = self.dtype result = self if inplace else self.copy() fill_f = missing.get_fill_func(method) mask = missing.mask_missing(result.values, to_replace) values = fill_f(result.values, limit=limit, mask=mask) if values.dtype == orig_dtype and inplace: return result = pd.Series(values, index=self.index, dtype=self.dtype).__finalize__(self) if inplace: self._update_inplace(result._data) return return result
python
def _single_replace(self, to_replace, method, inplace, limit): """ Replaces values in a Series using the fill method specified when no replacement value is given in the replace method """ if self.ndim != 1: raise TypeError('cannot replace {0} with method {1} on a {2}' .format(to_replace, method, type(self).__name__)) orig_dtype = self.dtype result = self if inplace else self.copy() fill_f = missing.get_fill_func(method) mask = missing.mask_missing(result.values, to_replace) values = fill_f(result.values, limit=limit, mask=mask) if values.dtype == orig_dtype and inplace: return result = pd.Series(values, index=self.index, dtype=self.dtype).__finalize__(self) if inplace: self._update_inplace(result._data) return return result
[ "def", "_single_replace", "(", "self", ",", "to_replace", ",", "method", ",", "inplace", ",", "limit", ")", ":", "if", "self", ".", "ndim", "!=", "1", ":", "raise", "TypeError", "(", "'cannot replace {0} with method {1} on a {2}'", ".", "format", "(", "to_replace", ",", "method", ",", "type", "(", "self", ")", ".", "__name__", ")", ")", "orig_dtype", "=", "self", ".", "dtype", "result", "=", "self", "if", "inplace", "else", "self", ".", "copy", "(", ")", "fill_f", "=", "missing", ".", "get_fill_func", "(", "method", ")", "mask", "=", "missing", ".", "mask_missing", "(", "result", ".", "values", ",", "to_replace", ")", "values", "=", "fill_f", "(", "result", ".", "values", ",", "limit", "=", "limit", ",", "mask", "=", "mask", ")", "if", "values", ".", "dtype", "==", "orig_dtype", "and", "inplace", ":", "return", "result", "=", "pd", ".", "Series", "(", "values", ",", "index", "=", "self", ".", "index", ",", "dtype", "=", "self", ".", "dtype", ")", ".", "__finalize__", "(", "self", ")", "if", "inplace", ":", "self", ".", "_update_inplace", "(", "result", ".", "_data", ")", "return", "return", "result" ]
Replaces values in a Series using the fill method specified when no replacement value is given in the replace method
[ "Replaces", "values", "in", "a", "Series", "using", "the", "fill", "method", "specified", "when", "no", "replacement", "value", "is", "given", "in", "the", "replace", "method" ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/generic.py#L69-L95
20,157
pandas-dev/pandas
pandas/core/generic.py
_doc_parms
def _doc_parms(cls): """Return a tuple of the doc parms.""" axis_descr = "{%s}" % ', '.join("{0} ({1})".format(a, i) for i, a in enumerate(cls._AXIS_ORDERS)) name = (cls._constructor_sliced.__name__ if cls._AXIS_LEN > 1 else 'scalar') name2 = cls.__name__ return axis_descr, name, name2
python
def _doc_parms(cls): """Return a tuple of the doc parms.""" axis_descr = "{%s}" % ', '.join("{0} ({1})".format(a, i) for i, a in enumerate(cls._AXIS_ORDERS)) name = (cls._constructor_sliced.__name__ if cls._AXIS_LEN > 1 else 'scalar') name2 = cls.__name__ return axis_descr, name, name2
[ "def", "_doc_parms", "(", "cls", ")", ":", "axis_descr", "=", "\"{%s}\"", "%", "', '", ".", "join", "(", "\"{0} ({1})\"", ".", "format", "(", "a", ",", "i", ")", "for", "i", ",", "a", "in", "enumerate", "(", "cls", ".", "_AXIS_ORDERS", ")", ")", "name", "=", "(", "cls", ".", "_constructor_sliced", ".", "__name__", "if", "cls", ".", "_AXIS_LEN", ">", "1", "else", "'scalar'", ")", "name2", "=", "cls", ".", "__name__", "return", "axis_descr", ",", "name", ",", "name2" ]
Return a tuple of the doc parms.
[ "Return", "a", "tuple", "of", "the", "doc", "parms", "." ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/generic.py#L10299-L10306
20,158
pandas-dev/pandas
pandas/core/generic.py
NDFrame._init_mgr
def _init_mgr(self, mgr, axes=None, dtype=None, copy=False): """ passed a manager and a axes dict """ for a, axe in axes.items(): if axe is not None: mgr = mgr.reindex_axis(axe, axis=self._get_block_manager_axis(a), copy=False) # make a copy if explicitly requested if copy: mgr = mgr.copy() if dtype is not None: # avoid further copies if we can if len(mgr.blocks) > 1 or mgr.blocks[0].values.dtype != dtype: mgr = mgr.astype(dtype=dtype) return mgr
python
def _init_mgr(self, mgr, axes=None, dtype=None, copy=False): """ passed a manager and a axes dict """ for a, axe in axes.items(): if axe is not None: mgr = mgr.reindex_axis(axe, axis=self._get_block_manager_axis(a), copy=False) # make a copy if explicitly requested if copy: mgr = mgr.copy() if dtype is not None: # avoid further copies if we can if len(mgr.blocks) > 1 or mgr.blocks[0].values.dtype != dtype: mgr = mgr.astype(dtype=dtype) return mgr
[ "def", "_init_mgr", "(", "self", ",", "mgr", ",", "axes", "=", "None", ",", "dtype", "=", "None", ",", "copy", "=", "False", ")", ":", "for", "a", ",", "axe", "in", "axes", ".", "items", "(", ")", ":", "if", "axe", "is", "not", "None", ":", "mgr", "=", "mgr", ".", "reindex_axis", "(", "axe", ",", "axis", "=", "self", ".", "_get_block_manager_axis", "(", "a", ")", ",", "copy", "=", "False", ")", "# make a copy if explicitly requested", "if", "copy", ":", "mgr", "=", "mgr", ".", "copy", "(", ")", "if", "dtype", "is", "not", "None", ":", "# avoid further copies if we can", "if", "len", "(", "mgr", ".", "blocks", ")", ">", "1", "or", "mgr", ".", "blocks", "[", "0", "]", ".", "values", ".", "dtype", "!=", "dtype", ":", "mgr", "=", "mgr", ".", "astype", "(", "dtype", "=", "dtype", ")", "return", "mgr" ]
passed a manager and a axes dict
[ "passed", "a", "manager", "and", "a", "axes", "dict" ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/generic.py#L141-L156
20,159
pandas-dev/pandas
pandas/core/generic.py
NDFrame._validate_dtype
def _validate_dtype(self, dtype): """ validate the passed dtype """ if dtype is not None: dtype = pandas_dtype(dtype) # a compound dtype if dtype.kind == 'V': raise NotImplementedError("compound dtypes are not implemented" " in the {0} constructor" .format(self.__class__.__name__)) return dtype
python
def _validate_dtype(self, dtype): """ validate the passed dtype """ if dtype is not None: dtype = pandas_dtype(dtype) # a compound dtype if dtype.kind == 'V': raise NotImplementedError("compound dtypes are not implemented" " in the {0} constructor" .format(self.__class__.__name__)) return dtype
[ "def", "_validate_dtype", "(", "self", ",", "dtype", ")", ":", "if", "dtype", "is", "not", "None", ":", "dtype", "=", "pandas_dtype", "(", "dtype", ")", "# a compound dtype", "if", "dtype", ".", "kind", "==", "'V'", ":", "raise", "NotImplementedError", "(", "\"compound dtypes are not implemented\"", "\" in the {0} constructor\"", ".", "format", "(", "self", ".", "__class__", ".", "__name__", ")", ")", "return", "dtype" ]
validate the passed dtype
[ "validate", "the", "passed", "dtype" ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/generic.py#L175-L187
20,160
pandas-dev/pandas
pandas/core/generic.py
NDFrame._setup_axes
def _setup_axes(cls, axes, info_axis=None, stat_axis=None, aliases=None, slicers=None, axes_are_reversed=False, build_axes=True, ns=None, docs=None): """Provide axes setup for the major PandasObjects. Parameters ---------- axes : the names of the axes in order (lowest to highest) info_axis_num : the axis of the selector dimension (int) stat_axis_num : the number of axis for the default stats (int) aliases : other names for a single axis (dict) slicers : how axes slice to others (dict) axes_are_reversed : boolean whether to treat passed axes as reversed (DataFrame) build_axes : setup the axis properties (default True) """ cls._AXIS_ORDERS = axes cls._AXIS_NUMBERS = {a: i for i, a in enumerate(axes)} cls._AXIS_LEN = len(axes) cls._AXIS_ALIASES = aliases or dict() cls._AXIS_IALIASES = {v: k for k, v in cls._AXIS_ALIASES.items()} cls._AXIS_NAMES = dict(enumerate(axes)) cls._AXIS_SLICEMAP = slicers or None cls._AXIS_REVERSED = axes_are_reversed # typ setattr(cls, '_typ', cls.__name__.lower()) # indexing support cls._ix = None if info_axis is not None: cls._info_axis_number = info_axis cls._info_axis_name = axes[info_axis] if stat_axis is not None: cls._stat_axis_number = stat_axis cls._stat_axis_name = axes[stat_axis] # setup the actual axis if build_axes: def set_axis(a, i): setattr(cls, a, properties.AxisProperty(i, docs.get(a, a))) cls._internal_names_set.add(a) if axes_are_reversed: m = cls._AXIS_LEN - 1 for i, a in cls._AXIS_NAMES.items(): set_axis(a, m - i) else: for i, a in cls._AXIS_NAMES.items(): set_axis(a, i) assert not isinstance(ns, dict)
python
def _setup_axes(cls, axes, info_axis=None, stat_axis=None, aliases=None, slicers=None, axes_are_reversed=False, build_axes=True, ns=None, docs=None): """Provide axes setup for the major PandasObjects. Parameters ---------- axes : the names of the axes in order (lowest to highest) info_axis_num : the axis of the selector dimension (int) stat_axis_num : the number of axis for the default stats (int) aliases : other names for a single axis (dict) slicers : how axes slice to others (dict) axes_are_reversed : boolean whether to treat passed axes as reversed (DataFrame) build_axes : setup the axis properties (default True) """ cls._AXIS_ORDERS = axes cls._AXIS_NUMBERS = {a: i for i, a in enumerate(axes)} cls._AXIS_LEN = len(axes) cls._AXIS_ALIASES = aliases or dict() cls._AXIS_IALIASES = {v: k for k, v in cls._AXIS_ALIASES.items()} cls._AXIS_NAMES = dict(enumerate(axes)) cls._AXIS_SLICEMAP = slicers or None cls._AXIS_REVERSED = axes_are_reversed # typ setattr(cls, '_typ', cls.__name__.lower()) # indexing support cls._ix = None if info_axis is not None: cls._info_axis_number = info_axis cls._info_axis_name = axes[info_axis] if stat_axis is not None: cls._stat_axis_number = stat_axis cls._stat_axis_name = axes[stat_axis] # setup the actual axis if build_axes: def set_axis(a, i): setattr(cls, a, properties.AxisProperty(i, docs.get(a, a))) cls._internal_names_set.add(a) if axes_are_reversed: m = cls._AXIS_LEN - 1 for i, a in cls._AXIS_NAMES.items(): set_axis(a, m - i) else: for i, a in cls._AXIS_NAMES.items(): set_axis(a, i) assert not isinstance(ns, dict)
[ "def", "_setup_axes", "(", "cls", ",", "axes", ",", "info_axis", "=", "None", ",", "stat_axis", "=", "None", ",", "aliases", "=", "None", ",", "slicers", "=", "None", ",", "axes_are_reversed", "=", "False", ",", "build_axes", "=", "True", ",", "ns", "=", "None", ",", "docs", "=", "None", ")", ":", "cls", ".", "_AXIS_ORDERS", "=", "axes", "cls", ".", "_AXIS_NUMBERS", "=", "{", "a", ":", "i", "for", "i", ",", "a", "in", "enumerate", "(", "axes", ")", "}", "cls", ".", "_AXIS_LEN", "=", "len", "(", "axes", ")", "cls", ".", "_AXIS_ALIASES", "=", "aliases", "or", "dict", "(", ")", "cls", ".", "_AXIS_IALIASES", "=", "{", "v", ":", "k", "for", "k", ",", "v", "in", "cls", ".", "_AXIS_ALIASES", ".", "items", "(", ")", "}", "cls", ".", "_AXIS_NAMES", "=", "dict", "(", "enumerate", "(", "axes", ")", ")", "cls", ".", "_AXIS_SLICEMAP", "=", "slicers", "or", "None", "cls", ".", "_AXIS_REVERSED", "=", "axes_are_reversed", "# typ", "setattr", "(", "cls", ",", "'_typ'", ",", "cls", ".", "__name__", ".", "lower", "(", ")", ")", "# indexing support", "cls", ".", "_ix", "=", "None", "if", "info_axis", "is", "not", "None", ":", "cls", ".", "_info_axis_number", "=", "info_axis", "cls", ".", "_info_axis_name", "=", "axes", "[", "info_axis", "]", "if", "stat_axis", "is", "not", "None", ":", "cls", ".", "_stat_axis_number", "=", "stat_axis", "cls", ".", "_stat_axis_name", "=", "axes", "[", "stat_axis", "]", "# setup the actual axis", "if", "build_axes", ":", "def", "set_axis", "(", "a", ",", "i", ")", ":", "setattr", "(", "cls", ",", "a", ",", "properties", ".", "AxisProperty", "(", "i", ",", "docs", ".", "get", "(", "a", ",", "a", ")", ")", ")", "cls", ".", "_internal_names_set", ".", "add", "(", "a", ")", "if", "axes_are_reversed", ":", "m", "=", "cls", ".", "_AXIS_LEN", "-", "1", "for", "i", ",", "a", "in", "cls", ".", "_AXIS_NAMES", ".", "items", "(", ")", ":", "set_axis", "(", "a", ",", "m", "-", "i", ")", "else", ":", "for", "i", ",", "a", "in", "cls", ".", "_AXIS_NAMES", ".", "items", "(", ")", ":", "set_axis", "(", "a", ",", "i", ")", "assert", "not", "isinstance", "(", "ns", ",", "dict", ")" ]
Provide axes setup for the major PandasObjects. Parameters ---------- axes : the names of the axes in order (lowest to highest) info_axis_num : the axis of the selector dimension (int) stat_axis_num : the number of axis for the default stats (int) aliases : other names for a single axis (dict) slicers : how axes slice to others (dict) axes_are_reversed : boolean whether to treat passed axes as reversed (DataFrame) build_axes : setup the axis properties (default True)
[ "Provide", "axes", "setup", "for", "the", "major", "PandasObjects", "." ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/generic.py#L217-L272
20,161
pandas-dev/pandas
pandas/core/generic.py
NDFrame._construct_axes_dict_from
def _construct_axes_dict_from(self, axes, **kwargs): """Return an axes dictionary for the passed axes.""" d = {a: ax for a, ax in zip(self._AXIS_ORDERS, axes)} d.update(kwargs) return d
python
def _construct_axes_dict_from(self, axes, **kwargs): """Return an axes dictionary for the passed axes.""" d = {a: ax for a, ax in zip(self._AXIS_ORDERS, axes)} d.update(kwargs) return d
[ "def", "_construct_axes_dict_from", "(", "self", ",", "axes", ",", "*", "*", "kwargs", ")", ":", "d", "=", "{", "a", ":", "ax", "for", "a", ",", "ax", "in", "zip", "(", "self", ".", "_AXIS_ORDERS", ",", "axes", ")", "}", "d", ".", "update", "(", "kwargs", ")", "return", "d" ]
Return an axes dictionary for the passed axes.
[ "Return", "an", "axes", "dictionary", "for", "the", "passed", "axes", "." ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/generic.py#L281-L285
20,162
pandas-dev/pandas
pandas/core/generic.py
NDFrame._get_block_manager_axis
def _get_block_manager_axis(cls, axis): """Map the axis to the block_manager axis.""" axis = cls._get_axis_number(axis) if cls._AXIS_REVERSED: m = cls._AXIS_LEN - 1 return m - axis return axis
python
def _get_block_manager_axis(cls, axis): """Map the axis to the block_manager axis.""" axis = cls._get_axis_number(axis) if cls._AXIS_REVERSED: m = cls._AXIS_LEN - 1 return m - axis return axis
[ "def", "_get_block_manager_axis", "(", "cls", ",", "axis", ")", ":", "axis", "=", "cls", ".", "_get_axis_number", "(", "axis", ")", "if", "cls", ".", "_AXIS_REVERSED", ":", "m", "=", "cls", ".", "_AXIS_LEN", "-", "1", "return", "m", "-", "axis", "return", "axis" ]
Map the axis to the block_manager axis.
[ "Map", "the", "axis", "to", "the", "block_manager", "axis", "." ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/generic.py#L379-L385
20,163
pandas-dev/pandas
pandas/core/generic.py
NDFrame._get_space_character_free_column_resolvers
def _get_space_character_free_column_resolvers(self): """Return the space character free column resolvers of a dataframe. Column names with spaces are 'cleaned up' so that they can be referred to by backtick quoting. Used in :meth:`DataFrame.eval`. """ from pandas.core.computation.common import _remove_spaces_column_name return {_remove_spaces_column_name(k): v for k, v in self.iteritems()}
python
def _get_space_character_free_column_resolvers(self): """Return the space character free column resolvers of a dataframe. Column names with spaces are 'cleaned up' so that they can be referred to by backtick quoting. Used in :meth:`DataFrame.eval`. """ from pandas.core.computation.common import _remove_spaces_column_name return {_remove_spaces_column_name(k): v for k, v in self.iteritems()}
[ "def", "_get_space_character_free_column_resolvers", "(", "self", ")", ":", "from", "pandas", ".", "core", ".", "computation", ".", "common", "import", "_remove_spaces_column_name", "return", "{", "_remove_spaces_column_name", "(", "k", ")", ":", "v", "for", "k", ",", "v", "in", "self", ".", "iteritems", "(", ")", "}" ]
Return the space character free column resolvers of a dataframe. Column names with spaces are 'cleaned up' so that they can be referred to by backtick quoting. Used in :meth:`DataFrame.eval`.
[ "Return", "the", "space", "character", "free", "column", "resolvers", "of", "a", "dataframe", "." ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/generic.py#L423-L433
20,164
pandas-dev/pandas
pandas/core/generic.py
NDFrame.shape
def shape(self): """ Return a tuple of axis dimensions """ return tuple(len(self._get_axis(a)) for a in self._AXIS_ORDERS)
python
def shape(self): """ Return a tuple of axis dimensions """ return tuple(len(self._get_axis(a)) for a in self._AXIS_ORDERS)
[ "def", "shape", "(", "self", ")", ":", "return", "tuple", "(", "len", "(", "self", ".", "_get_axis", "(", "a", ")", ")", "for", "a", "in", "self", ".", "_AXIS_ORDERS", ")" ]
Return a tuple of axis dimensions
[ "Return", "a", "tuple", "of", "axis", "dimensions" ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/generic.py#L444-L448
20,165
pandas-dev/pandas
pandas/core/generic.py
NDFrame.swapaxes
def swapaxes(self, axis1, axis2, copy=True): """ Interchange axes and swap values axes appropriately. Returns ------- y : same as input """ i = self._get_axis_number(axis1) j = self._get_axis_number(axis2) if i == j: if copy: return self.copy() return self mapping = {i: j, j: i} new_axes = (self._get_axis(mapping.get(k, k)) for k in range(self._AXIS_LEN)) new_values = self.values.swapaxes(i, j) if copy: new_values = new_values.copy() return self._constructor(new_values, *new_axes).__finalize__(self)
python
def swapaxes(self, axis1, axis2, copy=True): """ Interchange axes and swap values axes appropriately. Returns ------- y : same as input """ i = self._get_axis_number(axis1) j = self._get_axis_number(axis2) if i == j: if copy: return self.copy() return self mapping = {i: j, j: i} new_axes = (self._get_axis(mapping.get(k, k)) for k in range(self._AXIS_LEN)) new_values = self.values.swapaxes(i, j) if copy: new_values = new_values.copy() return self._constructor(new_values, *new_axes).__finalize__(self)
[ "def", "swapaxes", "(", "self", ",", "axis1", ",", "axis2", ",", "copy", "=", "True", ")", ":", "i", "=", "self", ".", "_get_axis_number", "(", "axis1", ")", "j", "=", "self", ".", "_get_axis_number", "(", "axis2", ")", "if", "i", "==", "j", ":", "if", "copy", ":", "return", "self", ".", "copy", "(", ")", "return", "self", "mapping", "=", "{", "i", ":", "j", ",", "j", ":", "i", "}", "new_axes", "=", "(", "self", ".", "_get_axis", "(", "mapping", ".", "get", "(", "k", ",", "k", ")", ")", "for", "k", "in", "range", "(", "self", ".", "_AXIS_LEN", ")", ")", "new_values", "=", "self", ".", "values", ".", "swapaxes", "(", "i", ",", "j", ")", "if", "copy", ":", "new_values", "=", "new_values", ".", "copy", "(", ")", "return", "self", ".", "_constructor", "(", "new_values", ",", "*", "new_axes", ")", ".", "__finalize__", "(", "self", ")" ]
Interchange axes and swap values axes appropriately. Returns ------- y : same as input
[ "Interchange", "axes", "and", "swap", "values", "axes", "appropriately", "." ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/generic.py#L694-L718
20,166
pandas-dev/pandas
pandas/core/generic.py
NDFrame.pop
def pop(self, item): """ Return item and drop from frame. Raise KeyError if not found. Parameters ---------- item : str Label of column to be popped. Returns ------- Series Examples -------- >>> df = pd.DataFrame([('falcon', 'bird', 389.0), ... ('parrot', 'bird', 24.0), ... ('lion', 'mammal', 80.5), ... ('monkey','mammal', np.nan)], ... columns=('name', 'class', 'max_speed')) >>> df name class max_speed 0 falcon bird 389.0 1 parrot bird 24.0 2 lion mammal 80.5 3 monkey mammal NaN >>> df.pop('class') 0 bird 1 bird 2 mammal 3 mammal Name: class, dtype: object >>> df name max_speed 0 falcon 389.0 1 parrot 24.0 2 lion 80.5 3 monkey NaN """ result = self[item] del self[item] try: result._reset_cacher() except AttributeError: pass return result
python
def pop(self, item): """ Return item and drop from frame. Raise KeyError if not found. Parameters ---------- item : str Label of column to be popped. Returns ------- Series Examples -------- >>> df = pd.DataFrame([('falcon', 'bird', 389.0), ... ('parrot', 'bird', 24.0), ... ('lion', 'mammal', 80.5), ... ('monkey','mammal', np.nan)], ... columns=('name', 'class', 'max_speed')) >>> df name class max_speed 0 falcon bird 389.0 1 parrot bird 24.0 2 lion mammal 80.5 3 monkey mammal NaN >>> df.pop('class') 0 bird 1 bird 2 mammal 3 mammal Name: class, dtype: object >>> df name max_speed 0 falcon 389.0 1 parrot 24.0 2 lion 80.5 3 monkey NaN """ result = self[item] del self[item] try: result._reset_cacher() except AttributeError: pass return result
[ "def", "pop", "(", "self", ",", "item", ")", ":", "result", "=", "self", "[", "item", "]", "del", "self", "[", "item", "]", "try", ":", "result", ".", "_reset_cacher", "(", ")", "except", "AttributeError", ":", "pass", "return", "result" ]
Return item and drop from frame. Raise KeyError if not found. Parameters ---------- item : str Label of column to be popped. Returns ------- Series Examples -------- >>> df = pd.DataFrame([('falcon', 'bird', 389.0), ... ('parrot', 'bird', 24.0), ... ('lion', 'mammal', 80.5), ... ('monkey','mammal', np.nan)], ... columns=('name', 'class', 'max_speed')) >>> df name class max_speed 0 falcon bird 389.0 1 parrot bird 24.0 2 lion mammal 80.5 3 monkey mammal NaN >>> df.pop('class') 0 bird 1 bird 2 mammal 3 mammal Name: class, dtype: object >>> df name max_speed 0 falcon 389.0 1 parrot 24.0 2 lion 80.5 3 monkey NaN
[ "Return", "item", "and", "drop", "from", "frame", ".", "Raise", "KeyError", "if", "not", "found", "." ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/generic.py#L779-L827
20,167
pandas-dev/pandas
pandas/core/generic.py
NDFrame.squeeze
def squeeze(self, axis=None): """ Squeeze 1 dimensional axis objects into scalars. Series or DataFrames with a single element are squeezed to a scalar. DataFrames with a single column or a single row are squeezed to a Series. Otherwise the object is unchanged. This method is most useful when you don't know if your object is a Series or DataFrame, but you do know it has just a single column. In that case you can safely call `squeeze` to ensure you have a Series. Parameters ---------- axis : {0 or 'index', 1 or 'columns', None}, default None A specific axis to squeeze. By default, all length-1 axes are squeezed. .. versionadded:: 0.20.0 Returns ------- DataFrame, Series, or scalar The projection after squeezing `axis` or all the axes. See Also -------- Series.iloc : Integer-location based indexing for selecting scalars. DataFrame.iloc : Integer-location based indexing for selecting Series. Series.to_frame : Inverse of DataFrame.squeeze for a single-column DataFrame. Examples -------- >>> primes = pd.Series([2, 3, 5, 7]) Slicing might produce a Series with a single value: >>> even_primes = primes[primes % 2 == 0] >>> even_primes 0 2 dtype: int64 >>> even_primes.squeeze() 2 Squeezing objects with more than one value in every axis does nothing: >>> odd_primes = primes[primes % 2 == 1] >>> odd_primes 1 3 2 5 3 7 dtype: int64 >>> odd_primes.squeeze() 1 3 2 5 3 7 dtype: int64 Squeezing is even more effective when used with DataFrames. >>> df = pd.DataFrame([[1, 2], [3, 4]], columns=['a', 'b']) >>> df a b 0 1 2 1 3 4 Slicing a single column will produce a DataFrame with the columns having only one value: >>> df_a = df[['a']] >>> df_a a 0 1 1 3 So the columns can be squeezed down, resulting in a Series: >>> df_a.squeeze('columns') 0 1 1 3 Name: a, dtype: int64 Slicing a single row from a single column will produce a single scalar DataFrame: >>> df_0a = df.loc[df.index < 1, ['a']] >>> df_0a a 0 1 Squeezing the rows produces a single scalar Series: >>> df_0a.squeeze('rows') a 1 Name: 0, dtype: int64 Squeezing all axes wil project directly into a scalar: >>> df_0a.squeeze() 1 """ axis = (self._AXIS_NAMES if axis is None else (self._get_axis_number(axis),)) try: return self.iloc[ tuple(0 if i in axis and len(a) == 1 else slice(None) for i, a in enumerate(self.axes))] except Exception: return self
python
def squeeze(self, axis=None): """ Squeeze 1 dimensional axis objects into scalars. Series or DataFrames with a single element are squeezed to a scalar. DataFrames with a single column or a single row are squeezed to a Series. Otherwise the object is unchanged. This method is most useful when you don't know if your object is a Series or DataFrame, but you do know it has just a single column. In that case you can safely call `squeeze` to ensure you have a Series. Parameters ---------- axis : {0 or 'index', 1 or 'columns', None}, default None A specific axis to squeeze. By default, all length-1 axes are squeezed. .. versionadded:: 0.20.0 Returns ------- DataFrame, Series, or scalar The projection after squeezing `axis` or all the axes. See Also -------- Series.iloc : Integer-location based indexing for selecting scalars. DataFrame.iloc : Integer-location based indexing for selecting Series. Series.to_frame : Inverse of DataFrame.squeeze for a single-column DataFrame. Examples -------- >>> primes = pd.Series([2, 3, 5, 7]) Slicing might produce a Series with a single value: >>> even_primes = primes[primes % 2 == 0] >>> even_primes 0 2 dtype: int64 >>> even_primes.squeeze() 2 Squeezing objects with more than one value in every axis does nothing: >>> odd_primes = primes[primes % 2 == 1] >>> odd_primes 1 3 2 5 3 7 dtype: int64 >>> odd_primes.squeeze() 1 3 2 5 3 7 dtype: int64 Squeezing is even more effective when used with DataFrames. >>> df = pd.DataFrame([[1, 2], [3, 4]], columns=['a', 'b']) >>> df a b 0 1 2 1 3 4 Slicing a single column will produce a DataFrame with the columns having only one value: >>> df_a = df[['a']] >>> df_a a 0 1 1 3 So the columns can be squeezed down, resulting in a Series: >>> df_a.squeeze('columns') 0 1 1 3 Name: a, dtype: int64 Slicing a single row from a single column will produce a single scalar DataFrame: >>> df_0a = df.loc[df.index < 1, ['a']] >>> df_0a a 0 1 Squeezing the rows produces a single scalar Series: >>> df_0a.squeeze('rows') a 1 Name: 0, dtype: int64 Squeezing all axes wil project directly into a scalar: >>> df_0a.squeeze() 1 """ axis = (self._AXIS_NAMES if axis is None else (self._get_axis_number(axis),)) try: return self.iloc[ tuple(0 if i in axis and len(a) == 1 else slice(None) for i, a in enumerate(self.axes))] except Exception: return self
[ "def", "squeeze", "(", "self", ",", "axis", "=", "None", ")", ":", "axis", "=", "(", "self", ".", "_AXIS_NAMES", "if", "axis", "is", "None", "else", "(", "self", ".", "_get_axis_number", "(", "axis", ")", ",", ")", ")", "try", ":", "return", "self", ".", "iloc", "[", "tuple", "(", "0", "if", "i", "in", "axis", "and", "len", "(", "a", ")", "==", "1", "else", "slice", "(", "None", ")", "for", "i", ",", "a", "in", "enumerate", "(", "self", ".", "axes", ")", ")", "]", "except", "Exception", ":", "return", "self" ]
Squeeze 1 dimensional axis objects into scalars. Series or DataFrames with a single element are squeezed to a scalar. DataFrames with a single column or a single row are squeezed to a Series. Otherwise the object is unchanged. This method is most useful when you don't know if your object is a Series or DataFrame, but you do know it has just a single column. In that case you can safely call `squeeze` to ensure you have a Series. Parameters ---------- axis : {0 or 'index', 1 or 'columns', None}, default None A specific axis to squeeze. By default, all length-1 axes are squeezed. .. versionadded:: 0.20.0 Returns ------- DataFrame, Series, or scalar The projection after squeezing `axis` or all the axes. See Also -------- Series.iloc : Integer-location based indexing for selecting scalars. DataFrame.iloc : Integer-location based indexing for selecting Series. Series.to_frame : Inverse of DataFrame.squeeze for a single-column DataFrame. Examples -------- >>> primes = pd.Series([2, 3, 5, 7]) Slicing might produce a Series with a single value: >>> even_primes = primes[primes % 2 == 0] >>> even_primes 0 2 dtype: int64 >>> even_primes.squeeze() 2 Squeezing objects with more than one value in every axis does nothing: >>> odd_primes = primes[primes % 2 == 1] >>> odd_primes 1 3 2 5 3 7 dtype: int64 >>> odd_primes.squeeze() 1 3 2 5 3 7 dtype: int64 Squeezing is even more effective when used with DataFrames. >>> df = pd.DataFrame([[1, 2], [3, 4]], columns=['a', 'b']) >>> df a b 0 1 2 1 3 4 Slicing a single column will produce a DataFrame with the columns having only one value: >>> df_a = df[['a']] >>> df_a a 0 1 1 3 So the columns can be squeezed down, resulting in a Series: >>> df_a.squeeze('columns') 0 1 1 3 Name: a, dtype: int64 Slicing a single row from a single column will produce a single scalar DataFrame: >>> df_0a = df.loc[df.index < 1, ['a']] >>> df_0a a 0 1 Squeezing the rows produces a single scalar Series: >>> df_0a.squeeze('rows') a 1 Name: 0, dtype: int64 Squeezing all axes wil project directly into a scalar: >>> df_0a.squeeze() 1
[ "Squeeze", "1", "dimensional", "axis", "objects", "into", "scalars", "." ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/generic.py#L829-L941
20,168
pandas-dev/pandas
pandas/core/generic.py
NDFrame.swaplevel
def swaplevel(self, i=-2, j=-1, axis=0): """ Swap levels i and j in a MultiIndex on a particular axis Parameters ---------- i, j : int, str (can be mixed) Level of index to be swapped. Can pass level name as string. Returns ------- swapped : same type as caller (new object) .. versionchanged:: 0.18.1 The indexes ``i`` and ``j`` are now optional, and default to the two innermost levels of the index. """ axis = self._get_axis_number(axis) result = self.copy() labels = result._data.axes[axis] result._data.set_axis(axis, labels.swaplevel(i, j)) return result
python
def swaplevel(self, i=-2, j=-1, axis=0): """ Swap levels i and j in a MultiIndex on a particular axis Parameters ---------- i, j : int, str (can be mixed) Level of index to be swapped. Can pass level name as string. Returns ------- swapped : same type as caller (new object) .. versionchanged:: 0.18.1 The indexes ``i`` and ``j`` are now optional, and default to the two innermost levels of the index. """ axis = self._get_axis_number(axis) result = self.copy() labels = result._data.axes[axis] result._data.set_axis(axis, labels.swaplevel(i, j)) return result
[ "def", "swaplevel", "(", "self", ",", "i", "=", "-", "2", ",", "j", "=", "-", "1", ",", "axis", "=", "0", ")", ":", "axis", "=", "self", ".", "_get_axis_number", "(", "axis", ")", "result", "=", "self", ".", "copy", "(", ")", "labels", "=", "result", ".", "_data", ".", "axes", "[", "axis", "]", "result", ".", "_data", ".", "set_axis", "(", "axis", ",", "labels", ".", "swaplevel", "(", "i", ",", "j", ")", ")", "return", "result" ]
Swap levels i and j in a MultiIndex on a particular axis Parameters ---------- i, j : int, str (can be mixed) Level of index to be swapped. Can pass level name as string. Returns ------- swapped : same type as caller (new object) .. versionchanged:: 0.18.1 The indexes ``i`` and ``j`` are now optional, and default to the two innermost levels of the index.
[ "Swap", "levels", "i", "and", "j", "in", "a", "MultiIndex", "on", "a", "particular", "axis" ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/generic.py#L943-L965
20,169
pandas-dev/pandas
pandas/core/generic.py
NDFrame.rename_axis
def rename_axis(self, mapper=sentinel, **kwargs): """ Set the name of the axis for the index or columns. Parameters ---------- mapper : scalar, list-like, optional Value to set the axis name attribute. index, columns : scalar, list-like, dict-like or function, optional A scalar, list-like, dict-like or functions transformations to apply to that axis' values. Use either ``mapper`` and ``axis`` to specify the axis to target with ``mapper``, or ``index`` and/or ``columns``. .. versionchanged:: 0.24.0 axis : {0 or 'index', 1 or 'columns'}, default 0 The axis to rename. copy : bool, default True Also copy underlying data. inplace : bool, default False Modifies the object directly, instead of creating a new Series or DataFrame. Returns ------- Series, DataFrame, or None The same type as the caller or None if `inplace` is True. See Also -------- Series.rename : Alter Series index labels or name. DataFrame.rename : Alter DataFrame index labels or name. Index.rename : Set new names on index. Notes ----- Prior to version 0.21.0, ``rename_axis`` could also be used to change the axis *labels* by passing a mapping or scalar. This behavior is deprecated and will be removed in a future version. Use ``rename`` instead. ``DataFrame.rename_axis`` supports two calling conventions * ``(index=index_mapper, columns=columns_mapper, ...)`` * ``(mapper, axis={'index', 'columns'}, ...)`` The first calling convention will only modify the names of the index and/or the names of the Index object that is the columns. In this case, the parameter ``copy`` is ignored. The second calling convention will modify the names of the the corresponding index if mapper is a list or a scalar. However, if mapper is dict-like or a function, it will use the deprecated behavior of modifying the axis *labels*. We *highly* recommend using keyword arguments to clarify your intent. Examples -------- **Series** >>> s = pd.Series(["dog", "cat", "monkey"]) >>> s 0 dog 1 cat 2 monkey dtype: object >>> s.rename_axis("animal") animal 0 dog 1 cat 2 monkey dtype: object **DataFrame** >>> df = pd.DataFrame({"num_legs": [4, 4, 2], ... "num_arms": [0, 0, 2]}, ... ["dog", "cat", "monkey"]) >>> df num_legs num_arms dog 4 0 cat 4 0 monkey 2 2 >>> df = df.rename_axis("animal") >>> df num_legs num_arms animal dog 4 0 cat 4 0 monkey 2 2 >>> df = df.rename_axis("limbs", axis="columns") >>> df limbs num_legs num_arms animal dog 4 0 cat 4 0 monkey 2 2 **MultiIndex** >>> df.index = pd.MultiIndex.from_product([['mammal'], ... ['dog', 'cat', 'monkey']], ... names=['type', 'name']) >>> df limbs num_legs num_arms type name mammal dog 4 0 cat 4 0 monkey 2 2 >>> df.rename_axis(index={'type': 'class'}) limbs num_legs num_arms class name mammal dog 4 0 cat 4 0 monkey 2 2 >>> df.rename_axis(columns=str.upper) LIMBS num_legs num_arms type name mammal dog 4 0 cat 4 0 monkey 2 2 """ axes, kwargs = self._construct_axes_from_arguments( (), kwargs, sentinel=sentinel) copy = kwargs.pop('copy', True) inplace = kwargs.pop('inplace', False) axis = kwargs.pop('axis', 0) if axis is not None: axis = self._get_axis_number(axis) if kwargs: raise TypeError('rename_axis() got an unexpected keyword ' 'argument "{0}"'.format(list(kwargs.keys())[0])) inplace = validate_bool_kwarg(inplace, 'inplace') if (mapper is not sentinel): # Use v0.23 behavior if a scalar or list non_mapper = is_scalar(mapper) or (is_list_like(mapper) and not is_dict_like(mapper)) if non_mapper: return self._set_axis_name(mapper, axis=axis, inplace=inplace) else: # Deprecated (v0.21) behavior is if mapper is specified, # and not a list or scalar, then call rename msg = ("Using 'rename_axis' to alter labels is deprecated. " "Use '.rename' instead") warnings.warn(msg, FutureWarning, stacklevel=3) axis = self._get_axis_name(axis) d = {'copy': copy, 'inplace': inplace} d[axis] = mapper return self.rename(**d) else: # Use new behavior. Means that index and/or columns # is specified result = self if inplace else self.copy(deep=copy) for axis in lrange(self._AXIS_LEN): v = axes.get(self._AXIS_NAMES[axis]) if v is sentinel: continue non_mapper = is_scalar(v) or (is_list_like(v) and not is_dict_like(v)) if non_mapper: newnames = v else: f = com._get_rename_function(v) curnames = self._get_axis(axis).names newnames = [f(name) for name in curnames] result._set_axis_name(newnames, axis=axis, inplace=True) if not inplace: return result
python
def rename_axis(self, mapper=sentinel, **kwargs): """ Set the name of the axis for the index or columns. Parameters ---------- mapper : scalar, list-like, optional Value to set the axis name attribute. index, columns : scalar, list-like, dict-like or function, optional A scalar, list-like, dict-like or functions transformations to apply to that axis' values. Use either ``mapper`` and ``axis`` to specify the axis to target with ``mapper``, or ``index`` and/or ``columns``. .. versionchanged:: 0.24.0 axis : {0 or 'index', 1 or 'columns'}, default 0 The axis to rename. copy : bool, default True Also copy underlying data. inplace : bool, default False Modifies the object directly, instead of creating a new Series or DataFrame. Returns ------- Series, DataFrame, or None The same type as the caller or None if `inplace` is True. See Also -------- Series.rename : Alter Series index labels or name. DataFrame.rename : Alter DataFrame index labels or name. Index.rename : Set new names on index. Notes ----- Prior to version 0.21.0, ``rename_axis`` could also be used to change the axis *labels* by passing a mapping or scalar. This behavior is deprecated and will be removed in a future version. Use ``rename`` instead. ``DataFrame.rename_axis`` supports two calling conventions * ``(index=index_mapper, columns=columns_mapper, ...)`` * ``(mapper, axis={'index', 'columns'}, ...)`` The first calling convention will only modify the names of the index and/or the names of the Index object that is the columns. In this case, the parameter ``copy`` is ignored. The second calling convention will modify the names of the the corresponding index if mapper is a list or a scalar. However, if mapper is dict-like or a function, it will use the deprecated behavior of modifying the axis *labels*. We *highly* recommend using keyword arguments to clarify your intent. Examples -------- **Series** >>> s = pd.Series(["dog", "cat", "monkey"]) >>> s 0 dog 1 cat 2 monkey dtype: object >>> s.rename_axis("animal") animal 0 dog 1 cat 2 monkey dtype: object **DataFrame** >>> df = pd.DataFrame({"num_legs": [4, 4, 2], ... "num_arms": [0, 0, 2]}, ... ["dog", "cat", "monkey"]) >>> df num_legs num_arms dog 4 0 cat 4 0 monkey 2 2 >>> df = df.rename_axis("animal") >>> df num_legs num_arms animal dog 4 0 cat 4 0 monkey 2 2 >>> df = df.rename_axis("limbs", axis="columns") >>> df limbs num_legs num_arms animal dog 4 0 cat 4 0 monkey 2 2 **MultiIndex** >>> df.index = pd.MultiIndex.from_product([['mammal'], ... ['dog', 'cat', 'monkey']], ... names=['type', 'name']) >>> df limbs num_legs num_arms type name mammal dog 4 0 cat 4 0 monkey 2 2 >>> df.rename_axis(index={'type': 'class'}) limbs num_legs num_arms class name mammal dog 4 0 cat 4 0 monkey 2 2 >>> df.rename_axis(columns=str.upper) LIMBS num_legs num_arms type name mammal dog 4 0 cat 4 0 monkey 2 2 """ axes, kwargs = self._construct_axes_from_arguments( (), kwargs, sentinel=sentinel) copy = kwargs.pop('copy', True) inplace = kwargs.pop('inplace', False) axis = kwargs.pop('axis', 0) if axis is not None: axis = self._get_axis_number(axis) if kwargs: raise TypeError('rename_axis() got an unexpected keyword ' 'argument "{0}"'.format(list(kwargs.keys())[0])) inplace = validate_bool_kwarg(inplace, 'inplace') if (mapper is not sentinel): # Use v0.23 behavior if a scalar or list non_mapper = is_scalar(mapper) or (is_list_like(mapper) and not is_dict_like(mapper)) if non_mapper: return self._set_axis_name(mapper, axis=axis, inplace=inplace) else: # Deprecated (v0.21) behavior is if mapper is specified, # and not a list or scalar, then call rename msg = ("Using 'rename_axis' to alter labels is deprecated. " "Use '.rename' instead") warnings.warn(msg, FutureWarning, stacklevel=3) axis = self._get_axis_name(axis) d = {'copy': copy, 'inplace': inplace} d[axis] = mapper return self.rename(**d) else: # Use new behavior. Means that index and/or columns # is specified result = self if inplace else self.copy(deep=copy) for axis in lrange(self._AXIS_LEN): v = axes.get(self._AXIS_NAMES[axis]) if v is sentinel: continue non_mapper = is_scalar(v) or (is_list_like(v) and not is_dict_like(v)) if non_mapper: newnames = v else: f = com._get_rename_function(v) curnames = self._get_axis(axis).names newnames = [f(name) for name in curnames] result._set_axis_name(newnames, axis=axis, inplace=True) if not inplace: return result
[ "def", "rename_axis", "(", "self", ",", "mapper", "=", "sentinel", ",", "*", "*", "kwargs", ")", ":", "axes", ",", "kwargs", "=", "self", ".", "_construct_axes_from_arguments", "(", "(", ")", ",", "kwargs", ",", "sentinel", "=", "sentinel", ")", "copy", "=", "kwargs", ".", "pop", "(", "'copy'", ",", "True", ")", "inplace", "=", "kwargs", ".", "pop", "(", "'inplace'", ",", "False", ")", "axis", "=", "kwargs", ".", "pop", "(", "'axis'", ",", "0", ")", "if", "axis", "is", "not", "None", ":", "axis", "=", "self", ".", "_get_axis_number", "(", "axis", ")", "if", "kwargs", ":", "raise", "TypeError", "(", "'rename_axis() got an unexpected keyword '", "'argument \"{0}\"'", ".", "format", "(", "list", "(", "kwargs", ".", "keys", "(", ")", ")", "[", "0", "]", ")", ")", "inplace", "=", "validate_bool_kwarg", "(", "inplace", ",", "'inplace'", ")", "if", "(", "mapper", "is", "not", "sentinel", ")", ":", "# Use v0.23 behavior if a scalar or list", "non_mapper", "=", "is_scalar", "(", "mapper", ")", "or", "(", "is_list_like", "(", "mapper", ")", "and", "not", "is_dict_like", "(", "mapper", ")", ")", "if", "non_mapper", ":", "return", "self", ".", "_set_axis_name", "(", "mapper", ",", "axis", "=", "axis", ",", "inplace", "=", "inplace", ")", "else", ":", "# Deprecated (v0.21) behavior is if mapper is specified,", "# and not a list or scalar, then call rename", "msg", "=", "(", "\"Using 'rename_axis' to alter labels is deprecated. \"", "\"Use '.rename' instead\"", ")", "warnings", ".", "warn", "(", "msg", ",", "FutureWarning", ",", "stacklevel", "=", "3", ")", "axis", "=", "self", ".", "_get_axis_name", "(", "axis", ")", "d", "=", "{", "'copy'", ":", "copy", ",", "'inplace'", ":", "inplace", "}", "d", "[", "axis", "]", "=", "mapper", "return", "self", ".", "rename", "(", "*", "*", "d", ")", "else", ":", "# Use new behavior. Means that index and/or columns", "# is specified", "result", "=", "self", "if", "inplace", "else", "self", ".", "copy", "(", "deep", "=", "copy", ")", "for", "axis", "in", "lrange", "(", "self", ".", "_AXIS_LEN", ")", ":", "v", "=", "axes", ".", "get", "(", "self", ".", "_AXIS_NAMES", "[", "axis", "]", ")", "if", "v", "is", "sentinel", ":", "continue", "non_mapper", "=", "is_scalar", "(", "v", ")", "or", "(", "is_list_like", "(", "v", ")", "and", "not", "is_dict_like", "(", "v", ")", ")", "if", "non_mapper", ":", "newnames", "=", "v", "else", ":", "f", "=", "com", ".", "_get_rename_function", "(", "v", ")", "curnames", "=", "self", ".", "_get_axis", "(", "axis", ")", ".", "names", "newnames", "=", "[", "f", "(", "name", ")", "for", "name", "in", "curnames", "]", "result", ".", "_set_axis_name", "(", "newnames", ",", "axis", "=", "axis", ",", "inplace", "=", "True", ")", "if", "not", "inplace", ":", "return", "result" ]
Set the name of the axis for the index or columns. Parameters ---------- mapper : scalar, list-like, optional Value to set the axis name attribute. index, columns : scalar, list-like, dict-like or function, optional A scalar, list-like, dict-like or functions transformations to apply to that axis' values. Use either ``mapper`` and ``axis`` to specify the axis to target with ``mapper``, or ``index`` and/or ``columns``. .. versionchanged:: 0.24.0 axis : {0 or 'index', 1 or 'columns'}, default 0 The axis to rename. copy : bool, default True Also copy underlying data. inplace : bool, default False Modifies the object directly, instead of creating a new Series or DataFrame. Returns ------- Series, DataFrame, or None The same type as the caller or None if `inplace` is True. See Also -------- Series.rename : Alter Series index labels or name. DataFrame.rename : Alter DataFrame index labels or name. Index.rename : Set new names on index. Notes ----- Prior to version 0.21.0, ``rename_axis`` could also be used to change the axis *labels* by passing a mapping or scalar. This behavior is deprecated and will be removed in a future version. Use ``rename`` instead. ``DataFrame.rename_axis`` supports two calling conventions * ``(index=index_mapper, columns=columns_mapper, ...)`` * ``(mapper, axis={'index', 'columns'}, ...)`` The first calling convention will only modify the names of the index and/or the names of the Index object that is the columns. In this case, the parameter ``copy`` is ignored. The second calling convention will modify the names of the the corresponding index if mapper is a list or a scalar. However, if mapper is dict-like or a function, it will use the deprecated behavior of modifying the axis *labels*. We *highly* recommend using keyword arguments to clarify your intent. Examples -------- **Series** >>> s = pd.Series(["dog", "cat", "monkey"]) >>> s 0 dog 1 cat 2 monkey dtype: object >>> s.rename_axis("animal") animal 0 dog 1 cat 2 monkey dtype: object **DataFrame** >>> df = pd.DataFrame({"num_legs": [4, 4, 2], ... "num_arms": [0, 0, 2]}, ... ["dog", "cat", "monkey"]) >>> df num_legs num_arms dog 4 0 cat 4 0 monkey 2 2 >>> df = df.rename_axis("animal") >>> df num_legs num_arms animal dog 4 0 cat 4 0 monkey 2 2 >>> df = df.rename_axis("limbs", axis="columns") >>> df limbs num_legs num_arms animal dog 4 0 cat 4 0 monkey 2 2 **MultiIndex** >>> df.index = pd.MultiIndex.from_product([['mammal'], ... ['dog', 'cat', 'monkey']], ... names=['type', 'name']) >>> df limbs num_legs num_arms type name mammal dog 4 0 cat 4 0 monkey 2 2 >>> df.rename_axis(index={'type': 'class'}) limbs num_legs num_arms class name mammal dog 4 0 cat 4 0 monkey 2 2 >>> df.rename_axis(columns=str.upper) LIMBS num_legs num_arms type name mammal dog 4 0 cat 4 0 monkey 2 2
[ "Set", "the", "name", "of", "the", "axis", "for", "the", "index", "or", "columns", "." ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/generic.py#L1133-L1312
20,170
pandas-dev/pandas
pandas/core/generic.py
NDFrame.equals
def equals(self, other): """ Test whether two objects contain the same elements. This function allows two Series or DataFrames to be compared against each other to see if they have the same shape and elements. NaNs in the same location are considered equal. The column headers do not need to have the same type, but the elements within the columns must be the same dtype. Parameters ---------- other : Series or DataFrame The other Series or DataFrame to be compared with the first. Returns ------- bool True if all elements are the same in both objects, False otherwise. See Also -------- Series.eq : Compare two Series objects of the same length and return a Series where each element is True if the element in each Series is equal, False otherwise. DataFrame.eq : Compare two DataFrame objects of the same shape and return a DataFrame where each element is True if the respective element in each DataFrame is equal, False otherwise. assert_series_equal : Return True if left and right Series are equal, False otherwise. assert_frame_equal : Return True if left and right DataFrames are equal, False otherwise. numpy.array_equal : Return True if two arrays have the same shape and elements, False otherwise. Notes ----- This function requires that the elements have the same dtype as their respective elements in the other Series or DataFrame. However, the column labels do not need to have the same type, as long as they are still considered equal. Examples -------- >>> df = pd.DataFrame({1: [10], 2: [20]}) >>> df 1 2 0 10 20 DataFrames df and exactly_equal have the same types and values for their elements and column labels, which will return True. >>> exactly_equal = pd.DataFrame({1: [10], 2: [20]}) >>> exactly_equal 1 2 0 10 20 >>> df.equals(exactly_equal) True DataFrames df and different_column_type have the same element types and values, but have different types for the column labels, which will still return True. >>> different_column_type = pd.DataFrame({1.0: [10], 2.0: [20]}) >>> different_column_type 1.0 2.0 0 10 20 >>> df.equals(different_column_type) True DataFrames df and different_data_type have different types for the same values for their elements, and will return False even though their column labels are the same values and types. >>> different_data_type = pd.DataFrame({1: [10.0], 2: [20.0]}) >>> different_data_type 1 2 0 10.0 20.0 >>> df.equals(different_data_type) False """ if not isinstance(other, self._constructor): return False return self._data.equals(other._data)
python
def equals(self, other): """ Test whether two objects contain the same elements. This function allows two Series or DataFrames to be compared against each other to see if they have the same shape and elements. NaNs in the same location are considered equal. The column headers do not need to have the same type, but the elements within the columns must be the same dtype. Parameters ---------- other : Series or DataFrame The other Series or DataFrame to be compared with the first. Returns ------- bool True if all elements are the same in both objects, False otherwise. See Also -------- Series.eq : Compare two Series objects of the same length and return a Series where each element is True if the element in each Series is equal, False otherwise. DataFrame.eq : Compare two DataFrame objects of the same shape and return a DataFrame where each element is True if the respective element in each DataFrame is equal, False otherwise. assert_series_equal : Return True if left and right Series are equal, False otherwise. assert_frame_equal : Return True if left and right DataFrames are equal, False otherwise. numpy.array_equal : Return True if two arrays have the same shape and elements, False otherwise. Notes ----- This function requires that the elements have the same dtype as their respective elements in the other Series or DataFrame. However, the column labels do not need to have the same type, as long as they are still considered equal. Examples -------- >>> df = pd.DataFrame({1: [10], 2: [20]}) >>> df 1 2 0 10 20 DataFrames df and exactly_equal have the same types and values for their elements and column labels, which will return True. >>> exactly_equal = pd.DataFrame({1: [10], 2: [20]}) >>> exactly_equal 1 2 0 10 20 >>> df.equals(exactly_equal) True DataFrames df and different_column_type have the same element types and values, but have different types for the column labels, which will still return True. >>> different_column_type = pd.DataFrame({1.0: [10], 2.0: [20]}) >>> different_column_type 1.0 2.0 0 10 20 >>> df.equals(different_column_type) True DataFrames df and different_data_type have different types for the same values for their elements, and will return False even though their column labels are the same values and types. >>> different_data_type = pd.DataFrame({1: [10.0], 2: [20.0]}) >>> different_data_type 1 2 0 10.0 20.0 >>> df.equals(different_data_type) False """ if not isinstance(other, self._constructor): return False return self._data.equals(other._data)
[ "def", "equals", "(", "self", ",", "other", ")", ":", "if", "not", "isinstance", "(", "other", ",", "self", ".", "_constructor", ")", ":", "return", "False", "return", "self", ".", "_data", ".", "equals", "(", "other", ".", "_data", ")" ]
Test whether two objects contain the same elements. This function allows two Series or DataFrames to be compared against each other to see if they have the same shape and elements. NaNs in the same location are considered equal. The column headers do not need to have the same type, but the elements within the columns must be the same dtype. Parameters ---------- other : Series or DataFrame The other Series or DataFrame to be compared with the first. Returns ------- bool True if all elements are the same in both objects, False otherwise. See Also -------- Series.eq : Compare two Series objects of the same length and return a Series where each element is True if the element in each Series is equal, False otherwise. DataFrame.eq : Compare two DataFrame objects of the same shape and return a DataFrame where each element is True if the respective element in each DataFrame is equal, False otherwise. assert_series_equal : Return True if left and right Series are equal, False otherwise. assert_frame_equal : Return True if left and right DataFrames are equal, False otherwise. numpy.array_equal : Return True if two arrays have the same shape and elements, False otherwise. Notes ----- This function requires that the elements have the same dtype as their respective elements in the other Series or DataFrame. However, the column labels do not need to have the same type, as long as they are still considered equal. Examples -------- >>> df = pd.DataFrame({1: [10], 2: [20]}) >>> df 1 2 0 10 20 DataFrames df and exactly_equal have the same types and values for their elements and column labels, which will return True. >>> exactly_equal = pd.DataFrame({1: [10], 2: [20]}) >>> exactly_equal 1 2 0 10 20 >>> df.equals(exactly_equal) True DataFrames df and different_column_type have the same element types and values, but have different types for the column labels, which will still return True. >>> different_column_type = pd.DataFrame({1.0: [10], 2.0: [20]}) >>> different_column_type 1.0 2.0 0 10 20 >>> df.equals(different_column_type) True DataFrames df and different_data_type have different types for the same values for their elements, and will return False even though their column labels are the same values and types. >>> different_data_type = pd.DataFrame({1: [10.0], 2: [20.0]}) >>> different_data_type 1 2 0 10.0 20.0 >>> df.equals(different_data_type) False
[ "Test", "whether", "two", "objects", "contain", "the", "same", "elements", "." ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/generic.py#L1382-L1466
20,171
pandas-dev/pandas
pandas/core/generic.py
NDFrame.bool
def bool(self): """ Return the bool of a single element PandasObject. This must be a boolean scalar value, either True or False. Raise a ValueError if the PandasObject does not have exactly 1 element, or that element is not boolean """ v = self.squeeze() if isinstance(v, (bool, np.bool_)): return bool(v) elif is_scalar(v): raise ValueError("bool cannot act on a non-boolean single element " "{0}".format(self.__class__.__name__)) self.__nonzero__()
python
def bool(self): """ Return the bool of a single element PandasObject. This must be a boolean scalar value, either True or False. Raise a ValueError if the PandasObject does not have exactly 1 element, or that element is not boolean """ v = self.squeeze() if isinstance(v, (bool, np.bool_)): return bool(v) elif is_scalar(v): raise ValueError("bool cannot act on a non-boolean single element " "{0}".format(self.__class__.__name__)) self.__nonzero__()
[ "def", "bool", "(", "self", ")", ":", "v", "=", "self", ".", "squeeze", "(", ")", "if", "isinstance", "(", "v", ",", "(", "bool", ",", "np", ".", "bool_", ")", ")", ":", "return", "bool", "(", "v", ")", "elif", "is_scalar", "(", "v", ")", ":", "raise", "ValueError", "(", "\"bool cannot act on a non-boolean single element \"", "\"{0}\"", ".", "format", "(", "self", ".", "__class__", ".", "__name__", ")", ")", "self", ".", "__nonzero__", "(", ")" ]
Return the bool of a single element PandasObject. This must be a boolean scalar value, either True or False. Raise a ValueError if the PandasObject does not have exactly 1 element, or that element is not boolean
[ "Return", "the", "bool", "of", "a", "single", "element", "PandasObject", "." ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/generic.py#L1514-L1529
20,172
pandas-dev/pandas
pandas/core/generic.py
NDFrame._is_level_reference
def _is_level_reference(self, key, axis=0): """ Test whether a key is a level reference for a given axis. To be considered a level reference, `key` must be a string that: - (axis=0): Matches the name of an index level and does NOT match a column label. - (axis=1): Matches the name of a column level and does NOT match an index label. Parameters ---------- key : str Potential level name for the given axis axis : int, default 0 Axis that levels are associated with (0 for index, 1 for columns) Returns ------- is_level : bool """ axis = self._get_axis_number(axis) if self.ndim > 2: raise NotImplementedError( "_is_level_reference is not implemented for {type}" .format(type=type(self))) return (key is not None and is_hashable(key) and key in self.axes[axis].names and not self._is_label_reference(key, axis=axis))
python
def _is_level_reference(self, key, axis=0): """ Test whether a key is a level reference for a given axis. To be considered a level reference, `key` must be a string that: - (axis=0): Matches the name of an index level and does NOT match a column label. - (axis=1): Matches the name of a column level and does NOT match an index label. Parameters ---------- key : str Potential level name for the given axis axis : int, default 0 Axis that levels are associated with (0 for index, 1 for columns) Returns ------- is_level : bool """ axis = self._get_axis_number(axis) if self.ndim > 2: raise NotImplementedError( "_is_level_reference is not implemented for {type}" .format(type=type(self))) return (key is not None and is_hashable(key) and key in self.axes[axis].names and not self._is_label_reference(key, axis=axis))
[ "def", "_is_level_reference", "(", "self", ",", "key", ",", "axis", "=", "0", ")", ":", "axis", "=", "self", ".", "_get_axis_number", "(", "axis", ")", "if", "self", ".", "ndim", ">", "2", ":", "raise", "NotImplementedError", "(", "\"_is_level_reference is not implemented for {type}\"", ".", "format", "(", "type", "=", "type", "(", "self", ")", ")", ")", "return", "(", "key", "is", "not", "None", "and", "is_hashable", "(", "key", ")", "and", "key", "in", "self", ".", "axes", "[", "axis", "]", ".", "names", "and", "not", "self", ".", "_is_label_reference", "(", "key", ",", "axis", "=", "axis", ")", ")" ]
Test whether a key is a level reference for a given axis. To be considered a level reference, `key` must be a string that: - (axis=0): Matches the name of an index level and does NOT match a column label. - (axis=1): Matches the name of a column level and does NOT match an index label. Parameters ---------- key : str Potential level name for the given axis axis : int, default 0 Axis that levels are associated with (0 for index, 1 for columns) Returns ------- is_level : bool
[ "Test", "whether", "a", "key", "is", "a", "level", "reference", "for", "a", "given", "axis", "." ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/generic.py#L1545-L1576
20,173
pandas-dev/pandas
pandas/core/generic.py
NDFrame._is_label_reference
def _is_label_reference(self, key, axis=0): """ Test whether a key is a label reference for a given axis. To be considered a label reference, `key` must be a string that: - (axis=0): Matches a column label - (axis=1): Matches an index label Parameters ---------- key: str Potential label name axis: int, default 0 Axis perpendicular to the axis that labels are associated with (0 means search for column labels, 1 means search for index labels) Returns ------- is_label: bool """ if self.ndim > 2: raise NotImplementedError( "_is_label_reference is not implemented for {type}" .format(type=type(self))) axis = self._get_axis_number(axis) other_axes = (ax for ax in range(self._AXIS_LEN) if ax != axis) return (key is not None and is_hashable(key) and any(key in self.axes[ax] for ax in other_axes))
python
def _is_label_reference(self, key, axis=0): """ Test whether a key is a label reference for a given axis. To be considered a label reference, `key` must be a string that: - (axis=0): Matches a column label - (axis=1): Matches an index label Parameters ---------- key: str Potential label name axis: int, default 0 Axis perpendicular to the axis that labels are associated with (0 means search for column labels, 1 means search for index labels) Returns ------- is_label: bool """ if self.ndim > 2: raise NotImplementedError( "_is_label_reference is not implemented for {type}" .format(type=type(self))) axis = self._get_axis_number(axis) other_axes = (ax for ax in range(self._AXIS_LEN) if ax != axis) return (key is not None and is_hashable(key) and any(key in self.axes[ax] for ax in other_axes))
[ "def", "_is_label_reference", "(", "self", ",", "key", ",", "axis", "=", "0", ")", ":", "if", "self", ".", "ndim", ">", "2", ":", "raise", "NotImplementedError", "(", "\"_is_label_reference is not implemented for {type}\"", ".", "format", "(", "type", "=", "type", "(", "self", ")", ")", ")", "axis", "=", "self", ".", "_get_axis_number", "(", "axis", ")", "other_axes", "=", "(", "ax", "for", "ax", "in", "range", "(", "self", ".", "_AXIS_LEN", ")", "if", "ax", "!=", "axis", ")", "return", "(", "key", "is", "not", "None", "and", "is_hashable", "(", "key", ")", "and", "any", "(", "key", "in", "self", ".", "axes", "[", "ax", "]", "for", "ax", "in", "other_axes", ")", ")" ]
Test whether a key is a label reference for a given axis. To be considered a label reference, `key` must be a string that: - (axis=0): Matches a column label - (axis=1): Matches an index label Parameters ---------- key: str Potential label name axis: int, default 0 Axis perpendicular to the axis that labels are associated with (0 means search for column labels, 1 means search for index labels) Returns ------- is_label: bool
[ "Test", "whether", "a", "key", "is", "a", "label", "reference", "for", "a", "given", "axis", "." ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/generic.py#L1578-L1608
20,174
pandas-dev/pandas
pandas/core/generic.py
NDFrame._is_label_or_level_reference
def _is_label_or_level_reference(self, key, axis=0): """ Test whether a key is a label or level reference for a given axis. To be considered either a label or a level reference, `key` must be a string that: - (axis=0): Matches a column label or an index level - (axis=1): Matches an index label or a column level Parameters ---------- key: str Potential label or level name axis: int, default 0 Axis that levels are associated with (0 for index, 1 for columns) Returns ------- is_label_or_level: bool """ if self.ndim > 2: raise NotImplementedError( "_is_label_or_level_reference is not implemented for {type}" .format(type=type(self))) return (self._is_level_reference(key, axis=axis) or self._is_label_reference(key, axis=axis))
python
def _is_label_or_level_reference(self, key, axis=0): """ Test whether a key is a label or level reference for a given axis. To be considered either a label or a level reference, `key` must be a string that: - (axis=0): Matches a column label or an index level - (axis=1): Matches an index label or a column level Parameters ---------- key: str Potential label or level name axis: int, default 0 Axis that levels are associated with (0 for index, 1 for columns) Returns ------- is_label_or_level: bool """ if self.ndim > 2: raise NotImplementedError( "_is_label_or_level_reference is not implemented for {type}" .format(type=type(self))) return (self._is_level_reference(key, axis=axis) or self._is_label_reference(key, axis=axis))
[ "def", "_is_label_or_level_reference", "(", "self", ",", "key", ",", "axis", "=", "0", ")", ":", "if", "self", ".", "ndim", ">", "2", ":", "raise", "NotImplementedError", "(", "\"_is_label_or_level_reference is not implemented for {type}\"", ".", "format", "(", "type", "=", "type", "(", "self", ")", ")", ")", "return", "(", "self", ".", "_is_level_reference", "(", "key", ",", "axis", "=", "axis", ")", "or", "self", ".", "_is_label_reference", "(", "key", ",", "axis", "=", "axis", ")", ")" ]
Test whether a key is a label or level reference for a given axis. To be considered either a label or a level reference, `key` must be a string that: - (axis=0): Matches a column label or an index level - (axis=1): Matches an index label or a column level Parameters ---------- key: str Potential label or level name axis: int, default 0 Axis that levels are associated with (0 for index, 1 for columns) Returns ------- is_label_or_level: bool
[ "Test", "whether", "a", "key", "is", "a", "label", "or", "level", "reference", "for", "a", "given", "axis", "." ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/generic.py#L1610-L1637
20,175
pandas-dev/pandas
pandas/core/generic.py
NDFrame._check_label_or_level_ambiguity
def _check_label_or_level_ambiguity(self, key, axis=0): """ Check whether `key` is ambiguous. By ambiguous, we mean that it matches both a level of the input `axis` and a label of the other axis. Parameters ---------- key: str or object label or level name axis: int, default 0 Axis that levels are associated with (0 for index, 1 for columns) Raises ------ ValueError: `key` is ambiguous """ if self.ndim > 2: raise NotImplementedError( "_check_label_or_level_ambiguity is not implemented for {type}" .format(type=type(self))) axis = self._get_axis_number(axis) other_axes = (ax for ax in range(self._AXIS_LEN) if ax != axis) if (key is not None and is_hashable(key) and key in self.axes[axis].names and any(key in self.axes[ax] for ax in other_axes)): # Build an informative and grammatical warning level_article, level_type = (('an', 'index') if axis == 0 else ('a', 'column')) label_article, label_type = (('a', 'column') if axis == 0 else ('an', 'index')) msg = ("'{key}' is both {level_article} {level_type} level and " "{label_article} {label_type} label, which is ambiguous." ).format(key=key, level_article=level_article, level_type=level_type, label_article=label_article, label_type=label_type) raise ValueError(msg)
python
def _check_label_or_level_ambiguity(self, key, axis=0): """ Check whether `key` is ambiguous. By ambiguous, we mean that it matches both a level of the input `axis` and a label of the other axis. Parameters ---------- key: str or object label or level name axis: int, default 0 Axis that levels are associated with (0 for index, 1 for columns) Raises ------ ValueError: `key` is ambiguous """ if self.ndim > 2: raise NotImplementedError( "_check_label_or_level_ambiguity is not implemented for {type}" .format(type=type(self))) axis = self._get_axis_number(axis) other_axes = (ax for ax in range(self._AXIS_LEN) if ax != axis) if (key is not None and is_hashable(key) and key in self.axes[axis].names and any(key in self.axes[ax] for ax in other_axes)): # Build an informative and grammatical warning level_article, level_type = (('an', 'index') if axis == 0 else ('a', 'column')) label_article, label_type = (('a', 'column') if axis == 0 else ('an', 'index')) msg = ("'{key}' is both {level_article} {level_type} level and " "{label_article} {label_type} label, which is ambiguous." ).format(key=key, level_article=level_article, level_type=level_type, label_article=label_article, label_type=label_type) raise ValueError(msg)
[ "def", "_check_label_or_level_ambiguity", "(", "self", ",", "key", ",", "axis", "=", "0", ")", ":", "if", "self", ".", "ndim", ">", "2", ":", "raise", "NotImplementedError", "(", "\"_check_label_or_level_ambiguity is not implemented for {type}\"", ".", "format", "(", "type", "=", "type", "(", "self", ")", ")", ")", "axis", "=", "self", ".", "_get_axis_number", "(", "axis", ")", "other_axes", "=", "(", "ax", "for", "ax", "in", "range", "(", "self", ".", "_AXIS_LEN", ")", "if", "ax", "!=", "axis", ")", "if", "(", "key", "is", "not", "None", "and", "is_hashable", "(", "key", ")", "and", "key", "in", "self", ".", "axes", "[", "axis", "]", ".", "names", "and", "any", "(", "key", "in", "self", ".", "axes", "[", "ax", "]", "for", "ax", "in", "other_axes", ")", ")", ":", "# Build an informative and grammatical warning", "level_article", ",", "level_type", "=", "(", "(", "'an'", ",", "'index'", ")", "if", "axis", "==", "0", "else", "(", "'a'", ",", "'column'", ")", ")", "label_article", ",", "label_type", "=", "(", "(", "'a'", ",", "'column'", ")", "if", "axis", "==", "0", "else", "(", "'an'", ",", "'index'", ")", ")", "msg", "=", "(", "\"'{key}' is both {level_article} {level_type} level and \"", "\"{label_article} {label_type} label, which is ambiguous.\"", ")", ".", "format", "(", "key", "=", "key", ",", "level_article", "=", "level_article", ",", "level_type", "=", "level_type", ",", "label_article", "=", "label_article", ",", "label_type", "=", "label_type", ")", "raise", "ValueError", "(", "msg", ")" ]
Check whether `key` is ambiguous. By ambiguous, we mean that it matches both a level of the input `axis` and a label of the other axis. Parameters ---------- key: str or object label or level name axis: int, default 0 Axis that levels are associated with (0 for index, 1 for columns) Raises ------ ValueError: `key` is ambiguous
[ "Check", "whether", "key", "is", "ambiguous", "." ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/generic.py#L1639-L1686
20,176
pandas-dev/pandas
pandas/core/generic.py
NDFrame._get_label_or_level_values
def _get_label_or_level_values(self, key, axis=0): """ Return a 1-D array of values associated with `key`, a label or level from the given `axis`. Retrieval logic: - (axis=0): Return column values if `key` matches a column label. Otherwise return index level values if `key` matches an index level. - (axis=1): Return row values if `key` matches an index label. Otherwise return column level values if 'key' matches a column level Parameters ---------- key: str Label or level name. axis: int, default 0 Axis that levels are associated with (0 for index, 1 for columns) Returns ------- values: np.ndarray Raises ------ KeyError if `key` matches neither a label nor a level ValueError if `key` matches multiple labels FutureWarning if `key` is ambiguous. This will become an ambiguity error in a future version """ if self.ndim > 2: raise NotImplementedError( "_get_label_or_level_values is not implemented for {type}" .format(type=type(self))) axis = self._get_axis_number(axis) other_axes = [ax for ax in range(self._AXIS_LEN) if ax != axis] if self._is_label_reference(key, axis=axis): self._check_label_or_level_ambiguity(key, axis=axis) values = self.xs(key, axis=other_axes[0])._values elif self._is_level_reference(key, axis=axis): values = self.axes[axis].get_level_values(key)._values else: raise KeyError(key) # Check for duplicates if values.ndim > 1: if other_axes and isinstance( self._get_axis(other_axes[0]), MultiIndex): multi_message = ('\n' 'For a multi-index, the label must be a ' 'tuple with elements corresponding to ' 'each level.') else: multi_message = '' label_axis_name = 'column' if axis == 0 else 'index' raise ValueError(("The {label_axis_name} label '{key}' " "is not unique.{multi_message}") .format(key=key, label_axis_name=label_axis_name, multi_message=multi_message)) return values
python
def _get_label_or_level_values(self, key, axis=0): """ Return a 1-D array of values associated with `key`, a label or level from the given `axis`. Retrieval logic: - (axis=0): Return column values if `key` matches a column label. Otherwise return index level values if `key` matches an index level. - (axis=1): Return row values if `key` matches an index label. Otherwise return column level values if 'key' matches a column level Parameters ---------- key: str Label or level name. axis: int, default 0 Axis that levels are associated with (0 for index, 1 for columns) Returns ------- values: np.ndarray Raises ------ KeyError if `key` matches neither a label nor a level ValueError if `key` matches multiple labels FutureWarning if `key` is ambiguous. This will become an ambiguity error in a future version """ if self.ndim > 2: raise NotImplementedError( "_get_label_or_level_values is not implemented for {type}" .format(type=type(self))) axis = self._get_axis_number(axis) other_axes = [ax for ax in range(self._AXIS_LEN) if ax != axis] if self._is_label_reference(key, axis=axis): self._check_label_or_level_ambiguity(key, axis=axis) values = self.xs(key, axis=other_axes[0])._values elif self._is_level_reference(key, axis=axis): values = self.axes[axis].get_level_values(key)._values else: raise KeyError(key) # Check for duplicates if values.ndim > 1: if other_axes and isinstance( self._get_axis(other_axes[0]), MultiIndex): multi_message = ('\n' 'For a multi-index, the label must be a ' 'tuple with elements corresponding to ' 'each level.') else: multi_message = '' label_axis_name = 'column' if axis == 0 else 'index' raise ValueError(("The {label_axis_name} label '{key}' " "is not unique.{multi_message}") .format(key=key, label_axis_name=label_axis_name, multi_message=multi_message)) return values
[ "def", "_get_label_or_level_values", "(", "self", ",", "key", ",", "axis", "=", "0", ")", ":", "if", "self", ".", "ndim", ">", "2", ":", "raise", "NotImplementedError", "(", "\"_get_label_or_level_values is not implemented for {type}\"", ".", "format", "(", "type", "=", "type", "(", "self", ")", ")", ")", "axis", "=", "self", ".", "_get_axis_number", "(", "axis", ")", "other_axes", "=", "[", "ax", "for", "ax", "in", "range", "(", "self", ".", "_AXIS_LEN", ")", "if", "ax", "!=", "axis", "]", "if", "self", ".", "_is_label_reference", "(", "key", ",", "axis", "=", "axis", ")", ":", "self", ".", "_check_label_or_level_ambiguity", "(", "key", ",", "axis", "=", "axis", ")", "values", "=", "self", ".", "xs", "(", "key", ",", "axis", "=", "other_axes", "[", "0", "]", ")", ".", "_values", "elif", "self", ".", "_is_level_reference", "(", "key", ",", "axis", "=", "axis", ")", ":", "values", "=", "self", ".", "axes", "[", "axis", "]", ".", "get_level_values", "(", "key", ")", ".", "_values", "else", ":", "raise", "KeyError", "(", "key", ")", "# Check for duplicates", "if", "values", ".", "ndim", ">", "1", ":", "if", "other_axes", "and", "isinstance", "(", "self", ".", "_get_axis", "(", "other_axes", "[", "0", "]", ")", ",", "MultiIndex", ")", ":", "multi_message", "=", "(", "'\\n'", "'For a multi-index, the label must be a '", "'tuple with elements corresponding to '", "'each level.'", ")", "else", ":", "multi_message", "=", "''", "label_axis_name", "=", "'column'", "if", "axis", "==", "0", "else", "'index'", "raise", "ValueError", "(", "(", "\"The {label_axis_name} label '{key}' \"", "\"is not unique.{multi_message}\"", ")", ".", "format", "(", "key", "=", "key", ",", "label_axis_name", "=", "label_axis_name", ",", "multi_message", "=", "multi_message", ")", ")", "return", "values" ]
Return a 1-D array of values associated with `key`, a label or level from the given `axis`. Retrieval logic: - (axis=0): Return column values if `key` matches a column label. Otherwise return index level values if `key` matches an index level. - (axis=1): Return row values if `key` matches an index label. Otherwise return column level values if 'key' matches a column level Parameters ---------- key: str Label or level name. axis: int, default 0 Axis that levels are associated with (0 for index, 1 for columns) Returns ------- values: np.ndarray Raises ------ KeyError if `key` matches neither a label nor a level ValueError if `key` matches multiple labels FutureWarning if `key` is ambiguous. This will become an ambiguity error in a future version
[ "Return", "a", "1", "-", "D", "array", "of", "values", "associated", "with", "key", "a", "label", "or", "level", "from", "the", "given", "axis", "." ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/generic.py#L1688-L1757
20,177
pandas-dev/pandas
pandas/core/generic.py
NDFrame.empty
def empty(self): """ Indicator whether DataFrame is empty. True if DataFrame is entirely empty (no items), meaning any of the axes are of length 0. Returns ------- bool If DataFrame is empty, return True, if not return False. See Also -------- Series.dropna DataFrame.dropna Notes ----- If DataFrame contains only NaNs, it is still not considered empty. See the example below. Examples -------- An example of an actual empty DataFrame. Notice the index is empty: >>> df_empty = pd.DataFrame({'A' : []}) >>> df_empty Empty DataFrame Columns: [A] Index: [] >>> df_empty.empty True If we only have NaNs in our DataFrame, it is not considered empty! We will need to drop the NaNs to make the DataFrame empty: >>> df = pd.DataFrame({'A' : [np.nan]}) >>> df A 0 NaN >>> df.empty False >>> df.dropna().empty True """ return any(len(self._get_axis(a)) == 0 for a in self._AXIS_ORDERS)
python
def empty(self): """ Indicator whether DataFrame is empty. True if DataFrame is entirely empty (no items), meaning any of the axes are of length 0. Returns ------- bool If DataFrame is empty, return True, if not return False. See Also -------- Series.dropna DataFrame.dropna Notes ----- If DataFrame contains only NaNs, it is still not considered empty. See the example below. Examples -------- An example of an actual empty DataFrame. Notice the index is empty: >>> df_empty = pd.DataFrame({'A' : []}) >>> df_empty Empty DataFrame Columns: [A] Index: [] >>> df_empty.empty True If we only have NaNs in our DataFrame, it is not considered empty! We will need to drop the NaNs to make the DataFrame empty: >>> df = pd.DataFrame({'A' : [np.nan]}) >>> df A 0 NaN >>> df.empty False >>> df.dropna().empty True """ return any(len(self._get_axis(a)) == 0 for a in self._AXIS_ORDERS)
[ "def", "empty", "(", "self", ")", ":", "return", "any", "(", "len", "(", "self", ".", "_get_axis", "(", "a", ")", ")", "==", "0", "for", "a", "in", "self", ".", "_AXIS_ORDERS", ")" ]
Indicator whether DataFrame is empty. True if DataFrame is entirely empty (no items), meaning any of the axes are of length 0. Returns ------- bool If DataFrame is empty, return True, if not return False. See Also -------- Series.dropna DataFrame.dropna Notes ----- If DataFrame contains only NaNs, it is still not considered empty. See the example below. Examples -------- An example of an actual empty DataFrame. Notice the index is empty: >>> df_empty = pd.DataFrame({'A' : []}) >>> df_empty Empty DataFrame Columns: [A] Index: [] >>> df_empty.empty True If we only have NaNs in our DataFrame, it is not considered empty! We will need to drop the NaNs to make the DataFrame empty: >>> df = pd.DataFrame({'A' : [np.nan]}) >>> df A 0 NaN >>> df.empty False >>> df.dropna().empty True
[ "Indicator", "whether", "DataFrame", "is", "empty", "." ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/generic.py#L1878-L1924
20,178
pandas-dev/pandas
pandas/core/generic.py
NDFrame._repr_data_resource_
def _repr_data_resource_(self): """ Not a real Jupyter special repr method, but we use the same naming convention. """ if config.get_option("display.html.table_schema"): data = self.head(config.get_option('display.max_rows')) payload = json.loads(data.to_json(orient='table'), object_pairs_hook=collections.OrderedDict) return payload
python
def _repr_data_resource_(self): """ Not a real Jupyter special repr method, but we use the same naming convention. """ if config.get_option("display.html.table_schema"): data = self.head(config.get_option('display.max_rows')) payload = json.loads(data.to_json(orient='table'), object_pairs_hook=collections.OrderedDict) return payload
[ "def", "_repr_data_resource_", "(", "self", ")", ":", "if", "config", ".", "get_option", "(", "\"display.html.table_schema\"", ")", ":", "data", "=", "self", ".", "head", "(", "config", ".", "get_option", "(", "'display.max_rows'", ")", ")", "payload", "=", "json", ".", "loads", "(", "data", ".", "to_json", "(", "orient", "=", "'table'", ")", ",", "object_pairs_hook", "=", "collections", ".", "OrderedDict", ")", "return", "payload" ]
Not a real Jupyter special repr method, but we use the same naming convention.
[ "Not", "a", "real", "Jupyter", "special", "repr", "method", "but", "we", "use", "the", "same", "naming", "convention", "." ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/generic.py#L2021-L2030
20,179
pandas-dev/pandas
pandas/core/generic.py
NDFrame.to_json
def to_json(self, path_or_buf=None, orient=None, date_format=None, double_precision=10, force_ascii=True, date_unit='ms', default_handler=None, lines=False, compression='infer', index=True): """ Convert the object to a JSON string. Note NaN's and None will be converted to null and datetime objects will be converted to UNIX timestamps. Parameters ---------- path_or_buf : string or file handle, optional File path or object. If not specified, the result is returned as a string. orient : string Indication of expected JSON string format. * Series - default is 'index' - allowed values are: {'split','records','index','table'} * DataFrame - default is 'columns' - allowed values are: {'split','records','index','columns','values','table'} * The format of the JSON string - 'split' : dict like {'index' -> [index], 'columns' -> [columns], 'data' -> [values]} - 'records' : list like [{column -> value}, ... , {column -> value}] - 'index' : dict like {index -> {column -> value}} - 'columns' : dict like {column -> {index -> value}} - 'values' : just the values array - 'table' : dict like {'schema': {schema}, 'data': {data}} describing the data, and the data component is like ``orient='records'``. .. versionchanged:: 0.20.0 date_format : {None, 'epoch', 'iso'} Type of date conversion. 'epoch' = epoch milliseconds, 'iso' = ISO8601. The default depends on the `orient`. For ``orient='table'``, the default is 'iso'. For all other orients, the default is 'epoch'. double_precision : int, default 10 The number of decimal places to use when encoding floating point values. force_ascii : bool, default True Force encoded string to be ASCII. date_unit : string, default 'ms' (milliseconds) The time unit to encode to, governs timestamp and ISO8601 precision. One of 's', 'ms', 'us', 'ns' for second, millisecond, microsecond, and nanosecond respectively. default_handler : callable, default None Handler to call if object cannot otherwise be converted to a suitable format for JSON. Should receive a single argument which is the object to convert and return a serialisable object. lines : bool, default False If 'orient' is 'records' write out line delimited json format. Will throw ValueError if incorrect 'orient' since others are not list like. .. versionadded:: 0.19.0 compression : {'infer', 'gzip', 'bz2', 'zip', 'xz', None} A string representing the compression to use in the output file, only used when the first argument is a filename. By default, the compression is inferred from the filename. .. versionadded:: 0.21.0 .. versionchanged:: 0.24.0 'infer' option added and set to default index : bool, default True Whether to include the index values in the JSON string. Not including the index (``index=False``) is only supported when orient is 'split' or 'table'. .. versionadded:: 0.23.0 See Also -------- read_json Examples -------- >>> df = pd.DataFrame([['a', 'b'], ['c', 'd']], ... index=['row 1', 'row 2'], ... columns=['col 1', 'col 2']) >>> df.to_json(orient='split') '{"columns":["col 1","col 2"], "index":["row 1","row 2"], "data":[["a","b"],["c","d"]]}' Encoding/decoding a Dataframe using ``'records'`` formatted JSON. Note that index labels are not preserved with this encoding. >>> df.to_json(orient='records') '[{"col 1":"a","col 2":"b"},{"col 1":"c","col 2":"d"}]' Encoding/decoding a Dataframe using ``'index'`` formatted JSON: >>> df.to_json(orient='index') '{"row 1":{"col 1":"a","col 2":"b"},"row 2":{"col 1":"c","col 2":"d"}}' Encoding/decoding a Dataframe using ``'columns'`` formatted JSON: >>> df.to_json(orient='columns') '{"col 1":{"row 1":"a","row 2":"c"},"col 2":{"row 1":"b","row 2":"d"}}' Encoding/decoding a Dataframe using ``'values'`` formatted JSON: >>> df.to_json(orient='values') '[["a","b"],["c","d"]]' Encoding with Table Schema >>> df.to_json(orient='table') '{"schema": {"fields": [{"name": "index", "type": "string"}, {"name": "col 1", "type": "string"}, {"name": "col 2", "type": "string"}], "primaryKey": "index", "pandas_version": "0.20.0"}, "data": [{"index": "row 1", "col 1": "a", "col 2": "b"}, {"index": "row 2", "col 1": "c", "col 2": "d"}]}' """ from pandas.io import json if date_format is None and orient == 'table': date_format = 'iso' elif date_format is None: date_format = 'epoch' return json.to_json(path_or_buf=path_or_buf, obj=self, orient=orient, date_format=date_format, double_precision=double_precision, force_ascii=force_ascii, date_unit=date_unit, default_handler=default_handler, lines=lines, compression=compression, index=index)
python
def to_json(self, path_or_buf=None, orient=None, date_format=None, double_precision=10, force_ascii=True, date_unit='ms', default_handler=None, lines=False, compression='infer', index=True): """ Convert the object to a JSON string. Note NaN's and None will be converted to null and datetime objects will be converted to UNIX timestamps. Parameters ---------- path_or_buf : string or file handle, optional File path or object. If not specified, the result is returned as a string. orient : string Indication of expected JSON string format. * Series - default is 'index' - allowed values are: {'split','records','index','table'} * DataFrame - default is 'columns' - allowed values are: {'split','records','index','columns','values','table'} * The format of the JSON string - 'split' : dict like {'index' -> [index], 'columns' -> [columns], 'data' -> [values]} - 'records' : list like [{column -> value}, ... , {column -> value}] - 'index' : dict like {index -> {column -> value}} - 'columns' : dict like {column -> {index -> value}} - 'values' : just the values array - 'table' : dict like {'schema': {schema}, 'data': {data}} describing the data, and the data component is like ``orient='records'``. .. versionchanged:: 0.20.0 date_format : {None, 'epoch', 'iso'} Type of date conversion. 'epoch' = epoch milliseconds, 'iso' = ISO8601. The default depends on the `orient`. For ``orient='table'``, the default is 'iso'. For all other orients, the default is 'epoch'. double_precision : int, default 10 The number of decimal places to use when encoding floating point values. force_ascii : bool, default True Force encoded string to be ASCII. date_unit : string, default 'ms' (milliseconds) The time unit to encode to, governs timestamp and ISO8601 precision. One of 's', 'ms', 'us', 'ns' for second, millisecond, microsecond, and nanosecond respectively. default_handler : callable, default None Handler to call if object cannot otherwise be converted to a suitable format for JSON. Should receive a single argument which is the object to convert and return a serialisable object. lines : bool, default False If 'orient' is 'records' write out line delimited json format. Will throw ValueError if incorrect 'orient' since others are not list like. .. versionadded:: 0.19.0 compression : {'infer', 'gzip', 'bz2', 'zip', 'xz', None} A string representing the compression to use in the output file, only used when the first argument is a filename. By default, the compression is inferred from the filename. .. versionadded:: 0.21.0 .. versionchanged:: 0.24.0 'infer' option added and set to default index : bool, default True Whether to include the index values in the JSON string. Not including the index (``index=False``) is only supported when orient is 'split' or 'table'. .. versionadded:: 0.23.0 See Also -------- read_json Examples -------- >>> df = pd.DataFrame([['a', 'b'], ['c', 'd']], ... index=['row 1', 'row 2'], ... columns=['col 1', 'col 2']) >>> df.to_json(orient='split') '{"columns":["col 1","col 2"], "index":["row 1","row 2"], "data":[["a","b"],["c","d"]]}' Encoding/decoding a Dataframe using ``'records'`` formatted JSON. Note that index labels are not preserved with this encoding. >>> df.to_json(orient='records') '[{"col 1":"a","col 2":"b"},{"col 1":"c","col 2":"d"}]' Encoding/decoding a Dataframe using ``'index'`` formatted JSON: >>> df.to_json(orient='index') '{"row 1":{"col 1":"a","col 2":"b"},"row 2":{"col 1":"c","col 2":"d"}}' Encoding/decoding a Dataframe using ``'columns'`` formatted JSON: >>> df.to_json(orient='columns') '{"col 1":{"row 1":"a","row 2":"c"},"col 2":{"row 1":"b","row 2":"d"}}' Encoding/decoding a Dataframe using ``'values'`` formatted JSON: >>> df.to_json(orient='values') '[["a","b"],["c","d"]]' Encoding with Table Schema >>> df.to_json(orient='table') '{"schema": {"fields": [{"name": "index", "type": "string"}, {"name": "col 1", "type": "string"}, {"name": "col 2", "type": "string"}], "primaryKey": "index", "pandas_version": "0.20.0"}, "data": [{"index": "row 1", "col 1": "a", "col 2": "b"}, {"index": "row 2", "col 1": "c", "col 2": "d"}]}' """ from pandas.io import json if date_format is None and orient == 'table': date_format = 'iso' elif date_format is None: date_format = 'epoch' return json.to_json(path_or_buf=path_or_buf, obj=self, orient=orient, date_format=date_format, double_precision=double_precision, force_ascii=force_ascii, date_unit=date_unit, default_handler=default_handler, lines=lines, compression=compression, index=index)
[ "def", "to_json", "(", "self", ",", "path_or_buf", "=", "None", ",", "orient", "=", "None", ",", "date_format", "=", "None", ",", "double_precision", "=", "10", ",", "force_ascii", "=", "True", ",", "date_unit", "=", "'ms'", ",", "default_handler", "=", "None", ",", "lines", "=", "False", ",", "compression", "=", "'infer'", ",", "index", "=", "True", ")", ":", "from", "pandas", ".", "io", "import", "json", "if", "date_format", "is", "None", "and", "orient", "==", "'table'", ":", "date_format", "=", "'iso'", "elif", "date_format", "is", "None", ":", "date_format", "=", "'epoch'", "return", "json", ".", "to_json", "(", "path_or_buf", "=", "path_or_buf", ",", "obj", "=", "self", ",", "orient", "=", "orient", ",", "date_format", "=", "date_format", ",", "double_precision", "=", "double_precision", ",", "force_ascii", "=", "force_ascii", ",", "date_unit", "=", "date_unit", ",", "default_handler", "=", "default_handler", ",", "lines", "=", "lines", ",", "compression", "=", "compression", ",", "index", "=", "index", ")" ]
Convert the object to a JSON string. Note NaN's and None will be converted to null and datetime objects will be converted to UNIX timestamps. Parameters ---------- path_or_buf : string or file handle, optional File path or object. If not specified, the result is returned as a string. orient : string Indication of expected JSON string format. * Series - default is 'index' - allowed values are: {'split','records','index','table'} * DataFrame - default is 'columns' - allowed values are: {'split','records','index','columns','values','table'} * The format of the JSON string - 'split' : dict like {'index' -> [index], 'columns' -> [columns], 'data' -> [values]} - 'records' : list like [{column -> value}, ... , {column -> value}] - 'index' : dict like {index -> {column -> value}} - 'columns' : dict like {column -> {index -> value}} - 'values' : just the values array - 'table' : dict like {'schema': {schema}, 'data': {data}} describing the data, and the data component is like ``orient='records'``. .. versionchanged:: 0.20.0 date_format : {None, 'epoch', 'iso'} Type of date conversion. 'epoch' = epoch milliseconds, 'iso' = ISO8601. The default depends on the `orient`. For ``orient='table'``, the default is 'iso'. For all other orients, the default is 'epoch'. double_precision : int, default 10 The number of decimal places to use when encoding floating point values. force_ascii : bool, default True Force encoded string to be ASCII. date_unit : string, default 'ms' (milliseconds) The time unit to encode to, governs timestamp and ISO8601 precision. One of 's', 'ms', 'us', 'ns' for second, millisecond, microsecond, and nanosecond respectively. default_handler : callable, default None Handler to call if object cannot otherwise be converted to a suitable format for JSON. Should receive a single argument which is the object to convert and return a serialisable object. lines : bool, default False If 'orient' is 'records' write out line delimited json format. Will throw ValueError if incorrect 'orient' since others are not list like. .. versionadded:: 0.19.0 compression : {'infer', 'gzip', 'bz2', 'zip', 'xz', None} A string representing the compression to use in the output file, only used when the first argument is a filename. By default, the compression is inferred from the filename. .. versionadded:: 0.21.0 .. versionchanged:: 0.24.0 'infer' option added and set to default index : bool, default True Whether to include the index values in the JSON string. Not including the index (``index=False``) is only supported when orient is 'split' or 'table'. .. versionadded:: 0.23.0 See Also -------- read_json Examples -------- >>> df = pd.DataFrame([['a', 'b'], ['c', 'd']], ... index=['row 1', 'row 2'], ... columns=['col 1', 'col 2']) >>> df.to_json(orient='split') '{"columns":["col 1","col 2"], "index":["row 1","row 2"], "data":[["a","b"],["c","d"]]}' Encoding/decoding a Dataframe using ``'records'`` formatted JSON. Note that index labels are not preserved with this encoding. >>> df.to_json(orient='records') '[{"col 1":"a","col 2":"b"},{"col 1":"c","col 2":"d"}]' Encoding/decoding a Dataframe using ``'index'`` formatted JSON: >>> df.to_json(orient='index') '{"row 1":{"col 1":"a","col 2":"b"},"row 2":{"col 1":"c","col 2":"d"}}' Encoding/decoding a Dataframe using ``'columns'`` formatted JSON: >>> df.to_json(orient='columns') '{"col 1":{"row 1":"a","row 2":"c"},"col 2":{"row 1":"b","row 2":"d"}}' Encoding/decoding a Dataframe using ``'values'`` formatted JSON: >>> df.to_json(orient='values') '[["a","b"],["c","d"]]' Encoding with Table Schema >>> df.to_json(orient='table') '{"schema": {"fields": [{"name": "index", "type": "string"}, {"name": "col 1", "type": "string"}, {"name": "col 2", "type": "string"}], "primaryKey": "index", "pandas_version": "0.20.0"}, "data": [{"index": "row 1", "col 1": "a", "col 2": "b"}, {"index": "row 2", "col 1": "c", "col 2": "d"}]}'
[ "Convert", "the", "object", "to", "a", "JSON", "string", "." ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/generic.py#L2158-L2302
20,180
pandas-dev/pandas
pandas/core/generic.py
NDFrame.to_hdf
def to_hdf(self, path_or_buf, key, **kwargs): """ Write the contained data to an HDF5 file using HDFStore. Hierarchical Data Format (HDF) is self-describing, allowing an application to interpret the structure and contents of a file with no outside information. One HDF file can hold a mix of related objects which can be accessed as a group or as individual objects. In order to add another DataFrame or Series to an existing HDF file please use append mode and a different a key. For more information see the :ref:`user guide <io.hdf5>`. Parameters ---------- path_or_buf : str or pandas.HDFStore File path or HDFStore object. key : str Identifier for the group in the store. mode : {'a', 'w', 'r+'}, default 'a' Mode to open file: - 'w': write, a new file is created (an existing file with the same name would be deleted). - 'a': append, an existing file is opened for reading and writing, and if the file does not exist it is created. - 'r+': similar to 'a', but the file must already exist. format : {'fixed', 'table'}, default 'fixed' Possible values: - 'fixed': Fixed format. Fast writing/reading. Not-appendable, nor searchable. - 'table': Table format. Write as a PyTables Table structure which may perform worse but allow more flexible operations like searching / selecting subsets of the data. append : bool, default False For Table formats, append the input data to the existing. data_columns : list of columns or True, optional List of columns to create as indexed data columns for on-disk queries, or True to use all columns. By default only the axes of the object are indexed. See :ref:`io.hdf5-query-data-columns`. Applicable only to format='table'. complevel : {0-9}, optional Specifies a compression level for data. A value of 0 disables compression. complib : {'zlib', 'lzo', 'bzip2', 'blosc'}, default 'zlib' Specifies the compression library to be used. As of v0.20.2 these additional compressors for Blosc are supported (default if no compressor specified: 'blosc:blosclz'): {'blosc:blosclz', 'blosc:lz4', 'blosc:lz4hc', 'blosc:snappy', 'blosc:zlib', 'blosc:zstd'}. Specifying a compression library which is not available issues a ValueError. fletcher32 : bool, default False If applying compression use the fletcher32 checksum. dropna : bool, default False If true, ALL nan rows will not be written to store. errors : str, default 'strict' Specifies how encoding and decoding errors are to be handled. See the errors argument for :func:`open` for a full list of options. See Also -------- DataFrame.read_hdf : Read from HDF file. DataFrame.to_parquet : Write a DataFrame to the binary parquet format. DataFrame.to_sql : Write to a sql table. DataFrame.to_feather : Write out feather-format for DataFrames. DataFrame.to_csv : Write out to a csv file. Examples -------- >>> df = pd.DataFrame({'A': [1, 2, 3], 'B': [4, 5, 6]}, ... index=['a', 'b', 'c']) >>> df.to_hdf('data.h5', key='df', mode='w') We can add another object to the same file: >>> s = pd.Series([1, 2, 3, 4]) >>> s.to_hdf('data.h5', key='s') Reading from HDF file: >>> pd.read_hdf('data.h5', 'df') A B a 1 4 b 2 5 c 3 6 >>> pd.read_hdf('data.h5', 's') 0 1 1 2 2 3 3 4 dtype: int64 Deleting file with data: >>> import os >>> os.remove('data.h5') """ from pandas.io import pytables return pytables.to_hdf(path_or_buf, key, self, **kwargs)
python
def to_hdf(self, path_or_buf, key, **kwargs): """ Write the contained data to an HDF5 file using HDFStore. Hierarchical Data Format (HDF) is self-describing, allowing an application to interpret the structure and contents of a file with no outside information. One HDF file can hold a mix of related objects which can be accessed as a group or as individual objects. In order to add another DataFrame or Series to an existing HDF file please use append mode and a different a key. For more information see the :ref:`user guide <io.hdf5>`. Parameters ---------- path_or_buf : str or pandas.HDFStore File path or HDFStore object. key : str Identifier for the group in the store. mode : {'a', 'w', 'r+'}, default 'a' Mode to open file: - 'w': write, a new file is created (an existing file with the same name would be deleted). - 'a': append, an existing file is opened for reading and writing, and if the file does not exist it is created. - 'r+': similar to 'a', but the file must already exist. format : {'fixed', 'table'}, default 'fixed' Possible values: - 'fixed': Fixed format. Fast writing/reading. Not-appendable, nor searchable. - 'table': Table format. Write as a PyTables Table structure which may perform worse but allow more flexible operations like searching / selecting subsets of the data. append : bool, default False For Table formats, append the input data to the existing. data_columns : list of columns or True, optional List of columns to create as indexed data columns for on-disk queries, or True to use all columns. By default only the axes of the object are indexed. See :ref:`io.hdf5-query-data-columns`. Applicable only to format='table'. complevel : {0-9}, optional Specifies a compression level for data. A value of 0 disables compression. complib : {'zlib', 'lzo', 'bzip2', 'blosc'}, default 'zlib' Specifies the compression library to be used. As of v0.20.2 these additional compressors for Blosc are supported (default if no compressor specified: 'blosc:blosclz'): {'blosc:blosclz', 'blosc:lz4', 'blosc:lz4hc', 'blosc:snappy', 'blosc:zlib', 'blosc:zstd'}. Specifying a compression library which is not available issues a ValueError. fletcher32 : bool, default False If applying compression use the fletcher32 checksum. dropna : bool, default False If true, ALL nan rows will not be written to store. errors : str, default 'strict' Specifies how encoding and decoding errors are to be handled. See the errors argument for :func:`open` for a full list of options. See Also -------- DataFrame.read_hdf : Read from HDF file. DataFrame.to_parquet : Write a DataFrame to the binary parquet format. DataFrame.to_sql : Write to a sql table. DataFrame.to_feather : Write out feather-format for DataFrames. DataFrame.to_csv : Write out to a csv file. Examples -------- >>> df = pd.DataFrame({'A': [1, 2, 3], 'B': [4, 5, 6]}, ... index=['a', 'b', 'c']) >>> df.to_hdf('data.h5', key='df', mode='w') We can add another object to the same file: >>> s = pd.Series([1, 2, 3, 4]) >>> s.to_hdf('data.h5', key='s') Reading from HDF file: >>> pd.read_hdf('data.h5', 'df') A B a 1 4 b 2 5 c 3 6 >>> pd.read_hdf('data.h5', 's') 0 1 1 2 2 3 3 4 dtype: int64 Deleting file with data: >>> import os >>> os.remove('data.h5') """ from pandas.io import pytables return pytables.to_hdf(path_or_buf, key, self, **kwargs)
[ "def", "to_hdf", "(", "self", ",", "path_or_buf", ",", "key", ",", "*", "*", "kwargs", ")", ":", "from", "pandas", ".", "io", "import", "pytables", "return", "pytables", ".", "to_hdf", "(", "path_or_buf", ",", "key", ",", "self", ",", "*", "*", "kwargs", ")" ]
Write the contained data to an HDF5 file using HDFStore. Hierarchical Data Format (HDF) is self-describing, allowing an application to interpret the structure and contents of a file with no outside information. One HDF file can hold a mix of related objects which can be accessed as a group or as individual objects. In order to add another DataFrame or Series to an existing HDF file please use append mode and a different a key. For more information see the :ref:`user guide <io.hdf5>`. Parameters ---------- path_or_buf : str or pandas.HDFStore File path or HDFStore object. key : str Identifier for the group in the store. mode : {'a', 'w', 'r+'}, default 'a' Mode to open file: - 'w': write, a new file is created (an existing file with the same name would be deleted). - 'a': append, an existing file is opened for reading and writing, and if the file does not exist it is created. - 'r+': similar to 'a', but the file must already exist. format : {'fixed', 'table'}, default 'fixed' Possible values: - 'fixed': Fixed format. Fast writing/reading. Not-appendable, nor searchable. - 'table': Table format. Write as a PyTables Table structure which may perform worse but allow more flexible operations like searching / selecting subsets of the data. append : bool, default False For Table formats, append the input data to the existing. data_columns : list of columns or True, optional List of columns to create as indexed data columns for on-disk queries, or True to use all columns. By default only the axes of the object are indexed. See :ref:`io.hdf5-query-data-columns`. Applicable only to format='table'. complevel : {0-9}, optional Specifies a compression level for data. A value of 0 disables compression. complib : {'zlib', 'lzo', 'bzip2', 'blosc'}, default 'zlib' Specifies the compression library to be used. As of v0.20.2 these additional compressors for Blosc are supported (default if no compressor specified: 'blosc:blosclz'): {'blosc:blosclz', 'blosc:lz4', 'blosc:lz4hc', 'blosc:snappy', 'blosc:zlib', 'blosc:zstd'}. Specifying a compression library which is not available issues a ValueError. fletcher32 : bool, default False If applying compression use the fletcher32 checksum. dropna : bool, default False If true, ALL nan rows will not be written to store. errors : str, default 'strict' Specifies how encoding and decoding errors are to be handled. See the errors argument for :func:`open` for a full list of options. See Also -------- DataFrame.read_hdf : Read from HDF file. DataFrame.to_parquet : Write a DataFrame to the binary parquet format. DataFrame.to_sql : Write to a sql table. DataFrame.to_feather : Write out feather-format for DataFrames. DataFrame.to_csv : Write out to a csv file. Examples -------- >>> df = pd.DataFrame({'A': [1, 2, 3], 'B': [4, 5, 6]}, ... index=['a', 'b', 'c']) >>> df.to_hdf('data.h5', key='df', mode='w') We can add another object to the same file: >>> s = pd.Series([1, 2, 3, 4]) >>> s.to_hdf('data.h5', key='s') Reading from HDF file: >>> pd.read_hdf('data.h5', 'df') A B a 1 4 b 2 5 c 3 6 >>> pd.read_hdf('data.h5', 's') 0 1 1 2 2 3 3 4 dtype: int64 Deleting file with data: >>> import os >>> os.remove('data.h5')
[ "Write", "the", "contained", "data", "to", "an", "HDF5", "file", "using", "HDFStore", "." ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/generic.py#L2304-L2406
20,181
pandas-dev/pandas
pandas/core/generic.py
NDFrame.to_msgpack
def to_msgpack(self, path_or_buf=None, encoding='utf-8', **kwargs): """ Serialize object to input file path using msgpack format. THIS IS AN EXPERIMENTAL LIBRARY and the storage format may not be stable until a future release. Parameters ---------- path : string File path, buffer-like, or None if None, return generated string append : bool whether to append to an existing msgpack (default is False) compress : type of compressor (zlib or blosc), default to None (no compression) """ from pandas.io import packers return packers.to_msgpack(path_or_buf, self, encoding=encoding, **kwargs)
python
def to_msgpack(self, path_or_buf=None, encoding='utf-8', **kwargs): """ Serialize object to input file path using msgpack format. THIS IS AN EXPERIMENTAL LIBRARY and the storage format may not be stable until a future release. Parameters ---------- path : string File path, buffer-like, or None if None, return generated string append : bool whether to append to an existing msgpack (default is False) compress : type of compressor (zlib or blosc), default to None (no compression) """ from pandas.io import packers return packers.to_msgpack(path_or_buf, self, encoding=encoding, **kwargs)
[ "def", "to_msgpack", "(", "self", ",", "path_or_buf", "=", "None", ",", "encoding", "=", "'utf-8'", ",", "*", "*", "kwargs", ")", ":", "from", "pandas", ".", "io", "import", "packers", "return", "packers", ".", "to_msgpack", "(", "path_or_buf", ",", "self", ",", "encoding", "=", "encoding", ",", "*", "*", "kwargs", ")" ]
Serialize object to input file path using msgpack format. THIS IS AN EXPERIMENTAL LIBRARY and the storage format may not be stable until a future release. Parameters ---------- path : string File path, buffer-like, or None if None, return generated string append : bool whether to append to an existing msgpack (default is False) compress : type of compressor (zlib or blosc), default to None (no compression)
[ "Serialize", "object", "to", "input", "file", "path", "using", "msgpack", "format", "." ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/generic.py#L2408-L2427
20,182
pandas-dev/pandas
pandas/core/generic.py
NDFrame.to_clipboard
def to_clipboard(self, excel=True, sep=None, **kwargs): r""" Copy object to the system clipboard. Write a text representation of object to the system clipboard. This can be pasted into Excel, for example. Parameters ---------- excel : bool, default True - True, use the provided separator, writing in a csv format for allowing easy pasting into excel. - False, write a string representation of the object to the clipboard. sep : str, default ``'\t'`` Field delimiter. **kwargs These parameters will be passed to DataFrame.to_csv. See Also -------- DataFrame.to_csv : Write a DataFrame to a comma-separated values (csv) file. read_clipboard : Read text from clipboard and pass to read_table. Notes ----- Requirements for your platform. - Linux : `xclip`, or `xsel` (with `gtk` or `PyQt4` modules) - Windows : none - OS X : none Examples -------- Copy the contents of a DataFrame to the clipboard. >>> df = pd.DataFrame([[1, 2, 3], [4, 5, 6]], columns=['A', 'B', 'C']) >>> df.to_clipboard(sep=',') ... # Wrote the following to the system clipboard: ... # ,A,B,C ... # 0,1,2,3 ... # 1,4,5,6 We can omit the the index by passing the keyword `index` and setting it to false. >>> df.to_clipboard(sep=',', index=False) ... # Wrote the following to the system clipboard: ... # A,B,C ... # 1,2,3 ... # 4,5,6 """ from pandas.io import clipboards clipboards.to_clipboard(self, excel=excel, sep=sep, **kwargs)
python
def to_clipboard(self, excel=True, sep=None, **kwargs): r""" Copy object to the system clipboard. Write a text representation of object to the system clipboard. This can be pasted into Excel, for example. Parameters ---------- excel : bool, default True - True, use the provided separator, writing in a csv format for allowing easy pasting into excel. - False, write a string representation of the object to the clipboard. sep : str, default ``'\t'`` Field delimiter. **kwargs These parameters will be passed to DataFrame.to_csv. See Also -------- DataFrame.to_csv : Write a DataFrame to a comma-separated values (csv) file. read_clipboard : Read text from clipboard and pass to read_table. Notes ----- Requirements for your platform. - Linux : `xclip`, or `xsel` (with `gtk` or `PyQt4` modules) - Windows : none - OS X : none Examples -------- Copy the contents of a DataFrame to the clipboard. >>> df = pd.DataFrame([[1, 2, 3], [4, 5, 6]], columns=['A', 'B', 'C']) >>> df.to_clipboard(sep=',') ... # Wrote the following to the system clipboard: ... # ,A,B,C ... # 0,1,2,3 ... # 1,4,5,6 We can omit the the index by passing the keyword `index` and setting it to false. >>> df.to_clipboard(sep=',', index=False) ... # Wrote the following to the system clipboard: ... # A,B,C ... # 1,2,3 ... # 4,5,6 """ from pandas.io import clipboards clipboards.to_clipboard(self, excel=excel, sep=sep, **kwargs)
[ "def", "to_clipboard", "(", "self", ",", "excel", "=", "True", ",", "sep", "=", "None", ",", "*", "*", "kwargs", ")", ":", "from", "pandas", ".", "io", "import", "clipboards", "clipboards", ".", "to_clipboard", "(", "self", ",", "excel", "=", "excel", ",", "sep", "=", "sep", ",", "*", "*", "kwargs", ")" ]
r""" Copy object to the system clipboard. Write a text representation of object to the system clipboard. This can be pasted into Excel, for example. Parameters ---------- excel : bool, default True - True, use the provided separator, writing in a csv format for allowing easy pasting into excel. - False, write a string representation of the object to the clipboard. sep : str, default ``'\t'`` Field delimiter. **kwargs These parameters will be passed to DataFrame.to_csv. See Also -------- DataFrame.to_csv : Write a DataFrame to a comma-separated values (csv) file. read_clipboard : Read text from clipboard and pass to read_table. Notes ----- Requirements for your platform. - Linux : `xclip`, or `xsel` (with `gtk` or `PyQt4` modules) - Windows : none - OS X : none Examples -------- Copy the contents of a DataFrame to the clipboard. >>> df = pd.DataFrame([[1, 2, 3], [4, 5, 6]], columns=['A', 'B', 'C']) >>> df.to_clipboard(sep=',') ... # Wrote the following to the system clipboard: ... # ,A,B,C ... # 0,1,2,3 ... # 1,4,5,6 We can omit the the index by passing the keyword `index` and setting it to false. >>> df.to_clipboard(sep=',', index=False) ... # Wrote the following to the system clipboard: ... # A,B,C ... # 1,2,3 ... # 4,5,6
[ "r", "Copy", "object", "to", "the", "system", "clipboard", "." ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/generic.py#L2621-L2676
20,183
pandas-dev/pandas
pandas/core/generic.py
NDFrame.to_xarray
def to_xarray(self): """ Return an xarray object from the pandas object. Returns ------- xarray.DataArray or xarray.Dataset Data in the pandas structure converted to Dataset if the object is a DataFrame, or a DataArray if the object is a Series. See Also -------- DataFrame.to_hdf : Write DataFrame to an HDF5 file. DataFrame.to_parquet : Write a DataFrame to the binary parquet format. Notes ----- See the `xarray docs <http://xarray.pydata.org/en/stable/>`__ Examples -------- >>> df = pd.DataFrame([('falcon', 'bird', 389.0, 2), ... ('parrot', 'bird', 24.0, 2), ... ('lion', 'mammal', 80.5, 4), ... ('monkey', 'mammal', np.nan, 4)], ... columns=['name', 'class', 'max_speed', ... 'num_legs']) >>> df name class max_speed num_legs 0 falcon bird 389.0 2 1 parrot bird 24.0 2 2 lion mammal 80.5 4 3 monkey mammal NaN 4 >>> df.to_xarray() <xarray.Dataset> Dimensions: (index: 4) Coordinates: * index (index) int64 0 1 2 3 Data variables: name (index) object 'falcon' 'parrot' 'lion' 'monkey' class (index) object 'bird' 'bird' 'mammal' 'mammal' max_speed (index) float64 389.0 24.0 80.5 nan num_legs (index) int64 2 2 4 4 >>> df['max_speed'].to_xarray() <xarray.DataArray 'max_speed' (index: 4)> array([389. , 24. , 80.5, nan]) Coordinates: * index (index) int64 0 1 2 3 >>> dates = pd.to_datetime(['2018-01-01', '2018-01-01', ... '2018-01-02', '2018-01-02']) >>> df_multiindex = pd.DataFrame({'date': dates, ... 'animal': ['falcon', 'parrot', 'falcon', ... 'parrot'], ... 'speed': [350, 18, 361, 15]}).set_index(['date', ... 'animal']) >>> df_multiindex speed date animal 2018-01-01 falcon 350 parrot 18 2018-01-02 falcon 361 parrot 15 >>> df_multiindex.to_xarray() <xarray.Dataset> Dimensions: (animal: 2, date: 2) Coordinates: * date (date) datetime64[ns] 2018-01-01 2018-01-02 * animal (animal) object 'falcon' 'parrot' Data variables: speed (date, animal) int64 350 18 361 15 """ try: import xarray except ImportError: # Give a nice error message raise ImportError("the xarray library is not installed\n" "you can install via conda\n" "conda install xarray\n" "or via pip\n" "pip install xarray\n") if self.ndim == 1: return xarray.DataArray.from_series(self) elif self.ndim == 2: return xarray.Dataset.from_dataframe(self) # > 2 dims coords = [(a, self._get_axis(a)) for a in self._AXIS_ORDERS] return xarray.DataArray(self, coords=coords, )
python
def to_xarray(self): """ Return an xarray object from the pandas object. Returns ------- xarray.DataArray or xarray.Dataset Data in the pandas structure converted to Dataset if the object is a DataFrame, or a DataArray if the object is a Series. See Also -------- DataFrame.to_hdf : Write DataFrame to an HDF5 file. DataFrame.to_parquet : Write a DataFrame to the binary parquet format. Notes ----- See the `xarray docs <http://xarray.pydata.org/en/stable/>`__ Examples -------- >>> df = pd.DataFrame([('falcon', 'bird', 389.0, 2), ... ('parrot', 'bird', 24.0, 2), ... ('lion', 'mammal', 80.5, 4), ... ('monkey', 'mammal', np.nan, 4)], ... columns=['name', 'class', 'max_speed', ... 'num_legs']) >>> df name class max_speed num_legs 0 falcon bird 389.0 2 1 parrot bird 24.0 2 2 lion mammal 80.5 4 3 monkey mammal NaN 4 >>> df.to_xarray() <xarray.Dataset> Dimensions: (index: 4) Coordinates: * index (index) int64 0 1 2 3 Data variables: name (index) object 'falcon' 'parrot' 'lion' 'monkey' class (index) object 'bird' 'bird' 'mammal' 'mammal' max_speed (index) float64 389.0 24.0 80.5 nan num_legs (index) int64 2 2 4 4 >>> df['max_speed'].to_xarray() <xarray.DataArray 'max_speed' (index: 4)> array([389. , 24. , 80.5, nan]) Coordinates: * index (index) int64 0 1 2 3 >>> dates = pd.to_datetime(['2018-01-01', '2018-01-01', ... '2018-01-02', '2018-01-02']) >>> df_multiindex = pd.DataFrame({'date': dates, ... 'animal': ['falcon', 'parrot', 'falcon', ... 'parrot'], ... 'speed': [350, 18, 361, 15]}).set_index(['date', ... 'animal']) >>> df_multiindex speed date animal 2018-01-01 falcon 350 parrot 18 2018-01-02 falcon 361 parrot 15 >>> df_multiindex.to_xarray() <xarray.Dataset> Dimensions: (animal: 2, date: 2) Coordinates: * date (date) datetime64[ns] 2018-01-01 2018-01-02 * animal (animal) object 'falcon' 'parrot' Data variables: speed (date, animal) int64 350 18 361 15 """ try: import xarray except ImportError: # Give a nice error message raise ImportError("the xarray library is not installed\n" "you can install via conda\n" "conda install xarray\n" "or via pip\n" "pip install xarray\n") if self.ndim == 1: return xarray.DataArray.from_series(self) elif self.ndim == 2: return xarray.Dataset.from_dataframe(self) # > 2 dims coords = [(a, self._get_axis(a)) for a in self._AXIS_ORDERS] return xarray.DataArray(self, coords=coords, )
[ "def", "to_xarray", "(", "self", ")", ":", "try", ":", "import", "xarray", "except", "ImportError", ":", "# Give a nice error message", "raise", "ImportError", "(", "\"the xarray library is not installed\\n\"", "\"you can install via conda\\n\"", "\"conda install xarray\\n\"", "\"or via pip\\n\"", "\"pip install xarray\\n\"", ")", "if", "self", ".", "ndim", "==", "1", ":", "return", "xarray", ".", "DataArray", ".", "from_series", "(", "self", ")", "elif", "self", ".", "ndim", "==", "2", ":", "return", "xarray", ".", "Dataset", ".", "from_dataframe", "(", "self", ")", "# > 2 dims", "coords", "=", "[", "(", "a", ",", "self", ".", "_get_axis", "(", "a", ")", ")", "for", "a", "in", "self", ".", "_AXIS_ORDERS", "]", "return", "xarray", ".", "DataArray", "(", "self", ",", "coords", "=", "coords", ",", ")" ]
Return an xarray object from the pandas object. Returns ------- xarray.DataArray or xarray.Dataset Data in the pandas structure converted to Dataset if the object is a DataFrame, or a DataArray if the object is a Series. See Also -------- DataFrame.to_hdf : Write DataFrame to an HDF5 file. DataFrame.to_parquet : Write a DataFrame to the binary parquet format. Notes ----- See the `xarray docs <http://xarray.pydata.org/en/stable/>`__ Examples -------- >>> df = pd.DataFrame([('falcon', 'bird', 389.0, 2), ... ('parrot', 'bird', 24.0, 2), ... ('lion', 'mammal', 80.5, 4), ... ('monkey', 'mammal', np.nan, 4)], ... columns=['name', 'class', 'max_speed', ... 'num_legs']) >>> df name class max_speed num_legs 0 falcon bird 389.0 2 1 parrot bird 24.0 2 2 lion mammal 80.5 4 3 monkey mammal NaN 4 >>> df.to_xarray() <xarray.Dataset> Dimensions: (index: 4) Coordinates: * index (index) int64 0 1 2 3 Data variables: name (index) object 'falcon' 'parrot' 'lion' 'monkey' class (index) object 'bird' 'bird' 'mammal' 'mammal' max_speed (index) float64 389.0 24.0 80.5 nan num_legs (index) int64 2 2 4 4 >>> df['max_speed'].to_xarray() <xarray.DataArray 'max_speed' (index: 4)> array([389. , 24. , 80.5, nan]) Coordinates: * index (index) int64 0 1 2 3 >>> dates = pd.to_datetime(['2018-01-01', '2018-01-01', ... '2018-01-02', '2018-01-02']) >>> df_multiindex = pd.DataFrame({'date': dates, ... 'animal': ['falcon', 'parrot', 'falcon', ... 'parrot'], ... 'speed': [350, 18, 361, 15]}).set_index(['date', ... 'animal']) >>> df_multiindex speed date animal 2018-01-01 falcon 350 parrot 18 2018-01-02 falcon 361 parrot 15 >>> df_multiindex.to_xarray() <xarray.Dataset> Dimensions: (animal: 2, date: 2) Coordinates: * date (date) datetime64[ns] 2018-01-01 2018-01-02 * animal (animal) object 'falcon' 'parrot' Data variables: speed (date, animal) int64 350 18 361 15
[ "Return", "an", "xarray", "object", "from", "the", "pandas", "object", "." ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/generic.py#L2678-L2773
20,184
pandas-dev/pandas
pandas/core/generic.py
NDFrame.to_latex
def to_latex(self, buf=None, columns=None, col_space=None, header=True, index=True, na_rep='NaN', formatters=None, float_format=None, sparsify=None, index_names=True, bold_rows=False, column_format=None, longtable=None, escape=None, encoding=None, decimal='.', multicolumn=None, multicolumn_format=None, multirow=None): r""" Render an object to a LaTeX tabular environment table. Render an object to a tabular environment table. You can splice this into a LaTeX document. Requires \usepackage{booktabs}. .. versionchanged:: 0.20.2 Added to Series Parameters ---------- buf : file descriptor or None Buffer to write to. If None, the output is returned as a string. columns : list of label, optional The subset of columns to write. Writes all columns by default. col_space : int, optional The minimum width of each column. header : bool or list of str, default True Write out the column names. If a list of strings is given, it is assumed to be aliases for the column names. index : bool, default True Write row names (index). na_rep : str, default 'NaN' Missing data representation. formatters : list of functions or dict of {str: function}, optional Formatter functions to apply to columns' elements by position or name. The result of each function must be a unicode string. List must be of length equal to the number of columns. float_format : str, optional Format string for floating point numbers. sparsify : bool, optional Set to False for a DataFrame with a hierarchical index to print every multiindex key at each row. By default, the value will be read from the config module. index_names : bool, default True Prints the names of the indexes. bold_rows : bool, default False Make the row labels bold in the output. column_format : str, optional The columns format as specified in `LaTeX table format <https://en.wikibooks.org/wiki/LaTeX/Tables>`__ e.g. 'rcl' for 3 columns. By default, 'l' will be used for all columns except columns of numbers, which default to 'r'. longtable : bool, optional By default, the value will be read from the pandas config module. Use a longtable environment instead of tabular. Requires adding a \usepackage{longtable} to your LaTeX preamble. escape : bool, optional By default, the value will be read from the pandas config module. When set to False prevents from escaping latex special characters in column names. encoding : str, optional A string representing the encoding to use in the output file, defaults to 'utf-8'. decimal : str, default '.' Character recognized as decimal separator, e.g. ',' in Europe. .. versionadded:: 0.18.0 multicolumn : bool, default True Use \multicolumn to enhance MultiIndex columns. The default will be read from the config module. .. versionadded:: 0.20.0 multicolumn_format : str, default 'l' The alignment for multicolumns, similar to `column_format` The default will be read from the config module. .. versionadded:: 0.20.0 multirow : bool, default False Use \multirow to enhance MultiIndex rows. Requires adding a \usepackage{multirow} to your LaTeX preamble. Will print centered labels (instead of top-aligned) across the contained rows, separating groups via clines. The default will be read from the pandas config module. .. versionadded:: 0.20.0 Returns ------- str or None If buf is None, returns the resulting LateX format as a string. Otherwise returns None. See Also -------- DataFrame.to_string : Render a DataFrame to a console-friendly tabular output. DataFrame.to_html : Render a DataFrame as an HTML table. Examples -------- >>> df = pd.DataFrame({'name': ['Raphael', 'Donatello'], ... 'mask': ['red', 'purple'], ... 'weapon': ['sai', 'bo staff']}) >>> df.to_latex(index=False) # doctest: +NORMALIZE_WHITESPACE '\\begin{tabular}{lll}\n\\toprule\n name & mask & weapon \\\\\n\\midrule\n Raphael & red & sai \\\\\n Donatello & purple & bo staff \\\\\n\\bottomrule\n\\end{tabular}\n' """ # Get defaults from the pandas config if self.ndim == 1: self = self.to_frame() if longtable is None: longtable = config.get_option("display.latex.longtable") if escape is None: escape = config.get_option("display.latex.escape") if multicolumn is None: multicolumn = config.get_option("display.latex.multicolumn") if multicolumn_format is None: multicolumn_format = config.get_option( "display.latex.multicolumn_format") if multirow is None: multirow = config.get_option("display.latex.multirow") formatter = DataFrameFormatter(self, buf=buf, columns=columns, col_space=col_space, na_rep=na_rep, header=header, index=index, formatters=formatters, float_format=float_format, bold_rows=bold_rows, sparsify=sparsify, index_names=index_names, escape=escape, decimal=decimal) formatter.to_latex(column_format=column_format, longtable=longtable, encoding=encoding, multicolumn=multicolumn, multicolumn_format=multicolumn_format, multirow=multirow) if buf is None: return formatter.buf.getvalue()
python
def to_latex(self, buf=None, columns=None, col_space=None, header=True, index=True, na_rep='NaN', formatters=None, float_format=None, sparsify=None, index_names=True, bold_rows=False, column_format=None, longtable=None, escape=None, encoding=None, decimal='.', multicolumn=None, multicolumn_format=None, multirow=None): r""" Render an object to a LaTeX tabular environment table. Render an object to a tabular environment table. You can splice this into a LaTeX document. Requires \usepackage{booktabs}. .. versionchanged:: 0.20.2 Added to Series Parameters ---------- buf : file descriptor or None Buffer to write to. If None, the output is returned as a string. columns : list of label, optional The subset of columns to write. Writes all columns by default. col_space : int, optional The minimum width of each column. header : bool or list of str, default True Write out the column names. If a list of strings is given, it is assumed to be aliases for the column names. index : bool, default True Write row names (index). na_rep : str, default 'NaN' Missing data representation. formatters : list of functions or dict of {str: function}, optional Formatter functions to apply to columns' elements by position or name. The result of each function must be a unicode string. List must be of length equal to the number of columns. float_format : str, optional Format string for floating point numbers. sparsify : bool, optional Set to False for a DataFrame with a hierarchical index to print every multiindex key at each row. By default, the value will be read from the config module. index_names : bool, default True Prints the names of the indexes. bold_rows : bool, default False Make the row labels bold in the output. column_format : str, optional The columns format as specified in `LaTeX table format <https://en.wikibooks.org/wiki/LaTeX/Tables>`__ e.g. 'rcl' for 3 columns. By default, 'l' will be used for all columns except columns of numbers, which default to 'r'. longtable : bool, optional By default, the value will be read from the pandas config module. Use a longtable environment instead of tabular. Requires adding a \usepackage{longtable} to your LaTeX preamble. escape : bool, optional By default, the value will be read from the pandas config module. When set to False prevents from escaping latex special characters in column names. encoding : str, optional A string representing the encoding to use in the output file, defaults to 'utf-8'. decimal : str, default '.' Character recognized as decimal separator, e.g. ',' in Europe. .. versionadded:: 0.18.0 multicolumn : bool, default True Use \multicolumn to enhance MultiIndex columns. The default will be read from the config module. .. versionadded:: 0.20.0 multicolumn_format : str, default 'l' The alignment for multicolumns, similar to `column_format` The default will be read from the config module. .. versionadded:: 0.20.0 multirow : bool, default False Use \multirow to enhance MultiIndex rows. Requires adding a \usepackage{multirow} to your LaTeX preamble. Will print centered labels (instead of top-aligned) across the contained rows, separating groups via clines. The default will be read from the pandas config module. .. versionadded:: 0.20.0 Returns ------- str or None If buf is None, returns the resulting LateX format as a string. Otherwise returns None. See Also -------- DataFrame.to_string : Render a DataFrame to a console-friendly tabular output. DataFrame.to_html : Render a DataFrame as an HTML table. Examples -------- >>> df = pd.DataFrame({'name': ['Raphael', 'Donatello'], ... 'mask': ['red', 'purple'], ... 'weapon': ['sai', 'bo staff']}) >>> df.to_latex(index=False) # doctest: +NORMALIZE_WHITESPACE '\\begin{tabular}{lll}\n\\toprule\n name & mask & weapon \\\\\n\\midrule\n Raphael & red & sai \\\\\n Donatello & purple & bo staff \\\\\n\\bottomrule\n\\end{tabular}\n' """ # Get defaults from the pandas config if self.ndim == 1: self = self.to_frame() if longtable is None: longtable = config.get_option("display.latex.longtable") if escape is None: escape = config.get_option("display.latex.escape") if multicolumn is None: multicolumn = config.get_option("display.latex.multicolumn") if multicolumn_format is None: multicolumn_format = config.get_option( "display.latex.multicolumn_format") if multirow is None: multirow = config.get_option("display.latex.multirow") formatter = DataFrameFormatter(self, buf=buf, columns=columns, col_space=col_space, na_rep=na_rep, header=header, index=index, formatters=formatters, float_format=float_format, bold_rows=bold_rows, sparsify=sparsify, index_names=index_names, escape=escape, decimal=decimal) formatter.to_latex(column_format=column_format, longtable=longtable, encoding=encoding, multicolumn=multicolumn, multicolumn_format=multicolumn_format, multirow=multirow) if buf is None: return formatter.buf.getvalue()
[ "def", "to_latex", "(", "self", ",", "buf", "=", "None", ",", "columns", "=", "None", ",", "col_space", "=", "None", ",", "header", "=", "True", ",", "index", "=", "True", ",", "na_rep", "=", "'NaN'", ",", "formatters", "=", "None", ",", "float_format", "=", "None", ",", "sparsify", "=", "None", ",", "index_names", "=", "True", ",", "bold_rows", "=", "False", ",", "column_format", "=", "None", ",", "longtable", "=", "None", ",", "escape", "=", "None", ",", "encoding", "=", "None", ",", "decimal", "=", "'.'", ",", "multicolumn", "=", "None", ",", "multicolumn_format", "=", "None", ",", "multirow", "=", "None", ")", ":", "# Get defaults from the pandas config", "if", "self", ".", "ndim", "==", "1", ":", "self", "=", "self", ".", "to_frame", "(", ")", "if", "longtable", "is", "None", ":", "longtable", "=", "config", ".", "get_option", "(", "\"display.latex.longtable\"", ")", "if", "escape", "is", "None", ":", "escape", "=", "config", ".", "get_option", "(", "\"display.latex.escape\"", ")", "if", "multicolumn", "is", "None", ":", "multicolumn", "=", "config", ".", "get_option", "(", "\"display.latex.multicolumn\"", ")", "if", "multicolumn_format", "is", "None", ":", "multicolumn_format", "=", "config", ".", "get_option", "(", "\"display.latex.multicolumn_format\"", ")", "if", "multirow", "is", "None", ":", "multirow", "=", "config", ".", "get_option", "(", "\"display.latex.multirow\"", ")", "formatter", "=", "DataFrameFormatter", "(", "self", ",", "buf", "=", "buf", ",", "columns", "=", "columns", ",", "col_space", "=", "col_space", ",", "na_rep", "=", "na_rep", ",", "header", "=", "header", ",", "index", "=", "index", ",", "formatters", "=", "formatters", ",", "float_format", "=", "float_format", ",", "bold_rows", "=", "bold_rows", ",", "sparsify", "=", "sparsify", ",", "index_names", "=", "index_names", ",", "escape", "=", "escape", ",", "decimal", "=", "decimal", ")", "formatter", ".", "to_latex", "(", "column_format", "=", "column_format", ",", "longtable", "=", "longtable", ",", "encoding", "=", "encoding", ",", "multicolumn", "=", "multicolumn", ",", "multicolumn_format", "=", "multicolumn_format", ",", "multirow", "=", "multirow", ")", "if", "buf", "is", "None", ":", "return", "formatter", ".", "buf", ".", "getvalue", "(", ")" ]
r""" Render an object to a LaTeX tabular environment table. Render an object to a tabular environment table. You can splice this into a LaTeX document. Requires \usepackage{booktabs}. .. versionchanged:: 0.20.2 Added to Series Parameters ---------- buf : file descriptor or None Buffer to write to. If None, the output is returned as a string. columns : list of label, optional The subset of columns to write. Writes all columns by default. col_space : int, optional The minimum width of each column. header : bool or list of str, default True Write out the column names. If a list of strings is given, it is assumed to be aliases for the column names. index : bool, default True Write row names (index). na_rep : str, default 'NaN' Missing data representation. formatters : list of functions or dict of {str: function}, optional Formatter functions to apply to columns' elements by position or name. The result of each function must be a unicode string. List must be of length equal to the number of columns. float_format : str, optional Format string for floating point numbers. sparsify : bool, optional Set to False for a DataFrame with a hierarchical index to print every multiindex key at each row. By default, the value will be read from the config module. index_names : bool, default True Prints the names of the indexes. bold_rows : bool, default False Make the row labels bold in the output. column_format : str, optional The columns format as specified in `LaTeX table format <https://en.wikibooks.org/wiki/LaTeX/Tables>`__ e.g. 'rcl' for 3 columns. By default, 'l' will be used for all columns except columns of numbers, which default to 'r'. longtable : bool, optional By default, the value will be read from the pandas config module. Use a longtable environment instead of tabular. Requires adding a \usepackage{longtable} to your LaTeX preamble. escape : bool, optional By default, the value will be read from the pandas config module. When set to False prevents from escaping latex special characters in column names. encoding : str, optional A string representing the encoding to use in the output file, defaults to 'utf-8'. decimal : str, default '.' Character recognized as decimal separator, e.g. ',' in Europe. .. versionadded:: 0.18.0 multicolumn : bool, default True Use \multicolumn to enhance MultiIndex columns. The default will be read from the config module. .. versionadded:: 0.20.0 multicolumn_format : str, default 'l' The alignment for multicolumns, similar to `column_format` The default will be read from the config module. .. versionadded:: 0.20.0 multirow : bool, default False Use \multirow to enhance MultiIndex rows. Requires adding a \usepackage{multirow} to your LaTeX preamble. Will print centered labels (instead of top-aligned) across the contained rows, separating groups via clines. The default will be read from the pandas config module. .. versionadded:: 0.20.0 Returns ------- str or None If buf is None, returns the resulting LateX format as a string. Otherwise returns None. See Also -------- DataFrame.to_string : Render a DataFrame to a console-friendly tabular output. DataFrame.to_html : Render a DataFrame as an HTML table. Examples -------- >>> df = pd.DataFrame({'name': ['Raphael', 'Donatello'], ... 'mask': ['red', 'purple'], ... 'weapon': ['sai', 'bo staff']}) >>> df.to_latex(index=False) # doctest: +NORMALIZE_WHITESPACE '\\begin{tabular}{lll}\n\\toprule\n name & mask & weapon \\\\\n\\midrule\n Raphael & red & sai \\\\\n Donatello & purple & bo staff \\\\\n\\bottomrule\n\\end{tabular}\n'
[ "r", "Render", "an", "object", "to", "a", "LaTeX", "tabular", "environment", "table", "." ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/generic.py#L2775-L2910
20,185
pandas-dev/pandas
pandas/core/generic.py
NDFrame._create_indexer
def _create_indexer(cls, name, indexer): """Create an indexer like _name in the class.""" if getattr(cls, name, None) is None: _indexer = functools.partial(indexer, name) setattr(cls, name, property(_indexer, doc=indexer.__doc__))
python
def _create_indexer(cls, name, indexer): """Create an indexer like _name in the class.""" if getattr(cls, name, None) is None: _indexer = functools.partial(indexer, name) setattr(cls, name, property(_indexer, doc=indexer.__doc__))
[ "def", "_create_indexer", "(", "cls", ",", "name", ",", "indexer", ")", ":", "if", "getattr", "(", "cls", ",", "name", ",", "None", ")", "is", "None", ":", "_indexer", "=", "functools", ".", "partial", "(", "indexer", ",", "name", ")", "setattr", "(", "cls", ",", "name", ",", "property", "(", "_indexer", ",", "doc", "=", "indexer", ".", "__doc__", ")", ")" ]
Create an indexer like _name in the class.
[ "Create", "an", "indexer", "like", "_name", "in", "the", "class", "." ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/generic.py#L3059-L3063
20,186
pandas-dev/pandas
pandas/core/generic.py
NDFrame._get_item_cache
def _get_item_cache(self, item): """Return the cached item, item represents a label indexer.""" cache = self._item_cache res = cache.get(item) if res is None: values = self._data.get(item) res = self._box_item_values(item, values) cache[item] = res res._set_as_cached(item, self) # for a chain res._is_copy = self._is_copy return res
python
def _get_item_cache(self, item): """Return the cached item, item represents a label indexer.""" cache = self._item_cache res = cache.get(item) if res is None: values = self._data.get(item) res = self._box_item_values(item, values) cache[item] = res res._set_as_cached(item, self) # for a chain res._is_copy = self._is_copy return res
[ "def", "_get_item_cache", "(", "self", ",", "item", ")", ":", "cache", "=", "self", ".", "_item_cache", "res", "=", "cache", ".", "get", "(", "item", ")", "if", "res", "is", "None", ":", "values", "=", "self", ".", "_data", ".", "get", "(", "item", ")", "res", "=", "self", ".", "_box_item_values", "(", "item", ",", "values", ")", "cache", "[", "item", "]", "=", "res", "res", ".", "_set_as_cached", "(", "item", ",", "self", ")", "# for a chain", "res", ".", "_is_copy", "=", "self", ".", "_is_copy", "return", "res" ]
Return the cached item, item represents a label indexer.
[ "Return", "the", "cached", "item", "item", "represents", "a", "label", "indexer", "." ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/generic.py#L3086-L3098
20,187
pandas-dev/pandas
pandas/core/generic.py
NDFrame._set_as_cached
def _set_as_cached(self, item, cacher): """Set the _cacher attribute on the calling object with a weakref to cacher. """ self._cacher = (item, weakref.ref(cacher))
python
def _set_as_cached(self, item, cacher): """Set the _cacher attribute on the calling object with a weakref to cacher. """ self._cacher = (item, weakref.ref(cacher))
[ "def", "_set_as_cached", "(", "self", ",", "item", ",", "cacher", ")", ":", "self", ".", "_cacher", "=", "(", "item", ",", "weakref", ".", "ref", "(", "cacher", ")", ")" ]
Set the _cacher attribute on the calling object with a weakref to cacher.
[ "Set", "the", "_cacher", "attribute", "on", "the", "calling", "object", "with", "a", "weakref", "to", "cacher", "." ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/generic.py#L3100-L3104
20,188
pandas-dev/pandas
pandas/core/generic.py
NDFrame._iget_item_cache
def _iget_item_cache(self, item): """Return the cached item, item represents a positional indexer.""" ax = self._info_axis if ax.is_unique: lower = self._get_item_cache(ax[item]) else: lower = self._take(item, axis=self._info_axis_number) return lower
python
def _iget_item_cache(self, item): """Return the cached item, item represents a positional indexer.""" ax = self._info_axis if ax.is_unique: lower = self._get_item_cache(ax[item]) else: lower = self._take(item, axis=self._info_axis_number) return lower
[ "def", "_iget_item_cache", "(", "self", ",", "item", ")", ":", "ax", "=", "self", ".", "_info_axis", "if", "ax", ".", "is_unique", ":", "lower", "=", "self", ".", "_get_item_cache", "(", "ax", "[", "item", "]", ")", "else", ":", "lower", "=", "self", ".", "_take", "(", "item", ",", "axis", "=", "self", ".", "_info_axis_number", ")", "return", "lower" ]
Return the cached item, item represents a positional indexer.
[ "Return", "the", "cached", "item", "item", "represents", "a", "positional", "indexer", "." ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/generic.py#L3111-L3118
20,189
pandas-dev/pandas
pandas/core/generic.py
NDFrame._maybe_update_cacher
def _maybe_update_cacher(self, clear=False, verify_is_copy=True): """ See if we need to update our parent cacher if clear, then clear our cache. Parameters ---------- clear : boolean, default False clear the item cache verify_is_copy : boolean, default True provide is_copy checks """ cacher = getattr(self, '_cacher', None) if cacher is not None: ref = cacher[1]() # we are trying to reference a dead referant, hence # a copy if ref is None: del self._cacher else: try: ref._maybe_cache_changed(cacher[0], self) except Exception: pass if verify_is_copy: self._check_setitem_copy(stacklevel=5, t='referant') if clear: self._clear_item_cache()
python
def _maybe_update_cacher(self, clear=False, verify_is_copy=True): """ See if we need to update our parent cacher if clear, then clear our cache. Parameters ---------- clear : boolean, default False clear the item cache verify_is_copy : boolean, default True provide is_copy checks """ cacher = getattr(self, '_cacher', None) if cacher is not None: ref = cacher[1]() # we are trying to reference a dead referant, hence # a copy if ref is None: del self._cacher else: try: ref._maybe_cache_changed(cacher[0], self) except Exception: pass if verify_is_copy: self._check_setitem_copy(stacklevel=5, t='referant') if clear: self._clear_item_cache()
[ "def", "_maybe_update_cacher", "(", "self", ",", "clear", "=", "False", ",", "verify_is_copy", "=", "True", ")", ":", "cacher", "=", "getattr", "(", "self", ",", "'_cacher'", ",", "None", ")", "if", "cacher", "is", "not", "None", ":", "ref", "=", "cacher", "[", "1", "]", "(", ")", "# we are trying to reference a dead referant, hence", "# a copy", "if", "ref", "is", "None", ":", "del", "self", ".", "_cacher", "else", ":", "try", ":", "ref", ".", "_maybe_cache_changed", "(", "cacher", "[", "0", "]", ",", "self", ")", "except", "Exception", ":", "pass", "if", "verify_is_copy", ":", "self", ".", "_check_setitem_copy", "(", "stacklevel", "=", "5", ",", "t", "=", "'referant'", ")", "if", "clear", ":", "self", ".", "_clear_item_cache", "(", ")" ]
See if we need to update our parent cacher if clear, then clear our cache. Parameters ---------- clear : boolean, default False clear the item cache verify_is_copy : boolean, default True provide is_copy checks
[ "See", "if", "we", "need", "to", "update", "our", "parent", "cacher", "if", "clear", "then", "clear", "our", "cache", "." ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/generic.py#L3145-L3177
20,190
pandas-dev/pandas
pandas/core/generic.py
NDFrame._slice
def _slice(self, slobj, axis=0, kind=None): """ Construct a slice of this container. kind parameter is maintained for compatibility with Series slicing. """ axis = self._get_block_manager_axis(axis) result = self._constructor(self._data.get_slice(slobj, axis=axis)) result = result.__finalize__(self) # this could be a view # but only in a single-dtyped view slicable case is_copy = axis != 0 or result._is_view result._set_is_copy(self, copy=is_copy) return result
python
def _slice(self, slobj, axis=0, kind=None): """ Construct a slice of this container. kind parameter is maintained for compatibility with Series slicing. """ axis = self._get_block_manager_axis(axis) result = self._constructor(self._data.get_slice(slobj, axis=axis)) result = result.__finalize__(self) # this could be a view # but only in a single-dtyped view slicable case is_copy = axis != 0 or result._is_view result._set_is_copy(self, copy=is_copy) return result
[ "def", "_slice", "(", "self", ",", "slobj", ",", "axis", "=", "0", ",", "kind", "=", "None", ")", ":", "axis", "=", "self", ".", "_get_block_manager_axis", "(", "axis", ")", "result", "=", "self", ".", "_constructor", "(", "self", ".", "_data", ".", "get_slice", "(", "slobj", ",", "axis", "=", "axis", ")", ")", "result", "=", "result", ".", "__finalize__", "(", "self", ")", "# this could be a view", "# but only in a single-dtyped view slicable case", "is_copy", "=", "axis", "!=", "0", "or", "result", ".", "_is_view", "result", ".", "_set_is_copy", "(", "self", ",", "copy", "=", "is_copy", ")", "return", "result" ]
Construct a slice of this container. kind parameter is maintained for compatibility with Series slicing.
[ "Construct", "a", "slice", "of", "this", "container", "." ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/generic.py#L3185-L3199
20,191
pandas-dev/pandas
pandas/core/generic.py
NDFrame._check_is_chained_assignment_possible
def _check_is_chained_assignment_possible(self): """ Check if we are a view, have a cacher, and are of mixed type. If so, then force a setitem_copy check. Should be called just near setting a value Will return a boolean if it we are a view and are cached, but a single-dtype meaning that the cacher should be updated following setting. """ if self._is_view and self._is_cached: ref = self._get_cacher() if ref is not None and ref._is_mixed_type: self._check_setitem_copy(stacklevel=4, t='referant', force=True) return True elif self._is_copy: self._check_setitem_copy(stacklevel=4, t='referant') return False
python
def _check_is_chained_assignment_possible(self): """ Check if we are a view, have a cacher, and are of mixed type. If so, then force a setitem_copy check. Should be called just near setting a value Will return a boolean if it we are a view and are cached, but a single-dtype meaning that the cacher should be updated following setting. """ if self._is_view and self._is_cached: ref = self._get_cacher() if ref is not None and ref._is_mixed_type: self._check_setitem_copy(stacklevel=4, t='referant', force=True) return True elif self._is_copy: self._check_setitem_copy(stacklevel=4, t='referant') return False
[ "def", "_check_is_chained_assignment_possible", "(", "self", ")", ":", "if", "self", ".", "_is_view", "and", "self", ".", "_is_cached", ":", "ref", "=", "self", ".", "_get_cacher", "(", ")", "if", "ref", "is", "not", "None", "and", "ref", ".", "_is_mixed_type", ":", "self", ".", "_check_setitem_copy", "(", "stacklevel", "=", "4", ",", "t", "=", "'referant'", ",", "force", "=", "True", ")", "return", "True", "elif", "self", ".", "_is_copy", ":", "self", ".", "_check_setitem_copy", "(", "stacklevel", "=", "4", ",", "t", "=", "'referant'", ")", "return", "False" ]
Check if we are a view, have a cacher, and are of mixed type. If so, then force a setitem_copy check. Should be called just near setting a value Will return a boolean if it we are a view and are cached, but a single-dtype meaning that the cacher should be updated following setting.
[ "Check", "if", "we", "are", "a", "view", "have", "a", "cacher", "and", "are", "of", "mixed", "type", ".", "If", "so", "then", "force", "a", "setitem_copy", "check", "." ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/generic.py#L3214-L3233
20,192
pandas-dev/pandas
pandas/core/generic.py
NDFrame.select
def select(self, crit, axis=0): """ Return data corresponding to axis labels matching criteria. .. deprecated:: 0.21.0 Use df.loc[df.index.map(crit)] to select via labels Parameters ---------- crit : function To be called on each index (label). Should return True or False axis : int Returns ------- selection : same type as caller """ warnings.warn("'select' is deprecated and will be removed in a " "future release. You can use " ".loc[labels.map(crit)] as a replacement", FutureWarning, stacklevel=2) axis = self._get_axis_number(axis) axis_name = self._get_axis_name(axis) axis_values = self._get_axis(axis) if len(axis_values) > 0: new_axis = axis_values[ np.asarray([bool(crit(label)) for label in axis_values])] else: new_axis = axis_values return self.reindex(**{axis_name: new_axis})
python
def select(self, crit, axis=0): """ Return data corresponding to axis labels matching criteria. .. deprecated:: 0.21.0 Use df.loc[df.index.map(crit)] to select via labels Parameters ---------- crit : function To be called on each index (label). Should return True or False axis : int Returns ------- selection : same type as caller """ warnings.warn("'select' is deprecated and will be removed in a " "future release. You can use " ".loc[labels.map(crit)] as a replacement", FutureWarning, stacklevel=2) axis = self._get_axis_number(axis) axis_name = self._get_axis_name(axis) axis_values = self._get_axis(axis) if len(axis_values) > 0: new_axis = axis_values[ np.asarray([bool(crit(label)) for label in axis_values])] else: new_axis = axis_values return self.reindex(**{axis_name: new_axis})
[ "def", "select", "(", "self", ",", "crit", ",", "axis", "=", "0", ")", ":", "warnings", ".", "warn", "(", "\"'select' is deprecated and will be removed in a \"", "\"future release. You can use \"", "\".loc[labels.map(crit)] as a replacement\"", ",", "FutureWarning", ",", "stacklevel", "=", "2", ")", "axis", "=", "self", ".", "_get_axis_number", "(", "axis", ")", "axis_name", "=", "self", ".", "_get_axis_name", "(", "axis", ")", "axis_values", "=", "self", ".", "_get_axis", "(", "axis", ")", "if", "len", "(", "axis_values", ")", ">", "0", ":", "new_axis", "=", "axis_values", "[", "np", ".", "asarray", "(", "[", "bool", "(", "crit", "(", "label", ")", ")", "for", "label", "in", "axis_values", "]", ")", "]", "else", ":", "new_axis", "=", "axis_values", "return", "self", ".", "reindex", "(", "*", "*", "{", "axis_name", ":", "new_axis", "}", ")" ]
Return data corresponding to axis labels matching criteria. .. deprecated:: 0.21.0 Use df.loc[df.index.map(crit)] to select via labels Parameters ---------- crit : function To be called on each index (label). Should return True or False axis : int Returns ------- selection : same type as caller
[ "Return", "data", "corresponding", "to", "axis", "labels", "matching", "criteria", "." ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/generic.py#L3653-L3685
20,193
pandas-dev/pandas
pandas/core/generic.py
NDFrame.reindex_like
def reindex_like(self, other, method=None, copy=True, limit=None, tolerance=None): """ Return an object with matching indices as other object. Conform the object to the same index on all axes. Optional filling logic, placing NaN in locations having no value in the previous index. A new object is produced unless the new index is equivalent to the current one and copy=False. Parameters ---------- other : Object of the same data type Its row and column indices are used to define the new indices of this object. method : {None, 'backfill'/'bfill', 'pad'/'ffill', 'nearest'} Method to use for filling holes in reindexed DataFrame. Please note: this is only applicable to DataFrames/Series with a monotonically increasing/decreasing index. * None (default): don't fill gaps * pad / ffill: propagate last valid observation forward to next valid * backfill / bfill: use next valid observation to fill gap * nearest: use nearest valid observations to fill gap copy : bool, default True Return a new object, even if the passed indexes are the same. limit : int, default None Maximum number of consecutive labels to fill for inexact matches. tolerance : optional Maximum distance between original and new labels for inexact matches. The values of the index at the matching locations most satisfy the equation ``abs(index[indexer] - target) <= tolerance``. Tolerance may be a scalar value, which applies the same tolerance to all values, or list-like, which applies variable tolerance per element. List-like includes list, tuple, array, Series, and must be the same size as the index and its dtype must exactly match the index's type. .. versionadded:: 0.21.0 (list-like tolerance) Returns ------- Series or DataFrame Same type as caller, but with changed indices on each axis. See Also -------- DataFrame.set_index : Set row labels. DataFrame.reset_index : Remove row labels or move them to new columns. DataFrame.reindex : Change to new indices or expand indices. Notes ----- Same as calling ``.reindex(index=other.index, columns=other.columns,...)``. Examples -------- >>> df1 = pd.DataFrame([[24.3, 75.7, 'high'], ... [31, 87.8, 'high'], ... [22, 71.6, 'medium'], ... [35, 95, 'medium']], ... columns=['temp_celsius', 'temp_fahrenheit', 'windspeed'], ... index=pd.date_range(start='2014-02-12', ... end='2014-02-15', freq='D')) >>> df1 temp_celsius temp_fahrenheit windspeed 2014-02-12 24.3 75.7 high 2014-02-13 31.0 87.8 high 2014-02-14 22.0 71.6 medium 2014-02-15 35.0 95.0 medium >>> df2 = pd.DataFrame([[28, 'low'], ... [30, 'low'], ... [35.1, 'medium']], ... columns=['temp_celsius', 'windspeed'], ... index=pd.DatetimeIndex(['2014-02-12', '2014-02-13', ... '2014-02-15'])) >>> df2 temp_celsius windspeed 2014-02-12 28.0 low 2014-02-13 30.0 low 2014-02-15 35.1 medium >>> df2.reindex_like(df1) temp_celsius temp_fahrenheit windspeed 2014-02-12 28.0 NaN low 2014-02-13 30.0 NaN low 2014-02-14 NaN NaN NaN 2014-02-15 35.1 NaN medium """ d = other._construct_axes_dict(axes=self._AXIS_ORDERS, method=method, copy=copy, limit=limit, tolerance=tolerance) return self.reindex(**d)
python
def reindex_like(self, other, method=None, copy=True, limit=None, tolerance=None): """ Return an object with matching indices as other object. Conform the object to the same index on all axes. Optional filling logic, placing NaN in locations having no value in the previous index. A new object is produced unless the new index is equivalent to the current one and copy=False. Parameters ---------- other : Object of the same data type Its row and column indices are used to define the new indices of this object. method : {None, 'backfill'/'bfill', 'pad'/'ffill', 'nearest'} Method to use for filling holes in reindexed DataFrame. Please note: this is only applicable to DataFrames/Series with a monotonically increasing/decreasing index. * None (default): don't fill gaps * pad / ffill: propagate last valid observation forward to next valid * backfill / bfill: use next valid observation to fill gap * nearest: use nearest valid observations to fill gap copy : bool, default True Return a new object, even if the passed indexes are the same. limit : int, default None Maximum number of consecutive labels to fill for inexact matches. tolerance : optional Maximum distance between original and new labels for inexact matches. The values of the index at the matching locations most satisfy the equation ``abs(index[indexer] - target) <= tolerance``. Tolerance may be a scalar value, which applies the same tolerance to all values, or list-like, which applies variable tolerance per element. List-like includes list, tuple, array, Series, and must be the same size as the index and its dtype must exactly match the index's type. .. versionadded:: 0.21.0 (list-like tolerance) Returns ------- Series or DataFrame Same type as caller, but with changed indices on each axis. See Also -------- DataFrame.set_index : Set row labels. DataFrame.reset_index : Remove row labels or move them to new columns. DataFrame.reindex : Change to new indices or expand indices. Notes ----- Same as calling ``.reindex(index=other.index, columns=other.columns,...)``. Examples -------- >>> df1 = pd.DataFrame([[24.3, 75.7, 'high'], ... [31, 87.8, 'high'], ... [22, 71.6, 'medium'], ... [35, 95, 'medium']], ... columns=['temp_celsius', 'temp_fahrenheit', 'windspeed'], ... index=pd.date_range(start='2014-02-12', ... end='2014-02-15', freq='D')) >>> df1 temp_celsius temp_fahrenheit windspeed 2014-02-12 24.3 75.7 high 2014-02-13 31.0 87.8 high 2014-02-14 22.0 71.6 medium 2014-02-15 35.0 95.0 medium >>> df2 = pd.DataFrame([[28, 'low'], ... [30, 'low'], ... [35.1, 'medium']], ... columns=['temp_celsius', 'windspeed'], ... index=pd.DatetimeIndex(['2014-02-12', '2014-02-13', ... '2014-02-15'])) >>> df2 temp_celsius windspeed 2014-02-12 28.0 low 2014-02-13 30.0 low 2014-02-15 35.1 medium >>> df2.reindex_like(df1) temp_celsius temp_fahrenheit windspeed 2014-02-12 28.0 NaN low 2014-02-13 30.0 NaN low 2014-02-14 NaN NaN NaN 2014-02-15 35.1 NaN medium """ d = other._construct_axes_dict(axes=self._AXIS_ORDERS, method=method, copy=copy, limit=limit, tolerance=tolerance) return self.reindex(**d)
[ "def", "reindex_like", "(", "self", ",", "other", ",", "method", "=", "None", ",", "copy", "=", "True", ",", "limit", "=", "None", ",", "tolerance", "=", "None", ")", ":", "d", "=", "other", ".", "_construct_axes_dict", "(", "axes", "=", "self", ".", "_AXIS_ORDERS", ",", "method", "=", "method", ",", "copy", "=", "copy", ",", "limit", "=", "limit", ",", "tolerance", "=", "tolerance", ")", "return", "self", ".", "reindex", "(", "*", "*", "d", ")" ]
Return an object with matching indices as other object. Conform the object to the same index on all axes. Optional filling logic, placing NaN in locations having no value in the previous index. A new object is produced unless the new index is equivalent to the current one and copy=False. Parameters ---------- other : Object of the same data type Its row and column indices are used to define the new indices of this object. method : {None, 'backfill'/'bfill', 'pad'/'ffill', 'nearest'} Method to use for filling holes in reindexed DataFrame. Please note: this is only applicable to DataFrames/Series with a monotonically increasing/decreasing index. * None (default): don't fill gaps * pad / ffill: propagate last valid observation forward to next valid * backfill / bfill: use next valid observation to fill gap * nearest: use nearest valid observations to fill gap copy : bool, default True Return a new object, even if the passed indexes are the same. limit : int, default None Maximum number of consecutive labels to fill for inexact matches. tolerance : optional Maximum distance between original and new labels for inexact matches. The values of the index at the matching locations most satisfy the equation ``abs(index[indexer] - target) <= tolerance``. Tolerance may be a scalar value, which applies the same tolerance to all values, or list-like, which applies variable tolerance per element. List-like includes list, tuple, array, Series, and must be the same size as the index and its dtype must exactly match the index's type. .. versionadded:: 0.21.0 (list-like tolerance) Returns ------- Series or DataFrame Same type as caller, but with changed indices on each axis. See Also -------- DataFrame.set_index : Set row labels. DataFrame.reset_index : Remove row labels or move them to new columns. DataFrame.reindex : Change to new indices or expand indices. Notes ----- Same as calling ``.reindex(index=other.index, columns=other.columns,...)``. Examples -------- >>> df1 = pd.DataFrame([[24.3, 75.7, 'high'], ... [31, 87.8, 'high'], ... [22, 71.6, 'medium'], ... [35, 95, 'medium']], ... columns=['temp_celsius', 'temp_fahrenheit', 'windspeed'], ... index=pd.date_range(start='2014-02-12', ... end='2014-02-15', freq='D')) >>> df1 temp_celsius temp_fahrenheit windspeed 2014-02-12 24.3 75.7 high 2014-02-13 31.0 87.8 high 2014-02-14 22.0 71.6 medium 2014-02-15 35.0 95.0 medium >>> df2 = pd.DataFrame([[28, 'low'], ... [30, 'low'], ... [35.1, 'medium']], ... columns=['temp_celsius', 'windspeed'], ... index=pd.DatetimeIndex(['2014-02-12', '2014-02-13', ... '2014-02-15'])) >>> df2 temp_celsius windspeed 2014-02-12 28.0 low 2014-02-13 30.0 low 2014-02-15 35.1 medium >>> df2.reindex_like(df1) temp_celsius temp_fahrenheit windspeed 2014-02-12 28.0 NaN low 2014-02-13 30.0 NaN low 2014-02-14 NaN NaN NaN 2014-02-15 35.1 NaN medium
[ "Return", "an", "object", "with", "matching", "indices", "as", "other", "object", "." ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/generic.py#L3687-L3787
20,194
pandas-dev/pandas
pandas/core/generic.py
NDFrame._drop_axis
def _drop_axis(self, labels, axis, level=None, errors='raise'): """ Drop labels from specified axis. Used in the ``drop`` method internally. Parameters ---------- labels : single label or list-like axis : int or axis name level : int or level name, default None For MultiIndex errors : {'ignore', 'raise'}, default 'raise' If 'ignore', suppress error and existing labels are dropped. """ axis = self._get_axis_number(axis) axis_name = self._get_axis_name(axis) axis = self._get_axis(axis) if axis.is_unique: if level is not None: if not isinstance(axis, MultiIndex): raise AssertionError('axis must be a MultiIndex') new_axis = axis.drop(labels, level=level, errors=errors) else: new_axis = axis.drop(labels, errors=errors) result = self.reindex(**{axis_name: new_axis}) # Case for non-unique axis else: labels = ensure_object(com.index_labels_to_array(labels)) if level is not None: if not isinstance(axis, MultiIndex): raise AssertionError('axis must be a MultiIndex') indexer = ~axis.get_level_values(level).isin(labels) # GH 18561 MultiIndex.drop should raise if label is absent if errors == 'raise' and indexer.all(): raise KeyError('{} not found in axis'.format(labels)) else: indexer = ~axis.isin(labels) # Check if label doesn't exist along axis labels_missing = (axis.get_indexer_for(labels) == -1).any() if errors == 'raise' and labels_missing: raise KeyError('{} not found in axis'.format(labels)) slicer = [slice(None)] * self.ndim slicer[self._get_axis_number(axis_name)] = indexer result = self.loc[tuple(slicer)] return result
python
def _drop_axis(self, labels, axis, level=None, errors='raise'): """ Drop labels from specified axis. Used in the ``drop`` method internally. Parameters ---------- labels : single label or list-like axis : int or axis name level : int or level name, default None For MultiIndex errors : {'ignore', 'raise'}, default 'raise' If 'ignore', suppress error and existing labels are dropped. """ axis = self._get_axis_number(axis) axis_name = self._get_axis_name(axis) axis = self._get_axis(axis) if axis.is_unique: if level is not None: if not isinstance(axis, MultiIndex): raise AssertionError('axis must be a MultiIndex') new_axis = axis.drop(labels, level=level, errors=errors) else: new_axis = axis.drop(labels, errors=errors) result = self.reindex(**{axis_name: new_axis}) # Case for non-unique axis else: labels = ensure_object(com.index_labels_to_array(labels)) if level is not None: if not isinstance(axis, MultiIndex): raise AssertionError('axis must be a MultiIndex') indexer = ~axis.get_level_values(level).isin(labels) # GH 18561 MultiIndex.drop should raise if label is absent if errors == 'raise' and indexer.all(): raise KeyError('{} not found in axis'.format(labels)) else: indexer = ~axis.isin(labels) # Check if label doesn't exist along axis labels_missing = (axis.get_indexer_for(labels) == -1).any() if errors == 'raise' and labels_missing: raise KeyError('{} not found in axis'.format(labels)) slicer = [slice(None)] * self.ndim slicer[self._get_axis_number(axis_name)] = indexer result = self.loc[tuple(slicer)] return result
[ "def", "_drop_axis", "(", "self", ",", "labels", ",", "axis", ",", "level", "=", "None", ",", "errors", "=", "'raise'", ")", ":", "axis", "=", "self", ".", "_get_axis_number", "(", "axis", ")", "axis_name", "=", "self", ".", "_get_axis_name", "(", "axis", ")", "axis", "=", "self", ".", "_get_axis", "(", "axis", ")", "if", "axis", ".", "is_unique", ":", "if", "level", "is", "not", "None", ":", "if", "not", "isinstance", "(", "axis", ",", "MultiIndex", ")", ":", "raise", "AssertionError", "(", "'axis must be a MultiIndex'", ")", "new_axis", "=", "axis", ".", "drop", "(", "labels", ",", "level", "=", "level", ",", "errors", "=", "errors", ")", "else", ":", "new_axis", "=", "axis", ".", "drop", "(", "labels", ",", "errors", "=", "errors", ")", "result", "=", "self", ".", "reindex", "(", "*", "*", "{", "axis_name", ":", "new_axis", "}", ")", "# Case for non-unique axis", "else", ":", "labels", "=", "ensure_object", "(", "com", ".", "index_labels_to_array", "(", "labels", ")", ")", "if", "level", "is", "not", "None", ":", "if", "not", "isinstance", "(", "axis", ",", "MultiIndex", ")", ":", "raise", "AssertionError", "(", "'axis must be a MultiIndex'", ")", "indexer", "=", "~", "axis", ".", "get_level_values", "(", "level", ")", ".", "isin", "(", "labels", ")", "# GH 18561 MultiIndex.drop should raise if label is absent", "if", "errors", "==", "'raise'", "and", "indexer", ".", "all", "(", ")", ":", "raise", "KeyError", "(", "'{} not found in axis'", ".", "format", "(", "labels", ")", ")", "else", ":", "indexer", "=", "~", "axis", ".", "isin", "(", "labels", ")", "# Check if label doesn't exist along axis", "labels_missing", "=", "(", "axis", ".", "get_indexer_for", "(", "labels", ")", "==", "-", "1", ")", ".", "any", "(", ")", "if", "errors", "==", "'raise'", "and", "labels_missing", ":", "raise", "KeyError", "(", "'{} not found in axis'", ".", "format", "(", "labels", ")", ")", "slicer", "=", "[", "slice", "(", "None", ")", "]", "*", "self", ".", "ndim", "slicer", "[", "self", ".", "_get_axis_number", "(", "axis_name", ")", "]", "=", "indexer", "result", "=", "self", ".", "loc", "[", "tuple", "(", "slicer", ")", "]", "return", "result" ]
Drop labels from specified axis. Used in the ``drop`` method internally. Parameters ---------- labels : single label or list-like axis : int or axis name level : int or level name, default None For MultiIndex errors : {'ignore', 'raise'}, default 'raise' If 'ignore', suppress error and existing labels are dropped.
[ "Drop", "labels", "from", "specified", "axis", ".", "Used", "in", "the", "drop", "method", "internally", "." ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/generic.py#L3817-L3868
20,195
pandas-dev/pandas
pandas/core/generic.py
NDFrame._update_inplace
def _update_inplace(self, result, verify_is_copy=True): """ Replace self internals with result. Parameters ---------- verify_is_copy : boolean, default True provide is_copy checks """ # NOTE: This does *not* call __finalize__ and that's an explicit # decision that we may revisit in the future. self._reset_cache() self._clear_item_cache() self._data = getattr(result, '_data', result) self._maybe_update_cacher(verify_is_copy=verify_is_copy)
python
def _update_inplace(self, result, verify_is_copy=True): """ Replace self internals with result. Parameters ---------- verify_is_copy : boolean, default True provide is_copy checks """ # NOTE: This does *not* call __finalize__ and that's an explicit # decision that we may revisit in the future. self._reset_cache() self._clear_item_cache() self._data = getattr(result, '_data', result) self._maybe_update_cacher(verify_is_copy=verify_is_copy)
[ "def", "_update_inplace", "(", "self", ",", "result", ",", "verify_is_copy", "=", "True", ")", ":", "# NOTE: This does *not* call __finalize__ and that's an explicit", "# decision that we may revisit in the future.", "self", ".", "_reset_cache", "(", ")", "self", ".", "_clear_item_cache", "(", ")", "self", ".", "_data", "=", "getattr", "(", "result", ",", "'_data'", ",", "result", ")", "self", ".", "_maybe_update_cacher", "(", "verify_is_copy", "=", "verify_is_copy", ")" ]
Replace self internals with result. Parameters ---------- verify_is_copy : boolean, default True provide is_copy checks
[ "Replace", "self", "internals", "with", "result", "." ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/generic.py#L3870-L3886
20,196
pandas-dev/pandas
pandas/core/generic.py
NDFrame.add_prefix
def add_prefix(self, prefix): """ Prefix labels with string `prefix`. For Series, the row labels are prefixed. For DataFrame, the column labels are prefixed. Parameters ---------- prefix : str The string to add before each label. Returns ------- Series or DataFrame New Series or DataFrame with updated labels. See Also -------- Series.add_suffix: Suffix row labels with string `suffix`. DataFrame.add_suffix: Suffix column labels with string `suffix`. Examples -------- >>> s = pd.Series([1, 2, 3, 4]) >>> s 0 1 1 2 2 3 3 4 dtype: int64 >>> s.add_prefix('item_') item_0 1 item_1 2 item_2 3 item_3 4 dtype: int64 >>> df = pd.DataFrame({'A': [1, 2, 3, 4], 'B': [3, 4, 5, 6]}) >>> df A B 0 1 3 1 2 4 2 3 5 3 4 6 >>> df.add_prefix('col_') col_A col_B 0 1 3 1 2 4 2 3 5 3 4 6 """ f = functools.partial('{prefix}{}'.format, prefix=prefix) mapper = {self._info_axis_name: f} return self.rename(**mapper)
python
def add_prefix(self, prefix): """ Prefix labels with string `prefix`. For Series, the row labels are prefixed. For DataFrame, the column labels are prefixed. Parameters ---------- prefix : str The string to add before each label. Returns ------- Series or DataFrame New Series or DataFrame with updated labels. See Also -------- Series.add_suffix: Suffix row labels with string `suffix`. DataFrame.add_suffix: Suffix column labels with string `suffix`. Examples -------- >>> s = pd.Series([1, 2, 3, 4]) >>> s 0 1 1 2 2 3 3 4 dtype: int64 >>> s.add_prefix('item_') item_0 1 item_1 2 item_2 3 item_3 4 dtype: int64 >>> df = pd.DataFrame({'A': [1, 2, 3, 4], 'B': [3, 4, 5, 6]}) >>> df A B 0 1 3 1 2 4 2 3 5 3 4 6 >>> df.add_prefix('col_') col_A col_B 0 1 3 1 2 4 2 3 5 3 4 6 """ f = functools.partial('{prefix}{}'.format, prefix=prefix) mapper = {self._info_axis_name: f} return self.rename(**mapper)
[ "def", "add_prefix", "(", "self", ",", "prefix", ")", ":", "f", "=", "functools", ".", "partial", "(", "'{prefix}{}'", ".", "format", ",", "prefix", "=", "prefix", ")", "mapper", "=", "{", "self", ".", "_info_axis_name", ":", "f", "}", "return", "self", ".", "rename", "(", "*", "*", "mapper", ")" ]
Prefix labels with string `prefix`. For Series, the row labels are prefixed. For DataFrame, the column labels are prefixed. Parameters ---------- prefix : str The string to add before each label. Returns ------- Series or DataFrame New Series or DataFrame with updated labels. See Also -------- Series.add_suffix: Suffix row labels with string `suffix`. DataFrame.add_suffix: Suffix column labels with string `suffix`. Examples -------- >>> s = pd.Series([1, 2, 3, 4]) >>> s 0 1 1 2 2 3 3 4 dtype: int64 >>> s.add_prefix('item_') item_0 1 item_1 2 item_2 3 item_3 4 dtype: int64 >>> df = pd.DataFrame({'A': [1, 2, 3, 4], 'B': [3, 4, 5, 6]}) >>> df A B 0 1 3 1 2 4 2 3 5 3 4 6 >>> df.add_prefix('col_') col_A col_B 0 1 3 1 2 4 2 3 5 3 4 6
[ "Prefix", "labels", "with", "string", "prefix", "." ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/generic.py#L3888-L3945
20,197
pandas-dev/pandas
pandas/core/generic.py
NDFrame.add_suffix
def add_suffix(self, suffix): """ Suffix labels with string `suffix`. For Series, the row labels are suffixed. For DataFrame, the column labels are suffixed. Parameters ---------- suffix : str The string to add after each label. Returns ------- Series or DataFrame New Series or DataFrame with updated labels. See Also -------- Series.add_prefix: Prefix row labels with string `prefix`. DataFrame.add_prefix: Prefix column labels with string `prefix`. Examples -------- >>> s = pd.Series([1, 2, 3, 4]) >>> s 0 1 1 2 2 3 3 4 dtype: int64 >>> s.add_suffix('_item') 0_item 1 1_item 2 2_item 3 3_item 4 dtype: int64 >>> df = pd.DataFrame({'A': [1, 2, 3, 4], 'B': [3, 4, 5, 6]}) >>> df A B 0 1 3 1 2 4 2 3 5 3 4 6 >>> df.add_suffix('_col') A_col B_col 0 1 3 1 2 4 2 3 5 3 4 6 """ f = functools.partial('{}{suffix}'.format, suffix=suffix) mapper = {self._info_axis_name: f} return self.rename(**mapper)
python
def add_suffix(self, suffix): """ Suffix labels with string `suffix`. For Series, the row labels are suffixed. For DataFrame, the column labels are suffixed. Parameters ---------- suffix : str The string to add after each label. Returns ------- Series or DataFrame New Series or DataFrame with updated labels. See Also -------- Series.add_prefix: Prefix row labels with string `prefix`. DataFrame.add_prefix: Prefix column labels with string `prefix`. Examples -------- >>> s = pd.Series([1, 2, 3, 4]) >>> s 0 1 1 2 2 3 3 4 dtype: int64 >>> s.add_suffix('_item') 0_item 1 1_item 2 2_item 3 3_item 4 dtype: int64 >>> df = pd.DataFrame({'A': [1, 2, 3, 4], 'B': [3, 4, 5, 6]}) >>> df A B 0 1 3 1 2 4 2 3 5 3 4 6 >>> df.add_suffix('_col') A_col B_col 0 1 3 1 2 4 2 3 5 3 4 6 """ f = functools.partial('{}{suffix}'.format, suffix=suffix) mapper = {self._info_axis_name: f} return self.rename(**mapper)
[ "def", "add_suffix", "(", "self", ",", "suffix", ")", ":", "f", "=", "functools", ".", "partial", "(", "'{}{suffix}'", ".", "format", ",", "suffix", "=", "suffix", ")", "mapper", "=", "{", "self", ".", "_info_axis_name", ":", "f", "}", "return", "self", ".", "rename", "(", "*", "*", "mapper", ")" ]
Suffix labels with string `suffix`. For Series, the row labels are suffixed. For DataFrame, the column labels are suffixed. Parameters ---------- suffix : str The string to add after each label. Returns ------- Series or DataFrame New Series or DataFrame with updated labels. See Also -------- Series.add_prefix: Prefix row labels with string `prefix`. DataFrame.add_prefix: Prefix column labels with string `prefix`. Examples -------- >>> s = pd.Series([1, 2, 3, 4]) >>> s 0 1 1 2 2 3 3 4 dtype: int64 >>> s.add_suffix('_item') 0_item 1 1_item 2 2_item 3 3_item 4 dtype: int64 >>> df = pd.DataFrame({'A': [1, 2, 3, 4], 'B': [3, 4, 5, 6]}) >>> df A B 0 1 3 1 2 4 2 3 5 3 4 6 >>> df.add_suffix('_col') A_col B_col 0 1 3 1 2 4 2 3 5 3 4 6
[ "Suffix", "labels", "with", "string", "suffix", "." ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/generic.py#L3947-L4004
20,198
pandas-dev/pandas
pandas/core/generic.py
NDFrame.sort_values
def sort_values(self, by=None, axis=0, ascending=True, inplace=False, kind='quicksort', na_position='last'): """ Sort by the values along either axis. Parameters ----------%(optional_by)s axis : %(axes_single_arg)s, default 0 Axis to be sorted. ascending : bool or list of bool, default True Sort ascending vs. descending. Specify list for multiple sort orders. If this is a list of bools, must match the length of the by. inplace : bool, default False If True, perform operation in-place. kind : {'quicksort', 'mergesort', 'heapsort'}, default 'quicksort' Choice of sorting algorithm. See also ndarray.np.sort for more information. `mergesort` is the only stable algorithm. For DataFrames, this option is only applied when sorting on a single column or label. na_position : {'first', 'last'}, default 'last' Puts NaNs at the beginning if `first`; `last` puts NaNs at the end. Returns ------- sorted_obj : DataFrame or None DataFrame with sorted values if inplace=False, None otherwise. Examples -------- >>> df = pd.DataFrame({ ... 'col1': ['A', 'A', 'B', np.nan, 'D', 'C'], ... 'col2': [2, 1, 9, 8, 7, 4], ... 'col3': [0, 1, 9, 4, 2, 3], ... }) >>> df col1 col2 col3 0 A 2 0 1 A 1 1 2 B 9 9 3 NaN 8 4 4 D 7 2 5 C 4 3 Sort by col1 >>> df.sort_values(by=['col1']) col1 col2 col3 0 A 2 0 1 A 1 1 2 B 9 9 5 C 4 3 4 D 7 2 3 NaN 8 4 Sort by multiple columns >>> df.sort_values(by=['col1', 'col2']) col1 col2 col3 1 A 1 1 0 A 2 0 2 B 9 9 5 C 4 3 4 D 7 2 3 NaN 8 4 Sort Descending >>> df.sort_values(by='col1', ascending=False) col1 col2 col3 4 D 7 2 5 C 4 3 2 B 9 9 0 A 2 0 1 A 1 1 3 NaN 8 4 Putting NAs first >>> df.sort_values(by='col1', ascending=False, na_position='first') col1 col2 col3 3 NaN 8 4 4 D 7 2 5 C 4 3 2 B 9 9 0 A 2 0 1 A 1 1 """ raise NotImplementedError("sort_values has not been implemented " "on Panel or Panel4D objects.")
python
def sort_values(self, by=None, axis=0, ascending=True, inplace=False, kind='quicksort', na_position='last'): """ Sort by the values along either axis. Parameters ----------%(optional_by)s axis : %(axes_single_arg)s, default 0 Axis to be sorted. ascending : bool or list of bool, default True Sort ascending vs. descending. Specify list for multiple sort orders. If this is a list of bools, must match the length of the by. inplace : bool, default False If True, perform operation in-place. kind : {'quicksort', 'mergesort', 'heapsort'}, default 'quicksort' Choice of sorting algorithm. See also ndarray.np.sort for more information. `mergesort` is the only stable algorithm. For DataFrames, this option is only applied when sorting on a single column or label. na_position : {'first', 'last'}, default 'last' Puts NaNs at the beginning if `first`; `last` puts NaNs at the end. Returns ------- sorted_obj : DataFrame or None DataFrame with sorted values if inplace=False, None otherwise. Examples -------- >>> df = pd.DataFrame({ ... 'col1': ['A', 'A', 'B', np.nan, 'D', 'C'], ... 'col2': [2, 1, 9, 8, 7, 4], ... 'col3': [0, 1, 9, 4, 2, 3], ... }) >>> df col1 col2 col3 0 A 2 0 1 A 1 1 2 B 9 9 3 NaN 8 4 4 D 7 2 5 C 4 3 Sort by col1 >>> df.sort_values(by=['col1']) col1 col2 col3 0 A 2 0 1 A 1 1 2 B 9 9 5 C 4 3 4 D 7 2 3 NaN 8 4 Sort by multiple columns >>> df.sort_values(by=['col1', 'col2']) col1 col2 col3 1 A 1 1 0 A 2 0 2 B 9 9 5 C 4 3 4 D 7 2 3 NaN 8 4 Sort Descending >>> df.sort_values(by='col1', ascending=False) col1 col2 col3 4 D 7 2 5 C 4 3 2 B 9 9 0 A 2 0 1 A 1 1 3 NaN 8 4 Putting NAs first >>> df.sort_values(by='col1', ascending=False, na_position='first') col1 col2 col3 3 NaN 8 4 4 D 7 2 5 C 4 3 2 B 9 9 0 A 2 0 1 A 1 1 """ raise NotImplementedError("sort_values has not been implemented " "on Panel or Panel4D objects.")
[ "def", "sort_values", "(", "self", ",", "by", "=", "None", ",", "axis", "=", "0", ",", "ascending", "=", "True", ",", "inplace", "=", "False", ",", "kind", "=", "'quicksort'", ",", "na_position", "=", "'last'", ")", ":", "raise", "NotImplementedError", "(", "\"sort_values has not been implemented \"", "\"on Panel or Panel4D objects.\"", ")" ]
Sort by the values along either axis. Parameters ----------%(optional_by)s axis : %(axes_single_arg)s, default 0 Axis to be sorted. ascending : bool or list of bool, default True Sort ascending vs. descending. Specify list for multiple sort orders. If this is a list of bools, must match the length of the by. inplace : bool, default False If True, perform operation in-place. kind : {'quicksort', 'mergesort', 'heapsort'}, default 'quicksort' Choice of sorting algorithm. See also ndarray.np.sort for more information. `mergesort` is the only stable algorithm. For DataFrames, this option is only applied when sorting on a single column or label. na_position : {'first', 'last'}, default 'last' Puts NaNs at the beginning if `first`; `last` puts NaNs at the end. Returns ------- sorted_obj : DataFrame or None DataFrame with sorted values if inplace=False, None otherwise. Examples -------- >>> df = pd.DataFrame({ ... 'col1': ['A', 'A', 'B', np.nan, 'D', 'C'], ... 'col2': [2, 1, 9, 8, 7, 4], ... 'col3': [0, 1, 9, 4, 2, 3], ... }) >>> df col1 col2 col3 0 A 2 0 1 A 1 1 2 B 9 9 3 NaN 8 4 4 D 7 2 5 C 4 3 Sort by col1 >>> df.sort_values(by=['col1']) col1 col2 col3 0 A 2 0 1 A 1 1 2 B 9 9 5 C 4 3 4 D 7 2 3 NaN 8 4 Sort by multiple columns >>> df.sort_values(by=['col1', 'col2']) col1 col2 col3 1 A 1 1 0 A 2 0 2 B 9 9 5 C 4 3 4 D 7 2 3 NaN 8 4 Sort Descending >>> df.sort_values(by='col1', ascending=False) col1 col2 col3 4 D 7 2 5 C 4 3 2 B 9 9 0 A 2 0 1 A 1 1 3 NaN 8 4 Putting NAs first >>> df.sort_values(by='col1', ascending=False, na_position='first') col1 col2 col3 3 NaN 8 4 4 D 7 2 5 C 4 3 2 B 9 9 0 A 2 0 1 A 1 1
[ "Sort", "by", "the", "values", "along", "either", "axis", "." ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/generic.py#L4006-L4096
20,199
pandas-dev/pandas
pandas/core/generic.py
NDFrame._reindex_axes
def _reindex_axes(self, axes, level, limit, tolerance, method, fill_value, copy): """Perform the reindex for all the axes.""" obj = self for a in self._AXIS_ORDERS: labels = axes[a] if labels is None: continue ax = self._get_axis(a) new_index, indexer = ax.reindex(labels, level=level, limit=limit, tolerance=tolerance, method=method) axis = self._get_axis_number(a) obj = obj._reindex_with_indexers({axis: [new_index, indexer]}, fill_value=fill_value, copy=copy, allow_dups=False) return obj
python
def _reindex_axes(self, axes, level, limit, tolerance, method, fill_value, copy): """Perform the reindex for all the axes.""" obj = self for a in self._AXIS_ORDERS: labels = axes[a] if labels is None: continue ax = self._get_axis(a) new_index, indexer = ax.reindex(labels, level=level, limit=limit, tolerance=tolerance, method=method) axis = self._get_axis_number(a) obj = obj._reindex_with_indexers({axis: [new_index, indexer]}, fill_value=fill_value, copy=copy, allow_dups=False) return obj
[ "def", "_reindex_axes", "(", "self", ",", "axes", ",", "level", ",", "limit", ",", "tolerance", ",", "method", ",", "fill_value", ",", "copy", ")", ":", "obj", "=", "self", "for", "a", "in", "self", ".", "_AXIS_ORDERS", ":", "labels", "=", "axes", "[", "a", "]", "if", "labels", "is", "None", ":", "continue", "ax", "=", "self", ".", "_get_axis", "(", "a", ")", "new_index", ",", "indexer", "=", "ax", ".", "reindex", "(", "labels", ",", "level", "=", "level", ",", "limit", "=", "limit", ",", "tolerance", "=", "tolerance", ",", "method", "=", "method", ")", "axis", "=", "self", ".", "_get_axis_number", "(", "a", ")", "obj", "=", "obj", ".", "_reindex_with_indexers", "(", "{", "axis", ":", "[", "new_index", ",", "indexer", "]", "}", ",", "fill_value", "=", "fill_value", ",", "copy", "=", "copy", ",", "allow_dups", "=", "False", ")", "return", "obj" ]
Perform the reindex for all the axes.
[ "Perform", "the", "reindex", "for", "all", "the", "axes", "." ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/generic.py#L4393-L4411