id
int32
0
252k
repo
stringlengths
7
55
path
stringlengths
4
127
func_name
stringlengths
1
88
original_string
stringlengths
75
19.8k
language
stringclasses
1 value
code
stringlengths
75
19.8k
code_tokens
list
docstring
stringlengths
3
17.3k
docstring_tokens
list
sha
stringlengths
40
40
url
stringlengths
87
242
19,700
pandas-dev/pandas
pandas/core/frame.py
DataFrame.round
def round(self, decimals=0, *args, **kwargs): """ Round a DataFrame to a variable number of decimal places. Parameters ---------- decimals : int, dict, Series Number of decimal places to round each column to. If an int is given, round each column to the same number of places. Otherwise dict and Series round to variable numbers of places. Column names should be in the keys if `decimals` is a dict-like, or in the index if `decimals` is a Series. Any columns not included in `decimals` will be left as is. Elements of `decimals` which are not columns of the input will be ignored. *args Additional keywords have no effect but might be accepted for compatibility with numpy. **kwargs Additional keywords have no effect but might be accepted for compatibility with numpy. Returns ------- DataFrame A DataFrame with the affected columns rounded to the specified number of decimal places. See Also -------- numpy.around : Round a numpy array to the given number of decimals. Series.round : Round a Series to the given number of decimals. Examples -------- >>> df = pd.DataFrame([(.21, .32), (.01, .67), (.66, .03), (.21, .18)], ... columns=['dogs', 'cats']) >>> df dogs cats 0 0.21 0.32 1 0.01 0.67 2 0.66 0.03 3 0.21 0.18 By providing an integer each column is rounded to the same number of decimal places >>> df.round(1) dogs cats 0 0.2 0.3 1 0.0 0.7 2 0.7 0.0 3 0.2 0.2 With a dict, the number of places for specific columns can be specfified with the column names as key and the number of decimal places as value >>> df.round({'dogs': 1, 'cats': 0}) dogs cats 0 0.2 0.0 1 0.0 1.0 2 0.7 0.0 3 0.2 0.0 Using a Series, the number of places for specific columns can be specfified with the column names as index and the number of decimal places as value >>> decimals = pd.Series([0, 1], index=['cats', 'dogs']) >>> df.round(decimals) dogs cats 0 0.2 0.0 1 0.0 1.0 2 0.7 0.0 3 0.2 0.0 """ from pandas.core.reshape.concat import concat def _dict_round(df, decimals): for col, vals in df.iteritems(): try: yield _series_round(vals, decimals[col]) except KeyError: yield vals def _series_round(s, decimals): if is_integer_dtype(s) or is_float_dtype(s): return s.round(decimals) return s nv.validate_round(args, kwargs) if isinstance(decimals, (dict, Series)): if isinstance(decimals, Series): if not decimals.index.is_unique: raise ValueError("Index of decimals must be unique") new_cols = [col for col in _dict_round(self, decimals)] elif is_integer(decimals): # Dispatch to Series.round new_cols = [_series_round(v, decimals) for _, v in self.iteritems()] else: raise TypeError("decimals must be an integer, a dict-like or a " "Series") if len(new_cols) > 0: return self._constructor(concat(new_cols, axis=1), index=self.index, columns=self.columns) else: return self
python
def round(self, decimals=0, *args, **kwargs): """ Round a DataFrame to a variable number of decimal places. Parameters ---------- decimals : int, dict, Series Number of decimal places to round each column to. If an int is given, round each column to the same number of places. Otherwise dict and Series round to variable numbers of places. Column names should be in the keys if `decimals` is a dict-like, or in the index if `decimals` is a Series. Any columns not included in `decimals` will be left as is. Elements of `decimals` which are not columns of the input will be ignored. *args Additional keywords have no effect but might be accepted for compatibility with numpy. **kwargs Additional keywords have no effect but might be accepted for compatibility with numpy. Returns ------- DataFrame A DataFrame with the affected columns rounded to the specified number of decimal places. See Also -------- numpy.around : Round a numpy array to the given number of decimals. Series.round : Round a Series to the given number of decimals. Examples -------- >>> df = pd.DataFrame([(.21, .32), (.01, .67), (.66, .03), (.21, .18)], ... columns=['dogs', 'cats']) >>> df dogs cats 0 0.21 0.32 1 0.01 0.67 2 0.66 0.03 3 0.21 0.18 By providing an integer each column is rounded to the same number of decimal places >>> df.round(1) dogs cats 0 0.2 0.3 1 0.0 0.7 2 0.7 0.0 3 0.2 0.2 With a dict, the number of places for specific columns can be specfified with the column names as key and the number of decimal places as value >>> df.round({'dogs': 1, 'cats': 0}) dogs cats 0 0.2 0.0 1 0.0 1.0 2 0.7 0.0 3 0.2 0.0 Using a Series, the number of places for specific columns can be specfified with the column names as index and the number of decimal places as value >>> decimals = pd.Series([0, 1], index=['cats', 'dogs']) >>> df.round(decimals) dogs cats 0 0.2 0.0 1 0.0 1.0 2 0.7 0.0 3 0.2 0.0 """ from pandas.core.reshape.concat import concat def _dict_round(df, decimals): for col, vals in df.iteritems(): try: yield _series_round(vals, decimals[col]) except KeyError: yield vals def _series_round(s, decimals): if is_integer_dtype(s) or is_float_dtype(s): return s.round(decimals) return s nv.validate_round(args, kwargs) if isinstance(decimals, (dict, Series)): if isinstance(decimals, Series): if not decimals.index.is_unique: raise ValueError("Index of decimals must be unique") new_cols = [col for col in _dict_round(self, decimals)] elif is_integer(decimals): # Dispatch to Series.round new_cols = [_series_round(v, decimals) for _, v in self.iteritems()] else: raise TypeError("decimals must be an integer, a dict-like or a " "Series") if len(new_cols) > 0: return self._constructor(concat(new_cols, axis=1), index=self.index, columns=self.columns) else: return self
[ "def", "round", "(", "self", ",", "decimals", "=", "0", ",", "*", "args", ",", "*", "*", "kwargs", ")", ":", "from", "pandas", ".", "core", ".", "reshape", ".", "concat", "import", "concat", "def", "_dict_round", "(", "df", ",", "decimals", ")", ":", "for", "col", ",", "vals", "in", "df", ".", "iteritems", "(", ")", ":", "try", ":", "yield", "_series_round", "(", "vals", ",", "decimals", "[", "col", "]", ")", "except", "KeyError", ":", "yield", "vals", "def", "_series_round", "(", "s", ",", "decimals", ")", ":", "if", "is_integer_dtype", "(", "s", ")", "or", "is_float_dtype", "(", "s", ")", ":", "return", "s", ".", "round", "(", "decimals", ")", "return", "s", "nv", ".", "validate_round", "(", "args", ",", "kwargs", ")", "if", "isinstance", "(", "decimals", ",", "(", "dict", ",", "Series", ")", ")", ":", "if", "isinstance", "(", "decimals", ",", "Series", ")", ":", "if", "not", "decimals", ".", "index", ".", "is_unique", ":", "raise", "ValueError", "(", "\"Index of decimals must be unique\"", ")", "new_cols", "=", "[", "col", "for", "col", "in", "_dict_round", "(", "self", ",", "decimals", ")", "]", "elif", "is_integer", "(", "decimals", ")", ":", "# Dispatch to Series.round", "new_cols", "=", "[", "_series_round", "(", "v", ",", "decimals", ")", "for", "_", ",", "v", "in", "self", ".", "iteritems", "(", ")", "]", "else", ":", "raise", "TypeError", "(", "\"decimals must be an integer, a dict-like or a \"", "\"Series\"", ")", "if", "len", "(", "new_cols", ")", ">", "0", ":", "return", "self", ".", "_constructor", "(", "concat", "(", "new_cols", ",", "axis", "=", "1", ")", ",", "index", "=", "self", ".", "index", ",", "columns", "=", "self", ".", "columns", ")", "else", ":", "return", "self" ]
Round a DataFrame to a variable number of decimal places. Parameters ---------- decimals : int, dict, Series Number of decimal places to round each column to. If an int is given, round each column to the same number of places. Otherwise dict and Series round to variable numbers of places. Column names should be in the keys if `decimals` is a dict-like, or in the index if `decimals` is a Series. Any columns not included in `decimals` will be left as is. Elements of `decimals` which are not columns of the input will be ignored. *args Additional keywords have no effect but might be accepted for compatibility with numpy. **kwargs Additional keywords have no effect but might be accepted for compatibility with numpy. Returns ------- DataFrame A DataFrame with the affected columns rounded to the specified number of decimal places. See Also -------- numpy.around : Round a numpy array to the given number of decimals. Series.round : Round a Series to the given number of decimals. Examples -------- >>> df = pd.DataFrame([(.21, .32), (.01, .67), (.66, .03), (.21, .18)], ... columns=['dogs', 'cats']) >>> df dogs cats 0 0.21 0.32 1 0.01 0.67 2 0.66 0.03 3 0.21 0.18 By providing an integer each column is rounded to the same number of decimal places >>> df.round(1) dogs cats 0 0.2 0.3 1 0.0 0.7 2 0.7 0.0 3 0.2 0.2 With a dict, the number of places for specific columns can be specfified with the column names as key and the number of decimal places as value >>> df.round({'dogs': 1, 'cats': 0}) dogs cats 0 0.2 0.0 1 0.0 1.0 2 0.7 0.0 3 0.2 0.0 Using a Series, the number of places for specific columns can be specfified with the column names as index and the number of decimal places as value >>> decimals = pd.Series([0, 1], index=['cats', 'dogs']) >>> df.round(decimals) dogs cats 0 0.2 0.0 1 0.0 1.0 2 0.7 0.0 3 0.2 0.0
[ "Round", "a", "DataFrame", "to", "a", "variable", "number", "of", "decimal", "places", "." ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/frame.py#L6917-L7028
19,701
pandas-dev/pandas
pandas/core/frame.py
DataFrame.corrwith
def corrwith(self, other, axis=0, drop=False, method='pearson'): """ Compute pairwise correlation between rows or columns of DataFrame with rows or columns of Series or DataFrame. DataFrames are first aligned along both axes before computing the correlations. Parameters ---------- other : DataFrame, Series Object with which to compute correlations. axis : {0 or 'index', 1 or 'columns'}, default 0 0 or 'index' to compute column-wise, 1 or 'columns' for row-wise. drop : bool, default False Drop missing indices from result. method : {'pearson', 'kendall', 'spearman'} or callable * pearson : standard correlation coefficient * kendall : Kendall Tau correlation coefficient * spearman : Spearman rank correlation * callable: callable with input two 1d ndarrays and returning a float .. versionadded:: 0.24.0 Returns ------- Series Pairwise correlations. See Also ------- DataFrame.corr """ axis = self._get_axis_number(axis) this = self._get_numeric_data() if isinstance(other, Series): return this.apply(lambda x: other.corr(x, method=method), axis=axis) other = other._get_numeric_data() left, right = this.align(other, join='inner', copy=False) if axis == 1: left = left.T right = right.T if method == 'pearson': # mask missing values left = left + right * 0 right = right + left * 0 # demeaned data ldem = left - left.mean() rdem = right - right.mean() num = (ldem * rdem).sum() dom = (left.count() - 1) * left.std() * right.std() correl = num / dom elif method in ['kendall', 'spearman'] or callable(method): def c(x): return nanops.nancorr(x[0], x[1], method=method) correl = Series(map(c, zip(left.values.T, right.values.T)), index=left.columns) else: raise ValueError("Invalid method {method} was passed, " "valid methods are: 'pearson', 'kendall', " "'spearman', or callable". format(method=method)) if not drop: # Find non-matching labels along the given axis # and append missing correlations (GH 22375) raxis = 1 if axis == 0 else 0 result_index = (this._get_axis(raxis). union(other._get_axis(raxis))) idx_diff = result_index.difference(correl.index) if len(idx_diff) > 0: correl = correl.append(Series([np.nan] * len(idx_diff), index=idx_diff)) return correl
python
def corrwith(self, other, axis=0, drop=False, method='pearson'): """ Compute pairwise correlation between rows or columns of DataFrame with rows or columns of Series or DataFrame. DataFrames are first aligned along both axes before computing the correlations. Parameters ---------- other : DataFrame, Series Object with which to compute correlations. axis : {0 or 'index', 1 or 'columns'}, default 0 0 or 'index' to compute column-wise, 1 or 'columns' for row-wise. drop : bool, default False Drop missing indices from result. method : {'pearson', 'kendall', 'spearman'} or callable * pearson : standard correlation coefficient * kendall : Kendall Tau correlation coefficient * spearman : Spearman rank correlation * callable: callable with input two 1d ndarrays and returning a float .. versionadded:: 0.24.0 Returns ------- Series Pairwise correlations. See Also ------- DataFrame.corr """ axis = self._get_axis_number(axis) this = self._get_numeric_data() if isinstance(other, Series): return this.apply(lambda x: other.corr(x, method=method), axis=axis) other = other._get_numeric_data() left, right = this.align(other, join='inner', copy=False) if axis == 1: left = left.T right = right.T if method == 'pearson': # mask missing values left = left + right * 0 right = right + left * 0 # demeaned data ldem = left - left.mean() rdem = right - right.mean() num = (ldem * rdem).sum() dom = (left.count() - 1) * left.std() * right.std() correl = num / dom elif method in ['kendall', 'spearman'] or callable(method): def c(x): return nanops.nancorr(x[0], x[1], method=method) correl = Series(map(c, zip(left.values.T, right.values.T)), index=left.columns) else: raise ValueError("Invalid method {method} was passed, " "valid methods are: 'pearson', 'kendall', " "'spearman', or callable". format(method=method)) if not drop: # Find non-matching labels along the given axis # and append missing correlations (GH 22375) raxis = 1 if axis == 0 else 0 result_index = (this._get_axis(raxis). union(other._get_axis(raxis))) idx_diff = result_index.difference(correl.index) if len(idx_diff) > 0: correl = correl.append(Series([np.nan] * len(idx_diff), index=idx_diff)) return correl
[ "def", "corrwith", "(", "self", ",", "other", ",", "axis", "=", "0", ",", "drop", "=", "False", ",", "method", "=", "'pearson'", ")", ":", "axis", "=", "self", ".", "_get_axis_number", "(", "axis", ")", "this", "=", "self", ".", "_get_numeric_data", "(", ")", "if", "isinstance", "(", "other", ",", "Series", ")", ":", "return", "this", ".", "apply", "(", "lambda", "x", ":", "other", ".", "corr", "(", "x", ",", "method", "=", "method", ")", ",", "axis", "=", "axis", ")", "other", "=", "other", ".", "_get_numeric_data", "(", ")", "left", ",", "right", "=", "this", ".", "align", "(", "other", ",", "join", "=", "'inner'", ",", "copy", "=", "False", ")", "if", "axis", "==", "1", ":", "left", "=", "left", ".", "T", "right", "=", "right", ".", "T", "if", "method", "==", "'pearson'", ":", "# mask missing values", "left", "=", "left", "+", "right", "*", "0", "right", "=", "right", "+", "left", "*", "0", "# demeaned data", "ldem", "=", "left", "-", "left", ".", "mean", "(", ")", "rdem", "=", "right", "-", "right", ".", "mean", "(", ")", "num", "=", "(", "ldem", "*", "rdem", ")", ".", "sum", "(", ")", "dom", "=", "(", "left", ".", "count", "(", ")", "-", "1", ")", "*", "left", ".", "std", "(", ")", "*", "right", ".", "std", "(", ")", "correl", "=", "num", "/", "dom", "elif", "method", "in", "[", "'kendall'", ",", "'spearman'", "]", "or", "callable", "(", "method", ")", ":", "def", "c", "(", "x", ")", ":", "return", "nanops", ".", "nancorr", "(", "x", "[", "0", "]", ",", "x", "[", "1", "]", ",", "method", "=", "method", ")", "correl", "=", "Series", "(", "map", "(", "c", ",", "zip", "(", "left", ".", "values", ".", "T", ",", "right", ".", "values", ".", "T", ")", ")", ",", "index", "=", "left", ".", "columns", ")", "else", ":", "raise", "ValueError", "(", "\"Invalid method {method} was passed, \"", "\"valid methods are: 'pearson', 'kendall', \"", "\"'spearman', or callable\"", ".", "format", "(", "method", "=", "method", ")", ")", "if", "not", "drop", ":", "# Find non-matching labels along the given axis", "# and append missing correlations (GH 22375)", "raxis", "=", "1", "if", "axis", "==", "0", "else", "0", "result_index", "=", "(", "this", ".", "_get_axis", "(", "raxis", ")", ".", "union", "(", "other", ".", "_get_axis", "(", "raxis", ")", ")", ")", "idx_diff", "=", "result_index", ".", "difference", "(", "correl", ".", "index", ")", "if", "len", "(", "idx_diff", ")", ">", "0", ":", "correl", "=", "correl", ".", "append", "(", "Series", "(", "[", "np", ".", "nan", "]", "*", "len", "(", "idx_diff", ")", ",", "index", "=", "idx_diff", ")", ")", "return", "correl" ]
Compute pairwise correlation between rows or columns of DataFrame with rows or columns of Series or DataFrame. DataFrames are first aligned along both axes before computing the correlations. Parameters ---------- other : DataFrame, Series Object with which to compute correlations. axis : {0 or 'index', 1 or 'columns'}, default 0 0 or 'index' to compute column-wise, 1 or 'columns' for row-wise. drop : bool, default False Drop missing indices from result. method : {'pearson', 'kendall', 'spearman'} or callable * pearson : standard correlation coefficient * kendall : Kendall Tau correlation coefficient * spearman : Spearman rank correlation * callable: callable with input two 1d ndarrays and returning a float .. versionadded:: 0.24.0 Returns ------- Series Pairwise correlations. See Also ------- DataFrame.corr
[ "Compute", "pairwise", "correlation", "between", "rows", "or", "columns", "of", "DataFrame", "with", "rows", "or", "columns", "of", "Series", "or", "DataFrame", ".", "DataFrames", "are", "first", "aligned", "along", "both", "axes", "before", "computing", "the", "correlations", "." ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/frame.py#L7228-L7314
19,702
pandas-dev/pandas
pandas/core/frame.py
DataFrame.count
def count(self, axis=0, level=None, numeric_only=False): """ Count non-NA cells for each column or row. The values `None`, `NaN`, `NaT`, and optionally `numpy.inf` (depending on `pandas.options.mode.use_inf_as_na`) are considered NA. Parameters ---------- axis : {0 or 'index', 1 or 'columns'}, default 0 If 0 or 'index' counts are generated for each column. If 1 or 'columns' counts are generated for each **row**. level : int or str, optional If the axis is a `MultiIndex` (hierarchical), count along a particular `level`, collapsing into a `DataFrame`. A `str` specifies the level name. numeric_only : bool, default False Include only `float`, `int` or `boolean` data. Returns ------- Series or DataFrame For each column/row the number of non-NA/null entries. If `level` is specified returns a `DataFrame`. See Also -------- Series.count: Number of non-NA elements in a Series. DataFrame.shape: Number of DataFrame rows and columns (including NA elements). DataFrame.isna: Boolean same-sized DataFrame showing places of NA elements. Examples -------- Constructing DataFrame from a dictionary: >>> df = pd.DataFrame({"Person": ... ["John", "Myla", "Lewis", "John", "Myla"], ... "Age": [24., np.nan, 21., 33, 26], ... "Single": [False, True, True, True, False]}) >>> df Person Age Single 0 John 24.0 False 1 Myla NaN True 2 Lewis 21.0 True 3 John 33.0 True 4 Myla 26.0 False Notice the uncounted NA values: >>> df.count() Person 5 Age 4 Single 5 dtype: int64 Counts for each **row**: >>> df.count(axis='columns') 0 3 1 2 2 3 3 3 4 3 dtype: int64 Counts for one level of a `MultiIndex`: >>> df.set_index(["Person", "Single"]).count(level="Person") Age Person John 2 Lewis 1 Myla 1 """ axis = self._get_axis_number(axis) if level is not None: return self._count_level(level, axis=axis, numeric_only=numeric_only) if numeric_only: frame = self._get_numeric_data() else: frame = self # GH #423 if len(frame._get_axis(axis)) == 0: result = Series(0, index=frame._get_agg_axis(axis)) else: if frame._is_mixed_type or frame._data.any_extension_types: # the or any_extension_types is really only hit for single- # column frames with an extension array result = notna(frame).sum(axis=axis) else: # GH13407 series_counts = notna(frame).sum(axis=axis) counts = series_counts.values result = Series(counts, index=frame._get_agg_axis(axis)) return result.astype('int64')
python
def count(self, axis=0, level=None, numeric_only=False): """ Count non-NA cells for each column or row. The values `None`, `NaN`, `NaT`, and optionally `numpy.inf` (depending on `pandas.options.mode.use_inf_as_na`) are considered NA. Parameters ---------- axis : {0 or 'index', 1 or 'columns'}, default 0 If 0 or 'index' counts are generated for each column. If 1 or 'columns' counts are generated for each **row**. level : int or str, optional If the axis is a `MultiIndex` (hierarchical), count along a particular `level`, collapsing into a `DataFrame`. A `str` specifies the level name. numeric_only : bool, default False Include only `float`, `int` or `boolean` data. Returns ------- Series or DataFrame For each column/row the number of non-NA/null entries. If `level` is specified returns a `DataFrame`. See Also -------- Series.count: Number of non-NA elements in a Series. DataFrame.shape: Number of DataFrame rows and columns (including NA elements). DataFrame.isna: Boolean same-sized DataFrame showing places of NA elements. Examples -------- Constructing DataFrame from a dictionary: >>> df = pd.DataFrame({"Person": ... ["John", "Myla", "Lewis", "John", "Myla"], ... "Age": [24., np.nan, 21., 33, 26], ... "Single": [False, True, True, True, False]}) >>> df Person Age Single 0 John 24.0 False 1 Myla NaN True 2 Lewis 21.0 True 3 John 33.0 True 4 Myla 26.0 False Notice the uncounted NA values: >>> df.count() Person 5 Age 4 Single 5 dtype: int64 Counts for each **row**: >>> df.count(axis='columns') 0 3 1 2 2 3 3 3 4 3 dtype: int64 Counts for one level of a `MultiIndex`: >>> df.set_index(["Person", "Single"]).count(level="Person") Age Person John 2 Lewis 1 Myla 1 """ axis = self._get_axis_number(axis) if level is not None: return self._count_level(level, axis=axis, numeric_only=numeric_only) if numeric_only: frame = self._get_numeric_data() else: frame = self # GH #423 if len(frame._get_axis(axis)) == 0: result = Series(0, index=frame._get_agg_axis(axis)) else: if frame._is_mixed_type or frame._data.any_extension_types: # the or any_extension_types is really only hit for single- # column frames with an extension array result = notna(frame).sum(axis=axis) else: # GH13407 series_counts = notna(frame).sum(axis=axis) counts = series_counts.values result = Series(counts, index=frame._get_agg_axis(axis)) return result.astype('int64')
[ "def", "count", "(", "self", ",", "axis", "=", "0", ",", "level", "=", "None", ",", "numeric_only", "=", "False", ")", ":", "axis", "=", "self", ".", "_get_axis_number", "(", "axis", ")", "if", "level", "is", "not", "None", ":", "return", "self", ".", "_count_level", "(", "level", ",", "axis", "=", "axis", ",", "numeric_only", "=", "numeric_only", ")", "if", "numeric_only", ":", "frame", "=", "self", ".", "_get_numeric_data", "(", ")", "else", ":", "frame", "=", "self", "# GH #423", "if", "len", "(", "frame", ".", "_get_axis", "(", "axis", ")", ")", "==", "0", ":", "result", "=", "Series", "(", "0", ",", "index", "=", "frame", ".", "_get_agg_axis", "(", "axis", ")", ")", "else", ":", "if", "frame", ".", "_is_mixed_type", "or", "frame", ".", "_data", ".", "any_extension_types", ":", "# the or any_extension_types is really only hit for single-", "# column frames with an extension array", "result", "=", "notna", "(", "frame", ")", ".", "sum", "(", "axis", "=", "axis", ")", "else", ":", "# GH13407", "series_counts", "=", "notna", "(", "frame", ")", ".", "sum", "(", "axis", "=", "axis", ")", "counts", "=", "series_counts", ".", "values", "result", "=", "Series", "(", "counts", ",", "index", "=", "frame", ".", "_get_agg_axis", "(", "axis", ")", ")", "return", "result", ".", "astype", "(", "'int64'", ")" ]
Count non-NA cells for each column or row. The values `None`, `NaN`, `NaT`, and optionally `numpy.inf` (depending on `pandas.options.mode.use_inf_as_na`) are considered NA. Parameters ---------- axis : {0 or 'index', 1 or 'columns'}, default 0 If 0 or 'index' counts are generated for each column. If 1 or 'columns' counts are generated for each **row**. level : int or str, optional If the axis is a `MultiIndex` (hierarchical), count along a particular `level`, collapsing into a `DataFrame`. A `str` specifies the level name. numeric_only : bool, default False Include only `float`, `int` or `boolean` data. Returns ------- Series or DataFrame For each column/row the number of non-NA/null entries. If `level` is specified returns a `DataFrame`. See Also -------- Series.count: Number of non-NA elements in a Series. DataFrame.shape: Number of DataFrame rows and columns (including NA elements). DataFrame.isna: Boolean same-sized DataFrame showing places of NA elements. Examples -------- Constructing DataFrame from a dictionary: >>> df = pd.DataFrame({"Person": ... ["John", "Myla", "Lewis", "John", "Myla"], ... "Age": [24., np.nan, 21., 33, 26], ... "Single": [False, True, True, True, False]}) >>> df Person Age Single 0 John 24.0 False 1 Myla NaN True 2 Lewis 21.0 True 3 John 33.0 True 4 Myla 26.0 False Notice the uncounted NA values: >>> df.count() Person 5 Age 4 Single 5 dtype: int64 Counts for each **row**: >>> df.count(axis='columns') 0 3 1 2 2 3 3 3 4 3 dtype: int64 Counts for one level of a `MultiIndex`: >>> df.set_index(["Person", "Single"]).count(level="Person") Age Person John 2 Lewis 1 Myla 1
[ "Count", "non", "-", "NA", "cells", "for", "each", "column", "or", "row", "." ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/frame.py#L7319-L7419
19,703
pandas-dev/pandas
pandas/core/frame.py
DataFrame.nunique
def nunique(self, axis=0, dropna=True): """ Count distinct observations over requested axis. Return Series with number of distinct observations. Can ignore NaN values. .. versionadded:: 0.20.0 Parameters ---------- axis : {0 or 'index', 1 or 'columns'}, default 0 The axis to use. 0 or 'index' for row-wise, 1 or 'columns' for column-wise. dropna : bool, default True Don't include NaN in the counts. Returns ------- Series See Also -------- Series.nunique: Method nunique for Series. DataFrame.count: Count non-NA cells for each column or row. Examples -------- >>> df = pd.DataFrame({'A': [1, 2, 3], 'B': [1, 1, 1]}) >>> df.nunique() A 3 B 1 dtype: int64 >>> df.nunique(axis=1) 0 1 1 2 2 2 dtype: int64 """ return self.apply(Series.nunique, axis=axis, dropna=dropna)
python
def nunique(self, axis=0, dropna=True): """ Count distinct observations over requested axis. Return Series with number of distinct observations. Can ignore NaN values. .. versionadded:: 0.20.0 Parameters ---------- axis : {0 or 'index', 1 or 'columns'}, default 0 The axis to use. 0 or 'index' for row-wise, 1 or 'columns' for column-wise. dropna : bool, default True Don't include NaN in the counts. Returns ------- Series See Also -------- Series.nunique: Method nunique for Series. DataFrame.count: Count non-NA cells for each column or row. Examples -------- >>> df = pd.DataFrame({'A': [1, 2, 3], 'B': [1, 1, 1]}) >>> df.nunique() A 3 B 1 dtype: int64 >>> df.nunique(axis=1) 0 1 1 2 2 2 dtype: int64 """ return self.apply(Series.nunique, axis=axis, dropna=dropna)
[ "def", "nunique", "(", "self", ",", "axis", "=", "0", ",", "dropna", "=", "True", ")", ":", "return", "self", ".", "apply", "(", "Series", ".", "nunique", ",", "axis", "=", "axis", ",", "dropna", "=", "dropna", ")" ]
Count distinct observations over requested axis. Return Series with number of distinct observations. Can ignore NaN values. .. versionadded:: 0.20.0 Parameters ---------- axis : {0 or 'index', 1 or 'columns'}, default 0 The axis to use. 0 or 'index' for row-wise, 1 or 'columns' for column-wise. dropna : bool, default True Don't include NaN in the counts. Returns ------- Series See Also -------- Series.nunique: Method nunique for Series. DataFrame.count: Count non-NA cells for each column or row. Examples -------- >>> df = pd.DataFrame({'A': [1, 2, 3], 'B': [1, 1, 1]}) >>> df.nunique() A 3 B 1 dtype: int64 >>> df.nunique(axis=1) 0 1 1 2 2 2 dtype: int64
[ "Count", "distinct", "observations", "over", "requested", "axis", "." ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/frame.py#L7565-L7605
19,704
pandas-dev/pandas
pandas/core/frame.py
DataFrame._get_agg_axis
def _get_agg_axis(self, axis_num): """ Let's be explicit about this. """ if axis_num == 0: return self.columns elif axis_num == 1: return self.index else: raise ValueError('Axis must be 0 or 1 (got %r)' % axis_num)
python
def _get_agg_axis(self, axis_num): """ Let's be explicit about this. """ if axis_num == 0: return self.columns elif axis_num == 1: return self.index else: raise ValueError('Axis must be 0 or 1 (got %r)' % axis_num)
[ "def", "_get_agg_axis", "(", "self", ",", "axis_num", ")", ":", "if", "axis_num", "==", "0", ":", "return", "self", ".", "columns", "elif", "axis_num", "==", "1", ":", "return", "self", ".", "index", "else", ":", "raise", "ValueError", "(", "'Axis must be 0 or 1 (got %r)'", "%", "axis_num", ")" ]
Let's be explicit about this.
[ "Let", "s", "be", "explicit", "about", "this", "." ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/frame.py#L7681-L7690
19,705
pandas-dev/pandas
pandas/core/frame.py
DataFrame.quantile
def quantile(self, q=0.5, axis=0, numeric_only=True, interpolation='linear'): """ Return values at the given quantile over requested axis. Parameters ---------- q : float or array-like, default 0.5 (50% quantile) Value between 0 <= q <= 1, the quantile(s) to compute. axis : {0, 1, 'index', 'columns'} (default 0) Equals 0 or 'index' for row-wise, 1 or 'columns' for column-wise. numeric_only : bool, default True If False, the quantile of datetime and timedelta data will be computed as well. interpolation : {'linear', 'lower', 'higher', 'midpoint', 'nearest'} This optional parameter specifies the interpolation method to use, when the desired quantile lies between two data points `i` and `j`: * linear: `i + (j - i) * fraction`, where `fraction` is the fractional part of the index surrounded by `i` and `j`. * lower: `i`. * higher: `j`. * nearest: `i` or `j` whichever is nearest. * midpoint: (`i` + `j`) / 2. .. versionadded:: 0.18.0 Returns ------- Series or DataFrame If ``q`` is an array, a DataFrame will be returned where the index is ``q``, the columns are the columns of self, and the values are the quantiles. If ``q`` is a float, a Series will be returned where the index is the columns of self and the values are the quantiles. See Also -------- core.window.Rolling.quantile: Rolling quantile. numpy.percentile: Numpy function to compute the percentile. Examples -------- >>> df = pd.DataFrame(np.array([[1, 1], [2, 10], [3, 100], [4, 100]]), ... columns=['a', 'b']) >>> df.quantile(.1) a 1.3 b 3.7 Name: 0.1, dtype: float64 >>> df.quantile([.1, .5]) a b 0.1 1.3 3.7 0.5 2.5 55.0 Specifying `numeric_only=False` will also compute the quantile of datetime and timedelta data. >>> df = pd.DataFrame({'A': [1, 2], ... 'B': [pd.Timestamp('2010'), ... pd.Timestamp('2011')], ... 'C': [pd.Timedelta('1 days'), ... pd.Timedelta('2 days')]}) >>> df.quantile(0.5, numeric_only=False) A 1.5 B 2010-07-02 12:00:00 C 1 days 12:00:00 Name: 0.5, dtype: object """ self._check_percentile(q) data = self._get_numeric_data() if numeric_only else self axis = self._get_axis_number(axis) is_transposed = axis == 1 if is_transposed: data = data.T result = data._data.quantile(qs=q, axis=1, interpolation=interpolation, transposed=is_transposed) if result.ndim == 2: result = self._constructor(result) else: result = self._constructor_sliced(result, name=q) if is_transposed: result = result.T return result
python
def quantile(self, q=0.5, axis=0, numeric_only=True, interpolation='linear'): """ Return values at the given quantile over requested axis. Parameters ---------- q : float or array-like, default 0.5 (50% quantile) Value between 0 <= q <= 1, the quantile(s) to compute. axis : {0, 1, 'index', 'columns'} (default 0) Equals 0 or 'index' for row-wise, 1 or 'columns' for column-wise. numeric_only : bool, default True If False, the quantile of datetime and timedelta data will be computed as well. interpolation : {'linear', 'lower', 'higher', 'midpoint', 'nearest'} This optional parameter specifies the interpolation method to use, when the desired quantile lies between two data points `i` and `j`: * linear: `i + (j - i) * fraction`, where `fraction` is the fractional part of the index surrounded by `i` and `j`. * lower: `i`. * higher: `j`. * nearest: `i` or `j` whichever is nearest. * midpoint: (`i` + `j`) / 2. .. versionadded:: 0.18.0 Returns ------- Series or DataFrame If ``q`` is an array, a DataFrame will be returned where the index is ``q``, the columns are the columns of self, and the values are the quantiles. If ``q`` is a float, a Series will be returned where the index is the columns of self and the values are the quantiles. See Also -------- core.window.Rolling.quantile: Rolling quantile. numpy.percentile: Numpy function to compute the percentile. Examples -------- >>> df = pd.DataFrame(np.array([[1, 1], [2, 10], [3, 100], [4, 100]]), ... columns=['a', 'b']) >>> df.quantile(.1) a 1.3 b 3.7 Name: 0.1, dtype: float64 >>> df.quantile([.1, .5]) a b 0.1 1.3 3.7 0.5 2.5 55.0 Specifying `numeric_only=False` will also compute the quantile of datetime and timedelta data. >>> df = pd.DataFrame({'A': [1, 2], ... 'B': [pd.Timestamp('2010'), ... pd.Timestamp('2011')], ... 'C': [pd.Timedelta('1 days'), ... pd.Timedelta('2 days')]}) >>> df.quantile(0.5, numeric_only=False) A 1.5 B 2010-07-02 12:00:00 C 1 days 12:00:00 Name: 0.5, dtype: object """ self._check_percentile(q) data = self._get_numeric_data() if numeric_only else self axis = self._get_axis_number(axis) is_transposed = axis == 1 if is_transposed: data = data.T result = data._data.quantile(qs=q, axis=1, interpolation=interpolation, transposed=is_transposed) if result.ndim == 2: result = self._constructor(result) else: result = self._constructor_sliced(result, name=q) if is_transposed: result = result.T return result
[ "def", "quantile", "(", "self", ",", "q", "=", "0.5", ",", "axis", "=", "0", ",", "numeric_only", "=", "True", ",", "interpolation", "=", "'linear'", ")", ":", "self", ".", "_check_percentile", "(", "q", ")", "data", "=", "self", ".", "_get_numeric_data", "(", ")", "if", "numeric_only", "else", "self", "axis", "=", "self", ".", "_get_axis_number", "(", "axis", ")", "is_transposed", "=", "axis", "==", "1", "if", "is_transposed", ":", "data", "=", "data", ".", "T", "result", "=", "data", ".", "_data", ".", "quantile", "(", "qs", "=", "q", ",", "axis", "=", "1", ",", "interpolation", "=", "interpolation", ",", "transposed", "=", "is_transposed", ")", "if", "result", ".", "ndim", "==", "2", ":", "result", "=", "self", ".", "_constructor", "(", "result", ")", "else", ":", "result", "=", "self", ".", "_constructor_sliced", "(", "result", ",", "name", "=", "q", ")", "if", "is_transposed", ":", "result", "=", "result", ".", "T", "return", "result" ]
Return values at the given quantile over requested axis. Parameters ---------- q : float or array-like, default 0.5 (50% quantile) Value between 0 <= q <= 1, the quantile(s) to compute. axis : {0, 1, 'index', 'columns'} (default 0) Equals 0 or 'index' for row-wise, 1 or 'columns' for column-wise. numeric_only : bool, default True If False, the quantile of datetime and timedelta data will be computed as well. interpolation : {'linear', 'lower', 'higher', 'midpoint', 'nearest'} This optional parameter specifies the interpolation method to use, when the desired quantile lies between two data points `i` and `j`: * linear: `i + (j - i) * fraction`, where `fraction` is the fractional part of the index surrounded by `i` and `j`. * lower: `i`. * higher: `j`. * nearest: `i` or `j` whichever is nearest. * midpoint: (`i` + `j`) / 2. .. versionadded:: 0.18.0 Returns ------- Series or DataFrame If ``q`` is an array, a DataFrame will be returned where the index is ``q``, the columns are the columns of self, and the values are the quantiles. If ``q`` is a float, a Series will be returned where the index is the columns of self and the values are the quantiles. See Also -------- core.window.Rolling.quantile: Rolling quantile. numpy.percentile: Numpy function to compute the percentile. Examples -------- >>> df = pd.DataFrame(np.array([[1, 1], [2, 10], [3, 100], [4, 100]]), ... columns=['a', 'b']) >>> df.quantile(.1) a 1.3 b 3.7 Name: 0.1, dtype: float64 >>> df.quantile([.1, .5]) a b 0.1 1.3 3.7 0.5 2.5 55.0 Specifying `numeric_only=False` will also compute the quantile of datetime and timedelta data. >>> df = pd.DataFrame({'A': [1, 2], ... 'B': [pd.Timestamp('2010'), ... pd.Timestamp('2011')], ... 'C': [pd.Timedelta('1 days'), ... pd.Timedelta('2 days')]}) >>> df.quantile(0.5, numeric_only=False) A 1.5 B 2010-07-02 12:00:00 C 1 days 12:00:00 Name: 0.5, dtype: object
[ "Return", "values", "at", "the", "given", "quantile", "over", "requested", "axis", "." ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/frame.py#L7778-L7869
19,706
pandas-dev/pandas
pandas/core/frame.py
DataFrame.isin
def isin(self, values): """ Whether each element in the DataFrame is contained in values. Parameters ---------- values : iterable, Series, DataFrame or dict The result will only be true at a location if all the labels match. If `values` is a Series, that's the index. If `values` is a dict, the keys must be the column names, which must match. If `values` is a DataFrame, then both the index and column labels must match. Returns ------- DataFrame DataFrame of booleans showing whether each element in the DataFrame is contained in values. See Also -------- DataFrame.eq: Equality test for DataFrame. Series.isin: Equivalent method on Series. Series.str.contains: Test if pattern or regex is contained within a string of a Series or Index. Examples -------- >>> df = pd.DataFrame({'num_legs': [2, 4], 'num_wings': [2, 0]}, ... index=['falcon', 'dog']) >>> df num_legs num_wings falcon 2 2 dog 4 0 When ``values`` is a list check whether every value in the DataFrame is present in the list (which animals have 0 or 2 legs or wings) >>> df.isin([0, 2]) num_legs num_wings falcon True True dog False True When ``values`` is a dict, we can pass values to check for each column separately: >>> df.isin({'num_wings': [0, 3]}) num_legs num_wings falcon False False dog False True When ``values`` is a Series or DataFrame the index and column must match. Note that 'falcon' does not match based on the number of legs in df2. >>> other = pd.DataFrame({'num_legs': [8, 2], 'num_wings': [0, 2]}, ... index=['spider', 'falcon']) >>> df.isin(other) num_legs num_wings falcon True True dog False False """ if isinstance(values, dict): from pandas.core.reshape.concat import concat values = collections.defaultdict(list, values) return concat((self.iloc[:, [i]].isin(values[col]) for i, col in enumerate(self.columns)), axis=1) elif isinstance(values, Series): if not values.index.is_unique: raise ValueError("cannot compute isin with " "a duplicate axis.") return self.eq(values.reindex_like(self), axis='index') elif isinstance(values, DataFrame): if not (values.columns.is_unique and values.index.is_unique): raise ValueError("cannot compute isin with " "a duplicate axis.") return self.eq(values.reindex_like(self)) else: if not is_list_like(values): raise TypeError("only list-like or dict-like objects are " "allowed to be passed to DataFrame.isin(), " "you passed a " "{0!r}".format(type(values).__name__)) return DataFrame( algorithms.isin(self.values.ravel(), values).reshape(self.shape), self.index, self.columns)
python
def isin(self, values): """ Whether each element in the DataFrame is contained in values. Parameters ---------- values : iterable, Series, DataFrame or dict The result will only be true at a location if all the labels match. If `values` is a Series, that's the index. If `values` is a dict, the keys must be the column names, which must match. If `values` is a DataFrame, then both the index and column labels must match. Returns ------- DataFrame DataFrame of booleans showing whether each element in the DataFrame is contained in values. See Also -------- DataFrame.eq: Equality test for DataFrame. Series.isin: Equivalent method on Series. Series.str.contains: Test if pattern or regex is contained within a string of a Series or Index. Examples -------- >>> df = pd.DataFrame({'num_legs': [2, 4], 'num_wings': [2, 0]}, ... index=['falcon', 'dog']) >>> df num_legs num_wings falcon 2 2 dog 4 0 When ``values`` is a list check whether every value in the DataFrame is present in the list (which animals have 0 or 2 legs or wings) >>> df.isin([0, 2]) num_legs num_wings falcon True True dog False True When ``values`` is a dict, we can pass values to check for each column separately: >>> df.isin({'num_wings': [0, 3]}) num_legs num_wings falcon False False dog False True When ``values`` is a Series or DataFrame the index and column must match. Note that 'falcon' does not match based on the number of legs in df2. >>> other = pd.DataFrame({'num_legs': [8, 2], 'num_wings': [0, 2]}, ... index=['spider', 'falcon']) >>> df.isin(other) num_legs num_wings falcon True True dog False False """ if isinstance(values, dict): from pandas.core.reshape.concat import concat values = collections.defaultdict(list, values) return concat((self.iloc[:, [i]].isin(values[col]) for i, col in enumerate(self.columns)), axis=1) elif isinstance(values, Series): if not values.index.is_unique: raise ValueError("cannot compute isin with " "a duplicate axis.") return self.eq(values.reindex_like(self), axis='index') elif isinstance(values, DataFrame): if not (values.columns.is_unique and values.index.is_unique): raise ValueError("cannot compute isin with " "a duplicate axis.") return self.eq(values.reindex_like(self)) else: if not is_list_like(values): raise TypeError("only list-like or dict-like objects are " "allowed to be passed to DataFrame.isin(), " "you passed a " "{0!r}".format(type(values).__name__)) return DataFrame( algorithms.isin(self.values.ravel(), values).reshape(self.shape), self.index, self.columns)
[ "def", "isin", "(", "self", ",", "values", ")", ":", "if", "isinstance", "(", "values", ",", "dict", ")", ":", "from", "pandas", ".", "core", ".", "reshape", ".", "concat", "import", "concat", "values", "=", "collections", ".", "defaultdict", "(", "list", ",", "values", ")", "return", "concat", "(", "(", "self", ".", "iloc", "[", ":", ",", "[", "i", "]", "]", ".", "isin", "(", "values", "[", "col", "]", ")", "for", "i", ",", "col", "in", "enumerate", "(", "self", ".", "columns", ")", ")", ",", "axis", "=", "1", ")", "elif", "isinstance", "(", "values", ",", "Series", ")", ":", "if", "not", "values", ".", "index", ".", "is_unique", ":", "raise", "ValueError", "(", "\"cannot compute isin with \"", "\"a duplicate axis.\"", ")", "return", "self", ".", "eq", "(", "values", ".", "reindex_like", "(", "self", ")", ",", "axis", "=", "'index'", ")", "elif", "isinstance", "(", "values", ",", "DataFrame", ")", ":", "if", "not", "(", "values", ".", "columns", ".", "is_unique", "and", "values", ".", "index", ".", "is_unique", ")", ":", "raise", "ValueError", "(", "\"cannot compute isin with \"", "\"a duplicate axis.\"", ")", "return", "self", ".", "eq", "(", "values", ".", "reindex_like", "(", "self", ")", ")", "else", ":", "if", "not", "is_list_like", "(", "values", ")", ":", "raise", "TypeError", "(", "\"only list-like or dict-like objects are \"", "\"allowed to be passed to DataFrame.isin(), \"", "\"you passed a \"", "\"{0!r}\"", ".", "format", "(", "type", "(", "values", ")", ".", "__name__", ")", ")", "return", "DataFrame", "(", "algorithms", ".", "isin", "(", "self", ".", "values", ".", "ravel", "(", ")", ",", "values", ")", ".", "reshape", "(", "self", ".", "shape", ")", ",", "self", ".", "index", ",", "self", ".", "columns", ")" ]
Whether each element in the DataFrame is contained in values. Parameters ---------- values : iterable, Series, DataFrame or dict The result will only be true at a location if all the labels match. If `values` is a Series, that's the index. If `values` is a dict, the keys must be the column names, which must match. If `values` is a DataFrame, then both the index and column labels must match. Returns ------- DataFrame DataFrame of booleans showing whether each element in the DataFrame is contained in values. See Also -------- DataFrame.eq: Equality test for DataFrame. Series.isin: Equivalent method on Series. Series.str.contains: Test if pattern or regex is contained within a string of a Series or Index. Examples -------- >>> df = pd.DataFrame({'num_legs': [2, 4], 'num_wings': [2, 0]}, ... index=['falcon', 'dog']) >>> df num_legs num_wings falcon 2 2 dog 4 0 When ``values`` is a list check whether every value in the DataFrame is present in the list (which animals have 0 or 2 legs or wings) >>> df.isin([0, 2]) num_legs num_wings falcon True True dog False True When ``values`` is a dict, we can pass values to check for each column separately: >>> df.isin({'num_wings': [0, 3]}) num_legs num_wings falcon False False dog False True When ``values`` is a Series or DataFrame the index and column must match. Note that 'falcon' does not match based on the number of legs in df2. >>> other = pd.DataFrame({'num_legs': [8, 2], 'num_wings': [0, 2]}, ... index=['spider', 'falcon']) >>> df.isin(other) num_legs num_wings falcon True True dog False False
[ "Whether", "each", "element", "in", "the", "DataFrame", "is", "contained", "in", "values", "." ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/frame.py#L7939-L8026
19,707
pandas-dev/pandas
pandas/core/arrays/integer.py
integer_array
def integer_array(values, dtype=None, copy=False): """ Infer and return an integer array of the values. Parameters ---------- values : 1D list-like dtype : dtype, optional dtype to coerce copy : boolean, default False Returns ------- IntegerArray Raises ------ TypeError if incompatible types """ values, mask = coerce_to_array(values, dtype=dtype, copy=copy) return IntegerArray(values, mask)
python
def integer_array(values, dtype=None, copy=False): """ Infer and return an integer array of the values. Parameters ---------- values : 1D list-like dtype : dtype, optional dtype to coerce copy : boolean, default False Returns ------- IntegerArray Raises ------ TypeError if incompatible types """ values, mask = coerce_to_array(values, dtype=dtype, copy=copy) return IntegerArray(values, mask)
[ "def", "integer_array", "(", "values", ",", "dtype", "=", "None", ",", "copy", "=", "False", ")", ":", "values", ",", "mask", "=", "coerce_to_array", "(", "values", ",", "dtype", "=", "dtype", ",", "copy", "=", "copy", ")", "return", "IntegerArray", "(", "values", ",", "mask", ")" ]
Infer and return an integer array of the values. Parameters ---------- values : 1D list-like dtype : dtype, optional dtype to coerce copy : boolean, default False Returns ------- IntegerArray Raises ------ TypeError if incompatible types
[ "Infer", "and", "return", "an", "integer", "array", "of", "the", "values", "." ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/arrays/integer.py#L92-L112
19,708
pandas-dev/pandas
pandas/core/arrays/integer.py
safe_cast
def safe_cast(values, dtype, copy): """ Safely cast the values to the dtype if they are equivalent, meaning floats must be equivalent to the ints. """ try: return values.astype(dtype, casting='safe', copy=copy) except TypeError: casted = values.astype(dtype, copy=copy) if (casted == values).all(): return casted raise TypeError("cannot safely cast non-equivalent {} to {}".format( values.dtype, np.dtype(dtype)))
python
def safe_cast(values, dtype, copy): """ Safely cast the values to the dtype if they are equivalent, meaning floats must be equivalent to the ints. """ try: return values.astype(dtype, casting='safe', copy=copy) except TypeError: casted = values.astype(dtype, copy=copy) if (casted == values).all(): return casted raise TypeError("cannot safely cast non-equivalent {} to {}".format( values.dtype, np.dtype(dtype)))
[ "def", "safe_cast", "(", "values", ",", "dtype", ",", "copy", ")", ":", "try", ":", "return", "values", ".", "astype", "(", "dtype", ",", "casting", "=", "'safe'", ",", "copy", "=", "copy", ")", "except", "TypeError", ":", "casted", "=", "values", ".", "astype", "(", "dtype", ",", "copy", "=", "copy", ")", "if", "(", "casted", "==", "values", ")", ".", "all", "(", ")", ":", "return", "casted", "raise", "TypeError", "(", "\"cannot safely cast non-equivalent {} to {}\"", ".", "format", "(", "values", ".", "dtype", ",", "np", ".", "dtype", "(", "dtype", ")", ")", ")" ]
Safely cast the values to the dtype if they are equivalent, meaning floats must be equivalent to the ints.
[ "Safely", "cast", "the", "values", "to", "the", "dtype", "if", "they", "are", "equivalent", "meaning", "floats", "must", "be", "equivalent", "to", "the", "ints", "." ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/arrays/integer.py#L115-L132
19,709
pandas-dev/pandas
pandas/core/arrays/integer.py
coerce_to_array
def coerce_to_array(values, dtype, mask=None, copy=False): """ Coerce the input values array to numpy arrays with a mask Parameters ---------- values : 1D list-like dtype : integer dtype mask : boolean 1D array, optional copy : boolean, default False if True, copy the input Returns ------- tuple of (values, mask) """ # if values is integer numpy array, preserve it's dtype if dtype is None and hasattr(values, 'dtype'): if is_integer_dtype(values.dtype): dtype = values.dtype if dtype is not None: if (isinstance(dtype, str) and (dtype.startswith("Int") or dtype.startswith("UInt"))): # Avoid DeprecationWarning from NumPy about np.dtype("Int64") # https://github.com/numpy/numpy/pull/7476 dtype = dtype.lower() if not issubclass(type(dtype), _IntegerDtype): try: dtype = _dtypes[str(np.dtype(dtype))] except KeyError: raise ValueError("invalid dtype specified {}".format(dtype)) if isinstance(values, IntegerArray): values, mask = values._data, values._mask if dtype is not None: values = values.astype(dtype.numpy_dtype, copy=False) if copy: values = values.copy() mask = mask.copy() return values, mask values = np.array(values, copy=copy) if is_object_dtype(values): inferred_type = lib.infer_dtype(values, skipna=True) if inferred_type == 'empty': values = np.empty(len(values)) values.fill(np.nan) elif inferred_type not in ['floating', 'integer', 'mixed-integer', 'mixed-integer-float']: raise TypeError("{} cannot be converted to an IntegerDtype".format( values.dtype)) elif not (is_integer_dtype(values) or is_float_dtype(values)): raise TypeError("{} cannot be converted to an IntegerDtype".format( values.dtype)) if mask is None: mask = isna(values) else: assert len(mask) == len(values) if not values.ndim == 1: raise TypeError("values must be a 1D list-like") if not mask.ndim == 1: raise TypeError("mask must be a 1D list-like") # infer dtype if needed if dtype is None: dtype = np.dtype('int64') else: dtype = dtype.type # if we are float, let's make sure that we can # safely cast # we copy as need to coerce here if mask.any(): values = values.copy() values[mask] = 1 values = safe_cast(values, dtype, copy=False) else: values = safe_cast(values, dtype, copy=False) return values, mask
python
def coerce_to_array(values, dtype, mask=None, copy=False): """ Coerce the input values array to numpy arrays with a mask Parameters ---------- values : 1D list-like dtype : integer dtype mask : boolean 1D array, optional copy : boolean, default False if True, copy the input Returns ------- tuple of (values, mask) """ # if values is integer numpy array, preserve it's dtype if dtype is None and hasattr(values, 'dtype'): if is_integer_dtype(values.dtype): dtype = values.dtype if dtype is not None: if (isinstance(dtype, str) and (dtype.startswith("Int") or dtype.startswith("UInt"))): # Avoid DeprecationWarning from NumPy about np.dtype("Int64") # https://github.com/numpy/numpy/pull/7476 dtype = dtype.lower() if not issubclass(type(dtype), _IntegerDtype): try: dtype = _dtypes[str(np.dtype(dtype))] except KeyError: raise ValueError("invalid dtype specified {}".format(dtype)) if isinstance(values, IntegerArray): values, mask = values._data, values._mask if dtype is not None: values = values.astype(dtype.numpy_dtype, copy=False) if copy: values = values.copy() mask = mask.copy() return values, mask values = np.array(values, copy=copy) if is_object_dtype(values): inferred_type = lib.infer_dtype(values, skipna=True) if inferred_type == 'empty': values = np.empty(len(values)) values.fill(np.nan) elif inferred_type not in ['floating', 'integer', 'mixed-integer', 'mixed-integer-float']: raise TypeError("{} cannot be converted to an IntegerDtype".format( values.dtype)) elif not (is_integer_dtype(values) or is_float_dtype(values)): raise TypeError("{} cannot be converted to an IntegerDtype".format( values.dtype)) if mask is None: mask = isna(values) else: assert len(mask) == len(values) if not values.ndim == 1: raise TypeError("values must be a 1D list-like") if not mask.ndim == 1: raise TypeError("mask must be a 1D list-like") # infer dtype if needed if dtype is None: dtype = np.dtype('int64') else: dtype = dtype.type # if we are float, let's make sure that we can # safely cast # we copy as need to coerce here if mask.any(): values = values.copy() values[mask] = 1 values = safe_cast(values, dtype, copy=False) else: values = safe_cast(values, dtype, copy=False) return values, mask
[ "def", "coerce_to_array", "(", "values", ",", "dtype", ",", "mask", "=", "None", ",", "copy", "=", "False", ")", ":", "# if values is integer numpy array, preserve it's dtype", "if", "dtype", "is", "None", "and", "hasattr", "(", "values", ",", "'dtype'", ")", ":", "if", "is_integer_dtype", "(", "values", ".", "dtype", ")", ":", "dtype", "=", "values", ".", "dtype", "if", "dtype", "is", "not", "None", ":", "if", "(", "isinstance", "(", "dtype", ",", "str", ")", "and", "(", "dtype", ".", "startswith", "(", "\"Int\"", ")", "or", "dtype", ".", "startswith", "(", "\"UInt\"", ")", ")", ")", ":", "# Avoid DeprecationWarning from NumPy about np.dtype(\"Int64\")", "# https://github.com/numpy/numpy/pull/7476", "dtype", "=", "dtype", ".", "lower", "(", ")", "if", "not", "issubclass", "(", "type", "(", "dtype", ")", ",", "_IntegerDtype", ")", ":", "try", ":", "dtype", "=", "_dtypes", "[", "str", "(", "np", ".", "dtype", "(", "dtype", ")", ")", "]", "except", "KeyError", ":", "raise", "ValueError", "(", "\"invalid dtype specified {}\"", ".", "format", "(", "dtype", ")", ")", "if", "isinstance", "(", "values", ",", "IntegerArray", ")", ":", "values", ",", "mask", "=", "values", ".", "_data", ",", "values", ".", "_mask", "if", "dtype", "is", "not", "None", ":", "values", "=", "values", ".", "astype", "(", "dtype", ".", "numpy_dtype", ",", "copy", "=", "False", ")", "if", "copy", ":", "values", "=", "values", ".", "copy", "(", ")", "mask", "=", "mask", ".", "copy", "(", ")", "return", "values", ",", "mask", "values", "=", "np", ".", "array", "(", "values", ",", "copy", "=", "copy", ")", "if", "is_object_dtype", "(", "values", ")", ":", "inferred_type", "=", "lib", ".", "infer_dtype", "(", "values", ",", "skipna", "=", "True", ")", "if", "inferred_type", "==", "'empty'", ":", "values", "=", "np", ".", "empty", "(", "len", "(", "values", ")", ")", "values", ".", "fill", "(", "np", ".", "nan", ")", "elif", "inferred_type", "not", "in", "[", "'floating'", ",", "'integer'", ",", "'mixed-integer'", ",", "'mixed-integer-float'", "]", ":", "raise", "TypeError", "(", "\"{} cannot be converted to an IntegerDtype\"", ".", "format", "(", "values", ".", "dtype", ")", ")", "elif", "not", "(", "is_integer_dtype", "(", "values", ")", "or", "is_float_dtype", "(", "values", ")", ")", ":", "raise", "TypeError", "(", "\"{} cannot be converted to an IntegerDtype\"", ".", "format", "(", "values", ".", "dtype", ")", ")", "if", "mask", "is", "None", ":", "mask", "=", "isna", "(", "values", ")", "else", ":", "assert", "len", "(", "mask", ")", "==", "len", "(", "values", ")", "if", "not", "values", ".", "ndim", "==", "1", ":", "raise", "TypeError", "(", "\"values must be a 1D list-like\"", ")", "if", "not", "mask", ".", "ndim", "==", "1", ":", "raise", "TypeError", "(", "\"mask must be a 1D list-like\"", ")", "# infer dtype if needed", "if", "dtype", "is", "None", ":", "dtype", "=", "np", ".", "dtype", "(", "'int64'", ")", "else", ":", "dtype", "=", "dtype", ".", "type", "# if we are float, let's make sure that we can", "# safely cast", "# we copy as need to coerce here", "if", "mask", ".", "any", "(", ")", ":", "values", "=", "values", ".", "copy", "(", ")", "values", "[", "mask", "]", "=", "1", "values", "=", "safe_cast", "(", "values", ",", "dtype", ",", "copy", "=", "False", ")", "else", ":", "values", "=", "safe_cast", "(", "values", ",", "dtype", ",", "copy", "=", "False", ")", "return", "values", ",", "mask" ]
Coerce the input values array to numpy arrays with a mask Parameters ---------- values : 1D list-like dtype : integer dtype mask : boolean 1D array, optional copy : boolean, default False if True, copy the input Returns ------- tuple of (values, mask)
[ "Coerce", "the", "input", "values", "array", "to", "numpy", "arrays", "with", "a", "mask" ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/arrays/integer.py#L135-L221
19,710
pandas-dev/pandas
pandas/core/arrays/integer.py
_IntegerDtype.construct_from_string
def construct_from_string(cls, string): """ Construction from a string, raise a TypeError if not possible """ if string == cls.name: return cls() raise TypeError("Cannot construct a '{}' from " "'{}'".format(cls, string))
python
def construct_from_string(cls, string): """ Construction from a string, raise a TypeError if not possible """ if string == cls.name: return cls() raise TypeError("Cannot construct a '{}' from " "'{}'".format(cls, string))
[ "def", "construct_from_string", "(", "cls", ",", "string", ")", ":", "if", "string", "==", "cls", ".", "name", ":", "return", "cls", "(", ")", "raise", "TypeError", "(", "\"Cannot construct a '{}' from \"", "\"'{}'\"", ".", "format", "(", "cls", ",", "string", ")", ")" ]
Construction from a string, raise a TypeError if not possible
[ "Construction", "from", "a", "string", "raise", "a", "TypeError", "if", "not", "possible" ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/arrays/integer.py#L81-L89
19,711
pandas-dev/pandas
pandas/core/arrays/integer.py
IntegerArray._coerce_to_ndarray
def _coerce_to_ndarray(self): """ coerce to an ndarary of object dtype """ # TODO(jreback) make this better data = self._data.astype(object) data[self._mask] = self._na_value return data
python
def _coerce_to_ndarray(self): """ coerce to an ndarary of object dtype """ # TODO(jreback) make this better data = self._data.astype(object) data[self._mask] = self._na_value return data
[ "def", "_coerce_to_ndarray", "(", "self", ")", ":", "# TODO(jreback) make this better", "data", "=", "self", ".", "_data", ".", "astype", "(", "object", ")", "data", "[", "self", ".", "_mask", "]", "=", "self", ".", "_na_value", "return", "data" ]
coerce to an ndarary of object dtype
[ "coerce", "to", "an", "ndarary", "of", "object", "dtype" ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/arrays/integer.py#L328-L336
19,712
pandas-dev/pandas
pandas/core/arrays/integer.py
IntegerArray.astype
def astype(self, dtype, copy=True): """ Cast to a NumPy array or IntegerArray with 'dtype'. Parameters ---------- dtype : str or dtype Typecode or data-type to which the array is cast. copy : bool, default True Whether to copy the data, even if not necessary. If False, a copy is made only if the old dtype does not match the new dtype. Returns ------- array : ndarray or IntegerArray NumPy ndarray or IntergerArray with 'dtype' for its dtype. Raises ------ TypeError if incompatible type with an IntegerDtype, equivalent of same_kind casting """ # if we are astyping to an existing IntegerDtype we can fastpath if isinstance(dtype, _IntegerDtype): result = self._data.astype(dtype.numpy_dtype, copy=False) return type(self)(result, mask=self._mask, copy=False) # coerce data = self._coerce_to_ndarray() return astype_nansafe(data, dtype, copy=None)
python
def astype(self, dtype, copy=True): """ Cast to a NumPy array or IntegerArray with 'dtype'. Parameters ---------- dtype : str or dtype Typecode or data-type to which the array is cast. copy : bool, default True Whether to copy the data, even if not necessary. If False, a copy is made only if the old dtype does not match the new dtype. Returns ------- array : ndarray or IntegerArray NumPy ndarray or IntergerArray with 'dtype' for its dtype. Raises ------ TypeError if incompatible type with an IntegerDtype, equivalent of same_kind casting """ # if we are astyping to an existing IntegerDtype we can fastpath if isinstance(dtype, _IntegerDtype): result = self._data.astype(dtype.numpy_dtype, copy=False) return type(self)(result, mask=self._mask, copy=False) # coerce data = self._coerce_to_ndarray() return astype_nansafe(data, dtype, copy=None)
[ "def", "astype", "(", "self", ",", "dtype", ",", "copy", "=", "True", ")", ":", "# if we are astyping to an existing IntegerDtype we can fastpath", "if", "isinstance", "(", "dtype", ",", "_IntegerDtype", ")", ":", "result", "=", "self", ".", "_data", ".", "astype", "(", "dtype", ".", "numpy_dtype", ",", "copy", "=", "False", ")", "return", "type", "(", "self", ")", "(", "result", ",", "mask", "=", "self", ".", "_mask", ",", "copy", "=", "False", ")", "# coerce", "data", "=", "self", ".", "_coerce_to_ndarray", "(", ")", "return", "astype_nansafe", "(", "data", ",", "dtype", ",", "copy", "=", "None", ")" ]
Cast to a NumPy array or IntegerArray with 'dtype'. Parameters ---------- dtype : str or dtype Typecode or data-type to which the array is cast. copy : bool, default True Whether to copy the data, even if not necessary. If False, a copy is made only if the old dtype does not match the new dtype. Returns ------- array : ndarray or IntegerArray NumPy ndarray or IntergerArray with 'dtype' for its dtype. Raises ------ TypeError if incompatible type with an IntegerDtype, equivalent of same_kind casting
[ "Cast", "to", "a", "NumPy", "array", "or", "IntegerArray", "with", "dtype", "." ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/arrays/integer.py#L420-L452
19,713
pandas-dev/pandas
pandas/core/arrays/integer.py
IntegerArray.value_counts
def value_counts(self, dropna=True): """ Returns a Series containing counts of each category. Every category will have an entry, even those with a count of 0. Parameters ---------- dropna : boolean, default True Don't include counts of NaN. Returns ------- counts : Series See Also -------- Series.value_counts """ from pandas import Index, Series # compute counts on the data with no nans data = self._data[~self._mask] value_counts = Index(data).value_counts() array = value_counts.values # TODO(extension) # if we have allow Index to hold an ExtensionArray # this is easier index = value_counts.index.astype(object) # if we want nans, count the mask if not dropna: # TODO(extension) # appending to an Index *always* infers # w/o passing the dtype array = np.append(array, [self._mask.sum()]) index = Index(np.concatenate( [index.values, np.array([np.nan], dtype=object)]), dtype=object) return Series(array, index=index)
python
def value_counts(self, dropna=True): """ Returns a Series containing counts of each category. Every category will have an entry, even those with a count of 0. Parameters ---------- dropna : boolean, default True Don't include counts of NaN. Returns ------- counts : Series See Also -------- Series.value_counts """ from pandas import Index, Series # compute counts on the data with no nans data = self._data[~self._mask] value_counts = Index(data).value_counts() array = value_counts.values # TODO(extension) # if we have allow Index to hold an ExtensionArray # this is easier index = value_counts.index.astype(object) # if we want nans, count the mask if not dropna: # TODO(extension) # appending to an Index *always* infers # w/o passing the dtype array = np.append(array, [self._mask.sum()]) index = Index(np.concatenate( [index.values, np.array([np.nan], dtype=object)]), dtype=object) return Series(array, index=index)
[ "def", "value_counts", "(", "self", ",", "dropna", "=", "True", ")", ":", "from", "pandas", "import", "Index", ",", "Series", "# compute counts on the data with no nans", "data", "=", "self", ".", "_data", "[", "~", "self", ".", "_mask", "]", "value_counts", "=", "Index", "(", "data", ")", ".", "value_counts", "(", ")", "array", "=", "value_counts", ".", "values", "# TODO(extension)", "# if we have allow Index to hold an ExtensionArray", "# this is easier", "index", "=", "value_counts", ".", "index", ".", "astype", "(", "object", ")", "# if we want nans, count the mask", "if", "not", "dropna", ":", "# TODO(extension)", "# appending to an Index *always* infers", "# w/o passing the dtype", "array", "=", "np", ".", "append", "(", "array", ",", "[", "self", ".", "_mask", ".", "sum", "(", ")", "]", ")", "index", "=", "Index", "(", "np", ".", "concatenate", "(", "[", "index", ".", "values", ",", "np", ".", "array", "(", "[", "np", ".", "nan", "]", ",", "dtype", "=", "object", ")", "]", ")", ",", "dtype", "=", "object", ")", "return", "Series", "(", "array", ",", "index", "=", "index", ")" ]
Returns a Series containing counts of each category. Every category will have an entry, even those with a count of 0. Parameters ---------- dropna : boolean, default True Don't include counts of NaN. Returns ------- counts : Series See Also -------- Series.value_counts
[ "Returns", "a", "Series", "containing", "counts", "of", "each", "category", "." ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/arrays/integer.py#L465-L509
19,714
pandas-dev/pandas
pandas/core/arrays/integer.py
IntegerArray._values_for_argsort
def _values_for_argsort(self) -> np.ndarray: """Return values for sorting. Returns ------- ndarray The transformed values should maintain the ordering between values within the array. See Also -------- ExtensionArray.argsort """ data = self._data.copy() data[self._mask] = data.min() - 1 return data
python
def _values_for_argsort(self) -> np.ndarray: """Return values for sorting. Returns ------- ndarray The transformed values should maintain the ordering between values within the array. See Also -------- ExtensionArray.argsort """ data = self._data.copy() data[self._mask] = data.min() - 1 return data
[ "def", "_values_for_argsort", "(", "self", ")", "->", "np", ".", "ndarray", ":", "data", "=", "self", ".", "_data", ".", "copy", "(", ")", "data", "[", "self", ".", "_mask", "]", "=", "data", ".", "min", "(", ")", "-", "1", "return", "data" ]
Return values for sorting. Returns ------- ndarray The transformed values should maintain the ordering between values within the array. See Also -------- ExtensionArray.argsort
[ "Return", "values", "for", "sorting", "." ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/arrays/integer.py#L511-L526
19,715
pandas-dev/pandas
pandas/core/indexing.py
length_of_indexer
def length_of_indexer(indexer, target=None): """ return the length of a single non-tuple indexer which could be a slice """ if target is not None and isinstance(indexer, slice): target_len = len(target) start = indexer.start stop = indexer.stop step = indexer.step if start is None: start = 0 elif start < 0: start += target_len if stop is None or stop > target_len: stop = target_len elif stop < 0: stop += target_len if step is None: step = 1 elif step < 0: step = -step return (stop - start + step - 1) // step elif isinstance(indexer, (ABCSeries, Index, np.ndarray, list)): return len(indexer) elif not is_list_like_indexer(indexer): return 1 raise AssertionError("cannot find the length of the indexer")
python
def length_of_indexer(indexer, target=None): """ return the length of a single non-tuple indexer which could be a slice """ if target is not None and isinstance(indexer, slice): target_len = len(target) start = indexer.start stop = indexer.stop step = indexer.step if start is None: start = 0 elif start < 0: start += target_len if stop is None or stop > target_len: stop = target_len elif stop < 0: stop += target_len if step is None: step = 1 elif step < 0: step = -step return (stop - start + step - 1) // step elif isinstance(indexer, (ABCSeries, Index, np.ndarray, list)): return len(indexer) elif not is_list_like_indexer(indexer): return 1 raise AssertionError("cannot find the length of the indexer")
[ "def", "length_of_indexer", "(", "indexer", ",", "target", "=", "None", ")", ":", "if", "target", "is", "not", "None", "and", "isinstance", "(", "indexer", ",", "slice", ")", ":", "target_len", "=", "len", "(", "target", ")", "start", "=", "indexer", ".", "start", "stop", "=", "indexer", ".", "stop", "step", "=", "indexer", ".", "step", "if", "start", "is", "None", ":", "start", "=", "0", "elif", "start", "<", "0", ":", "start", "+=", "target_len", "if", "stop", "is", "None", "or", "stop", ">", "target_len", ":", "stop", "=", "target_len", "elif", "stop", "<", "0", ":", "stop", "+=", "target_len", "if", "step", "is", "None", ":", "step", "=", "1", "elif", "step", "<", "0", ":", "step", "=", "-", "step", "return", "(", "stop", "-", "start", "+", "step", "-", "1", ")", "//", "step", "elif", "isinstance", "(", "indexer", ",", "(", "ABCSeries", ",", "Index", ",", "np", ".", "ndarray", ",", "list", ")", ")", ":", "return", "len", "(", "indexer", ")", "elif", "not", "is_list_like_indexer", "(", "indexer", ")", ":", "return", "1", "raise", "AssertionError", "(", "\"cannot find the length of the indexer\"", ")" ]
return the length of a single non-tuple indexer which could be a slice
[ "return", "the", "length", "of", "a", "single", "non", "-", "tuple", "indexer", "which", "could", "be", "a", "slice" ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/indexing.py#L2431-L2457
19,716
pandas-dev/pandas
pandas/core/indexing.py
convert_to_index_sliceable
def convert_to_index_sliceable(obj, key): """ if we are index sliceable, then return my slicer, otherwise return None """ idx = obj.index if isinstance(key, slice): return idx._convert_slice_indexer(key, kind='getitem') elif isinstance(key, str): # we are an actual column if obj._data.items.contains(key): return None # We might have a datetimelike string that we can translate to a # slice here via partial string indexing if idx.is_all_dates: try: return idx._get_string_slice(key) except (KeyError, ValueError, NotImplementedError): return None return None
python
def convert_to_index_sliceable(obj, key): """ if we are index sliceable, then return my slicer, otherwise return None """ idx = obj.index if isinstance(key, slice): return idx._convert_slice_indexer(key, kind='getitem') elif isinstance(key, str): # we are an actual column if obj._data.items.contains(key): return None # We might have a datetimelike string that we can translate to a # slice here via partial string indexing if idx.is_all_dates: try: return idx._get_string_slice(key) except (KeyError, ValueError, NotImplementedError): return None return None
[ "def", "convert_to_index_sliceable", "(", "obj", ",", "key", ")", ":", "idx", "=", "obj", ".", "index", "if", "isinstance", "(", "key", ",", "slice", ")", ":", "return", "idx", ".", "_convert_slice_indexer", "(", "key", ",", "kind", "=", "'getitem'", ")", "elif", "isinstance", "(", "key", ",", "str", ")", ":", "# we are an actual column", "if", "obj", ".", "_data", ".", "items", ".", "contains", "(", "key", ")", ":", "return", "None", "# We might have a datetimelike string that we can translate to a", "# slice here via partial string indexing", "if", "idx", ".", "is_all_dates", ":", "try", ":", "return", "idx", ".", "_get_string_slice", "(", "key", ")", "except", "(", "KeyError", ",", "ValueError", ",", "NotImplementedError", ")", ":", "return", "None", "return", "None" ]
if we are index sliceable, then return my slicer, otherwise return None
[ "if", "we", "are", "index", "sliceable", "then", "return", "my", "slicer", "otherwise", "return", "None" ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/indexing.py#L2460-L2482
19,717
pandas-dev/pandas
pandas/core/indexing.py
check_setitem_lengths
def check_setitem_lengths(indexer, value, values): """ Validate that value and indexer are the same length. An special-case is allowed for when the indexer is a boolean array and the number of true values equals the length of ``value``. In this case, no exception is raised. Parameters ---------- indexer : sequence The key for the setitem value : array-like The value for the setitem values : array-like The values being set into Returns ------- None Raises ------ ValueError When the indexer is an ndarray or list and the lengths don't match. """ # boolean with truth values == len of the value is ok too if isinstance(indexer, (np.ndarray, list)): if is_list_like(value) and len(indexer) != len(value): if not (isinstance(indexer, np.ndarray) and indexer.dtype == np.bool_ and len(indexer[indexer]) == len(value)): raise ValueError("cannot set using a list-like indexer " "with a different length than the value") # slice elif isinstance(indexer, slice): if is_list_like(value) and len(values): if len(value) != length_of_indexer(indexer, values): raise ValueError("cannot set using a slice indexer with a " "different length than the value")
python
def check_setitem_lengths(indexer, value, values): """ Validate that value and indexer are the same length. An special-case is allowed for when the indexer is a boolean array and the number of true values equals the length of ``value``. In this case, no exception is raised. Parameters ---------- indexer : sequence The key for the setitem value : array-like The value for the setitem values : array-like The values being set into Returns ------- None Raises ------ ValueError When the indexer is an ndarray or list and the lengths don't match. """ # boolean with truth values == len of the value is ok too if isinstance(indexer, (np.ndarray, list)): if is_list_like(value) and len(indexer) != len(value): if not (isinstance(indexer, np.ndarray) and indexer.dtype == np.bool_ and len(indexer[indexer]) == len(value)): raise ValueError("cannot set using a list-like indexer " "with a different length than the value") # slice elif isinstance(indexer, slice): if is_list_like(value) and len(values): if len(value) != length_of_indexer(indexer, values): raise ValueError("cannot set using a slice indexer with a " "different length than the value")
[ "def", "check_setitem_lengths", "(", "indexer", ",", "value", ",", "values", ")", ":", "# boolean with truth values == len of the value is ok too", "if", "isinstance", "(", "indexer", ",", "(", "np", ".", "ndarray", ",", "list", ")", ")", ":", "if", "is_list_like", "(", "value", ")", "and", "len", "(", "indexer", ")", "!=", "len", "(", "value", ")", ":", "if", "not", "(", "isinstance", "(", "indexer", ",", "np", ".", "ndarray", ")", "and", "indexer", ".", "dtype", "==", "np", ".", "bool_", "and", "len", "(", "indexer", "[", "indexer", "]", ")", "==", "len", "(", "value", ")", ")", ":", "raise", "ValueError", "(", "\"cannot set using a list-like indexer \"", "\"with a different length than the value\"", ")", "# slice", "elif", "isinstance", "(", "indexer", ",", "slice", ")", ":", "if", "is_list_like", "(", "value", ")", "and", "len", "(", "values", ")", ":", "if", "len", "(", "value", ")", "!=", "length_of_indexer", "(", "indexer", ",", "values", ")", ":", "raise", "ValueError", "(", "\"cannot set using a slice indexer with a \"", "\"different length than the value\"", ")" ]
Validate that value and indexer are the same length. An special-case is allowed for when the indexer is a boolean array and the number of true values equals the length of ``value``. In this case, no exception is raised. Parameters ---------- indexer : sequence The key for the setitem value : array-like The value for the setitem values : array-like The values being set into Returns ------- None Raises ------ ValueError When the indexer is an ndarray or list and the lengths don't match.
[ "Validate", "that", "value", "and", "indexer", "are", "the", "same", "length", "." ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/indexing.py#L2511-L2552
19,718
pandas-dev/pandas
pandas/core/indexing.py
convert_missing_indexer
def convert_missing_indexer(indexer): """ reverse convert a missing indexer, which is a dict return the scalar indexer and a boolean indicating if we converted """ if isinstance(indexer, dict): # a missing key (but not a tuple indexer) indexer = indexer['key'] if isinstance(indexer, bool): raise KeyError("cannot use a single bool to index into setitem") return indexer, True return indexer, False
python
def convert_missing_indexer(indexer): """ reverse convert a missing indexer, which is a dict return the scalar indexer and a boolean indicating if we converted """ if isinstance(indexer, dict): # a missing key (but not a tuple indexer) indexer = indexer['key'] if isinstance(indexer, bool): raise KeyError("cannot use a single bool to index into setitem") return indexer, True return indexer, False
[ "def", "convert_missing_indexer", "(", "indexer", ")", ":", "if", "isinstance", "(", "indexer", ",", "dict", ")", ":", "# a missing key (but not a tuple indexer)", "indexer", "=", "indexer", "[", "'key'", "]", "if", "isinstance", "(", "indexer", ",", "bool", ")", ":", "raise", "KeyError", "(", "\"cannot use a single bool to index into setitem\"", ")", "return", "indexer", ",", "True", "return", "indexer", ",", "False" ]
reverse convert a missing indexer, which is a dict return the scalar indexer and a boolean indicating if we converted
[ "reverse", "convert", "a", "missing", "indexer", "which", "is", "a", "dict", "return", "the", "scalar", "indexer", "and", "a", "boolean", "indicating", "if", "we", "converted" ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/indexing.py#L2555-L2570
19,719
pandas-dev/pandas
pandas/core/indexing.py
convert_from_missing_indexer_tuple
def convert_from_missing_indexer_tuple(indexer, axes): """ create a filtered indexer that doesn't have any missing indexers """ def get_indexer(_i, _idx): return (axes[_i].get_loc(_idx['key']) if isinstance(_idx, dict) else _idx) return tuple(get_indexer(_i, _idx) for _i, _idx in enumerate(indexer))
python
def convert_from_missing_indexer_tuple(indexer, axes): """ create a filtered indexer that doesn't have any missing indexers """ def get_indexer(_i, _idx): return (axes[_i].get_loc(_idx['key']) if isinstance(_idx, dict) else _idx) return tuple(get_indexer(_i, _idx) for _i, _idx in enumerate(indexer))
[ "def", "convert_from_missing_indexer_tuple", "(", "indexer", ",", "axes", ")", ":", "def", "get_indexer", "(", "_i", ",", "_idx", ")", ":", "return", "(", "axes", "[", "_i", "]", ".", "get_loc", "(", "_idx", "[", "'key'", "]", ")", "if", "isinstance", "(", "_idx", ",", "dict", ")", "else", "_idx", ")", "return", "tuple", "(", "get_indexer", "(", "_i", ",", "_idx", ")", "for", "_i", ",", "_idx", "in", "enumerate", "(", "indexer", ")", ")" ]
create a filtered indexer that doesn't have any missing indexers
[ "create", "a", "filtered", "indexer", "that", "doesn", "t", "have", "any", "missing", "indexers" ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/indexing.py#L2573-L2582
19,720
pandas-dev/pandas
pandas/core/indexing.py
maybe_convert_indices
def maybe_convert_indices(indices, n): """ Attempt to convert indices into valid, positive indices. If we have negative indices, translate to positive here. If we have indices that are out-of-bounds, raise an IndexError. Parameters ---------- indices : array-like The array of indices that we are to convert. n : int The number of elements in the array that we are indexing. Returns ------- valid_indices : array-like An array-like of positive indices that correspond to the ones that were passed in initially to this function. Raises ------ IndexError : one of the converted indices either exceeded the number of elements (specified by `n`) OR was still negative. """ if isinstance(indices, list): indices = np.array(indices) if len(indices) == 0: # If list is empty, np.array will return float and cause indexing # errors. return np.empty(0, dtype=np.intp) mask = indices < 0 if mask.any(): indices = indices.copy() indices[mask] += n mask = (indices >= n) | (indices < 0) if mask.any(): raise IndexError("indices are out-of-bounds") return indices
python
def maybe_convert_indices(indices, n): """ Attempt to convert indices into valid, positive indices. If we have negative indices, translate to positive here. If we have indices that are out-of-bounds, raise an IndexError. Parameters ---------- indices : array-like The array of indices that we are to convert. n : int The number of elements in the array that we are indexing. Returns ------- valid_indices : array-like An array-like of positive indices that correspond to the ones that were passed in initially to this function. Raises ------ IndexError : one of the converted indices either exceeded the number of elements (specified by `n`) OR was still negative. """ if isinstance(indices, list): indices = np.array(indices) if len(indices) == 0: # If list is empty, np.array will return float and cause indexing # errors. return np.empty(0, dtype=np.intp) mask = indices < 0 if mask.any(): indices = indices.copy() indices[mask] += n mask = (indices >= n) | (indices < 0) if mask.any(): raise IndexError("indices are out-of-bounds") return indices
[ "def", "maybe_convert_indices", "(", "indices", ",", "n", ")", ":", "if", "isinstance", "(", "indices", ",", "list", ")", ":", "indices", "=", "np", ".", "array", "(", "indices", ")", "if", "len", "(", "indices", ")", "==", "0", ":", "# If list is empty, np.array will return float and cause indexing", "# errors.", "return", "np", ".", "empty", "(", "0", ",", "dtype", "=", "np", ".", "intp", ")", "mask", "=", "indices", "<", "0", "if", "mask", ".", "any", "(", ")", ":", "indices", "=", "indices", ".", "copy", "(", ")", "indices", "[", "mask", "]", "+=", "n", "mask", "=", "(", "indices", ">=", "n", ")", "|", "(", "indices", "<", "0", ")", "if", "mask", ".", "any", "(", ")", ":", "raise", "IndexError", "(", "\"indices are out-of-bounds\"", ")", "return", "indices" ]
Attempt to convert indices into valid, positive indices. If we have negative indices, translate to positive here. If we have indices that are out-of-bounds, raise an IndexError. Parameters ---------- indices : array-like The array of indices that we are to convert. n : int The number of elements in the array that we are indexing. Returns ------- valid_indices : array-like An array-like of positive indices that correspond to the ones that were passed in initially to this function. Raises ------ IndexError : one of the converted indices either exceeded the number of elements (specified by `n`) OR was still negative.
[ "Attempt", "to", "convert", "indices", "into", "valid", "positive", "indices", "." ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/indexing.py#L2585-L2626
19,721
pandas-dev/pandas
pandas/core/indexing.py
validate_indices
def validate_indices(indices, n): """ Perform bounds-checking for an indexer. -1 is allowed for indicating missing values. Parameters ---------- indices : ndarray n : int length of the array being indexed Raises ------ ValueError Examples -------- >>> validate_indices([1, 2], 3) # OK >>> validate_indices([1, -2], 3) ValueError >>> validate_indices([1, 2, 3], 3) IndexError >>> validate_indices([-1, -1], 0) # OK >>> validate_indices([0, 1], 0) IndexError """ if len(indices): min_idx = indices.min() if min_idx < -1: msg = ("'indices' contains values less than allowed ({} < {})" .format(min_idx, -1)) raise ValueError(msg) max_idx = indices.max() if max_idx >= n: raise IndexError("indices are out-of-bounds")
python
def validate_indices(indices, n): """ Perform bounds-checking for an indexer. -1 is allowed for indicating missing values. Parameters ---------- indices : ndarray n : int length of the array being indexed Raises ------ ValueError Examples -------- >>> validate_indices([1, 2], 3) # OK >>> validate_indices([1, -2], 3) ValueError >>> validate_indices([1, 2, 3], 3) IndexError >>> validate_indices([-1, -1], 0) # OK >>> validate_indices([0, 1], 0) IndexError """ if len(indices): min_idx = indices.min() if min_idx < -1: msg = ("'indices' contains values less than allowed ({} < {})" .format(min_idx, -1)) raise ValueError(msg) max_idx = indices.max() if max_idx >= n: raise IndexError("indices are out-of-bounds")
[ "def", "validate_indices", "(", "indices", ",", "n", ")", ":", "if", "len", "(", "indices", ")", ":", "min_idx", "=", "indices", ".", "min", "(", ")", "if", "min_idx", "<", "-", "1", ":", "msg", "=", "(", "\"'indices' contains values less than allowed ({} < {})\"", ".", "format", "(", "min_idx", ",", "-", "1", ")", ")", "raise", "ValueError", "(", "msg", ")", "max_idx", "=", "indices", ".", "max", "(", ")", "if", "max_idx", ">=", "n", ":", "raise", "IndexError", "(", "\"indices are out-of-bounds\"", ")" ]
Perform bounds-checking for an indexer. -1 is allowed for indicating missing values. Parameters ---------- indices : ndarray n : int length of the array being indexed Raises ------ ValueError Examples -------- >>> validate_indices([1, 2], 3) # OK >>> validate_indices([1, -2], 3) ValueError >>> validate_indices([1, 2, 3], 3) IndexError >>> validate_indices([-1, -1], 0) # OK >>> validate_indices([0, 1], 0) IndexError
[ "Perform", "bounds", "-", "checking", "for", "an", "indexer", "." ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/indexing.py#L2629-L2667
19,722
pandas-dev/pandas
pandas/core/indexing.py
maybe_convert_ix
def maybe_convert_ix(*args): """ We likely want to take the cross-product """ ixify = True for arg in args: if not isinstance(arg, (np.ndarray, list, ABCSeries, Index)): ixify = False if ixify: return np.ix_(*args) else: return args
python
def maybe_convert_ix(*args): """ We likely want to take the cross-product """ ixify = True for arg in args: if not isinstance(arg, (np.ndarray, list, ABCSeries, Index)): ixify = False if ixify: return np.ix_(*args) else: return args
[ "def", "maybe_convert_ix", "(", "*", "args", ")", ":", "ixify", "=", "True", "for", "arg", "in", "args", ":", "if", "not", "isinstance", "(", "arg", ",", "(", "np", ".", "ndarray", ",", "list", ",", "ABCSeries", ",", "Index", ")", ")", ":", "ixify", "=", "False", "if", "ixify", ":", "return", "np", ".", "ix_", "(", "*", "args", ")", "else", ":", "return", "args" ]
We likely want to take the cross-product
[ "We", "likely", "want", "to", "take", "the", "cross", "-", "product" ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/indexing.py#L2670-L2683
19,723
pandas-dev/pandas
pandas/core/indexing.py
_non_reducing_slice
def _non_reducing_slice(slice_): """ Ensurse that a slice doesn't reduce to a Series or Scalar. Any user-paseed `subset` should have this called on it to make sure we're always working with DataFrames. """ # default to column slice, like DataFrame # ['A', 'B'] -> IndexSlices[:, ['A', 'B']] kinds = (ABCSeries, np.ndarray, Index, list, str) if isinstance(slice_, kinds): slice_ = IndexSlice[:, slice_] def pred(part): # true when slice does *not* reduce, False when part is a tuple, # i.e. MultiIndex slice return ((isinstance(part, slice) or is_list_like(part)) and not isinstance(part, tuple)) if not is_list_like(slice_): if not isinstance(slice_, slice): # a 1-d slice, like df.loc[1] slice_ = [[slice_]] else: # slice(a, b, c) slice_ = [slice_] # to tuplize later else: slice_ = [part if pred(part) else [part] for part in slice_] return tuple(slice_)
python
def _non_reducing_slice(slice_): """ Ensurse that a slice doesn't reduce to a Series or Scalar. Any user-paseed `subset` should have this called on it to make sure we're always working with DataFrames. """ # default to column slice, like DataFrame # ['A', 'B'] -> IndexSlices[:, ['A', 'B']] kinds = (ABCSeries, np.ndarray, Index, list, str) if isinstance(slice_, kinds): slice_ = IndexSlice[:, slice_] def pred(part): # true when slice does *not* reduce, False when part is a tuple, # i.e. MultiIndex slice return ((isinstance(part, slice) or is_list_like(part)) and not isinstance(part, tuple)) if not is_list_like(slice_): if not isinstance(slice_, slice): # a 1-d slice, like df.loc[1] slice_ = [[slice_]] else: # slice(a, b, c) slice_ = [slice_] # to tuplize later else: slice_ = [part if pred(part) else [part] for part in slice_] return tuple(slice_)
[ "def", "_non_reducing_slice", "(", "slice_", ")", ":", "# default to column slice, like DataFrame", "# ['A', 'B'] -> IndexSlices[:, ['A', 'B']]", "kinds", "=", "(", "ABCSeries", ",", "np", ".", "ndarray", ",", "Index", ",", "list", ",", "str", ")", "if", "isinstance", "(", "slice_", ",", "kinds", ")", ":", "slice_", "=", "IndexSlice", "[", ":", ",", "slice_", "]", "def", "pred", "(", "part", ")", ":", "# true when slice does *not* reduce, False when part is a tuple,", "# i.e. MultiIndex slice", "return", "(", "(", "isinstance", "(", "part", ",", "slice", ")", "or", "is_list_like", "(", "part", ")", ")", "and", "not", "isinstance", "(", "part", ",", "tuple", ")", ")", "if", "not", "is_list_like", "(", "slice_", ")", ":", "if", "not", "isinstance", "(", "slice_", ",", "slice", ")", ":", "# a 1-d slice, like df.loc[1]", "slice_", "=", "[", "[", "slice_", "]", "]", "else", ":", "# slice(a, b, c)", "slice_", "=", "[", "slice_", "]", "# to tuplize later", "else", ":", "slice_", "=", "[", "part", "if", "pred", "(", "part", ")", "else", "[", "part", "]", "for", "part", "in", "slice_", "]", "return", "tuple", "(", "slice_", ")" ]
Ensurse that a slice doesn't reduce to a Series or Scalar. Any user-paseed `subset` should have this called on it to make sure we're always working with DataFrames.
[ "Ensurse", "that", "a", "slice", "doesn", "t", "reduce", "to", "a", "Series", "or", "Scalar", "." ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/indexing.py#L2734-L2762
19,724
pandas-dev/pandas
pandas/core/indexing.py
_maybe_numeric_slice
def _maybe_numeric_slice(df, slice_, include_bool=False): """ want nice defaults for background_gradient that don't break with non-numeric data. But if slice_ is passed go with that. """ if slice_ is None: dtypes = [np.number] if include_bool: dtypes.append(bool) slice_ = IndexSlice[:, df.select_dtypes(include=dtypes).columns] return slice_
python
def _maybe_numeric_slice(df, slice_, include_bool=False): """ want nice defaults for background_gradient that don't break with non-numeric data. But if slice_ is passed go with that. """ if slice_ is None: dtypes = [np.number] if include_bool: dtypes.append(bool) slice_ = IndexSlice[:, df.select_dtypes(include=dtypes).columns] return slice_
[ "def", "_maybe_numeric_slice", "(", "df", ",", "slice_", ",", "include_bool", "=", "False", ")", ":", "if", "slice_", "is", "None", ":", "dtypes", "=", "[", "np", ".", "number", "]", "if", "include_bool", ":", "dtypes", ".", "append", "(", "bool", ")", "slice_", "=", "IndexSlice", "[", ":", ",", "df", ".", "select_dtypes", "(", "include", "=", "dtypes", ")", ".", "columns", "]", "return", "slice_" ]
want nice defaults for background_gradient that don't break with non-numeric data. But if slice_ is passed go with that.
[ "want", "nice", "defaults", "for", "background_gradient", "that", "don", "t", "break", "with", "non", "-", "numeric", "data", ".", "But", "if", "slice_", "is", "passed", "go", "with", "that", "." ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/indexing.py#L2765-L2775
19,725
pandas-dev/pandas
pandas/core/indexing.py
_NDFrameIndexer._has_valid_tuple
def _has_valid_tuple(self, key): """ check the key for valid keys across my indexer """ for i, k in enumerate(key): if i >= self.obj.ndim: raise IndexingError('Too many indexers') try: self._validate_key(k, i) except ValueError: raise ValueError("Location based indexing can only have " "[{types}] types" .format(types=self._valid_types))
python
def _has_valid_tuple(self, key): """ check the key for valid keys across my indexer """ for i, k in enumerate(key): if i >= self.obj.ndim: raise IndexingError('Too many indexers') try: self._validate_key(k, i) except ValueError: raise ValueError("Location based indexing can only have " "[{types}] types" .format(types=self._valid_types))
[ "def", "_has_valid_tuple", "(", "self", ",", "key", ")", ":", "for", "i", ",", "k", "in", "enumerate", "(", "key", ")", ":", "if", "i", ">=", "self", ".", "obj", ".", "ndim", ":", "raise", "IndexingError", "(", "'Too many indexers'", ")", "try", ":", "self", ".", "_validate_key", "(", "k", ",", "i", ")", "except", "ValueError", ":", "raise", "ValueError", "(", "\"Location based indexing can only have \"", "\"[{types}] types\"", ".", "format", "(", "types", "=", "self", ".", "_valid_types", ")", ")" ]
check the key for valid keys across my indexer
[ "check", "the", "key", "for", "valid", "keys", "across", "my", "indexer" ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/indexing.py#L215-L225
19,726
pandas-dev/pandas
pandas/core/indexing.py
_NDFrameIndexer._has_valid_positional_setitem_indexer
def _has_valid_positional_setitem_indexer(self, indexer): """ validate that an positional indexer cannot enlarge its target will raise if needed, does not modify the indexer externally """ if isinstance(indexer, dict): raise IndexError("{0} cannot enlarge its target object" .format(self.name)) else: if not isinstance(indexer, tuple): indexer = self._tuplify(indexer) for ax, i in zip(self.obj.axes, indexer): if isinstance(i, slice): # should check the stop slice? pass elif is_list_like_indexer(i): # should check the elements? pass elif is_integer(i): if i >= len(ax): raise IndexError("{name} cannot enlarge its target " "object".format(name=self.name)) elif isinstance(i, dict): raise IndexError("{name} cannot enlarge its target object" .format(name=self.name)) return True
python
def _has_valid_positional_setitem_indexer(self, indexer): """ validate that an positional indexer cannot enlarge its target will raise if needed, does not modify the indexer externally """ if isinstance(indexer, dict): raise IndexError("{0} cannot enlarge its target object" .format(self.name)) else: if not isinstance(indexer, tuple): indexer = self._tuplify(indexer) for ax, i in zip(self.obj.axes, indexer): if isinstance(i, slice): # should check the stop slice? pass elif is_list_like_indexer(i): # should check the elements? pass elif is_integer(i): if i >= len(ax): raise IndexError("{name} cannot enlarge its target " "object".format(name=self.name)) elif isinstance(i, dict): raise IndexError("{name} cannot enlarge its target object" .format(name=self.name)) return True
[ "def", "_has_valid_positional_setitem_indexer", "(", "self", ",", "indexer", ")", ":", "if", "isinstance", "(", "indexer", ",", "dict", ")", ":", "raise", "IndexError", "(", "\"{0} cannot enlarge its target object\"", ".", "format", "(", "self", ".", "name", ")", ")", "else", ":", "if", "not", "isinstance", "(", "indexer", ",", "tuple", ")", ":", "indexer", "=", "self", ".", "_tuplify", "(", "indexer", ")", "for", "ax", ",", "i", "in", "zip", "(", "self", ".", "obj", ".", "axes", ",", "indexer", ")", ":", "if", "isinstance", "(", "i", ",", "slice", ")", ":", "# should check the stop slice?", "pass", "elif", "is_list_like_indexer", "(", "i", ")", ":", "# should check the elements?", "pass", "elif", "is_integer", "(", "i", ")", ":", "if", "i", ">=", "len", "(", "ax", ")", ":", "raise", "IndexError", "(", "\"{name} cannot enlarge its target \"", "\"object\"", ".", "format", "(", "name", "=", "self", ".", "name", ")", ")", "elif", "isinstance", "(", "i", ",", "dict", ")", ":", "raise", "IndexError", "(", "\"{name} cannot enlarge its target object\"", ".", "format", "(", "name", "=", "self", ".", "name", ")", ")", "return", "True" ]
validate that an positional indexer cannot enlarge its target will raise if needed, does not modify the indexer externally
[ "validate", "that", "an", "positional", "indexer", "cannot", "enlarge", "its", "target", "will", "raise", "if", "needed", "does", "not", "modify", "the", "indexer", "externally" ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/indexing.py#L270-L295
19,727
pandas-dev/pandas
pandas/core/indexing.py
_NDFrameIndexer._multi_take_opportunity
def _multi_take_opportunity(self, tup): """ Check whether there is the possibility to use ``_multi_take``. Currently the limit is that all axes being indexed must be indexed with list-likes. Parameters ---------- tup : tuple Tuple of indexers, one per axis Returns ------- boolean: Whether the current indexing can be passed through _multi_take """ if not all(is_list_like_indexer(x) for x in tup): return False # just too complicated if any(com.is_bool_indexer(x) for x in tup): return False return True
python
def _multi_take_opportunity(self, tup): """ Check whether there is the possibility to use ``_multi_take``. Currently the limit is that all axes being indexed must be indexed with list-likes. Parameters ---------- tup : tuple Tuple of indexers, one per axis Returns ------- boolean: Whether the current indexing can be passed through _multi_take """ if not all(is_list_like_indexer(x) for x in tup): return False # just too complicated if any(com.is_bool_indexer(x) for x in tup): return False return True
[ "def", "_multi_take_opportunity", "(", "self", ",", "tup", ")", ":", "if", "not", "all", "(", "is_list_like_indexer", "(", "x", ")", "for", "x", "in", "tup", ")", ":", "return", "False", "# just too complicated", "if", "any", "(", "com", ".", "is_bool_indexer", "(", "x", ")", "for", "x", "in", "tup", ")", ":", "return", "False", "return", "True" ]
Check whether there is the possibility to use ``_multi_take``. Currently the limit is that all axes being indexed must be indexed with list-likes. Parameters ---------- tup : tuple Tuple of indexers, one per axis Returns ------- boolean: Whether the current indexing can be passed through _multi_take
[ "Check", "whether", "there", "is", "the", "possibility", "to", "use", "_multi_take", ".", "Currently", "the", "limit", "is", "that", "all", "axes", "being", "indexed", "must", "be", "indexed", "with", "list", "-", "likes", "." ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/indexing.py#L890-L912
19,728
pandas-dev/pandas
pandas/core/indexing.py
_NDFrameIndexer._multi_take
def _multi_take(self, tup): """ Create the indexers for the passed tuple of keys, and execute the take operation. This allows the take operation to be executed all at once - rather than once for each dimension - improving efficiency. Parameters ---------- tup : tuple Tuple of indexers, one per axis Returns ------- values: same type as the object being indexed """ # GH 836 o = self.obj d = {axis: self._get_listlike_indexer(key, axis) for (key, axis) in zip(tup, o._AXIS_ORDERS)} return o._reindex_with_indexers(d, copy=True, allow_dups=True)
python
def _multi_take(self, tup): """ Create the indexers for the passed tuple of keys, and execute the take operation. This allows the take operation to be executed all at once - rather than once for each dimension - improving efficiency. Parameters ---------- tup : tuple Tuple of indexers, one per axis Returns ------- values: same type as the object being indexed """ # GH 836 o = self.obj d = {axis: self._get_listlike_indexer(key, axis) for (key, axis) in zip(tup, o._AXIS_ORDERS)} return o._reindex_with_indexers(d, copy=True, allow_dups=True)
[ "def", "_multi_take", "(", "self", ",", "tup", ")", ":", "# GH 836", "o", "=", "self", ".", "obj", "d", "=", "{", "axis", ":", "self", ".", "_get_listlike_indexer", "(", "key", ",", "axis", ")", "for", "(", "key", ",", "axis", ")", "in", "zip", "(", "tup", ",", "o", ".", "_AXIS_ORDERS", ")", "}", "return", "o", ".", "_reindex_with_indexers", "(", "d", ",", "copy", "=", "True", ",", "allow_dups", "=", "True", ")" ]
Create the indexers for the passed tuple of keys, and execute the take operation. This allows the take operation to be executed all at once - rather than once for each dimension - improving efficiency. Parameters ---------- tup : tuple Tuple of indexers, one per axis Returns ------- values: same type as the object being indexed
[ "Create", "the", "indexers", "for", "the", "passed", "tuple", "of", "keys", "and", "execute", "the", "take", "operation", ".", "This", "allows", "the", "take", "operation", "to", "be", "executed", "all", "at", "once", "-", "rather", "than", "once", "for", "each", "dimension", "-", "improving", "efficiency", "." ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/indexing.py#L914-L933
19,729
pandas-dev/pandas
pandas/core/indexing.py
_NDFrameIndexer._get_listlike_indexer
def _get_listlike_indexer(self, key, axis, raise_missing=False): """ Transform a list-like of keys into a new index and an indexer. Parameters ---------- key : list-like Target labels axis: int Dimension on which the indexing is being made raise_missing: bool Whether to raise a KeyError if some labels are not found. Will be removed in the future, and then this method will always behave as if raise_missing=True. Raises ------ KeyError If at least one key was requested but none was found, and raise_missing=True. Returns ------- keyarr: Index New index (coinciding with 'key' if the axis is unique) values : array-like An indexer for the return object; -1 denotes keys not found """ o = self.obj ax = o._get_axis(axis) # Have the index compute an indexer or return None # if it cannot handle: indexer, keyarr = ax._convert_listlike_indexer(key, kind=self.name) # We only act on all found values: if indexer is not None and (indexer != -1).all(): self._validate_read_indexer(key, indexer, axis, raise_missing=raise_missing) return ax[indexer], indexer if ax.is_unique: # If we are trying to get actual keys from empty Series, we # patiently wait for a KeyError later on - otherwise, convert if len(ax) or not len(key): key = self._convert_for_reindex(key, axis) indexer = ax.get_indexer_for(key) keyarr = ax.reindex(keyarr)[0] else: keyarr, indexer, new_indexer = ax._reindex_non_unique(keyarr) self._validate_read_indexer(keyarr, indexer, o._get_axis_number(axis), raise_missing=raise_missing) return keyarr, indexer
python
def _get_listlike_indexer(self, key, axis, raise_missing=False): """ Transform a list-like of keys into a new index and an indexer. Parameters ---------- key : list-like Target labels axis: int Dimension on which the indexing is being made raise_missing: bool Whether to raise a KeyError if some labels are not found. Will be removed in the future, and then this method will always behave as if raise_missing=True. Raises ------ KeyError If at least one key was requested but none was found, and raise_missing=True. Returns ------- keyarr: Index New index (coinciding with 'key' if the axis is unique) values : array-like An indexer for the return object; -1 denotes keys not found """ o = self.obj ax = o._get_axis(axis) # Have the index compute an indexer or return None # if it cannot handle: indexer, keyarr = ax._convert_listlike_indexer(key, kind=self.name) # We only act on all found values: if indexer is not None and (indexer != -1).all(): self._validate_read_indexer(key, indexer, axis, raise_missing=raise_missing) return ax[indexer], indexer if ax.is_unique: # If we are trying to get actual keys from empty Series, we # patiently wait for a KeyError later on - otherwise, convert if len(ax) or not len(key): key = self._convert_for_reindex(key, axis) indexer = ax.get_indexer_for(key) keyarr = ax.reindex(keyarr)[0] else: keyarr, indexer, new_indexer = ax._reindex_non_unique(keyarr) self._validate_read_indexer(keyarr, indexer, o._get_axis_number(axis), raise_missing=raise_missing) return keyarr, indexer
[ "def", "_get_listlike_indexer", "(", "self", ",", "key", ",", "axis", ",", "raise_missing", "=", "False", ")", ":", "o", "=", "self", ".", "obj", "ax", "=", "o", ".", "_get_axis", "(", "axis", ")", "# Have the index compute an indexer or return None", "# if it cannot handle:", "indexer", ",", "keyarr", "=", "ax", ".", "_convert_listlike_indexer", "(", "key", ",", "kind", "=", "self", ".", "name", ")", "# We only act on all found values:", "if", "indexer", "is", "not", "None", "and", "(", "indexer", "!=", "-", "1", ")", ".", "all", "(", ")", ":", "self", ".", "_validate_read_indexer", "(", "key", ",", "indexer", ",", "axis", ",", "raise_missing", "=", "raise_missing", ")", "return", "ax", "[", "indexer", "]", ",", "indexer", "if", "ax", ".", "is_unique", ":", "# If we are trying to get actual keys from empty Series, we", "# patiently wait for a KeyError later on - otherwise, convert", "if", "len", "(", "ax", ")", "or", "not", "len", "(", "key", ")", ":", "key", "=", "self", ".", "_convert_for_reindex", "(", "key", ",", "axis", ")", "indexer", "=", "ax", ".", "get_indexer_for", "(", "key", ")", "keyarr", "=", "ax", ".", "reindex", "(", "keyarr", ")", "[", "0", "]", "else", ":", "keyarr", ",", "indexer", ",", "new_indexer", "=", "ax", ".", "_reindex_non_unique", "(", "keyarr", ")", "self", ".", "_validate_read_indexer", "(", "keyarr", ",", "indexer", ",", "o", ".", "_get_axis_number", "(", "axis", ")", ",", "raise_missing", "=", "raise_missing", ")", "return", "keyarr", ",", "indexer" ]
Transform a list-like of keys into a new index and an indexer. Parameters ---------- key : list-like Target labels axis: int Dimension on which the indexing is being made raise_missing: bool Whether to raise a KeyError if some labels are not found. Will be removed in the future, and then this method will always behave as if raise_missing=True. Raises ------ KeyError If at least one key was requested but none was found, and raise_missing=True. Returns ------- keyarr: Index New index (coinciding with 'key' if the axis is unique) values : array-like An indexer for the return object; -1 denotes keys not found
[ "Transform", "a", "list", "-", "like", "of", "keys", "into", "a", "new", "index", "and", "an", "indexer", "." ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/indexing.py#L1112-L1166
19,730
pandas-dev/pandas
pandas/core/indexing.py
_NDFrameIndexer._convert_to_indexer
def _convert_to_indexer(self, obj, axis=None, is_setter=False, raise_missing=False): """ Convert indexing key into something we can use to do actual fancy indexing on an ndarray Examples ix[:5] -> slice(0, 5) ix[[1,2,3]] -> [1,2,3] ix[['foo', 'bar', 'baz']] -> [i, j, k] (indices of foo, bar, baz) Going by Zen of Python? 'In the face of ambiguity, refuse the temptation to guess.' raise AmbiguousIndexError with integer labels? - No, prefer label-based indexing """ if axis is None: axis = self.axis or 0 labels = self.obj._get_axis(axis) if isinstance(obj, slice): return self._convert_slice_indexer(obj, axis) # try to find out correct indexer, if not type correct raise try: obj = self._convert_scalar_indexer(obj, axis) except TypeError: # but we will allow setting if is_setter: pass # see if we are positional in nature is_int_index = labels.is_integer() is_int_positional = is_integer(obj) and not is_int_index # if we are a label return me try: return labels.get_loc(obj) except LookupError: if isinstance(obj, tuple) and isinstance(labels, MultiIndex): if is_setter and len(obj) == labels.nlevels: return {'key': obj} raise except TypeError: pass except (ValueError): if not is_int_positional: raise # a positional if is_int_positional: # if we are setting and its not a valid location # its an insert which fails by definition if is_setter: # always valid if self.name == 'loc': return {'key': obj} # a positional if (obj >= self.obj.shape[axis] and not isinstance(labels, MultiIndex)): raise ValueError("cannot set by positional indexing with " "enlargement") return obj if is_nested_tuple(obj, labels): return labels.get_locs(obj) elif is_list_like_indexer(obj): if com.is_bool_indexer(obj): obj = check_bool_indexer(labels, obj) inds, = obj.nonzero() return inds else: # When setting, missing keys are not allowed, even with .loc: kwargs = {'raise_missing': True if is_setter else raise_missing} return self._get_listlike_indexer(obj, axis, **kwargs)[1] else: try: return labels.get_loc(obj) except LookupError: # allow a not found key only if we are a setter if not is_list_like_indexer(obj) and is_setter: return {'key': obj} raise
python
def _convert_to_indexer(self, obj, axis=None, is_setter=False, raise_missing=False): """ Convert indexing key into something we can use to do actual fancy indexing on an ndarray Examples ix[:5] -> slice(0, 5) ix[[1,2,3]] -> [1,2,3] ix[['foo', 'bar', 'baz']] -> [i, j, k] (indices of foo, bar, baz) Going by Zen of Python? 'In the face of ambiguity, refuse the temptation to guess.' raise AmbiguousIndexError with integer labels? - No, prefer label-based indexing """ if axis is None: axis = self.axis or 0 labels = self.obj._get_axis(axis) if isinstance(obj, slice): return self._convert_slice_indexer(obj, axis) # try to find out correct indexer, if not type correct raise try: obj = self._convert_scalar_indexer(obj, axis) except TypeError: # but we will allow setting if is_setter: pass # see if we are positional in nature is_int_index = labels.is_integer() is_int_positional = is_integer(obj) and not is_int_index # if we are a label return me try: return labels.get_loc(obj) except LookupError: if isinstance(obj, tuple) and isinstance(labels, MultiIndex): if is_setter and len(obj) == labels.nlevels: return {'key': obj} raise except TypeError: pass except (ValueError): if not is_int_positional: raise # a positional if is_int_positional: # if we are setting and its not a valid location # its an insert which fails by definition if is_setter: # always valid if self.name == 'loc': return {'key': obj} # a positional if (obj >= self.obj.shape[axis] and not isinstance(labels, MultiIndex)): raise ValueError("cannot set by positional indexing with " "enlargement") return obj if is_nested_tuple(obj, labels): return labels.get_locs(obj) elif is_list_like_indexer(obj): if com.is_bool_indexer(obj): obj = check_bool_indexer(labels, obj) inds, = obj.nonzero() return inds else: # When setting, missing keys are not allowed, even with .loc: kwargs = {'raise_missing': True if is_setter else raise_missing} return self._get_listlike_indexer(obj, axis, **kwargs)[1] else: try: return labels.get_loc(obj) except LookupError: # allow a not found key only if we are a setter if not is_list_like_indexer(obj) and is_setter: return {'key': obj} raise
[ "def", "_convert_to_indexer", "(", "self", ",", "obj", ",", "axis", "=", "None", ",", "is_setter", "=", "False", ",", "raise_missing", "=", "False", ")", ":", "if", "axis", "is", "None", ":", "axis", "=", "self", ".", "axis", "or", "0", "labels", "=", "self", ".", "obj", ".", "_get_axis", "(", "axis", ")", "if", "isinstance", "(", "obj", ",", "slice", ")", ":", "return", "self", ".", "_convert_slice_indexer", "(", "obj", ",", "axis", ")", "# try to find out correct indexer, if not type correct raise", "try", ":", "obj", "=", "self", ".", "_convert_scalar_indexer", "(", "obj", ",", "axis", ")", "except", "TypeError", ":", "# but we will allow setting", "if", "is_setter", ":", "pass", "# see if we are positional in nature", "is_int_index", "=", "labels", ".", "is_integer", "(", ")", "is_int_positional", "=", "is_integer", "(", "obj", ")", "and", "not", "is_int_index", "# if we are a label return me", "try", ":", "return", "labels", ".", "get_loc", "(", "obj", ")", "except", "LookupError", ":", "if", "isinstance", "(", "obj", ",", "tuple", ")", "and", "isinstance", "(", "labels", ",", "MultiIndex", ")", ":", "if", "is_setter", "and", "len", "(", "obj", ")", "==", "labels", ".", "nlevels", ":", "return", "{", "'key'", ":", "obj", "}", "raise", "except", "TypeError", ":", "pass", "except", "(", "ValueError", ")", ":", "if", "not", "is_int_positional", ":", "raise", "# a positional", "if", "is_int_positional", ":", "# if we are setting and its not a valid location", "# its an insert which fails by definition", "if", "is_setter", ":", "# always valid", "if", "self", ".", "name", "==", "'loc'", ":", "return", "{", "'key'", ":", "obj", "}", "# a positional", "if", "(", "obj", ">=", "self", ".", "obj", ".", "shape", "[", "axis", "]", "and", "not", "isinstance", "(", "labels", ",", "MultiIndex", ")", ")", ":", "raise", "ValueError", "(", "\"cannot set by positional indexing with \"", "\"enlargement\"", ")", "return", "obj", "if", "is_nested_tuple", "(", "obj", ",", "labels", ")", ":", "return", "labels", ".", "get_locs", "(", "obj", ")", "elif", "is_list_like_indexer", "(", "obj", ")", ":", "if", "com", ".", "is_bool_indexer", "(", "obj", ")", ":", "obj", "=", "check_bool_indexer", "(", "labels", ",", "obj", ")", "inds", ",", "=", "obj", ".", "nonzero", "(", ")", "return", "inds", "else", ":", "# When setting, missing keys are not allowed, even with .loc:", "kwargs", "=", "{", "'raise_missing'", ":", "True", "if", "is_setter", "else", "raise_missing", "}", "return", "self", ".", "_get_listlike_indexer", "(", "obj", ",", "axis", ",", "*", "*", "kwargs", ")", "[", "1", "]", "else", ":", "try", ":", "return", "labels", ".", "get_loc", "(", "obj", ")", "except", "LookupError", ":", "# allow a not found key only if we are a setter", "if", "not", "is_list_like_indexer", "(", "obj", ")", "and", "is_setter", ":", "return", "{", "'key'", ":", "obj", "}", "raise" ]
Convert indexing key into something we can use to do actual fancy indexing on an ndarray Examples ix[:5] -> slice(0, 5) ix[[1,2,3]] -> [1,2,3] ix[['foo', 'bar', 'baz']] -> [i, j, k] (indices of foo, bar, baz) Going by Zen of Python? 'In the face of ambiguity, refuse the temptation to guess.' raise AmbiguousIndexError with integer labels? - No, prefer label-based indexing
[ "Convert", "indexing", "key", "into", "something", "we", "can", "use", "to", "do", "actual", "fancy", "indexing", "on", "an", "ndarray" ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/indexing.py#L1275-L1366
19,731
pandas-dev/pandas
pandas/core/indexing.py
_LocationIndexer._get_slice_axis
def _get_slice_axis(self, slice_obj, axis=None): """ this is pretty simple as we just have to deal with labels """ if axis is None: axis = self.axis or 0 obj = self.obj if not need_slice(slice_obj): return obj.copy(deep=False) labels = obj._get_axis(axis) indexer = labels.slice_indexer(slice_obj.start, slice_obj.stop, slice_obj.step, kind=self.name) if isinstance(indexer, slice): return self._slice(indexer, axis=axis, kind='iloc') else: return self.obj._take(indexer, axis=axis)
python
def _get_slice_axis(self, slice_obj, axis=None): """ this is pretty simple as we just have to deal with labels """ if axis is None: axis = self.axis or 0 obj = self.obj if not need_slice(slice_obj): return obj.copy(deep=False) labels = obj._get_axis(axis) indexer = labels.slice_indexer(slice_obj.start, slice_obj.stop, slice_obj.step, kind=self.name) if isinstance(indexer, slice): return self._slice(indexer, axis=axis, kind='iloc') else: return self.obj._take(indexer, axis=axis)
[ "def", "_get_slice_axis", "(", "self", ",", "slice_obj", ",", "axis", "=", "None", ")", ":", "if", "axis", "is", "None", ":", "axis", "=", "self", ".", "axis", "or", "0", "obj", "=", "self", ".", "obj", "if", "not", "need_slice", "(", "slice_obj", ")", ":", "return", "obj", ".", "copy", "(", "deep", "=", "False", ")", "labels", "=", "obj", ".", "_get_axis", "(", "axis", ")", "indexer", "=", "labels", ".", "slice_indexer", "(", "slice_obj", ".", "start", ",", "slice_obj", ".", "stop", ",", "slice_obj", ".", "step", ",", "kind", "=", "self", ".", "name", ")", "if", "isinstance", "(", "indexer", ",", "slice", ")", ":", "return", "self", ".", "_slice", "(", "indexer", ",", "axis", "=", "axis", ",", "kind", "=", "'iloc'", ")", "else", ":", "return", "self", ".", "obj", ".", "_take", "(", "indexer", ",", "axis", "=", "axis", ")" ]
this is pretty simple as we just have to deal with labels
[ "this", "is", "pretty", "simple", "as", "we", "just", "have", "to", "deal", "with", "labels" ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/indexing.py#L1526-L1542
19,732
pandas-dev/pandas
pandas/core/indexing.py
_iLocIndexer._validate_integer
def _validate_integer(self, key, axis): """ Check that 'key' is a valid position in the desired axis. Parameters ---------- key : int Requested position axis : int Desired axis Returns ------- None Raises ------ IndexError If 'key' is not a valid position in axis 'axis' """ len_axis = len(self.obj._get_axis(axis)) if key >= len_axis or key < -len_axis: raise IndexError("single positional indexer is out-of-bounds")
python
def _validate_integer(self, key, axis): """ Check that 'key' is a valid position in the desired axis. Parameters ---------- key : int Requested position axis : int Desired axis Returns ------- None Raises ------ IndexError If 'key' is not a valid position in axis 'axis' """ len_axis = len(self.obj._get_axis(axis)) if key >= len_axis or key < -len_axis: raise IndexError("single positional indexer is out-of-bounds")
[ "def", "_validate_integer", "(", "self", ",", "key", ",", "axis", ")", ":", "len_axis", "=", "len", "(", "self", ".", "obj", ".", "_get_axis", "(", "axis", ")", ")", "if", "key", ">=", "len_axis", "or", "key", "<", "-", "len_axis", ":", "raise", "IndexError", "(", "\"single positional indexer is out-of-bounds\"", ")" ]
Check that 'key' is a valid position in the desired axis. Parameters ---------- key : int Requested position axis : int Desired axis Returns ------- None Raises ------ IndexError If 'key' is not a valid position in axis 'axis'
[ "Check", "that", "key", "is", "a", "valid", "position", "in", "the", "desired", "axis", "." ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/indexing.py#L2125-L2148
19,733
pandas-dev/pandas
pandas/core/indexing.py
_iLocIndexer._get_list_axis
def _get_list_axis(self, key, axis=None): """ Return Series values by list or array of integers Parameters ---------- key : list-like positional indexer axis : int (can only be zero) Returns ------- Series object """ if axis is None: axis = self.axis or 0 try: return self.obj._take(key, axis=axis) except IndexError: # re-raise with different error message raise IndexError("positional indexers are out-of-bounds")
python
def _get_list_axis(self, key, axis=None): """ Return Series values by list or array of integers Parameters ---------- key : list-like positional indexer axis : int (can only be zero) Returns ------- Series object """ if axis is None: axis = self.axis or 0 try: return self.obj._take(key, axis=axis) except IndexError: # re-raise with different error message raise IndexError("positional indexers are out-of-bounds")
[ "def", "_get_list_axis", "(", "self", ",", "key", ",", "axis", "=", "None", ")", ":", "if", "axis", "is", "None", ":", "axis", "=", "self", ".", "axis", "or", "0", "try", ":", "return", "self", ".", "obj", ".", "_take", "(", "key", ",", "axis", "=", "axis", ")", "except", "IndexError", ":", "# re-raise with different error message", "raise", "IndexError", "(", "\"positional indexers are out-of-bounds\"", ")" ]
Return Series values by list or array of integers Parameters ---------- key : list-like positional indexer axis : int (can only be zero) Returns ------- Series object
[ "Return", "Series", "values", "by", "list", "or", "array", "of", "integers" ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/indexing.py#L2193-L2212
19,734
pandas-dev/pandas
pandas/core/indexing.py
_iLocIndexer._convert_to_indexer
def _convert_to_indexer(self, obj, axis=None, is_setter=False): """ much simpler as we only have to deal with our valid types """ if axis is None: axis = self.axis or 0 # make need to convert a float key if isinstance(obj, slice): return self._convert_slice_indexer(obj, axis) elif is_float(obj): return self._convert_scalar_indexer(obj, axis) try: self._validate_key(obj, axis) return obj except ValueError: raise ValueError("Can only index by location with " "a [{types}]".format(types=self._valid_types))
python
def _convert_to_indexer(self, obj, axis=None, is_setter=False): """ much simpler as we only have to deal with our valid types """ if axis is None: axis = self.axis or 0 # make need to convert a float key if isinstance(obj, slice): return self._convert_slice_indexer(obj, axis) elif is_float(obj): return self._convert_scalar_indexer(obj, axis) try: self._validate_key(obj, axis) return obj except ValueError: raise ValueError("Can only index by location with " "a [{types}]".format(types=self._valid_types))
[ "def", "_convert_to_indexer", "(", "self", ",", "obj", ",", "axis", "=", "None", ",", "is_setter", "=", "False", ")", ":", "if", "axis", "is", "None", ":", "axis", "=", "self", ".", "axis", "or", "0", "# make need to convert a float key", "if", "isinstance", "(", "obj", ",", "slice", ")", ":", "return", "self", ".", "_convert_slice_indexer", "(", "obj", ",", "axis", ")", "elif", "is_float", "(", "obj", ")", ":", "return", "self", ".", "_convert_scalar_indexer", "(", "obj", ",", "axis", ")", "try", ":", "self", ".", "_validate_key", "(", "obj", ",", "axis", ")", "return", "obj", "except", "ValueError", ":", "raise", "ValueError", "(", "\"Can only index by location with \"", "\"a [{types}]\"", ".", "format", "(", "types", "=", "self", ".", "_valid_types", ")", ")" ]
much simpler as we only have to deal with our valid types
[ "much", "simpler", "as", "we", "only", "have", "to", "deal", "with", "our", "valid", "types" ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/indexing.py#L2244-L2261
19,735
pandas-dev/pandas
pandas/core/sparse/frame.py
to_manager
def to_manager(sdf, columns, index): """ create and return the block manager from a dataframe of series, columns, index """ # from BlockManager perspective axes = [ensure_index(columns), ensure_index(index)] return create_block_manager_from_arrays( [sdf[c] for c in columns], columns, axes)
python
def to_manager(sdf, columns, index): """ create and return the block manager from a dataframe of series, columns, index """ # from BlockManager perspective axes = [ensure_index(columns), ensure_index(index)] return create_block_manager_from_arrays( [sdf[c] for c in columns], columns, axes)
[ "def", "to_manager", "(", "sdf", ",", "columns", ",", "index", ")", ":", "# from BlockManager perspective", "axes", "=", "[", "ensure_index", "(", "columns", ")", ",", "ensure_index", "(", "index", ")", "]", "return", "create_block_manager_from_arrays", "(", "[", "sdf", "[", "c", "]", "for", "c", "in", "columns", "]", ",", "columns", ",", "axes", ")" ]
create and return the block manager from a dataframe of series, columns, index
[ "create", "and", "return", "the", "block", "manager", "from", "a", "dataframe", "of", "series", "columns", "index" ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/sparse/frame.py#L951-L960
19,736
pandas-dev/pandas
pandas/core/sparse/frame.py
stack_sparse_frame
def stack_sparse_frame(frame): """ Only makes sense when fill_value is NaN """ lengths = [s.sp_index.npoints for _, s in frame.items()] nobs = sum(lengths) # this is pretty fast minor_codes = np.repeat(np.arange(len(frame.columns)), lengths) inds_to_concat = [] vals_to_concat = [] # TODO: Figure out whether this can be reached. # I think this currently can't be reached because you can't build a # SparseDataFrame with a non-np.NaN fill value (fails earlier). for _, series in frame.items(): if not np.isnan(series.fill_value): raise TypeError('This routine assumes NaN fill value') int_index = series.sp_index.to_int_index() inds_to_concat.append(int_index.indices) vals_to_concat.append(series.sp_values) major_codes = np.concatenate(inds_to_concat) stacked_values = np.concatenate(vals_to_concat) index = MultiIndex(levels=[frame.index, frame.columns], codes=[major_codes, minor_codes], verify_integrity=False) lp = DataFrame(stacked_values.reshape((nobs, 1)), index=index, columns=['foo']) return lp.sort_index(level=0)
python
def stack_sparse_frame(frame): """ Only makes sense when fill_value is NaN """ lengths = [s.sp_index.npoints for _, s in frame.items()] nobs = sum(lengths) # this is pretty fast minor_codes = np.repeat(np.arange(len(frame.columns)), lengths) inds_to_concat = [] vals_to_concat = [] # TODO: Figure out whether this can be reached. # I think this currently can't be reached because you can't build a # SparseDataFrame with a non-np.NaN fill value (fails earlier). for _, series in frame.items(): if not np.isnan(series.fill_value): raise TypeError('This routine assumes NaN fill value') int_index = series.sp_index.to_int_index() inds_to_concat.append(int_index.indices) vals_to_concat.append(series.sp_values) major_codes = np.concatenate(inds_to_concat) stacked_values = np.concatenate(vals_to_concat) index = MultiIndex(levels=[frame.index, frame.columns], codes=[major_codes, minor_codes], verify_integrity=False) lp = DataFrame(stacked_values.reshape((nobs, 1)), index=index, columns=['foo']) return lp.sort_index(level=0)
[ "def", "stack_sparse_frame", "(", "frame", ")", ":", "lengths", "=", "[", "s", ".", "sp_index", ".", "npoints", "for", "_", ",", "s", "in", "frame", ".", "items", "(", ")", "]", "nobs", "=", "sum", "(", "lengths", ")", "# this is pretty fast", "minor_codes", "=", "np", ".", "repeat", "(", "np", ".", "arange", "(", "len", "(", "frame", ".", "columns", ")", ")", ",", "lengths", ")", "inds_to_concat", "=", "[", "]", "vals_to_concat", "=", "[", "]", "# TODO: Figure out whether this can be reached.", "# I think this currently can't be reached because you can't build a", "# SparseDataFrame with a non-np.NaN fill value (fails earlier).", "for", "_", ",", "series", "in", "frame", ".", "items", "(", ")", ":", "if", "not", "np", ".", "isnan", "(", "series", ".", "fill_value", ")", ":", "raise", "TypeError", "(", "'This routine assumes NaN fill value'", ")", "int_index", "=", "series", ".", "sp_index", ".", "to_int_index", "(", ")", "inds_to_concat", ".", "append", "(", "int_index", ".", "indices", ")", "vals_to_concat", ".", "append", "(", "series", ".", "sp_values", ")", "major_codes", "=", "np", ".", "concatenate", "(", "inds_to_concat", ")", "stacked_values", "=", "np", ".", "concatenate", "(", "vals_to_concat", ")", "index", "=", "MultiIndex", "(", "levels", "=", "[", "frame", ".", "index", ",", "frame", ".", "columns", "]", ",", "codes", "=", "[", "major_codes", ",", "minor_codes", "]", ",", "verify_integrity", "=", "False", ")", "lp", "=", "DataFrame", "(", "stacked_values", ".", "reshape", "(", "(", "nobs", ",", "1", ")", ")", ",", "index", "=", "index", ",", "columns", "=", "[", "'foo'", "]", ")", "return", "lp", ".", "sort_index", "(", "level", "=", "0", ")" ]
Only makes sense when fill_value is NaN
[ "Only", "makes", "sense", "when", "fill_value", "is", "NaN" ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/sparse/frame.py#L963-L994
19,737
pandas-dev/pandas
pandas/core/sparse/frame.py
SparseDataFrame._init_matrix
def _init_matrix(self, data, index, columns, dtype=None): """ Init self from ndarray or list of lists. """ data = prep_ndarray(data, copy=False) index, columns = self._prep_index(data, index, columns) data = {idx: data[:, i] for i, idx in enumerate(columns)} return self._init_dict(data, index, columns, dtype)
python
def _init_matrix(self, data, index, columns, dtype=None): """ Init self from ndarray or list of lists. """ data = prep_ndarray(data, copy=False) index, columns = self._prep_index(data, index, columns) data = {idx: data[:, i] for i, idx in enumerate(columns)} return self._init_dict(data, index, columns, dtype)
[ "def", "_init_matrix", "(", "self", ",", "data", ",", "index", ",", "columns", ",", "dtype", "=", "None", ")", ":", "data", "=", "prep_ndarray", "(", "data", ",", "copy", "=", "False", ")", "index", ",", "columns", "=", "self", ".", "_prep_index", "(", "data", ",", "index", ",", "columns", ")", "data", "=", "{", "idx", ":", "data", "[", ":", ",", "i", "]", "for", "i", ",", "idx", "in", "enumerate", "(", "columns", ")", "}", "return", "self", ".", "_init_dict", "(", "data", ",", "index", ",", "columns", ",", "dtype", ")" ]
Init self from ndarray or list of lists.
[ "Init", "self", "from", "ndarray", "or", "list", "of", "lists", "." ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/sparse/frame.py#L190-L197
19,738
pandas-dev/pandas
pandas/core/sparse/frame.py
SparseDataFrame._init_spmatrix
def _init_spmatrix(self, data, index, columns, dtype=None, fill_value=None): """ Init self from scipy.sparse matrix. """ index, columns = self._prep_index(data, index, columns) data = data.tocoo() N = len(index) # Construct a dict of SparseSeries sdict = {} values = Series(data.data, index=data.row, copy=False) for col, rowvals in values.groupby(data.col): # get_blocks expects int32 row indices in sorted order rowvals = rowvals.sort_index() rows = rowvals.index.values.astype(np.int32) blocs, blens = get_blocks(rows) sdict[columns[col]] = SparseSeries( rowvals.values, index=index, fill_value=fill_value, sparse_index=BlockIndex(N, blocs, blens)) # Add any columns that were empty and thus not grouped on above sdict.update({column: SparseSeries(index=index, fill_value=fill_value, sparse_index=BlockIndex(N, [], [])) for column in columns if column not in sdict}) return self._init_dict(sdict, index, columns, dtype)
python
def _init_spmatrix(self, data, index, columns, dtype=None, fill_value=None): """ Init self from scipy.sparse matrix. """ index, columns = self._prep_index(data, index, columns) data = data.tocoo() N = len(index) # Construct a dict of SparseSeries sdict = {} values = Series(data.data, index=data.row, copy=False) for col, rowvals in values.groupby(data.col): # get_blocks expects int32 row indices in sorted order rowvals = rowvals.sort_index() rows = rowvals.index.values.astype(np.int32) blocs, blens = get_blocks(rows) sdict[columns[col]] = SparseSeries( rowvals.values, index=index, fill_value=fill_value, sparse_index=BlockIndex(N, blocs, blens)) # Add any columns that were empty and thus not grouped on above sdict.update({column: SparseSeries(index=index, fill_value=fill_value, sparse_index=BlockIndex(N, [], [])) for column in columns if column not in sdict}) return self._init_dict(sdict, index, columns, dtype)
[ "def", "_init_spmatrix", "(", "self", ",", "data", ",", "index", ",", "columns", ",", "dtype", "=", "None", ",", "fill_value", "=", "None", ")", ":", "index", ",", "columns", "=", "self", ".", "_prep_index", "(", "data", ",", "index", ",", "columns", ")", "data", "=", "data", ".", "tocoo", "(", ")", "N", "=", "len", "(", "index", ")", "# Construct a dict of SparseSeries", "sdict", "=", "{", "}", "values", "=", "Series", "(", "data", ".", "data", ",", "index", "=", "data", ".", "row", ",", "copy", "=", "False", ")", "for", "col", ",", "rowvals", "in", "values", ".", "groupby", "(", "data", ".", "col", ")", ":", "# get_blocks expects int32 row indices in sorted order", "rowvals", "=", "rowvals", ".", "sort_index", "(", ")", "rows", "=", "rowvals", ".", "index", ".", "values", ".", "astype", "(", "np", ".", "int32", ")", "blocs", ",", "blens", "=", "get_blocks", "(", "rows", ")", "sdict", "[", "columns", "[", "col", "]", "]", "=", "SparseSeries", "(", "rowvals", ".", "values", ",", "index", "=", "index", ",", "fill_value", "=", "fill_value", ",", "sparse_index", "=", "BlockIndex", "(", "N", ",", "blocs", ",", "blens", ")", ")", "# Add any columns that were empty and thus not grouped on above", "sdict", ".", "update", "(", "{", "column", ":", "SparseSeries", "(", "index", "=", "index", ",", "fill_value", "=", "fill_value", ",", "sparse_index", "=", "BlockIndex", "(", "N", ",", "[", "]", ",", "[", "]", ")", ")", "for", "column", "in", "columns", "if", "column", "not", "in", "sdict", "}", ")", "return", "self", ".", "_init_dict", "(", "sdict", ",", "index", ",", "columns", ",", "dtype", ")" ]
Init self from scipy.sparse matrix.
[ "Init", "self", "from", "scipy", ".", "sparse", "matrix", "." ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/sparse/frame.py#L199-L229
19,739
pandas-dev/pandas
pandas/core/sparse/frame.py
SparseDataFrame.to_coo
def to_coo(self): """ Return the contents of the frame as a sparse SciPy COO matrix. .. versionadded:: 0.20.0 Returns ------- coo_matrix : scipy.sparse.spmatrix If the caller is heterogeneous and contains booleans or objects, the result will be of dtype=object. See Notes. Notes ----- The dtype will be the lowest-common-denominator type (implicit upcasting); that is to say if the dtypes (even of numeric types) are mixed, the one that accommodates all will be chosen. e.g. If the dtypes are float16 and float32, dtype will be upcast to float32. By numpy.find_common_type convention, mixing int64 and and uint64 will result in a float64 dtype. """ try: from scipy.sparse import coo_matrix except ImportError: raise ImportError('Scipy is not installed') dtype = find_common_type(self.dtypes) if isinstance(dtype, SparseDtype): dtype = dtype.subtype cols, rows, datas = [], [], [] for col, name in enumerate(self): s = self[name] row = s.sp_index.to_int_index().indices cols.append(np.repeat(col, len(row))) rows.append(row) datas.append(s.sp_values.astype(dtype, copy=False)) cols = np.concatenate(cols) rows = np.concatenate(rows) datas = np.concatenate(datas) return coo_matrix((datas, (rows, cols)), shape=self.shape)
python
def to_coo(self): """ Return the contents of the frame as a sparse SciPy COO matrix. .. versionadded:: 0.20.0 Returns ------- coo_matrix : scipy.sparse.spmatrix If the caller is heterogeneous and contains booleans or objects, the result will be of dtype=object. See Notes. Notes ----- The dtype will be the lowest-common-denominator type (implicit upcasting); that is to say if the dtypes (even of numeric types) are mixed, the one that accommodates all will be chosen. e.g. If the dtypes are float16 and float32, dtype will be upcast to float32. By numpy.find_common_type convention, mixing int64 and and uint64 will result in a float64 dtype. """ try: from scipy.sparse import coo_matrix except ImportError: raise ImportError('Scipy is not installed') dtype = find_common_type(self.dtypes) if isinstance(dtype, SparseDtype): dtype = dtype.subtype cols, rows, datas = [], [], [] for col, name in enumerate(self): s = self[name] row = s.sp_index.to_int_index().indices cols.append(np.repeat(col, len(row))) rows.append(row) datas.append(s.sp_values.astype(dtype, copy=False)) cols = np.concatenate(cols) rows = np.concatenate(rows) datas = np.concatenate(datas) return coo_matrix((datas, (rows, cols)), shape=self.shape)
[ "def", "to_coo", "(", "self", ")", ":", "try", ":", "from", "scipy", ".", "sparse", "import", "coo_matrix", "except", "ImportError", ":", "raise", "ImportError", "(", "'Scipy is not installed'", ")", "dtype", "=", "find_common_type", "(", "self", ".", "dtypes", ")", "if", "isinstance", "(", "dtype", ",", "SparseDtype", ")", ":", "dtype", "=", "dtype", ".", "subtype", "cols", ",", "rows", ",", "datas", "=", "[", "]", ",", "[", "]", ",", "[", "]", "for", "col", ",", "name", "in", "enumerate", "(", "self", ")", ":", "s", "=", "self", "[", "name", "]", "row", "=", "s", ".", "sp_index", ".", "to_int_index", "(", ")", ".", "indices", "cols", ".", "append", "(", "np", ".", "repeat", "(", "col", ",", "len", "(", "row", ")", ")", ")", "rows", ".", "append", "(", "row", ")", "datas", ".", "append", "(", "s", ".", "sp_values", ".", "astype", "(", "dtype", ",", "copy", "=", "False", ")", ")", "cols", "=", "np", ".", "concatenate", "(", "cols", ")", "rows", "=", "np", ".", "concatenate", "(", "rows", ")", "datas", "=", "np", ".", "concatenate", "(", "datas", ")", "return", "coo_matrix", "(", "(", "datas", ",", "(", "rows", ",", "cols", ")", ")", ",", "shape", "=", "self", ".", "shape", ")" ]
Return the contents of the frame as a sparse SciPy COO matrix. .. versionadded:: 0.20.0 Returns ------- coo_matrix : scipy.sparse.spmatrix If the caller is heterogeneous and contains booleans or objects, the result will be of dtype=object. See Notes. Notes ----- The dtype will be the lowest-common-denominator type (implicit upcasting); that is to say if the dtypes (even of numeric types) are mixed, the one that accommodates all will be chosen. e.g. If the dtypes are float16 and float32, dtype will be upcast to float32. By numpy.find_common_type convention, mixing int64 and and uint64 will result in a float64 dtype.
[ "Return", "the", "contents", "of", "the", "frame", "as", "a", "sparse", "SciPy", "COO", "matrix", "." ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/sparse/frame.py#L246-L288
19,740
pandas-dev/pandas
pandas/core/sparse/frame.py
SparseDataFrame._unpickle_sparse_frame_compat
def _unpickle_sparse_frame_compat(self, state): """ Original pickle format """ series, cols, idx, fv, kind = state if not isinstance(cols, Index): # pragma: no cover from pandas.io.pickle import _unpickle_array columns = _unpickle_array(cols) else: columns = cols if not isinstance(idx, Index): # pragma: no cover from pandas.io.pickle import _unpickle_array index = _unpickle_array(idx) else: index = idx series_dict = DataFrame() for col, (sp_index, sp_values) in series.items(): series_dict[col] = SparseSeries(sp_values, sparse_index=sp_index, fill_value=fv) self._data = to_manager(series_dict, columns, index) self._default_fill_value = fv self._default_kind = kind
python
def _unpickle_sparse_frame_compat(self, state): """ Original pickle format """ series, cols, idx, fv, kind = state if not isinstance(cols, Index): # pragma: no cover from pandas.io.pickle import _unpickle_array columns = _unpickle_array(cols) else: columns = cols if not isinstance(idx, Index): # pragma: no cover from pandas.io.pickle import _unpickle_array index = _unpickle_array(idx) else: index = idx series_dict = DataFrame() for col, (sp_index, sp_values) in series.items(): series_dict[col] = SparseSeries(sp_values, sparse_index=sp_index, fill_value=fv) self._data = to_manager(series_dict, columns, index) self._default_fill_value = fv self._default_kind = kind
[ "def", "_unpickle_sparse_frame_compat", "(", "self", ",", "state", ")", ":", "series", ",", "cols", ",", "idx", ",", "fv", ",", "kind", "=", "state", "if", "not", "isinstance", "(", "cols", ",", "Index", ")", ":", "# pragma: no cover", "from", "pandas", ".", "io", ".", "pickle", "import", "_unpickle_array", "columns", "=", "_unpickle_array", "(", "cols", ")", "else", ":", "columns", "=", "cols", "if", "not", "isinstance", "(", "idx", ",", "Index", ")", ":", "# pragma: no cover", "from", "pandas", ".", "io", ".", "pickle", "import", "_unpickle_array", "index", "=", "_unpickle_array", "(", "idx", ")", "else", ":", "index", "=", "idx", "series_dict", "=", "DataFrame", "(", ")", "for", "col", ",", "(", "sp_index", ",", "sp_values", ")", "in", "series", ".", "items", "(", ")", ":", "series_dict", "[", "col", "]", "=", "SparseSeries", "(", "sp_values", ",", "sparse_index", "=", "sp_index", ",", "fill_value", "=", "fv", ")", "self", ".", "_data", "=", "to_manager", "(", "series_dict", ",", "columns", ",", "index", ")", "self", ".", "_default_fill_value", "=", "fv", "self", ".", "_default_kind", "=", "kind" ]
Original pickle format
[ "Original", "pickle", "format" ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/sparse/frame.py#L302-L327
19,741
pandas-dev/pandas
pandas/core/sparse/frame.py
SparseDataFrame.to_dense
def to_dense(self): """ Convert to dense DataFrame Returns ------- df : DataFrame """ data = {k: v.to_dense() for k, v in self.items()} return DataFrame(data, index=self.index, columns=self.columns)
python
def to_dense(self): """ Convert to dense DataFrame Returns ------- df : DataFrame """ data = {k: v.to_dense() for k, v in self.items()} return DataFrame(data, index=self.index, columns=self.columns)
[ "def", "to_dense", "(", "self", ")", ":", "data", "=", "{", "k", ":", "v", ".", "to_dense", "(", ")", "for", "k", ",", "v", "in", "self", ".", "items", "(", ")", "}", "return", "DataFrame", "(", "data", ",", "index", "=", "self", ".", "index", ",", "columns", "=", "self", ".", "columns", ")" ]
Convert to dense DataFrame Returns ------- df : DataFrame
[ "Convert", "to", "dense", "DataFrame" ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/sparse/frame.py#L329-L338
19,742
pandas-dev/pandas
pandas/core/sparse/frame.py
SparseDataFrame._apply_columns
def _apply_columns(self, func): """ Get new SparseDataFrame applying func to each columns """ new_data = {col: func(series) for col, series in self.items()} return self._constructor( data=new_data, index=self.index, columns=self.columns, default_fill_value=self.default_fill_value).__finalize__(self)
python
def _apply_columns(self, func): """ Get new SparseDataFrame applying func to each columns """ new_data = {col: func(series) for col, series in self.items()} return self._constructor( data=new_data, index=self.index, columns=self.columns, default_fill_value=self.default_fill_value).__finalize__(self)
[ "def", "_apply_columns", "(", "self", ",", "func", ")", ":", "new_data", "=", "{", "col", ":", "func", "(", "series", ")", "for", "col", ",", "series", "in", "self", ".", "items", "(", ")", "}", "return", "self", ".", "_constructor", "(", "data", "=", "new_data", ",", "index", "=", "self", ".", "index", ",", "columns", "=", "self", ".", "columns", ",", "default_fill_value", "=", "self", ".", "default_fill_value", ")", ".", "__finalize__", "(", "self", ")" ]
Get new SparseDataFrame applying func to each columns
[ "Get", "new", "SparseDataFrame", "applying", "func", "to", "each", "columns" ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/sparse/frame.py#L340-L350
19,743
pandas-dev/pandas
pandas/core/sparse/frame.py
SparseDataFrame.copy
def copy(self, deep=True): """ Make a copy of this SparseDataFrame """ result = super().copy(deep=deep) result._default_fill_value = self._default_fill_value result._default_kind = self._default_kind return result
python
def copy(self, deep=True): """ Make a copy of this SparseDataFrame """ result = super().copy(deep=deep) result._default_fill_value = self._default_fill_value result._default_kind = self._default_kind return result
[ "def", "copy", "(", "self", ",", "deep", "=", "True", ")", ":", "result", "=", "super", "(", ")", ".", "copy", "(", "deep", "=", "deep", ")", "result", ".", "_default_fill_value", "=", "self", ".", "_default_fill_value", "result", ".", "_default_kind", "=", "self", ".", "_default_kind", "return", "result" ]
Make a copy of this SparseDataFrame
[ "Make", "a", "copy", "of", "this", "SparseDataFrame" ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/sparse/frame.py#L355-L362
19,744
pandas-dev/pandas
pandas/core/sparse/frame.py
SparseDataFrame._sanitize_column
def _sanitize_column(self, key, value, **kwargs): """ Creates a new SparseArray from the input value. Parameters ---------- key : object value : scalar, Series, or array-like kwargs : dict Returns ------- sanitized_column : SparseArray """ def sp_maker(x, index=None): return SparseArray(x, index=index, fill_value=self._default_fill_value, kind=self._default_kind) if isinstance(value, SparseSeries): clean = value.reindex(self.index).as_sparse_array( fill_value=self._default_fill_value, kind=self._default_kind) elif isinstance(value, SparseArray): if len(value) != len(self.index): raise ValueError('Length of values does not match ' 'length of index') clean = value elif hasattr(value, '__iter__'): if isinstance(value, Series): clean = value.reindex(self.index) if not isinstance(value, SparseSeries): clean = sp_maker(clean) else: if len(value) != len(self.index): raise ValueError('Length of values does not match ' 'length of index') clean = sp_maker(value) # Scalar else: clean = sp_maker(value, self.index) # always return a SparseArray! return clean
python
def _sanitize_column(self, key, value, **kwargs): """ Creates a new SparseArray from the input value. Parameters ---------- key : object value : scalar, Series, or array-like kwargs : dict Returns ------- sanitized_column : SparseArray """ def sp_maker(x, index=None): return SparseArray(x, index=index, fill_value=self._default_fill_value, kind=self._default_kind) if isinstance(value, SparseSeries): clean = value.reindex(self.index).as_sparse_array( fill_value=self._default_fill_value, kind=self._default_kind) elif isinstance(value, SparseArray): if len(value) != len(self.index): raise ValueError('Length of values does not match ' 'length of index') clean = value elif hasattr(value, '__iter__'): if isinstance(value, Series): clean = value.reindex(self.index) if not isinstance(value, SparseSeries): clean = sp_maker(clean) else: if len(value) != len(self.index): raise ValueError('Length of values does not match ' 'length of index') clean = sp_maker(value) # Scalar else: clean = sp_maker(value, self.index) # always return a SparseArray! return clean
[ "def", "_sanitize_column", "(", "self", ",", "key", ",", "value", ",", "*", "*", "kwargs", ")", ":", "def", "sp_maker", "(", "x", ",", "index", "=", "None", ")", ":", "return", "SparseArray", "(", "x", ",", "index", "=", "index", ",", "fill_value", "=", "self", ".", "_default_fill_value", ",", "kind", "=", "self", ".", "_default_kind", ")", "if", "isinstance", "(", "value", ",", "SparseSeries", ")", ":", "clean", "=", "value", ".", "reindex", "(", "self", ".", "index", ")", ".", "as_sparse_array", "(", "fill_value", "=", "self", ".", "_default_fill_value", ",", "kind", "=", "self", ".", "_default_kind", ")", "elif", "isinstance", "(", "value", ",", "SparseArray", ")", ":", "if", "len", "(", "value", ")", "!=", "len", "(", "self", ".", "index", ")", ":", "raise", "ValueError", "(", "'Length of values does not match '", "'length of index'", ")", "clean", "=", "value", "elif", "hasattr", "(", "value", ",", "'__iter__'", ")", ":", "if", "isinstance", "(", "value", ",", "Series", ")", ":", "clean", "=", "value", ".", "reindex", "(", "self", ".", "index", ")", "if", "not", "isinstance", "(", "value", ",", "SparseSeries", ")", ":", "clean", "=", "sp_maker", "(", "clean", ")", "else", ":", "if", "len", "(", "value", ")", "!=", "len", "(", "self", ".", "index", ")", ":", "raise", "ValueError", "(", "'Length of values does not match '", "'length of index'", ")", "clean", "=", "sp_maker", "(", "value", ")", "# Scalar", "else", ":", "clean", "=", "sp_maker", "(", "value", ",", "self", ".", "index", ")", "# always return a SparseArray!", "return", "clean" ]
Creates a new SparseArray from the input value. Parameters ---------- key : object value : scalar, Series, or array-like kwargs : dict Returns ------- sanitized_column : SparseArray
[ "Creates", "a", "new", "SparseArray", "from", "the", "input", "value", "." ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/sparse/frame.py#L403-L448
19,745
pandas-dev/pandas
pandas/core/sparse/frame.py
SparseDataFrame.cumsum
def cumsum(self, axis=0, *args, **kwargs): """ Return SparseDataFrame of cumulative sums over requested axis. Parameters ---------- axis : {0, 1} 0 for row-wise, 1 for column-wise Returns ------- y : SparseDataFrame """ nv.validate_cumsum(args, kwargs) if axis is None: axis = self._stat_axis_number return self.apply(lambda x: x.cumsum(), axis=axis)
python
def cumsum(self, axis=0, *args, **kwargs): """ Return SparseDataFrame of cumulative sums over requested axis. Parameters ---------- axis : {0, 1} 0 for row-wise, 1 for column-wise Returns ------- y : SparseDataFrame """ nv.validate_cumsum(args, kwargs) if axis is None: axis = self._stat_axis_number return self.apply(lambda x: x.cumsum(), axis=axis)
[ "def", "cumsum", "(", "self", ",", "axis", "=", "0", ",", "*", "args", ",", "*", "*", "kwargs", ")", ":", "nv", ".", "validate_cumsum", "(", "args", ",", "kwargs", ")", "if", "axis", "is", "None", ":", "axis", "=", "self", ".", "_stat_axis_number", "return", "self", ".", "apply", "(", "lambda", "x", ":", "x", ".", "cumsum", "(", ")", ",", "axis", "=", "axis", ")" ]
Return SparseDataFrame of cumulative sums over requested axis. Parameters ---------- axis : {0, 1} 0 for row-wise, 1 for column-wise Returns ------- y : SparseDataFrame
[ "Return", "SparseDataFrame", "of", "cumulative", "sums", "over", "requested", "axis", "." ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/sparse/frame.py#L828-L846
19,746
pandas-dev/pandas
pandas/core/sparse/frame.py
SparseDataFrame.apply
def apply(self, func, axis=0, broadcast=None, reduce=None, result_type=None): """ Analogous to DataFrame.apply, for SparseDataFrame Parameters ---------- func : function Function to apply to each column axis : {0, 1, 'index', 'columns'} broadcast : bool, default False For aggregation functions, return object of same size with values propagated .. deprecated:: 0.23.0 This argument will be removed in a future version, replaced by result_type='broadcast'. reduce : boolean or None, default None Try to apply reduction procedures. If the DataFrame is empty, apply will use reduce to determine whether the result should be a Series or a DataFrame. If reduce is None (the default), apply's return value will be guessed by calling func an empty Series (note: while guessing, exceptions raised by func will be ignored). If reduce is True a Series will always be returned, and if False a DataFrame will always be returned. .. deprecated:: 0.23.0 This argument will be removed in a future version, replaced by result_type='reduce'. result_type : {'expand', 'reduce', 'broadcast, None} These only act when axis=1 {columns}: * 'expand' : list-like results will be turned into columns. * 'reduce' : return a Series if possible rather than expanding list-like results. This is the opposite to 'expand'. * 'broadcast' : results will be broadcast to the original shape of the frame, the original index & columns will be retained. The default behaviour (None) depends on the return value of the applied function: list-like results will be returned as a Series of those. However if the apply function returns a Series these are expanded to columns. .. versionadded:: 0.23.0 Returns ------- applied : Series or SparseDataFrame """ if not len(self.columns): return self axis = self._get_axis_number(axis) if isinstance(func, np.ufunc): new_series = {} for k, v in self.items(): applied = func(v) applied.fill_value = func(v.fill_value) new_series[k] = applied return self._constructor( new_series, index=self.index, columns=self.columns, default_fill_value=self._default_fill_value, default_kind=self._default_kind).__finalize__(self) from pandas.core.apply import frame_apply op = frame_apply(self, func=func, axis=axis, reduce=reduce, broadcast=broadcast, result_type=result_type) return op.get_result()
python
def apply(self, func, axis=0, broadcast=None, reduce=None, result_type=None): """ Analogous to DataFrame.apply, for SparseDataFrame Parameters ---------- func : function Function to apply to each column axis : {0, 1, 'index', 'columns'} broadcast : bool, default False For aggregation functions, return object of same size with values propagated .. deprecated:: 0.23.0 This argument will be removed in a future version, replaced by result_type='broadcast'. reduce : boolean or None, default None Try to apply reduction procedures. If the DataFrame is empty, apply will use reduce to determine whether the result should be a Series or a DataFrame. If reduce is None (the default), apply's return value will be guessed by calling func an empty Series (note: while guessing, exceptions raised by func will be ignored). If reduce is True a Series will always be returned, and if False a DataFrame will always be returned. .. deprecated:: 0.23.0 This argument will be removed in a future version, replaced by result_type='reduce'. result_type : {'expand', 'reduce', 'broadcast, None} These only act when axis=1 {columns}: * 'expand' : list-like results will be turned into columns. * 'reduce' : return a Series if possible rather than expanding list-like results. This is the opposite to 'expand'. * 'broadcast' : results will be broadcast to the original shape of the frame, the original index & columns will be retained. The default behaviour (None) depends on the return value of the applied function: list-like results will be returned as a Series of those. However if the apply function returns a Series these are expanded to columns. .. versionadded:: 0.23.0 Returns ------- applied : Series or SparseDataFrame """ if not len(self.columns): return self axis = self._get_axis_number(axis) if isinstance(func, np.ufunc): new_series = {} for k, v in self.items(): applied = func(v) applied.fill_value = func(v.fill_value) new_series[k] = applied return self._constructor( new_series, index=self.index, columns=self.columns, default_fill_value=self._default_fill_value, default_kind=self._default_kind).__finalize__(self) from pandas.core.apply import frame_apply op = frame_apply(self, func=func, axis=axis, reduce=reduce, broadcast=broadcast, result_type=result_type) return op.get_result()
[ "def", "apply", "(", "self", ",", "func", ",", "axis", "=", "0", ",", "broadcast", "=", "None", ",", "reduce", "=", "None", ",", "result_type", "=", "None", ")", ":", "if", "not", "len", "(", "self", ".", "columns", ")", ":", "return", "self", "axis", "=", "self", ".", "_get_axis_number", "(", "axis", ")", "if", "isinstance", "(", "func", ",", "np", ".", "ufunc", ")", ":", "new_series", "=", "{", "}", "for", "k", ",", "v", "in", "self", ".", "items", "(", ")", ":", "applied", "=", "func", "(", "v", ")", "applied", ".", "fill_value", "=", "func", "(", "v", ".", "fill_value", ")", "new_series", "[", "k", "]", "=", "applied", "return", "self", ".", "_constructor", "(", "new_series", ",", "index", "=", "self", ".", "index", ",", "columns", "=", "self", ".", "columns", ",", "default_fill_value", "=", "self", ".", "_default_fill_value", ",", "default_kind", "=", "self", ".", "_default_kind", ")", ".", "__finalize__", "(", "self", ")", "from", "pandas", ".", "core", ".", "apply", "import", "frame_apply", "op", "=", "frame_apply", "(", "self", ",", "func", "=", "func", ",", "axis", "=", "axis", ",", "reduce", "=", "reduce", ",", "broadcast", "=", "broadcast", ",", "result_type", "=", "result_type", ")", "return", "op", ".", "get_result", "(", ")" ]
Analogous to DataFrame.apply, for SparseDataFrame Parameters ---------- func : function Function to apply to each column axis : {0, 1, 'index', 'columns'} broadcast : bool, default False For aggregation functions, return object of same size with values propagated .. deprecated:: 0.23.0 This argument will be removed in a future version, replaced by result_type='broadcast'. reduce : boolean or None, default None Try to apply reduction procedures. If the DataFrame is empty, apply will use reduce to determine whether the result should be a Series or a DataFrame. If reduce is None (the default), apply's return value will be guessed by calling func an empty Series (note: while guessing, exceptions raised by func will be ignored). If reduce is True a Series will always be returned, and if False a DataFrame will always be returned. .. deprecated:: 0.23.0 This argument will be removed in a future version, replaced by result_type='reduce'. result_type : {'expand', 'reduce', 'broadcast, None} These only act when axis=1 {columns}: * 'expand' : list-like results will be turned into columns. * 'reduce' : return a Series if possible rather than expanding list-like results. This is the opposite to 'expand'. * 'broadcast' : results will be broadcast to the original shape of the frame, the original index & columns will be retained. The default behaviour (None) depends on the return value of the applied function: list-like results will be returned as a Series of those. However if the apply function returns a Series these are expanded to columns. .. versionadded:: 0.23.0 Returns ------- applied : Series or SparseDataFrame
[ "Analogous", "to", "DataFrame", ".", "apply", "for", "SparseDataFrame" ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/sparse/frame.py#L858-L931
19,747
pandas-dev/pandas
scripts/generate_pip_deps_from_conda.py
conda_package_to_pip
def conda_package_to_pip(package): """ Convert a conda package to its pip equivalent. In most cases they are the same, those are the exceptions: - Packages that should be excluded (in `EXCLUDE`) - Packages that should be renamed (in `RENAME`) - A package requiring a specific version, in conda is defined with a single equal (e.g. ``pandas=1.0``) and in pip with two (e.g. ``pandas==1.0``) """ if package in EXCLUDE: return package = re.sub('(?<=[^<>])=', '==', package).strip() for compare in ('<=', '>=', '=='): if compare not in package: continue pkg, version = package.split(compare) if pkg in RENAME: return ''.join((RENAME[pkg], compare, version)) break return package
python
def conda_package_to_pip(package): """ Convert a conda package to its pip equivalent. In most cases they are the same, those are the exceptions: - Packages that should be excluded (in `EXCLUDE`) - Packages that should be renamed (in `RENAME`) - A package requiring a specific version, in conda is defined with a single equal (e.g. ``pandas=1.0``) and in pip with two (e.g. ``pandas==1.0``) """ if package in EXCLUDE: return package = re.sub('(?<=[^<>])=', '==', package).strip() for compare in ('<=', '>=', '=='): if compare not in package: continue pkg, version = package.split(compare) if pkg in RENAME: return ''.join((RENAME[pkg], compare, version)) break return package
[ "def", "conda_package_to_pip", "(", "package", ")", ":", "if", "package", "in", "EXCLUDE", ":", "return", "package", "=", "re", ".", "sub", "(", "'(?<=[^<>])='", ",", "'=='", ",", "package", ")", ".", "strip", "(", ")", "for", "compare", "in", "(", "'<='", ",", "'>='", ",", "'=='", ")", ":", "if", "compare", "not", "in", "package", ":", "continue", "pkg", ",", "version", "=", "package", ".", "split", "(", "compare", ")", "if", "pkg", "in", "RENAME", ":", "return", "''", ".", "join", "(", "(", "RENAME", "[", "pkg", "]", ",", "compare", ",", "version", ")", ")", "break", "return", "package" ]
Convert a conda package to its pip equivalent. In most cases they are the same, those are the exceptions: - Packages that should be excluded (in `EXCLUDE`) - Packages that should be renamed (in `RENAME`) - A package requiring a specific version, in conda is defined with a single equal (e.g. ``pandas=1.0``) and in pip with two (e.g. ``pandas==1.0``)
[ "Convert", "a", "conda", "package", "to", "its", "pip", "equivalent", "." ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/scripts/generate_pip_deps_from_conda.py#L26-L51
19,748
pandas-dev/pandas
pandas/core/dtypes/cast.py
maybe_convert_platform
def maybe_convert_platform(values): """ try to do platform conversion, allow ndarray or list here """ if isinstance(values, (list, tuple)): values = construct_1d_object_array_from_listlike(list(values)) if getattr(values, 'dtype', None) == np.object_: if hasattr(values, '_values'): values = values._values values = lib.maybe_convert_objects(values) return values
python
def maybe_convert_platform(values): """ try to do platform conversion, allow ndarray or list here """ if isinstance(values, (list, tuple)): values = construct_1d_object_array_from_listlike(list(values)) if getattr(values, 'dtype', None) == np.object_: if hasattr(values, '_values'): values = values._values values = lib.maybe_convert_objects(values) return values
[ "def", "maybe_convert_platform", "(", "values", ")", ":", "if", "isinstance", "(", "values", ",", "(", "list", ",", "tuple", ")", ")", ":", "values", "=", "construct_1d_object_array_from_listlike", "(", "list", "(", "values", ")", ")", "if", "getattr", "(", "values", ",", "'dtype'", ",", "None", ")", "==", "np", ".", "object_", ":", "if", "hasattr", "(", "values", ",", "'_values'", ")", ":", "values", "=", "values", ".", "_values", "values", "=", "lib", ".", "maybe_convert_objects", "(", "values", ")", "return", "values" ]
try to do platform conversion, allow ndarray or list here
[ "try", "to", "do", "platform", "conversion", "allow", "ndarray", "or", "list", "here" ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/dtypes/cast.py#L35-L45
19,749
pandas-dev/pandas
pandas/core/dtypes/cast.py
maybe_upcast_putmask
def maybe_upcast_putmask(result, mask, other): """ A safe version of putmask that potentially upcasts the result. The result is replaced with the first N elements of other, where N is the number of True values in mask. If the length of other is shorter than N, other will be repeated. Parameters ---------- result : ndarray The destination array. This will be mutated in-place if no upcasting is necessary. mask : boolean ndarray other : ndarray or scalar The source array or value Returns ------- result : ndarray changed : boolean Set to true if the result array was upcasted Examples -------- >>> result, _ = maybe_upcast_putmask(np.arange(1,6), np.array([False, True, False, True, True]), np.arange(21,23)) >>> result array([1, 21, 3, 22, 21]) """ if not isinstance(result, np.ndarray): raise ValueError("The result input must be a ndarray.") if mask.any(): # Two conversions for date-like dtypes that can't be done automatically # in np.place: # NaN -> NaT # integer or integer array -> date-like array if is_datetimelike(result.dtype): if is_scalar(other): if isna(other): other = result.dtype.type('nat') elif is_integer(other): other = np.array(other, dtype=result.dtype) elif is_integer_dtype(other): other = np.array(other, dtype=result.dtype) def changeit(): # try to directly set by expanding our array to full # length of the boolean try: om = other[mask] om_at = om.astype(result.dtype) if (om == om_at).all(): new_result = result.values.copy() new_result[mask] = om_at result[:] = new_result return result, False except Exception: pass # we are forced to change the dtype of the result as the input # isn't compatible r, _ = maybe_upcast(result, fill_value=other, copy=True) np.place(r, mask, other) return r, True # we want to decide whether place will work # if we have nans in the False portion of our mask then we need to # upcast (possibly), otherwise we DON't want to upcast (e.g. if we # have values, say integers, in the success portion then it's ok to not # upcast) new_dtype, _ = maybe_promote(result.dtype, other) if new_dtype != result.dtype: # we have a scalar or len 0 ndarray # and its nan and we are changing some values if (is_scalar(other) or (isinstance(other, np.ndarray) and other.ndim < 1)): if isna(other): return changeit() # we have an ndarray and the masking has nans in it else: if isna(other).any(): return changeit() try: np.place(result, mask, other) except Exception: return changeit() return result, False
python
def maybe_upcast_putmask(result, mask, other): """ A safe version of putmask that potentially upcasts the result. The result is replaced with the first N elements of other, where N is the number of True values in mask. If the length of other is shorter than N, other will be repeated. Parameters ---------- result : ndarray The destination array. This will be mutated in-place if no upcasting is necessary. mask : boolean ndarray other : ndarray or scalar The source array or value Returns ------- result : ndarray changed : boolean Set to true if the result array was upcasted Examples -------- >>> result, _ = maybe_upcast_putmask(np.arange(1,6), np.array([False, True, False, True, True]), np.arange(21,23)) >>> result array([1, 21, 3, 22, 21]) """ if not isinstance(result, np.ndarray): raise ValueError("The result input must be a ndarray.") if mask.any(): # Two conversions for date-like dtypes that can't be done automatically # in np.place: # NaN -> NaT # integer or integer array -> date-like array if is_datetimelike(result.dtype): if is_scalar(other): if isna(other): other = result.dtype.type('nat') elif is_integer(other): other = np.array(other, dtype=result.dtype) elif is_integer_dtype(other): other = np.array(other, dtype=result.dtype) def changeit(): # try to directly set by expanding our array to full # length of the boolean try: om = other[mask] om_at = om.astype(result.dtype) if (om == om_at).all(): new_result = result.values.copy() new_result[mask] = om_at result[:] = new_result return result, False except Exception: pass # we are forced to change the dtype of the result as the input # isn't compatible r, _ = maybe_upcast(result, fill_value=other, copy=True) np.place(r, mask, other) return r, True # we want to decide whether place will work # if we have nans in the False portion of our mask then we need to # upcast (possibly), otherwise we DON't want to upcast (e.g. if we # have values, say integers, in the success portion then it's ok to not # upcast) new_dtype, _ = maybe_promote(result.dtype, other) if new_dtype != result.dtype: # we have a scalar or len 0 ndarray # and its nan and we are changing some values if (is_scalar(other) or (isinstance(other, np.ndarray) and other.ndim < 1)): if isna(other): return changeit() # we have an ndarray and the masking has nans in it else: if isna(other).any(): return changeit() try: np.place(result, mask, other) except Exception: return changeit() return result, False
[ "def", "maybe_upcast_putmask", "(", "result", ",", "mask", ",", "other", ")", ":", "if", "not", "isinstance", "(", "result", ",", "np", ".", "ndarray", ")", ":", "raise", "ValueError", "(", "\"The result input must be a ndarray.\"", ")", "if", "mask", ".", "any", "(", ")", ":", "# Two conversions for date-like dtypes that can't be done automatically", "# in np.place:", "# NaN -> NaT", "# integer or integer array -> date-like array", "if", "is_datetimelike", "(", "result", ".", "dtype", ")", ":", "if", "is_scalar", "(", "other", ")", ":", "if", "isna", "(", "other", ")", ":", "other", "=", "result", ".", "dtype", ".", "type", "(", "'nat'", ")", "elif", "is_integer", "(", "other", ")", ":", "other", "=", "np", ".", "array", "(", "other", ",", "dtype", "=", "result", ".", "dtype", ")", "elif", "is_integer_dtype", "(", "other", ")", ":", "other", "=", "np", ".", "array", "(", "other", ",", "dtype", "=", "result", ".", "dtype", ")", "def", "changeit", "(", ")", ":", "# try to directly set by expanding our array to full", "# length of the boolean", "try", ":", "om", "=", "other", "[", "mask", "]", "om_at", "=", "om", ".", "astype", "(", "result", ".", "dtype", ")", "if", "(", "om", "==", "om_at", ")", ".", "all", "(", ")", ":", "new_result", "=", "result", ".", "values", ".", "copy", "(", ")", "new_result", "[", "mask", "]", "=", "om_at", "result", "[", ":", "]", "=", "new_result", "return", "result", ",", "False", "except", "Exception", ":", "pass", "# we are forced to change the dtype of the result as the input", "# isn't compatible", "r", ",", "_", "=", "maybe_upcast", "(", "result", ",", "fill_value", "=", "other", ",", "copy", "=", "True", ")", "np", ".", "place", "(", "r", ",", "mask", ",", "other", ")", "return", "r", ",", "True", "# we want to decide whether place will work", "# if we have nans in the False portion of our mask then we need to", "# upcast (possibly), otherwise we DON't want to upcast (e.g. if we", "# have values, say integers, in the success portion then it's ok to not", "# upcast)", "new_dtype", ",", "_", "=", "maybe_promote", "(", "result", ".", "dtype", ",", "other", ")", "if", "new_dtype", "!=", "result", ".", "dtype", ":", "# we have a scalar or len 0 ndarray", "# and its nan and we are changing some values", "if", "(", "is_scalar", "(", "other", ")", "or", "(", "isinstance", "(", "other", ",", "np", ".", "ndarray", ")", "and", "other", ".", "ndim", "<", "1", ")", ")", ":", "if", "isna", "(", "other", ")", ":", "return", "changeit", "(", ")", "# we have an ndarray and the masking has nans in it", "else", ":", "if", "isna", "(", "other", ")", ".", "any", "(", ")", ":", "return", "changeit", "(", ")", "try", ":", "np", ".", "place", "(", "result", ",", "mask", ",", "other", ")", "except", "Exception", ":", "return", "changeit", "(", ")", "return", "result", ",", "False" ]
A safe version of putmask that potentially upcasts the result. The result is replaced with the first N elements of other, where N is the number of True values in mask. If the length of other is shorter than N, other will be repeated. Parameters ---------- result : ndarray The destination array. This will be mutated in-place if no upcasting is necessary. mask : boolean ndarray other : ndarray or scalar The source array or value Returns ------- result : ndarray changed : boolean Set to true if the result array was upcasted Examples -------- >>> result, _ = maybe_upcast_putmask(np.arange(1,6), np.array([False, True, False, True, True]), np.arange(21,23)) >>> result array([1, 21, 3, 22, 21])
[ "A", "safe", "version", "of", "putmask", "that", "potentially", "upcasts", "the", "result", ".", "The", "result", "is", "replaced", "with", "the", "first", "N", "elements", "of", "other", "where", "N", "is", "the", "number", "of", "True", "values", "in", "mask", ".", "If", "the", "length", "of", "other", "is", "shorter", "than", "N", "other", "will", "be", "repeated", "." ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/dtypes/cast.py#L170-L265
19,750
pandas-dev/pandas
pandas/core/dtypes/cast.py
infer_dtype_from
def infer_dtype_from(val, pandas_dtype=False): """ interpret the dtype from a scalar or array. This is a convenience routines to infer dtype from a scalar or an array Parameters ---------- pandas_dtype : bool, default False whether to infer dtype including pandas extension types. If False, scalar/array belongs to pandas extension types is inferred as object """ if is_scalar(val): return infer_dtype_from_scalar(val, pandas_dtype=pandas_dtype) return infer_dtype_from_array(val, pandas_dtype=pandas_dtype)
python
def infer_dtype_from(val, pandas_dtype=False): """ interpret the dtype from a scalar or array. This is a convenience routines to infer dtype from a scalar or an array Parameters ---------- pandas_dtype : bool, default False whether to infer dtype including pandas extension types. If False, scalar/array belongs to pandas extension types is inferred as object """ if is_scalar(val): return infer_dtype_from_scalar(val, pandas_dtype=pandas_dtype) return infer_dtype_from_array(val, pandas_dtype=pandas_dtype)
[ "def", "infer_dtype_from", "(", "val", ",", "pandas_dtype", "=", "False", ")", ":", "if", "is_scalar", "(", "val", ")", ":", "return", "infer_dtype_from_scalar", "(", "val", ",", "pandas_dtype", "=", "pandas_dtype", ")", "return", "infer_dtype_from_array", "(", "val", ",", "pandas_dtype", "=", "pandas_dtype", ")" ]
interpret the dtype from a scalar or array. This is a convenience routines to infer dtype from a scalar or an array Parameters ---------- pandas_dtype : bool, default False whether to infer dtype including pandas extension types. If False, scalar/array belongs to pandas extension types is inferred as object
[ "interpret", "the", "dtype", "from", "a", "scalar", "or", "array", ".", "This", "is", "a", "convenience", "routines", "to", "infer", "dtype", "from", "a", "scalar", "or", "an", "array" ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/dtypes/cast.py#L337-L351
19,751
pandas-dev/pandas
pandas/core/dtypes/cast.py
infer_dtype_from_scalar
def infer_dtype_from_scalar(val, pandas_dtype=False): """ interpret the dtype from a scalar Parameters ---------- pandas_dtype : bool, default False whether to infer dtype including pandas extension types. If False, scalar belongs to pandas extension types is inferred as object """ dtype = np.object_ # a 1-element ndarray if isinstance(val, np.ndarray): msg = "invalid ndarray passed to infer_dtype_from_scalar" if val.ndim != 0: raise ValueError(msg) dtype = val.dtype val = val.item() elif isinstance(val, str): # If we create an empty array using a string to infer # the dtype, NumPy will only allocate one character per entry # so this is kind of bad. Alternately we could use np.repeat # instead of np.empty (but then you still don't want things # coming out as np.str_! dtype = np.object_ elif isinstance(val, (np.datetime64, datetime)): val = tslibs.Timestamp(val) if val is tslibs.NaT or val.tz is None: dtype = np.dtype('M8[ns]') else: if pandas_dtype: dtype = DatetimeTZDtype(unit='ns', tz=val.tz) else: # return datetimetz as object return np.object_, val val = val.value elif isinstance(val, (np.timedelta64, timedelta)): val = tslibs.Timedelta(val).value dtype = np.dtype('m8[ns]') elif is_bool(val): dtype = np.bool_ elif is_integer(val): if isinstance(val, np.integer): dtype = type(val) else: dtype = np.int64 elif is_float(val): if isinstance(val, np.floating): dtype = type(val) else: dtype = np.float64 elif is_complex(val): dtype = np.complex_ elif pandas_dtype: if lib.is_period(val): dtype = PeriodDtype(freq=val.freq) val = val.ordinal return dtype, val
python
def infer_dtype_from_scalar(val, pandas_dtype=False): """ interpret the dtype from a scalar Parameters ---------- pandas_dtype : bool, default False whether to infer dtype including pandas extension types. If False, scalar belongs to pandas extension types is inferred as object """ dtype = np.object_ # a 1-element ndarray if isinstance(val, np.ndarray): msg = "invalid ndarray passed to infer_dtype_from_scalar" if val.ndim != 0: raise ValueError(msg) dtype = val.dtype val = val.item() elif isinstance(val, str): # If we create an empty array using a string to infer # the dtype, NumPy will only allocate one character per entry # so this is kind of bad. Alternately we could use np.repeat # instead of np.empty (but then you still don't want things # coming out as np.str_! dtype = np.object_ elif isinstance(val, (np.datetime64, datetime)): val = tslibs.Timestamp(val) if val is tslibs.NaT or val.tz is None: dtype = np.dtype('M8[ns]') else: if pandas_dtype: dtype = DatetimeTZDtype(unit='ns', tz=val.tz) else: # return datetimetz as object return np.object_, val val = val.value elif isinstance(val, (np.timedelta64, timedelta)): val = tslibs.Timedelta(val).value dtype = np.dtype('m8[ns]') elif is_bool(val): dtype = np.bool_ elif is_integer(val): if isinstance(val, np.integer): dtype = type(val) else: dtype = np.int64 elif is_float(val): if isinstance(val, np.floating): dtype = type(val) else: dtype = np.float64 elif is_complex(val): dtype = np.complex_ elif pandas_dtype: if lib.is_period(val): dtype = PeriodDtype(freq=val.freq) val = val.ordinal return dtype, val
[ "def", "infer_dtype_from_scalar", "(", "val", ",", "pandas_dtype", "=", "False", ")", ":", "dtype", "=", "np", ".", "object_", "# a 1-element ndarray", "if", "isinstance", "(", "val", ",", "np", ".", "ndarray", ")", ":", "msg", "=", "\"invalid ndarray passed to infer_dtype_from_scalar\"", "if", "val", ".", "ndim", "!=", "0", ":", "raise", "ValueError", "(", "msg", ")", "dtype", "=", "val", ".", "dtype", "val", "=", "val", ".", "item", "(", ")", "elif", "isinstance", "(", "val", ",", "str", ")", ":", "# If we create an empty array using a string to infer", "# the dtype, NumPy will only allocate one character per entry", "# so this is kind of bad. Alternately we could use np.repeat", "# instead of np.empty (but then you still don't want things", "# coming out as np.str_!", "dtype", "=", "np", ".", "object_", "elif", "isinstance", "(", "val", ",", "(", "np", ".", "datetime64", ",", "datetime", ")", ")", ":", "val", "=", "tslibs", ".", "Timestamp", "(", "val", ")", "if", "val", "is", "tslibs", ".", "NaT", "or", "val", ".", "tz", "is", "None", ":", "dtype", "=", "np", ".", "dtype", "(", "'M8[ns]'", ")", "else", ":", "if", "pandas_dtype", ":", "dtype", "=", "DatetimeTZDtype", "(", "unit", "=", "'ns'", ",", "tz", "=", "val", ".", "tz", ")", "else", ":", "# return datetimetz as object", "return", "np", ".", "object_", ",", "val", "val", "=", "val", ".", "value", "elif", "isinstance", "(", "val", ",", "(", "np", ".", "timedelta64", ",", "timedelta", ")", ")", ":", "val", "=", "tslibs", ".", "Timedelta", "(", "val", ")", ".", "value", "dtype", "=", "np", ".", "dtype", "(", "'m8[ns]'", ")", "elif", "is_bool", "(", "val", ")", ":", "dtype", "=", "np", ".", "bool_", "elif", "is_integer", "(", "val", ")", ":", "if", "isinstance", "(", "val", ",", "np", ".", "integer", ")", ":", "dtype", "=", "type", "(", "val", ")", "else", ":", "dtype", "=", "np", ".", "int64", "elif", "is_float", "(", "val", ")", ":", "if", "isinstance", "(", "val", ",", "np", ".", "floating", ")", ":", "dtype", "=", "type", "(", "val", ")", "else", ":", "dtype", "=", "np", ".", "float64", "elif", "is_complex", "(", "val", ")", ":", "dtype", "=", "np", ".", "complex_", "elif", "pandas_dtype", ":", "if", "lib", ".", "is_period", "(", "val", ")", ":", "dtype", "=", "PeriodDtype", "(", "freq", "=", "val", ".", "freq", ")", "val", "=", "val", ".", "ordinal", "return", "dtype", ",", "val" ]
interpret the dtype from a scalar Parameters ---------- pandas_dtype : bool, default False whether to infer dtype including pandas extension types. If False, scalar belongs to pandas extension types is inferred as object
[ "interpret", "the", "dtype", "from", "a", "scalar" ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/dtypes/cast.py#L354-L426
19,752
pandas-dev/pandas
pandas/core/dtypes/cast.py
infer_dtype_from_array
def infer_dtype_from_array(arr, pandas_dtype=False): """ infer the dtype from a scalar or array Parameters ---------- arr : scalar or array pandas_dtype : bool, default False whether to infer dtype including pandas extension types. If False, array belongs to pandas extension types is inferred as object Returns ------- tuple (numpy-compat/pandas-compat dtype, array) Notes ----- if pandas_dtype=False. these infer to numpy dtypes exactly with the exception that mixed / object dtypes are not coerced by stringifying or conversion if pandas_dtype=True. datetime64tz-aware/categorical types will retain there character. Examples -------- >>> np.asarray([1, '1']) array(['1', '1'], dtype='<U21') >>> infer_dtype_from_array([1, '1']) (numpy.object_, [1, '1']) """ if isinstance(arr, np.ndarray): return arr.dtype, arr if not is_list_like(arr): arr = [arr] if pandas_dtype and is_extension_type(arr): return arr.dtype, arr elif isinstance(arr, ABCSeries): return arr.dtype, np.asarray(arr) # don't force numpy coerce with nan's inferred = lib.infer_dtype(arr, skipna=False) if inferred in ['string', 'bytes', 'unicode', 'mixed', 'mixed-integer']: return (np.object_, arr) arr = np.asarray(arr) return arr.dtype, arr
python
def infer_dtype_from_array(arr, pandas_dtype=False): """ infer the dtype from a scalar or array Parameters ---------- arr : scalar or array pandas_dtype : bool, default False whether to infer dtype including pandas extension types. If False, array belongs to pandas extension types is inferred as object Returns ------- tuple (numpy-compat/pandas-compat dtype, array) Notes ----- if pandas_dtype=False. these infer to numpy dtypes exactly with the exception that mixed / object dtypes are not coerced by stringifying or conversion if pandas_dtype=True. datetime64tz-aware/categorical types will retain there character. Examples -------- >>> np.asarray([1, '1']) array(['1', '1'], dtype='<U21') >>> infer_dtype_from_array([1, '1']) (numpy.object_, [1, '1']) """ if isinstance(arr, np.ndarray): return arr.dtype, arr if not is_list_like(arr): arr = [arr] if pandas_dtype and is_extension_type(arr): return arr.dtype, arr elif isinstance(arr, ABCSeries): return arr.dtype, np.asarray(arr) # don't force numpy coerce with nan's inferred = lib.infer_dtype(arr, skipna=False) if inferred in ['string', 'bytes', 'unicode', 'mixed', 'mixed-integer']: return (np.object_, arr) arr = np.asarray(arr) return arr.dtype, arr
[ "def", "infer_dtype_from_array", "(", "arr", ",", "pandas_dtype", "=", "False", ")", ":", "if", "isinstance", "(", "arr", ",", "np", ".", "ndarray", ")", ":", "return", "arr", ".", "dtype", ",", "arr", "if", "not", "is_list_like", "(", "arr", ")", ":", "arr", "=", "[", "arr", "]", "if", "pandas_dtype", "and", "is_extension_type", "(", "arr", ")", ":", "return", "arr", ".", "dtype", ",", "arr", "elif", "isinstance", "(", "arr", ",", "ABCSeries", ")", ":", "return", "arr", ".", "dtype", ",", "np", ".", "asarray", "(", "arr", ")", "# don't force numpy coerce with nan's", "inferred", "=", "lib", ".", "infer_dtype", "(", "arr", ",", "skipna", "=", "False", ")", "if", "inferred", "in", "[", "'string'", ",", "'bytes'", ",", "'unicode'", ",", "'mixed'", ",", "'mixed-integer'", "]", ":", "return", "(", "np", ".", "object_", ",", "arr", ")", "arr", "=", "np", ".", "asarray", "(", "arr", ")", "return", "arr", ".", "dtype", ",", "arr" ]
infer the dtype from a scalar or array Parameters ---------- arr : scalar or array pandas_dtype : bool, default False whether to infer dtype including pandas extension types. If False, array belongs to pandas extension types is inferred as object Returns ------- tuple (numpy-compat/pandas-compat dtype, array) Notes ----- if pandas_dtype=False. these infer to numpy dtypes exactly with the exception that mixed / object dtypes are not coerced by stringifying or conversion if pandas_dtype=True. datetime64tz-aware/categorical types will retain there character. Examples -------- >>> np.asarray([1, '1']) array(['1', '1'], dtype='<U21') >>> infer_dtype_from_array([1, '1']) (numpy.object_, [1, '1'])
[ "infer", "the", "dtype", "from", "a", "scalar", "or", "array" ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/dtypes/cast.py#L429-L483
19,753
pandas-dev/pandas
pandas/core/dtypes/cast.py
maybe_infer_dtype_type
def maybe_infer_dtype_type(element): """Try to infer an object's dtype, for use in arithmetic ops Uses `element.dtype` if that's available. Objects implementing the iterator protocol are cast to a NumPy array, and from there the array's type is used. Parameters ---------- element : object Possibly has a `.dtype` attribute, and possibly the iterator protocol. Returns ------- tipo : type Examples -------- >>> from collections import namedtuple >>> Foo = namedtuple("Foo", "dtype") >>> maybe_infer_dtype_type(Foo(np.dtype("i8"))) numpy.int64 """ tipo = None if hasattr(element, 'dtype'): tipo = element.dtype elif is_list_like(element): element = np.asarray(element) tipo = element.dtype return tipo
python
def maybe_infer_dtype_type(element): """Try to infer an object's dtype, for use in arithmetic ops Uses `element.dtype` if that's available. Objects implementing the iterator protocol are cast to a NumPy array, and from there the array's type is used. Parameters ---------- element : object Possibly has a `.dtype` attribute, and possibly the iterator protocol. Returns ------- tipo : type Examples -------- >>> from collections import namedtuple >>> Foo = namedtuple("Foo", "dtype") >>> maybe_infer_dtype_type(Foo(np.dtype("i8"))) numpy.int64 """ tipo = None if hasattr(element, 'dtype'): tipo = element.dtype elif is_list_like(element): element = np.asarray(element) tipo = element.dtype return tipo
[ "def", "maybe_infer_dtype_type", "(", "element", ")", ":", "tipo", "=", "None", "if", "hasattr", "(", "element", ",", "'dtype'", ")", ":", "tipo", "=", "element", ".", "dtype", "elif", "is_list_like", "(", "element", ")", ":", "element", "=", "np", ".", "asarray", "(", "element", ")", "tipo", "=", "element", ".", "dtype", "return", "tipo" ]
Try to infer an object's dtype, for use in arithmetic ops Uses `element.dtype` if that's available. Objects implementing the iterator protocol are cast to a NumPy array, and from there the array's type is used. Parameters ---------- element : object Possibly has a `.dtype` attribute, and possibly the iterator protocol. Returns ------- tipo : type Examples -------- >>> from collections import namedtuple >>> Foo = namedtuple("Foo", "dtype") >>> maybe_infer_dtype_type(Foo(np.dtype("i8"))) numpy.int64
[ "Try", "to", "infer", "an", "object", "s", "dtype", "for", "use", "in", "arithmetic", "ops" ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/dtypes/cast.py#L486-L516
19,754
pandas-dev/pandas
pandas/core/dtypes/cast.py
maybe_upcast
def maybe_upcast(values, fill_value=np.nan, dtype=None, copy=False): """ provide explicit type promotion and coercion Parameters ---------- values : the ndarray that we want to maybe upcast fill_value : what we want to fill with dtype : if None, then use the dtype of the values, else coerce to this type copy : if True always make a copy even if no upcast is required """ if is_extension_type(values): if copy: values = values.copy() else: if dtype is None: dtype = values.dtype new_dtype, fill_value = maybe_promote(dtype, fill_value) if new_dtype != values.dtype: values = values.astype(new_dtype) elif copy: values = values.copy() return values, fill_value
python
def maybe_upcast(values, fill_value=np.nan, dtype=None, copy=False): """ provide explicit type promotion and coercion Parameters ---------- values : the ndarray that we want to maybe upcast fill_value : what we want to fill with dtype : if None, then use the dtype of the values, else coerce to this type copy : if True always make a copy even if no upcast is required """ if is_extension_type(values): if copy: values = values.copy() else: if dtype is None: dtype = values.dtype new_dtype, fill_value = maybe_promote(dtype, fill_value) if new_dtype != values.dtype: values = values.astype(new_dtype) elif copy: values = values.copy() return values, fill_value
[ "def", "maybe_upcast", "(", "values", ",", "fill_value", "=", "np", ".", "nan", ",", "dtype", "=", "None", ",", "copy", "=", "False", ")", ":", "if", "is_extension_type", "(", "values", ")", ":", "if", "copy", ":", "values", "=", "values", ".", "copy", "(", ")", "else", ":", "if", "dtype", "is", "None", ":", "dtype", "=", "values", ".", "dtype", "new_dtype", ",", "fill_value", "=", "maybe_promote", "(", "dtype", ",", "fill_value", ")", "if", "new_dtype", "!=", "values", ".", "dtype", ":", "values", "=", "values", ".", "astype", "(", "new_dtype", ")", "elif", "copy", ":", "values", "=", "values", ".", "copy", "(", ")", "return", "values", ",", "fill_value" ]
provide explicit type promotion and coercion Parameters ---------- values : the ndarray that we want to maybe upcast fill_value : what we want to fill with dtype : if None, then use the dtype of the values, else coerce to this type copy : if True always make a copy even if no upcast is required
[ "provide", "explicit", "type", "promotion", "and", "coercion" ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/dtypes/cast.py#L519-L542
19,755
pandas-dev/pandas
pandas/core/dtypes/cast.py
coerce_indexer_dtype
def coerce_indexer_dtype(indexer, categories): """ coerce the indexer input array to the smallest dtype possible """ length = len(categories) if length < _int8_max: return ensure_int8(indexer) elif length < _int16_max: return ensure_int16(indexer) elif length < _int32_max: return ensure_int32(indexer) return ensure_int64(indexer)
python
def coerce_indexer_dtype(indexer, categories): """ coerce the indexer input array to the smallest dtype possible """ length = len(categories) if length < _int8_max: return ensure_int8(indexer) elif length < _int16_max: return ensure_int16(indexer) elif length < _int32_max: return ensure_int32(indexer) return ensure_int64(indexer)
[ "def", "coerce_indexer_dtype", "(", "indexer", ",", "categories", ")", ":", "length", "=", "len", "(", "categories", ")", "if", "length", "<", "_int8_max", ":", "return", "ensure_int8", "(", "indexer", ")", "elif", "length", "<", "_int16_max", ":", "return", "ensure_int16", "(", "indexer", ")", "elif", "length", "<", "_int32_max", ":", "return", "ensure_int32", "(", "indexer", ")", "return", "ensure_int64", "(", "indexer", ")" ]
coerce the indexer input array to the smallest dtype possible
[ "coerce", "the", "indexer", "input", "array", "to", "the", "smallest", "dtype", "possible" ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/dtypes/cast.py#L565-L574
19,756
pandas-dev/pandas
pandas/core/dtypes/cast.py
coerce_to_dtypes
def coerce_to_dtypes(result, dtypes): """ given a dtypes and a result set, coerce the result elements to the dtypes """ if len(result) != len(dtypes): raise AssertionError("_coerce_to_dtypes requires equal len arrays") def conv(r, dtype): try: if isna(r): pass elif dtype == _NS_DTYPE: r = tslibs.Timestamp(r) elif dtype == _TD_DTYPE: r = tslibs.Timedelta(r) elif dtype == np.bool_: # messy. non 0/1 integers do not get converted. if is_integer(r) and r not in [0, 1]: return int(r) r = bool(r) elif dtype.kind == 'f': r = float(r) elif dtype.kind == 'i': r = int(r) except Exception: pass return r return [conv(r, dtype) for r, dtype in zip(result, dtypes)]
python
def coerce_to_dtypes(result, dtypes): """ given a dtypes and a result set, coerce the result elements to the dtypes """ if len(result) != len(dtypes): raise AssertionError("_coerce_to_dtypes requires equal len arrays") def conv(r, dtype): try: if isna(r): pass elif dtype == _NS_DTYPE: r = tslibs.Timestamp(r) elif dtype == _TD_DTYPE: r = tslibs.Timedelta(r) elif dtype == np.bool_: # messy. non 0/1 integers do not get converted. if is_integer(r) and r not in [0, 1]: return int(r) r = bool(r) elif dtype.kind == 'f': r = float(r) elif dtype.kind == 'i': r = int(r) except Exception: pass return r return [conv(r, dtype) for r, dtype in zip(result, dtypes)]
[ "def", "coerce_to_dtypes", "(", "result", ",", "dtypes", ")", ":", "if", "len", "(", "result", ")", "!=", "len", "(", "dtypes", ")", ":", "raise", "AssertionError", "(", "\"_coerce_to_dtypes requires equal len arrays\"", ")", "def", "conv", "(", "r", ",", "dtype", ")", ":", "try", ":", "if", "isna", "(", "r", ")", ":", "pass", "elif", "dtype", "==", "_NS_DTYPE", ":", "r", "=", "tslibs", ".", "Timestamp", "(", "r", ")", "elif", "dtype", "==", "_TD_DTYPE", ":", "r", "=", "tslibs", ".", "Timedelta", "(", "r", ")", "elif", "dtype", "==", "np", ".", "bool_", ":", "# messy. non 0/1 integers do not get converted.", "if", "is_integer", "(", "r", ")", "and", "r", "not", "in", "[", "0", ",", "1", "]", ":", "return", "int", "(", "r", ")", "r", "=", "bool", "(", "r", ")", "elif", "dtype", ".", "kind", "==", "'f'", ":", "r", "=", "float", "(", "r", ")", "elif", "dtype", ".", "kind", "==", "'i'", ":", "r", "=", "int", "(", "r", ")", "except", "Exception", ":", "pass", "return", "r", "return", "[", "conv", "(", "r", ",", "dtype", ")", "for", "r", ",", "dtype", "in", "zip", "(", "result", ",", "dtypes", ")", "]" ]
given a dtypes and a result set, coerce the result elements to the dtypes
[ "given", "a", "dtypes", "and", "a", "result", "set", "coerce", "the", "result", "elements", "to", "the", "dtypes" ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/dtypes/cast.py#L577-L607
19,757
pandas-dev/pandas
pandas/core/dtypes/cast.py
find_common_type
def find_common_type(types): """ Find a common data type among the given dtypes. Parameters ---------- types : list of dtypes Returns ------- pandas extension or numpy dtype See Also -------- numpy.find_common_type """ if len(types) == 0: raise ValueError('no types given') first = types[0] # workaround for find_common_type([np.dtype('datetime64[ns]')] * 2) # => object if all(is_dtype_equal(first, t) for t in types[1:]): return first if any(isinstance(t, (PandasExtensionDtype, ExtensionDtype)) for t in types): return np.object # take lowest unit if all(is_datetime64_dtype(t) for t in types): return np.dtype('datetime64[ns]') if all(is_timedelta64_dtype(t) for t in types): return np.dtype('timedelta64[ns]') # don't mix bool / int or float or complex # this is different from numpy, which casts bool with float/int as int has_bools = any(is_bool_dtype(t) for t in types) if has_bools: for t in types: if is_integer_dtype(t) or is_float_dtype(t) or is_complex_dtype(t): return np.object return np.find_common_type(types, [])
python
def find_common_type(types): """ Find a common data type among the given dtypes. Parameters ---------- types : list of dtypes Returns ------- pandas extension or numpy dtype See Also -------- numpy.find_common_type """ if len(types) == 0: raise ValueError('no types given') first = types[0] # workaround for find_common_type([np.dtype('datetime64[ns]')] * 2) # => object if all(is_dtype_equal(first, t) for t in types[1:]): return first if any(isinstance(t, (PandasExtensionDtype, ExtensionDtype)) for t in types): return np.object # take lowest unit if all(is_datetime64_dtype(t) for t in types): return np.dtype('datetime64[ns]') if all(is_timedelta64_dtype(t) for t in types): return np.dtype('timedelta64[ns]') # don't mix bool / int or float or complex # this is different from numpy, which casts bool with float/int as int has_bools = any(is_bool_dtype(t) for t in types) if has_bools: for t in types: if is_integer_dtype(t) or is_float_dtype(t) or is_complex_dtype(t): return np.object return np.find_common_type(types, [])
[ "def", "find_common_type", "(", "types", ")", ":", "if", "len", "(", "types", ")", "==", "0", ":", "raise", "ValueError", "(", "'no types given'", ")", "first", "=", "types", "[", "0", "]", "# workaround for find_common_type([np.dtype('datetime64[ns]')] * 2)", "# => object", "if", "all", "(", "is_dtype_equal", "(", "first", ",", "t", ")", "for", "t", "in", "types", "[", "1", ":", "]", ")", ":", "return", "first", "if", "any", "(", "isinstance", "(", "t", ",", "(", "PandasExtensionDtype", ",", "ExtensionDtype", ")", ")", "for", "t", "in", "types", ")", ":", "return", "np", ".", "object", "# take lowest unit", "if", "all", "(", "is_datetime64_dtype", "(", "t", ")", "for", "t", "in", "types", ")", ":", "return", "np", ".", "dtype", "(", "'datetime64[ns]'", ")", "if", "all", "(", "is_timedelta64_dtype", "(", "t", ")", "for", "t", "in", "types", ")", ":", "return", "np", ".", "dtype", "(", "'timedelta64[ns]'", ")", "# don't mix bool / int or float or complex", "# this is different from numpy, which casts bool with float/int as int", "has_bools", "=", "any", "(", "is_bool_dtype", "(", "t", ")", "for", "t", "in", "types", ")", "if", "has_bools", ":", "for", "t", "in", "types", ":", "if", "is_integer_dtype", "(", "t", ")", "or", "is_float_dtype", "(", "t", ")", "or", "is_complex_dtype", "(", "t", ")", ":", "return", "np", ".", "object", "return", "np", ".", "find_common_type", "(", "types", ",", "[", "]", ")" ]
Find a common data type among the given dtypes. Parameters ---------- types : list of dtypes Returns ------- pandas extension or numpy dtype See Also -------- numpy.find_common_type
[ "Find", "a", "common", "data", "type", "among", "the", "given", "dtypes", "." ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/dtypes/cast.py#L1083-L1129
19,758
pandas-dev/pandas
pandas/core/dtypes/cast.py
cast_scalar_to_array
def cast_scalar_to_array(shape, value, dtype=None): """ create np.ndarray of specified shape and dtype, filled with values Parameters ---------- shape : tuple value : scalar value dtype : np.dtype, optional dtype to coerce Returns ------- ndarray of shape, filled with value, of specified / inferred dtype """ if dtype is None: dtype, fill_value = infer_dtype_from_scalar(value) else: fill_value = value values = np.empty(shape, dtype=dtype) values.fill(fill_value) return values
python
def cast_scalar_to_array(shape, value, dtype=None): """ create np.ndarray of specified shape and dtype, filled with values Parameters ---------- shape : tuple value : scalar value dtype : np.dtype, optional dtype to coerce Returns ------- ndarray of shape, filled with value, of specified / inferred dtype """ if dtype is None: dtype, fill_value = infer_dtype_from_scalar(value) else: fill_value = value values = np.empty(shape, dtype=dtype) values.fill(fill_value) return values
[ "def", "cast_scalar_to_array", "(", "shape", ",", "value", ",", "dtype", "=", "None", ")", ":", "if", "dtype", "is", "None", ":", "dtype", ",", "fill_value", "=", "infer_dtype_from_scalar", "(", "value", ")", "else", ":", "fill_value", "=", "value", "values", "=", "np", ".", "empty", "(", "shape", ",", "dtype", "=", "dtype", ")", "values", ".", "fill", "(", "fill_value", ")", "return", "values" ]
create np.ndarray of specified shape and dtype, filled with values Parameters ---------- shape : tuple value : scalar value dtype : np.dtype, optional dtype to coerce Returns ------- ndarray of shape, filled with value, of specified / inferred dtype
[ "create", "np", ".", "ndarray", "of", "specified", "shape", "and", "dtype", "filled", "with", "values" ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/dtypes/cast.py#L1132-L1157
19,759
pandas-dev/pandas
pandas/core/dtypes/cast.py
construct_1d_object_array_from_listlike
def construct_1d_object_array_from_listlike(values): """ Transform any list-like object in a 1-dimensional numpy array of object dtype. Parameters ---------- values : any iterable which has a len() Raises ------ TypeError * If `values` does not have a len() Returns ------- 1-dimensional numpy array of dtype object """ # numpy will try to interpret nested lists as further dimensions, hence # making a 1D array that contains list-likes is a bit tricky: result = np.empty(len(values), dtype='object') result[:] = values return result
python
def construct_1d_object_array_from_listlike(values): """ Transform any list-like object in a 1-dimensional numpy array of object dtype. Parameters ---------- values : any iterable which has a len() Raises ------ TypeError * If `values` does not have a len() Returns ------- 1-dimensional numpy array of dtype object """ # numpy will try to interpret nested lists as further dimensions, hence # making a 1D array that contains list-likes is a bit tricky: result = np.empty(len(values), dtype='object') result[:] = values return result
[ "def", "construct_1d_object_array_from_listlike", "(", "values", ")", ":", "# numpy will try to interpret nested lists as further dimensions, hence", "# making a 1D array that contains list-likes is a bit tricky:", "result", "=", "np", ".", "empty", "(", "len", "(", "values", ")", ",", "dtype", "=", "'object'", ")", "result", "[", ":", "]", "=", "values", "return", "result" ]
Transform any list-like object in a 1-dimensional numpy array of object dtype. Parameters ---------- values : any iterable which has a len() Raises ------ TypeError * If `values` does not have a len() Returns ------- 1-dimensional numpy array of dtype object
[ "Transform", "any", "list", "-", "like", "object", "in", "a", "1", "-", "dimensional", "numpy", "array", "of", "object", "dtype", "." ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/dtypes/cast.py#L1202-L1224
19,760
pandas-dev/pandas
pandas/core/dtypes/cast.py
construct_1d_ndarray_preserving_na
def construct_1d_ndarray_preserving_na(values, dtype=None, copy=False): """ Construct a new ndarray, coercing `values` to `dtype`, preserving NA. Parameters ---------- values : Sequence dtype : numpy.dtype, optional copy : bool, default False Note that copies may still be made with ``copy=False`` if casting is required. Returns ------- arr : ndarray[dtype] Examples -------- >>> np.array([1.0, 2.0, None], dtype='str') array(['1.0', '2.0', 'None'], dtype='<U4') >>> construct_1d_ndarray_preserving_na([1.0, 2.0, None], dtype='str') """ subarr = np.array(values, dtype=dtype, copy=copy) if dtype is not None and dtype.kind in ("U", "S"): # GH-21083 # We can't just return np.array(subarr, dtype='str') since # NumPy will convert the non-string objects into strings # Including NA values. Se we have to go # string -> object -> update NA, which requires an # additional pass over the data. na_values = isna(values) subarr2 = subarr.astype(object) subarr2[na_values] = np.asarray(values, dtype=object)[na_values] subarr = subarr2 return subarr
python
def construct_1d_ndarray_preserving_na(values, dtype=None, copy=False): """ Construct a new ndarray, coercing `values` to `dtype`, preserving NA. Parameters ---------- values : Sequence dtype : numpy.dtype, optional copy : bool, default False Note that copies may still be made with ``copy=False`` if casting is required. Returns ------- arr : ndarray[dtype] Examples -------- >>> np.array([1.0, 2.0, None], dtype='str') array(['1.0', '2.0', 'None'], dtype='<U4') >>> construct_1d_ndarray_preserving_na([1.0, 2.0, None], dtype='str') """ subarr = np.array(values, dtype=dtype, copy=copy) if dtype is not None and dtype.kind in ("U", "S"): # GH-21083 # We can't just return np.array(subarr, dtype='str') since # NumPy will convert the non-string objects into strings # Including NA values. Se we have to go # string -> object -> update NA, which requires an # additional pass over the data. na_values = isna(values) subarr2 = subarr.astype(object) subarr2[na_values] = np.asarray(values, dtype=object)[na_values] subarr = subarr2 return subarr
[ "def", "construct_1d_ndarray_preserving_na", "(", "values", ",", "dtype", "=", "None", ",", "copy", "=", "False", ")", ":", "subarr", "=", "np", ".", "array", "(", "values", ",", "dtype", "=", "dtype", ",", "copy", "=", "copy", ")", "if", "dtype", "is", "not", "None", "and", "dtype", ".", "kind", "in", "(", "\"U\"", ",", "\"S\"", ")", ":", "# GH-21083", "# We can't just return np.array(subarr, dtype='str') since", "# NumPy will convert the non-string objects into strings", "# Including NA values. Se we have to go", "# string -> object -> update NA, which requires an", "# additional pass over the data.", "na_values", "=", "isna", "(", "values", ")", "subarr2", "=", "subarr", ".", "astype", "(", "object", ")", "subarr2", "[", "na_values", "]", "=", "np", ".", "asarray", "(", "values", ",", "dtype", "=", "object", ")", "[", "na_values", "]", "subarr", "=", "subarr2", "return", "subarr" ]
Construct a new ndarray, coercing `values` to `dtype`, preserving NA. Parameters ---------- values : Sequence dtype : numpy.dtype, optional copy : bool, default False Note that copies may still be made with ``copy=False`` if casting is required. Returns ------- arr : ndarray[dtype] Examples -------- >>> np.array([1.0, 2.0, None], dtype='str') array(['1.0', '2.0', 'None'], dtype='<U4') >>> construct_1d_ndarray_preserving_na([1.0, 2.0, None], dtype='str')
[ "Construct", "a", "new", "ndarray", "coercing", "values", "to", "dtype", "preserving", "NA", "." ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/dtypes/cast.py#L1227-L1266
19,761
pandas-dev/pandas
pandas/plotting/_core.py
scatter_plot
def scatter_plot(data, x, y, by=None, ax=None, figsize=None, grid=False, **kwargs): """ Make a scatter plot from two DataFrame columns Parameters ---------- data : DataFrame x : Column name for the x-axis values y : Column name for the y-axis values ax : Matplotlib axis object figsize : A tuple (width, height) in inches grid : Setting this to True will show the grid kwargs : other plotting keyword arguments To be passed to scatter function Returns ------- matplotlib.Figure """ import matplotlib.pyplot as plt kwargs.setdefault('edgecolors', 'none') def plot_group(group, ax): xvals = group[x].values yvals = group[y].values ax.scatter(xvals, yvals, **kwargs) ax.grid(grid) if by is not None: fig = _grouped_plot(plot_group, data, by=by, figsize=figsize, ax=ax) else: if ax is None: fig = plt.figure() ax = fig.add_subplot(111) else: fig = ax.get_figure() plot_group(data, ax) ax.set_ylabel(pprint_thing(y)) ax.set_xlabel(pprint_thing(x)) ax.grid(grid) return fig
python
def scatter_plot(data, x, y, by=None, ax=None, figsize=None, grid=False, **kwargs): """ Make a scatter plot from two DataFrame columns Parameters ---------- data : DataFrame x : Column name for the x-axis values y : Column name for the y-axis values ax : Matplotlib axis object figsize : A tuple (width, height) in inches grid : Setting this to True will show the grid kwargs : other plotting keyword arguments To be passed to scatter function Returns ------- matplotlib.Figure """ import matplotlib.pyplot as plt kwargs.setdefault('edgecolors', 'none') def plot_group(group, ax): xvals = group[x].values yvals = group[y].values ax.scatter(xvals, yvals, **kwargs) ax.grid(grid) if by is not None: fig = _grouped_plot(plot_group, data, by=by, figsize=figsize, ax=ax) else: if ax is None: fig = plt.figure() ax = fig.add_subplot(111) else: fig = ax.get_figure() plot_group(data, ax) ax.set_ylabel(pprint_thing(y)) ax.set_xlabel(pprint_thing(x)) ax.grid(grid) return fig
[ "def", "scatter_plot", "(", "data", ",", "x", ",", "y", ",", "by", "=", "None", ",", "ax", "=", "None", ",", "figsize", "=", "None", ",", "grid", "=", "False", ",", "*", "*", "kwargs", ")", ":", "import", "matplotlib", ".", "pyplot", "as", "plt", "kwargs", ".", "setdefault", "(", "'edgecolors'", ",", "'none'", ")", "def", "plot_group", "(", "group", ",", "ax", ")", ":", "xvals", "=", "group", "[", "x", "]", ".", "values", "yvals", "=", "group", "[", "y", "]", ".", "values", "ax", ".", "scatter", "(", "xvals", ",", "yvals", ",", "*", "*", "kwargs", ")", "ax", ".", "grid", "(", "grid", ")", "if", "by", "is", "not", "None", ":", "fig", "=", "_grouped_plot", "(", "plot_group", ",", "data", ",", "by", "=", "by", ",", "figsize", "=", "figsize", ",", "ax", "=", "ax", ")", "else", ":", "if", "ax", "is", "None", ":", "fig", "=", "plt", ".", "figure", "(", ")", "ax", "=", "fig", ".", "add_subplot", "(", "111", ")", "else", ":", "fig", "=", "ax", ".", "get_figure", "(", ")", "plot_group", "(", "data", ",", "ax", ")", "ax", ".", "set_ylabel", "(", "pprint_thing", "(", "y", ")", ")", "ax", ".", "set_xlabel", "(", "pprint_thing", "(", "x", ")", ")", "ax", ".", "grid", "(", "grid", ")", "return", "fig" ]
Make a scatter plot from two DataFrame columns Parameters ---------- data : DataFrame x : Column name for the x-axis values y : Column name for the y-axis values ax : Matplotlib axis object figsize : A tuple (width, height) in inches grid : Setting this to True will show the grid kwargs : other plotting keyword arguments To be passed to scatter function Returns ------- matplotlib.Figure
[ "Make", "a", "scatter", "plot", "from", "two", "DataFrame", "columns" ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/plotting/_core.py#L2284-L2328
19,762
pandas-dev/pandas
pandas/plotting/_core.py
hist_frame
def hist_frame(data, column=None, by=None, grid=True, xlabelsize=None, xrot=None, ylabelsize=None, yrot=None, ax=None, sharex=False, sharey=False, figsize=None, layout=None, bins=10, **kwds): """ Make a histogram of the DataFrame's. A `histogram`_ is a representation of the distribution of data. This function calls :meth:`matplotlib.pyplot.hist`, on each series in the DataFrame, resulting in one histogram per column. .. _histogram: https://en.wikipedia.org/wiki/Histogram Parameters ---------- data : DataFrame The pandas object holding the data. column : string or sequence If passed, will be used to limit data to a subset of columns. by : object, optional If passed, then used to form histograms for separate groups. grid : bool, default True Whether to show axis grid lines. xlabelsize : int, default None If specified changes the x-axis label size. xrot : float, default None Rotation of x axis labels. For example, a value of 90 displays the x labels rotated 90 degrees clockwise. ylabelsize : int, default None If specified changes the y-axis label size. yrot : float, default None Rotation of y axis labels. For example, a value of 90 displays the y labels rotated 90 degrees clockwise. ax : Matplotlib axes object, default None The axes to plot the histogram on. sharex : bool, default True if ax is None else False In case subplots=True, share x axis and set some x axis labels to invisible; defaults to True if ax is None otherwise False if an ax is passed in. Note that passing in both an ax and sharex=True will alter all x axis labels for all subplots in a figure. sharey : bool, default False In case subplots=True, share y axis and set some y axis labels to invisible. figsize : tuple The size in inches of the figure to create. Uses the value in `matplotlib.rcParams` by default. layout : tuple, optional Tuple of (rows, columns) for the layout of the histograms. bins : integer or sequence, default 10 Number of histogram bins to be used. If an integer is given, bins + 1 bin edges are calculated and returned. If bins is a sequence, gives bin edges, including left edge of first bin and right edge of last bin. In this case, bins is returned unmodified. **kwds All other plotting keyword arguments to be passed to :meth:`matplotlib.pyplot.hist`. Returns ------- matplotlib.AxesSubplot or numpy.ndarray of them See Also -------- matplotlib.pyplot.hist : Plot a histogram using matplotlib. Examples -------- .. plot:: :context: close-figs This example draws a histogram based on the length and width of some animals, displayed in three bins >>> df = pd.DataFrame({ ... 'length': [1.5, 0.5, 1.2, 0.9, 3], ... 'width': [0.7, 0.2, 0.15, 0.2, 1.1] ... }, index= ['pig', 'rabbit', 'duck', 'chicken', 'horse']) >>> hist = df.hist(bins=3) """ _raise_if_no_mpl() _converter._WARN = False if by is not None: axes = grouped_hist(data, column=column, by=by, ax=ax, grid=grid, figsize=figsize, sharex=sharex, sharey=sharey, layout=layout, bins=bins, xlabelsize=xlabelsize, xrot=xrot, ylabelsize=ylabelsize, yrot=yrot, **kwds) return axes if column is not None: if not isinstance(column, (list, np.ndarray, ABCIndexClass)): column = [column] data = data[column] data = data._get_numeric_data() naxes = len(data.columns) fig, axes = _subplots(naxes=naxes, ax=ax, squeeze=False, sharex=sharex, sharey=sharey, figsize=figsize, layout=layout) _axes = _flatten(axes) for i, col in enumerate(com.try_sort(data.columns)): ax = _axes[i] ax.hist(data[col].dropna().values, bins=bins, **kwds) ax.set_title(col) ax.grid(grid) _set_ticks_props(axes, xlabelsize=xlabelsize, xrot=xrot, ylabelsize=ylabelsize, yrot=yrot) fig.subplots_adjust(wspace=0.3, hspace=0.3) return axes
python
def hist_frame(data, column=None, by=None, grid=True, xlabelsize=None, xrot=None, ylabelsize=None, yrot=None, ax=None, sharex=False, sharey=False, figsize=None, layout=None, bins=10, **kwds): """ Make a histogram of the DataFrame's. A `histogram`_ is a representation of the distribution of data. This function calls :meth:`matplotlib.pyplot.hist`, on each series in the DataFrame, resulting in one histogram per column. .. _histogram: https://en.wikipedia.org/wiki/Histogram Parameters ---------- data : DataFrame The pandas object holding the data. column : string or sequence If passed, will be used to limit data to a subset of columns. by : object, optional If passed, then used to form histograms for separate groups. grid : bool, default True Whether to show axis grid lines. xlabelsize : int, default None If specified changes the x-axis label size. xrot : float, default None Rotation of x axis labels. For example, a value of 90 displays the x labels rotated 90 degrees clockwise. ylabelsize : int, default None If specified changes the y-axis label size. yrot : float, default None Rotation of y axis labels. For example, a value of 90 displays the y labels rotated 90 degrees clockwise. ax : Matplotlib axes object, default None The axes to plot the histogram on. sharex : bool, default True if ax is None else False In case subplots=True, share x axis and set some x axis labels to invisible; defaults to True if ax is None otherwise False if an ax is passed in. Note that passing in both an ax and sharex=True will alter all x axis labels for all subplots in a figure. sharey : bool, default False In case subplots=True, share y axis and set some y axis labels to invisible. figsize : tuple The size in inches of the figure to create. Uses the value in `matplotlib.rcParams` by default. layout : tuple, optional Tuple of (rows, columns) for the layout of the histograms. bins : integer or sequence, default 10 Number of histogram bins to be used. If an integer is given, bins + 1 bin edges are calculated and returned. If bins is a sequence, gives bin edges, including left edge of first bin and right edge of last bin. In this case, bins is returned unmodified. **kwds All other plotting keyword arguments to be passed to :meth:`matplotlib.pyplot.hist`. Returns ------- matplotlib.AxesSubplot or numpy.ndarray of them See Also -------- matplotlib.pyplot.hist : Plot a histogram using matplotlib. Examples -------- .. plot:: :context: close-figs This example draws a histogram based on the length and width of some animals, displayed in three bins >>> df = pd.DataFrame({ ... 'length': [1.5, 0.5, 1.2, 0.9, 3], ... 'width': [0.7, 0.2, 0.15, 0.2, 1.1] ... }, index= ['pig', 'rabbit', 'duck', 'chicken', 'horse']) >>> hist = df.hist(bins=3) """ _raise_if_no_mpl() _converter._WARN = False if by is not None: axes = grouped_hist(data, column=column, by=by, ax=ax, grid=grid, figsize=figsize, sharex=sharex, sharey=sharey, layout=layout, bins=bins, xlabelsize=xlabelsize, xrot=xrot, ylabelsize=ylabelsize, yrot=yrot, **kwds) return axes if column is not None: if not isinstance(column, (list, np.ndarray, ABCIndexClass)): column = [column] data = data[column] data = data._get_numeric_data() naxes = len(data.columns) fig, axes = _subplots(naxes=naxes, ax=ax, squeeze=False, sharex=sharex, sharey=sharey, figsize=figsize, layout=layout) _axes = _flatten(axes) for i, col in enumerate(com.try_sort(data.columns)): ax = _axes[i] ax.hist(data[col].dropna().values, bins=bins, **kwds) ax.set_title(col) ax.grid(grid) _set_ticks_props(axes, xlabelsize=xlabelsize, xrot=xrot, ylabelsize=ylabelsize, yrot=yrot) fig.subplots_adjust(wspace=0.3, hspace=0.3) return axes
[ "def", "hist_frame", "(", "data", ",", "column", "=", "None", ",", "by", "=", "None", ",", "grid", "=", "True", ",", "xlabelsize", "=", "None", ",", "xrot", "=", "None", ",", "ylabelsize", "=", "None", ",", "yrot", "=", "None", ",", "ax", "=", "None", ",", "sharex", "=", "False", ",", "sharey", "=", "False", ",", "figsize", "=", "None", ",", "layout", "=", "None", ",", "bins", "=", "10", ",", "*", "*", "kwds", ")", ":", "_raise_if_no_mpl", "(", ")", "_converter", ".", "_WARN", "=", "False", "if", "by", "is", "not", "None", ":", "axes", "=", "grouped_hist", "(", "data", ",", "column", "=", "column", ",", "by", "=", "by", ",", "ax", "=", "ax", ",", "grid", "=", "grid", ",", "figsize", "=", "figsize", ",", "sharex", "=", "sharex", ",", "sharey", "=", "sharey", ",", "layout", "=", "layout", ",", "bins", "=", "bins", ",", "xlabelsize", "=", "xlabelsize", ",", "xrot", "=", "xrot", ",", "ylabelsize", "=", "ylabelsize", ",", "yrot", "=", "yrot", ",", "*", "*", "kwds", ")", "return", "axes", "if", "column", "is", "not", "None", ":", "if", "not", "isinstance", "(", "column", ",", "(", "list", ",", "np", ".", "ndarray", ",", "ABCIndexClass", ")", ")", ":", "column", "=", "[", "column", "]", "data", "=", "data", "[", "column", "]", "data", "=", "data", ".", "_get_numeric_data", "(", ")", "naxes", "=", "len", "(", "data", ".", "columns", ")", "fig", ",", "axes", "=", "_subplots", "(", "naxes", "=", "naxes", ",", "ax", "=", "ax", ",", "squeeze", "=", "False", ",", "sharex", "=", "sharex", ",", "sharey", "=", "sharey", ",", "figsize", "=", "figsize", ",", "layout", "=", "layout", ")", "_axes", "=", "_flatten", "(", "axes", ")", "for", "i", ",", "col", "in", "enumerate", "(", "com", ".", "try_sort", "(", "data", ".", "columns", ")", ")", ":", "ax", "=", "_axes", "[", "i", "]", "ax", ".", "hist", "(", "data", "[", "col", "]", ".", "dropna", "(", ")", ".", "values", ",", "bins", "=", "bins", ",", "*", "*", "kwds", ")", "ax", ".", "set_title", "(", "col", ")", "ax", ".", "grid", "(", "grid", ")", "_set_ticks_props", "(", "axes", ",", "xlabelsize", "=", "xlabelsize", ",", "xrot", "=", "xrot", ",", "ylabelsize", "=", "ylabelsize", ",", "yrot", "=", "yrot", ")", "fig", ".", "subplots_adjust", "(", "wspace", "=", "0.3", ",", "hspace", "=", "0.3", ")", "return", "axes" ]
Make a histogram of the DataFrame's. A `histogram`_ is a representation of the distribution of data. This function calls :meth:`matplotlib.pyplot.hist`, on each series in the DataFrame, resulting in one histogram per column. .. _histogram: https://en.wikipedia.org/wiki/Histogram Parameters ---------- data : DataFrame The pandas object holding the data. column : string or sequence If passed, will be used to limit data to a subset of columns. by : object, optional If passed, then used to form histograms for separate groups. grid : bool, default True Whether to show axis grid lines. xlabelsize : int, default None If specified changes the x-axis label size. xrot : float, default None Rotation of x axis labels. For example, a value of 90 displays the x labels rotated 90 degrees clockwise. ylabelsize : int, default None If specified changes the y-axis label size. yrot : float, default None Rotation of y axis labels. For example, a value of 90 displays the y labels rotated 90 degrees clockwise. ax : Matplotlib axes object, default None The axes to plot the histogram on. sharex : bool, default True if ax is None else False In case subplots=True, share x axis and set some x axis labels to invisible; defaults to True if ax is None otherwise False if an ax is passed in. Note that passing in both an ax and sharex=True will alter all x axis labels for all subplots in a figure. sharey : bool, default False In case subplots=True, share y axis and set some y axis labels to invisible. figsize : tuple The size in inches of the figure to create. Uses the value in `matplotlib.rcParams` by default. layout : tuple, optional Tuple of (rows, columns) for the layout of the histograms. bins : integer or sequence, default 10 Number of histogram bins to be used. If an integer is given, bins + 1 bin edges are calculated and returned. If bins is a sequence, gives bin edges, including left edge of first bin and right edge of last bin. In this case, bins is returned unmodified. **kwds All other plotting keyword arguments to be passed to :meth:`matplotlib.pyplot.hist`. Returns ------- matplotlib.AxesSubplot or numpy.ndarray of them See Also -------- matplotlib.pyplot.hist : Plot a histogram using matplotlib. Examples -------- .. plot:: :context: close-figs This example draws a histogram based on the length and width of some animals, displayed in three bins >>> df = pd.DataFrame({ ... 'length': [1.5, 0.5, 1.2, 0.9, 3], ... 'width': [0.7, 0.2, 0.15, 0.2, 1.1] ... }, index= ['pig', 'rabbit', 'duck', 'chicken', 'horse']) >>> hist = df.hist(bins=3)
[ "Make", "a", "histogram", "of", "the", "DataFrame", "s", "." ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/plotting/_core.py#L2331-L2443
19,763
pandas-dev/pandas
pandas/plotting/_core.py
hist_series
def hist_series(self, by=None, ax=None, grid=True, xlabelsize=None, xrot=None, ylabelsize=None, yrot=None, figsize=None, bins=10, **kwds): """ Draw histogram of the input series using matplotlib. Parameters ---------- by : object, optional If passed, then used to form histograms for separate groups ax : matplotlib axis object If not passed, uses gca() grid : bool, default True Whether to show axis grid lines xlabelsize : int, default None If specified changes the x-axis label size xrot : float, default None rotation of x axis labels ylabelsize : int, default None If specified changes the y-axis label size yrot : float, default None rotation of y axis labels figsize : tuple, default None figure size in inches by default bins : integer or sequence, default 10 Number of histogram bins to be used. If an integer is given, bins + 1 bin edges are calculated and returned. If bins is a sequence, gives bin edges, including left edge of first bin and right edge of last bin. In this case, bins is returned unmodified. bins : integer, default 10 Number of histogram bins to be used `**kwds` : keywords To be passed to the actual plotting function See Also -------- matplotlib.axes.Axes.hist : Plot a histogram using matplotlib. """ import matplotlib.pyplot as plt if by is None: if kwds.get('layout', None) is not None: raise ValueError("The 'layout' keyword is not supported when " "'by' is None") # hack until the plotting interface is a bit more unified fig = kwds.pop('figure', plt.gcf() if plt.get_fignums() else plt.figure(figsize=figsize)) if (figsize is not None and tuple(figsize) != tuple(fig.get_size_inches())): fig.set_size_inches(*figsize, forward=True) if ax is None: ax = fig.gca() elif ax.get_figure() != fig: raise AssertionError('passed axis not bound to passed figure') values = self.dropna().values ax.hist(values, bins=bins, **kwds) ax.grid(grid) axes = np.array([ax]) _set_ticks_props(axes, xlabelsize=xlabelsize, xrot=xrot, ylabelsize=ylabelsize, yrot=yrot) else: if 'figure' in kwds: raise ValueError("Cannot pass 'figure' when using the " "'by' argument, since a new 'Figure' instance " "will be created") axes = grouped_hist(self, by=by, ax=ax, grid=grid, figsize=figsize, bins=bins, xlabelsize=xlabelsize, xrot=xrot, ylabelsize=ylabelsize, yrot=yrot, **kwds) if hasattr(axes, 'ndim'): if axes.ndim == 1 and len(axes) == 1: return axes[0] return axes
python
def hist_series(self, by=None, ax=None, grid=True, xlabelsize=None, xrot=None, ylabelsize=None, yrot=None, figsize=None, bins=10, **kwds): """ Draw histogram of the input series using matplotlib. Parameters ---------- by : object, optional If passed, then used to form histograms for separate groups ax : matplotlib axis object If not passed, uses gca() grid : bool, default True Whether to show axis grid lines xlabelsize : int, default None If specified changes the x-axis label size xrot : float, default None rotation of x axis labels ylabelsize : int, default None If specified changes the y-axis label size yrot : float, default None rotation of y axis labels figsize : tuple, default None figure size in inches by default bins : integer or sequence, default 10 Number of histogram bins to be used. If an integer is given, bins + 1 bin edges are calculated and returned. If bins is a sequence, gives bin edges, including left edge of first bin and right edge of last bin. In this case, bins is returned unmodified. bins : integer, default 10 Number of histogram bins to be used `**kwds` : keywords To be passed to the actual plotting function See Also -------- matplotlib.axes.Axes.hist : Plot a histogram using matplotlib. """ import matplotlib.pyplot as plt if by is None: if kwds.get('layout', None) is not None: raise ValueError("The 'layout' keyword is not supported when " "'by' is None") # hack until the plotting interface is a bit more unified fig = kwds.pop('figure', plt.gcf() if plt.get_fignums() else plt.figure(figsize=figsize)) if (figsize is not None and tuple(figsize) != tuple(fig.get_size_inches())): fig.set_size_inches(*figsize, forward=True) if ax is None: ax = fig.gca() elif ax.get_figure() != fig: raise AssertionError('passed axis not bound to passed figure') values = self.dropna().values ax.hist(values, bins=bins, **kwds) ax.grid(grid) axes = np.array([ax]) _set_ticks_props(axes, xlabelsize=xlabelsize, xrot=xrot, ylabelsize=ylabelsize, yrot=yrot) else: if 'figure' in kwds: raise ValueError("Cannot pass 'figure' when using the " "'by' argument, since a new 'Figure' instance " "will be created") axes = grouped_hist(self, by=by, ax=ax, grid=grid, figsize=figsize, bins=bins, xlabelsize=xlabelsize, xrot=xrot, ylabelsize=ylabelsize, yrot=yrot, **kwds) if hasattr(axes, 'ndim'): if axes.ndim == 1 and len(axes) == 1: return axes[0] return axes
[ "def", "hist_series", "(", "self", ",", "by", "=", "None", ",", "ax", "=", "None", ",", "grid", "=", "True", ",", "xlabelsize", "=", "None", ",", "xrot", "=", "None", ",", "ylabelsize", "=", "None", ",", "yrot", "=", "None", ",", "figsize", "=", "None", ",", "bins", "=", "10", ",", "*", "*", "kwds", ")", ":", "import", "matplotlib", ".", "pyplot", "as", "plt", "if", "by", "is", "None", ":", "if", "kwds", ".", "get", "(", "'layout'", ",", "None", ")", "is", "not", "None", ":", "raise", "ValueError", "(", "\"The 'layout' keyword is not supported when \"", "\"'by' is None\"", ")", "# hack until the plotting interface is a bit more unified", "fig", "=", "kwds", ".", "pop", "(", "'figure'", ",", "plt", ".", "gcf", "(", ")", "if", "plt", ".", "get_fignums", "(", ")", "else", "plt", ".", "figure", "(", "figsize", "=", "figsize", ")", ")", "if", "(", "figsize", "is", "not", "None", "and", "tuple", "(", "figsize", ")", "!=", "tuple", "(", "fig", ".", "get_size_inches", "(", ")", ")", ")", ":", "fig", ".", "set_size_inches", "(", "*", "figsize", ",", "forward", "=", "True", ")", "if", "ax", "is", "None", ":", "ax", "=", "fig", ".", "gca", "(", ")", "elif", "ax", ".", "get_figure", "(", ")", "!=", "fig", ":", "raise", "AssertionError", "(", "'passed axis not bound to passed figure'", ")", "values", "=", "self", ".", "dropna", "(", ")", ".", "values", "ax", ".", "hist", "(", "values", ",", "bins", "=", "bins", ",", "*", "*", "kwds", ")", "ax", ".", "grid", "(", "grid", ")", "axes", "=", "np", ".", "array", "(", "[", "ax", "]", ")", "_set_ticks_props", "(", "axes", ",", "xlabelsize", "=", "xlabelsize", ",", "xrot", "=", "xrot", ",", "ylabelsize", "=", "ylabelsize", ",", "yrot", "=", "yrot", ")", "else", ":", "if", "'figure'", "in", "kwds", ":", "raise", "ValueError", "(", "\"Cannot pass 'figure' when using the \"", "\"'by' argument, since a new 'Figure' instance \"", "\"will be created\"", ")", "axes", "=", "grouped_hist", "(", "self", ",", "by", "=", "by", ",", "ax", "=", "ax", ",", "grid", "=", "grid", ",", "figsize", "=", "figsize", ",", "bins", "=", "bins", ",", "xlabelsize", "=", "xlabelsize", ",", "xrot", "=", "xrot", ",", "ylabelsize", "=", "ylabelsize", ",", "yrot", "=", "yrot", ",", "*", "*", "kwds", ")", "if", "hasattr", "(", "axes", ",", "'ndim'", ")", ":", "if", "axes", ".", "ndim", "==", "1", "and", "len", "(", "axes", ")", "==", "1", ":", "return", "axes", "[", "0", "]", "return", "axes" ]
Draw histogram of the input series using matplotlib. Parameters ---------- by : object, optional If passed, then used to form histograms for separate groups ax : matplotlib axis object If not passed, uses gca() grid : bool, default True Whether to show axis grid lines xlabelsize : int, default None If specified changes the x-axis label size xrot : float, default None rotation of x axis labels ylabelsize : int, default None If specified changes the y-axis label size yrot : float, default None rotation of y axis labels figsize : tuple, default None figure size in inches by default bins : integer or sequence, default 10 Number of histogram bins to be used. If an integer is given, bins + 1 bin edges are calculated and returned. If bins is a sequence, gives bin edges, including left edge of first bin and right edge of last bin. In this case, bins is returned unmodified. bins : integer, default 10 Number of histogram bins to be used `**kwds` : keywords To be passed to the actual plotting function See Also -------- matplotlib.axes.Axes.hist : Plot a histogram using matplotlib.
[ "Draw", "histogram", "of", "the", "input", "series", "using", "matplotlib", "." ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/plotting/_core.py#L2446-L2521
19,764
pandas-dev/pandas
pandas/plotting/_core.py
boxplot_frame_groupby
def boxplot_frame_groupby(grouped, subplots=True, column=None, fontsize=None, rot=0, grid=True, ax=None, figsize=None, layout=None, sharex=False, sharey=True, **kwds): """ Make box plots from DataFrameGroupBy data. Parameters ---------- grouped : Grouped DataFrame subplots : bool * ``False`` - no subplots will be used * ``True`` - create a subplot for each group column : column name or list of names, or vector Can be any valid input to groupby fontsize : int or string rot : label rotation angle grid : Setting this to True will show the grid ax : Matplotlib axis object, default None figsize : A tuple (width, height) in inches layout : tuple (optional) (rows, columns) for the layout of the plot sharex : bool, default False Whether x-axes will be shared among subplots .. versionadded:: 0.23.1 sharey : bool, default True Whether y-axes will be shared among subplots .. versionadded:: 0.23.1 `**kwds` : Keyword Arguments All other plotting keyword arguments to be passed to matplotlib's boxplot function Returns ------- dict of key/value = group key/DataFrame.boxplot return value or DataFrame.boxplot return value in case subplots=figures=False Examples -------- >>> import itertools >>> tuples = [t for t in itertools.product(range(1000), range(4))] >>> index = pd.MultiIndex.from_tuples(tuples, names=['lvl0', 'lvl1']) >>> data = np.random.randn(len(index),4) >>> df = pd.DataFrame(data, columns=list('ABCD'), index=index) >>> >>> grouped = df.groupby(level='lvl1') >>> boxplot_frame_groupby(grouped) >>> >>> grouped = df.unstack(level='lvl1').groupby(level=0, axis=1) >>> boxplot_frame_groupby(grouped, subplots=False) """ _raise_if_no_mpl() _converter._WARN = False if subplots is True: naxes = len(grouped) fig, axes = _subplots(naxes=naxes, squeeze=False, ax=ax, sharex=sharex, sharey=sharey, figsize=figsize, layout=layout) axes = _flatten(axes) from pandas.core.series import Series ret = Series() for (key, group), ax in zip(grouped, axes): d = group.boxplot(ax=ax, column=column, fontsize=fontsize, rot=rot, grid=grid, **kwds) ax.set_title(pprint_thing(key)) ret.loc[key] = d fig.subplots_adjust(bottom=0.15, top=0.9, left=0.1, right=0.9, wspace=0.2) else: from pandas.core.reshape.concat import concat keys, frames = zip(*grouped) if grouped.axis == 0: df = concat(frames, keys=keys, axis=1) else: if len(frames) > 1: df = frames[0].join(frames[1::]) else: df = frames[0] ret = df.boxplot(column=column, fontsize=fontsize, rot=rot, grid=grid, ax=ax, figsize=figsize, layout=layout, **kwds) return ret
python
def boxplot_frame_groupby(grouped, subplots=True, column=None, fontsize=None, rot=0, grid=True, ax=None, figsize=None, layout=None, sharex=False, sharey=True, **kwds): """ Make box plots from DataFrameGroupBy data. Parameters ---------- grouped : Grouped DataFrame subplots : bool * ``False`` - no subplots will be used * ``True`` - create a subplot for each group column : column name or list of names, or vector Can be any valid input to groupby fontsize : int or string rot : label rotation angle grid : Setting this to True will show the grid ax : Matplotlib axis object, default None figsize : A tuple (width, height) in inches layout : tuple (optional) (rows, columns) for the layout of the plot sharex : bool, default False Whether x-axes will be shared among subplots .. versionadded:: 0.23.1 sharey : bool, default True Whether y-axes will be shared among subplots .. versionadded:: 0.23.1 `**kwds` : Keyword Arguments All other plotting keyword arguments to be passed to matplotlib's boxplot function Returns ------- dict of key/value = group key/DataFrame.boxplot return value or DataFrame.boxplot return value in case subplots=figures=False Examples -------- >>> import itertools >>> tuples = [t for t in itertools.product(range(1000), range(4))] >>> index = pd.MultiIndex.from_tuples(tuples, names=['lvl0', 'lvl1']) >>> data = np.random.randn(len(index),4) >>> df = pd.DataFrame(data, columns=list('ABCD'), index=index) >>> >>> grouped = df.groupby(level='lvl1') >>> boxplot_frame_groupby(grouped) >>> >>> grouped = df.unstack(level='lvl1').groupby(level=0, axis=1) >>> boxplot_frame_groupby(grouped, subplots=False) """ _raise_if_no_mpl() _converter._WARN = False if subplots is True: naxes = len(grouped) fig, axes = _subplots(naxes=naxes, squeeze=False, ax=ax, sharex=sharex, sharey=sharey, figsize=figsize, layout=layout) axes = _flatten(axes) from pandas.core.series import Series ret = Series() for (key, group), ax in zip(grouped, axes): d = group.boxplot(ax=ax, column=column, fontsize=fontsize, rot=rot, grid=grid, **kwds) ax.set_title(pprint_thing(key)) ret.loc[key] = d fig.subplots_adjust(bottom=0.15, top=0.9, left=0.1, right=0.9, wspace=0.2) else: from pandas.core.reshape.concat import concat keys, frames = zip(*grouped) if grouped.axis == 0: df = concat(frames, keys=keys, axis=1) else: if len(frames) > 1: df = frames[0].join(frames[1::]) else: df = frames[0] ret = df.boxplot(column=column, fontsize=fontsize, rot=rot, grid=grid, ax=ax, figsize=figsize, layout=layout, **kwds) return ret
[ "def", "boxplot_frame_groupby", "(", "grouped", ",", "subplots", "=", "True", ",", "column", "=", "None", ",", "fontsize", "=", "None", ",", "rot", "=", "0", ",", "grid", "=", "True", ",", "ax", "=", "None", ",", "figsize", "=", "None", ",", "layout", "=", "None", ",", "sharex", "=", "False", ",", "sharey", "=", "True", ",", "*", "*", "kwds", ")", ":", "_raise_if_no_mpl", "(", ")", "_converter", ".", "_WARN", "=", "False", "if", "subplots", "is", "True", ":", "naxes", "=", "len", "(", "grouped", ")", "fig", ",", "axes", "=", "_subplots", "(", "naxes", "=", "naxes", ",", "squeeze", "=", "False", ",", "ax", "=", "ax", ",", "sharex", "=", "sharex", ",", "sharey", "=", "sharey", ",", "figsize", "=", "figsize", ",", "layout", "=", "layout", ")", "axes", "=", "_flatten", "(", "axes", ")", "from", "pandas", ".", "core", ".", "series", "import", "Series", "ret", "=", "Series", "(", ")", "for", "(", "key", ",", "group", ")", ",", "ax", "in", "zip", "(", "grouped", ",", "axes", ")", ":", "d", "=", "group", ".", "boxplot", "(", "ax", "=", "ax", ",", "column", "=", "column", ",", "fontsize", "=", "fontsize", ",", "rot", "=", "rot", ",", "grid", "=", "grid", ",", "*", "*", "kwds", ")", "ax", ".", "set_title", "(", "pprint_thing", "(", "key", ")", ")", "ret", ".", "loc", "[", "key", "]", "=", "d", "fig", ".", "subplots_adjust", "(", "bottom", "=", "0.15", ",", "top", "=", "0.9", ",", "left", "=", "0.1", ",", "right", "=", "0.9", ",", "wspace", "=", "0.2", ")", "else", ":", "from", "pandas", ".", "core", ".", "reshape", ".", "concat", "import", "concat", "keys", ",", "frames", "=", "zip", "(", "*", "grouped", ")", "if", "grouped", ".", "axis", "==", "0", ":", "df", "=", "concat", "(", "frames", ",", "keys", "=", "keys", ",", "axis", "=", "1", ")", "else", ":", "if", "len", "(", "frames", ")", ">", "1", ":", "df", "=", "frames", "[", "0", "]", ".", "join", "(", "frames", "[", "1", ":", ":", "]", ")", "else", ":", "df", "=", "frames", "[", "0", "]", "ret", "=", "df", ".", "boxplot", "(", "column", "=", "column", ",", "fontsize", "=", "fontsize", ",", "rot", "=", "rot", ",", "grid", "=", "grid", ",", "ax", "=", "ax", ",", "figsize", "=", "figsize", ",", "layout", "=", "layout", ",", "*", "*", "kwds", ")", "return", "ret" ]
Make box plots from DataFrameGroupBy data. Parameters ---------- grouped : Grouped DataFrame subplots : bool * ``False`` - no subplots will be used * ``True`` - create a subplot for each group column : column name or list of names, or vector Can be any valid input to groupby fontsize : int or string rot : label rotation angle grid : Setting this to True will show the grid ax : Matplotlib axis object, default None figsize : A tuple (width, height) in inches layout : tuple (optional) (rows, columns) for the layout of the plot sharex : bool, default False Whether x-axes will be shared among subplots .. versionadded:: 0.23.1 sharey : bool, default True Whether y-axes will be shared among subplots .. versionadded:: 0.23.1 `**kwds` : Keyword Arguments All other plotting keyword arguments to be passed to matplotlib's boxplot function Returns ------- dict of key/value = group key/DataFrame.boxplot return value or DataFrame.boxplot return value in case subplots=figures=False Examples -------- >>> import itertools >>> tuples = [t for t in itertools.product(range(1000), range(4))] >>> index = pd.MultiIndex.from_tuples(tuples, names=['lvl0', 'lvl1']) >>> data = np.random.randn(len(index),4) >>> df = pd.DataFrame(data, columns=list('ABCD'), index=index) >>> >>> grouped = df.groupby(level='lvl1') >>> boxplot_frame_groupby(grouped) >>> >>> grouped = df.unstack(level='lvl1').groupby(level=0, axis=1) >>> boxplot_frame_groupby(grouped, subplots=False)
[ "Make", "box", "plots", "from", "DataFrameGroupBy", "data", "." ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/plotting/_core.py#L2570-L2653
19,765
pandas-dev/pandas
pandas/plotting/_core.py
MPLPlot._has_plotted_object
def _has_plotted_object(self, ax): """check whether ax has data""" return (len(ax.lines) != 0 or len(ax.artists) != 0 or len(ax.containers) != 0)
python
def _has_plotted_object(self, ax): """check whether ax has data""" return (len(ax.lines) != 0 or len(ax.artists) != 0 or len(ax.containers) != 0)
[ "def", "_has_plotted_object", "(", "self", ",", "ax", ")", ":", "return", "(", "len", "(", "ax", ".", "lines", ")", "!=", "0", "or", "len", "(", "ax", ".", "artists", ")", "!=", "0", "or", "len", "(", "ax", ".", "containers", ")", "!=", "0", ")" ]
check whether ax has data
[ "check", "whether", "ax", "has", "data" ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/plotting/_core.py#L260-L264
19,766
pandas-dev/pandas
pandas/plotting/_core.py
MPLPlot.result
def result(self): """ Return result axes """ if self.subplots: if self.layout is not None and not is_list_like(self.ax): return self.axes.reshape(*self.layout) else: return self.axes else: sec_true = isinstance(self.secondary_y, bool) and self.secondary_y all_sec = (is_list_like(self.secondary_y) and len(self.secondary_y) == self.nseries) if (sec_true or all_sec): # if all data is plotted on secondary, return right axes return self._get_ax_layer(self.axes[0], primary=False) else: return self.axes[0]
python
def result(self): """ Return result axes """ if self.subplots: if self.layout is not None and not is_list_like(self.ax): return self.axes.reshape(*self.layout) else: return self.axes else: sec_true = isinstance(self.secondary_y, bool) and self.secondary_y all_sec = (is_list_like(self.secondary_y) and len(self.secondary_y) == self.nseries) if (sec_true or all_sec): # if all data is plotted on secondary, return right axes return self._get_ax_layer(self.axes[0], primary=False) else: return self.axes[0]
[ "def", "result", "(", "self", ")", ":", "if", "self", ".", "subplots", ":", "if", "self", ".", "layout", "is", "not", "None", "and", "not", "is_list_like", "(", "self", ".", "ax", ")", ":", "return", "self", ".", "axes", ".", "reshape", "(", "*", "self", ".", "layout", ")", "else", ":", "return", "self", ".", "axes", "else", ":", "sec_true", "=", "isinstance", "(", "self", ".", "secondary_y", ",", "bool", ")", "and", "self", ".", "secondary_y", "all_sec", "=", "(", "is_list_like", "(", "self", ".", "secondary_y", ")", "and", "len", "(", "self", ".", "secondary_y", ")", "==", "self", ".", "nseries", ")", "if", "(", "sec_true", "or", "all_sec", ")", ":", "# if all data is plotted on secondary, return right axes", "return", "self", ".", "_get_ax_layer", "(", "self", ".", "axes", "[", "0", "]", ",", "primary", "=", "False", ")", "else", ":", "return", "self", ".", "axes", "[", "0", "]" ]
Return result axes
[ "Return", "result", "axes" ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/plotting/_core.py#L336-L353
19,767
pandas-dev/pandas
pandas/plotting/_core.py
MPLPlot._post_plot_logic_common
def _post_plot_logic_common(self, ax, data): """Common post process for each axes""" def get_label(i): try: return pprint_thing(data.index[i]) except Exception: return '' if self.orientation == 'vertical' or self.orientation is None: if self._need_to_set_index: xticklabels = [get_label(x) for x in ax.get_xticks()] ax.set_xticklabels(xticklabels) self._apply_axis_properties(ax.xaxis, rot=self.rot, fontsize=self.fontsize) self._apply_axis_properties(ax.yaxis, fontsize=self.fontsize) if hasattr(ax, 'right_ax'): self._apply_axis_properties(ax.right_ax.yaxis, fontsize=self.fontsize) elif self.orientation == 'horizontal': if self._need_to_set_index: yticklabels = [get_label(y) for y in ax.get_yticks()] ax.set_yticklabels(yticklabels) self._apply_axis_properties(ax.yaxis, rot=self.rot, fontsize=self.fontsize) self._apply_axis_properties(ax.xaxis, fontsize=self.fontsize) if hasattr(ax, 'right_ax'): self._apply_axis_properties(ax.right_ax.yaxis, fontsize=self.fontsize) else: # pragma no cover raise ValueError
python
def _post_plot_logic_common(self, ax, data): """Common post process for each axes""" def get_label(i): try: return pprint_thing(data.index[i]) except Exception: return '' if self.orientation == 'vertical' or self.orientation is None: if self._need_to_set_index: xticklabels = [get_label(x) for x in ax.get_xticks()] ax.set_xticklabels(xticklabels) self._apply_axis_properties(ax.xaxis, rot=self.rot, fontsize=self.fontsize) self._apply_axis_properties(ax.yaxis, fontsize=self.fontsize) if hasattr(ax, 'right_ax'): self._apply_axis_properties(ax.right_ax.yaxis, fontsize=self.fontsize) elif self.orientation == 'horizontal': if self._need_to_set_index: yticklabels = [get_label(y) for y in ax.get_yticks()] ax.set_yticklabels(yticklabels) self._apply_axis_properties(ax.yaxis, rot=self.rot, fontsize=self.fontsize) self._apply_axis_properties(ax.xaxis, fontsize=self.fontsize) if hasattr(ax, 'right_ax'): self._apply_axis_properties(ax.right_ax.yaxis, fontsize=self.fontsize) else: # pragma no cover raise ValueError
[ "def", "_post_plot_logic_common", "(", "self", ",", "ax", ",", "data", ")", ":", "def", "get_label", "(", "i", ")", ":", "try", ":", "return", "pprint_thing", "(", "data", ".", "index", "[", "i", "]", ")", "except", "Exception", ":", "return", "''", "if", "self", ".", "orientation", "==", "'vertical'", "or", "self", ".", "orientation", "is", "None", ":", "if", "self", ".", "_need_to_set_index", ":", "xticklabels", "=", "[", "get_label", "(", "x", ")", "for", "x", "in", "ax", ".", "get_xticks", "(", ")", "]", "ax", ".", "set_xticklabels", "(", "xticklabels", ")", "self", ".", "_apply_axis_properties", "(", "ax", ".", "xaxis", ",", "rot", "=", "self", ".", "rot", ",", "fontsize", "=", "self", ".", "fontsize", ")", "self", ".", "_apply_axis_properties", "(", "ax", ".", "yaxis", ",", "fontsize", "=", "self", ".", "fontsize", ")", "if", "hasattr", "(", "ax", ",", "'right_ax'", ")", ":", "self", ".", "_apply_axis_properties", "(", "ax", ".", "right_ax", ".", "yaxis", ",", "fontsize", "=", "self", ".", "fontsize", ")", "elif", "self", ".", "orientation", "==", "'horizontal'", ":", "if", "self", ".", "_need_to_set_index", ":", "yticklabels", "=", "[", "get_label", "(", "y", ")", "for", "y", "in", "ax", ".", "get_yticks", "(", ")", "]", "ax", ".", "set_yticklabels", "(", "yticklabels", ")", "self", ".", "_apply_axis_properties", "(", "ax", ".", "yaxis", ",", "rot", "=", "self", ".", "rot", ",", "fontsize", "=", "self", ".", "fontsize", ")", "self", ".", "_apply_axis_properties", "(", "ax", ".", "xaxis", ",", "fontsize", "=", "self", ".", "fontsize", ")", "if", "hasattr", "(", "ax", ",", "'right_ax'", ")", ":", "self", ".", "_apply_axis_properties", "(", "ax", ".", "right_ax", ".", "yaxis", ",", "fontsize", "=", "self", ".", "fontsize", ")", "else", ":", "# pragma no cover", "raise", "ValueError" ]
Common post process for each axes
[ "Common", "post", "process", "for", "each", "axes" ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/plotting/_core.py#L402-L435
19,768
pandas-dev/pandas
pandas/plotting/_core.py
MPLPlot._adorn_subplots
def _adorn_subplots(self): """Common post process unrelated to data""" if len(self.axes) > 0: all_axes = self._get_subplots() nrows, ncols = self._get_axes_layout() _handle_shared_axes(axarr=all_axes, nplots=len(all_axes), naxes=nrows * ncols, nrows=nrows, ncols=ncols, sharex=self.sharex, sharey=self.sharey) for ax in self.axes: if self.yticks is not None: ax.set_yticks(self.yticks) if self.xticks is not None: ax.set_xticks(self.xticks) if self.ylim is not None: ax.set_ylim(self.ylim) if self.xlim is not None: ax.set_xlim(self.xlim) ax.grid(self.grid) if self.title: if self.subplots: if is_list_like(self.title): if len(self.title) != self.nseries: msg = ('The length of `title` must equal the number ' 'of columns if using `title` of type `list` ' 'and `subplots=True`.\n' 'length of title = {}\n' 'number of columns = {}').format( len(self.title), self.nseries) raise ValueError(msg) for (ax, title) in zip(self.axes, self.title): ax.set_title(title) else: self.fig.suptitle(self.title) else: if is_list_like(self.title): msg = ('Using `title` of type `list` is not supported ' 'unless `subplots=True` is passed') raise ValueError(msg) self.axes[0].set_title(self.title)
python
def _adorn_subplots(self): """Common post process unrelated to data""" if len(self.axes) > 0: all_axes = self._get_subplots() nrows, ncols = self._get_axes_layout() _handle_shared_axes(axarr=all_axes, nplots=len(all_axes), naxes=nrows * ncols, nrows=nrows, ncols=ncols, sharex=self.sharex, sharey=self.sharey) for ax in self.axes: if self.yticks is not None: ax.set_yticks(self.yticks) if self.xticks is not None: ax.set_xticks(self.xticks) if self.ylim is not None: ax.set_ylim(self.ylim) if self.xlim is not None: ax.set_xlim(self.xlim) ax.grid(self.grid) if self.title: if self.subplots: if is_list_like(self.title): if len(self.title) != self.nseries: msg = ('The length of `title` must equal the number ' 'of columns if using `title` of type `list` ' 'and `subplots=True`.\n' 'length of title = {}\n' 'number of columns = {}').format( len(self.title), self.nseries) raise ValueError(msg) for (ax, title) in zip(self.axes, self.title): ax.set_title(title) else: self.fig.suptitle(self.title) else: if is_list_like(self.title): msg = ('Using `title` of type `list` is not supported ' 'unless `subplots=True` is passed') raise ValueError(msg) self.axes[0].set_title(self.title)
[ "def", "_adorn_subplots", "(", "self", ")", ":", "if", "len", "(", "self", ".", "axes", ")", ">", "0", ":", "all_axes", "=", "self", ".", "_get_subplots", "(", ")", "nrows", ",", "ncols", "=", "self", ".", "_get_axes_layout", "(", ")", "_handle_shared_axes", "(", "axarr", "=", "all_axes", ",", "nplots", "=", "len", "(", "all_axes", ")", ",", "naxes", "=", "nrows", "*", "ncols", ",", "nrows", "=", "nrows", ",", "ncols", "=", "ncols", ",", "sharex", "=", "self", ".", "sharex", ",", "sharey", "=", "self", ".", "sharey", ")", "for", "ax", "in", "self", ".", "axes", ":", "if", "self", ".", "yticks", "is", "not", "None", ":", "ax", ".", "set_yticks", "(", "self", ".", "yticks", ")", "if", "self", ".", "xticks", "is", "not", "None", ":", "ax", ".", "set_xticks", "(", "self", ".", "xticks", ")", "if", "self", ".", "ylim", "is", "not", "None", ":", "ax", ".", "set_ylim", "(", "self", ".", "ylim", ")", "if", "self", ".", "xlim", "is", "not", "None", ":", "ax", ".", "set_xlim", "(", "self", ".", "xlim", ")", "ax", ".", "grid", "(", "self", ".", "grid", ")", "if", "self", ".", "title", ":", "if", "self", ".", "subplots", ":", "if", "is_list_like", "(", "self", ".", "title", ")", ":", "if", "len", "(", "self", ".", "title", ")", "!=", "self", ".", "nseries", ":", "msg", "=", "(", "'The length of `title` must equal the number '", "'of columns if using `title` of type `list` '", "'and `subplots=True`.\\n'", "'length of title = {}\\n'", "'number of columns = {}'", ")", ".", "format", "(", "len", "(", "self", ".", "title", ")", ",", "self", ".", "nseries", ")", "raise", "ValueError", "(", "msg", ")", "for", "(", "ax", ",", "title", ")", "in", "zip", "(", "self", ".", "axes", ",", "self", ".", "title", ")", ":", "ax", ".", "set_title", "(", "title", ")", "else", ":", "self", ".", "fig", ".", "suptitle", "(", "self", ".", "title", ")", "else", ":", "if", "is_list_like", "(", "self", ".", "title", ")", ":", "msg", "=", "(", "'Using `title` of type `list` is not supported '", "'unless `subplots=True` is passed'", ")", "raise", "ValueError", "(", "msg", ")", "self", ".", "axes", "[", "0", "]", ".", "set_title", "(", "self", ".", "title", ")" ]
Common post process unrelated to data
[ "Common", "post", "process", "unrelated", "to", "data" ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/plotting/_core.py#L441-L487
19,769
pandas-dev/pandas
pandas/plotting/_core.py
MPLPlot._apply_style_colors
def _apply_style_colors(self, colors, kwds, col_num, label): """ Manage style and color based on column number and its label. Returns tuple of appropriate style and kwds which "color" may be added. """ style = None if self.style is not None: if isinstance(self.style, list): try: style = self.style[col_num] except IndexError: pass elif isinstance(self.style, dict): style = self.style.get(label, style) else: style = self.style has_color = 'color' in kwds or self.colormap is not None nocolor_style = style is None or re.match('[a-z]+', style) is None if (has_color or self.subplots) and nocolor_style: kwds['color'] = colors[col_num % len(colors)] return style, kwds
python
def _apply_style_colors(self, colors, kwds, col_num, label): """ Manage style and color based on column number and its label. Returns tuple of appropriate style and kwds which "color" may be added. """ style = None if self.style is not None: if isinstance(self.style, list): try: style = self.style[col_num] except IndexError: pass elif isinstance(self.style, dict): style = self.style.get(label, style) else: style = self.style has_color = 'color' in kwds or self.colormap is not None nocolor_style = style is None or re.match('[a-z]+', style) is None if (has_color or self.subplots) and nocolor_style: kwds['color'] = colors[col_num % len(colors)] return style, kwds
[ "def", "_apply_style_colors", "(", "self", ",", "colors", ",", "kwds", ",", "col_num", ",", "label", ")", ":", "style", "=", "None", "if", "self", ".", "style", "is", "not", "None", ":", "if", "isinstance", "(", "self", ".", "style", ",", "list", ")", ":", "try", ":", "style", "=", "self", ".", "style", "[", "col_num", "]", "except", "IndexError", ":", "pass", "elif", "isinstance", "(", "self", ".", "style", ",", "dict", ")", ":", "style", "=", "self", ".", "style", ".", "get", "(", "label", ",", "style", ")", "else", ":", "style", "=", "self", ".", "style", "has_color", "=", "'color'", "in", "kwds", "or", "self", ".", "colormap", "is", "not", "None", "nocolor_style", "=", "style", "is", "None", "or", "re", ".", "match", "(", "'[a-z]+'", ",", "style", ")", "is", "None", "if", "(", "has_color", "or", "self", ".", "subplots", ")", "and", "nocolor_style", ":", "kwds", "[", "'color'", "]", "=", "colors", "[", "col_num", "%", "len", "(", "colors", ")", "]", "return", "style", ",", "kwds" ]
Manage style and color based on column number and its label. Returns tuple of appropriate style and kwds which "color" may be added.
[ "Manage", "style", "and", "color", "based", "on", "column", "number", "and", "its", "label", ".", "Returns", "tuple", "of", "appropriate", "style", "and", "kwds", "which", "color", "may", "be", "added", "." ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/plotting/_core.py#L672-L693
19,770
pandas-dev/pandas
pandas/plotting/_core.py
FramePlotMethods.line
def line(self, x=None, y=None, **kwds): """ Plot DataFrame columns as lines. This function is useful to plot lines using DataFrame's values as coordinates. Parameters ---------- x : int or str, optional Columns to use for the horizontal axis. Either the location or the label of the columns to be used. By default, it will use the DataFrame indices. y : int, str, or list of them, optional The values to be plotted. Either the location or the label of the columns to be used. By default, it will use the remaining DataFrame numeric columns. **kwds Keyword arguments to pass on to :meth:`DataFrame.plot`. Returns ------- :class:`matplotlib.axes.Axes` or :class:`numpy.ndarray` Return an ndarray when ``subplots=True``. See Also -------- matplotlib.pyplot.plot : Plot y versus x as lines and/or markers. Examples -------- .. plot:: :context: close-figs The following example shows the populations for some animals over the years. >>> df = pd.DataFrame({ ... 'pig': [20, 18, 489, 675, 1776], ... 'horse': [4, 25, 281, 600, 1900] ... }, index=[1990, 1997, 2003, 2009, 2014]) >>> lines = df.plot.line() .. plot:: :context: close-figs An example with subplots, so an array of axes is returned. >>> axes = df.plot.line(subplots=True) >>> type(axes) <class 'numpy.ndarray'> .. plot:: :context: close-figs The following example shows the relationship between both populations. >>> lines = df.plot.line(x='pig', y='horse') """ return self(kind='line', x=x, y=y, **kwds)
python
def line(self, x=None, y=None, **kwds): """ Plot DataFrame columns as lines. This function is useful to plot lines using DataFrame's values as coordinates. Parameters ---------- x : int or str, optional Columns to use for the horizontal axis. Either the location or the label of the columns to be used. By default, it will use the DataFrame indices. y : int, str, or list of them, optional The values to be plotted. Either the location or the label of the columns to be used. By default, it will use the remaining DataFrame numeric columns. **kwds Keyword arguments to pass on to :meth:`DataFrame.plot`. Returns ------- :class:`matplotlib.axes.Axes` or :class:`numpy.ndarray` Return an ndarray when ``subplots=True``. See Also -------- matplotlib.pyplot.plot : Plot y versus x as lines and/or markers. Examples -------- .. plot:: :context: close-figs The following example shows the populations for some animals over the years. >>> df = pd.DataFrame({ ... 'pig': [20, 18, 489, 675, 1776], ... 'horse': [4, 25, 281, 600, 1900] ... }, index=[1990, 1997, 2003, 2009, 2014]) >>> lines = df.plot.line() .. plot:: :context: close-figs An example with subplots, so an array of axes is returned. >>> axes = df.plot.line(subplots=True) >>> type(axes) <class 'numpy.ndarray'> .. plot:: :context: close-figs The following example shows the relationship between both populations. >>> lines = df.plot.line(x='pig', y='horse') """ return self(kind='line', x=x, y=y, **kwds)
[ "def", "line", "(", "self", ",", "x", "=", "None", ",", "y", "=", "None", ",", "*", "*", "kwds", ")", ":", "return", "self", "(", "kind", "=", "'line'", ",", "x", "=", "x", ",", "y", "=", "y", ",", "*", "*", "kwds", ")" ]
Plot DataFrame columns as lines. This function is useful to plot lines using DataFrame's values as coordinates. Parameters ---------- x : int or str, optional Columns to use for the horizontal axis. Either the location or the label of the columns to be used. By default, it will use the DataFrame indices. y : int, str, or list of them, optional The values to be plotted. Either the location or the label of the columns to be used. By default, it will use the remaining DataFrame numeric columns. **kwds Keyword arguments to pass on to :meth:`DataFrame.plot`. Returns ------- :class:`matplotlib.axes.Axes` or :class:`numpy.ndarray` Return an ndarray when ``subplots=True``. See Also -------- matplotlib.pyplot.plot : Plot y versus x as lines and/or markers. Examples -------- .. plot:: :context: close-figs The following example shows the populations for some animals over the years. >>> df = pd.DataFrame({ ... 'pig': [20, 18, 489, 675, 1776], ... 'horse': [4, 25, 281, 600, 1900] ... }, index=[1990, 1997, 2003, 2009, 2014]) >>> lines = df.plot.line() .. plot:: :context: close-figs An example with subplots, so an array of axes is returned. >>> axes = df.plot.line(subplots=True) >>> type(axes) <class 'numpy.ndarray'> .. plot:: :context: close-figs The following example shows the relationship between both populations. >>> lines = df.plot.line(x='pig', y='horse')
[ "Plot", "DataFrame", "columns", "as", "lines", "." ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/plotting/_core.py#L2970-L3031
19,771
pandas-dev/pandas
pandas/plotting/_core.py
FramePlotMethods.bar
def bar(self, x=None, y=None, **kwds): """ Vertical bar plot. A bar plot is a plot that presents categorical data with rectangular bars with lengths proportional to the values that they represent. A bar plot shows comparisons among discrete categories. One axis of the plot shows the specific categories being compared, and the other axis represents a measured value. Parameters ---------- x : label or position, optional Allows plotting of one column versus another. If not specified, the index of the DataFrame is used. y : label or position, optional Allows plotting of one column versus another. If not specified, all numerical columns are used. **kwds Additional keyword arguments are documented in :meth:`DataFrame.plot`. Returns ------- matplotlib.axes.Axes or np.ndarray of them An ndarray is returned with one :class:`matplotlib.axes.Axes` per column when ``subplots=True``. See Also -------- DataFrame.plot.barh : Horizontal bar plot. DataFrame.plot : Make plots of a DataFrame. matplotlib.pyplot.bar : Make a bar plot with matplotlib. Examples -------- Basic plot. .. plot:: :context: close-figs >>> df = pd.DataFrame({'lab':['A', 'B', 'C'], 'val':[10, 30, 20]}) >>> ax = df.plot.bar(x='lab', y='val', rot=0) Plot a whole dataframe to a bar plot. Each column is assigned a distinct color, and each row is nested in a group along the horizontal axis. .. plot:: :context: close-figs >>> speed = [0.1, 17.5, 40, 48, 52, 69, 88] >>> lifespan = [2, 8, 70, 1.5, 25, 12, 28] >>> index = ['snail', 'pig', 'elephant', ... 'rabbit', 'giraffe', 'coyote', 'horse'] >>> df = pd.DataFrame({'speed': speed, ... 'lifespan': lifespan}, index=index) >>> ax = df.plot.bar(rot=0) Instead of nesting, the figure can be split by column with ``subplots=True``. In this case, a :class:`numpy.ndarray` of :class:`matplotlib.axes.Axes` are returned. .. plot:: :context: close-figs >>> axes = df.plot.bar(rot=0, subplots=True) >>> axes[1].legend(loc=2) # doctest: +SKIP Plot a single column. .. plot:: :context: close-figs >>> ax = df.plot.bar(y='speed', rot=0) Plot only selected categories for the DataFrame. .. plot:: :context: close-figs >>> ax = df.plot.bar(x='lifespan', rot=0) """ return self(kind='bar', x=x, y=y, **kwds)
python
def bar(self, x=None, y=None, **kwds): """ Vertical bar plot. A bar plot is a plot that presents categorical data with rectangular bars with lengths proportional to the values that they represent. A bar plot shows comparisons among discrete categories. One axis of the plot shows the specific categories being compared, and the other axis represents a measured value. Parameters ---------- x : label or position, optional Allows plotting of one column versus another. If not specified, the index of the DataFrame is used. y : label or position, optional Allows plotting of one column versus another. If not specified, all numerical columns are used. **kwds Additional keyword arguments are documented in :meth:`DataFrame.plot`. Returns ------- matplotlib.axes.Axes or np.ndarray of them An ndarray is returned with one :class:`matplotlib.axes.Axes` per column when ``subplots=True``. See Also -------- DataFrame.plot.barh : Horizontal bar plot. DataFrame.plot : Make plots of a DataFrame. matplotlib.pyplot.bar : Make a bar plot with matplotlib. Examples -------- Basic plot. .. plot:: :context: close-figs >>> df = pd.DataFrame({'lab':['A', 'B', 'C'], 'val':[10, 30, 20]}) >>> ax = df.plot.bar(x='lab', y='val', rot=0) Plot a whole dataframe to a bar plot. Each column is assigned a distinct color, and each row is nested in a group along the horizontal axis. .. plot:: :context: close-figs >>> speed = [0.1, 17.5, 40, 48, 52, 69, 88] >>> lifespan = [2, 8, 70, 1.5, 25, 12, 28] >>> index = ['snail', 'pig', 'elephant', ... 'rabbit', 'giraffe', 'coyote', 'horse'] >>> df = pd.DataFrame({'speed': speed, ... 'lifespan': lifespan}, index=index) >>> ax = df.plot.bar(rot=0) Instead of nesting, the figure can be split by column with ``subplots=True``. In this case, a :class:`numpy.ndarray` of :class:`matplotlib.axes.Axes` are returned. .. plot:: :context: close-figs >>> axes = df.plot.bar(rot=0, subplots=True) >>> axes[1].legend(loc=2) # doctest: +SKIP Plot a single column. .. plot:: :context: close-figs >>> ax = df.plot.bar(y='speed', rot=0) Plot only selected categories for the DataFrame. .. plot:: :context: close-figs >>> ax = df.plot.bar(x='lifespan', rot=0) """ return self(kind='bar', x=x, y=y, **kwds)
[ "def", "bar", "(", "self", ",", "x", "=", "None", ",", "y", "=", "None", ",", "*", "*", "kwds", ")", ":", "return", "self", "(", "kind", "=", "'bar'", ",", "x", "=", "x", ",", "y", "=", "y", ",", "*", "*", "kwds", ")" ]
Vertical bar plot. A bar plot is a plot that presents categorical data with rectangular bars with lengths proportional to the values that they represent. A bar plot shows comparisons among discrete categories. One axis of the plot shows the specific categories being compared, and the other axis represents a measured value. Parameters ---------- x : label or position, optional Allows plotting of one column versus another. If not specified, the index of the DataFrame is used. y : label or position, optional Allows plotting of one column versus another. If not specified, all numerical columns are used. **kwds Additional keyword arguments are documented in :meth:`DataFrame.plot`. Returns ------- matplotlib.axes.Axes or np.ndarray of them An ndarray is returned with one :class:`matplotlib.axes.Axes` per column when ``subplots=True``. See Also -------- DataFrame.plot.barh : Horizontal bar plot. DataFrame.plot : Make plots of a DataFrame. matplotlib.pyplot.bar : Make a bar plot with matplotlib. Examples -------- Basic plot. .. plot:: :context: close-figs >>> df = pd.DataFrame({'lab':['A', 'B', 'C'], 'val':[10, 30, 20]}) >>> ax = df.plot.bar(x='lab', y='val', rot=0) Plot a whole dataframe to a bar plot. Each column is assigned a distinct color, and each row is nested in a group along the horizontal axis. .. plot:: :context: close-figs >>> speed = [0.1, 17.5, 40, 48, 52, 69, 88] >>> lifespan = [2, 8, 70, 1.5, 25, 12, 28] >>> index = ['snail', 'pig', 'elephant', ... 'rabbit', 'giraffe', 'coyote', 'horse'] >>> df = pd.DataFrame({'speed': speed, ... 'lifespan': lifespan}, index=index) >>> ax = df.plot.bar(rot=0) Instead of nesting, the figure can be split by column with ``subplots=True``. In this case, a :class:`numpy.ndarray` of :class:`matplotlib.axes.Axes` are returned. .. plot:: :context: close-figs >>> axes = df.plot.bar(rot=0, subplots=True) >>> axes[1].legend(loc=2) # doctest: +SKIP Plot a single column. .. plot:: :context: close-figs >>> ax = df.plot.bar(y='speed', rot=0) Plot only selected categories for the DataFrame. .. plot:: :context: close-figs >>> ax = df.plot.bar(x='lifespan', rot=0)
[ "Vertical", "bar", "plot", "." ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/plotting/_core.py#L3033-L3116
19,772
pandas-dev/pandas
pandas/plotting/_core.py
FramePlotMethods.barh
def barh(self, x=None, y=None, **kwds): """ Make a horizontal bar plot. A horizontal bar plot is a plot that presents quantitative data with rectangular bars with lengths proportional to the values that they represent. A bar plot shows comparisons among discrete categories. One axis of the plot shows the specific categories being compared, and the other axis represents a measured value. Parameters ---------- x : label or position, default DataFrame.index Column to be used for categories. y : label or position, default All numeric columns in dataframe Columns to be plotted from the DataFrame. **kwds Keyword arguments to pass on to :meth:`DataFrame.plot`. Returns ------- :class:`matplotlib.axes.Axes` or numpy.ndarray of them See Also -------- DataFrame.plot.bar: Vertical bar plot. DataFrame.plot : Make plots of DataFrame using matplotlib. matplotlib.axes.Axes.bar : Plot a vertical bar plot using matplotlib. Examples -------- Basic example .. plot:: :context: close-figs >>> df = pd.DataFrame({'lab':['A', 'B', 'C'], 'val':[10, 30, 20]}) >>> ax = df.plot.barh(x='lab', y='val') Plot a whole DataFrame to a horizontal bar plot .. plot:: :context: close-figs >>> speed = [0.1, 17.5, 40, 48, 52, 69, 88] >>> lifespan = [2, 8, 70, 1.5, 25, 12, 28] >>> index = ['snail', 'pig', 'elephant', ... 'rabbit', 'giraffe', 'coyote', 'horse'] >>> df = pd.DataFrame({'speed': speed, ... 'lifespan': lifespan}, index=index) >>> ax = df.plot.barh() Plot a column of the DataFrame to a horizontal bar plot .. plot:: :context: close-figs >>> speed = [0.1, 17.5, 40, 48, 52, 69, 88] >>> lifespan = [2, 8, 70, 1.5, 25, 12, 28] >>> index = ['snail', 'pig', 'elephant', ... 'rabbit', 'giraffe', 'coyote', 'horse'] >>> df = pd.DataFrame({'speed': speed, ... 'lifespan': lifespan}, index=index) >>> ax = df.plot.barh(y='speed') Plot DataFrame versus the desired column .. plot:: :context: close-figs >>> speed = [0.1, 17.5, 40, 48, 52, 69, 88] >>> lifespan = [2, 8, 70, 1.5, 25, 12, 28] >>> index = ['snail', 'pig', 'elephant', ... 'rabbit', 'giraffe', 'coyote', 'horse'] >>> df = pd.DataFrame({'speed': speed, ... 'lifespan': lifespan}, index=index) >>> ax = df.plot.barh(x='lifespan') """ return self(kind='barh', x=x, y=y, **kwds)
python
def barh(self, x=None, y=None, **kwds): """ Make a horizontal bar plot. A horizontal bar plot is a plot that presents quantitative data with rectangular bars with lengths proportional to the values that they represent. A bar plot shows comparisons among discrete categories. One axis of the plot shows the specific categories being compared, and the other axis represents a measured value. Parameters ---------- x : label or position, default DataFrame.index Column to be used for categories. y : label or position, default All numeric columns in dataframe Columns to be plotted from the DataFrame. **kwds Keyword arguments to pass on to :meth:`DataFrame.plot`. Returns ------- :class:`matplotlib.axes.Axes` or numpy.ndarray of them See Also -------- DataFrame.plot.bar: Vertical bar plot. DataFrame.plot : Make plots of DataFrame using matplotlib. matplotlib.axes.Axes.bar : Plot a vertical bar plot using matplotlib. Examples -------- Basic example .. plot:: :context: close-figs >>> df = pd.DataFrame({'lab':['A', 'B', 'C'], 'val':[10, 30, 20]}) >>> ax = df.plot.barh(x='lab', y='val') Plot a whole DataFrame to a horizontal bar plot .. plot:: :context: close-figs >>> speed = [0.1, 17.5, 40, 48, 52, 69, 88] >>> lifespan = [2, 8, 70, 1.5, 25, 12, 28] >>> index = ['snail', 'pig', 'elephant', ... 'rabbit', 'giraffe', 'coyote', 'horse'] >>> df = pd.DataFrame({'speed': speed, ... 'lifespan': lifespan}, index=index) >>> ax = df.plot.barh() Plot a column of the DataFrame to a horizontal bar plot .. plot:: :context: close-figs >>> speed = [0.1, 17.5, 40, 48, 52, 69, 88] >>> lifespan = [2, 8, 70, 1.5, 25, 12, 28] >>> index = ['snail', 'pig', 'elephant', ... 'rabbit', 'giraffe', 'coyote', 'horse'] >>> df = pd.DataFrame({'speed': speed, ... 'lifespan': lifespan}, index=index) >>> ax = df.plot.barh(y='speed') Plot DataFrame versus the desired column .. plot:: :context: close-figs >>> speed = [0.1, 17.5, 40, 48, 52, 69, 88] >>> lifespan = [2, 8, 70, 1.5, 25, 12, 28] >>> index = ['snail', 'pig', 'elephant', ... 'rabbit', 'giraffe', 'coyote', 'horse'] >>> df = pd.DataFrame({'speed': speed, ... 'lifespan': lifespan}, index=index) >>> ax = df.plot.barh(x='lifespan') """ return self(kind='barh', x=x, y=y, **kwds)
[ "def", "barh", "(", "self", ",", "x", "=", "None", ",", "y", "=", "None", ",", "*", "*", "kwds", ")", ":", "return", "self", "(", "kind", "=", "'barh'", ",", "x", "=", "x", ",", "y", "=", "y", ",", "*", "*", "kwds", ")" ]
Make a horizontal bar plot. A horizontal bar plot is a plot that presents quantitative data with rectangular bars with lengths proportional to the values that they represent. A bar plot shows comparisons among discrete categories. One axis of the plot shows the specific categories being compared, and the other axis represents a measured value. Parameters ---------- x : label or position, default DataFrame.index Column to be used for categories. y : label or position, default All numeric columns in dataframe Columns to be plotted from the DataFrame. **kwds Keyword arguments to pass on to :meth:`DataFrame.plot`. Returns ------- :class:`matplotlib.axes.Axes` or numpy.ndarray of them See Also -------- DataFrame.plot.bar: Vertical bar plot. DataFrame.plot : Make plots of DataFrame using matplotlib. matplotlib.axes.Axes.bar : Plot a vertical bar plot using matplotlib. Examples -------- Basic example .. plot:: :context: close-figs >>> df = pd.DataFrame({'lab':['A', 'B', 'C'], 'val':[10, 30, 20]}) >>> ax = df.plot.barh(x='lab', y='val') Plot a whole DataFrame to a horizontal bar plot .. plot:: :context: close-figs >>> speed = [0.1, 17.5, 40, 48, 52, 69, 88] >>> lifespan = [2, 8, 70, 1.5, 25, 12, 28] >>> index = ['snail', 'pig', 'elephant', ... 'rabbit', 'giraffe', 'coyote', 'horse'] >>> df = pd.DataFrame({'speed': speed, ... 'lifespan': lifespan}, index=index) >>> ax = df.plot.barh() Plot a column of the DataFrame to a horizontal bar plot .. plot:: :context: close-figs >>> speed = [0.1, 17.5, 40, 48, 52, 69, 88] >>> lifespan = [2, 8, 70, 1.5, 25, 12, 28] >>> index = ['snail', 'pig', 'elephant', ... 'rabbit', 'giraffe', 'coyote', 'horse'] >>> df = pd.DataFrame({'speed': speed, ... 'lifespan': lifespan}, index=index) >>> ax = df.plot.barh(y='speed') Plot DataFrame versus the desired column .. plot:: :context: close-figs >>> speed = [0.1, 17.5, 40, 48, 52, 69, 88] >>> lifespan = [2, 8, 70, 1.5, 25, 12, 28] >>> index = ['snail', 'pig', 'elephant', ... 'rabbit', 'giraffe', 'coyote', 'horse'] >>> df = pd.DataFrame({'speed': speed, ... 'lifespan': lifespan}, index=index) >>> ax = df.plot.barh(x='lifespan')
[ "Make", "a", "horizontal", "bar", "plot", "." ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/plotting/_core.py#L3118-L3196
19,773
pandas-dev/pandas
pandas/plotting/_core.py
FramePlotMethods.hist
def hist(self, by=None, bins=10, **kwds): """ Draw one histogram of the DataFrame's columns. A histogram is a representation of the distribution of data. This function groups the values of all given Series in the DataFrame into bins and draws all bins in one :class:`matplotlib.axes.Axes`. This is useful when the DataFrame's Series are in a similar scale. Parameters ---------- by : str or sequence, optional Column in the DataFrame to group by. bins : int, default 10 Number of histogram bins to be used. **kwds Additional keyword arguments are documented in :meth:`DataFrame.plot`. Returns ------- class:`matplotlib.AxesSubplot` Return a histogram plot. See Also -------- DataFrame.hist : Draw histograms per DataFrame's Series. Series.hist : Draw a histogram with Series' data. Examples -------- When we draw a dice 6000 times, we expect to get each value around 1000 times. But when we draw two dices and sum the result, the distribution is going to be quite different. A histogram illustrates those distributions. .. plot:: :context: close-figs >>> df = pd.DataFrame( ... np.random.randint(1, 7, 6000), ... columns = ['one']) >>> df['two'] = df['one'] + np.random.randint(1, 7, 6000) >>> ax = df.plot.hist(bins=12, alpha=0.5) """ return self(kind='hist', by=by, bins=bins, **kwds)
python
def hist(self, by=None, bins=10, **kwds): """ Draw one histogram of the DataFrame's columns. A histogram is a representation of the distribution of data. This function groups the values of all given Series in the DataFrame into bins and draws all bins in one :class:`matplotlib.axes.Axes`. This is useful when the DataFrame's Series are in a similar scale. Parameters ---------- by : str or sequence, optional Column in the DataFrame to group by. bins : int, default 10 Number of histogram bins to be used. **kwds Additional keyword arguments are documented in :meth:`DataFrame.plot`. Returns ------- class:`matplotlib.AxesSubplot` Return a histogram plot. See Also -------- DataFrame.hist : Draw histograms per DataFrame's Series. Series.hist : Draw a histogram with Series' data. Examples -------- When we draw a dice 6000 times, we expect to get each value around 1000 times. But when we draw two dices and sum the result, the distribution is going to be quite different. A histogram illustrates those distributions. .. plot:: :context: close-figs >>> df = pd.DataFrame( ... np.random.randint(1, 7, 6000), ... columns = ['one']) >>> df['two'] = df['one'] + np.random.randint(1, 7, 6000) >>> ax = df.plot.hist(bins=12, alpha=0.5) """ return self(kind='hist', by=by, bins=bins, **kwds)
[ "def", "hist", "(", "self", ",", "by", "=", "None", ",", "bins", "=", "10", ",", "*", "*", "kwds", ")", ":", "return", "self", "(", "kind", "=", "'hist'", ",", "by", "=", "by", ",", "bins", "=", "bins", ",", "*", "*", "kwds", ")" ]
Draw one histogram of the DataFrame's columns. A histogram is a representation of the distribution of data. This function groups the values of all given Series in the DataFrame into bins and draws all bins in one :class:`matplotlib.axes.Axes`. This is useful when the DataFrame's Series are in a similar scale. Parameters ---------- by : str or sequence, optional Column in the DataFrame to group by. bins : int, default 10 Number of histogram bins to be used. **kwds Additional keyword arguments are documented in :meth:`DataFrame.plot`. Returns ------- class:`matplotlib.AxesSubplot` Return a histogram plot. See Also -------- DataFrame.hist : Draw histograms per DataFrame's Series. Series.hist : Draw a histogram with Series' data. Examples -------- When we draw a dice 6000 times, we expect to get each value around 1000 times. But when we draw two dices and sum the result, the distribution is going to be quite different. A histogram illustrates those distributions. .. plot:: :context: close-figs >>> df = pd.DataFrame( ... np.random.randint(1, 7, 6000), ... columns = ['one']) >>> df['two'] = df['one'] + np.random.randint(1, 7, 6000) >>> ax = df.plot.hist(bins=12, alpha=0.5)
[ "Draw", "one", "histogram", "of", "the", "DataFrame", "s", "columns", "." ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/plotting/_core.py#L3248-L3293
19,774
pandas-dev/pandas
pandas/plotting/_core.py
FramePlotMethods.area
def area(self, x=None, y=None, **kwds): """ Draw a stacked area plot. An area plot displays quantitative data visually. This function wraps the matplotlib area function. Parameters ---------- x : label or position, optional Coordinates for the X axis. By default uses the index. y : label or position, optional Column to plot. By default uses all columns. stacked : bool, default True Area plots are stacked by default. Set to False to create a unstacked plot. **kwds : optional Additional keyword arguments are documented in :meth:`DataFrame.plot`. Returns ------- matplotlib.axes.Axes or numpy.ndarray Area plot, or array of area plots if subplots is True. See Also -------- DataFrame.plot : Make plots of DataFrame using matplotlib / pylab. Examples -------- Draw an area plot based on basic business metrics: .. plot:: :context: close-figs >>> df = pd.DataFrame({ ... 'sales': [3, 2, 3, 9, 10, 6], ... 'signups': [5, 5, 6, 12, 14, 13], ... 'visits': [20, 42, 28, 62, 81, 50], ... }, index=pd.date_range(start='2018/01/01', end='2018/07/01', ... freq='M')) >>> ax = df.plot.area() Area plots are stacked by default. To produce an unstacked plot, pass ``stacked=False``: .. plot:: :context: close-figs >>> ax = df.plot.area(stacked=False) Draw an area plot for a single column: .. plot:: :context: close-figs >>> ax = df.plot.area(y='sales') Draw with a different `x`: .. plot:: :context: close-figs >>> df = pd.DataFrame({ ... 'sales': [3, 2, 3], ... 'visits': [20, 42, 28], ... 'day': [1, 2, 3], ... }) >>> ax = df.plot.area(x='day') """ return self(kind='area', x=x, y=y, **kwds)
python
def area(self, x=None, y=None, **kwds): """ Draw a stacked area plot. An area plot displays quantitative data visually. This function wraps the matplotlib area function. Parameters ---------- x : label or position, optional Coordinates for the X axis. By default uses the index. y : label or position, optional Column to plot. By default uses all columns. stacked : bool, default True Area plots are stacked by default. Set to False to create a unstacked plot. **kwds : optional Additional keyword arguments are documented in :meth:`DataFrame.plot`. Returns ------- matplotlib.axes.Axes or numpy.ndarray Area plot, or array of area plots if subplots is True. See Also -------- DataFrame.plot : Make plots of DataFrame using matplotlib / pylab. Examples -------- Draw an area plot based on basic business metrics: .. plot:: :context: close-figs >>> df = pd.DataFrame({ ... 'sales': [3, 2, 3, 9, 10, 6], ... 'signups': [5, 5, 6, 12, 14, 13], ... 'visits': [20, 42, 28, 62, 81, 50], ... }, index=pd.date_range(start='2018/01/01', end='2018/07/01', ... freq='M')) >>> ax = df.plot.area() Area plots are stacked by default. To produce an unstacked plot, pass ``stacked=False``: .. plot:: :context: close-figs >>> ax = df.plot.area(stacked=False) Draw an area plot for a single column: .. plot:: :context: close-figs >>> ax = df.plot.area(y='sales') Draw with a different `x`: .. plot:: :context: close-figs >>> df = pd.DataFrame({ ... 'sales': [3, 2, 3], ... 'visits': [20, 42, 28], ... 'day': [1, 2, 3], ... }) >>> ax = df.plot.area(x='day') """ return self(kind='area', x=x, y=y, **kwds)
[ "def", "area", "(", "self", ",", "x", "=", "None", ",", "y", "=", "None", ",", "*", "*", "kwds", ")", ":", "return", "self", "(", "kind", "=", "'area'", ",", "x", "=", "x", ",", "y", "=", "y", ",", "*", "*", "kwds", ")" ]
Draw a stacked area plot. An area plot displays quantitative data visually. This function wraps the matplotlib area function. Parameters ---------- x : label or position, optional Coordinates for the X axis. By default uses the index. y : label or position, optional Column to plot. By default uses all columns. stacked : bool, default True Area plots are stacked by default. Set to False to create a unstacked plot. **kwds : optional Additional keyword arguments are documented in :meth:`DataFrame.plot`. Returns ------- matplotlib.axes.Axes or numpy.ndarray Area plot, or array of area plots if subplots is True. See Also -------- DataFrame.plot : Make plots of DataFrame using matplotlib / pylab. Examples -------- Draw an area plot based on basic business metrics: .. plot:: :context: close-figs >>> df = pd.DataFrame({ ... 'sales': [3, 2, 3, 9, 10, 6], ... 'signups': [5, 5, 6, 12, 14, 13], ... 'visits': [20, 42, 28, 62, 81, 50], ... }, index=pd.date_range(start='2018/01/01', end='2018/07/01', ... freq='M')) >>> ax = df.plot.area() Area plots are stacked by default. To produce an unstacked plot, pass ``stacked=False``: .. plot:: :context: close-figs >>> ax = df.plot.area(stacked=False) Draw an area plot for a single column: .. plot:: :context: close-figs >>> ax = df.plot.area(y='sales') Draw with a different `x`: .. plot:: :context: close-figs >>> df = pd.DataFrame({ ... 'sales': [3, 2, 3], ... 'visits': [20, 42, 28], ... 'day': [1, 2, 3], ... }) >>> ax = df.plot.area(x='day')
[ "Draw", "a", "stacked", "area", "plot", "." ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/plotting/_core.py#L3341-L3412
19,775
pandas-dev/pandas
pandas/plotting/_core.py
FramePlotMethods.scatter
def scatter(self, x, y, s=None, c=None, **kwds): """ Create a scatter plot with varying marker point size and color. The coordinates of each point are defined by two dataframe columns and filled circles are used to represent each point. This kind of plot is useful to see complex correlations between two variables. Points could be for instance natural 2D coordinates like longitude and latitude in a map or, in general, any pair of metrics that can be plotted against each other. Parameters ---------- x : int or str The column name or column position to be used as horizontal coordinates for each point. y : int or str The column name or column position to be used as vertical coordinates for each point. s : scalar or array_like, optional The size of each point. Possible values are: - A single scalar so all points have the same size. - A sequence of scalars, which will be used for each point's size recursively. For instance, when passing [2,14] all points size will be either 2 or 14, alternatively. c : str, int or array_like, optional The color of each point. Possible values are: - A single color string referred to by name, RGB or RGBA code, for instance 'red' or '#a98d19'. - A sequence of color strings referred to by name, RGB or RGBA code, which will be used for each point's color recursively. For instance ['green','yellow'] all points will be filled in green or yellow, alternatively. - A column name or position whose values will be used to color the marker points according to a colormap. **kwds Keyword arguments to pass on to :meth:`DataFrame.plot`. Returns ------- :class:`matplotlib.axes.Axes` or numpy.ndarray of them See Also -------- matplotlib.pyplot.scatter : Scatter plot using multiple input data formats. Examples -------- Let's see how to draw a scatter plot using coordinates from the values in a DataFrame's columns. .. plot:: :context: close-figs >>> df = pd.DataFrame([[5.1, 3.5, 0], [4.9, 3.0, 0], [7.0, 3.2, 1], ... [6.4, 3.2, 1], [5.9, 3.0, 2]], ... columns=['length', 'width', 'species']) >>> ax1 = df.plot.scatter(x='length', ... y='width', ... c='DarkBlue') And now with the color determined by a column as well. .. plot:: :context: close-figs >>> ax2 = df.plot.scatter(x='length', ... y='width', ... c='species', ... colormap='viridis') """ return self(kind='scatter', x=x, y=y, c=c, s=s, **kwds)
python
def scatter(self, x, y, s=None, c=None, **kwds): """ Create a scatter plot with varying marker point size and color. The coordinates of each point are defined by two dataframe columns and filled circles are used to represent each point. This kind of plot is useful to see complex correlations between two variables. Points could be for instance natural 2D coordinates like longitude and latitude in a map or, in general, any pair of metrics that can be plotted against each other. Parameters ---------- x : int or str The column name or column position to be used as horizontal coordinates for each point. y : int or str The column name or column position to be used as vertical coordinates for each point. s : scalar or array_like, optional The size of each point. Possible values are: - A single scalar so all points have the same size. - A sequence of scalars, which will be used for each point's size recursively. For instance, when passing [2,14] all points size will be either 2 or 14, alternatively. c : str, int or array_like, optional The color of each point. Possible values are: - A single color string referred to by name, RGB or RGBA code, for instance 'red' or '#a98d19'. - A sequence of color strings referred to by name, RGB or RGBA code, which will be used for each point's color recursively. For instance ['green','yellow'] all points will be filled in green or yellow, alternatively. - A column name or position whose values will be used to color the marker points according to a colormap. **kwds Keyword arguments to pass on to :meth:`DataFrame.plot`. Returns ------- :class:`matplotlib.axes.Axes` or numpy.ndarray of them See Also -------- matplotlib.pyplot.scatter : Scatter plot using multiple input data formats. Examples -------- Let's see how to draw a scatter plot using coordinates from the values in a DataFrame's columns. .. plot:: :context: close-figs >>> df = pd.DataFrame([[5.1, 3.5, 0], [4.9, 3.0, 0], [7.0, 3.2, 1], ... [6.4, 3.2, 1], [5.9, 3.0, 2]], ... columns=['length', 'width', 'species']) >>> ax1 = df.plot.scatter(x='length', ... y='width', ... c='DarkBlue') And now with the color determined by a column as well. .. plot:: :context: close-figs >>> ax2 = df.plot.scatter(x='length', ... y='width', ... c='species', ... colormap='viridis') """ return self(kind='scatter', x=x, y=y, c=c, s=s, **kwds)
[ "def", "scatter", "(", "self", ",", "x", ",", "y", ",", "s", "=", "None", ",", "c", "=", "None", ",", "*", "*", "kwds", ")", ":", "return", "self", "(", "kind", "=", "'scatter'", ",", "x", "=", "x", ",", "y", "=", "y", ",", "c", "=", "c", ",", "s", "=", "s", ",", "*", "*", "kwds", ")" ]
Create a scatter plot with varying marker point size and color. The coordinates of each point are defined by two dataframe columns and filled circles are used to represent each point. This kind of plot is useful to see complex correlations between two variables. Points could be for instance natural 2D coordinates like longitude and latitude in a map or, in general, any pair of metrics that can be plotted against each other. Parameters ---------- x : int or str The column name or column position to be used as horizontal coordinates for each point. y : int or str The column name or column position to be used as vertical coordinates for each point. s : scalar or array_like, optional The size of each point. Possible values are: - A single scalar so all points have the same size. - A sequence of scalars, which will be used for each point's size recursively. For instance, when passing [2,14] all points size will be either 2 or 14, alternatively. c : str, int or array_like, optional The color of each point. Possible values are: - A single color string referred to by name, RGB or RGBA code, for instance 'red' or '#a98d19'. - A sequence of color strings referred to by name, RGB or RGBA code, which will be used for each point's color recursively. For instance ['green','yellow'] all points will be filled in green or yellow, alternatively. - A column name or position whose values will be used to color the marker points according to a colormap. **kwds Keyword arguments to pass on to :meth:`DataFrame.plot`. Returns ------- :class:`matplotlib.axes.Axes` or numpy.ndarray of them See Also -------- matplotlib.pyplot.scatter : Scatter plot using multiple input data formats. Examples -------- Let's see how to draw a scatter plot using coordinates from the values in a DataFrame's columns. .. plot:: :context: close-figs >>> df = pd.DataFrame([[5.1, 3.5, 0], [4.9, 3.0, 0], [7.0, 3.2, 1], ... [6.4, 3.2, 1], [5.9, 3.0, 2]], ... columns=['length', 'width', 'species']) >>> ax1 = df.plot.scatter(x='length', ... y='width', ... c='DarkBlue') And now with the color determined by a column as well. .. plot:: :context: close-figs >>> ax2 = df.plot.scatter(x='length', ... y='width', ... c='species', ... colormap='viridis')
[ "Create", "a", "scatter", "plot", "with", "varying", "marker", "point", "size", "and", "color", "." ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/plotting/_core.py#L3463-L3542
19,776
pandas-dev/pandas
pandas/plotting/_core.py
FramePlotMethods.hexbin
def hexbin(self, x, y, C=None, reduce_C_function=None, gridsize=None, **kwds): """ Generate a hexagonal binning plot. Generate a hexagonal binning plot of `x` versus `y`. If `C` is `None` (the default), this is a histogram of the number of occurrences of the observations at ``(x[i], y[i])``. If `C` is specified, specifies values at given coordinates ``(x[i], y[i])``. These values are accumulated for each hexagonal bin and then reduced according to `reduce_C_function`, having as default the NumPy's mean function (:meth:`numpy.mean`). (If `C` is specified, it must also be a 1-D sequence of the same length as `x` and `y`, or a column label.) Parameters ---------- x : int or str The column label or position for x points. y : int or str The column label or position for y points. C : int or str, optional The column label or position for the value of `(x, y)` point. reduce_C_function : callable, default `np.mean` Function of one argument that reduces all the values in a bin to a single number (e.g. `np.mean`, `np.max`, `np.sum`, `np.std`). gridsize : int or tuple of (int, int), default 100 The number of hexagons in the x-direction. The corresponding number of hexagons in the y-direction is chosen in a way that the hexagons are approximately regular. Alternatively, gridsize can be a tuple with two elements specifying the number of hexagons in the x-direction and the y-direction. **kwds Additional keyword arguments are documented in :meth:`DataFrame.plot`. Returns ------- matplotlib.AxesSubplot The matplotlib ``Axes`` on which the hexbin is plotted. See Also -------- DataFrame.plot : Make plots of a DataFrame. matplotlib.pyplot.hexbin : Hexagonal binning plot using matplotlib, the matplotlib function that is used under the hood. Examples -------- The following examples are generated with random data from a normal distribution. .. plot:: :context: close-figs >>> n = 10000 >>> df = pd.DataFrame({'x': np.random.randn(n), ... 'y': np.random.randn(n)}) >>> ax = df.plot.hexbin(x='x', y='y', gridsize=20) The next example uses `C` and `np.sum` as `reduce_C_function`. Note that `'observations'` values ranges from 1 to 5 but the result plot shows values up to more than 25. This is because of the `reduce_C_function`. .. plot:: :context: close-figs >>> n = 500 >>> df = pd.DataFrame({ ... 'coord_x': np.random.uniform(-3, 3, size=n), ... 'coord_y': np.random.uniform(30, 50, size=n), ... 'observations': np.random.randint(1,5, size=n) ... }) >>> ax = df.plot.hexbin(x='coord_x', ... y='coord_y', ... C='observations', ... reduce_C_function=np.sum, ... gridsize=10, ... cmap="viridis") """ if reduce_C_function is not None: kwds['reduce_C_function'] = reduce_C_function if gridsize is not None: kwds['gridsize'] = gridsize return self(kind='hexbin', x=x, y=y, C=C, **kwds)
python
def hexbin(self, x, y, C=None, reduce_C_function=None, gridsize=None, **kwds): """ Generate a hexagonal binning plot. Generate a hexagonal binning plot of `x` versus `y`. If `C` is `None` (the default), this is a histogram of the number of occurrences of the observations at ``(x[i], y[i])``. If `C` is specified, specifies values at given coordinates ``(x[i], y[i])``. These values are accumulated for each hexagonal bin and then reduced according to `reduce_C_function`, having as default the NumPy's mean function (:meth:`numpy.mean`). (If `C` is specified, it must also be a 1-D sequence of the same length as `x` and `y`, or a column label.) Parameters ---------- x : int or str The column label or position for x points. y : int or str The column label or position for y points. C : int or str, optional The column label or position for the value of `(x, y)` point. reduce_C_function : callable, default `np.mean` Function of one argument that reduces all the values in a bin to a single number (e.g. `np.mean`, `np.max`, `np.sum`, `np.std`). gridsize : int or tuple of (int, int), default 100 The number of hexagons in the x-direction. The corresponding number of hexagons in the y-direction is chosen in a way that the hexagons are approximately regular. Alternatively, gridsize can be a tuple with two elements specifying the number of hexagons in the x-direction and the y-direction. **kwds Additional keyword arguments are documented in :meth:`DataFrame.plot`. Returns ------- matplotlib.AxesSubplot The matplotlib ``Axes`` on which the hexbin is plotted. See Also -------- DataFrame.plot : Make plots of a DataFrame. matplotlib.pyplot.hexbin : Hexagonal binning plot using matplotlib, the matplotlib function that is used under the hood. Examples -------- The following examples are generated with random data from a normal distribution. .. plot:: :context: close-figs >>> n = 10000 >>> df = pd.DataFrame({'x': np.random.randn(n), ... 'y': np.random.randn(n)}) >>> ax = df.plot.hexbin(x='x', y='y', gridsize=20) The next example uses `C` and `np.sum` as `reduce_C_function`. Note that `'observations'` values ranges from 1 to 5 but the result plot shows values up to more than 25. This is because of the `reduce_C_function`. .. plot:: :context: close-figs >>> n = 500 >>> df = pd.DataFrame({ ... 'coord_x': np.random.uniform(-3, 3, size=n), ... 'coord_y': np.random.uniform(30, 50, size=n), ... 'observations': np.random.randint(1,5, size=n) ... }) >>> ax = df.plot.hexbin(x='coord_x', ... y='coord_y', ... C='observations', ... reduce_C_function=np.sum, ... gridsize=10, ... cmap="viridis") """ if reduce_C_function is not None: kwds['reduce_C_function'] = reduce_C_function if gridsize is not None: kwds['gridsize'] = gridsize return self(kind='hexbin', x=x, y=y, C=C, **kwds)
[ "def", "hexbin", "(", "self", ",", "x", ",", "y", ",", "C", "=", "None", ",", "reduce_C_function", "=", "None", ",", "gridsize", "=", "None", ",", "*", "*", "kwds", ")", ":", "if", "reduce_C_function", "is", "not", "None", ":", "kwds", "[", "'reduce_C_function'", "]", "=", "reduce_C_function", "if", "gridsize", "is", "not", "None", ":", "kwds", "[", "'gridsize'", "]", "=", "gridsize", "return", "self", "(", "kind", "=", "'hexbin'", ",", "x", "=", "x", ",", "y", "=", "y", ",", "C", "=", "C", ",", "*", "*", "kwds", ")" ]
Generate a hexagonal binning plot. Generate a hexagonal binning plot of `x` versus `y`. If `C` is `None` (the default), this is a histogram of the number of occurrences of the observations at ``(x[i], y[i])``. If `C` is specified, specifies values at given coordinates ``(x[i], y[i])``. These values are accumulated for each hexagonal bin and then reduced according to `reduce_C_function`, having as default the NumPy's mean function (:meth:`numpy.mean`). (If `C` is specified, it must also be a 1-D sequence of the same length as `x` and `y`, or a column label.) Parameters ---------- x : int or str The column label or position for x points. y : int or str The column label or position for y points. C : int or str, optional The column label or position for the value of `(x, y)` point. reduce_C_function : callable, default `np.mean` Function of one argument that reduces all the values in a bin to a single number (e.g. `np.mean`, `np.max`, `np.sum`, `np.std`). gridsize : int or tuple of (int, int), default 100 The number of hexagons in the x-direction. The corresponding number of hexagons in the y-direction is chosen in a way that the hexagons are approximately regular. Alternatively, gridsize can be a tuple with two elements specifying the number of hexagons in the x-direction and the y-direction. **kwds Additional keyword arguments are documented in :meth:`DataFrame.plot`. Returns ------- matplotlib.AxesSubplot The matplotlib ``Axes`` on which the hexbin is plotted. See Also -------- DataFrame.plot : Make plots of a DataFrame. matplotlib.pyplot.hexbin : Hexagonal binning plot using matplotlib, the matplotlib function that is used under the hood. Examples -------- The following examples are generated with random data from a normal distribution. .. plot:: :context: close-figs >>> n = 10000 >>> df = pd.DataFrame({'x': np.random.randn(n), ... 'y': np.random.randn(n)}) >>> ax = df.plot.hexbin(x='x', y='y', gridsize=20) The next example uses `C` and `np.sum` as `reduce_C_function`. Note that `'observations'` values ranges from 1 to 5 but the result plot shows values up to more than 25. This is because of the `reduce_C_function`. .. plot:: :context: close-figs >>> n = 500 >>> df = pd.DataFrame({ ... 'coord_x': np.random.uniform(-3, 3, size=n), ... 'coord_y': np.random.uniform(30, 50, size=n), ... 'observations': np.random.randint(1,5, size=n) ... }) >>> ax = df.plot.hexbin(x='coord_x', ... y='coord_y', ... C='observations', ... reduce_C_function=np.sum, ... gridsize=10, ... cmap="viridis")
[ "Generate", "a", "hexagonal", "binning", "plot", "." ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/plotting/_core.py#L3544-L3631
19,777
pandas-dev/pandas
pandas/core/indexes/api.py
_get_combined_index
def _get_combined_index(indexes, intersect=False, sort=False): """ Return the union or intersection of indexes. Parameters ---------- indexes : list of Index or list objects When intersect=True, do not accept list of lists. intersect : bool, default False If True, calculate the intersection between indexes. Otherwise, calculate the union. sort : bool, default False Whether the result index should come out sorted or not. Returns ------- Index """ # TODO: handle index names! indexes = _get_distinct_objs(indexes) if len(indexes) == 0: index = Index([]) elif len(indexes) == 1: index = indexes[0] elif intersect: index = indexes[0] for other in indexes[1:]: index = index.intersection(other) else: index = _union_indexes(indexes, sort=sort) index = ensure_index(index) if sort: try: index = index.sort_values() except TypeError: pass return index
python
def _get_combined_index(indexes, intersect=False, sort=False): """ Return the union or intersection of indexes. Parameters ---------- indexes : list of Index or list objects When intersect=True, do not accept list of lists. intersect : bool, default False If True, calculate the intersection between indexes. Otherwise, calculate the union. sort : bool, default False Whether the result index should come out sorted or not. Returns ------- Index """ # TODO: handle index names! indexes = _get_distinct_objs(indexes) if len(indexes) == 0: index = Index([]) elif len(indexes) == 1: index = indexes[0] elif intersect: index = indexes[0] for other in indexes[1:]: index = index.intersection(other) else: index = _union_indexes(indexes, sort=sort) index = ensure_index(index) if sort: try: index = index.sort_values() except TypeError: pass return index
[ "def", "_get_combined_index", "(", "indexes", ",", "intersect", "=", "False", ",", "sort", "=", "False", ")", ":", "# TODO: handle index names!", "indexes", "=", "_get_distinct_objs", "(", "indexes", ")", "if", "len", "(", "indexes", ")", "==", "0", ":", "index", "=", "Index", "(", "[", "]", ")", "elif", "len", "(", "indexes", ")", "==", "1", ":", "index", "=", "indexes", "[", "0", "]", "elif", "intersect", ":", "index", "=", "indexes", "[", "0", "]", "for", "other", "in", "indexes", "[", "1", ":", "]", ":", "index", "=", "index", ".", "intersection", "(", "other", ")", "else", ":", "index", "=", "_union_indexes", "(", "indexes", ",", "sort", "=", "sort", ")", "index", "=", "ensure_index", "(", "index", ")", "if", "sort", ":", "try", ":", "index", "=", "index", ".", "sort_values", "(", ")", "except", "TypeError", ":", "pass", "return", "index" ]
Return the union or intersection of indexes. Parameters ---------- indexes : list of Index or list objects When intersect=True, do not accept list of lists. intersect : bool, default False If True, calculate the intersection between indexes. Otherwise, calculate the union. sort : bool, default False Whether the result index should come out sorted or not. Returns ------- Index
[ "Return", "the", "union", "or", "intersection", "of", "indexes", "." ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/indexes/api.py#L87-L125
19,778
pandas-dev/pandas
pandas/core/indexes/api.py
_union_indexes
def _union_indexes(indexes, sort=True): """ Return the union of indexes. The behavior of sort and names is not consistent. Parameters ---------- indexes : list of Index or list objects sort : bool, default True Whether the result index should come out sorted or not. Returns ------- Index """ if len(indexes) == 0: raise AssertionError('Must have at least 1 Index to union') if len(indexes) == 1: result = indexes[0] if isinstance(result, list): result = Index(sorted(result)) return result indexes, kind = _sanitize_and_check(indexes) def _unique_indices(inds): """ Convert indexes to lists and concatenate them, removing duplicates. The final dtype is inferred. Parameters ---------- inds : list of Index or list objects Returns ------- Index """ def conv(i): if isinstance(i, Index): i = i.tolist() return i return Index( lib.fast_unique_multiple_list([conv(i) for i in inds], sort=sort)) if kind == 'special': result = indexes[0] if hasattr(result, 'union_many'): return result.union_many(indexes[1:]) else: for other in indexes[1:]: result = result.union(other) return result elif kind == 'array': index = indexes[0] for other in indexes[1:]: if not index.equals(other): if sort is None: # TODO: remove once pd.concat sort default changes warnings.warn(_sort_msg, FutureWarning, stacklevel=8) sort = True return _unique_indices(indexes) name = _get_consensus_names(indexes)[0] if name != index.name: index = index._shallow_copy(name=name) return index else: # kind='list' return _unique_indices(indexes)
python
def _union_indexes(indexes, sort=True): """ Return the union of indexes. The behavior of sort and names is not consistent. Parameters ---------- indexes : list of Index or list objects sort : bool, default True Whether the result index should come out sorted or not. Returns ------- Index """ if len(indexes) == 0: raise AssertionError('Must have at least 1 Index to union') if len(indexes) == 1: result = indexes[0] if isinstance(result, list): result = Index(sorted(result)) return result indexes, kind = _sanitize_and_check(indexes) def _unique_indices(inds): """ Convert indexes to lists and concatenate them, removing duplicates. The final dtype is inferred. Parameters ---------- inds : list of Index or list objects Returns ------- Index """ def conv(i): if isinstance(i, Index): i = i.tolist() return i return Index( lib.fast_unique_multiple_list([conv(i) for i in inds], sort=sort)) if kind == 'special': result = indexes[0] if hasattr(result, 'union_many'): return result.union_many(indexes[1:]) else: for other in indexes[1:]: result = result.union(other) return result elif kind == 'array': index = indexes[0] for other in indexes[1:]: if not index.equals(other): if sort is None: # TODO: remove once pd.concat sort default changes warnings.warn(_sort_msg, FutureWarning, stacklevel=8) sort = True return _unique_indices(indexes) name = _get_consensus_names(indexes)[0] if name != index.name: index = index._shallow_copy(name=name) return index else: # kind='list' return _unique_indices(indexes)
[ "def", "_union_indexes", "(", "indexes", ",", "sort", "=", "True", ")", ":", "if", "len", "(", "indexes", ")", "==", "0", ":", "raise", "AssertionError", "(", "'Must have at least 1 Index to union'", ")", "if", "len", "(", "indexes", ")", "==", "1", ":", "result", "=", "indexes", "[", "0", "]", "if", "isinstance", "(", "result", ",", "list", ")", ":", "result", "=", "Index", "(", "sorted", "(", "result", ")", ")", "return", "result", "indexes", ",", "kind", "=", "_sanitize_and_check", "(", "indexes", ")", "def", "_unique_indices", "(", "inds", ")", ":", "\"\"\"\n Convert indexes to lists and concatenate them, removing duplicates.\n\n The final dtype is inferred.\n\n Parameters\n ----------\n inds : list of Index or list objects\n\n Returns\n -------\n Index\n \"\"\"", "def", "conv", "(", "i", ")", ":", "if", "isinstance", "(", "i", ",", "Index", ")", ":", "i", "=", "i", ".", "tolist", "(", ")", "return", "i", "return", "Index", "(", "lib", ".", "fast_unique_multiple_list", "(", "[", "conv", "(", "i", ")", "for", "i", "in", "inds", "]", ",", "sort", "=", "sort", ")", ")", "if", "kind", "==", "'special'", ":", "result", "=", "indexes", "[", "0", "]", "if", "hasattr", "(", "result", ",", "'union_many'", ")", ":", "return", "result", ".", "union_many", "(", "indexes", "[", "1", ":", "]", ")", "else", ":", "for", "other", "in", "indexes", "[", "1", ":", "]", ":", "result", "=", "result", ".", "union", "(", "other", ")", "return", "result", "elif", "kind", "==", "'array'", ":", "index", "=", "indexes", "[", "0", "]", "for", "other", "in", "indexes", "[", "1", ":", "]", ":", "if", "not", "index", ".", "equals", "(", "other", ")", ":", "if", "sort", "is", "None", ":", "# TODO: remove once pd.concat sort default changes", "warnings", ".", "warn", "(", "_sort_msg", ",", "FutureWarning", ",", "stacklevel", "=", "8", ")", "sort", "=", "True", "return", "_unique_indices", "(", "indexes", ")", "name", "=", "_get_consensus_names", "(", "indexes", ")", "[", "0", "]", "if", "name", "!=", "index", ".", "name", ":", "index", "=", "index", ".", "_shallow_copy", "(", "name", "=", "name", ")", "return", "index", "else", ":", "# kind='list'", "return", "_unique_indices", "(", "indexes", ")" ]
Return the union of indexes. The behavior of sort and names is not consistent. Parameters ---------- indexes : list of Index or list objects sort : bool, default True Whether the result index should come out sorted or not. Returns ------- Index
[ "Return", "the", "union", "of", "indexes", "." ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/indexes/api.py#L128-L202
19,779
pandas-dev/pandas
pandas/core/indexes/api.py
_sanitize_and_check
def _sanitize_and_check(indexes): """ Verify the type of indexes and convert lists to Index. Cases: - [list, list, ...]: Return ([list, list, ...], 'list') - [list, Index, ...]: Return _sanitize_and_check([Index, Index, ...]) Lists are sorted and converted to Index. - [Index, Index, ...]: Return ([Index, Index, ...], TYPE) TYPE = 'special' if at least one special type, 'array' otherwise. Parameters ---------- indexes : list of Index or list objects Returns ------- sanitized_indexes : list of Index or list objects type : {'list', 'array', 'special'} """ kinds = list({type(index) for index in indexes}) if list in kinds: if len(kinds) > 1: indexes = [Index(com.try_sort(x)) if not isinstance(x, Index) else x for x in indexes] kinds.remove(list) else: return indexes, 'list' if len(kinds) > 1 or Index not in kinds: return indexes, 'special' else: return indexes, 'array'
python
def _sanitize_and_check(indexes): """ Verify the type of indexes and convert lists to Index. Cases: - [list, list, ...]: Return ([list, list, ...], 'list') - [list, Index, ...]: Return _sanitize_and_check([Index, Index, ...]) Lists are sorted and converted to Index. - [Index, Index, ...]: Return ([Index, Index, ...], TYPE) TYPE = 'special' if at least one special type, 'array' otherwise. Parameters ---------- indexes : list of Index or list objects Returns ------- sanitized_indexes : list of Index or list objects type : {'list', 'array', 'special'} """ kinds = list({type(index) for index in indexes}) if list in kinds: if len(kinds) > 1: indexes = [Index(com.try_sort(x)) if not isinstance(x, Index) else x for x in indexes] kinds.remove(list) else: return indexes, 'list' if len(kinds) > 1 or Index not in kinds: return indexes, 'special' else: return indexes, 'array'
[ "def", "_sanitize_and_check", "(", "indexes", ")", ":", "kinds", "=", "list", "(", "{", "type", "(", "index", ")", "for", "index", "in", "indexes", "}", ")", "if", "list", "in", "kinds", ":", "if", "len", "(", "kinds", ")", ">", "1", ":", "indexes", "=", "[", "Index", "(", "com", ".", "try_sort", "(", "x", ")", ")", "if", "not", "isinstance", "(", "x", ",", "Index", ")", "else", "x", "for", "x", "in", "indexes", "]", "kinds", ".", "remove", "(", "list", ")", "else", ":", "return", "indexes", ",", "'list'", "if", "len", "(", "kinds", ")", ">", "1", "or", "Index", "not", "in", "kinds", ":", "return", "indexes", ",", "'special'", "else", ":", "return", "indexes", ",", "'array'" ]
Verify the type of indexes and convert lists to Index. Cases: - [list, list, ...]: Return ([list, list, ...], 'list') - [list, Index, ...]: Return _sanitize_and_check([Index, Index, ...]) Lists are sorted and converted to Index. - [Index, Index, ...]: Return ([Index, Index, ...], TYPE) TYPE = 'special' if at least one special type, 'array' otherwise. Parameters ---------- indexes : list of Index or list objects Returns ------- sanitized_indexes : list of Index or list objects type : {'list', 'array', 'special'}
[ "Verify", "the", "type", "of", "indexes", "and", "convert", "lists", "to", "Index", "." ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/indexes/api.py#L205-L240
19,780
pandas-dev/pandas
pandas/core/indexes/api.py
_get_consensus_names
def _get_consensus_names(indexes): """ Give a consensus 'names' to indexes. If there's exactly one non-empty 'names', return this, otherwise, return empty. Parameters ---------- indexes : list of Index objects Returns ------- list A list representing the consensus 'names' found. """ # find the non-none names, need to tupleify to make # the set hashable, then reverse on return consensus_names = {tuple(i.names) for i in indexes if com._any_not_none(*i.names)} if len(consensus_names) == 1: return list(list(consensus_names)[0]) return [None] * indexes[0].nlevels
python
def _get_consensus_names(indexes): """ Give a consensus 'names' to indexes. If there's exactly one non-empty 'names', return this, otherwise, return empty. Parameters ---------- indexes : list of Index objects Returns ------- list A list representing the consensus 'names' found. """ # find the non-none names, need to tupleify to make # the set hashable, then reverse on return consensus_names = {tuple(i.names) for i in indexes if com._any_not_none(*i.names)} if len(consensus_names) == 1: return list(list(consensus_names)[0]) return [None] * indexes[0].nlevels
[ "def", "_get_consensus_names", "(", "indexes", ")", ":", "# find the non-none names, need to tupleify to make", "# the set hashable, then reverse on return", "consensus_names", "=", "{", "tuple", "(", "i", ".", "names", ")", "for", "i", "in", "indexes", "if", "com", ".", "_any_not_none", "(", "*", "i", ".", "names", ")", "}", "if", "len", "(", "consensus_names", ")", "==", "1", ":", "return", "list", "(", "list", "(", "consensus_names", ")", "[", "0", "]", ")", "return", "[", "None", "]", "*", "indexes", "[", "0", "]", ".", "nlevels" ]
Give a consensus 'names' to indexes. If there's exactly one non-empty 'names', return this, otherwise, return empty. Parameters ---------- indexes : list of Index objects Returns ------- list A list representing the consensus 'names' found.
[ "Give", "a", "consensus", "names", "to", "indexes", "." ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/indexes/api.py#L243-L266
19,781
pandas-dev/pandas
pandas/core/indexes/api.py
_all_indexes_same
def _all_indexes_same(indexes): """ Determine if all indexes contain the same elements. Parameters ---------- indexes : list of Index objects Returns ------- bool True if all indexes contain the same elements, False otherwise. """ first = indexes[0] for index in indexes[1:]: if not first.equals(index): return False return True
python
def _all_indexes_same(indexes): """ Determine if all indexes contain the same elements. Parameters ---------- indexes : list of Index objects Returns ------- bool True if all indexes contain the same elements, False otherwise. """ first = indexes[0] for index in indexes[1:]: if not first.equals(index): return False return True
[ "def", "_all_indexes_same", "(", "indexes", ")", ":", "first", "=", "indexes", "[", "0", "]", "for", "index", "in", "indexes", "[", "1", ":", "]", ":", "if", "not", "first", ".", "equals", "(", "index", ")", ":", "return", "False", "return", "True" ]
Determine if all indexes contain the same elements. Parameters ---------- indexes : list of Index objects Returns ------- bool True if all indexes contain the same elements, False otherwise.
[ "Determine", "if", "all", "indexes", "contain", "the", "same", "elements", "." ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/indexes/api.py#L269-L286
19,782
pandas-dev/pandas
pandas/io/sql.py
_convert_params
def _convert_params(sql, params): """Convert SQL and params args to DBAPI2.0 compliant format.""" args = [sql] if params is not None: if hasattr(params, 'keys'): # test if params is a mapping args += [params] else: args += [list(params)] return args
python
def _convert_params(sql, params): """Convert SQL and params args to DBAPI2.0 compliant format.""" args = [sql] if params is not None: if hasattr(params, 'keys'): # test if params is a mapping args += [params] else: args += [list(params)] return args
[ "def", "_convert_params", "(", "sql", ",", "params", ")", ":", "args", "=", "[", "sql", "]", "if", "params", "is", "not", "None", ":", "if", "hasattr", "(", "params", ",", "'keys'", ")", ":", "# test if params is a mapping", "args", "+=", "[", "params", "]", "else", ":", "args", "+=", "[", "list", "(", "params", ")", "]", "return", "args" ]
Convert SQL and params args to DBAPI2.0 compliant format.
[ "Convert", "SQL", "and", "params", "args", "to", "DBAPI2", ".", "0", "compliant", "format", "." ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/io/sql.py#L57-L65
19,783
pandas-dev/pandas
pandas/io/sql.py
_process_parse_dates_argument
def _process_parse_dates_argument(parse_dates): """Process parse_dates argument for read_sql functions""" # handle non-list entries for parse_dates gracefully if parse_dates is True or parse_dates is None or parse_dates is False: parse_dates = [] elif not hasattr(parse_dates, '__iter__'): parse_dates = [parse_dates] return parse_dates
python
def _process_parse_dates_argument(parse_dates): """Process parse_dates argument for read_sql functions""" # handle non-list entries for parse_dates gracefully if parse_dates is True or parse_dates is None or parse_dates is False: parse_dates = [] elif not hasattr(parse_dates, '__iter__'): parse_dates = [parse_dates] return parse_dates
[ "def", "_process_parse_dates_argument", "(", "parse_dates", ")", ":", "# handle non-list entries for parse_dates gracefully", "if", "parse_dates", "is", "True", "or", "parse_dates", "is", "None", "or", "parse_dates", "is", "False", ":", "parse_dates", "=", "[", "]", "elif", "not", "hasattr", "(", "parse_dates", ",", "'__iter__'", ")", ":", "parse_dates", "=", "[", "parse_dates", "]", "return", "parse_dates" ]
Process parse_dates argument for read_sql functions
[ "Process", "parse_dates", "argument", "for", "read_sql", "functions" ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/io/sql.py#L68-L76
19,784
pandas-dev/pandas
pandas/io/sql.py
_parse_date_columns
def _parse_date_columns(data_frame, parse_dates): """ Force non-datetime columns to be read as such. Supports both string formatted and integer timestamp columns. """ parse_dates = _process_parse_dates_argument(parse_dates) # we want to coerce datetime64_tz dtypes for now to UTC # we could in theory do a 'nice' conversion from a FixedOffset tz # GH11216 for col_name, df_col in data_frame.iteritems(): if is_datetime64tz_dtype(df_col) or col_name in parse_dates: try: fmt = parse_dates[col_name] except TypeError: fmt = None data_frame[col_name] = _handle_date_column(df_col, format=fmt) return data_frame
python
def _parse_date_columns(data_frame, parse_dates): """ Force non-datetime columns to be read as such. Supports both string formatted and integer timestamp columns. """ parse_dates = _process_parse_dates_argument(parse_dates) # we want to coerce datetime64_tz dtypes for now to UTC # we could in theory do a 'nice' conversion from a FixedOffset tz # GH11216 for col_name, df_col in data_frame.iteritems(): if is_datetime64tz_dtype(df_col) or col_name in parse_dates: try: fmt = parse_dates[col_name] except TypeError: fmt = None data_frame[col_name] = _handle_date_column(df_col, format=fmt) return data_frame
[ "def", "_parse_date_columns", "(", "data_frame", ",", "parse_dates", ")", ":", "parse_dates", "=", "_process_parse_dates_argument", "(", "parse_dates", ")", "# we want to coerce datetime64_tz dtypes for now to UTC", "# we could in theory do a 'nice' conversion from a FixedOffset tz", "# GH11216", "for", "col_name", ",", "df_col", "in", "data_frame", ".", "iteritems", "(", ")", ":", "if", "is_datetime64tz_dtype", "(", "df_col", ")", "or", "col_name", "in", "parse_dates", ":", "try", ":", "fmt", "=", "parse_dates", "[", "col_name", "]", "except", "TypeError", ":", "fmt", "=", "None", "data_frame", "[", "col_name", "]", "=", "_handle_date_column", "(", "df_col", ",", "format", "=", "fmt", ")", "return", "data_frame" ]
Force non-datetime columns to be read as such. Supports both string formatted and integer timestamp columns.
[ "Force", "non", "-", "datetime", "columns", "to", "be", "read", "as", "such", ".", "Supports", "both", "string", "formatted", "and", "integer", "timestamp", "columns", "." ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/io/sql.py#L98-L116
19,785
pandas-dev/pandas
pandas/io/sql.py
_wrap_result
def _wrap_result(data, columns, index_col=None, coerce_float=True, parse_dates=None): """Wrap result set of query in a DataFrame.""" frame = DataFrame.from_records(data, columns=columns, coerce_float=coerce_float) frame = _parse_date_columns(frame, parse_dates) if index_col is not None: frame.set_index(index_col, inplace=True) return frame
python
def _wrap_result(data, columns, index_col=None, coerce_float=True, parse_dates=None): """Wrap result set of query in a DataFrame.""" frame = DataFrame.from_records(data, columns=columns, coerce_float=coerce_float) frame = _parse_date_columns(frame, parse_dates) if index_col is not None: frame.set_index(index_col, inplace=True) return frame
[ "def", "_wrap_result", "(", "data", ",", "columns", ",", "index_col", "=", "None", ",", "coerce_float", "=", "True", ",", "parse_dates", "=", "None", ")", ":", "frame", "=", "DataFrame", ".", "from_records", "(", "data", ",", "columns", "=", "columns", ",", "coerce_float", "=", "coerce_float", ")", "frame", "=", "_parse_date_columns", "(", "frame", ",", "parse_dates", ")", "if", "index_col", "is", "not", "None", ":", "frame", ".", "set_index", "(", "index_col", ",", "inplace", "=", "True", ")", "return", "frame" ]
Wrap result set of query in a DataFrame.
[ "Wrap", "result", "set", "of", "query", "in", "a", "DataFrame", "." ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/io/sql.py#L119-L131
19,786
pandas-dev/pandas
pandas/io/sql.py
execute
def execute(sql, con, cur=None, params=None): """ Execute the given SQL query using the provided connection object. Parameters ---------- sql : string SQL query to be executed. con : SQLAlchemy connectable(engine/connection) or sqlite3 connection Using SQLAlchemy makes it possible to use any DB supported by the library. If a DBAPI2 object, only sqlite3 is supported. cur : deprecated, cursor is obtained from connection, default: None params : list or tuple, optional, default: None List of parameters to pass to execute method. Returns ------- Results Iterable """ if cur is None: pandas_sql = pandasSQL_builder(con) else: pandas_sql = pandasSQL_builder(cur, is_cursor=True) args = _convert_params(sql, params) return pandas_sql.execute(*args)
python
def execute(sql, con, cur=None, params=None): """ Execute the given SQL query using the provided connection object. Parameters ---------- sql : string SQL query to be executed. con : SQLAlchemy connectable(engine/connection) or sqlite3 connection Using SQLAlchemy makes it possible to use any DB supported by the library. If a DBAPI2 object, only sqlite3 is supported. cur : deprecated, cursor is obtained from connection, default: None params : list or tuple, optional, default: None List of parameters to pass to execute method. Returns ------- Results Iterable """ if cur is None: pandas_sql = pandasSQL_builder(con) else: pandas_sql = pandasSQL_builder(cur, is_cursor=True) args = _convert_params(sql, params) return pandas_sql.execute(*args)
[ "def", "execute", "(", "sql", ",", "con", ",", "cur", "=", "None", ",", "params", "=", "None", ")", ":", "if", "cur", "is", "None", ":", "pandas_sql", "=", "pandasSQL_builder", "(", "con", ")", "else", ":", "pandas_sql", "=", "pandasSQL_builder", "(", "cur", ",", "is_cursor", "=", "True", ")", "args", "=", "_convert_params", "(", "sql", ",", "params", ")", "return", "pandas_sql", ".", "execute", "(", "*", "args", ")" ]
Execute the given SQL query using the provided connection object. Parameters ---------- sql : string SQL query to be executed. con : SQLAlchemy connectable(engine/connection) or sqlite3 connection Using SQLAlchemy makes it possible to use any DB supported by the library. If a DBAPI2 object, only sqlite3 is supported. cur : deprecated, cursor is obtained from connection, default: None params : list or tuple, optional, default: None List of parameters to pass to execute method. Returns ------- Results Iterable
[ "Execute", "the", "given", "SQL", "query", "using", "the", "provided", "connection", "object", "." ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/io/sql.py#L134-L159
19,787
pandas-dev/pandas
pandas/io/sql.py
has_table
def has_table(table_name, con, schema=None): """ Check if DataBase has named table. Parameters ---------- table_name: string Name of SQL table. con: SQLAlchemy connectable(engine/connection) or sqlite3 DBAPI2 connection Using SQLAlchemy makes it possible to use any DB supported by that library. If a DBAPI2 object, only sqlite3 is supported. schema : string, default None Name of SQL schema in database to write to (if database flavor supports this). If None, use default schema (default). Returns ------- boolean """ pandas_sql = pandasSQL_builder(con, schema=schema) return pandas_sql.has_table(table_name)
python
def has_table(table_name, con, schema=None): """ Check if DataBase has named table. Parameters ---------- table_name: string Name of SQL table. con: SQLAlchemy connectable(engine/connection) or sqlite3 DBAPI2 connection Using SQLAlchemy makes it possible to use any DB supported by that library. If a DBAPI2 object, only sqlite3 is supported. schema : string, default None Name of SQL schema in database to write to (if database flavor supports this). If None, use default schema (default). Returns ------- boolean """ pandas_sql = pandasSQL_builder(con, schema=schema) return pandas_sql.has_table(table_name)
[ "def", "has_table", "(", "table_name", ",", "con", ",", "schema", "=", "None", ")", ":", "pandas_sql", "=", "pandasSQL_builder", "(", "con", ",", "schema", "=", "schema", ")", "return", "pandas_sql", ".", "has_table", "(", "table_name", ")" ]
Check if DataBase has named table. Parameters ---------- table_name: string Name of SQL table. con: SQLAlchemy connectable(engine/connection) or sqlite3 DBAPI2 connection Using SQLAlchemy makes it possible to use any DB supported by that library. If a DBAPI2 object, only sqlite3 is supported. schema : string, default None Name of SQL schema in database to write to (if database flavor supports this). If None, use default schema (default). Returns ------- boolean
[ "Check", "if", "DataBase", "has", "named", "table", "." ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/io/sql.py#L454-L475
19,788
pandas-dev/pandas
pandas/io/sql.py
pandasSQL_builder
def pandasSQL_builder(con, schema=None, meta=None, is_cursor=False): """ Convenience function to return the correct PandasSQL subclass based on the provided parameters. """ # When support for DBAPI connections is removed, # is_cursor should not be necessary. con = _engine_builder(con) if _is_sqlalchemy_connectable(con): return SQLDatabase(con, schema=schema, meta=meta) elif isinstance(con, str): raise ImportError("Using URI string without sqlalchemy installed.") else: return SQLiteDatabase(con, is_cursor=is_cursor)
python
def pandasSQL_builder(con, schema=None, meta=None, is_cursor=False): """ Convenience function to return the correct PandasSQL subclass based on the provided parameters. """ # When support for DBAPI connections is removed, # is_cursor should not be necessary. con = _engine_builder(con) if _is_sqlalchemy_connectable(con): return SQLDatabase(con, schema=schema, meta=meta) elif isinstance(con, str): raise ImportError("Using URI string without sqlalchemy installed.") else: return SQLiteDatabase(con, is_cursor=is_cursor)
[ "def", "pandasSQL_builder", "(", "con", ",", "schema", "=", "None", ",", "meta", "=", "None", ",", "is_cursor", "=", "False", ")", ":", "# When support for DBAPI connections is removed,", "# is_cursor should not be necessary.", "con", "=", "_engine_builder", "(", "con", ")", "if", "_is_sqlalchemy_connectable", "(", "con", ")", ":", "return", "SQLDatabase", "(", "con", ",", "schema", "=", "schema", ",", "meta", "=", "meta", ")", "elif", "isinstance", "(", "con", ",", "str", ")", ":", "raise", "ImportError", "(", "\"Using URI string without sqlalchemy installed.\"", ")", "else", ":", "return", "SQLiteDatabase", "(", "con", ",", "is_cursor", "=", "is_cursor", ")" ]
Convenience function to return the correct PandasSQL subclass based on the provided parameters.
[ "Convenience", "function", "to", "return", "the", "correct", "PandasSQL", "subclass", "based", "on", "the", "provided", "parameters", "." ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/io/sql.py#L499-L513
19,789
pandas-dev/pandas
pandas/io/sql.py
get_schema
def get_schema(frame, name, keys=None, con=None, dtype=None): """ Get the SQL db table schema for the given frame. Parameters ---------- frame : DataFrame name : string name of SQL table keys : string or sequence, default: None columns to use a primary key con: an open SQL database connection object or a SQLAlchemy connectable Using SQLAlchemy makes it possible to use any DB supported by that library, default: None If a DBAPI2 object, only sqlite3 is supported. dtype : dict of column name to SQL type, default None Optional specifying the datatype for columns. The SQL type should be a SQLAlchemy type, or a string for sqlite3 fallback connection. """ pandas_sql = pandasSQL_builder(con=con) return pandas_sql._create_sql_schema(frame, name, keys=keys, dtype=dtype)
python
def get_schema(frame, name, keys=None, con=None, dtype=None): """ Get the SQL db table schema for the given frame. Parameters ---------- frame : DataFrame name : string name of SQL table keys : string or sequence, default: None columns to use a primary key con: an open SQL database connection object or a SQLAlchemy connectable Using SQLAlchemy makes it possible to use any DB supported by that library, default: None If a DBAPI2 object, only sqlite3 is supported. dtype : dict of column name to SQL type, default None Optional specifying the datatype for columns. The SQL type should be a SQLAlchemy type, or a string for sqlite3 fallback connection. """ pandas_sql = pandasSQL_builder(con=con) return pandas_sql._create_sql_schema(frame, name, keys=keys, dtype=dtype)
[ "def", "get_schema", "(", "frame", ",", "name", ",", "keys", "=", "None", ",", "con", "=", "None", ",", "dtype", "=", "None", ")", ":", "pandas_sql", "=", "pandasSQL_builder", "(", "con", "=", "con", ")", "return", "pandas_sql", ".", "_create_sql_schema", "(", "frame", ",", "name", ",", "keys", "=", "keys", ",", "dtype", "=", "dtype", ")" ]
Get the SQL db table schema for the given frame. Parameters ---------- frame : DataFrame name : string name of SQL table keys : string or sequence, default: None columns to use a primary key con: an open SQL database connection object or a SQLAlchemy connectable Using SQLAlchemy makes it possible to use any DB supported by that library, default: None If a DBAPI2 object, only sqlite3 is supported. dtype : dict of column name to SQL type, default None Optional specifying the datatype for columns. The SQL type should be a SQLAlchemy type, or a string for sqlite3 fallback connection.
[ "Get", "the", "SQL", "db", "table", "schema", "for", "the", "given", "frame", "." ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/io/sql.py#L1564-L1586
19,790
pandas-dev/pandas
pandas/io/sql.py
SQLTable._execute_insert
def _execute_insert(self, conn, keys, data_iter): """Execute SQL statement inserting data Parameters ---------- conn : sqlalchemy.engine.Engine or sqlalchemy.engine.Connection keys : list of str Column names data_iter : generator of list Each item contains a list of values to be inserted """ data = [dict(zip(keys, row)) for row in data_iter] conn.execute(self.table.insert(), data)
python
def _execute_insert(self, conn, keys, data_iter): """Execute SQL statement inserting data Parameters ---------- conn : sqlalchemy.engine.Engine or sqlalchemy.engine.Connection keys : list of str Column names data_iter : generator of list Each item contains a list of values to be inserted """ data = [dict(zip(keys, row)) for row in data_iter] conn.execute(self.table.insert(), data)
[ "def", "_execute_insert", "(", "self", ",", "conn", ",", "keys", ",", "data_iter", ")", ":", "data", "=", "[", "dict", "(", "zip", "(", "keys", ",", "row", ")", ")", "for", "row", "in", "data_iter", "]", "conn", ".", "execute", "(", "self", ".", "table", ".", "insert", "(", ")", ",", "data", ")" ]
Execute SQL statement inserting data Parameters ---------- conn : sqlalchemy.engine.Engine or sqlalchemy.engine.Connection keys : list of str Column names data_iter : generator of list Each item contains a list of values to be inserted
[ "Execute", "SQL", "statement", "inserting", "data" ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/io/sql.py#L578-L590
19,791
pandas-dev/pandas
pandas/io/sql.py
SQLTable._query_iterator
def _query_iterator(self, result, chunksize, columns, coerce_float=True, parse_dates=None): """Return generator through chunked result set.""" while True: data = result.fetchmany(chunksize) if not data: break else: self.frame = DataFrame.from_records( data, columns=columns, coerce_float=coerce_float) self._harmonize_columns(parse_dates=parse_dates) if self.index is not None: self.frame.set_index(self.index, inplace=True) yield self.frame
python
def _query_iterator(self, result, chunksize, columns, coerce_float=True, parse_dates=None): """Return generator through chunked result set.""" while True: data = result.fetchmany(chunksize) if not data: break else: self.frame = DataFrame.from_records( data, columns=columns, coerce_float=coerce_float) self._harmonize_columns(parse_dates=parse_dates) if self.index is not None: self.frame.set_index(self.index, inplace=True) yield self.frame
[ "def", "_query_iterator", "(", "self", ",", "result", ",", "chunksize", ",", "columns", ",", "coerce_float", "=", "True", ",", "parse_dates", "=", "None", ")", ":", "while", "True", ":", "data", "=", "result", ".", "fetchmany", "(", "chunksize", ")", "if", "not", "data", ":", "break", "else", ":", "self", ".", "frame", "=", "DataFrame", ".", "from_records", "(", "data", ",", "columns", "=", "columns", ",", "coerce_float", "=", "coerce_float", ")", "self", ".", "_harmonize_columns", "(", "parse_dates", "=", "parse_dates", ")", "if", "self", ".", "index", "is", "not", "None", ":", "self", ".", "frame", ".", "set_index", "(", "self", ".", "index", ",", "inplace", "=", "True", ")", "yield", "self", ".", "frame" ]
Return generator through chunked result set.
[ "Return", "generator", "through", "chunked", "result", "set", "." ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/io/sql.py#L679-L696
19,792
pandas-dev/pandas
pandas/io/sql.py
SQLTable._harmonize_columns
def _harmonize_columns(self, parse_dates=None): """ Make the DataFrame's column types align with the SQL table column types. Need to work around limited NA value support. Floats are always fine, ints must always be floats if there are Null values. Booleans are hard because converting bool column with None replaces all Nones with false. Therefore only convert bool if there are no NA values. Datetimes should already be converted to np.datetime64 if supported, but here we also force conversion if required. """ parse_dates = _process_parse_dates_argument(parse_dates) for sql_col in self.table.columns: col_name = sql_col.name try: df_col = self.frame[col_name] # Handle date parsing upfront; don't try to convert columns # twice if col_name in parse_dates: try: fmt = parse_dates[col_name] except TypeError: fmt = None self.frame[col_name] = _handle_date_column( df_col, format=fmt) continue # the type the dataframe column should have col_type = self._get_dtype(sql_col.type) if (col_type is datetime or col_type is date or col_type is DatetimeTZDtype): # Convert tz-aware Datetime SQL columns to UTC utc = col_type is DatetimeTZDtype self.frame[col_name] = _handle_date_column(df_col, utc=utc) elif col_type is float: # floats support NA, can always convert! self.frame[col_name] = df_col.astype(col_type, copy=False) elif len(df_col) == df_col.count(): # No NA values, can convert ints and bools if col_type is np.dtype('int64') or col_type is bool: self.frame[col_name] = df_col.astype( col_type, copy=False) except KeyError: pass
python
def _harmonize_columns(self, parse_dates=None): """ Make the DataFrame's column types align with the SQL table column types. Need to work around limited NA value support. Floats are always fine, ints must always be floats if there are Null values. Booleans are hard because converting bool column with None replaces all Nones with false. Therefore only convert bool if there are no NA values. Datetimes should already be converted to np.datetime64 if supported, but here we also force conversion if required. """ parse_dates = _process_parse_dates_argument(parse_dates) for sql_col in self.table.columns: col_name = sql_col.name try: df_col = self.frame[col_name] # Handle date parsing upfront; don't try to convert columns # twice if col_name in parse_dates: try: fmt = parse_dates[col_name] except TypeError: fmt = None self.frame[col_name] = _handle_date_column( df_col, format=fmt) continue # the type the dataframe column should have col_type = self._get_dtype(sql_col.type) if (col_type is datetime or col_type is date or col_type is DatetimeTZDtype): # Convert tz-aware Datetime SQL columns to UTC utc = col_type is DatetimeTZDtype self.frame[col_name] = _handle_date_column(df_col, utc=utc) elif col_type is float: # floats support NA, can always convert! self.frame[col_name] = df_col.astype(col_type, copy=False) elif len(df_col) == df_col.count(): # No NA values, can convert ints and bools if col_type is np.dtype('int64') or col_type is bool: self.frame[col_name] = df_col.astype( col_type, copy=False) except KeyError: pass
[ "def", "_harmonize_columns", "(", "self", ",", "parse_dates", "=", "None", ")", ":", "parse_dates", "=", "_process_parse_dates_argument", "(", "parse_dates", ")", "for", "sql_col", "in", "self", ".", "table", ".", "columns", ":", "col_name", "=", "sql_col", ".", "name", "try", ":", "df_col", "=", "self", ".", "frame", "[", "col_name", "]", "# Handle date parsing upfront; don't try to convert columns", "# twice", "if", "col_name", "in", "parse_dates", ":", "try", ":", "fmt", "=", "parse_dates", "[", "col_name", "]", "except", "TypeError", ":", "fmt", "=", "None", "self", ".", "frame", "[", "col_name", "]", "=", "_handle_date_column", "(", "df_col", ",", "format", "=", "fmt", ")", "continue", "# the type the dataframe column should have", "col_type", "=", "self", ".", "_get_dtype", "(", "sql_col", ".", "type", ")", "if", "(", "col_type", "is", "datetime", "or", "col_type", "is", "date", "or", "col_type", "is", "DatetimeTZDtype", ")", ":", "# Convert tz-aware Datetime SQL columns to UTC", "utc", "=", "col_type", "is", "DatetimeTZDtype", "self", ".", "frame", "[", "col_name", "]", "=", "_handle_date_column", "(", "df_col", ",", "utc", "=", "utc", ")", "elif", "col_type", "is", "float", ":", "# floats support NA, can always convert!", "self", ".", "frame", "[", "col_name", "]", "=", "df_col", ".", "astype", "(", "col_type", ",", "copy", "=", "False", ")", "elif", "len", "(", "df_col", ")", "==", "df_col", ".", "count", "(", ")", ":", "# No NA values, can convert ints and bools", "if", "col_type", "is", "np", ".", "dtype", "(", "'int64'", ")", "or", "col_type", "is", "bool", ":", "self", ".", "frame", "[", "col_name", "]", "=", "df_col", ".", "astype", "(", "col_type", ",", "copy", "=", "False", ")", "except", "KeyError", ":", "pass" ]
Make the DataFrame's column types align with the SQL table column types. Need to work around limited NA value support. Floats are always fine, ints must always be floats if there are Null values. Booleans are hard because converting bool column with None replaces all Nones with false. Therefore only convert bool if there are no NA values. Datetimes should already be converted to np.datetime64 if supported, but here we also force conversion if required.
[ "Make", "the", "DataFrame", "s", "column", "types", "align", "with", "the", "SQL", "table", "column", "types", ".", "Need", "to", "work", "around", "limited", "NA", "value", "support", ".", "Floats", "are", "always", "fine", "ints", "must", "always", "be", "floats", "if", "there", "are", "Null", "values", ".", "Booleans", "are", "hard", "because", "converting", "bool", "column", "with", "None", "replaces", "all", "Nones", "with", "false", ".", "Therefore", "only", "convert", "bool", "if", "there", "are", "no", "NA", "values", ".", "Datetimes", "should", "already", "be", "converted", "to", "np", ".", "datetime64", "if", "supported", "but", "here", "we", "also", "force", "conversion", "if", "required", "." ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/io/sql.py#L803-L851
19,793
pandas-dev/pandas
pandas/io/sql.py
SQLiteTable._create_table_setup
def _create_table_setup(self): """ Return a list of SQL statements that creates a table reflecting the structure of a DataFrame. The first entry will be a CREATE TABLE statement while the rest will be CREATE INDEX statements. """ column_names_and_types = self._get_column_names_and_types( self._sql_type_name ) pat = re.compile(r'\s+') column_names = [col_name for col_name, _, _ in column_names_and_types] if any(map(pat.search, column_names)): warnings.warn(_SAFE_NAMES_WARNING, stacklevel=6) escape = _get_valid_sqlite_name create_tbl_stmts = [escape(cname) + ' ' + ctype for cname, ctype, _ in column_names_and_types] if self.keys is not None and len(self.keys): if not is_list_like(self.keys): keys = [self.keys] else: keys = self.keys cnames_br = ", ".join(escape(c) for c in keys) create_tbl_stmts.append( "CONSTRAINT {tbl}_pk PRIMARY KEY ({cnames_br})".format( tbl=self.name, cnames_br=cnames_br)) create_stmts = ["CREATE TABLE " + escape(self.name) + " (\n" + ',\n '.join(create_tbl_stmts) + "\n)"] ix_cols = [cname for cname, _, is_index in column_names_and_types if is_index] if len(ix_cols): cnames = "_".join(ix_cols) cnames_br = ",".join(escape(c) for c in ix_cols) create_stmts.append( "CREATE INDEX " + escape("ix_" + self.name + "_" + cnames) + "ON " + escape(self.name) + " (" + cnames_br + ")") return create_stmts
python
def _create_table_setup(self): """ Return a list of SQL statements that creates a table reflecting the structure of a DataFrame. The first entry will be a CREATE TABLE statement while the rest will be CREATE INDEX statements. """ column_names_and_types = self._get_column_names_and_types( self._sql_type_name ) pat = re.compile(r'\s+') column_names = [col_name for col_name, _, _ in column_names_and_types] if any(map(pat.search, column_names)): warnings.warn(_SAFE_NAMES_WARNING, stacklevel=6) escape = _get_valid_sqlite_name create_tbl_stmts = [escape(cname) + ' ' + ctype for cname, ctype, _ in column_names_and_types] if self.keys is not None and len(self.keys): if not is_list_like(self.keys): keys = [self.keys] else: keys = self.keys cnames_br = ", ".join(escape(c) for c in keys) create_tbl_stmts.append( "CONSTRAINT {tbl}_pk PRIMARY KEY ({cnames_br})".format( tbl=self.name, cnames_br=cnames_br)) create_stmts = ["CREATE TABLE " + escape(self.name) + " (\n" + ',\n '.join(create_tbl_stmts) + "\n)"] ix_cols = [cname for cname, _, is_index in column_names_and_types if is_index] if len(ix_cols): cnames = "_".join(ix_cols) cnames_br = ",".join(escape(c) for c in ix_cols) create_stmts.append( "CREATE INDEX " + escape("ix_" + self.name + "_" + cnames) + "ON " + escape(self.name) + " (" + cnames_br + ")") return create_stmts
[ "def", "_create_table_setup", "(", "self", ")", ":", "column_names_and_types", "=", "self", ".", "_get_column_names_and_types", "(", "self", ".", "_sql_type_name", ")", "pat", "=", "re", ".", "compile", "(", "r'\\s+'", ")", "column_names", "=", "[", "col_name", "for", "col_name", ",", "_", ",", "_", "in", "column_names_and_types", "]", "if", "any", "(", "map", "(", "pat", ".", "search", ",", "column_names", ")", ")", ":", "warnings", ".", "warn", "(", "_SAFE_NAMES_WARNING", ",", "stacklevel", "=", "6", ")", "escape", "=", "_get_valid_sqlite_name", "create_tbl_stmts", "=", "[", "escape", "(", "cname", ")", "+", "' '", "+", "ctype", "for", "cname", ",", "ctype", ",", "_", "in", "column_names_and_types", "]", "if", "self", ".", "keys", "is", "not", "None", "and", "len", "(", "self", ".", "keys", ")", ":", "if", "not", "is_list_like", "(", "self", ".", "keys", ")", ":", "keys", "=", "[", "self", ".", "keys", "]", "else", ":", "keys", "=", "self", ".", "keys", "cnames_br", "=", "\", \"", ".", "join", "(", "escape", "(", "c", ")", "for", "c", "in", "keys", ")", "create_tbl_stmts", ".", "append", "(", "\"CONSTRAINT {tbl}_pk PRIMARY KEY ({cnames_br})\"", ".", "format", "(", "tbl", "=", "self", ".", "name", ",", "cnames_br", "=", "cnames_br", ")", ")", "create_stmts", "=", "[", "\"CREATE TABLE \"", "+", "escape", "(", "self", ".", "name", ")", "+", "\" (\\n\"", "+", "',\\n '", ".", "join", "(", "create_tbl_stmts", ")", "+", "\"\\n)\"", "]", "ix_cols", "=", "[", "cname", "for", "cname", ",", "_", ",", "is_index", "in", "column_names_and_types", "if", "is_index", "]", "if", "len", "(", "ix_cols", ")", ":", "cnames", "=", "\"_\"", ".", "join", "(", "ix_cols", ")", "cnames_br", "=", "\",\"", ".", "join", "(", "escape", "(", "c", ")", "for", "c", "in", "ix_cols", ")", "create_stmts", ".", "append", "(", "\"CREATE INDEX \"", "+", "escape", "(", "\"ix_\"", "+", "self", ".", "name", "+", "\"_\"", "+", "cnames", ")", "+", "\"ON \"", "+", "escape", "(", "self", ".", "name", ")", "+", "\" (\"", "+", "cnames_br", "+", "\")\"", ")", "return", "create_stmts" ]
Return a list of SQL statements that creates a table reflecting the structure of a DataFrame. The first entry will be a CREATE TABLE statement while the rest will be CREATE INDEX statements.
[ "Return", "a", "list", "of", "SQL", "statements", "that", "creates", "a", "table", "reflecting", "the", "structure", "of", "a", "DataFrame", ".", "The", "first", "entry", "will", "be", "a", "CREATE", "TABLE", "statement", "while", "the", "rest", "will", "be", "CREATE", "INDEX", "statements", "." ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/io/sql.py#L1311-L1353
19,794
pandas-dev/pandas
pandas/core/arrays/categorical.py
_maybe_to_categorical
def _maybe_to_categorical(array): """ Coerce to a categorical if a series is given. Internal use ONLY. """ if isinstance(array, (ABCSeries, ABCCategoricalIndex)): return array._values elif isinstance(array, np.ndarray): return Categorical(array) return array
python
def _maybe_to_categorical(array): """ Coerce to a categorical if a series is given. Internal use ONLY. """ if isinstance(array, (ABCSeries, ABCCategoricalIndex)): return array._values elif isinstance(array, np.ndarray): return Categorical(array) return array
[ "def", "_maybe_to_categorical", "(", "array", ")", ":", "if", "isinstance", "(", "array", ",", "(", "ABCSeries", ",", "ABCCategoricalIndex", ")", ")", ":", "return", "array", ".", "_values", "elif", "isinstance", "(", "array", ",", "np", ".", "ndarray", ")", ":", "return", "Categorical", "(", "array", ")", "return", "array" ]
Coerce to a categorical if a series is given. Internal use ONLY.
[ "Coerce", "to", "a", "categorical", "if", "a", "series", "is", "given", "." ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/arrays/categorical.py#L131-L141
19,795
pandas-dev/pandas
pandas/core/arrays/categorical.py
contains
def contains(cat, key, container): """ Helper for membership check for ``key`` in ``cat``. This is a helper method for :method:`__contains__` and :class:`CategoricalIndex.__contains__`. Returns True if ``key`` is in ``cat.categories`` and the location of ``key`` in ``categories`` is in ``container``. Parameters ---------- cat : :class:`Categorical`or :class:`categoricalIndex` key : a hashable object The key to check membership for. container : Container (e.g. list-like or mapping) The container to check for membership in. Returns ------- is_in : bool True if ``key`` is in ``self.categories`` and location of ``key`` in ``categories`` is in ``container``, else False. Notes ----- This method does not check for NaN values. Do that separately before calling this method. """ hash(key) # get location of key in categories. # If a KeyError, the key isn't in categories, so logically # can't be in container either. try: loc = cat.categories.get_loc(key) except KeyError: return False # loc is the location of key in categories, but also the *value* # for key in container. So, `key` may be in categories, # but still not in `container`. Example ('b' in categories, # but not in values): # 'b' in Categorical(['a'], categories=['a', 'b']) # False if is_scalar(loc): return loc in container else: # if categories is an IntervalIndex, loc is an array. return any(loc_ in container for loc_ in loc)
python
def contains(cat, key, container): """ Helper for membership check for ``key`` in ``cat``. This is a helper method for :method:`__contains__` and :class:`CategoricalIndex.__contains__`. Returns True if ``key`` is in ``cat.categories`` and the location of ``key`` in ``categories`` is in ``container``. Parameters ---------- cat : :class:`Categorical`or :class:`categoricalIndex` key : a hashable object The key to check membership for. container : Container (e.g. list-like or mapping) The container to check for membership in. Returns ------- is_in : bool True if ``key`` is in ``self.categories`` and location of ``key`` in ``categories`` is in ``container``, else False. Notes ----- This method does not check for NaN values. Do that separately before calling this method. """ hash(key) # get location of key in categories. # If a KeyError, the key isn't in categories, so logically # can't be in container either. try: loc = cat.categories.get_loc(key) except KeyError: return False # loc is the location of key in categories, but also the *value* # for key in container. So, `key` may be in categories, # but still not in `container`. Example ('b' in categories, # but not in values): # 'b' in Categorical(['a'], categories=['a', 'b']) # False if is_scalar(loc): return loc in container else: # if categories is an IntervalIndex, loc is an array. return any(loc_ in container for loc_ in loc)
[ "def", "contains", "(", "cat", ",", "key", ",", "container", ")", ":", "hash", "(", "key", ")", "# get location of key in categories.", "# If a KeyError, the key isn't in categories, so logically", "# can't be in container either.", "try", ":", "loc", "=", "cat", ".", "categories", ".", "get_loc", "(", "key", ")", "except", "KeyError", ":", "return", "False", "# loc is the location of key in categories, but also the *value*", "# for key in container. So, `key` may be in categories,", "# but still not in `container`. Example ('b' in categories,", "# but not in values):", "# 'b' in Categorical(['a'], categories=['a', 'b']) # False", "if", "is_scalar", "(", "loc", ")", ":", "return", "loc", "in", "container", "else", ":", "# if categories is an IntervalIndex, loc is an array.", "return", "any", "(", "loc_", "in", "container", "for", "loc_", "in", "loc", ")" ]
Helper for membership check for ``key`` in ``cat``. This is a helper method for :method:`__contains__` and :class:`CategoricalIndex.__contains__`. Returns True if ``key`` is in ``cat.categories`` and the location of ``key`` in ``categories`` is in ``container``. Parameters ---------- cat : :class:`Categorical`or :class:`categoricalIndex` key : a hashable object The key to check membership for. container : Container (e.g. list-like or mapping) The container to check for membership in. Returns ------- is_in : bool True if ``key`` is in ``self.categories`` and location of ``key`` in ``categories`` is in ``container``, else False. Notes ----- This method does not check for NaN values. Do that separately before calling this method.
[ "Helper", "for", "membership", "check", "for", "key", "in", "cat", "." ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/arrays/categorical.py#L144-L192
19,796
pandas-dev/pandas
pandas/core/arrays/categorical.py
_get_codes_for_values
def _get_codes_for_values(values, categories): """ utility routine to turn values into codes given the specified categories """ from pandas.core.algorithms import _get_data_algo, _hashtables dtype_equal = is_dtype_equal(values.dtype, categories.dtype) if dtype_equal: # To prevent erroneous dtype coercion in _get_data_algo, retrieve # the underlying numpy array. gh-22702 values = getattr(values, '_ndarray_values', values) categories = getattr(categories, '_ndarray_values', categories) elif (is_extension_array_dtype(categories.dtype) and is_object_dtype(values)): # Support inferring the correct extension dtype from an array of # scalar objects. e.g. # Categorical(array[Period, Period], categories=PeriodIndex(...)) try: values = ( categories.dtype.construct_array_type()._from_sequence(values) ) except Exception: # but that may fail for any reason, so fall back to object values = ensure_object(values) categories = ensure_object(categories) else: values = ensure_object(values) categories = ensure_object(categories) (hash_klass, vec_klass), vals = _get_data_algo(values, _hashtables) (_, _), cats = _get_data_algo(categories, _hashtables) t = hash_klass(len(cats)) t.map_locations(cats) return coerce_indexer_dtype(t.lookup(vals), cats)
python
def _get_codes_for_values(values, categories): """ utility routine to turn values into codes given the specified categories """ from pandas.core.algorithms import _get_data_algo, _hashtables dtype_equal = is_dtype_equal(values.dtype, categories.dtype) if dtype_equal: # To prevent erroneous dtype coercion in _get_data_algo, retrieve # the underlying numpy array. gh-22702 values = getattr(values, '_ndarray_values', values) categories = getattr(categories, '_ndarray_values', categories) elif (is_extension_array_dtype(categories.dtype) and is_object_dtype(values)): # Support inferring the correct extension dtype from an array of # scalar objects. e.g. # Categorical(array[Period, Period], categories=PeriodIndex(...)) try: values = ( categories.dtype.construct_array_type()._from_sequence(values) ) except Exception: # but that may fail for any reason, so fall back to object values = ensure_object(values) categories = ensure_object(categories) else: values = ensure_object(values) categories = ensure_object(categories) (hash_klass, vec_klass), vals = _get_data_algo(values, _hashtables) (_, _), cats = _get_data_algo(categories, _hashtables) t = hash_klass(len(cats)) t.map_locations(cats) return coerce_indexer_dtype(t.lookup(vals), cats)
[ "def", "_get_codes_for_values", "(", "values", ",", "categories", ")", ":", "from", "pandas", ".", "core", ".", "algorithms", "import", "_get_data_algo", ",", "_hashtables", "dtype_equal", "=", "is_dtype_equal", "(", "values", ".", "dtype", ",", "categories", ".", "dtype", ")", "if", "dtype_equal", ":", "# To prevent erroneous dtype coercion in _get_data_algo, retrieve", "# the underlying numpy array. gh-22702", "values", "=", "getattr", "(", "values", ",", "'_ndarray_values'", ",", "values", ")", "categories", "=", "getattr", "(", "categories", ",", "'_ndarray_values'", ",", "categories", ")", "elif", "(", "is_extension_array_dtype", "(", "categories", ".", "dtype", ")", "and", "is_object_dtype", "(", "values", ")", ")", ":", "# Support inferring the correct extension dtype from an array of", "# scalar objects. e.g.", "# Categorical(array[Period, Period], categories=PeriodIndex(...))", "try", ":", "values", "=", "(", "categories", ".", "dtype", ".", "construct_array_type", "(", ")", ".", "_from_sequence", "(", "values", ")", ")", "except", "Exception", ":", "# but that may fail for any reason, so fall back to object", "values", "=", "ensure_object", "(", "values", ")", "categories", "=", "ensure_object", "(", "categories", ")", "else", ":", "values", "=", "ensure_object", "(", "values", ")", "categories", "=", "ensure_object", "(", "categories", ")", "(", "hash_klass", ",", "vec_klass", ")", ",", "vals", "=", "_get_data_algo", "(", "values", ",", "_hashtables", ")", "(", "_", ",", "_", ")", ",", "cats", "=", "_get_data_algo", "(", "categories", ",", "_hashtables", ")", "t", "=", "hash_klass", "(", "len", "(", "cats", ")", ")", "t", ".", "map_locations", "(", "cats", ")", "return", "coerce_indexer_dtype", "(", "t", ".", "lookup", "(", "vals", ")", ",", "cats", ")" ]
utility routine to turn values into codes given the specified categories
[ "utility", "routine", "to", "turn", "values", "into", "codes", "given", "the", "specified", "categories" ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/arrays/categorical.py#L2549-L2582
19,797
pandas-dev/pandas
pandas/core/arrays/categorical.py
_recode_for_categories
def _recode_for_categories(codes, old_categories, new_categories): """ Convert a set of codes for to a new set of categories Parameters ---------- codes : array old_categories, new_categories : Index Returns ------- new_codes : array Examples -------- >>> old_cat = pd.Index(['b', 'a', 'c']) >>> new_cat = pd.Index(['a', 'b']) >>> codes = np.array([0, 1, 1, 2]) >>> _recode_for_categories(codes, old_cat, new_cat) array([ 1, 0, 0, -1]) """ from pandas.core.algorithms import take_1d if len(old_categories) == 0: # All null anyway, so just retain the nulls return codes.copy() elif new_categories.equals(old_categories): # Same categories, so no need to actually recode return codes.copy() indexer = coerce_indexer_dtype(new_categories.get_indexer(old_categories), new_categories) new_codes = take_1d(indexer, codes.copy(), fill_value=-1) return new_codes
python
def _recode_for_categories(codes, old_categories, new_categories): """ Convert a set of codes for to a new set of categories Parameters ---------- codes : array old_categories, new_categories : Index Returns ------- new_codes : array Examples -------- >>> old_cat = pd.Index(['b', 'a', 'c']) >>> new_cat = pd.Index(['a', 'b']) >>> codes = np.array([0, 1, 1, 2]) >>> _recode_for_categories(codes, old_cat, new_cat) array([ 1, 0, 0, -1]) """ from pandas.core.algorithms import take_1d if len(old_categories) == 0: # All null anyway, so just retain the nulls return codes.copy() elif new_categories.equals(old_categories): # Same categories, so no need to actually recode return codes.copy() indexer = coerce_indexer_dtype(new_categories.get_indexer(old_categories), new_categories) new_codes = take_1d(indexer, codes.copy(), fill_value=-1) return new_codes
[ "def", "_recode_for_categories", "(", "codes", ",", "old_categories", ",", "new_categories", ")", ":", "from", "pandas", ".", "core", ".", "algorithms", "import", "take_1d", "if", "len", "(", "old_categories", ")", "==", "0", ":", "# All null anyway, so just retain the nulls", "return", "codes", ".", "copy", "(", ")", "elif", "new_categories", ".", "equals", "(", "old_categories", ")", ":", "# Same categories, so no need to actually recode", "return", "codes", ".", "copy", "(", ")", "indexer", "=", "coerce_indexer_dtype", "(", "new_categories", ".", "get_indexer", "(", "old_categories", ")", ",", "new_categories", ")", "new_codes", "=", "take_1d", "(", "indexer", ",", "codes", ".", "copy", "(", ")", ",", "fill_value", "=", "-", "1", ")", "return", "new_codes" ]
Convert a set of codes for to a new set of categories Parameters ---------- codes : array old_categories, new_categories : Index Returns ------- new_codes : array Examples -------- >>> old_cat = pd.Index(['b', 'a', 'c']) >>> new_cat = pd.Index(['a', 'b']) >>> codes = np.array([0, 1, 1, 2]) >>> _recode_for_categories(codes, old_cat, new_cat) array([ 1, 0, 0, -1])
[ "Convert", "a", "set", "of", "codes", "for", "to", "a", "new", "set", "of", "categories" ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/arrays/categorical.py#L2585-L2617
19,798
pandas-dev/pandas
pandas/core/arrays/categorical.py
_factorize_from_iterable
def _factorize_from_iterable(values): """ Factorize an input `values` into `categories` and `codes`. Preserves categorical dtype in `categories`. *This is an internal function* Parameters ---------- values : list-like Returns ------- codes : ndarray categories : Index If `values` has a categorical dtype, then `categories` is a CategoricalIndex keeping the categories and order of `values`. """ from pandas.core.indexes.category import CategoricalIndex if not is_list_like(values): raise TypeError("Input must be list-like") if is_categorical(values): if isinstance(values, (ABCCategoricalIndex, ABCSeries)): values = values._values categories = CategoricalIndex(values.categories, dtype=values.dtype) codes = values.codes else: # The value of ordered is irrelevant since we don't use cat as such, # but only the resulting categories, the order of which is independent # from ordered. Set ordered to False as default. See GH #15457 cat = Categorical(values, ordered=False) categories = cat.categories codes = cat.codes return codes, categories
python
def _factorize_from_iterable(values): """ Factorize an input `values` into `categories` and `codes`. Preserves categorical dtype in `categories`. *This is an internal function* Parameters ---------- values : list-like Returns ------- codes : ndarray categories : Index If `values` has a categorical dtype, then `categories` is a CategoricalIndex keeping the categories and order of `values`. """ from pandas.core.indexes.category import CategoricalIndex if not is_list_like(values): raise TypeError("Input must be list-like") if is_categorical(values): if isinstance(values, (ABCCategoricalIndex, ABCSeries)): values = values._values categories = CategoricalIndex(values.categories, dtype=values.dtype) codes = values.codes else: # The value of ordered is irrelevant since we don't use cat as such, # but only the resulting categories, the order of which is independent # from ordered. Set ordered to False as default. See GH #15457 cat = Categorical(values, ordered=False) categories = cat.categories codes = cat.codes return codes, categories
[ "def", "_factorize_from_iterable", "(", "values", ")", ":", "from", "pandas", ".", "core", ".", "indexes", ".", "category", "import", "CategoricalIndex", "if", "not", "is_list_like", "(", "values", ")", ":", "raise", "TypeError", "(", "\"Input must be list-like\"", ")", "if", "is_categorical", "(", "values", ")", ":", "if", "isinstance", "(", "values", ",", "(", "ABCCategoricalIndex", ",", "ABCSeries", ")", ")", ":", "values", "=", "values", ".", "_values", "categories", "=", "CategoricalIndex", "(", "values", ".", "categories", ",", "dtype", "=", "values", ".", "dtype", ")", "codes", "=", "values", ".", "codes", "else", ":", "# The value of ordered is irrelevant since we don't use cat as such,", "# but only the resulting categories, the order of which is independent", "# from ordered. Set ordered to False as default. See GH #15457", "cat", "=", "Categorical", "(", "values", ",", "ordered", "=", "False", ")", "categories", "=", "cat", ".", "categories", "codes", "=", "cat", ".", "codes", "return", "codes", ",", "categories" ]
Factorize an input `values` into `categories` and `codes`. Preserves categorical dtype in `categories`. *This is an internal function* Parameters ---------- values : list-like Returns ------- codes : ndarray categories : Index If `values` has a categorical dtype, then `categories` is a CategoricalIndex keeping the categories and order of `values`.
[ "Factorize", "an", "input", "values", "into", "categories", "and", "codes", ".", "Preserves", "categorical", "dtype", "in", "categories", "." ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/arrays/categorical.py#L2635-L2670
19,799
pandas-dev/pandas
pandas/core/arrays/categorical.py
_factorize_from_iterables
def _factorize_from_iterables(iterables): """ A higher-level wrapper over `_factorize_from_iterable`. *This is an internal function* Parameters ---------- iterables : list-like of list-likes Returns ------- codes_list : list of ndarrays categories_list : list of Indexes Notes ----- See `_factorize_from_iterable` for more info. """ if len(iterables) == 0: # For consistency, it should return a list of 2 lists. return [[], []] return map(list, lzip(*[_factorize_from_iterable(it) for it in iterables]))
python
def _factorize_from_iterables(iterables): """ A higher-level wrapper over `_factorize_from_iterable`. *This is an internal function* Parameters ---------- iterables : list-like of list-likes Returns ------- codes_list : list of ndarrays categories_list : list of Indexes Notes ----- See `_factorize_from_iterable` for more info. """ if len(iterables) == 0: # For consistency, it should return a list of 2 lists. return [[], []] return map(list, lzip(*[_factorize_from_iterable(it) for it in iterables]))
[ "def", "_factorize_from_iterables", "(", "iterables", ")", ":", "if", "len", "(", "iterables", ")", "==", "0", ":", "# For consistency, it should return a list of 2 lists.", "return", "[", "[", "]", ",", "[", "]", "]", "return", "map", "(", "list", ",", "lzip", "(", "*", "[", "_factorize_from_iterable", "(", "it", ")", "for", "it", "in", "iterables", "]", ")", ")" ]
A higher-level wrapper over `_factorize_from_iterable`. *This is an internal function* Parameters ---------- iterables : list-like of list-likes Returns ------- codes_list : list of ndarrays categories_list : list of Indexes Notes ----- See `_factorize_from_iterable` for more info.
[ "A", "higher", "-", "level", "wrapper", "over", "_factorize_from_iterable", "." ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/arrays/categorical.py#L2673-L2695