id
int32 0
252k
| repo
stringlengths 7
55
| path
stringlengths 4
127
| func_name
stringlengths 1
88
| original_string
stringlengths 75
19.8k
| language
stringclasses 1
value | code
stringlengths 75
19.8k
| code_tokens
list | docstring
stringlengths 3
17.3k
| docstring_tokens
list | sha
stringlengths 40
40
| url
stringlengths 87
242
|
|---|---|---|---|---|---|---|---|---|---|---|---|
19,600
|
pandas-dev/pandas
|
pandas/core/internals/managers.py
|
BlockManager.make_empty
|
def make_empty(self, axes=None):
""" return an empty BlockManager with the items axis of len 0 """
if axes is None:
axes = [ensure_index([])] + [ensure_index(a)
for a in self.axes[1:]]
# preserve dtype if possible
if self.ndim == 1:
blocks = np.array([], dtype=self.array_dtype)
else:
blocks = []
return self.__class__(blocks, axes)
|
python
|
def make_empty(self, axes=None):
""" return an empty BlockManager with the items axis of len 0 """
if axes is None:
axes = [ensure_index([])] + [ensure_index(a)
for a in self.axes[1:]]
# preserve dtype if possible
if self.ndim == 1:
blocks = np.array([], dtype=self.array_dtype)
else:
blocks = []
return self.__class__(blocks, axes)
|
[
"def",
"make_empty",
"(",
"self",
",",
"axes",
"=",
"None",
")",
":",
"if",
"axes",
"is",
"None",
":",
"axes",
"=",
"[",
"ensure_index",
"(",
"[",
"]",
")",
"]",
"+",
"[",
"ensure_index",
"(",
"a",
")",
"for",
"a",
"in",
"self",
".",
"axes",
"[",
"1",
":",
"]",
"]",
"# preserve dtype if possible",
"if",
"self",
".",
"ndim",
"==",
"1",
":",
"blocks",
"=",
"np",
".",
"array",
"(",
"[",
"]",
",",
"dtype",
"=",
"self",
".",
"array_dtype",
")",
"else",
":",
"blocks",
"=",
"[",
"]",
"return",
"self",
".",
"__class__",
"(",
"blocks",
",",
"axes",
")"
] |
return an empty BlockManager with the items axis of len 0
|
[
"return",
"an",
"empty",
"BlockManager",
"with",
"the",
"items",
"axis",
"of",
"len",
"0"
] |
9feb3ad92cc0397a04b665803a49299ee7aa1037
|
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/internals/managers.py#L120-L131
|
19,601
|
pandas-dev/pandas
|
pandas/core/internals/managers.py
|
BlockManager.rename_axis
|
def rename_axis(self, mapper, axis, copy=True, level=None):
"""
Rename one of axes.
Parameters
----------
mapper : unary callable
axis : int
copy : boolean, default True
level : int, default None
"""
obj = self.copy(deep=copy)
obj.set_axis(axis, _transform_index(self.axes[axis], mapper, level))
return obj
|
python
|
def rename_axis(self, mapper, axis, copy=True, level=None):
"""
Rename one of axes.
Parameters
----------
mapper : unary callable
axis : int
copy : boolean, default True
level : int, default None
"""
obj = self.copy(deep=copy)
obj.set_axis(axis, _transform_index(self.axes[axis], mapper, level))
return obj
|
[
"def",
"rename_axis",
"(",
"self",
",",
"mapper",
",",
"axis",
",",
"copy",
"=",
"True",
",",
"level",
"=",
"None",
")",
":",
"obj",
"=",
"self",
".",
"copy",
"(",
"deep",
"=",
"copy",
")",
"obj",
".",
"set_axis",
"(",
"axis",
",",
"_transform_index",
"(",
"self",
".",
"axes",
"[",
"axis",
"]",
",",
"mapper",
",",
"level",
")",
")",
"return",
"obj"
] |
Rename one of axes.
Parameters
----------
mapper : unary callable
axis : int
copy : boolean, default True
level : int, default None
|
[
"Rename",
"one",
"of",
"axes",
"."
] |
9feb3ad92cc0397a04b665803a49299ee7aa1037
|
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/internals/managers.py#L159-L172
|
19,602
|
pandas-dev/pandas
|
pandas/core/internals/managers.py
|
BlockManager._get_counts
|
def _get_counts(self, f):
""" return a dict of the counts of the function in BlockManager """
self._consolidate_inplace()
counts = dict()
for b in self.blocks:
v = f(b)
counts[v] = counts.get(v, 0) + b.shape[0]
return counts
|
python
|
def _get_counts(self, f):
""" return a dict of the counts of the function in BlockManager """
self._consolidate_inplace()
counts = dict()
for b in self.blocks:
v = f(b)
counts[v] = counts.get(v, 0) + b.shape[0]
return counts
|
[
"def",
"_get_counts",
"(",
"self",
",",
"f",
")",
":",
"self",
".",
"_consolidate_inplace",
"(",
")",
"counts",
"=",
"dict",
"(",
")",
"for",
"b",
"in",
"self",
".",
"blocks",
":",
"v",
"=",
"f",
"(",
"b",
")",
"counts",
"[",
"v",
"]",
"=",
"counts",
".",
"get",
"(",
"v",
",",
"0",
")",
"+",
"b",
".",
"shape",
"[",
"0",
"]",
"return",
"counts"
] |
return a dict of the counts of the function in BlockManager
|
[
"return",
"a",
"dict",
"of",
"the",
"counts",
"of",
"the",
"function",
"in",
"BlockManager"
] |
9feb3ad92cc0397a04b665803a49299ee7aa1037
|
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/internals/managers.py#L210-L217
|
19,603
|
pandas-dev/pandas
|
pandas/core/internals/managers.py
|
BlockManager.apply
|
def apply(self, f, axes=None, filter=None, do_integrity_check=False,
consolidate=True, **kwargs):
"""
iterate over the blocks, collect and create a new block manager
Parameters
----------
f : the callable or function name to operate on at the block level
axes : optional (if not supplied, use self.axes)
filter : list, if supplied, only call the block if the filter is in
the block
do_integrity_check : boolean, default False. Do the block manager
integrity check
consolidate: boolean, default True. Join together blocks having same
dtype
Returns
-------
Block Manager (new object)
"""
result_blocks = []
# filter kwarg is used in replace-* family of methods
if filter is not None:
filter_locs = set(self.items.get_indexer_for(filter))
if len(filter_locs) == len(self.items):
# All items are included, as if there were no filtering
filter = None
else:
kwargs['filter'] = filter_locs
if consolidate:
self._consolidate_inplace()
if f == 'where':
align_copy = True
if kwargs.get('align', True):
align_keys = ['other', 'cond']
else:
align_keys = ['cond']
elif f == 'putmask':
align_copy = False
if kwargs.get('align', True):
align_keys = ['new', 'mask']
else:
align_keys = ['mask']
elif f == 'fillna':
# fillna internally does putmask, maybe it's better to do this
# at mgr, not block level?
align_copy = False
align_keys = ['value']
else:
align_keys = []
# TODO(EA): may interfere with ExtensionBlock.setitem for blocks
# with a .values attribute.
aligned_args = {k: kwargs[k]
for k in align_keys
if hasattr(kwargs[k], 'values') and
not isinstance(kwargs[k], ABCExtensionArray)}
for b in self.blocks:
if filter is not None:
if not b.mgr_locs.isin(filter_locs).any():
result_blocks.append(b)
continue
if aligned_args:
b_items = self.items[b.mgr_locs.indexer]
for k, obj in aligned_args.items():
axis = getattr(obj, '_info_axis_number', 0)
kwargs[k] = obj.reindex(b_items, axis=axis,
copy=align_copy)
applied = getattr(b, f)(**kwargs)
result_blocks = _extend_blocks(applied, result_blocks)
if len(result_blocks) == 0:
return self.make_empty(axes or self.axes)
bm = self.__class__(result_blocks, axes or self.axes,
do_integrity_check=do_integrity_check)
bm._consolidate_inplace()
return bm
|
python
|
def apply(self, f, axes=None, filter=None, do_integrity_check=False,
consolidate=True, **kwargs):
"""
iterate over the blocks, collect and create a new block manager
Parameters
----------
f : the callable or function name to operate on at the block level
axes : optional (if not supplied, use self.axes)
filter : list, if supplied, only call the block if the filter is in
the block
do_integrity_check : boolean, default False. Do the block manager
integrity check
consolidate: boolean, default True. Join together blocks having same
dtype
Returns
-------
Block Manager (new object)
"""
result_blocks = []
# filter kwarg is used in replace-* family of methods
if filter is not None:
filter_locs = set(self.items.get_indexer_for(filter))
if len(filter_locs) == len(self.items):
# All items are included, as if there were no filtering
filter = None
else:
kwargs['filter'] = filter_locs
if consolidate:
self._consolidate_inplace()
if f == 'where':
align_copy = True
if kwargs.get('align', True):
align_keys = ['other', 'cond']
else:
align_keys = ['cond']
elif f == 'putmask':
align_copy = False
if kwargs.get('align', True):
align_keys = ['new', 'mask']
else:
align_keys = ['mask']
elif f == 'fillna':
# fillna internally does putmask, maybe it's better to do this
# at mgr, not block level?
align_copy = False
align_keys = ['value']
else:
align_keys = []
# TODO(EA): may interfere with ExtensionBlock.setitem for blocks
# with a .values attribute.
aligned_args = {k: kwargs[k]
for k in align_keys
if hasattr(kwargs[k], 'values') and
not isinstance(kwargs[k], ABCExtensionArray)}
for b in self.blocks:
if filter is not None:
if not b.mgr_locs.isin(filter_locs).any():
result_blocks.append(b)
continue
if aligned_args:
b_items = self.items[b.mgr_locs.indexer]
for k, obj in aligned_args.items():
axis = getattr(obj, '_info_axis_number', 0)
kwargs[k] = obj.reindex(b_items, axis=axis,
copy=align_copy)
applied = getattr(b, f)(**kwargs)
result_blocks = _extend_blocks(applied, result_blocks)
if len(result_blocks) == 0:
return self.make_empty(axes or self.axes)
bm = self.__class__(result_blocks, axes or self.axes,
do_integrity_check=do_integrity_check)
bm._consolidate_inplace()
return bm
|
[
"def",
"apply",
"(",
"self",
",",
"f",
",",
"axes",
"=",
"None",
",",
"filter",
"=",
"None",
",",
"do_integrity_check",
"=",
"False",
",",
"consolidate",
"=",
"True",
",",
"*",
"*",
"kwargs",
")",
":",
"result_blocks",
"=",
"[",
"]",
"# filter kwarg is used in replace-* family of methods",
"if",
"filter",
"is",
"not",
"None",
":",
"filter_locs",
"=",
"set",
"(",
"self",
".",
"items",
".",
"get_indexer_for",
"(",
"filter",
")",
")",
"if",
"len",
"(",
"filter_locs",
")",
"==",
"len",
"(",
"self",
".",
"items",
")",
":",
"# All items are included, as if there were no filtering",
"filter",
"=",
"None",
"else",
":",
"kwargs",
"[",
"'filter'",
"]",
"=",
"filter_locs",
"if",
"consolidate",
":",
"self",
".",
"_consolidate_inplace",
"(",
")",
"if",
"f",
"==",
"'where'",
":",
"align_copy",
"=",
"True",
"if",
"kwargs",
".",
"get",
"(",
"'align'",
",",
"True",
")",
":",
"align_keys",
"=",
"[",
"'other'",
",",
"'cond'",
"]",
"else",
":",
"align_keys",
"=",
"[",
"'cond'",
"]",
"elif",
"f",
"==",
"'putmask'",
":",
"align_copy",
"=",
"False",
"if",
"kwargs",
".",
"get",
"(",
"'align'",
",",
"True",
")",
":",
"align_keys",
"=",
"[",
"'new'",
",",
"'mask'",
"]",
"else",
":",
"align_keys",
"=",
"[",
"'mask'",
"]",
"elif",
"f",
"==",
"'fillna'",
":",
"# fillna internally does putmask, maybe it's better to do this",
"# at mgr, not block level?",
"align_copy",
"=",
"False",
"align_keys",
"=",
"[",
"'value'",
"]",
"else",
":",
"align_keys",
"=",
"[",
"]",
"# TODO(EA): may interfere with ExtensionBlock.setitem for blocks",
"# with a .values attribute.",
"aligned_args",
"=",
"{",
"k",
":",
"kwargs",
"[",
"k",
"]",
"for",
"k",
"in",
"align_keys",
"if",
"hasattr",
"(",
"kwargs",
"[",
"k",
"]",
",",
"'values'",
")",
"and",
"not",
"isinstance",
"(",
"kwargs",
"[",
"k",
"]",
",",
"ABCExtensionArray",
")",
"}",
"for",
"b",
"in",
"self",
".",
"blocks",
":",
"if",
"filter",
"is",
"not",
"None",
":",
"if",
"not",
"b",
".",
"mgr_locs",
".",
"isin",
"(",
"filter_locs",
")",
".",
"any",
"(",
")",
":",
"result_blocks",
".",
"append",
"(",
"b",
")",
"continue",
"if",
"aligned_args",
":",
"b_items",
"=",
"self",
".",
"items",
"[",
"b",
".",
"mgr_locs",
".",
"indexer",
"]",
"for",
"k",
",",
"obj",
"in",
"aligned_args",
".",
"items",
"(",
")",
":",
"axis",
"=",
"getattr",
"(",
"obj",
",",
"'_info_axis_number'",
",",
"0",
")",
"kwargs",
"[",
"k",
"]",
"=",
"obj",
".",
"reindex",
"(",
"b_items",
",",
"axis",
"=",
"axis",
",",
"copy",
"=",
"align_copy",
")",
"applied",
"=",
"getattr",
"(",
"b",
",",
"f",
")",
"(",
"*",
"*",
"kwargs",
")",
"result_blocks",
"=",
"_extend_blocks",
"(",
"applied",
",",
"result_blocks",
")",
"if",
"len",
"(",
"result_blocks",
")",
"==",
"0",
":",
"return",
"self",
".",
"make_empty",
"(",
"axes",
"or",
"self",
".",
"axes",
")",
"bm",
"=",
"self",
".",
"__class__",
"(",
"result_blocks",
",",
"axes",
"or",
"self",
".",
"axes",
",",
"do_integrity_check",
"=",
"do_integrity_check",
")",
"bm",
".",
"_consolidate_inplace",
"(",
")",
"return",
"bm"
] |
iterate over the blocks, collect and create a new block manager
Parameters
----------
f : the callable or function name to operate on at the block level
axes : optional (if not supplied, use self.axes)
filter : list, if supplied, only call the block if the filter is in
the block
do_integrity_check : boolean, default False. Do the block manager
integrity check
consolidate: boolean, default True. Join together blocks having same
dtype
Returns
-------
Block Manager (new object)
|
[
"iterate",
"over",
"the",
"blocks",
"collect",
"and",
"create",
"a",
"new",
"block",
"manager"
] |
9feb3ad92cc0397a04b665803a49299ee7aa1037
|
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/internals/managers.py#L318-L403
|
19,604
|
pandas-dev/pandas
|
pandas/core/internals/managers.py
|
BlockManager.quantile
|
def quantile(self, axis=0, consolidate=True, transposed=False,
interpolation='linear', qs=None, numeric_only=None):
"""
Iterate over blocks applying quantile reduction.
This routine is intended for reduction type operations and
will do inference on the generated blocks.
Parameters
----------
axis: reduction axis, default 0
consolidate: boolean, default True. Join together blocks having same
dtype
transposed: boolean, default False
we are holding transposed data
interpolation : type of interpolation, default 'linear'
qs : a scalar or list of the quantiles to be computed
numeric_only : ignored
Returns
-------
Block Manager (new object)
"""
# Series dispatches to DataFrame for quantile, which allows us to
# simplify some of the code here and in the blocks
assert self.ndim >= 2
if consolidate:
self._consolidate_inplace()
def get_axe(block, qs, axes):
from pandas import Float64Index
if is_list_like(qs):
ax = Float64Index(qs)
elif block.ndim == 1:
ax = Float64Index([qs])
else:
ax = axes[0]
return ax
axes, blocks = [], []
for b in self.blocks:
block = b.quantile(axis=axis, qs=qs, interpolation=interpolation)
axe = get_axe(b, qs, axes=self.axes)
axes.append(axe)
blocks.append(block)
# note that some DatetimeTZ, Categorical are always ndim==1
ndim = {b.ndim for b in blocks}
assert 0 not in ndim, ndim
if 2 in ndim:
new_axes = list(self.axes)
# multiple blocks that are reduced
if len(blocks) > 1:
new_axes[1] = axes[0]
# reset the placement to the original
for b, sb in zip(blocks, self.blocks):
b.mgr_locs = sb.mgr_locs
else:
new_axes[axis] = Index(np.concatenate(
[ax.values for ax in axes]))
if transposed:
new_axes = new_axes[::-1]
blocks = [b.make_block(b.values.T,
placement=np.arange(b.shape[1])
) for b in blocks]
return self.__class__(blocks, new_axes)
# single block, i.e. ndim == {1}
values = _concat._concat_compat([b.values for b in blocks])
# compute the orderings of our original data
if len(self.blocks) > 1:
indexer = np.empty(len(self.axes[0]), dtype=np.intp)
i = 0
for b in self.blocks:
for j in b.mgr_locs:
indexer[j] = i
i = i + 1
values = values.take(indexer)
return SingleBlockManager(
[make_block(values,
ndim=1,
placement=np.arange(len(values)))],
axes[0])
|
python
|
def quantile(self, axis=0, consolidate=True, transposed=False,
interpolation='linear', qs=None, numeric_only=None):
"""
Iterate over blocks applying quantile reduction.
This routine is intended for reduction type operations and
will do inference on the generated blocks.
Parameters
----------
axis: reduction axis, default 0
consolidate: boolean, default True. Join together blocks having same
dtype
transposed: boolean, default False
we are holding transposed data
interpolation : type of interpolation, default 'linear'
qs : a scalar or list of the quantiles to be computed
numeric_only : ignored
Returns
-------
Block Manager (new object)
"""
# Series dispatches to DataFrame for quantile, which allows us to
# simplify some of the code here and in the blocks
assert self.ndim >= 2
if consolidate:
self._consolidate_inplace()
def get_axe(block, qs, axes):
from pandas import Float64Index
if is_list_like(qs):
ax = Float64Index(qs)
elif block.ndim == 1:
ax = Float64Index([qs])
else:
ax = axes[0]
return ax
axes, blocks = [], []
for b in self.blocks:
block = b.quantile(axis=axis, qs=qs, interpolation=interpolation)
axe = get_axe(b, qs, axes=self.axes)
axes.append(axe)
blocks.append(block)
# note that some DatetimeTZ, Categorical are always ndim==1
ndim = {b.ndim for b in blocks}
assert 0 not in ndim, ndim
if 2 in ndim:
new_axes = list(self.axes)
# multiple blocks that are reduced
if len(blocks) > 1:
new_axes[1] = axes[0]
# reset the placement to the original
for b, sb in zip(blocks, self.blocks):
b.mgr_locs = sb.mgr_locs
else:
new_axes[axis] = Index(np.concatenate(
[ax.values for ax in axes]))
if transposed:
new_axes = new_axes[::-1]
blocks = [b.make_block(b.values.T,
placement=np.arange(b.shape[1])
) for b in blocks]
return self.__class__(blocks, new_axes)
# single block, i.e. ndim == {1}
values = _concat._concat_compat([b.values for b in blocks])
# compute the orderings of our original data
if len(self.blocks) > 1:
indexer = np.empty(len(self.axes[0]), dtype=np.intp)
i = 0
for b in self.blocks:
for j in b.mgr_locs:
indexer[j] = i
i = i + 1
values = values.take(indexer)
return SingleBlockManager(
[make_block(values,
ndim=1,
placement=np.arange(len(values)))],
axes[0])
|
[
"def",
"quantile",
"(",
"self",
",",
"axis",
"=",
"0",
",",
"consolidate",
"=",
"True",
",",
"transposed",
"=",
"False",
",",
"interpolation",
"=",
"'linear'",
",",
"qs",
"=",
"None",
",",
"numeric_only",
"=",
"None",
")",
":",
"# Series dispatches to DataFrame for quantile, which allows us to",
"# simplify some of the code here and in the blocks",
"assert",
"self",
".",
"ndim",
">=",
"2",
"if",
"consolidate",
":",
"self",
".",
"_consolidate_inplace",
"(",
")",
"def",
"get_axe",
"(",
"block",
",",
"qs",
",",
"axes",
")",
":",
"from",
"pandas",
"import",
"Float64Index",
"if",
"is_list_like",
"(",
"qs",
")",
":",
"ax",
"=",
"Float64Index",
"(",
"qs",
")",
"elif",
"block",
".",
"ndim",
"==",
"1",
":",
"ax",
"=",
"Float64Index",
"(",
"[",
"qs",
"]",
")",
"else",
":",
"ax",
"=",
"axes",
"[",
"0",
"]",
"return",
"ax",
"axes",
",",
"blocks",
"=",
"[",
"]",
",",
"[",
"]",
"for",
"b",
"in",
"self",
".",
"blocks",
":",
"block",
"=",
"b",
".",
"quantile",
"(",
"axis",
"=",
"axis",
",",
"qs",
"=",
"qs",
",",
"interpolation",
"=",
"interpolation",
")",
"axe",
"=",
"get_axe",
"(",
"b",
",",
"qs",
",",
"axes",
"=",
"self",
".",
"axes",
")",
"axes",
".",
"append",
"(",
"axe",
")",
"blocks",
".",
"append",
"(",
"block",
")",
"# note that some DatetimeTZ, Categorical are always ndim==1",
"ndim",
"=",
"{",
"b",
".",
"ndim",
"for",
"b",
"in",
"blocks",
"}",
"assert",
"0",
"not",
"in",
"ndim",
",",
"ndim",
"if",
"2",
"in",
"ndim",
":",
"new_axes",
"=",
"list",
"(",
"self",
".",
"axes",
")",
"# multiple blocks that are reduced",
"if",
"len",
"(",
"blocks",
")",
">",
"1",
":",
"new_axes",
"[",
"1",
"]",
"=",
"axes",
"[",
"0",
"]",
"# reset the placement to the original",
"for",
"b",
",",
"sb",
"in",
"zip",
"(",
"blocks",
",",
"self",
".",
"blocks",
")",
":",
"b",
".",
"mgr_locs",
"=",
"sb",
".",
"mgr_locs",
"else",
":",
"new_axes",
"[",
"axis",
"]",
"=",
"Index",
"(",
"np",
".",
"concatenate",
"(",
"[",
"ax",
".",
"values",
"for",
"ax",
"in",
"axes",
"]",
")",
")",
"if",
"transposed",
":",
"new_axes",
"=",
"new_axes",
"[",
":",
":",
"-",
"1",
"]",
"blocks",
"=",
"[",
"b",
".",
"make_block",
"(",
"b",
".",
"values",
".",
"T",
",",
"placement",
"=",
"np",
".",
"arange",
"(",
"b",
".",
"shape",
"[",
"1",
"]",
")",
")",
"for",
"b",
"in",
"blocks",
"]",
"return",
"self",
".",
"__class__",
"(",
"blocks",
",",
"new_axes",
")",
"# single block, i.e. ndim == {1}",
"values",
"=",
"_concat",
".",
"_concat_compat",
"(",
"[",
"b",
".",
"values",
"for",
"b",
"in",
"blocks",
"]",
")",
"# compute the orderings of our original data",
"if",
"len",
"(",
"self",
".",
"blocks",
")",
">",
"1",
":",
"indexer",
"=",
"np",
".",
"empty",
"(",
"len",
"(",
"self",
".",
"axes",
"[",
"0",
"]",
")",
",",
"dtype",
"=",
"np",
".",
"intp",
")",
"i",
"=",
"0",
"for",
"b",
"in",
"self",
".",
"blocks",
":",
"for",
"j",
"in",
"b",
".",
"mgr_locs",
":",
"indexer",
"[",
"j",
"]",
"=",
"i",
"i",
"=",
"i",
"+",
"1",
"values",
"=",
"values",
".",
"take",
"(",
"indexer",
")",
"return",
"SingleBlockManager",
"(",
"[",
"make_block",
"(",
"values",
",",
"ndim",
"=",
"1",
",",
"placement",
"=",
"np",
".",
"arange",
"(",
"len",
"(",
"values",
")",
")",
")",
"]",
",",
"axes",
"[",
"0",
"]",
")"
] |
Iterate over blocks applying quantile reduction.
This routine is intended for reduction type operations and
will do inference on the generated blocks.
Parameters
----------
axis: reduction axis, default 0
consolidate: boolean, default True. Join together blocks having same
dtype
transposed: boolean, default False
we are holding transposed data
interpolation : type of interpolation, default 'linear'
qs : a scalar or list of the quantiles to be computed
numeric_only : ignored
Returns
-------
Block Manager (new object)
|
[
"Iterate",
"over",
"blocks",
"applying",
"quantile",
"reduction",
".",
"This",
"routine",
"is",
"intended",
"for",
"reduction",
"type",
"operations",
"and",
"will",
"do",
"inference",
"on",
"the",
"generated",
"blocks",
"."
] |
9feb3ad92cc0397a04b665803a49299ee7aa1037
|
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/internals/managers.py#L405-L501
|
19,605
|
pandas-dev/pandas
|
pandas/core/internals/managers.py
|
BlockManager.replace_list
|
def replace_list(self, src_list, dest_list, inplace=False, regex=False):
""" do a list replace """
inplace = validate_bool_kwarg(inplace, 'inplace')
# figure out our mask a-priori to avoid repeated replacements
values = self.as_array()
def comp(s, regex=False):
"""
Generate a bool array by perform an equality check, or perform
an element-wise regular expression matching
"""
if isna(s):
return isna(values)
if hasattr(s, 'asm8'):
return _compare_or_regex_search(maybe_convert_objects(values),
getattr(s, 'asm8'), regex)
return _compare_or_regex_search(values, s, regex)
masks = [comp(s, regex) for i, s in enumerate(src_list)]
result_blocks = []
src_len = len(src_list) - 1
for blk in self.blocks:
# its possible to get multiple result blocks here
# replace ALWAYS will return a list
rb = [blk if inplace else blk.copy()]
for i, (s, d) in enumerate(zip(src_list, dest_list)):
new_rb = []
for b in rb:
m = masks[i][b.mgr_locs.indexer]
convert = i == src_len
result = b._replace_coerce(mask=m, to_replace=s, value=d,
inplace=inplace,
convert=convert, regex=regex)
if m.any():
new_rb = _extend_blocks(result, new_rb)
else:
new_rb.append(b)
rb = new_rb
result_blocks.extend(rb)
bm = self.__class__(result_blocks, self.axes)
bm._consolidate_inplace()
return bm
|
python
|
def replace_list(self, src_list, dest_list, inplace=False, regex=False):
""" do a list replace """
inplace = validate_bool_kwarg(inplace, 'inplace')
# figure out our mask a-priori to avoid repeated replacements
values = self.as_array()
def comp(s, regex=False):
"""
Generate a bool array by perform an equality check, or perform
an element-wise regular expression matching
"""
if isna(s):
return isna(values)
if hasattr(s, 'asm8'):
return _compare_or_regex_search(maybe_convert_objects(values),
getattr(s, 'asm8'), regex)
return _compare_or_regex_search(values, s, regex)
masks = [comp(s, regex) for i, s in enumerate(src_list)]
result_blocks = []
src_len = len(src_list) - 1
for blk in self.blocks:
# its possible to get multiple result blocks here
# replace ALWAYS will return a list
rb = [blk if inplace else blk.copy()]
for i, (s, d) in enumerate(zip(src_list, dest_list)):
new_rb = []
for b in rb:
m = masks[i][b.mgr_locs.indexer]
convert = i == src_len
result = b._replace_coerce(mask=m, to_replace=s, value=d,
inplace=inplace,
convert=convert, regex=regex)
if m.any():
new_rb = _extend_blocks(result, new_rb)
else:
new_rb.append(b)
rb = new_rb
result_blocks.extend(rb)
bm = self.__class__(result_blocks, self.axes)
bm._consolidate_inplace()
return bm
|
[
"def",
"replace_list",
"(",
"self",
",",
"src_list",
",",
"dest_list",
",",
"inplace",
"=",
"False",
",",
"regex",
"=",
"False",
")",
":",
"inplace",
"=",
"validate_bool_kwarg",
"(",
"inplace",
",",
"'inplace'",
")",
"# figure out our mask a-priori to avoid repeated replacements",
"values",
"=",
"self",
".",
"as_array",
"(",
")",
"def",
"comp",
"(",
"s",
",",
"regex",
"=",
"False",
")",
":",
"\"\"\"\n Generate a bool array by perform an equality check, or perform\n an element-wise regular expression matching\n \"\"\"",
"if",
"isna",
"(",
"s",
")",
":",
"return",
"isna",
"(",
"values",
")",
"if",
"hasattr",
"(",
"s",
",",
"'asm8'",
")",
":",
"return",
"_compare_or_regex_search",
"(",
"maybe_convert_objects",
"(",
"values",
")",
",",
"getattr",
"(",
"s",
",",
"'asm8'",
")",
",",
"regex",
")",
"return",
"_compare_or_regex_search",
"(",
"values",
",",
"s",
",",
"regex",
")",
"masks",
"=",
"[",
"comp",
"(",
"s",
",",
"regex",
")",
"for",
"i",
",",
"s",
"in",
"enumerate",
"(",
"src_list",
")",
"]",
"result_blocks",
"=",
"[",
"]",
"src_len",
"=",
"len",
"(",
"src_list",
")",
"-",
"1",
"for",
"blk",
"in",
"self",
".",
"blocks",
":",
"# its possible to get multiple result blocks here",
"# replace ALWAYS will return a list",
"rb",
"=",
"[",
"blk",
"if",
"inplace",
"else",
"blk",
".",
"copy",
"(",
")",
"]",
"for",
"i",
",",
"(",
"s",
",",
"d",
")",
"in",
"enumerate",
"(",
"zip",
"(",
"src_list",
",",
"dest_list",
")",
")",
":",
"new_rb",
"=",
"[",
"]",
"for",
"b",
"in",
"rb",
":",
"m",
"=",
"masks",
"[",
"i",
"]",
"[",
"b",
".",
"mgr_locs",
".",
"indexer",
"]",
"convert",
"=",
"i",
"==",
"src_len",
"result",
"=",
"b",
".",
"_replace_coerce",
"(",
"mask",
"=",
"m",
",",
"to_replace",
"=",
"s",
",",
"value",
"=",
"d",
",",
"inplace",
"=",
"inplace",
",",
"convert",
"=",
"convert",
",",
"regex",
"=",
"regex",
")",
"if",
"m",
".",
"any",
"(",
")",
":",
"new_rb",
"=",
"_extend_blocks",
"(",
"result",
",",
"new_rb",
")",
"else",
":",
"new_rb",
".",
"append",
"(",
"b",
")",
"rb",
"=",
"new_rb",
"result_blocks",
".",
"extend",
"(",
"rb",
")",
"bm",
"=",
"self",
".",
"__class__",
"(",
"result_blocks",
",",
"self",
".",
"axes",
")",
"bm",
".",
"_consolidate_inplace",
"(",
")",
"return",
"bm"
] |
do a list replace
|
[
"do",
"a",
"list",
"replace"
] |
9feb3ad92cc0397a04b665803a49299ee7aa1037
|
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/internals/managers.py#L539-L585
|
19,606
|
pandas-dev/pandas
|
pandas/core/internals/managers.py
|
BlockManager.combine
|
def combine(self, blocks, copy=True):
""" return a new manager with the blocks """
if len(blocks) == 0:
return self.make_empty()
# FIXME: optimization potential
indexer = np.sort(np.concatenate([b.mgr_locs.as_array
for b in blocks]))
inv_indexer = lib.get_reverse_indexer(indexer, self.shape[0])
new_blocks = []
for b in blocks:
b = b.copy(deep=copy)
b.mgr_locs = algos.take_1d(inv_indexer, b.mgr_locs.as_array,
axis=0, allow_fill=False)
new_blocks.append(b)
axes = list(self.axes)
axes[0] = self.items.take(indexer)
return self.__class__(new_blocks, axes, do_integrity_check=False)
|
python
|
def combine(self, blocks, copy=True):
""" return a new manager with the blocks """
if len(blocks) == 0:
return self.make_empty()
# FIXME: optimization potential
indexer = np.sort(np.concatenate([b.mgr_locs.as_array
for b in blocks]))
inv_indexer = lib.get_reverse_indexer(indexer, self.shape[0])
new_blocks = []
for b in blocks:
b = b.copy(deep=copy)
b.mgr_locs = algos.take_1d(inv_indexer, b.mgr_locs.as_array,
axis=0, allow_fill=False)
new_blocks.append(b)
axes = list(self.axes)
axes[0] = self.items.take(indexer)
return self.__class__(new_blocks, axes, do_integrity_check=False)
|
[
"def",
"combine",
"(",
"self",
",",
"blocks",
",",
"copy",
"=",
"True",
")",
":",
"if",
"len",
"(",
"blocks",
")",
"==",
"0",
":",
"return",
"self",
".",
"make_empty",
"(",
")",
"# FIXME: optimization potential",
"indexer",
"=",
"np",
".",
"sort",
"(",
"np",
".",
"concatenate",
"(",
"[",
"b",
".",
"mgr_locs",
".",
"as_array",
"for",
"b",
"in",
"blocks",
"]",
")",
")",
"inv_indexer",
"=",
"lib",
".",
"get_reverse_indexer",
"(",
"indexer",
",",
"self",
".",
"shape",
"[",
"0",
"]",
")",
"new_blocks",
"=",
"[",
"]",
"for",
"b",
"in",
"blocks",
":",
"b",
"=",
"b",
".",
"copy",
"(",
"deep",
"=",
"copy",
")",
"b",
".",
"mgr_locs",
"=",
"algos",
".",
"take_1d",
"(",
"inv_indexer",
",",
"b",
".",
"mgr_locs",
".",
"as_array",
",",
"axis",
"=",
"0",
",",
"allow_fill",
"=",
"False",
")",
"new_blocks",
".",
"append",
"(",
"b",
")",
"axes",
"=",
"list",
"(",
"self",
".",
"axes",
")",
"axes",
"[",
"0",
"]",
"=",
"self",
".",
"items",
".",
"take",
"(",
"indexer",
")",
"return",
"self",
".",
"__class__",
"(",
"new_blocks",
",",
"axes",
",",
"do_integrity_check",
"=",
"False",
")"
] |
return a new manager with the blocks
|
[
"return",
"a",
"new",
"manager",
"with",
"the",
"blocks"
] |
9feb3ad92cc0397a04b665803a49299ee7aa1037
|
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/internals/managers.py#L658-L678
|
19,607
|
pandas-dev/pandas
|
pandas/core/internals/managers.py
|
BlockManager.copy
|
def copy(self, deep=True):
"""
Make deep or shallow copy of BlockManager
Parameters
----------
deep : boolean o rstring, default True
If False, return shallow copy (do not copy data)
If 'all', copy data and a deep copy of the index
Returns
-------
copy : BlockManager
"""
# this preserves the notion of view copying of axes
if deep:
if deep == 'all':
copy = lambda ax: ax.copy(deep=True)
else:
copy = lambda ax: ax.view()
new_axes = [copy(ax) for ax in self.axes]
else:
new_axes = list(self.axes)
return self.apply('copy', axes=new_axes, deep=deep,
do_integrity_check=False)
|
python
|
def copy(self, deep=True):
"""
Make deep or shallow copy of BlockManager
Parameters
----------
deep : boolean o rstring, default True
If False, return shallow copy (do not copy data)
If 'all', copy data and a deep copy of the index
Returns
-------
copy : BlockManager
"""
# this preserves the notion of view copying of axes
if deep:
if deep == 'all':
copy = lambda ax: ax.copy(deep=True)
else:
copy = lambda ax: ax.view()
new_axes = [copy(ax) for ax in self.axes]
else:
new_axes = list(self.axes)
return self.apply('copy', axes=new_axes, deep=deep,
do_integrity_check=False)
|
[
"def",
"copy",
"(",
"self",
",",
"deep",
"=",
"True",
")",
":",
"# this preserves the notion of view copying of axes",
"if",
"deep",
":",
"if",
"deep",
"==",
"'all'",
":",
"copy",
"=",
"lambda",
"ax",
":",
"ax",
".",
"copy",
"(",
"deep",
"=",
"True",
")",
"else",
":",
"copy",
"=",
"lambda",
"ax",
":",
"ax",
".",
"view",
"(",
")",
"new_axes",
"=",
"[",
"copy",
"(",
"ax",
")",
"for",
"ax",
"in",
"self",
".",
"axes",
"]",
"else",
":",
"new_axes",
"=",
"list",
"(",
"self",
".",
"axes",
")",
"return",
"self",
".",
"apply",
"(",
"'copy'",
",",
"axes",
"=",
"new_axes",
",",
"deep",
"=",
"deep",
",",
"do_integrity_check",
"=",
"False",
")"
] |
Make deep or shallow copy of BlockManager
Parameters
----------
deep : boolean o rstring, default True
If False, return shallow copy (do not copy data)
If 'all', copy data and a deep copy of the index
Returns
-------
copy : BlockManager
|
[
"Make",
"deep",
"or",
"shallow",
"copy",
"of",
"BlockManager"
] |
9feb3ad92cc0397a04b665803a49299ee7aa1037
|
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/internals/managers.py#L706-L730
|
19,608
|
pandas-dev/pandas
|
pandas/core/internals/managers.py
|
BlockManager.as_array
|
def as_array(self, transpose=False, items=None):
"""Convert the blockmanager data into an numpy array.
Parameters
----------
transpose : boolean, default False
If True, transpose the return array
items : list of strings or None
Names of block items that will be included in the returned
array. ``None`` means that all block items will be used
Returns
-------
arr : ndarray
"""
if len(self.blocks) == 0:
arr = np.empty(self.shape, dtype=float)
return arr.transpose() if transpose else arr
if items is not None:
mgr = self.reindex_axis(items, axis=0)
else:
mgr = self
if self._is_single_block and mgr.blocks[0].is_datetimetz:
# TODO(Block.get_values): Make DatetimeTZBlock.get_values
# always be object dtype. Some callers seem to want the
# DatetimeArray (previously DTI)
arr = mgr.blocks[0].get_values(dtype=object)
elif self._is_single_block or not self.is_mixed_type:
arr = np.asarray(mgr.blocks[0].get_values())
else:
arr = mgr._interleave()
return arr.transpose() if transpose else arr
|
python
|
def as_array(self, transpose=False, items=None):
"""Convert the blockmanager data into an numpy array.
Parameters
----------
transpose : boolean, default False
If True, transpose the return array
items : list of strings or None
Names of block items that will be included in the returned
array. ``None`` means that all block items will be used
Returns
-------
arr : ndarray
"""
if len(self.blocks) == 0:
arr = np.empty(self.shape, dtype=float)
return arr.transpose() if transpose else arr
if items is not None:
mgr = self.reindex_axis(items, axis=0)
else:
mgr = self
if self._is_single_block and mgr.blocks[0].is_datetimetz:
# TODO(Block.get_values): Make DatetimeTZBlock.get_values
# always be object dtype. Some callers seem to want the
# DatetimeArray (previously DTI)
arr = mgr.blocks[0].get_values(dtype=object)
elif self._is_single_block or not self.is_mixed_type:
arr = np.asarray(mgr.blocks[0].get_values())
else:
arr = mgr._interleave()
return arr.transpose() if transpose else arr
|
[
"def",
"as_array",
"(",
"self",
",",
"transpose",
"=",
"False",
",",
"items",
"=",
"None",
")",
":",
"if",
"len",
"(",
"self",
".",
"blocks",
")",
"==",
"0",
":",
"arr",
"=",
"np",
".",
"empty",
"(",
"self",
".",
"shape",
",",
"dtype",
"=",
"float",
")",
"return",
"arr",
".",
"transpose",
"(",
")",
"if",
"transpose",
"else",
"arr",
"if",
"items",
"is",
"not",
"None",
":",
"mgr",
"=",
"self",
".",
"reindex_axis",
"(",
"items",
",",
"axis",
"=",
"0",
")",
"else",
":",
"mgr",
"=",
"self",
"if",
"self",
".",
"_is_single_block",
"and",
"mgr",
".",
"blocks",
"[",
"0",
"]",
".",
"is_datetimetz",
":",
"# TODO(Block.get_values): Make DatetimeTZBlock.get_values",
"# always be object dtype. Some callers seem to want the",
"# DatetimeArray (previously DTI)",
"arr",
"=",
"mgr",
".",
"blocks",
"[",
"0",
"]",
".",
"get_values",
"(",
"dtype",
"=",
"object",
")",
"elif",
"self",
".",
"_is_single_block",
"or",
"not",
"self",
".",
"is_mixed_type",
":",
"arr",
"=",
"np",
".",
"asarray",
"(",
"mgr",
".",
"blocks",
"[",
"0",
"]",
".",
"get_values",
"(",
")",
")",
"else",
":",
"arr",
"=",
"mgr",
".",
"_interleave",
"(",
")",
"return",
"arr",
".",
"transpose",
"(",
")",
"if",
"transpose",
"else",
"arr"
] |
Convert the blockmanager data into an numpy array.
Parameters
----------
transpose : boolean, default False
If True, transpose the return array
items : list of strings or None
Names of block items that will be included in the returned
array. ``None`` means that all block items will be used
Returns
-------
arr : ndarray
|
[
"Convert",
"the",
"blockmanager",
"data",
"into",
"an",
"numpy",
"array",
"."
] |
9feb3ad92cc0397a04b665803a49299ee7aa1037
|
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/internals/managers.py#L732-L766
|
19,609
|
pandas-dev/pandas
|
pandas/core/internals/managers.py
|
BlockManager._interleave
|
def _interleave(self):
"""
Return ndarray from blocks with specified item order
Items must be contained in the blocks
"""
from pandas.core.dtypes.common import is_sparse
dtype = _interleaved_dtype(self.blocks)
# TODO: https://github.com/pandas-dev/pandas/issues/22791
# Give EAs some input on what happens here. Sparse needs this.
if is_sparse(dtype):
dtype = dtype.subtype
elif is_extension_array_dtype(dtype):
dtype = 'object'
result = np.empty(self.shape, dtype=dtype)
itemmask = np.zeros(self.shape[0])
for blk in self.blocks:
rl = blk.mgr_locs
result[rl.indexer] = blk.get_values(dtype)
itemmask[rl.indexer] = 1
if not itemmask.all():
raise AssertionError('Some items were not contained in blocks')
return result
|
python
|
def _interleave(self):
"""
Return ndarray from blocks with specified item order
Items must be contained in the blocks
"""
from pandas.core.dtypes.common import is_sparse
dtype = _interleaved_dtype(self.blocks)
# TODO: https://github.com/pandas-dev/pandas/issues/22791
# Give EAs some input on what happens here. Sparse needs this.
if is_sparse(dtype):
dtype = dtype.subtype
elif is_extension_array_dtype(dtype):
dtype = 'object'
result = np.empty(self.shape, dtype=dtype)
itemmask = np.zeros(self.shape[0])
for blk in self.blocks:
rl = blk.mgr_locs
result[rl.indexer] = blk.get_values(dtype)
itemmask[rl.indexer] = 1
if not itemmask.all():
raise AssertionError('Some items were not contained in blocks')
return result
|
[
"def",
"_interleave",
"(",
"self",
")",
":",
"from",
"pandas",
".",
"core",
".",
"dtypes",
".",
"common",
"import",
"is_sparse",
"dtype",
"=",
"_interleaved_dtype",
"(",
"self",
".",
"blocks",
")",
"# TODO: https://github.com/pandas-dev/pandas/issues/22791",
"# Give EAs some input on what happens here. Sparse needs this.",
"if",
"is_sparse",
"(",
"dtype",
")",
":",
"dtype",
"=",
"dtype",
".",
"subtype",
"elif",
"is_extension_array_dtype",
"(",
"dtype",
")",
":",
"dtype",
"=",
"'object'",
"result",
"=",
"np",
".",
"empty",
"(",
"self",
".",
"shape",
",",
"dtype",
"=",
"dtype",
")",
"itemmask",
"=",
"np",
".",
"zeros",
"(",
"self",
".",
"shape",
"[",
"0",
"]",
")",
"for",
"blk",
"in",
"self",
".",
"blocks",
":",
"rl",
"=",
"blk",
".",
"mgr_locs",
"result",
"[",
"rl",
".",
"indexer",
"]",
"=",
"blk",
".",
"get_values",
"(",
"dtype",
")",
"itemmask",
"[",
"rl",
".",
"indexer",
"]",
"=",
"1",
"if",
"not",
"itemmask",
".",
"all",
"(",
")",
":",
"raise",
"AssertionError",
"(",
"'Some items were not contained in blocks'",
")",
"return",
"result"
] |
Return ndarray from blocks with specified item order
Items must be contained in the blocks
|
[
"Return",
"ndarray",
"from",
"blocks",
"with",
"specified",
"item",
"order",
"Items",
"must",
"be",
"contained",
"in",
"the",
"blocks"
] |
9feb3ad92cc0397a04b665803a49299ee7aa1037
|
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/internals/managers.py#L768-L795
|
19,610
|
pandas-dev/pandas
|
pandas/core/internals/managers.py
|
BlockManager.fast_xs
|
def fast_xs(self, loc):
"""
get a cross sectional for a given location in the
items ; handle dups
return the result, is *could* be a view in the case of a
single block
"""
if len(self.blocks) == 1:
return self.blocks[0].iget((slice(None), loc))
items = self.items
# non-unique (GH4726)
if not items.is_unique:
result = self._interleave()
if self.ndim == 2:
result = result.T
return result[loc]
# unique
dtype = _interleaved_dtype(self.blocks)
n = len(items)
if is_extension_array_dtype(dtype):
# we'll eventually construct an ExtensionArray.
result = np.empty(n, dtype=object)
else:
result = np.empty(n, dtype=dtype)
for blk in self.blocks:
# Such assignment may incorrectly coerce NaT to None
# result[blk.mgr_locs] = blk._slice((slice(None), loc))
for i, rl in enumerate(blk.mgr_locs):
result[rl] = blk._try_coerce_result(blk.iget((i, loc)))
if is_extension_array_dtype(dtype):
result = dtype.construct_array_type()._from_sequence(
result, dtype=dtype
)
return result
|
python
|
def fast_xs(self, loc):
"""
get a cross sectional for a given location in the
items ; handle dups
return the result, is *could* be a view in the case of a
single block
"""
if len(self.blocks) == 1:
return self.blocks[0].iget((slice(None), loc))
items = self.items
# non-unique (GH4726)
if not items.is_unique:
result = self._interleave()
if self.ndim == 2:
result = result.T
return result[loc]
# unique
dtype = _interleaved_dtype(self.blocks)
n = len(items)
if is_extension_array_dtype(dtype):
# we'll eventually construct an ExtensionArray.
result = np.empty(n, dtype=object)
else:
result = np.empty(n, dtype=dtype)
for blk in self.blocks:
# Such assignment may incorrectly coerce NaT to None
# result[blk.mgr_locs] = blk._slice((slice(None), loc))
for i, rl in enumerate(blk.mgr_locs):
result[rl] = blk._try_coerce_result(blk.iget((i, loc)))
if is_extension_array_dtype(dtype):
result = dtype.construct_array_type()._from_sequence(
result, dtype=dtype
)
return result
|
[
"def",
"fast_xs",
"(",
"self",
",",
"loc",
")",
":",
"if",
"len",
"(",
"self",
".",
"blocks",
")",
"==",
"1",
":",
"return",
"self",
".",
"blocks",
"[",
"0",
"]",
".",
"iget",
"(",
"(",
"slice",
"(",
"None",
")",
",",
"loc",
")",
")",
"items",
"=",
"self",
".",
"items",
"# non-unique (GH4726)",
"if",
"not",
"items",
".",
"is_unique",
":",
"result",
"=",
"self",
".",
"_interleave",
"(",
")",
"if",
"self",
".",
"ndim",
"==",
"2",
":",
"result",
"=",
"result",
".",
"T",
"return",
"result",
"[",
"loc",
"]",
"# unique",
"dtype",
"=",
"_interleaved_dtype",
"(",
"self",
".",
"blocks",
")",
"n",
"=",
"len",
"(",
"items",
")",
"if",
"is_extension_array_dtype",
"(",
"dtype",
")",
":",
"# we'll eventually construct an ExtensionArray.",
"result",
"=",
"np",
".",
"empty",
"(",
"n",
",",
"dtype",
"=",
"object",
")",
"else",
":",
"result",
"=",
"np",
".",
"empty",
"(",
"n",
",",
"dtype",
"=",
"dtype",
")",
"for",
"blk",
"in",
"self",
".",
"blocks",
":",
"# Such assignment may incorrectly coerce NaT to None",
"# result[blk.mgr_locs] = blk._slice((slice(None), loc))",
"for",
"i",
",",
"rl",
"in",
"enumerate",
"(",
"blk",
".",
"mgr_locs",
")",
":",
"result",
"[",
"rl",
"]",
"=",
"blk",
".",
"_try_coerce_result",
"(",
"blk",
".",
"iget",
"(",
"(",
"i",
",",
"loc",
")",
")",
")",
"if",
"is_extension_array_dtype",
"(",
"dtype",
")",
":",
"result",
"=",
"dtype",
".",
"construct_array_type",
"(",
")",
".",
"_from_sequence",
"(",
"result",
",",
"dtype",
"=",
"dtype",
")",
"return",
"result"
] |
get a cross sectional for a given location in the
items ; handle dups
return the result, is *could* be a view in the case of a
single block
|
[
"get",
"a",
"cross",
"sectional",
"for",
"a",
"given",
"location",
"in",
"the",
"items",
";",
"handle",
"dups"
] |
9feb3ad92cc0397a04b665803a49299ee7aa1037
|
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/internals/managers.py#L864-L905
|
19,611
|
pandas-dev/pandas
|
pandas/core/internals/managers.py
|
BlockManager.consolidate
|
def consolidate(self):
"""
Join together blocks having same dtype
Returns
-------
y : BlockManager
"""
if self.is_consolidated():
return self
bm = self.__class__(self.blocks, self.axes)
bm._is_consolidated = False
bm._consolidate_inplace()
return bm
|
python
|
def consolidate(self):
"""
Join together blocks having same dtype
Returns
-------
y : BlockManager
"""
if self.is_consolidated():
return self
bm = self.__class__(self.blocks, self.axes)
bm._is_consolidated = False
bm._consolidate_inplace()
return bm
|
[
"def",
"consolidate",
"(",
"self",
")",
":",
"if",
"self",
".",
"is_consolidated",
"(",
")",
":",
"return",
"self",
"bm",
"=",
"self",
".",
"__class__",
"(",
"self",
".",
"blocks",
",",
"self",
".",
"axes",
")",
"bm",
".",
"_is_consolidated",
"=",
"False",
"bm",
".",
"_consolidate_inplace",
"(",
")",
"return",
"bm"
] |
Join together blocks having same dtype
Returns
-------
y : BlockManager
|
[
"Join",
"together",
"blocks",
"having",
"same",
"dtype"
] |
9feb3ad92cc0397a04b665803a49299ee7aa1037
|
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/internals/managers.py#L907-L921
|
19,612
|
pandas-dev/pandas
|
pandas/core/internals/managers.py
|
BlockManager.iget
|
def iget(self, i, fastpath=True):
"""
Return the data as a SingleBlockManager if fastpath=True and possible
Otherwise return as a ndarray
"""
block = self.blocks[self._blknos[i]]
values = block.iget(self._blklocs[i])
if not fastpath or not block._box_to_block_values or values.ndim != 1:
return values
# fastpath shortcut for select a single-dim from a 2-dim BM
return SingleBlockManager(
[block.make_block_same_class(values,
placement=slice(0, len(values)),
ndim=1)],
self.axes[1])
|
python
|
def iget(self, i, fastpath=True):
"""
Return the data as a SingleBlockManager if fastpath=True and possible
Otherwise return as a ndarray
"""
block = self.blocks[self._blknos[i]]
values = block.iget(self._blklocs[i])
if not fastpath or not block._box_to_block_values or values.ndim != 1:
return values
# fastpath shortcut for select a single-dim from a 2-dim BM
return SingleBlockManager(
[block.make_block_same_class(values,
placement=slice(0, len(values)),
ndim=1)],
self.axes[1])
|
[
"def",
"iget",
"(",
"self",
",",
"i",
",",
"fastpath",
"=",
"True",
")",
":",
"block",
"=",
"self",
".",
"blocks",
"[",
"self",
".",
"_blknos",
"[",
"i",
"]",
"]",
"values",
"=",
"block",
".",
"iget",
"(",
"self",
".",
"_blklocs",
"[",
"i",
"]",
")",
"if",
"not",
"fastpath",
"or",
"not",
"block",
".",
"_box_to_block_values",
"or",
"values",
".",
"ndim",
"!=",
"1",
":",
"return",
"values",
"# fastpath shortcut for select a single-dim from a 2-dim BM",
"return",
"SingleBlockManager",
"(",
"[",
"block",
".",
"make_block_same_class",
"(",
"values",
",",
"placement",
"=",
"slice",
"(",
"0",
",",
"len",
"(",
"values",
")",
")",
",",
"ndim",
"=",
"1",
")",
"]",
",",
"self",
".",
"axes",
"[",
"1",
"]",
")"
] |
Return the data as a SingleBlockManager if fastpath=True and possible
Otherwise return as a ndarray
|
[
"Return",
"the",
"data",
"as",
"a",
"SingleBlockManager",
"if",
"fastpath",
"=",
"True",
"and",
"possible"
] |
9feb3ad92cc0397a04b665803a49299ee7aa1037
|
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/internals/managers.py#L959-L975
|
19,613
|
pandas-dev/pandas
|
pandas/core/internals/managers.py
|
BlockManager.insert
|
def insert(self, loc, item, value, allow_duplicates=False):
"""
Insert item at selected position.
Parameters
----------
loc : int
item : hashable
value : array_like
allow_duplicates: bool
If False, trying to insert non-unique item will raise
"""
if not allow_duplicates and item in self.items:
# Should this be a different kind of error??
raise ValueError('cannot insert {}, already exists'.format(item))
if not isinstance(loc, int):
raise TypeError("loc must be int")
# insert to the axis; this could possibly raise a TypeError
new_axis = self.items.insert(loc, item)
block = make_block(values=value, ndim=self.ndim,
placement=slice(loc, loc + 1))
for blkno, count in _fast_count_smallints(self._blknos[loc:]):
blk = self.blocks[blkno]
if count == len(blk.mgr_locs):
blk.mgr_locs = blk.mgr_locs.add(1)
else:
new_mgr_locs = blk.mgr_locs.as_array.copy()
new_mgr_locs[new_mgr_locs >= loc] += 1
blk.mgr_locs = new_mgr_locs
if loc == self._blklocs.shape[0]:
# np.append is a lot faster, let's use it if we can.
self._blklocs = np.append(self._blklocs, 0)
self._blknos = np.append(self._blknos, len(self.blocks))
else:
self._blklocs = np.insert(self._blklocs, loc, 0)
self._blknos = np.insert(self._blknos, loc, len(self.blocks))
self.axes[0] = new_axis
self.blocks += (block,)
self._shape = None
self._known_consolidated = False
if len(self.blocks) > 100:
self._consolidate_inplace()
|
python
|
def insert(self, loc, item, value, allow_duplicates=False):
"""
Insert item at selected position.
Parameters
----------
loc : int
item : hashable
value : array_like
allow_duplicates: bool
If False, trying to insert non-unique item will raise
"""
if not allow_duplicates and item in self.items:
# Should this be a different kind of error??
raise ValueError('cannot insert {}, already exists'.format(item))
if not isinstance(loc, int):
raise TypeError("loc must be int")
# insert to the axis; this could possibly raise a TypeError
new_axis = self.items.insert(loc, item)
block = make_block(values=value, ndim=self.ndim,
placement=slice(loc, loc + 1))
for blkno, count in _fast_count_smallints(self._blknos[loc:]):
blk = self.blocks[blkno]
if count == len(blk.mgr_locs):
blk.mgr_locs = blk.mgr_locs.add(1)
else:
new_mgr_locs = blk.mgr_locs.as_array.copy()
new_mgr_locs[new_mgr_locs >= loc] += 1
blk.mgr_locs = new_mgr_locs
if loc == self._blklocs.shape[0]:
# np.append is a lot faster, let's use it if we can.
self._blklocs = np.append(self._blklocs, 0)
self._blknos = np.append(self._blknos, len(self.blocks))
else:
self._blklocs = np.insert(self._blklocs, loc, 0)
self._blknos = np.insert(self._blknos, loc, len(self.blocks))
self.axes[0] = new_axis
self.blocks += (block,)
self._shape = None
self._known_consolidated = False
if len(self.blocks) > 100:
self._consolidate_inplace()
|
[
"def",
"insert",
"(",
"self",
",",
"loc",
",",
"item",
",",
"value",
",",
"allow_duplicates",
"=",
"False",
")",
":",
"if",
"not",
"allow_duplicates",
"and",
"item",
"in",
"self",
".",
"items",
":",
"# Should this be a different kind of error??",
"raise",
"ValueError",
"(",
"'cannot insert {}, already exists'",
".",
"format",
"(",
"item",
")",
")",
"if",
"not",
"isinstance",
"(",
"loc",
",",
"int",
")",
":",
"raise",
"TypeError",
"(",
"\"loc must be int\"",
")",
"# insert to the axis; this could possibly raise a TypeError",
"new_axis",
"=",
"self",
".",
"items",
".",
"insert",
"(",
"loc",
",",
"item",
")",
"block",
"=",
"make_block",
"(",
"values",
"=",
"value",
",",
"ndim",
"=",
"self",
".",
"ndim",
",",
"placement",
"=",
"slice",
"(",
"loc",
",",
"loc",
"+",
"1",
")",
")",
"for",
"blkno",
",",
"count",
"in",
"_fast_count_smallints",
"(",
"self",
".",
"_blknos",
"[",
"loc",
":",
"]",
")",
":",
"blk",
"=",
"self",
".",
"blocks",
"[",
"blkno",
"]",
"if",
"count",
"==",
"len",
"(",
"blk",
".",
"mgr_locs",
")",
":",
"blk",
".",
"mgr_locs",
"=",
"blk",
".",
"mgr_locs",
".",
"add",
"(",
"1",
")",
"else",
":",
"new_mgr_locs",
"=",
"blk",
".",
"mgr_locs",
".",
"as_array",
".",
"copy",
"(",
")",
"new_mgr_locs",
"[",
"new_mgr_locs",
">=",
"loc",
"]",
"+=",
"1",
"blk",
".",
"mgr_locs",
"=",
"new_mgr_locs",
"if",
"loc",
"==",
"self",
".",
"_blklocs",
".",
"shape",
"[",
"0",
"]",
":",
"# np.append is a lot faster, let's use it if we can.",
"self",
".",
"_blklocs",
"=",
"np",
".",
"append",
"(",
"self",
".",
"_blklocs",
",",
"0",
")",
"self",
".",
"_blknos",
"=",
"np",
".",
"append",
"(",
"self",
".",
"_blknos",
",",
"len",
"(",
"self",
".",
"blocks",
")",
")",
"else",
":",
"self",
".",
"_blklocs",
"=",
"np",
".",
"insert",
"(",
"self",
".",
"_blklocs",
",",
"loc",
",",
"0",
")",
"self",
".",
"_blknos",
"=",
"np",
".",
"insert",
"(",
"self",
".",
"_blknos",
",",
"loc",
",",
"len",
"(",
"self",
".",
"blocks",
")",
")",
"self",
".",
"axes",
"[",
"0",
"]",
"=",
"new_axis",
"self",
".",
"blocks",
"+=",
"(",
"block",
",",
")",
"self",
".",
"_shape",
"=",
"None",
"self",
".",
"_known_consolidated",
"=",
"False",
"if",
"len",
"(",
"self",
".",
"blocks",
")",
">",
"100",
":",
"self",
".",
"_consolidate_inplace",
"(",
")"
] |
Insert item at selected position.
Parameters
----------
loc : int
item : hashable
value : array_like
allow_duplicates: bool
If False, trying to insert non-unique item will raise
|
[
"Insert",
"item",
"at",
"selected",
"position",
"."
] |
9feb3ad92cc0397a04b665803a49299ee7aa1037
|
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/internals/managers.py#L1130-L1180
|
19,614
|
pandas-dev/pandas
|
pandas/core/internals/managers.py
|
BlockManager.reindex_axis
|
def reindex_axis(self, new_index, axis, method=None, limit=None,
fill_value=None, copy=True):
"""
Conform block manager to new index.
"""
new_index = ensure_index(new_index)
new_index, indexer = self.axes[axis].reindex(new_index, method=method,
limit=limit)
return self.reindex_indexer(new_index, indexer, axis=axis,
fill_value=fill_value, copy=copy)
|
python
|
def reindex_axis(self, new_index, axis, method=None, limit=None,
fill_value=None, copy=True):
"""
Conform block manager to new index.
"""
new_index = ensure_index(new_index)
new_index, indexer = self.axes[axis].reindex(new_index, method=method,
limit=limit)
return self.reindex_indexer(new_index, indexer, axis=axis,
fill_value=fill_value, copy=copy)
|
[
"def",
"reindex_axis",
"(",
"self",
",",
"new_index",
",",
"axis",
",",
"method",
"=",
"None",
",",
"limit",
"=",
"None",
",",
"fill_value",
"=",
"None",
",",
"copy",
"=",
"True",
")",
":",
"new_index",
"=",
"ensure_index",
"(",
"new_index",
")",
"new_index",
",",
"indexer",
"=",
"self",
".",
"axes",
"[",
"axis",
"]",
".",
"reindex",
"(",
"new_index",
",",
"method",
"=",
"method",
",",
"limit",
"=",
"limit",
")",
"return",
"self",
".",
"reindex_indexer",
"(",
"new_index",
",",
"indexer",
",",
"axis",
"=",
"axis",
",",
"fill_value",
"=",
"fill_value",
",",
"copy",
"=",
"copy",
")"
] |
Conform block manager to new index.
|
[
"Conform",
"block",
"manager",
"to",
"new",
"index",
"."
] |
9feb3ad92cc0397a04b665803a49299ee7aa1037
|
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/internals/managers.py#L1182-L1192
|
19,615
|
pandas-dev/pandas
|
pandas/core/internals/managers.py
|
BlockManager.take
|
def take(self, indexer, axis=1, verify=True, convert=True):
"""
Take items along any axis.
"""
self._consolidate_inplace()
indexer = (np.arange(indexer.start, indexer.stop, indexer.step,
dtype='int64')
if isinstance(indexer, slice)
else np.asanyarray(indexer, dtype='int64'))
n = self.shape[axis]
if convert:
indexer = maybe_convert_indices(indexer, n)
if verify:
if ((indexer == -1) | (indexer >= n)).any():
raise Exception('Indices must be nonzero and less than '
'the axis length')
new_labels = self.axes[axis].take(indexer)
return self.reindex_indexer(new_axis=new_labels, indexer=indexer,
axis=axis, allow_dups=True)
|
python
|
def take(self, indexer, axis=1, verify=True, convert=True):
"""
Take items along any axis.
"""
self._consolidate_inplace()
indexer = (np.arange(indexer.start, indexer.stop, indexer.step,
dtype='int64')
if isinstance(indexer, slice)
else np.asanyarray(indexer, dtype='int64'))
n = self.shape[axis]
if convert:
indexer = maybe_convert_indices(indexer, n)
if verify:
if ((indexer == -1) | (indexer >= n)).any():
raise Exception('Indices must be nonzero and less than '
'the axis length')
new_labels = self.axes[axis].take(indexer)
return self.reindex_indexer(new_axis=new_labels, indexer=indexer,
axis=axis, allow_dups=True)
|
[
"def",
"take",
"(",
"self",
",",
"indexer",
",",
"axis",
"=",
"1",
",",
"verify",
"=",
"True",
",",
"convert",
"=",
"True",
")",
":",
"self",
".",
"_consolidate_inplace",
"(",
")",
"indexer",
"=",
"(",
"np",
".",
"arange",
"(",
"indexer",
".",
"start",
",",
"indexer",
".",
"stop",
",",
"indexer",
".",
"step",
",",
"dtype",
"=",
"'int64'",
")",
"if",
"isinstance",
"(",
"indexer",
",",
"slice",
")",
"else",
"np",
".",
"asanyarray",
"(",
"indexer",
",",
"dtype",
"=",
"'int64'",
")",
")",
"n",
"=",
"self",
".",
"shape",
"[",
"axis",
"]",
"if",
"convert",
":",
"indexer",
"=",
"maybe_convert_indices",
"(",
"indexer",
",",
"n",
")",
"if",
"verify",
":",
"if",
"(",
"(",
"indexer",
"==",
"-",
"1",
")",
"|",
"(",
"indexer",
">=",
"n",
")",
")",
".",
"any",
"(",
")",
":",
"raise",
"Exception",
"(",
"'Indices must be nonzero and less than '",
"'the axis length'",
")",
"new_labels",
"=",
"self",
".",
"axes",
"[",
"axis",
"]",
".",
"take",
"(",
"indexer",
")",
"return",
"self",
".",
"reindex_indexer",
"(",
"new_axis",
"=",
"new_labels",
",",
"indexer",
"=",
"indexer",
",",
"axis",
"=",
"axis",
",",
"allow_dups",
"=",
"True",
")"
] |
Take items along any axis.
|
[
"Take",
"items",
"along",
"any",
"axis",
"."
] |
9feb3ad92cc0397a04b665803a49299ee7aa1037
|
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/internals/managers.py#L1325-L1346
|
19,616
|
pandas-dev/pandas
|
pandas/core/internals/managers.py
|
BlockManager.unstack
|
def unstack(self, unstacker_func, fill_value):
"""Return a blockmanager with all blocks unstacked.
Parameters
----------
unstacker_func : callable
A (partially-applied) ``pd.core.reshape._Unstacker`` class.
fill_value : Any
fill_value for newly introduced missing values.
Returns
-------
unstacked : BlockManager
"""
n_rows = self.shape[-1]
dummy = unstacker_func(np.empty((0, 0)), value_columns=self.items)
new_columns = dummy.get_new_columns()
new_index = dummy.get_new_index()
new_blocks = []
columns_mask = []
for blk in self.blocks:
blocks, mask = blk._unstack(
partial(unstacker_func,
value_columns=self.items[blk.mgr_locs.indexer]),
new_columns,
n_rows,
fill_value
)
new_blocks.extend(blocks)
columns_mask.extend(mask)
new_columns = new_columns[columns_mask]
bm = BlockManager(new_blocks, [new_columns, new_index])
return bm
|
python
|
def unstack(self, unstacker_func, fill_value):
"""Return a blockmanager with all blocks unstacked.
Parameters
----------
unstacker_func : callable
A (partially-applied) ``pd.core.reshape._Unstacker`` class.
fill_value : Any
fill_value for newly introduced missing values.
Returns
-------
unstacked : BlockManager
"""
n_rows = self.shape[-1]
dummy = unstacker_func(np.empty((0, 0)), value_columns=self.items)
new_columns = dummy.get_new_columns()
new_index = dummy.get_new_index()
new_blocks = []
columns_mask = []
for blk in self.blocks:
blocks, mask = blk._unstack(
partial(unstacker_func,
value_columns=self.items[blk.mgr_locs.indexer]),
new_columns,
n_rows,
fill_value
)
new_blocks.extend(blocks)
columns_mask.extend(mask)
new_columns = new_columns[columns_mask]
bm = BlockManager(new_blocks, [new_columns, new_index])
return bm
|
[
"def",
"unstack",
"(",
"self",
",",
"unstacker_func",
",",
"fill_value",
")",
":",
"n_rows",
"=",
"self",
".",
"shape",
"[",
"-",
"1",
"]",
"dummy",
"=",
"unstacker_func",
"(",
"np",
".",
"empty",
"(",
"(",
"0",
",",
"0",
")",
")",
",",
"value_columns",
"=",
"self",
".",
"items",
")",
"new_columns",
"=",
"dummy",
".",
"get_new_columns",
"(",
")",
"new_index",
"=",
"dummy",
".",
"get_new_index",
"(",
")",
"new_blocks",
"=",
"[",
"]",
"columns_mask",
"=",
"[",
"]",
"for",
"blk",
"in",
"self",
".",
"blocks",
":",
"blocks",
",",
"mask",
"=",
"blk",
".",
"_unstack",
"(",
"partial",
"(",
"unstacker_func",
",",
"value_columns",
"=",
"self",
".",
"items",
"[",
"blk",
".",
"mgr_locs",
".",
"indexer",
"]",
")",
",",
"new_columns",
",",
"n_rows",
",",
"fill_value",
")",
"new_blocks",
".",
"extend",
"(",
"blocks",
")",
"columns_mask",
".",
"extend",
"(",
"mask",
")",
"new_columns",
"=",
"new_columns",
"[",
"columns_mask",
"]",
"bm",
"=",
"BlockManager",
"(",
"new_blocks",
",",
"[",
"new_columns",
",",
"new_index",
"]",
")",
"return",
"bm"
] |
Return a blockmanager with all blocks unstacked.
Parameters
----------
unstacker_func : callable
A (partially-applied) ``pd.core.reshape._Unstacker`` class.
fill_value : Any
fill_value for newly introduced missing values.
Returns
-------
unstacked : BlockManager
|
[
"Return",
"a",
"blockmanager",
"with",
"all",
"blocks",
"unstacked",
"."
] |
9feb3ad92cc0397a04b665803a49299ee7aa1037
|
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/internals/managers.py#L1392-L1428
|
19,617
|
pandas-dev/pandas
|
pandas/core/internals/managers.py
|
SingleBlockManager.delete
|
def delete(self, item):
"""
Delete single item from SingleBlockManager.
Ensures that self.blocks doesn't become empty.
"""
loc = self.items.get_loc(item)
self._block.delete(loc)
self.axes[0] = self.axes[0].delete(loc)
|
python
|
def delete(self, item):
"""
Delete single item from SingleBlockManager.
Ensures that self.blocks doesn't become empty.
"""
loc = self.items.get_loc(item)
self._block.delete(loc)
self.axes[0] = self.axes[0].delete(loc)
|
[
"def",
"delete",
"(",
"self",
",",
"item",
")",
":",
"loc",
"=",
"self",
".",
"items",
".",
"get_loc",
"(",
"item",
")",
"self",
".",
"_block",
".",
"delete",
"(",
"loc",
")",
"self",
".",
"axes",
"[",
"0",
"]",
"=",
"self",
".",
"axes",
"[",
"0",
"]",
".",
"delete",
"(",
"loc",
")"
] |
Delete single item from SingleBlockManager.
Ensures that self.blocks doesn't become empty.
|
[
"Delete",
"single",
"item",
"from",
"SingleBlockManager",
"."
] |
9feb3ad92cc0397a04b665803a49299ee7aa1037
|
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/internals/managers.py#L1577-L1585
|
19,618
|
pandas-dev/pandas
|
pandas/core/internals/managers.py
|
SingleBlockManager.concat
|
def concat(self, to_concat, new_axis):
"""
Concatenate a list of SingleBlockManagers into a single
SingleBlockManager.
Used for pd.concat of Series objects with axis=0.
Parameters
----------
to_concat : list of SingleBlockManagers
new_axis : Index of the result
Returns
-------
SingleBlockManager
"""
non_empties = [x for x in to_concat if len(x) > 0]
# check if all series are of the same block type:
if len(non_empties) > 0:
blocks = [obj.blocks[0] for obj in non_empties]
if len({b.dtype for b in blocks}) == 1:
new_block = blocks[0].concat_same_type(blocks)
else:
values = [x.values for x in blocks]
values = _concat._concat_compat(values)
new_block = make_block(
values, placement=slice(0, len(values), 1))
else:
values = [x._block.values for x in to_concat]
values = _concat._concat_compat(values)
new_block = make_block(
values, placement=slice(0, len(values), 1))
mgr = SingleBlockManager(new_block, new_axis)
return mgr
|
python
|
def concat(self, to_concat, new_axis):
"""
Concatenate a list of SingleBlockManagers into a single
SingleBlockManager.
Used for pd.concat of Series objects with axis=0.
Parameters
----------
to_concat : list of SingleBlockManagers
new_axis : Index of the result
Returns
-------
SingleBlockManager
"""
non_empties = [x for x in to_concat if len(x) > 0]
# check if all series are of the same block type:
if len(non_empties) > 0:
blocks = [obj.blocks[0] for obj in non_empties]
if len({b.dtype for b in blocks}) == 1:
new_block = blocks[0].concat_same_type(blocks)
else:
values = [x.values for x in blocks]
values = _concat._concat_compat(values)
new_block = make_block(
values, placement=slice(0, len(values), 1))
else:
values = [x._block.values for x in to_concat]
values = _concat._concat_compat(values)
new_block = make_block(
values, placement=slice(0, len(values), 1))
mgr = SingleBlockManager(new_block, new_axis)
return mgr
|
[
"def",
"concat",
"(",
"self",
",",
"to_concat",
",",
"new_axis",
")",
":",
"non_empties",
"=",
"[",
"x",
"for",
"x",
"in",
"to_concat",
"if",
"len",
"(",
"x",
")",
">",
"0",
"]",
"# check if all series are of the same block type:",
"if",
"len",
"(",
"non_empties",
")",
">",
"0",
":",
"blocks",
"=",
"[",
"obj",
".",
"blocks",
"[",
"0",
"]",
"for",
"obj",
"in",
"non_empties",
"]",
"if",
"len",
"(",
"{",
"b",
".",
"dtype",
"for",
"b",
"in",
"blocks",
"}",
")",
"==",
"1",
":",
"new_block",
"=",
"blocks",
"[",
"0",
"]",
".",
"concat_same_type",
"(",
"blocks",
")",
"else",
":",
"values",
"=",
"[",
"x",
".",
"values",
"for",
"x",
"in",
"blocks",
"]",
"values",
"=",
"_concat",
".",
"_concat_compat",
"(",
"values",
")",
"new_block",
"=",
"make_block",
"(",
"values",
",",
"placement",
"=",
"slice",
"(",
"0",
",",
"len",
"(",
"values",
")",
",",
"1",
")",
")",
"else",
":",
"values",
"=",
"[",
"x",
".",
"_block",
".",
"values",
"for",
"x",
"in",
"to_concat",
"]",
"values",
"=",
"_concat",
".",
"_concat_compat",
"(",
"values",
")",
"new_block",
"=",
"make_block",
"(",
"values",
",",
"placement",
"=",
"slice",
"(",
"0",
",",
"len",
"(",
"values",
")",
",",
"1",
")",
")",
"mgr",
"=",
"SingleBlockManager",
"(",
"new_block",
",",
"new_axis",
")",
"return",
"mgr"
] |
Concatenate a list of SingleBlockManagers into a single
SingleBlockManager.
Used for pd.concat of Series objects with axis=0.
Parameters
----------
to_concat : list of SingleBlockManagers
new_axis : Index of the result
Returns
-------
SingleBlockManager
|
[
"Concatenate",
"a",
"list",
"of",
"SingleBlockManagers",
"into",
"a",
"single",
"SingleBlockManager",
"."
] |
9feb3ad92cc0397a04b665803a49299ee7aa1037
|
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/internals/managers.py#L1594-L1630
|
19,619
|
pandas-dev/pandas
|
pandas/core/sparse/series.py
|
SparseSeries.from_array
|
def from_array(cls, arr, index=None, name=None, copy=False,
fill_value=None, fastpath=False):
"""Construct SparseSeries from array.
.. deprecated:: 0.23.0
Use the pd.SparseSeries(..) constructor instead.
"""
warnings.warn("'from_array' is deprecated and will be removed in a "
"future version. Please use the pd.SparseSeries(..) "
"constructor instead.", FutureWarning, stacklevel=2)
return cls(arr, index=index, name=name, copy=copy,
fill_value=fill_value, fastpath=fastpath)
|
python
|
def from_array(cls, arr, index=None, name=None, copy=False,
fill_value=None, fastpath=False):
"""Construct SparseSeries from array.
.. deprecated:: 0.23.0
Use the pd.SparseSeries(..) constructor instead.
"""
warnings.warn("'from_array' is deprecated and will be removed in a "
"future version. Please use the pd.SparseSeries(..) "
"constructor instead.", FutureWarning, stacklevel=2)
return cls(arr, index=index, name=name, copy=copy,
fill_value=fill_value, fastpath=fastpath)
|
[
"def",
"from_array",
"(",
"cls",
",",
"arr",
",",
"index",
"=",
"None",
",",
"name",
"=",
"None",
",",
"copy",
"=",
"False",
",",
"fill_value",
"=",
"None",
",",
"fastpath",
"=",
"False",
")",
":",
"warnings",
".",
"warn",
"(",
"\"'from_array' is deprecated and will be removed in a \"",
"\"future version. Please use the pd.SparseSeries(..) \"",
"\"constructor instead.\"",
",",
"FutureWarning",
",",
"stacklevel",
"=",
"2",
")",
"return",
"cls",
"(",
"arr",
",",
"index",
"=",
"index",
",",
"name",
"=",
"name",
",",
"copy",
"=",
"copy",
",",
"fill_value",
"=",
"fill_value",
",",
"fastpath",
"=",
"fastpath",
")"
] |
Construct SparseSeries from array.
.. deprecated:: 0.23.0
Use the pd.SparseSeries(..) constructor instead.
|
[
"Construct",
"SparseSeries",
"from",
"array",
"."
] |
9feb3ad92cc0397a04b665803a49299ee7aa1037
|
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/sparse/series.py#L181-L192
|
19,620
|
pandas-dev/pandas
|
pandas/core/sparse/series.py
|
SparseSeries.as_sparse_array
|
def as_sparse_array(self, kind=None, fill_value=None, copy=False):
""" return my self as a sparse array, do not copy by default """
if fill_value is None:
fill_value = self.fill_value
if kind is None:
kind = self.kind
return SparseArray(self.values, sparse_index=self.sp_index,
fill_value=fill_value, kind=kind, copy=copy)
|
python
|
def as_sparse_array(self, kind=None, fill_value=None, copy=False):
""" return my self as a sparse array, do not copy by default """
if fill_value is None:
fill_value = self.fill_value
if kind is None:
kind = self.kind
return SparseArray(self.values, sparse_index=self.sp_index,
fill_value=fill_value, kind=kind, copy=copy)
|
[
"def",
"as_sparse_array",
"(",
"self",
",",
"kind",
"=",
"None",
",",
"fill_value",
"=",
"None",
",",
"copy",
"=",
"False",
")",
":",
"if",
"fill_value",
"is",
"None",
":",
"fill_value",
"=",
"self",
".",
"fill_value",
"if",
"kind",
"is",
"None",
":",
"kind",
"=",
"self",
".",
"kind",
"return",
"SparseArray",
"(",
"self",
".",
"values",
",",
"sparse_index",
"=",
"self",
".",
"sp_index",
",",
"fill_value",
"=",
"fill_value",
",",
"kind",
"=",
"kind",
",",
"copy",
"=",
"copy",
")"
] |
return my self as a sparse array, do not copy by default
|
[
"return",
"my",
"self",
"as",
"a",
"sparse",
"array",
"do",
"not",
"copy",
"by",
"default"
] |
9feb3ad92cc0397a04b665803a49299ee7aa1037
|
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/sparse/series.py#L210-L218
|
19,621
|
pandas-dev/pandas
|
pandas/core/sparse/series.py
|
SparseSeries._reduce
|
def _reduce(self, op, name, axis=0, skipna=True, numeric_only=None,
filter_type=None, **kwds):
""" perform a reduction operation """
return op(self.get_values(), skipna=skipna, **kwds)
|
python
|
def _reduce(self, op, name, axis=0, skipna=True, numeric_only=None,
filter_type=None, **kwds):
""" perform a reduction operation """
return op(self.get_values(), skipna=skipna, **kwds)
|
[
"def",
"_reduce",
"(",
"self",
",",
"op",
",",
"name",
",",
"axis",
"=",
"0",
",",
"skipna",
"=",
"True",
",",
"numeric_only",
"=",
"None",
",",
"filter_type",
"=",
"None",
",",
"*",
"*",
"kwds",
")",
":",
"return",
"op",
"(",
"self",
".",
"get_values",
"(",
")",
",",
"skipna",
"=",
"skipna",
",",
"*",
"*",
"kwds",
")"
] |
perform a reduction operation
|
[
"perform",
"a",
"reduction",
"operation"
] |
9feb3ad92cc0397a04b665803a49299ee7aa1037
|
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/sparse/series.py#L227-L230
|
19,622
|
pandas-dev/pandas
|
pandas/core/sparse/series.py
|
SparseSeries._ixs
|
def _ixs(self, i, axis=0):
"""
Return the i-th value or values in the SparseSeries by location
Parameters
----------
i : int, slice, or sequence of integers
Returns
-------
value : scalar (int) or Series (slice, sequence)
"""
label = self.index[i]
if isinstance(label, Index):
return self.take(i, axis=axis)
else:
return self._get_val_at(i)
|
python
|
def _ixs(self, i, axis=0):
"""
Return the i-th value or values in the SparseSeries by location
Parameters
----------
i : int, slice, or sequence of integers
Returns
-------
value : scalar (int) or Series (slice, sequence)
"""
label = self.index[i]
if isinstance(label, Index):
return self.take(i, axis=axis)
else:
return self._get_val_at(i)
|
[
"def",
"_ixs",
"(",
"self",
",",
"i",
",",
"axis",
"=",
"0",
")",
":",
"label",
"=",
"self",
".",
"index",
"[",
"i",
"]",
"if",
"isinstance",
"(",
"label",
",",
"Index",
")",
":",
"return",
"self",
".",
"take",
"(",
"i",
",",
"axis",
"=",
"axis",
")",
"else",
":",
"return",
"self",
".",
"_get_val_at",
"(",
"i",
")"
] |
Return the i-th value or values in the SparseSeries by location
Parameters
----------
i : int, slice, or sequence of integers
Returns
-------
value : scalar (int) or Series (slice, sequence)
|
[
"Return",
"the",
"i",
"-",
"th",
"value",
"or",
"values",
"in",
"the",
"SparseSeries",
"by",
"location"
] |
9feb3ad92cc0397a04b665803a49299ee7aa1037
|
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/sparse/series.py#L268-L284
|
19,623
|
pandas-dev/pandas
|
pandas/core/sparse/series.py
|
SparseSeries.abs
|
def abs(self):
"""
Return an object with absolute value taken. Only applicable to objects
that are all numeric
Returns
-------
abs: same type as caller
"""
return self._constructor(np.abs(self.values),
index=self.index).__finalize__(self)
|
python
|
def abs(self):
"""
Return an object with absolute value taken. Only applicable to objects
that are all numeric
Returns
-------
abs: same type as caller
"""
return self._constructor(np.abs(self.values),
index=self.index).__finalize__(self)
|
[
"def",
"abs",
"(",
"self",
")",
":",
"return",
"self",
".",
"_constructor",
"(",
"np",
".",
"abs",
"(",
"self",
".",
"values",
")",
",",
"index",
"=",
"self",
".",
"index",
")",
".",
"__finalize__",
"(",
"self",
")"
] |
Return an object with absolute value taken. Only applicable to objects
that are all numeric
Returns
-------
abs: same type as caller
|
[
"Return",
"an",
"object",
"with",
"absolute",
"value",
"taken",
".",
"Only",
"applicable",
"to",
"objects",
"that",
"are",
"all",
"numeric"
] |
9feb3ad92cc0397a04b665803a49299ee7aa1037
|
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/sparse/series.py#L308-L318
|
19,624
|
pandas-dev/pandas
|
pandas/core/sparse/series.py
|
SparseSeries.get
|
def get(self, label, default=None):
"""
Returns value occupying requested label, default to specified
missing value if not present. Analogous to dict.get
Parameters
----------
label : object
Label value looking for
default : object, optional
Value to return if label not in index
Returns
-------
y : scalar
"""
if label in self.index:
loc = self.index.get_loc(label)
return self._get_val_at(loc)
else:
return default
|
python
|
def get(self, label, default=None):
"""
Returns value occupying requested label, default to specified
missing value if not present. Analogous to dict.get
Parameters
----------
label : object
Label value looking for
default : object, optional
Value to return if label not in index
Returns
-------
y : scalar
"""
if label in self.index:
loc = self.index.get_loc(label)
return self._get_val_at(loc)
else:
return default
|
[
"def",
"get",
"(",
"self",
",",
"label",
",",
"default",
"=",
"None",
")",
":",
"if",
"label",
"in",
"self",
".",
"index",
":",
"loc",
"=",
"self",
".",
"index",
".",
"get_loc",
"(",
"label",
")",
"return",
"self",
".",
"_get_val_at",
"(",
"loc",
")",
"else",
":",
"return",
"default"
] |
Returns value occupying requested label, default to specified
missing value if not present. Analogous to dict.get
Parameters
----------
label : object
Label value looking for
default : object, optional
Value to return if label not in index
Returns
-------
y : scalar
|
[
"Returns",
"value",
"occupying",
"requested",
"label",
"default",
"to",
"specified",
"missing",
"value",
"if",
"not",
"present",
".",
"Analogous",
"to",
"dict",
".",
"get"
] |
9feb3ad92cc0397a04b665803a49299ee7aa1037
|
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/sparse/series.py#L320-L340
|
19,625
|
pandas-dev/pandas
|
pandas/core/sparse/series.py
|
SparseSeries.get_value
|
def get_value(self, label, takeable=False):
"""
Retrieve single value at passed index label
.. deprecated:: 0.21.0
Please use .at[] or .iat[] accessors.
Parameters
----------
index : label
takeable : interpret the index as indexers, default False
Returns
-------
value : scalar value
"""
warnings.warn("get_value is deprecated and will be removed "
"in a future release. Please use "
".at[] or .iat[] accessors instead", FutureWarning,
stacklevel=2)
return self._get_value(label, takeable=takeable)
|
python
|
def get_value(self, label, takeable=False):
"""
Retrieve single value at passed index label
.. deprecated:: 0.21.0
Please use .at[] or .iat[] accessors.
Parameters
----------
index : label
takeable : interpret the index as indexers, default False
Returns
-------
value : scalar value
"""
warnings.warn("get_value is deprecated and will be removed "
"in a future release. Please use "
".at[] or .iat[] accessors instead", FutureWarning,
stacklevel=2)
return self._get_value(label, takeable=takeable)
|
[
"def",
"get_value",
"(",
"self",
",",
"label",
",",
"takeable",
"=",
"False",
")",
":",
"warnings",
".",
"warn",
"(",
"\"get_value is deprecated and will be removed \"",
"\"in a future release. Please use \"",
"\".at[] or .iat[] accessors instead\"",
",",
"FutureWarning",
",",
"stacklevel",
"=",
"2",
")",
"return",
"self",
".",
"_get_value",
"(",
"label",
",",
"takeable",
"=",
"takeable",
")"
] |
Retrieve single value at passed index label
.. deprecated:: 0.21.0
Please use .at[] or .iat[] accessors.
Parameters
----------
index : label
takeable : interpret the index as indexers, default False
Returns
-------
value : scalar value
|
[
"Retrieve",
"single",
"value",
"at",
"passed",
"index",
"label"
] |
9feb3ad92cc0397a04b665803a49299ee7aa1037
|
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/sparse/series.py#L342-L364
|
19,626
|
pandas-dev/pandas
|
pandas/core/sparse/series.py
|
SparseSeries.set_value
|
def set_value(self, label, value, takeable=False):
"""
Quickly set single value at passed label. If label is not contained, a
new object is created with the label placed at the end of the result
index
.. deprecated:: 0.21.0
Please use .at[] or .iat[] accessors.
Parameters
----------
label : object
Partial indexing with MultiIndex not allowed
value : object
Scalar value
takeable : interpret the index as indexers, default False
Notes
-----
This method *always* returns a new object. It is not particularly
efficient but is provided for API compatibility with Series
Returns
-------
series : SparseSeries
"""
warnings.warn("set_value is deprecated and will be removed "
"in a future release. Please use "
".at[] or .iat[] accessors instead", FutureWarning,
stacklevel=2)
return self._set_value(label, value, takeable=takeable)
|
python
|
def set_value(self, label, value, takeable=False):
"""
Quickly set single value at passed label. If label is not contained, a
new object is created with the label placed at the end of the result
index
.. deprecated:: 0.21.0
Please use .at[] or .iat[] accessors.
Parameters
----------
label : object
Partial indexing with MultiIndex not allowed
value : object
Scalar value
takeable : interpret the index as indexers, default False
Notes
-----
This method *always* returns a new object. It is not particularly
efficient but is provided for API compatibility with Series
Returns
-------
series : SparseSeries
"""
warnings.warn("set_value is deprecated and will be removed "
"in a future release. Please use "
".at[] or .iat[] accessors instead", FutureWarning,
stacklevel=2)
return self._set_value(label, value, takeable=takeable)
|
[
"def",
"set_value",
"(",
"self",
",",
"label",
",",
"value",
",",
"takeable",
"=",
"False",
")",
":",
"warnings",
".",
"warn",
"(",
"\"set_value is deprecated and will be removed \"",
"\"in a future release. Please use \"",
"\".at[] or .iat[] accessors instead\"",
",",
"FutureWarning",
",",
"stacklevel",
"=",
"2",
")",
"return",
"self",
".",
"_set_value",
"(",
"label",
",",
"value",
",",
"takeable",
"=",
"takeable",
")"
] |
Quickly set single value at passed label. If label is not contained, a
new object is created with the label placed at the end of the result
index
.. deprecated:: 0.21.0
Please use .at[] or .iat[] accessors.
Parameters
----------
label : object
Partial indexing with MultiIndex not allowed
value : object
Scalar value
takeable : interpret the index as indexers, default False
Notes
-----
This method *always* returns a new object. It is not particularly
efficient but is provided for API compatibility with Series
Returns
-------
series : SparseSeries
|
[
"Quickly",
"set",
"single",
"value",
"at",
"passed",
"label",
".",
"If",
"label",
"is",
"not",
"contained",
"a",
"new",
"object",
"is",
"created",
"with",
"the",
"label",
"placed",
"at",
"the",
"end",
"of",
"the",
"result",
"index"
] |
9feb3ad92cc0397a04b665803a49299ee7aa1037
|
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/sparse/series.py#L371-L402
|
19,627
|
pandas-dev/pandas
|
pandas/core/sparse/series.py
|
SparseSeries.to_dense
|
def to_dense(self):
"""
Convert SparseSeries to a Series.
Returns
-------
s : Series
"""
return Series(self.values.to_dense(), index=self.index,
name=self.name)
|
python
|
def to_dense(self):
"""
Convert SparseSeries to a Series.
Returns
-------
s : Series
"""
return Series(self.values.to_dense(), index=self.index,
name=self.name)
|
[
"def",
"to_dense",
"(",
"self",
")",
":",
"return",
"Series",
"(",
"self",
".",
"values",
".",
"to_dense",
"(",
")",
",",
"index",
"=",
"self",
".",
"index",
",",
"name",
"=",
"self",
".",
"name",
")"
] |
Convert SparseSeries to a Series.
Returns
-------
s : Series
|
[
"Convert",
"SparseSeries",
"to",
"a",
"Series",
"."
] |
9feb3ad92cc0397a04b665803a49299ee7aa1037
|
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/sparse/series.py#L434-L443
|
19,628
|
pandas-dev/pandas
|
pandas/core/sparse/series.py
|
SparseSeries.copy
|
def copy(self, deep=True):
"""
Make a copy of the SparseSeries. Only the actual sparse values need to
be copied
"""
# TODO: https://github.com/pandas-dev/pandas/issues/22314
# We skip the block manager till that is resolved.
new_data = self.values.copy(deep=deep)
return self._constructor(new_data, sparse_index=self.sp_index,
fill_value=self.fill_value,
index=self.index.copy(),
name=self.name).__finalize__(self)
|
python
|
def copy(self, deep=True):
"""
Make a copy of the SparseSeries. Only the actual sparse values need to
be copied
"""
# TODO: https://github.com/pandas-dev/pandas/issues/22314
# We skip the block manager till that is resolved.
new_data = self.values.copy(deep=deep)
return self._constructor(new_data, sparse_index=self.sp_index,
fill_value=self.fill_value,
index=self.index.copy(),
name=self.name).__finalize__(self)
|
[
"def",
"copy",
"(",
"self",
",",
"deep",
"=",
"True",
")",
":",
"# TODO: https://github.com/pandas-dev/pandas/issues/22314",
"# We skip the block manager till that is resolved.",
"new_data",
"=",
"self",
".",
"values",
".",
"copy",
"(",
"deep",
"=",
"deep",
")",
"return",
"self",
".",
"_constructor",
"(",
"new_data",
",",
"sparse_index",
"=",
"self",
".",
"sp_index",
",",
"fill_value",
"=",
"self",
".",
"fill_value",
",",
"index",
"=",
"self",
".",
"index",
".",
"copy",
"(",
")",
",",
"name",
"=",
"self",
".",
"name",
")",
".",
"__finalize__",
"(",
"self",
")"
] |
Make a copy of the SparseSeries. Only the actual sparse values need to
be copied
|
[
"Make",
"a",
"copy",
"of",
"the",
"SparseSeries",
".",
"Only",
"the",
"actual",
"sparse",
"values",
"need",
"to",
"be",
"copied"
] |
9feb3ad92cc0397a04b665803a49299ee7aa1037
|
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/sparse/series.py#L449-L460
|
19,629
|
pandas-dev/pandas
|
pandas/core/sparse/series.py
|
SparseSeries.sparse_reindex
|
def sparse_reindex(self, new_index):
"""
Conform sparse values to new SparseIndex
Parameters
----------
new_index : {BlockIndex, IntIndex}
Returns
-------
reindexed : SparseSeries
"""
if not isinstance(new_index, splib.SparseIndex):
raise TypeError("new index must be a SparseIndex")
values = self.values
values = values.sp_index.to_int_index().reindex(
values.sp_values.astype('float64'), values.fill_value, new_index)
values = SparseArray(values,
sparse_index=new_index,
fill_value=self.values.fill_value)
return self._constructor(values, index=self.index).__finalize__(self)
|
python
|
def sparse_reindex(self, new_index):
"""
Conform sparse values to new SparseIndex
Parameters
----------
new_index : {BlockIndex, IntIndex}
Returns
-------
reindexed : SparseSeries
"""
if not isinstance(new_index, splib.SparseIndex):
raise TypeError("new index must be a SparseIndex")
values = self.values
values = values.sp_index.to_int_index().reindex(
values.sp_values.astype('float64'), values.fill_value, new_index)
values = SparseArray(values,
sparse_index=new_index,
fill_value=self.values.fill_value)
return self._constructor(values, index=self.index).__finalize__(self)
|
[
"def",
"sparse_reindex",
"(",
"self",
",",
"new_index",
")",
":",
"if",
"not",
"isinstance",
"(",
"new_index",
",",
"splib",
".",
"SparseIndex",
")",
":",
"raise",
"TypeError",
"(",
"\"new index must be a SparseIndex\"",
")",
"values",
"=",
"self",
".",
"values",
"values",
"=",
"values",
".",
"sp_index",
".",
"to_int_index",
"(",
")",
".",
"reindex",
"(",
"values",
".",
"sp_values",
".",
"astype",
"(",
"'float64'",
")",
",",
"values",
".",
"fill_value",
",",
"new_index",
")",
"values",
"=",
"SparseArray",
"(",
"values",
",",
"sparse_index",
"=",
"new_index",
",",
"fill_value",
"=",
"self",
".",
"values",
".",
"fill_value",
")",
"return",
"self",
".",
"_constructor",
"(",
"values",
",",
"index",
"=",
"self",
".",
"index",
")",
".",
"__finalize__",
"(",
"self",
")"
] |
Conform sparse values to new SparseIndex
Parameters
----------
new_index : {BlockIndex, IntIndex}
Returns
-------
reindexed : SparseSeries
|
[
"Conform",
"sparse",
"values",
"to",
"new",
"SparseIndex"
] |
9feb3ad92cc0397a04b665803a49299ee7aa1037
|
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/sparse/series.py#L470-L490
|
19,630
|
pandas-dev/pandas
|
pandas/core/sparse/series.py
|
SparseSeries.dropna
|
def dropna(self, axis=0, inplace=False, **kwargs):
"""
Analogous to Series.dropna. If fill_value=NaN, returns a dense Series
"""
# TODO: make more efficient
# Validate axis
self._get_axis_number(axis or 0)
dense_valid = self.to_dense().dropna()
if inplace:
raise NotImplementedError("Cannot perform inplace dropna"
" operations on a SparseSeries")
if isna(self.fill_value):
return dense_valid
else:
dense_valid = dense_valid[dense_valid != self.fill_value]
return dense_valid.to_sparse(fill_value=self.fill_value)
|
python
|
def dropna(self, axis=0, inplace=False, **kwargs):
"""
Analogous to Series.dropna. If fill_value=NaN, returns a dense Series
"""
# TODO: make more efficient
# Validate axis
self._get_axis_number(axis or 0)
dense_valid = self.to_dense().dropna()
if inplace:
raise NotImplementedError("Cannot perform inplace dropna"
" operations on a SparseSeries")
if isna(self.fill_value):
return dense_valid
else:
dense_valid = dense_valid[dense_valid != self.fill_value]
return dense_valid.to_sparse(fill_value=self.fill_value)
|
[
"def",
"dropna",
"(",
"self",
",",
"axis",
"=",
"0",
",",
"inplace",
"=",
"False",
",",
"*",
"*",
"kwargs",
")",
":",
"# TODO: make more efficient",
"# Validate axis",
"self",
".",
"_get_axis_number",
"(",
"axis",
"or",
"0",
")",
"dense_valid",
"=",
"self",
".",
"to_dense",
"(",
")",
".",
"dropna",
"(",
")",
"if",
"inplace",
":",
"raise",
"NotImplementedError",
"(",
"\"Cannot perform inplace dropna\"",
"\" operations on a SparseSeries\"",
")",
"if",
"isna",
"(",
"self",
".",
"fill_value",
")",
":",
"return",
"dense_valid",
"else",
":",
"dense_valid",
"=",
"dense_valid",
"[",
"dense_valid",
"!=",
"self",
".",
"fill_value",
"]",
"return",
"dense_valid",
".",
"to_sparse",
"(",
"fill_value",
"=",
"self",
".",
"fill_value",
")"
] |
Analogous to Series.dropna. If fill_value=NaN, returns a dense Series
|
[
"Analogous",
"to",
"Series",
".",
"dropna",
".",
"If",
"fill_value",
"=",
"NaN",
"returns",
"a",
"dense",
"Series"
] |
9feb3ad92cc0397a04b665803a49299ee7aa1037
|
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/sparse/series.py#L537-L552
|
19,631
|
pandas-dev/pandas
|
pandas/core/sparse/series.py
|
SparseSeries.combine_first
|
def combine_first(self, other):
"""
Combine Series values, choosing the calling Series's values
first. Result index will be the union of the two indexes
Parameters
----------
other : Series
Returns
-------
y : Series
"""
if isinstance(other, SparseSeries):
other = other.to_dense()
dense_combined = self.to_dense().combine_first(other)
return dense_combined.to_sparse(fill_value=self.fill_value)
|
python
|
def combine_first(self, other):
"""
Combine Series values, choosing the calling Series's values
first. Result index will be the union of the two indexes
Parameters
----------
other : Series
Returns
-------
y : Series
"""
if isinstance(other, SparseSeries):
other = other.to_dense()
dense_combined = self.to_dense().combine_first(other)
return dense_combined.to_sparse(fill_value=self.fill_value)
|
[
"def",
"combine_first",
"(",
"self",
",",
"other",
")",
":",
"if",
"isinstance",
"(",
"other",
",",
"SparseSeries",
")",
":",
"other",
"=",
"other",
".",
"to_dense",
"(",
")",
"dense_combined",
"=",
"self",
".",
"to_dense",
"(",
")",
".",
"combine_first",
"(",
"other",
")",
"return",
"dense_combined",
".",
"to_sparse",
"(",
"fill_value",
"=",
"self",
".",
"fill_value",
")"
] |
Combine Series values, choosing the calling Series's values
first. Result index will be the union of the two indexes
Parameters
----------
other : Series
Returns
-------
y : Series
|
[
"Combine",
"Series",
"values",
"choosing",
"the",
"calling",
"Series",
"s",
"values",
"first",
".",
"Result",
"index",
"will",
"be",
"the",
"union",
"of",
"the",
"two",
"indexes"
] |
9feb3ad92cc0397a04b665803a49299ee7aa1037
|
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/sparse/series.py#L554-L571
|
19,632
|
pandas-dev/pandas
|
pandas/core/tools/datetimes.py
|
_maybe_cache
|
def _maybe_cache(arg, format, cache, convert_listlike):
"""
Create a cache of unique dates from an array of dates
Parameters
----------
arg : integer, float, string, datetime, list, tuple, 1-d array, Series
format : string
Strftime format to parse time
cache : boolean
True attempts to create a cache of converted values
convert_listlike : function
Conversion function to apply on dates
Returns
-------
cache_array : Series
Cache of converted, unique dates. Can be empty
"""
from pandas import Series
cache_array = Series()
if cache:
# Perform a quicker unique check
from pandas import Index
unique_dates = Index(arg).unique()
if len(unique_dates) < len(arg):
cache_dates = convert_listlike(unique_dates.to_numpy(),
True, format)
cache_array = Series(cache_dates, index=unique_dates)
return cache_array
|
python
|
def _maybe_cache(arg, format, cache, convert_listlike):
"""
Create a cache of unique dates from an array of dates
Parameters
----------
arg : integer, float, string, datetime, list, tuple, 1-d array, Series
format : string
Strftime format to parse time
cache : boolean
True attempts to create a cache of converted values
convert_listlike : function
Conversion function to apply on dates
Returns
-------
cache_array : Series
Cache of converted, unique dates. Can be empty
"""
from pandas import Series
cache_array = Series()
if cache:
# Perform a quicker unique check
from pandas import Index
unique_dates = Index(arg).unique()
if len(unique_dates) < len(arg):
cache_dates = convert_listlike(unique_dates.to_numpy(),
True, format)
cache_array = Series(cache_dates, index=unique_dates)
return cache_array
|
[
"def",
"_maybe_cache",
"(",
"arg",
",",
"format",
",",
"cache",
",",
"convert_listlike",
")",
":",
"from",
"pandas",
"import",
"Series",
"cache_array",
"=",
"Series",
"(",
")",
"if",
"cache",
":",
"# Perform a quicker unique check",
"from",
"pandas",
"import",
"Index",
"unique_dates",
"=",
"Index",
"(",
"arg",
")",
".",
"unique",
"(",
")",
"if",
"len",
"(",
"unique_dates",
")",
"<",
"len",
"(",
"arg",
")",
":",
"cache_dates",
"=",
"convert_listlike",
"(",
"unique_dates",
".",
"to_numpy",
"(",
")",
",",
"True",
",",
"format",
")",
"cache_array",
"=",
"Series",
"(",
"cache_dates",
",",
"index",
"=",
"unique_dates",
")",
"return",
"cache_array"
] |
Create a cache of unique dates from an array of dates
Parameters
----------
arg : integer, float, string, datetime, list, tuple, 1-d array, Series
format : string
Strftime format to parse time
cache : boolean
True attempts to create a cache of converted values
convert_listlike : function
Conversion function to apply on dates
Returns
-------
cache_array : Series
Cache of converted, unique dates. Can be empty
|
[
"Create",
"a",
"cache",
"of",
"unique",
"dates",
"from",
"an",
"array",
"of",
"dates"
] |
9feb3ad92cc0397a04b665803a49299ee7aa1037
|
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/tools/datetimes.py#L31-L60
|
19,633
|
pandas-dev/pandas
|
pandas/core/tools/datetimes.py
|
_convert_and_box_cache
|
def _convert_and_box_cache(arg, cache_array, box, errors, name=None):
"""
Convert array of dates with a cache and box the result
Parameters
----------
arg : integer, float, string, datetime, list, tuple, 1-d array, Series
cache_array : Series
Cache of converted, unique dates
box : boolean
True boxes result as an Index-like, False returns an ndarray
errors : string
'ignore' plus box=True will convert result to Index
name : string, default None
Name for a DatetimeIndex
Returns
-------
result : datetime of converted dates
Returns:
- Index-like if box=True
- ndarray if box=False
"""
from pandas import Series, DatetimeIndex, Index
result = Series(arg).map(cache_array)
if box:
if errors == 'ignore':
return Index(result, name=name)
else:
return DatetimeIndex(result, name=name)
return result.values
|
python
|
def _convert_and_box_cache(arg, cache_array, box, errors, name=None):
"""
Convert array of dates with a cache and box the result
Parameters
----------
arg : integer, float, string, datetime, list, tuple, 1-d array, Series
cache_array : Series
Cache of converted, unique dates
box : boolean
True boxes result as an Index-like, False returns an ndarray
errors : string
'ignore' plus box=True will convert result to Index
name : string, default None
Name for a DatetimeIndex
Returns
-------
result : datetime of converted dates
Returns:
- Index-like if box=True
- ndarray if box=False
"""
from pandas import Series, DatetimeIndex, Index
result = Series(arg).map(cache_array)
if box:
if errors == 'ignore':
return Index(result, name=name)
else:
return DatetimeIndex(result, name=name)
return result.values
|
[
"def",
"_convert_and_box_cache",
"(",
"arg",
",",
"cache_array",
",",
"box",
",",
"errors",
",",
"name",
"=",
"None",
")",
":",
"from",
"pandas",
"import",
"Series",
",",
"DatetimeIndex",
",",
"Index",
"result",
"=",
"Series",
"(",
"arg",
")",
".",
"map",
"(",
"cache_array",
")",
"if",
"box",
":",
"if",
"errors",
"==",
"'ignore'",
":",
"return",
"Index",
"(",
"result",
",",
"name",
"=",
"name",
")",
"else",
":",
"return",
"DatetimeIndex",
"(",
"result",
",",
"name",
"=",
"name",
")",
"return",
"result",
".",
"values"
] |
Convert array of dates with a cache and box the result
Parameters
----------
arg : integer, float, string, datetime, list, tuple, 1-d array, Series
cache_array : Series
Cache of converted, unique dates
box : boolean
True boxes result as an Index-like, False returns an ndarray
errors : string
'ignore' plus box=True will convert result to Index
name : string, default None
Name for a DatetimeIndex
Returns
-------
result : datetime of converted dates
Returns:
- Index-like if box=True
- ndarray if box=False
|
[
"Convert",
"array",
"of",
"dates",
"with",
"a",
"cache",
"and",
"box",
"the",
"result"
] |
9feb3ad92cc0397a04b665803a49299ee7aa1037
|
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/tools/datetimes.py#L63-L94
|
19,634
|
pandas-dev/pandas
|
pandas/core/tools/datetimes.py
|
_return_parsed_timezone_results
|
def _return_parsed_timezone_results(result, timezones, box, tz, name):
"""
Return results from array_strptime if a %z or %Z directive was passed.
Parameters
----------
result : ndarray
int64 date representations of the dates
timezones : ndarray
pytz timezone objects
box : boolean
True boxes result as an Index-like, False returns an ndarray
tz : object
None or pytz timezone object
name : string, default None
Name for a DatetimeIndex
Returns
-------
tz_result : ndarray of parsed dates with timezone
Returns:
- Index-like if box=True
- ndarray of Timestamps if box=False
"""
if tz is not None:
raise ValueError("Cannot pass a tz argument when "
"parsing strings with timezone "
"information.")
tz_results = np.array([Timestamp(res).tz_localize(zone) for res, zone
in zip(result, timezones)])
if box:
from pandas import Index
return Index(tz_results, name=name)
return tz_results
|
python
|
def _return_parsed_timezone_results(result, timezones, box, tz, name):
"""
Return results from array_strptime if a %z or %Z directive was passed.
Parameters
----------
result : ndarray
int64 date representations of the dates
timezones : ndarray
pytz timezone objects
box : boolean
True boxes result as an Index-like, False returns an ndarray
tz : object
None or pytz timezone object
name : string, default None
Name for a DatetimeIndex
Returns
-------
tz_result : ndarray of parsed dates with timezone
Returns:
- Index-like if box=True
- ndarray of Timestamps if box=False
"""
if tz is not None:
raise ValueError("Cannot pass a tz argument when "
"parsing strings with timezone "
"information.")
tz_results = np.array([Timestamp(res).tz_localize(zone) for res, zone
in zip(result, timezones)])
if box:
from pandas import Index
return Index(tz_results, name=name)
return tz_results
|
[
"def",
"_return_parsed_timezone_results",
"(",
"result",
",",
"timezones",
",",
"box",
",",
"tz",
",",
"name",
")",
":",
"if",
"tz",
"is",
"not",
"None",
":",
"raise",
"ValueError",
"(",
"\"Cannot pass a tz argument when \"",
"\"parsing strings with timezone \"",
"\"information.\"",
")",
"tz_results",
"=",
"np",
".",
"array",
"(",
"[",
"Timestamp",
"(",
"res",
")",
".",
"tz_localize",
"(",
"zone",
")",
"for",
"res",
",",
"zone",
"in",
"zip",
"(",
"result",
",",
"timezones",
")",
"]",
")",
"if",
"box",
":",
"from",
"pandas",
"import",
"Index",
"return",
"Index",
"(",
"tz_results",
",",
"name",
"=",
"name",
")",
"return",
"tz_results"
] |
Return results from array_strptime if a %z or %Z directive was passed.
Parameters
----------
result : ndarray
int64 date representations of the dates
timezones : ndarray
pytz timezone objects
box : boolean
True boxes result as an Index-like, False returns an ndarray
tz : object
None or pytz timezone object
name : string, default None
Name for a DatetimeIndex
Returns
-------
tz_result : ndarray of parsed dates with timezone
Returns:
- Index-like if box=True
- ndarray of Timestamps if box=False
|
[
"Return",
"results",
"from",
"array_strptime",
"if",
"a",
"%z",
"or",
"%Z",
"directive",
"was",
"passed",
"."
] |
9feb3ad92cc0397a04b665803a49299ee7aa1037
|
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/tools/datetimes.py#L97-L132
|
19,635
|
pandas-dev/pandas
|
pandas/core/tools/datetimes.py
|
_adjust_to_origin
|
def _adjust_to_origin(arg, origin, unit):
"""
Helper function for to_datetime.
Adjust input argument to the specified origin
Parameters
----------
arg : list, tuple, ndarray, Series, Index
date to be adjusted
origin : 'julian' or Timestamp
origin offset for the arg
unit : string
passed unit from to_datetime, must be 'D'
Returns
-------
ndarray or scalar of adjusted date(s)
"""
if origin == 'julian':
original = arg
j0 = Timestamp(0).to_julian_date()
if unit != 'D':
raise ValueError("unit must be 'D' for origin='julian'")
try:
arg = arg - j0
except TypeError:
raise ValueError("incompatible 'arg' type for given "
"'origin'='julian'")
# premptively check this for a nice range
j_max = Timestamp.max.to_julian_date() - j0
j_min = Timestamp.min.to_julian_date() - j0
if np.any(arg > j_max) or np.any(arg < j_min):
raise tslibs.OutOfBoundsDatetime(
"{original} is Out of Bounds for "
"origin='julian'".format(original=original))
else:
# arg must be numeric
if not ((is_scalar(arg) and (is_integer(arg) or is_float(arg))) or
is_numeric_dtype(np.asarray(arg))):
raise ValueError(
"'{arg}' is not compatible with origin='{origin}'; "
"it must be numeric with a unit specified ".format(
arg=arg,
origin=origin))
# we are going to offset back to unix / epoch time
try:
offset = Timestamp(origin)
except tslibs.OutOfBoundsDatetime:
raise tslibs.OutOfBoundsDatetime(
"origin {origin} is Out of Bounds".format(origin=origin))
except ValueError:
raise ValueError("origin {origin} cannot be converted "
"to a Timestamp".format(origin=origin))
if offset.tz is not None:
raise ValueError(
"origin offset {} must be tz-naive".format(offset))
offset -= Timestamp(0)
# convert the offset to the unit of the arg
# this should be lossless in terms of precision
offset = offset // tslibs.Timedelta(1, unit=unit)
# scalars & ndarray-like can handle the addition
if is_list_like(arg) and not isinstance(
arg, (ABCSeries, ABCIndexClass, np.ndarray)):
arg = np.asarray(arg)
arg = arg + offset
return arg
|
python
|
def _adjust_to_origin(arg, origin, unit):
"""
Helper function for to_datetime.
Adjust input argument to the specified origin
Parameters
----------
arg : list, tuple, ndarray, Series, Index
date to be adjusted
origin : 'julian' or Timestamp
origin offset for the arg
unit : string
passed unit from to_datetime, must be 'D'
Returns
-------
ndarray or scalar of adjusted date(s)
"""
if origin == 'julian':
original = arg
j0 = Timestamp(0).to_julian_date()
if unit != 'D':
raise ValueError("unit must be 'D' for origin='julian'")
try:
arg = arg - j0
except TypeError:
raise ValueError("incompatible 'arg' type for given "
"'origin'='julian'")
# premptively check this for a nice range
j_max = Timestamp.max.to_julian_date() - j0
j_min = Timestamp.min.to_julian_date() - j0
if np.any(arg > j_max) or np.any(arg < j_min):
raise tslibs.OutOfBoundsDatetime(
"{original} is Out of Bounds for "
"origin='julian'".format(original=original))
else:
# arg must be numeric
if not ((is_scalar(arg) and (is_integer(arg) or is_float(arg))) or
is_numeric_dtype(np.asarray(arg))):
raise ValueError(
"'{arg}' is not compatible with origin='{origin}'; "
"it must be numeric with a unit specified ".format(
arg=arg,
origin=origin))
# we are going to offset back to unix / epoch time
try:
offset = Timestamp(origin)
except tslibs.OutOfBoundsDatetime:
raise tslibs.OutOfBoundsDatetime(
"origin {origin} is Out of Bounds".format(origin=origin))
except ValueError:
raise ValueError("origin {origin} cannot be converted "
"to a Timestamp".format(origin=origin))
if offset.tz is not None:
raise ValueError(
"origin offset {} must be tz-naive".format(offset))
offset -= Timestamp(0)
# convert the offset to the unit of the arg
# this should be lossless in terms of precision
offset = offset // tslibs.Timedelta(1, unit=unit)
# scalars & ndarray-like can handle the addition
if is_list_like(arg) and not isinstance(
arg, (ABCSeries, ABCIndexClass, np.ndarray)):
arg = np.asarray(arg)
arg = arg + offset
return arg
|
[
"def",
"_adjust_to_origin",
"(",
"arg",
",",
"origin",
",",
"unit",
")",
":",
"if",
"origin",
"==",
"'julian'",
":",
"original",
"=",
"arg",
"j0",
"=",
"Timestamp",
"(",
"0",
")",
".",
"to_julian_date",
"(",
")",
"if",
"unit",
"!=",
"'D'",
":",
"raise",
"ValueError",
"(",
"\"unit must be 'D' for origin='julian'\"",
")",
"try",
":",
"arg",
"=",
"arg",
"-",
"j0",
"except",
"TypeError",
":",
"raise",
"ValueError",
"(",
"\"incompatible 'arg' type for given \"",
"\"'origin'='julian'\"",
")",
"# premptively check this for a nice range",
"j_max",
"=",
"Timestamp",
".",
"max",
".",
"to_julian_date",
"(",
")",
"-",
"j0",
"j_min",
"=",
"Timestamp",
".",
"min",
".",
"to_julian_date",
"(",
")",
"-",
"j0",
"if",
"np",
".",
"any",
"(",
"arg",
">",
"j_max",
")",
"or",
"np",
".",
"any",
"(",
"arg",
"<",
"j_min",
")",
":",
"raise",
"tslibs",
".",
"OutOfBoundsDatetime",
"(",
"\"{original} is Out of Bounds for \"",
"\"origin='julian'\"",
".",
"format",
"(",
"original",
"=",
"original",
")",
")",
"else",
":",
"# arg must be numeric",
"if",
"not",
"(",
"(",
"is_scalar",
"(",
"arg",
")",
"and",
"(",
"is_integer",
"(",
"arg",
")",
"or",
"is_float",
"(",
"arg",
")",
")",
")",
"or",
"is_numeric_dtype",
"(",
"np",
".",
"asarray",
"(",
"arg",
")",
")",
")",
":",
"raise",
"ValueError",
"(",
"\"'{arg}' is not compatible with origin='{origin}'; \"",
"\"it must be numeric with a unit specified \"",
".",
"format",
"(",
"arg",
"=",
"arg",
",",
"origin",
"=",
"origin",
")",
")",
"# we are going to offset back to unix / epoch time",
"try",
":",
"offset",
"=",
"Timestamp",
"(",
"origin",
")",
"except",
"tslibs",
".",
"OutOfBoundsDatetime",
":",
"raise",
"tslibs",
".",
"OutOfBoundsDatetime",
"(",
"\"origin {origin} is Out of Bounds\"",
".",
"format",
"(",
"origin",
"=",
"origin",
")",
")",
"except",
"ValueError",
":",
"raise",
"ValueError",
"(",
"\"origin {origin} cannot be converted \"",
"\"to a Timestamp\"",
".",
"format",
"(",
"origin",
"=",
"origin",
")",
")",
"if",
"offset",
".",
"tz",
"is",
"not",
"None",
":",
"raise",
"ValueError",
"(",
"\"origin offset {} must be tz-naive\"",
".",
"format",
"(",
"offset",
")",
")",
"offset",
"-=",
"Timestamp",
"(",
"0",
")",
"# convert the offset to the unit of the arg",
"# this should be lossless in terms of precision",
"offset",
"=",
"offset",
"//",
"tslibs",
".",
"Timedelta",
"(",
"1",
",",
"unit",
"=",
"unit",
")",
"# scalars & ndarray-like can handle the addition",
"if",
"is_list_like",
"(",
"arg",
")",
"and",
"not",
"isinstance",
"(",
"arg",
",",
"(",
"ABCSeries",
",",
"ABCIndexClass",
",",
"np",
".",
"ndarray",
")",
")",
":",
"arg",
"=",
"np",
".",
"asarray",
"(",
"arg",
")",
"arg",
"=",
"arg",
"+",
"offset",
"return",
"arg"
] |
Helper function for to_datetime.
Adjust input argument to the specified origin
Parameters
----------
arg : list, tuple, ndarray, Series, Index
date to be adjusted
origin : 'julian' or Timestamp
origin offset for the arg
unit : string
passed unit from to_datetime, must be 'D'
Returns
-------
ndarray or scalar of adjusted date(s)
|
[
"Helper",
"function",
"for",
"to_datetime",
".",
"Adjust",
"input",
"argument",
"to",
"the",
"specified",
"origin"
] |
9feb3ad92cc0397a04b665803a49299ee7aa1037
|
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/tools/datetimes.py#L329-L399
|
19,636
|
pandas-dev/pandas
|
pandas/core/tools/datetimes.py
|
to_datetime
|
def to_datetime(arg, errors='raise', dayfirst=False, yearfirst=False,
utc=None, box=True, format=None, exact=True,
unit=None, infer_datetime_format=False, origin='unix',
cache=False):
"""
Convert argument to datetime.
Parameters
----------
arg : integer, float, string, datetime, list, tuple, 1-d array, Series
.. versionadded:: 0.18.1
or DataFrame/dict-like
errors : {'ignore', 'raise', 'coerce'}, default 'raise'
- If 'raise', then invalid parsing will raise an exception
- If 'coerce', then invalid parsing will be set as NaT
- If 'ignore', then invalid parsing will return the input
dayfirst : boolean, default False
Specify a date parse order if `arg` is str or its list-likes.
If True, parses dates with the day first, eg 10/11/12 is parsed as
2012-11-10.
Warning: dayfirst=True is not strict, but will prefer to parse
with day first (this is a known bug, based on dateutil behavior).
yearfirst : boolean, default False
Specify a date parse order if `arg` is str or its list-likes.
- If True parses dates with the year first, eg 10/11/12 is parsed as
2010-11-12.
- If both dayfirst and yearfirst are True, yearfirst is preceded (same
as dateutil).
Warning: yearfirst=True is not strict, but will prefer to parse
with year first (this is a known bug, based on dateutil behavior).
.. versionadded:: 0.16.1
utc : boolean, default None
Return UTC DatetimeIndex if True (converting any tz-aware
datetime.datetime objects as well).
box : boolean, default True
- If True returns a DatetimeIndex or Index-like object
- If False returns ndarray of values.
.. deprecated:: 0.25.0
Use :meth:`.to_numpy` or :meth:`Timestamp.to_datetime64`
instead to get an ndarray of values or numpy.datetime64,
respectively.
format : string, default None
strftime to parse time, eg "%d/%m/%Y", note that "%f" will parse
all the way up to nanoseconds.
See strftime documentation for more information on choices:
https://docs.python.org/3/library/datetime.html#strftime-and-strptime-behavior
exact : boolean, True by default
- If True, require an exact format match.
- If False, allow the format to match anywhere in the target string.
unit : string, default 'ns'
unit of the arg (D,s,ms,us,ns) denote the unit, which is an
integer or float number. This will be based off the origin.
Example, with unit='ms' and origin='unix' (the default), this
would calculate the number of milliseconds to the unix epoch start.
infer_datetime_format : boolean, default False
If True and no `format` is given, attempt to infer the format of the
datetime strings, and if it can be inferred, switch to a faster
method of parsing them. In some cases this can increase the parsing
speed by ~5-10x.
origin : scalar, default is 'unix'
Define the reference date. The numeric values would be parsed as number
of units (defined by `unit`) since this reference date.
- If 'unix' (or POSIX) time; origin is set to 1970-01-01.
- If 'julian', unit must be 'D', and origin is set to beginning of
Julian Calendar. Julian day number 0 is assigned to the day starting
at noon on January 1, 4713 BC.
- If Timestamp convertible, origin is set to Timestamp identified by
origin.
.. versionadded:: 0.20.0
cache : boolean, default False
If True, use a cache of unique, converted dates to apply the datetime
conversion. May produce significant speed-up when parsing duplicate
date strings, especially ones with timezone offsets.
.. versionadded:: 0.23.0
Returns
-------
ret : datetime if parsing succeeded.
Return type depends on input:
- list-like: DatetimeIndex
- Series: Series of datetime64 dtype
- scalar: Timestamp
In case when it is not possible to return designated types (e.g. when
any element of input is before Timestamp.min or after Timestamp.max)
return will have datetime.datetime type (or corresponding
array/Series).
See Also
--------
DataFrame.astype : Cast argument to a specified dtype.
to_timedelta : Convert argument to timedelta.
Examples
--------
Assembling a datetime from multiple columns of a DataFrame. The keys can be
common abbreviations like ['year', 'month', 'day', 'minute', 'second',
'ms', 'us', 'ns']) or plurals of the same
>>> df = pd.DataFrame({'year': [2015, 2016],
'month': [2, 3],
'day': [4, 5]})
>>> pd.to_datetime(df)
0 2015-02-04
1 2016-03-05
dtype: datetime64[ns]
If a date does not meet the `timestamp limitations
<http://pandas.pydata.org/pandas-docs/stable/timeseries.html
#timeseries-timestamp-limits>`_, passing errors='ignore'
will return the original input instead of raising any exception.
Passing errors='coerce' will force an out-of-bounds date to NaT,
in addition to forcing non-dates (or non-parseable dates) to NaT.
>>> pd.to_datetime('13000101', format='%Y%m%d', errors='ignore')
datetime.datetime(1300, 1, 1, 0, 0)
>>> pd.to_datetime('13000101', format='%Y%m%d', errors='coerce')
NaT
Passing infer_datetime_format=True can often-times speedup a parsing
if its not an ISO8601 format exactly, but in a regular format.
>>> s = pd.Series(['3/11/2000', '3/12/2000', '3/13/2000']*1000)
>>> s.head()
0 3/11/2000
1 3/12/2000
2 3/13/2000
3 3/11/2000
4 3/12/2000
dtype: object
>>> %timeit pd.to_datetime(s,infer_datetime_format=True)
100 loops, best of 3: 10.4 ms per loop
>>> %timeit pd.to_datetime(s,infer_datetime_format=False)
1 loop, best of 3: 471 ms per loop
Using a unix epoch time
>>> pd.to_datetime(1490195805, unit='s')
Timestamp('2017-03-22 15:16:45')
>>> pd.to_datetime(1490195805433502912, unit='ns')
Timestamp('2017-03-22 15:16:45.433502912')
.. warning:: For float arg, precision rounding might happen. To prevent
unexpected behavior use a fixed-width exact type.
Using a non-unix epoch origin
>>> pd.to_datetime([1, 2, 3], unit='D',
origin=pd.Timestamp('1960-01-01'))
0 1960-01-02
1 1960-01-03
2 1960-01-04
"""
if arg is None:
return None
if origin != 'unix':
arg = _adjust_to_origin(arg, origin, unit)
tz = 'utc' if utc else None
convert_listlike = partial(_convert_listlike_datetimes, tz=tz, unit=unit,
dayfirst=dayfirst, yearfirst=yearfirst,
errors=errors, exact=exact,
infer_datetime_format=infer_datetime_format)
if isinstance(arg, Timestamp):
result = arg
if tz is not None:
if arg.tz is not None:
result = result.tz_convert(tz)
else:
result = result.tz_localize(tz)
elif isinstance(arg, ABCSeries):
cache_array = _maybe_cache(arg, format, cache, convert_listlike)
if not cache_array.empty:
result = arg.map(cache_array)
else:
values = convert_listlike(arg._values, True, format)
result = arg._constructor(values, index=arg.index, name=arg.name)
elif isinstance(arg, (ABCDataFrame, abc.MutableMapping)):
result = _assemble_from_unit_mappings(arg, errors, box, tz)
elif isinstance(arg, ABCIndexClass):
cache_array = _maybe_cache(arg, format, cache, convert_listlike)
if not cache_array.empty:
result = _convert_and_box_cache(arg, cache_array, box, errors,
name=arg.name)
else:
convert_listlike = partial(convert_listlike, name=arg.name)
result = convert_listlike(arg, box, format)
elif is_list_like(arg):
cache_array = _maybe_cache(arg, format, cache, convert_listlike)
if not cache_array.empty:
result = _convert_and_box_cache(arg, cache_array, box, errors)
else:
result = convert_listlike(arg, box, format)
else:
result = convert_listlike(np.array([arg]), box, format)[0]
return result
|
python
|
def to_datetime(arg, errors='raise', dayfirst=False, yearfirst=False,
utc=None, box=True, format=None, exact=True,
unit=None, infer_datetime_format=False, origin='unix',
cache=False):
"""
Convert argument to datetime.
Parameters
----------
arg : integer, float, string, datetime, list, tuple, 1-d array, Series
.. versionadded:: 0.18.1
or DataFrame/dict-like
errors : {'ignore', 'raise', 'coerce'}, default 'raise'
- If 'raise', then invalid parsing will raise an exception
- If 'coerce', then invalid parsing will be set as NaT
- If 'ignore', then invalid parsing will return the input
dayfirst : boolean, default False
Specify a date parse order if `arg` is str or its list-likes.
If True, parses dates with the day first, eg 10/11/12 is parsed as
2012-11-10.
Warning: dayfirst=True is not strict, but will prefer to parse
with day first (this is a known bug, based on dateutil behavior).
yearfirst : boolean, default False
Specify a date parse order if `arg` is str or its list-likes.
- If True parses dates with the year first, eg 10/11/12 is parsed as
2010-11-12.
- If both dayfirst and yearfirst are True, yearfirst is preceded (same
as dateutil).
Warning: yearfirst=True is not strict, but will prefer to parse
with year first (this is a known bug, based on dateutil behavior).
.. versionadded:: 0.16.1
utc : boolean, default None
Return UTC DatetimeIndex if True (converting any tz-aware
datetime.datetime objects as well).
box : boolean, default True
- If True returns a DatetimeIndex or Index-like object
- If False returns ndarray of values.
.. deprecated:: 0.25.0
Use :meth:`.to_numpy` or :meth:`Timestamp.to_datetime64`
instead to get an ndarray of values or numpy.datetime64,
respectively.
format : string, default None
strftime to parse time, eg "%d/%m/%Y", note that "%f" will parse
all the way up to nanoseconds.
See strftime documentation for more information on choices:
https://docs.python.org/3/library/datetime.html#strftime-and-strptime-behavior
exact : boolean, True by default
- If True, require an exact format match.
- If False, allow the format to match anywhere in the target string.
unit : string, default 'ns'
unit of the arg (D,s,ms,us,ns) denote the unit, which is an
integer or float number. This will be based off the origin.
Example, with unit='ms' and origin='unix' (the default), this
would calculate the number of milliseconds to the unix epoch start.
infer_datetime_format : boolean, default False
If True and no `format` is given, attempt to infer the format of the
datetime strings, and if it can be inferred, switch to a faster
method of parsing them. In some cases this can increase the parsing
speed by ~5-10x.
origin : scalar, default is 'unix'
Define the reference date. The numeric values would be parsed as number
of units (defined by `unit`) since this reference date.
- If 'unix' (or POSIX) time; origin is set to 1970-01-01.
- If 'julian', unit must be 'D', and origin is set to beginning of
Julian Calendar. Julian day number 0 is assigned to the day starting
at noon on January 1, 4713 BC.
- If Timestamp convertible, origin is set to Timestamp identified by
origin.
.. versionadded:: 0.20.0
cache : boolean, default False
If True, use a cache of unique, converted dates to apply the datetime
conversion. May produce significant speed-up when parsing duplicate
date strings, especially ones with timezone offsets.
.. versionadded:: 0.23.0
Returns
-------
ret : datetime if parsing succeeded.
Return type depends on input:
- list-like: DatetimeIndex
- Series: Series of datetime64 dtype
- scalar: Timestamp
In case when it is not possible to return designated types (e.g. when
any element of input is before Timestamp.min or after Timestamp.max)
return will have datetime.datetime type (or corresponding
array/Series).
See Also
--------
DataFrame.astype : Cast argument to a specified dtype.
to_timedelta : Convert argument to timedelta.
Examples
--------
Assembling a datetime from multiple columns of a DataFrame. The keys can be
common abbreviations like ['year', 'month', 'day', 'minute', 'second',
'ms', 'us', 'ns']) or plurals of the same
>>> df = pd.DataFrame({'year': [2015, 2016],
'month': [2, 3],
'day': [4, 5]})
>>> pd.to_datetime(df)
0 2015-02-04
1 2016-03-05
dtype: datetime64[ns]
If a date does not meet the `timestamp limitations
<http://pandas.pydata.org/pandas-docs/stable/timeseries.html
#timeseries-timestamp-limits>`_, passing errors='ignore'
will return the original input instead of raising any exception.
Passing errors='coerce' will force an out-of-bounds date to NaT,
in addition to forcing non-dates (or non-parseable dates) to NaT.
>>> pd.to_datetime('13000101', format='%Y%m%d', errors='ignore')
datetime.datetime(1300, 1, 1, 0, 0)
>>> pd.to_datetime('13000101', format='%Y%m%d', errors='coerce')
NaT
Passing infer_datetime_format=True can often-times speedup a parsing
if its not an ISO8601 format exactly, but in a regular format.
>>> s = pd.Series(['3/11/2000', '3/12/2000', '3/13/2000']*1000)
>>> s.head()
0 3/11/2000
1 3/12/2000
2 3/13/2000
3 3/11/2000
4 3/12/2000
dtype: object
>>> %timeit pd.to_datetime(s,infer_datetime_format=True)
100 loops, best of 3: 10.4 ms per loop
>>> %timeit pd.to_datetime(s,infer_datetime_format=False)
1 loop, best of 3: 471 ms per loop
Using a unix epoch time
>>> pd.to_datetime(1490195805, unit='s')
Timestamp('2017-03-22 15:16:45')
>>> pd.to_datetime(1490195805433502912, unit='ns')
Timestamp('2017-03-22 15:16:45.433502912')
.. warning:: For float arg, precision rounding might happen. To prevent
unexpected behavior use a fixed-width exact type.
Using a non-unix epoch origin
>>> pd.to_datetime([1, 2, 3], unit='D',
origin=pd.Timestamp('1960-01-01'))
0 1960-01-02
1 1960-01-03
2 1960-01-04
"""
if arg is None:
return None
if origin != 'unix':
arg = _adjust_to_origin(arg, origin, unit)
tz = 'utc' if utc else None
convert_listlike = partial(_convert_listlike_datetimes, tz=tz, unit=unit,
dayfirst=dayfirst, yearfirst=yearfirst,
errors=errors, exact=exact,
infer_datetime_format=infer_datetime_format)
if isinstance(arg, Timestamp):
result = arg
if tz is not None:
if arg.tz is not None:
result = result.tz_convert(tz)
else:
result = result.tz_localize(tz)
elif isinstance(arg, ABCSeries):
cache_array = _maybe_cache(arg, format, cache, convert_listlike)
if not cache_array.empty:
result = arg.map(cache_array)
else:
values = convert_listlike(arg._values, True, format)
result = arg._constructor(values, index=arg.index, name=arg.name)
elif isinstance(arg, (ABCDataFrame, abc.MutableMapping)):
result = _assemble_from_unit_mappings(arg, errors, box, tz)
elif isinstance(arg, ABCIndexClass):
cache_array = _maybe_cache(arg, format, cache, convert_listlike)
if not cache_array.empty:
result = _convert_and_box_cache(arg, cache_array, box, errors,
name=arg.name)
else:
convert_listlike = partial(convert_listlike, name=arg.name)
result = convert_listlike(arg, box, format)
elif is_list_like(arg):
cache_array = _maybe_cache(arg, format, cache, convert_listlike)
if not cache_array.empty:
result = _convert_and_box_cache(arg, cache_array, box, errors)
else:
result = convert_listlike(arg, box, format)
else:
result = convert_listlike(np.array([arg]), box, format)[0]
return result
|
[
"def",
"to_datetime",
"(",
"arg",
",",
"errors",
"=",
"'raise'",
",",
"dayfirst",
"=",
"False",
",",
"yearfirst",
"=",
"False",
",",
"utc",
"=",
"None",
",",
"box",
"=",
"True",
",",
"format",
"=",
"None",
",",
"exact",
"=",
"True",
",",
"unit",
"=",
"None",
",",
"infer_datetime_format",
"=",
"False",
",",
"origin",
"=",
"'unix'",
",",
"cache",
"=",
"False",
")",
":",
"if",
"arg",
"is",
"None",
":",
"return",
"None",
"if",
"origin",
"!=",
"'unix'",
":",
"arg",
"=",
"_adjust_to_origin",
"(",
"arg",
",",
"origin",
",",
"unit",
")",
"tz",
"=",
"'utc'",
"if",
"utc",
"else",
"None",
"convert_listlike",
"=",
"partial",
"(",
"_convert_listlike_datetimes",
",",
"tz",
"=",
"tz",
",",
"unit",
"=",
"unit",
",",
"dayfirst",
"=",
"dayfirst",
",",
"yearfirst",
"=",
"yearfirst",
",",
"errors",
"=",
"errors",
",",
"exact",
"=",
"exact",
",",
"infer_datetime_format",
"=",
"infer_datetime_format",
")",
"if",
"isinstance",
"(",
"arg",
",",
"Timestamp",
")",
":",
"result",
"=",
"arg",
"if",
"tz",
"is",
"not",
"None",
":",
"if",
"arg",
".",
"tz",
"is",
"not",
"None",
":",
"result",
"=",
"result",
".",
"tz_convert",
"(",
"tz",
")",
"else",
":",
"result",
"=",
"result",
".",
"tz_localize",
"(",
"tz",
")",
"elif",
"isinstance",
"(",
"arg",
",",
"ABCSeries",
")",
":",
"cache_array",
"=",
"_maybe_cache",
"(",
"arg",
",",
"format",
",",
"cache",
",",
"convert_listlike",
")",
"if",
"not",
"cache_array",
".",
"empty",
":",
"result",
"=",
"arg",
".",
"map",
"(",
"cache_array",
")",
"else",
":",
"values",
"=",
"convert_listlike",
"(",
"arg",
".",
"_values",
",",
"True",
",",
"format",
")",
"result",
"=",
"arg",
".",
"_constructor",
"(",
"values",
",",
"index",
"=",
"arg",
".",
"index",
",",
"name",
"=",
"arg",
".",
"name",
")",
"elif",
"isinstance",
"(",
"arg",
",",
"(",
"ABCDataFrame",
",",
"abc",
".",
"MutableMapping",
")",
")",
":",
"result",
"=",
"_assemble_from_unit_mappings",
"(",
"arg",
",",
"errors",
",",
"box",
",",
"tz",
")",
"elif",
"isinstance",
"(",
"arg",
",",
"ABCIndexClass",
")",
":",
"cache_array",
"=",
"_maybe_cache",
"(",
"arg",
",",
"format",
",",
"cache",
",",
"convert_listlike",
")",
"if",
"not",
"cache_array",
".",
"empty",
":",
"result",
"=",
"_convert_and_box_cache",
"(",
"arg",
",",
"cache_array",
",",
"box",
",",
"errors",
",",
"name",
"=",
"arg",
".",
"name",
")",
"else",
":",
"convert_listlike",
"=",
"partial",
"(",
"convert_listlike",
",",
"name",
"=",
"arg",
".",
"name",
")",
"result",
"=",
"convert_listlike",
"(",
"arg",
",",
"box",
",",
"format",
")",
"elif",
"is_list_like",
"(",
"arg",
")",
":",
"cache_array",
"=",
"_maybe_cache",
"(",
"arg",
",",
"format",
",",
"cache",
",",
"convert_listlike",
")",
"if",
"not",
"cache_array",
".",
"empty",
":",
"result",
"=",
"_convert_and_box_cache",
"(",
"arg",
",",
"cache_array",
",",
"box",
",",
"errors",
")",
"else",
":",
"result",
"=",
"convert_listlike",
"(",
"arg",
",",
"box",
",",
"format",
")",
"else",
":",
"result",
"=",
"convert_listlike",
"(",
"np",
".",
"array",
"(",
"[",
"arg",
"]",
")",
",",
"box",
",",
"format",
")",
"[",
"0",
"]",
"return",
"result"
] |
Convert argument to datetime.
Parameters
----------
arg : integer, float, string, datetime, list, tuple, 1-d array, Series
.. versionadded:: 0.18.1
or DataFrame/dict-like
errors : {'ignore', 'raise', 'coerce'}, default 'raise'
- If 'raise', then invalid parsing will raise an exception
- If 'coerce', then invalid parsing will be set as NaT
- If 'ignore', then invalid parsing will return the input
dayfirst : boolean, default False
Specify a date parse order if `arg` is str or its list-likes.
If True, parses dates with the day first, eg 10/11/12 is parsed as
2012-11-10.
Warning: dayfirst=True is not strict, but will prefer to parse
with day first (this is a known bug, based on dateutil behavior).
yearfirst : boolean, default False
Specify a date parse order if `arg` is str or its list-likes.
- If True parses dates with the year first, eg 10/11/12 is parsed as
2010-11-12.
- If both dayfirst and yearfirst are True, yearfirst is preceded (same
as dateutil).
Warning: yearfirst=True is not strict, but will prefer to parse
with year first (this is a known bug, based on dateutil behavior).
.. versionadded:: 0.16.1
utc : boolean, default None
Return UTC DatetimeIndex if True (converting any tz-aware
datetime.datetime objects as well).
box : boolean, default True
- If True returns a DatetimeIndex or Index-like object
- If False returns ndarray of values.
.. deprecated:: 0.25.0
Use :meth:`.to_numpy` or :meth:`Timestamp.to_datetime64`
instead to get an ndarray of values or numpy.datetime64,
respectively.
format : string, default None
strftime to parse time, eg "%d/%m/%Y", note that "%f" will parse
all the way up to nanoseconds.
See strftime documentation for more information on choices:
https://docs.python.org/3/library/datetime.html#strftime-and-strptime-behavior
exact : boolean, True by default
- If True, require an exact format match.
- If False, allow the format to match anywhere in the target string.
unit : string, default 'ns'
unit of the arg (D,s,ms,us,ns) denote the unit, which is an
integer or float number. This will be based off the origin.
Example, with unit='ms' and origin='unix' (the default), this
would calculate the number of milliseconds to the unix epoch start.
infer_datetime_format : boolean, default False
If True and no `format` is given, attempt to infer the format of the
datetime strings, and if it can be inferred, switch to a faster
method of parsing them. In some cases this can increase the parsing
speed by ~5-10x.
origin : scalar, default is 'unix'
Define the reference date. The numeric values would be parsed as number
of units (defined by `unit`) since this reference date.
- If 'unix' (or POSIX) time; origin is set to 1970-01-01.
- If 'julian', unit must be 'D', and origin is set to beginning of
Julian Calendar. Julian day number 0 is assigned to the day starting
at noon on January 1, 4713 BC.
- If Timestamp convertible, origin is set to Timestamp identified by
origin.
.. versionadded:: 0.20.0
cache : boolean, default False
If True, use a cache of unique, converted dates to apply the datetime
conversion. May produce significant speed-up when parsing duplicate
date strings, especially ones with timezone offsets.
.. versionadded:: 0.23.0
Returns
-------
ret : datetime if parsing succeeded.
Return type depends on input:
- list-like: DatetimeIndex
- Series: Series of datetime64 dtype
- scalar: Timestamp
In case when it is not possible to return designated types (e.g. when
any element of input is before Timestamp.min or after Timestamp.max)
return will have datetime.datetime type (or corresponding
array/Series).
See Also
--------
DataFrame.astype : Cast argument to a specified dtype.
to_timedelta : Convert argument to timedelta.
Examples
--------
Assembling a datetime from multiple columns of a DataFrame. The keys can be
common abbreviations like ['year', 'month', 'day', 'minute', 'second',
'ms', 'us', 'ns']) or plurals of the same
>>> df = pd.DataFrame({'year': [2015, 2016],
'month': [2, 3],
'day': [4, 5]})
>>> pd.to_datetime(df)
0 2015-02-04
1 2016-03-05
dtype: datetime64[ns]
If a date does not meet the `timestamp limitations
<http://pandas.pydata.org/pandas-docs/stable/timeseries.html
#timeseries-timestamp-limits>`_, passing errors='ignore'
will return the original input instead of raising any exception.
Passing errors='coerce' will force an out-of-bounds date to NaT,
in addition to forcing non-dates (or non-parseable dates) to NaT.
>>> pd.to_datetime('13000101', format='%Y%m%d', errors='ignore')
datetime.datetime(1300, 1, 1, 0, 0)
>>> pd.to_datetime('13000101', format='%Y%m%d', errors='coerce')
NaT
Passing infer_datetime_format=True can often-times speedup a parsing
if its not an ISO8601 format exactly, but in a regular format.
>>> s = pd.Series(['3/11/2000', '3/12/2000', '3/13/2000']*1000)
>>> s.head()
0 3/11/2000
1 3/12/2000
2 3/13/2000
3 3/11/2000
4 3/12/2000
dtype: object
>>> %timeit pd.to_datetime(s,infer_datetime_format=True)
100 loops, best of 3: 10.4 ms per loop
>>> %timeit pd.to_datetime(s,infer_datetime_format=False)
1 loop, best of 3: 471 ms per loop
Using a unix epoch time
>>> pd.to_datetime(1490195805, unit='s')
Timestamp('2017-03-22 15:16:45')
>>> pd.to_datetime(1490195805433502912, unit='ns')
Timestamp('2017-03-22 15:16:45.433502912')
.. warning:: For float arg, precision rounding might happen. To prevent
unexpected behavior use a fixed-width exact type.
Using a non-unix epoch origin
>>> pd.to_datetime([1, 2, 3], unit='D',
origin=pd.Timestamp('1960-01-01'))
0 1960-01-02
1 1960-01-03
2 1960-01-04
|
[
"Convert",
"argument",
"to",
"datetime",
"."
] |
9feb3ad92cc0397a04b665803a49299ee7aa1037
|
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/tools/datetimes.py#L403-L622
|
19,637
|
pandas-dev/pandas
|
pandas/util/_decorators.py
|
deprecate
|
def deprecate(name, alternative, version, alt_name=None,
klass=None, stacklevel=2, msg=None):
"""
Return a new function that emits a deprecation warning on use.
To use this method for a deprecated function, another function
`alternative` with the same signature must exist. The deprecated
function will emit a deprecation warning, and in the docstring
it will contain the deprecation directive with the provided version
so it can be detected for future removal.
Parameters
----------
name : str
Name of function to deprecate.
alternative : func
Function to use instead.
version : str
Version of pandas in which the method has been deprecated.
alt_name : str, optional
Name to use in preference of alternative.__name__.
klass : Warning, default FutureWarning
stacklevel : int, default 2
msg : str
The message to display in the warning.
Default is '{name} is deprecated. Use {alt_name} instead.'
"""
alt_name = alt_name or alternative.__name__
klass = klass or FutureWarning
warning_msg = msg or '{} is deprecated, use {} instead'.format(name,
alt_name)
@wraps(alternative)
def wrapper(*args, **kwargs):
warnings.warn(warning_msg, klass, stacklevel=stacklevel)
return alternative(*args, **kwargs)
# adding deprecated directive to the docstring
msg = msg or 'Use `{alt_name}` instead.'.format(alt_name=alt_name)
doc_error_msg = ('deprecate needs a correctly formatted docstring in '
'the target function (should have a one liner short '
'summary, and opening quotes should be in their own '
'line). Found:\n{}'.format(alternative.__doc__))
# when python is running in optimized mode (i.e. `-OO`), docstrings are
# removed, so we check that a docstring with correct formatting is used
# but we allow empty docstrings
if alternative.__doc__:
if alternative.__doc__.count('\n') < 3:
raise AssertionError(doc_error_msg)
empty1, summary, empty2, doc = alternative.__doc__.split('\n', 3)
if empty1 or empty2 and not summary:
raise AssertionError(doc_error_msg)
wrapper.__doc__ = dedent("""
{summary}
.. deprecated:: {depr_version}
{depr_msg}
{rest_of_docstring}""").format(summary=summary.strip(),
depr_version=version,
depr_msg=msg,
rest_of_docstring=dedent(doc))
return wrapper
|
python
|
def deprecate(name, alternative, version, alt_name=None,
klass=None, stacklevel=2, msg=None):
"""
Return a new function that emits a deprecation warning on use.
To use this method for a deprecated function, another function
`alternative` with the same signature must exist. The deprecated
function will emit a deprecation warning, and in the docstring
it will contain the deprecation directive with the provided version
so it can be detected for future removal.
Parameters
----------
name : str
Name of function to deprecate.
alternative : func
Function to use instead.
version : str
Version of pandas in which the method has been deprecated.
alt_name : str, optional
Name to use in preference of alternative.__name__.
klass : Warning, default FutureWarning
stacklevel : int, default 2
msg : str
The message to display in the warning.
Default is '{name} is deprecated. Use {alt_name} instead.'
"""
alt_name = alt_name or alternative.__name__
klass = klass or FutureWarning
warning_msg = msg or '{} is deprecated, use {} instead'.format(name,
alt_name)
@wraps(alternative)
def wrapper(*args, **kwargs):
warnings.warn(warning_msg, klass, stacklevel=stacklevel)
return alternative(*args, **kwargs)
# adding deprecated directive to the docstring
msg = msg or 'Use `{alt_name}` instead.'.format(alt_name=alt_name)
doc_error_msg = ('deprecate needs a correctly formatted docstring in '
'the target function (should have a one liner short '
'summary, and opening quotes should be in their own '
'line). Found:\n{}'.format(alternative.__doc__))
# when python is running in optimized mode (i.e. `-OO`), docstrings are
# removed, so we check that a docstring with correct formatting is used
# but we allow empty docstrings
if alternative.__doc__:
if alternative.__doc__.count('\n') < 3:
raise AssertionError(doc_error_msg)
empty1, summary, empty2, doc = alternative.__doc__.split('\n', 3)
if empty1 or empty2 and not summary:
raise AssertionError(doc_error_msg)
wrapper.__doc__ = dedent("""
{summary}
.. deprecated:: {depr_version}
{depr_msg}
{rest_of_docstring}""").format(summary=summary.strip(),
depr_version=version,
depr_msg=msg,
rest_of_docstring=dedent(doc))
return wrapper
|
[
"def",
"deprecate",
"(",
"name",
",",
"alternative",
",",
"version",
",",
"alt_name",
"=",
"None",
",",
"klass",
"=",
"None",
",",
"stacklevel",
"=",
"2",
",",
"msg",
"=",
"None",
")",
":",
"alt_name",
"=",
"alt_name",
"or",
"alternative",
".",
"__name__",
"klass",
"=",
"klass",
"or",
"FutureWarning",
"warning_msg",
"=",
"msg",
"or",
"'{} is deprecated, use {} instead'",
".",
"format",
"(",
"name",
",",
"alt_name",
")",
"@",
"wraps",
"(",
"alternative",
")",
"def",
"wrapper",
"(",
"*",
"args",
",",
"*",
"*",
"kwargs",
")",
":",
"warnings",
".",
"warn",
"(",
"warning_msg",
",",
"klass",
",",
"stacklevel",
"=",
"stacklevel",
")",
"return",
"alternative",
"(",
"*",
"args",
",",
"*",
"*",
"kwargs",
")",
"# adding deprecated directive to the docstring",
"msg",
"=",
"msg",
"or",
"'Use `{alt_name}` instead.'",
".",
"format",
"(",
"alt_name",
"=",
"alt_name",
")",
"doc_error_msg",
"=",
"(",
"'deprecate needs a correctly formatted docstring in '",
"'the target function (should have a one liner short '",
"'summary, and opening quotes should be in their own '",
"'line). Found:\\n{}'",
".",
"format",
"(",
"alternative",
".",
"__doc__",
")",
")",
"# when python is running in optimized mode (i.e. `-OO`), docstrings are",
"# removed, so we check that a docstring with correct formatting is used",
"# but we allow empty docstrings",
"if",
"alternative",
".",
"__doc__",
":",
"if",
"alternative",
".",
"__doc__",
".",
"count",
"(",
"'\\n'",
")",
"<",
"3",
":",
"raise",
"AssertionError",
"(",
"doc_error_msg",
")",
"empty1",
",",
"summary",
",",
"empty2",
",",
"doc",
"=",
"alternative",
".",
"__doc__",
".",
"split",
"(",
"'\\n'",
",",
"3",
")",
"if",
"empty1",
"or",
"empty2",
"and",
"not",
"summary",
":",
"raise",
"AssertionError",
"(",
"doc_error_msg",
")",
"wrapper",
".",
"__doc__",
"=",
"dedent",
"(",
"\"\"\"\n {summary}\n\n .. deprecated:: {depr_version}\n {depr_msg}\n\n {rest_of_docstring}\"\"\"",
")",
".",
"format",
"(",
"summary",
"=",
"summary",
".",
"strip",
"(",
")",
",",
"depr_version",
"=",
"version",
",",
"depr_msg",
"=",
"msg",
",",
"rest_of_docstring",
"=",
"dedent",
"(",
"doc",
")",
")",
"return",
"wrapper"
] |
Return a new function that emits a deprecation warning on use.
To use this method for a deprecated function, another function
`alternative` with the same signature must exist. The deprecated
function will emit a deprecation warning, and in the docstring
it will contain the deprecation directive with the provided version
so it can be detected for future removal.
Parameters
----------
name : str
Name of function to deprecate.
alternative : func
Function to use instead.
version : str
Version of pandas in which the method has been deprecated.
alt_name : str, optional
Name to use in preference of alternative.__name__.
klass : Warning, default FutureWarning
stacklevel : int, default 2
msg : str
The message to display in the warning.
Default is '{name} is deprecated. Use {alt_name} instead.'
|
[
"Return",
"a",
"new",
"function",
"that",
"emits",
"a",
"deprecation",
"warning",
"on",
"use",
"."
] |
9feb3ad92cc0397a04b665803a49299ee7aa1037
|
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/util/_decorators.py#L9-L74
|
19,638
|
pandas-dev/pandas
|
pandas/util/_decorators.py
|
deprecate_kwarg
|
def deprecate_kwarg(old_arg_name, new_arg_name, mapping=None, stacklevel=2):
"""
Decorator to deprecate a keyword argument of a function.
Parameters
----------
old_arg_name : str
Name of argument in function to deprecate
new_arg_name : str or None
Name of preferred argument in function. Use None to raise warning that
``old_arg_name`` keyword is deprecated.
mapping : dict or callable
If mapping is present, use it to translate old arguments to
new arguments. A callable must do its own value checking;
values not found in a dict will be forwarded unchanged.
Examples
--------
The following deprecates 'cols', using 'columns' instead
>>> @deprecate_kwarg(old_arg_name='cols', new_arg_name='columns')
... def f(columns=''):
... print(columns)
...
>>> f(columns='should work ok')
should work ok
>>> f(cols='should raise warning')
FutureWarning: cols is deprecated, use columns instead
warnings.warn(msg, FutureWarning)
should raise warning
>>> f(cols='should error', columns="can\'t pass do both")
TypeError: Can only specify 'cols' or 'columns', not both
>>> @deprecate_kwarg('old', 'new', {'yes': True, 'no': False})
... def f(new=False):
... print('yes!' if new else 'no!')
...
>>> f(old='yes')
FutureWarning: old='yes' is deprecated, use new=True instead
warnings.warn(msg, FutureWarning)
yes!
To raise a warning that a keyword will be removed entirely in the future
>>> @deprecate_kwarg(old_arg_name='cols', new_arg_name=None)
... def f(cols='', another_param=''):
... print(cols)
...
>>> f(cols='should raise warning')
FutureWarning: the 'cols' keyword is deprecated and will be removed in a
future version please takes steps to stop use of 'cols'
should raise warning
>>> f(another_param='should not raise warning')
should not raise warning
>>> f(cols='should raise warning', another_param='')
FutureWarning: the 'cols' keyword is deprecated and will be removed in a
future version please takes steps to stop use of 'cols'
should raise warning
"""
if mapping is not None and not hasattr(mapping, 'get') and \
not callable(mapping):
raise TypeError("mapping from old to new argument values "
"must be dict or callable!")
def _deprecate_kwarg(func):
@wraps(func)
def wrapper(*args, **kwargs):
old_arg_value = kwargs.pop(old_arg_name, None)
if new_arg_name is None and old_arg_value is not None:
msg = (
"the '{old_name}' keyword is deprecated and will be "
"removed in a future version. "
"Please take steps to stop the use of '{old_name}'"
).format(old_name=old_arg_name)
warnings.warn(msg, FutureWarning, stacklevel=stacklevel)
kwargs[old_arg_name] = old_arg_value
return func(*args, **kwargs)
if old_arg_value is not None:
if mapping is not None:
if hasattr(mapping, 'get'):
new_arg_value = mapping.get(old_arg_value,
old_arg_value)
else:
new_arg_value = mapping(old_arg_value)
msg = ("the {old_name}={old_val!r} keyword is deprecated, "
"use {new_name}={new_val!r} instead"
).format(old_name=old_arg_name,
old_val=old_arg_value,
new_name=new_arg_name,
new_val=new_arg_value)
else:
new_arg_value = old_arg_value
msg = ("the '{old_name}' keyword is deprecated, "
"use '{new_name}' instead"
).format(old_name=old_arg_name,
new_name=new_arg_name)
warnings.warn(msg, FutureWarning, stacklevel=stacklevel)
if kwargs.get(new_arg_name, None) is not None:
msg = ("Can only specify '{old_name}' or '{new_name}', "
"not both").format(old_name=old_arg_name,
new_name=new_arg_name)
raise TypeError(msg)
else:
kwargs[new_arg_name] = new_arg_value
return func(*args, **kwargs)
return wrapper
return _deprecate_kwarg
|
python
|
def deprecate_kwarg(old_arg_name, new_arg_name, mapping=None, stacklevel=2):
"""
Decorator to deprecate a keyword argument of a function.
Parameters
----------
old_arg_name : str
Name of argument in function to deprecate
new_arg_name : str or None
Name of preferred argument in function. Use None to raise warning that
``old_arg_name`` keyword is deprecated.
mapping : dict or callable
If mapping is present, use it to translate old arguments to
new arguments. A callable must do its own value checking;
values not found in a dict will be forwarded unchanged.
Examples
--------
The following deprecates 'cols', using 'columns' instead
>>> @deprecate_kwarg(old_arg_name='cols', new_arg_name='columns')
... def f(columns=''):
... print(columns)
...
>>> f(columns='should work ok')
should work ok
>>> f(cols='should raise warning')
FutureWarning: cols is deprecated, use columns instead
warnings.warn(msg, FutureWarning)
should raise warning
>>> f(cols='should error', columns="can\'t pass do both")
TypeError: Can only specify 'cols' or 'columns', not both
>>> @deprecate_kwarg('old', 'new', {'yes': True, 'no': False})
... def f(new=False):
... print('yes!' if new else 'no!')
...
>>> f(old='yes')
FutureWarning: old='yes' is deprecated, use new=True instead
warnings.warn(msg, FutureWarning)
yes!
To raise a warning that a keyword will be removed entirely in the future
>>> @deprecate_kwarg(old_arg_name='cols', new_arg_name=None)
... def f(cols='', another_param=''):
... print(cols)
...
>>> f(cols='should raise warning')
FutureWarning: the 'cols' keyword is deprecated and will be removed in a
future version please takes steps to stop use of 'cols'
should raise warning
>>> f(another_param='should not raise warning')
should not raise warning
>>> f(cols='should raise warning', another_param='')
FutureWarning: the 'cols' keyword is deprecated and will be removed in a
future version please takes steps to stop use of 'cols'
should raise warning
"""
if mapping is not None and not hasattr(mapping, 'get') and \
not callable(mapping):
raise TypeError("mapping from old to new argument values "
"must be dict or callable!")
def _deprecate_kwarg(func):
@wraps(func)
def wrapper(*args, **kwargs):
old_arg_value = kwargs.pop(old_arg_name, None)
if new_arg_name is None and old_arg_value is not None:
msg = (
"the '{old_name}' keyword is deprecated and will be "
"removed in a future version. "
"Please take steps to stop the use of '{old_name}'"
).format(old_name=old_arg_name)
warnings.warn(msg, FutureWarning, stacklevel=stacklevel)
kwargs[old_arg_name] = old_arg_value
return func(*args, **kwargs)
if old_arg_value is not None:
if mapping is not None:
if hasattr(mapping, 'get'):
new_arg_value = mapping.get(old_arg_value,
old_arg_value)
else:
new_arg_value = mapping(old_arg_value)
msg = ("the {old_name}={old_val!r} keyword is deprecated, "
"use {new_name}={new_val!r} instead"
).format(old_name=old_arg_name,
old_val=old_arg_value,
new_name=new_arg_name,
new_val=new_arg_value)
else:
new_arg_value = old_arg_value
msg = ("the '{old_name}' keyword is deprecated, "
"use '{new_name}' instead"
).format(old_name=old_arg_name,
new_name=new_arg_name)
warnings.warn(msg, FutureWarning, stacklevel=stacklevel)
if kwargs.get(new_arg_name, None) is not None:
msg = ("Can only specify '{old_name}' or '{new_name}', "
"not both").format(old_name=old_arg_name,
new_name=new_arg_name)
raise TypeError(msg)
else:
kwargs[new_arg_name] = new_arg_value
return func(*args, **kwargs)
return wrapper
return _deprecate_kwarg
|
[
"def",
"deprecate_kwarg",
"(",
"old_arg_name",
",",
"new_arg_name",
",",
"mapping",
"=",
"None",
",",
"stacklevel",
"=",
"2",
")",
":",
"if",
"mapping",
"is",
"not",
"None",
"and",
"not",
"hasattr",
"(",
"mapping",
",",
"'get'",
")",
"and",
"not",
"callable",
"(",
"mapping",
")",
":",
"raise",
"TypeError",
"(",
"\"mapping from old to new argument values \"",
"\"must be dict or callable!\"",
")",
"def",
"_deprecate_kwarg",
"(",
"func",
")",
":",
"@",
"wraps",
"(",
"func",
")",
"def",
"wrapper",
"(",
"*",
"args",
",",
"*",
"*",
"kwargs",
")",
":",
"old_arg_value",
"=",
"kwargs",
".",
"pop",
"(",
"old_arg_name",
",",
"None",
")",
"if",
"new_arg_name",
"is",
"None",
"and",
"old_arg_value",
"is",
"not",
"None",
":",
"msg",
"=",
"(",
"\"the '{old_name}' keyword is deprecated and will be \"",
"\"removed in a future version. \"",
"\"Please take steps to stop the use of '{old_name}'\"",
")",
".",
"format",
"(",
"old_name",
"=",
"old_arg_name",
")",
"warnings",
".",
"warn",
"(",
"msg",
",",
"FutureWarning",
",",
"stacklevel",
"=",
"stacklevel",
")",
"kwargs",
"[",
"old_arg_name",
"]",
"=",
"old_arg_value",
"return",
"func",
"(",
"*",
"args",
",",
"*",
"*",
"kwargs",
")",
"if",
"old_arg_value",
"is",
"not",
"None",
":",
"if",
"mapping",
"is",
"not",
"None",
":",
"if",
"hasattr",
"(",
"mapping",
",",
"'get'",
")",
":",
"new_arg_value",
"=",
"mapping",
".",
"get",
"(",
"old_arg_value",
",",
"old_arg_value",
")",
"else",
":",
"new_arg_value",
"=",
"mapping",
"(",
"old_arg_value",
")",
"msg",
"=",
"(",
"\"the {old_name}={old_val!r} keyword is deprecated, \"",
"\"use {new_name}={new_val!r} instead\"",
")",
".",
"format",
"(",
"old_name",
"=",
"old_arg_name",
",",
"old_val",
"=",
"old_arg_value",
",",
"new_name",
"=",
"new_arg_name",
",",
"new_val",
"=",
"new_arg_value",
")",
"else",
":",
"new_arg_value",
"=",
"old_arg_value",
"msg",
"=",
"(",
"\"the '{old_name}' keyword is deprecated, \"",
"\"use '{new_name}' instead\"",
")",
".",
"format",
"(",
"old_name",
"=",
"old_arg_name",
",",
"new_name",
"=",
"new_arg_name",
")",
"warnings",
".",
"warn",
"(",
"msg",
",",
"FutureWarning",
",",
"stacklevel",
"=",
"stacklevel",
")",
"if",
"kwargs",
".",
"get",
"(",
"new_arg_name",
",",
"None",
")",
"is",
"not",
"None",
":",
"msg",
"=",
"(",
"\"Can only specify '{old_name}' or '{new_name}', \"",
"\"not both\"",
")",
".",
"format",
"(",
"old_name",
"=",
"old_arg_name",
",",
"new_name",
"=",
"new_arg_name",
")",
"raise",
"TypeError",
"(",
"msg",
")",
"else",
":",
"kwargs",
"[",
"new_arg_name",
"]",
"=",
"new_arg_value",
"return",
"func",
"(",
"*",
"args",
",",
"*",
"*",
"kwargs",
")",
"return",
"wrapper",
"return",
"_deprecate_kwarg"
] |
Decorator to deprecate a keyword argument of a function.
Parameters
----------
old_arg_name : str
Name of argument in function to deprecate
new_arg_name : str or None
Name of preferred argument in function. Use None to raise warning that
``old_arg_name`` keyword is deprecated.
mapping : dict or callable
If mapping is present, use it to translate old arguments to
new arguments. A callable must do its own value checking;
values not found in a dict will be forwarded unchanged.
Examples
--------
The following deprecates 'cols', using 'columns' instead
>>> @deprecate_kwarg(old_arg_name='cols', new_arg_name='columns')
... def f(columns=''):
... print(columns)
...
>>> f(columns='should work ok')
should work ok
>>> f(cols='should raise warning')
FutureWarning: cols is deprecated, use columns instead
warnings.warn(msg, FutureWarning)
should raise warning
>>> f(cols='should error', columns="can\'t pass do both")
TypeError: Can only specify 'cols' or 'columns', not both
>>> @deprecate_kwarg('old', 'new', {'yes': True, 'no': False})
... def f(new=False):
... print('yes!' if new else 'no!')
...
>>> f(old='yes')
FutureWarning: old='yes' is deprecated, use new=True instead
warnings.warn(msg, FutureWarning)
yes!
To raise a warning that a keyword will be removed entirely in the future
>>> @deprecate_kwarg(old_arg_name='cols', new_arg_name=None)
... def f(cols='', another_param=''):
... print(cols)
...
>>> f(cols='should raise warning')
FutureWarning: the 'cols' keyword is deprecated and will be removed in a
future version please takes steps to stop use of 'cols'
should raise warning
>>> f(another_param='should not raise warning')
should not raise warning
>>> f(cols='should raise warning', another_param='')
FutureWarning: the 'cols' keyword is deprecated and will be removed in a
future version please takes steps to stop use of 'cols'
should raise warning
|
[
"Decorator",
"to",
"deprecate",
"a",
"keyword",
"argument",
"of",
"a",
"function",
"."
] |
9feb3ad92cc0397a04b665803a49299ee7aa1037
|
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/util/_decorators.py#L77-L190
|
19,639
|
pandas-dev/pandas
|
pandas/util/_decorators.py
|
make_signature
|
def make_signature(func):
"""
Returns a tuple containing the paramenter list with defaults
and parameter list.
Examples
--------
>>> def f(a, b, c=2):
>>> return a * b * c
>>> print(make_signature(f))
(['a', 'b', 'c=2'], ['a', 'b', 'c'])
"""
spec = inspect.getfullargspec(func)
if spec.defaults is None:
n_wo_defaults = len(spec.args)
defaults = ('',) * n_wo_defaults
else:
n_wo_defaults = len(spec.args) - len(spec.defaults)
defaults = ('',) * n_wo_defaults + tuple(spec.defaults)
args = []
for var, default in zip(spec.args, defaults):
args.append(var if default == '' else var + '=' + repr(default))
if spec.varargs:
args.append('*' + spec.varargs)
if spec.varkw:
args.append('**' + spec.varkw)
return args, spec.args
|
python
|
def make_signature(func):
"""
Returns a tuple containing the paramenter list with defaults
and parameter list.
Examples
--------
>>> def f(a, b, c=2):
>>> return a * b * c
>>> print(make_signature(f))
(['a', 'b', 'c=2'], ['a', 'b', 'c'])
"""
spec = inspect.getfullargspec(func)
if spec.defaults is None:
n_wo_defaults = len(spec.args)
defaults = ('',) * n_wo_defaults
else:
n_wo_defaults = len(spec.args) - len(spec.defaults)
defaults = ('',) * n_wo_defaults + tuple(spec.defaults)
args = []
for var, default in zip(spec.args, defaults):
args.append(var if default == '' else var + '=' + repr(default))
if spec.varargs:
args.append('*' + spec.varargs)
if spec.varkw:
args.append('**' + spec.varkw)
return args, spec.args
|
[
"def",
"make_signature",
"(",
"func",
")",
":",
"spec",
"=",
"inspect",
".",
"getfullargspec",
"(",
"func",
")",
"if",
"spec",
".",
"defaults",
"is",
"None",
":",
"n_wo_defaults",
"=",
"len",
"(",
"spec",
".",
"args",
")",
"defaults",
"=",
"(",
"''",
",",
")",
"*",
"n_wo_defaults",
"else",
":",
"n_wo_defaults",
"=",
"len",
"(",
"spec",
".",
"args",
")",
"-",
"len",
"(",
"spec",
".",
"defaults",
")",
"defaults",
"=",
"(",
"''",
",",
")",
"*",
"n_wo_defaults",
"+",
"tuple",
"(",
"spec",
".",
"defaults",
")",
"args",
"=",
"[",
"]",
"for",
"var",
",",
"default",
"in",
"zip",
"(",
"spec",
".",
"args",
",",
"defaults",
")",
":",
"args",
".",
"append",
"(",
"var",
"if",
"default",
"==",
"''",
"else",
"var",
"+",
"'='",
"+",
"repr",
"(",
"default",
")",
")",
"if",
"spec",
".",
"varargs",
":",
"args",
".",
"append",
"(",
"'*'",
"+",
"spec",
".",
"varargs",
")",
"if",
"spec",
".",
"varkw",
":",
"args",
".",
"append",
"(",
"'**'",
"+",
"spec",
".",
"varkw",
")",
"return",
"args",
",",
"spec",
".",
"args"
] |
Returns a tuple containing the paramenter list with defaults
and parameter list.
Examples
--------
>>> def f(a, b, c=2):
>>> return a * b * c
>>> print(make_signature(f))
(['a', 'b', 'c=2'], ['a', 'b', 'c'])
|
[
"Returns",
"a",
"tuple",
"containing",
"the",
"paramenter",
"list",
"with",
"defaults",
"and",
"parameter",
"list",
"."
] |
9feb3ad92cc0397a04b665803a49299ee7aa1037
|
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/util/_decorators.py#L324-L351
|
19,640
|
pandas-dev/pandas
|
pandas/core/indexes/range.py
|
RangeIndex.from_range
|
def from_range(cls, data, name=None, dtype=None, **kwargs):
""" Create RangeIndex from a range object. """
if not isinstance(data, range):
raise TypeError(
'{0}(...) must be called with object coercible to a '
'range, {1} was passed'.format(cls.__name__, repr(data)))
start, stop, step = data.start, data.stop, data.step
return RangeIndex(start, stop, step, dtype=dtype, name=name, **kwargs)
|
python
|
def from_range(cls, data, name=None, dtype=None, **kwargs):
""" Create RangeIndex from a range object. """
if not isinstance(data, range):
raise TypeError(
'{0}(...) must be called with object coercible to a '
'range, {1} was passed'.format(cls.__name__, repr(data)))
start, stop, step = data.start, data.stop, data.step
return RangeIndex(start, stop, step, dtype=dtype, name=name, **kwargs)
|
[
"def",
"from_range",
"(",
"cls",
",",
"data",
",",
"name",
"=",
"None",
",",
"dtype",
"=",
"None",
",",
"*",
"*",
"kwargs",
")",
":",
"if",
"not",
"isinstance",
"(",
"data",
",",
"range",
")",
":",
"raise",
"TypeError",
"(",
"'{0}(...) must be called with object coercible to a '",
"'range, {1} was passed'",
".",
"format",
"(",
"cls",
".",
"__name__",
",",
"repr",
"(",
"data",
")",
")",
")",
"start",
",",
"stop",
",",
"step",
"=",
"data",
".",
"start",
",",
"data",
".",
"stop",
",",
"data",
".",
"step",
"return",
"RangeIndex",
"(",
"start",
",",
"stop",
",",
"step",
",",
"dtype",
"=",
"dtype",
",",
"name",
"=",
"name",
",",
"*",
"*",
"kwargs",
")"
] |
Create RangeIndex from a range object.
|
[
"Create",
"RangeIndex",
"from",
"a",
"range",
"object",
"."
] |
9feb3ad92cc0397a04b665803a49299ee7aa1037
|
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/indexes/range.py#L128-L136
|
19,641
|
pandas-dev/pandas
|
pandas/core/indexes/range.py
|
RangeIndex.min
|
def min(self, axis=None, skipna=True):
"""The minimum value of the RangeIndex"""
nv.validate_minmax_axis(axis)
return self._minmax('min')
|
python
|
def min(self, axis=None, skipna=True):
"""The minimum value of the RangeIndex"""
nv.validate_minmax_axis(axis)
return self._minmax('min')
|
[
"def",
"min",
"(",
"self",
",",
"axis",
"=",
"None",
",",
"skipna",
"=",
"True",
")",
":",
"nv",
".",
"validate_minmax_axis",
"(",
"axis",
")",
"return",
"self",
".",
"_minmax",
"(",
"'min'",
")"
] |
The minimum value of the RangeIndex
|
[
"The",
"minimum",
"value",
"of",
"the",
"RangeIndex"
] |
9feb3ad92cc0397a04b665803a49299ee7aa1037
|
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/indexes/range.py#L325-L328
|
19,642
|
pandas-dev/pandas
|
pandas/core/indexes/range.py
|
RangeIndex.max
|
def max(self, axis=None, skipna=True):
"""The maximum value of the RangeIndex"""
nv.validate_minmax_axis(axis)
return self._minmax('max')
|
python
|
def max(self, axis=None, skipna=True):
"""The maximum value of the RangeIndex"""
nv.validate_minmax_axis(axis)
return self._minmax('max')
|
[
"def",
"max",
"(",
"self",
",",
"axis",
"=",
"None",
",",
"skipna",
"=",
"True",
")",
":",
"nv",
".",
"validate_minmax_axis",
"(",
"axis",
")",
"return",
"self",
".",
"_minmax",
"(",
"'max'",
")"
] |
The maximum value of the RangeIndex
|
[
"The",
"maximum",
"value",
"of",
"the",
"RangeIndex"
] |
9feb3ad92cc0397a04b665803a49299ee7aa1037
|
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/indexes/range.py#L330-L333
|
19,643
|
pandas-dev/pandas
|
pandas/core/indexes/range.py
|
RangeIndex.argsort
|
def argsort(self, *args, **kwargs):
"""
Returns the indices that would sort the index and its
underlying data.
Returns
-------
argsorted : numpy array
See Also
--------
numpy.ndarray.argsort
"""
nv.validate_argsort(args, kwargs)
if self._step > 0:
return np.arange(len(self))
else:
return np.arange(len(self) - 1, -1, -1)
|
python
|
def argsort(self, *args, **kwargs):
"""
Returns the indices that would sort the index and its
underlying data.
Returns
-------
argsorted : numpy array
See Also
--------
numpy.ndarray.argsort
"""
nv.validate_argsort(args, kwargs)
if self._step > 0:
return np.arange(len(self))
else:
return np.arange(len(self) - 1, -1, -1)
|
[
"def",
"argsort",
"(",
"self",
",",
"*",
"args",
",",
"*",
"*",
"kwargs",
")",
":",
"nv",
".",
"validate_argsort",
"(",
"args",
",",
"kwargs",
")",
"if",
"self",
".",
"_step",
">",
"0",
":",
"return",
"np",
".",
"arange",
"(",
"len",
"(",
"self",
")",
")",
"else",
":",
"return",
"np",
".",
"arange",
"(",
"len",
"(",
"self",
")",
"-",
"1",
",",
"-",
"1",
",",
"-",
"1",
")"
] |
Returns the indices that would sort the index and its
underlying data.
Returns
-------
argsorted : numpy array
See Also
--------
numpy.ndarray.argsort
|
[
"Returns",
"the",
"indices",
"that",
"would",
"sort",
"the",
"index",
"and",
"its",
"underlying",
"data",
"."
] |
9feb3ad92cc0397a04b665803a49299ee7aa1037
|
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/indexes/range.py#L335-L353
|
19,644
|
pandas-dev/pandas
|
pandas/core/indexes/range.py
|
RangeIndex._min_fitting_element
|
def _min_fitting_element(self, lower_limit):
"""Returns the smallest element greater than or equal to the limit"""
no_steps = -(-(lower_limit - self._start) // abs(self._step))
return self._start + abs(self._step) * no_steps
|
python
|
def _min_fitting_element(self, lower_limit):
"""Returns the smallest element greater than or equal to the limit"""
no_steps = -(-(lower_limit - self._start) // abs(self._step))
return self._start + abs(self._step) * no_steps
|
[
"def",
"_min_fitting_element",
"(",
"self",
",",
"lower_limit",
")",
":",
"no_steps",
"=",
"-",
"(",
"-",
"(",
"lower_limit",
"-",
"self",
".",
"_start",
")",
"//",
"abs",
"(",
"self",
".",
"_step",
")",
")",
"return",
"self",
".",
"_start",
"+",
"abs",
"(",
"self",
".",
"_step",
")",
"*",
"no_steps"
] |
Returns the smallest element greater than or equal to the limit
|
[
"Returns",
"the",
"smallest",
"element",
"greater",
"than",
"or",
"equal",
"to",
"the",
"limit"
] |
9feb3ad92cc0397a04b665803a49299ee7aa1037
|
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/indexes/range.py#L439-L442
|
19,645
|
pandas-dev/pandas
|
pandas/core/indexes/range.py
|
RangeIndex._max_fitting_element
|
def _max_fitting_element(self, upper_limit):
"""Returns the largest element smaller than or equal to the limit"""
no_steps = (upper_limit - self._start) // abs(self._step)
return self._start + abs(self._step) * no_steps
|
python
|
def _max_fitting_element(self, upper_limit):
"""Returns the largest element smaller than or equal to the limit"""
no_steps = (upper_limit - self._start) // abs(self._step)
return self._start + abs(self._step) * no_steps
|
[
"def",
"_max_fitting_element",
"(",
"self",
",",
"upper_limit",
")",
":",
"no_steps",
"=",
"(",
"upper_limit",
"-",
"self",
".",
"_start",
")",
"//",
"abs",
"(",
"self",
".",
"_step",
")",
"return",
"self",
".",
"_start",
"+",
"abs",
"(",
"self",
".",
"_step",
")",
"*",
"no_steps"
] |
Returns the largest element smaller than or equal to the limit
|
[
"Returns",
"the",
"largest",
"element",
"smaller",
"than",
"or",
"equal",
"to",
"the",
"limit"
] |
9feb3ad92cc0397a04b665803a49299ee7aa1037
|
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/indexes/range.py#L444-L447
|
19,646
|
pandas-dev/pandas
|
pandas/core/indexes/range.py
|
RangeIndex.union
|
def union(self, other, sort=None):
"""
Form the union of two Index objects and sorts if possible
Parameters
----------
other : Index or array-like
sort : False or None, default None
Whether to sort resulting index. ``sort=None`` returns a
mononotically increasing ``RangeIndex`` if possible or a sorted
``Int64Index`` if not. ``sort=False`` always returns an
unsorted ``Int64Index``
.. versionadded:: 0.25.0
Returns
-------
union : Index
"""
self._assert_can_do_setop(other)
if len(other) == 0 or self.equals(other) or len(self) == 0:
return super().union(other, sort=sort)
if isinstance(other, RangeIndex) and sort is None:
start_s, step_s = self._start, self._step
end_s = self._start + self._step * (len(self) - 1)
start_o, step_o = other._start, other._step
end_o = other._start + other._step * (len(other) - 1)
if self._step < 0:
start_s, step_s, end_s = end_s, -step_s, start_s
if other._step < 0:
start_o, step_o, end_o = end_o, -step_o, start_o
if len(self) == 1 and len(other) == 1:
step_s = step_o = abs(self._start - other._start)
elif len(self) == 1:
step_s = step_o
elif len(other) == 1:
step_o = step_s
start_r = min(start_s, start_o)
end_r = max(end_s, end_o)
if step_o == step_s:
if ((start_s - start_o) % step_s == 0 and
(start_s - end_o) <= step_s and
(start_o - end_s) <= step_s):
return RangeIndex(start_r, end_r + step_s, step_s)
if ((step_s % 2 == 0) and
(abs(start_s - start_o) <= step_s / 2) and
(abs(end_s - end_o) <= step_s / 2)):
return RangeIndex(start_r, end_r + step_s / 2, step_s / 2)
elif step_o % step_s == 0:
if ((start_o - start_s) % step_s == 0 and
(start_o + step_s >= start_s) and
(end_o - step_s <= end_s)):
return RangeIndex(start_r, end_r + step_s, step_s)
elif step_s % step_o == 0:
if ((start_s - start_o) % step_o == 0 and
(start_s + step_o >= start_o) and
(end_s - step_o <= end_o)):
return RangeIndex(start_r, end_r + step_o, step_o)
return self._int64index.union(other, sort=sort)
|
python
|
def union(self, other, sort=None):
"""
Form the union of two Index objects and sorts if possible
Parameters
----------
other : Index or array-like
sort : False or None, default None
Whether to sort resulting index. ``sort=None`` returns a
mononotically increasing ``RangeIndex`` if possible or a sorted
``Int64Index`` if not. ``sort=False`` always returns an
unsorted ``Int64Index``
.. versionadded:: 0.25.0
Returns
-------
union : Index
"""
self._assert_can_do_setop(other)
if len(other) == 0 or self.equals(other) or len(self) == 0:
return super().union(other, sort=sort)
if isinstance(other, RangeIndex) and sort is None:
start_s, step_s = self._start, self._step
end_s = self._start + self._step * (len(self) - 1)
start_o, step_o = other._start, other._step
end_o = other._start + other._step * (len(other) - 1)
if self._step < 0:
start_s, step_s, end_s = end_s, -step_s, start_s
if other._step < 0:
start_o, step_o, end_o = end_o, -step_o, start_o
if len(self) == 1 and len(other) == 1:
step_s = step_o = abs(self._start - other._start)
elif len(self) == 1:
step_s = step_o
elif len(other) == 1:
step_o = step_s
start_r = min(start_s, start_o)
end_r = max(end_s, end_o)
if step_o == step_s:
if ((start_s - start_o) % step_s == 0 and
(start_s - end_o) <= step_s and
(start_o - end_s) <= step_s):
return RangeIndex(start_r, end_r + step_s, step_s)
if ((step_s % 2 == 0) and
(abs(start_s - start_o) <= step_s / 2) and
(abs(end_s - end_o) <= step_s / 2)):
return RangeIndex(start_r, end_r + step_s / 2, step_s / 2)
elif step_o % step_s == 0:
if ((start_o - start_s) % step_s == 0 and
(start_o + step_s >= start_s) and
(end_o - step_s <= end_s)):
return RangeIndex(start_r, end_r + step_s, step_s)
elif step_s % step_o == 0:
if ((start_s - start_o) % step_o == 0 and
(start_s + step_o >= start_o) and
(end_s - step_o <= end_o)):
return RangeIndex(start_r, end_r + step_o, step_o)
return self._int64index.union(other, sort=sort)
|
[
"def",
"union",
"(",
"self",
",",
"other",
",",
"sort",
"=",
"None",
")",
":",
"self",
".",
"_assert_can_do_setop",
"(",
"other",
")",
"if",
"len",
"(",
"other",
")",
"==",
"0",
"or",
"self",
".",
"equals",
"(",
"other",
")",
"or",
"len",
"(",
"self",
")",
"==",
"0",
":",
"return",
"super",
"(",
")",
".",
"union",
"(",
"other",
",",
"sort",
"=",
"sort",
")",
"if",
"isinstance",
"(",
"other",
",",
"RangeIndex",
")",
"and",
"sort",
"is",
"None",
":",
"start_s",
",",
"step_s",
"=",
"self",
".",
"_start",
",",
"self",
".",
"_step",
"end_s",
"=",
"self",
".",
"_start",
"+",
"self",
".",
"_step",
"*",
"(",
"len",
"(",
"self",
")",
"-",
"1",
")",
"start_o",
",",
"step_o",
"=",
"other",
".",
"_start",
",",
"other",
".",
"_step",
"end_o",
"=",
"other",
".",
"_start",
"+",
"other",
".",
"_step",
"*",
"(",
"len",
"(",
"other",
")",
"-",
"1",
")",
"if",
"self",
".",
"_step",
"<",
"0",
":",
"start_s",
",",
"step_s",
",",
"end_s",
"=",
"end_s",
",",
"-",
"step_s",
",",
"start_s",
"if",
"other",
".",
"_step",
"<",
"0",
":",
"start_o",
",",
"step_o",
",",
"end_o",
"=",
"end_o",
",",
"-",
"step_o",
",",
"start_o",
"if",
"len",
"(",
"self",
")",
"==",
"1",
"and",
"len",
"(",
"other",
")",
"==",
"1",
":",
"step_s",
"=",
"step_o",
"=",
"abs",
"(",
"self",
".",
"_start",
"-",
"other",
".",
"_start",
")",
"elif",
"len",
"(",
"self",
")",
"==",
"1",
":",
"step_s",
"=",
"step_o",
"elif",
"len",
"(",
"other",
")",
"==",
"1",
":",
"step_o",
"=",
"step_s",
"start_r",
"=",
"min",
"(",
"start_s",
",",
"start_o",
")",
"end_r",
"=",
"max",
"(",
"end_s",
",",
"end_o",
")",
"if",
"step_o",
"==",
"step_s",
":",
"if",
"(",
"(",
"start_s",
"-",
"start_o",
")",
"%",
"step_s",
"==",
"0",
"and",
"(",
"start_s",
"-",
"end_o",
")",
"<=",
"step_s",
"and",
"(",
"start_o",
"-",
"end_s",
")",
"<=",
"step_s",
")",
":",
"return",
"RangeIndex",
"(",
"start_r",
",",
"end_r",
"+",
"step_s",
",",
"step_s",
")",
"if",
"(",
"(",
"step_s",
"%",
"2",
"==",
"0",
")",
"and",
"(",
"abs",
"(",
"start_s",
"-",
"start_o",
")",
"<=",
"step_s",
"/",
"2",
")",
"and",
"(",
"abs",
"(",
"end_s",
"-",
"end_o",
")",
"<=",
"step_s",
"/",
"2",
")",
")",
":",
"return",
"RangeIndex",
"(",
"start_r",
",",
"end_r",
"+",
"step_s",
"/",
"2",
",",
"step_s",
"/",
"2",
")",
"elif",
"step_o",
"%",
"step_s",
"==",
"0",
":",
"if",
"(",
"(",
"start_o",
"-",
"start_s",
")",
"%",
"step_s",
"==",
"0",
"and",
"(",
"start_o",
"+",
"step_s",
">=",
"start_s",
")",
"and",
"(",
"end_o",
"-",
"step_s",
"<=",
"end_s",
")",
")",
":",
"return",
"RangeIndex",
"(",
"start_r",
",",
"end_r",
"+",
"step_s",
",",
"step_s",
")",
"elif",
"step_s",
"%",
"step_o",
"==",
"0",
":",
"if",
"(",
"(",
"start_s",
"-",
"start_o",
")",
"%",
"step_o",
"==",
"0",
"and",
"(",
"start_s",
"+",
"step_o",
">=",
"start_o",
")",
"and",
"(",
"end_s",
"-",
"step_o",
"<=",
"end_o",
")",
")",
":",
"return",
"RangeIndex",
"(",
"start_r",
",",
"end_r",
"+",
"step_o",
",",
"step_o",
")",
"return",
"self",
".",
"_int64index",
".",
"union",
"(",
"other",
",",
"sort",
"=",
"sort",
")"
] |
Form the union of two Index objects and sorts if possible
Parameters
----------
other : Index or array-like
sort : False or None, default None
Whether to sort resulting index. ``sort=None`` returns a
mononotically increasing ``RangeIndex`` if possible or a sorted
``Int64Index`` if not. ``sort=False`` always returns an
unsorted ``Int64Index``
.. versionadded:: 0.25.0
Returns
-------
union : Index
|
[
"Form",
"the",
"union",
"of",
"two",
"Index",
"objects",
"and",
"sorts",
"if",
"possible"
] |
9feb3ad92cc0397a04b665803a49299ee7aa1037
|
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/indexes/range.py#L466-L527
|
19,647
|
pandas-dev/pandas
|
pandas/core/indexes/range.py
|
RangeIndex._add_numeric_methods_binary
|
def _add_numeric_methods_binary(cls):
""" add in numeric methods, specialized to RangeIndex """
def _make_evaluate_binop(op, step=False):
"""
Parameters
----------
op : callable that accepts 2 parms
perform the binary op
step : callable, optional, default to False
op to apply to the step parm if not None
if False, use the existing step
"""
def _evaluate_numeric_binop(self, other):
if isinstance(other, (ABCSeries, ABCDataFrame)):
return NotImplemented
elif isinstance(other, ABCTimedeltaIndex):
# Defer to TimedeltaIndex implementation
return NotImplemented
elif isinstance(other, (timedelta, np.timedelta64)):
# GH#19333 is_integer evaluated True on timedelta64,
# so we need to catch these explicitly
return op(self._int64index, other)
elif is_timedelta64_dtype(other):
# Must be an np.ndarray; GH#22390
return op(self._int64index, other)
other = self._validate_for_numeric_binop(other, op)
attrs = self._get_attributes_dict()
attrs = self._maybe_update_attributes(attrs)
left, right = self, other
try:
# apply if we have an override
if step:
with np.errstate(all='ignore'):
rstep = step(left._step, right)
# we don't have a representable op
# so return a base index
if not is_integer(rstep) or not rstep:
raise ValueError
else:
rstep = left._step
with np.errstate(all='ignore'):
rstart = op(left._start, right)
rstop = op(left._stop, right)
result = RangeIndex(rstart,
rstop,
rstep,
**attrs)
# for compat with numpy / Int64Index
# even if we can represent as a RangeIndex, return
# as a Float64Index if we have float-like descriptors
if not all(is_integer(x) for x in
[rstart, rstop, rstep]):
result = result.astype('float64')
return result
except (ValueError, TypeError, ZeroDivisionError):
# Defer to Int64Index implementation
return op(self._int64index, other)
# TODO: Do attrs get handled reliably?
name = '__{name}__'.format(name=op.__name__)
return compat.set_function_name(_evaluate_numeric_binop, name, cls)
cls.__add__ = _make_evaluate_binop(operator.add)
cls.__radd__ = _make_evaluate_binop(ops.radd)
cls.__sub__ = _make_evaluate_binop(operator.sub)
cls.__rsub__ = _make_evaluate_binop(ops.rsub)
cls.__mul__ = _make_evaluate_binop(operator.mul, step=operator.mul)
cls.__rmul__ = _make_evaluate_binop(ops.rmul, step=ops.rmul)
cls.__truediv__ = _make_evaluate_binop(operator.truediv,
step=operator.truediv)
cls.__rtruediv__ = _make_evaluate_binop(ops.rtruediv,
step=ops.rtruediv)
|
python
|
def _add_numeric_methods_binary(cls):
""" add in numeric methods, specialized to RangeIndex """
def _make_evaluate_binop(op, step=False):
"""
Parameters
----------
op : callable that accepts 2 parms
perform the binary op
step : callable, optional, default to False
op to apply to the step parm if not None
if False, use the existing step
"""
def _evaluate_numeric_binop(self, other):
if isinstance(other, (ABCSeries, ABCDataFrame)):
return NotImplemented
elif isinstance(other, ABCTimedeltaIndex):
# Defer to TimedeltaIndex implementation
return NotImplemented
elif isinstance(other, (timedelta, np.timedelta64)):
# GH#19333 is_integer evaluated True on timedelta64,
# so we need to catch these explicitly
return op(self._int64index, other)
elif is_timedelta64_dtype(other):
# Must be an np.ndarray; GH#22390
return op(self._int64index, other)
other = self._validate_for_numeric_binop(other, op)
attrs = self._get_attributes_dict()
attrs = self._maybe_update_attributes(attrs)
left, right = self, other
try:
# apply if we have an override
if step:
with np.errstate(all='ignore'):
rstep = step(left._step, right)
# we don't have a representable op
# so return a base index
if not is_integer(rstep) or not rstep:
raise ValueError
else:
rstep = left._step
with np.errstate(all='ignore'):
rstart = op(left._start, right)
rstop = op(left._stop, right)
result = RangeIndex(rstart,
rstop,
rstep,
**attrs)
# for compat with numpy / Int64Index
# even if we can represent as a RangeIndex, return
# as a Float64Index if we have float-like descriptors
if not all(is_integer(x) for x in
[rstart, rstop, rstep]):
result = result.astype('float64')
return result
except (ValueError, TypeError, ZeroDivisionError):
# Defer to Int64Index implementation
return op(self._int64index, other)
# TODO: Do attrs get handled reliably?
name = '__{name}__'.format(name=op.__name__)
return compat.set_function_name(_evaluate_numeric_binop, name, cls)
cls.__add__ = _make_evaluate_binop(operator.add)
cls.__radd__ = _make_evaluate_binop(ops.radd)
cls.__sub__ = _make_evaluate_binop(operator.sub)
cls.__rsub__ = _make_evaluate_binop(ops.rsub)
cls.__mul__ = _make_evaluate_binop(operator.mul, step=operator.mul)
cls.__rmul__ = _make_evaluate_binop(ops.rmul, step=ops.rmul)
cls.__truediv__ = _make_evaluate_binop(operator.truediv,
step=operator.truediv)
cls.__rtruediv__ = _make_evaluate_binop(ops.rtruediv,
step=ops.rtruediv)
|
[
"def",
"_add_numeric_methods_binary",
"(",
"cls",
")",
":",
"def",
"_make_evaluate_binop",
"(",
"op",
",",
"step",
"=",
"False",
")",
":",
"\"\"\"\n Parameters\n ----------\n op : callable that accepts 2 parms\n perform the binary op\n step : callable, optional, default to False\n op to apply to the step parm if not None\n if False, use the existing step\n \"\"\"",
"def",
"_evaluate_numeric_binop",
"(",
"self",
",",
"other",
")",
":",
"if",
"isinstance",
"(",
"other",
",",
"(",
"ABCSeries",
",",
"ABCDataFrame",
")",
")",
":",
"return",
"NotImplemented",
"elif",
"isinstance",
"(",
"other",
",",
"ABCTimedeltaIndex",
")",
":",
"# Defer to TimedeltaIndex implementation",
"return",
"NotImplemented",
"elif",
"isinstance",
"(",
"other",
",",
"(",
"timedelta",
",",
"np",
".",
"timedelta64",
")",
")",
":",
"# GH#19333 is_integer evaluated True on timedelta64,",
"# so we need to catch these explicitly",
"return",
"op",
"(",
"self",
".",
"_int64index",
",",
"other",
")",
"elif",
"is_timedelta64_dtype",
"(",
"other",
")",
":",
"# Must be an np.ndarray; GH#22390",
"return",
"op",
"(",
"self",
".",
"_int64index",
",",
"other",
")",
"other",
"=",
"self",
".",
"_validate_for_numeric_binop",
"(",
"other",
",",
"op",
")",
"attrs",
"=",
"self",
".",
"_get_attributes_dict",
"(",
")",
"attrs",
"=",
"self",
".",
"_maybe_update_attributes",
"(",
"attrs",
")",
"left",
",",
"right",
"=",
"self",
",",
"other",
"try",
":",
"# apply if we have an override",
"if",
"step",
":",
"with",
"np",
".",
"errstate",
"(",
"all",
"=",
"'ignore'",
")",
":",
"rstep",
"=",
"step",
"(",
"left",
".",
"_step",
",",
"right",
")",
"# we don't have a representable op",
"# so return a base index",
"if",
"not",
"is_integer",
"(",
"rstep",
")",
"or",
"not",
"rstep",
":",
"raise",
"ValueError",
"else",
":",
"rstep",
"=",
"left",
".",
"_step",
"with",
"np",
".",
"errstate",
"(",
"all",
"=",
"'ignore'",
")",
":",
"rstart",
"=",
"op",
"(",
"left",
".",
"_start",
",",
"right",
")",
"rstop",
"=",
"op",
"(",
"left",
".",
"_stop",
",",
"right",
")",
"result",
"=",
"RangeIndex",
"(",
"rstart",
",",
"rstop",
",",
"rstep",
",",
"*",
"*",
"attrs",
")",
"# for compat with numpy / Int64Index",
"# even if we can represent as a RangeIndex, return",
"# as a Float64Index if we have float-like descriptors",
"if",
"not",
"all",
"(",
"is_integer",
"(",
"x",
")",
"for",
"x",
"in",
"[",
"rstart",
",",
"rstop",
",",
"rstep",
"]",
")",
":",
"result",
"=",
"result",
".",
"astype",
"(",
"'float64'",
")",
"return",
"result",
"except",
"(",
"ValueError",
",",
"TypeError",
",",
"ZeroDivisionError",
")",
":",
"# Defer to Int64Index implementation",
"return",
"op",
"(",
"self",
".",
"_int64index",
",",
"other",
")",
"# TODO: Do attrs get handled reliably?",
"name",
"=",
"'__{name}__'",
".",
"format",
"(",
"name",
"=",
"op",
".",
"__name__",
")",
"return",
"compat",
".",
"set_function_name",
"(",
"_evaluate_numeric_binop",
",",
"name",
",",
"cls",
")",
"cls",
".",
"__add__",
"=",
"_make_evaluate_binop",
"(",
"operator",
".",
"add",
")",
"cls",
".",
"__radd__",
"=",
"_make_evaluate_binop",
"(",
"ops",
".",
"radd",
")",
"cls",
".",
"__sub__",
"=",
"_make_evaluate_binop",
"(",
"operator",
".",
"sub",
")",
"cls",
".",
"__rsub__",
"=",
"_make_evaluate_binop",
"(",
"ops",
".",
"rsub",
")",
"cls",
".",
"__mul__",
"=",
"_make_evaluate_binop",
"(",
"operator",
".",
"mul",
",",
"step",
"=",
"operator",
".",
"mul",
")",
"cls",
".",
"__rmul__",
"=",
"_make_evaluate_binop",
"(",
"ops",
".",
"rmul",
",",
"step",
"=",
"ops",
".",
"rmul",
")",
"cls",
".",
"__truediv__",
"=",
"_make_evaluate_binop",
"(",
"operator",
".",
"truediv",
",",
"step",
"=",
"operator",
".",
"truediv",
")",
"cls",
".",
"__rtruediv__",
"=",
"_make_evaluate_binop",
"(",
"ops",
".",
"rtruediv",
",",
"step",
"=",
"ops",
".",
"rtruediv",
")"
] |
add in numeric methods, specialized to RangeIndex
|
[
"add",
"in",
"numeric",
"methods",
"specialized",
"to",
"RangeIndex"
] |
9feb3ad92cc0397a04b665803a49299ee7aa1037
|
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/indexes/range.py#L644-L727
|
19,648
|
pandas-dev/pandas
|
pandas/io/formats/printing.py
|
adjoin
|
def adjoin(space, *lists, **kwargs):
"""
Glues together two sets of strings using the amount of space requested.
The idea is to prettify.
----------
space : int
number of spaces for padding
lists : str
list of str which being joined
strlen : callable
function used to calculate the length of each str. Needed for unicode
handling.
justfunc : callable
function used to justify str. Needed for unicode handling.
"""
strlen = kwargs.pop('strlen', len)
justfunc = kwargs.pop('justfunc', justify)
out_lines = []
newLists = []
lengths = [max(map(strlen, x)) + space for x in lists[:-1]]
# not the last one
lengths.append(max(map(len, lists[-1])))
maxLen = max(map(len, lists))
for i, lst in enumerate(lists):
nl = justfunc(lst, lengths[i], mode='left')
nl.extend([' ' * lengths[i]] * (maxLen - len(lst)))
newLists.append(nl)
toJoin = zip(*newLists)
for lines in toJoin:
out_lines.append(_join_unicode(lines))
return _join_unicode(out_lines, sep='\n')
|
python
|
def adjoin(space, *lists, **kwargs):
"""
Glues together two sets of strings using the amount of space requested.
The idea is to prettify.
----------
space : int
number of spaces for padding
lists : str
list of str which being joined
strlen : callable
function used to calculate the length of each str. Needed for unicode
handling.
justfunc : callable
function used to justify str. Needed for unicode handling.
"""
strlen = kwargs.pop('strlen', len)
justfunc = kwargs.pop('justfunc', justify)
out_lines = []
newLists = []
lengths = [max(map(strlen, x)) + space for x in lists[:-1]]
# not the last one
lengths.append(max(map(len, lists[-1])))
maxLen = max(map(len, lists))
for i, lst in enumerate(lists):
nl = justfunc(lst, lengths[i], mode='left')
nl.extend([' ' * lengths[i]] * (maxLen - len(lst)))
newLists.append(nl)
toJoin = zip(*newLists)
for lines in toJoin:
out_lines.append(_join_unicode(lines))
return _join_unicode(out_lines, sep='\n')
|
[
"def",
"adjoin",
"(",
"space",
",",
"*",
"lists",
",",
"*",
"*",
"kwargs",
")",
":",
"strlen",
"=",
"kwargs",
".",
"pop",
"(",
"'strlen'",
",",
"len",
")",
"justfunc",
"=",
"kwargs",
".",
"pop",
"(",
"'justfunc'",
",",
"justify",
")",
"out_lines",
"=",
"[",
"]",
"newLists",
"=",
"[",
"]",
"lengths",
"=",
"[",
"max",
"(",
"map",
"(",
"strlen",
",",
"x",
")",
")",
"+",
"space",
"for",
"x",
"in",
"lists",
"[",
":",
"-",
"1",
"]",
"]",
"# not the last one",
"lengths",
".",
"append",
"(",
"max",
"(",
"map",
"(",
"len",
",",
"lists",
"[",
"-",
"1",
"]",
")",
")",
")",
"maxLen",
"=",
"max",
"(",
"map",
"(",
"len",
",",
"lists",
")",
")",
"for",
"i",
",",
"lst",
"in",
"enumerate",
"(",
"lists",
")",
":",
"nl",
"=",
"justfunc",
"(",
"lst",
",",
"lengths",
"[",
"i",
"]",
",",
"mode",
"=",
"'left'",
")",
"nl",
".",
"extend",
"(",
"[",
"' '",
"*",
"lengths",
"[",
"i",
"]",
"]",
"*",
"(",
"maxLen",
"-",
"len",
"(",
"lst",
")",
")",
")",
"newLists",
".",
"append",
"(",
"nl",
")",
"toJoin",
"=",
"zip",
"(",
"*",
"newLists",
")",
"for",
"lines",
"in",
"toJoin",
":",
"out_lines",
".",
"append",
"(",
"_join_unicode",
"(",
"lines",
")",
")",
"return",
"_join_unicode",
"(",
"out_lines",
",",
"sep",
"=",
"'\\n'",
")"
] |
Glues together two sets of strings using the amount of space requested.
The idea is to prettify.
----------
space : int
number of spaces for padding
lists : str
list of str which being joined
strlen : callable
function used to calculate the length of each str. Needed for unicode
handling.
justfunc : callable
function used to justify str. Needed for unicode handling.
|
[
"Glues",
"together",
"two",
"sets",
"of",
"strings",
"using",
"the",
"amount",
"of",
"space",
"requested",
".",
"The",
"idea",
"is",
"to",
"prettify",
"."
] |
9feb3ad92cc0397a04b665803a49299ee7aa1037
|
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/io/formats/printing.py#L12-L44
|
19,649
|
pandas-dev/pandas
|
pandas/io/gbq.py
|
read_gbq
|
def read_gbq(query, project_id=None, index_col=None, col_order=None,
reauth=False, auth_local_webserver=False, dialect=None,
location=None, configuration=None, credentials=None,
use_bqstorage_api=None, private_key=None, verbose=None):
"""
Load data from Google BigQuery.
This function requires the `pandas-gbq package
<https://pandas-gbq.readthedocs.io>`__.
See the `How to authenticate with Google BigQuery
<https://pandas-gbq.readthedocs.io/en/latest/howto/authentication.html>`__
guide for authentication instructions.
Parameters
----------
query : str
SQL-Like Query to return data values.
project_id : str, optional
Google BigQuery Account project ID. Optional when available from
the environment.
index_col : str, optional
Name of result column to use for index in results DataFrame.
col_order : list(str), optional
List of BigQuery column names in the desired order for results
DataFrame.
reauth : boolean, default False
Force Google BigQuery to re-authenticate the user. This is useful
if multiple accounts are used.
auth_local_webserver : boolean, default False
Use the `local webserver flow`_ instead of the `console flow`_
when getting user credentials.
.. _local webserver flow:
http://google-auth-oauthlib.readthedocs.io/en/latest/reference/google_auth_oauthlib.flow.html#google_auth_oauthlib.flow.InstalledAppFlow.run_local_server
.. _console flow:
http://google-auth-oauthlib.readthedocs.io/en/latest/reference/google_auth_oauthlib.flow.html#google_auth_oauthlib.flow.InstalledAppFlow.run_console
*New in version 0.2.0 of pandas-gbq*.
dialect : str, default 'legacy'
Note: The default value is changing to 'standard' in a future verion.
SQL syntax dialect to use. Value can be one of:
``'legacy'``
Use BigQuery's legacy SQL dialect. For more information see
`BigQuery Legacy SQL Reference
<https://cloud.google.com/bigquery/docs/reference/legacy-sql>`__.
``'standard'``
Use BigQuery's standard SQL, which is
compliant with the SQL 2011 standard. For more information
see `BigQuery Standard SQL Reference
<https://cloud.google.com/bigquery/docs/reference/standard-sql/>`__.
.. versionchanged:: 0.24.0
location : str, optional
Location where the query job should run. See the `BigQuery locations
documentation
<https://cloud.google.com/bigquery/docs/dataset-locations>`__ for a
list of available locations. The location must match that of any
datasets used in the query.
*New in version 0.5.0 of pandas-gbq*.
configuration : dict, optional
Query config parameters for job processing.
For example:
configuration = {'query': {'useQueryCache': False}}
For more information see `BigQuery REST API Reference
<https://cloud.google.com/bigquery/docs/reference/rest/v2/jobs#configuration.query>`__.
credentials : google.auth.credentials.Credentials, optional
Credentials for accessing Google APIs. Use this parameter to override
default credentials, such as to use Compute Engine
:class:`google.auth.compute_engine.Credentials` or Service Account
:class:`google.oauth2.service_account.Credentials` directly.
*New in version 0.8.0 of pandas-gbq*.
.. versionadded:: 0.24.0
use_bqstorage_api : bool, default False
Use the `BigQuery Storage API
<https://cloud.google.com/bigquery/docs/reference/storage/>`__ to
download query results quickly, but at an increased cost. To use this
API, first `enable it in the Cloud Console
<https://console.cloud.google.com/apis/library/bigquerystorage.googleapis.com>`__.
You must also have the `bigquery.readsessions.create
<https://cloud.google.com/bigquery/docs/access-control#roles>`__
permission on the project you are billing queries to.
This feature requires version 0.10.0 or later of the ``pandas-gbq``
package. It also requires the ``google-cloud-bigquery-storage`` and
``fastavro`` packages.
.. versionadded:: 0.25.0
private_key : str, deprecated
Deprecated in pandas-gbq version 0.8.0. Use the ``credentials``
parameter and
:func:`google.oauth2.service_account.Credentials.from_service_account_info`
or
:func:`google.oauth2.service_account.Credentials.from_service_account_file`
instead.
Service account private key in JSON format. Can be file path
or string contents. This is useful for remote server
authentication (eg. Jupyter/IPython notebook on remote host).
verbose : None, deprecated
Deprecated in pandas-gbq version 0.4.0. Use the `logging module to
adjust verbosity instead
<https://pandas-gbq.readthedocs.io/en/latest/intro.html#logging>`__.
Returns
-------
df: DataFrame
DataFrame representing results of query.
See Also
--------
pandas_gbq.read_gbq : This function in the pandas-gbq library.
DataFrame.to_gbq : Write a DataFrame to Google BigQuery.
"""
pandas_gbq = _try_import()
kwargs = {}
# START: new kwargs. Don't populate unless explicitly set.
if use_bqstorage_api is not None:
kwargs["use_bqstorage_api"] = use_bqstorage_api
# END: new kwargs
# START: deprecated kwargs. Don't populate unless explicitly set.
if verbose is not None:
kwargs["verbose"] = verbose
if private_key is not None:
kwargs["private_key"] = private_key
# END: deprecated kwargs
return pandas_gbq.read_gbq(
query, project_id=project_id, index_col=index_col,
col_order=col_order, reauth=reauth,
auth_local_webserver=auth_local_webserver, dialect=dialect,
location=location, configuration=configuration,
credentials=credentials, **kwargs)
|
python
|
def read_gbq(query, project_id=None, index_col=None, col_order=None,
reauth=False, auth_local_webserver=False, dialect=None,
location=None, configuration=None, credentials=None,
use_bqstorage_api=None, private_key=None, verbose=None):
"""
Load data from Google BigQuery.
This function requires the `pandas-gbq package
<https://pandas-gbq.readthedocs.io>`__.
See the `How to authenticate with Google BigQuery
<https://pandas-gbq.readthedocs.io/en/latest/howto/authentication.html>`__
guide for authentication instructions.
Parameters
----------
query : str
SQL-Like Query to return data values.
project_id : str, optional
Google BigQuery Account project ID. Optional when available from
the environment.
index_col : str, optional
Name of result column to use for index in results DataFrame.
col_order : list(str), optional
List of BigQuery column names in the desired order for results
DataFrame.
reauth : boolean, default False
Force Google BigQuery to re-authenticate the user. This is useful
if multiple accounts are used.
auth_local_webserver : boolean, default False
Use the `local webserver flow`_ instead of the `console flow`_
when getting user credentials.
.. _local webserver flow:
http://google-auth-oauthlib.readthedocs.io/en/latest/reference/google_auth_oauthlib.flow.html#google_auth_oauthlib.flow.InstalledAppFlow.run_local_server
.. _console flow:
http://google-auth-oauthlib.readthedocs.io/en/latest/reference/google_auth_oauthlib.flow.html#google_auth_oauthlib.flow.InstalledAppFlow.run_console
*New in version 0.2.0 of pandas-gbq*.
dialect : str, default 'legacy'
Note: The default value is changing to 'standard' in a future verion.
SQL syntax dialect to use. Value can be one of:
``'legacy'``
Use BigQuery's legacy SQL dialect. For more information see
`BigQuery Legacy SQL Reference
<https://cloud.google.com/bigquery/docs/reference/legacy-sql>`__.
``'standard'``
Use BigQuery's standard SQL, which is
compliant with the SQL 2011 standard. For more information
see `BigQuery Standard SQL Reference
<https://cloud.google.com/bigquery/docs/reference/standard-sql/>`__.
.. versionchanged:: 0.24.0
location : str, optional
Location where the query job should run. See the `BigQuery locations
documentation
<https://cloud.google.com/bigquery/docs/dataset-locations>`__ for a
list of available locations. The location must match that of any
datasets used in the query.
*New in version 0.5.0 of pandas-gbq*.
configuration : dict, optional
Query config parameters for job processing.
For example:
configuration = {'query': {'useQueryCache': False}}
For more information see `BigQuery REST API Reference
<https://cloud.google.com/bigquery/docs/reference/rest/v2/jobs#configuration.query>`__.
credentials : google.auth.credentials.Credentials, optional
Credentials for accessing Google APIs. Use this parameter to override
default credentials, such as to use Compute Engine
:class:`google.auth.compute_engine.Credentials` or Service Account
:class:`google.oauth2.service_account.Credentials` directly.
*New in version 0.8.0 of pandas-gbq*.
.. versionadded:: 0.24.0
use_bqstorage_api : bool, default False
Use the `BigQuery Storage API
<https://cloud.google.com/bigquery/docs/reference/storage/>`__ to
download query results quickly, but at an increased cost. To use this
API, first `enable it in the Cloud Console
<https://console.cloud.google.com/apis/library/bigquerystorage.googleapis.com>`__.
You must also have the `bigquery.readsessions.create
<https://cloud.google.com/bigquery/docs/access-control#roles>`__
permission on the project you are billing queries to.
This feature requires version 0.10.0 or later of the ``pandas-gbq``
package. It also requires the ``google-cloud-bigquery-storage`` and
``fastavro`` packages.
.. versionadded:: 0.25.0
private_key : str, deprecated
Deprecated in pandas-gbq version 0.8.0. Use the ``credentials``
parameter and
:func:`google.oauth2.service_account.Credentials.from_service_account_info`
or
:func:`google.oauth2.service_account.Credentials.from_service_account_file`
instead.
Service account private key in JSON format. Can be file path
or string contents. This is useful for remote server
authentication (eg. Jupyter/IPython notebook on remote host).
verbose : None, deprecated
Deprecated in pandas-gbq version 0.4.0. Use the `logging module to
adjust verbosity instead
<https://pandas-gbq.readthedocs.io/en/latest/intro.html#logging>`__.
Returns
-------
df: DataFrame
DataFrame representing results of query.
See Also
--------
pandas_gbq.read_gbq : This function in the pandas-gbq library.
DataFrame.to_gbq : Write a DataFrame to Google BigQuery.
"""
pandas_gbq = _try_import()
kwargs = {}
# START: new kwargs. Don't populate unless explicitly set.
if use_bqstorage_api is not None:
kwargs["use_bqstorage_api"] = use_bqstorage_api
# END: new kwargs
# START: deprecated kwargs. Don't populate unless explicitly set.
if verbose is not None:
kwargs["verbose"] = verbose
if private_key is not None:
kwargs["private_key"] = private_key
# END: deprecated kwargs
return pandas_gbq.read_gbq(
query, project_id=project_id, index_col=index_col,
col_order=col_order, reauth=reauth,
auth_local_webserver=auth_local_webserver, dialect=dialect,
location=location, configuration=configuration,
credentials=credentials, **kwargs)
|
[
"def",
"read_gbq",
"(",
"query",
",",
"project_id",
"=",
"None",
",",
"index_col",
"=",
"None",
",",
"col_order",
"=",
"None",
",",
"reauth",
"=",
"False",
",",
"auth_local_webserver",
"=",
"False",
",",
"dialect",
"=",
"None",
",",
"location",
"=",
"None",
",",
"configuration",
"=",
"None",
",",
"credentials",
"=",
"None",
",",
"use_bqstorage_api",
"=",
"None",
",",
"private_key",
"=",
"None",
",",
"verbose",
"=",
"None",
")",
":",
"pandas_gbq",
"=",
"_try_import",
"(",
")",
"kwargs",
"=",
"{",
"}",
"# START: new kwargs. Don't populate unless explicitly set.",
"if",
"use_bqstorage_api",
"is",
"not",
"None",
":",
"kwargs",
"[",
"\"use_bqstorage_api\"",
"]",
"=",
"use_bqstorage_api",
"# END: new kwargs",
"# START: deprecated kwargs. Don't populate unless explicitly set.",
"if",
"verbose",
"is",
"not",
"None",
":",
"kwargs",
"[",
"\"verbose\"",
"]",
"=",
"verbose",
"if",
"private_key",
"is",
"not",
"None",
":",
"kwargs",
"[",
"\"private_key\"",
"]",
"=",
"private_key",
"# END: deprecated kwargs",
"return",
"pandas_gbq",
".",
"read_gbq",
"(",
"query",
",",
"project_id",
"=",
"project_id",
",",
"index_col",
"=",
"index_col",
",",
"col_order",
"=",
"col_order",
",",
"reauth",
"=",
"reauth",
",",
"auth_local_webserver",
"=",
"auth_local_webserver",
",",
"dialect",
"=",
"dialect",
",",
"location",
"=",
"location",
",",
"configuration",
"=",
"configuration",
",",
"credentials",
"=",
"credentials",
",",
"*",
"*",
"kwargs",
")"
] |
Load data from Google BigQuery.
This function requires the `pandas-gbq package
<https://pandas-gbq.readthedocs.io>`__.
See the `How to authenticate with Google BigQuery
<https://pandas-gbq.readthedocs.io/en/latest/howto/authentication.html>`__
guide for authentication instructions.
Parameters
----------
query : str
SQL-Like Query to return data values.
project_id : str, optional
Google BigQuery Account project ID. Optional when available from
the environment.
index_col : str, optional
Name of result column to use for index in results DataFrame.
col_order : list(str), optional
List of BigQuery column names in the desired order for results
DataFrame.
reauth : boolean, default False
Force Google BigQuery to re-authenticate the user. This is useful
if multiple accounts are used.
auth_local_webserver : boolean, default False
Use the `local webserver flow`_ instead of the `console flow`_
when getting user credentials.
.. _local webserver flow:
http://google-auth-oauthlib.readthedocs.io/en/latest/reference/google_auth_oauthlib.flow.html#google_auth_oauthlib.flow.InstalledAppFlow.run_local_server
.. _console flow:
http://google-auth-oauthlib.readthedocs.io/en/latest/reference/google_auth_oauthlib.flow.html#google_auth_oauthlib.flow.InstalledAppFlow.run_console
*New in version 0.2.0 of pandas-gbq*.
dialect : str, default 'legacy'
Note: The default value is changing to 'standard' in a future verion.
SQL syntax dialect to use. Value can be one of:
``'legacy'``
Use BigQuery's legacy SQL dialect. For more information see
`BigQuery Legacy SQL Reference
<https://cloud.google.com/bigquery/docs/reference/legacy-sql>`__.
``'standard'``
Use BigQuery's standard SQL, which is
compliant with the SQL 2011 standard. For more information
see `BigQuery Standard SQL Reference
<https://cloud.google.com/bigquery/docs/reference/standard-sql/>`__.
.. versionchanged:: 0.24.0
location : str, optional
Location where the query job should run. See the `BigQuery locations
documentation
<https://cloud.google.com/bigquery/docs/dataset-locations>`__ for a
list of available locations. The location must match that of any
datasets used in the query.
*New in version 0.5.0 of pandas-gbq*.
configuration : dict, optional
Query config parameters for job processing.
For example:
configuration = {'query': {'useQueryCache': False}}
For more information see `BigQuery REST API Reference
<https://cloud.google.com/bigquery/docs/reference/rest/v2/jobs#configuration.query>`__.
credentials : google.auth.credentials.Credentials, optional
Credentials for accessing Google APIs. Use this parameter to override
default credentials, such as to use Compute Engine
:class:`google.auth.compute_engine.Credentials` or Service Account
:class:`google.oauth2.service_account.Credentials` directly.
*New in version 0.8.0 of pandas-gbq*.
.. versionadded:: 0.24.0
use_bqstorage_api : bool, default False
Use the `BigQuery Storage API
<https://cloud.google.com/bigquery/docs/reference/storage/>`__ to
download query results quickly, but at an increased cost. To use this
API, first `enable it in the Cloud Console
<https://console.cloud.google.com/apis/library/bigquerystorage.googleapis.com>`__.
You must also have the `bigquery.readsessions.create
<https://cloud.google.com/bigquery/docs/access-control#roles>`__
permission on the project you are billing queries to.
This feature requires version 0.10.0 or later of the ``pandas-gbq``
package. It also requires the ``google-cloud-bigquery-storage`` and
``fastavro`` packages.
.. versionadded:: 0.25.0
private_key : str, deprecated
Deprecated in pandas-gbq version 0.8.0. Use the ``credentials``
parameter and
:func:`google.oauth2.service_account.Credentials.from_service_account_info`
or
:func:`google.oauth2.service_account.Credentials.from_service_account_file`
instead.
Service account private key in JSON format. Can be file path
or string contents. This is useful for remote server
authentication (eg. Jupyter/IPython notebook on remote host).
verbose : None, deprecated
Deprecated in pandas-gbq version 0.4.0. Use the `logging module to
adjust verbosity instead
<https://pandas-gbq.readthedocs.io/en/latest/intro.html#logging>`__.
Returns
-------
df: DataFrame
DataFrame representing results of query.
See Also
--------
pandas_gbq.read_gbq : This function in the pandas-gbq library.
DataFrame.to_gbq : Write a DataFrame to Google BigQuery.
|
[
"Load",
"data",
"from",
"Google",
"BigQuery",
"."
] |
9feb3ad92cc0397a04b665803a49299ee7aa1037
|
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/io/gbq.py#L24-L167
|
19,650
|
pandas-dev/pandas
|
pandas/plotting/_misc.py
|
andrews_curves
|
def andrews_curves(frame, class_column, ax=None, samples=200, color=None,
colormap=None, **kwds):
"""
Generate a matplotlib plot of Andrews curves, for visualising clusters of
multivariate data.
Andrews curves have the functional form:
f(t) = x_1/sqrt(2) + x_2 sin(t) + x_3 cos(t) +
x_4 sin(2t) + x_5 cos(2t) + ...
Where x coefficients correspond to the values of each dimension and t is
linearly spaced between -pi and +pi. Each row of frame then corresponds to
a single curve.
Parameters
----------
frame : DataFrame
Data to be plotted, preferably normalized to (0.0, 1.0)
class_column : Name of the column containing class names
ax : matplotlib axes object, default None
samples : Number of points to plot in each curve
color : list or tuple, optional
Colors to use for the different classes
colormap : str or matplotlib colormap object, default None
Colormap to select colors from. If string, load colormap with that name
from matplotlib.
kwds : keywords
Options to pass to matplotlib plotting method
Returns
-------
class:`matplotlip.axis.Axes`
"""
from math import sqrt, pi
import matplotlib.pyplot as plt
def function(amplitudes):
def f(t):
x1 = amplitudes[0]
result = x1 / sqrt(2.0)
# Take the rest of the coefficients and resize them
# appropriately. Take a copy of amplitudes as otherwise numpy
# deletes the element from amplitudes itself.
coeffs = np.delete(np.copy(amplitudes), 0)
coeffs.resize(int((coeffs.size + 1) / 2), 2)
# Generate the harmonics and arguments for the sin and cos
# functions.
harmonics = np.arange(0, coeffs.shape[0]) + 1
trig_args = np.outer(harmonics, t)
result += np.sum(coeffs[:, 0, np.newaxis] * np.sin(trig_args) +
coeffs[:, 1, np.newaxis] * np.cos(trig_args),
axis=0)
return result
return f
n = len(frame)
class_col = frame[class_column]
classes = frame[class_column].drop_duplicates()
df = frame.drop(class_column, axis=1)
t = np.linspace(-pi, pi, samples)
used_legends = set()
color_values = _get_standard_colors(num_colors=len(classes),
colormap=colormap, color_type='random',
color=color)
colors = dict(zip(classes, color_values))
if ax is None:
ax = plt.gca(xlim=(-pi, pi))
for i in range(n):
row = df.iloc[i].values
f = function(row)
y = f(t)
kls = class_col.iat[i]
label = pprint_thing(kls)
if label not in used_legends:
used_legends.add(label)
ax.plot(t, y, color=colors[kls], label=label, **kwds)
else:
ax.plot(t, y, color=colors[kls], **kwds)
ax.legend(loc='upper right')
ax.grid()
return ax
|
python
|
def andrews_curves(frame, class_column, ax=None, samples=200, color=None,
colormap=None, **kwds):
"""
Generate a matplotlib plot of Andrews curves, for visualising clusters of
multivariate data.
Andrews curves have the functional form:
f(t) = x_1/sqrt(2) + x_2 sin(t) + x_3 cos(t) +
x_4 sin(2t) + x_5 cos(2t) + ...
Where x coefficients correspond to the values of each dimension and t is
linearly spaced between -pi and +pi. Each row of frame then corresponds to
a single curve.
Parameters
----------
frame : DataFrame
Data to be plotted, preferably normalized to (0.0, 1.0)
class_column : Name of the column containing class names
ax : matplotlib axes object, default None
samples : Number of points to plot in each curve
color : list or tuple, optional
Colors to use for the different classes
colormap : str or matplotlib colormap object, default None
Colormap to select colors from. If string, load colormap with that name
from matplotlib.
kwds : keywords
Options to pass to matplotlib plotting method
Returns
-------
class:`matplotlip.axis.Axes`
"""
from math import sqrt, pi
import matplotlib.pyplot as plt
def function(amplitudes):
def f(t):
x1 = amplitudes[0]
result = x1 / sqrt(2.0)
# Take the rest of the coefficients and resize them
# appropriately. Take a copy of amplitudes as otherwise numpy
# deletes the element from amplitudes itself.
coeffs = np.delete(np.copy(amplitudes), 0)
coeffs.resize(int((coeffs.size + 1) / 2), 2)
# Generate the harmonics and arguments for the sin and cos
# functions.
harmonics = np.arange(0, coeffs.shape[0]) + 1
trig_args = np.outer(harmonics, t)
result += np.sum(coeffs[:, 0, np.newaxis] * np.sin(trig_args) +
coeffs[:, 1, np.newaxis] * np.cos(trig_args),
axis=0)
return result
return f
n = len(frame)
class_col = frame[class_column]
classes = frame[class_column].drop_duplicates()
df = frame.drop(class_column, axis=1)
t = np.linspace(-pi, pi, samples)
used_legends = set()
color_values = _get_standard_colors(num_colors=len(classes),
colormap=colormap, color_type='random',
color=color)
colors = dict(zip(classes, color_values))
if ax is None:
ax = plt.gca(xlim=(-pi, pi))
for i in range(n):
row = df.iloc[i].values
f = function(row)
y = f(t)
kls = class_col.iat[i]
label = pprint_thing(kls)
if label not in used_legends:
used_legends.add(label)
ax.plot(t, y, color=colors[kls], label=label, **kwds)
else:
ax.plot(t, y, color=colors[kls], **kwds)
ax.legend(loc='upper right')
ax.grid()
return ax
|
[
"def",
"andrews_curves",
"(",
"frame",
",",
"class_column",
",",
"ax",
"=",
"None",
",",
"samples",
"=",
"200",
",",
"color",
"=",
"None",
",",
"colormap",
"=",
"None",
",",
"*",
"*",
"kwds",
")",
":",
"from",
"math",
"import",
"sqrt",
",",
"pi",
"import",
"matplotlib",
".",
"pyplot",
"as",
"plt",
"def",
"function",
"(",
"amplitudes",
")",
":",
"def",
"f",
"(",
"t",
")",
":",
"x1",
"=",
"amplitudes",
"[",
"0",
"]",
"result",
"=",
"x1",
"/",
"sqrt",
"(",
"2.0",
")",
"# Take the rest of the coefficients and resize them",
"# appropriately. Take a copy of amplitudes as otherwise numpy",
"# deletes the element from amplitudes itself.",
"coeffs",
"=",
"np",
".",
"delete",
"(",
"np",
".",
"copy",
"(",
"amplitudes",
")",
",",
"0",
")",
"coeffs",
".",
"resize",
"(",
"int",
"(",
"(",
"coeffs",
".",
"size",
"+",
"1",
")",
"/",
"2",
")",
",",
"2",
")",
"# Generate the harmonics and arguments for the sin and cos",
"# functions.",
"harmonics",
"=",
"np",
".",
"arange",
"(",
"0",
",",
"coeffs",
".",
"shape",
"[",
"0",
"]",
")",
"+",
"1",
"trig_args",
"=",
"np",
".",
"outer",
"(",
"harmonics",
",",
"t",
")",
"result",
"+=",
"np",
".",
"sum",
"(",
"coeffs",
"[",
":",
",",
"0",
",",
"np",
".",
"newaxis",
"]",
"*",
"np",
".",
"sin",
"(",
"trig_args",
")",
"+",
"coeffs",
"[",
":",
",",
"1",
",",
"np",
".",
"newaxis",
"]",
"*",
"np",
".",
"cos",
"(",
"trig_args",
")",
",",
"axis",
"=",
"0",
")",
"return",
"result",
"return",
"f",
"n",
"=",
"len",
"(",
"frame",
")",
"class_col",
"=",
"frame",
"[",
"class_column",
"]",
"classes",
"=",
"frame",
"[",
"class_column",
"]",
".",
"drop_duplicates",
"(",
")",
"df",
"=",
"frame",
".",
"drop",
"(",
"class_column",
",",
"axis",
"=",
"1",
")",
"t",
"=",
"np",
".",
"linspace",
"(",
"-",
"pi",
",",
"pi",
",",
"samples",
")",
"used_legends",
"=",
"set",
"(",
")",
"color_values",
"=",
"_get_standard_colors",
"(",
"num_colors",
"=",
"len",
"(",
"classes",
")",
",",
"colormap",
"=",
"colormap",
",",
"color_type",
"=",
"'random'",
",",
"color",
"=",
"color",
")",
"colors",
"=",
"dict",
"(",
"zip",
"(",
"classes",
",",
"color_values",
")",
")",
"if",
"ax",
"is",
"None",
":",
"ax",
"=",
"plt",
".",
"gca",
"(",
"xlim",
"=",
"(",
"-",
"pi",
",",
"pi",
")",
")",
"for",
"i",
"in",
"range",
"(",
"n",
")",
":",
"row",
"=",
"df",
".",
"iloc",
"[",
"i",
"]",
".",
"values",
"f",
"=",
"function",
"(",
"row",
")",
"y",
"=",
"f",
"(",
"t",
")",
"kls",
"=",
"class_col",
".",
"iat",
"[",
"i",
"]",
"label",
"=",
"pprint_thing",
"(",
"kls",
")",
"if",
"label",
"not",
"in",
"used_legends",
":",
"used_legends",
".",
"add",
"(",
"label",
")",
"ax",
".",
"plot",
"(",
"t",
",",
"y",
",",
"color",
"=",
"colors",
"[",
"kls",
"]",
",",
"label",
"=",
"label",
",",
"*",
"*",
"kwds",
")",
"else",
":",
"ax",
".",
"plot",
"(",
"t",
",",
"y",
",",
"color",
"=",
"colors",
"[",
"kls",
"]",
",",
"*",
"*",
"kwds",
")",
"ax",
".",
"legend",
"(",
"loc",
"=",
"'upper right'",
")",
"ax",
".",
"grid",
"(",
")",
"return",
"ax"
] |
Generate a matplotlib plot of Andrews curves, for visualising clusters of
multivariate data.
Andrews curves have the functional form:
f(t) = x_1/sqrt(2) + x_2 sin(t) + x_3 cos(t) +
x_4 sin(2t) + x_5 cos(2t) + ...
Where x coefficients correspond to the values of each dimension and t is
linearly spaced between -pi and +pi. Each row of frame then corresponds to
a single curve.
Parameters
----------
frame : DataFrame
Data to be plotted, preferably normalized to (0.0, 1.0)
class_column : Name of the column containing class names
ax : matplotlib axes object, default None
samples : Number of points to plot in each curve
color : list or tuple, optional
Colors to use for the different classes
colormap : str or matplotlib colormap object, default None
Colormap to select colors from. If string, load colormap with that name
from matplotlib.
kwds : keywords
Options to pass to matplotlib plotting method
Returns
-------
class:`matplotlip.axis.Axes`
|
[
"Generate",
"a",
"matplotlib",
"plot",
"of",
"Andrews",
"curves",
"for",
"visualising",
"clusters",
"of",
"multivariate",
"data",
"."
] |
9feb3ad92cc0397a04b665803a49299ee7aa1037
|
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/plotting/_misc.py#L270-L356
|
19,651
|
pandas-dev/pandas
|
pandas/plotting/_misc.py
|
bootstrap_plot
|
def bootstrap_plot(series, fig=None, size=50, samples=500, **kwds):
"""
Bootstrap plot on mean, median and mid-range statistics.
The bootstrap plot is used to estimate the uncertainty of a statistic
by relaying on random sampling with replacement [1]_. This function will
generate bootstrapping plots for mean, median and mid-range statistics
for the given number of samples of the given size.
.. [1] "Bootstrapping (statistics)" in \
https://en.wikipedia.org/wiki/Bootstrapping_%28statistics%29
Parameters
----------
series : pandas.Series
Pandas Series from where to get the samplings for the bootstrapping.
fig : matplotlib.figure.Figure, default None
If given, it will use the `fig` reference for plotting instead of
creating a new one with default parameters.
size : int, default 50
Number of data points to consider during each sampling. It must be
greater or equal than the length of the `series`.
samples : int, default 500
Number of times the bootstrap procedure is performed.
**kwds :
Options to pass to matplotlib plotting method.
Returns
-------
matplotlib.figure.Figure
Matplotlib figure.
See Also
--------
DataFrame.plot : Basic plotting for DataFrame objects.
Series.plot : Basic plotting for Series objects.
Examples
--------
.. plot::
:context: close-figs
>>> s = pd.Series(np.random.uniform(size=100))
>>> fig = pd.plotting.bootstrap_plot(s) # doctest: +SKIP
"""
import random
import matplotlib.pyplot as plt
# random.sample(ndarray, int) fails on python 3.3, sigh
data = list(series.values)
samplings = [random.sample(data, size) for _ in range(samples)]
means = np.array([np.mean(sampling) for sampling in samplings])
medians = np.array([np.median(sampling) for sampling in samplings])
midranges = np.array([(min(sampling) + max(sampling)) * 0.5
for sampling in samplings])
if fig is None:
fig = plt.figure()
x = lrange(samples)
axes = []
ax1 = fig.add_subplot(2, 3, 1)
ax1.set_xlabel("Sample")
axes.append(ax1)
ax1.plot(x, means, **kwds)
ax2 = fig.add_subplot(2, 3, 2)
ax2.set_xlabel("Sample")
axes.append(ax2)
ax2.plot(x, medians, **kwds)
ax3 = fig.add_subplot(2, 3, 3)
ax3.set_xlabel("Sample")
axes.append(ax3)
ax3.plot(x, midranges, **kwds)
ax4 = fig.add_subplot(2, 3, 4)
ax4.set_xlabel("Mean")
axes.append(ax4)
ax4.hist(means, **kwds)
ax5 = fig.add_subplot(2, 3, 5)
ax5.set_xlabel("Median")
axes.append(ax5)
ax5.hist(medians, **kwds)
ax6 = fig.add_subplot(2, 3, 6)
ax6.set_xlabel("Midrange")
axes.append(ax6)
ax6.hist(midranges, **kwds)
for axis in axes:
plt.setp(axis.get_xticklabels(), fontsize=8)
plt.setp(axis.get_yticklabels(), fontsize=8)
return fig
|
python
|
def bootstrap_plot(series, fig=None, size=50, samples=500, **kwds):
"""
Bootstrap plot on mean, median and mid-range statistics.
The bootstrap plot is used to estimate the uncertainty of a statistic
by relaying on random sampling with replacement [1]_. This function will
generate bootstrapping plots for mean, median and mid-range statistics
for the given number of samples of the given size.
.. [1] "Bootstrapping (statistics)" in \
https://en.wikipedia.org/wiki/Bootstrapping_%28statistics%29
Parameters
----------
series : pandas.Series
Pandas Series from where to get the samplings for the bootstrapping.
fig : matplotlib.figure.Figure, default None
If given, it will use the `fig` reference for plotting instead of
creating a new one with default parameters.
size : int, default 50
Number of data points to consider during each sampling. It must be
greater or equal than the length of the `series`.
samples : int, default 500
Number of times the bootstrap procedure is performed.
**kwds :
Options to pass to matplotlib plotting method.
Returns
-------
matplotlib.figure.Figure
Matplotlib figure.
See Also
--------
DataFrame.plot : Basic plotting for DataFrame objects.
Series.plot : Basic plotting for Series objects.
Examples
--------
.. plot::
:context: close-figs
>>> s = pd.Series(np.random.uniform(size=100))
>>> fig = pd.plotting.bootstrap_plot(s) # doctest: +SKIP
"""
import random
import matplotlib.pyplot as plt
# random.sample(ndarray, int) fails on python 3.3, sigh
data = list(series.values)
samplings = [random.sample(data, size) for _ in range(samples)]
means = np.array([np.mean(sampling) for sampling in samplings])
medians = np.array([np.median(sampling) for sampling in samplings])
midranges = np.array([(min(sampling) + max(sampling)) * 0.5
for sampling in samplings])
if fig is None:
fig = plt.figure()
x = lrange(samples)
axes = []
ax1 = fig.add_subplot(2, 3, 1)
ax1.set_xlabel("Sample")
axes.append(ax1)
ax1.plot(x, means, **kwds)
ax2 = fig.add_subplot(2, 3, 2)
ax2.set_xlabel("Sample")
axes.append(ax2)
ax2.plot(x, medians, **kwds)
ax3 = fig.add_subplot(2, 3, 3)
ax3.set_xlabel("Sample")
axes.append(ax3)
ax3.plot(x, midranges, **kwds)
ax4 = fig.add_subplot(2, 3, 4)
ax4.set_xlabel("Mean")
axes.append(ax4)
ax4.hist(means, **kwds)
ax5 = fig.add_subplot(2, 3, 5)
ax5.set_xlabel("Median")
axes.append(ax5)
ax5.hist(medians, **kwds)
ax6 = fig.add_subplot(2, 3, 6)
ax6.set_xlabel("Midrange")
axes.append(ax6)
ax6.hist(midranges, **kwds)
for axis in axes:
plt.setp(axis.get_xticklabels(), fontsize=8)
plt.setp(axis.get_yticklabels(), fontsize=8)
return fig
|
[
"def",
"bootstrap_plot",
"(",
"series",
",",
"fig",
"=",
"None",
",",
"size",
"=",
"50",
",",
"samples",
"=",
"500",
",",
"*",
"*",
"kwds",
")",
":",
"import",
"random",
"import",
"matplotlib",
".",
"pyplot",
"as",
"plt",
"# random.sample(ndarray, int) fails on python 3.3, sigh",
"data",
"=",
"list",
"(",
"series",
".",
"values",
")",
"samplings",
"=",
"[",
"random",
".",
"sample",
"(",
"data",
",",
"size",
")",
"for",
"_",
"in",
"range",
"(",
"samples",
")",
"]",
"means",
"=",
"np",
".",
"array",
"(",
"[",
"np",
".",
"mean",
"(",
"sampling",
")",
"for",
"sampling",
"in",
"samplings",
"]",
")",
"medians",
"=",
"np",
".",
"array",
"(",
"[",
"np",
".",
"median",
"(",
"sampling",
")",
"for",
"sampling",
"in",
"samplings",
"]",
")",
"midranges",
"=",
"np",
".",
"array",
"(",
"[",
"(",
"min",
"(",
"sampling",
")",
"+",
"max",
"(",
"sampling",
")",
")",
"*",
"0.5",
"for",
"sampling",
"in",
"samplings",
"]",
")",
"if",
"fig",
"is",
"None",
":",
"fig",
"=",
"plt",
".",
"figure",
"(",
")",
"x",
"=",
"lrange",
"(",
"samples",
")",
"axes",
"=",
"[",
"]",
"ax1",
"=",
"fig",
".",
"add_subplot",
"(",
"2",
",",
"3",
",",
"1",
")",
"ax1",
".",
"set_xlabel",
"(",
"\"Sample\"",
")",
"axes",
".",
"append",
"(",
"ax1",
")",
"ax1",
".",
"plot",
"(",
"x",
",",
"means",
",",
"*",
"*",
"kwds",
")",
"ax2",
"=",
"fig",
".",
"add_subplot",
"(",
"2",
",",
"3",
",",
"2",
")",
"ax2",
".",
"set_xlabel",
"(",
"\"Sample\"",
")",
"axes",
".",
"append",
"(",
"ax2",
")",
"ax2",
".",
"plot",
"(",
"x",
",",
"medians",
",",
"*",
"*",
"kwds",
")",
"ax3",
"=",
"fig",
".",
"add_subplot",
"(",
"2",
",",
"3",
",",
"3",
")",
"ax3",
".",
"set_xlabel",
"(",
"\"Sample\"",
")",
"axes",
".",
"append",
"(",
"ax3",
")",
"ax3",
".",
"plot",
"(",
"x",
",",
"midranges",
",",
"*",
"*",
"kwds",
")",
"ax4",
"=",
"fig",
".",
"add_subplot",
"(",
"2",
",",
"3",
",",
"4",
")",
"ax4",
".",
"set_xlabel",
"(",
"\"Mean\"",
")",
"axes",
".",
"append",
"(",
"ax4",
")",
"ax4",
".",
"hist",
"(",
"means",
",",
"*",
"*",
"kwds",
")",
"ax5",
"=",
"fig",
".",
"add_subplot",
"(",
"2",
",",
"3",
",",
"5",
")",
"ax5",
".",
"set_xlabel",
"(",
"\"Median\"",
")",
"axes",
".",
"append",
"(",
"ax5",
")",
"ax5",
".",
"hist",
"(",
"medians",
",",
"*",
"*",
"kwds",
")",
"ax6",
"=",
"fig",
".",
"add_subplot",
"(",
"2",
",",
"3",
",",
"6",
")",
"ax6",
".",
"set_xlabel",
"(",
"\"Midrange\"",
")",
"axes",
".",
"append",
"(",
"ax6",
")",
"ax6",
".",
"hist",
"(",
"midranges",
",",
"*",
"*",
"kwds",
")",
"for",
"axis",
"in",
"axes",
":",
"plt",
".",
"setp",
"(",
"axis",
".",
"get_xticklabels",
"(",
")",
",",
"fontsize",
"=",
"8",
")",
"plt",
".",
"setp",
"(",
"axis",
".",
"get_yticklabels",
"(",
")",
",",
"fontsize",
"=",
"8",
")",
"return",
"fig"
] |
Bootstrap plot on mean, median and mid-range statistics.
The bootstrap plot is used to estimate the uncertainty of a statistic
by relaying on random sampling with replacement [1]_. This function will
generate bootstrapping plots for mean, median and mid-range statistics
for the given number of samples of the given size.
.. [1] "Bootstrapping (statistics)" in \
https://en.wikipedia.org/wiki/Bootstrapping_%28statistics%29
Parameters
----------
series : pandas.Series
Pandas Series from where to get the samplings for the bootstrapping.
fig : matplotlib.figure.Figure, default None
If given, it will use the `fig` reference for plotting instead of
creating a new one with default parameters.
size : int, default 50
Number of data points to consider during each sampling. It must be
greater or equal than the length of the `series`.
samples : int, default 500
Number of times the bootstrap procedure is performed.
**kwds :
Options to pass to matplotlib plotting method.
Returns
-------
matplotlib.figure.Figure
Matplotlib figure.
See Also
--------
DataFrame.plot : Basic plotting for DataFrame objects.
Series.plot : Basic plotting for Series objects.
Examples
--------
.. plot::
:context: close-figs
>>> s = pd.Series(np.random.uniform(size=100))
>>> fig = pd.plotting.bootstrap_plot(s) # doctest: +SKIP
|
[
"Bootstrap",
"plot",
"on",
"mean",
"median",
"and",
"mid",
"-",
"range",
"statistics",
"."
] |
9feb3ad92cc0397a04b665803a49299ee7aa1037
|
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/plotting/_misc.py#L359-L447
|
19,652
|
pandas-dev/pandas
|
pandas/plotting/_misc.py
|
autocorrelation_plot
|
def autocorrelation_plot(series, ax=None, **kwds):
"""
Autocorrelation plot for time series.
Parameters:
-----------
series: Time series
ax: Matplotlib axis object, optional
kwds : keywords
Options to pass to matplotlib plotting method
Returns:
-----------
class:`matplotlib.axis.Axes`
"""
import matplotlib.pyplot as plt
n = len(series)
data = np.asarray(series)
if ax is None:
ax = plt.gca(xlim=(1, n), ylim=(-1.0, 1.0))
mean = np.mean(data)
c0 = np.sum((data - mean) ** 2) / float(n)
def r(h):
return ((data[:n - h] - mean) *
(data[h:] - mean)).sum() / float(n) / c0
x = np.arange(n) + 1
y = lmap(r, x)
z95 = 1.959963984540054
z99 = 2.5758293035489004
ax.axhline(y=z99 / np.sqrt(n), linestyle='--', color='grey')
ax.axhline(y=z95 / np.sqrt(n), color='grey')
ax.axhline(y=0.0, color='black')
ax.axhline(y=-z95 / np.sqrt(n), color='grey')
ax.axhline(y=-z99 / np.sqrt(n), linestyle='--', color='grey')
ax.set_xlabel("Lag")
ax.set_ylabel("Autocorrelation")
ax.plot(x, y, **kwds)
if 'label' in kwds:
ax.legend()
ax.grid()
return ax
|
python
|
def autocorrelation_plot(series, ax=None, **kwds):
"""
Autocorrelation plot for time series.
Parameters:
-----------
series: Time series
ax: Matplotlib axis object, optional
kwds : keywords
Options to pass to matplotlib plotting method
Returns:
-----------
class:`matplotlib.axis.Axes`
"""
import matplotlib.pyplot as plt
n = len(series)
data = np.asarray(series)
if ax is None:
ax = plt.gca(xlim=(1, n), ylim=(-1.0, 1.0))
mean = np.mean(data)
c0 = np.sum((data - mean) ** 2) / float(n)
def r(h):
return ((data[:n - h] - mean) *
(data[h:] - mean)).sum() / float(n) / c0
x = np.arange(n) + 1
y = lmap(r, x)
z95 = 1.959963984540054
z99 = 2.5758293035489004
ax.axhline(y=z99 / np.sqrt(n), linestyle='--', color='grey')
ax.axhline(y=z95 / np.sqrt(n), color='grey')
ax.axhline(y=0.0, color='black')
ax.axhline(y=-z95 / np.sqrt(n), color='grey')
ax.axhline(y=-z99 / np.sqrt(n), linestyle='--', color='grey')
ax.set_xlabel("Lag")
ax.set_ylabel("Autocorrelation")
ax.plot(x, y, **kwds)
if 'label' in kwds:
ax.legend()
ax.grid()
return ax
|
[
"def",
"autocorrelation_plot",
"(",
"series",
",",
"ax",
"=",
"None",
",",
"*",
"*",
"kwds",
")",
":",
"import",
"matplotlib",
".",
"pyplot",
"as",
"plt",
"n",
"=",
"len",
"(",
"series",
")",
"data",
"=",
"np",
".",
"asarray",
"(",
"series",
")",
"if",
"ax",
"is",
"None",
":",
"ax",
"=",
"plt",
".",
"gca",
"(",
"xlim",
"=",
"(",
"1",
",",
"n",
")",
",",
"ylim",
"=",
"(",
"-",
"1.0",
",",
"1.0",
")",
")",
"mean",
"=",
"np",
".",
"mean",
"(",
"data",
")",
"c0",
"=",
"np",
".",
"sum",
"(",
"(",
"data",
"-",
"mean",
")",
"**",
"2",
")",
"/",
"float",
"(",
"n",
")",
"def",
"r",
"(",
"h",
")",
":",
"return",
"(",
"(",
"data",
"[",
":",
"n",
"-",
"h",
"]",
"-",
"mean",
")",
"*",
"(",
"data",
"[",
"h",
":",
"]",
"-",
"mean",
")",
")",
".",
"sum",
"(",
")",
"/",
"float",
"(",
"n",
")",
"/",
"c0",
"x",
"=",
"np",
".",
"arange",
"(",
"n",
")",
"+",
"1",
"y",
"=",
"lmap",
"(",
"r",
",",
"x",
")",
"z95",
"=",
"1.959963984540054",
"z99",
"=",
"2.5758293035489004",
"ax",
".",
"axhline",
"(",
"y",
"=",
"z99",
"/",
"np",
".",
"sqrt",
"(",
"n",
")",
",",
"linestyle",
"=",
"'--'",
",",
"color",
"=",
"'grey'",
")",
"ax",
".",
"axhline",
"(",
"y",
"=",
"z95",
"/",
"np",
".",
"sqrt",
"(",
"n",
")",
",",
"color",
"=",
"'grey'",
")",
"ax",
".",
"axhline",
"(",
"y",
"=",
"0.0",
",",
"color",
"=",
"'black'",
")",
"ax",
".",
"axhline",
"(",
"y",
"=",
"-",
"z95",
"/",
"np",
".",
"sqrt",
"(",
"n",
")",
",",
"color",
"=",
"'grey'",
")",
"ax",
".",
"axhline",
"(",
"y",
"=",
"-",
"z99",
"/",
"np",
".",
"sqrt",
"(",
"n",
")",
",",
"linestyle",
"=",
"'--'",
",",
"color",
"=",
"'grey'",
")",
"ax",
".",
"set_xlabel",
"(",
"\"Lag\"",
")",
"ax",
".",
"set_ylabel",
"(",
"\"Autocorrelation\"",
")",
"ax",
".",
"plot",
"(",
"x",
",",
"y",
",",
"*",
"*",
"kwds",
")",
"if",
"'label'",
"in",
"kwds",
":",
"ax",
".",
"legend",
"(",
")",
"ax",
".",
"grid",
"(",
")",
"return",
"ax"
] |
Autocorrelation plot for time series.
Parameters:
-----------
series: Time series
ax: Matplotlib axis object, optional
kwds : keywords
Options to pass to matplotlib plotting method
Returns:
-----------
class:`matplotlib.axis.Axes`
|
[
"Autocorrelation",
"plot",
"for",
"time",
"series",
"."
] |
9feb3ad92cc0397a04b665803a49299ee7aa1037
|
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/plotting/_misc.py#L596-L637
|
19,653
|
pandas-dev/pandas
|
pandas/core/computation/align.py
|
_any_pandas_objects
|
def _any_pandas_objects(terms):
"""Check a sequence of terms for instances of PandasObject."""
return any(isinstance(term.value, pd.core.generic.PandasObject)
for term in terms)
|
python
|
def _any_pandas_objects(terms):
"""Check a sequence of terms for instances of PandasObject."""
return any(isinstance(term.value, pd.core.generic.PandasObject)
for term in terms)
|
[
"def",
"_any_pandas_objects",
"(",
"terms",
")",
":",
"return",
"any",
"(",
"isinstance",
"(",
"term",
".",
"value",
",",
"pd",
".",
"core",
".",
"generic",
".",
"PandasObject",
")",
"for",
"term",
"in",
"terms",
")"
] |
Check a sequence of terms for instances of PandasObject.
|
[
"Check",
"a",
"sequence",
"of",
"terms",
"for",
"instances",
"of",
"PandasObject",
"."
] |
9feb3ad92cc0397a04b665803a49299ee7aa1037
|
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/computation/align.py#L36-L39
|
19,654
|
pandas-dev/pandas
|
pandas/core/computation/align.py
|
_align
|
def _align(terms):
"""Align a set of terms"""
try:
# flatten the parse tree (a nested list, really)
terms = list(com.flatten(terms))
except TypeError:
# can't iterate so it must just be a constant or single variable
if isinstance(terms.value, pd.core.generic.NDFrame):
typ = type(terms.value)
return typ, _zip_axes_from_type(typ, terms.value.axes)
return np.result_type(terms.type), None
# if all resolved variables are numeric scalars
if all(term.is_scalar for term in terms):
return _result_type_many(*(term.value for term in terms)).type, None
# perform the main alignment
typ, axes = _align_core(terms)
return typ, axes
|
python
|
def _align(terms):
"""Align a set of terms"""
try:
# flatten the parse tree (a nested list, really)
terms = list(com.flatten(terms))
except TypeError:
# can't iterate so it must just be a constant or single variable
if isinstance(terms.value, pd.core.generic.NDFrame):
typ = type(terms.value)
return typ, _zip_axes_from_type(typ, terms.value.axes)
return np.result_type(terms.type), None
# if all resolved variables are numeric scalars
if all(term.is_scalar for term in terms):
return _result_type_many(*(term.value for term in terms)).type, None
# perform the main alignment
typ, axes = _align_core(terms)
return typ, axes
|
[
"def",
"_align",
"(",
"terms",
")",
":",
"try",
":",
"# flatten the parse tree (a nested list, really)",
"terms",
"=",
"list",
"(",
"com",
".",
"flatten",
"(",
"terms",
")",
")",
"except",
"TypeError",
":",
"# can't iterate so it must just be a constant or single variable",
"if",
"isinstance",
"(",
"terms",
".",
"value",
",",
"pd",
".",
"core",
".",
"generic",
".",
"NDFrame",
")",
":",
"typ",
"=",
"type",
"(",
"terms",
".",
"value",
")",
"return",
"typ",
",",
"_zip_axes_from_type",
"(",
"typ",
",",
"terms",
".",
"value",
".",
"axes",
")",
"return",
"np",
".",
"result_type",
"(",
"terms",
".",
"type",
")",
",",
"None",
"# if all resolved variables are numeric scalars",
"if",
"all",
"(",
"term",
".",
"is_scalar",
"for",
"term",
"in",
"terms",
")",
":",
"return",
"_result_type_many",
"(",
"*",
"(",
"term",
".",
"value",
"for",
"term",
"in",
"terms",
")",
")",
".",
"type",
",",
"None",
"# perform the main alignment",
"typ",
",",
"axes",
"=",
"_align_core",
"(",
"terms",
")",
"return",
"typ",
",",
"axes"
] |
Align a set of terms
|
[
"Align",
"a",
"set",
"of",
"terms"
] |
9feb3ad92cc0397a04b665803a49299ee7aa1037
|
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/computation/align.py#L114-L132
|
19,655
|
pandas-dev/pandas
|
pandas/plotting/_timeseries.py
|
tsplot
|
def tsplot(series, plotf, ax=None, **kwargs):
import warnings
"""
Plots a Series on the given Matplotlib axes or the current axes
Parameters
----------
axes : Axes
series : Series
Notes
_____
Supports same kwargs as Axes.plot
.. deprecated:: 0.23.0
Use Series.plot() instead
"""
warnings.warn("'tsplot' is deprecated and will be removed in a "
"future version. Please use Series.plot() instead.",
FutureWarning, stacklevel=2)
# Used inferred freq is possible, need a test case for inferred
if ax is None:
import matplotlib.pyplot as plt
ax = plt.gca()
freq, series = _maybe_resample(series, ax, kwargs)
# Set ax with freq info
_decorate_axes(ax, freq, kwargs)
ax._plot_data.append((series, plotf, kwargs))
lines = plotf(ax, series.index._mpl_repr(), series.values, **kwargs)
# set date formatter, locators and rescale limits
format_dateaxis(ax, ax.freq, series.index)
return lines
|
python
|
def tsplot(series, plotf, ax=None, **kwargs):
import warnings
"""
Plots a Series on the given Matplotlib axes or the current axes
Parameters
----------
axes : Axes
series : Series
Notes
_____
Supports same kwargs as Axes.plot
.. deprecated:: 0.23.0
Use Series.plot() instead
"""
warnings.warn("'tsplot' is deprecated and will be removed in a "
"future version. Please use Series.plot() instead.",
FutureWarning, stacklevel=2)
# Used inferred freq is possible, need a test case for inferred
if ax is None:
import matplotlib.pyplot as plt
ax = plt.gca()
freq, series = _maybe_resample(series, ax, kwargs)
# Set ax with freq info
_decorate_axes(ax, freq, kwargs)
ax._plot_data.append((series, plotf, kwargs))
lines = plotf(ax, series.index._mpl_repr(), series.values, **kwargs)
# set date formatter, locators and rescale limits
format_dateaxis(ax, ax.freq, series.index)
return lines
|
[
"def",
"tsplot",
"(",
"series",
",",
"plotf",
",",
"ax",
"=",
"None",
",",
"*",
"*",
"kwargs",
")",
":",
"import",
"warnings",
"warnings",
".",
"warn",
"(",
"\"'tsplot' is deprecated and will be removed in a \"",
"\"future version. Please use Series.plot() instead.\"",
",",
"FutureWarning",
",",
"stacklevel",
"=",
"2",
")",
"# Used inferred freq is possible, need a test case for inferred",
"if",
"ax",
"is",
"None",
":",
"import",
"matplotlib",
".",
"pyplot",
"as",
"plt",
"ax",
"=",
"plt",
".",
"gca",
"(",
")",
"freq",
",",
"series",
"=",
"_maybe_resample",
"(",
"series",
",",
"ax",
",",
"kwargs",
")",
"# Set ax with freq info",
"_decorate_axes",
"(",
"ax",
",",
"freq",
",",
"kwargs",
")",
"ax",
".",
"_plot_data",
".",
"append",
"(",
"(",
"series",
",",
"plotf",
",",
"kwargs",
")",
")",
"lines",
"=",
"plotf",
"(",
"ax",
",",
"series",
".",
"index",
".",
"_mpl_repr",
"(",
")",
",",
"series",
".",
"values",
",",
"*",
"*",
"kwargs",
")",
"# set date formatter, locators and rescale limits",
"format_dateaxis",
"(",
"ax",
",",
"ax",
".",
"freq",
",",
"series",
".",
"index",
")",
"return",
"lines"
] |
Plots a Series on the given Matplotlib axes or the current axes
Parameters
----------
axes : Axes
series : Series
Notes
_____
Supports same kwargs as Axes.plot
.. deprecated:: 0.23.0
Use Series.plot() instead
|
[
"Plots",
"a",
"Series",
"on",
"the",
"given",
"Matplotlib",
"axes",
"or",
"the",
"current",
"axes"
] |
9feb3ad92cc0397a04b665803a49299ee7aa1037
|
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/plotting/_timeseries.py#L26-L62
|
19,656
|
pandas-dev/pandas
|
pandas/plotting/_timeseries.py
|
_decorate_axes
|
def _decorate_axes(ax, freq, kwargs):
"""Initialize axes for time-series plotting"""
if not hasattr(ax, '_plot_data'):
ax._plot_data = []
ax.freq = freq
xaxis = ax.get_xaxis()
xaxis.freq = freq
if not hasattr(ax, 'legendlabels'):
ax.legendlabels = [kwargs.get('label', None)]
else:
ax.legendlabels.append(kwargs.get('label', None))
ax.view_interval = None
ax.date_axis_info = None
|
python
|
def _decorate_axes(ax, freq, kwargs):
"""Initialize axes for time-series plotting"""
if not hasattr(ax, '_plot_data'):
ax._plot_data = []
ax.freq = freq
xaxis = ax.get_xaxis()
xaxis.freq = freq
if not hasattr(ax, 'legendlabels'):
ax.legendlabels = [kwargs.get('label', None)]
else:
ax.legendlabels.append(kwargs.get('label', None))
ax.view_interval = None
ax.date_axis_info = None
|
[
"def",
"_decorate_axes",
"(",
"ax",
",",
"freq",
",",
"kwargs",
")",
":",
"if",
"not",
"hasattr",
"(",
"ax",
",",
"'_plot_data'",
")",
":",
"ax",
".",
"_plot_data",
"=",
"[",
"]",
"ax",
".",
"freq",
"=",
"freq",
"xaxis",
"=",
"ax",
".",
"get_xaxis",
"(",
")",
"xaxis",
".",
"freq",
"=",
"freq",
"if",
"not",
"hasattr",
"(",
"ax",
",",
"'legendlabels'",
")",
":",
"ax",
".",
"legendlabels",
"=",
"[",
"kwargs",
".",
"get",
"(",
"'label'",
",",
"None",
")",
"]",
"else",
":",
"ax",
".",
"legendlabels",
".",
"append",
"(",
"kwargs",
".",
"get",
"(",
"'label'",
",",
"None",
")",
")",
"ax",
".",
"view_interval",
"=",
"None",
"ax",
".",
"date_axis_info",
"=",
"None"
] |
Initialize axes for time-series plotting
|
[
"Initialize",
"axes",
"for",
"time",
"-",
"series",
"plotting"
] |
9feb3ad92cc0397a04b665803a49299ee7aa1037
|
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/plotting/_timeseries.py#L157-L170
|
19,657
|
pandas-dev/pandas
|
pandas/core/frame.py
|
DataFrame._is_homogeneous_type
|
def _is_homogeneous_type(self):
"""
Whether all the columns in a DataFrame have the same type.
Returns
-------
bool
Examples
--------
>>> DataFrame({"A": [1, 2], "B": [3, 4]})._is_homogeneous_type
True
>>> DataFrame({"A": [1, 2], "B": [3.0, 4.0]})._is_homogeneous_type
False
Items with the same type but different sizes are considered
different types.
>>> DataFrame({
... "A": np.array([1, 2], dtype=np.int32),
... "B": np.array([1, 2], dtype=np.int64)})._is_homogeneous_type
False
"""
if self._data.any_extension_types:
return len({block.dtype for block in self._data.blocks}) == 1
else:
return not self._data.is_mixed_type
|
python
|
def _is_homogeneous_type(self):
"""
Whether all the columns in a DataFrame have the same type.
Returns
-------
bool
Examples
--------
>>> DataFrame({"A": [1, 2], "B": [3, 4]})._is_homogeneous_type
True
>>> DataFrame({"A": [1, 2], "B": [3.0, 4.0]})._is_homogeneous_type
False
Items with the same type but different sizes are considered
different types.
>>> DataFrame({
... "A": np.array([1, 2], dtype=np.int32),
... "B": np.array([1, 2], dtype=np.int64)})._is_homogeneous_type
False
"""
if self._data.any_extension_types:
return len({block.dtype for block in self._data.blocks}) == 1
else:
return not self._data.is_mixed_type
|
[
"def",
"_is_homogeneous_type",
"(",
"self",
")",
":",
"if",
"self",
".",
"_data",
".",
"any_extension_types",
":",
"return",
"len",
"(",
"{",
"block",
".",
"dtype",
"for",
"block",
"in",
"self",
".",
"_data",
".",
"blocks",
"}",
")",
"==",
"1",
"else",
":",
"return",
"not",
"self",
".",
"_data",
".",
"is_mixed_type"
] |
Whether all the columns in a DataFrame have the same type.
Returns
-------
bool
Examples
--------
>>> DataFrame({"A": [1, 2], "B": [3, 4]})._is_homogeneous_type
True
>>> DataFrame({"A": [1, 2], "B": [3.0, 4.0]})._is_homogeneous_type
False
Items with the same type but different sizes are considered
different types.
>>> DataFrame({
... "A": np.array([1, 2], dtype=np.int32),
... "B": np.array([1, 2], dtype=np.int64)})._is_homogeneous_type
False
|
[
"Whether",
"all",
"the",
"columns",
"in",
"a",
"DataFrame",
"have",
"the",
"same",
"type",
"."
] |
9feb3ad92cc0397a04b665803a49299ee7aa1037
|
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/frame.py#L514-L540
|
19,658
|
pandas-dev/pandas
|
pandas/core/frame.py
|
DataFrame._repr_html_
|
def _repr_html_(self):
"""
Return a html representation for a particular DataFrame.
Mainly for IPython notebook.
"""
if self._info_repr():
buf = StringIO("")
self.info(buf=buf)
# need to escape the <class>, should be the first line.
val = buf.getvalue().replace('<', r'<', 1)
val = val.replace('>', r'>', 1)
return '<pre>' + val + '</pre>'
if get_option("display.notebook_repr_html"):
max_rows = get_option("display.max_rows")
max_cols = get_option("display.max_columns")
show_dimensions = get_option("display.show_dimensions")
return self.to_html(max_rows=max_rows, max_cols=max_cols,
show_dimensions=show_dimensions, notebook=True)
else:
return None
|
python
|
def _repr_html_(self):
"""
Return a html representation for a particular DataFrame.
Mainly for IPython notebook.
"""
if self._info_repr():
buf = StringIO("")
self.info(buf=buf)
# need to escape the <class>, should be the first line.
val = buf.getvalue().replace('<', r'<', 1)
val = val.replace('>', r'>', 1)
return '<pre>' + val + '</pre>'
if get_option("display.notebook_repr_html"):
max_rows = get_option("display.max_rows")
max_cols = get_option("display.max_columns")
show_dimensions = get_option("display.show_dimensions")
return self.to_html(max_rows=max_rows, max_cols=max_cols,
show_dimensions=show_dimensions, notebook=True)
else:
return None
|
[
"def",
"_repr_html_",
"(",
"self",
")",
":",
"if",
"self",
".",
"_info_repr",
"(",
")",
":",
"buf",
"=",
"StringIO",
"(",
"\"\"",
")",
"self",
".",
"info",
"(",
"buf",
"=",
"buf",
")",
"# need to escape the <class>, should be the first line.",
"val",
"=",
"buf",
".",
"getvalue",
"(",
")",
".",
"replace",
"(",
"'<'",
",",
"r'<'",
",",
"1",
")",
"val",
"=",
"val",
".",
"replace",
"(",
"'>'",
",",
"r'>'",
",",
"1",
")",
"return",
"'<pre>'",
"+",
"val",
"+",
"'</pre>'",
"if",
"get_option",
"(",
"\"display.notebook_repr_html\"",
")",
":",
"max_rows",
"=",
"get_option",
"(",
"\"display.max_rows\"",
")",
"max_cols",
"=",
"get_option",
"(",
"\"display.max_columns\"",
")",
"show_dimensions",
"=",
"get_option",
"(",
"\"display.show_dimensions\"",
")",
"return",
"self",
".",
"to_html",
"(",
"max_rows",
"=",
"max_rows",
",",
"max_cols",
"=",
"max_cols",
",",
"show_dimensions",
"=",
"show_dimensions",
",",
"notebook",
"=",
"True",
")",
"else",
":",
"return",
"None"
] |
Return a html representation for a particular DataFrame.
Mainly for IPython notebook.
|
[
"Return",
"a",
"html",
"representation",
"for",
"a",
"particular",
"DataFrame",
"."
] |
9feb3ad92cc0397a04b665803a49299ee7aa1037
|
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/frame.py#L635-L657
|
19,659
|
pandas-dev/pandas
|
pandas/core/frame.py
|
DataFrame.itertuples
|
def itertuples(self, index=True, name="Pandas"):
"""
Iterate over DataFrame rows as namedtuples.
Parameters
----------
index : bool, default True
If True, return the index as the first element of the tuple.
name : str or None, default "Pandas"
The name of the returned namedtuples or None to return regular
tuples.
Yields
-------
collections.namedtuple
Yields a namedtuple for each row in the DataFrame with the first
field possibly being the index and following fields being the
column values.
See Also
--------
DataFrame.iterrows : Iterate over DataFrame rows as (index, Series)
pairs.
DataFrame.iteritems : Iterate over (column name, Series) pairs.
Notes
-----
The column names will be renamed to positional names if they are
invalid Python identifiers, repeated, or start with an underscore.
With a large number of columns (>255), regular tuples are returned.
Examples
--------
>>> df = pd.DataFrame({'num_legs': [4, 2], 'num_wings': [0, 2]},
... index=['dog', 'hawk'])
>>> df
num_legs num_wings
dog 4 0
hawk 2 2
>>> for row in df.itertuples():
... print(row)
...
Pandas(Index='dog', num_legs=4, num_wings=0)
Pandas(Index='hawk', num_legs=2, num_wings=2)
By setting the `index` parameter to False we can remove the index
as the first element of the tuple:
>>> for row in df.itertuples(index=False):
... print(row)
...
Pandas(num_legs=4, num_wings=0)
Pandas(num_legs=2, num_wings=2)
With the `name` parameter set we set a custom name for the yielded
namedtuples:
>>> for row in df.itertuples(name='Animal'):
... print(row)
...
Animal(Index='dog', num_legs=4, num_wings=0)
Animal(Index='hawk', num_legs=2, num_wings=2)
"""
arrays = []
fields = list(self.columns)
if index:
arrays.append(self.index)
fields.insert(0, "Index")
# use integer indexing because of possible duplicate column names
arrays.extend(self.iloc[:, k] for k in range(len(self.columns)))
# Python 3 supports at most 255 arguments to constructor
if name is not None and len(self.columns) + index < 256:
itertuple = collections.namedtuple(name, fields, rename=True)
return map(itertuple._make, zip(*arrays))
# fallback to regular tuples
return zip(*arrays)
|
python
|
def itertuples(self, index=True, name="Pandas"):
"""
Iterate over DataFrame rows as namedtuples.
Parameters
----------
index : bool, default True
If True, return the index as the first element of the tuple.
name : str or None, default "Pandas"
The name of the returned namedtuples or None to return regular
tuples.
Yields
-------
collections.namedtuple
Yields a namedtuple for each row in the DataFrame with the first
field possibly being the index and following fields being the
column values.
See Also
--------
DataFrame.iterrows : Iterate over DataFrame rows as (index, Series)
pairs.
DataFrame.iteritems : Iterate over (column name, Series) pairs.
Notes
-----
The column names will be renamed to positional names if they are
invalid Python identifiers, repeated, or start with an underscore.
With a large number of columns (>255), regular tuples are returned.
Examples
--------
>>> df = pd.DataFrame({'num_legs': [4, 2], 'num_wings': [0, 2]},
... index=['dog', 'hawk'])
>>> df
num_legs num_wings
dog 4 0
hawk 2 2
>>> for row in df.itertuples():
... print(row)
...
Pandas(Index='dog', num_legs=4, num_wings=0)
Pandas(Index='hawk', num_legs=2, num_wings=2)
By setting the `index` parameter to False we can remove the index
as the first element of the tuple:
>>> for row in df.itertuples(index=False):
... print(row)
...
Pandas(num_legs=4, num_wings=0)
Pandas(num_legs=2, num_wings=2)
With the `name` parameter set we set a custom name for the yielded
namedtuples:
>>> for row in df.itertuples(name='Animal'):
... print(row)
...
Animal(Index='dog', num_legs=4, num_wings=0)
Animal(Index='hawk', num_legs=2, num_wings=2)
"""
arrays = []
fields = list(self.columns)
if index:
arrays.append(self.index)
fields.insert(0, "Index")
# use integer indexing because of possible duplicate column names
arrays.extend(self.iloc[:, k] for k in range(len(self.columns)))
# Python 3 supports at most 255 arguments to constructor
if name is not None and len(self.columns) + index < 256:
itertuple = collections.namedtuple(name, fields, rename=True)
return map(itertuple._make, zip(*arrays))
# fallback to regular tuples
return zip(*arrays)
|
[
"def",
"itertuples",
"(",
"self",
",",
"index",
"=",
"True",
",",
"name",
"=",
"\"Pandas\"",
")",
":",
"arrays",
"=",
"[",
"]",
"fields",
"=",
"list",
"(",
"self",
".",
"columns",
")",
"if",
"index",
":",
"arrays",
".",
"append",
"(",
"self",
".",
"index",
")",
"fields",
".",
"insert",
"(",
"0",
",",
"\"Index\"",
")",
"# use integer indexing because of possible duplicate column names",
"arrays",
".",
"extend",
"(",
"self",
".",
"iloc",
"[",
":",
",",
"k",
"]",
"for",
"k",
"in",
"range",
"(",
"len",
"(",
"self",
".",
"columns",
")",
")",
")",
"# Python 3 supports at most 255 arguments to constructor",
"if",
"name",
"is",
"not",
"None",
"and",
"len",
"(",
"self",
".",
"columns",
")",
"+",
"index",
"<",
"256",
":",
"itertuple",
"=",
"collections",
".",
"namedtuple",
"(",
"name",
",",
"fields",
",",
"rename",
"=",
"True",
")",
"return",
"map",
"(",
"itertuple",
".",
"_make",
",",
"zip",
"(",
"*",
"arrays",
")",
")",
"# fallback to regular tuples",
"return",
"zip",
"(",
"*",
"arrays",
")"
] |
Iterate over DataFrame rows as namedtuples.
Parameters
----------
index : bool, default True
If True, return the index as the first element of the tuple.
name : str or None, default "Pandas"
The name of the returned namedtuples or None to return regular
tuples.
Yields
-------
collections.namedtuple
Yields a namedtuple for each row in the DataFrame with the first
field possibly being the index and following fields being the
column values.
See Also
--------
DataFrame.iterrows : Iterate over DataFrame rows as (index, Series)
pairs.
DataFrame.iteritems : Iterate over (column name, Series) pairs.
Notes
-----
The column names will be renamed to positional names if they are
invalid Python identifiers, repeated, or start with an underscore.
With a large number of columns (>255), regular tuples are returned.
Examples
--------
>>> df = pd.DataFrame({'num_legs': [4, 2], 'num_wings': [0, 2]},
... index=['dog', 'hawk'])
>>> df
num_legs num_wings
dog 4 0
hawk 2 2
>>> for row in df.itertuples():
... print(row)
...
Pandas(Index='dog', num_legs=4, num_wings=0)
Pandas(Index='hawk', num_legs=2, num_wings=2)
By setting the `index` parameter to False we can remove the index
as the first element of the tuple:
>>> for row in df.itertuples(index=False):
... print(row)
...
Pandas(num_legs=4, num_wings=0)
Pandas(num_legs=2, num_wings=2)
With the `name` parameter set we set a custom name for the yielded
namedtuples:
>>> for row in df.itertuples(name='Animal'):
... print(row)
...
Animal(Index='dog', num_legs=4, num_wings=0)
Animal(Index='hawk', num_legs=2, num_wings=2)
|
[
"Iterate",
"over",
"DataFrame",
"rows",
"as",
"namedtuples",
"."
] |
9feb3ad92cc0397a04b665803a49299ee7aa1037
|
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/frame.py#L832-L910
|
19,660
|
pandas-dev/pandas
|
pandas/core/frame.py
|
DataFrame.dot
|
def dot(self, other):
"""
Compute the matrix mutiplication between the DataFrame and other.
This method computes the matrix product between the DataFrame and the
values of an other Series, DataFrame or a numpy array.
It can also be called using ``self @ other`` in Python >= 3.5.
Parameters
----------
other : Series, DataFrame or array-like
The other object to compute the matrix product with.
Returns
-------
Series or DataFrame
If other is a Series, return the matrix product between self and
other as a Serie. If other is a DataFrame or a numpy.array, return
the matrix product of self and other in a DataFrame of a np.array.
See Also
--------
Series.dot: Similar method for Series.
Notes
-----
The dimensions of DataFrame and other must be compatible in order to
compute the matrix multiplication.
The dot method for Series computes the inner product, instead of the
matrix product here.
Examples
--------
Here we multiply a DataFrame with a Series.
>>> df = pd.DataFrame([[0, 1, -2, -1], [1, 1, 1, 1]])
>>> s = pd.Series([1, 1, 2, 1])
>>> df.dot(s)
0 -4
1 5
dtype: int64
Here we multiply a DataFrame with another DataFrame.
>>> other = pd.DataFrame([[0, 1], [1, 2], [-1, -1], [2, 0]])
>>> df.dot(other)
0 1
0 1 4
1 2 2
Note that the dot method give the same result as @
>>> df @ other
0 1
0 1 4
1 2 2
The dot method works also if other is an np.array.
>>> arr = np.array([[0, 1], [1, 2], [-1, -1], [2, 0]])
>>> df.dot(arr)
0 1
0 1 4
1 2 2
"""
if isinstance(other, (Series, DataFrame)):
common = self.columns.union(other.index)
if (len(common) > len(self.columns) or
len(common) > len(other.index)):
raise ValueError('matrices are not aligned')
left = self.reindex(columns=common, copy=False)
right = other.reindex(index=common, copy=False)
lvals = left.values
rvals = right.values
else:
left = self
lvals = self.values
rvals = np.asarray(other)
if lvals.shape[1] != rvals.shape[0]:
raise ValueError('Dot product shape mismatch, '
'{s} vs {r}'.format(s=lvals.shape,
r=rvals.shape))
if isinstance(other, DataFrame):
return self._constructor(np.dot(lvals, rvals), index=left.index,
columns=other.columns)
elif isinstance(other, Series):
return Series(np.dot(lvals, rvals), index=left.index)
elif isinstance(rvals, (np.ndarray, Index)):
result = np.dot(lvals, rvals)
if result.ndim == 2:
return self._constructor(result, index=left.index)
else:
return Series(result, index=left.index)
else: # pragma: no cover
raise TypeError('unsupported type: {oth}'.format(oth=type(other)))
|
python
|
def dot(self, other):
"""
Compute the matrix mutiplication between the DataFrame and other.
This method computes the matrix product between the DataFrame and the
values of an other Series, DataFrame or a numpy array.
It can also be called using ``self @ other`` in Python >= 3.5.
Parameters
----------
other : Series, DataFrame or array-like
The other object to compute the matrix product with.
Returns
-------
Series or DataFrame
If other is a Series, return the matrix product between self and
other as a Serie. If other is a DataFrame or a numpy.array, return
the matrix product of self and other in a DataFrame of a np.array.
See Also
--------
Series.dot: Similar method for Series.
Notes
-----
The dimensions of DataFrame and other must be compatible in order to
compute the matrix multiplication.
The dot method for Series computes the inner product, instead of the
matrix product here.
Examples
--------
Here we multiply a DataFrame with a Series.
>>> df = pd.DataFrame([[0, 1, -2, -1], [1, 1, 1, 1]])
>>> s = pd.Series([1, 1, 2, 1])
>>> df.dot(s)
0 -4
1 5
dtype: int64
Here we multiply a DataFrame with another DataFrame.
>>> other = pd.DataFrame([[0, 1], [1, 2], [-1, -1], [2, 0]])
>>> df.dot(other)
0 1
0 1 4
1 2 2
Note that the dot method give the same result as @
>>> df @ other
0 1
0 1 4
1 2 2
The dot method works also if other is an np.array.
>>> arr = np.array([[0, 1], [1, 2], [-1, -1], [2, 0]])
>>> df.dot(arr)
0 1
0 1 4
1 2 2
"""
if isinstance(other, (Series, DataFrame)):
common = self.columns.union(other.index)
if (len(common) > len(self.columns) or
len(common) > len(other.index)):
raise ValueError('matrices are not aligned')
left = self.reindex(columns=common, copy=False)
right = other.reindex(index=common, copy=False)
lvals = left.values
rvals = right.values
else:
left = self
lvals = self.values
rvals = np.asarray(other)
if lvals.shape[1] != rvals.shape[0]:
raise ValueError('Dot product shape mismatch, '
'{s} vs {r}'.format(s=lvals.shape,
r=rvals.shape))
if isinstance(other, DataFrame):
return self._constructor(np.dot(lvals, rvals), index=left.index,
columns=other.columns)
elif isinstance(other, Series):
return Series(np.dot(lvals, rvals), index=left.index)
elif isinstance(rvals, (np.ndarray, Index)):
result = np.dot(lvals, rvals)
if result.ndim == 2:
return self._constructor(result, index=left.index)
else:
return Series(result, index=left.index)
else: # pragma: no cover
raise TypeError('unsupported type: {oth}'.format(oth=type(other)))
|
[
"def",
"dot",
"(",
"self",
",",
"other",
")",
":",
"if",
"isinstance",
"(",
"other",
",",
"(",
"Series",
",",
"DataFrame",
")",
")",
":",
"common",
"=",
"self",
".",
"columns",
".",
"union",
"(",
"other",
".",
"index",
")",
"if",
"(",
"len",
"(",
"common",
")",
">",
"len",
"(",
"self",
".",
"columns",
")",
"or",
"len",
"(",
"common",
")",
">",
"len",
"(",
"other",
".",
"index",
")",
")",
":",
"raise",
"ValueError",
"(",
"'matrices are not aligned'",
")",
"left",
"=",
"self",
".",
"reindex",
"(",
"columns",
"=",
"common",
",",
"copy",
"=",
"False",
")",
"right",
"=",
"other",
".",
"reindex",
"(",
"index",
"=",
"common",
",",
"copy",
"=",
"False",
")",
"lvals",
"=",
"left",
".",
"values",
"rvals",
"=",
"right",
".",
"values",
"else",
":",
"left",
"=",
"self",
"lvals",
"=",
"self",
".",
"values",
"rvals",
"=",
"np",
".",
"asarray",
"(",
"other",
")",
"if",
"lvals",
".",
"shape",
"[",
"1",
"]",
"!=",
"rvals",
".",
"shape",
"[",
"0",
"]",
":",
"raise",
"ValueError",
"(",
"'Dot product shape mismatch, '",
"'{s} vs {r}'",
".",
"format",
"(",
"s",
"=",
"lvals",
".",
"shape",
",",
"r",
"=",
"rvals",
".",
"shape",
")",
")",
"if",
"isinstance",
"(",
"other",
",",
"DataFrame",
")",
":",
"return",
"self",
".",
"_constructor",
"(",
"np",
".",
"dot",
"(",
"lvals",
",",
"rvals",
")",
",",
"index",
"=",
"left",
".",
"index",
",",
"columns",
"=",
"other",
".",
"columns",
")",
"elif",
"isinstance",
"(",
"other",
",",
"Series",
")",
":",
"return",
"Series",
"(",
"np",
".",
"dot",
"(",
"lvals",
",",
"rvals",
")",
",",
"index",
"=",
"left",
".",
"index",
")",
"elif",
"isinstance",
"(",
"rvals",
",",
"(",
"np",
".",
"ndarray",
",",
"Index",
")",
")",
":",
"result",
"=",
"np",
".",
"dot",
"(",
"lvals",
",",
"rvals",
")",
"if",
"result",
".",
"ndim",
"==",
"2",
":",
"return",
"self",
".",
"_constructor",
"(",
"result",
",",
"index",
"=",
"left",
".",
"index",
")",
"else",
":",
"return",
"Series",
"(",
"result",
",",
"index",
"=",
"left",
".",
"index",
")",
"else",
":",
"# pragma: no cover",
"raise",
"TypeError",
"(",
"'unsupported type: {oth}'",
".",
"format",
"(",
"oth",
"=",
"type",
"(",
"other",
")",
")",
")"
] |
Compute the matrix mutiplication between the DataFrame and other.
This method computes the matrix product between the DataFrame and the
values of an other Series, DataFrame or a numpy array.
It can also be called using ``self @ other`` in Python >= 3.5.
Parameters
----------
other : Series, DataFrame or array-like
The other object to compute the matrix product with.
Returns
-------
Series or DataFrame
If other is a Series, return the matrix product between self and
other as a Serie. If other is a DataFrame or a numpy.array, return
the matrix product of self and other in a DataFrame of a np.array.
See Also
--------
Series.dot: Similar method for Series.
Notes
-----
The dimensions of DataFrame and other must be compatible in order to
compute the matrix multiplication.
The dot method for Series computes the inner product, instead of the
matrix product here.
Examples
--------
Here we multiply a DataFrame with a Series.
>>> df = pd.DataFrame([[0, 1, -2, -1], [1, 1, 1, 1]])
>>> s = pd.Series([1, 1, 2, 1])
>>> df.dot(s)
0 -4
1 5
dtype: int64
Here we multiply a DataFrame with another DataFrame.
>>> other = pd.DataFrame([[0, 1], [1, 2], [-1, -1], [2, 0]])
>>> df.dot(other)
0 1
0 1 4
1 2 2
Note that the dot method give the same result as @
>>> df @ other
0 1
0 1 4
1 2 2
The dot method works also if other is an np.array.
>>> arr = np.array([[0, 1], [1, 2], [-1, -1], [2, 0]])
>>> df.dot(arr)
0 1
0 1 4
1 2 2
|
[
"Compute",
"the",
"matrix",
"mutiplication",
"between",
"the",
"DataFrame",
"and",
"other",
"."
] |
9feb3ad92cc0397a04b665803a49299ee7aa1037
|
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/frame.py#L920-L1018
|
19,661
|
pandas-dev/pandas
|
pandas/core/frame.py
|
DataFrame.from_dict
|
def from_dict(cls, data, orient='columns', dtype=None, columns=None):
"""
Construct DataFrame from dict of array-like or dicts.
Creates DataFrame object from dictionary by columns or by index
allowing dtype specification.
Parameters
----------
data : dict
Of the form {field : array-like} or {field : dict}.
orient : {'columns', 'index'}, default 'columns'
The "orientation" of the data. If the keys of the passed dict
should be the columns of the resulting DataFrame, pass 'columns'
(default). Otherwise if the keys should be rows, pass 'index'.
dtype : dtype, default None
Data type to force, otherwise infer.
columns : list, default None
Column labels to use when ``orient='index'``. Raises a ValueError
if used with ``orient='columns'``.
.. versionadded:: 0.23.0
Returns
-------
DataFrame
See Also
--------
DataFrame.from_records : DataFrame from ndarray (structured
dtype), list of tuples, dict, or DataFrame.
DataFrame : DataFrame object creation using constructor.
Examples
--------
By default the keys of the dict become the DataFrame columns:
>>> data = {'col_1': [3, 2, 1, 0], 'col_2': ['a', 'b', 'c', 'd']}
>>> pd.DataFrame.from_dict(data)
col_1 col_2
0 3 a
1 2 b
2 1 c
3 0 d
Specify ``orient='index'`` to create the DataFrame using dictionary
keys as rows:
>>> data = {'row_1': [3, 2, 1, 0], 'row_2': ['a', 'b', 'c', 'd']}
>>> pd.DataFrame.from_dict(data, orient='index')
0 1 2 3
row_1 3 2 1 0
row_2 a b c d
When using the 'index' orientation, the column names can be
specified manually:
>>> pd.DataFrame.from_dict(data, orient='index',
... columns=['A', 'B', 'C', 'D'])
A B C D
row_1 3 2 1 0
row_2 a b c d
"""
index = None
orient = orient.lower()
if orient == 'index':
if len(data) > 0:
# TODO speed up Series case
if isinstance(list(data.values())[0], (Series, dict)):
data = _from_nested_dict(data)
else:
data, index = list(data.values()), list(data.keys())
elif orient == 'columns':
if columns is not None:
raise ValueError("cannot use columns parameter with "
"orient='columns'")
else: # pragma: no cover
raise ValueError('only recognize index or columns for orient')
return cls(data, index=index, columns=columns, dtype=dtype)
|
python
|
def from_dict(cls, data, orient='columns', dtype=None, columns=None):
"""
Construct DataFrame from dict of array-like or dicts.
Creates DataFrame object from dictionary by columns or by index
allowing dtype specification.
Parameters
----------
data : dict
Of the form {field : array-like} or {field : dict}.
orient : {'columns', 'index'}, default 'columns'
The "orientation" of the data. If the keys of the passed dict
should be the columns of the resulting DataFrame, pass 'columns'
(default). Otherwise if the keys should be rows, pass 'index'.
dtype : dtype, default None
Data type to force, otherwise infer.
columns : list, default None
Column labels to use when ``orient='index'``. Raises a ValueError
if used with ``orient='columns'``.
.. versionadded:: 0.23.0
Returns
-------
DataFrame
See Also
--------
DataFrame.from_records : DataFrame from ndarray (structured
dtype), list of tuples, dict, or DataFrame.
DataFrame : DataFrame object creation using constructor.
Examples
--------
By default the keys of the dict become the DataFrame columns:
>>> data = {'col_1': [3, 2, 1, 0], 'col_2': ['a', 'b', 'c', 'd']}
>>> pd.DataFrame.from_dict(data)
col_1 col_2
0 3 a
1 2 b
2 1 c
3 0 d
Specify ``orient='index'`` to create the DataFrame using dictionary
keys as rows:
>>> data = {'row_1': [3, 2, 1, 0], 'row_2': ['a', 'b', 'c', 'd']}
>>> pd.DataFrame.from_dict(data, orient='index')
0 1 2 3
row_1 3 2 1 0
row_2 a b c d
When using the 'index' orientation, the column names can be
specified manually:
>>> pd.DataFrame.from_dict(data, orient='index',
... columns=['A', 'B', 'C', 'D'])
A B C D
row_1 3 2 1 0
row_2 a b c d
"""
index = None
orient = orient.lower()
if orient == 'index':
if len(data) > 0:
# TODO speed up Series case
if isinstance(list(data.values())[0], (Series, dict)):
data = _from_nested_dict(data)
else:
data, index = list(data.values()), list(data.keys())
elif orient == 'columns':
if columns is not None:
raise ValueError("cannot use columns parameter with "
"orient='columns'")
else: # pragma: no cover
raise ValueError('only recognize index or columns for orient')
return cls(data, index=index, columns=columns, dtype=dtype)
|
[
"def",
"from_dict",
"(",
"cls",
",",
"data",
",",
"orient",
"=",
"'columns'",
",",
"dtype",
"=",
"None",
",",
"columns",
"=",
"None",
")",
":",
"index",
"=",
"None",
"orient",
"=",
"orient",
".",
"lower",
"(",
")",
"if",
"orient",
"==",
"'index'",
":",
"if",
"len",
"(",
"data",
")",
">",
"0",
":",
"# TODO speed up Series case",
"if",
"isinstance",
"(",
"list",
"(",
"data",
".",
"values",
"(",
")",
")",
"[",
"0",
"]",
",",
"(",
"Series",
",",
"dict",
")",
")",
":",
"data",
"=",
"_from_nested_dict",
"(",
"data",
")",
"else",
":",
"data",
",",
"index",
"=",
"list",
"(",
"data",
".",
"values",
"(",
")",
")",
",",
"list",
"(",
"data",
".",
"keys",
"(",
")",
")",
"elif",
"orient",
"==",
"'columns'",
":",
"if",
"columns",
"is",
"not",
"None",
":",
"raise",
"ValueError",
"(",
"\"cannot use columns parameter with \"",
"\"orient='columns'\"",
")",
"else",
":",
"# pragma: no cover",
"raise",
"ValueError",
"(",
"'only recognize index or columns for orient'",
")",
"return",
"cls",
"(",
"data",
",",
"index",
"=",
"index",
",",
"columns",
"=",
"columns",
",",
"dtype",
"=",
"dtype",
")"
] |
Construct DataFrame from dict of array-like or dicts.
Creates DataFrame object from dictionary by columns or by index
allowing dtype specification.
Parameters
----------
data : dict
Of the form {field : array-like} or {field : dict}.
orient : {'columns', 'index'}, default 'columns'
The "orientation" of the data. If the keys of the passed dict
should be the columns of the resulting DataFrame, pass 'columns'
(default). Otherwise if the keys should be rows, pass 'index'.
dtype : dtype, default None
Data type to force, otherwise infer.
columns : list, default None
Column labels to use when ``orient='index'``. Raises a ValueError
if used with ``orient='columns'``.
.. versionadded:: 0.23.0
Returns
-------
DataFrame
See Also
--------
DataFrame.from_records : DataFrame from ndarray (structured
dtype), list of tuples, dict, or DataFrame.
DataFrame : DataFrame object creation using constructor.
Examples
--------
By default the keys of the dict become the DataFrame columns:
>>> data = {'col_1': [3, 2, 1, 0], 'col_2': ['a', 'b', 'c', 'd']}
>>> pd.DataFrame.from_dict(data)
col_1 col_2
0 3 a
1 2 b
2 1 c
3 0 d
Specify ``orient='index'`` to create the DataFrame using dictionary
keys as rows:
>>> data = {'row_1': [3, 2, 1, 0], 'row_2': ['a', 'b', 'c', 'd']}
>>> pd.DataFrame.from_dict(data, orient='index')
0 1 2 3
row_1 3 2 1 0
row_2 a b c d
When using the 'index' orientation, the column names can be
specified manually:
>>> pd.DataFrame.from_dict(data, orient='index',
... columns=['A', 'B', 'C', 'D'])
A B C D
row_1 3 2 1 0
row_2 a b c d
|
[
"Construct",
"DataFrame",
"from",
"dict",
"of",
"array",
"-",
"like",
"or",
"dicts",
"."
] |
9feb3ad92cc0397a04b665803a49299ee7aa1037
|
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/frame.py#L1036-L1115
|
19,662
|
pandas-dev/pandas
|
pandas/core/frame.py
|
DataFrame.to_numpy
|
def to_numpy(self, dtype=None, copy=False):
"""
Convert the DataFrame to a NumPy array.
.. versionadded:: 0.24.0
By default, the dtype of the returned array will be the common NumPy
dtype of all types in the DataFrame. For example, if the dtypes are
``float16`` and ``float32``, the results dtype will be ``float32``.
This may require copying data and coercing values, which may be
expensive.
Parameters
----------
dtype : str or numpy.dtype, optional
The dtype to pass to :meth:`numpy.asarray`
copy : bool, default False
Whether to ensure that the returned value is a not a view on
another array. Note that ``copy=False`` does not *ensure* that
``to_numpy()`` is no-copy. Rather, ``copy=True`` ensure that
a copy is made, even if not strictly necessary.
Returns
-------
numpy.ndarray
See Also
--------
Series.to_numpy : Similar method for Series.
Examples
--------
>>> pd.DataFrame({"A": [1, 2], "B": [3, 4]}).to_numpy()
array([[1, 3],
[2, 4]])
With heterogenous data, the lowest common type will have to
be used.
>>> df = pd.DataFrame({"A": [1, 2], "B": [3.0, 4.5]})
>>> df.to_numpy()
array([[1. , 3. ],
[2. , 4.5]])
For a mix of numeric and non-numeric types, the output array will
have object dtype.
>>> df['C'] = pd.date_range('2000', periods=2)
>>> df.to_numpy()
array([[1, 3.0, Timestamp('2000-01-01 00:00:00')],
[2, 4.5, Timestamp('2000-01-02 00:00:00')]], dtype=object)
"""
result = np.array(self.values, dtype=dtype, copy=copy)
return result
|
python
|
def to_numpy(self, dtype=None, copy=False):
"""
Convert the DataFrame to a NumPy array.
.. versionadded:: 0.24.0
By default, the dtype of the returned array will be the common NumPy
dtype of all types in the DataFrame. For example, if the dtypes are
``float16`` and ``float32``, the results dtype will be ``float32``.
This may require copying data and coercing values, which may be
expensive.
Parameters
----------
dtype : str or numpy.dtype, optional
The dtype to pass to :meth:`numpy.asarray`
copy : bool, default False
Whether to ensure that the returned value is a not a view on
another array. Note that ``copy=False`` does not *ensure* that
``to_numpy()`` is no-copy. Rather, ``copy=True`` ensure that
a copy is made, even if not strictly necessary.
Returns
-------
numpy.ndarray
See Also
--------
Series.to_numpy : Similar method for Series.
Examples
--------
>>> pd.DataFrame({"A": [1, 2], "B": [3, 4]}).to_numpy()
array([[1, 3],
[2, 4]])
With heterogenous data, the lowest common type will have to
be used.
>>> df = pd.DataFrame({"A": [1, 2], "B": [3.0, 4.5]})
>>> df.to_numpy()
array([[1. , 3. ],
[2. , 4.5]])
For a mix of numeric and non-numeric types, the output array will
have object dtype.
>>> df['C'] = pd.date_range('2000', periods=2)
>>> df.to_numpy()
array([[1, 3.0, Timestamp('2000-01-01 00:00:00')],
[2, 4.5, Timestamp('2000-01-02 00:00:00')]], dtype=object)
"""
result = np.array(self.values, dtype=dtype, copy=copy)
return result
|
[
"def",
"to_numpy",
"(",
"self",
",",
"dtype",
"=",
"None",
",",
"copy",
"=",
"False",
")",
":",
"result",
"=",
"np",
".",
"array",
"(",
"self",
".",
"values",
",",
"dtype",
"=",
"dtype",
",",
"copy",
"=",
"copy",
")",
"return",
"result"
] |
Convert the DataFrame to a NumPy array.
.. versionadded:: 0.24.0
By default, the dtype of the returned array will be the common NumPy
dtype of all types in the DataFrame. For example, if the dtypes are
``float16`` and ``float32``, the results dtype will be ``float32``.
This may require copying data and coercing values, which may be
expensive.
Parameters
----------
dtype : str or numpy.dtype, optional
The dtype to pass to :meth:`numpy.asarray`
copy : bool, default False
Whether to ensure that the returned value is a not a view on
another array. Note that ``copy=False`` does not *ensure* that
``to_numpy()`` is no-copy. Rather, ``copy=True`` ensure that
a copy is made, even if not strictly necessary.
Returns
-------
numpy.ndarray
See Also
--------
Series.to_numpy : Similar method for Series.
Examples
--------
>>> pd.DataFrame({"A": [1, 2], "B": [3, 4]}).to_numpy()
array([[1, 3],
[2, 4]])
With heterogenous data, the lowest common type will have to
be used.
>>> df = pd.DataFrame({"A": [1, 2], "B": [3.0, 4.5]})
>>> df.to_numpy()
array([[1. , 3. ],
[2. , 4.5]])
For a mix of numeric and non-numeric types, the output array will
have object dtype.
>>> df['C'] = pd.date_range('2000', periods=2)
>>> df.to_numpy()
array([[1, 3.0, Timestamp('2000-01-01 00:00:00')],
[2, 4.5, Timestamp('2000-01-02 00:00:00')]], dtype=object)
|
[
"Convert",
"the",
"DataFrame",
"to",
"a",
"NumPy",
"array",
"."
] |
9feb3ad92cc0397a04b665803a49299ee7aa1037
|
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/frame.py#L1117-L1170
|
19,663
|
pandas-dev/pandas
|
pandas/core/frame.py
|
DataFrame.to_dict
|
def to_dict(self, orient='dict', into=dict):
"""
Convert the DataFrame to a dictionary.
The type of the key-value pairs can be customized with the parameters
(see below).
Parameters
----------
orient : str {'dict', 'list', 'series', 'split', 'records', 'index'}
Determines the type of the values of the dictionary.
- 'dict' (default) : dict like {column -> {index -> value}}
- 'list' : dict like {column -> [values]}
- 'series' : dict like {column -> Series(values)}
- 'split' : dict like
{'index' -> [index], 'columns' -> [columns], 'data' -> [values]}
- 'records' : list like
[{column -> value}, ... , {column -> value}]
- 'index' : dict like {index -> {column -> value}}
Abbreviations are allowed. `s` indicates `series` and `sp`
indicates `split`.
into : class, default dict
The collections.abc.Mapping subclass used for all Mappings
in the return value. Can be the actual class or an empty
instance of the mapping type you want. If you want a
collections.defaultdict, you must pass it initialized.
.. versionadded:: 0.21.0
Returns
-------
dict, list or collections.abc.Mapping
Return a collections.abc.Mapping object representing the DataFrame.
The resulting transformation depends on the `orient` parameter.
See Also
--------
DataFrame.from_dict: Create a DataFrame from a dictionary.
DataFrame.to_json: Convert a DataFrame to JSON format.
Examples
--------
>>> df = pd.DataFrame({'col1': [1, 2],
... 'col2': [0.5, 0.75]},
... index=['row1', 'row2'])
>>> df
col1 col2
row1 1 0.50
row2 2 0.75
>>> df.to_dict()
{'col1': {'row1': 1, 'row2': 2}, 'col2': {'row1': 0.5, 'row2': 0.75}}
You can specify the return orientation.
>>> df.to_dict('series')
{'col1': row1 1
row2 2
Name: col1, dtype: int64,
'col2': row1 0.50
row2 0.75
Name: col2, dtype: float64}
>>> df.to_dict('split')
{'index': ['row1', 'row2'], 'columns': ['col1', 'col2'],
'data': [[1, 0.5], [2, 0.75]]}
>>> df.to_dict('records')
[{'col1': 1, 'col2': 0.5}, {'col1': 2, 'col2': 0.75}]
>>> df.to_dict('index')
{'row1': {'col1': 1, 'col2': 0.5}, 'row2': {'col1': 2, 'col2': 0.75}}
You can also specify the mapping type.
>>> from collections import OrderedDict, defaultdict
>>> df.to_dict(into=OrderedDict)
OrderedDict([('col1', OrderedDict([('row1', 1), ('row2', 2)])),
('col2', OrderedDict([('row1', 0.5), ('row2', 0.75)]))])
If you want a `defaultdict`, you need to initialize it:
>>> dd = defaultdict(list)
>>> df.to_dict('records', into=dd)
[defaultdict(<class 'list'>, {'col1': 1, 'col2': 0.5}),
defaultdict(<class 'list'>, {'col1': 2, 'col2': 0.75})]
"""
if not self.columns.is_unique:
warnings.warn("DataFrame columns are not unique, some "
"columns will be omitted.", UserWarning,
stacklevel=2)
# GH16122
into_c = com.standardize_mapping(into)
if orient.lower().startswith('d'):
return into_c(
(k, v.to_dict(into)) for k, v in self.items())
elif orient.lower().startswith('l'):
return into_c((k, v.tolist()) for k, v in self.items())
elif orient.lower().startswith('sp'):
return into_c((('index', self.index.tolist()),
('columns', self.columns.tolist()),
('data', [
list(map(com.maybe_box_datetimelike, t))
for t in self.itertuples(index=False, name=None)
])))
elif orient.lower().startswith('s'):
return into_c((k, com.maybe_box_datetimelike(v))
for k, v in self.items())
elif orient.lower().startswith('r'):
columns = self.columns.tolist()
rows = (dict(zip(columns, row))
for row in self.itertuples(index=False, name=None))
return [
into_c((k, com.maybe_box_datetimelike(v))
for k, v in row.items())
for row in rows]
elif orient.lower().startswith('i'):
if not self.index.is_unique:
raise ValueError(
"DataFrame index must be unique for orient='index'."
)
return into_c((t[0], dict(zip(self.columns, t[1:])))
for t in self.itertuples(name=None))
else:
raise ValueError("orient '{o}' not understood".format(o=orient))
|
python
|
def to_dict(self, orient='dict', into=dict):
"""
Convert the DataFrame to a dictionary.
The type of the key-value pairs can be customized with the parameters
(see below).
Parameters
----------
orient : str {'dict', 'list', 'series', 'split', 'records', 'index'}
Determines the type of the values of the dictionary.
- 'dict' (default) : dict like {column -> {index -> value}}
- 'list' : dict like {column -> [values]}
- 'series' : dict like {column -> Series(values)}
- 'split' : dict like
{'index' -> [index], 'columns' -> [columns], 'data' -> [values]}
- 'records' : list like
[{column -> value}, ... , {column -> value}]
- 'index' : dict like {index -> {column -> value}}
Abbreviations are allowed. `s` indicates `series` and `sp`
indicates `split`.
into : class, default dict
The collections.abc.Mapping subclass used for all Mappings
in the return value. Can be the actual class or an empty
instance of the mapping type you want. If you want a
collections.defaultdict, you must pass it initialized.
.. versionadded:: 0.21.0
Returns
-------
dict, list or collections.abc.Mapping
Return a collections.abc.Mapping object representing the DataFrame.
The resulting transformation depends on the `orient` parameter.
See Also
--------
DataFrame.from_dict: Create a DataFrame from a dictionary.
DataFrame.to_json: Convert a DataFrame to JSON format.
Examples
--------
>>> df = pd.DataFrame({'col1': [1, 2],
... 'col2': [0.5, 0.75]},
... index=['row1', 'row2'])
>>> df
col1 col2
row1 1 0.50
row2 2 0.75
>>> df.to_dict()
{'col1': {'row1': 1, 'row2': 2}, 'col2': {'row1': 0.5, 'row2': 0.75}}
You can specify the return orientation.
>>> df.to_dict('series')
{'col1': row1 1
row2 2
Name: col1, dtype: int64,
'col2': row1 0.50
row2 0.75
Name: col2, dtype: float64}
>>> df.to_dict('split')
{'index': ['row1', 'row2'], 'columns': ['col1', 'col2'],
'data': [[1, 0.5], [2, 0.75]]}
>>> df.to_dict('records')
[{'col1': 1, 'col2': 0.5}, {'col1': 2, 'col2': 0.75}]
>>> df.to_dict('index')
{'row1': {'col1': 1, 'col2': 0.5}, 'row2': {'col1': 2, 'col2': 0.75}}
You can also specify the mapping type.
>>> from collections import OrderedDict, defaultdict
>>> df.to_dict(into=OrderedDict)
OrderedDict([('col1', OrderedDict([('row1', 1), ('row2', 2)])),
('col2', OrderedDict([('row1', 0.5), ('row2', 0.75)]))])
If you want a `defaultdict`, you need to initialize it:
>>> dd = defaultdict(list)
>>> df.to_dict('records', into=dd)
[defaultdict(<class 'list'>, {'col1': 1, 'col2': 0.5}),
defaultdict(<class 'list'>, {'col1': 2, 'col2': 0.75})]
"""
if not self.columns.is_unique:
warnings.warn("DataFrame columns are not unique, some "
"columns will be omitted.", UserWarning,
stacklevel=2)
# GH16122
into_c = com.standardize_mapping(into)
if orient.lower().startswith('d'):
return into_c(
(k, v.to_dict(into)) for k, v in self.items())
elif orient.lower().startswith('l'):
return into_c((k, v.tolist()) for k, v in self.items())
elif orient.lower().startswith('sp'):
return into_c((('index', self.index.tolist()),
('columns', self.columns.tolist()),
('data', [
list(map(com.maybe_box_datetimelike, t))
for t in self.itertuples(index=False, name=None)
])))
elif orient.lower().startswith('s'):
return into_c((k, com.maybe_box_datetimelike(v))
for k, v in self.items())
elif orient.lower().startswith('r'):
columns = self.columns.tolist()
rows = (dict(zip(columns, row))
for row in self.itertuples(index=False, name=None))
return [
into_c((k, com.maybe_box_datetimelike(v))
for k, v in row.items())
for row in rows]
elif orient.lower().startswith('i'):
if not self.index.is_unique:
raise ValueError(
"DataFrame index must be unique for orient='index'."
)
return into_c((t[0], dict(zip(self.columns, t[1:])))
for t in self.itertuples(name=None))
else:
raise ValueError("orient '{o}' not understood".format(o=orient))
|
[
"def",
"to_dict",
"(",
"self",
",",
"orient",
"=",
"'dict'",
",",
"into",
"=",
"dict",
")",
":",
"if",
"not",
"self",
".",
"columns",
".",
"is_unique",
":",
"warnings",
".",
"warn",
"(",
"\"DataFrame columns are not unique, some \"",
"\"columns will be omitted.\"",
",",
"UserWarning",
",",
"stacklevel",
"=",
"2",
")",
"# GH16122",
"into_c",
"=",
"com",
".",
"standardize_mapping",
"(",
"into",
")",
"if",
"orient",
".",
"lower",
"(",
")",
".",
"startswith",
"(",
"'d'",
")",
":",
"return",
"into_c",
"(",
"(",
"k",
",",
"v",
".",
"to_dict",
"(",
"into",
")",
")",
"for",
"k",
",",
"v",
"in",
"self",
".",
"items",
"(",
")",
")",
"elif",
"orient",
".",
"lower",
"(",
")",
".",
"startswith",
"(",
"'l'",
")",
":",
"return",
"into_c",
"(",
"(",
"k",
",",
"v",
".",
"tolist",
"(",
")",
")",
"for",
"k",
",",
"v",
"in",
"self",
".",
"items",
"(",
")",
")",
"elif",
"orient",
".",
"lower",
"(",
")",
".",
"startswith",
"(",
"'sp'",
")",
":",
"return",
"into_c",
"(",
"(",
"(",
"'index'",
",",
"self",
".",
"index",
".",
"tolist",
"(",
")",
")",
",",
"(",
"'columns'",
",",
"self",
".",
"columns",
".",
"tolist",
"(",
")",
")",
",",
"(",
"'data'",
",",
"[",
"list",
"(",
"map",
"(",
"com",
".",
"maybe_box_datetimelike",
",",
"t",
")",
")",
"for",
"t",
"in",
"self",
".",
"itertuples",
"(",
"index",
"=",
"False",
",",
"name",
"=",
"None",
")",
"]",
")",
")",
")",
"elif",
"orient",
".",
"lower",
"(",
")",
".",
"startswith",
"(",
"'s'",
")",
":",
"return",
"into_c",
"(",
"(",
"k",
",",
"com",
".",
"maybe_box_datetimelike",
"(",
"v",
")",
")",
"for",
"k",
",",
"v",
"in",
"self",
".",
"items",
"(",
")",
")",
"elif",
"orient",
".",
"lower",
"(",
")",
".",
"startswith",
"(",
"'r'",
")",
":",
"columns",
"=",
"self",
".",
"columns",
".",
"tolist",
"(",
")",
"rows",
"=",
"(",
"dict",
"(",
"zip",
"(",
"columns",
",",
"row",
")",
")",
"for",
"row",
"in",
"self",
".",
"itertuples",
"(",
"index",
"=",
"False",
",",
"name",
"=",
"None",
")",
")",
"return",
"[",
"into_c",
"(",
"(",
"k",
",",
"com",
".",
"maybe_box_datetimelike",
"(",
"v",
")",
")",
"for",
"k",
",",
"v",
"in",
"row",
".",
"items",
"(",
")",
")",
"for",
"row",
"in",
"rows",
"]",
"elif",
"orient",
".",
"lower",
"(",
")",
".",
"startswith",
"(",
"'i'",
")",
":",
"if",
"not",
"self",
".",
"index",
".",
"is_unique",
":",
"raise",
"ValueError",
"(",
"\"DataFrame index must be unique for orient='index'.\"",
")",
"return",
"into_c",
"(",
"(",
"t",
"[",
"0",
"]",
",",
"dict",
"(",
"zip",
"(",
"self",
".",
"columns",
",",
"t",
"[",
"1",
":",
"]",
")",
")",
")",
"for",
"t",
"in",
"self",
".",
"itertuples",
"(",
"name",
"=",
"None",
")",
")",
"else",
":",
"raise",
"ValueError",
"(",
"\"orient '{o}' not understood\"",
".",
"format",
"(",
"o",
"=",
"orient",
")",
")"
] |
Convert the DataFrame to a dictionary.
The type of the key-value pairs can be customized with the parameters
(see below).
Parameters
----------
orient : str {'dict', 'list', 'series', 'split', 'records', 'index'}
Determines the type of the values of the dictionary.
- 'dict' (default) : dict like {column -> {index -> value}}
- 'list' : dict like {column -> [values]}
- 'series' : dict like {column -> Series(values)}
- 'split' : dict like
{'index' -> [index], 'columns' -> [columns], 'data' -> [values]}
- 'records' : list like
[{column -> value}, ... , {column -> value}]
- 'index' : dict like {index -> {column -> value}}
Abbreviations are allowed. `s` indicates `series` and `sp`
indicates `split`.
into : class, default dict
The collections.abc.Mapping subclass used for all Mappings
in the return value. Can be the actual class or an empty
instance of the mapping type you want. If you want a
collections.defaultdict, you must pass it initialized.
.. versionadded:: 0.21.0
Returns
-------
dict, list or collections.abc.Mapping
Return a collections.abc.Mapping object representing the DataFrame.
The resulting transformation depends on the `orient` parameter.
See Also
--------
DataFrame.from_dict: Create a DataFrame from a dictionary.
DataFrame.to_json: Convert a DataFrame to JSON format.
Examples
--------
>>> df = pd.DataFrame({'col1': [1, 2],
... 'col2': [0.5, 0.75]},
... index=['row1', 'row2'])
>>> df
col1 col2
row1 1 0.50
row2 2 0.75
>>> df.to_dict()
{'col1': {'row1': 1, 'row2': 2}, 'col2': {'row1': 0.5, 'row2': 0.75}}
You can specify the return orientation.
>>> df.to_dict('series')
{'col1': row1 1
row2 2
Name: col1, dtype: int64,
'col2': row1 0.50
row2 0.75
Name: col2, dtype: float64}
>>> df.to_dict('split')
{'index': ['row1', 'row2'], 'columns': ['col1', 'col2'],
'data': [[1, 0.5], [2, 0.75]]}
>>> df.to_dict('records')
[{'col1': 1, 'col2': 0.5}, {'col1': 2, 'col2': 0.75}]
>>> df.to_dict('index')
{'row1': {'col1': 1, 'col2': 0.5}, 'row2': {'col1': 2, 'col2': 0.75}}
You can also specify the mapping type.
>>> from collections import OrderedDict, defaultdict
>>> df.to_dict(into=OrderedDict)
OrderedDict([('col1', OrderedDict([('row1', 1), ('row2', 2)])),
('col2', OrderedDict([('row1', 0.5), ('row2', 0.75)]))])
If you want a `defaultdict`, you need to initialize it:
>>> dd = defaultdict(list)
>>> df.to_dict('records', into=dd)
[defaultdict(<class 'list'>, {'col1': 1, 'col2': 0.5}),
defaultdict(<class 'list'>, {'col1': 2, 'col2': 0.75})]
|
[
"Convert",
"the",
"DataFrame",
"to",
"a",
"dictionary",
"."
] |
9feb3ad92cc0397a04b665803a49299ee7aa1037
|
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/frame.py#L1172-L1298
|
19,664
|
pandas-dev/pandas
|
pandas/core/frame.py
|
DataFrame.to_records
|
def to_records(self, index=True, convert_datetime64=None,
column_dtypes=None, index_dtypes=None):
"""
Convert DataFrame to a NumPy record array.
Index will be included as the first field of the record array if
requested.
Parameters
----------
index : bool, default True
Include index in resulting record array, stored in 'index'
field or using the index label, if set.
convert_datetime64 : bool, default None
.. deprecated:: 0.23.0
Whether to convert the index to datetime.datetime if it is a
DatetimeIndex.
column_dtypes : str, type, dict, default None
.. versionadded:: 0.24.0
If a string or type, the data type to store all columns. If
a dictionary, a mapping of column names and indices (zero-indexed)
to specific data types.
index_dtypes : str, type, dict, default None
.. versionadded:: 0.24.0
If a string or type, the data type to store all index levels. If
a dictionary, a mapping of index level names and indices
(zero-indexed) to specific data types.
This mapping is applied only if `index=True`.
Returns
-------
numpy.recarray
NumPy ndarray with the DataFrame labels as fields and each row
of the DataFrame as entries.
See Also
--------
DataFrame.from_records: Convert structured or record ndarray
to DataFrame.
numpy.recarray: An ndarray that allows field access using
attributes, analogous to typed columns in a
spreadsheet.
Examples
--------
>>> df = pd.DataFrame({'A': [1, 2], 'B': [0.5, 0.75]},
... index=['a', 'b'])
>>> df
A B
a 1 0.50
b 2 0.75
>>> df.to_records()
rec.array([('a', 1, 0.5 ), ('b', 2, 0.75)],
dtype=[('index', 'O'), ('A', '<i8'), ('B', '<f8')])
If the DataFrame index has no label then the recarray field name
is set to 'index'. If the index has a label then this is used as the
field name:
>>> df.index = df.index.rename("I")
>>> df.to_records()
rec.array([('a', 1, 0.5 ), ('b', 2, 0.75)],
dtype=[('I', 'O'), ('A', '<i8'), ('B', '<f8')])
The index can be excluded from the record array:
>>> df.to_records(index=False)
rec.array([(1, 0.5 ), (2, 0.75)],
dtype=[('A', '<i8'), ('B', '<f8')])
Data types can be specified for the columns:
>>> df.to_records(column_dtypes={"A": "int32"})
rec.array([('a', 1, 0.5 ), ('b', 2, 0.75)],
dtype=[('I', 'O'), ('A', '<i4'), ('B', '<f8')])
As well as for the index:
>>> df.to_records(index_dtypes="<S2")
rec.array([(b'a', 1, 0.5 ), (b'b', 2, 0.75)],
dtype=[('I', 'S2'), ('A', '<i8'), ('B', '<f8')])
>>> index_dtypes = "<S{}".format(df.index.str.len().max())
>>> df.to_records(index_dtypes=index_dtypes)
rec.array([(b'a', 1, 0.5 ), (b'b', 2, 0.75)],
dtype=[('I', 'S1'), ('A', '<i8'), ('B', '<f8')])
"""
if convert_datetime64 is not None:
warnings.warn("The 'convert_datetime64' parameter is "
"deprecated and will be removed in a future "
"version",
FutureWarning, stacklevel=2)
if index:
if is_datetime64_any_dtype(self.index) and convert_datetime64:
ix_vals = [self.index.to_pydatetime()]
else:
if isinstance(self.index, MultiIndex):
# array of tuples to numpy cols. copy copy copy
ix_vals = lmap(np.array, zip(*self.index.values))
else:
ix_vals = [self.index.values]
arrays = ix_vals + [self[c].get_values() for c in self.columns]
count = 0
index_names = list(self.index.names)
if isinstance(self.index, MultiIndex):
for i, n in enumerate(index_names):
if n is None:
index_names[i] = 'level_%d' % count
count += 1
elif index_names[0] is None:
index_names = ['index']
names = lmap(str, index_names) + lmap(str, self.columns)
else:
arrays = [self[c].get_values() for c in self.columns]
names = lmap(str, self.columns)
index_names = []
index_len = len(index_names)
formats = []
for i, v in enumerate(arrays):
index = i
# When the names and arrays are collected, we
# first collect those in the DataFrame's index,
# followed by those in its columns.
#
# Thus, the total length of the array is:
# len(index_names) + len(DataFrame.columns).
#
# This check allows us to see whether we are
# handling a name / array in the index or column.
if index < index_len:
dtype_mapping = index_dtypes
name = index_names[index]
else:
index -= index_len
dtype_mapping = column_dtypes
name = self.columns[index]
# We have a dictionary, so we get the data type
# associated with the index or column (which can
# be denoted by its name in the DataFrame or its
# position in DataFrame's array of indices or
# columns, whichever is applicable.
if is_dict_like(dtype_mapping):
if name in dtype_mapping:
dtype_mapping = dtype_mapping[name]
elif index in dtype_mapping:
dtype_mapping = dtype_mapping[index]
else:
dtype_mapping = None
# If no mapping can be found, use the array's
# dtype attribute for formatting.
#
# A valid dtype must either be a type or
# string naming a type.
if dtype_mapping is None:
formats.append(v.dtype)
elif isinstance(dtype_mapping, (type, np.dtype, str)):
formats.append(dtype_mapping)
else:
element = "row" if i < index_len else "column"
msg = ("Invalid dtype {dtype} specified for "
"{element} {name}").format(dtype=dtype_mapping,
element=element, name=name)
raise ValueError(msg)
return np.rec.fromarrays(
arrays,
dtype={'names': names, 'formats': formats}
)
|
python
|
def to_records(self, index=True, convert_datetime64=None,
column_dtypes=None, index_dtypes=None):
"""
Convert DataFrame to a NumPy record array.
Index will be included as the first field of the record array if
requested.
Parameters
----------
index : bool, default True
Include index in resulting record array, stored in 'index'
field or using the index label, if set.
convert_datetime64 : bool, default None
.. deprecated:: 0.23.0
Whether to convert the index to datetime.datetime if it is a
DatetimeIndex.
column_dtypes : str, type, dict, default None
.. versionadded:: 0.24.0
If a string or type, the data type to store all columns. If
a dictionary, a mapping of column names and indices (zero-indexed)
to specific data types.
index_dtypes : str, type, dict, default None
.. versionadded:: 0.24.0
If a string or type, the data type to store all index levels. If
a dictionary, a mapping of index level names and indices
(zero-indexed) to specific data types.
This mapping is applied only if `index=True`.
Returns
-------
numpy.recarray
NumPy ndarray with the DataFrame labels as fields and each row
of the DataFrame as entries.
See Also
--------
DataFrame.from_records: Convert structured or record ndarray
to DataFrame.
numpy.recarray: An ndarray that allows field access using
attributes, analogous to typed columns in a
spreadsheet.
Examples
--------
>>> df = pd.DataFrame({'A': [1, 2], 'B': [0.5, 0.75]},
... index=['a', 'b'])
>>> df
A B
a 1 0.50
b 2 0.75
>>> df.to_records()
rec.array([('a', 1, 0.5 ), ('b', 2, 0.75)],
dtype=[('index', 'O'), ('A', '<i8'), ('B', '<f8')])
If the DataFrame index has no label then the recarray field name
is set to 'index'. If the index has a label then this is used as the
field name:
>>> df.index = df.index.rename("I")
>>> df.to_records()
rec.array([('a', 1, 0.5 ), ('b', 2, 0.75)],
dtype=[('I', 'O'), ('A', '<i8'), ('B', '<f8')])
The index can be excluded from the record array:
>>> df.to_records(index=False)
rec.array([(1, 0.5 ), (2, 0.75)],
dtype=[('A', '<i8'), ('B', '<f8')])
Data types can be specified for the columns:
>>> df.to_records(column_dtypes={"A": "int32"})
rec.array([('a', 1, 0.5 ), ('b', 2, 0.75)],
dtype=[('I', 'O'), ('A', '<i4'), ('B', '<f8')])
As well as for the index:
>>> df.to_records(index_dtypes="<S2")
rec.array([(b'a', 1, 0.5 ), (b'b', 2, 0.75)],
dtype=[('I', 'S2'), ('A', '<i8'), ('B', '<f8')])
>>> index_dtypes = "<S{}".format(df.index.str.len().max())
>>> df.to_records(index_dtypes=index_dtypes)
rec.array([(b'a', 1, 0.5 ), (b'b', 2, 0.75)],
dtype=[('I', 'S1'), ('A', '<i8'), ('B', '<f8')])
"""
if convert_datetime64 is not None:
warnings.warn("The 'convert_datetime64' parameter is "
"deprecated and will be removed in a future "
"version",
FutureWarning, stacklevel=2)
if index:
if is_datetime64_any_dtype(self.index) and convert_datetime64:
ix_vals = [self.index.to_pydatetime()]
else:
if isinstance(self.index, MultiIndex):
# array of tuples to numpy cols. copy copy copy
ix_vals = lmap(np.array, zip(*self.index.values))
else:
ix_vals = [self.index.values]
arrays = ix_vals + [self[c].get_values() for c in self.columns]
count = 0
index_names = list(self.index.names)
if isinstance(self.index, MultiIndex):
for i, n in enumerate(index_names):
if n is None:
index_names[i] = 'level_%d' % count
count += 1
elif index_names[0] is None:
index_names = ['index']
names = lmap(str, index_names) + lmap(str, self.columns)
else:
arrays = [self[c].get_values() for c in self.columns]
names = lmap(str, self.columns)
index_names = []
index_len = len(index_names)
formats = []
for i, v in enumerate(arrays):
index = i
# When the names and arrays are collected, we
# first collect those in the DataFrame's index,
# followed by those in its columns.
#
# Thus, the total length of the array is:
# len(index_names) + len(DataFrame.columns).
#
# This check allows us to see whether we are
# handling a name / array in the index or column.
if index < index_len:
dtype_mapping = index_dtypes
name = index_names[index]
else:
index -= index_len
dtype_mapping = column_dtypes
name = self.columns[index]
# We have a dictionary, so we get the data type
# associated with the index or column (which can
# be denoted by its name in the DataFrame or its
# position in DataFrame's array of indices or
# columns, whichever is applicable.
if is_dict_like(dtype_mapping):
if name in dtype_mapping:
dtype_mapping = dtype_mapping[name]
elif index in dtype_mapping:
dtype_mapping = dtype_mapping[index]
else:
dtype_mapping = None
# If no mapping can be found, use the array's
# dtype attribute for formatting.
#
# A valid dtype must either be a type or
# string naming a type.
if dtype_mapping is None:
formats.append(v.dtype)
elif isinstance(dtype_mapping, (type, np.dtype, str)):
formats.append(dtype_mapping)
else:
element = "row" if i < index_len else "column"
msg = ("Invalid dtype {dtype} specified for "
"{element} {name}").format(dtype=dtype_mapping,
element=element, name=name)
raise ValueError(msg)
return np.rec.fromarrays(
arrays,
dtype={'names': names, 'formats': formats}
)
|
[
"def",
"to_records",
"(",
"self",
",",
"index",
"=",
"True",
",",
"convert_datetime64",
"=",
"None",
",",
"column_dtypes",
"=",
"None",
",",
"index_dtypes",
"=",
"None",
")",
":",
"if",
"convert_datetime64",
"is",
"not",
"None",
":",
"warnings",
".",
"warn",
"(",
"\"The 'convert_datetime64' parameter is \"",
"\"deprecated and will be removed in a future \"",
"\"version\"",
",",
"FutureWarning",
",",
"stacklevel",
"=",
"2",
")",
"if",
"index",
":",
"if",
"is_datetime64_any_dtype",
"(",
"self",
".",
"index",
")",
"and",
"convert_datetime64",
":",
"ix_vals",
"=",
"[",
"self",
".",
"index",
".",
"to_pydatetime",
"(",
")",
"]",
"else",
":",
"if",
"isinstance",
"(",
"self",
".",
"index",
",",
"MultiIndex",
")",
":",
"# array of tuples to numpy cols. copy copy copy",
"ix_vals",
"=",
"lmap",
"(",
"np",
".",
"array",
",",
"zip",
"(",
"*",
"self",
".",
"index",
".",
"values",
")",
")",
"else",
":",
"ix_vals",
"=",
"[",
"self",
".",
"index",
".",
"values",
"]",
"arrays",
"=",
"ix_vals",
"+",
"[",
"self",
"[",
"c",
"]",
".",
"get_values",
"(",
")",
"for",
"c",
"in",
"self",
".",
"columns",
"]",
"count",
"=",
"0",
"index_names",
"=",
"list",
"(",
"self",
".",
"index",
".",
"names",
")",
"if",
"isinstance",
"(",
"self",
".",
"index",
",",
"MultiIndex",
")",
":",
"for",
"i",
",",
"n",
"in",
"enumerate",
"(",
"index_names",
")",
":",
"if",
"n",
"is",
"None",
":",
"index_names",
"[",
"i",
"]",
"=",
"'level_%d'",
"%",
"count",
"count",
"+=",
"1",
"elif",
"index_names",
"[",
"0",
"]",
"is",
"None",
":",
"index_names",
"=",
"[",
"'index'",
"]",
"names",
"=",
"lmap",
"(",
"str",
",",
"index_names",
")",
"+",
"lmap",
"(",
"str",
",",
"self",
".",
"columns",
")",
"else",
":",
"arrays",
"=",
"[",
"self",
"[",
"c",
"]",
".",
"get_values",
"(",
")",
"for",
"c",
"in",
"self",
".",
"columns",
"]",
"names",
"=",
"lmap",
"(",
"str",
",",
"self",
".",
"columns",
")",
"index_names",
"=",
"[",
"]",
"index_len",
"=",
"len",
"(",
"index_names",
")",
"formats",
"=",
"[",
"]",
"for",
"i",
",",
"v",
"in",
"enumerate",
"(",
"arrays",
")",
":",
"index",
"=",
"i",
"# When the names and arrays are collected, we",
"# first collect those in the DataFrame's index,",
"# followed by those in its columns.",
"#",
"# Thus, the total length of the array is:",
"# len(index_names) + len(DataFrame.columns).",
"#",
"# This check allows us to see whether we are",
"# handling a name / array in the index or column.",
"if",
"index",
"<",
"index_len",
":",
"dtype_mapping",
"=",
"index_dtypes",
"name",
"=",
"index_names",
"[",
"index",
"]",
"else",
":",
"index",
"-=",
"index_len",
"dtype_mapping",
"=",
"column_dtypes",
"name",
"=",
"self",
".",
"columns",
"[",
"index",
"]",
"# We have a dictionary, so we get the data type",
"# associated with the index or column (which can",
"# be denoted by its name in the DataFrame or its",
"# position in DataFrame's array of indices or",
"# columns, whichever is applicable.",
"if",
"is_dict_like",
"(",
"dtype_mapping",
")",
":",
"if",
"name",
"in",
"dtype_mapping",
":",
"dtype_mapping",
"=",
"dtype_mapping",
"[",
"name",
"]",
"elif",
"index",
"in",
"dtype_mapping",
":",
"dtype_mapping",
"=",
"dtype_mapping",
"[",
"index",
"]",
"else",
":",
"dtype_mapping",
"=",
"None",
"# If no mapping can be found, use the array's",
"# dtype attribute for formatting.",
"#",
"# A valid dtype must either be a type or",
"# string naming a type.",
"if",
"dtype_mapping",
"is",
"None",
":",
"formats",
".",
"append",
"(",
"v",
".",
"dtype",
")",
"elif",
"isinstance",
"(",
"dtype_mapping",
",",
"(",
"type",
",",
"np",
".",
"dtype",
",",
"str",
")",
")",
":",
"formats",
".",
"append",
"(",
"dtype_mapping",
")",
"else",
":",
"element",
"=",
"\"row\"",
"if",
"i",
"<",
"index_len",
"else",
"\"column\"",
"msg",
"=",
"(",
"\"Invalid dtype {dtype} specified for \"",
"\"{element} {name}\"",
")",
".",
"format",
"(",
"dtype",
"=",
"dtype_mapping",
",",
"element",
"=",
"element",
",",
"name",
"=",
"name",
")",
"raise",
"ValueError",
"(",
"msg",
")",
"return",
"np",
".",
"rec",
".",
"fromarrays",
"(",
"arrays",
",",
"dtype",
"=",
"{",
"'names'",
":",
"names",
",",
"'formats'",
":",
"formats",
"}",
")"
] |
Convert DataFrame to a NumPy record array.
Index will be included as the first field of the record array if
requested.
Parameters
----------
index : bool, default True
Include index in resulting record array, stored in 'index'
field or using the index label, if set.
convert_datetime64 : bool, default None
.. deprecated:: 0.23.0
Whether to convert the index to datetime.datetime if it is a
DatetimeIndex.
column_dtypes : str, type, dict, default None
.. versionadded:: 0.24.0
If a string or type, the data type to store all columns. If
a dictionary, a mapping of column names and indices (zero-indexed)
to specific data types.
index_dtypes : str, type, dict, default None
.. versionadded:: 0.24.0
If a string or type, the data type to store all index levels. If
a dictionary, a mapping of index level names and indices
(zero-indexed) to specific data types.
This mapping is applied only if `index=True`.
Returns
-------
numpy.recarray
NumPy ndarray with the DataFrame labels as fields and each row
of the DataFrame as entries.
See Also
--------
DataFrame.from_records: Convert structured or record ndarray
to DataFrame.
numpy.recarray: An ndarray that allows field access using
attributes, analogous to typed columns in a
spreadsheet.
Examples
--------
>>> df = pd.DataFrame({'A': [1, 2], 'B': [0.5, 0.75]},
... index=['a', 'b'])
>>> df
A B
a 1 0.50
b 2 0.75
>>> df.to_records()
rec.array([('a', 1, 0.5 ), ('b', 2, 0.75)],
dtype=[('index', 'O'), ('A', '<i8'), ('B', '<f8')])
If the DataFrame index has no label then the recarray field name
is set to 'index'. If the index has a label then this is used as the
field name:
>>> df.index = df.index.rename("I")
>>> df.to_records()
rec.array([('a', 1, 0.5 ), ('b', 2, 0.75)],
dtype=[('I', 'O'), ('A', '<i8'), ('B', '<f8')])
The index can be excluded from the record array:
>>> df.to_records(index=False)
rec.array([(1, 0.5 ), (2, 0.75)],
dtype=[('A', '<i8'), ('B', '<f8')])
Data types can be specified for the columns:
>>> df.to_records(column_dtypes={"A": "int32"})
rec.array([('a', 1, 0.5 ), ('b', 2, 0.75)],
dtype=[('I', 'O'), ('A', '<i4'), ('B', '<f8')])
As well as for the index:
>>> df.to_records(index_dtypes="<S2")
rec.array([(b'a', 1, 0.5 ), (b'b', 2, 0.75)],
dtype=[('I', 'S2'), ('A', '<i8'), ('B', '<f8')])
>>> index_dtypes = "<S{}".format(df.index.str.len().max())
>>> df.to_records(index_dtypes=index_dtypes)
rec.array([(b'a', 1, 0.5 ), (b'b', 2, 0.75)],
dtype=[('I', 'S1'), ('A', '<i8'), ('B', '<f8')])
|
[
"Convert",
"DataFrame",
"to",
"a",
"NumPy",
"record",
"array",
"."
] |
9feb3ad92cc0397a04b665803a49299ee7aa1037
|
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/frame.py#L1535-L1717
|
19,665
|
pandas-dev/pandas
|
pandas/core/frame.py
|
DataFrame.from_items
|
def from_items(cls, items, columns=None, orient='columns'):
"""
Construct a DataFrame from a list of tuples.
.. deprecated:: 0.23.0
`from_items` is deprecated and will be removed in a future version.
Use :meth:`DataFrame.from_dict(dict(items)) <DataFrame.from_dict>`
instead.
:meth:`DataFrame.from_dict(OrderedDict(items)) <DataFrame.from_dict>`
may be used to preserve the key order.
Convert (key, value) pairs to DataFrame. The keys will be the axis
index (usually the columns, but depends on the specified
orientation). The values should be arrays or Series.
Parameters
----------
items : sequence of (key, value) pairs
Values should be arrays or Series.
columns : sequence of column labels, optional
Must be passed if orient='index'.
orient : {'columns', 'index'}, default 'columns'
The "orientation" of the data. If the keys of the
input correspond to column labels, pass 'columns'
(default). Otherwise if the keys correspond to the index,
pass 'index'.
Returns
-------
DataFrame
"""
warnings.warn("from_items is deprecated. Please use "
"DataFrame.from_dict(dict(items), ...) instead. "
"DataFrame.from_dict(OrderedDict(items)) may be used to "
"preserve the key order.",
FutureWarning, stacklevel=2)
keys, values = lzip(*items)
if orient == 'columns':
if columns is not None:
columns = ensure_index(columns)
idict = dict(items)
if len(idict) < len(items):
if not columns.equals(ensure_index(keys)):
raise ValueError('With non-unique item names, passed '
'columns must be identical')
arrays = values
else:
arrays = [idict[k] for k in columns if k in idict]
else:
columns = ensure_index(keys)
arrays = values
# GH 17312
# Provide more informative error msg when scalar values passed
try:
return cls._from_arrays(arrays, columns, None)
except ValueError:
if not is_nested_list_like(values):
raise ValueError('The value in each (key, value) pair '
'must be an array, Series, or dict')
elif orient == 'index':
if columns is None:
raise TypeError("Must pass columns with orient='index'")
keys = ensure_index(keys)
# GH 17312
# Provide more informative error msg when scalar values passed
try:
arr = np.array(values, dtype=object).T
data = [lib.maybe_convert_objects(v) for v in arr]
return cls._from_arrays(data, columns, keys)
except TypeError:
if not is_nested_list_like(values):
raise ValueError('The value in each (key, value) pair '
'must be an array, Series, or dict')
else: # pragma: no cover
raise ValueError("'orient' must be either 'columns' or 'index'")
|
python
|
def from_items(cls, items, columns=None, orient='columns'):
"""
Construct a DataFrame from a list of tuples.
.. deprecated:: 0.23.0
`from_items` is deprecated and will be removed in a future version.
Use :meth:`DataFrame.from_dict(dict(items)) <DataFrame.from_dict>`
instead.
:meth:`DataFrame.from_dict(OrderedDict(items)) <DataFrame.from_dict>`
may be used to preserve the key order.
Convert (key, value) pairs to DataFrame. The keys will be the axis
index (usually the columns, but depends on the specified
orientation). The values should be arrays or Series.
Parameters
----------
items : sequence of (key, value) pairs
Values should be arrays or Series.
columns : sequence of column labels, optional
Must be passed if orient='index'.
orient : {'columns', 'index'}, default 'columns'
The "orientation" of the data. If the keys of the
input correspond to column labels, pass 'columns'
(default). Otherwise if the keys correspond to the index,
pass 'index'.
Returns
-------
DataFrame
"""
warnings.warn("from_items is deprecated. Please use "
"DataFrame.from_dict(dict(items), ...) instead. "
"DataFrame.from_dict(OrderedDict(items)) may be used to "
"preserve the key order.",
FutureWarning, stacklevel=2)
keys, values = lzip(*items)
if orient == 'columns':
if columns is not None:
columns = ensure_index(columns)
idict = dict(items)
if len(idict) < len(items):
if not columns.equals(ensure_index(keys)):
raise ValueError('With non-unique item names, passed '
'columns must be identical')
arrays = values
else:
arrays = [idict[k] for k in columns if k in idict]
else:
columns = ensure_index(keys)
arrays = values
# GH 17312
# Provide more informative error msg when scalar values passed
try:
return cls._from_arrays(arrays, columns, None)
except ValueError:
if not is_nested_list_like(values):
raise ValueError('The value in each (key, value) pair '
'must be an array, Series, or dict')
elif orient == 'index':
if columns is None:
raise TypeError("Must pass columns with orient='index'")
keys = ensure_index(keys)
# GH 17312
# Provide more informative error msg when scalar values passed
try:
arr = np.array(values, dtype=object).T
data = [lib.maybe_convert_objects(v) for v in arr]
return cls._from_arrays(data, columns, keys)
except TypeError:
if not is_nested_list_like(values):
raise ValueError('The value in each (key, value) pair '
'must be an array, Series, or dict')
else: # pragma: no cover
raise ValueError("'orient' must be either 'columns' or 'index'")
|
[
"def",
"from_items",
"(",
"cls",
",",
"items",
",",
"columns",
"=",
"None",
",",
"orient",
"=",
"'columns'",
")",
":",
"warnings",
".",
"warn",
"(",
"\"from_items is deprecated. Please use \"",
"\"DataFrame.from_dict(dict(items), ...) instead. \"",
"\"DataFrame.from_dict(OrderedDict(items)) may be used to \"",
"\"preserve the key order.\"",
",",
"FutureWarning",
",",
"stacklevel",
"=",
"2",
")",
"keys",
",",
"values",
"=",
"lzip",
"(",
"*",
"items",
")",
"if",
"orient",
"==",
"'columns'",
":",
"if",
"columns",
"is",
"not",
"None",
":",
"columns",
"=",
"ensure_index",
"(",
"columns",
")",
"idict",
"=",
"dict",
"(",
"items",
")",
"if",
"len",
"(",
"idict",
")",
"<",
"len",
"(",
"items",
")",
":",
"if",
"not",
"columns",
".",
"equals",
"(",
"ensure_index",
"(",
"keys",
")",
")",
":",
"raise",
"ValueError",
"(",
"'With non-unique item names, passed '",
"'columns must be identical'",
")",
"arrays",
"=",
"values",
"else",
":",
"arrays",
"=",
"[",
"idict",
"[",
"k",
"]",
"for",
"k",
"in",
"columns",
"if",
"k",
"in",
"idict",
"]",
"else",
":",
"columns",
"=",
"ensure_index",
"(",
"keys",
")",
"arrays",
"=",
"values",
"# GH 17312",
"# Provide more informative error msg when scalar values passed",
"try",
":",
"return",
"cls",
".",
"_from_arrays",
"(",
"arrays",
",",
"columns",
",",
"None",
")",
"except",
"ValueError",
":",
"if",
"not",
"is_nested_list_like",
"(",
"values",
")",
":",
"raise",
"ValueError",
"(",
"'The value in each (key, value) pair '",
"'must be an array, Series, or dict'",
")",
"elif",
"orient",
"==",
"'index'",
":",
"if",
"columns",
"is",
"None",
":",
"raise",
"TypeError",
"(",
"\"Must pass columns with orient='index'\"",
")",
"keys",
"=",
"ensure_index",
"(",
"keys",
")",
"# GH 17312",
"# Provide more informative error msg when scalar values passed",
"try",
":",
"arr",
"=",
"np",
".",
"array",
"(",
"values",
",",
"dtype",
"=",
"object",
")",
".",
"T",
"data",
"=",
"[",
"lib",
".",
"maybe_convert_objects",
"(",
"v",
")",
"for",
"v",
"in",
"arr",
"]",
"return",
"cls",
".",
"_from_arrays",
"(",
"data",
",",
"columns",
",",
"keys",
")",
"except",
"TypeError",
":",
"if",
"not",
"is_nested_list_like",
"(",
"values",
")",
":",
"raise",
"ValueError",
"(",
"'The value in each (key, value) pair '",
"'must be an array, Series, or dict'",
")",
"else",
":",
"# pragma: no cover",
"raise",
"ValueError",
"(",
"\"'orient' must be either 'columns' or 'index'\"",
")"
] |
Construct a DataFrame from a list of tuples.
.. deprecated:: 0.23.0
`from_items` is deprecated and will be removed in a future version.
Use :meth:`DataFrame.from_dict(dict(items)) <DataFrame.from_dict>`
instead.
:meth:`DataFrame.from_dict(OrderedDict(items)) <DataFrame.from_dict>`
may be used to preserve the key order.
Convert (key, value) pairs to DataFrame. The keys will be the axis
index (usually the columns, but depends on the specified
orientation). The values should be arrays or Series.
Parameters
----------
items : sequence of (key, value) pairs
Values should be arrays or Series.
columns : sequence of column labels, optional
Must be passed if orient='index'.
orient : {'columns', 'index'}, default 'columns'
The "orientation" of the data. If the keys of the
input correspond to column labels, pass 'columns'
(default). Otherwise if the keys correspond to the index,
pass 'index'.
Returns
-------
DataFrame
|
[
"Construct",
"a",
"DataFrame",
"from",
"a",
"list",
"of",
"tuples",
"."
] |
9feb3ad92cc0397a04b665803a49299ee7aa1037
|
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/frame.py#L1720-L1805
|
19,666
|
pandas-dev/pandas
|
pandas/core/frame.py
|
DataFrame.to_sparse
|
def to_sparse(self, fill_value=None, kind='block'):
"""
Convert to SparseDataFrame.
Implement the sparse version of the DataFrame meaning that any data
matching a specific value it's omitted in the representation.
The sparse DataFrame allows for a more efficient storage.
Parameters
----------
fill_value : float, default None
The specific value that should be omitted in the representation.
kind : {'block', 'integer'}, default 'block'
The kind of the SparseIndex tracking where data is not equal to
the fill value:
- 'block' tracks only the locations and sizes of blocks of data.
- 'integer' keeps an array with all the locations of the data.
In most cases 'block' is recommended, since it's more memory
efficient.
Returns
-------
SparseDataFrame
The sparse representation of the DataFrame.
See Also
--------
DataFrame.to_dense :
Converts the DataFrame back to the its dense form.
Examples
--------
>>> df = pd.DataFrame([(np.nan, np.nan),
... (1., np.nan),
... (np.nan, 1.)])
>>> df
0 1
0 NaN NaN
1 1.0 NaN
2 NaN 1.0
>>> type(df)
<class 'pandas.core.frame.DataFrame'>
>>> sdf = df.to_sparse()
>>> sdf
0 1
0 NaN NaN
1 1.0 NaN
2 NaN 1.0
>>> type(sdf)
<class 'pandas.core.sparse.frame.SparseDataFrame'>
"""
from pandas.core.sparse.api import SparseDataFrame
return SparseDataFrame(self._series, index=self.index,
columns=self.columns, default_kind=kind,
default_fill_value=fill_value)
|
python
|
def to_sparse(self, fill_value=None, kind='block'):
"""
Convert to SparseDataFrame.
Implement the sparse version of the DataFrame meaning that any data
matching a specific value it's omitted in the representation.
The sparse DataFrame allows for a more efficient storage.
Parameters
----------
fill_value : float, default None
The specific value that should be omitted in the representation.
kind : {'block', 'integer'}, default 'block'
The kind of the SparseIndex tracking where data is not equal to
the fill value:
- 'block' tracks only the locations and sizes of blocks of data.
- 'integer' keeps an array with all the locations of the data.
In most cases 'block' is recommended, since it's more memory
efficient.
Returns
-------
SparseDataFrame
The sparse representation of the DataFrame.
See Also
--------
DataFrame.to_dense :
Converts the DataFrame back to the its dense form.
Examples
--------
>>> df = pd.DataFrame([(np.nan, np.nan),
... (1., np.nan),
... (np.nan, 1.)])
>>> df
0 1
0 NaN NaN
1 1.0 NaN
2 NaN 1.0
>>> type(df)
<class 'pandas.core.frame.DataFrame'>
>>> sdf = df.to_sparse()
>>> sdf
0 1
0 NaN NaN
1 1.0 NaN
2 NaN 1.0
>>> type(sdf)
<class 'pandas.core.sparse.frame.SparseDataFrame'>
"""
from pandas.core.sparse.api import SparseDataFrame
return SparseDataFrame(self._series, index=self.index,
columns=self.columns, default_kind=kind,
default_fill_value=fill_value)
|
[
"def",
"to_sparse",
"(",
"self",
",",
"fill_value",
"=",
"None",
",",
"kind",
"=",
"'block'",
")",
":",
"from",
"pandas",
".",
"core",
".",
"sparse",
".",
"api",
"import",
"SparseDataFrame",
"return",
"SparseDataFrame",
"(",
"self",
".",
"_series",
",",
"index",
"=",
"self",
".",
"index",
",",
"columns",
"=",
"self",
".",
"columns",
",",
"default_kind",
"=",
"kind",
",",
"default_fill_value",
"=",
"fill_value",
")"
] |
Convert to SparseDataFrame.
Implement the sparse version of the DataFrame meaning that any data
matching a specific value it's omitted in the representation.
The sparse DataFrame allows for a more efficient storage.
Parameters
----------
fill_value : float, default None
The specific value that should be omitted in the representation.
kind : {'block', 'integer'}, default 'block'
The kind of the SparseIndex tracking where data is not equal to
the fill value:
- 'block' tracks only the locations and sizes of blocks of data.
- 'integer' keeps an array with all the locations of the data.
In most cases 'block' is recommended, since it's more memory
efficient.
Returns
-------
SparseDataFrame
The sparse representation of the DataFrame.
See Also
--------
DataFrame.to_dense :
Converts the DataFrame back to the its dense form.
Examples
--------
>>> df = pd.DataFrame([(np.nan, np.nan),
... (1., np.nan),
... (np.nan, 1.)])
>>> df
0 1
0 NaN NaN
1 1.0 NaN
2 NaN 1.0
>>> type(df)
<class 'pandas.core.frame.DataFrame'>
>>> sdf = df.to_sparse()
>>> sdf
0 1
0 NaN NaN
1 1.0 NaN
2 NaN 1.0
>>> type(sdf)
<class 'pandas.core.sparse.frame.SparseDataFrame'>
|
[
"Convert",
"to",
"SparseDataFrame",
"."
] |
9feb3ad92cc0397a04b665803a49299ee7aa1037
|
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/frame.py#L1879-L1936
|
19,667
|
pandas-dev/pandas
|
pandas/core/frame.py
|
DataFrame.to_stata
|
def to_stata(self, fname, convert_dates=None, write_index=True,
encoding="latin-1", byteorder=None, time_stamp=None,
data_label=None, variable_labels=None, version=114,
convert_strl=None):
"""
Export DataFrame object to Stata dta format.
Writes the DataFrame to a Stata dataset file.
"dta" files contain a Stata dataset.
Parameters
----------
fname : str, buffer or path object
String, path object (pathlib.Path or py._path.local.LocalPath) or
object implementing a binary write() function. If using a buffer
then the buffer will not be automatically closed after the file
data has been written.
convert_dates : dict
Dictionary mapping columns containing datetime types to stata
internal format to use when writing the dates. Options are 'tc',
'td', 'tm', 'tw', 'th', 'tq', 'ty'. Column can be either an integer
or a name. Datetime columns that do not have a conversion type
specified will be converted to 'tc'. Raises NotImplementedError if
a datetime column has timezone information.
write_index : bool
Write the index to Stata dataset.
encoding : str
Default is latin-1. Unicode is not supported.
byteorder : str
Can be ">", "<", "little", or "big". default is `sys.byteorder`.
time_stamp : datetime
A datetime to use as file creation date. Default is the current
time.
data_label : str, optional
A label for the data set. Must be 80 characters or smaller.
variable_labels : dict
Dictionary containing columns as keys and variable labels as
values. Each label must be 80 characters or smaller.
.. versionadded:: 0.19.0
version : {114, 117}, default 114
Version to use in the output dta file. Version 114 can be used
read by Stata 10 and later. Version 117 can be read by Stata 13
or later. Version 114 limits string variables to 244 characters or
fewer while 117 allows strings with lengths up to 2,000,000
characters.
.. versionadded:: 0.23.0
convert_strl : list, optional
List of column names to convert to string columns to Stata StrL
format. Only available if version is 117. Storing strings in the
StrL format can produce smaller dta files if strings have more than
8 characters and values are repeated.
.. versionadded:: 0.23.0
Raises
------
NotImplementedError
* If datetimes contain timezone information
* Column dtype is not representable in Stata
ValueError
* Columns listed in convert_dates are neither datetime64[ns]
or datetime.datetime
* Column listed in convert_dates is not in DataFrame
* Categorical label contains more than 32,000 characters
.. versionadded:: 0.19.0
See Also
--------
read_stata : Import Stata data files.
io.stata.StataWriter : Low-level writer for Stata data files.
io.stata.StataWriter117 : Low-level writer for version 117 files.
Examples
--------
>>> df = pd.DataFrame({'animal': ['falcon', 'parrot', 'falcon',
... 'parrot'],
... 'speed': [350, 18, 361, 15]})
>>> df.to_stata('animals.dta') # doctest: +SKIP
"""
kwargs = {}
if version not in (114, 117):
raise ValueError('Only formats 114 and 117 supported.')
if version == 114:
if convert_strl is not None:
raise ValueError('strl support is only available when using '
'format 117')
from pandas.io.stata import StataWriter as statawriter
else:
from pandas.io.stata import StataWriter117 as statawriter
kwargs['convert_strl'] = convert_strl
writer = statawriter(fname, self, convert_dates=convert_dates,
byteorder=byteorder, time_stamp=time_stamp,
data_label=data_label, write_index=write_index,
variable_labels=variable_labels, **kwargs)
writer.write_file()
|
python
|
def to_stata(self, fname, convert_dates=None, write_index=True,
encoding="latin-1", byteorder=None, time_stamp=None,
data_label=None, variable_labels=None, version=114,
convert_strl=None):
"""
Export DataFrame object to Stata dta format.
Writes the DataFrame to a Stata dataset file.
"dta" files contain a Stata dataset.
Parameters
----------
fname : str, buffer or path object
String, path object (pathlib.Path or py._path.local.LocalPath) or
object implementing a binary write() function. If using a buffer
then the buffer will not be automatically closed after the file
data has been written.
convert_dates : dict
Dictionary mapping columns containing datetime types to stata
internal format to use when writing the dates. Options are 'tc',
'td', 'tm', 'tw', 'th', 'tq', 'ty'. Column can be either an integer
or a name. Datetime columns that do not have a conversion type
specified will be converted to 'tc'. Raises NotImplementedError if
a datetime column has timezone information.
write_index : bool
Write the index to Stata dataset.
encoding : str
Default is latin-1. Unicode is not supported.
byteorder : str
Can be ">", "<", "little", or "big". default is `sys.byteorder`.
time_stamp : datetime
A datetime to use as file creation date. Default is the current
time.
data_label : str, optional
A label for the data set. Must be 80 characters or smaller.
variable_labels : dict
Dictionary containing columns as keys and variable labels as
values. Each label must be 80 characters or smaller.
.. versionadded:: 0.19.0
version : {114, 117}, default 114
Version to use in the output dta file. Version 114 can be used
read by Stata 10 and later. Version 117 can be read by Stata 13
or later. Version 114 limits string variables to 244 characters or
fewer while 117 allows strings with lengths up to 2,000,000
characters.
.. versionadded:: 0.23.0
convert_strl : list, optional
List of column names to convert to string columns to Stata StrL
format. Only available if version is 117. Storing strings in the
StrL format can produce smaller dta files if strings have more than
8 characters and values are repeated.
.. versionadded:: 0.23.0
Raises
------
NotImplementedError
* If datetimes contain timezone information
* Column dtype is not representable in Stata
ValueError
* Columns listed in convert_dates are neither datetime64[ns]
or datetime.datetime
* Column listed in convert_dates is not in DataFrame
* Categorical label contains more than 32,000 characters
.. versionadded:: 0.19.0
See Also
--------
read_stata : Import Stata data files.
io.stata.StataWriter : Low-level writer for Stata data files.
io.stata.StataWriter117 : Low-level writer for version 117 files.
Examples
--------
>>> df = pd.DataFrame({'animal': ['falcon', 'parrot', 'falcon',
... 'parrot'],
... 'speed': [350, 18, 361, 15]})
>>> df.to_stata('animals.dta') # doctest: +SKIP
"""
kwargs = {}
if version not in (114, 117):
raise ValueError('Only formats 114 and 117 supported.')
if version == 114:
if convert_strl is not None:
raise ValueError('strl support is only available when using '
'format 117')
from pandas.io.stata import StataWriter as statawriter
else:
from pandas.io.stata import StataWriter117 as statawriter
kwargs['convert_strl'] = convert_strl
writer = statawriter(fname, self, convert_dates=convert_dates,
byteorder=byteorder, time_stamp=time_stamp,
data_label=data_label, write_index=write_index,
variable_labels=variable_labels, **kwargs)
writer.write_file()
|
[
"def",
"to_stata",
"(",
"self",
",",
"fname",
",",
"convert_dates",
"=",
"None",
",",
"write_index",
"=",
"True",
",",
"encoding",
"=",
"\"latin-1\"",
",",
"byteorder",
"=",
"None",
",",
"time_stamp",
"=",
"None",
",",
"data_label",
"=",
"None",
",",
"variable_labels",
"=",
"None",
",",
"version",
"=",
"114",
",",
"convert_strl",
"=",
"None",
")",
":",
"kwargs",
"=",
"{",
"}",
"if",
"version",
"not",
"in",
"(",
"114",
",",
"117",
")",
":",
"raise",
"ValueError",
"(",
"'Only formats 114 and 117 supported.'",
")",
"if",
"version",
"==",
"114",
":",
"if",
"convert_strl",
"is",
"not",
"None",
":",
"raise",
"ValueError",
"(",
"'strl support is only available when using '",
"'format 117'",
")",
"from",
"pandas",
".",
"io",
".",
"stata",
"import",
"StataWriter",
"as",
"statawriter",
"else",
":",
"from",
"pandas",
".",
"io",
".",
"stata",
"import",
"StataWriter117",
"as",
"statawriter",
"kwargs",
"[",
"'convert_strl'",
"]",
"=",
"convert_strl",
"writer",
"=",
"statawriter",
"(",
"fname",
",",
"self",
",",
"convert_dates",
"=",
"convert_dates",
",",
"byteorder",
"=",
"byteorder",
",",
"time_stamp",
"=",
"time_stamp",
",",
"data_label",
"=",
"data_label",
",",
"write_index",
"=",
"write_index",
",",
"variable_labels",
"=",
"variable_labels",
",",
"*",
"*",
"kwargs",
")",
"writer",
".",
"write_file",
"(",
")"
] |
Export DataFrame object to Stata dta format.
Writes the DataFrame to a Stata dataset file.
"dta" files contain a Stata dataset.
Parameters
----------
fname : str, buffer or path object
String, path object (pathlib.Path or py._path.local.LocalPath) or
object implementing a binary write() function. If using a buffer
then the buffer will not be automatically closed after the file
data has been written.
convert_dates : dict
Dictionary mapping columns containing datetime types to stata
internal format to use when writing the dates. Options are 'tc',
'td', 'tm', 'tw', 'th', 'tq', 'ty'. Column can be either an integer
or a name. Datetime columns that do not have a conversion type
specified will be converted to 'tc'. Raises NotImplementedError if
a datetime column has timezone information.
write_index : bool
Write the index to Stata dataset.
encoding : str
Default is latin-1. Unicode is not supported.
byteorder : str
Can be ">", "<", "little", or "big". default is `sys.byteorder`.
time_stamp : datetime
A datetime to use as file creation date. Default is the current
time.
data_label : str, optional
A label for the data set. Must be 80 characters or smaller.
variable_labels : dict
Dictionary containing columns as keys and variable labels as
values. Each label must be 80 characters or smaller.
.. versionadded:: 0.19.0
version : {114, 117}, default 114
Version to use in the output dta file. Version 114 can be used
read by Stata 10 and later. Version 117 can be read by Stata 13
or later. Version 114 limits string variables to 244 characters or
fewer while 117 allows strings with lengths up to 2,000,000
characters.
.. versionadded:: 0.23.0
convert_strl : list, optional
List of column names to convert to string columns to Stata StrL
format. Only available if version is 117. Storing strings in the
StrL format can produce smaller dta files if strings have more than
8 characters and values are repeated.
.. versionadded:: 0.23.0
Raises
------
NotImplementedError
* If datetimes contain timezone information
* Column dtype is not representable in Stata
ValueError
* Columns listed in convert_dates are neither datetime64[ns]
or datetime.datetime
* Column listed in convert_dates is not in DataFrame
* Categorical label contains more than 32,000 characters
.. versionadded:: 0.19.0
See Also
--------
read_stata : Import Stata data files.
io.stata.StataWriter : Low-level writer for Stata data files.
io.stata.StataWriter117 : Low-level writer for version 117 files.
Examples
--------
>>> df = pd.DataFrame({'animal': ['falcon', 'parrot', 'falcon',
... 'parrot'],
... 'speed': [350, 18, 361, 15]})
>>> df.to_stata('animals.dta') # doctest: +SKIP
|
[
"Export",
"DataFrame",
"object",
"to",
"Stata",
"dta",
"format",
"."
] |
9feb3ad92cc0397a04b665803a49299ee7aa1037
|
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/frame.py#L1955-L2055
|
19,668
|
pandas-dev/pandas
|
pandas/core/frame.py
|
DataFrame.to_feather
|
def to_feather(self, fname):
"""
Write out the binary feather-format for DataFrames.
.. versionadded:: 0.20.0
Parameters
----------
fname : str
string file path
"""
from pandas.io.feather_format import to_feather
to_feather(self, fname)
|
python
|
def to_feather(self, fname):
"""
Write out the binary feather-format for DataFrames.
.. versionadded:: 0.20.0
Parameters
----------
fname : str
string file path
"""
from pandas.io.feather_format import to_feather
to_feather(self, fname)
|
[
"def",
"to_feather",
"(",
"self",
",",
"fname",
")",
":",
"from",
"pandas",
".",
"io",
".",
"feather_format",
"import",
"to_feather",
"to_feather",
"(",
"self",
",",
"fname",
")"
] |
Write out the binary feather-format for DataFrames.
.. versionadded:: 0.20.0
Parameters
----------
fname : str
string file path
|
[
"Write",
"out",
"the",
"binary",
"feather",
"-",
"format",
"for",
"DataFrames",
"."
] |
9feb3ad92cc0397a04b665803a49299ee7aa1037
|
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/frame.py#L2057-L2069
|
19,669
|
pandas-dev/pandas
|
pandas/core/frame.py
|
DataFrame.to_parquet
|
def to_parquet(self, fname, engine='auto', compression='snappy',
index=None, partition_cols=None, **kwargs):
"""
Write a DataFrame to the binary parquet format.
.. versionadded:: 0.21.0
This function writes the dataframe as a `parquet file
<https://parquet.apache.org/>`_. You can choose different parquet
backends, and have the option of compression. See
:ref:`the user guide <io.parquet>` for more details.
Parameters
----------
fname : str
File path or Root Directory path. Will be used as Root Directory
path while writing a partitioned dataset.
.. versionchanged:: 0.24.0
engine : {'auto', 'pyarrow', 'fastparquet'}, default 'auto'
Parquet library to use. If 'auto', then the option
``io.parquet.engine`` is used. The default ``io.parquet.engine``
behavior is to try 'pyarrow', falling back to 'fastparquet' if
'pyarrow' is unavailable.
compression : {'snappy', 'gzip', 'brotli', None}, default 'snappy'
Name of the compression to use. Use ``None`` for no compression.
index : bool, default None
If ``True``, include the dataframe's index(es) in the file output.
If ``False``, they will not be written to the file. If ``None``,
the behavior depends on the chosen engine.
.. versionadded:: 0.24.0
partition_cols : list, optional, default None
Column names by which to partition the dataset
Columns are partitioned in the order they are given
.. versionadded:: 0.24.0
**kwargs
Additional arguments passed to the parquet library. See
:ref:`pandas io <io.parquet>` for more details.
See Also
--------
read_parquet : Read a parquet file.
DataFrame.to_csv : Write a csv file.
DataFrame.to_sql : Write to a sql table.
DataFrame.to_hdf : Write to hdf.
Notes
-----
This function requires either the `fastparquet
<https://pypi.org/project/fastparquet>`_ or `pyarrow
<https://arrow.apache.org/docs/python/>`_ library.
Examples
--------
>>> df = pd.DataFrame(data={'col1': [1, 2], 'col2': [3, 4]})
>>> df.to_parquet('df.parquet.gzip',
... compression='gzip') # doctest: +SKIP
>>> pd.read_parquet('df.parquet.gzip') # doctest: +SKIP
col1 col2
0 1 3
1 2 4
"""
from pandas.io.parquet import to_parquet
to_parquet(self, fname, engine,
compression=compression, index=index,
partition_cols=partition_cols, **kwargs)
|
python
|
def to_parquet(self, fname, engine='auto', compression='snappy',
index=None, partition_cols=None, **kwargs):
"""
Write a DataFrame to the binary parquet format.
.. versionadded:: 0.21.0
This function writes the dataframe as a `parquet file
<https://parquet.apache.org/>`_. You can choose different parquet
backends, and have the option of compression. See
:ref:`the user guide <io.parquet>` for more details.
Parameters
----------
fname : str
File path or Root Directory path. Will be used as Root Directory
path while writing a partitioned dataset.
.. versionchanged:: 0.24.0
engine : {'auto', 'pyarrow', 'fastparquet'}, default 'auto'
Parquet library to use. If 'auto', then the option
``io.parquet.engine`` is used. The default ``io.parquet.engine``
behavior is to try 'pyarrow', falling back to 'fastparquet' if
'pyarrow' is unavailable.
compression : {'snappy', 'gzip', 'brotli', None}, default 'snappy'
Name of the compression to use. Use ``None`` for no compression.
index : bool, default None
If ``True``, include the dataframe's index(es) in the file output.
If ``False``, they will not be written to the file. If ``None``,
the behavior depends on the chosen engine.
.. versionadded:: 0.24.0
partition_cols : list, optional, default None
Column names by which to partition the dataset
Columns are partitioned in the order they are given
.. versionadded:: 0.24.0
**kwargs
Additional arguments passed to the parquet library. See
:ref:`pandas io <io.parquet>` for more details.
See Also
--------
read_parquet : Read a parquet file.
DataFrame.to_csv : Write a csv file.
DataFrame.to_sql : Write to a sql table.
DataFrame.to_hdf : Write to hdf.
Notes
-----
This function requires either the `fastparquet
<https://pypi.org/project/fastparquet>`_ or `pyarrow
<https://arrow.apache.org/docs/python/>`_ library.
Examples
--------
>>> df = pd.DataFrame(data={'col1': [1, 2], 'col2': [3, 4]})
>>> df.to_parquet('df.parquet.gzip',
... compression='gzip') # doctest: +SKIP
>>> pd.read_parquet('df.parquet.gzip') # doctest: +SKIP
col1 col2
0 1 3
1 2 4
"""
from pandas.io.parquet import to_parquet
to_parquet(self, fname, engine,
compression=compression, index=index,
partition_cols=partition_cols, **kwargs)
|
[
"def",
"to_parquet",
"(",
"self",
",",
"fname",
",",
"engine",
"=",
"'auto'",
",",
"compression",
"=",
"'snappy'",
",",
"index",
"=",
"None",
",",
"partition_cols",
"=",
"None",
",",
"*",
"*",
"kwargs",
")",
":",
"from",
"pandas",
".",
"io",
".",
"parquet",
"import",
"to_parquet",
"to_parquet",
"(",
"self",
",",
"fname",
",",
"engine",
",",
"compression",
"=",
"compression",
",",
"index",
"=",
"index",
",",
"partition_cols",
"=",
"partition_cols",
",",
"*",
"*",
"kwargs",
")"
] |
Write a DataFrame to the binary parquet format.
.. versionadded:: 0.21.0
This function writes the dataframe as a `parquet file
<https://parquet.apache.org/>`_. You can choose different parquet
backends, and have the option of compression. See
:ref:`the user guide <io.parquet>` for more details.
Parameters
----------
fname : str
File path or Root Directory path. Will be used as Root Directory
path while writing a partitioned dataset.
.. versionchanged:: 0.24.0
engine : {'auto', 'pyarrow', 'fastparquet'}, default 'auto'
Parquet library to use. If 'auto', then the option
``io.parquet.engine`` is used. The default ``io.parquet.engine``
behavior is to try 'pyarrow', falling back to 'fastparquet' if
'pyarrow' is unavailable.
compression : {'snappy', 'gzip', 'brotli', None}, default 'snappy'
Name of the compression to use. Use ``None`` for no compression.
index : bool, default None
If ``True``, include the dataframe's index(es) in the file output.
If ``False``, they will not be written to the file. If ``None``,
the behavior depends on the chosen engine.
.. versionadded:: 0.24.0
partition_cols : list, optional, default None
Column names by which to partition the dataset
Columns are partitioned in the order they are given
.. versionadded:: 0.24.0
**kwargs
Additional arguments passed to the parquet library. See
:ref:`pandas io <io.parquet>` for more details.
See Also
--------
read_parquet : Read a parquet file.
DataFrame.to_csv : Write a csv file.
DataFrame.to_sql : Write to a sql table.
DataFrame.to_hdf : Write to hdf.
Notes
-----
This function requires either the `fastparquet
<https://pypi.org/project/fastparquet>`_ or `pyarrow
<https://arrow.apache.org/docs/python/>`_ library.
Examples
--------
>>> df = pd.DataFrame(data={'col1': [1, 2], 'col2': [3, 4]})
>>> df.to_parquet('df.parquet.gzip',
... compression='gzip') # doctest: +SKIP
>>> pd.read_parquet('df.parquet.gzip') # doctest: +SKIP
col1 col2
0 1 3
1 2 4
|
[
"Write",
"a",
"DataFrame",
"to",
"the",
"binary",
"parquet",
"format",
"."
] |
9feb3ad92cc0397a04b665803a49299ee7aa1037
|
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/frame.py#L2071-L2141
|
19,670
|
pandas-dev/pandas
|
pandas/core/frame.py
|
DataFrame.memory_usage
|
def memory_usage(self, index=True, deep=False):
"""
Return the memory usage of each column in bytes.
The memory usage can optionally include the contribution of
the index and elements of `object` dtype.
This value is displayed in `DataFrame.info` by default. This can be
suppressed by setting ``pandas.options.display.memory_usage`` to False.
Parameters
----------
index : bool, default True
Specifies whether to include the memory usage of the DataFrame's
index in returned Series. If ``index=True``, the memory usage of
the index is the first item in the output.
deep : bool, default False
If True, introspect the data deeply by interrogating
`object` dtypes for system-level memory consumption, and include
it in the returned values.
Returns
-------
Series
A Series whose index is the original column names and whose values
is the memory usage of each column in bytes.
See Also
--------
numpy.ndarray.nbytes : Total bytes consumed by the elements of an
ndarray.
Series.memory_usage : Bytes consumed by a Series.
Categorical : Memory-efficient array for string values with
many repeated values.
DataFrame.info : Concise summary of a DataFrame.
Examples
--------
>>> dtypes = ['int64', 'float64', 'complex128', 'object', 'bool']
>>> data = dict([(t, np.ones(shape=5000).astype(t))
... for t in dtypes])
>>> df = pd.DataFrame(data)
>>> df.head()
int64 float64 complex128 object bool
0 1 1.0 1.0+0.0j 1 True
1 1 1.0 1.0+0.0j 1 True
2 1 1.0 1.0+0.0j 1 True
3 1 1.0 1.0+0.0j 1 True
4 1 1.0 1.0+0.0j 1 True
>>> df.memory_usage()
Index 80
int64 40000
float64 40000
complex128 80000
object 40000
bool 5000
dtype: int64
>>> df.memory_usage(index=False)
int64 40000
float64 40000
complex128 80000
object 40000
bool 5000
dtype: int64
The memory footprint of `object` dtype columns is ignored by default:
>>> df.memory_usage(deep=True)
Index 80
int64 40000
float64 40000
complex128 80000
object 160000
bool 5000
dtype: int64
Use a Categorical for efficient storage of an object-dtype column with
many repeated values.
>>> df['object'].astype('category').memory_usage(deep=True)
5168
"""
result = Series([c.memory_usage(index=False, deep=deep)
for col, c in self.iteritems()], index=self.columns)
if index:
result = Series(self.index.memory_usage(deep=deep),
index=['Index']).append(result)
return result
|
python
|
def memory_usage(self, index=True, deep=False):
"""
Return the memory usage of each column in bytes.
The memory usage can optionally include the contribution of
the index and elements of `object` dtype.
This value is displayed in `DataFrame.info` by default. This can be
suppressed by setting ``pandas.options.display.memory_usage`` to False.
Parameters
----------
index : bool, default True
Specifies whether to include the memory usage of the DataFrame's
index in returned Series. If ``index=True``, the memory usage of
the index is the first item in the output.
deep : bool, default False
If True, introspect the data deeply by interrogating
`object` dtypes for system-level memory consumption, and include
it in the returned values.
Returns
-------
Series
A Series whose index is the original column names and whose values
is the memory usage of each column in bytes.
See Also
--------
numpy.ndarray.nbytes : Total bytes consumed by the elements of an
ndarray.
Series.memory_usage : Bytes consumed by a Series.
Categorical : Memory-efficient array for string values with
many repeated values.
DataFrame.info : Concise summary of a DataFrame.
Examples
--------
>>> dtypes = ['int64', 'float64', 'complex128', 'object', 'bool']
>>> data = dict([(t, np.ones(shape=5000).astype(t))
... for t in dtypes])
>>> df = pd.DataFrame(data)
>>> df.head()
int64 float64 complex128 object bool
0 1 1.0 1.0+0.0j 1 True
1 1 1.0 1.0+0.0j 1 True
2 1 1.0 1.0+0.0j 1 True
3 1 1.0 1.0+0.0j 1 True
4 1 1.0 1.0+0.0j 1 True
>>> df.memory_usage()
Index 80
int64 40000
float64 40000
complex128 80000
object 40000
bool 5000
dtype: int64
>>> df.memory_usage(index=False)
int64 40000
float64 40000
complex128 80000
object 40000
bool 5000
dtype: int64
The memory footprint of `object` dtype columns is ignored by default:
>>> df.memory_usage(deep=True)
Index 80
int64 40000
float64 40000
complex128 80000
object 160000
bool 5000
dtype: int64
Use a Categorical for efficient storage of an object-dtype column with
many repeated values.
>>> df['object'].astype('category').memory_usage(deep=True)
5168
"""
result = Series([c.memory_usage(index=False, deep=deep)
for col, c in self.iteritems()], index=self.columns)
if index:
result = Series(self.index.memory_usage(deep=deep),
index=['Index']).append(result)
return result
|
[
"def",
"memory_usage",
"(",
"self",
",",
"index",
"=",
"True",
",",
"deep",
"=",
"False",
")",
":",
"result",
"=",
"Series",
"(",
"[",
"c",
".",
"memory_usage",
"(",
"index",
"=",
"False",
",",
"deep",
"=",
"deep",
")",
"for",
"col",
",",
"c",
"in",
"self",
".",
"iteritems",
"(",
")",
"]",
",",
"index",
"=",
"self",
".",
"columns",
")",
"if",
"index",
":",
"result",
"=",
"Series",
"(",
"self",
".",
"index",
".",
"memory_usage",
"(",
"deep",
"=",
"deep",
")",
",",
"index",
"=",
"[",
"'Index'",
"]",
")",
".",
"append",
"(",
"result",
")",
"return",
"result"
] |
Return the memory usage of each column in bytes.
The memory usage can optionally include the contribution of
the index and elements of `object` dtype.
This value is displayed in `DataFrame.info` by default. This can be
suppressed by setting ``pandas.options.display.memory_usage`` to False.
Parameters
----------
index : bool, default True
Specifies whether to include the memory usage of the DataFrame's
index in returned Series. If ``index=True``, the memory usage of
the index is the first item in the output.
deep : bool, default False
If True, introspect the data deeply by interrogating
`object` dtypes for system-level memory consumption, and include
it in the returned values.
Returns
-------
Series
A Series whose index is the original column names and whose values
is the memory usage of each column in bytes.
See Also
--------
numpy.ndarray.nbytes : Total bytes consumed by the elements of an
ndarray.
Series.memory_usage : Bytes consumed by a Series.
Categorical : Memory-efficient array for string values with
many repeated values.
DataFrame.info : Concise summary of a DataFrame.
Examples
--------
>>> dtypes = ['int64', 'float64', 'complex128', 'object', 'bool']
>>> data = dict([(t, np.ones(shape=5000).astype(t))
... for t in dtypes])
>>> df = pd.DataFrame(data)
>>> df.head()
int64 float64 complex128 object bool
0 1 1.0 1.0+0.0j 1 True
1 1 1.0 1.0+0.0j 1 True
2 1 1.0 1.0+0.0j 1 True
3 1 1.0 1.0+0.0j 1 True
4 1 1.0 1.0+0.0j 1 True
>>> df.memory_usage()
Index 80
int64 40000
float64 40000
complex128 80000
object 40000
bool 5000
dtype: int64
>>> df.memory_usage(index=False)
int64 40000
float64 40000
complex128 80000
object 40000
bool 5000
dtype: int64
The memory footprint of `object` dtype columns is ignored by default:
>>> df.memory_usage(deep=True)
Index 80
int64 40000
float64 40000
complex128 80000
object 160000
bool 5000
dtype: int64
Use a Categorical for efficient storage of an object-dtype column with
many repeated values.
>>> df['object'].astype('category').memory_usage(deep=True)
5168
|
[
"Return",
"the",
"memory",
"usage",
"of",
"each",
"column",
"in",
"bytes",
"."
] |
9feb3ad92cc0397a04b665803a49299ee7aa1037
|
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/frame.py#L2453-L2542
|
19,671
|
pandas-dev/pandas
|
pandas/core/frame.py
|
DataFrame.transpose
|
def transpose(self, *args, **kwargs):
"""
Transpose index and columns.
Reflect the DataFrame over its main diagonal by writing rows as columns
and vice-versa. The property :attr:`.T` is an accessor to the method
:meth:`transpose`.
Parameters
----------
copy : bool, default False
If True, the underlying data is copied. Otherwise (default), no
copy is made if possible.
*args, **kwargs
Additional keywords have no effect but might be accepted for
compatibility with numpy.
Returns
-------
DataFrame
The transposed DataFrame.
See Also
--------
numpy.transpose : Permute the dimensions of a given array.
Notes
-----
Transposing a DataFrame with mixed dtypes will result in a homogeneous
DataFrame with the `object` dtype. In such a case, a copy of the data
is always made.
Examples
--------
**Square DataFrame with homogeneous dtype**
>>> d1 = {'col1': [1, 2], 'col2': [3, 4]}
>>> df1 = pd.DataFrame(data=d1)
>>> df1
col1 col2
0 1 3
1 2 4
>>> df1_transposed = df1.T # or df1.transpose()
>>> df1_transposed
0 1
col1 1 2
col2 3 4
When the dtype is homogeneous in the original DataFrame, we get a
transposed DataFrame with the same dtype:
>>> df1.dtypes
col1 int64
col2 int64
dtype: object
>>> df1_transposed.dtypes
0 int64
1 int64
dtype: object
**Non-square DataFrame with mixed dtypes**
>>> d2 = {'name': ['Alice', 'Bob'],
... 'score': [9.5, 8],
... 'employed': [False, True],
... 'kids': [0, 0]}
>>> df2 = pd.DataFrame(data=d2)
>>> df2
name score employed kids
0 Alice 9.5 False 0
1 Bob 8.0 True 0
>>> df2_transposed = df2.T # or df2.transpose()
>>> df2_transposed
0 1
name Alice Bob
score 9.5 8
employed False True
kids 0 0
When the DataFrame has mixed dtypes, we get a transposed DataFrame with
the `object` dtype:
>>> df2.dtypes
name object
score float64
employed bool
kids int64
dtype: object
>>> df2_transposed.dtypes
0 object
1 object
dtype: object
"""
nv.validate_transpose(args, dict())
return super().transpose(1, 0, **kwargs)
|
python
|
def transpose(self, *args, **kwargs):
"""
Transpose index and columns.
Reflect the DataFrame over its main diagonal by writing rows as columns
and vice-versa. The property :attr:`.T` is an accessor to the method
:meth:`transpose`.
Parameters
----------
copy : bool, default False
If True, the underlying data is copied. Otherwise (default), no
copy is made if possible.
*args, **kwargs
Additional keywords have no effect but might be accepted for
compatibility with numpy.
Returns
-------
DataFrame
The transposed DataFrame.
See Also
--------
numpy.transpose : Permute the dimensions of a given array.
Notes
-----
Transposing a DataFrame with mixed dtypes will result in a homogeneous
DataFrame with the `object` dtype. In such a case, a copy of the data
is always made.
Examples
--------
**Square DataFrame with homogeneous dtype**
>>> d1 = {'col1': [1, 2], 'col2': [3, 4]}
>>> df1 = pd.DataFrame(data=d1)
>>> df1
col1 col2
0 1 3
1 2 4
>>> df1_transposed = df1.T # or df1.transpose()
>>> df1_transposed
0 1
col1 1 2
col2 3 4
When the dtype is homogeneous in the original DataFrame, we get a
transposed DataFrame with the same dtype:
>>> df1.dtypes
col1 int64
col2 int64
dtype: object
>>> df1_transposed.dtypes
0 int64
1 int64
dtype: object
**Non-square DataFrame with mixed dtypes**
>>> d2 = {'name': ['Alice', 'Bob'],
... 'score': [9.5, 8],
... 'employed': [False, True],
... 'kids': [0, 0]}
>>> df2 = pd.DataFrame(data=d2)
>>> df2
name score employed kids
0 Alice 9.5 False 0
1 Bob 8.0 True 0
>>> df2_transposed = df2.T # or df2.transpose()
>>> df2_transposed
0 1
name Alice Bob
score 9.5 8
employed False True
kids 0 0
When the DataFrame has mixed dtypes, we get a transposed DataFrame with
the `object` dtype:
>>> df2.dtypes
name object
score float64
employed bool
kids int64
dtype: object
>>> df2_transposed.dtypes
0 object
1 object
dtype: object
"""
nv.validate_transpose(args, dict())
return super().transpose(1, 0, **kwargs)
|
[
"def",
"transpose",
"(",
"self",
",",
"*",
"args",
",",
"*",
"*",
"kwargs",
")",
":",
"nv",
".",
"validate_transpose",
"(",
"args",
",",
"dict",
"(",
")",
")",
"return",
"super",
"(",
")",
".",
"transpose",
"(",
"1",
",",
"0",
",",
"*",
"*",
"kwargs",
")"
] |
Transpose index and columns.
Reflect the DataFrame over its main diagonal by writing rows as columns
and vice-versa. The property :attr:`.T` is an accessor to the method
:meth:`transpose`.
Parameters
----------
copy : bool, default False
If True, the underlying data is copied. Otherwise (default), no
copy is made if possible.
*args, **kwargs
Additional keywords have no effect but might be accepted for
compatibility with numpy.
Returns
-------
DataFrame
The transposed DataFrame.
See Also
--------
numpy.transpose : Permute the dimensions of a given array.
Notes
-----
Transposing a DataFrame with mixed dtypes will result in a homogeneous
DataFrame with the `object` dtype. In such a case, a copy of the data
is always made.
Examples
--------
**Square DataFrame with homogeneous dtype**
>>> d1 = {'col1': [1, 2], 'col2': [3, 4]}
>>> df1 = pd.DataFrame(data=d1)
>>> df1
col1 col2
0 1 3
1 2 4
>>> df1_transposed = df1.T # or df1.transpose()
>>> df1_transposed
0 1
col1 1 2
col2 3 4
When the dtype is homogeneous in the original DataFrame, we get a
transposed DataFrame with the same dtype:
>>> df1.dtypes
col1 int64
col2 int64
dtype: object
>>> df1_transposed.dtypes
0 int64
1 int64
dtype: object
**Non-square DataFrame with mixed dtypes**
>>> d2 = {'name': ['Alice', 'Bob'],
... 'score': [9.5, 8],
... 'employed': [False, True],
... 'kids': [0, 0]}
>>> df2 = pd.DataFrame(data=d2)
>>> df2
name score employed kids
0 Alice 9.5 False 0
1 Bob 8.0 True 0
>>> df2_transposed = df2.T # or df2.transpose()
>>> df2_transposed
0 1
name Alice Bob
score 9.5 8
employed False True
kids 0 0
When the DataFrame has mixed dtypes, we get a transposed DataFrame with
the `object` dtype:
>>> df2.dtypes
name object
score float64
employed bool
kids int64
dtype: object
>>> df2_transposed.dtypes
0 object
1 object
dtype: object
|
[
"Transpose",
"index",
"and",
"columns",
"."
] |
9feb3ad92cc0397a04b665803a49299ee7aa1037
|
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/frame.py#L2544-L2640
|
19,672
|
pandas-dev/pandas
|
pandas/core/frame.py
|
DataFrame.get_value
|
def get_value(self, index, col, takeable=False):
"""
Quickly retrieve single value at passed column and index.
.. deprecated:: 0.21.0
Use .at[] or .iat[] accessors instead.
Parameters
----------
index : row label
col : column label
takeable : interpret the index/col as indexers, default False
Returns
-------
scalar
"""
warnings.warn("get_value is deprecated and will be removed "
"in a future release. Please use "
".at[] or .iat[] accessors instead", FutureWarning,
stacklevel=2)
return self._get_value(index, col, takeable=takeable)
|
python
|
def get_value(self, index, col, takeable=False):
"""
Quickly retrieve single value at passed column and index.
.. deprecated:: 0.21.0
Use .at[] or .iat[] accessors instead.
Parameters
----------
index : row label
col : column label
takeable : interpret the index/col as indexers, default False
Returns
-------
scalar
"""
warnings.warn("get_value is deprecated and will be removed "
"in a future release. Please use "
".at[] or .iat[] accessors instead", FutureWarning,
stacklevel=2)
return self._get_value(index, col, takeable=takeable)
|
[
"def",
"get_value",
"(",
"self",
",",
"index",
",",
"col",
",",
"takeable",
"=",
"False",
")",
":",
"warnings",
".",
"warn",
"(",
"\"get_value is deprecated and will be removed \"",
"\"in a future release. Please use \"",
"\".at[] or .iat[] accessors instead\"",
",",
"FutureWarning",
",",
"stacklevel",
"=",
"2",
")",
"return",
"self",
".",
"_get_value",
"(",
"index",
",",
"col",
",",
"takeable",
"=",
"takeable",
")"
] |
Quickly retrieve single value at passed column and index.
.. deprecated:: 0.21.0
Use .at[] or .iat[] accessors instead.
Parameters
----------
index : row label
col : column label
takeable : interpret the index/col as indexers, default False
Returns
-------
scalar
|
[
"Quickly",
"retrieve",
"single",
"value",
"at",
"passed",
"column",
"and",
"index",
"."
] |
9feb3ad92cc0397a04b665803a49299ee7aa1037
|
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/frame.py#L2679-L2701
|
19,673
|
pandas-dev/pandas
|
pandas/core/frame.py
|
DataFrame.set_value
|
def set_value(self, index, col, value, takeable=False):
"""
Put single value at passed column and index.
.. deprecated:: 0.21.0
Use .at[] or .iat[] accessors instead.
Parameters
----------
index : row label
col : column label
value : scalar
takeable : interpret the index/col as indexers, default False
Returns
-------
DataFrame
If label pair is contained, will be reference to calling DataFrame,
otherwise a new object.
"""
warnings.warn("set_value is deprecated and will be removed "
"in a future release. Please use "
".at[] or .iat[] accessors instead", FutureWarning,
stacklevel=2)
return self._set_value(index, col, value, takeable=takeable)
|
python
|
def set_value(self, index, col, value, takeable=False):
"""
Put single value at passed column and index.
.. deprecated:: 0.21.0
Use .at[] or .iat[] accessors instead.
Parameters
----------
index : row label
col : column label
value : scalar
takeable : interpret the index/col as indexers, default False
Returns
-------
DataFrame
If label pair is contained, will be reference to calling DataFrame,
otherwise a new object.
"""
warnings.warn("set_value is deprecated and will be removed "
"in a future release. Please use "
".at[] or .iat[] accessors instead", FutureWarning,
stacklevel=2)
return self._set_value(index, col, value, takeable=takeable)
|
[
"def",
"set_value",
"(",
"self",
",",
"index",
",",
"col",
",",
"value",
",",
"takeable",
"=",
"False",
")",
":",
"warnings",
".",
"warn",
"(",
"\"set_value is deprecated and will be removed \"",
"\"in a future release. Please use \"",
"\".at[] or .iat[] accessors instead\"",
",",
"FutureWarning",
",",
"stacklevel",
"=",
"2",
")",
"return",
"self",
".",
"_set_value",
"(",
"index",
",",
"col",
",",
"value",
",",
"takeable",
"=",
"takeable",
")"
] |
Put single value at passed column and index.
.. deprecated:: 0.21.0
Use .at[] or .iat[] accessors instead.
Parameters
----------
index : row label
col : column label
value : scalar
takeable : interpret the index/col as indexers, default False
Returns
-------
DataFrame
If label pair is contained, will be reference to calling DataFrame,
otherwise a new object.
|
[
"Put",
"single",
"value",
"at",
"passed",
"column",
"and",
"index",
"."
] |
9feb3ad92cc0397a04b665803a49299ee7aa1037
|
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/frame.py#L2723-L2747
|
19,674
|
pandas-dev/pandas
|
pandas/core/frame.py
|
DataFrame.query
|
def query(self, expr, inplace=False, **kwargs):
"""
Query the columns of a DataFrame with a boolean expression.
Parameters
----------
expr : str
The query string to evaluate. You can refer to variables
in the environment by prefixing them with an '@' character like
``@a + b``.
.. versionadded:: 0.25.0
You can refer to column names that contain spaces by surrounding
them in backticks.
For example, if one of your columns is called ``a a`` and you want
to sum it with ``b``, your query should be ```a a` + b``.
inplace : bool
Whether the query should modify the data in place or return
a modified copy.
**kwargs
See the documentation for :func:`eval` for complete details
on the keyword arguments accepted by :meth:`DataFrame.query`.
.. versionadded:: 0.18.0
Returns
-------
DataFrame
DataFrame resulting from the provided query expression.
See Also
--------
eval : Evaluate a string describing operations on
DataFrame columns.
DataFrame.eval : Evaluate a string describing operations on
DataFrame columns.
Notes
-----
The result of the evaluation of this expression is first passed to
:attr:`DataFrame.loc` and if that fails because of a
multidimensional key (e.g., a DataFrame) then the result will be passed
to :meth:`DataFrame.__getitem__`.
This method uses the top-level :func:`eval` function to
evaluate the passed query.
The :meth:`~pandas.DataFrame.query` method uses a slightly
modified Python syntax by default. For example, the ``&`` and ``|``
(bitwise) operators have the precedence of their boolean cousins,
:keyword:`and` and :keyword:`or`. This *is* syntactically valid Python,
however the semantics are different.
You can change the semantics of the expression by passing the keyword
argument ``parser='python'``. This enforces the same semantics as
evaluation in Python space. Likewise, you can pass ``engine='python'``
to evaluate an expression using Python itself as a backend. This is not
recommended as it is inefficient compared to using ``numexpr`` as the
engine.
The :attr:`DataFrame.index` and
:attr:`DataFrame.columns` attributes of the
:class:`~pandas.DataFrame` instance are placed in the query namespace
by default, which allows you to treat both the index and columns of the
frame as a column in the frame.
The identifier ``index`` is used for the frame index; you can also
use the name of the index to identify it in a query. Please note that
Python keywords may not be used as identifiers.
For further details and examples see the ``query`` documentation in
:ref:`indexing <indexing.query>`.
Examples
--------
>>> df = pd.DataFrame({'A': range(1, 6),
... 'B': range(10, 0, -2),
... 'C C': range(10, 5, -1)})
>>> df
A B C C
0 1 10 10
1 2 8 9
2 3 6 8
3 4 4 7
4 5 2 6
>>> df.query('A > B')
A B C C
4 5 2 6
The previous expression is equivalent to
>>> df[df.A > df.B]
A B C C
4 5 2 6
For columns with spaces in their name, you can use backtick quoting.
>>> df.query('B == `C C`')
A B C C
0 1 10 10
The previous expression is equivalent to
>>> df[df.B == df['C C']]
A B C C
0 1 10 10
"""
inplace = validate_bool_kwarg(inplace, 'inplace')
if not isinstance(expr, str):
msg = "expr must be a string to be evaluated, {0} given"
raise ValueError(msg.format(type(expr)))
kwargs['level'] = kwargs.pop('level', 0) + 1
kwargs['target'] = None
res = self.eval(expr, **kwargs)
try:
new_data = self.loc[res]
except ValueError:
# when res is multi-dimensional loc raises, but this is sometimes a
# valid query
new_data = self[res]
if inplace:
self._update_inplace(new_data)
else:
return new_data
|
python
|
def query(self, expr, inplace=False, **kwargs):
"""
Query the columns of a DataFrame with a boolean expression.
Parameters
----------
expr : str
The query string to evaluate. You can refer to variables
in the environment by prefixing them with an '@' character like
``@a + b``.
.. versionadded:: 0.25.0
You can refer to column names that contain spaces by surrounding
them in backticks.
For example, if one of your columns is called ``a a`` and you want
to sum it with ``b``, your query should be ```a a` + b``.
inplace : bool
Whether the query should modify the data in place or return
a modified copy.
**kwargs
See the documentation for :func:`eval` for complete details
on the keyword arguments accepted by :meth:`DataFrame.query`.
.. versionadded:: 0.18.0
Returns
-------
DataFrame
DataFrame resulting from the provided query expression.
See Also
--------
eval : Evaluate a string describing operations on
DataFrame columns.
DataFrame.eval : Evaluate a string describing operations on
DataFrame columns.
Notes
-----
The result of the evaluation of this expression is first passed to
:attr:`DataFrame.loc` and if that fails because of a
multidimensional key (e.g., a DataFrame) then the result will be passed
to :meth:`DataFrame.__getitem__`.
This method uses the top-level :func:`eval` function to
evaluate the passed query.
The :meth:`~pandas.DataFrame.query` method uses a slightly
modified Python syntax by default. For example, the ``&`` and ``|``
(bitwise) operators have the precedence of their boolean cousins,
:keyword:`and` and :keyword:`or`. This *is* syntactically valid Python,
however the semantics are different.
You can change the semantics of the expression by passing the keyword
argument ``parser='python'``. This enforces the same semantics as
evaluation in Python space. Likewise, you can pass ``engine='python'``
to evaluate an expression using Python itself as a backend. This is not
recommended as it is inefficient compared to using ``numexpr`` as the
engine.
The :attr:`DataFrame.index` and
:attr:`DataFrame.columns` attributes of the
:class:`~pandas.DataFrame` instance are placed in the query namespace
by default, which allows you to treat both the index and columns of the
frame as a column in the frame.
The identifier ``index`` is used for the frame index; you can also
use the name of the index to identify it in a query. Please note that
Python keywords may not be used as identifiers.
For further details and examples see the ``query`` documentation in
:ref:`indexing <indexing.query>`.
Examples
--------
>>> df = pd.DataFrame({'A': range(1, 6),
... 'B': range(10, 0, -2),
... 'C C': range(10, 5, -1)})
>>> df
A B C C
0 1 10 10
1 2 8 9
2 3 6 8
3 4 4 7
4 5 2 6
>>> df.query('A > B')
A B C C
4 5 2 6
The previous expression is equivalent to
>>> df[df.A > df.B]
A B C C
4 5 2 6
For columns with spaces in their name, you can use backtick quoting.
>>> df.query('B == `C C`')
A B C C
0 1 10 10
The previous expression is equivalent to
>>> df[df.B == df['C C']]
A B C C
0 1 10 10
"""
inplace = validate_bool_kwarg(inplace, 'inplace')
if not isinstance(expr, str):
msg = "expr must be a string to be evaluated, {0} given"
raise ValueError(msg.format(type(expr)))
kwargs['level'] = kwargs.pop('level', 0) + 1
kwargs['target'] = None
res = self.eval(expr, **kwargs)
try:
new_data = self.loc[res]
except ValueError:
# when res is multi-dimensional loc raises, but this is sometimes a
# valid query
new_data = self[res]
if inplace:
self._update_inplace(new_data)
else:
return new_data
|
[
"def",
"query",
"(",
"self",
",",
"expr",
",",
"inplace",
"=",
"False",
",",
"*",
"*",
"kwargs",
")",
":",
"inplace",
"=",
"validate_bool_kwarg",
"(",
"inplace",
",",
"'inplace'",
")",
"if",
"not",
"isinstance",
"(",
"expr",
",",
"str",
")",
":",
"msg",
"=",
"\"expr must be a string to be evaluated, {0} given\"",
"raise",
"ValueError",
"(",
"msg",
".",
"format",
"(",
"type",
"(",
"expr",
")",
")",
")",
"kwargs",
"[",
"'level'",
"]",
"=",
"kwargs",
".",
"pop",
"(",
"'level'",
",",
"0",
")",
"+",
"1",
"kwargs",
"[",
"'target'",
"]",
"=",
"None",
"res",
"=",
"self",
".",
"eval",
"(",
"expr",
",",
"*",
"*",
"kwargs",
")",
"try",
":",
"new_data",
"=",
"self",
".",
"loc",
"[",
"res",
"]",
"except",
"ValueError",
":",
"# when res is multi-dimensional loc raises, but this is sometimes a",
"# valid query",
"new_data",
"=",
"self",
"[",
"res",
"]",
"if",
"inplace",
":",
"self",
".",
"_update_inplace",
"(",
"new_data",
")",
"else",
":",
"return",
"new_data"
] |
Query the columns of a DataFrame with a boolean expression.
Parameters
----------
expr : str
The query string to evaluate. You can refer to variables
in the environment by prefixing them with an '@' character like
``@a + b``.
.. versionadded:: 0.25.0
You can refer to column names that contain spaces by surrounding
them in backticks.
For example, if one of your columns is called ``a a`` and you want
to sum it with ``b``, your query should be ```a a` + b``.
inplace : bool
Whether the query should modify the data in place or return
a modified copy.
**kwargs
See the documentation for :func:`eval` for complete details
on the keyword arguments accepted by :meth:`DataFrame.query`.
.. versionadded:: 0.18.0
Returns
-------
DataFrame
DataFrame resulting from the provided query expression.
See Also
--------
eval : Evaluate a string describing operations on
DataFrame columns.
DataFrame.eval : Evaluate a string describing operations on
DataFrame columns.
Notes
-----
The result of the evaluation of this expression is first passed to
:attr:`DataFrame.loc` and if that fails because of a
multidimensional key (e.g., a DataFrame) then the result will be passed
to :meth:`DataFrame.__getitem__`.
This method uses the top-level :func:`eval` function to
evaluate the passed query.
The :meth:`~pandas.DataFrame.query` method uses a slightly
modified Python syntax by default. For example, the ``&`` and ``|``
(bitwise) operators have the precedence of their boolean cousins,
:keyword:`and` and :keyword:`or`. This *is* syntactically valid Python,
however the semantics are different.
You can change the semantics of the expression by passing the keyword
argument ``parser='python'``. This enforces the same semantics as
evaluation in Python space. Likewise, you can pass ``engine='python'``
to evaluate an expression using Python itself as a backend. This is not
recommended as it is inefficient compared to using ``numexpr`` as the
engine.
The :attr:`DataFrame.index` and
:attr:`DataFrame.columns` attributes of the
:class:`~pandas.DataFrame` instance are placed in the query namespace
by default, which allows you to treat both the index and columns of the
frame as a column in the frame.
The identifier ``index`` is used for the frame index; you can also
use the name of the index to identify it in a query. Please note that
Python keywords may not be used as identifiers.
For further details and examples see the ``query`` documentation in
:ref:`indexing <indexing.query>`.
Examples
--------
>>> df = pd.DataFrame({'A': range(1, 6),
... 'B': range(10, 0, -2),
... 'C C': range(10, 5, -1)})
>>> df
A B C C
0 1 10 10
1 2 8 9
2 3 6 8
3 4 4 7
4 5 2 6
>>> df.query('A > B')
A B C C
4 5 2 6
The previous expression is equivalent to
>>> df[df.A > df.B]
A B C C
4 5 2 6
For columns with spaces in their name, you can use backtick quoting.
>>> df.query('B == `C C`')
A B C C
0 1 10 10
The previous expression is equivalent to
>>> df[df.B == df['C C']]
A B C C
0 1 10 10
|
[
"Query",
"the",
"columns",
"of",
"a",
"DataFrame",
"with",
"a",
"boolean",
"expression",
"."
] |
9feb3ad92cc0397a04b665803a49299ee7aa1037
|
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/frame.py#L2955-L3082
|
19,675
|
pandas-dev/pandas
|
pandas/core/frame.py
|
DataFrame.eval
|
def eval(self, expr, inplace=False, **kwargs):
"""
Evaluate a string describing operations on DataFrame columns.
Operates on columns only, not specific rows or elements. This allows
`eval` to run arbitrary code, which can make you vulnerable to code
injection if you pass user input to this function.
Parameters
----------
expr : str
The expression string to evaluate.
inplace : bool, default False
If the expression contains an assignment, whether to perform the
operation inplace and mutate the existing DataFrame. Otherwise,
a new DataFrame is returned.
.. versionadded:: 0.18.0.
kwargs : dict
See the documentation for :func:`eval` for complete details
on the keyword arguments accepted by
:meth:`~pandas.DataFrame.query`.
Returns
-------
ndarray, scalar, or pandas object
The result of the evaluation.
See Also
--------
DataFrame.query : Evaluates a boolean expression to query the columns
of a frame.
DataFrame.assign : Can evaluate an expression or function to create new
values for a column.
eval : Evaluate a Python expression as a string using various
backends.
Notes
-----
For more details see the API documentation for :func:`~eval`.
For detailed examples see :ref:`enhancing performance with eval
<enhancingperf.eval>`.
Examples
--------
>>> df = pd.DataFrame({'A': range(1, 6), 'B': range(10, 0, -2)})
>>> df
A B
0 1 10
1 2 8
2 3 6
3 4 4
4 5 2
>>> df.eval('A + B')
0 11
1 10
2 9
3 8
4 7
dtype: int64
Assignment is allowed though by default the original DataFrame is not
modified.
>>> df.eval('C = A + B')
A B C
0 1 10 11
1 2 8 10
2 3 6 9
3 4 4 8
4 5 2 7
>>> df
A B
0 1 10
1 2 8
2 3 6
3 4 4
4 5 2
Use ``inplace=True`` to modify the original DataFrame.
>>> df.eval('C = A + B', inplace=True)
>>> df
A B C
0 1 10 11
1 2 8 10
2 3 6 9
3 4 4 8
4 5 2 7
"""
from pandas.core.computation.eval import eval as _eval
inplace = validate_bool_kwarg(inplace, 'inplace')
resolvers = kwargs.pop('resolvers', None)
kwargs['level'] = kwargs.pop('level', 0) + 1
if resolvers is None:
index_resolvers = self._get_index_resolvers()
column_resolvers = \
self._get_space_character_free_column_resolvers()
resolvers = column_resolvers, index_resolvers
if 'target' not in kwargs:
kwargs['target'] = self
kwargs['resolvers'] = kwargs.get('resolvers', ()) + tuple(resolvers)
return _eval(expr, inplace=inplace, **kwargs)
|
python
|
def eval(self, expr, inplace=False, **kwargs):
"""
Evaluate a string describing operations on DataFrame columns.
Operates on columns only, not specific rows or elements. This allows
`eval` to run arbitrary code, which can make you vulnerable to code
injection if you pass user input to this function.
Parameters
----------
expr : str
The expression string to evaluate.
inplace : bool, default False
If the expression contains an assignment, whether to perform the
operation inplace and mutate the existing DataFrame. Otherwise,
a new DataFrame is returned.
.. versionadded:: 0.18.0.
kwargs : dict
See the documentation for :func:`eval` for complete details
on the keyword arguments accepted by
:meth:`~pandas.DataFrame.query`.
Returns
-------
ndarray, scalar, or pandas object
The result of the evaluation.
See Also
--------
DataFrame.query : Evaluates a boolean expression to query the columns
of a frame.
DataFrame.assign : Can evaluate an expression or function to create new
values for a column.
eval : Evaluate a Python expression as a string using various
backends.
Notes
-----
For more details see the API documentation for :func:`~eval`.
For detailed examples see :ref:`enhancing performance with eval
<enhancingperf.eval>`.
Examples
--------
>>> df = pd.DataFrame({'A': range(1, 6), 'B': range(10, 0, -2)})
>>> df
A B
0 1 10
1 2 8
2 3 6
3 4 4
4 5 2
>>> df.eval('A + B')
0 11
1 10
2 9
3 8
4 7
dtype: int64
Assignment is allowed though by default the original DataFrame is not
modified.
>>> df.eval('C = A + B')
A B C
0 1 10 11
1 2 8 10
2 3 6 9
3 4 4 8
4 5 2 7
>>> df
A B
0 1 10
1 2 8
2 3 6
3 4 4
4 5 2
Use ``inplace=True`` to modify the original DataFrame.
>>> df.eval('C = A + B', inplace=True)
>>> df
A B C
0 1 10 11
1 2 8 10
2 3 6 9
3 4 4 8
4 5 2 7
"""
from pandas.core.computation.eval import eval as _eval
inplace = validate_bool_kwarg(inplace, 'inplace')
resolvers = kwargs.pop('resolvers', None)
kwargs['level'] = kwargs.pop('level', 0) + 1
if resolvers is None:
index_resolvers = self._get_index_resolvers()
column_resolvers = \
self._get_space_character_free_column_resolvers()
resolvers = column_resolvers, index_resolvers
if 'target' not in kwargs:
kwargs['target'] = self
kwargs['resolvers'] = kwargs.get('resolvers', ()) + tuple(resolvers)
return _eval(expr, inplace=inplace, **kwargs)
|
[
"def",
"eval",
"(",
"self",
",",
"expr",
",",
"inplace",
"=",
"False",
",",
"*",
"*",
"kwargs",
")",
":",
"from",
"pandas",
".",
"core",
".",
"computation",
".",
"eval",
"import",
"eval",
"as",
"_eval",
"inplace",
"=",
"validate_bool_kwarg",
"(",
"inplace",
",",
"'inplace'",
")",
"resolvers",
"=",
"kwargs",
".",
"pop",
"(",
"'resolvers'",
",",
"None",
")",
"kwargs",
"[",
"'level'",
"]",
"=",
"kwargs",
".",
"pop",
"(",
"'level'",
",",
"0",
")",
"+",
"1",
"if",
"resolvers",
"is",
"None",
":",
"index_resolvers",
"=",
"self",
".",
"_get_index_resolvers",
"(",
")",
"column_resolvers",
"=",
"self",
".",
"_get_space_character_free_column_resolvers",
"(",
")",
"resolvers",
"=",
"column_resolvers",
",",
"index_resolvers",
"if",
"'target'",
"not",
"in",
"kwargs",
":",
"kwargs",
"[",
"'target'",
"]",
"=",
"self",
"kwargs",
"[",
"'resolvers'",
"]",
"=",
"kwargs",
".",
"get",
"(",
"'resolvers'",
",",
"(",
")",
")",
"+",
"tuple",
"(",
"resolvers",
")",
"return",
"_eval",
"(",
"expr",
",",
"inplace",
"=",
"inplace",
",",
"*",
"*",
"kwargs",
")"
] |
Evaluate a string describing operations on DataFrame columns.
Operates on columns only, not specific rows or elements. This allows
`eval` to run arbitrary code, which can make you vulnerable to code
injection if you pass user input to this function.
Parameters
----------
expr : str
The expression string to evaluate.
inplace : bool, default False
If the expression contains an assignment, whether to perform the
operation inplace and mutate the existing DataFrame. Otherwise,
a new DataFrame is returned.
.. versionadded:: 0.18.0.
kwargs : dict
See the documentation for :func:`eval` for complete details
on the keyword arguments accepted by
:meth:`~pandas.DataFrame.query`.
Returns
-------
ndarray, scalar, or pandas object
The result of the evaluation.
See Also
--------
DataFrame.query : Evaluates a boolean expression to query the columns
of a frame.
DataFrame.assign : Can evaluate an expression or function to create new
values for a column.
eval : Evaluate a Python expression as a string using various
backends.
Notes
-----
For more details see the API documentation for :func:`~eval`.
For detailed examples see :ref:`enhancing performance with eval
<enhancingperf.eval>`.
Examples
--------
>>> df = pd.DataFrame({'A': range(1, 6), 'B': range(10, 0, -2)})
>>> df
A B
0 1 10
1 2 8
2 3 6
3 4 4
4 5 2
>>> df.eval('A + B')
0 11
1 10
2 9
3 8
4 7
dtype: int64
Assignment is allowed though by default the original DataFrame is not
modified.
>>> df.eval('C = A + B')
A B C
0 1 10 11
1 2 8 10
2 3 6 9
3 4 4 8
4 5 2 7
>>> df
A B
0 1 10
1 2 8
2 3 6
3 4 4
4 5 2
Use ``inplace=True`` to modify the original DataFrame.
>>> df.eval('C = A + B', inplace=True)
>>> df
A B C
0 1 10 11
1 2 8 10
2 3 6 9
3 4 4 8
4 5 2 7
|
[
"Evaluate",
"a",
"string",
"describing",
"operations",
"on",
"DataFrame",
"columns",
"."
] |
9feb3ad92cc0397a04b665803a49299ee7aa1037
|
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/frame.py#L3084-L3187
|
19,676
|
pandas-dev/pandas
|
pandas/core/frame.py
|
DataFrame.select_dtypes
|
def select_dtypes(self, include=None, exclude=None):
"""
Return a subset of the DataFrame's columns based on the column dtypes.
Parameters
----------
include, exclude : scalar or list-like
A selection of dtypes or strings to be included/excluded. At least
one of these parameters must be supplied.
Returns
-------
DataFrame
The subset of the frame including the dtypes in ``include`` and
excluding the dtypes in ``exclude``.
Raises
------
ValueError
* If both of ``include`` and ``exclude`` are empty
* If ``include`` and ``exclude`` have overlapping elements
* If any kind of string dtype is passed in.
Notes
-----
* To select all *numeric* types, use ``np.number`` or ``'number'``
* To select strings you must use the ``object`` dtype, but note that
this will return *all* object dtype columns
* See the `numpy dtype hierarchy
<http://docs.scipy.org/doc/numpy/reference/arrays.scalars.html>`__
* To select datetimes, use ``np.datetime64``, ``'datetime'`` or
``'datetime64'``
* To select timedeltas, use ``np.timedelta64``, ``'timedelta'`` or
``'timedelta64'``
* To select Pandas categorical dtypes, use ``'category'``
* To select Pandas datetimetz dtypes, use ``'datetimetz'`` (new in
0.20.0) or ``'datetime64[ns, tz]'``
Examples
--------
>>> df = pd.DataFrame({'a': [1, 2] * 3,
... 'b': [True, False] * 3,
... 'c': [1.0, 2.0] * 3})
>>> df
a b c
0 1 True 1.0
1 2 False 2.0
2 1 True 1.0
3 2 False 2.0
4 1 True 1.0
5 2 False 2.0
>>> df.select_dtypes(include='bool')
b
0 True
1 False
2 True
3 False
4 True
5 False
>>> df.select_dtypes(include=['float64'])
c
0 1.0
1 2.0
2 1.0
3 2.0
4 1.0
5 2.0
>>> df.select_dtypes(exclude=['int'])
b c
0 True 1.0
1 False 2.0
2 True 1.0
3 False 2.0
4 True 1.0
5 False 2.0
"""
def _get_info_slice(obj, indexer):
"""Slice the info axis of `obj` with `indexer`."""
if not hasattr(obj, '_info_axis_number'):
msg = 'object of type {typ!r} has no info axis'
raise TypeError(msg.format(typ=type(obj).__name__))
slices = [slice(None)] * obj.ndim
slices[obj._info_axis_number] = indexer
return tuple(slices)
if not is_list_like(include):
include = (include,) if include is not None else ()
if not is_list_like(exclude):
exclude = (exclude,) if exclude is not None else ()
selection = tuple(map(frozenset, (include, exclude)))
if not any(selection):
raise ValueError('at least one of include or exclude must be '
'nonempty')
# convert the myriad valid dtypes object to a single representation
include, exclude = map(
lambda x: frozenset(map(infer_dtype_from_object, x)), selection)
for dtypes in (include, exclude):
invalidate_string_dtypes(dtypes)
# can't both include AND exclude!
if not include.isdisjoint(exclude):
raise ValueError('include and exclude overlap on {inc_ex}'.format(
inc_ex=(include & exclude)))
# empty include/exclude -> defaults to True
# three cases (we've already raised if both are empty)
# case 1: empty include, nonempty exclude
# we have True, True, ... True for include, same for exclude
# in the loop below we get the excluded
# and when we call '&' below we get only the excluded
# case 2: nonempty include, empty exclude
# same as case 1, but with include
# case 3: both nonempty
# the "union" of the logic of case 1 and case 2:
# we get the included and excluded, and return their logical and
include_these = Series(not bool(include), index=self.columns)
exclude_these = Series(not bool(exclude), index=self.columns)
def is_dtype_instance_mapper(idx, dtype):
return idx, functools.partial(issubclass, dtype.type)
for idx, f in itertools.starmap(is_dtype_instance_mapper,
enumerate(self.dtypes)):
if include: # checks for the case of empty include or exclude
include_these.iloc[idx] = any(map(f, include))
if exclude:
exclude_these.iloc[idx] = not any(map(f, exclude))
dtype_indexer = include_these & exclude_these
return self.loc[_get_info_slice(self, dtype_indexer)]
|
python
|
def select_dtypes(self, include=None, exclude=None):
"""
Return a subset of the DataFrame's columns based on the column dtypes.
Parameters
----------
include, exclude : scalar or list-like
A selection of dtypes or strings to be included/excluded. At least
one of these parameters must be supplied.
Returns
-------
DataFrame
The subset of the frame including the dtypes in ``include`` and
excluding the dtypes in ``exclude``.
Raises
------
ValueError
* If both of ``include`` and ``exclude`` are empty
* If ``include`` and ``exclude`` have overlapping elements
* If any kind of string dtype is passed in.
Notes
-----
* To select all *numeric* types, use ``np.number`` or ``'number'``
* To select strings you must use the ``object`` dtype, but note that
this will return *all* object dtype columns
* See the `numpy dtype hierarchy
<http://docs.scipy.org/doc/numpy/reference/arrays.scalars.html>`__
* To select datetimes, use ``np.datetime64``, ``'datetime'`` or
``'datetime64'``
* To select timedeltas, use ``np.timedelta64``, ``'timedelta'`` or
``'timedelta64'``
* To select Pandas categorical dtypes, use ``'category'``
* To select Pandas datetimetz dtypes, use ``'datetimetz'`` (new in
0.20.0) or ``'datetime64[ns, tz]'``
Examples
--------
>>> df = pd.DataFrame({'a': [1, 2] * 3,
... 'b': [True, False] * 3,
... 'c': [1.0, 2.0] * 3})
>>> df
a b c
0 1 True 1.0
1 2 False 2.0
2 1 True 1.0
3 2 False 2.0
4 1 True 1.0
5 2 False 2.0
>>> df.select_dtypes(include='bool')
b
0 True
1 False
2 True
3 False
4 True
5 False
>>> df.select_dtypes(include=['float64'])
c
0 1.0
1 2.0
2 1.0
3 2.0
4 1.0
5 2.0
>>> df.select_dtypes(exclude=['int'])
b c
0 True 1.0
1 False 2.0
2 True 1.0
3 False 2.0
4 True 1.0
5 False 2.0
"""
def _get_info_slice(obj, indexer):
"""Slice the info axis of `obj` with `indexer`."""
if not hasattr(obj, '_info_axis_number'):
msg = 'object of type {typ!r} has no info axis'
raise TypeError(msg.format(typ=type(obj).__name__))
slices = [slice(None)] * obj.ndim
slices[obj._info_axis_number] = indexer
return tuple(slices)
if not is_list_like(include):
include = (include,) if include is not None else ()
if not is_list_like(exclude):
exclude = (exclude,) if exclude is not None else ()
selection = tuple(map(frozenset, (include, exclude)))
if not any(selection):
raise ValueError('at least one of include or exclude must be '
'nonempty')
# convert the myriad valid dtypes object to a single representation
include, exclude = map(
lambda x: frozenset(map(infer_dtype_from_object, x)), selection)
for dtypes in (include, exclude):
invalidate_string_dtypes(dtypes)
# can't both include AND exclude!
if not include.isdisjoint(exclude):
raise ValueError('include and exclude overlap on {inc_ex}'.format(
inc_ex=(include & exclude)))
# empty include/exclude -> defaults to True
# three cases (we've already raised if both are empty)
# case 1: empty include, nonempty exclude
# we have True, True, ... True for include, same for exclude
# in the loop below we get the excluded
# and when we call '&' below we get only the excluded
# case 2: nonempty include, empty exclude
# same as case 1, but with include
# case 3: both nonempty
# the "union" of the logic of case 1 and case 2:
# we get the included and excluded, and return their logical and
include_these = Series(not bool(include), index=self.columns)
exclude_these = Series(not bool(exclude), index=self.columns)
def is_dtype_instance_mapper(idx, dtype):
return idx, functools.partial(issubclass, dtype.type)
for idx, f in itertools.starmap(is_dtype_instance_mapper,
enumerate(self.dtypes)):
if include: # checks for the case of empty include or exclude
include_these.iloc[idx] = any(map(f, include))
if exclude:
exclude_these.iloc[idx] = not any(map(f, exclude))
dtype_indexer = include_these & exclude_these
return self.loc[_get_info_slice(self, dtype_indexer)]
|
[
"def",
"select_dtypes",
"(",
"self",
",",
"include",
"=",
"None",
",",
"exclude",
"=",
"None",
")",
":",
"def",
"_get_info_slice",
"(",
"obj",
",",
"indexer",
")",
":",
"\"\"\"Slice the info axis of `obj` with `indexer`.\"\"\"",
"if",
"not",
"hasattr",
"(",
"obj",
",",
"'_info_axis_number'",
")",
":",
"msg",
"=",
"'object of type {typ!r} has no info axis'",
"raise",
"TypeError",
"(",
"msg",
".",
"format",
"(",
"typ",
"=",
"type",
"(",
"obj",
")",
".",
"__name__",
")",
")",
"slices",
"=",
"[",
"slice",
"(",
"None",
")",
"]",
"*",
"obj",
".",
"ndim",
"slices",
"[",
"obj",
".",
"_info_axis_number",
"]",
"=",
"indexer",
"return",
"tuple",
"(",
"slices",
")",
"if",
"not",
"is_list_like",
"(",
"include",
")",
":",
"include",
"=",
"(",
"include",
",",
")",
"if",
"include",
"is",
"not",
"None",
"else",
"(",
")",
"if",
"not",
"is_list_like",
"(",
"exclude",
")",
":",
"exclude",
"=",
"(",
"exclude",
",",
")",
"if",
"exclude",
"is",
"not",
"None",
"else",
"(",
")",
"selection",
"=",
"tuple",
"(",
"map",
"(",
"frozenset",
",",
"(",
"include",
",",
"exclude",
")",
")",
")",
"if",
"not",
"any",
"(",
"selection",
")",
":",
"raise",
"ValueError",
"(",
"'at least one of include or exclude must be '",
"'nonempty'",
")",
"# convert the myriad valid dtypes object to a single representation",
"include",
",",
"exclude",
"=",
"map",
"(",
"lambda",
"x",
":",
"frozenset",
"(",
"map",
"(",
"infer_dtype_from_object",
",",
"x",
")",
")",
",",
"selection",
")",
"for",
"dtypes",
"in",
"(",
"include",
",",
"exclude",
")",
":",
"invalidate_string_dtypes",
"(",
"dtypes",
")",
"# can't both include AND exclude!",
"if",
"not",
"include",
".",
"isdisjoint",
"(",
"exclude",
")",
":",
"raise",
"ValueError",
"(",
"'include and exclude overlap on {inc_ex}'",
".",
"format",
"(",
"inc_ex",
"=",
"(",
"include",
"&",
"exclude",
")",
")",
")",
"# empty include/exclude -> defaults to True",
"# three cases (we've already raised if both are empty)",
"# case 1: empty include, nonempty exclude",
"# we have True, True, ... True for include, same for exclude",
"# in the loop below we get the excluded",
"# and when we call '&' below we get only the excluded",
"# case 2: nonempty include, empty exclude",
"# same as case 1, but with include",
"# case 3: both nonempty",
"# the \"union\" of the logic of case 1 and case 2:",
"# we get the included and excluded, and return their logical and",
"include_these",
"=",
"Series",
"(",
"not",
"bool",
"(",
"include",
")",
",",
"index",
"=",
"self",
".",
"columns",
")",
"exclude_these",
"=",
"Series",
"(",
"not",
"bool",
"(",
"exclude",
")",
",",
"index",
"=",
"self",
".",
"columns",
")",
"def",
"is_dtype_instance_mapper",
"(",
"idx",
",",
"dtype",
")",
":",
"return",
"idx",
",",
"functools",
".",
"partial",
"(",
"issubclass",
",",
"dtype",
".",
"type",
")",
"for",
"idx",
",",
"f",
"in",
"itertools",
".",
"starmap",
"(",
"is_dtype_instance_mapper",
",",
"enumerate",
"(",
"self",
".",
"dtypes",
")",
")",
":",
"if",
"include",
":",
"# checks for the case of empty include or exclude",
"include_these",
".",
"iloc",
"[",
"idx",
"]",
"=",
"any",
"(",
"map",
"(",
"f",
",",
"include",
")",
")",
"if",
"exclude",
":",
"exclude_these",
".",
"iloc",
"[",
"idx",
"]",
"=",
"not",
"any",
"(",
"map",
"(",
"f",
",",
"exclude",
")",
")",
"dtype_indexer",
"=",
"include_these",
"&",
"exclude_these",
"return",
"self",
".",
"loc",
"[",
"_get_info_slice",
"(",
"self",
",",
"dtype_indexer",
")",
"]"
] |
Return a subset of the DataFrame's columns based on the column dtypes.
Parameters
----------
include, exclude : scalar or list-like
A selection of dtypes or strings to be included/excluded. At least
one of these parameters must be supplied.
Returns
-------
DataFrame
The subset of the frame including the dtypes in ``include`` and
excluding the dtypes in ``exclude``.
Raises
------
ValueError
* If both of ``include`` and ``exclude`` are empty
* If ``include`` and ``exclude`` have overlapping elements
* If any kind of string dtype is passed in.
Notes
-----
* To select all *numeric* types, use ``np.number`` or ``'number'``
* To select strings you must use the ``object`` dtype, but note that
this will return *all* object dtype columns
* See the `numpy dtype hierarchy
<http://docs.scipy.org/doc/numpy/reference/arrays.scalars.html>`__
* To select datetimes, use ``np.datetime64``, ``'datetime'`` or
``'datetime64'``
* To select timedeltas, use ``np.timedelta64``, ``'timedelta'`` or
``'timedelta64'``
* To select Pandas categorical dtypes, use ``'category'``
* To select Pandas datetimetz dtypes, use ``'datetimetz'`` (new in
0.20.0) or ``'datetime64[ns, tz]'``
Examples
--------
>>> df = pd.DataFrame({'a': [1, 2] * 3,
... 'b': [True, False] * 3,
... 'c': [1.0, 2.0] * 3})
>>> df
a b c
0 1 True 1.0
1 2 False 2.0
2 1 True 1.0
3 2 False 2.0
4 1 True 1.0
5 2 False 2.0
>>> df.select_dtypes(include='bool')
b
0 True
1 False
2 True
3 False
4 True
5 False
>>> df.select_dtypes(include=['float64'])
c
0 1.0
1 2.0
2 1.0
3 2.0
4 1.0
5 2.0
>>> df.select_dtypes(exclude=['int'])
b c
0 True 1.0
1 False 2.0
2 True 1.0
3 False 2.0
4 True 1.0
5 False 2.0
|
[
"Return",
"a",
"subset",
"of",
"the",
"DataFrame",
"s",
"columns",
"based",
"on",
"the",
"column",
"dtypes",
"."
] |
9feb3ad92cc0397a04b665803a49299ee7aa1037
|
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/frame.py#L3189-L3324
|
19,677
|
pandas-dev/pandas
|
pandas/core/frame.py
|
DataFrame._box_col_values
|
def _box_col_values(self, values, items):
"""
Provide boxed values for a column.
"""
klass = self._constructor_sliced
return klass(values, index=self.index, name=items, fastpath=True)
|
python
|
def _box_col_values(self, values, items):
"""
Provide boxed values for a column.
"""
klass = self._constructor_sliced
return klass(values, index=self.index, name=items, fastpath=True)
|
[
"def",
"_box_col_values",
"(",
"self",
",",
"values",
",",
"items",
")",
":",
"klass",
"=",
"self",
".",
"_constructor_sliced",
"return",
"klass",
"(",
"values",
",",
"index",
"=",
"self",
".",
"index",
",",
"name",
"=",
"items",
",",
"fastpath",
"=",
"True",
")"
] |
Provide boxed values for a column.
|
[
"Provide",
"boxed",
"values",
"for",
"a",
"column",
"."
] |
9feb3ad92cc0397a04b665803a49299ee7aa1037
|
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/frame.py#L3333-L3338
|
19,678
|
pandas-dev/pandas
|
pandas/core/frame.py
|
DataFrame._ensure_valid_index
|
def _ensure_valid_index(self, value):
"""
Ensure that if we don't have an index, that we can create one from the
passed value.
"""
# GH5632, make sure that we are a Series convertible
if not len(self.index) and is_list_like(value):
try:
value = Series(value)
except (ValueError, NotImplementedError, TypeError):
raise ValueError('Cannot set a frame with no defined index '
'and a value that cannot be converted to a '
'Series')
self._data = self._data.reindex_axis(value.index.copy(), axis=1,
fill_value=np.nan)
|
python
|
def _ensure_valid_index(self, value):
"""
Ensure that if we don't have an index, that we can create one from the
passed value.
"""
# GH5632, make sure that we are a Series convertible
if not len(self.index) and is_list_like(value):
try:
value = Series(value)
except (ValueError, NotImplementedError, TypeError):
raise ValueError('Cannot set a frame with no defined index '
'and a value that cannot be converted to a '
'Series')
self._data = self._data.reindex_axis(value.index.copy(), axis=1,
fill_value=np.nan)
|
[
"def",
"_ensure_valid_index",
"(",
"self",
",",
"value",
")",
":",
"# GH5632, make sure that we are a Series convertible",
"if",
"not",
"len",
"(",
"self",
".",
"index",
")",
"and",
"is_list_like",
"(",
"value",
")",
":",
"try",
":",
"value",
"=",
"Series",
"(",
"value",
")",
"except",
"(",
"ValueError",
",",
"NotImplementedError",
",",
"TypeError",
")",
":",
"raise",
"ValueError",
"(",
"'Cannot set a frame with no defined index '",
"'and a value that cannot be converted to a '",
"'Series'",
")",
"self",
".",
"_data",
"=",
"self",
".",
"_data",
".",
"reindex_axis",
"(",
"value",
".",
"index",
".",
"copy",
"(",
")",
",",
"axis",
"=",
"1",
",",
"fill_value",
"=",
"np",
".",
"nan",
")"
] |
Ensure that if we don't have an index, that we can create one from the
passed value.
|
[
"Ensure",
"that",
"if",
"we",
"don",
"t",
"have",
"an",
"index",
"that",
"we",
"can",
"create",
"one",
"from",
"the",
"passed",
"value",
"."
] |
9feb3ad92cc0397a04b665803a49299ee7aa1037
|
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/frame.py#L3400-L3415
|
19,679
|
pandas-dev/pandas
|
pandas/core/frame.py
|
DataFrame._set_item
|
def _set_item(self, key, value):
"""
Add series to DataFrame in specified column.
If series is a numpy-array (not a Series/TimeSeries), it must be the
same length as the DataFrames index or an error will be thrown.
Series/TimeSeries will be conformed to the DataFrames index to
ensure homogeneity.
"""
self._ensure_valid_index(value)
value = self._sanitize_column(key, value)
NDFrame._set_item(self, key, value)
# check if we are modifying a copy
# try to set first as we want an invalid
# value exception to occur first
if len(self):
self._check_setitem_copy()
|
python
|
def _set_item(self, key, value):
"""
Add series to DataFrame in specified column.
If series is a numpy-array (not a Series/TimeSeries), it must be the
same length as the DataFrames index or an error will be thrown.
Series/TimeSeries will be conformed to the DataFrames index to
ensure homogeneity.
"""
self._ensure_valid_index(value)
value = self._sanitize_column(key, value)
NDFrame._set_item(self, key, value)
# check if we are modifying a copy
# try to set first as we want an invalid
# value exception to occur first
if len(self):
self._check_setitem_copy()
|
[
"def",
"_set_item",
"(",
"self",
",",
"key",
",",
"value",
")",
":",
"self",
".",
"_ensure_valid_index",
"(",
"value",
")",
"value",
"=",
"self",
".",
"_sanitize_column",
"(",
"key",
",",
"value",
")",
"NDFrame",
".",
"_set_item",
"(",
"self",
",",
"key",
",",
"value",
")",
"# check if we are modifying a copy",
"# try to set first as we want an invalid",
"# value exception to occur first",
"if",
"len",
"(",
"self",
")",
":",
"self",
".",
"_check_setitem_copy",
"(",
")"
] |
Add series to DataFrame in specified column.
If series is a numpy-array (not a Series/TimeSeries), it must be the
same length as the DataFrames index or an error will be thrown.
Series/TimeSeries will be conformed to the DataFrames index to
ensure homogeneity.
|
[
"Add",
"series",
"to",
"DataFrame",
"in",
"specified",
"column",
"."
] |
9feb3ad92cc0397a04b665803a49299ee7aa1037
|
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/frame.py#L3417-L3436
|
19,680
|
pandas-dev/pandas
|
pandas/core/frame.py
|
DataFrame.insert
|
def insert(self, loc, column, value, allow_duplicates=False):
"""
Insert column into DataFrame at specified location.
Raises a ValueError if `column` is already contained in the DataFrame,
unless `allow_duplicates` is set to True.
Parameters
----------
loc : int
Insertion index. Must verify 0 <= loc <= len(columns)
column : string, number, or hashable object
label of the inserted column
value : int, Series, or array-like
allow_duplicates : bool, optional
"""
self._ensure_valid_index(value)
value = self._sanitize_column(column, value, broadcast=False)
self._data.insert(loc, column, value,
allow_duplicates=allow_duplicates)
|
python
|
def insert(self, loc, column, value, allow_duplicates=False):
"""
Insert column into DataFrame at specified location.
Raises a ValueError if `column` is already contained in the DataFrame,
unless `allow_duplicates` is set to True.
Parameters
----------
loc : int
Insertion index. Must verify 0 <= loc <= len(columns)
column : string, number, or hashable object
label of the inserted column
value : int, Series, or array-like
allow_duplicates : bool, optional
"""
self._ensure_valid_index(value)
value = self._sanitize_column(column, value, broadcast=False)
self._data.insert(loc, column, value,
allow_duplicates=allow_duplicates)
|
[
"def",
"insert",
"(",
"self",
",",
"loc",
",",
"column",
",",
"value",
",",
"allow_duplicates",
"=",
"False",
")",
":",
"self",
".",
"_ensure_valid_index",
"(",
"value",
")",
"value",
"=",
"self",
".",
"_sanitize_column",
"(",
"column",
",",
"value",
",",
"broadcast",
"=",
"False",
")",
"self",
".",
"_data",
".",
"insert",
"(",
"loc",
",",
"column",
",",
"value",
",",
"allow_duplicates",
"=",
"allow_duplicates",
")"
] |
Insert column into DataFrame at specified location.
Raises a ValueError if `column` is already contained in the DataFrame,
unless `allow_duplicates` is set to True.
Parameters
----------
loc : int
Insertion index. Must verify 0 <= loc <= len(columns)
column : string, number, or hashable object
label of the inserted column
value : int, Series, or array-like
allow_duplicates : bool, optional
|
[
"Insert",
"column",
"into",
"DataFrame",
"at",
"specified",
"location",
"."
] |
9feb3ad92cc0397a04b665803a49299ee7aa1037
|
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/frame.py#L3438-L3457
|
19,681
|
pandas-dev/pandas
|
pandas/core/frame.py
|
DataFrame.assign
|
def assign(self, **kwargs):
r"""
Assign new columns to a DataFrame.
Returns a new object with all original columns in addition to new ones.
Existing columns that are re-assigned will be overwritten.
Parameters
----------
**kwargs : dict of {str: callable or Series}
The column names are keywords. If the values are
callable, they are computed on the DataFrame and
assigned to the new columns. The callable must not
change input DataFrame (though pandas doesn't check it).
If the values are not callable, (e.g. a Series, scalar, or array),
they are simply assigned.
Returns
-------
DataFrame
A new DataFrame with the new columns in addition to
all the existing columns.
Notes
-----
Assigning multiple columns within the same ``assign`` is possible.
For Python 3.6 and above, later items in '\*\*kwargs' may refer to
newly created or modified columns in 'df'; items are computed and
assigned into 'df' in order. For Python 3.5 and below, the order of
keyword arguments is not specified, you cannot refer to newly created
or modified columns. All items are computed first, and then assigned
in alphabetical order.
.. versionchanged :: 0.23.0
Keyword argument order is maintained for Python 3.6 and later.
Examples
--------
>>> df = pd.DataFrame({'temp_c': [17.0, 25.0]},
... index=['Portland', 'Berkeley'])
>>> df
temp_c
Portland 17.0
Berkeley 25.0
Where the value is a callable, evaluated on `df`:
>>> df.assign(temp_f=lambda x: x.temp_c * 9 / 5 + 32)
temp_c temp_f
Portland 17.0 62.6
Berkeley 25.0 77.0
Alternatively, the same behavior can be achieved by directly
referencing an existing Series or sequence:
>>> df.assign(temp_f=df['temp_c'] * 9 / 5 + 32)
temp_c temp_f
Portland 17.0 62.6
Berkeley 25.0 77.0
In Python 3.6+, you can create multiple columns within the same assign
where one of the columns depends on another one defined within the same
assign:
>>> df.assign(temp_f=lambda x: x['temp_c'] * 9 / 5 + 32,
... temp_k=lambda x: (x['temp_f'] + 459.67) * 5 / 9)
temp_c temp_f temp_k
Portland 17.0 62.6 290.15
Berkeley 25.0 77.0 298.15
"""
data = self.copy()
# >= 3.6 preserve order of kwargs
if PY36:
for k, v in kwargs.items():
data[k] = com.apply_if_callable(v, data)
else:
# <= 3.5: do all calculations first...
results = OrderedDict()
for k, v in kwargs.items():
results[k] = com.apply_if_callable(v, data)
# <= 3.5 and earlier
results = sorted(results.items())
# ... and then assign
for k, v in results:
data[k] = v
return data
|
python
|
def assign(self, **kwargs):
r"""
Assign new columns to a DataFrame.
Returns a new object with all original columns in addition to new ones.
Existing columns that are re-assigned will be overwritten.
Parameters
----------
**kwargs : dict of {str: callable or Series}
The column names are keywords. If the values are
callable, they are computed on the DataFrame and
assigned to the new columns. The callable must not
change input DataFrame (though pandas doesn't check it).
If the values are not callable, (e.g. a Series, scalar, or array),
they are simply assigned.
Returns
-------
DataFrame
A new DataFrame with the new columns in addition to
all the existing columns.
Notes
-----
Assigning multiple columns within the same ``assign`` is possible.
For Python 3.6 and above, later items in '\*\*kwargs' may refer to
newly created or modified columns in 'df'; items are computed and
assigned into 'df' in order. For Python 3.5 and below, the order of
keyword arguments is not specified, you cannot refer to newly created
or modified columns. All items are computed first, and then assigned
in alphabetical order.
.. versionchanged :: 0.23.0
Keyword argument order is maintained for Python 3.6 and later.
Examples
--------
>>> df = pd.DataFrame({'temp_c': [17.0, 25.0]},
... index=['Portland', 'Berkeley'])
>>> df
temp_c
Portland 17.0
Berkeley 25.0
Where the value is a callable, evaluated on `df`:
>>> df.assign(temp_f=lambda x: x.temp_c * 9 / 5 + 32)
temp_c temp_f
Portland 17.0 62.6
Berkeley 25.0 77.0
Alternatively, the same behavior can be achieved by directly
referencing an existing Series or sequence:
>>> df.assign(temp_f=df['temp_c'] * 9 / 5 + 32)
temp_c temp_f
Portland 17.0 62.6
Berkeley 25.0 77.0
In Python 3.6+, you can create multiple columns within the same assign
where one of the columns depends on another one defined within the same
assign:
>>> df.assign(temp_f=lambda x: x['temp_c'] * 9 / 5 + 32,
... temp_k=lambda x: (x['temp_f'] + 459.67) * 5 / 9)
temp_c temp_f temp_k
Portland 17.0 62.6 290.15
Berkeley 25.0 77.0 298.15
"""
data = self.copy()
# >= 3.6 preserve order of kwargs
if PY36:
for k, v in kwargs.items():
data[k] = com.apply_if_callable(v, data)
else:
# <= 3.5: do all calculations first...
results = OrderedDict()
for k, v in kwargs.items():
results[k] = com.apply_if_callable(v, data)
# <= 3.5 and earlier
results = sorted(results.items())
# ... and then assign
for k, v in results:
data[k] = v
return data
|
[
"def",
"assign",
"(",
"self",
",",
"*",
"*",
"kwargs",
")",
":",
"data",
"=",
"self",
".",
"copy",
"(",
")",
"# >= 3.6 preserve order of kwargs",
"if",
"PY36",
":",
"for",
"k",
",",
"v",
"in",
"kwargs",
".",
"items",
"(",
")",
":",
"data",
"[",
"k",
"]",
"=",
"com",
".",
"apply_if_callable",
"(",
"v",
",",
"data",
")",
"else",
":",
"# <= 3.5: do all calculations first...",
"results",
"=",
"OrderedDict",
"(",
")",
"for",
"k",
",",
"v",
"in",
"kwargs",
".",
"items",
"(",
")",
":",
"results",
"[",
"k",
"]",
"=",
"com",
".",
"apply_if_callable",
"(",
"v",
",",
"data",
")",
"# <= 3.5 and earlier",
"results",
"=",
"sorted",
"(",
"results",
".",
"items",
"(",
")",
")",
"# ... and then assign",
"for",
"k",
",",
"v",
"in",
"results",
":",
"data",
"[",
"k",
"]",
"=",
"v",
"return",
"data"
] |
r"""
Assign new columns to a DataFrame.
Returns a new object with all original columns in addition to new ones.
Existing columns that are re-assigned will be overwritten.
Parameters
----------
**kwargs : dict of {str: callable or Series}
The column names are keywords. If the values are
callable, they are computed on the DataFrame and
assigned to the new columns. The callable must not
change input DataFrame (though pandas doesn't check it).
If the values are not callable, (e.g. a Series, scalar, or array),
they are simply assigned.
Returns
-------
DataFrame
A new DataFrame with the new columns in addition to
all the existing columns.
Notes
-----
Assigning multiple columns within the same ``assign`` is possible.
For Python 3.6 and above, later items in '\*\*kwargs' may refer to
newly created or modified columns in 'df'; items are computed and
assigned into 'df' in order. For Python 3.5 and below, the order of
keyword arguments is not specified, you cannot refer to newly created
or modified columns. All items are computed first, and then assigned
in alphabetical order.
.. versionchanged :: 0.23.0
Keyword argument order is maintained for Python 3.6 and later.
Examples
--------
>>> df = pd.DataFrame({'temp_c': [17.0, 25.0]},
... index=['Portland', 'Berkeley'])
>>> df
temp_c
Portland 17.0
Berkeley 25.0
Where the value is a callable, evaluated on `df`:
>>> df.assign(temp_f=lambda x: x.temp_c * 9 / 5 + 32)
temp_c temp_f
Portland 17.0 62.6
Berkeley 25.0 77.0
Alternatively, the same behavior can be achieved by directly
referencing an existing Series or sequence:
>>> df.assign(temp_f=df['temp_c'] * 9 / 5 + 32)
temp_c temp_f
Portland 17.0 62.6
Berkeley 25.0 77.0
In Python 3.6+, you can create multiple columns within the same assign
where one of the columns depends on another one defined within the same
assign:
>>> df.assign(temp_f=lambda x: x['temp_c'] * 9 / 5 + 32,
... temp_k=lambda x: (x['temp_f'] + 459.67) * 5 / 9)
temp_c temp_f temp_k
Portland 17.0 62.6 290.15
Berkeley 25.0 77.0 298.15
|
[
"r",
"Assign",
"new",
"columns",
"to",
"a",
"DataFrame",
"."
] |
9feb3ad92cc0397a04b665803a49299ee7aa1037
|
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/frame.py#L3459-L3547
|
19,682
|
pandas-dev/pandas
|
pandas/core/frame.py
|
DataFrame.lookup
|
def lookup(self, row_labels, col_labels):
"""
Label-based "fancy indexing" function for DataFrame.
Given equal-length arrays of row and column labels, return an
array of the values corresponding to each (row, col) pair.
Parameters
----------
row_labels : sequence
The row labels to use for lookup
col_labels : sequence
The column labels to use for lookup
Notes
-----
Akin to::
result = [df.get_value(row, col)
for row, col in zip(row_labels, col_labels)]
Examples
--------
values : ndarray
The found values
"""
n = len(row_labels)
if n != len(col_labels):
raise ValueError('Row labels must have same size as column labels')
thresh = 1000
if not self._is_mixed_type or n > thresh:
values = self.values
ridx = self.index.get_indexer(row_labels)
cidx = self.columns.get_indexer(col_labels)
if (ridx == -1).any():
raise KeyError('One or more row labels was not found')
if (cidx == -1).any():
raise KeyError('One or more column labels was not found')
flat_index = ridx * len(self.columns) + cidx
result = values.flat[flat_index]
else:
result = np.empty(n, dtype='O')
for i, (r, c) in enumerate(zip(row_labels, col_labels)):
result[i] = self._get_value(r, c)
if is_object_dtype(result):
result = lib.maybe_convert_objects(result)
return result
|
python
|
def lookup(self, row_labels, col_labels):
"""
Label-based "fancy indexing" function for DataFrame.
Given equal-length arrays of row and column labels, return an
array of the values corresponding to each (row, col) pair.
Parameters
----------
row_labels : sequence
The row labels to use for lookup
col_labels : sequence
The column labels to use for lookup
Notes
-----
Akin to::
result = [df.get_value(row, col)
for row, col in zip(row_labels, col_labels)]
Examples
--------
values : ndarray
The found values
"""
n = len(row_labels)
if n != len(col_labels):
raise ValueError('Row labels must have same size as column labels')
thresh = 1000
if not self._is_mixed_type or n > thresh:
values = self.values
ridx = self.index.get_indexer(row_labels)
cidx = self.columns.get_indexer(col_labels)
if (ridx == -1).any():
raise KeyError('One or more row labels was not found')
if (cidx == -1).any():
raise KeyError('One or more column labels was not found')
flat_index = ridx * len(self.columns) + cidx
result = values.flat[flat_index]
else:
result = np.empty(n, dtype='O')
for i, (r, c) in enumerate(zip(row_labels, col_labels)):
result[i] = self._get_value(r, c)
if is_object_dtype(result):
result = lib.maybe_convert_objects(result)
return result
|
[
"def",
"lookup",
"(",
"self",
",",
"row_labels",
",",
"col_labels",
")",
":",
"n",
"=",
"len",
"(",
"row_labels",
")",
"if",
"n",
"!=",
"len",
"(",
"col_labels",
")",
":",
"raise",
"ValueError",
"(",
"'Row labels must have same size as column labels'",
")",
"thresh",
"=",
"1000",
"if",
"not",
"self",
".",
"_is_mixed_type",
"or",
"n",
">",
"thresh",
":",
"values",
"=",
"self",
".",
"values",
"ridx",
"=",
"self",
".",
"index",
".",
"get_indexer",
"(",
"row_labels",
")",
"cidx",
"=",
"self",
".",
"columns",
".",
"get_indexer",
"(",
"col_labels",
")",
"if",
"(",
"ridx",
"==",
"-",
"1",
")",
".",
"any",
"(",
")",
":",
"raise",
"KeyError",
"(",
"'One or more row labels was not found'",
")",
"if",
"(",
"cidx",
"==",
"-",
"1",
")",
".",
"any",
"(",
")",
":",
"raise",
"KeyError",
"(",
"'One or more column labels was not found'",
")",
"flat_index",
"=",
"ridx",
"*",
"len",
"(",
"self",
".",
"columns",
")",
"+",
"cidx",
"result",
"=",
"values",
".",
"flat",
"[",
"flat_index",
"]",
"else",
":",
"result",
"=",
"np",
".",
"empty",
"(",
"n",
",",
"dtype",
"=",
"'O'",
")",
"for",
"i",
",",
"(",
"r",
",",
"c",
")",
"in",
"enumerate",
"(",
"zip",
"(",
"row_labels",
",",
"col_labels",
")",
")",
":",
"result",
"[",
"i",
"]",
"=",
"self",
".",
"_get_value",
"(",
"r",
",",
"c",
")",
"if",
"is_object_dtype",
"(",
"result",
")",
":",
"result",
"=",
"lib",
".",
"maybe_convert_objects",
"(",
"result",
")",
"return",
"result"
] |
Label-based "fancy indexing" function for DataFrame.
Given equal-length arrays of row and column labels, return an
array of the values corresponding to each (row, col) pair.
Parameters
----------
row_labels : sequence
The row labels to use for lookup
col_labels : sequence
The column labels to use for lookup
Notes
-----
Akin to::
result = [df.get_value(row, col)
for row, col in zip(row_labels, col_labels)]
Examples
--------
values : ndarray
The found values
|
[
"Label",
"-",
"based",
"fancy",
"indexing",
"function",
"for",
"DataFrame",
"."
] |
9feb3ad92cc0397a04b665803a49299ee7aa1037
|
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/frame.py#L3659-L3708
|
19,683
|
pandas-dev/pandas
|
pandas/core/frame.py
|
DataFrame._reindex_multi
|
def _reindex_multi(self, axes, copy, fill_value):
"""
We are guaranteed non-Nones in the axes.
"""
new_index, row_indexer = self.index.reindex(axes['index'])
new_columns, col_indexer = self.columns.reindex(axes['columns'])
if row_indexer is not None and col_indexer is not None:
indexer = row_indexer, col_indexer
new_values = algorithms.take_2d_multi(self.values, indexer,
fill_value=fill_value)
return self._constructor(new_values, index=new_index,
columns=new_columns)
else:
return self._reindex_with_indexers({0: [new_index, row_indexer],
1: [new_columns, col_indexer]},
copy=copy,
fill_value=fill_value)
|
python
|
def _reindex_multi(self, axes, copy, fill_value):
"""
We are guaranteed non-Nones in the axes.
"""
new_index, row_indexer = self.index.reindex(axes['index'])
new_columns, col_indexer = self.columns.reindex(axes['columns'])
if row_indexer is not None and col_indexer is not None:
indexer = row_indexer, col_indexer
new_values = algorithms.take_2d_multi(self.values, indexer,
fill_value=fill_value)
return self._constructor(new_values, index=new_index,
columns=new_columns)
else:
return self._reindex_with_indexers({0: [new_index, row_indexer],
1: [new_columns, col_indexer]},
copy=copy,
fill_value=fill_value)
|
[
"def",
"_reindex_multi",
"(",
"self",
",",
"axes",
",",
"copy",
",",
"fill_value",
")",
":",
"new_index",
",",
"row_indexer",
"=",
"self",
".",
"index",
".",
"reindex",
"(",
"axes",
"[",
"'index'",
"]",
")",
"new_columns",
",",
"col_indexer",
"=",
"self",
".",
"columns",
".",
"reindex",
"(",
"axes",
"[",
"'columns'",
"]",
")",
"if",
"row_indexer",
"is",
"not",
"None",
"and",
"col_indexer",
"is",
"not",
"None",
":",
"indexer",
"=",
"row_indexer",
",",
"col_indexer",
"new_values",
"=",
"algorithms",
".",
"take_2d_multi",
"(",
"self",
".",
"values",
",",
"indexer",
",",
"fill_value",
"=",
"fill_value",
")",
"return",
"self",
".",
"_constructor",
"(",
"new_values",
",",
"index",
"=",
"new_index",
",",
"columns",
"=",
"new_columns",
")",
"else",
":",
"return",
"self",
".",
"_reindex_with_indexers",
"(",
"{",
"0",
":",
"[",
"new_index",
",",
"row_indexer",
"]",
",",
"1",
":",
"[",
"new_columns",
",",
"col_indexer",
"]",
"}",
",",
"copy",
"=",
"copy",
",",
"fill_value",
"=",
"fill_value",
")"
] |
We are guaranteed non-Nones in the axes.
|
[
"We",
"are",
"guaranteed",
"non",
"-",
"Nones",
"in",
"the",
"axes",
"."
] |
9feb3ad92cc0397a04b665803a49299ee7aa1037
|
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/frame.py#L3747-L3765
|
19,684
|
pandas-dev/pandas
|
pandas/core/frame.py
|
DataFrame.drop
|
def drop(self, labels=None, axis=0, index=None, columns=None,
level=None, inplace=False, errors='raise'):
"""
Drop specified labels from rows or columns.
Remove rows or columns by specifying label names and corresponding
axis, or by specifying directly index or column names. When using a
multi-index, labels on different levels can be removed by specifying
the level.
Parameters
----------
labels : single label or list-like
Index or column labels to drop.
axis : {0 or 'index', 1 or 'columns'}, default 0
Whether to drop labels from the index (0 or 'index') or
columns (1 or 'columns').
index : single label or list-like
Alternative to specifying axis (``labels, axis=0``
is equivalent to ``index=labels``).
.. versionadded:: 0.21.0
columns : single label or list-like
Alternative to specifying axis (``labels, axis=1``
is equivalent to ``columns=labels``).
.. versionadded:: 0.21.0
level : int or level name, optional
For MultiIndex, level from which the labels will be removed.
inplace : bool, default False
If True, do operation inplace and return None.
errors : {'ignore', 'raise'}, default 'raise'
If 'ignore', suppress error and only existing labels are
dropped.
Returns
-------
DataFrame
DataFrame without the removed index or column labels.
Raises
------
KeyError
If any of the labels is not found in the selected axis.
See Also
--------
DataFrame.loc : Label-location based indexer for selection by label.
DataFrame.dropna : Return DataFrame with labels on given axis omitted
where (all or any) data are missing.
DataFrame.drop_duplicates : Return DataFrame with duplicate rows
removed, optionally only considering certain columns.
Series.drop : Return Series with specified index labels removed.
Examples
--------
>>> df = pd.DataFrame(np.arange(12).reshape(3, 4),
... columns=['A', 'B', 'C', 'D'])
>>> df
A B C D
0 0 1 2 3
1 4 5 6 7
2 8 9 10 11
Drop columns
>>> df.drop(['B', 'C'], axis=1)
A D
0 0 3
1 4 7
2 8 11
>>> df.drop(columns=['B', 'C'])
A D
0 0 3
1 4 7
2 8 11
Drop a row by index
>>> df.drop([0, 1])
A B C D
2 8 9 10 11
Drop columns and/or rows of MultiIndex DataFrame
>>> midx = pd.MultiIndex(levels=[['lama', 'cow', 'falcon'],
... ['speed', 'weight', 'length']],
... codes=[[0, 0, 0, 1, 1, 1, 2, 2, 2],
... [0, 1, 2, 0, 1, 2, 0, 1, 2]])
>>> df = pd.DataFrame(index=midx, columns=['big', 'small'],
... data=[[45, 30], [200, 100], [1.5, 1], [30, 20],
... [250, 150], [1.5, 0.8], [320, 250],
... [1, 0.8], [0.3, 0.2]])
>>> df
big small
lama speed 45.0 30.0
weight 200.0 100.0
length 1.5 1.0
cow speed 30.0 20.0
weight 250.0 150.0
length 1.5 0.8
falcon speed 320.0 250.0
weight 1.0 0.8
length 0.3 0.2
>>> df.drop(index='cow', columns='small')
big
lama speed 45.0
weight 200.0
length 1.5
falcon speed 320.0
weight 1.0
length 0.3
>>> df.drop(index='length', level=1)
big small
lama speed 45.0 30.0
weight 200.0 100.0
cow speed 30.0 20.0
weight 250.0 150.0
falcon speed 320.0 250.0
weight 1.0 0.8
"""
return super().drop(labels=labels, axis=axis, index=index,
columns=columns, level=level, inplace=inplace,
errors=errors)
|
python
|
def drop(self, labels=None, axis=0, index=None, columns=None,
level=None, inplace=False, errors='raise'):
"""
Drop specified labels from rows or columns.
Remove rows or columns by specifying label names and corresponding
axis, or by specifying directly index or column names. When using a
multi-index, labels on different levels can be removed by specifying
the level.
Parameters
----------
labels : single label or list-like
Index or column labels to drop.
axis : {0 or 'index', 1 or 'columns'}, default 0
Whether to drop labels from the index (0 or 'index') or
columns (1 or 'columns').
index : single label or list-like
Alternative to specifying axis (``labels, axis=0``
is equivalent to ``index=labels``).
.. versionadded:: 0.21.0
columns : single label or list-like
Alternative to specifying axis (``labels, axis=1``
is equivalent to ``columns=labels``).
.. versionadded:: 0.21.0
level : int or level name, optional
For MultiIndex, level from which the labels will be removed.
inplace : bool, default False
If True, do operation inplace and return None.
errors : {'ignore', 'raise'}, default 'raise'
If 'ignore', suppress error and only existing labels are
dropped.
Returns
-------
DataFrame
DataFrame without the removed index or column labels.
Raises
------
KeyError
If any of the labels is not found in the selected axis.
See Also
--------
DataFrame.loc : Label-location based indexer for selection by label.
DataFrame.dropna : Return DataFrame with labels on given axis omitted
where (all or any) data are missing.
DataFrame.drop_duplicates : Return DataFrame with duplicate rows
removed, optionally only considering certain columns.
Series.drop : Return Series with specified index labels removed.
Examples
--------
>>> df = pd.DataFrame(np.arange(12).reshape(3, 4),
... columns=['A', 'B', 'C', 'D'])
>>> df
A B C D
0 0 1 2 3
1 4 5 6 7
2 8 9 10 11
Drop columns
>>> df.drop(['B', 'C'], axis=1)
A D
0 0 3
1 4 7
2 8 11
>>> df.drop(columns=['B', 'C'])
A D
0 0 3
1 4 7
2 8 11
Drop a row by index
>>> df.drop([0, 1])
A B C D
2 8 9 10 11
Drop columns and/or rows of MultiIndex DataFrame
>>> midx = pd.MultiIndex(levels=[['lama', 'cow', 'falcon'],
... ['speed', 'weight', 'length']],
... codes=[[0, 0, 0, 1, 1, 1, 2, 2, 2],
... [0, 1, 2, 0, 1, 2, 0, 1, 2]])
>>> df = pd.DataFrame(index=midx, columns=['big', 'small'],
... data=[[45, 30], [200, 100], [1.5, 1], [30, 20],
... [250, 150], [1.5, 0.8], [320, 250],
... [1, 0.8], [0.3, 0.2]])
>>> df
big small
lama speed 45.0 30.0
weight 200.0 100.0
length 1.5 1.0
cow speed 30.0 20.0
weight 250.0 150.0
length 1.5 0.8
falcon speed 320.0 250.0
weight 1.0 0.8
length 0.3 0.2
>>> df.drop(index='cow', columns='small')
big
lama speed 45.0
weight 200.0
length 1.5
falcon speed 320.0
weight 1.0
length 0.3
>>> df.drop(index='length', level=1)
big small
lama speed 45.0 30.0
weight 200.0 100.0
cow speed 30.0 20.0
weight 250.0 150.0
falcon speed 320.0 250.0
weight 1.0 0.8
"""
return super().drop(labels=labels, axis=axis, index=index,
columns=columns, level=level, inplace=inplace,
errors=errors)
|
[
"def",
"drop",
"(",
"self",
",",
"labels",
"=",
"None",
",",
"axis",
"=",
"0",
",",
"index",
"=",
"None",
",",
"columns",
"=",
"None",
",",
"level",
"=",
"None",
",",
"inplace",
"=",
"False",
",",
"errors",
"=",
"'raise'",
")",
":",
"return",
"super",
"(",
")",
".",
"drop",
"(",
"labels",
"=",
"labels",
",",
"axis",
"=",
"axis",
",",
"index",
"=",
"index",
",",
"columns",
"=",
"columns",
",",
"level",
"=",
"level",
",",
"inplace",
"=",
"inplace",
",",
"errors",
"=",
"errors",
")"
] |
Drop specified labels from rows or columns.
Remove rows or columns by specifying label names and corresponding
axis, or by specifying directly index or column names. When using a
multi-index, labels on different levels can be removed by specifying
the level.
Parameters
----------
labels : single label or list-like
Index or column labels to drop.
axis : {0 or 'index', 1 or 'columns'}, default 0
Whether to drop labels from the index (0 or 'index') or
columns (1 or 'columns').
index : single label or list-like
Alternative to specifying axis (``labels, axis=0``
is equivalent to ``index=labels``).
.. versionadded:: 0.21.0
columns : single label or list-like
Alternative to specifying axis (``labels, axis=1``
is equivalent to ``columns=labels``).
.. versionadded:: 0.21.0
level : int or level name, optional
For MultiIndex, level from which the labels will be removed.
inplace : bool, default False
If True, do operation inplace and return None.
errors : {'ignore', 'raise'}, default 'raise'
If 'ignore', suppress error and only existing labels are
dropped.
Returns
-------
DataFrame
DataFrame without the removed index or column labels.
Raises
------
KeyError
If any of the labels is not found in the selected axis.
See Also
--------
DataFrame.loc : Label-location based indexer for selection by label.
DataFrame.dropna : Return DataFrame with labels on given axis omitted
where (all or any) data are missing.
DataFrame.drop_duplicates : Return DataFrame with duplicate rows
removed, optionally only considering certain columns.
Series.drop : Return Series with specified index labels removed.
Examples
--------
>>> df = pd.DataFrame(np.arange(12).reshape(3, 4),
... columns=['A', 'B', 'C', 'D'])
>>> df
A B C D
0 0 1 2 3
1 4 5 6 7
2 8 9 10 11
Drop columns
>>> df.drop(['B', 'C'], axis=1)
A D
0 0 3
1 4 7
2 8 11
>>> df.drop(columns=['B', 'C'])
A D
0 0 3
1 4 7
2 8 11
Drop a row by index
>>> df.drop([0, 1])
A B C D
2 8 9 10 11
Drop columns and/or rows of MultiIndex DataFrame
>>> midx = pd.MultiIndex(levels=[['lama', 'cow', 'falcon'],
... ['speed', 'weight', 'length']],
... codes=[[0, 0, 0, 1, 1, 1, 2, 2, 2],
... [0, 1, 2, 0, 1, 2, 0, 1, 2]])
>>> df = pd.DataFrame(index=midx, columns=['big', 'small'],
... data=[[45, 30], [200, 100], [1.5, 1], [30, 20],
... [250, 150], [1.5, 0.8], [320, 250],
... [1, 0.8], [0.3, 0.2]])
>>> df
big small
lama speed 45.0 30.0
weight 200.0 100.0
length 1.5 1.0
cow speed 30.0 20.0
weight 250.0 150.0
length 1.5 0.8
falcon speed 320.0 250.0
weight 1.0 0.8
length 0.3 0.2
>>> df.drop(index='cow', columns='small')
big
lama speed 45.0
weight 200.0
length 1.5
falcon speed 320.0
weight 1.0
length 0.3
>>> df.drop(index='length', level=1)
big small
lama speed 45.0 30.0
weight 200.0 100.0
cow speed 30.0 20.0
weight 250.0 150.0
falcon speed 320.0 250.0
weight 1.0 0.8
|
[
"Drop",
"specified",
"labels",
"from",
"rows",
"or",
"columns",
"."
] |
9feb3ad92cc0397a04b665803a49299ee7aa1037
|
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/frame.py#L3800-L3926
|
19,685
|
pandas-dev/pandas
|
pandas/core/frame.py
|
DataFrame.rename
|
def rename(self, *args, **kwargs):
"""
Alter axes labels.
Function / dict values must be unique (1-to-1). Labels not contained in
a dict / Series will be left as-is. Extra labels listed don't throw an
error.
See the :ref:`user guide <basics.rename>` for more.
Parameters
----------
mapper : dict-like or function
Dict-like or functions transformations to apply to
that axis' values. Use either ``mapper`` and ``axis`` to
specify the axis to target with ``mapper``, or ``index`` and
``columns``.
index : dict-like or function
Alternative to specifying axis (``mapper, axis=0``
is equivalent to ``index=mapper``).
columns : dict-like or function
Alternative to specifying axis (``mapper, axis=1``
is equivalent to ``columns=mapper``).
axis : int or str
Axis to target with ``mapper``. Can be either the axis name
('index', 'columns') or number (0, 1). The default is 'index'.
copy : bool, default True
Also copy underlying data.
inplace : bool, default False
Whether to return a new DataFrame. If True then value of copy is
ignored.
level : int or level name, default None
In case of a MultiIndex, only rename labels in the specified
level.
errors : {'ignore', 'raise'}, default 'ignore'
If 'raise', raise a `KeyError` when a dict-like `mapper`, `index`,
or `columns` contains labels that are not present in the Index
being transformed.
If 'ignore', existing keys will be renamed and extra keys will be
ignored.
Returns
-------
DataFrame
DataFrame with the renamed axis labels.
Raises
------
KeyError
If any of the labels is not found in the selected axis and
"errors='raise'".
See Also
--------
DataFrame.rename_axis : Set the name of the axis.
Examples
--------
``DataFrame.rename`` supports two calling conventions
* ``(index=index_mapper, columns=columns_mapper, ...)``
* ``(mapper, axis={'index', 'columns'}, ...)``
We *highly* recommend using keyword arguments to clarify your
intent.
>>> df = pd.DataFrame({"A": [1, 2, 3], "B": [4, 5, 6]})
>>> df.rename(index=str, columns={"A": "a", "B": "c"})
a c
0 1 4
1 2 5
2 3 6
>>> df.rename(index=str, columns={"A": "a", "C": "c"})
a B
0 1 4
1 2 5
2 3 6
>>> df.rename(index=str, columns={"A": "a", "C": "c"}, errors="raise")
Traceback (most recent call last):
KeyError: ['C'] not found in axis
Using axis-style parameters
>>> df.rename(str.lower, axis='columns')
a b
0 1 4
1 2 5
2 3 6
>>> df.rename({1: 2, 2: 4}, axis='index')
A B
0 1 4
2 2 5
4 3 6
"""
axes = validate_axis_style_args(self, args, kwargs, 'mapper', 'rename')
kwargs.update(axes)
# Pop these, since the values are in `kwargs` under different names
kwargs.pop('axis', None)
kwargs.pop('mapper', None)
return super().rename(**kwargs)
|
python
|
def rename(self, *args, **kwargs):
"""
Alter axes labels.
Function / dict values must be unique (1-to-1). Labels not contained in
a dict / Series will be left as-is. Extra labels listed don't throw an
error.
See the :ref:`user guide <basics.rename>` for more.
Parameters
----------
mapper : dict-like or function
Dict-like or functions transformations to apply to
that axis' values. Use either ``mapper`` and ``axis`` to
specify the axis to target with ``mapper``, or ``index`` and
``columns``.
index : dict-like or function
Alternative to specifying axis (``mapper, axis=0``
is equivalent to ``index=mapper``).
columns : dict-like or function
Alternative to specifying axis (``mapper, axis=1``
is equivalent to ``columns=mapper``).
axis : int or str
Axis to target with ``mapper``. Can be either the axis name
('index', 'columns') or number (0, 1). The default is 'index'.
copy : bool, default True
Also copy underlying data.
inplace : bool, default False
Whether to return a new DataFrame. If True then value of copy is
ignored.
level : int or level name, default None
In case of a MultiIndex, only rename labels in the specified
level.
errors : {'ignore', 'raise'}, default 'ignore'
If 'raise', raise a `KeyError` when a dict-like `mapper`, `index`,
or `columns` contains labels that are not present in the Index
being transformed.
If 'ignore', existing keys will be renamed and extra keys will be
ignored.
Returns
-------
DataFrame
DataFrame with the renamed axis labels.
Raises
------
KeyError
If any of the labels is not found in the selected axis and
"errors='raise'".
See Also
--------
DataFrame.rename_axis : Set the name of the axis.
Examples
--------
``DataFrame.rename`` supports two calling conventions
* ``(index=index_mapper, columns=columns_mapper, ...)``
* ``(mapper, axis={'index', 'columns'}, ...)``
We *highly* recommend using keyword arguments to clarify your
intent.
>>> df = pd.DataFrame({"A": [1, 2, 3], "B": [4, 5, 6]})
>>> df.rename(index=str, columns={"A": "a", "B": "c"})
a c
0 1 4
1 2 5
2 3 6
>>> df.rename(index=str, columns={"A": "a", "C": "c"})
a B
0 1 4
1 2 5
2 3 6
>>> df.rename(index=str, columns={"A": "a", "C": "c"}, errors="raise")
Traceback (most recent call last):
KeyError: ['C'] not found in axis
Using axis-style parameters
>>> df.rename(str.lower, axis='columns')
a b
0 1 4
1 2 5
2 3 6
>>> df.rename({1: 2, 2: 4}, axis='index')
A B
0 1 4
2 2 5
4 3 6
"""
axes = validate_axis_style_args(self, args, kwargs, 'mapper', 'rename')
kwargs.update(axes)
# Pop these, since the values are in `kwargs` under different names
kwargs.pop('axis', None)
kwargs.pop('mapper', None)
return super().rename(**kwargs)
|
[
"def",
"rename",
"(",
"self",
",",
"*",
"args",
",",
"*",
"*",
"kwargs",
")",
":",
"axes",
"=",
"validate_axis_style_args",
"(",
"self",
",",
"args",
",",
"kwargs",
",",
"'mapper'",
",",
"'rename'",
")",
"kwargs",
".",
"update",
"(",
"axes",
")",
"# Pop these, since the values are in `kwargs` under different names",
"kwargs",
".",
"pop",
"(",
"'axis'",
",",
"None",
")",
"kwargs",
".",
"pop",
"(",
"'mapper'",
",",
"None",
")",
"return",
"super",
"(",
")",
".",
"rename",
"(",
"*",
"*",
"kwargs",
")"
] |
Alter axes labels.
Function / dict values must be unique (1-to-1). Labels not contained in
a dict / Series will be left as-is. Extra labels listed don't throw an
error.
See the :ref:`user guide <basics.rename>` for more.
Parameters
----------
mapper : dict-like or function
Dict-like or functions transformations to apply to
that axis' values. Use either ``mapper`` and ``axis`` to
specify the axis to target with ``mapper``, or ``index`` and
``columns``.
index : dict-like or function
Alternative to specifying axis (``mapper, axis=0``
is equivalent to ``index=mapper``).
columns : dict-like or function
Alternative to specifying axis (``mapper, axis=1``
is equivalent to ``columns=mapper``).
axis : int or str
Axis to target with ``mapper``. Can be either the axis name
('index', 'columns') or number (0, 1). The default is 'index'.
copy : bool, default True
Also copy underlying data.
inplace : bool, default False
Whether to return a new DataFrame. If True then value of copy is
ignored.
level : int or level name, default None
In case of a MultiIndex, only rename labels in the specified
level.
errors : {'ignore', 'raise'}, default 'ignore'
If 'raise', raise a `KeyError` when a dict-like `mapper`, `index`,
or `columns` contains labels that are not present in the Index
being transformed.
If 'ignore', existing keys will be renamed and extra keys will be
ignored.
Returns
-------
DataFrame
DataFrame with the renamed axis labels.
Raises
------
KeyError
If any of the labels is not found in the selected axis and
"errors='raise'".
See Also
--------
DataFrame.rename_axis : Set the name of the axis.
Examples
--------
``DataFrame.rename`` supports two calling conventions
* ``(index=index_mapper, columns=columns_mapper, ...)``
* ``(mapper, axis={'index', 'columns'}, ...)``
We *highly* recommend using keyword arguments to clarify your
intent.
>>> df = pd.DataFrame({"A": [1, 2, 3], "B": [4, 5, 6]})
>>> df.rename(index=str, columns={"A": "a", "B": "c"})
a c
0 1 4
1 2 5
2 3 6
>>> df.rename(index=str, columns={"A": "a", "C": "c"})
a B
0 1 4
1 2 5
2 3 6
>>> df.rename(index=str, columns={"A": "a", "C": "c"}, errors="raise")
Traceback (most recent call last):
KeyError: ['C'] not found in axis
Using axis-style parameters
>>> df.rename(str.lower, axis='columns')
a b
0 1 4
1 2 5
2 3 6
>>> df.rename({1: 2, 2: 4}, axis='index')
A B
0 1 4
2 2 5
4 3 6
|
[
"Alter",
"axes",
"labels",
"."
] |
9feb3ad92cc0397a04b665803a49299ee7aa1037
|
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/frame.py#L3932-L4035
|
19,686
|
pandas-dev/pandas
|
pandas/core/frame.py
|
DataFrame.dropna
|
def dropna(self, axis=0, how='any', thresh=None, subset=None,
inplace=False):
"""
Remove missing values.
See the :ref:`User Guide <missing_data>` for more on which values are
considered missing, and how to work with missing data.
Parameters
----------
axis : {0 or 'index', 1 or 'columns'}, default 0
Determine if rows or columns which contain missing values are
removed.
* 0, or 'index' : Drop rows which contain missing values.
* 1, or 'columns' : Drop columns which contain missing value.
.. deprecated:: 0.23.0
Pass tuple or list to drop on multiple axes.
Only a single axis is allowed.
how : {'any', 'all'}, default 'any'
Determine if row or column is removed from DataFrame, when we have
at least one NA or all NA.
* 'any' : If any NA values are present, drop that row or column.
* 'all' : If all values are NA, drop that row or column.
thresh : int, optional
Require that many non-NA values.
subset : array-like, optional
Labels along other axis to consider, e.g. if you are dropping rows
these would be a list of columns to include.
inplace : bool, default False
If True, do operation inplace and return None.
Returns
-------
DataFrame
DataFrame with NA entries dropped from it.
See Also
--------
DataFrame.isna: Indicate missing values.
DataFrame.notna : Indicate existing (non-missing) values.
DataFrame.fillna : Replace missing values.
Series.dropna : Drop missing values.
Index.dropna : Drop missing indices.
Examples
--------
>>> df = pd.DataFrame({"name": ['Alfred', 'Batman', 'Catwoman'],
... "toy": [np.nan, 'Batmobile', 'Bullwhip'],
... "born": [pd.NaT, pd.Timestamp("1940-04-25"),
... pd.NaT]})
>>> df
name toy born
0 Alfred NaN NaT
1 Batman Batmobile 1940-04-25
2 Catwoman Bullwhip NaT
Drop the rows where at least one element is missing.
>>> df.dropna()
name toy born
1 Batman Batmobile 1940-04-25
Drop the columns where at least one element is missing.
>>> df.dropna(axis='columns')
name
0 Alfred
1 Batman
2 Catwoman
Drop the rows where all elements are missing.
>>> df.dropna(how='all')
name toy born
0 Alfred NaN NaT
1 Batman Batmobile 1940-04-25
2 Catwoman Bullwhip NaT
Keep only the rows with at least 2 non-NA values.
>>> df.dropna(thresh=2)
name toy born
1 Batman Batmobile 1940-04-25
2 Catwoman Bullwhip NaT
Define in which columns to look for missing values.
>>> df.dropna(subset=['name', 'born'])
name toy born
1 Batman Batmobile 1940-04-25
Keep the DataFrame with valid entries in the same variable.
>>> df.dropna(inplace=True)
>>> df
name toy born
1 Batman Batmobile 1940-04-25
"""
inplace = validate_bool_kwarg(inplace, 'inplace')
if isinstance(axis, (tuple, list)):
# GH20987
msg = ("supplying multiple axes to axis is deprecated and "
"will be removed in a future version.")
warnings.warn(msg, FutureWarning, stacklevel=2)
result = self
for ax in axis:
result = result.dropna(how=how, thresh=thresh, subset=subset,
axis=ax)
else:
axis = self._get_axis_number(axis)
agg_axis = 1 - axis
agg_obj = self
if subset is not None:
ax = self._get_axis(agg_axis)
indices = ax.get_indexer_for(subset)
check = indices == -1
if check.any():
raise KeyError(list(np.compress(check, subset)))
agg_obj = self.take(indices, axis=agg_axis)
count = agg_obj.count(axis=agg_axis)
if thresh is not None:
mask = count >= thresh
elif how == 'any':
mask = count == len(agg_obj._get_axis(agg_axis))
elif how == 'all':
mask = count > 0
else:
if how is not None:
raise ValueError('invalid how option: {h}'.format(h=how))
else:
raise TypeError('must specify how or thresh')
result = self.loc(axis=axis)[mask]
if inplace:
self._update_inplace(result)
else:
return result
|
python
|
def dropna(self, axis=0, how='any', thresh=None, subset=None,
inplace=False):
"""
Remove missing values.
See the :ref:`User Guide <missing_data>` for more on which values are
considered missing, and how to work with missing data.
Parameters
----------
axis : {0 or 'index', 1 or 'columns'}, default 0
Determine if rows or columns which contain missing values are
removed.
* 0, or 'index' : Drop rows which contain missing values.
* 1, or 'columns' : Drop columns which contain missing value.
.. deprecated:: 0.23.0
Pass tuple or list to drop on multiple axes.
Only a single axis is allowed.
how : {'any', 'all'}, default 'any'
Determine if row or column is removed from DataFrame, when we have
at least one NA or all NA.
* 'any' : If any NA values are present, drop that row or column.
* 'all' : If all values are NA, drop that row or column.
thresh : int, optional
Require that many non-NA values.
subset : array-like, optional
Labels along other axis to consider, e.g. if you are dropping rows
these would be a list of columns to include.
inplace : bool, default False
If True, do operation inplace and return None.
Returns
-------
DataFrame
DataFrame with NA entries dropped from it.
See Also
--------
DataFrame.isna: Indicate missing values.
DataFrame.notna : Indicate existing (non-missing) values.
DataFrame.fillna : Replace missing values.
Series.dropna : Drop missing values.
Index.dropna : Drop missing indices.
Examples
--------
>>> df = pd.DataFrame({"name": ['Alfred', 'Batman', 'Catwoman'],
... "toy": [np.nan, 'Batmobile', 'Bullwhip'],
... "born": [pd.NaT, pd.Timestamp("1940-04-25"),
... pd.NaT]})
>>> df
name toy born
0 Alfred NaN NaT
1 Batman Batmobile 1940-04-25
2 Catwoman Bullwhip NaT
Drop the rows where at least one element is missing.
>>> df.dropna()
name toy born
1 Batman Batmobile 1940-04-25
Drop the columns where at least one element is missing.
>>> df.dropna(axis='columns')
name
0 Alfred
1 Batman
2 Catwoman
Drop the rows where all elements are missing.
>>> df.dropna(how='all')
name toy born
0 Alfred NaN NaT
1 Batman Batmobile 1940-04-25
2 Catwoman Bullwhip NaT
Keep only the rows with at least 2 non-NA values.
>>> df.dropna(thresh=2)
name toy born
1 Batman Batmobile 1940-04-25
2 Catwoman Bullwhip NaT
Define in which columns to look for missing values.
>>> df.dropna(subset=['name', 'born'])
name toy born
1 Batman Batmobile 1940-04-25
Keep the DataFrame with valid entries in the same variable.
>>> df.dropna(inplace=True)
>>> df
name toy born
1 Batman Batmobile 1940-04-25
"""
inplace = validate_bool_kwarg(inplace, 'inplace')
if isinstance(axis, (tuple, list)):
# GH20987
msg = ("supplying multiple axes to axis is deprecated and "
"will be removed in a future version.")
warnings.warn(msg, FutureWarning, stacklevel=2)
result = self
for ax in axis:
result = result.dropna(how=how, thresh=thresh, subset=subset,
axis=ax)
else:
axis = self._get_axis_number(axis)
agg_axis = 1 - axis
agg_obj = self
if subset is not None:
ax = self._get_axis(agg_axis)
indices = ax.get_indexer_for(subset)
check = indices == -1
if check.any():
raise KeyError(list(np.compress(check, subset)))
agg_obj = self.take(indices, axis=agg_axis)
count = agg_obj.count(axis=agg_axis)
if thresh is not None:
mask = count >= thresh
elif how == 'any':
mask = count == len(agg_obj._get_axis(agg_axis))
elif how == 'all':
mask = count > 0
else:
if how is not None:
raise ValueError('invalid how option: {h}'.format(h=how))
else:
raise TypeError('must specify how or thresh')
result = self.loc(axis=axis)[mask]
if inplace:
self._update_inplace(result)
else:
return result
|
[
"def",
"dropna",
"(",
"self",
",",
"axis",
"=",
"0",
",",
"how",
"=",
"'any'",
",",
"thresh",
"=",
"None",
",",
"subset",
"=",
"None",
",",
"inplace",
"=",
"False",
")",
":",
"inplace",
"=",
"validate_bool_kwarg",
"(",
"inplace",
",",
"'inplace'",
")",
"if",
"isinstance",
"(",
"axis",
",",
"(",
"tuple",
",",
"list",
")",
")",
":",
"# GH20987",
"msg",
"=",
"(",
"\"supplying multiple axes to axis is deprecated and \"",
"\"will be removed in a future version.\"",
")",
"warnings",
".",
"warn",
"(",
"msg",
",",
"FutureWarning",
",",
"stacklevel",
"=",
"2",
")",
"result",
"=",
"self",
"for",
"ax",
"in",
"axis",
":",
"result",
"=",
"result",
".",
"dropna",
"(",
"how",
"=",
"how",
",",
"thresh",
"=",
"thresh",
",",
"subset",
"=",
"subset",
",",
"axis",
"=",
"ax",
")",
"else",
":",
"axis",
"=",
"self",
".",
"_get_axis_number",
"(",
"axis",
")",
"agg_axis",
"=",
"1",
"-",
"axis",
"agg_obj",
"=",
"self",
"if",
"subset",
"is",
"not",
"None",
":",
"ax",
"=",
"self",
".",
"_get_axis",
"(",
"agg_axis",
")",
"indices",
"=",
"ax",
".",
"get_indexer_for",
"(",
"subset",
")",
"check",
"=",
"indices",
"==",
"-",
"1",
"if",
"check",
".",
"any",
"(",
")",
":",
"raise",
"KeyError",
"(",
"list",
"(",
"np",
".",
"compress",
"(",
"check",
",",
"subset",
")",
")",
")",
"agg_obj",
"=",
"self",
".",
"take",
"(",
"indices",
",",
"axis",
"=",
"agg_axis",
")",
"count",
"=",
"agg_obj",
".",
"count",
"(",
"axis",
"=",
"agg_axis",
")",
"if",
"thresh",
"is",
"not",
"None",
":",
"mask",
"=",
"count",
">=",
"thresh",
"elif",
"how",
"==",
"'any'",
":",
"mask",
"=",
"count",
"==",
"len",
"(",
"agg_obj",
".",
"_get_axis",
"(",
"agg_axis",
")",
")",
"elif",
"how",
"==",
"'all'",
":",
"mask",
"=",
"count",
">",
"0",
"else",
":",
"if",
"how",
"is",
"not",
"None",
":",
"raise",
"ValueError",
"(",
"'invalid how option: {h}'",
".",
"format",
"(",
"h",
"=",
"how",
")",
")",
"else",
":",
"raise",
"TypeError",
"(",
"'must specify how or thresh'",
")",
"result",
"=",
"self",
".",
"loc",
"(",
"axis",
"=",
"axis",
")",
"[",
"mask",
"]",
"if",
"inplace",
":",
"self",
".",
"_update_inplace",
"(",
"result",
")",
"else",
":",
"return",
"result"
] |
Remove missing values.
See the :ref:`User Guide <missing_data>` for more on which values are
considered missing, and how to work with missing data.
Parameters
----------
axis : {0 or 'index', 1 or 'columns'}, default 0
Determine if rows or columns which contain missing values are
removed.
* 0, or 'index' : Drop rows which contain missing values.
* 1, or 'columns' : Drop columns which contain missing value.
.. deprecated:: 0.23.0
Pass tuple or list to drop on multiple axes.
Only a single axis is allowed.
how : {'any', 'all'}, default 'any'
Determine if row or column is removed from DataFrame, when we have
at least one NA or all NA.
* 'any' : If any NA values are present, drop that row or column.
* 'all' : If all values are NA, drop that row or column.
thresh : int, optional
Require that many non-NA values.
subset : array-like, optional
Labels along other axis to consider, e.g. if you are dropping rows
these would be a list of columns to include.
inplace : bool, default False
If True, do operation inplace and return None.
Returns
-------
DataFrame
DataFrame with NA entries dropped from it.
See Also
--------
DataFrame.isna: Indicate missing values.
DataFrame.notna : Indicate existing (non-missing) values.
DataFrame.fillna : Replace missing values.
Series.dropna : Drop missing values.
Index.dropna : Drop missing indices.
Examples
--------
>>> df = pd.DataFrame({"name": ['Alfred', 'Batman', 'Catwoman'],
... "toy": [np.nan, 'Batmobile', 'Bullwhip'],
... "born": [pd.NaT, pd.Timestamp("1940-04-25"),
... pd.NaT]})
>>> df
name toy born
0 Alfred NaN NaT
1 Batman Batmobile 1940-04-25
2 Catwoman Bullwhip NaT
Drop the rows where at least one element is missing.
>>> df.dropna()
name toy born
1 Batman Batmobile 1940-04-25
Drop the columns where at least one element is missing.
>>> df.dropna(axis='columns')
name
0 Alfred
1 Batman
2 Catwoman
Drop the rows where all elements are missing.
>>> df.dropna(how='all')
name toy born
0 Alfred NaN NaT
1 Batman Batmobile 1940-04-25
2 Catwoman Bullwhip NaT
Keep only the rows with at least 2 non-NA values.
>>> df.dropna(thresh=2)
name toy born
1 Batman Batmobile 1940-04-25
2 Catwoman Bullwhip NaT
Define in which columns to look for missing values.
>>> df.dropna(subset=['name', 'born'])
name toy born
1 Batman Batmobile 1940-04-25
Keep the DataFrame with valid entries in the same variable.
>>> df.dropna(inplace=True)
>>> df
name toy born
1 Batman Batmobile 1940-04-25
|
[
"Remove",
"missing",
"values",
"."
] |
9feb3ad92cc0397a04b665803a49299ee7aa1037
|
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/frame.py#L4497-L4644
|
19,687
|
pandas-dev/pandas
|
pandas/core/frame.py
|
DataFrame.drop_duplicates
|
def drop_duplicates(self, subset=None, keep='first', inplace=False):
"""
Return DataFrame with duplicate rows removed, optionally only
considering certain columns. Indexes, including time indexes
are ignored.
Parameters
----------
subset : column label or sequence of labels, optional
Only consider certain columns for identifying duplicates, by
default use all of the columns
keep : {'first', 'last', False}, default 'first'
- ``first`` : Drop duplicates except for the first occurrence.
- ``last`` : Drop duplicates except for the last occurrence.
- False : Drop all duplicates.
inplace : boolean, default False
Whether to drop duplicates in place or to return a copy
Returns
-------
DataFrame
"""
if self.empty:
return self.copy()
inplace = validate_bool_kwarg(inplace, 'inplace')
duplicated = self.duplicated(subset, keep=keep)
if inplace:
inds, = (-duplicated)._ndarray_values.nonzero()
new_data = self._data.take(inds)
self._update_inplace(new_data)
else:
return self[-duplicated]
|
python
|
def drop_duplicates(self, subset=None, keep='first', inplace=False):
"""
Return DataFrame with duplicate rows removed, optionally only
considering certain columns. Indexes, including time indexes
are ignored.
Parameters
----------
subset : column label or sequence of labels, optional
Only consider certain columns for identifying duplicates, by
default use all of the columns
keep : {'first', 'last', False}, default 'first'
- ``first`` : Drop duplicates except for the first occurrence.
- ``last`` : Drop duplicates except for the last occurrence.
- False : Drop all duplicates.
inplace : boolean, default False
Whether to drop duplicates in place or to return a copy
Returns
-------
DataFrame
"""
if self.empty:
return self.copy()
inplace = validate_bool_kwarg(inplace, 'inplace')
duplicated = self.duplicated(subset, keep=keep)
if inplace:
inds, = (-duplicated)._ndarray_values.nonzero()
new_data = self._data.take(inds)
self._update_inplace(new_data)
else:
return self[-duplicated]
|
[
"def",
"drop_duplicates",
"(",
"self",
",",
"subset",
"=",
"None",
",",
"keep",
"=",
"'first'",
",",
"inplace",
"=",
"False",
")",
":",
"if",
"self",
".",
"empty",
":",
"return",
"self",
".",
"copy",
"(",
")",
"inplace",
"=",
"validate_bool_kwarg",
"(",
"inplace",
",",
"'inplace'",
")",
"duplicated",
"=",
"self",
".",
"duplicated",
"(",
"subset",
",",
"keep",
"=",
"keep",
")",
"if",
"inplace",
":",
"inds",
",",
"=",
"(",
"-",
"duplicated",
")",
".",
"_ndarray_values",
".",
"nonzero",
"(",
")",
"new_data",
"=",
"self",
".",
"_data",
".",
"take",
"(",
"inds",
")",
"self",
".",
"_update_inplace",
"(",
"new_data",
")",
"else",
":",
"return",
"self",
"[",
"-",
"duplicated",
"]"
] |
Return DataFrame with duplicate rows removed, optionally only
considering certain columns. Indexes, including time indexes
are ignored.
Parameters
----------
subset : column label or sequence of labels, optional
Only consider certain columns for identifying duplicates, by
default use all of the columns
keep : {'first', 'last', False}, default 'first'
- ``first`` : Drop duplicates except for the first occurrence.
- ``last`` : Drop duplicates except for the last occurrence.
- False : Drop all duplicates.
inplace : boolean, default False
Whether to drop duplicates in place or to return a copy
Returns
-------
DataFrame
|
[
"Return",
"DataFrame",
"with",
"duplicate",
"rows",
"removed",
"optionally",
"only",
"considering",
"certain",
"columns",
".",
"Indexes",
"including",
"time",
"indexes",
"are",
"ignored",
"."
] |
9feb3ad92cc0397a04b665803a49299ee7aa1037
|
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/frame.py#L4646-L4679
|
19,688
|
pandas-dev/pandas
|
pandas/core/frame.py
|
DataFrame.duplicated
|
def duplicated(self, subset=None, keep='first'):
"""
Return boolean Series denoting duplicate rows, optionally only
considering certain columns.
Parameters
----------
subset : column label or sequence of labels, optional
Only consider certain columns for identifying duplicates, by
default use all of the columns
keep : {'first', 'last', False}, default 'first'
- ``first`` : Mark duplicates as ``True`` except for the
first occurrence.
- ``last`` : Mark duplicates as ``True`` except for the
last occurrence.
- False : Mark all duplicates as ``True``.
Returns
-------
Series
"""
from pandas.core.sorting import get_group_index
from pandas._libs.hashtable import duplicated_int64, _SIZE_HINT_LIMIT
if self.empty:
return Series(dtype=bool)
def f(vals):
labels, shape = algorithms.factorize(
vals, size_hint=min(len(self), _SIZE_HINT_LIMIT))
return labels.astype('i8', copy=False), len(shape)
if subset is None:
subset = self.columns
elif (not np.iterable(subset) or
isinstance(subset, str) or
isinstance(subset, tuple) and subset in self.columns):
subset = subset,
# Verify all columns in subset exist in the queried dataframe
# Otherwise, raise a KeyError, same as if you try to __getitem__ with a
# key that doesn't exist.
diff = Index(subset).difference(self.columns)
if not diff.empty:
raise KeyError(diff)
vals = (col.values for name, col in self.iteritems()
if name in subset)
labels, shape = map(list, zip(*map(f, vals)))
ids = get_group_index(labels, shape, sort=False, xnull=False)
return Series(duplicated_int64(ids, keep), index=self.index)
|
python
|
def duplicated(self, subset=None, keep='first'):
"""
Return boolean Series denoting duplicate rows, optionally only
considering certain columns.
Parameters
----------
subset : column label or sequence of labels, optional
Only consider certain columns for identifying duplicates, by
default use all of the columns
keep : {'first', 'last', False}, default 'first'
- ``first`` : Mark duplicates as ``True`` except for the
first occurrence.
- ``last`` : Mark duplicates as ``True`` except for the
last occurrence.
- False : Mark all duplicates as ``True``.
Returns
-------
Series
"""
from pandas.core.sorting import get_group_index
from pandas._libs.hashtable import duplicated_int64, _SIZE_HINT_LIMIT
if self.empty:
return Series(dtype=bool)
def f(vals):
labels, shape = algorithms.factorize(
vals, size_hint=min(len(self), _SIZE_HINT_LIMIT))
return labels.astype('i8', copy=False), len(shape)
if subset is None:
subset = self.columns
elif (not np.iterable(subset) or
isinstance(subset, str) or
isinstance(subset, tuple) and subset in self.columns):
subset = subset,
# Verify all columns in subset exist in the queried dataframe
# Otherwise, raise a KeyError, same as if you try to __getitem__ with a
# key that doesn't exist.
diff = Index(subset).difference(self.columns)
if not diff.empty:
raise KeyError(diff)
vals = (col.values for name, col in self.iteritems()
if name in subset)
labels, shape = map(list, zip(*map(f, vals)))
ids = get_group_index(labels, shape, sort=False, xnull=False)
return Series(duplicated_int64(ids, keep), index=self.index)
|
[
"def",
"duplicated",
"(",
"self",
",",
"subset",
"=",
"None",
",",
"keep",
"=",
"'first'",
")",
":",
"from",
"pandas",
".",
"core",
".",
"sorting",
"import",
"get_group_index",
"from",
"pandas",
".",
"_libs",
".",
"hashtable",
"import",
"duplicated_int64",
",",
"_SIZE_HINT_LIMIT",
"if",
"self",
".",
"empty",
":",
"return",
"Series",
"(",
"dtype",
"=",
"bool",
")",
"def",
"f",
"(",
"vals",
")",
":",
"labels",
",",
"shape",
"=",
"algorithms",
".",
"factorize",
"(",
"vals",
",",
"size_hint",
"=",
"min",
"(",
"len",
"(",
"self",
")",
",",
"_SIZE_HINT_LIMIT",
")",
")",
"return",
"labels",
".",
"astype",
"(",
"'i8'",
",",
"copy",
"=",
"False",
")",
",",
"len",
"(",
"shape",
")",
"if",
"subset",
"is",
"None",
":",
"subset",
"=",
"self",
".",
"columns",
"elif",
"(",
"not",
"np",
".",
"iterable",
"(",
"subset",
")",
"or",
"isinstance",
"(",
"subset",
",",
"str",
")",
"or",
"isinstance",
"(",
"subset",
",",
"tuple",
")",
"and",
"subset",
"in",
"self",
".",
"columns",
")",
":",
"subset",
"=",
"subset",
",",
"# Verify all columns in subset exist in the queried dataframe",
"# Otherwise, raise a KeyError, same as if you try to __getitem__ with a",
"# key that doesn't exist.",
"diff",
"=",
"Index",
"(",
"subset",
")",
".",
"difference",
"(",
"self",
".",
"columns",
")",
"if",
"not",
"diff",
".",
"empty",
":",
"raise",
"KeyError",
"(",
"diff",
")",
"vals",
"=",
"(",
"col",
".",
"values",
"for",
"name",
",",
"col",
"in",
"self",
".",
"iteritems",
"(",
")",
"if",
"name",
"in",
"subset",
")",
"labels",
",",
"shape",
"=",
"map",
"(",
"list",
",",
"zip",
"(",
"*",
"map",
"(",
"f",
",",
"vals",
")",
")",
")",
"ids",
"=",
"get_group_index",
"(",
"labels",
",",
"shape",
",",
"sort",
"=",
"False",
",",
"xnull",
"=",
"False",
")",
"return",
"Series",
"(",
"duplicated_int64",
"(",
"ids",
",",
"keep",
")",
",",
"index",
"=",
"self",
".",
"index",
")"
] |
Return boolean Series denoting duplicate rows, optionally only
considering certain columns.
Parameters
----------
subset : column label or sequence of labels, optional
Only consider certain columns for identifying duplicates, by
default use all of the columns
keep : {'first', 'last', False}, default 'first'
- ``first`` : Mark duplicates as ``True`` except for the
first occurrence.
- ``last`` : Mark duplicates as ``True`` except for the
last occurrence.
- False : Mark all duplicates as ``True``.
Returns
-------
Series
|
[
"Return",
"boolean",
"Series",
"denoting",
"duplicate",
"rows",
"optionally",
"only",
"considering",
"certain",
"columns",
"."
] |
9feb3ad92cc0397a04b665803a49299ee7aa1037
|
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/frame.py#L4681-L4732
|
19,689
|
pandas-dev/pandas
|
pandas/core/frame.py
|
DataFrame.nlargest
|
def nlargest(self, n, columns, keep='first'):
"""
Return the first `n` rows ordered by `columns` in descending order.
Return the first `n` rows with the largest values in `columns`, in
descending order. The columns that are not specified are returned as
well, but not used for ordering.
This method is equivalent to
``df.sort_values(columns, ascending=False).head(n)``, but more
performant.
Parameters
----------
n : int
Number of rows to return.
columns : label or list of labels
Column label(s) to order by.
keep : {'first', 'last', 'all'}, default 'first'
Where there are duplicate values:
- `first` : prioritize the first occurrence(s)
- `last` : prioritize the last occurrence(s)
- ``all`` : do not drop any duplicates, even it means
selecting more than `n` items.
.. versionadded:: 0.24.0
Returns
-------
DataFrame
The first `n` rows ordered by the given columns in descending
order.
See Also
--------
DataFrame.nsmallest : Return the first `n` rows ordered by `columns` in
ascending order.
DataFrame.sort_values : Sort DataFrame by the values.
DataFrame.head : Return the first `n` rows without re-ordering.
Notes
-----
This function cannot be used with all column types. For example, when
specifying columns with `object` or `category` dtypes, ``TypeError`` is
raised.
Examples
--------
>>> df = pd.DataFrame({'population': [59000000, 65000000, 434000,
... 434000, 434000, 337000, 11300,
... 11300, 11300],
... 'GDP': [1937894, 2583560 , 12011, 4520, 12128,
... 17036, 182, 38, 311],
... 'alpha-2': ["IT", "FR", "MT", "MV", "BN",
... "IS", "NR", "TV", "AI"]},
... index=["Italy", "France", "Malta",
... "Maldives", "Brunei", "Iceland",
... "Nauru", "Tuvalu", "Anguilla"])
>>> df
population GDP alpha-2
Italy 59000000 1937894 IT
France 65000000 2583560 FR
Malta 434000 12011 MT
Maldives 434000 4520 MV
Brunei 434000 12128 BN
Iceland 337000 17036 IS
Nauru 11300 182 NR
Tuvalu 11300 38 TV
Anguilla 11300 311 AI
In the following example, we will use ``nlargest`` to select the three
rows having the largest values in column "population".
>>> df.nlargest(3, 'population')
population GDP alpha-2
France 65000000 2583560 FR
Italy 59000000 1937894 IT
Malta 434000 12011 MT
When using ``keep='last'``, ties are resolved in reverse order:
>>> df.nlargest(3, 'population', keep='last')
population GDP alpha-2
France 65000000 2583560 FR
Italy 59000000 1937894 IT
Brunei 434000 12128 BN
When using ``keep='all'``, all duplicate items are maintained:
>>> df.nlargest(3, 'population', keep='all')
population GDP alpha-2
France 65000000 2583560 FR
Italy 59000000 1937894 IT
Malta 434000 12011 MT
Maldives 434000 4520 MV
Brunei 434000 12128 BN
To order by the largest values in column "population" and then "GDP",
we can specify multiple columns like in the next example.
>>> df.nlargest(3, ['population', 'GDP'])
population GDP alpha-2
France 65000000 2583560 FR
Italy 59000000 1937894 IT
Brunei 434000 12128 BN
"""
return algorithms.SelectNFrame(self,
n=n,
keep=keep,
columns=columns).nlargest()
|
python
|
def nlargest(self, n, columns, keep='first'):
"""
Return the first `n` rows ordered by `columns` in descending order.
Return the first `n` rows with the largest values in `columns`, in
descending order. The columns that are not specified are returned as
well, but not used for ordering.
This method is equivalent to
``df.sort_values(columns, ascending=False).head(n)``, but more
performant.
Parameters
----------
n : int
Number of rows to return.
columns : label or list of labels
Column label(s) to order by.
keep : {'first', 'last', 'all'}, default 'first'
Where there are duplicate values:
- `first` : prioritize the first occurrence(s)
- `last` : prioritize the last occurrence(s)
- ``all`` : do not drop any duplicates, even it means
selecting more than `n` items.
.. versionadded:: 0.24.0
Returns
-------
DataFrame
The first `n` rows ordered by the given columns in descending
order.
See Also
--------
DataFrame.nsmallest : Return the first `n` rows ordered by `columns` in
ascending order.
DataFrame.sort_values : Sort DataFrame by the values.
DataFrame.head : Return the first `n` rows without re-ordering.
Notes
-----
This function cannot be used with all column types. For example, when
specifying columns with `object` or `category` dtypes, ``TypeError`` is
raised.
Examples
--------
>>> df = pd.DataFrame({'population': [59000000, 65000000, 434000,
... 434000, 434000, 337000, 11300,
... 11300, 11300],
... 'GDP': [1937894, 2583560 , 12011, 4520, 12128,
... 17036, 182, 38, 311],
... 'alpha-2': ["IT", "FR", "MT", "MV", "BN",
... "IS", "NR", "TV", "AI"]},
... index=["Italy", "France", "Malta",
... "Maldives", "Brunei", "Iceland",
... "Nauru", "Tuvalu", "Anguilla"])
>>> df
population GDP alpha-2
Italy 59000000 1937894 IT
France 65000000 2583560 FR
Malta 434000 12011 MT
Maldives 434000 4520 MV
Brunei 434000 12128 BN
Iceland 337000 17036 IS
Nauru 11300 182 NR
Tuvalu 11300 38 TV
Anguilla 11300 311 AI
In the following example, we will use ``nlargest`` to select the three
rows having the largest values in column "population".
>>> df.nlargest(3, 'population')
population GDP alpha-2
France 65000000 2583560 FR
Italy 59000000 1937894 IT
Malta 434000 12011 MT
When using ``keep='last'``, ties are resolved in reverse order:
>>> df.nlargest(3, 'population', keep='last')
population GDP alpha-2
France 65000000 2583560 FR
Italy 59000000 1937894 IT
Brunei 434000 12128 BN
When using ``keep='all'``, all duplicate items are maintained:
>>> df.nlargest(3, 'population', keep='all')
population GDP alpha-2
France 65000000 2583560 FR
Italy 59000000 1937894 IT
Malta 434000 12011 MT
Maldives 434000 4520 MV
Brunei 434000 12128 BN
To order by the largest values in column "population" and then "GDP",
we can specify multiple columns like in the next example.
>>> df.nlargest(3, ['population', 'GDP'])
population GDP alpha-2
France 65000000 2583560 FR
Italy 59000000 1937894 IT
Brunei 434000 12128 BN
"""
return algorithms.SelectNFrame(self,
n=n,
keep=keep,
columns=columns).nlargest()
|
[
"def",
"nlargest",
"(",
"self",
",",
"n",
",",
"columns",
",",
"keep",
"=",
"'first'",
")",
":",
"return",
"algorithms",
".",
"SelectNFrame",
"(",
"self",
",",
"n",
"=",
"n",
",",
"keep",
"=",
"keep",
",",
"columns",
"=",
"columns",
")",
".",
"nlargest",
"(",
")"
] |
Return the first `n` rows ordered by `columns` in descending order.
Return the first `n` rows with the largest values in `columns`, in
descending order. The columns that are not specified are returned as
well, but not used for ordering.
This method is equivalent to
``df.sort_values(columns, ascending=False).head(n)``, but more
performant.
Parameters
----------
n : int
Number of rows to return.
columns : label or list of labels
Column label(s) to order by.
keep : {'first', 'last', 'all'}, default 'first'
Where there are duplicate values:
- `first` : prioritize the first occurrence(s)
- `last` : prioritize the last occurrence(s)
- ``all`` : do not drop any duplicates, even it means
selecting more than `n` items.
.. versionadded:: 0.24.0
Returns
-------
DataFrame
The first `n` rows ordered by the given columns in descending
order.
See Also
--------
DataFrame.nsmallest : Return the first `n` rows ordered by `columns` in
ascending order.
DataFrame.sort_values : Sort DataFrame by the values.
DataFrame.head : Return the first `n` rows without re-ordering.
Notes
-----
This function cannot be used with all column types. For example, when
specifying columns with `object` or `category` dtypes, ``TypeError`` is
raised.
Examples
--------
>>> df = pd.DataFrame({'population': [59000000, 65000000, 434000,
... 434000, 434000, 337000, 11300,
... 11300, 11300],
... 'GDP': [1937894, 2583560 , 12011, 4520, 12128,
... 17036, 182, 38, 311],
... 'alpha-2': ["IT", "FR", "MT", "MV", "BN",
... "IS", "NR", "TV", "AI"]},
... index=["Italy", "France", "Malta",
... "Maldives", "Brunei", "Iceland",
... "Nauru", "Tuvalu", "Anguilla"])
>>> df
population GDP alpha-2
Italy 59000000 1937894 IT
France 65000000 2583560 FR
Malta 434000 12011 MT
Maldives 434000 4520 MV
Brunei 434000 12128 BN
Iceland 337000 17036 IS
Nauru 11300 182 NR
Tuvalu 11300 38 TV
Anguilla 11300 311 AI
In the following example, we will use ``nlargest`` to select the three
rows having the largest values in column "population".
>>> df.nlargest(3, 'population')
population GDP alpha-2
France 65000000 2583560 FR
Italy 59000000 1937894 IT
Malta 434000 12011 MT
When using ``keep='last'``, ties are resolved in reverse order:
>>> df.nlargest(3, 'population', keep='last')
population GDP alpha-2
France 65000000 2583560 FR
Italy 59000000 1937894 IT
Brunei 434000 12128 BN
When using ``keep='all'``, all duplicate items are maintained:
>>> df.nlargest(3, 'population', keep='all')
population GDP alpha-2
France 65000000 2583560 FR
Italy 59000000 1937894 IT
Malta 434000 12011 MT
Maldives 434000 4520 MV
Brunei 434000 12128 BN
To order by the largest values in column "population" and then "GDP",
we can specify multiple columns like in the next example.
>>> df.nlargest(3, ['population', 'GDP'])
population GDP alpha-2
France 65000000 2583560 FR
Italy 59000000 1937894 IT
Brunei 434000 12128 BN
|
[
"Return",
"the",
"first",
"n",
"rows",
"ordered",
"by",
"columns",
"in",
"descending",
"order",
"."
] |
9feb3ad92cc0397a04b665803a49299ee7aa1037
|
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/frame.py#L4843-L4953
|
19,690
|
pandas-dev/pandas
|
pandas/core/frame.py
|
DataFrame.nsmallest
|
def nsmallest(self, n, columns, keep='first'):
"""
Return the first `n` rows ordered by `columns` in ascending order.
Return the first `n` rows with the smallest values in `columns`, in
ascending order. The columns that are not specified are returned as
well, but not used for ordering.
This method is equivalent to
``df.sort_values(columns, ascending=True).head(n)``, but more
performant.
Parameters
----------
n : int
Number of items to retrieve.
columns : list or str
Column name or names to order by.
keep : {'first', 'last', 'all'}, default 'first'
Where there are duplicate values:
- ``first`` : take the first occurrence.
- ``last`` : take the last occurrence.
- ``all`` : do not drop any duplicates, even it means
selecting more than `n` items.
.. versionadded:: 0.24.0
Returns
-------
DataFrame
See Also
--------
DataFrame.nlargest : Return the first `n` rows ordered by `columns` in
descending order.
DataFrame.sort_values : Sort DataFrame by the values.
DataFrame.head : Return the first `n` rows without re-ordering.
Examples
--------
>>> df = pd.DataFrame({'population': [59000000, 65000000, 434000,
... 434000, 434000, 337000, 11300,
... 11300, 11300],
... 'GDP': [1937894, 2583560 , 12011, 4520, 12128,
... 17036, 182, 38, 311],
... 'alpha-2': ["IT", "FR", "MT", "MV", "BN",
... "IS", "NR", "TV", "AI"]},
... index=["Italy", "France", "Malta",
... "Maldives", "Brunei", "Iceland",
... "Nauru", "Tuvalu", "Anguilla"])
>>> df
population GDP alpha-2
Italy 59000000 1937894 IT
France 65000000 2583560 FR
Malta 434000 12011 MT
Maldives 434000 4520 MV
Brunei 434000 12128 BN
Iceland 337000 17036 IS
Nauru 11300 182 NR
Tuvalu 11300 38 TV
Anguilla 11300 311 AI
In the following example, we will use ``nsmallest`` to select the
three rows having the smallest values in column "a".
>>> df.nsmallest(3, 'population')
population GDP alpha-2
Nauru 11300 182 NR
Tuvalu 11300 38 TV
Anguilla 11300 311 AI
When using ``keep='last'``, ties are resolved in reverse order:
>>> df.nsmallest(3, 'population', keep='last')
population GDP alpha-2
Anguilla 11300 311 AI
Tuvalu 11300 38 TV
Nauru 11300 182 NR
When using ``keep='all'``, all duplicate items are maintained:
>>> df.nsmallest(3, 'population', keep='all')
population GDP alpha-2
Nauru 11300 182 NR
Tuvalu 11300 38 TV
Anguilla 11300 311 AI
To order by the largest values in column "a" and then "c", we can
specify multiple columns like in the next example.
>>> df.nsmallest(3, ['population', 'GDP'])
population GDP alpha-2
Tuvalu 11300 38 TV
Nauru 11300 182 NR
Anguilla 11300 311 AI
"""
return algorithms.SelectNFrame(self,
n=n,
keep=keep,
columns=columns).nsmallest()
|
python
|
def nsmallest(self, n, columns, keep='first'):
"""
Return the first `n` rows ordered by `columns` in ascending order.
Return the first `n` rows with the smallest values in `columns`, in
ascending order. The columns that are not specified are returned as
well, but not used for ordering.
This method is equivalent to
``df.sort_values(columns, ascending=True).head(n)``, but more
performant.
Parameters
----------
n : int
Number of items to retrieve.
columns : list or str
Column name or names to order by.
keep : {'first', 'last', 'all'}, default 'first'
Where there are duplicate values:
- ``first`` : take the first occurrence.
- ``last`` : take the last occurrence.
- ``all`` : do not drop any duplicates, even it means
selecting more than `n` items.
.. versionadded:: 0.24.0
Returns
-------
DataFrame
See Also
--------
DataFrame.nlargest : Return the first `n` rows ordered by `columns` in
descending order.
DataFrame.sort_values : Sort DataFrame by the values.
DataFrame.head : Return the first `n` rows without re-ordering.
Examples
--------
>>> df = pd.DataFrame({'population': [59000000, 65000000, 434000,
... 434000, 434000, 337000, 11300,
... 11300, 11300],
... 'GDP': [1937894, 2583560 , 12011, 4520, 12128,
... 17036, 182, 38, 311],
... 'alpha-2': ["IT", "FR", "MT", "MV", "BN",
... "IS", "NR", "TV", "AI"]},
... index=["Italy", "France", "Malta",
... "Maldives", "Brunei", "Iceland",
... "Nauru", "Tuvalu", "Anguilla"])
>>> df
population GDP alpha-2
Italy 59000000 1937894 IT
France 65000000 2583560 FR
Malta 434000 12011 MT
Maldives 434000 4520 MV
Brunei 434000 12128 BN
Iceland 337000 17036 IS
Nauru 11300 182 NR
Tuvalu 11300 38 TV
Anguilla 11300 311 AI
In the following example, we will use ``nsmallest`` to select the
three rows having the smallest values in column "a".
>>> df.nsmallest(3, 'population')
population GDP alpha-2
Nauru 11300 182 NR
Tuvalu 11300 38 TV
Anguilla 11300 311 AI
When using ``keep='last'``, ties are resolved in reverse order:
>>> df.nsmallest(3, 'population', keep='last')
population GDP alpha-2
Anguilla 11300 311 AI
Tuvalu 11300 38 TV
Nauru 11300 182 NR
When using ``keep='all'``, all duplicate items are maintained:
>>> df.nsmallest(3, 'population', keep='all')
population GDP alpha-2
Nauru 11300 182 NR
Tuvalu 11300 38 TV
Anguilla 11300 311 AI
To order by the largest values in column "a" and then "c", we can
specify multiple columns like in the next example.
>>> df.nsmallest(3, ['population', 'GDP'])
population GDP alpha-2
Tuvalu 11300 38 TV
Nauru 11300 182 NR
Anguilla 11300 311 AI
"""
return algorithms.SelectNFrame(self,
n=n,
keep=keep,
columns=columns).nsmallest()
|
[
"def",
"nsmallest",
"(",
"self",
",",
"n",
",",
"columns",
",",
"keep",
"=",
"'first'",
")",
":",
"return",
"algorithms",
".",
"SelectNFrame",
"(",
"self",
",",
"n",
"=",
"n",
",",
"keep",
"=",
"keep",
",",
"columns",
"=",
"columns",
")",
".",
"nsmallest",
"(",
")"
] |
Return the first `n` rows ordered by `columns` in ascending order.
Return the first `n` rows with the smallest values in `columns`, in
ascending order. The columns that are not specified are returned as
well, but not used for ordering.
This method is equivalent to
``df.sort_values(columns, ascending=True).head(n)``, but more
performant.
Parameters
----------
n : int
Number of items to retrieve.
columns : list or str
Column name or names to order by.
keep : {'first', 'last', 'all'}, default 'first'
Where there are duplicate values:
- ``first`` : take the first occurrence.
- ``last`` : take the last occurrence.
- ``all`` : do not drop any duplicates, even it means
selecting more than `n` items.
.. versionadded:: 0.24.0
Returns
-------
DataFrame
See Also
--------
DataFrame.nlargest : Return the first `n` rows ordered by `columns` in
descending order.
DataFrame.sort_values : Sort DataFrame by the values.
DataFrame.head : Return the first `n` rows without re-ordering.
Examples
--------
>>> df = pd.DataFrame({'population': [59000000, 65000000, 434000,
... 434000, 434000, 337000, 11300,
... 11300, 11300],
... 'GDP': [1937894, 2583560 , 12011, 4520, 12128,
... 17036, 182, 38, 311],
... 'alpha-2': ["IT", "FR", "MT", "MV", "BN",
... "IS", "NR", "TV", "AI"]},
... index=["Italy", "France", "Malta",
... "Maldives", "Brunei", "Iceland",
... "Nauru", "Tuvalu", "Anguilla"])
>>> df
population GDP alpha-2
Italy 59000000 1937894 IT
France 65000000 2583560 FR
Malta 434000 12011 MT
Maldives 434000 4520 MV
Brunei 434000 12128 BN
Iceland 337000 17036 IS
Nauru 11300 182 NR
Tuvalu 11300 38 TV
Anguilla 11300 311 AI
In the following example, we will use ``nsmallest`` to select the
three rows having the smallest values in column "a".
>>> df.nsmallest(3, 'population')
population GDP alpha-2
Nauru 11300 182 NR
Tuvalu 11300 38 TV
Anguilla 11300 311 AI
When using ``keep='last'``, ties are resolved in reverse order:
>>> df.nsmallest(3, 'population', keep='last')
population GDP alpha-2
Anguilla 11300 311 AI
Tuvalu 11300 38 TV
Nauru 11300 182 NR
When using ``keep='all'``, all duplicate items are maintained:
>>> df.nsmallest(3, 'population', keep='all')
population GDP alpha-2
Nauru 11300 182 NR
Tuvalu 11300 38 TV
Anguilla 11300 311 AI
To order by the largest values in column "a" and then "c", we can
specify multiple columns like in the next example.
>>> df.nsmallest(3, ['population', 'GDP'])
population GDP alpha-2
Tuvalu 11300 38 TV
Nauru 11300 182 NR
Anguilla 11300 311 AI
|
[
"Return",
"the",
"first",
"n",
"rows",
"ordered",
"by",
"columns",
"in",
"ascending",
"order",
"."
] |
9feb3ad92cc0397a04b665803a49299ee7aa1037
|
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/frame.py#L4955-L5055
|
19,691
|
pandas-dev/pandas
|
pandas/core/frame.py
|
DataFrame.swaplevel
|
def swaplevel(self, i=-2, j=-1, axis=0):
"""
Swap levels i and j in a MultiIndex on a particular axis.
Parameters
----------
i, j : int, string (can be mixed)
Level of index to be swapped. Can pass level name as string.
Returns
-------
DataFrame
.. versionchanged:: 0.18.1
The indexes ``i`` and ``j`` are now optional, and default to
the two innermost levels of the index.
"""
result = self.copy()
axis = self._get_axis_number(axis)
if axis == 0:
result.index = result.index.swaplevel(i, j)
else:
result.columns = result.columns.swaplevel(i, j)
return result
|
python
|
def swaplevel(self, i=-2, j=-1, axis=0):
"""
Swap levels i and j in a MultiIndex on a particular axis.
Parameters
----------
i, j : int, string (can be mixed)
Level of index to be swapped. Can pass level name as string.
Returns
-------
DataFrame
.. versionchanged:: 0.18.1
The indexes ``i`` and ``j`` are now optional, and default to
the two innermost levels of the index.
"""
result = self.copy()
axis = self._get_axis_number(axis)
if axis == 0:
result.index = result.index.swaplevel(i, j)
else:
result.columns = result.columns.swaplevel(i, j)
return result
|
[
"def",
"swaplevel",
"(",
"self",
",",
"i",
"=",
"-",
"2",
",",
"j",
"=",
"-",
"1",
",",
"axis",
"=",
"0",
")",
":",
"result",
"=",
"self",
".",
"copy",
"(",
")",
"axis",
"=",
"self",
".",
"_get_axis_number",
"(",
"axis",
")",
"if",
"axis",
"==",
"0",
":",
"result",
".",
"index",
"=",
"result",
".",
"index",
".",
"swaplevel",
"(",
"i",
",",
"j",
")",
"else",
":",
"result",
".",
"columns",
"=",
"result",
".",
"columns",
".",
"swaplevel",
"(",
"i",
",",
"j",
")",
"return",
"result"
] |
Swap levels i and j in a MultiIndex on a particular axis.
Parameters
----------
i, j : int, string (can be mixed)
Level of index to be swapped. Can pass level name as string.
Returns
-------
DataFrame
.. versionchanged:: 0.18.1
The indexes ``i`` and ``j`` are now optional, and default to
the two innermost levels of the index.
|
[
"Swap",
"levels",
"i",
"and",
"j",
"in",
"a",
"MultiIndex",
"on",
"a",
"particular",
"axis",
"."
] |
9feb3ad92cc0397a04b665803a49299ee7aa1037
|
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/frame.py#L5057-L5082
|
19,692
|
pandas-dev/pandas
|
pandas/core/frame.py
|
DataFrame.reorder_levels
|
def reorder_levels(self, order, axis=0):
"""
Rearrange index levels using input order. May not drop or
duplicate levels.
Parameters
----------
order : list of int or list of str
List representing new level order. Reference level by number
(position) or by key (label).
axis : int
Where to reorder levels.
Returns
-------
type of caller (new object)
"""
axis = self._get_axis_number(axis)
if not isinstance(self._get_axis(axis),
MultiIndex): # pragma: no cover
raise TypeError('Can only reorder levels on a hierarchical axis.')
result = self.copy()
if axis == 0:
result.index = result.index.reorder_levels(order)
else:
result.columns = result.columns.reorder_levels(order)
return result
|
python
|
def reorder_levels(self, order, axis=0):
"""
Rearrange index levels using input order. May not drop or
duplicate levels.
Parameters
----------
order : list of int or list of str
List representing new level order. Reference level by number
(position) or by key (label).
axis : int
Where to reorder levels.
Returns
-------
type of caller (new object)
"""
axis = self._get_axis_number(axis)
if not isinstance(self._get_axis(axis),
MultiIndex): # pragma: no cover
raise TypeError('Can only reorder levels on a hierarchical axis.')
result = self.copy()
if axis == 0:
result.index = result.index.reorder_levels(order)
else:
result.columns = result.columns.reorder_levels(order)
return result
|
[
"def",
"reorder_levels",
"(",
"self",
",",
"order",
",",
"axis",
"=",
"0",
")",
":",
"axis",
"=",
"self",
".",
"_get_axis_number",
"(",
"axis",
")",
"if",
"not",
"isinstance",
"(",
"self",
".",
"_get_axis",
"(",
"axis",
")",
",",
"MultiIndex",
")",
":",
"# pragma: no cover",
"raise",
"TypeError",
"(",
"'Can only reorder levels on a hierarchical axis.'",
")",
"result",
"=",
"self",
".",
"copy",
"(",
")",
"if",
"axis",
"==",
"0",
":",
"result",
".",
"index",
"=",
"result",
".",
"index",
".",
"reorder_levels",
"(",
"order",
")",
"else",
":",
"result",
".",
"columns",
"=",
"result",
".",
"columns",
".",
"reorder_levels",
"(",
"order",
")",
"return",
"result"
] |
Rearrange index levels using input order. May not drop or
duplicate levels.
Parameters
----------
order : list of int or list of str
List representing new level order. Reference level by number
(position) or by key (label).
axis : int
Where to reorder levels.
Returns
-------
type of caller (new object)
|
[
"Rearrange",
"index",
"levels",
"using",
"input",
"order",
".",
"May",
"not",
"drop",
"or",
"duplicate",
"levels",
"."
] |
9feb3ad92cc0397a04b665803a49299ee7aa1037
|
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/frame.py#L5084-L5112
|
19,693
|
pandas-dev/pandas
|
pandas/core/frame.py
|
DataFrame.combine
|
def combine(self, other, func, fill_value=None, overwrite=True):
"""
Perform column-wise combine with another DataFrame.
Combines a DataFrame with `other` DataFrame using `func`
to element-wise combine columns. The row and column indexes of the
resulting DataFrame will be the union of the two.
Parameters
----------
other : DataFrame
The DataFrame to merge column-wise.
func : function
Function that takes two series as inputs and return a Series or a
scalar. Used to merge the two dataframes column by columns.
fill_value : scalar value, default None
The value to fill NaNs with prior to passing any column to the
merge func.
overwrite : bool, default True
If True, columns in `self` that do not exist in `other` will be
overwritten with NaNs.
Returns
-------
DataFrame
Combination of the provided DataFrames.
See Also
--------
DataFrame.combine_first : Combine two DataFrame objects and default to
non-null values in frame calling the method.
Examples
--------
Combine using a simple function that chooses the smaller column.
>>> df1 = pd.DataFrame({'A': [0, 0], 'B': [4, 4]})
>>> df2 = pd.DataFrame({'A': [1, 1], 'B': [3, 3]})
>>> take_smaller = lambda s1, s2: s1 if s1.sum() < s2.sum() else s2
>>> df1.combine(df2, take_smaller)
A B
0 0 3
1 0 3
Example using a true element-wise combine function.
>>> df1 = pd.DataFrame({'A': [5, 0], 'B': [2, 4]})
>>> df2 = pd.DataFrame({'A': [1, 1], 'B': [3, 3]})
>>> df1.combine(df2, np.minimum)
A B
0 1 2
1 0 3
Using `fill_value` fills Nones prior to passing the column to the
merge function.
>>> df1 = pd.DataFrame({'A': [0, 0], 'B': [None, 4]})
>>> df2 = pd.DataFrame({'A': [1, 1], 'B': [3, 3]})
>>> df1.combine(df2, take_smaller, fill_value=-5)
A B
0 0 -5.0
1 0 4.0
However, if the same element in both dataframes is None, that None
is preserved
>>> df1 = pd.DataFrame({'A': [0, 0], 'B': [None, 4]})
>>> df2 = pd.DataFrame({'A': [1, 1], 'B': [None, 3]})
>>> df1.combine(df2, take_smaller, fill_value=-5)
A B
0 0 -5.0
1 0 3.0
Example that demonstrates the use of `overwrite` and behavior when
the axis differ between the dataframes.
>>> df1 = pd.DataFrame({'A': [0, 0], 'B': [4, 4]})
>>> df2 = pd.DataFrame({'B': [3, 3], 'C': [-10, 1], }, index=[1, 2])
>>> df1.combine(df2, take_smaller)
A B C
0 NaN NaN NaN
1 NaN 3.0 -10.0
2 NaN 3.0 1.0
>>> df1.combine(df2, take_smaller, overwrite=False)
A B C
0 0.0 NaN NaN
1 0.0 3.0 -10.0
2 NaN 3.0 1.0
Demonstrating the preference of the passed in dataframe.
>>> df2 = pd.DataFrame({'B': [3, 3], 'C': [1, 1], }, index=[1, 2])
>>> df2.combine(df1, take_smaller)
A B C
0 0.0 NaN NaN
1 0.0 3.0 NaN
2 NaN 3.0 NaN
>>> df2.combine(df1, take_smaller, overwrite=False)
A B C
0 0.0 NaN NaN
1 0.0 3.0 1.0
2 NaN 3.0 1.0
"""
other_idxlen = len(other.index) # save for compare
this, other = self.align(other, copy=False)
new_index = this.index
if other.empty and len(new_index) == len(self.index):
return self.copy()
if self.empty and len(other) == other_idxlen:
return other.copy()
# sorts if possible
new_columns = this.columns.union(other.columns)
do_fill = fill_value is not None
result = {}
for col in new_columns:
series = this[col]
otherSeries = other[col]
this_dtype = series.dtype
other_dtype = otherSeries.dtype
this_mask = isna(series)
other_mask = isna(otherSeries)
# don't overwrite columns unecessarily
# DO propagate if this column is not in the intersection
if not overwrite and other_mask.all():
result[col] = this[col].copy()
continue
if do_fill:
series = series.copy()
otherSeries = otherSeries.copy()
series[this_mask] = fill_value
otherSeries[other_mask] = fill_value
if col not in self.columns:
# If self DataFrame does not have col in other DataFrame,
# try to promote series, which is all NaN, as other_dtype.
new_dtype = other_dtype
try:
series = series.astype(new_dtype, copy=False)
except ValueError:
# e.g. new_dtype is integer types
pass
else:
# if we have different dtypes, possibly promote
new_dtype = find_common_type([this_dtype, other_dtype])
if not is_dtype_equal(this_dtype, new_dtype):
series = series.astype(new_dtype)
if not is_dtype_equal(other_dtype, new_dtype):
otherSeries = otherSeries.astype(new_dtype)
arr = func(series, otherSeries)
arr = maybe_downcast_to_dtype(arr, this_dtype)
result[col] = arr
# convert_objects just in case
return self._constructor(result, index=new_index,
columns=new_columns)
|
python
|
def combine(self, other, func, fill_value=None, overwrite=True):
"""
Perform column-wise combine with another DataFrame.
Combines a DataFrame with `other` DataFrame using `func`
to element-wise combine columns. The row and column indexes of the
resulting DataFrame will be the union of the two.
Parameters
----------
other : DataFrame
The DataFrame to merge column-wise.
func : function
Function that takes two series as inputs and return a Series or a
scalar. Used to merge the two dataframes column by columns.
fill_value : scalar value, default None
The value to fill NaNs with prior to passing any column to the
merge func.
overwrite : bool, default True
If True, columns in `self` that do not exist in `other` will be
overwritten with NaNs.
Returns
-------
DataFrame
Combination of the provided DataFrames.
See Also
--------
DataFrame.combine_first : Combine two DataFrame objects and default to
non-null values in frame calling the method.
Examples
--------
Combine using a simple function that chooses the smaller column.
>>> df1 = pd.DataFrame({'A': [0, 0], 'B': [4, 4]})
>>> df2 = pd.DataFrame({'A': [1, 1], 'B': [3, 3]})
>>> take_smaller = lambda s1, s2: s1 if s1.sum() < s2.sum() else s2
>>> df1.combine(df2, take_smaller)
A B
0 0 3
1 0 3
Example using a true element-wise combine function.
>>> df1 = pd.DataFrame({'A': [5, 0], 'B': [2, 4]})
>>> df2 = pd.DataFrame({'A': [1, 1], 'B': [3, 3]})
>>> df1.combine(df2, np.minimum)
A B
0 1 2
1 0 3
Using `fill_value` fills Nones prior to passing the column to the
merge function.
>>> df1 = pd.DataFrame({'A': [0, 0], 'B': [None, 4]})
>>> df2 = pd.DataFrame({'A': [1, 1], 'B': [3, 3]})
>>> df1.combine(df2, take_smaller, fill_value=-5)
A B
0 0 -5.0
1 0 4.0
However, if the same element in both dataframes is None, that None
is preserved
>>> df1 = pd.DataFrame({'A': [0, 0], 'B': [None, 4]})
>>> df2 = pd.DataFrame({'A': [1, 1], 'B': [None, 3]})
>>> df1.combine(df2, take_smaller, fill_value=-5)
A B
0 0 -5.0
1 0 3.0
Example that demonstrates the use of `overwrite` and behavior when
the axis differ between the dataframes.
>>> df1 = pd.DataFrame({'A': [0, 0], 'B': [4, 4]})
>>> df2 = pd.DataFrame({'B': [3, 3], 'C': [-10, 1], }, index=[1, 2])
>>> df1.combine(df2, take_smaller)
A B C
0 NaN NaN NaN
1 NaN 3.0 -10.0
2 NaN 3.0 1.0
>>> df1.combine(df2, take_smaller, overwrite=False)
A B C
0 0.0 NaN NaN
1 0.0 3.0 -10.0
2 NaN 3.0 1.0
Demonstrating the preference of the passed in dataframe.
>>> df2 = pd.DataFrame({'B': [3, 3], 'C': [1, 1], }, index=[1, 2])
>>> df2.combine(df1, take_smaller)
A B C
0 0.0 NaN NaN
1 0.0 3.0 NaN
2 NaN 3.0 NaN
>>> df2.combine(df1, take_smaller, overwrite=False)
A B C
0 0.0 NaN NaN
1 0.0 3.0 1.0
2 NaN 3.0 1.0
"""
other_idxlen = len(other.index) # save for compare
this, other = self.align(other, copy=False)
new_index = this.index
if other.empty and len(new_index) == len(self.index):
return self.copy()
if self.empty and len(other) == other_idxlen:
return other.copy()
# sorts if possible
new_columns = this.columns.union(other.columns)
do_fill = fill_value is not None
result = {}
for col in new_columns:
series = this[col]
otherSeries = other[col]
this_dtype = series.dtype
other_dtype = otherSeries.dtype
this_mask = isna(series)
other_mask = isna(otherSeries)
# don't overwrite columns unecessarily
# DO propagate if this column is not in the intersection
if not overwrite and other_mask.all():
result[col] = this[col].copy()
continue
if do_fill:
series = series.copy()
otherSeries = otherSeries.copy()
series[this_mask] = fill_value
otherSeries[other_mask] = fill_value
if col not in self.columns:
# If self DataFrame does not have col in other DataFrame,
# try to promote series, which is all NaN, as other_dtype.
new_dtype = other_dtype
try:
series = series.astype(new_dtype, copy=False)
except ValueError:
# e.g. new_dtype is integer types
pass
else:
# if we have different dtypes, possibly promote
new_dtype = find_common_type([this_dtype, other_dtype])
if not is_dtype_equal(this_dtype, new_dtype):
series = series.astype(new_dtype)
if not is_dtype_equal(other_dtype, new_dtype):
otherSeries = otherSeries.astype(new_dtype)
arr = func(series, otherSeries)
arr = maybe_downcast_to_dtype(arr, this_dtype)
result[col] = arr
# convert_objects just in case
return self._constructor(result, index=new_index,
columns=new_columns)
|
[
"def",
"combine",
"(",
"self",
",",
"other",
",",
"func",
",",
"fill_value",
"=",
"None",
",",
"overwrite",
"=",
"True",
")",
":",
"other_idxlen",
"=",
"len",
"(",
"other",
".",
"index",
")",
"# save for compare",
"this",
",",
"other",
"=",
"self",
".",
"align",
"(",
"other",
",",
"copy",
"=",
"False",
")",
"new_index",
"=",
"this",
".",
"index",
"if",
"other",
".",
"empty",
"and",
"len",
"(",
"new_index",
")",
"==",
"len",
"(",
"self",
".",
"index",
")",
":",
"return",
"self",
".",
"copy",
"(",
")",
"if",
"self",
".",
"empty",
"and",
"len",
"(",
"other",
")",
"==",
"other_idxlen",
":",
"return",
"other",
".",
"copy",
"(",
")",
"# sorts if possible",
"new_columns",
"=",
"this",
".",
"columns",
".",
"union",
"(",
"other",
".",
"columns",
")",
"do_fill",
"=",
"fill_value",
"is",
"not",
"None",
"result",
"=",
"{",
"}",
"for",
"col",
"in",
"new_columns",
":",
"series",
"=",
"this",
"[",
"col",
"]",
"otherSeries",
"=",
"other",
"[",
"col",
"]",
"this_dtype",
"=",
"series",
".",
"dtype",
"other_dtype",
"=",
"otherSeries",
".",
"dtype",
"this_mask",
"=",
"isna",
"(",
"series",
")",
"other_mask",
"=",
"isna",
"(",
"otherSeries",
")",
"# don't overwrite columns unecessarily",
"# DO propagate if this column is not in the intersection",
"if",
"not",
"overwrite",
"and",
"other_mask",
".",
"all",
"(",
")",
":",
"result",
"[",
"col",
"]",
"=",
"this",
"[",
"col",
"]",
".",
"copy",
"(",
")",
"continue",
"if",
"do_fill",
":",
"series",
"=",
"series",
".",
"copy",
"(",
")",
"otherSeries",
"=",
"otherSeries",
".",
"copy",
"(",
")",
"series",
"[",
"this_mask",
"]",
"=",
"fill_value",
"otherSeries",
"[",
"other_mask",
"]",
"=",
"fill_value",
"if",
"col",
"not",
"in",
"self",
".",
"columns",
":",
"# If self DataFrame does not have col in other DataFrame,",
"# try to promote series, which is all NaN, as other_dtype.",
"new_dtype",
"=",
"other_dtype",
"try",
":",
"series",
"=",
"series",
".",
"astype",
"(",
"new_dtype",
",",
"copy",
"=",
"False",
")",
"except",
"ValueError",
":",
"# e.g. new_dtype is integer types",
"pass",
"else",
":",
"# if we have different dtypes, possibly promote",
"new_dtype",
"=",
"find_common_type",
"(",
"[",
"this_dtype",
",",
"other_dtype",
"]",
")",
"if",
"not",
"is_dtype_equal",
"(",
"this_dtype",
",",
"new_dtype",
")",
":",
"series",
"=",
"series",
".",
"astype",
"(",
"new_dtype",
")",
"if",
"not",
"is_dtype_equal",
"(",
"other_dtype",
",",
"new_dtype",
")",
":",
"otherSeries",
"=",
"otherSeries",
".",
"astype",
"(",
"new_dtype",
")",
"arr",
"=",
"func",
"(",
"series",
",",
"otherSeries",
")",
"arr",
"=",
"maybe_downcast_to_dtype",
"(",
"arr",
",",
"this_dtype",
")",
"result",
"[",
"col",
"]",
"=",
"arr",
"# convert_objects just in case",
"return",
"self",
".",
"_constructor",
"(",
"result",
",",
"index",
"=",
"new_index",
",",
"columns",
"=",
"new_columns",
")"
] |
Perform column-wise combine with another DataFrame.
Combines a DataFrame with `other` DataFrame using `func`
to element-wise combine columns. The row and column indexes of the
resulting DataFrame will be the union of the two.
Parameters
----------
other : DataFrame
The DataFrame to merge column-wise.
func : function
Function that takes two series as inputs and return a Series or a
scalar. Used to merge the two dataframes column by columns.
fill_value : scalar value, default None
The value to fill NaNs with prior to passing any column to the
merge func.
overwrite : bool, default True
If True, columns in `self` that do not exist in `other` will be
overwritten with NaNs.
Returns
-------
DataFrame
Combination of the provided DataFrames.
See Also
--------
DataFrame.combine_first : Combine two DataFrame objects and default to
non-null values in frame calling the method.
Examples
--------
Combine using a simple function that chooses the smaller column.
>>> df1 = pd.DataFrame({'A': [0, 0], 'B': [4, 4]})
>>> df2 = pd.DataFrame({'A': [1, 1], 'B': [3, 3]})
>>> take_smaller = lambda s1, s2: s1 if s1.sum() < s2.sum() else s2
>>> df1.combine(df2, take_smaller)
A B
0 0 3
1 0 3
Example using a true element-wise combine function.
>>> df1 = pd.DataFrame({'A': [5, 0], 'B': [2, 4]})
>>> df2 = pd.DataFrame({'A': [1, 1], 'B': [3, 3]})
>>> df1.combine(df2, np.minimum)
A B
0 1 2
1 0 3
Using `fill_value` fills Nones prior to passing the column to the
merge function.
>>> df1 = pd.DataFrame({'A': [0, 0], 'B': [None, 4]})
>>> df2 = pd.DataFrame({'A': [1, 1], 'B': [3, 3]})
>>> df1.combine(df2, take_smaller, fill_value=-5)
A B
0 0 -5.0
1 0 4.0
However, if the same element in both dataframes is None, that None
is preserved
>>> df1 = pd.DataFrame({'A': [0, 0], 'B': [None, 4]})
>>> df2 = pd.DataFrame({'A': [1, 1], 'B': [None, 3]})
>>> df1.combine(df2, take_smaller, fill_value=-5)
A B
0 0 -5.0
1 0 3.0
Example that demonstrates the use of `overwrite` and behavior when
the axis differ between the dataframes.
>>> df1 = pd.DataFrame({'A': [0, 0], 'B': [4, 4]})
>>> df2 = pd.DataFrame({'B': [3, 3], 'C': [-10, 1], }, index=[1, 2])
>>> df1.combine(df2, take_smaller)
A B C
0 NaN NaN NaN
1 NaN 3.0 -10.0
2 NaN 3.0 1.0
>>> df1.combine(df2, take_smaller, overwrite=False)
A B C
0 0.0 NaN NaN
1 0.0 3.0 -10.0
2 NaN 3.0 1.0
Demonstrating the preference of the passed in dataframe.
>>> df2 = pd.DataFrame({'B': [3, 3], 'C': [1, 1], }, index=[1, 2])
>>> df2.combine(df1, take_smaller)
A B C
0 0.0 NaN NaN
1 0.0 3.0 NaN
2 NaN 3.0 NaN
>>> df2.combine(df1, take_smaller, overwrite=False)
A B C
0 0.0 NaN NaN
1 0.0 3.0 1.0
2 NaN 3.0 1.0
|
[
"Perform",
"column",
"-",
"wise",
"combine",
"with",
"another",
"DataFrame",
"."
] |
9feb3ad92cc0397a04b665803a49299ee7aa1037
|
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/frame.py#L5164-L5330
|
19,694
|
pandas-dev/pandas
|
pandas/core/frame.py
|
DataFrame.combine_first
|
def combine_first(self, other):
"""
Update null elements with value in the same location in `other`.
Combine two DataFrame objects by filling null values in one DataFrame
with non-null values from other DataFrame. The row and column indexes
of the resulting DataFrame will be the union of the two.
Parameters
----------
other : DataFrame
Provided DataFrame to use to fill null values.
Returns
-------
DataFrame
See Also
--------
DataFrame.combine : Perform series-wise operation on two DataFrames
using a given function.
Examples
--------
>>> df1 = pd.DataFrame({'A': [None, 0], 'B': [None, 4]})
>>> df2 = pd.DataFrame({'A': [1, 1], 'B': [3, 3]})
>>> df1.combine_first(df2)
A B
0 1.0 3.0
1 0.0 4.0
Null values still persist if the location of that null value
does not exist in `other`
>>> df1 = pd.DataFrame({'A': [None, 0], 'B': [4, None]})
>>> df2 = pd.DataFrame({'B': [3, 3], 'C': [1, 1]}, index=[1, 2])
>>> df1.combine_first(df2)
A B C
0 NaN 4.0 NaN
1 0.0 3.0 1.0
2 NaN 3.0 1.0
"""
import pandas.core.computation.expressions as expressions
def extract_values(arr):
# Does two things:
# 1. maybe gets the values from the Series / Index
# 2. convert datelike to i8
if isinstance(arr, (ABCIndexClass, ABCSeries)):
arr = arr._values
if needs_i8_conversion(arr):
if is_extension_array_dtype(arr.dtype):
arr = arr.asi8
else:
arr = arr.view('i8')
return arr
def combiner(x, y):
mask = isna(x)
if isinstance(mask, (ABCIndexClass, ABCSeries)):
mask = mask._values
x_values = extract_values(x)
y_values = extract_values(y)
# If the column y in other DataFrame is not in first DataFrame,
# just return y_values.
if y.name not in self.columns:
return y_values
return expressions.where(mask, y_values, x_values)
return self.combine(other, combiner, overwrite=False)
|
python
|
def combine_first(self, other):
"""
Update null elements with value in the same location in `other`.
Combine two DataFrame objects by filling null values in one DataFrame
with non-null values from other DataFrame. The row and column indexes
of the resulting DataFrame will be the union of the two.
Parameters
----------
other : DataFrame
Provided DataFrame to use to fill null values.
Returns
-------
DataFrame
See Also
--------
DataFrame.combine : Perform series-wise operation on two DataFrames
using a given function.
Examples
--------
>>> df1 = pd.DataFrame({'A': [None, 0], 'B': [None, 4]})
>>> df2 = pd.DataFrame({'A': [1, 1], 'B': [3, 3]})
>>> df1.combine_first(df2)
A B
0 1.0 3.0
1 0.0 4.0
Null values still persist if the location of that null value
does not exist in `other`
>>> df1 = pd.DataFrame({'A': [None, 0], 'B': [4, None]})
>>> df2 = pd.DataFrame({'B': [3, 3], 'C': [1, 1]}, index=[1, 2])
>>> df1.combine_first(df2)
A B C
0 NaN 4.0 NaN
1 0.0 3.0 1.0
2 NaN 3.0 1.0
"""
import pandas.core.computation.expressions as expressions
def extract_values(arr):
# Does two things:
# 1. maybe gets the values from the Series / Index
# 2. convert datelike to i8
if isinstance(arr, (ABCIndexClass, ABCSeries)):
arr = arr._values
if needs_i8_conversion(arr):
if is_extension_array_dtype(arr.dtype):
arr = arr.asi8
else:
arr = arr.view('i8')
return arr
def combiner(x, y):
mask = isna(x)
if isinstance(mask, (ABCIndexClass, ABCSeries)):
mask = mask._values
x_values = extract_values(x)
y_values = extract_values(y)
# If the column y in other DataFrame is not in first DataFrame,
# just return y_values.
if y.name not in self.columns:
return y_values
return expressions.where(mask, y_values, x_values)
return self.combine(other, combiner, overwrite=False)
|
[
"def",
"combine_first",
"(",
"self",
",",
"other",
")",
":",
"import",
"pandas",
".",
"core",
".",
"computation",
".",
"expressions",
"as",
"expressions",
"def",
"extract_values",
"(",
"arr",
")",
":",
"# Does two things:",
"# 1. maybe gets the values from the Series / Index",
"# 2. convert datelike to i8",
"if",
"isinstance",
"(",
"arr",
",",
"(",
"ABCIndexClass",
",",
"ABCSeries",
")",
")",
":",
"arr",
"=",
"arr",
".",
"_values",
"if",
"needs_i8_conversion",
"(",
"arr",
")",
":",
"if",
"is_extension_array_dtype",
"(",
"arr",
".",
"dtype",
")",
":",
"arr",
"=",
"arr",
".",
"asi8",
"else",
":",
"arr",
"=",
"arr",
".",
"view",
"(",
"'i8'",
")",
"return",
"arr",
"def",
"combiner",
"(",
"x",
",",
"y",
")",
":",
"mask",
"=",
"isna",
"(",
"x",
")",
"if",
"isinstance",
"(",
"mask",
",",
"(",
"ABCIndexClass",
",",
"ABCSeries",
")",
")",
":",
"mask",
"=",
"mask",
".",
"_values",
"x_values",
"=",
"extract_values",
"(",
"x",
")",
"y_values",
"=",
"extract_values",
"(",
"y",
")",
"# If the column y in other DataFrame is not in first DataFrame,",
"# just return y_values.",
"if",
"y",
".",
"name",
"not",
"in",
"self",
".",
"columns",
":",
"return",
"y_values",
"return",
"expressions",
".",
"where",
"(",
"mask",
",",
"y_values",
",",
"x_values",
")",
"return",
"self",
".",
"combine",
"(",
"other",
",",
"combiner",
",",
"overwrite",
"=",
"False",
")"
] |
Update null elements with value in the same location in `other`.
Combine two DataFrame objects by filling null values in one DataFrame
with non-null values from other DataFrame. The row and column indexes
of the resulting DataFrame will be the union of the two.
Parameters
----------
other : DataFrame
Provided DataFrame to use to fill null values.
Returns
-------
DataFrame
See Also
--------
DataFrame.combine : Perform series-wise operation on two DataFrames
using a given function.
Examples
--------
>>> df1 = pd.DataFrame({'A': [None, 0], 'B': [None, 4]})
>>> df2 = pd.DataFrame({'A': [1, 1], 'B': [3, 3]})
>>> df1.combine_first(df2)
A B
0 1.0 3.0
1 0.0 4.0
Null values still persist if the location of that null value
does not exist in `other`
>>> df1 = pd.DataFrame({'A': [None, 0], 'B': [4, None]})
>>> df2 = pd.DataFrame({'B': [3, 3], 'C': [1, 1]}, index=[1, 2])
>>> df1.combine_first(df2)
A B C
0 NaN 4.0 NaN
1 0.0 3.0 1.0
2 NaN 3.0 1.0
|
[
"Update",
"null",
"elements",
"with",
"value",
"in",
"the",
"same",
"location",
"in",
"other",
"."
] |
9feb3ad92cc0397a04b665803a49299ee7aa1037
|
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/frame.py#L5332-L5406
|
19,695
|
pandas-dev/pandas
|
pandas/core/frame.py
|
DataFrame.update
|
def update(self, other, join='left', overwrite=True, filter_func=None,
errors='ignore'):
"""
Modify in place using non-NA values from another DataFrame.
Aligns on indices. There is no return value.
Parameters
----------
other : DataFrame, or object coercible into a DataFrame
Should have at least one matching index/column label
with the original DataFrame. If a Series is passed,
its name attribute must be set, and that will be
used as the column name to align with the original DataFrame.
join : {'left'}, default 'left'
Only left join is implemented, keeping the index and columns of the
original object.
overwrite : bool, default True
How to handle non-NA values for overlapping keys:
* True: overwrite original DataFrame's values
with values from `other`.
* False: only update values that are NA in
the original DataFrame.
filter_func : callable(1d-array) -> bool 1d-array, optional
Can choose to replace values other than NA. Return True for values
that should be updated.
errors : {'raise', 'ignore'}, default 'ignore'
If 'raise', will raise a ValueError if the DataFrame and `other`
both contain non-NA data in the same place.
.. versionchanged :: 0.24.0
Changed from `raise_conflict=False|True`
to `errors='ignore'|'raise'`.
Returns
-------
None : method directly changes calling object
Raises
------
ValueError
* When `errors='raise'` and there's overlapping non-NA data.
* When `errors` is not either `'ignore'` or `'raise'`
NotImplementedError
* If `join != 'left'`
See Also
--------
dict.update : Similar method for dictionaries.
DataFrame.merge : For column(s)-on-columns(s) operations.
Examples
--------
>>> df = pd.DataFrame({'A': [1, 2, 3],
... 'B': [400, 500, 600]})
>>> new_df = pd.DataFrame({'B': [4, 5, 6],
... 'C': [7, 8, 9]})
>>> df.update(new_df)
>>> df
A B
0 1 4
1 2 5
2 3 6
The DataFrame's length does not increase as a result of the update,
only values at matching index/column labels are updated.
>>> df = pd.DataFrame({'A': ['a', 'b', 'c'],
... 'B': ['x', 'y', 'z']})
>>> new_df = pd.DataFrame({'B': ['d', 'e', 'f', 'g', 'h', 'i']})
>>> df.update(new_df)
>>> df
A B
0 a d
1 b e
2 c f
For Series, it's name attribute must be set.
>>> df = pd.DataFrame({'A': ['a', 'b', 'c'],
... 'B': ['x', 'y', 'z']})
>>> new_column = pd.Series(['d', 'e'], name='B', index=[0, 2])
>>> df.update(new_column)
>>> df
A B
0 a d
1 b y
2 c e
>>> df = pd.DataFrame({'A': ['a', 'b', 'c'],
... 'B': ['x', 'y', 'z']})
>>> new_df = pd.DataFrame({'B': ['d', 'e']}, index=[1, 2])
>>> df.update(new_df)
>>> df
A B
0 a x
1 b d
2 c e
If `other` contains NaNs the corresponding values are not updated
in the original dataframe.
>>> df = pd.DataFrame({'A': [1, 2, 3],
... 'B': [400, 500, 600]})
>>> new_df = pd.DataFrame({'B': [4, np.nan, 6]})
>>> df.update(new_df)
>>> df
A B
0 1 4.0
1 2 500.0
2 3 6.0
"""
import pandas.core.computation.expressions as expressions
# TODO: Support other joins
if join != 'left': # pragma: no cover
raise NotImplementedError("Only left join is supported")
if errors not in ['ignore', 'raise']:
raise ValueError("The parameter errors must be either "
"'ignore' or 'raise'")
if not isinstance(other, DataFrame):
other = DataFrame(other)
other = other.reindex_like(self)
for col in self.columns:
this = self[col]._values
that = other[col]._values
if filter_func is not None:
with np.errstate(all='ignore'):
mask = ~filter_func(this) | isna(that)
else:
if errors == 'raise':
mask_this = notna(that)
mask_that = notna(this)
if any(mask_this & mask_that):
raise ValueError("Data overlaps.")
if overwrite:
mask = isna(that)
else:
mask = notna(this)
# don't overwrite columns unecessarily
if mask.all():
continue
self[col] = expressions.where(mask, this, that)
|
python
|
def update(self, other, join='left', overwrite=True, filter_func=None,
errors='ignore'):
"""
Modify in place using non-NA values from another DataFrame.
Aligns on indices. There is no return value.
Parameters
----------
other : DataFrame, or object coercible into a DataFrame
Should have at least one matching index/column label
with the original DataFrame. If a Series is passed,
its name attribute must be set, and that will be
used as the column name to align with the original DataFrame.
join : {'left'}, default 'left'
Only left join is implemented, keeping the index and columns of the
original object.
overwrite : bool, default True
How to handle non-NA values for overlapping keys:
* True: overwrite original DataFrame's values
with values from `other`.
* False: only update values that are NA in
the original DataFrame.
filter_func : callable(1d-array) -> bool 1d-array, optional
Can choose to replace values other than NA. Return True for values
that should be updated.
errors : {'raise', 'ignore'}, default 'ignore'
If 'raise', will raise a ValueError if the DataFrame and `other`
both contain non-NA data in the same place.
.. versionchanged :: 0.24.0
Changed from `raise_conflict=False|True`
to `errors='ignore'|'raise'`.
Returns
-------
None : method directly changes calling object
Raises
------
ValueError
* When `errors='raise'` and there's overlapping non-NA data.
* When `errors` is not either `'ignore'` or `'raise'`
NotImplementedError
* If `join != 'left'`
See Also
--------
dict.update : Similar method for dictionaries.
DataFrame.merge : For column(s)-on-columns(s) operations.
Examples
--------
>>> df = pd.DataFrame({'A': [1, 2, 3],
... 'B': [400, 500, 600]})
>>> new_df = pd.DataFrame({'B': [4, 5, 6],
... 'C': [7, 8, 9]})
>>> df.update(new_df)
>>> df
A B
0 1 4
1 2 5
2 3 6
The DataFrame's length does not increase as a result of the update,
only values at matching index/column labels are updated.
>>> df = pd.DataFrame({'A': ['a', 'b', 'c'],
... 'B': ['x', 'y', 'z']})
>>> new_df = pd.DataFrame({'B': ['d', 'e', 'f', 'g', 'h', 'i']})
>>> df.update(new_df)
>>> df
A B
0 a d
1 b e
2 c f
For Series, it's name attribute must be set.
>>> df = pd.DataFrame({'A': ['a', 'b', 'c'],
... 'B': ['x', 'y', 'z']})
>>> new_column = pd.Series(['d', 'e'], name='B', index=[0, 2])
>>> df.update(new_column)
>>> df
A B
0 a d
1 b y
2 c e
>>> df = pd.DataFrame({'A': ['a', 'b', 'c'],
... 'B': ['x', 'y', 'z']})
>>> new_df = pd.DataFrame({'B': ['d', 'e']}, index=[1, 2])
>>> df.update(new_df)
>>> df
A B
0 a x
1 b d
2 c e
If `other` contains NaNs the corresponding values are not updated
in the original dataframe.
>>> df = pd.DataFrame({'A': [1, 2, 3],
... 'B': [400, 500, 600]})
>>> new_df = pd.DataFrame({'B': [4, np.nan, 6]})
>>> df.update(new_df)
>>> df
A B
0 1 4.0
1 2 500.0
2 3 6.0
"""
import pandas.core.computation.expressions as expressions
# TODO: Support other joins
if join != 'left': # pragma: no cover
raise NotImplementedError("Only left join is supported")
if errors not in ['ignore', 'raise']:
raise ValueError("The parameter errors must be either "
"'ignore' or 'raise'")
if not isinstance(other, DataFrame):
other = DataFrame(other)
other = other.reindex_like(self)
for col in self.columns:
this = self[col]._values
that = other[col]._values
if filter_func is not None:
with np.errstate(all='ignore'):
mask = ~filter_func(this) | isna(that)
else:
if errors == 'raise':
mask_this = notna(that)
mask_that = notna(this)
if any(mask_this & mask_that):
raise ValueError("Data overlaps.")
if overwrite:
mask = isna(that)
else:
mask = notna(this)
# don't overwrite columns unecessarily
if mask.all():
continue
self[col] = expressions.where(mask, this, that)
|
[
"def",
"update",
"(",
"self",
",",
"other",
",",
"join",
"=",
"'left'",
",",
"overwrite",
"=",
"True",
",",
"filter_func",
"=",
"None",
",",
"errors",
"=",
"'ignore'",
")",
":",
"import",
"pandas",
".",
"core",
".",
"computation",
".",
"expressions",
"as",
"expressions",
"# TODO: Support other joins",
"if",
"join",
"!=",
"'left'",
":",
"# pragma: no cover",
"raise",
"NotImplementedError",
"(",
"\"Only left join is supported\"",
")",
"if",
"errors",
"not",
"in",
"[",
"'ignore'",
",",
"'raise'",
"]",
":",
"raise",
"ValueError",
"(",
"\"The parameter errors must be either \"",
"\"'ignore' or 'raise'\"",
")",
"if",
"not",
"isinstance",
"(",
"other",
",",
"DataFrame",
")",
":",
"other",
"=",
"DataFrame",
"(",
"other",
")",
"other",
"=",
"other",
".",
"reindex_like",
"(",
"self",
")",
"for",
"col",
"in",
"self",
".",
"columns",
":",
"this",
"=",
"self",
"[",
"col",
"]",
".",
"_values",
"that",
"=",
"other",
"[",
"col",
"]",
".",
"_values",
"if",
"filter_func",
"is",
"not",
"None",
":",
"with",
"np",
".",
"errstate",
"(",
"all",
"=",
"'ignore'",
")",
":",
"mask",
"=",
"~",
"filter_func",
"(",
"this",
")",
"|",
"isna",
"(",
"that",
")",
"else",
":",
"if",
"errors",
"==",
"'raise'",
":",
"mask_this",
"=",
"notna",
"(",
"that",
")",
"mask_that",
"=",
"notna",
"(",
"this",
")",
"if",
"any",
"(",
"mask_this",
"&",
"mask_that",
")",
":",
"raise",
"ValueError",
"(",
"\"Data overlaps.\"",
")",
"if",
"overwrite",
":",
"mask",
"=",
"isna",
"(",
"that",
")",
"else",
":",
"mask",
"=",
"notna",
"(",
"this",
")",
"# don't overwrite columns unecessarily",
"if",
"mask",
".",
"all",
"(",
")",
":",
"continue",
"self",
"[",
"col",
"]",
"=",
"expressions",
".",
"where",
"(",
"mask",
",",
"this",
",",
"that",
")"
] |
Modify in place using non-NA values from another DataFrame.
Aligns on indices. There is no return value.
Parameters
----------
other : DataFrame, or object coercible into a DataFrame
Should have at least one matching index/column label
with the original DataFrame. If a Series is passed,
its name attribute must be set, and that will be
used as the column name to align with the original DataFrame.
join : {'left'}, default 'left'
Only left join is implemented, keeping the index and columns of the
original object.
overwrite : bool, default True
How to handle non-NA values for overlapping keys:
* True: overwrite original DataFrame's values
with values from `other`.
* False: only update values that are NA in
the original DataFrame.
filter_func : callable(1d-array) -> bool 1d-array, optional
Can choose to replace values other than NA. Return True for values
that should be updated.
errors : {'raise', 'ignore'}, default 'ignore'
If 'raise', will raise a ValueError if the DataFrame and `other`
both contain non-NA data in the same place.
.. versionchanged :: 0.24.0
Changed from `raise_conflict=False|True`
to `errors='ignore'|'raise'`.
Returns
-------
None : method directly changes calling object
Raises
------
ValueError
* When `errors='raise'` and there's overlapping non-NA data.
* When `errors` is not either `'ignore'` or `'raise'`
NotImplementedError
* If `join != 'left'`
See Also
--------
dict.update : Similar method for dictionaries.
DataFrame.merge : For column(s)-on-columns(s) operations.
Examples
--------
>>> df = pd.DataFrame({'A': [1, 2, 3],
... 'B': [400, 500, 600]})
>>> new_df = pd.DataFrame({'B': [4, 5, 6],
... 'C': [7, 8, 9]})
>>> df.update(new_df)
>>> df
A B
0 1 4
1 2 5
2 3 6
The DataFrame's length does not increase as a result of the update,
only values at matching index/column labels are updated.
>>> df = pd.DataFrame({'A': ['a', 'b', 'c'],
... 'B': ['x', 'y', 'z']})
>>> new_df = pd.DataFrame({'B': ['d', 'e', 'f', 'g', 'h', 'i']})
>>> df.update(new_df)
>>> df
A B
0 a d
1 b e
2 c f
For Series, it's name attribute must be set.
>>> df = pd.DataFrame({'A': ['a', 'b', 'c'],
... 'B': ['x', 'y', 'z']})
>>> new_column = pd.Series(['d', 'e'], name='B', index=[0, 2])
>>> df.update(new_column)
>>> df
A B
0 a d
1 b y
2 c e
>>> df = pd.DataFrame({'A': ['a', 'b', 'c'],
... 'B': ['x', 'y', 'z']})
>>> new_df = pd.DataFrame({'B': ['d', 'e']}, index=[1, 2])
>>> df.update(new_df)
>>> df
A B
0 a x
1 b d
2 c e
If `other` contains NaNs the corresponding values are not updated
in the original dataframe.
>>> df = pd.DataFrame({'A': [1, 2, 3],
... 'B': [400, 500, 600]})
>>> new_df = pd.DataFrame({'B': [4, np.nan, 6]})
>>> df.update(new_df)
>>> df
A B
0 1 4.0
1 2 500.0
2 3 6.0
|
[
"Modify",
"in",
"place",
"using",
"non",
"-",
"NA",
"values",
"from",
"another",
"DataFrame",
"."
] |
9feb3ad92cc0397a04b665803a49299ee7aa1037
|
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/frame.py#L5410-L5558
|
19,696
|
pandas-dev/pandas
|
pandas/core/frame.py
|
DataFrame.apply
|
def apply(self, func, axis=0, broadcast=None, raw=False, reduce=None,
result_type=None, args=(), **kwds):
"""
Apply a function along an axis of the DataFrame.
Objects passed to the function are Series objects whose index is
either the DataFrame's index (``axis=0``) or the DataFrame's columns
(``axis=1``). By default (``result_type=None``), the final return type
is inferred from the return type of the applied function. Otherwise,
it depends on the `result_type` argument.
Parameters
----------
func : function
Function to apply to each column or row.
axis : {0 or 'index', 1 or 'columns'}, default 0
Axis along which the function is applied:
* 0 or 'index': apply function to each column.
* 1 or 'columns': apply function to each row.
broadcast : bool, optional
Only relevant for aggregation functions:
* ``False`` or ``None`` : returns a Series whose length is the
length of the index or the number of columns (based on the
`axis` parameter)
* ``True`` : results will be broadcast to the original shape
of the frame, the original index and columns will be retained.
.. deprecated:: 0.23.0
This argument will be removed in a future version, replaced
by result_type='broadcast'.
raw : bool, default False
* ``False`` : passes each row or column as a Series to the
function.
* ``True`` : the passed function will receive ndarray objects
instead.
If you are just applying a NumPy reduction function this will
achieve much better performance.
reduce : bool or None, default None
Try to apply reduction procedures. If the DataFrame is empty,
`apply` will use `reduce` to determine whether the result
should be a Series or a DataFrame. If ``reduce=None`` (the
default), `apply`'s return value will be guessed by calling
`func` on an empty Series
(note: while guessing, exceptions raised by `func` will be
ignored).
If ``reduce=True`` a Series will always be returned, and if
``reduce=False`` a DataFrame will always be returned.
.. deprecated:: 0.23.0
This argument will be removed in a future version, replaced
by ``result_type='reduce'``.
result_type : {'expand', 'reduce', 'broadcast', None}, default None
These only act when ``axis=1`` (columns):
* 'expand' : list-like results will be turned into columns.
* 'reduce' : returns a Series if possible rather than expanding
list-like results. This is the opposite of 'expand'.
* 'broadcast' : results will be broadcast to the original shape
of the DataFrame, the original index and columns will be
retained.
The default behaviour (None) depends on the return value of the
applied function: list-like results will be returned as a Series
of those. However if the apply function returns a Series these
are expanded to columns.
.. versionadded:: 0.23.0
args : tuple
Positional arguments to pass to `func` in addition to the
array/series.
**kwds
Additional keyword arguments to pass as keywords arguments to
`func`.
Returns
-------
Series or DataFrame
Result of applying ``func`` along the given axis of the
DataFrame.
See Also
--------
DataFrame.applymap: For elementwise operations.
DataFrame.aggregate: Only perform aggregating type operations.
DataFrame.transform: Only perform transforming type operations.
Notes
-----
In the current implementation apply calls `func` twice on the
first column/row to decide whether it can take a fast or slow
code path. This can lead to unexpected behavior if `func` has
side-effects, as they will take effect twice for the first
column/row.
Examples
--------
>>> df = pd.DataFrame([[4, 9]] * 3, columns=['A', 'B'])
>>> df
A B
0 4 9
1 4 9
2 4 9
Using a numpy universal function (in this case the same as
``np.sqrt(df)``):
>>> df.apply(np.sqrt)
A B
0 2.0 3.0
1 2.0 3.0
2 2.0 3.0
Using a reducing function on either axis
>>> df.apply(np.sum, axis=0)
A 12
B 27
dtype: int64
>>> df.apply(np.sum, axis=1)
0 13
1 13
2 13
dtype: int64
Retuning a list-like will result in a Series
>>> df.apply(lambda x: [1, 2], axis=1)
0 [1, 2]
1 [1, 2]
2 [1, 2]
dtype: object
Passing result_type='expand' will expand list-like results
to columns of a Dataframe
>>> df.apply(lambda x: [1, 2], axis=1, result_type='expand')
0 1
0 1 2
1 1 2
2 1 2
Returning a Series inside the function is similar to passing
``result_type='expand'``. The resulting column names
will be the Series index.
>>> df.apply(lambda x: pd.Series([1, 2], index=['foo', 'bar']), axis=1)
foo bar
0 1 2
1 1 2
2 1 2
Passing ``result_type='broadcast'`` will ensure the same shape
result, whether list-like or scalar is returned by the function,
and broadcast it along the axis. The resulting column names will
be the originals.
>>> df.apply(lambda x: [1, 2], axis=1, result_type='broadcast')
A B
0 1 2
1 1 2
2 1 2
"""
from pandas.core.apply import frame_apply
op = frame_apply(self,
func=func,
axis=axis,
broadcast=broadcast,
raw=raw,
reduce=reduce,
result_type=result_type,
args=args,
kwds=kwds)
return op.get_result()
|
python
|
def apply(self, func, axis=0, broadcast=None, raw=False, reduce=None,
result_type=None, args=(), **kwds):
"""
Apply a function along an axis of the DataFrame.
Objects passed to the function are Series objects whose index is
either the DataFrame's index (``axis=0``) or the DataFrame's columns
(``axis=1``). By default (``result_type=None``), the final return type
is inferred from the return type of the applied function. Otherwise,
it depends on the `result_type` argument.
Parameters
----------
func : function
Function to apply to each column or row.
axis : {0 or 'index', 1 or 'columns'}, default 0
Axis along which the function is applied:
* 0 or 'index': apply function to each column.
* 1 or 'columns': apply function to each row.
broadcast : bool, optional
Only relevant for aggregation functions:
* ``False`` or ``None`` : returns a Series whose length is the
length of the index or the number of columns (based on the
`axis` parameter)
* ``True`` : results will be broadcast to the original shape
of the frame, the original index and columns will be retained.
.. deprecated:: 0.23.0
This argument will be removed in a future version, replaced
by result_type='broadcast'.
raw : bool, default False
* ``False`` : passes each row or column as a Series to the
function.
* ``True`` : the passed function will receive ndarray objects
instead.
If you are just applying a NumPy reduction function this will
achieve much better performance.
reduce : bool or None, default None
Try to apply reduction procedures. If the DataFrame is empty,
`apply` will use `reduce` to determine whether the result
should be a Series or a DataFrame. If ``reduce=None`` (the
default), `apply`'s return value will be guessed by calling
`func` on an empty Series
(note: while guessing, exceptions raised by `func` will be
ignored).
If ``reduce=True`` a Series will always be returned, and if
``reduce=False`` a DataFrame will always be returned.
.. deprecated:: 0.23.0
This argument will be removed in a future version, replaced
by ``result_type='reduce'``.
result_type : {'expand', 'reduce', 'broadcast', None}, default None
These only act when ``axis=1`` (columns):
* 'expand' : list-like results will be turned into columns.
* 'reduce' : returns a Series if possible rather than expanding
list-like results. This is the opposite of 'expand'.
* 'broadcast' : results will be broadcast to the original shape
of the DataFrame, the original index and columns will be
retained.
The default behaviour (None) depends on the return value of the
applied function: list-like results will be returned as a Series
of those. However if the apply function returns a Series these
are expanded to columns.
.. versionadded:: 0.23.0
args : tuple
Positional arguments to pass to `func` in addition to the
array/series.
**kwds
Additional keyword arguments to pass as keywords arguments to
`func`.
Returns
-------
Series or DataFrame
Result of applying ``func`` along the given axis of the
DataFrame.
See Also
--------
DataFrame.applymap: For elementwise operations.
DataFrame.aggregate: Only perform aggregating type operations.
DataFrame.transform: Only perform transforming type operations.
Notes
-----
In the current implementation apply calls `func` twice on the
first column/row to decide whether it can take a fast or slow
code path. This can lead to unexpected behavior if `func` has
side-effects, as they will take effect twice for the first
column/row.
Examples
--------
>>> df = pd.DataFrame([[4, 9]] * 3, columns=['A', 'B'])
>>> df
A B
0 4 9
1 4 9
2 4 9
Using a numpy universal function (in this case the same as
``np.sqrt(df)``):
>>> df.apply(np.sqrt)
A B
0 2.0 3.0
1 2.0 3.0
2 2.0 3.0
Using a reducing function on either axis
>>> df.apply(np.sum, axis=0)
A 12
B 27
dtype: int64
>>> df.apply(np.sum, axis=1)
0 13
1 13
2 13
dtype: int64
Retuning a list-like will result in a Series
>>> df.apply(lambda x: [1, 2], axis=1)
0 [1, 2]
1 [1, 2]
2 [1, 2]
dtype: object
Passing result_type='expand' will expand list-like results
to columns of a Dataframe
>>> df.apply(lambda x: [1, 2], axis=1, result_type='expand')
0 1
0 1 2
1 1 2
2 1 2
Returning a Series inside the function is similar to passing
``result_type='expand'``. The resulting column names
will be the Series index.
>>> df.apply(lambda x: pd.Series([1, 2], index=['foo', 'bar']), axis=1)
foo bar
0 1 2
1 1 2
2 1 2
Passing ``result_type='broadcast'`` will ensure the same shape
result, whether list-like or scalar is returned by the function,
and broadcast it along the axis. The resulting column names will
be the originals.
>>> df.apply(lambda x: [1, 2], axis=1, result_type='broadcast')
A B
0 1 2
1 1 2
2 1 2
"""
from pandas.core.apply import frame_apply
op = frame_apply(self,
func=func,
axis=axis,
broadcast=broadcast,
raw=raw,
reduce=reduce,
result_type=result_type,
args=args,
kwds=kwds)
return op.get_result()
|
[
"def",
"apply",
"(",
"self",
",",
"func",
",",
"axis",
"=",
"0",
",",
"broadcast",
"=",
"None",
",",
"raw",
"=",
"False",
",",
"reduce",
"=",
"None",
",",
"result_type",
"=",
"None",
",",
"args",
"=",
"(",
")",
",",
"*",
"*",
"kwds",
")",
":",
"from",
"pandas",
".",
"core",
".",
"apply",
"import",
"frame_apply",
"op",
"=",
"frame_apply",
"(",
"self",
",",
"func",
"=",
"func",
",",
"axis",
"=",
"axis",
",",
"broadcast",
"=",
"broadcast",
",",
"raw",
"=",
"raw",
",",
"reduce",
"=",
"reduce",
",",
"result_type",
"=",
"result_type",
",",
"args",
"=",
"args",
",",
"kwds",
"=",
"kwds",
")",
"return",
"op",
".",
"get_result",
"(",
")"
] |
Apply a function along an axis of the DataFrame.
Objects passed to the function are Series objects whose index is
either the DataFrame's index (``axis=0``) or the DataFrame's columns
(``axis=1``). By default (``result_type=None``), the final return type
is inferred from the return type of the applied function. Otherwise,
it depends on the `result_type` argument.
Parameters
----------
func : function
Function to apply to each column or row.
axis : {0 or 'index', 1 or 'columns'}, default 0
Axis along which the function is applied:
* 0 or 'index': apply function to each column.
* 1 or 'columns': apply function to each row.
broadcast : bool, optional
Only relevant for aggregation functions:
* ``False`` or ``None`` : returns a Series whose length is the
length of the index or the number of columns (based on the
`axis` parameter)
* ``True`` : results will be broadcast to the original shape
of the frame, the original index and columns will be retained.
.. deprecated:: 0.23.0
This argument will be removed in a future version, replaced
by result_type='broadcast'.
raw : bool, default False
* ``False`` : passes each row or column as a Series to the
function.
* ``True`` : the passed function will receive ndarray objects
instead.
If you are just applying a NumPy reduction function this will
achieve much better performance.
reduce : bool or None, default None
Try to apply reduction procedures. If the DataFrame is empty,
`apply` will use `reduce` to determine whether the result
should be a Series or a DataFrame. If ``reduce=None`` (the
default), `apply`'s return value will be guessed by calling
`func` on an empty Series
(note: while guessing, exceptions raised by `func` will be
ignored).
If ``reduce=True`` a Series will always be returned, and if
``reduce=False`` a DataFrame will always be returned.
.. deprecated:: 0.23.0
This argument will be removed in a future version, replaced
by ``result_type='reduce'``.
result_type : {'expand', 'reduce', 'broadcast', None}, default None
These only act when ``axis=1`` (columns):
* 'expand' : list-like results will be turned into columns.
* 'reduce' : returns a Series if possible rather than expanding
list-like results. This is the opposite of 'expand'.
* 'broadcast' : results will be broadcast to the original shape
of the DataFrame, the original index and columns will be
retained.
The default behaviour (None) depends on the return value of the
applied function: list-like results will be returned as a Series
of those. However if the apply function returns a Series these
are expanded to columns.
.. versionadded:: 0.23.0
args : tuple
Positional arguments to pass to `func` in addition to the
array/series.
**kwds
Additional keyword arguments to pass as keywords arguments to
`func`.
Returns
-------
Series or DataFrame
Result of applying ``func`` along the given axis of the
DataFrame.
See Also
--------
DataFrame.applymap: For elementwise operations.
DataFrame.aggregate: Only perform aggregating type operations.
DataFrame.transform: Only perform transforming type operations.
Notes
-----
In the current implementation apply calls `func` twice on the
first column/row to decide whether it can take a fast or slow
code path. This can lead to unexpected behavior if `func` has
side-effects, as they will take effect twice for the first
column/row.
Examples
--------
>>> df = pd.DataFrame([[4, 9]] * 3, columns=['A', 'B'])
>>> df
A B
0 4 9
1 4 9
2 4 9
Using a numpy universal function (in this case the same as
``np.sqrt(df)``):
>>> df.apply(np.sqrt)
A B
0 2.0 3.0
1 2.0 3.0
2 2.0 3.0
Using a reducing function on either axis
>>> df.apply(np.sum, axis=0)
A 12
B 27
dtype: int64
>>> df.apply(np.sum, axis=1)
0 13
1 13
2 13
dtype: int64
Retuning a list-like will result in a Series
>>> df.apply(lambda x: [1, 2], axis=1)
0 [1, 2]
1 [1, 2]
2 [1, 2]
dtype: object
Passing result_type='expand' will expand list-like results
to columns of a Dataframe
>>> df.apply(lambda x: [1, 2], axis=1, result_type='expand')
0 1
0 1 2
1 1 2
2 1 2
Returning a Series inside the function is similar to passing
``result_type='expand'``. The resulting column names
will be the Series index.
>>> df.apply(lambda x: pd.Series([1, 2], index=['foo', 'bar']), axis=1)
foo bar
0 1 2
1 1 2
2 1 2
Passing ``result_type='broadcast'`` will ensure the same shape
result, whether list-like or scalar is returned by the function,
and broadcast it along the axis. The resulting column names will
be the originals.
>>> df.apply(lambda x: [1, 2], axis=1, result_type='broadcast')
A B
0 1 2
1 1 2
2 1 2
|
[
"Apply",
"a",
"function",
"along",
"an",
"axis",
"of",
"the",
"DataFrame",
"."
] |
9feb3ad92cc0397a04b665803a49299ee7aa1037
|
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/frame.py#L6355-L6534
|
19,697
|
pandas-dev/pandas
|
pandas/core/frame.py
|
DataFrame.applymap
|
def applymap(self, func):
"""
Apply a function to a Dataframe elementwise.
This method applies a function that accepts and returns a scalar
to every element of a DataFrame.
Parameters
----------
func : callable
Python function, returns a single value from a single value.
Returns
-------
DataFrame
Transformed DataFrame.
See Also
--------
DataFrame.apply : Apply a function along input axis of DataFrame.
Notes
-----
In the current implementation applymap calls `func` twice on the
first column/row to decide whether it can take a fast or slow
code path. This can lead to unexpected behavior if `func` has
side-effects, as they will take effect twice for the first
column/row.
Examples
--------
>>> df = pd.DataFrame([[1, 2.12], [3.356, 4.567]])
>>> df
0 1
0 1.000 2.120
1 3.356 4.567
>>> df.applymap(lambda x: len(str(x)))
0 1
0 3 4
1 5 5
Note that a vectorized version of `func` often exists, which will
be much faster. You could square each number elementwise.
>>> df.applymap(lambda x: x**2)
0 1
0 1.000000 4.494400
1 11.262736 20.857489
But it's better to avoid applymap in that case.
>>> df ** 2
0 1
0 1.000000 4.494400
1 11.262736 20.857489
"""
# if we have a dtype == 'M8[ns]', provide boxed values
def infer(x):
if x.empty:
return lib.map_infer(x, func)
return lib.map_infer(x.astype(object).values, func)
return self.apply(infer)
|
python
|
def applymap(self, func):
"""
Apply a function to a Dataframe elementwise.
This method applies a function that accepts and returns a scalar
to every element of a DataFrame.
Parameters
----------
func : callable
Python function, returns a single value from a single value.
Returns
-------
DataFrame
Transformed DataFrame.
See Also
--------
DataFrame.apply : Apply a function along input axis of DataFrame.
Notes
-----
In the current implementation applymap calls `func` twice on the
first column/row to decide whether it can take a fast or slow
code path. This can lead to unexpected behavior if `func` has
side-effects, as they will take effect twice for the first
column/row.
Examples
--------
>>> df = pd.DataFrame([[1, 2.12], [3.356, 4.567]])
>>> df
0 1
0 1.000 2.120
1 3.356 4.567
>>> df.applymap(lambda x: len(str(x)))
0 1
0 3 4
1 5 5
Note that a vectorized version of `func` often exists, which will
be much faster. You could square each number elementwise.
>>> df.applymap(lambda x: x**2)
0 1
0 1.000000 4.494400
1 11.262736 20.857489
But it's better to avoid applymap in that case.
>>> df ** 2
0 1
0 1.000000 4.494400
1 11.262736 20.857489
"""
# if we have a dtype == 'M8[ns]', provide boxed values
def infer(x):
if x.empty:
return lib.map_infer(x, func)
return lib.map_infer(x.astype(object).values, func)
return self.apply(infer)
|
[
"def",
"applymap",
"(",
"self",
",",
"func",
")",
":",
"# if we have a dtype == 'M8[ns]', provide boxed values",
"def",
"infer",
"(",
"x",
")",
":",
"if",
"x",
".",
"empty",
":",
"return",
"lib",
".",
"map_infer",
"(",
"x",
",",
"func",
")",
"return",
"lib",
".",
"map_infer",
"(",
"x",
".",
"astype",
"(",
"object",
")",
".",
"values",
",",
"func",
")",
"return",
"self",
".",
"apply",
"(",
"infer",
")"
] |
Apply a function to a Dataframe elementwise.
This method applies a function that accepts and returns a scalar
to every element of a DataFrame.
Parameters
----------
func : callable
Python function, returns a single value from a single value.
Returns
-------
DataFrame
Transformed DataFrame.
See Also
--------
DataFrame.apply : Apply a function along input axis of DataFrame.
Notes
-----
In the current implementation applymap calls `func` twice on the
first column/row to decide whether it can take a fast or slow
code path. This can lead to unexpected behavior if `func` has
side-effects, as they will take effect twice for the first
column/row.
Examples
--------
>>> df = pd.DataFrame([[1, 2.12], [3.356, 4.567]])
>>> df
0 1
0 1.000 2.120
1 3.356 4.567
>>> df.applymap(lambda x: len(str(x)))
0 1
0 3 4
1 5 5
Note that a vectorized version of `func` often exists, which will
be much faster. You could square each number elementwise.
>>> df.applymap(lambda x: x**2)
0 1
0 1.000000 4.494400
1 11.262736 20.857489
But it's better to avoid applymap in that case.
>>> df ** 2
0 1
0 1.000000 4.494400
1 11.262736 20.857489
|
[
"Apply",
"a",
"function",
"to",
"a",
"Dataframe",
"elementwise",
"."
] |
9feb3ad92cc0397a04b665803a49299ee7aa1037
|
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/frame.py#L6536-L6600
|
19,698
|
pandas-dev/pandas
|
pandas/core/frame.py
|
DataFrame.append
|
def append(self, other, ignore_index=False,
verify_integrity=False, sort=None):
"""
Append rows of `other` to the end of caller, returning a new object.
Columns in `other` that are not in the caller are added as new columns.
Parameters
----------
other : DataFrame or Series/dict-like object, or list of these
The data to append.
ignore_index : boolean, default False
If True, do not use the index labels.
verify_integrity : boolean, default False
If True, raise ValueError on creating index with duplicates.
sort : boolean, default None
Sort columns if the columns of `self` and `other` are not aligned.
The default sorting is deprecated and will change to not-sorting
in a future version of pandas. Explicitly pass ``sort=True`` to
silence the warning and sort. Explicitly pass ``sort=False`` to
silence the warning and not sort.
.. versionadded:: 0.23.0
Returns
-------
DataFrame
See Also
--------
concat : General function to concatenate DataFrame, Series
or Panel objects.
Notes
-----
If a list of dict/series is passed and the keys are all contained in
the DataFrame's index, the order of the columns in the resulting
DataFrame will be unchanged.
Iteratively appending rows to a DataFrame can be more computationally
intensive than a single concatenate. A better solution is to append
those rows to a list and then concatenate the list with the original
DataFrame all at once.
Examples
--------
>>> df = pd.DataFrame([[1, 2], [3, 4]], columns=list('AB'))
>>> df
A B
0 1 2
1 3 4
>>> df2 = pd.DataFrame([[5, 6], [7, 8]], columns=list('AB'))
>>> df.append(df2)
A B
0 1 2
1 3 4
0 5 6
1 7 8
With `ignore_index` set to True:
>>> df.append(df2, ignore_index=True)
A B
0 1 2
1 3 4
2 5 6
3 7 8
The following, while not recommended methods for generating DataFrames,
show two ways to generate a DataFrame from multiple data sources.
Less efficient:
>>> df = pd.DataFrame(columns=['A'])
>>> for i in range(5):
... df = df.append({'A': i}, ignore_index=True)
>>> df
A
0 0
1 1
2 2
3 3
4 4
More efficient:
>>> pd.concat([pd.DataFrame([i], columns=['A']) for i in range(5)],
... ignore_index=True)
A
0 0
1 1
2 2
3 3
4 4
"""
if isinstance(other, (Series, dict)):
if isinstance(other, dict):
other = Series(other)
if other.name is None and not ignore_index:
raise TypeError('Can only append a Series if ignore_index=True'
' or if the Series has a name')
if other.name is None:
index = None
else:
# other must have the same index name as self, otherwise
# index name will be reset
index = Index([other.name], name=self.index.name)
idx_diff = other.index.difference(self.columns)
try:
combined_columns = self.columns.append(idx_diff)
except TypeError:
combined_columns = self.columns.astype(object).append(idx_diff)
other = other.reindex(combined_columns, copy=False)
other = DataFrame(other.values.reshape((1, len(other))),
index=index,
columns=combined_columns)
other = other._convert(datetime=True, timedelta=True)
if not self.columns.equals(combined_columns):
self = self.reindex(columns=combined_columns)
elif isinstance(other, list) and not isinstance(other[0], DataFrame):
other = DataFrame(other)
if (self.columns.get_indexer(other.columns) >= 0).all():
other = other.reindex(columns=self.columns)
from pandas.core.reshape.concat import concat
if isinstance(other, (list, tuple)):
to_concat = [self] + other
else:
to_concat = [self, other]
return concat(to_concat, ignore_index=ignore_index,
verify_integrity=verify_integrity,
sort=sort)
|
python
|
def append(self, other, ignore_index=False,
verify_integrity=False, sort=None):
"""
Append rows of `other` to the end of caller, returning a new object.
Columns in `other` that are not in the caller are added as new columns.
Parameters
----------
other : DataFrame or Series/dict-like object, or list of these
The data to append.
ignore_index : boolean, default False
If True, do not use the index labels.
verify_integrity : boolean, default False
If True, raise ValueError on creating index with duplicates.
sort : boolean, default None
Sort columns if the columns of `self` and `other` are not aligned.
The default sorting is deprecated and will change to not-sorting
in a future version of pandas. Explicitly pass ``sort=True`` to
silence the warning and sort. Explicitly pass ``sort=False`` to
silence the warning and not sort.
.. versionadded:: 0.23.0
Returns
-------
DataFrame
See Also
--------
concat : General function to concatenate DataFrame, Series
or Panel objects.
Notes
-----
If a list of dict/series is passed and the keys are all contained in
the DataFrame's index, the order of the columns in the resulting
DataFrame will be unchanged.
Iteratively appending rows to a DataFrame can be more computationally
intensive than a single concatenate. A better solution is to append
those rows to a list and then concatenate the list with the original
DataFrame all at once.
Examples
--------
>>> df = pd.DataFrame([[1, 2], [3, 4]], columns=list('AB'))
>>> df
A B
0 1 2
1 3 4
>>> df2 = pd.DataFrame([[5, 6], [7, 8]], columns=list('AB'))
>>> df.append(df2)
A B
0 1 2
1 3 4
0 5 6
1 7 8
With `ignore_index` set to True:
>>> df.append(df2, ignore_index=True)
A B
0 1 2
1 3 4
2 5 6
3 7 8
The following, while not recommended methods for generating DataFrames,
show two ways to generate a DataFrame from multiple data sources.
Less efficient:
>>> df = pd.DataFrame(columns=['A'])
>>> for i in range(5):
... df = df.append({'A': i}, ignore_index=True)
>>> df
A
0 0
1 1
2 2
3 3
4 4
More efficient:
>>> pd.concat([pd.DataFrame([i], columns=['A']) for i in range(5)],
... ignore_index=True)
A
0 0
1 1
2 2
3 3
4 4
"""
if isinstance(other, (Series, dict)):
if isinstance(other, dict):
other = Series(other)
if other.name is None and not ignore_index:
raise TypeError('Can only append a Series if ignore_index=True'
' or if the Series has a name')
if other.name is None:
index = None
else:
# other must have the same index name as self, otherwise
# index name will be reset
index = Index([other.name], name=self.index.name)
idx_diff = other.index.difference(self.columns)
try:
combined_columns = self.columns.append(idx_diff)
except TypeError:
combined_columns = self.columns.astype(object).append(idx_diff)
other = other.reindex(combined_columns, copy=False)
other = DataFrame(other.values.reshape((1, len(other))),
index=index,
columns=combined_columns)
other = other._convert(datetime=True, timedelta=True)
if not self.columns.equals(combined_columns):
self = self.reindex(columns=combined_columns)
elif isinstance(other, list) and not isinstance(other[0], DataFrame):
other = DataFrame(other)
if (self.columns.get_indexer(other.columns) >= 0).all():
other = other.reindex(columns=self.columns)
from pandas.core.reshape.concat import concat
if isinstance(other, (list, tuple)):
to_concat = [self] + other
else:
to_concat = [self, other]
return concat(to_concat, ignore_index=ignore_index,
verify_integrity=verify_integrity,
sort=sort)
|
[
"def",
"append",
"(",
"self",
",",
"other",
",",
"ignore_index",
"=",
"False",
",",
"verify_integrity",
"=",
"False",
",",
"sort",
"=",
"None",
")",
":",
"if",
"isinstance",
"(",
"other",
",",
"(",
"Series",
",",
"dict",
")",
")",
":",
"if",
"isinstance",
"(",
"other",
",",
"dict",
")",
":",
"other",
"=",
"Series",
"(",
"other",
")",
"if",
"other",
".",
"name",
"is",
"None",
"and",
"not",
"ignore_index",
":",
"raise",
"TypeError",
"(",
"'Can only append a Series if ignore_index=True'",
"' or if the Series has a name'",
")",
"if",
"other",
".",
"name",
"is",
"None",
":",
"index",
"=",
"None",
"else",
":",
"# other must have the same index name as self, otherwise",
"# index name will be reset",
"index",
"=",
"Index",
"(",
"[",
"other",
".",
"name",
"]",
",",
"name",
"=",
"self",
".",
"index",
".",
"name",
")",
"idx_diff",
"=",
"other",
".",
"index",
".",
"difference",
"(",
"self",
".",
"columns",
")",
"try",
":",
"combined_columns",
"=",
"self",
".",
"columns",
".",
"append",
"(",
"idx_diff",
")",
"except",
"TypeError",
":",
"combined_columns",
"=",
"self",
".",
"columns",
".",
"astype",
"(",
"object",
")",
".",
"append",
"(",
"idx_diff",
")",
"other",
"=",
"other",
".",
"reindex",
"(",
"combined_columns",
",",
"copy",
"=",
"False",
")",
"other",
"=",
"DataFrame",
"(",
"other",
".",
"values",
".",
"reshape",
"(",
"(",
"1",
",",
"len",
"(",
"other",
")",
")",
")",
",",
"index",
"=",
"index",
",",
"columns",
"=",
"combined_columns",
")",
"other",
"=",
"other",
".",
"_convert",
"(",
"datetime",
"=",
"True",
",",
"timedelta",
"=",
"True",
")",
"if",
"not",
"self",
".",
"columns",
".",
"equals",
"(",
"combined_columns",
")",
":",
"self",
"=",
"self",
".",
"reindex",
"(",
"columns",
"=",
"combined_columns",
")",
"elif",
"isinstance",
"(",
"other",
",",
"list",
")",
"and",
"not",
"isinstance",
"(",
"other",
"[",
"0",
"]",
",",
"DataFrame",
")",
":",
"other",
"=",
"DataFrame",
"(",
"other",
")",
"if",
"(",
"self",
".",
"columns",
".",
"get_indexer",
"(",
"other",
".",
"columns",
")",
">=",
"0",
")",
".",
"all",
"(",
")",
":",
"other",
"=",
"other",
".",
"reindex",
"(",
"columns",
"=",
"self",
".",
"columns",
")",
"from",
"pandas",
".",
"core",
".",
"reshape",
".",
"concat",
"import",
"concat",
"if",
"isinstance",
"(",
"other",
",",
"(",
"list",
",",
"tuple",
")",
")",
":",
"to_concat",
"=",
"[",
"self",
"]",
"+",
"other",
"else",
":",
"to_concat",
"=",
"[",
"self",
",",
"other",
"]",
"return",
"concat",
"(",
"to_concat",
",",
"ignore_index",
"=",
"ignore_index",
",",
"verify_integrity",
"=",
"verify_integrity",
",",
"sort",
"=",
"sort",
")"
] |
Append rows of `other` to the end of caller, returning a new object.
Columns in `other` that are not in the caller are added as new columns.
Parameters
----------
other : DataFrame or Series/dict-like object, or list of these
The data to append.
ignore_index : boolean, default False
If True, do not use the index labels.
verify_integrity : boolean, default False
If True, raise ValueError on creating index with duplicates.
sort : boolean, default None
Sort columns if the columns of `self` and `other` are not aligned.
The default sorting is deprecated and will change to not-sorting
in a future version of pandas. Explicitly pass ``sort=True`` to
silence the warning and sort. Explicitly pass ``sort=False`` to
silence the warning and not sort.
.. versionadded:: 0.23.0
Returns
-------
DataFrame
See Also
--------
concat : General function to concatenate DataFrame, Series
or Panel objects.
Notes
-----
If a list of dict/series is passed and the keys are all contained in
the DataFrame's index, the order of the columns in the resulting
DataFrame will be unchanged.
Iteratively appending rows to a DataFrame can be more computationally
intensive than a single concatenate. A better solution is to append
those rows to a list and then concatenate the list with the original
DataFrame all at once.
Examples
--------
>>> df = pd.DataFrame([[1, 2], [3, 4]], columns=list('AB'))
>>> df
A B
0 1 2
1 3 4
>>> df2 = pd.DataFrame([[5, 6], [7, 8]], columns=list('AB'))
>>> df.append(df2)
A B
0 1 2
1 3 4
0 5 6
1 7 8
With `ignore_index` set to True:
>>> df.append(df2, ignore_index=True)
A B
0 1 2
1 3 4
2 5 6
3 7 8
The following, while not recommended methods for generating DataFrames,
show two ways to generate a DataFrame from multiple data sources.
Less efficient:
>>> df = pd.DataFrame(columns=['A'])
>>> for i in range(5):
... df = df.append({'A': i}, ignore_index=True)
>>> df
A
0 0
1 1
2 2
3 3
4 4
More efficient:
>>> pd.concat([pd.DataFrame([i], columns=['A']) for i in range(5)],
... ignore_index=True)
A
0 0
1 1
2 2
3 3
4 4
|
[
"Append",
"rows",
"of",
"other",
"to",
"the",
"end",
"of",
"caller",
"returning",
"a",
"new",
"object",
"."
] |
9feb3ad92cc0397a04b665803a49299ee7aa1037
|
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/frame.py#L6605-L6739
|
19,699
|
pandas-dev/pandas
|
pandas/core/frame.py
|
DataFrame.join
|
def join(self, other, on=None, how='left', lsuffix='', rsuffix='',
sort=False):
"""
Join columns of another DataFrame.
Join columns with `other` DataFrame either on index or on a key
column. Efficiently join multiple DataFrame objects by index at once by
passing a list.
Parameters
----------
other : DataFrame, Series, or list of DataFrame
Index should be similar to one of the columns in this one. If a
Series is passed, its name attribute must be set, and that will be
used as the column name in the resulting joined DataFrame.
on : str, list of str, or array-like, optional
Column or index level name(s) in the caller to join on the index
in `other`, otherwise joins index-on-index. If multiple
values given, the `other` DataFrame must have a MultiIndex. Can
pass an array as the join key if it is not already contained in
the calling DataFrame. Like an Excel VLOOKUP operation.
how : {'left', 'right', 'outer', 'inner'}, default 'left'
How to handle the operation of the two objects.
* left: use calling frame's index (or column if on is specified)
* right: use `other`'s index.
* outer: form union of calling frame's index (or column if on is
specified) with `other`'s index, and sort it.
lexicographically.
* inner: form intersection of calling frame's index (or column if
on is specified) with `other`'s index, preserving the order
of the calling's one.
lsuffix : str, default ''
Suffix to use from left frame's overlapping columns.
rsuffix : str, default ''
Suffix to use from right frame's overlapping columns.
sort : bool, default False
Order result DataFrame lexicographically by the join key. If False,
the order of the join key depends on the join type (how keyword).
Returns
-------
DataFrame
A dataframe containing columns from both the caller and `other`.
See Also
--------
DataFrame.merge : For column(s)-on-columns(s) operations.
Notes
-----
Parameters `on`, `lsuffix`, and `rsuffix` are not supported when
passing a list of `DataFrame` objects.
Support for specifying index levels as the `on` parameter was added
in version 0.23.0.
Examples
--------
>>> df = pd.DataFrame({'key': ['K0', 'K1', 'K2', 'K3', 'K4', 'K5'],
... 'A': ['A0', 'A1', 'A2', 'A3', 'A4', 'A5']})
>>> df
key A
0 K0 A0
1 K1 A1
2 K2 A2
3 K3 A3
4 K4 A4
5 K5 A5
>>> other = pd.DataFrame({'key': ['K0', 'K1', 'K2'],
... 'B': ['B0', 'B1', 'B2']})
>>> other
key B
0 K0 B0
1 K1 B1
2 K2 B2
Join DataFrames using their indexes.
>>> df.join(other, lsuffix='_caller', rsuffix='_other')
key_caller A key_other B
0 K0 A0 K0 B0
1 K1 A1 K1 B1
2 K2 A2 K2 B2
3 K3 A3 NaN NaN
4 K4 A4 NaN NaN
5 K5 A5 NaN NaN
If we want to join using the key columns, we need to set key to be
the index in both `df` and `other`. The joined DataFrame will have
key as its index.
>>> df.set_index('key').join(other.set_index('key'))
A B
key
K0 A0 B0
K1 A1 B1
K2 A2 B2
K3 A3 NaN
K4 A4 NaN
K5 A5 NaN
Another option to join using the key columns is to use the `on`
parameter. DataFrame.join always uses `other`'s index but we can use
any column in `df`. This method preserves the original DataFrame's
index in the result.
>>> df.join(other.set_index('key'), on='key')
key A B
0 K0 A0 B0
1 K1 A1 B1
2 K2 A2 B2
3 K3 A3 NaN
4 K4 A4 NaN
5 K5 A5 NaN
"""
# For SparseDataFrame's benefit
return self._join_compat(other, on=on, how=how, lsuffix=lsuffix,
rsuffix=rsuffix, sort=sort)
|
python
|
def join(self, other, on=None, how='left', lsuffix='', rsuffix='',
sort=False):
"""
Join columns of another DataFrame.
Join columns with `other` DataFrame either on index or on a key
column. Efficiently join multiple DataFrame objects by index at once by
passing a list.
Parameters
----------
other : DataFrame, Series, or list of DataFrame
Index should be similar to one of the columns in this one. If a
Series is passed, its name attribute must be set, and that will be
used as the column name in the resulting joined DataFrame.
on : str, list of str, or array-like, optional
Column or index level name(s) in the caller to join on the index
in `other`, otherwise joins index-on-index. If multiple
values given, the `other` DataFrame must have a MultiIndex. Can
pass an array as the join key if it is not already contained in
the calling DataFrame. Like an Excel VLOOKUP operation.
how : {'left', 'right', 'outer', 'inner'}, default 'left'
How to handle the operation of the two objects.
* left: use calling frame's index (or column if on is specified)
* right: use `other`'s index.
* outer: form union of calling frame's index (or column if on is
specified) with `other`'s index, and sort it.
lexicographically.
* inner: form intersection of calling frame's index (or column if
on is specified) with `other`'s index, preserving the order
of the calling's one.
lsuffix : str, default ''
Suffix to use from left frame's overlapping columns.
rsuffix : str, default ''
Suffix to use from right frame's overlapping columns.
sort : bool, default False
Order result DataFrame lexicographically by the join key. If False,
the order of the join key depends on the join type (how keyword).
Returns
-------
DataFrame
A dataframe containing columns from both the caller and `other`.
See Also
--------
DataFrame.merge : For column(s)-on-columns(s) operations.
Notes
-----
Parameters `on`, `lsuffix`, and `rsuffix` are not supported when
passing a list of `DataFrame` objects.
Support for specifying index levels as the `on` parameter was added
in version 0.23.0.
Examples
--------
>>> df = pd.DataFrame({'key': ['K0', 'K1', 'K2', 'K3', 'K4', 'K5'],
... 'A': ['A0', 'A1', 'A2', 'A3', 'A4', 'A5']})
>>> df
key A
0 K0 A0
1 K1 A1
2 K2 A2
3 K3 A3
4 K4 A4
5 K5 A5
>>> other = pd.DataFrame({'key': ['K0', 'K1', 'K2'],
... 'B': ['B0', 'B1', 'B2']})
>>> other
key B
0 K0 B0
1 K1 B1
2 K2 B2
Join DataFrames using their indexes.
>>> df.join(other, lsuffix='_caller', rsuffix='_other')
key_caller A key_other B
0 K0 A0 K0 B0
1 K1 A1 K1 B1
2 K2 A2 K2 B2
3 K3 A3 NaN NaN
4 K4 A4 NaN NaN
5 K5 A5 NaN NaN
If we want to join using the key columns, we need to set key to be
the index in both `df` and `other`. The joined DataFrame will have
key as its index.
>>> df.set_index('key').join(other.set_index('key'))
A B
key
K0 A0 B0
K1 A1 B1
K2 A2 B2
K3 A3 NaN
K4 A4 NaN
K5 A5 NaN
Another option to join using the key columns is to use the `on`
parameter. DataFrame.join always uses `other`'s index but we can use
any column in `df`. This method preserves the original DataFrame's
index in the result.
>>> df.join(other.set_index('key'), on='key')
key A B
0 K0 A0 B0
1 K1 A1 B1
2 K2 A2 B2
3 K3 A3 NaN
4 K4 A4 NaN
5 K5 A5 NaN
"""
# For SparseDataFrame's benefit
return self._join_compat(other, on=on, how=how, lsuffix=lsuffix,
rsuffix=rsuffix, sort=sort)
|
[
"def",
"join",
"(",
"self",
",",
"other",
",",
"on",
"=",
"None",
",",
"how",
"=",
"'left'",
",",
"lsuffix",
"=",
"''",
",",
"rsuffix",
"=",
"''",
",",
"sort",
"=",
"False",
")",
":",
"# For SparseDataFrame's benefit",
"return",
"self",
".",
"_join_compat",
"(",
"other",
",",
"on",
"=",
"on",
",",
"how",
"=",
"how",
",",
"lsuffix",
"=",
"lsuffix",
",",
"rsuffix",
"=",
"rsuffix",
",",
"sort",
"=",
"sort",
")"
] |
Join columns of another DataFrame.
Join columns with `other` DataFrame either on index or on a key
column. Efficiently join multiple DataFrame objects by index at once by
passing a list.
Parameters
----------
other : DataFrame, Series, or list of DataFrame
Index should be similar to one of the columns in this one. If a
Series is passed, its name attribute must be set, and that will be
used as the column name in the resulting joined DataFrame.
on : str, list of str, or array-like, optional
Column or index level name(s) in the caller to join on the index
in `other`, otherwise joins index-on-index. If multiple
values given, the `other` DataFrame must have a MultiIndex. Can
pass an array as the join key if it is not already contained in
the calling DataFrame. Like an Excel VLOOKUP operation.
how : {'left', 'right', 'outer', 'inner'}, default 'left'
How to handle the operation of the two objects.
* left: use calling frame's index (or column if on is specified)
* right: use `other`'s index.
* outer: form union of calling frame's index (or column if on is
specified) with `other`'s index, and sort it.
lexicographically.
* inner: form intersection of calling frame's index (or column if
on is specified) with `other`'s index, preserving the order
of the calling's one.
lsuffix : str, default ''
Suffix to use from left frame's overlapping columns.
rsuffix : str, default ''
Suffix to use from right frame's overlapping columns.
sort : bool, default False
Order result DataFrame lexicographically by the join key. If False,
the order of the join key depends on the join type (how keyword).
Returns
-------
DataFrame
A dataframe containing columns from both the caller and `other`.
See Also
--------
DataFrame.merge : For column(s)-on-columns(s) operations.
Notes
-----
Parameters `on`, `lsuffix`, and `rsuffix` are not supported when
passing a list of `DataFrame` objects.
Support for specifying index levels as the `on` parameter was added
in version 0.23.0.
Examples
--------
>>> df = pd.DataFrame({'key': ['K0', 'K1', 'K2', 'K3', 'K4', 'K5'],
... 'A': ['A0', 'A1', 'A2', 'A3', 'A4', 'A5']})
>>> df
key A
0 K0 A0
1 K1 A1
2 K2 A2
3 K3 A3
4 K4 A4
5 K5 A5
>>> other = pd.DataFrame({'key': ['K0', 'K1', 'K2'],
... 'B': ['B0', 'B1', 'B2']})
>>> other
key B
0 K0 B0
1 K1 B1
2 K2 B2
Join DataFrames using their indexes.
>>> df.join(other, lsuffix='_caller', rsuffix='_other')
key_caller A key_other B
0 K0 A0 K0 B0
1 K1 A1 K1 B1
2 K2 A2 K2 B2
3 K3 A3 NaN NaN
4 K4 A4 NaN NaN
5 K5 A5 NaN NaN
If we want to join using the key columns, we need to set key to be
the index in both `df` and `other`. The joined DataFrame will have
key as its index.
>>> df.set_index('key').join(other.set_index('key'))
A B
key
K0 A0 B0
K1 A1 B1
K2 A2 B2
K3 A3 NaN
K4 A4 NaN
K5 A5 NaN
Another option to join using the key columns is to use the `on`
parameter. DataFrame.join always uses `other`'s index but we can use
any column in `df`. This method preserves the original DataFrame's
index in the result.
>>> df.join(other.set_index('key'), on='key')
key A B
0 K0 A0 B0
1 K1 A1 B1
2 K2 A2 B2
3 K3 A3 NaN
4 K4 A4 NaN
5 K5 A5 NaN
|
[
"Join",
"columns",
"of",
"another",
"DataFrame",
"."
] |
9feb3ad92cc0397a04b665803a49299ee7aa1037
|
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/frame.py#L6741-L6862
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.