id
int32
0
252k
repo
stringlengths
7
55
path
stringlengths
4
127
func_name
stringlengths
1
88
original_string
stringlengths
75
19.8k
language
stringclasses
1 value
code
stringlengths
75
19.8k
code_tokens
list
docstring
stringlengths
3
17.3k
docstring_tokens
list
sha
stringlengths
40
40
url
stringlengths
87
242
16,000
wmayner/pyphi
pyphi/compute/subsystem.py
ComputeSystemIrreducibility.process_result
def process_result(self, new_sia, min_sia): """Check if the new SIA has smaller |big_phi| than the standing result. """ if new_sia.phi == 0: self.done = True # Short-circuit return new_sia elif new_sia < min_sia: return new_sia return min_sia
python
def process_result(self, new_sia, min_sia): """Check if the new SIA has smaller |big_phi| than the standing result. """ if new_sia.phi == 0: self.done = True # Short-circuit return new_sia elif new_sia < min_sia: return new_sia return min_sia
[ "def", "process_result", "(", "self", ",", "new_sia", ",", "min_sia", ")", ":", "if", "new_sia", ".", "phi", "==", "0", ":", "self", ".", "done", "=", "True", "# Short-circuit", "return", "new_sia", "elif", "new_sia", "<", "min_sia", ":", "return", "new_sia", "return", "min_sia" ]
Check if the new SIA has smaller |big_phi| than the standing result.
[ "Check", "if", "the", "new", "SIA", "has", "smaller", "|big_phi|", "than", "the", "standing", "result", "." ]
deeca69a084d782a6fde7bf26f59e93b593c5d77
https://github.com/wmayner/pyphi/blob/deeca69a084d782a6fde7bf26f59e93b593c5d77/pyphi/compute/subsystem.py#L170-L181
16,001
wmayner/pyphi
pyphi/compute/subsystem.py
ConceptStyleSystem.concept
def concept(self, mechanism, purviews=False, cause_purviews=False, effect_purviews=False): """Compute a concept, using the appropriate system for each side of the cut. """ cause = self.cause_system.mic( mechanism, purviews=(cause_purviews or purviews)) effect = self.effect_system.mie( mechanism, purviews=(effect_purviews or purviews)) return Concept(mechanism=mechanism, cause=cause, effect=effect, subsystem=self)
python
def concept(self, mechanism, purviews=False, cause_purviews=False, effect_purviews=False): """Compute a concept, using the appropriate system for each side of the cut. """ cause = self.cause_system.mic( mechanism, purviews=(cause_purviews or purviews)) effect = self.effect_system.mie( mechanism, purviews=(effect_purviews or purviews)) return Concept(mechanism=mechanism, cause=cause, effect=effect, subsystem=self)
[ "def", "concept", "(", "self", ",", "mechanism", ",", "purviews", "=", "False", ",", "cause_purviews", "=", "False", ",", "effect_purviews", "=", "False", ")", ":", "cause", "=", "self", ".", "cause_system", ".", "mic", "(", "mechanism", ",", "purviews", "=", "(", "cause_purviews", "or", "purviews", ")", ")", "effect", "=", "self", ".", "effect_system", ".", "mie", "(", "mechanism", ",", "purviews", "=", "(", "effect_purviews", "or", "purviews", ")", ")", "return", "Concept", "(", "mechanism", "=", "mechanism", ",", "cause", "=", "cause", ",", "effect", "=", "effect", ",", "subsystem", "=", "self", ")" ]
Compute a concept, using the appropriate system for each side of the cut.
[ "Compute", "a", "concept", "using", "the", "appropriate", "system", "for", "each", "side", "of", "the", "cut", "." ]
deeca69a084d782a6fde7bf26f59e93b593c5d77
https://github.com/wmayner/pyphi/blob/deeca69a084d782a6fde7bf26f59e93b593c5d77/pyphi/compute/subsystem.py#L372-L384
16,002
wmayner/pyphi
pyphi/labels.py
NodeLabels.coerce_to_indices
def coerce_to_indices(self, nodes): """Return the nodes indices for nodes, where ``nodes`` is either already integer indices or node labels. """ if nodes is None: return self.node_indices if all(isinstance(node, str) for node in nodes): indices = self.labels2indices(nodes) else: indices = map(int, nodes) return tuple(sorted(set(indices)))
python
def coerce_to_indices(self, nodes): """Return the nodes indices for nodes, where ``nodes`` is either already integer indices or node labels. """ if nodes is None: return self.node_indices if all(isinstance(node, str) for node in nodes): indices = self.labels2indices(nodes) else: indices = map(int, nodes) return tuple(sorted(set(indices)))
[ "def", "coerce_to_indices", "(", "self", ",", "nodes", ")", ":", "if", "nodes", "is", "None", ":", "return", "self", ".", "node_indices", "if", "all", "(", "isinstance", "(", "node", ",", "str", ")", "for", "node", "in", "nodes", ")", ":", "indices", "=", "self", ".", "labels2indices", "(", "nodes", ")", "else", ":", "indices", "=", "map", "(", "int", ",", "nodes", ")", "return", "tuple", "(", "sorted", "(", "set", "(", "indices", ")", ")", ")" ]
Return the nodes indices for nodes, where ``nodes`` is either already integer indices or node labels.
[ "Return", "the", "nodes", "indices", "for", "nodes", "where", "nodes", "is", "either", "already", "integer", "indices", "or", "node", "labels", "." ]
deeca69a084d782a6fde7bf26f59e93b593c5d77
https://github.com/wmayner/pyphi/blob/deeca69a084d782a6fde7bf26f59e93b593c5d77/pyphi/labels.py#L82-L93
16,003
wmayner/pyphi
pyphi/models/subsystem.py
_null_sia
def _null_sia(subsystem, phi=0.0): """Return a |SystemIrreducibilityAnalysis| with zero |big_phi| and empty cause-effect structures. This is the analysis result for a reducible subsystem. """ return SystemIrreducibilityAnalysis(subsystem=subsystem, cut_subsystem=subsystem, phi=phi, ces=_null_ces(subsystem), partitioned_ces=_null_ces(subsystem))
python
def _null_sia(subsystem, phi=0.0): """Return a |SystemIrreducibilityAnalysis| with zero |big_phi| and empty cause-effect structures. This is the analysis result for a reducible subsystem. """ return SystemIrreducibilityAnalysis(subsystem=subsystem, cut_subsystem=subsystem, phi=phi, ces=_null_ces(subsystem), partitioned_ces=_null_ces(subsystem))
[ "def", "_null_sia", "(", "subsystem", ",", "phi", "=", "0.0", ")", ":", "return", "SystemIrreducibilityAnalysis", "(", "subsystem", "=", "subsystem", ",", "cut_subsystem", "=", "subsystem", ",", "phi", "=", "phi", ",", "ces", "=", "_null_ces", "(", "subsystem", ")", ",", "partitioned_ces", "=", "_null_ces", "(", "subsystem", ")", ")" ]
Return a |SystemIrreducibilityAnalysis| with zero |big_phi| and empty cause-effect structures. This is the analysis result for a reducible subsystem.
[ "Return", "a", "|SystemIrreducibilityAnalysis|", "with", "zero", "|big_phi|", "and", "empty", "cause", "-", "effect", "structures", "." ]
deeca69a084d782a6fde7bf26f59e93b593c5d77
https://github.com/wmayner/pyphi/blob/deeca69a084d782a6fde7bf26f59e93b593c5d77/pyphi/models/subsystem.py#L179-L189
16,004
wmayner/pyphi
pyphi/models/subsystem.py
CauseEffectStructure.labeled_mechanisms
def labeled_mechanisms(self): """The labeled mechanism of each concept.""" label = self.subsystem.node_labels.indices2labels return tuple(list(label(mechanism)) for mechanism in self.mechanisms)
python
def labeled_mechanisms(self): """The labeled mechanism of each concept.""" label = self.subsystem.node_labels.indices2labels return tuple(list(label(mechanism)) for mechanism in self.mechanisms)
[ "def", "labeled_mechanisms", "(", "self", ")", ":", "label", "=", "self", ".", "subsystem", ".", "node_labels", ".", "indices2labels", "return", "tuple", "(", "list", "(", "label", "(", "mechanism", ")", ")", "for", "mechanism", "in", "self", ".", "mechanisms", ")" ]
The labeled mechanism of each concept.
[ "The", "labeled", "mechanism", "of", "each", "concept", "." ]
deeca69a084d782a6fde7bf26f59e93b593c5d77
https://github.com/wmayner/pyphi/blob/deeca69a084d782a6fde7bf26f59e93b593c5d77/pyphi/models/subsystem.py#L69-L72
16,005
wmayner/pyphi
pyphi/direction.py
Direction.order
def order(self, mechanism, purview): """Order the mechanism and purview in time. If the direction is ``CAUSE``, then the purview is at |t-1| and the mechanism is at time |t|. If the direction is ``EFFECT``, then the mechanism is at time |t| and the purview is at |t+1|. """ if self is Direction.CAUSE: return purview, mechanism elif self is Direction.EFFECT: return mechanism, purview from . import validate return validate.direction(self)
python
def order(self, mechanism, purview): """Order the mechanism and purview in time. If the direction is ``CAUSE``, then the purview is at |t-1| and the mechanism is at time |t|. If the direction is ``EFFECT``, then the mechanism is at time |t| and the purview is at |t+1|. """ if self is Direction.CAUSE: return purview, mechanism elif self is Direction.EFFECT: return mechanism, purview from . import validate return validate.direction(self)
[ "def", "order", "(", "self", ",", "mechanism", ",", "purview", ")", ":", "if", "self", "is", "Direction", ".", "CAUSE", ":", "return", "purview", ",", "mechanism", "elif", "self", "is", "Direction", ".", "EFFECT", ":", "return", "mechanism", ",", "purview", "from", ".", "import", "validate", "return", "validate", ".", "direction", "(", "self", ")" ]
Order the mechanism and purview in time. If the direction is ``CAUSE``, then the purview is at |t-1| and the mechanism is at time |t|. If the direction is ``EFFECT``, then the mechanism is at time |t| and the purview is at |t+1|.
[ "Order", "the", "mechanism", "and", "purview", "in", "time", "." ]
deeca69a084d782a6fde7bf26f59e93b593c5d77
https://github.com/wmayner/pyphi/blob/deeca69a084d782a6fde7bf26f59e93b593c5d77/pyphi/direction.py#L31-L44
16,006
wmayner/pyphi
pyphi/models/cmp.py
sametype
def sametype(func): """Method decorator to return ``NotImplemented`` if the args of the wrapped method are of different types. When wrapping a rich model comparison method this will delegate (reflect) the comparison to the right-hand-side object, or fallback by passing it up the inheritance tree. """ @functools.wraps(func) def wrapper(self, other): # pylint: disable=missing-docstring if type(other) is not type(self): return NotImplemented return func(self, other) return wrapper
python
def sametype(func): """Method decorator to return ``NotImplemented`` if the args of the wrapped method are of different types. When wrapping a rich model comparison method this will delegate (reflect) the comparison to the right-hand-side object, or fallback by passing it up the inheritance tree. """ @functools.wraps(func) def wrapper(self, other): # pylint: disable=missing-docstring if type(other) is not type(self): return NotImplemented return func(self, other) return wrapper
[ "def", "sametype", "(", "func", ")", ":", "@", "functools", ".", "wraps", "(", "func", ")", "def", "wrapper", "(", "self", ",", "other", ")", ":", "# pylint: disable=missing-docstring", "if", "type", "(", "other", ")", "is", "not", "type", "(", "self", ")", ":", "return", "NotImplemented", "return", "func", "(", "self", ",", "other", ")", "return", "wrapper" ]
Method decorator to return ``NotImplemented`` if the args of the wrapped method are of different types. When wrapping a rich model comparison method this will delegate (reflect) the comparison to the right-hand-side object, or fallback by passing it up the inheritance tree.
[ "Method", "decorator", "to", "return", "NotImplemented", "if", "the", "args", "of", "the", "wrapped", "method", "are", "of", "different", "types", "." ]
deeca69a084d782a6fde7bf26f59e93b593c5d77
https://github.com/wmayner/pyphi/blob/deeca69a084d782a6fde7bf26f59e93b593c5d77/pyphi/models/cmp.py#L19-L32
16,007
wmayner/pyphi
pyphi/models/cmp.py
general_eq
def general_eq(a, b, attributes): """Return whether two objects are equal up to the given attributes. If an attribute is called ``'phi'``, it is compared up to |PRECISION|. If an attribute is called ``'mechanism'`` or ``'purview'``, it is compared using set equality. All other attributes are compared with :func:`numpy_aware_eq`. """ try: for attr in attributes: _a, _b = getattr(a, attr), getattr(b, attr) if attr in ['phi', 'alpha']: if not utils.eq(_a, _b): return False elif attr in ['mechanism', 'purview']: if _a is None or _b is None: if _a != _b: return False elif not set(_a) == set(_b): return False else: if not numpy_aware_eq(_a, _b): return False return True except AttributeError: return False
python
def general_eq(a, b, attributes): """Return whether two objects are equal up to the given attributes. If an attribute is called ``'phi'``, it is compared up to |PRECISION|. If an attribute is called ``'mechanism'`` or ``'purview'``, it is compared using set equality. All other attributes are compared with :func:`numpy_aware_eq`. """ try: for attr in attributes: _a, _b = getattr(a, attr), getattr(b, attr) if attr in ['phi', 'alpha']: if not utils.eq(_a, _b): return False elif attr in ['mechanism', 'purview']: if _a is None or _b is None: if _a != _b: return False elif not set(_a) == set(_b): return False else: if not numpy_aware_eq(_a, _b): return False return True except AttributeError: return False
[ "def", "general_eq", "(", "a", ",", "b", ",", "attributes", ")", ":", "try", ":", "for", "attr", "in", "attributes", ":", "_a", ",", "_b", "=", "getattr", "(", "a", ",", "attr", ")", ",", "getattr", "(", "b", ",", "attr", ")", "if", "attr", "in", "[", "'phi'", ",", "'alpha'", "]", ":", "if", "not", "utils", ".", "eq", "(", "_a", ",", "_b", ")", ":", "return", "False", "elif", "attr", "in", "[", "'mechanism'", ",", "'purview'", "]", ":", "if", "_a", "is", "None", "or", "_b", "is", "None", ":", "if", "_a", "!=", "_b", ":", "return", "False", "elif", "not", "set", "(", "_a", ")", "==", "set", "(", "_b", ")", ":", "return", "False", "else", ":", "if", "not", "numpy_aware_eq", "(", "_a", ",", "_b", ")", ":", "return", "False", "return", "True", "except", "AttributeError", ":", "return", "False" ]
Return whether two objects are equal up to the given attributes. If an attribute is called ``'phi'``, it is compared up to |PRECISION|. If an attribute is called ``'mechanism'`` or ``'purview'``, it is compared using set equality. All other attributes are compared with :func:`numpy_aware_eq`.
[ "Return", "whether", "two", "objects", "are", "equal", "up", "to", "the", "given", "attributes", "." ]
deeca69a084d782a6fde7bf26f59e93b593c5d77
https://github.com/wmayner/pyphi/blob/deeca69a084d782a6fde7bf26f59e93b593c5d77/pyphi/models/cmp.py#L108-L133
16,008
wmayner/pyphi
benchmarks/time_emd.py
time_emd
def time_emd(emd_type, data): """Time an EMD command with the given data as arguments""" emd = { 'cause': _CAUSE_EMD, 'effect': pyphi.subsystem.effect_emd, 'hamming': pyphi.utils.hamming_emd }[emd_type] def statement(): for (d1, d2) in data: emd(d1, d2) results = timeit.repeat(statement, number=NUMBER, repeat=REPEAT) return min(results)
python
def time_emd(emd_type, data): """Time an EMD command with the given data as arguments""" emd = { 'cause': _CAUSE_EMD, 'effect': pyphi.subsystem.effect_emd, 'hamming': pyphi.utils.hamming_emd }[emd_type] def statement(): for (d1, d2) in data: emd(d1, d2) results = timeit.repeat(statement, number=NUMBER, repeat=REPEAT) return min(results)
[ "def", "time_emd", "(", "emd_type", ",", "data", ")", ":", "emd", "=", "{", "'cause'", ":", "_CAUSE_EMD", ",", "'effect'", ":", "pyphi", ".", "subsystem", ".", "effect_emd", ",", "'hamming'", ":", "pyphi", ".", "utils", ".", "hamming_emd", "}", "[", "emd_type", "]", "def", "statement", "(", ")", ":", "for", "(", "d1", ",", "d2", ")", "in", "data", ":", "emd", "(", "d1", ",", "d2", ")", "results", "=", "timeit", ".", "repeat", "(", "statement", ",", "number", "=", "NUMBER", ",", "repeat", "=", "REPEAT", ")", "return", "min", "(", "results", ")" ]
Time an EMD command with the given data as arguments
[ "Time", "an", "EMD", "command", "with", "the", "given", "data", "as", "arguments" ]
deeca69a084d782a6fde7bf26f59e93b593c5d77
https://github.com/wmayner/pyphi/blob/deeca69a084d782a6fde7bf26f59e93b593c5d77/benchmarks/time_emd.py#L320-L335
16,009
wmayner/pyphi
pyphi/distribution.py
marginal_zero
def marginal_zero(repertoire, node_index): """Return the marginal probability that the node is OFF.""" index = [slice(None)] * repertoire.ndim index[node_index] = 0 return repertoire[tuple(index)].sum()
python
def marginal_zero(repertoire, node_index): """Return the marginal probability that the node is OFF.""" index = [slice(None)] * repertoire.ndim index[node_index] = 0 return repertoire[tuple(index)].sum()
[ "def", "marginal_zero", "(", "repertoire", ",", "node_index", ")", ":", "index", "=", "[", "slice", "(", "None", ")", "]", "*", "repertoire", ".", "ndim", "index", "[", "node_index", "]", "=", "0", "return", "repertoire", "[", "tuple", "(", "index", ")", "]", ".", "sum", "(", ")" ]
Return the marginal probability that the node is OFF.
[ "Return", "the", "marginal", "probability", "that", "the", "node", "is", "OFF", "." ]
deeca69a084d782a6fde7bf26f59e93b593c5d77
https://github.com/wmayner/pyphi/blob/deeca69a084d782a6fde7bf26f59e93b593c5d77/pyphi/distribution.py#L50-L55
16,010
wmayner/pyphi
pyphi/distribution.py
marginal
def marginal(repertoire, node_index): """Get the marginal distribution for a node.""" index = tuple(i for i in range(repertoire.ndim) if i != node_index) return repertoire.sum(index, keepdims=True)
python
def marginal(repertoire, node_index): """Get the marginal distribution for a node.""" index = tuple(i for i in range(repertoire.ndim) if i != node_index) return repertoire.sum(index, keepdims=True)
[ "def", "marginal", "(", "repertoire", ",", "node_index", ")", ":", "index", "=", "tuple", "(", "i", "for", "i", "in", "range", "(", "repertoire", ".", "ndim", ")", "if", "i", "!=", "node_index", ")", "return", "repertoire", ".", "sum", "(", "index", ",", "keepdims", "=", "True", ")" ]
Get the marginal distribution for a node.
[ "Get", "the", "marginal", "distribution", "for", "a", "node", "." ]
deeca69a084d782a6fde7bf26f59e93b593c5d77
https://github.com/wmayner/pyphi/blob/deeca69a084d782a6fde7bf26f59e93b593c5d77/pyphi/distribution.py#L58-L62
16,011
wmayner/pyphi
pyphi/distribution.py
independent
def independent(repertoire): """Check whether the repertoire is independent.""" marginals = [marginal(repertoire, i) for i in range(repertoire.ndim)] # TODO: is there a way to do without an explicit iteration? joint = marginals[0] for m in marginals[1:]: joint = joint * m # TODO: should we round here? # repertoire = repertoire.round(config.PRECISION) # joint = joint.round(config.PRECISION) return np.array_equal(repertoire, joint)
python
def independent(repertoire): """Check whether the repertoire is independent.""" marginals = [marginal(repertoire, i) for i in range(repertoire.ndim)] # TODO: is there a way to do without an explicit iteration? joint = marginals[0] for m in marginals[1:]: joint = joint * m # TODO: should we round here? # repertoire = repertoire.round(config.PRECISION) # joint = joint.round(config.PRECISION) return np.array_equal(repertoire, joint)
[ "def", "independent", "(", "repertoire", ")", ":", "marginals", "=", "[", "marginal", "(", "repertoire", ",", "i", ")", "for", "i", "in", "range", "(", "repertoire", ".", "ndim", ")", "]", "# TODO: is there a way to do without an explicit iteration?", "joint", "=", "marginals", "[", "0", "]", "for", "m", "in", "marginals", "[", "1", ":", "]", ":", "joint", "=", "joint", "*", "m", "# TODO: should we round here?", "# repertoire = repertoire.round(config.PRECISION)", "# joint = joint.round(config.PRECISION)", "return", "np", ".", "array_equal", "(", "repertoire", ",", "joint", ")" ]
Check whether the repertoire is independent.
[ "Check", "whether", "the", "repertoire", "is", "independent", "." ]
deeca69a084d782a6fde7bf26f59e93b593c5d77
https://github.com/wmayner/pyphi/blob/deeca69a084d782a6fde7bf26f59e93b593c5d77/pyphi/distribution.py#L65-L78
16,012
wmayner/pyphi
pyphi/distribution.py
purview
def purview(repertoire): """The purview of the repertoire. Args: repertoire (np.ndarray): A repertoire Returns: tuple[int]: The purview that the repertoire was computed over. """ if repertoire is None: return None return tuple(i for i, dim in enumerate(repertoire.shape) if dim == 2)
python
def purview(repertoire): """The purview of the repertoire. Args: repertoire (np.ndarray): A repertoire Returns: tuple[int]: The purview that the repertoire was computed over. """ if repertoire is None: return None return tuple(i for i, dim in enumerate(repertoire.shape) if dim == 2)
[ "def", "purview", "(", "repertoire", ")", ":", "if", "repertoire", "is", "None", ":", "return", "None", "return", "tuple", "(", "i", "for", "i", ",", "dim", "in", "enumerate", "(", "repertoire", ".", "shape", ")", "if", "dim", "==", "2", ")" ]
The purview of the repertoire. Args: repertoire (np.ndarray): A repertoire Returns: tuple[int]: The purview that the repertoire was computed over.
[ "The", "purview", "of", "the", "repertoire", "." ]
deeca69a084d782a6fde7bf26f59e93b593c5d77
https://github.com/wmayner/pyphi/blob/deeca69a084d782a6fde7bf26f59e93b593c5d77/pyphi/distribution.py#L81-L93
16,013
wmayner/pyphi
pyphi/distribution.py
flatten
def flatten(repertoire, big_endian=False): """Flatten a repertoire, removing empty dimensions. By default, the flattened repertoire is returned in little-endian order. Args: repertoire (np.ndarray or None): A repertoire. Keyword Args: big_endian (boolean): If ``True``, flatten the repertoire in big-endian order. Returns: np.ndarray: The flattened repertoire. """ if repertoire is None: return None order = 'C' if big_endian else 'F' # For efficiency, use `ravel` (which returns a view of the array) instead # of `np.flatten` (which copies the whole array). return repertoire.squeeze().ravel(order=order)
python
def flatten(repertoire, big_endian=False): """Flatten a repertoire, removing empty dimensions. By default, the flattened repertoire is returned in little-endian order. Args: repertoire (np.ndarray or None): A repertoire. Keyword Args: big_endian (boolean): If ``True``, flatten the repertoire in big-endian order. Returns: np.ndarray: The flattened repertoire. """ if repertoire is None: return None order = 'C' if big_endian else 'F' # For efficiency, use `ravel` (which returns a view of the array) instead # of `np.flatten` (which copies the whole array). return repertoire.squeeze().ravel(order=order)
[ "def", "flatten", "(", "repertoire", ",", "big_endian", "=", "False", ")", ":", "if", "repertoire", "is", "None", ":", "return", "None", "order", "=", "'C'", "if", "big_endian", "else", "'F'", "# For efficiency, use `ravel` (which returns a view of the array) instead", "# of `np.flatten` (which copies the whole array).", "return", "repertoire", ".", "squeeze", "(", ")", ".", "ravel", "(", "order", "=", "order", ")" ]
Flatten a repertoire, removing empty dimensions. By default, the flattened repertoire is returned in little-endian order. Args: repertoire (np.ndarray or None): A repertoire. Keyword Args: big_endian (boolean): If ``True``, flatten the repertoire in big-endian order. Returns: np.ndarray: The flattened repertoire.
[ "Flatten", "a", "repertoire", "removing", "empty", "dimensions", "." ]
deeca69a084d782a6fde7bf26f59e93b593c5d77
https://github.com/wmayner/pyphi/blob/deeca69a084d782a6fde7bf26f59e93b593c5d77/pyphi/distribution.py#L130-L151
16,014
wmayner/pyphi
pyphi/distribution.py
max_entropy_distribution
def max_entropy_distribution(node_indices, number_of_nodes): """Return the maximum entropy distribution over a set of nodes. This is different from the network's uniform distribution because nodes outside ``node_indices`` are fixed and treated as if they have only 1 state. Args: node_indices (tuple[int]): The set of node indices over which to take the distribution. number_of_nodes (int): The total number of nodes in the network. Returns: np.ndarray: The maximum entropy distribution over the set of nodes. """ distribution = np.ones(repertoire_shape(node_indices, number_of_nodes)) return distribution / distribution.size
python
def max_entropy_distribution(node_indices, number_of_nodes): """Return the maximum entropy distribution over a set of nodes. This is different from the network's uniform distribution because nodes outside ``node_indices`` are fixed and treated as if they have only 1 state. Args: node_indices (tuple[int]): The set of node indices over which to take the distribution. number_of_nodes (int): The total number of nodes in the network. Returns: np.ndarray: The maximum entropy distribution over the set of nodes. """ distribution = np.ones(repertoire_shape(node_indices, number_of_nodes)) return distribution / distribution.size
[ "def", "max_entropy_distribution", "(", "node_indices", ",", "number_of_nodes", ")", ":", "distribution", "=", "np", ".", "ones", "(", "repertoire_shape", "(", "node_indices", ",", "number_of_nodes", ")", ")", "return", "distribution", "/", "distribution", ".", "size" ]
Return the maximum entropy distribution over a set of nodes. This is different from the network's uniform distribution because nodes outside ``node_indices`` are fixed and treated as if they have only 1 state. Args: node_indices (tuple[int]): The set of node indices over which to take the distribution. number_of_nodes (int): The total number of nodes in the network. Returns: np.ndarray: The maximum entropy distribution over the set of nodes.
[ "Return", "the", "maximum", "entropy", "distribution", "over", "a", "set", "of", "nodes", "." ]
deeca69a084d782a6fde7bf26f59e93b593c5d77
https://github.com/wmayner/pyphi/blob/deeca69a084d782a6fde7bf26f59e93b593c5d77/pyphi/distribution.py#L155-L172
16,015
wmayner/pyphi
pyphi/macro.py
run_tpm
def run_tpm(system, steps, blackbox): """Iterate the TPM for the given number of timesteps. Returns: np.ndarray: tpm * (noise_tpm^(t-1)) """ # Generate noised TPM # Noise the connections from every output element to elements in other # boxes. node_tpms = [] for node in system.nodes: node_tpm = node.tpm_on for input_node in node.inputs: if not blackbox.in_same_box(node.index, input_node): if input_node in blackbox.output_indices: node_tpm = marginalize_out([input_node], node_tpm) node_tpms.append(node_tpm) noised_tpm = rebuild_system_tpm(node_tpms) noised_tpm = convert.state_by_node2state_by_state(noised_tpm) tpm = convert.state_by_node2state_by_state(system.tpm) # Muliply by noise tpm = np.dot(tpm, np.linalg.matrix_power(noised_tpm, steps - 1)) return convert.state_by_state2state_by_node(tpm)
python
def run_tpm(system, steps, blackbox): """Iterate the TPM for the given number of timesteps. Returns: np.ndarray: tpm * (noise_tpm^(t-1)) """ # Generate noised TPM # Noise the connections from every output element to elements in other # boxes. node_tpms = [] for node in system.nodes: node_tpm = node.tpm_on for input_node in node.inputs: if not blackbox.in_same_box(node.index, input_node): if input_node in blackbox.output_indices: node_tpm = marginalize_out([input_node], node_tpm) node_tpms.append(node_tpm) noised_tpm = rebuild_system_tpm(node_tpms) noised_tpm = convert.state_by_node2state_by_state(noised_tpm) tpm = convert.state_by_node2state_by_state(system.tpm) # Muliply by noise tpm = np.dot(tpm, np.linalg.matrix_power(noised_tpm, steps - 1)) return convert.state_by_state2state_by_node(tpm)
[ "def", "run_tpm", "(", "system", ",", "steps", ",", "blackbox", ")", ":", "# Generate noised TPM", "# Noise the connections from every output element to elements in other", "# boxes.", "node_tpms", "=", "[", "]", "for", "node", "in", "system", ".", "nodes", ":", "node_tpm", "=", "node", ".", "tpm_on", "for", "input_node", "in", "node", ".", "inputs", ":", "if", "not", "blackbox", ".", "in_same_box", "(", "node", ".", "index", ",", "input_node", ")", ":", "if", "input_node", "in", "blackbox", ".", "output_indices", ":", "node_tpm", "=", "marginalize_out", "(", "[", "input_node", "]", ",", "node_tpm", ")", "node_tpms", ".", "append", "(", "node_tpm", ")", "noised_tpm", "=", "rebuild_system_tpm", "(", "node_tpms", ")", "noised_tpm", "=", "convert", ".", "state_by_node2state_by_state", "(", "noised_tpm", ")", "tpm", "=", "convert", ".", "state_by_node2state_by_state", "(", "system", ".", "tpm", ")", "# Muliply by noise", "tpm", "=", "np", ".", "dot", "(", "tpm", ",", "np", ".", "linalg", ".", "matrix_power", "(", "noised_tpm", ",", "steps", "-", "1", ")", ")", "return", "convert", ".", "state_by_state2state_by_node", "(", "tpm", ")" ]
Iterate the TPM for the given number of timesteps. Returns: np.ndarray: tpm * (noise_tpm^(t-1))
[ "Iterate", "the", "TPM", "for", "the", "given", "number", "of", "timesteps", "." ]
deeca69a084d782a6fde7bf26f59e93b593c5d77
https://github.com/wmayner/pyphi/blob/deeca69a084d782a6fde7bf26f59e93b593c5d77/pyphi/macro.py#L61-L88
16,016
wmayner/pyphi
pyphi/macro.py
_partitions_list
def _partitions_list(N): """Return a list of partitions of the |N| binary nodes. Args: N (int): The number of nodes under consideration. Returns: list[list]: A list of lists, where each inner list is the set of micro-elements corresponding to a macro-element. Example: >>> _partitions_list(3) [[[0, 1], [2]], [[0, 2], [1]], [[0], [1, 2]], [[0], [1], [2]]] """ if N < (_NUM_PRECOMPUTED_PARTITION_LISTS): return list(_partition_lists[N]) else: raise ValueError( 'Partition lists not yet available for system with {} ' 'nodes or more'.format(_NUM_PRECOMPUTED_PARTITION_LISTS))
python
def _partitions_list(N): """Return a list of partitions of the |N| binary nodes. Args: N (int): The number of nodes under consideration. Returns: list[list]: A list of lists, where each inner list is the set of micro-elements corresponding to a macro-element. Example: >>> _partitions_list(3) [[[0, 1], [2]], [[0, 2], [1]], [[0], [1, 2]], [[0], [1], [2]]] """ if N < (_NUM_PRECOMPUTED_PARTITION_LISTS): return list(_partition_lists[N]) else: raise ValueError( 'Partition lists not yet available for system with {} ' 'nodes or more'.format(_NUM_PRECOMPUTED_PARTITION_LISTS))
[ "def", "_partitions_list", "(", "N", ")", ":", "if", "N", "<", "(", "_NUM_PRECOMPUTED_PARTITION_LISTS", ")", ":", "return", "list", "(", "_partition_lists", "[", "N", "]", ")", "else", ":", "raise", "ValueError", "(", "'Partition lists not yet available for system with {} '", "'nodes or more'", ".", "format", "(", "_NUM_PRECOMPUTED_PARTITION_LISTS", ")", ")" ]
Return a list of partitions of the |N| binary nodes. Args: N (int): The number of nodes under consideration. Returns: list[list]: A list of lists, where each inner list is the set of micro-elements corresponding to a macro-element. Example: >>> _partitions_list(3) [[[0, 1], [2]], [[0, 2], [1]], [[0], [1, 2]], [[0], [1], [2]]]
[ "Return", "a", "list", "of", "partitions", "of", "the", "|N|", "binary", "nodes", "." ]
deeca69a084d782a6fde7bf26f59e93b593c5d77
https://github.com/wmayner/pyphi/blob/deeca69a084d782a6fde7bf26f59e93b593c5d77/pyphi/macro.py#L665-L684
16,017
wmayner/pyphi
pyphi/macro.py
all_partitions
def all_partitions(indices): """Return a list of all possible coarse grains of a network. Args: indices (tuple[int]): The micro indices to partition. Yields: tuple[tuple]: A possible partition. Each element of the tuple is a tuple of micro-elements which correspond to macro-elements. """ n = len(indices) partitions = _partitions_list(n) if n > 0: partitions[-1] = [list(range(n))] for partition in partitions: yield tuple(tuple(indices[i] for i in part) for part in partition)
python
def all_partitions(indices): """Return a list of all possible coarse grains of a network. Args: indices (tuple[int]): The micro indices to partition. Yields: tuple[tuple]: A possible partition. Each element of the tuple is a tuple of micro-elements which correspond to macro-elements. """ n = len(indices) partitions = _partitions_list(n) if n > 0: partitions[-1] = [list(range(n))] for partition in partitions: yield tuple(tuple(indices[i] for i in part) for part in partition)
[ "def", "all_partitions", "(", "indices", ")", ":", "n", "=", "len", "(", "indices", ")", "partitions", "=", "_partitions_list", "(", "n", ")", "if", "n", ">", "0", ":", "partitions", "[", "-", "1", "]", "=", "[", "list", "(", "range", "(", "n", ")", ")", "]", "for", "partition", "in", "partitions", ":", "yield", "tuple", "(", "tuple", "(", "indices", "[", "i", "]", "for", "i", "in", "part", ")", "for", "part", "in", "partition", ")" ]
Return a list of all possible coarse grains of a network. Args: indices (tuple[int]): The micro indices to partition. Yields: tuple[tuple]: A possible partition. Each element of the tuple is a tuple of micro-elements which correspond to macro-elements.
[ "Return", "a", "list", "of", "all", "possible", "coarse", "grains", "of", "a", "network", "." ]
deeca69a084d782a6fde7bf26f59e93b593c5d77
https://github.com/wmayner/pyphi/blob/deeca69a084d782a6fde7bf26f59e93b593c5d77/pyphi/macro.py#L687-L704
16,018
wmayner/pyphi
pyphi/macro.py
all_coarse_grains
def all_coarse_grains(indices): """Generator over all possible |CoarseGrains| of these indices. Args: indices (tuple[int]): Node indices to coarse grain. Yields: CoarseGrain: The next |CoarseGrain| for ``indices``. """ for partition in all_partitions(indices): for grouping in all_groupings(partition): yield CoarseGrain(partition, grouping)
python
def all_coarse_grains(indices): """Generator over all possible |CoarseGrains| of these indices. Args: indices (tuple[int]): Node indices to coarse grain. Yields: CoarseGrain: The next |CoarseGrain| for ``indices``. """ for partition in all_partitions(indices): for grouping in all_groupings(partition): yield CoarseGrain(partition, grouping)
[ "def", "all_coarse_grains", "(", "indices", ")", ":", "for", "partition", "in", "all_partitions", "(", "indices", ")", ":", "for", "grouping", "in", "all_groupings", "(", "partition", ")", ":", "yield", "CoarseGrain", "(", "partition", ",", "grouping", ")" ]
Generator over all possible |CoarseGrains| of these indices. Args: indices (tuple[int]): Node indices to coarse grain. Yields: CoarseGrain: The next |CoarseGrain| for ``indices``.
[ "Generator", "over", "all", "possible", "|CoarseGrains|", "of", "these", "indices", "." ]
deeca69a084d782a6fde7bf26f59e93b593c5d77
https://github.com/wmayner/pyphi/blob/deeca69a084d782a6fde7bf26f59e93b593c5d77/pyphi/macro.py#L734-L745
16,019
wmayner/pyphi
pyphi/macro.py
all_coarse_grains_for_blackbox
def all_coarse_grains_for_blackbox(blackbox): """Generator over all |CoarseGrains| for the given blackbox. If a box has multiple outputs, those outputs are partitioned into the same coarse-grain macro-element. """ for partition in all_partitions(blackbox.output_indices): for grouping in all_groupings(partition): coarse_grain = CoarseGrain(partition, grouping) try: validate.blackbox_and_coarse_grain(blackbox, coarse_grain) except ValueError: continue yield coarse_grain
python
def all_coarse_grains_for_blackbox(blackbox): """Generator over all |CoarseGrains| for the given blackbox. If a box has multiple outputs, those outputs are partitioned into the same coarse-grain macro-element. """ for partition in all_partitions(blackbox.output_indices): for grouping in all_groupings(partition): coarse_grain = CoarseGrain(partition, grouping) try: validate.blackbox_and_coarse_grain(blackbox, coarse_grain) except ValueError: continue yield coarse_grain
[ "def", "all_coarse_grains_for_blackbox", "(", "blackbox", ")", ":", "for", "partition", "in", "all_partitions", "(", "blackbox", ".", "output_indices", ")", ":", "for", "grouping", "in", "all_groupings", "(", "partition", ")", ":", "coarse_grain", "=", "CoarseGrain", "(", "partition", ",", "grouping", ")", "try", ":", "validate", ".", "blackbox_and_coarse_grain", "(", "blackbox", ",", "coarse_grain", ")", "except", "ValueError", ":", "continue", "yield", "coarse_grain" ]
Generator over all |CoarseGrains| for the given blackbox. If a box has multiple outputs, those outputs are partitioned into the same coarse-grain macro-element.
[ "Generator", "over", "all", "|CoarseGrains|", "for", "the", "given", "blackbox", "." ]
deeca69a084d782a6fde7bf26f59e93b593c5d77
https://github.com/wmayner/pyphi/blob/deeca69a084d782a6fde7bf26f59e93b593c5d77/pyphi/macro.py#L748-L761
16,020
wmayner/pyphi
pyphi/macro.py
all_blackboxes
def all_blackboxes(indices): """Generator over all possible blackboxings of these indices. Args: indices (tuple[int]): Nodes to blackbox. Yields: Blackbox: The next |Blackbox| of ``indices``. """ for partition in all_partitions(indices): # TODO? don't consider the empty set here # (pass `nonempty=True` to `powerset`) for output_indices in utils.powerset(indices): blackbox = Blackbox(partition, output_indices) try: # Ensure every box has at least one output validate.blackbox(blackbox) except ValueError: continue yield blackbox
python
def all_blackboxes(indices): """Generator over all possible blackboxings of these indices. Args: indices (tuple[int]): Nodes to blackbox. Yields: Blackbox: The next |Blackbox| of ``indices``. """ for partition in all_partitions(indices): # TODO? don't consider the empty set here # (pass `nonempty=True` to `powerset`) for output_indices in utils.powerset(indices): blackbox = Blackbox(partition, output_indices) try: # Ensure every box has at least one output validate.blackbox(blackbox) except ValueError: continue yield blackbox
[ "def", "all_blackboxes", "(", "indices", ")", ":", "for", "partition", "in", "all_partitions", "(", "indices", ")", ":", "# TODO? don't consider the empty set here", "# (pass `nonempty=True` to `powerset`)", "for", "output_indices", "in", "utils", ".", "powerset", "(", "indices", ")", ":", "blackbox", "=", "Blackbox", "(", "partition", ",", "output_indices", ")", "try", ":", "# Ensure every box has at least one output", "validate", ".", "blackbox", "(", "blackbox", ")", "except", "ValueError", ":", "continue", "yield", "blackbox" ]
Generator over all possible blackboxings of these indices. Args: indices (tuple[int]): Nodes to blackbox. Yields: Blackbox: The next |Blackbox| of ``indices``.
[ "Generator", "over", "all", "possible", "blackboxings", "of", "these", "indices", "." ]
deeca69a084d782a6fde7bf26f59e93b593c5d77
https://github.com/wmayner/pyphi/blob/deeca69a084d782a6fde7bf26f59e93b593c5d77/pyphi/macro.py#L764-L782
16,021
wmayner/pyphi
pyphi/macro.py
coarse_graining
def coarse_graining(network, state, internal_indices): """Find the maximal coarse-graining of a micro-system. Args: network (Network): The network in question. state (tuple[int]): The state of the network. internal_indices (tuple[int]): Nodes in the micro-system. Returns: tuple[int, CoarseGrain]: The phi-value of the maximal |CoarseGrain|. """ max_phi = float('-inf') max_coarse_grain = CoarseGrain((), ()) for coarse_grain in all_coarse_grains(internal_indices): try: subsystem = MacroSubsystem(network, state, internal_indices, coarse_grain=coarse_grain) except ConditionallyDependentError: continue phi = compute.phi(subsystem) if (phi - max_phi) > constants.EPSILON: max_phi = phi max_coarse_grain = coarse_grain return (max_phi, max_coarse_grain)
python
def coarse_graining(network, state, internal_indices): """Find the maximal coarse-graining of a micro-system. Args: network (Network): The network in question. state (tuple[int]): The state of the network. internal_indices (tuple[int]): Nodes in the micro-system. Returns: tuple[int, CoarseGrain]: The phi-value of the maximal |CoarseGrain|. """ max_phi = float('-inf') max_coarse_grain = CoarseGrain((), ()) for coarse_grain in all_coarse_grains(internal_indices): try: subsystem = MacroSubsystem(network, state, internal_indices, coarse_grain=coarse_grain) except ConditionallyDependentError: continue phi = compute.phi(subsystem) if (phi - max_phi) > constants.EPSILON: max_phi = phi max_coarse_grain = coarse_grain return (max_phi, max_coarse_grain)
[ "def", "coarse_graining", "(", "network", ",", "state", ",", "internal_indices", ")", ":", "max_phi", "=", "float", "(", "'-inf'", ")", "max_coarse_grain", "=", "CoarseGrain", "(", "(", ")", ",", "(", ")", ")", "for", "coarse_grain", "in", "all_coarse_grains", "(", "internal_indices", ")", ":", "try", ":", "subsystem", "=", "MacroSubsystem", "(", "network", ",", "state", ",", "internal_indices", ",", "coarse_grain", "=", "coarse_grain", ")", "except", "ConditionallyDependentError", ":", "continue", "phi", "=", "compute", ".", "phi", "(", "subsystem", ")", "if", "(", "phi", "-", "max_phi", ")", ">", "constants", ".", "EPSILON", ":", "max_phi", "=", "phi", "max_coarse_grain", "=", "coarse_grain", "return", "(", "max_phi", ",", "max_coarse_grain", ")" ]
Find the maximal coarse-graining of a micro-system. Args: network (Network): The network in question. state (tuple[int]): The state of the network. internal_indices (tuple[int]): Nodes in the micro-system. Returns: tuple[int, CoarseGrain]: The phi-value of the maximal |CoarseGrain|.
[ "Find", "the", "maximal", "coarse", "-", "graining", "of", "a", "micro", "-", "system", "." ]
deeca69a084d782a6fde7bf26f59e93b593c5d77
https://github.com/wmayner/pyphi/blob/deeca69a084d782a6fde7bf26f59e93b593c5d77/pyphi/macro.py#L827-L853
16,022
wmayner/pyphi
pyphi/macro.py
all_macro_systems
def all_macro_systems(network, state, do_blackbox=False, do_coarse_grain=False, time_scales=None): """Generator over all possible macro-systems for the network.""" if time_scales is None: time_scales = [1] def blackboxes(system): # Returns all blackboxes to evaluate if not do_blackbox: return [None] return all_blackboxes(system) def coarse_grains(blackbox, system): # Returns all coarse-grains to test if not do_coarse_grain: return [None] if blackbox is None: return all_coarse_grains(system) return all_coarse_grains_for_blackbox(blackbox) # TODO? don't consider the empty set here # (pass `nonempty=True` to `powerset`) for system in utils.powerset(network.node_indices): for time_scale in time_scales: for blackbox in blackboxes(system): for coarse_grain in coarse_grains(blackbox, system): try: yield MacroSubsystem( network, state, system, time_scale=time_scale, blackbox=blackbox, coarse_grain=coarse_grain) except (StateUnreachableError, ConditionallyDependentError): continue
python
def all_macro_systems(network, state, do_blackbox=False, do_coarse_grain=False, time_scales=None): """Generator over all possible macro-systems for the network.""" if time_scales is None: time_scales = [1] def blackboxes(system): # Returns all blackboxes to evaluate if not do_blackbox: return [None] return all_blackboxes(system) def coarse_grains(blackbox, system): # Returns all coarse-grains to test if not do_coarse_grain: return [None] if blackbox is None: return all_coarse_grains(system) return all_coarse_grains_for_blackbox(blackbox) # TODO? don't consider the empty set here # (pass `nonempty=True` to `powerset`) for system in utils.powerset(network.node_indices): for time_scale in time_scales: for blackbox in blackboxes(system): for coarse_grain in coarse_grains(blackbox, system): try: yield MacroSubsystem( network, state, system, time_scale=time_scale, blackbox=blackbox, coarse_grain=coarse_grain) except (StateUnreachableError, ConditionallyDependentError): continue
[ "def", "all_macro_systems", "(", "network", ",", "state", ",", "do_blackbox", "=", "False", ",", "do_coarse_grain", "=", "False", ",", "time_scales", "=", "None", ")", ":", "if", "time_scales", "is", "None", ":", "time_scales", "=", "[", "1", "]", "def", "blackboxes", "(", "system", ")", ":", "# Returns all blackboxes to evaluate", "if", "not", "do_blackbox", ":", "return", "[", "None", "]", "return", "all_blackboxes", "(", "system", ")", "def", "coarse_grains", "(", "blackbox", ",", "system", ")", ":", "# Returns all coarse-grains to test", "if", "not", "do_coarse_grain", ":", "return", "[", "None", "]", "if", "blackbox", "is", "None", ":", "return", "all_coarse_grains", "(", "system", ")", "return", "all_coarse_grains_for_blackbox", "(", "blackbox", ")", "# TODO? don't consider the empty set here", "# (pass `nonempty=True` to `powerset`)", "for", "system", "in", "utils", ".", "powerset", "(", "network", ".", "node_indices", ")", ":", "for", "time_scale", "in", "time_scales", ":", "for", "blackbox", "in", "blackboxes", "(", "system", ")", ":", "for", "coarse_grain", "in", "coarse_grains", "(", "blackbox", ",", "system", ")", ":", "try", ":", "yield", "MacroSubsystem", "(", "network", ",", "state", ",", "system", ",", "time_scale", "=", "time_scale", ",", "blackbox", "=", "blackbox", ",", "coarse_grain", "=", "coarse_grain", ")", "except", "(", "StateUnreachableError", ",", "ConditionallyDependentError", ")", ":", "continue" ]
Generator over all possible macro-systems for the network.
[ "Generator", "over", "all", "possible", "macro", "-", "systems", "for", "the", "network", "." ]
deeca69a084d782a6fde7bf26f59e93b593c5d77
https://github.com/wmayner/pyphi/blob/deeca69a084d782a6fde7bf26f59e93b593c5d77/pyphi/macro.py#L857-L891
16,023
wmayner/pyphi
pyphi/macro.py
emergence
def emergence(network, state, do_blackbox=False, do_coarse_grain=True, time_scales=None): """Check for the emergence of a micro-system into a macro-system. Checks all possible blackboxings and coarse-grainings of a system to find the spatial scale with maximum integrated information. Use the ``do_blackbox`` and ``do_coarse_grain`` args to specifiy whether to use blackboxing, coarse-graining, or both. The default is to just coarse-grain the system. Args: network (Network): The network of the micro-system under investigation. state (tuple[int]): The state of the network. do_blackbox (bool): Set to ``True`` to enable blackboxing. Defaults to ``False``. do_coarse_grain (bool): Set to ``True`` to enable coarse-graining. Defaults to ``True``. time_scales (list[int]): List of all time steps over which to check for emergence. Returns: MacroNetwork: The maximal macro-system generated from the micro-system. """ micro_phi = compute.major_complex(network, state).phi max_phi = float('-inf') max_network = None for subsystem in all_macro_systems(network, state, do_blackbox=do_blackbox, do_coarse_grain=do_coarse_grain, time_scales=time_scales): phi = compute.phi(subsystem) if (phi - max_phi) > constants.EPSILON: max_phi = phi max_network = MacroNetwork( network=network, macro_phi=phi, micro_phi=micro_phi, system=subsystem.micro_node_indices, time_scale=subsystem.time_scale, blackbox=subsystem.blackbox, coarse_grain=subsystem.coarse_grain) return max_network
python
def emergence(network, state, do_blackbox=False, do_coarse_grain=True, time_scales=None): """Check for the emergence of a micro-system into a macro-system. Checks all possible blackboxings and coarse-grainings of a system to find the spatial scale with maximum integrated information. Use the ``do_blackbox`` and ``do_coarse_grain`` args to specifiy whether to use blackboxing, coarse-graining, or both. The default is to just coarse-grain the system. Args: network (Network): The network of the micro-system under investigation. state (tuple[int]): The state of the network. do_blackbox (bool): Set to ``True`` to enable blackboxing. Defaults to ``False``. do_coarse_grain (bool): Set to ``True`` to enable coarse-graining. Defaults to ``True``. time_scales (list[int]): List of all time steps over which to check for emergence. Returns: MacroNetwork: The maximal macro-system generated from the micro-system. """ micro_phi = compute.major_complex(network, state).phi max_phi = float('-inf') max_network = None for subsystem in all_macro_systems(network, state, do_blackbox=do_blackbox, do_coarse_grain=do_coarse_grain, time_scales=time_scales): phi = compute.phi(subsystem) if (phi - max_phi) > constants.EPSILON: max_phi = phi max_network = MacroNetwork( network=network, macro_phi=phi, micro_phi=micro_phi, system=subsystem.micro_node_indices, time_scale=subsystem.time_scale, blackbox=subsystem.blackbox, coarse_grain=subsystem.coarse_grain) return max_network
[ "def", "emergence", "(", "network", ",", "state", ",", "do_blackbox", "=", "False", ",", "do_coarse_grain", "=", "True", ",", "time_scales", "=", "None", ")", ":", "micro_phi", "=", "compute", ".", "major_complex", "(", "network", ",", "state", ")", ".", "phi", "max_phi", "=", "float", "(", "'-inf'", ")", "max_network", "=", "None", "for", "subsystem", "in", "all_macro_systems", "(", "network", ",", "state", ",", "do_blackbox", "=", "do_blackbox", ",", "do_coarse_grain", "=", "do_coarse_grain", ",", "time_scales", "=", "time_scales", ")", ":", "phi", "=", "compute", ".", "phi", "(", "subsystem", ")", "if", "(", "phi", "-", "max_phi", ")", ">", "constants", ".", "EPSILON", ":", "max_phi", "=", "phi", "max_network", "=", "MacroNetwork", "(", "network", "=", "network", ",", "macro_phi", "=", "phi", ",", "micro_phi", "=", "micro_phi", ",", "system", "=", "subsystem", ".", "micro_node_indices", ",", "time_scale", "=", "subsystem", ".", "time_scale", ",", "blackbox", "=", "subsystem", ".", "blackbox", ",", "coarse_grain", "=", "subsystem", ".", "coarse_grain", ")", "return", "max_network" ]
Check for the emergence of a micro-system into a macro-system. Checks all possible blackboxings and coarse-grainings of a system to find the spatial scale with maximum integrated information. Use the ``do_blackbox`` and ``do_coarse_grain`` args to specifiy whether to use blackboxing, coarse-graining, or both. The default is to just coarse-grain the system. Args: network (Network): The network of the micro-system under investigation. state (tuple[int]): The state of the network. do_blackbox (bool): Set to ``True`` to enable blackboxing. Defaults to ``False``. do_coarse_grain (bool): Set to ``True`` to enable coarse-graining. Defaults to ``True``. time_scales (list[int]): List of all time steps over which to check for emergence. Returns: MacroNetwork: The maximal macro-system generated from the micro-system.
[ "Check", "for", "the", "emergence", "of", "a", "micro", "-", "system", "into", "a", "macro", "-", "system", "." ]
deeca69a084d782a6fde7bf26f59e93b593c5d77
https://github.com/wmayner/pyphi/blob/deeca69a084d782a6fde7bf26f59e93b593c5d77/pyphi/macro.py#L894-L940
16,024
wmayner/pyphi
pyphi/macro.py
effective_info
def effective_info(network): """Return the effective information of the given network. .. note:: For details, see: Hoel, Erik P., Larissa Albantakis, and Giulio Tononi. “Quantifying causal emergence shows that macro can beat micro.” Proceedings of the National Academy of Sciences 110.49 (2013): 19790-19795. Available online: `doi: 10.1073/pnas.1314922110 <http://www.pnas.org/content/110/49/19790.abstract>`_. """ validate.is_network(network) sbs_tpm = convert.state_by_node2state_by_state(network.tpm) avg_repertoire = np.mean(sbs_tpm, 0) return np.mean([entropy(repertoire, avg_repertoire, 2.0) for repertoire in sbs_tpm])
python
def effective_info(network): """Return the effective information of the given network. .. note:: For details, see: Hoel, Erik P., Larissa Albantakis, and Giulio Tononi. “Quantifying causal emergence shows that macro can beat micro.” Proceedings of the National Academy of Sciences 110.49 (2013): 19790-19795. Available online: `doi: 10.1073/pnas.1314922110 <http://www.pnas.org/content/110/49/19790.abstract>`_. """ validate.is_network(network) sbs_tpm = convert.state_by_node2state_by_state(network.tpm) avg_repertoire = np.mean(sbs_tpm, 0) return np.mean([entropy(repertoire, avg_repertoire, 2.0) for repertoire in sbs_tpm])
[ "def", "effective_info", "(", "network", ")", ":", "validate", ".", "is_network", "(", "network", ")", "sbs_tpm", "=", "convert", ".", "state_by_node2state_by_state", "(", "network", ".", "tpm", ")", "avg_repertoire", "=", "np", ".", "mean", "(", "sbs_tpm", ",", "0", ")", "return", "np", ".", "mean", "(", "[", "entropy", "(", "repertoire", ",", "avg_repertoire", ",", "2.0", ")", "for", "repertoire", "in", "sbs_tpm", "]", ")" ]
Return the effective information of the given network. .. note:: For details, see: Hoel, Erik P., Larissa Albantakis, and Giulio Tononi. “Quantifying causal emergence shows that macro can beat micro.” Proceedings of the National Academy of Sciences 110.49 (2013): 19790-19795. Available online: `doi: 10.1073/pnas.1314922110 <http://www.pnas.org/content/110/49/19790.abstract>`_.
[ "Return", "the", "effective", "information", "of", "the", "given", "network", "." ]
deeca69a084d782a6fde7bf26f59e93b593c5d77
https://github.com/wmayner/pyphi/blob/deeca69a084d782a6fde7bf26f59e93b593c5d77/pyphi/macro.py#L969-L989
16,025
wmayner/pyphi
pyphi/macro.py
SystemAttrs.node_labels
def node_labels(self): """Return the labels for macro nodes.""" assert list(self.node_indices)[0] == 0 labels = list("m{}".format(i) for i in self.node_indices) return NodeLabels(labels, self.node_indices)
python
def node_labels(self): """Return the labels for macro nodes.""" assert list(self.node_indices)[0] == 0 labels = list("m{}".format(i) for i in self.node_indices) return NodeLabels(labels, self.node_indices)
[ "def", "node_labels", "(", "self", ")", ":", "assert", "list", "(", "self", ".", "node_indices", ")", "[", "0", "]", "==", "0", "labels", "=", "list", "(", "\"m{}\"", ".", "format", "(", "i", ")", "for", "i", "in", "self", ".", "node_indices", ")", "return", "NodeLabels", "(", "labels", ",", "self", ".", "node_indices", ")" ]
Return the labels for macro nodes.
[ "Return", "the", "labels", "for", "macro", "nodes", "." ]
deeca69a084d782a6fde7bf26f59e93b593c5d77
https://github.com/wmayner/pyphi/blob/deeca69a084d782a6fde7bf26f59e93b593c5d77/pyphi/macro.py#L99-L103
16,026
wmayner/pyphi
pyphi/macro.py
MacroSubsystem._squeeze
def _squeeze(system): """Squeeze out all singleton dimensions in the Subsystem. Reindexes the subsystem so that the nodes are ``0..n`` where ``n`` is the number of internal indices in the system. """ assert system.node_indices == tpm_indices(system.tpm) internal_indices = tpm_indices(system.tpm) tpm = remove_singleton_dimensions(system.tpm) # The connectivity matrix is the network's connectivity matrix, with # cut applied, with all connections to/from external nodes severed, # shrunk to the size of the internal nodes. cm = system.cm[np.ix_(internal_indices, internal_indices)] state = utils.state_of(internal_indices, system.state) # Re-index the subsystem nodes with the external nodes removed node_indices = reindex(internal_indices) nodes = generate_nodes(tpm, cm, state, node_indices) # Re-calcuate the tpm based on the results of the cut tpm = rebuild_system_tpm(node.tpm_on for node in nodes) return SystemAttrs(tpm, cm, node_indices, state)
python
def _squeeze(system): """Squeeze out all singleton dimensions in the Subsystem. Reindexes the subsystem so that the nodes are ``0..n`` where ``n`` is the number of internal indices in the system. """ assert system.node_indices == tpm_indices(system.tpm) internal_indices = tpm_indices(system.tpm) tpm = remove_singleton_dimensions(system.tpm) # The connectivity matrix is the network's connectivity matrix, with # cut applied, with all connections to/from external nodes severed, # shrunk to the size of the internal nodes. cm = system.cm[np.ix_(internal_indices, internal_indices)] state = utils.state_of(internal_indices, system.state) # Re-index the subsystem nodes with the external nodes removed node_indices = reindex(internal_indices) nodes = generate_nodes(tpm, cm, state, node_indices) # Re-calcuate the tpm based on the results of the cut tpm = rebuild_system_tpm(node.tpm_on for node in nodes) return SystemAttrs(tpm, cm, node_indices, state)
[ "def", "_squeeze", "(", "system", ")", ":", "assert", "system", ".", "node_indices", "==", "tpm_indices", "(", "system", ".", "tpm", ")", "internal_indices", "=", "tpm_indices", "(", "system", ".", "tpm", ")", "tpm", "=", "remove_singleton_dimensions", "(", "system", ".", "tpm", ")", "# The connectivity matrix is the network's connectivity matrix, with", "# cut applied, with all connections to/from external nodes severed,", "# shrunk to the size of the internal nodes.", "cm", "=", "system", ".", "cm", "[", "np", ".", "ix_", "(", "internal_indices", ",", "internal_indices", ")", "]", "state", "=", "utils", ".", "state_of", "(", "internal_indices", ",", "system", ".", "state", ")", "# Re-index the subsystem nodes with the external nodes removed", "node_indices", "=", "reindex", "(", "internal_indices", ")", "nodes", "=", "generate_nodes", "(", "tpm", ",", "cm", ",", "state", ",", "node_indices", ")", "# Re-calcuate the tpm based on the results of the cut", "tpm", "=", "rebuild_system_tpm", "(", "node", ".", "tpm_on", "for", "node", "in", "nodes", ")", "return", "SystemAttrs", "(", "tpm", ",", "cm", ",", "node_indices", ",", "state", ")" ]
Squeeze out all singleton dimensions in the Subsystem. Reindexes the subsystem so that the nodes are ``0..n`` where ``n`` is the number of internal indices in the system.
[ "Squeeze", "out", "all", "singleton", "dimensions", "in", "the", "Subsystem", "." ]
deeca69a084d782a6fde7bf26f59e93b593c5d77
https://github.com/wmayner/pyphi/blob/deeca69a084d782a6fde7bf26f59e93b593c5d77/pyphi/macro.py#L199-L225
16,027
wmayner/pyphi
pyphi/macro.py
MacroSubsystem._blackbox_partial_noise
def _blackbox_partial_noise(blackbox, system): """Noise connections from hidden elements to other boxes.""" # Noise inputs from non-output elements hidden in other boxes node_tpms = [] for node in system.nodes: node_tpm = node.tpm_on for input_node in node.inputs: if blackbox.hidden_from(input_node, node.index): node_tpm = marginalize_out([input_node], node_tpm) node_tpms.append(node_tpm) tpm = rebuild_system_tpm(node_tpms) return system._replace(tpm=tpm)
python
def _blackbox_partial_noise(blackbox, system): """Noise connections from hidden elements to other boxes.""" # Noise inputs from non-output elements hidden in other boxes node_tpms = [] for node in system.nodes: node_tpm = node.tpm_on for input_node in node.inputs: if blackbox.hidden_from(input_node, node.index): node_tpm = marginalize_out([input_node], node_tpm) node_tpms.append(node_tpm) tpm = rebuild_system_tpm(node_tpms) return system._replace(tpm=tpm)
[ "def", "_blackbox_partial_noise", "(", "blackbox", ",", "system", ")", ":", "# Noise inputs from non-output elements hidden in other boxes", "node_tpms", "=", "[", "]", "for", "node", "in", "system", ".", "nodes", ":", "node_tpm", "=", "node", ".", "tpm_on", "for", "input_node", "in", "node", ".", "inputs", ":", "if", "blackbox", ".", "hidden_from", "(", "input_node", ",", "node", ".", "index", ")", ":", "node_tpm", "=", "marginalize_out", "(", "[", "input_node", "]", ",", "node_tpm", ")", "node_tpms", ".", "append", "(", "node_tpm", ")", "tpm", "=", "rebuild_system_tpm", "(", "node_tpms", ")", "return", "system", ".", "_replace", "(", "tpm", "=", "tpm", ")" ]
Noise connections from hidden elements to other boxes.
[ "Noise", "connections", "from", "hidden", "elements", "to", "other", "boxes", "." ]
deeca69a084d782a6fde7bf26f59e93b593c5d77
https://github.com/wmayner/pyphi/blob/deeca69a084d782a6fde7bf26f59e93b593c5d77/pyphi/macro.py#L228-L242
16,028
wmayner/pyphi
pyphi/macro.py
MacroSubsystem._blackbox_time
def _blackbox_time(time_scale, blackbox, system): """Black box the CM and TPM over the given time_scale.""" blackbox = blackbox.reindex() tpm = run_tpm(system, time_scale, blackbox) # Universal connectivity, for now. n = len(system.node_indices) cm = np.ones((n, n)) return SystemAttrs(tpm, cm, system.node_indices, system.state)
python
def _blackbox_time(time_scale, blackbox, system): """Black box the CM and TPM over the given time_scale.""" blackbox = blackbox.reindex() tpm = run_tpm(system, time_scale, blackbox) # Universal connectivity, for now. n = len(system.node_indices) cm = np.ones((n, n)) return SystemAttrs(tpm, cm, system.node_indices, system.state)
[ "def", "_blackbox_time", "(", "time_scale", ",", "blackbox", ",", "system", ")", ":", "blackbox", "=", "blackbox", ".", "reindex", "(", ")", "tpm", "=", "run_tpm", "(", "system", ",", "time_scale", ",", "blackbox", ")", "# Universal connectivity, for now.", "n", "=", "len", "(", "system", ".", "node_indices", ")", "cm", "=", "np", ".", "ones", "(", "(", "n", ",", "n", ")", ")", "return", "SystemAttrs", "(", "tpm", ",", "cm", ",", "system", ".", "node_indices", ",", "system", ".", "state", ")" ]
Black box the CM and TPM over the given time_scale.
[ "Black", "box", "the", "CM", "and", "TPM", "over", "the", "given", "time_scale", "." ]
deeca69a084d782a6fde7bf26f59e93b593c5d77
https://github.com/wmayner/pyphi/blob/deeca69a084d782a6fde7bf26f59e93b593c5d77/pyphi/macro.py#L245-L255
16,029
wmayner/pyphi
pyphi/macro.py
MacroSubsystem._blackbox_space
def _blackbox_space(self, blackbox, system): """Blackbox the TPM and CM in space. Conditions the TPM on the current value of the hidden nodes. The CM is set to universal connectivity. .. TODO: change this ^ This shrinks the size of the TPM by the number of hidden indices; now there is only `len(output_indices)` dimensions in the TPM and in the state of the subsystem. """ tpm = marginalize_out(blackbox.hidden_indices, system.tpm) assert blackbox.output_indices == tpm_indices(tpm) tpm = remove_singleton_dimensions(tpm) n = len(blackbox) cm = np.zeros((n, n)) for i, j in itertools.product(range(n), repeat=2): # TODO: don't pull cm from self outputs = self.blackbox.outputs_of(i) to = self.blackbox.partition[j] if self.cm[np.ix_(outputs, to)].sum() > 0: cm[i, j] = 1 state = blackbox.macro_state(system.state) node_indices = blackbox.macro_indices return SystemAttrs(tpm, cm, node_indices, state)
python
def _blackbox_space(self, blackbox, system): """Blackbox the TPM and CM in space. Conditions the TPM on the current value of the hidden nodes. The CM is set to universal connectivity. .. TODO: change this ^ This shrinks the size of the TPM by the number of hidden indices; now there is only `len(output_indices)` dimensions in the TPM and in the state of the subsystem. """ tpm = marginalize_out(blackbox.hidden_indices, system.tpm) assert blackbox.output_indices == tpm_indices(tpm) tpm = remove_singleton_dimensions(tpm) n = len(blackbox) cm = np.zeros((n, n)) for i, j in itertools.product(range(n), repeat=2): # TODO: don't pull cm from self outputs = self.blackbox.outputs_of(i) to = self.blackbox.partition[j] if self.cm[np.ix_(outputs, to)].sum() > 0: cm[i, j] = 1 state = blackbox.macro_state(system.state) node_indices = blackbox.macro_indices return SystemAttrs(tpm, cm, node_indices, state)
[ "def", "_blackbox_space", "(", "self", ",", "blackbox", ",", "system", ")", ":", "tpm", "=", "marginalize_out", "(", "blackbox", ".", "hidden_indices", ",", "system", ".", "tpm", ")", "assert", "blackbox", ".", "output_indices", "==", "tpm_indices", "(", "tpm", ")", "tpm", "=", "remove_singleton_dimensions", "(", "tpm", ")", "n", "=", "len", "(", "blackbox", ")", "cm", "=", "np", ".", "zeros", "(", "(", "n", ",", "n", ")", ")", "for", "i", ",", "j", "in", "itertools", ".", "product", "(", "range", "(", "n", ")", ",", "repeat", "=", "2", ")", ":", "# TODO: don't pull cm from self", "outputs", "=", "self", ".", "blackbox", ".", "outputs_of", "(", "i", ")", "to", "=", "self", ".", "blackbox", ".", "partition", "[", "j", "]", "if", "self", ".", "cm", "[", "np", ".", "ix_", "(", "outputs", ",", "to", ")", "]", ".", "sum", "(", ")", ">", "0", ":", "cm", "[", "i", ",", "j", "]", "=", "1", "state", "=", "blackbox", ".", "macro_state", "(", "system", ".", "state", ")", "node_indices", "=", "blackbox", ".", "macro_indices", "return", "SystemAttrs", "(", "tpm", ",", "cm", ",", "node_indices", ",", "state", ")" ]
Blackbox the TPM and CM in space. Conditions the TPM on the current value of the hidden nodes. The CM is set to universal connectivity. .. TODO: change this ^ This shrinks the size of the TPM by the number of hidden indices; now there is only `len(output_indices)` dimensions in the TPM and in the state of the subsystem.
[ "Blackbox", "the", "TPM", "and", "CM", "in", "space", "." ]
deeca69a084d782a6fde7bf26f59e93b593c5d77
https://github.com/wmayner/pyphi/blob/deeca69a084d782a6fde7bf26f59e93b593c5d77/pyphi/macro.py#L257-L286
16,030
wmayner/pyphi
pyphi/macro.py
MacroSubsystem._coarsegrain_space
def _coarsegrain_space(coarse_grain, is_cut, system): """Spatially coarse-grain the TPM and CM.""" tpm = coarse_grain.macro_tpm( system.tpm, check_independence=(not is_cut)) node_indices = coarse_grain.macro_indices state = coarse_grain.macro_state(system.state) # Universal connectivity, for now. n = len(node_indices) cm = np.ones((n, n)) return SystemAttrs(tpm, cm, node_indices, state)
python
def _coarsegrain_space(coarse_grain, is_cut, system): """Spatially coarse-grain the TPM and CM.""" tpm = coarse_grain.macro_tpm( system.tpm, check_independence=(not is_cut)) node_indices = coarse_grain.macro_indices state = coarse_grain.macro_state(system.state) # Universal connectivity, for now. n = len(node_indices) cm = np.ones((n, n)) return SystemAttrs(tpm, cm, node_indices, state)
[ "def", "_coarsegrain_space", "(", "coarse_grain", ",", "is_cut", ",", "system", ")", ":", "tpm", "=", "coarse_grain", ".", "macro_tpm", "(", "system", ".", "tpm", ",", "check_independence", "=", "(", "not", "is_cut", ")", ")", "node_indices", "=", "coarse_grain", ".", "macro_indices", "state", "=", "coarse_grain", ".", "macro_state", "(", "system", ".", "state", ")", "# Universal connectivity, for now.", "n", "=", "len", "(", "node_indices", ")", "cm", "=", "np", ".", "ones", "(", "(", "n", ",", "n", ")", ")", "return", "SystemAttrs", "(", "tpm", ",", "cm", ",", "node_indices", ",", "state", ")" ]
Spatially coarse-grain the TPM and CM.
[ "Spatially", "coarse", "-", "grain", "the", "TPM", "and", "CM", "." ]
deeca69a084d782a6fde7bf26f59e93b593c5d77
https://github.com/wmayner/pyphi/blob/deeca69a084d782a6fde7bf26f59e93b593c5d77/pyphi/macro.py#L289-L301
16,031
wmayner/pyphi
pyphi/macro.py
MacroSubsystem.cut_mechanisms
def cut_mechanisms(self): """The mechanisms of this system that are currently cut. Note that although ``cut_indices`` returns micro indices, this returns macro mechanisms. Yields: tuple[int] """ for mechanism in utils.powerset(self.node_indices, nonempty=True): micro_mechanism = self.macro2micro(mechanism) if self.cut.splits_mechanism(micro_mechanism): yield mechanism
python
def cut_mechanisms(self): """The mechanisms of this system that are currently cut. Note that although ``cut_indices`` returns micro indices, this returns macro mechanisms. Yields: tuple[int] """ for mechanism in utils.powerset(self.node_indices, nonempty=True): micro_mechanism = self.macro2micro(mechanism) if self.cut.splits_mechanism(micro_mechanism): yield mechanism
[ "def", "cut_mechanisms", "(", "self", ")", ":", "for", "mechanism", "in", "utils", ".", "powerset", "(", "self", ".", "node_indices", ",", "nonempty", "=", "True", ")", ":", "micro_mechanism", "=", "self", ".", "macro2micro", "(", "mechanism", ")", "if", "self", ".", "cut", ".", "splits_mechanism", "(", "micro_mechanism", ")", ":", "yield", "mechanism" ]
The mechanisms of this system that are currently cut. Note that although ``cut_indices`` returns micro indices, this returns macro mechanisms. Yields: tuple[int]
[ "The", "mechanisms", "of", "this", "system", "that", "are", "currently", "cut", "." ]
deeca69a084d782a6fde7bf26f59e93b593c5d77
https://github.com/wmayner/pyphi/blob/deeca69a084d782a6fde7bf26f59e93b593c5d77/pyphi/macro.py#L313-L325
16,032
wmayner/pyphi
pyphi/macro.py
MacroSubsystem.apply_cut
def apply_cut(self, cut): """Return a cut version of this |MacroSubsystem|. Args: cut (Cut): The cut to apply to this |MacroSubsystem|. Returns: MacroSubsystem: The cut version of this |MacroSubsystem|. """ # TODO: is the MICE cache reusable? return MacroSubsystem( self.network, self.network_state, self.micro_node_indices, cut=cut, time_scale=self.time_scale, blackbox=self.blackbox, coarse_grain=self.coarse_grain)
python
def apply_cut(self, cut): """Return a cut version of this |MacroSubsystem|. Args: cut (Cut): The cut to apply to this |MacroSubsystem|. Returns: MacroSubsystem: The cut version of this |MacroSubsystem|. """ # TODO: is the MICE cache reusable? return MacroSubsystem( self.network, self.network_state, self.micro_node_indices, cut=cut, time_scale=self.time_scale, blackbox=self.blackbox, coarse_grain=self.coarse_grain)
[ "def", "apply_cut", "(", "self", ",", "cut", ")", ":", "# TODO: is the MICE cache reusable?", "return", "MacroSubsystem", "(", "self", ".", "network", ",", "self", ".", "network_state", ",", "self", ".", "micro_node_indices", ",", "cut", "=", "cut", ",", "time_scale", "=", "self", ".", "time_scale", ",", "blackbox", "=", "self", ".", "blackbox", ",", "coarse_grain", "=", "self", ".", "coarse_grain", ")" ]
Return a cut version of this |MacroSubsystem|. Args: cut (Cut): The cut to apply to this |MacroSubsystem|. Returns: MacroSubsystem: The cut version of this |MacroSubsystem|.
[ "Return", "a", "cut", "version", "of", "this", "|MacroSubsystem|", "." ]
deeca69a084d782a6fde7bf26f59e93b593c5d77
https://github.com/wmayner/pyphi/blob/deeca69a084d782a6fde7bf26f59e93b593c5d77/pyphi/macro.py#L335-L352
16,033
wmayner/pyphi
pyphi/macro.py
MacroSubsystem.potential_purviews
def potential_purviews(self, direction, mechanism, purviews=False): """Override Subsystem implementation using Network-level indices.""" all_purviews = utils.powerset(self.node_indices) return irreducible_purviews( self.cm, direction, mechanism, all_purviews)
python
def potential_purviews(self, direction, mechanism, purviews=False): """Override Subsystem implementation using Network-level indices.""" all_purviews = utils.powerset(self.node_indices) return irreducible_purviews( self.cm, direction, mechanism, all_purviews)
[ "def", "potential_purviews", "(", "self", ",", "direction", ",", "mechanism", ",", "purviews", "=", "False", ")", ":", "all_purviews", "=", "utils", ".", "powerset", "(", "self", ".", "node_indices", ")", "return", "irreducible_purviews", "(", "self", ".", "cm", ",", "direction", ",", "mechanism", ",", "all_purviews", ")" ]
Override Subsystem implementation using Network-level indices.
[ "Override", "Subsystem", "implementation", "using", "Network", "-", "level", "indices", "." ]
deeca69a084d782a6fde7bf26f59e93b593c5d77
https://github.com/wmayner/pyphi/blob/deeca69a084d782a6fde7bf26f59e93b593c5d77/pyphi/macro.py#L354-L358
16,034
wmayner/pyphi
pyphi/macro.py
MacroSubsystem.macro2micro
def macro2micro(self, macro_indices): """Return all micro indices which compose the elements specified by ``macro_indices``. """ def from_partition(partition, macro_indices): micro_indices = itertools.chain.from_iterable( partition[i] for i in macro_indices) return tuple(sorted(micro_indices)) if self.blackbox and self.coarse_grain: cg_micro_indices = from_partition(self.coarse_grain.partition, macro_indices) return from_partition(self.blackbox.partition, reindex(cg_micro_indices)) elif self.blackbox: return from_partition(self.blackbox.partition, macro_indices) elif self.coarse_grain: return from_partition(self.coarse_grain.partition, macro_indices) return macro_indices
python
def macro2micro(self, macro_indices): """Return all micro indices which compose the elements specified by ``macro_indices``. """ def from_partition(partition, macro_indices): micro_indices = itertools.chain.from_iterable( partition[i] for i in macro_indices) return tuple(sorted(micro_indices)) if self.blackbox and self.coarse_grain: cg_micro_indices = from_partition(self.coarse_grain.partition, macro_indices) return from_partition(self.blackbox.partition, reindex(cg_micro_indices)) elif self.blackbox: return from_partition(self.blackbox.partition, macro_indices) elif self.coarse_grain: return from_partition(self.coarse_grain.partition, macro_indices) return macro_indices
[ "def", "macro2micro", "(", "self", ",", "macro_indices", ")", ":", "def", "from_partition", "(", "partition", ",", "macro_indices", ")", ":", "micro_indices", "=", "itertools", ".", "chain", ".", "from_iterable", "(", "partition", "[", "i", "]", "for", "i", "in", "macro_indices", ")", "return", "tuple", "(", "sorted", "(", "micro_indices", ")", ")", "if", "self", ".", "blackbox", "and", "self", ".", "coarse_grain", ":", "cg_micro_indices", "=", "from_partition", "(", "self", ".", "coarse_grain", ".", "partition", ",", "macro_indices", ")", "return", "from_partition", "(", "self", ".", "blackbox", ".", "partition", ",", "reindex", "(", "cg_micro_indices", ")", ")", "elif", "self", ".", "blackbox", ":", "return", "from_partition", "(", "self", ".", "blackbox", ".", "partition", ",", "macro_indices", ")", "elif", "self", ".", "coarse_grain", ":", "return", "from_partition", "(", "self", ".", "coarse_grain", ".", "partition", ",", "macro_indices", ")", "return", "macro_indices" ]
Return all micro indices which compose the elements specified by ``macro_indices``.
[ "Return", "all", "micro", "indices", "which", "compose", "the", "elements", "specified", "by", "macro_indices", "." ]
deeca69a084d782a6fde7bf26f59e93b593c5d77
https://github.com/wmayner/pyphi/blob/deeca69a084d782a6fde7bf26f59e93b593c5d77/pyphi/macro.py#L360-L378
16,035
wmayner/pyphi
pyphi/macro.py
MacroSubsystem.macro2blackbox_outputs
def macro2blackbox_outputs(self, macro_indices): """Given a set of macro elements, return the blackbox output elements which compose these elements. """ if not self.blackbox: raise ValueError('System is not blackboxed') return tuple(sorted(set( self.macro2micro(macro_indices) ).intersection(self.blackbox.output_indices)))
python
def macro2blackbox_outputs(self, macro_indices): """Given a set of macro elements, return the blackbox output elements which compose these elements. """ if not self.blackbox: raise ValueError('System is not blackboxed') return tuple(sorted(set( self.macro2micro(macro_indices) ).intersection(self.blackbox.output_indices)))
[ "def", "macro2blackbox_outputs", "(", "self", ",", "macro_indices", ")", ":", "if", "not", "self", ".", "blackbox", ":", "raise", "ValueError", "(", "'System is not blackboxed'", ")", "return", "tuple", "(", "sorted", "(", "set", "(", "self", ".", "macro2micro", "(", "macro_indices", ")", ")", ".", "intersection", "(", "self", ".", "blackbox", ".", "output_indices", ")", ")", ")" ]
Given a set of macro elements, return the blackbox output elements which compose these elements.
[ "Given", "a", "set", "of", "macro", "elements", "return", "the", "blackbox", "output", "elements", "which", "compose", "these", "elements", "." ]
deeca69a084d782a6fde7bf26f59e93b593c5d77
https://github.com/wmayner/pyphi/blob/deeca69a084d782a6fde7bf26f59e93b593c5d77/pyphi/macro.py#L380-L389
16,036
wmayner/pyphi
pyphi/macro.py
CoarseGrain.micro_indices
def micro_indices(self): """Indices of micro elements represented in this coarse-graining.""" return tuple(sorted(idx for part in self.partition for idx in part))
python
def micro_indices(self): """Indices of micro elements represented in this coarse-graining.""" return tuple(sorted(idx for part in self.partition for idx in part))
[ "def", "micro_indices", "(", "self", ")", ":", "return", "tuple", "(", "sorted", "(", "idx", "for", "part", "in", "self", ".", "partition", "for", "idx", "in", "part", ")", ")" ]
Indices of micro elements represented in this coarse-graining.
[ "Indices", "of", "micro", "elements", "represented", "in", "this", "coarse", "-", "graining", "." ]
deeca69a084d782a6fde7bf26f59e93b593c5d77
https://github.com/wmayner/pyphi/blob/deeca69a084d782a6fde7bf26f59e93b593c5d77/pyphi/macro.py#L430-L432
16,037
wmayner/pyphi
pyphi/macro.py
CoarseGrain.reindex
def reindex(self): """Re-index this coarse graining to use squeezed indices. The output grouping is translated to use indices ``0..n``, where ``n`` is the number of micro indices in the coarse-graining. Re-indexing does not effect the state grouping, which is already index-independent. Returns: CoarseGrain: A new |CoarseGrain| object, indexed from ``0..n``. Example: >>> partition = ((1, 2),) >>> grouping = (((0,), (1, 2)),) >>> coarse_grain = CoarseGrain(partition, grouping) >>> coarse_grain.reindex() CoarseGrain(partition=((0, 1),), grouping=(((0,), (1, 2)),)) """ _map = dict(zip(self.micro_indices, reindex(self.micro_indices))) partition = tuple( tuple(_map[index] for index in group) for group in self.partition ) return CoarseGrain(partition, self.grouping)
python
def reindex(self): """Re-index this coarse graining to use squeezed indices. The output grouping is translated to use indices ``0..n``, where ``n`` is the number of micro indices in the coarse-graining. Re-indexing does not effect the state grouping, which is already index-independent. Returns: CoarseGrain: A new |CoarseGrain| object, indexed from ``0..n``. Example: >>> partition = ((1, 2),) >>> grouping = (((0,), (1, 2)),) >>> coarse_grain = CoarseGrain(partition, grouping) >>> coarse_grain.reindex() CoarseGrain(partition=((0, 1),), grouping=(((0,), (1, 2)),)) """ _map = dict(zip(self.micro_indices, reindex(self.micro_indices))) partition = tuple( tuple(_map[index] for index in group) for group in self.partition ) return CoarseGrain(partition, self.grouping)
[ "def", "reindex", "(", "self", ")", ":", "_map", "=", "dict", "(", "zip", "(", "self", ".", "micro_indices", ",", "reindex", "(", "self", ".", "micro_indices", ")", ")", ")", "partition", "=", "tuple", "(", "tuple", "(", "_map", "[", "index", "]", "for", "index", "in", "group", ")", "for", "group", "in", "self", ".", "partition", ")", "return", "CoarseGrain", "(", "partition", ",", "self", ".", "grouping", ")" ]
Re-index this coarse graining to use squeezed indices. The output grouping is translated to use indices ``0..n``, where ``n`` is the number of micro indices in the coarse-graining. Re-indexing does not effect the state grouping, which is already index-independent. Returns: CoarseGrain: A new |CoarseGrain| object, indexed from ``0..n``. Example: >>> partition = ((1, 2),) >>> grouping = (((0,), (1, 2)),) >>> coarse_grain = CoarseGrain(partition, grouping) >>> coarse_grain.reindex() CoarseGrain(partition=((0, 1),), grouping=(((0,), (1, 2)),))
[ "Re", "-", "index", "this", "coarse", "graining", "to", "use", "squeezed", "indices", "." ]
deeca69a084d782a6fde7bf26f59e93b593c5d77
https://github.com/wmayner/pyphi/blob/deeca69a084d782a6fde7bf26f59e93b593c5d77/pyphi/macro.py#L442-L464
16,038
wmayner/pyphi
pyphi/macro.py
CoarseGrain.macro_state
def macro_state(self, micro_state): """Translate a micro state to a macro state Args: micro_state (tuple[int]): The state of the micro nodes in this coarse-graining. Returns: tuple[int]: The state of the macro system, translated as specified by this coarse-graining. Example: >>> coarse_grain = CoarseGrain(((1, 2),), (((0,), (1, 2)),)) >>> coarse_grain.macro_state((0, 0)) (0,) >>> coarse_grain.macro_state((1, 0)) (1,) >>> coarse_grain.macro_state((1, 1)) (1,) """ assert len(micro_state) == len(self.micro_indices) # TODO: only reindex if this coarse grain is not already from 0..n? # make_mapping calls this in a tight loop so it might be more efficient # to reindex conditionally. reindexed = self.reindex() micro_state = np.array(micro_state) return tuple(0 if sum(micro_state[list(reindexed.partition[i])]) in self.grouping[i][0] else 1 for i in self.macro_indices)
python
def macro_state(self, micro_state): """Translate a micro state to a macro state Args: micro_state (tuple[int]): The state of the micro nodes in this coarse-graining. Returns: tuple[int]: The state of the macro system, translated as specified by this coarse-graining. Example: >>> coarse_grain = CoarseGrain(((1, 2),), (((0,), (1, 2)),)) >>> coarse_grain.macro_state((0, 0)) (0,) >>> coarse_grain.macro_state((1, 0)) (1,) >>> coarse_grain.macro_state((1, 1)) (1,) """ assert len(micro_state) == len(self.micro_indices) # TODO: only reindex if this coarse grain is not already from 0..n? # make_mapping calls this in a tight loop so it might be more efficient # to reindex conditionally. reindexed = self.reindex() micro_state = np.array(micro_state) return tuple(0 if sum(micro_state[list(reindexed.partition[i])]) in self.grouping[i][0] else 1 for i in self.macro_indices)
[ "def", "macro_state", "(", "self", ",", "micro_state", ")", ":", "assert", "len", "(", "micro_state", ")", "==", "len", "(", "self", ".", "micro_indices", ")", "# TODO: only reindex if this coarse grain is not already from 0..n?", "# make_mapping calls this in a tight loop so it might be more efficient", "# to reindex conditionally.", "reindexed", "=", "self", ".", "reindex", "(", ")", "micro_state", "=", "np", ".", "array", "(", "micro_state", ")", "return", "tuple", "(", "0", "if", "sum", "(", "micro_state", "[", "list", "(", "reindexed", ".", "partition", "[", "i", "]", ")", "]", ")", "in", "self", ".", "grouping", "[", "i", "]", "[", "0", "]", "else", "1", "for", "i", "in", "self", ".", "macro_indices", ")" ]
Translate a micro state to a macro state Args: micro_state (tuple[int]): The state of the micro nodes in this coarse-graining. Returns: tuple[int]: The state of the macro system, translated as specified by this coarse-graining. Example: >>> coarse_grain = CoarseGrain(((1, 2),), (((0,), (1, 2)),)) >>> coarse_grain.macro_state((0, 0)) (0,) >>> coarse_grain.macro_state((1, 0)) (1,) >>> coarse_grain.macro_state((1, 1)) (1,)
[ "Translate", "a", "micro", "state", "to", "a", "macro", "state" ]
deeca69a084d782a6fde7bf26f59e93b593c5d77
https://github.com/wmayner/pyphi/blob/deeca69a084d782a6fde7bf26f59e93b593c5d77/pyphi/macro.py#L466-L496
16,039
wmayner/pyphi
pyphi/macro.py
CoarseGrain.make_mapping
def make_mapping(self): """Return a mapping from micro-state to the macro-states based on the partition and state grouping of this coarse-grain. Return: (nd.ndarray): A mapping from micro-states to macro-states. The |ith| entry in the mapping is the macro-state corresponding to the |ith| micro-state. """ micro_states = utils.all_states(len(self.micro_indices)) # Find the corresponding macro-state for each micro-state. # The i-th entry in the mapping is the macro-state corresponding to the # i-th micro-state. mapping = [convert.state2le_index(self.macro_state(micro_state)) for micro_state in micro_states] return np.array(mapping)
python
def make_mapping(self): """Return a mapping from micro-state to the macro-states based on the partition and state grouping of this coarse-grain. Return: (nd.ndarray): A mapping from micro-states to macro-states. The |ith| entry in the mapping is the macro-state corresponding to the |ith| micro-state. """ micro_states = utils.all_states(len(self.micro_indices)) # Find the corresponding macro-state for each micro-state. # The i-th entry in the mapping is the macro-state corresponding to the # i-th micro-state. mapping = [convert.state2le_index(self.macro_state(micro_state)) for micro_state in micro_states] return np.array(mapping)
[ "def", "make_mapping", "(", "self", ")", ":", "micro_states", "=", "utils", ".", "all_states", "(", "len", "(", "self", ".", "micro_indices", ")", ")", "# Find the corresponding macro-state for each micro-state.", "# The i-th entry in the mapping is the macro-state corresponding to the", "# i-th micro-state.", "mapping", "=", "[", "convert", ".", "state2le_index", "(", "self", ".", "macro_state", "(", "micro_state", ")", ")", "for", "micro_state", "in", "micro_states", "]", "return", "np", ".", "array", "(", "mapping", ")" ]
Return a mapping from micro-state to the macro-states based on the partition and state grouping of this coarse-grain. Return: (nd.ndarray): A mapping from micro-states to macro-states. The |ith| entry in the mapping is the macro-state corresponding to the |ith| micro-state.
[ "Return", "a", "mapping", "from", "micro", "-", "state", "to", "the", "macro", "-", "states", "based", "on", "the", "partition", "and", "state", "grouping", "of", "this", "coarse", "-", "grain", "." ]
deeca69a084d782a6fde7bf26f59e93b593c5d77
https://github.com/wmayner/pyphi/blob/deeca69a084d782a6fde7bf26f59e93b593c5d77/pyphi/macro.py#L498-L514
16,040
wmayner/pyphi
pyphi/macro.py
CoarseGrain.macro_tpm_sbs
def macro_tpm_sbs(self, state_by_state_micro_tpm): """Create a state-by-state coarse-grained macro TPM. Args: micro_tpm (nd.array): The state-by-state TPM of the micro-system. Returns: np.ndarray: The state-by-state TPM of the macro-system. """ validate.tpm(state_by_state_micro_tpm, check_independence=False) mapping = self.make_mapping() num_macro_states = 2 ** len(self.macro_indices) macro_tpm = np.zeros((num_macro_states, num_macro_states)) micro_states = range(2 ** len(self.micro_indices)) micro_state_transitions = itertools.product(micro_states, repeat=2) # For every possible micro-state transition, get the corresponding # previous and next macro-state using the mapping and add that # probability to the state-by-state macro TPM. for previous_state, current_state in micro_state_transitions: macro_tpm[mapping[previous_state], mapping[current_state]] += ( state_by_state_micro_tpm[previous_state, current_state]) # Re-normalize each row because we're going from larger to smaller TPM return np.array([distribution.normalize(row) for row in macro_tpm])
python
def macro_tpm_sbs(self, state_by_state_micro_tpm): """Create a state-by-state coarse-grained macro TPM. Args: micro_tpm (nd.array): The state-by-state TPM of the micro-system. Returns: np.ndarray: The state-by-state TPM of the macro-system. """ validate.tpm(state_by_state_micro_tpm, check_independence=False) mapping = self.make_mapping() num_macro_states = 2 ** len(self.macro_indices) macro_tpm = np.zeros((num_macro_states, num_macro_states)) micro_states = range(2 ** len(self.micro_indices)) micro_state_transitions = itertools.product(micro_states, repeat=2) # For every possible micro-state transition, get the corresponding # previous and next macro-state using the mapping and add that # probability to the state-by-state macro TPM. for previous_state, current_state in micro_state_transitions: macro_tpm[mapping[previous_state], mapping[current_state]] += ( state_by_state_micro_tpm[previous_state, current_state]) # Re-normalize each row because we're going from larger to smaller TPM return np.array([distribution.normalize(row) for row in macro_tpm])
[ "def", "macro_tpm_sbs", "(", "self", ",", "state_by_state_micro_tpm", ")", ":", "validate", ".", "tpm", "(", "state_by_state_micro_tpm", ",", "check_independence", "=", "False", ")", "mapping", "=", "self", ".", "make_mapping", "(", ")", "num_macro_states", "=", "2", "**", "len", "(", "self", ".", "macro_indices", ")", "macro_tpm", "=", "np", ".", "zeros", "(", "(", "num_macro_states", ",", "num_macro_states", ")", ")", "micro_states", "=", "range", "(", "2", "**", "len", "(", "self", ".", "micro_indices", ")", ")", "micro_state_transitions", "=", "itertools", ".", "product", "(", "micro_states", ",", "repeat", "=", "2", ")", "# For every possible micro-state transition, get the corresponding", "# previous and next macro-state using the mapping and add that", "# probability to the state-by-state macro TPM.", "for", "previous_state", ",", "current_state", "in", "micro_state_transitions", ":", "macro_tpm", "[", "mapping", "[", "previous_state", "]", ",", "mapping", "[", "current_state", "]", "]", "+=", "(", "state_by_state_micro_tpm", "[", "previous_state", ",", "current_state", "]", ")", "# Re-normalize each row because we're going from larger to smaller TPM", "return", "np", ".", "array", "(", "[", "distribution", ".", "normalize", "(", "row", ")", "for", "row", "in", "macro_tpm", "]", ")" ]
Create a state-by-state coarse-grained macro TPM. Args: micro_tpm (nd.array): The state-by-state TPM of the micro-system. Returns: np.ndarray: The state-by-state TPM of the macro-system.
[ "Create", "a", "state", "-", "by", "-", "state", "coarse", "-", "grained", "macro", "TPM", "." ]
deeca69a084d782a6fde7bf26f59e93b593c5d77
https://github.com/wmayner/pyphi/blob/deeca69a084d782a6fde7bf26f59e93b593c5d77/pyphi/macro.py#L516-L543
16,041
wmayner/pyphi
pyphi/macro.py
CoarseGrain.macro_tpm
def macro_tpm(self, micro_tpm, check_independence=True): """Create a coarse-grained macro TPM. Args: micro_tpm (nd.array): The TPM of the micro-system. check_independence (bool): Whether to check that the macro TPM is conditionally independent. Raises: ConditionallyDependentError: If ``check_independence`` is ``True`` and the macro TPM is not conditionally independent. Returns: np.ndarray: The state-by-node TPM of the macro-system. """ if not is_state_by_state(micro_tpm): micro_tpm = convert.state_by_node2state_by_state(micro_tpm) macro_tpm = self.macro_tpm_sbs(micro_tpm) if check_independence: validate.conditionally_independent(macro_tpm) return convert.state_by_state2state_by_node(macro_tpm)
python
def macro_tpm(self, micro_tpm, check_independence=True): """Create a coarse-grained macro TPM. Args: micro_tpm (nd.array): The TPM of the micro-system. check_independence (bool): Whether to check that the macro TPM is conditionally independent. Raises: ConditionallyDependentError: If ``check_independence`` is ``True`` and the macro TPM is not conditionally independent. Returns: np.ndarray: The state-by-node TPM of the macro-system. """ if not is_state_by_state(micro_tpm): micro_tpm = convert.state_by_node2state_by_state(micro_tpm) macro_tpm = self.macro_tpm_sbs(micro_tpm) if check_independence: validate.conditionally_independent(macro_tpm) return convert.state_by_state2state_by_node(macro_tpm)
[ "def", "macro_tpm", "(", "self", ",", "micro_tpm", ",", "check_independence", "=", "True", ")", ":", "if", "not", "is_state_by_state", "(", "micro_tpm", ")", ":", "micro_tpm", "=", "convert", ".", "state_by_node2state_by_state", "(", "micro_tpm", ")", "macro_tpm", "=", "self", ".", "macro_tpm_sbs", "(", "micro_tpm", ")", "if", "check_independence", ":", "validate", ".", "conditionally_independent", "(", "macro_tpm", ")", "return", "convert", ".", "state_by_state2state_by_node", "(", "macro_tpm", ")" ]
Create a coarse-grained macro TPM. Args: micro_tpm (nd.array): The TPM of the micro-system. check_independence (bool): Whether to check that the macro TPM is conditionally independent. Raises: ConditionallyDependentError: If ``check_independence`` is ``True`` and the macro TPM is not conditionally independent. Returns: np.ndarray: The state-by-node TPM of the macro-system.
[ "Create", "a", "coarse", "-", "grained", "macro", "TPM", "." ]
deeca69a084d782a6fde7bf26f59e93b593c5d77
https://github.com/wmayner/pyphi/blob/deeca69a084d782a6fde7bf26f59e93b593c5d77/pyphi/macro.py#L545-L568
16,042
wmayner/pyphi
pyphi/macro.py
Blackbox.hidden_indices
def hidden_indices(self): """All elements hidden inside the blackboxes.""" return tuple(sorted(set(self.micro_indices) - set(self.output_indices)))
python
def hidden_indices(self): """All elements hidden inside the blackboxes.""" return tuple(sorted(set(self.micro_indices) - set(self.output_indices)))
[ "def", "hidden_indices", "(", "self", ")", ":", "return", "tuple", "(", "sorted", "(", "set", "(", "self", ".", "micro_indices", ")", "-", "set", "(", "self", ".", "output_indices", ")", ")", ")" ]
All elements hidden inside the blackboxes.
[ "All", "elements", "hidden", "inside", "the", "blackboxes", "." ]
deeca69a084d782a6fde7bf26f59e93b593c5d77
https://github.com/wmayner/pyphi/blob/deeca69a084d782a6fde7bf26f59e93b593c5d77/pyphi/macro.py#L582-L585
16,043
wmayner/pyphi
pyphi/macro.py
Blackbox.outputs_of
def outputs_of(self, partition_index): """The outputs of the partition at ``partition_index``. Note that this returns a tuple of element indices, since coarse- grained blackboxes may have multiple outputs. """ partition = self.partition[partition_index] outputs = set(partition).intersection(self.output_indices) return tuple(sorted(outputs))
python
def outputs_of(self, partition_index): """The outputs of the partition at ``partition_index``. Note that this returns a tuple of element indices, since coarse- grained blackboxes may have multiple outputs. """ partition = self.partition[partition_index] outputs = set(partition).intersection(self.output_indices) return tuple(sorted(outputs))
[ "def", "outputs_of", "(", "self", ",", "partition_index", ")", ":", "partition", "=", "self", ".", "partition", "[", "partition_index", "]", "outputs", "=", "set", "(", "partition", ")", ".", "intersection", "(", "self", ".", "output_indices", ")", "return", "tuple", "(", "sorted", "(", "outputs", ")", ")" ]
The outputs of the partition at ``partition_index``. Note that this returns a tuple of element indices, since coarse- grained blackboxes may have multiple outputs.
[ "The", "outputs", "of", "the", "partition", "at", "partition_index", "." ]
deeca69a084d782a6fde7bf26f59e93b593c5d77
https://github.com/wmayner/pyphi/blob/deeca69a084d782a6fde7bf26f59e93b593c5d77/pyphi/macro.py#L600-L608
16,044
wmayner/pyphi
pyphi/macro.py
Blackbox.reindex
def reindex(self): """Squeeze the indices of this blackboxing to ``0..n``. Returns: Blackbox: a new, reindexed |Blackbox|. Example: >>> partition = ((3,), (2, 4)) >>> output_indices = (2, 3) >>> blackbox = Blackbox(partition, output_indices) >>> blackbox.reindex() Blackbox(partition=((1,), (0, 2)), output_indices=(0, 1)) """ _map = dict(zip(self.micro_indices, reindex(self.micro_indices))) partition = tuple( tuple(_map[index] for index in group) for group in self.partition ) output_indices = tuple(_map[i] for i in self.output_indices) return Blackbox(partition, output_indices)
python
def reindex(self): """Squeeze the indices of this blackboxing to ``0..n``. Returns: Blackbox: a new, reindexed |Blackbox|. Example: >>> partition = ((3,), (2, 4)) >>> output_indices = (2, 3) >>> blackbox = Blackbox(partition, output_indices) >>> blackbox.reindex() Blackbox(partition=((1,), (0, 2)), output_indices=(0, 1)) """ _map = dict(zip(self.micro_indices, reindex(self.micro_indices))) partition = tuple( tuple(_map[index] for index in group) for group in self.partition ) output_indices = tuple(_map[i] for i in self.output_indices) return Blackbox(partition, output_indices)
[ "def", "reindex", "(", "self", ")", ":", "_map", "=", "dict", "(", "zip", "(", "self", ".", "micro_indices", ",", "reindex", "(", "self", ".", "micro_indices", ")", ")", ")", "partition", "=", "tuple", "(", "tuple", "(", "_map", "[", "index", "]", "for", "index", "in", "group", ")", "for", "group", "in", "self", ".", "partition", ")", "output_indices", "=", "tuple", "(", "_map", "[", "i", "]", "for", "i", "in", "self", ".", "output_indices", ")", "return", "Blackbox", "(", "partition", ",", "output_indices", ")" ]
Squeeze the indices of this blackboxing to ``0..n``. Returns: Blackbox: a new, reindexed |Blackbox|. Example: >>> partition = ((3,), (2, 4)) >>> output_indices = (2, 3) >>> blackbox = Blackbox(partition, output_indices) >>> blackbox.reindex() Blackbox(partition=((1,), (0, 2)), output_indices=(0, 1))
[ "Squeeze", "the", "indices", "of", "this", "blackboxing", "to", "0", "..", "n", "." ]
deeca69a084d782a6fde7bf26f59e93b593c5d77
https://github.com/wmayner/pyphi/blob/deeca69a084d782a6fde7bf26f59e93b593c5d77/pyphi/macro.py#L610-L630
16,045
wmayner/pyphi
pyphi/macro.py
Blackbox.macro_state
def macro_state(self, micro_state): """Compute the macro-state of this blackbox. This is just the state of the blackbox's output indices. Args: micro_state (tuple[int]): The state of the micro-elements in the blackbox. Returns: tuple[int]: The state of the output indices. """ assert len(micro_state) == len(self.micro_indices) reindexed = self.reindex() return utils.state_of(reindexed.output_indices, micro_state)
python
def macro_state(self, micro_state): """Compute the macro-state of this blackbox. This is just the state of the blackbox's output indices. Args: micro_state (tuple[int]): The state of the micro-elements in the blackbox. Returns: tuple[int]: The state of the output indices. """ assert len(micro_state) == len(self.micro_indices) reindexed = self.reindex() return utils.state_of(reindexed.output_indices, micro_state)
[ "def", "macro_state", "(", "self", ",", "micro_state", ")", ":", "assert", "len", "(", "micro_state", ")", "==", "len", "(", "self", ".", "micro_indices", ")", "reindexed", "=", "self", ".", "reindex", "(", ")", "return", "utils", ".", "state_of", "(", "reindexed", ".", "output_indices", ",", "micro_state", ")" ]
Compute the macro-state of this blackbox. This is just the state of the blackbox's output indices. Args: micro_state (tuple[int]): The state of the micro-elements in the blackbox. Returns: tuple[int]: The state of the output indices.
[ "Compute", "the", "macro", "-", "state", "of", "this", "blackbox", "." ]
deeca69a084d782a6fde7bf26f59e93b593c5d77
https://github.com/wmayner/pyphi/blob/deeca69a084d782a6fde7bf26f59e93b593c5d77/pyphi/macro.py#L632-L647
16,046
wmayner/pyphi
pyphi/macro.py
Blackbox.in_same_box
def in_same_box(self, a, b): """Return ``True`` if nodes ``a`` and ``b``` are in the same box.""" assert a in self.micro_indices assert b in self.micro_indices for part in self.partition: if a in part and b in part: return True return False
python
def in_same_box(self, a, b): """Return ``True`` if nodes ``a`` and ``b``` are in the same box.""" assert a in self.micro_indices assert b in self.micro_indices for part in self.partition: if a in part and b in part: return True return False
[ "def", "in_same_box", "(", "self", ",", "a", ",", "b", ")", ":", "assert", "a", "in", "self", ".", "micro_indices", "assert", "b", "in", "self", ".", "micro_indices", "for", "part", "in", "self", ".", "partition", ":", "if", "a", "in", "part", "and", "b", "in", "part", ":", "return", "True", "return", "False" ]
Return ``True`` if nodes ``a`` and ``b``` are in the same box.
[ "Return", "True", "if", "nodes", "a", "and", "b", "are", "in", "the", "same", "box", "." ]
deeca69a084d782a6fde7bf26f59e93b593c5d77
https://github.com/wmayner/pyphi/blob/deeca69a084d782a6fde7bf26f59e93b593c5d77/pyphi/macro.py#L649-L658
16,047
wmayner/pyphi
pyphi/macro.py
Blackbox.hidden_from
def hidden_from(self, a, b): """Return True if ``a`` is hidden in a different box than ``b``.""" return a in self.hidden_indices and not self.in_same_box(a, b)
python
def hidden_from(self, a, b): """Return True if ``a`` is hidden in a different box than ``b``.""" return a in self.hidden_indices and not self.in_same_box(a, b)
[ "def", "hidden_from", "(", "self", ",", "a", ",", "b", ")", ":", "return", "a", "in", "self", ".", "hidden_indices", "and", "not", "self", ".", "in_same_box", "(", "a", ",", "b", ")" ]
Return True if ``a`` is hidden in a different box than ``b``.
[ "Return", "True", "if", "a", "is", "hidden", "in", "a", "different", "box", "than", "b", "." ]
deeca69a084d782a6fde7bf26f59e93b593c5d77
https://github.com/wmayner/pyphi/blob/deeca69a084d782a6fde7bf26f59e93b593c5d77/pyphi/macro.py#L660-L662
16,048
wmayner/pyphi
pyphi/network.py
irreducible_purviews
def irreducible_purviews(cm, direction, mechanism, purviews): """Return all purviews which are irreducible for the mechanism. Args: cm (np.ndarray): An |N x N| connectivity matrix. direction (Direction): |CAUSE| or |EFFECT|. purviews (list[tuple[int]]): The purviews to check. mechanism (tuple[int]): The mechanism in question. Returns: list[tuple[int]]: All purviews in ``purviews`` which are not reducible over ``mechanism``. Raises: ValueError: If ``direction`` is invalid. """ def reducible(purview): """Return ``True`` if purview is trivially reducible.""" _from, to = direction.order(mechanism, purview) return connectivity.block_reducible(cm, _from, to) return [purview for purview in purviews if not reducible(purview)]
python
def irreducible_purviews(cm, direction, mechanism, purviews): """Return all purviews which are irreducible for the mechanism. Args: cm (np.ndarray): An |N x N| connectivity matrix. direction (Direction): |CAUSE| or |EFFECT|. purviews (list[tuple[int]]): The purviews to check. mechanism (tuple[int]): The mechanism in question. Returns: list[tuple[int]]: All purviews in ``purviews`` which are not reducible over ``mechanism``. Raises: ValueError: If ``direction`` is invalid. """ def reducible(purview): """Return ``True`` if purview is trivially reducible.""" _from, to = direction.order(mechanism, purview) return connectivity.block_reducible(cm, _from, to) return [purview for purview in purviews if not reducible(purview)]
[ "def", "irreducible_purviews", "(", "cm", ",", "direction", ",", "mechanism", ",", "purviews", ")", ":", "def", "reducible", "(", "purview", ")", ":", "\"\"\"Return ``True`` if purview is trivially reducible.\"\"\"", "_from", ",", "to", "=", "direction", ".", "order", "(", "mechanism", ",", "purview", ")", "return", "connectivity", ".", "block_reducible", "(", "cm", ",", "_from", ",", "to", ")", "return", "[", "purview", "for", "purview", "in", "purviews", "if", "not", "reducible", "(", "purview", ")", "]" ]
Return all purviews which are irreducible for the mechanism. Args: cm (np.ndarray): An |N x N| connectivity matrix. direction (Direction): |CAUSE| or |EFFECT|. purviews (list[tuple[int]]): The purviews to check. mechanism (tuple[int]): The mechanism in question. Returns: list[tuple[int]]: All purviews in ``purviews`` which are not reducible over ``mechanism``. Raises: ValueError: If ``direction`` is invalid.
[ "Return", "all", "purviews", "which", "are", "irreducible", "for", "the", "mechanism", "." ]
deeca69a084d782a6fde7bf26f59e93b593c5d77
https://github.com/wmayner/pyphi/blob/deeca69a084d782a6fde7bf26f59e93b593c5d77/pyphi/network.py#L214-L235
16,049
wmayner/pyphi
pyphi/network.py
Network._build_tpm
def _build_tpm(tpm): """Validate the TPM passed by the user and convert to multidimensional form. """ tpm = np.array(tpm) validate.tpm(tpm) # Convert to multidimensional state-by-node form if is_state_by_state(tpm): tpm = convert.state_by_state2state_by_node(tpm) else: tpm = convert.to_multidimensional(tpm) utils.np_immutable(tpm) return (tpm, utils.np_hash(tpm))
python
def _build_tpm(tpm): """Validate the TPM passed by the user and convert to multidimensional form. """ tpm = np.array(tpm) validate.tpm(tpm) # Convert to multidimensional state-by-node form if is_state_by_state(tpm): tpm = convert.state_by_state2state_by_node(tpm) else: tpm = convert.to_multidimensional(tpm) utils.np_immutable(tpm) return (tpm, utils.np_hash(tpm))
[ "def", "_build_tpm", "(", "tpm", ")", ":", "tpm", "=", "np", ".", "array", "(", "tpm", ")", "validate", ".", "tpm", "(", "tpm", ")", "# Convert to multidimensional state-by-node form", "if", "is_state_by_state", "(", "tpm", ")", ":", "tpm", "=", "convert", ".", "state_by_state2state_by_node", "(", "tpm", ")", "else", ":", "tpm", "=", "convert", ".", "to_multidimensional", "(", "tpm", ")", "utils", ".", "np_immutable", "(", "tpm", ")", "return", "(", "tpm", ",", "utils", ".", "np_hash", "(", "tpm", ")", ")" ]
Validate the TPM passed by the user and convert to multidimensional form.
[ "Validate", "the", "TPM", "passed", "by", "the", "user", "and", "convert", "to", "multidimensional", "form", "." ]
deeca69a084d782a6fde7bf26f59e93b593c5d77
https://github.com/wmayner/pyphi/blob/deeca69a084d782a6fde7bf26f59e93b593c5d77/pyphi/network.py#L77-L93
16,050
wmayner/pyphi
pyphi/network.py
Network._build_cm
def _build_cm(self, cm): """Convert the passed CM to the proper format, or construct the unitary CM if none was provided. """ if cm is None: # Assume all are connected. cm = np.ones((self.size, self.size)) else: cm = np.array(cm) utils.np_immutable(cm) return (cm, utils.np_hash(cm))
python
def _build_cm(self, cm): """Convert the passed CM to the proper format, or construct the unitary CM if none was provided. """ if cm is None: # Assume all are connected. cm = np.ones((self.size, self.size)) else: cm = np.array(cm) utils.np_immutable(cm) return (cm, utils.np_hash(cm))
[ "def", "_build_cm", "(", "self", ",", "cm", ")", ":", "if", "cm", "is", "None", ":", "# Assume all are connected.", "cm", "=", "np", ".", "ones", "(", "(", "self", ".", "size", ",", "self", ".", "size", ")", ")", "else", ":", "cm", "=", "np", ".", "array", "(", "cm", ")", "utils", ".", "np_immutable", "(", "cm", ")", "return", "(", "cm", ",", "utils", ".", "np_hash", "(", "cm", ")", ")" ]
Convert the passed CM to the proper format, or construct the unitary CM if none was provided.
[ "Convert", "the", "passed", "CM", "to", "the", "proper", "format", "or", "construct", "the", "unitary", "CM", "if", "none", "was", "provided", "." ]
deeca69a084d782a6fde7bf26f59e93b593c5d77
https://github.com/wmayner/pyphi/blob/deeca69a084d782a6fde7bf26f59e93b593c5d77/pyphi/network.py#L104-L116
16,051
wmayner/pyphi
pyphi/network.py
Network.potential_purviews
def potential_purviews(self, direction, mechanism): """All purviews which are not clearly reducible for mechanism. Args: direction (Direction): |CAUSE| or |EFFECT|. mechanism (tuple[int]): The mechanism which all purviews are checked for reducibility over. Returns: list[tuple[int]]: All purviews which are irreducible over ``mechanism``. """ all_purviews = utils.powerset(self._node_indices) return irreducible_purviews(self.cm, direction, mechanism, all_purviews)
python
def potential_purviews(self, direction, mechanism): """All purviews which are not clearly reducible for mechanism. Args: direction (Direction): |CAUSE| or |EFFECT|. mechanism (tuple[int]): The mechanism which all purviews are checked for reducibility over. Returns: list[tuple[int]]: All purviews which are irreducible over ``mechanism``. """ all_purviews = utils.powerset(self._node_indices) return irreducible_purviews(self.cm, direction, mechanism, all_purviews)
[ "def", "potential_purviews", "(", "self", ",", "direction", ",", "mechanism", ")", ":", "all_purviews", "=", "utils", ".", "powerset", "(", "self", ".", "_node_indices", ")", "return", "irreducible_purviews", "(", "self", ".", "cm", ",", "direction", ",", "mechanism", ",", "all_purviews", ")" ]
All purviews which are not clearly reducible for mechanism. Args: direction (Direction): |CAUSE| or |EFFECT|. mechanism (tuple[int]): The mechanism which all purviews are checked for reducibility over. Returns: list[tuple[int]]: All purviews which are irreducible over ``mechanism``.
[ "All", "purviews", "which", "are", "not", "clearly", "reducible", "for", "mechanism", "." ]
deeca69a084d782a6fde7bf26f59e93b593c5d77
https://github.com/wmayner/pyphi/blob/deeca69a084d782a6fde7bf26f59e93b593c5d77/pyphi/network.py#L155-L169
16,052
wmayner/pyphi
pyphi/jsonify.py
_loadable_models
def _loadable_models(): """A dictionary of loadable PyPhi models. These are stored in this function (instead of module scope) to resolve circular import issues. """ classes = [ pyphi.Direction, pyphi.Network, pyphi.Subsystem, pyphi.Transition, pyphi.labels.NodeLabels, pyphi.models.Cut, pyphi.models.KCut, pyphi.models.NullCut, pyphi.models.Part, pyphi.models.Bipartition, pyphi.models.KPartition, pyphi.models.Tripartition, pyphi.models.RepertoireIrreducibilityAnalysis, pyphi.models.MaximallyIrreducibleCauseOrEffect, pyphi.models.MaximallyIrreducibleCause, pyphi.models.MaximallyIrreducibleEffect, pyphi.models.Concept, pyphi.models.CauseEffectStructure, pyphi.models.SystemIrreducibilityAnalysis, pyphi.models.ActualCut, pyphi.models.AcRepertoireIrreducibilityAnalysis, pyphi.models.CausalLink, pyphi.models.Account, pyphi.models.AcSystemIrreducibilityAnalysis ] return {cls.__name__: cls for cls in classes}
python
def _loadable_models(): """A dictionary of loadable PyPhi models. These are stored in this function (instead of module scope) to resolve circular import issues. """ classes = [ pyphi.Direction, pyphi.Network, pyphi.Subsystem, pyphi.Transition, pyphi.labels.NodeLabels, pyphi.models.Cut, pyphi.models.KCut, pyphi.models.NullCut, pyphi.models.Part, pyphi.models.Bipartition, pyphi.models.KPartition, pyphi.models.Tripartition, pyphi.models.RepertoireIrreducibilityAnalysis, pyphi.models.MaximallyIrreducibleCauseOrEffect, pyphi.models.MaximallyIrreducibleCause, pyphi.models.MaximallyIrreducibleEffect, pyphi.models.Concept, pyphi.models.CauseEffectStructure, pyphi.models.SystemIrreducibilityAnalysis, pyphi.models.ActualCut, pyphi.models.AcRepertoireIrreducibilityAnalysis, pyphi.models.CausalLink, pyphi.models.Account, pyphi.models.AcSystemIrreducibilityAnalysis ] return {cls.__name__: cls for cls in classes}
[ "def", "_loadable_models", "(", ")", ":", "classes", "=", "[", "pyphi", ".", "Direction", ",", "pyphi", ".", "Network", ",", "pyphi", ".", "Subsystem", ",", "pyphi", ".", "Transition", ",", "pyphi", ".", "labels", ".", "NodeLabels", ",", "pyphi", ".", "models", ".", "Cut", ",", "pyphi", ".", "models", ".", "KCut", ",", "pyphi", ".", "models", ".", "NullCut", ",", "pyphi", ".", "models", ".", "Part", ",", "pyphi", ".", "models", ".", "Bipartition", ",", "pyphi", ".", "models", ".", "KPartition", ",", "pyphi", ".", "models", ".", "Tripartition", ",", "pyphi", ".", "models", ".", "RepertoireIrreducibilityAnalysis", ",", "pyphi", ".", "models", ".", "MaximallyIrreducibleCauseOrEffect", ",", "pyphi", ".", "models", ".", "MaximallyIrreducibleCause", ",", "pyphi", ".", "models", ".", "MaximallyIrreducibleEffect", ",", "pyphi", ".", "models", ".", "Concept", ",", "pyphi", ".", "models", ".", "CauseEffectStructure", ",", "pyphi", ".", "models", ".", "SystemIrreducibilityAnalysis", ",", "pyphi", ".", "models", ".", "ActualCut", ",", "pyphi", ".", "models", ".", "AcRepertoireIrreducibilityAnalysis", ",", "pyphi", ".", "models", ".", "CausalLink", ",", "pyphi", ".", "models", ".", "Account", ",", "pyphi", ".", "models", ".", "AcSystemIrreducibilityAnalysis", "]", "return", "{", "cls", ".", "__name__", ":", "cls", "for", "cls", "in", "classes", "}" ]
A dictionary of loadable PyPhi models. These are stored in this function (instead of module scope) to resolve circular import issues.
[ "A", "dictionary", "of", "loadable", "PyPhi", "models", "." ]
deeca69a084d782a6fde7bf26f59e93b593c5d77
https://github.com/wmayner/pyphi/blob/deeca69a084d782a6fde7bf26f59e93b593c5d77/pyphi/jsonify.py#L51-L83
16,053
wmayner/pyphi
pyphi/jsonify.py
jsonify
def jsonify(obj): # pylint: disable=too-many-return-statements """Return a JSON-encodable representation of an object, recursively using any available ``to_json`` methods, converting NumPy arrays and datatypes to native lists and types along the way. """ # Call the `to_json` method if available and add metadata. if hasattr(obj, 'to_json'): d = obj.to_json() _push_metadata(d, obj) return jsonify(d) # If we have a numpy array, convert it to a list. if isinstance(obj, np.ndarray): return obj.tolist() # If we have NumPy datatypes, convert them to native types. if isinstance(obj, (np.int32, np.int64)): return int(obj) if isinstance(obj, np.float64): return float(obj) # Recurse over dictionaries. if isinstance(obj, dict): return _jsonify_dict(obj) # Recurse over object dictionaries. if hasattr(obj, '__dict__'): return _jsonify_dict(obj.__dict__) # Recurse over lists and tuples. if isinstance(obj, (list, tuple)): return [jsonify(item) for item in obj] # Otherwise, give up and hope it's serializable. return obj
python
def jsonify(obj): # pylint: disable=too-many-return-statements """Return a JSON-encodable representation of an object, recursively using any available ``to_json`` methods, converting NumPy arrays and datatypes to native lists and types along the way. """ # Call the `to_json` method if available and add metadata. if hasattr(obj, 'to_json'): d = obj.to_json() _push_metadata(d, obj) return jsonify(d) # If we have a numpy array, convert it to a list. if isinstance(obj, np.ndarray): return obj.tolist() # If we have NumPy datatypes, convert them to native types. if isinstance(obj, (np.int32, np.int64)): return int(obj) if isinstance(obj, np.float64): return float(obj) # Recurse over dictionaries. if isinstance(obj, dict): return _jsonify_dict(obj) # Recurse over object dictionaries. if hasattr(obj, '__dict__'): return _jsonify_dict(obj.__dict__) # Recurse over lists and tuples. if isinstance(obj, (list, tuple)): return [jsonify(item) for item in obj] # Otherwise, give up and hope it's serializable. return obj
[ "def", "jsonify", "(", "obj", ")", ":", "# pylint: disable=too-many-return-statements", "# Call the `to_json` method if available and add metadata.", "if", "hasattr", "(", "obj", ",", "'to_json'", ")", ":", "d", "=", "obj", ".", "to_json", "(", ")", "_push_metadata", "(", "d", ",", "obj", ")", "return", "jsonify", "(", "d", ")", "# If we have a numpy array, convert it to a list.", "if", "isinstance", "(", "obj", ",", "np", ".", "ndarray", ")", ":", "return", "obj", ".", "tolist", "(", ")", "# If we have NumPy datatypes, convert them to native types.", "if", "isinstance", "(", "obj", ",", "(", "np", ".", "int32", ",", "np", ".", "int64", ")", ")", ":", "return", "int", "(", "obj", ")", "if", "isinstance", "(", "obj", ",", "np", ".", "float64", ")", ":", "return", "float", "(", "obj", ")", "# Recurse over dictionaries.", "if", "isinstance", "(", "obj", ",", "dict", ")", ":", "return", "_jsonify_dict", "(", "obj", ")", "# Recurse over object dictionaries.", "if", "hasattr", "(", "obj", ",", "'__dict__'", ")", ":", "return", "_jsonify_dict", "(", "obj", ".", "__dict__", ")", "# Recurse over lists and tuples.", "if", "isinstance", "(", "obj", ",", "(", "list", ",", "tuple", ")", ")", ":", "return", "[", "jsonify", "(", "item", ")", "for", "item", "in", "obj", "]", "# Otherwise, give up and hope it's serializable.", "return", "obj" ]
Return a JSON-encodable representation of an object, recursively using any available ``to_json`` methods, converting NumPy arrays and datatypes to native lists and types along the way.
[ "Return", "a", "JSON", "-", "encodable", "representation", "of", "an", "object", "recursively", "using", "any", "available", "to_json", "methods", "converting", "NumPy", "arrays", "and", "datatypes", "to", "native", "lists", "and", "types", "along", "the", "way", "." ]
deeca69a084d782a6fde7bf26f59e93b593c5d77
https://github.com/wmayner/pyphi/blob/deeca69a084d782a6fde7bf26f59e93b593c5d77/pyphi/jsonify.py#L107-L141
16,054
wmayner/pyphi
pyphi/jsonify.py
_check_version
def _check_version(version): """Check whether the JSON version matches the PyPhi version.""" if version != pyphi.__version__: raise pyphi.exceptions.JSONVersionError( 'Cannot load JSON from a different version of PyPhi. ' 'JSON version = {0}, current version = {1}.'.format( version, pyphi.__version__))
python
def _check_version(version): """Check whether the JSON version matches the PyPhi version.""" if version != pyphi.__version__: raise pyphi.exceptions.JSONVersionError( 'Cannot load JSON from a different version of PyPhi. ' 'JSON version = {0}, current version = {1}.'.format( version, pyphi.__version__))
[ "def", "_check_version", "(", "version", ")", ":", "if", "version", "!=", "pyphi", ".", "__version__", ":", "raise", "pyphi", ".", "exceptions", ".", "JSONVersionError", "(", "'Cannot load JSON from a different version of PyPhi. '", "'JSON version = {0}, current version = {1}.'", ".", "format", "(", "version", ",", "pyphi", ".", "__version__", ")", ")" ]
Check whether the JSON version matches the PyPhi version.
[ "Check", "whether", "the", "JSON", "version", "matches", "the", "PyPhi", "version", "." ]
deeca69a084d782a6fde7bf26f59e93b593c5d77
https://github.com/wmayner/pyphi/blob/deeca69a084d782a6fde7bf26f59e93b593c5d77/pyphi/jsonify.py#L176-L182
16,055
wmayner/pyphi
pyphi/jsonify.py
PyPhiJSONDecoder._load_object
def _load_object(self, obj): """Recursively load a PyPhi object. PyPhi models are recursively loaded, using the model metadata to recreate the original object relations. Lists are cast to tuples because most objects in PyPhi which are serialized to lists (eg. mechanisms and purviews) are ultimately tuples. Other lists (tpms, repertoires) should be cast to the correct type in init methods. """ if isinstance(obj, dict): obj = {k: self._load_object(v) for k, v in obj.items()} # Load a serialized PyPhi model if _is_model(obj): return self._load_model(obj) elif isinstance(obj, list): return tuple(self._load_object(item) for item in obj) return obj
python
def _load_object(self, obj): """Recursively load a PyPhi object. PyPhi models are recursively loaded, using the model metadata to recreate the original object relations. Lists are cast to tuples because most objects in PyPhi which are serialized to lists (eg. mechanisms and purviews) are ultimately tuples. Other lists (tpms, repertoires) should be cast to the correct type in init methods. """ if isinstance(obj, dict): obj = {k: self._load_object(v) for k, v in obj.items()} # Load a serialized PyPhi model if _is_model(obj): return self._load_model(obj) elif isinstance(obj, list): return tuple(self._load_object(item) for item in obj) return obj
[ "def", "_load_object", "(", "self", ",", "obj", ")", ":", "if", "isinstance", "(", "obj", ",", "dict", ")", ":", "obj", "=", "{", "k", ":", "self", ".", "_load_object", "(", "v", ")", "for", "k", ",", "v", "in", "obj", ".", "items", "(", ")", "}", "# Load a serialized PyPhi model", "if", "_is_model", "(", "obj", ")", ":", "return", "self", ".", "_load_model", "(", "obj", ")", "elif", "isinstance", "(", "obj", ",", "list", ")", ":", "return", "tuple", "(", "self", ".", "_load_object", "(", "item", ")", "for", "item", "in", "obj", ")", "return", "obj" ]
Recursively load a PyPhi object. PyPhi models are recursively loaded, using the model metadata to recreate the original object relations. Lists are cast to tuples because most objects in PyPhi which are serialized to lists (eg. mechanisms and purviews) are ultimately tuples. Other lists (tpms, repertoires) should be cast to the correct type in init methods.
[ "Recursively", "load", "a", "PyPhi", "object", "." ]
deeca69a084d782a6fde7bf26f59e93b593c5d77
https://github.com/wmayner/pyphi/blob/deeca69a084d782a6fde7bf26f59e93b593c5d77/pyphi/jsonify.py#L212-L230
16,056
wmayner/pyphi
pyphi/jsonify.py
PyPhiJSONDecoder._load_model
def _load_model(self, dct): """Load a serialized PyPhi model. The object is memoized for reuse elsewhere in the object graph. """ classname, version, _ = _pop_metadata(dct) _check_version(version) cls = self._models[classname] # Use `from_json` if available if hasattr(cls, 'from_json'): return cls.from_json(dct) # Default to object constructor return cls(**dct)
python
def _load_model(self, dct): """Load a serialized PyPhi model. The object is memoized for reuse elsewhere in the object graph. """ classname, version, _ = _pop_metadata(dct) _check_version(version) cls = self._models[classname] # Use `from_json` if available if hasattr(cls, 'from_json'): return cls.from_json(dct) # Default to object constructor return cls(**dct)
[ "def", "_load_model", "(", "self", ",", "dct", ")", ":", "classname", ",", "version", ",", "_", "=", "_pop_metadata", "(", "dct", ")", "_check_version", "(", "version", ")", "cls", "=", "self", ".", "_models", "[", "classname", "]", "# Use `from_json` if available", "if", "hasattr", "(", "cls", ",", "'from_json'", ")", ":", "return", "cls", ".", "from_json", "(", "dct", ")", "# Default to object constructor", "return", "cls", "(", "*", "*", "dct", ")" ]
Load a serialized PyPhi model. The object is memoized for reuse elsewhere in the object graph.
[ "Load", "a", "serialized", "PyPhi", "model", "." ]
deeca69a084d782a6fde7bf26f59e93b593c5d77
https://github.com/wmayner/pyphi/blob/deeca69a084d782a6fde7bf26f59e93b593c5d77/pyphi/jsonify.py#L233-L248
16,057
wmayner/pyphi
pyphi/distance.py
_compute_hamming_matrix
def _compute_hamming_matrix(N): """Compute and store a Hamming matrix for |N| nodes. Hamming matrices have the following sizes:: N MBs == === 9 2 10 8 11 32 12 128 13 512 Given these sizes and the fact that large matrices are needed infrequently, we store computed matrices using the Joblib filesystem cache instead of adding computed matrices to the ``_hamming_matrices`` global and clogging up memory. This function is only called when |N| > ``_NUM_PRECOMPUTED_HAMMING_MATRICES``. Don't call this function directly; use |_hamming_matrix| instead. """ possible_states = np.array(list(utils.all_states((N)))) return cdist(possible_states, possible_states, 'hamming') * N
python
def _compute_hamming_matrix(N): """Compute and store a Hamming matrix for |N| nodes. Hamming matrices have the following sizes:: N MBs == === 9 2 10 8 11 32 12 128 13 512 Given these sizes and the fact that large matrices are needed infrequently, we store computed matrices using the Joblib filesystem cache instead of adding computed matrices to the ``_hamming_matrices`` global and clogging up memory. This function is only called when |N| > ``_NUM_PRECOMPUTED_HAMMING_MATRICES``. Don't call this function directly; use |_hamming_matrix| instead. """ possible_states = np.array(list(utils.all_states((N)))) return cdist(possible_states, possible_states, 'hamming') * N
[ "def", "_compute_hamming_matrix", "(", "N", ")", ":", "possible_states", "=", "np", ".", "array", "(", "list", "(", "utils", ".", "all_states", "(", "(", "N", ")", ")", ")", ")", "return", "cdist", "(", "possible_states", ",", "possible_states", ",", "'hamming'", ")", "*", "N" ]
Compute and store a Hamming matrix for |N| nodes. Hamming matrices have the following sizes:: N MBs == === 9 2 10 8 11 32 12 128 13 512 Given these sizes and the fact that large matrices are needed infrequently, we store computed matrices using the Joblib filesystem cache instead of adding computed matrices to the ``_hamming_matrices`` global and clogging up memory. This function is only called when |N| > ``_NUM_PRECOMPUTED_HAMMING_MATRICES``. Don't call this function directly; use |_hamming_matrix| instead.
[ "Compute", "and", "store", "a", "Hamming", "matrix", "for", "|N|", "nodes", "." ]
deeca69a084d782a6fde7bf26f59e93b593c5d77
https://github.com/wmayner/pyphi/blob/deeca69a084d782a6fde7bf26f59e93b593c5d77/pyphi/distance.py#L107-L130
16,058
wmayner/pyphi
pyphi/distance.py
effect_emd
def effect_emd(d1, d2): """Compute the EMD between two effect repertoires. Because the nodes are independent, the EMD between effect repertoires is equal to the sum of the EMDs between the marginal distributions of each node, and the EMD between marginal distribution for a node is the absolute difference in the probabilities that the node is OFF. Args: d1 (np.ndarray): The first repertoire. d2 (np.ndarray): The second repertoire. Returns: float: The EMD between ``d1`` and ``d2``. """ return sum(abs(marginal_zero(d1, i) - marginal_zero(d2, i)) for i in range(d1.ndim))
python
def effect_emd(d1, d2): """Compute the EMD between two effect repertoires. Because the nodes are independent, the EMD between effect repertoires is equal to the sum of the EMDs between the marginal distributions of each node, and the EMD between marginal distribution for a node is the absolute difference in the probabilities that the node is OFF. Args: d1 (np.ndarray): The first repertoire. d2 (np.ndarray): The second repertoire. Returns: float: The EMD between ``d1`` and ``d2``. """ return sum(abs(marginal_zero(d1, i) - marginal_zero(d2, i)) for i in range(d1.ndim))
[ "def", "effect_emd", "(", "d1", ",", "d2", ")", ":", "return", "sum", "(", "abs", "(", "marginal_zero", "(", "d1", ",", "i", ")", "-", "marginal_zero", "(", "d2", ",", "i", ")", ")", "for", "i", "in", "range", "(", "d1", ".", "ndim", ")", ")" ]
Compute the EMD between two effect repertoires. Because the nodes are independent, the EMD between effect repertoires is equal to the sum of the EMDs between the marginal distributions of each node, and the EMD between marginal distribution for a node is the absolute difference in the probabilities that the node is OFF. Args: d1 (np.ndarray): The first repertoire. d2 (np.ndarray): The second repertoire. Returns: float: The EMD between ``d1`` and ``d2``.
[ "Compute", "the", "EMD", "between", "two", "effect", "repertoires", "." ]
deeca69a084d782a6fde7bf26f59e93b593c5d77
https://github.com/wmayner/pyphi/blob/deeca69a084d782a6fde7bf26f59e93b593c5d77/pyphi/distance.py#L147-L163
16,059
wmayner/pyphi
pyphi/distance.py
entropy_difference
def entropy_difference(d1, d2): """Return the difference in entropy between two distributions.""" d1, d2 = flatten(d1), flatten(d2) return abs(entropy(d1, base=2.0) - entropy(d2, base=2.0))
python
def entropy_difference(d1, d2): """Return the difference in entropy between two distributions.""" d1, d2 = flatten(d1), flatten(d2) return abs(entropy(d1, base=2.0) - entropy(d2, base=2.0))
[ "def", "entropy_difference", "(", "d1", ",", "d2", ")", ":", "d1", ",", "d2", "=", "flatten", "(", "d1", ")", ",", "flatten", "(", "d2", ")", "return", "abs", "(", "entropy", "(", "d1", ",", "base", "=", "2.0", ")", "-", "entropy", "(", "d2", ",", "base", "=", "2.0", ")", ")" ]
Return the difference in entropy between two distributions.
[ "Return", "the", "difference", "in", "entropy", "between", "two", "distributions", "." ]
deeca69a084d782a6fde7bf26f59e93b593c5d77
https://github.com/wmayner/pyphi/blob/deeca69a084d782a6fde7bf26f59e93b593c5d77/pyphi/distance.py#L196-L199
16,060
wmayner/pyphi
pyphi/distance.py
psq2
def psq2(d1, d2): """Compute the PSQ2 measure. Args: d1 (np.ndarray): The first distribution. d2 (np.ndarray): The second distribution. """ d1, d2 = flatten(d1), flatten(d2) def f(p): return sum((p ** 2) * np.nan_to_num(np.log(p * len(p)))) return abs(f(d1) - f(d2))
python
def psq2(d1, d2): """Compute the PSQ2 measure. Args: d1 (np.ndarray): The first distribution. d2 (np.ndarray): The second distribution. """ d1, d2 = flatten(d1), flatten(d2) def f(p): return sum((p ** 2) * np.nan_to_num(np.log(p * len(p)))) return abs(f(d1) - f(d2))
[ "def", "psq2", "(", "d1", ",", "d2", ")", ":", "d1", ",", "d2", "=", "flatten", "(", "d1", ")", ",", "flatten", "(", "d2", ")", "def", "f", "(", "p", ")", ":", "return", "sum", "(", "(", "p", "**", "2", ")", "*", "np", ".", "nan_to_num", "(", "np", ".", "log", "(", "p", "*", "len", "(", "p", ")", ")", ")", ")", "return", "abs", "(", "f", "(", "d1", ")", "-", "f", "(", "d2", ")", ")" ]
Compute the PSQ2 measure. Args: d1 (np.ndarray): The first distribution. d2 (np.ndarray): The second distribution.
[ "Compute", "the", "PSQ2", "measure", "." ]
deeca69a084d782a6fde7bf26f59e93b593c5d77
https://github.com/wmayner/pyphi/blob/deeca69a084d782a6fde7bf26f59e93b593c5d77/pyphi/distance.py#L204-L216
16,061
wmayner/pyphi
pyphi/distance.py
mp2q
def mp2q(p, q): """Compute the MP2Q measure. Args: p (np.ndarray): The unpartitioned repertoire q (np.ndarray): The partitioned repertoire """ p, q = flatten(p), flatten(q) entropy_dist = 1 / len(p) return sum(entropy_dist * np.nan_to_num((p ** 2) / q * np.log(p / q)))
python
def mp2q(p, q): """Compute the MP2Q measure. Args: p (np.ndarray): The unpartitioned repertoire q (np.ndarray): The partitioned repertoire """ p, q = flatten(p), flatten(q) entropy_dist = 1 / len(p) return sum(entropy_dist * np.nan_to_num((p ** 2) / q * np.log(p / q)))
[ "def", "mp2q", "(", "p", ",", "q", ")", ":", "p", ",", "q", "=", "flatten", "(", "p", ")", ",", "flatten", "(", "q", ")", "entropy_dist", "=", "1", "/", "len", "(", "p", ")", "return", "sum", "(", "entropy_dist", "*", "np", ".", "nan_to_num", "(", "(", "p", "**", "2", ")", "/", "q", "*", "np", ".", "log", "(", "p", "/", "q", ")", ")", ")" ]
Compute the MP2Q measure. Args: p (np.ndarray): The unpartitioned repertoire q (np.ndarray): The partitioned repertoire
[ "Compute", "the", "MP2Q", "measure", "." ]
deeca69a084d782a6fde7bf26f59e93b593c5d77
https://github.com/wmayner/pyphi/blob/deeca69a084d782a6fde7bf26f59e93b593c5d77/pyphi/distance.py#L221-L230
16,062
wmayner/pyphi
pyphi/distance.py
klm
def klm(p, q): """Compute the KLM divergence.""" p, q = flatten(p), flatten(q) return max(abs(p * np.nan_to_num(np.log(p / q))))
python
def klm(p, q): """Compute the KLM divergence.""" p, q = flatten(p), flatten(q) return max(abs(p * np.nan_to_num(np.log(p / q))))
[ "def", "klm", "(", "p", ",", "q", ")", ":", "p", ",", "q", "=", "flatten", "(", "p", ")", ",", "flatten", "(", "q", ")", "return", "max", "(", "abs", "(", "p", "*", "np", ".", "nan_to_num", "(", "np", ".", "log", "(", "p", "/", "q", ")", ")", ")", ")" ]
Compute the KLM divergence.
[ "Compute", "the", "KLM", "divergence", "." ]
deeca69a084d782a6fde7bf26f59e93b593c5d77
https://github.com/wmayner/pyphi/blob/deeca69a084d782a6fde7bf26f59e93b593c5d77/pyphi/distance.py#L236-L239
16,063
wmayner/pyphi
pyphi/distance.py
directional_emd
def directional_emd(direction, d1, d2): """Compute the EMD between two repertoires for a given direction. The full EMD computation is used for cause repertoires. A fast analytic solution is used for effect repertoires. Args: direction (Direction): |CAUSE| or |EFFECT|. d1 (np.ndarray): The first repertoire. d2 (np.ndarray): The second repertoire. Returns: float: The EMD between ``d1`` and ``d2``, rounded to |PRECISION|. Raises: ValueError: If ``direction`` is invalid. """ if direction == Direction.CAUSE: func = hamming_emd elif direction == Direction.EFFECT: func = effect_emd else: # TODO: test that ValueError is raised validate.direction(direction) return round(func(d1, d2), config.PRECISION)
python
def directional_emd(direction, d1, d2): """Compute the EMD between two repertoires for a given direction. The full EMD computation is used for cause repertoires. A fast analytic solution is used for effect repertoires. Args: direction (Direction): |CAUSE| or |EFFECT|. d1 (np.ndarray): The first repertoire. d2 (np.ndarray): The second repertoire. Returns: float: The EMD between ``d1`` and ``d2``, rounded to |PRECISION|. Raises: ValueError: If ``direction`` is invalid. """ if direction == Direction.CAUSE: func = hamming_emd elif direction == Direction.EFFECT: func = effect_emd else: # TODO: test that ValueError is raised validate.direction(direction) return round(func(d1, d2), config.PRECISION)
[ "def", "directional_emd", "(", "direction", ",", "d1", ",", "d2", ")", ":", "if", "direction", "==", "Direction", ".", "CAUSE", ":", "func", "=", "hamming_emd", "elif", "direction", "==", "Direction", ".", "EFFECT", ":", "func", "=", "effect_emd", "else", ":", "# TODO: test that ValueError is raised", "validate", ".", "direction", "(", "direction", ")", "return", "round", "(", "func", "(", "d1", ",", "d2", ")", ",", "config", ".", "PRECISION", ")" ]
Compute the EMD between two repertoires for a given direction. The full EMD computation is used for cause repertoires. A fast analytic solution is used for effect repertoires. Args: direction (Direction): |CAUSE| or |EFFECT|. d1 (np.ndarray): The first repertoire. d2 (np.ndarray): The second repertoire. Returns: float: The EMD between ``d1`` and ``d2``, rounded to |PRECISION|. Raises: ValueError: If ``direction`` is invalid.
[ "Compute", "the", "EMD", "between", "two", "repertoires", "for", "a", "given", "direction", "." ]
deeca69a084d782a6fde7bf26f59e93b593c5d77
https://github.com/wmayner/pyphi/blob/deeca69a084d782a6fde7bf26f59e93b593c5d77/pyphi/distance.py#L242-L267
16,064
wmayner/pyphi
pyphi/distance.py
repertoire_distance
def repertoire_distance(direction, r1, r2): """Compute the distance between two repertoires for the given direction. Args: direction (Direction): |CAUSE| or |EFFECT|. r1 (np.ndarray): The first repertoire. r2 (np.ndarray): The second repertoire. Returns: float: The distance between ``d1`` and ``d2``, rounded to |PRECISION|. """ if config.MEASURE == 'EMD': dist = directional_emd(direction, r1, r2) else: dist = measures[config.MEASURE](r1, r2) return round(dist, config.PRECISION)
python
def repertoire_distance(direction, r1, r2): """Compute the distance between two repertoires for the given direction. Args: direction (Direction): |CAUSE| or |EFFECT|. r1 (np.ndarray): The first repertoire. r2 (np.ndarray): The second repertoire. Returns: float: The distance between ``d1`` and ``d2``, rounded to |PRECISION|. """ if config.MEASURE == 'EMD': dist = directional_emd(direction, r1, r2) else: dist = measures[config.MEASURE](r1, r2) return round(dist, config.PRECISION)
[ "def", "repertoire_distance", "(", "direction", ",", "r1", ",", "r2", ")", ":", "if", "config", ".", "MEASURE", "==", "'EMD'", ":", "dist", "=", "directional_emd", "(", "direction", ",", "r1", ",", "r2", ")", "else", ":", "dist", "=", "measures", "[", "config", ".", "MEASURE", "]", "(", "r1", ",", "r2", ")", "return", "round", "(", "dist", ",", "config", ".", "PRECISION", ")" ]
Compute the distance between two repertoires for the given direction. Args: direction (Direction): |CAUSE| or |EFFECT|. r1 (np.ndarray): The first repertoire. r2 (np.ndarray): The second repertoire. Returns: float: The distance between ``d1`` and ``d2``, rounded to |PRECISION|.
[ "Compute", "the", "distance", "between", "two", "repertoires", "for", "the", "given", "direction", "." ]
deeca69a084d782a6fde7bf26f59e93b593c5d77
https://github.com/wmayner/pyphi/blob/deeca69a084d782a6fde7bf26f59e93b593c5d77/pyphi/distance.py#L270-L286
16,065
wmayner/pyphi
pyphi/distance.py
system_repertoire_distance
def system_repertoire_distance(r1, r2): """Compute the distance between two repertoires of a system. Args: r1 (np.ndarray): The first repertoire. r2 (np.ndarray): The second repertoire. Returns: float: The distance between ``r1`` and ``r2``. """ if config.MEASURE in measures.asymmetric(): raise ValueError( '{} is asymmetric and cannot be used as a system-level ' 'irreducibility measure.'.format(config.MEASURE)) return measures[config.MEASURE](r1, r2)
python
def system_repertoire_distance(r1, r2): """Compute the distance between two repertoires of a system. Args: r1 (np.ndarray): The first repertoire. r2 (np.ndarray): The second repertoire. Returns: float: The distance between ``r1`` and ``r2``. """ if config.MEASURE in measures.asymmetric(): raise ValueError( '{} is asymmetric and cannot be used as a system-level ' 'irreducibility measure.'.format(config.MEASURE)) return measures[config.MEASURE](r1, r2)
[ "def", "system_repertoire_distance", "(", "r1", ",", "r2", ")", ":", "if", "config", ".", "MEASURE", "in", "measures", ".", "asymmetric", "(", ")", ":", "raise", "ValueError", "(", "'{} is asymmetric and cannot be used as a system-level '", "'irreducibility measure.'", ".", "format", "(", "config", ".", "MEASURE", ")", ")", "return", "measures", "[", "config", ".", "MEASURE", "]", "(", "r1", ",", "r2", ")" ]
Compute the distance between two repertoires of a system. Args: r1 (np.ndarray): The first repertoire. r2 (np.ndarray): The second repertoire. Returns: float: The distance between ``r1`` and ``r2``.
[ "Compute", "the", "distance", "between", "two", "repertoires", "of", "a", "system", "." ]
deeca69a084d782a6fde7bf26f59e93b593c5d77
https://github.com/wmayner/pyphi/blob/deeca69a084d782a6fde7bf26f59e93b593c5d77/pyphi/distance.py#L289-L304
16,066
wmayner/pyphi
pyphi/distance.py
MeasureRegistry.register
def register(self, name, asymmetric=False): """Decorator for registering a measure with PyPhi. Args: name (string): The name of the measure. Keyword Args: asymmetric (boolean): ``True`` if the measure is asymmetric. """ def register_func(func): if asymmetric: self._asymmetric.append(name) self.store[name] = func return func return register_func
python
def register(self, name, asymmetric=False): """Decorator for registering a measure with PyPhi. Args: name (string): The name of the measure. Keyword Args: asymmetric (boolean): ``True`` if the measure is asymmetric. """ def register_func(func): if asymmetric: self._asymmetric.append(name) self.store[name] = func return func return register_func
[ "def", "register", "(", "self", ",", "name", ",", "asymmetric", "=", "False", ")", ":", "def", "register_func", "(", "func", ")", ":", "if", "asymmetric", ":", "self", ".", "_asymmetric", ".", "append", "(", "name", ")", "self", ".", "store", "[", "name", "]", "=", "func", "return", "func", "return", "register_func" ]
Decorator for registering a measure with PyPhi. Args: name (string): The name of the measure. Keyword Args: asymmetric (boolean): ``True`` if the measure is asymmetric.
[ "Decorator", "for", "registering", "a", "measure", "with", "PyPhi", "." ]
deeca69a084d782a6fde7bf26f59e93b593c5d77
https://github.com/wmayner/pyphi/blob/deeca69a084d782a6fde7bf26f59e93b593c5d77/pyphi/distance.py#L46-L60
16,067
wmayner/pyphi
pyphi/partition.py
partitions
def partitions(collection): """Generate all set partitions of a collection. Example: >>> list(partitions(range(3))) # doctest: +NORMALIZE_WHITESPACE [[[0, 1, 2]], [[0], [1, 2]], [[0, 1], [2]], [[1], [0, 2]], [[0], [1], [2]]] """ collection = list(collection) # Special cases if not collection: return if len(collection) == 1: yield [collection] return first = collection[0] for smaller in partitions(collection[1:]): for n, subset in enumerate(smaller): yield smaller[:n] + [[first] + subset] + smaller[n+1:] yield [[first]] + smaller
python
def partitions(collection): """Generate all set partitions of a collection. Example: >>> list(partitions(range(3))) # doctest: +NORMALIZE_WHITESPACE [[[0, 1, 2]], [[0], [1, 2]], [[0, 1], [2]], [[1], [0, 2]], [[0], [1], [2]]] """ collection = list(collection) # Special cases if not collection: return if len(collection) == 1: yield [collection] return first = collection[0] for smaller in partitions(collection[1:]): for n, subset in enumerate(smaller): yield smaller[:n] + [[first] + subset] + smaller[n+1:] yield [[first]] + smaller
[ "def", "partitions", "(", "collection", ")", ":", "collection", "=", "list", "(", "collection", ")", "# Special cases", "if", "not", "collection", ":", "return", "if", "len", "(", "collection", ")", "==", "1", ":", "yield", "[", "collection", "]", "return", "first", "=", "collection", "[", "0", "]", "for", "smaller", "in", "partitions", "(", "collection", "[", "1", ":", "]", ")", ":", "for", "n", ",", "subset", "in", "enumerate", "(", "smaller", ")", ":", "yield", "smaller", "[", ":", "n", "]", "+", "[", "[", "first", "]", "+", "subset", "]", "+", "smaller", "[", "n", "+", "1", ":", "]", "yield", "[", "[", "first", "]", "]", "+", "smaller" ]
Generate all set partitions of a collection. Example: >>> list(partitions(range(3))) # doctest: +NORMALIZE_WHITESPACE [[[0, 1, 2]], [[0], [1, 2]], [[0, 1], [2]], [[1], [0, 2]], [[0], [1], [2]]]
[ "Generate", "all", "set", "partitions", "of", "a", "collection", "." ]
deeca69a084d782a6fde7bf26f59e93b593c5d77
https://github.com/wmayner/pyphi/blob/deeca69a084d782a6fde7bf26f59e93b593c5d77/pyphi/partition.py#L18-L43
16,068
wmayner/pyphi
pyphi/partition.py
bipartition_indices
def bipartition_indices(N): """Return indices for undirected bipartitions of a sequence. Args: N (int): The length of the sequence. Returns: list: A list of tuples containing the indices for each of the two parts. Example: >>> N = 3 >>> bipartition_indices(N) [((), (0, 1, 2)), ((0,), (1, 2)), ((1,), (0, 2)), ((0, 1), (2,))] """ result = [] if N <= 0: return result for i in range(2**(N - 1)): part = [[], []] for n in range(N): bit = (i >> n) & 1 part[bit].append(n) result.append((tuple(part[1]), tuple(part[0]))) return result
python
def bipartition_indices(N): """Return indices for undirected bipartitions of a sequence. Args: N (int): The length of the sequence. Returns: list: A list of tuples containing the indices for each of the two parts. Example: >>> N = 3 >>> bipartition_indices(N) [((), (0, 1, 2)), ((0,), (1, 2)), ((1,), (0, 2)), ((0, 1), (2,))] """ result = [] if N <= 0: return result for i in range(2**(N - 1)): part = [[], []] for n in range(N): bit = (i >> n) & 1 part[bit].append(n) result.append((tuple(part[1]), tuple(part[0]))) return result
[ "def", "bipartition_indices", "(", "N", ")", ":", "result", "=", "[", "]", "if", "N", "<=", "0", ":", "return", "result", "for", "i", "in", "range", "(", "2", "**", "(", "N", "-", "1", ")", ")", ":", "part", "=", "[", "[", "]", ",", "[", "]", "]", "for", "n", "in", "range", "(", "N", ")", ":", "bit", "=", "(", "i", ">>", "n", ")", "&", "1", "part", "[", "bit", "]", ".", "append", "(", "n", ")", "result", ".", "append", "(", "(", "tuple", "(", "part", "[", "1", "]", ")", ",", "tuple", "(", "part", "[", "0", "]", ")", ")", ")", "return", "result" ]
Return indices for undirected bipartitions of a sequence. Args: N (int): The length of the sequence. Returns: list: A list of tuples containing the indices for each of the two parts. Example: >>> N = 3 >>> bipartition_indices(N) [((), (0, 1, 2)), ((0,), (1, 2)), ((1,), (0, 2)), ((0, 1), (2,))]
[ "Return", "indices", "for", "undirected", "bipartitions", "of", "a", "sequence", "." ]
deeca69a084d782a6fde7bf26f59e93b593c5d77
https://github.com/wmayner/pyphi/blob/deeca69a084d782a6fde7bf26f59e93b593c5d77/pyphi/partition.py#L47-L72
16,069
wmayner/pyphi
pyphi/partition.py
bipartition
def bipartition(seq): """Return a list of bipartitions for a sequence. Args: a (Iterable): The sequence to partition. Returns: list[tuple[tuple]]: A list of tuples containing each of the two partitions. Example: >>> bipartition((1,2,3)) [((), (1, 2, 3)), ((1,), (2, 3)), ((2,), (1, 3)), ((1, 2), (3,))] """ return [(tuple(seq[i] for i in part0_idx), tuple(seq[j] for j in part1_idx)) for part0_idx, part1_idx in bipartition_indices(len(seq))]
python
def bipartition(seq): """Return a list of bipartitions for a sequence. Args: a (Iterable): The sequence to partition. Returns: list[tuple[tuple]]: A list of tuples containing each of the two partitions. Example: >>> bipartition((1,2,3)) [((), (1, 2, 3)), ((1,), (2, 3)), ((2,), (1, 3)), ((1, 2), (3,))] """ return [(tuple(seq[i] for i in part0_idx), tuple(seq[j] for j in part1_idx)) for part0_idx, part1_idx in bipartition_indices(len(seq))]
[ "def", "bipartition", "(", "seq", ")", ":", "return", "[", "(", "tuple", "(", "seq", "[", "i", "]", "for", "i", "in", "part0_idx", ")", ",", "tuple", "(", "seq", "[", "j", "]", "for", "j", "in", "part1_idx", ")", ")", "for", "part0_idx", ",", "part1_idx", "in", "bipartition_indices", "(", "len", "(", "seq", ")", ")", "]" ]
Return a list of bipartitions for a sequence. Args: a (Iterable): The sequence to partition. Returns: list[tuple[tuple]]: A list of tuples containing each of the two partitions. Example: >>> bipartition((1,2,3)) [((), (1, 2, 3)), ((1,), (2, 3)), ((2,), (1, 3)), ((1, 2), (3,))]
[ "Return", "a", "list", "of", "bipartitions", "for", "a", "sequence", "." ]
deeca69a084d782a6fde7bf26f59e93b593c5d77
https://github.com/wmayner/pyphi/blob/deeca69a084d782a6fde7bf26f59e93b593c5d77/pyphi/partition.py#L76-L92
16,070
wmayner/pyphi
pyphi/partition.py
directed_bipartition
def directed_bipartition(seq, nontrivial=False): """Return a list of directed bipartitions for a sequence. Args: seq (Iterable): The sequence to partition. Returns: list[tuple[tuple]]: A list of tuples containing each of the two parts. Example: >>> directed_bipartition((1, 2, 3)) # doctest: +NORMALIZE_WHITESPACE [((), (1, 2, 3)), ((1,), (2, 3)), ((2,), (1, 3)), ((1, 2), (3,)), ((3,), (1, 2)), ((1, 3), (2,)), ((2, 3), (1,)), ((1, 2, 3), ())] """ bipartitions = [ (tuple(seq[i] for i in part0_idx), tuple(seq[j] for j in part1_idx)) for part0_idx, part1_idx in directed_bipartition_indices(len(seq)) ] if nontrivial: # The first and last partitions have a part that is empty; skip them. # NOTE: This depends on the implementation of # `directed_partition_indices`. return bipartitions[1:-1] return bipartitions
python
def directed_bipartition(seq, nontrivial=False): """Return a list of directed bipartitions for a sequence. Args: seq (Iterable): The sequence to partition. Returns: list[tuple[tuple]]: A list of tuples containing each of the two parts. Example: >>> directed_bipartition((1, 2, 3)) # doctest: +NORMALIZE_WHITESPACE [((), (1, 2, 3)), ((1,), (2, 3)), ((2,), (1, 3)), ((1, 2), (3,)), ((3,), (1, 2)), ((1, 3), (2,)), ((2, 3), (1,)), ((1, 2, 3), ())] """ bipartitions = [ (tuple(seq[i] for i in part0_idx), tuple(seq[j] for j in part1_idx)) for part0_idx, part1_idx in directed_bipartition_indices(len(seq)) ] if nontrivial: # The first and last partitions have a part that is empty; skip them. # NOTE: This depends on the implementation of # `directed_partition_indices`. return bipartitions[1:-1] return bipartitions
[ "def", "directed_bipartition", "(", "seq", ",", "nontrivial", "=", "False", ")", ":", "bipartitions", "=", "[", "(", "tuple", "(", "seq", "[", "i", "]", "for", "i", "in", "part0_idx", ")", ",", "tuple", "(", "seq", "[", "j", "]", "for", "j", "in", "part1_idx", ")", ")", "for", "part0_idx", ",", "part1_idx", "in", "directed_bipartition_indices", "(", "len", "(", "seq", ")", ")", "]", "if", "nontrivial", ":", "# The first and last partitions have a part that is empty; skip them.", "# NOTE: This depends on the implementation of", "# `directed_partition_indices`.", "return", "bipartitions", "[", "1", ":", "-", "1", "]", "return", "bipartitions" ]
Return a list of directed bipartitions for a sequence. Args: seq (Iterable): The sequence to partition. Returns: list[tuple[tuple]]: A list of tuples containing each of the two parts. Example: >>> directed_bipartition((1, 2, 3)) # doctest: +NORMALIZE_WHITESPACE [((), (1, 2, 3)), ((1,), (2, 3)), ((2,), (1, 3)), ((1, 2), (3,)), ((3,), (1, 2)), ((1, 3), (2,)), ((2, 3), (1,)), ((1, 2, 3), ())]
[ "Return", "a", "list", "of", "directed", "bipartitions", "for", "a", "sequence", "." ]
deeca69a084d782a6fde7bf26f59e93b593c5d77
https://github.com/wmayner/pyphi/blob/deeca69a084d782a6fde7bf26f59e93b593c5d77/pyphi/partition.py#L123-L153
16,071
wmayner/pyphi
pyphi/partition.py
bipartition_of_one
def bipartition_of_one(seq): """Generate bipartitions where one part is of length 1.""" seq = list(seq) for i, elt in enumerate(seq): yield ((elt,), tuple(seq[:i] + seq[(i + 1):]))
python
def bipartition_of_one(seq): """Generate bipartitions where one part is of length 1.""" seq = list(seq) for i, elt in enumerate(seq): yield ((elt,), tuple(seq[:i] + seq[(i + 1):]))
[ "def", "bipartition_of_one", "(", "seq", ")", ":", "seq", "=", "list", "(", "seq", ")", "for", "i", ",", "elt", "in", "enumerate", "(", "seq", ")", ":", "yield", "(", "(", "elt", ",", ")", ",", "tuple", "(", "seq", "[", ":", "i", "]", "+", "seq", "[", "(", "i", "+", "1", ")", ":", "]", ")", ")" ]
Generate bipartitions where one part is of length 1.
[ "Generate", "bipartitions", "where", "one", "part", "is", "of", "length", "1", "." ]
deeca69a084d782a6fde7bf26f59e93b593c5d77
https://github.com/wmayner/pyphi/blob/deeca69a084d782a6fde7bf26f59e93b593c5d77/pyphi/partition.py#L156-L160
16,072
wmayner/pyphi
pyphi/partition.py
directed_bipartition_of_one
def directed_bipartition_of_one(seq): """Generate directed bipartitions where one part is of length 1. Args: seq (Iterable): The sequence to partition. Returns: list[tuple[tuple]]: A list of tuples containing each of the two partitions. Example: >>> partitions = directed_bipartition_of_one((1, 2, 3)) >>> list(partitions) # doctest: +NORMALIZE_WHITESPACE [((1,), (2, 3)), ((2,), (1, 3)), ((3,), (1, 2)), ((2, 3), (1,)), ((1, 3), (2,)), ((1, 2), (3,))] """ bipartitions = list(bipartition_of_one(seq)) return chain(bipartitions, reverse_elements(bipartitions))
python
def directed_bipartition_of_one(seq): """Generate directed bipartitions where one part is of length 1. Args: seq (Iterable): The sequence to partition. Returns: list[tuple[tuple]]: A list of tuples containing each of the two partitions. Example: >>> partitions = directed_bipartition_of_one((1, 2, 3)) >>> list(partitions) # doctest: +NORMALIZE_WHITESPACE [((1,), (2, 3)), ((2,), (1, 3)), ((3,), (1, 2)), ((2, 3), (1,)), ((1, 3), (2,)), ((1, 2), (3,))] """ bipartitions = list(bipartition_of_one(seq)) return chain(bipartitions, reverse_elements(bipartitions))
[ "def", "directed_bipartition_of_one", "(", "seq", ")", ":", "bipartitions", "=", "list", "(", "bipartition_of_one", "(", "seq", ")", ")", "return", "chain", "(", "bipartitions", ",", "reverse_elements", "(", "bipartitions", ")", ")" ]
Generate directed bipartitions where one part is of length 1. Args: seq (Iterable): The sequence to partition. Returns: list[tuple[tuple]]: A list of tuples containing each of the two partitions. Example: >>> partitions = directed_bipartition_of_one((1, 2, 3)) >>> list(partitions) # doctest: +NORMALIZE_WHITESPACE [((1,), (2, 3)), ((2,), (1, 3)), ((3,), (1, 2)), ((2, 3), (1,)), ((1, 3), (2,)), ((1, 2), (3,))]
[ "Generate", "directed", "bipartitions", "where", "one", "part", "is", "of", "length", "1", "." ]
deeca69a084d782a6fde7bf26f59e93b593c5d77
https://github.com/wmayner/pyphi/blob/deeca69a084d782a6fde7bf26f59e93b593c5d77/pyphi/partition.py#L169-L190
16,073
wmayner/pyphi
pyphi/partition.py
directed_tripartition_indices
def directed_tripartition_indices(N): """Return indices for directed tripartitions of a sequence. Args: N (int): The length of the sequence. Returns: list[tuple]: A list of tuples containing the indices for each partition. Example: >>> N = 1 >>> directed_tripartition_indices(N) [((0,), (), ()), ((), (0,), ()), ((), (), (0,))] """ result = [] if N <= 0: return result base = [0, 1, 2] for key in product(base, repeat=N): part = [[], [], []] for i, location in enumerate(key): part[location].append(i) result.append(tuple(tuple(p) for p in part)) return result
python
def directed_tripartition_indices(N): """Return indices for directed tripartitions of a sequence. Args: N (int): The length of the sequence. Returns: list[tuple]: A list of tuples containing the indices for each partition. Example: >>> N = 1 >>> directed_tripartition_indices(N) [((0,), (), ()), ((), (0,), ()), ((), (), (0,))] """ result = [] if N <= 0: return result base = [0, 1, 2] for key in product(base, repeat=N): part = [[], [], []] for i, location in enumerate(key): part[location].append(i) result.append(tuple(tuple(p) for p in part)) return result
[ "def", "directed_tripartition_indices", "(", "N", ")", ":", "result", "=", "[", "]", "if", "N", "<=", "0", ":", "return", "result", "base", "=", "[", "0", ",", "1", ",", "2", "]", "for", "key", "in", "product", "(", "base", ",", "repeat", "=", "N", ")", ":", "part", "=", "[", "[", "]", ",", "[", "]", ",", "[", "]", "]", "for", "i", ",", "location", "in", "enumerate", "(", "key", ")", ":", "part", "[", "location", "]", ".", "append", "(", "i", ")", "result", ".", "append", "(", "tuple", "(", "tuple", "(", "p", ")", "for", "p", "in", "part", ")", ")", "return", "result" ]
Return indices for directed tripartitions of a sequence. Args: N (int): The length of the sequence. Returns: list[tuple]: A list of tuples containing the indices for each partition. Example: >>> N = 1 >>> directed_tripartition_indices(N) [((0,), (), ()), ((), (0,), ()), ((), (), (0,))]
[ "Return", "indices", "for", "directed", "tripartitions", "of", "a", "sequence", "." ]
deeca69a084d782a6fde7bf26f59e93b593c5d77
https://github.com/wmayner/pyphi/blob/deeca69a084d782a6fde7bf26f59e93b593c5d77/pyphi/partition.py#L194-L221
16,074
wmayner/pyphi
pyphi/partition.py
directed_tripartition
def directed_tripartition(seq): """Generator over all directed tripartitions of a sequence. Args: seq (Iterable): a sequence. Yields: tuple[tuple]: A tripartition of ``seq``. Example: >>> seq = (2, 5) >>> list(directed_tripartition(seq)) # doctest: +NORMALIZE_WHITESPACE [((2, 5), (), ()), ((2,), (5,), ()), ((2,), (), (5,)), ((5,), (2,), ()), ((), (2, 5), ()), ((), (2,), (5,)), ((5,), (), (2,)), ((), (5,), (2,)), ((), (), (2, 5))] """ for a, b, c in directed_tripartition_indices(len(seq)): yield (tuple(seq[i] for i in a), tuple(seq[j] for j in b), tuple(seq[k] for k in c))
python
def directed_tripartition(seq): """Generator over all directed tripartitions of a sequence. Args: seq (Iterable): a sequence. Yields: tuple[tuple]: A tripartition of ``seq``. Example: >>> seq = (2, 5) >>> list(directed_tripartition(seq)) # doctest: +NORMALIZE_WHITESPACE [((2, 5), (), ()), ((2,), (5,), ()), ((2,), (), (5,)), ((5,), (2,), ()), ((), (2, 5), ()), ((), (2,), (5,)), ((5,), (), (2,)), ((), (5,), (2,)), ((), (), (2, 5))] """ for a, b, c in directed_tripartition_indices(len(seq)): yield (tuple(seq[i] for i in a), tuple(seq[j] for j in b), tuple(seq[k] for k in c))
[ "def", "directed_tripartition", "(", "seq", ")", ":", "for", "a", ",", "b", ",", "c", "in", "directed_tripartition_indices", "(", "len", "(", "seq", ")", ")", ":", "yield", "(", "tuple", "(", "seq", "[", "i", "]", "for", "i", "in", "a", ")", ",", "tuple", "(", "seq", "[", "j", "]", "for", "j", "in", "b", ")", ",", "tuple", "(", "seq", "[", "k", "]", "for", "k", "in", "c", ")", ")" ]
Generator over all directed tripartitions of a sequence. Args: seq (Iterable): a sequence. Yields: tuple[tuple]: A tripartition of ``seq``. Example: >>> seq = (2, 5) >>> list(directed_tripartition(seq)) # doctest: +NORMALIZE_WHITESPACE [((2, 5), (), ()), ((2,), (5,), ()), ((2,), (), (5,)), ((5,), (2,), ()), ((), (2, 5), ()), ((), (2,), (5,)), ((5,), (), (2,)), ((), (5,), (2,)), ((), (), (2, 5))]
[ "Generator", "over", "all", "directed", "tripartitions", "of", "a", "sequence", "." ]
deeca69a084d782a6fde7bf26f59e93b593c5d77
https://github.com/wmayner/pyphi/blob/deeca69a084d782a6fde7bf26f59e93b593c5d77/pyphi/partition.py#L224-L249
16,075
wmayner/pyphi
pyphi/partition.py
k_partitions
def k_partitions(collection, k): """Generate all ``k``-partitions of a collection. Example: >>> list(k_partitions(range(3), 2)) [[[0, 1], [2]], [[0], [1, 2]], [[0, 2], [1]]] """ collection = list(collection) n = len(collection) # Special cases if n == 0 or k < 1: return [] if k == 1: return [[collection]] a = [0] * (n + 1) for j in range(1, k + 1): a[n - k + j] = j - 1 return _f(k, n, 0, n, a, k, collection)
python
def k_partitions(collection, k): """Generate all ``k``-partitions of a collection. Example: >>> list(k_partitions(range(3), 2)) [[[0, 1], [2]], [[0], [1, 2]], [[0, 2], [1]]] """ collection = list(collection) n = len(collection) # Special cases if n == 0 or k < 1: return [] if k == 1: return [[collection]] a = [0] * (n + 1) for j in range(1, k + 1): a[n - k + j] = j - 1 return _f(k, n, 0, n, a, k, collection)
[ "def", "k_partitions", "(", "collection", ",", "k", ")", ":", "collection", "=", "list", "(", "collection", ")", "n", "=", "len", "(", "collection", ")", "# Special cases", "if", "n", "==", "0", "or", "k", "<", "1", ":", "return", "[", "]", "if", "k", "==", "1", ":", "return", "[", "[", "collection", "]", "]", "a", "=", "[", "0", "]", "*", "(", "n", "+", "1", ")", "for", "j", "in", "range", "(", "1", ",", "k", "+", "1", ")", ":", "a", "[", "n", "-", "k", "+", "j", "]", "=", "j", "-", "1", "return", "_f", "(", "k", ",", "n", ",", "0", ",", "n", ",", "a", ",", "k", ",", "collection", ")" ]
Generate all ``k``-partitions of a collection. Example: >>> list(k_partitions(range(3), 2)) [[[0, 1], [2]], [[0], [1, 2]], [[0, 2], [1]]]
[ "Generate", "all", "k", "-", "partitions", "of", "a", "collection", "." ]
deeca69a084d782a6fde7bf26f59e93b593c5d77
https://github.com/wmayner/pyphi/blob/deeca69a084d782a6fde7bf26f59e93b593c5d77/pyphi/partition.py#L335-L354
16,076
wmayner/pyphi
pyphi/partition.py
mip_partitions
def mip_partitions(mechanism, purview, node_labels=None): """Return a generator over all mechanism-purview partitions, based on the current configuration. """ func = partition_types[config.PARTITION_TYPE] return func(mechanism, purview, node_labels)
python
def mip_partitions(mechanism, purview, node_labels=None): """Return a generator over all mechanism-purview partitions, based on the current configuration. """ func = partition_types[config.PARTITION_TYPE] return func(mechanism, purview, node_labels)
[ "def", "mip_partitions", "(", "mechanism", ",", "purview", ",", "node_labels", "=", "None", ")", ":", "func", "=", "partition_types", "[", "config", ".", "PARTITION_TYPE", "]", "return", "func", "(", "mechanism", ",", "purview", ",", "node_labels", ")" ]
Return a generator over all mechanism-purview partitions, based on the current configuration.
[ "Return", "a", "generator", "over", "all", "mechanism", "-", "purview", "partitions", "based", "on", "the", "current", "configuration", "." ]
deeca69a084d782a6fde7bf26f59e93b593c5d77
https://github.com/wmayner/pyphi/blob/deeca69a084d782a6fde7bf26f59e93b593c5d77/pyphi/partition.py#L378-L383
16,077
wmayner/pyphi
pyphi/partition.py
mip_bipartitions
def mip_bipartitions(mechanism, purview, node_labels=None): r"""Return an generator of all |small_phi| bipartitions of a mechanism over a purview. Excludes all bipartitions where one half is entirely empty, *e.g*:: A ∅ ─── ✕ ─── B ∅ is not valid, but :: A ∅ ─── ✕ ─── ∅ B is. Args: mechanism (tuple[int]): The mechanism to partition purview (tuple[int]): The purview to partition Yields: Bipartition: Where each bipartition is:: bipart[0].mechanism bipart[1].mechanism ─────────────────── ✕ ─────────────────── bipart[0].purview bipart[1].purview Example: >>> mechanism = (0,) >>> purview = (2, 3) >>> for partition in mip_bipartitions(mechanism, purview): ... print(partition, '\n') # doctest: +NORMALIZE_WHITESPACE ∅ 0 ─── ✕ ─── 2 3 <BLANKLINE> ∅ 0 ─── ✕ ─── 3 2 <BLANKLINE> ∅ 0 ─── ✕ ─── 2,3 ∅ """ numerators = bipartition(mechanism) denominators = directed_bipartition(purview) for n, d in product(numerators, denominators): if (n[0] or d[0]) and (n[1] or d[1]): yield Bipartition(Part(n[0], d[0]), Part(n[1], d[1]), node_labels=node_labels)
python
def mip_bipartitions(mechanism, purview, node_labels=None): r"""Return an generator of all |small_phi| bipartitions of a mechanism over a purview. Excludes all bipartitions where one half is entirely empty, *e.g*:: A ∅ ─── ✕ ─── B ∅ is not valid, but :: A ∅ ─── ✕ ─── ∅ B is. Args: mechanism (tuple[int]): The mechanism to partition purview (tuple[int]): The purview to partition Yields: Bipartition: Where each bipartition is:: bipart[0].mechanism bipart[1].mechanism ─────────────────── ✕ ─────────────────── bipart[0].purview bipart[1].purview Example: >>> mechanism = (0,) >>> purview = (2, 3) >>> for partition in mip_bipartitions(mechanism, purview): ... print(partition, '\n') # doctest: +NORMALIZE_WHITESPACE ∅ 0 ─── ✕ ─── 2 3 <BLANKLINE> ∅ 0 ─── ✕ ─── 3 2 <BLANKLINE> ∅ 0 ─── ✕ ─── 2,3 ∅ """ numerators = bipartition(mechanism) denominators = directed_bipartition(purview) for n, d in product(numerators, denominators): if (n[0] or d[0]) and (n[1] or d[1]): yield Bipartition(Part(n[0], d[0]), Part(n[1], d[1]), node_labels=node_labels)
[ "def", "mip_bipartitions", "(", "mechanism", ",", "purview", ",", "node_labels", "=", "None", ")", ":", "numerators", "=", "bipartition", "(", "mechanism", ")", "denominators", "=", "directed_bipartition", "(", "purview", ")", "for", "n", ",", "d", "in", "product", "(", "numerators", ",", "denominators", ")", ":", "if", "(", "n", "[", "0", "]", "or", "d", "[", "0", "]", ")", "and", "(", "n", "[", "1", "]", "or", "d", "[", "1", "]", ")", ":", "yield", "Bipartition", "(", "Part", "(", "n", "[", "0", "]", ",", "d", "[", "0", "]", ")", ",", "Part", "(", "n", "[", "1", "]", ",", "d", "[", "1", "]", ")", ",", "node_labels", "=", "node_labels", ")" ]
r"""Return an generator of all |small_phi| bipartitions of a mechanism over a purview. Excludes all bipartitions where one half is entirely empty, *e.g*:: A ∅ ─── ✕ ─── B ∅ is not valid, but :: A ∅ ─── ✕ ─── ∅ B is. Args: mechanism (tuple[int]): The mechanism to partition purview (tuple[int]): The purview to partition Yields: Bipartition: Where each bipartition is:: bipart[0].mechanism bipart[1].mechanism ─────────────────── ✕ ─────────────────── bipart[0].purview bipart[1].purview Example: >>> mechanism = (0,) >>> purview = (2, 3) >>> for partition in mip_bipartitions(mechanism, purview): ... print(partition, '\n') # doctest: +NORMALIZE_WHITESPACE ∅ 0 ─── ✕ ─── 2 3 <BLANKLINE> ∅ 0 ─── ✕ ─── 3 2 <BLANKLINE> ∅ 0 ─── ✕ ─── 2,3 ∅
[ "r", "Return", "an", "generator", "of", "all", "|small_phi|", "bipartitions", "of", "a", "mechanism", "over", "a", "purview", "." ]
deeca69a084d782a6fde7bf26f59e93b593c5d77
https://github.com/wmayner/pyphi/blob/deeca69a084d782a6fde7bf26f59e93b593c5d77/pyphi/partition.py#L387-L439
16,078
wmayner/pyphi
pyphi/partition.py
wedge_partitions
def wedge_partitions(mechanism, purview, node_labels=None): """Return an iterator over all wedge partitions. These are partitions which strictly split the mechanism and allow a subset of the purview to be split into a third partition, e.g.:: A B ∅ ─── ✕ ─── ✕ ─── B C D See |PARTITION_TYPE| in |config| for more information. Args: mechanism (tuple[int]): A mechanism. purview (tuple[int]): A purview. Yields: Tripartition: all unique tripartitions of this mechanism and purview. """ numerators = bipartition(mechanism) denominators = directed_tripartition(purview) yielded = set() def valid(factoring): """Return whether the factoring should be considered.""" # pylint: disable=too-many-boolean-expressions numerator, denominator = factoring return ( (numerator[0] or denominator[0]) and (numerator[1] or denominator[1]) and ((numerator[0] and numerator[1]) or not denominator[0] or not denominator[1]) ) for n, d in filter(valid, product(numerators, denominators)): # Normalize order of parts to remove duplicates. tripart = Tripartition( Part(n[0], d[0]), Part(n[1], d[1]), Part((), d[2]), node_labels=node_labels ).normalize() # pylint: disable=bad-whitespace def nonempty(part): """Check that the part is not empty.""" return part.mechanism or part.purview def compressible(tripart): """Check if the tripartition can be transformed into a causally equivalent partition by combing two of its parts; e.g., A/∅ × B/∅ × ∅/CD is equivalent to AB/∅ × ∅/CD so we don't include it. """ pairs = [ (tripart[0], tripart[1]), (tripart[0], tripart[2]), (tripart[1], tripart[2]) ] for x, y in pairs: if (nonempty(x) and nonempty(y) and (x.mechanism + y.mechanism == () or x.purview + y.purview == ())): return True return False if not compressible(tripart) and tripart not in yielded: yielded.add(tripart) yield tripart
python
def wedge_partitions(mechanism, purview, node_labels=None): """Return an iterator over all wedge partitions. These are partitions which strictly split the mechanism and allow a subset of the purview to be split into a third partition, e.g.:: A B ∅ ─── ✕ ─── ✕ ─── B C D See |PARTITION_TYPE| in |config| for more information. Args: mechanism (tuple[int]): A mechanism. purview (tuple[int]): A purview. Yields: Tripartition: all unique tripartitions of this mechanism and purview. """ numerators = bipartition(mechanism) denominators = directed_tripartition(purview) yielded = set() def valid(factoring): """Return whether the factoring should be considered.""" # pylint: disable=too-many-boolean-expressions numerator, denominator = factoring return ( (numerator[0] or denominator[0]) and (numerator[1] or denominator[1]) and ((numerator[0] and numerator[1]) or not denominator[0] or not denominator[1]) ) for n, d in filter(valid, product(numerators, denominators)): # Normalize order of parts to remove duplicates. tripart = Tripartition( Part(n[0], d[0]), Part(n[1], d[1]), Part((), d[2]), node_labels=node_labels ).normalize() # pylint: disable=bad-whitespace def nonempty(part): """Check that the part is not empty.""" return part.mechanism or part.purview def compressible(tripart): """Check if the tripartition can be transformed into a causally equivalent partition by combing two of its parts; e.g., A/∅ × B/∅ × ∅/CD is equivalent to AB/∅ × ∅/CD so we don't include it. """ pairs = [ (tripart[0], tripart[1]), (tripart[0], tripart[2]), (tripart[1], tripart[2]) ] for x, y in pairs: if (nonempty(x) and nonempty(y) and (x.mechanism + y.mechanism == () or x.purview + y.purview == ())): return True return False if not compressible(tripart) and tripart not in yielded: yielded.add(tripart) yield tripart
[ "def", "wedge_partitions", "(", "mechanism", ",", "purview", ",", "node_labels", "=", "None", ")", ":", "numerators", "=", "bipartition", "(", "mechanism", ")", "denominators", "=", "directed_tripartition", "(", "purview", ")", "yielded", "=", "set", "(", ")", "def", "valid", "(", "factoring", ")", ":", "\"\"\"Return whether the factoring should be considered.\"\"\"", "# pylint: disable=too-many-boolean-expressions", "numerator", ",", "denominator", "=", "factoring", "return", "(", "(", "numerator", "[", "0", "]", "or", "denominator", "[", "0", "]", ")", "and", "(", "numerator", "[", "1", "]", "or", "denominator", "[", "1", "]", ")", "and", "(", "(", "numerator", "[", "0", "]", "and", "numerator", "[", "1", "]", ")", "or", "not", "denominator", "[", "0", "]", "or", "not", "denominator", "[", "1", "]", ")", ")", "for", "n", ",", "d", "in", "filter", "(", "valid", ",", "product", "(", "numerators", ",", "denominators", ")", ")", ":", "# Normalize order of parts to remove duplicates.", "tripart", "=", "Tripartition", "(", "Part", "(", "n", "[", "0", "]", ",", "d", "[", "0", "]", ")", ",", "Part", "(", "n", "[", "1", "]", ",", "d", "[", "1", "]", ")", ",", "Part", "(", "(", ")", ",", "d", "[", "2", "]", ")", ",", "node_labels", "=", "node_labels", ")", ".", "normalize", "(", ")", "# pylint: disable=bad-whitespace", "def", "nonempty", "(", "part", ")", ":", "\"\"\"Check that the part is not empty.\"\"\"", "return", "part", ".", "mechanism", "or", "part", ".", "purview", "def", "compressible", "(", "tripart", ")", ":", "\"\"\"Check if the tripartition can be transformed into a causally\n equivalent partition by combing two of its parts; e.g., A/∅ × B/∅ ×\n ∅/CD is equivalent to AB/∅ × ∅/CD so we don't include it.\n \"\"\"", "pairs", "=", "[", "(", "tripart", "[", "0", "]", ",", "tripart", "[", "1", "]", ")", ",", "(", "tripart", "[", "0", "]", ",", "tripart", "[", "2", "]", ")", ",", "(", "tripart", "[", "1", "]", ",", "tripart", "[", "2", "]", ")", "]", "for", "x", ",", "y", "in", "pairs", ":", "if", "(", "nonempty", "(", "x", ")", "and", "nonempty", "(", "y", ")", "and", "(", "x", ".", "mechanism", "+", "y", ".", "mechanism", "==", "(", ")", "or", "x", ".", "purview", "+", "y", ".", "purview", "==", "(", ")", ")", ")", ":", "return", "True", "return", "False", "if", "not", "compressible", "(", "tripart", ")", "and", "tripart", "not", "in", "yielded", ":", "yielded", ".", "add", "(", "tripart", ")", "yield", "tripart" ]
Return an iterator over all wedge partitions. These are partitions which strictly split the mechanism and allow a subset of the purview to be split into a third partition, e.g.:: A B ∅ ─── ✕ ─── ✕ ─── B C D See |PARTITION_TYPE| in |config| for more information. Args: mechanism (tuple[int]): A mechanism. purview (tuple[int]): A purview. Yields: Tripartition: all unique tripartitions of this mechanism and purview.
[ "Return", "an", "iterator", "over", "all", "wedge", "partitions", "." ]
deeca69a084d782a6fde7bf26f59e93b593c5d77
https://github.com/wmayner/pyphi/blob/deeca69a084d782a6fde7bf26f59e93b593c5d77/pyphi/partition.py#L443-L511
16,079
wmayner/pyphi
pyphi/partition.py
all_partitions
def all_partitions(mechanism, purview, node_labels=None): """Return all possible partitions of a mechanism and purview. Partitions can consist of any number of parts. Args: mechanism (tuple[int]): A mechanism. purview (tuple[int]): A purview. Yields: KPartition: A partition of this mechanism and purview into ``k`` parts. """ for mechanism_partition in partitions(mechanism): mechanism_partition.append([]) n_mechanism_parts = len(mechanism_partition) max_purview_partition = min(len(purview), n_mechanism_parts) for n_purview_parts in range(1, max_purview_partition + 1): n_empty = n_mechanism_parts - n_purview_parts for purview_partition in k_partitions(purview, n_purview_parts): purview_partition = [tuple(_list) for _list in purview_partition] # Extend with empty tuples so purview partition has same size # as mechanism purview purview_partition.extend([()] * n_empty) # Unique permutations to avoid duplicates empties for purview_permutation in set( permutations(purview_partition)): parts = [ Part(tuple(m), tuple(p)) for m, p in zip(mechanism_partition, purview_permutation) ] # Must partition the mechanism, unless the purview is fully # cut away from the mechanism. if parts[0].mechanism == mechanism and parts[0].purview: continue yield KPartition(*parts, node_labels=node_labels)
python
def all_partitions(mechanism, purview, node_labels=None): """Return all possible partitions of a mechanism and purview. Partitions can consist of any number of parts. Args: mechanism (tuple[int]): A mechanism. purview (tuple[int]): A purview. Yields: KPartition: A partition of this mechanism and purview into ``k`` parts. """ for mechanism_partition in partitions(mechanism): mechanism_partition.append([]) n_mechanism_parts = len(mechanism_partition) max_purview_partition = min(len(purview), n_mechanism_parts) for n_purview_parts in range(1, max_purview_partition + 1): n_empty = n_mechanism_parts - n_purview_parts for purview_partition in k_partitions(purview, n_purview_parts): purview_partition = [tuple(_list) for _list in purview_partition] # Extend with empty tuples so purview partition has same size # as mechanism purview purview_partition.extend([()] * n_empty) # Unique permutations to avoid duplicates empties for purview_permutation in set( permutations(purview_partition)): parts = [ Part(tuple(m), tuple(p)) for m, p in zip(mechanism_partition, purview_permutation) ] # Must partition the mechanism, unless the purview is fully # cut away from the mechanism. if parts[0].mechanism == mechanism and parts[0].purview: continue yield KPartition(*parts, node_labels=node_labels)
[ "def", "all_partitions", "(", "mechanism", ",", "purview", ",", "node_labels", "=", "None", ")", ":", "for", "mechanism_partition", "in", "partitions", "(", "mechanism", ")", ":", "mechanism_partition", ".", "append", "(", "[", "]", ")", "n_mechanism_parts", "=", "len", "(", "mechanism_partition", ")", "max_purview_partition", "=", "min", "(", "len", "(", "purview", ")", ",", "n_mechanism_parts", ")", "for", "n_purview_parts", "in", "range", "(", "1", ",", "max_purview_partition", "+", "1", ")", ":", "n_empty", "=", "n_mechanism_parts", "-", "n_purview_parts", "for", "purview_partition", "in", "k_partitions", "(", "purview", ",", "n_purview_parts", ")", ":", "purview_partition", "=", "[", "tuple", "(", "_list", ")", "for", "_list", "in", "purview_partition", "]", "# Extend with empty tuples so purview partition has same size", "# as mechanism purview", "purview_partition", ".", "extend", "(", "[", "(", ")", "]", "*", "n_empty", ")", "# Unique permutations to avoid duplicates empties", "for", "purview_permutation", "in", "set", "(", "permutations", "(", "purview_partition", ")", ")", ":", "parts", "=", "[", "Part", "(", "tuple", "(", "m", ")", ",", "tuple", "(", "p", ")", ")", "for", "m", ",", "p", "in", "zip", "(", "mechanism_partition", ",", "purview_permutation", ")", "]", "# Must partition the mechanism, unless the purview is fully", "# cut away from the mechanism.", "if", "parts", "[", "0", "]", ".", "mechanism", "==", "mechanism", "and", "parts", "[", "0", "]", ".", "purview", ":", "continue", "yield", "KPartition", "(", "*", "parts", ",", "node_labels", "=", "node_labels", ")" ]
Return all possible partitions of a mechanism and purview. Partitions can consist of any number of parts. Args: mechanism (tuple[int]): A mechanism. purview (tuple[int]): A purview. Yields: KPartition: A partition of this mechanism and purview into ``k`` parts.
[ "Return", "all", "possible", "partitions", "of", "a", "mechanism", "and", "purview", "." ]
deeca69a084d782a6fde7bf26f59e93b593c5d77
https://github.com/wmayner/pyphi/blob/deeca69a084d782a6fde7bf26f59e93b593c5d77/pyphi/partition.py#L515-L555
16,080
openstack/pyghmi
pyghmi/ipmi/oem/lenovo/imm.py
naturalize_string
def naturalize_string(key): """Analyzes string in a human way to enable natural sort :param nodename: The node name to analyze :returns: A structure that can be consumed by 'sorted' """ return [int(text) if text.isdigit() else text.lower() for text in re.split(numregex, key)]
python
def naturalize_string(key): """Analyzes string in a human way to enable natural sort :param nodename: The node name to analyze :returns: A structure that can be consumed by 'sorted' """ return [int(text) if text.isdigit() else text.lower() for text in re.split(numregex, key)]
[ "def", "naturalize_string", "(", "key", ")", ":", "return", "[", "int", "(", "text", ")", "if", "text", ".", "isdigit", "(", ")", "else", "text", ".", "lower", "(", ")", "for", "text", "in", "re", ".", "split", "(", "numregex", ",", "key", ")", "]" ]
Analyzes string in a human way to enable natural sort :param nodename: The node name to analyze :returns: A structure that can be consumed by 'sorted'
[ "Analyzes", "string", "in", "a", "human", "way", "to", "enable", "natural", "sort" ]
f710b1d30a8eed19a9e86f01f9351c737666f3e5
https://github.com/openstack/pyghmi/blob/f710b1d30a8eed19a9e86f01f9351c737666f3e5/pyghmi/ipmi/oem/lenovo/imm.py#L52-L59
16,081
openstack/pyghmi
pyghmi/ipmi/events.py
EventHandler.fetch_sel
def fetch_sel(self, ipmicmd, clear=False): """Fetch SEL entries Return an iterable of SEL entries. If clearing is requested, the fetch and clear will be done as an atomic operation, assuring no entries are dropped. :param ipmicmd: The Command object to use to interrogate :param clear: Whether to clear the entries upon retrieval. """ records = [] # First we do a fetch all without reservation, reducing the risk # of having a long lived reservation that gets canceled in the middle endat = self._fetch_entries(ipmicmd, 0, records) if clear and records: # don't bother clearing if there were no records # To do clear, we make a reservation first... rsp = ipmicmd.xraw_command(netfn=0xa, command=0x42) rsvid = struct.unpack_from('<H', rsp['data'])[0] # Then we refetch the tail with reservation (check for change) del records[-1] # remove the record that's about to be duplicated self._fetch_entries(ipmicmd, endat, records, rsvid) # finally clear the SEL # 0XAA means start initiate, 0x524c43 is 'RCL' or 'CLR' backwards clrdata = bytearray(struct.pack('<HI', rsvid, 0xAA524C43)) ipmicmd.xraw_command(netfn=0xa, command=0x47, data=clrdata) # Now to fixup the record timestamps... first we need to get the BMC # opinion of current time _fix_sel_time(records, ipmicmd) return records
python
def fetch_sel(self, ipmicmd, clear=False): """Fetch SEL entries Return an iterable of SEL entries. If clearing is requested, the fetch and clear will be done as an atomic operation, assuring no entries are dropped. :param ipmicmd: The Command object to use to interrogate :param clear: Whether to clear the entries upon retrieval. """ records = [] # First we do a fetch all without reservation, reducing the risk # of having a long lived reservation that gets canceled in the middle endat = self._fetch_entries(ipmicmd, 0, records) if clear and records: # don't bother clearing if there were no records # To do clear, we make a reservation first... rsp = ipmicmd.xraw_command(netfn=0xa, command=0x42) rsvid = struct.unpack_from('<H', rsp['data'])[0] # Then we refetch the tail with reservation (check for change) del records[-1] # remove the record that's about to be duplicated self._fetch_entries(ipmicmd, endat, records, rsvid) # finally clear the SEL # 0XAA means start initiate, 0x524c43 is 'RCL' or 'CLR' backwards clrdata = bytearray(struct.pack('<HI', rsvid, 0xAA524C43)) ipmicmd.xraw_command(netfn=0xa, command=0x47, data=clrdata) # Now to fixup the record timestamps... first we need to get the BMC # opinion of current time _fix_sel_time(records, ipmicmd) return records
[ "def", "fetch_sel", "(", "self", ",", "ipmicmd", ",", "clear", "=", "False", ")", ":", "records", "=", "[", "]", "# First we do a fetch all without reservation, reducing the risk", "# of having a long lived reservation that gets canceled in the middle", "endat", "=", "self", ".", "_fetch_entries", "(", "ipmicmd", ",", "0", ",", "records", ")", "if", "clear", "and", "records", ":", "# don't bother clearing if there were no records", "# To do clear, we make a reservation first...", "rsp", "=", "ipmicmd", ".", "xraw_command", "(", "netfn", "=", "0xa", ",", "command", "=", "0x42", ")", "rsvid", "=", "struct", ".", "unpack_from", "(", "'<H'", ",", "rsp", "[", "'data'", "]", ")", "[", "0", "]", "# Then we refetch the tail with reservation (check for change)", "del", "records", "[", "-", "1", "]", "# remove the record that's about to be duplicated", "self", ".", "_fetch_entries", "(", "ipmicmd", ",", "endat", ",", "records", ",", "rsvid", ")", "# finally clear the SEL", "# 0XAA means start initiate, 0x524c43 is 'RCL' or 'CLR' backwards", "clrdata", "=", "bytearray", "(", "struct", ".", "pack", "(", "'<HI'", ",", "rsvid", ",", "0xAA524C43", ")", ")", "ipmicmd", ".", "xraw_command", "(", "netfn", "=", "0xa", ",", "command", "=", "0x47", ",", "data", "=", "clrdata", ")", "# Now to fixup the record timestamps... first we need to get the BMC", "# opinion of current time", "_fix_sel_time", "(", "records", ",", "ipmicmd", ")", "return", "records" ]
Fetch SEL entries Return an iterable of SEL entries. If clearing is requested, the fetch and clear will be done as an atomic operation, assuring no entries are dropped. :param ipmicmd: The Command object to use to interrogate :param clear: Whether to clear the entries upon retrieval.
[ "Fetch", "SEL", "entries" ]
f710b1d30a8eed19a9e86f01f9351c737666f3e5
https://github.com/openstack/pyghmi/blob/f710b1d30a8eed19a9e86f01f9351c737666f3e5/pyghmi/ipmi/events.py#L553-L581
16,082
openstack/pyghmi
pyghmi/ipmi/command.py
Command.oem_init
def oem_init(self): """Initialize the command object for OEM capabilities A number of capabilities are either totally OEM defined or else augmented somehow by knowledge of the OEM. This method does an interrogation to identify the OEM. """ if self._oemknown: return self._oem, self._oemknown = get_oem_handler(self._get_device_id(), self)
python
def oem_init(self): """Initialize the command object for OEM capabilities A number of capabilities are either totally OEM defined or else augmented somehow by knowledge of the OEM. This method does an interrogation to identify the OEM. """ if self._oemknown: return self._oem, self._oemknown = get_oem_handler(self._get_device_id(), self)
[ "def", "oem_init", "(", "self", ")", ":", "if", "self", ".", "_oemknown", ":", "return", "self", ".", "_oem", ",", "self", ".", "_oemknown", "=", "get_oem_handler", "(", "self", ".", "_get_device_id", "(", ")", ",", "self", ")" ]
Initialize the command object for OEM capabilities A number of capabilities are either totally OEM defined or else augmented somehow by knowledge of the OEM. This method does an interrogation to identify the OEM.
[ "Initialize", "the", "command", "object", "for", "OEM", "capabilities" ]
f710b1d30a8eed19a9e86f01f9351c737666f3e5
https://github.com/openstack/pyghmi/blob/f710b1d30a8eed19a9e86f01f9351c737666f3e5/pyghmi/ipmi/command.py#L228-L239
16,083
openstack/pyghmi
pyghmi/ipmi/command.py
Command.reset_bmc
def reset_bmc(self): """Do a cold reset in BMC """ response = self.raw_command(netfn=6, command=2) if 'error' in response: raise exc.IpmiException(response['error'])
python
def reset_bmc(self): """Do a cold reset in BMC """ response = self.raw_command(netfn=6, command=2) if 'error' in response: raise exc.IpmiException(response['error'])
[ "def", "reset_bmc", "(", "self", ")", ":", "response", "=", "self", ".", "raw_command", "(", "netfn", "=", "6", ",", "command", "=", "2", ")", "if", "'error'", "in", "response", ":", "raise", "exc", ".", "IpmiException", "(", "response", "[", "'error'", "]", ")" ]
Do a cold reset in BMC
[ "Do", "a", "cold", "reset", "in", "BMC" ]
f710b1d30a8eed19a9e86f01f9351c737666f3e5
https://github.com/openstack/pyghmi/blob/f710b1d30a8eed19a9e86f01f9351c737666f3e5/pyghmi/ipmi/command.py#L364-L369
16,084
openstack/pyghmi
pyghmi/ipmi/command.py
Command.xraw_command
def xraw_command(self, netfn, command, bridge_request=(), data=(), delay_xmit=None, retry=True, timeout=None): """Send raw ipmi command to BMC, raising exception on error This is identical to raw_command, except it raises exceptions on IPMI errors and returns data as a buffer. This is the recommend function to use. The response['data'] being a buffer allows traditional indexed access as well as works nicely with struct.unpack_from when certain data is coming back. :param netfn: Net function number :param command: Command value :param bridge_request: The target slave address and channel number for the bridge request. :param data: Command data as a tuple or list :param retry: Whether to retry this particular payload or not, defaults to true. :param timeout: A custom time to wait for initial reply, useful for a slow command. This may interfere with retry logic. :returns: dict -- The response from IPMI device """ rsp = self.ipmi_session.raw_command(netfn=netfn, command=command, bridge_request=bridge_request, data=data, delay_xmit=delay_xmit, retry=retry, timeout=timeout) if 'error' in rsp: raise exc.IpmiException(rsp['error'], rsp['code']) rsp['data'] = buffer(rsp['data']) return rsp
python
def xraw_command(self, netfn, command, bridge_request=(), data=(), delay_xmit=None, retry=True, timeout=None): """Send raw ipmi command to BMC, raising exception on error This is identical to raw_command, except it raises exceptions on IPMI errors and returns data as a buffer. This is the recommend function to use. The response['data'] being a buffer allows traditional indexed access as well as works nicely with struct.unpack_from when certain data is coming back. :param netfn: Net function number :param command: Command value :param bridge_request: The target slave address and channel number for the bridge request. :param data: Command data as a tuple or list :param retry: Whether to retry this particular payload or not, defaults to true. :param timeout: A custom time to wait for initial reply, useful for a slow command. This may interfere with retry logic. :returns: dict -- The response from IPMI device """ rsp = self.ipmi_session.raw_command(netfn=netfn, command=command, bridge_request=bridge_request, data=data, delay_xmit=delay_xmit, retry=retry, timeout=timeout) if 'error' in rsp: raise exc.IpmiException(rsp['error'], rsp['code']) rsp['data'] = buffer(rsp['data']) return rsp
[ "def", "xraw_command", "(", "self", ",", "netfn", ",", "command", ",", "bridge_request", "=", "(", ")", ",", "data", "=", "(", ")", ",", "delay_xmit", "=", "None", ",", "retry", "=", "True", ",", "timeout", "=", "None", ")", ":", "rsp", "=", "self", ".", "ipmi_session", ".", "raw_command", "(", "netfn", "=", "netfn", ",", "command", "=", "command", ",", "bridge_request", "=", "bridge_request", ",", "data", "=", "data", ",", "delay_xmit", "=", "delay_xmit", ",", "retry", "=", "retry", ",", "timeout", "=", "timeout", ")", "if", "'error'", "in", "rsp", ":", "raise", "exc", ".", "IpmiException", "(", "rsp", "[", "'error'", "]", ",", "rsp", "[", "'code'", "]", ")", "rsp", "[", "'data'", "]", "=", "buffer", "(", "rsp", "[", "'data'", "]", ")", "return", "rsp" ]
Send raw ipmi command to BMC, raising exception on error This is identical to raw_command, except it raises exceptions on IPMI errors and returns data as a buffer. This is the recommend function to use. The response['data'] being a buffer allows traditional indexed access as well as works nicely with struct.unpack_from when certain data is coming back. :param netfn: Net function number :param command: Command value :param bridge_request: The target slave address and channel number for the bridge request. :param data: Command data as a tuple or list :param retry: Whether to retry this particular payload or not, defaults to true. :param timeout: A custom time to wait for initial reply, useful for a slow command. This may interfere with retry logic. :returns: dict -- The response from IPMI device
[ "Send", "raw", "ipmi", "command", "to", "BMC", "raising", "exception", "on", "error" ]
f710b1d30a8eed19a9e86f01f9351c737666f3e5
https://github.com/openstack/pyghmi/blob/f710b1d30a8eed19a9e86f01f9351c737666f3e5/pyghmi/ipmi/command.py#L418-L446
16,085
openstack/pyghmi
pyghmi/ipmi/command.py
Command.raw_command
def raw_command(self, netfn, command, bridge_request=(), data=(), delay_xmit=None, retry=True, timeout=None): """Send raw ipmi command to BMC This allows arbitrary IPMI bytes to be issued. This is commonly used for certain vendor specific commands. Example: ipmicmd.raw_command(netfn=0,command=4,data=(5)) :param netfn: Net function number :param command: Command value :param bridge_request: The target slave address and channel number for the bridge request. :param data: Command data as a tuple or list :param retry: Whether or not to retry command if no response received. Defaults to True :param timeout: A custom amount of time to wait for initial reply :returns: dict -- The response from IPMI device """ rsp = self.ipmi_session.raw_command(netfn=netfn, command=command, bridge_request=bridge_request, data=data, delay_xmit=delay_xmit, retry=retry, timeout=timeout) if 'data' in rsp: rsp['data'] = list(rsp['data']) return rsp
python
def raw_command(self, netfn, command, bridge_request=(), data=(), delay_xmit=None, retry=True, timeout=None): """Send raw ipmi command to BMC This allows arbitrary IPMI bytes to be issued. This is commonly used for certain vendor specific commands. Example: ipmicmd.raw_command(netfn=0,command=4,data=(5)) :param netfn: Net function number :param command: Command value :param bridge_request: The target slave address and channel number for the bridge request. :param data: Command data as a tuple or list :param retry: Whether or not to retry command if no response received. Defaults to True :param timeout: A custom amount of time to wait for initial reply :returns: dict -- The response from IPMI device """ rsp = self.ipmi_session.raw_command(netfn=netfn, command=command, bridge_request=bridge_request, data=data, delay_xmit=delay_xmit, retry=retry, timeout=timeout) if 'data' in rsp: rsp['data'] = list(rsp['data']) return rsp
[ "def", "raw_command", "(", "self", ",", "netfn", ",", "command", ",", "bridge_request", "=", "(", ")", ",", "data", "=", "(", ")", ",", "delay_xmit", "=", "None", ",", "retry", "=", "True", ",", "timeout", "=", "None", ")", ":", "rsp", "=", "self", ".", "ipmi_session", ".", "raw_command", "(", "netfn", "=", "netfn", ",", "command", "=", "command", ",", "bridge_request", "=", "bridge_request", ",", "data", "=", "data", ",", "delay_xmit", "=", "delay_xmit", ",", "retry", "=", "retry", ",", "timeout", "=", "timeout", ")", "if", "'data'", "in", "rsp", ":", "rsp", "[", "'data'", "]", "=", "list", "(", "rsp", "[", "'data'", "]", ")", "return", "rsp" ]
Send raw ipmi command to BMC This allows arbitrary IPMI bytes to be issued. This is commonly used for certain vendor specific commands. Example: ipmicmd.raw_command(netfn=0,command=4,data=(5)) :param netfn: Net function number :param command: Command value :param bridge_request: The target slave address and channel number for the bridge request. :param data: Command data as a tuple or list :param retry: Whether or not to retry command if no response received. Defaults to True :param timeout: A custom amount of time to wait for initial reply :returns: dict -- The response from IPMI device
[ "Send", "raw", "ipmi", "command", "to", "BMC" ]
f710b1d30a8eed19a9e86f01f9351c737666f3e5
https://github.com/openstack/pyghmi/blob/f710b1d30a8eed19a9e86f01f9351c737666f3e5/pyghmi/ipmi/command.py#L462-L487
16,086
openstack/pyghmi
pyghmi/ipmi/command.py
Command.get_power
def get_power(self): """Get current power state of the managed system The response, if successful, should contain 'powerstate' key and either 'on' or 'off' to indicate current state. :returns: dict -- {'powerstate': value} """ response = self.raw_command(netfn=0, command=1) if 'error' in response: raise exc.IpmiException(response['error']) assert (response['command'] == 1 and response['netfn'] == 1) powerstate = 'on' if (response['data'][0] & 1) else 'off' return {'powerstate': powerstate}
python
def get_power(self): """Get current power state of the managed system The response, if successful, should contain 'powerstate' key and either 'on' or 'off' to indicate current state. :returns: dict -- {'powerstate': value} """ response = self.raw_command(netfn=0, command=1) if 'error' in response: raise exc.IpmiException(response['error']) assert (response['command'] == 1 and response['netfn'] == 1) powerstate = 'on' if (response['data'][0] & 1) else 'off' return {'powerstate': powerstate}
[ "def", "get_power", "(", "self", ")", ":", "response", "=", "self", ".", "raw_command", "(", "netfn", "=", "0", ",", "command", "=", "1", ")", "if", "'error'", "in", "response", ":", "raise", "exc", ".", "IpmiException", "(", "response", "[", "'error'", "]", ")", "assert", "(", "response", "[", "'command'", "]", "==", "1", "and", "response", "[", "'netfn'", "]", "==", "1", ")", "powerstate", "=", "'on'", "if", "(", "response", "[", "'data'", "]", "[", "0", "]", "&", "1", ")", "else", "'off'", "return", "{", "'powerstate'", ":", "powerstate", "}" ]
Get current power state of the managed system The response, if successful, should contain 'powerstate' key and either 'on' or 'off' to indicate current state. :returns: dict -- {'powerstate': value}
[ "Get", "current", "power", "state", "of", "the", "managed", "system" ]
f710b1d30a8eed19a9e86f01f9351c737666f3e5
https://github.com/openstack/pyghmi/blob/f710b1d30a8eed19a9e86f01f9351c737666f3e5/pyghmi/ipmi/command.py#L489-L502
16,087
openstack/pyghmi
pyghmi/ipmi/command.py
Command.get_event_log
def get_event_log(self, clear=False): """Retrieve the log of events, optionally clearing The contents of the SEL are returned as an iterable. Timestamps are given as local time, ISO 8601 (whether the target has an accurate clock or not). Timestamps may be omitted for events that cannot be given a timestamp, leaving only the raw timecode to provide relative time information. clear set to true will result in the log being cleared as it is returned. This allows an atomic fetch and clear behavior so that no log entries will be lost between the fetch and clear actions. There is no 'clear_event_log' function to encourage users to create code that is not at risk for losing events. :param clear: Whether to remove the SEL entries from the target BMC """ self.oem_init() return sel.EventHandler(self.init_sdr(), self).fetch_sel(self, clear)
python
def get_event_log(self, clear=False): """Retrieve the log of events, optionally clearing The contents of the SEL are returned as an iterable. Timestamps are given as local time, ISO 8601 (whether the target has an accurate clock or not). Timestamps may be omitted for events that cannot be given a timestamp, leaving only the raw timecode to provide relative time information. clear set to true will result in the log being cleared as it is returned. This allows an atomic fetch and clear behavior so that no log entries will be lost between the fetch and clear actions. There is no 'clear_event_log' function to encourage users to create code that is not at risk for losing events. :param clear: Whether to remove the SEL entries from the target BMC """ self.oem_init() return sel.EventHandler(self.init_sdr(), self).fetch_sel(self, clear)
[ "def", "get_event_log", "(", "self", ",", "clear", "=", "False", ")", ":", "self", ".", "oem_init", "(", ")", "return", "sel", ".", "EventHandler", "(", "self", ".", "init_sdr", "(", ")", ",", "self", ")", ".", "fetch_sel", "(", "self", ",", "clear", ")" ]
Retrieve the log of events, optionally clearing The contents of the SEL are returned as an iterable. Timestamps are given as local time, ISO 8601 (whether the target has an accurate clock or not). Timestamps may be omitted for events that cannot be given a timestamp, leaving only the raw timecode to provide relative time information. clear set to true will result in the log being cleared as it is returned. This allows an atomic fetch and clear behavior so that no log entries will be lost between the fetch and clear actions. There is no 'clear_event_log' function to encourage users to create code that is not at risk for losing events. :param clear: Whether to remove the SEL entries from the target BMC
[ "Retrieve", "the", "log", "of", "events", "optionally", "clearing" ]
f710b1d30a8eed19a9e86f01f9351c737666f3e5
https://github.com/openstack/pyghmi/blob/f710b1d30a8eed19a9e86f01f9351c737666f3e5/pyghmi/ipmi/command.py#L559-L575
16,088
openstack/pyghmi
pyghmi/ipmi/command.py
Command.decode_pet
def decode_pet(self, specifictrap, petdata): """Decode PET to an event In IPMI, the alert format are PET alerts. It is a particular set of data put into an SNMPv1 trap and sent. It bears no small resemblence to the SEL entries. This function takes data that would have been received by an SNMP trap handler, and provides an event decode, similar to one entry of get_event_log. :param specifictrap: The specific trap, as either a bytearray or int :param petdata: An iterable of the octet data of varbind for 1.3.6.1.4.1.3183.1.1.1 :returns: A dict event similar to one iteration of get_event_log """ self.oem_init() return sel.EventHandler(self.init_sdr(), self).decode_pet(specifictrap, petdata)
python
def decode_pet(self, specifictrap, petdata): """Decode PET to an event In IPMI, the alert format are PET alerts. It is a particular set of data put into an SNMPv1 trap and sent. It bears no small resemblence to the SEL entries. This function takes data that would have been received by an SNMP trap handler, and provides an event decode, similar to one entry of get_event_log. :param specifictrap: The specific trap, as either a bytearray or int :param petdata: An iterable of the octet data of varbind for 1.3.6.1.4.1.3183.1.1.1 :returns: A dict event similar to one iteration of get_event_log """ self.oem_init() return sel.EventHandler(self.init_sdr(), self).decode_pet(specifictrap, petdata)
[ "def", "decode_pet", "(", "self", ",", "specifictrap", ",", "petdata", ")", ":", "self", ".", "oem_init", "(", ")", "return", "sel", ".", "EventHandler", "(", "self", ".", "init_sdr", "(", ")", ",", "self", ")", ".", "decode_pet", "(", "specifictrap", ",", "petdata", ")" ]
Decode PET to an event In IPMI, the alert format are PET alerts. It is a particular set of data put into an SNMPv1 trap and sent. It bears no small resemblence to the SEL entries. This function takes data that would have been received by an SNMP trap handler, and provides an event decode, similar to one entry of get_event_log. :param specifictrap: The specific trap, as either a bytearray or int :param petdata: An iterable of the octet data of varbind for 1.3.6.1.4.1.3183.1.1.1 :returns: A dict event similar to one iteration of get_event_log
[ "Decode", "PET", "to", "an", "event" ]
f710b1d30a8eed19a9e86f01f9351c737666f3e5
https://github.com/openstack/pyghmi/blob/f710b1d30a8eed19a9e86f01f9351c737666f3e5/pyghmi/ipmi/command.py#L577-L593
16,089
openstack/pyghmi
pyghmi/ipmi/command.py
Command.get_inventory_descriptions
def get_inventory_descriptions(self): """Retrieve list of things that could be inventoried This permits a caller to examine the available items without actually causing the inventory data to be gathered. It returns an iterable of string descriptions """ yield "System" self.init_sdr() for fruid in sorted(self._sdr.fru): yield self._sdr.fru[fruid].fru_name self.oem_init() for compname in self._oem.get_oem_inventory_descriptions(): yield compname
python
def get_inventory_descriptions(self): """Retrieve list of things that could be inventoried This permits a caller to examine the available items without actually causing the inventory data to be gathered. It returns an iterable of string descriptions """ yield "System" self.init_sdr() for fruid in sorted(self._sdr.fru): yield self._sdr.fru[fruid].fru_name self.oem_init() for compname in self._oem.get_oem_inventory_descriptions(): yield compname
[ "def", "get_inventory_descriptions", "(", "self", ")", ":", "yield", "\"System\"", "self", ".", "init_sdr", "(", ")", "for", "fruid", "in", "sorted", "(", "self", ".", "_sdr", ".", "fru", ")", ":", "yield", "self", ".", "_sdr", ".", "fru", "[", "fruid", "]", ".", "fru_name", "self", ".", "oem_init", "(", ")", "for", "compname", "in", "self", ".", "_oem", ".", "get_oem_inventory_descriptions", "(", ")", ":", "yield", "compname" ]
Retrieve list of things that could be inventoried This permits a caller to examine the available items without actually causing the inventory data to be gathered. It returns an iterable of string descriptions
[ "Retrieve", "list", "of", "things", "that", "could", "be", "inventoried" ]
f710b1d30a8eed19a9e86f01f9351c737666f3e5
https://github.com/openstack/pyghmi/blob/f710b1d30a8eed19a9e86f01f9351c737666f3e5/pyghmi/ipmi/command.py#L595-L608
16,090
openstack/pyghmi
pyghmi/ipmi/command.py
Command.get_inventory_of_component
def get_inventory_of_component(self, component): """Retrieve inventory of a component Retrieve detailed inventory information for only the requested component. """ self.oem_init() if component == 'System': return self._get_zero_fru() self.init_sdr() for fruid in self._sdr.fru: if self._sdr.fru[fruid].fru_name == component: return self._oem.process_fru(fru.FRU( ipmicmd=self, fruid=fruid, sdr=self._sdr.fru[fruid]).info, component) return self._oem.get_inventory_of_component(component)
python
def get_inventory_of_component(self, component): """Retrieve inventory of a component Retrieve detailed inventory information for only the requested component. """ self.oem_init() if component == 'System': return self._get_zero_fru() self.init_sdr() for fruid in self._sdr.fru: if self._sdr.fru[fruid].fru_name == component: return self._oem.process_fru(fru.FRU( ipmicmd=self, fruid=fruid, sdr=self._sdr.fru[fruid]).info, component) return self._oem.get_inventory_of_component(component)
[ "def", "get_inventory_of_component", "(", "self", ",", "component", ")", ":", "self", ".", "oem_init", "(", ")", "if", "component", "==", "'System'", ":", "return", "self", ".", "_get_zero_fru", "(", ")", "self", ".", "init_sdr", "(", ")", "for", "fruid", "in", "self", ".", "_sdr", ".", "fru", ":", "if", "self", ".", "_sdr", ".", "fru", "[", "fruid", "]", ".", "fru_name", "==", "component", ":", "return", "self", ".", "_oem", ".", "process_fru", "(", "fru", ".", "FRU", "(", "ipmicmd", "=", "self", ",", "fruid", "=", "fruid", ",", "sdr", "=", "self", ".", "_sdr", ".", "fru", "[", "fruid", "]", ")", ".", "info", ",", "component", ")", "return", "self", ".", "_oem", ".", "get_inventory_of_component", "(", "component", ")" ]
Retrieve inventory of a component Retrieve detailed inventory information for only the requested component.
[ "Retrieve", "inventory", "of", "a", "component" ]
f710b1d30a8eed19a9e86f01f9351c737666f3e5
https://github.com/openstack/pyghmi/blob/f710b1d30a8eed19a9e86f01f9351c737666f3e5/pyghmi/ipmi/command.py#L610-L625
16,091
openstack/pyghmi
pyghmi/ipmi/command.py
Command.get_inventory
def get_inventory(self): """Retrieve inventory of system Retrieve inventory of the targeted system. This frequently includes serial numbers, sometimes hardware addresses, sometimes memory modules This function will retrieve whatever the underlying platform provides and apply some structure. Iterating over the return yields tuples of a name for the inventoried item and dictionary of descriptions or None for items not present. """ self.oem_init() yield ("System", self._get_zero_fru()) self.init_sdr() for fruid in sorted(self._sdr.fru): fruinf = fru.FRU( ipmicmd=self, fruid=fruid, sdr=self._sdr.fru[fruid]).info if fruinf is not None: fruinf = self._oem.process_fru(fruinf, self._sdr.fru[fruid].fru_name) yield (self._sdr.fru[fruid].fru_name, fruinf) for componentpair in self._oem.get_oem_inventory(): yield componentpair
python
def get_inventory(self): """Retrieve inventory of system Retrieve inventory of the targeted system. This frequently includes serial numbers, sometimes hardware addresses, sometimes memory modules This function will retrieve whatever the underlying platform provides and apply some structure. Iterating over the return yields tuples of a name for the inventoried item and dictionary of descriptions or None for items not present. """ self.oem_init() yield ("System", self._get_zero_fru()) self.init_sdr() for fruid in sorted(self._sdr.fru): fruinf = fru.FRU( ipmicmd=self, fruid=fruid, sdr=self._sdr.fru[fruid]).info if fruinf is not None: fruinf = self._oem.process_fru(fruinf, self._sdr.fru[fruid].fru_name) yield (self._sdr.fru[fruid].fru_name, fruinf) for componentpair in self._oem.get_oem_inventory(): yield componentpair
[ "def", "get_inventory", "(", "self", ")", ":", "self", ".", "oem_init", "(", ")", "yield", "(", "\"System\"", ",", "self", ".", "_get_zero_fru", "(", ")", ")", "self", ".", "init_sdr", "(", ")", "for", "fruid", "in", "sorted", "(", "self", ".", "_sdr", ".", "fru", ")", ":", "fruinf", "=", "fru", ".", "FRU", "(", "ipmicmd", "=", "self", ",", "fruid", "=", "fruid", ",", "sdr", "=", "self", ".", "_sdr", ".", "fru", "[", "fruid", "]", ")", ".", "info", "if", "fruinf", "is", "not", "None", ":", "fruinf", "=", "self", ".", "_oem", ".", "process_fru", "(", "fruinf", ",", "self", ".", "_sdr", ".", "fru", "[", "fruid", "]", ".", "fru_name", ")", "yield", "(", "self", ".", "_sdr", ".", "fru", "[", "fruid", "]", ".", "fru_name", ",", "fruinf", ")", "for", "componentpair", "in", "self", ".", "_oem", ".", "get_oem_inventory", "(", ")", ":", "yield", "componentpair" ]
Retrieve inventory of system Retrieve inventory of the targeted system. This frequently includes serial numbers, sometimes hardware addresses, sometimes memory modules This function will retrieve whatever the underlying platform provides and apply some structure. Iterating over the return yields tuples of a name for the inventoried item and dictionary of descriptions or None for items not present.
[ "Retrieve", "inventory", "of", "system" ]
f710b1d30a8eed19a9e86f01f9351c737666f3e5
https://github.com/openstack/pyghmi/blob/f710b1d30a8eed19a9e86f01f9351c737666f3e5/pyghmi/ipmi/command.py#L651-L672
16,092
openstack/pyghmi
pyghmi/ipmi/command.py
Command.get_health
def get_health(self): """Summarize health of managed system This provides a summary of the health of the managed system. It additionally provides an iterable list of reasons for warning, critical, or failed assessments. """ summary = {'badreadings': [], 'health': const.Health.Ok} fallbackreadings = [] try: self.oem_init() fallbackreadings = self._oem.get_health(summary) for reading in self.get_sensor_data(): if reading.health != const.Health.Ok: summary['health'] |= reading.health summary['badreadings'].append(reading) except exc.BypassGenericBehavior: pass if not summary['badreadings']: summary['badreadings'] = fallbackreadings return summary
python
def get_health(self): """Summarize health of managed system This provides a summary of the health of the managed system. It additionally provides an iterable list of reasons for warning, critical, or failed assessments. """ summary = {'badreadings': [], 'health': const.Health.Ok} fallbackreadings = [] try: self.oem_init() fallbackreadings = self._oem.get_health(summary) for reading in self.get_sensor_data(): if reading.health != const.Health.Ok: summary['health'] |= reading.health summary['badreadings'].append(reading) except exc.BypassGenericBehavior: pass if not summary['badreadings']: summary['badreadings'] = fallbackreadings return summary
[ "def", "get_health", "(", "self", ")", ":", "summary", "=", "{", "'badreadings'", ":", "[", "]", ",", "'health'", ":", "const", ".", "Health", ".", "Ok", "}", "fallbackreadings", "=", "[", "]", "try", ":", "self", ".", "oem_init", "(", ")", "fallbackreadings", "=", "self", ".", "_oem", ".", "get_health", "(", "summary", ")", "for", "reading", "in", "self", ".", "get_sensor_data", "(", ")", ":", "if", "reading", ".", "health", "!=", "const", ".", "Health", ".", "Ok", ":", "summary", "[", "'health'", "]", "|=", "reading", ".", "health", "summary", "[", "'badreadings'", "]", ".", "append", "(", "reading", ")", "except", "exc", ".", "BypassGenericBehavior", ":", "pass", "if", "not", "summary", "[", "'badreadings'", "]", ":", "summary", "[", "'badreadings'", "]", "=", "fallbackreadings", "return", "summary" ]
Summarize health of managed system This provides a summary of the health of the managed system. It additionally provides an iterable list of reasons for warning, critical, or failed assessments.
[ "Summarize", "health", "of", "managed", "system" ]
f710b1d30a8eed19a9e86f01f9351c737666f3e5
https://github.com/openstack/pyghmi/blob/f710b1d30a8eed19a9e86f01f9351c737666f3e5/pyghmi/ipmi/command.py#L698-L718
16,093
openstack/pyghmi
pyghmi/ipmi/command.py
Command.get_sensor_reading
def get_sensor_reading(self, sensorname): """Get a sensor reading by name Returns a single decoded sensor reading per the name passed in :param sensorname: Name of the desired sensor :returns: sdr.SensorReading object """ self.init_sdr() for sensor in self._sdr.get_sensor_numbers(): if self._sdr.sensors[sensor].name == sensorname: rsp = self.raw_command(command=0x2d, netfn=4, data=(sensor,)) if 'error' in rsp: raise exc.IpmiException(rsp['error'], rsp['code']) return self._sdr.sensors[sensor].decode_sensor_reading( rsp['data']) self.oem_init() return self._oem.get_sensor_reading(sensorname)
python
def get_sensor_reading(self, sensorname): """Get a sensor reading by name Returns a single decoded sensor reading per the name passed in :param sensorname: Name of the desired sensor :returns: sdr.SensorReading object """ self.init_sdr() for sensor in self._sdr.get_sensor_numbers(): if self._sdr.sensors[sensor].name == sensorname: rsp = self.raw_command(command=0x2d, netfn=4, data=(sensor,)) if 'error' in rsp: raise exc.IpmiException(rsp['error'], rsp['code']) return self._sdr.sensors[sensor].decode_sensor_reading( rsp['data']) self.oem_init() return self._oem.get_sensor_reading(sensorname)
[ "def", "get_sensor_reading", "(", "self", ",", "sensorname", ")", ":", "self", ".", "init_sdr", "(", ")", "for", "sensor", "in", "self", ".", "_sdr", ".", "get_sensor_numbers", "(", ")", ":", "if", "self", ".", "_sdr", ".", "sensors", "[", "sensor", "]", ".", "name", "==", "sensorname", ":", "rsp", "=", "self", ".", "raw_command", "(", "command", "=", "0x2d", ",", "netfn", "=", "4", ",", "data", "=", "(", "sensor", ",", ")", ")", "if", "'error'", "in", "rsp", ":", "raise", "exc", ".", "IpmiException", "(", "rsp", "[", "'error'", "]", ",", "rsp", "[", "'code'", "]", ")", "return", "self", ".", "_sdr", ".", "sensors", "[", "sensor", "]", ".", "decode_sensor_reading", "(", "rsp", "[", "'data'", "]", ")", "self", ".", "oem_init", "(", ")", "return", "self", ".", "_oem", ".", "get_sensor_reading", "(", "sensorname", ")" ]
Get a sensor reading by name Returns a single decoded sensor reading per the name passed in :param sensorname: Name of the desired sensor :returns: sdr.SensorReading object
[ "Get", "a", "sensor", "reading", "by", "name" ]
f710b1d30a8eed19a9e86f01f9351c737666f3e5
https://github.com/openstack/pyghmi/blob/f710b1d30a8eed19a9e86f01f9351c737666f3e5/pyghmi/ipmi/command.py#L720-L738
16,094
openstack/pyghmi
pyghmi/ipmi/command.py
Command._fetch_lancfg_param
def _fetch_lancfg_param(self, channel, param, prefixlen=False): """Internal helper for fetching lan cfg parameters If the parameter revison != 0x11, bail. Further, if 4 bytes, return string with ipv4. If 6 bytes, colon delimited hex (mac address). If one byte, return the int value """ fetchcmd = bytearray((channel, param, 0, 0)) fetched = self.xraw_command(0xc, 2, data=fetchcmd) fetchdata = fetched['data'] if ord(fetchdata[0]) != 17: return None if len(fetchdata) == 5: # IPv4 address if prefixlen: return _mask_to_cidr(fetchdata[1:]) else: ip = socket.inet_ntoa(fetchdata[1:]) if ip == '0.0.0.0': return None return ip elif len(fetchdata) == 7: # MAC address mac = '{0:02x}:{1:02x}:{2:02x}:{3:02x}:{4:02x}:{5:02x}'.format( *bytearray(fetchdata[1:])) if mac == '00:00:00:00:00:00': return None return mac elif len(fetchdata) == 2: return ord(fetchdata[1]) else: raise Exception("Unrecognized data format " + repr(fetchdata))
python
def _fetch_lancfg_param(self, channel, param, prefixlen=False): """Internal helper for fetching lan cfg parameters If the parameter revison != 0x11, bail. Further, if 4 bytes, return string with ipv4. If 6 bytes, colon delimited hex (mac address). If one byte, return the int value """ fetchcmd = bytearray((channel, param, 0, 0)) fetched = self.xraw_command(0xc, 2, data=fetchcmd) fetchdata = fetched['data'] if ord(fetchdata[0]) != 17: return None if len(fetchdata) == 5: # IPv4 address if prefixlen: return _mask_to_cidr(fetchdata[1:]) else: ip = socket.inet_ntoa(fetchdata[1:]) if ip == '0.0.0.0': return None return ip elif len(fetchdata) == 7: # MAC address mac = '{0:02x}:{1:02x}:{2:02x}:{3:02x}:{4:02x}:{5:02x}'.format( *bytearray(fetchdata[1:])) if mac == '00:00:00:00:00:00': return None return mac elif len(fetchdata) == 2: return ord(fetchdata[1]) else: raise Exception("Unrecognized data format " + repr(fetchdata))
[ "def", "_fetch_lancfg_param", "(", "self", ",", "channel", ",", "param", ",", "prefixlen", "=", "False", ")", ":", "fetchcmd", "=", "bytearray", "(", "(", "channel", ",", "param", ",", "0", ",", "0", ")", ")", "fetched", "=", "self", ".", "xraw_command", "(", "0xc", ",", "2", ",", "data", "=", "fetchcmd", ")", "fetchdata", "=", "fetched", "[", "'data'", "]", "if", "ord", "(", "fetchdata", "[", "0", "]", ")", "!=", "17", ":", "return", "None", "if", "len", "(", "fetchdata", ")", "==", "5", ":", "# IPv4 address", "if", "prefixlen", ":", "return", "_mask_to_cidr", "(", "fetchdata", "[", "1", ":", "]", ")", "else", ":", "ip", "=", "socket", ".", "inet_ntoa", "(", "fetchdata", "[", "1", ":", "]", ")", "if", "ip", "==", "'0.0.0.0'", ":", "return", "None", "return", "ip", "elif", "len", "(", "fetchdata", ")", "==", "7", ":", "# MAC address", "mac", "=", "'{0:02x}:{1:02x}:{2:02x}:{3:02x}:{4:02x}:{5:02x}'", ".", "format", "(", "*", "bytearray", "(", "fetchdata", "[", "1", ":", "]", ")", ")", "if", "mac", "==", "'00:00:00:00:00:00'", ":", "return", "None", "return", "mac", "elif", "len", "(", "fetchdata", ")", "==", "2", ":", "return", "ord", "(", "fetchdata", "[", "1", "]", ")", "else", ":", "raise", "Exception", "(", "\"Unrecognized data format \"", "+", "repr", "(", "fetchdata", ")", ")" ]
Internal helper for fetching lan cfg parameters If the parameter revison != 0x11, bail. Further, if 4 bytes, return string with ipv4. If 6 bytes, colon delimited hex (mac address). If one byte, return the int value
[ "Internal", "helper", "for", "fetching", "lan", "cfg", "parameters" ]
f710b1d30a8eed19a9e86f01f9351c737666f3e5
https://github.com/openstack/pyghmi/blob/f710b1d30a8eed19a9e86f01f9351c737666f3e5/pyghmi/ipmi/command.py#L740-L769
16,095
openstack/pyghmi
pyghmi/ipmi/command.py
Command.set_net_configuration
def set_net_configuration(self, ipv4_address=None, ipv4_configuration=None, ipv4_gateway=None, channel=None): """Set network configuration data. Apply desired network configuration data, leaving unspecified parameters alone. :param ipv4_address: CIDR notation for IP address and netmask Example: '192.168.0.10/16' :param ipv4_configuration: Method to use to configure the network. 'DHCP' or 'Static'. :param ipv4_gateway: IP address of gateway to use. :param channel: LAN channel to configure, defaults to autodetect """ if channel is None: channel = self.get_network_channel() if ipv4_configuration is not None: cmddata = [channel, 4, 0] if ipv4_configuration.lower() == 'dhcp': cmddata[-1] = 2 elif ipv4_configuration.lower() == 'static': cmddata[-1] = 1 else: raise Exception('Unrecognized ipv4cfg parameter {0}'.format( ipv4_configuration)) self.xraw_command(netfn=0xc, command=1, data=cmddata) if ipv4_address is not None: netmask = None if '/' in ipv4_address: ipv4_address, prefix = ipv4_address.split('/') netmask = _cidr_to_mask(int(prefix)) cmddata = bytearray((channel, 3)) + socket.inet_aton(ipv4_address) self.xraw_command(netfn=0xc, command=1, data=cmddata) if netmask is not None: cmddata = bytearray((channel, 6)) + netmask self.xraw_command(netfn=0xc, command=1, data=cmddata) if ipv4_gateway is not None: cmddata = bytearray((channel, 12)) + socket.inet_aton(ipv4_gateway) self.xraw_command(netfn=0xc, command=1, data=cmddata)
python
def set_net_configuration(self, ipv4_address=None, ipv4_configuration=None, ipv4_gateway=None, channel=None): """Set network configuration data. Apply desired network configuration data, leaving unspecified parameters alone. :param ipv4_address: CIDR notation for IP address and netmask Example: '192.168.0.10/16' :param ipv4_configuration: Method to use to configure the network. 'DHCP' or 'Static'. :param ipv4_gateway: IP address of gateway to use. :param channel: LAN channel to configure, defaults to autodetect """ if channel is None: channel = self.get_network_channel() if ipv4_configuration is not None: cmddata = [channel, 4, 0] if ipv4_configuration.lower() == 'dhcp': cmddata[-1] = 2 elif ipv4_configuration.lower() == 'static': cmddata[-1] = 1 else: raise Exception('Unrecognized ipv4cfg parameter {0}'.format( ipv4_configuration)) self.xraw_command(netfn=0xc, command=1, data=cmddata) if ipv4_address is not None: netmask = None if '/' in ipv4_address: ipv4_address, prefix = ipv4_address.split('/') netmask = _cidr_to_mask(int(prefix)) cmddata = bytearray((channel, 3)) + socket.inet_aton(ipv4_address) self.xraw_command(netfn=0xc, command=1, data=cmddata) if netmask is not None: cmddata = bytearray((channel, 6)) + netmask self.xraw_command(netfn=0xc, command=1, data=cmddata) if ipv4_gateway is not None: cmddata = bytearray((channel, 12)) + socket.inet_aton(ipv4_gateway) self.xraw_command(netfn=0xc, command=1, data=cmddata)
[ "def", "set_net_configuration", "(", "self", ",", "ipv4_address", "=", "None", ",", "ipv4_configuration", "=", "None", ",", "ipv4_gateway", "=", "None", ",", "channel", "=", "None", ")", ":", "if", "channel", "is", "None", ":", "channel", "=", "self", ".", "get_network_channel", "(", ")", "if", "ipv4_configuration", "is", "not", "None", ":", "cmddata", "=", "[", "channel", ",", "4", ",", "0", "]", "if", "ipv4_configuration", ".", "lower", "(", ")", "==", "'dhcp'", ":", "cmddata", "[", "-", "1", "]", "=", "2", "elif", "ipv4_configuration", ".", "lower", "(", ")", "==", "'static'", ":", "cmddata", "[", "-", "1", "]", "=", "1", "else", ":", "raise", "Exception", "(", "'Unrecognized ipv4cfg parameter {0}'", ".", "format", "(", "ipv4_configuration", ")", ")", "self", ".", "xraw_command", "(", "netfn", "=", "0xc", ",", "command", "=", "1", ",", "data", "=", "cmddata", ")", "if", "ipv4_address", "is", "not", "None", ":", "netmask", "=", "None", "if", "'/'", "in", "ipv4_address", ":", "ipv4_address", ",", "prefix", "=", "ipv4_address", ".", "split", "(", "'/'", ")", "netmask", "=", "_cidr_to_mask", "(", "int", "(", "prefix", ")", ")", "cmddata", "=", "bytearray", "(", "(", "channel", ",", "3", ")", ")", "+", "socket", ".", "inet_aton", "(", "ipv4_address", ")", "self", ".", "xraw_command", "(", "netfn", "=", "0xc", ",", "command", "=", "1", ",", "data", "=", "cmddata", ")", "if", "netmask", "is", "not", "None", ":", "cmddata", "=", "bytearray", "(", "(", "channel", ",", "6", ")", ")", "+", "netmask", "self", ".", "xraw_command", "(", "netfn", "=", "0xc", ",", "command", "=", "1", ",", "data", "=", "cmddata", ")", "if", "ipv4_gateway", "is", "not", "None", ":", "cmddata", "=", "bytearray", "(", "(", "channel", ",", "12", ")", ")", "+", "socket", ".", "inet_aton", "(", "ipv4_gateway", ")", "self", ".", "xraw_command", "(", "netfn", "=", "0xc", ",", "command", "=", "1", ",", "data", "=", "cmddata", ")" ]
Set network configuration data. Apply desired network configuration data, leaving unspecified parameters alone. :param ipv4_address: CIDR notation for IP address and netmask Example: '192.168.0.10/16' :param ipv4_configuration: Method to use to configure the network. 'DHCP' or 'Static'. :param ipv4_gateway: IP address of gateway to use. :param channel: LAN channel to configure, defaults to autodetect
[ "Set", "network", "configuration", "data", "." ]
f710b1d30a8eed19a9e86f01f9351c737666f3e5
https://github.com/openstack/pyghmi/blob/f710b1d30a8eed19a9e86f01f9351c737666f3e5/pyghmi/ipmi/command.py#L787-L825
16,096
openstack/pyghmi
pyghmi/ipmi/command.py
Command.get_net_configuration
def get_net_configuration(self, channel=None, gateway_macs=True): """Get network configuration data Retrieve network configuration from the target :param channel: Channel to configure, defaults to None for 'autodetect' :param gateway_macs: Whether to retrieve mac addresses for gateways :returns: A dictionary of network configuration data """ if channel is None: channel = self.get_network_channel() retdata = {} v4addr = self._fetch_lancfg_param(channel, 3) if v4addr is None: retdata['ipv4_address'] = None else: v4masklen = self._fetch_lancfg_param(channel, 6, prefixlen=True) retdata['ipv4_address'] = '{0}/{1}'.format(v4addr, v4masklen) v4cfgmethods = { 0: 'Unspecified', 1: 'Static', 2: 'DHCP', 3: 'BIOS', 4: 'Other', } retdata['ipv4_configuration'] = v4cfgmethods[self._fetch_lancfg_param( channel, 4)] retdata['mac_address'] = self._fetch_lancfg_param(channel, 5) retdata['ipv4_gateway'] = self._fetch_lancfg_param(channel, 12) retdata['ipv4_backup_gateway'] = self._fetch_lancfg_param(channel, 14) if gateway_macs: retdata['ipv4_gateway_mac'] = self._fetch_lancfg_param(channel, 13) retdata['ipv4_backup_gateway_mac'] = self._fetch_lancfg_param( channel, 15) self.oem_init() self._oem.add_extra_net_configuration(retdata) return retdata
python
def get_net_configuration(self, channel=None, gateway_macs=True): """Get network configuration data Retrieve network configuration from the target :param channel: Channel to configure, defaults to None for 'autodetect' :param gateway_macs: Whether to retrieve mac addresses for gateways :returns: A dictionary of network configuration data """ if channel is None: channel = self.get_network_channel() retdata = {} v4addr = self._fetch_lancfg_param(channel, 3) if v4addr is None: retdata['ipv4_address'] = None else: v4masklen = self._fetch_lancfg_param(channel, 6, prefixlen=True) retdata['ipv4_address'] = '{0}/{1}'.format(v4addr, v4masklen) v4cfgmethods = { 0: 'Unspecified', 1: 'Static', 2: 'DHCP', 3: 'BIOS', 4: 'Other', } retdata['ipv4_configuration'] = v4cfgmethods[self._fetch_lancfg_param( channel, 4)] retdata['mac_address'] = self._fetch_lancfg_param(channel, 5) retdata['ipv4_gateway'] = self._fetch_lancfg_param(channel, 12) retdata['ipv4_backup_gateway'] = self._fetch_lancfg_param(channel, 14) if gateway_macs: retdata['ipv4_gateway_mac'] = self._fetch_lancfg_param(channel, 13) retdata['ipv4_backup_gateway_mac'] = self._fetch_lancfg_param( channel, 15) self.oem_init() self._oem.add_extra_net_configuration(retdata) return retdata
[ "def", "get_net_configuration", "(", "self", ",", "channel", "=", "None", ",", "gateway_macs", "=", "True", ")", ":", "if", "channel", "is", "None", ":", "channel", "=", "self", ".", "get_network_channel", "(", ")", "retdata", "=", "{", "}", "v4addr", "=", "self", ".", "_fetch_lancfg_param", "(", "channel", ",", "3", ")", "if", "v4addr", "is", "None", ":", "retdata", "[", "'ipv4_address'", "]", "=", "None", "else", ":", "v4masklen", "=", "self", ".", "_fetch_lancfg_param", "(", "channel", ",", "6", ",", "prefixlen", "=", "True", ")", "retdata", "[", "'ipv4_address'", "]", "=", "'{0}/{1}'", ".", "format", "(", "v4addr", ",", "v4masklen", ")", "v4cfgmethods", "=", "{", "0", ":", "'Unspecified'", ",", "1", ":", "'Static'", ",", "2", ":", "'DHCP'", ",", "3", ":", "'BIOS'", ",", "4", ":", "'Other'", ",", "}", "retdata", "[", "'ipv4_configuration'", "]", "=", "v4cfgmethods", "[", "self", ".", "_fetch_lancfg_param", "(", "channel", ",", "4", ")", "]", "retdata", "[", "'mac_address'", "]", "=", "self", ".", "_fetch_lancfg_param", "(", "channel", ",", "5", ")", "retdata", "[", "'ipv4_gateway'", "]", "=", "self", ".", "_fetch_lancfg_param", "(", "channel", ",", "12", ")", "retdata", "[", "'ipv4_backup_gateway'", "]", "=", "self", ".", "_fetch_lancfg_param", "(", "channel", ",", "14", ")", "if", "gateway_macs", ":", "retdata", "[", "'ipv4_gateway_mac'", "]", "=", "self", ".", "_fetch_lancfg_param", "(", "channel", ",", "13", ")", "retdata", "[", "'ipv4_backup_gateway_mac'", "]", "=", "self", ".", "_fetch_lancfg_param", "(", "channel", ",", "15", ")", "self", ".", "oem_init", "(", ")", "self", ".", "_oem", ".", "add_extra_net_configuration", "(", "retdata", ")", "return", "retdata" ]
Get network configuration data Retrieve network configuration from the target :param channel: Channel to configure, defaults to None for 'autodetect' :param gateway_macs: Whether to retrieve mac addresses for gateways :returns: A dictionary of network configuration data
[ "Get", "network", "configuration", "data" ]
f710b1d30a8eed19a9e86f01f9351c737666f3e5
https://github.com/openstack/pyghmi/blob/f710b1d30a8eed19a9e86f01f9351c737666f3e5/pyghmi/ipmi/command.py#L880-L916
16,097
openstack/pyghmi
pyghmi/ipmi/command.py
Command.get_sensor_data
def get_sensor_data(self): """Get sensor reading objects Iterates sensor reading objects pertaining to the currently managed BMC. :returns: Iterator of sdr.SensorReading objects """ self.init_sdr() for sensor in self._sdr.get_sensor_numbers(): rsp = self.raw_command(command=0x2d, netfn=4, data=(sensor,)) if 'error' in rsp: if rsp['code'] == 203: # Sensor does not exist, optional dev continue raise exc.IpmiException(rsp['error'], code=rsp['code']) yield self._sdr.sensors[sensor].decode_sensor_reading(rsp['data']) self.oem_init() for reading in self._oem.get_sensor_data(): yield reading
python
def get_sensor_data(self): """Get sensor reading objects Iterates sensor reading objects pertaining to the currently managed BMC. :returns: Iterator of sdr.SensorReading objects """ self.init_sdr() for sensor in self._sdr.get_sensor_numbers(): rsp = self.raw_command(command=0x2d, netfn=4, data=(sensor,)) if 'error' in rsp: if rsp['code'] == 203: # Sensor does not exist, optional dev continue raise exc.IpmiException(rsp['error'], code=rsp['code']) yield self._sdr.sensors[sensor].decode_sensor_reading(rsp['data']) self.oem_init() for reading in self._oem.get_sensor_data(): yield reading
[ "def", "get_sensor_data", "(", "self", ")", ":", "self", ".", "init_sdr", "(", ")", "for", "sensor", "in", "self", ".", "_sdr", ".", "get_sensor_numbers", "(", ")", ":", "rsp", "=", "self", ".", "raw_command", "(", "command", "=", "0x2d", ",", "netfn", "=", "4", ",", "data", "=", "(", "sensor", ",", ")", ")", "if", "'error'", "in", "rsp", ":", "if", "rsp", "[", "'code'", "]", "==", "203", ":", "# Sensor does not exist, optional dev", "continue", "raise", "exc", ".", "IpmiException", "(", "rsp", "[", "'error'", "]", ",", "code", "=", "rsp", "[", "'code'", "]", ")", "yield", "self", ".", "_sdr", ".", "sensors", "[", "sensor", "]", ".", "decode_sensor_reading", "(", "rsp", "[", "'data'", "]", ")", "self", ".", "oem_init", "(", ")", "for", "reading", "in", "self", ".", "_oem", ".", "get_sensor_data", "(", ")", ":", "yield", "reading" ]
Get sensor reading objects Iterates sensor reading objects pertaining to the currently managed BMC. :returns: Iterator of sdr.SensorReading objects
[ "Get", "sensor", "reading", "objects" ]
f710b1d30a8eed19a9e86f01f9351c737666f3e5
https://github.com/openstack/pyghmi/blob/f710b1d30a8eed19a9e86f01f9351c737666f3e5/pyghmi/ipmi/command.py#L918-L936
16,098
openstack/pyghmi
pyghmi/ipmi/command.py
Command.get_sensor_descriptions
def get_sensor_descriptions(self): """Get available sensor names Iterates over the available sensor descriptions :returns: Iterator of dicts describing each sensor """ self.init_sdr() for sensor in self._sdr.get_sensor_numbers(): yield {'name': self._sdr.sensors[sensor].name, 'type': self._sdr.sensors[sensor].sensor_type} self.oem_init() for sensor in self._oem.get_sensor_descriptions(): yield sensor
python
def get_sensor_descriptions(self): """Get available sensor names Iterates over the available sensor descriptions :returns: Iterator of dicts describing each sensor """ self.init_sdr() for sensor in self._sdr.get_sensor_numbers(): yield {'name': self._sdr.sensors[sensor].name, 'type': self._sdr.sensors[sensor].sensor_type} self.oem_init() for sensor in self._oem.get_sensor_descriptions(): yield sensor
[ "def", "get_sensor_descriptions", "(", "self", ")", ":", "self", ".", "init_sdr", "(", ")", "for", "sensor", "in", "self", ".", "_sdr", ".", "get_sensor_numbers", "(", ")", ":", "yield", "{", "'name'", ":", "self", ".", "_sdr", ".", "sensors", "[", "sensor", "]", ".", "name", ",", "'type'", ":", "self", ".", "_sdr", ".", "sensors", "[", "sensor", "]", ".", "sensor_type", "}", "self", ".", "oem_init", "(", ")", "for", "sensor", "in", "self", ".", "_oem", ".", "get_sensor_descriptions", "(", ")", ":", "yield", "sensor" ]
Get available sensor names Iterates over the available sensor descriptions :returns: Iterator of dicts describing each sensor
[ "Get", "available", "sensor", "names" ]
f710b1d30a8eed19a9e86f01f9351c737666f3e5
https://github.com/openstack/pyghmi/blob/f710b1d30a8eed19a9e86f01f9351c737666f3e5/pyghmi/ipmi/command.py#L938-L951
16,099
openstack/pyghmi
pyghmi/ipmi/command.py
Command.get_network_channel
def get_network_channel(self): """Get a reasonable 'default' network channel. When configuring/examining network configuration, it's desirable to find the correct channel. Here we run with the 'real' number of the current channel if it is a LAN channel, otherwise it evaluates all of the channels to find the first workable LAN channel and returns that """ if self._netchannel is None: for channel in chain((0xe,), range(1, 0xc)): try: rsp = self.xraw_command( netfn=6, command=0x42, data=(channel,)) except exc.IpmiException as ie: if ie.ipmicode == 0xcc: # We have hit an invalid channel, move on to next # candidate continue else: raise chantype = ord(rsp['data'][1]) & 0b1111111 if chantype in (4, 6): try: # Some implementations denote an inactive channel # by refusing to do parameter retrieval if channel != 0xe: # skip checking if channel is active if we are # actively using the channel self.xraw_command( netfn=0xc, command=2, data=(channel, 5, 0, 0)) # If still here, the channel seems serviceable... # However some implementations may still have # ambiguous channel info, that will need to be # picked up on an OEM extension... self._netchannel = ord(rsp['data'][0]) & 0b1111 break except exc.IpmiException as ie: # This means the attempt to fetch parameter 5 failed, # therefore move on to next candidate channel continue return self._netchannel
python
def get_network_channel(self): """Get a reasonable 'default' network channel. When configuring/examining network configuration, it's desirable to find the correct channel. Here we run with the 'real' number of the current channel if it is a LAN channel, otherwise it evaluates all of the channels to find the first workable LAN channel and returns that """ if self._netchannel is None: for channel in chain((0xe,), range(1, 0xc)): try: rsp = self.xraw_command( netfn=6, command=0x42, data=(channel,)) except exc.IpmiException as ie: if ie.ipmicode == 0xcc: # We have hit an invalid channel, move on to next # candidate continue else: raise chantype = ord(rsp['data'][1]) & 0b1111111 if chantype in (4, 6): try: # Some implementations denote an inactive channel # by refusing to do parameter retrieval if channel != 0xe: # skip checking if channel is active if we are # actively using the channel self.xraw_command( netfn=0xc, command=2, data=(channel, 5, 0, 0)) # If still here, the channel seems serviceable... # However some implementations may still have # ambiguous channel info, that will need to be # picked up on an OEM extension... self._netchannel = ord(rsp['data'][0]) & 0b1111 break except exc.IpmiException as ie: # This means the attempt to fetch parameter 5 failed, # therefore move on to next candidate channel continue return self._netchannel
[ "def", "get_network_channel", "(", "self", ")", ":", "if", "self", ".", "_netchannel", "is", "None", ":", "for", "channel", "in", "chain", "(", "(", "0xe", ",", ")", ",", "range", "(", "1", ",", "0xc", ")", ")", ":", "try", ":", "rsp", "=", "self", ".", "xraw_command", "(", "netfn", "=", "6", ",", "command", "=", "0x42", ",", "data", "=", "(", "channel", ",", ")", ")", "except", "exc", ".", "IpmiException", "as", "ie", ":", "if", "ie", ".", "ipmicode", "==", "0xcc", ":", "# We have hit an invalid channel, move on to next", "# candidate", "continue", "else", ":", "raise", "chantype", "=", "ord", "(", "rsp", "[", "'data'", "]", "[", "1", "]", ")", "&", "0b1111111", "if", "chantype", "in", "(", "4", ",", "6", ")", ":", "try", ":", "# Some implementations denote an inactive channel", "# by refusing to do parameter retrieval", "if", "channel", "!=", "0xe", ":", "# skip checking if channel is active if we are", "# actively using the channel", "self", ".", "xraw_command", "(", "netfn", "=", "0xc", ",", "command", "=", "2", ",", "data", "=", "(", "channel", ",", "5", ",", "0", ",", "0", ")", ")", "# If still here, the channel seems serviceable...", "# However some implementations may still have", "# ambiguous channel info, that will need to be", "# picked up on an OEM extension...", "self", ".", "_netchannel", "=", "ord", "(", "rsp", "[", "'data'", "]", "[", "0", "]", ")", "&", "0b1111", "break", "except", "exc", ".", "IpmiException", "as", "ie", ":", "# This means the attempt to fetch parameter 5 failed,", "# therefore move on to next candidate channel", "continue", "return", "self", ".", "_netchannel" ]
Get a reasonable 'default' network channel. When configuring/examining network configuration, it's desirable to find the correct channel. Here we run with the 'real' number of the current channel if it is a LAN channel, otherwise it evaluates all of the channels to find the first workable LAN channel and returns that
[ "Get", "a", "reasonable", "default", "network", "channel", "." ]
f710b1d30a8eed19a9e86f01f9351c737666f3e5
https://github.com/openstack/pyghmi/blob/f710b1d30a8eed19a9e86f01f9351c737666f3e5/pyghmi/ipmi/command.py#L953-L994