id
int32
0
252k
repo
stringlengths
7
55
path
stringlengths
4
127
func_name
stringlengths
1
88
original_string
stringlengths
75
19.8k
language
stringclasses
1 value
code
stringlengths
75
19.8k
code_tokens
list
docstring
stringlengths
3
17.3k
docstring_tokens
list
sha
stringlengths
40
40
url
stringlengths
87
242
15,800
mitodl/edx-api-client
edx_api/enrollments/__init__.py
CourseEnrollments._get_enrollments_list_page
def _get_enrollments_list_page(self, params=None): """ Submit request to retrieve enrollments list. Args: params (dict): Query parameters to use in the request. Valid parameters are: * course_id: Filters the result to course enrollments for the course corresponding to the given course ID. The value must be URL encoded. Optional. * username: username: List of comma-separated usernames. Filters the result to the course enrollments of the given users. Optional. """ req_url = urljoin(self.base_url, self.enrollment_list_url) resp = self.requester.get(req_url, params=params) resp.raise_for_status() resp_json = resp.json() results = resp_json['results'] next_url_str = resp_json.get('next') cursor = None qstr_cursor = None if next_url_str: next_url = urlparse(next_url_str) qstr = parse_qs(next_url.query) qstr_cursor = qstr.get('cursor') if qstr_cursor and isinstance(qstr_cursor, list): cursor = qstr_cursor[0] return results, cursor
python
def _get_enrollments_list_page(self, params=None): """ Submit request to retrieve enrollments list. Args: params (dict): Query parameters to use in the request. Valid parameters are: * course_id: Filters the result to course enrollments for the course corresponding to the given course ID. The value must be URL encoded. Optional. * username: username: List of comma-separated usernames. Filters the result to the course enrollments of the given users. Optional. """ req_url = urljoin(self.base_url, self.enrollment_list_url) resp = self.requester.get(req_url, params=params) resp.raise_for_status() resp_json = resp.json() results = resp_json['results'] next_url_str = resp_json.get('next') cursor = None qstr_cursor = None if next_url_str: next_url = urlparse(next_url_str) qstr = parse_qs(next_url.query) qstr_cursor = qstr.get('cursor') if qstr_cursor and isinstance(qstr_cursor, list): cursor = qstr_cursor[0] return results, cursor
[ "def", "_get_enrollments_list_page", "(", "self", ",", "params", "=", "None", ")", ":", "req_url", "=", "urljoin", "(", "self", ".", "base_url", ",", "self", ".", "enrollment_list_url", ")", "resp", "=", "self", ".", "requester", ".", "get", "(", "req_url", ",", "params", "=", "params", ")", "resp", ".", "raise_for_status", "(", ")", "resp_json", "=", "resp", ".", "json", "(", ")", "results", "=", "resp_json", "[", "'results'", "]", "next_url_str", "=", "resp_json", ".", "get", "(", "'next'", ")", "cursor", "=", "None", "qstr_cursor", "=", "None", "if", "next_url_str", ":", "next_url", "=", "urlparse", "(", "next_url_str", ")", "qstr", "=", "parse_qs", "(", "next_url", ".", "query", ")", "qstr_cursor", "=", "qstr", ".", "get", "(", "'cursor'", ")", "if", "qstr_cursor", "and", "isinstance", "(", "qstr_cursor", ",", "list", ")", ":", "cursor", "=", "qstr_cursor", "[", "0", "]", "return", "results", ",", "cursor" ]
Submit request to retrieve enrollments list. Args: params (dict): Query parameters to use in the request. Valid parameters are: * course_id: Filters the result to course enrollments for the course corresponding to the given course ID. The value must be URL encoded. Optional. * username: username: List of comma-separated usernames. Filters the result to the course enrollments of the given users. Optional.
[ "Submit", "request", "to", "retrieve", "enrollments", "list", "." ]
083fd23a48b3ef0d39602fc3e7e53ef02f4ad6d6
https://github.com/mitodl/edx-api-client/blob/083fd23a48b3ef0d39602fc3e7e53ef02f4ad6d6/edx_api/enrollments/__init__.py#L31-L59
15,801
mitodl/edx-api-client
edx_api/enrollments/__init__.py
CourseEnrollments.get_enrollments
def get_enrollments(self, course_id=None, usernames=None): """ List all course enrollments. Args: course_id (str, optional): If used enrollments will be filtered to the specified course id. usernames (list, optional): List of usernames to filter enrollments. Notes: - This method returns an iterator to avoid going through the entire pagination at once. - The :class:`Enrollments` instance returned for each generated item will not have any course details. Examples: Get all enrollments for a specific course id >>> api = EdxApi({'access_token': 'token'}, 'http://base_url') >>> enrollments = api.enrollments.get_enrollments(course_id='course_id') >>> for enrollment in enrollments: do_something(enrollment) Get all enrollments for a set of usernames >>> api = EdxApi({'access_token': 'token'}, 'http://base_url') >>> enrollments = api.enrollments.get_enrollments(usernames=['user1', 'user2']) >>> for enrollment in enrollments: do_something(enrollment) Returns: Generator with an instance of :class:`Enrollments` for each item. """ params = {} if course_id is not None: params['course_id'] = course_id if usernames is not None and isinstance(usernames, list): params['username'] = ','.join(usernames) done = False while not done: enrollments, next_cursor = self._get_enrollments_list_page(params) for enrollment in enrollments: yield Enrollment(enrollment) if next_cursor: params['cursor'] = next_cursor else: done = True
python
def get_enrollments(self, course_id=None, usernames=None): """ List all course enrollments. Args: course_id (str, optional): If used enrollments will be filtered to the specified course id. usernames (list, optional): List of usernames to filter enrollments. Notes: - This method returns an iterator to avoid going through the entire pagination at once. - The :class:`Enrollments` instance returned for each generated item will not have any course details. Examples: Get all enrollments for a specific course id >>> api = EdxApi({'access_token': 'token'}, 'http://base_url') >>> enrollments = api.enrollments.get_enrollments(course_id='course_id') >>> for enrollment in enrollments: do_something(enrollment) Get all enrollments for a set of usernames >>> api = EdxApi({'access_token': 'token'}, 'http://base_url') >>> enrollments = api.enrollments.get_enrollments(usernames=['user1', 'user2']) >>> for enrollment in enrollments: do_something(enrollment) Returns: Generator with an instance of :class:`Enrollments` for each item. """ params = {} if course_id is not None: params['course_id'] = course_id if usernames is not None and isinstance(usernames, list): params['username'] = ','.join(usernames) done = False while not done: enrollments, next_cursor = self._get_enrollments_list_page(params) for enrollment in enrollments: yield Enrollment(enrollment) if next_cursor: params['cursor'] = next_cursor else: done = True
[ "def", "get_enrollments", "(", "self", ",", "course_id", "=", "None", ",", "usernames", "=", "None", ")", ":", "params", "=", "{", "}", "if", "course_id", "is", "not", "None", ":", "params", "[", "'course_id'", "]", "=", "course_id", "if", "usernames", "is", "not", "None", "and", "isinstance", "(", "usernames", ",", "list", ")", ":", "params", "[", "'username'", "]", "=", "','", ".", "join", "(", "usernames", ")", "done", "=", "False", "while", "not", "done", ":", "enrollments", ",", "next_cursor", "=", "self", ".", "_get_enrollments_list_page", "(", "params", ")", "for", "enrollment", "in", "enrollments", ":", "yield", "Enrollment", "(", "enrollment", ")", "if", "next_cursor", ":", "params", "[", "'cursor'", "]", "=", "next_cursor", "else", ":", "done", "=", "True" ]
List all course enrollments. Args: course_id (str, optional): If used enrollments will be filtered to the specified course id. usernames (list, optional): List of usernames to filter enrollments. Notes: - This method returns an iterator to avoid going through the entire pagination at once. - The :class:`Enrollments` instance returned for each generated item will not have any course details. Examples: Get all enrollments for a specific course id >>> api = EdxApi({'access_token': 'token'}, 'http://base_url') >>> enrollments = api.enrollments.get_enrollments(course_id='course_id') >>> for enrollment in enrollments: do_something(enrollment) Get all enrollments for a set of usernames >>> api = EdxApi({'access_token': 'token'}, 'http://base_url') >>> enrollments = api.enrollments.get_enrollments(usernames=['user1', 'user2']) >>> for enrollment in enrollments: do_something(enrollment) Returns: Generator with an instance of :class:`Enrollments` for each item.
[ "List", "all", "course", "enrollments", "." ]
083fd23a48b3ef0d39602fc3e7e53ef02f4ad6d6
https://github.com/mitodl/edx-api-client/blob/083fd23a48b3ef0d39602fc3e7e53ef02f4ad6d6/edx_api/enrollments/__init__.py#L61-L106
15,802
mitodl/edx-api-client
edx_api/enrollments/__init__.py
CourseEnrollments.get_student_enrollments
def get_student_enrollments(self): """ Returns an Enrollments object with the user enrollments Returns: Enrollments: object representing the student enrollments """ # the request is done in behalf of the current logged in user resp = self.requester.get( urljoin(self.base_url, self.enrollment_url)) resp.raise_for_status() return Enrollments(resp.json())
python
def get_student_enrollments(self): """ Returns an Enrollments object with the user enrollments Returns: Enrollments: object representing the student enrollments """ # the request is done in behalf of the current logged in user resp = self.requester.get( urljoin(self.base_url, self.enrollment_url)) resp.raise_for_status() return Enrollments(resp.json())
[ "def", "get_student_enrollments", "(", "self", ")", ":", "# the request is done in behalf of the current logged in user", "resp", "=", "self", ".", "requester", ".", "get", "(", "urljoin", "(", "self", ".", "base_url", ",", "self", ".", "enrollment_url", ")", ")", "resp", ".", "raise_for_status", "(", ")", "return", "Enrollments", "(", "resp", ".", "json", "(", ")", ")" ]
Returns an Enrollments object with the user enrollments Returns: Enrollments: object representing the student enrollments
[ "Returns", "an", "Enrollments", "object", "with", "the", "user", "enrollments" ]
083fd23a48b3ef0d39602fc3e7e53ef02f4ad6d6
https://github.com/mitodl/edx-api-client/blob/083fd23a48b3ef0d39602fc3e7e53ef02f4ad6d6/edx_api/enrollments/__init__.py#L108-L119
15,803
mitodl/edx-api-client
edx_api/enrollments/__init__.py
CourseEnrollments.create_audit_student_enrollment
def create_audit_student_enrollment(self, course_id): """ Creates an audit enrollment for the user in a given course Args: course_id (str): an edX course id Returns: Enrollment: object representing the student enrollment in the provided course """ audit_enrollment = { "mode": "audit", "course_details": {"course_id": course_id} } # the request is done in behalf of the current logged in user resp = self.requester.post( urljoin(self.base_url, self.enrollment_url), json=audit_enrollment ) resp.raise_for_status() return Enrollment(resp.json())
python
def create_audit_student_enrollment(self, course_id): """ Creates an audit enrollment for the user in a given course Args: course_id (str): an edX course id Returns: Enrollment: object representing the student enrollment in the provided course """ audit_enrollment = { "mode": "audit", "course_details": {"course_id": course_id} } # the request is done in behalf of the current logged in user resp = self.requester.post( urljoin(self.base_url, self.enrollment_url), json=audit_enrollment ) resp.raise_for_status() return Enrollment(resp.json())
[ "def", "create_audit_student_enrollment", "(", "self", ",", "course_id", ")", ":", "audit_enrollment", "=", "{", "\"mode\"", ":", "\"audit\"", ",", "\"course_details\"", ":", "{", "\"course_id\"", ":", "course_id", "}", "}", "# the request is done in behalf of the current logged in user", "resp", "=", "self", ".", "requester", ".", "post", "(", "urljoin", "(", "self", ".", "base_url", ",", "self", ".", "enrollment_url", ")", ",", "json", "=", "audit_enrollment", ")", "resp", ".", "raise_for_status", "(", ")", "return", "Enrollment", "(", "resp", ".", "json", "(", ")", ")" ]
Creates an audit enrollment for the user in a given course Args: course_id (str): an edX course id Returns: Enrollment: object representing the student enrollment in the provided course
[ "Creates", "an", "audit", "enrollment", "for", "the", "user", "in", "a", "given", "course" ]
083fd23a48b3ef0d39602fc3e7e53ef02f4ad6d6
https://github.com/mitodl/edx-api-client/blob/083fd23a48b3ef0d39602fc3e7e53ef02f4ad6d6/edx_api/enrollments/__init__.py#L121-L141
15,804
mitodl/edx-api-client
edx_api/certificates/__init__.py
UserCertificates.get_student_certificate
def get_student_certificate(self, username, course_id): """ Returns an Certificate object with the user certificates Args: username (str): an edx user's username course_id (str): an edX course id. Returns: Certificate: object representing the student certificate for a course """ # the request is done in behalf of the current logged in user resp = self.requester.get( urljoin( self.base_url, '/api/certificates/v0/certificates/{username}/courses/{course_key}/'.format( username=username, course_key=course_id ) ) ) resp.raise_for_status() return Certificate(resp.json())
python
def get_student_certificate(self, username, course_id): """ Returns an Certificate object with the user certificates Args: username (str): an edx user's username course_id (str): an edX course id. Returns: Certificate: object representing the student certificate for a course """ # the request is done in behalf of the current logged in user resp = self.requester.get( urljoin( self.base_url, '/api/certificates/v0/certificates/{username}/courses/{course_key}/'.format( username=username, course_key=course_id ) ) ) resp.raise_for_status() return Certificate(resp.json())
[ "def", "get_student_certificate", "(", "self", ",", "username", ",", "course_id", ")", ":", "# the request is done in behalf of the current logged in user", "resp", "=", "self", ".", "requester", ".", "get", "(", "urljoin", "(", "self", ".", "base_url", ",", "'/api/certificates/v0/certificates/{username}/courses/{course_key}/'", ".", "format", "(", "username", "=", "username", ",", "course_key", "=", "course_id", ")", ")", ")", "resp", ".", "raise_for_status", "(", ")", "return", "Certificate", "(", "resp", ".", "json", "(", ")", ")" ]
Returns an Certificate object with the user certificates Args: username (str): an edx user's username course_id (str): an edX course id. Returns: Certificate: object representing the student certificate for a course
[ "Returns", "an", "Certificate", "object", "with", "the", "user", "certificates" ]
083fd23a48b3ef0d39602fc3e7e53ef02f4ad6d6
https://github.com/mitodl/edx-api-client/blob/083fd23a48b3ef0d39602fc3e7e53ef02f4ad6d6/edx_api/certificates/__init__.py#L25-L49
15,805
mitodl/edx-api-client
edx_api/certificates/__init__.py
UserCertificates.get_student_certificates
def get_student_certificates(self, username, course_ids=None): """ Returns an Certificates object with the user certificates Args: username (str): an edx user's username course_ids (list): a list of edX course ids. Returns: Certificates: object representing the student certificates for a course """ # if no course ids are provided, let's get the user enrollments if course_ids is None: enrollments_client = CourseEnrollments(self.requester, self.base_url) enrollments = enrollments_client.get_student_enrollments() course_ids = list(enrollments.get_enrolled_course_ids()) all_certificates = [] for course_id in course_ids: try: all_certificates.append(self.get_student_certificate(username, course_id)) except HTTPError as error: if error.response.status_code >= 500: raise return Certificates(all_certificates)
python
def get_student_certificates(self, username, course_ids=None): """ Returns an Certificates object with the user certificates Args: username (str): an edx user's username course_ids (list): a list of edX course ids. Returns: Certificates: object representing the student certificates for a course """ # if no course ids are provided, let's get the user enrollments if course_ids is None: enrollments_client = CourseEnrollments(self.requester, self.base_url) enrollments = enrollments_client.get_student_enrollments() course_ids = list(enrollments.get_enrolled_course_ids()) all_certificates = [] for course_id in course_ids: try: all_certificates.append(self.get_student_certificate(username, course_id)) except HTTPError as error: if error.response.status_code >= 500: raise return Certificates(all_certificates)
[ "def", "get_student_certificates", "(", "self", ",", "username", ",", "course_ids", "=", "None", ")", ":", "# if no course ids are provided, let's get the user enrollments", "if", "course_ids", "is", "None", ":", "enrollments_client", "=", "CourseEnrollments", "(", "self", ".", "requester", ",", "self", ".", "base_url", ")", "enrollments", "=", "enrollments_client", ".", "get_student_enrollments", "(", ")", "course_ids", "=", "list", "(", "enrollments", ".", "get_enrolled_course_ids", "(", ")", ")", "all_certificates", "=", "[", "]", "for", "course_id", "in", "course_ids", ":", "try", ":", "all_certificates", ".", "append", "(", "self", ".", "get_student_certificate", "(", "username", ",", "course_id", ")", ")", "except", "HTTPError", "as", "error", ":", "if", "error", ".", "response", ".", "status_code", ">=", "500", ":", "raise", "return", "Certificates", "(", "all_certificates", ")" ]
Returns an Certificates object with the user certificates Args: username (str): an edx user's username course_ids (list): a list of edX course ids. Returns: Certificates: object representing the student certificates for a course
[ "Returns", "an", "Certificates", "object", "with", "the", "user", "certificates" ]
083fd23a48b3ef0d39602fc3e7e53ef02f4ad6d6
https://github.com/mitodl/edx-api-client/blob/083fd23a48b3ef0d39602fc3e7e53ef02f4ad6d6/edx_api/certificates/__init__.py#L51-L76
15,806
metakirby5/colorz
colorz.py
get_colors
def get_colors(img): """ Returns a list of all the image's colors. """ w, h = img.size return [color[:3] for count, color in img.convert('RGB').getcolors(w * h)]
python
def get_colors(img): """ Returns a list of all the image's colors. """ w, h = img.size return [color[:3] for count, color in img.convert('RGB').getcolors(w * h)]
[ "def", "get_colors", "(", "img", ")", ":", "w", ",", "h", "=", "img", ".", "size", "return", "[", "color", "[", ":", "3", "]", "for", "count", ",", "color", "in", "img", ".", "convert", "(", "'RGB'", ")", ".", "getcolors", "(", "w", "*", "h", ")", "]" ]
Returns a list of all the image's colors.
[ "Returns", "a", "list", "of", "all", "the", "image", "s", "colors", "." ]
11fd47a28d7a4af5b91d29978524335c8fef8cc9
https://github.com/metakirby5/colorz/blob/11fd47a28d7a4af5b91d29978524335c8fef8cc9/colorz.py#L56-L61
15,807
metakirby5/colorz
colorz.py
clamp
def clamp(color, min_v, max_v): """ Clamps a color such that the value is between min_v and max_v. """ h, s, v = rgb_to_hsv(*map(down_scale, color)) min_v, max_v = map(down_scale, (min_v, max_v)) v = min(max(min_v, v), max_v) return tuple(map(up_scale, hsv_to_rgb(h, s, v)))
python
def clamp(color, min_v, max_v): """ Clamps a color such that the value is between min_v and max_v. """ h, s, v = rgb_to_hsv(*map(down_scale, color)) min_v, max_v = map(down_scale, (min_v, max_v)) v = min(max(min_v, v), max_v) return tuple(map(up_scale, hsv_to_rgb(h, s, v)))
[ "def", "clamp", "(", "color", ",", "min_v", ",", "max_v", ")", ":", "h", ",", "s", ",", "v", "=", "rgb_to_hsv", "(", "*", "map", "(", "down_scale", ",", "color", ")", ")", "min_v", ",", "max_v", "=", "map", "(", "down_scale", ",", "(", "min_v", ",", "max_v", ")", ")", "v", "=", "min", "(", "max", "(", "min_v", ",", "v", ")", ",", "max_v", ")", "return", "tuple", "(", "map", "(", "up_scale", ",", "hsv_to_rgb", "(", "h", ",", "s", ",", "v", ")", ")", ")" ]
Clamps a color such that the value is between min_v and max_v.
[ "Clamps", "a", "color", "such", "that", "the", "value", "is", "between", "min_v", "and", "max_v", "." ]
11fd47a28d7a4af5b91d29978524335c8fef8cc9
https://github.com/metakirby5/colorz/blob/11fd47a28d7a4af5b91d29978524335c8fef8cc9/colorz.py#L64-L71
15,808
metakirby5/colorz
colorz.py
order_by_hue
def order_by_hue(colors): """ Orders colors by hue. """ hsvs = [rgb_to_hsv(*map(down_scale, color)) for color in colors] hsvs.sort(key=lambda t: t[0]) return [tuple(map(up_scale, hsv_to_rgb(*hsv))) for hsv in hsvs]
python
def order_by_hue(colors): """ Orders colors by hue. """ hsvs = [rgb_to_hsv(*map(down_scale, color)) for color in colors] hsvs.sort(key=lambda t: t[0]) return [tuple(map(up_scale, hsv_to_rgb(*hsv))) for hsv in hsvs]
[ "def", "order_by_hue", "(", "colors", ")", ":", "hsvs", "=", "[", "rgb_to_hsv", "(", "*", "map", "(", "down_scale", ",", "color", ")", ")", "for", "color", "in", "colors", "]", "hsvs", ".", "sort", "(", "key", "=", "lambda", "t", ":", "t", "[", "0", "]", ")", "return", "[", "tuple", "(", "map", "(", "up_scale", ",", "hsv_to_rgb", "(", "*", "hsv", ")", ")", ")", "for", "hsv", "in", "hsvs", "]" ]
Orders colors by hue.
[ "Orders", "colors", "by", "hue", "." ]
11fd47a28d7a4af5b91d29978524335c8fef8cc9
https://github.com/metakirby5/colorz/blob/11fd47a28d7a4af5b91d29978524335c8fef8cc9/colorz.py#L74-L80
15,809
metakirby5/colorz
colorz.py
brighten
def brighten(color, brightness): """ Adds or subtracts value to a color. """ h, s, v = rgb_to_hsv(*map(down_scale, color)) return tuple(map(up_scale, hsv_to_rgb(h, s, v + down_scale(brightness))))
python
def brighten(color, brightness): """ Adds or subtracts value to a color. """ h, s, v = rgb_to_hsv(*map(down_scale, color)) return tuple(map(up_scale, hsv_to_rgb(h, s, v + down_scale(brightness))))
[ "def", "brighten", "(", "color", ",", "brightness", ")", ":", "h", ",", "s", ",", "v", "=", "rgb_to_hsv", "(", "*", "map", "(", "down_scale", ",", "color", ")", ")", "return", "tuple", "(", "map", "(", "up_scale", ",", "hsv_to_rgb", "(", "h", ",", "s", ",", "v", "+", "down_scale", "(", "brightness", ")", ")", ")", ")" ]
Adds or subtracts value to a color.
[ "Adds", "or", "subtracts", "value", "to", "a", "color", "." ]
11fd47a28d7a4af5b91d29978524335c8fef8cc9
https://github.com/metakirby5/colorz/blob/11fd47a28d7a4af5b91d29978524335c8fef8cc9/colorz.py#L83-L88
15,810
metakirby5/colorz
colorz.py
colorz
def colorz(fd, n=DEFAULT_NUM_COLORS, min_v=DEFAULT_MINV, max_v=DEFAULT_MAXV, bold_add=DEFAULT_BOLD_ADD, order_colors=True): """ Get the n most dominant colors of an image. Clamps value to between min_v and max_v. Creates bold colors using bold_add. Total number of colors returned is 2*n, optionally ordered by hue. Returns as a list of pairs of RGB triples. For terminal colors, the hue order is: red, yellow, green, cyan, blue, magenta """ img = Image.open(fd) img.thumbnail(THUMB_SIZE) obs = get_colors(img) clamped = [clamp(color, min_v, max_v) for color in obs] clusters, _ = kmeans(array(clamped).astype(float), n) colors = order_by_hue(clusters) if order_colors else clusters return list(zip(colors, [brighten(c, bold_add) for c in colors]))
python
def colorz(fd, n=DEFAULT_NUM_COLORS, min_v=DEFAULT_MINV, max_v=DEFAULT_MAXV, bold_add=DEFAULT_BOLD_ADD, order_colors=True): """ Get the n most dominant colors of an image. Clamps value to between min_v and max_v. Creates bold colors using bold_add. Total number of colors returned is 2*n, optionally ordered by hue. Returns as a list of pairs of RGB triples. For terminal colors, the hue order is: red, yellow, green, cyan, blue, magenta """ img = Image.open(fd) img.thumbnail(THUMB_SIZE) obs = get_colors(img) clamped = [clamp(color, min_v, max_v) for color in obs] clusters, _ = kmeans(array(clamped).astype(float), n) colors = order_by_hue(clusters) if order_colors else clusters return list(zip(colors, [brighten(c, bold_add) for c in colors]))
[ "def", "colorz", "(", "fd", ",", "n", "=", "DEFAULT_NUM_COLORS", ",", "min_v", "=", "DEFAULT_MINV", ",", "max_v", "=", "DEFAULT_MAXV", ",", "bold_add", "=", "DEFAULT_BOLD_ADD", ",", "order_colors", "=", "True", ")", ":", "img", "=", "Image", ".", "open", "(", "fd", ")", "img", ".", "thumbnail", "(", "THUMB_SIZE", ")", "obs", "=", "get_colors", "(", "img", ")", "clamped", "=", "[", "clamp", "(", "color", ",", "min_v", ",", "max_v", ")", "for", "color", "in", "obs", "]", "clusters", ",", "_", "=", "kmeans", "(", "array", "(", "clamped", ")", ".", "astype", "(", "float", ")", ",", "n", ")", "colors", "=", "order_by_hue", "(", "clusters", ")", "if", "order_colors", "else", "clusters", "return", "list", "(", "zip", "(", "colors", ",", "[", "brighten", "(", "c", ",", "bold_add", ")", "for", "c", "in", "colors", "]", ")", ")" ]
Get the n most dominant colors of an image. Clamps value to between min_v and max_v. Creates bold colors using bold_add. Total number of colors returned is 2*n, optionally ordered by hue. Returns as a list of pairs of RGB triples. For terminal colors, the hue order is: red, yellow, green, cyan, blue, magenta
[ "Get", "the", "n", "most", "dominant", "colors", "of", "an", "image", ".", "Clamps", "value", "to", "between", "min_v", "and", "max_v", "." ]
11fd47a28d7a4af5b91d29978524335c8fef8cc9
https://github.com/metakirby5/colorz/blob/11fd47a28d7a4af5b91d29978524335c8fef8cc9/colorz.py#L91-L111
15,811
ansible/pytest-ansible
setup.py
long_description
def long_description(*paths): '''Returns a RST formated string. ''' result = '' # attempt to import pandoc try: import pypandoc except (ImportError, OSError) as e: print("Unable to import pypandoc - %s" % e) return result # attempt md -> rst conversion try: for path in paths: result += '\n' + pypandoc.convert( path, 'rst', format='markdown' ) except (OSError, IOError) as e: print("Failed to convert with pypandoc - %s" % e) return result return result
python
def long_description(*paths): '''Returns a RST formated string. ''' result = '' # attempt to import pandoc try: import pypandoc except (ImportError, OSError) as e: print("Unable to import pypandoc - %s" % e) return result # attempt md -> rst conversion try: for path in paths: result += '\n' + pypandoc.convert( path, 'rst', format='markdown' ) except (OSError, IOError) as e: print("Failed to convert with pypandoc - %s" % e) return result return result
[ "def", "long_description", "(", "*", "paths", ")", ":", "result", "=", "''", "# attempt to import pandoc", "try", ":", "import", "pypandoc", "except", "(", "ImportError", ",", "OSError", ")", "as", "e", ":", "print", "(", "\"Unable to import pypandoc - %s\"", "%", "e", ")", "return", "result", "# attempt md -> rst conversion", "try", ":", "for", "path", "in", "paths", ":", "result", "+=", "'\\n'", "+", "pypandoc", ".", "convert", "(", "path", ",", "'rst'", ",", "format", "=", "'markdown'", ")", "except", "(", "OSError", ",", "IOError", ")", "as", "e", ":", "print", "(", "\"Failed to convert with pypandoc - %s\"", "%", "e", ")", "return", "result", "return", "result" ]
Returns a RST formated string.
[ "Returns", "a", "RST", "formated", "string", "." ]
0f7eea80887715fb290a425b8ea4a1c1cfad1ecf
https://github.com/ansible/pytest-ansible/blob/0f7eea80887715fb290a425b8ea4a1c1cfad1ecf/setup.py#L78-L100
15,812
wmayner/pyphi
pyphi/cache.py
memory_full
def memory_full(): """Check if the memory is too full for further caching.""" current_process = psutil.Process(os.getpid()) return (current_process.memory_percent() > config.MAXIMUM_CACHE_MEMORY_PERCENTAGE)
python
def memory_full(): """Check if the memory is too full for further caching.""" current_process = psutil.Process(os.getpid()) return (current_process.memory_percent() > config.MAXIMUM_CACHE_MEMORY_PERCENTAGE)
[ "def", "memory_full", "(", ")", ":", "current_process", "=", "psutil", ".", "Process", "(", "os", ".", "getpid", "(", ")", ")", "return", "(", "current_process", ".", "memory_percent", "(", ")", ">", "config", ".", "MAXIMUM_CACHE_MEMORY_PERCENTAGE", ")" ]
Check if the memory is too full for further caching.
[ "Check", "if", "the", "memory", "is", "too", "full", "for", "further", "caching", "." ]
deeca69a084d782a6fde7bf26f59e93b593c5d77
https://github.com/wmayner/pyphi/blob/deeca69a084d782a6fde7bf26f59e93b593c5d77/pyphi/cache.py#L26-L30
15,813
wmayner/pyphi
pyphi/cache.py
cache
def cache(cache={}, maxmem=config.MAXIMUM_CACHE_MEMORY_PERCENTAGE, typed=False): """Memory-limited cache decorator. ``maxmem`` is a float between 0 and 100, inclusive, specifying the maximum percentage of physical memory that the cache can use. If ``typed`` is ``True``, arguments of different types will be cached separately. For example, f(3.0) and f(3) will be treated as distinct calls with distinct results. Arguments to the cached function must be hashable. View the cache statistics named tuple (hits, misses, currsize) with f.cache_info(). Clear the cache and statistics with f.cache_clear(). Access the underlying function with f.__wrapped__. """ # Constants shared by all lru cache instances: # Unique object used to signal cache misses. sentinel = object() # Build a key from the function arguments. make_key = _make_key def decorating_function(user_function, hits=0, misses=0): full = False # Bound method to look up a key or return None. cache_get = cache.get if not maxmem: def wrapper(*args, **kwds): # Simple caching without memory limit. nonlocal hits, misses key = make_key(args, kwds, typed) result = cache_get(key, sentinel) if result is not sentinel: hits += 1 return result result = user_function(*args, **kwds) cache[key] = result misses += 1 return result else: def wrapper(*args, **kwds): # Memory-limited caching. nonlocal hits, misses, full key = make_key(args, kwds, typed) result = cache_get(key) if result is not None: hits += 1 return result result = user_function(*args, **kwds) if not full: cache[key] = result # Cache is full if the total recursive usage is greater # than the maximum allowed percentage. current_process = psutil.Process(os.getpid()) full = current_process.memory_percent() > maxmem misses += 1 return result def cache_info(): """Report cache statistics.""" return _CacheInfo(hits, misses, len(cache)) def cache_clear(): """Clear the cache and cache statistics.""" nonlocal hits, misses, full cache.clear() hits = misses = 0 full = False wrapper.cache_info = cache_info wrapper.cache_clear = cache_clear return update_wrapper(wrapper, user_function) return decorating_function
python
def cache(cache={}, maxmem=config.MAXIMUM_CACHE_MEMORY_PERCENTAGE, typed=False): """Memory-limited cache decorator. ``maxmem`` is a float between 0 and 100, inclusive, specifying the maximum percentage of physical memory that the cache can use. If ``typed`` is ``True``, arguments of different types will be cached separately. For example, f(3.0) and f(3) will be treated as distinct calls with distinct results. Arguments to the cached function must be hashable. View the cache statistics named tuple (hits, misses, currsize) with f.cache_info(). Clear the cache and statistics with f.cache_clear(). Access the underlying function with f.__wrapped__. """ # Constants shared by all lru cache instances: # Unique object used to signal cache misses. sentinel = object() # Build a key from the function arguments. make_key = _make_key def decorating_function(user_function, hits=0, misses=0): full = False # Bound method to look up a key or return None. cache_get = cache.get if not maxmem: def wrapper(*args, **kwds): # Simple caching without memory limit. nonlocal hits, misses key = make_key(args, kwds, typed) result = cache_get(key, sentinel) if result is not sentinel: hits += 1 return result result = user_function(*args, **kwds) cache[key] = result misses += 1 return result else: def wrapper(*args, **kwds): # Memory-limited caching. nonlocal hits, misses, full key = make_key(args, kwds, typed) result = cache_get(key) if result is not None: hits += 1 return result result = user_function(*args, **kwds) if not full: cache[key] = result # Cache is full if the total recursive usage is greater # than the maximum allowed percentage. current_process = psutil.Process(os.getpid()) full = current_process.memory_percent() > maxmem misses += 1 return result def cache_info(): """Report cache statistics.""" return _CacheInfo(hits, misses, len(cache)) def cache_clear(): """Clear the cache and cache statistics.""" nonlocal hits, misses, full cache.clear() hits = misses = 0 full = False wrapper.cache_info = cache_info wrapper.cache_clear = cache_clear return update_wrapper(wrapper, user_function) return decorating_function
[ "def", "cache", "(", "cache", "=", "{", "}", ",", "maxmem", "=", "config", ".", "MAXIMUM_CACHE_MEMORY_PERCENTAGE", ",", "typed", "=", "False", ")", ":", "# Constants shared by all lru cache instances:", "# Unique object used to signal cache misses.", "sentinel", "=", "object", "(", ")", "# Build a key from the function arguments.", "make_key", "=", "_make_key", "def", "decorating_function", "(", "user_function", ",", "hits", "=", "0", ",", "misses", "=", "0", ")", ":", "full", "=", "False", "# Bound method to look up a key or return None.", "cache_get", "=", "cache", ".", "get", "if", "not", "maxmem", ":", "def", "wrapper", "(", "*", "args", ",", "*", "*", "kwds", ")", ":", "# Simple caching without memory limit.", "nonlocal", "hits", ",", "misses", "key", "=", "make_key", "(", "args", ",", "kwds", ",", "typed", ")", "result", "=", "cache_get", "(", "key", ",", "sentinel", ")", "if", "result", "is", "not", "sentinel", ":", "hits", "+=", "1", "return", "result", "result", "=", "user_function", "(", "*", "args", ",", "*", "*", "kwds", ")", "cache", "[", "key", "]", "=", "result", "misses", "+=", "1", "return", "result", "else", ":", "def", "wrapper", "(", "*", "args", ",", "*", "*", "kwds", ")", ":", "# Memory-limited caching.", "nonlocal", "hits", ",", "misses", ",", "full", "key", "=", "make_key", "(", "args", ",", "kwds", ",", "typed", ")", "result", "=", "cache_get", "(", "key", ")", "if", "result", "is", "not", "None", ":", "hits", "+=", "1", "return", "result", "result", "=", "user_function", "(", "*", "args", ",", "*", "*", "kwds", ")", "if", "not", "full", ":", "cache", "[", "key", "]", "=", "result", "# Cache is full if the total recursive usage is greater", "# than the maximum allowed percentage.", "current_process", "=", "psutil", ".", "Process", "(", "os", ".", "getpid", "(", ")", ")", "full", "=", "current_process", ".", "memory_percent", "(", ")", ">", "maxmem", "misses", "+=", "1", "return", "result", "def", "cache_info", "(", ")", ":", "\"\"\"Report cache statistics.\"\"\"", "return", "_CacheInfo", "(", "hits", ",", "misses", ",", "len", "(", "cache", ")", ")", "def", "cache_clear", "(", ")", ":", "\"\"\"Clear the cache and cache statistics.\"\"\"", "nonlocal", "hits", ",", "misses", ",", "full", "cache", ".", "clear", "(", ")", "hits", "=", "misses", "=", "0", "full", "=", "False", "wrapper", ".", "cache_info", "=", "cache_info", "wrapper", ".", "cache_clear", "=", "cache_clear", "return", "update_wrapper", "(", "wrapper", ",", "user_function", ")", "return", "decorating_function" ]
Memory-limited cache decorator. ``maxmem`` is a float between 0 and 100, inclusive, specifying the maximum percentage of physical memory that the cache can use. If ``typed`` is ``True``, arguments of different types will be cached separately. For example, f(3.0) and f(3) will be treated as distinct calls with distinct results. Arguments to the cached function must be hashable. View the cache statistics named tuple (hits, misses, currsize) with f.cache_info(). Clear the cache and statistics with f.cache_clear(). Access the underlying function with f.__wrapped__.
[ "Memory", "-", "limited", "cache", "decorator", "." ]
deeca69a084d782a6fde7bf26f59e93b593c5d77
https://github.com/wmayner/pyphi/blob/deeca69a084d782a6fde7bf26f59e93b593c5d77/pyphi/cache.py#L78-L156
15,814
wmayner/pyphi
pyphi/cache.py
MICECache
def MICECache(subsystem, parent_cache=None): """Construct a |MICE| cache. Uses either a Redis-backed cache or a local dict cache on the object. Args: subsystem (Subsystem): The subsystem that this is a cache for. Kwargs: parent_cache (MICECache): The cache generated by the uncut version of ``subsystem``. Any cached |MICE| which are unaffected by the cut are reused in this cache. If None, the cache is initialized empty. """ if config.REDIS_CACHE: cls = RedisMICECache else: cls = DictMICECache return cls(subsystem, parent_cache=parent_cache)
python
def MICECache(subsystem, parent_cache=None): """Construct a |MICE| cache. Uses either a Redis-backed cache or a local dict cache on the object. Args: subsystem (Subsystem): The subsystem that this is a cache for. Kwargs: parent_cache (MICECache): The cache generated by the uncut version of ``subsystem``. Any cached |MICE| which are unaffected by the cut are reused in this cache. If None, the cache is initialized empty. """ if config.REDIS_CACHE: cls = RedisMICECache else: cls = DictMICECache return cls(subsystem, parent_cache=parent_cache)
[ "def", "MICECache", "(", "subsystem", ",", "parent_cache", "=", "None", ")", ":", "if", "config", ".", "REDIS_CACHE", ":", "cls", "=", "RedisMICECache", "else", ":", "cls", "=", "DictMICECache", "return", "cls", "(", "subsystem", ",", "parent_cache", "=", "parent_cache", ")" ]
Construct a |MICE| cache. Uses either a Redis-backed cache or a local dict cache on the object. Args: subsystem (Subsystem): The subsystem that this is a cache for. Kwargs: parent_cache (MICECache): The cache generated by the uncut version of ``subsystem``. Any cached |MICE| which are unaffected by the cut are reused in this cache. If None, the cache is initialized empty.
[ "Construct", "a", "|MICE|", "cache", "." ]
deeca69a084d782a6fde7bf26f59e93b593c5d77
https://github.com/wmayner/pyphi/blob/deeca69a084d782a6fde7bf26f59e93b593c5d77/pyphi/cache.py#L396-L414
15,815
wmayner/pyphi
pyphi/cache.py
method
def method(cache_name, key_prefix=None): """Caching decorator for object-level method caches. Cache key generation is delegated to the cache. Args: cache_name (str): The name of the (already-instantiated) cache on the decorated object which should be used to store results of this method. *key_prefix: A constant to use as part of the cache key in addition to the method arguments. """ def decorator(func): if (func.__name__ in ['cause_repertoire', 'effect_repertoire'] and not config.CACHE_REPERTOIRES): return func @wraps(func) def wrapper(obj, *args, **kwargs): cache = getattr(obj, cache_name) # Delegate key generation key = cache.key(*args, _prefix=key_prefix, **kwargs) # Get cached value, or compute value = cache.get(key) if value is None: # miss value = func(obj, *args, **kwargs) cache.set(key, value) return value return wrapper return decorator
python
def method(cache_name, key_prefix=None): """Caching decorator for object-level method caches. Cache key generation is delegated to the cache. Args: cache_name (str): The name of the (already-instantiated) cache on the decorated object which should be used to store results of this method. *key_prefix: A constant to use as part of the cache key in addition to the method arguments. """ def decorator(func): if (func.__name__ in ['cause_repertoire', 'effect_repertoire'] and not config.CACHE_REPERTOIRES): return func @wraps(func) def wrapper(obj, *args, **kwargs): cache = getattr(obj, cache_name) # Delegate key generation key = cache.key(*args, _prefix=key_prefix, **kwargs) # Get cached value, or compute value = cache.get(key) if value is None: # miss value = func(obj, *args, **kwargs) cache.set(key, value) return value return wrapper return decorator
[ "def", "method", "(", "cache_name", ",", "key_prefix", "=", "None", ")", ":", "def", "decorator", "(", "func", ")", ":", "if", "(", "func", ".", "__name__", "in", "[", "'cause_repertoire'", ",", "'effect_repertoire'", "]", "and", "not", "config", ".", "CACHE_REPERTOIRES", ")", ":", "return", "func", "@", "wraps", "(", "func", ")", "def", "wrapper", "(", "obj", ",", "*", "args", ",", "*", "*", "kwargs", ")", ":", "cache", "=", "getattr", "(", "obj", ",", "cache_name", ")", "# Delegate key generation", "key", "=", "cache", ".", "key", "(", "*", "args", ",", "_prefix", "=", "key_prefix", ",", "*", "*", "kwargs", ")", "# Get cached value, or compute", "value", "=", "cache", ".", "get", "(", "key", ")", "if", "value", "is", "None", ":", "# miss", "value", "=", "func", "(", "obj", ",", "*", "args", ",", "*", "*", "kwargs", ")", "cache", ".", "set", "(", "key", ",", "value", ")", "return", "value", "return", "wrapper", "return", "decorator" ]
Caching decorator for object-level method caches. Cache key generation is delegated to the cache. Args: cache_name (str): The name of the (already-instantiated) cache on the decorated object which should be used to store results of this method. *key_prefix: A constant to use as part of the cache key in addition to the method arguments.
[ "Caching", "decorator", "for", "object", "-", "level", "method", "caches", "." ]
deeca69a084d782a6fde7bf26f59e93b593c5d77
https://github.com/wmayner/pyphi/blob/deeca69a084d782a6fde7bf26f59e93b593c5d77/pyphi/cache.py#L426-L458
15,816
wmayner/pyphi
pyphi/cache.py
DictCache.get
def get(self, key): """Get a value out of the cache. Returns None if the key is not in the cache. Updates cache statistics. """ if key in self.cache: self.hits += 1 return self.cache[key] self.misses += 1 return None
python
def get(self, key): """Get a value out of the cache. Returns None if the key is not in the cache. Updates cache statistics. """ if key in self.cache: self.hits += 1 return self.cache[key] self.misses += 1 return None
[ "def", "get", "(", "self", ",", "key", ")", ":", "if", "key", "in", "self", ".", "cache", ":", "self", ".", "hits", "+=", "1", "return", "self", ".", "cache", "[", "key", "]", "self", ".", "misses", "+=", "1", "return", "None" ]
Get a value out of the cache. Returns None if the key is not in the cache. Updates cache statistics.
[ "Get", "a", "value", "out", "of", "the", "cache", "." ]
deeca69a084d782a6fde7bf26f59e93b593c5d77
https://github.com/wmayner/pyphi/blob/deeca69a084d782a6fde7bf26f59e93b593c5d77/pyphi/cache.py#L183-L193
15,817
wmayner/pyphi
pyphi/cache.py
DictCache.key
def key(self, *args, _prefix=None, **kwargs): """Get the cache key for the given function args. Kwargs: prefix: A constant to prefix to the key. """ if kwargs: raise NotImplementedError( 'kwarg cache keys not implemented') return (_prefix,) + tuple(args)
python
def key(self, *args, _prefix=None, **kwargs): """Get the cache key for the given function args. Kwargs: prefix: A constant to prefix to the key. """ if kwargs: raise NotImplementedError( 'kwarg cache keys not implemented') return (_prefix,) + tuple(args)
[ "def", "key", "(", "self", ",", "*", "args", ",", "_prefix", "=", "None", ",", "*", "*", "kwargs", ")", ":", "if", "kwargs", ":", "raise", "NotImplementedError", "(", "'kwarg cache keys not implemented'", ")", "return", "(", "_prefix", ",", ")", "+", "tuple", "(", "args", ")" ]
Get the cache key for the given function args. Kwargs: prefix: A constant to prefix to the key.
[ "Get", "the", "cache", "key", "for", "the", "given", "function", "args", "." ]
deeca69a084d782a6fde7bf26f59e93b593c5d77
https://github.com/wmayner/pyphi/blob/deeca69a084d782a6fde7bf26f59e93b593c5d77/pyphi/cache.py#L201-L210
15,818
wmayner/pyphi
pyphi/cache.py
RedisCache.info
def info(self): """Return cache information. .. note:: This is not the cache info for the entire Redis key space. """ info = redis_conn.info() return _CacheInfo(info['keyspace_hits'], info['keyspace_misses'], self.size())
python
def info(self): """Return cache information. .. note:: This is not the cache info for the entire Redis key space. """ info = redis_conn.info() return _CacheInfo(info['keyspace_hits'], info['keyspace_misses'], self.size())
[ "def", "info", "(", "self", ")", ":", "info", "=", "redis_conn", ".", "info", "(", ")", "return", "_CacheInfo", "(", "info", "[", "'keyspace_hits'", "]", ",", "info", "[", "'keyspace_misses'", "]", ",", "self", ".", "size", "(", ")", ")" ]
Return cache information. .. note:: This is not the cache info for the entire Redis key space.
[ "Return", "cache", "information", "." ]
deeca69a084d782a6fde7bf26f59e93b593c5d77
https://github.com/wmayner/pyphi/blob/deeca69a084d782a6fde7bf26f59e93b593c5d77/pyphi/cache.py#L251-L259
15,819
wmayner/pyphi
pyphi/cache.py
RedisMICECache.set
def set(self, key, value): """Only need to set if the subsystem is uncut. Caches are only inherited from uncut subsystems. """ if not self.subsystem.is_cut: super().set(key, value)
python
def set(self, key, value): """Only need to set if the subsystem is uncut. Caches are only inherited from uncut subsystems. """ if not self.subsystem.is_cut: super().set(key, value)
[ "def", "set", "(", "self", ",", "key", ",", "value", ")", ":", "if", "not", "self", ".", "subsystem", ".", "is_cut", ":", "super", "(", ")", ".", "set", "(", "key", ",", "value", ")" ]
Only need to set if the subsystem is uncut. Caches are only inherited from uncut subsystems.
[ "Only", "need", "to", "set", "if", "the", "subsystem", "is", "uncut", "." ]
deeca69a084d782a6fde7bf26f59e93b593c5d77
https://github.com/wmayner/pyphi/blob/deeca69a084d782a6fde7bf26f59e93b593c5d77/pyphi/cache.py#L334-L340
15,820
wmayner/pyphi
pyphi/cache.py
DictMICECache._build
def _build(self, parent_cache): """Build the initial cache from the parent. Only include the |MICE| which are unaffected by the subsystem cut. A |MICE| is affected if either the cut splits the mechanism or splits the connections between the purview and mechanism """ for key, mice in parent_cache.cache.items(): if not mice.damaged_by_cut(self.subsystem): self.cache[key] = mice
python
def _build(self, parent_cache): """Build the initial cache from the parent. Only include the |MICE| which are unaffected by the subsystem cut. A |MICE| is affected if either the cut splits the mechanism or splits the connections between the purview and mechanism """ for key, mice in parent_cache.cache.items(): if not mice.damaged_by_cut(self.subsystem): self.cache[key] = mice
[ "def", "_build", "(", "self", ",", "parent_cache", ")", ":", "for", "key", ",", "mice", "in", "parent_cache", ".", "cache", ".", "items", "(", ")", ":", "if", "not", "mice", ".", "damaged_by_cut", "(", "self", ".", "subsystem", ")", ":", "self", ".", "cache", "[", "key", "]", "=", "mice" ]
Build the initial cache from the parent. Only include the |MICE| which are unaffected by the subsystem cut. A |MICE| is affected if either the cut splits the mechanism or splits the connections between the purview and mechanism
[ "Build", "the", "initial", "cache", "from", "the", "parent", "." ]
deeca69a084d782a6fde7bf26f59e93b593c5d77
https://github.com/wmayner/pyphi/blob/deeca69a084d782a6fde7bf26f59e93b593c5d77/pyphi/cache.py#L362-L371
15,821
wmayner/pyphi
pyphi/cache.py
PurviewCache.set
def set(self, key, value): """Only set if purview caching is enabled""" if config.CACHE_POTENTIAL_PURVIEWS: self.cache[key] = value
python
def set(self, key, value): """Only set if purview caching is enabled""" if config.CACHE_POTENTIAL_PURVIEWS: self.cache[key] = value
[ "def", "set", "(", "self", ",", "key", ",", "value", ")", ":", "if", "config", ".", "CACHE_POTENTIAL_PURVIEWS", ":", "self", ".", "cache", "[", "key", "]", "=", "value" ]
Only set if purview caching is enabled
[ "Only", "set", "if", "purview", "caching", "is", "enabled" ]
deeca69a084d782a6fde7bf26f59e93b593c5d77
https://github.com/wmayner/pyphi/blob/deeca69a084d782a6fde7bf26f59e93b593c5d77/pyphi/cache.py#L420-L423
15,822
wmayner/pyphi
pyphi/connectivity.py
apply_boundary_conditions_to_cm
def apply_boundary_conditions_to_cm(external_indices, cm): """Remove connections to or from external nodes.""" cm = cm.copy() cm[external_indices, :] = 0 # Zero-out row cm[:, external_indices] = 0 # Zero-out columnt return cm
python
def apply_boundary_conditions_to_cm(external_indices, cm): """Remove connections to or from external nodes.""" cm = cm.copy() cm[external_indices, :] = 0 # Zero-out row cm[:, external_indices] = 0 # Zero-out columnt return cm
[ "def", "apply_boundary_conditions_to_cm", "(", "external_indices", ",", "cm", ")", ":", "cm", "=", "cm", ".", "copy", "(", ")", "cm", "[", "external_indices", ",", ":", "]", "=", "0", "# Zero-out row", "cm", "[", ":", ",", "external_indices", "]", "=", "0", "# Zero-out columnt", "return", "cm" ]
Remove connections to or from external nodes.
[ "Remove", "connections", "to", "or", "from", "external", "nodes", "." ]
deeca69a084d782a6fde7bf26f59e93b593c5d77
https://github.com/wmayner/pyphi/blob/deeca69a084d782a6fde7bf26f59e93b593c5d77/pyphi/connectivity.py#L13-L18
15,823
wmayner/pyphi
pyphi/connectivity.py
get_inputs_from_cm
def get_inputs_from_cm(index, cm): """Return indices of inputs to the node with the given index.""" return tuple(i for i in range(cm.shape[0]) if cm[i][index])
python
def get_inputs_from_cm(index, cm): """Return indices of inputs to the node with the given index.""" return tuple(i for i in range(cm.shape[0]) if cm[i][index])
[ "def", "get_inputs_from_cm", "(", "index", ",", "cm", ")", ":", "return", "tuple", "(", "i", "for", "i", "in", "range", "(", "cm", ".", "shape", "[", "0", "]", ")", "if", "cm", "[", "i", "]", "[", "index", "]", ")" ]
Return indices of inputs to the node with the given index.
[ "Return", "indices", "of", "inputs", "to", "the", "node", "with", "the", "given", "index", "." ]
deeca69a084d782a6fde7bf26f59e93b593c5d77
https://github.com/wmayner/pyphi/blob/deeca69a084d782a6fde7bf26f59e93b593c5d77/pyphi/connectivity.py#L21-L23
15,824
wmayner/pyphi
pyphi/connectivity.py
get_outputs_from_cm
def get_outputs_from_cm(index, cm): """Return indices of the outputs of node with the given index.""" return tuple(i for i in range(cm.shape[0]) if cm[index][i])
python
def get_outputs_from_cm(index, cm): """Return indices of the outputs of node with the given index.""" return tuple(i for i in range(cm.shape[0]) if cm[index][i])
[ "def", "get_outputs_from_cm", "(", "index", ",", "cm", ")", ":", "return", "tuple", "(", "i", "for", "i", "in", "range", "(", "cm", ".", "shape", "[", "0", "]", ")", "if", "cm", "[", "index", "]", "[", "i", "]", ")" ]
Return indices of the outputs of node with the given index.
[ "Return", "indices", "of", "the", "outputs", "of", "node", "with", "the", "given", "index", "." ]
deeca69a084d782a6fde7bf26f59e93b593c5d77
https://github.com/wmayner/pyphi/blob/deeca69a084d782a6fde7bf26f59e93b593c5d77/pyphi/connectivity.py#L26-L28
15,825
wmayner/pyphi
pyphi/connectivity.py
causally_significant_nodes
def causally_significant_nodes(cm): """Return indices of nodes that have both inputs and outputs.""" inputs = cm.sum(0) outputs = cm.sum(1) nodes_with_inputs_and_outputs = np.logical_and(inputs > 0, outputs > 0) return tuple(np.where(nodes_with_inputs_and_outputs)[0])
python
def causally_significant_nodes(cm): """Return indices of nodes that have both inputs and outputs.""" inputs = cm.sum(0) outputs = cm.sum(1) nodes_with_inputs_and_outputs = np.logical_and(inputs > 0, outputs > 0) return tuple(np.where(nodes_with_inputs_and_outputs)[0])
[ "def", "causally_significant_nodes", "(", "cm", ")", ":", "inputs", "=", "cm", ".", "sum", "(", "0", ")", "outputs", "=", "cm", ".", "sum", "(", "1", ")", "nodes_with_inputs_and_outputs", "=", "np", ".", "logical_and", "(", "inputs", ">", "0", ",", "outputs", ">", "0", ")", "return", "tuple", "(", "np", ".", "where", "(", "nodes_with_inputs_and_outputs", ")", "[", "0", "]", ")" ]
Return indices of nodes that have both inputs and outputs.
[ "Return", "indices", "of", "nodes", "that", "have", "both", "inputs", "and", "outputs", "." ]
deeca69a084d782a6fde7bf26f59e93b593c5d77
https://github.com/wmayner/pyphi/blob/deeca69a084d782a6fde7bf26f59e93b593c5d77/pyphi/connectivity.py#L31-L36
15,826
wmayner/pyphi
pyphi/connectivity.py
relevant_connections
def relevant_connections(n, _from, to): """Construct a connectivity matrix. Args: n (int): The dimensions of the matrix _from (tuple[int]): Nodes with outgoing connections to ``to`` to (tuple[int]): Nodes with incoming connections from ``_from`` Returns: np.ndarray: An |n x n| connectivity matrix with the |i,jth| entry is ``1`` if |i| is in ``_from`` and |j| is in ``to``, and 0 otherwise. """ cm = np.zeros((n, n)) # Don't try and index with empty arrays. Older versions of NumPy # (at least up to 1.9.3) break with empty array indices. if not _from or not to: return cm cm[np.ix_(_from, to)] = 1 return cm
python
def relevant_connections(n, _from, to): """Construct a connectivity matrix. Args: n (int): The dimensions of the matrix _from (tuple[int]): Nodes with outgoing connections to ``to`` to (tuple[int]): Nodes with incoming connections from ``_from`` Returns: np.ndarray: An |n x n| connectivity matrix with the |i,jth| entry is ``1`` if |i| is in ``_from`` and |j| is in ``to``, and 0 otherwise. """ cm = np.zeros((n, n)) # Don't try and index with empty arrays. Older versions of NumPy # (at least up to 1.9.3) break with empty array indices. if not _from or not to: return cm cm[np.ix_(_from, to)] = 1 return cm
[ "def", "relevant_connections", "(", "n", ",", "_from", ",", "to", ")", ":", "cm", "=", "np", ".", "zeros", "(", "(", "n", ",", "n", ")", ")", "# Don't try and index with empty arrays. Older versions of NumPy", "# (at least up to 1.9.3) break with empty array indices.", "if", "not", "_from", "or", "not", "to", ":", "return", "cm", "cm", "[", "np", ".", "ix_", "(", "_from", ",", "to", ")", "]", "=", "1", "return", "cm" ]
Construct a connectivity matrix. Args: n (int): The dimensions of the matrix _from (tuple[int]): Nodes with outgoing connections to ``to`` to (tuple[int]): Nodes with incoming connections from ``_from`` Returns: np.ndarray: An |n x n| connectivity matrix with the |i,jth| entry is ``1`` if |i| is in ``_from`` and |j| is in ``to``, and 0 otherwise.
[ "Construct", "a", "connectivity", "matrix", "." ]
deeca69a084d782a6fde7bf26f59e93b593c5d77
https://github.com/wmayner/pyphi/blob/deeca69a084d782a6fde7bf26f59e93b593c5d77/pyphi/connectivity.py#L40-L60
15,827
wmayner/pyphi
pyphi/connectivity.py
block_cm
def block_cm(cm): """Return whether ``cm`` can be arranged as a block connectivity matrix. If so, the corresponding mechanism/purview is trivially reducible. Technically, only square matrices are "block diagonal", but the notion of connectivity carries over. We test for block connectivity by trying to grow a block of nodes such that: - 'source' nodes only input to nodes in the block - 'sink' nodes only receive inputs from source nodes in the block For example, the following connectivity matrix represents connections from ``nodes1 = A, B, C`` to ``nodes2 = D, E, F, G`` (without loss of generality, note that ``nodes1`` and ``nodes2`` may share elements):: D E F G A [1, 1, 0, 0] B [1, 1, 0, 0] C [0, 0, 1, 1] Since nodes |AB| only connect to nodes |DE|, and node |C| only connects to nodes |FG|, the subgraph is reducible, because the cut :: A,B C ─── ✕ ─── D,E F,G does not change the structure of the graph. """ if np.any(cm.sum(1) == 0): return True if np.all(cm.sum(1) == 1): return True outputs = list(range(cm.shape[1])) # CM helpers: def outputs_of(nodes): """Return all nodes that `nodes` connect to (output to).""" return np.where(cm[nodes, :].sum(0))[0] def inputs_to(nodes): """Return all nodes which connect to (input to) `nodes`.""" return np.where(cm[:, nodes].sum(1))[0] # Start: source node with most outputs sources = [np.argmax(cm.sum(1))] sinks = outputs_of(sources) sink_inputs = inputs_to(sinks) while True: if np.array_equal(sink_inputs, sources): # sources exclusively connect to sinks. # There are no other nodes which connect sink nodes, # hence set(sources) + set(sinks) form a component # which is not connected to the rest of the graph return True # Recompute sources, sinks, and sink_inputs sources = sink_inputs sinks = outputs_of(sources) sink_inputs = inputs_to(sinks) # Considering all output nodes? if np.array_equal(sinks, outputs): return False
python
def block_cm(cm): """Return whether ``cm`` can be arranged as a block connectivity matrix. If so, the corresponding mechanism/purview is trivially reducible. Technically, only square matrices are "block diagonal", but the notion of connectivity carries over. We test for block connectivity by trying to grow a block of nodes such that: - 'source' nodes only input to nodes in the block - 'sink' nodes only receive inputs from source nodes in the block For example, the following connectivity matrix represents connections from ``nodes1 = A, B, C`` to ``nodes2 = D, E, F, G`` (without loss of generality, note that ``nodes1`` and ``nodes2`` may share elements):: D E F G A [1, 1, 0, 0] B [1, 1, 0, 0] C [0, 0, 1, 1] Since nodes |AB| only connect to nodes |DE|, and node |C| only connects to nodes |FG|, the subgraph is reducible, because the cut :: A,B C ─── ✕ ─── D,E F,G does not change the structure of the graph. """ if np.any(cm.sum(1) == 0): return True if np.all(cm.sum(1) == 1): return True outputs = list(range(cm.shape[1])) # CM helpers: def outputs_of(nodes): """Return all nodes that `nodes` connect to (output to).""" return np.where(cm[nodes, :].sum(0))[0] def inputs_to(nodes): """Return all nodes which connect to (input to) `nodes`.""" return np.where(cm[:, nodes].sum(1))[0] # Start: source node with most outputs sources = [np.argmax(cm.sum(1))] sinks = outputs_of(sources) sink_inputs = inputs_to(sinks) while True: if np.array_equal(sink_inputs, sources): # sources exclusively connect to sinks. # There are no other nodes which connect sink nodes, # hence set(sources) + set(sinks) form a component # which is not connected to the rest of the graph return True # Recompute sources, sinks, and sink_inputs sources = sink_inputs sinks = outputs_of(sources) sink_inputs = inputs_to(sinks) # Considering all output nodes? if np.array_equal(sinks, outputs): return False
[ "def", "block_cm", "(", "cm", ")", ":", "if", "np", ".", "any", "(", "cm", ".", "sum", "(", "1", ")", "==", "0", ")", ":", "return", "True", "if", "np", ".", "all", "(", "cm", ".", "sum", "(", "1", ")", "==", "1", ")", ":", "return", "True", "outputs", "=", "list", "(", "range", "(", "cm", ".", "shape", "[", "1", "]", ")", ")", "# CM helpers:", "def", "outputs_of", "(", "nodes", ")", ":", "\"\"\"Return all nodes that `nodes` connect to (output to).\"\"\"", "return", "np", ".", "where", "(", "cm", "[", "nodes", ",", ":", "]", ".", "sum", "(", "0", ")", ")", "[", "0", "]", "def", "inputs_to", "(", "nodes", ")", ":", "\"\"\"Return all nodes which connect to (input to) `nodes`.\"\"\"", "return", "np", ".", "where", "(", "cm", "[", ":", ",", "nodes", "]", ".", "sum", "(", "1", ")", ")", "[", "0", "]", "# Start: source node with most outputs", "sources", "=", "[", "np", ".", "argmax", "(", "cm", ".", "sum", "(", "1", ")", ")", "]", "sinks", "=", "outputs_of", "(", "sources", ")", "sink_inputs", "=", "inputs_to", "(", "sinks", ")", "while", "True", ":", "if", "np", ".", "array_equal", "(", "sink_inputs", ",", "sources", ")", ":", "# sources exclusively connect to sinks.", "# There are no other nodes which connect sink nodes,", "# hence set(sources) + set(sinks) form a component", "# which is not connected to the rest of the graph", "return", "True", "# Recompute sources, sinks, and sink_inputs", "sources", "=", "sink_inputs", "sinks", "=", "outputs_of", "(", "sources", ")", "sink_inputs", "=", "inputs_to", "(", "sinks", ")", "# Considering all output nodes?", "if", "np", ".", "array_equal", "(", "sinks", ",", "outputs", ")", ":", "return", "False" ]
Return whether ``cm`` can be arranged as a block connectivity matrix. If so, the corresponding mechanism/purview is trivially reducible. Technically, only square matrices are "block diagonal", but the notion of connectivity carries over. We test for block connectivity by trying to grow a block of nodes such that: - 'source' nodes only input to nodes in the block - 'sink' nodes only receive inputs from source nodes in the block For example, the following connectivity matrix represents connections from ``nodes1 = A, B, C`` to ``nodes2 = D, E, F, G`` (without loss of generality, note that ``nodes1`` and ``nodes2`` may share elements):: D E F G A [1, 1, 0, 0] B [1, 1, 0, 0] C [0, 0, 1, 1] Since nodes |AB| only connect to nodes |DE|, and node |C| only connects to nodes |FG|, the subgraph is reducible, because the cut :: A,B C ─── ✕ ─── D,E F,G does not change the structure of the graph.
[ "Return", "whether", "cm", "can", "be", "arranged", "as", "a", "block", "connectivity", "matrix", "." ]
deeca69a084d782a6fde7bf26f59e93b593c5d77
https://github.com/wmayner/pyphi/blob/deeca69a084d782a6fde7bf26f59e93b593c5d77/pyphi/connectivity.py#L63-L130
15,828
wmayner/pyphi
pyphi/connectivity.py
block_reducible
def block_reducible(cm, nodes1, nodes2): """Return whether connections from ``nodes1`` to ``nodes2`` are reducible. Args: cm (np.ndarray): The network's connectivity matrix. nodes1 (tuple[int]): Source nodes nodes2 (tuple[int]): Sink nodes """ # Trivial case if not nodes1 or not nodes2: return True cm = cm[np.ix_(nodes1, nodes2)] # Validate the connectivity matrix. if not cm.sum(0).all() or not cm.sum(1).all(): return True if len(nodes1) > 1 and len(nodes2) > 1: return block_cm(cm) return False
python
def block_reducible(cm, nodes1, nodes2): """Return whether connections from ``nodes1`` to ``nodes2`` are reducible. Args: cm (np.ndarray): The network's connectivity matrix. nodes1 (tuple[int]): Source nodes nodes2 (tuple[int]): Sink nodes """ # Trivial case if not nodes1 or not nodes2: return True cm = cm[np.ix_(nodes1, nodes2)] # Validate the connectivity matrix. if not cm.sum(0).all() or not cm.sum(1).all(): return True if len(nodes1) > 1 and len(nodes2) > 1: return block_cm(cm) return False
[ "def", "block_reducible", "(", "cm", ",", "nodes1", ",", "nodes2", ")", ":", "# Trivial case", "if", "not", "nodes1", "or", "not", "nodes2", ":", "return", "True", "cm", "=", "cm", "[", "np", ".", "ix_", "(", "nodes1", ",", "nodes2", ")", "]", "# Validate the connectivity matrix.", "if", "not", "cm", ".", "sum", "(", "0", ")", ".", "all", "(", ")", "or", "not", "cm", ".", "sum", "(", "1", ")", ".", "all", "(", ")", ":", "return", "True", "if", "len", "(", "nodes1", ")", ">", "1", "and", "len", "(", "nodes2", ")", ">", "1", ":", "return", "block_cm", "(", "cm", ")", "return", "False" ]
Return whether connections from ``nodes1`` to ``nodes2`` are reducible. Args: cm (np.ndarray): The network's connectivity matrix. nodes1 (tuple[int]): Source nodes nodes2 (tuple[int]): Sink nodes
[ "Return", "whether", "connections", "from", "nodes1", "to", "nodes2", "are", "reducible", "." ]
deeca69a084d782a6fde7bf26f59e93b593c5d77
https://github.com/wmayner/pyphi/blob/deeca69a084d782a6fde7bf26f59e93b593c5d77/pyphi/connectivity.py#L135-L154
15,829
wmayner/pyphi
pyphi/connectivity.py
_connected
def _connected(cm, nodes, connection): """Test connectivity for the connectivity matrix.""" if nodes is not None: cm = cm[np.ix_(nodes, nodes)] num_components, _ = connected_components(cm, connection=connection) return num_components < 2
python
def _connected(cm, nodes, connection): """Test connectivity for the connectivity matrix.""" if nodes is not None: cm = cm[np.ix_(nodes, nodes)] num_components, _ = connected_components(cm, connection=connection) return num_components < 2
[ "def", "_connected", "(", "cm", ",", "nodes", ",", "connection", ")", ":", "if", "nodes", "is", "not", "None", ":", "cm", "=", "cm", "[", "np", ".", "ix_", "(", "nodes", ",", "nodes", ")", "]", "num_components", ",", "_", "=", "connected_components", "(", "cm", ",", "connection", "=", "connection", ")", "return", "num_components", "<", "2" ]
Test connectivity for the connectivity matrix.
[ "Test", "connectivity", "for", "the", "connectivity", "matrix", "." ]
deeca69a084d782a6fde7bf26f59e93b593c5d77
https://github.com/wmayner/pyphi/blob/deeca69a084d782a6fde7bf26f59e93b593c5d77/pyphi/connectivity.py#L157-L163
15,830
wmayner/pyphi
pyphi/connectivity.py
is_full
def is_full(cm, nodes1, nodes2): """Test connectivity of one set of nodes to another. Args: cm (``np.ndarrray``): The connectivity matrix nodes1 (tuple[int]): The nodes whose outputs to ``nodes2`` will be tested. nodes2 (tuple[int]): The nodes whose inputs from ``nodes1`` will be tested. Returns: bool: ``True`` if all elements in ``nodes1`` output to some element in ``nodes2`` and all elements in ``nodes2`` have an input from some element in ``nodes1``, or if either set of nodes is empty; ``False`` otherwise. """ if not nodes1 or not nodes2: return True cm = cm[np.ix_(nodes1, nodes2)] # Do all nodes have at least one connection? return cm.sum(0).all() and cm.sum(1).all()
python
def is_full(cm, nodes1, nodes2): """Test connectivity of one set of nodes to another. Args: cm (``np.ndarrray``): The connectivity matrix nodes1 (tuple[int]): The nodes whose outputs to ``nodes2`` will be tested. nodes2 (tuple[int]): The nodes whose inputs from ``nodes1`` will be tested. Returns: bool: ``True`` if all elements in ``nodes1`` output to some element in ``nodes2`` and all elements in ``nodes2`` have an input from some element in ``nodes1``, or if either set of nodes is empty; ``False`` otherwise. """ if not nodes1 or not nodes2: return True cm = cm[np.ix_(nodes1, nodes2)] # Do all nodes have at least one connection? return cm.sum(0).all() and cm.sum(1).all()
[ "def", "is_full", "(", "cm", ",", "nodes1", ",", "nodes2", ")", ":", "if", "not", "nodes1", "or", "not", "nodes2", ":", "return", "True", "cm", "=", "cm", "[", "np", ".", "ix_", "(", "nodes1", ",", "nodes2", ")", "]", "# Do all nodes have at least one connection?", "return", "cm", ".", "sum", "(", "0", ")", ".", "all", "(", ")", "and", "cm", ".", "sum", "(", "1", ")", ".", "all", "(", ")" ]
Test connectivity of one set of nodes to another. Args: cm (``np.ndarrray``): The connectivity matrix nodes1 (tuple[int]): The nodes whose outputs to ``nodes2`` will be tested. nodes2 (tuple[int]): The nodes whose inputs from ``nodes1`` will be tested. Returns: bool: ``True`` if all elements in ``nodes1`` output to some element in ``nodes2`` and all elements in ``nodes2`` have an input from some element in ``nodes1``, or if either set of nodes is empty; ``False`` otherwise.
[ "Test", "connectivity", "of", "one", "set", "of", "nodes", "to", "another", "." ]
deeca69a084d782a6fde7bf26f59e93b593c5d77
https://github.com/wmayner/pyphi/blob/deeca69a084d782a6fde7bf26f59e93b593c5d77/pyphi/connectivity.py#L192-L214
15,831
wmayner/pyphi
pyphi/models/cuts.py
_CutBase.apply_cut
def apply_cut(self, cm): """Return a modified connectivity matrix with all connections that are severed by this cut removed. Args: cm (np.ndarray): A connectivity matrix. """ # Invert the cut matrix, creating a matrix of preserved connections inverse = np.logical_not(self.cut_matrix(cm.shape[0])).astype(int) return cm * inverse
python
def apply_cut(self, cm): """Return a modified connectivity matrix with all connections that are severed by this cut removed. Args: cm (np.ndarray): A connectivity matrix. """ # Invert the cut matrix, creating a matrix of preserved connections inverse = np.logical_not(self.cut_matrix(cm.shape[0])).astype(int) return cm * inverse
[ "def", "apply_cut", "(", "self", ",", "cm", ")", ":", "# Invert the cut matrix, creating a matrix of preserved connections", "inverse", "=", "np", ".", "logical_not", "(", "self", ".", "cut_matrix", "(", "cm", ".", "shape", "[", "0", "]", ")", ")", ".", "astype", "(", "int", ")", "return", "cm", "*", "inverse" ]
Return a modified connectivity matrix with all connections that are severed by this cut removed. Args: cm (np.ndarray): A connectivity matrix.
[ "Return", "a", "modified", "connectivity", "matrix", "with", "all", "connections", "that", "are", "severed", "by", "this", "cut", "removed", "." ]
deeca69a084d782a6fde7bf26f59e93b593c5d77
https://github.com/wmayner/pyphi/blob/deeca69a084d782a6fde7bf26f59e93b593c5d77/pyphi/models/cuts.py#L48-L57
15,832
wmayner/pyphi
pyphi/models/cuts.py
_CutBase.cuts_connections
def cuts_connections(self, a, b): """Check if this cut severs any connections from ``a`` to ``b``. Args: a (tuple[int]): A set of nodes. b (tuple[int]): A set of nodes. """ n = max(self.indices) + 1 return self.cut_matrix(n)[np.ix_(a, b)].any()
python
def cuts_connections(self, a, b): """Check if this cut severs any connections from ``a`` to ``b``. Args: a (tuple[int]): A set of nodes. b (tuple[int]): A set of nodes. """ n = max(self.indices) + 1 return self.cut_matrix(n)[np.ix_(a, b)].any()
[ "def", "cuts_connections", "(", "self", ",", "a", ",", "b", ")", ":", "n", "=", "max", "(", "self", ".", "indices", ")", "+", "1", "return", "self", ".", "cut_matrix", "(", "n", ")", "[", "np", ".", "ix_", "(", "a", ",", "b", ")", "]", ".", "any", "(", ")" ]
Check if this cut severs any connections from ``a`` to ``b``. Args: a (tuple[int]): A set of nodes. b (tuple[int]): A set of nodes.
[ "Check", "if", "this", "cut", "severs", "any", "connections", "from", "a", "to", "b", "." ]
deeca69a084d782a6fde7bf26f59e93b593c5d77
https://github.com/wmayner/pyphi/blob/deeca69a084d782a6fde7bf26f59e93b593c5d77/pyphi/models/cuts.py#L59-L67
15,833
wmayner/pyphi
pyphi/models/cuts.py
_CutBase.all_cut_mechanisms
def all_cut_mechanisms(self): """Return all mechanisms with elements on both sides of this cut. Yields: tuple[int]: The next cut mechanism. """ for mechanism in utils.powerset(self.indices, nonempty=True): if self.splits_mechanism(mechanism): yield mechanism
python
def all_cut_mechanisms(self): """Return all mechanisms with elements on both sides of this cut. Yields: tuple[int]: The next cut mechanism. """ for mechanism in utils.powerset(self.indices, nonempty=True): if self.splits_mechanism(mechanism): yield mechanism
[ "def", "all_cut_mechanisms", "(", "self", ")", ":", "for", "mechanism", "in", "utils", ".", "powerset", "(", "self", ".", "indices", ",", "nonempty", "=", "True", ")", ":", "if", "self", ".", "splits_mechanism", "(", "mechanism", ")", ":", "yield", "mechanism" ]
Return all mechanisms with elements on both sides of this cut. Yields: tuple[int]: The next cut mechanism.
[ "Return", "all", "mechanisms", "with", "elements", "on", "both", "sides", "of", "this", "cut", "." ]
deeca69a084d782a6fde7bf26f59e93b593c5d77
https://github.com/wmayner/pyphi/blob/deeca69a084d782a6fde7bf26f59e93b593c5d77/pyphi/models/cuts.py#L81-L89
15,834
wmayner/pyphi
pyphi/models/cuts.py
Cut.cut_matrix
def cut_matrix(self, n): """Compute the cut matrix for this cut. The cut matrix is a square matrix which represents connections severed by the cut. Args: n (int): The size of the network. Example: >>> cut = Cut((1,), (2,)) >>> cut.cut_matrix(3) array([[0., 0., 0.], [0., 0., 1.], [0., 0., 0.]]) """ return connectivity.relevant_connections(n, self.from_nodes, self.to_nodes)
python
def cut_matrix(self, n): """Compute the cut matrix for this cut. The cut matrix is a square matrix which represents connections severed by the cut. Args: n (int): The size of the network. Example: >>> cut = Cut((1,), (2,)) >>> cut.cut_matrix(3) array([[0., 0., 0.], [0., 0., 1.], [0., 0., 0.]]) """ return connectivity.relevant_connections(n, self.from_nodes, self.to_nodes)
[ "def", "cut_matrix", "(", "self", ",", "n", ")", ":", "return", "connectivity", ".", "relevant_connections", "(", "n", ",", "self", ".", "from_nodes", ",", "self", ".", "to_nodes", ")" ]
Compute the cut matrix for this cut. The cut matrix is a square matrix which represents connections severed by the cut. Args: n (int): The size of the network. Example: >>> cut = Cut((1,), (2,)) >>> cut.cut_matrix(3) array([[0., 0., 0.], [0., 0., 1.], [0., 0., 0.]])
[ "Compute", "the", "cut", "matrix", "for", "this", "cut", "." ]
deeca69a084d782a6fde7bf26f59e93b593c5d77
https://github.com/wmayner/pyphi/blob/deeca69a084d782a6fde7bf26f59e93b593c5d77/pyphi/models/cuts.py#L153-L170
15,835
wmayner/pyphi
pyphi/models/cuts.py
KCut.cut_matrix
def cut_matrix(self, n): """The matrix of connections that are severed by this cut.""" cm = np.zeros((n, n)) for part in self.partition: from_, to = self.direction.order(part.mechanism, part.purview) # All indices external to this part external = tuple(set(self.indices) - set(to)) cm[np.ix_(from_, external)] = 1 return cm
python
def cut_matrix(self, n): """The matrix of connections that are severed by this cut.""" cm = np.zeros((n, n)) for part in self.partition: from_, to = self.direction.order(part.mechanism, part.purview) # All indices external to this part external = tuple(set(self.indices) - set(to)) cm[np.ix_(from_, external)] = 1 return cm
[ "def", "cut_matrix", "(", "self", ",", "n", ")", ":", "cm", "=", "np", ".", "zeros", "(", "(", "n", ",", "n", ")", ")", "for", "part", "in", "self", ".", "partition", ":", "from_", ",", "to", "=", "self", ".", "direction", ".", "order", "(", "part", ".", "mechanism", ",", "part", ".", "purview", ")", "# All indices external to this part", "external", "=", "tuple", "(", "set", "(", "self", ".", "indices", ")", "-", "set", "(", "to", ")", ")", "cm", "[", "np", ".", "ix_", "(", "from_", ",", "external", ")", "]", "=", "1", "return", "cm" ]
The matrix of connections that are severed by this cut.
[ "The", "matrix", "of", "connections", "that", "are", "severed", "by", "this", "cut", "." ]
deeca69a084d782a6fde7bf26f59e93b593c5d77
https://github.com/wmayner/pyphi/blob/deeca69a084d782a6fde7bf26f59e93b593c5d77/pyphi/models/cuts.py#L204-L214
15,836
wmayner/pyphi
pyphi/compute/distance.py
concept_distance
def concept_distance(c1, c2): """Return the distance between two concepts in concept space. Args: c1 (Concept): The first concept. c2 (Concept): The second concept. Returns: float: The distance between the two concepts in concept space. """ # Calculate the sum of the cause and effect EMDs, expanding the repertoires # to the combined purview of the two concepts, so that the EMD signatures # are the same size. cause_purview = tuple(set(c1.cause.purview + c2.cause.purview)) effect_purview = tuple(set(c1.effect.purview + c2.effect.purview)) # Take the sum return (repertoire_distance(c1.expand_cause_repertoire(cause_purview), c2.expand_cause_repertoire(cause_purview)) + repertoire_distance(c1.expand_effect_repertoire(effect_purview), c2.expand_effect_repertoire(effect_purview)))
python
def concept_distance(c1, c2): """Return the distance between two concepts in concept space. Args: c1 (Concept): The first concept. c2 (Concept): The second concept. Returns: float: The distance between the two concepts in concept space. """ # Calculate the sum of the cause and effect EMDs, expanding the repertoires # to the combined purview of the two concepts, so that the EMD signatures # are the same size. cause_purview = tuple(set(c1.cause.purview + c2.cause.purview)) effect_purview = tuple(set(c1.effect.purview + c2.effect.purview)) # Take the sum return (repertoire_distance(c1.expand_cause_repertoire(cause_purview), c2.expand_cause_repertoire(cause_purview)) + repertoire_distance(c1.expand_effect_repertoire(effect_purview), c2.expand_effect_repertoire(effect_purview)))
[ "def", "concept_distance", "(", "c1", ",", "c2", ")", ":", "# Calculate the sum of the cause and effect EMDs, expanding the repertoires", "# to the combined purview of the two concepts, so that the EMD signatures", "# are the same size.", "cause_purview", "=", "tuple", "(", "set", "(", "c1", ".", "cause", ".", "purview", "+", "c2", ".", "cause", ".", "purview", ")", ")", "effect_purview", "=", "tuple", "(", "set", "(", "c1", ".", "effect", ".", "purview", "+", "c2", ".", "effect", ".", "purview", ")", ")", "# Take the sum", "return", "(", "repertoire_distance", "(", "c1", ".", "expand_cause_repertoire", "(", "cause_purview", ")", ",", "c2", ".", "expand_cause_repertoire", "(", "cause_purview", ")", ")", "+", "repertoire_distance", "(", "c1", ".", "expand_effect_repertoire", "(", "effect_purview", ")", ",", "c2", ".", "expand_effect_repertoire", "(", "effect_purview", ")", ")", ")" ]
Return the distance between two concepts in concept space. Args: c1 (Concept): The first concept. c2 (Concept): The second concept. Returns: float: The distance between the two concepts in concept space.
[ "Return", "the", "distance", "between", "two", "concepts", "in", "concept", "space", "." ]
deeca69a084d782a6fde7bf26f59e93b593c5d77
https://github.com/wmayner/pyphi/blob/deeca69a084d782a6fde7bf26f59e93b593c5d77/pyphi/compute/distance.py#L16-L35
15,837
wmayner/pyphi
pyphi/compute/distance.py
small_phi_ces_distance
def small_phi_ces_distance(C1, C2): """Return the difference in |small_phi| between |CauseEffectStructure|.""" return sum(c.phi for c in C1) - sum(c.phi for c in C2)
python
def small_phi_ces_distance(C1, C2): """Return the difference in |small_phi| between |CauseEffectStructure|.""" return sum(c.phi for c in C1) - sum(c.phi for c in C2)
[ "def", "small_phi_ces_distance", "(", "C1", ",", "C2", ")", ":", "return", "sum", "(", "c", ".", "phi", "for", "c", "in", "C1", ")", "-", "sum", "(", "c", ".", "phi", "for", "c", "in", "C2", ")" ]
Return the difference in |small_phi| between |CauseEffectStructure|.
[ "Return", "the", "difference", "in", "|small_phi|", "between", "|CauseEffectStructure|", "." ]
deeca69a084d782a6fde7bf26f59e93b593c5d77
https://github.com/wmayner/pyphi/blob/deeca69a084d782a6fde7bf26f59e93b593c5d77/pyphi/compute/distance.py#L149-L151
15,838
wmayner/pyphi
pyphi/node.py
generate_nodes
def generate_nodes(tpm, cm, network_state, indices, node_labels=None): """Generate |Node| objects for a subsystem. Args: tpm (np.ndarray): The system's TPM cm (np.ndarray): The corresponding CM. network_state (tuple): The state of the network. indices (tuple[int]): Indices to generate nodes for. Keyword Args: node_labels (|NodeLabels|): Textual labels for each node. Returns: tuple[Node]: The nodes of the system. """ if node_labels is None: node_labels = NodeLabels(None, indices) node_state = utils.state_of(indices, network_state) return tuple(Node(tpm, cm, index, state, node_labels) for index, state in zip(indices, node_state))
python
def generate_nodes(tpm, cm, network_state, indices, node_labels=None): """Generate |Node| objects for a subsystem. Args: tpm (np.ndarray): The system's TPM cm (np.ndarray): The corresponding CM. network_state (tuple): The state of the network. indices (tuple[int]): Indices to generate nodes for. Keyword Args: node_labels (|NodeLabels|): Textual labels for each node. Returns: tuple[Node]: The nodes of the system. """ if node_labels is None: node_labels = NodeLabels(None, indices) node_state = utils.state_of(indices, network_state) return tuple(Node(tpm, cm, index, state, node_labels) for index, state in zip(indices, node_state))
[ "def", "generate_nodes", "(", "tpm", ",", "cm", ",", "network_state", ",", "indices", ",", "node_labels", "=", "None", ")", ":", "if", "node_labels", "is", "None", ":", "node_labels", "=", "NodeLabels", "(", "None", ",", "indices", ")", "node_state", "=", "utils", ".", "state_of", "(", "indices", ",", "network_state", ")", "return", "tuple", "(", "Node", "(", "tpm", ",", "cm", ",", "index", ",", "state", ",", "node_labels", ")", "for", "index", ",", "state", "in", "zip", "(", "indices", ",", "node_state", ")", ")" ]
Generate |Node| objects for a subsystem. Args: tpm (np.ndarray): The system's TPM cm (np.ndarray): The corresponding CM. network_state (tuple): The state of the network. indices (tuple[int]): Indices to generate nodes for. Keyword Args: node_labels (|NodeLabels|): Textual labels for each node. Returns: tuple[Node]: The nodes of the system.
[ "Generate", "|Node|", "objects", "for", "a", "subsystem", "." ]
deeca69a084d782a6fde7bf26f59e93b593c5d77
https://github.com/wmayner/pyphi/blob/deeca69a084d782a6fde7bf26f59e93b593c5d77/pyphi/node.py#L156-L177
15,839
wmayner/pyphi
pyphi/node.py
expand_node_tpm
def expand_node_tpm(tpm): """Broadcast a node TPM over the full network. This is different from broadcasting the TPM of a full system since the last dimension (containing the state of the node) contains only the probability of *this* node being on, rather than the probabilities for each node. """ uc = np.ones([2 for node in tpm.shape]) return uc * tpm
python
def expand_node_tpm(tpm): """Broadcast a node TPM over the full network. This is different from broadcasting the TPM of a full system since the last dimension (containing the state of the node) contains only the probability of *this* node being on, rather than the probabilities for each node. """ uc = np.ones([2 for node in tpm.shape]) return uc * tpm
[ "def", "expand_node_tpm", "(", "tpm", ")", ":", "uc", "=", "np", ".", "ones", "(", "[", "2", "for", "node", "in", "tpm", ".", "shape", "]", ")", "return", "uc", "*", "tpm" ]
Broadcast a node TPM over the full network. This is different from broadcasting the TPM of a full system since the last dimension (containing the state of the node) contains only the probability of *this* node being on, rather than the probabilities for each node.
[ "Broadcast", "a", "node", "TPM", "over", "the", "full", "network", "." ]
deeca69a084d782a6fde7bf26f59e93b593c5d77
https://github.com/wmayner/pyphi/blob/deeca69a084d782a6fde7bf26f59e93b593c5d77/pyphi/node.py#L180-L188
15,840
wmayner/pyphi
pyphi/tpm.py
condition_tpm
def condition_tpm(tpm, fixed_nodes, state): """Return a TPM conditioned on the given fixed node indices, whose states are fixed according to the given state-tuple. The dimensions of the new TPM that correspond to the fixed nodes are collapsed onto their state, making those dimensions singletons suitable for broadcasting. The number of dimensions of the conditioned TPM will be the same as the unconditioned TPM. """ conditioning_indices = [[slice(None)]] * len(state) for i in fixed_nodes: # Preserve singleton dimensions with `np.newaxis` conditioning_indices[i] = [state[i], np.newaxis] # Flatten the indices. conditioning_indices = list(chain.from_iterable(conditioning_indices)) # Obtain the actual conditioned TPM by indexing with the conditioning # indices. return tpm[tuple(conditioning_indices)]
python
def condition_tpm(tpm, fixed_nodes, state): """Return a TPM conditioned on the given fixed node indices, whose states are fixed according to the given state-tuple. The dimensions of the new TPM that correspond to the fixed nodes are collapsed onto their state, making those dimensions singletons suitable for broadcasting. The number of dimensions of the conditioned TPM will be the same as the unconditioned TPM. """ conditioning_indices = [[slice(None)]] * len(state) for i in fixed_nodes: # Preserve singleton dimensions with `np.newaxis` conditioning_indices[i] = [state[i], np.newaxis] # Flatten the indices. conditioning_indices = list(chain.from_iterable(conditioning_indices)) # Obtain the actual conditioned TPM by indexing with the conditioning # indices. return tpm[tuple(conditioning_indices)]
[ "def", "condition_tpm", "(", "tpm", ",", "fixed_nodes", ",", "state", ")", ":", "conditioning_indices", "=", "[", "[", "slice", "(", "None", ")", "]", "]", "*", "len", "(", "state", ")", "for", "i", "in", "fixed_nodes", ":", "# Preserve singleton dimensions with `np.newaxis`", "conditioning_indices", "[", "i", "]", "=", "[", "state", "[", "i", "]", ",", "np", ".", "newaxis", "]", "# Flatten the indices.", "conditioning_indices", "=", "list", "(", "chain", ".", "from_iterable", "(", "conditioning_indices", ")", ")", "# Obtain the actual conditioned TPM by indexing with the conditioning", "# indices.", "return", "tpm", "[", "tuple", "(", "conditioning_indices", ")", "]" ]
Return a TPM conditioned on the given fixed node indices, whose states are fixed according to the given state-tuple. The dimensions of the new TPM that correspond to the fixed nodes are collapsed onto their state, making those dimensions singletons suitable for broadcasting. The number of dimensions of the conditioned TPM will be the same as the unconditioned TPM.
[ "Return", "a", "TPM", "conditioned", "on", "the", "given", "fixed", "node", "indices", "whose", "states", "are", "fixed", "according", "to", "the", "given", "state", "-", "tuple", "." ]
deeca69a084d782a6fde7bf26f59e93b593c5d77
https://github.com/wmayner/pyphi/blob/deeca69a084d782a6fde7bf26f59e93b593c5d77/pyphi/tpm.py#L29-L46
15,841
wmayner/pyphi
pyphi/tpm.py
expand_tpm
def expand_tpm(tpm): """Broadcast a state-by-node TPM so that singleton dimensions are expanded over the full network. """ unconstrained = np.ones([2] * (tpm.ndim - 1) + [tpm.shape[-1]]) return tpm * unconstrained
python
def expand_tpm(tpm): """Broadcast a state-by-node TPM so that singleton dimensions are expanded over the full network. """ unconstrained = np.ones([2] * (tpm.ndim - 1) + [tpm.shape[-1]]) return tpm * unconstrained
[ "def", "expand_tpm", "(", "tpm", ")", ":", "unconstrained", "=", "np", ".", "ones", "(", "[", "2", "]", "*", "(", "tpm", ".", "ndim", "-", "1", ")", "+", "[", "tpm", ".", "shape", "[", "-", "1", "]", "]", ")", "return", "tpm", "*", "unconstrained" ]
Broadcast a state-by-node TPM so that singleton dimensions are expanded over the full network.
[ "Broadcast", "a", "state", "-", "by", "-", "node", "TPM", "so", "that", "singleton", "dimensions", "are", "expanded", "over", "the", "full", "network", "." ]
deeca69a084d782a6fde7bf26f59e93b593c5d77
https://github.com/wmayner/pyphi/blob/deeca69a084d782a6fde7bf26f59e93b593c5d77/pyphi/tpm.py#L49-L54
15,842
wmayner/pyphi
pyphi/tpm.py
marginalize_out
def marginalize_out(node_indices, tpm): """Marginalize out nodes from a TPM. Args: node_indices (list[int]): The indices of nodes to be marginalized out. tpm (np.ndarray): The TPM to marginalize the node out of. Returns: np.ndarray: A TPM with the same number of dimensions, with the nodes marginalized out. """ return tpm.sum(tuple(node_indices), keepdims=True) / ( np.array(tpm.shape)[list(node_indices)].prod())
python
def marginalize_out(node_indices, tpm): """Marginalize out nodes from a TPM. Args: node_indices (list[int]): The indices of nodes to be marginalized out. tpm (np.ndarray): The TPM to marginalize the node out of. Returns: np.ndarray: A TPM with the same number of dimensions, with the nodes marginalized out. """ return tpm.sum(tuple(node_indices), keepdims=True) / ( np.array(tpm.shape)[list(node_indices)].prod())
[ "def", "marginalize_out", "(", "node_indices", ",", "tpm", ")", ":", "return", "tpm", ".", "sum", "(", "tuple", "(", "node_indices", ")", ",", "keepdims", "=", "True", ")", "/", "(", "np", ".", "array", "(", "tpm", ".", "shape", ")", "[", "list", "(", "node_indices", ")", "]", ".", "prod", "(", ")", ")" ]
Marginalize out nodes from a TPM. Args: node_indices (list[int]): The indices of nodes to be marginalized out. tpm (np.ndarray): The TPM to marginalize the node out of. Returns: np.ndarray: A TPM with the same number of dimensions, with the nodes marginalized out.
[ "Marginalize", "out", "nodes", "from", "a", "TPM", "." ]
deeca69a084d782a6fde7bf26f59e93b593c5d77
https://github.com/wmayner/pyphi/blob/deeca69a084d782a6fde7bf26f59e93b593c5d77/pyphi/tpm.py#L57-L69
15,843
wmayner/pyphi
pyphi/tpm.py
infer_edge
def infer_edge(tpm, a, b, contexts): """Infer the presence or absence of an edge from node A to node B. Let |S| be the set of all nodes in a network. Let |A' = S - {A}|. We call the state of |A'| the context |C| of |A|. There is an edge from |A| to |B| if there exists any context |C(A)| such that |Pr(B | C(A), A=0) != Pr(B | C(A), A=1)|. Args: tpm (np.ndarray): The TPM in state-by-node, multidimensional form. a (int): The index of the putative source node. b (int): The index of the putative sink node. Returns: bool: ``True`` if the edge |A -> B| exists, ``False`` otherwise. """ def a_in_context(context): """Given a context C(A), return the states of the full system with A OFF and ON, respectively. """ a_off = context[:a] + OFF + context[a:] a_on = context[:a] + ON + context[a:] return (a_off, a_on) def a_affects_b_in_context(context): """Return ``True`` if A has an effect on B, given a context.""" a_off, a_on = a_in_context(context) return tpm[a_off][b] != tpm[a_on][b] return any(a_affects_b_in_context(context) for context in contexts)
python
def infer_edge(tpm, a, b, contexts): """Infer the presence or absence of an edge from node A to node B. Let |S| be the set of all nodes in a network. Let |A' = S - {A}|. We call the state of |A'| the context |C| of |A|. There is an edge from |A| to |B| if there exists any context |C(A)| such that |Pr(B | C(A), A=0) != Pr(B | C(A), A=1)|. Args: tpm (np.ndarray): The TPM in state-by-node, multidimensional form. a (int): The index of the putative source node. b (int): The index of the putative sink node. Returns: bool: ``True`` if the edge |A -> B| exists, ``False`` otherwise. """ def a_in_context(context): """Given a context C(A), return the states of the full system with A OFF and ON, respectively. """ a_off = context[:a] + OFF + context[a:] a_on = context[:a] + ON + context[a:] return (a_off, a_on) def a_affects_b_in_context(context): """Return ``True`` if A has an effect on B, given a context.""" a_off, a_on = a_in_context(context) return tpm[a_off][b] != tpm[a_on][b] return any(a_affects_b_in_context(context) for context in contexts)
[ "def", "infer_edge", "(", "tpm", ",", "a", ",", "b", ",", "contexts", ")", ":", "def", "a_in_context", "(", "context", ")", ":", "\"\"\"Given a context C(A), return the states of the full system with A\n OFF and ON, respectively.\n \"\"\"", "a_off", "=", "context", "[", ":", "a", "]", "+", "OFF", "+", "context", "[", "a", ":", "]", "a_on", "=", "context", "[", ":", "a", "]", "+", "ON", "+", "context", "[", "a", ":", "]", "return", "(", "a_off", ",", "a_on", ")", "def", "a_affects_b_in_context", "(", "context", ")", ":", "\"\"\"Return ``True`` if A has an effect on B, given a context.\"\"\"", "a_off", ",", "a_on", "=", "a_in_context", "(", "context", ")", "return", "tpm", "[", "a_off", "]", "[", "b", "]", "!=", "tpm", "[", "a_on", "]", "[", "b", "]", "return", "any", "(", "a_affects_b_in_context", "(", "context", ")", "for", "context", "in", "contexts", ")" ]
Infer the presence or absence of an edge from node A to node B. Let |S| be the set of all nodes in a network. Let |A' = S - {A}|. We call the state of |A'| the context |C| of |A|. There is an edge from |A| to |B| if there exists any context |C(A)| such that |Pr(B | C(A), A=0) != Pr(B | C(A), A=1)|. Args: tpm (np.ndarray): The TPM in state-by-node, multidimensional form. a (int): The index of the putative source node. b (int): The index of the putative sink node. Returns: bool: ``True`` if the edge |A -> B| exists, ``False`` otherwise.
[ "Infer", "the", "presence", "or", "absence", "of", "an", "edge", "from", "node", "A", "to", "node", "B", "." ]
deeca69a084d782a6fde7bf26f59e93b593c5d77
https://github.com/wmayner/pyphi/blob/deeca69a084d782a6fde7bf26f59e93b593c5d77/pyphi/tpm.py#L72-L101
15,844
wmayner/pyphi
pyphi/tpm.py
infer_cm
def infer_cm(tpm): """Infer the connectivity matrix associated with a state-by-node TPM in multidimensional form. """ network_size = tpm.shape[-1] all_contexts = tuple(all_states(network_size - 1)) cm = np.empty((network_size, network_size), dtype=int) for a, b in np.ndindex(cm.shape): cm[a][b] = infer_edge(tpm, a, b, all_contexts) return cm
python
def infer_cm(tpm): """Infer the connectivity matrix associated with a state-by-node TPM in multidimensional form. """ network_size = tpm.shape[-1] all_contexts = tuple(all_states(network_size - 1)) cm = np.empty((network_size, network_size), dtype=int) for a, b in np.ndindex(cm.shape): cm[a][b] = infer_edge(tpm, a, b, all_contexts) return cm
[ "def", "infer_cm", "(", "tpm", ")", ":", "network_size", "=", "tpm", ".", "shape", "[", "-", "1", "]", "all_contexts", "=", "tuple", "(", "all_states", "(", "network_size", "-", "1", ")", ")", "cm", "=", "np", ".", "empty", "(", "(", "network_size", ",", "network_size", ")", ",", "dtype", "=", "int", ")", "for", "a", ",", "b", "in", "np", ".", "ndindex", "(", "cm", ".", "shape", ")", ":", "cm", "[", "a", "]", "[", "b", "]", "=", "infer_edge", "(", "tpm", ",", "a", ",", "b", ",", "all_contexts", ")", "return", "cm" ]
Infer the connectivity matrix associated with a state-by-node TPM in multidimensional form.
[ "Infer", "the", "connectivity", "matrix", "associated", "with", "a", "state", "-", "by", "-", "node", "TPM", "in", "multidimensional", "form", "." ]
deeca69a084d782a6fde7bf26f59e93b593c5d77
https://github.com/wmayner/pyphi/blob/deeca69a084d782a6fde7bf26f59e93b593c5d77/pyphi/tpm.py#L104-L113
15,845
wmayner/pyphi
pyphi/compute/parallel.py
get_num_processes
def get_num_processes(): """Return the number of processes to use in parallel.""" cpu_count = multiprocessing.cpu_count() if config.NUMBER_OF_CORES == 0: raise ValueError( 'Invalid NUMBER_OF_CORES; value may not be 0.') if config.NUMBER_OF_CORES > cpu_count: log.info('Requesting %s cores; only %s available', config.NUMBER_OF_CORES, cpu_count) return cpu_count if config.NUMBER_OF_CORES < 0: num = cpu_count + config.NUMBER_OF_CORES + 1 if num <= 0: raise ValueError( 'Invalid NUMBER_OF_CORES; negative value is too negative: ' 'requesting {} cores, {} available.'.format(num, cpu_count)) return num return config.NUMBER_OF_CORES
python
def get_num_processes(): """Return the number of processes to use in parallel.""" cpu_count = multiprocessing.cpu_count() if config.NUMBER_OF_CORES == 0: raise ValueError( 'Invalid NUMBER_OF_CORES; value may not be 0.') if config.NUMBER_OF_CORES > cpu_count: log.info('Requesting %s cores; only %s available', config.NUMBER_OF_CORES, cpu_count) return cpu_count if config.NUMBER_OF_CORES < 0: num = cpu_count + config.NUMBER_OF_CORES + 1 if num <= 0: raise ValueError( 'Invalid NUMBER_OF_CORES; negative value is too negative: ' 'requesting {} cores, {} available.'.format(num, cpu_count)) return num return config.NUMBER_OF_CORES
[ "def", "get_num_processes", "(", ")", ":", "cpu_count", "=", "multiprocessing", ".", "cpu_count", "(", ")", "if", "config", ".", "NUMBER_OF_CORES", "==", "0", ":", "raise", "ValueError", "(", "'Invalid NUMBER_OF_CORES; value may not be 0.'", ")", "if", "config", ".", "NUMBER_OF_CORES", ">", "cpu_count", ":", "log", ".", "info", "(", "'Requesting %s cores; only %s available'", ",", "config", ".", "NUMBER_OF_CORES", ",", "cpu_count", ")", "return", "cpu_count", "if", "config", ".", "NUMBER_OF_CORES", "<", "0", ":", "num", "=", "cpu_count", "+", "config", ".", "NUMBER_OF_CORES", "+", "1", "if", "num", "<=", "0", ":", "raise", "ValueError", "(", "'Invalid NUMBER_OF_CORES; negative value is too negative: '", "'requesting {} cores, {} available.'", ".", "format", "(", "num", ",", "cpu_count", ")", ")", "return", "num", "return", "config", ".", "NUMBER_OF_CORES" ]
Return the number of processes to use in parallel.
[ "Return", "the", "number", "of", "processes", "to", "use", "in", "parallel", "." ]
deeca69a084d782a6fde7bf26f59e93b593c5d77
https://github.com/wmayner/pyphi/blob/deeca69a084d782a6fde7bf26f59e93b593c5d77/pyphi/compute/parallel.py#L24-L46
15,846
wmayner/pyphi
pyphi/compute/parallel.py
MapReduce.init_progress_bar
def init_progress_bar(self): """Initialize and return a progress bar.""" # Forked worker processes can't show progress bars. disable = MapReduce._forked or not config.PROGRESS_BARS # Don't materialize iterable unless we have to: huge iterables # (e.g. of `KCuts`) eat memory. if disable: total = None else: self.iterable = list(self.iterable) total = len(self.iterable) return tqdm(total=total, disable=disable, leave=False, desc=self.description)
python
def init_progress_bar(self): """Initialize and return a progress bar.""" # Forked worker processes can't show progress bars. disable = MapReduce._forked or not config.PROGRESS_BARS # Don't materialize iterable unless we have to: huge iterables # (e.g. of `KCuts`) eat memory. if disable: total = None else: self.iterable = list(self.iterable) total = len(self.iterable) return tqdm(total=total, disable=disable, leave=False, desc=self.description)
[ "def", "init_progress_bar", "(", "self", ")", ":", "# Forked worker processes can't show progress bars.", "disable", "=", "MapReduce", ".", "_forked", "or", "not", "config", ".", "PROGRESS_BARS", "# Don't materialize iterable unless we have to: huge iterables", "# (e.g. of `KCuts`) eat memory.", "if", "disable", ":", "total", "=", "None", "else", ":", "self", ".", "iterable", "=", "list", "(", "self", ".", "iterable", ")", "total", "=", "len", "(", "self", ".", "iterable", ")", "return", "tqdm", "(", "total", "=", "total", ",", "disable", "=", "disable", ",", "leave", "=", "False", ",", "desc", "=", "self", ".", "description", ")" ]
Initialize and return a progress bar.
[ "Initialize", "and", "return", "a", "progress", "bar", "." ]
deeca69a084d782a6fde7bf26f59e93b593c5d77
https://github.com/wmayner/pyphi/blob/deeca69a084d782a6fde7bf26f59e93b593c5d77/pyphi/compute/parallel.py#L144-L158
15,847
wmayner/pyphi
pyphi/compute/parallel.py
MapReduce.worker
def worker(compute, task_queue, result_queue, log_queue, complete, *context): """A worker process, run by ``multiprocessing.Process``.""" try: MapReduce._forked = True log.debug('Worker process starting...') configure_worker_logging(log_queue) for obj in iter(task_queue.get, POISON_PILL): if complete.is_set(): log.debug('Worker received signal - exiting early') break log.debug('Worker got %s', obj) result_queue.put(compute(obj, *context)) log.debug('Worker finished %s', obj) result_queue.put(POISON_PILL) log.debug('Worker process exiting') except Exception as e: # pylint: disable=broad-except result_queue.put(ExceptionWrapper(e))
python
def worker(compute, task_queue, result_queue, log_queue, complete, *context): """A worker process, run by ``multiprocessing.Process``.""" try: MapReduce._forked = True log.debug('Worker process starting...') configure_worker_logging(log_queue) for obj in iter(task_queue.get, POISON_PILL): if complete.is_set(): log.debug('Worker received signal - exiting early') break log.debug('Worker got %s', obj) result_queue.put(compute(obj, *context)) log.debug('Worker finished %s', obj) result_queue.put(POISON_PILL) log.debug('Worker process exiting') except Exception as e: # pylint: disable=broad-except result_queue.put(ExceptionWrapper(e))
[ "def", "worker", "(", "compute", ",", "task_queue", ",", "result_queue", ",", "log_queue", ",", "complete", ",", "*", "context", ")", ":", "try", ":", "MapReduce", ".", "_forked", "=", "True", "log", ".", "debug", "(", "'Worker process starting...'", ")", "configure_worker_logging", "(", "log_queue", ")", "for", "obj", "in", "iter", "(", "task_queue", ".", "get", ",", "POISON_PILL", ")", ":", "if", "complete", ".", "is_set", "(", ")", ":", "log", ".", "debug", "(", "'Worker received signal - exiting early'", ")", "break", "log", ".", "debug", "(", "'Worker got %s'", ",", "obj", ")", "result_queue", ".", "put", "(", "compute", "(", "obj", ",", "*", "context", ")", ")", "log", ".", "debug", "(", "'Worker finished %s'", ",", "obj", ")", "result_queue", ".", "put", "(", "POISON_PILL", ")", "log", ".", "debug", "(", "'Worker process exiting'", ")", "except", "Exception", "as", "e", ":", "# pylint: disable=broad-except", "result_queue", ".", "put", "(", "ExceptionWrapper", "(", "e", ")", ")" ]
A worker process, run by ``multiprocessing.Process``.
[ "A", "worker", "process", "run", "by", "multiprocessing", ".", "Process", "." ]
deeca69a084d782a6fde7bf26f59e93b593c5d77
https://github.com/wmayner/pyphi/blob/deeca69a084d782a6fde7bf26f59e93b593c5d77/pyphi/compute/parallel.py#L161-L183
15,848
wmayner/pyphi
pyphi/compute/parallel.py
MapReduce.start_parallel
def start_parallel(self): """Initialize all queues and start the worker processes and the log thread. """ self.num_processes = get_num_processes() self.task_queue = multiprocessing.Queue(maxsize=Q_MAX_SIZE) self.result_queue = multiprocessing.Queue() self.log_queue = multiprocessing.Queue() # Used to signal worker processes when a result is found that allows # the computation to terminate early. self.complete = multiprocessing.Event() args = (self.compute, self.task_queue, self.result_queue, self.log_queue, self.complete) + self.context self.processes = [ multiprocessing.Process(target=self.worker, args=args, daemon=True) for i in range(self.num_processes)] for process in self.processes: process.start() self.log_thread = LogThread(self.log_queue) self.log_thread.start() self.initialize_tasks()
python
def start_parallel(self): """Initialize all queues and start the worker processes and the log thread. """ self.num_processes = get_num_processes() self.task_queue = multiprocessing.Queue(maxsize=Q_MAX_SIZE) self.result_queue = multiprocessing.Queue() self.log_queue = multiprocessing.Queue() # Used to signal worker processes when a result is found that allows # the computation to terminate early. self.complete = multiprocessing.Event() args = (self.compute, self.task_queue, self.result_queue, self.log_queue, self.complete) + self.context self.processes = [ multiprocessing.Process(target=self.worker, args=args, daemon=True) for i in range(self.num_processes)] for process in self.processes: process.start() self.log_thread = LogThread(self.log_queue) self.log_thread.start() self.initialize_tasks()
[ "def", "start_parallel", "(", "self", ")", ":", "self", ".", "num_processes", "=", "get_num_processes", "(", ")", "self", ".", "task_queue", "=", "multiprocessing", ".", "Queue", "(", "maxsize", "=", "Q_MAX_SIZE", ")", "self", ".", "result_queue", "=", "multiprocessing", ".", "Queue", "(", ")", "self", ".", "log_queue", "=", "multiprocessing", ".", "Queue", "(", ")", "# Used to signal worker processes when a result is found that allows", "# the computation to terminate early.", "self", ".", "complete", "=", "multiprocessing", ".", "Event", "(", ")", "args", "=", "(", "self", ".", "compute", ",", "self", ".", "task_queue", ",", "self", ".", "result_queue", ",", "self", ".", "log_queue", ",", "self", ".", "complete", ")", "+", "self", ".", "context", "self", ".", "processes", "=", "[", "multiprocessing", ".", "Process", "(", "target", "=", "self", ".", "worker", ",", "args", "=", "args", ",", "daemon", "=", "True", ")", "for", "i", "in", "range", "(", "self", ".", "num_processes", ")", "]", "for", "process", "in", "self", ".", "processes", ":", "process", ".", "start", "(", ")", "self", ".", "log_thread", "=", "LogThread", "(", "self", ".", "log_queue", ")", "self", ".", "log_thread", ".", "start", "(", ")", "self", ".", "initialize_tasks", "(", ")" ]
Initialize all queues and start the worker processes and the log thread.
[ "Initialize", "all", "queues", "and", "start", "the", "worker", "processes", "and", "the", "log", "thread", "." ]
deeca69a084d782a6fde7bf26f59e93b593c5d77
https://github.com/wmayner/pyphi/blob/deeca69a084d782a6fde7bf26f59e93b593c5d77/pyphi/compute/parallel.py#L185-L211
15,849
wmayner/pyphi
pyphi/compute/parallel.py
MapReduce.initialize_tasks
def initialize_tasks(self): """Load the input queue to capacity. Overfilling causes a deadlock when `queue.put` blocks when full, so further tasks are enqueued as results are returned. """ # Add a poison pill to shutdown each process. self.tasks = chain(self.iterable, [POISON_PILL] * self.num_processes) for task in islice(self.tasks, Q_MAX_SIZE): log.debug('Putting %s on queue', task) self.task_queue.put(task)
python
def initialize_tasks(self): """Load the input queue to capacity. Overfilling causes a deadlock when `queue.put` blocks when full, so further tasks are enqueued as results are returned. """ # Add a poison pill to shutdown each process. self.tasks = chain(self.iterable, [POISON_PILL] * self.num_processes) for task in islice(self.tasks, Q_MAX_SIZE): log.debug('Putting %s on queue', task) self.task_queue.put(task)
[ "def", "initialize_tasks", "(", "self", ")", ":", "# Add a poison pill to shutdown each process.", "self", ".", "tasks", "=", "chain", "(", "self", ".", "iterable", ",", "[", "POISON_PILL", "]", "*", "self", ".", "num_processes", ")", "for", "task", "in", "islice", "(", "self", ".", "tasks", ",", "Q_MAX_SIZE", ")", ":", "log", ".", "debug", "(", "'Putting %s on queue'", ",", "task", ")", "self", ".", "task_queue", ".", "put", "(", "task", ")" ]
Load the input queue to capacity. Overfilling causes a deadlock when `queue.put` blocks when full, so further tasks are enqueued as results are returned.
[ "Load", "the", "input", "queue", "to", "capacity", "." ]
deeca69a084d782a6fde7bf26f59e93b593c5d77
https://github.com/wmayner/pyphi/blob/deeca69a084d782a6fde7bf26f59e93b593c5d77/pyphi/compute/parallel.py#L213-L223
15,850
wmayner/pyphi
pyphi/compute/parallel.py
MapReduce.maybe_put_task
def maybe_put_task(self): """Enqueue the next task, if there are any waiting.""" try: task = next(self.tasks) except StopIteration: pass else: log.debug('Putting %s on queue', task) self.task_queue.put(task)
python
def maybe_put_task(self): """Enqueue the next task, if there are any waiting.""" try: task = next(self.tasks) except StopIteration: pass else: log.debug('Putting %s on queue', task) self.task_queue.put(task)
[ "def", "maybe_put_task", "(", "self", ")", ":", "try", ":", "task", "=", "next", "(", "self", ".", "tasks", ")", "except", "StopIteration", ":", "pass", "else", ":", "log", ".", "debug", "(", "'Putting %s on queue'", ",", "task", ")", "self", ".", "task_queue", ".", "put", "(", "task", ")" ]
Enqueue the next task, if there are any waiting.
[ "Enqueue", "the", "next", "task", "if", "there", "are", "any", "waiting", "." ]
deeca69a084d782a6fde7bf26f59e93b593c5d77
https://github.com/wmayner/pyphi/blob/deeca69a084d782a6fde7bf26f59e93b593c5d77/pyphi/compute/parallel.py#L225-L233
15,851
wmayner/pyphi
pyphi/compute/parallel.py
MapReduce.run_parallel
def run_parallel(self): """Perform the computation in parallel, reading results from the output queue and passing them to ``process_result``. """ try: self.start_parallel() result = self.empty_result(*self.context) while self.num_processes > 0: r = self.result_queue.get() self.maybe_put_task() if r is POISON_PILL: self.num_processes -= 1 elif isinstance(r, ExceptionWrapper): r.reraise() else: result = self.process_result(r, result) self.progress.update(1) # Did `process_result` decide to terminate early? if self.done: self.complete.set() self.finish_parallel() except Exception: raise finally: log.debug('Removing progress bar') self.progress.close() return result
python
def run_parallel(self): """Perform the computation in parallel, reading results from the output queue and passing them to ``process_result``. """ try: self.start_parallel() result = self.empty_result(*self.context) while self.num_processes > 0: r = self.result_queue.get() self.maybe_put_task() if r is POISON_PILL: self.num_processes -= 1 elif isinstance(r, ExceptionWrapper): r.reraise() else: result = self.process_result(r, result) self.progress.update(1) # Did `process_result` decide to terminate early? if self.done: self.complete.set() self.finish_parallel() except Exception: raise finally: log.debug('Removing progress bar') self.progress.close() return result
[ "def", "run_parallel", "(", "self", ")", ":", "try", ":", "self", ".", "start_parallel", "(", ")", "result", "=", "self", ".", "empty_result", "(", "*", "self", ".", "context", ")", "while", "self", ".", "num_processes", ">", "0", ":", "r", "=", "self", ".", "result_queue", ".", "get", "(", ")", "self", ".", "maybe_put_task", "(", ")", "if", "r", "is", "POISON_PILL", ":", "self", ".", "num_processes", "-=", "1", "elif", "isinstance", "(", "r", ",", "ExceptionWrapper", ")", ":", "r", ".", "reraise", "(", ")", "else", ":", "result", "=", "self", ".", "process_result", "(", "r", ",", "result", ")", "self", ".", "progress", ".", "update", "(", "1", ")", "# Did `process_result` decide to terminate early?", "if", "self", ".", "done", ":", "self", ".", "complete", ".", "set", "(", ")", "self", ".", "finish_parallel", "(", ")", "except", "Exception", ":", "raise", "finally", ":", "log", ".", "debug", "(", "'Removing progress bar'", ")", "self", ".", "progress", ".", "close", "(", ")", "return", "result" ]
Perform the computation in parallel, reading results from the output queue and passing them to ``process_result``.
[ "Perform", "the", "computation", "in", "parallel", "reading", "results", "from", "the", "output", "queue", "and", "passing", "them", "to", "process_result", "." ]
deeca69a084d782a6fde7bf26f59e93b593c5d77
https://github.com/wmayner/pyphi/blob/deeca69a084d782a6fde7bf26f59e93b593c5d77/pyphi/compute/parallel.py#L235-L269
15,852
wmayner/pyphi
pyphi/compute/parallel.py
MapReduce.finish_parallel
def finish_parallel(self): """Orderly shutdown of workers.""" for process in self.processes: process.join() # Shutdown the log thread log.debug('Joining log thread') self.log_queue.put(POISON_PILL) self.log_thread.join() self.log_queue.close() # Close all queues log.debug('Closing queues') self.task_queue.close() self.result_queue.close()
python
def finish_parallel(self): """Orderly shutdown of workers.""" for process in self.processes: process.join() # Shutdown the log thread log.debug('Joining log thread') self.log_queue.put(POISON_PILL) self.log_thread.join() self.log_queue.close() # Close all queues log.debug('Closing queues') self.task_queue.close() self.result_queue.close()
[ "def", "finish_parallel", "(", "self", ")", ":", "for", "process", "in", "self", ".", "processes", ":", "process", ".", "join", "(", ")", "# Shutdown the log thread", "log", ".", "debug", "(", "'Joining log thread'", ")", "self", ".", "log_queue", ".", "put", "(", "POISON_PILL", ")", "self", ".", "log_thread", ".", "join", "(", ")", "self", ".", "log_queue", ".", "close", "(", ")", "# Close all queues", "log", ".", "debug", "(", "'Closing queues'", ")", "self", ".", "task_queue", ".", "close", "(", ")", "self", ".", "result_queue", ".", "close", "(", ")" ]
Orderly shutdown of workers.
[ "Orderly", "shutdown", "of", "workers", "." ]
deeca69a084d782a6fde7bf26f59e93b593c5d77
https://github.com/wmayner/pyphi/blob/deeca69a084d782a6fde7bf26f59e93b593c5d77/pyphi/compute/parallel.py#L271-L285
15,853
wmayner/pyphi
pyphi/compute/parallel.py
MapReduce.run_sequential
def run_sequential(self): """Perform the computation sequentially, only holding two computed objects in memory at a time. """ try: result = self.empty_result(*self.context) for obj in self.iterable: r = self.compute(obj, *self.context) result = self.process_result(r, result) self.progress.update(1) # Short-circuited? if self.done: break except Exception as e: raise e finally: self.progress.close() return result
python
def run_sequential(self): """Perform the computation sequentially, only holding two computed objects in memory at a time. """ try: result = self.empty_result(*self.context) for obj in self.iterable: r = self.compute(obj, *self.context) result = self.process_result(r, result) self.progress.update(1) # Short-circuited? if self.done: break except Exception as e: raise e finally: self.progress.close() return result
[ "def", "run_sequential", "(", "self", ")", ":", "try", ":", "result", "=", "self", ".", "empty_result", "(", "*", "self", ".", "context", ")", "for", "obj", "in", "self", ".", "iterable", ":", "r", "=", "self", ".", "compute", "(", "obj", ",", "*", "self", ".", "context", ")", "result", "=", "self", ".", "process_result", "(", "r", ",", "result", ")", "self", ".", "progress", ".", "update", "(", "1", ")", "# Short-circuited?", "if", "self", ".", "done", ":", "break", "except", "Exception", "as", "e", ":", "raise", "e", "finally", ":", "self", ".", "progress", ".", "close", "(", ")", "return", "result" ]
Perform the computation sequentially, only holding two computed objects in memory at a time.
[ "Perform", "the", "computation", "sequentially", "only", "holding", "two", "computed", "objects", "in", "memory", "at", "a", "time", "." ]
deeca69a084d782a6fde7bf26f59e93b593c5d77
https://github.com/wmayner/pyphi/blob/deeca69a084d782a6fde7bf26f59e93b593c5d77/pyphi/compute/parallel.py#L287-L307
15,854
wmayner/pyphi
pyphi/conf.py
configure_logging
def configure_logging(conf): """Reconfigure PyPhi logging based on the current configuration.""" logging.config.dictConfig({ 'version': 1, 'disable_existing_loggers': False, 'formatters': { 'standard': { 'format': '%(asctime)s [%(name)s] %(levelname)s ' '%(processName)s: %(message)s' } }, 'handlers': { 'file': { 'level': conf.LOG_FILE_LEVEL, 'filename': conf.LOG_FILE, 'class': 'logging.FileHandler', 'formatter': 'standard', }, 'stdout': { 'level': conf.LOG_STDOUT_LEVEL, 'class': 'pyphi.log.TqdmHandler', 'formatter': 'standard', } }, 'root': { 'level': 'DEBUG', 'handlers': (['file'] if conf.LOG_FILE_LEVEL else []) + (['stdout'] if conf.LOG_STDOUT_LEVEL else []) } })
python
def configure_logging(conf): """Reconfigure PyPhi logging based on the current configuration.""" logging.config.dictConfig({ 'version': 1, 'disable_existing_loggers': False, 'formatters': { 'standard': { 'format': '%(asctime)s [%(name)s] %(levelname)s ' '%(processName)s: %(message)s' } }, 'handlers': { 'file': { 'level': conf.LOG_FILE_LEVEL, 'filename': conf.LOG_FILE, 'class': 'logging.FileHandler', 'formatter': 'standard', }, 'stdout': { 'level': conf.LOG_STDOUT_LEVEL, 'class': 'pyphi.log.TqdmHandler', 'formatter': 'standard', } }, 'root': { 'level': 'DEBUG', 'handlers': (['file'] if conf.LOG_FILE_LEVEL else []) + (['stdout'] if conf.LOG_STDOUT_LEVEL else []) } })
[ "def", "configure_logging", "(", "conf", ")", ":", "logging", ".", "config", ".", "dictConfig", "(", "{", "'version'", ":", "1", ",", "'disable_existing_loggers'", ":", "False", ",", "'formatters'", ":", "{", "'standard'", ":", "{", "'format'", ":", "'%(asctime)s [%(name)s] %(levelname)s '", "'%(processName)s: %(message)s'", "}", "}", ",", "'handlers'", ":", "{", "'file'", ":", "{", "'level'", ":", "conf", ".", "LOG_FILE_LEVEL", ",", "'filename'", ":", "conf", ".", "LOG_FILE", ",", "'class'", ":", "'logging.FileHandler'", ",", "'formatter'", ":", "'standard'", ",", "}", ",", "'stdout'", ":", "{", "'level'", ":", "conf", ".", "LOG_STDOUT_LEVEL", ",", "'class'", ":", "'pyphi.log.TqdmHandler'", ",", "'formatter'", ":", "'standard'", ",", "}", "}", ",", "'root'", ":", "{", "'level'", ":", "'DEBUG'", ",", "'handlers'", ":", "(", "[", "'file'", "]", "if", "conf", ".", "LOG_FILE_LEVEL", "else", "[", "]", ")", "+", "(", "[", "'stdout'", "]", "if", "conf", ".", "LOG_STDOUT_LEVEL", "else", "[", "]", ")", "}", "}", ")" ]
Reconfigure PyPhi logging based on the current configuration.
[ "Reconfigure", "PyPhi", "logging", "based", "on", "the", "current", "configuration", "." ]
deeca69a084d782a6fde7bf26f59e93b593c5d77
https://github.com/wmayner/pyphi/blob/deeca69a084d782a6fde7bf26f59e93b593c5d77/pyphi/conf.py#L328-L357
15,855
wmayner/pyphi
pyphi/conf.py
Option._validate
def _validate(self, value): """Validate the new value.""" if self.values and value not in self.values: raise ValueError( '{} is not a valid value for {}'.format(value, self.name))
python
def _validate(self, value): """Validate the new value.""" if self.values and value not in self.values: raise ValueError( '{} is not a valid value for {}'.format(value, self.name))
[ "def", "_validate", "(", "self", ",", "value", ")", ":", "if", "self", ".", "values", "and", "value", "not", "in", "self", ".", "values", ":", "raise", "ValueError", "(", "'{} is not a valid value for {}'", ".", "format", "(", "value", ",", "self", ".", "name", ")", ")" ]
Validate the new value.
[ "Validate", "the", "new", "value", "." ]
deeca69a084d782a6fde7bf26f59e93b593c5d77
https://github.com/wmayner/pyphi/blob/deeca69a084d782a6fde7bf26f59e93b593c5d77/pyphi/conf.py#L201-L205
15,856
wmayner/pyphi
pyphi/conf.py
Config.options
def options(cls): """Return a dictionary of the ``Option`` objects for this config.""" return {k: v for k, v in cls.__dict__.items() if isinstance(v, Option)}
python
def options(cls): """Return a dictionary of the ``Option`` objects for this config.""" return {k: v for k, v in cls.__dict__.items() if isinstance(v, Option)}
[ "def", "options", "(", "cls", ")", ":", "return", "{", "k", ":", "v", "for", "k", ",", "v", "in", "cls", ".", "__dict__", ".", "items", "(", ")", "if", "isinstance", "(", "v", ",", "Option", ")", "}" ]
Return a dictionary of the ``Option`` objects for this config.
[ "Return", "a", "dictionary", "of", "the", "Option", "objects", "for", "this", "config", "." ]
deeca69a084d782a6fde7bf26f59e93b593c5d77
https://github.com/wmayner/pyphi/blob/deeca69a084d782a6fde7bf26f59e93b593c5d77/pyphi/conf.py#L262-L264
15,857
wmayner/pyphi
pyphi/conf.py
Config.defaults
def defaults(self): """Return the default values of this configuration.""" return {k: v.default for k, v in self.options().items()}
python
def defaults(self): """Return the default values of this configuration.""" return {k: v.default for k, v in self.options().items()}
[ "def", "defaults", "(", "self", ")", ":", "return", "{", "k", ":", "v", ".", "default", "for", "k", ",", "v", "in", "self", ".", "options", "(", ")", ".", "items", "(", ")", "}" ]
Return the default values of this configuration.
[ "Return", "the", "default", "values", "of", "this", "configuration", "." ]
deeca69a084d782a6fde7bf26f59e93b593c5d77
https://github.com/wmayner/pyphi/blob/deeca69a084d782a6fde7bf26f59e93b593c5d77/pyphi/conf.py#L266-L268
15,858
wmayner/pyphi
pyphi/conf.py
Config.load_dict
def load_dict(self, dct): """Load a dictionary of configuration values.""" for k, v in dct.items(): setattr(self, k, v)
python
def load_dict(self, dct): """Load a dictionary of configuration values.""" for k, v in dct.items(): setattr(self, k, v)
[ "def", "load_dict", "(", "self", ",", "dct", ")", ":", "for", "k", ",", "v", "in", "dct", ".", "items", "(", ")", ":", "setattr", "(", "self", ",", "k", ",", "v", ")" ]
Load a dictionary of configuration values.
[ "Load", "a", "dictionary", "of", "configuration", "values", "." ]
deeca69a084d782a6fde7bf26f59e93b593c5d77
https://github.com/wmayner/pyphi/blob/deeca69a084d782a6fde7bf26f59e93b593c5d77/pyphi/conf.py#L270-L273
15,859
wmayner/pyphi
pyphi/conf.py
Config.load_file
def load_file(self, filename): """Load config from a YAML file.""" filename = os.path.abspath(filename) with open(filename) as f: self.load_dict(yaml.load(f)) self._loaded_files.append(filename)
python
def load_file(self, filename): """Load config from a YAML file.""" filename = os.path.abspath(filename) with open(filename) as f: self.load_dict(yaml.load(f)) self._loaded_files.append(filename)
[ "def", "load_file", "(", "self", ",", "filename", ")", ":", "filename", "=", "os", ".", "path", ".", "abspath", "(", "filename", ")", "with", "open", "(", "filename", ")", "as", "f", ":", "self", ".", "load_dict", "(", "yaml", ".", "load", "(", "f", ")", ")", "self", ".", "_loaded_files", ".", "append", "(", "filename", ")" ]
Load config from a YAML file.
[ "Load", "config", "from", "a", "YAML", "file", "." ]
deeca69a084d782a6fde7bf26f59e93b593c5d77
https://github.com/wmayner/pyphi/blob/deeca69a084d782a6fde7bf26f59e93b593c5d77/pyphi/conf.py#L275-L282
15,860
wmayner/pyphi
pyphi/conf.py
PyphiConfig.log
def log(self): """Log current settings.""" log.info('PyPhi v%s', __about__.__version__) if self._loaded_files: log.info('Loaded configuration from %s', self._loaded_files) else: log.info('Using default configuration (no configuration file ' 'provided)') log.info('Current PyPhi configuration:\n %s', str(self))
python
def log(self): """Log current settings.""" log.info('PyPhi v%s', __about__.__version__) if self._loaded_files: log.info('Loaded configuration from %s', self._loaded_files) else: log.info('Using default configuration (no configuration file ' 'provided)') log.info('Current PyPhi configuration:\n %s', str(self))
[ "def", "log", "(", "self", ")", ":", "log", ".", "info", "(", "'PyPhi v%s'", ",", "__about__", ".", "__version__", ")", "if", "self", ".", "_loaded_files", ":", "log", ".", "info", "(", "'Loaded configuration from %s'", ",", "self", ".", "_loaded_files", ")", "else", ":", "log", ".", "info", "(", "'Using default configuration (no configuration file '", "'provided)'", ")", "log", ".", "info", "(", "'Current PyPhi configuration:\\n %s'", ",", "str", "(", "self", ")", ")" ]
Log current settings.
[ "Log", "current", "settings", "." ]
deeca69a084d782a6fde7bf26f59e93b593c5d77
https://github.com/wmayner/pyphi/blob/deeca69a084d782a6fde7bf26f59e93b593c5d77/pyphi/conf.py#L636-L644
15,861
wmayner/pyphi
pyphi/convert.py
be2le_state_by_state
def be2le_state_by_state(tpm): """Convert a state-by-state TPM from big-endian to little-endian or vice versa. Args: tpm (np.ndarray): A state-by-state TPM. Returns: np.ndarray: The state-by-state TPM in the other indexing format. Example: >>> tpm = np.arange(16).reshape([4, 4]) >>> be2le_state_by_state(tpm) array([[ 0., 1., 2., 3.], [ 8., 9., 10., 11.], [ 4., 5., 6., 7.], [12., 13., 14., 15.]]) """ le = np.empty(tpm.shape) N = tpm.shape[0] n = int(log2(N)) for i in range(N): le[i, :] = tpm[be2le(i, n), :] return le
python
def be2le_state_by_state(tpm): """Convert a state-by-state TPM from big-endian to little-endian or vice versa. Args: tpm (np.ndarray): A state-by-state TPM. Returns: np.ndarray: The state-by-state TPM in the other indexing format. Example: >>> tpm = np.arange(16).reshape([4, 4]) >>> be2le_state_by_state(tpm) array([[ 0., 1., 2., 3.], [ 8., 9., 10., 11.], [ 4., 5., 6., 7.], [12., 13., 14., 15.]]) """ le = np.empty(tpm.shape) N = tpm.shape[0] n = int(log2(N)) for i in range(N): le[i, :] = tpm[be2le(i, n), :] return le
[ "def", "be2le_state_by_state", "(", "tpm", ")", ":", "le", "=", "np", ".", "empty", "(", "tpm", ".", "shape", ")", "N", "=", "tpm", ".", "shape", "[", "0", "]", "n", "=", "int", "(", "log2", "(", "N", ")", ")", "for", "i", "in", "range", "(", "N", ")", ":", "le", "[", "i", ",", ":", "]", "=", "tpm", "[", "be2le", "(", "i", ",", "n", ")", ",", ":", "]", "return", "le" ]
Convert a state-by-state TPM from big-endian to little-endian or vice versa. Args: tpm (np.ndarray): A state-by-state TPM. Returns: np.ndarray: The state-by-state TPM in the other indexing format. Example: >>> tpm = np.arange(16).reshape([4, 4]) >>> be2le_state_by_state(tpm) array([[ 0., 1., 2., 3.], [ 8., 9., 10., 11.], [ 4., 5., 6., 7.], [12., 13., 14., 15.]])
[ "Convert", "a", "state", "-", "by", "-", "state", "TPM", "from", "big", "-", "endian", "to", "little", "-", "endian", "or", "vice", "versa", "." ]
deeca69a084d782a6fde7bf26f59e93b593c5d77
https://github.com/wmayner/pyphi/blob/deeca69a084d782a6fde7bf26f59e93b593c5d77/pyphi/convert.py#L147-L170
15,862
wmayner/pyphi
pyphi/convert.py
to_multidimensional
def to_multidimensional(tpm): """Reshape a state-by-node TPM to the multidimensional form. See documentation for the |Network| object for more information on TPM formats. """ # Cast to np.array. tpm = np.array(tpm) # Get the number of nodes. N = tpm.shape[-1] # Reshape. We use Fortran ordering here so that the rows use the # little-endian convention (least-significant bits correspond to low-index # nodes). Note that this does not change the actual memory layout (C- or # Fortran-contiguous), so there is no performance loss. return tpm.reshape([2] * N + [N], order="F").astype(float)
python
def to_multidimensional(tpm): """Reshape a state-by-node TPM to the multidimensional form. See documentation for the |Network| object for more information on TPM formats. """ # Cast to np.array. tpm = np.array(tpm) # Get the number of nodes. N = tpm.shape[-1] # Reshape. We use Fortran ordering here so that the rows use the # little-endian convention (least-significant bits correspond to low-index # nodes). Note that this does not change the actual memory layout (C- or # Fortran-contiguous), so there is no performance loss. return tpm.reshape([2] * N + [N], order="F").astype(float)
[ "def", "to_multidimensional", "(", "tpm", ")", ":", "# Cast to np.array.", "tpm", "=", "np", ".", "array", "(", "tpm", ")", "# Get the number of nodes.", "N", "=", "tpm", ".", "shape", "[", "-", "1", "]", "# Reshape. We use Fortran ordering here so that the rows use the", "# little-endian convention (least-significant bits correspond to low-index", "# nodes). Note that this does not change the actual memory layout (C- or", "# Fortran-contiguous), so there is no performance loss.", "return", "tpm", ".", "reshape", "(", "[", "2", "]", "*", "N", "+", "[", "N", "]", ",", "order", "=", "\"F\"", ")", ".", "astype", "(", "float", ")" ]
Reshape a state-by-node TPM to the multidimensional form. See documentation for the |Network| object for more information on TPM formats.
[ "Reshape", "a", "state", "-", "by", "-", "node", "TPM", "to", "the", "multidimensional", "form", "." ]
deeca69a084d782a6fde7bf26f59e93b593c5d77
https://github.com/wmayner/pyphi/blob/deeca69a084d782a6fde7bf26f59e93b593c5d77/pyphi/convert.py#L176-L190
15,863
wmayner/pyphi
pyphi/convert.py
state_by_state2state_by_node
def state_by_state2state_by_node(tpm): """Convert a state-by-state TPM to a state-by-node TPM. .. danger:: Many nondeterministic state-by-state TPMs can be represented by a single a state-by-state TPM. However, the mapping can be made to be one-to-one if we assume the state-by-state TPM is conditionally independent, as this function does. **If the given TPM is not conditionally independent, the conditional dependencies will be silently lost.** .. note:: The indices of the rows and columns of the state-by-state TPM are assumed to follow the little-endian convention. The indices of the rows of the resulting state-by-node TPM also follow the little-endian convention. See the documentation on PyPhi the :ref:`tpm-conventions` more information. Args: tpm (list[list] or np.ndarray): A square state-by-state TPM with row and column indices following the little-endian convention. Returns: np.ndarray: A state-by-node TPM, with row indices following the little-endian convention. Example: >>> tpm = np.array([[0.5, 0.5, 0.0, 0.0], ... [0.0, 1.0, 0.0, 0.0], ... [0.0, 0.2, 0.0, 0.8], ... [0.0, 0.3, 0.7, 0.0]]) >>> state_by_state2state_by_node(tpm) array([[[0.5, 0. ], [1. , 0.8]], <BLANKLINE> [[1. , 0. ], [0.3, 0.7]]]) """ # Cast to np.array. tpm = np.array(tpm) # Get the number of states from the length of one side of the TPM. S = tpm.shape[-1] # Get the number of nodes from the number of states. N = int(log2(S)) # Initialize the new state-by node TPM. sbn_tpm = np.zeros(([2] * N + [N])) # Map indices to state-tuples with the little-endian convention. states = {i: le_index2state(i, N) for i in range(S)} # Get an array for each node with 1 in positions that correspond to that # node being on in the next state, and a 0 otherwise. node_on = np.array([[states[i][n] for i in range(S)] for n in range(N)]) on_probabilities = [tpm * node_on[n] for n in range(N)] for i, state in states.items(): # Get the probability of each node being on given the previous state i, # i.e., a row of the state-by-node TPM. # Assign that row to the ith state in the state-by-node TPM. sbn_tpm[state] = [np.sum(on_probabilities[n][i]) for n in range(N)] return sbn_tpm
python
def state_by_state2state_by_node(tpm): """Convert a state-by-state TPM to a state-by-node TPM. .. danger:: Many nondeterministic state-by-state TPMs can be represented by a single a state-by-state TPM. However, the mapping can be made to be one-to-one if we assume the state-by-state TPM is conditionally independent, as this function does. **If the given TPM is not conditionally independent, the conditional dependencies will be silently lost.** .. note:: The indices of the rows and columns of the state-by-state TPM are assumed to follow the little-endian convention. The indices of the rows of the resulting state-by-node TPM also follow the little-endian convention. See the documentation on PyPhi the :ref:`tpm-conventions` more information. Args: tpm (list[list] or np.ndarray): A square state-by-state TPM with row and column indices following the little-endian convention. Returns: np.ndarray: A state-by-node TPM, with row indices following the little-endian convention. Example: >>> tpm = np.array([[0.5, 0.5, 0.0, 0.0], ... [0.0, 1.0, 0.0, 0.0], ... [0.0, 0.2, 0.0, 0.8], ... [0.0, 0.3, 0.7, 0.0]]) >>> state_by_state2state_by_node(tpm) array([[[0.5, 0. ], [1. , 0.8]], <BLANKLINE> [[1. , 0. ], [0.3, 0.7]]]) """ # Cast to np.array. tpm = np.array(tpm) # Get the number of states from the length of one side of the TPM. S = tpm.shape[-1] # Get the number of nodes from the number of states. N = int(log2(S)) # Initialize the new state-by node TPM. sbn_tpm = np.zeros(([2] * N + [N])) # Map indices to state-tuples with the little-endian convention. states = {i: le_index2state(i, N) for i in range(S)} # Get an array for each node with 1 in positions that correspond to that # node being on in the next state, and a 0 otherwise. node_on = np.array([[states[i][n] for i in range(S)] for n in range(N)]) on_probabilities = [tpm * node_on[n] for n in range(N)] for i, state in states.items(): # Get the probability of each node being on given the previous state i, # i.e., a row of the state-by-node TPM. # Assign that row to the ith state in the state-by-node TPM. sbn_tpm[state] = [np.sum(on_probabilities[n][i]) for n in range(N)] return sbn_tpm
[ "def", "state_by_state2state_by_node", "(", "tpm", ")", ":", "# Cast to np.array.", "tpm", "=", "np", ".", "array", "(", "tpm", ")", "# Get the number of states from the length of one side of the TPM.", "S", "=", "tpm", ".", "shape", "[", "-", "1", "]", "# Get the number of nodes from the number of states.", "N", "=", "int", "(", "log2", "(", "S", ")", ")", "# Initialize the new state-by node TPM.", "sbn_tpm", "=", "np", ".", "zeros", "(", "(", "[", "2", "]", "*", "N", "+", "[", "N", "]", ")", ")", "# Map indices to state-tuples with the little-endian convention.", "states", "=", "{", "i", ":", "le_index2state", "(", "i", ",", "N", ")", "for", "i", "in", "range", "(", "S", ")", "}", "# Get an array for each node with 1 in positions that correspond to that", "# node being on in the next state, and a 0 otherwise.", "node_on", "=", "np", ".", "array", "(", "[", "[", "states", "[", "i", "]", "[", "n", "]", "for", "i", "in", "range", "(", "S", ")", "]", "for", "n", "in", "range", "(", "N", ")", "]", ")", "on_probabilities", "=", "[", "tpm", "*", "node_on", "[", "n", "]", "for", "n", "in", "range", "(", "N", ")", "]", "for", "i", ",", "state", "in", "states", ".", "items", "(", ")", ":", "# Get the probability of each node being on given the previous state i,", "# i.e., a row of the state-by-node TPM.", "# Assign that row to the ith state in the state-by-node TPM.", "sbn_tpm", "[", "state", "]", "=", "[", "np", ".", "sum", "(", "on_probabilities", "[", "n", "]", "[", "i", "]", ")", "for", "n", "in", "range", "(", "N", ")", "]", "return", "sbn_tpm" ]
Convert a state-by-state TPM to a state-by-node TPM. .. danger:: Many nondeterministic state-by-state TPMs can be represented by a single a state-by-state TPM. However, the mapping can be made to be one-to-one if we assume the state-by-state TPM is conditionally independent, as this function does. **If the given TPM is not conditionally independent, the conditional dependencies will be silently lost.** .. note:: The indices of the rows and columns of the state-by-state TPM are assumed to follow the little-endian convention. The indices of the rows of the resulting state-by-node TPM also follow the little-endian convention. See the documentation on PyPhi the :ref:`tpm-conventions` more information. Args: tpm (list[list] or np.ndarray): A square state-by-state TPM with row and column indices following the little-endian convention. Returns: np.ndarray: A state-by-node TPM, with row indices following the little-endian convention. Example: >>> tpm = np.array([[0.5, 0.5, 0.0, 0.0], ... [0.0, 1.0, 0.0, 0.0], ... [0.0, 0.2, 0.0, 0.8], ... [0.0, 0.3, 0.7, 0.0]]) >>> state_by_state2state_by_node(tpm) array([[[0.5, 0. ], [1. , 0.8]], <BLANKLINE> [[1. , 0. ], [0.3, 0.7]]])
[ "Convert", "a", "state", "-", "by", "-", "state", "TPM", "to", "a", "state", "-", "by", "-", "node", "TPM", "." ]
deeca69a084d782a6fde7bf26f59e93b593c5d77
https://github.com/wmayner/pyphi/blob/deeca69a084d782a6fde7bf26f59e93b593c5d77/pyphi/convert.py#L207-L264
15,864
wmayner/pyphi
pyphi/convert.py
state_by_node2state_by_state
def state_by_node2state_by_state(tpm): """Convert a state-by-node TPM to a state-by-state TPM. .. important:: A nondeterministic state-by-node TPM can have more than one representation as a state-by-state TPM. However, the mapping can be made to be one-to-one if we assume the TPMs to be conditionally independent. Therefore, **this function returns the corresponding conditionally independent state-by-state TPM.** .. note:: The indices of the rows of the state-by-node TPM are assumed to follow the little-endian convention, while the indices of the columns follow the big-endian convention. The indices of the rows and columns of the resulting state-by-state TPM both follow the big-endian convention. See the documentation on PyPhi :ref:`tpm-conventions` for more info. Args: tpm (list[list] or np.ndarray): A state-by-node TPM with row indices following the little-endian convention and column indices following the big-endian convention. Returns: np.ndarray: A state-by-state TPM, with both row and column indices following the big-endian convention. >>> tpm = np.array([[1, 1, 0], ... [0, 0, 1], ... [0, 1, 1], ... [1, 0, 0], ... [0, 0, 1], ... [1, 0, 0], ... [1, 1, 1], ... [1, 0, 1]]) >>> state_by_node2state_by_state(tpm) array([[0., 0., 0., 1., 0., 0., 0., 0.], [0., 0., 0., 0., 1., 0., 0., 0.], [0., 0., 0., 0., 0., 0., 1., 0.], [0., 1., 0., 0., 0., 0., 0., 0.], [0., 0., 0., 0., 1., 0., 0., 0.], [0., 1., 0., 0., 0., 0., 0., 0.], [0., 0., 0., 0., 0., 0., 0., 1.], [0., 0., 0., 0., 0., 1., 0., 0.]]) """ # Cast to np.array. tpm = np.array(tpm) # Convert to multidimensional form. tpm = to_multidimensional(tpm) # Get the number of nodes from the last dimension of the TPM. N = tpm.shape[-1] # Get the number of states. S = 2**N # Initialize the state-by-state TPM. sbs_tpm = np.zeros((S, S)) if not np.any(np.logical_and(tpm < 1, tpm > 0)): # TPM is deterministic. for previous_state_index in range(S): # Use the little-endian convention to get the row and column # indices. previous_state = le_index2state(previous_state_index, N) current_state_index = state2le_index(tpm[previous_state]) sbs_tpm[previous_state_index, current_state_index] = 1 else: # TPM is nondeterministic. for previous_state_index in range(S): # Use the little-endian convention to get the row and column # indices. previous_state = le_index2state(previous_state_index, N) marginal_tpm = tpm[previous_state] for current_state_index in range(S): current_state = np.array( [i for i in le_index2state(current_state_index, N)]) sbs_tpm[previous_state_index, current_state_index] = ( np.prod(marginal_tpm[current_state == 1]) * np.prod(1 - marginal_tpm[current_state == 0])) return sbs_tpm
python
def state_by_node2state_by_state(tpm): """Convert a state-by-node TPM to a state-by-state TPM. .. important:: A nondeterministic state-by-node TPM can have more than one representation as a state-by-state TPM. However, the mapping can be made to be one-to-one if we assume the TPMs to be conditionally independent. Therefore, **this function returns the corresponding conditionally independent state-by-state TPM.** .. note:: The indices of the rows of the state-by-node TPM are assumed to follow the little-endian convention, while the indices of the columns follow the big-endian convention. The indices of the rows and columns of the resulting state-by-state TPM both follow the big-endian convention. See the documentation on PyPhi :ref:`tpm-conventions` for more info. Args: tpm (list[list] or np.ndarray): A state-by-node TPM with row indices following the little-endian convention and column indices following the big-endian convention. Returns: np.ndarray: A state-by-state TPM, with both row and column indices following the big-endian convention. >>> tpm = np.array([[1, 1, 0], ... [0, 0, 1], ... [0, 1, 1], ... [1, 0, 0], ... [0, 0, 1], ... [1, 0, 0], ... [1, 1, 1], ... [1, 0, 1]]) >>> state_by_node2state_by_state(tpm) array([[0., 0., 0., 1., 0., 0., 0., 0.], [0., 0., 0., 0., 1., 0., 0., 0.], [0., 0., 0., 0., 0., 0., 1., 0.], [0., 1., 0., 0., 0., 0., 0., 0.], [0., 0., 0., 0., 1., 0., 0., 0.], [0., 1., 0., 0., 0., 0., 0., 0.], [0., 0., 0., 0., 0., 0., 0., 1.], [0., 0., 0., 0., 0., 1., 0., 0.]]) """ # Cast to np.array. tpm = np.array(tpm) # Convert to multidimensional form. tpm = to_multidimensional(tpm) # Get the number of nodes from the last dimension of the TPM. N = tpm.shape[-1] # Get the number of states. S = 2**N # Initialize the state-by-state TPM. sbs_tpm = np.zeros((S, S)) if not np.any(np.logical_and(tpm < 1, tpm > 0)): # TPM is deterministic. for previous_state_index in range(S): # Use the little-endian convention to get the row and column # indices. previous_state = le_index2state(previous_state_index, N) current_state_index = state2le_index(tpm[previous_state]) sbs_tpm[previous_state_index, current_state_index] = 1 else: # TPM is nondeterministic. for previous_state_index in range(S): # Use the little-endian convention to get the row and column # indices. previous_state = le_index2state(previous_state_index, N) marginal_tpm = tpm[previous_state] for current_state_index in range(S): current_state = np.array( [i for i in le_index2state(current_state_index, N)]) sbs_tpm[previous_state_index, current_state_index] = ( np.prod(marginal_tpm[current_state == 1]) * np.prod(1 - marginal_tpm[current_state == 0])) return sbs_tpm
[ "def", "state_by_node2state_by_state", "(", "tpm", ")", ":", "# Cast to np.array.", "tpm", "=", "np", ".", "array", "(", "tpm", ")", "# Convert to multidimensional form.", "tpm", "=", "to_multidimensional", "(", "tpm", ")", "# Get the number of nodes from the last dimension of the TPM.", "N", "=", "tpm", ".", "shape", "[", "-", "1", "]", "# Get the number of states.", "S", "=", "2", "**", "N", "# Initialize the state-by-state TPM.", "sbs_tpm", "=", "np", ".", "zeros", "(", "(", "S", ",", "S", ")", ")", "if", "not", "np", ".", "any", "(", "np", ".", "logical_and", "(", "tpm", "<", "1", ",", "tpm", ">", "0", ")", ")", ":", "# TPM is deterministic.", "for", "previous_state_index", "in", "range", "(", "S", ")", ":", "# Use the little-endian convention to get the row and column", "# indices.", "previous_state", "=", "le_index2state", "(", "previous_state_index", ",", "N", ")", "current_state_index", "=", "state2le_index", "(", "tpm", "[", "previous_state", "]", ")", "sbs_tpm", "[", "previous_state_index", ",", "current_state_index", "]", "=", "1", "else", ":", "# TPM is nondeterministic.", "for", "previous_state_index", "in", "range", "(", "S", ")", ":", "# Use the little-endian convention to get the row and column", "# indices.", "previous_state", "=", "le_index2state", "(", "previous_state_index", ",", "N", ")", "marginal_tpm", "=", "tpm", "[", "previous_state", "]", "for", "current_state_index", "in", "range", "(", "S", ")", ":", "current_state", "=", "np", ".", "array", "(", "[", "i", "for", "i", "in", "le_index2state", "(", "current_state_index", ",", "N", ")", "]", ")", "sbs_tpm", "[", "previous_state_index", ",", "current_state_index", "]", "=", "(", "np", ".", "prod", "(", "marginal_tpm", "[", "current_state", "==", "1", "]", ")", "*", "np", ".", "prod", "(", "1", "-", "marginal_tpm", "[", "current_state", "==", "0", "]", ")", ")", "return", "sbs_tpm" ]
Convert a state-by-node TPM to a state-by-state TPM. .. important:: A nondeterministic state-by-node TPM can have more than one representation as a state-by-state TPM. However, the mapping can be made to be one-to-one if we assume the TPMs to be conditionally independent. Therefore, **this function returns the corresponding conditionally independent state-by-state TPM.** .. note:: The indices of the rows of the state-by-node TPM are assumed to follow the little-endian convention, while the indices of the columns follow the big-endian convention. The indices of the rows and columns of the resulting state-by-state TPM both follow the big-endian convention. See the documentation on PyPhi :ref:`tpm-conventions` for more info. Args: tpm (list[list] or np.ndarray): A state-by-node TPM with row indices following the little-endian convention and column indices following the big-endian convention. Returns: np.ndarray: A state-by-state TPM, with both row and column indices following the big-endian convention. >>> tpm = np.array([[1, 1, 0], ... [0, 0, 1], ... [0, 1, 1], ... [1, 0, 0], ... [0, 0, 1], ... [1, 0, 0], ... [1, 1, 1], ... [1, 0, 1]]) >>> state_by_node2state_by_state(tpm) array([[0., 0., 0., 1., 0., 0., 0., 0.], [0., 0., 0., 0., 1., 0., 0., 0.], [0., 0., 0., 0., 0., 0., 1., 0.], [0., 1., 0., 0., 0., 0., 0., 0.], [0., 0., 0., 0., 1., 0., 0., 0.], [0., 1., 0., 0., 0., 0., 0., 0.], [0., 0., 0., 0., 0., 0., 0., 1.], [0., 0., 0., 0., 0., 1., 0., 0.]])
[ "Convert", "a", "state", "-", "by", "-", "node", "TPM", "to", "a", "state", "-", "by", "-", "state", "TPM", "." ]
deeca69a084d782a6fde7bf26f59e93b593c5d77
https://github.com/wmayner/pyphi/blob/deeca69a084d782a6fde7bf26f59e93b593c5d77/pyphi/convert.py#L270-L345
15,865
wmayner/pyphi
profiling/code_to_profile.py
load_json_network
def load_json_network(json_dict): """Load a network from a json file""" network = pyphi.Network.from_json(json_dict['network']) state = json_dict['state'] return (network, state)
python
def load_json_network(json_dict): """Load a network from a json file""" network = pyphi.Network.from_json(json_dict['network']) state = json_dict['state'] return (network, state)
[ "def", "load_json_network", "(", "json_dict", ")", ":", "network", "=", "pyphi", ".", "Network", ".", "from_json", "(", "json_dict", "[", "'network'", "]", ")", "state", "=", "json_dict", "[", "'state'", "]", "return", "(", "network", ",", "state", ")" ]
Load a network from a json file
[ "Load", "a", "network", "from", "a", "json", "file" ]
deeca69a084d782a6fde7bf26f59e93b593c5d77
https://github.com/wmayner/pyphi/blob/deeca69a084d782a6fde7bf26f59e93b593c5d77/profiling/code_to_profile.py#L35-L39
15,866
wmayner/pyphi
profiling/code_to_profile.py
all_network_files
def all_network_files(): """All network files""" # TODO: list explicitly since some are missing? network_types = [ 'AND-circle', 'MAJ-specialized', 'MAJ-complete', 'iit-3.0-modular' ] network_sizes = range(5, 8) network_files = [] for n in network_sizes: for t in network_types: network_files.append('{}-{}'.format(n, t)) return network_files
python
def all_network_files(): """All network files""" # TODO: list explicitly since some are missing? network_types = [ 'AND-circle', 'MAJ-specialized', 'MAJ-complete', 'iit-3.0-modular' ] network_sizes = range(5, 8) network_files = [] for n in network_sizes: for t in network_types: network_files.append('{}-{}'.format(n, t)) return network_files
[ "def", "all_network_files", "(", ")", ":", "# TODO: list explicitly since some are missing?", "network_types", "=", "[", "'AND-circle'", ",", "'MAJ-specialized'", ",", "'MAJ-complete'", ",", "'iit-3.0-modular'", "]", "network_sizes", "=", "range", "(", "5", ",", "8", ")", "network_files", "=", "[", "]", "for", "n", "in", "network_sizes", ":", "for", "t", "in", "network_types", ":", "network_files", ".", "append", "(", "'{}-{}'", ".", "format", "(", "n", ",", "t", ")", ")", "return", "network_files" ]
All network files
[ "All", "network", "files" ]
deeca69a084d782a6fde7bf26f59e93b593c5d77
https://github.com/wmayner/pyphi/blob/deeca69a084d782a6fde7bf26f59e93b593c5d77/profiling/code_to_profile.py#L42-L56
15,867
wmayner/pyphi
profiling/code_to_profile.py
profile_network
def profile_network(filename): """Profile a network. Saves PyPhi results, pstats, and logs to respective directories. """ log = logging.getLogger(filename) logfile = os.path.join(LOGS, filename + '.log') os.makedirs(os.path.dirname(logfile), exist_ok=True) handler = logging.FileHandler(logfile) handler.setFormatter(formatter) log.addHandler(handler) log.setLevel(logging.INFO) try: with open(os.path.join(NETWORKS, filename + '.json')) as f: network, state = load_json_network(json.load(f)) log.info('Profiling %s...', filename) log.info('PyPhi configuration:\n%s', pyphi.config.get_config_string()) start = time() pr = cProfile.Profile() pr.enable() results = tuple(pyphi.compute.complexes(network, state)) pr.disable() end = time() pstatsfile = os.path.join(PSTATS, filename + '.pstats') os.makedirs(os.path.dirname(pstatsfile), exist_ok=True) pr.dump_stats(pstatsfile) log.info('Finished in %i seconds.', end - start) resultfile = os.path.join(RESULTS, filename + '-results.pkl') os.makedirs(os.path.dirname(resultfile), exist_ok=True) with open(resultfile, 'wb') as f: pickle.dump(results, f) except Exception as e: log.error(e) raise e
python
def profile_network(filename): """Profile a network. Saves PyPhi results, pstats, and logs to respective directories. """ log = logging.getLogger(filename) logfile = os.path.join(LOGS, filename + '.log') os.makedirs(os.path.dirname(logfile), exist_ok=True) handler = logging.FileHandler(logfile) handler.setFormatter(formatter) log.addHandler(handler) log.setLevel(logging.INFO) try: with open(os.path.join(NETWORKS, filename + '.json')) as f: network, state = load_json_network(json.load(f)) log.info('Profiling %s...', filename) log.info('PyPhi configuration:\n%s', pyphi.config.get_config_string()) start = time() pr = cProfile.Profile() pr.enable() results = tuple(pyphi.compute.complexes(network, state)) pr.disable() end = time() pstatsfile = os.path.join(PSTATS, filename + '.pstats') os.makedirs(os.path.dirname(pstatsfile), exist_ok=True) pr.dump_stats(pstatsfile) log.info('Finished in %i seconds.', end - start) resultfile = os.path.join(RESULTS, filename + '-results.pkl') os.makedirs(os.path.dirname(resultfile), exist_ok=True) with open(resultfile, 'wb') as f: pickle.dump(results, f) except Exception as e: log.error(e) raise e
[ "def", "profile_network", "(", "filename", ")", ":", "log", "=", "logging", ".", "getLogger", "(", "filename", ")", "logfile", "=", "os", ".", "path", ".", "join", "(", "LOGS", ",", "filename", "+", "'.log'", ")", "os", ".", "makedirs", "(", "os", ".", "path", ".", "dirname", "(", "logfile", ")", ",", "exist_ok", "=", "True", ")", "handler", "=", "logging", ".", "FileHandler", "(", "logfile", ")", "handler", ".", "setFormatter", "(", "formatter", ")", "log", ".", "addHandler", "(", "handler", ")", "log", ".", "setLevel", "(", "logging", ".", "INFO", ")", "try", ":", "with", "open", "(", "os", ".", "path", ".", "join", "(", "NETWORKS", ",", "filename", "+", "'.json'", ")", ")", "as", "f", ":", "network", ",", "state", "=", "load_json_network", "(", "json", ".", "load", "(", "f", ")", ")", "log", ".", "info", "(", "'Profiling %s...'", ",", "filename", ")", "log", ".", "info", "(", "'PyPhi configuration:\\n%s'", ",", "pyphi", ".", "config", ".", "get_config_string", "(", ")", ")", "start", "=", "time", "(", ")", "pr", "=", "cProfile", ".", "Profile", "(", ")", "pr", ".", "enable", "(", ")", "results", "=", "tuple", "(", "pyphi", ".", "compute", ".", "complexes", "(", "network", ",", "state", ")", ")", "pr", ".", "disable", "(", ")", "end", "=", "time", "(", ")", "pstatsfile", "=", "os", ".", "path", ".", "join", "(", "PSTATS", ",", "filename", "+", "'.pstats'", ")", "os", ".", "makedirs", "(", "os", ".", "path", ".", "dirname", "(", "pstatsfile", ")", ",", "exist_ok", "=", "True", ")", "pr", ".", "dump_stats", "(", "pstatsfile", ")", "log", ".", "info", "(", "'Finished in %i seconds.'", ",", "end", "-", "start", ")", "resultfile", "=", "os", ".", "path", ".", "join", "(", "RESULTS", ",", "filename", "+", "'-results.pkl'", ")", "os", ".", "makedirs", "(", "os", ".", "path", ".", "dirname", "(", "resultfile", ")", ",", "exist_ok", "=", "True", ")", "with", "open", "(", "resultfile", ",", "'wb'", ")", "as", "f", ":", "pickle", ".", "dump", "(", "results", ",", "f", ")", "except", "Exception", "as", "e", ":", "log", ".", "error", "(", "e", ")", "raise", "e" ]
Profile a network. Saves PyPhi results, pstats, and logs to respective directories.
[ "Profile", "a", "network", "." ]
deeca69a084d782a6fde7bf26f59e93b593c5d77
https://github.com/wmayner/pyphi/blob/deeca69a084d782a6fde7bf26f59e93b593c5d77/profiling/code_to_profile.py#L59-L102
15,868
wmayner/pyphi
pyphi/timescale.py
run_tpm
def run_tpm(tpm, time_scale): """Iterate a TPM by the specified number of time steps. Args: tpm (np.ndarray): A state-by-node tpm. time_scale (int): The number of steps to run the tpm. Returns: np.ndarray """ sbs_tpm = convert.state_by_node2state_by_state(tpm) if sparse(tpm): tpm = sparse_time(sbs_tpm, time_scale) else: tpm = dense_time(sbs_tpm, time_scale) return convert.state_by_state2state_by_node(tpm)
python
def run_tpm(tpm, time_scale): """Iterate a TPM by the specified number of time steps. Args: tpm (np.ndarray): A state-by-node tpm. time_scale (int): The number of steps to run the tpm. Returns: np.ndarray """ sbs_tpm = convert.state_by_node2state_by_state(tpm) if sparse(tpm): tpm = sparse_time(sbs_tpm, time_scale) else: tpm = dense_time(sbs_tpm, time_scale) return convert.state_by_state2state_by_node(tpm)
[ "def", "run_tpm", "(", "tpm", ",", "time_scale", ")", ":", "sbs_tpm", "=", "convert", ".", "state_by_node2state_by_state", "(", "tpm", ")", "if", "sparse", "(", "tpm", ")", ":", "tpm", "=", "sparse_time", "(", "sbs_tpm", ",", "time_scale", ")", "else", ":", "tpm", "=", "dense_time", "(", "sbs_tpm", ",", "time_scale", ")", "return", "convert", ".", "state_by_state2state_by_node", "(", "tpm", ")" ]
Iterate a TPM by the specified number of time steps. Args: tpm (np.ndarray): A state-by-node tpm. time_scale (int): The number of steps to run the tpm. Returns: np.ndarray
[ "Iterate", "a", "TPM", "by", "the", "specified", "number", "of", "time", "steps", "." ]
deeca69a084d782a6fde7bf26f59e93b593c5d77
https://github.com/wmayner/pyphi/blob/deeca69a084d782a6fde7bf26f59e93b593c5d77/pyphi/timescale.py#L28-L43
15,869
wmayner/pyphi
pyphi/timescale.py
run_cm
def run_cm(cm, time_scale): """Iterate a connectivity matrix the specified number of steps. Args: cm (np.ndarray): A connectivity matrix. time_scale (int): The number of steps to run. Returns: np.ndarray: The connectivity matrix at the new timescale. """ cm = np.linalg.matrix_power(cm, time_scale) # Round non-unitary values back to 1 cm[cm > 1] = 1 return cm
python
def run_cm(cm, time_scale): """Iterate a connectivity matrix the specified number of steps. Args: cm (np.ndarray): A connectivity matrix. time_scale (int): The number of steps to run. Returns: np.ndarray: The connectivity matrix at the new timescale. """ cm = np.linalg.matrix_power(cm, time_scale) # Round non-unitary values back to 1 cm[cm > 1] = 1 return cm
[ "def", "run_cm", "(", "cm", ",", "time_scale", ")", ":", "cm", "=", "np", ".", "linalg", ".", "matrix_power", "(", "cm", ",", "time_scale", ")", "# Round non-unitary values back to 1", "cm", "[", "cm", ">", "1", "]", "=", "1", "return", "cm" ]
Iterate a connectivity matrix the specified number of steps. Args: cm (np.ndarray): A connectivity matrix. time_scale (int): The number of steps to run. Returns: np.ndarray: The connectivity matrix at the new timescale.
[ "Iterate", "a", "connectivity", "matrix", "the", "specified", "number", "of", "steps", "." ]
deeca69a084d782a6fde7bf26f59e93b593c5d77
https://github.com/wmayner/pyphi/blob/deeca69a084d782a6fde7bf26f59e93b593c5d77/pyphi/timescale.py#L46-L59
15,870
wmayner/pyphi
pyphi/compute/network.py
_reachable_subsystems
def _reachable_subsystems(network, indices, state): """A generator over all subsystems in a valid state.""" validate.is_network(network) # Return subsystems largest to smallest to optimize parallel # resource usage. for subset in utils.powerset(indices, nonempty=True, reverse=True): try: yield Subsystem(network, state, subset) except exceptions.StateUnreachableError: pass
python
def _reachable_subsystems(network, indices, state): """A generator over all subsystems in a valid state.""" validate.is_network(network) # Return subsystems largest to smallest to optimize parallel # resource usage. for subset in utils.powerset(indices, nonempty=True, reverse=True): try: yield Subsystem(network, state, subset) except exceptions.StateUnreachableError: pass
[ "def", "_reachable_subsystems", "(", "network", ",", "indices", ",", "state", ")", ":", "validate", ".", "is_network", "(", "network", ")", "# Return subsystems largest to smallest to optimize parallel", "# resource usage.", "for", "subset", "in", "utils", ".", "powerset", "(", "indices", ",", "nonempty", "=", "True", ",", "reverse", "=", "True", ")", ":", "try", ":", "yield", "Subsystem", "(", "network", ",", "state", ",", "subset", ")", "except", "exceptions", ".", "StateUnreachableError", ":", "pass" ]
A generator over all subsystems in a valid state.
[ "A", "generator", "over", "all", "subsystems", "in", "a", "valid", "state", "." ]
deeca69a084d782a6fde7bf26f59e93b593c5d77
https://github.com/wmayner/pyphi/blob/deeca69a084d782a6fde7bf26f59e93b593c5d77/pyphi/compute/network.py#L21-L31
15,871
wmayner/pyphi
pyphi/compute/network.py
all_complexes
def all_complexes(network, state): """Return a generator for all complexes of the network. .. note:: Includes reducible, zero-|big_phi| complexes (which are not, strictly speaking, complexes at all). Args: network (Network): The |Network| of interest. state (tuple[int]): The state of the network (a binary tuple). Yields: SystemIrreducibilityAnalysis: A |SIA| for each |Subsystem| of the |Network|. """ engine = FindAllComplexes(subsystems(network, state)) return engine.run(config.PARALLEL_COMPLEX_EVALUATION)
python
def all_complexes(network, state): """Return a generator for all complexes of the network. .. note:: Includes reducible, zero-|big_phi| complexes (which are not, strictly speaking, complexes at all). Args: network (Network): The |Network| of interest. state (tuple[int]): The state of the network (a binary tuple). Yields: SystemIrreducibilityAnalysis: A |SIA| for each |Subsystem| of the |Network|. """ engine = FindAllComplexes(subsystems(network, state)) return engine.run(config.PARALLEL_COMPLEX_EVALUATION)
[ "def", "all_complexes", "(", "network", ",", "state", ")", ":", "engine", "=", "FindAllComplexes", "(", "subsystems", "(", "network", ",", "state", ")", ")", "return", "engine", ".", "run", "(", "config", ".", "PARALLEL_COMPLEX_EVALUATION", ")" ]
Return a generator for all complexes of the network. .. note:: Includes reducible, zero-|big_phi| complexes (which are not, strictly speaking, complexes at all). Args: network (Network): The |Network| of interest. state (tuple[int]): The state of the network (a binary tuple). Yields: SystemIrreducibilityAnalysis: A |SIA| for each |Subsystem| of the |Network|.
[ "Return", "a", "generator", "for", "all", "complexes", "of", "the", "network", "." ]
deeca69a084d782a6fde7bf26f59e93b593c5d77
https://github.com/wmayner/pyphi/blob/deeca69a084d782a6fde7bf26f59e93b593c5d77/pyphi/compute/network.py#L93-L109
15,872
wmayner/pyphi
pyphi/compute/network.py
complexes
def complexes(network, state): """Return all irreducible complexes of the network. Args: network (Network): The |Network| of interest. state (tuple[int]): The state of the network (a binary tuple). Yields: SystemIrreducibilityAnalysis: A |SIA| for each |Subsystem| of the |Network|, excluding those with |big_phi = 0|. """ engine = FindIrreducibleComplexes(possible_complexes(network, state)) return engine.run(config.PARALLEL_COMPLEX_EVALUATION)
python
def complexes(network, state): """Return all irreducible complexes of the network. Args: network (Network): The |Network| of interest. state (tuple[int]): The state of the network (a binary tuple). Yields: SystemIrreducibilityAnalysis: A |SIA| for each |Subsystem| of the |Network|, excluding those with |big_phi = 0|. """ engine = FindIrreducibleComplexes(possible_complexes(network, state)) return engine.run(config.PARALLEL_COMPLEX_EVALUATION)
[ "def", "complexes", "(", "network", ",", "state", ")", ":", "engine", "=", "FindIrreducibleComplexes", "(", "possible_complexes", "(", "network", ",", "state", ")", ")", "return", "engine", ".", "run", "(", "config", ".", "PARALLEL_COMPLEX_EVALUATION", ")" ]
Return all irreducible complexes of the network. Args: network (Network): The |Network| of interest. state (tuple[int]): The state of the network (a binary tuple). Yields: SystemIrreducibilityAnalysis: A |SIA| for each |Subsystem| of the |Network|, excluding those with |big_phi = 0|.
[ "Return", "all", "irreducible", "complexes", "of", "the", "network", "." ]
deeca69a084d782a6fde7bf26f59e93b593c5d77
https://github.com/wmayner/pyphi/blob/deeca69a084d782a6fde7bf26f59e93b593c5d77/pyphi/compute/network.py#L121-L133
15,873
wmayner/pyphi
pyphi/compute/network.py
major_complex
def major_complex(network, state): """Return the major complex of the network. Args: network (Network): The |Network| of interest. state (tuple[int]): The state of the network (a binary tuple). Returns: SystemIrreducibilityAnalysis: The |SIA| for the |Subsystem| with maximal |big_phi|. """ log.info('Calculating major complex...') result = complexes(network, state) if result: result = max(result) else: empty_subsystem = Subsystem(network, state, ()) result = _null_sia(empty_subsystem) log.info("Finished calculating major complex.") return result
python
def major_complex(network, state): """Return the major complex of the network. Args: network (Network): The |Network| of interest. state (tuple[int]): The state of the network (a binary tuple). Returns: SystemIrreducibilityAnalysis: The |SIA| for the |Subsystem| with maximal |big_phi|. """ log.info('Calculating major complex...') result = complexes(network, state) if result: result = max(result) else: empty_subsystem = Subsystem(network, state, ()) result = _null_sia(empty_subsystem) log.info("Finished calculating major complex.") return result
[ "def", "major_complex", "(", "network", ",", "state", ")", ":", "log", ".", "info", "(", "'Calculating major complex...'", ")", "result", "=", "complexes", "(", "network", ",", "state", ")", "if", "result", ":", "result", "=", "max", "(", "result", ")", "else", ":", "empty_subsystem", "=", "Subsystem", "(", "network", ",", "state", ",", "(", ")", ")", "result", "=", "_null_sia", "(", "empty_subsystem", ")", "log", ".", "info", "(", "\"Finished calculating major complex.\"", ")", "return", "result" ]
Return the major complex of the network. Args: network (Network): The |Network| of interest. state (tuple[int]): The state of the network (a binary tuple). Returns: SystemIrreducibilityAnalysis: The |SIA| for the |Subsystem| with maximal |big_phi|.
[ "Return", "the", "major", "complex", "of", "the", "network", "." ]
deeca69a084d782a6fde7bf26f59e93b593c5d77
https://github.com/wmayner/pyphi/blob/deeca69a084d782a6fde7bf26f59e93b593c5d77/pyphi/compute/network.py#L136-L158
15,874
wmayner/pyphi
pyphi/compute/network.py
condensed
def condensed(network, state): """Return a list of maximal non-overlapping complexes. Args: network (Network): The |Network| of interest. state (tuple[int]): The state of the network (a binary tuple). Returns: list[SystemIrreducibilityAnalysis]: A list of |SIA| for non-overlapping complexes with maximal |big_phi| values. """ result = [] covered_nodes = set() for c in reversed(sorted(complexes(network, state))): if not any(n in covered_nodes for n in c.subsystem.node_indices): result.append(c) covered_nodes = covered_nodes | set(c.subsystem.node_indices) return result
python
def condensed(network, state): """Return a list of maximal non-overlapping complexes. Args: network (Network): The |Network| of interest. state (tuple[int]): The state of the network (a binary tuple). Returns: list[SystemIrreducibilityAnalysis]: A list of |SIA| for non-overlapping complexes with maximal |big_phi| values. """ result = [] covered_nodes = set() for c in reversed(sorted(complexes(network, state))): if not any(n in covered_nodes for n in c.subsystem.node_indices): result.append(c) covered_nodes = covered_nodes | set(c.subsystem.node_indices) return result
[ "def", "condensed", "(", "network", ",", "state", ")", ":", "result", "=", "[", "]", "covered_nodes", "=", "set", "(", ")", "for", "c", "in", "reversed", "(", "sorted", "(", "complexes", "(", "network", ",", "state", ")", ")", ")", ":", "if", "not", "any", "(", "n", "in", "covered_nodes", "for", "n", "in", "c", ".", "subsystem", ".", "node_indices", ")", ":", "result", ".", "append", "(", "c", ")", "covered_nodes", "=", "covered_nodes", "|", "set", "(", "c", ".", "subsystem", ".", "node_indices", ")", "return", "result" ]
Return a list of maximal non-overlapping complexes. Args: network (Network): The |Network| of interest. state (tuple[int]): The state of the network (a binary tuple). Returns: list[SystemIrreducibilityAnalysis]: A list of |SIA| for non-overlapping complexes with maximal |big_phi| values.
[ "Return", "a", "list", "of", "maximal", "non", "-", "overlapping", "complexes", "." ]
deeca69a084d782a6fde7bf26f59e93b593c5d77
https://github.com/wmayner/pyphi/blob/deeca69a084d782a6fde7bf26f59e93b593c5d77/pyphi/compute/network.py#L161-L180
15,875
wmayner/pyphi
pyphi/examples.py
basic_network
def basic_network(cm=False): """A 3-node network of logic gates. Diagram:: +~~~~~~~~+ +~~~~>| A |<~~~~+ | | (OR) +~~~+ | | +~~~~~~~~+ | | | | | | v | +~+~~~~~~+ +~~~~~+~+ | B |<~~~~~~+ C | | (COPY) +~~~~~~>| (XOR) | +~~~~~~~~+ +~~~~~~~+ TPM: +----------------+---------------+ | Previous state | Current state | +----------------+---------------+ | A, B, C | A, B, C | +================+===============+ | 0, 0, 0 | 0, 0, 0 | +----------------+---------------+ | 1, 0, 0 | 0, 0, 1 | +----------------+---------------+ | 0, 1, 0 | 1, 0, 1 | +----------------+---------------+ | 1, 1, 0 | 1, 0, 0 | +----------------+---------------+ | 0, 0, 1 | 1, 1, 0 | +----------------+---------------+ | 1, 0, 1 | 1, 1, 1 | +----------------+---------------+ | 0, 1, 1 | 1, 1, 1 | +----------------+---------------+ | 1, 1, 1 | 1, 1, 0 | +----------------+---------------+ Connectivity matrix: +---+---+---+---+ | . | A | B | C | +---+---+---+---+ | A | 0 | 0 | 1 | +---+---+---+---+ | B | 1 | 0 | 1 | +---+---+---+---+ | C | 1 | 1 | 0 | +---+---+---+---+ .. note:: |CM[i][j] = 1| means that there is a directed edge |(i,j)| from node |i| to node |j| and |CM[i][j] = 0| means there is no edge from |i| to |j|. """ tpm = np.array([ [0, 0, 0], [0, 0, 1], [1, 0, 1], [1, 0, 0], [1, 1, 0], [1, 1, 1], [1, 1, 1], [1, 1, 0] ]) if cm is False: cm = np.array([ [0, 0, 1], [1, 0, 1], [1, 1, 0] ]) else: cm = None return Network(tpm, cm=cm, node_labels=LABELS[:tpm.shape[1]])
python
def basic_network(cm=False): """A 3-node network of logic gates. Diagram:: +~~~~~~~~+ +~~~~>| A |<~~~~+ | | (OR) +~~~+ | | +~~~~~~~~+ | | | | | | v | +~+~~~~~~+ +~~~~~+~+ | B |<~~~~~~+ C | | (COPY) +~~~~~~>| (XOR) | +~~~~~~~~+ +~~~~~~~+ TPM: +----------------+---------------+ | Previous state | Current state | +----------------+---------------+ | A, B, C | A, B, C | +================+===============+ | 0, 0, 0 | 0, 0, 0 | +----------------+---------------+ | 1, 0, 0 | 0, 0, 1 | +----------------+---------------+ | 0, 1, 0 | 1, 0, 1 | +----------------+---------------+ | 1, 1, 0 | 1, 0, 0 | +----------------+---------------+ | 0, 0, 1 | 1, 1, 0 | +----------------+---------------+ | 1, 0, 1 | 1, 1, 1 | +----------------+---------------+ | 0, 1, 1 | 1, 1, 1 | +----------------+---------------+ | 1, 1, 1 | 1, 1, 0 | +----------------+---------------+ Connectivity matrix: +---+---+---+---+ | . | A | B | C | +---+---+---+---+ | A | 0 | 0 | 1 | +---+---+---+---+ | B | 1 | 0 | 1 | +---+---+---+---+ | C | 1 | 1 | 0 | +---+---+---+---+ .. note:: |CM[i][j] = 1| means that there is a directed edge |(i,j)| from node |i| to node |j| and |CM[i][j] = 0| means there is no edge from |i| to |j|. """ tpm = np.array([ [0, 0, 0], [0, 0, 1], [1, 0, 1], [1, 0, 0], [1, 1, 0], [1, 1, 1], [1, 1, 1], [1, 1, 0] ]) if cm is False: cm = np.array([ [0, 0, 1], [1, 0, 1], [1, 1, 0] ]) else: cm = None return Network(tpm, cm=cm, node_labels=LABELS[:tpm.shape[1]])
[ "def", "basic_network", "(", "cm", "=", "False", ")", ":", "tpm", "=", "np", ".", "array", "(", "[", "[", "0", ",", "0", ",", "0", "]", ",", "[", "0", ",", "0", ",", "1", "]", ",", "[", "1", ",", "0", ",", "1", "]", ",", "[", "1", ",", "0", ",", "0", "]", ",", "[", "1", ",", "1", ",", "0", "]", ",", "[", "1", ",", "1", ",", "1", "]", ",", "[", "1", ",", "1", ",", "1", "]", ",", "[", "1", ",", "1", ",", "0", "]", "]", ")", "if", "cm", "is", "False", ":", "cm", "=", "np", ".", "array", "(", "[", "[", "0", ",", "0", ",", "1", "]", ",", "[", "1", ",", "0", ",", "1", "]", ",", "[", "1", ",", "1", ",", "0", "]", "]", ")", "else", ":", "cm", "=", "None", "return", "Network", "(", "tpm", ",", "cm", "=", "cm", ",", "node_labels", "=", "LABELS", "[", ":", "tpm", ".", "shape", "[", "1", "]", "]", ")" ]
A 3-node network of logic gates. Diagram:: +~~~~~~~~+ +~~~~>| A |<~~~~+ | | (OR) +~~~+ | | +~~~~~~~~+ | | | | | | v | +~+~~~~~~+ +~~~~~+~+ | B |<~~~~~~+ C | | (COPY) +~~~~~~>| (XOR) | +~~~~~~~~+ +~~~~~~~+ TPM: +----------------+---------------+ | Previous state | Current state | +----------------+---------------+ | A, B, C | A, B, C | +================+===============+ | 0, 0, 0 | 0, 0, 0 | +----------------+---------------+ | 1, 0, 0 | 0, 0, 1 | +----------------+---------------+ | 0, 1, 0 | 1, 0, 1 | +----------------+---------------+ | 1, 1, 0 | 1, 0, 0 | +----------------+---------------+ | 0, 0, 1 | 1, 1, 0 | +----------------+---------------+ | 1, 0, 1 | 1, 1, 1 | +----------------+---------------+ | 0, 1, 1 | 1, 1, 1 | +----------------+---------------+ | 1, 1, 1 | 1, 1, 0 | +----------------+---------------+ Connectivity matrix: +---+---+---+---+ | . | A | B | C | +---+---+---+---+ | A | 0 | 0 | 1 | +---+---+---+---+ | B | 1 | 0 | 1 | +---+---+---+---+ | C | 1 | 1 | 0 | +---+---+---+---+ .. note:: |CM[i][j] = 1| means that there is a directed edge |(i,j)| from node |i| to node |j| and |CM[i][j] = 0| means there is no edge from |i| to |j|.
[ "A", "3", "-", "node", "network", "of", "logic", "gates", "." ]
deeca69a084d782a6fde7bf26f59e93b593c5d77
https://github.com/wmayner/pyphi/blob/deeca69a084d782a6fde7bf26f59e93b593c5d77/pyphi/examples.py#L24-L99
15,876
wmayner/pyphi
pyphi/examples.py
basic_noisy_selfloop_network
def basic_noisy_selfloop_network(): """Based on the basic_network, but with added selfloops and noisy edges. Nodes perform deterministic functions of their inputs, but those inputs may be flipped (i.e. what should be a 0 becomes a 1, and vice versa) with probability epsilon (eps = 0.1 here). Diagram:: +~~+ | v +~~~~~~~~+ +~~~~>| A |<~~~~+ | | (OR) +~~~+ | | +~~~~~~~~+ | | | | | | v | +~+~~~~~~+ +~~~~~+~+ | B |<~~~~~~+ C | +>| (COPY) +~~~~~~>| (XOR) |<+ | +~~~~~~~~+ +~~~~~~~+ | | | | | +~~~+ +~~~+ """ tpm = np.array([ [0.271, 0.19, 0.244], [0.919, 0.19, 0.756], [0.919, 0.91, 0.756], [0.991, 0.91, 0.244], [0.919, 0.91, 0.756], [0.991, 0.91, 0.244], [0.991, 0.99, 0.244], [0.999, 0.99, 0.756] ]) cm = np.array([ [1, 0, 1], [1, 1, 1], [1, 1, 1] ]) return Network(tpm, cm=cm)
python
def basic_noisy_selfloop_network(): """Based on the basic_network, but with added selfloops and noisy edges. Nodes perform deterministic functions of their inputs, but those inputs may be flipped (i.e. what should be a 0 becomes a 1, and vice versa) with probability epsilon (eps = 0.1 here). Diagram:: +~~+ | v +~~~~~~~~+ +~~~~>| A |<~~~~+ | | (OR) +~~~+ | | +~~~~~~~~+ | | | | | | v | +~+~~~~~~+ +~~~~~+~+ | B |<~~~~~~+ C | +>| (COPY) +~~~~~~>| (XOR) |<+ | +~~~~~~~~+ +~~~~~~~+ | | | | | +~~~+ +~~~+ """ tpm = np.array([ [0.271, 0.19, 0.244], [0.919, 0.19, 0.756], [0.919, 0.91, 0.756], [0.991, 0.91, 0.244], [0.919, 0.91, 0.756], [0.991, 0.91, 0.244], [0.991, 0.99, 0.244], [0.999, 0.99, 0.756] ]) cm = np.array([ [1, 0, 1], [1, 1, 1], [1, 1, 1] ]) return Network(tpm, cm=cm)
[ "def", "basic_noisy_selfloop_network", "(", ")", ":", "tpm", "=", "np", ".", "array", "(", "[", "[", "0.271", ",", "0.19", ",", "0.244", "]", ",", "[", "0.919", ",", "0.19", ",", "0.756", "]", ",", "[", "0.919", ",", "0.91", ",", "0.756", "]", ",", "[", "0.991", ",", "0.91", ",", "0.244", "]", ",", "[", "0.919", ",", "0.91", ",", "0.756", "]", ",", "[", "0.991", ",", "0.91", ",", "0.244", "]", ",", "[", "0.991", ",", "0.99", ",", "0.244", "]", ",", "[", "0.999", ",", "0.99", ",", "0.756", "]", "]", ")", "cm", "=", "np", ".", "array", "(", "[", "[", "1", ",", "0", ",", "1", "]", ",", "[", "1", ",", "1", ",", "1", "]", ",", "[", "1", ",", "1", ",", "1", "]", "]", ")", "return", "Network", "(", "tpm", ",", "cm", "=", "cm", ")" ]
Based on the basic_network, but with added selfloops and noisy edges. Nodes perform deterministic functions of their inputs, but those inputs may be flipped (i.e. what should be a 0 becomes a 1, and vice versa) with probability epsilon (eps = 0.1 here). Diagram:: +~~+ | v +~~~~~~~~+ +~~~~>| A |<~~~~+ | | (OR) +~~~+ | | +~~~~~~~~+ | | | | | | v | +~+~~~~~~+ +~~~~~+~+ | B |<~~~~~~+ C | +>| (COPY) +~~~~~~>| (XOR) |<+ | +~~~~~~~~+ +~~~~~~~+ | | | | | +~~~+ +~~~+
[ "Based", "on", "the", "basic_network", "but", "with", "added", "selfloops", "and", "noisy", "edges", "." ]
deeca69a084d782a6fde7bf26f59e93b593c5d77
https://github.com/wmayner/pyphi/blob/deeca69a084d782a6fde7bf26f59e93b593c5d77/pyphi/examples.py#L116-L158
15,877
wmayner/pyphi
pyphi/examples.py
residue_network
def residue_network(): """The network for the residue example. Current and previous state are all nodes OFF. Diagram:: +~~~~~~~+ +~~~~~~~+ | A | | B | +~~>| (AND) | | (AND) |<~~+ | +~~~~~~~+ +~~~~~~~+ | | ^ ^ | | | | | | +~~~~~+ +~~~~~+ | | | | | +~~~+~~~+ +~+~~~+~+ +~~~+~~~+ | C | | D | | E | | | | | | | +~~~~~~~+ +~~~~~~~+ +~~~~~~~+ Connectivity matrix: +---+---+---+---+---+---+ | . | A | B | C | D | E | +---+---+---+---+---+---+ | A | 0 | 0 | 0 | 0 | 0 | +---+---+---+---+---+---+ | B | 0 | 0 | 0 | 0 | 0 | +---+---+---+---+---+---+ | C | 1 | 0 | 0 | 0 | 0 | +---+---+---+---+---+---+ | D | 1 | 1 | 0 | 0 | 0 | +---+---+---+---+---+---+ | E | 0 | 1 | 0 | 0 | 0 | +---+---+---+---+---+---+ """ tpm = np.array([ [int(s) for s in bin(x)[2:].zfill(5)[::-1]] for x in range(32) ]) tpm[np.where(np.sum(tpm[0:, 2:4], 1) == 2), 0] = 1 tpm[np.where(np.sum(tpm[0:, 3:5], 1) == 2), 1] = 1 tpm[np.where(np.sum(tpm[0:, 2:4], 1) < 2), 0] = 0 tpm[np.where(np.sum(tpm[0:, 3:5], 1) < 2), 1] = 0 cm = np.zeros((5, 5)) cm[2:4, 0] = 1 cm[3:, 1] = 1 return Network(tpm, cm=cm, node_labels=LABELS[:tpm.shape[1]])
python
def residue_network(): """The network for the residue example. Current and previous state are all nodes OFF. Diagram:: +~~~~~~~+ +~~~~~~~+ | A | | B | +~~>| (AND) | | (AND) |<~~+ | +~~~~~~~+ +~~~~~~~+ | | ^ ^ | | | | | | +~~~~~+ +~~~~~+ | | | | | +~~~+~~~+ +~+~~~+~+ +~~~+~~~+ | C | | D | | E | | | | | | | +~~~~~~~+ +~~~~~~~+ +~~~~~~~+ Connectivity matrix: +---+---+---+---+---+---+ | . | A | B | C | D | E | +---+---+---+---+---+---+ | A | 0 | 0 | 0 | 0 | 0 | +---+---+---+---+---+---+ | B | 0 | 0 | 0 | 0 | 0 | +---+---+---+---+---+---+ | C | 1 | 0 | 0 | 0 | 0 | +---+---+---+---+---+---+ | D | 1 | 1 | 0 | 0 | 0 | +---+---+---+---+---+---+ | E | 0 | 1 | 0 | 0 | 0 | +---+---+---+---+---+---+ """ tpm = np.array([ [int(s) for s in bin(x)[2:].zfill(5)[::-1]] for x in range(32) ]) tpm[np.where(np.sum(tpm[0:, 2:4], 1) == 2), 0] = 1 tpm[np.where(np.sum(tpm[0:, 3:5], 1) == 2), 1] = 1 tpm[np.where(np.sum(tpm[0:, 2:4], 1) < 2), 0] = 0 tpm[np.where(np.sum(tpm[0:, 3:5], 1) < 2), 1] = 0 cm = np.zeros((5, 5)) cm[2:4, 0] = 1 cm[3:, 1] = 1 return Network(tpm, cm=cm, node_labels=LABELS[:tpm.shape[1]])
[ "def", "residue_network", "(", ")", ":", "tpm", "=", "np", ".", "array", "(", "[", "[", "int", "(", "s", ")", "for", "s", "in", "bin", "(", "x", ")", "[", "2", ":", "]", ".", "zfill", "(", "5", ")", "[", ":", ":", "-", "1", "]", "]", "for", "x", "in", "range", "(", "32", ")", "]", ")", "tpm", "[", "np", ".", "where", "(", "np", ".", "sum", "(", "tpm", "[", "0", ":", ",", "2", ":", "4", "]", ",", "1", ")", "==", "2", ")", ",", "0", "]", "=", "1", "tpm", "[", "np", ".", "where", "(", "np", ".", "sum", "(", "tpm", "[", "0", ":", ",", "3", ":", "5", "]", ",", "1", ")", "==", "2", ")", ",", "1", "]", "=", "1", "tpm", "[", "np", ".", "where", "(", "np", ".", "sum", "(", "tpm", "[", "0", ":", ",", "2", ":", "4", "]", ",", "1", ")", "<", "2", ")", ",", "0", "]", "=", "0", "tpm", "[", "np", ".", "where", "(", "np", ".", "sum", "(", "tpm", "[", "0", ":", ",", "3", ":", "5", "]", ",", "1", ")", "<", "2", ")", ",", "1", "]", "=", "0", "cm", "=", "np", ".", "zeros", "(", "(", "5", ",", "5", ")", ")", "cm", "[", "2", ":", "4", ",", "0", "]", "=", "1", "cm", "[", "3", ":", ",", "1", "]", "=", "1", "return", "Network", "(", "tpm", ",", "cm", "=", "cm", ",", "node_labels", "=", "LABELS", "[", ":", "tpm", ".", "shape", "[", "1", "]", "]", ")" ]
The network for the residue example. Current and previous state are all nodes OFF. Diagram:: +~~~~~~~+ +~~~~~~~+ | A | | B | +~~>| (AND) | | (AND) |<~~+ | +~~~~~~~+ +~~~~~~~+ | | ^ ^ | | | | | | +~~~~~+ +~~~~~+ | | | | | +~~~+~~~+ +~+~~~+~+ +~~~+~~~+ | C | | D | | E | | | | | | | +~~~~~~~+ +~~~~~~~+ +~~~~~~~+ Connectivity matrix: +---+---+---+---+---+---+ | . | A | B | C | D | E | +---+---+---+---+---+---+ | A | 0 | 0 | 0 | 0 | 0 | +---+---+---+---+---+---+ | B | 0 | 0 | 0 | 0 | 0 | +---+---+---+---+---+---+ | C | 1 | 0 | 0 | 0 | 0 | +---+---+---+---+---+---+ | D | 1 | 1 | 0 | 0 | 0 | +---+---+---+---+---+---+ | E | 0 | 1 | 0 | 0 | 0 | +---+---+---+---+---+---+
[ "The", "network", "for", "the", "residue", "example", "." ]
deeca69a084d782a6fde7bf26f59e93b593c5d77
https://github.com/wmayner/pyphi/blob/deeca69a084d782a6fde7bf26f59e93b593c5d77/pyphi/examples.py#L170-L218
15,878
wmayner/pyphi
pyphi/examples.py
propagation_delay_network
def propagation_delay_network(): """A version of the primary example from the IIT 3.0 paper with deterministic COPY gates on each connection. These copy gates essentially function as propagation delays on the signal between OR, AND and XOR gates from the original system. The current and previous states of the network are also selected to mimic the corresponding states from the IIT 3.0 paper. Diagram:: +----------+ +------------------+ C (COPY) +<----------------+ v +----------+ | +-------+-+ +-+-------+ | | +----------+ | | | A (OR) +--------------->+ B (COPY) +-------------->+ D (XOR) | | | +----------+ | | +-+-----+-+ +-+-----+-+ | ^ ^ | | | | | | | +----------+ +----------+ | | | +---+ H (COPY) +<----+ +---->+ F (COPY) +---+ | | +----------+ | | +----------+ | | | | | | +-+-----+-+ | | +----------+ | | +----------+ | +-------->+ I (COPY) +-->| G (AND) |<--+ E (COPY) +<--------+ +----------+ | | +----------+ +---------+ Connectivity matrix: +---+---+---+---+---+---+---+---+---+---+ | . | A | B | C | D | E | F | G | H | I | +---+---+---+---+---+---+---+---+---+---+ | A | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | +---+---+---+---+---+---+---+---+---+---+ | B | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | +---+---+---+---+---+---+---+---+---+---+ | C | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | +---+---+---+---+---+---+---+---+---+---+ | D | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | +---+---+---+---+---+---+---+---+---+---+ | E | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | +---+---+---+---+---+---+---+---+---+---+ | F | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | +---+---+---+---+---+---+---+---+---+---+ | G | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | +---+---+---+---+---+---+---+---+---+---+ | H | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | +---+---+---+---+---+---+---+---+---+---+ | I | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | +---+---+---+---+---+---+---+---+---+---+ States: In the IIT 3.0 paper example, the previous state of the system has only the XOR gate ON. For the propagation delay network, this corresponds to a state of ``(0, 0, 0, 1, 0, 0, 0, 0, 0)``. The current state of the IIT 3.0 example has only the OR gate ON. By advancing the propagation delay system two time steps, the current state ``(1, 0, 0, 0, 0, 0, 0, 0, 0)`` is achieved, with corresponding previous state ``(0, 0, 1, 0, 1, 0, 0, 0, 0)``. """ num_nodes = 9 num_states = 2 ** num_nodes tpm = np.zeros((num_states, num_nodes)) for previous_state_index, previous in enumerate(all_states(num_nodes)): current_state = [0 for i in range(num_nodes)] if previous[2] == 1 or previous[7] == 1: current_state[0] = 1 if previous[0] == 1: current_state[1] = 1 current_state[8] = 1 if previous[3] == 1: current_state[2] = 1 current_state[4] = 1 if previous[1] == 1 ^ previous[5] == 1: current_state[3] = 1 if previous[4] == 1 and previous[8] == 1: current_state[6] = 1 if previous[6] == 1: current_state[5] = 1 current_state[7] = 1 tpm[previous_state_index, :] = current_state cm = np.array([[0, 1, 0, 0, 0, 0, 0, 0, 1], [0, 0, 0, 1, 0, 0, 0, 0, 0], [1, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 1, 0, 0], [0, 0, 0, 1, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 1, 0, 1, 0], [1, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 1, 0, 0]]) return Network(tpm, cm=cm, node_labels=LABELS[:tpm.shape[1]])
python
def propagation_delay_network(): """A version of the primary example from the IIT 3.0 paper with deterministic COPY gates on each connection. These copy gates essentially function as propagation delays on the signal between OR, AND and XOR gates from the original system. The current and previous states of the network are also selected to mimic the corresponding states from the IIT 3.0 paper. Diagram:: +----------+ +------------------+ C (COPY) +<----------------+ v +----------+ | +-------+-+ +-+-------+ | | +----------+ | | | A (OR) +--------------->+ B (COPY) +-------------->+ D (XOR) | | | +----------+ | | +-+-----+-+ +-+-----+-+ | ^ ^ | | | | | | | +----------+ +----------+ | | | +---+ H (COPY) +<----+ +---->+ F (COPY) +---+ | | +----------+ | | +----------+ | | | | | | +-+-----+-+ | | +----------+ | | +----------+ | +-------->+ I (COPY) +-->| G (AND) |<--+ E (COPY) +<--------+ +----------+ | | +----------+ +---------+ Connectivity matrix: +---+---+---+---+---+---+---+---+---+---+ | . | A | B | C | D | E | F | G | H | I | +---+---+---+---+---+---+---+---+---+---+ | A | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | +---+---+---+---+---+---+---+---+---+---+ | B | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | +---+---+---+---+---+---+---+---+---+---+ | C | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | +---+---+---+---+---+---+---+---+---+---+ | D | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | +---+---+---+---+---+---+---+---+---+---+ | E | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | +---+---+---+---+---+---+---+---+---+---+ | F | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | +---+---+---+---+---+---+---+---+---+---+ | G | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | +---+---+---+---+---+---+---+---+---+---+ | H | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | +---+---+---+---+---+---+---+---+---+---+ | I | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | +---+---+---+---+---+---+---+---+---+---+ States: In the IIT 3.0 paper example, the previous state of the system has only the XOR gate ON. For the propagation delay network, this corresponds to a state of ``(0, 0, 0, 1, 0, 0, 0, 0, 0)``. The current state of the IIT 3.0 example has only the OR gate ON. By advancing the propagation delay system two time steps, the current state ``(1, 0, 0, 0, 0, 0, 0, 0, 0)`` is achieved, with corresponding previous state ``(0, 0, 1, 0, 1, 0, 0, 0, 0)``. """ num_nodes = 9 num_states = 2 ** num_nodes tpm = np.zeros((num_states, num_nodes)) for previous_state_index, previous in enumerate(all_states(num_nodes)): current_state = [0 for i in range(num_nodes)] if previous[2] == 1 or previous[7] == 1: current_state[0] = 1 if previous[0] == 1: current_state[1] = 1 current_state[8] = 1 if previous[3] == 1: current_state[2] = 1 current_state[4] = 1 if previous[1] == 1 ^ previous[5] == 1: current_state[3] = 1 if previous[4] == 1 and previous[8] == 1: current_state[6] = 1 if previous[6] == 1: current_state[5] = 1 current_state[7] = 1 tpm[previous_state_index, :] = current_state cm = np.array([[0, 1, 0, 0, 0, 0, 0, 0, 1], [0, 0, 0, 1, 0, 0, 0, 0, 0], [1, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 1, 0, 0], [0, 0, 0, 1, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 1, 0, 1, 0], [1, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 1, 0, 0]]) return Network(tpm, cm=cm, node_labels=LABELS[:tpm.shape[1]])
[ "def", "propagation_delay_network", "(", ")", ":", "num_nodes", "=", "9", "num_states", "=", "2", "**", "num_nodes", "tpm", "=", "np", ".", "zeros", "(", "(", "num_states", ",", "num_nodes", ")", ")", "for", "previous_state_index", ",", "previous", "in", "enumerate", "(", "all_states", "(", "num_nodes", ")", ")", ":", "current_state", "=", "[", "0", "for", "i", "in", "range", "(", "num_nodes", ")", "]", "if", "previous", "[", "2", "]", "==", "1", "or", "previous", "[", "7", "]", "==", "1", ":", "current_state", "[", "0", "]", "=", "1", "if", "previous", "[", "0", "]", "==", "1", ":", "current_state", "[", "1", "]", "=", "1", "current_state", "[", "8", "]", "=", "1", "if", "previous", "[", "3", "]", "==", "1", ":", "current_state", "[", "2", "]", "=", "1", "current_state", "[", "4", "]", "=", "1", "if", "previous", "[", "1", "]", "==", "1", "^", "previous", "[", "5", "]", "==", "1", ":", "current_state", "[", "3", "]", "=", "1", "if", "previous", "[", "4", "]", "==", "1", "and", "previous", "[", "8", "]", "==", "1", ":", "current_state", "[", "6", "]", "=", "1", "if", "previous", "[", "6", "]", "==", "1", ":", "current_state", "[", "5", "]", "=", "1", "current_state", "[", "7", "]", "=", "1", "tpm", "[", "previous_state_index", ",", ":", "]", "=", "current_state", "cm", "=", "np", ".", "array", "(", "[", "[", "0", ",", "1", ",", "0", ",", "0", ",", "0", ",", "0", ",", "0", ",", "0", ",", "1", "]", ",", "[", "0", ",", "0", ",", "0", ",", "1", ",", "0", ",", "0", ",", "0", ",", "0", ",", "0", "]", ",", "[", "1", ",", "0", ",", "0", ",", "0", ",", "0", ",", "0", ",", "0", ",", "0", ",", "0", "]", ",", "[", "0", ",", "0", ",", "1", ",", "0", ",", "1", ",", "0", ",", "0", ",", "0", ",", "0", "]", ",", "[", "0", ",", "0", ",", "0", ",", "0", ",", "0", ",", "0", ",", "1", ",", "0", ",", "0", "]", ",", "[", "0", ",", "0", ",", "0", ",", "1", ",", "0", ",", "0", ",", "0", ",", "0", ",", "0", "]", ",", "[", "0", ",", "0", ",", "0", ",", "0", ",", "0", ",", "1", ",", "0", ",", "1", ",", "0", "]", ",", "[", "1", ",", "0", ",", "0", ",", "0", ",", "0", ",", "0", ",", "0", ",", "0", ",", "0", "]", ",", "[", "0", ",", "0", ",", "0", ",", "0", ",", "0", ",", "0", ",", "1", ",", "0", ",", "0", "]", "]", ")", "return", "Network", "(", "tpm", ",", "cm", "=", "cm", ",", "node_labels", "=", "LABELS", "[", ":", "tpm", ".", "shape", "[", "1", "]", "]", ")" ]
A version of the primary example from the IIT 3.0 paper with deterministic COPY gates on each connection. These copy gates essentially function as propagation delays on the signal between OR, AND and XOR gates from the original system. The current and previous states of the network are also selected to mimic the corresponding states from the IIT 3.0 paper. Diagram:: +----------+ +------------------+ C (COPY) +<----------------+ v +----------+ | +-------+-+ +-+-------+ | | +----------+ | | | A (OR) +--------------->+ B (COPY) +-------------->+ D (XOR) | | | +----------+ | | +-+-----+-+ +-+-----+-+ | ^ ^ | | | | | | | +----------+ +----------+ | | | +---+ H (COPY) +<----+ +---->+ F (COPY) +---+ | | +----------+ | | +----------+ | | | | | | +-+-----+-+ | | +----------+ | | +----------+ | +-------->+ I (COPY) +-->| G (AND) |<--+ E (COPY) +<--------+ +----------+ | | +----------+ +---------+ Connectivity matrix: +---+---+---+---+---+---+---+---+---+---+ | . | A | B | C | D | E | F | G | H | I | +---+---+---+---+---+---+---+---+---+---+ | A | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | +---+---+---+---+---+---+---+---+---+---+ | B | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | +---+---+---+---+---+---+---+---+---+---+ | C | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | +---+---+---+---+---+---+---+---+---+---+ | D | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | +---+---+---+---+---+---+---+---+---+---+ | E | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | +---+---+---+---+---+---+---+---+---+---+ | F | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | +---+---+---+---+---+---+---+---+---+---+ | G | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | +---+---+---+---+---+---+---+---+---+---+ | H | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | +---+---+---+---+---+---+---+---+---+---+ | I | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | +---+---+---+---+---+---+---+---+---+---+ States: In the IIT 3.0 paper example, the previous state of the system has only the XOR gate ON. For the propagation delay network, this corresponds to a state of ``(0, 0, 0, 1, 0, 0, 0, 0, 0)``. The current state of the IIT 3.0 example has only the OR gate ON. By advancing the propagation delay system two time steps, the current state ``(1, 0, 0, 0, 0, 0, 0, 0, 0)`` is achieved, with corresponding previous state ``(0, 0, 1, 0, 1, 0, 0, 0, 0)``.
[ "A", "version", "of", "the", "primary", "example", "from", "the", "IIT", "3", ".", "0", "paper", "with", "deterministic", "COPY", "gates", "on", "each", "connection", ".", "These", "copy", "gates", "essentially", "function", "as", "propagation", "delays", "on", "the", "signal", "between", "OR", "AND", "and", "XOR", "gates", "from", "the", "original", "system", "." ]
deeca69a084d782a6fde7bf26f59e93b593c5d77
https://github.com/wmayner/pyphi/blob/deeca69a084d782a6fde7bf26f59e93b593c5d77/pyphi/examples.py#L395-L496
15,879
wmayner/pyphi
pyphi/examples.py
macro_network
def macro_network(): """A network of micro elements which has greater integrated information after coarse graining to a macro scale. """ tpm = np.array([[0.3, 0.3, 0.3, 0.3], [0.3, 0.3, 0.3, 0.3], [0.3, 0.3, 0.3, 0.3], [0.3, 0.3, 1.0, 1.0], [0.3, 0.3, 0.3, 0.3], [0.3, 0.3, 0.3, 0.3], [0.3, 0.3, 0.3, 0.3], [0.3, 0.3, 1.0, 1.0], [0.3, 0.3, 0.3, 0.3], [0.3, 0.3, 0.3, 0.3], [0.3, 0.3, 0.3, 0.3], [0.3, 0.3, 1.0, 1.0], [1.0, 1.0, 0.3, 0.3], [1.0, 1.0, 0.3, 0.3], [1.0, 1.0, 0.3, 0.3], [1.0, 1.0, 1.0, 1.0]]) return Network(tpm, node_labels=LABELS[:tpm.shape[1]])
python
def macro_network(): """A network of micro elements which has greater integrated information after coarse graining to a macro scale. """ tpm = np.array([[0.3, 0.3, 0.3, 0.3], [0.3, 0.3, 0.3, 0.3], [0.3, 0.3, 0.3, 0.3], [0.3, 0.3, 1.0, 1.0], [0.3, 0.3, 0.3, 0.3], [0.3, 0.3, 0.3, 0.3], [0.3, 0.3, 0.3, 0.3], [0.3, 0.3, 1.0, 1.0], [0.3, 0.3, 0.3, 0.3], [0.3, 0.3, 0.3, 0.3], [0.3, 0.3, 0.3, 0.3], [0.3, 0.3, 1.0, 1.0], [1.0, 1.0, 0.3, 0.3], [1.0, 1.0, 0.3, 0.3], [1.0, 1.0, 0.3, 0.3], [1.0, 1.0, 1.0, 1.0]]) return Network(tpm, node_labels=LABELS[:tpm.shape[1]])
[ "def", "macro_network", "(", ")", ":", "tpm", "=", "np", ".", "array", "(", "[", "[", "0.3", ",", "0.3", ",", "0.3", ",", "0.3", "]", ",", "[", "0.3", ",", "0.3", ",", "0.3", ",", "0.3", "]", ",", "[", "0.3", ",", "0.3", ",", "0.3", ",", "0.3", "]", ",", "[", "0.3", ",", "0.3", ",", "1.0", ",", "1.0", "]", ",", "[", "0.3", ",", "0.3", ",", "0.3", ",", "0.3", "]", ",", "[", "0.3", ",", "0.3", ",", "0.3", ",", "0.3", "]", ",", "[", "0.3", ",", "0.3", ",", "0.3", ",", "0.3", "]", ",", "[", "0.3", ",", "0.3", ",", "1.0", ",", "1.0", "]", ",", "[", "0.3", ",", "0.3", ",", "0.3", ",", "0.3", "]", ",", "[", "0.3", ",", "0.3", ",", "0.3", ",", "0.3", "]", ",", "[", "0.3", ",", "0.3", ",", "0.3", ",", "0.3", "]", ",", "[", "0.3", ",", "0.3", ",", "1.0", ",", "1.0", "]", ",", "[", "1.0", ",", "1.0", ",", "0.3", ",", "0.3", "]", ",", "[", "1.0", ",", "1.0", ",", "0.3", ",", "0.3", "]", ",", "[", "1.0", ",", "1.0", ",", "0.3", ",", "0.3", "]", ",", "[", "1.0", ",", "1.0", ",", "1.0", ",", "1.0", "]", "]", ")", "return", "Network", "(", "tpm", ",", "node_labels", "=", "LABELS", "[", ":", "tpm", ".", "shape", "[", "1", "]", "]", ")" ]
A network of micro elements which has greater integrated information after coarse graining to a macro scale.
[ "A", "network", "of", "micro", "elements", "which", "has", "greater", "integrated", "information", "after", "coarse", "graining", "to", "a", "macro", "scale", "." ]
deeca69a084d782a6fde7bf26f59e93b593c5d77
https://github.com/wmayner/pyphi/blob/deeca69a084d782a6fde7bf26f59e93b593c5d77/pyphi/examples.py#L499-L519
15,880
wmayner/pyphi
pyphi/examples.py
blackbox_network
def blackbox_network(): """A micro-network to demonstrate blackboxing. Diagram:: +----------+ +-------------------->+ A (COPY) + <---------------+ | +----------+ | | +----------+ | | +-----------+ B (COPY) + <-------------+ | v v +----------+ | | +-+-----+-+ +-+-----+-+ | | | | | C (AND) | | F (AND) | | | | | +-+-----+-+ +-+-----+-+ | | ^ ^ | | +----------+ | | | +---------> + D (COPY) +---------------+ | | +----------+ | | +----------+ | +-------------------> + E (COPY) +-----------------+ +----------+ Connectivity Matrix: +---+---+---+---+---+---+---+ | . | A | B | C | D | E | F | +---+---+---+---+---+---+---+ | A | 0 | 0 | 1 | 0 | 0 | 0 | +---+---+---+---+---+---+---+ | B | 0 | 0 | 1 | 0 | 0 | 0 | +---+---+---+---+---+---+---+ | C | 0 | 0 | 0 | 1 | 1 | 0 | +---+---+---+---+---+---+---+ | D | 0 | 0 | 0 | 0 | 0 | 1 | +---+---+---+---+---+---+---+ | E | 0 | 0 | 0 | 0 | 0 | 1 | +---+---+---+---+---+---+---+ | F | 1 | 1 | 0 | 0 | 0 | 0 | +---+---+---+---+---+---+---+ In the documentation example, the state is (0, 0, 0, 0, 0, 0). """ num_nodes = 6 num_states = 2 ** num_nodes tpm = np.zeros((num_states, num_nodes)) for index, previous_state in enumerate(all_states(num_nodes)): current_state = [0 for i in range(num_nodes)] if previous_state[5] == 1: current_state[0] = 1 current_state[1] = 1 if previous_state[0] == 1 and previous_state[1]: current_state[2] = 1 if previous_state[2] == 1: current_state[3] = 1 current_state[4] = 1 if previous_state[3] == 1 and previous_state[4] == 1: current_state[5] = 1 tpm[index, :] = current_state cm = np.array([ [0, 0, 1, 0, 0, 0], [0, 0, 1, 0, 0, 0], [0, 0, 0, 1, 1, 0], [0, 0, 0, 0, 0, 1], [0, 0, 0, 0, 0, 1], [1, 1, 0, 0, 0, 0] ]) return Network(tpm, cm, node_labels=LABELS[:tpm.shape[1]])
python
def blackbox_network(): """A micro-network to demonstrate blackboxing. Diagram:: +----------+ +-------------------->+ A (COPY) + <---------------+ | +----------+ | | +----------+ | | +-----------+ B (COPY) + <-------------+ | v v +----------+ | | +-+-----+-+ +-+-----+-+ | | | | | C (AND) | | F (AND) | | | | | +-+-----+-+ +-+-----+-+ | | ^ ^ | | +----------+ | | | +---------> + D (COPY) +---------------+ | | +----------+ | | +----------+ | +-------------------> + E (COPY) +-----------------+ +----------+ Connectivity Matrix: +---+---+---+---+---+---+---+ | . | A | B | C | D | E | F | +---+---+---+---+---+---+---+ | A | 0 | 0 | 1 | 0 | 0 | 0 | +---+---+---+---+---+---+---+ | B | 0 | 0 | 1 | 0 | 0 | 0 | +---+---+---+---+---+---+---+ | C | 0 | 0 | 0 | 1 | 1 | 0 | +---+---+---+---+---+---+---+ | D | 0 | 0 | 0 | 0 | 0 | 1 | +---+---+---+---+---+---+---+ | E | 0 | 0 | 0 | 0 | 0 | 1 | +---+---+---+---+---+---+---+ | F | 1 | 1 | 0 | 0 | 0 | 0 | +---+---+---+---+---+---+---+ In the documentation example, the state is (0, 0, 0, 0, 0, 0). """ num_nodes = 6 num_states = 2 ** num_nodes tpm = np.zeros((num_states, num_nodes)) for index, previous_state in enumerate(all_states(num_nodes)): current_state = [0 for i in range(num_nodes)] if previous_state[5] == 1: current_state[0] = 1 current_state[1] = 1 if previous_state[0] == 1 and previous_state[1]: current_state[2] = 1 if previous_state[2] == 1: current_state[3] = 1 current_state[4] = 1 if previous_state[3] == 1 and previous_state[4] == 1: current_state[5] = 1 tpm[index, :] = current_state cm = np.array([ [0, 0, 1, 0, 0, 0], [0, 0, 1, 0, 0, 0], [0, 0, 0, 1, 1, 0], [0, 0, 0, 0, 0, 1], [0, 0, 0, 0, 0, 1], [1, 1, 0, 0, 0, 0] ]) return Network(tpm, cm, node_labels=LABELS[:tpm.shape[1]])
[ "def", "blackbox_network", "(", ")", ":", "num_nodes", "=", "6", "num_states", "=", "2", "**", "num_nodes", "tpm", "=", "np", ".", "zeros", "(", "(", "num_states", ",", "num_nodes", ")", ")", "for", "index", ",", "previous_state", "in", "enumerate", "(", "all_states", "(", "num_nodes", ")", ")", ":", "current_state", "=", "[", "0", "for", "i", "in", "range", "(", "num_nodes", ")", "]", "if", "previous_state", "[", "5", "]", "==", "1", ":", "current_state", "[", "0", "]", "=", "1", "current_state", "[", "1", "]", "=", "1", "if", "previous_state", "[", "0", "]", "==", "1", "and", "previous_state", "[", "1", "]", ":", "current_state", "[", "2", "]", "=", "1", "if", "previous_state", "[", "2", "]", "==", "1", ":", "current_state", "[", "3", "]", "=", "1", "current_state", "[", "4", "]", "=", "1", "if", "previous_state", "[", "3", "]", "==", "1", "and", "previous_state", "[", "4", "]", "==", "1", ":", "current_state", "[", "5", "]", "=", "1", "tpm", "[", "index", ",", ":", "]", "=", "current_state", "cm", "=", "np", ".", "array", "(", "[", "[", "0", ",", "0", ",", "1", ",", "0", ",", "0", ",", "0", "]", ",", "[", "0", ",", "0", ",", "1", ",", "0", ",", "0", ",", "0", "]", ",", "[", "0", ",", "0", ",", "0", ",", "1", ",", "1", ",", "0", "]", ",", "[", "0", ",", "0", ",", "0", ",", "0", ",", "0", ",", "1", "]", ",", "[", "0", ",", "0", ",", "0", ",", "0", ",", "0", ",", "1", "]", ",", "[", "1", ",", "1", ",", "0", ",", "0", ",", "0", ",", "0", "]", "]", ")", "return", "Network", "(", "tpm", ",", "cm", ",", "node_labels", "=", "LABELS", "[", ":", "tpm", ".", "shape", "[", "1", "]", "]", ")" ]
A micro-network to demonstrate blackboxing. Diagram:: +----------+ +-------------------->+ A (COPY) + <---------------+ | +----------+ | | +----------+ | | +-----------+ B (COPY) + <-------------+ | v v +----------+ | | +-+-----+-+ +-+-----+-+ | | | | | C (AND) | | F (AND) | | | | | +-+-----+-+ +-+-----+-+ | | ^ ^ | | +----------+ | | | +---------> + D (COPY) +---------------+ | | +----------+ | | +----------+ | +-------------------> + E (COPY) +-----------------+ +----------+ Connectivity Matrix: +---+---+---+---+---+---+---+ | . | A | B | C | D | E | F | +---+---+---+---+---+---+---+ | A | 0 | 0 | 1 | 0 | 0 | 0 | +---+---+---+---+---+---+---+ | B | 0 | 0 | 1 | 0 | 0 | 0 | +---+---+---+---+---+---+---+ | C | 0 | 0 | 0 | 1 | 1 | 0 | +---+---+---+---+---+---+---+ | D | 0 | 0 | 0 | 0 | 0 | 1 | +---+---+---+---+---+---+---+ | E | 0 | 0 | 0 | 0 | 0 | 1 | +---+---+---+---+---+---+---+ | F | 1 | 1 | 0 | 0 | 0 | 0 | +---+---+---+---+---+---+---+ In the documentation example, the state is (0, 0, 0, 0, 0, 0).
[ "A", "micro", "-", "network", "to", "demonstrate", "blackboxing", "." ]
deeca69a084d782a6fde7bf26f59e93b593c5d77
https://github.com/wmayner/pyphi/blob/deeca69a084d782a6fde7bf26f59e93b593c5d77/pyphi/examples.py#L531-L603
15,881
wmayner/pyphi
pyphi/examples.py
actual_causation
def actual_causation(): """The actual causation example network, consisting of an ``OR`` and ``AND`` gate with self-loops. """ tpm = np.array([ [1, 0, 0, 0], [0, 1, 0, 0], [0, 1, 0, 0], [0, 0, 0, 1] ]) cm = np.array([ [1, 1], [1, 1] ]) return Network(tpm, cm, node_labels=('OR', 'AND'))
python
def actual_causation(): """The actual causation example network, consisting of an ``OR`` and ``AND`` gate with self-loops. """ tpm = np.array([ [1, 0, 0, 0], [0, 1, 0, 0], [0, 1, 0, 0], [0, 0, 0, 1] ]) cm = np.array([ [1, 1], [1, 1] ]) return Network(tpm, cm, node_labels=('OR', 'AND'))
[ "def", "actual_causation", "(", ")", ":", "tpm", "=", "np", ".", "array", "(", "[", "[", "1", ",", "0", ",", "0", ",", "0", "]", ",", "[", "0", ",", "1", ",", "0", ",", "0", "]", ",", "[", "0", ",", "1", ",", "0", ",", "0", "]", ",", "[", "0", ",", "0", ",", "0", ",", "1", "]", "]", ")", "cm", "=", "np", ".", "array", "(", "[", "[", "1", ",", "1", "]", ",", "[", "1", ",", "1", "]", "]", ")", "return", "Network", "(", "tpm", ",", "cm", ",", "node_labels", "=", "(", "'OR'", ",", "'AND'", ")", ")" ]
The actual causation example network, consisting of an ``OR`` and ``AND`` gate with self-loops.
[ "The", "actual", "causation", "example", "network", "consisting", "of", "an", "OR", "and", "AND", "gate", "with", "self", "-", "loops", "." ]
deeca69a084d782a6fde7bf26f59e93b593c5d77
https://github.com/wmayner/pyphi/blob/deeca69a084d782a6fde7bf26f59e93b593c5d77/pyphi/examples.py#L1063-L1077
15,882
wmayner/pyphi
pyphi/examples.py
prevention
def prevention(): """The |Transition| for the prevention example from Actual Causation Figure 5D. """ tpm = np.array([ [0.5, 0.5, 1], [0.5, 0.5, 0], [0.5, 0.5, 1], [0.5, 0.5, 1], [0.5, 0.5, 1], [0.5, 0.5, 0], [0.5, 0.5, 1], [0.5, 0.5, 1] ]) cm = np.array([ [0, 0, 1], [0, 0, 1], [0, 0, 0] ]) network = Network(tpm, cm, node_labels=['A', 'B', 'F']) x_state = (1, 1, 1) y_state = (1, 1, 1) return Transition(network, x_state, y_state, (0, 1), (2,))
python
def prevention(): """The |Transition| for the prevention example from Actual Causation Figure 5D. """ tpm = np.array([ [0.5, 0.5, 1], [0.5, 0.5, 0], [0.5, 0.5, 1], [0.5, 0.5, 1], [0.5, 0.5, 1], [0.5, 0.5, 0], [0.5, 0.5, 1], [0.5, 0.5, 1] ]) cm = np.array([ [0, 0, 1], [0, 0, 1], [0, 0, 0] ]) network = Network(tpm, cm, node_labels=['A', 'B', 'F']) x_state = (1, 1, 1) y_state = (1, 1, 1) return Transition(network, x_state, y_state, (0, 1), (2,))
[ "def", "prevention", "(", ")", ":", "tpm", "=", "np", ".", "array", "(", "[", "[", "0.5", ",", "0.5", ",", "1", "]", ",", "[", "0.5", ",", "0.5", ",", "0", "]", ",", "[", "0.5", ",", "0.5", ",", "1", "]", ",", "[", "0.5", ",", "0.5", ",", "1", "]", ",", "[", "0.5", ",", "0.5", ",", "1", "]", ",", "[", "0.5", ",", "0.5", ",", "0", "]", ",", "[", "0.5", ",", "0.5", ",", "1", "]", ",", "[", "0.5", ",", "0.5", ",", "1", "]", "]", ")", "cm", "=", "np", ".", "array", "(", "[", "[", "0", ",", "0", ",", "1", "]", ",", "[", "0", ",", "0", ",", "1", "]", ",", "[", "0", ",", "0", ",", "0", "]", "]", ")", "network", "=", "Network", "(", "tpm", ",", "cm", ",", "node_labels", "=", "[", "'A'", ",", "'B'", ",", "'F'", "]", ")", "x_state", "=", "(", "1", ",", "1", ",", "1", ")", "y_state", "=", "(", "1", ",", "1", ",", "1", ")", "return", "Transition", "(", "network", ",", "x_state", ",", "y_state", ",", "(", "0", ",", "1", ")", ",", "(", "2", ",", ")", ")" ]
The |Transition| for the prevention example from Actual Causation Figure 5D.
[ "The", "|Transition|", "for", "the", "prevention", "example", "from", "Actual", "Causation", "Figure", "5D", "." ]
deeca69a084d782a6fde7bf26f59e93b593c5d77
https://github.com/wmayner/pyphi/blob/deeca69a084d782a6fde7bf26f59e93b593c5d77/pyphi/examples.py#L1113-L1136
15,883
wmayner/pyphi
benchmarks/benchmarks/subsystem.py
clear_subsystem_caches
def clear_subsystem_caches(subsys): """Clear subsystem caches""" try: # New-style caches subsys._repertoire_cache.clear() subsys._mice_cache.clear() except TypeError: try: # Pre cache.clear() implementation subsys._repertoire_cache.cache = {} subsys._mice_cache.cache = {} except AttributeError: # Old school, pre cache refactor subsys._repertoire_cache = {} subsys._repertoire_cache_info = [0, 0] subsys._mice_cache = {}
python
def clear_subsystem_caches(subsys): """Clear subsystem caches""" try: # New-style caches subsys._repertoire_cache.clear() subsys._mice_cache.clear() except TypeError: try: # Pre cache.clear() implementation subsys._repertoire_cache.cache = {} subsys._mice_cache.cache = {} except AttributeError: # Old school, pre cache refactor subsys._repertoire_cache = {} subsys._repertoire_cache_info = [0, 0] subsys._mice_cache = {}
[ "def", "clear_subsystem_caches", "(", "subsys", ")", ":", "try", ":", "# New-style caches", "subsys", ".", "_repertoire_cache", ".", "clear", "(", ")", "subsys", ".", "_mice_cache", ".", "clear", "(", ")", "except", "TypeError", ":", "try", ":", "# Pre cache.clear() implementation", "subsys", ".", "_repertoire_cache", ".", "cache", "=", "{", "}", "subsys", ".", "_mice_cache", ".", "cache", "=", "{", "}", "except", "AttributeError", ":", "# Old school, pre cache refactor", "subsys", ".", "_repertoire_cache", "=", "{", "}", "subsys", ".", "_repertoire_cache_info", "=", "[", "0", ",", "0", "]", "subsys", ".", "_mice_cache", "=", "{", "}" ]
Clear subsystem caches
[ "Clear", "subsystem", "caches" ]
deeca69a084d782a6fde7bf26f59e93b593c5d77
https://github.com/wmayner/pyphi/blob/deeca69a084d782a6fde7bf26f59e93b593c5d77/benchmarks/benchmarks/subsystem.py#L24-L39
15,884
wmayner/pyphi
pyphi/utils.py
all_states
def all_states(n, big_endian=False): """Return all binary states for a system. Args: n (int): The number of elements in the system. big_endian (bool): Whether to return the states in big-endian order instead of little-endian order. Yields: tuple[int]: The next state of an ``n``-element system, in little-endian order unless ``big_endian`` is ``True``. """ if n == 0: return for state in product((0, 1), repeat=n): if big_endian: yield state else: yield state[::-1]
python
def all_states(n, big_endian=False): """Return all binary states for a system. Args: n (int): The number of elements in the system. big_endian (bool): Whether to return the states in big-endian order instead of little-endian order. Yields: tuple[int]: The next state of an ``n``-element system, in little-endian order unless ``big_endian`` is ``True``. """ if n == 0: return for state in product((0, 1), repeat=n): if big_endian: yield state else: yield state[::-1]
[ "def", "all_states", "(", "n", ",", "big_endian", "=", "False", ")", ":", "if", "n", "==", "0", ":", "return", "for", "state", "in", "product", "(", "(", "0", ",", "1", ")", ",", "repeat", "=", "n", ")", ":", "if", "big_endian", ":", "yield", "state", "else", ":", "yield", "state", "[", ":", ":", "-", "1", "]" ]
Return all binary states for a system. Args: n (int): The number of elements in the system. big_endian (bool): Whether to return the states in big-endian order instead of little-endian order. Yields: tuple[int]: The next state of an ``n``-element system, in little-endian order unless ``big_endian`` is ``True``.
[ "Return", "all", "binary", "states", "for", "a", "system", "." ]
deeca69a084d782a6fde7bf26f59e93b593c5d77
https://github.com/wmayner/pyphi/blob/deeca69a084d782a6fde7bf26f59e93b593c5d77/pyphi/utils.py#L27-L46
15,885
wmayner/pyphi
pyphi/utils.py
np_hash
def np_hash(a): """Return a hash of a NumPy array.""" if a is None: return hash(None) # Ensure that hashes are equal whatever the ordering in memory (C or # Fortran) a = np.ascontiguousarray(a) # Compute the digest and return a decimal int return int(hashlib.sha1(a.view(a.dtype)).hexdigest(), 16)
python
def np_hash(a): """Return a hash of a NumPy array.""" if a is None: return hash(None) # Ensure that hashes are equal whatever the ordering in memory (C or # Fortran) a = np.ascontiguousarray(a) # Compute the digest and return a decimal int return int(hashlib.sha1(a.view(a.dtype)).hexdigest(), 16)
[ "def", "np_hash", "(", "a", ")", ":", "if", "a", "is", "None", ":", "return", "hash", "(", "None", ")", "# Ensure that hashes are equal whatever the ordering in memory (C or", "# Fortran)", "a", "=", "np", ".", "ascontiguousarray", "(", "a", ")", "# Compute the digest and return a decimal int", "return", "int", "(", "hashlib", ".", "sha1", "(", "a", ".", "view", "(", "a", ".", "dtype", ")", ")", ".", "hexdigest", "(", ")", ",", "16", ")" ]
Return a hash of a NumPy array.
[ "Return", "a", "hash", "of", "a", "NumPy", "array", "." ]
deeca69a084d782a6fde7bf26f59e93b593c5d77
https://github.com/wmayner/pyphi/blob/deeca69a084d782a6fde7bf26f59e93b593c5d77/pyphi/utils.py#L55-L63
15,886
wmayner/pyphi
pyphi/utils.py
powerset
def powerset(iterable, nonempty=False, reverse=False): """Generate the power set of an iterable. Args: iterable (Iterable): The iterable from which to generate the power set. Keyword Args: nonempty (boolean): If True, don't include the empty set. reverse (boolean): If True, reverse the order of the powerset. Returns: Iterable: An iterator over the power set. Example: >>> ps = powerset(np.arange(2)) >>> list(ps) [(), (0,), (1,), (0, 1)] >>> ps = powerset(np.arange(2), nonempty=True) >>> list(ps) [(0,), (1,), (0, 1)] >>> ps = powerset(np.arange(2), nonempty=True, reverse=True) >>> list(ps) [(1, 0), (1,), (0,)] """ iterable = list(iterable) if nonempty: # Don't include 0-length subsets start = 1 else: start = 0 seq_sizes = range(start, len(iterable) + 1) if reverse: seq_sizes = reversed(seq_sizes) iterable.reverse() return chain.from_iterable(combinations(iterable, r) for r in seq_sizes)
python
def powerset(iterable, nonempty=False, reverse=False): """Generate the power set of an iterable. Args: iterable (Iterable): The iterable from which to generate the power set. Keyword Args: nonempty (boolean): If True, don't include the empty set. reverse (boolean): If True, reverse the order of the powerset. Returns: Iterable: An iterator over the power set. Example: >>> ps = powerset(np.arange(2)) >>> list(ps) [(), (0,), (1,), (0, 1)] >>> ps = powerset(np.arange(2), nonempty=True) >>> list(ps) [(0,), (1,), (0, 1)] >>> ps = powerset(np.arange(2), nonempty=True, reverse=True) >>> list(ps) [(1, 0), (1,), (0,)] """ iterable = list(iterable) if nonempty: # Don't include 0-length subsets start = 1 else: start = 0 seq_sizes = range(start, len(iterable) + 1) if reverse: seq_sizes = reversed(seq_sizes) iterable.reverse() return chain.from_iterable(combinations(iterable, r) for r in seq_sizes)
[ "def", "powerset", "(", "iterable", ",", "nonempty", "=", "False", ",", "reverse", "=", "False", ")", ":", "iterable", "=", "list", "(", "iterable", ")", "if", "nonempty", ":", "# Don't include 0-length subsets", "start", "=", "1", "else", ":", "start", "=", "0", "seq_sizes", "=", "range", "(", "start", ",", "len", "(", "iterable", ")", "+", "1", ")", "if", "reverse", ":", "seq_sizes", "=", "reversed", "(", "seq_sizes", ")", "iterable", ".", "reverse", "(", ")", "return", "chain", ".", "from_iterable", "(", "combinations", "(", "iterable", ",", "r", ")", "for", "r", "in", "seq_sizes", ")" ]
Generate the power set of an iterable. Args: iterable (Iterable): The iterable from which to generate the power set. Keyword Args: nonempty (boolean): If True, don't include the empty set. reverse (boolean): If True, reverse the order of the powerset. Returns: Iterable: An iterator over the power set. Example: >>> ps = powerset(np.arange(2)) >>> list(ps) [(), (0,), (1,), (0, 1)] >>> ps = powerset(np.arange(2), nonempty=True) >>> list(ps) [(0,), (1,), (0, 1)] >>> ps = powerset(np.arange(2), nonempty=True, reverse=True) >>> list(ps) [(1, 0), (1,), (0,)]
[ "Generate", "the", "power", "set", "of", "an", "iterable", "." ]
deeca69a084d782a6fde7bf26f59e93b593c5d77
https://github.com/wmayner/pyphi/blob/deeca69a084d782a6fde7bf26f59e93b593c5d77/pyphi/utils.py#L146-L183
15,887
wmayner/pyphi
pyphi/utils.py
load_data
def load_data(directory, num): """Load numpy data from the data directory. The files should stored in ``../data/<dir>`` and named ``0.npy, 1.npy, ... <num - 1>.npy``. Returns: list: A list of loaded data, such that ``list[i]`` contains the the contents of ``i.npy``. """ root = os.path.abspath(os.path.dirname(__file__)) def get_path(i): # pylint: disable=missing-docstring return os.path.join(root, 'data', directory, str(i) + '.npy') return [np.load(get_path(i)) for i in range(num)]
python
def load_data(directory, num): """Load numpy data from the data directory. The files should stored in ``../data/<dir>`` and named ``0.npy, 1.npy, ... <num - 1>.npy``. Returns: list: A list of loaded data, such that ``list[i]`` contains the the contents of ``i.npy``. """ root = os.path.abspath(os.path.dirname(__file__)) def get_path(i): # pylint: disable=missing-docstring return os.path.join(root, 'data', directory, str(i) + '.npy') return [np.load(get_path(i)) for i in range(num)]
[ "def", "load_data", "(", "directory", ",", "num", ")", ":", "root", "=", "os", ".", "path", ".", "abspath", "(", "os", ".", "path", ".", "dirname", "(", "__file__", ")", ")", "def", "get_path", "(", "i", ")", ":", "# pylint: disable=missing-docstring", "return", "os", ".", "path", ".", "join", "(", "root", ",", "'data'", ",", "directory", ",", "str", "(", "i", ")", "+", "'.npy'", ")", "return", "[", "np", ".", "load", "(", "get_path", "(", "i", ")", ")", "for", "i", "in", "range", "(", "num", ")", "]" ]
Load numpy data from the data directory. The files should stored in ``../data/<dir>`` and named ``0.npy, 1.npy, ... <num - 1>.npy``. Returns: list: A list of loaded data, such that ``list[i]`` contains the the contents of ``i.npy``.
[ "Load", "numpy", "data", "from", "the", "data", "directory", "." ]
deeca69a084d782a6fde7bf26f59e93b593c5d77
https://github.com/wmayner/pyphi/blob/deeca69a084d782a6fde7bf26f59e93b593c5d77/pyphi/utils.py#L186-L201
15,888
wmayner/pyphi
pyphi/utils.py
time_annotated
def time_annotated(func, *args, **kwargs): """Annotate the decorated function or method with the total execution time. The result is annotated with a `time` attribute. """ start = time() result = func(*args, **kwargs) end = time() result.time = round(end - start, config.PRECISION) return result
python
def time_annotated(func, *args, **kwargs): """Annotate the decorated function or method with the total execution time. The result is annotated with a `time` attribute. """ start = time() result = func(*args, **kwargs) end = time() result.time = round(end - start, config.PRECISION) return result
[ "def", "time_annotated", "(", "func", ",", "*", "args", ",", "*", "*", "kwargs", ")", ":", "start", "=", "time", "(", ")", "result", "=", "func", "(", "*", "args", ",", "*", "*", "kwargs", ")", "end", "=", "time", "(", ")", "result", ".", "time", "=", "round", "(", "end", "-", "start", ",", "config", ".", "PRECISION", ")", "return", "result" ]
Annotate the decorated function or method with the total execution time. The result is annotated with a `time` attribute.
[ "Annotate", "the", "decorated", "function", "or", "method", "with", "the", "total", "execution", "time", "." ]
deeca69a084d782a6fde7bf26f59e93b593c5d77
https://github.com/wmayner/pyphi/blob/deeca69a084d782a6fde7bf26f59e93b593c5d77/pyphi/utils.py#L207-L217
15,889
wmayner/pyphi
pyphi/models/mechanism.py
_null_ria
def _null_ria(direction, mechanism, purview, repertoire=None, phi=0.0): """The irreducibility analysis for a reducible mechanism.""" # TODO Use properties here to infer mechanism and purview from # partition yet access them with .mechanism and .partition return RepertoireIrreducibilityAnalysis( direction=direction, mechanism=mechanism, purview=purview, partition=None, repertoire=repertoire, partitioned_repertoire=None, phi=phi )
python
def _null_ria(direction, mechanism, purview, repertoire=None, phi=0.0): """The irreducibility analysis for a reducible mechanism.""" # TODO Use properties here to infer mechanism and purview from # partition yet access them with .mechanism and .partition return RepertoireIrreducibilityAnalysis( direction=direction, mechanism=mechanism, purview=purview, partition=None, repertoire=repertoire, partitioned_repertoire=None, phi=phi )
[ "def", "_null_ria", "(", "direction", ",", "mechanism", ",", "purview", ",", "repertoire", "=", "None", ",", "phi", "=", "0.0", ")", ":", "# TODO Use properties here to infer mechanism and purview from", "# partition yet access them with .mechanism and .partition", "return", "RepertoireIrreducibilityAnalysis", "(", "direction", "=", "direction", ",", "mechanism", "=", "mechanism", ",", "purview", "=", "purview", ",", "partition", "=", "None", ",", "repertoire", "=", "repertoire", ",", "partitioned_repertoire", "=", "None", ",", "phi", "=", "phi", ")" ]
The irreducibility analysis for a reducible mechanism.
[ "The", "irreducibility", "analysis", "for", "a", "reducible", "mechanism", "." ]
deeca69a084d782a6fde7bf26f59e93b593c5d77
https://github.com/wmayner/pyphi/blob/deeca69a084d782a6fde7bf26f59e93b593c5d77/pyphi/models/mechanism.py#L135-L147
15,890
wmayner/pyphi
pyphi/models/mechanism.py
MaximallyIrreducibleCauseOrEffect.damaged_by_cut
def damaged_by_cut(self, subsystem): """Return ``True`` if this MICE is affected by the subsystem's cut. The cut affects the MICE if it either splits the MICE's mechanism or splits the connections between the purview and mechanism. """ return (subsystem.cut.splits_mechanism(self.mechanism) or np.any(self._relevant_connections(subsystem) * subsystem.cut.cut_matrix(subsystem.network.size) == 1))
python
def damaged_by_cut(self, subsystem): """Return ``True`` if this MICE is affected by the subsystem's cut. The cut affects the MICE if it either splits the MICE's mechanism or splits the connections between the purview and mechanism. """ return (subsystem.cut.splits_mechanism(self.mechanism) or np.any(self._relevant_connections(subsystem) * subsystem.cut.cut_matrix(subsystem.network.size) == 1))
[ "def", "damaged_by_cut", "(", "self", ",", "subsystem", ")", ":", "return", "(", "subsystem", ".", "cut", ".", "splits_mechanism", "(", "self", ".", "mechanism", ")", "or", "np", ".", "any", "(", "self", ".", "_relevant_connections", "(", "subsystem", ")", "*", "subsystem", ".", "cut", ".", "cut_matrix", "(", "subsystem", ".", "network", ".", "size", ")", "==", "1", ")", ")" ]
Return ``True`` if this MICE is affected by the subsystem's cut. The cut affects the MICE if it either splits the MICE's mechanism or splits the connections between the purview and mechanism.
[ "Return", "True", "if", "this", "MICE", "is", "affected", "by", "the", "subsystem", "s", "cut", "." ]
deeca69a084d782a6fde7bf26f59e93b593c5d77
https://github.com/wmayner/pyphi/blob/deeca69a084d782a6fde7bf26f59e93b593c5d77/pyphi/models/mechanism.py#L277-L285
15,891
wmayner/pyphi
pyphi/models/mechanism.py
Concept.eq_repertoires
def eq_repertoires(self, other): """Return whether this concept has the same repertoires as another. .. warning:: This only checks if the cause and effect repertoires are equal as arrays; mechanisms, purviews, or even the nodes that the mechanism and purview indices refer to, might be different. """ return ( np.array_equal(self.cause_repertoire, other.cause_repertoire) and np.array_equal(self.effect_repertoire, other.effect_repertoire))
python
def eq_repertoires(self, other): """Return whether this concept has the same repertoires as another. .. warning:: This only checks if the cause and effect repertoires are equal as arrays; mechanisms, purviews, or even the nodes that the mechanism and purview indices refer to, might be different. """ return ( np.array_equal(self.cause_repertoire, other.cause_repertoire) and np.array_equal(self.effect_repertoire, other.effect_repertoire))
[ "def", "eq_repertoires", "(", "self", ",", "other", ")", ":", "return", "(", "np", ".", "array_equal", "(", "self", ".", "cause_repertoire", ",", "other", ".", "cause_repertoire", ")", "and", "np", ".", "array_equal", "(", "self", ".", "effect_repertoire", ",", "other", ".", "effect_repertoire", ")", ")" ]
Return whether this concept has the same repertoires as another. .. warning:: This only checks if the cause and effect repertoires are equal as arrays; mechanisms, purviews, or even the nodes that the mechanism and purview indices refer to, might be different.
[ "Return", "whether", "this", "concept", "has", "the", "same", "repertoires", "as", "another", "." ]
deeca69a084d782a6fde7bf26f59e93b593c5d77
https://github.com/wmayner/pyphi/blob/deeca69a084d782a6fde7bf26f59e93b593c5d77/pyphi/models/mechanism.py#L431-L441
15,892
wmayner/pyphi
pyphi/models/mechanism.py
Concept.emd_eq
def emd_eq(self, other): """Return whether this concept is equal to another in the context of an EMD calculation. """ return (self.phi == other.phi and self.mechanism == other.mechanism and self.eq_repertoires(other))
python
def emd_eq(self, other): """Return whether this concept is equal to another in the context of an EMD calculation. """ return (self.phi == other.phi and self.mechanism == other.mechanism and self.eq_repertoires(other))
[ "def", "emd_eq", "(", "self", ",", "other", ")", ":", "return", "(", "self", ".", "phi", "==", "other", ".", "phi", "and", "self", ".", "mechanism", "==", "other", ".", "mechanism", "and", "self", ".", "eq_repertoires", "(", "other", ")", ")" ]
Return whether this concept is equal to another in the context of an EMD calculation.
[ "Return", "whether", "this", "concept", "is", "equal", "to", "another", "in", "the", "context", "of", "an", "EMD", "calculation", "." ]
deeca69a084d782a6fde7bf26f59e93b593c5d77
https://github.com/wmayner/pyphi/blob/deeca69a084d782a6fde7bf26f59e93b593c5d77/pyphi/models/mechanism.py#L443-L449
15,893
wmayner/pyphi
pyphi/actual.py
directed_account
def directed_account(transition, direction, mechanisms=False, purviews=False, allow_neg=False): """Return the set of all |CausalLinks| of the specified direction.""" if mechanisms is False: mechanisms = utils.powerset(transition.mechanism_indices(direction), nonempty=True) links = [ transition.find_causal_link(direction, mechanism, purviews=purviews, allow_neg=allow_neg) for mechanism in mechanisms] # Filter out causal links with zero alpha return DirectedAccount(filter(None, links))
python
def directed_account(transition, direction, mechanisms=False, purviews=False, allow_neg=False): """Return the set of all |CausalLinks| of the specified direction.""" if mechanisms is False: mechanisms = utils.powerset(transition.mechanism_indices(direction), nonempty=True) links = [ transition.find_causal_link(direction, mechanism, purviews=purviews, allow_neg=allow_neg) for mechanism in mechanisms] # Filter out causal links with zero alpha return DirectedAccount(filter(None, links))
[ "def", "directed_account", "(", "transition", ",", "direction", ",", "mechanisms", "=", "False", ",", "purviews", "=", "False", ",", "allow_neg", "=", "False", ")", ":", "if", "mechanisms", "is", "False", ":", "mechanisms", "=", "utils", ".", "powerset", "(", "transition", ".", "mechanism_indices", "(", "direction", ")", ",", "nonempty", "=", "True", ")", "links", "=", "[", "transition", ".", "find_causal_link", "(", "direction", ",", "mechanism", ",", "purviews", "=", "purviews", ",", "allow_neg", "=", "allow_neg", ")", "for", "mechanism", "in", "mechanisms", "]", "# Filter out causal links with zero alpha", "return", "DirectedAccount", "(", "filter", "(", "None", ",", "links", ")", ")" ]
Return the set of all |CausalLinks| of the specified direction.
[ "Return", "the", "set", "of", "all", "|CausalLinks|", "of", "the", "specified", "direction", "." ]
deeca69a084d782a6fde7bf26f59e93b593c5d77
https://github.com/wmayner/pyphi/blob/deeca69a084d782a6fde7bf26f59e93b593c5d77/pyphi/actual.py#L440-L452
15,894
wmayner/pyphi
pyphi/actual.py
account
def account(transition, direction=Direction.BIDIRECTIONAL): """Return the set of all causal links for a |Transition|. Args: transition (Transition): The transition of interest. Keyword Args: direction (Direction): By default the account contains actual causes and actual effects. """ if direction != Direction.BIDIRECTIONAL: return directed_account(transition, direction) return Account(directed_account(transition, Direction.CAUSE) + directed_account(transition, Direction.EFFECT))
python
def account(transition, direction=Direction.BIDIRECTIONAL): """Return the set of all causal links for a |Transition|. Args: transition (Transition): The transition of interest. Keyword Args: direction (Direction): By default the account contains actual causes and actual effects. """ if direction != Direction.BIDIRECTIONAL: return directed_account(transition, direction) return Account(directed_account(transition, Direction.CAUSE) + directed_account(transition, Direction.EFFECT))
[ "def", "account", "(", "transition", ",", "direction", "=", "Direction", ".", "BIDIRECTIONAL", ")", ":", "if", "direction", "!=", "Direction", ".", "BIDIRECTIONAL", ":", "return", "directed_account", "(", "transition", ",", "direction", ")", "return", "Account", "(", "directed_account", "(", "transition", ",", "Direction", ".", "CAUSE", ")", "+", "directed_account", "(", "transition", ",", "Direction", ".", "EFFECT", ")", ")" ]
Return the set of all causal links for a |Transition|. Args: transition (Transition): The transition of interest. Keyword Args: direction (Direction): By default the account contains actual causes and actual effects.
[ "Return", "the", "set", "of", "all", "causal", "links", "for", "a", "|Transition|", "." ]
deeca69a084d782a6fde7bf26f59e93b593c5d77
https://github.com/wmayner/pyphi/blob/deeca69a084d782a6fde7bf26f59e93b593c5d77/pyphi/actual.py#L455-L469
15,895
wmayner/pyphi
pyphi/actual.py
_evaluate_cut
def _evaluate_cut(transition, cut, unpartitioned_account, direction=Direction.BIDIRECTIONAL): """Find the |AcSystemIrreducibilityAnalysis| for a given cut.""" cut_transition = transition.apply_cut(cut) partitioned_account = account(cut_transition, direction) log.debug("Finished evaluating %s.", cut) alpha = account_distance(unpartitioned_account, partitioned_account) return AcSystemIrreducibilityAnalysis( alpha=round(alpha, config.PRECISION), direction=direction, account=unpartitioned_account, partitioned_account=partitioned_account, transition=transition, cut=cut)
python
def _evaluate_cut(transition, cut, unpartitioned_account, direction=Direction.BIDIRECTIONAL): """Find the |AcSystemIrreducibilityAnalysis| for a given cut.""" cut_transition = transition.apply_cut(cut) partitioned_account = account(cut_transition, direction) log.debug("Finished evaluating %s.", cut) alpha = account_distance(unpartitioned_account, partitioned_account) return AcSystemIrreducibilityAnalysis( alpha=round(alpha, config.PRECISION), direction=direction, account=unpartitioned_account, partitioned_account=partitioned_account, transition=transition, cut=cut)
[ "def", "_evaluate_cut", "(", "transition", ",", "cut", ",", "unpartitioned_account", ",", "direction", "=", "Direction", ".", "BIDIRECTIONAL", ")", ":", "cut_transition", "=", "transition", ".", "apply_cut", "(", "cut", ")", "partitioned_account", "=", "account", "(", "cut_transition", ",", "direction", ")", "log", ".", "debug", "(", "\"Finished evaluating %s.\"", ",", "cut", ")", "alpha", "=", "account_distance", "(", "unpartitioned_account", ",", "partitioned_account", ")", "return", "AcSystemIrreducibilityAnalysis", "(", "alpha", "=", "round", "(", "alpha", ",", "config", ".", "PRECISION", ")", ",", "direction", "=", "direction", ",", "account", "=", "unpartitioned_account", ",", "partitioned_account", "=", "partitioned_account", ",", "transition", "=", "transition", ",", "cut", "=", "cut", ")" ]
Find the |AcSystemIrreducibilityAnalysis| for a given cut.
[ "Find", "the", "|AcSystemIrreducibilityAnalysis|", "for", "a", "given", "cut", "." ]
deeca69a084d782a6fde7bf26f59e93b593c5d77
https://github.com/wmayner/pyphi/blob/deeca69a084d782a6fde7bf26f59e93b593c5d77/pyphi/actual.py#L492-L507
15,896
wmayner/pyphi
pyphi/actual.py
_get_cuts
def _get_cuts(transition, direction): """A list of possible cuts to a transition.""" n = transition.network.size if direction is Direction.BIDIRECTIONAL: yielded = set() for cut in chain(_get_cuts(transition, Direction.CAUSE), _get_cuts(transition, Direction.EFFECT)): cm = utils.np_hashable(cut.cut_matrix(n)) if cm not in yielded: yielded.add(cm) yield cut else: mechanism = transition.mechanism_indices(direction) purview = transition.purview_indices(direction) for partition in mip_partitions(mechanism, purview, transition.node_labels): yield ActualCut(direction, partition, transition.node_labels)
python
def _get_cuts(transition, direction): """A list of possible cuts to a transition.""" n = transition.network.size if direction is Direction.BIDIRECTIONAL: yielded = set() for cut in chain(_get_cuts(transition, Direction.CAUSE), _get_cuts(transition, Direction.EFFECT)): cm = utils.np_hashable(cut.cut_matrix(n)) if cm not in yielded: yielded.add(cm) yield cut else: mechanism = transition.mechanism_indices(direction) purview = transition.purview_indices(direction) for partition in mip_partitions(mechanism, purview, transition.node_labels): yield ActualCut(direction, partition, transition.node_labels)
[ "def", "_get_cuts", "(", "transition", ",", "direction", ")", ":", "n", "=", "transition", ".", "network", ".", "size", "if", "direction", "is", "Direction", ".", "BIDIRECTIONAL", ":", "yielded", "=", "set", "(", ")", "for", "cut", "in", "chain", "(", "_get_cuts", "(", "transition", ",", "Direction", ".", "CAUSE", ")", ",", "_get_cuts", "(", "transition", ",", "Direction", ".", "EFFECT", ")", ")", ":", "cm", "=", "utils", ".", "np_hashable", "(", "cut", ".", "cut_matrix", "(", "n", ")", ")", "if", "cm", "not", "in", "yielded", ":", "yielded", ".", "add", "(", "cm", ")", "yield", "cut", "else", ":", "mechanism", "=", "transition", ".", "mechanism_indices", "(", "direction", ")", "purview", "=", "transition", ".", "purview_indices", "(", "direction", ")", "for", "partition", "in", "mip_partitions", "(", "mechanism", ",", "purview", ",", "transition", ".", "node_labels", ")", ":", "yield", "ActualCut", "(", "direction", ",", "partition", ",", "transition", ".", "node_labels", ")" ]
A list of possible cuts to a transition.
[ "A", "list", "of", "possible", "cuts", "to", "a", "transition", "." ]
deeca69a084d782a6fde7bf26f59e93b593c5d77
https://github.com/wmayner/pyphi/blob/deeca69a084d782a6fde7bf26f59e93b593c5d77/pyphi/actual.py#L511-L529
15,897
wmayner/pyphi
pyphi/actual.py
sia
def sia(transition, direction=Direction.BIDIRECTIONAL): """Return the minimal information partition of a transition in a specific direction. Args: transition (Transition): The candidate system. Returns: AcSystemIrreducibilityAnalysis: A nested structure containing all the data from the intermediate calculations. The top level contains the basic irreducibility information for the given subsystem. """ validate.direction(direction, allow_bi=True) log.info("Calculating big-alpha for %s...", transition) if not transition: log.info('Transition %s is empty; returning null SIA ' 'immediately.', transition) return _null_ac_sia(transition, direction) if not connectivity.is_weak(transition.network.cm, transition.node_indices): log.info('%s is not strongly/weakly connected; returning null SIA ' 'immediately.', transition) return _null_ac_sia(transition, direction) log.debug("Finding unpartitioned account...") unpartitioned_account = account(transition, direction) log.debug("Found unpartitioned account.") if not unpartitioned_account: log.info('Empty unpartitioned account; returning null AC SIA ' 'immediately.') return _null_ac_sia(transition, direction) cuts = _get_cuts(transition, direction) engine = ComputeACSystemIrreducibility( cuts, transition, direction, unpartitioned_account) result = engine.run_sequential() log.info("Finished calculating big-ac-phi data for %s.", transition) log.debug("RESULT: \n%s", result) return result
python
def sia(transition, direction=Direction.BIDIRECTIONAL): """Return the minimal information partition of a transition in a specific direction. Args: transition (Transition): The candidate system. Returns: AcSystemIrreducibilityAnalysis: A nested structure containing all the data from the intermediate calculations. The top level contains the basic irreducibility information for the given subsystem. """ validate.direction(direction, allow_bi=True) log.info("Calculating big-alpha for %s...", transition) if not transition: log.info('Transition %s is empty; returning null SIA ' 'immediately.', transition) return _null_ac_sia(transition, direction) if not connectivity.is_weak(transition.network.cm, transition.node_indices): log.info('%s is not strongly/weakly connected; returning null SIA ' 'immediately.', transition) return _null_ac_sia(transition, direction) log.debug("Finding unpartitioned account...") unpartitioned_account = account(transition, direction) log.debug("Found unpartitioned account.") if not unpartitioned_account: log.info('Empty unpartitioned account; returning null AC SIA ' 'immediately.') return _null_ac_sia(transition, direction) cuts = _get_cuts(transition, direction) engine = ComputeACSystemIrreducibility( cuts, transition, direction, unpartitioned_account) result = engine.run_sequential() log.info("Finished calculating big-ac-phi data for %s.", transition) log.debug("RESULT: \n%s", result) return result
[ "def", "sia", "(", "transition", ",", "direction", "=", "Direction", ".", "BIDIRECTIONAL", ")", ":", "validate", ".", "direction", "(", "direction", ",", "allow_bi", "=", "True", ")", "log", ".", "info", "(", "\"Calculating big-alpha for %s...\"", ",", "transition", ")", "if", "not", "transition", ":", "log", ".", "info", "(", "'Transition %s is empty; returning null SIA '", "'immediately.'", ",", "transition", ")", "return", "_null_ac_sia", "(", "transition", ",", "direction", ")", "if", "not", "connectivity", ".", "is_weak", "(", "transition", ".", "network", ".", "cm", ",", "transition", ".", "node_indices", ")", ":", "log", ".", "info", "(", "'%s is not strongly/weakly connected; returning null SIA '", "'immediately.'", ",", "transition", ")", "return", "_null_ac_sia", "(", "transition", ",", "direction", ")", "log", ".", "debug", "(", "\"Finding unpartitioned account...\"", ")", "unpartitioned_account", "=", "account", "(", "transition", ",", "direction", ")", "log", ".", "debug", "(", "\"Found unpartitioned account.\"", ")", "if", "not", "unpartitioned_account", ":", "log", ".", "info", "(", "'Empty unpartitioned account; returning null AC SIA '", "'immediately.'", ")", "return", "_null_ac_sia", "(", "transition", ",", "direction", ")", "cuts", "=", "_get_cuts", "(", "transition", ",", "direction", ")", "engine", "=", "ComputeACSystemIrreducibility", "(", "cuts", ",", "transition", ",", "direction", ",", "unpartitioned_account", ")", "result", "=", "engine", ".", "run_sequential", "(", ")", "log", ".", "info", "(", "\"Finished calculating big-ac-phi data for %s.\"", ",", "transition", ")", "log", ".", "debug", "(", "\"RESULT: \\n%s\"", ",", "result", ")", "return", "result" ]
Return the minimal information partition of a transition in a specific direction. Args: transition (Transition): The candidate system. Returns: AcSystemIrreducibilityAnalysis: A nested structure containing all the data from the intermediate calculations. The top level contains the basic irreducibility information for the given subsystem.
[ "Return", "the", "minimal", "information", "partition", "of", "a", "transition", "in", "a", "specific", "direction", "." ]
deeca69a084d782a6fde7bf26f59e93b593c5d77
https://github.com/wmayner/pyphi/blob/deeca69a084d782a6fde7bf26f59e93b593c5d77/pyphi/actual.py#L532-L573
15,898
wmayner/pyphi
pyphi/actual.py
nexus
def nexus(network, before_state, after_state, direction=Direction.BIDIRECTIONAL): """Return a tuple of all irreducible nexus of the network.""" validate.is_network(network) sias = (sia(transition, direction) for transition in transitions(network, before_state, after_state)) return tuple(sorted(filter(None, sias), reverse=True))
python
def nexus(network, before_state, after_state, direction=Direction.BIDIRECTIONAL): """Return a tuple of all irreducible nexus of the network.""" validate.is_network(network) sias = (sia(transition, direction) for transition in transitions(network, before_state, after_state)) return tuple(sorted(filter(None, sias), reverse=True))
[ "def", "nexus", "(", "network", ",", "before_state", ",", "after_state", ",", "direction", "=", "Direction", ".", "BIDIRECTIONAL", ")", ":", "validate", ".", "is_network", "(", "network", ")", "sias", "=", "(", "sia", "(", "transition", ",", "direction", ")", "for", "transition", "in", "transitions", "(", "network", ",", "before_state", ",", "after_state", ")", ")", "return", "tuple", "(", "sorted", "(", "filter", "(", "None", ",", "sias", ")", ",", "reverse", "=", "True", ")", ")" ]
Return a tuple of all irreducible nexus of the network.
[ "Return", "a", "tuple", "of", "all", "irreducible", "nexus", "of", "the", "network", "." ]
deeca69a084d782a6fde7bf26f59e93b593c5d77
https://github.com/wmayner/pyphi/blob/deeca69a084d782a6fde7bf26f59e93b593c5d77/pyphi/actual.py#L626-L633
15,899
wmayner/pyphi
pyphi/actual.py
causal_nexus
def causal_nexus(network, before_state, after_state, direction=Direction.BIDIRECTIONAL): """Return the causal nexus of the network.""" validate.is_network(network) log.info("Calculating causal nexus...") result = nexus(network, before_state, after_state, direction) if result: result = max(result) else: null_transition = Transition( network, before_state, after_state, (), ()) result = _null_ac_sia(null_transition, direction) log.info("Finished calculating causal nexus.") log.debug("RESULT: \n%s", result) return result
python
def causal_nexus(network, before_state, after_state, direction=Direction.BIDIRECTIONAL): """Return the causal nexus of the network.""" validate.is_network(network) log.info("Calculating causal nexus...") result = nexus(network, before_state, after_state, direction) if result: result = max(result) else: null_transition = Transition( network, before_state, after_state, (), ()) result = _null_ac_sia(null_transition, direction) log.info("Finished calculating causal nexus.") log.debug("RESULT: \n%s", result) return result
[ "def", "causal_nexus", "(", "network", ",", "before_state", ",", "after_state", ",", "direction", "=", "Direction", ".", "BIDIRECTIONAL", ")", ":", "validate", ".", "is_network", "(", "network", ")", "log", ".", "info", "(", "\"Calculating causal nexus...\"", ")", "result", "=", "nexus", "(", "network", ",", "before_state", ",", "after_state", ",", "direction", ")", "if", "result", ":", "result", "=", "max", "(", "result", ")", "else", ":", "null_transition", "=", "Transition", "(", "network", ",", "before_state", ",", "after_state", ",", "(", ")", ",", "(", ")", ")", "result", "=", "_null_ac_sia", "(", "null_transition", ",", "direction", ")", "log", ".", "info", "(", "\"Finished calculating causal nexus.\"", ")", "log", ".", "debug", "(", "\"RESULT: \\n%s\"", ",", "result", ")", "return", "result" ]
Return the causal nexus of the network.
[ "Return", "the", "causal", "nexus", "of", "the", "network", "." ]
deeca69a084d782a6fde7bf26f59e93b593c5d77
https://github.com/wmayner/pyphi/blob/deeca69a084d782a6fde7bf26f59e93b593c5d77/pyphi/actual.py#L636-L652