SPARKNET / docs /SPARKNET_Slides.md
MHamdan's picture
Initial commit: SPARKNET framework
a9dc537

A newer version of the Streamlit SDK is available: 1.53.1

Upgrade
metadata
marp: true
theme: default
paginate: true
backgroundColor: null
backgroundImage: url('https://marp.app/assets/hero-background.svg')

SPARKNET

AI-Powered Patent Valorization System

A Multi-Agent Platform for Technology Transfer

Hamdan November 2025


System Architecture & Components

β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€ SPARKNET Platform ────────────────────────┐
β”‚                                                                 β”‚
β”‚  Frontend (Next.js)  ◄────► Backend (FastAPI + LangGraph)     β”‚
β”‚     Port 3001                      Port 8001                    β”‚
β”‚                                       β”‚                         β”‚
β”‚                    β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β–Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”          β”‚
β”‚                    β”‚   LangGraph State Machine      β”‚          β”‚
β”‚                    β”‚   Workflow Orchestrator        β”‚          β”‚
β”‚                    β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜          β”‚
β”‚                                   β”‚                             β”‚
β”‚    β”Œβ”€β”€β”€β”€β”€β”€β”€ STARTUP AGENTS (4) ──┴─────────────────────┐      β”‚
β”‚    β”‚                                                     β”‚      β”‚
β”‚    β”‚  β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”  β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”  β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”  β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”   β”‚
β”‚    β”‚  β”‚ Planner  β”‚  β”‚  Critic  β”‚  β”‚  Memory  β”‚  β”‚ Vision β”‚   β”‚
β”‚    β”‚  β”‚  Agent   β”‚  β”‚  Agent   β”‚  β”‚  Agent   β”‚  β”‚  OCR   β”‚   β”‚
β”‚    β”‚  β”‚qwen2.5   β”‚  β”‚ mistral  β”‚  β”‚ ChromaDB β”‚  β”‚llava:7bβ”‚   β”‚
β”‚    β”‚  β”‚  :14b    β”‚  β”‚ :latest  β”‚  β”‚  Vector  β”‚  β”‚        β”‚   β”‚
β”‚    β”‚  β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜  β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜  β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜  β””β”€β”€β”€β”€β”€β”€β”€β”€β”˜   β”‚
β”‚    β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜    β”‚
β”‚                                                                 β”‚
β”‚    β”Œβ”€β”€β”€β”€ RUNTIME AGENTS (4) - Created per workflow ────┐      β”‚
β”‚    β”‚                                                     β”‚      β”‚
β”‚    β”‚  β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”  β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”  β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”  β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”‚
β”‚    β”‚  β”‚Document  β”‚  β”‚ Market   β”‚  β”‚Matching  β”‚  β”‚Outreach  β”‚ β”‚
β”‚    β”‚  β”‚Analysis  β”‚  β”‚ Analysis β”‚  β”‚  Agent   β”‚  β”‚  Agent   β”‚ β”‚
β”‚    β”‚  β”‚llama3.1  β”‚  β”‚llama3.1  β”‚  β”‚llama3.1  β”‚  β”‚llama3.1  β”‚ β”‚
β”‚    β”‚  β”‚  :8b     β”‚  β”‚  :8b     β”‚  β”‚  :8b     β”‚  β”‚  :8b     β”‚ β”‚
β”‚    β”‚  β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜  β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜  β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜  β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β”‚
β”‚    β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜    β”‚
β”‚                                                                 β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜

Key Components: 8 Agents β€’ 4 LLM Models β€’ State Machine β€’ Vector Store


Functional Workflow: Patent Wake-Up Pipeline

Phase 1: Orchestration 🎯

  • PlannerAgent (qwen2.5:14b): Decomposes task into executable subtasks
  • MemoryAgent (ChromaDB): Retrieves relevant context from past analyses
  • LangGraph routes workflow to Patent Wake-Up scenario

Phase 2: Sequential Analysis (4-Step Pipeline) πŸ€–

Step 1: Document Analysis πŸ“„

  • DocumentAnalysisAgent (llama3.1:8b) + VisionOCRAgent (llava:7b)
  • Extracts text using PyMuPDF, processes images with OCR
  • Identifies: Title, Abstract, Claims, Technical Domains, TRL Level
  • Output: Patent Analysis Model with 1+ innovations

Step 2: Market Analysis πŸ“Š

  • MarketAnalysisAgent (llama3.1:8b)
  • Analyzes commercialization opportunities based on patent data
  • Identifies market segments, competitive landscape
  • Output: 4-5 Market Opportunities with sizing estimates

Step 3: Partner Matching 🀝

  • MatchmakingAgent (llama3.1:8b)
  • Queries MemoryAgent for stakeholder profiles from vector store
  • Scores matches based on technology alignment
  • Output: Top 10 potential partners ranked by compatibility

Step 4: Brief Creation πŸ“

  • OutreachAgent (llama3.1:8b)
  • Generates PDF valorization brief for stakeholder outreach
  • Includes executive summary, technical details, business case
  • Output: PDF document ready for distribution

Phase 3: Quality Validation βœ…

  • CriticAgent (mistral:latest): Validates output quality (threshold: 0.80)
  • Stores successful episodes in MemoryAgent for future learning
  • Returns results via WebSocket to frontend dashboard

Live Demonstration & Results

Example Analysis: Toyota Hydrogen Fuel Cell Initiative

Metric Result
Title "Toyota Opens Door to Hydrogen Future"
Technical Domains Automotive β€’ Clean Energy β€’ Fuel Cells
TRL Level 8/9 (System Complete & Qualified)
Commercialization HIGH
Key Innovations β€’ 5,680 patents royalty-free
β€’ High-pressure Hβ‚‚ storage
β€’ Fuel cell stack optimization
Applications Hydrogen vehicles β€’ Power systems
Industrial fuel cells

System Status βœ…

  • Performance: Sub-2 minute analysis per document (117s avg)
  • Accuracy: Multi-model validation with quality score β‰₯ 0.80
  • Real-time Updates: WebSocket streaming for live progress
  • Deployment:

Impact & Next Steps

Current Capabilities βœ“

βœ… Automated patent document analysis βœ… Technology readiness assessment (TRL) βœ… Multi-domain commercialization evaluation βœ… Real-time web interface with workflow visualization

Value Proposition

Problem: Manual patent analysis takes days and requires domain experts Solution: SPARKNET reduces analysis time from days to < 1 minute Benefit: Universities can rapidly assess entire patent portfolios for licensing

Future Enhancements

  • Batch processing for large patent portfolios
  • Industry partner matching database
  • Automated technology brief generation
  • Integration with patent databases (USPTO, EPO)

Thank you!

Questions?

Live Demo URLs: