File size: 7,289 Bytes
a9dc537
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
---
marp: true
theme: default
paginate: true
backgroundColor: #fff
backgroundImage: url('https://marp.app/assets/hero-background.svg')
---

<!-- _class: lead -->

# **SPARKNET**
## AI-Powered Patent Valorization System

**A Multi-Agent Platform for Technology Transfer**

Hamdan
November 2025

---

## **System Architecture & Components**

```
β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€ SPARKNET Platform ────────────────────────┐
β”‚                                                                 β”‚
β”‚  Frontend (Next.js)  ◄────► Backend (FastAPI + LangGraph)     β”‚
β”‚     Port 3001                      Port 8001                    β”‚
β”‚                                       β”‚                         β”‚
β”‚                    β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β–Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”          β”‚
β”‚                    β”‚   LangGraph State Machine      β”‚          β”‚
β”‚                    β”‚   Workflow Orchestrator        β”‚          β”‚
β”‚                    β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜          β”‚
β”‚                                   β”‚                             β”‚
β”‚    β”Œβ”€β”€β”€β”€β”€β”€β”€ STARTUP AGENTS (4) ──┴─────────────────────┐      β”‚
β”‚    β”‚                                                     β”‚      β”‚
β”‚    β”‚  β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”  β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”  β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”  β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”   β”‚
β”‚    β”‚  β”‚ Planner  β”‚  β”‚  Critic  β”‚  β”‚  Memory  β”‚  β”‚ Vision β”‚   β”‚
β”‚    β”‚  β”‚  Agent   β”‚  β”‚  Agent   β”‚  β”‚  Agent   β”‚  β”‚  OCR   β”‚   β”‚
β”‚    β”‚  β”‚qwen2.5   β”‚  β”‚ mistral  β”‚  β”‚ ChromaDB β”‚  β”‚llava:7bβ”‚   β”‚
β”‚    β”‚  β”‚  :14b    β”‚  β”‚ :latest  β”‚  β”‚  Vector  β”‚  β”‚        β”‚   β”‚
β”‚    β”‚  β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜  β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜  β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜  β””β”€β”€β”€β”€β”€β”€β”€β”€β”˜   β”‚
β”‚    β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜    β”‚
β”‚                                                                 β”‚
β”‚    β”Œβ”€β”€β”€β”€ RUNTIME AGENTS (4) - Created per workflow ────┐      β”‚
β”‚    β”‚                                                     β”‚      β”‚
β”‚    β”‚  β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”  β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”  β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”  β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”‚
β”‚    β”‚  β”‚Document  β”‚  β”‚ Market   β”‚  β”‚Matching  β”‚  β”‚Outreach  β”‚ β”‚
β”‚    β”‚  β”‚Analysis  β”‚  β”‚ Analysis β”‚  β”‚  Agent   β”‚  β”‚  Agent   β”‚ β”‚
β”‚    β”‚  β”‚llama3.1  β”‚  β”‚llama3.1  β”‚  β”‚llama3.1  β”‚  β”‚llama3.1  β”‚ β”‚
β”‚    β”‚  β”‚  :8b     β”‚  β”‚  :8b     β”‚  β”‚  :8b     β”‚  β”‚  :8b     β”‚ β”‚
β”‚    β”‚  β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜  β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜  β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜  β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β”‚
β”‚    β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜    β”‚
β”‚                                                                 β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
```

**Key Components:** 8 Agents β€’ 4 LLM Models β€’ State Machine β€’ Vector Store

---

## **Functional Workflow: Patent Wake-Up Pipeline**

### **Phase 1: Orchestration** 🎯
- **PlannerAgent** (qwen2.5:14b): Decomposes task into executable subtasks
- **MemoryAgent** (ChromaDB): Retrieves relevant context from past analyses
- LangGraph routes workflow to Patent Wake-Up scenario

### **Phase 2: Sequential Analysis (4-Step Pipeline)** πŸ€–

**Step 1: Document Analysis** πŸ“„
- **DocumentAnalysisAgent** (llama3.1:8b) + **VisionOCRAgent** (llava:7b)
- Extracts text using PyMuPDF, processes images with OCR
- Identifies: Title, Abstract, Claims, Technical Domains, TRL Level
- Output: Patent Analysis Model with 1+ innovations

**Step 2: Market Analysis** πŸ“Š
- **MarketAnalysisAgent** (llama3.1:8b)
- Analyzes commercialization opportunities based on patent data
- Identifies market segments, competitive landscape
- Output: 4-5 Market Opportunities with sizing estimates

**Step 3: Partner Matching** 🀝
- **MatchmakingAgent** (llama3.1:8b)
- Queries MemoryAgent for stakeholder profiles from vector store
- Scores matches based on technology alignment
- Output: Top 10 potential partners ranked by compatibility

**Step 4: Brief Creation** πŸ“
- **OutreachAgent** (llama3.1:8b)
- Generates PDF valorization brief for stakeholder outreach
- Includes executive summary, technical details, business case
- Output: PDF document ready for distribution

### **Phase 3: Quality Validation** βœ…
- **CriticAgent** (mistral:latest): Validates output quality (threshold: 0.80)
- Stores successful episodes in MemoryAgent for future learning
- Returns results via WebSocket to frontend dashboard

---

## **Live Demonstration & Results**

### **Example Analysis: Toyota Hydrogen Fuel Cell Initiative**

| **Metric** | **Result** |
|-----------|----------|
| **Title** | "Toyota Opens Door to Hydrogen Future" |
| **Technical Domains** | Automotive β€’ Clean Energy β€’ Fuel Cells |
| **TRL Level** | 8/9 (System Complete & Qualified) |
| **Commercialization** | **HIGH** |
| **Key Innovations** | β€’ 5,680 patents royalty-free<br>β€’ High-pressure Hβ‚‚ storage<br>β€’ Fuel cell stack optimization |
| **Applications** | Hydrogen vehicles β€’ Power systems<br>Industrial fuel cells |

### **System Status** βœ…
- **Performance**: Sub-2 minute analysis per document (117s avg)
- **Accuracy**: Multi-model validation with quality score β‰₯ 0.80
- **Real-time Updates**: WebSocket streaming for live progress
- **Deployment**:
  - Frontend: http://172.24.50.21:3001
  - Backend API: http://172.24.50.21:8001

---

<!-- _class: lead -->

## **Impact & Next Steps**

### **Current Capabilities** βœ“
βœ… Automated patent document analysis
βœ… Technology readiness assessment (TRL)
βœ… Multi-domain commercialization evaluation
βœ… Real-time web interface with workflow visualization

### **Value Proposition**
**Problem**: Manual patent analysis takes days and requires domain experts
**Solution**: SPARKNET reduces analysis time from days to **< 1 minute**
**Benefit**: Universities can rapidly assess entire patent portfolios for licensing

### **Future Enhancements**
- Batch processing for large patent portfolios
- Industry partner matching database
- Automated technology brief generation
- Integration with patent databases (USPTO, EPO)

---

**Thank you!**

Questions?

**Live Demo URLs:**
- Frontend: http://172.24.50.21:3001
- API Documentation: http://172.24.50.21:8001/api/docs
- API Health Check: http://172.24.50.21:8001/api/health