SPARKNET / docs /SPARKNET_Presentation.md
MHamdan's picture
Initial commit: SPARKNET framework
a9dc537

A newer version of the Streamlit SDK is available: 1.53.1

Upgrade

SPARKNET

AI-Powered Research Valorization Platform

A Multi-Agent System for Patent Wake-Up and Technology Transfer


What is SPARKNET?

SPARKNET is an intelligent platform that analyzes patent documents and research to:

  • Assess commercialization potential
  • Identify technology applications
  • Match with industry partners
  • Accelerate technology transfer

Built on modern AI agent architecture with LangGraph workflow orchestration.


System Architecture

β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚           SPARKNET Multi-Agent System           β”‚
β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€
β”‚                                                 β”‚
β”‚   β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”  β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”  β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”    β”‚
β”‚   β”‚ Frontend β”‚  β”‚  Backend β”‚  β”‚    LLM   β”‚    β”‚
β”‚   β”‚ Next.js  │◄──  FastAPI │◄──  Ollama  β”‚    β”‚
β”‚   β”‚ Port 3000β”‚  β”‚ Port 8000β”‚  β”‚ 4 Models β”‚    β”‚
β”‚   β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜  β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜  β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜    β”‚
β”‚                       β”‚                         β”‚
β”‚              β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”€β”€β”€β”               β”‚
β”‚              β”‚  LangGraph      β”‚               β”‚
β”‚              β”‚  Workflow       β”‚               β”‚
β”‚              β”‚  (State Machine)β”‚               β”‚
β”‚              β””β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”˜               β”‚
β”‚                       β”‚                         β”‚
β”‚      β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”       β”‚
β”‚      β”‚                β”‚                 β”‚       β”‚
β”‚  β”Œβ”€β”€β”€β–Όβ”€β”€β”€β”      β”Œβ”€β”€β”€β”€β–Όβ”€β”€β”€β”€β”€β”     β”Œβ”€β”€β”€β–Όβ”€β”€β”€β”   β”‚
β”‚  β”‚Plannerβ”‚      β”‚  Documentβ”‚     β”‚ Criticβ”‚   β”‚
β”‚  β”‚ Agent β”‚      β”‚  Analysisβ”‚     β”‚ Agent β”‚   β”‚
β”‚  β””β”€β”€β”€β”€β”€β”€β”€β”˜      β”‚   Agent  β”‚     β””β”€β”€β”€β”€β”€β”€β”€β”˜   β”‚
β”‚                 β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜                   β”‚
β”‚  β”Œβ”€β”€β”€β”€β”€β”€β”€β”      β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”     β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”  β”‚
β”‚  β”‚Memory β”‚      β”‚ VisionOCRβ”‚     β”‚ Vector β”‚  β”‚
β”‚  β”‚ Agent β”‚      β”‚   Agent  β”‚     β”‚  Store β”‚  β”‚
β”‚  β””β”€β”€β”€β”€β”€β”€β”€β”˜      β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜     β””β”€β”€β”€β”€β”€β”€β”€β”€β”˜  β”‚
β”‚                                                 β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜

User Workflow

Simple 4-Step Process:

  1. Upload β†’ User uploads patent PDF
  2. Process β†’ Multi-agent system analyzes document
  3. Assess β†’ Technology readiness & commercial potential evaluated
  4. Results β†’ Interactive dashboard with insights and recommendations
Upload PDF β†’ Auto-Extract β†’ Multi-Agent Analysis β†’ Results Dashboard
    β”‚             β”‚                   β”‚                    β”‚
    β”‚             β”œβ”€ Title           β”œβ”€ TRL Assessment    β”œβ”€ Patent Details
    β”‚             β”œβ”€ Abstract         β”œβ”€ Key Innovations   β”œβ”€ Technical Domains
    β”‚             └─ Claims           β”œβ”€ Applications      β”œβ”€ Commercialization
                                      └─ Partner Matching  └─ Recommendations

Core Components

1. Frontend (Next.js + React)

  • Modern, responsive UI
  • Drag-and-drop file upload
  • Real-time workflow visualization
  • Interactive results dashboard

2. Backend (FastAPI)

  • RESTful API architecture
  • Async processing pipeline
  • CORS-enabled for frontend integration
  • Comprehensive logging

3. LLM Layer (Ollama)

  • 4 specialized models:
    • gemma2:2b - Simple tasks
    • llama3.1:8b - Standard complexity
    • qwen2.5:14b - Complex reasoning
    • mistral:latest - Analysis tasks

4. Agent System

  • PlannerAgent: Orchestrates workflow steps
  • DocumentAnalysisAgent: Extracts patent structure & content
  • CriticAgent: Reviews and validates outputs
  • MemoryAgent: ChromaDB vector store for context
  • VisionOCRAgent: Image/diagram extraction (llava:7b)

5. Workflow Engine (LangGraph)

  • State machine-based execution
  • Parallel agent coordination
  • Error handling & recovery
  • Checkpointing for long-running tasks

Key Features

βœ“ Intelligent Document Analysis

  • Automatic title & abstract extraction
  • Patent claims identification
  • Technical domain classification

βœ“ Technology Assessment

  • TRL (Technology Readiness Level) scoring
  • Innovation identification
  • Novelty assessment

βœ“ Commercialization Analysis

  • Market potential evaluation
  • Application domain suggestions
  • Partner matching recommendations

βœ“ Multi-Format Support

  • Standard patent PDFs
  • Press releases & technical docs
  • Fallback extraction for non-standard formats

Technology Stack

Layer Technology
Frontend Next.js 16, React, TypeScript
Backend FastAPI, Python 3.10
LLM Framework LangChain, LangGraph
AI Models Ollama (local deployment)
Vector Store ChromaDB
Vision llava:7b (OCR & diagram analysis)
Development Hot reload, async/await

Current Status

βœ… Operational

  • Multi-agent system fully initialized
  • All 4 LLM models loaded
  • Workflow engine running
  • Frontend & backend connected

πŸ“Š Capabilities Demonstrated

  • Patent PDF processing
  • Document extraction (with fallback)
  • TRL assessment
  • Technical domain classification
  • Commercialization potential scoring

Use Cases

1. Patent Wake-Up (Primary)

University tech transfer offices can:

  • Rapidly assess dormant patent portfolios
  • Identify commercialization opportunities
  • Match technologies with industry needs

2. Technology Transfer

  • Evaluate research outputs
  • Prioritize licensing opportunities
  • Generate technology briefs

3. Partner Matching (Future)

  • Connect inventors with industry
  • Identify potential licensees
  • Facilitate collaboration

Sample Analysis Output

Patent: Toyota Hydrogen Fuel Cell Initiative
─────────────────────────────────────────────

Title: "Toyota Opens the Door to Hydrogen Future"
Abstract: "Toyota announces royalty-free access to 5,680 fuel
          cell patents to spur hydrogen vehicle development..."

Technical Domains:
  β€’ Automotive Technology
  β€’ Clean Energy Systems
  β€’ Fuel Cell Engineering

TRL Level: 8 (System Complete & Qualified)
Commercialization Potential: HIGH

Key Innovations:
  β€’ High-pressure hydrogen storage
  β€’ Fuel cell stack optimization
  β€’ System control software

Applications:
  β€’ Hydrogen vehicles
  β€’ Stationary power systems
  β€’ Industrial fuel cells

Why SPARKNET?

Problem:

  • Manual patent analysis is slow and expensive
  • Technology transfer offices overwhelmed
  • Valuable IP sits dormant in university portfolios

Solution:

  • Automated: AI agents handle complex analysis
  • Fast: Minutes instead of days
  • Scalable: Batch processing capability
  • Intelligent: Multi-model approach ensures accuracy

Next Steps

Immediate (v1.0)

  • Enhance patent structure extraction
  • Add batch processing for multiple patents
  • Improve TRL assessment accuracy

Short-term (v1.5)

  • Industry partner database integration
  • Automated technology brief generation
  • Export to PDF reports

Future (v2.0)

  • Real-time collaboration features
  • Market trend analysis integration
  • Automated prior art search

Demo Access


Team & Contact

Project: SPARKNET - Research Valorization Platform Architecture: Multi-Agent AI System Framework: LangGraph + LangChain Deployment: Local (Ollama) / Cloud-ready

For more information: See documentation in /home/mhamdan/SPARKNET/


Summary

SPARKNET is a production-ready AI platform that automates patent analysis and technology assessment using:

  • Multi-agent architecture for complex reasoning
  • State-of-the-art LLMs for accurate analysis
  • Modern web stack for seamless user experience
  • Flexible deployment options (local or cloud)

Result: Accelerated technology transfer from lab to market.


Questions?

This is a preliminary overview for initial searching and evaluation.