File size: 9,406 Bytes
a9dc537 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 |
# SPARKNET
## AI-Powered Research Valorization Platform
**A Multi-Agent System for Patent Wake-Up and Technology Transfer**
---
## What is SPARKNET?
SPARKNET is an intelligent platform that analyzes patent documents and research to:
- **Assess commercialization potential**
- **Identify technology applications**
- **Match with industry partners**
- **Accelerate technology transfer**
Built on modern AI agent architecture with LangGraph workflow orchestration.
---
## System Architecture
```
βββββββββββββββββββββββββββββββββββββββββββββββββββ
β SPARKNET Multi-Agent System β
βββββββββββββββββββββββββββββββββββββββββββββββββββ€
β β
β ββββββββββββ ββββββββββββ ββββββββββββ β
β β Frontend β β Backend β β LLM β β
β β Next.js ββββ€ FastAPI ββββ€ Ollama β β
β β Port 3000β β Port 8000β β 4 Models β β
β ββββββββββββ ββββββββββββ ββββββββββββ β
β β β
β ββββββββββ΄βββββββββ β
β β LangGraph β β
β β Workflow β β
β β (State Machine)β β
β ββββββββββ¬βββββββββ β
β β β
β ββββββββββββββββββΌβββββββββββββββββ β
β β β β β
β βββββΌββββ ββββββΌββββββ βββββΌββββ β
β βPlannerβ β Documentβ β Criticβ β
β β Agent β β Analysisβ β Agent β β
β βββββββββ β Agent β βββββββββ β
β ββββββββββββ β
β βββββββββ ββββββββββββ ββββββββββ β
β βMemory β β VisionOCRβ β Vector β β
β β Agent β β Agent β β Store β β
β βββββββββ ββββββββββββ ββββββββββ β
β β
βββββββββββββββββββββββββββββββββββββββββββββββββββ
```
---
## User Workflow
### Simple 4-Step Process:
1. **Upload** β User uploads patent PDF
2. **Process** β Multi-agent system analyzes document
3. **Assess** β Technology readiness & commercial potential evaluated
4. **Results** β Interactive dashboard with insights and recommendations
```
Upload PDF β Auto-Extract β Multi-Agent Analysis β Results Dashboard
β β β β
β ββ Title ββ TRL Assessment ββ Patent Details
β ββ Abstract ββ Key Innovations ββ Technical Domains
β ββ Claims ββ Applications ββ Commercialization
ββ Partner Matching ββ Recommendations
```
---
## Core Components
### 1. **Frontend (Next.js + React)**
- Modern, responsive UI
- Drag-and-drop file upload
- Real-time workflow visualization
- Interactive results dashboard
### 2. **Backend (FastAPI)**
- RESTful API architecture
- Async processing pipeline
- CORS-enabled for frontend integration
- Comprehensive logging
### 3. **LLM Layer (Ollama)**
- **4 specialized models**:
- `gemma2:2b` - Simple tasks
- `llama3.1:8b` - Standard complexity
- `qwen2.5:14b` - Complex reasoning
- `mistral:latest` - Analysis tasks
### 4. **Agent System**
- **PlannerAgent**: Orchestrates workflow steps
- **DocumentAnalysisAgent**: Extracts patent structure & content
- **CriticAgent**: Reviews and validates outputs
- **MemoryAgent**: ChromaDB vector store for context
- **VisionOCRAgent**: Image/diagram extraction (llava:7b)
### 5. **Workflow Engine (LangGraph)**
- State machine-based execution
- Parallel agent coordination
- Error handling & recovery
- Checkpointing for long-running tasks
---
## Key Features
β **Intelligent Document Analysis**
- Automatic title & abstract extraction
- Patent claims identification
- Technical domain classification
β **Technology Assessment**
- TRL (Technology Readiness Level) scoring
- Innovation identification
- Novelty assessment
β **Commercialization Analysis**
- Market potential evaluation
- Application domain suggestions
- Partner matching recommendations
β **Multi-Format Support**
- Standard patent PDFs
- Press releases & technical docs
- Fallback extraction for non-standard formats
---
## Technology Stack
| Layer | Technology |
|----------------|-------------------------------------|
| Frontend | Next.js 16, React, TypeScript |
| Backend | FastAPI, Python 3.10 |
| LLM Framework | LangChain, LangGraph |
| AI Models | Ollama (local deployment) |
| Vector Store | ChromaDB |
| Vision | llava:7b (OCR & diagram analysis) |
| Development | Hot reload, async/await |
---
## Current Status
### β
Operational
- Multi-agent system fully initialized
- All 4 LLM models loaded
- Workflow engine running
- Frontend & backend connected
### π Capabilities Demonstrated
- Patent PDF processing
- Document extraction (with fallback)
- TRL assessment
- Technical domain classification
- Commercialization potential scoring
---
## Use Cases
### 1. **Patent Wake-Up (Primary)**
University tech transfer offices can:
- Rapidly assess dormant patent portfolios
- Identify commercialization opportunities
- Match technologies with industry needs
### 2. **Technology Transfer**
- Evaluate research outputs
- Prioritize licensing opportunities
- Generate technology briefs
### 3. **Partner Matching** (Future)
- Connect inventors with industry
- Identify potential licensees
- Facilitate collaboration
---
## Sample Analysis Output
```yaml
Patent: Toyota Hydrogen Fuel Cell Initiative
βββββββββββββββββββββββββββββββββββββββββββββ
Title: "Toyota Opens the Door to Hydrogen Future"
Abstract: "Toyota announces royalty-free access to 5,680 fuel
cell patents to spur hydrogen vehicle development..."
Technical Domains:
β’ Automotive Technology
β’ Clean Energy Systems
β’ Fuel Cell Engineering
TRL Level: 8 (System Complete & Qualified)
Commercialization Potential: HIGH
Key Innovations:
β’ High-pressure hydrogen storage
β’ Fuel cell stack optimization
β’ System control software
Applications:
β’ Hydrogen vehicles
β’ Stationary power systems
β’ Industrial fuel cells
```
---
## Why SPARKNET?
### **Problem**:
- Manual patent analysis is slow and expensive
- Technology transfer offices overwhelmed
- Valuable IP sits dormant in university portfolios
### **Solution**:
- **Automated**: AI agents handle complex analysis
- **Fast**: Minutes instead of days
- **Scalable**: Batch processing capability
- **Intelligent**: Multi-model approach ensures accuracy
---
## Next Steps
### Immediate (v1.0)
- [ ] Enhance patent structure extraction
- [ ] Add batch processing for multiple patents
- [ ] Improve TRL assessment accuracy
### Short-term (v1.5)
- [ ] Industry partner database integration
- [ ] Automated technology brief generation
- [ ] Export to PDF reports
### Future (v2.0)
- [ ] Real-time collaboration features
- [ ] Market trend analysis integration
- [ ] Automated prior art search
---
## Demo Access
- **Frontend**: http://localhost:3000
- **Backend API**: http://localhost:8000
- **API Docs**: http://localhost:8000/docs
- **Health Check**: http://localhost:8000/api/health
---
## Team & Contact
**Project**: SPARKNET - Research Valorization Platform
**Architecture**: Multi-Agent AI System
**Framework**: LangGraph + LangChain
**Deployment**: Local (Ollama) / Cloud-ready
**For more information**: See documentation in `/home/mhamdan/SPARKNET/`
---
## Summary
SPARKNET is a **production-ready AI platform** that automates patent analysis and technology assessment using:
- **Multi-agent architecture** for complex reasoning
- **State-of-the-art LLMs** for accurate analysis
- **Modern web stack** for seamless user experience
- **Flexible deployment** options (local or cloud)
**Result**: Accelerated technology transfer from lab to market.
---
**Questions?**
*This is a preliminary overview for initial searching and evaluation.*
|