Rafs-an09002's picture
Update README.md
474be13 verified
metadata
title: Nexus-Nano Inference API
emoji: πŸš€
colorFrom: yellow
colorTo: red
sdk: docker
pinned: false
license: gpl-3.0

πŸš€ Nexus-Nano Inference API

Ultra-lightweight chess engine for instant responses.

Model Parameters Speed

🎯 Model Details

Nexus-Nano is the fastest model in the GambitFlow series:

  • Model: GambitFlow/Nexus-Nano
  • Parameters: 2.8 Million
  • Architecture: Compact ResNet (6 blocks)
  • Input: 12-channel board representation
  • Training Data: GambitFlow/Elite-Data (5M+ positions)
  • Strength: 1800-2000 ELO estimated

πŸ”¬ Search Algorithm

Ultra-minimal implementation for maximum speed:

Core Features

  • Pure Alpha-Beta Pruning [^1] - Classic minimax
  • Simple MVV-LVA Ordering [^2] - Capture prioritization
  • No Transposition Table - Zero memory overhead
  • Iterative Deepening - Anytime algorithm

Design Philosophy

  • Minimal overhead - Direct evaluation calls
  • Speed over strength - Optimized for response time

πŸ“Š Performance

Metric Value Environment
Depth 3 Search ~0.2-0.5 seconds HF Spaces CPU
Average Nodes 2K-5K per move Typical positions
Memory Usage ~1GB RAM Peak inference
Response Time 200-500ms 95th percentile

πŸ“‘ API Endpoints

POST /get-move

Request:

{
  "fen": "rnbqkbnr/pppppppp/8/8/8/8/PPPPPPPP/RNBQKBNR w KQkq - 0 1",
  "depth": 3
}

Response:

{
  "best_move": "e2e4",
  "evaluation": 0.18,
  "depth_searched": 3,
  "nodes_evaluated": 2847,
  "time_taken": 234
}

GET /health

Health check endpoint.

πŸ”§ Parameters

  • fen (required): Board position in FEN notation
  • depth (optional): Search depth (1-5, default: 3)

πŸš€ Quick Start

import requests

response = requests.post(
    "https://YOUR-SPACE.hf.space/get-move",
    json={
        "fen": "rnbqkbnr/pppppppp/8/8/8/8/PPPPPPPP/RNBQKBNR w KQkq - 0 1",
        "depth": 3
    }
)

data = response.json()
print(f"Best move: {data['best_move']} (took {data['time_taken']}ms)")

πŸ’» Use Cases

Perfect for:

  • Bullet chess (1+0, 2+1) - Lightning-fast moves
  • Chess tutorials - Instant move suggestions
  • Mobile applications - Minimal resource usage
  • Live analysis - Real-time position evaluation
  • Casual play - Good enough for beginners/intermediate

πŸ“š Research References

[^1]: Alpha-Beta Pruning: Knuth, D. E., & Moore, R. W. (1975). "An analysis of alpha-beta pruning". Artificial Intelligence, 6(4), 293-326.

[^2]: MVV-LVA: Hyatt, R. M., Gower, A. E., & Nelson, H. L. (1990). "Cray Blitz". Computers, Chess, and Cognition, 111-130.

πŸ“– Minimalist Design Inspiration

πŸ† Model Lineage

GambitFlow AI Engine Series:

  1. Nexus-Nano (2.8M) - Ultra-fast baseline ✨
  2. Nexus-Core (13M) - Balanced performance
  3. Synapse-Base (38.1M) - State-of-the-art

βš–οΈ Comparison Table

Feature Nexus-Nano Nexus-Core Synapse-Base
Speed ⚑⚑⚑⚑ Lightning ⚑⚑⚑ Ultra-fast ⚑⚑ Fast
Strength 1800-2000 ELO 2000-2200 ELO 2400-2600 ELO
Memory 1GB 2GB 5GB
Depth 3-4 4-5 5-7
Response 200-500ms 500-1000ms 1000-2000ms
Best for Bullet/Mobile Online/Rapid Tournament/Analysis

🎯 When to Use

Choose Nexus-Nano if:

  • βœ… Speed is critical (bullet games, live demos)
  • βœ… Resource-constrained environment (mobile, embedded)
  • βœ… Playing against beginners/intermediate (1800-2000 ELO)
  • βœ… You need instant move suggestions

Choose Nexus-Core if:

  • ⚑ You want balanced speed and strength
  • ⚑ Playing online rapid/blitz games

Choose Synapse-Base if:

  • πŸ† Maximum strength is priority
  • πŸ† Tournament-level play
  • πŸ† Deep position analysis needed

Developed by: GambitFlow / Rafsan1711
License: GPL v3 (GNU General Public License Version 3) Citation:

@software{gambitflow_nexus_nano_2025,
  author = {Rafsan1711},
  title = {Nexus-Nano: Ultra-Lightweight Chess Engine},
  year = {2025},
  publisher = {Hugging Face},
  url = {https://huggingface.co/GambitFlow/Nexus-Nano}
}

Part of the GambitFlow Project βš‘β™ŸοΈ