metadata
title: Nexus-Nano Inference API
emoji: π
colorFrom: yellow
colorTo: red
sdk: docker
pinned: false
license: gpl-3.0
π Nexus-Nano Inference API
Ultra-lightweight chess engine for instant responses.
π― Model Details
Nexus-Nano is the fastest model in the GambitFlow series:
- Model: GambitFlow/Nexus-Nano
- Parameters: 2.8 Million
- Architecture: Compact ResNet (6 blocks)
- Input: 12-channel board representation
- Training Data: GambitFlow/Elite-Data (5M+ positions)
- Strength: 1800-2000 ELO estimated
π¬ Search Algorithm
Ultra-minimal implementation for maximum speed:
Core Features
- Pure Alpha-Beta Pruning [^1] - Classic minimax
- Simple MVV-LVA Ordering [^2] - Capture prioritization
- No Transposition Table - Zero memory overhead
- Iterative Deepening - Anytime algorithm
Design Philosophy
- Minimal overhead - Direct evaluation calls
- Speed over strength - Optimized for response time
π Performance
| Metric | Value | Environment |
|---|---|---|
| Depth 3 Search | ~0.2-0.5 seconds | HF Spaces CPU |
| Average Nodes | 2K-5K per move | Typical positions |
| Memory Usage | ~1GB RAM | Peak inference |
| Response Time | 200-500ms | 95th percentile |
π‘ API Endpoints
POST /get-move
Request:
{
"fen": "rnbqkbnr/pppppppp/8/8/8/8/PPPPPPPP/RNBQKBNR w KQkq - 0 1",
"depth": 3
}
Response:
{
"best_move": "e2e4",
"evaluation": 0.18,
"depth_searched": 3,
"nodes_evaluated": 2847,
"time_taken": 234
}
GET /health
Health check endpoint.
π§ Parameters
- fen (required): Board position in FEN notation
- depth (optional): Search depth (1-5, default: 3)
π Quick Start
import requests
response = requests.post(
"https://YOUR-SPACE.hf.space/get-move",
json={
"fen": "rnbqkbnr/pppppppp/8/8/8/8/PPPPPPPP/RNBQKBNR w KQkq - 0 1",
"depth": 3
}
)
data = response.json()
print(f"Best move: {data['best_move']} (took {data['time_taken']}ms)")
π» Use Cases
Perfect for:
- Bullet chess (1+0, 2+1) - Lightning-fast moves
- Chess tutorials - Instant move suggestions
- Mobile applications - Minimal resource usage
- Live analysis - Real-time position evaluation
- Casual play - Good enough for beginners/intermediate
π Research References
[^1]: Alpha-Beta Pruning: Knuth, D. E., & Moore, R. W. (1975). "An analysis of alpha-beta pruning". Artificial Intelligence, 6(4), 293-326.
[^2]: MVV-LVA: Hyatt, R. M., Gower, A. E., & Nelson, H. L. (1990). "Cray Blitz". Computers, Chess, and Cognition, 111-130.
π Minimalist Design Inspiration
- MicroMax - Mulder, H. G. (2007). "1433-byte chess program". https://home.hccnet.nl/h.g.muller/max-src2.html
- Sunfish - Fiekas, N. (2013). "Simple chess engine in Python". https://github.com/thomasahle/sunfish
- Stockfish Lite - Simplified versions for embedded systems
π Model Lineage
GambitFlow AI Engine Series:
- Nexus-Nano (2.8M) - Ultra-fast baseline β¨
- Nexus-Core (13M) - Balanced performance
- Synapse-Base (38.1M) - State-of-the-art
βοΈ Comparison Table
| Feature | Nexus-Nano | Nexus-Core | Synapse-Base |
|---|---|---|---|
| Speed | β‘β‘β‘β‘ Lightning | β‘β‘β‘ Ultra-fast | β‘β‘ Fast |
| Strength | 1800-2000 ELO | 2000-2200 ELO | 2400-2600 ELO |
| Memory | 1GB | 2GB | 5GB |
| Depth | 3-4 | 4-5 | 5-7 |
| Response | 200-500ms | 500-1000ms | 1000-2000ms |
| Best for | Bullet/Mobile | Online/Rapid | Tournament/Analysis |
π― When to Use
Choose Nexus-Nano if:
- β Speed is critical (bullet games, live demos)
- β Resource-constrained environment (mobile, embedded)
- β Playing against beginners/intermediate (1800-2000 ELO)
- β You need instant move suggestions
Choose Nexus-Core if:
- β‘ You want balanced speed and strength
- β‘ Playing online rapid/blitz games
Choose Synapse-Base if:
- π Maximum strength is priority
- π Tournament-level play
- π Deep position analysis needed
Developed by: GambitFlow / Rafsan1711
License: GPL v3 (GNU General Public License Version 3)
Citation:
@software{gambitflow_nexus_nano_2025,
author = {Rafsan1711},
title = {Nexus-Nano: Ultra-Lightweight Chess Engine},
year = {2025},
publisher = {Hugging Face},
url = {https://huggingface.co/GambitFlow/Nexus-Nano}
}
Part of the GambitFlow Project β‘βοΈ