--- title: Nexus-Nano Inference API emoji: ๐Ÿš€ colorFrom: yellow colorTo: red sdk: docker pinned: false license: gpl-3.0 --- # ๐Ÿš€ Nexus-Nano Inference API Ultra-lightweight chess engine for instant responses. [![Model](https://img.shields.io/badge/Model-Nexus--Nano-yellow)](https://huggingface.co/GambitFlow/Nexus-Nano) [![Parameters](https://img.shields.io/badge/Params-2.8M-orange)](https://huggingface.co/GambitFlow/Nexus-Nano) [![Speed](https://img.shields.io/badge/Speed-Lightning-red)](https://huggingface.co/GambitFlow/Nexus-Nano) ## ๐ŸŽฏ Model Details **Nexus-Nano** is the fastest model in the GambitFlow series: - **Model:** [GambitFlow/Nexus-Nano](https://huggingface.co/GambitFlow/Nexus-Nano) - **Parameters:** 2.8 Million - **Architecture:** Compact ResNet (6 blocks) - **Input:** 12-channel board representation - **Training Data:** [GambitFlow/Elite-Data](https://huggingface.co/datasets/GambitFlow/Elite-Data) (5M+ positions) - **Strength:** 1800-2000 ELO estimated ## ๐Ÿ”ฌ Search Algorithm Ultra-minimal implementation for maximum speed: ### Core Features - **Pure Alpha-Beta Pruning** [^1] - Classic minimax - **Simple MVV-LVA Ordering** [^2] - Capture prioritization - **No Transposition Table** - Zero memory overhead - **Iterative Deepening** - Anytime algorithm ### Design Philosophy - **Minimal overhead** - Direct evaluation calls - **Speed over strength** - Optimized for response time ## ๐Ÿ“Š Performance | Metric | Value | Environment | |--------|-------|-------------| | **Depth 3 Search** | ~0.2-0.5 seconds | HF Spaces CPU | | **Average Nodes** | 2K-5K per move | Typical positions | | **Memory Usage** | ~1GB RAM | Peak inference | | **Response Time** | 200-500ms | 95th percentile | ## ๐Ÿ“ก API Endpoints ### `POST /get-move` **Request:** ```json { "fen": "rnbqkbnr/pppppppp/8/8/8/8/PPPPPPPP/RNBQKBNR w KQkq - 0 1", "depth": 3 } ``` **Response:** ```json { "best_move": "e2e4", "evaluation": 0.18, "depth_searched": 3, "nodes_evaluated": 2847, "time_taken": 234 } ``` ### `GET /health` Health check endpoint. ## ๐Ÿ”ง Parameters - **fen** (required): Board position in FEN notation - **depth** (optional): Search depth (1-5, default: 3) ## ๐Ÿš€ Quick Start ```python import requests response = requests.post( "https://YOUR-SPACE.hf.space/get-move", json={ "fen": "rnbqkbnr/pppppppp/8/8/8/8/PPPPPPPP/RNBQKBNR w KQkq - 0 1", "depth": 3 } ) data = response.json() print(f"Best move: {data['best_move']} (took {data['time_taken']}ms)") ``` ## ๐Ÿ’ป Use Cases Perfect for: - **Bullet chess (1+0, 2+1)** - Lightning-fast moves - **Chess tutorials** - Instant move suggestions - **Mobile applications** - Minimal resource usage - **Live analysis** - Real-time position evaluation - **Casual play** - Good enough for beginners/intermediate ## ๐Ÿ“š Research References [^1]: **Alpha-Beta Pruning**: Knuth, D. E., & Moore, R. W. (1975). "An analysis of alpha-beta pruning". *Artificial Intelligence*, 6(4), 293-326. [^2]: **MVV-LVA**: Hyatt, R. M., Gower, A. E., & Nelson, H. L. (1990). "Cray Blitz". *Computers, Chess, and Cognition*, 111-130. ## ๐Ÿ“– Minimalist Design Inspiration - **MicroMax** - Mulder, H. G. (2007). "1433-byte chess program". https://home.hccnet.nl/h.g.muller/max-src2.html - **Sunfish** - Fiekas, N. (2013). "Simple chess engine in Python". https://github.com/thomasahle/sunfish - **Stockfish Lite** - Simplified versions for embedded systems ## ๐Ÿ† Model Lineage **GambitFlow AI Engine Series:** 1. **Nexus-Nano (2.8M)** - Ultra-fast baseline โœจ 2. Nexus-Core (13M) - Balanced performance 3. Synapse-Base (38.1M) - State-of-the-art ## โš–๏ธ Comparison Table | Feature | Nexus-Nano | Nexus-Core | Synapse-Base | |---------|------------|------------|--------------| | **Speed** | โšกโšกโšกโšก Lightning | โšกโšกโšก Ultra-fast | โšกโšก Fast | | **Strength** | 1800-2000 ELO | 2000-2200 ELO | 2400-2600 ELO | | **Memory** | 1GB | 2GB | 5GB | | **Depth** | 3-4 | 4-5 | 5-7 | | **Response** | 200-500ms | 500-1000ms | 1000-2000ms | | **Best for** | Bullet/Mobile | Online/Rapid | Tournament/Analysis | ## ๐ŸŽฏ When to Use Choose **Nexus-Nano** if: - โœ… Speed is critical (bullet games, live demos) - โœ… Resource-constrained environment (mobile, embedded) - โœ… Playing against beginners/intermediate (1800-2000 ELO) - โœ… You need instant move suggestions Choose **Nexus-Core** if: - โšก You want balanced speed and strength - โšก Playing online rapid/blitz games Choose **Synapse-Base** if: - ๐Ÿ† Maximum strength is priority - ๐Ÿ† Tournament-level play - ๐Ÿ† Deep position analysis needed --- **Developed by:** [GambitFlow](https://huggingface.co/GambitFlow) / Rafsan1711 **License:** GPL v3 (GNU General Public License Version 3) **Citation:** ```bibtex @software{gambitflow_nexus_nano_2025, author = {Rafsan1711}, title = {Nexus-Nano: Ultra-Lightweight Chess Engine}, year = {2025}, publisher = {Hugging Face}, url = {https://huggingface.co/GambitFlow/Nexus-Nano} } ``` --- Part of the **GambitFlow Project** โšกโ™Ÿ๏ธ