hexsha
stringlengths
40
40
size
int64
5
2.06M
ext
stringclasses
10 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
3
248
max_stars_repo_name
stringlengths
5
125
max_stars_repo_head_hexsha
stringlengths
40
78
max_stars_repo_licenses
listlengths
1
10
max_stars_count
int64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
3
248
max_issues_repo_name
stringlengths
5
125
max_issues_repo_head_hexsha
stringlengths
40
78
max_issues_repo_licenses
listlengths
1
10
max_issues_count
int64
1
67k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
3
248
max_forks_repo_name
stringlengths
5
125
max_forks_repo_head_hexsha
stringlengths
40
78
max_forks_repo_licenses
listlengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
5
2.06M
avg_line_length
float64
1
1.02M
max_line_length
int64
3
1.03M
alphanum_fraction
float64
0
1
count_classes
int64
0
1.6M
score_classes
float64
0
1
count_generators
int64
0
651k
score_generators
float64
0
1
count_decorators
int64
0
990k
score_decorators
float64
0
1
count_async_functions
int64
0
235k
score_async_functions
float64
0
1
count_documentation
int64
0
1.04M
score_documentation
float64
0
1
9a9a50511abf52afcd61e02d8aeff1032454c0a6
3,379
py
Python
utils/videoJob.py
dbpeng/aws-lambda-python-example-zencoder
3c3e2d2ea88be824a62e41f16d6bdd79deeef2a0
[ "MIT" ]
1
2018-05-01T11:54:33.000Z
2018-05-01T11:54:33.000Z
utils/videoJob.py
dbpeng/aws-lambda-python-example-zencoder
3c3e2d2ea88be824a62e41f16d6bdd79deeef2a0
[ "MIT" ]
1
2021-06-01T22:18:53.000Z
2021-06-01T22:18:53.000Z
utils/videoJob.py
dbpeng/aws-lambda-python-example-zencoder
3c3e2d2ea88be824a62e41f16d6bdd79deeef2a0
[ "MIT" ]
null
null
null
import os import sys from sqlalchemy import Column, ForeignKey, Integer, String, DateTime from sqlalchemy.ext.declarative import declarative_base from sqlalchemy.orm import sessionmaker from sqlalchemy import create_engine from datetime import datetime import json from base import Session, engine, Base from enum import Enum VIDEOS_S3_PATH = os.environ["VIDEOS_S3_PATH"] class VideoJobState(Enum): INIT = 0 DONE = 3 CANCEL = 4 class VideoTranscodeJob(Base): __tablename__ = "TranscodingJob" id = Column("ID", Integer, primary_key=True) src = Column("Src", String(100)) dst = Column("Dst", String(100)) playUrl = Column("VideoUrl", String(256)) config = Column("Config", String(100)) vendor = Column("Vendor", String(100)) jobId = Column("JobId", String(100)) progress = Column("Progress", Integer) webhook = Column("Webhook", String(300)) created_At = Column("Created_At", DateTime, default=datetime.now) updated_At = Column("Updated_At", DateTime, onupdate=datetime.now) def __init__(self): self.progress = 0 def setConfig(self, config): self.config = config filename = "profiles/"+self.config+".json" with open(filename, 'r') as f: datastore = json.load(f) self.configContext = datastore def getConfig(self): return self.config def getConfigContext(self): return self.configContext def setSrc(self, src): self.src = src def getSrc(self): return self.src def setPlaybackUrl(self, url): # TODO: should validate url scheme here self.playUrl = url def getPlaybackUrl(self): return self.playUrl def setDst(self, dst): # this part needs a revamp, we should not by default assume it's HLS self.dst = VIDEOS_S3_PATH + dst + "/playlist.m3u8" def getDst(self): return self.dst def setVendor(self, vendorId): self.vendor = vendorId def getVendor(self): return self.vendor def setJobId(self, jobid): self.jobId = jobid def getJobId(self): return self.jobId def setWebhook(self, url): self.webhook = url def getWebhook(self): return self.webhook def setProgress(self, status): self.progress = status def getProgress(self): return self.progress def getCreatedTime(self): return self.createTime def getUpdatedTime(self): return self.updatedTime def setId(self, id): self.id = id def getId(self): return self.id def getJobDescription(self): # self.configContext['input'] = self.getSrc() for output in self.configContext['output']: output['base_url'] = self.getDst() return self.configContext def submit(self): pass # if __name__ == "__main__": # session = Session() # vjob = VideoTranscodeJob() # vjob.setSrc("s3://wowza-video/hk33456678.mp4") # vjob.setDst("13ffjsdhr") # vjob.setConfig("zen-hls") # vjob.setJobId("13556245") # vjob.setVendor("zencoder") # session.add(vjob) # session.commit() # # jobs = session.query(VideoTranscodeJob).all() # # for job in jobs: # # job.setProgress(4) # # session.commit() # session.close()
25.406015
76
0.629772
2,520
0.745783
0
0
0
0
0
0
787
0.232909
9a9af8b29d8ddd5b44627798d65817d8e0c206e0
3,411
py
Python
alipay/aop/api/domain/MybankCreditSceneprodCommonQueryModel.py
antopen/alipay-sdk-python-all
8e51c54409b9452f8d46c7bb10eea7c8f7e8d30c
[ "Apache-2.0" ]
213
2018-08-27T16:49:32.000Z
2021-12-29T04:34:12.000Z
alipay/aop/api/domain/MybankCreditSceneprodCommonQueryModel.py
antopen/alipay-sdk-python-all
8e51c54409b9452f8d46c7bb10eea7c8f7e8d30c
[ "Apache-2.0" ]
29
2018-09-29T06:43:00.000Z
2021-09-02T03:27:32.000Z
alipay/aop/api/domain/MybankCreditSceneprodCommonQueryModel.py
antopen/alipay-sdk-python-all
8e51c54409b9452f8d46c7bb10eea7c8f7e8d30c
[ "Apache-2.0" ]
59
2018-08-27T16:59:26.000Z
2022-03-25T10:08:15.000Z
#!/usr/bin/env python # -*- coding: utf-8 -*- import json from alipay.aop.api.constant.ParamConstants import * class MybankCreditSceneprodCommonQueryModel(object): def __init__(self): self._app_seq_no = None self._ext_param = None self._operation_type = None self._org_code = None self._product_code = None self._seq_no = None @property def app_seq_no(self): return self._app_seq_no @app_seq_no.setter def app_seq_no(self, value): self._app_seq_no = value @property def ext_param(self): return self._ext_param @ext_param.setter def ext_param(self, value): self._ext_param = value @property def operation_type(self): return self._operation_type @operation_type.setter def operation_type(self, value): self._operation_type = value @property def org_code(self): return self._org_code @org_code.setter def org_code(self, value): self._org_code = value @property def product_code(self): return self._product_code @product_code.setter def product_code(self, value): self._product_code = value @property def seq_no(self): return self._seq_no @seq_no.setter def seq_no(self, value): self._seq_no = value def to_alipay_dict(self): params = dict() if self.app_seq_no: if hasattr(self.app_seq_no, 'to_alipay_dict'): params['app_seq_no'] = self.app_seq_no.to_alipay_dict() else: params['app_seq_no'] = self.app_seq_no if self.ext_param: if hasattr(self.ext_param, 'to_alipay_dict'): params['ext_param'] = self.ext_param.to_alipay_dict() else: params['ext_param'] = self.ext_param if self.operation_type: if hasattr(self.operation_type, 'to_alipay_dict'): params['operation_type'] = self.operation_type.to_alipay_dict() else: params['operation_type'] = self.operation_type if self.org_code: if hasattr(self.org_code, 'to_alipay_dict'): params['org_code'] = self.org_code.to_alipay_dict() else: params['org_code'] = self.org_code if self.product_code: if hasattr(self.product_code, 'to_alipay_dict'): params['product_code'] = self.product_code.to_alipay_dict() else: params['product_code'] = self.product_code if self.seq_no: if hasattr(self.seq_no, 'to_alipay_dict'): params['seq_no'] = self.seq_no.to_alipay_dict() else: params['seq_no'] = self.seq_no return params @staticmethod def from_alipay_dict(d): if not d: return None o = MybankCreditSceneprodCommonQueryModel() if 'app_seq_no' in d: o.app_seq_no = d['app_seq_no'] if 'ext_param' in d: o.ext_param = d['ext_param'] if 'operation_type' in d: o.operation_type = d['operation_type'] if 'org_code' in d: o.org_code = d['org_code'] if 'product_code' in d: o.product_code = d['product_code'] if 'seq_no' in d: o.seq_no = d['seq_no'] return o
29.405172
79
0.588977
3,294
0.965699
0
0
1,489
0.436529
0
0
424
0.124304
9a9d13bd5f6b65068699065c4f4e5d2b6027979d
32,570
py
Python
train_end2end.py
lyn1874/daml
edd89c3baf018cdb407208d137364fcefd913896
[ "MIT" ]
null
null
null
train_end2end.py
lyn1874/daml
edd89c3baf018cdb407208d137364fcefd913896
[ "MIT" ]
null
null
null
train_end2end.py
lyn1874/daml
edd89c3baf018cdb407208d137364fcefd913896
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Tue Aug 13 18:23:08 2019 This scrip is for training the experiement end2end @author: li """ import tensorflow as tf import models.AE as AE import optimization.loss_tf as loss_tf from data import read_frame_temporal as rft import numpy as np import os import math import cv2 import shutil import const def train_end2end(args, data_set, model_type, motion_method, version=0, bg_ind=None, augment_opt="none"): model_mom_for_load_data = args.datadir path_mom = args.expdir if data_set == "ucsd1": stat = [8,6,2,5] train_ucsd1(stat, model_type, motion_method, version) elif data_set == "ucsd2": stat = [8,6,2,4] train_ucsd2(stat, model_type, motion_method, version) elif data_set == "avenue": stat = [6,6,2,4] train_avenue(stat, model_type, augment_opt, version) elif data_set == "shanghaitech_allinone": stat = [6,6,2,4] train_shanghaitech_allinone(stat, model_type, version) elif data_set == "shanghaitech_multiple": stat = [6,6,2,4] train_shanghaitech_multiple(stat, model_type, motion_method, version, bg_ind) # elif data_set is "moving_mnist": # # 6, 6, 1, 4 # train_moving_mnist(model_mom_for_load_data, path_mom, stat, model_type, version) def train_fps(model_mom_for_load_data, path_mom): # 31,32,33,34 version = 0 interval_group = np.arange(11)[1:] * 2 learn_opt = "learn_fore" data_set = "ucsd2" motion_method = "conv3d" model_type = "2d_2d_pure_unet" time_step = 6 args.z_mse_ratio = 0.001 for single_interval in interval_group: delta = single_interval train_model(args.datadir, args.expdir, data_set, time_step, delta, model_type, motion_method, single_interval, version, None, 4, learn_opt) def train_ucsd1_group(): stat = [8, 6, 2, 5] model_type = "2d_2d_pure_unet" motion_method = "convlstm" version = [0, 1, 2, 3] for single_version in version: train_ucsd1(stat, model_type, motion_method, single_version) def train_ucsd1(stat, model_type, motion_method, version): data_set = "ucsd1" time_step, delta, interval, num_enc_layer = stat train_model(args.datadir, args.expdir, data_set, time_step, delta, model_type, motion_method, interval, version, None, num_enc_layer, "learn_fore") def train_ucsd2_group(): stat = [8, 6, 2, 4] model_type = "2d_2d_pure_unet" motion_method = "convlstm" for single_version in [2, 3]: train_ucsd2(stat, model_type, motion_method, single_version) def train_ucsd2(stat, model_type, motion_method, version): data_set = "ucsd2" time_step, delta, interval, num_enc_layer = stat train_model(args.datadir, args.expdir, data_set, time_step, delta, model_type, motion_method, interval, version, None, num_enc_layer, "learn_fore") def train_avenue_group(): data_dir = args.datadir model_dir = args.expdir stat = [6, 6, 2, 4] motion_method = "conv3d" augment_opt = "none" for single_version in [2, 3]: train_avenue(data_dir, model_dir, stat, "2d_2d_pure_unet", motion_method, augment_opt, single_version) def train_avenue(stat, model_type, motion_method, augment_opt, version): data_set = "avenue" args.augment_option = augment_opt if augment_opt == "add_dark_auto": learn_opt = "learn_full" else: learn_opt = "learn_fore" time_step, delta, interval, num_enc_layer = stat train_model(args.datadir, args.expdir, data_set, time_step, delta, model_type, motion_method, interval, version, None, num_enc_layer, learn_opt) def train_shanghaitech_allinone(stat, model_type, version): motion_method = "conv3d" time_step, delta, interval, num_enc_layer = stat data_set = "shanghaitech" train_model(args.datadir, args.expdir, data_set, time_step, delta, model_type, motion_method, interval, version, None, num_enc_layer, "learn_fore") def train_shanghaitech_multiple(stat, model_type, motion_method, version, bg_ind=None): if bg_ind[0] == 0: bg_ind = [2, 3, 7, 9, 11] for single_bg_ind in bg_ind: train_shanghaitech_for_per_bg(args.datadir, args.expdir, stat, model_type, motion_method, single_bg_ind, version) def train_shanghaitech_for_per_bg(model_mom_for_load_data, path_mom, stat, model_type, motion_method, bg_ind, version): time_step, delta, interval, num_enc_layer = stat data_set = "shanghaitech" train_model(model_mom_for_load_data, path_mom, data_set, time_step, delta, model_type, motion_method, interval, version, None, num_enc_layer, "learn_fore", bg_index_pool=[bg_ind]) def train_moving_mnist(): motion_method = "conv3d" data_set = "moving_mnist" version = 2 model_type = "2d_2d_unet_no_shortcut" z_mse_ratio = 0.001 args.z_mse_ratio = z_mse_ratio num_layer = [5] stat_group = [[6, 2, 1]] for single_layer in num_layer: for single_stat in stat_group: time_step, delta, interval = single_stat num_enc_layer = single_layer train_model(args.datadir, args.expdir, data_set, time_step, delta, model_type, motion_method, interval, version, None, num_enc_layer, "learn_full") def train_moving_mnist_single_digit(model_group): """This function train a pure autoencoder for moving mnist single digit dataset The goal of this type of experiments is to hope the latent can show some pattern between anomalies and normal""" motion_method = "conv3d" data_set = "moving_mnist_single_digit" version = 1 # version 1 means the activation layer in the last convolutional block is changed from # learky-relu to tanh args.z_mse_ratio = 0.001 num_layer = [5, 4] stat = [6, 2, 1] for model_type in model_group: for single_layer in num_layer: time_step, delta, interval = stat num_enc_layer = single_layer train_model(args.datadir, args.expdir, data_set, time_step, delta, model_type, motion_method, interval, version, None, num_enc_layer, "learn_full") def train_seq2seq(version): data_set = "ucsd2" motion_method = "conv3d" model_type = "many_to_one" for time_step in [4, 6, 8]: stat = [time_step, 2, 2, 4] train_model(args.datadir, args.expdir, data_set, stat[0], stat[1], model_type, motion_method, stat[2], version, None, stat[-1], "learn_fore", None) def train_model(model_mom_for_load_data, path_mom, data_set, time_step, delta, model_type, motion_method, single_interval, version, ckpt_dir, num_enc_layer, learn_opt, bg_index_pool=None): print("-------------------Start to train the model------------------------------") args.data_set = data_set interval_input = np.array([single_interval]) bg_index = None args.num_encoder_layer = num_enc_layer args.num_decoder_layer = num_enc_layer args.time_step = time_step args.single_interval = single_interval args.delta = delta args.learn_opt = learn_opt args.bg_index_pool = bg_index_pool model_dir = path_mom + "ano_%s_motion_end2end/" % args.data_set if not bg_index_pool: model_dir = model_dir + "time_%d_delta_%d_gap_%d_%s_%s_%s_enc_%d_version_%d" % (time_step, delta, single_interval, model_type, motion_method, learn_opt, num_enc_layer, version) else: model_dir = model_dir + "time_%d_delta_%d_gap_%d_%s_%s_%s_enc_%d_bg_%d_version_%d" % ( time_step, delta, single_interval, model_type, motion_method, learn_opt, num_enc_layer, bg_index_pool[0], version) tmf = TrainMainFunc(args, model_mom_for_load_data, model_dir, ckpt_dir, time_step, interval_input, delta, train_index=bg_index, bg_index_pool=bg_index_pool) tmf.build_running() def read_data(model_mom, data_set, concat_option, time_step, interval_input, delta, bg_index_pool=None): if data_set != "shanghaitech": train_im, test_im, imshape, targ_shape = rft.get_video_data(model_mom, data_set).forward() train_im_interval, in_shape, out_shape = rft.read_frame_interval_by_dataset(data_set, train_im, time_step, concat_option, interval_input, delta) else: train_im_group = [] if not bg_index_pool: bg_index_pool = np.arange(13)[1:] for single_bg_index in bg_index_pool: if single_bg_index < 10: bg_index = "bg_index_0%d" % single_bg_index else: bg_index = "bg_index_%d" % single_bg_index print("--------loading data from bg %s---------------" % bg_index) test_im, test_la, imshape, targ_shape = rft.get_video_data(model_mom, args.data_set).forward(bg_index) test_im_interval, in_shape, out_shape = rft.read_frame_interval_by_dataset(data_set, test_im, time_step, concat_option, interval=interval_input, delta=delta) train_im_group.append(test_im_interval) train_im_interval = np.array([v for j in train_im_group for v in j]) return train_im_interval, imshape, targ_shape, in_shape, out_shape class TrainMainFunc(object): def __init__(self, args, model_mom, model_dir, ckpt_dir, time_step, interval_input=np.array([1]), delta=None, train_index=None, bg_index_pool=None): if not os.path.exists(model_dir): os.makedirs(model_dir) concat_option = "conc_tr" train_im_interval, imshape, targ_shape, in_shape, out_shape = read_data(model_mom, args.data_set, concat_option, time_step, interval_input, delta, bg_index_pool=bg_index_pool) args.output_dim = targ_shape[-1] if concat_option == "conc_tr": args.num_prediction = 1 else: args.num_prediction = out_shape[0] self.args = args self.model_mom = model_mom self.model_dir = model_dir self.ckpt_dir = ckpt_dir self.data_set = args.data_set self.train_index = train_index self.temp_shape = [in_shape, out_shape] self.targ_shape = targ_shape self.imshape = imshape self.output_dim = args.output_dim self.concat = "conc_tr" self.time_step = time_step self.delta = delta self.interval = interval_input[0] self.test_im = train_im_interval self.input_option = args.input_option self.augment_option = args.augment_option self.darker_value = args.darker_value self.learn_opt = args.learn_opt self.model_type = args.model_type self.z_mse_ratio = args.z_mse_ratio [lrate_g_step, lrate_g], [lrate_z_step, lrate_z], [epoch, batch_size] = const.give_learning_rate_for_init_exp(self.args) self.lrate_g_decay_step = lrate_g_step self.lrate_g_init = lrate_g self.lrate_z_decay_step = lrate_z_step self.lrate_z_init = lrate_z self.batch_size = batch_size self.max_epoch = epoch print(args) def read_tensor(self): imh, imw, ch = self.targ_shape placeholder_shape = [None, 2, self.temp_shape[0][0]] shuffle_option = True if "/project/" in self.model_dir: repeat = 20 else: repeat = 1 images_in = tf.placeholder(tf.string, shape=placeholder_shape, name='tr_im_path') image_queue = rft.dataset_input(self.model_mom, self.data_set, images_in, self.learn_opt, self.temp_shape, self.imshape, self.targ_shape[:2], self.batch_size, augment_option=self.augment_option, darker_value=self.darker_value, conc_option=self.concat, shuffle=shuffle_option, train_index=None, epoch_size=repeat) image_init = image_queue.make_initializable_iterator() image_batch = image_init.get_next() x_input = image_batch[0] # [batch_size, num_input_channel, imh, imw, ch] x_output = image_batch[1] # [batch_size, self.output_dim, imh, imw, ch] im_background = image_batch[-1] print("=========================================") print("The input of the model", x_input) print("The output of the model", x_output) print("The background of the data", im_background) print("=========================================") x_input = tf.concat([x_input, x_output], axis=1) # th==already subtract the background. if self.learn_opt == "learn_fore": x_real_input = x_input + im_background else: x_real_input = x_input self.x_real_input = tf.transpose(x_real_input, perm=(1, 0, 2, 3, 4)) x_input = tf.transpose(x_input, perm=(1, 0, 2, 3, 4)) # num_frame, batch_size, imh, imw, ch # the last input of x_input is for prediction im_background = tf.transpose(im_background, perm=(1, 0, 2, 3, 4)) # num_frame, batch_size, imh, imw, ch if "crop" in self.input_option: x_input = tf.reshape(x_input, shape=[(self.time_step + 1) * self.batch_size, imh, imw, ch]) crop_size = self.input_option.strip().split("crop_")[1] crop_h, crop_w = crop_size.strip().split("_") crop_h, crop_w = int(crop_h), int(crop_w) x_input_crop, stride_size, crop_box_h_w = rft.get_crop_image(x_input, crop_h, crop_w) x_input_crop = tf.concat([x_input_crop], axis=0) # [num_regions, (num_time+1)*batch_size, crop_height, crop_weight,ch] num_box = x_input_crop.get_shape().as_list()[0] x_input_crop = tf.reshape(x_input_crop, shape=[num_box, self.time_step + 1, self.batch_size, crop_h, crop_w, ch]) x_input_crop = tf.transpose(x_input_crop, perm=(1, 0, 2, 3, 4, 5)) x_input_crop = tf.reshape(x_input_crop, shape=[self.time_step + 1, num_box * self.batch_size, crop_h, crop_w, ch]) x_input = x_input_crop # [time, num_box*batch, croph, cropw, ch] x_input = tf.transpose(x_input, perm=(1, 0, 2, 3, 4)) # [batch, time, c_h, c_w, ch] x_input = tf.random.shuffle(x_input) if crop_h >= 128: x_input = x_input[:4] # this is for batch size print("The actual number of box", num_box) x_input = tf.transpose(x_input, perm=(1, 0, 2, 3, 4)) # [time, batch, c_h, c_w, ch] self.x_real_input = x_input return images_in, x_input, image_init, im_background def build_graph(self): num_recons_output = self.time_step image_placeholder, x_input, image_init, im_background = self.read_tensor() # --build encoder-------------# model_use = AE.DAML(self.args) p_x_recons, p_x_pred, latent_space_gt, latent_space_pred = model_use.forward(x_input) if "crop" not in self.input_option: if self.learn_opt == "learn_full": print("====the reconstruction is full frame=============") elif self.learn_opt == "learn_fore": print("====the reconstruction is frame - background=====") if self.model_type != "many_to_one": p_x_recons = p_x_recons + im_background p_x_pred = p_x_pred + im_background if self.model_type == "2d_2d_pure_unet": x_recons_gt = self.x_real_input[1:self.time_step] # [num_recons, batch_size, imh, imw, ch] elif self.model_type == "2d_2d_unet_no_shortcut": x_recons_gt = self.x_real_input[:self.time_step] else: x_recons_gt = [] x_pred_gt = self.x_real_input[-1:] print("=============================================================") print("----the input for the model-----------------", x_input) print("----the groundtruth for reconstruction------", x_recons_gt) print("----the reconstructed frames----------------", p_x_recons) print("----the groundtruth for prediction----------", x_pred_gt) print("----the predicted frame---------------------", p_x_pred) print("----the gt latent space---------------------", latent_space_gt) print("----the predicted latent space--------------", latent_space_pred) print("=============================================================") if self.model_type== "2d_2d_pure_unet" or self.model_type== "2d_2d_unet_no_shortcut": if "moving_mnist" not in self.data_set: mse_pixel = tf.reduce_mean(tf.reduce_sum(tf.squared_difference(x_recons_gt, p_x_recons), (-1, -2, -3))) else: mse_pixel = tf.keras.losses.binary_crossentropy(y_true=x_recons_gt, y_pred=p_x_recons, from_logits=False) mse_pixel = tf.reduce_mean(tf.reduce_sum(mse_pixel, (-1, -2, -3))) mse_latent = tf.reduce_mean( tf.reduce_sum(tf.squared_difference(latent_space_gt, latent_space_pred), (-1, -2, -3))) elif self.model_type== "many_to_one": mse_pixel = tf.reduce_mean(tf.reduce_sum(tf.squared_difference(x_pred_gt-im_background, p_x_pred-im_background), (-1, -2, -3))) mse_latent = tf.constant(0.0) z_mse_ratio_placeholder = tf.placeholder(tf.float32, name="ratio_for_z_mse") if self.model_type != "many_to_one": loss_tot = mse_pixel + mse_latent * z_mse_ratio_placeholder else: loss_tot = mse_pixel var_tot = tf.trainable_variables() [print(v) for v in var_tot if 'kernel' in v.name] # print("==========================================") # print("encoder decoder trainable variables") # [print(v) for v in var_tot if 'motion_latent' not in v.name] # print("==========================================") # print("motion trainable variables") # [print(v) for v in var_tot if 'motion_latent' in v.name] var_0 = var_tot loss_tot = tf.add_n([loss_tot, tf.add_n( [tf.nn.l2_loss(v) for v in var_0 if 'kernel' in v.name or 'weight' in v.name]) * args.regu_par]) g_lrate = tf.placeholder(tf.float32, name='g_lrate') train_op_0 = loss_tf.train_op(loss_tot, g_lrate, var_opt=var_0, name='train_op_tot') z_lrate = tf.placeholder(tf.float32, name='z_lrate') if self.model_type != "many_to_one": var_motion = [v for v in var_tot if 'motion_latent' in v.name] loss_motion = mse_latent loss_motion = tf.add_n([loss_motion, tf.add_n( [tf.nn.l2_loss(v) for v in var_motion if 'kernel' in v.name or 'weight' in v.name]) * args.regu_par]) train_op_z = loss_tf.train_op(loss_motion, z_lrate, var_opt=var_motion, name='train_latent_z') train_z_group = [z_lrate, train_op_z] else: train_z_group = [z_lrate, []] saver_set_all = tf.train.Saver(tf.trainable_variables(), max_to_keep=1) input_group = [image_init, image_placeholder, z_mse_ratio_placeholder] loss_group = [mse_pixel, mse_latent, loss_tot] train_group = [g_lrate, train_op_0, saver_set_all] if self.model_type== "2d_2d_pure_unet" or self.model_type== "2d_2d_unet_no_shortcut": im_stat = [p_x_recons, x_recons_gt, p_x_pred, x_pred_gt] else: im_stat = [p_x_pred, x_pred_gt] return input_group, loss_group, train_group, train_z_group, im_stat def build_train_op(self, sess, image_init, placeholder_group, x_train, single_epoch, num_epoch_for_full, loss_group, train_op_group): train_op_0, train_op_z = train_op_group image_placeholder, z_mse_placeholder, g_lrate_placeholder, z_lrate_placeholder = placeholder_group sess.run(image_init.initializer, feed_dict={image_placeholder: x_train}) num_tr_iter_per_epoch = np.shape(x_train)[0] // self.batch_size lrate_g_npy = self.lrate_g_init * math.pow(0.1, math.floor(float(single_epoch) / float(self.lrate_g_decay_step))) lrate_z_npy = self.lrate_z_init * math.pow(0.1, math.floor(float(single_epoch - num_epoch_for_full) / float(self.lrate_z_decay_step))) loss_per_epoch = [] if single_epoch <= num_epoch_for_full: fetches_tr = [train_op_0] else: fetches_tr = [train_op_z] fetches_tr.append(loss_group) for single_iter in range(num_tr_iter_per_epoch): _, _loss_group = sess.run(fetches=fetches_tr, feed_dict={z_mse_placeholder: self.z_mse_ratio, g_lrate_placeholder: lrate_g_npy, z_lrate_placeholder: lrate_z_npy}) loss_per_epoch.append(_loss_group) return np.mean(loss_per_epoch, axis=0) def build_val_op(self, sess, image_init, image_placeholder, x_val, loss_group, image_stat, image_path, single_epoch): sess.run(image_init.initializer, feed_dict={image_placeholder: x_val}) num_val_iter_per_epoch = np.shape(x_val)[0] // self.batch_size # image_stat: [p_x_recons, p_x_pred, x_recons_gt, x_pred_gt] # or # image_stat: [p_x_pred, x_pred_gt] loss_val_per_epoch = [] for single_val_iter in range(num_val_iter_per_epoch): if single_val_iter != num_val_iter_per_epoch - 1: _loss_val = sess.run(fetches=loss_group) else: _loss_val, _stat_use = sess.run(fetches=[loss_group, image_stat]) for single_input, single_path in zip(_stat_use, image_path): for j in range(np.shape(single_input)[0]): im_use = single_input[j, :] shape_use = np.array(np.shape(im_use)[1:]) cv2.imwrite(os.path.join(single_path, "epoch_%d_frame_%d.jpg" % (single_epoch, j)), (plot_canvas(im_use, shape_use)).astype('uint8')[:, :, ::-1]) loss_val_per_epoch.append(_loss_val) return np.mean(loss_val_per_epoch, axis=0) def build_running(self): im_path = os.path.join(self.model_dir, 'recons_gt') recons_path = os.path.join(self.model_dir, 'p_x_recons') im_pred_path = os.path.join(self.model_dir, 'pred_gt') pred_path = os.path.join(self.model_dir, 'p_x_pred') if self.model_type== "2d_2d_pure_unet" or self.model_type== "2d_2d_unet_no_shortcut": path_group = [recons_path, im_path, pred_path, im_pred_path] else: path_group = [pred_path, im_pred_path] for i in path_group: if not os.path.exists(i): os.makedirs(i) with tf.Graph().as_default(): input_group, loss_group, train_group, train_z_group, im_stat = self.build_graph() image_init, image_placeholder, z_mse_ratio_placeholder = input_group mse_pixel_loss, mse_latent_loss, mse_tot = loss_group g_lrate, train_op, saver = train_group #z_lrate, train_z_op = train_z_group saver_restore = None tot_num_frame = np.shape(self.test_im)[0] test_im_shuffle = self.test_im[np.random.choice(np.arange(tot_num_frame), tot_num_frame, replace=False)] placeholder_group = [image_placeholder, z_mse_ratio_placeholder, g_lrate, train_z_group[0]] loss_group = [mse_pixel_loss, mse_latent_loss] train_group = [train_op, train_z_group[-1]] if "ucsd" in self.data_set: x_train = test_im_shuffle[:-self.batch_size * 4] x_val = test_im_shuffle[-self.batch_size * 4:] elif "avenue" in self.data_set or "shanghaitech" in self.data_set: x_train = test_im_shuffle[:-self.batch_size * 20] x_val = test_im_shuffle[-self.batch_size * 20:] else: x_train = test_im_shuffle[:-self.batch_size * 2] x_val = test_im_shuffle[-self.batch_size * 2:] if self.data_set== "ucsd1" and self.model_type != "many_to_one": num_epoch_for_full = 25 else: num_epoch_for_full = self.lrate_g_decay_step checkpoint_path = self.model_dir + '/model.ckpt' print("====================================================================================") print("There are %d frames in total" % np.shape(self.test_im)[0]) print("The shape of training and validation images", np.shape(x_train), np.shape(x_val)) print( "%d input frames are loaded with %d stride for predicting furture frame at time t+%d" % (self.time_step, self.interval, self.delta)) print("The lr for whole process start from %.4f and decay 0.1 every %d epoch" % ( self.lrate_g_init, self.lrate_g_decay_step)) print("The lr for motion process start from %.4f and decay 0.1 every %d epoch" % ( self.lrate_z_init, self.lrate_z_decay_step)) print("The ratio for the latent space mse loss== ", self.z_mse_ratio) print("The used background index is:", self.train_index) print("I am only focusing on the reconstruction for the first %d epochs" % num_epoch_for_full) print("====================================================================================") with tf.Session() as sess: if self.ckpt_dir== None: sess.run(tf.global_variables_initializer()) sess.run(tf.local_variables_initializer()) else: sess.run(tf.global_variables_initializer()) sess.run(tf.local_variables_initializer()) saver_restore.restore(sess, self.ckpt_dir) print("restore parameter from ", self.ckpt_dir) loss_tr_tot = np.zeros([self.max_epoch, 2]) loss_val_tot = [] try: for single_epoch in range(self.max_epoch): loss_per_epoch = self.build_train_op(sess, image_init, placeholder_group, x_train, single_epoch, num_epoch_for_full, loss_group, train_group) loss_tr_tot[single_epoch, :] = loss_per_epoch print("Epoch %d with training pixel mse loss %.3f z mse %.3f" % (single_epoch, loss_tr_tot[single_epoch, 0], loss_tr_tot[single_epoch, 1])) if single_epoch % 5 == 0 or single_epoch == self.max_epoch - 1: # sess, image_init, image_placeholder, x_val, loss_group, image_stat, image_path, single_epoch) loss_val_per_epoch = self.build_val_op(sess, image_init, image_placeholder, x_val, loss_group, im_stat, path_group, single_epoch) loss_val_tot.append(loss_val_per_epoch) print("Epoch %d with validation pixel mse loss %.3f z mse %.3f" % (single_epoch, loss_val_tot[-1][0], loss_val_tot[-1][1])) if np.isnan(loss_tr_tot[single_epoch, 0]): np.save(self.model_dir + '/tr_loss', loss_tr_tot) np.save(self.model_dir + '/val_loss', np.array(loss_val_tot)) if single_epoch % 5 == 0 and single_epoch != 0: np.save(self.model_dir + '/tr_loss', loss_tr_tot) np.save(self.model_dir + '/val_loss', np.array(loss_val_tot)) saver.save(sess, checkpoint_path, global_step=single_epoch) if single_epoch == self.max_epoch - 1: saver.save(sess, checkpoint_path, global_step=single_epoch) np.save(self.model_dir + '/tr_loss', loss_tr_tot) np.save(self.model_dir + '/val_loss', np.array(loss_val_tot)) except tf.errors.OutOfRangeError: print("---oh my god, my model again could't read the data----") print("I am at step", single_iter, single_iter // num_tr_iter_per_epoch) np.save(os.path.join(self.model_dir, 'tr_loss'), loss_tr_tot) np.save(os.path.join(self.model_dir, 'val_loss'), np.array(loss_val_tot)) saver.save(sess, checkpoint_path, global_step=single_epoch) pass def plot_canvas(image, imshape, ny=8): if np.shape(image)[0] < ny: ny = np.shape(image)[0] nx = np.shape(image)[0] // ny x_values = np.linspace(-3, 3, nx) y_values = np.linspace(-3, 3, ny) targ_height, targ_width = imshape[0], imshape[1] if np.shape(image)[-1] == 1: image = np.repeat(image, 3, -1) imshape[-1] = 3 canvas = np.empty((targ_height * nx, targ_width * ny, 3)) for i, yi in enumerate(x_values): for j, xi in enumerate(y_values): canvas[(nx - i - 1) * targ_height:(nx - i) * targ_height, j * targ_width:(j + 1) * targ_width, :] = np.reshape(image[i * ny + j], imshape) return (canvas * 255.0).astype('uint8') if __name__ == '__main__': args = const.args print("-------------------------------------------------------------------") print("------------------argument for current experiment------------------") print("-------------------------------------------------------------------") for arg in vars(args): print(arg, getattr(args, arg)) print("-------------------------------------------------------------------") print(type(args.version), args.version) if args.version == 0: print("only running experiment once") train_end2end(args, args.data_set, args.model_type, args.motion_method, version=args.version, bg_ind=None, augment_opt="none") else: for s_version in range(args.version): print("running experiment for version %d" % s_version) train_end2end(args, args.data_set, args.model_type, args.motion_method, version=s_version, bg_ind=None, augment_opt="none")
49.725191
142
0.576727
20,833
0.639638
0
0
0
0
0
0
5,099
0.156555
9a9d1d892502aafdc91f1a1eaee4fb13e479814b
10,781
py
Python
cellfinder_napari/detect.py
neuromusic/cellfinder-napari
9a58a3b2174c5cb4c740ace6373744b5bcc4cc3d
[ "BSD-3-Clause" ]
7
2021-03-03T11:58:24.000Z
2021-12-24T08:40:12.000Z
cellfinder_napari/detect.py
neuromusic/cellfinder-napari
9a58a3b2174c5cb4c740ace6373744b5bcc4cc3d
[ "BSD-3-Clause" ]
87
2021-03-08T18:58:26.000Z
2022-03-30T15:37:08.000Z
cellfinder_napari/detect.py
neuromusic/cellfinder-napari
9a58a3b2174c5cb4c740ace6373744b5bcc4cc3d
[ "BSD-3-Clause" ]
5
2021-05-26T19:23:50.000Z
2022-03-06T13:03:13.000Z
import napari from pathlib import Path from magicgui import magicgui from typing import List from cellfinder_napari.utils import brainglobe_logo # TODO: # how to store & fetch pre-trained models? # TODO: params to add NETWORK_VOXEL_SIZES = [5, 1, 1] CUBE_WIDTH = 50 CUBE_HEIGHT = 20 CUBE_DEPTH = 20 # If using ROI, how many extra planes to analyse MIN_PLANES_ANALYSE = 0 def detect(): from math import ceil # from fancylog import fancylog # import cellfinder_napari as program_for_log from napari.qt.threading import thread_worker from cellfinder_core.main import main as cellfinder_run from cellfinder_core.classify.cube_generator import get_cube_depth_min_max from imlib.cells.cells import Cell from .utils import cells_to_array DEFAULT_PARAMETERS = dict( voxel_size_z=5, voxel_size_y=2, voxel_size_x=2, Soma_diameter=16.0, ball_xy_size=6, ball_z_size=15, Ball_overlap=0.6, Filter_width=0.2, Threshold=10, Cell_spread=1.4, Max_cluster=100000, Trained_model=Path.home(), Start_plane=0, End_plane=0, Number_of_free_cpus=2, Analyse_local=False, Debug=False, ) @magicgui( header=dict( widget_type="Label", label=f'<h1><img src="{brainglobe_logo}"width="100">cellfinder</h1>', ), detection_label=dict( widget_type="Label", label="<h3>Cell detection</h3>", ), data_options=dict( widget_type="Label", label="<b>Data:</b>", ), detection_options=dict( widget_type="Label", label="<b>Detection:</b>", ), classification_options=dict( widget_type="Label", label="<b>Classification:</b>", ), misc_options=dict( widget_type="Label", label="<b>Misc:</b>", ), voxel_size_z=dict( value=DEFAULT_PARAMETERS["voxel_size_z"], label="Voxel size (z)", step=0.1, ), voxel_size_y=dict( value=DEFAULT_PARAMETERS["voxel_size_y"], label="Voxel size (y)", step=0.1, ), voxel_size_x=dict( value=DEFAULT_PARAMETERS["voxel_size_x"], label="Voxel size (x)", step=0.1, ), Soma_diameter=dict( value=DEFAULT_PARAMETERS["Soma_diameter"], step=0.1 ), ball_xy_size=dict( value=DEFAULT_PARAMETERS["ball_xy_size"], label="Ball filter (xy)" ), ball_z_size=dict( value=DEFAULT_PARAMETERS["ball_z_size"], label="Ball filter (z)" ), Ball_overlap=dict(value=DEFAULT_PARAMETERS["Ball_overlap"], step=0.1), Filter_width=dict(value=DEFAULT_PARAMETERS["Filter_width"], step=0.1), Threshold=dict(value=DEFAULT_PARAMETERS["Threshold"], step=0.1), Cell_spread=dict(value=DEFAULT_PARAMETERS["Cell_spread"], step=0.1), Max_cluster=dict( value=DEFAULT_PARAMETERS["Max_cluster"], min=0, max=10000000 ), Trained_model=dict(value=DEFAULT_PARAMETERS["Trained_model"]), Start_plane=dict( value=DEFAULT_PARAMETERS["Start_plane"], min=0, max=100000 ), End_plane=dict( value=DEFAULT_PARAMETERS["End_plane"], min=0, max=100000 ), Number_of_free_cpus=dict( value=DEFAULT_PARAMETERS["Number_of_free_cpus"] ), Analyse_local=dict( value=DEFAULT_PARAMETERS["Analyse_local"], label="Analyse local" ), Debug=dict(value=DEFAULT_PARAMETERS["Debug"]), # Classification_batch_size=dict(max=4096), call_button=True, persist=True, reset_button=dict(widget_type="PushButton", text="Reset defaults"), ) def widget( header, detection_label, data_options, viewer: napari.Viewer, Signal_image: napari.layers.Image, Background_image: napari.layers.Image, voxel_size_z: float, voxel_size_y: float, voxel_size_x: float, detection_options, Soma_diameter: float, ball_xy_size: float, ball_z_size: float, Ball_overlap: float, Filter_width: float, Threshold: int, Cell_spread: float, Max_cluster: int, classification_options, Trained_model: Path, misc_options, Start_plane: int, End_plane: int, Number_of_free_cpus: int, Analyse_local: bool, Debug: bool, reset_button, ) -> List[napari.types.LayerDataTuple]: """ Parameters ---------- Signal_image : napari.layers.Image Image layer containing the labelled cells Background_image : napari.layers.Image Image layer without labelled cells voxel_size_z : float Size of your voxels in the axial dimension voxel_size_y : float Size of your voxels in the y direction (top to bottom) voxel_size_x : float Size of your voxels in the x direction (left to right) Soma_diameter : float The expected in-plane soma diameter (microns) ball_xy_size : float Elliptical morphological in-plane filter size (microns) ball_z_size : float Elliptical morphological axial filter size (microns) Ball_overlap : float Fraction of the morphological filter needed to be filled to retain a voxel Filter_width : float Laplacian of Gaussian filter width (as a fraction of soma diameter) Threshold : int Cell intensity threshold (as a multiple of noise above the mean) Cell_spread : float Cell spread factor (for splitting up cell clusters) Max_cluster : int Largest putative cell cluster (in cubic um) where splitting should be attempted Trained_model : Path Trained model file path Start_plane : int First plane to process (to process a subset of the data) End_plane : int Last plane to process (to process a subset of the data) Number_of_free_cpus : int How many CPU cores to leave free Analyse_local : bool Only analyse planes around the current position Debug : bool Increase logging reset_button : Reset parameters to default """ def add_layers(points): points, rejected = cells_to_array(points) viewer.add_points( rejected, name="Rejected", size=15, n_dimensional=True, opacity=0.6, symbol="ring", face_color="lightskyblue", visible=False, metadata=dict(point_type=Cell.UNKNOWN), ) viewer.add_points( points, name="Detected", size=15, n_dimensional=True, opacity=0.6, symbol="ring", face_color="lightgoldenrodyellow", metadata=dict(point_type=Cell.CELL), ) @thread_worker def run( signal, background, voxel_sizes, Soma_diameter, ball_xy_size, ball_z_size, Start_plane, End_plane, Ball_overlap, Filter_width, Threshold, Cell_spread, Max_cluster, Trained_model, Number_of_free_cpus, # Classification_batch_size, ): points = cellfinder_run( signal, background, voxel_sizes, soma_diameter=Soma_diameter, ball_xy_size=ball_xy_size, ball_z_size=ball_z_size, start_plane=Start_plane, end_plane=End_plane, ball_overlap_fraction=Ball_overlap, log_sigma_size=Filter_width, n_sds_above_mean_thresh=Threshold, soma_spread_factor=Cell_spread, max_cluster_size=Max_cluster, trained_model=Trained_model, n_free_cpus=Number_of_free_cpus, # batch_size=Classification_batch_size, ) return points if End_plane == 0: End_plane = len(Signal_image.data) voxel_sizes = (voxel_size_z, voxel_size_y, voxel_size_x) if Trained_model == Path.home(): Trained_model = None if Analyse_local: current_plane = viewer.dims.current_step[0] # so a reasonable number of cells in the plane are detected planes_needed = MIN_PLANES_ANALYSE + int( ceil((CUBE_DEPTH * NETWORK_VOXEL_SIZES[0]) / voxel_size_z) ) Start_plane, End_plane = get_cube_depth_min_max( current_plane, planes_needed ) Start_plane = max(0, Start_plane) End_plane = min(len(Signal_image.data), End_plane) worker = run( Signal_image.data, Background_image.data, voxel_sizes, Soma_diameter, ball_xy_size, ball_z_size, Start_plane, End_plane, Ball_overlap, Filter_width, Threshold, Cell_spread, Max_cluster, Trained_model, Number_of_free_cpus, # Classification_batch_size, ) worker.returned.connect(add_layers) worker.start() widget.header.value = ( "<p>Efficient cell detection in large images.</p>" '<p><a href="https://cellfinder.info" style="color:gray;">Website</a></p>' '<p><a href="https://docs.brainglobe.info/cellfinder/napari-plugin" style="color:gray;">Documentation</a></p>' '<p><a href="https://github.com/brainglobe/cellfinder-napari" style="color:gray;">Source</a></p>' '<p><a href="https://www.biorxiv.org/content/10.1101/2020.10.21.348771v2" style="color:gray;">Citation</a></p>' "<p><small>For help, hover the cursor over each parameter.</small>" ) widget.header.native.setOpenExternalLinks(True) @widget.reset_button.changed.connect def restore_defaults(event=None): for name, value in DEFAULT_PARAMETERS.items(): getattr(widget, name).value = value return widget
32.969419
119
0.576384
0
0
0
0
8,857
0.821538
0
0
3,419
0.317132
9a9de9279be39ea51b643d07bcacfa3cc557f3f2
1,414
py
Python
setup.py
paxtonfitzpatrick/nltools
9d52e2e1d665a21feb641ab16424e450aca0c971
[ "MIT" ]
65
2018-08-26T19:39:11.000Z
2022-02-20T10:32:58.000Z
setup.py
paxtonfitzpatrick/nltools
9d52e2e1d665a21feb641ab16424e450aca0c971
[ "MIT" ]
138
2018-08-15T22:31:45.000Z
2022-02-14T18:23:46.000Z
setup.py
paxtonfitzpatrick/nltools
9d52e2e1d665a21feb641ab16424e450aca0c971
[ "MIT" ]
18
2018-08-23T16:52:35.000Z
2022-02-24T01:52:27.000Z
from setuptools import setup, find_packages version = {} with open("nltools/version.py") as f: exec(f.read(), version) with open("requirements.txt") as f: requirements = f.read().splitlines() extra_setuptools_args = dict(tests_require=["pytest"]) setup( name="nltools", version=version["__version__"], author="Cosan Lab", author_email="luke.j.chang@dartmouth.edu", url="https://cosanlab.github.io/nltools", python_requires=">=3.6", install_requires=requirements, extras_require={"interactive_plots": ["ipywidgets>=5.2.2"]}, packages=find_packages(exclude=["nltools/tests"]), package_data={"nltools": ["resources/*"]}, include_package_data=True, license="LICENSE.txt", description="A Python package to analyze neuroimaging data", long_description="nltools is a collection of python tools to perform " "preprocessing, univariate GLMs, and predictive " "multivariate modeling of neuroimaging data. It is the " "analysis engine powering www.neuro-learn.org.", keywords=["neuroimaging", "preprocessing", "analysis", "machine-learning"], classifiers=[ "Programming Language :: Python :: 3.7", "Programming Language :: Python :: 3.8", "Operating System :: OS Independent", "Intended Audience :: Science/Research", "License :: OSI Approved :: MIT License", ], **extra_setuptools_args )
35.35
79
0.681047
0
0
0
0
0
0
0
0
740
0.523338
9a9e35c047e006353fb6423b17d95459f785de56
4,028
py
Python
{{ cookiecutter.repo_name }}/src/config/config.py
johanngerberding/cookiecutter-data-science
db44c48cdce4886d42b610c04e758d758f834e32
[ "MIT" ]
null
null
null
{{ cookiecutter.repo_name }}/src/config/config.py
johanngerberding/cookiecutter-data-science
db44c48cdce4886d42b610c04e758d758f834e32
[ "MIT" ]
null
null
null
{{ cookiecutter.repo_name }}/src/config/config.py
johanngerberding/cookiecutter-data-science
db44c48cdce4886d42b610c04e758d758f834e32
[ "MIT" ]
null
null
null
import os import warnings from dotenv import find_dotenv, load_dotenv from yacs.config import CfgNode as ConfigurationNode from pathlib import Path # Please configure your own settings here # # YACS overwrite these settings using YAML __C = ConfigurationNode() ### EXAMPLE ### """ # data augmentation parameters with albumentations library __C.DATASET.AUGMENTATION = ConfigurationNode() __C.DATASET.AUGMENTATION.BLURRING_PROB = 0.25 __C.DATASET.AUGMENTATION.GAUSS_NOISE_PROB = 0.25 __C.DATASET.AUGMENTATION.GAUSS_VAR_LIMIT =(10.0, 40.0) __C.DATASET.AUGMENTATION.BLUR_LIMIT = 7 ... # model backbone configs __C.MODEL.BACKBONE = ConfigurationNode() __C.MODEL.BACKBONE.NAME = 'mobilenet_v2' __C.MODEL.BACKBONE.RGB = True __C.MODEL.BACKBONE.PRETRAINED_PATH = 'C:/data-science/kaggle/bengali.ai/models/mobilenet_v2-b0353104.pth' # model head configs __C.MODEL.HEAD = ConfigurationNode() __C.MODEL.HEAD.NAME = 'simple_head_module' __C.MODEL.HEAD.ACTIVATION = 'leaky_relu' __C.MODEL.HEAD.OUTPUT_DIMS = [168, 11, 7] __C.MODEL.HEAD.INPUT_DIM = 1280 # mobilenet_v2 __C.MODEL.HEAD.HIDDEN_DIMS = [512, 256] __C.MODEL.HEAD.BATCH_NORM = True __C.MODEL.HEAD.DROPOUT = 0.4 """ def get_cfg_defaults(): """ Get a yacs CfgNode object with default values for my_project. """ # Return a clone so that the defaults will not be altered # This is for the "local variable" use pattern recommended by the YACS repo. # It will be subsequently overwritten with local YAML. return __C.clone() def combine_cfgs(path_cfg_data: Path=None, path_cfg_override: Path=None): """ An internal facing routine thaat combined CFG in the order provided. :param path_output: path to output files :param path_cfg_data: path to path_cfg_data files :param path_cfg_override: path to path_cfg_override actual :return: cfg_base incorporating the overwrite. """ if path_cfg_data is not None: path_cfg_data=Path(path_cfg_data) if path_cfg_override is not None: path_cfg_override=Path(path_cfg_override) # Path order of precedence is: # Priority 1, 2, 3, 4 respectively # .env > other CFG YAML > data.yaml > default.yaml # Load default lowest tier one: # Priority 4: cfg_base = get_cfg_defaults() # Merge from the path_data # Priority 3: if path_cfg_data is not None and path_cfg_data.exists(): cfg_base.merge_from_file(path_cfg_data.absolute()) # Merge from other cfg_path files to further reduce effort # Priority 2: if path_cfg_override is not None and path_cfg_override.exists(): cfg_base.merge_from_file(path_cfg_override.absolute()) # Merge from .env # Priority 1: list_cfg = update_cfg_using_dotenv() if list_cfg is not []: cfg_base.merge_from_list(list_cfg) return cfg_base def update_cfg_using_dotenv() -> list: """ In case when there are dotenvs, try to return list of them. # It is returning a list of hard overwrite. :return: empty list or overwriting information """ # If .env not found, bail if find_dotenv() == '': warnings.warn(".env files not found. YACS config file merging aborted.") return [] # Load env. load_dotenv(find_dotenv(), verbose=True) # Load variables list_key_env = { "DATASET.TRAIN_DATA_PATH", "DATASET.VAL_DATA_PATH", "MODEL.BACKBONE.PRETRAINED_PATH", "MODEL.SOLVER.LOSS.LABELS_WEIGHTS_PATH" } # Instantiate return list. path_overwrite_keys = [] # Go through the list of key to be overwritten. for key in list_key_env: # Get value from the env. value = os.getenv("path_overwrite_keys") # If it is none, skip. As some keys are only needed during training and others during the prediction stage. if value is None: continue # Otherwise, adding the key and the value to the dictionary. path_overwrite_keys.append(key) path_overwrite_keys.append(value) return path_overwrite_keys
30.984615
115
0.712512
0
0
0
0
0
0
0
0
2,536
0.629593
9a9e673814218a6b691d7522f64cfb8d20627d8f
475
py
Python
section_7/ex 30.py
thiagofreitascarneiro/Python-avancado-Geek-University
861b742ad6b30955fcbe63274b8cf8afc6ca028f
[ "MIT" ]
null
null
null
section_7/ex 30.py
thiagofreitascarneiro/Python-avancado-Geek-University
861b742ad6b30955fcbe63274b8cf8afc6ca028f
[ "MIT" ]
null
null
null
section_7/ex 30.py
thiagofreitascarneiro/Python-avancado-Geek-University
861b742ad6b30955fcbe63274b8cf8afc6ca028f
[ "MIT" ]
null
null
null
list1 = [] list2 = [] list3 = [] cont = 0 while cont < 10: valor = int(input('Digite um numero na lista 1: ')) list1.append(valor) valor2 = int(input('Digite um numero na lista 2: ')) list2.append(valor2) cont = cont + 1 if cont == 10: for i in list1: if i in list2: if i not in list3: list3.append(i) print(list1) print(list2) print(f'Os númeoros que contem em ambos os vetores são: {list3}')
23.75
65
0.562105
0
0
0
0
0
0
0
0
122
0.255765
9a9ee79fbb5396d6313eb8172811069d5e290bd2
7,693
py
Python
scripts/eval/eval.py
p0l0satik/PlaneDetector
60d7330537b90ff0ca74247cd6dac2ca7fc627bc
[ "MIT" ]
null
null
null
scripts/eval/eval.py
p0l0satik/PlaneDetector
60d7330537b90ff0ca74247cd6dac2ca7fc627bc
[ "MIT" ]
null
null
null
scripts/eval/eval.py
p0l0satik/PlaneDetector
60d7330537b90ff0ca74247cd6dac2ca7fc627bc
[ "MIT" ]
null
null
null
import os from shutil import rmtree import cv2 import docker import numpy as np import open3d as o3d from pypcd import pypcd from src.metrics import metrics from src.metrics.metrics import multi_value, mean from src.parser import loaders, create_parser UNSEGMENTED_COLOR = np.asarray([0, 0, 0], dtype=int) algos = { "ddpff": "ddpff:1.0" } all_plane_metrics = [ metrics.iou, metrics.dice, metrics.precision, metrics.recall, metrics.fScore ] CLOUDS_DIR = "input" PREDICTIONS_DIR = "output" annot_sorters = { 'tum': lambda x: x, 'icl_tum': lambda x: int(x), 'icl': lambda x: x } def read_labels(annot_frame_path: str) -> np.array: annot_image = cv2.imread(annot_frame_path) label_colors = annot_image.reshape((annot_image.shape[0] * annot_image.shape[1], 3)) labels = np.zeros(label_colors.shape[0], dtype=int) unique_colors = np.unique(label_colors, axis=0) for index, color in enumerate(unique_colors): color_indices = np.where(np.all(label_colors == color, axis=-1))[0] if not np.array_equal(color, UNSEGMENTED_COLOR): labels[color_indices] = index + 1 return labels def predict_labels(algo_name: str): if os.path.exists(PREDICTIONS_DIR): rmtree(PREDICTIONS_DIR) os.mkdir(PREDICTIONS_DIR) current_dir_abs = os.path.abspath(os.path.curdir) path_to_input = os.path.join(current_dir_abs, CLOUDS_DIR) path_to_output = os.path.join(current_dir_abs, PREDICTIONS_DIR) # for filename in os.listdir(path_to_input): # folder_path = os.path.join(path_to_output, filename[:-4]) # os.mkdir(folder_path) # pcd = o3d.io.read_point_cloud(os.path.join(path_to_input, filename)) # o3d.io.write_point_cloud(os.path.join(folder_path, filename), pcd) # np.save( # os.path.join(folder_path, "{}.npy".format(filename[:-4])), # np.ones(np.asarray(pcd.points).shape[0], dtype=int) # ) client = docker.from_env() docker_image_name = algos[algo_name] container = client.containers.run( docker_image_name, volumes=[ '{}:/app/build/input'.format(path_to_input), '{}:/app/build/output'.format(path_to_output) ], detach=True ) for line in container.logs(stream=True): print(line.strip()) def prepare_clouds(dataset_path: str, loader_name: str): if os.path.exists(CLOUDS_DIR): rmtree(CLOUDS_DIR) os.mkdir(CLOUDS_DIR) loader = loaders[loader_name](dataset_path) for depth_frame_num in range(loader.get_frame_count()): pcd_points = loader.read_pcd(depth_frame_num) cloud_filepath = os.path.join(CLOUDS_DIR, "{:04d}.pcd".format(depth_frame_num)) # pcd = o3d.geometry.PointCloud() # pcd.points = o3d.utility.Vector3dVector(pcd_points) # o3d.io.write_point_cloud(cloud_filepath, pcd) pc = pypcd.make_xyz_point_cloud(pcd_points) pc.width = loader.cam_intrinsics.width pc.height = loader.cam_intrinsics.height pc.save_pcd(cloud_filepath, compression='binary') def get_filepaths_for_dir(dir_path: str): filenames = os.listdir(dir_path) file_paths = [os.path.join(dir_path, filename) for filename in filenames] return file_paths def get_path_to_frames(annot_path: str, loader_name: str) -> [(str, str)]: sort_by = annot_sorters[loader_name] cloud_file_paths = sorted(get_filepaths_for_dir(CLOUDS_DIR), key=lambda x: sort_by(os.path.split(x)[-1][:-4])) prediction_folders = sorted(get_filepaths_for_dir(PREDICTIONS_DIR), key=lambda x: sort_by(os.path.split(x)[-1])) prediction_grouped_file_paths = [ list(filter(lambda x: x.endswith(".npy"), get_filepaths_for_dir(folder))) for folder in prediction_folders ] annot_file_paths = sorted(get_filepaths_for_dir(annot_path), key=lambda x: sort_by(os.path.split(x)[-1][:-4])) return zip(cloud_file_paths, annot_file_paths, prediction_grouped_file_paths) def visualize_pcd_labels(pcd_points: np.array, labels: np.array, filename: str = None): colors = np.concatenate([UNSEGMENTED_COLOR.astype(dtype=float).reshape(-1, 3), np.random.rand(np.max(labels), 3)]) pcd_for_vis = o3d.geometry.PointCloud() pcd_for_vis.points = o3d.utility.Vector3dVector(pcd_points) pcd_for_vis.paint_uniform_color([0, 0, 0]) pcd_for_vis.colors = o3d.utility.Vector3dVector(colors[labels]) if filename is None: o3d.visualization.draw_geometries([pcd_for_vis]) else: o3d.io.write_point_cloud(filename, pcd_for_vis) def dump_info(info, file=None): print(info) if file is not None: print(info, file=file) def measure_algo(algo_name: str, annot_path: str, loader_name: str, log_file): metrics_average = {metric.__name__: 0 for metric in all_plane_metrics} dump_info("-------------Results for algo: '{}'--------------".format(algo_name), log_file) predict_labels(algo_name) for cloud_frame_path, annot_frame_path, prediction_group in get_path_to_frames(annot_path, loader_name): pcd_points = np.asarray(o3d.io.read_point_cloud(cloud_frame_path).points) gt_labels = read_labels(annot_frame_path) # remove zero depth (for TUM) zero_depth_mask = np.sum(pcd_points == 0, axis=-1) == 3 pcd_points = pcd_points[~zero_depth_mask] gt_labels = gt_labels[~zero_depth_mask] # Find the best annotation from algorithm for frame max_mean_index = 0 max_mean = 0 for prediction_index, prediction_frame_path in enumerate(prediction_group): pred_labels = np.load(prediction_frame_path) # remove zero depth (for TUM) pred_labels = pred_labels[~zero_depth_mask] metric_res = mean(pcd_points, pred_labels, gt_labels, metrics.iou) if metric_res > max_mean: max_mean = metric_res max_mean_index = prediction_index # Load chosen predictions chosen_prediction_path = prediction_group[max_mean_index] pred_labels = np.load(chosen_prediction_path) pred_labels = pred_labels[~zero_depth_mask] # visualize_pcd_labels(pcd_points, pred_labels) # Print metrics results dump_info("********Result for frame: '{}'********".format(os.path.split(cloud_frame_path)[-1][:-4]), log_file) dump_info(multi_value(pcd_points, pred_labels, gt_labels), log_file) for metric in all_plane_metrics: metric_res = mean(pcd_points, pred_labels, gt_labels, metric) metrics_average[metric.__name__] += metric_res dump_info("Mean {0}: {1}".format(metric.__name__, metric_res), log_file) dump_info("--------------------------------------------------------", log_file) dump_info("----------------Average of algo: '{}'----------------".format(algo_name), log_file) for metric_name, sum_value in metrics_average.items(): dump_info( "Average {0} for dataset is: {1}".format(metric_name, sum_value / len(os.listdir(CLOUDS_DIR))), log_file ) dump_info("--------------------------------------------------------", log_file) dump_info("----------------End of algo: '{}'--------------------".format(algo_name), log_file) dump_info("--------------------------------------------------------", log_file) if __name__ == "__main__": parser = create_parser() args = parser.parse_args() prepare_clouds(args.dataset_path, args.loader) with open("results.txt", 'w') as log_file: for algo_name in algos.keys(): measure_algo(algo_name, args.annotations_path, args.loader, log_file)
38.273632
118
0.66203
0
0
0
0
0
0
0
0
1,337
0.173794
9a9f85fc451de9881426ccefc8e13f03669bb8d6
491
py
Python
cosmogrb/utils/fits_file.py
wematthias/cosmogrb
09852eb4e6e7315bbede507e19a2d57f1b927c3f
[ "BSD-2-Clause" ]
3
2020-03-08T18:20:32.000Z
2022-03-10T17:27:26.000Z
cosmogrb/utils/fits_file.py
wematthias/cosmogrb
09852eb4e6e7315bbede507e19a2d57f1b927c3f
[ "BSD-2-Clause" ]
11
2020-03-04T17:21:15.000Z
2020-06-09T12:20:00.000Z
cosmogrb/utils/fits_file.py
wematthias/cosmogrb
09852eb4e6e7315bbede507e19a2d57f1b927c3f
[ "BSD-2-Clause" ]
5
2020-03-18T18:05:05.000Z
2022-03-21T16:06:38.000Z
from responsum.utils.fits_file import FITSFile, FITSExtension as FE import pkg_resources class FITSExtension(FE): # I use __new__ instead of __init__ because I need to use the classmethod .from_columns instead of the # constructor of fits.BinTableHDU def __init__(self, data_tuple, header_tuple): creator = "COSMOGRB v.%s" % (pkg_resources.get_distribution("cosmogrb").version) super(FITSExtension, self).__init__(data_tuple, header_tuple, creator=creator)
32.733333
106
0.757637
399
0.812627
0
0
0
0
0
0
160
0.325866
9a9fb2cd7765697e57d5b413e5af8232b235432f
121,557
py
Python
mi/instrument/seabird/sbe26plus/driver.py
rhan1498/marine-integrations
ad94c865e0e4cc7c8fd337870410c74b57d5c826
[ "BSD-2-Clause" ]
null
null
null
mi/instrument/seabird/sbe26plus/driver.py
rhan1498/marine-integrations
ad94c865e0e4cc7c8fd337870410c74b57d5c826
[ "BSD-2-Clause" ]
null
null
null
mi/instrument/seabird/sbe26plus/driver.py
rhan1498/marine-integrations
ad94c865e0e4cc7c8fd337870410c74b57d5c826
[ "BSD-2-Clause" ]
null
null
null
""" @package mi.instrument.seabird.sbe26plus.ooicore.driver @file /Users/unwin/OOI/Workspace/code/marine-integrations/mi/instrument/seabird/sbe26plus/ooicore/driver.py @author Roger Unwin @brief Driver for the ooicore Release notes: None. """ __author__ = 'Roger Unwin' __license__ = 'Apache 2.0' import re import time import string from mi.core.log import get_logger ; log = get_logger() from mi.instrument.seabird.driver import SeaBirdInstrumentDriver from mi.instrument.seabird.driver import SeaBirdProtocol from mi.instrument.seabird.driver import NEWLINE from mi.instrument.seabird.driver import ESCAPE from mi.core.util import dict_equal from mi.core.common import BaseEnum from mi.core.instrument.instrument_fsm import InstrumentFSM from mi.core.instrument.instrument_driver import DriverEvent from mi.core.instrument.instrument_driver import DriverAsyncEvent from mi.core.instrument.instrument_driver import DriverProtocolState from mi.core.instrument.instrument_driver import DriverParameter from mi.core.instrument.protocol_param_dict import ParameterDictVisibility from mi.core.instrument.data_particle import DataParticle, DataParticleKey, CommonDataParticleType from mi.core.instrument.protocol_param_dict import ParameterDictType from mi.core.instrument.driver_dict import DriverDictKey from mi.core.instrument.chunker import StringChunker from mi.core.exceptions import InstrumentParameterException from mi.core.exceptions import SampleException from mi.core.exceptions import InstrumentStateException from mi.core.exceptions import InstrumentProtocolException from mi.core.exceptions import InstrumentTimeoutException from pyon.agent.agent import ResourceAgentState # default timeout. TIMEOUT = 60 # setsampling takes longer than 10 on bad internet days. TIDE_REGEX = r'tide: start time = +(\d+ [A-Za-z]{3} \d{4} \d+:\d+:\d+), p = +([\-\d\.]+), pt = +([\-\d\.]+), t = +([\-\d\.]+)\r\n' TIDE_REGEX_MATCHER = re.compile(TIDE_REGEX) WAVE_REGEX = r'(wave: start time =.*?wave: end burst\r\n)' WAVE_REGEX_MATCHER = re.compile(WAVE_REGEX, re.DOTALL) STATS_REGEX = r'(deMeanTrend.*?H1/100 = [\d\.e+]+\r\n)' STATS_REGEX_MATCHER = re.compile(STATS_REGEX, re.DOTALL) TS_REGEX = r'( +)([\-\d\.]+) +([\-\d\.]+) +([\-\d\.]+)\r\n' TS_REGEX_MATCHER = re.compile(TS_REGEX) DC_REGEX = r'(Pressure coefficients.+?)TA3 = [\d+e\.].+?\r\n' DC_REGEX_MATCHER = re.compile(DC_REGEX, re.DOTALL) DS_REGEX = r'(SBE 26plus V.+?)logging = [\w, ].+?\r\n' DS_REGEX_MATCHER = re.compile(DS_REGEX, re.DOTALL) ### # Driver Constant Definitions ### class ScheduledJob(BaseEnum): ACQUIRE_STATUS = 'acquire_status' CALIBRATION_COEFFICIENTS = 'calibration_coefficients' CLOCK_SYNC = 'clock_sync' class DataParticleType(BaseEnum): RAW = CommonDataParticleType.RAW TIDE_PARSED = 'presf_tide_measurement' WAVE_BURST = 'presf_wave_burst' DEVICE_STATUS = 'presf_operating_status' DEVICE_CALIBRATION = 'presf_calibration_coefficients' STATISTICS = 'presf_wave_statistics' class InstrumentCmds(BaseEnum): """ Device specific commands Represents the commands the driver implements and the string that must be sent to the instrument to execute the command. """ SETSAMPLING = 'setsampling' DISPLAY_STATUS = 'ds' QUIT_SESSION = 'qs' DISPLAY_CALIBRATION = 'dc' START_LOGGING = 'start' STOP_LOGGING = 'stop' SET_TIME = 'settime' SET = 'set' GET = 'get' TAKE_SAMPLE = 'ts' SEND_LAST_SAMPLE = "sl" class ProtocolState(BaseEnum): """ Protocol states """ UNKNOWN = DriverProtocolState.UNKNOWN COMMAND = DriverProtocolState.COMMAND AUTOSAMPLE = DriverProtocolState.AUTOSAMPLE DIRECT_ACCESS = DriverProtocolState.DIRECT_ACCESS class ProtocolEvent(BaseEnum): """ Protocol events Extends protocol events to the set defined in the base class. """ ENTER = DriverEvent.ENTER EXIT = DriverEvent.EXIT GET = DriverEvent.GET SET = DriverEvent.SET DISCOVER = DriverEvent.DISCOVER ### Common driver commands, should these be promoted? What if the command isn't supported? ACQUIRE_SAMPLE = DriverEvent.ACQUIRE_SAMPLE # TS START_AUTOSAMPLE = DriverEvent.START_AUTOSAMPLE # START STOP_AUTOSAMPLE = DriverEvent.STOP_AUTOSAMPLE # DTOP ACQUIRE_STATUS = DriverEvent.ACQUIRE_STATUS # DS ACQUIRE_CONFIGURATION = "PROTOCOL_EVENT_ACQUIRE_CONFIGURATION" # DC SEND_LAST_SAMPLE = "PROTOCOL_EVENT_SEND_LAST_SAMPLE" # SL EXECUTE_DIRECT = DriverEvent.EXECUTE_DIRECT START_DIRECT = DriverEvent.START_DIRECT STOP_DIRECT = DriverEvent.STOP_DIRECT PING_DRIVER = DriverEvent.PING_DRIVER SETSAMPLING = 'PROTOCOL_EVENT_SETSAMPLING' QUIT_SESSION = 'PROTOCOL_EVENT_QUIT_SESSION' CLOCK_SYNC = DriverEvent.CLOCK_SYNC # Different event because we don't want to expose this as a capability SCHEDULED_CLOCK_SYNC = 'PROTOCOL_EVENT_SCHEDULED_CLOCK_SYNC' class Capability(BaseEnum): """ Protocol events that should be exposed to users (subset of above). """ ACQUIRE_SAMPLE = ProtocolEvent.ACQUIRE_SAMPLE START_AUTOSAMPLE = ProtocolEvent.START_AUTOSAMPLE STOP_AUTOSAMPLE = ProtocolEvent.STOP_AUTOSAMPLE ACQUIRE_STATUS = ProtocolEvent.ACQUIRE_STATUS ACQUIRE_CONFIGURATION = ProtocolEvent.ACQUIRE_CONFIGURATION SEND_LAST_SAMPLE = ProtocolEvent.SEND_LAST_SAMPLE QUIT_SESSION = ProtocolEvent.QUIT_SESSION CLOCK_SYNC = ProtocolEvent.CLOCK_SYNC class Parameter(DriverParameter): """ Device parameters """ # DS DEVICE_VERSION = 'DEVICE_VERSION' # str, SERIAL_NUMBER = 'SERIAL_NUMBER' # str, DS_DEVICE_DATE_TIME = 'DateTime' # str for now, later *** USER_INFO = 'USERINFO' # str, QUARTZ_PRESSURE_SENSOR_SERIAL_NUMBER = 'QUARTZ_PRESSURE_SENSOR_SERIAL_NUMBER' # float, QUARTZ_PRESSURE_SENSOR_RANGE = 'QUARTZ_PRESSURE_SENSOR_RANGE' # float, EXTERNAL_TEMPERATURE_SENSOR = 'ExternalTemperature' # bool, CONDUCTIVITY = 'CONDUCTIVITY' # bool, IOP_MA = 'IOP_MA' # float, VMAIN_V = 'VMAIN_V' # float, VLITH_V = 'VLITH_V' # float, LAST_SAMPLE_P = 'LAST_SAMPLE_P' # float, LAST_SAMPLE_T = 'LAST_SAMPLE_T' # float, LAST_SAMPLE_S = 'LAST_SAMPLE_S' # float, # DS/SETSAMPLING TIDE_INTERVAL = 'TIDE_INTERVAL' # int, TIDE_MEASUREMENT_DURATION = 'TIDE_MEASUREMENT_DURATION' # int, TIDE_SAMPLES_BETWEEN_WAVE_BURST_MEASUREMENTS = 'TIDE_SAMPLES_BETWEEN_WAVE_BURST_MEASUREMENTS' # int, WAVE_SAMPLES_PER_BURST = 'WAVE_SAMPLES_PER_BURST' # float, WAVE_SAMPLES_SCANS_PER_SECOND = 'WAVE_SAMPLES_SCANS_PER_SECOND' # 4.0 = 0.25 USE_START_TIME = 'USE_START_TIME' # bool, USE_STOP_TIME = 'USE_STOP_TIME' # bool, TXWAVESTATS = 'TXWAVESTATS' # bool, TIDE_SAMPLES_PER_DAY = 'TIDE_SAMPLES_PER_DAY' # float, WAVE_BURSTS_PER_DAY = 'WAVE_BURSTS_PER_DAY' # float, MEMORY_ENDURANCE = 'MEMORY_ENDURANCE' # float, NOMINAL_ALKALINE_BATTERY_ENDURANCE = 'NOMINAL_ALKALINE_BATTERY_ENDURANCE' # float, TOTAL_RECORDED_TIDE_MEASUREMENTS = 'TOTAL_RECORDED_TIDE_MEASUREMENTS' # float, TOTAL_RECORDED_WAVE_BURSTS = 'TOTAL_RECORDED_WAVE_BURSTS' # float, TIDE_MEASUREMENTS_SINCE_LAST_START = 'TIDE_MEASUREMENTS_SINCE_LAST_START' # float, WAVE_BURSTS_SINCE_LAST_START = 'WAVE_BURSTS_SINCE_LAST_START' # float, TXREALTIME = 'TxTide' # bool, TXWAVEBURST = 'TxWave' # bool, NUM_WAVE_SAMPLES_PER_BURST_FOR_WAVE_STASTICS = 'NUM_WAVE_SAMPLES_PER_BURST_FOR_WAVE_STASTICS' # int, USE_MEASURED_TEMP_AND_CONDUCTIVITY_FOR_DENSITY_CALC = 'USE_MEASURED_TEMP_AND_CONDUCTIVITY_FOR_DENSITY_CALC' # bool, AVERAGE_WATER_TEMPERATURE_ABOVE_PRESSURE_SENSOR = 'AVERAGE_WATER_TEMPERATURE_ABOVE_PRESSURE_SENSOR' AVERAGE_SALINITY_ABOVE_PRESSURE_SENSOR = 'AVERAGE_SALINITY_ABOVE_PRESSURE_SENSOR' PRESSURE_SENSOR_HEIGHT_FROM_BOTTOM = 'PRESSURE_SENSOR_HEIGHT_FROM_BOTTOM' # float, SPECTRAL_ESTIMATES_FOR_EACH_FREQUENCY_BAND = 'SPECTRAL_ESTIMATES_FOR_EACH_FREQUENCY_BAND' # int, MIN_ALLOWABLE_ATTENUATION = 'MIN_ALLOWABLE_ATTENUATION' # float, MIN_PERIOD_IN_AUTO_SPECTRUM = 'MIN_PERIOD_IN_AUTO_SPECTRUM' # float, MAX_PERIOD_IN_AUTO_SPECTRUM = 'MAX_PERIOD_IN_AUTO_SPECTRUM' # float, HANNING_WINDOW_CUTOFF = 'HANNING_WINDOW_CUTOFF' # float, SHOW_PROGRESS_MESSAGES = 'SHOW_PROGRESS_MESSAGES' # bool, STATUS = 'STATUS' # str, LOGGING = 'LOGGING' # bool, # Device prompts. class Prompt(BaseEnum): """ sbe26plus io prompts. """ COMMAND = 'S>' BAD_COMMAND = '? cmd S>' AUTOSAMPLE = 'S>' CONFIRMATION_PROMPT = 'proceed Y/N ?' ############################################################################### # Data Particles ################################################################################ # presf_tide_measurement class SBE26plusTideSampleDataParticleKey(BaseEnum): TIMESTAMP = "date_time_string" PRESSURE = "absolute_pressure" # p = calculated and stored pressure (psia). PRESSURE_TEMP = "pressure_temp" # pt = calculated pressure temperature (not stored) (C). TEMPERATURE = "seawater_temperature" # t = calculated and stored temperature (C). class SBE26plusTideSampleDataParticle(DataParticle): """ Routines for parsing raw data into a data particle structure. Override the building of values, and the rest should come along for free. """ _data_particle_type = DataParticleType.TIDE_PARSED def _build_parsed_values(self): """ Take something in the autosample format and split it into values with appropriate tags @throws SampleException If there is a problem with sample creation """ log.debug("in SBE26plusTideSampleDataParticle._build_parsed_values") match1 = TIDE_REGEX_MATCHER.match(self.raw_data) ## Tide sample from streaming match2 = TS_REGEX_MATCHER.match(self.raw_data) ## Tide sample from TS command if not (match1 or match2): raise SampleException("No regex match of parsed sample data: [%s]" % self.raw_data) if(match1): match = match1 else: match = match2 # initialize timestamp = None pressure = None pressure_temp = None temperature = None try: # Only streaming outputs a timestamp text_timestamp = None if(match1): text_timestamp = match.group(1) py_timestamp = time.strptime(text_timestamp, "%d %b %Y %H:%M:%S") self.set_internal_timestamp(unix_time=time.mktime(py_timestamp)) pressure = float(match.group(2)) pressure_temp = float(match.group(3)) temperature = float(match.group(4)) except ValueError: raise SampleException("ValueError while decoding floats in data: [%s]" % self.raw_data) result = [{DataParticleKey.VALUE_ID: SBE26plusTideSampleDataParticleKey.TIMESTAMP, DataParticleKey.VALUE: text_timestamp}, {DataParticleKey.VALUE_ID: SBE26plusTideSampleDataParticleKey.PRESSURE, DataParticleKey.VALUE: pressure}, {DataParticleKey.VALUE_ID: SBE26plusTideSampleDataParticleKey.PRESSURE_TEMP, DataParticleKey.VALUE: pressure_temp}, {DataParticleKey.VALUE_ID: SBE26plusTideSampleDataParticleKey.TEMPERATURE, DataParticleKey.VALUE: temperature}] return result # presf_wave_burst class SBE26plusWaveBurstDataParticleKey(BaseEnum): TIMESTAMP = "date_time_string" # start time of wave measurement. PTFREQ = "ptemp_frequency" # ptfreq = pressure temperature frequency (Hz); PTRAW = "absolute_pressure_burst" # calculated pressure temperature number class SBE26plusWaveBurstDataParticle(DataParticle): """ Routines for parsing raw data into a data particle structure. Override the building of values, and the rest should come along for free. """ _data_particle_type = DataParticleType.WAVE_BURST def _build_parsed_values(self): """ Take something in the autosample format and split it into values with appropriate tags @throws SampleException If there is a problem with sample creation """ start_time_pat = r'wave: start time = +(\d+ [A-Za-z]{3} \d{4} \d+:\d+:\d+)' start_time_matcher = re.compile(start_time_pat) ptfreq_pat = r'wave: ptfreq = ([\d\.]+)' ptfreq_matcher = re.compile(ptfreq_pat) ptraw_pat = r' *(-?\d+\.\d+)' ptraw_matcher = re.compile(ptraw_pat) # initialize timestamp = None ptfreq = None ptraw = [] for line in self.raw_data.split(NEWLINE): log.debug("SBE26plusWaveBurstDataParticle._build_parsed_values LINE = " + repr(line)) matched = False # skip blank lines if len(line) == 0: matched = True match = start_time_matcher.match(line) if match: matched = True try: text_timestamp = match.group(1) py_timestamp = time.strptime(text_timestamp, "%d %b %Y %H:%M:%S") self.set_internal_timestamp(unix_time=time.mktime(py_timestamp)) except ValueError: raise SampleException("ValueError while decoding floats in data: [%s]" % self.raw_data) match = ptfreq_matcher.match(line) if match: matched = True try: ptfreq = float(match.group(1)) except ValueError: raise SampleException("ValueError while decoding floats in data: [%s]" % self.raw_data) match = ptraw_matcher.match(line) if match: matched = True try: ptraw.append(float(match.group(1))) except ValueError: raise SampleException("ValueError while decoding floats in data: [%s]" % self.raw_data) if 'wave: end burst' in line: matched = True log.debug("End of record detected") if False == matched: raise SampleException("No regex match of parsed sample data: ROW: [%s]" % line) result = [{DataParticleKey.VALUE_ID: SBE26plusWaveBurstDataParticleKey.TIMESTAMP, DataParticleKey.VALUE: text_timestamp}, {DataParticleKey.VALUE_ID: SBE26plusWaveBurstDataParticleKey.PTFREQ, DataParticleKey.VALUE: ptfreq}, {DataParticleKey.VALUE_ID: SBE26plusWaveBurstDataParticleKey.PTRAW, DataParticleKey.VALUE: ptraw}] return result # presf_wave_statistics class SBE26plusStatisticsDataParticleKey(BaseEnum): # deMeanTrend DEPTH = "depth" TEMPERATURE = "temperature" SALINITY = "salinity" DENSITY = "density" # Auto-Spectrum Statistics: N_AGV_BAND = "n_avg_band" TOTAL_VARIANCE = "ass_total_variance" TOTAL_ENERGY = "ass_total_energy" SIGNIFICANT_PERIOD = "ass_sig_wave_period" SIGNIFICANT_WAVE_HEIGHT = "ass_sig_wave_height" # Time Series Statistics: TSS_WAVE_INTEGRATION_TIME = "tss_wave_integration_time" TSS_NUMBER_OF_WAVES = "tss_number_of_waves" TSS_TOTAL_VARIANCE = "tss_total_variance" TSS_TOTAL_ENERGY = "tss_total_energy" TSS_AVERAGE_WAVE_HEIGHT = "tss_avg_wave_height" TSS_AVERAGE_WAVE_PERIOD = "tss_avg_wave_period" TSS_MAXIMUM_WAVE_HEIGHT = "tss_max_wave_height" TSS_SIGNIFICANT_WAVE_HEIGHT = "tss_sig_wave_height" TSS_SIGNIFICANT_WAVE_PERIOD = "tss_sig_wave_period" TSS_H1_10 = "tss_10_wave_height" TSS_H1_100 = "tss_1_wave_height" class SBE26plusStatisticsDataParticle(DataParticle): """ Routines for parsing raw data into a data particle structure. Override the building of values, and the rest should come along for free. """ _data_particle_type = DataParticleType.STATISTICS class StatisticType(BaseEnum): NONE = 0 AUTO = 1 TSS = 2 def _build_parsed_values(self): """ Take something in the autosample format and split it into values with appropriate tags @throws SampleException If there is a problem with sample creation """ dtsd_matcher = re.compile(r'depth = +([\d\.e+-]+), temperature = +([\d\.e+-]+), salinity = +([\d\.e+-]+), density = +([\d\.e+-]+)') #going to err on the side of VERBOSE methinks... single_var_matchers = { "nAvgBand": re.compile(r' nAvgBand = (\d+)'), "total variance": re.compile(r' total variance = ([\d\.e+-]+)'), "total energy": re.compile(r' total energy = ([\d\.e+-]+)'), "significant period": re.compile(r' significant period = ([\d\.e+-]+)'), "a significant wave height":re.compile(r' significant wave height = ([\d\.e+-]+)'), "wave integration time": re.compile(r' wave integration time = (\d+)'), "number of waves": re.compile(r' number of waves = (\d+)'), "total variance": re.compile(r' total variance = ([\d\.e+-]+)'), "total energy": re.compile(r' total energy = ([\d\.e+-]+)'), "average wave height": re.compile(r' average wave height = ([\d\.e+-]+)'), "average wave period": re.compile(r' average wave period = ([\d\.e+-]+)'), "maximum wave height": re.compile(r' maximum wave height = ([\d\.e+-]+)'), "significant wave height": re.compile(r' significant wave height = ([\d\.e+-]+)'), "t significant wave period":re.compile(r' significant wave period = ([\d\.e+-]+)'), "H1/10": re.compile(r' H1/10 = ([\d\.e+-]+)'), "H1/100": re.compile(r' H1/100 = ([\d\.e+-]+)') } # Initialize depth = None temperature = None salinity = None density = None single_var_matches = { "nAvgBand": None, "total variance": None, "total energy": None, "significant period": None, "significant wave height": None, "wave integration time": None, "number of waves": None, "total variance": None, "total energy": None, "average wave height": None, "average wave period": None, "maximum wave height": None, "t significant wave height":None, "t significant wave period":None, "t total variance": None, "t total energy": None, "H1/10": None, "H1/100": None } stat_type = self.StatisticType.NONE for line in self.raw_data.split(NEWLINE): if 'Auto-Spectrum Statistics:' in line: stat_type = self.StatisticType.AUTO elif 'Time Series Statistics:' in line: stat_type = self.StatisticType.TSS match = dtsd_matcher.match(line) if match: depth = float(match.group(1)) temperature = float(match.group(2)) salinity = float(match.group(3)) density = float(match.group(4)) for (key, matcher) in single_var_matchers.items(): match = single_var_matchers[key].match(line) if match: if key in ["nAvgBand", "wave integration time", "number of waves"]: single_var_matches[key] = int(match.group(1)) elif key in ["significant wave height", "significant wave period", "total variance", "total energy"] and stat_type == self.StatisticType.TSS: single_var_matches["t " + key] = float(match.group(1)) else: single_var_matches[key] = float(match.group(1)) result = [{DataParticleKey.VALUE_ID: SBE26plusStatisticsDataParticleKey.DEPTH, DataParticleKey.VALUE: depth}, {DataParticleKey.VALUE_ID: SBE26plusStatisticsDataParticleKey.TEMPERATURE, DataParticleKey.VALUE: temperature}, {DataParticleKey.VALUE_ID: SBE26plusStatisticsDataParticleKey.SALINITY, DataParticleKey.VALUE: salinity}, {DataParticleKey.VALUE_ID: SBE26plusStatisticsDataParticleKey.DENSITY, DataParticleKey.VALUE: density}, {DataParticleKey.VALUE_ID: SBE26plusStatisticsDataParticleKey.N_AGV_BAND, DataParticleKey.VALUE: single_var_matches["nAvgBand"]}, {DataParticleKey.VALUE_ID: SBE26plusStatisticsDataParticleKey.TOTAL_VARIANCE, DataParticleKey.VALUE: single_var_matches["total variance"]}, {DataParticleKey.VALUE_ID: SBE26plusStatisticsDataParticleKey.TOTAL_ENERGY, DataParticleKey.VALUE: single_var_matches["total energy"]}, {DataParticleKey.VALUE_ID: SBE26plusStatisticsDataParticleKey.SIGNIFICANT_PERIOD, DataParticleKey.VALUE: single_var_matches["significant period"]}, {DataParticleKey.VALUE_ID: SBE26plusStatisticsDataParticleKey.SIGNIFICANT_WAVE_HEIGHT, DataParticleKey.VALUE: single_var_matches["significant wave height"]}, {DataParticleKey.VALUE_ID: SBE26plusStatisticsDataParticleKey.TSS_WAVE_INTEGRATION_TIME, DataParticleKey.VALUE: single_var_matches["wave integration time"]}, {DataParticleKey.VALUE_ID: SBE26plusStatisticsDataParticleKey.TSS_NUMBER_OF_WAVES, DataParticleKey.VALUE: single_var_matches["number of waves"]}, {DataParticleKey.VALUE_ID: SBE26plusStatisticsDataParticleKey.TSS_TOTAL_VARIANCE, DataParticleKey.VALUE: single_var_matches["t total variance"]}, {DataParticleKey.VALUE_ID: SBE26plusStatisticsDataParticleKey.TSS_TOTAL_ENERGY, DataParticleKey.VALUE: single_var_matches["t total energy"]}, {DataParticleKey.VALUE_ID: SBE26plusStatisticsDataParticleKey.TSS_AVERAGE_WAVE_HEIGHT, DataParticleKey.VALUE: single_var_matches["average wave height"]}, {DataParticleKey.VALUE_ID: SBE26plusStatisticsDataParticleKey.TSS_AVERAGE_WAVE_PERIOD, DataParticleKey.VALUE: single_var_matches["average wave period"]}, {DataParticleKey.VALUE_ID: SBE26plusStatisticsDataParticleKey.TSS_MAXIMUM_WAVE_HEIGHT, DataParticleKey.VALUE: single_var_matches["maximum wave height"]}, {DataParticleKey.VALUE_ID: SBE26plusStatisticsDataParticleKey.TSS_SIGNIFICANT_WAVE_HEIGHT, DataParticleKey.VALUE: single_var_matches["t significant wave height"]}, {DataParticleKey.VALUE_ID: SBE26plusStatisticsDataParticleKey.TSS_SIGNIFICANT_WAVE_PERIOD, DataParticleKey.VALUE: single_var_matches["t significant wave period"]}, {DataParticleKey.VALUE_ID: SBE26plusStatisticsDataParticleKey.TSS_H1_10, DataParticleKey.VALUE: single_var_matches["H1/10"]}, {DataParticleKey.VALUE_ID: SBE26plusStatisticsDataParticleKey.TSS_H1_100, DataParticleKey.VALUE: single_var_matches["H1/100"]}] return result # presf_calibration_coefficients class SBE26plusDeviceCalibrationDataParticleKey(BaseEnum): PCALDATE = 'calibration_date_pressure' # tuple, PU0 = 'press_coeff_pu0' # float, PY1 = 'press_coeff_py1' # float, PY2 = 'press_coeff_py2' # float, PY3 = 'press_coeff_py3' # float, PC1 = 'press_coeff_pc1' # float, PC2 = 'press_coeff_pc2' # float, PC3 = 'press_coeff_pc3' # float, PD1 = 'press_coeff_pd1' # float, PD2 = 'press_coeff_pd2' # float, PT1 = 'press_coeff_pt1' # float, PT2 = 'press_coeff_pt2' # float, PT3 = 'press_coeff_pt3' # float, PT4 = 'press_coeff_pt4' # float, FACTORY_M = 'press_coeff_m' # float, FACTORY_B = 'press_coeff_b' # float, POFFSET = 'press_coeff_poffset' # float, TCALDATE = 'calibration_date_temperature' # string, TA0 = 'temp_coeff_ta0' # float, TA1 = 'temp_coeff_ta1' # float, TA2 = 'temp_coeff_ta2' # float, TA3 = 'temp_coeff_ta3' # float, CCALDATE = 'calibration_date_cond' # tuple, CG = 'cond_coeff_cg' # float, CH = 'cond_coeff_ch' # float, CI = 'cond_coeff_ci' # float, CJ = 'cond_coeff_cj' # float, CTCOR = 'cond_coeff_ctcor' # float, CPCOR = 'cond_coeff_cpcor' # float, CSLOPE = 'cond_coeff_cslope' # float, class SBE26plusDeviceCalibrationDataParticle(DataParticle): """ Routines for parsing raw data into a data particle structure. Override the building of values, and the rest should come along for free. """ _data_particle_type = DataParticleType.DEVICE_CALIBRATION def _build_parsed_values(self): """ Take something in the autosample format and split it into values with appropriate tags @throws SampleException If there is a problem with sample creation """ log.debug("in SBE26plusDeviceCalibrationDataParticle._build_parsed_values") single_var_matchers = { SBE26plusDeviceCalibrationDataParticleKey.PCALDATE: ( re.compile(r'Pressure coefficients: +(\d+-[a-zA-Z]+-\d+)'), lambda match : match.group(1) ), SBE26plusDeviceCalibrationDataParticleKey.PU0: ( re.compile(r' +U0 = (-?[\d\.e\-\+]+)'), lambda match : float(match.group(1)) ), SBE26plusDeviceCalibrationDataParticleKey.PY1: ( re.compile(r' +Y1 = (-?[\d\.e\-\+]+)'), lambda match : float(match.group(1)) ), SBE26plusDeviceCalibrationDataParticleKey.PY2: ( re.compile(r' +Y2 = (-?[\d\.e\-\+]+)'), lambda match : float(match.group(1)) ), SBE26plusDeviceCalibrationDataParticleKey.PY3: ( re.compile(r' +Y3 = (-?[\d\.e\-\+]+)'), lambda match : float(match.group(1)) ), SBE26plusDeviceCalibrationDataParticleKey.PC1: ( re.compile(r' +C1 = (-?[\d\.e\-\+]+)'), lambda match : float(match.group(1)) ), SBE26plusDeviceCalibrationDataParticleKey.PC2: ( re.compile(r' +C2 = (-?[\d\.e\-\+]+)'), lambda match : float(match.group(1)) ), SBE26plusDeviceCalibrationDataParticleKey.PC3: ( re.compile(r' +C3 = (-?[\d\.e\-\+]+)'), lambda match : float(match.group(1)) ), SBE26plusDeviceCalibrationDataParticleKey.PD1: ( re.compile(r' +D1 = (-?[\d\.e\-\+]+)'), lambda match : float(match.group(1)) ), SBE26plusDeviceCalibrationDataParticleKey.PD2: ( re.compile(r' +D2 = (-?[\d\.e\-\+]+)'), lambda match : float(match.group(1)) ), SBE26plusDeviceCalibrationDataParticleKey.PT1: ( re.compile(r' +T1 = (-?[\d\.e\-\+]+)'), lambda match : float(match.group(1)) ), SBE26plusDeviceCalibrationDataParticleKey.PT2: ( re.compile(r' +T2 = (-?[\d\.e\-\+]+)'), lambda match : float(match.group(1)) ), SBE26plusDeviceCalibrationDataParticleKey.PT3: ( re.compile(r' +T3 = (-?[\d\.e\-\+]+)'), lambda match : float(match.group(1)) ), SBE26plusDeviceCalibrationDataParticleKey.PT4: ( re.compile(r' +T4 = (-?[\d\.e\-\+]+)'), lambda match : float(match.group(1)) ), SBE26plusDeviceCalibrationDataParticleKey.FACTORY_M: ( re.compile(r' +M = ([\d\.]+)'), lambda match : float(match.group(1)) ), SBE26plusDeviceCalibrationDataParticleKey.FACTORY_B: ( re.compile(r' +B = ([\d\.]+)'), lambda match : float(match.group(1)) ), SBE26plusDeviceCalibrationDataParticleKey.POFFSET: ( re.compile(r' +OFFSET = (-?[\d\.e\-\+]+)'), lambda match : float(match.group(1)) ), SBE26plusDeviceCalibrationDataParticleKey.TCALDATE: ( re.compile(r'Temperature coefficients: +(\d+-[a-zA-Z]+-\d+)'), lambda match : str(match.group(1)) ), SBE26plusDeviceCalibrationDataParticleKey.TA0: ( re.compile(r' +TA0 = (-?[\d\.e\-\+]+)'), lambda match : float(match.group(1)) ), SBE26plusDeviceCalibrationDataParticleKey.TA1: ( re.compile(r' +TA1 = (-?[\d\.e\-\+]+)'), lambda match : float(match.group(1)) ), SBE26plusDeviceCalibrationDataParticleKey.TA2: ( re.compile(r' +TA2 = (-?[\d\.e\-\+]+)'), lambda match : float(match.group(1)) ), SBE26plusDeviceCalibrationDataParticleKey.TA3: ( re.compile(r' +TA3 = (-?[\d\.e\-\+]+)'), lambda match : float(match.group(1)) ), SBE26plusDeviceCalibrationDataParticleKey.CCALDATE: ( re.compile(r'Conductivity coefficients: +(\d+-[a-zA-Z]+-\d+)'), lambda match : str(match.group(1)) ), SBE26plusDeviceCalibrationDataParticleKey.CG: ( re.compile(r' +CG = (-?[\d\.e\-\+]+)'), lambda match : float(match.group(1)) ), SBE26plusDeviceCalibrationDataParticleKey.CH: ( re.compile(r' +CH = (-?[\d\.e\-\+]+)'), lambda match : float(match.group(1)) ), SBE26plusDeviceCalibrationDataParticleKey.CI: ( re.compile(r' +CI = (-?[\d\.e\-\+]+)'), lambda match : float(match.group(1)) ), SBE26plusDeviceCalibrationDataParticleKey.CJ: ( re.compile(r' +CJ = (-?[\d\.e\-\+]+)'), lambda match : float(match.group(1)) ), SBE26plusDeviceCalibrationDataParticleKey.CTCOR: ( re.compile(r' +CTCOR = (-?[\d\.e\-\+]+)'), lambda match : float(match.group(1)) ), SBE26plusDeviceCalibrationDataParticleKey.CPCOR: ( re.compile(r' +CPCOR = (-?[\d\.e\-\+]+)'), lambda match : float(match.group(1)) ), SBE26plusDeviceCalibrationDataParticleKey.CSLOPE: ( re.compile(r' +CSLOPE = (-?[\d\.e\-\+]+)'), lambda match : float(match.group(1)) ), } result = [] # Final storage for particle vals = {} # intermediate storage for particle values so they can be set to null first. for (key, (matcher, l_func)) in single_var_matchers.iteritems(): vals[key] = None for line in self.raw_data.split(NEWLINE): for (key, (matcher, l_func)) in single_var_matchers.iteritems(): match = matcher.match(line) if match: vals[key] = l_func(match) for (key, val) in vals.iteritems(): result.append({DataParticleKey.VALUE_ID: key, DataParticleKey.VALUE: val}) return result # presf_operating_status class SBE26plusDeviceStatusDataParticleKey(BaseEnum): # DS DEVICE_VERSION = 'firmware_version' # str, SERIAL_NUMBER = 'serial_number' # str, DS_DEVICE_DATE_TIME = 'date_time_string' # str for now, later *** USER_INFO = 'user_info' # str, QUARTZ_PRESSURE_SENSOR_SERIAL_NUMBER = 'quartz_pressure_sensor_serial_number' # float, QUARTZ_PRESSURE_SENSOR_RANGE = 'pressure_sensor_range' # float, EXTERNAL_TEMPERATURE_SENSOR = 'external_temperature_sensor' # bool, CONDUCTIVITY = 'external_conductivity_sensor' # bool, IOP_MA = 'operational_current' # float, VMAIN_V = 'battery_voltage_main' # float, VLITH_V = 'battery_voltage_lithium' # float, LAST_SAMPLE_P = 'last_sample_absolute_press' # float, LAST_SAMPLE_T = 'last_sample_temp' # float, LAST_SAMPLE_S = 'last_sample_saln' # float, # DS/SETSAMPLING TIDE_INTERVAL = 'tide_measurement_interval' # int, TIDE_MEASUREMENT_DURATION = 'tide_measurement_duration' # int, TIDE_SAMPLES_BETWEEN_WAVE_BURST_MEASUREMENTS = 'wave_samples_between_tide_measurement' # int, WAVE_SAMPLES_PER_BURST = 'wave_samples_per_burst' # float, WAVE_SAMPLES_SCANS_PER_SECOND = 'wave_samples_scans_per_second' # 4.0 = 0.25 USE_START_TIME = 'use_start_time' # bool, #START_TIME = 'logging_start_time' # *** USE_STOP_TIME = 'use_stop_time' # bool, #STOP_TIME = 'logging_stop_time' # *** TXWAVESTATS = 'tx_wave_stats' # bool, ########################################## TIDE_SAMPLES_PER_DAY = 'tide_samples_per_day' # float, WAVE_BURSTS_PER_DAY = 'wave_bursts_per_day' # float, MEMORY_ENDURANCE = 'memory_endurance' # float, NOMINAL_ALKALINE_BATTERY_ENDURANCE = 'nominal_alkaline_battery_endurance' # float, TOTAL_RECORDED_TIDE_MEASUREMENTS = 'total_recorded_tide_measurements' # float, TOTAL_RECORDED_WAVE_BURSTS = 'total_recorded_wave_bursts' # float, TIDE_MEASUREMENTS_SINCE_LAST_START = 'tide_measurements_since_last_start' # float, WAVE_BURSTS_SINCE_LAST_START = 'wave_bursts_since_last_start' # float, WAVE_SAMPLES_DURATION = 'wave_samples_duration' TXREALTIME = 'tx_tide_samples' # bool, TXWAVEBURST = 'tx_wave_bursts' # bool, NUM_WAVE_SAMPLES_PER_BURST_FOR_WAVE_STASTICS = 'num_wave_samples_per_burst_for_wave_statistics' # int, USE_MEASURED_TEMP_AND_CONDUCTIVITY_FOR_DENSITY_CALC = 'use_measured_temp_and_cond_for_density_calc' # bool, PRESSURE_SENSOR_HEIGHT_FROM_BOTTOM = 'pressure_sensor_height_from_bottom' # float, SPECTRAL_ESTIMATES_FOR_EACH_FREQUENCY_BAND = 'num_spectral_estimates_for_each_frequency_band' # int, MIN_ALLOWABLE_ATTENUATION = 'min_allowable_attenuation' # float, MIN_PERIOD_IN_AUTO_SPECTRUM = 'min_period_in_auto_spectrum' # float, MAX_PERIOD_IN_AUTO_SPECTRUM = 'max_period_in_auto_spectrum' # float, HANNING_WINDOW_CUTOFF = 'hanning_window_cutoff' # float, SHOW_PROGRESS_MESSAGES = 'show_progress_messages' # bool, STATUS = 'device_status' # str, LOGGING = 'logging_status' # bool, class SBE26plusDeviceStatusDataParticle(DataParticle): """ Routines for parsing raw data into a data particle structure. Override the building of values, and the rest should come along for free. """ _data_particle_type = DataParticleType.DEVICE_STATUS def _build_parsed_values(self): """ Take something in the autosample format and split it into values with appropriate tags @throws SampleException If there is a problem with sample creation """ log.debug("in SBE26plusDeviceStatusDataParticle._build_parsed_values") # VAR_LABEL: (regex, lambda) single_var_matchers = { SBE26plusDeviceStatusDataParticleKey.DEVICE_VERSION: ( re.compile(r'SBE 26plus V ([\w.]+) +SN (\d+) +(\d{2} [a-zA-Z]{3,4} \d{4} +[\d:]+)'), lambda match : match.group(1) ), SBE26plusDeviceStatusDataParticleKey.SERIAL_NUMBER: ( re.compile(r'SBE 26plus V ([\w.]+) +SN (\d+) +(\d{2} [a-zA-Z]{3,4} \d{4} +[\d:]+)'), lambda match : match.group(2) ), SBE26plusDeviceStatusDataParticleKey.DS_DEVICE_DATE_TIME: ( re.compile(r'SBE 26plus V ([\w.]+) +SN (\d+) +(\d{2} [a-zA-Z]{3,4} \d{4} +[\d:]+)'), lambda match : match.group(3) ), SBE26plusDeviceStatusDataParticleKey.USER_INFO: ( re.compile(r'user info=(.*)$'), lambda match : match.group(1) ), SBE26plusDeviceStatusDataParticleKey.QUARTZ_PRESSURE_SENSOR_SERIAL_NUMBER: ( re.compile(r'quartz pressure sensor: serial number = ([\d\.\-]+), range = ([\d\.\-]+) psia'), lambda match : float(match.group(1)) ), SBE26plusDeviceStatusDataParticleKey.QUARTZ_PRESSURE_SENSOR_RANGE: ( re.compile(r'quartz pressure sensor: serial number = ([\d\.\-]+), range = ([\d\.\-]+) psia'), lambda match : float(match.group(2)) ), SBE26plusDeviceStatusDataParticleKey.EXTERNAL_TEMPERATURE_SENSOR: ( re.compile(r'(external|internal) temperature sensor'), lambda match : False if (match.group(1)=='internal') else True ), SBE26plusDeviceStatusDataParticleKey.CONDUCTIVITY: ( re.compile(r'conductivity = (YES|NO)'), lambda match : False if (match.group(1)=='NO') else True ), SBE26plusDeviceStatusDataParticleKey.IOP_MA: ( re.compile(r'iop = +([\d\.\-]+) ma vmain = +([\d\.\-]+) V vlith = +([\d\.\-]+) V'), lambda match : float(match.group(1)) ), SBE26plusDeviceStatusDataParticleKey.VMAIN_V: ( re.compile(r'iop = +([\d\.\-]+) ma vmain = +([\d\.\-]+) V vlith = +([\d\.\-]+) V'), lambda match : float(match.group(2)) ), SBE26plusDeviceStatusDataParticleKey.VLITH_V: ( re.compile(r'iop = +([\d\.\-]+) ma vmain = +([\d\.\-]+) V vlith = +([\d\.\-]+) V'), lambda match : float(match.group(3)) ), SBE26plusDeviceStatusDataParticleKey.LAST_SAMPLE_P: ( re.compile(r'last sample: p = +([\d\.\-]+), t = +([\d\.\-]+)'), lambda match : float(match.group(1)) ), SBE26plusDeviceStatusDataParticleKey.LAST_SAMPLE_T: ( re.compile(r'last sample: p = +([\d\.\-]+), t = +([\d\.\-]+)'), lambda match : float(match.group(2)) ), SBE26plusDeviceStatusDataParticleKey.LAST_SAMPLE_S: ( re.compile(r'last sample: .*?, s = +([\d\.\-]+)'), lambda match : float(match.group(1)) ), SBE26plusDeviceStatusDataParticleKey.TIDE_INTERVAL: ( re.compile(r'tide measurement: interval = (\d+).000 minutes, duration = ([\d\.\-]+) seconds'), lambda match : int(match.group(1)) ), SBE26plusDeviceStatusDataParticleKey.TIDE_MEASUREMENT_DURATION: ( re.compile(r'tide measurement: interval = (\d+).000 minutes, duration = ([\d\.\-]+) seconds'), lambda match : int(match.group(2)) ), SBE26plusDeviceStatusDataParticleKey.TIDE_SAMPLES_BETWEEN_WAVE_BURST_MEASUREMENTS: ( re.compile(r'measure waves every ([\d]+) tide samples'), lambda match : int(match.group(1)) ), SBE26plusDeviceStatusDataParticleKey.WAVE_SAMPLES_PER_BURST: ( re.compile(r'([\d\.\-]+) wave samples/burst at ([\d\.\-]+) scans/sec, duration = ([\d\.\-]+) seconds'), lambda match : int(match.group(1)) ), SBE26plusDeviceStatusDataParticleKey.WAVE_SAMPLES_SCANS_PER_SECOND: ( re.compile(r'([\d\.\-]+) wave samples/burst at ([\d\.\-]+) scans/sec, duration = ([\d\.\-]+) seconds'), lambda match : float(match.group(2)) ), SBE26plusDeviceStatusDataParticleKey.WAVE_SAMPLES_DURATION: ( re.compile(r'([\d\.\-]+) wave samples/burst at ([\d\.\-]+) scans/sec, duration = ([\d\.\-]+) seconds'), lambda match : int(match.group(3)) ), SBE26plusDeviceStatusDataParticleKey.USE_START_TIME: ( re.compile(r'logging start time = (do not) use start time'), lambda match : False if (match.group(1)=='do not') else True ), SBE26plusDeviceStatusDataParticleKey.USE_STOP_TIME: ( re.compile(r'logging stop time = (do not) use stop time'), lambda match : False if (match.group(1)=='do not') else True ), SBE26plusDeviceStatusDataParticleKey.TIDE_SAMPLES_PER_DAY: ( re.compile(r'tide samples/day = (\d+\.\d+)'), lambda match : float(match.group(1)) ), SBE26plusDeviceStatusDataParticleKey.WAVE_BURSTS_PER_DAY: ( re.compile(r'wave bursts/day = (\d+\.\d+)'), lambda match : float(match.group(1)) ), SBE26plusDeviceStatusDataParticleKey.MEMORY_ENDURANCE: ( re.compile(r'memory endurance = (\d+\.\d+) days'), lambda match : float(match.group(1)) ), SBE26plusDeviceStatusDataParticleKey.NOMINAL_ALKALINE_BATTERY_ENDURANCE: ( re.compile(r'nominal alkaline battery endurance = (\d+\.\d+) days'), lambda match : float(match.group(1)) ), SBE26plusDeviceStatusDataParticleKey.TOTAL_RECORDED_TIDE_MEASUREMENTS: ( re.compile(r'total recorded tide measurements = ([\d\.\-]+)'), lambda match : float(match.group(1)) ), SBE26plusDeviceStatusDataParticleKey.TOTAL_RECORDED_WAVE_BURSTS: ( re.compile(r'total recorded wave bursts = ([\d\.\-]+)'), lambda match : float(match.group(1)) ), SBE26plusDeviceStatusDataParticleKey.TIDE_MEASUREMENTS_SINCE_LAST_START: ( re.compile(r'tide measurements since last start = ([\d\.\-]+)'), lambda match : float(match.group(1)) ), SBE26plusDeviceStatusDataParticleKey.WAVE_BURSTS_SINCE_LAST_START: ( re.compile(r'wave bursts since last start = ([\d\.\-]+)'), lambda match : float(match.group(1)) ), SBE26plusDeviceStatusDataParticleKey.TXREALTIME: ( re.compile(r'transmit real-time tide data = (YES|NO)'), lambda match : False if (match.group(1)=='NO') else True ), SBE26plusDeviceStatusDataParticleKey.TXWAVEBURST: ( re.compile(r'transmit real-time wave burst data = (YES|NO)'), lambda match : False if (match.group(1)=='NO') else True ), SBE26plusDeviceStatusDataParticleKey.TXWAVESTATS: ( re.compile(r'transmit real-time wave statistics = (YES|NO)'), lambda match : False if (match.group(1)=='NO') else True ), SBE26plusDeviceStatusDataParticleKey.NUM_WAVE_SAMPLES_PER_BURST_FOR_WAVE_STASTICS: ( re.compile(r' +number of wave samples per burst to use for wave statistics = (\d+)'), lambda match : int(match.group(1)) ), # combined this into the regex of below. #SBE26plusDeviceStatusDataParticleKey.USE_MEASURED_TEMP_AND_CONDUCTIVITY_FOR_DENSITY_CALC: ( # re.compile(r' +(do not|) use measured temperature and conductivity for density calculation'), # lambda match : False if (match.group(1)=='do not') else True #), SBE26plusDeviceStatusDataParticleKey.USE_MEASURED_TEMP_AND_CONDUCTIVITY_FOR_DENSITY_CALC: ( re.compile(r' +(do not|) use measured temperature (and conductivity |)for density calculation'), lambda match : True if (match.group(1)=='do not') else False ), #SBE26plusDeviceStatusDataParticleKey.AVERAGE_WATER_TEMPERATURE_ABOVE_PRESSURE_SENSOR: ( # re.compile(r' +average water temperature above the pressure sensor \(deg C\) = ([\-\d\.]+)'), # lambda match : float(match.group(1)) #), #SBE26plusDeviceStatusDataParticleKey.AVERAGE_SALINITY_ABOVE_PRESSURE_SENSOR: ( # re.compile(r' +average salinity above the pressure sensor \(PSU\) = ([\-\d\.]+)'), # lambda match : float(match.group(1)) #), SBE26plusDeviceStatusDataParticleKey.PRESSURE_SENSOR_HEIGHT_FROM_BOTTOM: ( re.compile(r' +height of pressure sensor from bottom \(meters\) = ([\d\.]+)'), lambda match : float(match.group(1)) ), SBE26plusDeviceStatusDataParticleKey.SPECTRAL_ESTIMATES_FOR_EACH_FREQUENCY_BAND: ( re.compile(r' +number of spectral estimates for each frequency band = (\d+)'), lambda match : int(match.group(1)) ), SBE26plusDeviceStatusDataParticleKey.MIN_ALLOWABLE_ATTENUATION: ( re.compile(r' +minimum allowable attenuation = ([\d\.]+)'), lambda match : float(match.group(1)) ), SBE26plusDeviceStatusDataParticleKey.MIN_PERIOD_IN_AUTO_SPECTRUM: ( re.compile(r' +minimum period \(seconds\) to use in auto-spectrum = (-?[\d\.e\-\+]+)'), lambda match : float(match.group(1)) ), SBE26plusDeviceStatusDataParticleKey.MAX_PERIOD_IN_AUTO_SPECTRUM: ( re.compile(r' +maximum period \(seconds\) to use in auto-spectrum = (-?[\d\.e\-\+]+)'), lambda match : float(match.group(1)) ), SBE26plusDeviceStatusDataParticleKey.HANNING_WINDOW_CUTOFF: ( re.compile(r' +hanning window cutoff = ([\d\.]+)'), lambda match : float(match.group(1)) ), SBE26plusDeviceStatusDataParticleKey.SHOW_PROGRESS_MESSAGES: ( re.compile(r' +(do not show|show) progress messages'), lambda match : True if (match.group(1)=='show') else False ), SBE26plusDeviceStatusDataParticleKey.STATUS: ( re.compile(r'status = ([\w ]+)'), lambda match : match.group(1) ), SBE26plusDeviceStatusDataParticleKey.LOGGING: ( re.compile(r'logging = (YES|NO)'), lambda match : False if (match.group(1)=='NO') else True, ) } result = [] # Final storage for particle vals = {} # intermediate storage for particle values so they can be set to null first. for (key, (matcher, l_func)) in single_var_matchers.iteritems(): vals[key] = None for line in self.raw_data.split(NEWLINE): for (key, (matcher, l_func)) in single_var_matchers.iteritems(): match = matcher.match(line) if match: vals[key] = l_func(match) for (key, val) in vals.iteritems(): result.append({DataParticleKey.VALUE_ID: key, DataParticleKey.VALUE: val}) return result ############################################################################### # Driver ############################################################################### class SBE26PlusInstrumentDriver(SeaBirdInstrumentDriver): """ InstrumentDriver subclass Subclasses SingleConnectionInstrumentDriver with connection state machine. """ def __init__(self, evt_callback): """ Driver constructor. @param evt_callback Driver process event callback. """ #Construct superclass. SeaBirdInstrumentDriver.__init__(self, evt_callback) ######################################################################## # Superclass overrides for resource query. ######################################################################## ######################################################################## # Protocol builder. ######################################################################## def _build_protocol(self): """ Construct the driver protocol state machine. """ self._protocol = Protocol(Prompt, NEWLINE, self._driver_event) ############################################################################### # Protocol ############################################################################### class Protocol(SeaBirdProtocol): """ Instrument protocol class for sbe26plus driver. Subclasses CommandResponseInstrumentProtocol """ def __init__(self, prompts, newline, driver_event): """ Protocol constructor. @param prompts A BaseEnum class containing instrument prompts. @param newline The sbe26plus newline. @param driver_event Driver process event callback. """ # Construct protocol superclass. SeaBirdProtocol.__init__(self, prompts, newline, driver_event) # Build sbe26plus protocol state machine. self._protocol_fsm = InstrumentFSM(ProtocolState, ProtocolEvent, ProtocolEvent.ENTER, ProtocolEvent.EXIT) # Add event handlers for protocol state machine. self._protocol_fsm.add_handler(ProtocolState.UNKNOWN, ProtocolEvent.ENTER, self._handler_unknown_enter) self._protocol_fsm.add_handler(ProtocolState.UNKNOWN, ProtocolEvent.EXIT, self._handler_unknown_exit) self._protocol_fsm.add_handler(ProtocolState.UNKNOWN, ProtocolEvent.DISCOVER, self._handler_unknown_discover) self._protocol_fsm.add_handler(ProtocolState.COMMAND, ProtocolEvent.ENTER, self._handler_command_enter) self._protocol_fsm.add_handler(ProtocolState.COMMAND, ProtocolEvent.EXIT, self._handler_command_exit) self._protocol_fsm.add_handler(ProtocolState.COMMAND, ProtocolEvent.ACQUIRE_SAMPLE, self._handler_command_acquire_sample) self._protocol_fsm.add_handler(ProtocolState.COMMAND, ProtocolEvent.START_AUTOSAMPLE, self._handler_command_start_autosample) self._protocol_fsm.add_handler(ProtocolState.COMMAND, ProtocolEvent.GET, self._handler_command_get) self._protocol_fsm.add_handler(ProtocolState.COMMAND, ProtocolEvent.SET, self._handler_command_set) self._protocol_fsm.add_handler(ProtocolState.COMMAND, ProtocolEvent.SETSAMPLING, self._handler_command_setsampling) self._protocol_fsm.add_handler(ProtocolState.COMMAND, ProtocolEvent.CLOCK_SYNC, self._handler_command_clock_sync) self._protocol_fsm.add_handler(ProtocolState.COMMAND, ProtocolEvent.SCHEDULED_CLOCK_SYNC, self._handler_command_clock_sync) self._protocol_fsm.add_handler(ProtocolState.COMMAND, ProtocolEvent.ACQUIRE_STATUS, self._handler_command_acquire_status) self._protocol_fsm.add_handler(ProtocolState.COMMAND, ProtocolEvent.ACQUIRE_CONFIGURATION, self._handler_command_acquire_configuration) self._protocol_fsm.add_handler(ProtocolState.COMMAND, ProtocolEvent.QUIT_SESSION, self._handler_command_quit_session) self._protocol_fsm.add_handler(ProtocolState.COMMAND, ProtocolEvent.START_DIRECT, self._handler_command_start_direct) self._protocol_fsm.add_handler(ProtocolState.AUTOSAMPLE, ProtocolEvent.ENTER, self._handler_autosample_enter) self._protocol_fsm.add_handler(ProtocolState.AUTOSAMPLE, ProtocolEvent.EXIT, self._handler_autosample_exit) self._protocol_fsm.add_handler(ProtocolState.AUTOSAMPLE, ProtocolEvent.GET, self._handler_command_get) self._protocol_fsm.add_handler(ProtocolState.AUTOSAMPLE, ProtocolEvent.ACQUIRE_STATUS, self._handler_command_acquire_status) self._protocol_fsm.add_handler(ProtocolState.AUTOSAMPLE, ProtocolEvent.ACQUIRE_CONFIGURATION, self._handler_command_acquire_configuration) self._protocol_fsm.add_handler(ProtocolState.AUTOSAMPLE, ProtocolEvent.STOP_AUTOSAMPLE, self._handler_autosample_stop_autosample) self._protocol_fsm.add_handler(ProtocolState.AUTOSAMPLE, ProtocolEvent.SEND_LAST_SAMPLE, self._handler_command_send_last_sample) self._protocol_fsm.add_handler(ProtocolState.AUTOSAMPLE, ProtocolEvent.SCHEDULED_CLOCK_SYNC, self._handler_autosample_clock_sync) self._protocol_fsm.add_handler(ProtocolState.DIRECT_ACCESS, ProtocolEvent.ENTER, self._handler_direct_access_enter) self._protocol_fsm.add_handler(ProtocolState.DIRECT_ACCESS, ProtocolEvent.EXIT, self._handler_direct_access_exit) self._protocol_fsm.add_handler(ProtocolState.DIRECT_ACCESS, ProtocolEvent.EXECUTE_DIRECT, self._handler_direct_access_execute_direct) self._protocol_fsm.add_handler(ProtocolState.DIRECT_ACCESS, ProtocolEvent.STOP_DIRECT, self._handler_direct_access_stop_direct) # Construct the parameter dictionary containing device parameters, # current parameter values, and set formatting functions. self._build_param_dict() self._build_command_dict() self._build_driver_dict() # Add build handlers for device commands. self._add_build_handler(InstrumentCmds.SETSAMPLING, self._build_setsampling_command) self._add_build_handler(InstrumentCmds.DISPLAY_STATUS, self._build_simple_command) self._add_build_handler(InstrumentCmds.QUIT_SESSION, self._build_simple_command) self._add_build_handler(InstrumentCmds.DISPLAY_CALIBRATION, self._build_simple_command) self._add_build_handler(InstrumentCmds.SEND_LAST_SAMPLE, self._build_simple_command) self._add_build_handler(InstrumentCmds.START_LOGGING, self._build_simple_command) self._add_build_handler(InstrumentCmds.STOP_LOGGING, self._build_simple_command) self._add_build_handler(InstrumentCmds.SET, self._build_set_command) self._add_build_handler(InstrumentCmds.SET_TIME, self._build_set_command) self._add_build_handler(InstrumentCmds.TAKE_SAMPLE, self._build_simple_command) # Add response handlers for device commands. self._add_response_handler(InstrumentCmds.SETSAMPLING, self._parse_setsampling_response) self._add_response_handler(InstrumentCmds.DISPLAY_STATUS, self._parse_ds_response) self._add_response_handler(InstrumentCmds.DISPLAY_CALIBRATION, self._parse_dc_response) self._add_response_handler(InstrumentCmds.SEND_LAST_SAMPLE, self._parse_sl_response) self._add_response_handler(InstrumentCmds.SET, self._parse_set_response) self._add_response_handler(InstrumentCmds.SET_TIME, self._parse_set_response) self._add_response_handler(InstrumentCmds.TAKE_SAMPLE, self._parse_ts_response) # State state machine in UNKNOWN state. self._protocol_fsm.start(ProtocolState.UNKNOWN) # commands sent sent to device to be filtered in responses for telnet DA self._sent_cmds = [] self._chunker = StringChunker(Protocol.sieve_function) self._add_scheduler_event(ScheduledJob.ACQUIRE_STATUS, ProtocolEvent.ACQUIRE_STATUS) self._add_scheduler_event(ScheduledJob.CALIBRATION_COEFFICIENTS, ProtocolEvent.ACQUIRE_CONFIGURATION) self._add_scheduler_event(ScheduledJob.CLOCK_SYNC, ProtocolEvent.SCHEDULED_CLOCK_SYNC) @staticmethod def sieve_function(raw_data): """ Chunker sieve method to help the chunker identify chunks. @returns a list of chunks identified, if any. The chunks are all the same type. """ sieve_matchers = [TS_REGEX_MATCHER, TIDE_REGEX_MATCHER, WAVE_REGEX_MATCHER, STATS_REGEX_MATCHER, DS_REGEX_MATCHER, DC_REGEX_MATCHER] return_list = [] for matcher in sieve_matchers: for match in matcher.finditer(raw_data): return_list.append((match.start(), match.end())) return return_list def _filter_capabilities(self, events): """ Return a list of currently available capabilities. """ events_out = [x for x in events if Capability.has(x)] return events_out ######################################################################## # Unknown handlers. ######################################################################## def _handler_unknown_enter(self, *args, **kwargs): """ Enter unknown state. Tell driver superclass to send a state change event. Superclass will query the state. """ self._driver_event(DriverAsyncEvent.STATE_CHANGE) def _handler_unknown_discover(self, *args, **kwargs): """ Discover current state; can be COMMAND or AUTOSAMPLE. @retval (next_state, result), (ProtocolState.COMMAND or State.AUTOSAMPLE, None) if successful. @throws InstrumentTimeoutException if the device cannot be woken. @throws InstrumentStateException if the device response does not correspond to an expected state. """ timeout = kwargs.get('timeout', TIMEOUT) next_state = None result = None current_state = self._protocol_fsm.get_current_state() logging = self._is_logging(timeout=timeout) if logging == True: next_state = ProtocolState.AUTOSAMPLE result = ResourceAgentState.STREAMING elif logging == False: next_state = ProtocolState.COMMAND result = ResourceAgentState.IDLE else: raise InstrumentStateException('Discover state failed.') return (next_state, result) def _handler_unknown_exit(self, *args, **kwargs): """ Exit unknown state. """ pass ######################################################################## # Command handlers. ######################################################################## def _handler_command_enter(self, *args, **kwargs): """ Enter command state. @throws InstrumentTimeoutException if the device cannot be woken. @throws InstrumentProtocolException if the update commands and not recognized. """ # Command device to update parameters and send a config change event. log.debug("*** IN _handler_command_enter(), updating params") self._update_params() # Tell driver superclass to send a state change event. # Superclass will query the state. self._driver_event(DriverAsyncEvent.STATE_CHANGE) def _handler_command_acquire_sample(self, *args, **kwargs): """ Acquire sample from SBE26 Plus. @retval (next_state, result) tuple, (None, sample dict). @throws InstrumentTimeoutException if device cannot be woken for command. @throws InstrumentProtocolException if command could not be built or misunderstood. @throws SampleException if a sample could not be extracted from result. """ next_state = None next_agent_state = None result = None kwargs['timeout'] = 45 # samples can take a long time result = self._do_cmd_resp(InstrumentCmds.TAKE_SAMPLE, *args, **kwargs) return (next_state, (next_agent_state, result)) def _handler_command_acquire_status(self, *args, **kwargs): """ @param args: @param kwargs: @return: """ next_state = None next_agent_state = None kwargs['timeout'] = 30 result = self._do_cmd_resp(InstrumentCmds.DISPLAY_STATUS, *args, **kwargs) return (next_state, (next_agent_state, result)) def _handler_command_acquire_configuration(self, *args, **kwargs): """ @param args: @param kwargs: @return: """ next_state = None next_agent_state = None kwargs['timeout'] = 30 result = self._do_cmd_resp(InstrumentCmds.DISPLAY_CALIBRATION, *args, **kwargs) return (next_state, (next_agent_state, result)) def _handler_command_send_last_sample(self, *args, **kwargs): """ @param args: @param kwargs: @return: """ next_state = None next_agent_state = None kwargs['timeout'] = 30 result = self._do_cmd_resp(InstrumentCmds.SEND_LAST_SAMPLE, *args, **kwargs) return (next_state, (next_agent_state, result)) def _handler_command_exit(self, *args, **kwargs): """ Exit command state. """ pass def _handler_autosample_clock_sync(self, *args, **kwargs): """ execute a clock sync on the leading edge of a second change from autosample mode. For this command we have to move the instrument into command mode, do the clock sync, then switch back. If an exception is thrown we will try to get ourselves back into streaming and then raise that exception. @retval (next_state, result) tuple, (ProtocolState.AUTOSAMPLE, None) if successful. @throws InstrumentTimeoutException if device cannot be woken for command. @throws InstrumentProtocolException if command could not be built or misunderstood. """ next_state = None next_agent_state = None result = None error = None try: # Switch to command mode, self._stop_logging() # Sync the clock timeout = kwargs.get('timeout', TIMEOUT) self._sync_clock(InstrumentCmds.SET_TIME, Parameter.DS_DEVICE_DATE_TIME, TIMEOUT) # Catch all error so we can put ourself back into # streaming. Then rethrow the error except Exception as e: error = e finally: # Switch back to streaming self._start_logging() if(error): raise error return (next_state, (next_agent_state, result)) def _handler_command_clock_sync(self, *args, **kwargs): """ execute a clock sync on the leading edge of a second change @retval (next_state, result) tuple, (None, (None, )) if successful. @throws InstrumentTimeoutException if device cannot be woken for command. @throws InstrumentProtocolException if command could not be built or misunderstood. """ next_state = None next_agent_state = None result = None timeout = kwargs.get('timeout', TIMEOUT) self._sync_clock(InstrumentCmds.SET_TIME, Parameter.DS_DEVICE_DATE_TIME, TIMEOUT) return (next_state, (next_agent_state, result)) ################################ # SET / SETSAMPLING ################################ def _set_params(self, *args, **kwargs): """ Issue commands to the instrument to set various parameters """ self._verify_not_readonly(*args, **kwargs) # Retrieve required parameter. # Raise if no parameter provided, or not a dict. try: params = args[0] except IndexError: raise InstrumentParameterException('Set command requires a parameter dict.') (set_params, ss_params) = self._split_params(**params) log.debug("SetSampling Params: %s" % ss_params) log.debug("General Set Params: %s" % set_params) if set_params != {}: for (key, val) in set_params.iteritems(): log.debug("KEY = " + str(key) + " VALUE = " + str(val)) result = self._do_cmd_resp(InstrumentCmds.SET, key, val, **kwargs) if ss_params != {}: # ONLY do next if a param for it is present kwargs['expected_prompt'] = ", new value = " self._do_cmd_resp(InstrumentCmds.SETSAMPLING, ss_params, **kwargs) self._update_params() def _build_set_command(self, cmd, param, val): """ Build handler for set commands. param=val followed by newline. String val constructed by param dict formatting function. @param param the parameter key to set. @param val the parameter value to set. @ retval The set command to be sent to the device. @ retval The set command to be sent to the device. @throws InstrumentProtocolException if the parameter is not valid or if the formatting function could not accept the value passed. """ try: str_val = self._param_dict.format(param, val) set_cmd = '%s=%s' % (param, str_val) set_cmd = set_cmd + NEWLINE except KeyError: raise InstrumentParameterException('Unknown driver parameter %s' % param) return set_cmd def _parse_set_response(self, response, prompt): """ Parse handler for set command. @param response command response string. @param prompt prompt following command response. @throws InstrumentProtocolException if set command misunderstood. """ if prompt == Prompt.CONFIRMATION_PROMPT: self._connection.send("y") time.sleep(0.5) elif prompt != Prompt.COMMAND: raise InstrumentProtocolException('Protocol._parse_set_response : Set command not recognized: %s' % response) def _handler_command_setsampling(self, *args, **kwargs): """ Perform a command-response on the device. @param cmd The command to execute. @param args positional arguments to pass to the build handler. @param timeout=timeout optional wakeup and command timeout. @retval resp_result The (possibly parsed) response result. @raises InstrumentTimeoutException if the response did not occur in time. @raises InstrumentProtocolException if command could not be built or if response was not recognized. """ log.debug(" in _handler_command_setsampling") next_state = None kwargs['expected_prompt'] = ", new value = " result = self._do_cmd_resp(InstrumentCmds.SETSAMPLING, *args, **kwargs) return (next_state, result) def _build_setsampling_command(self, foo, *args, **kwargs): """ Build handler for setsampling command. @param args[0] is a dict of the values to change @throws InstrumentParameterException if passed paramater is outside of allowed ranges. """ log.debug("_build_setsampling_command setting _sampling_args") self._sampling_args = args[0] for (arg, val) in self._sampling_args.items(): # assert int if arg in [Parameter.WAVE_SAMPLES_PER_BURST, Parameter.TIDE_INTERVAL, Parameter.TIDE_MEASUREMENT_DURATION, Parameter.TIDE_SAMPLES_BETWEEN_WAVE_BURST_MEASUREMENTS, Parameter.NUM_WAVE_SAMPLES_PER_BURST_FOR_WAVE_STASTICS, Parameter.SPECTRAL_ESTIMATES_FOR_EACH_FREQUENCY_BAND ]: if type(val) != int: raise InstrumentParameterException("incorrect type for " + str(arg)) # assert float if arg in [Parameter.AVERAGE_WATER_TEMPERATURE_ABOVE_PRESSURE_SENSOR, Parameter.AVERAGE_SALINITY_ABOVE_PRESSURE_SENSOR, Parameter.PRESSURE_SENSOR_HEIGHT_FROM_BOTTOM, Parameter.WAVE_SAMPLES_SCANS_PER_SECOND, Parameter.MIN_ALLOWABLE_ATTENUATION, Parameter.MIN_PERIOD_IN_AUTO_SPECTRUM, Parameter.MAX_PERIOD_IN_AUTO_SPECTRUM, Parameter.HANNING_WINDOW_CUTOFF ]: if type(val) != float: raise InstrumentParameterException("incorrect type for " + str(arg)) # assert bool if arg in [Parameter.USE_START_TIME, Parameter.USE_STOP_TIME, Parameter.TXWAVESTATS, Parameter.SHOW_PROGRESS_MESSAGES, Parameter.USE_MEASURED_TEMP_AND_CONDUCTIVITY_FOR_DENSITY_CALC ]: if type(val) != bool: raise InstrumentParameterException("incorrect type for " + str(arg)) return InstrumentCmds.SETSAMPLING + NEWLINE def _parse_setsampling_response(self, response, prompt): #(self, cmd, *args, **kwargs): """ Parse handler for set command. Timeout if we don't parse in a timely manor. Not infinite loop here. @param response command response string. @param prompt prompt following command response. @throws InstrumentProtocolException if set command misunderstood. @throws InstrumentTimeoutException if we don't parse the setsample in a timely manor """ desired_prompt = ", new value = " done = False starttime = time.time() while not done: if (starttime + TIMEOUT < time.time()): raise InstrumentTimeoutException("failed to parse set sample string in a timely(%ds) manor" % TIMEOUT) (prompt, response) = self._get_response(expected_prompt=desired_prompt) self._promptbuf = '' self._linebuf = '' time.sleep(0.1) log.debug("mmprompt = " + str(prompt)) log.debug("mmresponse = " + str(response)) if "tide interval (integer minutes) " in response: if Parameter.TIDE_INTERVAL in self._sampling_args: self._connection.send(self._int_to_string(self._sampling_args[Parameter.TIDE_INTERVAL]) + NEWLINE) else: self._connection.send(NEWLINE) elif "tide measurement duration (seconds)" in response: if Parameter.TIDE_MEASUREMENT_DURATION in self._sampling_args: self._connection.send(self._int_to_string(self._sampling_args[Parameter.TIDE_MEASUREMENT_DURATION]) + NEWLINE) else: self._connection.send(NEWLINE) elif "measure wave burst after every N tide samples" in response: if Parameter.TIDE_SAMPLES_BETWEEN_WAVE_BURST_MEASUREMENTS in self._sampling_args: self._connection.send(self._int_to_string(self._sampling_args[Parameter.TIDE_SAMPLES_BETWEEN_WAVE_BURST_MEASUREMENTS]) + NEWLINE) else: self._connection.send(NEWLINE) elif "number of wave samples per burst (multiple of 4)" in response: if Parameter.WAVE_SAMPLES_PER_BURST in self._sampling_args: self._connection.send(self._int_to_string(self._sampling_args[Parameter.WAVE_SAMPLES_PER_BURST]) + NEWLINE) else: self._connection.send(NEWLINE) elif "wave Sample duration (0.25, 0.50, 0.75, 1.0) seconds" in response: # WAVE_SAMPLES_SCANS_PER_SECOND = 4, wave Sample duration = 1/4... if Parameter.WAVE_SAMPLES_SCANS_PER_SECOND in self._sampling_args: val = float(1.0 / float(self._sampling_args[Parameter.WAVE_SAMPLES_SCANS_PER_SECOND])) self._connection.send(self._float_to_string(val) + NEWLINE) else: self._connection.send(NEWLINE) elif "use start time (y/n)" in response: if Parameter.USE_START_TIME in self._sampling_args: self._connection.send(self._true_false_to_string(self._sampling_args[Parameter.USE_START_TIME]) + NEWLINE) else: self._connection.send(NEWLINE) elif "use stop time (y/n)" in response: if Parameter.USE_STOP_TIME in self._sampling_args: self._connection.send(self._true_false_to_string(self._sampling_args[Parameter.USE_STOP_TIME]) + NEWLINE) else: self._connection.send(NEWLINE) elif "TXWAVESTATS (real-time wave statistics) (y/n)" in response: if Parameter.TXWAVESTATS in self._sampling_args: if self._sampling_args[Parameter.TXWAVESTATS] == False: done = True self._connection.send(self._true_false_to_string(self._sampling_args[Parameter.TXWAVESTATS]) + NEWLINE) else: # We default to no just for consistency sake. We might want to change the behavior here because this # parameter affects the ability to set parameters. Options, default to no if not explicit (what # we are doing now), decide Yes or No based on parameters to be set, or raise an exception if incorrect # for parameter set self._connection.send(self._true_false_to_string(False) + NEWLINE) done = True elif "show progress messages (y/n) = " in response: if Parameter.SHOW_PROGRESS_MESSAGES in self._sampling_args: self._connection.send(self._true_false_to_string(self._sampling_args[Parameter.SHOW_PROGRESS_MESSAGES]) + NEWLINE) else: self._connection.send(NEWLINE) elif "number of wave samples per burst to use for wave statistics = " in response: if Parameter.NUM_WAVE_SAMPLES_PER_BURST_FOR_WAVE_STASTICS in self._sampling_args: self._connection.send(self._int_to_string(self._sampling_args[Parameter.NUM_WAVE_SAMPLES_PER_BURST_FOR_WAVE_STASTICS]) + NEWLINE) else: self._connection.send(NEWLINE) elif "use measured temperature and conductivity for density calculation (y/n) = " in response or \ "use measured temperature for density calculation " in response: if Parameter.USE_MEASURED_TEMP_AND_CONDUCTIVITY_FOR_DENSITY_CALC in self._sampling_args: self._connection.send(self._true_false_to_string(self._sampling_args[Parameter.USE_MEASURED_TEMP_AND_CONDUCTIVITY_FOR_DENSITY_CALC]) + NEWLINE) else: self._connection.send(NEWLINE) elif "average water temperature above the pressure sensor (deg C) = " in response: if Parameter.AVERAGE_WATER_TEMPERATURE_ABOVE_PRESSURE_SENSOR in self._sampling_args: self._connection.send(self._float_to_string(self._sampling_args[Parameter.AVERAGE_WATER_TEMPERATURE_ABOVE_PRESSURE_SENSOR]) + NEWLINE) else: self._connection.send(NEWLINE) elif "average salinity above the pressure sensor (PSU) = " in response: if Parameter.AVERAGE_SALINITY_ABOVE_PRESSURE_SENSOR in self._sampling_args: self._connection.send(self._float_to_string(self._sampling_args[Parameter.AVERAGE_SALINITY_ABOVE_PRESSURE_SENSOR]) + NEWLINE) else: self._connection.send(NEWLINE) elif "height of pressure sensor from bottom (meters) = " in response: if Parameter.PRESSURE_SENSOR_HEIGHT_FROM_BOTTOM in self._sampling_args: self._connection.send(self._float_to_string(self._sampling_args[Parameter.PRESSURE_SENSOR_HEIGHT_FROM_BOTTOM]) + NEWLINE) else: self._connection.send(NEWLINE) elif "number of spectral estimates for each frequency band = " in response: if Parameter.SPECTRAL_ESTIMATES_FOR_EACH_FREQUENCY_BAND in self._sampling_args: self._connection.send(self._int_to_string(self._sampling_args[Parameter.SPECTRAL_ESTIMATES_FOR_EACH_FREQUENCY_BAND]) + NEWLINE) else: self._connection.send(NEWLINE) elif "minimum allowable attenuation = " in response: if Parameter.MIN_ALLOWABLE_ATTENUATION in self._sampling_args: self._connection.send(self._float_to_string(self._sampling_args[Parameter.MIN_ALLOWABLE_ATTENUATION]) + NEWLINE) else: self._connection.send(NEWLINE) elif "minimum period (seconds) to use in auto-spectrum = " in response: if Parameter.MIN_PERIOD_IN_AUTO_SPECTRUM in self._sampling_args: self._connection.send(self._float_to_string(self._sampling_args[Parameter.MIN_PERIOD_IN_AUTO_SPECTRUM]) + NEWLINE) else: self._connection.send(NEWLINE) elif "maximum period (seconds) to use in auto-spectrum = " in response: if Parameter.MAX_PERIOD_IN_AUTO_SPECTRUM in self._sampling_args: self._connection.send(self._float_to_string(self._sampling_args[Parameter.MAX_PERIOD_IN_AUTO_SPECTRUM]) + NEWLINE) else: self._connection.send(NEWLINE) elif "hanning window cutoff = " in response: done = True if Parameter.HANNING_WINDOW_CUTOFF in self._sampling_args: self._connection.send(self._float_to_string(self._sampling_args[Parameter.HANNING_WINDOW_CUTOFF]) + NEWLINE) else: self._connection.send(NEWLINE) # the remaining prompts apply to real-time wave statistics # show progress messages (y/n) = n, new value = y # number of wave samples per burst to use for wave statistics = 512, new value = 555 # use measured temperature and conductivity for density calculation (y/n) = y, new value = # height of pressure sensor from bottom (meters) = 600.0, new value = 55 # number of spectral estimates for each frequency band = 5, new value = # minimum allowable attenuation = 0.0025, new value = # minimum period (seconds) to use in auto-spectrum = 0.0e+00, new value = # maximum period (seconds) to use in auto-spectrum = 1.0e+06, new value = # hanning window cutoff = 0.10, new value = # resetting number of wave samples per burst to 512 # resetting number of samples to use for wave statistics to 512 else: raise InstrumentProtocolException('HOW DID I GET HERE! %s' % str(response) + str(prompt)) prompt = "" while prompt != Prompt.COMMAND: (prompt, response) = self._get_response(expected_prompt=Prompt.COMMAND) log.debug("WARNING!!! UNEXPECTED RESPONSE " + repr(response)) # Update params after changing them. self._update_params() # Verify that paramaters set via set are matching in the latest parameter scan. device_parameters = self._param_dict.get_config() for k in self._sampling_args.keys(): try: log.debug("self._sampling_args " + k + " = " + str(self._sampling_args[k])) except: log.debug("self._sampling_args " + k + " = ERROR") try: log.debug("device_parameters " + k + " = " + str(device_parameters[k])) except: log.debug("device_parameters " + k + " = ERROR") if self._sampling_args[k] != device_parameters[k]: log.debug("FAILURE: " + str(k) + " was " + str(device_parameters[k]) + " and should have been " + str(self._sampling_args[k])) raise InstrumentParameterException("FAILURE: " + str(k) + " was " + str(device_parameters[k]) + " and should have been " + str(self._sampling_args[k])) def _split_params(self, **params): log.debug("PARAMS = " + str(params)) ss_params = {} set_params = {} ss_keys = [Parameter.TIDE_INTERVAL, Parameter.TIDE_MEASUREMENT_DURATION, Parameter.TIDE_SAMPLES_BETWEEN_WAVE_BURST_MEASUREMENTS, Parameter.WAVE_SAMPLES_PER_BURST, Parameter.WAVE_SAMPLES_SCANS_PER_SECOND, Parameter.USE_START_TIME, Parameter.USE_STOP_TIME, Parameter.TXWAVESTATS, Parameter.SHOW_PROGRESS_MESSAGES, Parameter.NUM_WAVE_SAMPLES_PER_BURST_FOR_WAVE_STASTICS, Parameter.USE_MEASURED_TEMP_AND_CONDUCTIVITY_FOR_DENSITY_CALC, Parameter.AVERAGE_WATER_TEMPERATURE_ABOVE_PRESSURE_SENSOR, Parameter.AVERAGE_SALINITY_ABOVE_PRESSURE_SENSOR, Parameter.PRESSURE_SENSOR_HEIGHT_FROM_BOTTOM, Parameter.SPECTRAL_ESTIMATES_FOR_EACH_FREQUENCY_BAND, Parameter.MIN_ALLOWABLE_ATTENUATION, Parameter.MIN_PERIOD_IN_AUTO_SPECTRUM, Parameter.MAX_PERIOD_IN_AUTO_SPECTRUM, Parameter.HANNING_WINDOW_CUTOFF] for (key, value) in params.iteritems(): if key in ss_keys: ss_params[key] = value else: set_params[key] = value return(set_params, ss_params) ######################################################################## # Quit Session. ######################################################################## def _handler_command_quit_session(self, *args, **kwargs): """ Perform a command-response on the device. @param cmd The command to execute. @param args positional arguments to pass to the build handler. @param timeout=timeout optional wakeup and command timeout. @retval resp_result The (possibly parsed) response result. @raises InstrumentTimeoutException if the response did not occur in time. @raises InstrumentProtocolException if command could not be built or if response was not recognized. """ next_state = None next_agent_state = None result = self._do_cmd_no_resp(InstrumentCmds.QUIT_SESSION, *args, **kwargs) return (next_state, (next_agent_state, result)) ######################################################################## # Autosample handlers. ######################################################################## def _handler_autosample_enter(self, *args, **kwargs): """ Enter autosample state. """ # Tell driver superclass to send a state change event. # Superclass will query the state. self._driver_event(DriverAsyncEvent.STATE_CHANGE) def _handler_command_start_autosample(self, *args, **kwargs): """ Switch into autosample mode. @retval (next_state, result) tuple, (ProtocolState.AUTOSAMPLE, None) if successful. @throws InstrumentTimeoutException if device cannot be woken for command. @throws InstrumentProtocolException if command could not be built or misunderstood. """ kwargs['expected_prompt'] = Prompt.COMMAND kwargs['timeout'] = 30 next_state = None result = None # Issue start command and switch to autosample if successful. self._start_logging() next_state = ProtocolState.AUTOSAMPLE next_agent_state = ResourceAgentState.STREAMING return (next_state, (next_agent_state, result)) def _handler_autosample_stop_autosample(self, *args, **kwargs): """ Stop autosample and switch back to command mode. @retval (next_state, result) tuple, (ProtocolState.COMMAND, None) if successful. @throws InstrumentTimeoutException if device cannot be woken for command. @throws InstrumentProtocolException if command misunderstood or incorrect prompt received. """ next_state = None result = None # Wake up the device, continuing until autosample prompt seen. timeout = kwargs.get('timeout', TIMEOUT) self._wakeup_until(timeout, Prompt.AUTOSAMPLE) self._stop_logging(timeout) next_state = ProtocolState.COMMAND next_agent_state = ResourceAgentState.COMMAND return (next_state, (next_agent_state, result)) def _handler_autosample_exit(self, *args, **kwargs): """ Exit autosample state. """ pass ######################################################################## # Common handlers. ######################################################################## ######################################################################## # Test handlers. ######################################################################## ######################################################################## # Direct access handlers. ######################################################################## def _handler_command_start_direct(self, *args, **kwargs): """ """ next_state = None result = None next_state = ProtocolState.DIRECT_ACCESS next_agent_state = ResourceAgentState.DIRECT_ACCESS return (next_state, (next_agent_state, result)) def _handler_direct_access_enter(self, *args, **kwargs): """ Enter direct access state. """ # Tell driver superclass to send a state change event. # Superclass will query the state. self._driver_event(DriverAsyncEvent.STATE_CHANGE) self._sent_cmds = [] def _handler_direct_access_execute_direct(self, data): """ """ next_state = None result = None next_agent_state = None self._do_cmd_direct(data) # add sent command to list for 'echo' filtering in callback self._sent_cmds.append(data) return (next_state, (next_agent_state, result)) def _handler_direct_access_stop_direct(self): """ @throw InstrumentProtocolException on invalid command """ result = None next_state = ProtocolState.COMMAND next_agent_state = ResourceAgentState.COMMAND return (next_state, (next_agent_state, result)) def _handler_direct_access_exit(self, *args, **kwargs): """ Exit direct access state. """ pass ######################################################################## # Startup parameter handlers ######################################################################## def apply_startup_params(self): """ Apply all startup parameters. First we check the instrument to see if we need to set the parameters. If they are they are set correctly then we don't do anything. If we need to set parameters then we might need to transition to command first. Then we will transition back when complete. @todo: This feels odd. It feels like some of this logic should be handled by the state machine. It's a pattern that we may want to review. I say this because this command needs to be run from autosample or command mode. @raise: InstrumentProtocolException if not in command or streaming """ # Let's give it a try in unknown state log.debug("CURRENT STATE: %s" % self.get_current_state()) if (self.get_current_state() != ProtocolState.COMMAND and self.get_current_state() != ProtocolState.AUTOSAMPLE): raise InstrumentProtocolException("Not in command or autosample state. Unable to apply startup params") logging = self._is_logging() # If we are in streaming mode and our configuration on the # instrument matches what we think it should be then we # don't need to do anything. if(not self._instrument_config_dirty()): return True error = None try: if(logging): # Switch to command mode, self._stop_logging() self._apply_params() # Catch all error so we can put ourself back into # streaming. Then rethrow the error except Exception as e: error = e finally: # Switch back to streaming if(logging): self._start_logging() if(error): raise error def _instrument_config_dirty(self): """ Read the startup config and compare that to what the instrument is configured too. If they differ then return True @return: True if the startup config doesn't match the instrument @raise: InstrumentParameterException """ # Refresh the param dict cache # Let's assume we have already run this command recently #self._do_cmd_resp(InstrumentCmds.DISPLAY_STATUS) self._do_cmd_resp(InstrumentCmds.DISPLAY_CALIBRATION) startup_params = self._param_dict.get_startup_list() log.debug("Startup Parameters: %s" % startup_params) for param in startup_params: if not Parameter.has(param): raise InstrumentParameterException() if (self._param_dict.get(param) != self._param_dict.get_config_value(param)): log.debug("DIRTY: %s %s != %s" % (param, self._param_dict.get(param), self._param_dict.get_config_value(param))) return True log.debug("Clean instrument config") return False ######################################################################## # Private helpers. ######################################################################## def _is_logging(self, *args, **kwargs): """ Wake up the instrument and inspect the prompt to determine if we are in streaming @param: timeout - Command timeout @return: True - instrument logging, False - not logging, None - unknown logging state @raise: InstrumentProtocolException if we can't identify the prompt """ basetime = self._param_dict.get_current_timestamp() prompt = self._wakeup(timeout=TIMEOUT, delay=0.3) self._update_params() pd = self._param_dict.get_all(basetime) return pd.get(Parameter.LOGGING) def _start_logging(self, timeout=TIMEOUT): """ Command the instrument to start logging @param timeout: how long to wait for a prompt @return: True if successful @raise: InstrumentProtocolException if failed to start logging """ log.debug("Start Logging!") if(self._is_logging()): return True self._do_cmd_no_resp(InstrumentCmds.START_LOGGING, timeout=timeout) time.sleep(1) # Prompt device until command prompt is seen. self._wakeup_until(timeout, Prompt.COMMAND) if not self._is_logging(timeout): raise InstrumentProtocolException("failed to start logging") return True def _stop_logging(self, timeout=TIMEOUT): """ Command the instrument to stop logging @param timeout: how long to wait for a prompt @return: True if successful @raise: InstrumentTimeoutException if prompt isn't seen @raise: InstrumentProtocolException failed to stop logging """ log.debug("Stop Logging!") # Issue the stop command. self._do_cmd_resp(InstrumentCmds.STOP_LOGGING) time.sleep(1) # Prompt device until command prompt is seen. self._wakeup_until(timeout, Prompt.COMMAND) if self._is_logging(timeout): raise InstrumentProtocolException("failed to stop logging") return True def _build_simple_command(self, cmd): """ Build handler for basic sbe26plus commands. @param cmd the simple sbe37 command to format. @retval The command to be sent to the device. """ return cmd + NEWLINE def _build_driver_dict(self): """ Populate the driver dictionary with options """ self._driver_dict.add(DriverDictKey.VENDOR_SW_COMPATIBLE, True) def _build_command_dict(self): """ Populate the command dictionary with command. """ self._cmd_dict.add(Capability.ACQUIRE_STATUS, display_name="acquire status") self._cmd_dict.add(Capability.CLOCK_SYNC, display_name="sync clock") self._cmd_dict.add(Capability.START_AUTOSAMPLE, display_name="start autosample") self._cmd_dict.add(Capability.STOP_AUTOSAMPLE, display_name="stop autosample") self._cmd_dict.add(Capability.ACQUIRE_CONFIGURATION, display_name="get configuration data") self._cmd_dict.add(Capability.SEND_LAST_SAMPLE, display_name="get last sample") self._cmd_dict.add(Capability.QUIT_SESSION, display_name="quit session") def _build_param_dict(self): """ Populate the parameter dictionary with sbe26plus parameters. For each parameter key, add match stirng, match lambda function, and value formatting function for set commands. """ # Add parameter handlers to parameter dict. # DS ds_line_01 = r'SBE 26plus V ([\w.]+) +SN (\d+) +(\d{2} [a-zA-Z]{3,4} \d{4} +[\d:]+)' # NOT DONE # ds_line_02 = r'user info=(.*)$' ds_line_03 = r'quartz pressure sensor: serial number = ([\d\.\-]+), range = ([\d\.\-]+) psia' ds_line_04 = r'(external|internal) temperature sensor' # NOT DONE # ds_line_05 = r'conductivity = (YES|NO)' ds_line_06 = r'iop = +([\d\.\-]+) ma vmain = +([\d\.\-]+) V vlith = +([\d\.\-]+) V' ds_line_07a = r'last sample: p = +([\d\.\-]+), t = +([\d\.\-]+), s = +([\d\.\-]+)' ds_line_07b = r'last sample: p = +([\d\.\-]+), t = +([\d\.\-]+)' ds_line_08 = r'tide measurement: interval = (\d+)\.000 minutes, duration = ([\d\.\-]+) seconds' ds_line_09 = r'measure waves every ([\d\.\-]+) tide samples' ds_line_10 = r'([\d\.]+) wave samples/burst at ([\d\.]+) scans/sec, duration = ([\d\.]+) seconds' #ds_line_11 = r'logging start time = (\d{2} [a-zA-Z]{3,4} \d{4} +[\d:]+)' # NOT DONE # ds_line_11b = r'logging start time = (do not) use start time' #ds_line_12 = r'logging stop time = (\d{2} [a-zA-Z]{3,4} \d{4} +[\d:]+)' # NOT DONE # ds_line_12b = r'logging stop time = (do not) use stop time' ds_line_13 = r'tide samples/day = (\d+.\d+)' ds_line_14 = r'wave bursts/day = (\d+.\d+)' ds_line_15 = r'memory endurance = (\d+.\d+) days' ds_line_16 = r'nominal alkaline battery endurance = (\d+\.\d+) days' #ds_line_16_b = r'deployments longer than 2 years are not recommended with alkaline batteries' ds_line_17 = r'total recorded tide measurements = ([\d\.\-]+)' ds_line_18 = r'total recorded wave bursts = ([\d\.\-]+)' ds_line_19 = r'tide measurements since last start = ([\d\.\-]+)' ds_line_20 = r'wave bursts since last start = ([\d\.\-]+)' ds_line_21 = r'transmit real-time tide data = (YES|NO)' ds_line_22 = r'transmit real-time wave burst data = (YES|NO)' ds_line_23 = r'transmit real-time wave statistics = (YES|NO)' # real-time wave statistics settings: ds_line_24 = r' +number of wave samples per burst to use for wave statistics = (\d+)' ds_line_25 = r' +(do not |)use measured temperature (and conductivity |)for density calculation' # average water temperature above the pressure sensor (deg C) = -273.0 ds_line_26 = r' +average water temperature above the pressure sensor \(deg C\) = +([\-\d\.]+)' # float ds_line_27 = r' +average salinity above the pressure sensor \(PSU\) = +([\-\d\.]+)' # float ds_line_28 = r' +height of pressure sensor from bottom \(meters\) = ([\-\d\.]+)' ds_line_29 = r' +number of spectral estimates for each frequency band = (\d+)' ds_line_30 = r' +minimum allowable attenuation = ([\d\.]+)' ds_line_31 = r' +minimum period \(seconds\) to use in auto-spectrum = (-?[\d\.e\-\+]+)' ds_line_32 = r' +maximum period \(seconds\) to use in auto-spectrum = (-?[\d\.e\-\+]+)' ds_line_33 = r' +hanning window cutoff = ([\d\.]+)' ds_line_34 = r' +(do not show|show) progress messages' # NOT DONE # ds_line_35 = r'status = (logging|waiting|stopped)' # status = stopped by user ds_line_36 = r'logging = (YES|NO)' # logging = NO, send start command to begin logging # Next 2 work together to pull 2 values out of a single line. # self._param_dict.add(Parameter.DEVICE_VERSION, ds_line_01, lambda match : string.upper(match.group(1)), self._string_to_string, type=ParameterDictType.STRING, display_name="Firmware Version", multi_match=True, visibility=ParameterDictVisibility.READ_ONLY) self._param_dict.add(Parameter.SERIAL_NUMBER, ds_line_01, lambda match : string.upper(match.group(2)), self._string_to_string, type=ParameterDictType.STRING, display_name="Serial Number", multi_match=True, visibility=ParameterDictVisibility.READ_ONLY) self._param_dict.add(Parameter.DS_DEVICE_DATE_TIME, ds_line_01, lambda match : string.upper(match.group(3)), self._string_to_numeric_date_time_string, type=ParameterDictType.STRING, display_name="Instrument Time", multi_match=True, visibility=ParameterDictVisibility.READ_ONLY) # will need to make this a date time once that is sorted out self._param_dict.add(Parameter.USER_INFO, ds_line_02, lambda match : string.upper(match.group(1)), self._string_to_string, type=ParameterDictType.STRING, display_name="User Info") # # Next 2 work together to pull 2 values out of a single line. # self._param_dict.add(Parameter.QUARTZ_PRESSURE_SENSOR_SERIAL_NUMBER, ds_line_03, lambda match : float(match.group(1)), self._float_to_string, type=ParameterDictType.FLOAT, display_name="Quartz Pressure Sensor Serial Number", multi_match=True, visibility=ParameterDictVisibility.READ_ONLY) self._param_dict.add(Parameter.QUARTZ_PRESSURE_SENSOR_RANGE, ds_line_03, lambda match : float(match.group(2)), self._float_to_string, type=ParameterDictType.FLOAT, display_name="Quartz Pressure Sensor Range", multi_match=True, visibility=ParameterDictVisibility.READ_ONLY) self._param_dict.add(Parameter.EXTERNAL_TEMPERATURE_SENSOR, ds_line_04, lambda match : False if (match.group(1)=='internal') else True, self._true_false_to_string, type=ParameterDictType.BOOL, display_name="External Temperature Sensor", visibility=ParameterDictVisibility.IMMUTABLE, startup_param=True, direct_access=True, default_value=False ) self._param_dict.add(Parameter.CONDUCTIVITY, ds_line_05, lambda match : False if (match.group(1)=='NO') else True, self._true_false_to_string, type=ParameterDictType.BOOL, display_name="Report Conductivity", visibility=ParameterDictVisibility.IMMUTABLE, startup_param=True, direct_access=True, default_value=False ) # # Next 3 work together to pull 3 values out of a single line. # self._param_dict.add(Parameter.IOP_MA, ds_line_06, lambda match : float(match.group(1)), self._float_to_string, type=ParameterDictType.FLOAT, display_name="IOP", multi_match=True, visibility=ParameterDictVisibility.READ_ONLY) self._param_dict.add(Parameter.VMAIN_V, ds_line_06, lambda match : float(match.group(2)), self._float_to_string, type=ParameterDictType.FLOAT, display_name="VMain", multi_match=True, visibility=ParameterDictVisibility.READ_ONLY) self._param_dict.add(Parameter.VLITH_V, ds_line_06, lambda match : float(match.group(3)), self._float_to_string, type=ParameterDictType.FLOAT, display_name="VLith", multi_match=True, visibility=ParameterDictVisibility.READ_ONLY) # # Next 3 work together to pull 3 values out of a single line. # self._param_dict.add(Parameter.LAST_SAMPLE_P, ds_line_07a, lambda match : float(match.group(1)), self._float_to_string, type=ParameterDictType.FLOAT, display_name="Last Sample Pressure", multi_match=True, visibility=ParameterDictVisibility.READ_ONLY) self._param_dict.add(Parameter.LAST_SAMPLE_T, ds_line_07a, lambda match : float(match.group(2)), self._float_to_string, type=ParameterDictType.FLOAT, display_name="Last Sample Temperature", multi_match=True, visibility=ParameterDictVisibility.READ_ONLY) self._param_dict.add(Parameter.LAST_SAMPLE_S, ds_line_07a, lambda match : float(match.group(3)), self._float_to_string, type=ParameterDictType.FLOAT, display_name="Last Sample Salinity", multi_match=True, visibility=ParameterDictVisibility.READ_ONLY) # # Altewrnate for when S is not present # self._param_dict.add(Parameter.LAST_SAMPLE_P, ds_line_07b, lambda match : float(match.group(1)), self._float_to_string, type=ParameterDictType.FLOAT, display_name="Last Sample Pressure", multi_match=True, visibility=ParameterDictVisibility.READ_ONLY) self._param_dict.add(Parameter.LAST_SAMPLE_T, ds_line_07b, lambda match : float(match.group(2)), self._float_to_string, type=ParameterDictType.FLOAT, display_name="Last Sample Temperature", multi_match=True, visibility=ParameterDictVisibility.READ_ONLY) # # Next 2 work together to pull 2 values out of a single line. # self._param_dict.add(Parameter.TIDE_INTERVAL, ds_line_08, lambda match : int(match.group(1)), self._int_to_string, type=ParameterDictType.INT, display_name="Tide Interval", multi_match=True) self._param_dict.add(Parameter.TIDE_MEASUREMENT_DURATION, ds_line_08, lambda match : int(match.group(2)), self._int_to_string, type=ParameterDictType.INT, display_name="Tide Measurement Duration", multi_match=True) self._param_dict.add(Parameter.TIDE_SAMPLES_BETWEEN_WAVE_BURST_MEASUREMENTS, ds_line_09, lambda match : float(match.group(1)), self._float_to_string, type=ParameterDictType.FLOAT, display_name="Tide Samples Between Wave Burst Measurements") # # Next 3 work together to pull 3 values out of a single line. # 1000 wave samples/burst at 4.00 scans/sec, duration = 250 seconds self._param_dict.add(Parameter.WAVE_SAMPLES_PER_BURST, ds_line_10, lambda match : int(match.group(1)), self._int_to_string, type=ParameterDictType.INT, display_name="Wave Sample Per Burst", multi_match=True) self._param_dict.add(Parameter.WAVE_SAMPLES_SCANS_PER_SECOND, ds_line_10, lambda match : float(match.group(2)), self._float_to_string, type=ParameterDictType.FLOAT, display_name="Wave Samples Scans Per Second", multi_match=True) self._param_dict.add(Parameter.NUM_WAVE_SAMPLES_PER_BURST_FOR_WAVE_STASTICS, ds_line_10, lambda match : int(match.group(3)), self._int_to_string, type=ParameterDictType.INT, display_name="Number of Wave Samples Per Burst For Wave Stats", multi_match=True) self._param_dict.add(Parameter.USE_START_TIME, ds_line_11b, lambda match : False if (match.group(1)=='do not') else True, self._true_false_to_string, type=ParameterDictType.BOOL, display_name="Use Start Time", visibility=ParameterDictVisibility.IMMUTABLE, startup_param=False, direct_access=False, default_value=False ) self._param_dict.add(Parameter.USE_STOP_TIME, ds_line_12b, lambda match : False if (match.group(1)=='do not') else True, self._true_false_to_string, type=ParameterDictType.BOOL, display_name="Use Stop Time", visibility=ParameterDictVisibility.IMMUTABLE, startup_param=False, direct_access=False, default_value=False ) self._param_dict.add(Parameter.TIDE_SAMPLES_PER_DAY, ds_line_13, lambda match : float(match.group(1)), self._float_to_string, type=ParameterDictType.FLOAT, display_name="Tide Samples Per Day") self._param_dict.add(Parameter.WAVE_BURSTS_PER_DAY, ds_line_14, lambda match : float(match.group(1)), self._float_to_string, type=ParameterDictType.FLOAT, display_name="Wave Bursts Per Day") self._param_dict.add(Parameter.MEMORY_ENDURANCE, ds_line_15, lambda match : float(match.group(1)), self._float_to_string, visibility=ParameterDictVisibility.READ_ONLY, type=ParameterDictType.FLOAT, display_name="Memory Endurance") self._param_dict.add(Parameter.NOMINAL_ALKALINE_BATTERY_ENDURANCE, ds_line_16, lambda match : float(match.group(1)), self._float_to_string, visibility=ParameterDictVisibility.READ_ONLY, type=ParameterDictType.FLOAT, display_name="Nominal Alkaline Battery Endurance") self._param_dict.add(Parameter.TOTAL_RECORDED_TIDE_MEASUREMENTS, ds_line_17, lambda match : float(match.group(1)), self._float_to_string, visibility=ParameterDictVisibility.READ_ONLY, type=ParameterDictType.FLOAT, display_name="Total Recorded Tide Measurements") self._param_dict.add(Parameter.TOTAL_RECORDED_WAVE_BURSTS, ds_line_18, lambda match : float(match.group(1)), self._float_to_string, visibility=ParameterDictVisibility.READ_ONLY, type=ParameterDictType.FLOAT, display_name="Total Recorded Wave Bursts") self._param_dict.add(Parameter.TIDE_MEASUREMENTS_SINCE_LAST_START, ds_line_19, lambda match : float(match.group(1)), self._float_to_string, visibility=ParameterDictVisibility.READ_ONLY, type=ParameterDictType.FLOAT, display_name="Tide Measuremetns Since Last Start") self._param_dict.add(Parameter.WAVE_BURSTS_SINCE_LAST_START, ds_line_20, lambda match : float(match.group(1)), self._float_to_string, visibility=ParameterDictVisibility.READ_ONLY, type=ParameterDictType.FLOAT, display_name="Wave Bursts Since Last Start") self._param_dict.add(Parameter.TXREALTIME, ds_line_21, lambda match : False if (match.group(1)=='NO') else True, self._true_false_to_string, type=ParameterDictType.BOOL, display_name="Transmit RealTime Tide Data", startup_param=True, direct_access=True, default_value=True ) self._param_dict.add(Parameter.TXWAVEBURST, ds_line_22, lambda match : False if (match.group(1)=='NO') else True, self._true_false_to_string, type=ParameterDictType.BOOL, display_name="Transmit RealTime Wave Burst Data", startup_param=True, direct_access=True, default_value=False ) self._param_dict.add(Parameter.TXWAVESTATS, ds_line_23, lambda match : False if (match.group(1)=='NO') else True, self._true_false_to_string, type=ParameterDictType.BOOL, display_name="Transmit Wave Stats Data", ) self._param_dict.add(Parameter.NUM_WAVE_SAMPLES_PER_BURST_FOR_WAVE_STASTICS, ds_line_24, lambda match : int(match.group(1)), self._int_to_string, type=ParameterDictType.INT, display_name="Number of Wave Samples Per Burst For Wave Stats", ) self._param_dict.add(Parameter.USE_MEASURED_TEMP_AND_CONDUCTIVITY_FOR_DENSITY_CALC, ds_line_25, lambda match : False if (match.group(1)=='do not ') else True, self._true_false_to_string, type=ParameterDictType.BOOL, display_name="Use Measured Temperature and Conductivity of rDensity Calculation", ) self._param_dict.add(Parameter.AVERAGE_WATER_TEMPERATURE_ABOVE_PRESSURE_SENSOR, ds_line_26, lambda match : float(match.group(1)), self._float_to_string, type=ParameterDictType.FLOAT, display_name="Average Water Temperature Above Pressure Sensor", ) self._param_dict.add(Parameter.AVERAGE_SALINITY_ABOVE_PRESSURE_SENSOR, ds_line_27, lambda match : float(match.group(1)), self._float_to_string, type=ParameterDictType.FLOAT, display_name="Average Salinity Above Pressure Sensor", ) self._param_dict.add(Parameter.PRESSURE_SENSOR_HEIGHT_FROM_BOTTOM, ds_line_28, lambda match : float(match.group(1)), self._float_to_string, type=ParameterDictType.FLOAT, display_name="Pressure Sensor Height From Bottom", ) self._param_dict.add(Parameter.SPECTRAL_ESTIMATES_FOR_EACH_FREQUENCY_BAND, ds_line_29, lambda match : int(match.group(1)), self._int_to_string, type=ParameterDictType.INT, display_name="Spectral Estimates For Each Frequency Band", ) self._param_dict.add(Parameter.MIN_ALLOWABLE_ATTENUATION, ds_line_30, lambda match : float(match.group(1)), self._float_to_string, type=ParameterDictType.FLOAT, display_name="Minimum Allowable Attenuation", ) self._param_dict.add(Parameter.MIN_PERIOD_IN_AUTO_SPECTRUM, ds_line_31, lambda match : float(match.group(1)), self._float_to_string, type=ParameterDictType.FLOAT, display_name="Minimum Period In Auto Spectrum", ) self._param_dict.add(Parameter.MAX_PERIOD_IN_AUTO_SPECTRUM, ds_line_32, lambda match : float(match.group(1)), self._float_to_string, type=ParameterDictType.FLOAT, display_name="Maximum Period In Auto Spectrum", ) self._param_dict.add(Parameter.HANNING_WINDOW_CUTOFF, ds_line_33, lambda match : float(match.group(1)), self._float_to_string, type=ParameterDictType.FLOAT, display_name="Hanning Window Cutoff", ) self._param_dict.add(Parameter.SHOW_PROGRESS_MESSAGES, ds_line_34, lambda match : True if (match.group(1)=='show') else False, self._true_false_to_string, type=ParameterDictType.BOOL, display_name="Show Progress Message", visibility=ParameterDictVisibility.IMMUTABLE) self._param_dict.add(Parameter.STATUS, ds_line_35, lambda match : string.upper(match.group(1)), self._string_to_string, type=ParameterDictType.STRING, display_name="Status", visibility=ParameterDictVisibility.READ_ONLY) self._param_dict.add(Parameter.LOGGING, ds_line_36, lambda match : False if (match.group(1)=='NO') else True, self._true_false_to_string, type=ParameterDictType.BOOL, display_name="Logging", visibility=ParameterDictVisibility.READ_ONLY) def _update_params(self, *args, **kwargs): """ Update the parameter dictionary. Wake the device then issue display status and display calibration commands. The parameter dict will match line output and udpate itself. @throws InstrumentTimeoutException if device cannot be timely woken. @throws InstrumentProtocolException if ds/dc misunderstood. """ # Get old param dict config. old_config = self._param_dict.get_config() # Issue display commands and parse results. timeout = kwargs.get('timeout', TIMEOUT) self._do_cmd_resp(InstrumentCmds.DISPLAY_STATUS, timeout=timeout) # Get new param dict config. If it differs from the old config, # tell driver superclass to publish a config change event. new_config = self._param_dict.get_config() if not dict_equal(new_config, old_config) and self._protocol_fsm.get_current_state() != ProtocolState.UNKNOWN: self._driver_event(DriverAsyncEvent.CONFIG_CHANGE) def _parse_ds_response(self, response, prompt): """ Response handler for ds command """ if prompt != Prompt.COMMAND: raise InstrumentProtocolException('ds command not recognized: %s.' % response) for line in response.split(NEWLINE): hit_count = self._param_dict.multi_match_update(line) log.debug(str(hit_count) + "_parse_ds_response -- " + line ) # return the Ds as text match = DS_REGEX_MATCHER.search(response) result = None if match: result = match.group(1) log.debug("MATCH = " + str(result)) return result def _parse_dc_response(self, response, prompt): """ Response handler for dc command """ if prompt != Prompt.COMMAND: raise InstrumentProtocolException('dc command not recognized: %s.' % response) # publish a sample sample = self._extract_sample(SBE26plusDeviceCalibrationDataParticle, DC_REGEX_MATCHER, response, True) # return the DC as text match = DC_REGEX_MATCHER.search(response) result = None if match: result = match.group(1) return result def _parse_sl_response(self, response, prompt): """ Response handler for dc command """ if prompt != Prompt.COMMAND: raise InstrumentProtocolException('sl command not recognized: %s.' % response) result = response log.debug("_parse_sl_response RETURNING RESULT=" + str(result)) return result def _parse_ts_response(self, response, prompt): """ Response handler for ts command. @param response command response string. @param prompt prompt following command response. @retval sample dictionary containig c, t, d values. @throws InstrumentProtocolException if ts command misunderstood. @throws InstrumentSampleException if response did not contain a sample """ if prompt != Prompt.COMMAND: raise InstrumentProtocolException('ts command not recognized: %s', response) result = response log.debug("_parse_ts_response RETURNING RESULT=" + str(result)) return result def _got_chunk(self, chunk, timestamp): """ The base class got_data has gotten a chunk from the chunker. Pass it to extract_sample with the appropriate particle objects and REGEXes. @param: chunk - byte sequence that we want to create a particle from @param: timestamp - port agent timestamp to include in the chunk """ if(self._extract_sample(SBE26plusTideSampleDataParticle, TS_REGEX_MATCHER, chunk, timestamp)): return if(self._extract_sample(SBE26plusTideSampleDataParticle, TIDE_REGEX_MATCHER, chunk, timestamp)): return if(self._extract_sample(SBE26plusWaveBurstDataParticle, WAVE_REGEX_MATCHER, chunk, timestamp)): return if(self._extract_sample(SBE26plusStatisticsDataParticle, STATS_REGEX_MATCHER, chunk, timestamp)): return if(self._extract_sample(SBE26plusDeviceCalibrationDataParticle, DC_REGEX_MATCHER, chunk, timestamp)): return if(self._extract_sample(SBE26plusDeviceStatusDataParticle, DS_REGEX_MATCHER, chunk, timestamp)): return ######################################################################## # Static helpers to format set commands. ######################################################################## @staticmethod def _string_to_string(v): return v @staticmethod # Should be renamed boolen_to_string for consistency def _true_false_to_string(v): """ Write a boolean value to string formatted for sbe37 set operations. @param v a boolean value. @retval A yes/no string formatted for sbe37 set operations. @throws InstrumentParameterException if value not a bool. """ if not isinstance(v,bool): raise InstrumentParameterException('Value %s is not a bool.' % str(v)) if v: return 'y' else: return 'n' @staticmethod def _int_to_string(v): """ Write an int value to string formatted for sbe37 set operations. @param v An int val. @retval an int string formatted for sbe37 set operations. @throws InstrumentParameterException if value not an int. """ if not isinstance(v,int): raise InstrumentParameterException('Value %s is not an int.' % str(v)) else: return '%i' % v @staticmethod def _float_to_string(v): """ Write a float value to string formatted for sbe37 set operations. @param v A float val. @retval a float string formatted for sbe37 set operations. @throws InstrumentParameterException if value is not a float. """ if not isinstance(v, float): raise InstrumentParameterException('Value %s is not a float.' % v) else: #return '%e' % v #This returns a exponential formatted float # every time. not what is needed return str(v) #return a simple float @staticmethod def _string_to_numeric_date_time_string(date_time_string): """ convert string from "21 AUG 2012 09:51:55" to numeric "mmddyyyyhhmmss" """ return time.strftime("%m%d%Y%H%M%S", time.strptime(date_time_string, "%d %b %Y %H:%M:%S"))
45.054485
167
0.613276
118,300
0.973206
0
0
2,677
0.022023
0
0
39,752
0.327024
9a9fc338c15aa55b529d0d570899ecd61a1b41cd
514
py
Python
Strings/count-index-find.py
tverma332/python3
544c4ec9c726c37293c8da5799f50575cc50852d
[ "MIT" ]
3
2022-03-28T09:10:08.000Z
2022-03-29T10:47:56.000Z
Strings/count-index-find.py
tverma332/python3
544c4ec9c726c37293c8da5799f50575cc50852d
[ "MIT" ]
1
2022-03-27T11:52:58.000Z
2022-03-27T11:52:58.000Z
Strings/count-index-find.py
tverma332/python3
544c4ec9c726c37293c8da5799f50575cc50852d
[ "MIT" ]
null
null
null
# 1) count = To count how many time a particular word & char. is appearing x = "Keep grinding keep hustling" print(x.count("t")) # 2) index = To get index of letter(gives the lowest index) x="Keep grinding keep hustling" print(x.index("t")) # will give the lowest index value of (t) # 3) find = To get index of letter(gives the lowest index) | Return -1 on failure. x = "Keep grinding keep hustling" print(x.find("t")) ''' NOTE : print(x.index("t",34)) : Search starts from index value 34 including 34 '''
25.7
82
0.684825
0
0
0
0
0
0
0
0
438
0.85214
9aa0a86fc034faf07525b543313701f15dfaa4e4
4,526
py
Python
datasets/datasets.py
rioyokotalab/ecl-isvr
ae274b1b81b1d1c10db008140c477f5893a0c1c3
[ "BSD-4-Clause-UC" ]
null
null
null
datasets/datasets.py
rioyokotalab/ecl-isvr
ae274b1b81b1d1c10db008140c477f5893a0c1c3
[ "BSD-4-Clause-UC" ]
null
null
null
datasets/datasets.py
rioyokotalab/ecl-isvr
ae274b1b81b1d1c10db008140c477f5893a0c1c3
[ "BSD-4-Clause-UC" ]
2
2021-09-30T02:13:40.000Z
2021-12-14T07:33:28.000Z
#! -*- coding:utf-8 from typing import Callable, List, Optional import numpy as np import torch import torchvision __all__ = ["CIFAR10", "FashionMNIST"] class CIFAR10(torch.utils.data.Dataset): def __init__(self, root: str, train: bool = True, transform: Optional[Callable] = None, target_transform: Optional[Callable] = None, download: bool = False, indices: List[int] = None, data_length: int = None, shuffle: bool = False): super(CIFAR10, self).__init__() self.__datas__ = [] self.__labels__ = [] dataset = torchvision.datasets.CIFAR10(root, train=train, transform=transform, target_transform=target_transform, download=download) self.__classes__ = dataset.classes if indices is None: indices = list(range(len(dataset))) for i in indices: # load data and catching... d, l = dataset[i] self.__datas__.append(d) self.__labels__.append(l) self.__length__ = (len(self.data) if data_length is None else data_length) self.__indices__ = np.arange(len(self.data)) self.__shuffle__ = shuffle if self.shuffle: np.random.shuffle(self.__indices__) self.__call_count__ = 0 @property def data(self): return self.__datas__ @property def label(self): return self.__labels__ @property def classes(self): return self.__classes__ @property def indices(self): return self.__indices__ @property def shuffle(self): return self.__shuffle__ def __len__(self): return self.__length__ def __getitem__(self, idx): idx = self.indices[idx % len(self.data)] d = self.data[idx] l = self.label[idx] self.__call_count__ += 1 if self.shuffle and self.__call_count__ >= len(self): np.random.shuffle(self.__indices__) self.__call_count__ = 0 return d, l class FashionMNIST(torch.utils.data.Dataset): def __init__(self, root: str, train: bool = True, transform: Optional[Callable] = None, target_transform: Optional[Callable] = None, download: bool = False, indices: List[int] = None, data_length: int = None, shuffle: bool = False): super(FashionMNIST, self).__init__() self.__datas__ = [] self.__labels__ = [] dataset = torchvision.datasets.FashionMNIST(root, train=train, transform=transform, target_transform=target_transform, download=download) self.__classes__ = dataset.classes if indices is None: indices = list(range(len(dataset))) for i in indices: # load data and catching... d, l = dataset[i] self.__datas__.append(d) self.__labels__.append(l) self.__length__ = (len(self.data) if data_length is None else data_length) self.__indices__ = np.arange(len(self.data)) self.__shuffle__ = shuffle if self.shuffle: np.random.shuffle(self.__indices__) self.__call_count__ = 0 @property def data(self): return self.__datas__ @property def label(self): return self.__labels__ @property def classes(self): return self.__classes__ @property def indices(self): return self.__indices__ @property def shuffle(self): return self.__shuffle__ def __len__(self): return self.__length__ def __getitem__(self, idx): idx = self.indices[idx % len(self.data)] d = self.data[idx] l = self.label[idx] self.__call_count__ += 1 if self.shuffle and self.__call_count__ >= len(self): np.random.shuffle(self.__indices__) self.__call_count__ = 0 return d, l
36.208
87
0.527176
4,351
0.961335
0
0
554
0.122404
0
0
99
0.021874
9aa249f279f7113e5bf54c4bf46eea1716af9bd2
1,819
py
Python
API/Segmentation_API/detectron_seg.py
rogo96/Background-removal
e301d288b73074940356fa4fe9c11f11885dc506
[ "MIT" ]
40
2020-09-16T02:22:30.000Z
2021-12-22T11:30:49.000Z
API/Segmentation_API/detectron_seg.py
ganjbakhshali/Background-removal
39691c0044b824e8beab13e44f2c269e309aec72
[ "MIT" ]
6
2020-09-18T02:59:11.000Z
2021-09-06T15:44:33.000Z
API/Segmentation_API/detectron_seg.py
ganjbakhshali/Background-removal
39691c0044b824e8beab13e44f2c269e309aec72
[ "MIT" ]
14
2020-11-06T09:26:25.000Z
2021-10-20T08:00:48.000Z
from detectron2 import model_zoo from detectron2.engine import DefaultPredictor from detectron2.config import get_cfg from detectron2.utils.visualizer import Visualizer from detectron2.data import MetadataCatalog import torch import numpy as np import cv2 class Model: def __init__(self,confidence_thresh=0.6): cfg = get_cfg() cfg.merge_from_file(model_zoo.get_config_file("COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x.yaml")) cfg.MODEL.ROI_HEADS.SCORE_THRESH_TEST = confidence_thresh # set threshold for this model cfg.MODEL.WEIGHTS = model_zoo.get_checkpoint_url("COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x.yaml") self.model = DefaultPredictor(cfg) def get_seg_output(self,image:np.array): out = self.model(image)['instances'] outputs = [(out.pred_masks[i],out.pred_classes[i]) for i in range(len(out.pred_classes)) if out.pred_classes[i]==0] return outputs class Preprocessing: def __init__(self,kernel,dilate_iter=5,erode_iter=1): self.kernel = kernel self.dilate_iter = dilate_iter self.erode_iter = erode_iter def get_target_mask(self,masks): out = np.zeros(masks[0].shape) for mask in masks: out += mask out = np.clip(out,0,1) return out def get_trimap(self,masks): target_mask = self.get_target_mask(masks) erode = cv2.erode(target_mask.astype('uint8'),self.kernel,iterations=self.erode_iter) dilate = cv2.dilate(target_mask.astype('uint8'),self.kernel,iterations=self.dilate_iter) h, w = target_mask.shape trimap = np.zeros((h, w, 2)) trimap[erode == 1, 1] = 1 trimap[dilate == 0, 0] = 1 return trimap
31.912281
124
0.6663
1,528
0.840022
0
0
0
0
0
0
163
0.08961
9aa39e5e7763187b713ab547d0e364010f1b3d6f
106
py
Python
examples/plugin_example/setup.py
linshoK/pysen
2b84a15240c5a47cadd8e3fc8392c54c2995b0b1
[ "MIT" ]
423
2021-03-22T08:45:12.000Z
2022-03-31T21:05:53.000Z
examples/plugin_example/setup.py
linshoK/pysen
2b84a15240c5a47cadd8e3fc8392c54c2995b0b1
[ "MIT" ]
1
2022-02-23T08:53:24.000Z
2022-03-23T14:11:54.000Z
examples/plugin_example/setup.py
linshoK/pysen
2b84a15240c5a47cadd8e3fc8392c54c2995b0b1
[ "MIT" ]
9
2021-03-26T14:20:07.000Z
2022-03-24T13:17:06.000Z
from setuptools import setup setup( name="example-advanced-package", version="0.0.0", packages=[], )
17.666667
66
0.698113
0
0
0
0
0
0
0
0
33
0.311321
9aa3bdf68ace18fc9d168671cbe55ba44bdbac29
416
py
Python
setup.py
xpac1985/pyASA
a6cf470a4d1b731864a1b450e321901636c1ebdf
[ "MIT" ]
10
2017-02-05T12:15:19.000Z
2020-05-20T14:33:04.000Z
setup.py
xpac1985/pyASA
a6cf470a4d1b731864a1b450e321901636c1ebdf
[ "MIT" ]
null
null
null
setup.py
xpac1985/pyASA
a6cf470a4d1b731864a1b450e321901636c1ebdf
[ "MIT" ]
3
2017-04-02T13:00:28.000Z
2020-06-13T23:34:37.000Z
from distutils.core import setup setup( name='pyASA', packages=['pyASA'], version='0.1.0', description='Wrapper for the Cisco ASA REST API', author='xpac', author_email='bjoern@areafunky.net', url='https://github.com/xpac1985/pyASA', download_url='https://github.com/xpac1985/pyASA/tarball/0.1.0', keywords=['cisco', 'asa', 'rest-api', 'wrapper', 'alpha'], classifiers=[], )
27.733333
67
0.646635
0
0
0
0
0
0
0
0
207
0.497596
9aa3ca73beed1f30ce5fdf99995b03ee7f17a719
2,441
py
Python
Client.py
fimmartins/qpid_protobuf_python
b1411088e74b48347aeeaecdf84bbf9c7c9f7662
[ "Apache-2.0" ]
1
2015-12-15T19:21:26.000Z
2015-12-15T19:21:26.000Z
Client.py
fimmartins/qpid_protobuf_python
b1411088e74b48347aeeaecdf84bbf9c7c9f7662
[ "Apache-2.0" ]
null
null
null
Client.py
fimmartins/qpid_protobuf_python
b1411088e74b48347aeeaecdf84bbf9c7c9f7662
[ "Apache-2.0" ]
null
null
null
from Qpid import QpidConnection from mxt1xx_pb2 import * from commands_pb2 import * from QpidTypes import * from qpid.messaging import * #doc http://qpid.apache.org/releases/qpid-0.14/apis/python/html/ #examples https://developers.google.com/protocol-buffers/docs/pythontutorial qpidCon = QpidConnection('192.168.0.78', '5672', 'fila_dados_ext', 'mxt_command_qpid') while not(qpidCon.start()): print('Trying to reconnect') response_received = True; def mxt1xx_output_control(activate, pos, qpidCon): activate = not activate activate = int(activate == True) cmd = u_command() cmd.protocol = pos.firmware.protocol cmd.serial = pos.firmware.serial cmd.id = 'Controla Saida ' + str(pos.firmware.serial) cmd.type = 51 cmd.attempt = 50 cmd.timeout = '2020-12-31 00:00:00' cmd.handler_type = 2 cmd.transport = 'GPRS' parameter = cmd.parameter.add() parameter.id = 'SET_OUTPUT' parameter.value = '1' parameter = cmd.parameter.add() parameter.id = 'SET OUTPUT 1' parameter.value = str(activate) parameter = cmd.parameter.add() parameter.id = 'SET OUTPUT 2' parameter.value = str(activate) parameter = cmd.parameter.add() parameter.id = 'SET OUTPUT 3' parameter.value = str(activate) parameter = cmd.parameter.add() parameter.id = 'SET OUTPUT 4' parameter.value = str(activate) message = Message(subject="PB_COMMAND", content=cmd.SerializeToString()) qpidCon.sender.send(message) return False while(1): message = qpidCon.receiver.fetch() subject = message.subject print (message.subject + ' received') if subject == QpidSubjectType.qpid_st_pb_mxt1xx_pos: pos = mxt1xx_u_position() pos.ParseFromString(message.content) print (str(pos.firmware.protocol) + ':' + str(pos.firmware.serial) + ':' + str(pos.firmware.memory_index)) qpidCon.session.acknowledge() if response_received: response_received = mxt1xx_output_control(pos.hardware_monitor.outputs.output_1, pos, qpidCon); if subject == QpidSubjectType.qpid_st_pb_command_response: res = u_command_response() res.ParseFromString(message.content) if res.status == 5: print('Command response: Success') response_received = True else: print('Command response: ' + str(res.status)) else: qpidCon.session.acknowledge()
31.294872
114
0.679639
0
0
0
0
0
0
0
0
406
0.166325
9aa4eade5a06a5cb47e49505af09bdb59f7f1c8a
1,574
py
Python
run_all.py
EinariTuukkanen/line-search-comparison
7daa38779017f26828caa31a53675c8223e6ab8e
[ "MIT" ]
null
null
null
run_all.py
EinariTuukkanen/line-search-comparison
7daa38779017f26828caa31a53675c8223e6ab8e
[ "MIT" ]
null
null
null
run_all.py
EinariTuukkanen/line-search-comparison
7daa38779017f26828caa31a53675c8223e6ab8e
[ "MIT" ]
null
null
null
import numpy as np from example_functions import target_function_dict from line_search_methods import line_search_dict from main_methods import main_method_dict from config import best_params from helpers import generate_x0 def run_one(_theta, _main_method, _ls_method, params, ls_params): theta = _theta() x0 = generate_x0(theta.n, *theta.bounds) ls_method = _ls_method(ls_params) main_method = _main_method(params, ls_method) # print('Correct solution: ', theta.min_values) result = main_method(theta, np.array(x0)) # print('Found solution: ', result['min_value']) # print(result_to_string(result)) return result def result_to_string(result): perf = result['performance'] ls_perf = perf['line_search'] return ', '.join([str(s) for s in [ result['status'], perf['iterations'], f"{perf['duration']} ms", ls_perf['iterations'], f"{round(ls_perf['duration'], 2)} ms", ]]) np.warnings.filterwarnings('ignore', category=RuntimeWarning) for theta in best_params: for main_method in best_params[theta]: for line_search in best_params[theta][main_method]: result = run_one( target_function_dict[theta], main_method_dict[main_method], line_search_dict[line_search], best_params[theta][main_method][line_search]['params'], best_params[theta][main_method][line_search]['ls_params'], ) status = result['status'] print(f"{status}: {theta},{main_method},{line_search}")
34.217391
74
0.670902
0
0
0
0
0
0
0
0
334
0.212198
9aa4fd6241fe5ed3a825608b2a7990cea4c0d1af
5,299
py
Python
bin/runner.py
ColorOfLight/ML-term-project
047b22fcdd8df7a18abd224ccbf23ae5d981fc97
[ "MIT" ]
null
null
null
bin/runner.py
ColorOfLight/ML-term-project
047b22fcdd8df7a18abd224ccbf23ae5d981fc97
[ "MIT" ]
null
null
null
bin/runner.py
ColorOfLight/ML-term-project
047b22fcdd8df7a18abd224ccbf23ae5d981fc97
[ "MIT" ]
null
null
null
# Load Packages import pandas as pd import numpy as np import matplotlib as mpl import matplotlib.pyplot as plt from sklearn import preprocessing from sklearn.model_selection import GridSearchCV, cross_val_score from sklearn.metrics import classification_report from plots import draw_corr_heatmap import seaborn as sns import xgboost as xgb import pickle from logger import Logger import os from sklearn.linear_model import ElasticNet from sklearn.ensemble import AdaBoostRegressor from ensemble import Ensemble from sklearn.impute import SimpleImputer from ilbeom_lg_v2 import Ilbeom_Linear from sklearn.model_selection import StratifiedKFold os.environ["JOBLIB_TEMP_FOLDER"] = "/tmp" # Varaibles train_rate = .8 # The model will saved in ../models/{model_name}.dat model_name = 'ensemble-test1' np.random.seed(0) names = ['contract date', 'latitude', 'longtitude', 'altitude', '1st region id', '2nd region id', 'road id', 'apartment_id', 'floor', 'angle', 'area', 'parking lot limit', 'parking lot area', 'parking lot external', 'management fee', 'households', 'age of residents', 'builder id', 'completion date', 'built year', 'schools', 'bus stations', 'subway stations', 'price'] non_numeric_names = ['contract date', 'completion date'] tuned_parameters = { 'n_estimators': [100, 200, 400], 'learning_rate': [0.02, 0.04, 0.08, 0.1, 0.4], 'gamma': [0, 1, 2], 'subsample': [0.5, 0.66, 0.75], 'colsample_bytree': [0.6, 0.8, 1], 'max_depth': [6, 7, 8] # 'learning_rate': [0.02], # 'gamma': [0], # 'subsample': [0.5], # 'colsample_bytree': [0.6], # 'max_depth': [6] } def acc_scorer(model, X, y): y_pred = model.predict(X) return get_accuracy(y_pred, y.iloc) def preprocess(data): data['angle'] = np.sin(data['angle']) data['contract date'] = pd.to_datetime(data['contract date']) data['completion date'] = pd.to_numeric( data['contract date'] - pd.to_datetime(data['completion date'])) data['contract date'] = pd.to_numeric( data['contract date'] - data['contract date'].min()) drop_columns = ['1st region id', '2nd region id', 'road id', 'apartment_id', 'builder id', 'built year'] data = data.drop(columns=drop_columns) drop_columns.append('price') def normalize(d): min_max_scaler = preprocessing.MinMaxScaler() d_scaled = min_max_scaler.fit_transform(d) return pd.DataFrame(d_scaled, columns=[item for item in names if item not in drop_columns]) return normalize(data) def get_accuracy(y_pred, y_test): length = len(y_pred) _sum = 0 for idx in range(length): _sum += abs((y_test[idx] - y_pred[idx]) / y_pred[idx]) return 1 - (_sum / length) # Main logger = Logger('final') data = pd.read_csv('../data/data_train.csv', names=names) # Fill NaN def fill_missing_values(data, is_test=False): new_data = data.drop(columns=non_numeric_names) imputer = SimpleImputer(missing_values=np.nan, strategy='median') imputer = imputer.fit(new_data) new_data = imputer.transform(new_data) if is_test: columns = [n for n in names if n not in non_numeric_names] columns.remove('price') new_data = pd.DataFrame( new_data, columns=columns) else: new_data = pd.DataFrame(new_data, columns=[n for n in names if n not in non_numeric_names]) for n in non_numeric_names: new_data[n] = data[n] return new_data data = fill_missing_values(data) y = data['price'] X = data.drop(columns=['price']) # X_names = list(X) def get_unique_model(): xg = xgb.XGBRegressor(n_estimators=200, learning_rate=0.02, gamma=0, subsample=0.75, colsample_bytree=1, max_depth=6) en = ElasticNet(l1_ratio=0.95, alpha=0.15, max_iter=50000) ada = AdaBoostRegressor( learning_rate=0.01, loss='square', n_estimators=100) lr = Ilbeom_Linear() lst = [xg, en, ada, lr] return Ensemble(lst) # model_n = xgb.XGBRegressor(n_estimators=200, learning_rate=0.02, gamma=0, subsample=0.75, # colsample_bytree=1, max_depth=6) model_n = ElasticNet(l1_ratio=0.95, alpha=0.15, max_iter=50000) model_u = get_unique_model() def test_cv(model, X, y, n_splits=5): # print(np.mean(cross_val_score(model, X, y, scoring=acc_scorer, cv=5, n_jobs=-1))) skf = StratifiedKFold(n_splits=n_splits, shuffle=True) results = [] for i, (train, test) in enumerate(skf.split(X, y)): print("Running Fold", i+1, "/", 5) X_train, X_test = X.iloc[train], X.iloc[test] y_train, y_test = y.iloc[train], y.iloc[test] model.fit(X_train, y_train) y_pred = model.predict(X_test) results.append(get_accuracy(y_pred, y_test.iloc)) print(f"result: {sum(results) / n_splits}") # Test each model # test_cv(model_n, preprocess(X), y) # test_cv(model_u, X, y) # Write Answer Sheet def write_answers(model_n, model_u): data = pd.read_csv('../data/data_test.csv', names=[n for n in names if n is not 'price']) data = fill_missing_values(data, is_test=True) np.savetxt('../data/result_.csv', model_n.predict(preprocess(data)).reshape(-1,1)) np.savetxt('../data/result_unique.csv', model_u.predict(data).reshape(-1, 1)) # write answers model_n.fit(preprocess(X), y) model_u.fit(X, y) write_answers(model_n, model_u)
32.115152
115
0.684846
0
0
0
0
0
0
0
0
1,452
0.274014
9aa693424bf8bc328cb722f9e8651b7867acfe8a
1,346
py
Python
api/app.py
t-kigi/nuxt-chalice-aws-app-template
d413752004976911938d2fc26aa864ddae91a34f
[ "MIT" ]
null
null
null
api/app.py
t-kigi/nuxt-chalice-aws-app-template
d413752004976911938d2fc26aa864ddae91a34f
[ "MIT" ]
null
null
null
api/app.py
t-kigi/nuxt-chalice-aws-app-template
d413752004976911938d2fc26aa864ddae91a34f
[ "MIT" ]
null
null
null
#!/usr/bin/python # -*- coding: utf-8 -*- """ nuxt-chalice-api のテンプレート実装です。 主に、全体で利用するグローバルスコープのリソースを初期化します。 """ import os from chalice import ( Chalice, CognitoUserPoolAuthorizer, CORSConfig ) from chalicelib import aws from chalicelib.env import store stage = store.mutation( 'chalilce.stage', os.environ.get('STAGE', 'local')) appname = os.environ.get('APPNAME', 'nuxt-chalice-api') app = store.mutation( 'chalice.app', Chalice(app_name=appname)) project_dir = os.path.dirname(__file__) conffile = os.path.join( project_dir, 'chalicelib', 'env', f'{stage}.yaml') store.load_config(conffile) authorizer = store.mutation( 'chalice.authorizer', CognitoUserPoolAuthorizer( 'MyUserPool', provider_arns=[store.conf('UserPoolARN')]) ) # local の場合のみ異なる Origin からのリクエストになるため CORS 設定が必要 if store.is_local(): cors = CORSConfig( allow_origin=store.conf('FrontUrl'), allow_headers=['CognitoAccessToken'], allow_credentials=True ) else: cors = None store.mutation('chalice.cors', cors) # AWS boto3 client 初期化 store.mutation( 'aws.session', aws.create_session(store.conf('Profile'), store.conf('Region'))) store.mutation( 'aws.cognito-idp', store.get('aws.session').client('cognito-idp')) # モジュール別のルーティングを追加 from chalicelib.routes import auth, example # noqa
22.433333
70
0.704309
0
0
0
0
0
0
0
0
646
0.423885
9aa815cea217ed0284d392142fbc2dadb16b41d8
2,186
py
Python
examples/plotting/plot_with_matplotlib.py
crzdg/acconeer-python-exploration
26c16a3164199c58fe2940fe7050664d0d0e1161
[ "BSD-3-Clause-Clear" ]
null
null
null
examples/plotting/plot_with_matplotlib.py
crzdg/acconeer-python-exploration
26c16a3164199c58fe2940fe7050664d0d0e1161
[ "BSD-3-Clause-Clear" ]
null
null
null
examples/plotting/plot_with_matplotlib.py
crzdg/acconeer-python-exploration
26c16a3164199c58fe2940fe7050664d0d0e1161
[ "BSD-3-Clause-Clear" ]
null
null
null
import matplotlib.pyplot as plt import numpy as np from acconeer.exptool import configs, utils from acconeer.exptool.clients import SocketClient, SPIClient, UARTClient def main(): args = utils.ExampleArgumentParser(num_sens=1).parse_args() utils.config_logging(args) if args.socket_addr: client = SocketClient(args.socket_addr) elif args.spi: client = SPIClient() else: port = args.serial_port or utils.autodetect_serial_port() client = UARTClient(port) config = configs.IQServiceConfig() config.sensor = args.sensors config.update_rate = 10 session_info = client.setup_session(config) depths = utils.get_range_depths(config, session_info) amplitude_y_max = 1000 fig, (amplitude_ax, phase_ax) = plt.subplots(2) fig.set_size_inches(8, 6) fig.canvas.set_window_title("Acconeer matplotlib example") for ax in [amplitude_ax, phase_ax]: ax.set_xlabel("Depth (m)") ax.set_xlim(config.range_interval) ax.grid(True) amplitude_ax.set_ylabel("Amplitude") amplitude_ax.set_ylim(0, 1.1 * amplitude_y_max) phase_ax.set_ylabel("Phase") utils.mpl_setup_yaxis_for_phase(phase_ax) amplitude_line = amplitude_ax.plot(depths, np.zeros_like(depths))[0] phase_line = phase_ax.plot(depths, np.zeros_like(depths))[0] fig.tight_layout() plt.ion() plt.show() interrupt_handler = utils.ExampleInterruptHandler() print("Press Ctrl-C to end session") client.start_session() while not interrupt_handler.got_signal: info, data = client.get_next() amplitude = np.abs(data) phase = np.angle(data) max_amplitude = np.max(amplitude) if max_amplitude > amplitude_y_max: amplitude_y_max = max_amplitude amplitude_ax.set_ylim(0, 1.1 * max_amplitude) amplitude_line.set_ydata(amplitude) phase_line.set_ydata(phase) if not plt.fignum_exists(1): # Simple way to check if plot is closed break fig.canvas.flush_events() print("Disconnecting...") plt.close() client.disconnect() if __name__ == "__main__": main()
26.987654
77
0.682068
0
0
0
0
0
0
0
0
154
0.070448
9aa888a27862f3097e55339b5958acdbaec12723
437
py
Python
kryptobot/bots/multi_bot.py
eristoddle/Kryptobot
d0c3050a1c924125810946530670c19b2de72d3f
[ "Apache-2.0" ]
24
2018-05-29T13:44:36.000Z
2022-03-12T20:41:45.000Z
kryptobot/bots/multi_bot.py
eristoddle/Kryptobot
d0c3050a1c924125810946530670c19b2de72d3f
[ "Apache-2.0" ]
23
2018-07-08T02:31:18.000Z
2020-06-02T04:07:49.000Z
kryptobot/bots/multi_bot.py
eristoddle/Kryptobot
d0c3050a1c924125810946530670c19b2de72d3f
[ "Apache-2.0" ]
14
2018-08-10T15:44:27.000Z
2021-06-14T07:14:52.000Z
from .bot import Bot class MultiBot(Bot): strategies = [] def __init__(self, strategies, config=None): super().__init__(strategy=None, config=config) self.strategies = strategies # override this to inherit def __start(self): for st in self.strategies: st.add_session(self.session) st.add_keys(self.config['apis']) st.run_simulation() st.start()
24.277778
54
0.606407
414
0.947368
0
0
0
0
0
0
32
0.073227
9aa8e28e915cdb48539530ca48ffdc1fa280bc82
140
py
Python
setup.py
adrienbrunet/mixt
d725ec752ce430d135e993bc988bfdf2b8457c4b
[ "MIT" ]
27
2018-06-04T19:11:42.000Z
2022-02-23T22:46:39.000Z
setup.py
adrienbrunet/mixt
d725ec752ce430d135e993bc988bfdf2b8457c4b
[ "MIT" ]
7
2018-06-09T15:27:51.000Z
2021-03-11T20:00:35.000Z
setup.py
adrienbrunet/mixt
d725ec752ce430d135e993bc988bfdf2b8457c4b
[ "MIT" ]
3
2018-07-29T10:20:02.000Z
2021-11-18T19:55:07.000Z
#!/usr/bin/env python """Setup file for the ``mixt`` module. Configuration is in ``setup.cfg``.""" from setuptools import setup setup()
15.555556
76
0.678571
0
0
0
0
0
0
0
0
97
0.692857
9aa920f4f30751f1feef1f340c733399005558c4
1,235
py
Python
venv/lib/python3.9/site-packages/py2app/recipes/PIL/prescript.py
dequeb/asmbattle
27e8b209de5787836e288a2f2f9b7644ce07563e
[ "MIT" ]
193
2020-01-15T09:34:20.000Z
2022-03-18T19:14:16.000Z
venv/lib/python3.9/site-packages/py2app/recipes/PIL/prescript.py
dequeb/asmbattle
27e8b209de5787836e288a2f2f9b7644ce07563e
[ "MIT" ]
185
2020-01-15T08:38:27.000Z
2022-03-27T17:29:29.000Z
venv/lib/python3.9/site-packages/py2app/recipes/PIL/prescript.py
dequeb/asmbattle
27e8b209de5787836e288a2f2f9b7644ce07563e
[ "MIT" ]
23
2020-01-24T14:47:18.000Z
2022-02-22T17:19:47.000Z
def _recipes_pil_prescript(plugins): try: import Image have_PIL = False except ImportError: from PIL import Image have_PIL = True import sys def init(): if Image._initialized >= 2: return if have_PIL: try: import PIL.JpegPresets sys.modules["JpegPresets"] = PIL.JpegPresets except ImportError: pass for plugin in plugins: try: if have_PIL: try: # First try absolute import through PIL (for # Pillow support) only then try relative imports m = __import__("PIL." + plugin, globals(), locals(), []) m = getattr(m, plugin) sys.modules[plugin] = m continue except ImportError: pass __import__(plugin, globals(), locals(), []) except ImportError: print("Image: failed to import") if Image.OPEN or Image.SAVE: Image._initialized = 2 return 1 Image.init = init
26.276596
80
0.460729
0
0
0
0
0
0
0
0
136
0.110121
9aa95eb6fe52df130917d5af87f7b5c65c75b243
691
py
Python
app/accounts/views/user_type.py
phessabi/eshop
6a5352753a0c27f9c3f0eda6eec696f49ef4a8eb
[ "Apache-2.0" ]
1
2020-02-04T21:18:31.000Z
2020-02-04T21:18:31.000Z
app/accounts/views/user_type.py
phessabi/eshop
6a5352753a0c27f9c3f0eda6eec696f49ef4a8eb
[ "Apache-2.0" ]
12
2020-01-01T11:46:33.000Z
2022-03-12T00:10:01.000Z
app/accounts/views/user_type.py
phessabi/eshop
6a5352753a0c27f9c3f0eda6eec696f49ef4a8eb
[ "Apache-2.0" ]
1
2020-02-18T11:12:48.000Z
2020-02-18T11:12:48.000Z
from rest_framework.permissions import IsAuthenticated from rest_framework.response import Response from rest_framework.views import APIView class GetTypeView(APIView): permission_classes = [IsAuthenticated] def get(self, request): user = request.user if hasattr(user, 'vendor'): type = 'vendor' name = user.vendor.name elif hasattr(user, 'buyer'): type = 'buyer' name = user.buyer.name else: type = 'admin' name = user.username data = { 'name': name, 'type': type, 'username': user.username } return Response(data)
26.576923
54
0.570188
547
0.791606
0
0
0
0
0
0
59
0.085384
9aa976fa66600077fd0293cccc1c6dcd3ade5f91
9,390
py
Python
Statistical Thinking in Python (Part 1)/Thinking_probabilistically--_Discrete_variables.py
shreejitverma/Data-Scientist
03c06936e957f93182bb18362b01383e5775ffb1
[ "MIT" ]
2
2022-03-12T04:53:03.000Z
2022-03-27T12:39:21.000Z
Statistical Thinking in Python (Part 1)/Thinking_probabilistically--_Discrete_variables.py
shivaniverma1/Data-Scientist
f82939a411484311171465591455880c8e354750
[ "MIT" ]
null
null
null
Statistical Thinking in Python (Part 1)/Thinking_probabilistically--_Discrete_variables.py
shivaniverma1/Data-Scientist
f82939a411484311171465591455880c8e354750
[ "MIT" ]
2
2022-03-12T04:52:21.000Z
2022-03-27T12:45:32.000Z
# Thinking probabilistically-- Discrete variables!! # Statistical inference rests upon probability. Because we can very rarely say anything meaningful with absolute certainty from data, we use probabilistic language to make quantitative statements about data. In this chapter, you will learn how to think probabilistically about discrete quantities: those that can only take certain values, like integers. # Generating random numbers using the np.random module # We will be hammering the np.random module for the rest of this course and its sequel. Actually, you will probably call functions from this module more than any other while wearing your hacker statistician hat. Let's start by taking its simplest function, np.random.random() for a test spin. The function returns a random number between zero and one. Call np.random.random() a few times in the IPython shell. You should see numbers jumping around between zero and one. # In this exercise, we'll generate lots of random numbers between zero and one, and then plot a histogram of the results. If the numbers are truly random, all bars in the histogram should be of (close to) equal height. # You may have noticed that, in the video, Justin generated 4 random numbers by passing the keyword argument size=4 to np.random.random(). Such an approach is more efficient than a for loop: in this exercise, however, you will write a for loop to experience hacker statistics as the practice of repeating an experiment over and over again. # Seed the random number generator np.random.seed(42) # Initialize random numbers: random_numbers random_numbers = np.empty(100000) # Generate random numbers by looping over range(100000) for i in range(100000): random_numbers[i] = np.random.random() # Plot a histogram _ = plt.hist(random_numbers) # Show the plot plt.show() # The np.random module and Bernoulli trials # You can think of a Bernoulli trial as a flip of a possibly biased coin. Specifically, each coin flip has a probability p of landing heads (success) and probability 1−p of landing tails (failure). In this exercise, you will write a function to perform n Bernoulli trials, perform_bernoulli_trials(n, p), which returns the number of successes out of n Bernoulli trials, each of which has probability p of success. To perform each Bernoulli trial, use the np.random.random() function, which returns a random number between zero and one. def perform_bernoulli_trials(n, p): """Perform n Bernoulli trials with success probability p and return number of successes.""" # Initialize number of successes: n_success n_success = 0 # Perform trials for i in range(n): # Choose random number between zero and one: random_number random_number = np.random.random() # If less than p, it's a success so add one to n_success if random_number< p: n_success +=1 return n_success # How many defaults might we expect? # Let's say a bank made 100 mortgage loans. It is possible that anywhere between 0 and 100 of the loans will be defaulted upon. You would like to know the probability of getting a given number of defaults, given that the probability of a default is p = 0.05. To investigate this, you will do a simulation. You will perform 100 Bernoulli trials using the perform_bernoulli_trials() function you wrote in the previous exercise and record how many defaults we get. Here, a success is a default. (Remember that the word "success" just means that the Bernoulli trial evaluates to True, i.e., did the loan recipient default?) You will do this for another 100 Bernoulli trials. And again and again until we have tried it 1000 times. Then, you will plot a histogram describing the probability of the number of defaults. # Seed random number generator np.random.seed(42) # Initialize the number of defaults: n_defaults n_defaults = np.empty(1000) # Compute the number of defaults for i in range(1000): n_defaults[i] = perform_bernoulli_trials(100,0.05) # Plot the histogram with default number of bins; label your axes _ = plt.hist(n_defaults, normed= True) _ = plt.xlabel('number of defaults out of 100 loans') _ = plt.ylabel('probability') # Show the plot plt.show() # Will the bank fail? # Plot the number of defaults you got from the previous exercise, in your namespace as n_defaults, as a CDF. The ecdf() function you wrote in the first chapter is available. # If interest rates are such that the bank will lose money if 10 or more of its loans are defaulted upon, what is the probability that the bank will lose money? # Compute ECDF: x, y x, y= ecdf(n_defaults) # Plot the ECDF with labeled axes plt.plot(x, y, marker = '.', linestyle ='none') plt.xlabel('loans') plt.ylabel('interest') # Show the plot plt.show() # Compute the number of 100-loan simulations with 10 or more defaults: n_lose_money n_lose_money=sum(n_defaults >=10) # Compute and print probability of losing money print('Probability of losing money =', n_lose_money / len(n_defaults)) # Sampling out of the Binomial distribution # Compute the probability mass function for the number of defaults we would expect for 100 loans as in the last section, but instead of simulating all of the Bernoulli trials, perform the sampling using np.random.binomial(). This is identical to the calculation you did in the last set of exercises using your custom-written perform_bernoulli_trials() function, but far more computationally efficient. Given this extra efficiency, we will take 10,000 samples instead of 1000. After taking the samples, plot the CDF as last time. This CDF that you are plotting is that of the Binomial distribution. # Note: For this exercise and all going forward, the random number generator is pre-seeded for you (with np.random.seed(42)) to save you typing that each time. # Take 10,000 samples out of the binomial distribution: n_defaults n_defaults = np.random.binomial(100,0.05,size = 10000) # Compute CDF: x, y x, y = ecdf(n_defaults) # Plot the CDF with axis labels plt.plot(x,y, marker ='.', linestyle = 'none') plt.xlabel("Number of Defaults") plt.ylabel("CDF") # Show the plot plt.show() # Plotting the Binomial PMF # As mentioned in the video, plotting a nice looking PMF requires a bit of matplotlib trickery that we will not go into here. Instead, we will plot the PMF of the Binomial distribution as a histogram with skills you have already learned. The trick is setting up the edges of the bins to pass to plt.hist() via the bins keyword argument. We want the bins centered on the integers. So, the edges of the bins should be -0.5, 0.5, 1.5, 2.5, ... up to max(n_defaults) + 1.5. You can generate an array like this using np.arange() and then subtracting 0.5 from the array. # You have already sampled out of the Binomial distribution during your exercises on loan defaults, and the resulting samples are in the NumPy array n_defaults. # Compute bin edges: bins bins = np.arange(0, max(n_defaults) + 1.5) - 0.5 # Generate histogram plt.hist(n_defaults, normed = True, bins = bins) # Label axes plt.xlabel('Defaults') plt.ylabel('PMF') # Show the plot plt.show() # Relationship between Binomial and Poisson distributions # You just heard that the Poisson distribution is a limit of the Binomial distribution for rare events. This makes sense if you think about the stories. Say we do a Bernoulli trial every minute for an hour, each with a success probability of 0.1. We would do 60 trials, and the number of successes is Binomially distributed, and we would expect to get about 6 successes. This is just like the Poisson story we discussed in the video, where we get on average 6 hits on a website per hour. So, the Poisson distribution with arrival rate equal to np approximates a Binomial distribution for n Bernoulli trials with probability p of success (with n large and p small). Importantly, the Poisson distribution is often simpler to work with because it has only one parameter instead of two for the Binomial distribution. # Let's explore these two distributions computationally. You will compute the mean and standard deviation of samples from a Poisson distribution with an arrival rate of 10. Then, you will compute the mean and standard deviation of samples from a Binomial distribution with parameters n and p such that np=10. # Draw 10,000 samples out of Poisson distribution: samples_poisson # Print the mean and standard deviation print('Poisson: ', np.mean(samples_poisson), np.std(samples_poisson)) # Specify values of n and p to consider for Binomial: n, p # Draw 10,000 samples for each n,p pair: samples_binomial for i in range(3): samples_binomial = ____ # Print results print('n =', n[i], 'Binom:', np.mean(samples_binomial), np.std(samples_binomial)) # Was 2015 anomalous? # 1990 and 2015 featured the most no-hitters of any season of baseball (there were seven). Given that there are on average 251/115 no-hitters per season, what is the probability of having seven or more in a season? # Draw 10,000 samples out of Poisson distribution: n_nohitters # Compute number of samples that are seven or greater: n_large n_large = np.sum(____) # Compute probability of getting seven or more: p_large # Print the result print('Probability of seven or more no-hitters:', p_large)
47.908163
812
0.760809
0
0
0
0
0
0
0
0
7,912
0.842419
9aacaa2c9c98de085aff50585e25fcd2964d6c96
1,008
py
Python
ml/data_engineering/ETL/extract.py
alexnakagawa/tools
b5e8c047293247c8781d44607968402f637e597e
[ "MIT" ]
null
null
null
ml/data_engineering/ETL/extract.py
alexnakagawa/tools
b5e8c047293247c8781d44607968402f637e597e
[ "MIT" ]
null
null
null
ml/data_engineering/ETL/extract.py
alexnakagawa/tools
b5e8c047293247c8781d44607968402f637e597e
[ "MIT" ]
null
null
null
''' This is an abstract example of Extracting in an ETL pipeline. Inspired from the "Introduction to Data Engineering" course on Datacamp.com Author: Alex Nakagawa ''' import requests # Fetch the Hackernews post resp = requests.get("https://hacker-news.firebaseio.com/v0/item/16222426.json") # Print the response parsed as JSON print(resp.json()) # Assign the score of the test to post_score post_score = resp.json()['score'] print(post_score) # Function to extract table to a pandas DataFrame def extract_table_to_pandas(tablename, db_engine): query = "SELECT * FROM {}".format(tablename) return pd.read_sql(query, db_engine) # Connect to the database using the connection URI connection_uri = "postgresql://repl:password@localhost:5432/pagila" db_engine = sqlalchemy.create_engine(connection_uri) # Extract the film table into a pandas DataFrame extract_table_to_pandas("film", db_engine) # Extract the customer table into a pandas DataFrame extract_table_to_pandas("customer", db_engine)
30.545455
79
0.779762
0
0
0
0
0
0
0
0
623
0.618056
9aacd4bc00b3363cbb5a9d413afa93f29eedb771
531
py
Python
python/python-algorithm-intervew/11-hash-table/29-jewels-and-stones-3.py
bum12ark/algorithm
b6e262b0c29a8b5fb551db5a177a40feebc411b4
[ "MIT" ]
1
2022-03-06T03:49:31.000Z
2022-03-06T03:49:31.000Z
python/python-algorithm-intervew/11-hash-table/29-jewels-and-stones-3.py
bum12ark/algorithm
b6e262b0c29a8b5fb551db5a177a40feebc411b4
[ "MIT" ]
null
null
null
python/python-algorithm-intervew/11-hash-table/29-jewels-and-stones-3.py
bum12ark/algorithm
b6e262b0c29a8b5fb551db5a177a40feebc411b4
[ "MIT" ]
null
null
null
""" * 보석과 돌 J는 보석이며, S는 갖고 있는 돌이다. S에는 보석이 몇 개나 있을까? 대소문자는 구분한다. - Example 1 Input : J = "aA", S = "aAAbbbb" Output : 3 - Example 2 Input : J = "z", S = "ZZ" Output : 0 """ import collections class Solution: # Counter로 계산 생략 def numJewelsInStones(self, J: str, S: str) -> int: freqs = collections.Counter(S) count = 0 for char in J: count += freqs[char] return count if __name__ == '__main__': solution = Solution() print(solution.numJewelsInStones("aA", "aAAbbbb"))
19.666667
55
0.585687
238
0.386992
0
0
0
0
0
0
295
0.479675
9aad0121a197a064fa70a4456dc468491585ad3b
774
py
Python
migrations/versions/e1c435b9e9dc_.py
vipshae/todo-lister
ca639a3efcc243bebe132ca43c1917a28d4e83a6
[ "MIT" ]
null
null
null
migrations/versions/e1c435b9e9dc_.py
vipshae/todo-lister
ca639a3efcc243bebe132ca43c1917a28d4e83a6
[ "MIT" ]
null
null
null
migrations/versions/e1c435b9e9dc_.py
vipshae/todo-lister
ca639a3efcc243bebe132ca43c1917a28d4e83a6
[ "MIT" ]
null
null
null
"""empty message Revision ID: e1c435b9e9dc Revises: 2527092d6a89 Create Date: 2020-06-11 14:22:00.453626 """ from alembic import op import sqlalchemy as sa # revision identifiers, used by Alembic. revision = 'e1c435b9e9dc' down_revision = '2527092d6a89' branch_labels = None depends_on = None def upgrade(): # ### commands auto generated by Alembic - please adjust! ### op.alter_column('todolists', 'completed', existing_type=sa.BOOLEAN(), nullable=False) # ### end Alembic commands ### def downgrade(): # ### commands auto generated by Alembic - please adjust! ### op.alter_column('todolists', 'completed', existing_type=sa.BOOLEAN(), nullable=True) # ### end Alembic commands ###
23.454545
65
0.652455
0
0
0
0
0
0
0
0
404
0.521964
9aad26c087264dde6976cf7bacd6c4bf3d397a51
1,345
py
Python
test/test_quilted_contacts_list.py
cocoroutine/pyquilted
dd8644043deec17608e00f46e3ac4562b8879603
[ "MIT" ]
1
2019-02-21T20:10:37.000Z
2019-02-21T20:10:37.000Z
test/test_quilted_contacts_list.py
cocoroutine/pyquilted
dd8644043deec17608e00f46e3ac4562b8879603
[ "MIT" ]
null
null
null
test/test_quilted_contacts_list.py
cocoroutine/pyquilted
dd8644043deec17608e00f46e3ac4562b8879603
[ "MIT" ]
null
null
null
import unittest from pyquilted.quilted.contact import * from pyquilted.quilted.contacts_list import ContactsList class TestContactsList(unittest.TestCase): def test_contact_list(self): contacts = ContactsList() email = EmailContact('jon.snow@winterfell.got') phone = PhoneContact('555-123-4567') social_dict = {"handle": "@jonsnow", "sites": ['twitter', 'instagram']} social = SocialContact(**social_dict) contacts.append(email) contacts.append(phone) contacts.append(social) valid = [ { 'label': 'email', 'value': 'jon.snow@winterfell.got', 'icons': ['fa-envelope'], 'link': 'mailto:jon.snow@winterfell.got' }, { 'label': 'phone', 'value': '555-123-4567', 'icons': ['fa-phone'], 'link': 'tel:+15551234567' }, { 'label': 'social', 'value': '@jonsnow', 'icons': ['fa-twitter', 'fa-instagram'], 'link': None } ] self.assertEqual(contacts.serialize(), valid) if __name__ == '__main__': unittest.main()
31.27907
79
0.475093
1,180
0.877323
0
0
0
0
0
0
345
0.256506
9aae954a3239c945002696eff2a9d8adff07720d
3,110
py
Python
examples/python/macOS/hack_or_die.py
kitazaki/NORA_Badge
9b04a57235f0763641ffa8e90e499f141dc57570
[ "Apache-2.0" ]
null
null
null
examples/python/macOS/hack_or_die.py
kitazaki/NORA_Badge
9b04a57235f0763641ffa8e90e499f141dc57570
[ "Apache-2.0" ]
null
null
null
examples/python/macOS/hack_or_die.py
kitazaki/NORA_Badge
9b04a57235f0763641ffa8e90e499f141dc57570
[ "Apache-2.0" ]
null
null
null
from __future__ import print_function import time import uuid import Adafruit_BluefruitLE CHARACTERISTIC_SERVICE_UUID = uuid.UUID('0000fee0-0000-1000-8000-00805f9b34fb') CHARACTERISTIC_DATA_UUID = uuid.UUID('0000fee1-0000-1000-8000-00805f9b34fb') provider = Adafruit_BluefruitLE.get_provider() def main(): provider.clear_cached_data() adapter = provider.get_default_adapter() if not adapter.is_powered: adapter.power_on() print('Searching for device...') try: adapter.start_scan() device = provider.find_device(service_uuids=[CHARACTERISTIC_SERVICE_UUID]) if device is None: raise RuntimeError('Failed to find device!') else: print(device) print('device: {0}'.format(device.name)) print('id: {0}'.format(device.id)) finally: adapter.stop_scan() print('Connecting to device...') device.connect() try: print('Discovering services...') device.discover([CHARACTERISTIC_SERVICE_UUID], [CHARACTERISTIC_DATA_UUID]) service = device.find_service(CHARACTERISTIC_SERVICE_UUID) print('service uuid: {0}'.format(service.uuid)) data = service.find_characteristic(CHARACTERISTIC_DATA_UUID) print('characteristic uuid: {0}'.format(data.uuid)) print('Writing Data..') bs = bytes(range(16)) bs = b'\x77\x61\x6E\x67\x00\x00\x00\x00\x30\x00\x00\x00\x00\x00\x00\x00' data.write_value(bs) time.sleep(0.1) bs = b'\x00\x0b\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00' data.write_value(bs) time.sleep(0.1) bs = b'\x00\x00\x00\x00\x00\x00\xE1\x0C\x06\x17\x2D\x23\x00\x00\x00\x00' data.write_value(bs) time.sleep(0.1) bs = b'\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00' data.write_value(bs) time.sleep(0.1) bs = b'\x00\x00\xc6\xc6\xc6\xfe\xc6\xc6\xc6\xc6\x00\x00\x00\xfe\xc6\xc6' data.write_value(bs) time.sleep(0.1) bs = b'\xfe\xc6\xc6\xc6\xc6\x00\x00\x00\xfe\xc6\xc0\xc0\xc6\xc6\xc6\xfe' data.write_value(bs) time.sleep(0.1) bs = b'\x00\x00\x00\xc6\xcc\xd8\xf0\xd8\xcc\xc6\xc6\x00\x00\x00\x00\x00' data.write_value(bs) time.sleep(0.1) bs = b'\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x7c\x6c\x6c' data.write_value(bs) time.sleep(0.1) bs = b'\x7c\x00\x00\x00\x00\x00\x00\x00\x6c\x78\x70\x60\x00\x00\x00\x00' data.write_value(bs) time.sleep(0.1) bs = b'\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xf8\xce\xc6\xc6\xc6\xc6' data.write_value(bs) time.sleep(0.1) bs = b'\xce\xf8\x00\x00\x00\x30\x30\x30\x30\x30\x30\x30\x30\x00\x00\x00' data.write_value(bs) time.sleep(0.1) bs = b'\xfe\xc0\xc0\xfe\xc0\xc0\xc0\xfe\x00\x00\x00\x00\x00\x00\x00\x00' data.write_value(bs) time.sleep(3) print('Writing done.') finally: device.disconnect() provider.initialize() provider.run_mainloop_with(main)
37.02381
82
0.632797
0
0
0
0
0
0
0
0
1,077
0.346302
9aaec48386d244bd541a612785f13979caec8fe3
4,902
py
Python
turkish_morphology/validate_test.py
nogeeky/turkish-morphology
64881f23dad87c6f470d874030f6b5f33fe1a9eb
[ "Apache-2.0" ]
157
2019-05-20T13:05:43.000Z
2022-03-23T16:36:31.000Z
turkish_morphology/validate_test.py
OrenBochman/turkish-morphology
8f33046722ce204ccc51739687921ab041bed254
[ "Apache-2.0" ]
9
2019-09-11T08:17:12.000Z
2022-03-15T18:29:01.000Z
turkish_morphology/validate_test.py
OrenBochman/turkish-morphology
8f33046722ce204ccc51739687921ab041bed254
[ "Apache-2.0" ]
30
2019-09-29T06:50:01.000Z
2022-03-13T15:31:10.000Z
# coding=utf-8 # Copyright 2020 The Google Research Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for turkish_morphology.validate.""" import os from turkish_morphology import analysis_pb2 from turkish_morphology import validate from absl.testing import absltest from absl.testing import parameterized from google.protobuf import text_format _TESTDATA_DIR = "turkish_morphology/testdata" def _read_file(path): with open(path, "r") as f: read = f.read() return read def _read_analysis(basename): path = os.path.join(_TESTDATA_DIR, f"{basename}.pbtxt") return text_format.Parse(_read_file(path), analysis_pb2.Analysis()) class AnalysisTest(parameterized.TestCase): @parameterized.named_parameters([ { "testcase_name": "SingleInflectionalGroupsWithProperFeature", "basename": "araba_with_proper", }, { "testcase_name": "SingleInflectionalGroupsWithoutProperFeature", "basename": "araba_without_proper", }, { "testcase_name": "MultipleInflectionalGroupsWithProperFeature", "basename": "yasa_with_proper", }, { "testcase_name": "MultipleInflectionalGroupsWithoutProperFeature", "basename": "yasa_without_proper", }, ]) def test_success(self, basename): analysis = _read_analysis(basename) actual = validate.analysis(analysis) self.assertIsNone(actual) @parameterized.named_parameters([ { "testcase_name": "AnalysisMissingInflectionalGroups", "basename": "invalid_empty_analysis", "message": "Analysis is missing inflectional groups", }, { "testcase_name": "InflectionalGroupMissingPartOfSpeechTag", "basename": "invalid_ig_missing_pos", "message": "Inflectional group 2 is missing part-of-speech tag", }, { "testcase_name": "InflectionalGroupEmptyPartOfSpeechTag", "basename": "invalid_ig_empty_pos", "message": "Inflectional group 2 part-of-speech tag is empty", }, { "testcase_name": "FirstInflectionalGroupMissingRoot", "basename": "invalid_first_ig_missing_root", "message": "Inflectional group 1 is missing root", }, { "testcase_name": "DerivedInflectionalGroupMissingDerivation", "basename": "invalid_derived_ig_missing_derivation", "message": "Inflectional group 2 is missing derivational affix", }, { "testcase_name": "AffixMissingFeature", "basename": "invalid_affix_missing_feature", "message": "Affix is missing feature", }, { "testcase_name": "DerivationalAffixMissingMetaMorpheme", "basename": "invalid_derivational_affix_missing_meta_morpheme", "message": "Derivational affix is missing meta-morpheme", }, { "testcase_name": "DerivationalAffixEmptyMetaMorpheme", "basename": "invalid_derivational_affix_empty_meta_morpheme", "message": "Derivational affix meta-morpheme is empty", }, { "testcase_name": "FeatureMissingCategory", "basename": "invalid_feature_missing_category", "message": "Feature is missing category", }, { "testcase_name": "FeatureEmptyCategory", "basename": "invalid_feature_empty_category", "message": "Feature category is empty", }, { "testcase_name": "FeatureMissingValue", "basename": "invalid_feature_missing_value", "message": "Feature is missing value", }, { "testcase_name": "FeatureEmptyValue", "basename": "invalid_feature_empty_value", "message": "Feature value is empty", }, { "testcase_name": "RootMissingMorpheme", "basename": "invalid_root_missing_morpheme", "message": "Root is missing morpheme", }, { "testcase_name": "RootEmptyMorpheme", "basename": "invalid_root_empty_morpheme", "message": "Root morpheme is empty", }, ]) def test_raises_exception(self, basename, message): analysis = _read_analysis(basename) with self.assertRaisesRegexp(validate.IllformedAnalysisError, message): validate.analysis(analysis) if __name__ == "__main__": absltest.main()
33.346939
76
0.659935
3,695
0.753774
0
0
3,644
0.74337
0
0
2,908
0.593227
9aaf20b86321deb4ac2d2c3951af5c3c52764470
115
py
Python
rplint/__main__.py
lpozo/rplint
907cb5342827b2c38e79721bc2dc99b3b6f7912b
[ "MIT" ]
7
2020-09-10T15:39:07.000Z
2021-02-15T17:45:04.000Z
rplint/__main__.py
lpozo/rplint
907cb5342827b2c38e79721bc2dc99b3b6f7912b
[ "MIT" ]
6
2020-11-11T02:42:37.000Z
2021-03-17T01:00:27.000Z
rplint/__main__.py
lpozo/rplint
907cb5342827b2c38e79721bc2dc99b3b6f7912b
[ "MIT" ]
3
2020-11-11T02:10:22.000Z
2020-12-12T01:02:29.000Z
#!/usr/bin/env python3 from .main import rplint if __name__ == "__main__": rplint.main(prog_name=__package__)
19.166667
38
0.730435
0
0
0
0
0
0
0
0
32
0.278261
9ab1353597b9195d65b8c371888b502f56866647
3,368
py
Python
physicspy/optics/jones.py
suyag/physicspy
f2b29a72cb08b1de170274b3e35c3d8eda32f9e1
[ "MIT" ]
null
null
null
physicspy/optics/jones.py
suyag/physicspy
f2b29a72cb08b1de170274b3e35c3d8eda32f9e1
[ "MIT" ]
null
null
null
physicspy/optics/jones.py
suyag/physicspy
f2b29a72cb08b1de170274b3e35c3d8eda32f9e1
[ "MIT" ]
null
null
null
#!/usr/bin/env python from __future__ import division from numpy import sqrt, cos, sin, arctan, exp, abs, pi, conj from scipy import array, dot, sum class JonesVector: """ A Jones vector class to represent polarized EM waves """ def __init__(self,Jarray=array([1,0])): self.Jx = Jarray[0] self.Jy = Jarray[1] def size(self): """ Jones vector size """ return sqrt(dot(self.toArray().conj(),self.toArray()).real) def normalize(self): """ Normalized Jones vector """ result = self try: size = result.size() if size == 0: raise Exception('Zero-sized Jones vector cannot be normalized') result.Jx /= size result.Jy /= size except Exception as inst: print "Error: ",inst finally: return result def toArray(self): """ Convert into array format """ return array([self.Jx, self.Jy]) def rotate(self,phi): """ Rotated Jones vector Argument: phi - rotation angle in radians (clockwise is positive) """ R = array([[cos(phi), sin(phi)], \ [-sin(phi), cos(phi)]]) return JonesVector(dot(R, self.toArray())) def waveplate(self,G): """ Waveplate with arbitrary retardance Slow axis (or "c axis") is along X Argument: G - retartandance in phase units (e.g. one wavelength retardance is G = 2 * pi) """ W0 = array([[exp(-1j*G/2), 0], \ [0, exp(1j*G/2)]]) return JonesVector(dot(W0, self.toArray())) def waveplateRot(self,phi,G): """ Waveplate matrix with arbitrary rotation Arguments: phi - rotation angle in radians (clockwise is positive) G - retardance in phase units (e.g. one wavelength retardance is G = 2 * pi) """ return self.rotate(phi).waveplate(G).rotate(-phi) def pol(self,phi): """ Polarizer matrix """ P = array([[cos(phi)**2, cos(phi)*sin(phi)], \ [sin(phi)*cos(phi), sin(phi)**2]]) return JonesVector(dot(P, self.toArray())) def mirrormetal(self,n,k,th): """ Reflection off a metal mirror Incoming and reflected beams are assumed to be in the X plane """ dr = mphase(n,k,th); W0 = array([[dr[3]*exp(-1j*dr[1]), 0],\ [0, dr[2]*exp(-1j*dr[0])]]) return JonesVector(dot(W0, self.toArray())) def intensity(self): """ Intensity from electric field vector """ return real(self.Jx)**2 + real(self.Jy)**2 def mphase(n,k,th): """ Calculate phase shift and reflectance of a metal in the s and p directions""" u = sqrt(0.5 *((n**2 - k**2 - sin(th)**2) + sqrt( (n**2 - k**2 - sin(th)**2)**2 + 4*n**2*k**2 ))) v = sqrt(0.5*(-(n**2 - k**2 - sin(th)**2) + sqrt( (n**2 - k**2 - sin(th)**2)**2 + 4*n**2*k**2 ))) ds = arctan(2*v*cos(th)/(u**2+v**2-cos(th)**2)); dp = arctan(2*v*cos(th)*(n**2-k**2-2*u**2)/(u**2+v**2-(n**2+k**2)**2*cos(th)**2)); if(dp < 0): dp = dp+pi; rs = abs((cos(th) - (u+v*1j))/(cos(th) + (u+v*1j))) rp = abs(((n**2 + k**2)*cos(th) - (u+v*1j))/((n**2 + k**2)*cos(th) + (u+v*1j))); return array([ds, dp, rs, rp])
34.367347
101
0.518705
2,551
0.757423
0
0
0
0
0
0
1,101
0.3269
9ab5d8227882ea8202fdc93b49f22e935bbc0e93
2,560
py
Python
aiida/cmdline/params/options/config.py
louisponet/aiida-core
3214236df66a3792ee57fe38a06c0c3bb65861ab
[ "MIT", "BSD-3-Clause" ]
1
2020-10-01T17:11:58.000Z
2020-10-01T17:11:58.000Z
aiida/cmdline/params/options/config.py
louisponet/aiida-core
3214236df66a3792ee57fe38a06c0c3bb65861ab
[ "MIT", "BSD-3-Clause" ]
17
2020-03-11T17:04:05.000Z
2020-05-01T09:34:45.000Z
aiida/cmdline/params/options/config.py
louisponet/aiida-core
3214236df66a3792ee57fe38a06c0c3bb65861ab
[ "MIT", "BSD-3-Clause" ]
null
null
null
# -*- coding: utf-8 -*- ########################################################################### # Copyright (c), The AiiDA team. All rights reserved. # # This file is part of the AiiDA code. # # # # The code is hosted on GitHub at https://github.com/aiidateam/aiida-core # # For further information on the license, see the LICENSE.txt file # # For further information please visit http://www.aiida.net # ########################################################################### # pylint: disable=cyclic-import """ .. py:module::config :synopsis: Convenience class for configuration file option """ import click_config_file import yaml from .overridable import OverridableOption def yaml_config_file_provider(handle, cmd_name): # pylint: disable=unused-argument """Read yaml config file from file handle.""" return yaml.safe_load(handle) class ConfigFileOption(OverridableOption): """ Wrapper around click_config_file.configuration_option that increases reusability. Example:: CONFIG_FILE = ConfigFileOption('--config', help='A configuration file') @click.command() @click.option('computer_name') @CONFIG_FILE(help='Configuration file for computer_setup') def computer_setup(computer_name): click.echo(f"Setting up computer {computername}") computer_setup --config config.yml with config.yml:: --- computer_name: computer1 """ def __init__(self, *args, **kwargs): """ Store the default args and kwargs. :param args: default arguments to be used for the option :param kwargs: default keyword arguments to be used that can be overridden in the call """ kwargs.update({'provider': yaml_config_file_provider, 'implicit': False}) super().__init__(*args, **kwargs) def __call__(self, **kwargs): """ Override the stored kwargs, (ignoring args as we do not allow option name changes) and return the option. :param kwargs: keyword arguments that will override those set in the construction :return: click_config_file.configuration_option constructed with args and kwargs defined during construction and call of this instance """ kw_copy = self.kwargs.copy() kw_copy.update(kwargs) return click_config_file.configuration_option(*self.args, **kw_copy)
36.056338
116
0.605078
1,550
0.605469
0
0
0
0
0
0
1,981
0.773828
9ab6d13a500341cc43c1e83dfab97d3f76d1b8d3
460
py
Python
vaccine_feed_ingest/runners/ct/state/parse.py
jeremyschlatter/vaccine-feed-ingest
215f6c144fe5220deaccdb5db3e96f28b7077b3f
[ "MIT" ]
27
2021-04-24T02:11:18.000Z
2021-05-17T00:54:45.000Z
vaccine_feed_ingest/runners/ct/state/parse.py
jeremyschlatter/vaccine-feed-ingest
215f6c144fe5220deaccdb5db3e96f28b7077b3f
[ "MIT" ]
574
2021-04-06T18:09:11.000Z
2021-08-30T07:55:06.000Z
vaccine_feed_ingest/runners/ct/state/parse.py
jeremyschlatter/vaccine-feed-ingest
215f6c144fe5220deaccdb5db3e96f28b7077b3f
[ "MIT" ]
47
2021-04-23T05:31:14.000Z
2021-07-01T20:22:46.000Z
#!/usr/bin/env python import json import pathlib import sys input_dir = pathlib.Path(sys.argv[2]) output_dir = pathlib.Path(sys.argv[1]) output_file = output_dir / "data.parsed.ndjson" results = [] for input_file in input_dir.glob("data.raw.*.json"): with input_file.open() as fin: results.extend(json.load(fin)["results"]) with output_file.open("w") as fout: for result in results: json.dump(result, fout) fout.write("\n")
23
52
0.680435
0
0
0
0
0
0
0
0
74
0.16087
9ab9d917b353cf0f8ea3e285cac62732af59e404
563
py
Python
python_learning/exception_redefinition.py
KonstantinKlepikov/all-python-ml-learning
a8a41347b548828bb8531ccdab89c622a0be20e1
[ "MIT" ]
null
null
null
python_learning/exception_redefinition.py
KonstantinKlepikov/all-python-ml-learning
a8a41347b548828bb8531ccdab89c622a0be20e1
[ "MIT" ]
null
null
null
python_learning/exception_redefinition.py
KonstantinKlepikov/all-python-ml-learning
a8a41347b548828bb8531ccdab89c622a0be20e1
[ "MIT" ]
1
2020-12-23T19:32:51.000Z
2020-12-23T19:32:51.000Z
# example of redefinition __repr__ and __str__ of exception class MyBad(Exception): def __str__(self): return 'My mistake!' class MyBad2(Exception): def __repr__(self): return 'Not calable' # because buid-in method has __str__ try: raise MyBad('spam') except MyBad as X: print(X) # My mistake! print(X.args) # ('spam',) try: raise MyBad2('spam') except MyBad2 as X: print(X) # spam print(X.args) # ('spam',) raise MyBad('spam') # __main__.MyBad2: My mistake! # raise MyBad2('spam') # __main__.MyBad2: spam
20.107143
65
0.648313
191
0.339254
0
0
0
0
0
0
257
0.456483
9abaab450ac2ca5229b853ff9168c5720ce319bf
7,998
py
Python
difPy/dif.py
ppizarror/Duplicate-Image-Finder
371d70454531d1407b06d98f3e3bdc5e3fc03f49
[ "MIT" ]
null
null
null
difPy/dif.py
ppizarror/Duplicate-Image-Finder
371d70454531d1407b06d98f3e3bdc5e3fc03f49
[ "MIT" ]
null
null
null
difPy/dif.py
ppizarror/Duplicate-Image-Finder
371d70454531d1407b06d98f3e3bdc5e3fc03f49
[ "MIT" ]
null
null
null
import skimage.color import matplotlib.pyplot as plt import numpy as np import cv2 import os import imghdr import time """ Duplicate Image Finder (DIF): function that searches a given directory for images and finds duplicate/similar images among them. Outputs the number of found duplicate/similar image pairs with a list of the filenames having lower resolution. """ class dif: def compare_images(directory, show_imgs=False, similarity="normal", px_size=50, delete=False): """ directory (str)......folder path to search for duplicate/similar images show_imgs (bool).....False = omits the output and doesn't show found images True = shows duplicate/similar images found in output similarity (str)....."normal" = searches for duplicates, recommended setting, MSE < 200 "high" = serached for exact duplicates, extremly sensitive to details, MSE < 0.1 "low" = searches for similar images, MSE < 1000 px_size (int)........recommended not to change default value resize images to px_size height x width (in pixels) before being compared the higher the pixel size, the more computational ressources and time required delete (bool)........! please use with care, as this cannot be undone lower resolution duplicate images that were found are automatically deleted OUTPUT (set).........a set of the filenames of the lower resolution duplicate images """ # list where the found duplicate/similar images are stored duplicates = [] lower_res = [] imgs_matrix = dif.create_imgs_matrix(directory, px_size) # search for similar images, MSE < 1000 if similarity == "low": ref = 1000 # search for exact duplicate images, extremly sensitive, MSE < 0.1 elif similarity == "high": ref = 0.1 # normal, search for duplicates, recommended, MSE < 200 else: ref = 200 main_img = 0 compared_img = 1 nrows, ncols = px_size, px_size srow_A = 0 erow_A = nrows srow_B = erow_A erow_B = srow_B + nrows while erow_B <= imgs_matrix.shape[0]: while compared_img < (len(image_files)): # select two images from imgs_matrix imgA = imgs_matrix[srow_A: erow_A, # rows 0: ncols] # columns imgB = imgs_matrix[srow_B: erow_B, # rows 0: ncols] # columns # compare the images rotations = 0 while image_files[main_img] not in duplicates and rotations <= 3: if rotations != 0: imgB = dif.rotate_img(imgB) err = dif.mse(imgA, imgB) if err < ref: if show_imgs: dif.show_img_figs(imgA, imgB, err) dif.show_file_info(compared_img, main_img) dif.add_to_list(image_files[main_img], duplicates) dif.check_img_quality(directory, image_files[main_img], image_files[compared_img], lower_res) rotations += 1 srow_B += nrows erow_B += nrows compared_img += 1 srow_A += nrows erow_A += nrows srow_B = erow_A erow_B = srow_B + nrows main_img += 1 compared_img = main_img + 1 msg = "\n***\nFound " + str(len(duplicates)) + " duplicate image pairs in " + str( len(image_files)) + " total images.\n\nThe following files have lower resolution:" print(msg) print(lower_res, "\n") time.sleep(0.5) if delete: usr = input("Are you sure you want to delete all lower resolution duplicate images? (y/n)") if str(usr) == "y": dif.delete_imgs(directory, set(lower_res)) else: print("Image deletion canceled.") return set(lower_res) else: return set(lower_res) def _process_directory(directory): directory += os.sep if not os.path.isdir(directory): raise FileNotFoundError(f"Directory: " + directory + " does not exist") return directory # Function that searches the folder for image files, converts them to a matrix def create_imgs_matrix(directory, px_size): directory = dif._process_directory(directory) global image_files image_files = [] # create list of all files in directory folder_files = [filename for filename in os.listdir(directory)] # create images matrix counter = 0 for filename in folder_files: if not os.path.isdir(directory + filename) and imghdr.what(directory + filename): img = cv2.imdecode(np.fromfile(directory + filename, dtype=np.uint8), cv2.IMREAD_UNCHANGED) if type(img) == np.ndarray: img = img[..., 0:3] img = cv2.resize(img, dsize=(px_size, px_size), interpolation=cv2.INTER_CUBIC) if len(img.shape) == 2: img = skimage.color.gray2rgb(img) if counter == 0: imgs_matrix = img image_files.append(filename) counter += 1 else: imgs_matrix = np.concatenate((imgs_matrix, img)) image_files.append(filename) return imgs_matrix # Function that calulates the mean squared error (mse) between two image matrices def mse(imageA, imageB): err = np.sum((imageA.astype("float") - imageB.astype("float")) ** 2) err /= float(imageA.shape[0] * imageA.shape[1]) return err # Function that plots two compared image files and their mse def show_img_figs(imageA, imageB, err): fig = plt.figure() plt.suptitle("MSE: %.2f" % (err)) # plot first image ax = fig.add_subplot(1, 2, 1) plt.imshow(imageA, cmap=plt.cm.gray) plt.axis("off") # plot second image ax = fig.add_subplot(1, 2, 2) plt.imshow(imageB, cmap=plt.cm.gray) plt.axis("off") # show the images plt.show() # Function for rotating an image matrix by a 90 degree angle def rotate_img(image): image = np.rot90(image, k=1, axes=(0, 1)) return image # Function for printing filename info of plotted image files def show_file_info(compared_img, main_img): print("Duplicate file: " + image_files[main_img] + " and " + image_files[compared_img]) # Function for appending items to a list def add_to_list(filename, list): list.append(filename) # Function for checking the quality of compared images, appends the lower quality image to the list def check_img_quality(directory, imageA, imageB, list): directory = dif._process_directory(directory) size_imgA = os.stat(directory + imageA).st_size size_imgB = os.stat(directory + imageB).st_size if size_imgA > size_imgB: dif.add_to_list(imageB, list) else: dif.add_to_list(imageA, list) def delete_imgs(directory, filenames_set): directory = dif._process_directory(directory) print("\nDeletion in progress...") deleted = 0 for filename in filenames_set: try: os.remove(directory + filename) print("Deleted file:", filename) deleted += 1 except: print("Could not delete file:", filename) print("\n***\nDeleted", deleted, "duplicates.")
41.65625
128
0.572893
7,625
0.953363
0
0
0
0
0
0
2,686
0.335834
9abc03c9cf82f6250f6e274347a435222a3060a0
1,572
py
Python
minmax.py
jeffmorais/estrutura-de-dados
e7088df4fe753af106b4642c5e147d578a466c3b
[ "MIT" ]
1
2016-02-16T13:52:00.000Z
2016-02-16T13:52:00.000Z
minmax.py
jeffmorais/estrutura-de-dados
e7088df4fe753af106b4642c5e147d578a466c3b
[ "MIT" ]
null
null
null
minmax.py
jeffmorais/estrutura-de-dados
e7088df4fe753af106b4642c5e147d578a466c3b
[ "MIT" ]
null
null
null
# A função min_max deverá rodar em O(n) e o código não pode usar nenhuma # lib do Python (sort, min, max e etc) # Não pode usar qualquer laço (while, for), a função deve ser recursiva # Ou delegar a solução para uma função puramente recursiva import unittest def bora(cont, seq, min, max): if cont < len(seq): if int(seq[cont]) > int(seq[cont + 1]) and int(seq[cont]) > max: max = int(seq[cont]) if int(seq[cont]) < int(seq[cont + 1]) and int(seq[cont]) < min: min = int(seq[cont]) cont = cont + 1 if cont == (len(seq) - 1): if int(seq[len(seq) - 1]) > max: max = int(seq[len(seq) - 1]) if int(seq[len(seq) - 1]) < min: min = int(seq[len(seq) - 1]) return (min, max) return bora(cont, seq, min, max) def min_max(seq): ''' :param seq: uma sequencia :return: (min, max) Retorna tupla cujo primeiro valor mínimo (min) é o valor mínimo da sequencia seq. O segundo é o valor máximo (max) da sequencia O(n) ''' if len(seq) == 0: return (None, None) if len(seq) == 1: return seq[0], seq[0] val = bora(0, seq, seq[0], seq[0]) return val class MinMaxTestes(unittest.TestCase): def test_lista_vazia(self): self.assertTupleEqual((None, None), min_max([])) def test_lista_len_1(self): self.assertTupleEqual((1, 1), min_max([1])) def test_lista_consecutivos(self): self.assertTupleEqual((0, 500), min_max(list(range(501)))) if __name__ == '__main__': unittest.main()
29.111111
72
0.588422
319
0.200629
0
0
0
0
0
0
482
0.303145
9abd21b74954fe3eba3090f8582e570668b4381d
3,927
py
Python
news-category-classifcation/build_vocab.py
lyeoni/pytorch-nlp-tutorial
8cc490adc6cc92d458548e0e73fbbf1db575f049
[ "MIT" ]
1,433
2018-12-14T06:20:28.000Z
2022-03-31T14:12:50.000Z
news-category-classifcation/build_vocab.py
itsshaikaslam/nlp-tutorial-1
6e4c74e103f4cdc5e0559d987ae6e41c40e17a5a
[ "MIT" ]
14
2019-04-03T08:30:23.000Z
2021-07-11T11:41:05.000Z
news-category-classifcation/build_vocab.py
itsshaikaslam/nlp-tutorial-1
6e4c74e103f4cdc5e0559d987ae6e41c40e17a5a
[ "MIT" ]
306
2018-12-20T09:41:24.000Z
2022-03-31T05:07:14.000Z
import argparse import pickle from tokenization import Vocab, Tokenizer TOKENIZER = ('treebank', 'mecab') def argparser(): p = argparse.ArgumentParser() # Required parameters p.add_argument('--corpus', default=None, type=str, required=True) p.add_argument('--vocab', default=None, type=str, required=True) # Other parameters p.add_argument('--pretrained_vectors', default=None, type=str) p.add_argument('--is_sentence', action='store_true', help='Whether the corpus is already split into sentences') p.add_argument('--tokenizer', default='treebank', type=str, help='Tokenizer used for input corpus tokenization: ' + ', '.join(TOKENIZER)) p.add_argument('--max_seq_length', default=1024, type=int, help='The maximum total input sequence length after tokenization') p.add_argument('--unk_token', default='<unk>', type=str, help='The representation for any unknown token') p.add_argument('--pad_token', default='<pad>', type=str, help='The representation for the special token of padding token') p.add_argument('--bos_token', default='<bos>', type=str, help='The representation for the special token of beginning-of-sequence token') p.add_argument('--eos_token', default='<eos>', type=str, help='The representation for the special token of end-of-sequence token') p.add_argument('--min_freq', default=3, type=int, help='The minimum frequency required for a token') p.add_argument('--lower', action='store_true', help='Whether to convert the texts to lowercase') config = p.parse_args() return config def load_pretrained(fname): """ Load pre-trained FastText word vectors :param fname: text file containing the word vectors, one per line. """ fin = open(fname, 'r', encoding='utf-8', newline='\n', errors='ignore') n, d = map(int, fin.readline().split()) print('Loading {} word vectors(dim={})...'.format(n, d)) word2vec_dict = {} for line in fin: tokens = line.rstrip().split(' ') word2vec_dict[tokens[0]] = list(map(float, tokens[1:])) print('#pretrained_word_vectors:', len(word2vec_dict)) return word2vec_dict if __name__=='__main__': config = argparser() print(config) # Select tokenizer config.tokenizer = config.tokenizer.lower() if config.tokenizer==TOKENIZER[0]: from nltk.tokenize import word_tokenize tokenization_fn = word_tokenize elif config.tokenizer ==TOKENIZER[1]: from konlpy.tag import Mecab tokenization_fn = Mecab().morphs tokenizer = Tokenizer(tokenization_fn=tokenization_fn, is_sentence=config.is_sentence, max_seq_length=config.max_seq_length) # Tokenization & read tokens list_of_tokens = [] with open(config.corpus, 'r', encoding='-utf-8', errors='ignore') as reader: for li, line in enumerate(reader): text = ' '.join(line.split('\t')[1:]).strip() list_of_tokens += tokenizer.tokenize(text) # Build vocabulary vocab = Vocab(list_of_tokens=list_of_tokens, unk_token=config.unk_token, pad_token=config.pad_token, bos_token=config.bos_token, eos_token=config.eos_token, min_freq=config.min_freq, lower=config.lower) vocab.build() if config.pretrained_vectors: pretrained_vectors = load_pretrained(fname=config.pretrained_vectors) vocab.from_pretrained(pretrained_vectors=pretrained_vectors) print('Vocabulary size: ', len(vocab)) # Save vocabulary with open(config.vocab, 'wb') as writer: pickle.dump(vocab, writer) print('Vocabulary saved to', config.vocab)
40.071429
98
0.638146
0
0
0
0
0
0
0
0
1,145
0.291571
9abd5d0a8f6f8a824f776810d4a5b66aeca261fa
650
py
Python
lambda-sfn-terraform/src/LambdaFunction.py
extremenelson/serverless-patterns
c307599ab2759567c581c37d70561e85b0fa8788
[ "MIT-0" ]
1
2022-01-12T17:22:02.000Z
2022-01-12T17:22:02.000Z
lambda-sfn-terraform/src/LambdaFunction.py
extremenelson/serverless-patterns
c307599ab2759567c581c37d70561e85b0fa8788
[ "MIT-0" ]
null
null
null
lambda-sfn-terraform/src/LambdaFunction.py
extremenelson/serverless-patterns
c307599ab2759567c581c37d70561e85b0fa8788
[ "MIT-0" ]
null
null
null
# Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved. # SPDX-License-Identifier: MIT-0 import json import boto3 import os from aws_lambda_powertools import Logger logger = Logger() client = boto3.client('stepfunctions') sfnArn = os.environ['SFN_ARN'] def lambda_handler(event, context): # TODO implement logger.info(f"Received Choice: {event['Choice']}") response = client.start_execution( stateMachineArn=sfnArn, input=json.dumps(event) ) logger.info(f"Received Response: {response}") return { 'statusCode': 200, 'body': json.dumps(response,default=str) }
23.214286
68
0.676923
0
0
0
0
0
0
0
0
227
0.349231
9abd6d106252aee5d79f8c8f78a07cba499bc3da
3,068
py
Python
tests/encryption/aes_decrypter.py
dfjxs/dfvfs
a4154b07bb08c3c86afa2847f3224189dd80c138
[ "Apache-2.0" ]
176
2015-01-02T13:55:39.000Z
2022-03-12T11:44:37.000Z
tests/encryption/aes_decrypter.py
dfjxs/dfvfs
a4154b07bb08c3c86afa2847f3224189dd80c138
[ "Apache-2.0" ]
495
2015-01-13T06:47:06.000Z
2022-03-12T11:07:03.000Z
tests/encryption/aes_decrypter.py
dfjxs/dfvfs
a4154b07bb08c3c86afa2847f3224189dd80c138
[ "Apache-2.0" ]
62
2015-02-23T08:19:38.000Z
2022-03-18T06:01:22.000Z
#!/usr/bin/env python # -*- coding: utf-8 -*- """Tests for the AES decrypter object.""" import unittest from dfvfs.encryption import aes_decrypter from dfvfs.lib import definitions from tests.encryption import test_lib class AESDecrypterTestCase(test_lib.DecrypterTestCase): """Tests for the AES decrypter object.""" _AES_INITIALIZATION_VECTOR = b'This is an IV456' _AES_KEY = b'This is a key123' def testInitialization(self): """Tests the initialization method.""" # Test missing arguments. with self.assertRaises(ValueError): aes_decrypter.AESDecrypter() # Test unsupported block cipher mode. with self.assertRaises(ValueError): aes_decrypter.AESDecrypter( cipher_mode='bogus', key=self._AES_KEY) # Test missing initialization vector. with self.assertRaises(ValueError): aes_decrypter.AESDecrypter( cipher_mode=definitions.ENCRYPTION_MODE_CBC, key=self._AES_KEY) # Test missing initialization vector with valid block cipher mode. aes_decrypter.AESDecrypter( cipher_mode=definitions.ENCRYPTION_MODE_ECB, key=self._AES_KEY) # Test incorrect key size. with self.assertRaises(ValueError): aes_decrypter.AESDecrypter( cipher_mode=definitions.ENCRYPTION_MODE_ECB, key=b'Wrong key size') # Test incorrect initialization vector type. with self.assertRaises(TypeError): aes_decrypter.AESDecrypter( cipher_mode=definitions.ENCRYPTION_MODE_CBC, initialization_vector='Wrong IV type', key=self._AES_KEY) # Test incorrect initialization vector size. with self.assertRaises(ValueError): aes_decrypter.AESDecrypter( cipher_mode=definitions.ENCRYPTION_MODE_CBC, initialization_vector=b'Wrong IV size', key=self._AES_KEY) def testDecrypt(self): """Tests the Decrypt method.""" decrypter = aes_decrypter.AESDecrypter( cipher_mode=definitions.ENCRYPTION_MODE_CBC, initialization_vector=self._AES_INITIALIZATION_VECTOR, key=self._AES_KEY) # Test full decryption. expected_decrypted_data = b'This is secret encrypted text!!!' decrypted_data, remaining_encrypted_data = decrypter.Decrypt( b'2|\x7f\xd7\xff\xbay\xf9\x95?\x81\xc7\xaafV\xceB\x01\xdb8E7\xfe' b'\x92j\xf0\x1d(\xb9\x9f\xad\x13', finalize=True) self.assertEqual(decrypted_data, expected_decrypted_data) self.assertEqual(remaining_encrypted_data, b'') # Reset decrypter. decrypter = aes_decrypter.AESDecrypter( cipher_mode=definitions.ENCRYPTION_MODE_CBC, initialization_vector=self._AES_INITIALIZATION_VECTOR, key=self._AES_KEY) # Test partial decryption. partial_encrypted_data = ( b'2|\x7f\xd7\xff\xbay\xf9\x95?\x81\xc7\xaafV\xceB\x01\xdb8E7\xfe') decrypted_data, remaining_encrypted_data = decrypter.Decrypt( partial_encrypted_data) self.assertEqual(decrypted_data, b'') self.assertEqual(remaining_encrypted_data, partial_encrypted_data) if __name__ == '__main__': unittest.main()
33.714286
77
0.730769
2,796
0.911343
0
0
0
0
0
0
848
0.276402
9abfb5ca61ed6e49fce34592c1824290b02d1d23
4,460
py
Python
Crash Course on Python/WEEK 5/solutions.py
atharvpuranik/Google-IT-Automation-with-Python-Professional-Certificate
4d8fd587fa85ea4db62db6142fbb58cd9c29bb69
[ "MIT" ]
42
2020-04-28T09:06:21.000Z
2022-01-09T01:01:55.000Z
Crash Course on Python/WEEK 5/solutions.py
vaquarkhan/Google-IT-Automation-with-Python-Professional-Certificate
d87dffe924de218f73d61d27689798646824ed6c
[ "MIT" ]
null
null
null
Crash Course on Python/WEEK 5/solutions.py
vaquarkhan/Google-IT-Automation-with-Python-Professional-Certificate
d87dffe924de218f73d61d27689798646824ed6c
[ "MIT" ]
52
2020-05-12T05:29:46.000Z
2022-01-26T21:24:08.000Z
#Q2 # “If you have an apple and I have an apple and we exchange these apples then # you and I will still each have one apple. But if you have an idea and I have # an idea and we exchange these ideas, then each of us will have two ideas.” # George Bernard Shaw class Person: apples = 0 ideas = 0 johanna = Person() johanna.apples = 1 johanna.ideas = 1 martin = Person() martin.apples = 2 martin.ideas = 1 def exchange_apples(you, me): #Here, despite G.B. Shaw's quote, our characters have started with #different amounts of apples so we can better observe the results. #We're going to have Martin and Johanna exchange ALL their apples with #one another. #Hint: how would you switch values of variables, #so that "you" and "me" will exchange ALL their apples with one another? #Do you need a temporary variable to store one of the values? #You may need more than one line of code to do that, which is OK. temp=you.apples you.apples=me.apples me.apples=temp return you.apples, me.apples def exchange_ideas(you, me): #"you" and "me" will share our ideas with one another. #What operations need to be performed, so that each object receives #the shared number of ideas? #Hint: how would you assign the total number of ideas to #each idea attribute? Do you need a temporary variable to store #the sum of ideas, or can you find another way? #Use as many lines of code as you need here. you.ideas =me.ideas+you.ideas me.ideas =you.ideas return you.ideas, me.ideas exchange_apples(johanna, martin) print("Johanna has {} apples and Martin has {} apples".format(johanna.apples, martin.apples)) exchange_ideas(johanna, martin) print("Johanna has {} ideas and Martin has {} ideas".format(johanna.ideas, martin.ideas)) #Q3 # define a basic city class class City: name = "" country = "" elevation = 0 population = 0 # create a new instance of the City class and # define each attribute city1 = City() city1.name = "Cusco" city1.country = "Peru" city1.elevation = 3399 city1.population = 358052 # create a new instance of the City class and # define each attribute city2 = City() city2.name = "Sofia" city2.country = "Bulgaria" city2.elevation = 2290 city2.population = 1241675 # create a new instance of the City class and # define each attribute city3 = City() city3.name = "Seoul" city3.country = "South Korea" city3.elevation = 38 city3.population = 9733509 def max_elevation_city(min_population): # Initialize the variable that will hold # the information of the city with # the highest elevation highest_elevation=0 return_city ="" # Evaluate the 1st instance to meet the requirements: # does city #1 have at least min_population and # is its elevation the highest evaluated so far? if (city1.population>min_population): if(highest_elevation<city1.elevation): highest_elevation=city1.elevation return_city = ("{}, {}".format(city1.name,city1.country)) # Evaluate the 2nd instance to meet the requirements: # does city #2 have at least min_population and # is its elevation the highest evaluated so far? if(city2.population>min_population): if (highest_elevation<city2.elevation): highest_elevation=city2.elevation return_city = ("{}, {}".format(city2.name,city2.country)) # Evaluate the 3rd instance to meet the requirements: # does city #3 have at least min_population and # is its elevation the highest evaluated so far? if(city3.population>min_population): if (highest_elevation<city3.elevation): highest_elevation=city3.elevation return_city = ("{}, {}".format(city3.name,city3.country)) #Format the return string if return_city!="": return return_city else: return "" print(max_elevation_city(100000)) # Should print "Cusco, Peru" print(max_elevation_city(1000000)) # Should print "Sofia, Bulgaria" print(max_elevation_city(10000000)) # Should print "" #Q5 class Furniture: color = "" material = "" table = Furniture() table.color="brown" table.material="wood" couch = Furniture() couch.color="red" couch.material="leather" def describe_furniture(piece): return ("This piece of furniture is made of {} {}".format(piece.color, piece.material)) print(describe_furniture(table)) # Should be "This piece of furniture is made of brown wood" print(describe_furniture(couch)) # Should be "This piece of furniture is made of red leather"
31.188811
140
0.722646
153
0.034274
0
0
0
0
0
0
2,346
0.525538
9ac1c767370071e77aa1a0a522794a49b7886db3
205
py
Python
python/test/is_prime.test.py
hotate29/kyopro_lib
20085381372d2555439980c79887ca6b0809bb77
[ "MIT" ]
null
null
null
python/test/is_prime.test.py
hotate29/kyopro_lib
20085381372d2555439980c79887ca6b0809bb77
[ "MIT" ]
2
2020-10-13T17:02:12.000Z
2020-10-17T16:04:48.000Z
python/test/is_prime.test.py
hotate29/kyopro_lib
20085381372d2555439980c79887ca6b0809bb77
[ "MIT" ]
null
null
null
# verification-helper: PROBLEM http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=ALDS1_1_C from python.lib.is_prime import isprime print(sum(isprime(int(input())) for _ in range(int(input()))))
25.625
97
0.756098
0
0
0
0
0
0
0
0
97
0.473171
9ac242f669af4d52c4d497c2811debd7113e2d03
691
py
Python
utils/pad.py
Zenodia/nativePytorch_NMT
bfced09eb6e5476d34619dfc0dd41d4ed610248f
[ "MIT" ]
60
2018-09-28T07:53:11.000Z
2020-11-06T11:59:07.000Z
utils/pad.py
Pravin74/transformer-pytorch
c31e163ed57321e405771ef7fb556d4d92fd5efb
[ "MIT" ]
2
2021-02-15T14:08:08.000Z
2021-09-12T12:52:37.000Z
utils/pad.py
Pravin74/transformer-pytorch
c31e163ed57321e405771ef7fb556d4d92fd5efb
[ "MIT" ]
18
2018-09-28T07:56:35.000Z
2020-11-24T00:11:33.000Z
import torch import numpy as np PAD_TOKEN_INDEX = 0 def pad_masking(x, target_len): # x: (batch_size, seq_len) batch_size, seq_len = x.size() padded_positions = x == PAD_TOKEN_INDEX # (batch_size, seq_len) pad_mask = padded_positions.unsqueeze(1).expand(batch_size, target_len, seq_len) return pad_mask def subsequent_masking(x): # x: (batch_size, seq_len - 1) batch_size, seq_len = x.size() subsequent_mask = np.triu(np.ones(shape=(seq_len, seq_len)), k=1).astype('uint8') subsequent_mask = torch.tensor(subsequent_mask).to(x.device) subsequent_mask = subsequent_mask.unsqueeze(0).expand(batch_size, seq_len, seq_len) return subsequent_mask
32.904762
87
0.723589
0
0
0
0
0
0
0
0
86
0.124457
9ac324779be3fdadd696253340d551fc8f9b954c
576
py
Python
jesse/modes/utils.py
julesGoullee/jesse
49a1ac46715682e8a30df133ce055bf2dfdedb7d
[ "MIT" ]
4
2021-02-23T18:23:58.000Z
2021-10-10T07:32:41.000Z
jesse/modes/utils.py
ArdeshirV/jesse
2ff415f6768f9ef7cca3e86d8f2f87988d3e7129
[ "MIT" ]
null
null
null
jesse/modes/utils.py
ArdeshirV/jesse
2ff415f6768f9ef7cca3e86d8f2f87988d3e7129
[ "MIT" ]
2
2021-04-30T06:49:26.000Z
2022-01-24T09:24:35.000Z
from jesse.store import store from jesse import helpers from jesse.services import logger def save_daily_portfolio_balance(): balances = [] # add exchange balances for key, e in store.exchanges.storage.items(): balances.append(e.assets[helpers.app_currency()]) # add open position values for key, pos in store.positions.storage.items(): if pos.is_open: balances.append(pos.pnl) total = sum(balances) store.app.daily_balance.append(total) logger.info('Saved daily portfolio balance: {}'.format(round(total, 2)))
27.428571
76
0.694444
0
0
0
0
0
0
0
0
84
0.145833
9ac5612f4d7fef57c2d92d9c354db5aaef44d59e
1,020
py
Python
Modo/Kits/OD_ModoCopyPasteExternal/lxserv/cmd_copyToExternal.py
heimlich1024/OD_CopyPasteExternal
943b993198e16d19f1fb4ba44049e498abf1e993
[ "Apache-2.0" ]
278
2017-04-27T18:44:06.000Z
2022-03-31T02:49:42.000Z
Modo/Kits/OD_ModoCopyPasteExternal/lxserv/cmd_copyToExternal.py
heimlich1024/OD_CopyPasteExternal
943b993198e16d19f1fb4ba44049e498abf1e993
[ "Apache-2.0" ]
57
2017-05-01T11:58:41.000Z
2022-02-06T18:43:13.000Z
Modo/Kits/OD_ModoCopyPasteExternal/lxserv/cmd_copyToExternal.py
heimlich1024/OD_CopyPasteExternal
943b993198e16d19f1fb4ba44049e498abf1e993
[ "Apache-2.0" ]
49
2017-04-28T19:24:14.000Z
2022-03-12T15:17:13.000Z
################################################################################ # # cmd_copyToExternal.py # # Author: Oliver Hotz | Chris Sprance # # Description: Copies Geo/Weights/Morphs/UV's to External File # # Last Update: # ################################################################################ import lx import lxifc import lxu.command from od_copy_paste_external import copy_to_external class ODCopyToExternal(lxu.command.BasicCommand): def __init__(self): lxu.command.BasicCommand.__init__(self) def cmd_Flags(self): return lx.symbol.fCMD_MODEL | lx.symbol.fCMD_UNDO def basic_Enable(self, msg): return True def cmd_Interact(self): pass def basic_Execute(self, msg, flags): # TODO: Disable reload for release reload(copy_to_external) copy_to_external.execute() def cmd_Query(self, index, vaQuery): lx.notimpl() lx.bless(ODCopyToExternal, "OD_CopyToExternal")
23.72093
81
0.560784
538
0.527451
0
0
0
0
0
0
366
0.358824
9ac6f272c7449b8674bd2e0ae76f212c2c1488d6
17,828
py
Python
iotest/case.py
gwk/iotest
bb5386c8d2e96cf99ca840fc512008ef786c4805
[ "CC0-1.0" ]
1
2018-03-24T16:03:15.000Z
2018-03-24T16:03:15.000Z
iotest/case.py
gwk/iotest
bb5386c8d2e96cf99ca840fc512008ef786c4805
[ "CC0-1.0" ]
1
2016-08-12T19:09:43.000Z
2016-08-12T19:09:43.000Z
iotest/case.py
gwk/iotest
bb5386c8d2e96cf99ca840fc512008ef786c4805
[ "CC0-1.0" ]
null
null
null
# Dedicated to the public domain under CC0: https://creativecommons.org/publicdomain/zero/1.0/. import ast import os import re import shlex from itertools import zip_longest from string import Template from typing import * from .pithy.fs import * from .pithy.io import * from .pithy.types import * # type: ignore from .ctx import Ctx coverage_name = '_.coven' class TestCaseError(Exception): pass class IotParseError(TestCaseError): pass class FileExpectation: def __init__(self, path: str, info: Dict[str, str], expand_str_fn: Callable) -> None: if path.find('..') != -1: raise TestCaseError(f"file expectation {path}: cannot contain '..'") self.path = path self.mode = info.get('mode', 'equal') validate_exp_mode(path, self.mode) try: exp_path = info['path'] except KeyError: val = info.get('val', '') else: if 'val' in info: raise TestCaseError(f'file expectation {path}: cannot specify both `path` and `val` properties') exp_path_expanded = expand_str_fn(exp_path) val = read_from_path(exp_path_expanded) self.val = expand_str_fn(val) if self.mode == 'match': self.match_pattern_pairs = self.compile_match_lines(self.val) else: self.match_pattern_pairs = [] self.match_error: Optional[Tuple[int, Optional[Pattern], str]] = None def compile_match_lines(self, text: str) -> List[Tuple[str, Pattern]]: return [self.compile_match_line(i, line) for i, line in enumerate(text.splitlines(True), 1)] def compile_match_line(self, i: int, line: str) -> Tuple[str, Pattern]: prefix = line[:2] contents = line[2:] valid_prefixes = ('|', '|\n', '| ', '~', '~\n', '~ ') if prefix not in valid_prefixes: raise TestCaseError("test expectation: {!r};\nmatch line {}: must begin with one of: {}\n{!r}".format( self.path, i, ', '.join(repr(p) for p in valid_prefixes), line)) if prefix.endswith('\n'): # these two cases exist to be lenient about empty lines, # where otherwise the pattern line would consist of the symbol and a single space. # since trailing space is highlighted by `git diff` and often considered bad style, # we allow it to be omitted, since there is no loss of generality for the patterns. contents = '\n' try: return (line, re.compile(contents if prefix == '~ ' else re.escape(contents))) except Exception as e: raise TestCaseError('test expectation: {!r};\nmatch line {}: pattern is invalid regex:\n{!r}\n{}'.format( self.path, i, contents, e)) from e def __repr__(self) -> str: return 'FileExpectation({!r}, {!r}, {!r})'.format(self.path, self.mode, self.val) class ParConfig(NamedTuple): ''' Parameterized case configuration data. ''' stem: str pattern: Pattern[str] config: Dict class Case: 'Case represents a single test case, or a default.' def __init__(self, ctx:Ctx, proto: Optional['Case'], stem: str, config: Dict, par_configs: List[ParConfig], par_stems_used: Set[str]) -> None: self.stem: str = path_dir(stem) if path_name(stem) == '_' else stem # TODO: better naming for 'logical stem' (see code in main). self.name: str = path_name(self.stem) # derived properties. self.multi_index: Optional[int] = None self.test_info_paths: Set[str] = set() # the files that comprise the test case. self.dflt_src_paths: List[str] = [] self.coverage_targets: List[str] = [] self.test_dir: str = '' self.test_cmd: List[str] = [] self.test_env: Dict[str, str] = {} self.test_in: Optional[str] = None self.test_expectations: List[FileExpectation] = [] self.test_links: List[Tuple[str, str]] = [] # sequence of (orig-name, link-name) pairs. self.test_par_args: Dict[str, Tuple[str, ...]] = {} # the match groups that resulted from applying the regex for the given parameterized stem. # configurable properties. self.args: Optional[List[str]] = None # arguments to follow the file under test. self.cmd: Optional[List[str]] = None # command string/list with which to invoke the test. self.coverage: Optional[List[str]] = None # list of names to include in code coverage analysis. self.code: Optional[int] = None # the expected exit code. self.compile: Optional[List[Any]] = None # the optional list of compile commands, each a string or list of strings. self.compile_timeout: Optional[int] = None self.desc: Optional[str] = None # description. self.env: Optional[Dict[str, str]] = None # environment variables. self.err_mode: Optional[str] = None # comparison mode for stderr expectation. self.err_path: Optional[str] = None # file path for stderr expectation. self.err_val: Optional[str] = None # stderr expectation value (mutually exclusive with err_path). self.files: Optional[Dict[str, Dict[str, str]]] = None # additional file expectations. self.in_: Optional[str] = None # stdin as text. self.interpreter: Optional[str] = None # interpreter to prepend to cmd. self.interpreter_args: Optional[List[str]] = None # interpreter args. self.links: Union[None, Set[str], Dict[str, str]] = None # symlinks to be made into the test directory; written as a str, set or dict. self.out_mode: Optional[str] = None # comparison mode for stdout expectation. self.out_path: Optional[str] = None # file path for stdout expectation. self.out_val: Optional[str] = None # stdout expectation value (mutually exclusive with out_path). self.skip: Optional[str] = None self.timeout: Optional[int] = None try: if proto is not None: for key in case_key_validators: setattr(self, key, getattr(proto, key)) for par_stem, par_re, par_config in par_configs: m = par_re.fullmatch(stem) if not m: continue for key, val in par_config.items(): self.add_val_for_key(ctx, key, val) self.test_par_args[par_stem] = cast(Tuple[str, ...], m.groups()) # Save the strings matching the parameters to use as arguments. par_stems_used.add(par_stem) # Mark this parameterized config as used. for key, val in config.items(): self.add_val_for_key(ctx, key, val) # do all additional computations now, so as to fail as quickly as possible. self.derive_info(ctx) except Exception as e: outL(f'iotest error: broken test case: {stem}') outL(f' exception: {type(e).__name__}: {e}.') # not sure if it makes sense to describe cases for some exceptions; # for now, just carve out the ones for which it is definitely useless. if not isinstance(e, IotParseError): self.describe(stdout) outL() exit(1) def __repr__(self) -> str: return f'Case(stem={self.stem!r}, ...)' def __lt__(self, other: 'Case') -> bool: return self.stem < other.stem @property def coverage_path(self) -> str: 'Returned path is relative to self.test_dir.' return self.std_name(coverage_name) @property def coven_cmd_prefix(self) -> List[str]: coven_cmd = ['coven', '-output', self.coverage_path] if self.coverage_targets: coven_cmd += ['-targets'] + self.coverage_targets coven_cmd.append('--') return coven_cmd def std_name(self, std: str) -> str: return f'{self.name}.{std}' def describe(self, file: TextIO) -> None: def stable_repr(val: Any) -> str: if is_dict(val): return '{{{}}}'.format(', '.join(f'{k!r}:{v!r}' for k, v in sorted(val.items()))) # sort dict representations. TODO: factor out. return repr(val) items = sorted(self.__dict__.items()) writeLSSL(file, 'Case:', *('{}: {}'.format(k, stable_repr(v)) for k, v in items)) def add_val_for_key(self, ctx:Ctx, key:str, val:Any) -> None: try: name = iot_key_subs[key] except KeyError: name = key.replace('-', '_') try: exp_desc, predicate, validator_fn = case_key_validators[name] except KeyError as e: raise TestCaseError(f'invalid config key: {key!r}') from e if not predicate(val): raise TestCaseError(f'key: {key!r}: expected value of type: {exp_desc}; received: {val!r}') if validator_fn: validator_fn(name, val) if ctx.dbg: existing = getattr(self, name) if existing is not None and existing != val: errL(f'note: {self.stem}: overriding value for key: {name!r};\n existing: {existing!r}\n incoming: {val!r}') setattr(self, name, val) def derive_info(self, ctx: Ctx) -> None: if self.name == '_default': return # do not process prototype cases. rel_dir, _, multi_index = self.stem.partition('.') self.multi_index = int(multi_index) if multi_index else None self.test_dir = path_join(ctx.build_dir, rel_dir) env = self.test_env # local alias for convenience. env['BUILD'] = ctx.build_dir env['NAME'] = self.name env['PROJ'] = abs_path(ctx.proj_dir) env['SRC'] = self.dflt_src_paths[0] if len(self.dflt_src_paths) == 1 else 'NONE' env['STEM'] = self.stem env['DIR'] = path_dir(self.stem) def default_to_env(key: str) -> None: if key not in env and key in os.environ: env[key] = os.environ[key] default_to_env('HOME') # otherwise git fails with "error: Could not expand include path '~/.gitcinclude'". default_to_env('LANG') # necessary to make std file handles unicode-aware. default_to_env('NODE_PATH') default_to_env('PATH') default_to_env('PYTHONPATH') default_to_env('SDKROOT') def expand_str(val: Any) -> str: t = Template(val) return t.safe_substitute(env) def expand(val: Any) -> List[str]: if val is None: return [] if is_str(val): # note: plain strings are expanded first, then split. # this behavior matches that of shell commands more closely than split-then-expand, # but introduces all the confusion of shell quoting. return shlex.split(expand_str(val)) if is_list(val): return [expand_str(el) for el in val] raise TestCaseError(f'expand received unexpected value: {val}') # add the case env one item at a time. # sorted because we want expansion to be deterministic; # TODO: should probably expand everything with just the builtins; # otherwise would need some dependency resolution between vars. if self.env: for key, val in sorted(self.env.items()): if key in env: raise TestCaseError(f'specified env contains reserved key: {key}') env[key] = expand_str(val) self.compile_cmds = [expand(cmd) for cmd in self.compile] if self.compile else [] cmd: List[str] = [] if self.interpreter: cmd += expand(self.interpreter) if self.interpreter_args: if not self.interpreter: raise TestCaseError('interpreter_args specified without interpreter') cmd += expand(self.interpreter_args) if self.cmd is not None: cmd += expand(self.cmd) elif self.compile_cmds: cmd += ['./' + self.name] elif len(self.dflt_src_paths) > 1: raise TestCaseError(f'no `cmd` specified and multiple default source paths found: {self.dflt_src_paths}') elif len(self.dflt_src_paths) < 1: raise TestCaseError('no `cmd` specified and no default source path found') else: dflt_path = self.dflt_src_paths[0] dflt_name = path_name(dflt_path) self.test_links.append((dflt_path, dflt_name)) prefix = '' if cmd else './' cmd.append(prefix + dflt_name) if self.args is None: par_args = list(self.test_par_args.get(path_stem(dflt_path), ())) cmd += par_args if self.args: cmd += expand(self.args) or [] self.test_cmd = cmd if self.multi_index and self.links: raise TestCaseError("non-lead subcase of a multicase cannot specify 'links'") elif isinstance(self.links, str): link = expand_str(self.links) self.test_links += [(link, path_name(link))] elif isinstance(self.links, set): self.test_links += sorted((n, path_name(n)) for n in map(expand_str, self.links)) elif isinstance(self.links, dict): self.test_links += sorted((expand_str(orig), expand_str(link)) for orig, link in self.links.items()) elif self.links is not None: raise TestCaseError(self.links) self.coverage_targets = expand(self.coverage) self.test_in = expand_str(self.in_) if self.in_ is not None else None def add_std_exp(name:str, mode:Optional[str], path:Optional[str], val:Optional[str]) -> None: info = {} if mode is not None: info['mode'] = mode if path is not None: info['path'] = path if val is not None: info['val'] = val exp = FileExpectation(self.std_name(name), info, expand_str) self.test_expectations.append(exp) add_std_exp('err', self.err_mode, self.err_path, self.err_val) add_std_exp('out', self.out_mode, self.out_path, self.out_val) for path, info in (self.files or {}).items(): exp = FileExpectation(path, info, expand_str) self.test_expectations.append(exp) iot_key_subs = { '.in' : 'in_', '.err' : 'err_val', '.out' : 'out_val', '.dflt_src_paths' : 'dflt_src_paths', '.test_info_paths' : 'test_info_paths', 'in' : 'in_', } def is_int_or_ellipsis(val: Any) -> bool: return val is Ellipsis or is_int(val) def is_compile_cmd(val: Any) -> bool: return is_list(val) and all(is_str_or_list(el) for el in val) def is_valid_links(val: Any) -> bool: return is_str(val) or is_set_of_str(val) or is_dict_of_str(val) def validate_path(key: str, path: Any) -> None: if not path: raise TestCaseError(f'key: {key}: path is empty: {path!r}') if '.' in path: raise TestCaseError(f"key: {key}: path cannot contain '.': {path!r}") def validate_exp_mode(key: str, mode: str) -> None: if mode not in file_expectation_fns: raise TestCaseError(f'key: {key}: invalid file expectation mode: {mode}') def validate_exp_dict(key: str, val: Any) -> None: if not is_dict(val): raise TestCaseError(f'file expectation: {key}: value must be a dictionary.') for k in val: if k not in ('mode', 'path', 'val'): raise TestCaseError(f'file expectation: {key}: invalid expectation property: {k}') def validate_files_dict(key: str, val: Any) -> None: if not is_dict(val): raise TestCaseError(f'file expectation: {key}: value must be a dictionary.') for k, exp_dict in val.items(): if k in ('out', 'err'): raise TestCaseError(f'key: {key}: {k}: use the standard properties instead ({k}_mode, {k}_path, {k}_val).') validate_exp_dict(k, exp_dict) def validate_links_dict(key: str, val: Any) -> None: if is_str(val): items = [(val, val)] elif is_set(val): items = [(p, p) for p in val] elif is_dict(val): items = val.items() else: raise AssertionError('`validate_links_dict` types inconsistent with `is_valid_links`.') for orig, link in items: if orig.find('..') != -1: raise TestCaseError(f"key: {key}: link original contains '..': {orig}") if link.find('..') != -1: raise TestCaseError(f"key: {key}: link location contains '..': {link}") case_key_validators: Dict[str, Tuple[str, Callable[[Any], bool], Optional[Callable[[str, Any], None]]]] = { # key => msg, validator_predicate, validator_fn. 'args': ('string or list of strings', is_str_or_list, None), 'cmd': ('string or list of strings', is_str_or_list, None), 'code': ('int or `...`', is_int_or_ellipsis, None), 'compile': ('list of (str | list of str)', is_compile_cmd, None), 'compile_timeout': ('positive int', is_pos_int, None), 'coverage': ('string or list of strings', is_str_or_list, None), 'desc': ('str', is_str, None), 'dflt_src_paths': ('list of str', is_list_of_str, None), 'env': ('dict of strings', is_dict_of_str, None), 'err_mode': ('str', is_str, validate_exp_mode), 'err_path': ('str', is_str, None), 'err_val': ('str', is_str, None), 'files': ('dict', is_dict, validate_files_dict), 'in_': ('str', is_str, None), 'interpreter': ('string or list of strings', is_str_or_list, None), 'interpreter_args': ('string or list of strings', is_str_or_list, None), 'links': ('string or (dict | set) of strings', is_valid_links, validate_links_dict), 'out_mode': ('str', is_str, validate_exp_mode), 'out_path': ('str', is_str, None), 'out_val': ('str', is_str, None), 'skip': ('bool', is_bool, None), 'test_info_paths': ('set of str', is_set_of_str, None), 'timeout': ('positive int', is_pos_int, None), } # file expectation functions. def compare_equal(exp: FileExpectation, val: str) -> bool: return exp.val == val # type: ignore def compare_contain(exp: FileExpectation, val: str) -> bool: return val.find(exp.val) != -1 def compare_match(exp: FileExpectation, val: str) -> bool: lines: List[str] = val.splitlines(True) for i, (pair, line) in enumerate(zip_longest(exp.match_pattern_pairs, lines), 1): if pair is None: exp.match_error = (i, None, line) return False (pattern, regex) = pair if line is None or not regex.fullmatch(line): exp.match_error = (i, pattern, line) return False return True def compare_ignore(exp: FileExpectation, val: str) -> bool: return True file_expectation_fns = { 'equal' : compare_equal, 'contain' : compare_contain, 'match' : compare_match, 'ignore' : compare_ignore, }
40.796339
146
0.648138
12,669
0.710624
0
0
376
0.02109
0
0
5,233
0.293527
9ac8a3896499bd8c6da3c5ab7c320fbd74dda4ff
111
py
Python
aiophotoprism/__init__.py
zhulik/aiophotoprism
91cc263ffbd85c7dc7ccef6d4cdafdfdaf2a4c85
[ "MIT" ]
4
2021-08-09T05:02:23.000Z
2022-01-30T03:04:29.000Z
aiophotoprism/__init__.py
zhulik/aiophotoprism
91cc263ffbd85c7dc7ccef6d4cdafdfdaf2a4c85
[ "MIT" ]
null
null
null
aiophotoprism/__init__.py
zhulik/aiophotoprism
91cc263ffbd85c7dc7ccef6d4cdafdfdaf2a4c85
[ "MIT" ]
null
null
null
"""Asynchronous Python client for the Photoprism REST API.""" from .photoprism import API, Photoprism # noqa
27.75
61
0.756757
0
0
0
0
0
0
0
0
67
0.603604
9ac8a6eee2b79ed601b853802a3795b71f290223
5,558
py
Python
xen/xen-4.2.2/tools/python/scripts/test_vm_create.py
zhiming-shen/Xen-Blanket-NG
47e59d9bb92e8fdc60942df526790ddb983a5496
[ "Apache-2.0" ]
1
2018-02-02T00:15:26.000Z
2018-02-02T00:15:26.000Z
xen/xen-4.2.2/tools/python/scripts/test_vm_create.py
zhiming-shen/Xen-Blanket-NG
47e59d9bb92e8fdc60942df526790ddb983a5496
[ "Apache-2.0" ]
null
null
null
xen/xen-4.2.2/tools/python/scripts/test_vm_create.py
zhiming-shen/Xen-Blanket-NG
47e59d9bb92e8fdc60942df526790ddb983a5496
[ "Apache-2.0" ]
1
2019-05-27T09:47:18.000Z
2019-05-27T09:47:18.000Z
#!/usr/bin/python vm_cfg = { 'name_label': 'APIVM', 'user_version': 1, 'is_a_template': False, 'auto_power_on': False, # TODO 'memory_static_min': 64, 'memory_static_max': 128, #'memory_dynamic_min': 64, #'memory_dynamic_max': 128, 'VCPUs_policy': 'credit', 'VCPUs_params': '', 'VCPUs_number': 2, 'actions_after_shutdown': 'destroy', 'actions_after_reboot': 'restart', 'actions_after_crash': 'destroy', 'PV_bootloader': '', 'PV_bootloader_args': '', 'PV_kernel': '/boot/vmlinuz-2.6.18-xenU', 'PV_ramdisk': '', 'PV_args': 'root=/dev/sda1 ro', #'HVM_boot': '', 'platform_std_VGA': False, 'platform_serial': '', 'platform_localtime': False, 'platform_clock_offset': False, 'platform_enable_audio': False, 'PCI_bus': '' } vdi_cfg = { 'name_label': 'API_VDI', 'name_description': '', 'virtual_size': 100 * 1024 * 1024 * 1024, 'type': 'system', 'parent': '', 'SR_name': 'QCoW', 'sharable': False, 'read_only': False, } vbd_cfg = { 'VDI': '', 'VM': '', 'device': 'sda2', 'mode': 'RW', 'type': 'disk', 'driver': 'paravirtualised', } local_vdi_cfg = { 'name_label': 'gentoo.amd64.img', 'name_description': '', 'virtual_size': 0, 'type': 'system', 'parent': '', 'SR_name': 'Local', 'sharable': False, 'read_only': False, 'other_config': {'location': 'file:/root/gentoo.amd64.img'}, } local_vbd_cfg = { 'VDI': '', 'VM': '', 'device': 'sda1', 'mode': 'RW', 'type': 'disk', 'driver': 'paravirtualised', } vif_cfg = { 'name': 'API_VIF', 'type': 'paravirtualised', 'device': '', 'network': '', 'MAC': '', 'MTU': 1500, } console_cfg = { 'protocol': 'rfb', 'other_config': {'vncunused': 1, 'vncpasswd': 'testing'}, } import sys import time from xapi import connect, execute def test_vm_create(): server, session = connect() vm_uuid = None vdi_uuid = None local_vdi_uuid = None local_vbd_uuid = None vbd_uuid = None vif_uuid = None # List all VMs vm_list = execute(server, 'VM.get_all', (session,)) vm_names = [] for vm_uuid in vm_list: vm_record = execute(server, 'VM.get_record', (session, vm_uuid)) vm_names.append(vm_record['name_label']) # Get default SR sr_list = execute(server, 'SR.get_by_name_label', (session, vdi_cfg['SR_name'])) sr_uuid = sr_list[0] local_sr_list = execute(server, 'SR.get_by_name_label', (session, local_vdi_cfg['SR_name'])) local_sr_uuid = local_sr_list[0] # Get default network net_list = execute(server, 'network.get_all', (session,)) net_uuid = net_list[0] try: # Create a new VM vm_uuid = execute(server, 'VM.create', (session, vm_cfg)) # Create a new VDI vdi_cfg['SR'] = sr_uuid vdi_uuid = execute(server, 'VDI.create', (session, vdi_cfg)) # Create a VDI backed VBD vbd_cfg['VM'] = vm_uuid vbd_cfg['VDI'] = vdi_uuid vbd_uuid = execute(server, 'VBD.create', (session, vbd_cfg)) # Create a new VDI (Local) local_vdi_cfg['SR'] = local_sr_uuid local_vdi_uuid = execute(server, 'VDI.create', (session, local_vdi_cfg)) # Create a new VBD (Local) local_vbd_cfg['VM'] = vm_uuid local_vbd_cfg['VDI'] = local_vdi_uuid local_vbd_uuid = execute(server, 'VBD.create', (session, local_vbd_cfg)) # Create a new VIF vif_cfg['network'] = net_uuid vif_cfg['VM'] = vm_uuid vif_uuid = execute(server, 'VIF.create', (session, vif_cfg)) # Create a console console_cfg['VM'] = vm_uuid console_uuid = execute(server, 'console.create', (session, console_cfg)) print console_uuid # Start the VM execute(server, 'VM.start', (session, vm_uuid, False)) time.sleep(30) test_suspend = False if test_suspend: print 'Suspending VM..' execute(server, 'VM.suspend', (session, vm_uuid)) print 'Suspended VM.' time.sleep(5) print 'Resuming VM ...' execute(server, 'VM.resume', (session, vm_uuid, False)) print 'Resumed VM.' finally: # Wait for user to say we're good to shut it down while True: destroy = raw_input('destroy VM? ') if destroy[0] in ('y', 'Y'): break # Clean up if vif_uuid: execute(server, 'VIF.destroy', (session, vif_uuid)) if local_vbd_uuid: execute(server, 'VBD.destroy', (session, local_vbd_uuid)) if local_vdi_uuid: execute(server, 'VDI.destroy', (session, local_vdi_uuid)) if vbd_uuid: execute(server, 'VBD.destroy', (session, vbd_uuid)) if vdi_uuid: execute(server, 'VDI.destroy', (session, vdi_uuid)) if vm_uuid: try: execute(server, 'VM.hard_shutdown', (session, vm_uuid)) time.sleep(2) except: pass execute(server, 'VM.destroy', (session, vm_uuid)) if __name__ == "__main__": test_vm_create()
26.216981
75
0.542821
0
0
0
0
0
0
0
0
1,884
0.338971
9ac8dc710710ba41c77dd17ed479decc6f7a00ea
6,171
py
Python
portfolyo/core/pfline/tests/test_single_helper.py
rwijtvliet/portfolyo
b22948fbc55264ec5d69824e791ca7ef45c6e49c
[ "BSD-3-Clause" ]
null
null
null
portfolyo/core/pfline/tests/test_single_helper.py
rwijtvliet/portfolyo
b22948fbc55264ec5d69824e791ca7ef45c6e49c
[ "BSD-3-Clause" ]
null
null
null
portfolyo/core/pfline/tests/test_single_helper.py
rwijtvliet/portfolyo
b22948fbc55264ec5d69824e791ca7ef45c6e49c
[ "BSD-3-Clause" ]
null
null
null
from portfolyo import testing, dev from portfolyo.core.pfline import single_helper from portfolyo.tools.nits import Q_ from portfolyo.tools.stamps import FREQUENCIES import pandas as pd import pytest def assert_w_q_compatible(freq, w, q): if freq == "15T": testing.assert_series_equal(q, w * Q_(0.25, "h"), check_names=False) elif freq == "H": testing.assert_series_equal(q, w * Q_(1, "h"), check_names=False) elif freq == "D": assert (q > w * Q_(22.99, "h")).all() assert (q < w * Q_(25.01, "h")).all() elif freq == "MS": assert (q > w * 27 * Q_(24, "h")).all() assert (q < w * 32 * Q_(24, "h")).all() elif freq == "QS": assert (q > w * 89 * Q_(24, "h")).all() assert (q < w * 93 * Q_(24, "h")).all() elif freq == "AS": assert (q > w * Q_(8759.9, "h")).all() assert (q < w * Q_(8784.1, "h")).all() else: raise ValueError("Uncaught value for freq: {freq}.") def assert_p_q_r_compatible(r, p, q): testing.assert_series_equal(r, q * p, check_names=False) @pytest.mark.parametrize("tz", ["Europe/Berlin", None]) @pytest.mark.parametrize("freq", FREQUENCIES) def test_makedataframe_freqtz(freq, tz): """Test if dataframe can made from data with various timezones and frequencies.""" i = dev.get_index(freq, tz) q = dev.get_series(i, "q") result1 = single_helper.make_dataframe({"q": q}) expected = pd.DataFrame({"q": q}) expected.index.freq = freq testing.assert_frame_equal(result1, expected, check_names=False) if tz: w = q / q.index.duration result2 = single_helper.make_dataframe({"w": w}) testing.assert_frame_equal( result2, expected, check_names=False, check_dtype=False ) @pytest.mark.parametrize("inputtype", ["dict", "df"]) @pytest.mark.parametrize("tz", ["Europe/Berlin", None]) @pytest.mark.parametrize("freq", ["MS", "D"]) @pytest.mark.parametrize( "columns", [ "r", "p", "q", "w", "wq", "pr", "wp", "qp", "qr", "wr", "wqp", "qpr", "wqr", "wpr", "wqpr", ], ) def test_makedataframe_consistency(tz, freq, columns, inputtype): """Test if conversions are done correctly and inconsistent data raises error.""" i = dev.get_index(freq, tz) df = dev.get_dataframe(i, columns) dic = {key: df[key] for key in columns} if columns in ["r", "wq", "wqp", "wqr", "wpr", "qpr", "wqpr"]: # error cases with pytest.raises(ValueError): if inputtype == "dict": _ = single_helper.make_dataframe(dic) else: _ = single_helper.make_dataframe(df) return # Actual result. if inputtype == "dict": result = single_helper.make_dataframe(dic) else: result = single_helper.make_dataframe(df) # Expected result. expected = df.rename_axis("ts_left") if columns == "p": # kind == "p" expected = df[["p"]] elif columns in ["q", "w"]: # kind == "q" if columns == "w": df["q"] = df.w * df.w.index.duration expected = df[["q"]] elif columns in ["pr", "qp", "wp", "qr", "wr"]: # kind == "all" # fill dataframe first. if columns == "wp": df["q"] = df.w * df.w.index.duration df["r"] = df.p * df.q elif columns == "pr": df["q"] = df.r / df.p df["w"] = df.q / df.index.duration elif columns == "qp": df["r"] = df.p * df.q df["w"] = df.q / df.index.duration elif columns == "wr": df["q"] = df.w * df.w.index.duration df["p"] = df.r / df.q else: df["p"] = df.r / df.q df["w"] = df.q / df.index.duration assert_p_q_r_compatible(result.r, df.p, result.q) assert_w_q_compatible(freq, df.w, result.q) expected = df[["q", "r"]].dropna() testing.assert_frame_equal(result, expected) @pytest.mark.parametrize("freq1", ["15T", "D", "MS", "QS"]) # don't do all - many! @pytest.mark.parametrize("freq2", ["15T", "H", "D", "MS", "QS"]) @pytest.mark.parametrize("columns", ["rp", "wp", "pq", "qr", "wr"]) def test_makedataframe_unequalfrequencies(freq1, freq2, columns): """Test if error is raised when creating a dataframe from series with unequal frequencies.""" if freq1 == freq2: return kwargs = {"start": "2020", "end": "2021", "closed": "left", "tz": "Europe/Berlin"} i1 = pd.date_range(**kwargs, freq=freq1) i2 = pd.date_range(**kwargs, freq=freq2) s1 = dev.get_series(i1, columns[0]) s2 = dev.get_series(i2, columns[1]) dic = {columns[0]: s1, columns[1]: s2} with pytest.raises(ValueError): _ = single_helper.make_dataframe(dic) @pytest.mark.parametrize("tz", [None, "Europe/Berlin"]) @pytest.mark.parametrize("freq", ["15T", "H", "D", "MS"]) @pytest.mark.parametrize("overlap", [True, False]) def test_makedataframe_unequaltimeperiods(freq, overlap, tz): """Test if only intersection is kept for overlapping series, and error is raised for non-overlapping series.""" kwargs = {"freq": freq, "inclusive": "left", "tz": tz} start2 = "2020-03-01" if overlap else "2020-07-01" i1 = pd.date_range(start="2020-01-01", end="2020-06-01", **kwargs) i2 = pd.date_range(start=start2, end="2020-09-01", **kwargs) s1 = dev.get_series(i1, "q") s2 = dev.get_series(i2, "r") intersection_values = [i for i in s1.index if i in s2.index] intersection = pd.DatetimeIndex(intersection_values, freq=freq, name="ts_left") if not overlap: # raise ValueError("The two timeseries do not have anything in common.") with pytest.raises(ValueError): result = single_helper.make_dataframe({"q": s1, "r": s2}) return result = single_helper.make_dataframe({"q": s1, "r": s2}) testing.assert_index_equal(result.index, intersection) testing.assert_series_equal(result.q, s1.loc[intersection]) testing.assert_series_equal(result.r, s2.loc[intersection])
33
97
0.580943
0
0
0
0
5,082
0.823529
0
0
1,268
0.205477
9ac99cea9babd92f880b3baa9bf72af575865d84
31,044
py
Python
gomill/mcts_tuners.py
BenisonSam/goprime
3613f643ee765b4ad48ebdc27bd9f1121b1c5298
[ "MIT" ]
null
null
null
gomill/mcts_tuners.py
BenisonSam/goprime
3613f643ee765b4ad48ebdc27bd9f1121b1c5298
[ "MIT" ]
null
null
null
gomill/mcts_tuners.py
BenisonSam/goprime
3613f643ee765b4ad48ebdc27bd9f1121b1c5298
[ "MIT" ]
null
null
null
"""Competitions for parameter tuning using Monte-carlo tree search.""" from __future__ import division import operator import random from heapq import nlargest from math import exp, log, sqrt from gomill import compact_tracebacks from gomill import game_jobs from gomill import competitions from gomill import competition_schedulers from gomill.competitions import ( Competition, NoGameAvailable, CompetitionError, ControlFileError, Player_config) from gomill.settings import * class Node(object): """A MCTS node. Public attributes: children -- list of Nodes, or None for unexpanded wins visits value -- wins / visits rsqrt_visits -- 1 / sqrt(visits) """ def count_tree_size(self): if self.children is None: return 1 return sum(child.count_tree_size() for child in self.children) + 1 def recalculate(self): """Update value and rsqrt_visits from changed wins and visits.""" self.value = self.wins / self.visits self.rsqrt_visits = sqrt(1 / self.visits) def __getstate__(self): return (self.children, self.wins, self.visits) def __setstate__(self, state): self.children, self.wins, self.visits = state self.recalculate() __slots__ = ( 'children', 'wins', 'visits', 'value', 'rsqrt_visits', ) def __repr__(self): return "<Node:%.2f{%s}>" % (self.value, repr(self.children)) class Tree(object): """A tree of MCTS nodes representing N-dimensional parameter space. Parameters (available as read-only attributes): splits -- subdivisions of each dimension (list of integers, one per dimension) max_depth -- number of generations below the root initial_visits -- visit count for newly-created nodes initial_wins -- win count for newly-created nodes exploration_coefficient -- constant for UCT formula (float) Public attributes: root -- Node dimensions -- number of dimensions in the parameter space All changing state is in the tree of Node objects started at 'root'. References to 'optimiser_parameters' below mean a sequence of length 'dimensions', whose values are floats in the range 0.0..1.0 representing a point in this space. Each node in the tree represents an N-cuboid of parameter space. Each expanded node has prod(splits) children, tiling its cuboid. (The splits are the same in each generation.) Instantiate with: all parameters listed above parameter_formatter -- function optimiser_parameters -> string """ def __init__(self, splits, max_depth, exploration_coefficient, initial_visits, initial_wins, parameter_formatter): self.splits = splits self.dimensions = len(splits) self.branching_factor = reduce(operator.mul, splits) self.max_depth = max_depth self.exploration_coefficient = exploration_coefficient self.initial_visits = initial_visits self.initial_wins = initial_wins self._initial_value = initial_wins / initial_visits self._initial_rsqrt_visits = 1 / sqrt(initial_visits) self.format_parameters = parameter_formatter # map child index -> coordinate vector # coordinate vector -- tuple length 'dimensions' with values in # range(splits[d]) # The first dimension changes most slowly. self._cube_coordinates = [] for child_index in xrange(self.branching_factor): v = [] i = child_index for split in reversed(splits): i, coord = divmod(i, split) v.append(coord) v.reverse() self._cube_coordinates.append(tuple(v)) def new_root(self): """Initialise the tree with an expanded root node.""" self.node_count = 1 # For description only self.root = Node() self.root.children = None self.root.wins = self.initial_wins self.root.visits = self.initial_visits self.root.value = self.initial_wins / self.initial_visits self.root.rsqrt_visits = self._initial_rsqrt_visits self.expand(self.root) def set_root(self, node): """Use the specified node as the tree's root. This is used when restoring serialised state. Raises ValueError if the node doesn't have the expected number of children. """ if not node.children or len(node.children) != self.branching_factor: raise ValueError self.root = node self.node_count = node.count_tree_size() def expand(self, node): """Add children to the specified node.""" assert node.children is None node.children = [] child_count = self.branching_factor for _ in xrange(child_count): child = Node() child.children = None child.wins = self.initial_wins child.visits = self.initial_visits child.value = self._initial_value child.rsqrt_visits = self._initial_rsqrt_visits node.children.append(child) self.node_count += child_count def is_ripe(self, node): """Say whether a node has been visted enough times to be expanded.""" return node.visits != self.initial_visits def parameters_for_path(self, choice_path): """Retrieve the point in parameter space given by a node. choice_path -- sequence of child indices Returns optimiser_parameters representing the centre of the region of parameter space represented by the node of interest. choice_path must represent a path from the root to the node of interest. """ lo = [0.0] * self.dimensions breadths = [1.0] * self.dimensions for child_index in choice_path: cube_pos = self._cube_coordinates[child_index] breadths = [f / split for (f, split) in zip(breadths, self.splits)] for d, coord in enumerate(cube_pos): lo[d] += breadths[d] * coord return [f + .5 * breadth for (f, breadth) in zip(lo, breadths)] def retrieve_best_parameters(self): """Find the parameters with the most promising simulation results. Returns optimiser_parameters This walks the tree from the root, at each point choosing the node with most wins, and returns the parameters corresponding to the leaf node. """ simulation = self.retrieve_best_parameter_simulation() return simulation.get_parameters() def retrieve_best_parameter_simulation(self): """Return the Greedy_simulation used for retrieve_best_parameters.""" simulation = Greedy_simulation(self) simulation.walk() return simulation def get_test_parameters(self): """Return a 'typical' optimiser_parameters.""" return self.parameters_for_path([0]) def describe_choice(self, choice): """Return a string describing a child's coordinates in its parent.""" return str(self._cube_coordinates[choice]).replace(" ", "") def describe(self): """Return a text description of the current state of the tree. This currently dumps the full tree to depth 2. """ def describe_node(node, choice_path): parameters = self.format_parameters( self.parameters_for_path(choice_path)) choice_s = self.describe_choice(choice_path[-1]) return "%s %s %.3f %3d" % ( choice_s, parameters, node.value, node.visits - self.initial_visits) root = self.root wins = root.wins - self.initial_wins visits = root.visits - self.initial_visits try: win_rate = "%.3f" % (wins / visits) except ZeroDivisionError: win_rate = "--" result = [ "%d nodes" % self.node_count, "Win rate %d/%d = %s" % (wins, visits, win_rate) ] for choice, node in enumerate(self.root.children): result.append(" " + describe_node(node, [choice])) if node.children is None: continue for choice2, node2 in enumerate(node.children): result.append(" " + describe_node(node2, [choice, choice2])) return "\n".join(result) def summarise(self, out, summary_spec): """Write a summary of the most-visited parts of the tree. out -- writeable file-like object summary_spec -- list of ints summary_spec says how many nodes to describe at each depth of the tree (so to show only direct children of the root, pass a list of length 1). """ def p(s): print >> out, s def describe_node(node, choice_path): parameters = self.format_parameters( self.parameters_for_path(choice_path)) choice_s = " ".join(map(self.describe_choice, choice_path)) return "%s %-40s %.3f %3d" % ( choice_s, parameters, node.value, node.visits - self.initial_visits) def most_visits((child_index, node)): return node.visits last_generation = [([], self.root)] for i, n in enumerate(summary_spec): depth = i + 1 p("most visited at depth %s" % (depth)) this_generation = [] for path, node in last_generation: if node.children is not None: this_generation += [ (path + [child_index], child) for (child_index, child) in enumerate(node.children)] for path, node in sorted( nlargest(n, this_generation, key=most_visits)): p(describe_node(node, path)) last_generation = this_generation p("") class Simulation(object): """A single monte-carlo simulation. Instantiate with the Tree the simulation will run in. Use the methods in the following order: run() get_parameters() update_stats(b) describe() """ def __init__(self, tree): self.tree = tree # list of Nodes self.node_path = [] # corresponding list of child indices self.choice_path = [] # bool self.candidate_won = None def _choose_action(self, node): """Choose the best action from the specified node. Returns a pair (child index, node) """ uct_numerator = (self.tree.exploration_coefficient * sqrt(log(node.visits))) def urgency((i, child)): return child.value + uct_numerator * child.rsqrt_visits start = random.randrange(len(node.children)) children = list(enumerate(node.children)) return max(children[start:] + children[:start], key=urgency) def walk(self): """Choose a node sequence, without expansion.""" node = self.tree.root while node.children is not None: choice, node = self._choose_action(node) self.node_path.append(node) self.choice_path.append(choice) def run(self): """Choose the node sequence for this simulation. This walks down from the root, using _choose_action() at each level, until it reaches a leaf; if the leaf has already been visited, this expands it and chooses one more action. """ self.walk() node = self.node_path[-1] if (len(self.node_path) < self.tree.max_depth and self.tree.is_ripe(node)): self.tree.expand(node) choice, child = self._choose_action(node) self.node_path.append(child) self.choice_path.append(choice) def get_parameters(self): """Retrieve the parameters corresponding to the simulation's leaf node. Returns optimiser_parameters """ return self.tree.parameters_for_path(self.choice_path) def update_stats(self, candidate_won): """Update the tree's node statistics with the simulation's results. This updates visits (and wins, if appropriate) for each node in the simulation's node sequence. """ self.candidate_won = candidate_won for node in self.node_path: node.visits += 1 if candidate_won: node.wins += 1 node.recalculate() self.tree.root.visits += 1 if candidate_won: self.tree.root.wins += 1 # For description only self.tree.root.recalculate() def describe_steps(self): """Return a text description of the simulation's node sequence.""" return " ".join(map(self.tree.describe_choice, self.choice_path)) def describe(self): """Return a one-line-ish text description of the simulation.""" result = "%s [%s]" % ( self.tree.format_parameters(self.get_parameters()), self.describe_steps()) if self.candidate_won is not None: result += (" lost", " won")[self.candidate_won] return result def describe_briefly(self): """Return a shorter description of the simulation.""" return "%s %s" % (self.tree.format_parameters(self.get_parameters()), ("lost", "won")[self.candidate_won]) class Greedy_simulation(Simulation): """Variant of simulation that chooses the node with most wins. This is used to pick the 'best' parameters from the current state of the tree. """ def _choose_action(self, node): def wins((i, node)): return node.wins return max(enumerate(node.children), key=wins) parameter_settings = [ Setting('code', interpret_identifier), Setting('scale', interpret_callable), Setting('split', interpret_positive_int), Setting('format', interpret_8bit_string, default=None), ] class Parameter_config(Quiet_config): """Parameter (ie, dimension) description for use in control files.""" # positional or keyword positional_arguments = ('code',) # keyword-only keyword_arguments = tuple(setting.name for setting in parameter_settings if setting.name != 'code') class Parameter_spec(object): """Internal description of a parameter spec from the configuration file. Public attributes: code -- identifier split -- integer scale -- function float(0.0..1.0) -> player parameter format -- string for use with '%' """ class Scale_fn(object): """Callable implementing a scale function. Scale_fn classes are used to provide a convenient way to describe scale functions in the control file (LINEAR, LOG, ...). """ class Linear_scale_fn(Scale_fn): """Linear scale function. Instantiate with lower_bound -- float upper_bound -- float integer -- bool (means 'round result to nearest integer') """ def __init__(self, lower_bound, upper_bound, integer=False): self.lower_bound = float(lower_bound) self.upper_bound = float(upper_bound) self.range = float(upper_bound - lower_bound) self.integer = bool(integer) def __call__(self, f): result = (f * self.range) + self.lower_bound if self.integer: result = int(result + .5) return result class Log_scale_fn(Scale_fn): """Log scale function. Instantiate with lower_bound -- float upper_bound -- float integer -- bool (means 'round result to nearest integer') """ def __init__(self, lower_bound, upper_bound, integer=False): if lower_bound == 0.0: raise ValueError("lower bound is zero") self.rate = log(upper_bound / lower_bound) self.lower_bound = lower_bound self.integer = bool(integer) def __call__(self, f): result = exp(self.rate * f) * self.lower_bound if self.integer: result = int(result + .5) return result class Explicit_scale_fn(Scale_fn): """Scale function that returns elements from a list. Instantiate with the list of values to use. Normally use this with 'split' equal to the length of the list (more generally, split**max_depth equal to the length of the list). """ def __init__(self, values): if not values: raise ValueError("empty value list") self.values = tuple(values) self.n = len(values) def __call__(self, f): return self.values[int(self.n * f)] class LINEAR(Config_proxy): underlying = Linear_scale_fn class LOG(Config_proxy): underlying = Log_scale_fn class EXPLICIT(Config_proxy): underlying = Explicit_scale_fn def interpret_candidate_colour(v): if v in ('r', 'random'): return 'random' else: return interpret_colour(v) class Mcts_tuner(Competition): """A Competition for parameter tuning using the Monte-carlo tree search. The game ids are strings containing integers starting from zero. """ def __init__(self, competition_code, **kwargs): Competition.__init__(self, competition_code, **kwargs) self.outstanding_simulations = {} self.halt_on_next_failure = True def control_file_globals(self): result = Competition.control_file_globals(self) result.update({ 'Parameter': Parameter_config, 'LINEAR': LINEAR, 'LOG': LOG, 'EXPLICIT': EXPLICIT, }) return result global_settings = (Competition.global_settings + competitions.game_settings + [ Setting('number_of_games', allow_none(interpret_int), default=None), Setting('candidate_colour', interpret_candidate_colour), Setting('log_tree_to_history_period', allow_none(interpret_positive_int), default=None), Setting('summary_spec', interpret_sequence_of(interpret_int), default=(30,)), Setting('number_of_running_simulations_to_show', interpret_int, default=12), ]) special_settings = [ Setting('opponent', interpret_identifier), Setting('parameters', interpret_sequence_of_quiet_configs(Parameter_config)), Setting('make_candidate', interpret_callable), ] # These are used to instantiate Tree; they don't turn into Mcts_tuner # attributes. tree_settings = [ Setting('max_depth', interpret_positive_int, default=1), Setting('exploration_coefficient', interpret_float), Setting('initial_visits', interpret_positive_int), Setting('initial_wins', interpret_positive_int), ] def parameter_spec_from_config(self, parameter_config): """Make a Parameter_spec from a Parameter_config. Raises ControlFileError if there is an error in the configuration. Returns a Parameter_spec with all attributes set. """ arguments = parameter_config.resolve_arguments() interpreted = load_settings(parameter_settings, arguments) pspec = Parameter_spec() for name, value in interpreted.iteritems(): setattr(pspec, name, value) optimiser_param = 1.0 / (pspec.split * 2) try: scaled = pspec.scale(optimiser_param) except Exception: raise ValueError( "error from scale (applied to %s)\n%s" % (optimiser_param, compact_tracebacks.format_traceback(skip=1))) if pspec.format is None: pspec.format = pspec.code + ":%s" try: pspec.format % scaled except Exception: raise ControlFileError("'format': invalid format string") return pspec def initialise_from_control_file(self, config): Competition.initialise_from_control_file(self, config) if self.komi == int(self.komi): raise ControlFileError("komi: must be fractional to prevent jigos") competitions.validate_handicap( self.handicap, self.handicap_style, self.board_size) try: specials = load_settings(self.special_settings, config) except ValueError, e: raise ControlFileError(str(e)) try: self.opponent = self.players[specials['opponent']] except KeyError: raise ControlFileError( "opponent: unknown player %s" % specials['opponent']) self.parameter_specs = [] if not specials['parameters']: raise ControlFileError("parameters: empty list") seen_codes = set() for i, parameter_spec in enumerate(specials['parameters']): try: pspec = self.parameter_spec_from_config(parameter_spec) except StandardError, e: code = parameter_spec.get_key() if code is None: code = i raise ControlFileError("parameter %s: %s" % (code, e)) if pspec.code in seen_codes: raise ControlFileError( "duplicate parameter code: %s" % pspec.code) seen_codes.add(pspec.code) self.parameter_specs.append(pspec) self.candidate_maker_fn = specials['make_candidate'] try: tree_arguments = load_settings(self.tree_settings, config) except ValueError, e: raise ControlFileError(str(e)) self.tree = Tree(splits=[pspec.split for pspec in self.parameter_specs], parameter_formatter=self.format_optimiser_parameters, **tree_arguments) # State attributes (*: in persistent state): # *scheduler -- Simple_scheduler # *tree -- Tree (root node is persisted) # outstanding_simulations -- map game_number -> Simulation # halt_on_next_failure -- bool # *opponent_description -- string (or None) def set_clean_status(self): self.scheduler = competition_schedulers.Simple_scheduler() self.tree.new_root() self.opponent_description = None # Can bump this to prevent people loading incompatible .status files. status_format_version = 0 def get_status(self): # path0 is stored for consistency check return { 'scheduler': self.scheduler, 'tree_root': self.tree.root, 'opponent_description': self.opponent_description, 'path0': self.scale_parameters(self.tree.parameters_for_path([0])), } def set_status(self, status): root = status['tree_root'] try: self.tree.set_root(root) except ValueError: raise CompetitionError( "status file is inconsistent with control file") expected_path0 = self.scale_parameters( self.tree.parameters_for_path([0])) if status['path0'] != expected_path0: raise CompetitionError( "status file is inconsistent with control file") self.scheduler = status['scheduler'] self.scheduler.rollback() self.opponent_description = status['opponent_description'] def scale_parameters(self, optimiser_parameters): l = [] for pspec, v in zip(self.parameter_specs, optimiser_parameters): try: l.append(pspec.scale(v)) except Exception: raise CompetitionError( "error from scale for %s\n%s" % (pspec.code, compact_tracebacks.format_traceback(skip=1))) return tuple(l) def format_engine_parameters(self, engine_parameters): l = [] for pspec, v in zip(self.parameter_specs, engine_parameters): try: s = pspec.format % v except Exception: s = "[%s?%s]" % (pspec.code, v) l.append(s) return "; ".join(l) def format_optimiser_parameters(self, optimiser_parameters): return self.format_engine_parameters(self.scale_parameters( optimiser_parameters)) def make_candidate(self, player_code, engine_parameters): """Make a player using the specified engine parameters. Returns a game_jobs.Player. """ try: candidate_config = self.candidate_maker_fn(*engine_parameters) except Exception: raise CompetitionError( "error from make_candidate()\n%s" % compact_tracebacks.format_traceback(skip=1)) if not isinstance(candidate_config, Player_config): raise CompetitionError( "make_candidate() returned %r, not Player" % candidate_config) try: candidate = self.game_jobs_player_from_config( player_code, candidate_config) except Exception, e: raise CompetitionError( "bad player spec from make_candidate():\n" "%s\nparameters were: %s" % (e, self.format_engine_parameters(engine_parameters))) return candidate def get_player_checks(self): test_parameters = self.tree.get_test_parameters() engine_parameters = self.scale_parameters(test_parameters) candidate = self.make_candidate('candidate', engine_parameters) result = [] for player in [candidate, self.opponent]: check = game_jobs.Player_check() check.player = player check.board_size = self.board_size check.komi = self.komi result.append(check) return result def choose_candidate_colour(self): if self.candidate_colour == 'random': return random.choice('bw') else: return self.candidate_colour def get_game(self): if (self.number_of_games is not None and self.scheduler.issued >= self.number_of_games): return NoGameAvailable game_number = self.scheduler.issue() simulation = Simulation(self.tree) simulation.run() optimiser_parameters = simulation.get_parameters() engine_parameters = self.scale_parameters(optimiser_parameters) candidate = self.make_candidate("#%d" % game_number, engine_parameters) self.outstanding_simulations[game_number] = simulation job = game_jobs.Game_job() job.game_id = str(game_number) job.game_data = game_number if self.choose_candidate_colour() == 'b': job.player_b = candidate job.player_w = self.opponent else: job.player_b = self.opponent job.player_w = candidate job.board_size = self.board_size job.komi = self.komi job.move_limit = self.move_limit job.handicap = self.handicap job.handicap_is_free = (self.handicap_style == 'free') job.use_internal_scorer = (self.scorer == 'internal') job.internal_scorer_handicap_compensation = \ self.internal_scorer_handicap_compensation job.sgf_event = self.competition_code job.sgf_note = ("Candidate parameters: %s" % self.format_engine_parameters(engine_parameters)) return job def process_game_result(self, response): self.halt_on_next_failure = False self.opponent_description = response.engine_descriptions[ self.opponent.code].get_long_description() game_number = response.game_data self.scheduler.fix(game_number) # Counting no-result as loss for the candidate candidate_won = ( response.game_result.losing_player == self.opponent.code) simulation = self.outstanding_simulations.pop(game_number) simulation.update_stats(candidate_won) self.log_history(simulation.describe()) if (self.log_tree_to_history_period is not None and self.scheduler.fixed % self.log_tree_to_history_period == 0): self.log_history(self.tree.describe()) return "%s %s" % (simulation.describe(), response.game_result.sgf_result) def process_game_error(self, job, previous_error_count): ## If the very first game to return a response gives an error, halt. ## If two games in a row give an error, halt. ## Otherwise, forget about the failed game stop_competition = False retry_game = False game_number = job.game_data del self.outstanding_simulations[game_number] self.scheduler.fix(game_number) if self.halt_on_next_failure: stop_competition = True else: self.halt_on_next_failure = True return stop_competition, retry_game def write_static_description(self, out): def p(s): print >> out, s p("MCTS tuning event: %s" % self.competition_code) if self.description: p(self.description) p("board size: %s" % self.board_size) p("komi: %s" % self.komi) def _write_main_report(self, out): games_played = self.scheduler.fixed if self.number_of_games is None: print >> out, "%d games played" % games_played else: print >> out, "%d/%d games played" % ( games_played, self.number_of_games) print >> out best_simulation = self.tree.retrieve_best_parameter_simulation() print >> out, "Best parameters: %s" % best_simulation.describe() print >> out self.tree.summarise(out, self.summary_spec) def write_screen_report(self, out): self._write_main_report(out) if self.outstanding_simulations: print >> out, "In progress:" to_show = sorted(self.outstanding_simulations.iteritems()) \ [:self.number_of_running_simulations_to_show] for game_id, simulation in to_show: print >> out, "game %s: %s" % (game_id, simulation.describe()) def write_short_report(self, out): self.write_static_description(out) self._write_main_report(out) if self.opponent_description: print >> out, "opponent (%s): %s" % ( self.opponent.code, self.opponent_description) else: print >> out, "opponent: %s" % self.opponent.code print >> out write_full_report = write_short_report
35.077966
95
0.616544
30,160
0.971524
0
0
0
0
0
0
8,512
0.274191
9aca58a06217030d4df687fba53565676f1f3f48
460
py
Python
Leetcoding-Actions/Explore-Monthly-Challenges/2021-02/25-shortestUnsortedContinuousSubarray.py
shoaibur/SWE
1e114a2750f2df5d6c50b48c8e439224894d65da
[ "MIT" ]
1
2020-11-14T18:28:13.000Z
2020-11-14T18:28:13.000Z
Leetcoding-Actions/Explore-Monthly-Challenges/2021-02/25-shortestUnsortedContinuousSubarray.py
shoaibur/SWE
1e114a2750f2df5d6c50b48c8e439224894d65da
[ "MIT" ]
null
null
null
Leetcoding-Actions/Explore-Monthly-Challenges/2021-02/25-shortestUnsortedContinuousSubarray.py
shoaibur/SWE
1e114a2750f2df5d6c50b48c8e439224894d65da
[ "MIT" ]
null
null
null
class Solution: def findUnsortedSubarray(self, nums: List[int]) -> int: ''' T: O(n log n) and S: O(1) ''' n = len(nums) sorted_nums = sorted(nums) start, end = n + 1, -1 for i in range(n): if nums[i] != sorted_nums[i]: start = min(start, i) end = max(end, i) diff = end - start return diff + 1 if diff > 0 else 0
25.555556
59
0.428261
459
0.997826
0
0
0
0
0
0
49
0.106522
9acbd6e09016763ff8a75cf2e88c6a01d873ad9c
9,705
py
Python
endoscopic_ai.py
dennkitotaichi/AI_prediction_for_patients_with_colorectal_polyps
afbad36cb3fc2de31665fc3b0a7f065b7e6564a0
[ "MIT" ]
null
null
null
endoscopic_ai.py
dennkitotaichi/AI_prediction_for_patients_with_colorectal_polyps
afbad36cb3fc2de31665fc3b0a7f065b7e6564a0
[ "MIT" ]
null
null
null
endoscopic_ai.py
dennkitotaichi/AI_prediction_for_patients_with_colorectal_polyps
afbad36cb3fc2de31665fc3b0a7f065b7e6564a0
[ "MIT" ]
null
null
null
import pandas as pd import numpy as np import matplotlib.pyplot as plt #%matplotlib inline import codecs import lightgbm as lgb from sklearn.model_selection import StratifiedShuffleSplit from sklearn.metrics import mean_squared_error from sklearn.metrics import r2_score # Read data image_file_path = './simulated_dpc_data.csv' with codecs.open(image_file_path, "r", "Shift-JIS", "ignore") as file: dpc = pd.read_table(file, delimiter=",") # dpc_r, g_dpc_r_1, g_r: restricted data from dpc dpc_r=dpc.loc[:, ['ID','code']] # g_dpc_r_1: made to check the details (: name of the code, ‘name’) g_dpc_r_1=dpc.loc[:, ['ID','code','name']] # Dummy Encoding with ‘name’ g_r = pd.get_dummies(dpc_r['code']) # Reconstruct simulated data for AI learning df_concat_dpc_get_dummies = pd.concat([dpc_r, g_r], axis=1) # Remove features that may be the cause of the data leak dpc_Remove_data_leak = df_concat_dpc_get_dummies.drop(["code",160094710,160094810,160094910,150285010,2113008,8842965,8843014,622224401,810000000,160060010], axis=1) # Sum up the number of occurrences of each feature for each patient. total_patient_features= dpc_Remove_data_leak.groupby("ID").sum() total_patient_features.reset_index() # Load a new file with ID and treatment availability # Prepare training data image_file_path_ID_and_polyp_pn = './simulated_patient_data.csv' with codecs.open(image_file_path_ID_and_polyp_pn, "r", "Shift-JIS", "ignore") as file: ID_and_polyp_pn = pd.read_table(file, delimiter=",") ID_and_polyp_pn_data= ID_and_polyp_pn[['ID', 'target']] #Combine the new file containing ID and treatment status with the file after dummy encoding by the ‘name’ ID_treatment_medical_statement=pd.merge(ID_and_polyp_pn_data,total_patient_features,on=["ID"],how='outer') ID_treatment_medical_statement_o= ID_treatment_medical_statement.fillna(0) ID_treatment_medical_statement_p=ID_treatment_medical_statement_o.drop("ID", axis=1) ID_treatment_medical_statement_rename= ID_treatment_medical_statement_p.rename(columns={'code':"Receipt type code"}) merge_data= ID_treatment_medical_statement_rename # Split the training/validation set into 80% and the test set into 20%, with a constant proportion of cases with lesions X = merge_data.drop("target",axis=1).values y = merge_data["target"].values columns_name = merge_data.drop("target",axis=1).columns sss = StratifiedShuffleSplit(n_splits=1, test_size=0.2,random_state=1) # Create a function to divide data def data_split(X,y): for train_index, test_index in sss.split(X, y): X_train, X_test = X[train_index], X[test_index] y_train, y_test = y[train_index], y[test_index] X_train = pd.DataFrame(X_train, columns=columns_name) X_test = pd.DataFrame(X_test, columns=columns_name) return X_train, y_train, X_test, y_test # Separate into training, validation, and test set X_train, y_train, X_test, y_test = data_split(X, y) X_train, y_train, X_val, y_val = data_split(X_train.values, y_train) # Make test set into pandas X_test_df = pd.DataFrame(X_test) y_test_df = pd.DataFrame(y_test) # Make test set into test_df to keep away for the final process test_dfp = pd.concat([y_test_df,X_test_df], axis=1) test_df=test_dfp.rename(columns={0:"target"}) # Make training/validation sets into pandas y_trainp = pd.DataFrame(y_train) X_trainp = pd.DataFrame(X_train) train=pd.concat([y_trainp, X_trainp], axis=1) y_valp = pd.DataFrame(y_val) X_valp = pd.DataFrame(X_val) val=pd.concat([y_valp, X_valp], axis=1) test_vol=pd.concat([train, val]) training_validation_sets=test_vol.rename(columns={0:"target"}) # Create a function to save the results and feature importance after analysis with lightGBM def reg_top10_lightGBM(merge_data,outname,no,random_state_number): # Define the objective variable X = merge_data.drop("target",axis=1).values y = merge_data["target"].values columns_name = merge_data.drop("target",axis=1).columns # Define a function sss = StratifiedShuffleSplit(n_splits=1, test_size=0.2, random_state=random_state_number) def data_split(X,y): for train_index, test_index in sss.split(X, y): X_train, X_test = X[train_index], X[test_index] y_train, y_test = y[train_index], y[test_index] X_train = pd.DataFrame(X_train, columns=columns_name) X_test = pd.DataFrame(X_test, columns=columns_name) return X_train, y_train, X_test, y_test X_train, y_train, X_test, y_test = data_split(X, y) X_train, y_train, X_val, y_val = data_split(X_train.values, y_train) y_test_df = pd.DataFrame(y_test) # Prepare dataset: training data: X_train, label: y_train train = lgb.Dataset(X_train, label=y_train) valid = lgb.Dataset(X_val, label=y_val) # Set the parameters params = {'task': 'train', 'boosting_type': 'gbdt', 'objective': 'regression', 'metric': 'rmse', 'learning_rate': 0.1 } # Train the model model = lgb.train(params, train, valid_sets=valid, num_boost_round=3000, early_stopping_rounds=100) # Prediction y_pred = model.predict(X_test, num_iteration=model.best_iteration) # Display actual values and predicted values df_pred = pd.DataFrame({'regression_y_test':y_test,'regression_y_pred':y_pred}) # Calculate MSE (Mean Square Error) mse = mean_squared_error(y_test, y_pred) # Calculate RSME = √MSE rmse = np.sqrt(mse) # r2 : Calculate the coefficient of determination r2 = r2_score(y_test,y_pred) df_Df = pd.DataFrame({'regression_y_test_'+no:y_test,'regression_y_pred_'+no:y_pred,'RMSE_'+no:rmse,'R2_'+no:r2}) df_Df.to_csv(r""+"./"+outname+no+'.csv', encoding = 'shift-jis') importance = pd.DataFrame(model.feature_importance(), columns=['importance']) column_list=merge_data.drop(["target"], axis=1) importance["columns"] =list(column_list.columns) return importance # Find out Top 50 features procedure / Run the model once importance = reg_top10_lightGBM(training_validation_sets,"check_data","_1",1) # Create a function that sorts and stores the values of feature importance. def after_imp_save_sort(importance,outname,no): importance.sort_values(by='importance',ascending=False) i_df=importance.sort_values(by='importance',ascending=False) top50=i_df.iloc[0:51,:] g_dpc_pre= g_dpc_r_1.drop(["ID"], axis=1) g_dpc_Remove_duplicates=g_dpc_pre.drop_duplicates() g_dpc_r_columns=g_dpc_Remove_duplicates.rename(columns={'code':"columns"}) importance_name=pd.merge(top50,g_dpc_r_columns) importance_all=pd.merge(i_df,g_dpc_r_columns) importance_all.to_csv(r""+"./"+outname+no+'importance_name_all'+'.csv', encoding = 'shift-jis') return importance_all # Run a function to sort and save the values of feature importance. top50_importance_all = after_imp_save_sort(importance,"check_data","_1") # 10 runs of this procedure dict = {} for num in range(10): print(num+1) importance = reg_top10_lightGBM(training_validation_sets,"check_data","_"+str(num+1),num+1) top50_importance_all = after_imp_save_sort(importance,"check_data","_"+str(num+1)) dict[str(num)] = top50_importance_all # Recall and merge the saved CSV files def concat_importance(First_pd,Next_pd): importance_1=pd.DataFrame(dict[First_pd]) importance_1d=importance_1.drop_duplicates(subset='columns') importance_2=pd.DataFrame(dict[Next_pd]) importance_2d=importance_2.drop_duplicates(subset='columns') importance_1_2=pd.concat([importance_1d, importance_2d]) return importance_1_2 importance_1_2 = concat_importance("0","1") importance_3_4 = concat_importance("2","3") importance_5_6 = concat_importance("4","5") importance_7_8 = concat_importance("6","7") importance_9_10 = concat_importance("8","9") importance_1_4=pd.concat([importance_1_2, importance_3_4]) importance_1_6=pd.concat([importance_1_4, importance_5_6]) importance_1_8=pd.concat([importance_1_6, importance_7_8]) importance_1_10=pd.concat([importance_1_8, importance_9_10]) # Calculate the total value of the feature importance for each code group_sum=importance_1_10.groupby(["columns"]).sum() group_sum_s = group_sum.sort_values('importance', ascending=False) importance_group_sum=group_sum_s.reset_index() # Create train/validation test data with all features merge_data_test=pd.concat([training_validation_sets, test_df]) # Make features in the order of highest total feature impotance value importance_top50_previous_data=importance_group_sum["columns"] importance_top50_previous_data # refine the data to top 50 features dict_top50 = {} pycaret_dict_top50 = {} X = range(1, 51) for i,v in enumerate(X): dict_top50[str(i)] = importance_top50_previous_data.iloc[v] pycaret_dict_top50[importance_top50_previous_data[i]] = merge_data_test[dict_top50[str(i)]] pycaret_df_dict_top50=pd.DataFrame(pycaret_dict_top50) # Add the value of target (: objective variable) target_data=merge_data_test["target"] target_top50_dataframe=pd.concat([target_data, pycaret_df_dict_top50], axis=1) # adjust pandas (pycaret needs to set “str” to “int”) target_top50_dataframe_int=target_top50_dataframe.astype('int') target_top50_dataframe_columns=target_top50_dataframe_int.columns.astype(str) numpy_target_top50=target_top50_dataframe_int.to_numpy() target_top50_dataframe_pycaret=pd.DataFrame(numpy_target_top50,columns=target_top50_dataframe_columns) # compare the models from pycaret.classification import * clf1 = setup(target_top50_dataframe_pycaret, target ='target',train_size = 0.8,data_split_shuffle=False,fold=10,session_id=0) best_model = compare_models()
48.525
165
0.757651
0
0
0
0
0
0
0
0
2,631
0.270484
9acbf669f84ad525253b32c114c4e395b93adc19
3,488
py
Python
open-hackathon-tempUI/src/hackathon/config-sample.py
SpAiNiOr/LABOSS
32ad341821e9f30fecfa338b5669f574d32dd0fa
[ "Apache-2.0" ]
null
null
null
open-hackathon-tempUI/src/hackathon/config-sample.py
SpAiNiOr/LABOSS
32ad341821e9f30fecfa338b5669f574d32dd0fa
[ "Apache-2.0" ]
null
null
null
open-hackathon-tempUI/src/hackathon/config-sample.py
SpAiNiOr/LABOSS
32ad341821e9f30fecfa338b5669f574d32dd0fa
[ "Apache-2.0" ]
null
null
null
# "javascript" section for javascript. see @app.route('/config.js') in app/views.py # oauth constants HOSTNAME = "http://hackathon.chinacloudapp.cn" # host name of the UI site QQ_OAUTH_STATE = "openhackathon" # todo state should be constant. Actually it should be unguessable to prevent CSFA HACkATHON_API_ENDPOINT = "http://hackathon.chinacloudapp.cn:15000" Config = { "environment": "local", "login": { "github": { "access_token_url": 'https://github.com/login/oauth/access_token?client_id=a10e2290ed907918d5ab&client_secret=5b240a2a1bed6a6cf806fc2f34eb38a33ce03d75&redirect_uri=%s/github&code=' % HOSTNAME, "user_info_url": 'https://api.github.com/user?access_token=', "emails_info_url": 'https://api.github.com/user/emails?access_token=' }, "qq": { "access_token_url": 'https://graph.qq.com/oauth2.0/token?grant_type=authorization_code&client_id=101192358&client_secret=d94f8e7baee4f03371f52d21c4400cab&redirect_uri=%s/qq&code=' % HOSTNAME, "openid_url": 'https://graph.qq.com/oauth2.0/me?access_token=', "user_info_url": 'https://graph.qq.com/user/get_user_info?access_token=%s&oauth_consumer_key=%s&openid=%s' }, "gitcafe": { "access_token_url": 'https://api.gitcafe.com/oauth/token?client_id=25ba4f6f90603bd2f3d310d11c0665d937db8971c8a5db00f6c9b9852547d6b8&client_secret=e3d821e82d15096054abbc7fbf41727d3650cab6404a242373f5c446c0918634&redirect_uri=%s/gitcafe&grant_type=authorization_code&code=' % HOSTNAME }, "provider_enabled": ["github", "qq", "gitcafe"], "session_minutes": 60, "token_expiration_minutes": 60 * 24 }, "hackathon-api": { "endpoint": HACkATHON_API_ENDPOINT }, "javascript": { "renren": { "clientID": "client_id=7e0932f4c5b34176b0ca1881f5e88562", "redirect_url": "redirect_uri=%s/renren" % HOSTNAME, "scope": "scope=read_user_message+read_user_feed+read_user_photo", "response_type": "response_type=token", }, "github": { "clientID": "client_id=a10e2290ed907918d5ab", "redirect_uri": "redirect_uri=%s/github" % HOSTNAME, "scope": "scope=user", }, "google": { "clientID": "client_id=304944766846-7jt8jbm39f1sj4kf4gtsqspsvtogdmem.apps.googleusercontent.com", "redirect_url": "redirect_uri=%s/google" % HOSTNAME, "scope": "scope=https://www.googleapis.com/auth/userinfo.profile+https://www.googleapis.com/auth/userinfo.email", "response_type": "response_type=token", }, "qq": { "clientID": "client_id=101192358", "redirect_uri": "redirect_uri=%s/qq" % HOSTNAME, "scope": "scope=get_user_info", "state": "state=%s" % QQ_OAUTH_STATE, "response_type": "response_type=code", }, "gitcafe": { "clientID": "client_id=25ba4f6f90603bd2f3d310d11c0665d937db8971c8a5db00f6c9b9852547d6b8", "clientSecret": "client_secret=e3d821e82d15096054abbc7fbf41727d3650cab6404a242373f5c446c0918634", "redirect_uri": "redirect_uri=http://hackathon.chinacloudapp.cn/gitcafe", "response_type": "response_type=code", "scope": "scope=public" }, "hackathon": { "name": "open-xml-sdk", "endpoint": HACkATHON_API_ENDPOINT } } }
48.444444
294
0.648222
0
0
0
0
0
0
0
0
2,476
0.709862
9acc78e7c1d68d1a67b2d32bd290cc493caa9d62
1,036
py
Python
marocco/first.py
panos1998/Thesis_Code
3f95730b1b2139011b060f002d5ce449a886079b
[ "Apache-2.0" ]
null
null
null
marocco/first.py
panos1998/Thesis_Code
3f95730b1b2139011b060f002d5ce449a886079b
[ "Apache-2.0" ]
null
null
null
marocco/first.py
panos1998/Thesis_Code
3f95730b1b2139011b060f002d5ce449a886079b
[ "Apache-2.0" ]
null
null
null
#%% import sys import numpy as np from typing import Any, List import pandas as pd from sklearn.preprocessing import MinMaxScaler sys.path.append('C:/Users/panos/Documents/Διπλωματική/code/fz') from arfftocsv import function_labelize import csv colnames =['age', 'sex', 'cp', 'trestbps', 'chol', 'fbs', 'restecg', 'thalach','exang', 'oldpeak', 'slope', 'ca', 'thal', 'cvd'] # %% df1 = function_labelize(dest = 'labeled_data1.txt', labels=colnames, source = 'processed.hungarian.csv') df2 = function_labelize(dest = 'labeled_data2.txt', labels=colnames, source = 'processed.cleveland.data') df3 = function_labelize(dest = 'labeled_data3.txt', labels=colnames, source = 'processed.va.csv') df4 =function_labelize(dest = 'labeled_data4.txt', labels=colnames, source = 'processed.switzerland.csv') df = pd.concat([df1,df2,df3,df4], axis=0) print(df.isna().sum()) df['cvd'] = df['cvd'].replace([2,3,4], 1) scaler = MinMaxScaler() X = df[colnames[:-1]] y = df[colnames[-1]] X_norm = scaler.fit_transform(X) print(X_norm) print(y) # %%
32.375
63
0.712355
0
0
0
0
0
0
0
0
341
0.325692
9accd3c42fa9f549ce35aac4c4567cb2591c14a9
10,323
py
Python
matlab2cpp/datatype.py
emc2norway/m2cpp
81943057c184c539b409282cbbd47bbf933db04f
[ "BSD-3-Clause" ]
28
2017-04-25T10:06:38.000Z
2022-02-09T07:25:34.000Z
matlab2cpp/datatype.py
emc2norway/m2cpp
81943057c184c539b409282cbbd47bbf933db04f
[ "BSD-3-Clause" ]
null
null
null
matlab2cpp/datatype.py
emc2norway/m2cpp
81943057c184c539b409282cbbd47bbf933db04f
[ "BSD-3-Clause" ]
5
2017-04-25T17:54:53.000Z
2022-03-21T20:15:15.000Z
""" The follwing constructor classes exists here: +------------------------------------------+---------------------------------------+ | Class | Description | +==========================================+=======================================+ | :py:class:`~matlab2cpp.datatype.Type` | Frontend for the datatype string | +------------------------------------------+---------------------------------------+ | :py:class:`~matlab2cpp.datatype.Dim` | Reference to the number of dimensions | +------------------------------------------+---------------------------------------+ | :py:class:`~matlab2cpp.datatype.Mem` | Reference to the memory type | +------------------------------------------+---------------------------------------+ | :py:class:`~matlab2cpp.datatype.Num` | Numerical value indicator | +------------------------------------------+---------------------------------------+ | :py:class:`~matlab2cpp.datatype.Suggest` | Frontend for suggested datatype | +------------------------------------------+---------------------------------------+ """ import supplement import matlab2cpp as mc dim0 = {"int", "float", "uword", "double", "cx_double", "size_t"} dim1 = {"ivec", "fvec", "uvec", "vec", "cx_vec"} dim2 = {"irowvec", "frowvec", "urowvec", "rowvec", "cx_rowvec"} dim3 = {"imat", "fmat", "umat", "mat", "cx_mat"} dim4 = {"icube", "fcube", "ucube", "cube", "cx_cube"} dims = [dim0, dim1, dim2, dim3, dim4] mem0 = {"uword", "uvec", "urowvec", "umat", "ucube"} mem1 = {"int", "ivec", "irowvec", "imat", "icube"} mem2 = {"float", "fvec", "frowvec", "fmat", "fcube"} mem3 = {"double", "vec", "rowvec", "mat", "cube"} mem4 = {"cx_double", "cx_vec", "cx_rowvec", "cx_mat", "cx_cube"} mems = [mem0, mem1, mem2, mem3, mem4] others = {"char", "string", "TYPE", "func_lambda", "struct", "structs", "cell", "wall_clock", "SPlot"} def common_loose(vals): """Common denominator among several names. Loose enforcment""" if not isinstance(vals, (tuple, list)) or \ isinstance(vals[0], int): vals = [vals] vals = list(vals) for i in xrange(len(vals)): if isinstance(vals[i], str): continue if isinstance(vals[i][0], int): vals[i] = get_name(*vals[i]) vals = set(vals) if len(vals) == 1: return vals.pop() vals.discard("TYPE") if len(vals) == 1: return vals.pop() for other in others: vals.discard(other) if len(vals) == 0: return "TYPE" elif len(vals) == 1: return vals.pop() dims_ = map(get_dim, vals) if dims_: dim = max(*dims_) else: return "TYPE" if dim == 2 and 1 in dims_: dim = 3 types = map(get_mem, vals) type = max(*types) val = get_name(dim, type) return val def common_strict(vals): """Common denominator among several names. Strict enforcment""" if not isinstance(vals, (tuple, list)) \ or isinstance(vals[0], int): vals = [vals] vals = list(vals) for i in xrange(len(vals)): if isinstance(vals[i], str): continue if isinstance(vals[i][0], int): vals[i] = get_name(*vals[i]) vals = set(vals) if len(vals) == 1: return vals.pop() for other in others: if other in vals: return "TYPE" dims_ = map(get_dim, vals) dim = max(*dims_) if dim == 2 and 1 in dims_: return "TYPE" types = map(get_mem, vals) type = max(*types) val = get_name(dim, type) return val def pointer_split(name): p = name.count("*") if not p: return 0, name return p, name[:-p] def get_dim(val): while val[-1] == "*": val = val[:-1] if val in dim0: dim = 0 elif val in dim1: dim = 1 elif val in dim2: dim = 2 elif val in dim3: dim = 3 elif val in dim4: dim = 4 elif val in others: dim = None else: raise ValueError("Datatype '%s' not recognized" % val) return dim def get_mem(val): while val[-1] == "*": val = val[:-1] if val in mem0: mem = 0 elif val in mem1: mem = 1 elif val in mem2: mem = 2 elif val in mem3: mem = 3 elif val in mem4: mem = 4 elif val in others: mem = None else: raise ValueError("Datatype '%s' not recognized" % val) return mem def get_num(val): while val[-1] == "*": val = val[:-1] if val in others: num = False else: num = True return num def get_name(dim, mem): return dims[dim].intersection(mems[mem]).pop() def get_type(instance): if instance.prop["type"] == "TYPE": instance = instance.declare return instance.prop["type"] class Dim(object): """ The `node.dim` is a help variable for handling numerical datatype. It represents the number of dimension a numerical object represents: +-------+--------------+ | *dim* | Description | +=======+==============+ | 0 | scalar | +-------+--------------+ | 1 | (col-)vector | +-------+--------------+ | 2 | row-vector | +-------+--------------+ | 3 | matrix | +-------+--------------+ | 4 | cube | +-------+--------------+ | None | Other | +-------+--------------+ The variable can be both read and set in real time: >>> node = mc.Var(None, "name") >>> node.type="float" >>> print node.dim 0 >>> node.dim = 3 >>> print node.type fmat """ def __get__(self, instance, owner): if instance is None: return self return get_dim(get_type(instance)) def __set__(self, instance, value): mem = get_mem(get_type(instance)) instance.prop["type"] = get_name(value, mem) class Mem(object): """ The `node.mem` is a help variable for handling numerical datatype. It represents the internal basic datatype represented in memory: +-------+-------------+ | *mem* | Description | +=======+=============+ | 0 | unsiged int | +-------+-------------+ | 1 | integer | +-------+-------------+ | 2 | float | +-------+-------------+ | 3 | double | +-------+-------------+ | 4 | complex | +-------+-------------+ | None | Other | +-------+-------------+ The variable can be both read and set in real time: >>> node = mc.Var(None, "name") >>> node.type="float" >>> print node.mem 2 >>> node.mem = 3 >>> print node.type double """ def __get__(self, instance, owner): if instance is None: return self return get_mem(get_type(instance)) def __set__(self, instance, value): dim = get_dim(get_type(instance)) instance.prop["type"] = get_name(dim, value) class Num(object): """ The `node.num` is a help variable for handling numerical datatype. It is a boolean values which is true given that the datatype is of numerical type. """ def __get__(self, instance, owner): if instance is None: return self return get_num(get_type(instance)) def __set__(self, instance, value): if not value: instance.prop["type"] = "TYPE" else: raise AttributeError("num can not be set True consistently") class Type(object): """ Datatypes can be roughly split into two groups: **numerical** and **non-numerical** types. The numerical types are as follows: +-------------+--------------+-----------+-----------+----------+-------------+ | | unsigned int | int | float | double | complex | +=============+==============+===========+===========+==========+=============+ | scalar | *uword* | *int* | *float* | *double* | *cx_double* | +-------------+--------------+-----------+-----------+----------+-------------+ | vector | *uvec* | *ivec* | *fvec* | *vec* | *cx_vec* | +-------------+--------------+-----------+-----------+----------+-------------+ | row\-vector | *urowvec* | *irowvec* | *frowvec* | *rowvec* | *cx_rowvec* | +-------------+--------------+-----------+-----------+----------+-------------+ | matrix | *umat* | *imat* | *fmat* | *mat* | *cx_mat* | +-------------+--------------+-----------+-----------+----------+-------------+ | cube | *ucube* | *icube* | *fcube* | *cube* | *cx_cube* | +-------------+--------------+-----------+-----------+----------+-------------+ Values along the horizontal axis represents the amount of memory reserved per element, and the along the vertical axis represents the various number of dimensions. The names are equivalent to the ones in the Armadillo package. The non-numerical types are as follows: +---------------+------------------------+ | Name | Description | +===============+========================+ | *char* | Single text character | +---------------+------------------------+ | *string* | Text string | +---------------+------------------------+ | *struct* | Struct container | +---------------+------------------------+ | *structs* | Struct array container | +---------------+------------------------+ | *func_lambda* | Anonymous function | +---------------+------------------------+ The node datatype can be referenced by any node through `node.type` and can be inserted as placeholder through `%(type)s`. """ def __get__(self, instance, owner): if instance is None: return self return get_type(instance) def __set__(self, instance, value): value = value or "TYPE" if isinstance(value, str): p, value = pointer_split(value) instance.pointer = p else: value = common_strict(value) instance.prop["type"] = value class Suggest(object): """Same as Type, but for suggested value. """ def __set__(self, instance, value): if value == "TYPE": return instance.declare.prop["suggest"] = value def __get__(self, instance, owner): return supplement.suggests.get(instance) if __name__ == "__main__": import doctest doctest.testmod()
28.675
84
0.465272
5,400
0.523104
0
0
0
0
0
0
5,722
0.554296
9acd3d20a14d9e96bec466426e861a98197f22b0
330
py
Python
src/the_impossible/live/migrations/newsletter/migrations/0002_auto_20200514_1518.py
micha31r/The-Impossible
7a79dea3169907eb93107107f4003c5813de58dc
[ "MIT" ]
null
null
null
src/the_impossible/live/migrations/newsletter/migrations/0002_auto_20200514_1518.py
micha31r/The-Impossible
7a79dea3169907eb93107107f4003c5813de58dc
[ "MIT" ]
2
2020-04-15T03:57:42.000Z
2020-06-06T01:43:34.000Z
src/the_impossible/live/migrations/newsletter/migrations/0002_auto_20200514_1518.py
micha31r/The-Impossible
7a79dea3169907eb93107107f4003c5813de58dc
[ "MIT" ]
null
null
null
# Generated by Django 2.2.7 on 2020-05-14 03:18 from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('newsletter', '0001_initial'), ] operations = [ migrations.RenameModel( old_name='Newsletter', new_name='Subscriber', ), ]
18.333333
47
0.593939
245
0.742424
0
0
0
0
0
0
97
0.293939
9acd4db9f55911f16eb79b057e6fc8abf0b3c6d4
210
py
Python
resident/views.py
felipeue/SmartBuilding
57d904c6166c87f836bc8fada9eb5a2bc82069b8
[ "MIT" ]
null
null
null
resident/views.py
felipeue/SmartBuilding
57d904c6166c87f836bc8fada9eb5a2bc82069b8
[ "MIT" ]
null
null
null
resident/views.py
felipeue/SmartBuilding
57d904c6166c87f836bc8fada9eb5a2bc82069b8
[ "MIT" ]
null
null
null
from django.views.generic import TemplateView from main.permissions import ResidentLoginRequiredMixin class DashboardView(ResidentLoginRequiredMixin, TemplateView): template_name = "index_dashboard.html"
30
62
0.852381
105
0.5
0
0
0
0
0
0
22
0.104762
9acff9f4ad0162148d8ed69428c049eb258f8169
9,179
py
Python
src/awspfx/awspfx.py
exfi/awspfx
118d2f83a365e1cd37da0b0689e6d5ff527e0f64
[ "MIT" ]
1
2021-08-10T23:17:07.000Z
2021-08-10T23:17:07.000Z
src/awspfx/awspfx.py
exfi/awspfx
118d2f83a365e1cd37da0b0689e6d5ff527e0f64
[ "MIT" ]
2
2021-09-22T03:59:52.000Z
2021-12-22T22:48:18.000Z
src/awspfx/awspfx.py
exfi/awspfx
118d2f83a365e1cd37da0b0689e6d5ff527e0f64
[ "MIT" ]
1
2022-03-29T15:14:22.000Z
2022-03-29T15:14:22.000Z
#!/usr/bin/env python3 """awspfx Usage: awspfx.py <profile> awspfx.py [(-c | --current) | (-l | --list) | (-s | --swap)] awspfx.py token [(-p | --profile) <profile>] awspfx.py sso [(login | token)] [(-p | --profile) <profile>] awspfx.py -h | --help awspfx.py --version Examples: awspfx.py default # Change profile to 'default' awspfx.py token # Token from current profile, default from SSO awspfx.py token -p default # Token from profile 'default' awspfx.py (-c | -l | -s) SubCommands: token Generate credentials -p --profile Select profile Options: -c --current Change the profile -l --list List profiles -s --swap Swap previous the profile -h --help Show this screen. --version Show version. WIP: sso Option to login sts Option to assume-role """ import json import logging import os import re import shutil import subprocess import sys import tempfile from configparser import ConfigParser as cfgParser import boto3 from colorlog import ColoredFormatter from docopt import docopt from iterfzf import iterfzf def setup_logging(): log_level = logging.INFO log_format = "\n%(log_color)s%(levelname)s%(reset)s => %(log_color)s%(message)s%(reset)s" logging.root.setLevel(log_level) formatter = ColoredFormatter(log_format) stream_ = logging.StreamHandler() stream_.setLevel(log_level) stream_.setFormatter(formatter) log_ = logging.getLogger("pythonConfig") log_.setLevel(log_level) log_.addHandler(stream_) return log_ def exit_err(msg): log.error(msg) sys.exit() def has_which(command, err=True): cmd = shutil.which(command) is not None if cmd: return command else: if err: exit_err(f"Command not installed: {command}") else: return False def has_file(file, create=False): f = os.path.isfile(file) or False if not f: if create: f_ = open(file, "w+") f_.close() else: exit_err(f"File not exist: {file}") return file def run_cmd(command): rc, out = subprocess.getstatusoutput(command) if rc != 0: err = "Occurred: ", out exit_err(err) return out def fzf(data: list, current: str = None): cmd = has_which("fzf", err=False) if not cmd: print(*data, sep="\n") exit_err("Not installed 'fzf'") return iterfzf(data) or exit_err("you did not choose any of the options") def sed_inplace(filename, pattern, repl): p = re.compile(pattern, re.MULTILINE) with tempfile.NamedTemporaryFile(mode="w", delete=False) as tmp_file: with open(filename, "r") as file: text = file.read() if "AWS_PROFILE" in text: new = p.sub(repl, text) tmp_file.write(new) else: print("No exist profile") tmp_file.write(text) tmp_file.write(f"export {repl}") shutil.copystat(filename, tmp_file.name) shutil.move(tmp_file.name, filename) def setup_aws(ctx: str = None): try: if ctx is None: # if aws_profile_env is None: # del os.environ['AWS_PROFILE'] aws_session = boto3.session.Session() else: aws_session = boto3.session.Session(profile_name=ctx) return aws_session except Exception as e: exit_err(e) def current_profile(err=True): ctx = aws.profile_name if err: return ctx or exit_err("Getting current profile") return ctx def get_profiles(err=True): try: ctx_ls = aws.available_profiles ctx = sorted(ctx_ls, reverse=True) if err: return ctx or exit_err("Getting profile list") return ctx except Exception as e: log.error(e) def list_profiles(lst=False): ctx_current = current_profile(err=False) ctx_list = get_profiles() if lst: ctx = reversed(ctx_list) print(*ctx, sep="\n") else: p = fzf(data=ctx_list, current=ctx_current) return p def read_profile(): with open(awspfx_cache, 'r') as file: r = file.read() return r def save_profile(ctx_current): ctx = ctx_current if ctx_current else "" with open(awspfx_cache, "w") as file: file.write(ctx) def switch_profile(ctx, ctx_current): ctx_old = f'AWS_PROFILE="{ctx_current}"' ctx_repl = f'AWS_PROFILE="{ctx}"' sed_inplace(envrc_file, ctx_old, ctx_repl) save_profile(ctx_current) run_cmd("direnv allow && direnv reload") def set_profile(ctx, ctx_current=None, sms=None): if not ctx_current: ctx_current = current_profile(err=False) if ctx == ctx_current: log.warning(f"The profile is not changed: {ctx_current}") else: switch_profile(ctx, ctx_current) sms_text = sms or f"Switched to profile: {ctx}" log.info(sms_text) def swap_profile(): ctx = read_profile() if ctx: sms_text = f"Switched to previous profile: {ctx}" set_profile(ctx=ctx, sms=sms_text) def exist_profile(ctx): if ctx in get_profiles(): return True else: exit_err(f"Profile does not exist: {ctx}") def sso(account_id, role_name): client = aws.client("sso", region_name="us-east-1") aws_sso_cache = os.path.expanduser("~/.aws/sso/cache") json_files = [ pos_json for pos_json in os.listdir( aws_sso_cache ) if pos_json.endswith( ".json" ) ] for json_file in json_files: path = f"{aws_sso_cache}/{json_file}" with open(path) as file: data = json.load(file) if "accessToken" in data: access_token = data['accessToken'] try: cred = client.get_role_credentials( accountId=account_id, roleName=role_name, accessToken=access_token ) return cred except Exception as e: log.error(e) log.warning("The SSO session associated with this profile has expired " "or is otherwise invalid. To refresh this SSO session run " "aws sso login with the corresponding profile.") sys.exit(2) def sts(account_id, role, region): role_info = { "RoleArn": f"arn:aws:iam::{account_id}:role/{role}", "RoleSessionName": "session01" } client = aws.client("sts", region_name=region) cred = client.assume_role(**role_info) return cred def get_token(ctx, sso_=True, sts_=False): aws_cred = cfgParser() aws_cred.read(creds_file) act_id = os.getenv("AWS_ACCOUNT_ID") or aws_cred.get(ctx, "account_id") act_role = os.getenv("AWS_ROLE_NAME") or aws_cred.get(ctx, "role_name") act_region = os.getenv("AWS_REGION") or aws_cred.get(ctx, "region") if sso_: cred = sso(account_id=act_id, role_name=act_role) elif sts_: cred = sts(account_id=act_id, role=act_role, region=act_region) else: cred = {} exit_err("Not select option from token") aws_access_key_id = cred['roleCredentials']['accessKeyId'] aws_secret_access_key = cred['roleCredentials']['secretAccessKey'] aws_session_token = cred['roleCredentials']['sessionToken'] # print('Save Credentials in ~/.aws/credentials ...') aws_cred.set(ctx, "aws_access_key_id", aws_access_key_id) aws_cred.set(ctx, "aws_secret_access_key", aws_secret_access_key) aws_cred.set(ctx, "aws_session_token", aws_session_token) with open(creds_file, "w") as f: aws_cred.write(f) def main(argv): ctx = argv['<profile>'] if ctx == "token" or argv['token']: if argv['--profile']: if exist_profile(ctx): get_token(ctx) log.info(f"Generate token to: {ctx}") else: ctx = current_profile() get_token(ctx) log.info(f"Generate token to: {ctx}") sys.exit() if ctx == "sso" or argv['sso']: print("sso") sys.exit() if argv['--current']: log.info(f"The current profile is: '{current_profile()}'") sys.exit() if argv['--list']: list_profiles(lst=True) sys.exit() if argv['--swap']: swap_profile() sys.exit() if ctx or ctx is None: if ctx is None: ctx_profile = list_profiles() else: ctx_profile = ctx if exist_profile(ctx) else sys.exit() set_profile(ctx_profile) sys.exit() if __name__ == "__main__": log = setup_logging() home_path = os.getenv('HOME') or exit_err("Home directory does not exist?") # aws_profile_env = os.getenv("AWS_PROFILE") aws = setup_aws() awspfx_cache = has_file(f"{home_path}/.aws/awspfx", create=True) direnv = has_which("direnv") envrc_file = has_file(f"{home_path}/.envrc") creds_file = has_file(f"{home_path}/.aws/credentials") arguments = docopt(__doc__, version=f'awspfx 0.1.6 - python {sys.version}') main(arguments)
26.002833
93
0.610742
0
0
0
0
0
0
0
0
2,602
0.283473
9ad11bb35b11a89ca5873c299ffa8f65fee28a06
3,694
py
Python
test/test_contacts_info_from_main_page.py
OlgaZtv/python_training
661165613ef4b9545345a8a2c61a894571ded703
[ "Apache-2.0" ]
null
null
null
test/test_contacts_info_from_main_page.py
OlgaZtv/python_training
661165613ef4b9545345a8a2c61a894571ded703
[ "Apache-2.0" ]
null
null
null
test/test_contacts_info_from_main_page.py
OlgaZtv/python_training
661165613ef4b9545345a8a2c61a894571ded703
[ "Apache-2.0" ]
null
null
null
import re from model.contact import Contact def test_contact_info_from_home_page(app, db): app.navigation.open_home_page() contact_from_home_page = sorted(app.contact.get_contact_list(), key=Contact.id_or_max) def clean(contact): return Contact(id=contact.id, firstname=contact.firstname.strip(), lastname=contact.lastname.strip(), address=contact.address.strip(), home=contact.home, mobile=contact.mobile, phone2=contact.phone2, email=contact.email, email2=contact.email2, email3=contact.email3) contact_from_db_list = list(map(clean, db.get_contact_list())) print("Contacts_from_home_page>>>>", contact_from_home_page) print("Contacts_from_DB>>>>", contact_from_db_list) i = 0 for item in contact_from_home_page: assert item.address == contact_from_db_list[i].address assert item.lastname == contact_from_db_list[i].lastname.strip() assert item.firstname == contact_from_db_list[i].firstname.strip() assert item.all_phones_from_home_page == merge_phones_like_on_home_page(contact_from_db_list[i]) assert item.all_emails_from_home_page == merge_emails_like_on_home_page(contact_from_db_list[i]) i += 1 def clear(s): return re.sub("[() -]", "", s) def merge_phones_like_on_home_page(contact): return "\n".join(filter(lambda x: x != "", map(lambda x: clear(x), filter(lambda x: x is not None, [contact.home, contact.mobile, contact.work, contact.phone2])))) def merge_emails_like_on_home_page(contact): return "\n".join(filter(lambda x: x != "", map(lambda x: clear(x), filter(lambda x: x is not None, [contact.email, contact.email2, contact.email3])))) # def test_contacts(app, ormdb): # random_index = randrange(app.contact.count()) # # взять все контакты с главной страницы # contact_from_home_page = app.contact.get_contact_list() # # взять все записи конатктов из бд # contact_from_db = ormdb.get_contact_list() # # сравниваем списки, сортируя # assert sorted(contact_from_home_page, key=Contact.id_or_max) == sorted(contact_from_db, key=Contact.id_or_max) # def test_contact_info_on_main_page(app): # if app.contact.amount() == 0: # app.contact.create( # Contact(firstname="TestTest", middlename="Test", lastname="Testing", nickname="testing", # title="test", company="Test test", address="Spb", home="000222111", # mobile="444555222", work="99966655", fax="11122255", email="test@tesr.ru", # email2="test2@test.ru", email3="test3@test.ru", homepage="www.test.ru", bday="15", # bmonth="May", byear="1985", aday="14", amonth="June", ayear="1985", # address2="Spb", phone2="111111", notes="Friend")) # random_index = randrange(app.contact.amount()) # contact_from_home_page = app.contact.get_contact_list()[random_index] # contact_from_edit_page = app.contact.get_contact_info_from_edit_page(random_index) # assert contact_from_home_page.all_phones_from_home_page == merge_phones_like_on_home_page(contact_from_edit_page) # assert contact_from_home_page.firstname == contact_from_edit_page.firstname # assert contact_from_home_page.lastname == contact_from_edit_page.lastname # assert contact_from_home_page.address == contact_from_edit_page.address # assert contact_from_home_page.all_emails_from_home_page == merge_emails_like_on_home_page(contact_from_edit_page)
52.028169
119
0.67542
0
0
0
0
0
0
0
0
1,931
0.511252
9ad1371d592dd9a07aabbaf79a51d2d1c5de33e5
628
py
Python
Leetcode/1379. Find a Corresponding Node of a Binary Tree in a Clone of That Tree/solution1.py
asanoviskhak/Outtalent
c500e8ad498f76d57eb87a9776a04af7bdda913d
[ "MIT" ]
51
2020-07-12T21:27:47.000Z
2022-02-11T19:25:36.000Z
Leetcode/1379. Find a Corresponding Node of a Binary Tree in a Clone of That Tree/solution1.py
CrazySquirrel/Outtalent
8a10b23335d8e9f080e5c39715b38bcc2916ff00
[ "MIT" ]
null
null
null
Leetcode/1379. Find a Corresponding Node of a Binary Tree in a Clone of That Tree/solution1.py
CrazySquirrel/Outtalent
8a10b23335d8e9f080e5c39715b38bcc2916ff00
[ "MIT" ]
32
2020-07-27T13:54:24.000Z
2021-12-25T18:12:50.000Z
# Definition for a binary tree node. # class TreeNode: # def __init__(self, x): # self.val = x # self.left = None # self.right = None class Solution: def getTargetCopy(self, original: TreeNode, cloned: TreeNode, target: TreeNode) -> TreeNode: if not target or not original or not cloned: return None if target.val == original.val == cloned.val: return cloned node = self.getTargetCopy(original.left, cloned.left, target) if node: return node node = self.getTargetCopy(original.right, cloned.right, target) if node: return node return None
36.941176
96
0.644904
464
0.738854
0
0
0
0
0
0
156
0.248408
9ad242baf7204452ac38c08eb06958775483a1b5
1,790
py
Python
benchmark.py
raonyguimaraes/machinelearning
03b18e5c69931c4ee2ea4803de72c846aba97bce
[ "MIT" ]
1
2016-10-23T19:45:12.000Z
2016-10-23T19:45:12.000Z
benchmark.py
raonyguimaraes/machinelearning
03b18e5c69931c4ee2ea4803de72c846aba97bce
[ "MIT" ]
null
null
null
benchmark.py
raonyguimaraes/machinelearning
03b18e5c69931c4ee2ea4803de72c846aba97bce
[ "MIT" ]
null
null
null
#!/usr/bin/env python # -*- coding: utf-8 -*- # Writing Our First Classifier - Machine Learning Recipes #5 #https://www.youtube.com/watch?v=AoeEHqVSNOw&list=PLOU2XLYxmsIIuiBfYad6rFYQU_jL2ryal&index=1 from scipy.spatial import distance from sklearn.neighbors import KNeighborsClassifier from sklearn.metrics import accuracy_score from sklearn import datasets from sklearn.cross_validation import train_test_split import numpy as np def euc(a,b): return distance.euclidean(a,b) class ScrappyKNN(): def fit(self, X_train, y_train): self.X_train = X_train self.y_train = y_train def predict(self, X_test): predictions = [] for row in X_test: label = self.closest(row) predictions.append(label) return predictions def closest(self, row): best_dist = euc(row, self.X_train[0]) best_index = 0 for i in range(1,len(self.X_train)): dist = euc(row, self.X_train[i]) if dist < best_dist: best_dist = dist best_index = i return self.y_train[best_index] iris = datasets.load_iris() X = iris.data y = iris.target X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = .5) # from sklearn.neighbors import KNeighborsClassifier my_classifier = ScrappyKNN() my_classifier_sklearn = KNeighborsClassifier() accuracies = [] for i in range (0,1000): my_classifier.fit(X_train, y_train) predictions = my_classifier.predict(X_test) accuracy = accuracy_score(y_test, predictions) accuracies.append(accuracy) print 'ScrappyKNN accuracy mean:', np.mean(accuracies) accuracies = [] for i in range (0,1000): my_classifier_sklearn.fit(X_train, y_train) predictions = my_classifier_sklearn.predict(X_test) accuracy = accuracy_score(y_test, predictions) accuracies.append(accuracy) print 'sklearn accuracy mean:', np.mean(accuracies)
24.189189
92
0.754749
507
0.28324
0
0
0
0
0
0
299
0.167039
9ad3c6eb1d3fc248c366e0859044b8671327d992
2,323
py
Python
process_frames.py
w-garcia/video-caption.pytorch
ef3766b093815b7cfd48d29b2af880c05b45ddbe
[ "MIT" ]
4
2019-03-27T11:37:44.000Z
2021-01-07T02:10:46.000Z
process_frames.py
w-garcia/video-caption.pytorch
ef3766b093815b7cfd48d29b2af880c05b45ddbe
[ "MIT" ]
2
2019-07-11T20:34:19.000Z
2019-08-19T13:21:52.000Z
process_frames.py
w-garcia/video-caption.pytorch
ef3766b093815b7cfd48d29b2af880c05b45ddbe
[ "MIT" ]
3
2020-02-12T02:31:58.000Z
2021-02-07T06:17:48.000Z
""" Re-tooled version of the script found on VideoToTextDNN: https://github.com/OSUPCVLab/VideoToTextDNN/blob/master/data/process_frames.py """ import sys import os import argparse import time from multiprocessing import Pool def main(args): src_dir = args.src_dir dst_dir = args.dst_dir start = int(args.start) end = int(args.end) PREPEND = args.prepend src_files = os.listdir(src_dir) if not os.path.isdir(dst_dir): os.mkdir(dst_dir) tuple_list = [] for video_file in src_files[start:end]: src_path = os.path.join(src_dir, video_file) dst_path = os.path.join(dst_dir, video_file) tuple_list.append((PREPEND, video_file, src_path, dst_path)) pool = Pool() # Default to number cores pool.map(process_vid, tuple_list) pool.close() pool.join() def process_vid(args): (PREPEND, video_file, src_path, dst_path) = args if not os.path.isdir(dst_path): os.mkdir(dst_path) # command = 'ffmpeg -i '+ src_path+' -s 256x256 '+ dst_path + '/%5d.jpg' #with resize command = PREPEND + 'ffmpeg -i '+ src_path+' -r 20 '+ dst_path + '/%6d.jpg > /dev/null 2>&1' #6 is to be in accordance with C3D features. print(command) os.system(command) else: print("Frames directory already found at {}".format(dst_path)) if __name__=='__main__': arg_parser = argparse.ArgumentParser() arg_parser.add_argument( 'src_dir', help='directory where videos are' ) arg_parser.add_argument( 'dst_dir', help='directory where to store frames' ) arg_parser.add_argument( 'start', help='start index (inclusive)' ) arg_parser.add_argument( 'end', help='end index (noninclusive)' ) arg_parser.add_argument( '--prepend', default='', help='optional prepend to start of ffmpeg command (in case you want to use a non-system wide version of ffmpeg)' 'For example: --prepend ~/anaconda2/bin/ will use ffmpeg installed in anaconda2' ) if not len(sys.argv) > 1: print(arg_parser.print_help()) sys.exit(0) args = arg_parser.parse_args() start_time = time.time() main(args) print("Job took %s mins" % ((time.time() - start_time)/60))
27.329412
145
0.635385
0
0
0
0
0
0
0
0
753
0.32415
9ad3d0b300ea5b2d36712d2ed1f19a77b925f25f
383
py
Python
plaintext_password/checks.py
bryanwills/django-plaintext-password
752cf0316cdc45dc9bed5f9107614881d613647f
[ "MIT" ]
null
null
null
plaintext_password/checks.py
bryanwills/django-plaintext-password
752cf0316cdc45dc9bed5f9107614881d613647f
[ "MIT" ]
null
null
null
plaintext_password/checks.py
bryanwills/django-plaintext-password
752cf0316cdc45dc9bed5f9107614881d613647f
[ "MIT" ]
2
2021-04-23T08:24:08.000Z
2022-03-01T06:56:33.000Z
from django.contrib.auth.hashers import get_hashers_by_algorithm from django.core import checks @checks.register(checks.Tags.security, deploy=True) def check_for_plaintext_passwords(app_configs, **kwargs): if "plaintext" in get_hashers_by_algorithm(): yield checks.Critical( "Plaintext module should not be used in production.", hint="Remove it." )
34.818182
83
0.744125
0
0
232
0.605744
284
0.741514
0
0
75
0.195822
9ad4238b4ae5b1bf04e852349b10a5a6489f5283
105
py
Python
city.py
cromermw/gen_pop
74541590b0142fac5178e7db25b068d967618dfb
[ "CC0-1.0" ]
null
null
null
city.py
cromermw/gen_pop
74541590b0142fac5178e7db25b068d967618dfb
[ "CC0-1.0" ]
null
null
null
city.py
cromermw/gen_pop
74541590b0142fac5178e7db25b068d967618dfb
[ "CC0-1.0" ]
null
null
null
class City: name = "city" size = "default" draw = -1 danger = -1 population = []
17.5
21
0.47619
105
1
0
0
0
0
0
0
15
0.142857
9ad5dd0d9bd8fbcbf6eef199aef2d2ca49925d18
9,340
py
Python
code/preprocess/data_generation.py
hms-dbmi/VarPPUD
316a45f33c12dfecadb17fa41b699ef95096a623
[ "Apache-2.0" ]
null
null
null
code/preprocess/data_generation.py
hms-dbmi/VarPPUD
316a45f33c12dfecadb17fa41b699ef95096a623
[ "Apache-2.0" ]
null
null
null
code/preprocess/data_generation.py
hms-dbmi/VarPPUD
316a45f33c12dfecadb17fa41b699ef95096a623
[ "Apache-2.0" ]
1
2022-01-18T17:14:31.000Z
2022-01-18T17:14:31.000Z
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Wed Mar 24 17:19:39 2021 @author: rayin """ import os, sys import numpy as np import pandas as pd import torch import warnings import random import torchvision.models as models from sdv.tabular import CTGAN from sdv.evaluation import evaluate from sdv.metrics.tabular import CSTest, KSTest from sdv.metrics.tabular import MulticlassDecisionTreeClassifier from sdv.metrics.tabular import LogisticDetection, SVCDetection from ctgan import CTGANSynthesizer from feature_data_imputation import data_imputation from sdv.constraints import GreaterThan warnings.filterwarnings("ignore") os.chdir("/Users/rayin/Google Drive/Harvard/5_data/UDN/work/") feature = pd.read_csv('data/feature/feature.csv', index_col=0) feature_imputation = data_imputation(feature, 'MICE') case_gene_update = pd.read_csv('data/processed/variant_clean.csv', index_col=0) case_gene_update['\\12_Candidate variants\\03 Interpretation\\'].replace('pathogenic', 1, inplace=True) case_gene_update['\\12_Candidate variants\\03 Interpretation\\'].replace('less_pathogenic', 0, inplace=True) label = case_gene_update['\\12_Candidate variants\\03 Interpretation\\'].reset_index() label = label['\\12_Candidate variants\\03 Interpretation\\'] #Generating synthetic data based on raw data with/without imputation respectively real_data_raw = pd.concat([feature, label], axis=1) real_data_impu = pd.concat([feature_imputation, label], axis=1) real_data_raw = real_data_raw.rename(columns={"\\12_Candidate variants\\03 Interpretation\\": "label"}) real_data_impu = real_data_impu.rename(columns={"\\12_Candidate variants\\03 Interpretation\\": "label"}) #splitting for imputation real data feature_real_impu = real_data_impu[real_data_impu.columns[0:-1]] label_real_impu = real_data_impu[real_data_impu.columns[-1]] real_data_impu_zero = real_data_impu.loc[real_data_impu[real_data_impu.columns[-1]] == 0] real_data_impu_one = real_data_impu.loc[real_data_impu[real_data_impu.columns[-1]] == 1] #splitting for raw real data feature_real_raw = real_data_raw[real_data_raw.columns[0:-1]] label_real_raw = real_data_raw[real_data_raw.columns[-1]] real_data_raw_zero = real_data_raw.loc[real_data_raw[real_data_raw.columns[-1]] == 0] real_data_raw_one = real_data_raw.loc[real_data_raw[real_data_raw.columns[-1]] == 1] ############################################################################################################################# #ctgan based on sdv range_min = pd.DataFrame(index=range(0,500), columns=['range_min']) range_min = range_min.fillna(0) range_max = pd.DataFrame(index=range(0,500), columns=['range_max']) range_max = range_max.fillna(1) real_data_raw = pd.concat([real_data_raw, range_min.iloc[0:474], range_max.iloc[0:474]], axis=1) real_data_raw_zero = pd.concat([real_data_raw_zero.reset_index(), range_min.iloc[0:252], range_max.iloc[0:252]], axis=1) real_data_raw_zero.drop(['index'], axis=1, inplace=True) real_data_raw_one = pd.concat([real_data_raw_one.reset_index(), range_min.iloc[0:222], range_max.iloc[0:222]], axis=1) real_data_raw_one.drop(['index'], axis=1, inplace=True) field_transformers = {'evolutionary age': 'float', 'dN/dS': 'float', 'gene essentiality': 'one_hot_encoding', 'number of chem interaction action': 'one_hot_encoding', 'number of chem interaction': 'one_hot_encoding', 'number of chem': 'one_hot_encoding', 'number of pathway': 'one_hot_encoding', 'number of phenotype': 'one_hot_encoding', 'number of rare diseases': 'one_hot_encoding', 'number of total diseases': 'one_hot_encoding', 'phylogenetic number': 'one_hot_encoding', 'net charge value diff': 'one_hot_encoding', 'secondary structure value diff': 'one_hot_encoding', 'number of hydrogen bond value diff': 'one_hot_encoding', 'number of vertices value diff': 'one_hot_encoding', 'number of edges value diff': 'one_hot_encoding', 'diameter value diff': 'one_hot_encoding'} #constraints settings for GAN rare_total_disease_constraint = GreaterThan( low='number of rare diseases', high='number of total diseases', handling_strategy='reject_sampling') evolutionary_age_constraint = GreaterThan( low = 'range_max', high = 'evolutionary age', handling_strategy='reject_sampling') dnds_constraint = GreaterThan( low = 'range_min', high = 'dN/dS', handling_strategy='reject_sampling') gene_haplo_min_constraint = GreaterThan( low = 'range_min', high = 'haploinsufficiency', handling_strategy='reject_sampling') gene_haplo_max_constraint = GreaterThan( low = 'haploinsufficiency', high = 'range_max', handling_strategy='reject_sampling') fathmm_min_constraint = GreaterThan( low = 'range_min', high = 'FATHMM', handling_strategy='reject_sampling') fathmm_max_constraint = GreaterThan( low = 'FATHMM', high = 'range_max', handling_strategy='reject_sampling') vest_min_constraint = GreaterThan( low = 'range_min', high = 'VEST', handling_strategy='reject_sampling') vest_max_constraint = GreaterThan( low = 'VEST', high = 'range_max', handling_strategy='reject_sampling') proven_constraint = GreaterThan( low = 'PROVEN', high = 'range_min', handling_strategy='reject_sampling') sift_min_constraint = GreaterThan( low = 'range_min', high = 'SIFT', handling_strategy='reject_sampling') sift_max_constraint = GreaterThan( low = 'SIFT', high = 'range_max', handling_strategy='reject_sampling') constraints = [rare_total_disease_constraint, evolutionary_age_constraint, dnds_constraint, gene_haplo_min_constraint, gene_haplo_max_constraint, fathmm_min_constraint, fathmm_max_constraint, vest_min_constraint, vest_max_constraint, proven_constraint, sift_min_constraint, sift_max_constraint] #build the model model = CTGAN(epochs=300, batch_size=100, field_transformers=field_transformers, constraints=constraints) #field_distributions=field_distributions # #Mode 1: generate all samples together (not work well) # #generate all labels data # model.fit(real_data_raw) # sample = model.sample(500) # sample.drop(['range_min', 'range_max'], axis=1, inplace=True) # feature_syn_raw = sample[sample.columns[0:-1]] # label_syn_raw = sample[sample.columns[-1]] # feature_syn_raw = data_imputation(feature_syn_raw, 'MICE') # ss = ShuffleSplit(n_splits=3, test_size=0.33, random_state=0) # for train_index, test_index in ss.split(real_data_raw): # train_x = feature_real_impu.iloc[train_index] # train_y = label_real_impu.iloc[train_index] # test_x = feature_real_impu.iloc[test_index] # test_y = label_real_impu.iloc[test_index] # feature_combine, label_combine = merge_data(train_x, train_y, feature_syn_raw, label_syn_raw) # rf_baseline(feature_combine, label_combine, test_x, test_y) # #xgb_baseline(feature_syn_raw, label_syn_raw, test_x, test_y) #Mode 2: negative and positive resampling, respectievly #generate label '0' data of 50000 cases real_data_raw_zero.drop(['label'], axis=1, inplace=True) model.fit(real_data_raw_zero) #model fitting sample_zero = model.sample(50000) #generate samples with label '0' sample_zero.drop(['range_min', 'range_max'], axis=1, inplace=True) #drop 'range_min' and 'range_max' columns sample_zero['label'] = 0 #add the labels #generate label '1' data of 50000 cases real_data_raw_one.drop(['label'], axis=1, inplace=True) model.fit(real_data_raw_one) sample_one = model.sample(50000) sample_one.drop(['range_min', 'range_max'], axis=1, inplace=True) sample_one['label'] = 1 #concatenate positive and negative synthetic samples sample_all = pd.concat([sample_zero, sample_one], axis=0) #sample_all.to_csv('data/synthetic/syn_data_raw.csv') #remove samples with 'NA' in any of the columns sample_syn = sample_all.dropna(axis=0,how='any') #sample_syn.to_csv('data/synthetic/syn_test_raw.csv') #select 500 synthetic test samples that keeps the similar size of raw data syn_test_raw = pd.read_csv('data/synthetic/syn_test_raw.csv', index_col=0) syn_test_raw = syn_test_raw.sample(frac=1) flag0 = 0 flag1= 0 count_zero = 0 count_one = 0 syn_test_data = [] for i in range(0, len(syn_test_raw)): if syn_test_raw['label'].iloc[i] == int(0): if count_zero == 250: flag0 = 1 else: count_zero = count_zero + 1 syn_test_data.append(syn_test_raw.iloc[i]) elif syn_test_raw['label'].iloc[i] == int(1): if count_one == 250: flag1 = 1 else: count_one = count_one + 1 syn_test_data.append(syn_test_raw.iloc[i]) if flag0 == 1 and flag1 == 1: break; syn_test_data = pd.DataFrame(syn_test_data) syn_test_data['label'] = syn_test_data['label'].astype(int) syn_test_data.reset_index(inplace=True) syn_test_data = syn_test_data[syn_test_data.columns[1:40]] #export synthetic data for external evaluation syn_test_data.to_csv('data/synthetic/syn_test.csv')
37.51004
147
0.713169
0
0
0
0
0
0
0
0
3,768
0.403426
9ad633a8b545c9fd60433dd7e1485b51abf58bfc
1,265
py
Python
app/user/models.py
briankaemingk/streaks-with-todoist
c6cbc982fbedafce04e9f23af7422e996513c8bb
[ "MIT" ]
3
2019-08-06T19:04:32.000Z
2022-01-19T14:00:12.000Z
app/user/models.py
briankaemingk/streaks-with-todoist
c6cbc982fbedafce04e9f23af7422e996513c8bb
[ "MIT" ]
6
2018-10-14T21:32:58.000Z
2021-03-20T00:07:56.000Z
app/user/models.py
briankaemingk/streaks-with-todoist
c6cbc982fbedafce04e9f23af7422e996513c8bb
[ "MIT" ]
null
null
null
from app.extensions import db from flask import current_app class User(db.Model): __tablename__ = 'users' id = db.Column(db.Integer, primary_key=True) access_token = db.Column(db.String()) jit_feature = db.Column(db.Boolean()) recurrence_resch_feature = db.Column(db.Boolean()) streaks_feature = db.Column(db.Boolean()) in_line_comment_feature = db.Column(db.Boolean()) def __init__(self, id, access_token, jit_feature, recurrence_resch_feature, streaks_feature, in_line_comment_feature): self.id = id self.access_token = access_token self.jit_feature = jit_feature self.recurrence_resch_feature = recurrence_resch_feature self.streaks_feature = streaks_feature self.in_line_comment_feature = in_line_comment_feature def __repr__(self): return '<id {}, access token {}, jit feature {}, recurrence resch feature {}, streaks feature {}, in-line comment feature {}>'.\ format(self.id, self.access_token, self.jit_feature, self.recurrence_resch_feature, self.streaks_feature, self.in_line_comment_feature) def launch_task(self, name, description, *args, **kwargs): current_app.task_queue.enqueue('app.tasks.' + name, self.id, *args, **kwargs)
38.333333
147
0.714625
1,198
0.947036
0
0
0
0
0
0
138
0.109091
9ad63695127b031d5978acb9042f9c3b9cb8c5de
1,240
py
Python
output/models/boeing_data/ipo4/ipo_xsd/address.py
tefra/xsdata-w3c-tests
b6b6a4ac4e0ab610e4b50d868510a8b7105b1a5f
[ "MIT" ]
1
2021-08-14T17:59:21.000Z
2021-08-14T17:59:21.000Z
output/models/boeing_data/ipo4/ipo_xsd/address.py
tefra/xsdata-w3c-tests
b6b6a4ac4e0ab610e4b50d868510a8b7105b1a5f
[ "MIT" ]
4
2020-02-12T21:30:44.000Z
2020-04-15T20:06:46.000Z
output/models/boeing_data/ipo4/ipo_xsd/address.py
tefra/xsdata-w3c-tests
b6b6a4ac4e0ab610e4b50d868510a8b7105b1a5f
[ "MIT" ]
null
null
null
from dataclasses import dataclass, field from enum import Enum from typing import Optional from output.models.boeing_data.ipo4.ipo_xsd.ipo import AddressType __NAMESPACE__ = "http://www.example.com/IPO" class Usstate(Enum): AK = "AK" AL = "AL" AR = "AR" CA = "CA" PA = "PA" @dataclass class Ukaddress(AddressType): class Meta: name = "UKAddress" postcode: Optional[str] = field( default=None, metadata={ "type": "Element", "namespace": "", "required": True, "pattern": r"[A-Z]{2}\d\s\d[A-Z]{2}", } ) export_code: int = field( init=False, default=1, metadata={ "name": "exportCode", "type": "Attribute", } ) @dataclass class Usaddress(AddressType): class Meta: name = "USAddress" state: Optional[Usstate] = field( default=None, metadata={ "type": "Element", "namespace": "", "required": True, } ) zip: Optional[int] = field( default=None, metadata={ "type": "Element", "namespace": "", "required": True, } )
20
66
0.504032
1,005
0.810484
0
0
937
0.755645
0
0
253
0.204032
9ad672b90b5e5960648f597358159ab9f9c375ec
5,060
py
Python
Invaders/Displays/animation_display.py
JaredsGames/SpaceInvaders
8a0da236c97340c4a8a06e7dd68e4672f885d9e0
[ "MIT" ]
null
null
null
Invaders/Displays/animation_display.py
JaredsGames/SpaceInvaders
8a0da236c97340c4a8a06e7dd68e4672f885d9e0
[ "MIT" ]
null
null
null
Invaders/Displays/animation_display.py
JaredsGames/SpaceInvaders
8a0da236c97340c4a8a06e7dd68e4672f885d9e0
[ "MIT" ]
null
null
null
# Jared Dyreson # CPSC 386-01 # 2021-11-29 # jareddyreson@csu.fullerton.edu # @JaredDyreson # # Lab 00-04 # # Some filler text # """ This module contains the Intro display class """ import pygame import functools import sys import pathlib import typing import os import dataclasses import random from pprint import pprint as pp import time from Invaders.Dataclasses.point import Point from Invaders.Displays.display import Display from Invaders.UI.button import Button # from Invaders.Entities.cacodemon import Cacodemon # from Invaders.Entities.Entity import Entity from Invaders.Entities.enemy_matrix import EnemyMatrix # from Invaders.Entities.Player import Player from Invaders.Entities.Entity import Entity from Invaders.Dataclasses.direction import Direction # TODO : move this to its own respective module or something like that def absolute_file_paths(directory: pathlib.Path) -> typing.List[pathlib.Path]: """ List the contents of a directory with their absolute path @param directory: path where to look @return: typing.List[pathlib.Path] """ return [ pathlib.Path(os.path.abspath(os.path.join(dirpath, f))) for dirpath, _, filenames in os.walk(directory) for f in filenames ] class AnimationDisplay(Display): def __init__(self): super().__init__() self.break_from_draw = False self.entities = EnemyMatrix(5, 5, self._display_surface) self.main_player = Entity( self._display_surface, ["assets/rocket.png"], Point(550, 700) ) # self.main_player = Player(self._display_surface, [ # "assets/rocket.png"], Point(550, 700)) self.DRAW_NEXT_ENTITY = pygame.USEREVENT + 1 self.ENEMY_FIRE_INTERVAL = pygame.USEREVENT + 2 self.score, self.lives = 0, 3 self.score_label_position = Point(775, 20) self.lives_label_position = Point(775, 60) def draw(self) -> None: draw_loop = True pygame.time.set_timer(self.DRAW_NEXT_ENTITY, 300) pygame.time.set_timer(self.ENEMY_FIRE_INTERVAL, 2000) will_move = False enemy_group = pygame.sprite.Group() player_group = pygame.sprite.Group() enemy_laser_group = pygame.sprite.Group() player_group.add(self.main_player) # print(player_group) for x, row in enumerate(self.entities.matrix): for y, column in enumerate(row): enemy_group.add(column.entity) # FIXME while draw_loop and not self.break_from_draw: positions = self.entities.scan_column() # FIXME: this code is not working for event in pygame.event.get(): if event.type == pygame.QUIT: pygame.quit() sys.exit() elif event.type == self.DRAW_NEXT_ENTITY: self._display_surface.fill(pygame.Color("black")) enemy_group.update(1) elif event.type == self.ENEMY_FIRE_INTERVAL: for position in random.choices(positions, k=2): x, y = position.container __laser = self.entities.matrix[x][y].entity.fire( Direction.SOUTH.value, True ) enemy_laser_group.add(__laser) elif event.type == pygame.KEYDOWN: if event.key == pygame.K_SPACE: self.main_player.fire(Direction.NORTH.value) if event.key == pygame.K_LEFT: self.main_player.position.x -= 20 if event.key == pygame.K_RIGHT: self.main_player.position.x += 20 will_move = True elif event.type != pygame.KEYDOWN: will_move = False if pygame.sprite.groupcollide( self.main_player.lasers, enemy_group, True, True ): self.score += 20 if pygame.sprite.groupcollide( enemy_laser_group, player_group, False, False ): print("hit the player!") self.lives -= 1 self._display_surface.fill(self.background_color) enemy_group.draw(self._display_surface) self.main_player.draw() self.main_player.lasers.draw(self._display_surface) enemy_laser_group.draw(self._display_surface) enemy_laser_group.update() if not enemy_group: draw_loop = False self.write_text( f"Score: {self.score}", self.score_label_position, pygame.font.SysFont(None, 30), ) self.write_text( f"Lives: {self.lives}", self.lives_label_position, pygame.font.SysFont(None, 30), ) self.main_player.update(1) pygame.display.flip() self.fps_meter.tick(60)
32.025316
86
0.594862
3,809
0.752767
0
0
0
0
0
0
775
0.153162
9ad73e40610067893659f1466d9493e1d1fdb576
49
py
Python
ledger/checkout/models.py
jawaidm/ledger
7094f3320d6a409a2a0080e70fa7c2b9dba4a715
[ "Apache-2.0" ]
59
2015-08-29T10:51:34.000Z
2021-11-03T10:00:25.000Z
ledger/checkout/models.py
jawaidm/ledger
7094f3320d6a409a2a0080e70fa7c2b9dba4a715
[ "Apache-2.0" ]
162
2018-02-16T05:13:03.000Z
2021-05-14T02:47:37.000Z
ledger/checkout/models.py
jawaidm/ledger
7094f3320d6a409a2a0080e70fa7c2b9dba4a715
[ "Apache-2.0" ]
22
2015-08-10T10:46:18.000Z
2020-04-04T07:11:55.000Z
from oscar.apps.checkout.models import * # noqa
24.5
48
0.755102
0
0
0
0
0
0
0
0
6
0.122449
9ad97cd25d6ffe7ca83c1fced680d4dc39e56290
1,642
py
Python
api/serializers.py
mariomtzjr/podemos_test
5efaf02a19aa8c4849e3ad0108546e95af524126
[ "MIT" ]
null
null
null
api/serializers.py
mariomtzjr/podemos_test
5efaf02a19aa8c4849e3ad0108546e95af524126
[ "MIT" ]
null
null
null
api/serializers.py
mariomtzjr/podemos_test
5efaf02a19aa8c4849e3ad0108546e95af524126
[ "MIT" ]
null
null
null
from rest_framework import serializers from apps.calendarioPago.models import CalendarioPago from apps.cliente.models import Cliente from apps.cuenta.models import Cuenta from apps.grupo.models import Grupo from apps.miembro.models import Miembro from apps.transaccion.models import Transaccion # Serializers define the API representation. class CalendarioPagoSerializer(serializers.ModelSerializer): class Meta: model = CalendarioPago fields = ['id', 'cuenta_id', 'num_pago', 'monto', 'fecha_pago', 'estatus', ] class ClienteSerializer(serializers.ModelSerializer): class Meta: model = Cliente fields = ['id', 'nombre', ] class MiembroSerializer(serializers.ModelSerializer): cliente = ClienteSerializer(source='cliente_id', read_only=True) class Meta: model = Miembro fields = ['cliente'] class MiembrosSerializer(serializers.ModelSerializer): class Meta: model = Miembro fields = ['id', 'grupo_id', 'cliente_id'] class GrupoSerializer(serializers.ModelSerializer): miembros = MiembroSerializer(many=True) class Meta: model = Grupo fields = ['id', 'nombre', 'miembros'] class GruposSerializer(serializers.ModelSerializer): class Meta: model = Grupo fields = ['id', 'nombre', ] class TransaccionSerializer(serializers.ModelSerializer): class Meta: model = Transaccion fields = ['id', 'cuenta_id', 'fecha', 'monto', ] class CuentaSerializer(serializers.ModelSerializer): class Meta: model = Cuenta fields = ['id', 'grupo_id', 'estatus', 'monto', 'saldo']
26.483871
84
0.694275
1,277
0.77771
0
0
0
0
0
0
256
0.155907
9ada5e1bb0d72f096389f3d35f059bd13ec5be47
8,194
py
Python
emmet/markup/format/html.py
emmetio/py-emmet
9cbb42f482526d7df18ba632b3b3f2ed3b7653a5
[ "MIT" ]
29
2019-11-12T16:15:15.000Z
2022-02-06T10:51:25.000Z
emmet/markup/format/html.py
emmetio/py-emmet
9cbb42f482526d7df18ba632b3b3f2ed3b7653a5
[ "MIT" ]
3
2020-04-25T11:02:53.000Z
2021-11-25T10:39:09.000Z
emmet/markup/format/html.py
emmetio/py-emmet
9cbb42f482526d7df18ba632b3b3f2ed3b7653a5
[ "MIT" ]
7
2020-04-25T09:42:54.000Z
2021-02-16T20:29:41.000Z
import re from .walk import walk, WalkState from .utils import caret, is_inline_element, is_snippet, push_tokens, should_output_attribute from .comment import comment_node_before, comment_node_after, CommentWalkState from ...abbreviation import Abbreviation, AbbreviationNode, AbbreviationAttribute from ...abbreviation.tokenizer.tokens import Field from ...config import Config from ...output_stream import tag_name, self_close, attr_name, is_boolean_attribute, attr_quote, is_inline from ...list_utils import some, find_index, get_item re_html_tag = re.compile(r'<([\w\-:]+)[\s>]') class HTMLWalkState(WalkState): __slots__ = ('comment') def html(abbr: Abbreviation, config: Config): state = HTMLWalkState(config) state.comment = CommentWalkState(config) walk(abbr, element, state) return state.out.value def element(node: AbbreviationNode, index: int, items: list, state: HTMLWalkState, walk_next: callable): out = state.out config = state.config fmt = should_format(node, index, items, state) # Pick offset level for current node level = get_indent(state) out.level += level if fmt: out.push_newline(True) if node.name: name = tag_name(node.name, config) comment_node_before(node, state) out.push_string('<%s' % name) if node.attributes: for attr in node.attributes: if should_output_attribute(attr): push_attribute(attr, state) if node.self_closing and not node.children and not node.value: out.push_string('%s>' % self_close(config)) else: out.push_string('>') if not push_snippet(node, state, walk_next): if node.value: inner_format = some(has_newline, node.value) or starts_with_block_tag(node.value, config) if inner_format: out.level += 1 out.push_newline(out.level) push_tokens(node.value, state) if inner_format: out.level -= 1 out.push_newline(out.level) _next(node.children, walk_next) if not node.value and not node.children: inner_format = config.options.get('output.formatLeafNode') or \ node.name in config.options.get('output.formatForce', []) if inner_format: out.level += 1 out.push_newline(out.level) push_tokens(caret, state) if inner_format: out.level -= 1 out.push_newline(out.level) out.push_string('</%s>' % name) comment_node_after(node, state) elif not push_snippet(node, state, walk_next) and node.value: # A text-only node (snippet) push_tokens(node.value, state) _next(node.children, walk_next) if fmt and index == len(items) - 1 and state.parent: offset = 0 if is_snippet(state.parent) else 1 out.push_newline(out.level - offset) out.level -= level def push_attribute(attr: AbbreviationAttribute, state: WalkState): "Outputs given attribute’s content into output stream" out = state.out config = state.config if attr.name: name = attr_name(attr.name, config) l_quote = attr_quote(attr, config, True) r_quote = attr_quote(attr, config, False) value = attr.value if is_boolean_attribute(attr, config) and not value: # If attribute value is omitted and it’s a boolean value, check for # `compactBoolean` option: if it’s disabled, set value to attribute name # (XML style) if not config.options.get('output.compactBoolean'): value = [name] elif not value: value = caret out.push_string(' %s' % name) if value: out.push_string('=%s' % l_quote) push_tokens(value, state) out.push_string(r_quote) elif config.options.get('output.selfClosingStyle') != 'html': out.push_string('=%s%s' % (l_quote, r_quote)) def push_snippet(node: AbbreviationNode, state: WalkState, walk_next: callable): if node.value and node.children: # We have a value and child nodes. In case if value contains fields, # we should output children as a content of first field field_ix = find_index(is_field, node.value) if field_ix != -1: push_tokens(node.value[0:field_ix], state) line = state.out.line pos = field_ix + 1 _next(node.children, walk_next) # If there was a line change, trim leading whitespace for better result if state.out.line != line and isinstance(get_item(node.value, pos), str): state.out.push_string(get_item(node.value, pos).lstrip()) pos += 1 push_tokens(node.value[pos:], state) return True return False def should_format(node: AbbreviationNode, index: int, items: list, state: WalkState): "Check if given node should be formatted in its parent context" parent = state.parent config = state.config if not config.options.get('output.format'): return False if index == 0 and not parent: # Do not format very first node return False # Do not format single child of snippet if parent and is_snippet(parent) and len(items) == 1: return False if is_snippet(node): # Adjacent text-only/snippet nodes fmt = is_snippet(get_item(items, index - 1)) or is_snippet(get_item(items, index + 1)) or \ some(has_newline, node.value) or \ (some(is_field, node.value) and node.children) if fmt: return True if is_inline(node, config): # Check if inline node is the next sibling of block-level node if index == 0: # First node in parent: format if it’s followed by a block-level element for item in items: if not is_inline(item, config): return True elif not is_inline(items[index - 1], config): # Node is right after block-level element return True if config.options.get('output.inlineBreak'): # check for adjacent inline elements before and after current element adjacent_inline = 1 before = index - 1 after = index + 1 while before >= 0 and is_inline_element(items[before], config): adjacent_inline += 1 before -= 1 while after < len(items) and is_inline_element(items[after], config): adjacent_inline += 1 after += 1 if adjacent_inline >= config.options.get('output.inlineBreak'): return True # Edge case: inline node contains node that should receive formatting for i, child in enumerate(node.children): if should_format(child, i, node.children, state): return True return False return True def get_indent(state: WalkState): "Returns indentation offset for given node" parent = state.parent if not parent or is_snippet(parent) or (parent.name and parent.name in state.config.options.get('output.formatSkip')): return 0 return 1 def has_newline(value): "Check if given node value contains newlines" return '\r' in value or '\n' in value if isinstance(value, str) else False def starts_with_block_tag(value: list, config: Config) -> bool: "Check if given node value starts with block-level tag" if value and isinstance(value[0], str): m = re_html_tag.match(value[0]) if m and m.group(1).lower() not in config.options.get('inlineElements'): return True return False def _next(items: list, walk_next: callable): for i, item in enumerate(items): walk_next(item, i, items) def is_field(item): return isinstance(item, Field)
34.868085
122
0.611667
59
0.007193
0
0
0
0
0
0
1,355
0.165204
9adc3fed9b6a076b0f178e8d91edfcd0fe2b0e5f
2,584
py
Python
secant_method.py
FixingMind5/proyecto_metodos_I
4eaed1991ad18574984bcc0010394ecb9c4a620e
[ "MIT" ]
null
null
null
secant_method.py
FixingMind5/proyecto_metodos_I
4eaed1991ad18574984bcc0010394ecb9c4a620e
[ "MIT" ]
null
null
null
secant_method.py
FixingMind5/proyecto_metodos_I
4eaed1991ad18574984bcc0010394ecb9c4a620e
[ "MIT" ]
null
null
null
"""Secant Method module""" from numeric_method import NumericMethod class SecantMethod(NumericMethod): """Secant method class""" def secant_method(self, previous_value, value): """The secant method itself @param previous_value: first value of interval @param previous_value: second value of interval @returns the result of the ecaluation """ result = value - previous_value result /= self.function(value) - self.function(previous_value) result *= self.function(value) return value - result def solve(self): """Solves the problem @raise ValueError if the number of iterations isn't at leasts 2 """ iteration = 1 (previous_n, n, next_n) = (self.x_0, self.x, 0.0) (f_previous_x, f_x, f_next_x) = (0.0, 0.0, 0.0) (error, converge) = (0.0, False) MAX_ITERATIONS = int(input("Número de iteraciones a realizar: ")) if MAX_ITERATIONS <= 1: raise ValueError("Asegurate de usar al menos 2 iteraciones") print("Comienza el metodo") print(f"Iteracion | Xi | Xi+1 | f(Xi) | f(Xi+1) | error absoluto") print( f"{iteration} \t | {n} | {next_n} | {f_previous_x} | {f_x} | {error if error else '' }") while iteration <= MAX_ITERATIONS: f_previous_x = self.function(previous_n) f_x = self.function(n) root_in_interval = self.function( previous_n) * self.function(n) == 0 if root_in_interval and iteration == 1: print(( "Una raiz a la ecuacion dada es " "es uno de los extremos del intervalo" )) break next_n = self.secant_method(previous_n, n) f_next_x = self.function(next_n) if f_next_x == 0: converge = True print(f"La raiz del intervalo es {next_n}") break if iteration > 1: error = self.absolute_error(n, next_n) row = f"{iteration} \t | {n} | {next_n} | {f_x} | {f_next_x} | {error if error else '' }" print(row) if error <= self.TOLERANCE and abs(f_next_x) <= self.TOLERANCE: print(f"Una raiz aproximada de la ecuación es {next_n}") converge = True break n = next_n iteration += 1 if not converge: print("El método no converge a una raiz")
32.708861
101
0.540635
2,516
0.972555
0
0
0
0
0
0
891
0.344414
9add394027ddb25c4a3c822d581f2bbeacc67447
245
py
Python
variables.py
bestend/korquad
3b92fffcc950ff584e0f9755ea9b04f8bece7a31
[ "MIT" ]
1
2019-09-06T04:47:14.000Z
2019-09-06T04:47:14.000Z
variables.py
bestend/korquad
3b92fffcc950ff584e0f9755ea9b04f8bece7a31
[ "MIT" ]
6
2020-01-28T22:12:50.000Z
2022-02-09T23:30:45.000Z
variables.py
bestend/korquad
3b92fffcc950ff584e0f9755ea9b04f8bece7a31
[ "MIT" ]
null
null
null
import os import re MODEL_FILE_FORMAT = 'weights.{epoch:02d}-{val_loss:.2f}.h5' MODEL_REGEX_PATTERN = re.compile(r'^.*weights\.(\d+)\-\d+\.\d+\.h5$') LAST_MODEL_FILE_FORMAT = 'last.h5' TEAMS_WEBHOOK_URL = os.environ.get('TEAMS_WEBHOOK_URL', '')
35
69
0.714286
0
0
0
0
0
0
0
0
104
0.42449
9ade61531561b4025a09449d1265b8472b175b17
977
py
Python
svm.py
sciencementors2019/Image-Processer
a1b036f38166722d2bb0ee44de1f3558880312c5
[ "MIT" ]
null
null
null
svm.py
sciencementors2019/Image-Processer
a1b036f38166722d2bb0ee44de1f3558880312c5
[ "MIT" ]
null
null
null
svm.py
sciencementors2019/Image-Processer
a1b036f38166722d2bb0ee44de1f3558880312c5
[ "MIT" ]
null
null
null
import numpy as np import pandas as pd from sklearn import svm from mlxtend.plotting import plot_decision_regions import matplotlib.pyplot as plt # Create arbitrary dataset for example df = pd.DataFrame({'Planned_End': np.random.uniform(low=-5, high=5, size=50), 'Actual_End': np.random.uniform(low=-1, high=1, size=50), 'Late': np.random.random_integers(low=0, high=2, size=50)} ) # Fit Support Vector Machine Classifier X = df[['Planned_End', 'Actual_End']] y = df['Late'] clf = svm.SVC(decision_function_shape='ovo') clf.fit(X.values, y.values) # Plot Decision Region using mlxtend's awesome plotting function plot_decision_regions(X=X.values, y=y.values, clf=clf, legend=2) # Update plot object with X/Y axis labels and Figure Title plt.xlabel(X.columns[0], size=14) plt.ylabel(X.columns[1], size=14) plt.title('SVM Decision Region Boundary', size=16)
32.566667
85
0.663255
0
0
0
0
0
0
0
0
296
0.302968
9ae1bc0d9c8249afc93cd2e786ee58fa70373ce4
2,544
py
Python
tests/importing/test_read_genes.py
EKingma/Transposonmapper
1413bda16a0bd5f5f3ccf84d86193c2dba0ab01b
[ "Apache-2.0" ]
2
2021-11-23T09:39:35.000Z
2022-01-25T15:49:45.000Z
tests/importing/test_read_genes.py
EKingma/Transposonmapper
1413bda16a0bd5f5f3ccf84d86193c2dba0ab01b
[ "Apache-2.0" ]
76
2021-07-07T18:31:44.000Z
2022-03-22T10:04:40.000Z
tests/importing/test_read_genes.py
EKingma/Transposonmapper
1413bda16a0bd5f5f3ccf84d86193c2dba0ab01b
[ "Apache-2.0" ]
2
2021-09-16T10:56:20.000Z
2022-01-25T12:33:25.000Z
from transposonmapper.importing import ( load_default_files,read_genes ) def test_output_format(): a,b,c=load_default_files(gff_file=None,essentials_file=None,gene_names_file=None) a_0,b_0,c_0=read_genes(gff_file=a,essentials_file=b,gene_names_file=c) assert type(a_0)==dict, "the gene coordinates have to be a dict" assert type(b_0)==dict, "the gene coordinates have to be a dict" assert type(c_0)==dict, "the gene coordinates have to be a dict" def test_output_length(): a,b,c=load_default_files(gff_file=None,essentials_file=None,gene_names_file=None) a_0,b_0,c_0=read_genes(gff_file=a,essentials_file=b,gene_names_file=c) assert len(a_0)>=6600, "the total number of genes should not be less than 6600" assert len(b_0)<6600, "the total number of essential genes should not be more than the number of genes" assert len(c_0)>=6600, "the total number of genes should not be less than 6600" def test_output_content_gff(): a,b,c=load_default_files(gff_file=None,essentials_file=None,gene_names_file=None) a_0,b_0,c_0=read_genes(gff_file=a,essentials_file=b,gene_names_file=c) #read the first value of the dict first_value=next(iter(a_0.values())) # read the first key first_key=next(iter(a_0)) assert first_value==['I', 335, 649, '+'], "The first value of the gene coordinates is wrong" assert first_key== 'YAL069W', "The first gene in the array should be YAL069W" def test_output_content_essentials(): a,b,c=load_default_files(gff_file=None,essentials_file=None,gene_names_file=None) a_0,b_0,c_0=read_genes(gff_file=a,essentials_file=b,gene_names_file=c) #read the first value of the dict first_value=next(iter(b_0.values())) # read the first key first_key=next(iter(b_0)) assert first_value==['I', 147594, 151166, '-'], "The first value of the gene coordinates is wrong" assert first_key== 'YAL001C', "The first gene in the array should be YAL001C" def test_output_content_names(): a,b,c=load_default_files(gff_file=None,essentials_file=None,gene_names_file=None) a_0,b_0,c_0=read_genes(gff_file=a,essentials_file=b,gene_names_file=c) #read the first value of the dict first_value=next(iter(c_0.values())) # read the first key first_key=next(iter(c_0)) assert first_value==['AAC1'], "The first value of the gene names is wrong" assert first_key== 'YMR056C', "The first gene in the array should be YMR056C"
39.138462
107
0.717374
0
0
0
0
0
0
0
0
802
0.315252
9ae33df6172e3d387be468447aa95067143972f3
4,477
py
Python
src/apps/tractatusapp/views_spacetree.py
lambdamusic/wittgensteiniana
f9b37282dcf4b93f9a6218cc827a6ab7386a3dd4
[ "MIT" ]
1
2018-04-24T09:55:40.000Z
2018-04-24T09:55:40.000Z
src/apps/tractatusapp/views_spacetree.py
lambdamusic/wittgensteiniana
f9b37282dcf4b93f9a6218cc827a6ab7386a3dd4
[ "MIT" ]
null
null
null
src/apps/tractatusapp/views_spacetree.py
lambdamusic/wittgensteiniana
f9b37282dcf4b93f9a6218cc827a6ab7386a3dd4
[ "MIT" ]
1
2020-11-25T08:53:49.000Z
2020-11-25T08:53:49.000Z
""" Using http://thejit.org/static/v20/Docs/files/Options/Options-Canvas-js.html#Options.Canvas """ from django.http import HttpResponse, Http404, HttpResponseRedirect from django.urls import reverse from django.shortcuts import render, redirect, get_object_or_404 import json import os import json from libs.myutils.myutils import printDebug from tractatusapp.models import * def spacetree(request): """ Visualizes a space tree - ORIGINAL VIEW (USED TO GENERATE HTML VERSION) """ # DEFAULT JSON FOR TESTING THE APP to_json = { 'id': "190_0", 'name': "Pearl Jam", 'children': [ { 'id': "306208_1", 'name': "Pearl Jam &amp; Cypress Hill", 'data': { 'relation': "<h4>Pearl Jam &amp; Cypress Hill</h4><b>Connections:</b><ul><h3>Pearl Jam <div>(relation: collaboration)</div></h3><h3>Cypress Hill <div>(relation: collaboration)</div></h3></ul>" },}, { 'id': "191_0", 'name': "Pink Floyd", 'children': [{ 'id': "306209_1", 'name': "Guns and Roses", 'data': { 'relation': "<h4>Pearl Jam &amp; Cypress Hill</h4><b>Connections:</b><ul><h3>Pearl Jam <div>(relation: collaboration)</div></h3><h3>Cypress Hill <div>(relation: collaboration)</div></h3></ul>" }, }], }]} # reconstruct the tree as a nested dictionary TESTING = False def nav_tree(el): d = {} d['id'] = el.name d['name'] = el.name full_ogden = generate_text(el) preview_ogden = "%s .." % ' '.join(el.textOgden().split()[:10]).replace("div", "span") d['data'] = {'preview_ogden' : preview_ogden, 'full_ogden' : full_ogden} if el.get_children() and not TESTING: d['children'] = [nav_tree(x) for x in el.get_children()] else: d['children'] = [] return d treeroot = {'id': "root", 'name': "TLP", 'children': [], 'data': {'preview_ogden' : "root node", 'full_ogden' : generate_text("root")}} # level0 = TextUnit.tree.root_nodes() # TODO - make this a mptt tree function level0 = TextUnit.tree_top() for x in level0: treeroot['children'] += [nav_tree(x)] context = { 'json': json.dumps(treeroot), 'experiment_description': """ The Space Tree Tractatus is an experimental visualization of the <br /> <a target='_blank' href="http://en.wikipedia.org/wiki/Tractatus_Logico-Philosophicus">Tractatus Logico-Philosophicus</a>, a philosophical text by Ludwig Wittgenstein. <br /><br /> <b>Click</b> on a node to move the tree and center that node. The text contents of the node are displayed at the bottom of the page. <b>Use the mouse wheel</b> to zoom and <b>drag and drop the canvas</b> to pan. <br /><br /> <small>Made with <a target='_blank' href="http://www.python.org/">Python</a> and the <a target='_blank' href="http://thejit.org/">JavaScript InfoVis Toolkit</a>. More info on this <a href="http://www.michelepasin.org/blog/2012/07/08/wittgenstein-and-the-javascript-infovis-toolkit/">blog post</a></small> """ } return render(request, 'tractatusapp/spacetree/spacetree.html', context) def generate_text(instance, expression="ogden"): """ creates the html needed for the full text representation of the tractatus includes the number-title, and small links to next and prev satz # TODO: add cases for different expressions """ if instance == "root": return """<div class='tnum'>Tractatus Logico-Philosophicus<span class='smalllinks'></small></div> <div>Ludwig Wittgenstein, 1921.<br /> Translated from the German by C.K. Ogden in 1922<br /> Original title: Logisch-Philosophische Abhandlung, Wilhelm Ostwald (ed.), Annalen der Naturphilosophie, 14 (1921)</div> """ else: next, prev = "", "" next_satz = instance.tractatus_next() prev_satz = instance.tractatus_prev() if next_satz: next = "<a title='Next Sentence' href='javascript:focus_node(%s);'>&rarr; %s</a>" % (next_satz.name, next_satz.name) if prev_satz: prev = "<a title='Previous Sentence' href='javascript:focus_node(%s);'>%s &larr;</a>" % (prev_satz.name, prev_satz.name) # HACK src images rendered via JS in the template cause WGET errors # hence they are hidden away in this visualization # TODO find a more elegant solution text_js_ready = instance.textOgden().replace('src="', '-src=\"src image omitted ') t = "<div class='tnum'><span class='smalllinks'>%s</span>%s<span class='smalllinks'>%s</span></div>%s" % (prev, instance.name, next, text_js_ready) return t
33.916667
309
0.663837
0
0
0
0
0
0
0
0
2,957
0.660487
9ae3c34cb81d8405b95cc94d6b0a73cbfa7be42a
14,772
py
Python
vumi/blinkenlights/metrics_workers.py
apopheniac/vumi
e04bf32a0cf09292f03dfe8628798adff512b709
[ "BSD-3-Clause" ]
null
null
null
vumi/blinkenlights/metrics_workers.py
apopheniac/vumi
e04bf32a0cf09292f03dfe8628798adff512b709
[ "BSD-3-Clause" ]
null
null
null
vumi/blinkenlights/metrics_workers.py
apopheniac/vumi
e04bf32a0cf09292f03dfe8628798adff512b709
[ "BSD-3-Clause" ]
2
2018-03-05T18:01:45.000Z
2019-11-02T19:34:18.000Z
# -*- test-case-name: vumi.blinkenlights.tests.test_metrics_workers -*- import time import random import hashlib from datetime import datetime from twisted.python import log from twisted.internet.defer import inlineCallbacks, Deferred from twisted.internet import reactor from twisted.internet.task import LoopingCall from twisted.internet.protocol import DatagramProtocol from vumi.service import Consumer, Publisher, Worker from vumi.blinkenlights.metrics import (MetricsConsumer, MetricManager, Count, Metric, Timer, Aggregator) from vumi.blinkenlights.message20110818 import MetricMessage class AggregatedMetricConsumer(Consumer): """Consumer for aggregate metrics. Parameters ---------- callback : function (metric_name, values) Called for each metric datapoint as it arrives. The parameters are metric_name (str) and values (a list of timestamp and value pairs). """ exchange_name = "vumi.metrics.aggregates" exchange_type = "direct" durable = True routing_key = "vumi.metrics.aggregates" def __init__(self, callback): self.queue_name = self.routing_key self.callback = callback def consume_message(self, vumi_message): msg = MetricMessage.from_dict(vumi_message.payload) for metric_name, _aggregators, values in msg.datapoints(): self.callback(metric_name, values) class AggregatedMetricPublisher(Publisher): """Publishes aggregated metrics. """ exchange_name = "vumi.metrics.aggregates" exchange_type = "direct" durable = True routing_key = "vumi.metrics.aggregates" def publish_aggregate(self, metric_name, timestamp, value): # TODO: perhaps change interface to publish multiple metrics? msg = MetricMessage() msg.append((metric_name, (), [(timestamp, value)])) self.publish_message(msg) class TimeBucketConsumer(Consumer): """Consume time bucketed metric messages. Parameters ---------- bucket : int Bucket to consume time buckets from. callback : function, f(metric_name, aggregators, values) Called for each metric datapoint as it arrives. The parameters are metric_name (str), aggregator (list of aggregator names) and values (a list of timestamp and value pairs). """ exchange_name = "vumi.metrics.buckets" exchange_type = "direct" durable = True ROUTING_KEY_TEMPLATE = "bucket.%d" def __init__(self, bucket, callback): self.queue_name = self.ROUTING_KEY_TEMPLATE % bucket self.routing_key = self.queue_name self.callback = callback def consume_message(self, vumi_message): msg = MetricMessage.from_dict(vumi_message.payload) for metric_name, aggregators, values in msg.datapoints(): self.callback(metric_name, aggregators, values) class TimeBucketPublisher(Publisher): """Publish time bucketed metric messages. Parameters ---------- buckets : int Total number of buckets messages are being distributed to. bucket_size : int, in seconds Size of each time bucket in seconds. """ exchange_name = "vumi.metrics.buckets" exchange_type = "direct" durable = True ROUTING_KEY_TEMPLATE = "bucket.%d" def __init__(self, buckets, bucket_size): self.buckets = buckets self.bucket_size = bucket_size def find_bucket(self, metric_name, ts_key): md5 = hashlib.md5("%s:%d" % (metric_name, ts_key)) return int(md5.hexdigest(), 16) % self.buckets def publish_metric(self, metric_name, aggregates, values): timestamp_buckets = {} for timestamp, value in values: ts_key = int(timestamp) / self.bucket_size ts_bucket = timestamp_buckets.get(ts_key) if ts_bucket is None: ts_bucket = timestamp_buckets[ts_key] = [] ts_bucket.append((timestamp, value)) for ts_key, ts_bucket in timestamp_buckets.iteritems(): bucket = self.find_bucket(metric_name, ts_key) routing_key = self.ROUTING_KEY_TEMPLATE % bucket msg = MetricMessage() msg.append((metric_name, aggregates, ts_bucket)) self.publish_message(msg, routing_key=routing_key) class MetricTimeBucket(Worker): """Gathers metrics messages and redistributes them to aggregators. :class:`MetricTimeBuckets` take metrics from the vumi.metrics exchange and redistribute them to one of N :class:`MetricAggregator` workers. There can be any number of :class:`MetricTimeBucket` workers. Configuration Values -------------------- buckets : int (N) The total number of aggregator workers. :class:`MetricAggregator` workers must be started with bucket numbers 0 to N-1 otherwise metric data will go missing (or at best be stuck in a queue somewhere). bucket_size : int, in seconds The amount of time each time bucket represents. """ @inlineCallbacks def startWorker(self): log.msg("Starting a MetricTimeBucket with config: %s" % self.config) buckets = int(self.config.get("buckets")) log.msg("Total number of buckets %d" % buckets) bucket_size = int(self.config.get("bucket_size")) log.msg("Bucket size is %d seconds" % bucket_size) self.publisher = yield self.start_publisher(TimeBucketPublisher, buckets, bucket_size) self.consumer = yield self.start_consumer(MetricsConsumer, self.publisher.publish_metric) class DiscardedMetricError(Exception): pass class MetricAggregator(Worker): """Gathers a subset of metrics and aggregates them. :class:`MetricAggregators` work in sets of N. Configuration Values -------------------- bucket : int, 0 to N-1 An aggregator needs to know which number out of N it is. This is its bucket number. bucket_size : int, in seconds The amount of time each time bucket represents. lag : int, seconds, optional The number of seconds after a bucket's time ends to wait before processing the bucket. Default is 5s. """ _time = time.time # hook for faking time in tests def _ts_key(self, time): return int(time) / self.bucket_size @inlineCallbacks def startWorker(self): log.msg("Starting a MetricAggregator with config: %s" % self.config) bucket = int(self.config.get("bucket")) log.msg("MetricAggregator bucket %d" % bucket) self.bucket_size = int(self.config.get("bucket_size")) log.msg("Bucket size is %d seconds" % self.bucket_size) self.lag = float(self.config.get("lag", 5.0)) # ts_key -> { metric_name -> (aggregate_set, values) } # values is a list of (timestamp, value) pairs self.buckets = {} # initialize last processed bucket self._last_ts_key = self._ts_key(self._time() - self.lag) - 2 self.publisher = yield self.start_publisher(AggregatedMetricPublisher) self.consumer = yield self.start_consumer(TimeBucketConsumer, bucket, self.consume_metric) self._task = LoopingCall(self.check_buckets) done = self._task.start(self.bucket_size, False) done.addErrback(lambda failure: log.err(failure, "MetricAggregator bucket checking task died")) def check_buckets(self): """Periodically clean out old buckets and calculate aggregates.""" # key for previous bucket current_ts_key = self._ts_key(self._time() - self.lag) - 1 for ts_key in self.buckets.keys(): if ts_key <= self._last_ts_key: log.err(DiscardedMetricError("Throwing way old metric data: %r" % self.buckets[ts_key])) del self.buckets[ts_key] elif ts_key <= current_ts_key: aggregates = [] ts = ts_key * self.bucket_size items = self.buckets[ts_key].iteritems() for metric_name, (agg_set, values) in items: for agg_name in agg_set: agg_metric = "%s.%s" % (metric_name, agg_name) agg_func = Aggregator.from_name(agg_name) agg_value = agg_func([v[1] for v in values]) aggregates.append((agg_metric, agg_value)) for agg_metric, agg_value in aggregates: self.publisher.publish_aggregate(agg_metric, ts, agg_value) del self.buckets[ts_key] self._last_ts_key = current_ts_key def consume_metric(self, metric_name, aggregates, values): if not values: return ts_key = self._ts_key(values[0][0]) metrics = self.buckets.get(ts_key, None) if metrics is None: metrics = self.buckets[ts_key] = {} metric = metrics.get(metric_name) if metric is None: metric = metrics[metric_name] = (set(), []) existing_aggregates, existing_values = metric existing_aggregates.update(aggregates) existing_values.extend(values) def stopWorker(self): self._task.stop() self.check_buckets() class MetricsCollectorWorker(Worker): @inlineCallbacks def startWorker(self): log.msg("Starting %s with config: %s" % ( type(self).__name__, self.config)) yield self.setup_worker() self.consumer = yield self.start_consumer( AggregatedMetricConsumer, self.consume_metrics) def stopWorker(self): log.msg("Stopping %s" % (type(self).__name__,)) return self.teardown_worker() def setup_worker(self): pass def teardown_worker(self): pass def consume_metrics(self, metric_name, values): raise NotImplementedError() class GraphitePublisher(Publisher): """Publisher for sending messages to Graphite.""" exchange_name = "graphite" exchange_type = "topic" durable = True auto_delete = False delivery_mode = 2 require_bind = False # Graphite uses a topic exchange def publish_metric(self, metric, value, timestamp): self.publish_raw("%f %d" % (value, timestamp), routing_key=metric) class GraphiteMetricsCollector(MetricsCollectorWorker): """Worker that collects Vumi metrics and publishes them to Graphite.""" @inlineCallbacks def setup_worker(self): self.graphite_publisher = yield self.start_publisher(GraphitePublisher) def consume_metrics(self, metric_name, values): for timestamp, value in values: self.graphite_publisher.publish_metric( metric_name, value, timestamp) class UDPMetricsProtocol(DatagramProtocol): def __init__(self, ip, port): # NOTE: `host` must be an IP, not a hostname. self._ip = ip self._port = port def startProtocol(self): self.transport.connect(self._ip, self._port) def send_metric(self, metric_string): return self.transport.write(metric_string) class UDPMetricsCollector(MetricsCollectorWorker): """Worker that collects Vumi metrics and publishes them over UDP.""" DEFAULT_FORMAT_STRING = '%(timestamp)s %(metric_name)s %(value)s\n' DEFAULT_TIMESTAMP_FORMAT = '%Y-%m-%d %H:%M:%S%z' @inlineCallbacks def setup_worker(self): self.format_string = self.config.get( 'format_string', self.DEFAULT_FORMAT_STRING) self.timestamp_format = self.config.get( 'timestamp_format', self.DEFAULT_TIMESTAMP_FORMAT) self.metrics_ip = yield reactor.resolve(self.config['metrics_host']) self.metrics_port = int(self.config['metrics_port']) self.metrics_protocol = UDPMetricsProtocol( self.metrics_ip, self.metrics_port) self.listener = yield reactor.listenUDP(0, self.metrics_protocol) def teardown_worker(self): return self.listener.stopListening() def consume_metrics(self, metric_name, values): for timestamp, value in values: timestamp = datetime.utcfromtimestamp(timestamp) metric_string = self.format_string % { 'timestamp': timestamp.strftime(self.timestamp_format), 'metric_name': metric_name, 'value': value, } self.metrics_protocol.send_metric(metric_string) class RandomMetricsGenerator(Worker): """Worker that publishes a set of random metrics. Useful for tests and demonstrations. Configuration Values -------------------- manager_period : float in seconds, optional How often to have the internal metric manager send metrics messages. Default is 5s. generator_period: float in seconds, optional How often the random metric loop should send values to the metric manager. Default is 1s. """ # callback for tests, f(worker) # (or anyone else that wants to be notified when metrics are generated) on_run = None @inlineCallbacks def startWorker(self): log.msg("Starting the MetricsGenerator with config: %s" % self.config) manager_period = float(self.config.get("manager_period", 5.0)) log.msg("MetricManager will sent metrics every %s seconds" % manager_period) generator_period = float(self.config.get("generator_period", 1.0)) log.msg("Random metrics values will be generated every %s seconds" % generator_period) self.mm = yield self.start_publisher(MetricManager, "vumi.random.", manager_period) self.counter = self.mm.register(Count("count")) self.value = self.mm.register(Metric("value")) self.timer = self.mm.register(Timer("timer")) self.next = Deferred() self.task = LoopingCall(self.run) self.task.start(generator_period) @inlineCallbacks def run(self): if random.choice([True, False]): self.counter.inc() self.value.set(random.normalvariate(2.0, 0.1)) with self.timer: d = Deferred() wait = random.uniform(0.0, 0.1) reactor.callLater(wait, lambda: d.callback(None)) yield d if self.on_run is not None: self.on_run(self) def stopWorker(self): self.mm.stop() self.task.stop() log.msg("Stopping the MetricsGenerator")
36.384236
79
0.641822
14,097
0.954305
3,875
0.262321
4,022
0.272272
0
0
4,422
0.29935
9ae436efa8485153023aeda553abb0051a92e57f
1,401
py
Python
src/sentry/web/forms/base_organization_member.py
JannKleen/sentry
8b29c8234bb51a81d5cab821a1f2ed4ea8e8bd88
[ "BSD-3-Clause" ]
1
2019-02-27T15:13:06.000Z
2019-02-27T15:13:06.000Z
src/sentry/web/forms/base_organization_member.py
rmax/sentry
8b29c8234bb51a81d5cab821a1f2ed4ea8e8bd88
[ "BSD-3-Clause" ]
5
2020-07-17T11:20:41.000Z
2021-05-09T12:16:53.000Z
src/sentry/web/forms/base_organization_member.py
zaasmi/codeerrorhelp
1ab8d3e314386b9b2d58dad9df45355bf6014ac9
[ "BSD-3-Clause" ]
2
2021-01-26T09:53:39.000Z
2022-03-22T09:01:47.000Z
from __future__ import absolute_import from django import forms from django.db import transaction from sentry.models import ( OrganizationMember, OrganizationMemberTeam, Team, ) class BaseOrganizationMemberForm(forms.ModelForm): """ Base form used by AddOrganizationMemberForm, InviteOrganizationMemberForm, and EditOrganizationMemberForm """ teams = forms.ModelMultipleChoiceField( queryset=Team.objects.none(), widget=forms.CheckboxSelectMultiple(), required=False, ) role = forms.ChoiceField() class Meta: fields = ('role', ) model = OrganizationMember def __init__(self, *args, **kwargs): allowed_roles = kwargs.pop('allowed_roles') all_teams = kwargs.pop('all_teams') super(BaseOrganizationMemberForm, self).__init__(*args, **kwargs) self.fields['role'].choices = ((r.id, r.name) for r in allowed_roles) self.fields['teams'].queryset = all_teams @transaction.atomic def save_team_assignments(self, organization_member): OrganizationMemberTeam.objects.filter(organizationmember=organization_member).delete() OrganizationMemberTeam.objects.bulk_create( [ OrganizationMemberTeam(team=team, organizationmember=organization_member) for team in self.cleaned_data['teams'] ] )
29.1875
94
0.68237
1,206
0.860814
0
0
407
0.290507
0
0
177
0.126338
9ae66ae64bed27a4c419e21d360710c58e9c3114
1,589
py
Python
turbinia/workers/fsstat.py
dfjxs/turbinia
23a97d9d826cbcc51e6b5dfd50d85251506bf242
[ "Apache-2.0" ]
1
2021-05-31T19:44:50.000Z
2021-05-31T19:44:50.000Z
turbinia/workers/fsstat.py
dfjxs/turbinia
23a97d9d826cbcc51e6b5dfd50d85251506bf242
[ "Apache-2.0" ]
null
null
null
turbinia/workers/fsstat.py
dfjxs/turbinia
23a97d9d826cbcc51e6b5dfd50d85251506bf242
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- # Copyright 2021 Google Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Task to run fsstat on disk partitions.""" from __future__ import unicode_literals import os from turbinia import TurbiniaException from turbinia.workers import TurbiniaTask from turbinia.evidence import EvidenceState as state from turbinia.evidence import ReportText class FsstatTask(TurbiniaTask): REQUIRED_STATES = [state.ATTACHED] def run(self, evidence, result): """Task to execute fsstat. Args: evidence (Evidence object): The evidence we will process. result (TurbiniaTaskResult): The object to place task results into. Returns: TurbiniaTaskResult object. """ fsstat_output = os.path.join(self.output_dir, 'fsstat.txt') output_evidence = ReportText(source_path=fsstat_output) cmd = ['sudo', 'fsstat', evidence.device_path] result.log('Running fsstat as [{0!s}]'.format(cmd)) self.execute( cmd, result, stdout_file=fsstat_output, new_evidence=[output_evidence], close=True) return result
33.104167
79
0.733166
715
0.449969
0
0
0
0
0
0
920
0.57898
9ae7351fe81fa3901619faf1757d1f1b2dffbe49
401
py
Python
app/django-doubtfire-api/endpoint/urls.py
JiatengTao/speaker-verification-api
89c0b82c49498426c4d35104e0e4935c193a3cb1
[ "MIT" ]
null
null
null
app/django-doubtfire-api/endpoint/urls.py
JiatengTao/speaker-verification-api
89c0b82c49498426c4d35104e0e4935c193a3cb1
[ "MIT" ]
null
null
null
app/django-doubtfire-api/endpoint/urls.py
JiatengTao/speaker-verification-api
89c0b82c49498426c4d35104e0e4935c193a3cb1
[ "MIT" ]
null
null
null
from django.urls import include, path from django.conf.urls import url from endpoint.views import ( enroll_user, validate_recording, check_redis_health, redirect_flower_dashboard, ) urlpatterns = [ path("enroll", enroll_user), path("validate", validate_recording), path("redis-healthcheck", check_redis_health, name="up"), path("flower", redirect_flower_dashboard), ]
25.0625
61
0.733167
0
0
0
0
0
0
0
0
49
0.122195
9ae9da1c04d49fc47628f3418837d002feeee3c7
3,096
py
Python
back/src/crud.py
Celeo/wiki_elm
620caf74b4cc17d3ffe3231493df15e84bfcf67f
[ "MIT" ]
null
null
null
back/src/crud.py
Celeo/wiki_elm
620caf74b4cc17d3ffe3231493df15e84bfcf67f
[ "MIT" ]
null
null
null
back/src/crud.py
Celeo/wiki_elm
620caf74b4cc17d3ffe3231493df15e84bfcf67f
[ "MIT" ]
null
null
null
from datetime import datetime from typing import List, Optional import bcrypt from sqlalchemy.orm import Session from . import models, schemas def get_user(db: Session, id: int) -> models.User: """Return a single user by id. Args: db (Session): database connection id (int): id of the user Returns: models.User: user """ return db.query(models.User).filter(models.User.id == id).first() def get_user_by_name(db: Session, name: str) -> models.User: """Return a single user by name. Args: db (Session): database connection name (str): name of the user Returns: models.User: user """ return db.query(models.User).filter(models.User.name == name).first() def get_all_articles(db: Session) -> List[models.Article]: """Return all articles. Args: db (Session): database connection Returns: List[models.Article]: list of articles """ return db.query(models.Article).all() def get_article(db: Session, id: int) -> models.Article: """Return a single article by id. Args: db (Session): database connection id (int): id of the article Returns: models.Article: article """ return db.query(models.Article).filter(models.Article.id == id).first() def create_user(db: Session, user: schemas.UserCreate) -> None: """Create a new user. Args: db (Session): database connection user: (schemas.UserCreate): creation data """ new_user = models.User(name=user.name) new_user.password = bcrypt.hashpw(user.password, bcrypt.gensalt()) db.add(new_user) db.commit() def check_user(db: Session, name: str, password: str) -> Optional[models.User]: """Return true if the name and password match. Args: db (Session): database connection name (str): name of the user to check password (str): password to check against Returns: Optional[models.User]: user if the password matches, otherwise None """ from_db = get_user_by_name(db, name) if not from_db: return None if bcrypt.checkpw(password.encode('UTF-8'), from_db.password.encode('UTF-8')): return from_db return None def create_article(db: Session, article: schemas.ArticleCreate, creator_id: int) -> None: """Create a new article. Args: db (Session): database connection article (schemas.ArticleCreate): data creation data creator_id (int): user id of the creator """ new_article = models.Article(**article.dict(), created_by=creator_id, time_created=datetime.utcnow()) db.add(new_article) db.commit() def update_article(db: Session, article: schemas.ArticleUpdate) -> None: """Update an article. Args: db (Session): database connection article (schemas.ArticleUpdate): data update data """ from_db = get_article(db, article.id) if article.title: from_db.title = article.title if article.content: from_db.content = article.content db.commit()
26.016807
105
0.648256
0
0
0
0
0
0
0
0
1,428
0.46124
9ae9dc9146555c9b41506690dc497c2bf3438943
170
py
Python
commands/cmd_invite.py
cygnus-dev/python01
e0111ef7031f2c931d433d3dc6449c6740a7880e
[ "MIT" ]
null
null
null
commands/cmd_invite.py
cygnus-dev/python01
e0111ef7031f2c931d433d3dc6449c6740a7880e
[ "MIT" ]
4
2021-06-08T22:27:42.000Z
2022-03-12T00:51:07.000Z
commands/cmd_invite.py
cygnus-dev/python01
e0111ef7031f2c931d433d3dc6449c6740a7880e
[ "MIT" ]
null
null
null
async def run(ctx): await ctx.send(''' `bot invite link:` <https://discord.com/api/oauth2/authorize?client_id=732933945057869867&permissions=538569921&scope=bot>''')
42.5
107
0.747059
0
0
0
0
0
0
169
0.994118
129
0.758824
9aea27159d7833c105fb4af0a9c01c188110c93d
2,693
py
Python
polymorphic/tests/test_utils.py
likeanaxon/django-polymorphic
ad4e6e90c82f897300c1c135bd7a95e4b2d802a3
[ "BSD-3-Clause" ]
1
2021-03-12T17:42:37.000Z
2021-03-12T17:42:37.000Z
polymorphic/tests/test_utils.py
likeanaxon/django-polymorphic
ad4e6e90c82f897300c1c135bd7a95e4b2d802a3
[ "BSD-3-Clause" ]
10
2020-02-12T01:46:41.000Z
2022-02-10T09:00:03.000Z
polymorphic/tests/test_utils.py
likeanaxon/django-polymorphic
ad4e6e90c82f897300c1c135bd7a95e4b2d802a3
[ "BSD-3-Clause" ]
1
2020-04-18T15:14:47.000Z
2020-04-18T15:14:47.000Z
from django.test import TransactionTestCase from polymorphic.models import PolymorphicModel, PolymorphicTypeUndefined from polymorphic.tests.models import ( Enhance_Base, Enhance_Inherit, Model2A, Model2B, Model2C, Model2D, ) from polymorphic.utils import ( get_base_polymorphic_model, reset_polymorphic_ctype, sort_by_subclass, ) class UtilsTests(TransactionTestCase): def test_sort_by_subclass(self): self.assertEqual( sort_by_subclass(Model2D, Model2B, Model2D, Model2A, Model2C), [Model2A, Model2B, Model2C, Model2D, Model2D], ) def test_reset_polymorphic_ctype(self): """ Test the the polymorphic_ctype_id can be restored. """ Model2A.objects.create(field1="A1") Model2D.objects.create(field1="A1", field2="B2", field3="C3", field4="D4") Model2B.objects.create(field1="A1", field2="B2") Model2B.objects.create(field1="A1", field2="B2") Model2A.objects.all().update(polymorphic_ctype_id=None) with self.assertRaises(PolymorphicTypeUndefined): list(Model2A.objects.all()) reset_polymorphic_ctype(Model2D, Model2B, Model2D, Model2A, Model2C) self.assertQuerysetEqual( Model2A.objects.order_by("pk"), [Model2A, Model2D, Model2B, Model2B], transform=lambda o: o.__class__, ) def test_get_base_polymorphic_model(self): """ Test that finding the base polymorphic model works. """ # Finds the base from every level (including lowest) self.assertIs(get_base_polymorphic_model(Model2D), Model2A) self.assertIs(get_base_polymorphic_model(Model2C), Model2A) self.assertIs(get_base_polymorphic_model(Model2B), Model2A) self.assertIs(get_base_polymorphic_model(Model2A), Model2A) # Properly handles multiple inheritance self.assertIs(get_base_polymorphic_model(Enhance_Inherit), Enhance_Base) # Ignores PolymorphicModel itself. self.assertIs(get_base_polymorphic_model(PolymorphicModel), None) def test_get_base_polymorphic_model_skip_abstract(self): """ Skipping abstract models that can't be used for querying. """ class A(PolymorphicModel): class Meta: abstract = True class B(A): pass class C(B): pass self.assertIs(get_base_polymorphic_model(A), None) self.assertIs(get_base_polymorphic_model(B), B) self.assertIs(get_base_polymorphic_model(C), B) self.assertIs(get_base_polymorphic_model(C, allow_abstract=True), A)
32.445783
82
0.671742
2,322
0.862235
0
0
0
0
0
0
395
0.146677
9aeae4d01c050a9274a24e3e6c5783d7fc583318
2,098
py
Python
blockchain/utils.py
TheEdgeOfRage/blockchain
f75764b5a5a87337200b14d1909077c31e2dbdc1
[ "MIT" ]
null
null
null
blockchain/utils.py
TheEdgeOfRage/blockchain
f75764b5a5a87337200b14d1909077c31e2dbdc1
[ "MIT" ]
null
null
null
blockchain/utils.py
TheEdgeOfRage/blockchain
f75764b5a5a87337200b14d1909077c31e2dbdc1
[ "MIT" ]
null
null
null
#! /usr/bin/env python # -*- coding: utf-8 -*- # vim:fenc=utf-8 # # Copyright © 2020 <pavle.portic@tilda.center> # # Distributed under terms of the BSD 3-Clause license. import hashlib import itertools import json from decimal import Decimal from multiprocessing import ( cpu_count, Pool, Process, Queue ) class DecimalJsonEncoder(json.JSONEncoder): def default(self, obj): if isinstance(obj, Decimal): return float(obj) return super(DecimalJsonEncoder, self).default(obj) def dumps(*data, **kwargs): return json.dumps( data, cls=DecimalJsonEncoder, **kwargs, ) def do_pooled_pow(last_proof, last_hash, difficulty): queue = Queue() with Pool(1) as p: result = p.starmap_async(pool_worker, (( queue, i, last_proof, last_hash, difficulty, ) for i in itertools.count()), chunksize=100) proof = queue.get() result.wait() p.terminate() return proof def pool_worker(queue, proof, last_proof, last_hash, difficulty): if valid_proof(last_proof, proof, last_hash): queue.put(proof) return proof return None def do_process_pow(last_proof, last_hash, difficulty): queue = Queue() processes = [ Process( target=process_worker, args=( queue, last_proof, last_hash, difficulty, step, ) ) for step in range(cpu_count()) ] for p in processes: p.start() proof = queue.get() for p in processes: p.terminate() return proof def process_worker(queue, last_proof, last_hash, difficulty, step): proof = step while not valid_proof(last_proof, proof, last_hash, difficulty): proof += step queue.put(proof) return def valid_proof(last_proof, proof, last_hash, difficulty): """ Validates the Proof :param last_proof: <int> Previous Proof :param proof: <int> Current Proof :param last_hash: <str> The hash of the Previous Block :return: <bool> True if correct, False if not. """ guess = f'{last_proof}{proof}{last_hash}'.encode() guess_hash = hashlib.sha256(guess) binary_hash = ''.join(format(n, '08b') for n in guess_hash.digest()) return binary_hash[:difficulty] == '0' * difficulty
18.900901
69
0.702574
174
0.082897
0
0
0
0
0
0
417
0.198666
9aebd92051cfcf6d0045079f9f922a518fd301b8
5,317
py
Python
myfunds/web/views/joint_limits/limit/views/participants.py
anzodev/myfunds
9f6cda99f443cec064d15d7ff7780f297cbdfe10
[ "MIT" ]
null
null
null
myfunds/web/views/joint_limits/limit/views/participants.py
anzodev/myfunds
9f6cda99f443cec064d15d7ff7780f297cbdfe10
[ "MIT" ]
null
null
null
myfunds/web/views/joint_limits/limit/views/participants.py
anzodev/myfunds
9f6cda99f443cec064d15d7ff7780f297cbdfe10
[ "MIT" ]
null
null
null
import peewee as pw from flask import g from flask import redirect from flask import render_template from flask import request from flask import url_for from myfunds.core.models import Account from myfunds.core.models import Category from myfunds.core.models import JointLimitParticipant from myfunds.web import auth from myfunds.web import notify from myfunds.web import utils from myfunds.web.constants import FundsDirection from myfunds.web.forms import AddJointLimitParticipantStep1Form from myfunds.web.forms import AddJointLimitParticipantStep2Form from myfunds.web.forms import DeleteJointLimitParticipantForm from myfunds.web.forms import JointLimitParticipantGetStepForm from myfunds.web.views.joint_limits.limit.views import bp from myfunds.web.views.joint_limits.limit.views import verify_limit @bp.route("/participants") @auth.login_required @auth.superuser_required @verify_limit def participants(): participants = ( JointLimitParticipant.select() .join(Category) .join(Account) .where(JointLimitParticipant.limit == g.limit) ) return render_template("limit/participants.html", participants=participants) @bp.route("/participants/new", methods=["GET", "POST"]) @auth.login_required @auth.superuser_required @verify_limit def participants_new(): # fmt: off current_participants_query = ( JointLimitParticipant .select() .join(Category) .where( (JointLimitParticipant.limit == g.limit.id) ) ) # fmt: on current_participants_account_ids = [ i.category.account_id for i in current_participants_query ] if request.method == "GET": # fmt: off accounts = ( Account .select(Account, pw.fn.COUNT(Category).alias("categories_count")) .join(Category) .where( (Account.id.not_in(current_participants_account_ids)) & (pw.Value("categories_count") > 0) ) .order_by(Account.username) .group_by(Account.id) ) # fmt: on return render_template("limit/new_participant.html", step=1, accounts=accounts) redirect_url = url_for("joint_limits.i.participants_new", limit_id=g.limit.id) step_form = JointLimitParticipantGetStepForm(request.form) utils.validate_form(step_form, redirect_url) step = step_form.step.data if step == 1: form = AddJointLimitParticipantStep1Form(request.form) utils.validate_form(form, redirect_url) account_id = form.account_id.data account = Account.get_or_none(id=account_id) if account is None: notify.error("Account not found.") return redirect(redirect_url) if account.id in current_participants_account_ids: notify.error("Account is participated already.") return redirect(redirect_url) # fmt: off categories = ( Category .select(Category) .where( (Category.account_id == account.id) & (Category.direction == FundsDirection.EXPENSE.value) ) .order_by(Category.name) ) # fmt: on return render_template( "limit/new_participant.html", step=2, account=account, categories=categories ) elif step == 2: # fmt: off current_categories_query = ( JointLimitParticipant .select() .join(Category) .where( (JointLimitParticipant.limit == g.limit.id) ) ) # fmt: on current_categories_ids = [i.category_id for i in current_categories_query] form = AddJointLimitParticipantStep2Form(request.form) utils.validate_form(form, redirect_url) account_id = form.account_id.data category_id = form.category_id.data # fmt: off category = ( Category .select() .where( (Category.id == category_id) & (Category.account_id.not_in(current_participants_account_ids)) & (Category.id.not_in(current_categories_ids)) ) .first() ) # fmt: on if category is None: notify.error("Category not found.") return redirect(redirect_url) JointLimitParticipant.create(limit=g.limit, category=category) notify.info("New participant was added successfully.") return redirect(url_for("joint_limits.i.participants", limit_id=g.limit.id)) @bp.route("/participants/delete", methods=["POST"]) @auth.login_required @auth.superuser_required @verify_limit def delete_participant(): redirect_url = url_for("joint_limits.i.participants", limit_id=g.limit.id) form = DeleteJointLimitParticipantForm(request.form) utils.validate_form(form, redirect_url) participant_id = form.participant_id.data participant = JointLimitParticipant.get_or_none(id=participant_id, limit=g.limit) if participant is None: notify.error("Participant not found.") return redirect(redirect_url) participant.delete_instance() notify.info("Participant was deleted.") return redirect(redirect_url)
30.912791
88
0.658454
0
0
0
0
4,501
0.84653
0
0
547
0.102878
9aec3cbbdf80ed6024cc8bfdc62a6afaf2fdc1c4
6,854
py
Python
elyra/pipeline/component_parser_kfp.py
rachaelhouse/elyra
e2f474f26f65fd7c5ec5602f6e40a229dda0a081
[ "Apache-2.0" ]
null
null
null
elyra/pipeline/component_parser_kfp.py
rachaelhouse/elyra
e2f474f26f65fd7c5ec5602f6e40a229dda0a081
[ "Apache-2.0" ]
null
null
null
elyra/pipeline/component_parser_kfp.py
rachaelhouse/elyra
e2f474f26f65fd7c5ec5602f6e40a229dda0a081
[ "Apache-2.0" ]
null
null
null
# # Copyright 2018-2021 Elyra Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from types import SimpleNamespace from typing import Any from typing import Dict from typing import List from typing import Optional import yaml from elyra.pipeline.component import Component from elyra.pipeline.component import ComponentParameter from elyra.pipeline.component import ComponentParser class KfpComponentParser(ComponentParser): _component_platform = "kfp" _file_types = [".yaml"] def parse(self, registry_entry: SimpleNamespace) -> Optional[List[Component]]: # Get YAML object from component definition component_yaml = self._read_component_yaml(registry_entry) if not component_yaml: return None # Assign component_id and description component_id = self.get_component_id(registry_entry.location, component_yaml.get('name', '')) description = "" if component_yaml.get('description'): # Remove whitespace characters and replace with spaces description = ' '.join(component_yaml.get('description').split()) component_properties = self._parse_properties(component_yaml) component = Component(id=component_id, name=component_yaml.get('name'), description=description, runtime=self.component_platform, location_type=registry_entry.location_type, location=registry_entry.location, properties=component_properties, categories=registry_entry.categories) return [component] def _parse_properties(self, component_yaml: Dict[str, Any]) -> List[ComponentParameter]: properties: List[ComponentParameter] = list() # NOTE: Currently no runtime-specific properties are needed # properties.extend(self.get_runtime_specific_properties()) # Then loop through and create custom properties input_params = component_yaml.get('inputs', []) for param in input_params: # KFP components default to being required unless otherwise stated. # Reference: https://www.kubeflow.org/docs/components/pipelines/reference/component-spec/#interface required = True if "optional" in param and param.get('optional') is True: required = False # Assign type, default to string data_type = param.get('type', 'string') # Set description and include parsed type information description = self._format_description(description=param.get('description', ''), data_type=data_type) # Change type to reflect the type of input (inputValue vs inputPath) data_type = self._get_adjusted_parameter_fields(component_body=component_yaml, io_object_name=param.get('name'), io_object_type="input", parameter_type=data_type) data_type, control_id, default_value = self.determine_type_information(data_type) # Get value if provided value = param.get('default', '') ref = param.get('name').lower().replace(' ', '_') properties.append(ComponentParameter(id=ref, name=param.get('name'), data_type=data_type, value=(value or default_value), description=description, control_id=control_id, required=required)) return properties def get_runtime_specific_properties(self) -> List[ComponentParameter]: """ Define properties that are common to the KFP runtime. """ return [ ComponentParameter( id="runtime_image", name="Runtime Image", data_type="string", value="", description="Docker image used as execution environment.", control="readonly", required=True, ) ] def _read_component_yaml(self, registry_entry: SimpleNamespace) -> Optional[Dict[str, Any]]: """ Convert component_definition string to YAML object """ try: return yaml.safe_load(registry_entry.component_definition) except Exception as e: self.log.debug(f"Could not read definition for component at " f"location: '{registry_entry.location}' -> {str(e)}") return None def _get_adjusted_parameter_fields(self, component_body: Dict[str, Any], io_object_name: str, io_object_type: str, parameter_type: str) -> str: """ Change the parameter ref according if it is a KFP path parameter (as opposed to a value parameter) """ adjusted_type = parameter_type if "implementation" in component_body and "container" in component_body['implementation']: if "command" in component_body['implementation']['container']: for command in component_body['implementation']['container']['command']: if isinstance(command, dict) and list(command.values())[0] == io_object_name and \ list(command.keys())[0] == f"{io_object_type}Path": adjusted_type = "file" if "args" in component_body['implementation']['container']: for arg in component_body['implementation']['container']['args']: if isinstance(arg, dict) and list(arg.values())[0] == io_object_name and \ list(arg.keys())[0] == f"{io_object_type}Path": adjusted_type = "file" return adjusted_type
45.390728
111
0.579224
5,966
0.870441
0
0
0
0
0
0
2,070
0.302013
9aedf1a23d553278d5b929adc837502da68eda10
356
py
Python
mayan/apps/mimetype/apps.py
eshbeata/open-paperless
6b9ed1f21908116ad2795b3785b2dbd66713d66e
[ "Apache-2.0" ]
2,743
2017-12-18T07:12:30.000Z
2022-03-27T17:21:25.000Z
mayan/apps/mimetype/apps.py
eshbeata/open-paperless
6b9ed1f21908116ad2795b3785b2dbd66713d66e
[ "Apache-2.0" ]
15
2017-12-18T14:58:07.000Z
2021-03-01T20:05:05.000Z
mayan/apps/mimetype/apps.py
eshbeata/open-paperless
6b9ed1f21908116ad2795b3785b2dbd66713d66e
[ "Apache-2.0" ]
257
2017-12-18T03:12:58.000Z
2022-03-25T08:59:10.000Z
from __future__ import unicode_literals from django.utils.translation import ugettext_lazy as _ from common import MayanAppConfig from .licenses import * # NOQA class MIMETypesApp(MayanAppConfig): name = 'mimetype' verbose_name = _('MIME types') def ready(self, *args, **kwargs): super(MIMETypesApp, self).ready(*args, **kwargs)
22.25
56
0.727528
188
0.52809
0
0
0
0
0
0
28
0.078652
9aefb8bc9120b71f8727047442cac13c02b21950
388
py
Python
test/level.py
Matt-London/command-line-tutorial
5b6afeedb4075de114e8c91756ecf3a03645fde7
[ "MIT" ]
1
2020-07-11T06:29:25.000Z
2020-07-11T06:29:25.000Z
test/level.py
Matt-London/Command-Line-Tutorial
5b6afeedb4075de114e8c91756ecf3a03645fde7
[ "MIT" ]
15
2020-07-10T20:01:51.000Z
2020-08-10T05:23:47.000Z
test/level.py
Matt-London/command-line-tutorial
5b6afeedb4075de114e8c91756ecf3a03645fde7
[ "MIT" ]
null
null
null
from packages.levels.Level import Level import packages.levels.levels as Levels import packages.resources.functions as function import packages.resources.variables as var from packages.filesystem.Directory import Directory from packages.filesystem.File import File var.bash_history = ("Check") test = Level("Instruct", "Help", ("Check")) test.instruct() test.help() print(test.check())
27.714286
51
0.796392
0
0
0
0
0
0
0
0
30
0.07732
9af07d32c8be1202f3730dbd2847cb3a451513ad
1,235
py
Python
tests/test_buffers.py
TheCharmingCthulhu/cython-vst-loader
2d2d358515f24f4846ca664e5a9b366a207207a6
[ "MIT" ]
23
2020-07-29T14:44:29.000Z
2022-01-07T05:29:16.000Z
tests/test_buffers.py
TheCharmingCthulhu/cython-vst-loader
2d2d358515f24f4846ca664e5a9b366a207207a6
[ "MIT" ]
14
2020-09-09T02:38:24.000Z
2022-03-04T05:19:25.000Z
tests/test_buffers.py
TheCharmingCthulhu/cython-vst-loader
2d2d358515f24f4846ca664e5a9b366a207207a6
[ "MIT" ]
2
2021-06-05T23:30:08.000Z
2021-06-06T19:58:59.000Z
# noinspection PyUnresolvedReferences import unittest from cython_vst_loader.vst_loader_wrapper import allocate_float_buffer, get_float_buffer_as_list, \ free_buffer, \ allocate_double_buffer, get_double_buffer_as_list class TestBuffers(unittest.TestCase): def test_float_buffer(self): pointer = allocate_float_buffer(10, 12.345) assert (pointer > 1000) # something like a pointer list_object = get_float_buffer_as_list(pointer, 10) assert (isinstance(list_object, list)) assert (len(list_object) == 10) for element in list_object: assert (self.roughly_equals(element, 12.345)) free_buffer(pointer) def test_double_buffer(self): pointer = allocate_double_buffer(10, 12.345) assert (pointer > 1000) # something like a pointer list_object = get_double_buffer_as_list(pointer, 10) assert (isinstance(list_object, list)) assert (len(list_object) == 10) for element in list_object: assert (self.roughly_equals(element, 12.345)) free_buffer(pointer) def roughly_equals(self, a: float, b: float) -> bool: tolerance: float = 0.00001 return abs(a - b) < tolerance
36.323529
99
0.688259
1,004
0.812955
0
0
0
0
0
0
89
0.072065
9af148fc623927e65f3f0abe332698d9eddb80f8
1,520
py
Python
samples/17.multilingual-bot/translation/microsoft_translator.py
hangdong/botbuilder-python
8ff979a58fadc4356d76b9ce577f94da3245f664
[ "MIT" ]
null
null
null
samples/17.multilingual-bot/translation/microsoft_translator.py
hangdong/botbuilder-python
8ff979a58fadc4356d76b9ce577f94da3245f664
[ "MIT" ]
null
null
null
samples/17.multilingual-bot/translation/microsoft_translator.py
hangdong/botbuilder-python
8ff979a58fadc4356d76b9ce577f94da3245f664
[ "MIT" ]
null
null
null
# Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. import uuid import requests class MicrosoftTranslator: def __init__(self, subscription_key: str, subscription_region: str): self.subscription_key = subscription_key self.subscription_region = subscription_region # Don't forget to replace with your Cog Services location! # Our Flask route will supply two arguments: text_input and language_output. # When the translate text button is pressed in our Flask app, the Ajax request # will grab these values from our web app, and use them in the request. # See main.js for Ajax calls. async def translate(self, text_input, language_output): base_url = "https://api.cognitive.microsofttranslator.com" path = "/translate?api-version=3.0" params = "&to=" + language_output constructed_url = base_url + path + params headers = { "Ocp-Apim-Subscription-Key": self.subscription_key, "Ocp-Apim-Subscription-Region": self.subscription_region, "Content-type": "application/json", "X-ClientTraceId": str(uuid.uuid4()), } # You can pass more than one object in body. body = [{"text": text_input}] response = requests.post(constructed_url, headers=headers, json=body) json_response = response.json() # for this sample, return the first translation return json_response[0]["translations"][0]["text"]
40
82
0.678947
1,394
0.917105
0
0
0
0
848
0.557895
708
0.465789
9af29a94a64ce15c2f18ac01d5658596e67aa248
48
py
Python
dachar/utils/__init__.py
roocs/dachar
687b6acb535f634791d13a435cded5f97cae8e76
[ "BSD-3-Clause" ]
2
2020-05-01T11:17:06.000Z
2020-11-23T10:37:24.000Z
dachar/utils/__init__.py
roocs/dachar
687b6acb535f634791d13a435cded5f97cae8e76
[ "BSD-3-Clause" ]
69
2020-03-26T15:39:26.000Z
2022-01-14T14:34:39.000Z
dachar/utils/__init__.py
roocs/dachar
687b6acb535f634791d13a435cded5f97cae8e76
[ "BSD-3-Clause" ]
null
null
null
from .common import * from .json_store import *
16
25
0.75
0
0
0
0
0
0
0
0
0
0
9af36b234d70f262e1618ab3933e4d7b9aedd9f4
2,760
py
Python
scraper/models.py
mrcnc/assessor-scraper
b502ebb157048d20294ca44ab0d30e3a44d86c08
[ "MIT" ]
null
null
null
scraper/models.py
mrcnc/assessor-scraper
b502ebb157048d20294ca44ab0d30e3a44d86c08
[ "MIT" ]
null
null
null
scraper/models.py
mrcnc/assessor-scraper
b502ebb157048d20294ca44ab0d30e3a44d86c08
[ "MIT" ]
1
2019-02-14T04:01:40.000Z
2019-02-14T04:01:40.000Z
# -*- coding: utf-8 -*- import os import logging from sqlalchemy import create_engine, Column, Integer, String, ForeignKey from sqlalchemy.engine.url import URL from sqlalchemy.ext.declarative import declarative_base from sqlalchemy.orm import relationship from scraper import settings Base = declarative_base() def db_connect(): """ Returns sqlalchemy engine instance """ if 'DATABASE_URL' in os.environ: DATABASE_URL = os.environ['DATABASE_URL'] logging.debug("Connecting to %s", URL) else: DATABASE_URL = URL(**settings.DATABASE) logging.debug("Connecting with settings %s", DATABASE_URL) return create_engine(DATABASE_URL) def create_tables(engine): Base.metadata.create_all(engine) class Property(Base): __tablename__ = 'properties' id = Column(Integer, primary_key=True) property_key = Column(String, nullable=False) todays_date = Column(String) location = Column(String) owner_name = Column(String) mailing_address = Column(String) municipal_district = Column(String) location_address = Column(String) tax_bill_number = Column(String) property_class = Column(String) special_tax_district = Column(String) subdivision_name = Column(String) land_area_sq_ft = Column(String) zoning_district = Column(String) building_area_sq_ft = Column(String) square = Column(String) lot = Column(String) book = Column(String) folio = Column(String) line = Column(String) parcel_map = Column(String) legal_description = Column(String) assessment_area = Column(String) values = relationship('PropertyValue') transfers = relationship('PropertyTransfer') class PropertyValue(Base): __tablename__ = 'property_values' id = Column(Integer, primary_key=True) property_id = Column(Integer, ForeignKey('properties.id')) year = Column(String) land_value = Column(String) building_value = Column(String) total_value = Column(String) assessed_land_value = Column(String) assessed_building_value = Column(String) total_assessed_value = Column(String) homestead_exemption_value = Column(String) taxable_assessment = Column(String) age_freeze = Column(String) disability_freeze = Column(String) assmnt_change = Column(String) tax_contract = Column(String) class PropertyTransfer(Base): __tablename__ = 'property_transfers' id = Column(Integer, primary_key=True) property_id = Column(Integer, ForeignKey('properties.id')) sale_transfer_date = Column(String) price = Column(String) grantor = Column(String) grantee = Column(String) notarial_archive_number = Column(String) instrument_number = Column(String)
29.677419
73
0.721014
1,997
0.723551
0
0
0
0
0
0
260
0.094203
9af3a835ffd32ad662ca751cd48d5f535bf94f5d
487
py
Python
WeIrD-StRiNg-CaSe.py
lovefov/Python
ba8fc49e6e503927dc1f827f37b77f3e43b5d0c8
[ "MIT" ]
null
null
null
WeIrD-StRiNg-CaSe.py
lovefov/Python
ba8fc49e6e503927dc1f827f37b77f3e43b5d0c8
[ "MIT" ]
null
null
null
WeIrD-StRiNg-CaSe.py
lovefov/Python
ba8fc49e6e503927dc1f827f37b77f3e43b5d0c8
[ "MIT" ]
1
2021-02-08T08:48:44.000Z
2021-02-08T08:48:44.000Z
def to_weird_case(string): arr=string.split() count=0 for i in arr: tmp=list(i) for j in range(len(tmp)): if j%2==0: tmp[j]=tmp[j].upper() arr[count] = ''.join(tmp) count+=1 return ' '.join(arr) ''' 一个比较不错的版本 def to_weird_case(string): recase = lambda s: "".join([c.upper() if i % 2 == 0 else c.lower() for i, c in enumerate(s)]) return " ".join([recase(word) for word in string.split(" ")]) '''
23.190476
97
0.521561
0
0
0
0
0
0
0
0
237
0.469307
9af63c97cc5b9b0bb2ddfde6ccac394409cbd012
1,573
py
Python
FTP_client/LHYlearning/Entry.py
welles2000/CCNProject
0f20718aa171571a952343d7a07c2f1c0f953a6e
[ "MulanPSL-1.0" ]
2
2022-03-29T05:43:09.000Z
2022-03-29T14:29:46.000Z
FTP_client/LHYlearning/Entry.py
welles2000/CCNProject
0f20718aa171571a952343d7a07c2f1c0f953a6e
[ "MulanPSL-1.0" ]
null
null
null
FTP_client/LHYlearning/Entry.py
welles2000/CCNProject
0f20718aa171571a952343d7a07c2f1c0f953a6e
[ "MulanPSL-1.0" ]
null
null
null
# 经典面向对象的GUI写法 from tkinter import * from tkinter import messagebox class Application(Frame): """一个经典的GUI程序""" def __init__(self,master=None): super().__init__(master) self.master = master self.pack() self.createWidget() def createWidget(self): """创建组件""" self.label01 = Label(self, text="用户名") self.label01.pack() # StringVar变量绑定到指定组件,双向关联 v1 = StringVar() # StringVar DoubleVar IntVar BooleanVar self.entry01 = Entry(self, textvariable=v1) self.entry01.pack() v1.set("admin") # 创建密码框 self.label02 = Label(self, text="密码") self.label02.pack() # StringVar变量绑定到指定组件,双向关联 v2 = StringVar() # StringVar DoubleVar IntVar BooleanVar self.entry02 = Entry(self, textvariable=v2, show="*") self.entry02.pack() self.btn01 = Button(self, text="登录", command=self.login) self.btn01.pack() # 创建一个退出按钮 self.btnQuit = Button(self, text="退出", command=self.master.destroy) self.btnQuit.pack() def login(self): username = self.entry01.get() pwd = self.entry02.get() print("用户名:"+username) print("密码:"+pwd) if username == "lhy" and pwd == "whl": messagebox.showinfo("登录界面", "您已登录,欢迎") else: messagebox.showinfo("登录界面", "密码错误") if __name__ == '__main__': root = Tk() root.geometry("1280x720+200+300") root.title("") app = Application(master=root) root.mainloop()
24.2
75
0.577241
1,514
0.85779
0
0
0
0
0
0
494
0.279887
9af728f0342a41c7e42c05bfe4ce250d82a4e42b
839
py
Python
curso-em-video/ex054.py
joseluizbrits/sobre-python
316143c341e5a44070a3b13877419082774bd730
[ "MIT" ]
null
null
null
curso-em-video/ex054.py
joseluizbrits/sobre-python
316143c341e5a44070a3b13877419082774bd730
[ "MIT" ]
null
null
null
curso-em-video/ex054.py
joseluizbrits/sobre-python
316143c341e5a44070a3b13877419082774bd730
[ "MIT" ]
null
null
null
# Grupo da Maioridade '''Crie um programa que leia o ANO DE NASCIMENTO de SETE PESSOAS. No final, mostre quantas pessoas ainda não atingiram a maioridade e quantas já são maiores''' from datetime import date anoatual = date.today().year # Pegará o ano atual configurado na máquina totalmaior = 0 totalmenor = 0 for pessoas in range(1, 8): anonasc = int(input('Digite o ano de nascimento da {}ª pessoa: '.format(pessoas))) if 1900 < anonasc < anoatual: idade = anoatual - anonasc if idade >= 21: totalmaior += 1 else: totalmenor += 1 else: print('\033[31m''Ocorreu um erro no ano em que você digitou! Tente novamente.') print('Há {} pessoas neste grupo que estão na maioridade'.format(totalmaior)) print('E há {} pessoas que ainda são menor de idade'.format(totalmenor))
38.136364
87
0.682956
0
0
0
0
0
0
0
0
447
0.525882
9af8cf4aed2f78a490c8a32e60b1aabe24f15e72
2,160
py
Python
stellar/simulation/data.py
strfx/stellar
41b190eed016d2d6ad8548490a0c9620a02d711e
[ "MIT" ]
null
null
null
stellar/simulation/data.py
strfx/stellar
41b190eed016d2d6ad8548490a0c9620a02d711e
[ "MIT" ]
null
null
null
stellar/simulation/data.py
strfx/stellar
41b190eed016d2d6ad8548490a0c9620a02d711e
[ "MIT" ]
null
null
null
from typing import Tuple import numpy as np import png from skimage.transform import resize def load_world(filename: str, size: Tuple[int, int], resolution: int) -> np.array: """Load a preconstructred track to initialize world. Args: filename: Full path to the track file (png). size: Width and height of the map resolution: Resolution of the grid map (i.e. into how many cells) one meter is divided into. Returns: An initialized gridmap based on the preconstructed track as an n x m dimensional numpy array, where n is the width (num cells) and m the height (num cells) - (after applying resolution). """ width_in_cells, height_in_cells = np.multiply(size, resolution) world = np.array(png_to_ogm( filename, normalized=True, origin='lower')) # If the image is already in our desired shape, no need to rescale it if world.shape == (height_in_cells, width_in_cells): return world # Otherwise, scale the image to our desired size. resized_world = resize(world, (width_in_cells, height_in_cells)) return resized_world def png_to_ogm(filename, normalized=False, origin='lower'): """Convert a png image to occupancy grid map. Inspired by https://github.com/richardos/occupancy-grid-a-star Args: filename: Path to the png file. normalized: Whether to normalize the data, i.e. to be in value range [0, 1] origin: Point of origin (0,0) Returns: 2D Array """ r = png.Reader(filename) img = r.read() img_data = list(img[2]) out_img = [] bitdepth = img[3]['bitdepth'] for i in range(len(img_data)): out_img_row = [] for j in range(len(img_data[0])): if j % img[3]['planes'] == 0: if normalized: out_img_row.append(img_data[i][j]*1.0/(2**bitdepth)) else: out_img_row.append(img_data[i][j]) out_img.append(out_img_row) if origin == 'lower': out_img.reverse() return out_img
29.189189
83
0.611574
0
0
0
0
0
0
0
0
1,046
0.484259
9af8e51dd66ea49555fb4a24794f6c9c1dc7752a
885
py
Python
apps/user/serializers.py
major-hub/soil_app
ddd250161ad496afd4c8484f79500ff2657b51df
[ "MIT" ]
null
null
null
apps/user/serializers.py
major-hub/soil_app
ddd250161ad496afd4c8484f79500ff2657b51df
[ "MIT" ]
null
null
null
apps/user/serializers.py
major-hub/soil_app
ddd250161ad496afd4c8484f79500ff2657b51df
[ "MIT" ]
null
null
null
from rest_framework import serializers from user.models import User from main.exceptions.user_exceptions import UserException user_exception = UserException class UserRegisterSerializer(serializers.ModelSerializer): password_confirmation = serializers.CharField(max_length=128) class Meta: model = User fields = ['email', 'phone_number', 'first_name', 'last_name', 'password', 'password_confirmation'] def validate(self, attrs): password_confirmation = attrs.pop('password_confirmation') if password_confirmation != attrs.get('password'): raise serializers.ValidationError({'non_field_errors': user_exception("NOT_MATCHED_PASSWORDS").message}) return attrs class UserLoginSerializer(serializers.Serializer): email = serializers.EmailField(max_length=255) password = serializers.CharField(max_length=128)
32.777778
116
0.754802
719
0.812429
0
0
0
0
0
0
151
0.170621
9af8e62cf5607d29f1d31c790e20bc86925e4fe4
7,332
py
Python
bf_compiler.py
PurpleMyst/bf_compiler
51832ac9bb493b478c88f68798e99727cf43e180
[ "MIT" ]
31
2018-03-09T15:40:46.000Z
2021-01-15T10:03:40.000Z
bf_compiler.py
PurpleMyst/bf_compiler
51832ac9bb493b478c88f68798e99727cf43e180
[ "MIT" ]
null
null
null
bf_compiler.py
PurpleMyst/bf_compiler
51832ac9bb493b478c88f68798e99727cf43e180
[ "MIT" ]
2
2018-03-09T23:59:28.000Z
2021-01-15T10:05:00.000Z
#!/usr/bin/env python3 import argparse import ctypes import os import sys from llvmlite import ir, binding as llvm INDEX_BIT_SIZE = 16 def parse(bf): bf = iter(bf) result = [] for c in bf: if c == "[": result.append(parse(bf)) elif c == "]": break else: result.append(c) return result def bf_to_ir(bf): ast = parse(bf) byte = ir.IntType(8) int32 = ir.IntType(32) size_t = ir.IntType(64) void = ir.VoidType() module = ir.Module(name=__file__) main_type = ir.FunctionType(int32, ()) main_func = ir.Function(module, main_type, name="main") entry = main_func.append_basic_block(name="entry") builder = ir.IRBuilder(entry) putchar_type = ir.FunctionType(int32, (int32,)) putchar = ir.Function(module, putchar_type, name="putchar") getchar_type = ir.FunctionType(int32, ()) getchar = ir.Function(module, getchar_type, name="getchar") bzero_type = ir.FunctionType(void, (byte.as_pointer(), size_t)) bzero = ir.Function(module, bzero_type, name="bzero") index_type = ir.IntType(INDEX_BIT_SIZE) index = builder.alloca(index_type) builder.store(ir.Constant(index_type, 0), index) tape_type = byte tape = builder.alloca(tape_type, size=2 ** INDEX_BIT_SIZE) builder.call(bzero, (tape, size_t(2 ** INDEX_BIT_SIZE))) zero8 = byte(0) one8 = byte(1) eof = int32(-1) def get_tape_location(): index_value = builder.load(index) index_value = builder.zext(index_value, int32) location = builder.gep(tape, (index_value,), inbounds=True) return location def compile_instruction(instruction): if isinstance(instruction, list): # You may initially analyze this code and think that it'll error # due to there being multiple blocks with the same name (e.g. if we # have two loops, there are two "preloop" blocks), but llvmlite # handles that for us. preloop = builder.append_basic_block(name="preloop") # In the LLVM IR, every block needs to be terminated. Our builder # is still at the end of the previous block, so we can just insert # an unconditional branching to the preloop branch. builder.branch(preloop) builder.position_at_start(preloop) # load tape value location = get_tape_location() tape_value = builder.load(location) # check tape value is_zero = builder.icmp_unsigned("==", tape_value, zero8) # We'll now create *another* block, but we won't terminate the # "preloop" block until later. This is because we need a reference # to both the "body" and the "postloop" block to know where to # jump. body = builder.append_basic_block(name="body") builder.position_at_start(body) for inner_instruction in instruction: compile_instruction(inner_instruction) builder.branch(preloop) postloop = builder.append_basic_block(name="postloop") builder.position_at_end(preloop) builder.cbranch(is_zero, postloop, body) builder.position_at_start(postloop) elif instruction == "+" or instruction == "-": location = get_tape_location() value = builder.load(location) if instruction == "+": new_value = builder.add(value, one8) else: new_value = builder.sub(value, one8) builder.store(new_value, location) elif instruction == ">" or instruction == "<": index_value = builder.load(index) if instruction == ">": index_value = builder.add(index_value, index_type(1)) else: index_value = builder.sub(index_value, index_type(1)) builder.store(index_value, index) elif instruction == ".": location = get_tape_location() tape_value = builder.load(location) tape_value = builder.zext(tape_value, int32) builder.call(putchar, (tape_value,)) elif instruction == ",": location = get_tape_location() char = builder.call(getchar, ()) is_eof = builder.icmp_unsigned("==", char, eof) with builder.if_else(is_eof) as (then, otherwise): with then: builder.store(zero8, location) with otherwise: char = builder.trunc(char, tape_type) builder.store(char, location) for instruction in ast: compile_instruction(instruction) builder.ret(int32(0)) return module # courtesy of the llvmlite docs def create_execution_engine(): """ Create an ExecutionEngine suitable for JIT code generation on the host CPU. The engine is reusable for an arbitrary number of modules. """ # Create a target machine representing the host target = llvm.Target.from_default_triple() target_machine = target.create_target_machine() # And an execution engine with an empty backing module backing_mod = llvm.parse_assembly("") engine = llvm.create_mcjit_compiler(backing_mod, target_machine) return engine def main(): argp = argparse.ArgumentParser() argp.add_argument("filename", help="The brainfuck code file.") argp.add_argument("-i", "--ir", action="store_true", help="Print out the human-readable LLVM IR to stderr") argp.add_argument('-r', '--run', action="store_true", help="Run the brainfuck code with McJIT.") argp.add_argument('-c', '--bitcode', action="store_true", help="Emit a bitcode file.") argp.add_argument('-o', '--optimize', action="store_true", help="Optimize the bitcode.") argv = argp.parse_args() llvm.initialize() llvm.initialize_native_target() llvm.initialize_native_asmprinter() with open(argv.filename) as bf_file: ir_module = bf_to_ir(bf_file.read()) basename = os.path.basename(argv.filename) basename = os.path.splitext(basename)[0] if argv.ir: with open(basename + ".ll", "w") as f: f.write(str(ir_module)) print("Wrote IR to", basename + ".ll") binding_module = llvm.parse_assembly(str(ir_module)) binding_module.verify() if argv.optimize: # TODO: We should define our own pass order. llvm.ModulePassManager().run(binding_module) if argv.bitcode: bitcode = binding_module.as_bitcode() with open(basename + ".bc", "wb") as output_file: output_file.write(bitcode) print("Wrote bitcode to", basename + ".bc") if argv.run: with create_execution_engine() as engine: engine.add_module(binding_module) engine.finalize_object() engine.run_static_constructors() func_ptr = engine.get_function_address("main") asm_main = ctypes.CFUNCTYPE(ctypes.c_int)(func_ptr) result = asm_main() sys.exit(result) if __name__ == "__main__": main()
31.2
79
0.610475
0
0
0
0
0
0
0
0
1,429
0.194899
9afad36409d9c59fa007a59c5630a3d8610a0ebd
4,715
py
Python
dapbench/record_dap.py
cedadev/dapbench
e722c52f1d38d0ea008e177a1d68adff0a5daecc
[ "BSD-3-Clause-Clear" ]
null
null
null
dapbench/record_dap.py
cedadev/dapbench
e722c52f1d38d0ea008e177a1d68adff0a5daecc
[ "BSD-3-Clause-Clear" ]
null
null
null
dapbench/record_dap.py
cedadev/dapbench
e722c52f1d38d0ea008e177a1d68adff0a5daecc
[ "BSD-3-Clause-Clear" ]
1
2019-08-05T20:01:23.000Z
2019-08-05T20:01:23.000Z
#!/usr/bin/env python # BSD Licence # Copyright (c) 2011, Science & Technology Facilities Council (STFC) # All rights reserved. # # See the LICENSE file in the source distribution of this software for # the full license text. """ Execute a programme that makes NetCDF-API OPeNDAP calls, capturing request events and timings. This script uses 2 methods of capturing OPeNDAP requests: 1. It assumes CURL.VERBOSE=1 in ~/.dodsrc 2. It runns the command through "strace" to capture request timings The result is a dapbench.dap_stats.DapStats object containing all OPeNDAP requests made. WARNING: It is possible to fool record_dap if the wrapped script writes to stderr lines begining "* Connected to" or "> GET" """ import tempfile import os, sys from subprocess import Popen, PIPE import re import urllib from dapbench.dap_request import DapRequest from dapbench.dap_stats import DapStats, SingleTimestampRecorder, echofilter_to_stats import logging log = logging.getLogger(__name__) TMP_PREFIX='record_dap-' DODSRC = '.dodsrc' class Wrapper(object): def __init__(self, tmpdir=None): if tmpdir is None: tmpdir = tempfile.mkdtemp(prefix=TMP_PREFIX) self.tmpdir = tmpdir def check_dodsrc(self): try: rcpath = os.path.join(os.environ['HOME'], DODSRC) assert os.path.exists(rcpath) rcdata = open(rcpath).read() mo = re.search(r'^\s*CURL.VERBOSE\s*=\s*1', rcdata, re.M) assert mo log.debug('CURL.VERBOSE=1 confirmed') except AssertionError: raise Exception("~/.dodsrc doesn't have CURL.VERBOSE defined") def call(self, command): self.check_dodsrc() os.chdir(self.tmpdir) cmd = 'strace -ttt -f -e trace=network %s' % command log.info('Executing traced command: %s' % command) log.debug('Full command: %s' % cmd) pipe = Popen(cmd, shell=True, stderr=PIPE).stderr recorder = SingleTimestampRecorder(self.iter_requests(pipe)) return recorder.stats def iter_requests(self, pipe): timestamp = None host = 'unknown' for line in pipe: mo = re.match('\* Connected to ([^\s]+)', line) if mo: host = mo.group(1) log.info('New Connection: %s' % host) elif re.match('> GET ', line): #!TODO: handle other stderr output from wrapped tool req = urllib.unquote(line.strip()[2:]) request = DapRequest.from_get(host, req) log.info('Request: %s %s' % (timestamp, request)) assert timestamp is not None yield (timestamp, request) timestamp = None else: mo = re.match('(?:\[pid\s*(\d+)\])?\s*(\d+\.\d+)\s+(send|recv)', line) if mo: pid, timestamp, syscall = mo.groups() timestamp = float(timestamp) #!TODO: track pids # Mark terminal event log.info('End: %s' % timestamp) yield (timestamp, None) def make_parser(): import optparse usage = "%prog [options] [--] command" parser = optparse.OptionParser(usage=usage) parser.add_option('-s', '--stats', action="store", help="Store stats in the pickle file STATS") parser.add_option('-d', '--dir', action='store', default='.', help="Execute in directory DIR") parser.add_option('-l', '--loglevel', action='store', default='INFO', help="Set logging level") parser.add_option('-p', '--proxy', action="store", metavar='PROXY_OUTPUT', help="Record via grinder TCPProxy output file PROXY_OUTPUT. Command is ignored") return parser def record_curl(opts, args): if not args: parser.error("No command specified") w = Wrapper(opts.dir) command = ' '.join(args) stats = w.call(command) return stats def record_proxy(opts, args): echofile = open(opts.proxy) return echofilter_to_stats(echofile) def main(argv=sys.argv): import pickle parser = make_parser() opts, args = parser.parse_args() loglevel = getattr(logging, opts.loglevel) logging.basicConfig(level=loglevel) if opts.proxy: stats = record_proxy(opts, args) else: stats = record_curl(opts, args) stats.print_summary() if opts.stats: statfile = open(opts.stats, 'w') pickle.dump(stats, statfile) statfile.close() if __name__ == '__main__': main()
30.419355
103
0.599152
2,111
0.44772
1,078
0.228632
0
0
0
0
1,486
0.315164