hexsha
stringlengths
40
40
size
int64
5
2.06M
ext
stringclasses
10 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
3
248
max_stars_repo_name
stringlengths
5
125
max_stars_repo_head_hexsha
stringlengths
40
78
max_stars_repo_licenses
listlengths
1
10
max_stars_count
int64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
3
248
max_issues_repo_name
stringlengths
5
125
max_issues_repo_head_hexsha
stringlengths
40
78
max_issues_repo_licenses
listlengths
1
10
max_issues_count
int64
1
67k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
3
248
max_forks_repo_name
stringlengths
5
125
max_forks_repo_head_hexsha
stringlengths
40
78
max_forks_repo_licenses
listlengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
5
2.06M
avg_line_length
float64
1
1.02M
max_line_length
int64
3
1.03M
alphanum_fraction
float64
0
1
count_classes
int64
0
1.6M
score_classes
float64
0
1
count_generators
int64
0
651k
score_generators
float64
0
1
count_decorators
int64
0
990k
score_decorators
float64
0
1
count_async_functions
int64
0
235k
score_async_functions
float64
0
1
count_documentation
int64
0
1.04M
score_documentation
float64
0
1
3dd1773f50f2af84354e0431bf0e4276687f173e
3,401
py
Python
Server/Python/src/dbs/dao/Oracle/MigrationBlock/Update.py
vkuznet/DBS
14df8bbe8ee8f874fe423399b18afef911fe78c7
[ "Apache-2.0" ]
8
2015-08-14T04:01:32.000Z
2021-06-03T00:56:42.000Z
Server/Python/src/dbs/dao/Oracle/MigrationBlock/Update.py
yuyiguo/DBS
14df8bbe8ee8f874fe423399b18afef911fe78c7
[ "Apache-2.0" ]
162
2015-01-07T21:34:47.000Z
2021-10-13T09:42:41.000Z
Server/Python/src/dbs/dao/Oracle/MigrationBlock/Update.py
yuyiguo/DBS
14df8bbe8ee8f874fe423399b18afef911fe78c7
[ "Apache-2.0" ]
16
2015-01-22T15:27:29.000Z
2021-04-28T09:23:28.000Z
#!/usr/bin/env python """ This module provides Migration.Update data access object. """ from WMCore.Database.DBFormatter import DBFormatter from dbs.utils.dbsExceptionHandler import dbsExceptionHandler from dbs.utils.DBSDaoTools import create_token_generator class Update(DBFormatter): """ Migration Update DAO class. migration_status: 0=PENDING 1=IN PROGRESS 2=COMPLETED 3=FAILED (will be retried) 9=Terminally FAILED status change: 0 -> 1 1 -> 2 1 -> 3 1 -> 9 are only allowed changes for working through. 3 -> 1 allowed for retrying when retry_count <3. """ def __init__(self, logger, dbi, owner): """ Add schema owner and sql. """ DBFormatter.__init__(self, logger, dbi) self.owner = "%s." % owner if not owner in ("", "__MYSQL__") else "" self.logger = logger self.sql = \ """UPDATE %sMIGRATION_BLOCKS SET MIGRATION_STATUS=:migration_status , LAST_MODIFICATION_DATE=:last_modification_date WHERE """ % self.owner def execute(self, conn, daoinput, transaction = False): """ daoinput keys: migration_status, migration_block_id, migration_request_id """ #print daoinput['migration_block_id'] if not conn: dbsExceptionHandler("dbsException-failed-connect2host", "Oracle/MigrationBlock/Update. Expects db connection from upper layer." ,self.logger.exception) if daoinput['migration_status'] == 1: sql = self.sql + " (MIGRATION_STATUS = 0 or MIGRATION_STATUS = 3)" elif daoinput['migration_status'] == 2 or daoinput['migration_status'] == 3 or daoinput['migration_status'] == 9: sql = self.sql + " MIGRATION_STATUS = 1 " else: dbsExceptionHandler("dbsException-conflict-data", "Oracle/MigrationBlock/Update. Expected migration status to be 1, 2, 3, 0r 9" ,self.logger.exception ) #print sql if 'migration_request_id' in daoinput: sql3 = sql + "and MIGRATION_REQUEST_ID =:migration_request_id" result = self.dbi.processData(sql3, daoinput, conn, transaction) elif 'migration_block_id' in daoinput: if type(daoinput['migration_block_id']) is not list: sql2 = sql+ " and MIGRATION_BLOCK_ID =:migration_block_id" result = self.dbi.processData(sql2, daoinput, conn, transaction) else: bk_id_generator, binds2 = create_token_generator(daoinput['migration_block_id']) newdaoinput = {} newdaoinput.update({"migration_status":daoinput["migration_status"], "last_modification_date":daoinput["last_modification_date"]}) newdaoinput.update(binds2) sql2 = sql+ """ and MIGRATION_BLOCK_ID in ({bk_id_generator} SELECT TOKEN FROM TOKEN_GENERATOR) """.format(bk_id_generator=bk_id_generator) result = self.dbi.processData(sql2, newdaoinput, conn, transaction) else: dbsExceptionHandler("dbsException-conflict-data", "Oracle/MigrationBlock/Update. Required IDs not in the input", self.logger.exception)
46.589041
165
0.614231
3,140
0.923258
0
0
0
0
0
0
1,754
0.515731
3dd18ca1ce7d02c28f4d50d91ff399eaea978a1f
3,636
py
Python
cldfbench_lapollaqiang.py
cldf-datasets/lapollaqiang
40bcba31a65b675a15d2dcac5fae7901619162fc
[ "CC-BY-4.0" ]
null
null
null
cldfbench_lapollaqiang.py
cldf-datasets/lapollaqiang
40bcba31a65b675a15d2dcac5fae7901619162fc
[ "CC-BY-4.0" ]
2
2020-04-18T10:57:21.000Z
2020-04-18T12:16:03.000Z
cldfbench_lapollaqiang.py
cldf-datasets/lapollaqiang
40bcba31a65b675a15d2dcac5fae7901619162fc
[ "CC-BY-4.0" ]
null
null
null
import re import pathlib from clldutils.text import strip_chars from cldfbench import Dataset as BaseDataset from cldfbench import CLDFSpec QUOTES = '“”' class Dataset(BaseDataset): dir = pathlib.Path(__file__).parent id = "lapollaqiang" def cldf_specs(self): # A dataset must declare all CLDF sets it creates. return CLDFSpec(dir=self.cldf_dir, module='Generic', metadata_fname='cldf-metadata.json') def cmd_download(self, args): pass def cmd_makecldf(self, args): args.writer.cldf.add_component('LanguageTable') args.writer.cldf.add_component( 'ExampleTable', 'Text_ID', {'name': 'Sentence_Number', 'datatype': 'integer'}, {'name': 'Phrase_Number', 'datatype': 'integer'}, ) args.writer.cldf.add_table('texts.csv', 'ID', 'Title') args.writer.cldf.add_foreign_key('ExampleTable', 'Text_ID', 'texts.csv', 'ID') args.writer.objects['LanguageTable'].append({'ID': 'qiang', 'Name': 'Qiang', 'Glottocode': 'west2876'}) example_number = 0 for text_id, title, lines in iter_texts(self.raw_dir.read('Qiang-2.txt').split('\n')): args.writer.objects['texts.csv'].append({'ID': text_id, 'Title': title}) text, gloss = [], [] for igt in iter_igts(lines): text.extend(igt[1]) gloss.extend(igt[2]) for sid, sentence in enumerate(iter_sentences(zip(text, gloss)), start=1): for pid, phrase in enumerate(iter_phrases(sentence), start=1): example_number += 1 args.writer.objects['ExampleTable'].append({ 'ID': example_number, 'Primary_Text': ' '.join(p[0] for p in phrase), 'Analyzed_Word': [p[0] for p in phrase], 'Gloss': [p[1] for p in phrase], 'Text_ID': text_id, 'Language_ID': 'qiang', 'Sentence_Number': sid, 'Phrase_Number': pid, }) def iter_phrases(chunks): phrase_end = ',;' phrase = [] for text, gloss in chunks: phrase.append((text, gloss)) if strip_chars(QUOTES, text)[-1] in phrase_end: yield phrase[:] phrase = [] assert phrase yield phrase def iter_sentences(chunks): sentence_end = '.!?' sentence = [] for text, gloss in chunks: sentence.append((text, gloss)) if strip_chars(QUOTES, text)[-1] in sentence_end: yield sentence[:] sentence = [] assert not sentence def iter_igts(lines): assert len(lines) % 3 == 0 for text, gloss, sep in [lines[i:i+3] for i in range(0, len(lines), 3)]: assert not sep m = re.match('(?P<number>[0-9]+)\s+', text) assert m sid = m.group('number') text = text[m.end():].split() gloss = gloss.split() assert len(text) == len(gloss) yield sid, text, gloss def iter_texts(all_lines): header_pattern = re.compile('Text\s+(?P<number>[0-9]+)\s*:\s+(?P<title>.+)') text_id, title, lines = None, None, [] for line in all_lines: line = line.strip() header = header_pattern.match(line) if header: if text_id: yield text_id, title, lines lines = [] text_id, title = header.group('number'), header.group('title') continue lines.append(line) if lines: yield text_id, title, lines
33.054545
97
0.55033
1,984
0.545055
1,481
0.406868
0
0
0
0
601
0.16511
3dd25490c9540bd331008a56be6c0ffa65b4b3b0
1,752
py
Python
simple-zero-width-chars-encoder-and-decoder/encoder.py
MihaiAC/Other-Projects
2ce3b4dbc0edf79124fee929c63a698efbbbf123
[ "MIT" ]
null
null
null
simple-zero-width-chars-encoder-and-decoder/encoder.py
MihaiAC/Other-Projects
2ce3b4dbc0edf79124fee929c63a698efbbbf123
[ "MIT" ]
null
null
null
simple-zero-width-chars-encoder-and-decoder/encoder.py
MihaiAC/Other-Projects
2ce3b4dbc0edf79124fee929c63a698efbbbf123
[ "MIT" ]
null
null
null
import sys import os def convert_word_to_zero_length_list(word): ls = [] # Convert each character into a zero-width sequence and save them into ls. for char in word: # Convert char to binary. binary_char = bin(ord(char)) binary_char_strip = binary_char[2:] # A zero-width sequence will begin with a zero-width joiner. accumulator = u"\u200D" for digit in binary_char_strip: # Zeros are encoded with zero-width spaces. if(digit == '0'): accumulator += u"\u200B" # Ones are encoded with zero-width non-joiners. else: accumulator += u"\u200C" accumulator += u"\u200D" ls.append(accumulator) return ls args = sys.argv from_file_path = args[1] to_file_path = args[2] word_to_hide = args[3] if(os.path.isfile(from_file_path) and len(word_to_hide) > 0): # Read input from file. f = open(from_file_path,'r') content = f.read() f.close() # Encode the word. ls = convert_word_to_zero_length_list(word_to_hide) # Preamble for iteration. step = int(len(content)/len(ls)) offset = 0 content = unicode(content) # Save each zero-width sequence corresponding to a character to a specific place in the input. # We can be smarter and save them semi-randomly but we'll keep it simple. for ii in range(len(ls)): index = ii * step + offset content = content[:index] + ls[ii] + content[index:] offset += len(ls[ii]) # Overwrite old file with modified input. f = open(to_file_path,'w') f.write(content.encode('utf-8')) f.close() else: print('File could not be found or length of word to hide is 0.')
30.206897
98
0.622717
0
0
0
0
0
0
0
0
632
0.360731
3dd2a3424b490a95eadbcb0285fa8becc7dbdcc5
280
py
Python
setup.py
lambdaofgod/HOTT
74ec33dae7ba9f9d382384c6bd2c97b5557f6eea
[ "MIT" ]
null
null
null
setup.py
lambdaofgod/HOTT
74ec33dae7ba9f9d382384c6bd2c97b5557f6eea
[ "MIT" ]
null
null
null
setup.py
lambdaofgod/HOTT
74ec33dae7ba9f9d382384c6bd2c97b5557f6eea
[ "MIT" ]
null
null
null
from setuptools import setup, find_packages with open('requirements.txt') as f: requirements = f.read().splitlines() setup( name='HOTT', version='0.1', url='https://github.com/lambdaofgod/HOTT', packages=find_packages(), install_requires=requirements )
20
46
0.692857
0
0
0
0
0
0
0
0
66
0.235714
3dd4772c1009f05a2da5ab89f95cb164ef80a08f
736
py
Python
setup.py
mdmix4/pymdmix-run
2c3fdeca39f02429ab0040491e2ad016de210795
[ "MIT" ]
null
null
null
setup.py
mdmix4/pymdmix-run
2c3fdeca39f02429ab0040491e2ad016de210795
[ "MIT" ]
null
null
null
setup.py
mdmix4/pymdmix-run
2c3fdeca39f02429ab0040491e2ad016de210795
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 from setuptools import setup def getRequirements(): requirements = [] with open("requirements.txt", "r") as reqfile: for line in reqfile.readlines(): requirements.append(line.strip()) return requirements def getVersion(): return "0.0.2" setup( python_requires=">=3.8", name="pymdmix-run", version=getVersion(), license="MIT", description="pymdmix plugin for command interpreter", author="ggutierrez-bio", author_email="", url="https://github.com/ggutierrez-bio/mdmix4/pymdmix-run", packages=["pymdmix_run"], install_requires=getRequirements(), classifiers=['Development Status :: 3 - Alpha'], scripts=["bin/mdmix-run"], )
23
63
0.65625
0
0
0
0
0
0
0
0
248
0.336957
3dd4a8f967bc41b59fc8f2382ab1f0506c71e247
4,340
py
Python
aether/forum/forms.py
katajakasa/aetherguild4
a7e294f0cff11e2508751f1013e6648fdc56bb94
[ "MIT" ]
null
null
null
aether/forum/forms.py
katajakasa/aetherguild4
a7e294f0cff11e2508751f1013e6648fdc56bb94
[ "MIT" ]
1
2021-06-10T17:36:11.000Z
2021-06-10T17:36:11.000Z
aether/forum/forms.py
katajakasa/aetherguild4
a7e294f0cff11e2508751f1013e6648fdc56bb94
[ "MIT" ]
null
null
null
from django.forms import Form, ModelForm, CharField, Textarea from django.db import transaction from django.utils.translation import gettext_lazy as _ from crispy_forms.helper import FormHelper from crispy_forms.layout import Submit from .models import ForumPost, ForumThread, ForumBoard, ForumPostEdit class NewThreadForm(ModelForm): title = CharField(label=_("Thread title"), max_length=128, required=True) def __init__(self, *args, **kwargs): self.user = kwargs.pop('user') self.board = kwargs.pop('board') super(NewThreadForm, self).__init__(*args, **kwargs) # Only allow attaching galleries for staff self.fields['attached_gallery'].required = False if not self.user.is_staff: del self.fields['attached_gallery'] self.fields['message'].widget.attrs['class'] = 'bbcode_field' self.helper = FormHelper() self.helper.add_input(Submit('submit', _('Post'))) @transaction.atomic def save(self, commit=True): thread = ForumThread( board=self.board, user=self.user, title=self.cleaned_data['title'] ) if commit: thread.save() post = super(NewThreadForm, self).save(commit=False) post.thread = thread post.user = self.user if commit: post.save() return post class Meta: model = ForumPost fields = ('title', 'message', 'attached_gallery') class NewMessageForm(ModelForm): def __init__(self, *args, **kwargs): self.user = kwargs.pop('user') self.thread = kwargs.pop('thread') super(NewMessageForm, self).__init__(*args, **kwargs) # Only allow attaching galleries for staff self.fields['attached_gallery'].required = False if not self.user.is_staff: del self.fields['attached_gallery'] self.fields['message'].widget.attrs['class'] = 'bbcode_field' self.helper = FormHelper() self.helper.add_input(Submit('submit', _('Post'))) @transaction.atomic def save(self, commit=True): self.thread.set_modified() post = super(NewMessageForm, self).save(commit=False) post.user = self.user post.thread = self.thread if commit: post.save() return post class Meta: model = ForumPost fields = ('message', 'attached_gallery') class MoveThreadForm(ModelForm): def __init__(self, *args, **kwargs): super(MoveThreadForm, self).__init__(*args, **kwargs) self.fields['board'].queryset = ForumBoard.objects.filter(deleted=False)\ .order_by('section__sort_index', 'sort_index') self.helper = FormHelper() self.helper.add_input(Submit('submit', _('Post'))) class Meta: model = ForumThread fields = ('board', ) class EditMessageForm(ModelForm): title = CharField(label=_("Thread title"), max_length=128, required=True) edit_note = CharField(label=_("Edit note"), max_length=255, required=False) def __init__(self, *args, **kwargs): self.user = kwargs.pop('user') super(EditMessageForm, self).__init__(*args, **kwargs) if self.instance.is_first: self.fields['title'].initial = self.instance.thread.title else: del self.fields['title'] # Only allow attaching galleries for staff self.fields['attached_gallery'].required = False if not self.user.is_staff: del self.fields['attached_gallery'] self.fields['message'].widget.attrs['class'] = 'bbcode_field' self.helper = FormHelper() self.helper.add_input(Submit('submit', _('Post'))) def save(self, commit=True): post = super(EditMessageForm, self).save(commit) if self.instance.is_first: self.instance.thread.title = self.cleaned_data['title'] if commit: self.instance.thread.save() edit = ForumPostEdit( post=post, message=self.cleaned_data['edit_note'], editor=self.user.profile.alias ) if commit: edit.save() return post, edit class Meta: model = ForumPost fields = ('title', 'message', 'edit_note', 'attached_gallery')
32.631579
81
0.621429
4,024
0.927189
0
0
700
0.16129
0
0
644
0.148387
3dd4b115a1efae712e7d58d8046528f7acbf782b
1,467
py
Python
for_straight_forward_relion/read_star_del_metadata_param.py
homurachan/Block-based-recontruction
b3fc02a0648db6aaa5d77dcc4b8e10f3361d66f4
[ "WTFPL" ]
11
2018-04-17T01:41:11.000Z
2020-12-11T05:43:21.000Z
for_straight_forward_relion/read_star_del_metadata_param.py
homurachan/Block-based-recontruction
b3fc02a0648db6aaa5d77dcc4b8e10f3361d66f4
[ "WTFPL" ]
null
null
null
for_straight_forward_relion/read_star_del_metadata_param.py
homurachan/Block-based-recontruction
b3fc02a0648db6aaa5d77dcc4b8e10f3361d66f4
[ "WTFPL" ]
3
2019-08-23T07:48:50.000Z
2020-12-08T07:31:41.000Z
#!/usr/bin/env python import math,os,sys try: from optparse import OptionParser except: from optik import OptionParser def main(): (star,mline,line_name,output) = parse_command_line() aa=open(star,"r") instar_line=aa.readlines() out=open(output,"w") for i in range(0,mline): if (instar_line[i].split()): if (str(instar_line[i].split()[0])==line_name): line_index=int(instar_line[i].split('#')[1])-1 skip=i for i in range(0,mline): if(i<skip): out.write(instar_line[i]) if(i>skip): tmp=str(instar_line[i].split('#')[0]) tmp_num=int(instar_line[i].split('#')[1]) tmp_num-=1 tmp=tmp+"#"+str(tmp_num) out.write(tmp+"\n") for i in range(mline,len(instar_line)): if (instar_line[i].split()): tmp="" xx=len(instar_line[i].split()) for j in range(0,xx): if(j!=line_index): tmp+=str(instar_line[i].split()[j]) if(j!=xx-1 and j!=line_index): tmp+="\t" if(j==xx-1): tmp+="\n" out.write(tmp) out.close() aa.close() def parse_command_line(): usage="%prog <input star> <mline +4> <line name> <output>" parser = OptionParser(usage=usage, version="%1") if len(sys.argv)<5: print "<input star> <mline +4> <line name> <output>" sys.exit(-1) (options, args)=parser.parse_args() star = str(args[0]) mline=int(args[1]) line_name=str(args[2]) output=str(args[3]) return (star,mline,line_name,output) def SQR(x): y=float(x) return(y*y) if __name__== "__main__": main()
22.227273
59
0.632584
0
0
0
0
0
0
0
0
165
0.112474
3dd4c39c91d920a780223d1076fe94897deaabd0
2,639
py
Python
python/GafferUI/ProgressBar.py
cwmartin/gaffer
1f8a0f75522105c9d5efefac6d55cb61c1038909
[ "BSD-3-Clause" ]
null
null
null
python/GafferUI/ProgressBar.py
cwmartin/gaffer
1f8a0f75522105c9d5efefac6d55cb61c1038909
[ "BSD-3-Clause" ]
null
null
null
python/GafferUI/ProgressBar.py
cwmartin/gaffer
1f8a0f75522105c9d5efefac6d55cb61c1038909
[ "BSD-3-Clause" ]
null
null
null
########################################################################## # # Copyright (c) 2011-2012, Image Engine Design Inc. All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are # met: # # * Redistributions of source code must retain the above # copyright notice, this list of conditions and the following # disclaimer. # # * Redistributions in binary form must reproduce the above # copyright notice, this list of conditions and the following # disclaimer in the documentation and/or other materials provided with # the distribution. # # * Neither the name of John Haddon nor the names of # any other contributors to this software may be used to endorse or # promote products derived from this software without specific prior # written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS # IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, # THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR # PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR # CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, # EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, # PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR # PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF # LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING # NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS # SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ########################################################################## import IECore import GafferUI QtGui = GafferUI._qtImport( "QtGui" ) class ProgressBar( GafferUI.Widget ) : def __init__( self, progress = 0, range = ( 0, 100 ), text = "%p%", **kw ) : GafferUI.Widget.__init__( self, QtGui.QProgressBar(), **kw ) self._qtWidget().setRange( range[0], range[1] ) self.setRange( range ) self.setProgress( progress ) self.setText( text ) def setRange( self, range ) : self._qtWidget().setRange( range[0], range[1] ) def getRange( self ) : return ( self._qtWidget().minimum(), self._qtWidget().maximum() ) def setProgress( self, progress ) : self._qtWidget().setValue( progress ) def getProgress( self ) : return self._qtWidget().value() def setText( self, text ) : self._qtWidget().setFormat( text ) def getText( self ) : return self._qtWidget().format()
33.833333
77
0.675256
759
0.287609
0
0
0
0
0
0
1,784
0.676014
3dd4de6bb7f825300faccd73e718c78bb7dd3d78
18,444
py
Python
minihack/agent/rllib/models.py
samvelyan/minihack-1
441eba33ba0d240b98aeabe1ff7a0c0b33cd236c
[ "Apache-2.0" ]
1
2021-11-19T01:51:38.000Z
2021-11-19T01:51:38.000Z
minihack/agent/rllib/models.py
samvelyan/minihack-1
441eba33ba0d240b98aeabe1ff7a0c0b33cd236c
[ "Apache-2.0" ]
null
null
null
minihack/agent/rllib/models.py
samvelyan/minihack-1
441eba33ba0d240b98aeabe1ff7a0c0b33cd236c
[ "Apache-2.0" ]
1
2021-11-17T15:45:02.000Z
2021-11-17T15:45:02.000Z
# Copyright (c) Facebook, Inc. and its affiliates. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import collections from typing import Any, Dict, Optional, Tuple import gym import torch from nle import nethack from minihack.agent.common.models.embed import GlyphEmbedding from minihack.agent.common.models.transformer import TransformerEncoder from omegaconf import DictConfig from ray.rllib.models import ModelCatalog from ray.rllib.models.torch.torch_modelv2 import TorchModelV2 from ray.rllib.utils.annotations import override from torch import nn from torch.nn import functional as F NUM_GLYPHS = nethack.MAX_GLYPH NUM_FEATURES = nethack.BLSTATS_SHAPE[0] PAD_CHAR = 0 NUM_CHARS = 128 class RLLibGlyphEmbedding(GlyphEmbedding): def glyphs_to_idgroup(self, glyphs): B, H, W = glyphs.shape ids_groups = self.id_pairs_table.index_select( 0, glyphs.contiguous().view(-1).long() ) ids = ids_groups.select(1, 0).view(B, H, W).long() groups = ids_groups.select(1, 1).view(B, H, W).long() return (ids, groups) def prepare_input(self, inputs): """Take the inputs to the network as dictionary and return a namedtuple of the input/index tensors to be embedded (GlyphTuple)""" embeddable_data = {} # Only flatten the data we want for key, value in inputs.items(): if key in self.embeddings: # -- [ B x ...] -> [ B' x ... ] # embeddable_data[key] = torch.flatten(value, 0, 1).long() embeddable_data[key] = value.long() # add our group id and subgroup id if we want them if self.requires_id_pairs_table: ids, groups = self.glyphs_to_idgroup(inputs["glyphs"]) embeddable_data["groups"] = groups embeddable_data["subgroup_ids"] = ids # convert embeddable_data to a named tuple return self.GlyphTuple(**embeddable_data) class NetHackNet(nn.Module): AgentOutput = collections.namedtuple( "AgentOutput", "action policy_logits baseline chosen_option teacher_logits pot_sm", ) def __init__(self): super(NetHackNet, self).__init__() self.register_buffer("reward_sum", torch.zeros(())) self.register_buffer("reward_m2", torch.zeros(())) self.register_buffer("reward_count", torch.zeros(()).fill_(1e-8)) def forward(self, inputs, core_state): raise NotImplementedError def initial_state(self, batch_size=1): return () def prepare_input(self, inputs): # -- [B x H x W] glyphs = inputs["glyphs"] # -- [B x F] features = inputs["blstats"] B, *_ = glyphs.shape return glyphs, features def embed_state(self, inputs): raise NotImplementedError @torch.no_grad() def update_running_moments(self, reward_batch): """Maintains a running mean of reward.""" new_count = len(reward_batch) new_sum = torch.sum(reward_batch) new_mean = new_sum / new_count curr_mean = self.reward_sum / self.reward_count new_m2 = torch.sum((reward_batch - new_mean) ** 2) + ( (self.reward_count * new_count) / (self.reward_count + new_count) * (new_mean - curr_mean) ** 2 ) self.reward_count += new_count self.reward_sum += new_sum self.reward_m2 += new_m2 @torch.no_grad() def get_running_std(self): """Returns standard deviation of the running mean of the reward.""" return torch.sqrt(self.reward_m2 / self.reward_count) class Crop(nn.Module): def __init__(self, height, width, height_target, width_target): super(Crop, self).__init__() self.width = width self.height = height self.width_target = width_target self.height_target = height_target width_grid = self._step_to_range( 2 / (self.width - 1), self.width_target )[None, :].expand(self.height_target, -1) height_grid = self._step_to_range( 2 / (self.height - 1), height_target )[:, None].expand(-1, self.width_target) # "clone" necessary, https://github.com/pytorch/pytorch/issues/34880 self.register_buffer("width_grid", width_grid.clone()) self.register_buffer("height_grid", height_grid.clone()) def _step_to_range(self, step, num_steps): return torch.tensor( [step * (i - num_steps // 2) for i in range(num_steps)] ) def forward(self, inputs, coordinates): """Calculates centered crop around given x,y coordinates. Args: inputs [B x H x W] or [B x H x W x C] coordinates [B x 2] x,y coordinates Returns: [B x H' x W'] inputs cropped and centered around x,y coordinates. """ assert inputs.shape[1] == self.height, "expected %d but found %d" % ( self.height, inputs.shape[1], ) assert inputs.shape[2] == self.width, "expected %d but found %d" % ( self.width, inputs.shape[2], ) permute_results = False if inputs.dim() == 3: inputs = inputs.unsqueeze(1) else: permute_results = True inputs = inputs.permute(0, 2, 3, 1) inputs = inputs.float() x = coordinates[:, 0] y = coordinates[:, 1] x_shift = 2 / (self.width - 1) * (x.float() - self.width // 2) y_shift = 2 / (self.height - 1) * (y.float() - self.height // 2) grid = torch.stack( [ self.width_grid[None, :, :] + x_shift[:, None, None], self.height_grid[None, :, :] + y_shift[:, None, None], ], dim=3, ) crop = ( torch.round(F.grid_sample(inputs, grid, align_corners=True)) .squeeze(1) .long() ) if permute_results: # [B x C x H x W] -> [B x H x W x C] crop = crop.permute(0, 2, 3, 1) return crop class Flatten(nn.Module): def forward(self, input): return input.view(input.size(0), -1) class BaseNet(NetHackNet): def __init__(self, processed_observation_shape, flags: DictConfig): super(BaseNet, self).__init__() self.observation_space = processed_observation_shape.original_space self.H = self.observation_space["glyphs"].shape[0] self.W = self.observation_space["glyphs"].shape[1] self.k_dim = flags.embedding_dim self.h_dim = flags.hidden_dim self.crop_model = flags.crop_model self.crop_dim = flags.crop_dim self.num_features = NUM_FEATURES self.crop = Crop(self.H, self.W, self.crop_dim, self.crop_dim) self.glyph_type = flags.glyph_type self.glyph_embedding = RLLibGlyphEmbedding( flags.glyph_type, flags.embedding_dim, None, flags.use_index_select, ) K = flags.embedding_dim # number of input filters F = 3 # filter dimensions S = 1 # stride P = 1 # padding M = 16 # number of intermediate filters self.Y = 8 # number of output filters L = flags.layers # number of convnet layers in_channels = [K] + [M] * (L - 1) out_channels = [M] * (L - 1) + [self.Y] def interleave(xs, ys): return [val for pair in zip(xs, ys) for val in pair] conv_extract = [ nn.Conv2d( in_channels=in_channels[i], out_channels=out_channels[i], kernel_size=(F, F), stride=S, padding=P, ) for i in range(L) ] self.extract_representation = nn.Sequential( *interleave(conv_extract, [nn.ELU()] * len(conv_extract)) ) if self.crop_model == "transformer": self.extract_crop_representation = TransformerEncoder( K, N=L, heads=8, height=self.crop_dim, width=self.crop_dim, device=None, ) elif self.crop_model == "cnn": conv_extract_crop = [ nn.Conv2d( in_channels=in_channels[i], out_channels=out_channels[i], kernel_size=(F, F), stride=S, padding=P, ) for i in range(L) ] self.extract_crop_representation = nn.Sequential( *interleave(conv_extract_crop, [nn.ELU()] * len(conv_extract)) ) # MESSAGING MODEL if "msg" not in flags: self.msg_model = "none" else: self.msg_model = flags.msg.model self.msg_hdim = flags.msg.hidden_dim self.msg_edim = flags.msg.embedding_dim if self.msg_model in ("gru", "lstm", "lt_cnn"): # character-based embeddings self.char_lt = nn.Embedding( NUM_CHARS, self.msg_edim, padding_idx=PAD_CHAR ) else: # forward will set up one-hot inputs for the cnn, no lt needed pass if self.msg_model.endswith("cnn"): # from Zhang et al, 2016 # Character-level Convolutional Networks for Text Classification # https://arxiv.org/abs/1509.01626 if self.msg_model == "cnn": # inputs will be one-hot vectors, as done in paper self.conv1 = nn.Conv1d(NUM_CHARS, self.msg_hdim, kernel_size=7) elif self.msg_model == "lt_cnn": # replace one-hot inputs with learned embeddings self.conv1 = nn.Conv1d( self.msg_edim, self.msg_hdim, kernel_size=7 ) else: raise NotImplementedError("msg.model == %s", flags.msg.model) # remaining convolutions, relus, pools, and a small FC network self.conv2_6_fc = nn.Sequential( nn.ReLU(), nn.MaxPool1d(kernel_size=3, stride=3), # conv2 nn.Conv1d(self.msg_hdim, self.msg_hdim, kernel_size=7), nn.ReLU(), nn.MaxPool1d(kernel_size=3, stride=3), # conv3 nn.Conv1d(self.msg_hdim, self.msg_hdim, kernel_size=3), nn.ReLU(), # conv4 nn.Conv1d(self.msg_hdim, self.msg_hdim, kernel_size=3), nn.ReLU(), # conv5 nn.Conv1d(self.msg_hdim, self.msg_hdim, kernel_size=3), nn.ReLU(), # conv6 nn.Conv1d(self.msg_hdim, self.msg_hdim, kernel_size=3), nn.ReLU(), nn.MaxPool1d(kernel_size=3, stride=3), # fc receives -- [ B x h_dim x 5 ] Flatten(), nn.Linear(5 * self.msg_hdim, 2 * self.msg_hdim), nn.ReLU(), nn.Linear(2 * self.msg_hdim, self.msg_hdim), ) # final output -- [ B x h_dim x 5 ] elif self.msg_model in ("gru", "lstm"): def rnn(flag): return nn.LSTM if flag == "lstm" else nn.GRU self.char_rnn = rnn(self.msg_model)( self.msg_edim, self.msg_hdim // 2, batch_first=True, bidirectional=True, ) elif self.msg_model != "none": raise NotImplementedError("msg.model == %s", flags.msg.model) self.embed_features = nn.Sequential( nn.Linear(self.num_features, self.k_dim), nn.ReLU(), nn.Linear(self.k_dim, self.k_dim), nn.ReLU(), ) self.equalize_input_dim = flags.equalize_input_dim if not self.equalize_input_dim: # just added up the output dimensions of the input featurizers # feature / status dim out_dim = self.k_dim # CNN over full glyph map out_dim += self.H * self.W * self.Y if self.crop_model == "transformer": out_dim += self.crop_dim ** 2 * K elif self.crop_model == "cnn": out_dim += self.crop_dim ** 2 * self.Y # messaging model if self.msg_model != "none": out_dim += self.msg_hdim else: # otherwise, project them all to h_dim NUM_INPUTS = 4 if self.msg_model != "none" else 3 project_hdim = flags.equalize_factor * self.h_dim out_dim = project_hdim * NUM_INPUTS # set up linear layers for projections self.project_feature_dim = nn.Linear(self.k_dim, project_hdim) self.project_glyph_dim = nn.Linear( self.H * self.W * self.Y, project_hdim ) c__2 = self.crop_dim ** 2 if self.crop_model == "transformer": self.project_crop_dim = nn.Linear(c__2 * K, project_hdim) elif self.crop_model == "cnn": self.project_crop_dim = nn.Linear(c__2 * self.Y, project_hdim) if self.msg_model != "none": self.project_msg_dim = nn.Linear(self.msg_hdim, project_hdim) self.fc = nn.Sequential( nn.Linear(out_dim, self.h_dim), nn.ReLU(), nn.Linear(self.h_dim, self.h_dim), nn.ReLU(), ) def prepare_input(self, inputs): # -- [B x H x W] B, H, W = inputs["glyphs"].shape # take our chosen glyphs and merge the time and batch glyphs = self.glyph_embedding.prepare_input(inputs) # -- [B x F] features = inputs["blstats"] return glyphs, features def forward(self, inputs): B, *_ = inputs["glyphs"].shape glyphs, features = self.prepare_input(inputs) # -- [B x 2] x,y coordinates coordinates = features[:, :2] # -- [B x K] features_emb = self.embed_features(features) if self.equalize_input_dim: features_emb = self.project_feature_dim(features_emb) assert features_emb.shape[0] == B reps = [features_emb] # either k_dim or project_hdim # -- [B x H' x W'] crop = self.glyph_embedding.GlyphTuple( *[self.crop(g, coordinates) for g in glyphs] ) # -- [B x H' x W' x K] crop_emb = self.glyph_embedding(crop) if self.crop_model == "transformer": # -- [B x W' x H' x K] crop_rep = self.extract_crop_representation(crop_emb, mask=None) elif self.crop_model == "cnn": # -- [B x K x W' x H'] crop_emb = crop_emb.transpose(1, 3) # -- [B x W' x H' x K] crop_rep = self.extract_crop_representation(crop_emb) # -- [B x K'] crop_rep = crop_rep.view(B, -1) if self.equalize_input_dim: crop_rep = self.project_crop_dim(crop_rep) assert crop_rep.shape[0] == B reps.append(crop_rep) # either k_dim or project_hdim # -- [B x H x W x K] glyphs_emb = self.glyph_embedding(glyphs) # glyphs_emb = self.embed(glyphs) # -- [B x K x W x H] glyphs_emb = glyphs_emb.transpose(1, 3) # -- [B x W x H x K] glyphs_rep = self.extract_representation(glyphs_emb) # -- [B x K'] glyphs_rep = glyphs_rep.view(B, -1) # -- [B x K'] if self.equalize_input_dim: glyphs_rep = self.project_glyph_dim(glyphs_rep) assert glyphs_rep.shape[0] == B # -- [B x K''] reps.append(glyphs_rep) # MESSAGING MODEL if self.msg_model != "none": messages = inputs["message"].long() if self.msg_model == "cnn": # convert messages to one-hot, [B x 96 x 256] one_hot = F.one_hot(messages, num_classes=NUM_CHARS).transpose( 1, 2 ) char_rep = self.conv2_6_fc(self.conv1(one_hot.float())) elif self.msg_model == "lt_cnn": # [B x E x 256 ] char_emb = self.char_lt(messages).transpose(1, 2) char_rep = self.conv2_6_fc(self.conv1(char_emb)) else: # lstm, gru char_emb = self.char_lt(messages) output = self.char_rnn(char_emb)[0] fwd_rep = output[:, -1, : self.h_dim // 2] bwd_rep = output[:, 0, self.h_dim // 2 :] char_rep = torch.cat([fwd_rep, bwd_rep], dim=1) if self.equalize_input_dim: char_rep = self.project_msg_dim(char_rep) reps.append(char_rep) st = torch.cat(reps, dim=1) # -- [B x K] st = self.fc(st) return st class RLLibNLENetwork(TorchModelV2, nn.Module): def __init__( self, observation_space: gym.spaces.Space, action_space: gym.spaces.Space, num_outputs: Optional[int], model_config: dict, name: str, **kwargs: Any, ): TorchModelV2.__init__( self, observation_space, action_space, num_outputs, model_config, name, ) nn.Module.__init__(self) flags = model_config["custom_model_config"]["flags"] self.num_outputs = num_outputs or flags.hidden_dim self.base = BaseNet(observation_space, flags) # device is sorted later @override(TorchModelV2) def forward(self, x: Dict[str, Any], *_: Any) -> Tuple[torch.Tensor, list]: return self.base(x["obs"]), [] ModelCatalog.register_custom_model("rllib_nle_model", RLLibNLENetwork)
33.966851
79
0.559803
17,162
0.930492
0
0
934
0.05064
0
0
3,401
0.184396
3dd4f4c9b22e44b3e89f6ae2ccad38e595e93b8d
1,149
py
Python
old/projects/6.884/hybrid_twolinkmanipulator_with_GreedyFeatures.py
ali493/pyro
1245340077a733e2ab35765eae783b358d2f3af9
[ "MIT" ]
null
null
null
old/projects/6.884/hybrid_twolinkmanipulator_with_GreedyFeatures.py
ali493/pyro
1245340077a733e2ab35765eae783b358d2f3af9
[ "MIT" ]
null
null
null
old/projects/6.884/hybrid_twolinkmanipulator_with_GreedyFeatures.py
ali493/pyro
1245340077a733e2ab35765eae783b358d2f3af9
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- """ Created on Wed Mar 23 12:50:34 2016 @author: alex """ from AlexRobotics.dynamic import Manipulator as M from AlexRobotics.dynamic import Hybrid_Manipulator as HM from AlexRobotics.control import DPO_features as DPO import numpy as np # Define dynamic system R = HM.HybridTwoLinkManipulator() R.u_lb = np.array([-5,-5, 0 ]) R.u_ub = np.array([ 5, 5, 3 ]) # Define controller cost_function = 'quadratic' A = DPO.TD_Greedy_hybrid_2DOF_Features( R , cost_function ) A.W = np.array([ 0.2 , 0.2 , 0.4 , 0.02 ]) #A.W = np.array([ 1 , 0 , 0 , 0 ]) A.x0 = np.array([ -3, 1 , 0 , 0 ]) A.max_error = 0.5 A.eps = 0.8 A.alpha = 0.00001 #A.plot_J_hat() A.training( 3 , random = True , show = False ) #A.W = np.array( [ 0.00596714 , 0.05787924 , 0.1246888 , -0.00158788 ] ) #Weight = [ 0.09416771 0.20230782 0.37820584 0.01672458] #A.plot_J_hat() A.eps = 1.0 R.plotAnimation( [-4,1,0,0] , tf = 12 , n = 241 , solver = 'euler' )#, save = True ) R.Sim.plot_CL('x') R.Sim.plot_CL('u') #R.Sim.plot_OL() #R.Sim.phase_plane_trajectory()
24.978261
85
0.598782
0
0
0
0
0
0
0
0
415
0.361184
3dd524d8e59e2c8188892e7a7fe2e15518d2a46b
5,294
py
Python
depthaware/data/sunrgbd_dataset.py
crmauceri/DepthAwareCNN-pytorch1.5
6d9b0cf001d7482df7d4cd7240fc36cbfc8356f9
[ "MIT" ]
3
2021-03-11T01:24:37.000Z
2021-06-29T03:46:40.000Z
depthaware/data/sunrgbd_dataset.py
crmauceri/DepthAwareCNN-pytorch1.5
6d9b0cf001d7482df7d4cd7240fc36cbfc8356f9
[ "MIT" ]
null
null
null
depthaware/data/sunrgbd_dataset.py
crmauceri/DepthAwareCNN-pytorch1.5
6d9b0cf001d7482df7d4cd7240fc36cbfc8356f9
[ "MIT" ]
null
null
null
import os.path from depthaware.data.base_dataset import * from PIL import Image import time def make_dataset_fromlst(dataroot, listfilename): """ NYUlist format: imagepath seglabelpath depthpath HHApath """ images = [] segs = [] depths = [] HHAs = [] with open(listfilename) as f: content = f.readlines() for x in content: imgname, segname, depthname, HHAname = x.strip().split(' ') images += [os.path.join(dataroot, imgname)] segs += [os.path.join(dataroot, segname)] depths += [os.path.join(dataroot, depthname)] HHAs += [os.path.join(dataroot, HHAname)] return {'images':images, 'segs':segs, 'HHAs':HHAs, 'depths':depths} class SUNRGBDDataset(BaseDataset): def __init__(self, opt): self.opt = opt np.random.seed(int(time.time())) self.paths_dict = make_dataset_fromlst(opt.dataroot, opt.list) self.len = len(self.paths_dict['images']) # self.label_weight = torch.Tensor(label_weight) self.datafile = 'sunrgbd_dataset.py' def __getitem__(self, index): #self.paths['images'][index] # print self.opt.scale,self.opt.flip,self.opt.crop,self.opt.colorjitter img = np.asarray(Image.open(self.paths_dict['images'][index]))#.astype(np.uint8) HHA = np.asarray(Image.open(self.paths_dict['HHAs'][index]))[:,:,::-1] seg = np.asarray(Image.open(self.paths_dict['segs'][index])).astype(np.uint8)-1 depth = np.asarray(Image.open(self.paths_dict['depths'][index])).astype(np.uint16) assert (img.shape[0]==HHA.shape[0]==seg.shape[0]==depth.shape[0]) assert (img.shape[1]==HHA.shape[1]==seg.shape[1]==depth.shape[1]) depth = np.bitwise_or(np.right_shift(depth,3),np.left_shift(depth,16-3)) depth = depth.astype(np.float32)/120. # 1/5 * depth params = get_params_sunrgbd(self.opt, seg.shape, maxcrop=.7) depth_tensor_tranformed = transform(depth, params, normalize=False,istrain=self.opt.isTrain) seg_tensor_tranformed = transform(seg, params, normalize=False,method='nearest',istrain=self.opt.isTrain) if self.opt.inputmode == 'bgr-mean': img_tensor_tranformed = transform(img, params, normalize=False, istrain=self.opt.isTrain, option=1) HHA_tensor_tranformed = transform(HHA, params, normalize=False, istrain=self.opt.isTrain, option=2) else: img_tensor_tranformed = transform(img, params, istrain=self.opt.isTrain, option=1) HHA_tensor_tranformed = transform(HHA, params, istrain=self.opt.isTrain, option=2) # print img_tensor_tranformed # print(np.unique(depth_tensor_tranformed.numpy()).shape) # print img_tensor_tranformed.size() return {'image':img_tensor_tranformed, 'depth':depth_tensor_tranformed, 'seg': seg_tensor_tranformed, 'HHA': HHA_tensor_tranformed, 'imgpath': self.paths_dict['segs'][index]} def __len__(self): return self.len def name(self): return 'sunrgbd_dataset' class SUNRGBDDataset_val(BaseDataset): def __init__(self, opt): self.opt = opt np.random.seed(8964) self.paths_dict = make_dataset_fromlst(opt.dataroot, opt.vallist) self.len = len(self.paths_dict['images']) def __getitem__(self, index): #self.paths['images'][index] img = np.asarray(Image.open(self.paths_dict['images'][index]))#.astype(np.uint8) HHA = np.asarray(Image.open(self.paths_dict['HHAs'][index]))[:,:,::-1] seg = np.asarray(Image.open(self.paths_dict['segs'][index])).astype(np.uint8)-1 depth = np.asarray(Image.open(self.paths_dict['depths'][index])).astype(np.uint16) depth = np.bitwise_or(np.right_shift(depth,3),np.left_shift(depth,16-3)) depth = depth.astype(np.float32)/120. # 1/5 * depth assert (img.shape[0]==HHA.shape[0]==seg.shape[0]==depth.shape[0]) assert (img.shape[1]==HHA.shape[1]==seg.shape[1]==depth.shape[1]) params = get_params_sunrgbd(self.opt, seg.shape, test=True) depth_tensor_tranformed = transform(depth, params, normalize=False,istrain=self.opt.isTrain) seg_tensor_tranformed = transform(seg, params, normalize=False,method='nearest',istrain=self.opt.isTrain) # HHA_tensor_tranformed = transform(HHA, params,istrain=self.opt.isTrain) if self.opt.inputmode == 'bgr-mean': img_tensor_tranformed = transform(img, params, normalize=False, istrain=self.opt.isTrain, option=1) HHA_tensor_tranformed = transform(HHA, params, normalize=False, istrain=self.opt.isTrain, option=2) else: img_tensor_tranformed = transform(img, params, istrain=self.opt.isTrain, option=1) HHA_tensor_tranformed = transform(HHA, params, istrain=self.opt.isTrain, option=2) return {'image':img_tensor_tranformed, 'depth':depth_tensor_tranformed, 'seg': seg_tensor_tranformed, 'HHA': HHA_tensor_tranformed, 'imgpath': self.paths_dict['segs'][index]} def __len__(self): return self.len def name(self): return 'sunrgbd_dataset_Val'
44.116667
113
0.647526
4,546
0.858708
0
0
0
0
0
0
785
0.148281
3dd551aff5d9acdfce555b2997eb9c881f846544
1,382
py
Python
setup.py
elafefy11/flask_gtts
8f14b9f114127d8fba240a88f3aa16eb17628872
[ "MIT" ]
null
null
null
setup.py
elafefy11/flask_gtts
8f14b9f114127d8fba240a88f3aa16eb17628872
[ "MIT" ]
null
null
null
setup.py
elafefy11/flask_gtts
8f14b9f114127d8fba240a88f3aa16eb17628872
[ "MIT" ]
null
null
null
""" Flask-gTTS ------------- A Flask extension to add gTTS Google text to speech, into the template, it makes adding and configuring multiple text to speech audio files at a time much easier and less time consuming """ from setuptools import setup setup( name='Flask-gTTS', version='0.11', url='https://github.com/mrf345/flask_gtts/', download_url='https://github.com/mrf345/flask_gtts/archive/0.11.tar.gz', license='MIT', author='Mohamed Feddad', author_email='mrf345@gmail.com', description='gTTS Google text to speech flask extension', long_description=__doc__, py_modules=['gtts'], packages=['flask_gtts'], zip_safe=False, include_package_data=True, platforms='any', install_requires=[ 'Flask', 'gTTS', 'static_parameters' ], keywords=['flask', 'extension', 'google', 'text', 'speech', 'gTTS', 'TTS', 'text-to-speech'], classifiers=[ 'Environment :: Web Environment', 'Intended Audience :: Developers', 'License :: OSI Approved :: MIT License', 'Operating System :: OS Independent', 'Programming Language :: Python', 'Topic :: Internet :: WWW/HTTP :: Dynamic Content', 'Topic :: Software Development :: Libraries :: Python Modules' ], setup_requires=['pytest-runner'], test_requires=['pytest'] )
29.404255
76
0.633864
0
0
0
0
0
0
0
0
848
0.613603
3dd5a2aa827f14ee73dd8f5c2368476016523c81
232
py
Python
READ.py
BeatrizFS/MongoDB-Python
a23741d5f58ccad50e6239c963f78759f92098ac
[ "MIT" ]
null
null
null
READ.py
BeatrizFS/MongoDB-Python
a23741d5f58ccad50e6239c963f78759f92098ac
[ "MIT" ]
null
null
null
READ.py
BeatrizFS/MongoDB-Python
a23741d5f58ccad50e6239c963f78759f92098ac
[ "MIT" ]
null
null
null
from Arquivo1 import Produto #READ #Consultar o Banco de dados #1.Retorna todas as informações do Banco de dados produtos = Produto.objects() print(produtos) for produto in produtos: print(produto.Nome, produto.Valor)
23.2
50
0.75
0
0
0
0
0
0
0
0
86
0.367521
3dd7149bf486a0156690dac8d36a869ec269ebf6
9,280
py
Python
src/aux_funcs.py
ArunBaskaran/Image-Driven-Machine-Learning-Approach-for-Microstructure-Classification-and-Segmentation-Ti-6Al-4V
79ca40ababbc65464650c5519f9e7fdbf3c9d14d
[ "MIT" ]
7
2020-03-19T05:04:30.000Z
2022-03-31T10:29:42.000Z
src/aux_funcs.py
ArunBaskaran/Image-Driven-Machine-Learning-Approach-for-Microstructure-Classification-and-Segmentation-Ti-6Al-4V
79ca40ababbc65464650c5519f9e7fdbf3c9d14d
[ "MIT" ]
2
2020-08-19T03:24:31.000Z
2021-03-02T00:18:46.000Z
src/aux_funcs.py
ArunBaskaran/Image-Driven-Machine-Learning-Approach-for-Microstructure-Classification-and-Segmentation-Ti-6Al-4V
79ca40ababbc65464650c5519f9e7fdbf3c9d14d
[ "MIT" ]
3
2020-09-17T04:15:04.000Z
2021-01-18T08:37:39.000Z
""" ----------------------------------ABOUT----------------------------------- Author: Arun Baskaran -------------------------------------------------------------------------- """ import model_params def smooth(img): return 0.5*img + 0.5*( np.roll(img, +1, axis=0) + np.roll(img, -1, axis=0) + np.roll(img, +1, axis=1) + np.roll(img, -1, axis=1) ) def returnIndex(a , value): k = np.size(a) for i in range(k): if(a[i]==value): return i def create_model(): xavier_init = tf.contrib.layers.xavier_initializer() #Initializer for weights zero_init = tf.zeros_initializer() #Initializer for biases model = tf.keras.models.Sequential([ keras.layers.Conv2D( 2, [5,5], (1,1), input_shape = (200,200,1), kernel_initializer = xavier_init, bias_initializer = zero_init, kernel_regularizer=regularizers.l1(0.001), padding = 'valid', name = 'C1'), keras.layers.MaxPool2D((2,2), (2,2), input_shape = (196,196,2),padding = 'valid', name ='P1'), keras.layers.Conv2D(4, [5,5],(1,1), input_shape = (98,98,2), kernel_initializer = xavier_init, bias_initializer = zero_init, kernel_regularizer=regularizers.l1(0.001), name ='C2'), keras.layers.MaxPool2D((2,2), (2,2), input_shape = (94,94,4), padding = 'valid', name ='P2'), keras.layers.Conv2D(12, [3,3],(1,1), input_shape = (47,47,4), kernel_initializer = xavier_init, bias_initializer = zero_init, kernel_regularizer=regularizers.l1(0.001), name ='C3'), keras.layers.Flatten(name ='fc_layer'), keras.layers.Dense(3, activation='softmax', kernel_regularizer=regularizers.l1(0.001)),]) return model def load_images_labels(): df = pd.read_excel('labels.xlsx', header=None, names=['id', 'label']) total_labels = df['label'] for i in range(len(total_labels)): total_labels[i]-=1 train_list = random.sample(range(1,total_size+1), train_size) nontrainlist = [] test_list = [] for i in range(1,total_size+1): if i not in train_list: nontrainlist.append(i) validation_list = random.sample(nontrainlist, validation_size) for item in nontrainlist: if(item not in validation_list): test_list.append(item) train_images = [] train_labels = [] validation_images = [] validation_labels = [] test_images = [] test_labels=[] test_images_id = [] for i in range(1, total_size+1): if i in train_list: filename = 'image_' + str(i) + '.png' image = cv2.imread(filename, cv2.IMREAD_GRAYSCALE) image = cv2.resize(image, dsize=(width, height), interpolation=cv2.INTER_CUBIC) image = cv2.blur(image,(5,5)) image = (image - np.min(image))/(np.max(image)-np.min(image)) train_images.append(image) train_labels.append(total_labels[i-1]) elif i in validation_list: filename = 'image_' + str(i) + '.png' image = cv2.imread(filename, cv2.IMREAD_GRAYSCALE) image = cv2.resize(image, dsize=(width, height), interpolation=cv2.INTER_CUBIC) image = cv2.blur(image,(5,5)) image = (image - np.min(image))/(np.max(image)-np.min(image)) validation_images.append(image) validation_labels.append(total_labels[i-1]) else: filename = 'image_' + str(i) + '.png' image = cv2.imread(filename, cv2.IMREAD_GRAYSCALE) image = cv2.resize(image, dsize=(width, height), interpolation=cv2.INTER_CUBIC) image = cv2.blur(image,(5,5)) image = (image - np.min(image))/(np.max(image)-np.min(image)) test_images_id.append(i) test_images.append(image) test_labels.append(total_labels[i-1]) train_images = np.reshape(train_images, (train_size, width, height, 1)) validation_images = np.reshape(validation_images, (validation_size, width, height, 1)) test_images = np.reshape(test_images, (test_size, width, height, 1)) train_labels = tf.keras.backend.one_hot(train_labels,3) test_labels = tf.keras.backend.one_hot(test_labels,3) validation_labels = tf.keras.backend.one_hot(validation_labels,3) return train_images, train_labels, test_images, test_labels, validation_images, validation_labels def train_model(): model = create_model() checkpoint_path = "weights/classification.ckpt" #Check this path checkpoint_dir = os.path.dirname(checkpoint_path) es = tf.keras.callbacks.EarlyStopping(monitor='val_loss', verbose=1, patience = 50, mode='min', restore_best_weights=True) cp_callback = tf.keras.callbacks.ModelCheckpoint(filepath=checkpoint_path, save_weights_only=True, verbose=0) model.compile(loss=tf.keras.losses.CategoricalCrossentropy(),optimizer='Adam',metrics='accuracy') model.fit(train_images, train_labels, epochs=1500, validation_data=(validation_images,validation_labels), steps_per_epoch = 4, validation_steps=1, callbacks=[es, cp_callback]) return model def load_model(): model = create_model() model.load_weights(checkpoint_path) return model def test_accuracy(model): loss,acc = model.evaluate(test_images, test_labels, verbose=2, steps = 1) print("Accuracy: {:5.2f}%".format(100*acc)) def get_predicted_classes(model): y_prob = model.predict(test_images) y_classes = y_prob.argmax(axis=-1) return y_classes df = pd.read_excel('labels.xlsx', header=None, names=['id', 'label']) total_labels = df['label'] for i in range(len(total_labels)): total_labels[i]-=1 def duplex_segmentation(i): area_frac_duplex=[] duplex_image_id=[] filename = 'image_' + str(test_images_id[i]) + '.png' image = Image.open(filename).convert('F') image = np.copy(np.reshape(np.array(image), image.size[::-1])/255.) image = exposure.equalize_adapthist(image, clip_limit=8.3) image = (smooth(smooth(image))) image_copy = image image = cv2.resize(image, dsize=(200,200), interpolation=cv2.INTER_CUBIC) image_copy = cv2.resize(image_copy, dsize=(200,200), interpolation=cv2.INTER_CUBIC) markers = np.zeros_like(image) markers[image > np.median(image) - 0.10*np.std(image)] = 1 markers[image < np.median(image) - 0.10*np.std(image)] = 2 fig, (ax1) = plt.subplots(1, sharex=True, sharey=True) elevation_map = sobel(image) #The following implementation of watershed segmentation has been adopted from scikit's documentation example: https://scikit-image.org/docs/dev/user_guide/tutorial_segmentation.html segmentation = morphology.watershed(elevation_map, markers) segmentation = ndi.binary_fill_holes(segmentation - 1) labeled_grains, _ = ndi.label(segmentation) image_label_overlay = label2rgb(labeled_grains, image=image) ax1.imshow(image_copy, cmap=plt.cm.gray, interpolation='nearest') ax1.contour(segmentation, [0.5], linewidths=1.2, colors='r') ax1.axis('off') outfile = 'seg_duplex_' + str(test_images_id[i]) + '.png' plt.savefig(outfile, dpi=100) equiaxed_area_fraction_dict[test_images_id[i]] = np.sum(segmentation)/(np.shape(image)[0]*np.shape(image)[1]) def lamellar_segmentation(i): dim = 400 filename = 'image_' + str(test_images_id[i]) + '.png' image = Image.open(filename).convert('F') image = np.copy(np.reshape(np.array(image), image.size[::-1])/255.) image = exposure.equalize_hist(image) image = smooth(image) image = np.reshape(image, (np.shape(image)[0],np.shape(image)[1])) gx = cv2.Sobel(np.float32(image), cv2.CV_32F, 1, 0, ksize=1) gy = cv2.Sobel(np.float32(image), cv2.CV_32F, 0, 1, ksize=1) mag, angle = cv2.cartToPolar(gx, gy, angleInDegrees=True) mag_cut_off = 0.2*np.max(mag) (n,bins,patches) = plt.hist(angle.ravel(), bins = 30) n_sorted = sorted(n, reverse=True) bin0 = bins[returnIndex(n, n_sorted[0])] bin1 = bins[returnIndex(n, n_sorted[1])] bin2 = bins[returnIndex(n, n_sorted[2])] bin_s = np.ones(20) for i in range(20): bin_s[i] = bins[returnIndex(n, n_sorted[i])] markers = np.zeros_like(angle) markers[(angle/360 > bin1/360 - 26/360) & (angle/360 < bin1/360 + 26/360) & (mag > mag_cut_off)] = 1 markers[(angle/360 > bin2/360 - 18/360) & (angle/360 < bin2/360 + 18/360) & (mag > mag_cut_off)] = 1 markers[(angle/360 > bin0/360 - 18/360) & (angle/360 < bin0/360 + 18/360) & (mag > mag_cut_off)] = 1 markers = (smooth(smooth(markers))) markers1 = np.where(markers > np.mean(markers), 1.0, 0.0) lamellae_area_fraction_dict[test_images_id[i]] = np.sum(markers1)/(np.shape(image)[0]*np.shape(image)[1]) fig, (ax1) = plt.subplots(1, sharex=True, sharey=True) ax1.imshow(image, 'gray') ax1.imshow(markers1, alpha = 0.5) image1 = image + markers1 ax1.imshow(image1) #plt.colorbar() outfile = 'seg_lamellae_' + str(test_images_id[i]) + '.png' plt.savefig(outfile, dpi=100) def feature_segmentation(): equiaxed_area_fraction_dict = {} lamellae_area_fraction_dict= {} for i in range(np.size(y_classes)): if(y_classes[i]==0): duplex_segmentation(i) elif(y_classes[i]==1): lamellar_segmentation(i)
44.830918
210
0.650108
0
0
0
0
0
0
0
0
780
0.084052
3dd842d4edbdc348779300fb523036992a49b5b2
125
py
Python
manage.py
Stupnitskiy/BinaryAPI
e448936ceed96da72e2aa65847030ea56edb224f
[ "MIT" ]
null
null
null
manage.py
Stupnitskiy/BinaryAPI
e448936ceed96da72e2aa65847030ea56edb224f
[ "MIT" ]
null
null
null
manage.py
Stupnitskiy/BinaryAPI
e448936ceed96da72e2aa65847030ea56edb224f
[ "MIT" ]
null
null
null
from flask_script import Manager from src import app manager = Manager(app) if __name__ == "__main__": manager.run()
12.5
32
0.72
0
0
0
0
0
0
0
0
10
0.08
3dd84d6968111423f954120eed10897fd01c00ea
1,355
py
Python
CIFAR10.py
jimmyLeeMc/NeuralNetworkTesting
a6208cc8639a93ac24655495c9ace1acba21c76f
[ "MIT" ]
null
null
null
CIFAR10.py
jimmyLeeMc/NeuralNetworkTesting
a6208cc8639a93ac24655495c9ace1acba21c76f
[ "MIT" ]
null
null
null
CIFAR10.py
jimmyLeeMc/NeuralNetworkTesting
a6208cc8639a93ac24655495c9ace1acba21c76f
[ "MIT" ]
null
null
null
#CIFAR from tensorflow import keras import numpy as np import matplotlib.pyplot as plt data = keras.datasets.cifar10 activations=[keras.activations.sigmoid, keras.activations.relu, keras.layers.LeakyReLU(), keras.activations.tanh] results=[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] class_names=[0,1,2,3,4,5,6,7,8,9] a=0 for i in range(4): for j in range(4): losssum=0 for k in range(6): (train_images, train_labels), (test_images, test_labels) = data.load_data() train_images = train_images/255.0 test_images = test_images/255.0 model = keras.Sequential([ keras.layers.Flatten(input_shape=(32,32,3)), keras.layers.Dense(128, activations[i]), keras.layers.Dense(10, activations[j]) # tanh softmax ]) model.compile(optimizer="adam",loss="sparse_categorical_crossentropy", metrics=["accuracy"]) history = model.fit(train_images, train_labels, validation_split=0.25, epochs=5, batch_size=16, verbose=1) prediction = model.predict(test_images) losssum=losssum+history.history['loss'][len(history.history['loss'])-1] results[a]=losssum/1 a=a+1 print(results)
38.714286
108
0.591882
0
0
0
0
0
0
0
0
81
0.059779
3dd93f9bb15a42397c641e431fd3df72da46ab0d
3,127
py
Python
All_RasPy_Files/edgedetection.py
govindak-umd/Autonomous_Robotics
5293b871c7032b40cbff7814bd773871ee2c5946
[ "MIT" ]
2
2020-05-14T11:23:30.000Z
2020-05-25T06:30:57.000Z
All_RasPy_Files/edgedetection.py
govindak-umd/ENPM809T
5293b871c7032b40cbff7814bd773871ee2c5946
[ "MIT" ]
null
null
null
All_RasPy_Files/edgedetection.py
govindak-umd/ENPM809T
5293b871c7032b40cbff7814bd773871ee2c5946
[ "MIT" ]
5
2020-06-09T22:09:15.000Z
2022-01-31T17:11:19.000Z
# ENME 489Y: Remote Sensing # Edge detection import numpy as np import matplotlib import matplotlib.pyplot as plt # Define slice of an arbitrary original image f = np.empty((0)) index = np.empty((0)) # Create intensity data, including noise for i in range(2000): index = np.append(index, i) if i <= 950: f = np.append(f, 50 + np.random.normal(0,1)) elif i > 950 and i < 1000: f = np.append(f, 50 + (i - 950)/2 + np.random.normal(0,1)) elif i >= 1000 and i < 1050: f = np.append(f, 75 + (i - 1000)/2 + np.random.normal(0,1)) else: f = np.append(f, 100 + np.random.normal(0,1)) print f.shape print index.shape plt.figure(2) plt.plot(index, f, 'r-') plt.title('Slice of Original Image: f(x)') plt.xlabel('Pixel x') plt.ylabel('Pixel intensity f(x)') plt.grid() plt.show() # Plot the gradient (first derivative) of the original signal messy = np.gradient(f) plt.figure(3) plt.plot(messy, 'r-') plt.title('Derivative of Original Image Slice: df/dx') plt.xlabel('Pixel x') plt.ylabel('Derivative df/dx') plt.grid() plt.show() # Define Gaussian filter mean = 0 std = 5 var = np.square(std) x = np.arange(-20, 20, 0.1) kernel = (1/(std*np.sqrt(2*np.pi)))*np.exp(-np.square((x-mean)/std)/2) print kernel.shape plt.figure(4) plt.plot(x, kernel, 'b-') plt.title('Kernel: Gaussian Filter h(x)') plt.xlabel('Pixel x') plt.ylabel('Kernel h(x)') plt.grid() plt.show() # Convolve original image signal with Gaussian filter smoothed = np.convolve(kernel, f, 'same') print smoothed.shape plt.figure(5) plt.plot(smoothed, 'r-') plt.title('Apply Gaussian Filter: Convolve h(x) * f(x)') plt.xlabel('Pixel x') plt.ylabel('Convolution') plt.grid() plt.show() # Plot the gradient (first derivative) of the filtered signal edges = np.gradient(smoothed) plt.figure(6) plt.plot(edges, 'r-') plt.title('Derivative of Convolved Image: d/dx[ h(x) * f(x) ] ') plt.xlabel('Pixel x') plt.ylabel('Derivative') plt.grid() plt.show() # Plot the gradient (first derivative) of the Gaussian kernel first_diff = np.gradient(kernel) plt.figure(7) plt.plot(first_diff, 'b-') plt.title('1st Derivative of Gaussian: d/dx[ h(x) ]') plt.xlabel('Pixel x') plt.ylabel('Derivative') plt.grid() plt.show() # Convolve original image signal with Gaussian filter smoothed = np.convolve(first_diff, f, 'same') print smoothed.shape plt.figure(8) plt.plot(smoothed, 'r-') plt.title('Apply Gaussian Filter: Convolve d/dx[ h(x) ] * f(x)') plt.xlabel('Pixel x') plt.ylabel('Convolution') plt.grid() plt.show() # Plot the second derivative of the Gaussian kernel: the Laplacian operator laplacian = np.gradient(first_diff) plt.figure(9) plt.plot(laplacian, 'b-') plt.title('2nd Derivative of Gaussian: Laplacian Operator d^2/dx^2[ h(x) ]') plt.xlabel('Pixel x') plt.ylabel('Derivative') plt.grid() plt.show() # Convolve original image signal with Gaussian filter smoothed = np.convolve(laplacian, f, 'same') print smoothed.shape plt.figure(10) plt.plot(smoothed, 'r-') plt.title('Apply Laplacian Operator: Convolve d^2/dx^2[ h(x) ] * f(x)') plt.xlabel('Pixel x') plt.ylabel('Convolution') plt.grid() plt.show()
23.689394
76
0.68692
0
0
0
0
0
0
0
0
1,254
0.401023
3dda1806de2d35a90208c505c2c72da1466cf4a9
1,850
py
Python
alipay/aop/api/domain/AlipayCommerceReceiptBatchqueryModel.py
antopen/alipay-sdk-python-all
8e51c54409b9452f8d46c7bb10eea7c8f7e8d30c
[ "Apache-2.0" ]
null
null
null
alipay/aop/api/domain/AlipayCommerceReceiptBatchqueryModel.py
antopen/alipay-sdk-python-all
8e51c54409b9452f8d46c7bb10eea7c8f7e8d30c
[ "Apache-2.0" ]
null
null
null
alipay/aop/api/domain/AlipayCommerceReceiptBatchqueryModel.py
antopen/alipay-sdk-python-all
8e51c54409b9452f8d46c7bb10eea7c8f7e8d30c
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python # -*- coding: utf-8 -*- import json from alipay.aop.api.constant.ParamConstants import * class AlipayCommerceReceiptBatchqueryModel(object): def __init__(self): self._level = None self._out_biz_no_list = None @property def level(self): return self._level @level.setter def level(self, value): self._level = value @property def out_biz_no_list(self): return self._out_biz_no_list @out_biz_no_list.setter def out_biz_no_list(self, value): if isinstance(value, list): self._out_biz_no_list = list() for i in value: self._out_biz_no_list.append(i) def to_alipay_dict(self): params = dict() if self.level: if hasattr(self.level, 'to_alipay_dict'): params['level'] = self.level.to_alipay_dict() else: params['level'] = self.level if self.out_biz_no_list: if isinstance(self.out_biz_no_list, list): for i in range(0, len(self.out_biz_no_list)): element = self.out_biz_no_list[i] if hasattr(element, 'to_alipay_dict'): self.out_biz_no_list[i] = element.to_alipay_dict() if hasattr(self.out_biz_no_list, 'to_alipay_dict'): params['out_biz_no_list'] = self.out_biz_no_list.to_alipay_dict() else: params['out_biz_no_list'] = self.out_biz_no_list return params @staticmethod def from_alipay_dict(d): if not d: return None o = AlipayCommerceReceiptBatchqueryModel() if 'level' in d: o.level = d['level'] if 'out_biz_no_list' in d: o.out_biz_no_list = d['out_biz_no_list'] return o
28.90625
81
0.585405
1,733
0.936757
0
0
717
0.387568
0
0
188
0.101622
3ddaf9735b2cb2b79bcc96e4e4c161028c28ae19
2,632
py
Python
tests/test_timeconversion.py
FObersteiner/pyFuppes
2a8c6e210855598dbf4fb491533bf22706340c9a
[ "MIT" ]
1
2020-06-02T08:02:36.000Z
2020-06-02T08:02:36.000Z
tests/test_timeconversion.py
FObersteiner/pyFuppes
2a8c6e210855598dbf4fb491533bf22706340c9a
[ "MIT" ]
3
2022-03-04T11:43:19.000Z
2022-03-25T00:26:46.000Z
tests/test_timeconversion.py
FObersteiner/pyFuppes
2a8c6e210855598dbf4fb491533bf22706340c9a
[ "MIT" ]
null
null
null
import unittest from datetime import datetime, timezone from pyfuppes import timeconversion class TestTimeconv(unittest.TestCase): @classmethod def setUpClass(cls): # to run before all tests print("testing pyfuppes.timeconversion...") @classmethod def tearDownClass(cls): # to run after all tests pass def setUp(self): # to run before each test pass def tearDown(self): # to run after each test pass def test_dtstr_2_mdns(self): # no timezone t = ["2012-01-01T01:00:00", "2012-01-01T02:00:00"] f = "%Y-%m-%dT%H:%M:%S" result = list(map(int, timeconversion.dtstr_2_mdns(t, f))) self.assertEqual(result, [3600, 7200]) # with timezone t = ["2012-01-01T01:00:00+02:00", "2012-01-01T02:00:00+02:00"] f = "%Y-%m-%dT%H:%M:%S%z" result = list(map(int, timeconversion.dtstr_2_mdns(t, f))) self.assertEqual(result, [3600, 7200]) # zero case t = "2012-01-01T00:00:00+02:00" result = timeconversion.dtstr_2_mdns(t, f) self.assertEqual(int(result), 0) def test_dtobj_2_mdns(self): t = [datetime(2000, 1, 1, 1), datetime(2000, 1, 1, 2)] result = list(map(int, timeconversion.dtobj_2_mdns(t))) self.assertEqual(result, [3600, 7200]) t = [ datetime(2000, 1, 1, 1, tzinfo=timezone.utc), datetime(2000, 1, 1, 2, tzinfo=timezone.utc), ] result = list(map(int, timeconversion.dtobj_2_mdns(t))) self.assertEqual(result, [3600, 7200]) def test_posix_2_mdns(self): t = [3600, 7200, 10800] result = list(map(int, timeconversion.posix_2_mdns(t))) self.assertEqual(result, t) def test_mdns_2_dtobj(self): t = [3600, 10800, 864000] ref = datetime(2020, 5, 15, tzinfo=timezone.utc) result = list(map(int, timeconversion.mdns_2_dtobj(t, ref, posix=True))) self.assertEqual(result, [1589504400, 1589511600, 1590364800]) def test_daysSince_2_dtobj(self): t0, off = datetime(2020, 5, 10), 10.5 result = timeconversion.daysSince_2_dtobj(t0, off) self.assertEqual(result.hour, 12) self.assertEqual(result.day, 20) def test_dtstr_2_posix(self): result = timeconversion.dtstr_2_posix("2020-05-15", "%Y-%m-%d") self.assertAlmostEqual( result, datetime(2020, 5, 15, tzinfo=timezone.utc).timestamp() ) if __name__ == "__main__": unittest.main()
32.9
81
0.587006
2,474
0.93997
0
0
215
0.081687
0
0
375
0.142477
3ddb42001698eb4e38741ad5c0c31bf71b836bbd
1,111
py
Python
ucscentralsdk/methodmeta/LstorageCloneMeta.py
ragupta-git/ucscentralsdk
2678008b5fb6b0fafafec388d0874147e95a1086
[ "Apache-2.0" ]
null
null
null
ucscentralsdk/methodmeta/LstorageCloneMeta.py
ragupta-git/ucscentralsdk
2678008b5fb6b0fafafec388d0874147e95a1086
[ "Apache-2.0" ]
null
null
null
ucscentralsdk/methodmeta/LstorageCloneMeta.py
ragupta-git/ucscentralsdk
2678008b5fb6b0fafafec388d0874147e95a1086
[ "Apache-2.0" ]
null
null
null
"""This module contains the meta information of LstorageClone ExternalMethod.""" from ..ucscentralcoremeta import MethodMeta, MethodPropertyMeta method_meta = MethodMeta("LstorageClone", "lstorageClone", "Version142b") prop_meta = { "cookie": MethodPropertyMeta("Cookie", "cookie", "Xs:string", "Version142b", "InputOutput", False), "dn": MethodPropertyMeta("Dn", "dn", "ReferenceObject", "Version142b", "InputOutput", False), "in_array_name": MethodPropertyMeta("InArrayName", "inArrayName", "Xs:string", "Version142b", "Input", False), "in_hierarchical": MethodPropertyMeta("InHierarchical", "inHierarchical", "Xs:string", "Version142b", "Input", False), "in_target_org": MethodPropertyMeta("InTargetOrg", "inTargetOrg", "ReferenceObject", "Version142b", "Input", False), "out_config": MethodPropertyMeta("OutConfig", "outConfig", "ConfigConfig", "Version142b", "Output", True), } prop_map = { "cookie": "cookie", "dn": "dn", "inArrayName": "in_array_name", "inHierarchical": "in_hierarchical", "inTargetOrg": "in_target_org", "outConfig": "out_config", }
44.44
122
0.706571
0
0
0
0
0
0
0
0
674
0.606661
3ddd545e8ac1636ac0a7d92a17cca391f2e23803
7,468
py
Python
tool/powermon.py
virajpadte/Power_monitoring_JetsonTX1
3f337adb16ce09072d69147b705a0c705b3ad53c
[ "MIT" ]
null
null
null
tool/powermon.py
virajpadte/Power_monitoring_JetsonTX1
3f337adb16ce09072d69147b705a0c705b3ad53c
[ "MIT" ]
null
null
null
tool/powermon.py
virajpadte/Power_monitoring_JetsonTX1
3f337adb16ce09072d69147b705a0c705b3ad53c
[ "MIT" ]
null
null
null
import sys import glob import serial import ttk import tkFileDialog from Tkinter import * #for plotting we need these: import matplotlib matplotlib.use("TkAgg") import matplotlib.pyplot as plt from drawnow import * class MainView: #CLASS VARIABLES: closing_status = False powerW = [] def __init__(self, master): self.master = master mainframe = ttk.Frame(self.master, padding="3 3 12 12") mainframe.grid(column=0, row=0, sticky=(N, W, E, S)) mainframe.columnconfigure(0, weight=1) mainframe.rowconfigure(0, weight=1) port = StringVar() port.set(" ") # initial value ttk.Label(mainframe, text="Select Port").grid(column=1, row=1, sticky=W) port_list = self.serial_ports() port_list.insert(0," ") print(port_list) port = StringVar(mainframe) port.set(port_list[1]) # default value dropdown = ttk.OptionMenu(mainframe,port,*port_list) dropdown.configure(width=20) dropdown.grid(column=2, row=1, sticky=W) ttk.Button(mainframe, text="Realtime Plot", command=lambda: self.real_time_plotting(port)).grid(column=1, row=2, sticky=W) ttk.Button(mainframe, text="Record Session", command=lambda: self.record_session(port)).grid(column=2, row=2, sticky=W) for child in mainframe.winfo_children(): child.grid_configure(padx=5, pady=5) def record_session(self,port): print("record_session") port = port.get() print("record port",port) self.newWindow = Toplevel(root) self.app = record_session(self.newWindow,port) def serial_ports(self): if sys.platform.startswith('win'): ports = ['COM%s' % (i + 1) for i in range(256)] elif sys.platform.startswith('linux') or sys.platform.startswith('cygwin'): # this excludes your current terminal "/dev/tty" ports = glob.glob('/dev/tty[A-Za-z]*') elif sys.platform.startswith('darwin'): ports = glob.glob('/dev/tty.*') else: raise EnvironmentError('Unsupported platform') result = [] result = ports return result def handle_close(self): print('Closed Figure!') self.closing_status = True def real_time_plotting(self,port): cnt = 0 window_size = 20 connected = False port = port.get() print("real_time_plotting") print("realtime data port", port) try: print("trying to connect to device....") ser = serial.Serial(port, 115200) except: print "Failed to connect on", port # ## loop until the arduino tells us it is ready while not connected: serin = ser.read() connected = True try: while not self.closing_status: # While loop that loops forever if ser.inWaiting(): # Wait here until there is data power = ser.readline() # read the line of text from the serial port print(power) self.powerW.append(power) # Build our tempF array by appending temp readings drawnow(self.makeFig) # Call drawnow to update our live graph plt.pause(.000001) # Pause Briefly. Important to keep drawnow from crashing cnt = cnt + 1 if (cnt > window_size): # If you have 50 or more points, delete the first one from the array self.powerW.pop(0) # This allows us to just see the last 50 data points print("closing port") ser.close() except KeyboardInterrupt: print("closing port") ser.close() def makeFig(self): # Create a function that makes our desired plot # configure the plot plt.ion() # Tell matplotlib you want interactive mode to plot live data plt.rcParams['toolbar'] = 'None' # create a fig #fig = plt.figure(0) #fig.canvas.set_window_title('Window 3D') #fig.canvas.mpl_connect('close_event', self.handle_close()) plt.ylim(0, 15) # Set y min and max values plt.title('Plotting power consumption') # Plot the title plt.grid(True) # Turn the grid on plt.ylabel('Power (Watts)') # Set ylabels plt.plot(self.powerW, 'ro-', label='Power W') # plot the temperature plt.legend(loc='upper right') # plot the legend def handle_close(self): print('Closed Figure!') self.closing_status = True class record_session: #class variable: path = "" def __init__(self, master,port): self.master = master self.master.title("Session parameters") mainframe = ttk.Frame(self.master, padding="3 3 12 12") mainframe.grid(column=0, row=0, sticky=(N, W, E, S)) mainframe.columnconfigure(0, weight=1) mainframe.rowconfigure(0, weight=1) print("passed port", port) duration = StringVar() autoplot = IntVar() autoplot.set(0) # initial value ttk.Button(mainframe, text="Select a location to store session.csv file", command=self.select_dir).grid(column=1, row=1, sticky=W) ttk.Label(mainframe, text="Record Duration in seconds:").grid(column=1, row=2, sticky=W) duration_entry_box = ttk.Entry(mainframe, width=5, textvariable=duration) duration_entry_box.grid(column=2, row=2, sticky=W) #ttk.Checkbutton(mainframe, text="Auto Plotting enabled", variable=autoplot).grid(column=1, row=3, sticky=W) ttk.Button(mainframe, text="Start recording", command=lambda: self.record(port,autoplot)).grid(column=1, row=4, sticky=W) for child in mainframe.winfo_children(): child.grid_configure(padx=5, pady=5) def select_dir(self): global path print("select dir") path = tkFileDialog.askdirectory() #append file name to the path if len(path): path = path + "/session.csv" print(path) def record(self,port,autoplot): global path print("recording") autoplot_status = autoplot.get() print("autoplot_status", autoplot_status) connected = False ## establish connection to the serial port that your arduino ## is connected to. try: print("trying to connect to device....") ser = serial.Serial(port, 115200) except: print "Failed to connect on", port # ## loop until the arduino tells us it is ready while not connected: serin = ser.read(self) connected = True #open text file to store the power values text_file = open(path, 'w') #read serial data from arduino and #write it to the text file 'Data.csv' try: while True: if ser.inWaiting(): # Read a line and convert it from b'xxx\r\n' to xxx line = ser.readline() print(line) if line: # If it isn't a blank line text_file.write(line) text_file.close() except KeyboardInterrupt: print("closing port") ser.close() if __name__ == '__main__': root = Tk() root.title("Power Monitoring tool") main = MainView(root) root.mainloop()
35.561905
138
0.595742
7,116
0.952866
0
0
0
0
0
0
2,121
0.284012
3ddeb574a2024dfb0d06c0c742bbc0a272df7e2d
900
py
Python
shop/tests/products/views/test_product_details_view.py
nikolaynikolov971/NftShop
09a535a6f708f0f6da5addeb8781f9bdcea72cf3
[ "MIT" ]
null
null
null
shop/tests/products/views/test_product_details_view.py
nikolaynikolov971/NftShop
09a535a6f708f0f6da5addeb8781f9bdcea72cf3
[ "MIT" ]
null
null
null
shop/tests/products/views/test_product_details_view.py
nikolaynikolov971/NftShop
09a535a6f708f0f6da5addeb8781f9bdcea72cf3
[ "MIT" ]
null
null
null
from django.test import TestCase, Client from django.urls import reverse from shop.products.models import Product from tests.base.mixins import ProductTestUtils class ProductDetailsTest(ProductTestUtils, TestCase): def setUp(self): self.client = Client() self.product = self.create_product( title="Barry", price=555.55, image='media/products/Dart.png', description="dasd", is_sold=False, ) def test_getProductDetails(self): response = self.client.get(reverse('product_details', kwargs={'pk': self.product.id})) self.assertEqual(200, response.status_code) def test_showErrorIfProductDoesNotExist(self): try: self.client.get(reverse('product_details', kwargs={'pk': self.product.id})) except Product.DoesNotExist: self.assertRaises(Exception)
30
94
0.66
735
0.816667
0
0
0
0
0
0
80
0.088889
3de34122732924fae3421861027e4399e17b6da8
4,558
py
Python
projetoFTP/servidor/sftps.py
MarciovsRocha/conectividade-sistemas-cyberfisicos
d76b8a540b55eb8a54ae99067b625010e85a2eb8
[ "MIT" ]
null
null
null
projetoFTP/servidor/sftps.py
MarciovsRocha/conectividade-sistemas-cyberfisicos
d76b8a540b55eb8a54ae99067b625010e85a2eb8
[ "MIT" ]
null
null
null
projetoFTP/servidor/sftps.py
MarciovsRocha/conectividade-sistemas-cyberfisicos
d76b8a540b55eb8a54ae99067b625010e85a2eb8
[ "MIT" ]
null
null
null
import socket import threading import os import sys from pathlib import Path #--------------------------------------------------- def ReadLine(conn): line = '' while True: try: byte = conn.recv(1) except: print('O cliente encerrou') return 0 if not byte: return 0 byte = byte.decode() if byte == '\r': continue if byte == '\n': break line += byte return line #------------------------------------------------ def Upload(conn, ip, file): try: f = open(file,'w+') except: print('erro abertura arquivo') try: s = socket.socket(socket.AF_INET, socket.SOCK_STREAM) s.connect((ip,9998)) while True: data = s.recv(1024) #print(data.decode('utf-8')) f.write(data.decode('utf-8')) if not data: break f.close() s.close() conn.send(bytes('TRANSMISSAO ENCERRADA\n','utf-8')) except: f.close() conn.send(bytes('A PORTA DE DADOS NÃO ESTA ABERTA\n','utf-8')) #----------------------------------------------- def Download(conn, ip, file): try: f = open(Path(file),'rb') except: print('erro abertura arquivo') try: s = socket.socket(socket.AF_INET, socket.SOCK_STREAM) s.connect((ip,9998)) s.send(f.read()) f.close() s.close() conn.send(bytes('TRANSMISSAO ENCERRADA\n','utf-8')) except: print('ERRO DE DOWNLOAD') f.close() conn.send(bytes('A PORTA DE DADOS NÃO ESTA ABERTA\n','utf-8')) #------------------------------------------------ def TrataCliente(conn, addr): while True: conn.send(bytes('\r\n','utf-8')) data = ReadLine(conn) print('{} enviou {}'.format(addr,data)) if data == 0: break try: if data == 'os.getcwd()': res=os.getcwd() conn.send(bytes(res,'utf-8')) elif data.startswith('os.listdir'): file = data.split('(')[1].split(')')[0] if file == '': file = '.' res=os.listdir(file) conn.send(bytes(str(res),'utf-8')) elif data.startswith('os.makedirs'): file = data.split('(')[1].split(')')[0] print(file) if file != '': os.makedirs(file) conn.send(bytes('OK','utf-8')) else: conn.send(bytes('NOK','utf-8')) elif data.startswith('upload'): try: file = data.split('(')[1].split(')')[0] Upload(conn, addr[0], file) except: conn.send(bytes('COMANDO INVALIDO','utf-8')) elif data.startswith('download'): try: file = data.split('(')[1].split(')')[0] Download(conn, addr[0], file) except: conn.send(bytes('COMANDO INVALIDO','utf-8')) else: print('teste:',data,'teste',len(data)) conn.send(bytes('COMANDO DESCONHECIDO','utf-8')) except: conn.send(bytes('ERRO DESCONHECIDO\n','utf-8')) print('{} encerrou'.format(addr)) #--------------------------------------------------------- # PROGRAMA PRINCIPAL #--------------------------------------------------------- pydir= os.path.dirname(os.path.realpath(__file__)) print('Diretorio do script: ', pydir) os.chdir(pydir) print('Simple File Transfer Protocol Server\n') s = socket.socket(socket.AF_INET, socket.SOCK_STREAM) try: s.bind(('', 9999)) except: print('# erro de bind') sys.exit() s.listen(5) print('aguardando conexões na porta ', 9999) print('Canal de controle: cliente ----> [9999] servidor') print('Canal de dados (call back): servidor ----> [9998] cliente') while True: conn, addr = s.accept() print('recebi uma conexao do cliente ', addr) t = threading.Thread( target=TrataCliente, args=(conn,addr,)) t.start()
28.4875
72
0.426942
0
0
0
0
0
0
0
0
1,189
0.260688
3de3ed318e614e22c2b9f52348133eddba3a0fee
2,424
py
Python
messages.py
runjak/hoodedFigure
539c9839dd47bc181e592bf4a61eaab361b8d316
[ "MIT" ]
null
null
null
messages.py
runjak/hoodedFigure
539c9839dd47bc181e592bf4a61eaab361b8d316
[ "MIT" ]
null
null
null
messages.py
runjak/hoodedFigure
539c9839dd47bc181e592bf4a61eaab361b8d316
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- import random sentences = [ "Going into the #dogpark is not allowed, @%s.", "That's my favourite #dogpark @%s - no one is allowed to go into it!", "That #dogpark you mention is forbidden! Please don't, @%s", "The #dogpark should be secured with electrified barbwire. " "Don't you agree, @%s?", "Just make sure NOT TO ENTER the #dogpark @%s.", "Why would you mention such nasty things like a #dogpark @%s?", "Remember to share your #dogpark experience " "so others may also survive @%s!", "Hi @%s! City council discourages the term #dogpark for security reasons.", "You are not a dog, @%s! Please don't think of the #dogpark.", "@%s in the #dogpark all dogs have 8 legs. Scary.", "Please return to safety @%s! Don't linger in the #dogpark.", "Hey @%s… I got notice that the #dogpark " "will get fortified with spikes and lava soon.", "Beware @%s. Today the #dogpark is full of deer. " "Dangerous with their sharp claws and many heads.", "There is a time and place for everything @%s. " "But it's not the #dogpark. An acid pit is much saver.", "@%s do you know that the #dogpark is actually a pond of molten lava?", "@%s beware - flesh entering the #dogpark without correct papers " "will actually turn into a liquid.", "Only truely evil spirits may enter the #dogpark. Are you one of us, @%s?", "I heard a five headed dragon near the #dogpark might try to dine on @%s.", "@%s and I are sure that the #dogpark is protected by a smiling god " "that replaces your blood with liquid led.", "In the #dogpark everyone becomes a stick in an eternal play of fetch. " "Be careful @%s.", "You may eat your own dogfood - but please: " "NEVER walk your own #dogpark, @%s.", "There is a non-zero chance that thinking the word #dogpark " "replaces your neurons with ants, @%s.", "The #dogpark will not harm you, @%s. " "Provided you have wings. And antlers.", ] def replyDictFromTweet(status): msg = random.choice(sentences) % status.user.screen_name if len(msg) > 140: print('Cannot send message:', msg) return None statusParams = { 'status': msg, 'in_reply_to_status_id': status.id } if status.place: statusParams['place_id'] = status.place.id return statusParams
44.072727
79
0.636139
0
0
0
0
0
0
0
0
1,849
0.76216
3de5ea40f8bf420e08e8aea386566d9bf26093f0
3,595
py
Python
detectron/tests/test_track_losses.py
orestis-z/track-rcnn
6b2405cb8308168106526b57027a1af3fe9df0f3
[ "Apache-2.0" ]
9
2020-10-16T22:20:09.000Z
2022-03-22T11:08:01.000Z
detectron/tests/test_track_losses.py
orestis-z/track-rcnn
6b2405cb8308168106526b57027a1af3fe9df0f3
[ "Apache-2.0" ]
null
null
null
detectron/tests/test_track_losses.py
orestis-z/track-rcnn
6b2405cb8308168106526b57027a1af3fe9df0f3
[ "Apache-2.0" ]
2
2021-10-04T14:27:52.000Z
2022-03-22T11:07:53.000Z
from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import numpy as np from scipy import spatial import unittest from caffe2.proto import caffe2_pb2 from caffe2.python import core from caffe2.python import workspace from detectron.core.config import cfg from detectron.core.config import assert_and_infer_cfg import detectron.utils.c2 as c2_utils from detectron.utils.math import cosine_similarity from detectron.modeling.track_rcnn_heads import add_track_losses from detectron.modeling.detector import DetectionModelHelper c2_utils.import_custom_ops() class TrackLossesTest(unittest.TestCase): """Unit test class for tracking losses. """ def _add_track_losses(self, X, X_gt): model = DetectionModelHelper(train=False, num_classes=1) add_track_losses(model) workspace.FeedBlob('track_similarity', X) workspace.FeedBlob('track_int32', X_gt) workspace.RunNetOnce(model.net) return workspace.FetchBlob('loss_track') def _add_track_losses_np(self, arr_in, arr_gt): if cfg.TRCNN.LOSS == 'Cosine': track_cosine_similarity = cosine_similarity(arr_in, arr_gt) loss_track_raw = 1 - track_cosine_similarity elif cfg.TRCNN.LOSS == 'L2': track_l2_loss = 0.5 * np.sum(np.square(arr_in - arr_gt)) loss_track_raw = track_l2_loss / arr_in.shape[1] elif cfg.TRCNN.LOSS == 'L2Balanced': track_int32_non_matches = 1 - arr_gt track_delta_sq = np.square(arr_in - arr_gt) loss_track_matches_raw = np.matmul(track_delta_sq, arr_gt.T)[0] loss_track_non_matches_raw = np.matmul(track_delta_sq, track_int32_non_matches.T)[0] loss_track_matches = loss_track_matches_raw / np.sum(arr_gt) loss_track_non_matches = loss_track_non_matches_raw / np.sum(track_int32_non_matches) loss_track_raw = 0.5 * (loss_track_matches + loss_track_non_matches) else: raise NotImplementedError('Test case for loss "{}" not implemented yet'.format(cfg.TRCNN.LOSS)) return cfg.TRCNN.LOSS_WEIGHT * loss_track_raw def test_gpu_random_input_gpu(self): X = np.random.rand(1, 6).astype(np.float32) X_gt = np.random.randint(2, size=(1, 6)).astype(np.float32) for loss in ['Cosine', 'L2', 'L2Balanced', 'CrossEntropy', 'CrossEntropyBalanced', 'CrossEntropyWeighted']: cfg.immutable(False) cfg.TRCNN.LOSS = loss assert_and_infer_cfg(cache_urls=False) Y_exp = self._add_track_losses_np(X.copy(), X_gt.copy()) with core.DeviceScope(core.DeviceOption(caffe2_pb2.CUDA, 0)): Y_act = self._add_track_losses(X.copy(), X_gt.copy()) np.testing.assert_allclose(Y_act, Y_exp, rtol=1e-06) def test_gpu_random_input(self): X = np.random.rand(1, 6).astype(np.float32) X_gt = np.random.randint(2, size=(1, 6)).astype(np.float32) for loss in ['Cosine', 'L2', 'L2Balanced', 'CrossEntropy', 'CrossEntropyBalanced', 'CrossEntropyWeighted']: cfg.immutable(False) cfg.TRCNN.LOSS = loss assert_and_infer_cfg(cache_urls=False) Y_exp = self._add_track_losses_np(X.copy(), X_gt.copy()) Y_act = self._add_track_losses(X.copy(), X_gt.copy()) np.testing.assert_allclose(Y_act, Y_exp, rtol=1e-06) if __name__ == '__main__': workspace.GlobalInit(['caffe2', '--caffe2_log_level=0']) unittest.main()
43.313253
115
0.69096
2,828
0.786648
0
0
0
0
0
0
363
0.100974
3de7f52d572f048f38c1b4744268152292a54283
4,497
py
Python
torch/nn/_functions/thnn/upsampling.py
UmaTaru/run
be29e4d41a4de3dee27cd6796801bfe51382d294
[ "MIT" ]
null
null
null
torch/nn/_functions/thnn/upsampling.py
UmaTaru/run
be29e4d41a4de3dee27cd6796801bfe51382d294
[ "MIT" ]
null
null
null
torch/nn/_functions/thnn/upsampling.py
UmaTaru/run
be29e4d41a4de3dee27cd6796801bfe51382d294
[ "MIT" ]
null
null
null
from numbers import Integral import torch from torch.autograd import Function from torch._thnn import type2backend from . import _all_functions from ...modules.utils import _pair from ...functional import _check_bilinear_2d_scale_factor class _UpsamplingBase(Function): def __init__(self, size=None, scale_factor=None): super(_UpsamplingBase, self).__init__() if size is None and scale_factor is None: raise ValueError('either size or scale_factor should be defined') if scale_factor is not None and not isinstance(scale_factor, (Integral, tuple)): raise ValueError('scale_factor must be of integer type or tuple of integer types') self.size = size self.scale_factor = scale_factor class UpsamplingNearest2d(_UpsamplingBase): def __init__(self, size=None, scale_factor=None): super(UpsamplingNearest2d, self).__init__(size, scale_factor) if self.scale_factor is not None and not isinstance(scale_factor, Integral): raise ValueError('scale_factor must be of integer type for nearest neighbor sampling') self.size = _pair(self.size) if self.size is not None else None def forward(self, input): assert input.dim() == 4 if self.scale_factor is None: if (self.size[0] % input.size(2) != 0 or self.size[1] % input.size(3) != 0): raise RuntimeError("output size specified in UpSamplingNearest " "({}) has to be divisible by the input size, but got: " "{}".format('x'.join(map(str, self.size)), 'x'.join(map(str, input.size())))) self.scale_factor = self.size[0] // input.size(2) if self.scale_factor != self.size[1] // input.size(3): raise RuntimeError("input aspect ratio doesn't match the " "output ratio") output = input.new() backend = type2backend[type(input)] self.save_for_backward(input) backend.SpatialUpSamplingNearest_updateOutput( backend.library_state, input, output, self.scale_factor ) return output def backward(self, grad_output): input, = self.saved_tensors grad_input = grad_output.new() backend = type2backend[type(input)] backend.SpatialUpSamplingNearest_updateGradInput( backend.library_state, input, grad_output, grad_input, self.scale_factor ) return grad_input class UpsamplingBilinear2d(_UpsamplingBase): def __init__(self, size=None, scale_factor=None): super(UpsamplingBilinear2d, self).__init__(size, scale_factor) if self.scale_factor is not None: self.scale_factor = _check_bilinear_2d_scale_factor(self.scale_factor) self.size = _pair(self.size) if self.size is not None else None def forward(self, input): assert input.dim() == 4 if self.scale_factor is not None: self.output_size = ( input.size(2) * self.scale_factor[0], input.size(3) * self.scale_factor[1], ) else: self.output_size = self.size self.input_size = input.size() output = input.new() backend = type2backend[type(input)] backend.SpatialUpSamplingBilinear_updateOutput( backend.library_state, input, output, self.output_size[0], self.output_size[1], ) return output def backward(self, grad_output): assert grad_output.dim() == 4 grad_output = grad_output.contiguous() grad_input = grad_output.new() backend = type2backend[type(grad_output)] backend.SpatialUpSamplingBilinear_updateGradInput( backend.library_state, grad_output, grad_input, self.input_size[0], self.input_size[1], self.input_size[2], self.input_size[3], self.output_size[0], self.output_size[1], ) return grad_input def __setstate__(self, state): self.__dict__.update(state) self.scale_factor = _tuple(self.scale_factor) _all_functions.append(UpsamplingNearest2d) _all_functions.append(UpsamplingBilinear2d)
34.328244
98
0.610407
4,162
0.925506
0
0
0
0
0
0
342
0.076051
3de882780eafbe1233cbdcdf8b3eb920ea7971b8
7,869
py
Python
Day17/17_trick_shot.py
schca675/my-code-for-advent-of-code-2021
e8bdb986930b444884d37e679a37ed25efe2b34e
[ "Apache-2.0" ]
null
null
null
Day17/17_trick_shot.py
schca675/my-code-for-advent-of-code-2021
e8bdb986930b444884d37e679a37ed25efe2b34e
[ "Apache-2.0" ]
null
null
null
Day17/17_trick_shot.py
schca675/my-code-for-advent-of-code-2021
e8bdb986930b444884d37e679a37ed25efe2b34e
[ "Apache-2.0" ]
null
null
null
# --- Day 17: Trick Shot --- import math import time def get_puzzle_input(filepath): with open(filepath) as f: for line in f: # target area: x=269..292, y =-68..-44 parts = line.rstrip().replace(',', '').split() [x1, x2] = parts[2][2:].split("..") [y1, y2] = parts[3][2:].split("..") return int(x1), int(x2), int(y1), int(y2) class Position: def __init__(self, vx, vy): self.x = 0 self.y = 0 self.max_y = 0 self.vx = vx self.vy = vy self.steps_to_start_searching_y = 10000 # def get_position_at_step(self, t): # if self.vx >= 0: # x = max(0, self.vx - t) + self.x # else: # x = min(0, self.vx + t) + self.x # y = min(0, self.vy + t) + self.y # return x, y def __eq__(self, other): if type(other) == type([1,2]): return other[0] == self.vx and other[1] == self.vy return self == other def __gt__(self, other): return self.x > other.x def __lt__(self, other): return self.x < other.x def get_position_at_step(self, t): if self.vx >= 0: if self.vx+1 <= t: # there is no horizontal speed left anymore x = 0.5* (self.vx*self.vx + self.vx) else: # t * self.vy - (0.5 * (t - 1) * t) # TODO x = t*self.vx - 0.5*(t*t - t) # vx_t == 0 <=> t >= vx+1 else: if self.vx+1 <= t: vx_abs = abs(self.vx) # there is no horizontal speed left anymore x = vx_abs * self.vx + 0.5* (vx_abs * vx_abs + vx_abs) else: x = t * self.vx + 0.5 * (t * t + t) y = self.get_y_at_step(t) return x, y def get_y_at_step(self, t): # vy_t = vy - t # y_t = y_t-1 + vy_t = y_t-1 + (vy-t) # = vy-t + vy-(t-1) + vy-(t-2) + ... + vy-0 # = (t+1) * vy - sum_0^t = (t+1) vy - t(t+1)/2 # y_1 = 0 + vy # y_2 = vy + vy-1 = 2*vy - 1 # y_3 = 2vy -1 + vy - 2 = 3 vy - sum_1^t-1 # y_t = return t* self.vy -(0.5 * (t-1) * t) #TODO def __str__(self): return "{},{} {} steps".format(str(self.vx), str(self.vy), self.steps_to_start_searching_y) def check_if_hitting_target(self, x1, x2, y1, y2, maxsteps=1000): ### assuming positive distances # Otherwise make: if max(x1, 0) > x > min(x2, 0): for first inequation # if at t steps: y is under y1 but left of x1: will not hit it anymore # | | # x1|________|x2 .0 # . # | # At vx steps --> no more horizontal movement left ## if we still havent reached target in a horizontal level --> will not hit it x, y = self.get_position_at_step(self.vx) if x < x1: return False ## if the y position once we only move straight down is above the bottom y line # y2_________ # | . | # y1|____|___| # | # | if x1 <= x <= x2: # Hits target only if movement stops above the target area, but could miss while going down if y >= min(y1, y2): self.steps_to_start_searching_y = self.vx # check every step after that t = self.vx while y >= y1: y = self.get_y_at_step(t) if y2 >= y >= y1: return True t += 1 return False # Else: check whether the steps before hit the target area at a integer step t = self.vx - 1 wx,wy = self.get_position_at_step(max(t - 10, 0)) while wx > x2: t -=10 wx,wy = self.get_position_at_step(max(t - 10, 0)) while x >= x1: x, y = self.get_position_at_step(t) if x1 <= x <= x2 and y2 >= y >= y1: return True t -= 1 #### has some mistake in it... # next_t = round(self.vx/2) # prev_t = self.vx # while next_t != prev_t: # prev_round = prev_t # prev_t = next_t # # new target: trunc(vx/2) # new_x, new_y = self.get_position_at_step(next_t) # # as long # if x1 <= new_x <=x2 and y1 <= new_y <= y2: # self.steps_to_start_searching_y = next_t # return True # elif new_x < x1: # if new_y < y1: # # left of target but still below # return False # else: # # go to right, add half distance # next_t += round(0.5*(prev_round - next_t)) # elif new_x <= x2 and new_y > y2: # # go to right (steps forwards) # next_t += round(0.5 * (prev_round - next_t)) # else: # # now one is either still to the right of target area or under it, so to have a chance to hit it: # # must be on an earlier step # if prev_round > next_t: # # now reference point is 0 # next_t = round(next_t/2) # else: # next_t -= round(0.5*(next_t - prev_round)) return False def check_highest_y(self, left_t, right_t, t): y = self.get_y_at_step(t) # check step one to left and one to right next_y = self.get_y_at_step(t+1) if next_y > y: # y+1/ \ # y / \ # \ # still going up -> take step to right new_t = t + math.floor(0.5*(right_t - t)) return self.check_highest_y(left_t=t, right_t=right_t, t=new_t) prev_y = self.get_y_at_step(t-1) if prev_y > y: # / \ y-1 # / \ y # \ # going down --> take step to the left new_t = t - math.floor(0.5*(t - left_t)) return self.check_highest_y(left_t=left_t, right_t=t, t=new_t) # if neither are true: y >= next and prev y ---> highest y achieved return y def get_highest_y(self): if self.vy <= 0: # if vy is negative highest point is at start return 0 # return self.check_highest_y(0, self.target_hit_after_steps, self.target_hit_after_steps) return self.vy*(self.vy+1)/2 def get_highest_trick_shot(x1, x2, y1, y2): hitting_shots = [] max_y_at_hitting_shots = [] # try different vx and vy for vx in range(math.floor(math.sqrt(x1)), x2+1): for vy in range(y1, 10*x2): #969 # for vy in range(-100, 5000): 969 pos = Position(vx, vy) hits = pos.check_if_hitting_target(x1, x2, y1, y2) if hits: hitting_shots.append(pos) max_y_at_hitting_shots.append(pos.get_highest_y()) return max(max_y_at_hitting_shots), len(hitting_shots), hitting_shots def resolve_puzzle_part1(filepath): x1, x2, y1, y2 = get_puzzle_input(filepath) y, count, hitting_shots = get_highest_trick_shot(x1, x2, y1, y2) print("HIghest position is: {}, Count: {}".format(y, count)) with open("hitting_shots.txt") as f: for line in f: hits = line.rstrip().split() int_hits = [] for hit in hits: [x, y] = hit.split(',') int_hits.append([int(x), int(y)]) pass print("TEST") start = time.time() resolve_puzzle_part1("test_data.txt") print("Time: {}".format(time.time()-start)) print("PUZZLE") start = time.time() resolve_puzzle_part1("data.txt") print("Time: {}".format(time.time()-start))
35.931507
115
0.490532
6,188
0.786377
0
0
0
0
0
0
3,026
0.384547
3de9f24b49937335e24db781a7e382e77643515c
568
py
Python
zip_files.py
VladimirsHisamutdinovs/Advanced_Python_Operations
509c219f70adcbe9b3dedd71bff819494bab9c83
[ "Apache-2.0" ]
null
null
null
zip_files.py
VladimirsHisamutdinovs/Advanced_Python_Operations
509c219f70adcbe9b3dedd71bff819494bab9c83
[ "Apache-2.0" ]
null
null
null
zip_files.py
VladimirsHisamutdinovs/Advanced_Python_Operations
509c219f70adcbe9b3dedd71bff819494bab9c83
[ "Apache-2.0" ]
null
null
null
import zipfile zip_file = zipfile.ZipFile("zip_archive.zip", "w") zip_file.write("textfile_for_zip_01") zip_file.write("textfile_for_zip_02") zip_file.write("textfile_for_zip_03") # print(zipfile.is_zipfile("zip_archive.zip")) # zip_file = zipfile.ZipFile("zip_archive.zip") # print(zip_file.namelist()) # print(zip_file.infolist()) # zip_info = zip_file.getinfo("textfile_for_zip_02") # print(zip_info.file_size) # print(zip_file.read("textfile_for_zip_01")) zip_file.extract("textfile_for_zip_02") zip_file.extractall() zip_file.close()
24.695652
53
0.748239
0
0
0
0
0
0
0
0
384
0.676056
3deab92507c5a88674b2ab8baa0fe1cd63998a28
21,024
py
Python
omdrivers/lifecycle/iDRAC/iDRACUpdate.py
rajroyce1212/Ansible-iDRAC
4ce00b605ee2e128ad98b572759e860bae3da3dc
[ "Apache-2.0" ]
61
2018-02-21T00:02:20.000Z
2022-01-26T03:47:19.000Z
omdrivers/lifecycle/iDRAC/iDRACUpdate.py
rajroyce1212/Ansible-iDRAC
4ce00b605ee2e128ad98b572759e860bae3da3dc
[ "Apache-2.0" ]
31
2018-03-24T05:43:39.000Z
2022-03-16T07:10:37.000Z
omdrivers/lifecycle/iDRAC/iDRACUpdate.py
rajroyce1212/Ansible-iDRAC
4ce00b605ee2e128ad98b572759e860bae3da3dc
[ "Apache-2.0" ]
25
2018-03-13T10:06:12.000Z
2022-01-26T03:47:21.000Z
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # # # Copyright © 2018 Dell Inc. or its subsidiaries. All rights reserved. # Dell, EMC, and other trademarks are trademarks of Dell Inc. or its subsidiaries. # Other trademarks may be trademarks of their respective owners. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # Authors: Vaideeswaran Ganesan # import sys import os import re import json import time import glob import xml.etree.ElementTree as ET from enum import Enum from datetime import datetime from omsdk.sdkprint import PrettyPrint from omsdk.sdkcenum import EnumWrapper, TypeHelper from omsdk.lifecycle.sdkupdate import Update from omsdk.catalog.sdkupdatemgr import UpdateManager from omsdk.catalog.updaterepo import RepoComparator, UpdateFilterCriteria from omsdk.catalog.updaterepo import UpdatePresenceEnum, UpdateNeededEnum, UpdateTypeEnum from omdrivers.enums.iDRAC.iDRACEnums import * from omsdk.sdkcunicode import UnicodeWriter from omsdk.sdkfile import FileOnShare PY2 = sys.version_info[0] == 2 PY3 = sys.version_info[0] == 3 try: from pysnmp.hlapi import * from pysnmp.smi import * PySnmpPresent = True except ImportError: PySnmpPresent = False class iDRACUpdate(Update): def __init__(self, entity): if PY2: super(iDRACUpdate, self).__init__(entity, iDRACFirmEnum) else: super().__init__(entity, iDRACFirmEnum) self.reset() self._job_mgr = entity.job_mgr def _sw_instance(self, comp): ilist = [] clist = self._comp_to_fqdd(comp) for firmware in self.firmware_json["Firmware"]: if firmware['FQDD'] in clist and firmware['Status'] == "Installed": ilist.append(firmware['InstanceID']) return ilist def _update_from_uri(self, firm_image_path, componentFQDD, job_wait=True): rjson = self.entity._install_from_uri(uri=firm_image_path, target=componentFQDD) rjson['file'] = str(share) if job_wait: rjson = self._job_mgr._job_wait(rjson['file'], rjson) return rjson def reset(self): self.sw_inited = False self._swidentity = {} self.firmware_json = {} self.installed_firmware = {} def get_swidentity(self): if self.sw_inited: logger.debug("Already present") return self.firmware_json self.entity._get_entries(self.firmware_json, self.firmware_enum) logger.debug(self.firmware_json) for obj in self.firmware_json: self.installed_firmware[obj] = [] for entry in self.firmware_json[obj]: if 'Status' in entry and entry['Status'] == 'Installed': self.installed_firmware[obj].append(entry) return self.firmware_json def _get_swidentity_hash(self): self.get_swidentity() for comp in self.firmware_json: for swentry in self.firmware_json[comp]: if not "FQDD" in swentry: continue if swentry["FQDD"] in self._swidentity: if not isinstance(self._swidentity[swentry["FQDD"]], list): self._swidentity[swentry["FQDD"]] = [self._swidentity[swentry["FQDD"]]] else: self._swidentity[swentry["FQDD"]] = {} self._swidentity[swentry["FQDD"]] = {} if "ComponentID" in swentry and swentry["ComponentID"]: for val in ["ComponentID"]: self._swidentity[swentry["FQDD"]][val] = swentry[val] else: for val in ["VendorID", "SubVendorID", "DeviceID", "SubDeviceID"]: self._swidentity[swentry["FQDD"]][val] = swentry[val] for val in ["ComponentType", "InstanceID", "VersionString", "Status"]: self._swidentity[swentry["FQDD"]][val] = swentry[val] self._swidentity[swentry["FQDD"]]["ComponentClass"] = "unknown" # TODO RESTORE # for mycomp in self.protocolspec.compmap: # if re.match(self.protocolspec.compmap[mycomp],swentry["FQDD"]): # self.swidentity[swentry["FQDD"]]["ComponentClass"] = mycomp self.sw_inited = True return self._swidentity def get_installed_fw_redfish(self): try: rjson = self.entity._list_fw_inventory_redfish() if rjson['Status'] != 'Success': return rjson members_uris = self.get_redfishjson_using_responsecode(rjson) if not members_uris: logger.debug("Failed to get installed firmware") return {"Status": "Failed", "Message": "Unable to get Installed Firmware"} fwlist = [] for member in members_uris: member_uri = member['@odata.id'] if "Previous" not in member_uri: rjson = self.get_fwdetail_using_uri(str(member_uri)) if rjson: fwlist.append(rjson) return {"Firmware": fwlist} except: logger.debug("Failed to get installed firmware") return {"Status": "Failed", "Message": "Unable to get Installed Firmware"} def get_fwdetail_using_uri(self, r_uri): try: rjson = self.entity._get_resource_redfish(resource_uri=r_uri) if 'Data' not in rjson or rjson['Status'] != 'Success' or 'body' not in rjson['Data']: return None fw_json = {} fw_json['Name'] = rjson['Data']['body']['Name'] fw_json['Id'] = rjson['Data']['body']['Id'] fw_json['Status'] = rjson['Data']['body']['Status'] fw_json['Updateable'] = rjson['Data']['body']['Updateable'] fw_json['Version'] = rjson['Data']['body']['Version'] return fw_json except: logger.debug("Error in getting fw deatil from uri:" + r_uri) return None def get_redfishjson_using_responsecode(self, r_json): try: if 'Data' not in r_json: logger.debug("Failed to get json from response") return None if 'body' not in r_json['Data']: logger.debug("reponse body is not present") return None if 'Members' not in r_json['Data']['body']: logger.debug("No installed firmware found") return None return r_json['Data']['body']['Members'] except Exception: logger.debug("Failed to get installed firmware, exception:") return None @property def InstalledFirmware(self): if self.entity.use_redfish: return self.get_installed_fw_redfish() self.get_swidentity() return self.installed_firmware @property def AllUpdates(self): return self.get_updates_matching(catalog='Catalog') @property def AvailableUpdates(self): criteria = UpdateFilterCriteria() criteria.include_packages(UpdatePresenceEnum.Present) return self.get_updates_matching(catalog='Catalog', criteria=criteria) @property def NeededUpdates(self): criteria = UpdateFilterCriteria() criteria.include_update_needed(UpdateNeededEnum.Needed) return self.get_updates_matching(catalog='Catalog', criteria=criteria) def get_updates_matching(self, catalog='Catalog', criteria=None): updmgr = UpdateManager.get_instance() if not updmgr: updates = RepoComparator(self.InstalledFirmware).final() else: (ignore, cache_cat) = updmgr.getCatalogScoper(catalog) updates = cache_cat.compare(self.entity.SystemIDInHex, self.InstalledFirmware) if not criteria: return updates retval = {} for comp in updates: for update in updates[comp]: if not criteria.meets(update): continue if comp not in retval: retval[comp] = [] retval[comp].append(update) return retval def save_invcollector_file(self, invcol_output_file): with UnicodeWriter(invcol_output_file) as output: self._save_invcollector(output) def serialize_inventory(self, myshare): share = myshare.format(ip=self.entity.ipaddr) swfqdd_list = [firmware['FQDD'] for firmware in \ self.InstalledFirmware["Firmware"]] with UnicodeWriter(share.local_full_path) as f: f._write_output(json.dumps({ 'Model_Hex': self.entity.SystemIDInHex, 'Model': self.entity.Model, 'IPAddress': self.entity.ipaddr, 'ServiceTag': self.entity.ServiceTag, 'Firmware': self.InstalledFirmware['Firmware'], 'ComponentMap': self.entity.config_mgr._fqdd_to_comp_map(swfqdd_list)}, sort_keys=True, indent=4, separators=(',', ': '))) def update_from_repo(self, catalog_path, apply_update=True, reboot_needed=False, job_wait=True): if isinstance(catalog_path, str): # Catalog name updmgr = UpdateManager.get_instance() if not updmgr: return {} (cache_share, ignore) = updmgr.getCatalogScoper(catalog_path) else: # DRM Repo cache_share = catalog_path catalog_dir = FileOnShare(remote=cache_share.remote_folder_path, isFolder=True, creds=cache_share.creds) catalog_file = cache_share.remote_file_name if self.entity.use_redfish: if isinstance(catalog_path, FileOnShare) and catalog_path.mount_point is None: raise ValueError("Share path or mount point does not exist") rjson = self.entity._update_from_repo_using_redfish(ipaddress=catalog_dir.remote_ipaddr, share_name=catalog_dir.remote.share_name, share_type=IFRShareTypeEnum[catalog_dir.remote_share_type.name.lower()], username=catalog_dir.creds.username, password=catalog_dir.creds.password, reboot_needed=reboot_needed, catalog_file=catalog_file, apply_update=ApplyUpdateEnum[str(apply_update)], ignore_cert_warning=IgnoreCertWarnEnum['On']) if TypeHelper.resolve(catalog_dir.remote_share_type) == TypeHelper.resolve(ShareTypeEnum.NFS): rjson = self.entity._update_repo_nfs(share=catalog_dir, creds=catalog_dir.creds, catalog=catalog_file, apply=URLApplyUpdateEnum[str(apply_update)].value, reboot=RebootEnum[str(reboot_needed)].value) else: rjson = self.entity._update_repo(share=catalog_dir, creds=catalog_dir.creds, catalog=catalog_file, apply=URLApplyUpdateEnum[str(apply_update)].value, reboot=RebootEnum[str(reboot_needed)].value) rjson['file'] = str(cache_share) if job_wait: rjson = self._job_mgr._job_wait(rjson['file'], rjson) if not self.entity.use_redfish: rjson['job_details'] = self.entity._update_get_repolist() return rjson def update_from_dell_repo_url(self, ipaddress=None, share_name=None, share_type=None, catalog_file="Catalog.xml", apply_update=True, reboot_needed=False, ignore_cert_warning=True, job_wait=True): rjson = self.entity._update_dell_repo_url(ipaddress=ipaddress, share_type=URLShareTypeEnum[share_type].value, catalog_file=catalog_file, apply_update=URLApplyUpdateEnum[str(apply_update)].value, reboot_needed=RebootEnum[str(reboot_needed)].value, ignore_cert_warning=URLCertWarningEnum[str(ignore_cert_warning)].value) file_format = "{0}://{1}/{2}/{3}" if share_name else "{0}://{1}{2}/{3}" rjson['file'] = file_format.format(share_type, ipaddress, share_name, catalog_file) if job_wait: rjson = self._job_mgr._job_wait(rjson['file'], rjson) if not self.entity.use_redfish: rjson['job_details'] = self.entity._update_get_repolist() return rjson def update_from_repo_url(self, ipaddress=None, share_type=None, share_name=None, share_user=None, share_pwd=None, catalog_file="Catalog.xml", apply_update=True, reboot_needed=False, ignore_cert_warning=True, job_wait=True): if self.entity.use_redfish: warning = IgnoreCertWarnEnum["On"] if ignore_cert_warning else IgnoreCertWarnEnum["Off"] rjson = self.entity._update_from_repo_using_redfish(ipaddress=ipaddress, share_name=share_name, share_type=IFRShareTypeEnum[share_type], username=share_user, password=share_pwd, reboot_needed=reboot_needed, catalog_file=catalog_file, apply_update=ApplyUpdateEnum[str(apply_update)], ignore_cert_warning=warning.value) else: rjson = self.entity._update_repo_url(ipaddress=ipaddress, share_type=URLShareTypeEnum[share_type].value, share_name=share_name, catalog_file=catalog_file, apply_update=URLApplyUpdateEnum[str(apply_update)].value, reboot_needed=RebootEnum[str(reboot_needed)].value, ignore_cert_warning=URLCertWarningEnum[str(ignore_cert_warning)].value) file_format = "{0}://{1}/{2}/{3}" if share_name else "{0}://{1}{2}/{3}" rjson['file'] = file_format.format(share_type, ipaddress, share_name, catalog_file) if job_wait: rjson = self._job_mgr._job_wait(rjson['file'], rjson) if not self.entity.use_redfish: rjson['job_details'] = self.entity._update_get_repolist() return rjson ##below methods to update firmware using redfish will be reimplemented using Type Manager system def _get_scp_path(self, catalog_dir): """ :param catalog_dir: object for Folder containing Catalog on share. :param catalog_dir: FileOnShare. :returns: returns a tuple containing remote scp path(full) and the scp file name """ catalog_path_str = catalog_dir.remote_full_path scp_file = 'scp_' + self.entity.ServiceTag + '_' + datetime.now().strftime('%Y%m%d_%H%M%S') + ".xml" scp_path = catalog_path_str + os.path.sep + scp_file return (scp_path, scp_file) def update_from_repo_usingscp_redfish(self, catalog_dir, catalog_file, mount_point, apply_update=True, reboot_needed=False, job_wait=True): """Performs firmware update on target server using scp RepositoyUpdate attribute :param catalog_dir: object for Folder containing Catalog on share. :param catalog_dir: FileOnShare. :param catalog_file: Catalog file name :param catalog_file: str. :param mount_point: local share on which remote(catalog_dir) folder has been mounted :param mount_point: str. :returns: returns status of firmware update through scp """ (scp_path, scp_file) = self._get_scp_path(catalog_dir) myshare = FileOnShare(scp_path).addcreds(catalog_dir.creds) # exports only that component which contains RepositoryUpdate attribute rjson = self.entity.config_mgr.scp_export(share_path=myshare, target='System.Embedded.1') if 'Status' not in rjson or rjson['Status'] != 'Success': return {'Status': 'Failed', 'Message': 'Export of scp failed for firmware update'} scpattrval = {'RepositoryUpdate': catalog_file} localfile = mount_point.share_path + os.path.sep + scp_file self.edit_xml_file(localfile, scpattrval) if reboot_needed: shutdown = ShutdownTypeEnum.Graceful else: shutdown = ShutdownTypeEnum.NoReboot rjson = self.entity.config_mgr.scp_import(share_path=myshare, shutdown_type=shutdown, job_wait=job_wait) if job_wait: rjson['file'] = localfile rjson = self._job_mgr._job_wait(rjson['file'], rjson) rjson['job_details'] = self.entity._update_get_repolist() return rjson def edit_xml_file(self, file_location, attr_val_dict): """Edit and save exported scp's attributes which are passed in attr_val_dict :param file_location: locally mounted location(full path) of the exported scp . :param file_location: str. :param attr_val_dict: attribute and value pairs as dict :param attr_val_dict: dict. :returns: returns None """ tree = ET.parse(file_location) root = tree.getroot() for attr in attr_val_dict: xpath = ".//*[@Name='" + str(attr) + "']" attribute_element = root.find(xpath) attribute_element.text = str(attr_val_dict.get(attr)) tree.write(file_location) return def update_get_repolist(self): return self.entity._update_get_repolist() def _save_invcollector(self, output): # self.entity.get_entityjson() # if not "System" in self.entity.entityjson: # logger.debug("ERROR: Entityjson is empty") # return self._get_swidentity_hash() output._write_output('<SVMInventory>\n') output._write_output(' <System') if "System" in self.entity.entityjson: for (invstr, field) in [("Model", "Model"), ("systemID", "SystemID"), ("Name", "HostName")]: if field in self.entity.entityjson["System"]: output._write_output(" " + invstr + "=\"" + self.entity.entityjson["System"][field] + "\"") output._write_output( ' InventoryTime="{0}">\n'.format(str(datetime.strftime(datetime.now(), "%Y-%m-%dT%H:%M:%S")))) for ent in self._swidentity: output._write_output(' <Device') for (invstr, field) in [("componentID", "ComponentID"), ("vendorID", "VendorID"), ("deviceID", "DeviceID"), ("subVendorID", "SubVendorID"), ("subDeviceID", "SubDeviceID")]: if field in self._swidentity[ent]: output._write_output(" " + invstr + "=\"" + self._swidentity[ent][field] + "\"") output._write_output(' bus="" display="">\n') output._write_output(' <Application componentType="{0}" version="{1}" display="" />\n'.format( self._swidentity[ent]["ComponentType"], self._swidentity[ent]["VersionString"])) output._write_output(' </Device>\n') output._write_output(' </System>\n') output._write_output('</SVMInventory>\n')
50.176611
137
0.581573
19,280
0.917004
0
0
755
0.03591
0
0
4,482
0.213175
3dec8f27fe9f9465de4b1a61485314e099192b22
3,196
py
Python
playthrough/management/commands/migrate_shogun.py
SciADV-Community/genki
b86811695c428ca93bdab3ea2f68e3a99713d4db
[ "MIT" ]
null
null
null
playthrough/management/commands/migrate_shogun.py
SciADV-Community/genki
b86811695c428ca93bdab3ea2f68e3a99713d4db
[ "MIT" ]
11
2020-10-15T01:19:24.000Z
2022-03-28T04:09:43.000Z
playthrough/management/commands/migrate_shogun.py
SciADV-Community/genki
b86811695c428ca93bdab3ea2f68e3a99713d4db
[ "MIT" ]
1
2021-01-11T19:56:02.000Z
2021-01-11T19:56:02.000Z
import argparse import os import sqlite3 from django.core.management.base import BaseCommand from playthrough.models import Alias, Channel, Game, GameConfig, Guild, RoleTemplate, User class Command(BaseCommand): help = 'Migrates a DB from \'Shogun\' bot (SciADV-Community/playthrough-bot).' @staticmethod def _db_path(path: str): if os.path.isfile(path) and path.endswith('.db'): return path else: raise argparse.ArgumentTypeError(f'{path} is not a valid path to an SQLite Database.') def add_arguments(self, parser): parser.add_argument('sqlite_file', type=self._db_path) def handle(self, *args, **options): conn = sqlite3.connect(options['sqlite_file']) c = conn.cursor() # Migrate Guilds c.execute('SELECT Guild_ID, Guild_Name FROM Config') guilds_in_db = c.fetchall() for guild in guilds_in_db: Guild.objects.get_or_create(id=guild[0], name=guild[1]) # Migrate Games self.stdout.write('- Migrating games...') c.execute('SELECT name, channel_suffix, role_name FROM Game') games_in_db = c.fetchall() self.stdout.write(f'- - Found {len(games_in_db)} games.') for game_row in games_in_db: self.stdout.write(f'- - Migrating {game_row[0]}') role_template = RoleTemplate.objects.create(name=game_row[2]) game = Game.objects.get_or_create( name=game_row[0] )[0] game.channel_suffix = f'-plays-{game_row[1]}' game.completion_role = role_template game.save() self.stdout.write(f'- - Saved {game_row[0]}.') # Migrate Aliases c.execute('SELECT alias FROM Game_Alias WHERE game_name = ?', (game.name,)) aliases = c.fetchall() self.stdout.write(f'- - - Found {len(aliases)} aliases.') game.aliases.clear() for alias in aliases: game.aliases.add(Alias(alias=alias[0]), bulk=False) self.stdout.write('- - - Migrated aliases.') # Migrate Configs c.execute('SELECT Guild_Id FROM Game_Guild WHERE Game_Name = ?', (game.name,)) configs = c.fetchall() self.stdout.write(f'- - - Found {len(configs)} GameConfigs.') for config in configs: self.stdout.write(f'- - - Migrating {game} - {config[0]}.') GameConfig.objects.get_or_create( guild_id=config[0], game=game, playable=True, completion_role_id='000000000000' ) # Migrate Channels c.execute('SELECT ID, Owner, Guild FROM Channel WHERE Game = ?', (game.name,)) channels = c.fetchall() self.stdout.write(f'- - - Found {len(channels)} channels.') for channel in channels: self.stdout.write(f'- - - Migrating {channel[0]}...') user = User.objects.get_or_create(id=channel[1])[0] Channel.objects.get_or_create(id=channel[0], owner=user, guild_id=channel[2], game=game) self.stdout.write(f'- - - Migrated {channel[0]}.')
44.388889
104
0.59199
3,007
0.940864
0
0
237
0.074155
0
0
888
0.277847
3ded44aff9cb2e2f9d8057ef0b9ba6ae462ea0c0
5,233
py
Python
backend/model/benchmark-metrics/service/ocr.py
agupta54/ulca
c1f570ac254ce2ac73f40c49716458f4f7cbaee2
[ "MIT" ]
3
2022-01-12T06:51:51.000Z
2022-02-23T18:54:33.000Z
backend/model/benchmark-metrics/service/ocr.py
agupta54/ulca
c1f570ac254ce2ac73f40c49716458f4f7cbaee2
[ "MIT" ]
6
2021-08-31T19:21:26.000Z
2022-01-03T05:53:42.000Z
backend/model/benchmark-metrics/service/ocr.py
agupta54/ulca
c1f570ac254ce2ac73f40c49716458f4f7cbaee2
[ "MIT" ]
8
2021-08-12T08:07:49.000Z
2022-01-25T04:40:51.000Z
import logging from datetime import datetime import numpy as np from logging.config import dictConfig from kafkawrapper.producer import Producer from utils.mongo_utils import BenchMarkingProcessRepo from configs.configs import ulca_notifier_input_topic, ulca_notifier_benchmark_completed_event, ulca_notifier_benchmark_failed_event from models.metric_manager import MetricManager log = logging.getLogger('file') prod = Producer() repo = BenchMarkingProcessRepo() class OcrMetricEvalHandler: def __init__(self): pass def execute_ocr_metric_eval(self, request): try: log.info("Executing Ocr Metric Evaluation.... {}".format(datetime.now())) metric_mgr = MetricManager.getInstance() if 'benchmarkDatasets' in request.keys(): for benchmark in request["benchmarkDatasets"]: metric_inst = metric_mgr.get_metric_execute(benchmark["metric"], request["modelTaskType"]) if not metric_inst: log.info("Metric definition not found") doc = {'benchmarkingProcessId':request['benchmarkingProcessId'],'benchmarkDatasetId': benchmark['datasetId'],'eval_score': None} repo.insert(doc) repo.insert_pt({'benchmarkingProcessId': request['benchmarkingProcessId'], 'status': 'Failed'}) mail_notif_event = {"event": ulca_notifier_benchmark_failed_event, "entityID": request['modelId'], "userID": request['userId'], "details":{"modelName":request['modelName']}} prod.produce(mail_notif_event, ulca_notifier_input_topic, None) return ground_truth = [corpus_sentence["tgt"] for corpus_sentence in benchmark["corpus"]] machine_translation = [corpus_sentence["mtgt"] for corpus_sentence in benchmark["corpus"]] eval_score = metric_inst.ocr_metric_eval(ground_truth, machine_translation) if eval_score: doc = {'benchmarkingProcessId':request['benchmarkingProcessId'],'benchmarkDatasetId': benchmark['datasetId'],'eval_score': float(np.round(eval_score, 3))} repo.insert(doc) repo.insert_pt({'benchmarkingProcessId': request['benchmarkingProcessId'], 'status': 'Completed'}) mail_notif_event = {"event": ulca_notifier_benchmark_completed_event, "entityID": request['modelId'], "userID": request['userId'], "details":{"modelName":request['modelName']}} prod.produce(mail_notif_event, ulca_notifier_input_topic, None) else: log.exception("Exception while metric evaluation of model") doc = {'benchmarkingProcessId':request['benchmarkingProcessId'],'benchmarkDatasetId': benchmark['datasetId'],'eval_score': None} repo.insert(doc) repo.insert_pt({'benchmarkingProcessId': request['benchmarkingProcessId'], 'status': 'Failed'}) mail_notif_event = {"event": ulca_notifier_benchmark_failed_event, "entityID": request['modelId'], "userID": request['userId'], "details":{"modelName":request['modelName']}} prod.produce(mail_notif_event, ulca_notifier_input_topic, None) else: log.exception("Missing parameter: benchmark details") repo.insert_pt({'benchmarkingProcessId': request['benchmarkingProcessId'], 'status': 'Failed'}) mail_notif_event = {"event": ulca_notifier_benchmark_failed_event, "entityID": request['modelId'], "userID": request['userId'], "details":{"modelName":request['modelName']}} prod.produce(mail_notif_event, ulca_notifier_input_topic, None) return except Exception as e: log.exception(f"Exception while metric evaluation of model: {str(e)}") repo.insert_pt({'benchmarkingProcessId': request['benchmarkingProcessId'], 'status': 'Failed'}) mail_notif_event = {"event": ulca_notifier_benchmark_failed_event, "entityID": request['modelId'], "userID": request['userId'], "details":{"modelName":request['modelName']}} prod.produce(mail_notif_event, ulca_notifier_input_topic, None) # Log config dictConfig({ 'version': 1, 'formatters': {'default': { 'format': '[%(asctime)s] {%(filename)s:%(lineno)d} %(threadName)s %(levelname)s in %(module)s: %(message)s', }}, 'handlers': { 'info': { 'class': 'logging.FileHandler', 'level': 'DEBUG', 'formatter': 'default', 'filename': 'info.log' }, 'console': { 'class': 'logging.StreamHandler', 'level': 'DEBUG', 'formatter': 'default', 'stream': 'ext://sys.stdout', } }, 'loggers': { 'file': { 'level': 'DEBUG', 'handlers': ['info', 'console'], 'propagate': '' } }, 'root': { 'level': 'DEBUG', 'handlers': ['info', 'console'] } })
55.084211
200
0.608064
3,926
0.750239
0
0
0
0
0
0
1,702
0.325244
3deea7c2a0399d6a1677f78e7cc36afe63de0fc2
1,780
py
Python
keystroke/migrations/0001_initial.py
jstavanja/quiz-biometrics-api
75e0db348668b14a85f94261aac092ae2d5fa9c6
[ "MIT" ]
null
null
null
keystroke/migrations/0001_initial.py
jstavanja/quiz-biometrics-api
75e0db348668b14a85f94261aac092ae2d5fa9c6
[ "MIT" ]
null
null
null
keystroke/migrations/0001_initial.py
jstavanja/quiz-biometrics-api
75e0db348668b14a85f94261aac092ae2d5fa9c6
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- # Generated by Django 1.11.15 on 2018-08-20 16:31 from __future__ import unicode_literals from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='KeystrokeTestSession', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('timing_matrix', models.CharField(max_length=5000)), ], ), migrations.CreateModel( name='KeystrokeTestType', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('input_text', models.CharField(max_length=5000)), ('repetitions', models.IntegerField()), ], ), migrations.CreateModel( name='Student', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('moodle_username', models.CharField(max_length=250)), ('path_to_image', models.CharField(max_length=250)), ], ), migrations.AddField( model_name='keystroketestsession', name='student', field=models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='keystroke.Student'), ), migrations.AddField( model_name='keystroketestsession', name='test_type', field=models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='keystroke.KeystrokeTestType'), ), ]
34.901961
115
0.591573
1,588
0.892135
0
0
0
0
0
0
330
0.185393
3deeb28e7a4a40609c5fe55751360abc1b88afba
1,603
py
Python
komposisjon/komposisjon/rektangler_kvadrater.py
knutsenfiksdal/Oving_8
4e5d3a358cfb9127509a86a61c9499f22da9eabc
[ "MIT" ]
null
null
null
komposisjon/komposisjon/rektangler_kvadrater.py
knutsenfiksdal/Oving_8
4e5d3a358cfb9127509a86a61c9499f22da9eabc
[ "MIT" ]
null
null
null
komposisjon/komposisjon/rektangler_kvadrater.py
knutsenfiksdal/Oving_8
4e5d3a358cfb9127509a86a61c9499f22da9eabc
[ "MIT" ]
null
null
null
class Rektangel: def __init__(self, start_x, start_y, bredde, hoyde): self.start_x = start_x self.start_y = start_y self.hoyde = hoyde self.bredde = bredde def areal(self): return self.bredde*self.hoyde # Endrer høyde og bredde på en slik måte at areal forblir det samme def strekk(self, multiplikator): self.bredde *= multiplikator self.hoyde /= multiplikator def __str__(self): return f"Rektangel fra ({self.start_x}, {self.start_y}), " \ f"bredde {self.bredde}, høyde {self.hoyde}" # Kvadrat som bruker komposisjon og delegering class Kvadrat: def __init__(self, start_x, start_y, storrelse): self.rektanglet = Rektangel(start_x, start_y, storrelse, storrelse) @property def bredde(self): return self.rektanglet.bredde @property def hoyde(self): return self.rektanglet.hoyde @bredde.setter def bredde(self, ny_bredde): self.rektanglet.bredde = ny_bredde self.rektanglet.hoyde = ny_bredde @hoyde.setter def hoyde(self, ny_hoyde): self.rektanglet.bredde = ny_hoyde self.rektanglet.hoyde = ny_hoyde def areal(self): return self.rektanglet.areal() if __name__ == "__main__": rektanglet = Rektangel(5, 5, 10, 5) print(rektanglet) print(rektanglet.areal()) rektanglet.strekk(0.5) print(rektanglet) print(rektanglet.areal()) kvadrat = Kvadrat(2, 2, 6) print(kvadrat) print(kvadrat.areal()) kvadrat.strekk(6) print(kvadrat) print(kvadrat.areal())
26.278689
75
0.646288
1,211
0.753578
0
0
395
0.2458
0
0
222
0.138146
3defd9479c2f0a53049990dbf13feea2c96391cf
16,024
py
Python
DiscordBot/Commands/DiscordPoints.py
aronjanosch/kirbec-bot
6d44e177c5cf6669564047fbbc8f6e8c342bca28
[ "MIT" ]
null
null
null
DiscordBot/Commands/DiscordPoints.py
aronjanosch/kirbec-bot
6d44e177c5cf6669564047fbbc8f6e8c342bca28
[ "MIT" ]
null
null
null
DiscordBot/Commands/DiscordPoints.py
aronjanosch/kirbec-bot
6d44e177c5cf6669564047fbbc8f6e8c342bca28
[ "MIT" ]
null
null
null
from datetime import datetime import discord import itertools from .utils import formatString, getUsageEmbed, getOopsEmbed # IDEAS # 1. Paying out points (without bets) class DiscordPoints: """ Class that parses Discord Points info and interactions Attributes __________ fire (Fire obj): The fire instance where information is fetched/updated Functions __________ async getDiscordPointsEmbed(page, guild) -> (discord.Embed) Makes an embedded message with total points for each user def createNewReward(guild, rewardString) -> (discord.Embed) Adds a reward and returns the updated list of rewards as an embedded msg """ fire = None def __init__(self, fire): self.fire = fire async def getDiscordPointsEmbed(self, page, guild): """ Makes an embedded message with DiscordPoints for each member in the guild Parameters ---------- guild : discord.Guild The server that we want to get information from Returns ---------- discord.Embed Embedded message of Discord Points for each member of the guild """ d = self.fire.fetchDiscordPoints(guild) # This sorts the dictionary by highest-value and converts it to a list # It takes form [(user_0.id, value_0) ...(user_n.id, value_n)] info_arr = [(k, d[k]) for k in sorted(d, key=d.get, reverse=True)] userString, pointsString, description = await self.__createdEmbedStrings(guild, info_arr, page) title = "Discord Points" return self.__createPointsEmbed(title, description, userString, pointsString) def createNewReward(self, guild, rewardString): """ Create new reward for the guild Parameters ---------- guild : discord.Guild The server that we want to get information from rewardString : string String with the reward title and cost Returns ---------- discord.Embed Embedded message of the updated rewards for the server """ rewardStringList = ["".join(x) for _, x in itertools.groupby(rewardString, key=str.isdigit)] if len(rewardStringList) < 2: return getUsageEmbed( "-addreward [Desired Reward] [Price of the Reward]\n\nexample: -addreward CSGO with friends 500") try: rewardCost = int(rewardStringList[len(rewardStringList) - 1]) rewardTitle = self.__parseRewardStringList(rewardStringList) self.fire.postNewReward(guild, rewardTitle, rewardCost) return self.getRewardsEmbed(guild) except Exception as e: print("ERROR ", e) return getUsageEmbed( "-addreward [Desired Reward] [Price of the Reward]\n\nexample: -addreward CSGO with friends 500") def getRewardsEmbed(self, guild): """ Get all of the current rewards for the guild Parameters ---------- guild : discord.Guild The server that we want to get information from Returns ---------- discord.Embed Embedded message with all of the rewards for the guild """ rewards_dict = self.fire.fetchAllRewards(guild) if rewards_dict == {}: return self.__noRewardsEmbed(guild) rewardsList = [(k, rewards_dict[k]) for k in sorted(rewards_dict, key=rewards_dict.get, reverse=True)] idString, rewardsString, costsString = self.__getRewardsEmbedStrings(rewardsList) return self.__createRewardsEmbed(idString, rewardsString, costsString) def redeemReward(self, guild, user, reward_id): """ Redeems the desired reward with DiscordPoints [@Todo: Ping Users associated with the reward] Parameters ---------- guild : discord.Guild The server that we want to get information from user : discord.Member if in guild, discord.User otherwise The user that redeemed the reward reward_id : Int The id of the reward to redeem Returns ---------- discord.Embed Embedded message with the redeemed reward """ points_dict = self.fire.fetchDiscordPoints(guild) rewards_dict = self.fire.fetchAllRewards(guild) rewards_list = [(k, rewards_dict[k]) for k in sorted(rewards_dict, key=rewards_dict.get, reverse=True)] try: # Check to see if the reward_id is within the list of rewards if int(reward_id) > len(rewards_list) or int(reward_id) < 1: return self.__createNotARewardEmbed() reward_title = rewards_list[int(reward_id) - 1][0] reward_cost = rewards_list[int(reward_id) - 1][1] # Check to see if the user has enough points to redeem the reward if points_dict[str(user.id)] and points_dict[str(user.id)] < reward_cost: return self.__createNotEnoughPointsEmbed(user, points_dict[str(user.id)]) else: new_points = points_dict[str(user.id)] - reward_cost self.fire.postNewDiscordPoints(guild, str(user.id), new_points) return self.__createRedeemRewardEmbed(reward_title, reward_cost, user, new_points) except Exception as e: print(e) return getUsageEmbed("-redeemReward [Desired Reward Id]\n\nexample: -redeemReward 3") def addPoints(self, guild, author, user, points): """ add Points to a specific User [@Todo: Ping Users associated with the points] Parameters ---------- guild : discord.Guild The server that we want to get information from author : message.user user : discord.Member if in guild, discord.User otherwise The user that redeemed the reward points : Int The amount of points Returns ---------- discord.Embed Embedded message with the redeemed reward """ points_dict = self.fire.fetchDiscordPoints(guild) print(user.id) try: if not str(user.id) in points_dict: return getOopsEmbed("User ID not correct") elif not author.guild_permissions.administrator: return getOopsEmbed("Command can only be used by Server-Admins") print(points_dict[str(user.id)]) new_points = points_dict[str(user.id)] + int(points) print(new_points) self.fire.postNewDiscordPoints(guild, str(user.id), new_points) return self.__createPointsEmbed("Points added", "Points were added to balance", f"{user}", f"{new_points}") except Exception as e: print(e) print("Error adding points") return getOopsEmbed("Error adding points, check console") # ---------- MARK: - Private Functions ---------- async def __createdEmbedStrings(self, guild, sortedList, page): """ Private helper function to create strings for the embedded message Parameters ---------- guild : (discord.Guild) The server that we are tracking sortedList : arr[(key_0, val_0) ... (key_n, val_n)] The sorted (by val) list of key, val pairs where key: user_id, val: points page : (int) Page of the message we want to look at (20 entries per page) Returns ---------- discord.Embed Formatted information embedded into a message """ member_dict = await self.fire.fetchAllMembers(guild) # Max 20 entries / page pages = len(sortedList) // 20 + 1 userString = "" pointsString = "" rankString = "" if page > pages or page < 0: page = 1 for i in range(0, 20): shiftedIndex = (page - 1) * 20 + i if shiftedIndex < len(sortedList): user_id = sortedList[shiftedIndex][0] points = sortedList[shiftedIndex][1] if int(user_id) in member_dict.keys(): userString += member_dict[int(user_id)] + '\n' pointsString += str(points) + '\n' description = "Page " + str(page) + " of " + str(page) return userString, pointsString, description def __createPointsEmbed(self, title, description, userString, pointsString): """ Formats information into an embedded message Parameters ---------- title: (str) Title for the embedded message description: (str) Description for the embedded message userString: (str) String representing the list of ordered users timeString: (str) String representing the list of ordered points rankString: (str) String representing the ranks of each user Returns ---------- discord.Embed Formatted information embedded into a message """ now = datetime.today() embed = discord.Embed(title=title, description=description, timestamp=now) embed.set_footer(text="Kirbec Bot", icon_url="https://cdn.discordapp.com/embed/avatars/0.png") embed.add_field(name="Username", value=userString) embed.add_field(name="Discord Points", value=pointsString) return embed def __noRewardsEmbed(self, guild): """ Private function that shows that there are no rewards yet for the guild Parameters ---------- guild : discord.Guild The server that we want to get information from Returns ---------- discord.Embed Embedded message that states no rewards are in the guild """ now = datetime.today() embed = discord.Embed(title="Oops!", description="", timestamp=now) embed.set_footer(text="Kirbec Bot", icon_url="https://cdn.discordapp.com/embed/avatars/0.png") embed.add_field(name="No Rewards Set Yet!", value="To add a reward:\n-addreward [Desired Reward] [Price of the Reward]") return embed def __getRewardsEmbedStrings(self, rewardsList): """ Private function that gets formatted strings for the list of rewards Parameters ---------- rewardsList: [(reward_title_0, cost_0)...] List of rewards sorted by the highest cost Returns ---------- idString: string String representing the id's of the rewards separated by '\n' rewardString: string String representing the title of the rewards separated by '\n' costString: string String representing the costs of the rewards separated by '\n' """ idString = "" rewardString = "" costString = "" for i in range(len(rewardsList)): numLines, formattedRewardString = formatString(str(rewardsList[i][0])) idString += str(i + 1) + ("\n" * numLines) rewardString += formattedRewardString + "\n" costString += str(rewardsList[i][1]) + ("\n" * numLines) return idString, rewardString, costString def __createRewardsEmbed(self, idString, rewardString, costString): """ Private function to help create a rewards embed Parameters ---------- idString: string String representing the id's of the rewards separated by '\n' rewardString: string String representing the title of the rewards separated by '\n' costString: string String representing the costs of the rewards separated by '\n' Returns ---------- discord.Embed Embedded message that states all of the rewards """ title = "Discord Point Rewards" description = "" now = datetime.today() embed = discord.Embed(title=title, description=description, timestamp=now) embed.set_footer(text="Kirbec Bot", icon_url="https://cdn.discordapp.com/embed/avatars/0.png") embed.add_field(name="ID", value=idString) embed.add_field(name="Reward", value=rewardString) embed.add_field(name="Price", value=costString) return embed def __createRedeemRewardEmbed(self, reward_title, reward_cost, user, new_points): """ Private function to help create a redeem reward embed Parameters ---------- reward_title: string Title of the reward to be redeemed reward_cost : int Cost of the reward to be redeemed user : discord.Member if in guild, discord.User otherwise User_id of the user that redeemed the reward Returns ---------- discord.Embed Embedded message that states the redeemed reward """ title = "Reward Redeemed" description = "" now = datetime.today() embed = discord.Embed(title=title, description=description, timestamp=now) embed.set_thumbnail(url=user.avatar_url) embed.set_author(name=user.display_name, icon_url=user.avatar_url) embed.set_footer(text="Kirbec Bot", icon_url="https://cdn.discordapp.com/embed/avatars/0.png") embed.add_field(name="Reward", value=reward_title, inline=False) embed.add_field(name="Price", value=reward_cost, inline=False) embed.add_field(name="Points Remaining", value=str(new_points), inline=False) return embed def __createNotEnoughPointsEmbed(self, user, user_points): """ Private function to help create a not enough points embed message Parameters ---------- user_points : int The amount of points that the user currently has user : discord.Member if in guild, discord.User otherwise User that try to redeem the reward Returns ---------- discord.Embed Embedded message that states that the user doesn't have enough points """ title = "Oops!" description = "" now = datetime.today() embed = discord.Embed(title=title, description=description, timestamp=now, colour=discord.Colour.red()) embed.set_thumbnail(url=user.avatar_url) embed.set_author(name=user.display_name, icon_url=user.avatar_url) embed.set_footer(text="Kirbec Bot", icon_url="https://cdn.discordapp.com/embed/avatars/0.png") embed.add_field(name="Not enough points", value="You have: " + str(user_points)) return embed def __createNotARewardEmbed(self): """ Private function to help create a "invalid reward id" embed Returns ---------- discord.Embed Embedded message that states that the reward id is invalid """ title = "Oops!" description = "" now = datetime.today() embed = discord.Embed(title=title, description=description, timestamp=now, colour=discord.Colour.red()) embed.set_footer(text="Kirbec Bot", icon_url="https://cdn.discordapp.com/embed/avatars/0.png") embed.add_field(name="Not a reward", value="Please enter a valid reward id") return embed def __parseRewardStringList(self, rewardStringList): """ Private function to recreate reward title Parameters ---------- rewardStringList: list(String) List of strings representing the title Returns ---------- s: string The reward title string """ s = "" for i in range(len(rewardStringList) - 1): s += rewardStringList[i] return s
33.949153
119
0.602034
15,851
0.989204
0
0
0
0
2,356
0.147029
8,361
0.52178
3df076848f2032b90ec31c8b5ee8c64134fd5e5c
1,579
py
Python
lunch/admin.py
KrzysztofSakowski/lunch-crawler
6a93d6cfad634fb98f89bc22d68547801865c9ae
[ "Apache-2.0" ]
1
2020-02-17T13:40:08.000Z
2020-02-17T13:40:08.000Z
lunch/admin.py
KrzysztofSakowski/lunch-crawler
6a93d6cfad634fb98f89bc22d68547801865c9ae
[ "Apache-2.0" ]
4
2020-02-11T23:06:14.000Z
2021-06-10T18:07:30.000Z
lunch/admin.py
KrzysztofSakowski/lunch-crawler
6a93d6cfad634fb98f89bc22d68547801865c9ae
[ "Apache-2.0" ]
null
null
null
from django.contrib import admin from .models import MenuFacebook, MenuEmail, UserProfile, Occupation, FacebookRestaurant, EmailRestaurant class MenuBaseAdmin(admin.ModelAdmin): list_display = ('id', 'format_date', 'is_lunch', 'message') list_filter = ('created_date', 'is_lunch') list_editable = ('is_lunch',) ordering = ['-created_date'] def format_date(self, obj): return obj.created_date.strftime('%Y-%m-%d, %R') class RestaurantAdmin(admin.ModelAdmin): list_display = ('id', 'name') class UserProfileInline(admin.StackedInline): model = UserProfile.restaurants.through class UserProfileAdmin(admin.ModelAdmin): inlines = UserProfileInline, list_display = ('name', 'restaurants_list',) def get_inline_instances(self, request, obj=None): if not obj: return [] return super(UserProfileAdmin, self).get_inline_instances(request, obj) def name(self, obj): return obj.user.username def restaurants_list(self, obj): return "\n".join([a.name for a in obj.restaurants.all()]) class SeatAdmin(admin.ModelAdmin): list_display = ('id', 'restaurant', 'seats_taken', 'seats_total', 'date_declared') def restaurant(self, obj): return obj.restaurant.name admin.site.register(FacebookRestaurant, RestaurantAdmin) admin.site.register(EmailRestaurant, RestaurantAdmin) admin.site.register(MenuFacebook, MenuBaseAdmin) admin.site.register(MenuEmail, MenuBaseAdmin) admin.site.register(UserProfile, UserProfileAdmin) admin.site.register(Occupation, SeatAdmin)
29.240741
105
0.723243
1,122
0.710576
0
0
0
0
0
0
194
0.122863
3df0af937b9149db956b0d8ec02537a403587abe
19,082
py
Python
src/oci/log_analytics/models/query_details.py
Manny27nyc/oci-python-sdk
de60b04e07a99826254f7255e992f41772902df7
[ "Apache-2.0", "BSD-3-Clause" ]
249
2017-09-11T22:06:05.000Z
2022-03-04T17:09:29.000Z
src/oci/log_analytics/models/query_details.py
Manny27nyc/oci-python-sdk
de60b04e07a99826254f7255e992f41772902df7
[ "Apache-2.0", "BSD-3-Clause" ]
228
2017-09-11T23:07:26.000Z
2022-03-23T10:58:50.000Z
src/oci/log_analytics/models/query_details.py
Manny27nyc/oci-python-sdk
de60b04e07a99826254f7255e992f41772902df7
[ "Apache-2.0", "BSD-3-Clause" ]
224
2017-09-27T07:32:43.000Z
2022-03-25T16:55:42.000Z
# coding: utf-8 # Copyright (c) 2016, 2021, Oracle and/or its affiliates. All rights reserved. # This software is dual-licensed to you under the Universal Permissive License (UPL) 1.0 as shown at https://oss.oracle.com/licenses/upl or Apache License 2.0 as shown at http://www.apache.org/licenses/LICENSE-2.0. You may choose either license. from oci.util import formatted_flat_dict, NONE_SENTINEL, value_allowed_none_or_none_sentinel # noqa: F401 from oci.decorators import init_model_state_from_kwargs @init_model_state_from_kwargs class QueryDetails(object): """ Input arguments for running a log anlaytics query. If the request is set to run in asynchronous mode then shouldIncludeColumns and shouldIncludeFields can be overwritten when retrieving the results. """ #: A constant which can be used with the sub_system property of a QueryDetails. #: This constant has a value of "LOG" SUB_SYSTEM_LOG = "LOG" #: A constant which can be used with the async_mode property of a QueryDetails. #: This constant has a value of "FOREGROUND" ASYNC_MODE_FOREGROUND = "FOREGROUND" #: A constant which can be used with the async_mode property of a QueryDetails. #: This constant has a value of "BACKGROUND" ASYNC_MODE_BACKGROUND = "BACKGROUND" def __init__(self, **kwargs): """ Initializes a new QueryDetails object with values from keyword arguments. The following keyword arguments are supported (corresponding to the getters/setters of this class): :param compartment_id: The value to assign to the compartment_id property of this QueryDetails. :type compartment_id: str :param compartment_id_in_subtree: The value to assign to the compartment_id_in_subtree property of this QueryDetails. :type compartment_id_in_subtree: bool :param saved_search_id: The value to assign to the saved_search_id property of this QueryDetails. :type saved_search_id: str :param query_string: The value to assign to the query_string property of this QueryDetails. :type query_string: str :param sub_system: The value to assign to the sub_system property of this QueryDetails. Allowed values for this property are: "LOG" :type sub_system: str :param max_total_count: The value to assign to the max_total_count property of this QueryDetails. :type max_total_count: int :param time_filter: The value to assign to the time_filter property of this QueryDetails. :type time_filter: oci.log_analytics.models.TimeRange :param scope_filters: The value to assign to the scope_filters property of this QueryDetails. :type scope_filters: list[oci.log_analytics.models.ScopeFilter] :param query_timeout_in_seconds: The value to assign to the query_timeout_in_seconds property of this QueryDetails. :type query_timeout_in_seconds: int :param should_run_async: The value to assign to the should_run_async property of this QueryDetails. :type should_run_async: bool :param async_mode: The value to assign to the async_mode property of this QueryDetails. Allowed values for this property are: "FOREGROUND", "BACKGROUND" :type async_mode: str :param should_include_total_count: The value to assign to the should_include_total_count property of this QueryDetails. :type should_include_total_count: bool :param should_include_columns: The value to assign to the should_include_columns property of this QueryDetails. :type should_include_columns: bool :param should_include_fields: The value to assign to the should_include_fields property of this QueryDetails. :type should_include_fields: bool :param should_use_acceleration: The value to assign to the should_use_acceleration property of this QueryDetails. :type should_use_acceleration: bool """ self.swagger_types = { 'compartment_id': 'str', 'compartment_id_in_subtree': 'bool', 'saved_search_id': 'str', 'query_string': 'str', 'sub_system': 'str', 'max_total_count': 'int', 'time_filter': 'TimeRange', 'scope_filters': 'list[ScopeFilter]', 'query_timeout_in_seconds': 'int', 'should_run_async': 'bool', 'async_mode': 'str', 'should_include_total_count': 'bool', 'should_include_columns': 'bool', 'should_include_fields': 'bool', 'should_use_acceleration': 'bool' } self.attribute_map = { 'compartment_id': 'compartmentId', 'compartment_id_in_subtree': 'compartmentIdInSubtree', 'saved_search_id': 'savedSearchId', 'query_string': 'queryString', 'sub_system': 'subSystem', 'max_total_count': 'maxTotalCount', 'time_filter': 'timeFilter', 'scope_filters': 'scopeFilters', 'query_timeout_in_seconds': 'queryTimeoutInSeconds', 'should_run_async': 'shouldRunAsync', 'async_mode': 'asyncMode', 'should_include_total_count': 'shouldIncludeTotalCount', 'should_include_columns': 'shouldIncludeColumns', 'should_include_fields': 'shouldIncludeFields', 'should_use_acceleration': 'shouldUseAcceleration' } self._compartment_id = None self._compartment_id_in_subtree = None self._saved_search_id = None self._query_string = None self._sub_system = None self._max_total_count = None self._time_filter = None self._scope_filters = None self._query_timeout_in_seconds = None self._should_run_async = None self._async_mode = None self._should_include_total_count = None self._should_include_columns = None self._should_include_fields = None self._should_use_acceleration = None @property def compartment_id(self): """ **[Required]** Gets the compartment_id of this QueryDetails. Compartment Identifier `OCID]`__. __ https://docs.cloud.oracle.com/iaas/Content/General/Concepts/identifiers.htm :return: The compartment_id of this QueryDetails. :rtype: str """ return self._compartment_id @compartment_id.setter def compartment_id(self, compartment_id): """ Sets the compartment_id of this QueryDetails. Compartment Identifier `OCID]`__. __ https://docs.cloud.oracle.com/iaas/Content/General/Concepts/identifiers.htm :param compartment_id: The compartment_id of this QueryDetails. :type: str """ self._compartment_id = compartment_id @property def compartment_id_in_subtree(self): """ Gets the compartment_id_in_subtree of this QueryDetails. Flag to search all child compartments of the compartment Id specified in the compartmentId query parameter. :return: The compartment_id_in_subtree of this QueryDetails. :rtype: bool """ return self._compartment_id_in_subtree @compartment_id_in_subtree.setter def compartment_id_in_subtree(self, compartment_id_in_subtree): """ Sets the compartment_id_in_subtree of this QueryDetails. Flag to search all child compartments of the compartment Id specified in the compartmentId query parameter. :param compartment_id_in_subtree: The compartment_id_in_subtree of this QueryDetails. :type: bool """ self._compartment_id_in_subtree = compartment_id_in_subtree @property def saved_search_id(self): """ Gets the saved_search_id of this QueryDetails. Saved search OCID for this query if known. :return: The saved_search_id of this QueryDetails. :rtype: str """ return self._saved_search_id @saved_search_id.setter def saved_search_id(self, saved_search_id): """ Sets the saved_search_id of this QueryDetails. Saved search OCID for this query if known. :param saved_search_id: The saved_search_id of this QueryDetails. :type: str """ self._saved_search_id = saved_search_id @property def query_string(self): """ **[Required]** Gets the query_string of this QueryDetails. Query to perform. Must conform to logging analytic querylanguage syntax. Syntax errors will be returned if present. :return: The query_string of this QueryDetails. :rtype: str """ return self._query_string @query_string.setter def query_string(self, query_string): """ Sets the query_string of this QueryDetails. Query to perform. Must conform to logging analytic querylanguage syntax. Syntax errors will be returned if present. :param query_string: The query_string of this QueryDetails. :type: str """ self._query_string = query_string @property def sub_system(self): """ **[Required]** Gets the sub_system of this QueryDetails. Default subsystem to qualify fields with in the queryString if not specified. Allowed values for this property are: "LOG" :return: The sub_system of this QueryDetails. :rtype: str """ return self._sub_system @sub_system.setter def sub_system(self, sub_system): """ Sets the sub_system of this QueryDetails. Default subsystem to qualify fields with in the queryString if not specified. :param sub_system: The sub_system of this QueryDetails. :type: str """ allowed_values = ["LOG"] if not value_allowed_none_or_none_sentinel(sub_system, allowed_values): raise ValueError( "Invalid value for `sub_system`, must be None or one of {0}" .format(allowed_values) ) self._sub_system = sub_system @property def max_total_count(self): """ Gets the max_total_count of this QueryDetails. Maximum number of results to count. Note a maximum of 2001 will be enforced; that is, actualMaxTotalCountUsed = Math.min(maxTotalCount, 2001). :return: The max_total_count of this QueryDetails. :rtype: int """ return self._max_total_count @max_total_count.setter def max_total_count(self, max_total_count): """ Sets the max_total_count of this QueryDetails. Maximum number of results to count. Note a maximum of 2001 will be enforced; that is, actualMaxTotalCountUsed = Math.min(maxTotalCount, 2001). :param max_total_count: The max_total_count of this QueryDetails. :type: int """ self._max_total_count = max_total_count @property def time_filter(self): """ Gets the time_filter of this QueryDetails. :return: The time_filter of this QueryDetails. :rtype: oci.log_analytics.models.TimeRange """ return self._time_filter @time_filter.setter def time_filter(self, time_filter): """ Sets the time_filter of this QueryDetails. :param time_filter: The time_filter of this QueryDetails. :type: oci.log_analytics.models.TimeRange """ self._time_filter = time_filter @property def scope_filters(self): """ Gets the scope_filters of this QueryDetails. List of filters to be applied when the query executes. More than one filter per field is not permitted. :return: The scope_filters of this QueryDetails. :rtype: list[oci.log_analytics.models.ScopeFilter] """ return self._scope_filters @scope_filters.setter def scope_filters(self, scope_filters): """ Sets the scope_filters of this QueryDetails. List of filters to be applied when the query executes. More than one filter per field is not permitted. :param scope_filters: The scope_filters of this QueryDetails. :type: list[oci.log_analytics.models.ScopeFilter] """ self._scope_filters = scope_filters @property def query_timeout_in_seconds(self): """ Gets the query_timeout_in_seconds of this QueryDetails. Amount of time, in seconds, allowed for a query to execute. If this time expires before the query is complete, any partial results will be returned. :return: The query_timeout_in_seconds of this QueryDetails. :rtype: int """ return self._query_timeout_in_seconds @query_timeout_in_seconds.setter def query_timeout_in_seconds(self, query_timeout_in_seconds): """ Sets the query_timeout_in_seconds of this QueryDetails. Amount of time, in seconds, allowed for a query to execute. If this time expires before the query is complete, any partial results will be returned. :param query_timeout_in_seconds: The query_timeout_in_seconds of this QueryDetails. :type: int """ self._query_timeout_in_seconds = query_timeout_in_seconds @property def should_run_async(self): """ Gets the should_run_async of this QueryDetails. Option to run the query asynchronously. This will lead to a LogAnalyticsQueryJobWorkRequest being submitted and the {workRequestId} will be returned to use for fetching the results. :return: The should_run_async of this QueryDetails. :rtype: bool """ return self._should_run_async @should_run_async.setter def should_run_async(self, should_run_async): """ Sets the should_run_async of this QueryDetails. Option to run the query asynchronously. This will lead to a LogAnalyticsQueryJobWorkRequest being submitted and the {workRequestId} will be returned to use for fetching the results. :param should_run_async: The should_run_async of this QueryDetails. :type: bool """ self._should_run_async = should_run_async @property def async_mode(self): """ Gets the async_mode of this QueryDetails. Execution mode for the query if running asynchronously i.e (shouldRunAsync is set to true). Allowed values for this property are: "FOREGROUND", "BACKGROUND" :return: The async_mode of this QueryDetails. :rtype: str """ return self._async_mode @async_mode.setter def async_mode(self, async_mode): """ Sets the async_mode of this QueryDetails. Execution mode for the query if running asynchronously i.e (shouldRunAsync is set to true). :param async_mode: The async_mode of this QueryDetails. :type: str """ allowed_values = ["FOREGROUND", "BACKGROUND"] if not value_allowed_none_or_none_sentinel(async_mode, allowed_values): raise ValueError( "Invalid value for `async_mode`, must be None or one of {0}" .format(allowed_values) ) self._async_mode = async_mode @property def should_include_total_count(self): """ Gets the should_include_total_count of this QueryDetails. Include the total number of results from the query. Note, this value will always be equal to or less than maxTotalCount. :return: The should_include_total_count of this QueryDetails. :rtype: bool """ return self._should_include_total_count @should_include_total_count.setter def should_include_total_count(self, should_include_total_count): """ Sets the should_include_total_count of this QueryDetails. Include the total number of results from the query. Note, this value will always be equal to or less than maxTotalCount. :param should_include_total_count: The should_include_total_count of this QueryDetails. :type: bool """ self._should_include_total_count = should_include_total_count @property def should_include_columns(self): """ Gets the should_include_columns of this QueryDetails. Include columns in response :return: The should_include_columns of this QueryDetails. :rtype: bool """ return self._should_include_columns @should_include_columns.setter def should_include_columns(self, should_include_columns): """ Sets the should_include_columns of this QueryDetails. Include columns in response :param should_include_columns: The should_include_columns of this QueryDetails. :type: bool """ self._should_include_columns = should_include_columns @property def should_include_fields(self): """ Gets the should_include_fields of this QueryDetails. Include fields in response :return: The should_include_fields of this QueryDetails. :rtype: bool """ return self._should_include_fields @should_include_fields.setter def should_include_fields(self, should_include_fields): """ Sets the should_include_fields of this QueryDetails. Include fields in response :param should_include_fields: The should_include_fields of this QueryDetails. :type: bool """ self._should_include_fields = should_include_fields @property def should_use_acceleration(self): """ Gets the should_use_acceleration of this QueryDetails. Controls if query should ignore pre-calculated results if available and only use raw data. If set and no acceleration data is found it will fallback to raw data. :return: The should_use_acceleration of this QueryDetails. :rtype: bool """ return self._should_use_acceleration @should_use_acceleration.setter def should_use_acceleration(self, should_use_acceleration): """ Sets the should_use_acceleration of this QueryDetails. Controls if query should ignore pre-calculated results if available and only use raw data. If set and no acceleration data is found it will fallback to raw data. :param should_use_acceleration: The should_use_acceleration of this QueryDetails. :type: bool """ self._should_use_acceleration = should_use_acceleration def __repr__(self): return formatted_flat_dict(self) def __eq__(self, other): if other is None: return False return self.__dict__ == other.__dict__ def __ne__(self, other): return not self == other
35.600746
245
0.672466
18,542
0.971701
0
0
18,572
0.973273
0
0
13,263
0.695053
3df0f23a4341291aa332900c1b4adf982ac1f716
2,740
py
Python
moist.py
phiriv/moisture_sensor
1e6a5d967ab639c67bae03847bd58ede31bde564
[ "MIT" ]
null
null
null
moist.py
phiriv/moisture_sensor
1e6a5d967ab639c67bae03847bd58ede31bde564
[ "MIT" ]
null
null
null
moist.py
phiriv/moisture_sensor
1e6a5d967ab639c67bae03847bd58ede31bde564
[ "MIT" ]
null
null
null
Script to read temperature data from the DHT11: # Importeer Adafruit DHT bibliotheek. import Adafruit_DHT import time als = True while als: humidity, temperature = Adafruit_DHT.read_retry(Adafruit_DHT.DHT11, 4) #on gpio pin 4 or pin 7 if humidity is not None and temperature is not None: humidity = round(humidity, 2) temperature = round(temperature, 2) print 'Temperature = {0:0.1f}*C Humidity = {1:0.1f}%'.format(temperature, humidity) else: print 'can not connect to the sensor!' time.sleep(60) # read data every minute Update from the Script above with modification of writing the data to a CSV.file: # Importeer Adafruit DHT bibliotheek. #time.strftime("%I:%M:%S") import Adafruit_DHT import time import csv import sys csvfile = "temp.csv" als = True while als: humidity, temperature = Adafruit_DHT.read_retry(Adafruit_DHT.DHT11, 4) # gpio pin 4 or pin number 7 if humidity is not None and temperature is not None: humidity = round(humidity, 2) temperature = round(temperature, 2) print 'Temperature = {0:0.1f}*C Humidity = {1:0.1f}%'.format(temperature, humidity) else: print 'can not connect to the sensor!' timeC = time.strftime("%I")+':' +time.strftime("%M")+':'+time.strftime("%S") data = [temperature, timeC] with open(csvfile, "a")as output: writer = csv.writer(output, delimiter=",", lineterminator = '\n') writer.writerow(data) time.sleep(6) # update script every 60 seconds Script to read data from the CSV and display it in a graph: import matplotlib.pyplot as plt import matplotlib.dates as mdates import matplotlib.animation as animation from datetime import datetime fig = plt.figure() rect = fig.patch rect.set_facecolor('#0079E7') def animate(i): ftemp = 'temp.csv' fh = open(ftemp) temp = list() timeC = list() for line in fh: pieces = line.split(',') degree = pieces[0] timeB= pieces[1] timeA= timeB[:8] #print timeA time_string = datetime.strptime(timeA,'%H:%M:%S') #print time_string try: temp.append(float(degree)) timeC.append(time_string) except: print "dont know" ax1 = fig.add_subplot(1,1,1,axisbg='white') ax1.xaxis.set_major_formatter(mdates.DateFormatter('%H:%M:%S')) ax1.clear() ax1.plot(timeC,temp, 'c', linewidth = 3.3) plt.title('Temperature') plt.xlabel('Time') ani = animation.FuncAnimation(fig, animate, interval = 6000) plt.show() */ void setup() { } void loop() { }
30.10989
104
0.622628
0
0
0
0
0
0
0
0
526
0.191971
3df10878e5646297672b7b72bacac47ff05e414e
4,168
py
Python
route_distances/utils/routes.py
general-synthesis/route-distances
2bc09a607bd7fa488357dcee96325669d8295f90
[ "MIT" ]
null
null
null
route_distances/utils/routes.py
general-synthesis/route-distances
2bc09a607bd7fa488357dcee96325669d8295f90
[ "MIT" ]
null
null
null
route_distances/utils/routes.py
general-synthesis/route-distances
2bc09a607bd7fa488357dcee96325669d8295f90
[ "MIT" ]
null
null
null
""" Module containing helper routines for routes """ from typing import Dict, Any, Set, List, Tuple import numpy as np from route_distances.utils.type_utils import StrDict def calc_depth(tree_dict: StrDict, depth: int = 0) -> int: """ Calculate the depth of a route, recursively :param tree_dict: the route :param depth: the current depth, don't specify for route """ children = tree_dict.get("children", []) if children: return max(calc_depth(child, depth + 1) for child in children) return depth def calc_llr(tree_dict: StrDict) -> int: """ Calculate the longest linear route for a synthetic route :param tree_dict: the route """ return calc_depth(tree_dict) // 2 def extract_leaves( tree_dict: StrDict, ) -> Set[str]: """ Extract a set with the SMILES of all the leaf nodes, i.e. starting material :param tree_dict: the route :return: a set of SMILE strings """ def traverse(tree_dict: StrDict, leaves: Set[str]) -> None: children = tree_dict.get("children", []) if children: for child in children: traverse(child, leaves) else: leaves.add(tree_dict["smiles"]) leaves = set() traverse(tree_dict, leaves) return leaves def is_solved(route: StrDict) -> bool: """ Find if a route is solved, i.e. if all starting material is in stock. To be accurate, each molecule node need to have an extra boolean property called `in_stock`. :param route: the route to analyze """ def find_leaves_not_in_stock(tree_dict: StrDict) -> None: children = tree_dict.get("children", []) if not children and not tree_dict.get("in_stock", True): raise ValueError(f"child not in stock {tree_dict}") elif children: for child in children: find_leaves_not_in_stock(child) try: find_leaves_not_in_stock(route) except ValueError: return False return True def route_score( tree_dict: StrDict, mol_costs: Dict[bool, float] = None, average_yield=0.8, reaction_cost=1.0, ) -> float: """ Calculate the score of route using the method from (Badowski et al. Chem Sci. 2019, 10, 4640). The reaction cost is constant and the yield is an average yield. The starting materials are assigned a cost based on whether they are in stock or not. By default starting material in stock is assigned a cost of 1 and starting material not in stock is assigned a cost of 10. To be accurate, each molecule node need to have an extra boolean property called `in_stock`. :param tree_dict: the route to analyze :param mol_costs: the starting material cost :param average_yield: the average yield, defaults to 0.8 :param reaction_cost: the reaction cost, defaults to 1.0 :return: the computed cost """ mol_cost = mol_costs or {True: 1, False: 10} reactions = tree_dict.get("children", []) if not reactions: return mol_cost[tree_dict.get("in_stock", True)] child_sum = sum( 1 / average_yield * route_score(child) for child in reactions[0]["children"] ) return reaction_cost + child_sum def route_scorer(routes: List[StrDict]) -> Tuple[List[StrDict], List[float]]: """ Scores and sort a list of routes. Returns a tuple of the sorted routes and their costs. :param routes: the routes to score :return: the sorted routes and their costs """ scores = np.asarray([route_score(route) for route in routes]) sorted_idx = np.argsort(scores) routes = [routes[idx] for idx in sorted_idx] return routes, scores[sorted_idx].tolist() def route_ranks(scores: List[float]) -> List[int]: """ Compute the rank of route scores. Rank starts at 1 :param scores: the route scores :return: a list of ranks for each route """ ranks = [1] for idx in range(1, len(scores)): if abs(scores[idx] - scores[idx - 1]) < 1e-8: ranks.append(ranks[idx - 1]) else: ranks.append(ranks[idx - 1] + 1) return ranks
28.744828
84
0.651631
0
0
0
0
0
0
0
0
1,910
0.458253
3df45b763adea0ed603bc91664b6febfe07b4afe
1,920
py
Python
src/yafowil/tests/__init__.py
2silver/yafowil
b9776503f98f145f7aaaa4f61b73e238c92c534c
[ "BSD-3-Clause" ]
8
2015-12-15T21:14:00.000Z
2019-11-11T22:13:18.000Z
src/yafowil/tests/__init__.py
2silver/yafowil
b9776503f98f145f7aaaa4f61b73e238c92c534c
[ "BSD-3-Clause" ]
21
2015-11-21T10:12:12.000Z
2021-06-03T06:51:53.000Z
src/yafowil/tests/__init__.py
2silver/yafowil
b9776503f98f145f7aaaa4f61b73e238c92c534c
[ "BSD-3-Clause" ]
5
2016-11-23T13:41:52.000Z
2020-06-08T18:21:00.000Z
from __future__ import print_function from node.tests import NodeTestCase from yafowil.base import factory from yafowil.compat import IS_PY2 import lxml.etree as etree import sys import unittest import yafowil.common import yafowil.compound import yafowil.persistence import yafowil.table if not IS_PY2: from importlib import reload class YafowilTestCase(NodeTestCase): def setUp(self): super(YafowilTestCase, self).setUp() factory.clear() reload(yafowil.persistence) reload(yafowil.common) reload(yafowil.compound) reload(yafowil.table) def fxml(xml): et = etree.fromstring(xml) return etree.tostring(et, pretty_print=True).decode('utf-8') def pxml(xml): print(fxml(xml)) def test_suite(): from yafowil.tests import test_base from yafowil.tests import test_common from yafowil.tests import test_compound from yafowil.tests import test_controller from yafowil.tests import test_persistence from yafowil.tests import test_resources from yafowil.tests import test_table from yafowil.tests import test_tsf from yafowil.tests import test_utils suite = unittest.TestSuite() suite.addTest(unittest.findTestCases(test_base)) suite.addTest(unittest.findTestCases(test_common)) suite.addTest(unittest.findTestCases(test_compound)) suite.addTest(unittest.findTestCases(test_controller)) suite.addTest(unittest.findTestCases(test_persistence)) suite.addTest(unittest.findTestCases(test_resources)) suite.addTest(unittest.findTestCases(test_table)) suite.addTest(unittest.findTestCases(test_tsf)) suite.addTest(unittest.findTestCases(test_utils)) return suite def run_tests(): from zope.testrunner.runner import Runner runner = Runner(found_suites=[test_suite()]) runner.run() sys.exit(int(runner.failed)) if __name__ == '__main__': run_tests()
25.945946
64
0.752083
257
0.133854
0
0
0
0
0
0
17
0.008854
3df5aa98eb0d85a8d21eb7afce122f2c8fabce6b
1,350
py
Python
tools/foolbox/bim_attack.py
GianmarcoMidena/adversarial-ML-benchmarker
43cfcfdac36da88d37b12d956ea8735fd27ca4a9
[ "MIT" ]
null
null
null
tools/foolbox/bim_attack.py
GianmarcoMidena/adversarial-ML-benchmarker
43cfcfdac36da88d37b12d956ea8735fd27ca4a9
[ "MIT" ]
null
null
null
tools/foolbox/bim_attack.py
GianmarcoMidena/adversarial-ML-benchmarker
43cfcfdac36da88d37b12d956ea8735fd27ca4a9
[ "MIT" ]
null
null
null
from foolbox.attacks import LinfinityBasicIterativeAttack from foolbox.criteria import Misclassification from foolbox.distances import MSE from tools.foolbox.adversarial_attack import AdversarialAttack class BIMAttack(AdversarialAttack): def __init__(self, model, step_size_iter=0.05, max_perturbation=0.3, n_iterations=10, min_perturbation=None, binary_search=True, random_start=False, return_early=True, criterion=Misclassification(), distance=MSE): super().__init__(attack_method_def=LinfinityBasicIterativeAttack, model=model, min_perturbation=min_perturbation, criterion=criterion, distance=distance) self._binary_search = binary_search self._step_size_iter = step_size_iter self._n_iterations = n_iterations self._random_start = random_start self._return_early = return_early self._max_perturbation = max_perturbation def apply_attack_method(self, x, y=None): return self.attack_method(x, labels=y, unpack=True, binary_search=self._binary_search, epsilon=self._max_perturbation, stepsize=self._step_size_iter, iterations=self._n_iterations, random_start=self._random_start, return_early=self._return_early)
51.923077
112
0.707407
1,144
0.847407
0
0
0
0
0
0
0
0
3df5e6a39fd0846088495ee87733d03e26f82c02
292
py
Python
Tabuada.py
tobiaspontes/ScriptsPython
21ed779e49adca500ce5815dd100f4ec999a2571
[ "MIT" ]
null
null
null
Tabuada.py
tobiaspontes/ScriptsPython
21ed779e49adca500ce5815dd100f4ec999a2571
[ "MIT" ]
null
null
null
Tabuada.py
tobiaspontes/ScriptsPython
21ed779e49adca500ce5815dd100f4ec999a2571
[ "MIT" ]
null
null
null
# Tabuada em Python def tabuada(x): for i in range(10): print('{} x {} = {}'.format(x, (i + 1), x * (i + 1))) print() if __name__ == '__main__': print(9 ) nro = int(input('Entre com um número: ')) print(f'\n\033[1;32mTabuada do {nro}'+'\n') tabuada(nro)
20.857143
61
0.513699
0
0
0
0
0
0
0
0
102
0.348123
3df87a91ac53ca2678893bfc4dee7db4ace5bf95
3,235
py
Python
radix_tree.py
mouradmourafiq/data-analysis
1df2ca020a554f1fdab7cc9e53115e249cc199ac
[ "BSD-2-Clause" ]
17
2015-04-01T12:11:31.000Z
2022-03-15T16:44:01.000Z
radix_tree.py
mouradmourafiq/data-analysis
1df2ca020a554f1fdab7cc9e53115e249cc199ac
[ "BSD-2-Clause" ]
null
null
null
radix_tree.py
mouradmourafiq/data-analysis
1df2ca020a554f1fdab7cc9e53115e249cc199ac
[ "BSD-2-Clause" ]
17
2015-01-14T14:59:40.000Z
2021-07-01T05:46:14.000Z
# -*- coding: utf-8 -*- ''' Created on Dec 01, 2012 @author: Mourad Mourafiq About: This is an attempt to implement the radix tree algo. Features : -> insert -> remove -> search ''' NOK = "{'':[]}" class Prefixer(): def __init__(self): self.__data = {} def __repr__(self): return 'Prefixer(%s)' % (self.__data,) def __eq__(self, other): return self.__data == other.__data def get_data(self): return self.__data def insert(self, word, item_id): node = self.__data while word: prefix, key = self.longest_prefix(word, node.keys()) if not prefix: break len_prefix = len(prefix) if prefix != key: # split key into prefix:suffix, move data suffix = key[len_prefix:] current_node = node[key] node[prefix] = {suffix: current_node} del node[key] word = word[len_prefix:] node = node[prefix] if word: node[word] = eval(NOK) node[word][''].append(item_id) else: try: node[word].append(item_id) except: node[word] = [] node[word].append(item_id) return True def remove(self, word, item_id): node = self.__data while word: prefix, key = self.longest_prefix(word, node.keys()) if not prefix: return False node = node.get(prefix, None) if not node: return False word = word[len(prefix):] try: node[''].remove(item_id) return True except: return False def _search_dico(self, word): node = self.__data while word: prefix, key = self.longest_prefix(word, node.keys()) if not prefix: return False if not key: return False if prefix != key: if prefix == word: return node[key] else: return False node = node[prefix] word = word[len(prefix):] return node def search(self, word): dico = self._search_dico(word) if dico != False: return self.traverse_dico(dico) return [] @staticmethod def traverse_dico(dico): results = [] for key, value in dico.iteritems(): if key == '': results += value else: results += Prefixer.traverse_dico(value) return results @staticmethod def longest_prefix(word, candidates): """ return the longest prefix match between word and any of the candidates, if any. Only one candidate will much. """ if word: wc = word[0] for c in candidates: if c.startswith(wc): for i in reversed(xrange(1, min(len(word), len(c)) + 1)): if c.startswith(word[:i]): return (word[:i], c) return ('', None)
27.415254
77
0.483462
3,018
0.932921
0
0
785
0.242658
0
0
409
0.12643
3df8c0e29455e554abfe1f3cc62c34726c6ded0b
1,264
py
Python
Python/PythonOOP/animals.py
JosephAMumford/CodingDojo
505be74d18d7a8f41c4b3576ca050b97f840f0a3
[ "MIT" ]
2
2018-08-18T15:14:45.000Z
2019-10-16T16:14:13.000Z
Python/PythonOOP/animals.py
JosephAMumford/CodingDojo
505be74d18d7a8f41c4b3576ca050b97f840f0a3
[ "MIT" ]
null
null
null
Python/PythonOOP/animals.py
JosephAMumford/CodingDojo
505be74d18d7a8f41c4b3576ca050b97f840f0a3
[ "MIT" ]
6
2018-05-05T18:13:05.000Z
2021-05-20T11:32:48.000Z
class Animal(object): def __init__(self,name,health): self.name = name self.health = 50 def walk(self): self.health = self.health - 1 return self def run(self): self.health = self.health - 5 return self def display_health(self): print "Health: " + str(self.health) return self # Create instance of Animal animal1 = Animal("Edgar",30) animal1.walk().walk().walk().run().run().display_health() class Dog(Animal): def pet(self): self.health = self.health + 5 return self # Create instance of Dog dog1 = Dog("Raspberry",150) dog1.walk().walk().walk().run().run().pet().display_health() class Dragon(Animal): def fly(self): self.health = self.health - 10 return self def display_health(self): print "I am a Dragon" return self # Create instance of Dragon dragon1 = Dragon("Phantoon", 500) dragon1.walk().run().fly().fly().fly().display_health() # Create new Animal animal2 = Animal("Probos",200) #animal2.pet() #AttributeError: 'Animal' object has no attribute 'pet' #animal2.fly() #AttributeError: 'Animal' object has no attribute 'fly' animal2.display_health() #Health: 50 - does not say "I am a Dragon"
22.175439
60
0.630538
640
0.506329
0
0
0
0
0
0
338
0.267405
3dfa41325fc23f6087b7a1ae8181579baa35af0a
17,915
py
Python
ai4water/preprocessing/transformations/_wrapper.py
moonson619/AI4Water-1
285d46824502b6a787e42570b72432f4f6acf45e
[ "MIT" ]
17
2021-05-21T13:01:52.000Z
2022-03-19T15:17:10.000Z
ai4water/preprocessing/transformations/_wrapper.py
moonson619/AI4Water-1
285d46824502b6a787e42570b72432f4f6acf45e
[ "MIT" ]
3
2021-10-31T22:40:28.000Z
2021-11-08T02:28:35.000Z
ai4water/preprocessing/transformations/_wrapper.py
moonson619/AI4Water-1
285d46824502b6a787e42570b72432f4f6acf45e
[ "MIT" ]
7
2021-08-06T07:27:50.000Z
2022-01-26T00:38:32.000Z
from typing import Union, List, Dict import numpy as np import pandas as pd from ai4water.utils.utils import jsonize, deepcopy_dict_without_clone from ai4water.preprocessing.transformations import Transformation class Transformations(object): """ While the [Transformation][ai4water.preprocessing.transformations.Transformation] class is useful to apply a single transformation to a single data source, this class is helpful to apply multple transformations to a single data or multiple transformations to multiple data. This class is especially designed to be applied as part of `model` inside the `fit`, `predict` or `evaluate` methods. The `fit_transform` method should be applied before feeding the data to the algorithm and `inverse_transform` method should be called after algorithm has worked with data. Examples: >>> import numpy as np >>> from ai4water.preprocessing.transformations import Transformations >>> x = np.arange(50).reshape(25, 2) >>> transformer = Transformations(['a', 'b'], config=['minmax', 'zscore']) >>> x_ = transformer.fit_transform(x) >>> _x = transformer.inverse_transform(x_) Apply multiple transformations on multiple arrays which are passed as list >>> transformer = Transformations([['a', 'b'], ['a', 'b']], config=['minmax', 'zscore']) >>> x1 = np.arange(50).reshape(25, 2) >>> x2 = np.arange(50, 100).reshape(25, 2) >>> x1_ = transformer.fit_transform([x1, x2]) >>> _x1 = transformer.inverse_transform(x1_) We can also do more complicated stuff as following >>> transformer = Transformations({'x1': ['a', 'b'], 'x2': ['a', 'b']}, config={'x1': ['minmax', 'zscore'], 'x2': [{'method': 'log', 'features': ['a', 'b']}, {'method': 'robust', 'features': ['a', 'b']}] }) >>> x1 = np.arange(20).reshape(10, 2) >>> x2 = np.arange(100, 120).reshape(10, 2) >>> x = {'x1': x1, 'x2': x2} >>> x_ = transformer.fit_transform(x) >>> _x = transformer.inverse_transform(x_) In above example we apply `minmax` and `zscore` transformations on x1 and `log` and `robust` transformations on x2 array """ def __init__( self, feature_names: Union[list, dict], config: Union[str, list, dict] = None, ): """ Arguments: feature_names: names of features in data config: Determines the type of transformation to be applied on data. It can be one of the following types - `string` when you want to apply single transformation ```python >>> config='minmax' ``` - `dict`: to pass additional arguments to the [Transformation][ai4water.preprocessing.Transformation] class ```python >>> config = {"method": 'log', 'treat_negatives': True, 'features': ['features']} ``` - `list` when we want to apply multiple transformations ```python >>> ['minmax', 'zscore'] ``` or ```python >>> [{"method": 'log', 'treat_negatives': True, 'features': ['features']}, >>> {'method': 'sqrt', 'treat_negatives': True}] ``` """ self.names = feature_names self.t_config = config def _fetch_transformation(self, data): config = self.t_config if isinstance(data, list): if isinstance(config, str): config = [config for _ in range(len(data))] elif isinstance(data, dict): if isinstance(config, str): config = {k:config for k in data.keys()} return config def _check_features(self): if self.is_numpy_: assert isinstance(self.names, list), f""" feature_names are of type {type(self.names)}""" elif self.is_list_: for n in self.names: assert isinstance(n, list), f""" feature_names {type(n)} don't match data""" elif self.is_dict_: assert isinstance(self.names, dict), f""" feature_names are of type {type(self.names)}""" for src_name, n in self.names.items(): assert n.__class__.__name__ in ["ListWrapper", 'list'] return def fit_transform(self, data:Union[np.ndarray, List, Dict]): """Transforms the data according the the `config`. Arguments: data: The data on which to apply transformations. It can be one of following - a (2d or 3d) numpy array - a list of numpy arrays - a dictionary of numpy arrays Returns: The transformed data which has same type and dimensions as the input data """ setattr(self, 'is_numpy_', False) setattr(self, 'is_list_', False) setattr(self, 'is_dict_', False) setattr(self, 'scalers_', {}) if self.t_config is None: # if no transformation then just return the data as it is return data orignal_data_type = data.__class__.__name__ if isinstance(data, np.ndarray): setattr(self, 'is_numpy_', True) elif isinstance(data, list): setattr(self, 'is_list_', True) elif isinstance(data, dict): setattr(self, 'is_dict_', True) else: raise ValueError(f"invalid data of type {data.__class__.__name__}") # first check that data matches config self._check_features() # then apply transformation data = self._fit_transform(data) # now pack it in original form assert data.__class__.__name__ == orignal_data_type, f""" type changed from {orignal_data_type} to {data.__class__.__name__} """ #self._assert_same_dim(self, orignal_data, data) return data def _transform_2d(self, data, columns, transformation=None, key="5"): """performs transformation on single data 2D source""" # it is better to make a copy here because all the operations on data happen after this. data = data.copy() scalers = {} if transformation: if isinstance(transformation, dict): transformer = Transformation(**transformation) data = transformer.fit_transform(pd.DataFrame(data, columns=columns)) scalers[key] = transformer.config() # we want to apply multiple transformations elif isinstance(transformation, list): for idx, trans in enumerate(transformation): if isinstance(trans, str): transformer = Transformation(method=trans) data = transformer.fit_transform(pd.DataFrame(data, columns=columns)) scalers[f'{key}_{trans}_{idx}'] = transformer.config() elif trans['method'] is not None: transformer = Transformation(**trans) data = transformer.fit_transform(pd.DataFrame(data, columns=columns)) scalers[f'{key}_{trans["method"]}_{idx}'] = transformer.config() else: assert isinstance(transformation, str) transformer = Transformation(method=transformation) data = transformer.fit_transform(pd.DataFrame(data, columns=columns)) scalers[key] = transformer.config() data = data.values self.scalers_.update(scalers) return data def __fit_transform(self, data, feature_names, transformation=None, key="5"): """performs transformation on single data source In case of 3d array, the shape is supposed to be following (num_examples, time_steps, num_features) Therefore, each time_step is extracted and transfomred individually for example with time_steps of 2, two 2d arrays will be extracted and transformed individually (num_examples, 0,num_features), (num_examples, 1, num_features) """ if data.ndim == 3: _data = np.full(data.shape, np.nan) for time_step in range(data.shape[1]): _data[:, time_step] = self._transform_2d(data[:, time_step], feature_names, transformation, key=f"{key}_{time_step}") else: _data = self._transform_2d(data, feature_names, transformation, key=key) return _data def _fit_transform(self, data, key="5"): """performs transformation on every data source in data""" transformation = self._fetch_transformation(data) if self.is_numpy_: _data = self.__fit_transform(data, self.names, transformation, key) elif self.is_list_: _data = [] for idx, array in enumerate(data): _data.append(self.__fit_transform(array, self.names[idx], transformation[idx], key=f"{key}_{idx}") ) else: _data = {} for src_name, array in data.items(): _data[src_name] = self.__fit_transform(array, self.names[src_name], transformation[src_name], f"{key}_{src_name}") return _data def inverse_transform(self, data): """inverse transforms data where data can be dictionary, list or numpy array. Arguments: data: the data which is to be inverse transformed. The output of `fit_transform` method. Returns: The original data which was given to `fit_transform` method. """ if not hasattr(self, 'scalers_'): raise ValueError(f"Transformations class has not been fitted yet") return self._inverse_transform(data) def _inverse_transform(self, data, key="5"): transformation = self._fetch_transformation(data) if self.is_numpy_: data = self.__inverse_transform(data, self.names, transformation, key) elif self.is_list_: assert isinstance(data, list) _data = [] for idx, src in enumerate(data): __data = self.__inverse_transform(src, self.names[idx], transformation[idx], f'{key}_{idx}') _data.append(__data) data = _data elif self.is_dict_: assert isinstance(data, dict) _data = {} for src_name, src in data.items(): _data[src_name] = self.__inverse_transform(src, self.names[src_name], transformation[src_name], f'{key}_{src_name}') data = _data return data def __inverse_transform(self, data, feature_names, transformation, key="5"): """inverse transforms one data source which may 2d or 3d nd array""" if data.ndim == 3: _data = np.full(data.shape, np.nan) for time_step in range(data.shape[1]): _data[:, time_step] = self._inverse_transform_2d(data[:, time_step], columns=feature_names, transformation=transformation, key=f"{key}_{time_step}") else: _data = self._inverse_transform_2d(data, feature_names, key, transformation) return _data def _inverse_transform_2d(self, data, columns, key, transformation)->np.ndarray: """inverse transforms one 2d array""" data = pd.DataFrame(data.copy(), columns=columns) if transformation is not None: if isinstance(transformation, str): if key not in self.scalers_: raise ValueError(f""" key `{key}` for inverse transformation not found. Available keys are {list(self.scalers_.keys())}""") scaler = self.scalers_[key] scaler, shape = scaler, scaler['shape'] original_shape = data.shape transformer = Transformation.from_config(scaler) transformed_data = transformer.inverse_transform(data) data = transformed_data elif isinstance(transformation, list): # idx and trans both in reverse form for idx, trans in reversed(list(enumerate(transformation))): if isinstance(trans, str): scaler = self.scalers_[f'{key}_{trans}_{idx}'] scaler, shape = scaler, scaler['shape'] transformer = Transformation.from_config(scaler) data = transformer.inverse_transform(data=data) elif trans['method'] is not None: features = trans.get('features', columns) # if any of the feature in data was transformed if any([True if f in data else False for f in features]): orig_cols = data.columns # copy teh columns in the original df scaler = self.scalers_[f'{key}_{trans["method"]}_{idx}'] scaler, shape = scaler, scaler['shape'] data, dummy_features = conform_shape(data, shape, features) # get data to transform transformer = Transformation.from_config(scaler) transformed_data = transformer.inverse_transform(data=data) data = transformed_data[orig_cols] # remove the dummy data elif isinstance(transformation, dict): features = transformation.get('features', columns) if any([True if f in data else False for f in features]): orig_cols = data.columns scaler = self.scalers_[key] scaler, shape = scaler, scaler['shape'] data, dummy_features = conform_shape(data, shape, features=features) transformer = Transformation.from_config(scaler) transformed_data = transformer.inverse_transform(data=data) data = transformed_data[orig_cols] # remove the dummy data if data.__class__.__name__ == "DataFrame": data = data.values # there is no need to return DataFrame return data def config(self)->dict: """returns a python dictionary which can be used to construct this class in fitted form i.e as if the fit_transform method has already been applied. Returns: a dictionary from which `Transformations` class can be constructed """ return { 'scalers_': jsonize(self.scalers_), "feature_names": self.names, "config": self.t_config, "is_numpy_": self.is_numpy_, "is_dict_": self.is_dict_, "is_list_": self.is_list_, } @classmethod def from_config(cls, config:dict)->"Transformations": """constructs the Transformations class which may has already been fitted. """ config = deepcopy_dict_without_clone(config) transformer = cls(config.pop('feature_names'), config.pop('config')) for attr_name, attr_val in config.items(): setattr(cls, attr_name, attr_val) return transformer def conform_shape(data, shape, features=None): # if the difference is of only 1 dim, we resolve it if data.ndim > len(shape): data = np.squeeze(data, axis=-1) elif data.ndim < len(shape): data = np.expand_dims(data, axis=-1) assert data.ndim == len(shape), f"""original data had {len(shape)} wihle the new data has {data.ndim} dimensions""" # how manu dummy features we have to add to match the shape dummy_features = shape[-1] - data.shape[-1] if data.__class__.__name__ in ['DataFrame', 'Series']: # we know what features must be in data, so put them in data one by one # if they do not exist in data already if features: for f in features: if f not in data: data[f] = np.random.random(len(data)) # identify how many features to be added by shape information elif dummy_features > 0: dummy_data = pd.DataFrame(np.random.random((len(data), dummy_features))) data = pd.concat([dummy_data, data], axis=1) else: dummy_data = np.random.random((len(data), dummy_features)) data = np.concatenate([dummy_data, data], axis=1) return data, dummy_features
42.252358
121
0.547251
16,459
0.918727
0
0
422
0.023556
0
0
7,008
0.391181
3dfbbd5b64a3c6157f0b5de85518ecc1e0323285
3,684
py
Python
main/tagcn_training.py
Stanislas0/KDD_CUP_2020_MLTrack2_SPEIT
7362104002225055715f05ccfc5ee8f6ef433d50
[ "Apache-2.0" ]
18
2020-09-10T06:48:22.000Z
2022-01-25T18:22:52.000Z
main/tagcn_training.py
Stanislas0/KDD_CUP_2020_MLTrack2_SPEIT
7362104002225055715f05ccfc5ee8f6ef433d50
[ "Apache-2.0" ]
null
null
null
main/tagcn_training.py
Stanislas0/KDD_CUP_2020_MLTrack2_SPEIT
7362104002225055715f05ccfc5ee8f6ef433d50
[ "Apache-2.0" ]
null
null
null
import os import dgl import time import argparse import numpy as np import torch as th import distutils.util import torch.nn.functional as F import utils import models import data_loader os.environ["CUDA_VISIBLE_DEVICES"] = '0' dev = th.device('cuda' if th.cuda.is_available() else 'cpu') if __name__ == '__main__': argparser = argparse.ArgumentParser("training") argparser.add_argument('--adj-path', type=str, default='../data/adj_matrix_formal_stage.pkl') argparser.add_argument('--feat-path', type=str, default='../data/feature_formal_stage.npy') argparser.add_argument('--label-path', type=str, default='../data/train_labels_formal_stage.npy') argparser.add_argument('--output-dir', type=str, default='./saved_models/') argparser.add_argument('--output-name', type=str, default='tagcn_128_3.pkl') argparser.add_argument('--if-load-model', type=lambda x: bool(distutils.util.strtobool(x)), default=False) argparser.add_argument('--model-dir', type=str, default='./saved_models/') argparser.add_argument('--model-name', type=str, default='tagcn_128_3.pkl') argparser.add_argument('--num-epochs', type=int, default=5000) argparser.add_argument('--num-hidden', type=int, default=128) argparser.add_argument('--num-layers', type=int, default=3) argparser.add_argument('--lr', type=float, default=0.001) argparser.add_argument('--dropout', type=float, default=0.1) argparser.add_argument('--adj-norm', type=lambda x: bool(distutils.util.strtobool(x)), default=True) argparser.add_argument('--feat-norm', type=str, default=None) args = argparser.parse_args() print(vars(args)) dataset = data_loader.KddDataset(args.adj_path, args.feat_path, args.label_path, indices) adj = dataset.adj features = dataset.features labels = dataset.labels train_mask = dataset.train_mask val_mask = dataset.val_mask test_mask = dataset.test_mask size_raw = features.shape[0] size_reduced = size_raw - 50000 graph = dgl.DGLGraph() if args.adj_norm: adj = utils.adj_preprocess(adj) feat_norm_func = utils.feat_norm(args.feat_norm) graph.from_scipy_sparse_matrix(adj) features = th.FloatTensor(features).to(dev) features[th.where(features < -1.0)[0]] = 0 features[th.where(features > 1.0)[0]] = 0 features = feat_norm_func(features) labels = th.LongTensor(labels).to(dev) graph.ndata['features'] = features model = models.TAGCN(100, args.num_hidden, 20, args.num_layers, activation=F.leaky_relu, dropout=args.dropout) if args.if_load_model: model_states = th.load(os.path.join(args.model_dir, args.model_name), map_location=dev) model.load_state_dict(model_states) model = model.to(dev) optimizer = th.optim.Adam(model.parameters(), lr=args.lr) dur = [] for epoch in range(args.num_epochs): t0 = time.time() logits = model(graph, features).to(dev) logp = F.log_softmax(logits, 1)[:size_reduced] loss = F.nll_loss(logp[train_mask], labels[train_mask]).to(dev) optimizer.zero_grad() loss.backward() optimizer.step() dur.append(time.time() - t0) if epoch % 10 == 0: train_acc = utils.compute_acc(logp, labels, train_mask) val_acc = utils.compute_acc(logp, labels, val_mask) print('Epoch {:05d} | Loss {:.4f} | Train Acc {:.4f} | Val Acc {:.4f} ' '| Time(s) {:.4f} | GPU {:.1f} MiB'.format( epoch, loss, train_acc, val_acc, np.mean(dur), th.cuda.max_memory_allocated() / 1000000)) th.save(model.state_dict(), os.path.join(args.output_dir, args.output_name))
41.393258
114
0.683496
0
0
0
0
0
0
0
0
540
0.14658
3dfd83b71400b6e832cb757945e612ae86e6bd4c
27,127
py
Python
AltFS.py
g-mc/AltFS
4d83a928cb1f1ec127e9565b578779ec4e659dae
[ "BSD-3-Clause" ]
54
2019-02-27T15:57:27.000Z
2021-10-10T21:51:50.000Z
AltFS.py
g-mc/AltFS
4d83a928cb1f1ec127e9565b578779ec4e659dae
[ "BSD-3-Clause" ]
null
null
null
AltFS.py
g-mc/AltFS
4d83a928cb1f1ec127e9565b578779ec4e659dae
[ "BSD-3-Clause" ]
11
2019-03-01T19:07:25.000Z
2020-12-03T14:56:44.000Z
#!/usr/bin/env python """ BSD 3-Clause License Copyright (c) 2017, SafeBreach Labs All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. * Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. Alternate Fileless File System References: Author: Dor Azouri <dor.azouri@safebreach.com> Date: 2019-01-01 """ import logging import types from exceptions_ import BucketValueMissingException, \ EndOfFileReachedException, \ FileIsClosedException, \ FileNotFoundException, \ InternalStorageOperationException, \ UnsupportedProviderException from model.block import Block from model.descriptor import Descriptor import providers from providers.common.calculations import \ calculate_bits_sum, \ calculate_next_available_index, \ split_string_by_max_size from providers.common.machine_identification import \ get_machine_identification_string logging.basicConfig(level=logging.DEBUG) logger = logging.getLogger(__name__) class AltFS(object): """ Alternate Fileless File System. Base class for all usages """ class File(object): """Provides a file-descriptor-like interface for AltFS files""" def __init__(self, altfs, name): """File constructor""" self._altfs = altfs self._pointer = 0 self.name = name self._closed = False def _decorator(func): def check_closed(*args): self = args[0] if self._closed: raise FileIsClosedException return func(*args) return check_closed def _set_open(self): """Explicitly sets the file status to OPEN""" self._closed = False @_decorator def get_pointer(self): """Returns the current pointer offset in file""" return self._pointer @_decorator def set_pointer(self, position): """Sets the pointer offset in file""" if position >= self.size(): self._pointer = self.size() elif position < 0: self._pointer = 0 else: self._pointer = position @_decorator def write(self, data): """Writes the given data to file, starting from the pointer""" self._altfs.write_file(self.name, self._pointer, data) @_decorator def read(self, size): """ Returns data from file. starting from the pointer, and until the given size (in bytes) """ return self._altfs.read_file(self.name, self._pointer, size) @_decorator def seek(self, offset): """ Move the file pointer by the given offset. Offset may be negative """ self._pointer += offset @_decorator def delete(self): """ Deletes the file. The instance is not deleted, but set to CLOSED """ self._closed = True self._altfs.delete_file(self.name) @_decorator def close(self): """Closes the file""" self._closed = True @_decorator def size(self): """Returns the file size""" return self._altfs.get_size(self.name) def __str__(self): """Returns the string representation of the file instance""" return "<File: name: %s, status: %s, pointer: %s, size: %s>" % \ (self.name, "CLOSED" if self._closed else "OPEN", self._pointer, self._altfs.get_size(self.name)) def __init__(self, storage_provider_name, machine_identification_method, max_block_size, **kwargs): """ Constructor for a new AltFS. A new AltFS instance is created, given the storage provider name, the machine identification method name, and the desired maximal block size for that AltFS. Note: * Provider must reside in /providers and implement StorageProvider * Machine identification method name should be implemented in /providers/common/machine_identification.py and exported through the global METHODS dictionary. """ logger.debug("initializing AltFS with storage provider: %s, " + "machine identification method: %s" % storage_provider_name, machine_identification_method) # calculate checksum of machine identification string, used for # calculating the bucket index of the first file system block machine_identification_string = get_machine_identification_string( machine_identification_method) self._set_machine_id_checksum(machine_identification_string) # initialize desired provider self._storage_providers = AltFS._load_providers() if storage_provider_name not in self._storage_providers: raise UnsupportedProviderException(storage_provider_name) self._storage_provider = \ self._storage_providers[storage_provider_name]( machine_identification_string, **kwargs) # set the buckets count, used for the modulus hash function self._buckets_count = self._storage_provider.get_buckets_count() # set the first bucket ID, used for the fs descriptor (superblock) self._first_bucket_id = \ self._machine_id_checksum % self._buckets_count # set the max data block size self.max_block_size = max_block_size # log calculated initialization info logger.info("INIT:number of buckets (=divider): %s" % self._buckets_count) logger.info("INIT:machine identification string: %s" % machine_identification_string) logger.info("INIT:machine identification checksum: %s" % self._machine_id_checksum) logger.info("INIT:first bucket ID: %s" % self._first_bucket_id) # iterate all buckets in storage to fill the blocks mapping self._load_blocks_dict() # load the descriptor superblock/create fresh if it does not exist self._load_descriptor() # mapping of open files (volatile runtime File instances) self.files = {} def _set_machine_id_checksum(self, machine_identification_string): """Sets the calculated checksum of the machine identification string""" self._machine_id_checksum = calculate_bits_sum( machine_identification_string) @staticmethod def _load_providers(): """ Loads the available providers. Iterates provider modules in package, to dynamically obtain a list of available storage providers' names, and picks only the ones that implement the StorageProvider base class. """ storage_providers = {} for symbol_name in dir(providers): symbol = getattr(providers, symbol_name) if not isinstance(symbol, (type, types.ClassType)): continue # fill only providers, i.e classes that derive from StorageProvider if issubclass(symbol, providers.StorageProvider) and \ symbol != providers.StorageProvider: storage_providers[symbol_name] = symbol return storage_providers def _load_blocks_dict(self): """ Fills the mapping of {block_id : (bucket_id, value_id)}. Iterates through all values in all buckets in storage. Determining which of the iterated values are part of the virtual FS is provider-dependent. Note: the filling policy is naive - any exception in the storage layer is ignored, and iteration continues to next bucket. """ self._blocks_dict = {} for bucket_id in xrange(self._buckets_count): try: values = self._storage_provider.get_value_ids_in_bucket( bucket_id) except Exception as e: logger.error(e, exc_info=True) continue for value_id in values: block = self._get_block(bucket_id, value_id) self._blocks_dict[block.block_id] = (bucket_id, value_id) def _load_descriptor(self): """ Loads the descriptor instance from the superblock. Creates an empty descriptor if such block does not exist, and writes it to storage. """ self._descriptor = Descriptor() try: # try load the existing descriptor from superblock first_block_data = self._storage_provider.get_block( self._first_bucket_id, 0) block = Block.generate_block_from_packed_str(first_block_data) self._descriptor.__dict__ = block.data except BucketValueMissingException: # superblock does not exist logger.error("superblock does not exist. Creating a new empty one") # create an empty descriptor and write it as a superblock (id=0) self._write_block( self._first_bucket_id, 0, self._generate_descriptor_block()) def _get_next_available_block_id(self, count=1, blacklist=None): """ Returns the next _count_ available block IDs. Considering the IDs given in the blacklist parameter. The next ID is the lowest available (re-use) """ if blacklist is None: blacklist = [] ids = [] existing_ids = self._blocks_dict.keys() + blacklist for i in xrange(count): id_ = calculate_next_available_index(existing_ids) ids.append(id_) existing_ids.append(id_) if count == 1: return ids[0] return ids def _get_block(self, bucket_id, value_id): """ Loads the block the data from the desired value. Returns it as aBlock instance. Raises InternalStorageOperationException if provider has failed to read """ try: block = Block.generate_block_from_packed_str( self._storage_provider.get_block(bucket_id, value_id)) except Exception as e: logger.error("reading of block at (%s:%s) has failed: %s" % (bucket_id, value_id, str(e))) raise InternalStorageOperationException( InternalStorageOperationException.OPERATION_READ, str(e)) logger.debug("a block was read at (%s:%s):%s" % (bucket_id, value_id, block.__dict__)) return block def _get_block_by_id(self, block_id): """Returns a Block instance of the desired block ID.""" return self._get_block(*self._blocks_dict[block_id]) def _generate_data_termination_block(self, data="", block_id=None): """ Returns a Block instance to be used as the last data block of a file. It closes the chain of data blocks by pointing to the superblock as next block. """ new_block_id = block_id if block_id is not None else \ self._get_next_available_block_id() return Block(block_id=new_block_id, block_type=Block.TYPE_DATA, data_length=len(data), next_block_id=0, data=data) def _generate_descriptor_block(self): """ Returns a Block instance of type TYPE_DESCRIPTOR. The current descriptor object is saved to it. Note: The next block ID field is redundant so it's given a constant 1. """ return Block(block_id=0, block_type=Block.TYPE_DESCRIPTOR, data_length=len(self._descriptor.serialize()), next_block_id=1, data=self._descriptor.__dict__) def _write_block(self, bucket_id, value_id, block): """ Writes the given Block instance to the given value_id. Overrides the existing one. Returns the value ID to which the block was written. Note: if the given value ID is None, a new value is created in the given bucket, and the block is written to it Raises InternalStorageOperationException if provider failed to write """ logger.debug("writing block at (%s:%s):%s" % (bucket_id, value_id, block.__dict__)) try: value_id = self._storage_provider.write_block( bucket_id, value_id, data=block.serialize()) except Exception as e: logger.error("writing of block (id:%s) to (%s:%s) has failed: %s" % (block.block_id, bucket_id, value_id, str(e))) raise InternalStorageOperationException( InternalStorageOperationException.OPERATION_WRITE, str(e)) # add the new block mapping self._blocks_dict[block.block_id] = (bucket_id, value_id) return value_id def _get_blocks_generator(self, start_block_id): """ A generator for blocks in a linked chain. Starting from the given block ID, ending in the data termination block. """ bucket_id, value_id = self._blocks_dict[start_block_id] while True: block = self._get_block(bucket_id, value_id) if block.block_id == 0: break yield block bucket_id, value_id = self._blocks_dict[block.next_block_id] def _delete_value(self, bucket_id, value_id): """ Deletes the value in the given bucket and value IDs. Raises InternalStorageOperationException if provider failed to delete """ block = self._get_block(bucket_id, value_id) logger.debug("deleting block ID %s (%s:%s)" % (block.block_id, bucket_id, value_id)) try: self._storage_provider.delete_block(bucket_id, value_id) except Exception as e: logger.error( "deleting of block (id:%s) to (%s:%s) has failed: %s" % (block.block_id, bucket_id, value_id, str(e))) raise InternalStorageOperationException( InternalStorageOperationException.OPERATION_DELETE, str(e)) # remove the mapping of the deleted block del self._blocks_dict[block.block_id] def _delete_data_blocks(self, start_block_id, until_block_id=None): """ Delete a chain of linked blocks. Starting from the given block ID, ending in the data termination block. """ for block in list(self._get_blocks_generator(start_block_id)): if until_block_id is not None and block.block_id == until_block_id: break bucket_id, value_id = self._blocks_dict[block.block_id] self._delete_value(bucket_id, value_id) def _get_block_by_file_offset(self, file_name, offset): """ Returns a tuple of: (block, offset inside block). The block is the one in which the given offset is located """ start_block_id = self._descriptor.files_dict[file_name] position = 0 for block in self._get_blocks_generator(start_block_id): if position <= offset <= position + block.data_length: return block, offset - position position += block.data_length raise EndOfFileReachedException( "The given offset exceeds the file size") def _create_data_blocks(self, data, terminating_at=None): """ Writes a chain of data blocks to hold the given data. Optional terminating_at parameter defines the next_block_id of the last data block in the chain. If omitted, the chain ends at the superblock. """ if len(data) == 0: return [] chunks = list(split_string_by_max_size(data, self.max_block_size)) new_block_ids = self._get_next_available_block_id(count=len(chunks)) if isinstance(new_block_ids, int): new_block_ids = [new_block_ids] if terminating_at: new_block_ids.append(terminating_at) else: new_block_ids.append(self._get_next_available_block_id( count=1, blacklist=new_block_ids)) chunk = "" for chunk_id, chunk in zip(range(len(chunks)), chunks): new_block = Block(block_id=new_block_ids[chunk_id], block_type=Block.TYPE_DATA, data_length=len(chunk), next_block_id=new_block_ids[chunk_id + 1], data=chunk) bucket_id = calculate_bits_sum(chunk) % self._buckets_count self._write_block(bucket_id, None, new_block) if not terminating_at: new_block = self._generate_data_termination_block( block_id=new_block_ids[-1]) bucket_id = calculate_bits_sum(chunk) % self._buckets_count self._write_block(bucket_id, None, new_block) return new_block_ids def _update_block(self, block_id, **kwargs): logging.debug("updating block (id=%s) with kwargs:%s" % (block_id, str(kwargs))) block = self._get_block_by_id(block_id) bucket_id, value_id = self._blocks_dict[block.block_id] for k, v in kwargs.iteritems(): setattr(block, k, v) self._write_block(bucket_id, value_id, block) def create_file(self, file_name): """ Returns a File object of the given name. Note: * If a file with that name already exists, it's corresponding File instance is returned. * Otherwise, the required data blocks are written to storage, and a corresponding File instance is returned. """ if file_name in self.files: # in case a File object already exists - return it self.files[file_name]._set_open() self.files[file_name].set_pointer(0) return self.files[file_name] if file_name not in self._descriptor.files_dict: # in case file doesn't exist in storage - create it. # creating a new empty file means adding only a single data # termination block, as there are no actual data blocks yet block = self._generate_data_termination_block() # adding the required mapping needed in the descriptor: self._descriptor.add_file(file_name, block.block_id) # flushing the new descriptor after update, into storage self._write_block( self._first_bucket_id, 0, self._generate_descriptor_block()) # calculate the target bucket ID for the new block, by applying the # hash function on the file name target_bucket_id = calculate_bits_sum( file_name) % self._buckets_count # write the data termination block to the calculated bucket, # creating a new value by passing None as the value ID value_id = self._write_block( target_bucket_id, None, block) # add the new block mapping self._blocks_dict[block.block_id] = ( target_bucket_id, value_id) # in case the file exists in storage, a new File instance is created. # We also do it in case we have just created the actual file in storage self.files[file_name] = AltFS.File(self, file_name) return self.files[file_name] def delete_file(self, file_name): """ Deletes a file. Results in: * Deletion of all of the file's data blocks, including the data termination block. * Removal of the mappings of the file's blocks * Deletion of the corresponding File instance. * Removal of the file mapping from the descriptor (updates the descriptor superblock in storage) """ if file_name not in self._descriptor.files_dict: raise FileNotFoundException("Cannot delete a non-existent file") block_id = self._descriptor.files_dict[file_name] self._delete_data_blocks(block_id) del self.files[file_name] # remove the file from the descriptor object self._descriptor.remove_file(file_name) # write the update descriptor to storage self._write_block( self._first_bucket_id, 0, self._generate_descriptor_block()) def read_file(self, file_name, start, size): """ Returns the data from file given its name. Starting from given offset and up to a maximum given size. """ if file_name not in self._descriptor.files_dict: raise FileNotFoundException() data = "" position = 0 first_file_block = self._descriptor.files_dict[file_name] for block in self._get_blocks_generator(first_file_block): data += block.data position += block.data_length if position >= start + size: break self.files[file_name].set_pointer(start + size) return data[start:start + size] def write_file(self, file_name, start, data): """ Writes the given data to file given its name. Starting from given offset. """ # in case data to write exceeds the current file size, create new # blocks that will be later linked with the block where start is # located. The overall result in this case should look like this: # [current blocks...] -> [fork block] -> [new blocks] -> [superblock] if start + len(data) >= self.get_size(file_name): # create the data blocks, still not linked, hanging in the air new_block_ids = self._create_data_blocks(data) # the new blocks anyway exceed the current file size, so no need to # connect the end of the new chain back to a current block until_block_id = None # calculate the the starting block out of the current file blocks, # that will link to the new blocks fork_block, offset_in_fork_block = self._get_block_by_file_offset( file_name, start) # in case data to write fits into the file size, we need to link the # new data blocks from both sides. Eventually, it should look like # this: # [current blocks...] -> [fork block] -> [new blocks] -> # [merging block] -> [current blocks...] -> [superblock] else: # calculate the block to which the new blocks end should link to merging_block, offset_in_merging_block = \ self._get_block_by_file_offset( file_name, start + len(data) - 1) # calculate the the starting block out of the current file blocks, # that will link to the new blocks fork_block, offset_in_fork_block = self._get_block_by_file_offset( file_name, start) # handle edge case where the fork and merging blocks are the same. # in this case, we just need to override that block's data if fork_block.block_id == merging_block.block_id: new_data = fork_block.data[:offset_in_fork_block] + \ data + fork_block.data[offset_in_fork_block + len(data):] self._update_block(fork_block.block_id, data=new_data, data_length=len(new_data)) self.files[file_name].set_pointer(start + len(data)) return # in the general case, we create new data blocks to be connected as # described, and cut data from the merging block, as the new data # length demands else: new_block_ids = self._create_data_blocks( data, terminating_at=merging_block.block_id) if offset_in_merging_block < merging_block.data_length: new_data = merging_block.data[offset_in_merging_block:] self._update_block( merging_block.block_id, data=new_data, data_length=len(new_data)) until_block_id = merging_block.block_id # cut the data in the fork block, as the start offset demands if offset_in_fork_block < fork_block.data_length: new_data = fork_block.data[:offset_in_fork_block] self._update_block(fork_block.block_id, data=new_data, data_length=len(new_data)) # delete the current blocks, starting from the fork block and ending at # the merging block/super block (depends on the above case - each case # sets the until_block_id value accordingly) self._delete_data_blocks( fork_block.next_block_id, until_block_id=until_block_id) self._update_block(fork_block.block_id, next_block_id=new_block_ids[0]) self.files[file_name].set_pointer(start + len(data)) return def get_file_names(self): """Returns the names of all files currently in storage""" return self._descriptor.get_file_names() def get_size(self, file_name): """Returns the size of file, given its name""" file_size = 0 first_file_block = self._descriptor.files_dict[file_name] for block in self._get_blocks_generator(first_file_block): file_size += block.data_length return file_size
41.798151
79
0.629742
24,823
0.915066
499
0.018395
2,370
0.087367
0
0
10,749
0.396247
3dfe1030cd691567d0eb0ceab815ccdf039f3393
269
py
Python
python-crypt-service/services/dbservice.py
Shirish-Singh/crypt-analysis
eed6d00925389ee0973733e6b7397cd460f97f99
[ "Apache-2.0" ]
null
null
null
python-crypt-service/services/dbservice.py
Shirish-Singh/crypt-analysis
eed6d00925389ee0973733e6b7397cd460f97f99
[ "Apache-2.0" ]
null
null
null
python-crypt-service/services/dbservice.py
Shirish-Singh/crypt-analysis
eed6d00925389ee0973733e6b7397cd460f97f99
[ "Apache-2.0" ]
null
null
null
from __future__ import print_function from configurations import configuration from pymongo import MongoClient MONGO_HOST= configuration.MONGO_HOST client = MongoClient(MONGO_HOST) class DBConnection(): def getConnection(self): return client.analyticsDB
20.692308
40
0.814126
84
0.312268
0
0
0
0
0
0
0
0
3dffaaba0f49d4e4bcf7fb58f40e51bc3b413470
448
py
Python
simple_amqp_rpc/data.py
rudineirk/py-simple-amqp-rpc
823b6efe271732495d4e3ccdcb9f4d85138c1d42
[ "MIT" ]
null
null
null
simple_amqp_rpc/data.py
rudineirk/py-simple-amqp-rpc
823b6efe271732495d4e3ccdcb9f4d85138c1d42
[ "MIT" ]
1
2021-06-01T22:28:43.000Z
2021-06-01T22:28:43.000Z
simple_amqp_rpc/data.py
rudineirk/py-simple-amqp-rpc
823b6efe271732495d4e3ccdcb9f4d85138c1d42
[ "MIT" ]
null
null
null
from typing import Any, List from dataclasses import dataclass, replace from .consts import OK class Data: def replace(self, **kwargs): return replace(self, **kwargs) @dataclass(frozen=True) class RpcCall(Data): route: str service: str method: str args: List[Any] @dataclass(frozen=True) class RpcResp(Data): status: int body: Any = None @property def ok(self): return self.status == OK
15.448276
42
0.654018
294
0.65625
0
0
259
0.578125
0
0
0
0
ad000563b867048b766de0b54cb60801221e67a0
598
py
Python
fileparse/python/main.py
mlavergn/benchmarks
4663009772c71d7c94bcd13eec542d1ce33cef72
[ "Unlicense" ]
null
null
null
fileparse/python/main.py
mlavergn/benchmarks
4663009772c71d7c94bcd13eec542d1ce33cef72
[ "Unlicense" ]
null
null
null
fileparse/python/main.py
mlavergn/benchmarks
4663009772c71d7c94bcd13eec542d1ce33cef72
[ "Unlicense" ]
null
null
null
#!/usr/bin/python import timeit setup = ''' import os def FileTest(path): file = open(path, "r") lines = file.readlines() data = [None for i in range(len(lines))] i = 0 for line in lines: data[i] = line.split(',') j = 0 for field in data[i]: data[i][j] = field.strip('\\'\\n') j += 1 i += 1 return data ''' elapsed = timeit.timeit("FileTest(os.getcwd() + '/../employees.txt')", setup=setup, number=1) print(elapsed * 1000.0, "ms - cold") elapsed = timeit.timeit("FileTest(os.getcwd() + '/../employees.txt')", setup=setup, number=1) print(elapsed * 1000.0, "ms - warm")
20.62069
93
0.605351
0
0
0
0
0
0
0
0
421
0.704013
ad005ad94d7f773d61fa5f1363d44b1d458fd462
5,475
py
Python
boris/classification.py
fragaria/BorIS
9585c83f29220d8f63910dabd98641ab41ace6cf
[ "MIT" ]
1
2021-08-10T14:01:26.000Z
2021-08-10T14:01:26.000Z
boris/classification.py
fragaria/BorIS
9585c83f29220d8f63910dabd98641ab41ace6cf
[ "MIT" ]
5
2018-04-04T14:31:34.000Z
2020-06-08T07:50:23.000Z
boris/classification.py
fragaria/BorIS
9585c83f29220d8f63910dabd98641ab41ace6cf
[ "MIT" ]
4
2017-02-06T15:38:34.000Z
2018-03-21T09:40:12.000Z
# -*- coding: utf-8 -*- ''' Created on 25.9.2011 @author: xaralis ''' from model_utils import Choices SEXES = Choices( (1, 'FEMALE', u'žena'), (2, 'MALE', u'muž') ) NATIONALITIES = Choices( (1, 'CZ', u'Česká republika'), (2, 'EU', u'Jiné - EU'), (3, 'NON_EU', u'Jiné - non-EU'), (4, 'UNKNOWN', u'Neznámo') ) ETHNIC_ORIGINS = Choices( (1, 'NON_GYPSY', u'Ne-romská'), (2, 'GYPSY', u'Romská'), (3, 'NOT_MONITORED', u'Nesledováno') ) LIVING_CONDITIONS = Choices( (1, 'ALONE', u'Sám'), (2, 'WITH_FAMILY', u'S rodiči/rodinou'), (3, 'WITH_FRIENDS', u'S přáteli'), (4, 'WITH_PARTNER', u'S partnerem'), (5, 'WITH_PARTNER_AND_CHILDREN', u'S partnerem a dítětem'), (6, 'ALONE_WITH_CHILDREN', u'Sám s dítětem'), (7, 'UNKNOWN', u'Není známo') ) ACCOMODATION_TYPES = Choices( (1, 'WITH_PARENTS', u'Doma (u rodičů)'), (2, 'OWN_FLAT', u'Vlastní byt (i pronajatý)'), (3, 'FOREIGN_FLAT', u'Cizí byt'), (4, 'PUBLIC_ACCOMODATION', u'Ubytovna'), (5, 'SQUAT', u'Squat'), (6, 'BARRACKS', u'Kasárna'), (7, 'HOMELESS', u'Bez domova, na ulici'), (8, 'UNKNOWN', u'Není známo') ) EMPLOYMENT_TYPES = Choices( (1, 'REGULAR', u'Pravidelné zam.'), (2, 'SCHOOL', u'Škola'), (3, 'OCCASIONAL_WORK', u'Příležitostná práce'), (4, 'REGISTERED_ON_EB', u'Registrován na ÚP'), (5, 'NO_EMPLOYMENT', u'Bez zaměstnání'), (6, 'STATE_SUPPORT', u'Dávky SZ'), (8, 'UNKNOWN', u'Není známo') ) EDUCATION_LEVELS = Choices( (1, 'BASIC', u'Základní'), (2, 'PRACTICAL_SECONDARY', u'Vyučen'), (3, 'SECONDARY', u'Střední s maturitou'), (4, 'HIGHER_PRACTICAL', u'Vyšší odborné'), (5, 'UNIVERSITY_GRADE', u'Vysokoškolské'), (6, 'BASIC_NOT_COMPLETED', u'Neukončené základní'), (7, 'UNKNOWN', u'Není známo') ) DRUGS = Choices( # (Numbers reflect the old drug ids.) (3, 'METHAMPHETAMINE', u'Pervitin, jiné amfetaminy'), (4, 'SUBUTEX_LEGAL', u'Subutex, Ravata, Buprenorphine alkaloid - legálně'), (5, 'TOBACCO', u'Tabák'), (8, 'THC', u'THC'), (9, 'ECSTASY', u'Extáze'), (10, 'DESIGNER_DRUGS', u'Designer drugs'), (11, 'HEROIN', u'Heroin'), (12, 'BRAUN', u'Braun a jiné opiáty'), (13, 'RAW_OPIUM', u'Surové opium'), (14, 'SUBUTEX_ILLEGAL', u'Subutex, Ravata, Buprenorphine alkaloid - ilegálně'), (16, 'ALCOHOL', u'Alkohol',), (17, 'INHALER_DRUGS', u'Inhalační látky, ředidla'), (18, 'MEDICAMENTS', u'Medikamenty'), (19, 'METHADONE', u'Metadon'), (20, 'COCAINE', u'Kokain, crack'), (21, 'SUBOXONE', u'Suboxone'), (22, 'VENDAL', u'Vendal'), (23, 'LSD', u'LSD'), (24, 'PSYLOCIBE', u'Lysohlávky'), (28, 'FENTANYL', u'Fentanyl'), (25, 'UNKNOWN', u'Neznámo'), (26, 'PATHOLOGICAL_GAMBLING', u'Patologické hráčství'), (27, 'OTHER_NON_SUBSTANCE_ADDICTION', u'Jiná nelátková závislost'), ) # Disable `application`, `first_try_application` and `primary_drug_usage` fields for these drugs NON_APPLICATION_DRUGS = ['26', '27'] DRUG_APPLICATION_FREQUENCY = Choices( (1, 'LESS_THAN_3X_A_MONTH', u'méně než 3x měsíčně'), (2, 'ONCE_A_WEEK', u'1x týdně'), (3, 'ON_WEEKENDS', u'víkendově'), (4, 'EVERY_SECOND_DAY', u'obden'), (5, 'DAILY', u'denně'), (6, '2X_3X_A_DAY', u'2-3x denně'), (7, 'MORE_THAN_3X_A_DAY', u'více než 3x denně'), (8, 'NONE_FOR_MORE_THAN_6_MONTHS', u'neužita déle než 6 měsíců'), # (9, 'NONE_FOR_LAST_6_MONTHS', u'neužita posledních 6 měsíců'), # Feature 103 (10, 'NONE_FOR_LAST_3_MONTHS', u'neužita poslední 3 měsíce'), (11, 'NONE_FOR_LAST_1_MONTH', u'neužita v posledním měsíci'), (12, 'UNKNOWN', u'Není známo') ) DRUG_APPLICATION_TYPES = Choices( (1, 'VEIN_INJECTION', u'injekčně do žíly'), (2, 'MUSCLE_INJECTION', u'injekčně do svalu'), (3, 'ORAL', u'ústně'), (4, 'SNIFFING', u'sniff (šňupání)'), (5, 'SMOKING', u'kouření'), (6, 'INHALATION', u'inhalace'), (7, 'UNKNOWN', u'Není známo') ) RISKY_BEHAVIOR_KIND = Choices( (1, 'EQUIPMENT_SHARING', u'Sdílení náčiní'), (2, 'SEX_WITHOUT_PROTECTION', u'Nechráněný sex'), (3, 'SYRINGE_SHARING', u'Sdílení jehel'), (4, 'INTRAVENOUS_APPLICATION', u'Nitrožilní aplikace'), (5, 'RISKY_APPLICATION', u'Riziková aplikace'), (6, 'OVERDOSING', u'Předávkování'), (7, 'HEALTH_COMPLICATIONS', u'Zdravotní komplikace') ) RISKY_BEHAVIOR_PERIODICITY = Choices( (1, 'NEVER', u'Nikdy'), (2, 'ONCE', u'Jednorázově'), (3, 'OFTEN', u'Opakovaně '), (4, 'UNKNOWN', u'Není známo') ) DISEASES = Choices( (1, 'HIV', u'HIV'), (2, 'VHA', u'VHA'), (3, 'VHB', u'VHB'), (4, 'VHC', u'VHC'), (5, 'SYFILIS', u'Syfilis'), ) DISEASE_TEST_RESULTS = Choices( (0, 'UNKNOWN', u'Neznámo, zda testován'), (1, 'TESTED_POSITIVE', u'Testován - pozitivní'), (2, 'TESTED_NEGATIVE', u'Testován - negativní'), (3, 'TESTED_UNKNOWN', u'Testován - výsledek neznámý'), (4, 'NOT_TESTED', u'Nikdy netestován'), (5, 'RESULT_NOT_ACCLAIMED', u'Nevyzvedl výsledek'), ) DISEASE_TEST_SIGN = Choices( ('p', 'POSITIVE', u'Pozitivní'), ('n', 'NEGATIVE', u'Negativní'), ('r', 'REACTIVE', u'Reaktivní'), ('i', 'INCONCLUSIVE', u'Test neprůkazný') ) ANONYMOUS_TYPES = Choices( (1, 'NON_USER', u'neuživatel'), (2, 'NON_IV', u'neIV'), (3, 'IV', u'IV'), (4, 'NON_USER_PARENT', u'rodič'), (5, 'THC', u'THC') ) def get_drug_by_id(id): for drug in DRUGS: if drug[0] == id: return drug
32.589286
96
0.606575
0
0
0
0
0
0
0
0
3,568
0.630946
9a735bf957ffc30fea6d0bb1fe8f079ce7582eb6
23,569
py
Python
extern/face_expression/face_expression/dataset.py
wangxihao/rgbd-kinect-pose
03180723c99759ba2500bcd42b5fe7a1d26eb507
[ "MIT" ]
1
2022-02-07T06:12:26.000Z
2022-02-07T06:12:26.000Z
extern/face_expression/face_expression/dataset.py
wangxihao/rgbd-kinect-pose
03180723c99759ba2500bcd42b5fe7a1d26eb507
[ "MIT" ]
null
null
null
extern/face_expression/face_expression/dataset.py
wangxihao/rgbd-kinect-pose
03180723c99759ba2500bcd42b5fe7a1d26eb507
[ "MIT" ]
null
null
null
import os import sys import json import pickle import h5py from tqdm import tqdm import numpy as np import torch import cv2 import scipy.spatial import hydra from face_expression import utils from face_expression.third_party.face_mesh_mediapipe import FaceMeshMediaPipe # class VoxCeleb2FaceDataset(torch.utils.data.Dataset): # def __init__( # self, # h5_path, # scheme_path, # image_root, # return_images=True, # bbox_scale=2.0, # image_shape=(256, 256), # sample_range=None # ): # self.h5_path = h5_path # self.scheme_path = scheme_path # self.image_root = image_root # self.return_images = return_images # self.bbox_scale = bbox_scale # self.image_shape = image_shape # self.sample_range = sample_range # # load scheme # with open(scheme_path, 'rb') as f: # self.scheme = pickle.load(f) # if sample_range is not None: # self.scheme = [self.scheme[i] for i in range(sample_range[0], sample_range[1], sample_range[2])] # def open_h5_file(self): # self.h5f = h5py.File(self.h5_path, mode='r') # def load_image(self, identity_id, video_id, utterance_id, seq_index): # image_dir = os.path.join(self.image_root, identity_id, video_id, utterance_id) # names = sorted(os.listdir(image_dir)) # if seq_index < len(names): # name = names[seq_index] # path = os.path.join(image_dir, name) # image = cv2.imread(path) # image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) # else: # # black image mock # name = names[0] # path = os.path.join(image_dir, name) # image = cv2.imread(path) # image = np.zeros(image.shape, dtype=np.uint8) # return image # def get_camera_matrix(self, h, w): # fx, fy = 3000.0, 3000.0 # cx, cy = w/2, h/2 # camera_martix = np.array([ # [fx, 0.0, cx], # [0.0, fy, cy], # [0.0, 0.0, 1.0] # ]) # return camera_martix # def get_transformation_matrix(self): # transformation_matrix = np.eye(3, 4) # return transformation_matrix # def get_bbox(self, keypoints_2d): # left, top, right, down = ( # keypoints_2d[:, 0].min(), # keypoints_2d[:, 1].min(), # keypoints_2d[:, 0].max(), # keypoints_2d[:, 1].max() # ) # # convex_hull = scipy.spatial.ConvexHull(points) # # center_x, center_y = (np.mean(convex_hull.points[convex_hull.vertices, axis]) for axis in (0, 1)) # center_x, center_y = (left + right) / 2, (top + down) / 2 # w, h = right - left, down - top # bbox = ( # center_x - w/2, # center_y - h/2, # center_x + w/2, # center_y + h/2 # ) # bbox = utils.common.utils.common.get_square_bbox(bbox) # bbox = utils.common.utils.common.scale_bbox(bbox, self.bbox_scale) # return bbox # def normalize_keypoints_2d(self, keypoints_2d): # convex_hull = scipy.spatial.ConvexHull(keypoints_2d) # center = np.mean(convex_hull.points[convex_hull.vertices], axis=0) # keypoints_2d = (keypoints_2d - center) / np.sqrt(convex_hull.area) # return keypoints_2d # def load_sample(self, identity_id, video_id, utterance_id, seq_index): # sample = dict() # # load h5_data # try: # h5_data = self.h5f[identity_id][video_id][utterance_id] # except Exception as e: # print(identity_id, video_id, utterance_id, seq_index) # print(e) # sample['expression'] = h5_data['expressions'][seq_index] # sample['pose'] = h5_data['poses'][seq_index] # sample['beta'] = h5_data['betas'][:] # sample['keypoints_2d'] = h5_data['face_keypoints_2d'][seq_index] # # load image # if self.return_images: # image = self.load_image(identity_id, video_id, utterance_id, seq_index) # orig_h, orig_w = image.shape[:2] # # crop # bbox = self.get_bbox(sample['keypoints_2d']) # image = utils.common.utils.common.crop_image(image, bbox) # # resize # image = utils.common.utils.common.resize_image(image, self.image_shape) # image = image / 255.0 # image = image.transpose(2, 0, 1) # sample['image'] = image # # load projection matrix # h, w = image.shape[1:3] # bbox_h, bbox_w = bbox[3] - bbox[1], bbox[2] - bbox[0] # if 'camera_matrix' in h5_data: # print('hey') # camera_matrix = h5_data['camera_matrix'][:] # else: # camera_matrix = self.get_camera_matrix(orig_h, orig_w) # camera_matrix = utils.common.utils.common.update_after_crop_and_resize( # camera_matrix, bbox, (w/bbox_w, h/bbox_h) # ) # # update keypoints 2d ufter crop and resize # sample['keypoints_2d'][:, 0] -= bbox[0] # sample['keypoints_2d'][:, 1] -= bbox[1] # sample['keypoints_2d'][:, 0] *= w/bbox_w # sample['keypoints_2d'][:, 1] *= h/bbox_h # else: # image = np.zeros((*self.image_shape, 3), dtype=np.uint8) # image = image / 255.0 # image = image.transpose(2, 0, 1) # h, w = image.shape[1:3] # sample['image'] = image # if 'camera_matrix' in h5_data: # camera_matrix = h5_data['camera_matrix'][:] # else: # camera_matrix = self.get_camera_matrix(*self.image_shape) # transformation_matrix = self.get_transformation_matrix() # projection_matrix = camera_matrix @ transformation_matrix # sample['camera_matrix'] = camera_matrix # sample['projection_matrix'] = projection_matrix # sample['h'] = h # sample['w'] = w # # normalize keypoints 2d # sample['keypoints_2d'] = self.normalize_keypoints_2d(sample['keypoints_2d']) # return sample # def __len__(self): # return len(self.scheme) # def __getitem__(self, index): # # this should be normally done in __init__, but due to DataLoader behaviour # # when num_workers > 1, the h5 file is opened during first data access: # # https://github.com/pytorch/pytorch/issues/11929#issuecomment-649760983 # if not hasattr(self, 'h5f'): # self.open_h5_file() # sample_key = self.scheme[index] # sample = self.load_sample(*sample_key) # return sample # @staticmethod # def build_scheme(h5f): # scheme = [] # for identity_id in tqdm(h5f): # for video_id in h5f[identity_id]: # for utterance_id in h5f[identity_id][video_id]: # seq_length = h5f[identity_id][video_id][utterance_id]['expressions'].shape[0] # for seq_index in range(seq_length): # scheme.append((identity_id, video_id, utterance_id, seq_index)) # scheme = sorted(scheme) # return scheme # @staticmethod # def preprocess_dataset(face_root, image_root, openpose_root, h5_path): # # load scheme # scheme = [] # identity_id_list = sorted(os.listdir(face_root)) # for identity_id in tqdm(identity_id_list): # identity_dir = os.path.join(face_root, identity_id) # video_id_list = sorted(os.listdir(identity_dir)) # for video_id in video_id_list: # video_dir = os.path.join(identity_dir, video_id) # utterance_id_list = sorted(os.listdir(video_dir)) # for utterance_id in utterance_id_list: # utterance_dir = os.path.join(video_dir, utterance_id) # scheme.append((identity_id, video_id, utterance_id)) # scheme = sorted(scheme) # # build h5 file # with h5py.File(h5_path, 'w') as hf: # for (identity_id, video_id, utterance_id) in tqdm(scheme): # # load face # face_dir = os.path.join(face_root, identity_id, video_id, utterance_id, 'joints_op_face') # expressions = np.load(os.path.join(face_dir, 'expressions.npy')) * 100 # poses = np.load(os.path.join(face_dir, 'poses.npy')) # betas = np.load(os.path.join(face_dir, 'betas.npy')) # # load openpose keypoints 2d # openpose_dir = os.path.join(openpose_root, identity_id, video_id, utterance_id) # face_keypoints_2d_list = [] # names = sorted(os.listdir(openpose_dir)) # for name in names: # path = os.path.join(openpose_dir, name) # with open(path) as f: # openpose_data = json.load(f) # face_keypoints_2d = openpose_data['people'][0]['face_keypoints_2d'] # face_keypoints_2d = np.array(face_keypoints_2d).reshape(70, 3) # face_keypoints_2d = face_keypoints_2d[:, :2] # remove confidences # face_keypoints_2d_list.append(face_keypoints_2d) # face_keypoints_2d_arr = np.array(face_keypoints_2d_list) # # save to h5 # group = hf.create_group(f"{identity_id}/{video_id}/{utterance_id}") # group['expressions'] = expressions # group['poses'] = poses # group['betas'] = betas # group['face_keypoints_2d'] = face_keypoints_2d_arr class VoxCeleb2MediapipeDataset(torch.utils.data.Dataset): def __init__( self, *, h5_path='', scheme_path='', image_root='', return_keypoints_3d=False, return_images=True, bbox_scale=2.0, image_shape=(256, 256), sample_range=None ): assert return_images self.h5_path = h5_path self.scheme_path = scheme_path self.return_keypoints_3d = return_keypoints_3d self.image_root = image_root self.return_images = return_images self.bbox_scale = bbox_scale self.image_shape = image_shape self.sample_range = sample_range # load facemesh model models_dir = os.path.join(os.path.dirname(os.path.abspath(__file__)), "third_party", "face_mesh_mediapipe", "models") anchors_path = os.path.join(models_dir, "face_anchors.csv") detection_model_path = os.path.join(models_dir, "face_detection_front.tflite") landmark_model_path = os.path.join(models_dir, "face_landmark.tflite") self.face_mesh_model = FaceMeshMediaPipe(anchors_path, detection_model_path, landmark_model_path, bbox_scale=1.5) # load scheme with open(scheme_path, 'rb') as f: self.scheme = pickle.load(f) if sample_range is not None: start = max(0, sample_range[0]) end = min(len(self.scheme), sample_range[1]) step = sample_range[2] self.scheme = [self.scheme[i] for i in range(start, end, step)] def open_h5_file(self): self.h5f = h5py.File(self.h5_path, mode='r') def load_image(self, identity_id, video_id, utterance_id, seq_index): image_dir = os.path.join(self.image_root, identity_id, video_id, utterance_id) if not os.path.exists(image_dir): image_dir = os.path.join(self.image_root, identity_id, video_id, 'color_undistorted') names = sorted(os.listdir(image_dir)) if seq_index < len(names): name = names[seq_index] path = os.path.join(image_dir, name) image = cv2.imread(path) image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) else: # black image mock name = names[0] path = os.path.join(image_dir, name) image = cv2.imread(path) image = np.zeros(image.shape, dtype=np.uint8) return image def get_camera_matrix(self, h, w): fx, fy = 3000.0, 3000.0 cx, cy = w/2, h/2 camera_martix = np.array([ [fx, 0.0, cx], [0.0, fy, cy], [0.0, 0.0, 1.0] ]) return camera_martix def get_transformation_matrix(self): transformation_matrix = np.eye(3, 4) return transformation_matrix def get_bbox(self, keypoints_2d): left, top, right, down = ( keypoints_2d[:, 0].min(), keypoints_2d[:, 1].min(), keypoints_2d[:, 0].max(), keypoints_2d[:, 1].max() ) center_x, center_y = (left + right) / 2, (top + down) / 2 w, h = right - left, down - top bbox = ( center_x - w/2, center_y - h/2, center_x + w/2, center_y + h/2 ) if np.sum(bbox) == 0.0 or np.sum(np.isnan(bbox)) > 0: return np.array([0.0, 0.0, 100.0, 100.0]) bbox = utils.common.get_square_bbox(bbox) bbox = utils.common.scale_bbox(bbox, self.bbox_scale) return bbox # def normalize_keypoints_2d(self, keypoints_2d, image_shape): # convex_hull = scipy.spatial.ConvexHull(keypoints_2d[:, :2]) # center = np.mean(convex_hull.points[convex_hull.vertices], axis=0) # keypoints_2d[:, :2] = keypoints_2d[:, :2] - center # if self.keypoints_2d_normalization == 'area': # keypoints_2d[:, :2] = keypoints_2d[:, :2] / np.sqrt(convex_hull.area) # elif self.keypoints_2d_normalization == 'image_shape': # keypoints_2d[:, :2] = keypoints_2d[:, :2] / np.array([image_shape[1], image_shape[0]]) # elif self.keypoints_2d_normalization == 'no': # pass # else: # raise NotImplementedError("Unknown keypoints_2d_normalization mode: {self.keypoints_2d_normalization}") # # norm depth # if keypoints_2d.shape[1] == 3: # 3d keypoints # keypoints_2d[:, 2] /= 100.0 # return keypoints_2d def load_sample(self, identity_id, video_id, utterance_id, seq_index): sample = dict() sample['key'] = (identity_id, video_id, utterance_id, seq_index) # load h5_data try: h5_data = self.h5f[identity_id][video_id][utterance_id] except Exception as e: print(identity_id, video_id, utterance_id, seq_index) print(e) sample['expression'] = h5_data['expressions'][seq_index] sample['pose'] = h5_data['poses'][seq_index] # 90 = [63 pose + 3 jaw + 6 eye + 12 hand + 3 trans + 3 root_orient] sample['beta'] = h5_data['betas'][:] sample['keypoints_2d_op'] = h5_data['face_keypoints_2d'][seq_index].astype(np.float32) # load image if self.return_images: image = self.load_image(identity_id, video_id, utterance_id, seq_index) orig_h, orig_w = image.shape[:2] # get keypoints_2d op_bbox = self.get_bbox(sample['keypoints_2d_op']) image_op_cropped = utils.common.crop_image(image, op_bbox) keypoints_3d, keypoints_3d_normed = self.face_mesh_model(image_op_cropped) if keypoints_3d_normed is None: keypoints_3d_normed = np.zeros((468, 3)) keypoints_3d = np.zeros((468, 3)) bbox = op_bbox else: keypoints_3d[:, :2] += np.array(op_bbox[:2]) bbox = self.get_bbox(keypoints_3d[:, :2]) if self.return_keypoints_3d: sample['keypoints'] = keypoints_3d_normed.astype(np.float32) sample['keypoints_orig'] = keypoints_3d.astype(np.float32) else: sample['keypoints'] = keypoints_3d_normed[:, :2].astype(np.float32) sample['keypoints_orig'] = keypoints_3d[:, :2].astype(np.float32) # crop image = utils.common.crop_image(image, bbox) # resize image = utils.common.resize_image(image, self.image_shape) image = image / 255.0 image = image.transpose(2, 0, 1) sample['image'] = image # load projection matrix h, w = image.shape[1:3] bbox_h, bbox_w = bbox[3] - bbox[1], bbox[2] - bbox[0] if 'camera_matrix' in h5_data: camera_matrix = h5_data['camera_matrix'][:] else: camera_matrix = self.get_camera_matrix(orig_h, orig_w) camera_matrix = utils.common.update_after_crop_and_resize( camera_matrix, bbox, (w/bbox_w, h/bbox_h) ) transformation_matrix = self.get_transformation_matrix() projection_matrix = camera_matrix @ transformation_matrix sample['camera_matrix'] = camera_matrix sample['projection_matrix'] = projection_matrix sample['h'] = h sample['w'] = w # update keypoints 2d after crop and resize sample['keypoints_orig'][:, 0] -= bbox[0] sample['keypoints_orig'][:, 1] -= bbox[1] sample['keypoints_orig'][:, 0] *= w/bbox_w sample['keypoints_orig'][:, 1] *= h/bbox_h # # normalize keypoints 2d # sample['keypoints_2d_orig'] = sample['keypoints_2d'].copy() # if not np.all(sample['keypoints_2d'] == 0.0): # try: # sample['keypoints_2d'] = self.normalize_keypoints_2d(sample['keypoints_2d'], (h, w)).astype(np.float32) # except Exception as e: # sample['keypoints_2d'] = np.zeros_like(sample['keypoints_2d']).astype(np.float32) return sample def __len__(self): return len(self.scheme) def __getitem__(self, index): # this should be normally done in __init__, but due to DataLoader behaviour # when num_workers > 1, the h5 file is opened during first data access: # https://github.com/pytorch/pytorch/issues/11929#issuecomment-649760983 if not hasattr(self, 'h5f'): self.open_h5_file() sample_key = self.scheme[index] sample = self.load_sample(*sample_key) return sample @staticmethod def build_scheme(h5f): scheme = [] for identity_id in tqdm(h5f): for video_id in h5f[identity_id]: for utterance_id in h5f[identity_id][video_id]: seq_length = h5f[identity_id][video_id][utterance_id]['expressions'].shape[0] for seq_index in range(seq_length): scheme.append((identity_id, video_id, utterance_id, seq_index)) scheme = sorted(scheme) return scheme @staticmethod def preprocess_dataset(face_root, image_root, openpose_root, h5_path): # load scheme scheme = [] identity_id_list = sorted(os.listdir(face_root)) for identity_id in tqdm(identity_id_list): identity_dir = os.path.join(face_root, identity_id) video_id_list = sorted(os.listdir(identity_dir)) for video_id in video_id_list: video_dir = os.path.join(identity_dir, video_id) utterance_id_list = sorted(os.listdir(video_dir)) for utterance_id in utterance_id_list: utterance_dir = os.path.join(video_dir, utterance_id) scheme.append((identity_id, video_id, utterance_id)) scheme = sorted(scheme) # build h5 file with h5py.File(h5_path, 'w') as hf: for (identity_id, video_id, utterance_id) in tqdm(scheme): # load face face_dir = os.path.join(face_root, identity_id, video_id, utterance_id, 'joints_op_face') expressions = np.load(os.path.join(face_dir, 'expressions.npy')) * 100 poses = np.load(os.path.join(face_dir, 'poses.npy')) betas = np.load(os.path.join(face_dir, 'betas.npy')) # load openpose keypoints 2d openpose_dir = os.path.join(openpose_root, identity_id, video_id, utterance_id) face_keypoints_2d_list = [] names = sorted(os.listdir(openpose_dir)) for name in names: path = os.path.join(openpose_dir, name) with open(path) as f: openpose_data = json.load(f) face_keypoints_2d = openpose_data['people'][0]['face_keypoints_2d'] face_keypoints_2d = np.array(face_keypoints_2d).reshape(70, 3) face_keypoints_2d = face_keypoints_2d[:, :2] # remove confidences face_keypoints_2d_list.append(face_keypoints_2d) face_keypoints_2d_arr = np.array(face_keypoints_2d_list) # save to h5 group = hf.create_group(f"{identity_id}/{video_id}/{utterance_id}") group['expressions'] = expressions group['poses'] = poses group['betas'] = betas group['face_keypoints_2d'] = face_keypoints_2d_arr @hydra.main(config_path='config/default.yaml') def main(config): print(config.pretty()) # preprocess print(f"Preprocess split {split}") VoxCeleb2FaceDataset.preprocess_dataset( config.data.face_root, config.data.image_root, config.data.openpose_root, config.data.h5_path ) # save scheme print("Build scheme") h5f = h5py.File(config.data.h5_path, mode='r', libver='latest') scheme = VoxCeleb2FaceDataset.build_scheme(h5f) with open(config.data.scheme_path, 'wb') as f: pickle.dump(scheme, f) # filter scheme print("Filter scheme") dataset = VoxCeleb2FaceDataset( config.data.h5_path, config.data.scheme_path, config.data.image_root, return_images=config.data.return_images, bbox_scale=config.data.bbox_scale, image_shape=config.data.image_shape ) invalid_indices = [] for i in tqdm(range(len(dataset))): try: sample = dataset[i] except Exception as e: invalid_indices.append(i) print(f"Index {i} is invalid. Reason: {e}") invalid_indices = set(invalid_indices) print(f"Found {len(invalid_indices)} invalid samples") scheme_filtered = [sample_key for i, sample_key in enumerate(dataset.scheme) if i not in invalid_indices] with open(config.data.scheme_path, 'wb') as f: pickle.dump(scheme_filtered, f) print("Success!") if __name__ == '__main__': main()
37.058176
125
0.566252
11,837
0.502228
0
0
4,375
0.185625
0
0
12,090
0.512962
9a75886d1c5240a727719c8116254cb13ec6d703
1,316
py
Python
session7/OLED_Clock.py
rezafari/raspberry
e6720780f3c65ee1809040fc538f793fe44f0111
[ "MIT" ]
null
null
null
session7/OLED_Clock.py
rezafari/raspberry
e6720780f3c65ee1809040fc538f793fe44f0111
[ "MIT" ]
null
null
null
session7/OLED_Clock.py
rezafari/raspberry
e6720780f3c65ee1809040fc538f793fe44f0111
[ "MIT" ]
null
null
null
###################################################################### # OLED_Clock.py # # This program display date and time on OLED module ###################################################################### import Adafruit_SSD1306 from datetime import datetime import time from PIL import Image from PIL import ImageDraw from PIL import ImageFont # Setup Display RST=24 device = Adafruit_SSD1306.SSD1306_128_64(rst=RST) device.begin() device.clear() device.display() width = device.width height = device.height fontFile = '/usr/share/fonts/truetype/freefont/FreeSansBold.ttf' smallFont = ImageFont.truetype(fontFile, 12) largeFont = ImageFont.truetype(fontFile, 33) # Display a message on 3 lines, first line big font def DisplayMessage(line1, line2): global device image = Image.new('1', (width, height)) draw = ImageDraw.Draw(image) maxWidth, unused = draw.textsize(line1, font=largeFont) #with canvas(deviccd e) as draw: draw.text((10, 0), line1, font=smallFont, fill=255) draw.text((0, 20), line2, font=largeFont, fill=255) device.image(image) device.display() while True: now = datetime.now() dateMessage = '{:%d %B %Y}'.format(now) timeMessage = '{:%H:%M:%S}'.format(now) DisplayMessage(dateMessage,timeMessage) time.sleep(0.1)
29.244444
70
0.634498
0
0
0
0
0
0
0
0
401
0.304711
9a75a5f4ae8ec0f7ef5613e16f951ea62c4bd8de
9,601
py
Python
odim/router.py
belda/odim
ea49284c4bfc76ac6cb436577c128b20c2c4004c
[ "MIT" ]
5
2021-01-29T11:00:10.000Z
2021-05-18T23:23:32.000Z
odim/router.py
belda/odim
ea49284c4bfc76ac6cb436577c128b20c2c4004c
[ "MIT" ]
1
2021-11-16T10:22:43.000Z
2021-11-16T10:22:43.000Z
odim/router.py
belda/odim
ea49284c4bfc76ac6cb436577c128b20c2c4004c
[ "MIT" ]
1
2021-02-18T14:45:43.000Z
2021-02-18T14:45:43.000Z
''' Contains the extended FastAPI router, for simplified CRUD from a model ''' from typing import Any, List, Optional, Sequence, Set, Type, Union import fastapi from fastapi import Depends, params from pydantic import BaseModel, create_model from odim import Odim, OkResponse, SearchResponse from odim.dependencies import SearchParams class OdimRouter(fastapi.APIRouter): ''' Simplified FastAPI router for easy CRUD ''' def mount_crud(self, path: str, *, model : Type[BaseModel], tags: Optional[List[str]] = None, dependencies : Optional[Sequence[params.Depends]] = None, include_in_schema: bool = True, methods : Optional[Union[Set[str], List[str]]] = ('create','get','search','save','update','delete'), methods_exclude : Optional[Union[Set[str], List[str]]] = [], extend_query : dict= {}): ''' Add endpoints for CRUD operations for particular model :param path: base_path, for the model resource location eg: /api/houses/ :param model: pydantic/Odim BaseModel, that is used for eg. Houses :param tags: Starlette/FastAPI tags for endpoints :param dependencies: Starlette/FastAPI dependencies for all endpoints :param include_in_schema: whether to include in docs :param methods: methods to automatically generate ('create','get','search','save','update','delete') :param methods_exclude: methods to NOT automatically generate ('create','get','search','save','update','delete') :param extend_query: adds these parameters to every query and sets it on the object upon creation. keys are fields, values can be exact values or functions taking request as parameter ''' add_methods = [ x for x in methods if x not in methods_exclude ] if 'create' in add_methods: async def create(request : fastapi.Request, obj : model): for k, v in exec_extend_qeury(request,extend_query).items(): setattr(obj, k, v) await Odim(obj).save() return obj self.add_api_route(path = path, endpoint=create, response_model=model, status_code=201, tags=tags, dependencies = dependencies, summary="Create new %s" % model.schema().get('title'), description = "Create new instance of %s " % model.schema().get('title'), methods = ["POST"], include_in_schema = include_in_schema) if 'get' in add_methods: async def get(request : fastapi.Request, id : str): return await Odim(model).get(id=id, extend_query=exec_extend_qeury(request,extend_query)) self.add_api_route(path = path+"{id}", endpoint=get, response_model=model, tags=tags, dependencies = dependencies, summary="Get %s by id" % model.schema().get('title'), description = "Return individual %s details " % model.schema().get('title'), methods = ["GET"], include_in_schema = include_in_schema) if 'search' in add_methods: async def search(request : fastapi.Request, search_params : dict = Depends(SearchParams)): sp = {**search_params.q, **exec_extend_qeury(request,extend_query)} rsp = { "results" : await Odim(model).find(sp, search_params), "total" : await Odim(model).count(sp), "search" : search_params.dict()} return rsp self.add_api_route(path = path, endpoint=search, response_model=SearchResponse[model], tags=tags, dependencies = dependencies, summary="Search for %ss" % model.schema().get('title'), description = "Performs a listing search for %s " % model.schema().get('title'), methods = ["GET"], include_in_schema = include_in_schema) if 'save' in add_methods: async def save(request : fastapi.Request, id : str, obj : model): obj.id = id await Odim(obj).save(extend_query=exec_extend_qeury(request,extend_query)) return obj self.add_api_route(path = path+"{id}", endpoint=save, response_model=model, tags=tags, dependencies = dependencies, summary="Replace %s by id" % model.schema().get('title'), description = "PUT replaces the original %s as whole " % model.schema().get('title'), methods = ["PUT"], include_in_schema = include_in_schema) if 'update' in add_methods: async def update(request : fastapi.Request, id : str, obj : model): obj.id = id await Odim(obj).update(extend_query=exec_extend_qeury(request,extend_query)) return obj self.add_api_route(path = path+"{id}", endpoint=update, response_model=model, tags=tags, dependencies = dependencies, summary="Partial update %s by id" % model.schema().get('title'), description = "Just updates individual fields of %s " % model.schema().get('title'), methods = ["Patch"], include_in_schema = include_in_schema) if 'delete' in add_methods: async def delete(request : fastapi.Request, id : str) -> None: await Odim(model).delete(id, extend_query=exec_extend_qeury(request,extend_query)) return OkResponse() self.add_api_route(path = path+"{id}", endpoint=delete, response_model=OkResponse, status_code=200, tags=tags, dependencies = dependencies, summary="Delete %s by id" % model.schema().get('title'), description = "Deletes individual instance of %s " % model.schema().get('title'), methods = ["DELETE"], include_in_schema = include_in_schema) def generate(self, path: str, *, model : Type[BaseModel], tags: Optional[List[str]] = None, dependencies : Optional[Sequence[params.Depends]] = None, include_in_schema: bool = True, methods : Optional[Union[Set[str], List[str]]] = ('create','get','search','save','update','delete'), methods_exclude : Optional[Union[Set[str], List[str]]] = []): ''' Generates the code for the endpoints :param path: base_path, for the model resource location eg: /api/houses/ :param model: pydantic/Odim BaseModel, that is used for eg. Houses :param tags: Starlette/FastAPI tags for endpoints :param dependencies: Starlette/FastAPI dependencies for all endpoints :param include_in_schema: whether to include in docs :param methods: methods to automatically generate ('create','get','search','save','update','delete') :param methods_exclude: methods to NOT automatically generate ('create','get','search','save','update','delete') ''' add_methods = [ x for x in methods if x not in methods_exclude ] model_name = model.__name__ other="" if tags: other+= ", tags="+str(tags) if dependencies: other+= ", dependencies="+str(dependencies) if not include_in_schema: other+= ", include_in_schema=False" if 'get' in add_methods: print(f''' @router.get("{path}{{id}}", response_model={model_name}{other}) async def get_{model_name}(id : str): \'\'\' Returns the individual {model_name} details\'\'\' return await Odim({model_name}).get(id=id) ''') if 'search' in add_methods: print(f''' @router.get("{path}", response_model=SearchResponse[{model_name}]{other}) async def search_{model_name}(search : dict = Depends(SearchParams)): rsp = {{ "results" : await Odim({model_name}).find(search.q, search), "total" : await Odim({model_name}).count(search.q), "search" : search.dict()}} return rsp ''') if 'create' in add_methods: print(f''' @router.post("{path}", status_code=201, response_model={model_name}{other}) async def create_{model_name}(obj : {model_name}): await Odim(obj).save() return obj ''') if 'save' in add_methods: print(f''' @router.put("{path}{{id}}", response_model={model_name}{other}) async def save_{model_name}(id : str, obj : {model_name}): obj.id = id await Odim(obj).save() return obj ''') if 'update' in add_methods: print(f''' @router.patch("{path}{{id}}", response_model={model_name}{other}) async def update_{model_name}(id : str, obj : {model_name}): obj.id = id await Odim(obj).update() return obj ''') if 'delete' in add_methods: print(f''' @router.delete("{path}{{id}}", status_code=200, response_model=OkResponse) async def delete_{model_name}(id : str): await Odim(obj).delete(id) return OkResponse() ''') def exec_extend_qeury(request : fastapi.Request, sl : dict = {}): out = {} for k, v in sl.items(): if callable(v): out[k] = v(request) else: out[k] = v return out
43.247748
187
0.584939
9,071
0.944797
0
0
0
0
1,273
0.13259
3,517
0.366316
9a760367155f89800e9ffffd081d1132a56544e5
194
py
Python
scripts/item/consume_2432803.py
Snewmy/swordie
ae01ed4ec0eb20a18730e8cd209eea0b84a8dd17
[ "MIT" ]
null
null
null
scripts/item/consume_2432803.py
Snewmy/swordie
ae01ed4ec0eb20a18730e8cd209eea0b84a8dd17
[ "MIT" ]
null
null
null
scripts/item/consume_2432803.py
Snewmy/swordie
ae01ed4ec0eb20a18730e8cd209eea0b84a8dd17
[ "MIT" ]
null
null
null
# Princess No Damage Skin (30-Days) success = sm.addDamageSkin(2432803) if success: sm.chat("The Princess No Damage Skin (30-Days) has been added to your account's damage skin collection.")
38.8
109
0.747423
0
0
0
0
0
0
0
0
131
0.675258
9a768a1c9833791d7a707ef08123594b6480d371
1,184
py
Python
tests/test_product.py
technicapital/stake-python
8d0a985923318ca7b92f23e0c9a8319a75f37ff2
[ "Apache-2.0" ]
null
null
null
tests/test_product.py
technicapital/stake-python
8d0a985923318ca7b92f23e0c9a8319a75f37ff2
[ "Apache-2.0" ]
null
null
null
tests/test_product.py
technicapital/stake-python
8d0a985923318ca7b92f23e0c9a8319a75f37ff2
[ "Apache-2.0" ]
null
null
null
import asyncio import aiohttp import pytest from .client import HttpClient from .constant import Url from .product import Product @pytest.mark.asyncio async def test_show_portfolio(tracing_client): return await tracing_client.equities.list() @pytest.mark.asyncio async def test_find_products_by_name(tracing_client): from .product import ProductSearchByName request = ProductSearchByName(keyword="techno") products = await tracing_client.products.search(request) assert len(products) == 10 @pytest.mark.asyncio async def test_product_serializer(): async with aiohttp.ClientSession(raise_for_status=True) as session: await session.get(HttpClient.url(Url.symbol.format(symbol="MSFT"))) async def _get_symbol(symbol): response = await session.get( HttpClient.url(Url.symbol.format(symbol=symbol)) ) return await response.json() coros = [_get_symbol(symbol) for symbol in {"MSFT", "TSLA", "GOOG"}] results = await asyncio.gather(*coros) assert [ Product(**serialized_product["products"][0]) for serialized_product in results ]
26.909091
76
0.697635
0
0
0
0
1,043
0.880912
980
0.827703
42
0.035473
9a76e7fea3dd34891002703a3d4d4adaf6c009dc
1,346
py
Python
data_utils.py
tar-bin/DeepAA
acdae33a410eec87eb22419fce0adb513fa97219
[ "MIT" ]
1
2021-07-27T09:31:20.000Z
2021-07-27T09:31:20.000Z
data_utils.py
tar-bin/DeepAA
acdae33a410eec87eb22419fce0adb513fa97219
[ "MIT" ]
null
null
null
data_utils.py
tar-bin/DeepAA
acdae33a410eec87eb22419fce0adb513fa97219
[ "MIT" ]
null
null
null
import numpy as np from PIL import Image, ImageOps class BaseImage(object): """ 変換元画像 """ def __init__(self, path): """ 元画像を読み込む :param path: :param array: np.ndarray :param line_height: int :return: """ image = Image.open(path) array = np.asarray(image) self.array = np.array(array) def scale_image(self, new_width): """ 元画像の横幅を変更 アスペクト比を維持する :param image: 元画像のndarray :param width: 新しい横幅 :return: 横幅を修正したndarray """ image = self.array original_width = image.shape[1] original_height = image.shape[0] aspect_ratio = original_height/float(original_width) new_height = int(aspect_ratio * new_width) image = Image.fromarray(image) new_image = image.resize((new_width, new_height), resample = Image.LANCZOS) return np.asarray(new_image) def add_mergin(self, h=18,w = 16): image = self.array new_image = np.ones((image.shape[0]+ 2 * h, image.shape[1] + 2 * w)) new_image = new_image*255 new_image[h:-h, w:-w] = image return new_image def gray_scale(self): image = Image.fromarray(self.array) image = ImageOps.grayscale(image) return np.asarray(image)
26.392157
83
0.581724
1,391
0.963296
0
0
0
0
0
0
401
0.277701
9a77a425a1b61dc019f50e24ad07e8460b1a7df9
2,839
py
Python
ledfx/color.py
broccoliboy/LedFx
1c90d5c3ddaf993a072eab92d3e373dd3b0fb45c
[ "MIT" ]
524
2020-12-18T19:34:55.000Z
2022-03-31T14:52:25.000Z
ledfx/color.py
broccoliboy/LedFx
1c90d5c3ddaf993a072eab92d3e373dd3b0fb45c
[ "MIT" ]
119
2020-12-18T21:28:12.000Z
2022-03-31T14:44:02.000Z
ledfx/color.py
broccoliboy/LedFx
1c90d5c3ddaf993a072eab92d3e373dd3b0fb45c
[ "MIT" ]
85
2020-12-18T18:23:16.000Z
2022-03-29T16:37:52.000Z
from collections import namedtuple RGB = namedtuple("RGB", "red, green, blue") COLORS = { "red": RGB(255, 0, 0), "orange-deep": RGB(255, 40, 0), "orange": RGB(255, 120, 0), "yellow": RGB(255, 200, 0), "yellow-acid": RGB(160, 255, 0), "green": RGB(0, 255, 0), "green-forest": RGB(34, 139, 34), "green-spring": RGB(0, 255, 127), "green-teal": RGB(0, 128, 128), "green-turquoise": RGB(0, 199, 140), "green-coral": RGB(0, 255, 50), "cyan": RGB(0, 255, 255), "blue": RGB(0, 0, 255), "blue-light": RGB(65, 105, 225), "blue-navy": RGB(0, 0, 128), "blue-aqua": RGB(0, 255, 255), "purple": RGB(128, 0, 128), "pink": RGB(255, 0, 178), "magenta": RGB(255, 0, 255), "black": RGB(0, 0, 0), "white": RGB(255, 255, 255), "brown": RGB(139, 69, 19), "gold": RGB(255, 215, 0), "hotpink": RGB(255, 105, 180), "lightblue": RGB(173, 216, 230), "lightgreen": RGB(152, 251, 152), "lightpink": RGB(255, 182, 193), "lightyellow": RGB(255, 255, 224), "maroon": RGB(128, 0, 0), "mint": RGB(189, 252, 201), "olive": RGB(85, 107, 47), "peach": RGB(255, 100, 100), "plum": RGB(221, 160, 221), "sepia": RGB(94, 38, 18), "skyblue": RGB(135, 206, 235), "steelblue": RGB(70, 130, 180), "tan": RGB(210, 180, 140), "violetred": RGB(208, 32, 144), } GRADIENTS = { "Rainbow": { "colors": [ "red", "orange", "yellow", "green", "green-turquoise", "blue", "purple", "pink", ] }, "Dancefloor": {"colors": ["red", "pink", "blue"]}, "Plasma": {"colors": ["blue", "purple", "red", "orange-deep", "yellow"]}, "Ocean": {"colors": ["blue-aqua", "blue"]}, "Viridis": {"colors": ["purple", "blue", "green-teal", "green", "yellow"]}, "Jungle": {"colors": ["green", "green-forest", "orange"]}, "Spring": {"colors": ["pink", "orange-deep", "yellow"]}, "Winter": {"colors": ["green-turquoise", "green-coral"]}, "Frost": {"colors": ["blue", "blue-aqua", "purple", "pink"]}, "Sunset": {"colors": ["blue-navy", "orange", "red"]}, "Borealis": { "colors": [ "orange-deep", "purple", "green-turquoise", "green", ] }, "Rust": {"colors": ["orange-deep", "red"]}, "Christmas": { "colors": [ "red", "red", "red", "red", "red", "green", "green", "green", "green", "green", ], "method": "repeat", }, "Winamp": { "colors": [ "green", "yellow", "orange", "orange-deep", "red", ] }, }
27.833333
79
0.446988
0
0
0
0
0
0
0
0
1,108
0.390278
9a7853c5ab201c882d582391f394325cd2ad7796
1,247
py
Python
src/test/nspawn_test/support/header_test.py
Andrei-Pozolotin/nspawn
9dd3926f1d1a3a0648f6ec14199cbf4069af1c98
[ "Apache-2.0" ]
15
2019-10-10T17:35:48.000Z
2022-01-29T10:41:01.000Z
src/test/nspawn_test/support/header_test.py
Andrei-Pozolotin/nspawn
9dd3926f1d1a3a0648f6ec14199cbf4069af1c98
[ "Apache-2.0" ]
null
null
null
src/test/nspawn_test/support/header_test.py
Andrei-Pozolotin/nspawn
9dd3926f1d1a3a0648f6ec14199cbf4069af1c98
[ "Apache-2.0" ]
2
2019-10-10T17:36:43.000Z
2020-06-20T15:28:33.000Z
from nspawn.support.header import * def test_header(): print() head_dict = { 'etag':'some-hash', 'last-modified':'some-time', 'content-length':'some-size', 'nspawn-digest':'some-text', } assert head_dict[Header.etag] == 'some-hash' assert head_dict[Header.last_modified] == 'some-time' assert head_dict[Header.content_length] == 'some-size' assert head_dict[Header.nspawn_digest] == 'some-text' def test_compare_head(): print() assert compare_header({ }, { }) == HeadComp.undetermined assert compare_header({ 'etag':'123' }, { 'etag':'"123"' }) == HeadComp.same assert compare_header({ 'last-modified':'some-time', 'content-length':'some-size', }, { 'last-modified':'some-time', 'content-length':'some-size', }) == HeadComp.same assert compare_header({ 'last-modified':'some-time', 'content-length':'some-size-1', }, { 'last-modified':'some-time', 'content-length':'some-size-2', }) == HeadComp.different assert compare_header({ 'last-modified':'some-time', }, { 'content-length':'some-size', }) == HeadComp.undetermined
25.44898
58
0.57498
0
0
0
0
0
0
0
0
433
0.347233
9a786a26a6979489803db0c2519bf5cf50427d08
2,042
py
Python
game1.py
akulakov/learnprogramming
ed7d557dabbef697773b4b369c8ed9cd3cdd55a6
[ "Apache-2.0" ]
null
null
null
game1.py
akulakov/learnprogramming
ed7d557dabbef697773b4b369c8ed9cd3cdd55a6
[ "Apache-2.0" ]
null
null
null
game1.py
akulakov/learnprogramming
ed7d557dabbef697773b4b369c8ed9cd3cdd55a6
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python from helpers import sjoin, cjoin from random import shuffle card_types = [ ("tax",1,1), # tax everyone 2 coins => bank ("soldier",2,1), ("sergeant",3,1), ("captain",4,2), ("emperor",1,5), ("prince",1,1), # prince takes 1/3rd of bank ] class Card: def __init__(self, name, power=1, honor=1): self.name = name self.power, self.honor = power, honor def __repr__(self): return "<%s %s %s>" % (self.name, self.power, self.honor) class Player: coins = 4 out = False def __init__(self, name, cards): self.name = name self.cards = cards def __repr__(self): return cjoin(self.name, self.cards, self.coins) def get_card(self, name): for c in self.cards: if c.name == name: return c def score(self): return sum(c.honor for c in self.cards) deck = [Card(*c) for c in card_types] deck += [Card(*c) for c in card_types] for _ in range(15): deck.append(Card(*randchoice(card_types))) shuffle(deck) def draw(lst, n): items, lst = lst[:n], lst[n:] return items players = [Player('a', draw(deck,5)), Player('b', draw(deck,5)), Player('c', draw(deck,5)) ] class Play: bank = 25 def play_prince(self, player, card): amt = round(self.bank / 3) self.bank -= amt player.coins += amt player.cards.remove(card) def play_tax(self, player, card): others = [p for p in players if p!=player] for p in others: p.coins -= 2 if p.coins < 0: players.remove(p) def check_end(self): return len(players) == 1 def go(self): for p in players: prince = p.get_card("prince") tax = p.get_card("tax") if prince: self.play_prince(p, prince) elif tax: self.play_tax()
24.023529
65
0.519589
1,315
0.643976
0
0
0
0
0
0
163
0.079824
9a78db38d0f259372303620cba450346c37cd245
683
py
Python
src/plotting/plot_permeability.py
pgniewko/Deep-Rock
b714b98a2c391b4a43c62412769e5732cbd0d07a
[ "BSD-3-Clause" ]
1
2019-11-18T04:51:02.000Z
2019-11-18T04:51:02.000Z
src/plotting/plot_permeability.py
pgniewko/Deep-Rock
b714b98a2c391b4a43c62412769e5732cbd0d07a
[ "BSD-3-Clause" ]
null
null
null
src/plotting/plot_permeability.py
pgniewko/Deep-Rock
b714b98a2c391b4a43c62412769e5732cbd0d07a
[ "BSD-3-Clause" ]
null
null
null
#! /usr/bin/env python # # Usage: # python # import sys import numpy as np import matplotlib.pyplot as plt import seaborn as sns sns.set(style="darkgrid") data = np.loadtxt(sys.argv[1]) kappa_LB, kappa_CNN = data.T kappa_LB = 10.0 ** kappa_LB kappa_CNN = 10.0 ** kappa_CNN fig, ax = plt.subplots(1, 1, sharey=True, figsize=(7, 7)) ax.set_xscale("log", nonposx="clip") ax.set_yscale("log", nonposy="clip") plt.tick_params(axis="both", which="major", labelsize=15) plt.tick_params(axis="both", which="minor", labelsize=12) plt.plot(kappa_LB, kappa_CNN, "+", color="green") plt.xlabel("lattice-Boltzmann", fontsize=20) plt.ylabel("ConvNet", fontsize=20, labelpad=-8) plt.show()
21.34375
57
0.707174
0
0
0
0
0
0
0
0
136
0.199122
9a79ab000b884a1fa7eeff49e8a3570bf0211367
1,664
py
Python
functions/python/todo-app.py
swiftycloud/swifty.todoapp
1a36c6e6f1af4584a8c0151e15e9ffcf2453f8c1
[ "MIT" ]
5
2018-11-08T17:07:43.000Z
2019-04-23T15:18:31.000Z
functions/python/todo-app.py
swiftycloud/swifty.todoapp
1a36c6e6f1af4584a8c0151e15e9ffcf2453f8c1
[ "MIT" ]
null
null
null
functions/python/todo-app.py
swiftycloud/swifty.todoapp
1a36c6e6f1af4584a8c0151e15e9ffcf2453f8c1
[ "MIT" ]
3
2018-11-08T17:07:47.000Z
2020-11-22T00:20:38.000Z
import bson import json import swifty # # GET /tasks -- list tasks # POST /tasks $BODY -- add new task # GET /tasks/ID -- get info about task # PUT /tasks/ID -- update task (except status) # DELETE /tasks/ID -- remove task # POST /tasks/ID/done -- mark task as done # def toTask(obj): return { 'id': str(obj['_id']), 'task': obj['task'], 'status': obj['status'] } def fromTask(body, q): b = json.loads(body) if 'task' in b: q['task'] = b['task'] def Main(req): db = swifty.MongoDatabase('tasks') col = db['tasks'] p = req.path.split('/') if p[0] != 'tasks': return {}, { 'status': 404 } q = { 'owner': req.claims['cookie'] } if len(p) == 1: if req.method == 'GET': if 'status' in req.args: q['status'] = req.args['status'] return [ toTask(x) for x in col.find(q) ], None if req.method == 'POST': q['status'] = 'new' fromTask(req.body, q) col.insert_one(q) return {}, None q['_id'] = bson.ObjectId(p[1]) if len(p) == 2: if req.method == 'GET': return toTask(col.find_one(q)), None if req.method == 'PUT': e = { } fromTask(req.body, e) col.update_one(q, { '$set': e }) return {}, None if req.method == 'DELETE': col.delete_one(q) return {}, None if len(p) == 3: if p[2] == 'done' and req.method == 'POST': col.update_one(q, { '$set': { 'status': 'done' } }) return {}, None return {}, { 'status': 404 }
25.6
82
0.477163
0
0
0
0
0
0
0
0
479
0.287861
9a79fb2f2787441274d55999dc0843161af999b5
401
py
Python
dmoj/Uncategorized/tss17a.py
UserBlackBox/competitive-programming
2aa8ffa6df6a386f8e47d084b5fa32d6d741bbbc
[ "Unlicense" ]
null
null
null
dmoj/Uncategorized/tss17a.py
UserBlackBox/competitive-programming
2aa8ffa6df6a386f8e47d084b5fa32d6d741bbbc
[ "Unlicense" ]
null
null
null
dmoj/Uncategorized/tss17a.py
UserBlackBox/competitive-programming
2aa8ffa6df6a386f8e47d084b5fa32d6d741bbbc
[ "Unlicense" ]
null
null
null
# https://dmoj.ca/problem/tss17a # https://dmoj.ca/submission/2226280 import sys n = int(sys.stdin.readline()[:-1]) for i in range(n): instruction = sys.stdin.readline()[:-1].split() printed = False for j in range(3): if instruction.count(instruction[j]) >= 2: print(instruction[j]) printed = True break if not printed: print('???')
26.733333
51
0.578554
0
0
0
0
0
0
0
0
73
0.182045
9a7ad9eea9244d2609a2517f92f7fc289fb240da
1,159
py
Python
todo/views/users_detail.py
josalhor/WebModels
6b9cde3141c53562f40b129e6e1c87448ce9853a
[ "BSD-3-Clause" ]
null
null
null
todo/views/users_detail.py
josalhor/WebModels
6b9cde3141c53562f40b129e6e1c87448ce9853a
[ "BSD-3-Clause" ]
41
2021-03-23T12:58:25.000Z
2021-05-25T11:38:42.000Z
todo/views/users_detail.py
josalhor/WebModels
6b9cde3141c53562f40b129e6e1c87448ce9853a
[ "BSD-3-Clause" ]
null
null
null
from todo.templatetags.todo_tags import is_management from django.contrib.auth.decorators import login_required, user_passes_test from django.http import HttpResponse from django.shortcuts import render from todo.models import Designer, Management, Writer, Editor @login_required @user_passes_test(is_management) def users_detail(request, list_slug=None) -> HttpResponse: # Which users to show on this list view? if list_slug == "editors": users = Editor.objects.all() elif list_slug == "designers": users = Designer.objects.all() elif list_slug == "writers": users = Writer.objects.all() elif list_slug == "management": users = Management.objects.all() # Additional filtering active_users = users.filter(user__is_active=True) unactive_users = users.filter(user__is_active=False) # ###################### # Add New User Form # ###################### context = { "list_slug": list_slug, "active_users": active_users, "unactive_users": unactive_users, "users": users, } return render(request, "todo/users_detail.html", context)
30.5
75
0.667817
0
0
0
0
892
0.769629
0
0
243
0.209664
9a7cfcbc63f3c97c82737bfbbfa13e26624618e7
214
py
Python
src/librhc/cost/__init__.py
arnavthareja/mushr_pixelart_mpc
db6ee6cae9b4cb1d3b213fed06690074372c824b
[ "BSD-3-Clause" ]
5
2019-08-30T08:20:27.000Z
2021-08-01T17:16:16.000Z
src/librhc/cost/__init__.py
arnavthareja/mushr_pixelart_mpc
db6ee6cae9b4cb1d3b213fed06690074372c824b
[ "BSD-3-Clause" ]
1
2020-09-09T13:38:08.000Z
2020-12-15T12:20:26.000Z
src/librhc/cost/__init__.py
arnavthareja/mushr_pixelart_mpc
db6ee6cae9b4cb1d3b213fed06690074372c824b
[ "BSD-3-Clause" ]
4
2019-09-14T21:26:09.000Z
2021-08-27T23:01:41.000Z
# Copyright (c) 2019, The Personal Robotics Lab, The MuSHR Team, The Contributors of MuSHR # License: BSD 3-Clause. See LICENSE.md file in root directory. from .waypoints import Waypoints __all__ = ["Waypoints"]
30.571429
90
0.757009
0
0
0
0
0
0
0
0
164
0.766355
9a7d3e4f21c385675dec5f7b1784429e468d978e
1,401
py
Python
759/Employee Free Time.py
cccccccccccccc/Myleetcode
fb3fa6df7c77feb2d252feea7f3507569e057c70
[ "Apache-2.0" ]
null
null
null
759/Employee Free Time.py
cccccccccccccc/Myleetcode
fb3fa6df7c77feb2d252feea7f3507569e057c70
[ "Apache-2.0" ]
null
null
null
759/Employee Free Time.py
cccccccccccccc/Myleetcode
fb3fa6df7c77feb2d252feea7f3507569e057c70
[ "Apache-2.0" ]
null
null
null
from typing import List import heapq # Definition for an Interval. class Interval: def __init__(self, start: int = None, end: int = None): self.start = start self.end = end class Solution: def employeeFreeTime(self, schedule: '[[Interval]]') -> '[Interval]': allinterval = [] heapq.heapify(allinterval) ans = [] for i,e in enumerate(schedule): heapq.heappush(allinterval,(e[0].start,e[0].end,i,0)) interval = Interval() flag = False freetime = [] while len(allinterval)>0: cur = heapq.heappop(allinterval) id = cur[2] idx = cur[3] if flag == False: interval = Interval(cur[0],cur[1]) flag = True else: if cur[0]>interval.end: freetime.append(Interval(interval.end,cur[0])) interval.start = cur[0] interval.end = cur[1] else: interval.end = max(interval.end,cur[1]) if len(schedule[id])-1>idx: heapq.heappush(allinterval,(schedule[id][idx+1].start,schedule[id][idx+1].end,id,idx+1)) return freetime i1 = Interval(1,2) i2 = Interval(6,7) i3 = Interval(2,4) i4 = Interval(2,5) i5 = Interval(9,12) A = Solution() print(A.employeeFreeTime([[i1,i2],[i3],[i4,i5]]))
31.840909
104
0.532477
1,169
0.834404
0
0
0
0
0
0
55
0.039258
9a7d9c6b811efb6d15e0d51600e0fd5bb7bf8479
41,312
py
Python
Comms1_internal/Final.py
CoderStellaJ/CG4002
474bda123856d8a88bef5ff787259fcd9ba9f09a
[ "MIT" ]
null
null
null
Comms1_internal/Final.py
CoderStellaJ/CG4002
474bda123856d8a88bef5ff787259fcd9ba9f09a
[ "MIT" ]
10
2020-01-28T14:17:26.000Z
2020-02-05T04:53:06.000Z
Comms1_internal/Final.py
CoderStellaJ/CG4002
474bda123856d8a88bef5ff787259fcd9ba9f09a
[ "MIT" ]
5
2021-01-21T08:00:56.000Z
2021-09-28T05:06:36.000Z
from bluepy import btle import concurrent from concurrent import futures import threading import multiprocessing import time from time_sync import * import eval_client import dashBoardClient from joblib import dump, load import numpy # to count labels and store in dict import operator # to get most predicted label import json import random # RNG in worst case from sklearn.preprocessing import StandardScaler # to normalise data class UUIDS: SERIAL_COMMS = btle.UUID("0000dfb1-0000-1000-8000-00805f9b34fb") class Delegate(btle.DefaultDelegate): def __init__(self, params): btle.DefaultDelegate.__init__(self) def handleNotification(self, cHandle, data): ultra96_receiving_timestamp = time.time() * 1000 for idx in range(len(beetle_addresses)): if global_delegate_obj[idx] == self: #print("receiving data from %s" % (beetle_addresses[idx])) #print("data: " + data.decode('ISO-8859-1')) if beetle_addresses[idx] == "50:F1:4A:CC:01:C4": # emg beetle data emg_buffer[beetle_addresses[idx] ] += data.decode('ISO-8859-1') if '>' in data.decode('ISO-8859-1'): print("sending emg dataset to dashboard") packet_count_dict[beetle_addresses[idx]] += 1 try: arr = emg_buffer[beetle_addresses[idx]].split(">")[ 0] final_arr = arr.split(",") board_client.send_data_to_DB( beetle_addresses[idx], str(final_arr)) emg_buffer[beetle_addresses[idx]] = "" except Exception as e: print(e) board_client.send_data_to_DB( beetle_addresses[idx], str(["1", "1", "1", "1"])) emg_buffer[beetle_addresses[idx]] = "" else: if incoming_data_flag[beetle_addresses[idx]] is True: if handshake_flag_dict[beetle_addresses[idx]] is True: buffer_dict[beetle_addresses[idx] ] += data.decode('ISO-8859-1') if '>' not in data.decode('ISO-8859-1'): pass else: if 'T' in buffer_dict[beetle_addresses[idx]]: for char in buffer_dict[beetle_addresses[idx]]: if char == 'T': ultra96_receiving_timestamp = time.time() * 1000 continue if char == '>': # end of packet try: timestamp_dict[beetle_addresses[idx]].append( int(datastring_dict[beetle_addresses[idx]])) except Exception: timestamp_dict[beetle_addresses[idx]].append( 0) timestamp_dict[beetle_addresses[idx]].append( ultra96_receiving_timestamp) handshake_flag_dict[beetle_addresses[idx]] = False clocksync_flag_dict[beetle_addresses[idx]] = True # clear serial input buffer to get ready for data packets datastring_dict[beetle_addresses[idx]] = "" buffer_dict[beetle_addresses[idx]] = "" return elif char != '>': if char == '|': # signify start of next timestamp try: timestamp_dict[beetle_addresses[idx]].append( int(datastring_dict[beetle_addresses[idx]])) except Exception: timestamp_dict[beetle_addresses[idx]].append( 0) datastring_dict[beetle_addresses[idx]] = "" else: datastring_dict[beetle_addresses[idx]] += char else: pass else: if '>' in data.decode('ISO-8859-1'): buffer_dict[beetle_addresses[idx] ] += data.decode('ISO-8859-1') #print("storing dance dataset") packet_count_dict[beetle_addresses[idx]] += 1 else: buffer_dict[beetle_addresses[idx] ] += data.decode('ISO-8859-1') # send data to dashboard once every 10 datasets try: if packet_count_dict[beetle_addresses[idx]] % 10 == 0 and '>' in data.decode('ISO-8859-1'): print("sending data to dashboard") first_string = buffer_dict[beetle_addresses[idx]].split("|")[ 0] final_arr = [first_string.split(",")[0], str(int(first_string.split(",")[1])/divide_get_float), str(int(first_string.split(",")[2])/divide_get_float), str(int(first_string.split(",")[ 3])/divide_get_float), str(int(first_string.split(",")[4])/divide_get_float), str(int(first_string.split(",")[5])/divide_get_float), str(int(first_string.split(",")[6])/divide_get_float)] board_client.send_data_to_DB( beetle_addresses[idx], str(final_arr)) except Exception as e: print(e) """ class EMGThread(object): def __init__(self): thread = threading.Thread(target=self.getEMGData, args=(beetle, )) thread.daemon = True # Daemonize thread thread.start() # Start the execution def getEMGData(self, beetle): while True: try: if beetle.waitForNotifications(2): continue except Exception as e: reestablish_connection(beetle) """ def initHandshake(beetle): retries = 0 if beetle.addr != "50:F1:4A:CC:01:C4": ultra96_sending_timestamp = time.time() * 1000 incoming_data_flag[beetle.addr] = True handshake_flag_dict[beetle.addr] = True for characteristic in beetle.getCharacteristics(): if characteristic.uuid == UUIDS.SERIAL_COMMS: ultra96_sending_timestamp = time.time() * 1000 timestamp_dict[beetle.addr].append( ultra96_sending_timestamp) print("Sending 'T' and 'H' and 'Z' packets to %s" % (beetle.addr)) characteristic.write( bytes('T', 'UTF-8'), withResponse=False) characteristic.write( bytes('H', 'UTF-8'), withResponse=False) characteristic.write( bytes('Z', 'UTF-8'), withResponse=False) while True: try: if beetle.waitForNotifications(2): if clocksync_flag_dict[beetle.addr] is True: # function for time calibration try: clock_offset_tmp = calculate_clock_offset(timestamp_dict[beetle.addr]) tmp_value_list = [] if clock_offset_tmp is not None: tmp_value_list.append(clock_offset_tmp) clock_offset_dict[beetle.addr] = tmp_value_list except Exception as e: print(e) timestamp_dict[beetle.addr].clear() print("beetle %s clock offset: %i" % (beetle.addr, clock_offset_dict[beetle.addr][-1])) clocksync_flag_dict[beetle.addr] = False incoming_data_flag[beetle.addr] = False return else: continue else: while True: if retries >= 5: retries = 0 break print( "Failed to receive timestamp, sending 'Z', 'T', 'H', and 'R' packet to %s" % (beetle.addr)) characteristic.write( bytes('R', 'UTF-8'), withResponse=False) characteristic.write( bytes('T', 'UTF-8'), withResponse=False) characteristic.write( bytes('H', 'UTF-8'), withResponse=False) characteristic.write( bytes('Z', 'UTF-8'), withResponse=False) retries += 1 except Exception as e: reestablish_connection(beetle) def establish_connection(address): while True: try: for idx in range(len(beetle_addresses)): # for initial connections or when any beetle is disconnected if beetle_addresses[idx] == address: if global_beetle[idx] != 0: # do not reconnect if already connected return else: print("connecting with %s" % (address)) beetle = btle.Peripheral(address) global_beetle[idx] = beetle beetle_delegate = Delegate(address) global_delegate_obj[idx] = beetle_delegate beetle.withDelegate(beetle_delegate) if address != "50:F1:4A:CC:01:C4": initHandshake(beetle) print("Connected to %s" % (address)) return except Exception as e: print(e) for idx in range(len(beetle_addresses)): # for initial connections or when any beetle is disconnected if beetle_addresses[idx] == address: if global_beetle[idx] != 0: # do not reconnect if already connected return time.sleep(3) def reestablish_connection(beetle): while True: try: print("reconnecting to %s" % (beetle.addr)) beetle.connect(beetle.addr) print("re-connected to %s" % (beetle.addr)) return except: time.sleep(1) continue def getDanceData(beetle): if beetle.addr != "50:F1:4A:CC:01:C4": timeout_count = 0 retries = 0 incoming_data_flag[beetle.addr] = True for characteristic in beetle.getCharacteristics(): if characteristic.uuid == UUIDS.SERIAL_COMMS: while True: if retries >= 10: retries = 0 break print( "sending 'A' to beetle %s to collect dancing data", (beetle.addr)) characteristic.write( bytes('A', 'UTF-8'), withResponse=False) retries += 1 while True: try: if beetle.waitForNotifications(2): #print("getting data...") # print(packet_count_dict[beetle.addr]) # if number of datasets received from all beetles exceed expectation if packet_count_dict[beetle.addr] >= num_datasets: print("sufficient datasets received from %s. Processing data now" % ( beetle.addr)) # reset for next dance move packet_count_dict[beetle.addr] = 0 incoming_data_flag[beetle.addr] = False while True: if retries >= 10: break characteristic.write( bytes('Z', 'UTF-8'), withResponse=False) retries += 1 return continue # beetle finish transmitting, but got packet losses elif (packet_count_dict[beetle.addr] < num_datasets) and (packet_count_dict[beetle.addr] >= 1): print(packet_count_dict[beetle.addr]) print("sufficient datasets received from %s with packet losses. Processing data now" % ( beetle.addr)) # reset for next dance move packet_count_dict[beetle.addr] = 0 incoming_data_flag[beetle.addr] = False while True: if retries >= 10: break characteristic.write( bytes('Z', 'UTF-8'), withResponse=False) retries += 1 return elif timeout_count >= 3: incoming_data_flag[beetle.addr] = False packet_count_dict[beetle.addr] = 0 timeout_count = 0 return else: # beetle did not start transmitting despite ultra96 sending 'A' previously timeout_count += 1 packet_count_dict[beetle.addr] = 0 retries = 0 while True: if retries >= 10: retries = 0 break print( "Failed to receive data, resending 'A' and 'B' packet to %s" % (beetle.addr)) characteristic.write( bytes('A', 'UTF-8'), withResponse=False) characteristic.write( bytes('B', 'UTF-8'), withResponse=False) retries += 1 except Exception as e: reestablish_connection(beetle) def getEMGData(beetle): retries = 0 for characteristic in beetle.getCharacteristics(): if characteristic.uuid == UUIDS.SERIAL_COMMS: while True: if retries >= 5: retries = 0 break print( "sending 'E' to beetle %s to collect emg data", (beetle.addr)) characteristic.write( bytes('E', 'UTF-8'), withResponse=False) retries += 1 while True: try: if beetle.waitForNotifications(2): if packet_count_dict[beetle.addr] >= 1: packet_count_dict[beetle.addr] = 0 retries = 0 while True: if retries >= 8: break characteristic.write( bytes('X', 'UTF-8'), withResponse=False) retries += 1 return continue else: print("failed to collect emg data, resending 'E'") characteristic.write( bytes('E', 'UTF-8'), withResponse=False) except Exception as e: reestablish_connection(beetle) def processData(address): if address != "50:F1:4A:CC:01:C4": data_dict = {address: {}} def deserialize(buffer_dict, result_dict, address): for char in buffer_dict[address]: # start of new dataset if char == 'D' or end_flag[address] is True: # 2nd part of dataset lost or '>' lost in transmission if start_flag[address] is True: try: # if only '>' lost in transmission, can keep dataset. Else delete if checksum_dict[address] != int(datastring_dict[address]): del result_dict[address][dataset_count_dict[address]] except Exception: # 2nd part of dataset lost try: del result_dict[address][dataset_count_dict[address]] except Exception: pass # reset datastring to prepare for next dataset datastring_dict[address] = "" # reset checksum to prepare for next dataset checksum_dict[address] = 0 comma_count_dict[address] = 0 dataset_count_dict[address] += 1 timestamp_flag_dict[address] = True checksum_dict[address] ^= ord(char) start_flag[address] = True end_flag[address] = False if char != 'D' and char != ',' and char != '|' and char != '>' and (char == '-' or char == '.' or float_flag_dict[address] is True or timestamp_flag_dict[address] is True): datastring_dict[address] += char checksum_dict[address] ^= ord(char) elif char == ' ': datastring_dict[address] += char checksum_dict[address] ^= ord(char) elif char == ',': # next value comma_count_dict[address] += 1 checksum_dict[address] ^= ord(char) # already past timestamp value if comma_count_dict[address] == 1: timestamp_flag_dict[address] = False try: result_dict[address].setdefault( dataset_count_dict[address], []).append(int(datastring_dict[address])) except Exception: try: del result_dict[address][dataset_count_dict[address]] except Exception: pass float_flag_dict[address] = True elif comma_count_dict[address] < 5: # yaw, pitch, roll floats try: result_dict[address][dataset_count_dict[address]].append( float("{0:.2f}".format((int(datastring_dict[address]) / divide_get_float)))) except Exception: try: del result_dict[address][dataset_count_dict[address]] except Exception: pass else: # accelerometer integers try: result_dict[address][dataset_count_dict[address]].append( int(int(datastring_dict[address]) / divide_get_float)) except Exception: try: del result_dict[address][dataset_count_dict[address]] except Exception: pass datastring_dict[address] = "" elif char == '>': # end of current dataset # print("ultra96 checksum: %i" % (checksum_dict[address])) # print("beetle checksum: %i" % (int(datastring_dict[address]))) # received dataset is invalid; drop the dataset from data dictionary try: if checksum_dict[address] != int(datastring_dict[address]): del result_dict[address][dataset_count_dict[address]] except Exception: try: del result_dict[address][dataset_count_dict[address]] except Exception: pass # reset datastring to prepare for next dataset datastring_dict[address] = "" # reset checksum to prepare for next dataset checksum_dict[address] = 0 comma_count_dict[address] = 0 start_flag[address] = False end_flag[address] = True # missing data in previous dataset try: if len(result_dict[address][list(result_dict[address].keys())[-1]]) < 7: del result_dict[address][list( result_dict[address].keys())[-1]] except Exception as e: print(e) print("error in processData in line 379") elif char == '|' or (float_flag_dict[address] is False and timestamp_flag_dict[address] is False): if float_flag_dict[address] is True: try: result_dict[address][dataset_count_dict[address]].append( int(int(datastring_dict[address]) / divide_get_float)) except Exception: try: del result_dict[address][dataset_count_dict[address]] except Exception: pass # clear datastring to prepare take in checksum from beetle datastring_dict[address] = "" float_flag_dict[address] = False elif char != '|' and char != '>': datastring_dict[address] += char try: if len(result_dict[address][list(result_dict[address].keys())[-1]]) < 7: del result_dict[address][list( result_dict[address].keys())[-1]] except Exception as e: print(e) print("error in processData in line 478") for character in "\r\n": buffer_dict[address] = buffer_dict[address].replace(character, "") deserialize(buffer_dict, data_dict, address) dataset_count_dict[address] = 0 return data_dict def parse_data(dic_data, beetle): # collect hand data data = [] for v in dic_data[beetle].values(): ypr = [] # yaw, pitch, roll for i in range(1, 7): ypr.append(v[i]) data.append(ypr) return (data) def predict_beetle(beetle_data, model): pred_arr = model.predict(beetle_data) unique, counts = numpy.unique(pred_arr, return_counts=True) pred_count = dict(zip(unique, counts)) prediction = max(pred_count.items(), key=operator.itemgetter(1))[0] return prediction # Program to find most frequent element in a list def most_frequent_prediction(pred_list): return max(set(pred_list), key=pred_list.count) def find_new_position(ground_truth, b1_move, b2_move, b3_move): # ground_truth = [3, 2, 1] # p1_movement = 'R' # p2_movement = 'S' # p3_movement = 'L' dic = {1: b1_move, 2: b2_move, 3: b3_move} p1_movement = dic[ground_truth[0]] p2_movement = dic[ground_truth[1]] p3_movement = dic[ground_truth[2]] if p1_movement == "R" and p2_movement == "S" and p3_movement == "L": # output = [3, 2, 1] output = [ground_truth[2], ground_truth[1], ground_truth[0]] elif p1_movement == "R" and p2_movement == "L" and p3_movement == "S": # output = [2, 1, 3] output = [ground_truth[1], ground_truth[0], ground_truth[2]] elif p1_movement == "R" and p2_movement == "L" and p3_movement == "L": # output = [2, 3, 1] output = [ground_truth[1], ground_truth[2], ground_truth[0]] elif p1_movement == "S" and p2_movement == "R" and p3_movement == "L": # output = [1, 3, 2] output = [ground_truth[0], ground_truth[2], ground_truth[1]] elif p1_movement == "S" and p2_movement == "L" and p3_movement == "S": # output = [2, 1, 3] output = [ground_truth[1], ground_truth[0], ground_truth[2]] else: # output = [1, 2, 3] output = ground_truth position = str(output[0]) + " " + str(output[1]) + " " + str(output[2]) return position def eval_1beetle(beetle_dict_1, beetle_1): # Get beetle data from dictionaries beetle1_data = parse_data(beetle_dict_1, beetle_1) # Predict dance move of each beetle #beetle1_dance = predict_beetle(beetle1_data, mlp_dance) pred_arr = mlp_dance.predict(beetle1_data) unique, counts = numpy.unique(pred_arr, return_counts=True) pred_count = dict(zip(unique, counts)) beetle1_dance = max(pred_count.items(), key=operator.itemgetter(1))[0] return beetle1_dance def normalise_data(data): try: scaler = StandardScaler() scaler.fit(data) data = scaler.transform(data) return data except Exception as e: return data if __name__ == '__main__': # 50:F1:4A:CB:FE:EE: position 1, 1C:BA:8C:1D:30:22: position 2, 78:DB:2F:BF:2C:E2: position 3 start_time = time.time() # global variables """ beetle_addresses = ["50:F1:4A:CC:01:C4", "50:F1:4A:CB:FE:EE", "78:DB:2F:BF:2C:E2", "1C:BA:8C:1D:30:22"] """ beetle_addresses = ["50:F1:4A:CC:01:C4", "50:F1:4A:CB:FE:EE", "78:DB:2F:BF:2C:E2", "1C:BA:8C:1D:30:22"] divide_get_float = 100.0 global_delegate_obj = [] global_beetle = [] handshake_flag_dict = {"50:F1:4A:CB:FE:EE": True, "78:DB:2F:BF:2C:E2": True, "1C:BA:8C:1D:30:22": True} emg_buffer = {"50:F1:4A:CC:01:C4": ""} buffer_dict = {"50:F1:4A:CB:FE:EE": "", "78:DB:2F:BF:2C:E2": "", "1C:BA:8C:1D:30:22": ""} incoming_data_flag = {"50:F1:4A:CB:FE:EE": False, "78:DB:2F:BF:2C:E2": False, "1C:BA:8C:1D:30:22": False} ground_truth = [1, 2, 3] ACTIONS = ['muscle', 'weightlifting', 'shoutout'] POSITIONS = ['1 2 3', '3 2 1', '2 3 1', '3 1 2', '1 3 2', '2 1 3'] beetle1 = "50:F1:4A:CB:FE:EE" beetle2 = "78:DB:2F:BF:2C:E2" beetle3 = "1C:BA:8C:1D:30:22" dance = "shoutout" new_pos = "1 2 3" # data global variables num_datasets = 200 beetle1_data_dict = {"50:F1:4A:CB:FE:EE": {}} beetle2_data_dict = {"78:DB:2F:BF:2C:E2": {}} beetle3_data_dict = {"1C:BA:8C:1D:30:22": {}} beetle1_moving_dict = {"50:F1:4A:CB:FE:EE": {}} beetle2_moving_dict = {"78:DB:2F:BF:2C:E2": {}} beetle3_moving_dict = {"1C:BA:8C:1D:30:22": {}} beetle1_dancing_dict = {"50:F1:4A:CB:FE:EE": {}} beetle2_dancing_dict = {"78:DB:2F:BF:2C:E2": {}} beetle3_dancing_dict = {"1C:BA:8C:1D:30:22": {}} datastring_dict = {"50:F1:4A:CB:FE:EE": "", "78:DB:2F:BF:2C:E2": "", "1C:BA:8C:1D:30:22": ""} packet_count_dict = {"50:F1:4A:CC:01:C4": 0, "50:F1:4A:CB:FE:EE": 0, "78:DB:2F:BF:2C:E2": 0, "1C:BA:8C:1D:30:22": 0} dataset_count_dict = {"50:F1:4A:CB:FE:EE": 0, "78:DB:2F:BF:2C:E2": 0, "1C:BA:8C:1D:30:22": 0} float_flag_dict = {"50:F1:4A:CB:FE:EE": False, "78:DB:2F:BF:2C:E2": False, "1C:BA:8C:1D:30:22": False} timestamp_flag_dict = {"50:F1:4A:CB:FE:EE": False, "78:DB:2F:BF:2C:E2": False, "1C:BA:8C:1D:30:22": False} comma_count_dict = {"50:F1:4A:CB:FE:EE": 0, "78:DB:2F:BF:2C:E2": 0, "1C:BA:8C:1D:30:22": 0} checksum_dict = {"50:F1:4A:CB:FE:EE": 0, "78:DB:2F:BF:2C:E2": 0, "1C:BA:8C:1D:30:22": 0} start_flag = {"50:F1:4A:CB:FE:EE": False, "78:DB:2F:BF:2C:E2": False, "1C:BA:8C:1D:30:22": False} end_flag = {"50:F1:4A:CB:FE:EE": False, "78:DB:2F:BF:2C:E2": False, "1C:BA:8C:1D:30:22": False} # clock synchronization global variables dance_count = 0 clocksync_flag_dict = {"50:F1:4A:CB:FE:EE": False, "78:DB:2F:BF:2C:E2": False, "1C:BA:8C:1D:30:22": False} timestamp_dict = {"50:F1:4A:CB:FE:EE": [], "78:DB:2F:BF:2C:E2": [], "1C:BA:8C:1D:30:22": []} clock_offset_dict = {"50:F1:4A:CB:FE:EE": [], "78:DB:2F:BF:2C:E2": [], "1C:BA:8C:1D:30:22": []} [global_delegate_obj.append(0) for idx in range(len(beetle_addresses))] [global_beetle.append(0) for idx in range(len(beetle_addresses))] try: eval_client = eval_client.Client("192.168.43.6", 8080, 6, "cg40024002group6") except Exception as e: print(e) try: board_client = dashBoardClient.Client("192.168.43.248", 8080, 6, "cg40024002group6") except Exception as e: print(e) establish_connection("50:F1:4A:CC:01:C4") time.sleep(2) establish_connection("78:DB:2F:BF:2C:E2") time.sleep(3) # Load MLP NN model mlp_dance = load('mlp_dance_LATEST.joblib') establish_connection("50:F1:4A:CB:FE:EE") time.sleep(3) # Load Movement ML mlp_move = load('mlp_movement_LATEST.joblib') establish_connection("1C:BA:8C:1D:30:22") with concurrent.futures.ThreadPoolExecutor(max_workers=7) as data_executor: for beetle in global_beetle: if beetle.addr == "50:F1:4A:CC:01:C4": data_executor.submit(getEMGData, beetle) data_executor.shutdown(wait=True) # start collecting data only after 1 min passed while True: elapsed_time = time.time() - start_time if int(elapsed_time) >= 60: break else: print(elapsed_time) time.sleep(1) """ for beetle in global_beetle: print(beetle.addr) emg_thread = EMGThread(global_beetle[3]) """ while True: with concurrent.futures.ThreadPoolExecutor(max_workers=7) as data_executor: {data_executor.submit(getDanceData, beetle): beetle for beetle in global_beetle} data_executor.shutdown(wait=True) """ with concurrent.futures.ThreadPoolExecutor(max_workers=7) as data_executor: data_executor.submit(getEMGData, global_beetle[0]) data_executor.shutdown(wait=True) """ # do calibration once every 4 moves; change 4 to other values according to time calibration needs if dance_count == 1: print("Proceed to do time calibration...") # clear clock_offset_dict for next time calibration for beetle in global_beetle: if beetle.addr != "50:F1:4A:CC:01:C4": initHandshake(beetle) if dance_count == 1: dance_count = 0 dance_count += 1 pool = multiprocessing.Pool() workers = [pool.apply_async(processData, args=(address, )) for address in beetle_addresses] result = [worker.get() for worker in workers] pool.close() try: # change to 1 if using emg beetle, 0 if not using for idx in range(1, len(result)): for address in result[idx].keys(): if address == "50:F1:4A:CB:FE:EE": beetle1_data_dict[address] = result[idx][address] elif address == "78:DB:2F:BF:2C:E2": beetle2_data_dict[address] = result[idx][address] elif address == "1C:BA:8C:1D:30:22": beetle3_data_dict[address] = result[idx][address] except Exception as e: pass try: for dataset_num, dataset_list in beetle1_data_dict["50:F1:4A:CB:FE:EE"].items(): if dataset_list[0] == 0: # moving data beetle1_moving_dict["50:F1:4A:CB:FE:EE"].update( {dataset_num: dataset_list}) else: # dancing data beetle1_dancing_dict["50:F1:4A:CB:FE:EE"].update( {dataset_num: dataset_list}) except Exception as e: pass try: for dataset_num, dataset_list in beetle2_data_dict["78:DB:2F:BF:2C:E2"].items(): if dataset_list[0] == 0: # moving data beetle2_moving_dict["78:DB:2F:BF:2C:E2"].update( {dataset_num: dataset_list}) else: # dancing data beetle2_dancing_dict["78:DB:2F:BF:2C:E2"].update( {dataset_num: dataset_list}) except Exception as e: pass try: for dataset_num, dataset_list in beetle3_data_dict["1C:BA:8C:1D:30:22"].items(): if dataset_list[0] == 0: # moving data beetle3_moving_dict["1C:BA:8C:1D:30:22"].update( {dataset_num: dataset_list}) else: # dancing data beetle3_dancing_dict["1C:BA:8C:1D:30:22"].update( {dataset_num: dataset_list}) except Exception as e: pass # clear buffer for next move for address in buffer_dict.keys(): buffer_dict[address] = "" # print(beetle1_data_dict) # print(beetle2_data_dict) # print(beetle3_data_dict) with open(r'position.txt', 'a') as file: file.write(json.dumps(beetle1_moving_dict) + "\n") file.write(json.dumps(beetle2_moving_dict) + "\n") file.write(json.dumps(beetle3_moving_dict) + "\n") file.close() with open(r'dance.txt', 'a') as file: file.write(json.dumps(beetle1_dancing_dict) + "\n") file.write(json.dumps(beetle2_dancing_dict) + "\n") file.write(json.dumps(beetle3_dancing_dict) + "\n") file.close() # synchronization delay try: beetle1_time_ultra96 = calculate_ultra96_time( beetle1_dancing_dict, clock_offset_dict["50:F1:4A:CB:FE:EE"][0]) beetle2_time_ultra96 = calculate_ultra96_time( beetle2_dancing_dict, clock_offset_dict["78:DB:2F:BF:2C:E2"][0]) beetle3_time_ultra96 = calculate_ultra96_time( beetle3_dancing_dict, clock_offset_dict["1C:BA:8C:1D:30:22"][0]) sync_delay = calculate_sync_delay(beetle1_time_ultra96, beetle2_time_ultra96, beetle3_time_ultra96) except Exception as e: print(e) print("use default sync delay") sync_delay = 950 # print("Beetle 1 ultra 96 time: ", beetle1_time_ultra96) # print("Beetle 2 ultra 96 time: ", beetle2_time_ultra96) # print("Beetle 3 ultra 96 time: ", beetle3_time_ultra96) print("Synchronization delay is: ", sync_delay) # machine learning # ml_result = get_prediction(beetle1_data_dict) """ """ beetle1_moving_dict = parse_data(beetle1_moving_dict, beetle1) beetle2_moving_dict = parse_data(beetle2_moving_dict, beetle2) beetle3_moving_dict = parse_data(beetle3_moving_dict, beetle3) beetle1_moving_dict = normalise_data(beetle1_moving_dict) beetle2_moving_dict = normalise_data(beetle2_moving_dict) beetle3_moving_dict = normalise_data(beetle3_moving_dict) # Predict movement direction of each beetle try: beetle1_move = predict_beetle(beetle1_moving_dict, mlp_move) except Exception as e: beetle1_move = 'S' try: beetle2_move = predict_beetle(beetle2_moving_dict, mlp_move) except Exception as e: beetle2_move = 'S' try: beetle3_move = predict_beetle(beetle3_moving_dict, mlp_move) except Exception as e: beetle3_move = 'S' # Find new position new_pos = find_new_position( ground_truth, beetle1_move, beetle2_move, beetle3_move) # PREDICT DANCE if beetle1_dancing_dict[beetle1] and beetle2_dancing_dict[beetle2] and beetle3_dancing_dict[beetle3]: # Get DANCE data from dictionaries in arguments beetle1_dance_data = parse_data(beetle1_dancing_dict, beetle1) beetle2_dance_data = parse_data(beetle2_dancing_dict, beetle2) beetle3_dance_data = parse_data(beetle3_dancing_dict, beetle3) # print(beetle1_data) # Normalise DANCE data beetle1_dance_data_norm = normalise_data(beetle1_dance_data) beetle2_dance_data_norm = normalise_data(beetle2_dance_data) beetle3_dance_data_norm = normalise_data(beetle3_dance_data) # print(beetle1_data_norm) # Predict DANCE of each beetle beetle1_dance = predict_beetle(beetle1_dance_data_norm, mlp_dance) beetle2_dance = predict_beetle(beetle2_dance_data_norm, mlp_dance) beetle3_dance = predict_beetle(beetle3_dance_data_norm, mlp_dance) # print(beetle1_dance) dance_predictions = [beetle1_dance, beetle2_dance, beetle3_dance] dance = most_frequent_prediction(dance_predictions) elif beetle2_dancing_dict[beetle2] and beetle3_dancing_dict[beetle3]: dance = eval_1beetle(beetle2_dancing_dict, beetle2) elif beetle1_dancing_dict[beetle1] and beetle3_dancing_dict[beetle3]: dance = eval_1beetle(beetle1_dancing_dict, beetle1) elif beetle1_dancing_dict[beetle1] and beetle2_dancing_dict[beetle2]: dance = eval_1beetle(beetle1_dancing_dict, beetle1) elif beetle1_dancing_dict[beetle1]: dance = eval_1beetle(beetle1_dancing_dict, beetle1) elif beetle2_dancing_dict[beetle2]: dance = eval_1beetle(beetle2_dancing_dict, beetle2) elif beetle3_dancing_dict[beetle3]: dance = eval_1beetle(beetle3_dancing_dict, beetle3) else: # RNG dance = random.choice(ACTIONS) print(dance) print(new_pos) # send data to eval and dashboard server eval_client.send_data(new_pos, dance, str(sync_delay)) ground_truth = eval_client.receive_dancer_position().split(' ') ground_truth = [int(ground_truth[0]), int( ground_truth[1]), int(ground_truth[2])] final_string = dance + " " + new_pos board_client.send_data_to_DB("MLDancer1", final_string) beetle1_moving_dict = {"50:F1:4A:CB:FE:EE": {}} beetle2_moving_dict = {"78:DB:2F:BF:2C:E2": {}} beetle3_moving_dict = {"1C:BA:8C:1D:30:22": {}} beetle1_dancing_dict = {"50:F1:4A:CB:FE:EE": {}} beetle2_dancing_dict = {"78:DB:2F:BF:2C:E2": {}} beetle3_dancing_dict = {"1C:BA:8C:1D:30:22": {}}
47.052392
188
0.495788
6,449
0.156105
0
0
0
0
0
0
7,671
0.185685
9a7dca2e7b004aae5d55d6951056ac9880930921
3,100
py
Python
tests/test_relations.py
OneRaynyDay/treeno
ce11b8447f471c0b5ea596a211b3855625ec43eb
[ "MIT" ]
1
2021-12-28T19:00:01.000Z
2021-12-28T19:00:01.000Z
tests/test_relations.py
OneRaynyDay/treeno
ce11b8447f471c0b5ea596a211b3855625ec43eb
[ "MIT" ]
null
null
null
tests/test_relations.py
OneRaynyDay/treeno
ce11b8447f471c0b5ea596a211b3855625ec43eb
[ "MIT" ]
null
null
null
import unittest from treeno.base import PrintMode, PrintOptions from treeno.expression import Array, Field, wrap_literal from treeno.orderby import OrderTerm, OrderType from treeno.relation import ( AliasedRelation, Lateral, SampleType, Table, TableQuery, TableSample, Unnest, ValuesQuery, ) class TestRelations(unittest.TestCase): def test_table(self): t = Table(name="table", schema="schema", catalog="catalog") assert t.sql(PrintOptions()) == '"catalog"."schema"."table"' tq = TableQuery(t) assert ( tq.sql(PrintOptions(mode=PrintMode.DEFAULT)) == tq.sql(PrintOptions(mode=PrintMode.PRETTY)) == 'TABLE "catalog"."schema"."table"' ) # Test a richer query type tq = TableQuery( t, offset=2, limit=5, orderby=[OrderTerm(value=Field("x"), order_type=OrderType.DESC)], ) assert ( tq.sql(PrintOptions(mode=PrintMode.DEFAULT)) == 'TABLE "catalog"."schema"."table" ORDER BY "x" DESC OFFSET 2 LIMIT 5' ) assert tq.sql(PrintOptions(mode=PrintMode.PRETTY)) == ( ' TABLE "catalog"."schema"."table"\n' ' ORDER BY "x" DESC\n' "OFFSET 2\n" " LIMIT 5" ) def test_values(self): v = ValuesQuery([wrap_literal(1), wrap_literal(2), wrap_literal(3)]) assert ( v.sql(PrintOptions(mode=PrintMode.DEFAULT)) == v.sql(PrintOptions(mode=PrintMode.PRETTY)) == "VALUES 1,2,3" ) v = ValuesQuery( [wrap_literal(1), wrap_literal(2), wrap_literal(3)], offset=3, with_=[AliasedRelation(TableQuery(Table(name="foo")), "foo")], ) assert ( v.sql(PrintOptions(mode=PrintMode.DEFAULT)) == 'WITH "foo" AS (TABLE "foo") VALUES 1,2,3 OFFSET 3' ) assert v.sql(PrintOptions(mode=PrintMode.PRETTY)) == ( ' WITH "foo" AS (\n TABLE "foo")\n' "VALUES 1,2,3\n" "OFFSET 3" ) def test_tablesample(self): table_sample = TableSample( Table(name="table"), SampleType.BERNOULLI, wrap_literal(0.3) ) assert ( table_sample.sql(PrintOptions(mode=PrintMode.DEFAULT)) == table_sample.sql(PrintOptions(mode=PrintMode.PRETTY)) == '"table" TABLESAMPLE BERNOULLI(0.3)' ) def test_lateral(self): lateral = Lateral(TableQuery(Table(name="table"))) assert ( lateral.sql(PrintOptions(mode=PrintMode.DEFAULT)) == lateral.sql(PrintOptions(mode=PrintMode.PRETTY)) == 'LATERAL(TABLE "table")' ) def test_unnest(self): unnest = Unnest([Array([wrap_literal(1)])]) assert ( unnest.sql(PrintOptions(mode=PrintMode.DEFAULT)) == unnest.sql(PrintOptions(mode=PrintMode.PRETTY)) == "UNNEST(ARRAY[1])" ) if __name__ == "__main__": unittest.main()
31
84
0.560968
2,723
0.878387
0
0
0
0
0
0
510
0.164516
9a7dd31031b6e51089b5322681d7a6bf9e613fcf
4,257
py
Python
tests/preprocess/test_har.py
henry1jin/alohamora
e51e2488ecdf3e9692d5bb6b25ebc88622087c20
[ "MIT" ]
5
2020-12-16T03:13:59.000Z
2022-03-06T07:16:39.000Z
tests/preprocess/test_har.py
henry1jin/alohamora
e51e2488ecdf3e9692d5bb6b25ebc88622087c20
[ "MIT" ]
9
2020-09-25T23:25:59.000Z
2022-03-11T23:45:14.000Z
tests/preprocess/test_har.py
henry1jin/alohamora
e51e2488ecdf3e9692d5bb6b25ebc88622087c20
[ "MIT" ]
3
2019-10-16T21:22:07.000Z
2020-07-21T13:38:22.000Z
import random from blaze.chrome.har import har_from_json, Har, HarLog, HarEntry, Request, Response from blaze.config.environment import ResourceType from blaze.preprocess.har import get_har_entry_type, har_entries_to_resources from blaze.util.seq import ordered_uniq from tests.mocks.config import get_config from tests.mocks.har import get_har_json class TestGetHarEntryType: def test_get_har_entry_type(self): test_cases = [ ("application/javascript", ResourceType.SCRIPT), ("application/json", ResourceType.OTHER), ("audio/aac", ResourceType.OTHER), ("image/jpeg", ResourceType.IMAGE), ("image/gif", ResourceType.IMAGE), ("text/html", ResourceType.HTML), ("text/css", ResourceType.CSS), ("text/xml", ResourceType.OTHER), ("font/woff2", ResourceType.FONT), ("font/oft", ResourceType.FONT), ] for (mime_type, resource_type) in test_cases: har_entry = HarEntry( started_date_time="", request=Request(url="", method=""), response=Response(status=200, body_size=0, headers_size=0, mime_type=mime_type), critical=False, ) assert get_har_entry_type(har_entry) == resource_type class TestHarEntriesToResources: def setup(self): self.config = get_config() self.har = har_from_json(get_har_json()) def test_har_entries_to_resources(self): resources = har_entries_to_resources(self.har) assert resources sorted_har_entries = sorted(self.har.log.entries, key=lambda e: e.started_date_time) sorted_har_entries = ordered_uniq(sorted_har_entries, key=lambda e: e.request.url) sorted_har_entries = [entry for entry in sorted_har_entries if entry.request.url.startswith("http")] sorted_har_entries = [entry for entry in sorted_har_entries if entry.response.status != 0] for har_entry, resource in zip(sorted_har_entries, resources): assert har_entry.request.url == resource.url assert resource.execution_ms == self.har.timings[resource.url].execution_ms assert resource.fetch_delay_ms == self.har.timings[resource.url].fetch_delay_ms assert resource.time_to_first_byte_ms == self.har.timings[resource.url].time_to_first_byte_ms if self.har.timings[resource.url].initiator == "": assert resource.initiator == 0 else: assert resources[resource.initiator].url == self.har.timings[resource.url].initiator def test_har_entries_to_resources_ignores_non_http_and_non_complete(self): entries = [] entry_urls = set() invalid_entries = set() for entry in self.har.log.entries: if random.random() < 0.1: new_url = entry.request.url new_status = entry.response.status if random.random() < 0.5: new_url = "" + str(random.random())[2:] + "==" else: new_status = 0 new_entry = HarEntry( started_date_time=entry.started_date_time, request=Request(url=new_url, method=entry.request.url), response=Response( status=new_status, body_size=entry.response.body_size, headers_size=entry.response.headers_size, mime_type=entry.response.mime_type, ), critical=False, ) entries.append(new_entry) invalid_entries.add(new_entry.request.url) else: entries.append(entry) entry_urls.add(entry.request.url) invalid_entries = invalid_entries - set(entry_urls) resources = har_entries_to_resources(Har(log=HarLog(entries=entries), timings={})) assert len(resources) < len(entries) - len(invalid_entries) assert not any(res.url in invalid_entries for res in resources) assert all(res.url in entry_urls for res in resources)
45.287234
109
0.624383
3,899
0.915903
0
0
0
0
0
0
192
0.045102
9a7f8708794c267295590be4b52b94df73d85efd
1,245
py
Python
Loader.py
JaredDobry/Budgeting-Fool
0f4ab5dea3b0750b7bf018de1d456a5587dbeb17
[ "MIT" ]
null
null
null
Loader.py
JaredDobry/Budgeting-Fool
0f4ab5dea3b0750b7bf018de1d456a5587dbeb17
[ "MIT" ]
null
null
null
Loader.py
JaredDobry/Budgeting-Fool
0f4ab5dea3b0750b7bf018de1d456a5587dbeb17
[ "MIT" ]
null
null
null
from Budget import Budget, Item FILENAME = 'Budget.txt' def scrape_off_char(s, c): out = '' for ch in s: if ch != c: out += ch return out def load_budget(): try: fr = open(FILENAME, 'r') lines = fr.readlines() fr.close() b = Budget() for line in lines: spl = line.split(',') if len(spl) != 4: raise ValueError item = Item() item.name = scrape_off_char(spl[0], '\n') item.amount = float(scrape_off_char(spl[1], '\n')) item.frequency = float(scrape_off_char(spl[2], '\n')) item.frequency_period = scrape_off_char(spl[3], '\n') b.add_item(item) return b except Exception: return Budget() def save_budget(budget: Budget): try: fw = open(FILENAME, 'w') first = True for item in budget.items: if not first: fw.write('\n') else: first = False fw.write(item.name + ',' + str(item.amount) + ',' + str(item.frequency) + ',' + item.frequency_period) fw.close() except Exception: return
28.295455
115
0.480321
0
0
0
0
0
0
0
0
52
0.041767
9a801f3178565c7f1b1008bb487a050d3079d8d5
448
py
Python
rush_hour/test_solution.py
ssebastianj/taip-2014
2a0e62c4bf755ff752136350c246456d65a8c3eb
[ "MIT" ]
null
null
null
rush_hour/test_solution.py
ssebastianj/taip-2014
2a0e62c4bf755ff752136350c246456d65a8c3eb
[ "MIT" ]
null
null
null
rush_hour/test_solution.py
ssebastianj/taip-2014
2a0e62c4bf755ff752136350c246456d65a8c3eb
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- import unittest import pytest from .solution import calc_minimum_travels class CalcMininumTravelsTestCase(unittest.TestCase): def setUp(self): pass def tearDown(self): pass def test_calc_minimum_travels(self): assert calc_minimum_travels([4, 5, 2, 3, 1]) == 3 assert calc_minimum_travels([1, 2, 3]) == 1 assert calc_minimum_travels([9, 4, 2, 7, 8, 3, 5, 6, 1]) == 4
23.578947
69
0.638393
346
0.772321
0
0
0
0
0
0
23
0.051339
9a822f57f1242bdc5f799bb28767d02eb1a10fd9
2,573
py
Python
wordle.py
ccattuto/wordle-device
65cbd95165cf6c8e7fae508358d58f7e013f5bc8
[ "CC0-1.0" ]
7
2022-02-01T17:20:29.000Z
2022-02-15T08:09:19.000Z
wordle.py
ccattuto/wordle-device
65cbd95165cf6c8e7fae508358d58f7e013f5bc8
[ "CC0-1.0" ]
1
2022-02-13T15:46:36.000Z
2022-02-13T15:46:36.000Z
wordle.py
ccattuto/wordle-device
65cbd95165cf6c8e7fae508358d58f7e013f5bc8
[ "CC0-1.0" ]
1
2022-02-03T17:33:13.000Z
2022-02-03T17:33:13.000Z
#!/usr/bin/env python import sys from serial.tools import list_ports import serial import tweepy # locate ESP32-C3 USB device port = None for device in list_ports.comports(): if device.vid == 0x303a and device.pid == 0x1001: break if not device: sys.exit(-1) ser = serial.Serial(device.device, baudrate=115200) # Twitter streaming API # CHANGE ME - your consumer key/secret below: CONSUMER_KEY = 'XXX' CONSUMER_SECRET = 'XXX' # CHANGE ME - your access token/secret below: ACCESS_TOKEN = 'XXX' ACCESS_TOKEN_SECRET = 'XXX' # LED matrix control (implemented in wordle.ino): # - 5x5 matrix is viewed as a LED strip # - sending 'Z' clears matrix and position cursor on first pixel (0) # - sending 'G' / 'Y' / 'B' writes a green / yellow / "dark gray" pixel and advances cursor # clear LED matrix ser.write('Z'.encode()) # maps characters in tweet to 1-char commands over serial symbol_map = { '🟩': 'G', '🟨': 'Y', '⬛': 'B', '⬜': 'B' } # write Wordle rows to LED matrix def display_wordle(rows): cmd = "Z" for row in rows: cmd += "".join([symbol_map[s] for s in row]) ser.write(cmd.encode()) # check whether a row of text is a worlde row def is_worlde_row(s): if len(s) != 5: return False for c in s: if not c in symbol_map: return False return True; # looks for 1 to 5 consecutive "worlde rows" in tweet # and pack them into a list. Returns [] otherwise. def extract_wordle(text): wordle = [] in_wordle = False for row in text.split("\n"): if (in_wordle): if not is_worlde_row(row): break wordle.append(row) else: if is_worlde_row(row): in_wordle = True wordle.append(row) # sorry, we don't have space for solutions with 6 rows if (len(wordle) == 0 or len(wordle) > 5): return [] # we require the last line to be the solution if (wordle[-1] != u'🟩🟩🟩🟩🟩'): return [] return wordle # process tweet def process_tweet(text): wordle = extract_wordle(text) if len(wordle) == 0: return # if we've found a wordle, print it and display it on the LED matrix print (text) display_wordle(wordle) # subclass tweepy class WordleStream(tweepy.Stream): def on_status(self, status): process_tweet(status.text) wordle_stream = WordleStream(CONSUMER_KEY, CONSUMER_SECRET, ACCESS_TOKEN, ACCESS_TOKEN_SECRET) # filter tweets containing the keyword 'worlde' wordle_stream.filter(track=["wordle"])
24.504762
94
0.638943
102
0.039261
0
0
0
0
0
0
1,008
0.387991
9a8309c0c453e677a70c4041fea94265ebf3f4e3
4,664
py
Python
DeepAlignmentNetwork/menpofit/lk/result.py
chiawei-liu/DeepAlignmentNetwork
52621cd2f697abe372b88c9ea0ee08f0d93b43d8
[ "MIT" ]
220
2019-09-01T01:52:04.000Z
2022-03-28T12:52:07.000Z
DeepAlignmentNetwork/menpofit/lk/result.py
chiawei-liu/DeepAlignmentNetwork
52621cd2f697abe372b88c9ea0ee08f0d93b43d8
[ "MIT" ]
80
2015-01-05T16:17:39.000Z
2020-11-22T13:42:00.000Z
DeepAlignmentNetwork/menpofit/lk/result.py
chiawei-liu/DeepAlignmentNetwork
52621cd2f697abe372b88c9ea0ee08f0d93b43d8
[ "MIT" ]
64
2015-02-02T15:11:38.000Z
2022-02-28T06:19:31.000Z
from menpofit.result import (ParametricIterativeResult, MultiScaleParametricIterativeResult) class LucasKanadeAlgorithmResult(ParametricIterativeResult): r""" Class for storing the iterative result of a Lucas-Kanade Image Alignment optimization algorithm. Parameters ---------- shapes : `list` of `menpo.shape.PointCloud` The `list` of shapes per iteration. The first and last members correspond to the initial and final shapes, respectively. homogeneous_parameters : `list` of ``(n_parameters,)`` `ndarray` The `list` of parameters of the homogeneous transform per iteration. The first and last members correspond to the initial and final shapes, respectively. initial_shape : `menpo.shape.PointCloud` or ``None``, optional The initial shape from which the fitting process started. If ``None``, then no initial shape is assigned. image : `menpo.image.Image` or `subclass` or ``None``, optional The image on which the fitting process was applied. Note that a copy of the image will be assigned as an attribute. If ``None``, then no image is assigned. gt_shape : `menpo.shape.PointCloud` or ``None``, optional The ground truth shape associated with the image. If ``None``, then no ground truth shape is assigned. costs : `list` of `float` or ``None``, optional The `list` of cost per iteration. If ``None``, then it is assumed that the cost function cannot be computed for the specific algorithm. """ def __init__(self, shapes, homogeneous_parameters, initial_shape=None, image=None, gt_shape=None, costs=None): super(LucasKanadeAlgorithmResult, self).__init__( shapes=shapes, shape_parameters=homogeneous_parameters, initial_shape=initial_shape, image=image, gt_shape=gt_shape, costs=costs) self._homogeneous_parameters = homogeneous_parameters @property def homogeneous_parameters(self): r""" Returns the `list` of parameters of the homogeneous transform obtained at each iteration of the fitting process. The `list` includes the parameters of the `initial_shape` (if it exists) and `final_shape`. :type: `list` of ``(n_params,)`` `ndarray` """ return self._shape_parameters class LucasKanadeResult(MultiScaleParametricIterativeResult): r""" Class for storing the multi-scale iterative fitting result of an ATM. It holds the shapes, shape parameters and costs per iteration. Parameters ---------- results : `list` of :map:`ATMAlgorithmResult` The `list` of optimization results per scale. scales : `list` or `tuple` The `list` of scale values per scale (low to high). affine_transforms : `list` of `menpo.transform.Affine` The list of affine transforms per scale that transform the shapes into the original image space. scale_transforms : `list` of `menpo.shape.Scale` The list of scaling transforms per scale. image : `menpo.image.Image` or `subclass` or ``None``, optional The image on which the fitting process was applied. Note that a copy of the image will be assigned as an attribute. If ``None``, then no image is assigned. gt_shape : `menpo.shape.PointCloud` or ``None``, optional The ground truth shape associated with the image. If ``None``, then no ground truth shape is assigned. """ def __init__(self, results, scales, affine_transforms, scale_transforms, image=None, gt_shape=None): super(LucasKanadeResult, self).__init__( results=results, scales=scales, affine_transforms=affine_transforms, scale_transforms=scale_transforms, image=image, gt_shape=gt_shape) # Create parameters list self._homogeneous_parameters = [] for r in results: self._homogeneous_parameters += r.homogeneous_parameters # Correct n_iters self._n_iters -= len(scales) @property def homogeneous_parameters(self): r""" Returns the `list` of parameters of the homogeneous transform obtained at each iteration of the fitting process. The `list` includes the parameters of the `initial_shape` (if it exists) and `final_shape`. :type: `list` of ``(n_params,)`` `ndarray` """ return self._homogeneous_parameters @property def shape_parameters(self): # Use homogeneous_parameters instead. raise AttributeError
44
80
0.670455
4,536
0.972556
0
0
920
0.197256
0
0
3,173
0.680317
9a831450ccec04bdfc6f981e2f3e5d2ad9771f21
6,533
py
Python
source/model.py
BecauseWeCanStudios/LEGOVNO
97654da906e5d8ee999fea6dbc062914cc5710b2
[ "MIT" ]
null
null
null
source/model.py
BecauseWeCanStudios/LEGOVNO
97654da906e5d8ee999fea6dbc062914cc5710b2
[ "MIT" ]
null
null
null
source/model.py
BecauseWeCanStudios/LEGOVNO
97654da906e5d8ee999fea6dbc062914cc5710b2
[ "MIT" ]
null
null
null
import os import keras import skimage.io import keras_contrib.applications from metrics import * from mrcnn import utils from mrcnn import config from imgaug import augmenters as iaa from dataset import Dataset, PoseEstimationDataset import numpy as np import keras.backend as K import mrcnn.model as modellib class Config(config.Config): NAME = 'LEGOVNO' IMAGES_PER_GPU = 1 GPU_COUNT = 1 NUM_CLASSES = 4 STEPS_PER_EPOCH = 1000 DETECTION_MIN_CONFIDENCE = 0.9 BACKBONE = 'resnet101' IMAGE_MIN_DIM = 1024 IMAGE_MAX_DIM = 1024 class InferenceConfig(Config): pass class Model: TRAIN = 0 INFERENCE = 1 COCO_WEIGHTS_PATH = './mask_rcnn_coco.h5' WEIGHT_LOADERS = { 'coco': lambda self: self.__load_coco(), 'last': lambda self: self.model.find_last()[1], 'imagenet': lambda self: self.model.get_imagenet_weights() } def __init__(self, weights, mode, logs='./logs'): assert mode in (self.TRAIN, self.INFERENCE), 'Unrecognised mode' self.config = Config() if mode == self.TRAIN else InferenceConfig() self.model = modellib.MaskRCNN(mode='training' if mode == self.TRAIN else 'inference', config=self.config, model_dir=logs) lweights = weights.lower() weights_path = self.WEIGHT_LOADERS[lweights](self) if lweights in self.WEIGHT_LOADERS else weights self.model.load_weights(weights_path, by_name=True, exclude=['mrcnn_class_logits', 'mrcnn_bbox_fc', 'mrcnn_bbox', 'mrcnn_mask'] if lweights == 'coco' else []) def train(self, data, epochs=30, learning_rate=1e-3): train_dataset = Dataset.load_and_prepare(data.root.train[:], data) test_dataset = Dataset.load_and_prepare(data.root.test[:], data) self.model.train(train_dataset, test_dataset, learning_rate=learning_rate, epochs=epochs, layers='all') def detect(self, image, verbose=1): return self.model.detect([image], verbose=verbose)[0] def detect_file(self, path, verbose=1): return self.detect(skimage.io.imread(path), verbose) def __load_coco(self): if not os.path.exists(self.COCO_WEIGHTS_PATH): utils.download_trained_weights(self.COCO_WEIGHTS_PATH) return self.COCO_WEIGHTS_PATH class ActivationLayer(keras.engine.topology.Layer): def __init__(self, **kwargs): super(ActivationLayer, self).__init__(**kwargs) def build(self, input_shape): super(ActivationLayer, self).build(input_shape) def call(self, x): return x / K.expand_dims(K.sqrt(K.sum(K.square(x), axis=-1))) def compute_output_shape(self, input_shape): return (input_shape[0], 4) class PoseEstimationConfig: BACKBONE = 'resnet18' INPUT_SHAPE = (300, 400, 1) SHARED_LAYERS = 0 SHARED_UNITS = 1024 POSITION_LAYERS = 0 POSITION_UNITS = 1024 ORIENTATION_LAYERS = 0 ORIENTATION_UNITS = 1024 BATCH_SIZE = 32 VALIDATION_BATCH_SIZE = 1 OPTIMIZER = keras.optimizers.Adam(lr=1e-3) LOSSES = [ MeshLoss( ['../models/1x1.obj', '../models/1x2.obj', '../models/1x3.obj'], SequentialLoss( [ RotationTransform(extract_quaternion), OffsetTransform(extract_offset) ], DiffMean ) ) ] METRICS = [ QuaternionDistanceMetric(extract_quaternion), QuaternionAngleMetric(extract_quaternion), DistanceMetric(extract_offset) ] SAVE_PERIOD = 10 STEPS_PER_EPOCH = None VALIDATION_STEPS = None AUGMENTER = iaa.Sequential( [ iaa.Sometimes(0.5, iaa.GaussianBlur(sigma=(0, 3))), iaa.Multiply((0.5, 1.5)) ], random_order=True ) class PoseEstimationModel(): BACKBONES = { 'resnet18': lambda input_shape: PoseEstimationModel.__resnet(input_shape, 'basic', [2, 2, 2, 2]), 'resnet34': lambda input_shape: PoseEstimationModel.__resnet(input_shape, 'basic', [3, 4, 6, 3]), 'resnet50': lambda input_shape: PoseEstimationModel.__resnet(input_shape, 'bottleneck', [3, 4, 6, 3]), 'xception': lambda input_shape: keras.applications.xception.Xception(include_top=False, weights=None, input_shape=input_shape, classes=None) } def __init__(self, config=None, weights=None, logs='./logs'): if not config: config = PoseEstimationConfig() if not os.path.exists(logs): os.makedirs(logs) backbone = PoseEstimationModel.BACKBONES[config.BACKBONE](config.INPUT_SHAPE) output = backbone.output output = keras.layers.Flatten()(output) for i in range(config.SHARED_LAYERS): output = keras.layers.Dense(config.SHARED_UNITS, activation='relu')(output) model = keras.models.Model(inputs=backbone.input, outputs=keras.layers.concatenate([ PoseEstimationModel.__make_fc_layers(output, config.POSITION_LAYERS, config.POSITION_UNITS, 3), ActivationLayer()(PoseEstimationModel.__make_fc_layers(output, config.ORIENTATION_LAYERS, config.ORIENTATION_UNITS, 4)) ])) model.compile( optimizer=config.OPTIMIZER, loss=config.LOSSES, metrics=config.METRICS ) if weights: model.load_weights(weights) self.model, self.config, self.logs = model, config, logs def train(self, data, epochs, initial_epoch=0): train_dataset = PoseEstimationDataset(data.root.train[:], data, self.config.BATCH_SIZE, self.config.AUGMENTER) test_dataset = PoseEstimationDataset(data.root.test[:], data, self.config.BATCH_SIZE if self.config.BATCH_SIZE else self.config.VALIDATION_BATCH_SIZE) save_best = keras.callbacks.ModelCheckpoint( os.path.join(self.logs, 'weights.{epoch:04d}.hdf5'), verbose=0, save_weights_only=True, period=self.config.SAVE_PERIOD ) reduce_lr = keras.callbacks.ReduceLROnPlateau( monitor='loss', factor=0.2, patience=5, min_lr=0.00001) tensorboard = keras.callbacks.TensorBoard(log_dir=self.logs) self.model.fit_generator( train_dataset, validation_data=test_dataset, steps_per_epoch=self.config.STEPS_PER_EPOCH, epochs=epochs, callbacks=[save_best, reduce_lr, tensorboard], shuffle=True, workers=0, validation_steps=self.config.VALIDATION_STEPS, initial_epoch=initial_epoch ) def predict(self, images, batch_size=1, verbose=0): return self.model.predict(images, batch_size=batch_size, verbose=verbose) def evaluate(self, images, y, batch_size=1, verbose=0): return self.model.evaluate(images, y, batch_size=batch_size, verbose=verbose) @staticmethod def __make_fc_layers(inputs, count, units, last_units): for i in range(count - 1): inputs = keras.layers.Dense(units, activation='relu')(inputs) return keras.layers.Dense(last_units)(inputs) @staticmethod def __resnet(input_shape, block, repetitions): return keras_contrib.applications.resnet.ResNet(input_shape, None, block, repetitions=repetitions, include_top=False)
30.386047
123
0.743762
6,210
0.950559
0
0
393
0.060156
0
0
366
0.056023
9a83696d4e899b64faddbb5626cfd880f1149543
442
py
Python
donations/urls.py
nanorepublica/django-donations
349aaf17029f3f9b4723fead3fa28dd85959f14e
[ "BSD-3-Clause" ]
9
2015-10-13T11:41:20.000Z
2020-11-30T04:38:43.000Z
donations/urls.py
nanorepublica/django-donations
349aaf17029f3f9b4723fead3fa28dd85959f14e
[ "BSD-3-Clause" ]
63
2015-10-22T17:41:27.000Z
2021-11-20T12:18:26.000Z
donations/urls.py
nanorepublica/django-donations
349aaf17029f3f9b4723fead3fa28dd85959f14e
[ "BSD-3-Clause" ]
3
2017-08-29T02:44:12.000Z
2020-04-07T23:43:12.000Z
from django.conf.urls import include, url from donations.views import DonateAPI, VerifyAPI app_name = 'donations' api_urls = ([ url(r'^donate/$', DonateAPI.as_view(), name="donate"), url(r'^verify/(?P<pk>[0-9]+)$', VerifyAPI.as_view(), name="verify"), ], "donations") donations = ([ url(r'^api/', include(api_urls, namespace="api")), ], "donations") urlpatterns = [ url(r'^', include(donations, namespace="donations")) ]
23.263158
72
0.651584
0
0
0
0
0
0
0
0
115
0.260181
9a83981c040624137fa42558baa04d53d347c0fc
3,004
py
Python
orc8r/tools/fab/vagrant.py
idoshveki/magma
8022267bd8b8d94913fbb9a0836880361d785446
[ "BSD-3-Clause" ]
2
2020-11-05T18:58:26.000Z
2021-02-09T06:42:49.000Z
orc8r/tools/fab/vagrant.py
idoshveki/magma
8022267bd8b8d94913fbb9a0836880361d785446
[ "BSD-3-Clause" ]
10
2021-03-31T20:19:00.000Z
2022-02-19T07:09:57.000Z
orc8r/tools/fab/vagrant.py
119Vik/magma-1
107a7b374466a837fc0a49b283ba9d6ff1d702e3
[ "BSD-3-Clause" ]
3
2020-08-20T18:45:34.000Z
2020-08-20T20:18:42.000Z
""" Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. This source code is licensed under the BSD-style license found in the LICENSE file in the root directory of this source tree. """ import os.path from fabric.api import local from fabric.api import env def __ensure_in_vagrant_dir(): """ Error out if there is not Vagrant instance associated with this directory """ pwd = local('pwd', capture=True) if not os.path.isfile(pwd + '/Vagrantfile'): print("Error: Vagrantfile not found. Try executing from fbcode/magma") exit(1) return def setup_env_vagrant(machine='magma', apply_to_env=True, force_provision=False): """ Host config for local Vagrant VM. Sets the environment to point at the local vagrant machine. Used whenever we need to run commands on the vagrant machine. """ __ensure_in_vagrant_dir() # Ensure that VM is running isUp = local('vagrant status %s' % machine, capture=True) \ .find('running') < 0 if isUp: # The machine isn't running. Most likely it's just not up. Let's # first try the simple thing of bringing it up, and if that doesn't # work then we ask the user to fix it. print("VM %s is not running... Attempting to bring it up." % machine) local('vagrant up %s' % machine) isUp = local('vagrant status %s' % machine, capture=True) \ .find('running') if isUp < 0: print("Error: VM: %s is still not running...\n" " Failed to bring up %s'" % (machine, machine)) exit(1) elif force_provision: local('vagrant provision %s' % machine) ssh_config = local('vagrant ssh-config %s' % machine, capture=True) ssh_lines = [line.strip() for line in ssh_config.split("\n")] ssh_params = {key: val for key, val in [line.split(" ", 1) for line in ssh_lines]} host = ssh_params.get("HostName", "").strip() port = ssh_params.get("Port", "").strip() # some installations seem to have quotes around the file location identity_file = ssh_params.get("IdentityFile", "").strip().strip('"') host_string = 'vagrant@%s:%s' % (host, port) if apply_to_env: env.host_string = host_string env.hosts = [env.host_string] env.key_filename = identity_file env.disable_known_hosts = True else: return { "hosts": [host_string], "host_string": host_string, "key_filename": identity_file, "disable_known_hosts": True, } def teardown_vagrant(machine): """ Destroy a vagrant machine so that we get a clean environment to work in """ __ensure_in_vagrant_dir() # Destroy if vm if it exists created = local('vagrant status %s' % machine, capture=True) \ .find('not created') < 0 if created: local('vagrant destroy -f %s' % machine)
31.957447
81
0.617843
0
0
0
0
0
0
0
0
1,343
0.447071
9a83eb7c6cde3a0afbb0a6028180ce05131c4869
1,988
py
Python
cp_multiply/examples/make_box_packing_cp.py
gkonjevod/multiply_CP
2410d242a29a340db8184e127d05c5da9d26f1b4
[ "MIT" ]
null
null
null
cp_multiply/examples/make_box_packing_cp.py
gkonjevod/multiply_CP
2410d242a29a340db8184e127d05c5da9d26f1b4
[ "MIT" ]
null
null
null
cp_multiply/examples/make_box_packing_cp.py
gkonjevod/multiply_CP
2410d242a29a340db8184e127d05c5da9d26f1b4
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Sat Feb 19 23:38:25 2022 @author: goran """ from ..general_cp import GeneralCP from ..cp_utils import to_degrees, dihedral_angle, normal from math import sqrt, pi, tan, atan2 box_packing_cell_nodes = {'A': (2, 0), 'B': (4, 0), 'C': (2, 2), 'D': (4, 2), 'E': (4, 3), 'F': (3.5, 3.5), 'G': (0, 0)} angle1 = to_degrees(atan2(sqrt(2)/2, 2)) folded_wall_coords = [ (2, 2, 0), (2, 1, 2), (2, 2, 2)] folded_top_coords = [ (2, 1, 2), (2, 2, 2), (1, 2, 2)] folded_slanted_coords = [(1, 2, 2), (2, 2, 0), (2, 1, 2)] angle1_check = to_degrees(dihedral_angle(normal(folded_top_coords), normal(folded_slanted_coords))) print('angle1 = ', angle1) angle2 = to_degrees(dihedral_angle(normal(folded_wall_coords), normal(folded_slanted_coords))) print('angle2 = ', angle2) box_packing_cell_edges = {'AC': -90, 'BD': 180, 'CD': -180, 'CE': 90 + angle1, 'DE': -180, 'EF': 90 + angle2, 'BG': 0} def generate_box_packing(): l1 = ((0, 0), (2, 2)) l2 = ((4, 0), (4, 1)) l3 = ((0, 4), (1, 4)) #l4 = ((0, 8), (1, 8)) min_cell = GeneralCP(namednodes = box_packing_cell_nodes, namededges = box_packing_cell_edges) #min_cell.save_cp('test0') c1 = min_cell.add_reflection(l1).add_reflection(l2).add_reflection(l3)#.add_reflection(l4) c1.save_cp('box_packing_cell') grid = c1.make_grid(grid_size = (5, 5), overlap_frac = 0.25) grid.save_cp('box_packing_5x5')
30.121212
94
0.454728
0
0
0
0
0
0
0
0
278
0.139839
9a862a138eaba7a151db1b55e4b4a041ae8dbd8a
11,001
py
Python
kq/queue.py
grofers/kq
1fc96e2a189901b91fdcde7f829b021b6555e217
[ "MIT" ]
null
null
null
kq/queue.py
grofers/kq
1fc96e2a189901b91fdcde7f829b021b6555e217
[ "MIT" ]
2
2018-09-24T15:43:48.000Z
2020-06-23T11:15:17.000Z
kq/queue.py
grofers/kq
1fc96e2a189901b91fdcde7f829b021b6555e217
[ "MIT" ]
null
null
null
from __future__ import absolute_import, print_function, unicode_literals import functools import logging import time import uuid import dill import kafka from kafka.errors import KafkaError from kq.job import Job class Queue(object): """KQ queue. A queue serializes incoming function calls and places them into a Kafka topic as *jobs*. Workers fetch these jobs and execute them asynchronously in the background. Here is an example of initializing and using a queue: .. code-block:: python from kq import Queue, Job queue = Queue( hosts='host:7000,host:8000', topic='foo', timeout=3600, compression='gzip', acks=0, retries=5, job_size=10000000, cafile='/my/files/cafile', certfile='/my/files/certfile', keyfile='/my/files/keyfile', crlfile='/my/files/crlfile' ) job = queue.enqueue(my_func, *args, **kwargs) assert isinstance(job, Job) .. note:: The number of partitions in a Kafka topic limits how many workers can read from the queue in parallel. For example, maximum of 10 workers can work off a queue with 10 partitions. :param hosts: Comma-separated Kafka hostnames and ports. For example, ``"localhost:9000,localhost:8000,192.168.1.1:7000"`` is a valid input string. Default: ``"127.0.0.1:9092"``. :type hosts: str | unicode :param topic: Name of the Kafka topic. Default: ``"default"``. :type topic: str | unicode :param timeout: Default job timeout threshold in seconds. If not set, the enqueued jobs are left to run until they finish. This means a hanging job can potentially block the workers. Default: ``None`` (no timeout). :type timeout: int :param compression: The algorithm used for compressing job data. Allowed values are: ``"gzip"``, ``"snappy"`` and ``"lz4"``. Default: ``None`` (no compression). :type compression: str | unicode :param acks: The number of acknowledgements required from the broker(s) before considering a job successfully enqueued. Allowed values are: .. code-block:: none 0: Do not wait for any acknowledgment from the broker leader and consider the job enqueued as soon as it is added to the socket buffer. Persistence is not guaranteed on broker failures. 1: Wait for the job to be saved on the broker leader but not for it be replicated across other brokers. If the leader broker fails before the replication finishes the job may not be persisted. -1: Wait for the job to be replicated across all brokers. As long as one of the brokers is functional job persistence is guaranteed. Default: ``1``. :type acks: int :param retries: The maximum number of attempts to re-enqueue a job when the job fails to reach the broker. Retries may alter the sequence of the enqueued jobs. Default: ``0``. :type retries: int :param job_size: The max size of each job in bytes. Default: ``1048576``. :type job_size: int :param cafile: Full path to the trusted CA certificate file. :type cafile: str | unicode :param certfile: Full path to the client certificate file. :type certfile: str | unicode :param keyfile: Full path to the client private key file. :type keyfile: str | unicode :param crlfile: Full path to the CRL file for validating certification expiry. This option is only available with Python 3.4+ or 2.7.9+. :type crlfile: str | unicode """ def __init__(self, hosts='127.0.0.1:9092', topic='default', timeout=None, compression=None, acks=1, retries=0, job_size=1048576, cafile=None, certfile=None, keyfile=None, crlfile=None): self._hosts = hosts self._topic = topic self._timeout = timeout self._logger = logging.getLogger('kq') self._producer = kafka.KafkaProducer( bootstrap_servers=self._hosts, compression_type=compression, acks=acks, retries=retries, max_request_size=job_size, buffer_memory=max(job_size, 33554432), ssl_cafile=cafile, ssl_certfile=certfile, ssl_keyfile=keyfile, ssl_crlfile=crlfile ) def __repr__(self): """Return a string representation of the queue. :return: String representation of the queue. :rtype: str | unicode """ return 'Queue(topic={})'.format(self._topic) @property def producer(self): """Return the Kafka producer object. :return: Kafka producer object. :rtype: kafka.producer.KafkaProducer """ return self._producer @property def hosts(self): """Return the list of Kafka host names and ports. :return: List of Kafka host names and ports. :rtype: [str] """ return self._hosts.split(',') @property def topic(self): """Return the name of the Kafka topic in use. :return: Name of the Kafka topic in use. :rtype: str | unicode """ return self._topic @property def timeout(self): """Return the job timeout threshold in seconds. :return: Job timeout threshold in seconds. :rtype: int """ return self._timeout def enqueue(self, obj, *args, **kwargs): """Place the function call (or the job) in the Kafka topic. For example: .. code-block:: python import requests from kq import Queue q = Queue() # You can queue the function call with its arguments job = q.enqueue(requests.get, 'https://www.google.com') # Or you can queue a kq.job.Job instance directly q.enqueue(job) :param obj: Function or the job object to enqueue. If a function is given, the function *must* be pickle-able. :type obj: callable | kq.job.Job :param args: Arguments for the function. Ignored if a KQ job object is given for the first argument instead. :type args: list :param kwargs: Keyword arguments for the function. Ignored if a KQ job instance is given as the first argument instead. :type kwargs: dict :return: The job that was enqueued :rtype: kq.job.Job """ if isinstance(obj, Job): func = obj.func args = obj.args kwargs = obj.kwargs key = obj.key else: func = obj key = None if not callable(func): raise ValueError('{} is not a callable'.format(func)) job = Job( id=str(uuid.uuid4()), timestamp=int(time.time()), topic=self._topic, func=func, args=args, kwargs=kwargs, timeout=self._timeout, key=key ) future = self._producer.send(self._topic, dill.dumps(job), key=key) try: future.get(timeout=self._timeout or 5) except KafkaError as e: self._logger.exception('Queuing failed: {}'.format(e.message)) return None self._logger.info('Enqueued: {}'.format(job)) return job def enqueue_with_key(self, key, obj, *args, **kwargs): """Place the function call (or the job) in the Kafka topic with key. For example: .. code-block:: python import requests from kq import Queue q = Queue() url = 'https://www.google.com' # You can queue the function call with its arguments job = q.enqueue_with_key('my_key', requests.get, url) # Or you can queue a kq.job.Job instance directly q.enqueue_with_key('my_key', job) :param key: The key for the Kafka message. Jobs with the same key are guaranteed to be placed in the same Kafka partition and processed sequentially. If a job object is enqueued, its key is overwritten. :type key: str :param obj: Function or the job object to enqueue. If a function is given, the function *must* be pickle-able. :type obj: callable | kq.job.Job :param args: Arguments for the function. Ignored if a KQ job object is given for the first argument instead. :type args: list :param kwargs: Keyword arguments for the function. Ignored if a KQ job instance is given as the first argument instead. :type kwargs: dict :return: The job that was enqueued :rtype: kq.job.Job """ if isinstance(obj, Job): func = obj.func args = obj.args kwargs = obj.kwargs else: func = obj if not callable(func): raise ValueError('{} is not a callable'.format(func)) job = Job( id=str(uuid.uuid4()), timestamp=int(time.time()), topic=self._topic, func=func, args=args, kwargs=kwargs, timeout=self._timeout, key=key ) future = self._producer.send(self._topic, dill.dumps(job), key=key) try: future.get(timeout=self._timeout or 5) except KafkaError as e: self._logger.exception('Queuing failed: {}'.format(e.message)) return None self._logger.info('Enqueued: {}'.format(job)) return job def job(self, func): """Decorator which add a **delay** method to a function. When the **delay** method is called, the function is queued as a job. For example: .. code-block:: python from kq import Queue queue = Queue() @queue.job def calculate_sum(a, b, c): return a + b + c # Enqueue the function as a job calculate_sum.delay(1, 2, 3) :param func: The function to decorate. :type func: callable :return: The decorated function with new method **delay** :rtype: callable """ @functools.wraps(func) def delay(*args, **kwargs): # pragma: no cover return self.enqueue(func, *args, **kwargs) func.delay = delay return func def flush(self): """Force-flush all buffered records to the broker.""" self._logger.info('Flushing {} ...'.format(self)) self._producer.flush()
32.937126
78
0.579947
10,782
0.980093
0
0
957
0.086992
0
0
7,387
0.671484
9a87b0a003cfac44c4b71f5b09ccd17d4a3eced1
8,683
py
Python
python/accel_adxl345/accel_adxl345.py
iorodeo/accel_adxl345
aadbca1c57840f66a61556ff02e72e8b8e4e93e0
[ "Apache-2.0" ]
null
null
null
python/accel_adxl345/accel_adxl345.py
iorodeo/accel_adxl345
aadbca1c57840f66a61556ff02e72e8b8e4e93e0
[ "Apache-2.0" ]
null
null
null
python/accel_adxl345/accel_adxl345.py
iorodeo/accel_adxl345
aadbca1c57840f66a61556ff02e72e8b8e4e93e0
[ "Apache-2.0" ]
null
null
null
""" accel_adxl345.py This modules defines the AccelADXL345 class for streaming data from the ADXL345 accelerometers. """ import time import serial import sys import numpy import struct BUF_EMPTY_NUM = 5 BUF_EMPTY_DT = 0.05 class AccelADXL345(serial.Serial): def __init__(self, **kwarg): # Command ids self.cmd_id = { 'stop_streaming' : 0, 'start_streaming' : 1, 'set_timer_period' : 2, 'get_timer_period' : 3, 'set_range' : 4, 'get_range' : 5, 'get_sample' : 6, 'get_max_timer_period' : 7, 'get_min_timer_period' : 8, 'get_bad_sample_count' : 9, } # Allowed accelerations ranges and scale factors self.allowedAccelRange = (2, 4, 8, 16) self.accelScale = 0.0384431560448 try: self.reset_sleep = kwarg.pop('reset_sleep') except KeyError: self.reset_sleep = True try: self.accelRange = kwarg.pop('range') except KeyError: self.accelRange = 16 if not self.checkAccelRange(self.accelRange): raise ValueError, 'unknown acceleration range {0}'.format(self.accelRange) _kwarg = { 'port' : '/dev/ttyUSB0', 'timeout' : 0.1, 'baudrate' : 38400, } _kwarg.update(kwarg) super(AccelADXL345,self).__init__(**_kwarg) if self.reset_sleep: time.sleep(2.0) self.emptyBuffer() # Get sample dt and current range setting self.sampleDt = self.getSampleDt() self.accelRange = self.getRange() # Get max and min allowed sample dt self.minSampleDt = self.getMinSampleDt() self.maxSampleDt = self.getMaxSampleDt() def sendCmd(self,cmd): """ Send the command, cmd, to the device """ self.write(cmd) def readValue(self): """ Read a value from the device. """ line = self.readline() line = line.strip() return line def readFloat(self): """ Read a single float of list of floats separated by commas """ value = self.readValue() if ' ' in value: value = value.split(' ') value = [float(x) for x in value] else: value = float(value) return value def readInt(self): """ Read a single integer or list of integers separated by commas. """ value = self.readValue() if ' ' in value: value = value.split(' ') value = [int(x) for x in value] else: value = int(value) return value def emptyBuffer(self): """ Empty the serial input buffer. """ for i in range(0,BUF_EMPTY_NUM): #print 'empty %d'%(i,), self.inWaiting() self.flushInput() time.sleep(BUF_EMPTY_DT) def checkAccelRange(self,value): """ Check if the value is within the allowed range set. """ return value in self.allowedAccelRange def startStreaming(self): """ Start data streaming form the accelerometer """ cmd = '[{0}]\n'.format(self.cmd_id['start_streaming']) self.sendCmd(cmd) def stopStreaming(self): """ Stop data streaming from the accelerometer """ cmd = '[{0}]\n'.format(self.cmd_id['stop_streaming']) self.sendCmd(cmd) def getSampleDt(self): """ Returns the sample interval, dt, in microseconds """ cmd = '[{0}]\n'.format(self.cmd_id['get_timer_period']) self.sendCmd(cmd) dt = self.readFloat() return dt def getBadSampleCount(self): """ Returns the number of bad/corrupted samples. """ cmd = '[{0}]\n'.format(self.cmd_id['get_bad_sample_count']) self.sendCmd(cmd) val = self.readInt() return val def setSampleDt(self,dt): """ Sets the sample interval in microseconds. """ _dt = int(dt) if _dt > self.maxSampleDt or _dt < self.minSampleDt: raise ValueError, 'sample dt out of range' cmd = '[{0},{1}]\n'.format(self.cmd_id['set_timer_period'],_dt) self.sendCmd(cmd) self.sampleDt = _dt def getSampleRate(self): """ Returns the sample rate in Hz """ return 1.0/self.sampleDt def setSampleRate(self,freq): """ Sets the sample rate in Hz """ dt = int(1.0e6/freq) self.setSampleDt(dt) def getMaxSampleDt(self): """ Gets the maximun allowed sample dt in microseconds. """ cmd = '[{0}]\n'.format(self.cmd_id['get_max_timer_period']) self.sendCmd(cmd) value = self.readInt() return value def getMinSampleDt(self): """ Gets the minimum allowed sample dt in microseconds. """ cmd = '[{0}]\n'.format(self.cmd_id['get_min_timer_period']) self.sendCmd(cmd) value = self.readInt() return value def getMaxSampleRate(self): """ Returns the maximum allowed sample rate in Hz """ minSampleDtSec = self.minSampleDt*(1.0e-6) return 1.0/minSampleDtSec def getMinSampleRate(self): """ Returns the minum allowed samples rate in Hz """ maxSampleDtSec = self.maxSampleDt*(1.0e-6) return 1.0/maxSampleDtSec def getRange(self): """ Returns the current accelerometer range setting. """ cmd = '[{0}]\n'.format(self.cmd_id['get_range']) self.sendCmd(cmd) accelRange = self.readInt() return accelRange def setRange(self,value): """ Sets the current accelerometer range. """ _value = int(value) if _value in self.allowedAccelRange: cmd = '[{0}, {1}]\n'.format(self.cmd_id['set_range'],_value) self.sendCmd(cmd) _value = self.getRange() self.accelRange = _value def getAllowedAccelRange(self): """ Returns all allowed range settings """ return self.allowedAccelRange def peekValue(self): """ Grabs a sinlge sample (ax,ay,az) from the accelerometer. """ cmd = '[{0}]\n'.format(self.cmd_id['get_sample']) self.sendCmd(cmd) samples = self.readFloat() samples = [x*self.accelScale for x in samples] return samples def getSamples(self,N,verbose=False): """ Streams N samples from the accelerometer at the current sample rate setting. """ # Start streaming self.emptyBuffer() self.startStreaming() # Read samples data = [] while len(data) < N: if verbose: print len(data) newData = self.readValues() data.extend(newData) # Stop streaming and empty buffer self.stopStreaming() self.emptyBuffer() # Convert to an array, truncate to number of samples requested data = numpy.array(data) data = self.accelScale*data[:N,:] # Use sample rate to get array of time points dtSec = self.sampleDt*1.0e-6 t = dtSec*numpy.arange(data.shape[0]) return t, data #def readValues(self,verbose=False): # data = [] # if self.inWaiting() > 0: # line = self.readline() # line = line.strip() # line = line.split(':') # for vals in line: # vals = vals.split(' ') # try: # vals = [float(x) for x in vals] # if len(vals) == 3: # data.append(vals) # except: # if verbose: # print 'fail' # return data def readValues(self): data = [] while self.inWaiting() >= 7: byteVals = self.read(7) ax = struct.unpack('<h',byteVals[0:2])[0] ay = struct.unpack('<h',byteVals[2:4])[0] az = struct.unpack('<h',byteVals[4:6])[0] chk = ord(byteVals[6]) if not chk == 0: raise IOError, 'streaming data is not in sync.' data.append([ax,ay,az]) return data
27.741214
86
0.524012
8,451
0.973281
0
0
0
0
0
0
3,063
0.352758
9a8866fd681b05cff1de0c32ef8dae40aefe5351
831
py
Python
polling_stations/apps/data_collection/management/commands/import_tower_hamlets.py
mtravis/UK-Polling-Stations
26e0331dc29253dc436a0462ffaa01e974c5dc52
[ "BSD-3-Clause" ]
null
null
null
polling_stations/apps/data_collection/management/commands/import_tower_hamlets.py
mtravis/UK-Polling-Stations
26e0331dc29253dc436a0462ffaa01e974c5dc52
[ "BSD-3-Clause" ]
null
null
null
polling_stations/apps/data_collection/management/commands/import_tower_hamlets.py
mtravis/UK-Polling-Stations
26e0331dc29253dc436a0462ffaa01e974c5dc52
[ "BSD-3-Clause" ]
null
null
null
from data_collection.management.commands import BaseXpressDemocracyClubCsvImporter class Command(BaseXpressDemocracyClubCsvImporter): council_id = "E09000030" addresses_name = "local.2018-05-03/Version 2/Democracy_Club__03May2018.tsv" stations_name = "local.2018-05-03/Version 2/Democracy_Club__03May2018.tsv" elections = ["local.2018-05-03"] csv_delimiter = "\t" csv_encoding = "windows-1252" def address_record_to_dict(self, record): uprn = record.property_urn.strip().lstrip("0") if uprn == "6198433": rec = super().address_record_to_dict(record) rec["postcode"] = "E2 9DG" return rec if record.addressline6 == "E3 2LB" or record.addressline6 == "E3 5EG": return None return super().address_record_to_dict(record)
34.625
82
0.683514
745
0.89651
0
0
0
0
0
0
209
0.251504
9a89981de0ecebc2323be5e00e13a157cd8dc62f
8,490
py
Python
pynaja/common/struct.py
xiaoxiamiya/naja
222c3e1135bbd2b9a02181273a8a70201fbdf0f5
[ "Apache-2.0" ]
1
2021-09-07T07:13:53.000Z
2021-09-07T07:13:53.000Z
pynaja/common/struct.py
xiaoxiamiya/naja
222c3e1135bbd2b9a02181273a8a70201fbdf0f5
[ "Apache-2.0" ]
null
null
null
pynaja/common/struct.py
xiaoxiamiya/naja
222c3e1135bbd2b9a02181273a8a70201fbdf0f5
[ "Apache-2.0" ]
null
null
null
import struct from collections import OrderedDict from configparser import RawConfigParser from pynaja.common.async_base import Utils from pynaja.common.error import ConstError class Result(dict): """返回结果类 """ def __init__(self, code=0, data=None, msg=None, details=None): super().__init__(code=code) if data is not None: self.__setitem__(r'data', data) if msg is not None: self.__setitem__(r'msg', msg) if details is not None: self.__setitem__(r'details', details) def __bool__(self): return self.code == 0 @property def code(self): return self.get(r'code') @property def data(self): return self.get(r'data', None) @property def msg(self): return self.get(r'msg', None) @property def details(self): return self.get(r'details', None) class Const(OrderedDict): """常量类 """ def __getattr__(self, key): return self.__getitem__(key) def __setattr__(self, key, val): if key[:1] == r'_': super().__setattr__(key, val) else: self.__setitem__(key, val) def __delattr__(self, key): if key[:1] == r'_': super().__delattr__(key) else: raise ConstError() def __setitem__(self, key, val): if key in self: raise ConstError() else: super().__setitem__(key, val) def __delitem__(self, key): raise ConstError() def exist(self, val): return val in self.values() class ByteArrayAbstract: """ByteArray抽象类 """ NETWORK = r'!' NATIVE = r'=' NATIVE_ALIGNMENT = r'@' LITTLE_ENDIAN = r'<' BIG_ENDIAN = r'>' def __init__(self): self._endian = self.NETWORK def get_endian(self): return self._endian def set_endian(self, val): self._endian = val def read(self, size): raise NotImplementedError() def write(self, buffer): raise NotImplementedError() def read_pad_byte(self, _len): struct.unpack(f'{self._endian}{_len}x', self.read(_len)) def write_pad_byte(self, _len): self.write(struct.pack(f'{self._endian}{_len}x')) def read_char(self): return struct.unpack(f'{self._endian}c', self.read(1))[0] def write_char(self, val): self.write(struct.pack(f'{self._endian}c', val)) def read_signed_char(self): return struct.unpack(f'{self._endian}b', self.read(1))[0] def write_signed_char(self, val): self.write(struct.pack(f'{self._endian}b', val)) def read_unsigned_char(self): return struct.unpack(f'{self._endian}B', self.read(1))[0] def write_unsigned_char(self, val): self.write(struct.pack(f'{self._endian}B', val)) def read_bool(self): return struct.unpack(f'{self._endian}?', self.read(1))[0] def write_bool(self, val): self.write(struct.pack(f'{self._endian}?', val)) def read_short(self): return struct.unpack(f'{self._endian}h', self.read(2))[0] def write_short(self, val): self.write(struct.pack(f'{self._endian}h', val)) def read_unsigned_short(self): return struct.unpack(f'{self._endian}H', self.read(2))[0] def write_unsigned_short(self, val): self.write(struct.pack(f'{self._endian}H', val)) def read_int(self): return struct.unpack(f'{self._endian}i', self.read(4))[0] def write_int(self, val): self.write(struct.pack(f'{self._endian}i', val)) def read_unsigned_int(self): return struct.unpack(f'{self._endian}I', self.read(4))[0] def write_unsigned_int(self, val): self.write(struct.pack(f'{self._endian}I', val)) def read_long(self): return struct.unpack(f'{self._endian}l', self.read(4))[0] def write_long(self, val): self.write(struct.pack(f'{self._endian}l', val)) def read_unsigned_long(self): return struct.unpack(f'{self._endian}L', self.read(4))[0] def write_unsigned_long(self, val): self.write(struct.pack(f'{self._endian}L', val)) def read_long_long(self): return struct.unpack(f'{self._endian}q', self.read(8))[0] def write_long_long(self, val): self.write(struct.pack(f'{self._endian}q', val)) def read_unsigned_long_long(self): return struct.unpack(f'{self._endian}Q', self.read(8))[0] def write_unsigned_long_long(self, val): self.write(struct.pack(f'{self._endian}Q', val)) def read_float(self): return struct.unpack(f'{self._endian}f', self.read(4))[0] def write_float(self, val): self.write(struct.pack(f'{self._endian}f', val)) def read_double(self): return struct.unpack(f'{self._endian}d', self.read(8))[0] def write_double(self, val): self.write(struct.pack(f'{self._endian}d', val)) def read_bytes(self, _len): return struct.unpack(f'{self._endian}{_len}s', self.read(_len))[0] def write_bytes(self, val): self.write(struct.pack(f'{self._endian}{len(val)}s', val)) def read_string(self, _len): return self.read_bytes(_len).decode() def write_string(self, val): self.write_bytes(val.encode()) def read_pascal_bytes(self, _len): return struct.unpack(f'{self._endian}{_len}p', self.read(_len))[0] def write_pascal_bytes(self, val): self.write(struct.pack(f'{self._endian}{len(val)}p', val)) def read_pascal_string(self, _len): return self.read_pascal_bytes(_len).decode() def write_pascal_string(self, val): self.write_pascal_bytes(val.encode()) def read_python_int(self, _len): return struct.unpack(f'{self._endian}{_len}P', self.read(_len))[0] def write_python_int(self, val): self.write(struct.pack(f'{self._endian}{len(val)}P', val)) class ConfigParser(RawConfigParser): """配置解析类 """ def getstr(self, section, option, default=None, **kwargs): val = self.get(section, option, **kwargs) return val if val else default def getjson(self, section, option, **kwargs): val = self.get(section, option, **kwargs) result = Utils.json_encode(val) return result def _split_host(self, val): if val.find(r':') > 0: host, port = val.split(r':', 2) return host.strip(), int(port.strip()) else: return None def get_split_host(self, section, option, **kwargs): val = self.get(section, option, **kwargs) return self._split_host(val) def get_split_str(self, section, option, sep=r'|', **kwargs): val = self.get(section, option, **kwargs) return tuple(Utils.split_str(val, sep)) def get_split_int(self, section, option, sep=r',', **kwargs): val = self.get(section, option, **kwargs) return tuple(Utils.split_int(val, sep)) def split_float(self, val, sep=r','): result = tuple(float(item.strip()) for item in val.split(sep)) return result def get_split_float(self, section, option, sep=r',', **kwargs): val = self.get(section, option, **kwargs) return self.split_float(val, sep) class Configure(Const): """配置类 """ def __init__(self): super().__init__() self._parser = ConfigParser() def _init_options(self): self.clear() def get_option(self, section, option): return self._parser.get(section, option) def get_options(self, section): parser = self._parser options = {} for option in parser.options(section): options[option] = parser.get(section, option) return options def set_options(self, section, **options): if not self._parser.has_section(section): self._parser.add_section(section) for option, value in options.items(): self._parser.set(section, option, value) self._init_options() def read(self, files): self._parser.clear() self._parser.read(files, r'utf-8') self._init_options() def read_str(self, val): self._parser.clear() self._parser.read_string(val) self._init_options() def read_dict(self, val): self._parser.clear() self._parser.read_dict(val) self._init_options()
21.493671
74
0.607538
8,335
0.977369
0
0
273
0.032012
0
0
942
0.11046
9a8b2c9a4fe128befea072dd96f7b456a616ecd8
15,178
py
Python
YOLO/Stronger-yolo-pytorch/port2tf/yolov3.py
ForrestPi/ObjectDetection
54e0821e73f67be5360c36f01229a123c34ab3b3
[ "MIT" ]
12
2020-03-25T01:24:22.000Z
2021-09-18T06:40:16.000Z
YOLO/Stronger-yolo-pytorch/port2tf/yolov3.py
ForrestPi/ObjectDetection
54e0821e73f67be5360c36f01229a123c34ab3b3
[ "MIT" ]
1
2020-04-22T07:52:36.000Z
2020-04-22T07:52:36.000Z
YOLO/Stronger-yolo-pytorch/port2tf/yolov3.py
ForrestPi/ObjectDetection
54e0821e73f67be5360c36f01229a123c34ab3b3
[ "MIT" ]
4
2020-03-25T01:24:26.000Z
2020-09-20T11:29:09.000Z
# coding:utf-8 import numpy as np import tensorflow as tf from layers import * from MobilenetV2 import MobilenetV2,MobilenetV2_dynamic class YOLOV3(object): def __init__(self, training,numcls=20): self.__training = training self.__num_classes = numcls self.__strides=[8,16,32] def build_nework(self, input_data, val_reuse=False,gt_per_grid=3): """ :param input_data: shape为(batch_size, input_size, input_size, 3) :return: conv_sbbox, conv_mbbox, conv_lbbox, pred_sbbox, pred_mbbox, pred_lbbox conv_sbbox的shape为(batch_size, input_size / 8, input_size / 8, gt_per_grid * (5 + num_classes)) conv_mbbox的shape为(batch_size, input_size / 16, input_size / 16, gt_per_grid * (5 + num_classes)) conv_lbbox的shape为(batch_size, input_size / 32, input_size / 32, gt_per_grid * (5 + num_classes)) conv_?是YOLO的原始卷积输出(raw_dx, raw_dy, raw_dw, raw_dh, raw_conf, raw_prob) pred_sbbox的shape为(batch_size, input_size / 8, input_size / 8, gt_per_grid, 5 + num_classes) pred_mbbox的shape为(batch_size, input_size / 16, input_size / 16, gt_per_grid, 5 + num_classes) pred_lbbox的shape为(batch_size, input_size / 32, input_size / 32, gt_per_grid, 5 + num_classes) pred_?是YOLO预测bbox的信息(x, y, w, h, conf, prob),(x, y, w, h)的大小是相对于input_size的 """ net_name = 'YoloV3' with tf.variable_scope(net_name, reuse=val_reuse): feature_map_s, feature_map_m, feature_map_l = MobilenetV2(input_data, self.__training) #jiangwei conv = convolutional(name='conv0', input_data=feature_map_l, filters_shape=(1, 1, 1280, 512), training=self.__training) conv = separable_conv(name='conv1', input_data=conv, input_c=512, output_c=1024, training=self.__training) conv = convolutional(name='conv2', input_data=conv, filters_shape=(1, 1, 1024, 512), training=self.__training) conv = separable_conv(name='conv3', input_data=conv, input_c=512, output_c=1024, training=self.__training) conv = convolutional(name='conv4', input_data=conv, filters_shape=(1, 1, 1024, 512), training=self.__training) # ----------**********---------- Detection branch of large object ----------**********---------- conv_lbbox = separable_conv(name='conv5', input_data=conv, input_c=512, output_c=1024, training=self.__training) conv_lbbox = convolutional(name='conv6', input_data=conv_lbbox, filters_shape=(1, 1, 1024, gt_per_grid * (self.__num_classes + 5)), training=self.__training, downsample=False, activate=False, bn=False) pred_lbbox = decode(name='pred_lbbox', conv_output=conv_lbbox, num_classes=self.__num_classes, stride=self.__strides[2]) # ----------**********---------- Detection branch of large object ----------**********---------- # ----------**********---------- up sample and merge features map ----------**********---------- conv = convolutional(name='conv7', input_data=conv, filters_shape=(1, 1, 512, 256), training=self.__training) conv = upsample(name='upsample0', input_data=conv) conv = route(name='route0', previous_output=feature_map_m, current_output=conv) # ----------**********---------- up sample and merge features map ----------**********---------- conv = convolutional('conv8', input_data=conv, filters_shape=(1, 1, 96 + 256, 256), training=self.__training) conv = separable_conv('conv9', input_data=conv, input_c=256, output_c=512, training=self.__training) conv = convolutional('conv10', input_data=conv, filters_shape=(1, 1, 512, 256), training=self.__training) conv = separable_conv('conv11', input_data=conv, input_c=256, output_c=512, training=self.__training) conv = convolutional('conv12', input_data=conv, filters_shape=(1, 1, 512, 256), training=self.__training) # ----------**********---------- Detection branch of middle object ----------**********---------- conv_mbbox = separable_conv(name='conv13', input_data=conv, input_c=256, output_c=512, training=self.__training) conv_mbbox = convolutional(name='conv14', input_data=conv_mbbox, filters_shape=(1, 1, 512, gt_per_grid * (self.__num_classes + 5)), training=self.__training, downsample=False, activate=False, bn=False) pred_mbbox = decode(name='pred_mbbox', conv_output=conv_mbbox, num_classes=self.__num_classes, stride=self.__strides[1]) # ----------**********---------- Detection branch of middle object ----------**********---------- # ----------**********---------- up sample and merge features map ----------**********---------- conv = convolutional(name='conv15', input_data=conv, filters_shape=(1, 1, 256, 128), training=self.__training) conv = upsample(name='upsample1', input_data=conv) conv = route(name='route1', previous_output=feature_map_s, current_output=conv) # ----------**********---------- up sample and merge features map ----------**********---------- conv = convolutional(name='conv16', input_data=conv, filters_shape=(1, 1, 32 + 128, 128), training=self.__training) conv = separable_conv(name='conv17', input_data=conv, input_c=128, output_c=256, training=self.__training) conv = convolutional(name='conv18', input_data=conv, filters_shape=(1, 1, 256, 128), training=self.__training) conv = separable_conv(name='conv19', input_data=conv, input_c=128, output_c=256, training=self.__training) conv = convolutional(name='conv20', input_data=conv, filters_shape=(1, 1, 256, 128), training=self.__training) # ----------**********---------- Detection branch of small object ----------**********---------- conv_sbbox = separable_conv(name='conv21', input_data=conv, input_c=128, output_c=256, training=self.__training) conv_sbbox = convolutional(name='conv22', input_data=conv_sbbox, filters_shape=(1, 1, 256, gt_per_grid * (self.__num_classes + 5)), training=self.__training, downsample=False, activate=False, bn=False) pred_sbbox = decode(name='pred_sbbox', conv_output=conv_sbbox, num_classes=self.__num_classes, stride=self.__strides[0]) # ----------**********---------- Detection branch of small object ----------**********---------- for var in tf.global_variables(net_name): tf.add_to_collection(net_name, var) return conv_sbbox, conv_mbbox, conv_lbbox, pred_sbbox, pred_mbbox, pred_lbbox def build_network_dynamic(self, input_data,statedict,val_reuse=False,inputsize=544,gt_per_grid=3): net_name = 'YoloV3' with tf.variable_scope(net_name, reuse=val_reuse): feature_map_s, feature_map_m, feature_map_l = MobilenetV2_dynamic(input_data, self.__training,statedict) conv = convolutional(name='conv0', input_data=feature_map_l, filters_shape=(1, 1, 1280, 512), training=self.__training,statedict=statedict['headslarge.conv0']) conv = separable_conv(name='conv1', input_data=conv, input_c=512, output_c=1024, training=self.__training,statedict=statedict['headslarge.conv1']) conv = convolutional(name='conv2', input_data=conv, filters_shape=(1, 1, 1024, 512), training=self.__training,statedict=statedict['headslarge.conv2']) conv = separable_conv(name='conv3', input_data=conv, input_c=512, output_c=1024, training=self.__training,statedict=statedict['headslarge.conv3']) conv = convolutional(name='conv4', input_data=conv, filters_shape=(1, 1, 1024, 512), training=self.__training,statedict=statedict['headslarge.conv4']) # ----------**********---------- Detection branch of large object ----------**********---------- conv_lbbox = separable_conv(name='conv5', input_data=conv, input_c=512, output_c=1024, training=self.__training,statedict=statedict['detlarge.conv5']) conv_lbbox = convolutional(name='conv6', input_data=conv_lbbox, filters_shape=(1, 1, 1024, gt_per_grid * (self.__num_classes + 5)), training=self.__training, downsample=False, activate=False, bn=False,statedict=statedict['detlarge.conv6']) pred_lbbox = decode_validate(name='pred_lbbox', conv_output=conv_lbbox, num_classes=self.__num_classes, stride=self.__strides[2], shape=inputsize // 32, gt_pergrid=gt_per_grid) # ----------**********---------- Detection branch of large object ----------**********---------- # ----------**********---------- up sample and merge features map ----------**********---------- conv = convolutional(name='conv7', input_data=conv, filters_shape=(1, 1, 512, 256), training=self.__training,statedict=statedict['mergelarge.conv7']) conv = upsample_decode(name='upsample0', input_data=conv,shape1=inputsize//32,shape2=inputsize//32) conv = route(name='route0', previous_output=feature_map_m, current_output=conv) # ----------**********---------- up sample and merge features map ----------**********---------- conv = convolutional('conv8', input_data=conv, filters_shape=(1, 1, 96 + 256, 256), training=self.__training,statedict=statedict['headsmid.conv8']) conv = separable_conv('conv9', input_data=conv, input_c=256, output_c=512, training=self.__training,statedict=statedict['headsmid.conv9']) conv = convolutional('conv10', input_data=conv, filters_shape=(1, 1, 512, 256), training=self.__training,statedict=statedict['headsmid.conv10']) conv = separable_conv('conv11', input_data=conv, input_c=256, output_c=512, training=self.__training,statedict=statedict['headsmid.conv11']) conv = convolutional('conv12', input_data=conv, filters_shape=(1, 1, 512, 256), training=self.__training,statedict=statedict['headsmid.conv12']) # ----------**********---------- Detection branch of middle object ----------**********---------- conv_mbbox = separable_conv(name='conv13', input_data=conv, input_c=256, output_c=512, training=self.__training,statedict=statedict['detmid.conv13']) conv_mbbox = convolutional(name='conv14', input_data=conv_mbbox, filters_shape=(1, 1, 512, gt_per_grid * (self.__num_classes + 5)), training=self.__training, downsample=False, activate=False, bn=False,statedict=statedict['detmid.conv14']) pred_mbbox = decode_validate(name='pred_mbbox', conv_output=conv_mbbox, num_classes=self.__num_classes, stride=self.__strides[1], shape=inputsize // 16, gt_pergrid=gt_per_grid) # ----------**********---------- Detection branch of middle object ----------**********---------- # ----------**********---------- up sample and merge features map ----------**********---------- conv = convolutional(name='conv15', input_data=conv, filters_shape=(1, 1, 256, 128), training=self.__training,statedict=statedict['mergemid.conv15']) conv = upsample_decode(name='upsample1', input_data=conv,shape1=inputsize//16,shape2=inputsize//16) conv = route(name='route1', previous_output=feature_map_s, current_output=conv) # ----------**********---------- up sample and merge features map ----------**********---------- conv = convolutional(name='conv16', input_data=conv, filters_shape=(1, 1, 32 + 128, 128), training=self.__training,statedict=statedict['headsmall.conv16']) conv = separable_conv(name='conv17', input_data=conv, input_c=128, output_c=256, training=self.__training,statedict=statedict['headsmall.conv17']) conv = convolutional(name='conv18', input_data=conv, filters_shape=(1, 1, 256, 128), training=self.__training,statedict=statedict['headsmall.conv18']) conv = separable_conv(name='conv19', input_data=conv, input_c=128, output_c=256, training=self.__training,statedict=statedict['headsmall.conv19']) conv = convolutional(name='conv20', input_data=conv, filters_shape=(1, 1, 256, 128), training=self.__training,statedict=statedict['headsmall.conv20']) # ----------**********---------- Detection branch of small object ----------**********---------- conv_sbbox = separable_conv(name='conv21', input_data=conv, input_c=128, output_c=256, training=self.__training,statedict=statedict['detsmall.conv21']) conv_sbbox = convolutional(name='conv22', input_data=conv_sbbox, filters_shape=(1, 1, 256, gt_per_grid * (self.__num_classes + 5)), training=self.__training, downsample=False, activate=False, bn=False,statedict=statedict['detsmall.conv22']) pred_sbbox = decode_validate(name='pred_sbbox', conv_output=conv_sbbox, num_classes=self.__num_classes, stride=self.__strides[0], shape=inputsize // 8, gt_pergrid=gt_per_grid) # ----------**********---------- Detection branch of small object ----------**********---------- pred_sbbox = tf.reshape(pred_sbbox, (-1, 5 + self.__num_classes)) pred_mbbox = tf.reshape(pred_mbbox, (-1, 5 + self.__num_classes)) pred_lbbox = tf.reshape(pred_lbbox, (-1, 5 + self.__num_classes)) pred_bbox = tf.concat([pred_sbbox, pred_mbbox, pred_lbbox], 0, name='output/boxconcat') for var in tf.global_variables(net_name): tf.add_to_collection(net_name, var) return pred_bbox
80.306878
158
0.566346
15,112
0.990951
0
0
0
0
0
0
3,899
0.255672
9a8ce9049f7230937ae69e4978f32515e2f46236
654
py
Python
saltlint/rules/CmdWaitRecommendRule.py
Poulpatine/salt-lint
304917d95d2730e7df8bd7b5dd29a3bd77c80250
[ "MIT" ]
null
null
null
saltlint/rules/CmdWaitRecommendRule.py
Poulpatine/salt-lint
304917d95d2730e7df8bd7b5dd29a3bd77c80250
[ "MIT" ]
null
null
null
saltlint/rules/CmdWaitRecommendRule.py
Poulpatine/salt-lint
304917d95d2730e7df8bd7b5dd29a3bd77c80250
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- # Copyright (c) 2020 Warpnet B.V. import re from saltlint.linter.rule import DeprecationRule from saltlint.utils import LANGUAGE_SLS class CmdWaitRecommendRule(DeprecationRule): id = '213' shortdesc = 'SaltStack recommends using cmd.run together with onchanges, rather than cmd.wait' description = 'SaltStack recommends using cmd.run together with onchanges, rather than cmd.wait' severity = 'LOW' languages = [LANGUAGE_SLS] tags = ['formatting'] version_added = 'develop' regex = re.compile(r"^\s{2}cmd\.wait:(\s+)?$") def match(self, file, line): return self.regex.search(line)
28.434783
100
0.697248
493
0.753823
0
0
0
0
0
0
277
0.423547
9a8d3871c093dea84d65b938bf3c599a010db785
7,818
py
Python
sdks/python/apache_beam/ml/inference/pytorch_test.py
hengfengli/beam
83a8855e5997e0311e6274c03bcb38f94efbf8ef
[ "PSF-2.0", "Apache-2.0", "BSD-3-Clause" ]
null
null
null
sdks/python/apache_beam/ml/inference/pytorch_test.py
hengfengli/beam
83a8855e5997e0311e6274c03bcb38f94efbf8ef
[ "PSF-2.0", "Apache-2.0", "BSD-3-Clause" ]
null
null
null
sdks/python/apache_beam/ml/inference/pytorch_test.py
hengfengli/beam
83a8855e5997e0311e6274c03bcb38f94efbf8ef
[ "PSF-2.0", "Apache-2.0", "BSD-3-Clause" ]
null
null
null
# # Licensed to the Apache Software Foundation (ASF) under one or more # contributor license agreements. See the NOTICE file distributed with # this work for additional information regarding copyright ownership. # The ASF licenses this file to You under the Apache License, Version 2.0 # (the "License"); you may not use this file except in compliance with # the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # pytype: skip-file import os import shutil import tempfile import unittest from collections import OrderedDict import numpy as np import pytest import apache_beam as beam from apache_beam.testing.test_pipeline import TestPipeline from apache_beam.testing.util import assert_that from apache_beam.testing.util import equal_to # Protect against environments where pytorch library is not available. # pylint: disable=wrong-import-order, wrong-import-position, ungrouped-imports try: import torch from apache_beam.ml.inference.api import PredictionResult from apache_beam.ml.inference.base import RunInference from apache_beam.ml.inference.pytorch import PytorchInferenceRunner from apache_beam.ml.inference.pytorch import PytorchModelLoader except ImportError: raise unittest.SkipTest('PyTorch dependencies are not installed') def _compare_prediction_result(a, b): return ( torch.equal(a.inference, b.inference) and torch.equal(a.example, b.example)) class PytorchLinearRegression(torch.nn.Module): def __init__(self, input_dim, output_dim): super().__init__() self.linear = torch.nn.Linear(input_dim, output_dim) def forward(self, x): out = self.linear(x) return out @pytest.mark.uses_pytorch class PytorchRunInferenceTest(unittest.TestCase): def setUp(self): self.tmpdir = tempfile.mkdtemp() def tearDown(self): shutil.rmtree(self.tmpdir) def test_inference_runner_single_tensor_feature(self): examples = [ torch.from_numpy(np.array([1], dtype="float32")), torch.from_numpy(np.array([5], dtype="float32")), torch.from_numpy(np.array([-3], dtype="float32")), torch.from_numpy(np.array([10.0], dtype="float32")), ] expected_predictions = [ PredictionResult(ex, pred) for ex, pred in zip( examples, torch.Tensor([example * 2.0 + 0.5 for example in examples]).reshape(-1, 1)) ] model = PytorchLinearRegression(input_dim=1, output_dim=1) model.load_state_dict( OrderedDict([('linear.weight', torch.Tensor([[2.0]])), ('linear.bias', torch.Tensor([0.5]))])) model.eval() inference_runner = PytorchInferenceRunner(torch.device('cpu')) predictions = inference_runner.run_inference(examples, model) for actual, expected in zip(predictions, expected_predictions): self.assertTrue(_compare_prediction_result(actual, expected)) def test_inference_runner_multiple_tensor_features(self): examples = torch.from_numpy( np.array([1, 5, 3, 10, -14, 0, 0.5, 0.5], dtype="float32")).reshape(-1, 2) examples = [ torch.from_numpy(np.array([1, 5], dtype="float32")), torch.from_numpy(np.array([3, 10], dtype="float32")), torch.from_numpy(np.array([-14, 0], dtype="float32")), torch.from_numpy(np.array([0.5, 0.5], dtype="float32")), ] expected_predictions = [ PredictionResult(ex, pred) for ex, pred in zip( examples, torch.Tensor([f1 * 2.0 + f2 * 3 + 0.5 for f1, f2 in examples]).reshape(-1, 1)) ] model = PytorchLinearRegression(input_dim=2, output_dim=1) model.load_state_dict( OrderedDict([('linear.weight', torch.Tensor([[2.0, 3]])), ('linear.bias', torch.Tensor([0.5]))])) model.eval() inference_runner = PytorchInferenceRunner(torch.device('cpu')) predictions = inference_runner.run_inference(examples, model) for actual, expected in zip(predictions, expected_predictions): self.assertTrue(_compare_prediction_result(actual, expected)) def test_num_bytes(self): inference_runner = PytorchInferenceRunner(torch.device('cpu')) examples = torch.from_numpy( np.array([1, 5, 3, 10, -14, 0, 0.5, 0.5], dtype="float32")).reshape(-1, 2) self.assertEqual((examples[0].element_size()) * 8, inference_runner.get_num_bytes(examples)) def test_namespace(self): inference_runner = PytorchInferenceRunner(torch.device('cpu')) self.assertEqual( 'RunInferencePytorch', inference_runner.get_metrics_namespace()) def test_pipeline_local_model(self): with TestPipeline() as pipeline: examples = torch.from_numpy( np.array([1, 5, 3, 10, -14, 0, 0.5, 0.5], dtype="float32")).reshape(-1, 2) expected_predictions = [ PredictionResult(ex, pred) for ex, pred in zip( examples, torch.Tensor([f1 * 2.0 + f2 * 3 + 0.5 for f1, f2 in examples]).reshape(-1, 1)) ] state_dict = OrderedDict([('linear.weight', torch.Tensor([[2.0, 3]])), ('linear.bias', torch.Tensor([0.5]))]) path = os.path.join(self.tmpdir, 'my_state_dict_path') torch.save(state_dict, path) model_loader = PytorchModelLoader( state_dict_path=path, model_class=PytorchLinearRegression(input_dim=2, output_dim=1)) pcoll = pipeline | 'start' >> beam.Create(examples) predictions = pcoll | RunInference(model_loader) assert_that( predictions, equal_to(expected_predictions, equals_fn=_compare_prediction_result)) def test_pipeline_gcs_model(self): with TestPipeline() as pipeline: examples = torch.from_numpy( np.array([1, 5, 3, 10], dtype="float32").reshape(-1, 1)) expected_predictions = [ PredictionResult(ex, pred) for ex, pred in zip( examples, torch.Tensor([example * 2.0 + 0.5 for example in examples]).reshape(-1, 1)) ] gs_pth = 'gs://apache-beam-ml/pytorch_lin_reg_model_2x+0.5_state_dict.pth' model_loader = PytorchModelLoader( state_dict_path=gs_pth, model_class=PytorchLinearRegression(input_dim=1, output_dim=1)) pcoll = pipeline | 'start' >> beam.Create(examples) predictions = pcoll | RunInference(model_loader) assert_that( predictions, equal_to(expected_predictions, equals_fn=_compare_prediction_result)) def test_invalid_input_type(self): with self.assertRaisesRegex(TypeError, "expected Tensor as element"): with TestPipeline() as pipeline: examples = np.array([1, 5, 3, 10], dtype="float32").reshape(-1, 1) state_dict = OrderedDict([('linear.weight', torch.Tensor([[2.0]])), ('linear.bias', torch.Tensor([0.5]))]) path = os.path.join(self.tmpdir, 'my_state_dict_path') torch.save(state_dict, path) model_loader = PytorchModelLoader( state_dict_path=path, model_class=PytorchLinearRegression(input_dim=1, output_dim=1)) pcoll = pipeline | 'start' >> beam.Create(examples) # pylint: disable=expression-not-assigned pcoll | RunInference(model_loader) if __name__ == '__main__': unittest.main()
37.228571
80
0.661678
5,973
0.764006
0
0
5,762
0.737017
0
0
1,450
0.185469
9a8deeda4be2011a1d0dba2c5373aa43b91fc628
6,636
py
Python
example/test/L20_snake.py
Michael8968/skulpt
15956a60398fac92ee1dab25bf661ffc003b2eaf
[ "MIT" ]
2
2021-12-18T06:34:26.000Z
2022-01-05T05:08:47.000Z
example/test/L20_snake.py
Michael8968/skulpt
15956a60398fac92ee1dab25bf661ffc003b2eaf
[ "MIT" ]
null
null
null
example/test/L20_snake.py
Michael8968/skulpt
15956a60398fac92ee1dab25bf661ffc003b2eaf
[ "MIT" ]
null
null
null
import pygame import sys import time import random from pygame.locals import * # Pygame Init pygame.init() # Play Surface size = width, height = 800, 800 screen = pygame.display.set_mode(size) pygame.display.set_caption("Snake Change") # Colors red = (255, 0, 0) green = (0, 255, 0) black = (0, 0, 0) white = (255, 255, 255) brown = (165, 42, 42) blue = (0, 0, 255) # FPS controller times = pygame.time.Clock() # Game settings delta = 10 snakePos = [100, 50] snakeBody = [[100, 50], [90, 50], [80, 50]] snakePos2 = [100, 350] snakeBody2 = [[100, 350], [90, 350], [80, 350]] foodPos = [400, 200] #snakePos = [delta*4, delta*3] #snakeBody = [[delta*4, delta*3], [delta*3, delta*3], [delta*2, delta*3]] #foodPos = [delta*10, delta*3] foodSpawn = True direction = 'RIGHT' direction2 = 'RIGHT' score = 0 score2 = 0 gameover = False winner = '' # Show Score def showScore(a,b): SFont = pygame.font.Font(None, 32) Ssurf = SFont.render("Score{1}p : {0}".format(a,b), True, black) if b == 1: screen.blit(Ssurf, (250,10)) elif b == 2: screen.blit(Ssurf, (450,10)) def showEnd(): font = pygame.font.SysFont(None, 88) fontimg = font.render('game over', True, red) screen.blit(fontimg, (250,250)) fontimg2 = font.render('press return to restart', True, brown) screen.blit(fontimg2, (100,350)) if winner: fontimg3 = font.render('winner is ' + winner, True, red) screen.blit(fontimg3, (250,450)) else: if score > score2: fontimg3 = font.render('winner is 1p', True, red) screen.blit(fontimg3, (250,450)) elif score < score2: fontimg3 = font.render('winner is 2p', True, red) screen.blit(fontimg3, (250,450)) elif score == score2: fontimg3 = font.render('no winner', True, red) screen.blit(fontimg3, (250,450)) def control_1p(aa): if event.key == K_RIGHT: if aa != 'LEFT': aa = 'RIGHT' if event.key == K_LEFT: if aa != 'RIGHT': aa = 'LEFT' if event.key == K_UP: if aa != 'DOWN': aa = 'UP' if event.key == K_DOWN: if aa != 'UP': aa = 'DOWN' return aa def control_2p(aa): if event.key == K_d: if aa != 'LEFT': aa = 'RIGHT' if event.key == K_a: if aa != 'RIGHT': aa = 'LEFT' if event.key == K_w: if aa != 'DOWN': aa = 'UP' if event.key == K_s: if aa != 'UP': aa = 'DOWN' return aa def move(a,b): if a == 'RIGHT': b[0] += delta if a == 'LEFT': b[0] -= delta if a == 'DOWN': b[1] += delta if a == 'UP': b[1] -= delta def is_game_over(): if snakePos[0] >= width or snakePos[0] < 0: return True, '2p' if snakePos[1] >= height or snakePos[1] < 0: return True, '2p' if snakePos2[0] >= width or snakePos2[0] < 0: return True, '1p' if snakePos2[1] >= height or snakePos2[1] < 0: return True, '1p' # Self hit for block in snakeBody[1:]: if snakePos == block: return True, '2p' if snakePos2 == block: return True, '1p' for block in snakeBody2[1:]: if snakePos == block: return True, '2p' if snakePos2 == block: return True, '1p' if snakePos == snakePos2: return True, '' return False, '' def is_game_over2(): a = False b = '' if snakePos[0] >= width or snakePos[0] < 0: a = True b = '2p' if snakePos[1] >= height or snakePos[1] < 0: a = True b = '2p' if snakePos2[0] >= width or snakePos2[0] < 0: a = True b = '1p' if snakePos2[1] >= height or snakePos2[1] < 0: a = True b = '1p' # Self hit for block in snakeBody[1:]: if snakePos == block: a = True b = '2p' if snakePos2 == block: a = True b = '1p' for block in snakeBody2[1:]: if snakePos == block: a = True b = '2p' if snakePos2 == block: a = True b = '1p' if snakePos == snakePos2: a = True return a, b def motion(score, foodSpawn, snakeBody, snakePos, color): snakeBody.insert(0, list(snakePos)) if snakePos == foodPos: foodSpawn = False score += 1 else: snakeBody.pop() for pos in snakeBody: pygame.draw.rect(screen, color, (pos[0], pos[1], delta, delta)) return score, foodSpawn while True: screen.fill(white) event = pygame.event.poll() if event.type == pygame.QUIT: pygame.quit() sys.exit() elif event.type == pygame.KEYDOWN: direction = control_1p(direction) direction2 = control_2p(direction2) move(direction,snakePos) move(direction2,snakePos2) score, foodSpawn = motion(score, foodSpawn, snakeBody, snakePos, green) score2, foodSpawn = motion(score2, foodSpawn, snakeBody2, snakePos2, blue) gameover, winner = is_game_over() #如果不想上面的写法,则改写函数后调用如下 #gameover, winner = is_game_over2() if foodSpawn == False: foodPos = [random.randrange(1, width // delta) * delta, random.randrange(1, height // delta) * delta] foodSpawn = True pygame.draw.rect(screen, brown, (foodPos[0], foodPos[1], delta, delta)) showScore(score,1) showScore(score2,2) if gameover: showEnd() while True: times.tick(10) event = pygame.event.poll() if event.type == pygame.QUIT: pygame.quit() sys.exit() elif event.type == KEYDOWN: if event.key == K_RETURN: snakePos = [100, 50] snakeBody = [[100, 50], [90, 50], [80, 50]] snakePos2 = [100, 350] snakeBody2 = [[100, 350], [90, 350], [80, 350]] foodPos = [400, 200] foodSpawn = True direction = 'RIGHT' direction2 = 'RIGHT' score = 0 score2 = 0 gameover = False winner = '' break keys = pygame.key.get_pressed() if keys[K_ESCAPE]: pygame.quit() sys.exit() pygame.display.flip() keys = pygame.key.get_pressed() if keys[K_ESCAPE]: pygame.quit() sys.exit() pygame.display.flip() times.tick(30)
25.231939
109
0.518987
0
0
0
0
0
0
0
0
664
0.099461
9a8e3182ccf25a9266ba55ff765c256d44cf7bcc
4,203
py
Python
readgadget/readrockstar.py
danielmarostica/pygadgetreader
977949da7fcb6585f3e0270019d369c6967b317c
[ "BSD-3-Clause" ]
6
2020-09-02T21:11:59.000Z
2021-09-24T16:12:44.000Z
readgadget/readrockstar.py
danielmarostica/pygadgetreader
977949da7fcb6585f3e0270019d369c6967b317c
[ "BSD-3-Clause" ]
1
2021-09-24T14:40:03.000Z
2021-09-25T20:07:13.000Z
readgadget/readrockstar.py
danielmarostica/pygadgetreader
977949da7fcb6585f3e0270019d369c6967b317c
[ "BSD-3-Clause" ]
1
2020-11-18T19:15:39.000Z
2020-11-18T19:15:39.000Z
from .modules.common import * import numpy as np import os from .modules.rs_structs import getRSformat class RockstarFile(object): def __init__(self,binfile,data,galaxies,debug): self.galaxies = galaxies self.binfile = binfile self.debug = debug self.header() self.halos() if data == 'particles': self.particles() self.f.close() def header(self): f = open(self.binfile,'rb') f.seek(8*3 + 4*10,1) self.num_halos = np.fromfile(f,dtype=np.int64,count=1)[0] self.num_particles = np.fromfile(f,dtype=np.int64,count=1)[0] #print self.num_halos f.seek(4 + 4 + 8,1) self.format_revision = np.fromfile(f,dtype=np.int32,count=1)[0] if self.debug: print('found HALO_FORMAT_REVISION %d (header)' % self.format_revision) bytes_left = 256 - f.tell() f.seek(bytes_left,1) self.f = f self.halostruct = getRSformat(self) def halos(self): #print 'reading %d halos (%d)' % (self.num_halos,self.galaxies) self.halodata = np.fromfile(self.f,dtype=self.halostruct,count=self.num_halos) def particles(self): self.particle_IDs = np.zeros(self.num_particles,dtype=np.int64) self.particle_IDs.fill(-1) self.particle_haloIDs = np.zeros(self.num_particles,dtype=np.int64) self.particle_haloIDs.fill(-1) nparts = 0 for i in range(0,self.num_halos): hid = self.halodata[i]['id'] num_p = self.halodata[i]['num_p'] #print '%d %d' % (i,num_p) pids = np.fromfile(self.f,dtype=np.int64,count=num_p) self.particle_IDs[nparts:nparts+num_p] = pids self.particle_haloIDs[nparts:nparts+num_p] = hid nparts += num_p #print 'complete' def compileReturnArray(RS,data): """compile data from RS binary and return requested value""" arr = [] singleval = False ## return particle ID data if data == 'particles': npart = 0 for i in range(0,len(RS)): npart += len(RS[i].particle_IDs) arr = np.zeros((npart,2),dtype=np.int64) npart = 0 for i in range(0,len(RS)): n = len(RS[i].particle_IDs) arr[npart:npart+n,0] = RS[i].particle_IDs arr[npart:npart+n,1] = RS[i].particle_haloIDs npart += n return arr ## return halo struct data if data in RS[0].halostruct.names: singleval = True if RS[0].debug: print('%s found in halodata' % data) nhalos = 0 for i in range(0,len(RS)): nhalos += RS[i].num_halos if singleval: arr.extend(RS[i].halodata[data]) else: arr.extend(RS[i].halodata) #print nhalos,len(arr) return np.asarray(arr) def readrockstargalaxies(binfile,data,**kwargs): if 'galaxies' in kwargs: del kwargs['galaxies'] arr = readrockstar(binfile,data,galaxies=1,**kwargs) return arr def readrockstar(binfile,data,**kwargs): """read rockstar binary file Parameters ---------- binfile : string path to rockstar binary file. Do NOT include file extention or leading number data : string requested data, see readme for details Examples -------- >>> halo_mass = readrockstar('/Users/bob/halos_020','m') >>> halo_mass array([ 7.25643648e+08, 5.70148608e+08, 3.97376288e+08, 3.66277274e+09, 1.99379231e+10, 5.01039648e+08, ..., 1.58950515e+09, 2.10782208e+09, 8.41401088e+09, 4.14653504e+08], dtype=float32) """ galaxies = 0 if 'galaxies' in kwargs and kwargs['galaxies']==1: galaxies = 1 debug = 0 if 'debug' in kwargs and kwargs['debug']==1: debug = 1 RS_DATA = [] for j in range(0,5000): b = '%s.%d.bin' % (binfile,j) if os.path.isfile(b): if debug: print('reading %s' % b) RS_DATA.append(RockstarFile(b,data,galaxies,debug)) else: break arr = compileReturnArray(RS_DATA,data) return arr
30.23741
93
0.578158
1,789
0.425648
0
0
0
0
0
0
1,025
0.243873
9a8e4ada3be3bb52b1edcd6ad889f5b0b8142092
7,019
py
Python
src/backend/preprocess/preprocess_helper.py
scmc/vch-mri
ffd2a7b60d770a76b545ce271f85e12f53cfb3ad
[ "MIT" ]
1
2021-12-01T23:40:20.000Z
2021-12-01T23:40:20.000Z
src/backend/preprocess/preprocess_helper.py
scmc/vch-mri
ffd2a7b60d770a76b545ce271f85e12f53cfb3ad
[ "MIT" ]
5
2021-03-11T03:07:38.000Z
2021-03-11T03:11:43.000Z
src/backend/preprocess/preprocess_helper.py
scmc/vch-mri
ffd2a7b60d770a76b545ce271f85e12f53cfb3ad
[ "MIT" ]
18
2020-12-30T22:04:44.000Z
2021-12-01T23:40:23.000Z
import boto3 from datetime import datetime, date import re import string import pandas as pd from spellchecker import SpellChecker import uuid import psycopg2 from psycopg2 import sql import sys sys.path.append('.') from rule_processing import postgresql def queryTable(conn, table): cmd = """ SELECT * FROM {} """ with conn.cursor() as cur: cur.execute(sql.SQL(cmd).format(sql.Identifier(table))) return cur.fetchall() compr = boto3.client(service_name='comprehend') compr_m = boto3.client(service_name='comprehendmedical') spell = SpellChecker() conn = postgresql.connect() spelling_list = [x[0] for x in queryTable(conn, 'spellchecker')] conn.close() # Add words to spell list spell.word_frequency.load_words(spelling_list) def findId(val): if val == '-1': return str(uuid.uuid4()) return val def findUnidentified(val): if val.lower() == 'unidentified': return 'U/I' return val def convert2CM(height): if not isinstance(height, str): return 0 try: parts = height.split(' ') unit = parts[1] if unit == 'CM': return float(parts[0]) elif unit == 'IN': quantity_parts = parts[0].replace("'", ' ').replace('"', ' ').split() foot = quantity_parts[0] inch = 0 if len(quantity_parts) == 2: inch = quantity_parts[1] return float(foot) * 30.48 + float(inch) * 2.54 except: return 0 def convert2KG(weight): if not isinstance(weight, str): return 0 try: parts = weight.split(' ') unit = parts[1] if unit == 'KG': return float(parts[0]) elif unit == 'LBS': return 0.453592 * float(parts[0]) except: return 0 def dob2age(dob): try: birthdate = datetime.strptime(dob, '%Y-%m-%d') today = date.today() age = today.year - birthdate.year - ((today.month, today.day) < (birthdate.month, birthdate.day)) return age except: return 0 def contains_word(sample, text): return f' {sample} ' in f' {text} ' def preProcessText(col): """ Takes in a pandas.Series and preprocesses the text """ reponct = string.punctuation.replace("?","").replace("/","") rehtml = re.compile('<.*>') extr = col.str.strip() extr = extr.str.replace(rehtml, '', regex=True) extr = extr.str.translate(str.maketrans('','',reponct)) extr = extr.str.replace('[^0-9a-zA-Z?/ ]+', ' ', regex=True) extr = extr.str.replace('\s+', ' ', regex=True) extr = extr.str.lower() return extr def checkSpelling(text: str): words = text.split() return ' '.join([spell.correction(word) for word in words]) def replace_conjunctions(conj_list, text: str, info_list): temp_text = f' {text} ' for conj in conj_list: if contains_word(conj[0],text): info_list.append(conj[1]) temp_text = temp_text.replace(f' {conj[0]} ', f' {conj[1]} ') return temp_text[1:len(temp_text)-1] def find_all_entities(data: str): if not data: return [] try: result = compr_m.detect_entities_v2(Text=data) return result['Entities'] except Exception as ex: template = "An exception of type {0} occurred. Arguments:\n{1!r}" message = template.format(type(ex).__name__, ex.args) print(message) def infer_icd10_cm(data: str, med_cond, diagnosis, symptoms): """ :data type: string to pass through Comprehend Medical icd10_cm :med_cond type: List[] :diagnosis type: List[] :symptoms type: List[] """ if not data: return try: icd10_result = compr_m.infer_icd10_cm(Text=data) for resp in icd10_result['Entities']: if resp['Score'] > 0.4: resp_str = resp['Text'] category = '' # first check Attributes for attr in resp['Attributes']: if attr['Score'] > 0.4: if attr['Type'] == 'ACUITY' or attr['Type'] == 'DIRECTION': resp_str = f'{attr["Text"]}' + ' ' + resp_str elif attr['Type'] == 'SYSTEM_ORGAN_SITE': resp_str = resp_str + ' ' + f'{attr["Text"]}' for trait in resp['Traits']: if trait['Score'] > 0.4: if trait['Name'] == 'NEGATION': category = 'NEG' break #don't save anything for negation elif trait['Name'] == 'SYMPTOM': category = 'SYMP' elif trait['Name'] == 'DIAGNOSIS': category = 'DIAGN' # add our response string to corresponding list if not category: resp_str = checkSpelling(resp_str) med_cond.append(resp_str) elif category == 'SYMP': resp_str = checkSpelling(resp_str) symptoms.append(resp_str) elif category == 'DIAGN': resp_str = checkSpelling(resp_str) diagnosis.append(resp_str) except Exception as ex: template = "An exception of type {0} occurred. Arguments:\n{1!r}" message = template.format(type(ex).__name__, ex.args) print(message) def find_key_phrases(data:str, key_phrases, icd10cm_list, anatomy_list): """ :data type: string to pass through Comprehend Detect Key Phrases :key_phrases type: List[] :icd10cm_list type: List[] :anatomy_list type: List[] """ if not data: return try: kp_result = compr.detect_key_phrases(Text=data, LanguageCode='en') for resp in kp_result['KeyPhrases']: placed = False if resp['Score'] > 0.4: for icd10cm in icd10cm_list: if contains_word(icd10cm, resp['Text']): resp_str = checkSpelling(resp['Text']) key_phrases.append(resp_str) placed = True break elif contains_word(resp['Text'], icd10cm): resp_str = checkSpelling(resp['Text']) key_phrases.append(resp_str) placed = True break if not placed: for anatomy in anatomy_list: if contains_word(anatomy, resp['Text']): resp_str = checkSpelling(resp['Text']) key_phrases.append(resp_str) break except Exception as ex: template = "An exception of type {0} occurred. Arguments:\n{1!r}" message = template.format(type(ex).__name__, ex.args) print(message)
34.747525
105
0.540248
0
0
0
0
0
0
0
0
1,263
0.17994
9a8e57b168ea55c696b5fec3c4c437440c05734d
1,182
py
Python
script_example.py
op8867555/BGmi
22a7b0292f0fe435e87208154826d8f5baeb7b67
[ "MIT" ]
null
null
null
script_example.py
op8867555/BGmi
22a7b0292f0fe435e87208154826d8f5baeb7b67
[ "MIT" ]
null
null
null
script_example.py
op8867555/BGmi
22a7b0292f0fe435e87208154826d8f5baeb7b67
[ "MIT" ]
null
null
null
import datetime from bgmi.script import ScriptBase from bgmi.utils import parse_episode class Script(ScriptBase): class Model(ScriptBase.Model): bangumi_name = "TEST_BANGUMI" cover = "" update_time = "Mon" due_date = datetime.datetime(2017, 9, 30) def get_download_url(self): # fetch and return dict # ignore they are not same bangumi. resp = [ { "title": "[c.c动漫][4月新番][影之诗][ShadowVerse][01][简日][HEVC][1080P][MP4]", "link": "http://example.com/Bangumi/1/1.torrent", }, { "title": "[YMDR][慕留人 -火影忍者新时代-][2017][2][AVC][JAP][BIG5][MP4][1080P]", "link": "http://example.com/Bangumi/1/2.torrent", }, { "title": "[ZXSUB仲夏动漫字幕组][博人传-火影忍者次世代][03][720P繁体][MP4]", "link": "magnet:?xt=urn:btih:233", }, ] ret = {} for item in resp: e = parse_episode(item["title"]) if e: ret[e] = item["link"] return ret if __name__ == "__main__": s = Script() print(s.get_download_url())
26.863636
86
0.5
1,090
0.865079
0
0
0
0
0
0
489
0.388095
9a8e626f8a8e604d6b65b5bcce02a4426d19dada
677
py
Python
3. Python Advanced (September 2021)/3.1 Python Advanced (September 2021)/10. Exercise - Functions Advanced/11_fill_the_box.py
kzborisov/SoftUni
ccb2b8850adc79bfb2652a45124c3ff11183412e
[ "MIT" ]
1
2021-02-07T07:51:12.000Z
2021-02-07T07:51:12.000Z
3. Python Advanced (September 2021)/3.1 Python Advanced (September 2021)/10. Exercise - Functions Advanced/11_fill_the_box.py
kzborisov/softuni
9c5b45c74fa7d9748e9b3ea65a5ae4e15c142751
[ "MIT" ]
null
null
null
3. Python Advanced (September 2021)/3.1 Python Advanced (September 2021)/10. Exercise - Functions Advanced/11_fill_the_box.py
kzborisov/softuni
9c5b45c74fa7d9748e9b3ea65a5ae4e15c142751
[ "MIT" ]
null
null
null
from collections import deque def fill_the_box(*args): box_size = args[0] * args[1] * args[2] args = deque(args[3:]) while args: curr_arg = args.popleft() if curr_arg == "Finish": break box_size -= curr_arg if box_size < 0: args.remove("Finish") return f"No more free space! You have {sum(args) + abs(box_size)} more cubes." return f"There is free space in the box. You could put {abs(box_size // 1)} more cubes." print(fill_the_box(2, 8, 2, 2, 1, 7, 3, 1, 5, "Finish")) print(fill_the_box(5, 5, 2, 40, 11, 7, 3, 1, 5, "Finish")) print(fill_the_box(10, 10, 10, 40, "Finish", 2, 15, 30))
29.434783
92
0.583456
0
0
0
0
0
0
0
0
192
0.283604
9a8fedf028eb554590720a2eafe70d6a08a4c617
19,617
py
Python
src/the_tale/the_tale/common/utils/views.py
al-arz/the-tale
542770257eb6ebd56a5ac44ea1ef93ff4ab19eb5
[ "BSD-3-Clause" ]
null
null
null
src/the_tale/the_tale/common/utils/views.py
al-arz/the-tale
542770257eb6ebd56a5ac44ea1ef93ff4ab19eb5
[ "BSD-3-Clause" ]
null
null
null
src/the_tale/the_tale/common/utils/views.py
al-arz/the-tale
542770257eb6ebd56a5ac44ea1ef93ff4ab19eb5
[ "BSD-3-Clause" ]
null
null
null
import smart_imports smart_imports.all() # for external code ViewError = utils_exceptions.ViewError class Context(object): def __setattr__(self, name, value): if hasattr(self, name): raise ViewError(code='internal.try_to_reassign_context_value', message=conf.settings.DEFAUL_ERROR_MESSAGE, info={'name': name}) super(Context, self).__setattr__(name, value) class View(object): __slots__ = ('processors', 'logic', 'name', 'path', 'resource', '__doc__', 'csrf_exempt') def __init__(self, logic): self.processors = [] self.logic = logic self.name = None self.path = None self.resource = None self.csrf_exempt = getattr(logic, 'csrf_exempt', False) self.__doc__ = logic.__doc__ # TODO: uncomment after https://bugs.python.org/issue24329 will be fixed # self.__name__ = logic.__name__ # self.__qualname__ = logic.__qualname__ def get_processors(self): return self.resource.get_processors() + self.processors def add_processor(self, processor): self.processors.insert(0, processor) def __call__(self, request, **url_arguments): context = Context() context.django_request = request context.django_url_argumens = url_arguments unprocessed_processors = self.get_processors() processed_processors = [] response = None try: for processor in unprocessed_processors: response = processor.preprocess(context) processed_processors.append(processor) if response: break if response is None: response = self.logic(context) for processor in reversed(processed_processors): response = processor.postprocess(context, response) if response: break return response.complete(context) except ViewError as error: return self.process_error(error, request, context) def _get_error_response_class(self, request): accepted_mimetypes = request.META.get('HTTP_ACCEPT') if accepted_mimetypes is None: return AjaxError if any(tp in accepted_mimetypes for tp in ('application/xhtml+xml', 'text/html', 'text/plain', 'text/xml')): return PageError if any(tp in accepted_mimetypes for tp in ('application/x-javascript',)): return NotImplemented return AjaxError def process_error(self, error, request, context): error_response_class = self._get_error_response_class(request) info = error.info info['resource'] = '%s.%s' % (self.resource.name, self.name) return error_response_class(code=error.code, errors=error.message, context=context, http_status=error.http_status, info=info).complete(context) def get_url_record(self): regex = '' for part in self.path: if len(part) == 0: regex = '%s/' % regex elif part[0] == '#': regex = '%s/(?P<%s>[^\/]*)' % (regex, part[1:]) elif part[0] == '^': regex = '%s/%s' % (regex, part[1:]) else: regex = '%s/%s' % (regex, part) return django_urls.url('^%s$' % regex[1:], self, name=self.name, kwargs={}) def __lt__(self, other): for l, r in zip(self.path, other.path): if not l: return True if not r: return False if l[0] == r[0] == '#': return l < r if l[0] == '#': return False if r[0] == '#': return True if l[0] != '#' and l != r: return l < r return len(self.path) < len(other.path) class Resource(object): __slots__ = ('name', 'processors', 'views', 'parent', 'children') def __init__(self, name): super(Resource, self).__init__() self.name = name self.processors = [] self.views = {} self.parent = None self.children = [] def get_processors(self): if self.parent: return self.parent.get_processors() + self.processors return self.processors def add_processor(self, processor): self.processors.append(processor) def add_child(self, child): self.children.append(child) child.parent = self def __call__(self, *argv, **kwargs): name = kwargs.get('name', argv[-1]) methods = kwargs.get('method', ('get',)) if isinstance(methods, str): methods = [methods] methods = [m.upper() for m in methods] @functools.wraps(self.__call__) def decorator(func): view = func if isinstance(func, View) else View(logic=func) # view = functools.wraps(view.logic)(view) view.name = name view.path = argv view.add_processor(HttpMethodProcessor(allowed_methods=methods)) view.add_processor(CSRFProcessor()) if view.name in self.views: raise exceptions.DuplicateViewNameError(name=view.name) self.views[view.name] = view view.resource = self return view return decorator def get_urls(self): urls = [] for view in sorted(self.views.values()): urls.append(view.get_url_record()) return urls class ProcessorArgument(object): __slots__ = ('default', ) def __init__(self, default=NotImplemented): self.default = default # TODO: write metaclass for processing processor arguments class BaseViewProcessor(object): __slots__ = () def __init__(self, **kwargs): for argument_name in dir(self): argument = getattr(self, argument_name) if not isinstance(argument, ProcessorArgument): continue name = argument_name[4:].lower() value = kwargs.get(name, getattr(self, name.upper(), argument.default)) setattr(self, name, value) for argument_name, value in kwargs.items(): argument = getattr(self, 'ARG_%s' % argument_name.upper()) if not isinstance(argument, ProcessorArgument): raise exceptions.WrongProcessorArgumentError(processor=self, argument=argument_name) setattr(self, argument_name.lower(), value) self.initialize() def initialize(self): pass def preprocess(self, context): pass def postprocess(self, context, response): return response def __call__(self, view): view = view if isinstance(view, View) else View(logic=view) view.add_processor(self) return view class HttpMethodProcessor(BaseViewProcessor): __slots__ = ('allowed_methods', ) ARG_ALLOWED_METHODS = ProcessorArgument() def initialize(self): super(HttpMethodProcessor, self).initialize() self.allowed_methods = frozenset(self.allowed_methods) def preprocess(self, context): if context.django_request.method not in self.allowed_methods: raise ViewError(code='common.wrong_http_method', message='К адресу нельзя обратиться с помощью HTTP метода "%(method)s"' % {'method': context.django_request.method}) context.django_method = getattr(utils_relations.HTTP_METHOD, context.django_request.method) class CSRFProcessor(BaseViewProcessor): def preprocess(self, context): context.csrf = django_middleware.csrf.get_token(context.django_request) class PermissionProcessor(BaseViewProcessor): __slots__ = ('permission', 'context_name') ARG_PERMISSION = ProcessorArgument() ARG_CONTEXT_NAME = ProcessorArgument() def preprocess(self, context): setattr(context, self.context_name, context.django_request.user.has_perm(self.permission)) class AccessProcessor(BaseViewProcessor): __slots__ = ('error_code', 'error_message') ARG_ERROR_CODE = ProcessorArgument() ARG_ERROR_MESSAGE = ProcessorArgument() def check(self, context): raise NotImplementedError() def preprocess(self, context): if not self.check(context): raise ViewError(code=self.error_code, message=self.error_message) class FlaggedAccessProcessor(AccessProcessor): __slots__ = ('error_code', 'error_message') ARG_ERROR_CODE = ProcessorArgument() ARG_ERROR_MESSAGE = ProcessorArgument() ARG_ARGUMENT = ProcessorArgument() def extract(self, context): return getattr(context, self.argument) def validate(self, argument): return argument def check(self, context): return self.validate(self.extract(context)) class FormProcessor(BaseViewProcessor): __slots__ = ('error_message', 'form_class', 'context_name') ARG_FORM_CLASS = ProcessorArgument() ARG_ERROR_MESSAGE = ProcessorArgument() ARG_CONTEXT_NAME = ProcessorArgument(default='form') def preprocess(self, context): form = self.form_class(context.django_request.POST) if not form.is_valid(): raise ViewError(code='form_errors', message=form.errors) setattr(context, self.context_name, form) class ArgumentProcessor(BaseViewProcessor): __slots__ = ('error_message', 'get_name', 'post_name', 'url_name', 'context_name', 'default_value', 'in_list') ARG_CONTEXT_NAME = ProcessorArgument() ARG_ERROR_MESSAGE = ProcessorArgument() ARG_GET_NAME = ProcessorArgument(default=None) ARG_POST_NAME = ProcessorArgument(default=None) ARG_URL_NAME = ProcessorArgument(default=None) ARG_CONTEXT_NAME = ProcessorArgument() ARG_DEFAULT_VALUE = ProcessorArgument() ARG_IN_LIST = ProcessorArgument(default=False) def initialize(self): super(ArgumentProcessor, self).initialize() if sum((1 if self.get_name else 0, 1 if self.post_name else 0, 1 if self.url_name else 0)) != 1: raise exceptions.SingleNameMustBeSpecifiedError() def extract(self, context): if self.url_name: return context.django_url_argumens.get(self.url_name) if self.get_name: if self.in_list: return context.django_request.GET.getlist(self.get_name) else: return context.django_request.GET.get(self.get_name) if self.in_list: return context.django_request.POST.getlist(self.post_name) else: return context.django_request.POST.get(self.post_name) def parse(self, context, raw_value): return raw_value def _argument_name(self): if self.url_name: return self.url_name if self.get_name: return self.get_name if self.post_name: return self.post_name def raise_not_specified(self): raise ViewError(code='%s.not_specified' % self._argument_name(), message=self.error_message) def raise_wrong_format(self): raise ViewError(code='%s.wrong_format' % self._argument_name(), message=self.error_message) def raise_wrong_value(self): raise ViewError(code='%s.wrong_value' % self._argument_name(), message=self.error_message) def preprocess(self, context): raw_value = self.extract(context) if raw_value: value = self.parse(context, raw_value) elif self.default_value is NotImplemented: self.raise_not_specified() else: value = self.default_value setattr(context, self.context_name, value) class MapArgumentProcessor(ArgumentProcessor): __slots__ = ('mapping',) ARG_MAPPING = ProcessorArgument() def parse(self, context, raw_value): mapping = self.mapping if not isinstance(self.mapping, collections.Callable) else self.mapping() if raw_value not in mapping: self.raise_wrong_value() return mapping.get(raw_value) class IntArgumentProcessor(ArgumentProcessor): def parse(self, context, raw_value): try: return int(raw_value) except ValueError: self.raise_wrong_format() class IntsArgumentProcessor(ArgumentProcessor): def parse(self, context, raw_value): try: return [int(value.strip()) for value in raw_value.split(',')] except ValueError: self.raise_wrong_format() class RelationArgumentProcessor(ArgumentProcessor): __slots__ = ('relation', 'value_type') ARG_RELATION = ProcessorArgument() ARG_VALUE_TYPE = ProcessorArgument(default=int) def parse(self, context, raw_value): from rels import exceptions as rels_exceptions try: value = self.value_type(raw_value) except ValueError: self.raise_wrong_format() except TypeError: self.raise_wrong_format() try: return self.relation(value) except rels_exceptions.NotExternalValueError: self.raise_wrong_value() class DebugProcessor(BaseViewProcessor): def preprocess(self, context): context.debug = django_settings.DEBUG if not context.debug: raise ViewError(code='common.debug_required', message='Функционал доступен только в режиме отладки') class BaseResponse(object): __slots__ = ('http_status', 'http_mimetype', 'http_charset', 'content') def __init__(self, http_mimetype, http_status=utils_relations.HTTP_STATUS.OK, http_charset='utf-8', content=None): self.http_status = http_status self.http_mimetype = http_mimetype self.http_charset = http_charset self.content = content if content is not None else {} def complete(self, context): return django_http.HttpResponse(self.content, status=self.http_status.value, content_type='%s; charset=%s' % (self.http_mimetype, self.http_charset)) class Redirect(BaseResponse): __slots__ = ('target_url', 'permanent') def __init__(self, target_url, permanent=False, **kwargs): super(Redirect, self).__init__(http_mimetype=None, **kwargs) self.target_url = target_url self.permanent = permanent def complete(self, context): ResponseClass = django_http.HttpResponsePermanentRedirect if self.permanent else django_http.HttpResponseRedirect return ResponseClass(self.target_url) class Page(BaseResponse): __slots__ = ('template',) def __init__(self, template, http_mimetype='text/html', **kwargs): super(Page, self).__init__(http_mimetype=http_mimetype, **kwargs) self.template = template def complete(self, context): self.content['context'] = context self.content = utils_jinja2.render(self.template, context=self.content, request=context.django_request) return super(Page, self).complete(context) # TODO: refactor error/errors class PageError(Page): __slots__ = ('code', 'errors', 'context', 'info') def __init__(self, code, errors, context, info=None, **kwargs): if 'template' not in kwargs: if context.django_request.is_ajax(): kwargs['template'] = conf.settings.DIALOG_ERROR_TEMPLATE else: kwargs['template'] = conf.settings.PAGE_ERROR_TEMPLATE if isinstance(errors, str): error = errors else: error = list(errors.values())[0][0] if 'content' not in kwargs: kwargs['content'] = {} kwargs['content'].update({'error_code': code, 'error_message': error, 'error_info': info, 'context': context, 'resource': context.resource})# TODO: remove resource (added for compartibility with old version) super(PageError, self).__init__(**kwargs) self.code = code self.errors = error self.context = context self.info = info class Atom(BaseResponse): __slots__ = ('feed',) def __init__(self, feed, http_mimetype='application/atom+xml', **kwargs): super(Atom, self).__init__(http_mimetype=http_mimetype, **kwargs) self.feed = feed def complete(self, context): self.content = self.feed.writeString(self.http_charset) return super(Atom, self).complete(context) class Ajax(BaseResponse): def __init__(self, http_mimetype='application/json', **kwargs): super(Ajax, self).__init__(http_mimetype=http_mimetype, **kwargs) def wrap(self, content): return content def complete(self, context): self.content = s11n.to_json(self.wrap(self.content)) return super(Ajax, self).complete(context) class AjaxOk(Ajax): def wrap(self, content): return {'status': 'ok', 'data': content} # TODO: refactor error/errors class AjaxError(Ajax): __slots__ = ('code', 'errors', 'context', 'info') def __init__(self, code, errors, context, info=None, **kwargs): super(AjaxError, self).__init__(**kwargs) self.code = code self.errors = errors self.context = context self.info = info def wrap(self, context): data = {'status': 'error', 'code': self.code, 'data': self.info} if isinstance(self.errors, str): data['error'] = self.errors else: data['errors'] = self.errors return data class AjaxProcessing(Ajax): __slots__ = ('status_url',) def __init__(self, status_url, **kwargs): super(AjaxProcessing, self).__init__(**kwargs) self.status_url = status_url def wrap(self, context): return {'status': 'processing', 'status_url': self.status_url} class FakeResource(object): def __init__(self, context): self.request = context.django_request self.account = context.account self.csrf = django_decorators.csrf.get_token(context.django_request) class FakeResourceProcessor(BaseViewProcessor): def preprocess(self, context): context.resource = FakeResource(context) class PageNumberProcessor(ArgumentProcessor): CONTEXT_NAME = 'page' ERROR_MESSAGE = 'Неверный номер страницы' GET_NAME = 'page' DEFAULT_VALUE = 0 def parse(self, context, raw_value): try: return max(0, int(raw_value) - 1) except ValueError: self.raise_wrong_format() class TextFilterProcessor(ArgumentProcessor): CONTEXT_NAME = 'filter' ERROR_MESSAGE = 'Неверный текст для фильтра' GET_NAME = 'filter' DEFAULT_VALUE = None def parse(self, context, raw_value): return raw_value def mime_type_to_response_type(content_type): if content_type is None: return 'json' if any(tp in content_type for tp in ('application/xhtml+xml', 'text/html', 'text/plain', 'text/xml')): return 'html' if any(tp in content_type for tp in ('application/x-javascript',)): return 'js' return 'json'
30.18
144
0.62247
19,085
0.967015
0
0
587
0.029743
0
0
2,010
0.101844
9a90d892378e62b46598d590087d4afcc5ce7a6c
269
py
Python
NeoAnalysis_Py2.7/NeoAnalysis/__init__.py
Research-lab-KUMS/NeoAnalysis
32b508dfade3069b1ec5cc7664574b8d3f2d5f57
[ "MIT" ]
23
2017-09-04T13:20:38.000Z
2022-03-08T08:15:17.000Z
NeoAnalysis_Py2.7/NeoAnalysis/__init__.py
Research-lab-KUMS/NeoAnalysis
32b508dfade3069b1ec5cc7664574b8d3f2d5f57
[ "MIT" ]
4
2018-01-05T13:44:29.000Z
2021-09-30T17:08:15.000Z
NeoAnalysis_Py2.7/NeoAnalysis/__init__.py
neoanalysis/NeoAnalysis
c5f25b71e16997f3a05f70b1eead11f99a3b7e2b
[ "MIT" ]
5
2017-11-26T19:40:46.000Z
2021-03-11T17:25:23.000Z
__version__ = '0.10.0' from NeoAnalysis.spikedetection import SpikeDetection from NeoAnalysis.spikesorting import SpikeSorting from NeoAnalysis.analogfilter import AnalogFilter from NeoAnalysis.graphics import Graphics from NeoAnalysis.popuanalysis import PopuAnalysis
38.428571
53
0.877323
0
0
0
0
0
0
0
0
8
0.02974
9a9199cd090e7135e6e6634b2297f724636eb3bf
5,021
py
Python
people.py
sabek/Guess-who
91c3f527d258ec81370e3f49fa9b8d23407af3ce
[ "MIT" ]
null
null
null
people.py
sabek/Guess-who
91c3f527d258ec81370e3f49fa9b8d23407af3ce
[ "MIT" ]
null
null
null
people.py
sabek/Guess-who
91c3f527d258ec81370e3f49fa9b8d23407af3ce
[ "MIT" ]
null
null
null
class HiddenPeople(): """Class for holding information on people""" def __init__(self): self.people = { 'Paul': {'bald': False, 'beard': False, 'eyes': 'brown', 'gender': 'man', 'hair': 'white', 'hat': False, 'glasses': True, 'moustache': False}, 'Richard': {'bald': True, 'beard': True, 'eyes': 'brown', 'gender': 'man', 'hair': 'brown', 'hat': False, 'glasses': False, 'moustache': True}, 'George': {'bald': False, 'beard': False, 'eyes': 'brown', 'gender': 'boy', 'hair': 'white', 'hat': True, 'glasses': False, 'moustache': False}, 'Frans': {'bald': False, 'beard': False, 'eyes': 'brown', 'gender': 'boy', 'hair': 'red', 'hat': False, 'glasses': False, 'moustache': False}, 'Bernard': {'bald': False, 'beard': False, 'eyes': 'brown', 'gender': 'boy', 'hair': 'brown', 'hat': True, 'glasses': True, 'moustache': False}, 'Anne': {'bald': False, 'beard': False, 'eyes': 'brown', 'gender': 'girl', 'hair': 'black', 'hat': False, 'glasses': False, 'moustache': False}, 'Joe': {'bald': False, 'beard': False, 'eyes': 'brown', 'gender': 'boy', 'hair': 'blonde', 'hat': False, 'glasses': True, 'moustache': False}, 'Peter': {'bald': False, 'beard': False, 'eyes': 'blue', 'gender': 'boy', 'hair': 'white', 'hat': False, 'glasses': False, 'moustache': False}, 'Tom': {'bald': True, 'beard': False, 'eyes': 'blue', 'gender': 'boy', 'hair': 'black', 'hat': False, 'glasses': True, 'moustache': False}, 'Susan': {'bald': False, 'beard': False, 'eyes': 'brown', 'gender': 'girl', 'hair': 'blonde', 'hat': False, 'glasses': False, 'moustache': False}, 'Sam': {'bald': True, 'beard': False, 'eyes': 'brown', 'gender': 'boy', 'hair': 'white', 'hat': False, 'glasses': True, 'moustache': False}, 'Maria': {'bald': False, 'beard': False, 'eyes': 'brown', 'gender': 'girl', 'hair': 'brown', 'hat': True, 'glasses': False, 'moustache': False}, 'Robert': {'bald': False, 'beard': False, 'eyes': 'blue', 'gender': 'boy', 'hair': 'brown', 'hat': False, 'glasses': False, 'moustache': False}, 'Alex': {'bald': False, 'beard': False, 'eyes': 'brown', 'gender': 'boy', 'hair': 'black', 'hat': False, 'glasses': False, 'moustache': True}, 'Charles': {'bald': False, 'beard': False, 'eyes': 'brown', 'gender': 'boy', 'hair': 'blonde', 'hat': False, 'glasses': False, 'moustache': True}, 'Philip': {'bald': False, 'beard': True, 'eyes': 'brown', 'gender': 'boy', 'hair': 'black', 'hat': False, 'glasses': False, 'moustache': False}, 'David': {'bald': False, 'beard': True, 'eyes': 'brown', 'gender': 'boy', 'hair': 'blonde', 'hat': False, 'glasses': False, 'moustache': False}, 'Eric': {'bald': False, 'beard': False, 'eyes': 'brown', 'gender': 'boy', 'hair': 'blonde', 'hat': True, 'glasses': False, 'moustache': False}, 'Bill': {'bald': True, 'beard': True, 'eyes': 'brown', 'gender': 'boy', 'hair': 'red', 'hat': False, 'glasses': False, 'moustache': False}, 'Alfred': {'bald': False, 'beard': False, 'eyes': 'blue', 'gender': 'boy', 'hair': 'red', 'hat': False, 'glasses': False, 'moustache': True}, 'Anita': {'bald': False, 'beard': False, 'eyes': 'blue', 'gender': 'girl', 'hair': 'white', 'hat': False, 'glasses': False, 'moustache': False}, 'Max': {'bald': False, 'beard': False, 'eyes': 'brown', 'gender': 'boy', 'hair': 'black', 'hat': False, 'glasses': False, 'moustache': True}, 'Herman': {'bald': True, 'beard': False, 'eyes': 'brown', 'gender': 'boy', 'hair': 'red', 'hat': False, 'glasses': False, 'moustache': False}, 'Claire': {'bald': False, 'beard': False, 'eyes': 'brown', 'gender': 'girl', 'hair': 'red', 'hat': True, 'glasses': True, 'moustache': False}} def removeperson(self, attribute): """Remove a person from listing of people to choose""" removelist = [] for person in self.people: if self.people[person][attribute]: removelist.append(person) for person in removelist: del self.people[person] def printpeople(self): for person in self.people: print(person + ": " + str(self.people[person]))
74.940299
120
0.466441
5,020
0.999801
0
0
0
0
0
0
2,113
0.420833
9a91a0bb1c2222107ec4d2fbb68724bb0b797301
247
py
Python
paperplane/backends/click/choice.py
abhilash1in/paperplane
1dfda182dc8a70fe08fa2284ea63b434246c394b
[ "MIT" ]
null
null
null
paperplane/backends/click/choice.py
abhilash1in/paperplane
1dfda182dc8a70fe08fa2284ea63b434246c394b
[ "MIT" ]
null
null
null
paperplane/backends/click/choice.py
abhilash1in/paperplane
1dfda182dc8a70fe08fa2284ea63b434246c394b
[ "MIT" ]
null
null
null
import click from typing import Any, Optional from paperplane.backends.click import _prompt def run(prompt: str, choices: list, default: Optional[Any] = None): return _prompt(text=prompt, default=default, type=click.Choice(choices=choices))
30.875
84
0.777328
0
0
0
0
0
0
0
0
0
0
9a95474d7bed8dc0c9bdace087bfb79423d63386
1,012
py
Python
lib/python/treadmill/api/nodeinfo.py
bretttegart/treadmill
812109e31c503a6eddaee2d3f2e1faf2833b6aaf
[ "Apache-2.0" ]
2
2017-10-31T18:48:20.000Z
2018-03-04T20:35:20.000Z
lib/python/treadmill/api/nodeinfo.py
bretttegart/treadmill
812109e31c503a6eddaee2d3f2e1faf2833b6aaf
[ "Apache-2.0" ]
null
null
null
lib/python/treadmill/api/nodeinfo.py
bretttegart/treadmill
812109e31c503a6eddaee2d3f2e1faf2833b6aaf
[ "Apache-2.0" ]
null
null
null
"""Implementation of allocation API. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import logging from treadmill import discovery from treadmill import context _LOGGER = logging.getLogger(__name__) class API(object): """Treadmill Local REST api.""" def __init__(self): def _get(hostname): """Get hostname nodeinfo endpoint info.""" _LOGGER.info('Redirect: %s', hostname) discovery_iter = discovery.iterator( context.GLOBAL.zk.conn, 'root.%s' % hostname, 'nodeinfo', False ) for (_app, hostport) in discovery_iter: if not hostport: continue _LOGGER.info('Found: %s - %s', hostname, hostport) return hostport _LOGGER.info('nodeinfo not found: %s', hostname) return None self.get = _get
24.095238
66
0.609684
699
0.690711
0
0
0
0
0
0
186
0.183794
9a95d81d2c4081cc80031302b6a6bfe2482c9c94
167
py
Python
new/views.py
Sravan996/django
3a982382d5cfe9bfb498534f1effcf58a3771539
[ "MIT" ]
null
null
null
new/views.py
Sravan996/django
3a982382d5cfe9bfb498534f1effcf58a3771539
[ "MIT" ]
null
null
null
new/views.py
Sravan996/django
3a982382d5cfe9bfb498534f1effcf58a3771539
[ "MIT" ]
null
null
null
from django.shortcuts import render from django.shortcuts import HttpResponse # Create your views here. def index(request): return HttpResponse('Hello World</en>')
20.875
41
0.790419
0
0
0
0
0
0
0
0
43
0.257485
9a969dcb4bdc1a8eee56b110c60c1611472a3520
1,834
py
Python
bob-ross/cluster-paintings.py
h4ckfu/data
bdc02fd5051dfb31e42f8e078832ceead92f9958
[ "CC-BY-4.0" ]
16,124
2015-01-01T06:18:12.000Z
2022-03-31T00:46:52.000Z
bob-ross/cluster-paintings.py
h4ckfu/data
bdc02fd5051dfb31e42f8e078832ceead92f9958
[ "CC-BY-4.0" ]
179
2015-01-07T10:19:57.000Z
2022-02-21T21:19:14.000Z
bob-ross/cluster-paintings.py
h4ckfu/data
bdc02fd5051dfb31e42f8e078832ceead92f9958
[ "CC-BY-4.0" ]
12,163
2015-01-03T14:23:36.000Z
2022-03-31T10:10:23.000Z
""" Clusters Bob Ross paintings by features. By Walter Hickey <walter.hickey@fivethirtyeight.com> See http://fivethirtyeight.com/features/a-statistical-analysis-of-the-work-of-bob-ross/ """ import numpy as np from scipy.cluster.vq import vq, kmeans, whiten import math import csv def main(): # load data into vectors of 1s and 0s for each tag with open('elements-by-episode.csv','r') as csvfile: reader = csv.reader(csvfile) reader.next() # skip header data = [] for row in reader: data.append(map(lambda x: int(x), row[2:])) # exclude EPISODE and TITLE columns # convert to numpy matrix matrix = np.array(data) # remove colums that have been tagged less than 5 times columns_to_remove = [] for col in range(np.shape(matrix)[1]): if sum(matrix[:,col]) <= 5: columns_to_remove.append(col) matrix = np.delete(matrix, columns_to_remove, axis=1) # normalize according to stddev whitened = whiten(matrix) output = kmeans(whitened, 10) print "episode", "distance", "cluster" # determine distance between each of 403 vectors and each centroid, find closest neighbor for i, v in enumerate(whitened): # distance between centroid 0 and feature vector distance = math.sqrt(sum((v - output[0][0]) ** 2)) # group is the centroid it is closest to so far, set initally to centroid 0 group = 0 closest_match = (distance, group) # test the vector i against the 10 centroids, find nearest neighbor for x in range (0, 10): dist_x = math.sqrt(sum((v - output[0][x]) ** 2)) if dist_x < closest_match[0]: closest_match = (dist_x, x) print i+1, closest_match[0], closest_match[1] if __name__ == "__main__": main()
31.084746
93
0.640676
0
0
0
0
0
0
0
0
745
0.406216
9a96b491ff08bc06ac888649b8beb70e3e05070b
880
py
Python
corvette/__init__.py
philipkiely/corvette
71632f9ed9d628c207c79f6f1b2ee98d911657b7
[ "MIT" ]
null
null
null
corvette/__init__.py
philipkiely/corvette
71632f9ed9d628c207c79f6f1b2ee98d911657b7
[ "MIT" ]
null
null
null
corvette/__init__.py
philipkiely/corvette
71632f9ed9d628c207c79f6f1b2ee98d911657b7
[ "MIT" ]
null
null
null
import os import sys import json from corvette.autoindex import autoindex def main(): if len(sys.argv) == 2: conf_path = sys.argv[1] else: print("Usage: python -m corvette path/to/corvetteconf.json") return dirname = os.path.dirname(__file__) # First load default conf default_path = os.path.join(dirname, "conf.json") default_file = open(default_path, "r") conf = json.loads(default_file.read()) default_file.close() # Then load user conf conf_file = open(conf_path, "r") user_conf = json.loads(conf_file.read()) conf_file.close() # Override default conf with user conf for key in conf.keys(): if key in user_conf: conf[key] = user_conf[key] if conf["template_dir"] == "False": conf["template_dir"] = os.path.join(dirname, "theme/templates") autoindex(conf)
30.344828
71
0.643182
0
0
0
0
0
0
0
0
206
0.234091
9a970d49581e1f0dbf4db3373345dd1070a85ab1
1,965
py
Python
main.py
theoboldt/pitemp
366f2d1459144fa7f5e3e5526ee0a4e334f52d37
[ "Apache-2.0" ]
null
null
null
main.py
theoboldt/pitemp
366f2d1459144fa7f5e3e5526ee0a4e334f52d37
[ "Apache-2.0" ]
null
null
null
main.py
theoboldt/pitemp
366f2d1459144fa7f5e3e5526ee0a4e334f52d37
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/python import sensor import lcd import csv import time import os import datetime import sys import re import circular_buffer lcd.init() last_time = datetime.datetime.now() last_minute = last_time.minute probe_minute_01 = circular_buffer.CircularBuffer(size=30) probe_minute_15 = circular_buffer.CircularBuffer(size=15) probes_minute_30 = circular_buffer.CircularBuffer(size=30) probes_minute_60 = circular_buffer.CircularBuffer(size=60) # initialize buffers current_temperature = sensor.read() probe_minute_01.append(current_temperature) probe_minute_15.append(current_temperature) probes_minute_30.append(current_temperature) probes_minute_60.append(current_temperature) while True: try: current_time = datetime.datetime.now() current_minute = current_time.minute current_temperature = sensor.read() if current_temperature == 9999: lcd.top("Temperature") lcd.bottom("Failed to read") lcd.cleanup() sys.exit(0) probe_minute_01.append(current_temperature) lcd.top("{:2.1f}".format(current_temperature) + chr(223) + "C " + current_time.strftime("%H:%M:%S")) if last_minute != current_minute: lcd.display_init() probe_minute_15.append(current_temperature) probes_minute_30.append(current_temperature) probes_minute_60.append(current_temperature) csv.append(current_time.strftime("%s") + ";" + str(current_time) + ";" + "{:2.1f}".format( current_temperature).replace('.', ',') + "\n") lcd.bottom("{:2.1f}".format(probes_minute_60.average) + chr(223) + " " + "{:2.1f}".format( probes_minute_30.average) + chr(223) + " " + "{:2.1f}".format(probe_minute_15.average) + chr(223)) time.sleep(2) last_minute = current_minute last_time = current_time except KeyboardInterrupt: lcd.cleanup() sys.exit(0)
30.230769
110
0.679898
0
0
0
0
0
0
0
0
152
0.077354
9a9716f606a1775600dbcfac690fb2f212514d33
9,988
py
Python
package/github-endpoints.py
wahyu9kdl/wahyu9kdl.github.io
c7c8ee1c3e7a2eb072467cb43e979ef4fc76d6fa
[ "MIT" ]
2
2021-12-05T22:40:52.000Z
2022-01-17T08:48:13.000Z
package/github-endpoints.py
wahyu9kdl/wahyu9kdl.github.io
c7c8ee1c3e7a2eb072467cb43e979ef4fc76d6fa
[ "MIT" ]
1
2022-01-12T13:58:28.000Z
2022-01-12T13:58:28.000Z
package/github-endpoints.py
wahyu9kdl/wahyu9kdl.github.io
c7c8ee1c3e7a2eb072467cb43e979ef4fc76d6fa
[ "MIT" ]
1
2022-01-12T19:20:26.000Z
2022-01-12T19:20:26.000Z
#!/usr/bin/python3 # I don't believe in license. # You can do whatever you want with this program. import os import sys import re import time import requests import random import argparse from urllib.parse import urlparse from functools import partial from colored import fg, bg, attr from multiprocessing.dummy import Pool TOKENS_FILE = os.path.dirname(os.path.realpath(__file__))+'/.tokens' MIN_LENGTH = 5 _url_chars = '[a-zA-Z0-9\-\.\?\#\$&@%=_:/\]\[]' _not_url_chars = '[^a-zA-Z0-9\-\.\?\#\$&@%=_:/\]\[]' t_endpoints = [] t_exclude = [ r'^http://$', r'^https://$', r'^javascript:$', r'^tel:$', r'^mailto:$', r'^text/javascript$', r'^application/json$', r'^application/javascript$', r'^text/plain$', r'^text/html$', r'^text/x-python$', r'^text/css$', r'^image/png$', r'^image/jpeg$', r'^image/x-icon$', r'^img/favicon.ico$', r'^application/x-www-form-urlencoded$', r'/Users/[0-9a-zA-Z\-\_]/Desktop', r'www.w3.org', r'schemas.android.com', r'www.apple.com', # r'^#', # r'^\?', # r'^javascript:', # r'^mailto:', ] t_regexp = [ r'[\'"\(].*(http[s]?://'+_url_chars+'*?)[\'"\)]', r'[\'"\(](http[s]?://'+_url_chars+'+)', r'[\'"\(]('+_url_chars+'+\.sdirect'+_url_chars+'*)', r'[\'"\(]('+_url_chars+'+\.htm'+_url_chars+'*)', r'[\'"\(]('+_url_chars+'+\.php'+_url_chars+'*)', r'[\'"\(]('+_url_chars+'+\.asp'+_url_chars+'*)', r'[\'"\(]('+_url_chars+'+\.js'+_url_chars+'*)', r'[\'"\(]('+_url_chars+'+\.xml'+_url_chars+'*)', r'[\'"\(]('+_url_chars+'+\.ini'+_url_chars+'*)', r'[\'"\(]('+_url_chars+'+\.conf'+_url_chars+'*)', r'[\'"\(]('+_url_chars+'+\.cfm'+_url_chars+'*)', r'href\s*[.=]\s*[\'"]('+_url_chars+'+)', r'src\s*[.=]\s*[\'"]('+_url_chars+'+)', r'url\s*[:=]\s*[\'"]('+_url_chars+'+)', r'urlRoot\s*[:=]\s*[\'"]('+_url_chars+'+)', r'endpoint[s]\s*[:=]\s*[\'"]('+_url_chars+'+)', r'script[s]\s*[:=]\s*[\'"]('+_url_chars+'+)', r'\.ajax\s*\(\s*[\'"]('+_url_chars+'+)', r'\.get\s*\(\s*[\'"]('+_url_chars+'+)', r'\.post\s*\(\s*[\'"]('+_url_chars+'+)', r'\.load\s*\(\s*[\'"]('+_url_chars+'+)', ### a bit noisy # r'[\'"](' + _url_chars + '+/' + _url_chars + '+)?[\'"]', # r'content\s*[.=]\s*[\'"]('+_url_chars+'+)', ] def githubApiSearchCode( token, search, page, sort, order ): headers = { "Authorization":"token "+token } url = 'https://api.github.com/search/code?per_page=100&s=' + sort + '&type=Code&o=' + order + '&q=' + search + '&page=' + str(page) # print(">>> "+url) try: r = requests.get( url, headers=headers, timeout=5 ) json = r.json() # print(r.json) # print(r.text) return json except Exception as e: print( "%s[-] error occurred: %s%s" % (fg('red'),e,attr(0)) ) return False def getRawUrl( result ): raw_url = result['html_url'] raw_url = raw_url.replace( 'https://github.com/', 'https://raw.githubusercontent.com/' ) raw_url = raw_url.replace( '/blob/', '/' ) return raw_url def readCode( regexp, confirm, display_source, display_relative, display_alldomains, result ): time.sleep( random.random() ) url = getRawUrl( result ) if url in t_history_urls: return str = '' t_local_endpoints = [] t_history_urls.append( url ) code = doGetCode( url ) # print( code ) # print( regexp ) # print( confirm ) # print( display_source ) # print( display_relative ) # print( display_alldomains ) if code: if display_source: str = "\n%s>>> %s%s\n\n" % (fg('yellow'),result['html_url'],attr(0)) matches = re.findall( regexp, code, re.IGNORECASE ) if matches: # domain found in the code for r in t_regexp: # looking for endpoints edpt = re.findall( r, code, re.IGNORECASE ) if edpt: # endpoints found for endpoint in edpt: endpoint = endpoint.strip() if len(endpoint) >= MIN_LENGTH: # sys.stdout.write("%s\n" % endpoint) # continue goodbye = False for exclude in t_exclude: if re.match(exclude,endpoint,re.IGNORECASE): goodbye = True break if goodbye: continue if endpoint.lower().startswith('http'): is_relative = False else: is_relative = True if is_relative and not display_relative: continue if endpoint in t_local_endpoints: continue # ??? # if not display_source and endpoint in t_endpoints: # continue if not display_alldomains and not is_relative: try: t_url_parse = urlparse( endpoint ) t_host_parse = tldextract.extract( t_url_parse.netloc ) domain = t_host_parse.domain # print(domain) sss = re.findall( regexp, t_url_parse.netloc, re.IGNORECASE ) if not sss: continue except Exception as e: sys.stdout.write( "%s[-] error occurred: %s%s\n" % (fg('red'),e,attr(0)) ) t_endpoints.append( endpoint ) t_local_endpoints.append( endpoint ) str = str + ("%s\n" % endpoint) # if display_source: # str = str + ("%s\n" % endpoint) # else: # sys.stdout.write( "%s\n" % endpoint ) # if display_source and len(t_local_endpoints): if len(t_local_endpoints): sys.stdout.write( str ) def doGetCode( url ): try: r = requests.get( url, timeout=5 ) except Exception as e: sys.stdout.write( "%s[-] error occurred: %s%s\n" % (fg('red'),e,attr(0)) ) return False return r.text parser = argparse.ArgumentParser() parser.add_argument( "-t","--token",help="your github token (required)" ) parser.add_argument( "-d","--domain",help="domain you are looking for (required)" ) parser.add_argument( "-e","--extend",help="also look for <dummy>example.com", action="store_true" ) parser.add_argument( "-a","--all",help="displays urls of all other domains", action="store_true" ) parser.add_argument( "-r","--relative",help="also displays relative urls", action="store_true" ) parser.add_argument( "-s","--source",help="display urls where endpoints are found", action="store_true" ) parser.add_argument( "-v","--verbose",help="verbose mode, for debugging purpose", action="store_true" ) parser.parse_args() args = parser.parse_args() t_tokens = [] if args.token: t_tokens = args.token.split(',') else: if os.path.isfile(TOKENS_FILE): fp = open(TOKENS_FILE,'r') t_tokens = fp.read().split("\n") fp.close() if not len(t_tokens): parser.error( 'auth token is missing' ) if args.source: _source = True else: _source = False if args.domain: _domain = args.domain else: parser.error( 'domain is missing' ) if args.relative: _relative = True else: _relative = False if args.all: _alldomains = True else: _alldomains = False t_sort_order = [ { 'sort':'indexed', 'order':'desc', }, { 'sort':'indexed', 'order':'asc', }, { 'sort':'', 'order':'desc', } ] t_history = [] t_history_urls = [] _search = '"' + _domain + '"' ### this is a test, looks like we got more result that way import tldextract t_host_parse = tldextract.extract( _domain ) if args.extend: # which one is _search = '"' + t_host_parse.domain + '"' else: # the most effective ? _search = '"' + t_host_parse.domain + '.' + t_host_parse.suffix + '"' # or simply ? # _search = '"' + _domain + '"' # print(_search) # exit() ### if args.extend: _regexp = r'(([0-9a-z_\-\.]+\.)?([0-9a-z_\-]+)?'+t_host_parse.domain+'([0-9a-z_\-\.]+)?\.[a-z]{1,5})' _confirm = t_host_parse.domain else: _regexp = r'((([0-9a-z_\-\.]+)\.)?' + _domain.replace('.','\.')+')' _confirm = _domain if args.verbose: print( "Search: %s" % _search ) print( "Regexp: %s" % _regexp) print( "Confirm: %s" % _confirm) print( "Relative urls: %s" % _relative) print( "All domains: %s" % _alldomains) for so in t_sort_order: page = 1 if args.verbose: print( '\n----- %s %s\n' % (so['sort'],so['order']) ) while True: if args.verbose: print("page %d" % page) time.sleep( random.random() ) token = random.choice( t_tokens ) t_json = githubApiSearchCode( token, _search, page, so['sort'], so['order'] ) # print(t_json) if not t_json or 'documentation_url' in t_json: if args.verbose: print(t_json) t_tokens.remove(token) if len(t_tokens) == 0: exit() continue page = page + 1 if 'items' in t_json and len(t_json['items']): pool = Pool( 30 ) pool.map( partial(readCode,_regexp,_confirm,_source,_relative,_alldomains), t_json['items'] ) pool.close() pool.join() else: break exit()
31.507886
135
0.505406
0
0
0
0
0
0
0
0
3,143
0.314678
9a983eb032aad5191f1e045e13d058aec5f59848
7,952
py
Python
information111/info/user/views.py
SNxiaobei/text
637018ff89d992c2ed23f5c90fa2010023bc2ff3
[ "MIT" ]
null
null
null
information111/info/user/views.py
SNxiaobei/text
637018ff89d992c2ed23f5c90fa2010023bc2ff3
[ "MIT" ]
null
null
null
information111/info/user/views.py
SNxiaobei/text
637018ff89d992c2ed23f5c90fa2010023bc2ff3
[ "MIT" ]
null
null
null
from flask import abort from flask import current_app from flask import g from flask import request from flask import session from info import constants from info import db from info.models import Category, News, User from info.utils.response_code import RET from . import profile_blue from flask import render_template,redirect,jsonify from info.utils.common import user_login_data from info.utils.image_storage import storage """ index.views:只放置首页的业务逻辑 """ """其他用户新闻列表""" @profile_blue.route("/other_news_list") def other_news_list(): # 获取页数 try: page = int(request.args.get("p", 1)) except Exception as e: current_app.logger.error(e) page = 1 # 获取id user_id = request.args.get("user_id") # 通过id获取用户 user = User.query.get(user_id) paginate = News.query.filter(News.user_id == user.id).paginate(page, 10, False) # 获取当前页的数据 items = paginate.items # 获取当前页 current_page = paginate.page # print(current_page) # 获取总的页数 total_page = paginate.pages news_li = [] for news in items: news_li.append(news.to_review_dict()) data = { "news_list": news_li, "current_page": current_page, "total_page": total_page } # return render_template("news/other.html", data=data) return jsonify(errno=RET.OK, errmsg="OK", data=data) """其他用户界面""" @profile_blue.route("/other_info") @user_login_data def other_info(): user = g.user # 获取其他用户id user_id = request.args.get("id") if not user_id: abort(404) # 通过id查询用户 other = User.query.get(user_id) # 判断当前登陆用户是否关注过该用户 is_followed = False if user: if other.followers.filter(User.id == user.id).count() > 0: is_followed = True data = { "user_info": user.to_dict() if user else None, "other_info": other.to_dict(), "is_followed": is_followed } return render_template("news/other.html", data=data) """我的关注""" @profile_blue.route("/user_follow") @user_login_data def user_follow(): user = g.user # 获取页数 try: page = int(request.args.get("p", 1)) except Exception as e: current_app.logger.error(e) page = 1 paginate = user.followed.paginate(page, constants.USER_FOLLOWED_MAX_COUNT, False) # 获取当前页数据 items = paginate.items # 获取当前页 current_page = paginate.page # 获取总页数 total_page = paginate.pages users = [] for user in items: users.append(user.to_dict()) data = { "users": users, "current_page": current_page, "total_page": total_page } return render_template("news/user_follow.html", data=data) @profile_blue.route("/news_list") @user_login_data def news_list(): try: page = int(request.args.get("p", 1)) except Exception as e: current_app.logger.error(e) page = 1 user = g.user paginate = News.query.filter(News.user_id == user.id).paginate(page, 2, False) items = paginate.items current_page = paginate.page totle_page = paginate.pages news_list = [] for item in items: news_list.append(item.to_review_dict()) data = { "current_page": current_page, "totle_page": totle_page, "news_list": news_list } return render_template("news/user_news_list.html", data=data) @profile_blue.route("/news_release", methods=["GET","POST"]) @user_login_data def news_release(): if request.method == "GET": # 首先获取到新闻分类,然后传递到模板页面,进行展示 category_list = Category.query.all() categorys = [] for category in category_list: categorys.append(category.to_dict()) # 删除列表当中0的元素 categorys.pop(0) data = { "categories": categorys } return render_template("news/user_news_release.html", data=data) # 获取到表单页码提交过来的数据, 获取的是用户发布的新闻数据 title = request.form.get("title") category_id = request.form.get("category_id") digest = request.form.get("digest") index_image = request.files.get("index_image") content = request.form.get("content") if not all([title, category_id, digest, index_image, content]): return jsonify(errno=RET.PARAMERR, errmsg="参数错误") user = g.user index_image = index_image.read() key = storage(index_image) # 用户发布完成之后, 我们需要把当前发布的新闻储存到数据库 news = News() news.title = title news.source = "个人来源" news.digest = digest news.content = content news.index_image_url = constants.QINIU_DOMIN_PREFIX+key news.category_id = category_id news.user_id = user.id # 当前的状态1表示正在审核中 news.status = 1 db.session.add(news) db.session.commit() return jsonify(errno=RET.OK, errmsg="发布成功") @profile_blue.route("/collection") @user_login_data def collection(): #  当前表示用户所有收藏的新闻,获取所有新闻涉及到分页,那么肯定是从第一页 开始 page = request.args.get("p", 1) try: page = int(page) except Exception as e: current_app.logger.error(e) page = 1 user = g.user # 获取到当前登录用户的所有的收藏的新闻列表 # 第一个参数表示页码 # 第二个参数表示当前每个页码一共有多少条数据 paginate = user.collection_news.paginate(page, 10, False) items = paginate.items current_page = paginate.page total_page = paginate.pages collections = [] for item in items: collections.append(item.to_dict()) data = { "collections" : collections, "current_page": current_page, "total_page": total_page } return render_template("news/user_collection.html", data = data) @profile_blue.route("/pass_info", methods=["GET", "POST"]) @user_login_data def pass_info(): if request.method == "GET": return render_template("news/user_pass_info.html") user = g.user old_password = request.json.get("old_password") new_password = request.json.get("new_password") if not all([old_password, new_password]): return jsonify(errno=RET.PARAMERR, errmsg="请输入密码") # 判断旧密码是否正确, 只有当旧密码正确,才能修改密码 if not user.check_password(old_password): return jsonify(errno=RET.PARAMERR, errmsg="旧密码错误") if old_password == new_password: return jsonify(errno=RET.PARAMERR, errmsg="新密码不能和旧密码相同") # 如果旧密码正确,那么直接更新到当前数据库里面 user.password = new_password db.session.commit() return jsonify(errno=RET.OK, errmsg="密码修改成功") @profile_blue.route("/pic_info",methods= ["GET","POST"]) @user_login_data def pic_info(): user = g.user if request.method == "GET": data = { "user_info": user.to_dict() if user else None } return render_template("news/user_pic_info.html", data=data) avatar = request.files.get("avatar").read() # 如果上传成功,那么就会返回一个url地址,或者叫做key # 如果想在浏览器里面浏览刚刚 上传的图片,那么必须通过 # 七牛的地址 + 刚刚返回的url # http: // oyucyko3w.bkt.clouddn.com / + url url = storage(avatar) user.avatar_url = url db.session.commit() return jsonify(errno = RET.OK,errmsg = "上传成功",data={"avatar_url": constants.QINIU_DOMIN_PREFIX + url}) @profile_blue.route("/base_info",methods = ["GET","POST"]) @user_login_data def base_info(): user = g.user if request.method == "GET": data = { "user_info": user.to_dict() if user else None } return render_template("news/user_base_info.html",data = data) nick_name = request.json.get("nick_name") signature = request.json.get("signature") gender = request.json.get("gender") user.nick_name = nick_name user.signature = signature user.gender = gender # 更新数据库 db.session.commit() # 更新session里面的数据 session["nick_name"] = user.nick_name return jsonify(errno = RET.OK,errmsg = "修改成功") @profile_blue.route("/info") @user_login_data def info(): user = g.user if not user: # 重新调转到首页 return redirect("/") data = { "user_info": user.to_dict() if user else None } return render_template("news/user.html",data = data)
26.774411
106
0.649774
0
0
0
0
8,297
0.934452
0
0
2,466
0.277734
9a9a15482e95aa7f0388513fb55229cb50c955bb
962
py
Python
code/magicsquares/mgsq/three_by_three.py
gerritjvv/blog
26dbba7b38ed7aae63467720fcac2d95da1a0d7f
[ "MIT" ]
null
null
null
code/magicsquares/mgsq/three_by_three.py
gerritjvv/blog
26dbba7b38ed7aae63467720fcac2d95da1a0d7f
[ "MIT" ]
null
null
null
code/magicsquares/mgsq/three_by_three.py
gerritjvv/blog
26dbba7b38ed7aae63467720fcac2d95da1a0d7f
[ "MIT" ]
null
null
null
""" Solves a 3x3 square programmatically. It is not meant to be a full blown solution for magic squares, but rather a writeup of my thoughts on how it can be solved. """ import statistics def make_pairs(I, mid): """ We take pairs as [ [9, 1], [8, 2], [7, 3], [6, 4]] :param I: :param mid: :return: """ h = 0 t = len(I) - 1 pairs = [] while h < mid-1: pairs.append([I[h], I[t]]) h += 1 t -= 1 return pairs def squares(n): I = [x for x in range(1, n * n + 1)] cols = n mid = statistics.median(I) print(f"I: {I}") print(f"cols: {cols}") print(f"mid: {mid}") pairs = make_pairs(I, mid) print(f"pairs: {pairs}") # the pairs are taken from the left and rigt of mid # so that the length is mid-1 assert len(pairs) == mid-1, f"len(pairs) = {len(pairs)} mid-1 = {mid-1}" assert len(pairs[0]) == cols-1 if __name__ == '__main__': squares(3)
20.041667
83
0.546778
0
0
0
0
0
0
0
0
467
0.485447