hexsha
stringlengths
40
40
size
int64
5
2.06M
ext
stringclasses
10 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
3
248
max_stars_repo_name
stringlengths
5
125
max_stars_repo_head_hexsha
stringlengths
40
78
max_stars_repo_licenses
listlengths
1
10
max_stars_count
int64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
3
248
max_issues_repo_name
stringlengths
5
125
max_issues_repo_head_hexsha
stringlengths
40
78
max_issues_repo_licenses
listlengths
1
10
max_issues_count
int64
1
67k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
3
248
max_forks_repo_name
stringlengths
5
125
max_forks_repo_head_hexsha
stringlengths
40
78
max_forks_repo_licenses
listlengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
5
2.06M
avg_line_length
float64
1
1.02M
max_line_length
int64
3
1.03M
alphanum_fraction
float64
0
1
count_classes
int64
0
1.6M
score_classes
float64
0
1
count_generators
int64
0
651k
score_generators
float64
0
1
count_decorators
int64
0
990k
score_decorators
float64
0
1
count_async_functions
int64
0
235k
score_async_functions
float64
0
1
count_documentation
int64
0
1.04M
score_documentation
float64
0
1
360b21f79c3d1e633d2504158f0ac62516a639e7
666
py
Python
bot/welcome_leave.py
Thorappan7/loki
26bed530997907c93914d6ac42f4a2ad62dc365c
[ "BSD-3-Clause" ]
null
null
null
bot/welcome_leave.py
Thorappan7/loki
26bed530997907c93914d6ac42f4a2ad62dc365c
[ "BSD-3-Clause" ]
null
null
null
bot/welcome_leave.py
Thorappan7/loki
26bed530997907c93914d6ac42f4a2ad62dc365c
[ "BSD-3-Clause" ]
null
null
null
from pyrogram import Client as bot, filters, emoji MENTION = "[{}](tg://user?id={})" text1="hi{} {} welcome to Group Chat" group ="jangobotz" @bot.on_message(filters.chat(group) &filters.new_chat_members) async def welcome(bot, message): new_members = [u.mention for u in message.new_chat_members] TEXT2= text1.format(emoji.SPARKLES,",".join(new_members)) await message.reply_text(TEXT2) @bot.on_message(filters.command("leave") &filters.group) def leave(bot, message): bot.send_message(message.chat.id, "നമ്മളില്ലേ...അല്ലേലും സ്വപ്നത്തിലെ കട്ടുറുമ്പ് ആവൻ ഞാനില്ല ..ഭൂമി ഉരുണ്ടതല്ലെ എവിടേലും വെച്ച് കാണാം") bot.leave_chat(message.chat.id )
33.3
140
0.683183
0
0
0
0
687
0.82177
195
0.233254
346
0.413876
360b7ea47f3ce200b5ccf6c834ad2ed52c42e4f9
2,079
py
Python
script.deluge/resources/lib/basictypes/xmlgenerator.py
ogero/Deluge-Manager-XBMC
10c4f2a93ac1fffba01209444ba5e597036b968b
[ "MIT" ]
null
null
null
script.deluge/resources/lib/basictypes/xmlgenerator.py
ogero/Deluge-Manager-XBMC
10c4f2a93ac1fffba01209444ba5e597036b968b
[ "MIT" ]
null
null
null
script.deluge/resources/lib/basictypes/xmlgenerator.py
ogero/Deluge-Manager-XBMC
10c4f2a93ac1fffba01209444ba5e597036b968b
[ "MIT" ]
null
null
null
import locale from xml.sax import saxutils defaultEncoding = locale.getdefaultlocale()[-1] class Generator(saxutils.XMLGenerator): """Friendly generator for XML code""" def __init__(self, out=None, encoding="utf-8"): """Initialise the generator Just overrides the default encoding of the base-class """ super(self, Generator).__init__(file, encoding) def startElement(self, name, attributes=None): """Start a new element with given attributes""" super(Generator, self).startElement(name, self._fixAttributes(attributes)) def _fixAttributes(self, attributes=None): """Fix an attribute-set to be all unicode strings""" if attributes is None: attributes = {} for key, value in attributes.items(): if not isinstance(value, (str, unicode)): attributes[key] = unicode(value) elif isinstance(value, str): attributes[key] = value.decode(defaultEncoding) class Store(Generator): """Store a set of objects to an XML representation""" def __init__(self, *arguments, **named): """Initialise the store""" super(Store, self).__init__(*arguments, **named) self.classMapping = { } self.rClassMapping = { } self.todo = [] self.alreadyDone = {} def classToElementName(self, classObject): """Get the element name for a given object""" name = classObject.__name__ if self.rClassMapping.has_key(name): return self.rClassMapping.get(name) short = name.split('.')[-1] count = 2 while self.classMapping.has_key(short): short = short + str(count) count += 1 self.classMapping[short] = name self.rClassMapping[name] = short return short def encodeInAttributes(self, property, client): """Determine whether to encode this property as an element attribute""" def handleObject(self, object): """Produce code for a single object"""
32.484375
82
0.619529
1,981
0.952862
0
0
0
0
0
0
481
0.231361
360ce588463dab38c7d8f02e3de4947c05f44448
4,877
py
Python
scrape.py
darenr/contemporary-art--rss-scraper
92d66d18712e781e6e96980004a17f810568e652
[ "MIT" ]
null
null
null
scrape.py
darenr/contemporary-art--rss-scraper
92d66d18712e781e6e96980004a17f810568e652
[ "MIT" ]
null
null
null
scrape.py
darenr/contemporary-art--rss-scraper
92d66d18712e781e6e96980004a17f810568e652
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- import json import codecs import traceback import sys import requests import requests_cache import feedparser import collections from bs4 import BeautifulSoup from urlparse import urlparse, urljoin one_day = 60 * 60 * 24 requests_cache.install_cache( 'rss_cache', backend='sqlite', expire_after=one_day) headers = { 'User-Agent': 'Mozilla/5.0' } def get_entry_formatted(mime_type, value): if mime_type.lower() == 'text/html': soup = BeautifulSoup(value, 'html5lib') return ''.join(line.lstrip() for line in soup.getText().splitlines(True)) else: return value; def parse_content(mime_type, value): if mime_type.lower() == 'text/html': soup = BeautifulSoup(value, 'html5lib') # scoop up all the text result = { "text": ''.join(line.lstrip() for line in soup.getText().splitlines(True)) } if soup.find('img'): result['imgurl'] = soup.find('img')['src'] return result else: return value def get_entry_value(entry, key, feed): # # deals with differences between feeds # _key = feed['fields'][key] if 'fields' in feed and key in feed['fields'] else key if _key in entry: return entry[_key] else: print ' *', 'No', _key, "field in", entry return None def fetch_page_and_parse(feed, url): print ' *', 'parsing page link:', url page = requests.get(url, headers=headers) result = {} if page.status_code == 200: soup = BeautifulSoup(page.text, 'html5lib') if 'selector' in feed: for img in soup.select(feed['selector']): src = img['src'] if img.has_attr('src') else None if not src: src = img['srcset'] if img.has_attr('srcset') else None if src: if src.startswith('/'): result['imgurl'] = urljoin(feed['url'], src) else: result['imgurl'] = src break else: # look for og_image as the default if soup.find('meta', {"property": "og:image"}): if 'content' in soup.find('meta', {"property": "og:image"}): result['imgurl'] = soup.find('meta', {"property": "og:image"})['content'] return result def validate(record): mandatory_fields = ['imgurl', 'description', 'title', 'link'] for field in mandatory_fields: if not (field in record and record[field]): print ' *', 'Missing field', field return False return True def process_feed(feed): print ' *', 'processing', feed['url'] rawxml = requests.get(feed['url'], headers=headers) d = feedparser.parse(rawxml.text) rows = [] for entry in d['entries']: # standard fields: record = { "organization": feed['organization'], "link": get_entry_value(entry, 'link', feed), "title": get_entry_value(entry, 'title', feed), "date": get_entry_value(entry, 'published', feed), "user_tags": [], "description": "", "imgurl": "" } if 'category' in entry and entry['category']: record['user_tags'].append(get_entry_formatted("text/html", entry["category"])) if 'summary_detail' in entry and entry['summary_detail']: m = parse_content(entry["summary_detail"]["type"], entry["summary_detail"]["value"]) if 'text' in m: record["description"] = m['text'] if 'imgurl' in m: record["imgurl"] = m['imgurl'] if 'media_thumbnail' in entry and entry['media_thumbnail']: media_thumbnail = entry['media_thumbnail'][0] if 'url' in media_thumbnail: record["imgurl"] = media_thumbnail['url'] if 'tags' in entry and entry['tags']: for x in entry['tags']: if 'term' in x: record['user_tags'].append(x['term']) record['user_tags'] = list(set(record['user_tags'])) if not record['imgurl']: m = fetch_page_and_parse(feed, record['link']) for k in m: record[k] = m[k] if validate(record): # # any that fail to validate are just ignored # rows.append(record) return rows if __name__ == "__main__": with codecs.open('sources.json', 'rb', 'utf-8') as f: sources = json.loads(f.read().encode('utf-8')) try: ingest_rows = [] for feed in sources['feeds']: ingest_rows += process_feed(feed) print ' *', 'scraped %d records' % (len(ingest_rows)) except Exception, e: traceback.print_exc() print str(e)
29.029762
96
0.552184
0
0
0
0
0
0
0
0
1,145
0.234775
360e9e36a16342872103b6bba5218132e5fe10ac
3,102
py
Python
src/main/admin_api/endpoint/table_endpoint.py
lemilliard/kibo-db
2fa1832aa6a8457b428870491aaf64e399cca4d6
[ "MIT" ]
null
null
null
src/main/admin_api/endpoint/table_endpoint.py
lemilliard/kibo-db
2fa1832aa6a8457b428870491aaf64e399cca4d6
[ "MIT" ]
null
null
null
src/main/admin_api/endpoint/table_endpoint.py
lemilliard/kibo-db
2fa1832aa6a8457b428870491aaf64e399cca4d6
[ "MIT" ]
null
null
null
from src.main.common.model import endpoint class TableEndpoint(endpoint.Endpoint): @classmethod def do_get(cls, *args, **kwargs): from src.main.admin_api.utils.descriptor_utils import DescriptorUtils db_system_name = kwargs.get("db_system_name") tb_system_name = kwargs.get("tb_system_name", None) response = None if tb_system_name is None: descriptor_dicts = [] descriptors = DescriptorUtils.get_tbs_descriptor(db_system_name) for d in descriptors: descriptor_dicts.append(d.to_dict()) response = descriptor_dicts else: descriptor = DescriptorUtils.get_tb_descriptor_by_system_name(db_system_name, tb_system_name) if descriptor is not None: response = descriptor.to_dict() return response @classmethod def do_post(cls, *args, **kwargs): from src.main.admin_api.utils.descriptor_utils import DescriptorUtils from src.main.admin_api.model.table import Table db_system_name = kwargs.get("db_system_name") response = None body = TableEndpoint.get_body() name = body.get("name", None) if name is not None: descriptor = Table.from_json(body) if not DescriptorUtils.does_tb_descriptor_exist(db_system_name, descriptor): descriptor.save(db_system_name) response = descriptor.to_dict() return response @classmethod def do_put(cls, *args, **kwargs): from src.main.admin_api.utils.descriptor_utils import DescriptorUtils db_system_name = kwargs.get("db_system_name") tb_system_name = kwargs.get("tb_system_name") response = None body = TableEndpoint.get_body() if tb_system_name is not None: descriptor = DescriptorUtils.get_tb_descriptor_by_system_name(db_system_name, tb_system_name) if descriptor is not None: name = body.get("name", None) if name is not None: descriptor.set_name(name) description = body.get("description", None) if description is not None: descriptor.set_description(description) fields = body.get("fields", None) if fields is not None: descriptor.set_fields(fields) descriptor.save(db_system_name) response = descriptor.to_dict() return response @classmethod def do_delete(cls, *args, **kwargs): from src.main.admin_api.utils.descriptor_utils import DescriptorUtils db_system_name = kwargs.get("db_system_name") tb_system_name = kwargs.get("tb_system_name") response = None descriptor = DescriptorUtils.get_tb_descriptor_by_system_name(db_system_name, tb_system_name) if descriptor is not None: response = descriptor.delete(db_system_name) return response
40.815789
106
0.624758
3,052
0.983881
0
0
2,981
0.960993
0
0
145
0.046744
360ffa9621191899023f1d394dd125777d985f49
10,326
py
Python
tools/testbed_generator.py
vkolli/5.0_contrail-test
1793f169a94100400a1b2fafbad21daf5aa4d48a
[ "Apache-2.0" ]
null
null
null
tools/testbed_generator.py
vkolli/5.0_contrail-test
1793f169a94100400a1b2fafbad21daf5aa4d48a
[ "Apache-2.0" ]
1
2021-06-01T22:18:29.000Z
2021-06-01T22:18:29.000Z
tools/testbed_generator.py
lmadhusudhanan/contrail-test
bd39ff19da06a20bd79af8c25e3cde07375577cf
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/python import yaml import json import sys import re import argparse from distutils.version import LooseVersion from collections import defaultdict discovery_port = '5998' config_api_port = '8082' analytics_api_port = '8081' control_port = '8083' dns_port = '8092' agent_port = '8085' def get_neutron_username(params): plugin_cfgs = [v['yaml_additional_config'] for k, v in params.iteritems() if type(v) is dict and v.has_key('yaml_additional_config')] for plugin_cfg in plugin_cfgs: cfg = yaml.load(plugin_cfg) try: return cfg['ldap_service_users']['quantum_settings']['keystone']['admin_user'] except KeyError: try: return cfg['quantum_settings']['keystone']['admin_user'] except KeyError: pass def parse_astute_6(params): astute_dict = defaultdict(list) for node in params['nodes']: for host in astute_dict['hosts']: if host['host_name'] == node['name']: host_dict = host break else: host_dict = {'data_ip': node['private_address'], 'host_name': node['name'], 'mgmt_ip': node['internal_address'] } host_dict['role'] = set() if 'nova' in node['role'] or 'controller' in node['role']: host_dict['role'].add('openstack') if 'compute' in node['role']: host_dict['role'].add('compute') if 'contrail' in node['role']: host_dict['role'].add('contrail_config') host_dict['role'].add('contrail_control') host_dict['role'].add('contrail_db') if host_dict['role']: astute_dict['hosts'].append(host_dict) astute_dict['contrail_vip'] = params['management_vip'] return astute_dict def parse_astute_7(params): astute_dict = defaultdict(list) for name, node_dict in params['network_metadata']['nodes'].iteritems(): host_dict = {'data_ip': node_dict['network_roles']['neutron/mesh'], 'host_name': name, 'mgmt_ip': node_dict['network_roles']['management'] } host_dict['role'] = set() for role in node_dict['node_roles']: if 'nova' in role or 'controller' in role: host_dict['role'].add('openstack') if 'compute' in role: host_dict['role'].add('compute') if 'contrail-config' in role: host_dict['role'].add('contrail_config') if 'contrail-control' in role: host_dict['role'].add('contrail_control') if 'contrail-analytics' in role and not 'contrail-analytics-db' in role: host_dict['role'].add('contrail_analytics') if 'contrail-db' in role: host_dict['role'].add('contrail_db') if host_dict['role']: astute_dict['hosts'].append(host_dict) astute_dict['mgmt_vip'] = params['network_metadata']['vips']['management']['ipaddr'] astute_dict['contrail_vip'] = params['network_metadata']['vips']['contrail_priv']['ipaddr'] return astute_dict def parse_astute(filename, version): with open(filename, 'r') as fd: params = yaml.load(fd) if not version: version = '7.1' if params.has_key('network_metadata') else '6.1' if LooseVersion(version) < LooseVersion('7'): astute_dict = parse_astute_6(params) else: astute_dict = parse_astute_7(params) astute_dict['neutron_username'] = get_neutron_username(params) return astute_dict def parse_openrc(filename): openrc_dict = dict() openrc_values = dict() for line in open(filename, 'r').readlines(): obj = re.match("export\s+(\w+)\s*=\s*(.*)", line) if obj: val = obj.group(2).strip("'") val = val.strip('"') openrc_values.update({obj.group(1):val}) openrc_dict['admin_tenant'] = openrc_values.get('OS_TENANT_NAME', '') openrc_dict['admin_user'] = openrc_values.get('OS_USERNAME', '') openrc_dict['admin_password'] = openrc_values.get('OS_PASSWORD', '') openrc_dict['region_name'] = openrc_values.get('OS_REGION_NAME', '') url = openrc_values['OS_AUTH_URL'] obj = re.match("(?P<protocol>\w+)://(?P<ip>\S+):(?P<port>\d+)", url) if obj: openrc_dict['auth_ip'] = obj.group('ip') openrc_dict['auth_port'] = obj.group('port') openrc_dict['auth_protocol'] = obj.group('protocol') return openrc_dict def gen_host_name(hostname): special_char = ['-', ':', '.'] for char in special_char: hostname = hostname.replace(char, '_') return 'host_'+hostname def fixup_tb_string(tb_string, hosts): for host in hosts: tb_string = tb_string.replace('"'+host+'"', host) tb_string = tb_string.replace('null', 'None') tb_string = tb_string.replace('true', 'True') tb_string = tb_string.replace('false', 'False') return tb_string def create_testbed_file(pargs, astute_dict, openrc_dict): tb_filename = pargs.tb_filename host_string = set() hosts = list() env_roledefs = defaultdict(list) control_data = {} env_keystone = {} env_test = {} env_cfgm = {} env_password = {} login_name = pargs.login_username is_analytics_isolated = False for host_dict in astute_dict['hosts']: host_name = gen_host_name(host_dict['host_name']) hosts.append(host_name) host_string.add("%s = '%s@%s'" %(host_name, login_name, host_dict['mgmt_ip'])) env_roledefs['all'].append(host_name) env_password.update({host_name : 'c0ntrail123'}) control_data.update({host_name : {'ip': host_dict['data_ip'], 'gw': None}}) if 'openstack' in host_dict['role']: env_roledefs['openstack'].append(host_name) if 'contrail_config' in host_dict['role']: env_roledefs['cfgm'].append(host_name) env_roledefs['webui'].append(host_name) if 'contrail_analytics' in host_dict['role']: env_roledefs['collector'].append(host_name) is_analytics_isolated = True if 'contrail_control' in host_dict['role']: env_roledefs['control'].append(host_name) if 'contrail_db' in host_dict['role']: env_roledefs['database'].append(host_name) if 'compute' in host_dict['role']: env_roledefs['compute'].append(host_name) if not is_analytics_isolated: for host_dict in astute_dict['hosts']: if 'contrail_config' in host_dict['role']: host_name = gen_host_name(host_dict['host_name']) env_roledefs['collector'].append(host_name) for k,v in env_roledefs.iteritems(): env_roledefs[k] = list(set(v)) env_keystone.update({'keystone_ip': openrc_dict['auth_ip']}) env_keystone.update({'auth_protocol': openrc_dict['auth_protocol']}) env_keystone.update({'auth_port': openrc_dict['auth_port']}) env_keystone.update({'admin_user': openrc_dict['admin_user']}) env_keystone.update({'admin_password': openrc_dict['admin_password']}) env_keystone.update({'admin_tenant': openrc_dict['admin_tenant']}) env_keystone.update({'region_name': openrc_dict['region_name']}) env_keystone.update({'insecure': 'True'}) env_test.update({'discovery_ip': astute_dict['contrail_vip']}) env_test.update({'config_api_ip': astute_dict['contrail_vip']}) env_test.update({'analytics_api_ip': astute_dict['contrail_vip']}) env_test.update({'discovery_port': discovery_port}) env_test.update({'config_api_port': config_api_port}) env_test.update({'analytics_api_port': analytics_api_port}) env_test.update({'control_port': control_port}) env_test.update({'dns_port': dns_port}) env_test.update({'agent_port': agent_port}) env_test.update({'user_isolation': False}) env_test.update({'neutron_username': astute_dict['neutron_username']}) env_test.update({'availability_zone': pargs.availability_zone_name}) if pargs.use_ssl: env_cfgm.update({'auth_protocol': 'https'}) env_cfgm.update({'insecure': 'True'}) tb_list = list() tb_list.append("env.test = %s"%json.dumps(env_test, sort_keys=True, indent=4)) tb_list.append("env.keystone = %s"%json.dumps(env_keystone, sort_keys=True, indent=4)) tb_list.append("env.cfgm = %s"%json.dumps(env_cfgm, sort_keys=True, indent=4)) tb_list.append("control_data = %s"%json.dumps(control_data, sort_keys=True, indent=4)) tb_list.append("env.roledefs = %s"%json.dumps(env_roledefs, sort_keys=True, indent=4)) tb_list.append("env.openstack_admin_password = '%s'"% env_keystone['admin_password']) tb_list.append("env.passwords = %s"%json.dumps(env_password, sort_keys=True, indent=4)) replaced_tb_string = fixup_tb_string('\n'.join(tb_list), hosts) tb_list = ['from fabric.api import env'] tb_list.extend(sorted(host_string)) tb_list.append(replaced_tb_string) with open(tb_filename, 'w+') as fd: fd.write('\n'.join(tb_list)) def parse_cli(args): parser = argparse.ArgumentParser(description='testbed.py file generator for MOS env') parser.add_argument('--yaml_file', required=True, help='astute.yaml file path') parser.add_argument('--openrc_file', help='openrc file path') parser.add_argument('--mos_version', help='mos version in use, optional') parser.add_argument('--availability_zone_name', help='Name of the nova availability zone to use for test', default='nova') parser.add_argument('--login_username', help='Username to use to login to the hosts (default: root)', default='root') parser.add_argument('--tb_filename', default='testbed.py', help='Testbed output file name') parser.add_argument('--use_ssl', action='store_true', help='Use https communication with contrail-api service') return parser.parse_args(args) def main(args): pargs = parse_cli(args) astute_dict = parse_astute(pargs.yaml_file, pargs.mos_version) openrc_dict = parse_openrc(pargs.openrc_file) create_testbed_file(pargs, astute_dict, openrc_dict) if __name__ == "__main__": main(sys.argv[1:])
43.56962
126
0.643521
0
0
0
0
0
0
0
0
2,850
0.276002
3610620368663e7a20b5544000c84c6865a97120
88
py
Python
sum of digits using recursion.py
kingRovo/PythonCodingChalenge
b62938592df10ccafec9930b69c14c778e19ad37
[ "bzip2-1.0.6" ]
1
2021-08-02T16:52:55.000Z
2021-08-02T16:52:55.000Z
sum of digits using recursion.py
kingRovo/PythonCodingChalenge
b62938592df10ccafec9930b69c14c778e19ad37
[ "bzip2-1.0.6" ]
null
null
null
sum of digits using recursion.py
kingRovo/PythonCodingChalenge
b62938592df10ccafec9930b69c14c778e19ad37
[ "bzip2-1.0.6" ]
null
null
null
def rec_sum(n): if(n<=1): return n else: return(n+rec_sum(n-1))
14.666667
30
0.477273
0
0
0
0
0
0
0
0
0
0
36111dceb7e38307b2a633510d6f416394679b79
9,292
py
Python
visualization/POF/data/Base2DReader.py
alvaro-budria/body2hands
0eba438b4343604548120bdb03c7e1cb2b08bcd6
[ "BSD-3-Clause" ]
63
2021-05-14T02:55:16.000Z
2022-03-13T01:51:12.000Z
visualization/POF/data/Base2DReader.py
human2b/body2hands
8ab4b206dc397c3b326f2b4ec9448c84ee8801fe
[ "BSD-3-Clause" ]
9
2021-06-24T09:59:41.000Z
2021-12-31T08:15:20.000Z
visualization/POF/data/Base2DReader.py
human2b/body2hands
8ab4b206dc397c3b326f2b4ec9448c84ee8801fe
[ "BSD-3-Clause" ]
9
2021-05-17T03:33:28.000Z
2022-02-17T02:30:44.000Z
import tensorflow as tf from data.BaseReader import BaseReader import numpy as np class Base2DReader(BaseReader): # inherit from BaseReader, implement different 2D cropping (cropping from 2D) def __init__(self, objtype=0, shuffle=True, batch_size=1, crop_noise=False): super(Base2DReader, self).__init__(objtype, shuffle, batch_size, crop_noise) def get(self, withPAF=True, read_image=True, imw=1920, imh=1080): assert type(withPAF) == bool assert self.objtype in (0, 1) # produce data from slice_input_producer flow_list = tf.train.slice_input_producer(list(self.tensor_dict.values()), shuffle=self.shuffle) flow_dict = {key: flow_list[ik] for ik, key in enumerate(self.tensor_dict.keys())} # build data dictionary data_dict = {} data_dict['img_dir'] = flow_dict['img_dirs'] PAF_given = False if self.objtype == 0: body2d = flow_dict['body'] data_dict['body_valid'] = flow_dict['body_valid'] data_dict['keypoint_uv_origin'] = body2d if 'body_3d' in flow_dict: data_dict['keypoint_xyz_origin'] = flow_dict['body_3d'] data_dict['keypoint_xyz_local'] = flow_dict['body_3d'] PAF_given = True elif self.objtype == 1: cond_left = tf.reduce_any(tf.cast(flow_dict['left_hand_valid'], dtype=tf.bool)) # 0 for right hand, 1 for left hand hand2d = tf.cond(cond_left, lambda: flow_dict['left_hand'], lambda: flow_dict['right_hand']) # in world coordinate hand2d = tf.cast(hand2d, tf.float32) data_dict['keypoint_uv_origin'] = hand2d data_dict['left_hand_valid'] = flow_dict['left_hand_valid'] data_dict['right_hand_valid'] = flow_dict['right_hand_valid'] if 'left_hand_3d' in flow_dict and 'right_hand_3d' in flow_dict: hand3d = tf.cond(cond_left, lambda: flow_dict['left_hand_3d'], lambda: flow_dict['right_hand_3d']) data_dict['keypoint_xyz_origin'] = hand3d data_dict['keypoint_xyz_local'] = hand3d PAF_given = True # read image if read_image: img_file = tf.read_file(flow_dict['img_dirs']) image = tf.image.decode_image(img_file, channels=3) image = tf.image.pad_to_bounding_box(image, 0, 0, imh, imw) image.set_shape((imh, imw, 3)) image = tf.cast(image, tf.float32) / 255.0 - 0.5 data_dict['image'] = image if 'mask_dirs' in flow_dict: mask_file = tf.read_file(flow_dict['mask_dirs']) mask = tf.image.decode_image(mask_file, channels=3) mask = tf.image.pad_to_bounding_box(mask, 0, 0, imh, imw) mask.set_shape((imh, imw, 3)) mask = mask[:, :, 0] mask = tf.cast(mask, tf.float32) else: mask = tf.ones((imh, imw), dtype=tf.float32) if 'other_bbox' in flow_dict: ob = flow_dict['other_bbox'] Xindmap = tf.tile(tf.expand_dims(tf.range(imw, dtype=tf.int32), 0), [imh, 1]) Xindmap = tf.tile(tf.expand_dims(Xindmap, 2), [1, 1, 20]) Yindmap = tf.tile(tf.expand_dims(tf.range(imh, dtype=tf.int32), 1), [1, imw]) Yindmap = tf.tile(tf.expand_dims(Yindmap, 2), [1, 1, 20]) x_out = tf.logical_or(tf.less(Xindmap, ob[:, 0]), tf.greater_equal(Xindmap, ob[:, 2])) y_out = tf.logical_or(tf.less(Yindmap, ob[:, 1]), tf.greater_equal(Yindmap, ob[:, 3])) out = tf.cast(tf.logical_or(x_out, y_out), tf.float32) out = tf.reduce_min(out, axis=2) mask = tf.minimum(mask, out) data_dict['mask'] = mask if self.objtype in (0, 1): if self.objtype == 0: keypoints = body2d valid = flow_dict['body_valid'] elif self.objtype == 1: keypoints = hand2d body2d = hand2d valid = tf.cond(cond_left, lambda: flow_dict['left_hand_valid'], lambda: flow_dict['right_hand_valid']) data_dict['hand_valid'] = valid if PAF_given: body3d = hand3d crop_center2d, scale2d = self.calc_crop_scale2d(keypoints, valid) data_dict['crop_center2d'] = crop_center2d data_dict['scale2d'] = scale2d if self.rotate_augmentation: print('using rotation augmentation') rotate_angle = tf.random_uniform([], minval=-np.pi * 40 / 180, maxval=np.pi * 40 / 180) R2 = tf.reshape(tf.stack([tf.cos(rotate_angle), -tf.sin(rotate_angle), tf.sin(rotate_angle), tf.cos(rotate_angle)]), [2, 2]) body2d = tf.matmul((body2d - crop_center2d), R2) + crop_center2d data_dict['keypoint_uv_origin'] = body2d if PAF_given: R3 = tf.reshape(tf.stack([tf.cos(rotate_angle), -tf.sin(rotate_angle), 0., tf.sin(rotate_angle), tf.cos(rotate_angle), 0., 0., 0., 1.]), [3, 3]) body3d = tf.matmul(body3d, R3) data_dict['keypoint_xyz_origin'] = body3d data_dict['keypoint_xyz_local'] = body3d body2d_local = self.update_keypoint2d(body2d, crop_center2d, scale2d) data_dict['keypoint_uv_local'] = body2d_local if read_image: image_crop = self.crop_image(image, crop_center2d, scale2d) data_dict['image_crop'] = image_crop mask_crop = self.crop_image(tf.stack([mask] * 3, axis=2), crop_center2d, scale2d) data_dict['mask_crop'] = mask_crop[:, :, 0] if self.rotate_augmentation: data_dict['image_crop'] = tf.contrib.image.rotate(data_dict['image_crop'], rotate_angle) data_dict['mask_crop'] = tf.contrib.image.rotate(data_dict['mask_crop'], rotate_angle) if self.blur_augmentation: print('using blur augmentation') rescale_factor = tf.random_uniform([], minval=0.1, maxval=1.0) rescale = tf.cast(rescale_factor * self.crop_size, tf.int32) resized_image = tf.image.resize_images(data_dict['image_crop'], [rescale, rescale]) data_dict['image_crop'] = tf.image.resize_images(resized_image, [self.crop_size, self.crop_size]) # create 2D gaussian map scoremap2d = self.create_multiple_gaussian_map(body2d_local[:, ::-1], (self.crop_size, self.crop_size), self.sigma, valid_vec=valid, extra=True) # coord_hw, imsize_hw data_dict['scoremap2d'] = scoremap2d if withPAF: from utils.PAF import createPAF num_keypoint = body2d_local.get_shape().as_list()[0] zeros = tf.zeros([num_keypoint, 1], dtype=tf.float32) if PAF_given: data_dict['PAF'] = createPAF(body2d_local, body3d, self.objtype, (self.crop_size, self.crop_size), normalize_3d=True, valid_vec=valid) data_dict['PAF_type'] = tf.ones([], dtype=bool) # 0 for 2D PAF, 1 for 3D PAF else: data_dict['PAF'] = createPAF(body2d_local, tf.concat([body2d, zeros], axis=1), self.objtype, (self.crop_size, self.crop_size), normalize_3d=False, valid_vec=valid) data_dict['PAF_type'] = tf.zeros([], dtype=bool) # 0 for 2D PAF, 1 for 3D PAF if self.objtype == 1: # this is hand, flip the image if it is right hand data_dict['image_crop'] = tf.cond(cond_left, lambda: data_dict['image_crop'], lambda: data_dict['image_crop'][:, ::-1, :]) data_dict['mask_crop'] = tf.cond(cond_left, lambda: data_dict['mask_crop'], lambda: data_dict['mask_crop'][:, ::-1]) data_dict['scoremap2d'] = tf.cond(cond_left, lambda: data_dict['scoremap2d'], lambda: data_dict['scoremap2d'][:, ::-1, :]) data_dict['keypoint_uv_local'] = tf.cond(cond_left, lambda: data_dict['keypoint_uv_local'], lambda: tf.constant([self.crop_size, 0], tf.float32) + tf.constant([-1, 1], tf.float32) * data_dict['keypoint_uv_local']) if withPAF: data_dict['PAF'] = tf.cond(cond_left, lambda: data_dict['PAF'], lambda: (data_dict['PAF'][:, ::-1, :]) * tf.constant([-1, 1, 1] * (data_dict['PAF'].get_shape().as_list()[2] // 3), dtype=tf.float32)) names, tensors = zip(*data_dict.items()) if self.shuffle: tensors = tf.train.shuffle_batch_join([tensors], batch_size=self.batch_size, capacity=100, min_after_dequeue=50, enqueue_many=False) else: tensors = tf.train.batch_join([tensors], batch_size=self.batch_size, capacity=100, enqueue_many=False) return dict(zip(names, tensors))
57.006135
183
0.574365
9,207
0.990852
0
0
0
0
0
0
1,328
0.142919
361199dea80437ba6ce5df8eea417f22ea366fce
301
py
Python
api/indexer/tzprofiles_indexer/models.py
clehner/tzprofiles
e44497bccf28d2d75cfdfa0c417dbecc0f342c12
[ "Apache-2.0" ]
null
null
null
api/indexer/tzprofiles_indexer/models.py
clehner/tzprofiles
e44497bccf28d2d75cfdfa0c417dbecc0f342c12
[ "Apache-2.0" ]
null
null
null
api/indexer/tzprofiles_indexer/models.py
clehner/tzprofiles
e44497bccf28d2d75cfdfa0c417dbecc0f342c12
[ "Apache-2.0" ]
null
null
null
from tortoise import Model, fields class TZProfile(Model): account = fields.CharField(36, pk=True) contract = fields.CharField(36) valid_claims = fields.JSONField() invalid_claims = fields.JSONField() errored = fields.BooleanField() class Meta: table = "tzprofiles"
23.153846
43
0.69103
263
0.873754
0
0
0
0
0
0
12
0.039867
3611a8921184c2a719ec2f7a6c28b90498243d94
6,006
py
Python
pyscripts/Backups/wikipull.py
mrchaos10/AGRICULTURAL-DOMAIN-SPECIES-IDENTIFICATION-AND-SEMI-SUPERVISED-QUERYING-SYSTEM
2697c806e4de565767efac276d58b3b3696e4893
[ "MIT" ]
null
null
null
pyscripts/Backups/wikipull.py
mrchaos10/AGRICULTURAL-DOMAIN-SPECIES-IDENTIFICATION-AND-SEMI-SUPERVISED-QUERYING-SYSTEM
2697c806e4de565767efac276d58b3b3696e4893
[ "MIT" ]
null
null
null
pyscripts/Backups/wikipull.py
mrchaos10/AGRICULTURAL-DOMAIN-SPECIES-IDENTIFICATION-AND-SEMI-SUPERVISED-QUERYING-SYSTEM
2697c806e4de565767efac276d58b3b3696e4893
[ "MIT" ]
null
null
null
#api for extracting the results from wikidata #https://www.wikidata.org/w/api.php?search=las&language=en&uselang=en&format=jsonfm&limit=25&action=wbsearchentities # importing modules import requests from lxml import etree import wikipedia import sys import re import pickle import numpy as np import os import sys import pandas as pd import seaborn as sns import matplotlib as plt from tensorflow import keras from nltk.corpus import stopwords from nltk.corpus import wordnet,words # Ignore warnings import warnings warnings.filterwarnings('ignore') SEARCHPAGE = str(sys.argv[1]) page=wikipedia.WikipediaPage(SEARCHPAGE) content=page.content content_list=content.split('.') #for i in content_list: # print(i) pd.set_option('display.max_columns', None) np.set_printoptions(threshold=sys.maxsize) np.set_printoptions(precision=3) sns.set(style="darkgrid") plt.rcParams['axes.labelsize'] = 14 plt.rcParams['xtick.labelsize'] = 12 plt.rcParams['ytick.labelsize'] = 12 max_words = 50 tokenize = keras.preprocessing.text.Tokenizer(num_words=max_words, char_level=False) #defining the text fields from training set as train_text and similiarly test_text train_text= pd.DataFrame({'words':content_list}) #print(train_text) #print("################################### TRAINING DATASET DESCRIPTION ###############################################################") #print(train_text.describe()) #remove unwanted from the questions #query = 'What is Nahuatl word for tomato and how did Aztecs called tomato ?' query=str(sys.argv[2]) stopperwords = ['what','where','when','who','which','whom','whose','why','how','?'] querywords = query.split() resultwords = [word for word in querywords if word.lower() not in stopperwords] result = ' '.join(resultwords) result=result.replace('?','') #print(result) stop_words = set(stopwords.words('english')) word_tokens = result.split(' ') filtered_sentence = [w for w in word_tokens if not w in stop_words] filtered_sentence = [] for w in word_tokens: if w not in stop_words: filtered_sentence.append(w) result=filtered_sentence #print(result) syn_result=[] ant_result=[] def similiarity(X_set,Y_set): l1 =[];l2 =[] rvector = X_set.union(Y_set)# form a set containing keywords of both strings for w in rvector: if w in X_set: l1.append(1) # create a vector else: l1.append(0) if w in Y_set: l2.append(1) else: l2.append(0) c = 0 # cosine formula for i in range(len(rvector)): c+= l1[i]*l2[i] cosine = c / float((sum(l1)*sum(l2))**0.5) return cosine def jaccard_similarity(query, document): intersection = query.intersection(document) union = query.union(document) return len(intersection)/len(union) def cosine_distance_wordembedding_method(s1, s2): import scipy vector_1 = np.mean([model[word] for word in preprocess(s1)],axis=0) vector_2 = np.mean([model[word] for word in preprocess(s2)],axis=0) cosine = scipy.spatial.distance.cosine(vector_1, vector_2) print('Word Embedding method with a cosine distance asses that our two sentences are similar to',round((1-cosine)*100,2),'%') def google_encoder_similiarity(sentences): import tensorflow as tf import tensorflow_hub as hub module_url = "https://tfhub.dev/google/universal-sentence-encoder/2" embed = hub.Module(module_url) #sentences = ["Python is a good language","Language a good python is"] similarity_input_placeholder = tf.placeholder(tf.string, shape=(None)) similarity_sentences_encodings = embed(similarity_input_placeholder) with tf.Session() as session: session.run(tf.global_variables_initializer()) session.run(tf.tables_initializer()) sentences_embeddings = session.run(similarity_sentences_encodings, feed_dict={similarity_input_placeholder: sentences}) similarity = np.inner(sentences_embeddings[0], sentences_embeddings[1]) print("Similarity is %s" % similarity) for res in result: synonyms = [] antonyms = [] for syn in wordnet.synsets(res): for l in syn.lemmas(): synonyms.append(l.name()) if l.antonyms(): antonyms.append(l.antonyms()[0].name()) syn_result.append(synonyms) ant_result.append(antonyms) #print(syn_result) simil=[] jaccard_simil=[] for ind in train_text.index: sentence=str(train_text['words'][ind]) stop_words = set(stopwords.words('english')) word_tokens = re.sub(r"[^a-zA-Z0-9]+", ' ', sentence).split(' ') filtered_sentence = [w for w in word_tokens if not w in stop_words] filtered_sentence = [] for w in word_tokens: if w not in stop_words and len(w)>=3 : #print(w) filtered_sentence.append(w) #print(filtered_sentence) X_set = {w for w in filtered_sentence} Y_set = {w for w in result} if len(filtered_sentence)>=1: sim=similiarity(X_set,Y_set) simil.append(sim) jaccard_simil.append(jaccard_similarity(X_set,Y_set)) else: simil.append(0) jaccard_simil.append(0) #str1=" ";str2=" " #QA=[str1.join(filtered_sentence),str2.join(result)] #print(QA) #google_encoder_similiarity(QA) #cosine similiarity of question with each sentence is found #print(simil) result_text= pd.DataFrame({'sentence':content_list,'cosine_similiarity':simil,'jaccard_similiarity':jaccard_simil}) #print(result_text) result_text.to_csv('simils.csv') #for visualization purposes result_text.plot(x='sentence', y='cosine_similiarity') result_text.plot(x='sentence', y='jaccard_similiarity') max=result_text.max() max_cos=max.cosine_similiarity max_jac=max.jaccard_similiarity filter1 = result_text['cosine_similiarity']==max_cos filter2 = result_text['jaccard_similiarity']==max_jac res_record=result_text.loc[(result_text['cosine_similiarity'] == max_cos) & (result_text['jaccard_similiarity']==max_jac)] res_sent=res_record.sentence.item() print(res_sent)
32.290323
141
0.705295
0
0
0
0
0
0
0
0
1,671
0.278222
3612229195c84fc7e099e8d1a5caa6236355676b
327
py
Python
alice.py
atamurad/coinflip
ded3877c808baae843b55c1cfa4685459ba71b29
[ "MIT" ]
1
2022-02-24T09:29:53.000Z
2022-02-24T09:29:53.000Z
alice.py
atamurad/coinflip
ded3877c808baae843b55c1cfa4685459ba71b29
[ "MIT" ]
null
null
null
alice.py
atamurad/coinflip
ded3877c808baae843b55c1cfa4685459ba71b29
[ "MIT" ]
null
null
null
from Crypto.Util.number import getRandomRange from sympy.ntheory.residue_ntheory import jacobi_symbol N = int(input("N ? ")) x = getRandomRange(2, N) x2 = (x*x) % N J = jacobi_symbol(x, N) print(f"x2 = {x2}") guess = int(input("j_guess ? ")) print(f"x = {x}") print("Outcome = Heads" if guess == J else "Outcome = Tails")
20.4375
61
0.663609
0
0
0
0
0
0
0
0
74
0.2263
36134c0670c8fbaeb545400c9c8d63641cf7bd8e
248
py
Python
accounts/management/commands/run-stats.py
ChristianJStarr/Scratch-Bowling-Series-Website
283c7b1b38ffce660464889de3f4dc8050b4008c
[ "MIT" ]
1
2021-05-19T19:30:40.000Z
2021-05-19T19:30:40.000Z
accounts/management/commands/run-stats.py
ChristianJStarr/Scratch-Bowling-Series-Website
283c7b1b38ffce660464889de3f4dc8050b4008c
[ "MIT" ]
null
null
null
accounts/management/commands/run-stats.py
ChristianJStarr/Scratch-Bowling-Series-Website
283c7b1b38ffce660464889de3f4dc8050b4008c
[ "MIT" ]
null
null
null
from django.core.management.base import BaseCommand, CommandError from scoreboard.ranking import calculate_statistics class Command(BaseCommand): help = 'Run Statistics' def handle(self, *args, **options): calculate_statistics()
24.8
65
0.758065
127
0.512097
0
0
0
0
0
0
16
0.064516
36136b9058bdd45bb7644ba4b0f512b2d1902d42
796
py
Python
LeetCode/TwoSum.py
batumoglu/Python_Algorithms
f586f386693eaddb64d6a654a89af177fd0e838f
[ "MIT" ]
null
null
null
LeetCode/TwoSum.py
batumoglu/Python_Algorithms
f586f386693eaddb64d6a654a89af177fd0e838f
[ "MIT" ]
null
null
null
LeetCode/TwoSum.py
batumoglu/Python_Algorithms
f586f386693eaddb64d6a654a89af177fd0e838f
[ "MIT" ]
null
null
null
class Solution(object): def twoSum(self, nums, target): seen = {} output = [] for i in range(len(nums)): k = target - nums[i] if k in seen: output.append(seen[k]) output.append(i) del seen[k] else: seen[nums[i]] = i return output class Solution2(object): """ If there is exactly one solution """ def twoSum(self, nums, target): h = {} for i, num in enumerate(nums): n = target - num if n not in h: h[num] = i else: return [h[n], i] if __name__ == '__main__': sol = Solution() print(sol.twoSum([2,7,11,15], 9)) print(sol.twoSum([3,3], 6))
24.121212
38
0.442211
675
0.84799
0
0
0
0
0
0
58
0.072864
3613905669a706db1108a17ee990707e01f2f9a0
9,028
py
Python
src/rospy_crazyflie/crazyflie_server/crazyflie_control.py
JGSuw/rospy_crazyflie
696aef900138c764419d33e2c8d44ca3f3e33fa1
[ "BSD-2-Clause-FreeBSD" ]
5
2019-07-26T22:19:53.000Z
2021-03-04T12:44:35.000Z
src/rospy_crazyflie/crazyflie_server/crazyflie_control.py
JGSuw/rospy_crazyflie
696aef900138c764419d33e2c8d44ca3f3e33fa1
[ "BSD-2-Clause-FreeBSD" ]
4
2021-02-17T23:30:48.000Z
2021-11-29T18:33:05.000Z
src/rospy_crazyflie/crazyflie_server/crazyflie_control.py
JGSuw/rospy_crazyflie
696aef900138c764419d33e2c8d44ca3f3e33fa1
[ "BSD-2-Clause-FreeBSD" ]
1
2019-04-24T19:00:31.000Z
2019-04-24T19:00:31.000Z
""" Copyright (c) 2018, Joseph Sullivan All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. The views and conclusions contained in the software and documentation are those of the authors and should not be interpreted as representing official policies, either expressed or implied, of the <project name> project. """ import numpy as np import pickle import time from cflib.crazyflie import Crazyflie from cflib.positioning.motion_commander import MotionCommander import rospy import actionlib from std_msgs.msg import UInt16 from geometry_msgs.msg import Vector3 from rospy_crazyflie.msg import * from rospy_crazyflie.srv import * from rospy_crazyflie.motion_commands import * class CrazyflieControl: def __init__(self, name, crazyflie): # Instantiate motion commander self._cf = crazyflie self._name = name self._mc = MotionCommander(self._cf) # Topic Publishers self._velocity_setpoint_pub = rospy.Publisher( self._name + '/velocity_setpoint', Vector3, queue_size = 10 ) """ Services hosted for this crazyflie controller """ self._reset_position_estimator_srv = rospy.Service( self._name + '/reset_position_estimator', ResetPositionEstimator, self._reset_position_estimator_cb ) self._send_hover_setpoint_srv = rospy.Service( self._name + '/send_hover_setpoint', SendHoverSetpoint, self._send_hover_setpoint_cb ) self._set_param_srv = rospy.Service( self._name + '/set_param', SetParam, self._set_param_cb ) self._velocity_control_srv = rospy.Service( self._name + '/velocity_control', VelocityControl, self._velocity_control_cb ) """ Action servers for this crazyflie controller """ self._position_control_as = actionlib.SimpleActionServer( self._name + '/position_control', PositionControlAction, self._position_control_cb, False ) self._position_control_as.start() """ Service Callbacks """ def _reset_position_estimator_cb(self, req): pass def _send_hover_setpoint_cb(self, req): vx = req.vx vy = req.vy z = req.z yaw_rate = req.yaw_rate self._cf.commander.send_hover_setpoint(vx, vy, yaw_rate, z) return [] def _set_param_cb(self, req): self._cf.param.set_value(req.param, req.value) print("set %s to %s" % (req.param, req.value)) return SetParamResponse() def _velocity_control_cb(self, req): try: obj = pickle.loads(req.pickle) print(self._mc) if isinstance(obj, SetVelSetpoint): self._mc._set_vel_setpoint(obj.vx, obj.vy, obj.vz, obj.rate_yaw) elif isinstance(obj, StartBack): self._mc.start_back(velocity = obj.velocity) elif isinstance(obj, StartCircleLeft): self._mc.start_circle_left(obj.radius_m, velocity = obj.velocity) elif isinstance(obj, StartCircleRight): self._mc.start_turn_right(obj.radius_m, velocity = obj.velocity) elif isinstance(obj, StartDown): self._mc.start_down(velocity = obj.velocity) elif isinstance(obj, StartForward): self._mc.start_forward(velocity = obj.velocity) elif isinstance(obj, StartLeft): self._mc.start_left(velocity = obj.velocity) elif isinstance(obj, StartLinearMotion): self._mc.start_linear_motion(obj.vx, obj.vy, obj.vz) elif isinstance(obj, StartRight): self._mc.start_right(velocity = obj.velocity) elif isinstance(obj, StartTurnLeft): self._mc.start_turn_left(rate = obj.rate) elif isinstance(obj, StartTurnRight): self._mc.start_turn_right(rate = obj.rate) elif isinstance(obj, StartUp): self._mc.start_up(velocity = obj.velocity) elif isinstance(obj, Stop): self._mc.stop() else: return 'Object is not a valid velocity command' except Exception as e: print(str(e)) raise e return 'ok' """ Action Implementations """ def _position_control_cb(self, goal): try: obj = pickle.loads(goal.pickle) if isinstance(obj, Back): self._mc.back(obj.distance_m, velocity=obj.velocity) elif isinstance(obj, CircleLeft): self._mc.circle_left(obj.radius_m, velocity = obj.velocity, angle_degrees = obj.angle_degrees ) elif isinstance(obj, CircleRight): self._mc.circle_right(obj.radius_m, velocity = obj.velocity, angle_degrees = obj.angle_degrees ) elif isinstance(obj, Down): self._mc.down(obj.distance_m, velocity=obj.velocity) elif isinstance(obj, Forward): self._mc.forward(obj.distance_m, velocity=obj.velocity) elif isinstance(obj, Land): self._mc.land(velocity=obj.velocity) elif isinstance(obj, Left): self._mc.left(obj.distance_m, velocity=obj.velocity) elif isinstance(obj, MoveDistance): self._mc.move_distance(obj.x, obj.y, obj.z, velocity=obj.velocity) elif isinstance(obj, Right): self._mc.right(obj.distance_m, velocity=obj.velocity) elif isinstance(obj, TakeOff): self._mc.take_off(height=obj.height, velocity = obj.velocity) elif isinstance(obj, TurnLeft): self._mc.turn_left(obj.angle_degrees, rate=obj.rate) elif isinstance(obj, TurnRight): self._mc.turn_right(obj.angle_degrees, rate=obj.rate) elif isinstance(obj, Up): self._mc.up(obj.distance_m, velocity=obj.velocity) except Exception as e: print('Exception in action server %s' % self._name + '/position_control') print(str(e)) print('Action aborted') self._position_control_as.set_aborted() return self._position_control_as.set_succeeded() def _takeoff(self, goal): try: self._mc.take_off(height = goal.height) time.sleep(5) except BaseException as e: self._takeoff_as.set_aborted() print(e) return self._takeoff_as.set_succeeded(TakeOffResult(True)) def _land(self, goal): try: self._mc.land(velocity=goal.velocity) except BaseException as e: self._land_as.set_aborted() print(e) return self._land_as.set_succeeded(LandResult(True)) def _move_distance(self, goal): try: x = goal.x y = goal.y z = goal.z velocity = goal.velocity dist = np.sqrt(x**2 + y**2 + z**2) vx = x / dist * velocity vy = y / dist * velocity vz = z / dist * velocity # self._velocity_setpoint_pub.publish(Vector3(vx, vy, vz)) self._mc.move_distance(x, y, z, velocity = velocity) # self._velocity_setpoint_pub.publish(Vector3(vx, vy, vz)) except BaseException as e: self._move_distance_as.set_aborted() print(e) return self._move_distance_as.set_succeeded()
37.305785
85
0.620735
7,131
0.789876
0
0
0
0
0
0
2,144
0.237483
3613d5c133ef8f38bb7353d844f6628f9fe5e6c6
901
py
Python
examples/imagenet_resnet50.py
inaccel/keras
bebd0ca930b9e2c2aee320e2e40b3d00cd15e46a
[ "Apache-2.0" ]
1
2021-01-27T12:20:35.000Z
2021-01-27T12:20:35.000Z
examples/imagenet_resnet50.py
inaccel/keras
bebd0ca930b9e2c2aee320e2e40b3d00cd15e46a
[ "Apache-2.0" ]
null
null
null
examples/imagenet_resnet50.py
inaccel/keras
bebd0ca930b9e2c2aee320e2e40b3d00cd15e46a
[ "Apache-2.0" ]
null
null
null
import numpy as np import time from inaccel.keras.applications.resnet50 import decode_predictions, ResNet50 from inaccel.keras.preprocessing.image import ImageDataGenerator, load_img model = ResNet50(weights='imagenet') data = ImageDataGenerator(dtype='int8') images = data.flow_from_directory('imagenet/', target_size=(224, 224), class_mode=None, batch_size=64) begin = time.monotonic() preds = model.predict(images, workers=16) end = time.monotonic() print('Duration for', len(preds), 'images: %.3f sec' % (end - begin)) print('FPS: %.3f' % (len(preds) / (end - begin))) dog = load_img('data/dog.jpg', target_size=(224, 224)) dog = np.expand_dims(dog, axis=0) elephant = load_img('data/elephant.jpg', target_size=(224, 224)) elephant = np.expand_dims(elephant, axis=0) images = np.vstack([dog, elephant]) preds = model.predict(images) print('Predicted:', decode_predictions(preds, top=1))
30.033333
102
0.739179
0
0
0
0
0
0
0
0
115
0.127636
3613f877b238035dadd508a419d964a6d0b3a50e
1,084
py
Python
api/permissions.py
letsdowork/yamdb_api
f493309dc52528d980463047d311d898714f3111
[ "MIT" ]
null
null
null
api/permissions.py
letsdowork/yamdb_api
f493309dc52528d980463047d311d898714f3111
[ "MIT" ]
null
null
null
api/permissions.py
letsdowork/yamdb_api
f493309dc52528d980463047d311d898714f3111
[ "MIT" ]
null
null
null
from rest_framework.permissions import BasePermission, SAFE_METHODS from .models import User class IsAdminOrReadOnly(BasePermission): def has_permission(self, request, view): return bool( request.method in SAFE_METHODS or request.user and request.user.is_authenticated and request.user.is_admin() or request.user.is_superuser) class IsOwnerOrAdmin(BasePermission): def has_object_permission(self, request, view, obj): return bool( obj.author == request.user or request.user and request.user.is_authenticated and request.user.is_admin() or request.user.is_superuser) class IsOwnerOrAllStaff(BasePermission): ALLOWED_USER_ROLES = (User.Roles.MODERATOR, User.Roles.ADMIN) def has_object_permission(self, request, view, obj): return bool( obj.author == request.user or request.user and request.user.is_authenticated and request.user.role in self.ALLOWED_USER_ROLES or request.user.is_superuser)
31.882353
67
0.681734
982
0.905904
0
0
0
0
0
0
0
0
3613fd30924745bd186e0751c87237612b35913e
8,090
py
Python
morphological_classifier/classifier.py
selflect11/morphological_classifier
2ef3c3e1e894220238a36b633d4a164a14fe820f
[ "MIT" ]
null
null
null
morphological_classifier/classifier.py
selflect11/morphological_classifier
2ef3c3e1e894220238a36b633d4a164a14fe820f
[ "MIT" ]
null
null
null
morphological_classifier/classifier.py
selflect11/morphological_classifier
2ef3c3e1e894220238a36b633d4a164a14fe820f
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- from morphological_classifier.perceptron import AveragedPerceptron from morphological_classifier.performance_metrics import PerformanceMetrics from morphological_classifier.stats_plot import StatsPlotter from morphological_classifier import constants, utils import numpy as np from collections import defaultdict from sklearn import model_selection import pickle import random class MorphologicalClassifier: # Tags used for padding, since the _get_features method uses # two words before and after the current word START = ['__START__', '__START2__'] END = ['__END__', '__END2__'] def __init__(self, metrics, plotter, save_path, data_path, logging, n_splits): self.model = AveragedPerceptron() self.metrics = metrics self.plotter = plotter self.tags = constants.TAGS self.tag_dict = dict() self.save_path = save_path self.data_path = data_path self.n_splits = n_splits self.logging = logging self.isTrained = False def predict(self, phrase): ''':type phrase: str :rtype: list(tuple(str, str))''' output = [] tags = [] words = phrase.split() for i, word in enumerate(words): tag = self.tag_dict.get(word) if not tag: features = self._get_features(words, tags, i) tag = self.model.predict_tag(features) output.append((word, tag)) tags.append(tag) return output def _get_features(self, words, tags, i): ''' Map words into a feature representation. :type words: list(str) :type tags: list(str) :type i: int ''' features = defaultdict(int) starts_capitalized = words[i][0].isupper() # Padding the tags, words and index words = self.START + [self.normalize(w) for w in words] + self.END tags = self.START + tags i += len(self.START) def add_feature(feat_id, *values): features[str.join(' ', (feat_id,) + tuple(values))] += 1 add_feature('bias') #add_feature('word_i_pref_1', words[i][0]) add_feature('tag_(i-1)', tags[i-1]) add_feature('tag_(i-2)', tags[i-2]) add_feature('tag_(i-1) tag_(i-2)', tags[i-1], tags[i-2]) add_feature('word_i_suffix', utils.get_suffix(words[i])) add_feature('word_i', words[i]) add_feature('tag_(i-1) word_i', tags[i-1], words[i]) add_feature('word_(i-1)', words[i-1]) add_feature('word_(i-1)_suffix', utils.get_suffix(words[i-1])) add_feature('word_(i-2)', words[i-2]) add_feature('word_(i+1)', words[i+1]) add_feature('word_(i+1)_suffix', utils.get_suffix(words[i+1])) add_feature('word_(i+2)', words[i+2]) #add_feature('word_i_starts_capitalized', str(starts_capitalized)) return features def _make_tag_dict(self, sentences): '''Make a tag dictionary for single-tag words. :param sentences: A list of list of (word, tag) tuples.''' counts = defaultdict(lambda: defaultdict(int)) for sentence in sentences: for word, tag in sentence: counts[word][tag] += 1 freq_thresh = 20 ambiguity_thresh = 0.97 for word, tag_freqs in counts.items(): tag, mode = max(tag_freqs.items(), key=lambda item: item[1]) n = sum(tag_freqs.values()) # Don't add rare words to the tag dictionary # Only add quite unambiguous words if n >= freq_thresh and (mode / n) >= ambiguity_thresh: self.tag_dict[word] = tag def parse_sentence(self, sentence): '''Gets "Word1_tag1 word2_tag2 word3_tag3..." returns [("word1", "tag1"), ("word2", "tag2"), ...]''' def parse_word_tag(string_element): '''Parses an element of the form Word_tag1+tag2...|extra_info into a (word, tags) tuple.''' word, tags_str = string_element.split('_') return self.normalize(word), tags_str parsed_sentence = [] for word_tags in sentence.split(): parsed_sentence.append(parse_word_tag(word_tags)) return parsed_sentence def normalize(self, word): '''Normalization used in pre-processing. - All words are lower cased - All numeric words are returned as !DIGITS''' if word.isdigit(): return '!DIGITS' else: return word.lower() def train_test(self): with open(self.data_path, 'r', encoding=constants.ENCODING) as f: sentences = f.readlines() parsed_sentences = np.array([self.parse_sentence(s) for s in sentences]) kf = model_selection.KFold(n_splits=self.n_splits) for i, (train, test) in enumerate(kf.split(parsed_sentences)): print('\nStarting train/test {} of {}'.format(i+1, self.n_splits)) self.train(train_sentences=parsed_sentences[train]) self.test(test_sentences=parsed_sentences[test], metrics=self.metrics) self.reset() if self.logging: self.metrics.log() self.plotter.plot_confusion_matrix(self.metrics.confusion_matrix, normalize=True) #self.save() def train(self, train_sentences, nr_iter=5): if self.isTrained: print('Classifier already trained') return print('Starting training phase...') self._make_tag_dict(train_sentences) num_sentences = len(train_sentences) for iter_ in range(nr_iter): # Padding sent_padd = num_sentences * iter_ for sent_num, sentence in enumerate(train_sentences): if not sentence: continue utils.update_progress((sent_num + sent_padd + 1)/(nr_iter * num_sentences)) words, true_tags = zip(*sentence) guess_tags = [] for i, word in enumerate(words): guess = self.tag_dict.get(word) if not guess: feats = self._get_features(words, guess_tags, i) guess = self.model.predict_tag(feats) self.model.update(feats, true_tags[i], guess) guess_tags.append(guess) random.shuffle(train_sentences) self.model.average_weights() self.erase_useless_data() self.isTrained = True def test(self, test_sentences, metrics): if not self.isTrained: print('Model not yet trained') return print('Starting testing phase...') # Metrics stuff num_sentences = len(test_sentences) metrics.checkin() for sent_num, sentence in enumerate(test_sentences): utils.update_progress((sent_num + 1)/num_sentences) words, true_tags = zip(*sentence) test_phrase = str.join(' ', words) wordtag_guess = self.predict(test_phrase) for index, (word, guess_tag) in enumerate(wordtag_guess): true_tag = true_tags[index] metrics.update_predicted(true_tag, guess_tag) metrics.checkout() metrics.build_confusion_matrix() def save(self): with open(self.save_path, 'wb') as f: pickle.dump(self.__dict__, f, -1) def load(self): with open(self.save_path, 'rb') as f: self.__dict__ = pickle.load(f) self.isTrained = True def erase_useless_data(self): self.model.erase_useless_data() def reset(self): self.model = AveragedPerceptron() self.tag_dict = dict() self.isTrained = False def __getitem__(self, key): return self.confusion_matrix[key]
38.341232
92
0.583931
7,673
0.948455
0
0
0
0
0
0
1,463
0.180841
361427d326c18b286127aad246549f8822f63a94
4,263
py
Python
autoprover/evaluation/evaluation.py
nclab-admin/autoprover
3fe5a0bb6132ae320461d538bb06c4f0fd604b27
[ "MIT" ]
1
2019-01-10T08:04:58.000Z
2019-01-10T08:04:58.000Z
autoprover/evaluation/evaluation.py
nclab-admin/autoprover
3fe5a0bb6132ae320461d538bb06c4f0fd604b27
[ "MIT" ]
null
null
null
autoprover/evaluation/evaluation.py
nclab-admin/autoprover
3fe5a0bb6132ae320461d538bb06c4f0fd604b27
[ "MIT" ]
1
2019-10-08T16:47:58.000Z
2019-10-08T16:47:58.000Z
"""evaluation function for chromosome """ import subprocess from subprocess import PIPE, STDOUT from autoprover.evaluation.coqstate import CoqState def preprocess(theorem, chromosome): """ convert chromosome to complete Coq script Args: theorem (list): a list of string contains theorem or some pre-provided tactic. chromosome (list): a list of string. Returns: byte: a byte string will be passed to coqtop """ script = b'' script += b'\n'.join(line.encode("utf-8") for line in theorem) + b'\n' script += b'\n'.join(line.encode("utf-8") for line in chromosome) + b'\n' script += b'Qed.' return script def run_coqtop(script): """run Coq script and return output Args: script (byte): a coq script Returns: string: the output of coqtop """ coqtop = subprocess.Popen('coqtop', shell=False, stdin=PIPE, stdout=PIPE, stderr=STDOUT) # communicate with coqtop (out, _) = coqtop.communicate(input=script) return out.decode('utf-8') def get_coq_states(result, proof, chromosome, threshold=-1): """return valid coq states, will ignore useless and error steps Args: result (string): Plain text output from coqtop proof (Proof): Proof instance chromosome (list): the corresponse chromosome of result threshold (int): the number of error tactic tolerance, -1 will ignore all error. Returns: list of Coqstate """ # the first and the last is useless splited_result = split_coqtop_result(result, proof.theorem_name)[1:] offset = proof.offset coq_states = [] tactics_set = set() error_count = 0 def check_overlap(coq_states, append_state): """If a state is equal to previous state, remove all element from that. """ for index, state in enumerate(coq_states): if state == append_state: del coq_states[index+1:] return coq_states.append(append_state) for (i, step) in enumerate(splited_result): if i < offset: coq_states.append(CoqState(step, proof.pre_feed_tactic[i])) continue # create a new state if i == (len(splited_result)-1): # lastest step state = CoqState(step, "Qed.") else: state = CoqState(step, chromosome[i-offset]) if state.is_proof: coq_states.append(state) break elif state.is_error_state or state == coq_states[-1]: error_count += 1 elif proof.tactics.is_unrepeatable(chromosome[i-offset]): if chromosome[i-offset] in tactics_set: error_count += 1 check_overlap(coq_states, state) else: tactics_set.add(chromosome[i-offset]) check_overlap(coq_states, state) else: check_overlap(coq_states, state) if error_count == threshold: break return coq_states def split_coqtop_result(result, theorem_name): """ split result into steps Args: result (string): the output of coqtop Returns: list: a list of states(string) of coqtop """ spliter = theorem_name + " <" return [spliter+x for x in result.split(spliter)] def calculate_fitness(coq_states, limit_hyp=100, limit_goal=300): """calculate fitness from coqstates score = sum(len(hypothesis)/len(goal)) Args: coq_states (list): a list of Coqstate Returns: double: represent fitness of a gene, higher is better. If raise ZeroDivisionError, means there is a bug. """ score = 0.0 for state in coq_states: l_hyp = len(state.hypothesis) l_goal = len(state.goal) if l_hyp > limit_hyp: score -= l_hyp / (l_hyp + limit_hyp) print(state.hypothesis) continue if l_goal > limit_goal: score -= l_goal / (l_goal + limit_goal) # print(state.goal) continue try: score += l_hyp / l_goal except ZeroDivisionError: print(state.data) exit(1) return score
29
79
0.601454
0
0
0
0
0
0
0
0
1,535
0.360075
3616727077997c5d64715fd00bfc6be4f8ba4ad8
1,323
py
Python
steapy/velocity_field.py
Sparsh-Sharma/SteaPy
d6f3bee7eb1385c83f65f345d466ef740db4ed3b
[ "MIT" ]
1
2017-04-28T13:05:13.000Z
2017-04-28T13:05:13.000Z
steapy/velocity_field.py
Sparsh-Sharma/SteaPy
d6f3bee7eb1385c83f65f345d466ef740db4ed3b
[ "MIT" ]
null
null
null
steapy/velocity_field.py
Sparsh-Sharma/SteaPy
d6f3bee7eb1385c83f65f345d466ef740db4ed3b
[ "MIT" ]
null
null
null
import os import numpy from numpy import * import math from scipy import integrate, linalg from matplotlib import pyplot from pylab import * from .integral import * def get_velocity_field(panels, freestream, X, Y): """ Computes the velocity field on a given 2D mesh. Parameters --------- panels: 1D array of Panel objects The source panels. freestream: Freestream object The freestream conditions. X: 2D Numpy array of floats x-coordinates of the mesh points. Y: 2D Numpy array of floats y-coordinate of the mesh points. Returns ------- u: 2D Numpy array of floats x-component of the velocity vector field. v: 2D Numpy array of floats y-component of the velocity vector field. """ # freestream contribution u = freestream.u_inf * math.cos(freestream.alpha) * numpy.ones_like(X, dtype=float) v = freestream.u_inf * math.sin(freestream.alpha) * numpy.ones_like(X, dtype=float) # add the contribution from each source (superposition powers!!!) vec_intregral = numpy.vectorize(integral) for panel in panels: u += panel.sigma / (2.0 * math.pi) * vec_intregral(X, Y, panel, 1, 0) v += panel.sigma / (2.0 * math.pi) * vec_intregral(X, Y, panel, 0, 1) return u, v
29.4
87
0.652305
0
0
0
0
0
0
0
0
661
0.499622
3616ce719b349e94d2bd7c4da3e42707eb0de49d
4,125
py
Python
admin/hams_admin/container_manager.py
hku-systems/hams
3a5720657252c650c9a6c5d9b674f7ea6153e557
[ "Apache-2.0" ]
6
2020-08-19T11:46:23.000Z
2021-12-24T07:34:15.000Z
admin/hams_admin/container_manager.py
hku-systems/hams
3a5720657252c650c9a6c5d9b674f7ea6153e557
[ "Apache-2.0" ]
1
2021-03-25T23:40:15.000Z
2021-03-25T23:40:15.000Z
admin/hams_admin/container_manager.py
hku-systems/hams
3a5720657252c650c9a6c5d9b674f7ea6153e557
[ "Apache-2.0" ]
2
2020-10-31T16:48:39.000Z
2021-03-07T09:14:25.000Z
import abc from .exceptions import HamsException import logging # Constants HAMS_INTERNAL_QUERY_PORT = 1337 HAMS_INTERNAL_MANAGEMENT_PORT = 1338 HAMS_INTERNAL_RPC_PORT = 7000 HAMS_INTERNAL_METRIC_PORT = 1390 HAMS_INTERNAL_REDIS_PORT = 6379 HAMS_DOCKER_LABEL = "ai.hams.container.label" HAMS_NAME_LABEL = "ai.hams.name" HAMS_MODEL_CONTAINER_LABEL = "ai.hams.model_container.label" HAMS_QUERY_FRONTEND_CONTAINER_LABEL = "ai.hams.query_frontend.label" HAMS_MGMT_FRONTEND_CONTAINER_LABEL = "ai.hams.management_frontend.label" HAMS_QUERY_FRONTEND_ID_LABEL = "ai.hams.query_frontend.id" CONTAINERLESS_MODEL_IMAGE = "NO_CONTAINER" HAMS_DOCKER_PORT_LABELS = { 'redis': 'ai.hams.redis.port', 'query_rest': 'ai.hams.query_frontend.query.port', 'query_rpc': 'ai.hams.query_frontend.rpc.port', 'management': 'ai.hams.management.port', 'metric': 'ai.hams.metric.port' } HAMS_METRIC_CONFIG_LABEL = 'ai.hams.metric.config' # NOTE: we use '_' as the delimiter because kubernetes allows the use # '_' in labels but not in deployment names. We force model names and # versions to be compliant with both limitations, so this gives us an extra # character to use when creating labels. _MODEL_CONTAINER_LABEL_DELIMITER = "_" class ClusterAdapter(logging.LoggerAdapter): """ This adapter adds cluster name to logging format. Usage ----- In ContainerManager init process, do: self.logger = ClusterAdapter(logger, {'cluster_name': self.cluster_name}) """ # def process(self, msg, kwargs): # return "[{}] {}".format(self.extra['cluster_name'], msg), kwargs def process(self, msg, kwargs): return "{}".format(msg), kwargs def create_model_container_label(name, version): return "{name}{delim}{version}".format( name=name, delim=_MODEL_CONTAINER_LABEL_DELIMITER, version=version) def parse_model_container_label(label): splits = label.split(_MODEL_CONTAINER_LABEL_DELIMITER) if len(splits) != 2: raise HamsException( "Unable to parse model container label {}".format(label)) return splits class ContainerManager(object): __metaclass__ = abc.ABCMeta @abc.abstractmethod def start_hams(self, query_frontend_image, mgmt_frontend_image, frontend_exporter_image, cache_size, qf_http_thread_pool_size, qf_http_timeout_request, qf_http_timeout_content, num_frontend_replicas): return @abc.abstractmethod def connect(self): return @abc.abstractmethod def connect_host(self, host_ip, host_port): return @abc.abstractmethod def deploy_model(self, name, version, input_type, image): return @abc.abstractmethod def add_replica(self, name, version, input_type, image, proxy_name="", proxy_port="", remove=True, runtime=""): return @abc.abstractmethod def set_proxy(self, image, model_container_label, model_ip, host_ip): return @abc.abstractmethod def get_num_replicas(self, name, version): return @abc.abstractmethod def get_logs(self, logging_dir): return @abc.abstractmethod def stop_models(self, models): return @abc.abstractmethod def stop_all_model_containers(self): return @abc.abstractmethod def stop_all(self, graceful=True): pass @abc.abstractmethod def get_admin_addr(self): return @abc.abstractmethod def get_query_addr(self): return @abc.abstractmethod def get_container_ip(self, host_ip, container_id): return @abc.abstractmethod def grpc_client(self, image, arg_list): return @abc.abstractmethod def check_container_status(self, host_ip, container_id, timeout, threshold): return @abc.abstractmethod def get_docker_client(self, host_ip): return @abc.abstractmethod def add_frontend(self, host_ip, image, runtime_dag_id, entry_proxy_ip, entry_proxy_port, max_workers=64,stateful=False, remove=True): return
28.448276
137
0.701333
2,476
0.600242
0
0
1,847
0.447758
0
0
1,047
0.253818
36170542f3bcc2d21452673199202e71e6245707
11,044
py
Python
solidata_api/api/api_auth/endpoint_user_tokens.py
co-demos/solidata-backend
2c67aecbd457cdec78b0772d78dcf699e20dd3dc
[ "MIT" ]
2
2019-12-17T22:27:53.000Z
2020-06-22T12:47:37.000Z
solidata_api/api/api_auth/endpoint_user_tokens.py
co-demos/solidata-backend
2c67aecbd457cdec78b0772d78dcf699e20dd3dc
[ "MIT" ]
13
2019-06-16T15:42:33.000Z
2022-02-26T05:12:34.000Z
solidata_api/api/api_auth/endpoint_user_tokens.py
co-demos/solidata-backend
2c67aecbd457cdec78b0772d78dcf699e20dd3dc
[ "MIT" ]
1
2019-12-17T22:27:58.000Z
2019-12-17T22:27:58.000Z
# -*- encoding: utf-8 -*- """ endpoint_user_tokens.py """ from solidata_api.api import * # from log_config import log, pformat log.debug(">>> api_auth ... creating api endpoints for USER_TOKENS") ### create namespace ns = Namespace('tokens', description='User : tokens freshening related endpoints') ### import models from solidata_api._models.models_user import * #User_infos, AnonymousUser model_user = User_infos(ns) model_user_access = model_user.model_access model_user_login_out = model_user.model_login_out model_old_refresh_token = ExpiredRefreshToken(ns).model ### + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ### ### ROUTES ### + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ### ### cf : response codes : https://restfulapi.net/http-status-codes/ # cf : http://flask-jwt-extended.readthedocs.io/en/latest/refresh_tokens.html """ RESPONSE CODES cf : https://restfulapi.net/http-status-codes/ 200 (OK) 201 (Created) 202 (Accepted) 204 (No Content) 301 (Moved Permanently) 302 (Found) 303 (See Other) 304 (Not Modified) 307 (Temporary Redirect) 400 (Bad Request) 401 (Unauthorized) 403 (Forbidden) 404 (Not Found) 405 (Method Not Allowed) 406 (Not Acceptable) 412 (Precondition Failed) 415 (Unsupported Media Type) 500 (Internal Server Error) 501 (Not Implemented) """ @ns.doc(security='apikey') @ns.route('/token_claims') class GetTokenClaims(Resource) : @jwt_required @distant_auth(func_name="token_claims", return_resp=True ) def get(self) : """ Get token claims given a token > --- needs : a token in the header >>> returns : msg, claims """ ### DEBUGGING print() print("-+- "*40) log.debug( "ROUTE class : %s", self.__class__.__name__ ) ### retrieve current token raw from token raw_jwt = get_raw_jwt() log.debug("raw_jwt : \n %s", pformat(raw_jwt) ) ### retrieve current token claims from token # claims = get_jwt_claims() claims = returnClaims() log.debug("claims : \n %s", pformat(claims) ) return { "msg" : "token claims from token in header " , "data" : claims , # "raw_jwt" : raw_jwt , }, 200 @ns.doc(security='apikey') @ns.route('/confirm_access') class ConfirmAccessToken(Resource) : # @jwt_required @guest_required @distant_auth(func_name="confirm_access", return_resp=True ) def get(self) : """ Confirm access_token given > --- needs : a valid access_token in the header >>> returns : msg, a new_access_token """ ### DEBUGGING print() print("-+- "*40) log.debug( "ROUTE class : %s", self.__class__.__name__ ) # log.debug ("payload : \n{}".format(pformat(ns.payload))) ### retrieve current user identity from refresh token # claims = get_jwt_claims() claims = returnClaims() log.debug("claims : \n %s", pformat(claims) ) user_id = claims["_id"] if user_id == None : return { "msg" : "user not found " , }, 401 else : return { "msg" : "user found " , "data" : claims , }, 200 @ns.doc(security='apikey') @ns.route('/new_access_token') class NewAccessToken(Resource) : # The jwt_refresh_token_required decorator insures a valid refresh # token is present in the request before calling this endpoint. We # can use the get_jwt_identity() function to get the identity of # the refresh token, and use the create_access_token() function again # to make a new access token for this identity. @jwt_refresh_token_required @distant_auth(func_name="new_access_token", return_resp=True ) def get(self) : """ Refresh the access_token given a valid refresh_token > --- needs : a valid refresh_token in the header >>> returns : msg, a new_access_token """ ### DEBUGGING print() print("-+- "*40) log.debug( "ROUTE class : %s", self.__class__.__name__ ) # log.debug ("payload : \n{}".format(pformat(ns.payload))) ### retrieve current user identity from refresh token user_identity = get_jwt_identity() log.debug("user_identity : \n %s", user_identity) ### retrieve user from db to get all infos # user = mongo_users.find_one( {"infos.email" : user_email } ) user = mongo_users.find_one( {"_id" : ObjectId(user_identity) } ) log.debug("user : \n %s", pformat(user)) # if user or user_email == "anonymous": if user : if user : # user_light = marshal( user , model_user_access) # user_light["_id"] = str(user["_id"]) user_light = marshal( user , model_user_login_out) # elif user_email == "anonymous" : # anon_user_class = AnonymousUser() # user_light = anon_user_class.__dict__ ### create new access token new_access_token = create_access_token(identity=user_light, fresh=False) log.debug("new_access_token : \n %s ", new_access_token) ### store tokens tokens = { 'access_token' : new_access_token, # 'salt_token' : public_key_str, } if app.config["RSA_MODE"] == "yes": tokens["salt_token"] = public_key_str return { "msg" : "new access token for user : {} ".format(user_identity) , "data" : user_light, "tokens" : tokens }, 200 ### indicates to redirect to other URL else : return { "msg" : "user not found or is anonymous" , }, 401 @ns.doc(security='apikey') @ns.route("/fresh_access_token") class FreshAccessToken(Resource): @ns.doc('user_fresh_token') @jwt_refresh_token_required @distant_auth(func_name="fresh_access_token", return_resp=True ) def get(self): """ Create a fresh access_token > --- needs : valid refresh_token in the header >>> returns : msg, fresh access_token, is_user_confirmed """ ### DEBUGGING print() print("-+- "*40) log.debug( "ROUTE class : %s", self.__class__.__name__ ) ### check identity user_identity = get_jwt_identity() log.debug('useremail from jwt : \n%s', user_identity ) ### find user user = mongo_users.find_one( {"infos.email" : user_identity } ) log.debug("user : \n %s", pformat(user)) if user : ### marshal user's info user_light = marshal( user , model_user_access) user_light["_id"] = str(user["_id"]) # Use create_access_token() to create user's fresh access token fresh_access_token = create_access_token(identity=user_light, fresh=True) tokens = { "access_token" : fresh_access_token, } if app.config["RSA_MODE"] == "yes": tokens["salt_token"] = public_key_str return { "msg" : "fresh access_token created for user '{}' ".format(user_identity) , "is_user_confirmed" : user["auth"]["conf_usr"], "tokens" : tokens }, 200 else : return { "msg" : "incorrect user" , }, 401 # @ns.route('/new_refresh_token' ) # @ns.route('/new_refresh_token/', defaults={ 'old_refresh_token':'your_old_refresh_token' } ) @ns.doc(security='apikey') @ns.route('/new_refresh_token/<string:old_refresh_token>' ) @ns.param('old_refresh_token', 'The expired refresh_token') class NewRefreshToken(Resource) : @ns.doc(params={'old_refresh_token': 'the old refresh token'}) @distant_auth(func_name="new_refresh_token", return_resp=True, ns_payload=True ) def post(self, old_refresh_token) : """ Refresh the refresh_token given when POST an old refresh_token (in URL or in header) ... From old_refresh_token check if : - user exists in DB - if user's email is confirmed and not anonymous - if user is blacklisted > --- needs : an old refresh_token in the header or in the URL >>> returns : msg, a new_refresh_token """ ### DEBUGGING print() print("-+- "*40) log.debug( "ROUTE class : %s", self.__class__.__name__ ) log.debug ("payload : \n{}".format(pformat(ns.payload))) ### retrieve jwt # raw_jwt = ns.payload["old_refresh_token"] raw_jwt = old_refresh_token log.debug("raw_jwt : \n %s", pformat(raw_jwt)) ### decode jwt # decoded_token = decode_token(raw_jwt) decoded_token = jwt.decode(raw_jwt, app.config.get('JWT_SECRET_KEY'), options={'verify_exp': False}) log.debug("decoded_token : \n %s", pformat(decoded_token)) ### check jwt and user's identity from old refresh_token jwt_type = decoded_token["type"] jwt_identity = decoded_token["jti"] log.debug('jwt_type : {} / jwt_identity : {}'.format(jwt_type, jwt_identity) ) user_identity = decoded_token["identity"] log.debug('user_identity from old refresh_token : \n%s', user_identity ) # if user_identity != "anonymous" and jwt_type == "refresh" : if user_identity and jwt_type == "refresh" : ### find user in db user = mongo_users.find_one( {"_id" : ObjectId(user_identity) } ) # user = mongo_users.find_one( {"infos.email" : user_identity } ) log.debug("user : \n %s", pformat(user)) if user : ### check if there is something wrong : user's email not confirmed | user blacklisted if user["auth"]["conf_usr"] and user["auth"]["is_blacklisted"] == False : ### marshal user's info user_light = marshal( user , model_user_login_out) # user_light["_id"] = str(user["_id"]) log.debug("user_light : \n %s", pformat(user_light)) # create a new refresh_token new_refresh_token = create_refresh_token(identity=user_light) # and save it into user's data in DB user["auth"]["refr_tok"] = new_refresh_token mongo_users.save(user) log.debug("new_refresh_token is saved in user's data : %s", new_refresh_token ) # create user's new_access_token new_access_token = create_access_token(identity=user_light) tokens = { "access_token" : new_access_token, "refresh_token" : new_refresh_token } if app.config["RSA_MODE"] == "yes": tokens["salt_token"] = public_key_str ### return new tokens return { "msg" : "new refresh_token created for user '{}' ".format(user_identity) , "tokens" : tokens }, 200 ### user's email not confirmed or blacklisted else : return { "msg" : "you need to confirm your email '{}' first before...".format(user_identity) }, 401 ### user not in DB else : return { "msg" : "no such user in DB" }, 401 ### user is anonymous | wrong jwt else : return { "msg" : "anonyous users can't renew their refresh_token OR wrong jwt type..." }, 401
30.174863
104
0.611554
9,105
0.82443
0
0
9,480
0.858385
0
0
5,886
0.532959
361738fea8f68576a66d9ee50d5cd2a6da5685cc
4,750
py
Python
tektonbundle/tektonbundle.py
chmouel/tektonbundle
6d44e47f9b6d5c2d1da4663f9c7bfcab50108074
[ "MIT" ]
3
2020-10-22T04:57:21.000Z
2021-06-03T16:03:44.000Z
tektonbundle/tektonbundle.py
chmouel/tektonbundle
6d44e47f9b6d5c2d1da4663f9c7bfcab50108074
[ "MIT" ]
3
2020-10-27T14:30:33.000Z
2020-11-12T11:39:07.000Z
tektonbundle/tektonbundle.py
chmouel/tektonbundle
6d44e47f9b6d5c2d1da4663f9c7bfcab50108074
[ "MIT" ]
null
null
null
"""Main module.""" import copy import io import logging import re from typing import Dict, List import yaml log = logging.getLogger(__name__) TEKTON_TYPE = ("pipeline", "pipelinerun", "task", "taskrun", "condition") class TektonBundleError(Exception): pass def tpl_apply(yaml_obj, parameters): def _apply(param): if param in parameters: return parameters[param] return "{{%s}}" % (param) return io.StringIO( re.sub( r"\{\{([_a-zA-Z0-9\.]*)\}\}", lambda m: _apply(m.group(1)), open(yaml_obj).read(), )) def resolve_task(mpipe, name, yaml_documents, skip_task_inlining): if 'pipelineSpec' in mpipe['spec']: tasks = mpipe['spec']['pipelineSpec']['tasks'] else: tasks = mpipe['spec']['tasks'] for task in tasks: if 'taskRef' in task: reftask = task['taskRef']['name'] if reftask in skip_task_inlining: continue if 'task' not in yaml_documents or reftask not in yaml_documents[ 'task']: raise TektonBundleError( f"Pipeline: {name} reference a Task: {reftask} not in repository" ) del task['taskRef'] task['taskSpec'] = yaml_documents['task'][reftask]['spec'] return mpipe def parse(yamlfiles: List[str], parameters: Dict[str, str], skip_inlining: List[str]) -> Dict[str, str]: """parse a bunch of yaml files""" yaml_documents = {} # type: Dict[str, Dict] results = [] notkube_ignored = [] nottekton_ignored = [] for yaml_file in yamlfiles: for document in yaml.load_all(tpl_apply(yaml_file, parameters), Loader=yaml.Loader): if 'apiVersion' not in document or 'kind' not in document: notkube_ignored.append( yaml.dump( document, Dumper=yaml.Dumper, )) continue name = (document['metadata']['generateName'] if 'generateName' in document['metadata'].keys() else document['metadata']['name']) kind = document['kind'].lower() if kind not in TEKTON_TYPE: nottekton_ignored.append( yaml.dump( document, Dumper=yaml.Dumper, )) continue yaml_documents.setdefault(kind, {}) yaml_documents[kind][name] = document if 'pipelinerun' not in yaml_documents: raise TektonBundleError("We need at least a PipelineRun") # if we have pipeline (i.e: not embedded) then expand all tasksRef insides. if 'pipeline' in yaml_documents: for pipeline in yaml_documents['pipeline']: mpipe = copy.deepcopy(yaml_documents['pipeline'][pipeline]) resolved = resolve_task(mpipe, pipeline, yaml_documents, skip_inlining) yaml_documents['pipeline'][pipeline] = copy.deepcopy(resolved) # For all pipelinerun expands the pipelineRef, keep it as is if it's a # pipelineSpec. for pipeline_run in yaml_documents['pipelinerun']: mpr = copy.deepcopy(yaml_documents['pipelinerun'][pipeline_run]) if 'pipelineSpec' in mpr['spec']: mpr = resolve_task(mpr, pipeline_run, yaml_documents, skip_inlining) elif 'pipelineRef' in mpr['spec']: refpipeline = mpr['spec']['pipelineRef']['name'] if 'pipeline' not in yaml_documents or refpipeline not in yaml_documents[ 'pipeline']: raise TektonBundleError( f"PR: {pipeline_run} reference a Pipeline: {refpipeline} not in repository" ) del mpr['spec']['pipelineRef'] mpr['spec']['pipelineSpec'] = yaml_documents['pipeline'][ refpipeline]['spec'] # Adjust names with generateName if needed # TODO(chmou): make it optional, we maybe don't want to do this sometime if 'name' in mpr['metadata']: name = mpr['metadata']['name'] mpr['metadata']['generateName'] = name + "-" del mpr['metadata']['name'] results.append(mpr) ret = { 'bundle': yaml.dump_all(results, Dumper=yaml.Dumper, default_flow_style=False, allow_unicode=True), 'ignored_not_tekton': nottekton_ignored, 'ignored_not_k8': notkube_ignored } return ret
32.986111
95
0.550105
44
0.009263
0
0
0
0
0
0
1,157
0.243579
3617e8e260511cf8ba4c78d54d81b23de02b0480
2,385
py
Python
Scripts/sims4communitylib/classes/time/common_alarm_handle.py
ColonolNutty/Sims4CommunityLibrary
684f28dc3c7deb4d9fd520e21e63942b65a91d31
[ "CC-BY-4.0" ]
118
2019-08-31T04:33:18.000Z
2022-03-28T21:12:14.000Z
Scripts/sims4communitylib/classes/time/common_alarm_handle.py
ColonolNutty/Sims4CommunityLibrary
684f28dc3c7deb4d9fd520e21e63942b65a91d31
[ "CC-BY-4.0" ]
15
2019-12-05T01:29:46.000Z
2022-02-18T17:13:46.000Z
Scripts/sims4communitylib/classes/time/common_alarm_handle.py
ColonolNutty/Sims4CommunityLibrary
684f28dc3c7deb4d9fd520e21e63942b65a91d31
[ "CC-BY-4.0" ]
28
2019-09-07T04:11:05.000Z
2022-02-07T18:31:40.000Z
""" The Sims 4 Community Library is licensed under the Creative Commons Attribution 4.0 International public license (CC BY 4.0). https://creativecommons.org/licenses/by/4.0/ https://creativecommons.org/licenses/by/4.0/legalcode Copyright (c) COLONOLNUTTY """ import os from sims4.commands import Command, CommandType, CheatOutput from sims4communitylib.utils.common_time_utils import CommonTimeUtils from typing import Any, Callable ON_RTD = os.environ.get('READTHEDOCS', None) == 'True' if not ON_RTD: from scheduling import Timeline from alarms import AlarmHandle from date_and_time import DateAndTime, TimeSpan else: # noinspection PyMissingOrEmptyDocstring class AlarmHandle: def cancel(self): pass # noinspection PyMissingOrEmptyDocstring class DateAndTime: pass # noinspection PyMissingOrEmptyDocstring class TimeSpan: pass # noinspection PyMissingOrEmptyDocstring class Timeline: pass class CommonAlarmHandle(AlarmHandle): """A custom alarm handle that keeps track of when it is slated to trigger for the first time.""" def __init__( self, owner: Any, on_alarm_triggered_callback: Callable[['CommonAlarmHandle'], None], timeline: Timeline, when: DateAndTime, should_repeat: bool=False, time_until_repeat: TimeSpan=None, accurate_repeat: bool=True, persist_across_zone_loads: bool=False ): self.started_at_date_and_time = when super().__init__( owner, on_alarm_triggered_callback, timeline, when, repeating=should_repeat, repeat_interval=time_until_repeat, accurate_repeat=accurate_repeat, cross_zone=persist_across_zone_loads ) if not ON_RTD: @Command('s4clib.print_current_time', command_type=CommandType.Live) def _s4clib_print_current_time(_connection: int=None): output = CheatOutput(_connection) output('Current time') output('Hour {} Minute {}'.format(CommonTimeUtils.get_current_date_and_time().hour(), CommonTimeUtils.get_current_date_and_time().minute())) output('Abs Hour {} Abs Minute {}'.format(CommonTimeUtils.get_current_date_and_time().absolute_hours(), CommonTimeUtils.get_current_date_and_time().absolute_minutes()))
33.125
176
0.704403
994
0.416771
0
0
526
0.220545
0
0
641
0.268763
3617f1fcc07ed43dd799a0a44d4cb775cd1c7478
1,884
py
Python
blackbook/migrations/0022_cleanup.py
bsiebens/blackbook
636d1adc8966db158914abba43e360c6a0d23173
[ "MIT" ]
1
2021-05-10T19:15:48.000Z
2021-05-10T19:15:48.000Z
blackbook/migrations/0022_cleanup.py
bsiebens/BlackBook
636d1adc8966db158914abba43e360c6a0d23173
[ "MIT" ]
20
2020-12-27T15:56:24.000Z
2021-09-22T18:25:02.000Z
blackbook/migrations/0022_cleanup.py
bsiebens/BlackBook
636d1adc8966db158914abba43e360c6a0d23173
[ "MIT" ]
null
null
null
# Generated by Django 3.1.4 on 2021-01-22 22:56 from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('blackbook', '0021_update_account_categories'), ] operations = [ migrations.RemoveField( model_name='budgetperiod', name='budget', ), migrations.RemoveField( model_name='transaction', name='account', ), migrations.RemoveField( model_name='transaction', name='journal_entry', ), migrations.RemoveField( model_name='transactionjournalentry', name='budget', ), migrations.RemoveField( model_name='transactionjournalentry', name='category', ), migrations.RemoveField( model_name='transactionjournalentry', name='from_account', ), migrations.RemoveField( model_name='transactionjournalentry', name='tags', ), migrations.RemoveField( model_name='transactionjournalentry', name='to_account', ), migrations.RemoveField( model_name='userprofile', name='user', ), migrations.DeleteModel( name='Account', ), migrations.DeleteModel( name='AccountType', ), migrations.DeleteModel( name='Budget', ), migrations.DeleteModel( name='BudgetPeriod', ), migrations.DeleteModel( name='Category', ), migrations.DeleteModel( name='Transaction', ), migrations.DeleteModel( name='TransactionJournalEntry', ), migrations.DeleteModel( name='UserProfile', ), ]
25.459459
56
0.525478
1,799
0.954883
0
0
0
0
0
0
461
0.244692
36188c3a24365e2e84cb2983da3bc80cf1611d71
1,431
py
Python
core/myauthbackend.py
devendraotari/HRMS_project
c6480903c2a8212c6698987e8ced96a114c4d7c7
[ "BSD-2-Clause" ]
null
null
null
core/myauthbackend.py
devendraotari/HRMS_project
c6480903c2a8212c6698987e8ced96a114c4d7c7
[ "BSD-2-Clause" ]
null
null
null
core/myauthbackend.py
devendraotari/HRMS_project
c6480903c2a8212c6698987e8ced96a114c4d7c7
[ "BSD-2-Clause" ]
null
null
null
from django.contrib.auth.backends import BaseBackend from django.contrib.auth import get_user_model class EmailPhoneBackend(BaseBackend): """ docstring """ def authenticate(self,request, email=None,phone=None, password=None): # Check the username/password and return a user. my_user_model = get_user_model() user = None try: print(f"{request.data['phone']}") if request.data.get('email',None): print(f"custom auth call{email}") user = my_user_model.objects.get(email=request.data.get('email',None)) if request.data.get('phone',None): print("in auth phone") user = my_user_model.objects.get(phone=request.data.get('phone',None)) print(f"user{user}") if user.check_password(password): return user # return user on valid credentials except my_user_model.DoesNotExist as mmode: print(f"{mmode}") return None # return None if custom user model does not exist except Exception as e: return None # return None in case of other exceptions def get_user(self, user_id): my_user_model = get_user_model() try: return my_user_model.objects.get(pk=user_id) except my_user_model.DoesNotExist: return None
40.885714
87
0.596785
1,317
0.920335
0
0
0
0
0
0
322
0.225017
3618b1890763a3badcdbdde17119e78da0fca799
1,655
py
Python
apps/core/management/commands/update-banned-email.py
sparcs-kaist/sparcssso
9aeedc02652dadacb44c6a4ba06901f6d2372223
[ "MIT" ]
18
2015-07-06T06:20:14.000Z
2022-03-20T23:45:40.000Z
apps/core/management/commands/update-banned-email.py
sparcs-kaist/sparcssso
9aeedc02652dadacb44c6a4ba06901f6d2372223
[ "MIT" ]
170
2015-07-07T08:42:03.000Z
2022-03-24T17:31:17.000Z
apps/core/management/commands/update-banned-email.py
sparcs-kaist/sparcssso
9aeedc02652dadacb44c6a4ba06901f6d2372223
[ "MIT" ]
11
2015-07-07T20:42:19.000Z
2022-01-12T22:39:59.000Z
import requests from django.core.management.base import BaseCommand, CommandError from apps.core.models import EmailDomain DATA_URL = ( 'https://raw.githubusercontent.com/martenson/disposable-email-domains' '/master/disposable_email_blacklist.conf' ) class Command(BaseCommand): help = 'Update list of banned email domains' def add_arguments(self, parser): parser.add_argument( '--overwrite', action='store_true', dest='overwrite', help='Overwrite configured data', ) parser.add_argument( '--clean', action='store_true', dest='clean', help='Empty the table and start from the beginning', ) def handle(self, *args, **options): try: domains_raw = requests.get(DATA_URL).text.split('\n') domains = [x for x in [y.strip() for y in domains_raw] if x] except Exception: raise CommandError(f'cannot fetch data from {DATA_URL}') if options['clean']: EmailDomain.objects.all().delete() count_created, count_overwrited = 0, 0 for domain in domains: obj, created = EmailDomain.objects.get_or_create(domain=domain) if created: count_created += 1 elif not obj.is_banned and options['overwrite']: count_overwrited += 1 obj.is_banned = True obj.save() self.stdout.write(self.style.SUCCESS( f'total {len(domains)}, ' f'created {count_created}, ' f'overwrited {count_overwrited}'))
30.648148
75
0.586103
1,390
0.839879
0
0
0
0
0
0
428
0.25861
361a68b0ba7eff6cb23d87bfa96dce0e03ec7a08
1,659
py
Python
LeetCode/Python3/Math/1323. Maximum 69 Number.py
WatsonWangZh/CodingPractice
dc057dd6ea2fc2034e14fd73e07e73e6364be2ae
[ "MIT" ]
11
2019-09-01T22:36:00.000Z
2021-11-08T08:57:20.000Z
LeetCode/Python3/Math/1323. Maximum 69 Number.py
WatsonWangZh/LeetCodePractice
dc057dd6ea2fc2034e14fd73e07e73e6364be2ae
[ "MIT" ]
null
null
null
LeetCode/Python3/Math/1323. Maximum 69 Number.py
WatsonWangZh/LeetCodePractice
dc057dd6ea2fc2034e14fd73e07e73e6364be2ae
[ "MIT" ]
2
2020-05-27T14:58:52.000Z
2020-05-27T15:04:17.000Z
# Given a positive integer num consisting only of digits 6 and 9. # Return the maximum number you can get by changing at most one digit (6 becomes 9, and 9 becomes 6). # Example 1: # Input: num = 9669 # Output: 9969 # Explanation: # Changing the first digit results in 6669. # Changing the second digit results in 9969. # Changing the third digit results in 9699. # Changing the fourth digit results in 9666. # The maximum number is 9969. # Example 2: # Input: num = 9996 # Output: 9999 # Explanation: Changing the last digit 6 to 9 results in the maximum number. # Example 3: # Input: num = 9999 # Output: 9999 # Explanation: It is better not to apply any change. # Constraints: # 1 <= num <= 10^4 # num's digits are 6 or 9. # Hints: # Convert the number in an array of its digits. # Brute force on every digit to get the maximum number. class Solution(object): def maximum69Number (self, num): """ :type num: int :rtype: int """ # https://blog.csdn.net/CSerwangjun/article/details/104053280 # M1. 模拟 return str(num).replace('6','9', 1) # M2. 模拟 str_num = str(num) if '6' in str_num: pos = str_num.index('6') list_num = list(str_num) list_num[pos] = '9' str_num = ''.join(list_num) return int(str_num) else: return num # M3. 模拟 s = str(num) lst = [] for i in s: lst.append(i) for i in range(len(lst)): if lst[i] == '6': lst[i] = '9' break s = ''.join(lst) return int(s)
25.921875
101
0.57384
822
0.491921
0
0
0
0
0
0
997
0.596649
361c83b1b112f9b41fc07f6d3ac9327c01a72ef7
3,245
py
Python
ticketing/userticket/createqrcode.py
autlamps/tessera-backend
1d02e8e3651c1ad75bdf4e5d0e61765a2a6de0c2
[ "MIT" ]
null
null
null
ticketing/userticket/createqrcode.py
autlamps/tessera-backend
1d02e8e3651c1ad75bdf4e5d0e61765a2a6de0c2
[ "MIT" ]
1
2018-08-14T03:15:00.000Z
2018-08-21T00:33:34.000Z
ticketing/userticket/createqrcode.py
autlamps/tessera-backend
1d02e8e3651c1ad75bdf4e5d0e61765a2a6de0c2
[ "MIT" ]
null
null
null
import base64 import rsa from django.conf import settings from django.core.exceptions import ObjectDoesNotExist from ticketing.models import BalanceTicket, RideTicket class VerifyFailedError(Exception): pass class QRCode: """ QRCode creator is used to create a user ticket/balance ID, which is then signed and then returned """ # Refactor to QR Factory # Make QR codes for RT tickets def __init__(self, testing=False): if not testing: if settings.PRIVATE_KEY is None or settings.PUBLIC_KEY is None: raise Exception("The settings file has an issue with the keys") else: self.private = rsa.PrivateKey.load_pkcs1(self.__getprivkey()) self.public = rsa.PublicKey.load_pkcs1(self.__getpubkey()) @staticmethod def __getprivkey(): priv = settings.PRIVATE_KEY header = priv[:32] body = priv[32:len(priv)-29].replace(" ", "\n") footer = priv[-29:] privkey = header + "\n" + body + footer return privkey @staticmethod def __getpubkey(): pub = settings.PUBLIC_KEY header = pub[:31] body = pub[31:len(pub)-28].replace(" ", "\n") footer = pub[-28:] pubkey = header + "\n" + body + footer return pubkey def createbtqrcode(self, btticket: BalanceTicket): uid = btticket.qr_code_id type = 'b' val = 'x' name = btticket.account.user.first_name return self.__sign(uid, type, val, name) def creatertqrcode(self, rtticket: RideTicket): uid = rtticket.qr_code type = 'r' val = rtticket.initial_value name = rtticket.short_name return self.__sign(uid, type, val, name) def __sign(self, uid, type, val, name): tosign = str(uid) + '.' + type + '.' + val + '.' + name signed = base64.b64encode(rsa.sign(tosign.encode('UTF-8'), self.private, 'SHA-256')) toreturn = str(tosign) + ':' + str(signed.decode('UTF-8')) self.ID = toreturn return toreturn def verify(self, qrcode): parts = qrcode.split(':') hash = base64.b64decode(parts[1]) try: rsa.verify(parts[0].encode(), hash, self.public) print("Verified") user = parts[0].split(".") uuid = user[0] ticketType = user[1] if ticketType == "b": try: ticket = BalanceTicket.objects.get(qr_code_id=uuid) return {"ticket": ticket, "type": ticketType} except ObjectDoesNotExist: raise VerifyFailedError() elif ticketType == "r": try: ticket = RideTicket.objects.get(qr_code=uuid) return {"ticket": ticket, "type": ticketType} except ObjectDoesNotExist: raise VerifyFailedError() except rsa.VerificationError: print("Verification Error") raise VerifyFailedError # Create an error for better usability print("Hash 0 : " + parts[0]) print("Hash 1 : " + parts[1])
33.112245
79
0.561787
3,070
0.946071
0
0
501
0.154391
0
0
413
0.127273
361df2d9546970e2a42e2d2a91b1abc8fb87455f
3,015
py
Python
CollabMoodle.py
dantonbertuol/PyCollab
b36c968f5f1aabf1a322559854db24aa6691ac63
[ "MIT" ]
null
null
null
CollabMoodle.py
dantonbertuol/PyCollab
b36c968f5f1aabf1a322559854db24aa6691ac63
[ "MIT" ]
null
null
null
CollabMoodle.py
dantonbertuol/PyCollab
b36c968f5f1aabf1a322559854db24aa6691ac63
[ "MIT" ]
null
null
null
import datetime from webService import WebService import Utilidades as ut import sys if __name__ == "__main__": param = ut.mainMoodle(sys.argv[1:]) #param = 'moodle_plugin_sessions.txt', '', '2020-08-01 00:00:00,2020-12-31 00:00:00' webService = WebService() report = [] ret = 0 dates = param[2].split(",") if param[0] != '' and param[1] == '': print("Moodle Sesions...") moodlSession = ut.leerUUID(param[0]) for sesion in moodlSession: try: nombre_session, date_session = webService.get_moodle_sesion_name(sesion) except: print('Erro WS') nombre_session = None if nombre_session == None or nombre_session == ' ': print("Session name not found!") else: print(nombre_session) try: lista_grabaciones = webService.get_moodle_lista_grabaciones(nombre_session, dates, date_session) except: lista_grabaciones = None if lista_grabaciones is None: print("There's no recording for: " + nombre_session) else: for grabacion in lista_grabaciones: try: ret = ut.downloadrecording(grabacion['recording_id'],grabacion['recording_name'], dates) except: ret = 2 try: if ret == 1: report.append([grabacion['recording_id'], grabacion['recording_name'], grabacion['duration'], grabacion['storageSize'], grabacion['created']]) elif ret == 2: report.append( ['Erro no download', grabacion['recording_name'], grabacion['duration'], grabacion['storageSize'], grabacion['created']]) elif ret == 3: if [grabacion['recording_id'], grabacion['recording_name'], grabacion['duration'], grabacion['storageSize'], grabacion['created']] in report: print("EXISTE") else: report.append( [grabacion['recording_id'], grabacion['recording_name'], grabacion['duration'], grabacion['storageSize'], grabacion['created']]) except: print("Nao foi possivel criar o relatorio") if len(report) > 0: try: print(ut.crearReporteMoodle(report, dates)) except: print("Nao foi possivel criar o relatorio") else: print('No recordings was found')
47.109375
125
0.469983
0
0
0
0
0
0
0
0
572
0.189718
361df35a0da6b8703efd3e8c9fc20bd6344aa676
5,549
py
Python
eva/views_data.py
aqutor/CE_Backend
1265f7169aea0b6b8cff3fda742a8a5a295fe9ea
[ "MIT" ]
null
null
null
eva/views_data.py
aqutor/CE_Backend
1265f7169aea0b6b8cff3fda742a8a5a295fe9ea
[ "MIT" ]
null
null
null
eva/views_data.py
aqutor/CE_Backend
1265f7169aea0b6b8cff3fda742a8a5a295fe9ea
[ "MIT" ]
null
null
null
from rest_framework.views import APIView from rest_framework import status from eva.serializers import WorkSerializer, PageSerializer, WordSerializer, RadicalSerializer from eva.models import Work, Page, Word, Radical from rest_framework.response import Response from django.http import Http404 class WorkView(APIView): def get(self, request, format=None): """return all works""" works = Work.objects.all() print(works) serializer = WorkSerializer(works, many=True) json = { 'works': serializer.data, 'count': works.count(), 'status': status.HTTP_200_OK, } return Response(json) class WorkDetail(APIView): """ Retrieve, update or delete a snippet instance. """ def get_object(self, pk): try: return Work.objects.get(pk=pk) except Work.DoesNotExist: raise Http404 def get(self, request, pk, format=None): work = self.get_object(pk) serializer = WorkSerializer(work) json = serializer.data json['status'] = status.HTTP_200_OK return Response(json) class PageView(APIView): def get(self, request, format=None, *args, **kwargs): """return all works""" try: workId = request.query_params.get("workId") if workId is None: pages = Page.objects.all() workId = 0 stats = status.HTTP_200_OK else: pages = Page.objects.filter(workId=workId) if pages.count() == 0: stats = status.HTTP_404_NOT_FOUND else: stats = status.HTTP_200_OK except ValueError: return Response({ 'status': status.HTTP_400_BAD_REQUEST, 'message': 'invalid pageId', }) serializer = PageSerializer(pages, many=True) json = { 'pages': serializer.data, 'count': pages.count(), 'workId': workId, 'status': stats, } return Response(json) class PageDetail(APIView): """ Retrieve, update or delete a snippet instance. """ def get_object(self, pk): try: return Page.objects.get(pk=pk) except Page.DoesNotExist: raise Http404 def get(self, request, pk, format=None): work = self.get_object(pk) serializer = PageSerializer(work) json = serializer.data json['status'] = status.HTTP_200_OK return Response(json) class WordView(APIView): def get(self, request, format=None, *args, **kwargs): """return all works""" pageId = request.query_params.get("pageId") try: if pageId is None: words = Word.objects.all() pageId = 0 stats = status.HTTP_200_OK else: words = Word.objects.filter(pageId=pageId) if words.count() == 0: stats = status.HTTP_404_NOT_FOUND else: stats = status.HTTP_200_OK except ValueError: return Response({ 'status': status.HTTP_400_BAD_REQUEST, 'message': 'invalid pageId', }) serializer = WordSerializer(words, many=True) json = { 'words': serializer.data, 'count': words.count(), 'pageId': pageId, 'status': stats, } return Response(json) class WordDetail(APIView): """ Retrieve, update or delete a snippet instance. """ def get_object(self, pk): try: return Word.objects.get(pk=pk) except Word.DoesNotExist: raise Http404 def get(self, request, pk, format=None): word = self.get_object(pk) serializer = WordSerializer(word) json = serializer.data json['status'] = status.HTTP_200_OK return Response(json) class RadicalView(APIView): def get(self, request, format=None, *args, **kwargs): """return all works""" wordId = request.query_params.get("wordId") try: if wordId is None: radicals = Radical.objects.all() wordId = 0 stats = status.HTTP_200_OK else: radicals = Radical.objects.filter(wordId=wordId) if radicals.count() == 0: stats = status.HTTP_404_NOT_FOUND else: stats = status.HTTP_200_OK except ValueError: return Response({ 'status': status.HTTP_400_BAD_REQUEST, 'message': 'invalid pageId', }) serializer = RadicalSerializer(radicals, many=True) json = { 'words': serializer.data, 'count': radicals.count(), 'wordId': wordId, 'status': stats, } return Response(json) class RadicalDetail(APIView): """ Retrieve, update or delete a snippet instance. """ def get_object(self, pk): try: return Radical.objects.get(pk=pk) except Word.DoesNotExist: raise Http404 def get(self, request, pk, format=None): radical = self.get_object(pk) serializer = RadicalSerializer(radical) json = serializer.data json['status'] = status.HTTP_200_OK return Response(json)
29.359788
93
0.548567
5,229
0.942332
0
0
0
0
0
0
603
0.108668
361ee510413d5ff2e8e4d3a5aa90b44d49e73ac2
1,447
py
Python
program/appID3.py
trungvuong55555/FlaskAPI_ExpertSystem
6f7a557fefd093e901070fe2ec363e0c2ed8ffa2
[ "MIT" ]
null
null
null
program/appID3.py
trungvuong55555/FlaskAPI_ExpertSystem
6f7a557fefd093e901070fe2ec363e0c2ed8ffa2
[ "MIT" ]
null
null
null
program/appID3.py
trungvuong55555/FlaskAPI_ExpertSystem
6f7a557fefd093e901070fe2ec363e0c2ed8ffa2
[ "MIT" ]
null
null
null
from flask import Flask, request, render_template import pickle app = Flask(__name__)#khoi tao flask model = pickle.load(open('modelID3.pkl', 'rb'))#unpicke model @app.route('/',methods =["GET", "POST"]) def home(): if request.method == "POST": #lay gia tri tu form one= request.form.get("a0") two= request.form.get("a1") three = request.form.get("a2") four = request.form.get("a3") five = request.form.get("a4") six = request.form.get("a5") seven = request.form.get("a6") eight = request.form.get("a7") nine = request.form.get("a8") ten = request.form.get("a9") eleven = request.form.get("a10") #ep kieu du lieu ve int one= int(one) two= int(two) three= int(three) four= int(four) five= int(five) six= int(six) seven= int(seven) eight= int(eight) nine= int(nine) ten= int(ten) eleven = int(eleven) #dua ve dang vector input_value= [one,two,three,four,five,six,seven,eight,nine,ten,eleven] #dua ra ve du doan du lieu prediction = model.predict([input_value]) prediction= str(prediction) #ep kieu du lieu ve dang string de co the xuat ra duoc man hinh return "quality of wine is : "+ prediction; return render_template('index.html') if __name__ == "__main__": app.run(debug=True)
28.94
99
0.57982
0
0
0
0
1,227
0.847961
0
0
315
0.217692
361ef035e9cacacdf5098c184cd2ac1fe4e53da4
474
py
Python
examples/deldup.py
rlan/pydmv
97619bbd2732b2ad8e64c97fe862a84dc147af93
[ "MIT" ]
null
null
null
examples/deldup.py
rlan/pydmv
97619bbd2732b2ad8e64c97fe862a84dc147af93
[ "MIT" ]
null
null
null
examples/deldup.py
rlan/pydmv
97619bbd2732b2ad8e64c97fe862a84dc147af93
[ "MIT" ]
null
null
null
#!/usr/bin/python import os import sys import argparse #Auto-import parent module sys.path.insert(1, os.path.join(sys.path[0], '..')) import voc #from pydmv import voc parser = argparse.ArgumentParser(description="Print VOC index file without duplicates") parser.add_argument("file", help="Input index file") args = parser.parse_args() in_file = args.file my_bag = set() for index in voc.stream(in_file): if index not in my_bag: print(index) my_bag.add(index)
21.545455
87
0.736287
0
0
0
0
0
0
0
0
134
0.2827
362141754e09b014da8e86cb87845189f022576c
448
py
Python
home_work/App/views.py
jianghaiming0707/python1806homework
2509f75794ac0ef8711cb1d1c2c4378408619a75
[ "Apache-2.0" ]
1
2018-06-28T01:01:35.000Z
2018-06-28T01:01:35.000Z
home_work/App/views.py
jianghaiming0707/python1806homework
2509f75794ac0ef8711cb1d1c2c4378408619a75
[ "Apache-2.0" ]
6
2018-06-25T04:50:23.000Z
2018-07-03T10:24:08.000Z
home_work/App/views.py
jianghaiming0707/python1806homework
2509f75794ac0ef8711cb1d1c2c4378408619a75
[ "Apache-2.0" ]
42
2018-06-19T09:48:04.000Z
2019-09-15T01:20:06.000Z
from django.shortcuts import render from django.http import HttpResponse from App.models import * # Create your views here. def search(seq): myclass=Myclass.objects.all() return render(seq,'test.html',context={'myclass':myclass}) def students(req): students_id=req.GET.get('classid') studentt=Student.objects.all() studentt=studentt.filter(cid_id=students_id) return render(req,'student.html',context={'students':studentt})
34.461538
67
0.747768
0
0
0
0
0
0
0
0
78
0.174107
3621452a8a1c3599be31b149a9b725b8f48992db
962
py
Python
Xiaomi_8/day_start/show_screen.py
Lezaza/hotpoor_autoclick_xhs
52eafad8cce59353a9de5bf6e488e8a2602e5536
[ "Apache-2.0" ]
1
2021-12-21T10:42:46.000Z
2021-12-21T10:42:46.000Z
Xiaomi_8/day_start/show_screen.py
2218084076/hotpoor_autoclick_xhs
a52446ba691ac19e43410a465dc63f940c0e444d
[ "Apache-2.0" ]
2
2021-11-03T11:36:44.000Z
2021-11-05T07:58:13.000Z
Xiaomi_8/day_start/show_screen.py
2218084076/hotpoor_autoclick_xhs
a52446ba691ac19e43410a465dc63f940c0e444d
[ "Apache-2.0" ]
1
2021-10-09T10:28:57.000Z
2021-10-09T10:28:57.000Z
import os import cv2 import time path = "C:/Users/lenovo/Documents/Sites/github/hotpoor_autoclick_xhs/Xiaomi_8/day_start/hotpoor_autoclick_cache" cache = "hotpoor_autoclick_cache/screen.png" def get_image(): os.system(f"adb shell screencap -p /sdcard/%s"%cache) os.system(r"adb pull /sdcard/%s %s"%(cache,path)) def load_image(): i1 = cv2.imread("%s/screen.png"%path) scale_percent=50 w=int(i1.shape[1]*scale_percent/100) h=int(i1.shape[0]*scale_percent/100) dim=(w,h) resized = cv2.resize(i1,dim,interpolation=cv2.INTER_AREA) cv2.imshow("path", resized) k = cv2.waitKey(0) while True: get_image() print("get_image") # load_image() i1 = cv2.imread("%s/screen.png"%path) scale_percent=40 w=int(i1.shape[1]*scale_percent/100) h=int(i1.shape[0]*scale_percent/100) dim=(w,h) resized = cv2.resize(i1,dim,interpolation=cv2.INTER_AREA) cv2.imshow("path", resized) k = cv2.waitKey(1)
30.0625
112
0.686071
0
0
0
0
0
0
0
0
269
0.279626
3622cd97012a4b31faded8cb9b89d6c988e04256
3,359
py
Python
hknweb/events/views/event_transactions/show_event.py
jyxzhang/hknweb
a01ffd8587859bf63c46213be6a0c8b87164a5c2
[ "MIT" ]
null
null
null
hknweb/events/views/event_transactions/show_event.py
jyxzhang/hknweb
a01ffd8587859bf63c46213be6a0c8b87164a5c2
[ "MIT" ]
null
null
null
hknweb/events/views/event_transactions/show_event.py
jyxzhang/hknweb
a01ffd8587859bf63c46213be6a0c8b87164a5c2
[ "MIT" ]
null
null
null
from django.shortcuts import render, redirect, reverse from django.contrib import messages from django.shortcuts import get_object_or_404 from django.core.paginator import Paginator from hknweb.utils import markdownify from hknweb.utils import allow_public_access from hknweb.events.constants import ( ACCESSLEVEL_TO_DESCRIPTION, ATTR, RSVPS_PER_PAGE, ) from hknweb.events.models import Event, Rsvp, AttendanceForm from hknweb.events.utils import format_url from hknweb.utils import get_access_level @allow_public_access def show_details(request, id): return show_details_helper(request, id, reverse("events:index"), True) def show_details_helper(request, id, back_link: str, can_edit: bool): event = get_object_or_404(Event, pk=id) if event.access_level < get_access_level(request.user): messages.warning(request, "Insufficent permission to access event.") return redirect(back_link) context = { "event": event, "event_description": markdownify(event.description), "event_location": format_url(event.location), "user_access_level": ACCESSLEVEL_TO_DESCRIPTION[get_access_level(request.user)], "event_access_level": ACCESSLEVEL_TO_DESCRIPTION[event.access_level], "back_link": back_link, "can_edit": can_edit and request.user.has_perm("events.change_event"), } if not request.user.is_authenticated: return render(request, "events/show_details.html", context) rsvps = Rsvp.objects.filter(event=event) waitlisted = False waitlist_position = 0 rsvp = None user_rsvps = rsvps.filter(user=request.user) if user_rsvps.exists(): # Gets the rsvp object for the user rsvp = user_rsvps.first() # Check if waitlisted if event.rsvp_limit: rsvps_before = rsvps.filter(created_at__lt=rsvp.created_at).count() waitlisted = rsvps_before >= event.rsvp_limit # Get waitlist position if waitlisted: position = rsvps.filter(created_at__lt=rsvp.created_at).count() waitlist_position = position - event.rsvp_limit + 1 # Render only non-waitlisted rsvps rsvps = event.admitted_set() waitlists = event.waitlist_set() limit = event.rsvp_limit rsvps_page = Paginator(rsvps, RSVPS_PER_PAGE).get_page( request.GET.get("rsvps_page") ) waitlists_page = Paginator(waitlists, RSVPS_PER_PAGE).get_page( request.GET.get("waitlists_page") ) data = [ { ATTR.TITLE: "RSVPs", ATTR.DATA: rsvps_page if len(rsvps_page) > 0 else None, ATTR.PAGE_PARAM: "rsvps_page", ATTR.COUNT: str(rsvps.count()) + " / {limit}".format(limit=limit), }, ] if limit: data.append( { ATTR.TITLE: "Waitlist", ATTR.DATA: waitlists_page if len(waitlists_page) > 0 else None, ATTR.PAGE_PARAM: "waitlists_page", ATTR.COUNT: str(waitlists.count()), } ) context = { **context, ATTR.DATA: data, "rsvp": rsvp, "attendance_form": AttendanceForm.objects.filter(event=event).first(), "waitlisted": waitlisted, "waitlist_position": waitlist_position, } return render(request, "events/show_details.html", context)
33.59
88
0.669842
0
0
0
0
126
0.037511
0
0
482
0.143495
36230cd6aca7407d1176980b4ef533beffe100f8
9,756
py
Python
pysnmp-with-texts/HPN-ICF-VOICE-IF-MIB.py
agustinhenze/mibs.snmplabs.com
1fc5c07860542b89212f4c8ab807057d9a9206c7
[ "Apache-2.0" ]
8
2019-05-09T17:04:00.000Z
2021-06-09T06:50:51.000Z
pysnmp-with-texts/HPN-ICF-VOICE-IF-MIB.py
agustinhenze/mibs.snmplabs.com
1fc5c07860542b89212f4c8ab807057d9a9206c7
[ "Apache-2.0" ]
4
2019-05-31T16:42:59.000Z
2020-01-31T21:57:17.000Z
pysnmp-with-texts/HPN-ICF-VOICE-IF-MIB.py
agustinhenze/mibs.snmplabs.com
1fc5c07860542b89212f4c8ab807057d9a9206c7
[ "Apache-2.0" ]
10
2019-04-30T05:51:36.000Z
2022-02-16T03:33:41.000Z
# # PySNMP MIB module HPN-ICF-VOICE-IF-MIB (http://snmplabs.com/pysmi) # ASN.1 source file:///Users/davwang4/Dev/mibs.snmplabs.com/asn1/HPN-ICF-VOICE-IF-MIB # Produced by pysmi-0.3.4 at Wed May 1 13:41:57 2019 # On host DAVWANG4-M-1475 platform Darwin version 18.5.0 by user davwang4 # Using Python version 3.7.3 (default, Mar 27 2019, 09:23:15) # ObjectIdentifier, Integer, OctetString = mibBuilder.importSymbols("ASN1", "ObjectIdentifier", "Integer", "OctetString") NamedValues, = mibBuilder.importSymbols("ASN1-ENUMERATION", "NamedValues") SingleValueConstraint, ValueSizeConstraint, ConstraintsUnion, ConstraintsIntersection, ValueRangeConstraint = mibBuilder.importSymbols("ASN1-REFINEMENT", "SingleValueConstraint", "ValueSizeConstraint", "ConstraintsUnion", "ConstraintsIntersection", "ValueRangeConstraint") hpnicfVoice, = mibBuilder.importSymbols("HPN-ICF-OID-MIB", "hpnicfVoice") ifIndex, = mibBuilder.importSymbols("IF-MIB", "ifIndex") NotificationGroup, ModuleCompliance = mibBuilder.importSymbols("SNMPv2-CONF", "NotificationGroup", "ModuleCompliance") TimeTicks, Unsigned32, Gauge32, NotificationType, MibIdentifier, ModuleIdentity, Counter32, IpAddress, iso, Counter64, ObjectIdentity, Integer32, MibScalar, MibTable, MibTableRow, MibTableColumn, Bits = mibBuilder.importSymbols("SNMPv2-SMI", "TimeTicks", "Unsigned32", "Gauge32", "NotificationType", "MibIdentifier", "ModuleIdentity", "Counter32", "IpAddress", "iso", "Counter64", "ObjectIdentity", "Integer32", "MibScalar", "MibTable", "MibTableRow", "MibTableColumn", "Bits") DisplayString, TextualConvention = mibBuilder.importSymbols("SNMPv2-TC", "DisplayString", "TextualConvention") hpnicfVoiceInterface = ModuleIdentity((1, 3, 6, 1, 4, 1, 11, 2, 14, 11, 15, 2, 39, 13)) hpnicfVoiceInterface.setRevisions(('2007-12-10 17:00',)) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): if mibBuilder.loadTexts: hpnicfVoiceInterface.setRevisionsDescriptions(('The initial version of this MIB file.',)) if mibBuilder.loadTexts: hpnicfVoiceInterface.setLastUpdated('200712101700Z') if mibBuilder.loadTexts: hpnicfVoiceInterface.setOrganization('') if mibBuilder.loadTexts: hpnicfVoiceInterface.setContactInfo('') if mibBuilder.loadTexts: hpnicfVoiceInterface.setDescription('This MIB file is to provide the definition of the voice interface general configuration.') hpnicfVoiceIfObjects = MibIdentifier((1, 3, 6, 1, 4, 1, 11, 2, 14, 11, 15, 2, 39, 13, 1)) hpnicfVoiceIfConfigTable = MibTable((1, 3, 6, 1, 4, 1, 11, 2, 14, 11, 15, 2, 39, 13, 1, 1), ) if mibBuilder.loadTexts: hpnicfVoiceIfConfigTable.setStatus('current') if mibBuilder.loadTexts: hpnicfVoiceIfConfigTable.setDescription('The table contains configurable parameters for both analog voice interface and digital voice interface.') hpnicfVoiceIfConfigEntry = MibTableRow((1, 3, 6, 1, 4, 1, 11, 2, 14, 11, 15, 2, 39, 13, 1, 1, 1), ).setIndexNames((0, "IF-MIB", "ifIndex")) if mibBuilder.loadTexts: hpnicfVoiceIfConfigEntry.setStatus('current') if mibBuilder.loadTexts: hpnicfVoiceIfConfigEntry.setDescription('The entry of voice interface table.') hpnicfVoiceIfCfgCngOn = MibTableColumn((1, 3, 6, 1, 4, 1, 11, 2, 14, 11, 15, 2, 39, 13, 1, 1, 1, 1), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2))).clone(namedValues=NamedValues(("enable", 1), ("disable", 2))).clone('enable')).setMaxAccess("readwrite") if mibBuilder.loadTexts: hpnicfVoiceIfCfgCngOn.setStatus('current') if mibBuilder.loadTexts: hpnicfVoiceIfCfgCngOn.setDescription('This object indicates whether the silence gaps should be filled with background noise. It is applicable to FXO, FXS, E&M subscriber lines and E1/T1 voice subscriber line.') hpnicfVoiceIfCfgNonLinearSwitch = MibTableColumn((1, 3, 6, 1, 4, 1, 11, 2, 14, 11, 15, 2, 39, 13, 1, 1, 1, 2), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2))).clone(namedValues=NamedValues(("enable", 1), ("disable", 2))).clone('enable')).setMaxAccess("readwrite") if mibBuilder.loadTexts: hpnicfVoiceIfCfgNonLinearSwitch.setStatus('current') if mibBuilder.loadTexts: hpnicfVoiceIfCfgNonLinearSwitch.setDescription('This object expresses the nonlinear processing is enable or disable for the voice interface. It is applicable to FXO, FXS, E&M subscriber lines and E1/T1 voice subscriber line. Currently, only digital voice subscriber lines can be set disabled.') hpnicfVoiceIfCfgInputGain = MibTableColumn((1, 3, 6, 1, 4, 1, 11, 2, 14, 11, 15, 2, 39, 13, 1, 1, 1, 3), Integer32().subtype(subtypeSpec=ValueRangeConstraint(-140, 139))).setMaxAccess("readwrite") if mibBuilder.loadTexts: hpnicfVoiceIfCfgInputGain.setStatus('current') if mibBuilder.loadTexts: hpnicfVoiceIfCfgInputGain.setDescription('This object indicates the amount of gain added to the receiver side of the voice interface. Unit is 0.1 db. It is applicable to FXO, FXS, E&M subscriber lines and E1/T1 voice subscriber line.') hpnicfVoiceIfCfgOutputGain = MibTableColumn((1, 3, 6, 1, 4, 1, 11, 2, 14, 11, 15, 2, 39, 13, 1, 1, 1, 4), Integer32().subtype(subtypeSpec=ValueRangeConstraint(-140, 139))).setMaxAccess("readwrite") if mibBuilder.loadTexts: hpnicfVoiceIfCfgOutputGain.setStatus('current') if mibBuilder.loadTexts: hpnicfVoiceIfCfgOutputGain.setDescription('This object indicates the amount of gain added to the send side of the voice interface. Unit is 0.1 db. It is applicable to FXO, FXS, E&M subscriber lines and E1/T1 voice subscriber line.') hpnicfVoiceIfCfgEchoCancelSwitch = MibTableColumn((1, 3, 6, 1, 4, 1, 11, 2, 14, 11, 15, 2, 39, 13, 1, 1, 1, 5), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2))).clone(namedValues=NamedValues(("enable", 1), ("disable", 2))).clone('enable')).setMaxAccess("readwrite") if mibBuilder.loadTexts: hpnicfVoiceIfCfgEchoCancelSwitch.setStatus('current') if mibBuilder.loadTexts: hpnicfVoiceIfCfgEchoCancelSwitch.setDescription('This object indicates whether the echo cancellation is enabled. It is applicable to FXO, FXS, E&M subscriber lines and E1/T1 voice subscriber line.') hpnicfVoiceIfCfgEchoCancelDelay = MibTableColumn((1, 3, 6, 1, 4, 1, 11, 2, 14, 11, 15, 2, 39, 13, 1, 1, 1, 6), Integer32().subtype(subtypeSpec=ValueRangeConstraint(0, 64))).setMaxAccess("readwrite") if mibBuilder.loadTexts: hpnicfVoiceIfCfgEchoCancelDelay.setStatus('current') if mibBuilder.loadTexts: hpnicfVoiceIfCfgEchoCancelDelay.setDescription("This object indicates the delay of the echo cancellation for the voice interface. This value couldn't be modified unless hpnicfVoiceIfCfgEchoCancelSwitch is enable. Unit is milliseconds. It is applicable to FXO, FXS, E&M subscriber lines and E1/T1 voice subscriber line. The default value of this object is 32.") hpnicfVoiceIfCfgTimerDialInterval = MibTableColumn((1, 3, 6, 1, 4, 1, 11, 2, 14, 11, 15, 2, 39, 13, 1, 1, 1, 7), Integer32().subtype(subtypeSpec=ValueRangeConstraint(1, 300))).setMaxAccess("readwrite") if mibBuilder.loadTexts: hpnicfVoiceIfCfgTimerDialInterval.setStatus('current') if mibBuilder.loadTexts: hpnicfVoiceIfCfgTimerDialInterval.setDescription('The interval, in seconds, between two dialing numbers. The default value of this object is 10 seconds. It is applicable to FXO, FXS, E&M subscriber lines and E1/T1 with loop-start or ground-start protocol voice subscriber line.') hpnicfVoiceIfCfgTimerFirstDial = MibTableColumn((1, 3, 6, 1, 4, 1, 11, 2, 14, 11, 15, 2, 39, 13, 1, 1, 1, 8), Integer32().subtype(subtypeSpec=ValueRangeConstraint(1, 300))).setMaxAccess("readwrite") if mibBuilder.loadTexts: hpnicfVoiceIfCfgTimerFirstDial.setStatus('current') if mibBuilder.loadTexts: hpnicfVoiceIfCfgTimerFirstDial.setDescription('The period of time, in seconds, before dialing the first number. The default value of this object is 10 seconds. It is applicable to FXO, FXS subscriber lines and E1/T1 with loop-start or ground-start protocol voice subscriber line.') hpnicfVoiceIfCfgPrivateline = MibTableColumn((1, 3, 6, 1, 4, 1, 11, 2, 14, 11, 15, 2, 39, 13, 1, 1, 1, 9), DisplayString().subtype(subtypeSpec=ValueSizeConstraint(0, 31))).setMaxAccess("readwrite") if mibBuilder.loadTexts: hpnicfVoiceIfCfgPrivateline.setStatus('current') if mibBuilder.loadTexts: hpnicfVoiceIfCfgPrivateline.setDescription('This object indicates the E.164 phone number for plar mode. It is applicable to FXO, FXS, E&M subscriber lines and E1/T1 voice subscriber line.') hpnicfVoiceIfCfgRegTone = MibTableColumn((1, 3, 6, 1, 4, 1, 11, 2, 14, 11, 15, 2, 39, 13, 1, 1, 1, 10), OctetString().subtype(subtypeSpec=ConstraintsUnion(ValueSizeConstraint(0, 0), ValueSizeConstraint(2, 3), ))).setMaxAccess("readwrite") if mibBuilder.loadTexts: hpnicfVoiceIfCfgRegTone.setStatus('current') if mibBuilder.loadTexts: hpnicfVoiceIfCfgRegTone.setDescription('This object uses 2 or 3 letter country code specify voice parameters of different countrys. This value will take effect on all voice interfaces of all cards on the device.') mibBuilder.exportSymbols("HPN-ICF-VOICE-IF-MIB", hpnicfVoiceInterface=hpnicfVoiceInterface, hpnicfVoiceIfCfgEchoCancelDelay=hpnicfVoiceIfCfgEchoCancelDelay, hpnicfVoiceIfConfigEntry=hpnicfVoiceIfConfigEntry, PYSNMP_MODULE_ID=hpnicfVoiceInterface, hpnicfVoiceIfObjects=hpnicfVoiceIfObjects, hpnicfVoiceIfCfgNonLinearSwitch=hpnicfVoiceIfCfgNonLinearSwitch, hpnicfVoiceIfCfgTimerFirstDial=hpnicfVoiceIfCfgTimerFirstDial, hpnicfVoiceIfCfgPrivateline=hpnicfVoiceIfCfgPrivateline, hpnicfVoiceIfCfgInputGain=hpnicfVoiceIfCfgInputGain, hpnicfVoiceIfCfgRegTone=hpnicfVoiceIfCfgRegTone, hpnicfVoiceIfCfgTimerDialInterval=hpnicfVoiceIfCfgTimerDialInterval, hpnicfVoiceIfCfgCngOn=hpnicfVoiceIfCfgCngOn, hpnicfVoiceIfCfgEchoCancelSwitch=hpnicfVoiceIfCfgEchoCancelSwitch, hpnicfVoiceIfCfgOutputGain=hpnicfVoiceIfCfgOutputGain, hpnicfVoiceIfConfigTable=hpnicfVoiceIfConfigTable)
154.857143
863
0.791513
0
0
0
0
0
0
0
0
3,593
0.368286
3624a7b0fa4de41698f562d63ac67b0fc5033a54
1,230
py
Python
data_access_layer/abstract_classes/customer_dao.py
Alejandro-Fuste/python-bank-application
46e44c830ab8c13fd64c08e2db4f743a7d1d35de
[ "MIT" ]
null
null
null
data_access_layer/abstract_classes/customer_dao.py
Alejandro-Fuste/python-bank-application
46e44c830ab8c13fd64c08e2db4f743a7d1d35de
[ "MIT" ]
15
2021-11-22T16:05:42.000Z
2021-12-08T16:43:37.000Z
data_access_layer/abstract_classes/customer_dao.py
Alejandro-Fuste/python-bank-application
46e44c830ab8c13fd64c08e2db4f743a7d1d35de
[ "MIT" ]
null
null
null
from abc import ABC, abstractmethod from entities.customers import Customer from typing import List class CustomerDao(ABC): @abstractmethod def create_customer_entry(self, customer: Customer) -> Customer: pass @abstractmethod def get_customer_by_id(self, customer_id: str) -> Customer: pass @abstractmethod def get_all_customers(self) -> List[Customer]: pass @abstractmethod def get_customer_balance_by_id(self, customer_id: str, account_id: int) -> float: pass @abstractmethod def deposit_into_account_by_id(self, customer_id: str, account_id: int, deposit: float) -> float: pass @abstractmethod def withdraw_from_account_by_id(self, customer_id: str, account_id: int, withdraw: float) -> float: pass @abstractmethod def transfer_money_by_their_ids(self, customer_id: str, from_account_id: int, to_account_id: int, transfer_amount: float) -> float: pass @abstractmethod def update_customer_by_id(self, customer_id: str, customer: Customer) -> Customer: pass @abstractmethod def delete_customer_by_id(self, customer_id: int) -> bool: pass
27.954545
103
0.68374
1,127
0.91626
0
0
1,050
0.853659
0
0
0
0
3624ec443278ac728598d1df9f161910bd3e69fe
975
py
Python
examples/make_sphere_graphic.py
itamar-dw/spherecluster
7c9b81d8bb6c6c2a0c569c17093bf0b4550f2768
[ "MIT" ]
186
2018-09-14T06:51:59.000Z
2022-03-30T12:56:01.000Z
examples/make_sphere_graphic.py
itamar-dw/spherecluster
7c9b81d8bb6c6c2a0c569c17093bf0b4550f2768
[ "MIT" ]
20
2018-10-16T15:40:08.000Z
2022-03-23T14:37:52.000Z
examples/make_sphere_graphic.py
itamar-dw/spherecluster
7c9b81d8bb6c6c2a0c569c17093bf0b4550f2768
[ "MIT" ]
40
2018-09-13T21:05:50.000Z
2022-03-09T16:05:53.000Z
import sys import numpy as np from matplotlib import pyplot as plt from mpl_toolkits.mplot3d import Axes3D # NOQA import seaborn # NOQA from spherecluster import sample_vMF plt.ion() n_clusters = 3 mus = np.random.randn(3, n_clusters) mus, r = np.linalg.qr(mus, mode='reduced') kappas = [15, 15, 15] num_points_per_class = 250 Xs = [] for nn in range(n_clusters): new_X = sample_vMF(mus[nn], kappas[nn], num_points_per_class) Xs.append(new_X.T) fig = plt.figure(figsize=(8, 6)) ax = fig.add_subplot( 1, 1, 1, aspect='equal', projection='3d', adjustable='box-forced', xlim=[-1.1, 1.1], ylim=[-1.1, 1.1], zlim=[-1.1, 1.1] ) colors = ['b', 'r', 'g'] for nn in range(n_clusters): ax.scatter(Xs[nn][0, :], Xs[nn][1, :], Xs[nn][2, :], c=colors[nn]) ax.set_aspect('equal') plt.axis('off') plt.show() def r_input(val=None): val = val or '' if sys.version_info[0] >= 3: return eval(input(val)) return raw_input(val) r_input()
20.744681
70
0.644103
0
0
0
0
0
0
0
0
67
0.068718
3626cc57d851fc7ca881f30af21ead100d822372
1,043
py
Python
pointnet2/tf_ops/sampling/tf_sampling.py
ltriess/pointnet2_keras
29be56161c8c772442b85b8fda300d10ff7fe7b3
[ "MIT" ]
2
2022-02-06T23:12:15.000Z
2022-03-28T06:48:52.000Z
pointnet2/tf_ops/sampling/tf_sampling.py
ltriess/pointnet2_keras
29be56161c8c772442b85b8fda300d10ff7fe7b3
[ "MIT" ]
null
null
null
pointnet2/tf_ops/sampling/tf_sampling.py
ltriess/pointnet2_keras
29be56161c8c772442b85b8fda300d10ff7fe7b3
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Furthest point sampling Original author: Haoqiang Fan Modified by Charles R. Qi All Rights Reserved. 2017. Modified by Larissa Triess (2020) """ import os import sys import tensorflow as tf from tensorflow.python.framework import ops BASE_DIR = os.path.dirname(os.path.abspath(__file__)) sys.path.append(BASE_DIR) sampling_module = tf.load_op_library(os.path.join(BASE_DIR, "tf_sampling_so.so")) def farthest_point_sample(k: int, points: tf.Tensor) -> tf.Tensor: """Returns the indices of the k farthest points in points Arguments: k : int The number of points to consider. points : tf.Tensor(shape=(batch_size, P1, 3), dtype=tf.float32) The points with P1 dataset points given in xyz. Returns: indices : tf.Tensor(shape=(batch_size, k), dtype=tf.int32) The indices of the k farthest points in points. """ return sampling_module.farthest_point_sample(points, k) ops.NoGradient("FarthestPointSample")
25.439024
81
0.701822
0
0
0
0
0
0
0
0
650
0.623202
3626d45d010076e81364291684b9ea5d2493fb6c
561
py
Python
gql/resolvers/mutations/scope.py
apoveda25/graphql-python-server
eb7b911aa1116327120b857beb17da3e30523e74
[ "Apache-2.0" ]
4
2020-06-20T11:54:04.000Z
2021-09-07T11:41:32.000Z
gql/resolvers/mutations/scope.py
apoveda25/graphql-python-server
eb7b911aa1116327120b857beb17da3e30523e74
[ "Apache-2.0" ]
null
null
null
gql/resolvers/mutations/scope.py
apoveda25/graphql-python-server
eb7b911aa1116327120b857beb17da3e30523e74
[ "Apache-2.0" ]
null
null
null
from ariadne import MutationType from datetime import datetime as dt from models.scope import Scope from schemas.helpers.normalize import change_keys from schemas.scope import ScopeCreate mutations_resolvers = MutationType() @mutations_resolvers.field("scopeCreate") async def resolve_scope_create(_, info, scope) -> dict: store_data = Scope.get_instance() data = ScopeCreate(**scope, key=f'{scope["collection"]}{scope["action"]}') normalize = change_keys(data.dict(exclude_none=True), key="_key") return await store_data.create(normalize)
31.166667
78
0.773619
0
0
0
0
331
0.590018
289
0.515152
60
0.106952
36288867b24d81ec55fecb507750b334c645d763
5,188
py
Python
napari_subboxer/interactivity_utils.py
alisterburt/napari-subboxer
f450e72a5c1c64c527c4f999644f99f3109c36e8
[ "BSD-3-Clause" ]
3
2021-11-01T18:18:43.000Z
2021-11-25T02:59:50.000Z
napari_subboxer/interactivity_utils.py
alisterburt/napari-subboxer
f450e72a5c1c64c527c4f999644f99f3109c36e8
[ "BSD-3-Clause" ]
1
2021-11-24T20:59:18.000Z
2021-11-24T20:59:24.000Z
napari_subboxer/interactivity_utils.py
alisterburt/napari-subboxer
f450e72a5c1c64c527c4f999644f99f3109c36e8
[ "BSD-3-Clause" ]
null
null
null
from typing import Optional import napari import napari.layers import numpy as np from napari.utils.geometry import project_point_onto_plane def point_in_bounding_box(point: np.ndarray, bounding_box: np.ndarray) -> bool: """Determine whether an nD point is inside an nD bounding box. Parameters ---------- point : np.ndarray (n,) array containing nD point coordinates to check. bounding_box : np.ndarray (2, n) array containing the min and max of the nD bounding box. As returned by `Layer._extent_data`. """ if np.all(point > bounding_box[0]) and np.all(point < bounding_box[1]): return True return False def drag_data_to_projected_distance( start_position, end_position, view_direction, vector ): """Calculate the projected distance between two mouse events. Project the drag vector between two mouse events onto a 3D vector specified in data coordinates. The general strategy is to 1) find mouse drag start and end positions, project them onto a pseudo-canvas (a plane aligned with the canvas) in data coordinates. 2) project the mouse drag vector onto the (normalised) vector in data coordinates Parameters ---------- start_position : np.ndarray Starting point of the drag vector in data coordinates end_position : np.ndarray End point of the drag vector in data coordinates view_direction : np.ndarray Vector defining the plane normal of the plane onto which the drag vector is projected. vector : np.ndarray (3,) unit vector or (n, 3) array thereof on which to project the drag vector from start_event to end_event. This argument is defined in data coordinates. Returns ------- projected_distance : (1, ) or (n, ) np.ndarray of float """ # enforce at least 2d input vector = np.atleast_2d(vector) # Store the start and end positions in world coordinates start_position = np.array(start_position) end_position = np.array(end_position) # Project the start and end positions onto a pseudo-canvas, a plane # parallel to the rendered canvas in data coordinates. start_position_canvas = start_position end_position_canvas = project_point_onto_plane( end_position, start_position_canvas, view_direction ) # Calculate the drag vector on the pseudo-canvas. drag_vector_canvas = np.squeeze( end_position_canvas - start_position_canvas ) # Project the drag vector onto the specified vector(s), return the distance return np.einsum('j, ij -> i', drag_vector_canvas, vector).squeeze() def point_in_layer_bounding_box(point, layer): bbox = layer._display_bounding_box(layer._dims_displayed).T if np.any(point < bbox[0]) or np.any(point > bbox[1]): return False else: return True def rotation_matrices_to_align_vectors(a: np.ndarray, b: np.ndarray): """ Find rotation matrices r such that r @ a = b Implementation designed to avoid trig calls, a and b must be normalised. based on https://iquilezles.org/www/articles/noacos/noacos.htm Parameters ---------- a : np.ndarray (1 or n, 3) normalised vector(s) of length 3. b : np.ndarray (1 or n, 3) normalised vector(s) of length 3. Returns ------- r : np.ndarray (3, 3) rotation matrix or (n, 3, 3) array thereof. """ # setup a = a.reshape(-1, 3) b = b.reshape(-1, 3) n_vectors = a.shape[0] # cross product to find axis about which rotation should occur axis = np.cross(a, b, axis=1) # dot product equals cosine of angle between normalised vectors cos_angle = np.einsum('ij, ij -> i', a, b) # k is a constant which appears as a factor in the rotation matrix k = 1 / (1 + cos_angle) # construct rotation matrix r = np.empty((n_vectors, 3, 3)) r[:, 0, 0] = (axis[:, 0] * axis[:, 0] * k) + cos_angle r[:, 0, 1] = (axis[:, 1] * axis[:, 0] * k) - axis[:, 2] r[:, 0, 2] = (axis[:, 2] * axis[:, 0] * k) + axis[:, 1] r[:, 1, 0] = (axis[:, 0] * axis[:, 1] * k) + axis[:, 2] r[:, 1, 1] = (axis[:, 1] * axis[:, 1] * k) + cos_angle r[:, 1, 2] = (axis[:, 2] * axis[:, 1] * k) - axis[:, 0] r[:, 2, 0] = (axis[:, 0] * axis[:, 2] * k) - axis[:, 1] r[:, 2, 1] = (axis[:, 1] * axis[:, 2] * k) + axis[:, 0] r[:, 2, 2] = (axis[:, 2] * axis[:, 2] * k) + cos_angle return r.squeeze() def rotation_matrix_from_z_vector(z_vector: np.ndarray): return rotation_matrices_to_align_vectors(np.array([0, 0, 1]), z_vector) def theta2rotz(theta: np.ndarray) -> np.ndarray: """ Rz = [[c(t), -s(t), 0], [s(t), c(t), 0], [ 0, 0, 1]] """ theta = np.deg2rad(np.asarray(theta).reshape(-1)) rotation_matrices = np.zeros((theta.shape[0], 3, 3), dtype=float) cos_theta = np.cos(theta) sin_theta = np.sin(theta) rotation_matrices[:, 2, 2] = 1 rotation_matrices[:, (0, 1), (0, 1)] = cos_theta[:, np.newaxis] rotation_matrices[:, 0, 1] = -sin_theta rotation_matrices[:, 1, 0] = sin_theta return rotation_matrices.squeeze()
35.292517
79
0.632999
0
0
0
0
0
0
0
0
2,563
0.494025
3628f30f1da84eb0aeefd00f476c1a8932e5c523
1,245
py
Python
src/attribute_generator.py
neutron101/cs231A-project
a147a3cc7de66c852dfc6b8cb9c65780c9d55d07
[ "MIT" ]
null
null
null
src/attribute_generator.py
neutron101/cs231A-project
a147a3cc7de66c852dfc6b8cb9c65780c9d55d07
[ "MIT" ]
null
null
null
src/attribute_generator.py
neutron101/cs231A-project
a147a3cc7de66c852dfc6b8cb9c65780c9d55d07
[ "MIT" ]
null
null
null
import numpy as np class AttributeGenerator: def __init__(self, RTs, Ks, Ps): self._RTs = RTs self._Ks = Ks self._Ps = Ps def generate(self): self._update_intrinsics() self._update_translation_and_rotation() self._updateProjection() def use_default_translation_and_rotation(self): self.rotation_translation = self._RTs def _updateProjection(self): self.projection = [] for i in range(len(self.rotation_translation)): kr = self.intrinsics[i].dot(self.rotation_translation[i][0:3,0:3].transpose()) kt = np.reshape(self.intrinsics[i].dot(-1*self.rotation_translation[i][0:3,0:3].transpose().dot(self.rotation_translation[i][0:3,3])), [3,1]) new_projection = np.hstack((kr, kt)) self.projection.append(new_projection) def _update_translation_and_rotation(self): self.rotation_translation = [] base_rot = self._RTs[0][0:3,0:3] base_trans = self._RTs[0][0:3,3] for i in range(0, len(self._RTs)): current = np.linalg.inv(base_rot).dot(self._RTs[i][0:3,0:3]) t = np.linalg.inv(current).dot(self._RTs[i][0:3,3] - base_trans) rt = np.hstack((current, np.reshape(t, [3,1]))) self.rotation_translation.append(rt) def _update_intrinsics(self): self.intrinsics = self._Ks
24.411765
144
0.702811
1,218
0.978313
0
0
0
0
0
0
0
0
362a49ef92737d73a5b3be88d93c98a6d215ec47
6,265
py
Python
theDarkArtsClass.py
biechuyangwang/UniversalAutomaticAnswer
4c558396cc04b36224e9be4409f80f9654c4aa88
[ "Apache-2.0" ]
2
2021-12-11T19:11:59.000Z
2021-12-24T19:32:12.000Z
theDarkArtsClass.py
biechuyangwang/UniversalAutomaticAnswer
4c558396cc04b36224e9be4409f80f9654c4aa88
[ "Apache-2.0" ]
null
null
null
theDarkArtsClass.py
biechuyangwang/UniversalAutomaticAnswer
4c558396cc04b36224e9be4409f80f9654c4aa88
[ "Apache-2.0" ]
null
null
null
# 分析黑魔法防御课界面 import cv2 import sys sys.path.append(r"C:\\Users\\SAT") # 添加自定义包的路径 from UniversalAutomaticAnswer.conf.confImp import get_yaml_file from UniversalAutomaticAnswer.screen.screenImp import ScreenImp # 加入自定义包 from UniversalAutomaticAnswer.ocr.ocrImp import OCRImp from UniversalAutomaticAnswer.util.filter import filterQuestion, filterLine, filterPersonState from paddleocr import PaddleOCR # 获取配置文件 conf_path = 'conf/conf.yml' conf_data = get_yaml_file(conf_path) # 初始化ocr模型 ocr = OCRImp(conf_data) # 初始化屏幕操作模块 screen = ScreenImp(conf_data) # left click import win32api import win32con def left_click(x,y,times=4): win32api.SetCursorPos((x,y)) import time while times: win32api.mouse_event(win32con.MOUSEEVENTF_LEFTDOWN,x,y,0,0) win32api.mouse_event(win32con.MOUSEEVENTF_LEFTUP,x,y,0,0) times -= 1 walk_coordinate = [[330,640],[1260,630],[740,550]] # 左 右 中 card_coordinate = [[522,820],[695,798],[838,821],[987,818],[1185,830]] # ~ 1 2 3 4 # charms_coordinate = [[200,770,300,855],[630,700,676,777],[765,690,818,778],[910,700,960,775],[1060,700,1108,786],[556, 878,637, 922]] # states: steps 1 2 3 4 HP # copy_coordinate = [[540,400,650,500],[980,345,1090,445],[1160,320,1260,420]] win_rect, img= screen.get_screenshot() # img_path = './img/harry_charmsclass.png' # img = cv2.imread(img_path) # img_steps = img[770:855,200:300] # img1 = img[700:800,600:700] # img2 = img[690:778,765:818] # 点击 850 716 # img3 = img[700:775,910:960] # img4 = img[700:786,1060:1108] # img5 = img[878:932,556:637] # 蓝条 # walk_coordinate = [[850,716],[846,712],[854,720]] # card_coordinate = [[522,820],[695,798],[838,821],[987,818],[1122,830]] # ~ 1 2 3 4 import matplotlib.pyplot as plt # result = ocr.ocr(img, det=True, cls=True) # print(result) # plt.imshow(img) # plt.show() # """ def is_start(img, str_start): img_start = screen.get_startMatchBtn(img) result_start = ocr.ocr(img_start) content_start = ocr.ocr_content(result_start) content_start = filterLine(content_start) if len(content_start)>0 and content_start[0] == str_start: time.sleep(5) x, y = 1300, 840 left_click(win_rect[0]+x,win_rect[1]+y,2) return True return False count_steps = 0 epoch_num = 3 while True: if epoch_num == 0: break import time time.sleep(2) win_rect, img= screen.get_screenshot() # img_path = './img/harry_darkclass3.png' # # img = cv2.imread(img_path) # print(img.shape) # img = img[875:920,1185:1300] # [1185, 875, 1300, 920] 点击继续 # img = img[830:880, 1234:1414] # [1234,830,1414,880] 匹配上课 # 识别匹配上课 flag1 = is_start(img, '匹配上课') flag2 = is_start(img, '学院活动匹配') if flag1 or flag2: # 识别到了就跳过,重新截图 epoch_num -= 1 continue # 识别继续按钮 img_continue = img[875:920,1185:1300] result_continue = ocr.ocr(img_continue) content_continue = ocr.ocr_content(result_continue) content_continue = filterLine(content_continue) if len(content_continue)>0 and content_continue[0] == '点击继续': x, y = 1200, 890 left_click(win_rect[0]+x,win_rect[1]+y,2) time.sleep(1) continue img_steps, img_1, img_2, img_3, img_4, img_5 = '-1', '15', '15', '15', '15', '11' img_steps = img[800:850, 200:265] img_1 = img[710:777, 615:665] # 1 img_2 = img[710:777, 770:820] # 2 img_3 = img[710:777, 920:970] # 3 img_4 = img[720:787, 1060:1110] # 4 img_nextcard = img[768:816, 1205:1246,::-1] # 下一张卡 img_5 = img[878:932,556:637] # 蓝条 result_steps = ocr.ocr(img_steps) result_1 = ocr.ocr(img_1) result_2 = ocr.ocr(img_2) result_3 = ocr.ocr(img_3) result_4 = ocr.ocr(img_4) result_nextcard = ocr.ocr(img_nextcard) result_5 = ocr.ocr(img_5) result_steps = ocr.ocr_content(result_steps) result_steps = filterLine(result_steps) result_1 = ocr.ocr_content(result_1) result_1 = filterLine(result_1) result_2 = ocr.ocr_content(result_2) result_2 = filterLine(result_2) result_3 = ocr.ocr_content(result_3) result_3 = filterLine(result_3) result_4 = ocr.ocr_content(result_4) result_4 = filterLine(result_4) result_5 = ocr.ocr_content(result_5) result_5 = filterLine(result_5) if (result_steps!=None) and len(result_steps) > 0 and result_steps[0].isdigit(): result_steps = int(result_steps[0][0][0]) else: result_steps = 0 if (result_1!=None) and len(result_1) > 0 and result_1[0].isdigit(): result_1 = int(result_1[0][0][0]) else: result_1 = 15 if (result_2!=None) and len(result_2) > 0 and result_2[0].isdigit(): result_2 = int(result_2[0][0][0]) else: result_2 = 15 if (result_3!=None) and len(result_3) > 0 and result_3[0].isdigit(): result_3 = int(result_3[0][0][0]) else: result_3 = 15 if (result_4!=None) and len(result_4) > 0 and result_4[0].isdigit(): result_4 = int(result_4[0][0][0]) else: result_4 = 15 if (result_5!=None) and len(result_5) > 0 and result_5[0].isdigit(): result_5 = int(result_5[0][0][0]) else: result_5 = -1 fee = [result_1,result_2,result_3,result_4] idx = fee.index(min(fee)) import random # idx = random.randint(0, 3) # if fee[idx]>7: # continue walk_idx = random.randint(0, 2) x_walk, y_walk = walk_coordinate[walk_idx][0], walk_coordinate[walk_idx][1] x_0, y_0 = card_coordinate[0][0], card_coordinate[0][1] # 伙伴卡 x, y = card_coordinate[idx+1][0], card_coordinate[idx+1][1] if result_5 == -1 or result_5 > 5: if count_steps % 3 == 0: left_click(win_rect[0]+x_walk,win_rect[1]+y_walk,4) # 走一步 left_click(win_rect[0]+x_0,win_rect[1]+y_0,4) # 点击伙伴卡 count_steps += 1 left_click(win_rect[0]+x,win_rect[1]+y,4) # 点击目标卡 print('所剩步数:',result_steps) print('卡1费用:',result_1) print('卡2费用:',result_2) print('卡3费用:',result_3) print('卡4费用:',result_4) print('剩余费用:',result_5) print('点击位置:', x, y) # """ # img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) # import matplotlib.pyplot as plt # plt.imshow(img) # plt.show() # cv2.imwrite('./img/harry_charmsclass.png',img)
34.423077
162
0.65012
0
0
0
0
0
0
0
0
1,755
0.267245
362bc4e36845077cd1de93becd4b863b9767b65f
521
py
Python
lt_104.py
fdzhonglin/trees
9a13412a5c424560722abf2caac797540fa508e4
[ "MIT" ]
null
null
null
lt_104.py
fdzhonglin/trees
9a13412a5c424560722abf2caac797540fa508e4
[ "MIT" ]
null
null
null
lt_104.py
fdzhonglin/trees
9a13412a5c424560722abf2caac797540fa508e4
[ "MIT" ]
null
null
null
# standard traversal problem class Solution(object): def maxDepth(self, root): """ :type root: TreeNode :rtype: int """ # leaf condition if root == None: return 0 # skeleton, since function has return, need to assign variables for following usage left_depth = self.maxDepth(root.left) right_depth = self.maxDepth(root.right) # this is according to the definition return max(left_depth, right_depth) + 1
30.647059
91
0.589251
492
0.944338
0
0
0
0
0
0
228
0.43762
362d167af1df22dfcc0fab4281874b494b14c018
826
py
Python
src/anim.py
JovialKnoll/monsters
15d969d0220fd003c2c28ae690f66633da370682
[ "MIT" ]
2
2017-05-14T06:37:14.000Z
2022-03-07T02:25:32.000Z
src/anim.py
JovialKnoll/monsters
15d969d0220fd003c2c28ae690f66633da370682
[ "MIT" ]
2
2017-10-08T19:41:18.000Z
2021-04-08T04:40:50.000Z
src/anim.py
JovialKnoll/monsters
15d969d0220fd003c2c28ae690f66633da370682
[ "MIT" ]
null
null
null
import pygame.mixer from vec2d import Vec2d from saveable import Saveable class Anim(Saveable): __slots__ = ( 'func', 'time', 'pos', 'sound', 'positional_sound', ) def __init__(self, func: str, time: int, x_or_pair, y=None, sound: pygame.mixer.Sound = None, positional_sound: bool = False): self.func = func self.time = time self.pos = Vec2d(x_or_pair, y) self.sound = sound self.positional_sound = positional_sound def save(self): # no sound right now, sorry # if we need it, either start passing sounds as paths # or don't save when there are pending Anims return self.func, self.time, self.pos @classmethod def load(cls, save_data): return cls(*save_data)
25.030303
83
0.596852
748
0.905569
0
0
73
0.088378
0
0
166
0.200969
362e01958a44c444693e75555e77973e632954c9
5,926
py
Python
nevermined_compute_api/workflow_utils.py
nevermined-io/compute-api
c0d3b1875b3b95ffa78374ff89a4fefd0d3af598
[ "Apache-2.0" ]
null
null
null
nevermined_compute_api/workflow_utils.py
nevermined-io/compute-api
c0d3b1875b3b95ffa78374ff89a4fefd0d3af598
[ "Apache-2.0" ]
3
2020-11-20T11:57:04.000Z
2021-04-06T10:56:49.000Z
nevermined_compute_api/workflow_utils.py
nevermined-io/compute-api
c0d3b1875b3b95ffa78374ff89a4fefd0d3af598
[ "Apache-2.0" ]
null
null
null
import os from pathlib import Path import json from contracts_lib_py.utils import get_account from common_utils_py.ddo.ddo import DDO from nevermined_sdk_py import Nevermined, Config import yaml from configparser import ConfigParser config_parser = ConfigParser() configuration = config_parser.read('config.ini') GROUP = config_parser.get('resources', 'group') # str | The custom resource's group name VERSION = config_parser.get('resources', 'version') # str | The custom resource's version NAMESPACE = config_parser.get('resources', 'namespace') # str | The custom resource's namespace KEYFILE = json.loads(Path(os.getenv("PROVIDER_KEYFILE")).read_text()) def create_execution(service_agreement_id, workflow): """Creates the argo workflow template Args: service_agreement_id (str): The id of the service agreement being executed workflow (dict): The workflow submitted to the compute api Returns: dict: The workflow template filled by the compute api with all the parameters """ ddo = DDO(dictionary=workflow) workflow_template = get_workflow_template() workflow_template['apiVersion'] = GROUP + '/' + VERSION workflow_template['metadata']['namespace'] = NAMESPACE workflow_template['spec']['arguments']['parameters'] += create_arguments(ddo) workflow_template["spec"]["workflowMetadata"]["labels"][ "serviceAgreementId"] = service_agreement_id if ddo.metadata["main"]["type"] == "fl-coordinator": workflow_template["spec"]["entrypoint"] = "coordinator-workflow" else: workflow_template["spec"]["entrypoint"] = "compute-workflow" return workflow_template def create_arguments(ddo): """Create the arguments that need to be add to the argo template. Args: ddo (:py:class:`common_utils_py.ddo.ddo.DDO`): The workflow DDO. Returns: list: The list of arguments to be appended to the argo workflow """ args = '' image = '' tag = '' if ddo.metadata["main"]["type"] != "fl-coordinator": workflow = ddo.metadata["main"]["workflow"] options = { "resources": { "metadata.url": "http://172.17.0.1:5000", }, "keeper-contracts": { "keeper.url": "http://172.17.0.1:8545" } } config = Config(options_dict=options) nevermined = Nevermined(config) # TODO: Currently this only supports one stage transformation_did = workflow["stages"][0]["transformation"]["id"] transformation_ddo = nevermined.assets.resolve(transformation_did) transformation_metadata = transformation_ddo.get_service("metadata") # get args and container args = transformation_metadata.main["algorithm"]["entrypoint"] image = transformation_metadata.main["algorithm"]["requirements"]["container"]["image"] tag = transformation_metadata.main["algorithm"]["requirements"]["container"]["tag"] arguments = [ { "name": "credentials", # remove white spaces "value": json.dumps(KEYFILE, separators=(",", ":")) }, { "name": "password", "value": os.getenv("PROVIDER_PASSWORD") }, { "name": "metadata_url", "value": "http://172.17.0.1:5000" }, { "name": "gateway_url", "value": "http://172.17.0.1:8030" }, { "name": "node", "value": "http://172.17.0.1:8545" }, { "name": "secret_store_url", "value": "http://172.17.0.1:12001" }, { "name": "workflow", "value": f"did:nv:{ddo.asset_id[2:]}" }, { "name": "verbose", "value": "false" }, { "name": "transformation_container_image", "value": f"{image}:{tag}" }, { "name": "transformation_arguments", "value": args } ] return arguments def setup_keeper(): init_account_envvars() account = get_account(0) if account is None: raise AssertionError(f'Nevermined Gateway cannot run without a valid ' f'ethereum account. Account address was not found in the environment' f'variable `PROVIDER_ADDRESS`. Please set the following evnironment ' f'variables and try again: `PROVIDER_ADDRESS`, `PROVIDER_PASSWORD`, ' f', `PROVIDER_KEYFILE`, `RSA_KEYFILE` and `RSA_PASSWORD`.') if not account.key_file and not (account.password and account.key_file): raise AssertionError(f'Nevermined Gateway cannot run without a valid ' f'ethereum account with either a password and ' f'keyfile/encrypted-key-string ' f'or private key. Current account has password {account.password}, ' f'keyfile {account.key_file}, encrypted-key {account._encrypted_key} ' f'and private-key {account._private_key}.') def init_account_envvars(): os.environ['PARITY_ADDRESS'] = os.getenv('PROVIDER_ADDRESS', '') os.environ['PARITY_PASSWORD'] = os.getenv('PROVIDER_PASSWORD', '') os.environ['PARITY_KEYFILE'] = os.getenv('PROVIDER_KEYFILE', '') os.environ['PSK-RSA_PRIVKEY_FILE'] = os.getenv('RSA_PRIVKEY_FILE', '') os.environ['PSK-RSA_PUBKEY_FILE'] = os.getenv('RSA_PUBKEY_FILE', '') def get_workflow_template(): """Returns a pre configured argo workflow template. Returns: dict: argo workflow template """ path = Path(__file__).parent / "argo-workflow.yaml" with path.open() as f: workflow_template = yaml.safe_load(f) return workflow_template
35.065089
99
0.602599
0
0
0
0
0
0
0
0
2,766
0.466757
362f493d8462bb8006f529fc1fed6929dd628362
1,206
py
Python
providers/scoop_mock_provider.py
prezesp/scoop-viewer
115f413979ba2e4e766e334f0240082a9343e314
[ "MIT" ]
86
2018-07-17T14:21:05.000Z
2022-03-29T03:00:40.000Z
providers/scoop_mock_provider.py
prezesp/scoop-viewer
115f413979ba2e4e766e334f0240082a9343e314
[ "MIT" ]
16
2018-04-24T22:45:24.000Z
2021-12-15T08:37:38.000Z
providers/scoop_mock_provider.py
prezesp/scoop-viewer
115f413979ba2e4e766e334f0240082a9343e314
[ "MIT" ]
5
2018-03-28T18:24:52.000Z
2022-01-08T11:28:31.000Z
""" Module to interact with scoop. """ from subprocess import Popen, PIPE # nosec import os class ScoopMockProvider: """ Module to interact with scoop. """ def __init__(self): self.version = 'unknown' def get_version(self): pass def __run_scoop(self, args, universal_newlines=False): workdir = os.path.dirname(os.path.realpath(__file__)) return Popen(['python', os.path.join(workdir, 'mock', 'scoop.py')] + args, stdin=PIPE, stdout=PIPE, stderr=PIPE, universal_newlines=universal_newlines) # nosec def get_installed(self): # pylint: disable=R0201 """ Get all installed app from scoop. """ stdout, _ = self.__run_scoop(['list']).communicate() stdout = stdout.decode("utf-8") return [a.strip().split(' ')[0] for a in stdout.split('\n')] def install(self, app, file_size_wrapper): # pylint: disable=R0201 """ Install app through scoop. """ _, _ = self.__run_scoop(['install', app]).communicate() def uninstall(self, app): # pylint: disable=R0201 """ Uninstal app. """ _, _ = self.__run_scoop(['uninstall', app]).communicate()
32.594595
82
0.609453
1,112
0.922056
0
0
0
0
0
0
328
0.271973
362ff49962e9b464199213d8822138a4aa8efdf5
515
py
Python
services/movies_streaming_converter/src/models/convertation.py
fuodorov/yacinema
43ad869575fbaab7c7056229538638666aa87110
[ "MIT" ]
null
null
null
services/movies_streaming_converter/src/models/convertation.py
fuodorov/yacinema
43ad869575fbaab7c7056229538638666aa87110
[ "MIT" ]
null
null
null
services/movies_streaming_converter/src/models/convertation.py
fuodorov/yacinema
43ad869575fbaab7c7056229538638666aa87110
[ "MIT" ]
1
2021-09-30T09:49:40.000Z
2021-09-30T09:49:40.000Z
import datetime import uuid from typing import Optional from models.base import CustomBaseModel class ConvertVideoIn(CustomBaseModel): source_path: str destination_path: str resolution: str codec_name: Optional[str] = None display_aspect_ratio: Optional[str] = None fps: Optional[int] = None class ConvertVideoCreate(ConvertVideoIn): id: uuid.UUID = uuid.uuid4() created_at: datetime.datetime = datetime.datetime.now() class ConvertVideoOut(CustomBaseModel): result: bool
21.458333
59
0.751456
409
0.794175
0
0
0
0
0
0
0
0
36307c13abd4a232603e88d4d656fa8c1d5c6d39
3,965
py
Python
flasc/circular_statistics.py
NREL/flasc
ac734892efc1bc7684e2393ffa1ce7a97a54efa1
[ "Apache-2.0" ]
3
2022-01-23T19:33:32.000Z
2022-03-14T10:29:36.000Z
flasc/circular_statistics.py
NREL/flasc
ac734892efc1bc7684e2393ffa1ce7a97a54efa1
[ "Apache-2.0" ]
2
2022-03-02T20:45:30.000Z
2022-03-22T18:49:24.000Z
flasc/circular_statistics.py
NREL/flasc
ac734892efc1bc7684e2393ffa1ce7a97a54efa1
[ "Apache-2.0" ]
4
2022-02-17T18:40:36.000Z
2022-03-24T05:44:31.000Z
# Copyright 2021 NREL # Licensed under the Apache License, Version 2.0 (the "License"); you may not # use this file except in compliance with the License. You may obtain a copy of # the License at http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations under # the License. import numpy as np from floris.utilities import wrap_360 def calc_wd_mean_radial(angles_array_deg, axis=0): # Use unit vectors to calculate the mean wd_x = np.cos(angles_array_deg * np.pi / 180.) wd_y = np.sin(angles_array_deg * np.pi / 180.) mean_wd = np.arctan2(np.sum(wd_y, axis=axis), np.sum(wd_x, axis=axis)) mean_wd = wrap_360(mean_wd * 180. / np.pi) return mean_wd # def calc_wd_mean_radial_list(angles_array_list): # if isinstance(angles_array_list, (pd.DataFrame, pd.Series)): # array = np.array(angles_array_list) # elif isinstance(angles_array_list, list): # array = np.vstack(angles_array_list).T # else: # array = np.array(angles_array_list) # # Use unit vectors to calculate the mean # dir_x = np.cos(array * np.pi / 180.).sum(axis=1) # dir_y = np.sin(array * np.pi / 180.).sum(axis=1) # mean_dirs = np.arctan2(dir_y, dir_x) # mean_out = wrap_360(mean_dirs * 180. / np.pi) # return mean_out def calculate_wd_statistics(angles_array_deg, axis=0, calc_median_min_max_std=True): """Determine statistical properties of an array of wind directions. This includes the mean of the array, the median, the standard deviation, the minimum value and the maximum value. Args: angles_array_deg ([float/int]): Array of angles in degrees Returns: mean_wd (float): Mean wind direction in [0, 360] deg median_wd (float): Median wind direction in [0, 360] deg std_wd (float): Standard deviation in deg min_wd (float): Minimum wind direction in [0, 360] deg max_wd (float): Maximum wind direction in [0, 360] deg """ # Preprocessing angles_array_deg = np.array(angles_array_deg, dtype=float) angles_array_deg = wrap_360(angles_array_deg) # Check for unique cases if angles_array_deg.shape[0] <= 0: if calc_median_min_max_std: return np.nan, np.nan, np.nan, np.nan, np.nan else: return np.nan if np.unique(angles_array_deg).shape[0] == 1: mean_wd = angles_array_deg[0] if not calc_median_min_max_std: return mean_wd median_wd = angles_array_deg[0] std_wd = 0.0 min_wd = angles_array_deg[0] max_wd = angles_array_deg[0] return mean_wd, median_wd, std_wd, min_wd, max_wd # Calculate the mean mean_wd = calc_wd_mean_radial(angles_array_deg, axis=axis) # Return if we dont need to calculate statistical properties if not calc_median_min_max_std: return mean_wd # Upsample mean_wd for next calculations new_shape = list(mean_wd.shape) new_shape.insert(axis, 1) # Add dimension at axis new_shape = tuple(new_shape) mean_wd_full = mean_wd.reshape(new_shape).repeat( angles_array_deg.shape[axis], axis=axis) # Copy angles_array_deg and wrap values around its mean value angles_wrp = angles_array_deg angles_wrp[angles_wrp > (mean_wd_full + 180.)] += -360. angles_wrp[angles_wrp < (mean_wd_full - 180.)] += 360. median_wd = wrap_360(np.nanmedian(angles_wrp, axis=axis)) std_wd = np.nanstd(angles_wrp, axis=axis) min_wd = wrap_360(np.nanmin(angles_wrp, axis=axis)) max_wd = wrap_360(np.nanmax(angles_wrp, axis=axis)) return mean_wd, median_wd, std_wd, min_wd, max_wd
35.088496
79
0.682219
0
0
0
0
0
0
0
0
2,001
0.504666
36323555756558519c34b677df24af6e2865a756
2,797
py
Python
src/cltl/backend/source/pyaudio_source.py
leolani/cltl-backend
4ecc6227f9d48e40b9f59e6d78e0fcee9cdadbd4
[ "MIT" ]
null
null
null
src/cltl/backend/source/pyaudio_source.py
leolani/cltl-backend
4ecc6227f9d48e40b9f59e6d78e0fcee9cdadbd4
[ "MIT" ]
null
null
null
src/cltl/backend/source/pyaudio_source.py
leolani/cltl-backend
4ecc6227f9d48e40b9f59e6d78e0fcee9cdadbd4
[ "MIT" ]
null
null
null
import logging import uuid from typing import Iterable import numpy as np import pyaudio from cltl.backend.api.util import raw_frames_to_np from cltl.backend.spi.audio import AudioSource logger = logging.getLogger(__name__) class PyAudioSource(AudioSource): BUFFER = 8 def __init__(self, rate, channels, frame_size): self.id = str(uuid.uuid4())[:6] self._rate = rate self._channels = channels self._frame_size = frame_size self._pyaudio = pyaudio.PyAudio() self._active = False self._start_time = None self._time = None @property def audio(self) -> Iterable[np.array]: return raw_frames_to_np(self, self.frame_size, self.channels, self.depth) @property def rate(self) -> int: return self._rate @property def channels(self) -> int: return self._channels @property def frame_size(self) -> int: return self._frame_size @property def depth(self) -> int: return 2 @property def active(self): return self._active @property def time(self): return self._mic_time - self._start_time @property def _mic_time(self): return self._time @_mic_time.setter def _mic_time(self, stream_time): advanced = stream_time - self._time if advanced > self._stream.get_input_latency(): logger.exception("Latency exceeded buffer (%.4fsec) - dropped frames: %.4fsec", self._stream.get_input_latency(), advanced) self._time = stream_time def stop(self): self._active = False logger.debug("Stopped microphone (%s)", self.id) def __enter__(self): self._stream = self._pyaudio.open(self._rate, self._channels, pyaudio.paInt16, input=True, frames_per_buffer=self.BUFFER * self._frame_size) self._active = True self._start_time = self._stream.get_time() self._time = self._start_time logger.debug("Opened microphone (%s) with rate: %s, channels: %s, frame_size: %s", self.id, self._rate, self._channels, self._frame_size) return self def __exit__(self, exc_type, exc_val, exc_tb): if self._active: self._active = False self._stream.close() logger.debug("Closed microphone (%s)", self.id) else: logger.warning("Ignored close microphone (%s)", self.id) def __iter__(self): return self def __next__(self): if not self._active: raise StopIteration() data = self._stream.read(self._frame_size, exception_on_overflow=False) self._mic_time = self._stream.get_time() return data
27.15534
98
0.620665
2,568
0.918127
0
0
944
0.337504
0
0
209
0.074723
363237db275189c9b2a840bb149422bab3cd8c25
21,097
py
Python
toolkit4nlp/optimizers.py
xv44586/toolkit4nlp
0ca8c45efe4ad4c6dc20b47016a13326aadcd0bd
[ "Apache-2.0" ]
94
2020-07-16T03:07:59.000Z
2022-03-13T08:06:30.000Z
toolkit4nlp/optimizers.py
xv44586/toolkit4nlp
0ca8c45efe4ad4c6dc20b47016a13326aadcd0bd
[ "Apache-2.0" ]
14
2020-11-24T04:26:26.000Z
2021-09-13T02:44:51.000Z
toolkit4nlp/optimizers.py
xv44586/toolkit4nlp
0ca8c45efe4ad4c6dc20b47016a13326aadcd0bd
[ "Apache-2.0" ]
17
2020-09-04T07:24:24.000Z
2021-11-19T06:35:18.000Z
# -*- coding: utf-8 -*- # @Date : 2020/7/6 # @Author : mingming.xu # @Email : xv44586@gmail.com # @File : optimizers.py import re import numpy as np import tensorflow as tf from keras.optimizers import * from toolkit4nlp.backend import keras, K, is_tf_keras, piecewise_linear from toolkit4nlp.utils import * class Adam(keras.optimizers.Optimizer): ''' w_t = w_t-1 - update_t update_t = lr * m_t / sqrt(v_t) m_t = beta_1 * m_t-1 + (1 - beta_1) * g_t v_t = beta_2 * v_t-1 + (1 - beta_2) * g_t**2 由于更新前期梯度较小,容易朝着0方向走,所以通常加一个bias correct来校正方向 m_t_hat = m_t / (1 + beta_1**t) v_t_hat = v_t / (1 + beta_2 ** t) ref: - [zhihu-zhuanlan]( https://zhuanlan.zhihu.com/p/32230623) - [Adam - A Method for Stochastic Optimization]( https://arxiv.org/abs/1412.6980v8) - [On the Convergence of Adam and Beyond]( https://openreview.net/forum?id=ryQu7f-RZ) ''' def __init__(self, learning_rate=0.001, beta_1=0.9, beta_2=0.99, epsilon=1e-6, bias_correct=True, **kwargs): kwargs['name'] = kwargs.get('name', 'Adam') super(Adam, self).__init__(**kwargs) self._set_hyper('learning_rate', learning_rate) self._set_hyper('beta_1', beta_1) self._set_hyper('beta_2', beta_2) self.epsilon = epsilon or K.epsilon() self.bias_correct = bias_correct def _create_slots(self, var_list): for var in var_list: self.add_slot(var, 'm') self.add_slot(var, 'v') def _resource_apply(self, grad, var, indices=None): var_dtype = var.dtype.base_dtype lr_t = self._decayed_lr(var_dtype) m = self.get_slot(var, 'm') v = self.get_slot(var, 'v') beta_1_t = self._get_hyper('beta_1', var_dtype) beta_2_t = self._get_hyper('beta_2', var_dtype) local_step = K.cast(self.iterations + 1, var_dtype) beta_1_power = K.pow(beta_1_t, local_step) beta_2_power = K.pow(beta_2_t, local_step) # update if indices is None: m_t = K.update(m, beta_1_t * m + (1 - beta_1_t) * grad) v_t = K.update(v, beta_2_t * v + (1 - beta_2_t) * grad ** 2) else: mv_ops = [K.update(m, beta_1_t * m), K.update(v, beta_2_t * v)] with tf.control_dependencies(mv_ops): m_t = self._resource_scatter_add(m, indices, (1 - beta_1_t) * grad) v_t = self._resource_scatter_add(v, indices, (1 - beta_2_t) * grad ** 2) # with tf.control_dependencies([m_t, v_t]): if self.bias_correct: m_t = m_t / (1 + beta_1_power) v_t = v_t / (1 + beta_2_power) var_t = var - lr_t * m_t / (K.sqrt(v_t) + self.epsilon) return K.update(var, var_t) def _resource_apply_dense(self, grad, var): return self._resource_apply(grad, var) def _resource_apply_sparse(self, grad, var, indices): return self._resource_apply(grad, var, indices) def get_config(self): config = { 'learnint_rate': self._serialize_hyperparameter('learning_rate'), 'beta_1': self._serialize_hyperparameter('beta_1'), 'beta_2': self._serialize_hyperparameter('beta_2'), 'epsilon': self.epsilon } basic_config = super(Adam, self).get_config() return dict(list(basic_config.items()) + list(config.items())) class AdaBelief(keras.optimizers.Optimizer): """AdaBelief optimizer. Default parameters follow those provided in the original paper. # Arguments learning_rate: float >= 0. Learning rate. beta_1: float, 0 < beta < 1. Generally close to 1. beta_2: float, 0 < beta < 1. Generally close to 1. amsgrad: boolean. Whether to apply the AMSGrad variant of this algorithm from the paper "On the Convergence of Adam and Beyond". # References - [Adam - A Method for Stochastic Optimization]( https://arxiv.org/abs/1412.6980v8) - [AdaBelief Optimizer: Adapting Stepsizes by the Belief in Observed Gradients]( https://arxiv.org/pdf/2010.07468.pdf) """ def __init__(self, learning_rate=0.001, beta_1=0.9, beta_2=0.999, amsgrad=False, **kwargs): self.initial_decay = kwargs.pop('decay', 0.0) self.epsilon = kwargs.pop('epsilon', K.epsilon()) learning_rate = kwargs.pop('lr', learning_rate) super(AdaBelief, self).__init__(**kwargs) with K.name_scope(self.__class__.__name__): self.iterations = K.variable(0, dtype='int64', name='iterations') self.learning_rate = K.variable(learning_rate, name='learning_rate') self.beta_1 = K.variable(beta_1, name='beta_1') self.beta_2 = K.variable(beta_2, name='beta_2') self.decay = K.variable(self.initial_decay, name='decay') self.amsgrad = amsgrad @K.symbolic def get_updates(self, loss, params): grads = self.get_gradients(loss, params) self.updates = [K.update_add(self.iterations, 1)] lr = self.learning_rate if self.initial_decay > 0: lr = lr * (1. / (1. + self.decay * K.cast(self.iterations, K.dtype(self.decay)))) t = K.cast(self.iterations, K.floatx()) + 1 lr_t = lr * (K.sqrt(1. - K.pow(self.beta_2, t)) / (1. - K.pow(self.beta_1, t))) ms = [K.zeros(K.int_shape(p), dtype=K.dtype(p), name='m_' + str(i)) for (i, p) in enumerate(params)] vs = [K.zeros(K.int_shape(p), dtype=K.dtype(p), name='v_' + str(i)) for (i, p) in enumerate(params)] if self.amsgrad: vhats = [K.zeros(K.int_shape(p), dtype=K.dtype(p), name='vhat_' + str(i)) for (i, p) in enumerate(params)] else: vhats = [K.zeros(1, name='vhat_' + str(i)) for i in range(len(params))] self.weights = [self.iterations] + ms + vs + vhats for p, g, m, v, vhat in zip(params, grads, ms, vs, vhats): m_t = (self.beta_1 * m) + (1. - self.beta_1) * g v_t = (self.beta_2 * v) + (1. - self.beta_2) * K.square(g - m_t) if self.amsgrad: vhat_t = K.maximum(vhat, v_t) p_t = p - lr_t * m_t / (K.sqrt(vhat_t) + self.epsilon) self.updates.append(K.update(vhat, vhat_t)) else: p_t = p - lr_t * m_t / (K.sqrt(v_t) + self.epsilon) self.updates.append(K.update(m, m_t)) self.updates.append(K.update(v, v_t)) new_p = p_t # Apply constraints. if getattr(p, 'constraint', None) is not None: new_p = p.constraint(new_p) self.updates.append(K.update(p, new_p)) return self.updates def get_config(self): config = {'learning_rate': float(K.get_value(self.learning_rate)), 'beta_1': float(K.get_value(self.beta_1)), 'beta_2': float(K.get_value(self.beta_2)), 'decay': float(K.get_value(self.decay)), 'epsilon': self.epsilon, 'amsgrad': self.amsgrad} base_config = super(AdaBelief, self).get_config() return dict(list(base_config.items()) + list(config.items())) class AdaBeliefTf(keras.optimizers.Optimizer): """tf.keras 版 """ def __init__( self, learning_rate=0.001, beta_1=0.9, beta_2=0.999, epsilon=1e-6, bias_correct=True, **kwargs ): kwargs['name'] = kwargs.get('name') or 'AdaBelief' super(AdaBeliefTf, self).__init__(**kwargs) self._set_hyper('learning_rate', learning_rate) self._set_hyper('beta_1', beta_1) self._set_hyper('beta_2', beta_2) self.epsilon = epsilon or K.epislon() self.bias_correct = bias_correct def _create_slots(self, var_list): for var in var_list: self.add_slot(var, 'm') self.add_slot(var, 'v') def _resource_apply(self, grad, var, indices=None): # 准备变量 var_dtype = var.dtype.base_dtype lr_t = self._decayed_lr(var_dtype) m = self.get_slot(var, 'm') v = self.get_slot(var, 'v') beta_1_t = self._get_hyper('beta_1', var_dtype) beta_2_t = self._get_hyper('beta_2', var_dtype) epsilon_t = K.cast(self.epsilon, var_dtype) local_step = K.cast(self.iterations + 1, var_dtype) beta_1_t_power = K.pow(beta_1_t, local_step) beta_2_t_power = K.pow(beta_2_t, local_step) # 更新公式 m_t = K.update(m, beta_1_t * m + (1 - beta_1_t) * grad) v_t = K.update(v, beta_2_t * v + (1 - beta_2_t) * (grad - m_t) ** 2) # 返回算子 with tf.control_dependencies([m_t, v_t]): if self.bias_correct: m_t = m_t / (1.0 - beta_1_t_power) v_t = v_t / (1.0 - beta_2_t_power) var_t = var - lr_t * m_t / (K.sqrt(v_t) + epsilon_t) return K.update(var, var_t) def _resource_apply_dense(self, grad, var): return self._resource_apply(grad, var) def _resource_apply_sparse(self, grad, var, indices): grad = tf.IndexedSlices(grad, indices, K.shape(var)) grad = tf.convert_to_tensor(grad) return self._resource_apply_dense(grad, var) def get_config(self): config = { 'learning_rate': self._serialize_hyperparameter('learning_rate'), 'beta_1': self._serialize_hyperparameter('beta_1'), 'beta_2': self._serialize_hyperparameter('beta_2'), 'epsilon': self.epsilon, 'bias_correct': self.bias_correct, } base_config = super(AdaBeliefTf, self).get_config() return dict(list(base_config.items()) + list(config.items())) def export_to_custom_objects(extend_with_func): def new_extend_with_func(BaseOptimizer, name=None): NewOptimizer = extend_with_func(BaseOptimizer) if name: NewOptimizer.__name__ = name name = NewOptimizer.__name__ keras.utils.get_custom_objects()[name] = NewOptimizer return NewOptimizer return new_extend_with_func @export_to_custom_objects def extend_with_gradient_accumulation_tf2(BaseOptimizer): class NewOptimizer(BaseOptimizer): @insert_arguments(grad_accum_steps=2) def __init__(self, *args, **kwargs): super(NewOptimizer, self).__init__(*args, **kwargs) def _create_slots(self, var_list): super(NewOptimizer, self)._create_slots(var_list) for var in var_list: self.add_slot(var, 'gradient_accumulation') def _resource_apply(self, grad, var, indices=None): """interation % acc_steps==0 then update else accumulate 思路是先判断是否累计了 acc_steps,如果没有,则update时保持原样, 并累计当前梯度,否则,更新梯度并将累计的梯度置零 """ # 是否更新 cond = K.equal(self.iterations % self.grad_accum_steps, 0) # 获取梯度累计量 gradient_accumulation = self.get_slot(var, 'gradient_accumulation') # 获取平均梯度 gradient_t = gradient_accumulation / self.grad_accum_steps old_update = K.update # 根据条件判断是否真的更新 def new_update(x, new_x): new_x = K.switch(cond, new_x, x) return old_update(x, new_x) K.update = new_update op = super(NewOptimizer, self)._resource_apply(gradient_t, var) K.update = old_update # 根据条件判断是否需要置零 with tf.control_dependencies([op]): gradient_t = K.switch(cond, K.zeros_like(gradient_accumulation), gradient_accumulation) with tf.control_dependencies([K.update(gradient_accumulation, gradient_t)]): if indices is None: gradient_t = K.update(gradient_accumulation, gradient_accumulation + grad) else: gradient_t = self._resource_scatter_add(gradient_accumulation, indices, grad) return gradient_t def get_config(self): config = super(NewOptimizer, self).get_config() config.update({'grad_accum_steps': self.grad_accum_steps}) return config return NewOptimizer @export_to_custom_objects def extend_with_gradient_accumulation(BaseOptimizer): """原生keras版""" class NewOptimizer(BaseOptimizer): @insert_arguments(grad_accum_steps=2) def __init__(self, *args, **kwargs): super(NewOptimizer, self).__init__(*args, **kwargs) self._first_grad = True # first grad @K.symbolic def get_updates(self, loss, params): # 是否更新 cond = K.equal(self.iterations % self.grad_accum_steps, 0) cond = K.cast(cond, K.floatx()) # 获取梯度 grads = self.get_gradients(loss, params) self.accum_grads = [K.zeros( shape=K.int_shape(p), dtype=K.dtype(p), name='accum_grad_{}'.format(i)) for i, p in enumerate(params)] old_update = K.update def new_update(x, new_x): new_x = cond * new_x + (1 - cond) * x return old_update(x, new_x) K.update = new_update updates = super(NewOptimizer, self).get_updates(loss, params) K.update = old_update # 累计更新 with K.control_dependencies(updates): acc_updates = [ K.update(ag, g + (1 - cond) * ag) for ag, g in zip(self.accum_grads, grads) ] return acc_updates def get_gradients(self, loss, params): if self._first_grad: self._first_grad = False return super(NewOptimizer, self).get_gradients(loss, params) else: return [ag / self.grad_accum_steps for ag in self.accum_grads] def get_config(self): config = {'grad_accum_steps': self.grad_accum_steps} base_config = super(NewOptimizer, self).get_config() return dict(list(base_config.items()) + list(config.items())) return NewOptimizer @export_to_custom_objects def extend_with_weight_decay_tf2(BaseOptimizer): """增加权重衰减 ref: [DECOUPLED WEIGHT DECAY REGULARIZATION](https://arxiv.org/pdf/1711.05101.pdf) 大多数框架在实现L2 regularization时是使用weight decay,然而L2 regularization 与 weight decay 在标准 SGD下是等价的, 但是当使用Adam时,缺不是等价的,原因是: g_t = ▽f_t-1 + λθ,其中λθ是 L2 loss的梯度 m_t = β_1 * m_t-1 + (1 - β_1) * g_t v_t = β_2 * v_t-2 + (1 - β_2) * g_t^2 θ_t = θ_t - 1 - α(m_t / v_t^0.5 + ε) 代入上面三式后带有θ的项为 α(λθ/ v_t^0.5 + ε),这导致梯度变化越大的方向,权重约束越小,这显然不合理。 L2 regularization应该是各向同性。一种改进这个问题的方法就是将梯度下降与weight decay 解耦, 不在求梯度时代入weight decay ,而是在整个梯度下降完成后,加入weight decay,这样将梯度下降与weight decay解耦, 达到L2 regularization效果 """ class NewOptimizer(BaseOptimizer): @insert_arguments(weight_decay_rate=0.01, exclude_from_weight_decay=[]) def __init__(self, *args, **kwargs): super(NewOptimizer, self).__init__(*args, **kwargs) def _resource_apply(self, grad, var, indices=None): old_update = K.update def new_update(x, new_x): if x is var and self._do_use_weight_decay(x): lr_t = self._decayed_lr(x.dtype.base_dtype) new_x = new_x - lr_t * self.weight_decay_rate * x return old_update(x, new_x) K.update = new_update op = super(NewOptimizer, self)._resource_apply(grad, var, indices) K.update = old_update return op def _do_use_weight_decay(self, param): """Whether to use L2 weight decay for `param_name`.""" param_name = param.name if not self.weight_decay_rate: return False if self.exclude_from_weight_decay: for r in self.exclude_from_weight_decay: if re.search(r, param_name) is not None: return False return True def get_config(self): config = super(NewOptimizer, self).get_config() config.update({'weight_decay_rate': self.weight_decay_rate, 'exclude_from_weight_decay': self.exclude_from_weight_decay}) return config return NewOptimizer @export_to_custom_objects def extend_with_weight_decay(BaseOptimizer): """原生keras版""" class NewOptimizer(BaseOptimizer): @insert_arguments(weight_decay_rate=0.01, exclude_from_weight_decay=[]) def __init__(self, *args, **kwargs): super(NewOptimizer, self).__init__(*args, **kwargs) if not hasattr(self, 'learning_rate'): self.learning_rate = self.lr @K.symbolic def get_update(self, loss, params): old_update = K.update def new_update(x, new_x): if x in params and self._do_use_weight_decay(x): new_x = new_x - self.learning_rate * self.weight_decay_rate * x return old_update(x, new_x) K.update = new_update updates = super(NewOptimizer, self).get_update(loss, params) K.update = old_update return updates def _do_use_weight_decay(self, param): """Whether to use L2 weight decay for `param_name`.""" param_name = param.name if not self.weight_decay_rate: return False if self.exclude_from_weight_decay: for r in self.exclude_from_weight_decay: if re.search(r, param_name) is not None: return False return True def get_config(self): config = {'weight_decay_rate': self.weight_decay_rate, 'exclude_from_weight_decay': self.exclude_from_weight_decay} base_config = super(NewOptimizer, self).get_config() return dict(list(base_config.items()) + list(config.items())) return NewOptimizer @export_to_custom_objects def extend_with_piecewise_linear_lr_tf2(BaseOptimizer): """ 分段线性学习率,使用场景如 warmup """ class NewOptimzer(BaseOptimizer): """ schedule 是一个{ point: value} 的字典,如 {10: 1, 20: 0.5}代表从 0 到 10 步 lr 从 0 线性增加到 100% , 然后从 10 到 20 线性降低到 50%,之后一直保持 50% 不变 """ @insert_arguments(lr_schedule={0: 1}) def __init__(self, *args, **kwargs): super(NewOptimzer, self).__init__(*args, **kwargs) self.lr_schedule = {int(t): v for t, v in self.lr_schedule.items()} def _decayed_lr(self, var_dtypes): """重写获取decayed learning rate 方法""" lr_t = super(NewOptimzer, self)._decayed_lr(var_dtypes) lr_rate = piecewise_linear(self.iterations, self.lr_schedule) return lr_t * K.cast(lr_rate, var_dtypes) def get_config(self): config = super(NewOptimzer, self).get_config() config.update({'lr_schedule': self.lr_schedule}) return config return NewOptimzer @export_to_custom_objects def extend_with_piecewise_linear_lr(BaseOptimizer): """原生keras版""" class NewOptimizer(BaseOptimizer): @insert_arguments(lr_schedule={0:1}) def __init__(self, *args, **kwargs): super(NewOptimizer, self).__init__(*args, **kwargs) self.lr_schedule = {int(t): v for t, v in self.lr_schedule.items()} @K.symbolic def get_update(self, loss, params): # 获取当前 step 的 lr rate lr_rate_t = piecewise_linear(self.iterations, self.lr_schedule) old_update = K.update def new_update(x, new_x): new_x = x + (new_x - x) * lr_rate_t # 按照当前lr rate 缩放 update return old_update(x, new_x) K.update = new_update updates = super(NewOptimizer, self).get_update(loss, params) K.update = old_update return updates def get_config(self): config = {'lr_schedule': self.lr_schedule} base_config = super(NewOptimizer, self).get_config() return dict(list(base_config.items()) + list(config.items())) return NewOptimizer # keras or tf.keras if is_tf_keras: extend_with_piecewise_linear_lr = extend_with_piecewise_linear_lr_tf2 extend_with_gradient_accumulation = extend_with_gradient_accumulation_tf2 extend_with_weight_decay = extend_with_weight_decay_tf2 AdaBelief = AdaBeliefTf else: Adam = keras.optimizers.Adam custom_objects = { 'Adam': Adam, 'AdaBelief': AdaBelief, } keras.utils.get_custom_objects().update(custom_objects)
37.273852
118
0.593592
18,958
0.865978
0
0
12,931
0.590672
0
0
4,305
0.196647
3632e12e345819f464e0f6feced15ba246770c00
5,832
py
Python
quadpy/triangle/_laursen_gellert.py
dariusarnold/quadpy
9dc7c1ebff99d15ae57ed9195cde94d97a599be8
[ "MIT" ]
null
null
null
quadpy/triangle/_laursen_gellert.py
dariusarnold/quadpy
9dc7c1ebff99d15ae57ed9195cde94d97a599be8
[ "MIT" ]
null
null
null
quadpy/triangle/_laursen_gellert.py
dariusarnold/quadpy
9dc7c1ebff99d15ae57ed9195cde94d97a599be8
[ "MIT" ]
null
null
null
from sympy import Rational as frac from ..helpers import article from ._helpers import TriangleScheme, concat, s1, s2, s3 citation = article( authors=["M.E. Laursen", "M. Gellert"], title="Some criteria for numerically integrated matrices and quadrature formulas for triangles", journal="International Journal for Numerical Methods in Engineering", volume="12", number="1", year="1978", pages="67–76", url="https://doi.org/10.1002/nme.1620120107", ) def laursen_gellert_01(): weights, points = s3(1) return TriangleScheme("Laursen-Gellert 1", weights, points, 1, citation) def laursen_gellert_02a(): weights, points = s2([frac(1, 3), frac(1, 6)]) return TriangleScheme("Laursen-Gellert 2a", weights, points, 2, citation) def laursen_gellert_02b(): weights, points = s2([frac(1, 3), frac(1, 2)]) return TriangleScheme("Laursen-Gellert 2b", weights, points, 2, citation) def laursen_gellert_03(): weights, points = concat(s3(-frac(9, 16)), s2([frac(25, 48), frac(1, 5)])) return TriangleScheme("Laursen-Gellert 3", weights, points, 3, citation) def laursen_gellert_04(): weights, points = s1([1.0 / 6.0, 0.659027622374092, 0.231933368553031]) return TriangleScheme("Laursen-Gellert 4", weights, points, 3, citation) def laursen_gellert_05(): weights, points = s2( [0.109951743655322, 0.091576213509771], [0.223381589678011, 0.445948490915965] ) return TriangleScheme("Laursen-Gellert 5", weights, points, 4, citation) def laursen_gellert_06(): weights, points = concat( s3(3.0 / 8.0), s1([5.0 / 48.0, 0.736712498968435, 0.237932366472434]) ) return TriangleScheme("Laursen-Gellert 6", weights, points, 4, citation) def laursen_gellert_07(): weights, points = concat( s3(9.0 / 40.0), s2( [0.125939180544827, 0.101286507323456], [0.132394152788506, 0.470142064105115], ), ) return TriangleScheme("Laursen-Gellert 7", weights, points, 5, citation) def laursen_gellert_08(): weights, points = concat( s2([0.205950504760887, 0.437525248383384]), s1([0.063691414286223, 0.797112651860071, 0.165409927389841]), ) return TriangleScheme("Laursen-Gellert 8", weights, points, 5, citation) def laursen_gellert_09(): weights, points = concat( s2( [0.050844906370207, 0.063089014491502], [0.116786275726379, 0.249286745170910], ), s1([0.082851075618374, 0.636502499121399, 0.310352451033785]), ) return TriangleScheme("Laursen-Gellert 9", weights, points, 6, citation) def laursen_gellert_10(): weights, points = concat( s3(-0.149570044467670), s2( [+0.175615257433204, 0.260345966079038], [+0.053347235608839, 0.065130102902216], ), s1([+0.077113760890257, 0.638444188569809, 0.312865496004875]), ) return TriangleScheme("Laursen-Gellert 10", weights, points, 7, citation) def laursen_gellert_11(): weights, points = concat( s2([0.053077801790233, 0.064930513159165]), s1( [0.070853083692136, 0.284575584249173, 0.517039939069325], [0.069274682079415, 0.313559184384932, 0.043863471792371], ), ) return TriangleScheme("Laursen-Gellert 11", weights, points, 7, citation) def laursen_gellert_12(): weights, points = concat( s3(0.144315607677787), s2( [0.103217370534718, 0.170569307751761], [0.032458497623198, 0.050547228317031], [0.095091634267284, 0.459292588292723], ), s1([0.027230314174435, 0.008394777409958, 0.263112829634638]), ) return TriangleScheme("Laursen-Gellert 12", weights, points, 8, citation) def laursen_gellert_13(): weights, points = concat( s3(0.097135796282799), s2( [0.031334700227139, 0.489682519198738], [0.077827541004774, 0.437089591492937], [0.079647738927210, 0.188203535619033], [0.025577675658698, 0.044729513394453], ), s1([0.043283539377289, 0.036838412054736, 0.221962989160766]), ) return TriangleScheme("Laursen-Gellert 13", weights, points, 9, citation) def laursen_gellert_14(): weights, points = concat( s2( [0.051617202569021, 0.481519834783311], [0.094080073458356, 0.403603979817940], [0.025993571032320, 0.045189009784377], ), s1( [0.045469538047619, 0.136991201264904, 0.218290070971381], [0.035351705089199, 0.030424361728820, 0.222063165537318], ), ) return TriangleScheme("Laursen-Gellert 14", weights, points, 9, citation) def laursen_gellert_15a(): weights, points = concat( s3(0.079894504741240), s2( [0.071123802232377, 0.425086210602091], [0.008223818690464, 0.023308867510000], ), s1( [0.045430592296170, 0.147925626209534, 0.223766973576973], [0.037359856234305, 0.029946031954171, 0.358740141864431], [0.030886656884564, 0.035632559587504, 0.143295370426867], ), ) return TriangleScheme("Laursen-Gellert 15a", weights, points, 10, citation) def laursen_gellert_15b(): weights, points = concat( s3(0.081743329146286), s2( [0.045957963604745, 0.142161101056564], [0.013352968813150, 0.032055373216944], ), s1( [0.063904906396424, 0.148132885783821, 0.321812995288835], [0.034184648162959, 0.029619889488730, 0.369146781827811], [0.025297757707288, 0.028367665339938, 0.163701733737182], ), ) return TriangleScheme("Laursen-Gellert 15b", weights, points, 10, citation)
32.043956
100
0.641632
0
0
0
0
0
0
0
0
571
0.097875
36359877c7a4f6573f92718849e22bc0b0b933eb
624
py
Python
python2/examples/tutorial_threadednotifier.py
openEuler-BaseService/pyinotify
d6c8b832177945106901fb6c0cd5ae7d54df8247
[ "MIT" ]
1,509
2015-01-04T01:20:06.000Z
2022-03-29T08:06:41.000Z
python2/examples/tutorial_threadednotifier.py
openEuler-BaseService/pyinotify
d6c8b832177945106901fb6c0cd5ae7d54df8247
[ "MIT" ]
98
2015-01-09T20:58:57.000Z
2022-03-29T11:53:44.000Z
python2/examples/tutorial_threadednotifier.py
openEuler-BaseService/pyinotify
d6c8b832177945106901fb6c0cd5ae7d54df8247
[ "MIT" ]
333
2015-01-02T09:22:01.000Z
2022-03-24T01:51:40.000Z
# ThreadedNotifier example from tutorial # # See: http://github.com/seb-m/pyinotify/wiki/Tutorial # import pyinotify wm = pyinotify.WatchManager() # Watch Manager mask = pyinotify.IN_DELETE | pyinotify.IN_CREATE # watched events class EventHandler(pyinotify.ProcessEvent): def process_IN_CREATE(self, event): print "Creating:", event.pathname def process_IN_DELETE(self, event): print "Removing:", event.pathname #log.setLevel(10) notifier = pyinotify.ThreadedNotifier(wm, EventHandler()) notifier.start() wdd = wm.add_watch('/tmp', mask, rec=True) wm.rm_watch(wdd.values()) notifier.stop()
24
66
0.735577
208
0.333333
0
0
0
0
0
0
172
0.275641
36360d07dd0f1e6bcc68b6986125359b768850eb
885
py
Python
VersionMonitorDeamonForPy/deamon/ZTest.py
xblia/Upgrade-service-for-java-application
6118cb270daba5d6511f41a2b3f0784c5a444c17
[ "Apache-2.0" ]
null
null
null
VersionMonitorDeamonForPy/deamon/ZTest.py
xblia/Upgrade-service-for-java-application
6118cb270daba5d6511f41a2b3f0784c5a444c17
[ "Apache-2.0" ]
null
null
null
VersionMonitorDeamonForPy/deamon/ZTest.py
xblia/Upgrade-service-for-java-application
6118cb270daba5d6511f41a2b3f0784c5a444c17
[ "Apache-2.0" ]
null
null
null
#coding=utf-8 '''/* * Copyright 2015 lixiaobo * * VersionUpgrade project licenses this file to you under the Apache License, * version 2.0 (the "License"); you may not use this file except in compliance * with the License. You may obtain a copy of the License at: * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the * License for the specific language governing permissions and limitations * under the License. */''' ''' Created on 2015年12月30日 @author: xiaobolx ''' import os if __name__ == '__main__': os.rename(r"D:\eclipse_workspace\VersionMonitorDeamonForPy\build\aaa", r"D:\eclipse_workspace\VersionMonitorDeamonForPy\build\exe.win32xxxx")
34.038462
145
0.748023
0
0
0
0
0
0
0
0
842
0.945006
3636162e87cf5572646ae4d4770a37dc7c29083e
9,158
py
Python
ROBOTIS/DynamixelSDK/python/tests/protocol2_0/sync_read_write.py
andy-Chien/timda_dual_arm
94170d8889218ea0dc4e6031dcbbf59b7e37e70c
[ "MIT" ]
3
2020-02-17T12:56:22.000Z
2020-09-30T11:17:03.000Z
ROBOTIS/DynamixelSDK/python/tests/protocol2_0/sync_read_write.py
andy-Chien/timda_dual_arm
94170d8889218ea0dc4e6031dcbbf59b7e37e70c
[ "MIT" ]
12
2019-05-14T12:24:02.000Z
2020-03-24T14:00:48.000Z
ROBOTIS/DynamixelSDK/python/tests/protocol2_0/sync_read_write.py
andy-Chien/timda_dual_arm
94170d8889218ea0dc4e6031dcbbf59b7e37e70c
[ "MIT" ]
9
2021-02-01T08:20:53.000Z
2021-09-17T05:52:35.000Z
#!/usr/bin/env python # -*- coding: utf-8 -*- ################################################################################ # Copyright 2017 ROBOTIS CO., LTD. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ################################################################################ # Author: Ryu Woon Jung (Leon) # # ********* Sync Read and Sync Write Example ********* # # # Available Dynamixel model on this example : All models using Protocol 2.0 # This example is tested with two Dynamixel PRO 54-200, and an USB2DYNAMIXEL # Be sure that Dynamixel PRO properties are already set as %% ID : 1 / Baudnum : 1 (Baudrate : 57600) # import os if os.name == 'nt': import msvcrt def getch(): return msvcrt.getch().decode() else: import sys, tty, termios fd = sys.stdin.fileno() old_settings = termios.tcgetattr(fd) def getch(): try: tty.setraw(sys.stdin.fileno()) ch = sys.stdin.read(1) finally: termios.tcsetattr(fd, termios.TCSADRAIN, old_settings) return ch from dynamixel_sdk import * # Uses Dynamixel SDK library # Control table address ADDR_PRO_TORQUE_ENABLE = 64 # Control table address is different in Dynamixel model ADDR_PRO_GOAL_POSITION = 116 ADDR_PRO_PRESENT_POSITION = 132 # Data Byte Length LEN_PRO_GOAL_POSITION = 4 LEN_PRO_PRESENT_POSITION = 4 # Protocol version PROTOCOL_VERSION = 2.0 # See which protocol version is used in the Dynamixel # Default setting DXL1_ID = 1 # Dynamixel#1 ID : 1 DXL2_ID = 2 # Dynamixel#1 ID : 2 BAUDRATE = 57600 # Dynamixel default baudrate : 57600 DEVICENAME = '/dev/ttyUSB0' # Check which port is being used on your controller # ex) Windows: "COM1" Linux: "/dev/ttyUSB0" Mac: "/dev/tty.usbserial-*" TORQUE_ENABLE = 1 # Value for enabling the torque TORQUE_DISABLE = 0 # Value for disabling the torque DXL_MINIMUM_POSITION_VALUE = 100 # Dynamixel will rotate between this value DXL_MAXIMUM_POSITION_VALUE = 4000 # and this value (note that the Dynamixel would not move when the position value is out of movable range. Check e-manual about the range of the Dynamixel you use.) DXL_MOVING_STATUS_THRESHOLD = 20 # Dynamixel moving status threshold index = 0 dxl_goal_position = [DXL_MINIMUM_POSITION_VALUE, DXL_MAXIMUM_POSITION_VALUE] # Goal position # Initialize PortHandler instance # Set the port path # Get methods and members of PortHandlerLinux or PortHandlerWindows portHandler = PortHandler(DEVICENAME) # Initialize PacketHandler instance # Set the protocol version # Get methods and members of Protocol1PacketHandler or Protocol2PacketHandler packetHandler = PacketHandler(PROTOCOL_VERSION) # Initialize GroupSyncWrite instance groupSyncWrite = GroupSyncWrite(portHandler, packetHandler, ADDR_PRO_GOAL_POSITION, LEN_PRO_GOAL_POSITION) # Initialize GroupSyncRead instace for Present Position groupSyncRead = GroupSyncRead(portHandler, packetHandler, ADDR_PRO_PRESENT_POSITION, LEN_PRO_PRESENT_POSITION) # Open port if portHandler.openPort(): print("Succeeded to open the port") else: print("Failed to open the port") print("Press any key to terminate...") getch() quit() # Set port baudrate if portHandler.setBaudRate(BAUDRATE): print("Succeeded to change the baudrate") else: print("Failed to change the baudrate") print("Press any key to terminate...") getch() quit() # Enable Dynamixel#1 Torque dxl_comm_result, dxl_error = packetHandler.write1ByteTxRx(portHandler, DXL1_ID, ADDR_PRO_TORQUE_ENABLE, TORQUE_ENABLE) if dxl_comm_result != COMM_SUCCESS: print("%s" % packetHandler.getTxRxResult(dxl_comm_result)) elif dxl_error != 0: print("%s" % packetHandler.getRxPacketError(dxl_error)) else: print("Dynamixel#%d has been successfully connected" % DXL1_ID) # Enable Dynamixel#2 Torque dxl_comm_result, dxl_error = packetHandler.write1ByteTxRx(portHandler, DXL2_ID, ADDR_PRO_TORQUE_ENABLE, TORQUE_ENABLE) if dxl_comm_result != COMM_SUCCESS: print("%s" % packetHandler.getTxRxResult(dxl_comm_result)) elif dxl_error != 0: print("%s" % packetHandler.getRxPacketError(dxl_error)) else: print("Dynamixel#%d has been successfully connected" % DXL2_ID) # Add parameter storage for Dynamixel#1 present position value dxl_addparam_result = groupSyncRead.addParam(DXL1_ID) if dxl_addparam_result != True: print("[ID:%03d] groupSyncRead addparam failed" % DXL1_ID) quit() # Add parameter storage for Dynamixel#2 present position value dxl_addparam_result = groupSyncRead.addParam(DXL2_ID) if dxl_addparam_result != True: print("[ID:%03d] groupSyncRead addparam failed" % DXL2_ID) quit() while 1: print("Press any key to continue! (or press ESC to quit!)") if getch() == chr(0x1b): break # Allocate goal position value into byte array param_goal_position = [DXL_LOBYTE(DXL_LOWORD(dxl_goal_position[index])), DXL_HIBYTE(DXL_LOWORD(dxl_goal_position[index])), DXL_LOBYTE(DXL_HIWORD(dxl_goal_position[index])), DXL_HIBYTE(DXL_HIWORD(dxl_goal_position[index]))] # Add Dynamixel#1 goal position value to the Syncwrite parameter storage dxl_addparam_result = groupSyncWrite.addParam(DXL1_ID, param_goal_position) if dxl_addparam_result != True: print("[ID:%03d] groupSyncWrite addparam failed" % DXL1_ID) quit() # Add Dynamixel#2 goal position value to the Syncwrite parameter storage dxl_addparam_result = groupSyncWrite.addParam(DXL2_ID, param_goal_position) if dxl_addparam_result != True: print("[ID:%03d] groupSyncWrite addparam failed" % DXL2_ID) quit() # Syncwrite goal position dxl_comm_result = groupSyncWrite.txPacket() if dxl_comm_result != COMM_SUCCESS: print("%s" % packetHandler.getTxRxResult(dxl_comm_result)) # Clear syncwrite parameter storage groupSyncWrite.clearParam() while 1: # Syncread present position dxl_comm_result = groupSyncRead.txRxPacket() if dxl_comm_result != COMM_SUCCESS: print("%s" % packetHandler.getTxRxResult(dxl_comm_result)) # Check if groupsyncread data of Dynamixel#1 is available dxl_getdata_result = groupSyncRead.isAvailable(DXL1_ID, ADDR_PRO_PRESENT_POSITION, LEN_PRO_PRESENT_POSITION) if dxl_getdata_result != True: print("[ID:%03d] groupSyncRead getdata failed" % DXL1_ID) quit() # Check if groupsyncread data of Dynamixel#2 is available dxl_getdata_result = groupSyncRead.isAvailable(DXL2_ID, ADDR_PRO_PRESENT_POSITION, LEN_PRO_PRESENT_POSITION) if dxl_getdata_result != True: print("[ID:%03d] groupSyncRead getdata failed" % DXL2_ID) quit() # Get Dynamixel#1 present position value dxl1_present_position = groupSyncRead.getData(DXL1_ID, ADDR_PRO_PRESENT_POSITION, LEN_PRO_PRESENT_POSITION) # Get Dynamixel#2 present position value dxl2_present_position = groupSyncRead.getData(DXL2_ID, ADDR_PRO_PRESENT_POSITION, LEN_PRO_PRESENT_POSITION) print("[ID:%03d] GoalPos:%03d PresPos:%03d\t[ID:%03d] GoalPos:%03d PresPos:%03d" % (DXL1_ID, dxl_goal_position[index], dxl1_present_position, DXL2_ID, dxl_goal_position[index], dxl2_present_position)) if not ((abs(dxl_goal_position[index] - dxl1_present_position) > DXL_MOVING_STATUS_THRESHOLD) and (abs(dxl_goal_position[index] - dxl2_present_position) > DXL_MOVING_STATUS_THRESHOLD)): break # Change goal position if index == 0: index = 1 else: index = 0 # Clear syncread parameter storage groupSyncRead.clearParam() # Disable Dynamixel#1 Torque dxl_comm_result, dxl_error = packetHandler.write1ByteTxRx(portHandler, DXL1_ID, ADDR_PRO_TORQUE_ENABLE, TORQUE_DISABLE) if dxl_comm_result != COMM_SUCCESS: print("%s" % packetHandler.getTxRxResult(dxl_comm_result)) elif dxl_error != 0: print("%s" % packetHandler.getRxPacketError(dxl_error)) # Disable Dynamixel#2 Torque dxl_comm_result, dxl_error = packetHandler.write1ByteTxRx(portHandler, DXL2_ID, ADDR_PRO_TORQUE_ENABLE, TORQUE_DISABLE) if dxl_comm_result != COMM_SUCCESS: print("%s" % packetHandler.getTxRxResult(dxl_comm_result)) elif dxl_error != 0: print("%s" % packetHandler.getRxPacketError(dxl_error)) # Close port portHandler.closePort()
40.166667
226
0.700371
0
0
0
0
0
0
0
0
3,706
0.404674
3636470ba1388bdc81e02a4d210d625e92578097
2,063
py
Python
models/globalsenti.py
movabo/newstsc
dcf0cff31c0e463c9a96cdaa24e9b662ed53f7ed
[ "MIT" ]
3
2021-02-28T19:14:49.000Z
2022-03-29T12:10:14.000Z
models/globalsenti.py
movabo/newstsc
dcf0cff31c0e463c9a96cdaa24e9b662ed53f7ed
[ "MIT" ]
null
null
null
models/globalsenti.py
movabo/newstsc
dcf0cff31c0e463c9a96cdaa24e9b662ed53f7ed
[ "MIT" ]
1
2021-05-13T10:27:12.000Z
2021-05-13T10:27:12.000Z
# -*- coding: utf-8 -*- # file: lcf_bert.py # author: yangheng <yangheng@m.scnu.edu.cn> # Copyright (C) 2019. All Rights Reserved. # The code is based on repository: https://github.com/yangheng95/LCF-ABSA import torch import torch.nn as nn from models.lcf import LCF_BERT class Global_LCF(nn.Module): def __init__(self, bert, opt): super(Global_LCF, self).__init__() self.max_num_components = 20 self.lcf = LCF_BERT(bert, opt, is_global_configuration=True) self.linear_merge_remainder_comps = nn.Linear(opt.bert_dim * self.max_num_components, opt.bert_dim) self.linear_merge_lcf_and_remainder = nn.Linear(opt.bert_dim * 2, opt.polarities_dim) def _get_inputs_for_component(self, inputs, component_index): assert component_index < self.max_num_components, "component_index({}) >= max_num_components({})".format( component_index, self.max_num_components) return [inputs[component_index * 4], inputs[component_index * 4 + 1], inputs[component_index * 4 + 2], inputs[ component_index * 4 + 3]] def forward(self, inputs): # this is the main component, which we want to classify main_comp_inputs = self._get_inputs_for_component(inputs, 0) main_lcf_output = self.lcf(main_comp_inputs) # process remaining document components, which we don't want to classify but use as context # TODO maybe disable gradient in these components? or at least in BERT in them? lst_remainder_comp_outputs = [] for i in range(1, self.max_num_components): cur_comp_inputs = self._get_inputs_for_component(inputs, i) cur_comp_output = self.lcf(cur_comp_inputs) lst_remainder_comp_outputs.append(cur_comp_output) remainder_comp_outputs = torch.cat(lst_remainder_comp_outputs, dim=-1) remainder_merged = self.linear_merge_remainder_comps(remainder_comp_outputs) dense_out = self.linear_merge_lcf_and_remainder(main_lcf_output, remainder_merged) return dense_out
38.924528
118
0.713039
1,783
0.864275
0
0
0
0
0
0
472
0.228793
36364741a2a1bcdc096a9a1390acb2038c00084b
10,351
py
Python
analysis/outflows/__init__.py
lconaboy/seren3
5a2ec80adf0d69664d2ee874f5ba12cc02d6c337
[ "CNRI-Python" ]
1
2017-09-21T14:58:23.000Z
2017-09-21T14:58:23.000Z
analysis/outflows/__init__.py
lconaboy/seren3
5a2ec80adf0d69664d2ee874f5ba12cc02d6c337
[ "CNRI-Python" ]
1
2020-09-09T08:52:43.000Z
2020-09-09T08:52:43.000Z
analysis/outflows/__init__.py
lconaboy/seren3
5a2ec80adf0d69664d2ee874f5ba12cc02d6c337
[ "CNRI-Python" ]
1
2019-01-21T10:57:41.000Z
2019-01-21T10:57:41.000Z
def integrate_surface_flux(flux_map, r): ''' Integrates a healpix surface flux to compute the total net flux out of the sphere. r is the radius of the sphere in meters ''' import numpy as np import healpy as hp from scipy.integrate import trapz from seren3.array import SimArray if not ((isinstance(flux_map, SimArray) or isinstance(r, SimArray))): raise Exception("Must pass SimArrays") # Compute theta/phi npix = len(flux_map) nside = hp.npix2nside(npix) # theta, phi = hp.pix2ang(nside, range(npix)) theta, phi = hp.pix2ang(nside, range(npix)) r = r.in_units("kpc") # make sure r is in meters # Compute the integral # integrand = np.zeros(len(theta)) ix = theta.argsort() integrand = r**2 * np.sin(theta[ix]) * flux_map[ix] # for i in range(len(theta)): # th, ph = (theta[i], phi[i]) # integrand[i] = r**2 * np.sin(th) * flux_map[i] # mass_flux_radial function already deals with unit vev # integrand = integrand[:, None] + np.zeros(len(phi)) # 2D over theta and phi # I = trapz(trapz(integrand, phi), theta) I = trapz(integrand, theta[ix]) * 2.*np.pi return SimArray(I, "Msol yr**-1") def dm_by_dt(subsnap, filt=False, **kwargs): ''' Compute mass flux at the virial sphere ''' import numpy as np from seren3.array import SimArray from seren3.analysis.render import render_spherical reload(render_spherical) rvir = SimArray(subsnap.region.radius, subsnap.info["unit_length"]) to_distance = rvir/4. # to_distance = rvir in_units = "kg s**-1 m**-2" s = kwargs.pop("s", subsnap.pynbody_snapshot(filt=filt)) if "nside" not in kwargs: kwargs["nside"] = 2**3 kwargs["radius"] = to_distance kwargs["denoise"] = True im = render_spherical.render_quantity(subsnap.g, "mass_flux_radial", s=s, in_units=in_units, out_units=in_units, **kwargs) im.convert_units("Msol yr**-1 kpc**-2") def _compute_flux(im, to_distance, direction=None): im_tmp = im.copy() ix = None if ("out" == direction): ix = np.where(im_tmp < 0) im_tmp[ix] = 0 elif ("in" == direction): ix = np.where(im_tmp > 0) im_tmp[ix] = 0 else: return integrate_surface_flux(im, to_distance) return integrate_surface_flux(im_tmp, to_distance) F = _compute_flux(im, to_distance) F_plus = _compute_flux(im, to_distance, direction="out") F_minus = _compute_flux(im, to_distance, direction="in") return (F, F_plus, F_minus), im def integrate_dm_by_dt(I1, I2, lbtime): from scipy.integrate import trapz return trapz(I1, lbtime) / trapz(I2, lbtime) def mass_flux_hist(halo, back_to_aexp, return_data=True, **kwargs): ''' Compute history of in/outflows ''' import numpy as np from seren3.scripts.mpi import write_mass_flux_hid_dict db = kwargs.pop("db", write_mass_flux_hid_dict.load_db(halo.base.path, halo.base.ioutput)) if (int(halo["id"]) in db.keys()): catalogue = halo.base.halos(finder="ctrees") F = [] age_arr = [] hids = [] iouts = [] def _compute(h, db): hid = int(h["id"]) res = db[hid] F.append(res["F"]) age_arr.append(h.base.age) hids.append(hid) iouts.append(h.base.ioutput) _compute(halo, db) for prog in catalogue.iterate_progenitors(halo, back_to_aexp=back_to_aexp): prog_db = write_mass_flux_hid_dict.load_db(prog.base.path, prog.base.ioutput) if (int(prog["id"]) in prog_db.keys()): _compute(prog, prog_db) else: break F = np.array(F) age_arr = np.array(age_arr) hids = np.array(hids, dtype=np.int64) iouts = np.array(iouts) lbtime = halo.base.age - age_arr if return_data: return F, age_arr, lbtime, hids, iouts return F else: return None def fesc_tot_outflow(snapshot): ''' Integrate the total mass ourflowed and photons escaped for all haloes ''' import numpy as np from scipy.integrate import trapz from seren3.array import SimArray from seren3.scripts.mpi import time_int_fesc_all_halos, history_mass_flux_all_halos fesc_db = time_int_fesc_all_halos.load(snapshot) mass_flux_db = history_mass_flux_all_halos.load(snapshot) mass_flux_hids = np.array( [int(res.idx) for res in mass_flux_db] ) def _integrate_halo(fesc_res, mass_flux_res): photons_escaped = SimArray(fesc_res["I1"], "s**-1").in_units("yr**-1") cum_photons_escaped = trapz(photons_escaped, fesc_res["lbtime"].in_units("yr")) F, F_plus, F_minus = mass_flux_res["F"].transpose() F_plus = SimArray(F_plus, "Msol yr**-1") F_minus = SimArray(F_minus, "Msol yr**-1") if (len(F_plus) != len(photons_escaped)): return np.nan, np.nan cum_outflowed_mass = trapz(F_plus, mass_flux_res["lbtime"].in_units("yr")) cum_inflowed_mass = np.abs(trapz(F_minus, mass_flux_res["lbtime"].in_units("yr"))) # return cum_photons_escaped, cum_outflowed_mass - cum_inflowed_mass return cum_photons_escaped, cum_outflowed_mass nphotons_escaped = np.zeros(len(fesc_db)) tot_mass_outflowed = np.zeros(len(fesc_db)) mvir = np.zeros(len(fesc_db)) for i in range(len(fesc_db)): hid = int(fesc_db[i].idx) fesc_res = fesc_db[i].result mass_flux_res_ix = np.abs(mass_flux_hids - hid).argmin() mass_flux_res = mass_flux_db[mass_flux_res_ix].result nphotons_escaped[i], tot_mass_outflowed[i] = _integrate_halo(fesc_res, mass_flux_res) mvir[i] = fesc_res["Mvir"] ix = np.where( np.logical_and( ~np.isnan(nphotons_escaped), ~np.isnan(tot_mass_outflowed)) ) nphotons_escaped = nphotons_escaped[ix] tot_mass_outflowed = tot_mass_outflowed[ix] mvir = mvir[ix] return nphotons_escaped, tot_mass_outflowed, mvir def fesc_mean_time_outflow(snapshot): ''' Integrate the total mass outflowed and photons escaped for all haloes ''' import numpy as np from scipy.integrate import trapz from seren3.array import SimArray from seren3.scripts.mpi import time_int_fesc_all_halos, history_mass_flux_all_halos fesc_db = time_int_fesc_all_halos.load(snapshot) mass_flux_db = history_mass_flux_all_halos.load(snapshot) mass_flux_hids = np.array( [int(res.idx) for res in mass_flux_db] ) def _integrate_halo(fesc_res, mass_flux_res): photons_escaped = SimArray(fesc_res["I1"], "s**-1").in_units("yr**-1") # cum_photons_escaped = trapz(photons_escaped, fesc_res["lbtime"].in_units("yr")) cum_photons_escaped = fesc_res["tint_fesc_hist"][0] F, F_plus, F_minus = mass_flux_res["F"].transpose() F_plus = SimArray(F_plus, "Msol yr**-1") F_minus = SimArray(F_minus, "Msol yr**-1") if (len(F_plus) != len(photons_escaped)): return np.nan, np.nan lbtime = mass_flux_res["lbtime"] F_net_outflow = F_plus - np.abs(F_minus) if len(np.where(np.isnan(F_net_outflow))[0] > 0): return np.nan, np.nan ix = np.where(F_net_outflow < 0.) if len(ix[0] == 0): return cum_photons_escaped, lbtime[-1] else: time_outflow = [0] for i in ix[0]: if (i == 0): continue time_outflow.append(lbtime[i - 1]) time_spent = np.zeros(len(time_outflow) - 1) for i in range(len(time_spent)): time_spent[i] = time_outflow[i+1] - time_outflow[i] return cum_photons_escaped, time_spent.mean() nphotons_escaped = np.zeros(len(fesc_db)) time_spent_net_outflow = np.zeros(len(fesc_db)) mvir = np.zeros(len(fesc_db)) for i in range(len(fesc_db)): hid = int(fesc_db[i].idx) fesc_res = fesc_db[i].result mass_flux_res_ix = np.abs(mass_flux_hids - hid).argmin() mass_flux_res = mass_flux_db[mass_flux_res_ix].result nphotons_escaped[i], time_spent_net_outflow[i] = _integrate_halo(fesc_res, mass_flux_res) mvir[i] = fesc_res["Mvir"] ix = np.where( np.logical_and( ~np.isnan(nphotons_escaped),\ np.logical_and(~np.isnan(time_spent_net_outflow),\ time_spent_net_outflow > 0) ) ) nphotons_escaped = nphotons_escaped[ix] time_spent_net_outflow = time_spent_net_outflow[ix] mvir = mvir[ix] return nphotons_escaped, SimArray(time_spent_net_outflow, "Gyr"), mvir def plot(sims, iout, labels, cols, ax=None, **kwargs): import numpy as np import matplotlib.pylab as plt from seren3.analysis import plots if (ax is None): ax = plt.gca() ls = ["-", "--"] lw = [3., 1.5] for sim, label, col, lsi, lwi in zip(sims, labels, cols, ls, lw): snap = sim[iout] nphotons_escaped, tot_mass_outflowed, mvir = fesc_tot_outflow(snap) print "%e" % nphotons_escaped.sum() log_mvir = np.log10(mvir) x = np.log10(tot_mass_outflowed) y = np.log10(nphotons_escaped) ix = np.where(np.logical_and(log_mvir >= 7.5, x>=5.5)) x = x[ix] y = y[ix] ix = np.where(np.logical_and(np.isfinite(x), np.isfinite(y))) x = x[ix] y = y[ix] bc, mean, std, sterr = plots.fit_scatter(x, y, ret_sterr=True, **kwargs) ax.scatter(x, y, alpha=0.10, s=5, color=col) e = ax.errorbar(bc, mean, yerr=std, color=col, label=label,\ fmt="o", markerfacecolor=col, mec='k',\ capsize=2, capthick=2, elinewidth=2, linewidth=lwi, linestyle=lsi) # ax.plot(bc, mean, color=col, label=None, linewidth=3., linestyle="-") # ax.fill_between(bc, mean-std, mean+std, facecolor=col, alpha=0.35, interpolate=True, label=label) ax.set_xlabel(r"log$_{10}$ $\int_{0}^{t_{\mathrm{H}}}$ $\vec{F}_{+}(t)$ $dt$ [M$_{\odot}$]", fontsize=20) ax.set_ylabel(r'log$_{10}$ $\int_{0}^{t_{\mathrm{H}}}$ $\dot{\mathrm{N}}_{\mathrm{ion}}(t)$ f$_{\mathrm{esc}}$ ($t$) $dt$ [#]', fontsize=20) ax.legend(loc='lower right', frameon=False, prop={"size" : 16})
34.734899
144
0.628925
0
0
0
0
0
0
0
0
1,775
0.171481
3637422656965fc8f3771e5007feaef41fa1973f
2,859
py
Python
evalution/composes/utils/matrix_utils.py
esantus/evalution2
622a9faf729b7c704ad45047911b9a03cf7c8dae
[ "MIT" ]
1
2017-12-06T21:46:26.000Z
2017-12-06T21:46:26.000Z
evalution/composes/utils/matrix_utils.py
esantus/EVALution-2.0
622a9faf729b7c704ad45047911b9a03cf7c8dae
[ "MIT" ]
5
2020-03-24T15:27:40.000Z
2021-06-01T21:47:18.000Z
evalution/composes/utils/matrix_utils.py
esantus/EVALution-2.0
622a9faf729b7c704ad45047911b9a03cf7c8dae
[ "MIT" ]
1
2018-02-15T17:13:02.000Z
2018-02-15T17:13:02.000Z
import numpy as np from composes.matrix.sparse_matrix import SparseMatrix from composes.matrix.dense_matrix import DenseMatrix from composes.matrix.matrix import Matrix from scipy.sparse import issparse from composes.utils.py_matrix_utils import is_array from warnings import warn def to_matrix(matrix_): """ Converts an array-like structure to a DenseMatrix/SparseMatrix """ if issparse(matrix_): return SparseMatrix(matrix_) else: return DenseMatrix(matrix_) def is_array_or_matrix(data): return is_array(data) or isinstance(data, Matrix) def assert_is_array_or_matrix(data): if not is_array_or_matrix(data): raise TypeError("expected array-like or matrix, received %s" % (type(data))) def padd_matrix(matrix_, axis, value=1): matrix_type = type(matrix_) if axis == 0: append_mat = matrix_type(np.ones((1, matrix_.shape[1]))*value) return matrix_.vstack(append_mat) elif axis == 1: append_mat = matrix_type(np.ones((matrix_.shape[0], 1))*value) return matrix_.hstack(append_mat) else: raise ValueError("Invalid axis value:%s" % axis) def assert_same_shape(matrix1, matrix2, axis=None): if axis is None: if matrix1.shape != matrix2.shape: raise ValueError("Inconsistent shapes") else: if not axis in [0, 1]: raise ValueError("Invalid axis value: %s, expected 0 or 1." % axis) if matrix1.shape[axis] != matrix2.shape[axis]: raise ValueError("Inconsistent shapes") def to_compatible_matrix_types(v1, v2): if isinstance(v1, Matrix) and isinstance(v2, Matrix): v2 = type(v1)(v2) elif not isinstance(v1, Matrix) and isinstance(v2, Matrix): v1 = type(v2)(v1) elif not isinstance(v2, Matrix) and isinstance(v1, Matrix): v2 = type(v1)(v2) else: v1 = to_matrix(v1) v2 = type(v1)(v2) return v1, v2 def get_type_of_largest(matrix_list): max_dim = 0 max_type = None for matrix_ in matrix_list: if matrix_.shape[0] * matrix_.shape[1] > max_dim: max_type = type(matrix_) max_dim = matrix_.shape[0] * matrix_.shape[1] return max_type def resolve_type_conflict(matrix_list, matrix_type): new_matrix_list = [] if matrix_type_conflict(matrix_list): warn("Efficiency warning: matrices should have the same dense/sparse type!") for matrix_ in matrix_list: new_matrix_list.append(matrix_type(matrix_)) return new_matrix_list return list(matrix_list) def matrix_type_conflict(matrix_list): if not matrix_list: return False matrix_type = type(matrix_list[0]) for matrix_ in matrix_list: if not isinstance(matrix_, matrix_type): return True return False
27.490385
84
0.666317
0
0
0
0
0
0
0
0
299
0.104582
3637cf787bdf4e4784cdc6527a8256c98d6b4fec
1,646
py
Python
cpu/pipeline/writeback_unit.py
tim-roderick/simple-cpu-simulator
334baf1934751527b7e5ffa0ad85d5e53e7215a1
[ "MIT" ]
2
2019-12-09T12:02:50.000Z
2019-12-09T22:40:01.000Z
cpu/pipeline/writeback_unit.py
tim-roderick/simple-cpu-simulator
334baf1934751527b7e5ffa0ad85d5e53e7215a1
[ "MIT" ]
null
null
null
cpu/pipeline/writeback_unit.py
tim-roderick/simple-cpu-simulator
334baf1934751527b7e5ffa0ad85d5e53e7215a1
[ "MIT" ]
1
2020-05-04T09:13:50.000Z
2020-05-04T09:13:50.000Z
from .component import Component from cpu.Memory import SCOREBOARD from isa.Instructions import ALUInstruction as alu class writeback_unit(Component): def add_result(self, result): result.finished = True self.pipeline_register = self.pipeline_register + [result] self.clean() def clean(self): self.pipeline_register = list(filter(None, self.pipeline_register)) def run(self, cpu): if not self.halt: cpu.update_reservation() for instruction in self.pipeline_register: if cpu.reorder_buffer.is_retirable(cpu, instruction): instruction.writeback(cpu) instruction.reservation_update() # # if str(instruction.eo[0]).startswith('r'): # cpu.update_reservation() # cpu.increment_ie() if instruction in self.pipeline_register: index = self.pipeline_register.index(instruction) self.pipeline_register[index] = "" self.clean() def flush(self, cpu, instruction): self.halt = True for instruction in self.pipeline_register: if instruction not in cpu.reorder_buffer.buffer: # if isinstance(instruction, alu) or instruction.opcode in ["LD", "LDC", "MOV"]: SCOREBOARD[instruction.operands[0]] = 1 # index = self.pipeline_register.index(instruction) self.pipeline_register[index] = "" self.clean()
38.27907
94
0.567436
1,526
0.927096
0
0
0
0
0
0
92
0.055893
36397c2f3323af879bfcf0a875f647ed132668eb
273
py
Python
ex026.py
juniorpedroso/Exercicios-CEV-Python
4adad3b6f3994cf61f9ead5564124b8b9c58d304
[ "MIT" ]
null
null
null
ex026.py
juniorpedroso/Exercicios-CEV-Python
4adad3b6f3994cf61f9ead5564124b8b9c58d304
[ "MIT" ]
null
null
null
ex026.py
juniorpedroso/Exercicios-CEV-Python
4adad3b6f3994cf61f9ead5564124b8b9c58d304
[ "MIT" ]
null
null
null
frase = str(input('Digite uma frase: ').strip().upper()) print('A letra a aparece {} vezes'.format(frase.count('A'))) print('Sua primeira aparição é na posição {}'.format(frase.find('A') + 1)) print('Ela aparece pela última vez na posição {}'.format(frase.rfind('A') + 1))
54.6
79
0.673993
0
0
0
0
0
0
0
0
147
0.523132
363ab7e49354291dcd24ad4beee0131449a7700e
3,269
py
Python
MyDataLoader.py
WynMew/WaifuLite
fbd9680dda4a5f501b7c66515c9fef1444f2d9e7
[ "Apache-2.0" ]
22
2019-07-16T13:59:18.000Z
2022-01-17T02:58:01.000Z
MyDataLoader.py
WynMew/WaifuLite
fbd9680dda4a5f501b7c66515c9fef1444f2d9e7
[ "Apache-2.0" ]
null
null
null
MyDataLoader.py
WynMew/WaifuLite
fbd9680dda4a5f501b7c66515c9fef1444f2d9e7
[ "Apache-2.0" ]
3
2020-02-19T19:37:52.000Z
2021-05-11T05:48:09.000Z
import glob import io import numpy as np import re import os from io import BytesIO import random from uuid import uuid4 import torch from PIL import Image from torch.utils.data import Dataset from torchvision.transforms import RandomCrop from torchvision.transforms.functional import to_tensor class ListDatasetLite(Dataset): def __init__(self, root, list_file, patch_size=96, shrink_size=2, noise_level=1, down_sample_method=None, transform=None): self.root = root self.transform = transform self.random_cropper = RandomCrop(size=patch_size) self.img_augmenter = ImageAugment(shrink_size, noise_level, down_sample_method) self.transform = transform self.fnames = [] if isinstance(list_file, list): tmp_file = '/tmp/listfile.txt' os.system('cat %s > %s' % (' '.join(list_file), tmp_file)) list_file = tmp_file with open(list_file) as f: lines = f.readlines() self.num_imgs = len(lines) for line in lines: self.fnames.append(line) def __getitem__(self, idx): fname = self.fnames[idx].strip() img = Image.open(os.path.join(self.root, fname)) if img.mode != 'RGB': img = img.convert('RGB') img_patch = self.random_cropper(img) lr_img, hr_img = self.img_augmenter.process(img_patch) return self.transform(lr_img), self.transform(hr_img) #return to_tensor(lr_img), to_tensor(hr_img) def __len__(self): return self.num_imgs class ImageAugment: def __init__(self, shrink_size=2, noise_level=1, down_sample_method=None ): # noise_level (int): 0: no noise; 1: 75-95% quality; 2:50-75% if noise_level == 0: self.noise_level = [0, 0] elif noise_level == 1: self.noise_level = [5, 25] elif noise_level == 2: self.noise_level = [25, 50] else: raise KeyError("Noise level should be either 0, 1, 2") self.shrink_size = shrink_size self.down_sample_method = down_sample_method def shrink_img(self, hr_img): if self.down_sample_method is None: resample_method = random.choice([Image.BILINEAR, Image.BICUBIC, Image.LANCZOS]) else: resample_method = self.down_sample_method img_w, img_h = tuple(map(lambda x: int(x / self.shrink_size), hr_img.size)) lr_img = hr_img.resize((img_w, img_h), resample_method) return lr_img def add_jpeg_noise(self, hr_img): quality = 100 - round(random.uniform(*self.noise_level)) lr_img = BytesIO() hr_img.save(lr_img, format='JPEG', quality=quality) lr_img.seek(0) lr_img = Image.open(lr_img) return lr_img def process(self, hr_patch_pil): lr_patch_pil = self.shrink_img(hr_patch_pil) if self.noise_level[1] > 0: lr_patch_pil = self.add_jpeg_noise(lr_patch_pil) return lr_patch_pil, hr_patch_pil def up_sample(self, img, resample): width, height = img.size return img.resize((self.shrink_size * width, self.shrink_size * height), resample=resample)
32.69
126
0.632303
2,967
0.907617
0
0
0
0
0
0
194
0.059345
363b300b4584703dde103216ec3118b56fec2aec
179
py
Python
model/get_data.py
qq1010903229/OIer
ec1f4c60d76188efd18af157f46849b27dd8ddae
[ "Apache-2.0" ]
null
null
null
model/get_data.py
qq1010903229/OIer
ec1f4c60d76188efd18af157f46849b27dd8ddae
[ "Apache-2.0" ]
null
null
null
model/get_data.py
qq1010903229/OIer
ec1f4c60d76188efd18af157f46849b27dd8ddae
[ "Apache-2.0" ]
null
null
null
f = open("OI_school.csv") op = open("mdt.txt","w") for i in f.readlines(): c = i.split('","') op.write(c[-3]+','+c[-2]+','+"".join([i+',' for i in eval(c[1])])[:-1]+'\n')
29.833333
80
0.463687
0
0
0
0
0
0
0
0
47
0.26257
363b4bc29bcc02e72a0083db4df10c04444ae917
523
py
Python
pythontabcmd2/parsers/global_options.py
playkazoomedia/tabcmd2
a89db9be6047d95379a7c88264236e9cb3e78189
[ "MIT" ]
11
2020-09-02T03:41:01.000Z
2022-01-20T12:38:20.000Z
pythontabcmd2/parsers/global_options.py
playkazoomedia/tabcmd2
a89db9be6047d95379a7c88264236e9cb3e78189
[ "MIT" ]
19
2020-09-03T04:54:47.000Z
2022-01-31T17:41:19.000Z
pythontabcmd2/parsers/global_options.py
playkazoomedia/tabcmd2
a89db9be6047d95379a7c88264236e9cb3e78189
[ "MIT" ]
6
2020-11-21T15:45:51.000Z
2022-01-24T12:26:20.000Z
class GlobalOptions: """ Class to evaluate global options for example: project path""" @staticmethod def evaluate_project_path(path): """ Method to parse the project path provided by the user""" first_dir_from_end = None if path[-1] != "/": path = path + "/" new_path = path.rsplit('/')[-2] for directory in new_path[::-1]: if directory != " ": first_dir_from_end = new_path break return first_dir_from_end
34.866667
69
0.565966
522
0.998088
0
0
427
0.816444
0
0
137
0.26195
363ecc9fcc777c09f95b187bd0eb4e97cd4e05fe
2,068
py
Python
power_data_to_sat_passes/filtersatpowerfiles.py
abrahamneben/orbcomm_beam_mapping
71b3e7d6e4214db0a6f4e68ebeeb7d7f846f5004
[ "MIT" ]
1
2019-04-10T02:50:19.000Z
2019-04-10T02:50:19.000Z
power_data_to_sat_passes/filtersatpowerfiles.py
abrahamneben/orbcomm_beam_mapping
71b3e7d6e4214db0a6f4e68ebeeb7d7f846f5004
[ "MIT" ]
null
null
null
power_data_to_sat_passes/filtersatpowerfiles.py
abrahamneben/orbcomm_beam_mapping
71b3e7d6e4214db0a6f4e68ebeeb7d7f846f5004
[ "MIT" ]
null
null
null
#!/users/aneben/python/bin/python import sys import commands import numpy as np import string np.set_printoptions(precision=3,linewidth=200) months={'Jan':'01','Feb':'02','Mar':'03','Apr':'04','May':'05','Jun':'06','Jul':'07','Aug':'08','Sept':'09','Oct':'10','Nov':'11','Dec':'12'} def make_datetime_numeric(dt): dt_elts = dt.split() month = months[dt_elts[2]] day = dt_elts[3] time = ''.join(dt_elts[4].split(':')) year = dt_elts[5] return year+month+day+time def read_next_refew_spectrum(f): header = '' inheader = True while inheader: nextline = f.readline() if len(nextline) == 0: return [[],[]] elif nextline == ' CH 1 CH 2 CH 3 CH 4\n': break else: header += nextline spectrum = np.zeros(512) # cols: tileEW=0, refEW=1, tileNS=2, refNS=3 for i in range(512): spectrum[i] = float(f.readline().split()[1]) return [header,spectrum] label = sys.argv[1] satpowerdir = '/media/disk-1/MWA_Tile/newdata/'+label satpowerfnames = commands.getoutput('ls '+satpowerdir+'/satpower*').split() outf = open('../phase3/composite_'+label+'/'+label+'_filteredsatpows.txt','w') satbins = np.array([102, 115, 128, 225, 236, 339, 352, 365 ,378, 410]) skip=4 for fname in satpowerfnames: f = open(fname) print 'reading '+fname acq_num = 0 [header,spect] = read_next_refew_spectrum(f) while len(spect) != 0: satstrs = header.split('\n')[3:-2] allsats = np.zeros(8,dtype=int) sats = [int(satstr[2:4]) for satstr in satstrs] allsats[0:len(sats)] = sats if acq_num%skip == 0: datetime = header.split('\n')[2] outf.write('\n'+make_datetime_numeric(datetime)) for i in range(len(satbins)): outf.write(",%1.3f"%(20*np.log10(spect[satbins[i]]))) outf.write(',') outf.write(','.join(map(str,allsats))) acq_num += 1 if acq_num%5000==0: print acq_num/50000. [header,spect] = read_next_refew_spectrum(f) f.close() outf.close()
26.512821
141
0.597679
0
0
0
0
0
0
0
0
370
0.178917
363f007b5be683fdae2cae98f2ef185659366c8a
6,060
py
Python
scripts/utils/prepare.py
Glaciohound/VCML
5a0f01a0baba238cef2f63131fccd412e3d7822b
[ "MIT" ]
52
2019-12-04T22:26:56.000Z
2022-03-31T17:04:15.000Z
scripts/utils/prepare.py
guxiwuruo/VCML
5a0f01a0baba238cef2f63131fccd412e3d7822b
[ "MIT" ]
6
2020-08-25T07:35:14.000Z
2021-09-09T04:57:09.000Z
scripts/utils/prepare.py
guxiwuruo/VCML
5a0f01a0baba238cef2f63131fccd412e3d7822b
[ "MIT" ]
5
2020-02-10T07:39:24.000Z
2021-06-23T02:53:42.000Z
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # File : prepare.py # Author : Chi Han, Jiayuan Mao # Email : haanchi@gmail.com, maojiayuan@gmail.com # Date : 17.07.2019 # Last Modified Date: 03.12.2019 # Last Modified By : Chi Han # # This file is part of the VCML codebase # Distributed under MIT license import os from dataset.visual_dataset.visual_dataset import Dataset from dataset.question_dataset.question_dataset import Dataset as QDataset from dataset.visual_dataset.utils.sceneGraph_loader import \ load_multiple_sceneGraphs from utility.common import load, make_dir from utility.cache import Cache from reason.models.parser import Seq2seqParser from . import register def load_visual_dataset(args, logger, process_fn): with Cache(args.task+'_sceneGraphs', logger, args) as cache: if not cache.exist(): cache.cache(load_multiple_sceneGraphs( args.sceneGraph_dir, args, logger, process_fn)) sceneGraphs = cache.obj visual_dataset = Dataset(args, logger, sceneGraphs, 0).get_agent() logger(f'SceneGraphs size: {len(visual_dataset)}') return visual_dataset def split_visual_dataset(dataset_dir, visual_dataset, config, logger): visual_split_config = load( os.path.join(dataset_dir, config.visual_split_dir)) visual_splits = visual_dataset.resplit(visual_split_config) return visual_splits def print_args(args, logger): logger.showtime() logger.split_line() logger('Printing Arguments') logger(args.str) logger.split_line() logger.line_break() def load_training_visual_dataset(args, filename, logger, index): # filename = os.path.join(path, dataset, 'sceneGraphs.pkl') sceneGraphs = load(filename) logger(f'Loaded sceneGraphs from: {filename}') logger(f'SceneGraphs size: {len(sceneGraphs)}', resume=True) visual_dataset = Dataset(args, logger, sceneGraphs, index).get_agent() return visual_dataset def load_model(args, tools, device, logger): if args.model in ('VCML', 'NSCL', 'BERTvariant'): from models.model.vcml_model import VCML_Model model = VCML_Model(args, tools, device, logger) elif args.model == 'BERT': from models.model.bert_model import BERTModel model = BERTModel(args, tools, device, logger) elif args.model.startswith('GRU'): use_vision = args.model == 'GRUCNN' use_pretrained = args.pretrained_embedding finetune = args.finetune_embedding assert not (args.force_off_lm and args.force_on_lm), \ 'force-on / off can not be both true' use_lm = (not use_pretrained and not args.force_off_lm) or \ args.force_on_lm from models.model.gru_model import GRUModel model = GRUModel(args, tools, device, logger, use_vision=use_vision, fix_vision=args.fix_resnet, use_pretrained=use_pretrained, finetune=finetune, use_lm=use_lm) ''' elif args.model == 'MAC': from models.model.mac_model import MAC_agent model = MAC_agent(args, tools, device) ''' return model def load_for_schedule(schedule, visual_dataset, tools): for stage in schedule: for dataset in stage['question_splits'].values(): dataset.load_parts(visual_dataset, tools) def questions_directly(path, args, logger=None): if logger is not None: logger(f'Loading questions from {path}') suite = {split: QDataset(load(os.path.join( path, f'{split}_questions.json'))['questions'], args).get_agent() for split in ['train', 'test', 'val']} schedule = [ { 'length': args.epochs, 'question_splits': suite, 'test_concepts': None, } ] if logger is not None: for split in ('train', 'val', 'test'): logger(f'{split} questions size = {len(suite[split])}', resume=True) return schedule def load_ref_dataset(args, logger, index, process_fn): filename = os.path.join(args.ref_scene_json) logger(f'Loading referential-expression dataset from {filename}') sceneGraphs = load(filename) processed = process_fn(sceneGraphs, '', logger, args) visual_dataset = Dataset(args, logger, processed, index, image_dir=args.ref_image_dir ).get_agent() logger(f'SceneGraphs size: {len(visual_dataset)}', resume=True) return visual_dataset def get_parser(args, device, logger, index, is_main): class fixed_opt: def __init__(self, **kwarg): self.__dict__.update(kwarg) if args.task in ['CLEVR', 'GQA']: ckpt_name_dir = args.task + '_reason' elif 'meronym' in args.name: ckpt_name_dir = 'CUB_meronym_reason' else: ckpt_name_dir = 'CUB_hypernym_reason' ckpt_name = ckpt_name_dir + '.tgz' temp_dir = os.path.join(args.temp_dir, 'vcml_reason', str(index)) make_dir(temp_dir) ckpt_link = os.path.join(args.webpage, 'ckpt', ckpt_name) ckpt_file = os.path.join(temp_dir, ckpt_name) ckpt_dir = os.path.join(temp_dir, ckpt_name_dir) logger(f'Loading question parser from {ckpt_link}') os.system(f'rm -f {ckpt_file}') if is_main: os.system(f'wget {ckpt_link} -P {temp_dir}') else: os.system(f'wget -q {ckpt_link} -P {temp_dir}') os.system(f'mkdir {ckpt_dir} && tar xf {ckpt_file} -C {ckpt_dir}') opt = fixed_opt( load_checkpoint_path=os.path.join( temp_dir, ckpt_name_dir, 'checkpoint.pt'), gpu_ids=[0], fix_embedding=False ) with logger.levelup(): tools = register.init_word2index(logger) tools.load(ckpt_dir) tools.operations.register_special() parser = Seq2seqParser(opt, tools, device) os.system(f'rm -r {ckpt_dir} {ckpt_file}') return parser
33.854749
74
0.64769
93
0.015347
0
0
0
0
0
0
1,417
0.233828
363f6b85601d80ec792d9609a878c76ff8a2a456
14,280
py
Python
burst_paper/all_ds/plot_allband_ds.py
jackievilladsen/dynspec
87101b188d7891644d848e781bca00f044fe3f0b
[ "MIT" ]
2
2019-05-01T00:34:28.000Z
2021-02-10T09:18:10.000Z
burst_paper/all_ds/plot_allband_ds.py
jackievilladsen/dynspec
87101b188d7891644d848e781bca00f044fe3f0b
[ "MIT" ]
null
null
null
burst_paper/all_ds/plot_allband_ds.py
jackievilladsen/dynspec
87101b188d7891644d848e781bca00f044fe3f0b
[ "MIT" ]
null
null
null
''' plot_allband_ds.py - Load P,L,S band dynamic spectrum for a given epoch, bin to specified resolution, and plot to file ''' import dynspec.plot reload(dynspec.plot) from dynspec import load_dict from dynspec.plot import * from pylab import * import os, subprocess import matplotlib.gridspec as gridspec ''' def get_obsname(obsfile): # take a file directory such as '/data/jrv/15A-416/YZCMi/1' and # convert to obs name such as '15A-416_YZCMi_1' and srcname 'YZCMi' names = obsfile.split('/') srcname = names[4] obsname = names[3]+'_'+names[4]+'_'+names[5] return obsname,srcname ''' def get_obsfile(obsname): # take an obs name such as '15A-416_YZCMi_1' and return srcname ('YZCMi') # and file directory ('/data/jrv/15A-416/YZCMi/1') names = obsname.split('_') srcname = names[1] obsfile = '/data/jrv/'+names[0]+'/'+names[1]+'/'+names[2] return obsfile, srcname params = {'legend.fontsize': 'small', 'axes.titlesize': 'small', 'axes.labelsize': 'small', 'xtick.labelsize': 'x-small', 'ytick.labelsize': 'x-small', 'image.interpolation': 'nearest'} rcParams.update(params) loadfile = '/data/jrv/burst_paper/all_burst_epoch_dynspec_LSband.npy' ds_list = load_dict(loadfile) loadfileP = '/data/jrv/burst_paper/all_burst_epoch_dynspec_Pband.npy' dsP_list = load_dict(loadfileP) ds_dir = '/data/jrv/burst_paper/ds/all_burst_dynspec/' # where to save ds plots if not os.path.exists(ds_dir): os.system('mkdir '+ds_dir) close('all') # note: throughout, "LS" can also include C band, I initially wrote this code for 2015 data (which only has LS band) # but it works for the 2013 data with LSC band # params that can be changed are listed in default_fig_params default_fig_params = { 'tint_P': 300, 'tint_LS': 60, 'df_MHz_P': 16, 'df_MHz_LS': 16, 'smax_P': None, 'smax_LS': None, 'pixflag_sigfacP': 7., 'pixflag_sigfacLS': 10., 'chanflag_sigfacP': 3., 'chanflag_sigfacLS': 7., 'colorscale_P':'linear', 'colorscale_LS':'linear', 'maskpartial_P':0.5, 'maskpartial_LS':0.5, 'linthresh_P':None, 'linthresh_LS':None} fig_params_dict = { '13A-423_UVCet_1':{'tint_LS':60,'df_MHz_LS':32,'smax_LS':None,'colorscale_LS':'symlog','pixflag_sigfacLS':100,'maskpartial_LS':1.0}, '13A-423_UVCet_2':{'tint_LS':60,'df_MHz_LS':32,'smax_LS':0.015,'maskpartial_LS':0.55}, '13A-423_UVCet_2_b':{'tint_LS':300,'df_MHz_LS':64,'smax_LS':0.008,'linthresh_LS':0.002,'maskpartial_LS':0.55,'colorscale_LS':'symlog'}, '15A-416_ADLeo_3':{'smax_LS':0.03,'smax_P':0.02}, '15A-416_ADLeo_4':{'smax_LS':0.045,'smax_P':0.02,'pixflag_sigfacLS':50.}, '15A-416_ADLeo_5':{'tint_LS':120,'df_MHz_LS':32,'tint_P':150,'df_MHz_P':8}, '15A-416_EQPeg_2':{'tint_LS':120,'df_MHz_LS':32,'tint_P':180,'df_MHz_P':8,'chanflag_sigfacP':2.5,'maskpartial_P':0.9,'pixflag_sigfacP':5.,'smax_P':0.1,'maskpartial_LS':0.7}, '15A-416_UVCet_1':{'df_MHz_LS':32}, '15A-416_UVCet_2':{'tint_P':150,'smax_P':0.05}, '15A-416_UVCet_3':{'tint_P':180,'df_MHz_P':16,'smax_P':0.05}, '15A-416_UVCet_4':{'colorscale_LS':'symlog','smax_LS':0.1,'df_MHz_LS':16,'maskpartial_LS':0.9,'linthresh_LS':0.012,'tint_P':180,'smax_P':0.05}, '15A-416_UVCet_5':{'smax_P':0.04,'maskpartial_P':0.7,'maskpartial_LS':0.9}, '15A-416_YZCMi_1':{'smax_P':0.05,'maskpartial_P':0.7,'maskpartial_LS':0.8,'tint_LS':150,'df_MHz_LS':32,'colorscale_LS':'symlog','smax_LS':0.05,'linthresh_LS':0.0075,'chanflag_sigfacLS':4.}, '15A-416_YZCMi_2':{'smax_P':0.05,'tint_LS':120,'df_MHz_LS':32,'smax_LS':0.015} } ### PLOT INDIVIDUAL OBSERVATIONS ### obs_list = fig_params_dict.keys() #obs_list = ['15A-416_EQPeg_2'] # so I can work on just this event fig_max_width=6.5 fig_max_height=8.25 for obsname in obs_list: for func in [real,imag]: # load dynamic spectra for this observation print '\n-----', obsname, '-----' obsfile,srcname = get_obsfile(obsname) ds = ds_list[obsfile] dsP = dsP_list.get(obsfile,None) # load custom parameters for plotting this epoch (binning, RFI flagging, color scale) fig_params = deepcopy(default_fig_params) fp_dict_temp = fig_params_dict.get(obsname,{}) for k in fp_dict_temp: fig_params[k] = fp_dict_temp[k] # Duration of observation relative to 3h40m (max duration of any) - scale x-axis by this # so they are all on the same time scale duration = ds.get_tlist()[-1]*ds.dt() print 'Duration:',duration,'sec' frac_duration = duration/(3*3600+40*60) print 'Fractional duration compared to 3h40m:', frac_duration # Bandwidth of >1 GHz data relative to 3 GHz (default for 2015) - scale y-axis of >1 GHz dynspec by this BW_LSC = max(ds.f)-min(ds.f) frac_BW = BW_LSC/3.e9 print 'Fractional bandwidth of >1 GHz data compared to 3 GHz:',frac_BW # bin LS band dynamic spectrum to desired resolution # mask RFI pix and chans before binning, pix after binning ds.mask_RFI_pixels(rmsfac=fig_params['pixflag_sigfacLS'],func=imag) ds.mask_RFI(rmsfac=fig_params['chanflag_sigfacLS']) nt = int(round(fig_params['tint_LS']/ds.dt())) # number of integrations to bin together nf = int(round(fig_params['df_MHz_LS']/(ds.df()/1e6))) # number of channels to bin together ds = ds.bin_dynspec(nt=nt,nf=nf,mask_partial=fig_params['maskpartial_LS']) ds.mask_RFI_pixels(rmsfac=fig_params['pixflag_sigfacLS'],func=imag) if dsP: dsP.mask_RFI_pixels(rmsfac=fig_params['pixflag_sigfacP']) dsP.mask_RFI(rmsfac=fig_params['chanflag_sigfacP']) # bin P band dynamic spectrum to desired resolution nt = int(round(fig_params['tint_P']/dsP.dt())) # number of integrations to bin together nf = int(round(fig_params['df_MHz_P']/(dsP.df()/1e6))) # number of channels to bin together dsP = dsP.bin_dynspec(nt=nt,nf=nf,mask_partial=fig_params['maskpartial_P']) dsP.mask_RFI(rmsfac=fig_params['chanflag_sigfacP']) # calculate horizontal positions of subplots in units from 0 to 1 # (0 is left edge) dsplot_w = 3.2 * frac_duration # width of dynamic spectrum in inches gap_l = 0.55 # width of x-axis blank space (left) in inches gap_c = 0.15 # width of x-axis blank space (center) in inches gap_cbar = 0.45 # width of blank space between V plot & cbar in inches gap_r = 0.57 # width of x-axis blank space (right) in inches cbar_w = 0.13 # width of colorbar in inches tot_w = 2*dsplot_w + cbar_w + gap_l + gap_c + gap_cbar + gap_r # total width in inches #if obs == '13A-423_UVCet_2': # tot_w += gap_c + dsplot_w + gap_cbar + gap_r print 'Total width of figure in inches:', tot_w, '(goal: <=8.25)' x1 = gap_l/tot_w # left edge of Stokes I dynspec x2 = x1 + dsplot_w/tot_w # right edge of Stokes I dynspec x3 = x2 + gap_c/tot_w # left edge of Stokes V dynspec x4 = x3 + dsplot_w/tot_w # right edge of Stokes V dynspec x5 = x4 + gap_cbar/tot_w # left edge of colorbar x6 = x5+cbar_w/tot_w # right edge of colorbar #if obs == '13A-423_UVCet_2': # x7 = x6 + (gap_r+gap_c)/tot_w # left edge of second Stokes V dynspec # x8 = x # calculate vertical positions of subplots in units from 0 to 1 # (0 is bottom edge) dsLS_h = 3.2 * frac_BW # height of LS band dynspec in inches dsP_h = 0.9 # height of P band dynspec in inches gap_t = 0.43 # height of y-axis blank space at top (includes titles) in inches gap_rows = 0.5 # heights of each gap between rows of dynspecs in inches gap_b = 0.36 # height of y-axis blank space at bottom in inches if dsP: tot_h = dsLS_h + 2*dsP_h + gap_t + 2*gap_rows + gap_b # total height in inches else: tot_h = gap_t + dsLS_h + gap_b # total height in inches if no P band data print 'Total height of figure in inches:', tot_h, '(goal: <=6.8)' y1 = 1-(gap_t/tot_h) # top edge of LS band dynspec y2 = y1 - dsLS_h/tot_h # bottom edge of LS band dynspec y3 = y2 - gap_rows/tot_h # top edge of P band I,V dynspecs y4 = y3 - dsP_h/tot_h # bottom edge of P band I,V dynspecs y5 = y4 - gap_rows/tot_h # top edge of P band U dynspec y6 = y5 - dsP_h/tot_h # bottom edge of P band U dynspec cbarP_h = (2*dsP_h + gap_rows)/tot_h # create figure close('all') figname = ds_dir+obsname+'.pdf' if func == imag: figname = ds_dir+obsname+'_imag.pdf' fig=figure(figsize=(tot_w,tot_h)) # First row of plots: Stokes I LS, Stokes V LS, colorbar LS # Format for axes command is axes([x_left, y_bottom, width, height]) # First row: y_bottom is y2, x_left is x1, x3, x5 # set flux limits for LS band smax = fig_params['smax_LS'] if smax is None: smax = max(percentile(real(ds.spec['i']),99)*1.1,median(real(ds.spec['i']))*2) smin = -smax # make colorbar symmetric about zero # set axis ratio to 'auto' in order to fill specified subplot areas # IMPORTANT: must not include 'cbar' and 'cbar_label' in axis_labels ar0 = 'auto' # plot Stokes I real, LS band ax = axes([x1,y2,dsplot_w/tot_w,dsLS_h/tot_h]) #ax.set_autoscale_on(False) pp = {'pol':'i','smin':smin,'smax':smax,'trim_mask':False,'axis_labels':[],'ar0':ar0,'dy':0.5,'scale':fig_params['colorscale_LS'],'func':func} if fig_params['linthresh_LS']: pp['linthresh']=fig_params['linthresh_LS'] plt,cbar_ticks,cbar_ticklbls = ds.plot_dynspec(plot_params=pp) #gca().xaxis.set_visible(False) #gca().yaxis.set_label_coords(-0.2,0) if dsP: title('Stokes I, 1-4 GHz') else: title('Stokes I') fig.text(0.01,0.5,'Frequency (GHz)',va='center',rotation='vertical',fontsize='small') # plot Stokes V real, LS band ax=axes([x3,y2,dsplot_w/tot_w,dsLS_h/tot_h]) pp = {'pol':'v','smin':smin,'smax':smax,'trim_mask':False,'axis_labels':['xlabel'],'ar0':ar0,'dy':0.5,'scale':fig_params['colorscale_LS'],'func':func} if fig_params['linthresh_LS']: pp['linthresh']=fig_params['linthresh_LS'] ds.plot_dynspec(plot_params=pp) gca().yaxis.tick_right() xlabel_text = ax.xaxis.get_label_text() ax.set_xlabel('') #gca().xaxis.set_visible(False) if dsP: title('Stokes V, 1-4 GHz') else: title('Stokes V') # plot LS band colorbar ax = axes([x5,y2,cbar_w/tot_w,dsLS_h/tot_h]) cbar=colorbar(plt,cax=ax) cbar.set_ticks(cbar_ticks) cbar.set_ticklabels(cbar_ticklbls) ax = cbar.ax if dsP: cbar_label = '1-4 Flux Density (mJy)' ycbar = 0.75 else: cbar_label = 'Flux Density (mJy)' ycbar=0.65 if obsname=='15A-416_UVCet_1': ycbar=0.98 ax.text(4.2,ycbar,cbar_label,rotation=90,fontsize='small') if dsP: # Second row of plots: Stokes I P, apparent Stokes V P # Format for axes command is axes([x_left, y_bottom, width, height]) # Second row: y_bottom is y4, x_left is x1, x3 # set flux limits for P band smaxP = fig_params['smax_P'] if smaxP is None: smaxP = dsP.get_rms('v')*6. sminP = -smaxP # plot Stokes I real, P band ax = axes([x1,y4,dsplot_w/tot_w,dsP_h/tot_h]) pp = {'pol':'i','smin':sminP,'smax':smaxP,'trim_mask':False,'axis_labels':[],'dy':0.05,'ar0':ar0,'scale':fig_params['colorscale_P'],'func':func} if fig_params['linthresh_P']: pp['linthresh']=fig_params['linthresh_P'] dsP.plot_dynspec(plot_params=pp) title('Stokes I, 0.2-0.5 GHz') # plot Stokes V real, P band ax = axes([x3,y4,dsplot_w/tot_w,dsP_h/tot_h]) pp = {'pol':'v','smin':sminP,'smax':smaxP,'trim_mask':False,'axis_labels':[],'dy':0.05,'ar0':ar0,'scale':fig_params['colorscale_P'],'func':func} if fig_params['linthresh_P']: pp['linthresh']=fig_params['linthresh_P'] plt,cbar_ticks,cbar_ticklbls=dsP.plot_dynspec(plot_params=pp) gca().yaxis.tick_right() title('Stokes V\', 0.2-0.5 GHz') # Third row of plots: [empty], apparent Stokes U P, P band colorbar (extra height) # Format for axes command is axes([x_left, y_bottom, width, height]) # Third row: y_bottom is y6 # x_left is x3 (Stokes U), x5 (colorbar) # height is dsP_h (Stokes U), 2*dsP_h+gap_rows (colorbar) # plot Stokes U real, P band ax = axes([x3,y6,dsplot_w/tot_w,dsP_h/tot_h]) pp = {'pol':'u','smin':sminP,'smax':smaxP,'trim_mask':False,'axis_labels':[],'dy':0.05,'ar0':ar0,'scale':fig_params['colorscale_P'],'func':func} if fig_params['linthresh_P']: pp['linthresh']=fig_params['linthresh_P'] dsP.plot_dynspec(plot_params=pp) gca().yaxis.tick_right() title('Stokes U\', 0.2-0.5 GHz') # plot P band colorbar ax = axes([x5,y6,cbar_w/tot_w,cbarP_h]) cbar=colorbar(plt,cax=ax) cbar.set_ticks(cbar_ticks) cbar.set_ticklabels(cbar_ticklbls) ax = cbar.ax ax.text(4.2,0.9,'0.2-0.5 GHz Flux Density (mJy)',rotation=90,fontsize='small') fig.text(0.5,0.01,xlabel_text,ha='center',fontsize='small') date = ds.t0().split()[0] fig_title = srcname[0:2]+' '+srcname[2:5]+' - '+date if func == imag: fig_title += ' - Imag(vis)' suptitle(fig_title,y=0.99,fontsize='medium') savefig(figname)
45.769231
193
0.614566
0
0
0
0
0
0
0
0
7,054
0.493978
363f98c059fbed994ba92f98a94c9d889c901242
2,518
py
Python
src/utils.py
jungtaekkim/On-Uncertainty-Estimation-by-Tree-based-Surrogate-Models-in-SMO
de195a391f1f9bfc4428dadda9400850408e88ca
[ "MIT" ]
null
null
null
src/utils.py
jungtaekkim/On-Uncertainty-Estimation-by-Tree-based-Surrogate-Models-in-SMO
de195a391f1f9bfc4428dadda9400850408e88ca
[ "MIT" ]
null
null
null
src/utils.py
jungtaekkim/On-Uncertainty-Estimation-by-Tree-based-Surrogate-Models-in-SMO
de195a391f1f9bfc4428dadda9400850408e88ca
[ "MIT" ]
null
null
null
import os import argparse import numpy as np import matplotlib.pyplot as plt from scipy.stats import norm def plot_1d(X_train, Y_train, X_test, Y_test, mean=None, std=None, str_figure=None, show_fig=True): plt.rc('text', usetex=True) fig = plt.figure(figsize=(8, 6)) ax = fig.gca() ax.plot(X_test, Y_test, linewidth=4) if mean is not None: line, = ax.plot(X_test, mean, linewidth=4) if mean is not None and std is not None: ax.fill_between(X_test.flatten(), mean - 1.96 * std, mean + 1.96 * std, alpha=0.25, color=line.get_color()) ax.plot(X_train, Y_train, 'x', linestyle='none', markersize=10, mew=4) ax.set_xlabel('$x$', fontsize=32) ax.set_ylabel('$y$', fontsize=32) ax.tick_params(labelsize=24) ax.set_xlim([np.min(X_test), np.max(X_test)]) ax.grid() plt.tight_layout() if str_figure is not None: path_figures = '../figures' if not os.path.exists(path_figures): os.mkdir(path_figures) plt.savefig( os.path.join(path_figures, str_figure + '.pdf'), format='pdf', transparent=True ) if show_fig: plt.show() plt.close('all') def get_parser(): parser = argparse.ArgumentParser(description='') parser.add_argument('-f', '--function', type=str) args = parser.parse_args() return parser, args def compute_nll(preds_mu, preds_sigma, X_test, Y_test, X_train): assert len(preds_mu.shape) == len(preds_sigma.shape) == len(X_test.shape) == len(Y_test.shape) == len(X_train.shape) == 1 assert preds_mu.shape[0] == preds_sigma.shape[0] == X_test.shape[0] == Y_test.shape[0] nll = 0.0 for mu, sigma, x, y in zip(preds_mu, preds_sigma, X_test, Y_test): if np.any(np.abs(X_train - x) < 0.025): continue log_pdf = norm.logpdf(y, loc=mu, scale=sigma) nll -= log_pdf nll /= preds_mu.shape[0] return nll def compute_kl(preds_mu, preds_sigma, mean_gp, std_gp): assert len(preds_mu.shape) == len(preds_sigma.shape) == len(mean_gp.shape) == len(std_gp.shape) == 1 assert preds_mu.shape[0] == preds_sigma.shape[0] == mean_gp.shape[0] == std_gp.shape[0] kl = 0.0 for mu, sigma, mu_gp, sigma_gp in zip(preds_mu, preds_sigma, mean_gp, std_gp): cur_kl = np.log(sigma_gp / (sigma + 1e-7)) + (sigma**2 + (mu - mu_gp)**2) / (2 * sigma_gp**2) - 1 / 2 kl = cur_kl kl /= preds_mu.shape[0] return kl if __name__ == '__main__': pass
27.67033
125
0.623511
0
0
0
0
0
0
0
0
81
0.032168
363fef05c1d19fcf588faad011da861494aa03e5
1,191
py
Python
cocos-example.py
halflings/terrasim
a51c0e7cb28d3a3ec0d9c687d58c1c753d956c2d
[ "Apache-2.0" ]
null
null
null
cocos-example.py
halflings/terrasim
a51c0e7cb28d3a3ec0d9c687d58c1c753d956c2d
[ "Apache-2.0" ]
null
null
null
cocos-example.py
halflings/terrasim
a51c0e7cb28d3a3ec0d9c687d58c1c753d956c2d
[ "Apache-2.0" ]
null
null
null
import random import cocos from cocos.tiles import TileSet, RectCell, RectMapLayer from cocos.director import director from cocos.layer.scrolling import ScrollingManager import pyglet from game import Game from views import WorldMap, CharacterView2 class MainLayer(cocos.layer.Layer): is_event_handler = True def __init__(self): super(MainLayer, self).__init__() # World/map management self.seed = random.Random() self.game = Game(seed=self.seed, world_width=30, world_height=15) # Children scroller = ScrollingManager() scroller.add(WorldMap(self.game.world)) for character in self.game.characters: scroller.add(CharacterView2(character)) self.add(scroller) self.schedule(self.update) def update(self, dt): self.game.update(dt) def on_key_press(self, symbol, modifiers): print("Pressed " + str(symbol)) if __name__ == '__main__': director.init(width=800, height=600, resizable=False, autoscale=False) director.set_show_FPS(True) main_layer = MainLayer() main_scene = cocos.scene.Scene(main_layer) director.run(main_scene)
26.466667
74
0.687657
691
0.580185
0
0
0
0
0
0
52
0.043661
3641d06d971b0ebba597cba4a1a138c64156e641
3,532
py
Python
view.py
ykmoon04/2021-2-OSSP1-Smith-3
66d86e01444b822414a254d0944657ca4ce7dc22
[ "Apache-2.0" ]
1
2021-10-31T13:01:08.000Z
2021-10-31T13:01:08.000Z
view.py
ykmoon04/2021-2-OSSP1-Smith-3
66d86e01444b822414a254d0944657ca4ce7dc22
[ "Apache-2.0" ]
null
null
null
view.py
ykmoon04/2021-2-OSSP1-Smith-3
66d86e01444b822414a254d0944657ca4ce7dc22
[ "Apache-2.0" ]
4
2021-11-04T09:03:37.000Z
2021-12-28T06:28:15.000Z
from itertools import takewhile from eunjeon import Mecab import queue from jamo import h2j, j2hcj import numpy as np import re import json import sys from pkg_resources import VersionConflict global script_table global voice_table global s_idx global v_idx script_table = [] voice_table = [] def main(ans,speak): global script_table global voice_table ans = remove_marks(ans) speak = remove_marks(speak) mecab = Mecab() script_table = [] # 정답 예문 voice_table = [] # speech recognition으로 받은 문장 falseWord = {} totalcount = len(ans.replace(" ","")) # 총 글자 수 falsecount = 0 # 틀린 글자 수 percent = 0.00 # 형태소 분석 script_table = mecab.morphs(ans) voice_table = mecab.morphs(speak) # 형태소 분석 결과 비교 위한 형식 맞추기 reconstruct() # 각 테이블 비교해 틀린 부분 추출 for voice, script in zip(voice_table,script_table): if voice != script: tmp = [] for v,s in zip(voice, script): if v!=s: tmp.append(v) falsecount += 1 falseWord[voice] = tmp # 말하다 만 경우 예문의 나머지 부분 false count if len(voice_table) < len(script_table): for script in script_table[len(voice_table):]: falsecount += len(script) # 정확도 계산 percent = round((totalcount - falsecount)/totalcount * 100,2) data = { # Json으로 넘길 data 생성 'script_table': script_table, # 예문 형태소 분석 결과 'voice_table': voice_table, # 사용자가 말한 문장 형태소 분석 결과 'false':falseWord, # 틀린 부분 "틀린 형태소": "틀린 글자" 'percent' : percent # 정확도 } print(json.dumps(data)) # script_table과 형식 맞추기 def reconstruct(): global s_idx global v_idx s_idx = 0 # script_table 인덱스 v_idx =0 # voice_table 인덱스 while needReconstruct(): # voice가 더 쪼개짐 ex) script[idx]= '해외여행' voice[idx] = '해외' if len(script_table[s_idx])>len(voice_table[v_idx]): diff = len(script_table[s_idx])-len(voice_table[v_idx]) while diff>0: if len(voice_table[v_idx+1]) >= diff: voice_table[v_idx] = voice_table[v_idx]+voice_table[v_idx+1][0:diff] voice_table[v_idx+1] = voice_table[v_idx+1][diff:] if(voice_table[v_idx+1]==''): del voice_table[v_idx+1] v_idx+=1 diff = 0 else: voice_table[v_idx] += voice_table[v_idx+1][0:] diff -= len(voice_table[v_idx+1]) del voice_table[v_idx+1] s_idx +=1 # voice가 덜 쪼개짐 ex) script[idx]= '해외' voice[idx] = '해외여행' elif len(script_table[s_idx]) < len(voice_table[v_idx]): voice_table.insert(v_idx+1,voice_table[v_idx][:len(script_table[s_idx])]) voice_table.insert(v_idx+2,voice_table[v_idx][len(script_table[s_idx]):]) del voice_table[v_idx] s_idx+=1 v_idx+=1 def needReconstruct(): global s_idx global v_idx tmp = 0 for voice, script in zip(voice_table[v_idx:],script_table[s_idx:]): if(len(voice)!=len(script)): v_idx += tmp s_idx += tmp return True tmp += 1; return False def remove_marks(string): # 특수문자(마침표 포함) 제거 함수 return re.sub('[.-=+,#/\?:^$.@*\"※~&%ㆍ!』\\‘|\(\)\[\]\<\>`\'…》]', '', string) if __name__=="__main__": main(sys.argv[1], sys.argv[2]) # argv[1]: 예문, argv[2]: 연습
29.433333
88
0.558607
0
0
0
0
0
0
0
0
909
0.234158
364307863e32ccdc999357c039cf0832ac94b380
103
py
Python
rboard/board/__init__.py
joalon/rboard
cc743d8c08837c20bcc9382655e36bb79aecd524
[ "MIT" ]
null
null
null
rboard/board/__init__.py
joalon/rboard
cc743d8c08837c20bcc9382655e36bb79aecd524
[ "MIT" ]
null
null
null
rboard/board/__init__.py
joalon/rboard
cc743d8c08837c20bcc9382655e36bb79aecd524
[ "MIT" ]
null
null
null
from flask import Blueprint blueprint = Blueprint('board', __name__) from rboard.board import routes
17.166667
40
0.796117
0
0
0
0
0
0
0
0
7
0.067961
36446df7ecc8c55d638710c593c4957d62d9704f
615
py
Python
examples/second_node.py
csunny/kademlia
5513ff7851aa00601ebc7fd9eb610de4e2147f96
[ "MIT" ]
1
2018-11-30T13:52:37.000Z
2018-11-30T13:52:37.000Z
examples/second_node.py
csunny/kademlia
5513ff7851aa00601ebc7fd9eb610de4e2147f96
[ "MIT" ]
null
null
null
examples/second_node.py
csunny/kademlia
5513ff7851aa00601ebc7fd9eb610de4e2147f96
[ "MIT" ]
null
null
null
import logging import asyncio import sys from kademlia.network import Server handler = logging.StreamHandler() formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s') handler.setFormatter(formatter) log = logging.getLogger('kademlia') log.addHandler(handler) log.setLevel(logging.DEBUG) loop = asyncio.get_event_loop() loop.set_debug(True) server = Server() server.listen(1234) bootstrap_node = ('0.0.0.0', 8468) loop.run_until_complete(server.bootstrap([bootstrap_node])) try: loop.run_forever() except KeyboardInterrupt: pass finally: server.stop() loop.close()
21.206897
85
0.749593
0
0
0
0
0
0
0
0
73
0.118699
3645c7b92794db29663c1c763622e5f0554a803c
1,771
py
Python
src/commons/big_query/big_query_job_reference.py
Morgenz/bbq
f0fd3f626841c610aee80ad08a61123b7cccb775
[ "Apache-2.0" ]
41
2018-05-08T11:54:37.000Z
2022-02-09T21:19:17.000Z
src/commons/big_query/big_query_job_reference.py
Morgenz/bbq
f0fd3f626841c610aee80ad08a61123b7cccb775
[ "Apache-2.0" ]
139
2018-06-07T13:45:21.000Z
2021-04-30T20:44:06.000Z
src/commons/big_query/big_query_job_reference.py
Morgenz/bbq
f0fd3f626841c610aee80ad08a61123b7cccb775
[ "Apache-2.0" ]
5
2019-09-11T12:28:24.000Z
2022-02-04T21:38:29.000Z
from src.commons.big_query.copy_job_async.result_check.result_check_request import \ ResultCheckRequest from src.commons.big_query.copy_job_async.task_creator import TaskCreator class BigQueryJobReference(object): def __init__(self, project_id, job_id, location): self.project_id = project_id self.job_id = job_id self.location = location def __str__(self): return "BigQueryJobReference(projectId:{}, job_id:{}, location: {})" \ .format(self.project_id, self.job_id, self.location) def __repr__(self): return self.__str__() def __eq__(self, other): return type(other) is BigQueryJobReference \ and self.project_id == other.project_id \ and self.job_id == other.job_id \ and self.location == other.location def __ne__(self, other): return not (self == other) def create_post_copy_action(self, copy_job_request): TaskCreator.create_copy_job_result_check( ResultCheckRequest( task_name_suffix=copy_job_request.task_name_suffix, copy_job_type_id=copy_job_request.copy_job_type_id, job_reference=self, retry_count=copy_job_request.retry_count, post_copy_action_request=copy_job_request.post_copy_action_request ) ) def to_json(self): return dict(project_id=self.project_id, job_id=self.job_id, location=self.location) @classmethod def from_json(cls, json): return BigQueryJobReference(project_id=json["project_id"], job_id=json["job_id"], location=json["location"])
36.142857
84
0.631846
1,586
0.895539
0
0
231
0.130435
0
0
91
0.051383
36472112e71a6f099b1f967e54265e83e3ef22d7
2,068
py
Python
PyInstaller/hooks/hook-numpy.py
mathiascode/pyinstaller
eaad76a75a5cc7be90e445f974f4bf1731045496
[ "Apache-2.0" ]
9,267
2015-01-01T04:08:45.000Z
2022-03-31T11:42:38.000Z
PyInstaller/hooks/hook-numpy.py
bwoodsend/pyinstaller
2a16bc2fe0a1234d0f89836d39b7877c74b3bca1
[ "Apache-2.0" ]
5,150
2015-01-01T12:09:56.000Z
2022-03-31T18:06:12.000Z
PyInstaller/hooks/hook-numpy.py
bwoodsend/pyinstaller
2a16bc2fe0a1234d0f89836d39b7877c74b3bca1
[ "Apache-2.0" ]
2,101
2015-01-03T10:25:27.000Z
2022-03-30T11:04:42.000Z
#!/usr/bin/env python3 # --- Copyright Disclaimer --- # # In order to support PyInstaller with numpy<1.20.0 this file will be duplicated for a short period inside # PyInstaller's repository [1]. However this file is the intellectual property of the NumPy team and is # under the terms and conditions outlined their repository [2]. # # .. refs: # # [1] PyInstaller: https://github.com/pyinstaller/pyinstaller/ # [2] NumPy's license: https://github.com/numpy/numpy/blob/master/LICENSE.txt # """ This hook should collect all binary files and any hidden modules that numpy needs. Our (some-what inadequate) docs for writing PyInstaller hooks are kept here: https://pyinstaller.readthedocs.io/en/stable/hooks.html PyInstaller has a lot of NumPy users so we consider maintaining this hook a high priority. Feel free to @mention either bwoodsend or Legorooj on Github for help keeping it working. """ from PyInstaller.compat import is_conda, is_pure_conda from PyInstaller.utils.hooks import collect_dynamic_libs # Collect all DLLs inside numpy's installation folder, dump them into built app's root. binaries = collect_dynamic_libs("numpy", ".") # If using Conda without any non-conda virtual environment manager: if is_pure_conda: # Assume running the NumPy from Conda-forge and collect it's DLLs from the communal Conda bin directory. DLLs from # NumPy's dependencies must also be collected to capture MKL, OpenBlas, OpenMP, etc. from PyInstaller.utils.hooks import conda_support datas = conda_support.collect_dynamic_libs("numpy", dependencies=True) # Submodules PyInstaller cannot detect (probably because they are only imported by extension modules, which PyInstaller # cannot read). hiddenimports = ['numpy.core._dtype_ctypes'] if is_conda: hiddenimports.append("six") # Remove testing and building code and packages that are referenced throughout NumPy but are not really dependencies. excludedimports = [ "scipy", "pytest", "nose", "distutils", "f2py", "setuptools", "numpy.f2py", "numpy.distutils", ]
38.296296
119
0.758704
0
0
0
0
0
0
0
0
1,617
0.781915
36480cab3e7b7b34c639f6dcb640a7d9ee3f2cc1
4,480
py
Python
test_proj/blog/admin.py
Ivan-Feofanov/django-inline-actions
a9410a67e9932152d65a063bea0848c98f5c8d73
[ "BSD-3-Clause" ]
204
2016-05-10T05:38:27.000Z
2022-03-25T11:22:28.000Z
test_proj/blog/admin.py
Ivan-Feofanov/django-inline-actions
a9410a67e9932152d65a063bea0848c98f5c8d73
[ "BSD-3-Clause" ]
45
2016-07-18T15:39:48.000Z
2022-02-28T17:06:38.000Z
test_proj/blog/admin.py
Ivan-Feofanov/django-inline-actions
a9410a67e9932152d65a063bea0848c98f5c8d73
[ "BSD-3-Clause" ]
40
2016-09-23T07:27:50.000Z
2022-03-22T09:44:10.000Z
from django.contrib import admin, messages from django.shortcuts import render from django.utils.translation import gettext_lazy as _ from inline_actions.actions import DefaultActionsMixin, ViewAction from inline_actions.admin import InlineActionsMixin, InlineActionsModelAdminMixin from . import forms from .models import Article, Author, AuthorProxy class UnPublishActionsMixin(object): def get_inline_actions(self, request, obj=None): actions = super(UnPublishActionsMixin, self).get_inline_actions(request, obj) if obj: if obj.status == Article.DRAFT: actions.append('publish') elif obj.status == Article.PUBLISHED: actions.append('unpublish') return actions def publish(self, request, obj, parent_obj=None): obj.status = Article.PUBLISHED obj.save() messages.info(request, _("Article published.")) publish.short_description = _("Publish") # type: ignore def unpublish(self, request, obj, parent_obj=None): obj.status = Article.DRAFT obj.save() messages.info(request, _("Article unpublished.")) unpublish.short_description = _("Unpublish") # type: ignore class TogglePublishActionsMixin(object): def get_inline_actions(self, request, obj=None): actions = super(TogglePublishActionsMixin, self).get_inline_actions( request=request, obj=obj ) actions.append('toggle_publish') return actions def toggle_publish(self, request, obj, parent_obj=None): if obj.status == Article.DRAFT: obj.status = Article.PUBLISHED else: obj.status = Article.DRAFT obj.save() status = 'unpublished' if obj.status == Article.DRAFT else 'published' messages.info(request, _("Article {}.".format(status))) def get_toggle_publish_label(self, obj): label = 'publish' if obj.status == Article.DRAFT else 'unpublish' return 'Toggle {}'.format(label) def get_toggle_publish_css(self, obj): return 'button object-tools' if obj.status == Article.DRAFT else 'default' class ChangeTitleActionsMixin(object): def get_inline_actions(self, request, obj=None): actions = super(ChangeTitleActionsMixin, self).get_inline_actions(request, obj) actions.append('change_title') return actions def change_title(self, request, obj, parent_obj=None): # explictly check whether the submit button has been pressed if '_save' in request.POST: form = forms.ChangeTitleForm(request.POST, instance=obj) form.save() return None # return back to list view elif '_back' in request.POST: return None # return back to list view else: form = forms.ChangeTitleForm(instance=obj) return render(request, 'change_title.html', context={'form': form}) class ArticleInline( DefaultActionsMixin, UnPublishActionsMixin, TogglePublishActionsMixin, InlineActionsMixin, admin.TabularInline, ): model = Article fields = ( 'title', 'status', ) readonly_fields = ( 'title', 'status', ) def has_add_permission(self, request, obj=None): return False class ArticleNoopInline(InlineActionsMixin, admin.TabularInline): model = Article fields = ( 'title', 'status', ) readonly_fields = ( 'title', 'status', ) def get_inline_actions(self, request, obj=None): actions = super(ArticleNoopInline, self).get_inline_actions( request=request, obj=obj ) actions.append('noop_action') return actions def noop_action(self, request, obj, parent_obj=None): pass @admin.register(AuthorProxy) class AuthorMultipleInlinesAdmin(InlineActionsModelAdminMixin, admin.ModelAdmin): inlines = [ArticleInline, ArticleNoopInline] list_display = ('name',) inline_actions = None @admin.register(Author) class AuthorAdmin(InlineActionsModelAdminMixin, admin.ModelAdmin): inlines = [ArticleInline] list_display = ('name',) inline_actions = None @admin.register(Article) class ArticleAdmin( UnPublishActionsMixin, TogglePublishActionsMixin, ChangeTitleActionsMixin, ViewAction, InlineActionsModelAdminMixin, admin.ModelAdmin, ): list_display = ('title', 'status', 'author')
29.668874
87
0.667857
4,024
0.898214
0
0
644
0.14375
0
0
497
0.110938
3649038aeb95961f992580df722315d018924dd9
12,731
py
Python
ixnetwork_restpy/testplatform/sessions/ixnetwork/traffic/trafficitem/configelement/stack/macInMACv42_template.py
OpenIxia/ixnetwork_restpy
f628db450573a104f327cf3c737ca25586e067ae
[ "MIT" ]
20
2019-05-07T01:59:14.000Z
2022-02-11T05:24:47.000Z
ixnetwork_restpy/testplatform/sessions/ixnetwork/traffic/trafficitem/configelement/stack/macInMACv42_template.py
OpenIxia/ixnetwork_restpy
f628db450573a104f327cf3c737ca25586e067ae
[ "MIT" ]
60
2019-04-03T18:59:35.000Z
2022-02-22T12:05:05.000Z
ixnetwork_restpy/testplatform/sessions/ixnetwork/traffic/trafficitem/configelement/stack/macInMACv42_template.py
OpenIxia/ixnetwork_restpy
f628db450573a104f327cf3c737ca25586e067ae
[ "MIT" ]
13
2019-05-20T10:48:31.000Z
2021-10-06T07:45:44.000Z
from ixnetwork_restpy.base import Base from ixnetwork_restpy.files import Files class MacInMACv42(Base): __slots__ = () _SDM_NAME = 'macInMACv42' _SDM_ATT_MAP = { 'HeaderBDstAddress': 'macInMACv42.header.bDstAddress-1', 'HeaderBSrcAddress': 'macInMACv42.header.bSrcAddress-2', 'BTAGEthertypeEthertypeValue': 'macInMACv42.header.bTAGEthertype.ethertypeValue-3', 'BTagPcp': 'macInMACv42.header.bTAGEthertype.bTag.pcp-4', 'BTagDei': 'macInMACv42.header.bTAGEthertype.bTag.dei-5', 'BTagVlanID': 'macInMACv42.header.bTAGEthertype.bTag.vlanID-6', 'ITAGEthertypeEthertypeValue': 'macInMACv42.header.iTAGEthertype.ethertypeValue-7', 'ITAGPcp': 'macInMACv42.header.iTAGEthertype.iTAG.pcp-8', 'ITAGDrop': 'macInMACv42.header.iTAGEthertype.iTAG.drop-9', 'ITAGFmt': 'macInMACv42.header.iTAGEthertype.iTAG.fmt-10', 'ITAGReserved': 'macInMACv42.header.iTAGEthertype.iTAG.reserved-11', 'ITAGISID': 'macInMACv42.header.iTAGEthertype.iTAG.iSID-12', 'HeaderCDstAddress': 'macInMACv42.header.cDstAddress-13', 'HeaderCSrcAddress': 'macInMACv42.header.cSrcAddress-14', 'STAGSTAGEthertype': 'macInMACv42.header.sTAGCTAG.tag.sTAG.sTAGEthertype-15', 'STAGPcp': 'macInMACv42.header.sTAGCTAG.tag.sTAG.sTAG.pcp-16', 'STAGDei': 'macInMACv42.header.sTAGCTAG.tag.sTAG.sTAG.dei-17', 'STAGVlanID': 'macInMACv42.header.sTAGCTAG.tag.sTAG.sTAG.vlanID-18', 'CTAGCTAGEthertype': 'macInMACv42.header.sTAGCTAG.tag.cTAG.cTAGEthertype-19', 'CTAGUserPriority': 'macInMACv42.header.sTAGCTAG.tag.cTAG.cTAG.userPriority-20', 'CTAGCfi': 'macInMACv42.header.sTAGCTAG.tag.cTAG.cTAG.cfi-21', 'CTAGVlanId': 'macInMACv42.header.sTAGCTAG.tag.cTAG.cTAG.vlanId-22', 'BothSTAGCTAGSTAGEthertype': 'macInMACv42.header.sTAGCTAG.tag.bothSTAGCTAG.sTAGEthertype-23', 'BothstagctagSTAGPcp': 'macInMACv42.header.sTAGCTAG.tag.bothSTAGCTAG.sTAG.pcp-24', 'BothstagctagSTAGDei': 'macInMACv42.header.sTAGCTAG.tag.bothSTAGCTAG.sTAG.dei-25', 'BothstagctagSTAGVlanID': 'macInMACv42.header.sTAGCTAG.tag.bothSTAGCTAG.sTAG.vlanID-26', 'BothSTAGCTAGCTAGEthertype': 'macInMACv42.header.sTAGCTAG.tag.bothSTAGCTAG.cTAGEthertype-27', 'BothstagctagCTAGUserPriority': 'macInMACv42.header.sTAGCTAG.tag.bothSTAGCTAG.cTAG.userPriority-28', 'BothstagctagCTAGCfi': 'macInMACv42.header.sTAGCTAG.tag.bothSTAGCTAG.cTAG.cfi-29', 'BothstagctagCTAGVlanId': 'macInMACv42.header.sTAGCTAG.tag.bothSTAGCTAG.cTAG.vlanId-30', 'TagNoSTAGCTAG': 'macInMACv42.header.sTAGCTAG.tag.noSTAGCTAG-31', } def __init__(self, parent, list_op=False): super(MacInMACv42, self).__init__(parent, list_op) @property def HeaderBDstAddress(self): """ Display Name: B-Destination Address (Ethernet) Default Value: 00:00:00:00:00:00 Value Format: mAC """ from ixnetwork_restpy.multivalue import Multivalue return Multivalue(self, self._get_attribute(self._SDM_ATT_MAP['HeaderBDstAddress'])) @property def HeaderBSrcAddress(self): """ Display Name: B-Source Address (Ethernet) Default Value: 00:00:00:00:00:00 Value Format: mAC """ from ixnetwork_restpy.multivalue import Multivalue return Multivalue(self, self._get_attribute(self._SDM_ATT_MAP['HeaderBSrcAddress'])) @property def BTAGEthertypeEthertypeValue(self): """ Display Name: Ethertype value Default Value: 0x88A8 Value Format: hex """ from ixnetwork_restpy.multivalue import Multivalue return Multivalue(self, self._get_attribute(self._SDM_ATT_MAP['BTAGEthertypeEthertypeValue'])) @property def BTagPcp(self): """ Display Name: B-TAG PCP Default Value: 0 Value Format: decimal """ from ixnetwork_restpy.multivalue import Multivalue return Multivalue(self, self._get_attribute(self._SDM_ATT_MAP['BTagPcp'])) @property def BTagDei(self): """ Display Name: B-TAG DEI Default Value: 0 Value Format: decimal """ from ixnetwork_restpy.multivalue import Multivalue return Multivalue(self, self._get_attribute(self._SDM_ATT_MAP['BTagDei'])) @property def BTagVlanID(self): """ Display Name: B-TAG VLAN ID Default Value: 2 Value Format: decimal """ from ixnetwork_restpy.multivalue import Multivalue return Multivalue(self, self._get_attribute(self._SDM_ATT_MAP['BTagVlanID'])) @property def ITAGEthertypeEthertypeValue(self): """ Display Name: Ethertype value Default Value: 0x88E7 Value Format: hex """ from ixnetwork_restpy.multivalue import Multivalue return Multivalue(self, self._get_attribute(self._SDM_ATT_MAP['ITAGEthertypeEthertypeValue'])) @property def ITAGPcp(self): """ Display Name: I-TAG PCP Default Value: 0 Value Format: decimal """ from ixnetwork_restpy.multivalue import Multivalue return Multivalue(self, self._get_attribute(self._SDM_ATT_MAP['ITAGPcp'])) @property def ITAGDrop(self): """ Display Name: I-TAG DEI Default Value: 0 Value Format: decimal """ from ixnetwork_restpy.multivalue import Multivalue return Multivalue(self, self._get_attribute(self._SDM_ATT_MAP['ITAGDrop'])) @property def ITAGFmt(self): """ Display Name: FMT Default Value: 0 Value Format: decimal Available enum values: Payload Encapsulated Wi Fcs, 0, Payload Encapsulated Wo Fcs, 1, No Encapsulation, 2, Reserved, 3 """ from ixnetwork_restpy.multivalue import Multivalue return Multivalue(self, self._get_attribute(self._SDM_ATT_MAP['ITAGFmt'])) @property def ITAGReserved(self): """ Display Name: Reserved Default Value: 0x0 Value Format: decimal """ from ixnetwork_restpy.multivalue import Multivalue return Multivalue(self, self._get_attribute(self._SDM_ATT_MAP['ITAGReserved'])) @property def ITAGISID(self): """ Display Name: I-SID Default Value: 256 Value Format: decimal """ from ixnetwork_restpy.multivalue import Multivalue return Multivalue(self, self._get_attribute(self._SDM_ATT_MAP['ITAGISID'])) @property def HeaderCDstAddress(self): """ Display Name: C-Destination Address (Ethernet) Default Value: 00:00:00:00:00:00 Value Format: mAC """ from ixnetwork_restpy.multivalue import Multivalue return Multivalue(self, self._get_attribute(self._SDM_ATT_MAP['HeaderCDstAddress'])) @property def HeaderCSrcAddress(self): """ Display Name: C-Source Address (Ethernet) Default Value: 00:00:00:00:00:00 Value Format: mAC """ from ixnetwork_restpy.multivalue import Multivalue return Multivalue(self, self._get_attribute(self._SDM_ATT_MAP['HeaderCSrcAddress'])) @property def STAGSTAGEthertype(self): """ Display Name: S-TAG Ethertype Default Value: 0x88A8 Value Format: hex """ from ixnetwork_restpy.multivalue import Multivalue return Multivalue(self, self._get_attribute(self._SDM_ATT_MAP['STAGSTAGEthertype'])) @property def STAGPcp(self): """ Display Name: S-TAG PCP Default Value: 0 Value Format: decimal """ from ixnetwork_restpy.multivalue import Multivalue return Multivalue(self, self._get_attribute(self._SDM_ATT_MAP['STAGPcp'])) @property def STAGDei(self): """ Display Name: S-TAG DEI Default Value: 0 Value Format: decimal """ from ixnetwork_restpy.multivalue import Multivalue return Multivalue(self, self._get_attribute(self._SDM_ATT_MAP['STAGDei'])) @property def STAGVlanID(self): """ Display Name: S-TAG VLAN ID Default Value: 2 Value Format: decimal """ from ixnetwork_restpy.multivalue import Multivalue return Multivalue(self, self._get_attribute(self._SDM_ATT_MAP['STAGVlanID'])) @property def CTAGCTAGEthertype(self): """ Display Name: C-TAG Ethertype Default Value: 0x8100 Value Format: hex """ from ixnetwork_restpy.multivalue import Multivalue return Multivalue(self, self._get_attribute(self._SDM_ATT_MAP['CTAGCTAGEthertype'])) @property def CTAGUserPriority(self): """ Display Name: C-TAG User Priority Default Value: 0 Value Format: decimal """ from ixnetwork_restpy.multivalue import Multivalue return Multivalue(self, self._get_attribute(self._SDM_ATT_MAP['CTAGUserPriority'])) @property def CTAGCfi(self): """ Display Name: C-TAG CFI Default Value: 0 Value Format: decimal """ from ixnetwork_restpy.multivalue import Multivalue return Multivalue(self, self._get_attribute(self._SDM_ATT_MAP['CTAGCfi'])) @property def CTAGVlanId(self): """ Display Name: C-TAG VLAN ID Default Value: 2 Value Format: decimal """ from ixnetwork_restpy.multivalue import Multivalue return Multivalue(self, self._get_attribute(self._SDM_ATT_MAP['CTAGVlanId'])) @property def BothSTAGCTAGSTAGEthertype(self): """ Display Name: S-TAG Ethertype Default Value: 0x88A8 Value Format: hex """ from ixnetwork_restpy.multivalue import Multivalue return Multivalue(self, self._get_attribute(self._SDM_ATT_MAP['BothSTAGCTAGSTAGEthertype'])) @property def BothstagctagSTAGPcp(self): """ Display Name: S-TAG PCP Default Value: 0 Value Format: decimal """ from ixnetwork_restpy.multivalue import Multivalue return Multivalue(self, self._get_attribute(self._SDM_ATT_MAP['BothstagctagSTAGPcp'])) @property def BothstagctagSTAGDei(self): """ Display Name: S-TAG DEI Default Value: 0 Value Format: decimal """ from ixnetwork_restpy.multivalue import Multivalue return Multivalue(self, self._get_attribute(self._SDM_ATT_MAP['BothstagctagSTAGDei'])) @property def BothstagctagSTAGVlanID(self): """ Display Name: S-TAG VLAN ID Default Value: 2 Value Format: decimal """ from ixnetwork_restpy.multivalue import Multivalue return Multivalue(self, self._get_attribute(self._SDM_ATT_MAP['BothstagctagSTAGVlanID'])) @property def BothSTAGCTAGCTAGEthertype(self): """ Display Name: C-TAG Ethertype Default Value: 0x8100 Value Format: hex """ from ixnetwork_restpy.multivalue import Multivalue return Multivalue(self, self._get_attribute(self._SDM_ATT_MAP['BothSTAGCTAGCTAGEthertype'])) @property def BothstagctagCTAGUserPriority(self): """ Display Name: C-TAG User Priority Default Value: 0 Value Format: decimal """ from ixnetwork_restpy.multivalue import Multivalue return Multivalue(self, self._get_attribute(self._SDM_ATT_MAP['BothstagctagCTAGUserPriority'])) @property def BothstagctagCTAGCfi(self): """ Display Name: C-TAG CFI Default Value: 0 Value Format: decimal """ from ixnetwork_restpy.multivalue import Multivalue return Multivalue(self, self._get_attribute(self._SDM_ATT_MAP['BothstagctagCTAGCfi'])) @property def BothstagctagCTAGVlanId(self): """ Display Name: C-TAG VLAN ID Default Value: 2 Value Format: decimal """ from ixnetwork_restpy.multivalue import Multivalue return Multivalue(self, self._get_attribute(self._SDM_ATT_MAP['BothstagctagCTAGVlanId'])) @property def TagNoSTAGCTAG(self): """ Display Name: No S-TAG/C-TAG Default Value: 0 Value Format: decimal """ from ixnetwork_restpy.multivalue import Multivalue return Multivalue(self, self._get_attribute(self._SDM_ATT_MAP['TagNoSTAGCTAG'])) def add(self): return self._create(self._map_locals(self._SDM_ATT_MAP, locals()))
35.561453
127
0.657843
12,648
0.99348
0
0
9,681
0.760427
0
0
6,153
0.483308
36490aa7054830d00893922cc4300184b33b2ea9
1,037
py
Python
aries_cloudagent/commands/__init__.py
ldej/aries-cloudagent-python
25b7a9c08921e67b0962c434102489884ac403b2
[ "Apache-2.0" ]
1
2021-01-15T01:04:43.000Z
2021-01-15T01:04:43.000Z
aries_cloudagent/commands/__init__.py
ldej/aries-cloudagent-python
25b7a9c08921e67b0962c434102489884ac403b2
[ "Apache-2.0" ]
1
2020-03-06T12:11:29.000Z
2020-03-06T12:11:29.000Z
aries_cloudagent/commands/__init__.py
ldej/aries-cloudagent-python
25b7a9c08921e67b0962c434102489884ac403b2
[ "Apache-2.0" ]
1
2021-01-15T08:45:02.000Z
2021-01-15T08:45:02.000Z
"""Commands module common setup.""" from importlib import import_module from typing import Sequence def available_commands(): """Index available commands.""" return [ {"name": "help", "summary": "Print available commands"}, {"name": "provision", "summary": "Provision an agent"}, {"name": "start", "summary": "Start a new agent process"}, ] def load_command(command: str): """Load the module corresponding with a named command.""" module = None module_path = None for cmd in available_commands(): if cmd["name"] == command: module = cmd["name"] module_path = cmd.get("module") break if module and not module_path: module_path = f"{__package__}.{module}" if module_path: return import_module(module_path) def run_command(command: str, argv: Sequence[str] = None): """Execute a named command with command line arguments.""" module = load_command(command) or load_command("help") module.execute(argv)
29.628571
66
0.636451
0
0
0
0
0
0
0
0
374
0.360656
36493db41d822a42cd12a9cb95ab495245aeb761
3,646
py
Python
AI/Lab 2/astar.py
abikoraj/CSIT
68ba4944d2b6366a8d5b70b92bdc16b19b7e9208
[ "MIT" ]
9
2021-11-29T00:56:41.000Z
2022-03-19T04:41:05.000Z
AI/Lab 2/astar.py
abikoraj/CSIT
68ba4944d2b6366a8d5b70b92bdc16b19b7e9208
[ "MIT" ]
null
null
null
AI/Lab 2/astar.py
abikoraj/CSIT
68ba4944d2b6366a8d5b70b92bdc16b19b7e9208
[ "MIT" ]
3
2021-11-29T06:30:33.000Z
2022-03-18T14:27:23.000Z
gScore = 0 #use this to index g(n) fScore = 1 #use this to index f(n) previous = 2 #use this to index previous node inf = 10000 #use this for value of infinity #we represent the graph usind adjacent list #as dictionary of dictionaries G = { 'biratnagar' : {'itahari' : 22, 'biratchowk' : 30, 'rangeli': 25}, 'itahari' : {'biratnagar' : 22, 'dharan' : 20, 'biratchowk' : 11}, 'dharan' : {'itahari' : 20}, 'biratchowk' : {'biratnagar' : 30, 'itahari' : 11, 'kanepokhari' :10}, 'rangeli' : {'biratnagar' : 25, 'kanepokhari' : 25, 'urlabari' : 40}, 'kanepokhari' : {'rangeli' : 25, 'biratchowk' : 10, 'urlabari' : 12}, 'urlabari' : {'rangeli' : 40, 'kanepokhari' : 12, 'damak' : 6}, 'damak' : {'urlabari' : 6} } def h(city): #returns straight line distance from a city to damak h = { 'biratnagar' : 46, 'itahari' : 39, 'dharan' : 41, 'rangeli' : 28, 'biratchowk' : 29, 'kanepokhari' : 17, 'urlabari' : 6, 'damak' : 0 } return h[city] def getMinimum(unvisited): #returns city with minimum f(n) currDist = inf leastFScoreCity = '' for city in unvisited: if unvisited[city][fScore] < currDist: currDist = unvisited[city][fScore] leastFScoreCity = city return leastFScoreCity def aStar(G, start, goal): visited = {} #we declare visited list as empty dict unvisited = {} #we declare unvisited list as empty dict #we now add every city to the unvisited for city in G.keys(): unvisited[city] = [inf, inf, ""] hScore = h(start) #for starting node, the g(n) is 0, so f(n) will be h(n) unvisited[start] = [0, hScore, ""] finished = False while finished == False: #if there are no nodes to evaluate in unvisited if len(unvisited) == 0: finished = True else: #find the node with lowest f(n) from open list currentNode = getMinimum(unvisited) if currentNode == goal: finished = True #copy data to visited list visited[currentNode] = unvisited[currentNode] else: #we examine the neighbors of currentNode for neighbor in G[currentNode]: #we only check unvisited neighbors if neighbor not in visited: newGScore = unvisited[currentNode][gScore] + G[currentNode][neighbor] if newGScore < unvisited[neighbor][gScore]: unvisited[neighbor][gScore] = newGScore unvisited[neighbor][fScore] = newGScore + h(neighbor) unvisited[neighbor][previous] = currentNode #we now add currentNode to the visited list visited[currentNode] = unvisited[currentNode] #we now remove the currentNode from unvisited del unvisited[currentNode] return visited def findPath(visitSequence, goal): answer = [] answer.append(goal) currCity = goal while visitSequence[currCity][previous] != '': prevCity = visitSequence[currCity][previous] answer.append(prevCity) currCity = prevCity return answer[::-1] start = 'biratnagar' goal = 'damak' visitSequence = aStar(G, start, goal) path = findPath(visitSequence, goal) print(path)
33.145455
94
0.545804
0
0
0
0
0
0
0
0
1,135
0.3113
3649d664027df60736783975e94228ac3542abe3
19,918
py
Python
plio/io/io_controlnetwork.py
jlaura/plio
980c92d88cc78d27729392c14b3113cfac4f89cd
[ "Unlicense" ]
11
2018-02-01T02:56:26.000Z
2022-02-21T12:08:12.000Z
plio/io/io_controlnetwork.py
jlaura/plio
980c92d88cc78d27729392c14b3113cfac4f89cd
[ "Unlicense" ]
151
2016-06-15T21:31:37.000Z
2021-11-15T16:55:53.000Z
plio/io/io_controlnetwork.py
jlaura/plio
980c92d88cc78d27729392c14b3113cfac4f89cd
[ "Unlicense" ]
21
2016-06-17T17:02:39.000Z
2021-03-08T20:47:50.000Z
from enum import IntEnum from time import gmtime, strftime import warnings import pandas as pd import numpy as np import pvl import struct from plio.io import ControlNetFileV0002_pb2 as cnf from plio.io import ControlNetFileHeaderV0005_pb2 as cnh5 from plio.io import ControlPointFileEntryV0005_pb2 as cnp5 from plio.utils.utils import xstr, find_in_dict HEADERSTARTBYTE = 65536 DEFAULTUSERNAME = 'None' def write_filelist(lst, path="fromlist.lis"): """ Writes a filelist to a file so it can be used in ISIS3. Parameters ---------- lst : list A list containing full paths to the images used, as strings. path : str The name of the file to write out. Default: fromlist.lis """ handle = open(path, 'w') for filename in lst: handle.write(filename) handle.write('\n') return class MeasureMessageType(IntEnum): """ An enum to mirror the ISIS3 MeasureLogData enum. """ GoodnessOfFit = 2 MinimumPixelZScore = 3 MaximumPixelZScore = 4 PixelShift = 5 WholePixelCorrelation = 6 SubPixelCorrelation = 7 class MeasureLog(): def __init__(self, messagetype, value): """ A protobuf compliant measure log object. Parameters ---------- messagetype : int or str Either the integer or string representation from the MeasureMessageType enum value : int or float The value to be stored in the message log """ if isinstance(messagetype, int): # by value self.messagetype = MeasureMessageType(messagetype) else: # by name self.messagetype = MeasureMessageType[messagetype] if not isinstance(value, (float, int)): raise TypeError(f'{value} is not a numeric type') self.value = value def __repr__(self): return f'{self.messagetype.name}: {self.value}' def to_protobuf(self, version=2): """ Return protobuf compliant measure log object representation of this class. Returns ------- log_message : obj MeasureLogData object suitable to append to a MeasureLog repeated field. """ # I do not see a better way to get to the inner MeasureLogData obj than this # imports were not working because it looks like these need to instantiate off # an object if version == 2: log_message = cnf.ControlPointFileEntryV0002().Measure().MeasureLogData() elif version == 5: log_message = cnp5.ControlPointFileEntryV0005().Measure().MeasureLogData() log_message.doubleDataValue = self.value log_message.doubleDataType = self.messagetype return log_message @classmethod def from_protobuf(cls, protobuf): return cls(protobuf.doubleDataType, protobuf.doubleDataValue) class IsisControlNetwork(pd.DataFrame): # normal properties _metadata = ['header'] @property def _constructor(self): return IsisControlNetwork def from_isis(path, remove_empty=True): # Now get ready to work with the binary with IsisStore(path, mode='rb') as store: df = store.read() return df def to_isis(obj, path, mode='wb', version=2, headerstartbyte=HEADERSTARTBYTE, networkid='None', targetname='None', description='None', username=DEFAULTUSERNAME, creation_date=None, modified_date=None, pointid_prefix=None, pointid_suffix=None): if targetname == 'None': warnings.warn("Users should provide a targetname to this function such as 'Moon' or 'Mars' in order to generate a valid ISIS control network.") with IsisStore(path, mode) as store: if not creation_date: creation_date = strftime("%Y-%m-%d %H:%M:%S", gmtime()) if not modified_date: modified_date = strftime("%Y-%m-%d %H:%M:%S", gmtime()) point_messages, point_sizes = store.create_points(obj, pointid_prefix, pointid_suffix) points_bytes = sum(point_sizes) buffer_header, buffer_header_size = store.create_buffer_header(networkid, targetname, description, username, point_sizes, creation_date, modified_date) # Write the buffer header store.write(buffer_header, HEADERSTARTBYTE) # Then write the points, so we know where to start writing, + 1 to avoid overwrite point_start_offset = HEADERSTARTBYTE + buffer_header_size for i, point in enumerate(point_messages): store.write(point, point_start_offset) point_start_offset += point_sizes[i] header = store.create_pvl_header(version, headerstartbyte, networkid, targetname, description, username, buffer_header_size, points_bytes, creation_date, modified_date) store.write(header.encode('utf-8')) class IsisStore(object): """ Class to manage IO of an ISIS control network (version 2). Attributes ---------- pointid : int The current index to be assigned to newly added points """ point_field_map = { 'type' : 'pointType', 'chooserName' : 'pointChoosername', 'datetime' : 'pointDatetime', 'editLock' : 'pointEditLock', 'ignore' : 'pointIgnore', 'jigsawRejected' : 'pointJigsawRejected', 'log' : 'pointLog' } measure_field_map = { 'type' : 'measureType', 'choosername' : 'measureChoosername', 'datetime' : 'measureDatetime', 'editLock' : 'measureEditLock', 'ignore' : 'measureIgnore', 'jigsawRejected' : 'measureJigsawRejected', 'log' : 'measureLog' } def __init__(self, path, mode=None, **kwargs): self.nmeasures = 0 self.npoints = 0 # Conversion from buffer types to Python types bt = {1: float, 5: int, 8: bool, 9: str, 11: list, 14: int} self.header_attrs = [(i.name, bt[i.type]) for i in cnf._CONTROLNETFILEHEADERV0002.fields] self.point_attrs = [(i.name, bt[i.type]) for i in cnf._CONTROLPOINTFILEENTRYV0002.fields] self.measure_attrs = [(i.name, bt[i.type]) for i in cnf._CONTROLPOINTFILEENTRYV0002_MEASURE.fields] self._path = path if not mode: mode = 'a' # pragma: no cover self._mode = mode self._handle = None self._open() def __enter__(self): return self def __exit__(self, exc_type, exc_val, traceback): self.close() def close(self): if self._handle is not None: self._handle.close() self._handle = None def _open(self): self._handle = open(self._path, self._mode) def read(self): """ Given an ISIS store, read the underlying ISIS3 compatible control network and return an IsisControlNetwork dataframe. """ pvl_header = pvl.load(self._path, grammar=pvl.grammar.ISISGrammar()) header_start_byte = find_in_dict(pvl_header, 'HeaderStartByte') header_bytes = find_in_dict(pvl_header, 'HeaderBytes') point_start_byte = find_in_dict(pvl_header, 'PointsStartByte') version = find_in_dict(pvl_header, 'Version') if version == 2: self.point_attrs = [i for i in cnf._CONTROLPOINTFILEENTRYV0002.fields_by_name if i != 'measures'] self.measure_attrs = [i for i in cnf._CONTROLPOINTFILEENTRYV0002_MEASURE.fields_by_name] cp = cnf.ControlPointFileEntryV0002() self._handle.seek(header_start_byte) pbuf_header = cnf.ControlNetFileHeaderV0002() pbuf_header.ParseFromString(self._handle.read(header_bytes)) self._handle.seek(point_start_byte) cp = cnf.ControlPointFileEntryV0002() pts = [] for s in pbuf_header.pointMessageSizes: cp.ParseFromString(self._handle.read(s)) pt = [getattr(cp, i) for i in self.point_attrs if i != 'measures'] for measure in cp.measures: meas = pt + [getattr(measure, j) for j in self.measure_attrs] pts.append(meas) elif version == 5: self.point_attrs = [i for i in cnp5._CONTROLPOINTFILEENTRYV0005.fields_by_name if i != 'measures'] self.measure_attrs = [i for i in cnp5._CONTROLPOINTFILEENTRYV0005_MEASURE.fields_by_name] cp = cnp5.ControlPointFileEntryV0005() self._handle.seek(header_start_byte) pbuf_header = cnh5.ControlNetFileHeaderV0005() pbuf_header.ParseFromString(self._handle.read(header_bytes)) self._handle.seek(point_start_byte) cp = cnp5.ControlPointFileEntryV0005() pts = [] byte_count = 0 while byte_count < find_in_dict(pvl_header, 'PointsBytes'): message_size = struct.unpack('I', self._handle.read(4))[0] cp.ParseFromString(self._handle.read(message_size)) pt = [getattr(cp, i) for i in self.point_attrs if i != 'measures'] for measure in cp.measures: meas = pt + [getattr(measure, j) for j in self.measure_attrs] pts.append(meas) byte_count += 4 + message_size # Some point and measure fields have the same name, so mangle them as point_ and measure_ point_cols = [self.point_field_map[attr] if attr in self.point_field_map else attr for attr in self.point_attrs] measure_cols = [self.measure_field_map[attr] if attr in self.measure_field_map else attr for attr in self.measure_attrs] cols = point_cols + measure_cols df = IsisControlNetwork(pts, columns=cols) # Convert the (0.5, 0.5) origin pixels back to (0,0) pixels df['line'] -= 0.5 df['sample'] -= 0.5 if 'aprioriline' in df.columns: df['aprioriline'] -= 0.5 df['apriorisample'] -= 0.5 # Munge the MeasureLogData into Python objs df['measureLog'] = df['measureLog'].apply(lambda x: [MeasureLog.from_protobuf(i) for i in x]) df.header = pvl_header return df def write(self, data, offset=0): """ Parameters ---------- data : bytes Encoded header to be written to the file offset : int The byte offset into the output binary """ self._handle.seek(offset) self._handle.write(data) def create_points(self, df, pointid_prefix, pointid_suffix): """ Step through a control network (C) and return protocol buffer point objects Parameters ---------- df : DataFrame with the appropriate attributes: point_id, point_type, serial, measure_type, x, y required. The entries in the list must support grouping by the point_id attribute. Returns ------- point_messages : list of serialized points buffers point_sizes : list of integer point sizes """ def _set_pid(pointid): return '{}{}{}'.format(xstr(pointid_prefix), pointid, xstr(pointid_suffix)) # TODO: Rewrite using apply syntax for performance point_sizes = [] point_messages = [] for i, g in df.groupby('id'): # Get the point specification from the protobuf point_spec = cnf.ControlPointFileEntryV0002() # Set the ID and then loop over all of the attributes that the # point has and check for corresponding columns in the group and # set with the correct type #point_spec.id = _set_pid(i) point_spec.id = _set_pid(i) point_spec.type = g.iloc[0].pointType try: point_spec.referenceIndex = g.iloc[0].referenceIndex except: warnings.warn(f'Unable to identify referenceIndex for point {point_spec.id}. Defaulting to index 0.') point_spec.referenceIndex = 0 for attr, attrtype in self.point_attrs: # Un-mangle common attribute names between points and measures df_attr = self.point_field_map.get(attr, attr) if df_attr in g.columns: if df_attr == 'pointLog': # Currently pointLog is not supported. warnings.warn('The pointLog field is currently unsupported. Any pointLog data will not be saved.') continue # As per protobuf docs for assigning to a repeated field. if df_attr == 'aprioriCovar' or df_attr == 'adjustedCovar': arr = g.iloc[0][df_attr] if isinstance(arr, np.ndarray): arr = arr.ravel().tolist() if arr: point_spec.aprioriCovar.extend(arr) # If field is repeated you must extend instead of assign elif cnf._CONTROLPOINTFILEENTRYV0002.fields_by_name[attr].label == 3: getattr(point_spec, attr).extend(g.iloc[0][df_attr]) else: setattr(point_spec, attr, attrtype(g.iloc[0][df_attr])) # A single extend call is cheaper than many add calls to pack points measure_iterable = [] for node_id, m in g.iterrows(): measure_spec = point_spec.Measure() # For all of the attributes, set if they are an dict accessible attr of the obj. for attr, attrtype in self.measure_attrs: # Un-mangle common attribute names between points and measures df_attr = self.measure_field_map.get(attr, attr) if df_attr in g.columns: if df_attr == 'measureLog': [getattr(measure_spec, attr).extend([i.to_protobuf()]) for i in m[df_attr]] # If field is repeated you must extend instead of assign elif cnf._CONTROLPOINTFILEENTRYV0002_MEASURE.fields_by_name[attr].label == 3: getattr(measure_spec, attr).extend(m[df_attr]) else: setattr(measure_spec, attr, attrtype(m[df_attr])) # ISIS pixels are centered on (0.5, 0.5). NDArrays are (0,0) based. measure_spec.sample = m['sample'] + 0.5 measure_spec.line = m['line'] + 0.5 if 'apriorisample' in g.columns: measure_spec.apriorisample = m['apriorisample'] + 0.5 measure_spec.aprioriline = m['aprioriline'] + 0.5 measure_iterable.append(measure_spec) self.nmeasures += 1 self.npoints += 1 point_spec.measures.extend(measure_iterable) point_message = point_spec.SerializeToString() point_sizes.append(point_spec.ByteSize()) point_messages.append(point_message) return point_messages, point_sizes def create_buffer_header(self, networkid, targetname, description, username, point_sizes, creation_date, modified_date): """ Create the Google Protocol Buffer header using the protobuf spec. Parameters ---------- networkid : str The user defined identifier of this control network targetname : str The name of the target, e.g. Moon description : str A description for the network. username : str The name of the user / application that created the control network point_sizes : list of the point sizes for each point message Returns ------- header_message : str The serialized message to write header_message_size : int The size of the serialized header, in bytes """ raw_header_message = cnf.ControlNetFileHeaderV0002() raw_header_message.created = creation_date raw_header_message.lastModified = modified_date raw_header_message.networkId = networkid raw_header_message.description = description raw_header_message.targetName = targetname raw_header_message.userName = username raw_header_message.pointMessageSizes.extend(point_sizes) header_message_size = raw_header_message.ByteSize() header_message = raw_header_message.SerializeToString() return header_message, header_message_size def create_pvl_header(self, version, headerstartbyte, networkid, targetname, description, username, buffer_header_size, points_bytes, creation_date, modified_date): """ Create the PVL header object Parameters ---------- version : int The current ISIS version to write, defaults to 2 headerstartbyte : int The seek offset that the protocol buffer header starts at networkid : str The name of the network targetname : str The name of the target, e.g. Moon description : str A description for the network. username : str The name of the user / application that created the control network buffer_header_size : int Total size of the header in bytes points_bytes : int The total number of bytes all points require Returns ------- : object An ISIS compliant PVL header object """ encoder = pvl.encoder.ISISEncoder(end_delimiter=False) header_bytes = buffer_header_size points_start_byte = HEADERSTARTBYTE + buffer_header_size header = pvl.PVLModule([ ('ProtoBuffer', ({'Core':{'HeaderStartByte': headerstartbyte, 'HeaderBytes': header_bytes, 'PointsStartByte': points_start_byte, 'PointsBytes': points_bytes}, 'ControlNetworkInfo': pvl.PVLGroup([ ('NetworkId', networkid), ('TargetName', targetname), ('UserName', username), ('Created', creation_date), ('LastModified', modified_date), ('Description', description), ('NumberOfPoints', self.npoints), ('NumberOfMeasures', self.nmeasures), ('Version', version) ]) }), ) ]) return pvl.dumps(header, encoder=encoder)
39.836
151
0.570288
16,697
0.838287
0
0
191
0.009589
0
0
6,543
0.328497
364ab9b65eb9e9388a14433c72e77abdba6bec4c
4,028
py
Python
resources.py
slowiklukasz/qgis-inventories
6bd247f41ec3340964522b3cac9dd9a924cefbf2
[ "MIT" ]
null
null
null
resources.py
slowiklukasz/qgis-inventories
6bd247f41ec3340964522b3cac9dd9a924cefbf2
[ "MIT" ]
null
null
null
resources.py
slowiklukasz/qgis-inventories
6bd247f41ec3340964522b3cac9dd9a924cefbf2
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- # Resource object code # # Created by: The Resource Compiler for PyQt5 (Qt v5.15.2) # # WARNING! All changes made in this file will be lost! from PyQt5 import QtCore qt_resource_data = b"\ \x00\x00\x02\x05\ \x89\ \x50\x4e\x47\x0d\x0a\x1a\x0a\x00\x00\x00\x0d\x49\x48\x44\x52\x00\ \x00\x00\x20\x00\x00\x00\x20\x08\x06\x00\x00\x00\x73\x7a\x7a\xf4\ \x00\x00\x00\x01\x73\x52\x47\x42\x00\xae\xce\x1c\xe9\x00\x00\x00\ \x04\x67\x41\x4d\x41\x00\x00\xb1\x8f\x0b\xfc\x61\x05\x00\x00\x00\ \x09\x70\x48\x59\x73\x00\x00\x12\x74\x00\x00\x12\x74\x01\xde\x66\ \x1f\x78\x00\x00\x01\x9a\x49\x44\x41\x54\x58\x47\xc5\x94\x3b\x4e\ \x03\x41\x10\x44\x7d\x01\x22\x12\x02\x9c\x20\x0e\x40\xc2\x2d\xe0\ \x42\xdc\x84\x63\x10\x70\x25\x32\x62\x42\xa3\xb2\x54\xab\x47\x6f\ \xf5\x78\x96\x9f\x83\x27\xe1\xe9\xea\xee\xb7\xe3\xc5\xbb\xd7\xb7\ \xfd\xe1\x9c\x4c\x0b\xdc\x3f\xdd\xc5\x73\x32\x93\xa9\x4c\x09\x68\ \xb0\x49\x75\x31\x93\x49\xfc\x89\xc0\xe3\xf3\x65\xcc\x24\x4e\x0a\ \x6c\x19\xcc\xec\xcd\xcb\xc3\x42\xca\x9a\x4d\x02\xa9\x4e\x98\x95\ \xec\xc5\xc7\xd5\x91\x91\xc4\xbf\x08\x8c\x24\x86\x02\x75\x60\xca\ \x54\xd8\xf3\xab\x02\xa9\x9e\x60\xcf\xd9\x05\xfc\x35\x74\xcb\xdf\ \xaf\x6f\xd7\x02\x0a\x8b\x3a\xa8\xe6\x46\xb0\x77\xb4\x7c\x25\xa0\ \xb0\xaf\x8c\x43\x98\x99\xe1\x54\xaf\x97\xeb\xef\x45\x80\xcb\xab\ \x40\xf7\x14\x1d\xec\x4d\x75\x2f\x17\x51\x80\x03\x74\xfd\x3f\x11\ \x10\xac\xf1\xe9\xc5\x49\x01\x7d\xde\x2a\x20\x38\x43\xfd\xa2\x2e\ \x17\xab\x77\x80\x8d\x6e\x66\x66\x16\xce\xf0\x62\x51\xe7\x7d\x11\ \x10\x6c\xdc\xfa\xf6\x13\xce\x11\x5a\xee\x1b\xa6\xc4\x50\xa0\xd6\ \xcc\x4c\x46\x30\xe7\x1b\x18\x0a\xb0\x41\xb0\xd6\x65\xba\x9c\x60\ \x46\x8b\x2d\xc1\x4c\x2b\x90\xae\x9f\xf5\x4a\xcd\xa6\xbc\x9e\xbc\ \x4a\xb4\x02\x3c\xaf\xb5\x0e\xe6\xb5\x44\x0f\x91\xea\x94\x58\x04\ \x18\x64\x38\xd5\x7c\x3b\x75\x81\xe1\x02\x9e\x73\xa6\x33\x51\x80\ \xd7\xcf\x73\xe1\x73\xd3\x49\xb8\x9e\xce\x4c\x2b\x90\xce\x78\x5e\ \x19\x49\xd4\x5a\xed\x3d\x0a\x30\xe0\xa7\xe7\x99\x60\x93\xd0\x0b\ \x45\xd4\xd7\x89\x90\x3a\x67\x25\x50\x3f\xfb\x8c\x68\xa1\x7f\x54\ \xcc\xac\x44\x9d\xb5\x12\xa8\xd4\x86\xb4\xdc\xa8\xa6\xcc\x16\x89\ \x5d\x0a\x18\x06\xcd\x8c\x80\x18\xdd\x06\xe7\xb5\x02\x0c\x91\x59\ \x01\xd1\x49\x30\x13\xbf\x02\x06\x12\x49\xa2\x2e\x37\x49\x82\xf5\ \xe5\xdf\x70\x2b\x5a\x48\x52\x66\x86\x6f\x0b\xfc\x0e\xfb\xc3\x27\ \x2f\x90\x9e\xc6\xb7\x8c\xf7\x21\x00\x00\x00\x00\x49\x45\x4e\x44\ \xae\x42\x60\x82\ " qt_resource_name = b"\ \x00\x07\ \x07\x3b\xe0\xb3\ \x00\x70\ \x00\x6c\x00\x75\x00\x67\x00\x69\x00\x6e\x00\x73\ \x00\x13\ \x0e\xb7\x46\xa2\ \x00\x69\ \x00\x6e\x00\x76\x00\x65\x00\x6e\x00\x74\x00\x6f\x00\x72\x00\x79\x00\x5f\x00\x76\x00\x61\x00\x6c\x00\x69\x00\x64\x00\x61\x00\x74\ \x00\x6f\x00\x72\ \x00\x08\ \x0a\x61\x5a\xa7\ \x00\x69\ \x00\x63\x00\x6f\x00\x6e\x00\x2e\x00\x70\x00\x6e\x00\x67\ " qt_resource_struct_v1 = b"\ \x00\x00\x00\x00\x00\x02\x00\x00\x00\x01\x00\x00\x00\x01\ \x00\x00\x00\x00\x00\x02\x00\x00\x00\x01\x00\x00\x00\x02\ \x00\x00\x00\x14\x00\x02\x00\x00\x00\x01\x00\x00\x00\x03\ \x00\x00\x00\x40\x00\x00\x00\x00\x00\x01\x00\x00\x00\x00\ " qt_resource_struct_v2 = b"\ \x00\x00\x00\x00\x00\x02\x00\x00\x00\x01\x00\x00\x00\x01\ \x00\x00\x00\x00\x00\x00\x00\x00\ \x00\x00\x00\x00\x00\x02\x00\x00\x00\x01\x00\x00\x00\x02\ \x00\x00\x00\x00\x00\x00\x00\x00\ \x00\x00\x00\x14\x00\x02\x00\x00\x00\x01\x00\x00\x00\x03\ \x00\x00\x00\x00\x00\x00\x00\x00\ \x00\x00\x00\x40\x00\x00\x00\x00\x00\x01\x00\x00\x00\x00\ \x00\x00\x01\x7e\xb7\x66\x8e\xd2\ " qt_version = [int(v) for v in QtCore.qVersion().split('.')] if qt_version < [5, 8, 0]: rcc_version = 1 qt_resource_struct = qt_resource_struct_v1 else: rcc_version = 2 qt_resource_struct = qt_resource_struct_v2 def qInitResources(): QtCore.qRegisterResourceData(rcc_version, qt_resource_struct, qt_resource_name, qt_resource_data) def qCleanupResources(): QtCore.qUnregisterResourceData(rcc_version, qt_resource_struct, qt_resource_name, qt_resource_data) qInitResources()
41.102041
130
0.708292
0
0
0
0
0
0
0
0
3,376
0.838133
364b2da593ffc26a8e80419fd18f3ad6526af7ad
2,130
py
Python
pulsarpy_to_encodedcc/scripts/patch_r2_paired_with.py
yunhailuo/pulsarpy-to-encodedcc
9fd0ce2b81b502dbd2e1e39910f373bd9635f787
[ "MIT" ]
null
null
null
pulsarpy_to_encodedcc/scripts/patch_r2_paired_with.py
yunhailuo/pulsarpy-to-encodedcc
9fd0ce2b81b502dbd2e1e39910f373bd9635f787
[ "MIT" ]
null
null
null
pulsarpy_to_encodedcc/scripts/patch_r2_paired_with.py
yunhailuo/pulsarpy-to-encodedcc
9fd0ce2b81b502dbd2e1e39910f373bd9635f787
[ "MIT" ]
1
2020-02-21T18:09:12.000Z
2020-02-21T18:09:12.000Z
#!/usr/bin/env python """ Given one or more DCC experiment IDs, looks at all read2s that were submitted and updates each r2 file object such that it's paired_with property points to the correct r1. This works by looking at the aliases in the r2 file object to see if there is one with _R2_001 in it. If so, it sets paired_with to be the same alias, but with that segment replace with _R1_001. Thus, this script is nice if submissions went wrong with regard to the file pairings, and this is one way to fix that. """ import argparse import encode_utils.connection as euc import re def get_parser(): parser = argparse.ArgumentParser(description=__doc__) parser.add_argument("-i", "--infile", required=True, help=""" The input file with a DCC experiment on each line.""") return parser def main(): conn = euc.Connection("prod") reg = re.compile("_R2_001") parser = get_parser() args = parser.parse_args() ids = [] fh = open(args.infile) for line in fh: line = line.strip() if not line or line.startswith("#"): continue ids.append(line) for i in ids: h = conn.get_fastqfile_replicate_hash(exp_id=i) for bio_rep in h: for tech_rep in h[bio_rep]: read_files = h[bio_rep][tech_rep].get(2) # read_files is a list of file objects if not read_files: continue for r in read_files: aliases = r["aliases"] for a in aliases: match = reg.search(a) if match: paired_with_name = a.replace(reg.pattern, "_R1_001") payload = {conn.ENCID_KEY: a} payload["paired_with"] = paired_with_name try: conn.patch(payload=payload) except Exception: break break if __name__ == "__main__": main()
37.368421
105
0.553521
0
0
0
0
0
0
0
0
690
0.323944
364b86ae80f99f078899fde9b937f621e0386d77
1,022
py
Python
ibsng/handler/bw/update_node.py
ParspooyeshFanavar/pyibsng
d48bcf4f25e3f23461528bf0ff8870cc3d537444
[ "MIT" ]
6
2018-03-06T10:16:36.000Z
2021-12-05T12:43:10.000Z
ibsng/handler/bw/update_node.py
ParspooyeshFanavar/pyibsng
d48bcf4f25e3f23461528bf0ff8870cc3d537444
[ "MIT" ]
3
2018-03-06T10:27:08.000Z
2022-01-02T15:21:27.000Z
ibsng/handler/bw/update_node.py
ParspooyeshFanavar/pyibsng
d48bcf4f25e3f23461528bf0ff8870cc3d537444
[ "MIT" ]
3
2018-01-06T16:28:31.000Z
2018-09-17T19:47:19.000Z
"""Update node API method.""" from ibsng.handler.handler import Handler class updateNode(Handler): """Update node class.""" def control(self): """Validate inputs after setup method. :return: None :rtype: None """ self.is_valid(self.node_id, int) self.is_valid_content(self.node_id, self.ID_PATTERN) self.is_valid(self.rate_kbits, int) self.is_valid(self.ceil_kbits, int) self.is_valid(self.priority, int) self.is_valid_content(self.priority, self.POSITIVE_NUMBER) def setup(self, node_id, rate_kbits, ceil_kbits, priority): """Setup required parameters. :param int node_id: node ID :param int rate_kbits: new kilo bits :param int ceil_kbits: new kilo bits :param int priority: new priority :return: None :rtype: None """ self.node_id = node_id self.rate_kbits = rate_kbits self.ceil_kbits = ceil_kbits self.priority = priority
28.388889
66
0.629159
947
0.926614
0
0
0
0
0
0
401
0.392368
364be06117f32488ff211fd30ee702031b4b63f0
935
py
Python
make_mozilla/events/tests/test_paginators.py
Mozilla-GitHub-Standards/54c69db06ef83bda60e995a6c34ecfd168ca028994e40ce817295415bb409f0c
f80e7c0cff97a1e9b301aa04015db983c7645778
[ "BSD-3-Clause" ]
4
2015-05-08T16:58:53.000Z
2019-09-06T05:30:59.000Z
make_mozilla/events/tests/test_paginators.py
Mozilla-GitHub-Standards/54c69db06ef83bda60e995a6c34ecfd168ca028994e40ce817295415bb409f0c
f80e7c0cff97a1e9b301aa04015db983c7645778
[ "BSD-3-Clause" ]
2
2019-02-17T17:44:53.000Z
2019-03-28T03:54:39.000Z
make_mozilla/events/tests/test_paginators.py
Mozilla-GitHub-Standards/54c69db06ef83bda60e995a6c34ecfd168ca028994e40ce817295415bb409f0c
f80e7c0cff97a1e9b301aa04015db983c7645778
[ "BSD-3-Clause" ]
7
2015-05-21T15:38:29.000Z
2019-10-28T23:39:06.000Z
from django.utils import unittest from nose.tools import eq_, ok_ from make_mozilla.events.paginators import results_page sample_results = [1,2,3,4,5,6,7,8,9,0] class TestResultsPage(unittest.TestCase): def test_returns_page_1_if_page_unspecified(self): page = results_page(sample_results, 4) eq_(page.number, 1) def test_returns_page_2_if_asked_for_it(self): page = results_page(sample_results, 4, page = '2') eq_(page.number, 2) def test_returns_page_1_if_asked_for_a_non_number(self): page = results_page(sample_results, 4, page = 'NaN') eq_(page.number, 1) def test_returns_page_3_if_asked_for_a_page_gt_3(self): page = results_page(sample_results, 4, page = '4') eq_(page.number, 3) def test_still_returns_something_if_there_are_no_results(self): page = results_page([], 4) eq_(page.number, 1)
28.333333
67
0.686631
770
0.823529
0
0
0
0
0
0
11
0.011765
364bea1cc3a268196e079579f42571e86d9befb2
644
py
Python
river/ensemble/test_streaming_random_patches.py
brcharron/creme
25290780f6bba0eb030215194e81b120d0219389
[ "BSD-3-Clause" ]
1
2020-12-04T18:56:19.000Z
2020-12-04T18:56:19.000Z
river/ensemble/test_streaming_random_patches.py
brcharron/creme
25290780f6bba0eb030215194e81b120d0219389
[ "BSD-3-Clause" ]
null
null
null
river/ensemble/test_streaming_random_patches.py
brcharron/creme
25290780f6bba0eb030215194e81b120d0219389
[ "BSD-3-Clause" ]
null
null
null
import copy import pytest from river import utils from river import ensemble estimator = ensemble.SRPClassifier( n_models=3, # Smaller ensemble than the default to avoid bottlenecks seed=42) @pytest.mark.parametrize('estimator, check', [ pytest.param( estimator, check, id=f'{estimator}:{check.__name__}' ) for check in utils.estimator_checks.yield_checks(estimator) # Skipping this test since shuffling features is expected to impact SRP if check.__name__ not in {'check_shuffle_features_no_impact'} ]) def test_check_estimator(estimator, check): check(copy.deepcopy(estimator))
24.769231
75
0.726708
0
0
0
0
436
0.677019
0
0
210
0.326087
364c9e4c77bae14954a377098632009151fcd659
2,071
py
Python
antlir/nspawn_in_subvol/plugin_hooks.py
lhl2617/antlir
1041732e8163c1316d3e45c0ba4db7937faa4809
[ "MIT" ]
null
null
null
antlir/nspawn_in_subvol/plugin_hooks.py
lhl2617/antlir
1041732e8163c1316d3e45c0ba4db7937faa4809
[ "MIT" ]
null
null
null
antlir/nspawn_in_subvol/plugin_hooks.py
lhl2617/antlir
1041732e8163c1316d3e45c0ba4db7937faa4809
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. "The core logic of how plugins integrate with `popen_nspawn`" import functools import subprocess from contextlib import contextmanager from typing import Callable, ContextManager, Iterable, Tuple, Union from antlir.subvol_utils import Subvol from .args import PopenArgs, _NspawnOpts from .cmd import _nspawn_setup, _NspawnSetup, _nspawn_subvol_setup from .plugins import NspawnPlugin _PopenResult = Tuple[subprocess.Popen, subprocess.Popen] _SetupSubvolCtxMgr = Callable[[_NspawnOpts], ContextManager[Subvol]] _NspawnSetupCtxMgr = Callable[ [_NspawnOpts, PopenArgs], ContextManager[_NspawnSetup] ] _PostSetupPopenCtxMgr = Callable[[_NspawnSetup], ContextManager[_PopenResult]] @contextmanager def _setup_subvol(opts: _NspawnOpts) -> Iterable[Subvol]: with _nspawn_subvol_setup(opts) as subvol: yield subvol @contextmanager def _setup( subvol: Subvol, opts: _NspawnOpts, popen_args: PopenArgs ) -> Iterable[_NspawnSetup]: with _nspawn_setup(subvol, opts, popen_args) as setup: yield setup @contextmanager def _popen_plugin_driver( opts: _NspawnOpts, popen_args: PopenArgs, post_setup_popen: _PostSetupPopenCtxMgr, plugins: Iterable[NspawnPlugin], ) -> _PopenResult: # Apply the plugins setup = _setup setup_subvol = _setup_subvol for p in plugins: if p.wrap_setup_subvol is not None: setup_subvol = functools.partial(p.wrap_setup_subvol, setup_subvol) if p.wrap_setup is not None: setup = functools.partial(p.wrap_setup, setup) if p.wrap_post_setup_popen is not None: post_setup_popen = functools.partial( p.wrap_post_setup_popen, post_setup_popen ) with setup_subvol(opts) as subvol, setup( subvol, opts, popen_args ) as setup, post_setup_popen(setup) as popen_res: yield popen_res
30.910448
79
0.740222
0
0
1,127
0.544182
1,175
0.567359
0
0
275
0.132786
364d2da5e343e2ce74256399a60ddf18ac23eadf
4,577
py
Python
horseDB.py
maf-kakimoto/bet
3da7c57bca88cee8f5565e605fae38168f6b21fa
[ "Apache-2.0" ]
null
null
null
horseDB.py
maf-kakimoto/bet
3da7c57bca88cee8f5565e605fae38168f6b21fa
[ "Apache-2.0" ]
null
null
null
horseDB.py
maf-kakimoto/bet
3da7c57bca88cee8f5565e605fae38168f6b21fa
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- import time import pandas as pd # self-made import manage_mysql def horseDB(table,search): con = manage_mysql.connect() c = con.cursor() column=[] value=[] for i in range(len(search)): if i%2 == 0: column.append(search[i]) else: value.append(search[i]) sql='SELECT * FROM '+table+' where ' for i in range(len(column)): if i != 0: sql+=' and ' sql+=column[i]+' = "'+str(value[i])+'"' result = pd.read_sql(sql,con) con.close() return result def fukusho(group,search,limit): sql='SELECT '+group+',count(*),sum(fukusho),sum(fukusho)/count(*) From mergedresult ' if search['column'] == '': sql+='where ' if limit != 0: ut=time.time() epoch=int(ut)-60*60*24*limit else: epoch=0 sql+='epoch >= '+str(epoch)+' ' elif search['column'] == 'sex': sql+='where ' sql+=search['column']+' = "'+search['value']+'" ' elif search['column'] == 'age': sql+='where ' if search['value'] == 7: sql+='year - birth >= '+str(search['value'])+' ' else: sql+='year - birth = '+str(search['value'])+' ' elif search['column'] == 'road': sql+='where ' value=search['value'].split("_") roadbed=value[1] roadCondition=value[2] if roadbed == 'turf': roadbed = '0' elif roadbed == 'dirt': roadbed = '1' sql+='roadbed = "'+roadbed+'" and ' if roadCondition == 'good': sql+='(roadCondition = "0") ' elif roadCondition == 'bad': sql+='(roadCondition = "1" or roadCondition = "2" or roadCondition = "3") ' elif search['column'] == 'distance_category': sql+='where distance_category = "' value=search['value'].split("_") category=value[1] if category == 'sprint': category = '0' elif category == 'mile': category = '1' elif category == 'intermediate': category = '2' elif category == 'long': category = '3' elif category == 'extended': category = '4' sql+=category+'" ' elif search['column'] == 'win_class': sql+='where ' value=search['value'].split("_") grade=value[1] sql+=search['column']+' = "'+str(grade)+'" ' elif search['column'] == 'track': sql+='where ' track=search['value'] track=track.split("_") course=track[1] roadbed=track[2] if roadbed == 'turf': roadbed = '0' elif roadbed == 'dirt': roadbed = '1' sql+='course = "'+course+'" and roadbed = "'+roadbed+'" ' if len(track) == 4: # (04 or 08) and turf inout=track[3] if course == '04': if inout == 'in': sql+=' and distance like "%in" ' elif inout == 'out': sql+=' and distance like "%out" ' elif course == '08': if inout == 'in': sql+=' and distance like "%in" ' elif inout == 'out': sql+=' and distance like "%out" ' elif search['column'] == 'rotation_epoch': sql+='where ' value=search['value'].split("_") rotationEpoch=value[2] if rotationEpoch == 'short': # threshold: 6weeks sql+=search['column']+' <= 60*60*24*7*6 and '+search['column']+' != 0 ' elif rotationEpoch == 'long': sql+=search['column']+' > 60*60*24*7*6 ' elif search['column'] == 'rotation_roadbed': sql+='where ' value=search['value'].split("_") rotationRoadbed=value[2] if rotationRoadbed == 'toTurf': sql+=search['column']+' = 1 and roadbed = "0" ' elif rotationRoadbed == 'toDirt': sql+=search['column']+' = 1 and roadbed = "1" ' elif search['column'] == 'rotation_distance': sql+='where ' value=search['value'].split("_") rotationDistance=value[2] if rotationDistance == 'shortening': sql+='distance/(distance-'+search['column']+') < 0.9 ' elif rotationDistance == 'extension': sql+='distance/(distance-'+search['column']+') > 1.1 ' sql+='GROUP BY '+group print(sql) con = manage_mysql.connect() result = pd.read_sql(sql,con) con.commit() con.close() return result
28.968354
89
0.489404
0
0
0
0
0
0
0
0
1,343
0.293424
364dafdcafb142ed50351e67323fec6552de2b84
325
py
Python
maskrcnn_benchmark/data/datasets/__init__.py
lipengfeizju/Detection
efe00b221725be05e30fd67957958f97ae42b3cf
[ "MIT" ]
null
null
null
maskrcnn_benchmark/data/datasets/__init__.py
lipengfeizju/Detection
efe00b221725be05e30fd67957958f97ae42b3cf
[ "MIT" ]
null
null
null
maskrcnn_benchmark/data/datasets/__init__.py
lipengfeizju/Detection
efe00b221725be05e30fd67957958f97ae42b3cf
[ "MIT" ]
null
null
null
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved. from .coco import COCODataset from .voc import PascalVOCDataset from .concat_dataset import ConcatDataset __all__ = ["COCODataset", "ConcatDataset", "PascalVOCDataset"] # if isinstance(dataset, datasets.MyDataset): # return coco_evaluation(**args)
36.111111
71
0.778462
0
0
0
0
0
0
0
0
198
0.609231
364dc99efa920ea79a2d2856b41d0a11a59412b1
68
py
Python
social/actions.py
raccoongang/python-social-auth
81c0a542d158772bd3486d31834c10af5d5f08b0
[ "BSD-3-Clause" ]
1,987
2015-01-01T16:12:45.000Z
2022-03-29T14:24:25.000Z
social/actions.py
raccoongang/python-social-auth
81c0a542d158772bd3486d31834c10af5d5f08b0
[ "BSD-3-Clause" ]
731
2015-01-01T22:55:25.000Z
2022-03-10T15:07:51.000Z
virtual/lib/python3.6/site-packages/social/actions.py
dennismwaniki67/awards
80ed10541f5f751aee5f8285ab1ad54cfecba95f
[ "MIT" ]
1,082
2015-01-01T16:27:26.000Z
2022-03-22T21:18:33.000Z
from social_core.actions import do_auth, do_complete, do_disconnect
34
67
0.867647
0
0
0
0
0
0
0
0
0
0
364de668db5e04abf8c4ddb3813bc74fcc464515
3,097
py
Python
src/alphazero/data.py
Whillikers/seldon
0d3ff7b25c7272d76a9aba38ee22efd910750f84
[ "MIT" ]
1
2019-11-03T20:18:16.000Z
2019-11-03T20:18:16.000Z
src/alphazero/data.py
Whillikers/seldon
0d3ff7b25c7272d76a9aba38ee22efd910750f84
[ "MIT" ]
null
null
null
src/alphazero/data.py
Whillikers/seldon
0d3ff7b25c7272d76a9aba38ee22efd910750f84
[ "MIT" ]
null
null
null
""" Code for working with data. In-memory format (as a list): - board: Tensor (8, 8, 2) [bool; one-hot] - move: Tensor (64,) [bool; one-hot] - value: Tensor () [float32] On-disk format (to save space and quicken loading): - board: int64 - move: int64 - value: float32 """ from typing import Dict, Tuple import tensorflow as tf # type: ignore from board import BOARD_SHAPE, BOARD_SQUARES, Board, Loc EXAMPLE_SPEC = { "board": tf.io.FixedLenFeature([2], tf.int64), "move": tf.io.FixedLenFeature([], tf.int64), "value": tf.io.FixedLenFeature([], tf.float32), } # Hack to allow storing bitboards efficiently as tf.Int64. # Necessary because boards are all valid uint64 but not necessarily valid int64. # Taken from: https://stackoverflow.com/questions/20766813/how-to-convert-signed-to- # unsigned-integer-in-python def _signed_representation(unsigned: int) -> int: """Convert an "unsigned" int to its equivalent C "signed" representation.""" return (unsigned & ((1 << 63) - 1)) - (unsigned & (1 << 63)) def _unsigned_representation(signed: int) -> int: """Convert a "signed" int to its equivalent C "unsigned" representation.""" return signed & 0xFFFFFFFFFFFFFFFF # See: https://stackoverflow.com/questions/48333210/tensorflow-how-to-convert-an- # integer-tensor-to-the-corresponding-binary-tensor def decode_bitboard(encoded: tf.Tensor) -> tf.Tensor: """ Convert from uint64 board representation to a tf.Tensor board. """ flat = tf.math.mod( tf.bitwise.right_shift(encoded, tf.range(BOARD_SQUARES, dtype=tf.int64)), 2 ) board = tf.reshape(flat, BOARD_SHAPE) # Hack to allow using rot90 on a 2D tensor return tf.image.rot90(tf.expand_dims(board, axis=-1), k=2)[:, :, 0] def serialize_example(board: Board, move: Loc, value: float) -> str: """ Serialize a single training example into a string. """ black = _signed_representation(int(board.black)) white = _signed_representation(int(board.white)) features = { "board": tf.train.Feature(int64_list=tf.train.Int64List(value=[black, white])), "move": tf.train.Feature(int64_list=tf.train.Int64List(value=[move.as_int])), "value": tf.train.Feature(float_list=tf.train.FloatList(value=[value])), } ex = tf.train.Example(features=tf.train.Features(feature=features)) return ex.SerializeToString() def preprocess_example( serialized: str ) -> Tuple[Dict[str, tf.Tensor], Dict[str, tf.Tensor]]: """ Turn a serialized example into the training-ready format. """ example = tf.io.parse_single_example(serialized, EXAMPLE_SPEC) bitboards = example["board"] black_bb = bitboards[0] white_bb = bitboards[1] black = decode_bitboard(black_bb) white = decode_bitboard(white_bb) board = tf.stack([black, white], axis=-1) move = tf.one_hot(example["move"], BOARD_SQUARES) # TODO: better solution to multi-input Keras model training return ( {"board": board}, {"policy_softmax": move, "tf_op_layer_Tanh": example["value"]}, )
34.032967
87
0.680336
0
0
0
0
0
0
0
0
1,262
0.407491
364e9aa16c6e94c8b02ddd7f95c3691e35f760e3
140
py
Python
Codechef Factorial.py
zoya-0509/Practice-codes
4d71b1b004f309025c215e55a504c7817b00e8c9
[ "MIT" ]
null
null
null
Codechef Factorial.py
zoya-0509/Practice-codes
4d71b1b004f309025c215e55a504c7817b00e8c9
[ "MIT" ]
null
null
null
Codechef Factorial.py
zoya-0509/Practice-codes
4d71b1b004f309025c215e55a504c7817b00e8c9
[ "MIT" ]
null
null
null
t=int(input("")) while (t>0): n=int(input("")) f=1 for i in range(1,n+1): f=f*i print(f) t=t-1
15.555556
28
0.378571
0
0
0
0
0
0
0
0
4
0.028571
364ed94d670a685e7be3d3182211a00338f863e8
269
py
Python
LC/263.py
szhu3210/LeetCode_Solutions
64747eb172c2ecb3c889830246f3282669516e10
[ "MIT" ]
2
2018-02-24T17:20:02.000Z
2018-02-24T17:25:43.000Z
LC/263.py
szhu3210/LeetCode_Solutions
64747eb172c2ecb3c889830246f3282669516e10
[ "MIT" ]
null
null
null
LC/263.py
szhu3210/LeetCode_Solutions
64747eb172c2ecb3c889830246f3282669516e10
[ "MIT" ]
null
null
null
class Solution(object): def isUgly(self, num): """ :type num: int :rtype: bool """ if num <= 0: return False for x in [2,3,5]: while(num % x ==0): num /= x return num==1
22.416667
31
0.386617
269
1
0
0
0
0
0
0
59
0.219331
364f0f926540cab854ab6053e2e09c0e19eaaacc
1,569
py
Python
pkgcore/ebuild/errors.py
pombreda/pkgcore
b438fc573af1a031d7ce12adbbf299bab5338451
[ "BSD-3-Clause" ]
1
2021-07-05T13:10:18.000Z
2021-07-05T13:10:18.000Z
pkgcore/ebuild/errors.py
vapier/pkgcore
35a7e4f4f0fc61dd9c4dc72d35a57e2e9d5b832f
[ "BSD-3-Clause" ]
8
2015-03-24T14:21:44.000Z
2015-03-24T14:21:44.000Z
pkgcore/ebuild/errors.py
vapier/pkgcore
35a7e4f4f0fc61dd9c4dc72d35a57e2e9d5b832f
[ "BSD-3-Clause" ]
null
null
null
# Copyright: 2005 Brian Harring <ferringb@gmail.com> # License: GPL2/BSD # "More than one statement on a single line" # pylint: disable-msg=C0321 """ atom exceptions """ __all__ = ("MalformedAtom", "InvalidVersion", "InvalidCPV", "ParseError") from pkgcore.package import errors class MalformedAtom(errors.InvalidDependency): def __init__(self, atom, err=''): errors.InvalidDependency.__init__( self, "atom '%s' is malformed: error %s" % (atom, err)) self.atom, self.err = atom, err class InvalidVersion(errors.InvalidDependency): def __init__(self, ver, rev, err=''): errors.InvalidDependency.__init__( self, "Version restriction ver='%s', rev='%s', is malformed: error %s" % (ver, rev, err)) self.ver, self.rev, self.err = ver, rev, err class InvalidCPV(errors.InvalidPackageName): """Raised if an invalid cpv was passed in. :ivar args: single-element tuple containing the invalid string. :type args: C{tuple} """ class ParseError(errors.InvalidDependency): def __init__(self, s, token=None, msg=None): if msg is None: str_msg = '' else: str_msg = ': %s' % msg if token is not None: Exception.__init__(self, "%s is unparseable%s\nflagged token- %s" % (s, str_msg, token)) else: Exception.__init__(self, "%s is unparseable%s" % (s, str_msg)) self.dep_str, self.token, self.msg = s, token, msg
27.526316
78
0.599745
1,274
0.811982
0
0
0
0
0
0
535
0.340982
3652d826b86718a511de34e46553dd7eade808bc
10,578
py
Python
trainer/train_doc_ml.py
dainis-boumber/AA_CNN
649612215c7e290ede1c51625268ad9fd7b46228
[ "MIT" ]
1
2021-09-27T09:39:11.000Z
2021-09-27T09:39:11.000Z
trainer/train_doc_ml.py
dainis-boumber/AA_CNN
649612215c7e290ede1c51625268ad9fd7b46228
[ "MIT" ]
null
null
null
trainer/train_doc_ml.py
dainis-boumber/AA_CNN
649612215c7e290ede1c51625268ad9fd7b46228
[ "MIT" ]
4
2018-03-21T23:19:40.000Z
2021-03-05T15:09:01.000Z
#! /usr/bin/env python import datetime import os import time import tensorflow as tf from datahelpers import data_helper_ml_mulmol6_OnTheFly as dh from evaluators import eval_pan_archy as evaler from networks.cnn_ml_archy import TextCNN def init_data(embed_dimension, do_dev_split=False): dater = dh.DataHelperMLFly(doc_level=True, embed_dim=embed_dimension, target_sent_len=40, target_doc_len=200) # Model Hyperparameters tf.flags.DEFINE_integer("num_classes", dater.num_of_classes, "Number of possible labels") tf.flags.DEFINE_integer("embedding_dim", dater.embedding_dim, "Dimensionality of character embedding") tf.flags.DEFINE_string("filter_sizes", "3", "Comma-separated filter sizes (default: '3,4,5')") # tf.flags.DEFINE_integer("num_filters", 100, "Number of filters per filter size (default: 128)") # tf.flags.DEFINE_float("dropout_keep_prob", 0.5, "Dropout keep probability (default: 0.5)") # tf.flags.DEFINE_float("l2_reg_lambda", 0.6, "L2 regularizaion lambda (default: 0.0)") # Training parameters tf.flags.DEFINE_integer("batch_size", 4, "Batch Size (default: 64)") tf.flags.DEFINE_integer("num_epochs", 200, "Number of training epochs (default: 200)") tf.flags.DEFINE_integer("evaluate_every", 200, "Evaluate model on dev set after this many steps (default: 100)") tf.flags.DEFINE_integer("checkpoint_every", 250, "Save model after this many steps (default: 100)") # Misc Parameters tf.flags.DEFINE_boolean("allow_soft_placement", True, "Allow device soft device placement") tf.flags.DEFINE_boolean("log_device_placement", False, "Log placement of ops on devices") FLAGS = tf.flags.FLAGS FLAGS._parse_flags() print("\nParameters:") for attr, value in sorted(FLAGS.__flags.items()): print(("{}={}".format(attr.upper(), value))) print("") # Load data print("Loading data...") x_shuffled, y_shuffled, vocabulary, vocabulary_inv, embed_matrix = dater.load_data() print(("Vocabulary Size: {:d}".format(len(vocabulary)))) # Split train/test set # TODO: This is very crude, should use cross-validation if do_dev_split: x_train, x_dev = x_shuffled[:-500], x_shuffled[-500:] y_train, y_dev = y_shuffled[:-500], y_shuffled[-500:] print(("Train/Dev split: {:d}/{:d}".format(len(y_train), len(y_dev)))) else: x_train = x_shuffled x_dev = None y_train = y_shuffled y_dev = None print("No Train/Dev split") return dater, FLAGS, x_train, x_dev, y_train, y_dev, vocabulary, embed_matrix # Training def training(DO_DEV_SPLIT, FLAGS, scheme_name, vocabulary, embed_matrix, x_train, x_dev, y_train, y_dev, num_filters, dropout_prob, l2_lambda, test_x, test_y): with tf.Graph().as_default(): session_conf = tf.ConfigProto( allow_soft_placement=FLAGS.allow_soft_placement, log_device_placement=FLAGS.log_device_placement) sess = tf.Session(config=session_conf) with sess.as_default(): cnn = TextCNN( doc_sent_len=x_train.shape[1], sent_len=x_train.shape[2], num_classes=FLAGS.num_classes, # Number of classification classes vocab_size=len(vocabulary), embedding_size=FLAGS.embedding_dim, filter_sizes=list(map(int, FLAGS.filter_sizes.split(","))), num_filters=num_filters, l2_reg_lambda=l2_lambda, init_embedding=embed_matrix) # Define Training procedure global_step = tf.Variable(0, name="global_step", trainable=False) optimizer = tf.train.AdamOptimizer(1e-3) grads_and_vars = optimizer.compute_gradients(cnn.loss) train_op = optimizer.apply_gradients(grads_and_vars, global_step=global_step) # Keep track of gradient values and sparsity (optional) with tf.name_scope('grad_summary'): grad_summaries = [] for g, v in grads_and_vars: if g is not None: grad_hist_summary = tf.histogram_summary("{}/grad/hist".format(v.name), g) sparsity_summary = tf.scalar_summary("{}/grad/sparsity".format(v.name), tf.nn.zero_fraction(g)) grad_summaries.append(grad_hist_summary) grad_summaries.append(sparsity_summary) grad_summaries_merged = tf.merge_summary(grad_summaries) # Output directory for models and summaries timestamp = str(int(time.time())) out_dir = os.path.abspath(os.path.join(os.path.curdir, "runs", scheme_name, timestamp)) print(("Writing to {}\n".format(out_dir))) # Summaries for loss and accuracy loss_summary = tf.scalar_summary("loss", cnn.loss) pred_ratio_summary = [] for i in range(FLAGS.num_classes): pred_ratio_summary.append( tf.scalar_summary("prediction/label_" + str(i) + "_percentage", cnn.rate_percentage[i])) acc_summary = tf.scalar_summary("accuracy", cnn.accuracy) # Train Summaries with tf.name_scope('train_summary'): train_summary_op = tf.merge_summary( [loss_summary, acc_summary, pred_ratio_summary, grad_summaries_merged]) train_summary_dir = os.path.join(out_dir, "summaries", "train") train_summary_writer = tf.train.SummaryWriter(train_summary_dir, sess.graph_def) # Dev summaries with tf.name_scope('dev_summary'): dev_summary_op = tf.merge_summary([loss_summary, acc_summary, pred_ratio_summary]) dev_summary_dir = os.path.join(out_dir, "summaries", "dev") dev_summary_writer = tf.train.SummaryWriter(dev_summary_dir, sess.graph_def) # Checkpoint directory. Tensorflow assumes this directory already exists so we need to create it checkpoint_dir = os.path.abspath(os.path.join(out_dir, "checkpoints")) checkpoint_prefix = os.path.join(checkpoint_dir, "model") if not os.path.exists(checkpoint_dir): os.makedirs(checkpoint_dir) saver = tf.train.Saver(var_list=tf.global_variables(), max_to_keep=7) # Initialize all variables sess.run(tf.global_variables_initializer()) def train_step(x_batch, y_batch): """ A single training step """ feed_dict = { cnn.input_x: x_batch, cnn.input_y: y_batch, cnn.dropout_keep_prob: dropout_prob } _, step, summaries, loss, accuracy = sess.run( [train_op, global_step, train_summary_op, cnn.loss, cnn.accuracy], feed_dict) time_str = datetime.datetime.now().isoformat() print(("{}: step {}, loss {:g}, acc {:g}".format(time_str, step, loss, accuracy))) train_summary_writer.add_summary(summaries, step) def dev_step(x_batch, y_batch, writer=None): """ Evaluates model on a dev set """ feed_dict = { cnn.input_x: x_batch, cnn.input_y: y_batch, cnn.dropout_keep_prob: 1 } step, summaries, loss, accuracy = sess.run( [global_step, dev_summary_op, cnn.loss, cnn.accuracy], feed_dict) time_str = datetime.datetime.now().isoformat() print(("{}: step {}, loss {:g}, acc {:g}".format(time_str, step, loss, accuracy))) if writer: writer.add_summary(summaries, step) # Generate batches batches = dh.DataHelperMLFly.batch_iter(list(zip(x_train, y_train)), FLAGS.batch_size, FLAGS.num_epochs) if test_x is not None and test_y is not None: test_x_1 = test_x[:100] test_y_1 = test_y[:100] test_x_2 = test_x[100:200] test_y_2 = test_y[100:200] # Training loop. For each batch... for batch in batches: if len(batch) == 0: continue x_batch, y_batch = list(zip(*batch)) train_step(x_batch, y_batch) current_step = tf.train.global_step(sess, global_step) if DO_DEV_SPLIT and current_step % FLAGS.evaluate_every == 0: print("\nEvaluation:") dev_batches = dh.DataHelperMLFly.batch_iter(list(zip(x_dev, y_dev)), 100, 1) for dev_batch in dev_batches: if len(dev_batch) > 0: small_dev_x, small_dev_y = list(zip(*dev_batch)) dev_step(small_dev_x, small_dev_y, writer=dev_summary_writer) print("") elif test_x is not None and test_y is not None and current_step % 200 == 0: dev_step(test_x_1, test_y_1, writer=dev_summary_writer) dev_step(test_x_2, test_y_2, writer=dev_summary_writer) if current_step % FLAGS.checkpoint_every == 0: path = saver.save(sess, checkpoint_prefix, global_step=current_step) print(("Saved model checkpoint to {}\n".format(path))) # if current_step >= 3000: # break return timestamp DO_DEV_SPLIT = False bold_step = [2500, 3000, 3500, 4000, 4500] bold_step2 = [2000, 2250, 2500, 2750, 3000, 3250, 3500] embed_dim = 100 output_file = open("ml_100d_doc.txt", mode="aw") dir_name = "ml_100d_doc" [dater, FLAGS, x_train, x_dev, y_train, y_dev, vocabulary, embed_matrix] =\ init_data(embed_dim, DO_DEV_SPLIT) ev = evaler.evaler() test_x, test_y, test_y_scalar = ev.load(dater) for f_size in [50]: for l2 in [0.1]: for drop in [0.50]: output_file.write("===== Filter Size: "+str(f_size)+"\n") output_file.write("===== L2 Norm: "+str(l2)+"\n") output_file.write("===== Drop Out: "+str(drop)+"\n\n\n") ts = training(DO_DEV_SPLIT, FLAGS, dir_name, vocabulary, embed_matrix, x_train, x_dev, y_train, y_dev, f_size, drop, l2, test_x, test_y) for train_step in [3000]: checkpoint_dir = "./runs/" + dir_name + "/" + str(ts) + "/checkpoints/" ev.test(checkpoint_dir, train_step, output_file, documentAcc=True) output_file.close()
45.012766
119
0.616752
0
0
0
0
0
0
0
0
2,095
0.198053
365493226ef8ff623b67882ccdb1d5957462cc3b
80
py
Python
releases/_version.py
Nicusor97/releases
97a763e41bbe7374106a1c648b89346a0d935429
[ "BSD-2-Clause" ]
null
null
null
releases/_version.py
Nicusor97/releases
97a763e41bbe7374106a1c648b89346a0d935429
[ "BSD-2-Clause" ]
null
null
null
releases/_version.py
Nicusor97/releases
97a763e41bbe7374106a1c648b89346a0d935429
[ "BSD-2-Clause" ]
null
null
null
__version_info__ = (1, 6, 1) __version__ = '.'.join(map(str, __version_info__))
26.666667
50
0.7
0
0
0
0
0
0
0
0
3
0.0375
3656cab44b971cc68a2561efdd667d02fb35d8b4
442
py
Python
areaofrectangle.py
Ahmad-Aiman/Calculate-Area-of-Rectangle
ff33a2eab14bffc1a8c29a9134cabea48b69538b
[ "MIT" ]
null
null
null
areaofrectangle.py
Ahmad-Aiman/Calculate-Area-of-Rectangle
ff33a2eab14bffc1a8c29a9134cabea48b69538b
[ "MIT" ]
null
null
null
areaofrectangle.py
Ahmad-Aiman/Calculate-Area-of-Rectangle
ff33a2eab14bffc1a8c29a9134cabea48b69538b
[ "MIT" ]
null
null
null
#Area of a rectangle = width x length #Perimeter of a rectangle = 2 x [length + width# width_input = float (input("\nPlease enter width: ")) length_input = float (input("Please enter length: ")) areaofRectangle = width_input * length_input perimeterofRectangle = 2 * (width_input * length_input) print ("\nArea of Rectangle is: " , areaofRectangle, "CM") print("\nPerimeter of Rectangle is: ", perimeterofRectangle, "CM")
29.466667
67
0.70362
0
0
0
0
0
0
0
0
199
0.450226
3657fec70ed8fedb4b5b14e5e0ae343bef42588d
2,324
py
Python
python/src/main/python/pygw/store/rocksdb/options.py
Maxar-Corp/sh-geowave
675781d3898b50c09ee66f57e74cf788286b05d5
[ "Apache-2.0" ]
null
null
null
python/src/main/python/pygw/store/rocksdb/options.py
Maxar-Corp/sh-geowave
675781d3898b50c09ee66f57e74cf788286b05d5
[ "Apache-2.0" ]
null
null
null
python/src/main/python/pygw/store/rocksdb/options.py
Maxar-Corp/sh-geowave
675781d3898b50c09ee66f57e74cf788286b05d5
[ "Apache-2.0" ]
null
null
null
# # Copyright (c) 2013-2020 Contributors to the Eclipse Foundation # # See the NOTICE file distributed with this work for additional information regarding copyright # ownership. All rights reserved. This program and the accompanying materials are made available # under the terms of the Apache License, Version 2.0 which accompanies this distribution and is # available at http://www.apache.org/licenses/LICENSE-2.0.txt #=============================================================================================== from pygw.config import geowave_pkg from pygw.store import DataStoreOptions class RocksDBOptions(DataStoreOptions): """ RocksDB data store options. """ def __init__(self): """ Initializes the RocksDB options class. """ super().__init__(geowave_pkg.datastore.rocksdb.config.RocksDBOptions()) def set_directory(self, directory): """ Sets the directory of the RocksDB database. Args: directory (str): The directory for the database. """ self._java_ref.setDirectory(directory) def get_directory(self): """ Returns: The directory for the RocksDB database. """ return self._java_ref.getDirectory() def set_compact_on_write(self, compact_on_write): """ Sets whether or not to perform compaction on write. Args: compact_on_write (bool): Whether or not to perform compaction on write. """ self._java_ref.setCompactOnWrite(compact_on_write) def is_compact_on_write(self): """ Returns: True if compaction on write is enabled, False otherwise. """ return self._java_ref.isCompactOnWrite() def set_batch_write_size(self, batch_write_size): """ Sets the number of entries to be gathered before performing a batch write operation on the data store. Args: batch_write_size (int): The number of entries to write in batch write operations. """ self._java_ref.setBatchWriteSize(batch_write_size) def get_batch_write_size(self): """ Returns: The number of entries to write in batch write operations. """ return self._java_ref.getBatchWriteSize()
31.835616
96
0.63167
1,727
0.743115
0
0
0
0
0
0
1,461
0.628657
36595769c1ee20b5e029d4e12f235050f6967122
33,084
py
Python
server/miscellaneous.py
dewancse/SMT-PMR
8d280ff5d169a021a73ffa30c8159581ab859c62
[ "MIT" ]
null
null
null
server/miscellaneous.py
dewancse/SMT-PMR
8d280ff5d169a021a73ffa30c8159581ab859c62
[ "MIT" ]
10
2017-05-16T22:08:40.000Z
2017-10-30T21:07:47.000Z
server/miscellaneous.py
dewancse/SMT-PMR
8d280ff5d169a021a73ffa30c8159581ab859c62
[ "MIT" ]
null
null
null
import requests from libcellml import * import lxml.etree as ET # pre-generated model recipe in JSON format model_recipe = [ { "med_fma": "http://purl.obolibrary.org/obo/FMA_84666", "med_pr": "http://purl.obolibrary.org/obo/PR_P26433", "med_pr_text": "sodium/hydrogen exchanger 3 (rat)", "med_pr_text_syn": "NHE3", "model_entity": "weinstein_1995.cellml#NHE3.J_NHE3_Na", "model_entity2": "", "model_entity3": "", "protein_name": "http://purl.obolibrary.org/obo/PR_P26433", "sink_fma": "http://purl.obolibrary.org/obo/FMA_66836", "sink_fma2": "", "sink_fma3": "", "solute_chebi": "http://purl.obolibrary.org/obo/CHEBI_29101", "solute_chebi2": "", "solute_chebi3": "", "solute_text": "Na+", "solute_text2": "", "solute_text3": "", "source_fma": "http://purl.obolibrary.org/obo/FMA_74550", "source_fma2": "", "source_fma3": "", "variable_text": "J_NHE3_Na", "variable_text2": "flux", "variable_text3": "flux" }, { "med_fma": "http://purl.obolibrary.org/obo/FMA_84669", "med_pr": "http://purl.obolibrary.org/obo/PR_Q9ET37", "med_pr_text": "low affinity sodium-glucose cotransporter (mouse)", "med_pr_text_syn": "Q9ET37", "model_entity": "mackenzie_1996-mouse-baso.cellml#NBC_current.J_Na", "model_entity2": "mackenzie_1996-mouse-baso.cellml#NBC_current.J_Na", "model_entity3": "", "protein_name": "http://purl.obolibrary.org/obo/PR_Q9ET37", "sink_fma": "http://purl.obolibrary.org/obo/FMA_9673", "sink_fma2": "http://purl.obolibrary.org/obo/FMA_66836", "sink_fma3": "", "solute_chebi": "http://purl.obolibrary.org/obo/CHEBI_29101", "solute_chebi2": "http://purl.obolibrary.org/obo/CHEBI_29101", "solute_chebi3": "", "solute_text": "Na+", "solute_text2": "Na+", "solute_text3": "", "source_fma": "http://purl.obolibrary.org/obo/FMA_66836", "source_fma2": "http://purl.obolibrary.org/obo/FMA_9673", "source_fma3": "", "variable_text": "J_Na", "variable_text2": "J_Na", "variable_text3": "" }, { "med_fma": "http://purl.obolibrary.org/obo/FMA_84666", "med_pr": "http://purl.obolibrary.org/obo/PR_P55018", "med_pr_text": "solute carrier family 12 member 3 (rat)", "med_pr_text_syn": "TSC", "model_entity": "chang_fujita_b_1999.cellml#total_transepithelial_sodium_flux.J_mc_Na", "model_entity2": "chang_fujita_b_1999.cellml#solute_concentrations.J_mc_Cl", "model_entity3": "", "protein_name": "http://purl.obolibrary.org/obo/CL_0000066", "sink_fma": "http://purl.obolibrary.org/obo/FMA_66836", "sink_fma2": "http://purl.obolibrary.org/obo/FMA_66836", "sink_fma3": "", "solute_chebi": "http://purl.obolibrary.org/obo/CHEBI_29101", "solute_chebi2": "http://purl.obolibrary.org/obo/CHEBI_17996", "solute_chebi3": "", "solute_text": "Na+", "solute_text2": "Cl-", "solute_text3": "", "source_fma": "http://purl.obolibrary.org/obo/FMA_74550", "source_fma2": "http://purl.obolibrary.org/obo/FMA_74550", "source_fma3": "", "variable_text": "J_mc_Na", "variable_text2": "J_mc_Cl", "variable_text3": "" }, { "med_fma": "http://purl.obolibrary.org/obo/FMA_84666", "med_pr": "http://purl.obolibrary.org/obo/PR_Q63633", "med_pr_text": "solute carrier family 12 member 5 (rat)", "med_pr_text_syn": "Q63633", "model_entity": "chang_fujita_b_1999.cellml#solute_concentrations.J_mc_Cl", "model_entity2": "chang_fujita_b_1999.cellml#total_transepithelial_potassium_flux.J_mc_K", "model_entity3": "", "protein_name": "http://purl.obolibrary.org/obo/CL_0000066", "sink_fma": "http://purl.obolibrary.org/obo/FMA_66836", "sink_fma2": "http://purl.obolibrary.org/obo/FMA_66836", "sink_fma3": "", "solute_chebi": "http://purl.obolibrary.org/obo/CHEBI_17996", "solute_chebi2": "http://purl.obolibrary.org/obo/CHEBI_29103", "solute_chebi3": "", "solute_text": "Cl-", "solute_text2": "K+", "solute_text3": "", "source_fma": "http://purl.obolibrary.org/obo/FMA_74550", "source_fma2": "http://purl.obolibrary.org/obo/FMA_74550", "source_fma3": "", "variable_text": "J_mc_Cl", "variable_text2": "J_mc_K", "variable_text3": "" }, { "med_fma": "http://purl.obolibrary.org/obo/FMA_84666", "med_pr": "http://purl.obolibrary.org/obo/PR_P37089", "med_pr_text": "amiloride-sensitive sodium channel subunit alpha (rat)", "med_pr_text_syn": "RENAC", "model_entity": "chang_fujita_b_1999.cellml#mc_sodium_flux.G_mc_Na", "model_entity2": "", "model_entity3": "", "protein_name": "http://purl.obolibrary.org/obo/CL_0000066", "sink_fma": "http://purl.obolibrary.org/obo/FMA_66836", "sink_fma2": "channel", "sink_fma3": "channel", "solute_chebi": "http://purl.obolibrary.org/obo/CHEBI_29101", "solute_chebi2": "channel", "solute_chebi3": "channel", "solute_text": "Na+", "solute_text2": "channel", "solute_text3": "channel", "source_fma": "http://purl.obolibrary.org/obo/FMA_74550", "source_fma2": "channel", "source_fma3": "channel", "variable_text": "G_mc_Na", "variable_text2": "channel", "variable_text3": "channel" }, { "med_fma": "http://purl.obolibrary.org/obo/FMA_84666", "med_pr": "http://purl.obolibrary.org/obo/PR_Q06393", "med_pr_text": "chloride channel protein ClC-Ka (rat)", "med_pr_text_syn": "CLCNK1", "model_entity": "chang_fujita_b_1999.cellml#mc_chloride_flux.G_mc_Cl", "model_entity2": "", "model_entity3": "", "protein_name": "http://purl.obolibrary.org/obo/CL_0000066", "sink_fma": "http://purl.obolibrary.org/obo/FMA_66836", "sink_fma2": "channel", "sink_fma3": "channel", "solute_chebi": "http://purl.obolibrary.org/obo/CHEBI_17996", "solute_chebi2": "channel", "solute_chebi3": "channel", "solute_text": "Cl-", "solute_text2": "channel", "solute_text3": "channel", "source_fma": "http://purl.obolibrary.org/obo/FMA_74550", "source_fma2": "channel", "source_fma3": "channel", "variable_text": "G_mc_Cl", "variable_text2": "channel", "variable_text3": "channel" }, { "med_fma": "http://purl.obolibrary.org/obo/FMA_84666", "med_pr": "http://purl.obolibrary.org/obo/PR_P15387", "med_pr_text": "potassium voltage-gated channel subfamily B member 1 (rat)", "med_pr_text_syn": "P15387", "model_entity": "chang_fujita_b_1999.cellml#mc_potassium_flux.G_mc_K", "model_entity2": "", "model_entity3": "", "protein_name": "http://purl.obolibrary.org/obo/CL_0000066", "sink_fma": "http://purl.obolibrary.org/obo/FMA_66836", "sink_fma2": "channel", "sink_fma3": "channel", "solute_chebi": "http://purl.obolibrary.org/obo/CHEBI_29103", "solute_chebi2": "channel", "solute_chebi3": "channel", "solute_text": "K+", "solute_text2": "channel", "solute_text3": "channel", "source_fma": "http://purl.obolibrary.org/obo/FMA_74550", "source_fma2": "channel", "source_fma3": "channel", "variable_text": "G_mc_K", "variable_text2": "channel", "variable_text3": "channel" }, { "med_fma": "http://purl.obolibrary.org/obo/FMA_84669", "med_pr": "http://purl.obolibrary.org/obo/PR_P06685", "med_pr_text": "sodium/potassium-transporting ATPase subunit alpha-1 (rat)", "med_pr_text_syn": "P06685", "model_entity": "chang_fujita_b_1999.cellml#solute_concentrations.J_sc_Na", "model_entity2": "chang_fujita_b_1999.cellml#sc_potassium_flux.J_sc_K", "model_entity3": "", "protein_name": "http://purl.obolibrary.org/obo/CL_0000066", "sink_fma": "http://purl.obolibrary.org/obo/FMA_9673", "sink_fma2": "http://purl.obolibrary.org/obo/FMA_66836", "sink_fma3": "", "solute_chebi": "http://purl.obolibrary.org/obo/CHEBI_29101", "solute_chebi2": "http://purl.obolibrary.org/obo/CHEBI_29103", "solute_chebi3": "", "solute_text": "Na+", "solute_text2": "K+", "solute_text3": "", "source_fma": "http://purl.obolibrary.org/obo/FMA_66836", "source_fma2": "http://purl.obolibrary.org/obo/FMA_9673", "source_fma3": "", "variable_text": "J_sc_Na", "variable_text2": "J_sc_K", "variable_text3": "" }, { "med_fma": "http://purl.obolibrary.org/obo/FMA_84669", "med_pr": "http://purl.obolibrary.org/obo/PR_Q06393", "med_pr_text": "chloride channel protein ClC-Ka (rat)", "med_pr_text_syn": "CLCNK1", "model_entity": "chang_fujita_b_1999.cellml#sc_chloride_flux.G_sc_Cl", "model_entity2": "", "model_entity3": "", "protein_name": "http://purl.obolibrary.org/obo/CL_0000066", "sink_fma": "http://purl.obolibrary.org/obo/FMA_66836", "sink_fma2": "channel", "sink_fma3": "channel", "solute_chebi": "http://purl.obolibrary.org/obo/CHEBI_17996", "solute_chebi2": "channel", "solute_chebi3": "channel", "solute_text": "Cl-", "solute_text2": "channel", "solute_text3": "channel", "source_fma": "http://purl.obolibrary.org/obo/FMA_9673", "source_fma2": "channel", "source_fma3": "channel", "variable_text": "G_sc_Cl", "variable_text2": "channel", "variable_text3": "channel" }, { "med_fma": "http://purl.obolibrary.org/obo/FMA_84669", "med_pr": "http://purl.obolibrary.org/obo/PR_P15387", "med_pr_text": "potassium voltage-gated channel subfamily B member 1 (rat)", "med_pr_text_syn": "P15387", "model_entity": "chang_fujita_b_1999.cellml#sc_potassium_flux.G_sc_K", "model_entity2": "", "model_entity3": "", "protein_name": "http://purl.obolibrary.org/obo/CL_0000066", "sink_fma": "http://purl.obolibrary.org/obo/FMA_66836", "sink_fma2": "channel", "sink_fma3": "channel", "solute_chebi": "http://purl.obolibrary.org/obo/CHEBI_29103", "solute_chebi2": "channel", "solute_chebi3": "channel", "solute_text": "K+", "solute_text2": "channel", "solute_text3": "channel", "source_fma": "http://purl.obolibrary.org/obo/FMA_9673", "source_fma2": "channel", "source_fma3": "channel", "variable_text": "G_sc_K", "variable_text2": "channel", "variable_text3": "channel" }, { "med_fma": "http://purl.obolibrary.org/obo/FMA_67394", "med_pr": "http://purl.obolibrary.org/obo/PR_Q9Z0S6", "med_pr_text": "claudin-10 (mouse)", "med_pr_text_syn": "CLDN10A", "model_entity": "chang_fujita_b_1999.cellml#ms_sodium_flux.G_ms_Na", "model_entity2": "", "model_entity3": "", "protein_name": "http://purl.obolibrary.org/obo/CL_0000066", "sink_fma": "http://purl.obolibrary.org/obo/FMA_9673", "sink_fma2": "diffusiveflux", "sink_fma3": "diffusiveflux", "solute_chebi": "http://purl.obolibrary.org/obo/CHEBI_29101", "solute_chebi2": "diffusiveflux", "solute_chebi3": "diffusiveflux", "solute_text": "Na+", "solute_text2": "diffusiveflux", "solute_text3": "diffusiveflux", "source_fma": "http://purl.obolibrary.org/obo/FMA_74550", "source_fma2": "diffusiveflux", "source_fma3": "diffusiveflux", "variable_text": "G_ms_Na", "variable_text2": "diffusiveflux", "variable_text3": "diffusiveflux" }, { "med_fma": "http://purl.obolibrary.org/obo/FMA_67394", "med_pr": "http://purl.obolibrary.org/obo/PR_O35054", "med_pr_text": "claudin-4 (mouse)", "med_pr_text_syn": "CPETR1", "model_entity": "chang_fujita_b_1999.cellml#ms_chloride_flux.G_ms_Cl", "model_entity2": "", "model_entity3": "", "protein_name": "http://purl.obolibrary.org/obo/CL_0000066", "sink_fma": "http://purl.obolibrary.org/obo/FMA_9673", "sink_fma2": "diffusiveflux", "sink_fma3": "diffusiveflux", "solute_chebi": "http://purl.obolibrary.org/obo/CHEBI_17996", "solute_chebi2": "diffusiveflux", "solute_chebi3": "diffusiveflux", "solute_text": "Cl-", "solute_text2": "diffusiveflux", "solute_text3": "diffusiveflux", "source_fma": "http://purl.obolibrary.org/obo/FMA_74550", "source_fma2": "diffusiveflux", "source_fma3": "diffusiveflux", "variable_text": "G_ms_Cl", "variable_text2": "diffusiveflux", "variable_text3": "diffusiveflux" }, { "med_fma": "http://purl.obolibrary.org/obo/FMA_67394", "med_pr": "http://purl.obolibrary.org/obo/PR_F1LZ52", "med_pr_text": "kelch-like protein 3 (rat)", "med_pr_text_syn": "F1LZ52", "model_entity": "chang_fujita_b_1999.cellml#ms_potassium_flux.G_ms_K", "model_entity2": "", "model_entity3": "", "protein_name": "http://purl.obolibrary.org/obo/CL_0000066", "sink_fma": "http://purl.obolibrary.org/obo/FMA_9673", "sink_fma2": "diffusiveflux", "sink_fma3": "diffusiveflux", "solute_chebi": "http://purl.obolibrary.org/obo/CHEBI_29103", "solute_chebi2": "diffusiveflux", "solute_chebi3": "diffusiveflux", "solute_text": "K+", "solute_text2": "diffusiveflux", "solute_text3": "diffusiveflux", "source_fma": "http://purl.obolibrary.org/obo/FMA_74550", "source_fma2": "diffusiveflux", "source_fma3": "diffusiveflux", "variable_text": "G_ms_K", "variable_text2": "diffusiveflux", "variable_text3": "diffusiveflux" } ] # sparql endpoint in PMR sparqlendpoint = "https://models.physiomeproject.org/pmr2_virtuoso_search" # workspace url where we have all models workspaceURL = "https://models.physiomeproject.org/workspace/267/rawfile/HEAD/" # reference URIs of anatomical locations lumen_fma = "http://purl.obolibrary.org/obo/FMA_74550" cytosol_fma = "http://purl.obolibrary.org/obo/FMA_66836" interstitialfluid_fma = "http://purl.obolibrary.org/obo/FMA_9673" # solutes dictionary to map URI to name dict_solutes = [ { "http://purl.obolibrary.org/obo/CHEBI_29101": "Na", "http://purl.obolibrary.org/obo/CHEBI_17996": "Cl", "http://purl.obolibrary.org/obo/CHEBI_29103": "K" } ] # get channels and diffusive fluxes equations from source model def getChannelsEquation(str_channel, v, compartment, importedModel, m, epithelial): # string index of "id=" and "</math>" inside MathML str_index = [] # save here required variables to make channels and diffusive fluxes equations # e.g. ['C_c_Na', 'RT', 'psi_c', 'P_mc_Na', 'F', 'psi_m'] list_of_variables = [] # remove C_c_Na from here ['C_c_Na', 'RT', 'psi_c', 'P_mc_Na', 'F', 'psi_m'] and save in this variable list_of_variables_2 = [] for i in range(len(str_channel)): if "id=" in str_channel[i]: str_index.append(i) # insert variables equation elif "</math>" in str_channel[i]: str_index.append(i) # insert math index to note end of math # print(str_index) for i in range(len(str_index)): flag = False if i + 1 == len(str_index): break else: my_str = str_channel[str_index[i]:str_index[i + 1] - 1] for i in range(len(my_str)): if "<eq/>" in my_str[i] and "<ci>" + v + "</ci>" in my_str[i + 1]: channel_str = "" for s in my_str: channel_str += s channel_str = "<math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n" + channel_str + "</apply>\n</math>\n" # check that whether this channel already exists in this component # we are doing this because G_mc_Na, etc comes twice in the epithelial component! mth = compartment.math() if channel_str not in mth: compartment.appendMath(channel_str) # extract variables from this math string for i in range(len(my_str)): if "<ci>" in my_str[i]: start_index = my_str[i].find("<ci>") end_index = my_str[i].find("</ci>") if my_str[i][start_index + 4:end_index] != v: list_of_variables.append(my_str[i][start_index + 4:end_index]) flag = True break if flag == True: break # remove variables if already exists in the component for i in range(compartment.variableCount()): var = compartment.variable(i) # we will remove C_c_Na from the list below after constructing lumen, cytosol and interstitial fluid component # e.g. ['C_c_Na', 'RT', 'psi_c', 'P_mc_Na', 'F', 'psi_m'] if var.name() in list_of_variables: list_of_variables.remove(var.name()) # unique elements in the list list_of_variables = list(set(list_of_variables)) # save all components including a parent component into a mycomponent variable # for now, we have considered 3 encapsulation stages: grandparent -> parent -> children mycomponent = Component() for i in range(importedModel.componentCount()): c = importedModel.component(i) mycomponent.addComponent(c) for j in range(c.componentCount()): c2 = c.component(j) mycomponent.addComponent(c2) for k in range(c2.componentCount()): c3 = c2.component(k) mycomponent.addComponent(c3) for item in list_of_variables: # iterate over components for i in range(mycomponent.componentCount()): c = mycomponent.component(i) # variables within a component for j in range(c.variableCount()): v = c.variable(j) if v.name() == item and v.initialValue() != "": # add units addUnitsModel(v.units(), importedModel, m) if epithelial.variable(v.name()) == None: v_epithelial = Variable() # insert this variable in the epithelial component createComponent(v_epithelial, v.name(), v.units(), "public_and_private", v.initialValue(), epithelial, v) if compartment.variable(v.name()) == None: v_compartment = Variable() # insert this variable in the lumen/cytosol/interstitial fluid component createComponent(v_compartment, v.name(), v.units(), "public", None, compartment, v) # user-defined function to append a substring of ODE based equations def subMath(sign, vFlux): return " <apply>\n" \ " <" + sign + "/>\n" + \ " <ci>" + vFlux + "</ci>\n" + \ " </apply>" # user-defined function to define ODE based equations def fullMath(vConcentration, subMath): return "<math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n" \ " <apply id=" + '"' + vConcentration + "_diff_eq" + '"' + ">\n" + \ " <eq/>\n" \ " <apply>\n" \ " <diff/>\n" \ " <bvar>\n" \ " <ci>time</ci>\n" \ " </bvar>\n" \ " <ci>" + vConcentration + "</ci>\n" + \ " </apply>\n" \ " <apply>\n" \ " <plus/>\n" \ "" + subMath + "\n" + \ " </apply>\n" \ " </apply>\n" \ "</math>\n" # insert ODE equations for lumen, cytosol and interstitial fluid component def insertODEMathEquation(math_dict, compartment, v_cons, v_flux, sign): # ODE equations for lumen if compartment.name() == "lumen": if v_cons.name() not in math_dict[0]["lumen"].keys(): math_dict[0]["lumen"][v_cons.name()] = subMath(sign, v_flux.name()) else: math_dict[0]["lumen"][v_cons.name()] = \ math_dict[0]["lumen"][v_cons.name()] + "\n" + subMath(sign, v_flux.name()) # ODE equations for cytosol if compartment.name() == "cytosol": if v_cons.name() not in math_dict[0]["cytosol"].keys(): math_dict[0]["cytosol"][v_cons.name()] = subMath(sign, v_flux.name()) else: math_dict[0]["cytosol"][v_cons.name()] = \ math_dict[0]["cytosol"][v_cons.name()] + "\n" + subMath(sign, v_flux.name()) # ODE equations for interstitial fluid if compartment.name() == "interstitialfluid": if v_cons.name() not in math_dict[0]["interstitialfluid"].keys(): math_dict[0]["interstitialfluid"][v_cons.name()] = subMath(sign, v_flux.name()) else: math_dict[0]["interstitialfluid"][v_cons.name()] = \ math_dict[0]["interstitialfluid"][v_cons.name()] + "\n" + subMath(sign, v_flux.name()) # math for total fluxes in the lumen, cytosol and interstitial fluid component def fullMathTotalFlux(vTotalFlux, sMath): return "<math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n" \ " <apply id=" + '"' + vTotalFlux + "_calculation" + '"' + ">\n" + \ " <eq/>\n" \ " <ci>" + vTotalFlux + "</ci>\n" + \ " <apply>\n" \ " <plus/>\n" \ "" + sMath + "\n" + \ " </apply>\n" \ " </apply>\n" \ "</math>\n" # user-defined function to append a substring of total fluxes and channels equations def subMathTotalFluxAndChannel(sign, vFlux): return " <apply>\n" \ " <" + sign + "/>\n" + \ " <ci>" + vFlux + "</ci>\n" + \ " </apply>" # insert equations for total fluxes def insertMathsForTotalFluxes(compartment, math_dict_Total_Flux, dict_solutes, chebi, sign, v_flux): if compartment.name() == "lumen": lumen_flux = "J_" + dict_solutes[0][chebi] + "_lumen" if lumen_flux not in math_dict_Total_Flux[0]["lumen"].keys(): math_dict_Total_Flux[0]["lumen"][lumen_flux] = subMathTotalFluxAndChannel(sign, v_flux.name()) else: math_dict_Total_Flux[0]["lumen"][lumen_flux] = \ math_dict_Total_Flux[0]["lumen"][lumen_flux] + "\n" + \ subMathTotalFluxAndChannel(sign, v_flux.name()) if compartment.name() == "cytosol": cytosol_flux = "J_" + dict_solutes[0][chebi] + "_cytosol" if cytosol_flux not in math_dict_Total_Flux[0]["cytosol"].keys(): math_dict_Total_Flux[0]["cytosol"][cytosol_flux] = \ subMathTotalFluxAndChannel(sign, v_flux.name()) else: math_dict_Total_Flux[0]["cytosol"][cytosol_flux] = \ math_dict_Total_Flux[0]["cytosol"][cytosol_flux] + "\n" + \ subMathTotalFluxAndChannel(sign, v_flux.name()) if compartment.name() == "interstitialfluid": interstitialfluid_flux = "J_" + dict_solutes[0][chebi] + "_interstitialfluid" if interstitialfluid_flux not in math_dict_Total_Flux[0]["interstitialfluid"].keys(): math_dict_Total_Flux[0]["interstitialfluid"][interstitialfluid_flux] = \ subMathTotalFluxAndChannel(sign, v_flux.name()) else: math_dict_Total_Flux[0]["interstitialfluid"][interstitialfluid_flux] = \ math_dict_Total_Flux[0]["interstitialfluid"][interstitialfluid_flux] + "\n" + \ subMathTotalFluxAndChannel(sign, v_flux.name()) # insert equations for channels and diffusive fluxes def insertMathsForTotalChannels(compartment, math_dict_Total_Flux, dict_solutes, chebi, sign, flux_name): if compartment.name() == "lumen": lumen_flux = "J_" + dict_solutes[0][chebi] + "_lumen" if lumen_flux not in math_dict_Total_Flux[0]["lumen"].keys(): math_dict_Total_Flux[0]["lumen"][lumen_flux] = subMathTotalFluxAndChannel(sign, flux_name) else: math_dict_Total_Flux[0]["lumen"][lumen_flux] = \ math_dict_Total_Flux[0]["lumen"][lumen_flux] + "\n" + subMathTotalFluxAndChannel(sign, flux_name) if compartment.name() == "cytosol": cytosol_flux = "J_" + dict_solutes[0][chebi] + "_cytosol" if cytosol_flux not in math_dict_Total_Flux[0]["cytosol"].keys(): math_dict_Total_Flux[0]["cytosol"][cytosol_flux] = subMathTotalFluxAndChannel(sign, flux_name) else: math_dict_Total_Flux[0]["cytosol"][cytosol_flux] = \ math_dict_Total_Flux[0]["cytosol"][cytosol_flux] + "\n" + subMathTotalFluxAndChannel(sign, flux_name) if compartment.name() == "interstitialfluid": interstitialfluid_flux = "J_" + dict_solutes[0][chebi] + "_interstitialfluid" if interstitialfluid_flux not in math_dict_Total_Flux[0]["interstitialfluid"].keys(): math_dict_Total_Flux[0]["interstitialfluid"][interstitialfluid_flux] = \ subMathTotalFluxAndChannel(sign, flux_name) else: math_dict_Total_Flux[0]["interstitialfluid"][interstitialfluid_flux] = \ math_dict_Total_Flux[0]["interstitialfluid"][interstitialfluid_flux] + "\n" + \ subMathTotalFluxAndChannel(sign, flux_name) # assign plus or minus sign in the equations def odeSignNotation(compartment, source_fma, sink_fma): # lumen if compartment.name() == "lumen": if source_fma == lumen_fma and sink_fma == cytosol_fma: sign = "minus" elif source_fma == lumen_fma and sink_fma == interstitialfluid_fma: sign = "minus" elif source_fma == cytosol_fma and sink_fma == lumen_fma: sign = "plus" elif source_fma == interstitialfluid_fma and sink_fma == lumen_fma: sign = "plus" # cytosol if compartment.name() == "cytosol": if source_fma == cytosol_fma and sink_fma == lumen_fma: sign = "minus" elif source_fma == cytosol_fma and sink_fma == interstitialfluid_fma: sign = "minus" elif source_fma == lumen_fma and sink_fma == cytosol_fma: sign = "plus" elif source_fma == interstitialfluid_fma and sink_fma == cytosol_fma: sign = "plus" # interstitial fluid if compartment.name() == "interstitialfluid": if source_fma == interstitialfluid_fma and sink_fma == cytosol_fma: sign = "minus" elif source_fma == interstitialfluid_fma and sink_fma == lumen_fma: sign = "minus" elif source_fma == cytosol_fma and sink_fma == interstitialfluid_fma: sign = "plus" elif source_fma == lumen_fma and sink_fma == interstitialfluid_fma: sign = "plus" return sign # user-defined function to instantiate a time component and its variable attributes # if v2 == None then variable comes from this component, e.g. environment.time # else variable comes from other component, e.g. lumen.P_mc_Na where P_mc_Na comes from a source model def createComponent(v, name, unit, interface, initialvalue, component, v2): v.setName(name) v.setUnits(unit) v.setInterfaceType(interface) if initialvalue != None: v.setInitialValue(initialvalue) if v2 == None: v.setId(component.name() + "." + v.name()) else: v.setId(component.name() + "." + v2.name()) component.addVariable(v) # concentration sparql query to get a list of concentration of solutes (chebi) in the (fma) compartment # fma and chebi are two input values to this function def concentrationSparql(fma, chebi): return "PREFIX semsim: <http://www.bhi.washington.edu/SemSim#>" \ "PREFIX ro: <http://www.obofoundry.org/ro/ro.owl#>" \ "PREFIX dcterms: <http://purl.org/dc/terms/>" \ "SELECT ?modelEntity " \ "WHERE { " \ "?modelEntity semsim:isComputationalComponentFor ?model_prop. " \ "?model_prop semsim:hasPhysicalDefinition <http://identifiers.org/opb/OPB_00340>. " \ "?model_prop semsim:physicalPropertyOf ?source_entity. " \ "?source_entity ro:part_of ?source_part_of_entity. " \ "?source_part_of_entity semsim:hasPhysicalDefinition <" + fma + ">. " + \ "?source_entity semsim:hasPhysicalDefinition <" + chebi + ">. " + \ "}" # add required units from the imported models def addUnitsModel(unit_name, importedModel, m): i = 0 while importedModel.units(i) != None: u = importedModel.units(i) # u.getUnitAttributes(reference, prefix, exponent, multiplier, id)) if u.name() == unit_name: # if this unit not exists, then add in the model if m.units(unit_name) == None: m.addUnits(u) break i += 1 # instantiate source url and create an imported component in the import section of the new model def instantiateImportedComponent(sourceurl, component, epithelial, m): imp = ImportSource() imp.setUrl(sourceurl) importedComponent = Component() importedComponent.setName(component) importedComponent.setSourceComponent(imp, component) # m.addComponent(importedComponent) if m.component(importedComponent.name()) is None: m.addComponent(importedComponent) # if epithelial.component(importedComponent.name()) == None: # epithelial.addComponent(importedComponent) # making http request to the source model r = requests.get(sourceurl) # parse the string representation of the model to access by libcellml p = Parser() impModel = p.parseModel(r.text) # check a valid model if p.errorCount() > 0: for i in range(p.errorCount()): desc = p.error(i).description() cellmlNullNamespace = "Model element is in invalid namespace 'null'" cellml10Namespace = "Model element is in invalid namespace 'http://www.cellml.org/cellml/1.0#'" cellml11Namespace = "Model element is in invalid namespace 'http://www.cellml.org/cellml/1.1#'" if desc.find(cellmlNullNamespace) != -1: print("Error in miscellaneous.py: ", p.error(i).description()) exit() elif desc.find(cellml10Namespace) != -1 or desc.find(cellml11Namespace) != -1: print("Msg in miscellaneous.py: ", p.error(i).description()) # parsing cellml 1.0 or 1.1 to 2.0 dom = ET.fromstring(r.text.encode("utf-8")) xslt = ET.parse("cellml1to2.xsl") transform = ET.XSLT(xslt) newdom = transform(dom) mstr = ET.tostring(newdom, pretty_print=True) mstr = mstr.decode("utf-8") # parse the string representation of the model to access by libcellml impModel = p.parseModel(mstr) else: print("Error in miscellaneous.py: ", p.error(i).description()) exit() impComponent = impModel.component(importedComponent.name()) # in order to later define the connections we need, we must make sure all the variables from # the source model are present in the imported component, we only need the name so just grab # that from the source. for i in range(impComponent.variableCount()): impVariable = impComponent.variable(i) v = Variable() v.setName(impVariable.name()) importedComponent.addVariable(v) # process model entities and source models' urls def processModelEntity(modelentity, epithelial, m): cellml_model_name = modelentity[0:modelentity.find('#')] component_variable = modelentity[modelentity.find('#') + 1:len(modelentity)] component = component_variable[:component_variable.find('.')] sourceurl = workspaceURL + cellml_model_name instantiateImportedComponent(sourceurl, component, epithelial, m)
44.647773
127
0.599716
0
0
0
0
0
0
0
0
16,959
0.512604
365d9e30b62ef2b43194d13cd3b143b547c83df7
2,383
py
Python
epg_grabber/sites/beinsports_id.py
akmalharith/epg-grabber
ee6bdd20f7cbb4c780d96a8ce0fe2ca68b553c33
[ "MIT" ]
1
2022-03-16T00:42:21.000Z
2022-03-16T00:42:21.000Z
epg_grabber/sites/beinsports_id.py
akmalharith/epg-grabber
ee6bdd20f7cbb4c780d96a8ce0fe2ca68b553c33
[ "MIT" ]
null
null
null
epg_grabber/sites/beinsports_id.py
akmalharith/epg-grabber
ee6bdd20f7cbb4c780d96a8ce0fe2ca68b553c33
[ "MIT" ]
1
2022-03-17T17:16:30.000Z
2022-03-17T17:16:30.000Z
from typing import List import requests from pathlib import Path from datetime import date, datetime from bs4 import BeautifulSoup from helper.classes import Channel, Program from helper.utils import get_channel_by_name, get_epg_datetime TIMEZONE_OFFSET = "+0800" PROGRAM_URL = "https://epg.beinsports.com/utctime_id.php?cdate={date}&offset=+8&mins=00&category=sports&id=123" def get_all_channels(): return [Channel( "channels_1", "beInSPORTS1.Id", "beIN SPORTS 1", "", True), Channel( "channels_2", "beInSPORTS2.Id", "beIN SPORTS 2", "", True)] def get_programs_by_channel(channel_name: str, *args) -> List[Program]: # TODO: Accept days as input and increment the date_input in an outer for # loop date_input = date.today() datetime_today = datetime.now().replace( hour=0, minute=0, second=0, microsecond=0) url = PROGRAM_URL.format( date=date_input) channel = get_channel_by_name(channel_name, Path(__file__).stem) try: r = requests.get(url) except requests.exceptions.RequestException as e: raise SystemExit(e) if r.status_code != 200: raise Exception(r.raise_for_status()) soup = BeautifulSoup(r.text, features="html.parser") divs = soup.find_all("div", {"id": channel.id}) programs = [] for div in divs: line = div.find_all("li", {"parent": "slider_1"}) for value in line: time_period = str(value.find("p", {"class": "time"}).string) time_start, time_end = time_period.split("-") start_hour, start_minute = time_start.split(":") start_time = datetime_today.replace( hour=int(start_hour), minute=int(start_minute)) end_hour, end_minute = time_end.split(":") end_time = datetime_today.replace( hour=int(end_hour), minute=int(end_minute)) obj = Program( channel_name=channel.tvg_id, title=value.find("p", {"class": "title"}).string, description=value.find("p", {"class": "format"}).string, start=get_epg_datetime(start_time, TIMEZONE_OFFSET), stop=get_epg_datetime(end_time, TIMEZONE_OFFSET) ) programs.append(obj) return programs
31.773333
111
0.61645
0
0
0
0
0
0
0
0
377
0.158204
365ebdd95b4706dd8e23a6549e2d402adf342132
1,608
py
Python
C19/19-1_Blog/blogs/views.py
Triple-Z/Python-Crash-Course
7e59104420f6110e4d60668314264105534016ce
[ "MIT" ]
null
null
null
C19/19-1_Blog/blogs/views.py
Triple-Z/Python-Crash-Course
7e59104420f6110e4d60668314264105534016ce
[ "MIT" ]
null
null
null
C19/19-1_Blog/blogs/views.py
Triple-Z/Python-Crash-Course
7e59104420f6110e4d60668314264105534016ce
[ "MIT" ]
null
null
null
from django.shortcuts import render from .models import BlogPost from django.http import HttpResponseRedirect, Http404 from django.urls import reverse from .forms import BlogForm from django.contrib.auth.decorators import login_required from .auth import check_blog_author def index(request): blogs = BlogPost.objects.order_by('-date_added') context = {'blogs': blogs} return render(request, 'blogs/index.html', context) @login_required def new_blog(request): if request.method != 'POST': form = BlogForm() else: form = BlogForm(request.POST) if form.is_valid(): new_blog = form.save(commit=False) new_blog.author = request.user new_blog.save() return HttpResponseRedirect(reverse('blogs:index')) context = {'form': form} return render(request, 'blogs/new_blog.html', context) def blog(request, blog_id): blog = BlogPost.objects.get(id=blog_id) context = {'blog': blog} return render(request, 'blogs/blog.html', context) @login_required def edit_blog(request, blog_id): blog = BlogPost.objects.get(id=blog_id) if request.method != 'POST': if check_blog_author(request, blog_id): form = BlogForm(instance=blog) else: raise Http404 else: form = BlogForm(instance=blog, data=request.POST) if form.is_valid(): form.save() return HttpResponseRedirect(reverse('blogs:blog', args=[blog_id])) context = {'blog': blog, 'form': form} return render(request, 'blogs/edit_blog.html', context)
26.8
78
0.663557
0
0
0
0
1,005
0.625
0
0
159
0.098881
365f44e59be4486a64ab3380f2d229d1dcacfbe6
34
py
Python
SmartAPI/__init__.py
Kreastr/SmartAPI-HEILA
97dbe9e6e27267c60a4f94f60692d5f391e2ef7f
[ "BSD-2-Clause" ]
null
null
null
SmartAPI/__init__.py
Kreastr/SmartAPI-HEILA
97dbe9e6e27267c60a4f94f60692d5f391e2ef7f
[ "BSD-2-Clause" ]
null
null
null
SmartAPI/__init__.py
Kreastr/SmartAPI-HEILA
97dbe9e6e27267c60a4f94f60692d5f391e2ef7f
[ "BSD-2-Clause" ]
null
null
null
import sys import site import os
6.8
11
0.794118
0
0
0
0
0
0
0
0
0
0
365f7a0a4d0f8739674bb26bb9651db410c27bb4
410
py
Python
compiler/dna/components/DNASuitEdge.py
AnonymousDeveloper65535/libpandadna
3110a8d576d22093e4c735081c5f639d28397a17
[ "BSD-3-Clause" ]
36
2015-01-29T19:43:45.000Z
2022-01-19T11:49:28.000Z
compiler/dna/components/DNASuitEdge.py
AnonymousDeveloper65535/libpandadna
3110a8d576d22093e4c735081c5f639d28397a17
[ "BSD-3-Clause" ]
44
2015-01-16T16:09:30.000Z
2022-01-25T02:29:15.000Z
compiler/dna/components/DNASuitEdge.py
AnonymousDeveloper65535/libpandadna
3110a8d576d22093e4c735081c5f639d28397a17
[ "BSD-3-Clause" ]
42
2015-01-03T08:43:21.000Z
2022-01-11T04:29:11.000Z
class DNASuitEdge: COMPONENT_CODE = 22 def __init__(self, startPoint, endPoint, zoneId): self.startPoint = startPoint self.endPoint = endPoint self.zoneId = zoneId def setStartPoint(self, startPoint): self.startPoint = startPoint def setEndPoint(self, endPoint): self.endPoint = endPoint def setZoneId(self, zoneId): self.zoneId = zoneId
24.117647
53
0.656098
409
0.997561
0
0
0
0
0
0
0
0
3660a38e9b27f00fca04ce1ae0246262cce312d3
3,455
py
Python
cpplint_junit.py
johnthagen/cpplint-junit
9de4ed6762fdb415e1ebe94f1cd82d2027c2b96f
[ "MIT" ]
5
2016-02-15T19:24:46.000Z
2020-05-12T12:35:24.000Z
cpplint_junit.py
johnthagen/cpplint-junit
9de4ed6762fdb415e1ebe94f1cd82d2027c2b96f
[ "MIT" ]
2
2019-10-14T12:25:38.000Z
2019-12-15T18:34:34.000Z
cpplint_junit.py
johnthagen/cpplint-junit
9de4ed6762fdb415e1ebe94f1cd82d2027c2b96f
[ "MIT" ]
null
null
null
#! /usr/bin/env python3 """Converts cpplint output to JUnit XML format.""" import argparse import collections import os import re import sys from typing import Dict, List from xml.etree import ElementTree from exitstatus import ExitStatus class CpplintError(object): def __init__(self, file: str, line: int, message: str) -> None: """Constructor. Args: file: File error originated on. line: Line error originated on. message: Error message. """ self.file = file self.line = line self.message = message def parse_arguments() -> argparse.Namespace: parser = argparse.ArgumentParser(description='Converts cpplint output to JUnit XML format.') parser.add_argument('input_file', type=str, help='cpplint stdout text file.') parser.add_argument('output_file', type=str, help='JUnit XML output file.') return parser.parse_args() def parse_cpplint(file_name: str) -> Dict[str, List[CpplintError]]: """Parses a cpplint output file. Args: file_name: cpplint output file. Returns: Parsed errors grouped by file name. Raises: IOError: File does not exist (More specifically FileNotFoundError on Python 3). """ with open(file_name, 'rt') as file: lines = file.readlines() errors = collections.defaultdict(list) for line in lines: line = line.rstrip() match = re.search(r'(\S+):(\d+):\s+(.+)', line) if match is not None: error = CpplintError(file=match.group(1), line=int(match.group(2)), message=match.group(3)) errors[error.file].append(error) return errors def generate_test_suite(errors: Dict[str, List[CpplintError]]) -> ElementTree.ElementTree: """Creates a JUnit XML tree from parsed cpplint errors. Args: errors: Parsed cpplint errors. Returns: XML test suite. """ test_suite = ElementTree.Element('testsuite') test_suite.attrib['errors'] = str(len(errors)) test_suite.attrib['failures'] = str(0) test_suite.attrib['name'] = 'cpplint errors' test_suite.attrib['tests'] = str(len(errors)) test_suite.attrib['time'] = str(1) for file_name, errors in errors.items(): test_case = ElementTree.SubElement(test_suite, 'testcase', name=os.path.relpath(file_name)) for error in errors: ElementTree.SubElement(test_case, 'error', file=os.path.relpath(error.file), line=str(error.line), message='{}: {}'.format(error.line, error.message)) return ElementTree.ElementTree(test_suite) def main() -> ExitStatus: # pragma: no cover """Main function. Returns: Exit code. """ args = parse_arguments() try: errors = parse_cpplint(args.input_file) except IOError as e: print(str(e)) return ExitStatus.failure if len(errors) > 0: tree = generate_test_suite(errors) tree.write(args.output_file, encoding='utf-8', xml_declaration=True) return ExitStatus.success if __name__ == '__main__': # pragma: no cover sys.exit(main())
29.279661
96
0.58958
351
0.101592
0
0
0
0
0
0
988
0.285962