hexsha
stringlengths
40
40
size
int64
5
2.06M
ext
stringclasses
10 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
3
248
max_stars_repo_name
stringlengths
5
125
max_stars_repo_head_hexsha
stringlengths
40
78
max_stars_repo_licenses
listlengths
1
10
max_stars_count
int64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
3
248
max_issues_repo_name
stringlengths
5
125
max_issues_repo_head_hexsha
stringlengths
40
78
max_issues_repo_licenses
listlengths
1
10
max_issues_count
int64
1
67k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
3
248
max_forks_repo_name
stringlengths
5
125
max_forks_repo_head_hexsha
stringlengths
40
78
max_forks_repo_licenses
listlengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
5
2.06M
avg_line_length
float64
1
1.02M
max_line_length
int64
3
1.03M
alphanum_fraction
float64
0
1
count_classes
int64
0
1.6M
score_classes
float64
0
1
count_generators
int64
0
651k
score_generators
float64
0
1
count_decorators
int64
0
990k
score_decorators
float64
0
1
count_async_functions
int64
0
235k
score_async_functions
float64
0
1
count_documentation
int64
0
1.04M
score_documentation
float64
0
1
836a1f95f9bc7256c74547e4b46165f7f107b034
286
py
Python
test_service.py
jgawrilo/qcr_ci
bd4c192444e03a551e3c5f4f0a275a4c029294de
[ "Apache-2.0" ]
1
2020-03-05T13:27:39.000Z
2020-03-05T13:27:39.000Z
test_service.py
jgawrilo/qcr_ci
bd4c192444e03a551e3c5f4f0a275a4c029294de
[ "Apache-2.0" ]
null
null
null
test_service.py
jgawrilo/qcr_ci
bd4c192444e03a551e3c5f4f0a275a4c029294de
[ "Apache-2.0" ]
null
null
null
import requests import json headers = {'Content-Type': 'application/json'} data = json.load(open("./test_input2.json")) url = "http://localhost:5001/api/impact" response = requests.post(url,data=json.dumps({"data":data}),headers=headers) print json.dumps(response.json(),indent=2)
22
76
0.727273
0
0
0
0
0
0
0
0
92
0.321678
836a92d066a5c850634a4179920f5c67049059c7
16,969
py
Python
google/appengine/ext/datastore_admin/backup_pb2.py
vladushakov987/appengine_python3
0dd481c73e2537a50ee10f1b79cd65938087e555
[ "Apache-2.0" ]
null
null
null
google/appengine/ext/datastore_admin/backup_pb2.py
vladushakov987/appengine_python3
0dd481c73e2537a50ee10f1b79cd65938087e555
[ "Apache-2.0" ]
null
null
null
google/appengine/ext/datastore_admin/backup_pb2.py
vladushakov987/appengine_python3
0dd481c73e2537a50ee10f1b79cd65938087e555
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python # # Copyright 2007 Google Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import sys _b=sys.version_info[0]<3 and (lambda x:x) or (lambda x:x.encode('latin1')) import google from google.net.proto2.python.public import descriptor as _descriptor from google.net.proto2.python.public import message as _message from google.net.proto2.python.public import reflection as _reflection from google.net.proto2.python.public import symbol_database as _symbol_database from google.net.proto2.proto import descriptor_pb2 _sym_db = _symbol_database.Default() DESCRIPTOR = _descriptor.FileDescriptor( name='apphosting/ext/datastore_admin/backup.proto', package='apphosting.ext.datastore_admin', serialized_pb=_b('\n+apphosting/ext/datastore_admin/backup.proto\x12\x1e\x61pphosting.ext.datastore_admin\"\x8c\x01\n\x06\x42\x61\x63kup\x12?\n\x0b\x62\x61\x63kup_info\x18\x01 \x01(\x0b\x32*.apphosting.ext.datastore_admin.BackupInfo\x12\x41\n\tkind_info\x18\x02 \x03(\x0b\x32..apphosting.ext.datastore_admin.KindBackupInfo\"Q\n\nBackupInfo\x12\x13\n\x0b\x62\x61\x63kup_name\x18\x01 \x01(\t\x12\x17\n\x0fstart_timestamp\x18\x02 \x01(\x03\x12\x15\n\rend_timestamp\x18\x03 \x01(\x03\"\x8c\x01\n\x0eKindBackupInfo\x12\x0c\n\x04kind\x18\x01 \x02(\t\x12\x0c\n\x04\x66ile\x18\x02 \x03(\t\x12\x43\n\rentity_schema\x18\x03 \x01(\x0b\x32,.apphosting.ext.datastore_admin.EntitySchema\x12\x19\n\nis_partial\x18\x04 \x01(\x08:\x05\x66\x61lse\"\x90\x05\n\x0c\x45ntitySchema\x12\x0c\n\x04kind\x18\x01 \x01(\t\x12\x41\n\x05\x66ield\x18\x02 \x03(\x0b\x32\x32.apphosting.ext.datastore_admin.EntitySchema.Field\x1a\xb2\x01\n\x04Type\x12\x0f\n\x07is_list\x18\x01 \x01(\x08\x12R\n\x0eprimitive_type\x18\x02 \x03(\x0e\x32:.apphosting.ext.datastore_admin.EntitySchema.PrimitiveType\x12\x45\n\x0f\x65mbedded_schema\x18\x03 \x03(\x0b\x32,.apphosting.ext.datastore_admin.EntitySchema\x1aj\n\x05\x46ield\x12\x0c\n\x04name\x18\x01 \x02(\t\x12?\n\x04type\x18\x02 \x03(\x0b\x32\x31.apphosting.ext.datastore_admin.EntitySchema.Type\x12\x12\n\nfield_name\x18\x03 \x01(\t\"\x8d\x02\n\rPrimitiveType\x12\t\n\x05\x46LOAT\x10\x00\x12\x0b\n\x07INTEGER\x10\x01\x12\x0b\n\x07\x42OOLEAN\x10\x02\x12\n\n\x06STRING\x10\x03\x12\r\n\tDATE_TIME\x10\x04\x12\n\n\x06RATING\x10\x05\x12\x08\n\x04LINK\x10\x06\x12\x0c\n\x08\x43\x41TEGORY\x10\x07\x12\x10\n\x0cPHONE_NUMBER\x10\x08\x12\x12\n\x0ePOSTAL_ADDRESS\x10\t\x12\t\n\x05\x45MAIL\x10\n\x12\r\n\tIM_HANDLE\x10\x0b\x12\x0c\n\x08\x42LOB_KEY\x10\x0c\x12\x08\n\x04TEXT\x10\r\x12\x08\n\x04\x42LOB\x10\x0e\x12\x0e\n\nSHORT_BLOB\x10\x0f\x12\x08\n\x04USER\x10\x10\x12\r\n\tGEO_POINT\x10\x11\x12\r\n\tREFERENCE\x10\x12\x42\x14\x10\x02 \x02(\x02\x42\x0c\x42\x61\x63kupProtos') ) _sym_db.RegisterFileDescriptor(DESCRIPTOR) _ENTITYSCHEMA_PRIMITIVETYPE = _descriptor.EnumDescriptor( name='PrimitiveType', full_name='apphosting.ext.datastore_admin.EntitySchema.PrimitiveType', filename=None, file=DESCRIPTOR, values=[ _descriptor.EnumValueDescriptor( name='FLOAT', index=0, number=0, options=None, type=None), _descriptor.EnumValueDescriptor( name='INTEGER', index=1, number=1, options=None, type=None), _descriptor.EnumValueDescriptor( name='BOOLEAN', index=2, number=2, options=None, type=None), _descriptor.EnumValueDescriptor( name='STRING', index=3, number=3, options=None, type=None), _descriptor.EnumValueDescriptor( name='DATE_TIME', index=4, number=4, options=None, type=None), _descriptor.EnumValueDescriptor( name='RATING', index=5, number=5, options=None, type=None), _descriptor.EnumValueDescriptor( name='LINK', index=6, number=6, options=None, type=None), _descriptor.EnumValueDescriptor( name='CATEGORY', index=7, number=7, options=None, type=None), _descriptor.EnumValueDescriptor( name='PHONE_NUMBER', index=8, number=8, options=None, type=None), _descriptor.EnumValueDescriptor( name='POSTAL_ADDRESS', index=9, number=9, options=None, type=None), _descriptor.EnumValueDescriptor( name='EMAIL', index=10, number=10, options=None, type=None), _descriptor.EnumValueDescriptor( name='IM_HANDLE', index=11, number=11, options=None, type=None), _descriptor.EnumValueDescriptor( name='BLOB_KEY', index=12, number=12, options=None, type=None), _descriptor.EnumValueDescriptor( name='TEXT', index=13, number=13, options=None, type=None), _descriptor.EnumValueDescriptor( name='BLOB', index=14, number=14, options=None, type=None), _descriptor.EnumValueDescriptor( name='SHORT_BLOB', index=15, number=15, options=None, type=None), _descriptor.EnumValueDescriptor( name='USER', index=16, number=16, options=None, type=None), _descriptor.EnumValueDescriptor( name='GEO_POINT', index=17, number=17, options=None, type=None), _descriptor.EnumValueDescriptor( name='REFERENCE', index=18, number=18, options=None, type=None), ], containing_type=None, options=None, serialized_start=836, serialized_end=1105, ) _sym_db.RegisterEnumDescriptor(_ENTITYSCHEMA_PRIMITIVETYPE) _BACKUP = _descriptor.Descriptor( name='Backup', full_name='apphosting.ext.datastore_admin.Backup', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='backup_info', full_name='apphosting.ext.datastore_admin.Backup.backup_info', index=0, number=1, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='kind_info', full_name='apphosting.ext.datastore_admin.Backup.kind_info', index=1, number=2, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, extension_ranges=[], oneofs=[ ], serialized_start=80, serialized_end=220, ) _BACKUPINFO = _descriptor.Descriptor( name='BackupInfo', full_name='apphosting.ext.datastore_admin.BackupInfo', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='backup_name', full_name='apphosting.ext.datastore_admin.BackupInfo.backup_name', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='start_timestamp', full_name='apphosting.ext.datastore_admin.BackupInfo.start_timestamp', index=1, number=2, type=3, cpp_type=2, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='end_timestamp', full_name='apphosting.ext.datastore_admin.BackupInfo.end_timestamp', index=2, number=3, type=3, cpp_type=2, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, extension_ranges=[], oneofs=[ ], serialized_start=222, serialized_end=303, ) _KINDBACKUPINFO = _descriptor.Descriptor( name='KindBackupInfo', full_name='apphosting.ext.datastore_admin.KindBackupInfo', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='kind', full_name='apphosting.ext.datastore_admin.KindBackupInfo.kind', index=0, number=1, type=9, cpp_type=9, label=2, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='file', full_name='apphosting.ext.datastore_admin.KindBackupInfo.file', index=1, number=2, type=9, cpp_type=9, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='entity_schema', full_name='apphosting.ext.datastore_admin.KindBackupInfo.entity_schema', index=2, number=3, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='is_partial', full_name='apphosting.ext.datastore_admin.KindBackupInfo.is_partial', index=3, number=4, type=8, cpp_type=7, label=1, has_default_value=True, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, extension_ranges=[], oneofs=[ ], serialized_start=306, serialized_end=446, ) _ENTITYSCHEMA_TYPE = _descriptor.Descriptor( name='Type', full_name='apphosting.ext.datastore_admin.EntitySchema.Type', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='is_list', full_name='apphosting.ext.datastore_admin.EntitySchema.Type.is_list', index=0, number=1, type=8, cpp_type=7, label=1, has_default_value=False, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='primitive_type', full_name='apphosting.ext.datastore_admin.EntitySchema.Type.primitive_type', index=1, number=2, type=14, cpp_type=8, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='embedded_schema', full_name='apphosting.ext.datastore_admin.EntitySchema.Type.embedded_schema', index=2, number=3, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, extension_ranges=[], oneofs=[ ], serialized_start=547, serialized_end=725, ) _ENTITYSCHEMA_FIELD = _descriptor.Descriptor( name='Field', full_name='apphosting.ext.datastore_admin.EntitySchema.Field', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='name', full_name='apphosting.ext.datastore_admin.EntitySchema.Field.name', index=0, number=1, type=9, cpp_type=9, label=2, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='type', full_name='apphosting.ext.datastore_admin.EntitySchema.Field.type', index=1, number=2, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='field_name', full_name='apphosting.ext.datastore_admin.EntitySchema.Field.field_name', index=2, number=3, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, extension_ranges=[], oneofs=[ ], serialized_start=727, serialized_end=833, ) _ENTITYSCHEMA = _descriptor.Descriptor( name='EntitySchema', full_name='apphosting.ext.datastore_admin.EntitySchema', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='kind', full_name='apphosting.ext.datastore_admin.EntitySchema.kind', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='field', full_name='apphosting.ext.datastore_admin.EntitySchema.field', index=1, number=2, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[_ENTITYSCHEMA_TYPE, _ENTITYSCHEMA_FIELD, ], enum_types=[ _ENTITYSCHEMA_PRIMITIVETYPE, ], options=None, is_extendable=False, extension_ranges=[], oneofs=[ ], serialized_start=449, serialized_end=1105, ) _BACKUP.fields_by_name['backup_info'].message_type = _BACKUPINFO _BACKUP.fields_by_name['kind_info'].message_type = _KINDBACKUPINFO _KINDBACKUPINFO.fields_by_name['entity_schema'].message_type = _ENTITYSCHEMA _ENTITYSCHEMA_TYPE.fields_by_name['primitive_type'].enum_type = _ENTITYSCHEMA_PRIMITIVETYPE _ENTITYSCHEMA_TYPE.fields_by_name['embedded_schema'].message_type = _ENTITYSCHEMA _ENTITYSCHEMA_TYPE.containing_type = _ENTITYSCHEMA _ENTITYSCHEMA_FIELD.fields_by_name['type'].message_type = _ENTITYSCHEMA_TYPE _ENTITYSCHEMA_FIELD.containing_type = _ENTITYSCHEMA _ENTITYSCHEMA.fields_by_name['field'].message_type = _ENTITYSCHEMA_FIELD _ENTITYSCHEMA_PRIMITIVETYPE.containing_type = _ENTITYSCHEMA DESCRIPTOR.message_types_by_name['Backup'] = _BACKUP DESCRIPTOR.message_types_by_name['BackupInfo'] = _BACKUPINFO DESCRIPTOR.message_types_by_name['KindBackupInfo'] = _KINDBACKUPINFO DESCRIPTOR.message_types_by_name['EntitySchema'] = _ENTITYSCHEMA Backup = _reflection.GeneratedProtocolMessageType('Backup', (_message.Message,), dict( DESCRIPTOR = _BACKUP, __module__ = 'google.appengine.ext.datastore_admin.backup_pb2' )) _sym_db.RegisterMessage(Backup) BackupInfo = _reflection.GeneratedProtocolMessageType('BackupInfo', (_message.Message,), dict( DESCRIPTOR = _BACKUPINFO, __module__ = 'google.appengine.ext.datastore_admin.backup_pb2' )) _sym_db.RegisterMessage(BackupInfo) KindBackupInfo = _reflection.GeneratedProtocolMessageType('KindBackupInfo', (_message.Message,), dict( DESCRIPTOR = _KINDBACKUPINFO, __module__ = 'google.appengine.ext.datastore_admin.backup_pb2' )) _sym_db.RegisterMessage(KindBackupInfo) EntitySchema = _reflection.GeneratedProtocolMessageType('EntitySchema', (_message.Message,), dict( Type = _reflection.GeneratedProtocolMessageType('Type', (_message.Message,), dict( DESCRIPTOR = _ENTITYSCHEMA_TYPE, __module__ = 'google.appengine.ext.datastore_admin.backup_pb2' )) , Field = _reflection.GeneratedProtocolMessageType('Field', (_message.Message,), dict( DESCRIPTOR = _ENTITYSCHEMA_FIELD, __module__ = 'google.appengine.ext.datastore_admin.backup_pb2' )) , DESCRIPTOR = _ENTITYSCHEMA, __module__ = 'google.appengine.ext.datastore_admin.backup_pb2' )) _sym_db.RegisterMessage(EntitySchema) _sym_db.RegisterMessage(EntitySchema.Type) _sym_db.RegisterMessage(EntitySchema.Field) DESCRIPTOR.has_options = True DESCRIPTOR._options = _descriptor._ParseOptions(descriptor_pb2.FileOptions(), _b('\020\002 \002(\002B\014BackupProtos'))
37.376652
1,971
0.736755
0
0
0
0
0
0
0
0
4,930
0.29053
836acb8a4b706f8933f3b1012b5068f029201a8e
11,254
py
Python
PSBChart_support.py
georgepruitt/PSBChart
ee31497ffb12f818bab7ec750425f9fc7259c0f8
[ "Apache-2.0" ]
1
2019-08-02T06:36:05.000Z
2019-08-02T06:36:05.000Z
PSBChart_support.py
schkr/PSBChart
bf19c2632491f18ba6ee6b3337bcb118350b9b3e
[ "Apache-2.0" ]
1
2018-02-07T21:20:43.000Z
2018-02-07T21:20:43.000Z
PSBChart_support.py
schkr/PSBChart
bf19c2632491f18ba6ee6b3337bcb118350b9b3e
[ "Apache-2.0" ]
1
2019-08-02T06:35:30.000Z
2019-08-02T06:35:30.000Z
#! /usr/bin/env python # # Support module generated by PAGE version 4.10 # In conjunction with Tcl version 8.6 # Jan 12, 2018 04:09:34 PM import turtle from turtle import TurtleScreen, RawTurtle, TK from tkinter.filedialog import askopenfilename import tkinter as tk import os.path import datetime import csv import sys from PSBChart import ManageTrades try: from Tkinter import * except ImportError: from tkinter import * try: import ttk py3 = 0 except ImportError: import tkinter.ttk as ttk py3 = 1 d = list() dt = list() o = list() h = list() l = list() c = list() v = list() oi = list() tradeDate = list() tradeVal1 = list() tradeType = list() tradeSize = list() tradeNtryOrXit = list() tradePrice = list() highestHigh = 0 lowestLow = 99999999 root = tk.Tk() #root.withdraw() ##s = tk.ScrollBar(root) T = tk.Text(root,height=10,width=50) ##s.pack(side=tk.RIGHT, fill = tk.Y) T.pack(side=tk.RIGHT, fill = tk.Y) ##s.config(command=T.yview) ##T.config(yscrollcommand.set) def manageTrades(trades,indicatorList): if trades.load: cnt = 0 file = askopenfilename(filetypes=(('CSV files', '*.csv'), ('TXT files', '*.txt'),('POR files', '*.por')), title='Select Markets or Ports. To Test- CSV format only!') with open(file) as f: f_csv = csv.reader(f) numDecs = 0 for row in f_csv: numCols = len(row) cnt += 1 tradeDate.append(int(row[0])) # dt.append(datetime.datetime.strptime(row[0],'%Y%m%d')) tradeVal1.append(int(row[1])) tradeType.append(row[2]) tradeSize.append(int(row[3])) tradePrice.append(float(row[4])) print("Trades ",tradeDate[-1]," ",tradePrice[-1]) tradeCnt = cnt trades.setLoadDraw(False,True) w.Button5.configure(state = "disable") loadAndDraw(False,True,indicatorList,trades) def loadAndDraw(load,draw,indicatorList,trades): def get_mouse_click_coor(x, y): print(x, y) barNumber = round(x/10) barNumber = max(1,barNumber) print("Bar Number: ",barNumber," ",d[startPt+barNumber-1]," ",o[startPt+barNumber-1]," ",highestHigh) # tkMessageBox("Information",str(barNumber) # # trtl.write('Vivax Solutions', font=("Arial", 20, "bold")) # chosing the font ## trtl.goto(10,highestHigh-.05*(highestHigh - lowestLow)) ## trtl.pendown() indexVal =startPt+barNumber-1 outPutStr = str(d[indexVal]) + " " +str(o[indexVal])+ " " +str(h[indexVal])+ " " +str(l[indexVal])+ " " + str(c[indexVal]) # chosing the font root.focus_set() T.focus_set( ) T.insert(tk.END,outPutStr+"\n") ## trtl.goto(20,highestHigh-60) ## trtl.write(str(o[50-(50-barNumber)]), font=("Arial", 8, "bold")) # chosing the font ## trtl.goto(20,highestHigh-80) ## trtl.write(str(h[50-(50-barNumber)]), font=("Arial", 8, "bold")) # chosing the font ## trtl.goto(20,highestHigh-100) ## trtl.write(str(l[50-(50-barNumber)]), font=("Arial", 8, "bold")) # chosing the font ## trtl.goto(20,highestHigh-120) ## trtl.write(str(c[50-(50-barNumber)]), font=("Arial", 8, "bold")) # chosing the font ## ## #root.withdraw() if load == True: cnt = 0 file = askopenfilename(filetypes=(('CSV files', '*.csv'), ('TXT files', '*.txt'),('POR files', '*.por')), title='Select Markets or Ports. To Test- CSV format only!') with open(file) as f: f_csv = csv.reader(f) numDecs = 0 for row in f_csv: numCols = len(row) cnt += 1 d.append(int(row[0])) dt.append(datetime.datetime.strptime(row[0],'%Y%m%d')) o.append(float(row[1])) h.append(float(row[2])) l.append(float(row[3])) c.append(float(row[4])) v.append(float(row[5])) oi.append(float(row[6])) oString= str(o[-1]) if '.' in oString: decLoc = oString.index('.') numDecs = max(numDecs,len(oString) - decLoc - 1) xDate = list() yVal = list() zVal = list() w.Button5.configure(state = "normal") w.Entry1.insert(0,str(d[-1])) if draw == True: startDrawDateStr = w.Entry1.get() startDrawDate = int(startDrawDateStr) cnt = -1 for x in range(0,len(d)): cnt+=1 if startDrawDate >= d[x]: startPt = x numBarsPlot = 60 if startPt + numBarsPlot > len(d): startPt = len(d) - (numBarsPlot + 1) print(startPt," ",len(d)," ",numBarsPlot); indicCnt = 0 screen = TurtleScreen(w.Canvas1) trtl = RawTurtle(screen) screen.tracer(False) screen.bgcolor('white') clr=['red','green','blue','yellow','purple'] trtl.pensize(6) trtl.penup() trtl.color("black") highestHigh = 0 lowestLow = 99999999 # scaleMult = 10**numDecs scaleMult = 1 for days in range(startPt,startPt+numBarsPlot): if h[days]*scaleMult > highestHigh: highestHigh = h[days]*scaleMult if l[days]*scaleMult < lowestLow: lowestLow = l[days]*scaleMult hhllDiffScale= (highestHigh - lowestLow) /1.65 hhllDiff = highestHigh - lowestLow botOfChart = lowestLow screen.setworldcoordinates(-10,highestHigh-hhllDiffScale,673,highestHigh) print(highestHigh," ",lowestLow) m=0 trtl.setheading(0) trtl.penup() for i in range(startPt,startPt+numBarsPlot+1): m=m+1 trtl.goto(m*10,h[i]*scaleMult) trtl.pendown() trtl.goto(m*10,l[i]*scaleMult) trtl.penup() trtl.goto(m*10,c[i]*scaleMult) trtl.pendown() trtl.goto(m*10+5,c[i]*scaleMult) trtl.penup() trtl.goto(m*10,o[i]*scaleMult) trtl.pendown() trtl.goto(m*10-5,o[i]*scaleMult) trtl.penup() trtl.goto(10,highestHigh) print("Indicator List: ",indicatorList) if len(indicatorList)!=0: movAvgParams = list([]) if "movAvg" in indicatorList: movAvgVal = 0 movAvgParamIndexVal = indicatorList.index("movAvg") movAvgParams.append(indicatorList[movAvgParamIndexVal + 1]) movAvgParams.append(indicatorList[movAvgParamIndexVal + 2]) movAvgParams.append(indicatorList[movAvgParamIndexVal + 3]) for j in range(0,3): n = 0 trtl.penup() if j == 0 : trtl.color("red") if j == 1 : trtl.color("green") if j == 2 : trtl.color("blue") for i in range(startPt,startPt+numBarsPlot): n = n + 1 movAvgVal = 0 for k in range(i-movAvgParams[j],i): movAvgVal = movAvgVal + c[k] * scaleMult if movAvgParams[j] !=0 : movAvgVal = movAvgVal/movAvgParams[j] if i == startPt : trtl.goto(n*10,movAvgVal) trtl.pendown() trtl.goto(n*10,movAvgVal) trtl.penup() # print("PlotTrades : ",plotTrades) if trades.draw: debugTradeDate = tradeDate[0] debugDate = d[startPt] n = 0 while debugTradeDate <= debugDate: n +=1 debugTradeDate = tradeDate[n] m = 0 for i in range(startPt,startPt+numBarsPlot): m = m + 1 debugDate = d[i] if debugDate == debugTradeDate: trtl.penup() tradeValue = tradePrice[n] if tradeType[n] == "buy": trtl.color("Green") trtl.goto(m*10-5,tradeValue - hhllDiff *.03) trtl.pensize(3) trtl.pendown() trtl.goto(m*10,tradeValue) trtl.goto(m*10+5,tradeValue - hhllDiff *.03) trtl.penup() if tradeType[n] == "sell": trtl.color("Red") trtl.goto(m*10-5,tradeValue + hhllDiff *.03) trtl.pensize(3) trtl.pendown() trtl.goto(m*10,tradeValue) trtl.goto(m*10+5,tradeValue + hhllDiff *.03) trtl.penup() if tradeType[n] == "longLiq": trtl.color("Blue") trtl.penup() trtl.goto(m*10-5, tradeValue) trtl.pensize(3) trtl.pendown() trtl.goto(m*10+5, tradeValue) trtl.penup() trtl.pensize(1) print("Found a trade: ",tradeValue," ",debugTradeDate," m= ",m," ",tradeValue-hhllDiff*.05) n+=1 if n < len(tradeDate): debugTradeDate = tradeDate[n] trtl.color("black") trtl.goto(-10,botOfChart) trtl.pendown() trtl.goto(673,botOfChart) trtl.penup() trtl.goto(-10,botOfChart) m = 0 for i in range(startPt,startPt+numBarsPlot): if i % 10 == 0 : m = m + 1 trtl.pendown() trtl.write(str(d[i]), font=("Arial", 8, "bold")) # chosing the font trtl.penup() trtl.goto(m*100,botOfChart) trtl.penup() trtl.goto(628,highestHigh) trtl.pendown() trtl.goto(628,botOfChart) trtl.penup() m = 0 vertIncrement = hhllDiff/10 for i in range(0,11): trtl.goto(630,highestHigh - m*vertIncrement) trtl.pendown() trtl.write(str(highestHigh - m * vertIncrement),font=("Arial", 8, "bold")) trtl.penup() m +=1 # turtle.done() screen.onscreenclick(get_mouse_click_coor) ## turtle.mainloop() def init(top, gui, *args, **kwargs): global w, top_level, root w = gui top_level = top root = top def destroy_window(): # Function which closes the window. global top_level top_level.destroy() top_level = None if __name__ == '__main__': import PSBChart PSBChart.vp_start_gui()
34.521472
150
0.494846
0
0
0
0
0
0
0
0
1,829
0.16252
55c1580b2b075823f72830e0bcd2511007db68b9
9,790
py
Python
test/low_use_test/test_reporter.py
KeithWhitley/LUAU
d7df6836e7c9c0ddc4099b9a17f7e0727eeeb179
[ "Apache-2.0" ]
1
2020-10-16T13:02:36.000Z
2020-10-16T13:02:36.000Z
test/low_use_test/test_reporter.py
KeithWhitley/LUAU
d7df6836e7c9c0ddc4099b9a17f7e0727eeeb179
[ "Apache-2.0" ]
3
2019-02-04T11:44:06.000Z
2019-02-05T14:09:04.000Z
test/low_use_test/test_reporter.py
KeithWhitley/LUAU
d7df6836e7c9c0ddc4099b9a17f7e0727eeeb179
[ "Apache-2.0" ]
1
2021-05-26T12:00:06.000Z
2021-05-26T12:00:06.000Z
import unittest import boto3 from moto import mock_dynamodb2, mock_ec2 from low_use.reporter import LowUseReporter from util.aws import EC2Wrapper, DynamoWrapper import os class TestLowUseReporter(unittest.TestCase): @mock_dynamodb2 @mock_ec2 def setUp(self): self.session = boto3.Session(region_name='us-west-2') self.wrapper = EC2Wrapper(self.session) self.dynamo = DynamoWrapper(self.session) os.environ['AWS_REGION'] = 'us-west-2' self.reporter = LowUseReporter(None, None) self.maxDiff = None self.dynamo_resource = boto3.resource( 'dynamodb', region_name='us-west-2') @mock_dynamodb2 def create_tables(self): self.whitelist_table = self.dynamo_resource.create_table( TableName='Whitelist', KeySchema=[ { 'AttributeName': 'InstanceID', 'KeyType': 'HASH' # Partition key } ], AttributeDefinitions=[ { 'AttributeName': 'InstanceID', 'AttributeType': 'S' }, { 'AttributeName': 'Creator', 'AttributeType': 'S' }, { 'AttributeName': 'Reason', 'AttributeType': 'S' }, ], ProvisionedThroughput={ 'ReadCapacityUnits': 1, 'WriteCapacityUnits': 1 } ) self.lowuse_table = self.dynamo_resource.create_table( TableName='LowUse', KeySchema=[ { 'AttributeName': 'InstanceID', 'KeyType': 'HASH' # Partition key } ], AttributeDefinitions=[ { 'AttributeName': 'InstanceID', 'AttributeType': 'S' }, { 'AttributeName': 'Creator', 'AttributeType': 'S' }, { 'AttributeName': 'Scheduled For Deletion', 'AttributeType': 'S' }, ], ProvisionedThroughput={ 'ReadCapacityUnits': 1, 'WriteCapacityUnits': 1 } ) self.lowuse_table.meta.client.get_waiter( 'table_exists').wait(TableName='LowUse') self.whitelist_table.meta.client.get_waiter( 'table_exists').wait(TableName='Whitelist') self.dynamo.low_use = self.dynamo_resource.Table('LowUse') self.dynamo.whitelist = self.dynamo_resource.Table('Whitelist') def test_sync(self): pass @mock_dynamodb2 def test_sync_whitelist(self): self.create_tables() test_item = { 'InstanceID': 'test_id', 'Creator': 'test_creator', 'Reason': 'test_reason', 'EmailSent': False } self.reporter.whitelist.append(test_item) self.reporter.sync_whitelist() item = self.whitelist_table.get_item( Key={'InstanceID': 'test_id'})['Item'] self.assertDictEqual(test_item, item) @mock_dynamodb2 @mock_ec2 def test_sync_low_use_instances(self): self.create_tables() instance = self.wrapper.ec2.run_instances(MaxCount=1, MinCount=1)[ 'Instances'][0]['InstanceId'] test_item = { 'InstanceID': instance, 'Creator': 'test_creator', 'Scheduled For Deletion': False, 'EmailSent': False } self.reporter.low_use_instances.append(test_item) self.reporter.sync_low_use_instances() item = self.lowuse_table.get_item(Key={'InstanceID': instance})['Item'] self.assertDictEqual(test_item, item) self.assertTrue(self.wrapper.is_low_use(instance)) @mock_dynamodb2 @mock_ec2 def test_sync_instances_scheduled_for_deletion(self): self.create_tables() instance = self.wrapper.ec2.run_instances(MaxCount=1, MinCount=1)[ 'Instances'][0]['InstanceId'] test_item = { 'InstanceID': instance, 'Creator': 'test_creator', 'Scheduled For Deletion': True, } self.reporter.instances_scheduled_for_deletion.append(test_item) self.reporter.sync_instances_scheduled_for_deletion() item = self.lowuse_table.get_item(Key={'InstanceID': instance})['Item'] self.assertDictEqual(test_item, item) self.assertTrue(self.wrapper.is_scheduled_for_deletion(instance)) @mock_dynamodb2 @mock_ec2 def test_flag_instances_as_low_use(self): self.create_tables() instance = self.wrapper.ec2.run_instances(MaxCount=1, MinCount=1)[ 'Instances'][0]['InstanceId'] test_item = { 'InstanceID': instance, 'Creator': 'test_creator', 'Scheduled For Deletion': False, 'EmailSent': False } self.reporter.flag_instance_as_low_use(instance, 'test_creator') item = self.lowuse_table.get_item(Key={'InstanceID': instance})['Item'] self.assertDictEqual(test_item, item) self.assertTrue(self.wrapper.is_low_use(instance)) @mock_dynamodb2 @mock_ec2 def test_flag_instance_for_deletion(self): self.create_tables() instance = self.wrapper.ec2.run_instances(MaxCount=1, MinCount=1)[ 'Instances'][0]['InstanceId'] test_item = { 'InstanceID': instance, 'Creator': 'test_creator', 'Scheduled For Deletion': True, } self.reporter.flag_instance_for_deletion(instance, 'test_creator') item = self.lowuse_table.get_item(Key={'InstanceID': instance})['Item'] self.assertDictEqual(test_item, item) self.assertTrue(self.wrapper.is_scheduled_for_deletion(instance)) @mock_ec2 def test_sort_instances(self): whitelist_instance = self.wrapper.ec2.run_instances( MaxCount=1, MinCount=1)['Instances'][0]['InstanceId'] instance_to_stop = self.wrapper.ec2.run_instances(MaxCount=1, MinCount=1)[ 'Instances'][0]['InstanceId'] low_use_instance = self.wrapper.ec2.run_instances(MaxCount=1, MinCount=1)[ 'Instances'][0]['InstanceId'] schedule_to_delete_instance = self.wrapper.ec2.run_instances( MaxCount=1, MinCount=1)['Instances'][0]['InstanceId'] self.wrapper.tag_as_low_use(schedule_to_delete_instance) self.wrapper.tag_as_whitelisted(whitelist_instance) self.wrapper.tag_for_deletion(instance_to_stop) list_of_instances = [{ 'instance_id': whitelist_instance }, { 'instance_id': low_use_instance }, { 'instance_id': instance_to_stop }, { 'instance_id': schedule_to_delete_instance }, ] expected_whitelist = [ { 'InstanceID': whitelist_instance, 'Creator': 'Unknown', 'Reason': None } ] expected_instances_to_stop = [instance_to_stop] expected_low_use_list = [{ 'InstanceID': low_use_instance, 'Creator': 'Unknown', 'Cost': 'Unknown', 'AverageCpuUsage': 'Unknown', 'AverageNetworkUsage': 'Unknown' }] expected_delete_list = [{ 'InstanceID': schedule_to_delete_instance, 'Creator': 'Unknown', 'Cost': 'Unknown', 'AverageCpuUsage': 'Unknown', 'AverageNetworkUsage': 'Unknown' }] self.reporter.sort_instances(list_of_instances) self.assertEqual(expected_whitelist, self.reporter.whitelist) self.assertEqual(expected_low_use_list, self.reporter.low_use_instances) self.assertEqual(expected_delete_list, self.reporter.instances_scheduled_for_deletion) self.assertEqual(expected_instances_to_stop, self.reporter.instances_to_stop) def test_get_creator_report(self): self.reporter.low_use_instances = [ { 'Creator': 'test1', 'InstanceID': 'test_id_1' }, { 'Creator': 'test2', 'InstanceID': 'test_id_2' } ] self.reporter.instances_scheduled_for_deletion = [ { 'Creator': 'test1', 'InstanceID': 'test_id_1_delete' }, { 'Creator': 'test2', 'InstanceID': 'test_id_2_delete' } ] expected_creator_reports = [ { 'creator': 'test1', 'low_use': [{ 'Creator': 'test1', 'InstanceID': 'test_id_1' }], 'scheduled_for_deletion': [{ 'Creator': 'test1', 'InstanceID': 'test_id_1_delete' }]}, { 'creator': 'test2', 'low_use': [{ 'Creator': 'test2', 'InstanceID': 'test_id_2' }], 'scheduled_for_deletion': [{ 'Creator': 'test2', 'InstanceID': 'test_id_2_delete' }]} ] result = list(self.reporter.get_creator_report()) self.assertCountEqual(expected_creator_reports, result) def test_start(self): pass
33.758621
82
0.544637
9,615
0.982125
0
0
7,982
0.815322
0
0
1,979
0.202145
55c1a75a2d6e9fa1c5acdea024449b58927aff23
1,009
py
Python
splot/tests/test_viz_libpysal_mpl.py
renanxcortes/splot
c29e9b5cc92be4c4deee0358c1f462b60b0fe9f7
[ "BSD-3-Clause" ]
null
null
null
splot/tests/test_viz_libpysal_mpl.py
renanxcortes/splot
c29e9b5cc92be4c4deee0358c1f462b60b0fe9f7
[ "BSD-3-Clause" ]
null
null
null
splot/tests/test_viz_libpysal_mpl.py
renanxcortes/splot
c29e9b5cc92be4c4deee0358c1f462b60b0fe9f7
[ "BSD-3-Clause" ]
null
null
null
from libpysal.weights.contiguity import Queen import libpysal from libpysal import examples import matplotlib.pyplot as plt import geopandas as gpd from splot.libpysal import plot_spatial_weights def test_plot_spatial_weights(): # get data gdf = gpd.read_file(examples.get_path('43MUE250GC_SIR.shp')) gdf.head() # calculate weights weights = Queen.from_dataframe(gdf) # plot weights fig, _ = plot_spatial_weights(weights, gdf) plt.close(fig) # calculate nonplanar_joins wnp = libpysal.weights.util.nonplanar_neighbors(weights, gdf) # plot new joins fig2, _ = plot_spatial_weights(wnp, gdf) plt.close(fig2) #customize fig3, _ = plot_spatial_weights(wnp, gdf, nonplanar_edge_kws=dict(color='#4393c3')) plt.close(fig3) # uses a column as the index for spatial weights object weights_index = Queen.from_dataframe(gdf, idVariable="CD_GEOCMU") fig, _ = plot_spatial_weights(weights_index, gdf, indexed_on="CD_GEOCMU") plt.close(fig)
33.633333
86
0.737364
0
0
0
0
0
0
0
0
202
0.200198
55c1a9520e720c583feab19a26044ebc037a17c8
17,245
py
Python
dev/Gems/CloudGemMetric/v1/AWS/python/windows/Lib/numba/tests/test_ir.py
BadDevCode/lumberyard
3d688932f919dbf5821f0cb8a210ce24abe39e9e
[ "AML" ]
1,738
2017-09-21T10:59:12.000Z
2022-03-31T21:05:46.000Z
dev/Gems/CloudGemMetric/v1/AWS/python/windows/Lib/numba/tests/test_ir.py
olivier-be/lumberyard
3d688932f919dbf5821f0cb8a210ce24abe39e9e
[ "AML" ]
427
2017-09-29T22:54:36.000Z
2022-02-15T19:26:50.000Z
dev/Gems/CloudGemMetric/v1/AWS/python/windows/Lib/numba/tests/test_ir.py
olivier-be/lumberyard
3d688932f919dbf5821f0cb8a210ce24abe39e9e
[ "AML" ]
671
2017-09-21T08:04:01.000Z
2022-03-29T14:30:07.000Z
from __future__ import print_function import numba.unittest_support as unittest from numba import compiler, ir, objmode import numpy as np class TestIR(unittest.TestCase): def test_IRScope(self): filename = "<?>" top = ir.Scope(parent=None, loc=ir.Loc(filename=filename, line=1)) local = ir.Scope(parent=top, loc=ir.Loc(filename=filename, line=2)) apple = local.define('apple', loc=ir.Loc(filename=filename, line=3)) self.assertIs(local.get('apple'), apple) self.assertEqual(len(local.localvars), 1) orange = top.define('orange', loc=ir.Loc(filename=filename, line=4)) self.assertEqual(len(local.localvars), 1) self.assertEqual(len(top.localvars), 1) self.assertIs(top.get('orange'), orange) self.assertIs(local.get('orange'), orange) more_orange = local.define('orange', loc=ir.Loc(filename=filename, line=5)) self.assertIs(top.get('orange'), orange) self.assertIsNot(local.get('orange'), not orange) self.assertIs(local.get('orange'), more_orange) try: local.define('orange', loc=ir.Loc(filename=filename, line=5)) except ir.RedefinedError: pass else: self.fail("Expecting an %s" % ir.RedefinedError) class CheckEquality(unittest.TestCase): var_a = ir.Var(None, 'a', ir.unknown_loc) var_b = ir.Var(None, 'b', ir.unknown_loc) var_c = ir.Var(None, 'c', ir.unknown_loc) var_d = ir.Var(None, 'd', ir.unknown_loc) var_e = ir.Var(None, 'e', ir.unknown_loc) loc1 = ir.Loc('mock', 1, 0) loc2 = ir.Loc('mock', 2, 0) loc3 = ir.Loc('mock', 3, 0) def check(self, base, same=[], different=[]): for s in same: self.assertTrue(base == s) for d in different: self.assertTrue(base != d) class TestIRMeta(CheckEquality): """ Tests IR node meta, like Loc and Scope """ def test_loc(self): a = ir.Loc('file', 1, 0) b = ir.Loc('file', 1, 0) c = ir.Loc('pile', 1, 0) d = ir.Loc('file', 2, 0) e = ir.Loc('file', 1, 1) self.check(a, same=[b,], different=[c, d, e]) f = ir.Loc('file', 1, 0, maybe_decorator=False) g = ir.Loc('file', 1, 0, maybe_decorator=True) self.check(a, same=[f, g]) def test_scope(self): parent1 = ir.Scope(None, self.loc1) parent2 = ir.Scope(None, self.loc1) parent3 = ir.Scope(None, self.loc2) self.check(parent1, same=[parent2, parent3,]) a = ir.Scope(parent1, self.loc1) b = ir.Scope(parent1, self.loc1) c = ir.Scope(parent1, self.loc2) d = ir.Scope(parent3, self.loc1) self.check(a, same=[b, c, d]) # parent1 and parent2 are equal, so children referring to either parent # should be equal e = ir.Scope(parent2, self.loc1) self.check(a, same=[e,]) class TestIRNodes(CheckEquality): """ Tests IR nodes """ def test_terminator(self): # terminator base class inst should always be equal t1 = ir.Terminator() t2 = ir.Terminator() self.check(t1, same=[t2]) def test_jump(self): a = ir.Jump(1, self.loc1) b = ir.Jump(1, self.loc1) c = ir.Jump(1, self.loc2) d = ir.Jump(2, self.loc1) self.check(a, same=[b, c], different=[d]) def test_return(self): a = ir.Return(self.var_a, self.loc1) b = ir.Return(self.var_a, self.loc1) c = ir.Return(self.var_a, self.loc2) d = ir.Return(self.var_b, self.loc1) self.check(a, same=[b, c], different=[d]) def test_raise(self): a = ir.Raise(self.var_a, self.loc1) b = ir.Raise(self.var_a, self.loc1) c = ir.Raise(self.var_a, self.loc2) d = ir.Raise(self.var_b, self.loc1) self.check(a, same=[b, c], different=[d]) def test_staticraise(self): a = ir.StaticRaise(AssertionError, None, self.loc1) b = ir.StaticRaise(AssertionError, None, self.loc1) c = ir.StaticRaise(AssertionError, None, self.loc2) e = ir.StaticRaise(AssertionError, ("str",), self.loc1) d = ir.StaticRaise(RuntimeError, None, self.loc1) self.check(a, same=[b, c], different=[d, e]) def test_branch(self): a = ir.Branch(self.var_a, 1, 2, self.loc1) b = ir.Branch(self.var_a, 1, 2, self.loc1) c = ir.Branch(self.var_a, 1, 2, self.loc2) d = ir.Branch(self.var_b, 1, 2, self.loc1) e = ir.Branch(self.var_a, 2, 2, self.loc1) f = ir.Branch(self.var_a, 1, 3, self.loc1) self.check(a, same=[b, c], different=[d, e, f]) def test_expr(self): a = ir.Expr('some_op', self.loc1) b = ir.Expr('some_op', self.loc1) c = ir.Expr('some_op', self.loc2) d = ir.Expr('some_other_op', self.loc1) self.check(a, same=[b, c], different=[d]) def test_setitem(self): a = ir.SetItem(self.var_a, self.var_b, self.var_c, self.loc1) b = ir.SetItem(self.var_a, self.var_b, self.var_c, self.loc1) c = ir.SetItem(self.var_a, self.var_b, self.var_c, self.loc2) d = ir.SetItem(self.var_d, self.var_b, self.var_c, self.loc1) e = ir.SetItem(self.var_a, self.var_d, self.var_c, self.loc1) f = ir.SetItem(self.var_a, self.var_b, self.var_d, self.loc1) self.check(a, same=[b, c], different=[d, e, f]) def test_staticsetitem(self): a = ir.StaticSetItem(self.var_a, 1, self.var_b, self.var_c, self.loc1) b = ir.StaticSetItem(self.var_a, 1, self.var_b, self.var_c, self.loc1) c = ir.StaticSetItem(self.var_a, 1, self.var_b, self.var_c, self.loc2) d = ir.StaticSetItem(self.var_d, 1, self.var_b, self.var_c, self.loc1) e = ir.StaticSetItem(self.var_a, 2, self.var_b, self.var_c, self.loc1) f = ir.StaticSetItem(self.var_a, 1, self.var_d, self.var_c, self.loc1) g = ir.StaticSetItem(self.var_a, 1, self.var_b, self.var_d, self.loc1) self.check(a, same=[b, c], different=[d, e, f, g]) def test_delitem(self): a = ir.DelItem(self.var_a, self.var_b, self.loc1) b = ir.DelItem(self.var_a, self.var_b, self.loc1) c = ir.DelItem(self.var_a, self.var_b, self.loc2) d = ir.DelItem(self.var_c, self.var_b, self.loc1) e = ir.DelItem(self.var_a, self.var_c, self.loc1) self.check(a, same=[b, c], different=[d, e]) def test_del(self): a = ir.Del(self.var_a.name, self.loc1) b = ir.Del(self.var_a.name, self.loc1) c = ir.Del(self.var_a.name, self.loc2) d = ir.Del(self.var_b.name, self.loc1) self.check(a, same=[b, c], different=[d]) def test_setattr(self): a = ir.SetAttr(self.var_a, 'foo', self.var_b, self.loc1) b = ir.SetAttr(self.var_a, 'foo', self.var_b, self.loc1) c = ir.SetAttr(self.var_a, 'foo', self.var_b, self.loc2) d = ir.SetAttr(self.var_c, 'foo', self.var_b, self.loc1) e = ir.SetAttr(self.var_a, 'bar', self.var_b, self.loc1) f = ir.SetAttr(self.var_a, 'foo', self.var_c, self.loc1) self.check(a, same=[b, c], different=[d, e, f]) def test_delattr(self): a = ir.DelAttr(self.var_a, 'foo', self.loc1) b = ir.DelAttr(self.var_a, 'foo', self.loc1) c = ir.DelAttr(self.var_a, 'foo', self.loc2) d = ir.DelAttr(self.var_c, 'foo', self.loc1) e = ir.DelAttr(self.var_a, 'bar', self.loc1) self.check(a, same=[b, c], different=[d, e]) def test_assign(self): a = ir.Assign(self.var_a, self.var_b, self.loc1) b = ir.Assign(self.var_a, self.var_b, self.loc1) c = ir.Assign(self.var_a, self.var_b, self.loc2) d = ir.Assign(self.var_c, self.var_b, self.loc1) e = ir.Assign(self.var_a, self.var_c, self.loc1) self.check(a, same=[b, c], different=[d, e]) def test_print(self): a = ir.Print((self.var_a,), self.var_b, self.loc1) b = ir.Print((self.var_a,), self.var_b, self.loc1) c = ir.Print((self.var_a,), self.var_b, self.loc2) d = ir.Print((self.var_c,), self.var_b, self.loc1) e = ir.Print((self.var_a,), self.var_c, self.loc1) self.check(a, same=[b, c], different=[d, e]) def test_storemap(self): a = ir.StoreMap(self.var_a, self.var_b, self.var_c, self.loc1) b = ir.StoreMap(self.var_a, self.var_b, self.var_c, self.loc1) c = ir.StoreMap(self.var_a, self.var_b, self.var_c, self.loc2) d = ir.StoreMap(self.var_d, self.var_b, self.var_c, self.loc1) e = ir.StoreMap(self.var_a, self.var_d, self.var_c, self.loc1) f = ir.StoreMap(self.var_a, self.var_b, self.var_d, self.loc1) self.check(a, same=[b, c], different=[d, e, f]) def test_yield(self): a = ir.Yield(self.var_a, self.loc1, 0) b = ir.Yield(self.var_a, self.loc1, 0) c = ir.Yield(self.var_a, self.loc2, 0) d = ir.Yield(self.var_b, self.loc1, 0) e = ir.Yield(self.var_a, self.loc1, 1) self.check(a, same=[b, c], different=[d, e]) def test_enterwith(self): a = ir.EnterWith(self.var_a, 0, 1, self.loc1) b = ir.EnterWith(self.var_a, 0, 1, self.loc1) c = ir.EnterWith(self.var_a, 0, 1, self.loc2) d = ir.EnterWith(self.var_b, 0, 1, self.loc1) e = ir.EnterWith(self.var_a, 1, 1, self.loc1) f = ir.EnterWith(self.var_a, 0, 2, self.loc1) self.check(a, same=[b, c], different=[d, e, f]) def test_arg(self): a = ir.Arg('foo', 0, self.loc1) b = ir.Arg('foo', 0, self.loc1) c = ir.Arg('foo', 0, self.loc2) d = ir.Arg('bar', 0, self.loc1) e = ir.Arg('foo', 1, self.loc1) self.check(a, same=[b, c], different=[d, e]) def test_const(self): a = ir.Const(1, self.loc1) b = ir.Const(1, self.loc1) c = ir.Const(1, self.loc2) d = ir.Const(2, self.loc1) self.check(a, same=[b, c], different=[d]) def test_global(self): a = ir.Global('foo', 0, self.loc1) b = ir.Global('foo', 0, self.loc1) c = ir.Global('foo', 0, self.loc2) d = ir.Global('bar', 0, self.loc1) e = ir.Global('foo', 1, self.loc1) self.check(a, same=[b, c], different=[d, e]) def test_var(self): a = ir.Var(None, 'foo', self.loc1) b = ir.Var(None, 'foo', self.loc1) c = ir.Var(None, 'foo', self.loc2) d = ir.Var(ir.Scope(None, ir.unknown_loc), 'foo', self.loc1) e = ir.Var(None, 'bar', self.loc1) self.check(a, same=[b, c, d], different=[e]) def test_intrinsic(self): a = ir.Intrinsic('foo', 'bar', (0,), self.loc1) b = ir.Intrinsic('foo', 'bar', (0,), self.loc1) c = ir.Intrinsic('foo', 'bar', (0,), self.loc2) d = ir.Intrinsic('baz', 'bar', (0,), self.loc1) e = ir.Intrinsic('foo', 'baz', (0,), self.loc1) f = ir.Intrinsic('foo', 'bar', (1,), self.loc1) self.check(a, same=[b, c], different=[d, e, f]) def test_undefinedtype(self): a = ir.UndefinedType() b = ir.UndefinedType() self.check(a, same=[b]) def test_loop(self): a = ir.Loop(1, 3) b = ir.Loop(1, 3) c = ir.Loop(2, 3) d = ir.Loop(1, 4) self.check(a, same=[b], different=[c, d]) def test_with(self): a = ir.With(1, 3) b = ir.With(1, 3) c = ir.With(2, 3) d = ir.With(1, 4) self.check(a, same=[b], different=[c, d]) # used later _GLOBAL = 1234 class TestIRCompounds(CheckEquality): """ Tests IR concepts that have state """ def test_varmap(self): a = ir.VarMap() a.define(self.var_a, 'foo') a.define(self.var_b, 'bar') b = ir.VarMap() b.define(self.var_a, 'foo') b.define(self.var_b, 'bar') c = ir.VarMap() c.define(self.var_a, 'foo') c.define(self.var_c, 'bar') self.check(a, same=[b], different=[c]) def test_block(self): def gen_block(): parent = ir.Scope(None, self.loc1) tmp = ir.Block(parent, self.loc2) assign1 = ir.Assign(self.var_a, self.var_b, self.loc3) assign2 = ir.Assign(self.var_a, self.var_c, self.loc3) assign3 = ir.Assign(self.var_c, self.var_b, self.loc3) tmp.append(assign1) tmp.append(assign2) tmp.append(assign3) return tmp a = gen_block() b = gen_block() c = gen_block().append(ir.Assign(self.var_a, self.var_b, self.loc3)) self.check(a, same=[b], different=[c]) def test_functionir(self): # this creates a function full of all sorts of things to ensure the IR # is pretty involved, it then compares two instances of the compiled # function IR to check the IR is the same invariant of objects, and then # a tiny mutation is made to the IR in the second function and detection # of this change is checked. def gen(): _FREEVAR = 0xCAFE def foo(a, b, c=12, d=1j, e=None): f = a + b a += _FREEVAR g = np.zeros(c, dtype=np.complex64) h = f + g i = 1j / d if np.abs(i) > 0: k = h / i l = np.arange(1, c + 1) with objmode(): print(e, k) m = np.sqrt(l - g) if np.abs(m[0]) < 1: n = 0 for o in range(a): n += 0 if np.abs(n) < 3: break n += m[2] p = g / l q = [] for r in range(len(p)): q.append(p[r]) if r > 4 + 1: with objmode(s='intp', t='complex128'): s = 123 t = 5 if s > 122: t += s t += q[0] + _GLOBAL return f + o + r + t + r + a + n return foo x = gen() y = gen() x_ir = compiler.run_frontend(x) y_ir = compiler.run_frontend(y) self.assertTrue(x_ir.equal_ir(y_ir)) def check_diffstr(string, pointing_at=[]): lines = string.splitlines() for item in pointing_at: for l in lines: if l.startswith('->'): if item in l: break else: raise AssertionError("Could not find %s " % item) self.assertIn("IR is considered equivalent", x_ir.diff_str(y_ir)) # minor mutation, simply switch branch targets on last branch for label in reversed(list(y_ir.blocks.keys())): blk = y_ir.blocks[label] if isinstance(blk.body[-1], ir.Branch): ref = blk.body[-1] ref.truebr, ref.falsebr = ref.falsebr, ref.truebr break check_diffstr(x_ir.diff_str(y_ir), ['branch']) z = gen() self.assertFalse(x_ir.equal_ir(y_ir)) z_ir = compiler.run_frontend(z) change_set = set() for label in reversed(list(z_ir.blocks.keys())): blk = z_ir.blocks[label] ref = blk.body[:-1] idx = None for i in range(len(ref)): # look for two adjacent Del if (isinstance(ref[i], ir.Del) and isinstance(ref[i + 1], ir.Del)): idx = i break if idx is not None: b = blk.body change_set.add(str(b[idx + 1])) change_set.add(str(b[idx])) b[idx], b[idx + 1] = b[idx + 1], b[idx] break self.assertFalse(x_ir.equal_ir(z_ir)) self.assertEqual(len(change_set), 2) for item in change_set: self.assertTrue(item.startswith('del ')) check_diffstr(x_ir.diff_str(z_ir), change_set) def foo(a, b): c = a * 2 d = c + b e = np.sqrt(d) return e def bar(a, b): # same as foo c = a * 2 d = c + b e = np.sqrt(d) return e def baz(a, b): c = a * 2 d = b + c e = np.sqrt(d + 1) return e foo_ir = compiler.run_frontend(foo) bar_ir = compiler.run_frontend(bar) self.assertTrue(foo_ir.equal_ir(bar_ir)) self.assertIn("IR is considered equivalent", foo_ir.diff_str(bar_ir)) baz_ir = compiler.run_frontend(baz) self.assertFalse(foo_ir.equal_ir(baz_ir)) tmp = foo_ir.diff_str(baz_ir) self.assertIn("Other block contains more statements", tmp) check_diffstr(tmp, ["c + b", "b + c"]) if __name__ == '__main__': unittest.main()
36.458774
80
0.534126
17,011
0.986431
0
0
0
0
0
0
1,313
0.076138
55c37842e6305ac81f748c98ec0be9fc4a30c176
13,629
py
Python
pyannote/audio/applications/base.py
Ruslanmlnkv/pyannote-audio
b678920057ace936c8900c62d2975e958903fae2
[ "MIT" ]
2
2018-10-25T19:32:27.000Z
2021-06-19T15:14:16.000Z
pyannote/audio/applications/base.py
Ruslanmlnkv/pyannote-audio
b678920057ace936c8900c62d2975e958903fae2
[ "MIT" ]
null
null
null
pyannote/audio/applications/base.py
Ruslanmlnkv/pyannote-audio
b678920057ace936c8900c62d2975e958903fae2
[ "MIT" ]
null
null
null
#!/usr/bin/env python # encoding: utf-8 # The MIT License (MIT) # Copyright (c) 2017 CNRS # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. # AUTHORS # Hervé BREDIN - http://herve.niderb.fr import time import yaml from os.path import dirname, basename import numpy as np from tqdm import tqdm from glob import glob from pyannote.database import FileFinder from pyannote.database import get_protocol from pyannote.audio.util import mkdir_p from sortedcontainers import SortedDict import tensorboardX from functools import partial class Application(object): CONFIG_YML = '{experiment_dir}/config.yml' TRAIN_DIR = '{experiment_dir}/train/{protocol}.{subset}' WEIGHTS_PT = '{train_dir}/weights/{epoch:04d}.pt' # created by "validate" mode VALIDATE_DIR = '{train_dir}/validate/{protocol}.{subset}' @classmethod def from_train_dir(cls, train_dir, db_yml=None): experiment_dir = dirname(dirname(train_dir)) app = cls(experiment_dir, db_yml=db_yml) app.train_dir_ = train_dir return app @classmethod def from_validate_txt(cls, validate_txt, db_yml=None): train_dir = dirname(dirname(dirname(validate_txt))) app = cls.from_train_dir(train_dir, db_yml=db_yml) app.validate_txt_ = validate_txt return app @classmethod def from_model_pt(cls, model_pt, db_yml=None): train_dir = dirname(dirname(model_pt)) app = cls.from_train_dir(train_dir, db_yml=db_yml) app.model_pt_ = model_pt epoch = int(basename(app.model_pt_)[:-3]) app.model_ = app.load_model(epoch, train_dir=train_dir) return app def __init__(self, experiment_dir, db_yml=None): super(Application, self).__init__() self.db_yml = db_yml self.preprocessors_ = {'audio': FileFinder(self.db_yml)} self.experiment_dir = experiment_dir # load configuration config_yml = self.CONFIG_YML.format(experiment_dir=self.experiment_dir) with open(config_yml, 'r') as fp: self.config_ = yaml.load(fp) # scheduler SCHEDULER_DEFAULT = {'name': 'DavisKingScheduler', 'params': {'learning_rate': 'auto'}} scheduler_cfg = self.config_.get('scheduler', SCHEDULER_DEFAULT) scheduler_name = scheduler_cfg['name'] schedulers = __import__('pyannote.audio.train.schedulers', fromlist=[scheduler_name]) Scheduler = getattr(schedulers, scheduler_name) scheduler_params = scheduler_cfg.get('params', {}) self.get_scheduler_ = partial(Scheduler, **scheduler_params) self.learning_rate_ = scheduler_params.get('learning_rate', 'auto') # optimizer OPTIMIZER_DEFAULT = { 'name': 'SGD', 'params': {'momentum': 0.9, 'dampening': 0, 'weight_decay': 0, 'nesterov': True}} optimizer_cfg = self.config_.get('optimizer', OPTIMIZER_DEFAULT) optimizer_name = optimizer_cfg['name'] optimizers = __import__('torch.optim', fromlist=[optimizer_name]) Optimizer = getattr(optimizers, optimizer_name) optimizer_params = optimizer_cfg.get('params', {}) self.get_optimizer_ = partial(Optimizer, **optimizer_params) # feature extraction if 'feature_extraction' in self.config_: extraction_name = self.config_['feature_extraction']['name'] features = __import__('pyannote.audio.features', fromlist=[extraction_name]) FeatureExtraction = getattr(features, extraction_name) self.feature_extraction_ = FeatureExtraction( **self.config_['feature_extraction'].get('params', {})) def train(self, protocol_name, subset='train', restart=None, epochs=1000): train_dir = self.TRAIN_DIR.format( experiment_dir=self.experiment_dir, protocol=protocol_name, subset=subset) protocol = get_protocol(protocol_name, progress=True, preprocessors=self.preprocessors_) self.task_.fit( self.model_, self.feature_extraction_, protocol, subset=subset, restart=restart, epochs=epochs, get_optimizer=self.get_optimizer_, get_scheduler=self.get_scheduler_, learning_rate=self.learning_rate_, log_dir=train_dir, device=self.device) def load_model(self, epoch, train_dir=None): """Load pretrained model Parameters ---------- epoch : int Which epoch to load. train_dir : str, optional Path to train directory. Defaults to self.train_dir_. """ if train_dir is None: train_dir = self.train_dir_ import torch weights_pt = self.WEIGHTS_PT.format( train_dir=train_dir, epoch=epoch) self.model_.load_state_dict(torch.load(weights_pt)) return self.model_ def get_number_of_epochs(self, train_dir=None, return_first=False): """Get information about completed epochs Parameters ---------- train_dir : str, optional Training directory. Defaults to self.train_dir_ return_first : bool, optional Defaults (False) to return number of epochs. Set to True to also return index of first epoch. """ if train_dir is None: train_dir = self.train_dir_ directory = self.WEIGHTS_PT.format(train_dir=train_dir, epoch=0)[:-7] weights = sorted(glob(directory + '*[0-9][0-9][0-9][0-9].pt')) if not weights: number_of_epochs = 0 first_epoch = None else: number_of_epochs = int(basename(weights[-1])[:-3]) + 1 first_epoch = int(basename(weights[0])[:-3]) return (number_of_epochs, first_epoch) if return_first \ else number_of_epochs def validate_init(self, protocol_name, subset='development'): pass def validate_epoch(self, epoch, protocol_name, subset='development', validation_data=None): raise NotImplementedError('') def validate(self, protocol_name, subset='development', every=1, start=0, end=None, in_order=False, **kwargs): minimize, values, best_epoch, best_value = {}, {}, {}, {} validate_dir = self.VALIDATE_DIR.format(train_dir=self.train_dir_, protocol=protocol_name, subset=subset) mkdir_p(validate_dir) writer = tensorboardX.SummaryWriter(log_dir=validate_dir) validation_data = self.validate_init(protocol_name, subset=subset, **kwargs) progress_bar = tqdm(unit='epoch') for i, epoch in enumerate( self.validate_iter(start=start, end=end, step=every, in_order=in_order)): # {'metric1': {'minimize': True, 'value': 0.2}, # 'metric2': {'minimize': False, 'value': 0.9}} metrics = self.validate_epoch(epoch, protocol_name, subset=subset, validation_data=validation_data) if i == 0: for metric, details in metrics.items(): minimize[metric] = details.get('minimize', True) values[metric] = SortedDict() description = 'Epoch #{epoch}'.format(epoch=epoch) for metric, details in sorted(metrics.items()): value = details['value'] values[metric][epoch] = value writer.add_scalar( f'validate/{protocol_name}.{subset}/{metric}', values[metric][epoch], global_step=epoch) # keep track of best epoch so far if minimize[metric] == 'NA': best_value = 'NA' elif minimize[metric]: best_epoch = \ values[metric].iloc[np.argmin(values[metric].values())] best_value = values[metric][best_epoch] else: best_epoch = \ values[metric].iloc[np.argmax(values[metric].values())] best_value = values[metric][best_epoch] if best_value == 'NA': continue if abs(best_value) < 1: addon = (' : {metric} = {value:.3f}% ' '[{best_value:.3f}%, #{best_epoch}]') description += addon.format(metric=metric, value=100 * value, best_value=100 * best_value, best_epoch=best_epoch) else: addon = (' : {metric} = {value:.3f} ' '[{best_value:.3f}, #{best_epoch}]') description += addon.format(metric=metric, value=value, best_value=best_value, best_epoch=best_epoch) progress_bar.set_description(description) progress_bar.update(1) def validate_iter(self, start=None, end=None, step=1, sleep=10, in_order=False): """Continuously watches `train_dir` for newly completed epochs and yields them for validation Note that epochs will not necessarily be yielded in order. The very last completed epoch will always be first on the list. Parameters ---------- start : int, optional Start validating after `start` epochs. Defaults to 0. end : int, optional Stop validating after epoch `end`. Defaults to never stop. step : int, optional Validate every `step`th epoch. Defaults to 1. sleep : int, optional in_order : bool, optional Force chronological validation. Usage ----- >>> for epoch in app.validate_iter(): ... app.validate(epoch) """ if end is None: end = np.inf if start is None: start = 0 validated_epochs = set() next_epoch_to_validate_in_order = start while next_epoch_to_validate_in_order < end: # wait for first epoch to complete _, first_epoch = self.get_number_of_epochs(return_first=True) if first_epoch is None: print('waiting for first epoch to complete...') time.sleep(sleep) continue # corner case: make sure this does not wait forever # for epoch 'start' as it might never happen, in case # training is started after n pre-existing epochs if next_epoch_to_validate_in_order < first_epoch: next_epoch_to_validate_in_order = first_epoch # first epoch has completed break while True: # check last completed epoch last_completed_epoch = self.get_number_of_epochs() - 1 # if last completed epoch has not been processed yet, # always process it first (except if 'in order') if (not in_order) and (last_completed_epoch not in validated_epochs): next_epoch_to_validate = last_completed_epoch time.sleep(5) # HACK give checkpoint time to save weights # in case no new epoch has completed since last time # process the next epoch in chronological order (if available) elif next_epoch_to_validate_in_order <= last_completed_epoch: next_epoch_to_validate = next_epoch_to_validate_in_order # otherwise, just wait for a new epoch to complete else: time.sleep(sleep) continue if next_epoch_to_validate not in validated_epochs: # yield next epoch to process yield next_epoch_to_validate # remember which epoch was processed validated_epochs.add(next_epoch_to_validate) # increment 'in_order' processing if next_epoch_to_validate_in_order == next_epoch_to_validate: next_epoch_to_validate_in_order += step
38.176471
81
0.595935
12,089
0.886941
3,152
0.231255
806
0.059134
0
0
4,238
0.310932
55c46dbffcc8bf64a692ba3c182ecb46d711b58d
9,359
py
Python
cogs/games/checkers.py
itsVale/Vale.py
6b3cac68d53e8d814ee969a959aae4de52beda80
[ "MIT" ]
14
2018-08-06T06:45:19.000Z
2018-12-28T14:20:33.000Z
cogs/games/checkers.py
Mystic-Alchemy/Vale.py
b4cc964d34672444c65e2801a15f37d774c5e6e3
[ "MIT" ]
10
2018-10-06T10:52:08.000Z
2018-12-28T14:21:47.000Z
cogs/games/checkers.py
Mystic-Alchemy/Vale.py
b4cc964d34672444c65e2801a15f37d774c5e6e3
[ "MIT" ]
13
2018-09-23T20:13:10.000Z
2019-01-26T11:02:37.000Z
import itertools import random import re import discord from more_itertools import chunked, pairwise, sliced, spy from .base import Status, TwoPlayerGameCog, TwoPlayerSession from utils.misc import emoji_url BLACK, WHITE = False, True PIECES = BK_PIECE, WH_PIECE = 'bw' KINGS = BK_KING, WH_KING = 'BW' CHECKERS_BLACK_KING = '\N{HEAVY BLACK HEART}' CHECKERS_WHITE_KING = '\N{BLUE HEART}' CHECKERS_BLACK_LAST_MOVE = '' CHECKERS_WHITE_LAST_MOVE = '' _is_king = str.isupper def _get_checkers(start, end, direction): return [ (x, y) for y, x in itertools.product(range(start, end + direction, direction), range(8)) if (x + y) % 2 == 1 ] _STARTING_BOARD = [ ' ', BK_PIECE, ' ', BK_PIECE, ' ', BK_PIECE, ' ', BK_PIECE, BK_PIECE, ' ', BK_PIECE, ' ', BK_PIECE, ' ', BK_PIECE, ' ', ' ', BK_PIECE, ' ', BK_PIECE, ' ', BK_PIECE, ' ', BK_PIECE, ' ', ' ', ' ', ' ', ' ', ' ', ' ', ' ', ' ', ' ', ' ', ' ', ' ', ' ', ' ', ' ', WH_PIECE, ' ', WH_PIECE, ' ', WH_PIECE, ' ', WH_PIECE, ' ', ' ', WH_PIECE, ' ', WH_PIECE, ' ', WH_PIECE, ' ', WH_PIECE, WH_PIECE, ' ', WH_PIECE, ' ', WH_PIECE, ' ', WH_PIECE, ' ', ] X = 'abcdefgh' Y = '87654321' def _to_i(x, y): return y * 8 + x _STARTING_BOARD = [' '] * 64 _STARTING_BOARD[_to_i(3, 4)] = BK_PIECE _STARTING_BOARD[_to_i(4, 3)] = WH_PIECE def _i_to_xy(i): y, x = divmod(i, 8) return X[x] + Y[y] def _xy_to_i(xy): x, y = xy return _to_i(X.index(x), Y.index(y)) def _in_range(x, y): return 0 <= x < 8 and 0 <= y < 8 def _moves(x, y, dy): return [_to_i(x + dx, y + dy) for dx in (-1, 1) if _in_range(x + dx, y + dy)] def _captures(x, y, dy): return [ (_to_i(x + dx, y + dy), _to_i(x + dx * 2, y + dy * 2)) for dx in (-1, 1) if _in_range(x + dx, y + dy) and _in_range(x + dx * 2, y + dy * 2) ] def _make_dict(f): moves = { BK_PIECE: {_to_i(x, y): f(x, y, 1) for x, y in _get_checkers(0, 8, 1)}, WH_PIECE: {_to_i(x, y): f(x, y, -1) for x, y in _get_checkers(8, 0, -1)} } # Kings can move anywhere moves[BK_KING] = moves[WH_KING] = { k: moves[WH_PIECE].get(k, []) + moves[BK_PIECE].get(k, []) for k in moves[BK_PIECE].keys() | moves[WH_PIECE].keys() } return moves # Generate lookup table for moves _MOVES = _make_dict(_moves) _CAPTURES = _make_dict(_captures) class Board: TILES = { BLACK: '\N{BLACK LARGE SQUARE}', WHITE: '\N{WHITE LARGE SQUARE}', BK_PIECE: '\N{LARGE RED CIRCLE}', WH_PIECE: '\N{LARGE BLUE CIRCLE}', BK_KING: '\N{HEAVY BLACK HEART}', WH_KING: '\N{BLUE HEART}', 'BK_LAST_MOVE': '', 'WH_LAST_MOVE': '', } X = '\u200b'.join(map(chr, range(0x1f1e6, 0x1f1ee))) Y = [f'{i}\u20e3' for i in Y] def __init__(self): self._board = _STARTING_BOARD[:] self._half_moves = 0 self._last_move = None self.turn = WHITE def __str__(self): rows = list(self._tiles()) if self._last_move: last_move_tile = self.TILES[['WH_LAST_MOVE', 'BK_LAST_MOVE'][self.turn]] if last_move_tile: for i in map(_xy_to_i, chunked(self._last_move[:-2], 2)): rows[i] = last_move_tile board = '\n'.join(f'{y}{"".join(chunk)}' for y, chunk in zip(self.Y, chunked(rows, 8))) return f'\N{BLACK LARGE SQUARE}{self.X}\n{board}' @property def half_moves(self): return self._half_moves def _tiles(self): tiles = self.TILES for i, char in enumerate(self._board): key = not sum(divmod(i, 8)) % 2 if char == ' ' else char yield tiles[key] def _find_all_pieces(self, colour): return [i for i, v in enumerate(self._board) if v.lower() == colour] def legal_moves(self): """Generates all legal moves in the current position. If there are any jumps one could make, those get generated instead, as jumps must be made according to the rules of Checkers. """ jumps_exist, jumps = spy(self.jumps()) if jumps_exist: yield from jumps return board = self._board for i in self._find_all_pieces(PIECES[self.turn]): for end in _MOVES[board[i]][i]: if board[end] == ' ': yield _i_to_xy(i) + _i_to_xy(end) def jumps(self): """Generates all jumps one can make in the current position.""" owner = PIECES[self.turn] return itertools.chain.from_iterable(map(self.jumps_from, self._find_all_pieces(owner))) def jumps_from(self, square): """Generates all jumps from a particular square in the current position.""" board = self._board captures = _CAPTURES[board[square]] def jump_helper(square, captured): is_king = _is_king(board[square]) for jump_over, jump_end in captures[square]: if board[jump_over].lower() != PIECES[not self.turn]: continue if jump_over in captured: # no loops continue if board[jump_end] != ' ': # The square must be empty (obviously) continue if not is_king and square >> 3 == 7 * self.turn: yield square, jump_end else: chain_exists, squares = spy(jump_helper(jump_end, captured | {jump_over})) if chain_exists: for sequence in squares: yield (square, *sequence) else: yield (square, jump_end) return (''.join(map(_i_to_xy, s)) for s in jump_helper(square, set())) def is_game_over(self): """Returns True if the game is over for the current player. False otherwise.""" return next(self.legal_moves(), None) is None def move(self, move): """Takes a move and apply it to the game.""" if move not in self.legal_moves(): raise ValueError(f'illegal move: {move!r}') board = self._board squares = [_xy_to_i(xy) for xy in sliced(move, 2)] end = squares[-1] piece = board[squares[0]] if end >> 3 == 7 * (not self.turn) and not _is_king(piece): # New king piece = piece.upper() for before, after in pairwise(squares): difference = abs(before - after) if difference not in {18, 14}: continue # A two step rather than a one step means a capture. square_between = min(before, after) + difference // 2 board[square_between] = ' ' board[squares[0]] = ' ' board[end] = piece self._last_move = move self._half_moves += 1 self.turn = not self.turn # Below is the game logic. If you just want to copy the board, Ignore this. _VALID_MOVE_REGEX = re.compile(r'^([a-h][1-8]\s?)+', re.IGNORECASE) _MESSAGES = { Status.PLAYING: 'Your turn, {user}', Status.END: '{user} wins!', Status.QUIT: '{user} ragequitted.', Status.TIMEOUT: '{user} ran out of time.', } def _safe_sample(population, k): return random.sample(population, min(k, len(population))) class CheckersSession(TwoPlayerSession, move_pattern=_VALID_MOVE_REGEX, board_factory=Board): def __init__(self, ctx, opponent): super().__init__(ctx, opponent) if ctx.bot_has_permissions(external_emojis=True): self._board.TILES = { **self._board.TILES, BK_KING: str(CHECKERS_BLACK_KING), WH_KING: str(CHECKERS_WHITE_KING), 'BK_LAST_MOVE': str(CHECKERS_BLACK_LAST_MOVE), 'WH_LAST_MOVE': str(CHECKERS_WHITE_LAST_MOVE), } def current(self): return self._players[self._board.turn] def _push_move(self, move): self._board.move(move[0]) def _is_game_over(self): return self._board.is_game_over() def _instructions(self): if self._board.half_moves >= 4: return '' sample = _safe_sample(list(self._board.legal_moves()), 5) joined = ', '.join(f'`{c}`' for c in sample) return ( '**Instructions:**\n' 'Type the position of the piece you want to move,\n' 'and where you want to move it.\n' f'**Example:**\n{joined}\n\u200b\n' ) async def _update_display(self): board = self._board if self._status is Status.PLAYING: instructions = self._instructions() icon = emoji_url(board.TILES[PIECES[board.turn]]) else: instructions = '' icon = discord.Embed.Empty if self._status is Status.END: user = self._players[not self._board.turn] else: user = self.current() header = _MESSAGES[self._status].format(user=user) self._display.description = f'{instructions}{board}' self._display.set_author(name=header, icon_url=icon) class Checkers(TwoPlayerGameCog, game_cls=CheckersSession): """Shortest cog I ever made. Well, games are special.""" def setup(bot): bot.add_cog(Checkers(bot))
30.093248
96
0.567048
6,497
0.694198
1,960
0.209424
67
0.007159
622
0.06646
1,593
0.17021
55c5a244138d1f9a3e5a9c72e37cf112606b9cae
767
py
Python
setup.py
Fohlen/yente
bcba9ef3f766fea115de7eb381d7ad1b385d8df8
[ "MIT" ]
null
null
null
setup.py
Fohlen/yente
bcba9ef3f766fea115de7eb381d7ad1b385d8df8
[ "MIT" ]
null
null
null
setup.py
Fohlen/yente
bcba9ef3f766fea115de7eb381d7ad1b385d8df8
[ "MIT" ]
null
null
null
from setuptools import setup, find_packages with open("README.md") as f: long_description = f.read() setup( name="yente", version="1.3.5", url="https://opensanctions.org/docs/api/", long_description=long_description, long_description_content_type="text/markdown", license="MIT", author="OpenSanctions", author_email="info@opensanctions.org", packages=find_packages(exclude=["examples", "test"]), namespace_packages=[], extras_require={ "dev": [ "pip>=10.0.0", "bump2version", "wheel>=0.29.0", "twine", "mypy", "pytest", "pytest-cov", "flake8>=2.6.0", "black", ], }, zip_safe=False, )
23.242424
57
0.548892
0
0
0
0
0
0
0
0
239
0.311604
55c74a48da6996ad1f49dfbcbd9bd447049566b8
451
py
Python
python-pulseaudio-master/setup.py
rrbutani/SoundAndColor
44992fa188c109a3b11b2df137b9272a0b6203d8
[ "Unlicense" ]
null
null
null
python-pulseaudio-master/setup.py
rrbutani/SoundAndColor
44992fa188c109a3b11b2df137b9272a0b6203d8
[ "Unlicense" ]
null
null
null
python-pulseaudio-master/setup.py
rrbutani/SoundAndColor
44992fa188c109a3b11b2df137b9272a0b6203d8
[ "Unlicense" ]
null
null
null
#!/usr/bin/env python from distutils.core import setup setup(name='libpulseaudio', version='1.1', description='simple libpulseaudio bindings', author='Valodim', author_email='valodim@mugenguild.com', license='LGPL', url='http://github.com/valodim/python-pulseaudio', packages=['pulseaudio'], provides=['libpulseaudio'], download_url='http://datatomb.de/~valodim/libpulseaudio-1.1.tar.gz' )
28.1875
73
0.662971
0
0
0
0
0
0
0
0
237
0.525499
55c807db743e48332bd230ddf2d2f732bbf1c1d4
2,006
py
Python
vectorization.py
creadal/articles-classifier
d7b7df5687e57da91fae2bb095f1617d729a00a2
[ "MIT" ]
null
null
null
vectorization.py
creadal/articles-classifier
d7b7df5687e57da91fae2bb095f1617d729a00a2
[ "MIT" ]
null
null
null
vectorization.py
creadal/articles-classifier
d7b7df5687e57da91fae2bb095f1617d729a00a2
[ "MIT" ]
null
null
null
import codecs import numpy as np import random categories = ['science', 'style', 'culture', 'life', 'economics', 'business', 'travel', 'forces', 'media', 'sport'] dict_file = codecs.open('processed/dictionary.txt', 'r', 'utf_8_sig') dictionary = [] for line in dict_file: line = line[: len(line) - 1] dictionary.append(line) def similar_words(word1, word2, coef = .5): if len(word1) == len(word2): ch = 0 n = len(word1) zn = 0 for i in range(n): zn += np.sqrt(n-i) for i in range(n): if word1[i] == word2[i]: ch+=np.sqrt(n-i) if ch/zn >= coef: return True else: return False else: return False def remove_punctuation(word): punctuation = ['!', ':', ':', ',', '.', '?', "'", '"', '(', ')', '«', '»', '+', '-', '=', '_', '/', '\\', '|', '0', '1', '2', '3', '4', '5', '6', '7', '8', '9'] new_word = '' for symbol in word: if symbol not in punctuation: new_word += symbol return new_word.lower() def line2vec(line, dictionary): vector = [0] * len(dictionary) for word in line.split(): word = remove_punctuation(word) for d in dictionary: if similar_words(word, d): vector[dictionary.index(d)] += 1 return vector train_file = codecs.open('news_train.txt', 'r', 'utf_8_sig') input_vectors = [] outputs = [] for line in train_file: label, name, content = line.split('\t') vector = line2vec(name, dictionary) output = [0]*10 output[categories.index(label)] = 1 input_vectors.append(vector) outputs.append(output) train_vectors_i = codecs.open('processed/train_vectors_input.txt', 'w+', 'utf_8_sig') train_vectors_o = codecs.open('processed/train_vectors_outputs.txt', 'w+', 'utf_8_sig') for i in input_vectors: train_vectors_i.write(str(i) + '\n') for i in outputs: train_vectors_o.write(str(i) +'\n') print('text processed')
25.717949
164
0.565803
0
0
0
0
0
0
0
0
374
0.186255
55c88b114fda250da3b41e3041303ef9275c30e5
4,734
py
Python
data/spca/preprocess.py
energydatalab/mrs
f2088fd25594ff0c67faac89013c2f1c58942485
[ "MIT" ]
null
null
null
data/spca/preprocess.py
energydatalab/mrs
f2088fd25594ff0c67faac89013c2f1c58942485
[ "MIT" ]
null
null
null
data/spca/preprocess.py
energydatalab/mrs
f2088fd25594ff0c67faac89013c2f1c58942485
[ "MIT" ]
null
null
null
# Built-in import os from glob import glob # Libs import numpy as np from tqdm import tqdm from natsort import natsorted # Own modules from data import data_utils from mrs_utils import misc_utils, process_block # Settings DS_NAME = 'spca' def get_images(data_dir, valid_percent=0.5, split=False): rgb_files = natsorted(glob(os.path.join(data_dir, '*RGB.jpg'))) lbl_files = natsorted(glob(os.path.join(data_dir, '*GT.png'))) '''ind = np.arange(len(rgb_files)) np.random.shuffle(ind) rgb_files = [rgb_files[a] for a in ind] lbl_files = [lbl_files[a] for a in ind]''' assert len(rgb_files) == len(lbl_files) city_names = ['Fresno', 'Modesto', 'Stockton', 'aus'] city_files = {city_name: [(rgb_file, lbl_file) for (rgb_file, lbl_file) in zip(rgb_files, lbl_files) if city_name in rgb_file] for city_name in city_names} train_files, valid_files = [], [] for city_name, file_pairs in city_files.items(): valid_size = int(valid_percent * len(file_pairs)) train_files.extend(file_pairs[valid_size:]) valid_files.extend(file_pairs[:valid_size]) if split: return train_files, valid_files else: return [a[0] for a in valid_files], [a[1] for a in valid_files] def create_dataset(data_dir, save_dir, patch_size, pad, overlap, valid_percent=0.1, visualize=False): # create folders and files patch_dir = os.path.join(save_dir, 'patches') misc_utils.make_dir_if_not_exist(patch_dir) record_file_train = open(os.path.join(save_dir, 'file_list_train_{}.txt').format( misc_utils.float2str(valid_percent)), 'w+') record_file_valid = open(os.path.join(save_dir, 'file_list_valid_{}.txt').format( misc_utils.float2str(valid_percent)), 'w+') train_files, valid_files = get_images(data_dir, valid_percent, split=True) for img_file, lbl_file in tqdm(train_files): city_name = os.path.splitext(os.path.basename(img_file))[0].split('_')[0] for rgb_patch, gt_patch, y, x in data_utils.patch_tile(img_file, lbl_file, patch_size, pad, overlap): if visualize: from mrs_utils import vis_utils vis_utils.compare_figures([rgb_patch, gt_patch], (1, 2), fig_size=(12, 5)) img_patchname = '{}_y{}x{}.jpg'.format(city_name, int(y), int(x)) lbl_patchname = '{}_y{}x{}.png'.format(city_name, int(y), int(x)) # misc_utils.save_file(os.path.join(patch_dir, img_patchname), rgb_patch.astype(np.uint8)) # misc_utils.save_file(os.path.join(patch_dir, lbl_patchname), gt_patch.astype(np.uint8)) record_file_train.write('{} {}\n'.format(img_patchname, lbl_patchname)) for img_file, lbl_file in tqdm(valid_files): city_name = os.path.splitext(os.path.basename(img_file))[0].split('_')[0] for rgb_patch, gt_patch, y, x in data_utils.patch_tile(img_file, lbl_file, patch_size, pad, overlap): if visualize: from mrs_utils import vis_utils vis_utils.compare_figures([rgb_patch, gt_patch], (1, 2), fig_size=(12, 5)) img_patchname = '{}_y{}x{}.jpg'.format(city_name, int(y), int(x)) lbl_patchname = '{}_y{}x{}.png'.format(city_name, int(y), int(x)) # misc_utils.save_file(os.path.join(patch_dir, img_patchname), rgb_patch.astype(np.uint8)) # misc_utils.save_file(os.path.join(patch_dir, lbl_patchname), gt_patch.astype(np.uint8)) record_file_valid.write('{} {}\n'.format(img_patchname, lbl_patchname)) def get_stats(img_dir): from data import data_utils from glob import glob rgb_imgs = glob(os.path.join(img_dir, '*RGB.jpg')) ds_mean, ds_std = data_utils.get_ds_stats(rgb_imgs) return np.stack([ds_mean, ds_std], axis=0) def get_stats_pb(img_dir): val = process_block.ValueComputeProcess(DS_NAME, os.path.join(os.path.dirname(__file__), '../stats/builtin'), os.path.join(os.path.dirname(__file__), '../stats/builtin/{}.npy'.format(DS_NAME)), func=get_stats).\ run(img_dir=img_dir).val val_test = val return val, val_test if __name__ == '__main__': img_files = natsorted(glob(os.path.join(r'/home/wh145/data/caemo', '*RGB.jpg'))) np.random.seed(931004) ps = 512 ol = 0 pd = 0 create_dataset(data_dir=r'/home/wh145/data/caemo', save_dir=r'/home/wh145/data/caemo/ps_512_ol_0', patch_size=(ps, ps), pad=pd, overlap=ol, visualize=False, valid_percent=0.1) # val = get_stats_pb(r'/media/ei-edl01/data/uab_datasets/spca/data/Original_Tiles')[0] # data_utils.patches_to_hdf5(r'/hdd/mrs/spca', r'/hdd/mrs/spca/ps512_pd0_ol0_hdf5')
44.660377
145
0.667934
0
0
0
0
0
0
0
0
1,110
0.234474
55c8ccd7b221f69f74c7f2b403781f9c5546f908
3,182
py
Python
tests/test_json_util.py
okutane/yandex-taxi-testsuite
7e2e3dd5a65869ecbf37bf3f79cba7bb4e782b0c
[ "MIT" ]
128
2020-03-10T09:13:41.000Z
2022-02-11T20:16:16.000Z
tests/test_json_util.py
okutane/yandex-taxi-testsuite
7e2e3dd5a65869ecbf37bf3f79cba7bb4e782b0c
[ "MIT" ]
3
2021-11-01T12:31:27.000Z
2022-02-11T13:08:38.000Z
tests/test_json_util.py
okutane/yandex-taxi-testsuite
7e2e3dd5a65869ecbf37bf3f79cba7bb4e782b0c
[ "MIT" ]
22
2020-03-05T07:13:12.000Z
2022-03-15T10:30:58.000Z
import dateutil import pytest from testsuite.plugins import mockserver from testsuite.utils import json_util NOW = dateutil.parser.parse('2019-09-19-13:04:00.000000') MOCKSERVER_INFO = mockserver.MockserverInfo( 'localhost', 123, 'http://localhost:123/', None, ) MOCKSERVER_SSL_INFO = mockserver.MockserverInfo( 'localhost', 456, 'https://localhost:456/', mockserver.SslInfo('/some_dir/cert.cert', '/some_dir/cert.key'), ) @pytest.mark.parametrize( 'json_input,expected_result', [ ( # simple list [{'some_date': {'$dateDiff': 0}}, 'regular_element'], # json_input [{'some_date': NOW}, 'regular_element'], # expected_result ), ( # simple dict { # json_input 'some_date': {'$dateDiff': 0}, 'regular_key': 'regular_value', }, {'some_date': NOW, 'regular_key': 'regular_value'}, # json_input ), ( # nested list and dict { # json_input 'regular_root_key': 'regular_root_value', 'root_date': {'$dateDiff': 0}, 'parent_key': { 'nested_date': {'$dateDiff': 0}, 'nested_list': [ 'regular_element1', {'$dateDiff': 0}, {'$dateDiff': 0}, 'regular_element2', ], }, }, { # expected_result 'regular_root_key': 'regular_root_value', 'root_date': NOW, 'parent_key': { 'nested_date': NOW, 'nested_list': [ 'regular_element1', NOW, NOW, 'regular_element2', ], }, }, ), ], ) def test_substitute_now(json_input, expected_result): result = json_util.substitute(json_input, now=NOW) assert result == expected_result @pytest.mark.parametrize( 'json_input,expected_result', [ ( ({'client_url': {'$mockserver': '/path'}}), ({'client_url': 'http://localhost:123/path'}), ), ( ({'client_url': {'$mockserver': '/path', '$schema': False}}), ({'client_url': 'localhost:123/path'}), ), ], ) def test_substitute_mockserver(json_input, expected_result): result = json_util.substitute(json_input, mockserver=MOCKSERVER_INFO) assert result == expected_result @pytest.mark.parametrize( 'json_input,expected_result', [ ( ({'client_url': {'$mockserver_https': '/path'}}), ({'client_url': 'https://localhost:456/path'}), ), ( ({'client_url': {'$mockserver_https': '/path', '$schema': False}}), ({'client_url': 'localhost:456/path'}), ), ], ) def test_substitute_mockserver_https(json_input, expected_result): result = json_util.substitute( json_input, mockserver_https=MOCKSERVER_SSL_INFO, ) assert result == expected_result
30.596154
79
0.511942
0
0
0
0
2,728
0.857322
0
0
1,099
0.34538
55c8ce13de36aa35d1ea8a967ade5c81bd88fbbc
1,066
py
Python
Level/__init__.py
PyRectangle/GreyRectangle
21c19002f52563a096566e9166040815005b830b
[ "MIT" ]
3
2017-09-28T16:53:09.000Z
2018-03-18T20:01:41.000Z
Level/__init__.py
PyRectangle/GreyRectangle
21c19002f52563a096566e9166040815005b830b
[ "MIT" ]
null
null
null
Level/__init__.py
PyRectangle/GreyRectangle
21c19002f52563a096566e9166040815005b830b
[ "MIT" ]
null
null
null
from Level.Render import Render from Level.Data import Data from Constants import * import os class Level: def __init__(self, folder, main): self.main = main self.name = folder self.folder = LEVEL_PATH + "/" + folder self.dataFiles = [] files = os.listdir(self.folder) for file in files: if file[0:4] == "data": self.dataFiles.append(file) self.render = Render(self, main) self.data = Data(self) def rename(self, name): self.name = name folder = LEVEL_PATH + "/" + name os.rename(self.folder, folder) self.folder = folder self.main.levelSelection.levelGuiHandler.updateText() def openSection(self, number): self.close() self.data = Data(self, number) def save(self): self.data.save() for region in self.data.regions: if region.loaded: region.save() region.save() def close(self): self.data.close() del self.data
26
61
0.562852
969
0.909006
0
0
0
0
0
0
12
0.011257
55cc899799689985629d17decc9d13ef5c737a0d
1,252
py
Python
preparedstatement.py
shgysk8zer0/pyutils
f7fa2ea7717740f05ea739d20cd8a21701835800
[ "MIT" ]
null
null
null
preparedstatement.py
shgysk8zer0/pyutils
f7fa2ea7717740f05ea739d20cd8a21701835800
[ "MIT" ]
null
null
null
preparedstatement.py
shgysk8zer0/pyutils
f7fa2ea7717740f05ea739d20cd8a21701835800
[ "MIT" ]
null
null
null
import sqlite3 class PreparedStatement: __cursor = None __sql = '' __params = {} def __init__(self, con: sqlite3.Connection, sql: str): self.__cursor = con.cursor() self.__sql = sql self.__params = {} def __str__(self) -> str: return self.__sql def __getitem__(self, key: str): return self.__params.get(key) def __delitem__(self, key: str): del self.__params[key] def __contains__(self, key: str) -> bool: return key in self.__params def __setitem__(self, name: str, value) -> None: self.__params[name] = value def __call__(self, **kwargs): return self.__cursor.execute(self.__sql, {**kwargs, **self.__params}) def bind(self, name: str, value): self.__params[name] = value return self def bindall(self, **kwargs): self.__params = kwargs return self def execute(self, **kwargs): return self.__cursor.execute(self.__sql, {**self.__params, **kwargs}) def executemany(self, *args): result = [{**self.__params, **arg} for arg in args] return self.__cursor.executemany(self.__sql, result) @property def params(self) -> dict: return self.__params
26.083333
77
0.610224
1,236
0.98722
0
0
68
0.054313
0
0
2
0.001597
55cce6a5f51b48ac0a3f7fb58d81fade424bd086
2,787
py
Python
python/communitymanager/lib/basicauthpolicy.py
OpenCIOC/communityrepo
63199a7b620f5c08624e534faf771e5dd2243adb
[ "Apache-2.0" ]
2
2016-01-25T14:40:44.000Z
2018-01-31T04:30:23.000Z
python/communitymanager/lib/basicauthpolicy.py
OpenCIOC/communityrepo
63199a7b620f5c08624e534faf771e5dd2243adb
[ "Apache-2.0" ]
5
2018-02-07T20:16:49.000Z
2021-12-13T19:41:43.000Z
python/communitymanager/lib/basicauthpolicy.py
OpenCIOC/communityrepo
63199a7b620f5c08624e534faf771e5dd2243adb
[ "Apache-2.0" ]
1
2018-02-07T20:37:52.000Z
2018-02-07T20:37:52.000Z
# From the Pyramid Cookbook: # http://pyramid-cookbook.readthedocs.org/en/latest/auth/basic.html import binascii import base64 from paste.httpheaders import AUTHORIZATION from paste.httpheaders import WWW_AUTHENTICATE from pyramid.security import Everyone from pyramid.security import Authenticated def _get_basicauth_credentials(request): authorization = AUTHORIZATION(request.environ) try: authmeth, auth = authorization.split(' ', 1) except ValueError: # not enough values to unpack return None if authmeth.lower() == 'basic': try: auth = base64.b64decode(auth.strip().encode('ascii')).decode('utf-8') except binascii.Error: # can't decode return None try: login, password = auth.split(':', 1) except ValueError: # not enough values to unpack return None return {'login': login, 'password': password} return None class BasicAuthenticationPolicy(object): """ A :app:`Pyramid` :term:`authentication policy` which obtains data from basic authentication headers. Constructor Arguments ``check`` A callback passed the credentials and the request, expected to return None if the userid doesn't exist or a sequence of group identifiers (possibly empty) if the user does exist. Required. ``realm`` Default: ``Realm``. The Basic Auth realm string. """ def __init__(self, check, realm='Realm'): self.check = check self.realm = realm def authenticated_userid(self, request): credentials = _get_basicauth_credentials(request) if credentials is None: return None userid = credentials['login'] if self.check(credentials, request) is not None: # is not None! return userid def effective_principals(self, request): effective_principals = [Everyone] credentials = _get_basicauth_credentials(request) if credentials is None: return effective_principals userid = credentials['login'] groups = self.check(credentials, request) if groups is None: # is None! return effective_principals effective_principals.append(Authenticated) effective_principals.append(userid) effective_principals.extend(groups) return effective_principals def unauthenticated_userid(self, request): creds = _get_basicauth_credentials(request) if creds is not None: return creds['login'] return None def remember(self, request, principal, **kw): return [] def forget(self, request): head = WWW_AUTHENTICATE.tuples('Basic realm="%s"' % self.realm) return head
30.626374
81
0.657696
1,835
0.658414
0
0
0
0
0
0
736
0.264083
55cd25162b525efcbd0ec6570ea61ed0a8074922
4,709
py
Python
eventsourcing/examples/searchabletimestamps/postgres.py
ParikhKadam/eventsourcing
8d7f8d28c527d7df47a631b009b19b5fdb53740b
[ "BSD-3-Clause" ]
107
2021-10-30T14:47:19.000Z
2022-03-31T10:52:42.000Z
eventsourcing/examples/searchabletimestamps/postgres.py
ParikhKadam/eventsourcing
8d7f8d28c527d7df47a631b009b19b5fdb53740b
[ "BSD-3-Clause" ]
12
2021-11-02T05:52:42.000Z
2022-03-08T14:49:09.000Z
eventsourcing/examples/searchabletimestamps/postgres.py
ParikhKadam/eventsourcing
8d7f8d28c527d7df47a631b009b19b5fdb53740b
[ "BSD-3-Clause" ]
8
2021-10-29T22:35:54.000Z
2022-03-03T04:16:17.000Z
from datetime import datetime from typing import Any, List, Optional, Sequence, Tuple, cast from uuid import UUID from eventsourcing.domain import Aggregate from eventsourcing.examples.searchabletimestamps.persistence import ( SearchableTimestampsRecorder, ) from eventsourcing.persistence import ApplicationRecorder, StoredEvent from eventsourcing.postgres import ( Factory, PostgresApplicationRecorder, PostgresConnection, PostgresCursor, PostgresDatastore, ) class SearchableTimestampsApplicationRecorder( SearchableTimestampsRecorder, PostgresApplicationRecorder ): def __init__( self, datastore: PostgresDatastore, events_table_name: str = "stored_events", event_timestamps_table_name: str = "event_timestamps", ): self.check_table_name_length(event_timestamps_table_name, datastore.schema) self.event_timestamps_table_name = event_timestamps_table_name super().__init__(datastore, events_table_name) self.insert_event_timestamp_statement = ( f"INSERT INTO {self.event_timestamps_table_name} VALUES ($1, $2, $3)" ) self.insert_event_timestamp_statement_name = ( f"insert_{event_timestamps_table_name}".replace(".", "_") ) self.select_event_timestamp_statement = ( f"SELECT originator_version FROM {self.event_timestamps_table_name} WHERE " f"originator_id = $1 AND " f"timestamp <= $2 " "ORDER BY originator_version DESC " "LIMIT 1" ) self.select_event_timestamp_statement_name = ( f"select_{event_timestamps_table_name}".replace(".", "_") ) def construct_create_table_statements(self) -> List[str]: statements = super().construct_create_table_statements() statements.append( "CREATE TABLE IF NOT EXISTS " f"{self.event_timestamps_table_name} (" "originator_id uuid NOT NULL, " "timestamp timestamp with time zone, " "originator_version bigint NOT NULL, " "PRIMARY KEY " "(originator_id, timestamp))" ) return statements def _prepare_insert_events(self, conn: PostgresConnection) -> None: super()._prepare_insert_events(conn) self._prepare( conn, self.insert_event_timestamp_statement_name, self.insert_event_timestamp_statement, ) def _insert_events( self, c: PostgresCursor, stored_events: List[StoredEvent], **kwargs: Any, ) -> Optional[Sequence[int]]: notification_ids = super()._insert_events(c, stored_events, **kwargs) # Insert event timestamps. event_timestamps_data = cast( List[Tuple[UUID, datetime, int]], kwargs.get("event_timestamps_data") ) for event_timestamp_data in event_timestamps_data: statement_alias = self.statement_name_aliases[ self.insert_event_timestamp_statement_name ] c.execute(f"EXECUTE {statement_alias}(%s, %s, %s)", event_timestamp_data) return notification_ids def get_version_at_timestamp( self, originator_id: UUID, timestamp: datetime ) -> Optional[int]: with self.datastore.get_connection() as conn: self._prepare( conn, self.select_event_timestamp_statement_name, self.select_event_timestamp_statement, ) with conn.transaction(commit=False) as curs: statement_alias = self.statement_name_aliases[ self.select_event_timestamp_statement_name ] curs.execute( f"EXECUTE {statement_alias}(%s, %s)", [originator_id, timestamp] ) for row in curs.fetchall(): return row["originator_version"] else: return Aggregate.INITIAL_VERSION - 1 class SearchableTimestampsInfrastructureFactory(Factory): def application_recorder(self) -> ApplicationRecorder: prefix = (self.datastore.schema + ".") if self.datastore.schema else "" prefix += self.env.name.lower() or "stored" events_table_name = prefix + "_events" event_timestamps_table_name = prefix + "_timestamps" recorder = SearchableTimestampsApplicationRecorder( datastore=self.datastore, events_table_name=events_table_name, event_timestamps_table_name=event_timestamps_table_name, ) recorder.create_table() return recorder del Factory
36.789063
87
0.647484
4,202
0.892334
0
0
0
0
0
0
754
0.160119
55cdd7e5e8bf1de41967431dfc57603e40486db0
313
py
Python
complete/01 - 10/Problem6/main.py
this-jacob/project-euler
8f9e700e2875e84d081eade44fd2107db0a0ae12
[ "MIT" ]
null
null
null
complete/01 - 10/Problem6/main.py
this-jacob/project-euler
8f9e700e2875e84d081eade44fd2107db0a0ae12
[ "MIT" ]
null
null
null
complete/01 - 10/Problem6/main.py
this-jacob/project-euler
8f9e700e2875e84d081eade44fd2107db0a0ae12
[ "MIT" ]
null
null
null
def main(): squareSum = 0 #(1 + 2)^2 square of the sums sumSquare = 0 #1^2 + 2^2 sum of the squares for i in range(1, 101): sumSquare += i ** 2 squareSum += i squareSum = squareSum ** 2 print(str(squareSum - sumSquare)) if __name__ == '__main__': main()
19.5625
54
0.533546
0
0
0
0
0
0
0
0
70
0.223642
55ce2377676e46ea6ca7f0b0a8a26da468d757a5
1,861
py
Python
Sudoko.py
abirbhattacharya82/Sudoko-Solver
36ea15d16561fe5031548ed3f4c58757280117f6
[ "MIT" ]
1
2021-07-25T03:02:39.000Z
2021-07-25T03:02:39.000Z
Sudoko.py
abirbhattacharya82/Sudoku-Solver
36ea15d16561fe5031548ed3f4c58757280117f6
[ "MIT" ]
null
null
null
Sudoko.py
abirbhattacharya82/Sudoku-Solver
36ea15d16561fe5031548ed3f4c58757280117f6
[ "MIT" ]
null
null
null
def find_space(board): for i in range(0,9): for j in range(0,9): if board[i][j]==0: return (i,j) return None def check(board,num,r,c): for i in range(0,9): if board[r][i]==num and c!=i: return False for i in range(0,9): if board[i][c]==num and r!=i: return False x=r//3 y=c//3 for i in range(x*3,x*3+3): for j in range(y*3,y*3+3): if board[i][j]==num and r!=i and c!=j: return False return True def enter_datas(board): for i in range(1,10): print("Enter the Datas in Row ",i) x=[int(i) for i in input().split()] board.append(x) def show(board): for i in range(0,9): for j in range(0,9): if j==2 or j==5: print(board[i][j]," | ",end="") else: print(board[i][j],end=" ") if i==2 or i==5: print("\n-----------------------\n") else: print("\n") def solve(board): x=find_space(board) if not x: return True else: r,c=x for i in range(1,10): if check(board,i,r,c): board[r][c]=i if solve(board): return True board[r][c]=0 return False board=[] enter_datas(board) show(board) solve(board) print("\n\n") show(board) ''' Enter the Datas in a Row 7 8 0 4 0 0 1 2 0 Enter the Datas in a Row 6 0 0 0 7 5 0 0 9 Enter the Datas in a Row 0 0 0 6 0 1 0 7 8 Enter the Datas in a Row 0 0 7 0 4 0 2 6 0 Enter the Datas in a Row 0 0 1 0 5 0 9 3 0 Enter the Datas in a Row 9 0 4 0 6 0 0 0 5 Enter the Datas in a Row 0 7 0 3 0 0 0 1 2 Enter the Datas in a Row 1 2 0 0 0 7 4 0 0 Enter the Datas in a Row 0 4 9 2 0 6 0 0 7 '''
23.2625
51
0.476088
0
0
0
0
0
0
0
0
487
0.261687
55cf3d9d9f70b37e8b09330bf7dcbd0d8aeb3b5f
2,341
py
Python
gbkfit_web/utility/display_names.py
ADACS-Australia/ADACS-GBKFIT
20c7cafcabb6e75d8c287df06efb43113fdabd25
[ "MIT" ]
null
null
null
gbkfit_web/utility/display_names.py
ADACS-Australia/ADACS-GBKFIT
20c7cafcabb6e75d8c287df06efb43113fdabd25
[ "MIT" ]
null
null
null
gbkfit_web/utility/display_names.py
ADACS-Australia/ADACS-GBKFIT
20c7cafcabb6e75d8c287df06efb43113fdabd25
[ "MIT" ]
null
null
null
""" Distributed under the MIT License. See LICENSE.txt for more info. """ # VARIABLES of this file must be unique from django_hpc_job_controller.client.scheduler.status import JobStatus # Dictionary to map names and corresponding display names (for UI) DISPLAY_NAME_MAP = dict() DISPLAY_NAME_MAP_HPC_JOB = dict() # Job Status NONE = 'none' NONE_DISPLAY = 'None' DRAFT = 'draft' DRAFT_DISPLAY = 'Draft' PENDING = 'pending' PENDING_DISPLAY = 'Pending' SUBMITTING = 'submitting' SUBMITTING_DISPLAY = 'Submitting' SUBMITTED = 'submitted' SUBMITTED_DISPLAY = 'Submitted' QUEUED = 'queued' QUEUED_DISPLAY = 'Queued' IN_PROGRESS = 'in_progress' IN_PROGRESS_DISPLAY = 'In Progress' CANCELLING = 'cancelling' CANCELLING_DISPLAY = 'Cancelling' CANCELLED = 'cancelled' CANCELLED_DISPLAY = 'Cancelled' ERROR = 'error' ERROR_DISPLAY = 'Error' WALL_TIME_EXCEEDED = 'wall_time_exceeded' WALL_TIME_EXCEEDED_DISPLAY = 'Wall Time Exceeded' OUT_OF_MEMORY = 'out_of_memory' OUT_OF_MEMORY_DISPLAY = 'Out of Memory' COMPLETED = 'completed' COMPLETED_DISPLAY = 'Completed' SAVED = 'saved' SAVED_DISPLAY = 'Saved' DELETING = 'deleting' DELETING_DISPLAY = 'Deleting' DELETED = 'deleted' DELETED_DISPLAY = 'Deleted' PUBLIC = 'public' PUBLIC_DISPLAY = 'Public' DISPLAY_NAME_MAP.update({ DRAFT: DRAFT_DISPLAY, PENDING: PENDING_DISPLAY, SUBMITTING: SUBMITTING_DISPLAY, SUBMITTED: SUBMITTED_DISPLAY, QUEUED: QUEUED_DISPLAY, IN_PROGRESS: IN_PROGRESS_DISPLAY, CANCELLING: CANCELLING_DISPLAY, CANCELLED: CANCELLED_DISPLAY, ERROR: ERROR_DISPLAY, WALL_TIME_EXCEEDED: WALL_TIME_EXCEEDED_DISPLAY, OUT_OF_MEMORY: OUT_OF_MEMORY_DISPLAY, COMPLETED: COMPLETED_DISPLAY, SAVED: SAVED_DISPLAY, DELETING: DELETING_DISPLAY, DELETED: DELETED_DISPLAY, PUBLIC: PUBLIC_DISPLAY, }) DISPLAY_NAME_MAP_HPC_JOB.update({ JobStatus.DRAFT: DRAFT, JobStatus.PENDING: PENDING, JobStatus.SUBMITTING: SUBMITTING, JobStatus.SUBMITTED: SUBMITTED, JobStatus.QUEUED: QUEUED, JobStatus.RUNNING: IN_PROGRESS, JobStatus.CANCELLING: CANCELLING, JobStatus.CANCELLED: CANCELLED, JobStatus.ERROR: ERROR, JobStatus.WALL_TIME_EXCEEDED: WALL_TIME_EXCEEDED, JobStatus.OUT_OF_MEMORY: OUT_OF_MEMORY, JobStatus.DELETING: DELETING, JobStatus.DELETED: DELETED, JobStatus.COMPLETED: COMPLETED, })
27.541176
71
0.76463
0
0
0
0
0
0
0
0
542
0.231525
55d01698d8da5e9ff89aaf1c3a856cf2b9f42f2c
5,227
py
Python
heap/heap.py
xyycha/data-struct
0a0d46bf6666681be2e4d5a2664b333dd9fb3a95
[ "Apache-2.0" ]
4
2020-03-10T07:45:44.000Z
2020-03-12T02:00:32.000Z
heap/heap.py
xyycha/data-struct
0a0d46bf6666681be2e4d5a2664b333dd9fb3a95
[ "Apache-2.0" ]
1
2020-03-14T01:32:19.000Z
2020-03-14T03:06:34.000Z
heap/heap.py
xyycha/data-struct
0a0d46bf6666681be2e4d5a2664b333dd9fb3a95
[ "Apache-2.0" ]
null
null
null
# -*- encoding: utf-8 -*- import random from graphviz import Digraph class HeapNode(object): def __init__(self, value, info): self.value = value self.info = info class Heap(object): def __init__(self, cap): self.cap = cap self.size = 0 self.heap = [None] def show(self, file_name=None): d = Digraph(filename=file_name, directory="./pdf_data") d.clear() node_name = [] for node in self.heap: if node is None: node_name.append(None) continue name = str(id(node)) d.node(name=name, label=str(node.value)) node_name.append(name) max_father_index = self.size // 2 for father_index in range(1, max_father_index + 1): left_son_index = father_index * 2 right_son_index = father_index * 2 + 1 if left_son_index <= self.size: d.edge(head_name=node_name[left_son_index], tail_name=node_name[father_index]) if right_son_index <= self.size: d.edge(head_name=node_name[right_son_index], tail_name=node_name[father_index]) d.view() def insert(self, node: HeapNode): self.heap.append(None) self.size += 1 index = self.size while index > 1: father_index = index // 2 if self.heap[father_index].value > node.value: self.heap[index] = self.heap[father_index] index = father_index else: break self.heap[index] = node return 1 def pop(self): assert self.size > 0, "空堆" first_node = self.heap[1] last_node = self.heap.pop() self.size -= 1 if first_node == last_node: return first_node index = 1 while index <= self.size // 2: left_son = self.heap[index * 2] father_index = index right_son_index = index * 2 + 1 self.heap[index] = left_son if left_son.value < last_node.value: index *= 2 if right_son_index <= self.size and self.heap[right_son_index].value < last_node.value and self.heap[right_son_index].value < self.heap[father_index].value: self.heap[father_index] = self.heap[right_son_index] index = right_son_index if index == father_index: break self.heap[index] = last_node return first_node def find_node_index(self, key): for index in range(1, self.size + 1): node_key = self.heap[index].info if node_key == key: break return index def decrease_value(self, key, value): index = self.find_node_index(key=key) self.heap[index].value -= value father_index = index // 2 while father_index >= 1 and self.heap[father_index].value > self.heap[index].value: self.swap_two_node(index1=father_index, index2=index) index = father_index father_index //= 2 def get_value(self, key): index = self.find_node_index(key=key) return self.heap[index].value def swap_two_node(self, index1, index2): self.heap[index1], self.heap[index2] = self.heap[index2], self.heap[index1] def keep_father_lt_son(self, father_index): """ 下滤 操作 :param father_index: 父节点下标 :return: None """ if father_index > self.size // 2: return left_index = father_index * 2 right_index = father_index * 2 + 1 index = father_index if self.heap[left_index].value < self.heap[father_index].value: index = left_index if right_index <= self.size and self.heap[right_index].value < self.heap[father_index].value and self.heap[right_index].value < self.heap[left_index].value: index = right_index if index == father_index: return self.swap_two_node(index1=index, index2=father_index) self.keep_father_lt_son(father_index=index) def build_heap(self, n: list): assert len(n) <= self.cap, "堆超限" self.heap.extend(n) self.size = len(n) father_index = self.size // 2 for index in range(father_index, 0, -1): self.keep_father_lt_son(father_index=index) def test1(): h = Heap(cap=20) for i in range(20): value = random.randint(0, 100) info = {"value": value, "key": str(value)} node = HeapNode(value=value, info=info) h.insert(node=node) h.show(file_name="初始堆") h.pop() h.show(file_name="第一次pop") h.pop() h.show(file_name="第二次pop") h.pop() h.show(file_name="第三次pop") def test2(): node_list = [] pre_res = [] for i in range(20): value = random.randint(0, 100) pre_res.append(value) info = {"value": value, "key": str(value)} node = HeapNode(value=value, info=info) node_list.append(node) print(pre_res) h = Heap(cap=20) h.build_heap(node_list) h.show(file_name="建立堆") print("end") if __name__ == "__main__": test2()
32.067485
168
0.575091
4,368
0.82649
0
0
0
0
0
0
263
0.049763
55d1d3ad368bdd500bd5c9d98aeb00a9d5dd603d
1,899
py
Python
python/federatedml/param/encrypted_mode_calculation_param.py
QuantumA/FATE
89a3dd593252128c1bf86fb1014b25a629bdb31a
[ "Apache-2.0" ]
1
2022-02-07T06:23:15.000Z
2022-02-07T06:23:15.000Z
python/federatedml/param/encrypted_mode_calculation_param.py
JavaGreenHands/FATE
ea1e94b6be50c70c354d1861093187e523af32f2
[ "Apache-2.0" ]
11
2020-10-09T09:53:50.000Z
2021-12-06T16:14:51.000Z
python/federatedml/param/encrypted_mode_calculation_param.py
JavaGreenHands/FATE
ea1e94b6be50c70c354d1861093187e523af32f2
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python # -*- coding: utf-8 -*- # # Copyright 2019 The FATE Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from federatedml.param.base_param import BaseParam class EncryptedModeCalculatorParam(BaseParam): """ Define the encrypted_mode_calulator parameters. Parameters ---------- mode: {'strict', 'fast', 'balance', 'confusion_opt'} encrypted mode, default: strict re_encrypted_rate: float or int numeric number in [0, 1], use when mode equals to 'balance', default: 1 """ def __init__(self, mode="strict", re_encrypted_rate=1): self.mode = mode self.re_encrypted_rate = re_encrypted_rate def check(self): descr = "encrypted_mode_calculator param" self.mode = self.check_and_change_lower(self.mode, ["strict", "fast", "balance", "confusion_opt", "confusion_opt_balance"], descr) if self.mode in ["balance", "confusion_opt_balance"]: if type(self.re_encrypted_rate).__name__ not in ["int", "long", "float"]: raise ValueError("re_encrypted_rate should be a numeric number") if not 0.0 <= self.re_encrypted_rate <= 1: raise ValueError("re_encrypted_rate should in [0, 1]") return True
35.830189
120
0.646656
1,182
0.622433
0
0
0
0
0
0
1,188
0.625592
55d2968cb14aa637fc9c4bccc7dba59fba67c074
5,832
py
Python
optimization/solution.py
silx-kit/silx-training
1e24d4fe383263e3466c029073190ed8bb70bb1f
[ "CC-BY-4.0" ]
7
2017-05-02T10:03:12.000Z
2021-06-28T14:11:32.000Z
optimization/solution.py
silx-kit/silx-training
1e24d4fe383263e3466c029073190ed8bb70bb1f
[ "CC-BY-4.0" ]
23
2016-11-21T17:55:11.000Z
2021-11-24T13:43:13.000Z
optimization/solution.py
silx-kit/silx-training
1e24d4fe383263e3466c029073190ed8bb70bb1f
[ "CC-BY-4.0" ]
13
2016-11-17T10:47:22.000Z
2022-02-07T09:38:47.000Z
"""Solution of the exercises of Optimization of compute bound Python code""" import math import cmath import numpy as np import numexpr as ne import numba as nb # Needed here since it is used as global variables # Maximum strain at surface e0 = 0.01 # Width of the strain profile below the surface w = 5.0 # Python: Circular crystal ### def circ_python_1(N, h, k): x = (np.arange(N) - N / 2).reshape(-1, 1) y = (np.arange(N) - N / 2).reshape(1, -1) omega = x * x + y * y <= (N / 2) ** 2 result = np.zeros((h.size, k.size)) for i_h, v_h in enumerate(h): # loop over the reciprocal space coordinates for i_k, v_k in enumerate(k): # One should discard bad values tmp = 0.0 for n in range(N): # loop and sum over unit-cells for m in range(N): if omega[n, m]: tmp += cmath.exp(2j * np.pi * (v_h * n + v_k * m)) result[i_h][i_k] = abs(tmp) ** 2 return result # Alternative using Python `sum` def circ_python_1_alt(N, h, k): # Filter-out position outside crystal once for all inside_pos = [ (n, m) for n in range(N) for m in range(N) if ((n - N / 2) ** 2 + (m - N / 2) ** 2) <= (N / 2) ** 2 ] result = np.zeros((h.size, k.size)) for i_h, v_h in enumerate(h): # loop over the reciprocal space coordinates for i_k, v_k in enumerate(k): result[i_h][i_k] = ( abs( sum( # Sum over positions inside the crystal cmath.exp(2j * np.pi * (v_h * n + v_k * m)) for n, m in inside_pos ) ) ** 2 ) return result # Python: Circular strained crystal ### def circ_python(N, h, k): N_2 = N / 2 positions = {} for i in range(N): x = i - N_2 for j in range(N): y = j - N_2 r = (x * x + y * y) ** 0.5 if r <= N_2: strain = e0 * (1 + math.tanh((r - N_2) / w)) positions[(i, j)] = (i + strain * x, j + strain * y) result = np.zeros((h.size, k.size)) for i_h, v_h in enumerate(h): # loop over the reciprocal space coordinates for i_k, v_k in enumerate(k): # One should discard bad values tmp = 0.0 for i_n in range(N): # loop and sum over unit-cells for i_m in range(N): pos = positions.get((i_n, i_m)) if pos: n_s, m_s = pos tmp += cmath.exp(2j * np.pi * (v_h * n_s + v_k * m_s)) result[i_h, i_k] = abs(tmp) ** 2 return result # Alternative computing list of strained position def circ_python_alt(N, h, k): # Compute strained position inside the crystal once for all strained_pos = [] crystal_radius = N / 2 for n in range(N): for m in range(N): # Center is at (N/2, N/2) x = n - crystal_radius y = m - crystal_radius radius = (x ** 2 + y ** 2) ** 0.5 if radius <= crystal_radius: delta = e0 * (1 + math.tanh((radius - crystal_radius) / w)) strained_pos.append((n + delta * x, m + delta * y)) result = np.zeros((h.size, k.size)) for i_h, v_h in enumerate(h): # loop over the reciprocal space coordinates for i_k, v_k in enumerate(k): result[i_h][i_k] = ( abs( sum( cmath.exp(2j * np.pi * (v_h * n_s + v_k * m_s)) for n_s, m_s in strained_pos ) ) ** 2 ) return result # numpy ### def circ_numpy(N, h, k): N_2 = N / 2 h = h.reshape(-1, 1, 1, 1) k = k.reshape(1, -1, 1, 1) n = np.arange(N).reshape(1, 1, -1, 1) m = np.arange(N).reshape(1, 1, 1, -1) radius = np.sqrt((n - N_2) ** 2 + (m - N_2) ** 2) strain = e0 * (1.0 + np.tanh((radius - N_2) / w)) p_n = n + strain * (n - N_2) p_m = m + strain * (m - N_2) omega = radius <= N_2 tmp = omega * np.exp(2j * np.pi * (h * p_n + k * p_m)) return np.abs(tmp.sum(axis=(2, 3))) ** 2 # numexpr ### def circ_numexpr(N, h, k): N_2 = N / 2 h = h.reshape(-1, 1, 1, 1) k = k.reshape(1, -1, 1, 1) n = np.arange(N).reshape(1, 1, -1, 1) m = np.arange(N).reshape(1, 1, 1, -1) radius = ne.evaluate("sqrt((n - N_2)**2 + (m - N_2)**2)") strain = ne.evaluate("e0 * (1 + tanh((radius-N_2) / w))") j2pi = np.pi * 2j tmp = ne.evaluate( "where(radius > N_2, 0, exp(j2pi*(h*(n+strain*(n-N_2)) + k*(m+strain*(m-N_2)))))" ) result = abs(tmp.sum(axis=(2, 3))) ** 2 return result # numba ### @nb.jit(parallel=True) def circ_numba(N, h, k): result = np.zeros((h.size, k.size), dtype=np.float64) N_2 = N / 2 for h_i in nb.prange(h.size): # loop over the reciprocal space coordinates for k_i in range(k.size): tmp = 0j for n in range(N): # loop and sum over unit-cells for m in range(N): radius = math.sqrt((n - N_2) ** 2 + (m - N_2) ** 2) if radius > (N_2): value = 0j # continue # Numba isn't working using the same continue pattern as below else: strain = e0 * (1 + math.tanh((radius - N_2) / w)) p_n = n + strain * (n - N_2) p_m = m + strain * (m - N_2) value = np.exp(2j * cmath.pi * (h[h_i] * p_n + k[k_i] * p_m)) tmp += value result[h_i, k_i] = abs(tmp) ** 2 return result
32.4
98
0.477195
0
0
0
0
987
0.169239
0
0
1,156
0.198217
55d367bc88c080acffb11c453ca1f70ffffc2a4c
9,300
py
Python
examples/SSTDemoWeightedClauses_Interpret.py
jivitesh-sharma/Drop-Clause-Interpretable-TM
4fb4d4be0f24a0c30f13fbcca974390889d7fe84
[ "MIT" ]
null
null
null
examples/SSTDemoWeightedClauses_Interpret.py
jivitesh-sharma/Drop-Clause-Interpretable-TM
4fb4d4be0f24a0c30f13fbcca974390889d7fe84
[ "MIT" ]
null
null
null
examples/SSTDemoWeightedClauses_Interpret.py
jivitesh-sharma/Drop-Clause-Interpretable-TM
4fb4d4be0f24a0c30f13fbcca974390889d7fe84
[ "MIT" ]
null
null
null
import re import string import nltk from nltk.tokenize import word_tokenize from string import punctuation from nltk.corpus import stopwords nltk.download('punkt') nltk.download('stopwords') import pandas as pd from nltk.stem import PorterStemmer from nltk import FreqDist from nltk.tokenize import RegexpTokenizer import numpy as np from sklearn.model_selection import train_test_split from sklearn import metrics from PyTsetlinMachineCUDA.tm import MultiClassTsetlinMachine nltk.download('wordnet') from time import time stop_words = set(stopwords.words('english')) tokenizerR = RegexpTokenizer(r'\w+') from numpy import save from nltk.stem import WordNetLemmatizer stop_words = set(stopwords.words('english')) alpha = ['a','b','c','d','e','f','g','h','i','j','k','l','m','n','o','p','q','r','s','t','u','v','w','x','y','z'] from argparse import ArgumentParser import matplotlib import matplotlib.pyplot as plt from matplotlib.colors import ListedColormap parser = ArgumentParser() parser.add_argument('-interpret', type=bool, default=False) parser.add_argument('-n_clauses_per_class', type=int, default=5000) parser.add_argument('-s', type=float, default=5.0) parser.add_argument('-T', type=int, default=80) parser.add_argument('-drop_clause', type=float, default=0.0) parser.add_argument('-state_bits', type=int, default=8) parser.add_argument('-features', type=int, default=7500) parser.add_argument('-gpus', type=int, default=1) parser.add_argument('-stop_train', type=int, default=250) config = parser.parse_args() col_list = ["text", "label"] df = pd.read_csv('sst2.csv') label = df.iloc[:,0:1].values textOrig = df.iloc[:,1:2].values y = np.reshape(label, len(label)) print(textOrig.shape) def prepreocess(data): input_data=[] vocab = [] for i in data: for j in i: j = j.lower() j = j.replace("\n", "") j = j.replace('n\'t', 'not') j = j.replace('\'ve', 'have') j = j.replace('\'ll', 'will') j = j.replace('\'re', 'are') j = j.replace('\'m', 'am') j = j.replace('/', ' / ') j = j.replace('-', ' ') j = j.replace('!', ' ') j = j.replace('?', ' ') j = j.replace('+', ' ') j = j.replace('*', ' ') while " " in j: j = j.replace(' ', ' ') while ",," in j: j = j.replace(',,', ',') j = j.strip() j = j.strip('.') j = j.strip() temp1 = tokenizerR.tokenize(j) temp2 = [x for x in temp1 if not x.isdigit()] temp3 = [w for w in temp2 if not w in alpha] #temp4 = [w for w in temp3 if not w in stop_words] input_data.append(temp3) return input_data input_text = prepreocess(textOrig) inputtext = [] for i in input_text: ps = PorterStemmer() temp4 = [] for m in i: temp_temp =ps.stem(m) temp4.append(temp_temp) inputtext.append(temp4) newVocab =[] for i in inputtext: for j in i: newVocab.append(j) print(len(newVocab)) fdist1 = FreqDist(newVocab) tokens1 = fdist1.most_common(config.features) full_token_fil = [] for i in tokens1: full_token_fil.append(i[0]) sum1 = 0 for j in tokens1: sum1 += j[1] print('sum1', sum1) vocab_unique = full_token_fil vocab = np.asarray(full_token_fil) np.savetxt('sst_vocab.csv', vocab, delimiter=',', fmt='%s') def binarization_text(data4): feature_set = np.zeros([len(data4), config.features], dtype=np.uint8) tnum=0 for t in data4: for w in t: if (w in vocab_unique): idx = vocab_unique.index(w) feature_set[tnum][idx] = 1 tnum += 1 return feature_set X_text = binarization_text(inputtext) print("Text length:", X_text.shape) tt = 6920 X_train = X_text[0:tt,:] print("X_train length:", X_train.shape) X_test = X_text[tt:,:] print("X_test length:", X_test.shape) ytrain = y[0:tt] ytest = y[tt:] print(ytest.shape) X_dev = X_text[tt:,:] Y_dev = y[tt:] tm1 = MultiClassTsetlinMachine(config.n_clauses_per_class*2, config.T*16, config.s, clause_drop_p=config.drop_clause, number_of_gpus=config.gpus, number_of_state_bits=config.state_bits) f = open("sst_weighted_%.1f_%d_%d_%.2f_%d_aug.txt" % (s, clauses, T, drop_clause, number_of_state_bits), "w+") r_25 = 0 r_50 = 0 max = 0.0 for i in range(config.stop_train): start_training = time() tm1.fit(X_train, ytrain, epochs=1, incremental=True) stop_training = time() start_testing = time() result2 = 100*(tm1.predict(X_train) == ytrain).mean() result1 = 100*(tm1.predict(X_test) == ytest).mean() #result1 = 0 stop_testing = time() if result1 > max: max = result1 if i >= 350: r_50+=result1 if i >= 375: r_25+=result1 print("#%d AccuracyTrain: %.2f%% AccuracyTest: %.2f%% Training: %.2fs Testing: %.2fs" % (i+1, result2, result1, stop_training-start_training, stop_testing-start_testing), file=f) print("Average Accuracy last 25 epochs: %.2f \n" %(r_25/25), file=f) print("Average Accuracy last 50 epochs: %.2f \n" %(r_50/50), file=f) print("Max Accuracy: %.2f \n" %(max), file=f) if config.interpret: print('predicted Class: ', tm1.predict(X_train[4245:4246,:])) triggClause = tm1.transform(X_train[4245:4246,:]) clauseIndex = [] for i in range(len(triggClause[0])): if triggClause[0][i] ==1: clauseIndex.append(i) import nltk from nltk.probability import FreqDist originalFeatures = [] negatedFeatures = [] number_of_features = 1000 for j in range(0, 1500, 2): #print("Clause #%d (%d): " % (j, tm1.get_weight(1, j)), end=' ') l = [] for k in range(number_of_features*2): if tm1.ta_action(0, j, k) == 1: if k < number_of_features: l.append(" x%d" % (k)) originalFeatures.append(k) else: l.append("¬x%d" % (k-number_of_features)) negatedFeatures.append(k-number_of_features) #print(" ∧ ".join(l)) fdist1 = FreqDist(negatedFeatures) negatedWords = fdist1.most_common(200) fdist2 = FreqDist(originalFeatures) originalWords = fdist2.most_common(20) print('full original word') fulloriginalword=[] for i in originalWords: fulloriginalword.append(i[0]) fullnegatedword =[] print('full negated word') for i in negatedWords: fullnegatedword.append(i[0]) originalFeatures2 = [] negatedFeatures2= [] for j in clauseIndex: if j < 1500 and j%2==0: #print("Clause #%d (%d): " % (j, tm1.get_weight(1, j)), end=' ') l = [] for k in range(number_of_features*2): if tm1.ta_action(0, j, k) == 1: if k < number_of_features: l.append(" x%d" % (k)) originalFeatures2.append(k) else: l.append("¬x%d" % (k-number_of_features)) negatedFeatures2.append(k-number_of_features) fdist3 = FreqDist(negatedFeatures2) negatedWords2 = fdist3.most_common(100) fdist4 = FreqDist(originalFeatures2) originalWords2 = fdist4.most_common(10) neededoriginalword =[] print('needed original word') for i in originalWords2: neededoriginalword.append(i[0]) needednegatedword =[] print('needed negated word') for i in negatedWords2: needednegatedword.append(i[0]) #Save fulloriginalword, fullnegatedword, neededoriginalword, or needednegatedword (Preferred needednegatedword for interpretability) interpretList = np.asarray(needednegatedword) np.savetxt('interpretFile.csv', interpretList, fmt='%s') df = pd.read_csv('interpretFile.csv', dtype=str, header=None) df1 = df.iloc[:,:] full1 = df.iloc[:,:].values #full1= np.reshape(full1,(10,20)) index = np.arange(100) letter2num = {} for i in range(len(index)): letter2num[full1[i][0]] =i print(letter2num) df2 = pd.DataFrame(np.array( [letter2num[i] for i in df1.values.flat] ).reshape(df1.shape)) print(df2) colors = ["white"] # use hex colors here, if desired. cmap = ListedColormap(colors) full2 = df.iloc[:,:].values full2= np.reshape(full2,(10,10)) full3 = df2.iloc[:,:].values full3= np.reshape(full3,(10,10)) fig, ax = plt.subplots() ax.imshow(full3,cmap='YlOrBr_r') for i in range(len(full2)): for j in range(10): ax.text(j,i, full2[i,j], ha="center", va="center") plt.axis('off') ax.set_aspect(0.3) plt.grid(True) plt.show()
30.097087
186
0.576882
0
0
0
0
0
0
0
0
1,311
0.140907
55d3a610da3467d16c45533e5d12b2a9f0ad38ba
1,457
py
Python
adbc/zql/builders/core.py
aleontiev/apg
c6a10a9b0a576913c63ed4f093e2a0fa7469af87
[ "MIT" ]
2
2020-07-17T16:33:42.000Z
2020-07-21T04:48:38.000Z
adbc/zql/builders/core.py
aleontiev/apg
c6a10a9b0a576913c63ed4f093e2a0fa7469af87
[ "MIT" ]
null
null
null
adbc/zql/builders/core.py
aleontiev/apg
c6a10a9b0a576913c63ed4f093e2a0fa7469af87
[ "MIT" ]
null
null
null
from adbc.zql.validator import Validator class Builder(Validator): INDENT = 4 IDENTIFIER_SPLIT_CHARACTER = '.' WHITESPACE_CHARACTER = ' ' WILDCARD_CHARACTER = '*' QUOTE_CHARACTERS = {'"', "'", '`'} RAW_QUOTE_CHARACTER = '`' COMMANDS = { 'select', 'insert', 'update', 'delete', 'truncate', 'create', 'alter', 'drop', 'show', 'explain', 'set' } OPERATOR_REWRITES = {} OPERATORS = { 'not': 1, '!!': 1, 'is': 2, 'is null': { 'arguments': 1, 'binds': 'right' }, 'is not null': { 'arguments': 1, 'binds': 'right' }, '!': { 'arguments': 1, 'binds': 'right' }, '@': 1, '|/': 1, '=': 2, '+': 2, '*': 2, '-': 2, '/': 2, '%': 2, '^': 2, '#': 2, '~': 1, '>>': 2, '&': 2, '<<': 2, '|': 2, '||': 2, '<': 2, '<=': 2, '-': 2, '!=': 2, '<>': 2, 'like': 2, 'ilike': 2, '~~': 2, '!~~': 2, '>': 2, '>=': 2, 'and': 2, 'or': 2, } # TODO: handle non-functional clause expressions # like CASE, BETWEEN, etc CLAUSES = { 'case', 'between' }
18.922078
52
0.315031
1,413
0.969801
0
0
0
0
0
0
413
0.283459
55d3b92efdbe3c9a4d84e47ec3fda8ecb4588bca
426
py
Python
setup.py
InTheMorning/python-bme280
47af2784c937bed429d8986b5205b495e03d74f2
[ "MIT" ]
null
null
null
setup.py
InTheMorning/python-bme280
47af2784c937bed429d8986b5205b495e03d74f2
[ "MIT" ]
null
null
null
setup.py
InTheMorning/python-bme280
47af2784c937bed429d8986b5205b495e03d74f2
[ "MIT" ]
null
null
null
from setuptools import setup setup(name='bme280', version='1.0.0', packages=['bme280'], install_requires=['smbus2'], python_requires='>=2.7', url='https://dev.mycrobase.de/gitea/cn/python-bme280', author='Christian Nicolai', description='A python library for accessing the BME280 combined humidity and pressure sensor from Bosch.', long_description=open('README.md').read())
30.428571
112
0.671362
0
0
0
0
0
0
0
0
210
0.492958
55d3d277d3db0f3730f055eade9ab037ac954a49
1,190
py
Python
List/learnlist.py
shahasifbashir/LearnPython
4ce6b81d66ea7bbf0a40427871daa4e563b6a184
[ "MIT" ]
null
null
null
List/learnlist.py
shahasifbashir/LearnPython
4ce6b81d66ea7bbf0a40427871daa4e563b6a184
[ "MIT" ]
null
null
null
List/learnlist.py
shahasifbashir/LearnPython
4ce6b81d66ea7bbf0a40427871daa4e563b6a184
[ "MIT" ]
null
null
null
# A simple list myList = [10,20,4,5,6,2,9,10,2,3,34,14] #print the whole list print("The List is {}".format(myList)) # printing elemts of the list one by one print("printing elemts of the list one by one") for elements in myList: print(elements) print("") #printing elements that are greater than 10 only print("printing elements that are greater than 10 only") for elements in myList: if(elements>10): print(elements) #printing elements that are greater that 10 but by using a list and appending the elements on it newList = [] for elements in myList: if(elements <10): newList.append(elements) print("") print("Print the new List \n{}".format(newList)) #print the above list part using a single line print(" The list is {}".format([item for item in myList if item < 10])) # here [item { This is the out put} for item { the is the for part} in myList {This Is the input list} if item <10 {This is the condition}] #Ask the user for an input and print the elemets of list less than that number print("Input a number : ") num = int(input()) print(" The elemnts of the list less that {} are {}".format(num,[item for item in myList if item < num]))
25.869565
139
0.696639
0
0
0
0
0
0
0
0
699
0.587395
55d68de8c22f2deefdb481f4a73d47295a2e3b27
870
py
Python
pmapi/app.py
jbushman/primemirror-api
4844d57b5581a2d537996c77eec65956ef5f1dc9
[ "Apache-2.0" ]
null
null
null
pmapi/app.py
jbushman/primemirror-api
4844d57b5581a2d537996c77eec65956ef5f1dc9
[ "Apache-2.0" ]
null
null
null
pmapi/app.py
jbushman/primemirror-api
4844d57b5581a2d537996c77eec65956ef5f1dc9
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/python3 from pmapi.config import Config, get_logger import os import logging import requests import connexion from flask import Flask, request logger = get_logger() # if not Config.TOKEN: # data = { # "hostname": Config.HOSTNAME, # "ip": Config.IP, # "state": Config.STATE, # "url": Config.URL, # "service_type": Config.SERVICE_TYPE, # "roles": "'service', 'primemirror'", # } # logging.info("Registering Service: ".format(data)) # r = requests.post("{}/register/service".format(Config.DEPLOYMENT_API_URI), json=data, verify=False) # resp = r.json() # if "TOKEN" in resp: # update_env("TOKEN", resp["TOKEN"]) flask_app = connexion.FlaskApp(__name__) flask_app.add_api("openapi.yaml", validate_responses=True, strict_validation=True) app = flask_app.app app.config.from_object(Config)
24.857143
104
0.670115
0
0
0
0
0
0
0
0
529
0.608046
55d7d78c6937d21c0eddc062cc73761c958ba202
1,175
py
Python
python/setup.py
chrisdembia/StateMint
53fdaabc7ba83fb477523ae9b79ccc964e791080
[ "BSD-3-Clause" ]
null
null
null
python/setup.py
chrisdembia/StateMint
53fdaabc7ba83fb477523ae9b79ccc964e791080
[ "BSD-3-Clause" ]
null
null
null
python/setup.py
chrisdembia/StateMint
53fdaabc7ba83fb477523ae9b79ccc964e791080
[ "BSD-3-Clause" ]
null
null
null
import setuptools with open('README.md') as f: long_description=f.read() setuptools.setup( name="StateMint", version="1.0.0", author="Cameron Devine", author_email="camdev@uw.edu", description="A library for finding State Space models of dynamical systems.", long_description=long_description, long_description_content_type='text/markdown', url="https://github.com/CameronDevine/StateMint", packages=setuptools.find_packages(), python_requires=">=2.7", install_requires=("sympy>=0.7.3",), classifiers=( "Development Status :: 4 - Beta", "Framework :: Jupyter", "Intended Audience :: Education", "Intended Audience :: Science/Research", "License :: OSI Approved :: BSD License", "Programming Language :: Python :: 2", "Programming Language :: Python :: 2.7", "Programming Language :: Python :: 3", "Programming Language :: Python :: 3.0", "Programming Language :: Python :: 3.1", "Programming Language :: Python :: 3.2", "Programming Language :: Python :: 3.3", "Programming Language :: Python :: 3.4", "Programming Language :: Python :: 3.5", "Programming Language :: Python :: 3.6", "Operating System :: OS Independent", ), )
31.756757
78
0.691064
0
0
0
0
0
0
0
0
791
0.673191
55d8e1c6fdbebec334001ecd1716470ce185570d
1,001
py
Python
cha_bebe/presente/migrations/0001_initial.py
intelektos/Cha_bebe
23df4af3901413c9c50e73bd305ade165c81001b
[ "MIT" ]
null
null
null
cha_bebe/presente/migrations/0001_initial.py
intelektos/Cha_bebe
23df4af3901413c9c50e73bd305ade165c81001b
[ "MIT" ]
9
2020-06-08T03:31:08.000Z
2022-01-13T02:44:42.000Z
cha_bebe/presente/migrations/0001_initial.py
intelektos/Cha_bebe
23df4af3901413c9c50e73bd305ade165c81001b
[ "MIT" ]
1
2020-06-01T17:43:20.000Z
2020-06-01T17:43:20.000Z
# Generated by Django 3.0.6 on 2020-05-14 18:13 from django.db import migrations, models class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='Presente', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('titulo', models.CharField(max_length=100)), ('slug', models.SlugField(blank=True, max_length=100, unique=True)), ('descricao', models.TextField(blank=True, null=True)), ('valor', models.FloatField(blank=True, null=True)), ('imagem', models.ImageField(blank=True, null=True, upload_to='presentes/imagens')), ('thumbnail', models.ImageField(blank=True, null=True, upload_to='presentes/thumbnail')), ], options={ 'ordering': ('titulo',), }, ), ]
33.366667
114
0.566434
908
0.907093
0
0
0
0
0
0
174
0.173826
55da18f8f5bba77168080eaa5260eeadfe4bb7f4
2,376
py
Python
src/rekognition_online_action_detection/models/feature_head.py
amazon-research/long-short-term-transformer
a425be4b52ab68fddd85c91d26571e4cdfe8379a
[ "Apache-2.0" ]
52
2021-11-19T01:35:10.000Z
2022-03-24T11:48:10.000Z
src/rekognition_online_action_detection/models/feature_head.py
amazon-research/long-short-term-transformer
a425be4b52ab68fddd85c91d26571e4cdfe8379a
[ "Apache-2.0" ]
9
2021-11-24T18:50:13.000Z
2022-03-10T05:13:53.000Z
src/rekognition_online_action_detection/models/feature_head.py
amazon-research/long-short-term-transformer
a425be4b52ab68fddd85c91d26571e4cdfe8379a
[ "Apache-2.0" ]
8
2022-01-15T08:01:33.000Z
2022-03-20T22:08:29.000Z
# Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved. # SPDX-License-Identifier: Apache-2.0 __all__ = ['build_feature_head'] import torch import torch.nn as nn from rekognition_online_action_detection.utils.registry import Registry FEATURE_HEADS = Registry() FEATURE_SIZES = { 'rgb_anet_resnet50': 2048, 'flow_anet_resnet50': 2048, 'rgb_kinetics_bninception': 1024, 'flow_kinetics_bninception': 1024, 'rgb_kinetics_resnet50': 2048, 'flow_kinetics_resnet50': 2048, } @FEATURE_HEADS.register('THUMOS') @FEATURE_HEADS.register('TVSeries') class BaseFeatureHead(nn.Module): def __init__(self, cfg): super(BaseFeatureHead, self).__init__() if cfg.INPUT.MODALITY in ['visual', 'motion', 'twostream']: self.with_visual = 'motion' not in cfg.INPUT.MODALITY self.with_motion = 'visual' not in cfg.INPUT.MODALITY else: raise RuntimeError('Unknown modality of {}'.format(cfg.INPUT.MODALITY)) if self.with_visual and self.with_motion: visual_size = FEATURE_SIZES[cfg.INPUT.VISUAL_FEATURE] motion_size = FEATURE_SIZES[cfg.INPUT.MOTION_FEATURE] fusion_size = visual_size + motion_size elif self.with_visual: fusion_size = FEATURE_SIZES[cfg.INPUT.VISUAL_FEATURE] elif self.with_motion: fusion_size = FEATURE_SIZES[cfg.INPUT.MOTION_FEATURE] self.d_model = fusion_size if cfg.MODEL.FEATURE_HEAD.LINEAR_ENABLED: if cfg.MODEL.FEATURE_HEAD.LINEAR_OUT_FEATURES != -1: self.d_model = cfg.MODEL.FEATURE_HEAD.LINEAR_OUT_FEATURES self.input_linear = nn.Sequential( nn.Linear(fusion_size, self.d_model), nn.ReLU(inplace=True), ) else: self.input_linear = nn.Identity() def forward(self, visual_input, motion_input): if self.with_visual and self.with_motion: fusion_input = torch.cat((visual_input, motion_input), dim=-1) elif self.with_visual: fusion_input = visual_input elif self.with_motion: fusion_input = motion_input fusion_input = self.input_linear(fusion_input) return fusion_input def build_feature_head(cfg): feature_head = FEATURE_HEADS[cfg.DATA.DATA_NAME] return feature_head(cfg)
33.942857
83
0.673822
1,681
0.707492
0
0
1,751
0.736953
0
0
349
0.146886
55dae12ae7fedf07888052fca21d9aabf3ce95df
1,367
py
Python
main.py
klarman-cell-observatory/cirrocumulus-app-engine
52997ae790773364591ab8d7c747e4505700373b
[ "BSD-3-Clause" ]
null
null
null
main.py
klarman-cell-observatory/cirrocumulus-app-engine
52997ae790773364591ab8d7c747e4505700373b
[ "BSD-3-Clause" ]
1
2021-04-13T14:52:39.000Z
2021-04-13T15:53:34.000Z
main.py
klarman-cell-observatory/cirrocumulus-app-engine
52997ae790773364591ab8d7c747e4505700373b
[ "BSD-3-Clause" ]
null
null
null
import os import sys sys.path.append('lib') from flask import Flask, send_from_directory import cirrocumulus from cirrocumulus.cloud_firestore_native import CloudFireStoreNative from cirrocumulus.api import blueprint from cirrocumulus.envir import CIRRO_AUTH_CLIENT_ID, CIRRO_AUTH, CIRRO_DATABASE, CIRRO_DATASET_PROVIDERS from cirrocumulus.google_auth import GoogleAuth from cirrocumulus.no_auth import NoAuth from cirrocumulus.util import add_dataset_providers client_path = os.path.join(cirrocumulus.__path__[0], 'client') # If `entrypoint` is not defined in app.yaml, App Engine will look for an app # called `app` in `main.py`. app = Flask(__name__, static_folder=client_path, static_url_path='') app.register_blueprint(blueprint, url_prefix='/api') @app.route('/') def root(): return send_from_directory(client_path, "index.html") if os.environ.get(CIRRO_AUTH_CLIENT_ID) is not None: app.config[CIRRO_AUTH] = GoogleAuth(os.environ.get(CIRRO_AUTH_CLIENT_ID)) else: app.config[CIRRO_AUTH] = NoAuth() app.config[CIRRO_DATABASE] = CloudFireStoreNative() os.environ[CIRRO_DATASET_PROVIDERS] = ','.join(['cirrocumulus.zarr_dataset.ZarrDataset', 'cirrocumulus.parquet_dataset.ParquetDataset']) add_dataset_providers() if __name__ == '__main__': app.run(host='127.0.0.1', port=5000, debug=True)
33.341463
104
0.766642
0
0
0
0
85
0.06218
0
0
249
0.182151
55db43f69d53783216fd36c9fb7e70e68c557460
823
py
Python
utils/load_externals.py
uvasrg/FeatureSqueezing
8448fbff07bf03ff81a52dbd7e014d5733035f56
[ "MIT" ]
56
2017-05-19T23:30:13.000Z
2021-11-16T09:15:48.000Z
utils/load_externals.py
pengpengqiao/FeatureSqueezing
5ca04dc704dda578df53f5234f4dabbfc3e3ec62
[ "MIT" ]
1
2018-03-12T03:47:45.000Z
2018-03-12T03:47:45.000Z
utils/load_externals.py
pengpengqiao/FeatureSqueezing
5ca04dc704dda578df53f5234f4dabbfc3e3ec62
[ "MIT" ]
19
2017-06-11T08:33:19.000Z
2022-01-03T09:46:44.000Z
import sys, os external_libs = {'Cleverhans v1.0.0': "externals/cleverhans", 'Tensorflow-Model-Resnet': "externals/tensorflow-models", } project_path = os.path.dirname(os.path.dirname(os.path.realpath(__file__))) for lib_name, lib_path in external_libs.iteritems(): lib_path = os.path.join(project_path, lib_path) if os.listdir(lib_path) == []: cmd = "git submodule update --init --recursive" print("Fetching external libraries...") os.system(cmd) if lib_name == 'Tensorflow-Model-Resnet': lib_token_fpath = os.path.join(lib_path, 'resnet', '__init__.py') if not os.path.isfile(lib_token_fpath): open(lib_token_fpath, 'a').close() sys.path.append(lib_path) print("Located %s" % lib_name) # print (sys.path)
32.92
75
0.64277
0
0
0
0
0
0
0
0
247
0.300122
55dc16af3929e96db5e96a0d381158d79e762fbd
2,333
py
Python
research/seq_flow_lite/utils/misc_utils.py
hjkim-haga/TF-OD-API
22ac477ff4dfb93fe7a32c94b5f0b1e74330902b
[ "Apache-2.0" ]
null
null
null
research/seq_flow_lite/utils/misc_utils.py
hjkim-haga/TF-OD-API
22ac477ff4dfb93fe7a32c94b5f0b1e74330902b
[ "Apache-2.0" ]
null
null
null
research/seq_flow_lite/utils/misc_utils.py
hjkim-haga/TF-OD-API
22ac477ff4dfb93fe7a32c94b5f0b1e74330902b
[ "Apache-2.0" ]
null
null
null
# Copyright 2020 The TensorFlow Authors All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== # Lint as: python3 """A module for miscelaneous utils.""" import tensorflow as tf def random_substr(str_tensor, max_words): """Select random substring if the input has more than max_words.""" word_batch_r = tf.strings.split(str_tensor) row_splits = word_batch_r.row_splits words = word_batch_r.values start_idx = row_splits[:-1] end_idx = row_splits[1:] words_per_example = end_idx - start_idx ones = tf.ones_like(end_idx) max_val = tf.maximum(ones, words_per_example - max_words) max_words_batch = tf.reduce_max(words_per_example) rnd = tf.random.uniform( tf.shape(start_idx), minval=0, maxval=max_words_batch, dtype=tf.int64) off_start_idx = tf.math.floormod(rnd, max_val) new_words_per_example = tf.where( tf.equal(max_val, 1), words_per_example, ones * max_words) new_start_idx = start_idx + off_start_idx new_end_idx = new_start_idx + new_words_per_example indices = tf.expand_dims(tf.range(tf.size(words), dtype=tf.int64), axis=0) within_limit = tf.logical_and( tf.greater_equal(indices, tf.expand_dims(new_start_idx, axis=1)), tf.less(indices, tf.expand_dims(new_end_idx, axis=1))) keep_indices = tf.reduce_any(within_limit, axis=0) keep_indices = tf.cast(keep_indices, dtype=tf.int32) _, selected_words = tf.dynamic_partition(words, keep_indices, 2) row_splits = tf.math.cumsum(new_words_per_example) row_splits = tf.concat([[0], row_splits], axis=0) new_tensor = tf.RaggedTensor.from_row_splits( values=selected_words, row_splits=row_splits) return tf.strings.reduce_join(new_tensor, axis=1, separator=" ")
46.66
81
0.714102
0
0
0
0
0
0
0
0
815
0.349336
55dc932db8d55326783afe7c9ef113e659643f67
2,503
py
Python
parc/pra__/incomplete_13910.py
KwanHoo/Data-Structure__Algorithm
b985f8b41a366b9c028da711ea43a643151268e2
[ "MIT" ]
null
null
null
parc/pra__/incomplete_13910.py
KwanHoo/Data-Structure__Algorithm
b985f8b41a366b9c028da711ea43a643151268e2
[ "MIT" ]
null
null
null
parc/pra__/incomplete_13910.py
KwanHoo/Data-Structure__Algorithm
b985f8b41a366b9c028da711ea43a643151268e2
[ "MIT" ]
null
null
null
## 백준 13910번 ## 개업 ## 다이나믹 프로그래밍 ## (짜장면 데이) ''' ##! ex) N = 4, 5그릇 이상 요리 X, 4사이즈 윅에 3그릇 이하 요리 X => 4윅에 4개 ##* ex) N = 5, 윅 사이즈 1,3 / first : 1+3 = 4 그릇, second : 1 => 5 그릇 --> 2번의 요리로 주문 처리 ##* 주문 받은 짜장면의 수, 가지고 있는 윅의 크기 => 주문 처리 # In1 ) N M : (주문 받은 짜장면의 수) N | (가지고 있는 윅의 수) M # In2 ) S : 윅의 크기 S가 M개 만큼 주어짐 (같은 크기의 윅을 여러개 가지고 있을 수 있음) # out ) 혜빈이가 모든 주문을 처리하기 위해 해야 하는 최소 요리수 | 주문 처리 못할시 -1 ''' ''' ex1I) 5주문 2개윅 ex1I) 1과 3사이즈 out ) 2 ex2I) 6주문 2개윅 ex2I) 1과 3사이즈 out ) 2 5 2 2 4 => 4|1 1<2 : -1 13 3 ''' import sys ## 프로토타입 def cooking(N,M,wig): count = 0 temp = N breakpoint = False while temp != 0: for i in range(M-1, -1, -1): if wig[i] < temp or wig[i] == temp: temp -= wig[i] count += 1 else: continue if i == 0: k = wig[0] if temp % k == 0: count = count + (temp//k) else: breakpoint = True count = -1 if breakpoint == True: break return count ## 테스트 1 성공, 2 실패 def cooking2(N, M, wig): temp = N count = 0 while temp != 0: ## 기저 조건 if wig[0] > temp: count = -1 break for i in range(M-1, -1, -1): ## M-1인덱스 부터 0 까지 if wig[i] < temp or wig[i] == temp: temp -= wig[i] count += 1 return count ## 미완성 def cooking4(N, M, wig): temp = N count = 0 while temp != 0: ## 기저 조건 if wig[0] > temp: count = -1 break for j in range(M-1, -1, -1): ## 반복 if temp % wig[j] > 1: ## 7 = 3*2 + 1 ## 8 = 3*2 + 1*2 if temp % wig[j] == 0: ## 6 = 3*2 count += temp // wig[j] temp = 0 break else: ## 반복 고려 X for i in range(M-1, -1, -1): # M-1인덱스 부터 0 까지 if wig[i] < temp or wig[i] == temp: temp -= wig[i] count += 1 return count if __name__ == "__main__": print('hello') N, M = map(int, sys.stdin.readline().split()) wig = list(map(int, sys.stdin.readline().split())) wig.sort()# 정렬 때리기 # print(wig) # print(cooking(N, M, wig)) ## 제대로 안나옴 # print(cooking2(N,M,wig)) ## 테스트 케이스 2 반복 처리 안됨 print(cooking4(N,M,wig)) ## 미완성
20.68595
83
0.411506
0
0
0
0
0
0
0
0
1,273
0.426752
55dce36c7d1bd205aea80744f2bd0ceb8afc6832
1,169
py
Python
manage/db_logger.py
ReanGD/web-home-manage
bbc5377a1f7fde002442fee7720e4ab9e9ad22b3
[ "Apache-2.0" ]
null
null
null
manage/db_logger.py
ReanGD/web-home-manage
bbc5377a1f7fde002442fee7720e4ab9e9ad22b3
[ "Apache-2.0" ]
null
null
null
manage/db_logger.py
ReanGD/web-home-manage
bbc5377a1f7fde002442fee7720e4ab9e9ad22b3
[ "Apache-2.0" ]
null
null
null
import sys import traceback from manage.models import LoadLog class DbLogger(object): def __init__(self, rec_id=None): if rec_id is None: self.rec = LoadLog.objects.create() else: self.rec = LoadLog.objects.get(pk=int(rec_id)) def remove_torrent(self): if self.rec.torent_ptr is not None: for it in LoadLog.objects.filter(torent_ptr=self.rec.torent_ptr): it.torent_ptr = None it.save() def id(self): return self.rec.id def json_result(self): return {'result': self.rec.result, 'text': self.rec.text} def text(self): return self.rec.text def write(self, msg): self.rec.text += ("\n" + msg) self.rec.save() def set_result(self, result): self.rec.result = result self.rec.save() def set_torrent(self, t): self.torent_ptr = t self.rec.save() def exception(self): e_type, e_value, e_traceback = sys.exc_info() s = "\n".join(traceback.format_exception(e_type, e_value, e_traceback)) self.write(s) self.set_result(LoadLog.RES_FAILED)
25.977778
79
0.597092
1,104
0.944397
0
0
0
0
0
0
22
0.01882
55dcf3dd3bd27fb171fb592911ad357dd0bb432c
5,623
py
Python
api/src/result_handler.py
Aragos/tichu-tournament
4cdf727a30af8820ad56fe3097ec9a8e84892068
[ "MIT" ]
7
2016-12-12T02:29:42.000Z
2020-05-12T21:21:21.000Z
api/src/result_handler.py
Aragos/tichu-tournament
4cdf727a30af8820ad56fe3097ec9a8e84892068
[ "MIT" ]
31
2017-01-05T06:07:28.000Z
2018-05-27T13:13:06.000Z
api/src/result_handler.py
Aragos/tichu-tournament
4cdf727a30af8820ad56fe3097ec9a8e84892068
[ "MIT" ]
3
2017-12-21T23:30:12.000Z
2019-01-03T20:51:52.000Z
import webapp2 import json from generic_handler import GenericHandler from python.calculator import Calculate from python.calculator import GetMaxRounds from google.appengine.api import users from handler_utils import BuildMovementAndMaybeSetStatus from handler_utils import CheckUserOwnsTournamentAndMaybeReturnStatus from handler_utils import GetTourneyWithIdAndMaybeReturnStatus from handler_utils import SetErrorStatus from python.jsonio import ReadJSONInput from python.jsonio import OutputJSON from python.xlsxio import WriteResultsToXlsx from python.xlsxio import OutputWorkbookAsBytesIO from models import PlayerPair from models import Tournament def GetPlayerListForTourney(tourney): ''' Returns a list of tuples of names for every pair.''' name_list = range(1, tourney.no_pairs + 1) for player_pair in PlayerPair.query(ancestor=tourney.key).fetch(): if player_pair.players: player_list = player_pair.player_list() if not player_list: continue elif len(player_list) == 1: name_list[player_pair.pair_no - 1] = (player_list[0].get("name"), None) else: name_list[player_pair.pair_no - 1] = (player_list[0].get("name"), player_list[1].get("name")) else: name_list[player_pair.pair_no - 1] = (None, None) return name_list class CompleteScoringHandler(GenericHandler): ''' Handles calls to /api/tournament/:id/handStatus ''' def get(self, id): tourney = GetTourneyWithIdAndMaybeReturnStatus(self.response, id) if not tourney: return if not CheckUserOwnsTournamentAndMaybeReturnStatus(self.response, users.get_current_user(), tourney): return movement = BuildMovementAndMaybeSetStatus( self.response, tourney.no_pairs, tourney.no_boards, tourney.legacy_version_id) if not movement: return name_list= GetPlayerListForTourney(tourney) scored_hands = self._TuplesToDict(tourney.ScoredHands()) unscored_hands = [] round_list = [] for round_no in xrange (1, movement.GetNumRounds() + 1): round_dict = {} round_dict["round"] = round_no round_dict["scored_hands"] = [] round_dict["unscored_hands"] = [] for team_no in xrange(1, tourney.no_pairs + 1): round = movement.GetMovement(team_no)[round_no - 1] hands = round.hands if not hands or not round.is_north: continue for hand in hands: hand_dict = {"hand" : hand, "ns_pair": team_no, "ns_names": list(name_list[team_no - 1]), "ew_pair" : round.opponent, "ew_names": list(name_list[round.opponent - 1]), "table" : round.table } if hand in scored_hands.get(team_no, []): scored_unscored = "scored_hands" else: scored_unscored = "unscored_hands" round_dict[scored_unscored].append(hand_dict) round_dict["scored_hands"].sort(key=lambda x : x["table"]) round_dict["unscored_hands"].sort(key=lambda x : x["table"]) round_dict["scored_hands"].sort(key=lambda x : x["hand"]) round_dict["unscored_hands"].sort(key=lambda x : x["hand"]) round_list.append(round_dict) self.response.headers['Content-Type'] = 'application/json' self.response.set_status(200) self.response.out.write(json.dumps({"rounds" : round_list }, indent=2)) def _TuplesToDict(self, hands): ''' Take tuples representing each hand and dump them into a per-pair dict. Args: hands: list of tuples (hand, ns_pair, ew_pair). Returns: Dictionary from team to list of hand numbers already played. ''' ret = {} for hand in hands: ret.setdefault(hand[1], []).append(hand[0]) ret.setdefault(hand[2], []).append(hand[0]) return ret class ResultHandler(GenericHandler): def get(self, id): tourney = GetTourneyWithIdAndMaybeReturnStatus(self.response, id) if not tourney: return if not CheckUserOwnsTournamentAndMaybeReturnStatus(self.response, users.get_current_user(), tourney): return hand_list = tourney.GetScoredHandList() boards = ReadJSONInput(hand_list) summaries = Calculate(boards, GetMaxRounds(boards)) self.response.headers['Content-Type'] = 'application/json' self.response.set_status(200) self.response.out.write(OutputJSON(hand_list, summaries)) class XlxsResultHandler(GenericHandler): def get(self, id): tourney = GetTourneyWithIdAndMaybeReturnStatus(self.response, id) if not tourney: return if not CheckUserOwnsTournamentAndMaybeReturnStatus(self.response, users.get_current_user(), tourney): return boards = ReadJSONInput(tourney.GetScoredHandList()) max_rounds = GetMaxRounds(boards) summaries = Calculate(boards, max_rounds) mp_summaries = summaries ap_summaries = summaries boards.sort(key=lambda bs : bs._board_no, reverse = False) wb = WriteResultsToXlsx(max_rounds, mp_summaries, ap_summaries, boards, name_list=GetPlayerListForTourney(tourney)) self.response.out.write(OutputWorkbookAsBytesIO(wb).getvalue()) self.response.headers['Content-Type'] = 'application/vnd.openxmlformats-officedocument.spreadsheetml.sheet' self.response.headers['Content-disposition'] = str('attachment; filename=' + tourney.name + 'TournamentResults.xlsx') self.response.headers['Content-Transfer-Encoding'] = 'Binary' self.response.set_status(200)
38.251701
111
0.686111
4,223
0.751023
0
0
0
0
0
0
817
0.145296
55de8a6657e59552d97157f0e3318b5e7abae0d2
323
py
Python
electsysApi/shared/exception.py
yuxiqian/electsys-api
52b42729e797f8bdf6a0827e9d62a50919d56d65
[ "MIT" ]
5
2019-01-21T00:44:33.000Z
2022-01-03T16:45:25.000Z
electsysApi/shared/exception.py
yuxiqian/electsys-api
52b42729e797f8bdf6a0827e9d62a50919d56d65
[ "MIT" ]
1
2021-10-24T00:46:59.000Z
2021-10-24T00:46:59.000Z
electsysApi/shared/exception.py
yuxiqian/electsys-api
52b42729e797f8bdf6a0827e9d62a50919d56d65
[ "MIT" ]
2
2019-01-12T03:18:33.000Z
2021-06-16T11:19:49.000Z
#!/usr/bin/env python # encoding: utf-8 ''' @author: yuxiqian @license: MIT @contact: akaza_akari@sjtu.edu.cn @software: electsys-api @file: electsysApi/shared/exception.py @time: 2019/1/9 ''' class RequestError(BaseException): pass class ParseError(BaseException): pass class ParseWarning(Warning): pass
14.043478
38
0.721362
121
0.374613
0
0
0
0
0
0
190
0.588235
55ded0b36a3a4b147484ae30e7276b05b17dc456
2,375
py
Python
src/CryptoPlus/Cipher/ARC2.py
voytecPL/pycryptoplus
86905bbb8661e00cfb2afdc4461d4a79b6429d8a
[ "MIT" ]
1
2022-02-27T17:46:18.000Z
2022-02-27T17:46:18.000Z
src/CryptoPlus/Cipher/ARC2.py
voytecPL/pycryptoplus
86905bbb8661e00cfb2afdc4461d4a79b6429d8a
[ "MIT" ]
null
null
null
src/CryptoPlus/Cipher/ARC2.py
voytecPL/pycryptoplus
86905bbb8661e00cfb2afdc4461d4a79b6429d8a
[ "MIT" ]
null
null
null
from __future__ import absolute_import from .blockcipher import * import Crypto.Cipher.ARC2 import Crypto from pkg_resources import parse_version def new(key,mode=MODE_ECB,IV=None,counter=None,segment_size=None,effective_keylen=None): """Create a new cipher object ARC2 using pycrypto for algo and pycryptoplus for ciphermode key = raw string containing the keys mode = python_AES.MODE_ECB/CBC/CFB/OFB/CTR/CMAC, default is ECB IV = IV as a raw string, default is "all zero" IV -> only needed for CBC mode counter = counter object (CryptoPlus.Util.util.Counter) -> only needed for CTR mode segment_size = amount of bits to use from the keystream in each chain part -> supported values: multiple of 8 between 8 and the blocksize of the cipher (only per byte access possible), default is 8 -> only needed for CFB mode effective_keylen = how much bits to effectively use from the supplied key -> will only be used when the pycrypto version on your system is >2.0.1 EXAMPLES: ********** IMPORTING: ----------- >>> import codecs >>> from CryptoPlus.Cipher import ARC2 http://www.ietf.org/rfc/rfc2268.txt Doctest will fail when using pycrypto 2.0.1 and older ------------------------------------ >>> key = codecs.decode("0000000000000000", 'hex') >>> plaintext = codecs.decode("0000000000000000", 'hex') >>> ek = 63 >>> cipher = ARC2.new(key,ARC2.MODE_ECB,effective_keylen=ek) >>> codecs.encode(cipher.encrypt(plaintext), 'hex') b'ebb773f993278eff' """ return ARC2(key,mode,IV,counter,effective_keylen,segment_size) class ARC2(BlockCipher): def __init__(self,key,mode,IV,counter,effective_keylen,segment_size): # pycrypto versions newer than 2.0.1 will have support for "effective_keylen" if parse_version(Crypto.__version__) <= parse_version("2.0.1"): cipher_module = Crypto.Cipher.ARC2.new args = {} else: cipher_module = Crypto.Cipher.ARC2.new args = {'effective_keylen':effective_keylen} self.blocksize = 8 BlockCipher.__init__(self,key,mode,IV,counter,cipher_module,segment_size,args) def _test(): import doctest doctest.testmod() if __name__ == "__main__": _test()
38.306452
88
0.656421
565
0.237895
0
0
0
0
0
0
1,517
0.638737
55e1293b8209552c67ecb749af45c55f2d9be6aa
1,121
py
Python
extensions/roles.py
iLuiizUHD/Expertise-Bot-v2
2b5264804d14d74ce1c0511dede434b7225683e0
[ "MIT" ]
2
2020-11-01T02:44:58.000Z
2021-02-21T18:05:39.000Z
extensions/roles.py
iLuiizUHD/Expertise-Bot-v2
2b5264804d14d74ce1c0511dede434b7225683e0
[ "MIT" ]
1
2020-09-13T20:53:26.000Z
2020-09-13T20:53:26.000Z
extensions/roles.py
iLuiizUHD/ExpertiseBot2
2b5264804d14d74ce1c0511dede434b7225683e0
[ "MIT" ]
null
null
null
# Utilities import json from sqlalchemy import create_engine from sqlalchemy.orm import sessionmaker # Imports from discord.ext import commands from discord import Guild, Role # Loading config file... with open("./config.json", "r", encoding="utf-8") as config: configFile = json.load(config) class Roles(commands.Cog, name="Roles management"): def __init__(self, client): self.client = client # MySQL self.connectionStr = configFile["config"]["db"] # MySQL SQLAlchemy Engine Creation self.MySQLEngine = create_engine( self.connectionStr, pool_size=10, pool_recycle=3600, max_overflow=5, echo=True ) # SQL Alchemy session self.sqlSession = sessionmaker(bind=self.MySQLEngine) self.session = self.sqlSession() @commands.command(name="Get channel roles", pass_context=True) async def role(self, ctx, command_='get', role: Role = None): roles = await Guild.fetch_roles(ctx.guild) print(roles) def setup(client): client.add_cog(Roles(client))
26.069767
66
0.64942
765
0.682426
0
0
200
0.178412
133
0.118644
185
0.165031
55e14400b4aed5430ec4803712092997b45a1d19
4,076
py
Python
amun/measure_accuracy.py
Elkoumy/amun
db07129450979cb8dd95b086b8e4187facb85bb8
[ "Apache-2.0" ]
10
2020-12-03T08:30:51.000Z
2021-12-12T11:03:47.000Z
amun/measure_accuracy.py
Elkoumy/amun
db07129450979cb8dd95b086b8e4187facb85bb8
[ "Apache-2.0" ]
1
2021-10-01T09:52:26.000Z
2021-10-07T08:52:46.000Z
amun/measure_accuracy.py
Elkoumy/amun
db07129450979cb8dd95b086b8e4187facb85bb8
[ "Apache-2.0" ]
null
null
null
""" In this module, we implement the accuracy measures to evaluate the effect of differential privacy injection. In this module, we support the following measures: * F1-score. * Earth Mover's distance. """ from scipy.stats import wasserstein_distance from pm4py.algo.discovery.inductive import factory as inductive_miner from pm4py.evaluation.replay_fitness import factory as replay_factory from math import fabs import pandas as pd def earth_mover_dist(dfg1, dfg2): # need to consider for zero frequncies as the counter object don't include it # after the discussion, we decided to let the user know about that issue and maybe has can handle it on his own. v1=list(dfg1.values()) v2=list(dfg2.values()) distance = wasserstein_distance(v1,v2) return distance def percentage_dist(dfg1,dfg2): #returns the maximum percentage difference between the two DFGs distance =0 distance_dist={} for key in dfg1.keys(): if dfg1[key]!=0: #division by zero diff = fabs(dfg1[key]-dfg2[key])/dfg1[key] else: diff = fabs( ((100-dfg1[key]) - (100-dfg2[key])) / (100-dfg1[key]) ) distance_dist[key]=diff if diff>distance: distance=diff return distance, distance_dist def error_calculation(dfg1,dfg2): #return MAPE, SMAPE, and distribution of APE between two DFGs. total =0 smape_acc=0 APE_dist={} MAPE_dist={} SMAPE_dist={} for key in dfg1.keys(): if dfg1[key]!=0: #division by zero diff = fabs(dfg1[key]-dfg2[key])/fabs(dfg1[key]) smape= abs(dfg1[key] - dfg2[key]) / abs(dfg1[key] + dfg2[key]) else: diff = fabs( ((100-dfg1[key]) - (100-dfg2[key])) / fabs(100-dfg1[key]) ) smape= abs((100-dfg1[key] )- (100-dfg2[key])) / abs((100-dfg1[key]) + (100-dfg2[key])) APE_dist[key]=diff smape_acc +=smape SMAPE_dist[key]=smape # smape_acc+=abs(dfg1[key]-dfg2[key])/(dfg1[key]+dfg2[key]) total+=diff MAPE= total/len(dfg1.keys()) SMAPE=smape_acc/len(dfg1.keys()) return MAPE, SMAPE, APE_dist, SMAPE_dist def f1_score(xes_file,dfg1,dfg2): f1_score_1, f1_score_2=0,0 #first we use inductive miner to generate the petric nets of both the DFGs net1, initial_marking1, final_marking1 = inductive_miner.apply(dfg1) net2, initial_marking2, final_marking2 = inductive_miner.apply(dfg2) fitness_1 = replay_factory.apply(xes_file, net1, initial_marking1, final_marking1) fitness_2 = replay_factory.apply(xes_file, net2, initial_marking2, final_marking2) return fitness_1, fitness_2 def estimate_SMAPE_variant_and_time(data, variant_counts): smape_variant=0 # mape=((data['relative_time_original']-data["relative_time_anonymized"])/data['relative_time_original']).abs().mean()*100 #percentage #$ # print("MAPE %s" %(((data['relative_time_original']-data["relative_time_anonymized"])/data['relative_time_original']).abs().mean()*100)) smape_time=((data['relative_time_original']-data["relative_time_anonymized"])/(data['relative_time_original'].abs()+data["relative_time_anonymized"].abs())).abs().mean()*100 variant_freq=pd.Series([ x['count'] for x in variant_counts]) variant_freq_anonymized= data.groupby(['trace_variant','case:concept:name'])['time:timestamp'].count().reset_index().groupby('trace_variant')['case:concept:name'].count() smape_variant=((variant_freq-variant_freq_anonymized).abs()/(variant_freq+variant_freq_anonymized)).mean()*100 oversampling_per_variant=variant_freq_anonymized/variant_freq avg_dilation_per_variant=oversampling_per_variant.mean() oversampling_ratio=data['case:concept:name'].unique().size/variant_freq.sum() oversampling_df=pd.DataFrame() oversampling_df['variant_freq_anonymized'] = variant_freq_anonymized oversampling_df['variant_freq'] = variant_freq oversampling_df['dilation_per_variant'] = oversampling_per_variant return data, smape_time, smape_variant, oversampling_ratio,oversampling_df
41.591837
177
0.707802
0
0
0
0
0
0
0
0
1,239
0.303974
55e1eb5bf2eb00d7ba492fd1c7a964baab5327be
10,845
py
Python
mkt/translations/models.py
ngokevin/zamboni
a33dcd489175d8e7ba1c02ee4dabb6cfdc405e69
[ "BSD-3-Clause" ]
null
null
null
mkt/translations/models.py
ngokevin/zamboni
a33dcd489175d8e7ba1c02ee4dabb6cfdc405e69
[ "BSD-3-Clause" ]
null
null
null
mkt/translations/models.py
ngokevin/zamboni
a33dcd489175d8e7ba1c02ee4dabb6cfdc405e69
[ "BSD-3-Clause" ]
null
null
null
import collections from itertools import groupby from django.db import connections, models, router from django.db.models.deletion import Collector from django.utils import encoding import bleach import commonware.log from mkt.site.models import ManagerBase, ModelBase from mkt.site.utils import linkify_with_outgoing from . import utils log = commonware.log.getLogger('z.translations') class TranslationManager(ManagerBase): def remove_for(self, obj, locale): """Remove a locale for the given object.""" ids = [getattr(obj, f.attname) for f in obj._meta.translated_fields] qs = Translation.objects.filter(id__in=filter(None, ids), locale=locale) qs.update(localized_string=None, localized_string_clean=None) class Translation(ModelBase): """ Translation model. Use :class:`translations.fields.TranslatedField` instead of a plain foreign key to this model. """ autoid = models.AutoField(primary_key=True) id = models.IntegerField() locale = models.CharField(max_length=10) localized_string = models.TextField(null=True) localized_string_clean = models.TextField(null=True) objects = TranslationManager() class Meta: db_table = 'translations' unique_together = ('id', 'locale') def __unicode__(self): return self.localized_string and unicode(self.localized_string) or '' def __nonzero__(self): # __nonzero__ is called to evaluate an object in a boolean context. We # want Translations to be falsy if their string is empty. return (bool(self.localized_string) and bool(self.localized_string.strip())) def __eq__(self, other): # Django implements an __eq__ that only checks pks. We need to check # the strings if we're dealing with existing vs. unsaved Translations. return self.__cmp__(other) == 0 def __cmp__(self, other): if hasattr(other, 'localized_string'): return cmp(self.localized_string, other.localized_string) else: return cmp(self.localized_string, other) def clean(self): if self.localized_string: self.localized_string = self.localized_string.strip() def save(self, **kwargs): self.clean() return super(Translation, self).save(**kwargs) def delete(self, using=None): # FIXME: if the Translation is the one used as default/fallback, # then deleting it will mean the corresponding field on the related # model will stay empty even if there are translations in other # languages! cls = self.__class__ using = using or router.db_for_write(cls, instance=self) # Look for all translations for the same string (id=self.id) except the # current one (autoid=self.autoid). qs = cls.objects.filter(id=self.id).exclude(autoid=self.autoid) if qs.using(using).exists(): # If other Translations for the same id exist, we just need to # delete this one and *only* this one, without letting Django # collect dependencies (it'd remove the others, which we want to # keep). assert self._get_pk_val() is not None collector = Collector(using=using) collector.collect([self], collect_related=False) # In addition, because we have FK pointing to a non-unique column, # we need to force MySQL to ignore constraints because it's dumb # and would otherwise complain even if there are remaining rows # that matches the FK. with connections[using].constraint_checks_disabled(): collector.delete() else: # If no other Translations with that id exist, then we should let # django behave normally. It should find the related model and set # the FKs to NULL. return super(Translation, self).delete(using=using) delete.alters_data = True @classmethod def _cache_key(cls, pk, db): # Hard-coding the class name here so that subclasses don't try to cache # themselves under something like "o:translations.purifiedtranslation". # # Like in ModelBase, we avoid putting the real db in the key because it # does us more harm than good. key_parts = ('o', 'translations.translation', pk, 'default') return ':'.join(map(encoding.smart_unicode, key_parts)) @classmethod def new(cls, string, locale, id=None): """ Jumps through all the right hoops to create a new translation. If ``id`` is not given a new id will be created using ``translations_seq``. Otherwise, the id will be used to add strings to an existing translation. To increment IDs we use a setting on MySQL. This is to support multiple database masters -- it's just crazy enough to work! See bug 756242. """ if id is None: # Get a sequence key for the new translation. cursor = connections['default'].cursor() cursor.execute("""UPDATE translations_seq SET id=LAST_INSERT_ID(id + @@global.auto_increment_increment)""") # The sequence table should never be empty. But alas, if it is, # let's fix it. if not cursor.rowcount > 0: cursor.execute("""INSERT INTO translations_seq (id) VALUES(LAST_INSERT_ID(id + @@global.auto_increment_increment))""") cursor.execute('SELECT LAST_INSERT_ID()') id = cursor.fetchone()[0] # Update if one exists, otherwise create a new one. q = {'id': id, 'locale': locale} try: trans = cls.objects.get(**q) trans.localized_string = string except cls.DoesNotExist: trans = cls(localized_string=string, **q) return trans class PurifiedTranslation(Translation): """Run the string through bleach to get a safe version.""" allowed_tags = [ 'a', 'abbr', 'acronym', 'b', 'blockquote', 'code', 'em', 'i', 'li', 'ol', 'strong', 'ul', ] allowed_attributes = { 'a': ['href', 'title', 'rel'], 'abbr': ['title'], 'acronym': ['title'], } class Meta: proxy = True def __unicode__(self): if not self.localized_string_clean: self.clean() return unicode(self.localized_string_clean) def __html__(self): return unicode(self) def __truncate__(self, length, killwords, end): return utils.truncate(unicode(self), length, killwords, end) def clean(self): super(PurifiedTranslation, self).clean() cleaned = self.clean_localized_string() self.localized_string_clean = utils.clean_nl(cleaned).strip() def clean_localized_string(self): # All links (text and markup) are normalized. linkified = linkify_with_outgoing(self.localized_string) # Keep only the allowed tags and attributes, escape the rest. return bleach.clean(linkified, tags=self.allowed_tags, attributes=self.allowed_attributes) class LinkifiedTranslation(PurifiedTranslation): """Run the string through bleach to get a linkified version.""" allowed_tags = ['a'] class Meta: proxy = True class NoLinksMixin(object): """Mixin used to remove links (URLs and text) from localized_string.""" def clean_localized_string(self): # First pass: bleach everything, but leave links untouched. cleaned = super(NoLinksMixin, self).clean_localized_string() # Second pass: call linkify to empty the inner text of all links. emptied_links = bleach.linkify( cleaned, callbacks=[lambda attrs, new: {'_text': ''}]) # Third pass: now strip links (only links will be stripped, other # forbidden tags are already bleached/escaped. allowed_tags = self.allowed_tags[:] # Make a copy. allowed_tags.remove('a') return bleach.clean(emptied_links, tags=allowed_tags, strip=True) class NoLinksTranslation(NoLinksMixin, PurifiedTranslation): """Run the string through bleach, escape markup and strip all the links.""" class Meta: proxy = True class NoLinksNoMarkupTranslation(NoLinksMixin, LinkifiedTranslation): """Run the string through bleach, escape markup and strip all the links.""" class Meta: proxy = True class TranslationSequence(models.Model): """ The translations_seq table, so syncdb will create it during testing. """ id = models.IntegerField(primary_key=True) class Meta: db_table = 'translations_seq' def delete_translation(obj, fieldname): field = obj._meta.get_field(fieldname) trans_id = getattr(obj, field.attname) obj.update(**{field.name: None}) if trans_id: Translation.objects.filter(id=trans_id).delete() def _sorted_groupby(seq, key): return groupby(sorted(seq, key=key), key=key) def attach_trans_dict(model, objs): """Put all translations into a translations dict.""" # Get the ids of all the translations we need to fetch. fields = model._meta.translated_fields ids = [getattr(obj, f.attname) for f in fields for obj in objs if getattr(obj, f.attname, None) is not None] # Get translations in a dict, ids will be the keys. It's important to # consume the result of groupby, which is an iterator. qs = Translation.objects.filter(id__in=ids, localized_string__isnull=False) all_translations = dict((k, list(v)) for k, v in _sorted_groupby(qs, lambda trans: trans.id)) def get_locale_and_string(translation, new_class): """Convert the translation to new_class (making PurifiedTranslations and LinkifiedTranslations work) and return locale / string tuple.""" converted_translation = new_class() converted_translation.__dict__ = translation.__dict__ return (converted_translation.locale.lower(), unicode(converted_translation)) # Build and attach translations for each field on each object. for obj in objs: obj.translations = collections.defaultdict(list) for field in fields: t_id = getattr(obj, field.attname, None) field_translations = all_translations.get(t_id, None) if not t_id or field_translations is None: continue obj.translations[t_id] = [get_locale_and_string(t, field.rel.to) for t in field_translations]
36.0299
100
0.643799
8,505
0.784232
0
0
1,950
0.179806
0
0
3,932
0.362563
55e27b739ace5413321cb8d38b36117252a799e4
2,564
py
Python
flow/sequential.py
altosaar/hierarchical-variational-models-physics
611d91e0281664d7d5ba1679bec7adfb3aac41e2
[ "MIT" ]
14
2020-05-10T20:44:49.000Z
2022-01-12T23:06:24.000Z
flow/sequential.py
altosaar/hierarchical-variational-models-physics
611d91e0281664d7d5ba1679bec7adfb3aac41e2
[ "MIT" ]
null
null
null
flow/sequential.py
altosaar/hierarchical-variational-models-physics
611d91e0281664d7d5ba1679bec7adfb3aac41e2
[ "MIT" ]
null
null
null
import torch from torch import nn class FlowSequential(nn.Sequential): """Forward pass with log determinant of the Jacobian.""" def forward(self, input, context=None): total_log_prob = torch.zeros(input.size(0), device=input.device) for block in self._modules.values(): input, log_prob = block(input, context) total_log_prob += log_prob return input, total_log_prob def inverse(self, input, context=None): total_log_prob = torch.zeros(input.size(0), device=input.device) for block in reversed(self._modules.values()): input, log_prob = block.inverse(input, context) total_log_prob += log_prob return input, total_log_prob def get_memory(): torch.cuda.synchronize() max_memory = torch.cuda.max_memory_allocated() memory = torch.cuda.memory_allocated() return memory / 10**9, max_memory / 10**9 class RealNVPSequential(nn.Sequential): """Assumes first and last module are CheckerSplit and CheckerUnsplit.""" def forward(self, input, context=None): total_log_prob = torch.zeros(input.size(0), device=input.device) modules = list(self._modules.values()) split = modules.pop(0) concat = modules.pop() transf, const = split(input) for module in modules: transf, const, log_prob = module(transf, const, context) total_log_prob += log_prob return concat(transf, const), total_log_prob def inverse(self, input, context=None): total_log_prob = torch.zeros(input.size(0), device=input.device) modules = list(self._modules.values()) split = modules.pop(0) concat = modules.pop() transf, const = split(input) for module in reversed(modules): transf, const, log_prob = module.inverse(transf, const, context) total_log_prob += log_prob return concat(transf, const), total_log_prob class SplitSequential(nn.Sequential): """Assumes first and last module are CheckerSplit and CheckerConcat.""" def forward(self, transf, const, context=None): total_log_prob = torch.zeros(transf.size(0), device=transf.device) for module in self._modules.values(): transf, const, log_prob = module(transf, const, context) total_log_prob += log_prob return transf, const, total_log_prob def inverse(self, transf, const, context=None): total_log_prob = torch.zeros(transf.size(0), device=transf.device) for module in reversed(self._modules.values()): transf, const, log_prob = module.inverse(transf, const, context) total_log_prob += log_prob return transf, const, total_log_prob
35.123288
74
0.710608
2,333
0.909906
0
0
0
0
0
0
199
0.077613
55e3a6acd9ba82563797c1dceb04e6f788b6036d
3,827
py
Python
inmoov/scripts/animation_executor.py
mish3albaiz/Robotics_ECE579
efb654040015671a0656eaee4c78ec085d862996
[ "BSD-3-Clause" ]
1
2020-02-13T21:13:08.000Z
2020-02-13T21:13:08.000Z
inmoov/scripts/animation_executor.py
mish3albaiz/Robotics_ECE579
efb654040015671a0656eaee4c78ec085d862996
[ "BSD-3-Clause" ]
null
null
null
inmoov/scripts/animation_executor.py
mish3albaiz/Robotics_ECE579
efb654040015671a0656eaee4c78ec085d862996
[ "BSD-3-Clause" ]
null
null
null
import time from os.path import join, dirname import sys whereami = dirname(__file__) scripts_dir= join(whereami, "../scripts/") sys.path.append(scripts_dir) from json_parsing import read_json import Inmoov filename_pose = join(whereami, '../json/pose.json') filename_animation = join(whereami, '../json/animations.json') # global objects that hold the json file contents # so i can control when/how often to read the json file # in the inmoov object, when it receives messages, it only needs to update at bootup. json will not change after bootup. # in the gui, it should update each time it tries to run, because the gui is editing the files. global_poses = None global_animations = None def update_animations(): global global_animations global_animations = read_json(filename_animation) def update_poses(): global global_poses global_poses = read_json(filename_pose) # TODO: if we are keeping the killlist idea, make it cleaner & easy to remove when transferring to a robot that doesn't need it # TODO: be more intelligent about when we need to read the animation/pose json files def do_animation(the_inmoov, animation_name): update_animations() print("Executing animation ", str(animation_name)) if animation_name not in global_animations: print("FAIL TO FIND: ANIMATION '%s'" % str(animation_name)) return #for key, pose_info in sorted(animation_data[animation_name].items()): # this method better supports animations >= 10 frames long # because using sorted() on 1-12 returns [1, 10, 11, 12, 2, 3, 4, 5, etc] this_animation_dict = global_animations[animation_name] t = 1 while str(t) in this_animation_dict: # pose_info is a list with item0 = posename and item1 = holdtime pose_info = this_animation_dict[str(t)] print("\n********* Executing pose {} *********\n".format(str(pose_info[0]))) do_pose(the_inmoov, pose_info[0], pose_info[1]) t += 1 print("\nANIMATION COMPLETE!\n") #killtime = 1 killlist = ["left_shoulder_lift_front","left_arm_rotate","right_arm_rotate","right_shoulder_lift_front"] def do_pose(the_inmoov, pose_name, hold_time=0): killtime = 1 update_poses() if pose_name not in global_poses: print("FAIL TO FIND: POSE '%s'" % str(pose_name)) return hold_time = float(hold_time) pose_data = global_poses[pose_name] for servo_name, servo_angle in pose_data.items(): #Obtain a handle to the actual servo object fservo = the_inmoov.find_servo_by_name(str(servo_name)) if fservo.curr_angle == servo_angle: # if telling it to move to a position it's already at, skip it instead, it doesnt need to move print('Skipping', servo_name) else: fservo.rotate(float(servo_angle)) print('Setting {} servo to an angle of {}'.format(servo_name, servo_angle)) # if servo_name == 'right_lift_front': # killtime = abs((7.5/90)*(fservo.curr_angle - servo_angle)) if hold_time != 0: print('\n--------------- Hold for {} second(s) ---------------'.format(hold_time)) # # todo: handle corner case where hold_time < killtime # time.sleep(killtime) # # kill all servos that can safely hold position wihtout power # for killname in killlist: # fservo = this_inmoov.find_servo_by_name(str(killname)) # fservo.off() # time.sleep(hold_time - killtime) time.sleep(hold_time) if __name__ == '__main__': this_inmoov = Inmoov.Inmoov() do_animation(this_inmoov, 'rps_paper') time.sleep(5) exit() do_animation(this_inmoov, 'headright_anim') time.sleep(5) do_animation(this_inmoov, 'headleft_anim') time.sleep(5) do_animation(this_inmoov, 'headright_anim') time.sleep(5)
37.891089
127
0.686961
0
0
0
0
0
0
0
0
1,834
0.479227
55e3e019d60ec9acd28cad6159176037b75aa670
930
py
Python
Python/1629.py
GeneralLi95/leetcode
f42392f2283e19ec76273d81b2912944f9039568
[ "MIT" ]
null
null
null
Python/1629.py
GeneralLi95/leetcode
f42392f2283e19ec76273d81b2912944f9039568
[ "MIT" ]
null
null
null
Python/1629.py
GeneralLi95/leetcode
f42392f2283e19ec76273d81b2912944f9039568
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 from typing import List, Optional from collections import defaultdict, deque from itertools import product,combinations,permutations class ListNode: def __init__(self, val=0, next=None): self.val = val self.next = next # ------------------------- class Solution: def slowestKey(self, releaseTimes: List[int], keysPressed: str) -> str: n = len(releaseTimes) max_time = 0 result = '' for i in range(n): if i == 0: time = releaseTimes[0] result = keysPressed[0] else: time = releaseTimes[i] - releaseTimes[i-1] if time > max_time: max_time = time result = keysPressed[i] elif time == max_time: result = max(result, keysPressed[i]) return result # ------------------------- a = Solution() b = [9,29,49,50] c = "cbcd" b2 = [19,22,28,29,66,81,93,97] c2 = "fnfaaxha" b3 = [12,23,36,46,62] c3 = "spuda" print(Solution.slowestKey(a, b3, c3))
20.217391
72
0.615054
538
0.578495
0
0
0
0
0
0
101
0.108602
55e424ce8e62dc85462716ba6efd8eff1ffa1fd9
530
py
Python
hexrd/sglite/setup.py
glemaitre/hexrd
b68b1ba72e0f480d29bdaae2adbd6c6e2380cc7c
[ "BSD-3-Clause" ]
null
null
null
hexrd/sglite/setup.py
glemaitre/hexrd
b68b1ba72e0f480d29bdaae2adbd6c6e2380cc7c
[ "BSD-3-Clause" ]
null
null
null
hexrd/sglite/setup.py
glemaitre/hexrd
b68b1ba72e0f480d29bdaae2adbd6c6e2380cc7c
[ "BSD-3-Clause" ]
null
null
null
from distutils.core import setup, Extension srclist = ['sgglobal.c','sgcb.c','sgcharmx.c','sgfile.c', 'sggen.c','sghall.c','sghkl.c','sgltr.c','sgmath.c','sgmetric.c', 'sgnorm.c','sgprop.c','sgss.c','sgstr.c','sgsymbols.c', 'sgtidy.c','sgtype.c','sgutil.c','runtests.c','sglitemodule.c'] module = Extension('sglite', sources=srclist, define_macros = [('PythonTypes', 1)]) setup (name='sglite', description = 'space group info', ext_modules = [module] )
33.125
76
0.584906
0
0
0
0
0
0
0
0
256
0.483019
55e48ca73e642e82cfdfccf386ed40c0b2fba12d
725
py
Python
app/blogging/routes.py
Sjors/patron
a496097ad0821b677c8e710e8aceb587928be31c
[ "MIT" ]
114
2018-12-30T20:43:37.000Z
2022-03-21T18:57:47.000Z
app/blogging/routes.py
Sjors/patron
a496097ad0821b677c8e710e8aceb587928be31c
[ "MIT" ]
17
2019-04-25T20:20:57.000Z
2022-03-29T21:48:35.000Z
app/blogging/routes.py
Sjors/patron
a496097ad0821b677c8e710e8aceb587928be31c
[ "MIT" ]
17
2019-01-02T06:37:11.000Z
2022-03-29T22:22:40.000Z
from app.blogging import bp from datetime import datetime from flask import flash, redirect, url_for from flask_login import current_user @bp.before_request def protect(): ''' Registers new function to Flask-Blogging Blueprint that protects updates to make them only viewable by paid subscribers. ''' if current_user.is_authenticated: if datetime.today() <= current_user.expiration: return None else: flash('You must have a paid-up subscription \ to view updates.', 'warning') return redirect(url_for('main.support')) else: flash('Please login to view updates.', 'warning') return redirect(url_for('auth.login'))
31.521739
68
0.666207
0
0
0
0
584
0.805517
0
0
290
0.4
55e5362057afc71bf0071723cb854344bbc9e957
409
py
Python
mini_cluster_07.py
jgpattis/Desres-sars-cov-2-apo-mpro
90c07414040c0ea0bf54028e2f194d6509c8f526
[ "MIT" ]
null
null
null
mini_cluster_07.py
jgpattis/Desres-sars-cov-2-apo-mpro
90c07414040c0ea0bf54028e2f194d6509c8f526
[ "MIT" ]
null
null
null
mini_cluster_07.py
jgpattis/Desres-sars-cov-2-apo-mpro
90c07414040c0ea0bf54028e2f194d6509c8f526
[ "MIT" ]
null
null
null
#cluster data into a small amount of clusters to later pull out structures import pyemma.coordinates as coor import numpy as np sys = 'back' tica_data = coor.load('tica_data_05/back_tica_data.h5') n_clusters = 50 cl = coor.cluster_kmeans(tica_data, k=n_clusters, max_iter=50) cl.save(f'{sys}_{n_clusters}_mini_cluster_object.h5', overwrite=True) cl.write_to_hdf5(f'{sys}_{n_clusters}_cluster_dtrajs.h5')
27.266667
74
0.787286
0
0
0
0
0
0
0
0
195
0.476773
55e68ec4c6def4aa1f467b3936144273058e5304
698
py
Python
pydaily/images/tests/test_color.py
codingPingjun/pydaily
966b96db05b3170f926aeb830ca6f81093a5371a
[ "Apache-2.0" ]
null
null
null
pydaily/images/tests/test_color.py
codingPingjun/pydaily
966b96db05b3170f926aeb830ca6f81093a5371a
[ "Apache-2.0" ]
null
null
null
pydaily/images/tests/test_color.py
codingPingjun/pydaily
966b96db05b3170f926aeb830ca6f81093a5371a
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- import os, sys, pdb from pydaily.images import graymask2rgb from pydaily import DATA_DIR import numpy as np from scipy import misc import matplotlib.pyplot as plt def test_graymask2rgb(): mask_img_path = os.path.join(DATA_DIR, "input/thyroid/mask/1273169.png") assert os.path.exists(mask_img_path), "{} not a valid file".format(mask_img_path) try: mask_img = misc.imread(mask_img_path) except: print("Load {} error.".format(mask_img_path)) plt.imshow(mask_img, cmap='gray') plt.show() mask_rgb = graymask2rgb(mask_img, channel='r') plt.imshow(mask_rgb) plt.show() if __name__ == '__main__': test_graymask2rgb()
24.068966
85
0.694842
0
0
0
0
0
0
0
0
111
0.159026
55e92561b0ff7599f7ae6a6d6d8a27dbdab535a8
63
py
Python
reqinstall/commands/freeze/__init__.py
QualiSystems/reqinstall
57268b185428b31368cb7246a20a6c7548fb44dc
[ "MIT" ]
null
null
null
reqinstall/commands/freeze/__init__.py
QualiSystems/reqinstall
57268b185428b31368cb7246a20a6c7548fb44dc
[ "MIT" ]
null
null
null
reqinstall/commands/freeze/__init__.py
QualiSystems/reqinstall
57268b185428b31368cb7246a20a6c7548fb44dc
[ "MIT" ]
null
null
null
from reqinstall.commands.freeze.freeze import PipFreezeCommand
31.5
62
0.888889
0
0
0
0
0
0
0
0
0
0
55ea56448f1d5c8396e0645cb61cbcf3e70761cc
1,784
py
Python
scripts/configure.py
materialdigital/pmd-server
fdc12fe3865e7783046ab5c50f00b71aceb07ebd
[ "BSD-3-Clause" ]
1
2021-07-05T21:54:44.000Z
2021-07-05T21:54:44.000Z
scripts/configure.py
materialdigital/pmd-server
fdc12fe3865e7783046ab5c50f00b71aceb07ebd
[ "BSD-3-Clause" ]
8
2021-06-14T15:03:06.000Z
2022-01-26T15:48:03.000Z
scripts/configure.py
materialdigital/pmd-server
fdc12fe3865e7783046ab5c50f00b71aceb07ebd
[ "BSD-3-Clause" ]
3
2021-10-01T12:07:50.000Z
2021-11-22T10:59:44.000Z
#! /usr/bin/env python3 import json, sys, argparse from os.path import isfile # ****************************************************************************** parser = argparse.ArgumentParser(description='Reads config.json and writes out docker-environment files.') parser.add_argument('file', nargs='?', help='optional input file, if omitted, read from stdin', default='-') parser.add_argument('-v', '--verbose', action='store_true', help="be verbose") args = parser.parse_args() # ****************************************************************************** def load_config(file_name): if isfile(file_name): with open(file_name) as fh: return json.load(fh) elif file_name == '-': return json.loads(sys.stdin.read()) else : return dict() def get_value(value): if value.startswith("shared:"): return shared_vars.get(value[7:], value) else: return value if __name__ == '__main__': config = load_config('static.json') # prevents script from trying to read interactively from tty, only "proper" pipe allowed if (args.file == '-' and sys.stdin.isatty()): print ("Won't read input from tty (please use -h for help)", file=sys.stderr) exit(1) else: filename = args.file for env_file, entry in load_config(filename).items(): if env_file in config: config[env_file].update(entry) else: config[env_file] = entry shared_vars = config.pop('shared', dict()) for env_file, entry in config.items(): with open(env_file, 'w') as fh: lines = [ "{}={}\n".format(key, get_value(val)) for key, val in entry.items()] print("### Writing {}...". format(env_file)) fh.writelines(lines)
33.037037
108
0.570628
0
0
0
0
0
0
0
0
561
0.314462
55eab24c8b73ac11d50c210b2451b3c1e941b6bd
676
py
Python
src/lib/jianshu_parser/jianshuparser.py
eebook/jianshu2e-book
d638fb8c2f47cf8e91e9f74e2e1e5f61f3c98a48
[ "MIT" ]
7
2019-01-02T14:52:48.000Z
2021-11-05T06:11:46.000Z
src/lib/jianshu_parser/jianshuparser.py
knarfeh/jianshu2e-book
d638fb8c2f47cf8e91e9f74e2e1e5f61f3c98a48
[ "MIT" ]
2
2021-03-22T17:11:32.000Z
2021-12-13T19:36:17.000Z
src/lib/jianshu_parser/jianshuparser.py
ee-book/jianshu2e-book
d638fb8c2f47cf8e91e9f74e2e1e5f61f3c98a48
[ "MIT" ]
2
2019-04-18T05:44:24.000Z
2021-06-10T09:35:44.000Z
# -*- coding: utf-8 -*- from bs4 import BeautifulSoup from src.lib.jianshu_parser.base import BaseParser from src.lib.jianshu_parser.content.JianshuAuthor import JianshuAuthorInfo from src.lib.jianshu_parser.content.JianshuArticle import JianshuArticle class JianshuParser(BaseParser): u""" 获得jianshu_info表中所需的内容 """ def __init__(self, content): self.dom = BeautifulSoup(content, 'lxml') self.article_parser = JianshuArticle(self.dom) return def get_jianshu_info_list(self): author_parser = JianshuAuthorInfo() # SinaBlog_Info表中的信息 author_parser.set_dom(self.dom) return [author_parser.get_info()]
28.166667
74
0.724852
447
0.634943
0
0
0
0
0
0
115
0.163352
55ebf274b2c9e17190671385e32d419938db93a1
306
py
Python
vox/utils/__init__.py
DSciLab/voxpy
4d06ffc9a52f4a2ae1eaacda7da998e75d0cc4aa
[ "MIT" ]
null
null
null
vox/utils/__init__.py
DSciLab/voxpy
4d06ffc9a52f4a2ae1eaacda7da998e75d0cc4aa
[ "MIT" ]
null
null
null
vox/utils/__init__.py
DSciLab/voxpy
4d06ffc9a52f4a2ae1eaacda7da998e75d0cc4aa
[ "MIT" ]
null
null
null
import numpy as np from .one_hot import one_hot from .rescale import LinearNormRescale255, \ CentralNormRescale255, \ GeneralNormRescale255 def threhold_seg(inp, th=0.5): inp_ = np.copy(inp) inp_[inp_>0.5] = 1.0 inp_[inp_<=0.5] = 0.0 return inp_
23.538462
45
0.611111
0
0
0
0
0
0
0
0
0
0
55ec22a317bb062a3d79bbd46b18d734b28581cf
58
py
Python
minimally_sufficient_pandas/__init__.py
dexplo/minimally_sufficient_pandas
d07710f03daa757f5778aa66ee68952d03467809
[ "BSD-3-Clause" ]
null
null
null
minimally_sufficient_pandas/__init__.py
dexplo/minimally_sufficient_pandas
d07710f03daa757f5778aa66ee68952d03467809
[ "BSD-3-Clause" ]
null
null
null
minimally_sufficient_pandas/__init__.py
dexplo/minimally_sufficient_pandas
d07710f03daa757f5778aa66ee68952d03467809
[ "BSD-3-Clause" ]
null
null
null
from ._pandas_accessor import _MSP __version__ = '0.0.1'
14.5
34
0.758621
0
0
0
0
0
0
0
0
7
0.12069
55ecaf06199d8ec889aab34a7ac5ad6a8dc82793
350
py
Python
src/rl/genotypes.py
xkp793003821/nas-segm-pytorch
c4b59ab56bd539bf08493c6d85072849213a3d62
[ "BSD-2-Clause" ]
null
null
null
src/rl/genotypes.py
xkp793003821/nas-segm-pytorch
c4b59ab56bd539bf08493c6d85072849213a3d62
[ "BSD-2-Clause" ]
null
null
null
src/rl/genotypes.py
xkp793003821/nas-segm-pytorch
c4b59ab56bd539bf08493c6d85072849213a3d62
[ "BSD-2-Clause" ]
null
null
null
"""List of operations""" from collections import namedtuple Genotype = namedtuple('Genotype', 'encoder decoder') OP_NAMES = [ 'conv1x1', 'conv3x3', 'sep_conv_3x3', 'sep_conv_5x5', 'global_average_pool', 'conv3x3_dil3', 'conv3x3_dil12', 'sep_conv_3x3_dil3', 'sep_conv_5x5_dil6', 'skip_connect', 'none' ]
17.5
52
0.648571
0
0
0
0
0
0
0
0
205
0.585714
55ece9e5b9ea1cfd57bf781ef73ac983e830b9f2
391
py
Python
solutions/python3/1089.py
sm2774us/amazon_interview_prep_2021
f580080e4a6b712b0b295bb429bf676eb15668de
[ "MIT" ]
42
2020-08-02T07:03:49.000Z
2022-03-26T07:50:15.000Z
solutions/python3/1089.py
ajayv13/leetcode
de02576a9503be6054816b7444ccadcc0c31c59d
[ "MIT" ]
null
null
null
solutions/python3/1089.py
ajayv13/leetcode
de02576a9503be6054816b7444ccadcc0c31c59d
[ "MIT" ]
40
2020-02-08T02:50:24.000Z
2022-03-26T15:38:10.000Z
class Solution: def duplicateZeros(self, arr: List[int]) -> None: """ Do not return anything, modify arr in-place instead. """ i = 0 for num in list(arr): if i >= len(arr): break arr[i] = num if not num: i += 1 if i < len(arr): arr[i] = num i += 1
27.928571
60
0.398977
391
1
0
0
0
0
0
0
76
0.194373
55ed312dab5a46153b2af52c1c2cf41104214f04
2,284
py
Python
tools/download_typed_ast.py
hugovk/typed_ast
8eed936014f81a55a3e17310629c40c0203327c3
[ "Apache-2.0" ]
null
null
null
tools/download_typed_ast.py
hugovk/typed_ast
8eed936014f81a55a3e17310629c40c0203327c3
[ "Apache-2.0" ]
null
null
null
tools/download_typed_ast.py
hugovk/typed_ast
8eed936014f81a55a3e17310629c40c0203327c3
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python3 # Hacky script to download linux and windows typed_ast wheels from appveyor and gcloud import os import os.path import json import sys from urllib.request import urlopen # Appveyor download for windows wheels api_url = 'https://ci.appveyor.com/api/' def get_json(path): url = api_url + path f = urlopen(url) data = f.read() return json.loads(data) def download(url): print('Downloading', url) name = os.path.join('dist', os.path.split(url)[1]) with urlopen(url) as f: data = f.read() with open(name, 'wb') as f: f.write(data) def download_appveyor(version): project_base = 'projects/ddfisher/typed-ast-a4xqu' history = get_json(project_base + '/history?recordsNumber=20') for build in history['builds']: if build.get('tag') == version: build_version = build['version'] build_version = str(build['buildId']) break else: sys.exit("Couldn't find tag") print(build_version) build = get_json(project_base + '/builds/' + build_version) for job in build['build']['jobs']: artifact_url = 'buildjobs/{}/artifacts'.format(job['jobId']) artifacts = get_json(artifact_url) for artifact in artifacts: download(api_url + artifact_url + '/' + artifact['fileName']) # gcloud downloads for linux wehels MIN_VER = 5 MAX_VER = 9 GCLOUD_URL = "https://storage.googleapis.com/typed-ast/typed_ast-{version}-cp3{pyver}-cp3{pyver}{abi_tag}-{platform}.whl" def download_entries(base_url, version, platform): entries = "" for pyver in range(MIN_VER, MAX_VER + 1): abi_tag = "" if pyver >= 8 else "m" url = base_url.format( version=version, pyver=pyver, abi_tag=abi_tag, platform=platform) download(url) def main(argv): if len(argv) != 2: sys.exit("Usage: download_typed_ast.py version") version = argv[1] os.makedirs('dist', exist_ok=True) download_entries(GCLOUD_URL, version, 'manylinux1_x86_64') download_entries(GCLOUD_URL, version, 'manylinux1_i686') download_entries(GCLOUD_URL, version, 'manylinux2014_aarch64') download_appveyor(version) if __name__ == '__main__': main(sys.argv)
28.911392
121
0.652802
0
0
0
0
0
0
0
0
641
0.280648
55ee2be125f56e9339bd29f2a5e248d4c0042d7f
220
py
Python
Contest/Keyence2021/a/main.py
mpses/AtCoder
9c101fcc0a1394754fcf2385af54b05c30a5ae2a
[ "CC0-1.0" ]
null
null
null
Contest/Keyence2021/a/main.py
mpses/AtCoder
9c101fcc0a1394754fcf2385af54b05c30a5ae2a
[ "CC0-1.0" ]
null
null
null
Contest/Keyence2021/a/main.py
mpses/AtCoder
9c101fcc0a1394754fcf2385af54b05c30a5ae2a
[ "CC0-1.0" ]
null
null
null
#!/usr/bin/env python3 (n,), a, b = [[*map(int, o.split())] for o in open(0)] from itertools import* *A, = accumulate(a, max) print(ans := a[0] * b[0]) for i in range(1, n): ans = max(ans, A[i] * b[i]) print(ans)
27.5
54
0.554545
0
0
0
0
0
0
0
0
22
0.1
55efeb23d40cb01ba113e0e658a5c2e41b236597
10,879
py
Python
service.py
ViscaElAyush/CSE598
8e95436015d466d168005846473e9e3978423913
[ "MIT" ]
35
2020-10-31T20:21:01.000Z
2022-01-29T18:28:44.000Z
service.py
ViscaElAyush/CSE598
8e95436015d466d168005846473e9e3978423913
[ "MIT" ]
null
null
null
service.py
ViscaElAyush/CSE598
8e95436015d466d168005846473e9e3978423913
[ "MIT" ]
10
2021-01-10T18:40:03.000Z
2022-02-09T04:19:27.000Z
#!/usr/bin/env python # @author Simon Stepputtis <sstepput@asu.edu>, Interactive Robotics Lab, Arizona State University from __future__ import absolute_import, division, print_function, unicode_literals import sys import rclpy from policy_translation.srv import NetworkPT, TuneNetwork from model_src.model import PolicyTranslationModel from utils.network import Network from utils.tf_util import trainOnCPU, limitGPUMemory from utils.intprim.gaussian_model import GaussianModel import tensorflow as tf import numpy as np import re from cv_bridge import CvBridge, CvBridgeError import cv2 import matplotlib.pyplot as plt from utils.intprim.gaussian_model import GaussianModel import glob import json import pickle import copy # Force TensorFlow to use the CPU FORCE_CPU = True # Use dropout at run-time for stochastif-forward passes USE_DROPOUT = True # Where can we find the trained model? MODEL_PATH = "../GDrive/model/policy_translation" # Where is a pre-trained faster-rcnn? FRCNN_PATH = "../GDrive/rcnn" # Where are the GloVe word embeddings? GLOVE_PATH = "../GDrive/glove.6B.50d.txt" # Where is the normalization of the dataset? NORM_PATH = "../GDrive/normalization_v2.pkl" if FORCE_CPU: trainOnCPU() else: limitGPUMemory() print("Running Policy Translation Model") model = PolicyTranslationModel( od_path=FRCNN_PATH, glove_path=GLOVE_PATH, special=None ) bs = 2 model(( np.ones((bs, 15), dtype=np.int64), np.ones((bs, 6, 5), dtype=np.float32), np.ones((bs, 500, 7), dtype=np.float32) )) model.load_weights(MODEL_PATH) model.summary() class NetworkService(): def __init__(self): self.dictionary = self._loadDictionary(GLOVE_PATH) self.regex = re.compile('[^a-z ]') self.bridge = CvBridge() self.history = [] rclpy.init(args=None) self.node = rclpy.create_node("neural_network") self.service_nn = self.node.create_service(NetworkPT, "/network", self.cbk_network_dmp_ros2) self.normalization = pickle.load(open(NORM_PATH, mode="rb"), encoding="latin1") print("Ready") def runNode(self): while rclpy.ok(): rclpy.spin_once(self.node) self.node.destroy_service(self.service_nn) self.node.destroy_service(self.service_tn) rclpy.shutdown() def _loadDictionary(self, file): __dictionary = {} __dictionary[""] = 0 # Empty string fh = open(file, "r", encoding="utf-8") for line in fh: if len(__dictionary) >= 300000: break tokens = line.strip().split(" ") __dictionary[tokens[0]] = len(__dictionary) fh.close() return __dictionary def tokenize(self, language): voice = self.regex.sub("", language.strip().lower()) tokens = [] for w in voice.split(" "): idx = 0 try: idx = self.dictionary[w] except: print("Unknown word: " + w) tokens.append(idx) return tokens def normalize(self, value, v_min, v_max): if (value.shape[1] != v_min.shape[0] or v_min.shape[0] != v_max.shape[0] or len(value.shape) != 2 or len(v_min.shape) != 1 or len(v_max.shape) != 1): raise ArrayDimensionMismatch() value = np.copy(value) v_min = np.tile(np.expand_dims(v_min, 0), [value.shape[0], 1]) v_max = np.tile(np.expand_dims(v_max, 0), [value.shape[0], 1]) value = (value - v_min) / (v_max - v_min) return value def interpolateTrajectory(self, trj, target): current_length = trj.shape[0] dimensions = trj.shape[1] result = np.zeros((target, trj.shape[1]), dtype=np.float32) for i in range(dimensions): result[:,i] = np.interp(np.linspace(0.0, 1.0, num=target), np.linspace(0.0, 1.0, num=current_length), trj[:,i]) return result def cbk_network_dmp_ros2(self, req, res): res.trajectory, res.confidence, res.timesteps, res.weights, res.phase = self.cbk_network_dmp(req) return res def imgmsg_to_cv2(self, img_msg, desired_encoding="passthrough"): if img_msg.encoding != "8UC3": self.node.get_logger().info("Unrecognized image type: " + encoding) exit(0) dtype = "uint8" n_channels = 3 dtype = np.dtype(dtype) dtype = dtype.newbyteorder('>' if img_msg.is_bigendian else '<') img_buf = np.asarray(img_msg.data, dtype=dtype) if isinstance(img_msg.data, list) else img_msg.data if n_channels == 1: im = np.ndarray(shape=(img_msg.height, img_msg.width), dtype=dtype, buffer=img_buf) else: im = np.ndarray(shape=(img_msg.height, img_msg.width, n_channels), dtype=dtype, buffer=img_buf) if img_msg.is_bigendian == (sys.byteorder == 'little'): im = im.byteswap().newbyteorder() if desired_encoding == 'passthrough': return im from cv_bridge.boost.cv_bridge_boost import cvtColor2 try: res = cvtColor2(im, img_msg.encoding, desired_encoding) except RuntimeError as e: raise CvBridgeError(e) return res def cbk_network_dmp(self, req): if req.reset: self.req_step = 0 self.sfp_history = [] try: image = self.imgmsg_to_cv2(req.image) except CvBridgeError as e: print(e) language = self.tokenize(req.language) self.language = language + [0] * (15-len(language)) image_features = model.frcnn(tf.convert_to_tensor([image], dtype=tf.uint8)) scores = image_features["detection_scores"][0, :6].numpy().astype(dtype=np.float32) scores = [0.0 if v < 0.5 else 1.0 for v in scores.tolist()] classes = image_features["detection_classes"][0, :6].numpy().astype(dtype=np.int32) classes = [v * scores[k] for k, v in enumerate(classes.tolist())] boxes = image_features["detection_boxes"][0, :6, :].numpy().astype(dtype=np.float32) self.features = np.concatenate((np.expand_dims(classes,1), boxes), axis=1) self.history = [] self.history.append(list(req.robot)) robot = np.asarray(self.history, dtype=np.float32) self.input_data = ( tf.convert_to_tensor(np.tile([self.language],[250, 1]), dtype=tf.int64), tf.convert_to_tensor(np.tile([self.features],[250, 1, 1]), dtype=tf.float32), tf.convert_to_tensor(np.tile([robot],[250, 1, 1]), dtype=tf.float32) ) generated, (atn, dmp_dt, phase, weights) = model(self.input_data, training=tf.constant(False), use_dropout=tf.constant(True)) self.trj_gen = tf.math.reduce_mean(generated, axis=0).numpy() self.trj_std = tf.math.reduce_std(generated, axis=0).numpy() self.timesteps = int(tf.math.reduce_mean(dmp_dt).numpy() * 500) self.b_weights = tf.math.reduce_mean(weights, axis=0).numpy() phase_value = tf.math.reduce_mean(phase, axis=0).numpy() phase_value = phase_value[-1,0] self.sfp_history.append(self.b_weights[-1,:,:]) if phase_value > 0.95 and len(self.sfp_history) > 100: trj_len = len(self.sfp_history) basismodel = GaussianModel(degree=11, scale=0.012, observed_dof_names=("Base","Shoulder","Ellbow","Wrist1","Wrist2","Wrist3","Gripper")) domain = np.linspace(0, 1, trj_len, dtype=np.float64) trajectories = [] for i in range(trj_len): trajectories.append(np.asarray(basismodel.apply_coefficients(domain, self.sfp_history[i].flatten()))) trajectories = np.asarray(trajectories) np.save("trajectories", trajectories) np.save("history", self.history) gen_trajectory = [] var_trj = np.zeros((trj_len, trj_len, 7), dtype=np.float32) for w in range(trj_len): gen_trajectory.append(trajectories[w,w,:]) gen_trajectory = np.asarray(gen_trajectory) np.save("gen_trajectory", gen_trajectory) self.sfp_history = [] self.req_step += 1 return (self.trj_gen.flatten().tolist(), self.trj_std.flatten().tolist(), self.timesteps, self.b_weights.flatten().tolist(), float(phase_value)) def idToText(self, id): names = ["", "Yellow Small Round", "Red Small Round", "Green Small Round", "Blue Small Round", "Pink Small Round", "Yellow Large Round", "Red Large Round", "Green Large Round", "Blue Large Round", "Pink Large Round", "Yellow Small Square", "Red Small Square", "Green Small Square", "Blue Small Square", "Pink Small Square", "Yellow Large Square", "Red Large Square", "Green Large Square", "Blue Large Square", "Pink Large Square", "Cup Red", "Cup Green", "Cup Blue"] return names[id] def plotTrajectory(self, trj, error, image): fig, ax = plt.subplots(3,3) fig.set_size_inches(9, 9) for sp in range(7): idx = sp // 3 idy = sp % 3 ax[idx,idy].clear() ax[idx,idy].plot(range(trj.shape[0]), trj[:,sp], alpha=0.5, color='mediumslateblue') ax[idx,idy].errorbar(range(trj.shape[0]), trj[:,sp], xerr=None, yerr=error[:,sp], alpha=0.1, fmt='none', color='mediumslateblue') ax[idx,idy].set_ylim([-0.1, 1.1]) ax[2,1].imshow(image) def plotImageRegions(self, image_np, image_dict, atn): # Visualization of the results of a detection. tgt_object = np.argmax(atn) num_detected = len([v for v in image_dict["detection_scores"][0] if v > 0.5]) num_detected = min(num_detected, len(atn)) for i in range(num_detected): ymin, xmin, ymax, xmax = image_dict['detection_boxes'][0][i,:] pt1 = (int(xmin*image_np.shape[1]), int(ymin*image_np.shape[0])) pt2 = (int(xmax*image_np.shape[1]), int(ymax*image_np.shape[0])) image_np = cv2.rectangle(image_np, pt1, pt2, (156, 2, 2), 1) if i == tgt_object: image_np = cv2.rectangle(image_np, pt1, pt2, (30, 156, 2), 2) image_np = cv2.putText(image_np, "{:.1f}%".format(atn[i] * 100), (pt1[0]-10, pt1[1]-5), cv2.FONT_HERSHEY_SIMPLEX, 0.75, (30, 156, 2), 2, cv2.LINE_AA) fig = plt.figure() plt.imshow(image_np) if __name__ == "__main__": ot = NetworkService() ot.runNode()
40.593284
165
0.603364
9,210
0.846585
0
0
0
0
0
0
1,393
0.128045
55f05ed10bf6e796822641491b85dc1b12b2b7ba
375
py
Python
model/pet_breed.py
IDRISSOUM/hospital_management
56a768f29269a77bc890d40479a8aacb90867189
[ "Unlicense" ]
null
null
null
model/pet_breed.py
IDRISSOUM/hospital_management
56a768f29269a77bc890d40479a8aacb90867189
[ "Unlicense" ]
null
null
null
model/pet_breed.py
IDRISSOUM/hospital_management
56a768f29269a77bc890d40479a8aacb90867189
[ "Unlicense" ]
null
null
null
# # -*- coding: utf-8 -*- # # Part of BrowseInfo. See LICENSE file for full copyright and licensing details. # # from odoo import api, fields, models, _ # # class pet_breed(models.Model): # _name = 'pet.breed' # # name = fields.Char('Name', required = True) # code = fields.Char('Code') # # # # vim:expandtab:smartindent:tabstop=4:softtabstop=4:shiftwidth=4:
28.846154
82
0.653333
0
0
0
0
0
0
0
0
363
0.968
55f120e7cddd6dd7d7bb9b4780eee99d7d17ddcc
797
py
Python
src/fireo/utils/utils.py
jshep23/FireO
f4ccac8461bcf821ae9665a942847aa9f28ee92b
[ "Apache-2.0" ]
null
null
null
src/fireo/utils/utils.py
jshep23/FireO
f4ccac8461bcf821ae9665a942847aa9f28ee92b
[ "Apache-2.0" ]
null
null
null
src/fireo/utils/utils.py
jshep23/FireO
f4ccac8461bcf821ae9665a942847aa9f28ee92b
[ "Apache-2.0" ]
null
null
null
import re from google.cloud import firestore def collection_name(model): return re.sub('(?!^)([A-Z]+)', r'_\1', model).lower() def ref_path(key): return key.split('/') def collection_path(key): return '/'.join(key.split('/')[:-1]) def get_parent(key): return collection_path(key) def get_parent_doc(key): return '/'.join(key.split('/')[:-2]) def get_id(key): try: return key.split('/')[-1] except AttributeError: return None def GeoPoint(latitude: float, longitude: float): return firestore.GeoPoint(latitude, longitude) def get_nested(dict, *args): if args and dict: element = args[0] if element: value = dict.get(element) return value if len(args) == 1 else get_nested(value, *args[1:])
18.97619
76
0.61606
0
0
0
0
0
0
0
0
39
0.048934
55f43053f0d67231d40b9280a1fec18d43d92658
169
py
Python
src/rlib/debug.py
SOM-st/PySOM
65ef72f44252439b724a7429408dac7f8d1b1d98
[ "MIT" ]
22
2015-10-29T05:11:06.000Z
2022-03-01T11:18:45.000Z
src/rlib/debug.py
smarr/PySOM
65ef72f44252439b724a7429408dac7f8d1b1d98
[ "MIT" ]
16
2021-03-07T22:09:33.000Z
2021-08-24T12:36:15.000Z
src/rlib/debug.py
SOM-st/PySOM
65ef72f44252439b724a7429408dac7f8d1b1d98
[ "MIT" ]
5
2015-01-02T03:51:29.000Z
2020-10-02T07:05:46.000Z
try: from rpython.rlib.debug import make_sure_not_resized # pylint: disable=W except ImportError: "NOT_RPYTHON" def make_sure_not_resized(_): pass
21.125
77
0.715976
0
0
0
0
0
0
0
0
32
0.189349
55f5635ca095ac94e1e398b32c7f23cd1b5b52ae
12,173
py
Python
emr_eks_cdk/studio_live_stack.py
aws-samples/aws-cdk-for-emr-on-eks
20c51b8c845172ea77ee4e1dbde7ffd41cad427a
[ "MIT-0" ]
9
2021-03-23T06:01:32.000Z
2021-12-28T09:01:45.000Z
emr_eks_cdk/studio_live_stack.py
aws-samples/aws-cdk-for-emr-on-eks
20c51b8c845172ea77ee4e1dbde7ffd41cad427a
[ "MIT-0" ]
2
2021-07-27T09:53:04.000Z
2021-08-05T04:55:15.000Z
emr_eks_cdk/studio_live_stack.py
aws-samples/aws-cdk-for-emr-on-eks
20c51b8c845172ea77ee4e1dbde7ffd41cad427a
[ "MIT-0" ]
9
2021-03-23T06:01:31.000Z
2021-12-29T14:03:14.000Z
# Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved. # SPDX-License-Identifier: MIT-0 from aws_cdk import aws_ec2 as ec2, aws_eks as eks, core, aws_emrcontainers as emrc, aws_iam as iam, aws_s3 as s3, custom_resources as custom, aws_acmpca as acmpca, aws_emr as emr """ This stack deploys the following: - EMR Studio """ class StudioLiveStack(core.Stack): def __init__(self, scope: core.Construct, construct_id: str, vpc: ec2.IVpc, **kwargs) -> None: super().__init__(scope, construct_id, **kwargs) # Create S3 bucket for Studio bucket = s3.Bucket(self, "StudioBucket", encryption=s3.BucketEncryption.S3_MANAGED, block_public_access=s3.BlockPublicAccess.BLOCK_ALL, versioned = True ) # Create security groups eng_sg = ec2.SecurityGroup(self, "EngineSecurityGroup", vpc=vpc, description="EMR Studio Engine", allow_all_outbound=True ) core.Tags.of(eng_sg).add("for-use-with-amazon-emr-managed-policies", "true") ws_sg = ec2.SecurityGroup(self, "WorkspaceSecurityGroup", vpc=vpc, description="EMR Studio Workspace", allow_all_outbound=False ) core.Tags.of(ws_sg).add("for-use-with-amazon-emr-managed-policies", "true") ws_sg.add_egress_rule(ec2.Peer.any_ipv4(), ec2.Port.tcp(443), "allow egress on port 443") ws_sg.add_egress_rule(eng_sg, ec2.Port.tcp(18888), "allow egress on port 18888 to eng") eng_sg.add_ingress_rule(ws_sg, ec2.Port.tcp(18888), "allow ingress on port 18888 from ws") # Create Studio roles role = iam.Role(self, "StudioRole", assumed_by=iam.ServicePrincipal("elasticmapreduce.amazonaws.com"), managed_policies=[ iam.ManagedPolicy.from_aws_managed_policy_name("AmazonS3FullAccess") ] ) role.add_to_policy(iam.PolicyStatement( resources=["*"], actions=["ec2:AuthorizeSecurityGroupEgress", "ec2:AuthorizeSecurityGroupIngress", "ec2:CreateSecurityGroup", "ec2:CreateTags", "ec2:DescribeSecurityGroups", "ec2:RevokeSecurityGroupEgress", "ec2:RevokeSecurityGroupIngress", "ec2:CreateNetworkInterface", "ec2:CreateNetworkInterfacePermission", "ec2:DeleteNetworkInterface", "ec2:DeleteNetworkInterfacePermission", "ec2:DescribeNetworkInterfaces", "ec2:ModifyNetworkInterfaceAttribute", "ec2:DescribeTags", "ec2:DescribeInstances", "ec2:DescribeSubnets", "ec2:DescribeVpcs", "elasticmapreduce:ListInstances", "elasticmapreduce:DescribeCluster", "elasticmapreduce:ListSteps"], effect=iam.Effect.ALLOW )) core.Tags.of(role).add("for-use-with-amazon-emr-managed-policies", "true") user_role = iam.Role(self, "StudioUserRole", assumed_by=iam.ServicePrincipal("elasticmapreduce.amazonaws.com") ) core.Tags.of(role).add("for-use-with-amazon-emr-managed-policies", "true") user_role.add_to_policy(iam.PolicyStatement( actions=["elasticmapreduce:CreateEditor", "elasticmapreduce:DescribeEditor", "elasticmapreduce:ListEditors", "elasticmapreduce:StartEditor", "elasticmapreduce:StopEditor", "elasticmapreduce:DeleteEditor", "elasticmapreduce:OpenEditorInConsole", "elasticmapreduce:AttachEditor", "elasticmapreduce:DetachEditor", "elasticmapreduce:CreateRepository", "elasticmapreduce:DescribeRepository", "elasticmapreduce:DeleteRepository", "elasticmapreduce:ListRepositories", "elasticmapreduce:LinkRepository", "elasticmapreduce:UnlinkRepository", "elasticmapreduce:DescribeCluster", "elasticmapreduce:ListInstanceGroups", "elasticmapreduce:ListBootstrapActions", "elasticmapreduce:ListClusters", "elasticmapreduce:ListSteps", "elasticmapreduce:CreatePersistentAppUI", "elasticmapreduce:DescribePersistentAppUI", "elasticmapreduce:GetPersistentAppUIPresignedURL", "secretsmanager:CreateSecret", "secretsmanager:ListSecrets", "secretsmanager:TagResource", "emr-containers:DescribeVirtualCluster", "emr-containers:ListVirtualClusters", "emr-containers:DescribeManagedEndpoint", "emr-containers:ListManagedEndpoints", "emr-containers:CreateAccessTokenForManagedEndpoint", "emr-containers:DescribeJobRun", "emr-containers:ListJobRuns"], resources=["*"], effect=iam.Effect.ALLOW )) user_role.add_to_policy(iam.PolicyStatement( resources=["*"], actions=["servicecatalog:DescribeProduct", "servicecatalog:DescribeProductView", "servicecatalog:DescribeProvisioningParameters", "servicecatalog:ProvisionProduct", "servicecatalog:SearchProducts", "servicecatalog:UpdateProvisionedProduct", "servicecatalog:ListProvisioningArtifacts", "servicecatalog:DescribeRecord", "cloudformation:DescribeStackResources"], effect=iam.Effect.ALLOW )) user_role.add_to_policy(iam.PolicyStatement( resources=["*"], actions=["elasticmapreduce:RunJobFlow"], effect=iam.Effect.ALLOW )) user_role.add_to_policy(iam.PolicyStatement( resources=[role.role_arn, f"arn:aws:iam::{self.account}:role/EMR_DefaultRole", f"arn:aws:iam::{self.account}:role/EMR_EC2_DefaultRole"], actions=["iam:PassRole"], effect=iam.Effect.ALLOW )) user_role.add_to_policy(iam.PolicyStatement( resources=["arn:aws:s3:::*"], actions=["s3:ListAllMyBuckets", "s3:ListBucket", "s3:GetBucketLocation"], effect=iam.Effect.ALLOW )) user_role.add_to_policy(iam.PolicyStatement( resources=[f"arn:aws:s3:::{bucket.bucket_name}/*", f"arn:aws:s3:::aws-logs-{self.account}-{self.region}/elasticmapreduce/*"], actions=["s3:GetObject"], effect=iam.Effect.ALLOW )) policy_document = { "Version": "2012-10-17T00:00:00.000Z", "Statement": [ { "Action": [ "elasticmapreduce:CreateEditor", "elasticmapreduce:DescribeEditor", "elasticmapreduce:ListEditors", "elasticmapreduce:StartEditor", "elasticmapreduce:StopEditor", "elasticmapreduce:DeleteEditor", "elasticmapreduce:OpenEditorInConsole", "elasticmapreduce:AttachEditor", "elasticmapreduce:DetachEditor", "elasticmapreduce:CreateRepository", "elasticmapreduce:DescribeRepository", "elasticmapreduce:DeleteRepository", "elasticmapreduce:ListRepositories", "elasticmapreduce:LinkRepository", "elasticmapreduce:UnlinkRepository", "elasticmapreduce:DescribeCluster", "elasticmapreduce:ListInstanceGroups", "elasticmapreduce:ListBootstrapActions", "elasticmapreduce:ListClusters", "elasticmapreduce:ListSteps", "elasticmapreduce:CreatePersistentAppUI", "elasticmapreduce:DescribePersistentAppUI", "elasticmapreduce:GetPersistentAppUIPresignedURL", "secretsmanager:CreateSecret", "secretsmanager:ListSecrets", "emr-containers:DescribeVirtualCluster", "emr-containers:ListVirtualClusters", "emr-containers:DescribeManagedEndpoint", "emr-containers:ListManagedEndpoints", "emr-containers:CreateAccessTokenForManagedEndpoint", "emr-containers:DescribeJobRun", "emr-containers:ListJobRuns" ], "Resource": "*", "Effect": "Allow", "Sid": "AllowBasicActions" }, { "Action": [ "servicecatalog:DescribeProduct", "servicecatalog:DescribeProductView", "servicecatalog:DescribeProvisioningParameters", "servicecatalog:ProvisionProduct", "servicecatalog:SearchProducts", "servicecatalog:UpdateProvisionedProduct", "servicecatalog:ListProvisioningArtifacts", "servicecatalog:DescribeRecord", "cloudformation:DescribeStackResources" ], "Resource": "*", "Effect": "Allow", "Sid": "AllowIntermediateActions" }, { "Action": [ "elasticmapreduce:RunJobFlow" ], "Resource": "*", "Effect": "Allow", "Sid": "AllowAdvancedActions" }, { "Action": "iam:PassRole", "Resource": [ role.role_arn, f"arn:aws:iam::{self.account}:role/EMR_DefaultRole", f"arn:aws:iam::{self.account}:role/EMR_EC2_DefaultRole" ], "Effect": "Allow", "Sid": "PassRolePermission" }, { "Action": [ "s3:ListAllMyBuckets", "s3:ListBucket", "s3:GetBucketLocation" ], "Resource": "arn:aws:s3:::*", "Effect": "Allow", "Sid": "S3ListPermission" }, { "Action": [ "s3:GetObject" ], "Resource": [ f"arn:aws:s3:::{bucket.bucket_name}/*", f"arn:aws:s3:::aws-logs-{self.account}-{self.region}/elasticmapreduce/*" ], "Effect": "Allow", "Sid": "S3GetObjectPermission" } ] } custom_policy_document = iam.PolicyDocument.from_json(policy_document) new_managed_policy = iam.ManagedPolicy(self, "LBControlPolicy", document=custom_policy_document ) # Set up Studio studio = emr.CfnStudio(self, "MyEmrStudio", auth_mode = "SSO", default_s3_location = f"s3://{bucket.bucket_name}/studio/", engine_security_group_id = eng_sg.security_group_id, name = "MyEmrEksStudio", service_role = role.role_arn, subnet_ids = [n.subnet_id for n in vpc.private_subnets], user_role = user_role.role_arn, vpc_id = vpc.vpc_id, workspace_security_group_id = ws_sg.security_group_id, description=None, tags=None) core.CfnOutput( self, "StudioUrl", value=studio.attr_url ) # Create session mapping studiosm = emr.CfnStudioSessionMapping(self, "MyStudioSM", identity_name = self.node.try_get_context("username"), identity_type = "USER", session_policy_arn = new_managed_policy.managed_policy_arn, studio_id = studio.attr_studio_id)
43.78777
179
0.559271
11,834
0.972151
0
0
0
0
0
0
5,507
0.452395
55f657ac810bd7adff3d28ddcf6b426dbce9f289
291
py
Python
dev/user-agent-stacktrace/lib/utils.py
Katharine/apisnoop
46c0e101c6e1e13a783f5022a6f77787c0824032
[ "Apache-2.0" ]
null
null
null
dev/user-agent-stacktrace/lib/utils.py
Katharine/apisnoop
46c0e101c6e1e13a783f5022a6f77787c0824032
[ "Apache-2.0" ]
13
2018-08-21T04:00:44.000Z
2019-07-03T22:36:07.000Z
dev/user-agent-stacktrace/lib/utils.py
Katharine/apisnoop
46c0e101c6e1e13a783f5022a6f77787c0824032
[ "Apache-2.0" ]
1
2019-05-09T18:47:22.000Z
2019-05-09T18:47:22.000Z
from collections import defaultdict def defaultdicttree(): return defaultdict(defaultdicttree) def defaultdict_to_dict(d): if isinstance(d, defaultdict): new_d = {} for k, v in d.items(): new_d[k] = defaultdict_to_dict(v) d = new_d return d
22.384615
45
0.639175
0
0
0
0
0
0
0
0
0
0
55f6b77678597fe15229ac3cf620e327925c88f6
1,217
py
Python
WebMirror/management/rss_parser_funcs/feed_parse_extractKaedesan721TumblrCom.py
fake-name/ReadableWebProxy
ed5c7abe38706acc2684a1e6cd80242a03c5f010
[ "BSD-3-Clause" ]
193
2016-08-02T22:04:35.000Z
2022-03-09T20:45:41.000Z
WebMirror/management/rss_parser_funcs/feed_parse_extractKaedesan721TumblrCom.py
fake-name/ReadableWebProxy
ed5c7abe38706acc2684a1e6cd80242a03c5f010
[ "BSD-3-Clause" ]
533
2016-08-23T20:48:23.000Z
2022-03-28T15:55:13.000Z
WebMirror/management/rss_parser_funcs/feed_parse_extractKaedesan721TumblrCom.py
rrosajp/ReadableWebProxy
ed5c7abe38706acc2684a1e6cd80242a03c5f010
[ "BSD-3-Clause" ]
19
2015-08-13T18:01:08.000Z
2021-07-12T17:13:09.000Z
def extractKaedesan721TumblrCom(item): ''' Parser for 'kaedesan721.tumblr.com' ''' bad_tags = [ 'FanArt', "htr asks", 'Spanish translations', 'htr anime','my thoughts', 'Cats', 'answered', 'ask meme', 'relay convos', 'translation related post', 'nightmare fuel', 'htr manga', 'memes', 'htrweek', 'Video Games', 'Animation', 'replies', 'jazz', 'Music', ] if any([bad in item['tags'] for bad in bad_tags]): return None vol, chp, frag, postfix = extractVolChapterFragmentPostfix(item['title']) if not (chp or vol) or "preview" in item['title'].lower(): return None if "my translations" in item['tags']: tagmap = [ ('Hakata Tonkotsu Ramens', 'Hakata Tonkotsu Ramens', 'translated'), ('hakata tonktosu ramens', 'Hakata Tonkotsu Ramens', 'translated'), ('PRC', 'PRC', 'translated'), ('Loiterous', 'Loiterous', 'oel'), ] for tagname, name, tl_type in tagmap: if tagname in item['tags']: return buildReleaseMessageWithType(item, name, vol, chp, frag=frag, postfix=postfix, tl_type=tl_type) return False
26.456522
105
0.576828
0
0
0
0
0
0
0
0
491
0.403451
55f710f1ba87dd022df6c57369e502a39ab22bee
8,244
py
Python
l0bnb/tree.py
rahulmaz/L0BnB
72c262581dd2d7e1489668c2fb2052214b6bbcdd
[ "MIT" ]
1
2020-04-16T03:40:36.000Z
2020-04-16T03:40:36.000Z
l0bnb/tree.py
rahulmaz/L0BnB
72c262581dd2d7e1489668c2fb2052214b6bbcdd
[ "MIT" ]
1
2020-04-16T04:12:12.000Z
2020-04-16T04:12:12.000Z
l0bnb/tree.py
rahulmaz/L0BnB
72c262581dd2d7e1489668c2fb2052214b6bbcdd
[ "MIT" ]
1
2020-04-16T03:42:19.000Z
2020-04-16T03:42:19.000Z
import time import queue import sys import numpy as np from scipy import optimize as sci_opt from .node import Node from .utilities import branch, is_integral class BNBTree: def __init__(self, x, y, inttol=1e-4, reltol=1e-4): """ Initiate a BnB Tree to solve the least squares regression problem with l0l2 regularization Parameters ---------- x: np.array n x p numpy array y: np.array 1 dimensional numpy array of size n inttol: float The integral tolerance of a variable. reltol: float primal-dual relative tolerance """ self.x = x self.y = y self.inttol = inttol self.reltol = reltol self.xi_xi = np.sum(x * x, axis=0) # The number of features self.p = x.shape[1] self.n = x.shape[0] self.node_bfs_queue = queue.Queue() self.node_dfs_queue = queue.LifoQueue() self.levels = {} # self.leaves = [] self.number_of_nodes = 0 self.root = None def solve(self, l0, l2, m, gaptol=1e-2, warm_start=None, mu=0.95, branching='maxfrac', l1solver='l1cd', number_of_dfs_levels=0, verbose=False): """ Solve the least squares problem with l0l2 regularization Parameters ---------- l0: float The zeroth norm coefficient l2: float The second norm coefficient m: float features bound (big M) gaptol: float the relative gap between the upper and lower bound after which the algorithm will be terminated warm_start: np.array (p x 1) array representing a warm start branching: str 'maxfrac' or 'strong' l1solver: str 'l1cd', 'gurobi' or 'mosek' mu: float Used with strong branching number_of_dfs_levels: int number of levels to solve as dfs verbose: int print progress Returns ------- tuple uppersol, upperbound, lower_bound, best_gap, sol_time """ st = time.time() if warm_start is None: upperbound = sys.maxsize uppersol = None else: if verbose: print("using a warm start") support = np.nonzero(warm_start)[0] x_support = self.x[:, support] x_ridge = np.sqrt(2 * l2) * np.identity(len(support)) x_upper = np.concatenate((x_support, x_ridge), axis=0) y_upper = np.concatenate((self.y, np.zeros(len(support))), axis=0) res = sci_opt.lsq_linear(x_upper, y_upper, (-m, m)) upperbound = res.cost + l0 * len(support) uppersol = warm_start uppersol[support] = res.x if verbose: print(f"initializing using a warm start took {time.time() - st}") # upper and lower bounds zlb = np.zeros(self.p) zub = np.ones(self.p) # root node self.root = Node(None, zlb, zub, x=self.x, y=self.y, l0=l0, l2=l2, m=m, xi_xi=self.xi_xi) self.node_bfs_queue.put(self.root) # lower and upper bounds initialization lower_bound = {} dual_bound = {} self.levels = {0: 1} min_open_level = 0 if verbose: print(f'solving using {number_of_dfs_levels} dfs levels') while self.node_bfs_queue.qsize() > 0 or self.node_dfs_queue.qsize() > 0: # get node if self.node_dfs_queue.qsize() > 0: current_node = self.node_dfs_queue.get() else: current_node = self.node_bfs_queue.get() # print(current_node.level, upperbound, self.levels) # prune? if current_node.parent_cost and upperbound <= \ current_node.parent_cost: self.levels[current_node.level] -= 1 # self.leaves.append(current_node) continue # calculate lower bound and update self.number_of_nodes += 1 current_lower_bound, current_dual_cost = current_node.\ lower_solve(l1solver, self.reltol, self.inttol) lower_bound[current_node.level] = \ min(current_lower_bound, lower_bound.get(current_node.level, sys.maxsize)) dual_bound[current_node.level] = \ min(current_dual_cost, dual_bound.get(current_node.level, sys.maxsize)) self.levels[current_node.level] -= 1 # update gap? if self.levels[min_open_level] == 0: del self.levels[min_open_level] min_value = max([j for i, j in dual_bound.items() if i <= min_open_level]) best_gap = (upperbound - min_value)/abs(upperbound) if verbose: print(f'l: {min_open_level}, (d: {min_value}, ' f'p: {lower_bound[min_open_level]}), u: {upperbound},' f' g: {best_gap}, t: {time.time() - st} s') # arrived at a solution? if best_gap <= gaptol: # self.leaves += [current_node] + \ # list(self.node_bfs_queue.queue) + \ # list(self.node_dfs_queue.queue) return uppersol, upperbound, lower_bound, best_gap, \ time.time() - st min_open_level += 1 # integral solution? if is_integral(current_node.lower_bound_z, self.inttol): current_upper_bound = current_lower_bound if current_upper_bound < upperbound: upperbound = current_upper_bound uppersol = current_node.lower_bound_solution # self.leaves.append(current_node) if verbose: print('itegral:', current_node) # branch? elif current_dual_cost < upperbound: current_upper_bound = current_node.upper_solve() if current_upper_bound < upperbound: upperbound = current_upper_bound uppersol = current_node.upper_bound_solution left_node, right_node = branch(current_node, self.x, l0, l2, m, self.xi_xi, self.inttol, branching, mu) self.levels[current_node.level + 1] = \ self.levels.get(current_node.level + 1, 0) + 2 if current_node.level < min_open_level + number_of_dfs_levels: self.node_dfs_queue.put(right_node) self.node_dfs_queue.put(left_node) else: self.node_bfs_queue.put(right_node) self.node_bfs_queue.put(left_node) # prune? else: pass # self.leaves.append(current_node) min_value = max([j for i, j in dual_bound.items() if i <= min_open_level]) best_gap = (upperbound - min_value)/abs(upperbound) return uppersol, upperbound, lower_bound, best_gap, time.time() - st # def get_lower_optimal_node(self): # self.leaves = sorted(self.leaves) # if self.leaves[-1].lower_bound_value: # return self.leaves[-1] # else: # return self.leaves[-1].parent # # @staticmethod # def support_list(current_node): # list_ = [] # while current_node: # list_.append(current_node.support) # current_node = current_node.parent # return list_ # # def optimal_support_list(self): # list_ = [] # current_node = self.get_lower_optimal_node() # while current_node: # list_.append(current_node.support) # current_node = current_node.parent # return list_
37.135135
81
0.533236
8,080
0.980107
0
0
0
0
0
0
2,788
0.338185
55f78570dc2c54902bbba417e6ce4621cf9434e6
1,819
py
Python
miniGithub/migrations/0003_auto_20200119_0955.py
stefan096/UKS
aeabe6a9995143c006ad4143e8e876a102e9d69b
[ "MIT" ]
null
null
null
miniGithub/migrations/0003_auto_20200119_0955.py
stefan096/UKS
aeabe6a9995143c006ad4143e8e876a102e9d69b
[ "MIT" ]
36
2020-01-12T17:00:23.000Z
2020-03-21T13:25:28.000Z
miniGithub/migrations/0003_auto_20200119_0955.py
stefan096/UKS
aeabe6a9995143c006ad4143e8e876a102e9d69b
[ "MIT" ]
null
null
null
# Generated by Django 3.0.2 on 2020-01-19 09:55 from django.conf import settings from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ migrations.swappable_dependency(settings.AUTH_USER_MODEL), ('miniGithub', '0002_project_owner'), ] operations = [ migrations.CreateModel( name='Comment', fields=[ ('custom_event_ptr', models.OneToOneField(auto_created=True, on_delete=django.db.models.deletion.CASCADE, parent_link=True, primary_key=True, serialize=False, to='miniGithub.Custom_Event')), ('description', models.CharField(max_length=500)), ], bases=('miniGithub.custom_event',), ), migrations.AlterField( model_name='custom_event', name='creator', field=models.ForeignKey(null=True, on_delete=django.db.models.deletion.CASCADE, to=settings.AUTH_USER_MODEL), ), migrations.CreateModel( name='Problem', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('title', models.CharField(max_length=100)), ('base_problem', models.ForeignKey(null=True, on_delete=django.db.models.deletion.CASCADE, related_name='problem', to='miniGithub.Problem')), ('project', models.ForeignKey(null=True, on_delete=django.db.models.deletion.CASCADE, to='miniGithub.Project')), ], ), migrations.AddField( model_name='custom_event', name='problem', field=models.ForeignKey(null=True, on_delete=django.db.models.deletion.CASCADE, to='miniGithub.Problem'), ), ]
41.340909
206
0.632216
1,660
0.912589
0
0
0
0
0
0
331
0.181968
55f7fc91f85571caa12221e2e54d28b60ea32a14
4,468
py
Python
megatron/model/gpt_model.py
vat99/Megatron-LM
fd61ae95aa8f3f41aa970cb86e943a7e5bfe0d1a
[ "MIT" ]
1
2022-03-29T09:16:39.000Z
2022-03-29T09:16:39.000Z
megatron/model/gpt_model.py
vat99/Megatron-LM
fd61ae95aa8f3f41aa970cb86e943a7e5bfe0d1a
[ "MIT" ]
5
2022-01-20T08:06:03.000Z
2022-03-10T10:01:32.000Z
megatron/model/gpt_model.py
vat99/Megatron-LM
fd61ae95aa8f3f41aa970cb86e943a7e5bfe0d1a
[ "MIT" ]
1
2022-03-25T12:00:47.000Z
2022-03-25T12:00:47.000Z
# coding=utf-8 # Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """GPT-2 model.""" import torch from megatron import get_args from megatron import mpu from .module import MegatronModule from .enums import AttnMaskType from .language_model import parallel_lm_logits from .language_model import get_language_model from .utils import init_method_normal from .utils import scaled_init_method_normal def post_language_model_processing(lm_output, labels, logit_weights, parallel_output, fp16_lm_cross_entropy): # Output. output = parallel_lm_logits( lm_output, logit_weights, parallel_output) if labels is None: return output else: if fp16_lm_cross_entropy: assert output.dtype == torch.half loss = mpu.vocab_parallel_cross_entropy(output, labels) else: loss = mpu.vocab_parallel_cross_entropy(output.float(), labels) return loss class GPTModel(MegatronModule): """GPT-2 Language model.""" def __init__(self, num_tokentypes=0, parallel_output=True, pre_process=True, post_process=True): super(GPTModel, self).__init__() args = get_args() self.parallel_output = parallel_output self.pre_process = pre_process self.post_process = post_process self.fp16_lm_cross_entropy = args.fp16_lm_cross_entropy self.language_model, self._language_model_key = get_language_model( num_tokentypes=num_tokentypes, add_pooler=False, encoder_attn_mask_type=AttnMaskType.causal, init_method=init_method_normal(args.init_method_std), scaled_init_method=scaled_init_method_normal(args.init_method_std, args.num_layers), pre_process=self.pre_process, post_process=self.post_process) self.initialize_word_embeddings(init_method_normal) def set_input_tensor(self, input_tensor): """See megatron.model.transformer.set_input_tensor()""" self.language_model.set_input_tensor(input_tensor) def forward(self, input_ids, position_ids, attention_mask, labels=None, tokentype_ids=None, inference_params=None): lm_output = self.language_model( input_ids, position_ids, attention_mask, inference_params=inference_params) if self.post_process: return post_language_model_processing( lm_output, labels, self.word_embeddings_weight(), self.parallel_output, self.fp16_lm_cross_entropy) else: return lm_output def state_dict_for_save_checkpoint(self, destination=None, prefix='', keep_vars=False): state_dict_ = {} state_dict_[self._language_model_key] \ = self.language_model.state_dict_for_save_checkpoint( destination, prefix, keep_vars) # Save word_embeddings. if self.post_process and not self.pre_process: state_dict_[self._word_embeddings_for_head_key] \ = self.word_embeddings.state_dict(destination, prefix, keep_vars) return state_dict_ def load_state_dict(self, state_dict, strict=True): """Customized load.""" # Load word_embeddings. if self.post_process and not self.pre_process: self.word_embeddings.load_state_dict( state_dict[self._word_embeddings_for_head_key], strict=strict) if self._language_model_key in state_dict: state_dict = state_dict[self._language_model_key] self.language_model.load_state_dict(state_dict, strict=strict)
35.744
81
0.660922
2,894
0.647717
0
0
0
0
0
0
790
0.176813
55f88475538cbd35f162e1da477042bc863348a2
67
py
Python
python/testData/inspections/PyMethodMayBeStaticInspection/documentedEmpty.py
jnthn/intellij-community
8fa7c8a3ace62400c838e0d5926a7be106aa8557
[ "Apache-2.0" ]
2
2018-12-29T09:53:39.000Z
2018-12-29T09:53:42.000Z
python/testData/inspections/PyMethodMayBeStaticInspection/documentedEmpty.py
Cyril-lamirand/intellij-community
60ab6c61b82fc761dd68363eca7d9d69663cfa39
[ "Apache-2.0" ]
173
2018-07-05T13:59:39.000Z
2018-08-09T01:12:03.000Z
python/testData/inspections/PyMethodMayBeStaticInspection/documentedEmpty.py
Cyril-lamirand/intellij-community
60ab6c61b82fc761dd68363eca7d9d69663cfa39
[ "Apache-2.0" ]
2
2020-03-15T08:57:37.000Z
2020-04-07T04:48:14.000Z
class A: def foo(self): """Do something""" pass
16.75
26
0.462687
67
1
0
0
0
0
0
0
18
0.268657
55f89e67422221688251900fa69112d9cc2e2083
5,324
py
Python
tests/utest/test_default_config.py
ngoan1608/robotframework-robocop
3444bbc98102f74ebae08dcb26cd63346f9ed03e
[ "Apache-2.0" ]
2
2021-12-22T01:50:52.000Z
2022-01-05T06:32:27.000Z
tests/utest/test_default_config.py
marcel-veselka/robotframework-robocop
4711c0dd389baa2d0346e62e1fda3c02c2dcc73b
[ "Apache-2.0" ]
null
null
null
tests/utest/test_default_config.py
marcel-veselka/robotframework-robocop
4711c0dd389baa2d0346e62e1fda3c02c2dcc73b
[ "Apache-2.0" ]
1
2021-06-30T11:01:51.000Z
2021-06-30T11:01:51.000Z
import os import sys import importlib from pathlib import Path from unittest.mock import patch import pytest import robocop.config from robocop.exceptions import InvalidArgumentError @pytest.fixture def config(): return robocop.config.Config() @pytest.fixture def path_to_test_data(): return Path(Path(__file__).parent.parent, 'test_data') class TestDefaultConfig: def test_find_project_root_same_dir(self, path_to_test_data, config): src = path_to_test_data / 'default_config' os.chdir(str(src)) root = config.find_file_in_project_root('.robocop') assert root == src / '.robocop' def test_find_project_root_missing_but_git(self, path_to_test_data, config): src = path_to_test_data / 'default_config_missing' / 'nested' / 'deeper' os.chdir(str(src)) root = config.find_file_in_project_root('.robocop') assert root == Path(__file__).parent.parent.parent / '.robocop' def test_load_config_from_default_file(self, path_to_test_data, config): src = path_to_test_data / 'default_config' os.chdir(str(src)) with patch.object(sys, 'argv', ['prog']): config.parse_opts() assert {'0810'} == config.include def test_load_config_from_default_file_verbose(self, path_to_test_data, config, capsys): src = path_to_test_data / 'default_config' os.chdir(str(src)) config.from_cli = True config.exec_dir = str(src) with patch.object(sys, 'argv', ['prog', '--verbose']): config.parse_opts() out, _ = capsys.readouterr() assert out == f'Loaded configuration from {config.config_from}\n' def test_ignore_config_from_default_file(self, path_to_test_data, config): src = path_to_test_data / 'default_config' os.chdir(str(src)) with patch.object(sys, 'argv', ['prog', '--include', '0202']): config.parse_opts() assert {'0202'} == config.include def test_load_default_config_before_pyproject(self, path_to_test_data, config): src = path_to_test_data / 'default_config_and_pyproject' os.chdir(str(src)) with patch.object(sys, 'argv', ['prog']): config.parse_opts() assert {'0810'} == config.include def test_pyproject(self, path_to_test_data, config): src = path_to_test_data / 'only_pyproject' os.chdir(str(src)) config.from_cli = True config.exec_dir = str(src) with patch.object(sys, 'argv', ['prog']): config.parse_opts() expected_config = robocop.config.Config(from_cli=True) with patch.object(sys, 'argv', [ 'robocop', '--include', 'W0504', '-i', '*doc*', '--exclude', '0203', '--reports', 'rules_by_id,scan_timer', '--ignore', 'ignore_me.robot', '--ext-rules', 'path_to_external\\dir', '--filetypes', '.txt,csv', '--threshold', 'E', '--no-recursive', '--format', '{source}:{line}:{col} [{severity}] {rule_id} {desc} (name)1', '--output', 'robocop.log', '--configure', 'line-too-long:line_length:150', '-c', '0201:severity:E', 'tests\\atest\\rules\\bad-indent', 'tests\\atest\\rules\\duplicated-library' ]): expected_config.parse_opts() config.config_from = '' config.parser, expected_config.parser = None, None config.output, expected_config.output = None, None assert len(config.include_patterns) == len(expected_config.include_patterns) config.include_patterns, expected_config.include_patterns = None, None assert config.__dict__ == expected_config.__dict__ def test_pyproject_verbose(self, path_to_test_data, config, capsys): src = path_to_test_data / 'only_pyproject' os.chdir(str(src)) config.from_cli = True config.exec_dir = str(src) with patch.object(sys, 'argv', ['prog', '--verbose']): config.parse_opts() out, _ = capsys.readouterr() assert out == f'Loaded configuration from {config.config_from}\n' def test_not_supported_option_pyproject(self, path_to_test_data, config): src = path_to_test_data / 'not_supported_option_pyproject' os.chdir(str(src)) with pytest.raises(InvalidArgumentError) as e, patch.object(sys, 'argv', ['prog']): config.parse_opts() assert "Invalid configuration for Robocop:\\n" \ "Option 'list' is not supported in pyproject.toml configuration file." in str(e) def test_invalid_toml_pyproject(self, path_to_test_data, config): src = path_to_test_data / 'invalid_pyproject' os.chdir(str(src)) with pytest.raises(InvalidArgumentError) as e, patch.object(sys, 'argv', ['prog']): config.parse_opts() assert "Invalid configuration for Robocop:\\nFailed to decode " in str(e) def test_toml_not_installed_pyproject(self, path_to_test_data): src = path_to_test_data / 'only_pyproject' os.chdir(str(src)) with patch.dict('sys.modules', {'toml': None}): importlib.reload(robocop.config) config = robocop.config.Config() with patch.object(sys, 'argv', ['prog']): config.parse_opts() assert config.include == set()
42.592
116
0.646506
4,967
0.932945
0
0
163
0.030616
0
0
1,184
0.222389
55f8affa309482626692f2a65c9326ebb9be7625
646
py
Python
tests/test_forms.py
haoziyeung/elasticstack
1fb4eb46317b402e0617badbc9034fb411a39992
[ "BSD-2-Clause" ]
2
2020-11-23T11:03:03.000Z
2020-11-23T11:03:31.000Z
tests/test_forms.py
haoziyeung/elasticstack
1fb4eb46317b402e0617badbc9034fb411a39992
[ "BSD-2-Clause" ]
null
null
null
tests/test_forms.py
haoziyeung/elasticstack
1fb4eb46317b402e0617badbc9034fb411a39992
[ "BSD-2-Clause" ]
null
null
null
#!/usr/bin/env python # -*- coding: utf-8 -*- """ test_elasticstack ------------ Tests for `elasticstack` forms module. """ from django import forms from django.test import TestCase from elasticstack.forms import SearchForm class TestForms(TestCase): def test_named_search_field(self): """Ensure that the `q` field can be optionally used""" class MyForm(SearchForm): s = forms.CharField(label='Search') f = forms.CharField(label='More search') search_field_name = 's' form = MyForm() self.assertTrue('s' in form.fields) self.assertFalse('q' in form.fields)
21.533333
62
0.633127
415
0.642415
0
0
0
0
0
0
206
0.318885
55fa09f3a8c3fad0ee952c33bd12012b56fb9d68
668
py
Python
AnkiIn/notetypes/ListCloze.py
Clouder0/AnkiIn
ca944bb9f79ce49bc2db62a0bfaeffe7908b48da
[ "MIT" ]
1
2021-07-04T08:10:53.000Z
2021-07-04T08:10:53.000Z
AnkiIn/notetypes/ListCloze.py
Clouder0/AnkiIn
ca944bb9f79ce49bc2db62a0bfaeffe7908b48da
[ "MIT" ]
35
2021-07-03T10:50:20.000Z
2022-01-09T09:33:17.000Z
AnkiIn/notetypes/ListCloze.py
Clouder0/AnkiIn
ca944bb9f79ce49bc2db62a0bfaeffe7908b48da
[ "MIT" ]
2
2021-08-21T11:33:00.000Z
2021-10-15T18:59:33.000Z
from .Cloze import get as cget from ..config import dict as conf from ..config import config_updater notetype_name = "ListCloze" if notetype_name not in conf["notetype"]: conf["notetype"][notetype_name] = {} settings = conf["notetype"][notetype_name] priority = None def update_list_cloze_config(): global settings, priority priority = settings.get("priority", 15) config_updater.append((update_list_cloze_config, 15)) def check(lines: list, extra_params={}) -> bool: return lines[0].startswith("- ") or lines[0].startswith(r"* ") def get(text: str, deck: str, tags: list, extra_params={}): return cget(text=text, deck=deck, tags=tags)
23.034483
66
0.712575
0
0
0
0
0
0
0
0
60
0.08982
55fadfd4280d478b35858e331edea1ce48c5383a
9,697
py
Python
app/routes.py
ptkaczyk/Ithacartists
0d8effafe64b29ae1756169cac1eb4d6bc980c1d
[ "MIT" ]
null
null
null
app/routes.py
ptkaczyk/Ithacartists
0d8effafe64b29ae1756169cac1eb4d6bc980c1d
[ "MIT" ]
null
null
null
app/routes.py
ptkaczyk/Ithacartists
0d8effafe64b29ae1756169cac1eb4d6bc980c1d
[ "MIT" ]
null
null
null
from flask import render_template, Flask, flash, redirect, url_for, abort, request from flask_login import login_user, logout_user, login_required from werkzeug.urls import url_parse from app import app, db from app.forms import * from app.models import * @app.route('/') @app.route('/landing') def landing(): return render_template('Landing.html', title='Landing') @app.route('/artistlist') def artistlist(): artists=Artist.query.all() return render_template('Artists.html', artists=artists, title='Artists') @app.route('/login', methods=['GET', 'POST']) def login(): form = loginForm() if form.validate_on_submit(): user=User.query.filter_by(username=form.username.data).first() if user is None or not user.check_password(form.password.data): flash('Incorrect name or password') return redirect(url_for('login')) login_user(user) return redirect(url_for('landing')) return render_template('Login.html', form=form, title='Login') @app.route('/search', methods=['GET','POST']) def search(): searched = Product.query.all() form = searchForm() if form.validate_on_submit(): searched = Product.query.filter_by(name=form.searchable.data).all() return render_template('search.html', searchable=searched, form=form, title='Search') @app.route('/user/<name>') def user(name): if len(User.query.filter_by(username=name).all()) > 0: chosenUser = User.query.filter_by(username=name).first() chosenProducts = Product.query.filter_by(Id=chosenUser.id).all() return render_template('user.html', title='User', userName=chosenUser.username, chosenUser=chosenUser, productList=chosenProducts) else: abort(404) @app.route('/product/<productName>') def product(productName): if len(Product.query.filter_by(name=productName).all()) > 0: chosenProduct=Product.query.filter_by(name=productName).first() chosenUser=User.query.filter_by(id=chosenProduct.userId).first() userName=chosenUser.username return render_template('product.html', title='Product', name=productName, userPosting=userName, description=chosenProduct.description, date=chosenProduct.dateHarvested, productPrice=chosenProduct.price, amount=chosenProduct.amount) else: abort(404) @app.route('/newProduct', methods=['GET','POST']) def newProduct(): form = productForm() if form.validate_on_submit(): flash('New product created: {}'.format(form.name.data)) newP = Product(name=form.name.data, description=form.description.data, price=form.price.data, amount=form.amount.data, dateHarvested=form.date.data, userId=4) db.session.add(newP) db.session.commit() return redirect(url_for('landing')) return render_template('newProduct.html', title='New Product', form=form) @app.route('/newartist', methods=['GET', 'POST']) @login_required def newartist(): form = artistForm() if form.validate_on_submit(): if len(Artist.query.filter_by(firstname=form.artistName.data).all()) > 0: flash('That name already exists') else: flash('New page created: {}'.format(form.artistName.data)) newA = Artist(firstname=form.artistName.data, lastname='', hometown=form.hometown.data, description=form.description.data) db.session.add(newA) db.session.commit() return redirect(url_for('artistlist')) return render_template('NewArtist.html', form=form, title='New Artist') @app.route('/newvenue', methods=['GET','POST']) def newvenue(): form = venueForm() if form.validate_on_submit(): if len(Venue.query.filter_by(name=form.name.data).all()) > 0: flash('That venue already exists') else: flash('New venue created: {}'.format(form.name.data)) newV = Venue(name=form.name.data, description=form.description.data) db.session.add(newV) db.session.commit() return redirect(url_for('artistlist')) return render_template('NewVenue.html', title='New Venue', form=form) @app.route('/newevent', methods=['GET', 'POST']) def newevent(): form = eventForm() form.venue.choices = [(venue.id, venue.name) for venue in Venue.query.all()] form.artists.choices = [(artist.id, artist.firstname) for artist in Artist.query.all()] if form.validate_on_submit(): if len(Event.query.filter_by(name=form.name.data).all()) > 0: flash('That event already exists') else: flash('New event created: {}'.format(form.name.data)) newE = Event(name=form.name.data, description=form.description.data, time=form.time.data, venueId=form.venue.data) db.session.add(newE) db.session.commit() for a in form.artists.data: newX = ArtistToEvent(artistId=Artist.query.filter_by(id=a).first().id, eventId=newE.id) db.session.add(newX) db.session.commit() return redirect(url_for('artistlist')) return render_template('NewEvent.html', title='New Event', form=form) @app.route('/artist/<name>') #instructor = Instructor.query.filter_by(firstname="Alex").first() def artist(name): if len(Artist.query.filter_by(firstname=name).all()) > 0: chosenArtist=Artist.query.filter_by(firstname=name).first() chosenJoins=ArtistToEvent.query.filter_by(artistId=chosenArtist.id).all() chosenEvents = [] trackingInt=0 for oneEvent in chosenJoins: chosenEvents.append(Event.query.filter_by(id=chosenJoins[trackingInt].eventId).first()) trackingInt=trackingInt+1 #chosenEvents=Event.query.filter_by(id=chosenJoin.eventId).all() return render_template('Artist.html', title='Artist', artistName=chosenArtist.firstname, hometown=chosenArtist.hometown, description=chosenArtist.description, event_list=chosenEvents) else: abort(404) @app.route('/register', methods=['GET','POST']) def register(): form = registerForm() if form.validate_on_submit(): if len(User.query.filter_by(username=form.username.data).all()) > 0: flash('That name already exists') else: flash('New user created. You can now log in.') newU= User(username=form.username.data, password=form.password.data) newU.set_password(form.password.data) db.session.add(newU) db.session.commit() return redirect(url_for('landing')) return render_template('Register.html', form=form, title='Register') @app.route('/logout') def logout(): logout_user() flash("User has been logged out.") return redirect(url_for('landing')) @app.route('/populate_db') def populate_db(): a1=Artist(firstname='Anne', lastname='Apricot', hometown='Ithaca', description='A') a2=Artist(firstname='Ben', lastname='Barrel', hometown='Ithaca', description='B') a3=Artist(firstname='Cathy', lastname='Chowder', hometown='Ithaca', description='C') a4=Artist(firstname='Dan', lastname='Derringer', hometown='Delanson', description='D') e1=Event(name='Augustfest', description='A', venueId='0') e2 = Event(name='Burgerfest', description='B', venueId='1') e3 = Event(name='Ciderfest', description='C', venueId='2') e4 = Event(name='Donutfest', description='D', venueId='1') e5 = Event(name='Earwigfest', description='E', venueId='1') e6 = Event(name='Falafelfest', description='F', venueId='2') ate1 = ArtistToEvent(artistId=1, eventId=1) ate2 = ArtistToEvent(artistId=2, eventId=2) ate3 = ArtistToEvent(artistId=3, eventId=3) ate4 = ArtistToEvent(artistId=4, eventId=4) ate5 = ArtistToEvent(artistId=1, eventId=5) ate6 = ArtistToEvent(artistId=2, eventId=5) ate7 = ArtistToEvent(artistId=3, eventId=6) ate8 = ArtistToEvent(artistId=1, eventId=6) v1 = Venue(name='Adelide Acres', description='A') v2 = Venue(name='Baltimore Barrelers', description='B') v3 = Venue(name='Canary Church', description='C') u1 = User(username='Peter',password='Tkaczyk') u1.set_password('Tkaczyk') u2 = User(username='Old Man McFarmer', password='Farmlivin') u2.set_password('Farmlivin') u3 = User(username='Young Man McFarmer', password='ILovFarm') u3.set_password('ILovFarm') p1 = Product(name='Eggs', amount = 12, dateHarvested = '12-12-2020', description = 'delicious eggs', price = '$0.99' , userId=1) p2 = Product(name='Tomatoes', amount=20, dateHarvested='12-14-2020', description='delicious tomatoes', price='$1.99', userId=2) p3 = Product(name='Beets', amount=30, dateHarvested='12-10-2020', description='delicious beets', price='$2.99' , userId=3) p4 = Product(name='Bacon', amount=10, dateHarvested='11-20-2020', description='delicious bacon', price='$3.99', userId=2) p5 = Product(name='Turnips', amount=40, dateHarvested='12-10-2020', description='delicious turnips', price='$4.99', userId=3) db.session.add_all([u1, u2, u3, p1, p2, p3, p4, p5]) db.session.commit() return "database has been populated." @app.route('/reset_db') def reset_db(): flash("Resetting database: deleting old data and repopulating with dummy data") meta = db.metadata for table in reversed(meta.sorted_tables): print('Clear table {}'.format(table)) db.session.execute(table.delete()) db.session.commit() populate_db() return "Reset and repopulated data."
42.530702
191
0.662267
0
0
0
0
9,400
0.969372
0
0
1,800
0.185624
55fb46ee1813e2c980cdc6a6a49ca860bf41a84e
2,861
py
Python
src/bloombox/schema/services/devices/v1beta1/DevicesService_Beta1_pb2_grpc.py
Bloombox/Python
1b125fbdf54efb390afe12aaa966f093218c4387
[ "Apache-2.0" ]
4
2018-01-23T20:13:11.000Z
2018-07-28T22:36:09.000Z
src/bloombox/schema/services/devices/v1beta1/DevicesService_Beta1_pb2_grpc.py
Bloombox/Python
1b125fbdf54efb390afe12aaa966f093218c4387
[ "Apache-2.0" ]
159
2018-02-02T09:55:52.000Z
2021-07-21T23:41:59.000Z
src/bloombox/schema/services/devices/v1beta1/DevicesService_Beta1_pb2_grpc.py
Bloombox/Python
1b125fbdf54efb390afe12aaa966f093218c4387
[ "Apache-2.0" ]
3
2018-01-23T20:13:15.000Z
2020-01-17T01:07:53.000Z
# Generated by the gRPC Python protocol compiler plugin. DO NOT EDIT! import grpc from devices.v1beta1 import DevicesService_Beta1_pb2 as devices_dot_v1beta1_dot_DevicesService__Beta1__pb2 class DevicesStub(object): """Specifies the devices service, which enables managed devices to check-in, authorize themselves, and discover their identity/role. """ def __init__(self, channel): """Constructor. Args: channel: A grpc.Channel. """ self.Ping = channel.unary_unary( '/bloombox.schema.services.devices.v1beta1.Devices/Ping', request_serializer=devices_dot_v1beta1_dot_DevicesService__Beta1__pb2.Ping.Request.SerializeToString, response_deserializer=devices_dot_v1beta1_dot_DevicesService__Beta1__pb2.Ping.Response.FromString, ) self.Activate = channel.unary_unary( '/bloombox.schema.services.devices.v1beta1.Devices/Activate', request_serializer=devices_dot_v1beta1_dot_DevicesService__Beta1__pb2.Activation.Request.SerializeToString, response_deserializer=devices_dot_v1beta1_dot_DevicesService__Beta1__pb2.Activation.Response.FromString, ) class DevicesServicer(object): """Specifies the devices service, which enables managed devices to check-in, authorize themselves, and discover their identity/role. """ def Ping(self, request, context): """Ping the device server. """ context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def Activate(self, request, context): """Setup and enable a device for live use. If this is the first time the subject device has activated itself, initialize or otherwise provision any requisite objects or resources. """ context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def add_DevicesServicer_to_server(servicer, server): rpc_method_handlers = { 'Ping': grpc.unary_unary_rpc_method_handler( servicer.Ping, request_deserializer=devices_dot_v1beta1_dot_DevicesService__Beta1__pb2.Ping.Request.FromString, response_serializer=devices_dot_v1beta1_dot_DevicesService__Beta1__pb2.Ping.Response.SerializeToString, ), 'Activate': grpc.unary_unary_rpc_method_handler( servicer.Activate, request_deserializer=devices_dot_v1beta1_dot_DevicesService__Beta1__pb2.Activation.Request.FromString, response_serializer=devices_dot_v1beta1_dot_DevicesService__Beta1__pb2.Activation.Response.SerializeToString, ), } generic_handler = grpc.method_handlers_generic_handler( 'bloombox.schema.services.devices.v1beta1.Devices', rpc_method_handlers) server.add_generic_rpc_handlers((generic_handler,))
42.701493
119
0.774205
1,757
0.614121
0
0
0
0
0
0
921
0.321915
55fb9d49fcf1a873c80991e0f909fcb04543c2ba
10,052
py
Python
oslo-modules/oslo_messaging/_drivers/amqp.py
esse-io/zen-common
8ede82ab81bad53c3b947084b812c44e329f159b
[ "Apache-2.0" ]
1
2021-02-17T15:30:45.000Z
2021-02-17T15:30:45.000Z
oslo-modules/oslo_messaging/_drivers/amqp.py
esse-io/zen-common
8ede82ab81bad53c3b947084b812c44e329f159b
[ "Apache-2.0" ]
null
null
null
oslo-modules/oslo_messaging/_drivers/amqp.py
esse-io/zen-common
8ede82ab81bad53c3b947084b812c44e329f159b
[ "Apache-2.0" ]
2
2015-11-03T03:21:55.000Z
2015-12-01T08:56:14.000Z
# Copyright 2010 United States Government as represented by the # Administrator of the National Aeronautics and Space Administration. # All Rights Reserved. # Copyright 2011 - 2012, Red Hat, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. """ Shared code between AMQP based openstack.common.rpc implementations. The code in this module is shared between the rpc implementations based on AMQP. Specifically, this includes impl_kombu and impl_qpid. impl_carrot also uses AMQP, but is deprecated and predates this code. """ import collections import logging import uuid from oslo_config import cfg import six from oslo_messaging._drivers import common as rpc_common from oslo_messaging._drivers import pool deprecated_durable_opts = [ cfg.DeprecatedOpt('amqp_durable_queues', group='DEFAULT'), cfg.DeprecatedOpt('rabbit_durable_queues', group='DEFAULT') ] amqp_opts = [ cfg.BoolOpt('amqp_durable_queues', default=False, deprecated_opts=deprecated_durable_opts, help='Use durable queues in AMQP.'), cfg.BoolOpt('amqp_auto_delete', default=False, deprecated_group='DEFAULT', help='Auto-delete queues in AMQP.'), cfg.BoolOpt('send_single_reply', default=False, help='Send a single AMQP reply to call message. The current ' 'behaviour since oslo-incubator is to send two AMQP ' 'replies - first one with the payload, a second one to ' 'ensure the other have finish to send the payload. We ' 'are going to remove it in the N release, but we must ' 'keep backward compatible at the same time. This option ' 'provides such compatibility - it defaults to False in ' 'Liberty and can be turned on for early adopters with a ' 'new installations or for testing. Please note, that ' 'this option will be removed in the Mitaka release.') ] UNIQUE_ID = '_unique_id' LOG = logging.getLogger(__name__) # NOTE(sileht): Even if rabbit/qpid have only one Connection class, # this connection can be used for two purposes: # * wait and receive amqp messages (only do read stuffs on the socket) # * send messages to the broker (only do write stuffs on the socket) # The code inside a connection class is not concurrency safe. # Using one Connection class instance for doing both, will result # of eventlet complaining of multiple greenthreads that read/write the # same fd concurrently... because 'send' and 'listen' run in different # greenthread. # So, a connection cannot be shared between thread/greenthread and # this two variables permit to define the purpose of the connection # to allow drivers to add special handling if needed (like heatbeat). # amqp drivers create 3 kind of connections: # * driver.listen*(): each call create a new 'PURPOSE_LISTEN' connection # * driver.send*(): a pool of 'PURPOSE_SEND' connections is used # * driver internally have another 'PURPOSE_LISTEN' connection dedicated # to wait replies of rpc call PURPOSE_LISTEN = 'listen' PURPOSE_SEND = 'send' class ConnectionPool(pool.Pool): """Class that implements a Pool of Connections.""" def __init__(self, conf, rpc_conn_pool_size, url, connection_cls): self.connection_cls = connection_cls self.conf = conf self.url = url super(ConnectionPool, self).__init__(rpc_conn_pool_size) self.reply_proxy = None # TODO(comstud): Timeout connections not used in a while def create(self, purpose=None): if purpose is None: purpose = PURPOSE_SEND LOG.debug('Pool creating new connection') return self.connection_cls(self.conf, self.url, purpose) def empty(self): for item in self.iter_free(): item.close() class ConnectionContext(rpc_common.Connection): """The class that is actually returned to the create_connection() caller. This is essentially a wrapper around Connection that supports 'with'. It can also return a new Connection, or one from a pool. The function will also catch when an instance of this class is to be deleted. With that we can return Connections to the pool on exceptions and so forth without making the caller be responsible for catching them. If possible the function makes sure to return a connection to the pool. """ def __init__(self, connection_pool, purpose): """Create a new connection, or get one from the pool.""" self.connection = None self.connection_pool = connection_pool pooled = purpose == PURPOSE_SEND if pooled: self.connection = connection_pool.get() else: # a non-pooled connection is requested, so create a new connection self.connection = connection_pool.create(purpose) self.pooled = pooled self.connection.pooled = pooled def __enter__(self): """When with ConnectionContext() is used, return self.""" return self def _done(self): """If the connection came from a pool, clean it up and put it back. If it did not come from a pool, close it. """ if self.connection: if self.pooled: # Reset the connection so it's ready for the next caller # to grab from the pool try: self.connection.reset() except Exception: LOG.exception("Fail to reset the connection, drop it") try: self.connection.close() except Exception: pass self.connection = self.connection_pool.create() finally: self.connection_pool.put(self.connection) else: try: self.connection.close() except Exception: pass self.connection = None def __exit__(self, exc_type, exc_value, tb): """End of 'with' statement. We're done here.""" self._done() def __del__(self): """Caller is done with this connection. Make sure we cleaned up.""" self._done() def close(self): """Caller is done with this connection.""" self._done() def __getattr__(self, key): """Proxy all other calls to the Connection instance.""" if self.connection: return getattr(self.connection, key) else: raise rpc_common.InvalidRPCConnectionReuse() class RpcContext(rpc_common.CommonRpcContext): """Context that supports replying to a rpc.call.""" def __init__(self, **kwargs): self.msg_id = kwargs.pop('msg_id', None) self.reply_q = kwargs.pop('reply_q', None) self.conf = kwargs.pop('conf') super(RpcContext, self).__init__(**kwargs) def deepcopy(self): values = self.to_dict() values['conf'] = self.conf values['msg_id'] = self.msg_id values['reply_q'] = self.reply_q return self.__class__(**values) def unpack_context(conf, msg): """Unpack context from msg.""" context_dict = {} for key in list(msg.keys()): key = six.text_type(key) if key.startswith('_context_'): value = msg.pop(key) context_dict[key[9:]] = value context_dict['msg_id'] = msg.pop('_msg_id', None) context_dict['reply_q'] = msg.pop('_reply_q', None) context_dict['conf'] = conf return RpcContext.from_dict(context_dict) def pack_context(msg, context): """Pack context into msg. Values for message keys need to be less than 255 chars, so we pull context out into a bunch of separate keys. If we want to support more arguments in rabbit messages, we may want to do the same for args at some point. """ if isinstance(context, dict): context_d = six.iteritems(context) else: context_d = six.iteritems(context.to_dict()) msg.update(('_context_%s' % key, value) for (key, value) in context_d) class _MsgIdCache(object): """This class checks any duplicate messages.""" # NOTE: This value is considered can be a configuration item, but # it is not necessary to change its value in most cases, # so let this value as static for now. DUP_MSG_CHECK_SIZE = 16 def __init__(self, **kwargs): self.prev_msgids = collections.deque([], maxlen=self.DUP_MSG_CHECK_SIZE) def check_duplicate_message(self, message_data): """AMQP consumers may read same message twice when exceptions occur before ack is returned. This method prevents doing it. """ try: msg_id = message_data.pop(UNIQUE_ID) except KeyError: return if msg_id in self.prev_msgids: raise rpc_common.DuplicateMessageError(msg_id=msg_id) return msg_id def add(self, msg_id): if msg_id and msg_id not in self.prev_msgids: self.prev_msgids.append(msg_id) def _add_unique_id(msg): """Add unique_id for checking duplicate messages.""" unique_id = uuid.uuid4().hex msg.update({UNIQUE_ID: unique_id}) class AMQPDestinationNotFound(Exception): pass
37.092251
78
0.643355
5,096
0.506964
0
0
0
0
0
0
4,990
0.496419
55fbb1e9d0d4e9b678c1d12c81f6b84f0a9bebb8
1,551
py
Python
scripts/agenda.py
benjaminogles/vim-head
be3e01b53d314b6f7e0d72a736fe40f38de2cf5f
[ "MIT" ]
3
2020-04-13T17:47:05.000Z
2020-05-11T17:23:02.000Z
scripts/agenda.py
benjaminogles/vim-head
be3e01b53d314b6f7e0d72a736fe40f38de2cf5f
[ "MIT" ]
3
2020-04-13T16:51:27.000Z
2020-04-13T16:53:54.000Z
scripts/agenda.py
benjaminogles/vim-head
be3e01b53d314b6f7e0d72a736fe40f38de2cf5f
[ "MIT" ]
null
null
null
#!/bin/python3 import datetime import itertools import sys from heading import * days = ['Mon', 'Tue', 'Wed', 'Thu', 'Fri', 'Sat', 'Sun'] def priority_key(): weights = {} sep = KEYWORDS.index('|') for keyword in KEYWORDS[sep+1:]: weights[keyword] = len(KEYWORDS) idx = 1 while idx <= sep: weights[KEYWORDS[sep - idx]] = idx idx += 1 return lambda heading: weights[heading.keyword] if heading.keyword in weights else len(weights.keys()) - 1 def date_key(heading): if heading.date is None: return datetime.date(datetime.MAXYEAR, 1, 1) return heading.date def has_date(heading): return heading.date is not None def is_pending(heading): if heading.keyword not in KEYWORDS: return False return KEYWORDS.index(heading.keyword) < KEYWORDS.index('|') if __name__ == '__main__': import argparse inputs = from_fields_file(sys.stdin) todos = filter(has_date, inputs) todos = filter(is_pending, todos) todos = sorted(todos, key=date_key) todos = itertools.groupby(todos, key=date_key) today = datetime.date.today() warned = False for date, todo_group in todos: if date < today and not warned: warned = True print('\n! Overdue !') elif date == today: print ('\n= Today =') elif date > today: print('\n= %s %s =' % (days[date.weekday()], date)) prioritized = sorted(todo_group, key=priority_key()) for todo in prioritized: print(todo)
27.210526
110
0.617666
0
0
0
0
0
0
0
0
106
0.068343
55fbb54a4881fb0eed71b1a082583ae85646db84
5,635
py
Python
clusterpy/core/toolboxes/cluster/componentsAlg/areamanager.py
CentroGeo/clusterpy_python3
5c2600b048836e54495dc5997a250af72f72f6e7
[ "BSD-3-Clause" ]
3
2019-09-29T15:27:57.000Z
2021-01-23T02:05:07.000Z
clusterpy/core/toolboxes/cluster/componentsAlg/areamanager.py
CentroGeo/clusterpy_python3
5c2600b048836e54495dc5997a250af72f72f6e7
[ "BSD-3-Clause" ]
null
null
null
clusterpy/core/toolboxes/cluster/componentsAlg/areamanager.py
CentroGeo/clusterpy_python3
5c2600b048836e54495dc5997a250af72f72f6e7
[ "BSD-3-Clause" ]
null
null
null
# encoding: latin2 """Algorithm utilities G{packagetree core} """ from __future__ import division from __future__ import print_function from __future__ import absolute_import from builtins import range from builtins import object from past.utils import old_div __author__ = "Juan C. Duque" __credits__ = "Copyright (c) 2009-11 Juan C. Duque" __license__ = "New BSD License" __version__ = "1.0.0" __maintainer__ = "RiSE Group" __email__ = "contacto@rise-group.org" from .areacl import AreaCl from .dist2Regions import distanceStatDispatcher class AreaManager(object): """ This class contains operations at areal level, including the generation of instances of areas, a wide range of area2area and area2region distance functions. """ def __init__(self, w, y, distanceType="EuclideanSquared", variance="false"): """ @type w: dictionary @param w: With B{key} = area Id, and B{value} = list with Ids of neighbours of each area. @type y: dictionary @param y: With B{key} = area Id, and B{value} = list with attribute values. @type distanceType: string @keyword distanceType: Function to calculate the distance between areas. Default value I{distanceType = 'EuclideanSquared'}. @type variance: boolean @keyword variance: Boolean indicating if the data have variance matrix. Default value I{variance = 'false'}. """ self.y = y self.areas = {} self.noNeighs = set([]) self.variance = variance self.distanceType = distanceType self.createAreas(w, y) self.distanceStatDispatcher = distanceStatDispatcher def createAreas(self, w, y): """ Creates instances of areas based on a sparse weights matrix (w) and a data array (y). """ n = len(self.y) self.distances = {} noNeighs = [] for key in range(n): data = y[key] try: neighbours = w[key] except: neighbours = {} w[key] = {} if len(w[key]) == 0: self.noNeighs = self.noNeighs | set([key]) a = AreaCl(key, neighbours, data, self.variance) self.areas[key] = a if len(self.noNeighs) > 0: print("Disconnected areas neighs: ", list(self.noNeighs)) def returnDistance2Area(self, area, otherArea): """ Returns the distance between two areas """ i = 0 j = 0 dist = 0.0 i = area.id j = otherArea.id if i < j: dist = self.distances[(i, j)] elif i == j: dist = 0.0 else: dist = self.distances[(j, i)] return dist def getDataAverage(self, areaList, dataIndex): """ Returns the attribute centroid of a set of areas """ dataAvg = len(dataIndex) * [0.0] for aID in areaList: i = 0 for index in dataIndex: dataAvg[i] += old_div(self.areas[aID].data[index],len(areaList)) i += 1 return dataAvg def getDistance2Region(self, area, areaList, distanceStat="Centroid", weights=[], indexData=[]): """ Returns the distance from an area to a region (defined as a list of area IDs) """ if isinstance(distanceStat, str): if len(indexData) == 0: indexData = list(range(len(area.data))) return self.distanceStatDispatcher[distanceStat](self, area, areaList, indexData) else: distance = 0.0 i = 0 for dS in distanceStat: if len(indexData) == 0: indexDataDS = list(range(len(area.data))) else: indexDataDS = indexData[i] if len(weights) > 0: distance += weights[i] self.distanceStatDispatcher[dS](self, area, areaList, indexDataDS) else: distance += self.distanceStatDispatcher[dS](self, area, areaList, indexDataDS) i += 1 return distance def getDistance2AreaMin(self, area, areaList): """ Return the ID of the area whitin a region that is closest to an area outside the region """ areaMin = -1; distanceMin = 1e300 for aID in areaList: if self.distances[area.id, aID] < distanceMin: areaMin = aID distanceMin = self.distances[area.id, aID] return areaMin def checkFeasibility(self, solution): """ Checks feasibility of a candidate solution """ n = len(solution) regions = {} for i in range(n): try: regions[solution[i]] = regions[solution[i]] + [i] except: regions[solution[i]] = [i] feasible = 1 r = len(regions) for i in range(r): if len(regions[i]) > 0: newRegion = set([regions[i][0]]) areas2Eval = set([regions[i][0]]) while(len(areas2Eval) > 0): area = areas2Eval.pop() areaNeighs = (set(self.areas[area].neighs) & set(regions[i])) areas2Eval = areas2Eval | (areaNeighs - newRegion) newRegion = newRegion | areaNeighs if set(regions[i]) -newRegion != set([]): feasible = 0 break return feasible
33.343195
132
0.546584
5,091
0.903461
0
0
0
0
0
0
1,555
0.275954
55fc362ece90946015f4b5b227a527251bc8be9e
1,463
py
Python
geolocator.py
Kugeleis/TeslaInventoryChecker
93b6e8e2885bf8e0c15942e940d5d5626754f7a8
[ "MIT" ]
7
2021-08-13T16:46:32.000Z
2021-12-23T17:54:33.000Z
geolocator.py
Kugeleis/TeslaInventoryChecker
93b6e8e2885bf8e0c15942e940d5d5626754f7a8
[ "MIT" ]
null
null
null
geolocator.py
Kugeleis/TeslaInventoryChecker
93b6e8e2885bf8e0c15942e940d5d5626754f7a8
[ "MIT" ]
5
2021-08-13T04:38:05.000Z
2021-12-14T06:29:11.000Z
import http.client import json from types import SimpleNamespace def get_token(): conn = http.client.HTTPSConnection("www.tesla.com") payload = { "resource": "geocodesvc", "csrf_name": "", "csrf_value": "" } headers = { 'Content-Type': 'application/json' } conn.request("POST", "/inventory/api/v1/refresh_token", json.dumps(payload), headers) res = conn.getresponse() data = res.read() auth = json.loads(data, object_hook=lambda d: SimpleNamespace(**d)) return auth.token def decode_zip(token, zip_code, country_code): conn = http.client.HTTPSConnection("www.tesla.com") payload = { "token": token, "postal_code": zip_code, "country_code": country_code, "csrf_name": "", "csrf_value": "" } headers = { 'Content-Type': 'application/json' } conn.request("POST", "/inventory/api/v1/address", json.dumps(payload), headers) res = conn.getresponse() data = res.read() geo_result = json.loads(data, object_hook=lambda d: SimpleNamespace(**d)) # Example Data: # { # "city": "Montreal", # "stateProvince": "Quebec", # "postalCode": "H1K 3T2", # "countryCode": "CA", # "countryName": "Canada", # "longitude": -73.5614205, # "latitude": 45.60802700000001, # "county": "Montreal", # "stateCode": "QC" # } return geo_result.data
28.686275
89
0.584416
0
0
0
0
0
0
0
0
557
0.380725
55fd77fad6026ba26284584227c80ea384f74fc0
4,942
py
Python
client/runTFpose.py
BamLubi/tf-pose_Client
07032a8b7ba80f717e74f6c893fadc6e2faa6573
[ "MIT" ]
1
2022-03-21T18:02:05.000Z
2022-03-21T18:02:05.000Z
client/runTFpose.py
BamLubi/tf-pose_Client
07032a8b7ba80f717e74f6c893fadc6e2faa6573
[ "MIT" ]
null
null
null
client/runTFpose.py
BamLubi/tf-pose_Client
07032a8b7ba80f717e74f6c893fadc6e2faa6573
[ "MIT" ]
null
null
null
import argparse import cv2 import time import numpy as np from tf_pose.estimator import TfPoseEstimator from tf_pose.networks import get_graph_path, model_wh """ 封装并调用tf-openpose项目所提供的骨架信息识别接口 """ class TFPOSE: def __init__(self): # 0. 参数 self.fps_time = 0 self.frame_count = 0 # 1. 解析参数 self.parseArgs() # 2. 输出参数 self.printArgs() # 3. 生成tfpose实例 self.w, self.h = model_wh(self.args.resize) self.e = TfPoseEstimator(get_graph_path(self.args.model), target_size=(self.w, self.h)) def parseArgs(self): """解析参数""" parser = argparse.ArgumentParser(description='tf-pose-estimation realtime webcam') parser.add_argument('--video', type=str, default=0, help='if provided, set the video path') parser.add_argument('--isoutput', type=bool, default=False, help='whether write to file') parser.add_argument('--output', type=str, default='test.avi', help='if provided, set the output video path') parser.add_argument('--isorigin', type=bool, default=False, help='whether output origin img') parser.add_argument('--resize', type=str, default='432x368', help='if provided, resize images before they are processed. default=256x256, Recommends : 432x368 or 656x368 or 1312x736 ') parser.add_argument('--resize-out-ratio', type=float, default=4.0, help='if provided, resize heatmaps before they are post-processed. default=1.0') parser.add_argument('--model', type=str, default='mobilenet_v2_large', help='cmu / mobilenet_thin / mobilenet_v2_large / mobilenet_v2_small') parser.add_argument('--show-process', type=bool, default=False, help='for debug purpose, if enabled, speed for inference is dropped.') # 命令行解析模块 self.args = parser.parse_args() def printArgs(self): """输出参数""" print('获取的参数如下:') print('video-视频: %s' % (self.args.video)) print('resize-重写图片大小: %s' % (self.args.resize)) print('resize-out-ratio-重写关键点热图大小: %s' % (self.args.resize_out_ratio)) print('show-process-是否展示过程: %s' % (self.args.show_process)) print('model-模型: %s, 模型路径: %s' % (self.args.model, get_graph_path(self.args.model))) def setArgsVideo(self, video): """设置video参数""" self.args.__setattr__('video', video) def setArgsIsOrigin(self, isorigin): """设置isorigin参数""" self.args.__setattr__('isorigin', isorigin) def setArgsIsOutput(self, isoutput): """设置isorigin参数""" self.args.__setattr__('isoutput', isoutput) def initVideo(self): """ 初始化视频信息 """ print('读取视频') self.cam = cv2.VideoCapture(self.args.video) self.ret_val, self.image = self.cam.read() # 获取视频第一帧图片,ret_val为bool值 self.frame_count = 0 # 重置帧数为0,因为会换视频 # 是否写入文件 if self.args.isoutput : fps = self.cam.get(cv2.CAP_PROP_FPS) # 视频帧率 fourcc = cv2.VideoWriter_fourcc(*'XVID') # 保存视频为MPEG-4编码 frame_size = (int(self.cam.get(cv2.CAP_PROP_FRAME_WIDTH)), int(self.cam.get(cv2.CAP_PROP_FRAME_HEIGHT))) self.videoWriter = cv2.VideoWriter(self.args.output, fourcc, fps, frame_size) print('源视频信息: 帧图片大小 %s, 帧率 %s, 视频大小 %s' % (self.image.shape, fps, frame_size)) def getHumans(self): humans = self.e.inference(self.image, resize_to_default=(self.w > 0 and self.h > 0), upsample_size=self.args.resize_out_ratio) return humans def getNextFrame(self): """获取下一帧的图片""" self.ret_val, self.image = self.cam.read() self.frame_count += 1 return self.ret_val def hasNextFrame(self): """是否还有下一帧""" return self.ret_val def getFrameCount(self): """获取帧数""" return self.frame_count def runOnce(self): """ 运行一次,即识别一帧,并返回此帧的cv2图片 """ fps_time = time.time() # 帧图片处理 print('帧图片处理...') humans = self.getHumans() # 关键点绘图 print('画图...') if self.args.isorigin : # 显示原图 pose_img = TfPoseEstimator.draw_humans(np.array(self.image), humans, imgcopy=False) else: # 不显示原图 emptyImage = np.zeros(self.image.shape, np.uint8) emptyImage[...] = 0 pose_img = TfPoseEstimator.draw_humans(emptyImage, humans, imgcopy=False) # cv2.putText(pose_img, "FPS: %f" % (1.0 / (time.time() - fps_time)), (10, 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2) # 判断写入文件 if self.args.isoutput : self.videoWriter.write(pose_img) return pose_img, humans if __name__ == '__main__': TFPOSE()
37.439394
151
0.593484
5,131
0.948429
0
0
0
0
0
0
1,808
0.334196
55fe127a3e15c5c409ac7dd672e540ee28e8d786
413
py
Python
oldPython/driving_app.py
Awarua-/Can-I-Have-Your-Attention-COSC475-Research
71b5140b988aa6512a7cf5b5b6d043e20fd02084
[ "MIT" ]
null
null
null
oldPython/driving_app.py
Awarua-/Can-I-Have-Your-Attention-COSC475-Research
71b5140b988aa6512a7cf5b5b6d043e20fd02084
[ "MIT" ]
null
null
null
oldPython/driving_app.py
Awarua-/Can-I-Have-Your-Attention-COSC475-Research
71b5140b988aa6512a7cf5b5b6d043e20fd02084
[ "MIT" ]
null
null
null
from kivy.app import App from kivy.uix.label import Label from kivy.core.window import Window class DrivingApp(App): def build(self): Window.fullscreen = False # Need to set the size, otherwise very pixalated # wonders about pixel mapping? Window.size(1920, 1080) b = Label(text='Launch Child App') return b if __name__ == "__main__": DrivingApp.run()
21.736842
56
0.653753
266
0.644068
0
0
0
0
0
0
106
0.256659
55fe69df7aecb356db95a682b17146dfaf4521ce
3,103
py
Python
api/src/opentrons/calibration_storage/helpers.py
faliester/opentrons
e945d0f72fed39b0f68c0b30b7afd1981644184f
[ "Apache-2.0" ]
1
2022-03-17T20:38:04.000Z
2022-03-17T20:38:04.000Z
api/src/opentrons/calibration_storage/helpers.py
faliester/opentrons
e945d0f72fed39b0f68c0b30b7afd1981644184f
[ "Apache-2.0" ]
null
null
null
api/src/opentrons/calibration_storage/helpers.py
faliester/opentrons
e945d0f72fed39b0f68c0b30b7afd1981644184f
[ "Apache-2.0" ]
null
null
null
""" opentrons.calibration_storage.helpers: various miscellaneous functions This module has functions that you can import to save robot or labware calibration to its designated file location. """ import json from typing import Union, List, Dict, TYPE_CHECKING from dataclasses import is_dataclass, asdict from hashlib import sha256 from . import types as local_types if TYPE_CHECKING: from opentrons_shared_data.labware.dev_types import LabwareDefinition DictionaryFactoryType = Union[List, Dict] def dict_filter_none(data: DictionaryFactoryType) -> Dict: """ Helper function to filter out None keys from a dataclass before saving to file. """ return dict(item for item in data if item[1] is not None) def convert_to_dict(obj) -> Dict: # The correct way to type this is described here: # https://github.com/python/mypy/issues/6568 # Unfortnately, since it's not currently supported I have an # assert check instead. assert is_dataclass(obj), 'This function is intended for dataclasses only' return asdict(obj, dict_factory=dict_filter_none) def hash_labware_def(labware_def: 'LabwareDefinition') -> str: """ Helper function to take in a labware definition and return a hashed string of key elemenets from the labware definition to make it a unique identifier. :param labware_def: Full labware definitino :returns: sha256 string """ # remove keys that do not affect run blocklist = ['metadata', 'brand', 'groups'] def_no_metadata = { k: v for k, v in labware_def.items() if k not in blocklist} sorted_def_str = json.dumps( def_no_metadata, sort_keys=True, separators=(',', ':')) return sha256(sorted_def_str.encode('utf-8')).hexdigest() def details_from_uri(uri: str, delimiter='/') -> local_types.UriDetails: """ Unpack a labware URI to get the namespace, loadname and version """ if uri: info = uri.split(delimiter) return local_types.UriDetails( namespace=info[0], load_name=info[1], version=int(info[2])) else: # Here we are assuming that the 'uri' passed in is actually # the loadname, though sometimes it may be an empty string. return local_types.UriDetails( namespace='', load_name=uri, version=1) def uri_from_details(namespace: str, load_name: str, version: Union[str, int], delimiter='/') -> str: """ Build a labware URI from its details. A labware URI is a string that uniquely specifies a labware definition. :returns str: The URI. """ return f'{namespace}{delimiter}{load_name}{delimiter}{version}' def uri_from_definition(definition: 'LabwareDefinition', delimiter='/') -> str: """ Build a labware URI from its definition. A labware URI is a string that uniquely specifies a labware definition. :returns str: The URI. """ return uri_from_details(definition['namespace'], definition['parameters']['loadName'], definition['version'])
32.663158
79
0.684821
0
0
0
0
0
0
0
0
1,499
0.483081
55fe802b2df8f3e2a5853155117ec23bac4176ca
3,264
py
Python
scripts/OpenRobotPyxl.py
coder-cell/robotframework-openpyxl
abc839755a1e8c0208065e9c9568d7df732a6792
[ "MIT" ]
null
null
null
scripts/OpenRobotPyxl.py
coder-cell/robotframework-openpyxl
abc839755a1e8c0208065e9c9568d7df732a6792
[ "MIT" ]
null
null
null
scripts/OpenRobotPyxl.py
coder-cell/robotframework-openpyxl
abc839755a1e8c0208065e9c9568d7df732a6792
[ "MIT" ]
null
null
null
import openpyxl from robot.api.deco import keyword, library from robot.api import logger @library class OpenRobotPyxl: def __init__(self): self.active_sheet = None self.active_book = None self.path = None self.bookname = None @keyword("Create New Workbook") def create_new_workbook(self, _path, book_name, sheet_name, postion=0): wb = openpyxl.Workbook() self.path = _path self.bookname = book_name + ".xlsx" ws = wb.create_sheet(sheet_name, postion) self.active_book, self.active_sheet = wb, ws return self.active_book @keyword('Close Workbook') def close_workbook(self): self.active_book.save(self.path + "/" + self.bookname) @keyword('Get Active Sheet') def get_active_sheet(self): if self.active_book: if self.active_sheet: return self.active_sheet else: # Return the first sheet in the work book. return self.active_book.worksheets[0] else: return None @keyword('Active Sheet Name') def get_active_sheet_name(self): return self.get_active_sheet().title @keyword('Load Workbook') def load_workbook(self, path, bookname): self.active_book = openpyxl.load_workbook(path + "/" + bookname) self.path = path self.bookname = bookname self.active_sheet = None self.active_sheet = self.get_active_sheet() @keyword('Add Sheet') def add_new_sheet(self, sheetname, index=0): self.active_book.create_sheet(title=sheetname, index=index) @keyword('Set Cell Value') def add_value_to_cell(self, row, col, value): self.active_sheet.cell(row, col, value) @keyword('Get Cell Value') def get_cell_value(self, row, col): return self.active_sheet.cell(row, col).value @keyword('Insert Row') def insert_empty_row(self, row_number): return self.active_sheet.insert_rows(row_number) @keyword('Insert Column') def insert_empty_col(self, col_number): return self.active_sheet.insert_cols(col_number) @keyword('Delete Row') def delete_row(self, row_number): return self.active_sheet.delete_rows(row_number) @keyword('Delete Column') def delete_col(self, col_number): return self.active_sheet.delete_cols(col_number) @keyword('Convert List to Row') def insert_value_to_row(self, row, col, listofdata): if type(listofdata) == list: datalength = len(listofdata) for index, row_ in enumerate(range(row, row+datalength)): cell = self.active_sheet.cell(row_, col) cell.value = listofdata[index] else: return Exception("The data should be of list.") @keyword('Convert List to Column') def insert_value_to_row(self, row, col, listofdata): if type(listofdata) == list: datalength = len(listofdata) for index, col_ in enumerate(range(col, col + datalength)): cell = self.active_sheet.cell(row, col_) cell.value = listofdata[index] else: return Exception("The data should be of list.") return True
32.969697
75
0.636336
3,163
0.969056
0
0
3,172
0.971814
0
0
344
0.105392
55fec657248ea9359324a70a7e7e0fc53b322616
1,852
py
Python
club/urls.py
NSYT0607/DONGKEY
83f926f22a10a28895c9ad71038c9a27d200e231
[ "MIT" ]
1
2018-04-10T11:47:16.000Z
2018-04-10T11:47:16.000Z
club/urls.py
NSYT0607/DONGKEY
83f926f22a10a28895c9ad71038c9a27d200e231
[ "MIT" ]
null
null
null
club/urls.py
NSYT0607/DONGKEY
83f926f22a10a28895c9ad71038c9a27d200e231
[ "MIT" ]
null
null
null
from django.urls import path from . import views app_name = 'club' urlpatterns = [ path('create/', views.create_club, name='create_club'), path('update/<int:club_pk>', views.update_club, name='update_club'), path('read_admin_club/<str:club>/<int:ctg_pk>/', views.read_admin_club, name='read_admin_club_ctg'), path('<int:pk>/', views.ClubView.as_view(), name='club_view'), path('read_admin_club/<str:club>/', views.read_admin_club, name='read_admin_club'), path('read_non_admin_club/<str:club>/<int:ctg_pk>/', views.read_non_admin_club, name='read_non_admin_club_ctg'), path('read_non_admin_club/<str:club>/', views.read_non_admin_club, name='read_non_admin_club'), path('apply/<str:club>/', views.apply_club, name='apply_club'), path('admit/<int:club>/<int:pk>/', views.admit, name='admit'), path('update_is_admin/<int:club_pk>/<int:user_pk>/', views.update_is_admin, name='update_is_admin'), path('manage/<int:club_pk>/', views.manage_member, name='manage_member'), path('member_list/<int:club_pk>/non_admin', views.member_list_for_non_admin, name='member_list_for_non_admin'), path('create/club/rule/<str:club>/', views.create_club_rule, name='create_club_rule'), path('read/admin_club/apply_list/<str:club>/', views.read_apply_list, name='read_apply_list'), path('read/admin_club/rule/<str:club>/', views.read_admin_club_rule, name='read_admin_club_rule'), path('read/non_admin_club/rule/<str:club>/', views.read_non_admin_club_rule, name='read_non_admin_club_rule'), path('update/club/rule/<str:club>/<int:rule_pk>/', views.update_club_rule, name='update_club_rule'), path('delete/club/rule/<str:club>/<int:rule_pk>/', views.delete_club_rule, name='delete_club_rule'), path('exit_club/<int:club_pk>/<int:user_pk>/', views.exit_club, name='exit_club'), ]
52.914286
116
0.721922
0
0
0
0
0
0
0
0
950
0.512959
55feec79a1027ecfba7881baf9cccd2719790498
1,270
py
Python
interview_kickstart/01_sorting_algorithms/class_discussed_problems/python/0215_kth_largest_element_in_an_array.py
mrinalini-m/data_structures_and_algorithms
f9bebcca8002064e26ba5b46e47b8abedac39c3e
[ "MIT" ]
2
2020-12-18T21:42:05.000Z
2020-12-21T06:07:33.000Z
interview_kickstart/01_sorting_algorithms/class_discussed_problems/python/0215_kth_largest_element_in_an_array.py
mrinalini-m/data_structures_and_algorithms
f9bebcca8002064e26ba5b46e47b8abedac39c3e
[ "MIT" ]
null
null
null
interview_kickstart/01_sorting_algorithms/class_discussed_problems/python/0215_kth_largest_element_in_an_array.py
mrinalini-m/data_structures_and_algorithms
f9bebcca8002064e26ba5b46e47b8abedac39c3e
[ "MIT" ]
2
2020-07-04T20:30:19.000Z
2021-08-31T08:32:36.000Z
from random import randint from typing import List class Solution: def findKthLargest(self, nums: List[int], k: int) -> int: jthSmallest = len(nums) - k return self.quickSelect(nums, 0, len(nums) - 1, jthSmallest) def quickSelect(self, nums: List[int], start: int, end: int, jthSmallest: int) -> int: pivot = self.partition(nums, start, end) if (pivot == jthSmallest): return nums[pivot] elif (jthSmallest < pivot): return self.quickSelect(nums, start, pivot - 1, jthSmallest) else: return self.quickSelect(nums, pivot + 1, end, jthSmallest) def partition(self, nums: List[int], start: int, end: int) -> int: randomIndex = randint(start, end) self.swap(nums, randomIndex, start) pivot = nums[start] smaller = start for bigger in range(start + 1, end + 1): if nums[bigger] < pivot: smaller += 1 self.swap(nums, smaller, bigger) self.swap(nums, start, smaller) return smaller def swap(self, nums: List[int], i: int, j: int) -> None: temp = nums[i] nums[i] = nums[j] nums[j] = temp print(Solution().findKthLargest([4, 1, 2, 11], 2))
27.021277
90
0.574803
1,163
0.915748
0
0
0
0
0
0
0
0
55ff7e57e726077e74bb90a288c442b6922782cb
3,033
py
Python
termpixels/util.py
loganzartman/termpixels
4353cc0eb9f6947cd5bb8286322a8afea597d741
[ "MIT" ]
17
2019-04-11T20:05:13.000Z
2022-03-08T22:26:44.000Z
termpixels/util.py
loganzartman/termpixels
4353cc0eb9f6947cd5bb8286322a8afea597d741
[ "MIT" ]
14
2019-05-16T19:26:58.000Z
2020-10-27T09:35:02.000Z
termpixels/util.py
loganzartman/termpixels
4353cc0eb9f6947cd5bb8286322a8afea597d741
[ "MIT" ]
1
2020-12-09T16:39:44.000Z
2020-12-09T16:39:44.000Z
from unicodedata import east_asian_width, category from functools import lru_cache import re def corners_to_box(x0, y0, x1, y1): """convert two corners (x0, y0, x1, y1) to (x, y, width, height)""" x0, x1 = min(x0, x1), max(x0, x1) y0, y1 = min(y0, y1), max(y0, y1) return x0, y0, x1 - x0 + 1, y1 - y0 + 1 # not sure how to determine how ambiguous characters will be rendered _ambiguous_is_wide = False def set_ambiguous_is_wide(is_wide): """ set whether ambiguous characters are considered to be wide """ global _ambiguous_is_wide if _ambiguous_is_wide != is_wide: _ambiguous_is_wide = is_wide terminal_char_len.cache_clear() @lru_cache(1024) def terminal_char_len(ch): """ return the width of a character in terminal cells """ if ch == "\t": # we can't know the width of a tab without context # prefer using spaces instead return None if not terminal_printable(ch): return 0 wide = ["F","W","A"] if _ambiguous_is_wide else ["F","W"] return 2 if east_asian_width(ch) in wide else 1 def terminal_len(s): """ return the width of a string in terminal cells """ return sum(map(terminal_char_len, s)) def terminal_printable(ch): """ determine if a character is "printable" """ return not category(ch).startswith("C") _newline_regex = re.compile(r"\r\n|\r|\n") def splitlines_print(s): """ like str.splitlines() but keeps all empty lines """ return _newline_regex.split(s) def wrap_text(text, line_len, *, tab_size=4, word_sep=re.compile(r"\s+|\W"), break_word=False, hyphen="", newline="\n"): """ returns a terminal-line-wrapped version of text """ text = text.replace("\t", " " * tab_size) hl = terminal_len(hyphen) buf = [] i = 0 col = 0 while i < len(text): match = word_sep.search(text, i) word = text[i:] sep = "" if match: word = text[i:match.start()] sep = match.group(0) i = match.end() else: i = len(text) # handle wrappable/breakable words wl = terminal_len(word) while col + wl > line_len: if break_word and col < line_len - hl or col == 0: while col + terminal_char_len(word[0]) <= line_len - hl: buf.append(word[0]) col += terminal_char_len(word[0]) word = word[1:] buf.append(hyphen) buf.append(newline) col = 0 wl = terminal_len(word) buf.append(word) col += wl # handle truncatable separators sl = terminal_len(sep) if col + sl > line_len: while col + terminal_char_len(sep[0]) <= line_len: buf.append(sep[0]) col += terminal_char_len(sep[0]) sep = sep[1:] buf.append(newline) col = 0 else: buf.append(sep) col += sl return "".join(buf)
32.265957
76
0.574019
0
0
0
0
407
0.134191
0
0
675
0.222552
55ffa154fe658f0af46cbd92f080b7eac5967357
303
py
Python
json.py
AbhijithGanesh/Flask-HTTP-Server
78f6c6985e6ffd9f4f70738771d6fcdb802964cc
[ "BSD-3-Clause" ]
null
null
null
json.py
AbhijithGanesh/Flask-HTTP-Server
78f6c6985e6ffd9f4f70738771d6fcdb802964cc
[ "BSD-3-Clause" ]
null
null
null
json.py
AbhijithGanesh/Flask-HTTP-Server
78f6c6985e6ffd9f4f70738771d6fcdb802964cc
[ "BSD-3-Clause" ]
null
null
null
import json ''' READ THE DATABASE README before operating ''' File = r'''YOUR FILE''' with open(File,'a') as fileObj: data = json.load() ''' YOUR DATA LOGIC GOES IN HERE Once the data is changed, to write it to your JSON file use the following command. ''' json.dump(object,File)
25.25
86
0.656766
0
0
0
0
0
0
0
0
199
0.656766
3600f4551fc329b671400ff96e43cfab6f75ddb4
3,128
py
Python
slash/hooks.py
omergertel/slash
7dd5710a05822bbbaadc6c6517cefcbaa6397eab
[ "BSD-3-Clause" ]
null
null
null
slash/hooks.py
omergertel/slash
7dd5710a05822bbbaadc6c6517cefcbaa6397eab
[ "BSD-3-Clause" ]
null
null
null
slash/hooks.py
omergertel/slash
7dd5710a05822bbbaadc6c6517cefcbaa6397eab
[ "BSD-3-Clause" ]
null
null
null
import gossip from .conf import config from .utils.deprecation import deprecated def _deprecated_to_gossip(func): return deprecated(since="0.6.0", message="Use gossip instead")(func) def _define(hook_name, **kwargs): hook = gossip.define("slash.{0}".format(hook_name), **kwargs) globals()[hook_name] = hook return hook _define('session_start', doc="Called right after session starts") _define('session_end', doc="Called right before the session ends, regardless of the reason for termination") _define('after_session_start', doc="Second entry point for session start, useful for plugins relying on other plugins' session_start routine") _define('test_interrupt', doc="Called when a test is interrupted by a KeyboardInterrupt or other similar means") _define('test_start', doc="Called right after a test starts") _define('test_end', doc="Called right before a test ends, regardless of the reason for termination") _define('test_success', doc="Called on test success") _define('test_error', doc="Called on test error") _define('test_failure', doc="Called on test failure") _define('test_skip', doc="Called on test skip", arg_names=("reason",)) _define('result_summary', doc="Called at the end of the execution, when printing results") _define('exception_caught_before_debugger', doc="Called whenever an exception is caught, but a debugger hasn't been entered yet") _define('exception_caught_after_debugger', doc="Called whenever an exception is caught, and a debugger has already been run") _slash_group = gossip.get_group('slash') _slash_group.set_strict() _slash_group.set_exception_policy(gossip.RaiseDefer()) @gossip.register('gossip.on_handler_exception') def debugger(handler, exception, hook): # pylint: disable=unused-argument from .exception_handling import handle_exception if hook.group is _slash_group and config.root.debug.debug_hook_handlers: handle_exception(exception) @_deprecated_to_gossip def add_custom_hook(hook_name): """ Adds an additional hook to the set of available hooks """ return _define(hook_name) @_deprecated_to_gossip def ensure_custom_hook(hook_name): """ Like :func:`.add_custom_hook`, only forgives if the hook already exists """ try: return gossip.get_hook("slash.{0}".format(hook_name)) except LookupError: return _define(hook_name) @_deprecated_to_gossip def remove_custom_hook(hook_name): """ Removes a hook from the set of available hooks """ gossip.get_hook("slash.{0}".format(hook_name)).undefine() globals().pop(hook_name) @_deprecated_to_gossip def get_custom_hook_names(): """ Retrieves the names of all custom hooks currently installed """ raise NotImplementedError() # pragma: no cover @_deprecated_to_gossip def get_all_hooks(): return [ (hook.name, hook) for hook in gossip.get_group('slash').get_hooks()] @_deprecated_to_gossip def get_hook_by_name(hook_name): """ Returns a hook (if exists) by its name, otherwise returns None """ return gossip.get_hook('slash.{0}'.format(hook_name))
34.373626
142
0.741368
0
0
0
0
1,460
0.466752
0
0
1,483
0.474105
36011f50763e2763762534e112d2a7cea6f3af2e
65
py
Python
experiments/archived/20210203/bag_model/models/__init__.py
fxnnxc/text_summarization
b8c8a5f491bc44622203602941c1514b2e006fe3
[ "Apache-2.0" ]
5
2020-10-14T02:30:44.000Z
2021-05-06T12:48:28.000Z
experiments/archived/20210119/bag_model/models/__init__.py
fxnnxc/text_summarization
b8c8a5f491bc44622203602941c1514b2e006fe3
[ "Apache-2.0" ]
2
2020-12-19T05:59:31.000Z
2020-12-22T11:05:31.000Z
experiments/archived/20210203/bag_model/models/__init__.py
fxnnxc/text_summarization
b8c8a5f491bc44622203602941c1514b2e006fe3
[ "Apache-2.0" ]
null
null
null
from .hub_interface import * # noqa from .model import * # noqa
32.5
36
0.707692
0
0
0
0
0
0
0
0
12
0.184615
360246393544aa24389fdcd4c6b8786fa1b242b5
232
py
Python
src/CodeLearn/plaintextCode/BloomTech/BTU5W1/U5W1P2_Task3_w1.py
MingjunGeng/Code-Knowledge
5b376f6b3ff9e7fa0ab41c7b57e3a80313fa0daa
[ "MIT" ]
null
null
null
src/CodeLearn/plaintextCode/BloomTech/BTU5W1/U5W1P2_Task3_w1.py
MingjunGeng/Code-Knowledge
5b376f6b3ff9e7fa0ab41c7b57e3a80313fa0daa
[ "MIT" ]
null
null
null
src/CodeLearn/plaintextCode/BloomTech/BTU5W1/U5W1P2_Task3_w1.py
MingjunGeng/Code-Knowledge
5b376f6b3ff9e7fa0ab41c7b57e3a80313fa0daa
[ "MIT" ]
1
2022-03-18T04:52:10.000Z
2022-03-18T04:52:10.000Z
#!/usr/bin/python3 # --- 001 > U5W2P1_Task3_w1 def solution(i): return float(i) if __name__ == "__main__": print('----------start------------') i = 12 print(solution( i )) print('------------end------------')
19.333333
40
0.465517
0
0
0
0
0
0
0
0
113
0.487069
3603655d64ea26fd4eb5614d884927de08638bdc
30,296
py
Python
plugins/modules/oci_sch_service_connector.py
A7rMtWE57x/oci-ansible-collection
80548243a085cd53fd5dddaa8135b5cb43612c66
[ "Apache-2.0" ]
null
null
null
plugins/modules/oci_sch_service_connector.py
A7rMtWE57x/oci-ansible-collection
80548243a085cd53fd5dddaa8135b5cb43612c66
[ "Apache-2.0" ]
null
null
null
plugins/modules/oci_sch_service_connector.py
A7rMtWE57x/oci-ansible-collection
80548243a085cd53fd5dddaa8135b5cb43612c66
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/python # Copyright (c) 2017, 2020 Oracle and/or its affiliates. # This software is made available to you under the terms of the GPL 3.0 license or the Apache 2.0 license. # GNU General Public License v3.0+ (see COPYING or https://www.gnu.org/licenses/gpl-3.0.txt) # Apache License v2.0 # See LICENSE.TXT for details. # GENERATED FILE - DO NOT EDIT - MANUAL CHANGES WILL BE OVERWRITTEN from __future__ import absolute_import, division, print_function __metaclass__ = type ANSIBLE_METADATA = { "metadata_version": "1.1", "status": ["preview"], "supported_by": "community", } DOCUMENTATION = """ --- module: oci_sch_service_connector short_description: Manage a ServiceConnector resource in Oracle Cloud Infrastructure description: - This module allows the user to create, update and delete a ServiceConnector resource in Oracle Cloud Infrastructure - For I(state=present), creates a new service connector in the specified compartment. A service connector is a logically defined flow for moving data from a source service to a destination service in Oracle Cloud Infrastructure. For general information about service connectors, see L(Service Connector Hub Overview,https://docs.cloud.oracle.com/iaas/service-connector-hub/using/index.htm). - For purposes of access control, you must provide the L(OCID,https://docs.cloud.oracle.com/iaas/Content/General/Concepts/identifiers.htm) of the compartment where you want the service connector to reside. Notice that the service connector doesn't have to be in the same compartment as the source or target services. For information about access control and compartments, see L(Overview of the IAM Service,https://docs.cloud.oracle.com/iaas/Content/Identity/Concepts/overview.htm). - After you send your request, the new service connector's state is temporarily CREATING. When the state changes to ACTIVE, data begins transferring from the source service to the target service. For instructions on deactivating and activating service connectors, see L(To activate or deactivate a service connector,https://docs.cloud.oracle.com/iaas/service-connector-hub/using/index.htm). - "This resource has the following action operations in the M(oci_service_connector_actions) module: activate, deactivate." version_added: "2.9" author: Oracle (@oracle) options: display_name: description: - A user-friendly name. It does not have to be unique, and it is changeable. Avoid entering confidential information. - Required for create using I(state=present). - Required for update, delete when environment variable C(OCI_USE_NAME_AS_IDENTIFIER) is set. - This parameter is updatable when C(OCI_USE_NAME_AS_IDENTIFIER) is not set. type: str aliases: ["name"] compartment_id: description: - The L(OCID,https://docs.cloud.oracle.com/iaas/Content/General/Concepts/identifiers.htm) of the comparment to create the service connector in. - Required for create using I(state=present). - Required for update when environment variable C(OCI_USE_NAME_AS_IDENTIFIER) is set. - Required for delete when environment variable C(OCI_USE_NAME_AS_IDENTIFIER) is set. type: str description: description: - The description of the resource. Avoid entering confidential information. - This parameter is updatable. type: str source: description: - "" - Required for create using I(state=present). - This parameter is updatable. type: dict suboptions: kind: description: - The type descriminator. type: str choices: - "logging" required: true log_sources: description: - The resources affected by this work request. type: list required: true suboptions: compartment_id: description: - The L(OCID,https://docs.cloud.oracle.com/iaas/Content/General/Concepts/identifiers.htm) of the compartment containing the log source. type: str required: true log_group_id: description: - The L(OCID,https://docs.cloud.oracle.com/iaas/Content/General/Concepts/identifiers.htm) of the log group. type: str log_id: description: - The L(OCID,https://docs.cloud.oracle.com/iaas/Content/General/Concepts/identifiers.htm) of the log. type: str tasks: description: - The list of tasks. - This parameter is updatable. type: list suboptions: kind: description: - The type descriminator. type: str choices: - "logRule" required: true condition: description: - A filter or mask to limit the source used in the flow defined by the service connector. type: str required: true target: description: - "" - Required for create using I(state=present). - This parameter is updatable. type: dict suboptions: kind: description: - The type descriminator. type: str choices: - "notifications" - "objectStorage" - "monitoring" - "functions" - "streaming" required: true topic_id: description: - The L(OCID,https://docs.cloud.oracle.com/iaas/Content/General/Concepts/identifiers.htm) of the topic. - Required when kind is 'notifications' type: str namespace: description: - The namespace. - Applicable when kind is 'objectStorage' type: str bucket_name: description: - The name of the bucket. Avoid entering confidential information. - Required when kind is 'objectStorage' type: str object_name_prefix: description: - The prefix of the objects. Avoid entering confidential information. - Applicable when kind is 'objectStorage' type: str compartment_id: description: - The L(OCID,https://docs.cloud.oracle.com/iaas/Content/General/Concepts/identifiers.htm) of the compartment containing the metric. - Required when kind is 'monitoring' type: str metric_namespace: description: - The namespace of the metric. - "Example: `oci_computeagent`" - Required when kind is 'monitoring' type: str metric: description: - The name of the metric. - "Example: `CpuUtilization`" - Required when kind is 'monitoring' type: str function_id: description: - The L(OCID,https://docs.cloud.oracle.com/iaas/Content/General/Concepts/identifiers.htm) of the function. - Required when kind is 'functions' type: str stream_id: description: - The L(OCID,https://docs.cloud.oracle.com/iaas/Content/General/Concepts/identifiers.htm) of the stream. - Required when kind is 'streaming' type: str freeform_tags: description: - "Simple key-value pair that is applied without any predefined name, type or scope. Exists for cross-compatibility only. Example: `{\\"bar-key\\": \\"value\\"}`" - This parameter is updatable. type: dict defined_tags: description: - "Defined tags for this resource. Each key is predefined and scoped to a namespace. Example: `{\\"foo-namespace\\": {\\"bar-key\\": \\"value\\"}}`" - This parameter is updatable. type: dict service_connector_id: description: - The L(OCID,https://docs.cloud.oracle.com/iaas/Content/General/Concepts/identifiers.htm) of the service connector. - Required for update using I(state=present) when environment variable C(OCI_USE_NAME_AS_IDENTIFIER) is not set. - Required for delete using I(state=absent) when environment variable C(OCI_USE_NAME_AS_IDENTIFIER) is not set. type: str aliases: ["id"] state: description: - The state of the ServiceConnector. - Use I(state=present) to create or update a ServiceConnector. - Use I(state=absent) to delete a ServiceConnector. type: str required: false default: 'present' choices: ["present", "absent"] extends_documentation_fragment: [ oracle.oci.oracle, oracle.oci.oracle_creatable_resource, oracle.oci.oracle_wait_options ] """ EXAMPLES = """ - name: Create service_connector oci_sch_service_connector: display_name: display_name_example compartment_id: ocid1.compartment.oc1..xxxxxxEXAMPLExxxxxx source: kind: logging log_sources: - compartment_id: ocid1.compartment.oc1..xxxxxxEXAMPLExxxxxx target: kind: notifications - name: Update service_connector using name (when environment variable OCI_USE_NAME_AS_IDENTIFIER is set) oci_sch_service_connector: display_name: display_name_example compartment_id: ocid1.compartment.oc1..xxxxxxEXAMPLExxxxxx description: description_example source: kind: logging log_sources: - compartment_id: ocid1.compartment.oc1..xxxxxxEXAMPLExxxxxx tasks: - kind: logRule condition: condition_example target: kind: notifications freeform_tags: {'Department': 'Finance'} defined_tags: {'Operations': {'CostCenter': 'US'}} - name: Update service_connector oci_sch_service_connector: display_name: display_name_example description: description_example service_connector_id: ocid1.serviceconnector.oc1..xxxxxxEXAMPLExxxxxx - name: Delete service_connector oci_sch_service_connector: service_connector_id: ocid1.serviceconnector.oc1..xxxxxxEXAMPLExxxxxx state: absent - name: Delete service_connector using name (when environment variable OCI_USE_NAME_AS_IDENTIFIER is set) oci_sch_service_connector: display_name: display_name_example compartment_id: ocid1.compartment.oc1..xxxxxxEXAMPLExxxxxx state: absent """ RETURN = """ service_connector: description: - Details of the ServiceConnector resource acted upon by the current operation returned: on success type: complex contains: id: description: - The L(OCID,https://docs.cloud.oracle.com/iaas/Content/General/Concepts/identifiers.htm) of the service connector. returned: on success type: string sample: ocid1.resource.oc1..xxxxxxEXAMPLExxxxxx display_name: description: - A user-friendly name. It does not have to be unique, and it is changeable. Avoid entering confidential information. returned: on success type: string sample: display_name_example description: description: - The description of the resource. Avoid entering confidential information. returned: on success type: string sample: description_example compartment_id: description: - The L(OCID,https://docs.cloud.oracle.com/iaas/Content/General/Concepts/identifiers.htm) of the compartment containing the service connector. returned: on success type: string sample: ocid1.compartment.oc1..xxxxxxEXAMPLExxxxxx time_created: description: - "The date and time when the service connector was created. Format is defined by L(RFC3339,https://tools.ietf.org/html/rfc3339). Example: `2020-01-25T21:10:29.600Z`" returned: on success type: string sample: 2020-01-25T21:10:29.600Z time_updated: description: - "The date and time when the service connector was updated. Format is defined by L(RFC3339,https://tools.ietf.org/html/rfc3339). Example: `2020-01-25T21:10:29.600Z`" returned: on success type: string sample: 2020-01-25T21:10:29.600Z lifecycle_state: description: - The current state of the service connector. returned: on success type: string sample: CREATING lifecyle_details: description: - A message describing the current state in more detail. For example, the message might provide actionable information for a resource in a `FAILED` state. returned: on success type: string sample: lifecyle_details_example source: description: - "" returned: on success type: complex contains: kind: description: - The type descriminator. returned: on success type: string sample: logging log_sources: description: - The resources affected by this work request. returned: on success type: complex contains: compartment_id: description: - The L(OCID,https://docs.cloud.oracle.com/iaas/Content/General/Concepts/identifiers.htm) of the compartment containing the log source. returned: on success type: string sample: ocid1.compartment.oc1..xxxxxxEXAMPLExxxxxx log_group_id: description: - The L(OCID,https://docs.cloud.oracle.com/iaas/Content/General/Concepts/identifiers.htm) of the log group. returned: on success type: string sample: ocid1.loggroup.oc1..xxxxxxEXAMPLExxxxxx log_id: description: - The L(OCID,https://docs.cloud.oracle.com/iaas/Content/General/Concepts/identifiers.htm) of the log. returned: on success type: string sample: ocid1.log.oc1..xxxxxxEXAMPLExxxxxx tasks: description: - The list of tasks. returned: on success type: complex contains: kind: description: - The type descriminator. returned: on success type: string sample: logRule condition: description: - A filter or mask to limit the source used in the flow defined by the service connector. returned: on success type: string sample: condition_example target: description: - "" returned: on success type: complex contains: kind: description: - The type descriminator. returned: on success type: string sample: notifications topic_id: description: - The L(OCID,https://docs.cloud.oracle.com/iaas/Content/General/Concepts/identifiers.htm) of the topic. returned: on success type: string sample: ocid1.topic.oc1..xxxxxxEXAMPLExxxxxx namespace: description: - The namespace. returned: on success type: string sample: namespace_example bucket_name: description: - The name of the bucket. Avoid entering confidential information. returned: on success type: string sample: bucket_name_example object_name_prefix: description: - The prefix of the objects. Avoid entering confidential information. returned: on success type: string sample: object_name_prefix_example compartment_id: description: - The L(OCID,https://docs.cloud.oracle.com/iaas/Content/General/Concepts/identifiers.htm) of the compartment containing the metric. returned: on success type: string sample: ocid1.compartment.oc1..xxxxxxEXAMPLExxxxxx metric_namespace: description: - The namespace of the metric. - "Example: `oci_computeagent`" returned: on success type: string sample: oci_computeagent metric: description: - The name of the metric. - "Example: `CpuUtilization`" returned: on success type: string sample: CpuUtilization function_id: description: - The L(OCID,https://docs.cloud.oracle.com/iaas/Content/General/Concepts/identifiers.htm) of the function. returned: on success type: string sample: ocid1.function.oc1..xxxxxxEXAMPLExxxxxx stream_id: description: - The L(OCID,https://docs.cloud.oracle.com/iaas/Content/General/Concepts/identifiers.htm) of the stream. returned: on success type: string sample: ocid1.stream.oc1..xxxxxxEXAMPLExxxxxx freeform_tags: description: - "Simple key-value pair that is applied without any predefined name, type or scope. Exists for cross-compatibility only. Example: `{\\"bar-key\\": \\"value\\"}`" returned: on success type: dict sample: {'Department': 'Finance'} defined_tags: description: - "Defined tags for this resource. Each key is predefined and scoped to a namespace. Example: `{\\"foo-namespace\\": {\\"bar-key\\": \\"value\\"}}`" returned: on success type: dict sample: {'Operations': {'CostCenter': 'US'}} system_tags: description: - "The system tags associated with this resource, if any. The system tags are set by Oracle Cloud Infrastructure services. Each key is predefined and scoped to namespaces. For more information, see L(Resource Tags,https://docs.cloud.oracle.com/iaas/Content/General/Concepts/resourcetags.htm). Example: `{orcl-cloud: {free-tier-retain: true}}`" returned: on success type: dict sample: {} sample: { "id": "ocid1.resource.oc1..xxxxxxEXAMPLExxxxxx", "display_name": "display_name_example", "description": "description_example", "compartment_id": "ocid1.compartment.oc1..xxxxxxEXAMPLExxxxxx", "time_created": "2020-01-25T21:10:29.600Z", "time_updated": "2020-01-25T21:10:29.600Z", "lifecycle_state": "CREATING", "lifecyle_details": "lifecyle_details_example", "source": { "kind": "logging", "log_sources": [{ "compartment_id": "ocid1.compartment.oc1..xxxxxxEXAMPLExxxxxx", "log_group_id": "ocid1.loggroup.oc1..xxxxxxEXAMPLExxxxxx", "log_id": "ocid1.log.oc1..xxxxxxEXAMPLExxxxxx" }] }, "tasks": [{ "kind": "logRule", "condition": "condition_example" }], "target": { "kind": "notifications", "topic_id": "ocid1.topic.oc1..xxxxxxEXAMPLExxxxxx", "namespace": "namespace_example", "bucket_name": "bucket_name_example", "object_name_prefix": "object_name_prefix_example", "compartment_id": "ocid1.compartment.oc1..xxxxxxEXAMPLExxxxxx", "metric_namespace": "oci_computeagent", "metric": "CpuUtilization", "function_id": "ocid1.function.oc1..xxxxxxEXAMPLExxxxxx", "stream_id": "ocid1.stream.oc1..xxxxxxEXAMPLExxxxxx" }, "freeform_tags": {'Department': 'Finance'}, "defined_tags": {'Operations': {'CostCenter': 'US'}}, "system_tags": {} } """ from ansible.module_utils.basic import AnsibleModule from ansible_collections.oracle.oci.plugins.module_utils import ( oci_common_utils, oci_wait_utils, ) from ansible_collections.oracle.oci.plugins.module_utils.oci_resource_utils import ( OCIResourceHelperBase, get_custom_class, ) try: from oci.sch import ServiceConnectorClient from oci.sch.models import CreateServiceConnectorDetails from oci.sch.models import UpdateServiceConnectorDetails HAS_OCI_PY_SDK = True except ImportError: HAS_OCI_PY_SDK = False class ServiceConnectorHelperGen(OCIResourceHelperBase): """Supported operations: create, update, get, list and delete""" def get_module_resource_id_param(self): return "service_connector_id" def get_module_resource_id(self): return self.module.params.get("service_connector_id") def get_get_fn(self): return self.client.get_service_connector def get_resource(self): return oci_common_utils.call_with_backoff( self.client.get_service_connector, service_connector_id=self.module.params.get("service_connector_id"), ) def get_required_kwargs_for_list(self): required_list_method_params = [ "compartment_id", ] return dict( (param, self.module.params[param]) for param in required_list_method_params ) def get_optional_kwargs_for_list(self): optional_list_method_params = ["display_name"] return dict( (param, self.module.params[param]) for param in optional_list_method_params if self.module.params.get(param) is not None and ( self._use_name_as_identifier() or ( not self.module.params.get("key_by") or param in self.module.params.get("key_by") ) ) ) def list_resources(self): required_kwargs = self.get_required_kwargs_for_list() optional_kwargs = self.get_optional_kwargs_for_list() kwargs = oci_common_utils.merge_dicts(required_kwargs, optional_kwargs) return oci_common_utils.list_all_resources( self.client.list_service_connectors, **kwargs ) def get_create_model_class(self): return CreateServiceConnectorDetails def create_resource(self): create_details = self.get_create_model() return oci_wait_utils.call_and_wait( call_fn=self.client.create_service_connector, call_fn_args=(), call_fn_kwargs=dict(create_service_connector_details=create_details,), waiter_type=oci_wait_utils.WORK_REQUEST_WAITER_KEY, operation=oci_common_utils.CREATE_OPERATION_KEY, waiter_client=self.get_waiter_client(), resource_helper=self, wait_for_states=oci_common_utils.get_work_request_completed_states(), ) def get_update_model_class(self): return UpdateServiceConnectorDetails def update_resource(self): update_details = self.get_update_model() return oci_wait_utils.call_and_wait( call_fn=self.client.update_service_connector, call_fn_args=(), call_fn_kwargs=dict( service_connector_id=self.module.params.get("service_connector_id"), update_service_connector_details=update_details, ), waiter_type=oci_wait_utils.WORK_REQUEST_WAITER_KEY, operation=oci_common_utils.UPDATE_OPERATION_KEY, waiter_client=self.get_waiter_client(), resource_helper=self, wait_for_states=oci_common_utils.get_work_request_completed_states(), ) def delete_resource(self): return oci_wait_utils.call_and_wait( call_fn=self.client.delete_service_connector, call_fn_args=(), call_fn_kwargs=dict( service_connector_id=self.module.params.get("service_connector_id"), ), waiter_type=oci_wait_utils.WORK_REQUEST_WAITER_KEY, operation=oci_common_utils.DELETE_OPERATION_KEY, waiter_client=self.get_waiter_client(), resource_helper=self, wait_for_states=oci_common_utils.get_work_request_completed_states(), ) ServiceConnectorHelperCustom = get_custom_class("ServiceConnectorHelperCustom") class ResourceHelper(ServiceConnectorHelperCustom, ServiceConnectorHelperGen): pass def main(): module_args = oci_common_utils.get_common_arg_spec( supports_create=True, supports_wait=True ) module_args.update( dict( display_name=dict(aliases=["name"], type="str"), compartment_id=dict(type="str"), description=dict(type="str"), source=dict( type="dict", options=dict( kind=dict(type="str", required=True, choices=["logging"]), log_sources=dict( type="list", elements="dict", required=True, options=dict( compartment_id=dict(type="str", required=True), log_group_id=dict(type="str"), log_id=dict(type="str"), ), ), ), ), tasks=dict( type="list", elements="dict", options=dict( kind=dict(type="str", required=True, choices=["logRule"]), condition=dict(type="str", required=True), ), ), target=dict( type="dict", options=dict( kind=dict( type="str", required=True, choices=[ "notifications", "objectStorage", "monitoring", "functions", "streaming", ], ), topic_id=dict(type="str"), namespace=dict(type="str"), bucket_name=dict(type="str"), object_name_prefix=dict(type="str"), compartment_id=dict(type="str"), metric_namespace=dict(type="str"), metric=dict(type="str"), function_id=dict(type="str"), stream_id=dict(type="str"), ), ), freeform_tags=dict(type="dict"), defined_tags=dict(type="dict"), service_connector_id=dict(aliases=["id"], type="str"), state=dict(type="str", default="present", choices=["present", "absent"]), ) ) module = AnsibleModule(argument_spec=module_args, supports_check_mode=True) if not HAS_OCI_PY_SDK: module.fail_json(msg="oci python sdk required for this module.") resource_helper = ResourceHelper( module=module, resource_type="service_connector", service_client_class=ServiceConnectorClient, namespace="sch", ) result = dict(changed=False) if resource_helper.is_delete_using_name(): result = resource_helper.delete_using_name() elif resource_helper.is_delete(): result = resource_helper.delete() elif resource_helper.is_update_using_name(): result = resource_helper.update_using_name() elif resource_helper.is_update(): result = resource_helper.update() elif resource_helper.is_create(): result = resource_helper.create() module.exit_json(**result) if __name__ == "__main__": main()
41.219048
159
0.568887
3,900
0.12873
0
0
0
0
0
0
22,784
0.752046
360379edca40aaeb8a9f20994bc3b04375f6c37f
210
py
Python
Kattis/fallingapart.py
ruidazeng/online-judge
6bdf8bbf1af885637dab474d0ccb58aff22a0933
[ "MIT" ]
null
null
null
Kattis/fallingapart.py
ruidazeng/online-judge
6bdf8bbf1af885637dab474d0ccb58aff22a0933
[ "MIT" ]
null
null
null
Kattis/fallingapart.py
ruidazeng/online-judge
6bdf8bbf1af885637dab474d0ccb58aff22a0933
[ "MIT" ]
1
2020-06-22T21:07:24.000Z
2020-06-22T21:07:24.000Z
n = int(input()) intz = [int(x) for x in input().split()] alice = 0 bob = 0 for i, num in zip(range(n), sorted(intz)[::-1]): if i%2 == 0: alice += num else: bob += num print(alice, bob)
21
48
0.514286
0
0
0
0
0
0
0
0
0
0
3604769fe194e0541eba00a227334b835b8009c4
3,515
py
Python
ffnn/rbf.py
RaoulMa/NeuralNets
f49072ac88686f753f9b5815d6cc5e71d536c3d2
[ "MIT" ]
1
2017-12-03T11:06:33.000Z
2017-12-03T11:06:33.000Z
ffnn/rbf.py
RaoulMa/BasicNeuralNets
f49072ac88686f753f9b5815d6cc5e71d536c3d2
[ "MIT" ]
null
null
null
ffnn/rbf.py
RaoulMa/BasicNeuralNets
f49072ac88686f753f9b5815d6cc5e71d536c3d2
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Description: Choose a set of data points as weights and calculate RBF nodes for the first layer. Those are then used as inputs for a one-layer perceptron, which gives the output """ import numpy as np import pcn class rbf: """ radial basic function """ def __init__(self,inputs,targets,nRBF,sigma=0,normalise=0,eta=0.25,functype='sigmoid',traintype='batch'): """ constructor """ self.inputs = inputs self.targets = targets self.nRBF = nRBF #number of RBF nodes self.normalise = normalise self.eta = eta #learning rate self.functype = functype self.traintype = traintype #set width of gaussian if sigma==0: d = (self.inputs.max(axis=0)-self.inputs.min(axis=0)).max() self.sigma = d/np.sqrt(2*nRBF) else: self.sigma = sigma #input array of RBF nodes self.hidden = np.zeros((np.shape(self.inputs)[0],self.nRBF)) #set RBF weights to be random datapoints self.weights = np.zeros((np.shape(inputs)[1],self.nRBF)) indices = np.arange(np.shape(self.inputs)[0]) np.random.shuffle(indices) for i in range(self.nRBF): self.weights[:,i] = self.inputs[indices[i],:] #calculate the hidden rbf nodes (first layer) self.hidden = self.rbffwd(self.inputs,1) #use initialise perceptron for second layer self.perceptron = pcn.pcn(self.hidden,self.targets,self.eta,self.functype,self.traintype) def errfunc(self,outputs,targets): """ error function """ E = 1/2*np.trace(np.dot(np.transpose(targets-outputs),targets-outputs)) return E def rbftrain(self,nIt=100): """ training the network """ #train perceptron self.perceptron.pcntrain(nIt) def rbftrain_automatic(self,valid,validt,itSteps): """ train the perceptron until the error on the validation data increases """ #calculate the hidden rbf nodes (first layer) rbfvalid = self.rbffwd(valid,1) trainerror = np.array([]) validerror = np.array([]) (trainerror,validerror) = self.perceptron.pcntrain_automatic(rbfvalid,validt,itSteps) return trainerror,validerror def rbffwd(self,inputs,layer): """ run the network forward """ #rbf nodes hidden = np.zeros((np.shape(inputs)[0],self.nRBF)) #calculate gaussian overlap of input with weights for i in range(self.nRBF): hidden[:,i] = np.exp(-np.sum((inputs - np.ones((1,np.shape(inputs)[1]))*self.weights[:,i])**2,axis=1)/(2*self.sigma**2)) #normalise RBF layer if self.normalise: hidden[:,:] /= np.transpose(np.ones((1,np.shape(hidden)[0]))*hidden[:,:].sum(axis=1)) #output of hidden (rbf) layer outputs = hidden #output of perceptron layer if layer == 2: outputs = self.perceptron.pcnfwd(hidden,True) return outputs def confmat(self,inputs,targets): """ confusion matrix to evaluate the performance of the network """ #calculate hidden nodes hidden = self.rbffwd(inputs,1) #confusion matrix of perceptron self.perceptron.confmat(hidden,targets) return 0
30.301724
132
0.588905
3,237
0.92091
0
0
0
0
0
0
980
0.278805
36056f0439b548a97fafa104e15d32abf2f73d7b
836
py
Python
Bot/config.py
faelbreseghello/Monsters-Bot
9432cf05451ff36c3282a2d6873577e94239e724
[ "MIT" ]
7
2020-07-13T22:31:00.000Z
2021-01-11T20:17:41.000Z
Bot/config.py
faelbreseghello/Monsters-Bot
9432cf05451ff36c3282a2d6873577e94239e724
[ "MIT" ]
1
2020-08-19T18:58:07.000Z
2020-08-19T18:58:07.000Z
Bot/config.py
faelbreseghello/Monsters-Bot
9432cf05451ff36c3282a2d6873577e94239e724
[ "MIT" ]
1
2021-01-11T21:36:08.000Z
2021-01-11T21:36:08.000Z
import datetime import os # General Token = open('../Token.txt', 'r') # The token of the bot Token = Token.read() prefix = '*' # the command prefix lang = 'en-us' # 'en-us' or 'pt-br' memes = os.listdir('../Assets/monsters_memes') # memes db load banchannel = None # the channel that will be used to ban messages # Minigame setup gamechannel = None # You can set here or with the command "*setup" gameinterval = 3600 #interval between the sessions #TEMP VALUE winnerPoints = 3 # points for who win the minigame valid = False end_day = 30 # The day of the end off the minigame - will verify at the start time # log file path logpath = '../logs' # Language import if lang == 'en-us': from en_us import * elif lang == 'pt-br': from pt_br import * else: raise Exception(f'There are no lang option called {lang}')
26.967742
82
0.685407
0
0
0
0
0
0
0
0
490
0.586124
3605823cc24094c58501be0321e78ef090f4367d
11,294
py
Python
postscripts/_city_transformer_postscripts.py
yasahi-hpc/CityTransformer
b285525d860b4cd522a30823351ecd3cb74dcdf3
[ "MIT" ]
null
null
null
postscripts/_city_transformer_postscripts.py
yasahi-hpc/CityTransformer
b285525d860b4cd522a30823351ecd3cb74dcdf3
[ "MIT" ]
null
null
null
postscripts/_city_transformer_postscripts.py
yasahi-hpc/CityTransformer
b285525d860b4cd522a30823351ecd3cb74dcdf3
[ "MIT" ]
null
null
null
""" Convert data and then visualize Data Manupulation 1. Save metrics for validation and test data Save figures 1. Loss curve 2. plume dispersion and errors 3. metrics """ import pathlib import numpy as np import xarray as xr from numpy import ma import matplotlib as mpl import matplotlib.pyplot as plt import matplotlib.style from matplotlib.colors import LogNorm from ._base_postscript import _BasePostscripts from .metrics import get_metric class CityTransformerPostscripts(_BasePostscripts): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.model_name = 'CityTransformer' self.modes = ['val', 'test'] self.threshold = 0.5 self.clip = 1.e-8 self.alpha = 0.9 self.vmin = self.clip self.vmax = 1.0 self.nb_bins = 100 self.fig_names = ['loss', 'contour', 'metrics'] self.extent = [-1024,1024,-1024,1024] self.metrics = {'FAC2', 'FAC5', 'MG', 'VG', 'NAD', 'FB', } # Matplotlib settings mpl.style.use('classic') fontsize = 28 self.fontsize = fontsize fontname = 'Times New Roman' plt.rc('xtick', labelsize=fontsize) plt.rc('ytick', labelsize=fontsize) plt.rc('font', family=fontname) self.title_font = {'fontname':fontname, 'size':fontsize, 'color':'black', 'verticalalignment':'bottom'} self.axis_font = {'fontname':fontname, 'size':fontsize} def __preprocess(self, epoch): for mode in self.modes: all_metrics = {metric_name: [] for metric_name in self.metrics} nb_shots = self.nb_shots_dict[mode] for i in range(nb_shots): filename = pathlib.Path(self.inference_dir) / mode / f'{mode}{i:06}_epoch{epoch:04}.nc' ds = xr.open_dataset(filename) levelset = ds['levelset'].values # Target metrics metric_dict = {'FAC2': {'factor': 2, 'levelset': levelset}, 'FAC5': {'factor': 5, 'levelset': levelset}, 'MG': {'levelset': levelset}, 'VG': {'levelset': levelset}, 'NAD': {'levelset': levelset}, 'FB': {'levelset': levelset}, } evaluated_metrics = self.__evaluate_metrics(ds, metric_dict=metric_dict) for metric_name in metric_dict.keys(): all_metrics[metric_name].append(evaluated_metrics[metric_name]) # Saving dataset data_vars = {} for metric_name, evaluated_values in all_metrics.items(): data_vars[metric_name] = (['shot_idx'], np.asarray(evaluated_values)) coords = {'shot_idx': np.arange(nb_shots)} filename = self.data_dir / f'{mode}_epoch{epoch:04}.nc' ds = xr.Dataset(data_vars=data_vars, coords=coords) ds.to_netcdf(filename) def __evaluate_metrics(self, ds, metric_dict): evaluated_metrics = {} pred, pred_binary = ds['pred_plume'].values.squeeze(), ds['pred_zeros_map'].values ref, ref_binary = ds['ref_plume'].values.squeeze(), ds['ref_zeros_map'].values levelset = ds['levelset'].values pred = self.__mask_img(img=pred, binary=pred_binary, levelset=levelset, threshold=self.threshold, clip=self.clip) ref = self.__mask_img(img=ref, binary=ref_binary, levelset=levelset, threshold=self.threshold, clip=self.clip) for metric_name, kwargs in metric_dict.items(): metric = get_metric(metric_name)(**kwargs) evaluated_metrics[metric_name] = metric.evaluate(pred, ref) return evaluated_metrics def __mask_img(self, img, binary, levelset, threshold, clip, apply_mask=False): img, binary = np.squeeze(img), np.squeeze(binary) mask = np.logical_or(binary<threshold, levelset >= 0.) img = 10**img img = np.where(mask, -1., img) * clip if apply_mask: return ma.masked_where(img <= 0, img) else: return img def __classification_by_factor(self, pred, ref, levelset, threshold, clip): """ factor2 == 0 factor5 == 0.5 factor5++ == 1.0 """ if type(pred) is tuple: pred, pred_binary = pred ref, ref_binary = ref # Create mask based on zeros map and levelset def mask_on_img(img, binary): mask = np.logical_or(binary < threshold, levelset >= 0.) img = 10**img img = np.where(mask, -1, img) * clip return img pred = mask_on_img(pred, pred_binary) ref = mask_on_img(ref, ref_binary) factor = np.ones_like(ref) # Default 1.0 target_area = np.logical_and(ref > 0., levelset < 0) fraction = np.where(target_area, pred/ref, 0) fac2_area = np.logical_and( fraction >= 1/2., fraction <= 2. ) fac5_area = np.logical_and( fraction >= 1/5., fraction <= 5. ) fac2_area = np.logical_and(target_area, fac2_area) fac5_area = np.logical_and(target_area, fac5_area) factor[fac5_area] = np.ones_like(ref)[fac5_area] * 0.5 factor[fac2_area] = np.zeros_like(ref)[fac2_area] correct_zeros = np.logical_and(pred_binary < 0.5, ref_binary < 0.5) masked_fraction = ma.masked_where(np.logical_or(correct_zeros, levelset >= 0.), factor) return masked_fraction def _visualize(self, epoch): self.data_dir = self.img_dir / 'metrics/data' if not self.data_dir.exists(): self.data_dir.mkdir(parents=True) super()._visualize_loss() self.__preprocess(epoch) self.__visualize_plume_dispersion(epoch) self.__visualize_metrics(epoch) def __visualize_plume_dispersion(self, epoch): figsize = (8, 8) for mode in self.modes: nb_shots = self.nb_shots_dict[mode] for i in range(nb_shots): fig, axes = plt.subplots(nrows=2, ncols=2, figsize=figsize, subplot_kw={'xticks':[], 'yticks':[]}, gridspec_kw=dict(hspace=0.1, wspace=0.05)) axes[1, 0].set_visible(False) filename = pathlib.Path(self.inference_dir) / mode / f'{mode}{i:06}_epoch{epoch:04}.nc' ds = xr.open_dataset(filename) levelset = ds['levelset'].values x, y = ds.attrs['release_x'], ds.attrs['release_y'] # apply masks pred, pred_binary = ds['pred_plume'].values.squeeze(), ds['pred_zeros_map'].values ref, ref_binary = ds['ref_plume'].values.squeeze(), ds['ref_zeros_map'].values levelset = ds['levelset'].values factor = self.__classification_by_factor((pred, pred_binary), (ref, ref_binary), levelset=levelset, threshold=self.threshold, clip=self.clip) masked_pred = self.__mask_img(img=pred, binary=pred_binary, levelset=levelset, threshold=self.threshold, clip=self.clip, apply_mask=True) masked_ref = self.__mask_img(img=ref, binary=ref_binary, levelset=levelset, threshold=self.threshold, clip=self.clip, apply_mask=True) # Plotting the ground truth and prediction im = axes[0, 0].imshow(levelset < 0., cmap='gray', origin='lower', extent=self.extent, interpolation='none') im = axes[0, 0].imshow(masked_ref, cmap='coolwarm', origin='lower', extent=self.extent, norm=LogNorm(vmin=self.vmin, vmax=self.vmax), alpha=self.alpha, interpolation='none') axes[0, 0].plot(x, y, color='none', marker='*', markeredgecolor='g', markeredgewidth=2, markersize=12) im = axes[0, 1].imshow(levelset < 0., cmap='gray', origin='lower', extent=self.extent, interpolation='none') im = axes[0, 1].imshow(masked_pred, cmap='coolwarm', origin='lower', extent=self.extent, norm=LogNorm(vmin=self.vmin, vmax=self.vmax), alpha=self.alpha, interpolation='none') axes[0, 1].plot(x, y, color='none', marker='*', markeredgecolor='g', markeredgewidth=2, markersize=12) # Plotting the factor map im2 = axes[1, 1].imshow(levelset < 0., cmap='gray', origin='lower', extent=self.extent, interpolation='none') im2 = axes[1, 1].imshow(factor, cmap='jet', origin='lower', extent=self.extent, vmin=0, vmax=1, alpha=self.alpha, interpolation='none') axes[1, 1].plot(x, y, color='none', marker='*', markeredgecolor='g', markeredgewidth=2, markersize=12) axes[0, 0].set_title('Ground Truth', **self.title_font) axes[0, 1].set_title(f'{self.arch_name}', **self.title_font) cbar = fig.colorbar(im, ax=axes[0, :]) cbar2 = fig.colorbar(im2, ax=axes[1, :]) cbar2.remove() figname = self.img_dir / 'contour' / f'log_{mode}{i:06}_epoch{epoch:04}.png' plt.savefig(figname, bbox_inches='tight') plt.close('all') def __visualize_metrics(self, epoch): figsize = (20, 12) plot_dict = {} # key: metric_name, value: xmin, xmax, ymin, ymax, label # xmin, xmax are also used to make histogram plot_dict['FAC2'] = (0, 1, 0, 0.05, 'FAC_2') plot_dict['FAC5'] = (0, 1, 0, 0.1, 'FAC_5') plot_dict['FB'] = (-2, 2, 0, 0.05, 'FB') plot_dict['NAD'] = (0, 0.15, 0, 0.15, 'NAD') plot_dict['MG'] = (0, 2, 0, 0.1, 'MG') plot_dict['VG'] = (1, 1.15, 0, 0.5, 'VG') metric_names = plot_dict.keys() for mode in self.modes: filename = self.data_dir / f'{mode}_epoch{epoch:04}.nc' ds = xr.open_dataset(filename) fig, axes = plt.subplots(nrows=2, ncols=3, figsize=figsize) for metric_name, ax in zip(metric_names, axes.flatten()): xmin, xmax, ymin, ymax, label = plot_dict[metric_name] bins = np.linspace(xmin, xmax, self.nb_bins) metric = ds[metric_name].values weights = np.ones_like(metric) / len(metric) _hist, _bins, _patches = ax.hist(metric, bins=bins, alpha=0.5, weights=weights, label=self.arch_name) average = np.mean( np.abs(metric) ) std = np.std( np.abs(metric) ) print(f'model: {self.arch_name}, metric_name: {metric_name}, average: {average}, std: {std}') ax.set_xlim([xmin, xmax]) ax.set_ylim([ymin, ymax]) ax.set_title(metric_name, **self.title_font) ax.legend(loc='upper right', prop={'size': self.fontsize*0.6}) ax.grid(ls='dashed', lw=1) figname = self.img_dir / 'metrics' / f'metric_{self.arch_name}.png' plt.savefig(figname, bbox_inches='tight') plt.close('all')
43.775194
190
0.573579
10,844
0.960156
0
0
0
0
0
0
1,675
0.148309
3606767125c21d0e6b93352716d5f01b3c40e053
664
py
Python
OrangeInstaller/OrangeInstaller/Testing.py
mcolombo87/OrangeInstaller
31486ed532409f08d3b22cd7fdb05f209e3fc3e8
[ "Apache-2.0" ]
3
2017-04-08T13:52:22.000Z
2018-10-31T20:17:20.000Z
OrangeInstaller/OrangeInstaller/Testing.py
mcolombo87/OrangeInstaller
31486ed532409f08d3b22cd7fdb05f209e3fc3e8
[ "Apache-2.0" ]
46
2017-03-16T10:20:11.000Z
2018-11-16T15:54:38.000Z
OrangeInstaller/OrangeInstaller/Testing.py
mcolombo87/OrangeInstaller
31486ed532409f08d3b22cd7fdb05f209e3fc3e8
[ "Apache-2.0" ]
1
2018-08-12T01:10:41.000Z
2018-08-12T01:10:41.000Z
from Functions import functions, systemTools import unittest import sys class systemToolsTests(unittest.TestCase): """ Class for testing """ def test_checkSystemTools(self): check = False if systemTools.isWindows() == True: check=True self.assertEqual(sys.platform.startswith("win"), True, "OI.SystemTool for check OS is different to sys method") if systemTools.isLinux() == True: check=True self.assertEqual(sys.platform.startswith("linux"), True, "OI.SystemTool for check OS is different to sys method") if __name__ == '__main__': unittest.main()
31.619048
125
0.641566
526
0.792169
0
0
0
0
0
0
165
0.248494
36067e37b136228914619d3370100e13fb6c3ddf
61,464
py
Python
venv/lib/python3.6/site-packages/ansible_collections/cisco/iosxr/plugins/module_utils/network/iosxr/argspec/bgp_global/bgp_global.py
usegalaxy-no/usegalaxy
75dad095769fe918eb39677f2c887e681a747f3a
[ "MIT" ]
1
2020-01-22T13:11:23.000Z
2020-01-22T13:11:23.000Z
venv/lib/python3.6/site-packages/ansible_collections/cisco/iosxr/plugins/module_utils/network/iosxr/argspec/bgp_global/bgp_global.py
usegalaxy-no/usegalaxy
75dad095769fe918eb39677f2c887e681a747f3a
[ "MIT" ]
12
2020-02-21T07:24:52.000Z
2020-04-14T09:54:32.000Z
venv/lib/python3.6/site-packages/ansible_collections/cisco/iosxr/plugins/module_utils/network/iosxr/argspec/bgp_global/bgp_global.py
usegalaxy-no/usegalaxy
75dad095769fe918eb39677f2c887e681a747f3a
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- # Copyright 2021 Red Hat # GNU General Public License v3.0+ # (see COPYING or https://www.gnu.org/licenses/gpl-3.0.txt) from __future__ import absolute_import, division, print_function __metaclass__ = type ############################################# # WARNING # ############################################# # # This file is auto generated by the # cli_rm_builder. # # Manually editing this file is not advised. # # To update the argspec make the desired changes # in the module docstring and re-run # cli_rm_builder. # ############################################# """ The arg spec for the iosxr_bgp_global module """ class Bgp_globalArgs(object): # pylint: disable=R0903 """The arg spec for the iosxr_bgp_global module """ def __init__(self, **kwargs): pass argument_spec = { "config": { "type": "dict", "options": { "as_number": {"type": "str"}, "bfd": { "type": "dict", "options": { "minimum_interval": {"type": "int"}, "multiplier": {"type": "int"}, }, }, "bgp": { "type": "dict", "options": { "as_path_loopcheck": {"type": "bool"}, "auto_policy_soft_reset": { "type": "dict", "options": {"disable": {"type": "bool"}}, }, "bestpath": { "type": "dict", "options": { "as_path": { "type": "dict", "options": { "ignore": {"type": "bool"}, "multipath_relax": {"type": "bool"}, }, }, "aigp": { "type": "dict", "options": {"ignore": {"type": "bool"}}, }, "med": { "type": "dict", "options": { "always": {"type": "bool"}, "confed": {"type": "bool"}, "missing_as_worst": {"type": "bool"}, }, }, "compare_routerid": {"type": "bool"}, "cost_community": { "type": "dict", "options": {"ignore": {"type": "bool"}}, }, "origin_as": { "type": "dict", "options": { "use": { "type": "dict", "options": { "validity": {"type": "bool"} }, }, "allow": { "type": "dict", "options": { "invalid": {"type": "bool"} }, }, }, }, }, }, "cluster_id": {"type": "str"}, "confederation": { "type": "dict", "options": { "identifier": {"type": "int"}, "peers": {"type": "list", "elements": "int"}, }, }, "default": { "type": "dict", "options": {"local_preference": {"type": "int"}}, }, "enforce_first_as": { "type": "dict", "options": {"disable": {"type": "bool"}}, }, "fast_external_fallover": { "type": "dict", "options": {"disable": {"type": "bool"}}, }, "graceful_restart": { "type": "dict", "options": { "set": {"type": "bool"}, "graceful_reset": {"type": "bool"}, "restart_time": {"type": "int"}, "purge_time": {"type": "int"}, "stalepath_time": {"type": "int"}, }, }, "install": { "type": "dict", "options": {"diversion": {"type": "bool"}}, }, "log": { "type": "dict", "options": { "log_message": { "type": "dict", "options": {"disable": {"type": "bool"}}, }, "neighbor": { "type": "dict", "options": { "changes": { "type": "dict", "options": { "detail": {"type": "bool"}, "disable": {"type": "bool"}, }, } }, }, }, }, "maximum": { "type": "dict", "options": {"neighbor": {"type": "int"}}, }, "multipath": { "type": "dict", "options": { "as_path": { "type": "dict", "options": { "ignore": { "type": "dict", "options": { "onwards": {"type": "bool"} }, } }, } }, }, "origin_as": { "type": "dict", "options": { "validation": { "type": "dict", "options": { "disable": {"type": "bool"}, "signal": { "type": "dict", "options": { "ibgp": {"type": "bool"} }, }, "time": { "type": "dict", "options": { "time_off": {"type": "bool"}, "time_in_second": { "type": "int" }, }, }, }, } }, }, "redistribute_internal": {"type": "bool"}, "router_id": {"type": "str"}, "scan_time": {"type": "int"}, "unsafe_ebgp_policy": {"type": "bool"}, "update_delay": {"type": "int"}, }, }, "default_information": { "type": "dict", "options": {"originate": {"type": "bool"}}, }, "default_metric": {"type": "int"}, "graceful_maintenance": { "type": "dict", "options": { "activate": { "type": "str", "choices": [ "all-neighbors", "retain-routes", "all-neighbors retain-routes", "", ], } }, }, "ibgp": { "type": "dict", "options": { "policy": { "type": "dict", "options": { "out": { "type": "dict", "options": { "enforce_modifications": { "type": "bool" } }, } }, } }, }, "mpls": { "type": "dict", "options": { "activate": { "type": "dict", "options": {"interface": {"type": "str"}}, } }, }, "mvpn": {"type": "bool"}, "neighbors": { "type": "list", "elements": "dict", "options": { "neighbor": {"type": "str", "required": True}, "advertisement_interval": {"type": "int"}, "bfd": { "type": "dict", "options": { "fast_detect": { "type": "dict", "options": { "disable": {"type": "bool"}, "strict_mode": {"type": "bool"}, }, }, "multiplier": {"type": "int"}, "minimum_interval": {"type": "int"}, }, }, "bmp_activate": { "type": "dict", "options": {"server": {"type": "int"}}, }, "capability": { "type": "dict", "options": { "additional_paths": { "type": "dict", "options": { "send": { "type": "dict", "options": { "set": {"type": "bool"}, "disable": {"type": "bool"}, }, }, "receive": { "type": "dict", "options": { "set": {"type": "bool"}, "disable": {"type": "bool"}, }, }, }, }, "suppress": { "type": "dict", "options": { "four_byte_AS": { "type": "dict", "options": { "set": {"type": "bool"} }, }, "all": { "type": "dict", "options": { "inheritance_disable": { "type": "bool" }, "set": {"type": "bool"}, }, }, }, }, }, }, "cluster_id": {"type": "str"}, "description": {"type": "str"}, "dmz_link_bandwidth": { "type": "dict", "options": { "inheritance_disable": {"type": "bool"}, "set": {"type": "bool"}, }, }, "dscp": {"type": "str"}, "ebgp_multihop": { "type": "dict", "options": { "value": {"type": "int"}, "mpls": {"type": "bool"}, }, }, "ebgp_recv_extcommunity_dmz": { "type": "dict", "options": { "inheritance_disable": {"type": "bool"}, "set": {"type": "bool"}, }, }, "ebgp_send_extcommunity_dmz": { "type": "dict", "options": { "inheritance_disable": {"type": "bool"}, "cumulatie": {"type": "bool"}, "set": {"type": "bool"}, }, }, "egress_engineering": { "type": "dict", "options": { "inheritance_disable": {"type": "bool"}, "set": {"type": "bool"}, }, }, "enforce_first_as": { "type": "dict", "options": {"disable": {"type": "bool"}}, }, "graceful_maintenance": { "type": "dict", "options": { "set": {"type": "bool"}, "activate": { "type": "dict", "options": { "inheritance_disable": { "type": "bool" }, "set": {"type": "bool"}, }, }, "as_prepends": { "type": "dict", "options": { "inheritance_disable": { "type": "bool" }, "value": {"type": "int"}, }, }, "local_preference": { "type": "dict", "options": { "value": {"type": "int"}, "inheritance_disable": { "type": "bool" }, }, }, }, }, "graceful_restart": { "type": "dict", "options": { "restart_time": {"type": "int"}, "stalepath_time": {"type": "int"}, }, }, "ignore_connected_check": { "type": "dict", "options": { "inheritance_disable": {"type": "bool"}, "set": {"type": "bool"}, }, }, "keychain": { "type": "dict", "no_log": False, "options": { "name": {"type": "str"}, "inheritance_disable": {"type": "bool"}, }, }, "local": { "type": "dict", "options": { "address": { "type": "dict", "options": { "ipv4_address": {"type": "str"}, "inheritance_disable": { "type": "bool" }, }, } }, }, "local_as": { "type": "dict", "options": { "value": {"type": "int"}, "inheritance_disable": {"type": "bool"}, }, }, "log": { "type": "dict", "options": { "log_message": { "type": "dict", "options": { "in": { "type": "dict", "options": { "value": {"type": "int"}, "disable": {"type": "bool"}, "inheritance_disable": { "type": "bool" }, }, }, "out": { "type": "dict", "options": { "value": {"type": "int"}, "disable": {"type": "bool"}, "inheritance_disable": { "type": "bool" }, }, }, }, } }, }, "origin_as": { "type": "dict", "options": { "validation": { "type": "dict", "options": {"disable": {"type": "bool"}}, } }, }, "receive_buffer_size": {"type": "int"}, "remote_as": {"type": "int"}, "send_buffer_size": {"type": "int"}, "session_open_mode": { "type": "str", "choices": ["active-only", "both", "passive-only"], }, "shutdown": { "type": "dict", "options": { "inheritance_disable": {"type": "bool"}, "set": {"type": "bool"}, }, }, "tcp": { "type": "dict", "options": { "mss": { "type": "dict", "options": { "value": {"type": "int"}, "inheritance_disable": { "type": "bool" }, }, } }, }, "timers": { "type": "dict", "options": { "keepalive_time": {"type": "int"}, "holdtime": {"type": "int"}, }, }, "ttl_security": { "type": "dict", "options": { "inheritance_disable": {"type": "bool"}, "set": {"type": "bool"}, }, }, "update": { "type": "dict", "options": { "in": { "type": "dict", "options": { "filtering": { "type": "dict", "options": { "attribute_filter": { "type": "dict", "options": { "group": { "type": "str" } }, }, "logging": { "type": "dict", "options": { "disable": { "type": "bool" } }, }, "update_message": { "type": "dict", "options": { "buffers": { "type": "int" } }, }, }, } }, } }, }, "update_source": {"type": "str"}, }, }, "nsr": { "type": "dict", "options": { "set": {"type": "bool"}, "disable": {"type": "bool"}, }, }, "socket": { "type": "dict", "options": { "receive_buffer_size": {"type": "int"}, "send_buffer_size": {"type": "int"}, }, }, "timers": { "type": "dict", "options": { "keepalive_time": {"type": "int"}, "holdtime": {"type": "int"}, }, }, "update": { "type": "dict", "options": { "in": { "type": "dict", "options": { "error_handling": { "type": "dict", "options": { "basic": { "type": "dict", "options": { "ebgp": { "type": "dict", "options": { "disable": { "type": "bool" } }, }, "ibgp": { "type": "dict", "options": { "disable": { "type": "bool" } }, }, }, }, "extended": { "type": "dict", "options": { "ebgp": {"type": "bool"}, "ibgp": {"type": "bool"}, }, }, }, } }, }, "out": { "type": "dict", "options": {"logging": {"type": "bool"}}, }, "limit": {"type": "int"}, }, }, "rpki": { "type": "dict", "options": { "route": { "type": "dict", "options": { "value": {"type": "str"}, "max": {"type": "int"}, "origin": {"type": "int"}, }, }, "servers": { "type": "list", "elements": "dict", "options": { "name": {"type": "str"}, "purge_time": {"type": "int"}, "refresh_time": { "type": "dict", "options": { "value": {"type": "int"}, "time_off": {"type": "bool"}, }, }, "response_time": { "type": "dict", "options": { "value": {"type": "int"}, "time_off": {"type": "bool"}, }, }, "shutdown": {"type": "bool"}, "transport": { "type": "dict", "options": { "ssh": { "type": "dict", "options": { "port": {"type": "int"} }, }, "tcp": { "type": "dict", "options": { "port": {"type": "int"} }, }, }, }, }, }, }, }, "vrfs": { "type": "list", "elements": "dict", "options": { "vrf": {"type": "str"}, "bfd": { "type": "dict", "options": { "minimum_interval": {"type": "int"}, "multiplier": {"type": "int"}, }, }, "bgp": { "type": "dict", "options": { "auto_policy_soft_reset": { "type": "dict", "options": {"disable": {"type": "bool"}}, }, "bestpath": { "type": "dict", "options": { "as_path": { "type": "dict", "options": { "ignore": {"type": "bool"}, "multipath_relax": { "type": "bool" }, }, }, "aigp": { "type": "dict", "options": { "ignore": {"type": "bool"} }, }, "med": { "type": "dict", "options": { "always": {"type": "bool"}, "confed": {"type": "bool"}, "missing_as_worst": { "type": "bool" }, }, }, "compare_routerid": {"type": "bool"}, "cost_community": { "type": "dict", "options": { "ignore": {"type": "bool"} }, }, "origin_as": { "type": "dict", "options": { "use": { "type": "dict", "options": { "validity": { "type": "bool" } }, }, "allow": { "type": "dict", "options": { "invalid": { "type": "bool" } }, }, }, }, }, }, "default": { "type": "dict", "options": { "local_preference": {"type": "int"} }, }, "enforce_first_as": { "type": "dict", "options": {"disable": {"type": "bool"}}, }, "fast_external_fallover": { "type": "dict", "options": {"disable": {"type": "bool"}}, }, "log": { "type": "dict", "options": { "log_message": { "type": "dict", "options": { "disable": {"type": "bool"} }, }, "neighbor": { "type": "dict", "options": { "changes": { "type": "dict", "options": { "detail": { "type": "bool" }, "disable": { "type": "bool" }, }, } }, }, }, }, "multipath": { "type": "dict", "options": { "as_path": { "type": "dict", "options": { "ignore": { "type": "dict", "options": { "onwards": { "type": "bool" } }, } }, } }, }, "redistribute_internal": {"type": "bool"}, "router_id": {"type": "str"}, "unsafe_ebgp_policy": {"type": "bool"}, }, }, "default_information": { "type": "dict", "options": {"originate": {"type": "bool"}}, }, "default_metric": {"type": "int"}, "mpls": { "type": "dict", "options": { "activate": { "type": "dict", "options": {"interface": {"type": "str"}}, } }, }, "neighbors": { "type": "list", "elements": "dict", "options": { "neighbor": {"type": "str", "required": True}, "advertisement_interval": {"type": "int"}, "bfd": { "type": "dict", "options": { "fast_detect": { "type": "dict", "options": { "disable": {"type": "bool"}, "strict_mode": { "type": "bool" }, }, }, "multiplier": {"type": "int"}, "minimum_interval": {"type": "int"}, }, }, "bmp_activate": { "type": "dict", "options": {"server": {"type": "int"}}, }, "capability": { "type": "dict", "options": { "additional_paths": { "type": "dict", "options": { "send": { "type": "dict", "options": { "set": { "type": "bool" }, "disable": { "type": "bool" }, }, }, "receive": { "type": "dict", "options": { "set": { "type": "bool" }, "disable": { "type": "bool" }, }, }, }, }, "suppress": { "type": "dict", "options": { "four_byte_AS": { "type": "dict", "options": { "set": {"type": "bool"} }, }, "all": { "type": "dict", "options": { "inheritance_disable": { "type": "bool" }, "set": { "type": "bool" }, }, }, }, }, }, }, "cluster_id": {"type": "str"}, "description": {"type": "str"}, "dmz_link_bandwidth": { "type": "dict", "options": { "inheritance_disable": { "type": "bool" }, "set": {"type": "bool"}, }, }, "dscp": {"type": "str"}, "ebgp_multihop": { "type": "dict", "options": { "value": {"type": "int"}, "mpls": {"type": "bool"}, }, }, "ebgp_recv_extcommunity_dmz": { "type": "dict", "options": { "inheritance_disable": { "type": "bool" }, "set": {"type": "bool"}, }, }, "ebgp_send_extcommunity_dmz": { "type": "dict", "options": { "inheritance_disable": { "type": "bool" }, "cumulatie": {"type": "bool"}, "set": {"type": "bool"}, }, }, "egress_engineering": { "type": "dict", "options": { "inheritance_disable": { "type": "bool" }, "set": {"type": "bool"}, }, }, "enforce_first_as": { "type": "dict", "options": {"disable": {"type": "bool"}}, }, "graceful_maintenance": { "type": "dict", "options": { "set": {"type": "bool"}, "activate": { "type": "dict", "options": { "inheritance_disable": { "type": "bool" }, "set": {"type": "bool"}, }, }, "as_prepends": { "type": "dict", "options": { "inheritance_disable": { "type": "bool" }, "value": {"type": "int"}, }, }, "local_preference": { "type": "dict", "options": { "value": {"type": "int"}, "inheritance_disable": { "type": "bool" }, }, }, }, }, "graceful_restart": { "type": "dict", "options": { "restart_time": {"type": "int"}, "stalepath_time": {"type": "int"}, }, }, "ignore_connected_check": { "type": "dict", "options": { "inheritance_disable": { "type": "bool" }, "set": {"type": "bool"}, }, }, "keychain": { "type": "dict", "no_log": False, "options": { "name": {"type": "str"}, "inheritance_disable": { "type": "bool" }, }, }, "local": { "type": "dict", "options": { "address": { "type": "dict", "options": { "ipv4_address": { "type": "str" }, "inheritance_disable": { "type": "bool" }, }, } }, }, "local_as": { "type": "dict", "options": { "value": {"type": "int"}, "inheritance_disable": { "type": "bool" }, }, }, "log": { "type": "dict", "options": { "log_message": { "type": "dict", "options": { "in": { "type": "dict", "options": { "value": { "type": "int" }, "disable": { "type": "bool" }, "inheritance_disable": { "type": "bool" }, }, }, "out": { "type": "dict", "options": { "value": { "type": "int" }, "disable": { "type": "bool" }, "inheritance_disable": { "type": "bool" }, }, }, }, } }, }, "origin_as": { "type": "dict", "options": { "validation": { "type": "dict", "options": { "disable": {"type": "bool"} }, } }, }, "receive_buffer_size": {"type": "int"}, "remote_as": {"type": "int"}, "send_buffer_size": {"type": "int"}, "session_open_mode": { "type": "str", "choices": [ "active-only", "both", "passive-only", ], }, "shutdown": { "type": "dict", "options": { "inheritance_disable": { "type": "bool" }, "set": {"type": "bool"}, }, }, "tcp": { "type": "dict", "options": { "mss": { "type": "dict", "options": { "value": {"type": "int"}, "inheritance_disable": { "type": "bool" }, }, } }, }, "timers": { "type": "dict", "options": { "keepalive_time": {"type": "int"}, "holdtime": {"type": "int"}, }, }, "ttl_security": { "type": "dict", "options": { "inheritance_disable": { "type": "bool" }, "set": {"type": "bool"}, }, }, "update": { "type": "dict", "options": { "in": { "type": "dict", "options": { "filtering": { "type": "dict", "options": { "attribute_filter": { "type": "dict", "options": { "group": { "type": "str" } }, }, "logging": { "type": "dict", "options": { "disable": { "type": "bool" } }, }, "update_message": { "type": "dict", "options": { "buffers": { "type": "int" } }, }, }, } }, } }, }, "update_source": {"type": "str"}, }, }, "rd": { "type": "dict", "options": {"auto": {"type": "bool"}}, }, "socket": { "type": "dict", "options": { "receive_buffer_size": {"type": "int"}, "send_buffer_size": {"type": "int"}, }, }, "timers": { "type": "dict", "options": { "keepalive_time": {"type": "int"}, "holdtime": {"type": "int"}, }, }, }, }, }, }, "running_config": {"type": "str"}, "state": { "type": "str", "choices": [ "deleted", "merged", "replaced", "gathered", "rendered", "parsed", "purged", ], "default": "merged", }, } # pylint: disable=C0301
49.647819
82
0.149974
60,778
0.988839
0
0
0
0
0
0
12,281
0.199808
36081a586f2b7afca6efc6de5e1d5480c80b61dc
7,039
py
Python
quince/ui/components/game_frame.py
DnrkasEFF/quince
89b5699a63642fd1ed172b566670b4dd8a2f8e18
[ "MIT" ]
null
null
null
quince/ui/components/game_frame.py
DnrkasEFF/quince
89b5699a63642fd1ed172b566670b4dd8a2f8e18
[ "MIT" ]
null
null
null
quince/ui/components/game_frame.py
DnrkasEFF/quince
89b5699a63642fd1ed172b566670b4dd8a2f8e18
[ "MIT" ]
null
null
null
""" The primary frame containing the content for the entire game """ import tkinter as tk import random as random from quince.utility import is_valid_pickup from quince.ronda import Ronda from quince.ui.components.opponents.opponent_frame \ import OpponentFrameHorizontal, OpponentFrameVertical from quince.ui.components.table.table import Table from quince.ui.components.player.player_frame import PlayerFrame class GameFrame(tk.Frame): """Tk frame containing the main gameplay display including cards, decks, and avatars.""" def __init__(self, parent, player, npc1, npc2, npc3, display_scores): """Instantiate a new GameFrame Args: parent (Tk widget) player - Player object representing the (human) user npc1 (NPC) - Shadow player (opponent) npc2 (NPC) - Shadow player (opponent) npc3 (NPC) - Shadow player (opponent) display_scores (function) - Callback to execute when a ronda is finished """ tk.Frame.__init__(self, parent) self.parent = parent self.display_scores = display_scores self.grid_rowconfigure(0, weight=1) self.grid_rowconfigure(1, weight=3) self.grid_rowconfigure(2, weight=1) self.grid_columnconfigure(0, weight=1) self.grid_columnconfigure(1, weight=3) self.grid_columnconfigure(2, weight=1) self.npc1 = npc1 self.npc2 = npc2 self.npc3 = npc3 self.player = player self.selected_table_cards = [] self.ronda = Ronda.start([self.player, self.npc1, self.npc2, self.npc3], self.npc3) # OPPONENT 1 opp1_hand_size = len(self.ronda.player_cards[self.npc1]['hand']) opp1_active = self.ronda.current_player is self.npc1 self.opp1 = OpponentFrameVertical(self, self.npc1.image(), self.npc1.name(), opp1_active, opp1_hand_size) self.opp1.grid(row=1, column=0) # OPPONENT 2 opp2_active = self.ronda.current_player is self.npc2 opp2_hand_size = len(self.ronda.player_cards[self.npc2]['hand']) self.opp2 = OpponentFrameHorizontal(self, self.npc2.image(), self.npc2.name(), opp2_active, opp2_hand_size) self.opp2.grid(row=0, column=1) # OPPONENT 3 opp3_active = self.ronda.current_player is self.npc3 opp3_hand_size = len(self.ronda.player_cards[self.npc3]['hand']) self.opp3 = OpponentFrameVertical(self, self.npc3.image(), self.npc3.name(), opp3_active, opp3_hand_size) self.opp3.grid(row=1, column=2) # PLAYER myhand = self.ronda.player_cards[self.player]['hand'] player_is_active = self.ronda.current_player is self.player self.hud = PlayerFrame(self, self.player, myhand, player_is_active, self.play_hand) self.hud.grid(row=2, column=0, columnspan=3) # TABLE table_cards = self.ronda.current_mesa self.tbl = Table(self, table_cards, self.register_table_card_selection) self.tbl.grid(row=1, column=1) def draw(self): """Update all widgets on the frame""" self.selected_table_cards = [] table_cards = self.ronda.current_mesa current_player = self.ronda.current_player # OPPONENT 1 opp1_hand_size = len(self.ronda.player_cards[self.npc1]['hand']) opp1_active = self.ronda.current_player is self.npc1 self.opp1.refresh(opp1_hand_size, opp1_active) # OPPONENT 2 opp2_active = current_player is self.npc2 opp2_hand_size = len(self.ronda.player_cards[self.npc2]['hand']) self.opp2.refresh(opp2_hand_size, opp2_active) # OPPONENT 3 opp3_active = current_player is self.npc3 opp3_hand_size = len(self.ronda.player_cards[self.npc3]['hand']) self.opp3.refresh(opp3_hand_size, opp3_active) # PLAYER myhand = self.ronda.player_cards[self.player]['hand'] player_is_active = current_player is self.player self.hud.refresh(myhand, player_is_active) # TABLE self.tbl.destroy() self.tbl = Table(self, table_cards, self.register_table_card_selection) self.tbl.grid(row=1, column=1) def register_table_card_selection(self, cards): """Callback function executed by the Table when the user selects cards. The list of cards is stored in the GameFrame's state so that it can be queried when the user makes a move. Args: cards (List of Card) """ self.selected_table_cards = cards def play_hand(self, hand_card): """Callback function executed when player clicks the "Play Hand" button. """ if self.ronda.current_player is self.player: print(f'Attempting to play {hand_card} and\ pick up: {self.selected_table_cards}') if is_valid_pickup(hand_card, self.selected_table_cards): self.ronda = self.ronda.play_turn(hand_card, self.selected_table_cards) self.draw() self.play_next_move() else: print("not your turn") def play_next_move(self): """This function gets called continually as CPU players make their moves. When it's the user's turn to play, the loop is broken until they play their hand, which will start up the cycle again. """ if self.ronda.is_finished: self.display_scores(self.ronda) return if self.ronda.current_player is self.player: pass else: sleep_time = random.randrange(0, 1) self.after(sleep_time*1000, self._play_cpu_move) def _play_cpu_move(self): table_cards = self.ronda.current_mesa current_player = self.ronda.current_player hand = self.ronda.player_cards[current_player]['hand'] (own_card, mesa_cards) = current_player.get_move(hand, table_cards) self.ronda = self.ronda.play_turn(own_card, mesa_cards) print(f'{current_player.name()}\ played: {own_card} and picked up: {mesa_cards}') self.draw() self.play_next_move()
37.844086
79
0.574513
6,621
0.940617
0
0
0
0
0
0
1,536
0.218213
360825b11a2ba8661131f351d015f5a8ff5ce829
263
py
Python
Python_Projects/numeric/lossofsignificance.py
arifBurakDemiray/TheCodesThatIWrote
17d7bc81c516ec97110d0749e9c19d5e6ef9fc88
[ "MIT" ]
1
2019-11-01T20:18:06.000Z
2019-11-01T20:18:06.000Z
Python_Projects/numeric/lossofsignificance.py
arifBurakDemiray/TheCodesThatIWrote
17d7bc81c516ec97110d0749e9c19d5e6ef9fc88
[ "MIT" ]
null
null
null
Python_Projects/numeric/lossofsignificance.py
arifBurakDemiray/TheCodesThatIWrote
17d7bc81c516ec97110d0749e9c19d5e6ef9fc88
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- """ Created on Mon Apr 13 13:35:33 2020 """ #for finding loss of significances x=1e-1 flag = True a=0 while (flag): print (((2*x)/(1-(x**2))),"......",(1/(1+x))-(1/(1-x))) x= x*(1e-1) a=a+1 if(a==25): flag=False
14.611111
59
0.48289
0
0
0
0
0
0
0
0
110
0.418251
36087ed60369c020bd543832aa6b41bed88a5c17
100
py
Python
easyfl/test.py
weimingwill/easyfl-pypi
f9135ab14f8d486d4a1065fa62ade43fa14490a5
[ "MIT" ]
2
2021-11-08T12:24:06.000Z
2021-11-08T12:24:33.000Z
easyfl/test.py
weimingwill/easyfl-pypi
f9135ab14f8d486d4a1065fa62ade43fa14490a5
[ "MIT" ]
null
null
null
easyfl/test.py
weimingwill/easyfl-pypi
f9135ab14f8d486d4a1065fa62ade43fa14490a5
[ "MIT" ]
null
null
null
class Test: def __init__(self): pass def hi(self): print("hello world")
16.666667
28
0.52
100
1
0
0
0
0
0
0
13
0.13
360a23f4d6f5c86eb8c653834fc1cf467b915bfa
6,479
py
Python
alphamind/model/treemodel.py
atefar2/alpha-mind
66d839affb5d81d31d5cac7e5e224278e3f99a8b
[ "MIT" ]
1
2020-05-18T20:57:25.000Z
2020-05-18T20:57:25.000Z
alphamind/model/treemodel.py
atefar2/alpha-mind
66d839affb5d81d31d5cac7e5e224278e3f99a8b
[ "MIT" ]
null
null
null
alphamind/model/treemodel.py
atefar2/alpha-mind
66d839affb5d81d31d5cac7e5e224278e3f99a8b
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- """ Created on 2017-12-4 @author: cheng.li """ import arrow import numpy as np import pandas as pd import xgboost as xgb from sklearn.ensemble import RandomForestClassifier as RandomForestClassifierImpl from sklearn.ensemble import RandomForestRegressor as RandomForestRegressorImpl from sklearn.model_selection import train_test_split from xgboost import XGBClassifier as XGBClassifierImpl from xgboost import XGBRegressor as XGBRegressorImpl from alphamind.model.modelbase import create_model_base class RandomForestRegressor(create_model_base('sklearn')): def __init__(self, n_estimators: int = 100, max_features: str = 'auto', features=None, fit_target=None, **kwargs): super().__init__(features=features, fit_target=fit_target) self.impl = RandomForestRegressorImpl(n_estimators=n_estimators, max_features=max_features, **kwargs) @property def importances(self): return self.impl.feature_importances_.tolist() class RandomForestClassifier(create_model_base('sklearn')): def __init__(self, n_estimators: int = 100, max_features: str = 'auto', features=None, fit_target=None, **kwargs): super().__init__(features=features, fit_target=fit_target) self.impl = RandomForestClassifierImpl(n_estimators=n_estimators, max_features=max_features, **kwargs) @property def importances(self): return self.impl.feature_importances_.tolist() class XGBRegressor(create_model_base('xgboost')): def __init__(self, n_estimators: int = 100, learning_rate: float = 0.1, max_depth: int = 3, features=None, fit_target=None, n_jobs: int = 1, missing: float = np.nan, **kwargs): super().__init__(features=features, fit_target=fit_target) self.impl = XGBRegressorImpl(n_estimators=n_estimators, learning_rate=learning_rate, max_depth=max_depth, n_jobs=n_jobs, missing=missing, **kwargs) @property def importances(self): return self.impl.feature_importances_.tolist() class XGBClassifier(create_model_base('xgboost')): def __init__(self, n_estimators: int = 100, learning_rate: float = 0.1, max_depth: int = 3, features=None, fit_target=None, n_jobs: int = 1, missing: float = np.nan, **kwargs): super().__init__(features=features, fit_target=fit_target) self.impl = XGBClassifierImpl(n_estimators=n_estimators, learning_rate=learning_rate, max_depth=max_depth, n_jobs=n_jobs, missing=missing, **kwargs) self.impl = XGBClassifier.model_decode(self.model_encode()) @property def importances(self): return self.impl.feature_importances_.tolist() class XGBTrainer(create_model_base('xgboost')): def __init__(self, objective='binary:logistic', booster='gbtree', tree_method='hist', n_estimators: int = 100, learning_rate: float = 0.1, max_depth=3, eval_sample=None, early_stopping_rounds=None, subsample=1., colsample_bytree=1., features=None, fit_target=None, random_state: int = 0, n_jobs: int = 1, **kwargs): super().__init__(features=features, fit_target=fit_target) self.params = { 'silent': 1, 'objective': objective, 'max_depth': max_depth, 'eta': learning_rate, 'booster': booster, 'tree_method': tree_method, 'subsample': subsample, 'colsample_bytree': colsample_bytree, 'nthread': n_jobs, 'seed': random_state } self.eval_sample = eval_sample self.num_boost_round = n_estimators self.early_stopping_rounds = early_stopping_rounds self.impl = None self.kwargs = kwargs self.trained_time = None def fit(self, x: pd.DataFrame, y: np.ndarray): if self.eval_sample: x_train, x_eval, y_train, y_eval = train_test_split(x[self.features].values, y, test_size=self.eval_sample, random_state=42) d_train = xgb.DMatrix(x_train, y_train) d_eval = xgb.DMatrix(x_eval, y_eval) self.impl = xgb.train(params=self.params, dtrain=d_train, num_boost_round=self.num_boost_round, evals=[(d_eval, 'eval')], verbose_eval=False, **self.kwargs) else: d_train = xgb.DMatrix(x[self.features].values, y) self.impl = xgb.train(params=self.params, dtrain=d_train, num_boost_round=self.num_boost_round, **self.kwargs) self.trained_time = arrow.now().format("YYYY-MM-DD HH:mm:ss") def predict(self, x: pd.DataFrame) -> np.ndarray: d_predict = xgb.DMatrix(x[self.features].values) return self.impl.predict(d_predict) @property def importances(self): imps = self.impl.get_fscore().items() imps = sorted(imps, key=lambda x: x[0]) return list(zip(*imps))[1]
36.60452
91
0.515666
5,937
0.916345
0
0
529
0.081648
0
0
286
0.044143