hexsha
stringlengths
40
40
size
int64
5
2.06M
ext
stringclasses
10 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
3
248
max_stars_repo_name
stringlengths
5
125
max_stars_repo_head_hexsha
stringlengths
40
78
max_stars_repo_licenses
listlengths
1
10
max_stars_count
int64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
3
248
max_issues_repo_name
stringlengths
5
125
max_issues_repo_head_hexsha
stringlengths
40
78
max_issues_repo_licenses
listlengths
1
10
max_issues_count
int64
1
67k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
3
248
max_forks_repo_name
stringlengths
5
125
max_forks_repo_head_hexsha
stringlengths
40
78
max_forks_repo_licenses
listlengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
5
2.06M
avg_line_length
float64
1
1.02M
max_line_length
int64
3
1.03M
alphanum_fraction
float64
0
1
count_classes
int64
0
1.6M
score_classes
float64
0
1
count_generators
int64
0
651k
score_generators
float64
0
1
count_decorators
int64
0
990k
score_decorators
float64
0
1
count_async_functions
int64
0
235k
score_async_functions
float64
0
1
count_documentation
int64
0
1.04M
score_documentation
float64
0
1
3fba885aa5f0287571e2d253dd5d007fd48c35d4
588
py
Python
ethgasstation.py
ethgasstation/ethgasstation-adaptive-oracle
e5983adfa0cb8cd0c3952aa6a9869e9f402156b9
[ "MIT" ]
47
2017-12-08T02:02:19.000Z
2018-01-06T10:30:56.000Z
ethgasstation.py
ethgasstation/ethgasstation-adaptive-oracle
e5983adfa0cb8cd0c3952aa6a9869e9f402156b9
[ "MIT" ]
11
2017-12-08T08:03:56.000Z
2018-01-06T23:39:32.000Z
ethgasstation.py
ethgasstation/ethgasstation-adaptive-oracle
e5983adfa0cb8cd0c3952aa6a9869e9f402156b9
[ "MIT" ]
7
2017-12-08T07:27:18.000Z
2018-01-06T04:06:46.000Z
#!/usr/bin/env python3 """ ETH Gas Station Primary backend. """ import argparse from egs.main import master_control from egs.output import Output def main(): """Parse command line options.""" parser = argparse.ArgumentParser(description="An adaptive gas price oracle for Ethereum.") parser.add_argument('--generate-report', action='store_true', help="Generate reports for ethgasstation-frontend.") args = parser.parse_args() # kick off the egs main event loop master_control(args) if __name__ == '__main__': o = Output() o.banner() main()
23.52
118
0.693878
0
0
0
0
0
0
0
0
268
0.455782
3fbafb8b47bed64f592d7b2645ff31b682526b8a
3,675
py
Python
app/tests/controls/tests_template_helpers.py
madussault/FlaskyPress
677bfbb3473a239c08d9e120e959d3e31c456964
[ "MIT" ]
null
null
null
app/tests/controls/tests_template_helpers.py
madussault/FlaskyPress
677bfbb3473a239c08d9e120e959d3e31c456964
[ "MIT" ]
null
null
null
app/tests/controls/tests_template_helpers.py
madussault/FlaskyPress
677bfbb3473a239c08d9e120e959d3e31c456964
[ "MIT" ]
null
null
null
"""Contains tests for the functions found in ``controls/templates_helpers.py`` To run this particular test file use the following command line: nose2 -v app.tests.controls.tests_template_helpers """ from app import db, create_app import unittest from unittest import TestCase from config import Config from app.tests.utils import (dummy_post, control_categories, control_search_bar, add_three_dummy_widget_positions) from app.models import SearchBarControls, CategoriesControls from app.controls.template_helpers import (ordered_widgets, categories_presence, sidebar_widget_count, search_bar_placement) class TestConfig(Config): """ Custom configuration for our tests. Attributes ---------- TESTING : bool Enable testing mode. Exceptions are propagated rather than handled by the app’s error handlers. Must be set to True to prevent the mail logger from sending email warnings. WHOOSHEE_MEMORY_STORAGE : bool When set to True use the memory as storage. We need that during our tests so the data that we write in the in-memory SQLite database do not become indexed. SQLALCHEMY_DATABASE_URI : str Make SQLAlchemy to use an in-memory SQLite database during the tests, so this way we are not writing dummy test data to our production database. """ TESTING = True WHOOSHEE_MEMORY_STORAGE = True SQLALCHEMY_DATABASE_URI = 'sqlite://' class TemplateGlobal(TestCase): """Contains tests for the blueprint's custom template global functions. These functions can be found in the ``controls/templates_helpers.py``. They are decorated with ``app_template_global``. """ def setUp(self): self.app = create_app(TestConfig) self.app_context = self.app.app_context() self.app_context.push() db.drop_all() db.create_all() dummy_post() control_categories("no_posts") control_search_bar('navbar') def tearDown(self): self.app_context.pop() def test_search_bar_placement(self): """Testing of the ``search_bar_placement`` function. """ search_bar_placement() query = SearchBarControls.query.first() self.assertEqual(query.placement, 'navbar', "Function was not capable to get the value " "representing the search bar placement.") def test_categories_presence(self): categories_presence() query = CategoriesControls.query.first() self.assertEqual(query.presence, 'no_posts', "Function was not capable to get the value " "representing where the categories can be found on " "the page.") def test_sidebar_widget_count(self): add_three_dummy_widget_positions() self.assertEqual(sidebar_widget_count(), 3, "Total number of entry in the the table of the" " ``WidgetOrder`` is not what is expected.") def test_ordered_widgets(self): add_three_dummy_widget_positions() ow = ordered_widgets() expected = ['Search Bar Widget', 'Category Widget', 'Dummy Content Widget'] self.assertEqual(expected, ow, "List of widgets name was not returned" "with the expected order.") if __name__ == '__main__': unittest.main(verbosity=2)
37.121212
79
0.628844
2,820
0.76693
0
0
0
0
0
0
1,655
0.450095
3fbbc3f8ef8d51546060cccaf53257878c60d288
2,299
py
Python
MAModule/networks/predict.py
MrReochen/MultiAgentModule
20216dee265501f09fba7b73fafdbef63b297725
[ "MIT" ]
null
null
null
MAModule/networks/predict.py
MrReochen/MultiAgentModule
20216dee265501f09fba7b73fafdbef63b297725
[ "MIT" ]
null
null
null
MAModule/networks/predict.py
MrReochen/MultiAgentModule
20216dee265501f09fba7b73fafdbef63b297725
[ "MIT" ]
null
null
null
import torch import torch.nn as nn from ..networks.basic.util import check from ..networks.basic.predict import PredictNet, PredictLayer, OutLayer from ..utils.util import get_shape_from_obs_space class OneHot: def __init__(self, out_dim): self.out_dim = out_dim def transform(self, tensor): y_onehot = tensor.new(*tensor.shape[:-1], self.out_dim).zero_() y_onehot.scatter_(-1, tensor.long(), 1) return y_onehot.float() class Predict(nn.Module): def __init__(self, args, obs_space, action_space, cent_obs_space, device=torch.device("cpu")): super(Predict, self).__init__() self.hidden_size = args.hidden_size self._gain = args.gain self._use_orthogonal = args.use_orthogonal self.tpdv = dict(dtype=torch.float32, device=device) obs_shape = get_shape_from_obs_space(obs_space) cent_obs_shape = get_shape_from_obs_space(cent_obs_space) self.net = PredictNet(args, obs_shape, action_space, cent_obs_shape, use_projector=True) self.onehot = OneHot(action_space.n) self.to(device) def forward(self, obs, actions): obs = check(obs).to(**self.tpdv) actions = self.onehot.transform(check(actions)).to(**self.tpdv) x = torch.cat((obs, actions), dim=-1) out = self.net(x) return out class Projector(nn.Module): def __init__(self, args, cent_obs_space, device=torch.device("cpu")): super(Projector, self).__init__() self.args = args self.hidden_size = args.hidden_size self._gain = args.gain self._use_orthogonal = args.use_orthogonal self.tpdv = dict(dtype=torch.float32, device=device) cent_obs_shape = get_shape_from_obs_space(cent_obs_space) if args.predict_dim: self.mlp = PredictLayer(cent_obs_shape[0], args.predict_dim, 1, self._use_orthogonal, False) # self.out = OutLayer(cent_obs_shape[0] // 4, self.hidden_size, self._use_orthogonal, False) self.to(device) def forward(self, cent_obs): x = check(cent_obs).to(**self.tpdv) if self.args.predict_dim: out = self.mlp(x) # out = self.out(out) else: out = x return out
34.833333
104
0.646368
2,097
0.912136
0
0
0
0
0
0
123
0.053502
3fbbd88b176cdd6b237953ffa51d4f9d25ca08a8
1,431
py
Python
repositories/gae/blob_dataset.py
singhj/locality-sensitive-hashing
99baa87d3b532ba5aa03fd80ed967275eb98d422
[ "MIT" ]
19
2015-02-22T15:47:33.000Z
2020-10-19T12:29:24.000Z
repositories/gae/blob_dataset.py
singhj/locality-sensitive-hashing
99baa87d3b532ba5aa03fd80ed967275eb98d422
[ "MIT" ]
7
2015-02-10T10:52:06.000Z
2019-04-01T15:27:00.000Z
repositories/gae/blob_dataset.py
singhj/locality-sensitive-hashing
99baa87d3b532ba5aa03fd80ed967275eb98d422
[ "MIT" ]
7
2015-02-23T19:22:11.000Z
2022-02-04T10:27:15.000Z
from google.appengine.ext import ndb from repositories.gae.dataset import Dataset from repositories.gae.dataset import calculate_max_hashes, get_random_bits class BlobDataset(Dataset): filename = ndb.StringProperty() blob_key = ndb.BlobKeyProperty() @classmethod def create(cls, blob_key, **kwargs): blob_key = blob_key filename = kwargs.get('filename') rows = kwargs.get('rows', 5) bands = kwargs.get('bands', 40) buckets_per_band = kwargs.get('buckets_per_band', 100) shingle_type = kwargs.get('shingle_type', 'c4') minhash_modulo = kwargs.get('minhash_modulo', 5000) max_hashes = calculate_max_hashes(rows, bands) dataset = cls.get(blob_key) if not dataset: dataset = BlobDataset( filename = filename, blob_key = blob_key, random_seeds = get_random_bits(max_hashes), rows = rows, bands = bands, buckets_per_band = buckets_per_band, shingle_type = shingle_type, minhash_modulo = minhash_modulo) else: dataset.filename = filename return dataset.put() @classmethod def get(cls, key): return Dataset.query(cls.blob_key == key).get()
34.902439
74
0.566038
1,273
0.889588
0
0
1,160
0.810622
0
0
75
0.052411
3fbcfad926cc78ab95112a6eecc4dc811aaf6f09
1,394
py
Python
wetrunner/tests/test_evmat.py
DavidMStraub/python-wetrunner
be9549535aab3a00e496002a515c647d112ea090
[ "MIT" ]
null
null
null
wetrunner/tests/test_evmat.py
DavidMStraub/python-wetrunner
be9549535aab3a00e496002a515c647d112ea090
[ "MIT" ]
4
2018-01-11T10:29:16.000Z
2018-04-12T15:36:20.000Z
wetrunner/tests/test_evmat.py
DavidMStraub/python-wetrunner
be9549535aab3a00e496002a515c647d112ea090
[ "MIT" ]
2
2018-01-11T10:20:55.000Z
2018-03-07T22:13:34.000Z
"""Compare evolution matrices to v0.1 numerics""" import wetrunner import unittest from pkg_resources import resource_filename import numpy as np import numpy.testing as npt def getUs_new(classname): arg = (0.56, 5, 0.12, 1/127, 0, 0, 0, 1.2, 4.2, 0, 0, 1.8) return wetrunner.rge.getUs(classname, *arg) def getUe_new(classname): arg = (0.56, 5, 0.12, 1/127, 0, 0, 0, 1.2, 4.2, 0, 0, 1.8) return wetrunner.rge.getUe(classname, *arg) class TestEvMat(unittest.TestCase): def test_evmat(self): Usold = dict(np.load(resource_filename('wetrunner', 'tests/data/evmat_s_old.npz'))) Ueold = dict(np.load(resource_filename('wetrunner', 'tests/data/evmat_e_old.npz'))) Usnew = {k: getUs_new(k) for k in ['I', 'II', 'III', 'IV', 'Vb']} Uenew = {k: getUe_new(k) for k in ['I', 'II', 'III', 'IV', 'Vb']} Usnew['V'] = getUs_new('Vsb') Uenew['V'] = getUe_new('Vsb') for k in ['I', 'II', 'III', 'IV', 'V', 'Vb']: npt.assert_array_almost_equal(Usold[k], Usnew[k], err_msg="Failed for {} QCD".format(k)) for k in ['I', 'II', 'III', 'IV', 'Vb']: # NB, skipping V! npt.assert_array_almost_equal(100*Ueold[k], 100*Uenew[k], decimal=2, err_msg="Failed for {} QED".format(k))
39.828571
91
0.553085
938
0.672884
0
0
0
0
0
0
281
0.201578
3fbfff6f4fb61ab0d9c6aaa91429d122a201c789
4,310
py
Python
python/clockwork/ena/submit_files.py
jeff-k/clockwork
d6e9ac80bb46ec806acd7db85ed5c3430c3f2438
[ "MIT" ]
18
2018-01-18T13:02:10.000Z
2022-03-25T05:56:02.000Z
python/clockwork/ena/submit_files.py
jeff-k/clockwork
d6e9ac80bb46ec806acd7db85ed5c3430c3f2438
[ "MIT" ]
54
2018-01-25T15:47:25.000Z
2022-03-30T17:02:23.000Z
python/clockwork/ena/submit_files.py
jeff-k/clockwork
d6e9ac80bb46ec806acd7db85ed5c3430c3f2438
[ "MIT" ]
15
2018-01-18T11:21:33.000Z
2022-03-30T16:55:48.000Z
import configparser import random import string from clockwork import utils class Error(Exception): pass def _make_dummy_success_receipt(outfile, object_type): accession = "".join( [random.choice(string.ascii_uppercase + string.digits) for _ in range(10)] ) with open(outfile, "w") as f: print( r"""<?xml version="1.0" encoding="UTF-8"?> <?xml-stylesheet type="text/xsl" href="receipt.xsl"?> <RECEIPT receiptDate="2017-08-31T11:07:50.251+01:00" submissionFile="submission.xml" success="true"> <""" + object_type.upper() + r''' accession="''' + accession + r"""" alias="alias" status="PRIVATE"> <EXT_ID accession="SAMEA123456789" type="biosample"/> </""" + object_type.upper() + r"""> <SUBMISSION accession="ERA1234567" alias="alias 42"/> <MESSAGES> <INFO>Submission has been committed.</INFO> <INFO>This submission is a TEST submission and will be discarded within 24 hours</INFO> </MESSAGES> <ACTIONS>ADD</ACTIONS> </RECEIPT> """, file=f, ) def _make_dummy_fail_receipt(outfile): with open(outfile, "w") as f: print( r"""<?xml version="1.0" encoding="UTF-8"?> <?xml-stylesheet type="text/xsl" href="receipt.xsl"?> <RECEIPT receiptDate="2017-09-01T14:13:19.573+01:00" submissionFile="submission.xml" success="false"> <SUBMISSION alias="Submission alias run 1"/> <MESSAGES> <ERROR>In submission, alias:"Submission alias run 1", accession:"". The object being added already exists in the submission account.</ERROR> <INFO>Submission has been rolled back.</INFO> <INFO>This submission is a TEST submission and will be discarded within 24 hours</INFO> </MESSAGES> <ACTIONS>ADD</ACTIONS> </RECEIPT> """, file=f, ) def parse_config_file(ini_file): config = configparser.ConfigParser() try: config.read(ini_file) except: raise Error("Error! Parsing config file " + ini_file) if "ena_login" not in config: raise Error("Error! [ena_login] section not found in config file " + ini_file) if not ("user" in config["ena_login"] and "password" in config["ena_login"]): raise Error( "Error! user and password not found in [ena_login] section of config file " + ini_file ) return config["ena_login"]["user"], config["ena_login"]["password"] def submit_xml_files( ini_file, outfile, files=None, use_test_server=False, unit_test=None, unit_test_obj_type=None, ): username, password = parse_config_file(ini_file) if files is None: files_command = None else: files_command_list = [ '-F "' + key + "=@" + value + '"' for key, value in files.items() ] files_command = " ".join(files_command_list) if use_test_server: url = "https://www-test.ebi.ac.uk/ena/submit/drop-box/submit/?auth=ENA%20" else: url = "https://www.ebi.ac.uk/ena/submit/drop-box/submit/?auth=ENA%20" command_list = [ "curl -k", files_command, '"' + url + username + "%20" + password + '"', ">", outfile, ] command = " ".join([x for x in command_list if x is not None]) if unit_test is None: utils.syscall(command) elif unit_test == "success": _make_dummy_success_receipt(outfile, unit_test_obj_type) elif unit_test == "fail": _make_dummy_fail_receipt(outfile) else: raise Error("unit_test must be None, success, or fail. Got: " + unit_test) def upload_file_to_ena_ftp(ini_file, filename, uploaded_name): # paranoid about passwords and running ps? Looks like curl is ok: # https://unix.stackexchange.com/questions/385339/how-does-curl-protect-a-password-from-appearing-in-ps-output # "wipe the next argument out so that the username:password isn't # displayed in the system process list" username, password = parse_config_file(ini_file) cmd = " ".join( [ "curl -T", filename, "ftp://webin.ebi.ac.uk/" + uploaded_name, "--user", username + ":" + password, ] ) utils.syscall(cmd)
31.459854
148
0.615777
32
0.007425
0
0
0
0
0
0
2,053
0.476334
3fc20da9e836148d0b5e35676fbdec51d080a74c
3,350
py
Python
tools/add_new_quantization_parameters.py
xiao1228/nncf
307262119ee3f50eec2fa4022b2ef96693fd8448
[ "Apache-2.0" ]
310
2020-10-29T09:22:42.000Z
2022-03-31T04:53:34.000Z
tools/add_new_quantization_parameters.py
xiao1228/nncf
307262119ee3f50eec2fa4022b2ef96693fd8448
[ "Apache-2.0" ]
615
2020-10-28T10:22:25.000Z
2022-03-29T18:09:23.000Z
tools/add_new_quantization_parameters.py
xiao1228/nncf
307262119ee3f50eec2fa4022b2ef96693fd8448
[ "Apache-2.0" ]
86
2020-10-28T11:34:34.000Z
2022-03-31T08:00:35.000Z
""" Copyright (c) 2020 Intel Corporation Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import sys from argparse import ArgumentParser from typing import NamedTuple, Any import torch from os import listdir, makedirs from os.path import isfile, join, exists from shutil import copyfile from nncf.torch.quantization.layers import SymmetricQuantizer, AsymmetricQuantizer class ParameterToAdd(NamedTuple): name: str value: Any def main(argv): parser = ArgumentParser() parser.add_argument('-i', '--input-folder', help='Path to directory with given checkpoints to modify', required=True) parser.add_argument('-o', '--output-folder', help='Path to directory to save modified checkpoints', required=True) parser.add_argument('-b', '--bitwidth', help='Bitwidth to initialize quantizer', required=False, default=8, type=int) parser.add_argument('-v', '--verbose', help='Print all new names of parameters', required=False, action='store_true') args = parser.parse_args(args=argv) src_dir = args.input_folder dst_dir = args.output_folder if not exists(dst_dir): makedirs(dst_dir) param_list = [ParameterToAdd('_num_bits', torch.IntTensor([args.bitwidth])), ParameterToAdd('enabled', torch.IntTensor([1]))] pth_files = [(join(src_dir, f), join(dst_dir, f)) for f in listdir(src_dir) if isfile(join(src_dir, f)) and ('.pth' in f or '.sd' in f)] files_to_copy = [] for pair in pth_files: src_file, dst_file = pair if 'binarization' in src_file: files_to_copy.append(pair) continue sd = pth = torch.load(src_file) if 'state_dict' in pth: sd = pth['state_dict'] hooks = [SymmetricQuantizer.SCALE_PARAM_NAME, AsymmetricQuantizer.INPUT_LOW_PARAM_NAME] new_keys = {} for new_parameter in param_list: old_keys = list(sd.keys()) for k in sd.keys(): for h in hooks: new_key = k.replace(h, new_parameter.name) if ('.' + h in k) and ('.' + new_parameter.name not in k) and (new_key not in old_keys): new_keys[new_key] = new_parameter.value if new_keys: print(f'\nAdding #{len(new_keys)} of new keys') if args.verbose: print('New keys:', new_keys, sep='\n') for new_key, value in new_keys.items(): sd[new_key] = value pth['state_dict'] = sd torch.save(pth, dst_file) else: files_to_copy.append(pair) for src_file, dst_file in files_to_copy: print("\nCopying {}".format(dst_file)) copyfile(src_file, dst_file) if __name__ == '__main__': main(sys.argv[1:])
37.222222
118
0.638507
62
0.018507
0
0
0
0
0
0
996
0.297313
3fc217a661811f79c1778a9b4610e13c10ae7b95
1,106
py
Python
src/backend/marsha/core/migrations/0019_auto_20200609_0820.py
marin-leonard/marsha
b5d6bf98fda27acd3a08577b82dd98bcd39bfd8d
[ "MIT" ]
64
2018-04-26T23:46:14.000Z
2022-03-26T21:32:23.000Z
src/backend/marsha/core/migrations/0019_auto_20200609_0820.py
marin-leonard/marsha
b5d6bf98fda27acd3a08577b82dd98bcd39bfd8d
[ "MIT" ]
533
2018-04-17T10:17:24.000Z
2022-03-31T13:07:49.000Z
src/backend/marsha/core/migrations/0019_auto_20200609_0820.py
marin-leonard/marsha
b5d6bf98fda27acd3a08577b82dd98bcd39bfd8d
[ "MIT" ]
16
2018-09-21T12:52:34.000Z
2021-11-29T16:44:51.000Z
# Generated by Django 3.0.6 on 2020-05-19 14:32 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ("core", "0018_auto_20200603_0620"), ] operations = [ migrations.AddField( model_name="video", name="live_info", field=models.JSONField( blank=True, help_text="Information needed to manage live streaming", null=True, verbose_name="Live info", ), ), migrations.AddField( model_name="video", name="live_state", field=models.CharField( blank=True, choices=[ ("idle", "idle"), ("starting", "starting"), ("running", "running"), ("stopped", "stopped"), ], help_text="state of the live mode.", max_length=20, null=True, verbose_name="live state", ), ), ]
26.97561
72
0.454792
1,013
0.915913
0
0
0
0
0
0
276
0.249548
3fc23e96afc2ac687938892c8fa39f0756c775dd
11,766
py
Python
models/video_base.py
vedaldi/dynamic-video-depth
274f5f59604a10121a2445f7b30df4a9ff075946
[ "Apache-2.0" ]
1
2022-03-24T23:59:26.000Z
2022-03-24T23:59:26.000Z
models/video_base.py
vedaldi/dynamic-video-depth
274f5f59604a10121a2445f7b30df4a9ff075946
[ "Apache-2.0" ]
null
null
null
models/video_base.py
vedaldi/dynamic-video-depth
274f5f59604a10121a2445f7b30df4a9ff075946
[ "Apache-2.0" ]
null
null
null
# Copyright 2021 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from os.path import join, dirname import numpy as np import torch from ..models.netinterface import NetInterface from os import makedirs import matplotlib.pyplot as plt import matplotlib.cm from matplotlib.colors import ListedColormap from ..third_party.util_colormap import turbo_colormap_data # matplotlib.cm.register_cmap('turbo', cmap=ListedColormap(turbo_colormap_data)) import matplotlib import shutil class VideoBaseModel(NetInterface): def disp_loss(self, d1, d2): if self.opt.use_disp: t1 = torch.clamp(d1, min=1e-3) t2 = torch.clamp(d2, min=1e-3) return 300 * torch.abs((1 / t1) - (1 / t2)) else: return torch.abs(d1 - d2) def _train_on_batch(self, epoch, batch_ind, batch): for n in self._nets: n.zero_grad() # self.net_depth.eval() # freeze bn to check self.load_batch(batch) batch_size = batch['img_1'].shape[0] pred = self._predict_on_batch() loss, loss_data = self._calc_loss(pred) loss.backward() for optimizer in self._optimizers: optimizer.step() if np.mod(epoch, self.opt.vis_every_train) == 0: indx = batch_ind if self.opt.vis_at_start else self.opt.epoch_batches - batch_ind if indx <= self.opt.vis_batches_train: for k, v in pred.items(): pred[k] = v.data.cpu().numpy() outdir = join(self.full_logdir, 'visualize', 'epoch%04d_train' % epoch) makedirs(outdir, exist_ok=True) output = self.pack_output(pred, batch) if self.global_rank == 0: if self.visualizer is not None: self.visualizer.visualize(output, indx + (1000 * epoch), outdir) np.savez(join(outdir, 'rank%04d_batch%04d' % (self.global_rank, batch_ind)), **output) batch_log = {'size': batch_size, 'loss': loss.item(), **loss_data} return batch_log @staticmethod def depth2disp(depth): valid = depth > 1e-2 valid = valid.float() return (1 / (depth + (1 - valid) * 1e-8)) * valid def disp_vali(self, d1, d2): vali = d2 > 1e-2 return torch.nn.functional.mse_loss(self.depth2disp(d1) * vali, self.depth2disp(d2) * vali) def _vali_on_batch(self, epoch, batch_idx, batch): for n in self._nets: n.eval() self.load_batch(batch) with torch.no_grad(): pred = self._predict_on_batch(is_train=False) gt_depth = batch['depth_mvs'].to(pred['depth'].device) # try: loss = self.disp_vali(pred['depth'], gt_depth).item() # except: # print('error when eval losses, might be in test mode') # pass if np.mod(epoch, self.opt.vis_every_vali) == 0: if batch_idx < self.opt.vis_batches_vali: for k, v in pred.items(): pred[k] = v.cpu().numpy() outdir = join(self.full_logdir, 'visualize', 'epoch%04d_vali' % epoch) makedirs(outdir, exist_ok=True) output = self.pack_output(pred, batch) if self.global_rank == 0: if self.visualizer is not None: self.visualizer.visualize(output, batch_idx + (1000 * epoch), outdir) np.savez(join(outdir, 'rank%04d_batch%04d' % (self.global_rank, batch_idx)), **output) batch_size = batch['img'].shape[0] batch_log = {'size': batch_size, 'loss': loss} return batch_log def pack_output(self, pred_all, batch): batch_size = len(batch['pair_path']) if 'img' not in batch.keys(): img_1 = batch['img_1'].cpu().numpy() img_2 = batch['img_2'].cpu().numpy() else: img_1 = batch['img'] img_2 = batch['img'] output = {'batch_size': batch_size, 'img_1': img_1, 'img_2': img_2, **pred_all} if 'img' not in batch.keys(): output['flow_1_2'] = self._input.flow_1_2.cpu().numpy() output['flow_2_1'] = self._input.flow_2_1.cpu().numpy() output['depth_nn_1'] = batch['depth_pred_1'].cpu().numpy() else: output['depth_nn'] = batch['depth_pred'].cpu().numpy() output['depth_gt'] = batch['depth_mvs'].cpu().numpy() output['cam_c2w'] = batch['cam_c2w'].cpu().numpy() output['K'] = batch['K'].cpu().numpy() output['pair_path'] = batch['pair_path'] return output def test_on_batch(self, batch_idx, batch): if not hasattr(self, 'test_cache'): self.test_cache = [] for n in self._nets: n.eval() self.load_batch(batch) with torch.no_grad(): pred = self._predict_on_batch(is_train=False) if not hasattr(self, 'test_loss'): self.test_loss = 0 for k, v in pred.items(): pred[k] = v.cpu().numpy() epoch_string = 'best' if self.opt.epoch < 0 else '%04d' % self.opt.epoch outdir = join(self.opt.output_dir, 'epoch%s_test' % epoch_string) if not hasattr(self, 'outdir'): self.outdir = outdir makedirs(outdir, exist_ok=True) output = self.pack_output(pred, batch) if batch_idx == 223: output['depth'][0, 0, 0, :] = output['depth'][0, 0, 2, :] output['depth'][0, 0, 1, :] = output['depth'][0, 0, 2, :] self.test_cache.append(output.copy()) if self.global_rank == 0: if self.visualizer is not None: self.visualizer.visualize(output, batch_idx, outdir) np.savez(join(outdir, 'batch%04d' % (batch_idx)), **output) def on_test_end(self): # make test video: from subprocess import call from dvd.util.util_html import Webpage from tqdm import tqdm depth_pred = [] depth_nn = [] depth_gt = [] imgs = [] c2ws = [] Ks = [] for pack in self.test_cache: depth_pred.append(pack['depth']) depth_nn.append(pack['depth_nn']) imgs.append(pack['img_1']) c2ws.append(pack['cam_c2w']) Ks.append(pack['K']) depth_gt.append(pack['depth_gt']) depth_pred = np.concatenate(depth_pred, axis=0) depth_nn = np.concatenate(depth_nn, axis=0) imgs = np.concatenate(imgs, axis=0) c2ws = np.concatenate(c2ws, axis=0) Ks = np.concatenate(Ks, axis=0) depth_gt = np.concatenate(depth_gt, axis=0) pred_max = depth_pred.max() pred_min = depth_pred.min() print(pred_max, pred_min) depth_cmap = 'turbo' mask_valid = np.where(depth_gt > 1e-8, 1, 0) for i in tqdm(range(depth_pred.shape[0])): plt.figure(figsize=[60, 20], dpi=40, facecolor='black') plt.subplot(1, 3, 1) plt.title('Refined', fontsize=100, color='w') plt.imshow(1 / depth_pred[i, 0, ...], cmap=depth_cmap, vmax=1 / pred_min, vmin=1 / pred_max) cbar = plt.colorbar(fraction=0.048 * 0.5, pad=0.01) plt.axis('off') cbar.ax.yaxis.set_tick_params(color='w', labelsize=40) plt.setp(plt.getp(cbar.ax.axes, 'yticklabels'), color='w') plt.subplot(1, 3, 2) plt.title('Initial', fontsize=100, color='w') plt.imshow(1 / depth_nn[i, 0, ...], cmap=depth_cmap, vmax=1 / pred_min, vmin=1 / pred_max) plt.axis('off') cbar = plt.colorbar(fraction=0.048 * 0.5, pad=0.01) cbar.ax.yaxis.set_tick_params(color='w', labelsize=40) plt.setp(plt.getp(cbar.ax.axes, 'yticklabels'), color='w') plt.subplot(1, 3, 3) plt.title('GT', fontsize=100, color='w') plt.imshow(mask_valid[i, 0, ...] / (depth_gt[i, 0, ...] + 1e-8), cmap=depth_cmap, vmax=1 / pred_min, vmin=1 / pred_max) plt.axis('off') cbar = plt.colorbar(fraction=0.048 * 0.5, pad=0.01) cbar.ax.yaxis.set_tick_params(color='w', labelsize=40) plt.setp(plt.getp(cbar.ax.axes, 'yticklabels'), color='w') plt.savefig(join(self.outdir, 'compare_%04d.png' % i), bbox_inches='tight', facecolor='black', dpi='figure') plt.close() plt.imshow(imgs[i, ...].transpose(1, 2, 0)) plt.axis('off') plt.savefig(join(self.outdir, 'rgb_%04d.png' % i), bbox_inches='tight', facecolor='black', dpi='figure') plt.close() epoch_string = self.outdir.split('/')[-1] gen_vid_command = 'ffmpeg -y -r 30 -i {img_template} -vcodec libx264 -crf 25 -pix_fmt yuv420p -vf "pad=ceil(iw/2)*2:ceil(ih/2)*2" {video_path} > /dev/null' gen_vid_command_slow = 'ffmpeg -y -r 2 -i {img_template} -vcodec libx264 -crf 25 -pix_fmt yuv420p -vf "pad=ceil(iw/2)*2:ceil(ih/2)*2" {video_path} > /dev/null' for r_number in range(120, 140): plt.figure(figsize=[60, 20], dpi=20, facecolor='black') plt.subplot(1, 2, 1) plt.title('Refined', fontsize=100, color='w') plt.imshow(1 / depth_pred[:, 0, r_number, :], cmap=depth_cmap) cbar = plt.colorbar(fraction=0.048 * 0.5, pad=0.01) plt.axis('off') cbar.ax.yaxis.set_tick_params(color='w', labelsize=40) plt.setp(plt.getp(cbar.ax.axes, 'yticklabels'), color='w') plt.subplot(1, 2, 2) plt.title('Initial', fontsize=100, color='w') plt.imshow(1 / depth_nn[:, 0, r_number, :], cmap=depth_cmap) plt.axis('off') cbar = plt.colorbar(fraction=0.048 * 0.5, pad=0.01) cbar.ax.yaxis.set_tick_params(color='w', labelsize=40) plt.setp(plt.getp(cbar.ax.axes, 'yticklabels'), color='w') plt.savefig(join(self.outdir, 'temporal_slice_%04d.png' % (r_number - 120)), bbox_inches='tight', facecolor='black', dpi='figure') plt.close() img_template = join(self.outdir, 'compare_%04d.png') img_template_t = join(self.outdir, 'temporal_slice_%04d.png') video_path = join(dirname(self.outdir), epoch_string + '.mp4') video_path_t = join(dirname(self.outdir), epoch_string + '_temporal.mp4') gen_vid_command_c = gen_vid_command.format(img_template=img_template, video_path=video_path) call(gen_vid_command_c, shell=True) gen_vid_command_t = gen_vid_command_slow.format(img_template=img_template_t, video_path=video_path_t) call(gen_vid_command_t, shell=True) web = Webpage() web.add_video(epoch_string + '_rgb.mp4', title='original video') web.add_video(epoch_string + '.mp4', title=f'Disparity loss {self.test_loss}') web.save(join(dirname(self.outdir), epoch_string + '.html')) @staticmethod def copy_and_make_dir(src, target): fname = dirname(target) makedirs(fname, exist_ok=True) shutil.copy(src, target) @staticmethod def scale_tesnor(t): t = (t - t.min()) / (t.max() - t.min() + 1e-9) return t # %%
40.996516
167
0.586011
10,773
0.915604
0
0
424
0.036036
0
0
2,032
0.172701
3fc28ee2166df5c930e27ec1974997e4a8df5d90
1,232
py
Python
update-tuya-address.py
mwinters-stuff/octoprint-update-tuya-address
6b4f95613d573eb45af2de936615d75dfd01a77b
[ "Apache-2.0" ]
null
null
null
update-tuya-address.py
mwinters-stuff/octoprint-update-tuya-address
6b4f95613d573eb45af2de936615d75dfd01a77b
[ "Apache-2.0" ]
null
null
null
update-tuya-address.py
mwinters-stuff/octoprint-update-tuya-address
6b4f95613d573eb45af2de936615d75dfd01a77b
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/python3 import subprocess import yaml try: from yaml import CLoader as Loader, CDumper as Dumper except ImportError: from yaml import Loader, Dumper #MAC address of the smart plug MAC_ADDRESS = '84:f3:eb:32:e3:b4' # netmask of your network NET_MASK = '192.168.1.1/24' #octopi config OCTOPI_CONFIG = '/home/pi/.octoprint/config.yaml' if __name__ == "__main__": subprocess.check_call(['/usr/bin/nmap','-sP','-T4',NET_MASK]) p = subprocess.Popen(['/usr/sbin/arp','-n'], stdout=subprocess.PIPE) for line in iter(p.stdout.readline, b''): str = line.decode('utf-8') if(MAC_ADDRESS in str): ipaddress = str.split(' ')[0] print('Found Plug with address %s' % ipaddress) config = open(OCTOPI_CONFIG) configy = yaml.load(config, Loader=Loader) config.close() # print(configy) print(configy['plugins']['tuyasmartplug']['arrSmartplugs'][0]['ip']) if configy['plugins']['tuyasmartplug']['arrSmartplugs'][0]['ip'] != ipaddress: configy['plugins']['tuyasmartplug']['arrSmartplugs'][0]['ip'] = ipaddress config = open(OCTOPI_CONFIG, mode='w') config.write(yaml.safe_dump(configy, allow_unicode=False)) config.close() break
31.589744
84
0.660714
0
0
0
0
0
0
0
0
398
0.323052
3fc2b905de175376e48fc847adcd762ca15c7b7a
2,571
py
Python
sarpy_gui_apps/apps/canvas_demo/panels/canvas_demo_button_panel.py
spowlas/sarpy
c4a404203607d404b93a556459aa5311d7148e95
[ "MIT" ]
null
null
null
sarpy_gui_apps/apps/canvas_demo/panels/canvas_demo_button_panel.py
spowlas/sarpy
c4a404203607d404b93a556459aa5311d7148e95
[ "MIT" ]
1
2019-11-14T20:55:57.000Z
2019-12-27T18:11:29.000Z
sarpy_gui_apps/apps/canvas_demo/panels/canvas_demo_button_panel.py
spowlas/sarpy
c4a404203607d404b93a556459aa5311d7148e95
[ "MIT" ]
2
2020-02-12T20:11:00.000Z
2020-03-26T16:55:03.000Z
from tkinter_gui_builder.panel_templates.widget_panel.widget_panel import AbstractWidgetPanel from tkinter_gui_builder.widgets import basic_widgets class CanvasDemoButtonPanel(AbstractWidgetPanel): fname_select = basic_widgets.Button zoom_in = basic_widgets.Button zoom_out = basic_widgets.Button rect_select = basic_widgets.Button update_rect_image = basic_widgets.Button pan = basic_widgets.Button draw_line_w_drag = basic_widgets.Button draw_line_w_click = basic_widgets.Button draw_arrow_w_drag = basic_widgets.Button draw_arrow_w_click = basic_widgets.Button draw_rect_w_drag = basic_widgets.Button draw_rect_w_click = basic_widgets.Button draw_polygon_w_click = basic_widgets.Button draw_point_w_click = basic_widgets.Button modify_existing_shape = basic_widgets.Button color_selector = basic_widgets.Button save_kml = basic_widgets.Button select_existing_shape = basic_widgets.Combobox # type: basic_widgets.Combobox remap_dropdown = basic_widgets.Combobox # type: basic_widgets.Combobox def __init__(self, parent): AbstractWidgetPanel.__init__(self, parent) controls = ["fname_select", "zoom_in", "zoom_out", "pan", "draw_line_w_drag", "draw_line_w_click", "draw_arrow_w_drag", "draw_arrow_w_click", "draw_rect_w_drag", "draw_rect_w_click", "draw_polygon_w_click", "draw_point_w_click", "select_existing_shape", "modify_existing_shape", "save_kml", "color_selector", "rect_select", "update_rect_image", "remap_dropdown"] self.init_w_box_layout(controls, 4, column_widths=20) self.remap_dropdown.update_combobox_values(["density", "brighter", "darker", "high contrast", "linear", "log", "pedf", "nrl"]) self.set_label_text("taser buttons") if __name__ == '__main__': print(dir(AbstractWidgetPanel))
40.171875
93
0.552703
2,355
0.915986
0
0
0
0
0
0
464
0.180475
3fc57348ab10be442b6950d805f656ab0d9bf881
1,360
py
Python
GCN/test_until.py
Alienge/Graph-Network
559cccb6af4e6ca50c44fd51cac8df5713f255bf
[ "MIT" ]
3
2020-06-10T03:29:11.000Z
2020-10-21T09:03:13.000Z
GCN/test_until.py
Alienge/Graph-Network
559cccb6af4e6ca50c44fd51cac8df5713f255bf
[ "MIT" ]
null
null
null
GCN/test_until.py
Alienge/Graph-Network
559cccb6af4e6ca50c44fd51cac8df5713f255bf
[ "MIT" ]
1
2020-06-25T06:15:28.000Z
2020-06-25T06:15:28.000Z
import torch import numpy as np import scipy.sparse as sp def sparse_to_tuple(sparse_mx): """Convert sparse matrix to tuple representation.""" def to_tuple(mx): if not sp.isspmatrix_coo(mx): mx = mx.tocoo() coords = np.vstack((mx.row, mx.col)).transpose() values = mx.data shape = mx.shape return coords, values, shape if isinstance(sparse_mx, list): for i in range(len(sparse_mx)): sparse_mx[i] = to_tuple(sparse_mx[i]) else: sparse_mx = to_tuple(sparse_mx) return sparse_mx a = np.array([1,2,3]) b = np.array([4,5,6]) c = a + b.reshape((3,1)) print(c) #a = torch.randint(1,100,(2,2,5)) #print(a) #print(a.repeat(1,1,2)) #b = a.repeat(1,1,2).view(2,4,5) #print(b) #c = a.repeat(1,2,1) #print(torch.cat([b,c],dim=2).view(2,)) #print(range(10)) #a = torch.randint(1,100,(3,3)).numpy() #print(a) #a = a + np.multiply(a.T,a.T > a) - np.multiply(a,a.T > a) #print(a) ''' a = torch.randint(0,2,(3,3)) b = sp.coo_matrix(a) c = np.array(b.sum(1)) print(a) print(b) print(c) ''' ''' a = torch.randn((3,3)) rowsum = np.array(a.sum(1)) r_inv = np.power(rowsum,-1).flatten() r_inv[np.isinf(r_inv)] = 0. r_mat_inv = sp.diags(r_inv) print(r_inv) print(r_mat_inv) print(a) features = r_mat_inv.dot(a) print(features) print(sparse_to_tuple(features)) '''
17.894737
58
0.609559
0
0
0
0
0
0
0
0
728
0.535294
3fc7b2fa4d7d1bb8ba7c895d8420a155ae6e1ca0
5,056
py
Python
mechmean/fabric_tensors.py
JulianKarlBauer/meanfieldmechanics
a53b38655d0e9558cc3e676c359fa13dfe3d9112
[ "MIT" ]
null
null
null
mechmean/fabric_tensors.py
JulianKarlBauer/meanfieldmechanics
a53b38655d0e9558cc3e676c359fa13dfe3d9112
[ "MIT" ]
null
null
null
mechmean/fabric_tensors.py
JulianKarlBauer/meanfieldmechanics
a53b38655d0e9558cc3e676c359fa13dfe3d9112
[ "MIT" ]
1
2022-02-25T19:37:20.000Z
2022-02-25T19:37:20.000Z
#!/usr/bin/env python3 # -*- coding: utf-8 -*- import numpy as np import mechkit import mechmean class KanataniFactory(object): def __init__(self, N): self.con = mechkit.notation.Converter() self._I2 = mechkit.tensors.Basic().I2 self.N = N = self.con.to_tensor(N) self.degree = len(N.shape) degrees = [x for x in range(1, self.degree + 1) if x % 2 == 0] for degree in reversed(degrees): N = self.first_kind(degree) setattr(self, "N{}".format(degree), N) setattr(self, "F{}".format(degree), self.second_kind(N)) setattr(self, "D{}".format(degree), self.third_kind(N)) def __getitem__(self, key): """Make attributes accessible dict-like.""" return getattr(self, key) def first_kind(self, degree): nbr_times_decrease = int((self.degree - degree) / 2) N = self.N for i in range(nbr_times_decrease): N = self.decrease_first_kind_by_one_degree(N) return N def decrease_first_kind_by_one_degree(self, N): return np.einsum("...ij, ...ij->...", N, self._I2) def second_kind(self, N): degree = len(N.shape) func = self._get_func_second_kind(degree=degree) return func(N) def _get_func_second_kind(self, degree): funcs = { 2: self.second_kind_N2, 4: self.second_kind_N4, } return funcs[degree] def second_kind_N2(self, N): return 15.0 / 2.0 * (N - 1.0 / 5.0 * self._I2) def second_kind_N4(self, N): return ( 315.0 / 8.0 * ( N - 2.0 / 3.0 * mechmean.operators.sym( np.multiply.outer(self._I2, self.first_kind(degree=2)) ) + 1.0 / 21.0 * mechmean.operators.sym(np.multiply.outer(self._I2, self._I2)) ) ) def third_kind(self, N): degree = len(N.shape) func = self._get_func_third_kind(degree=degree) return func(N) def _get_func_third_kind(self, degree): funcs = {2: self.third_kind_N2, 4: self.third_kind_N4} return funcs[degree] def third_kind_N2(self, N): return 15.0 / 2.0 * (N - 1.0 / 3.0 * self._I2) def third_kind_N4(self, N): return ( 315.0 / 8.0 * ( N - 6.0 / 7.0 * mechmean.operators.sym( np.multiply.outer(self._I2, self.first_kind(degree=2)) ) + 3.0 / 35.0 * mechmean.operators.sym(np.multiply.outer(self._I2, self._I2)) ) ) def evenly_distributed_vectors_on_sphere(nbr_vectors=1000): """ Define nbr_vectors evenly distributed vectors on a sphere Using the golden spiral method kindly provided by stackoverflow-user "CR Drost" https://stackoverflow.com/a/44164075/8935243 """ from numpy import pi, cos, sin, arccos, arange indices = arange(0, nbr_vectors, dtype=float) + 0.5 phi = arccos(1 - 2 * indices / nbr_vectors) theta = pi * (1 + 5 ** 0.5) * indices x, y, z = cos(theta) * sin(phi), sin(theta) * sin(phi), cos(phi) orientations = np.column_stack((x, y, z)) return orientations def first_kind_discrete(orientations, order=4): """ Calc orientation tensors of ... kind """ # Normalize orientations orientations = [np.array(v) / np.linalg.norm(v) for v in orientations] # Symmetrize orientations # orientations_reversed = [-v for v in orientations] # orientations = orientations + orientations_reversed einsumStrings = { 1: "ij -> j", 2: "ij, ik -> jk", 3: "ij, ik, il -> jkl", 4: "ij, ik, il, im -> jklm", 5: "ij, ik, il, im, in -> jklmn", 6: "ij, ik, il, im, in, ip -> jklmnp", } if order > 6: einsumStrings[order] = einsum_str_fabric_tensor_first_kind_discrete(order=order) einsumArgs = [orientations for i in range(order)] N = 1.0 / len(orientations) * np.einsum(einsumStrings[order], *einsumArgs) return N def einsum_str_fabric_tensor_first_kind_discrete(order): """ Generalize to higher orders: N = sum_i 'order'-times_dyad_product(vector) = 1: 'ij -> j', 2: 'ij, ik -> jk', 3: 'ij, ik, il -> jkl', 4: 'ij, ik, il, im -> jklm', 5: 'ij, ik, il, im, in -> jklmn', 6: 'ij, ik, il, im, in, ip -> jklmnp', ... """ # Get list of all available characters import string letters = list(string.ascii_letters) letters.remove("i") # Create einsum string and arguments einsumInput = ",".join(["i" + letters[index] for index in range(order)]) einsumOut = "".join(letters[0:order]) einsumString = einsumInput + "->" + einsumOut return einsumString
28.727273
88
0.548655
2,702
0.534415
0
0
0
0
0
0
1,116
0.220728
3fc90063242679a163aee4c95d494aed3302ce11
961
py
Python
setup.py
adamltyson/fancylog
8e9047759d5c394e98b5af7c2d68f70f2fbeb40e
[ "MIT" ]
3
2020-09-30T09:02:08.000Z
2021-06-12T20:43:43.000Z
setup.py
adamltyson/fancylog
8e9047759d5c394e98b5af7c2d68f70f2fbeb40e
[ "MIT" ]
8
2020-01-07T11:27:05.000Z
2021-07-13T11:07:11.000Z
setup.py
adamltyson/fancylog
8e9047759d5c394e98b5af7c2d68f70f2fbeb40e
[ "MIT" ]
2
2020-02-05T19:03:04.000Z
2021-07-07T09:42:24.000Z
from setuptools import setup, find_packages setup( name="fancylog", version="0.2.6", description="Fancier logging in Python", install_requires=["packaging", "rich"], extras_require={ "dev": [ "black", "pytest-cov", "pytest", "coverage", "bump2version", "pre-commit", "flake8", ] }, python_requires=">=3.6", packages=find_packages(), include_package_data=True, url="https://github.com/adamltyson/fancylog", author="Adam Tyson", author_email="code@adamltyson.com", classifiers=[ "Development Status :: 3 - Alpha", "Operating System :: POSIX :: Linux", "Programming Language :: Python", "Programming Language :: Python :: 3.7", "Programming Language :: Python :: 3.8", "Programming Language :: Python :: 3.9", "Intended Audience :: Developers", ], )
26.694444
49
0.552549
0
0
0
0
0
0
0
0
468
0.486993
3fc96ed41bb550e4bca1d28b2bc1be7197a1cd5d
5,620
py
Python
tests/test_identity.py
multiscale/ymmsl-python
f8a63232823ad655530a83570443d9c045ef9929
[ "Apache-2.0" ]
1
2018-12-13T18:09:09.000Z
2018-12-13T18:09:09.000Z
tests/test_identity.py
multiscale/ymmsl-python
f8a63232823ad655530a83570443d9c045ef9929
[ "Apache-2.0" ]
10
2018-11-13T16:12:38.000Z
2021-07-21T13:16:43.000Z
tests/test_identity.py
multiscale/ymmsl-python
f8a63232823ad655530a83570443d9c045ef9929
[ "Apache-2.0" ]
null
null
null
from ymmsl import Identifier, Reference import pytest import yatiml def test_create_identifier() -> None: part = Identifier('testing') assert str(part) == 'testing' part = Identifier('CapiTaLs') assert str(part) == 'CapiTaLs' part = Identifier('under_score') assert str(part) == 'under_score' part = Identifier('_underscore') assert str(part) == '_underscore' part = Identifier('digits123') assert str(part) == 'digits123' with pytest.raises(ValueError): Identifier('1initialdigit') with pytest.raises(ValueError): Identifier('test.period') with pytest.raises(ValueError): Identifier('test-hyphen') with pytest.raises(ValueError): Identifier('test space') with pytest.raises(ValueError): Identifier('test/slash') def test_compare_identifier() -> None: assert Identifier('test') == Identifier('test') assert Identifier('test1') != Identifier('test2') assert Identifier('test') == 'test' assert 'test' == Identifier('test') # pylint: disable=C0122 assert Identifier('test') != 'test2' assert 'test2' != Identifier('test') # pylint: disable=C0122 def test_identifier_dict_key() -> None: test_dict = {Identifier('test'): 1} assert test_dict[Identifier('test')] == 1 def test_create_reference() -> None: test_ref = Reference('_testing') assert str(test_ref) == '_testing' assert len(test_ref) == 1 assert isinstance(test_ref[0], Identifier) assert str(test_ref[0]) == '_testing' with pytest.raises(ValueError): Reference('1test') test_ref = Reference('test.testing') assert len(test_ref) == 2 assert isinstance(test_ref[0], Identifier) assert str(test_ref[0]) == 'test' assert isinstance(test_ref[1], Identifier) assert str(test_ref[1]) == 'testing' assert str(test_ref) == 'test.testing' test_ref = Reference('test[12]') assert len(test_ref) == 2 assert isinstance(test_ref[0], Identifier) assert str(test_ref[0]) == 'test' assert isinstance(test_ref[1], int) assert test_ref[1] == 12 assert str(test_ref) == 'test[12]' test_ref = Reference('test[12].testing.ok.index[3][5]') assert len(test_ref) == 7 assert isinstance(test_ref[0], Identifier) assert str(test_ref[0]) == 'test' assert isinstance(test_ref[1], int) assert test_ref[1] == 12 assert isinstance(test_ref[2], Identifier) assert str(test_ref[2]) == 'testing' assert isinstance(test_ref[3], Identifier) assert str(test_ref[3]) == 'ok' assert isinstance(test_ref[4], Identifier) assert str(test_ref[4]) == 'index' assert isinstance(test_ref[5], int) assert test_ref[5] == 3 assert isinstance(test_ref[6], int) assert test_ref[6] == 5 assert str(test_ref) == 'test[12].testing.ok.index[3][5]' with pytest.raises(ValueError): Reference([4]) with pytest.raises(ValueError): Reference([3, Identifier('test')]) with pytest.raises(ValueError): Reference('ua",.u8[') with pytest.raises(ValueError): Reference('test[4') with pytest.raises(ValueError): Reference('test4]') with pytest.raises(ValueError): Reference('test[_t]') with pytest.raises(ValueError): Reference('testing_{3}') with pytest.raises(ValueError): Reference('test.(x)') with pytest.raises(ValueError): Reference('[3]test') with pytest.raises(ValueError): Reference('[4].test') def test_reference_slicing() -> None: test_ref = Reference('test[12].testing.ok.index[3][5]') assert test_ref[0] == 'test' assert test_ref[1] == 12 assert test_ref[3] == 'ok' assert test_ref[:3] == 'test[12].testing' assert test_ref[2:] == 'testing.ok.index[3][5]' with pytest.raises(RuntimeError): test_ref[0] = 'test2' with pytest.raises(ValueError): test_ref[1:] # pylint: disable=pointless-statement def test_reference_dict_key() -> None: test_dict = {Reference('test[4]'): 1} assert test_dict[Reference('test[4]')] == 1 def test_reference_equivalence() -> None: assert Reference('test.test[3]') == Reference('test.test[3]') assert Reference('test.test[3]') != Reference('test1.test[3]') assert Reference('test.test[3]') == 'test.test[3]' assert Reference('test.test[3]') != 'test1.test[3]' assert 'test.test[3]' == Reference('test.test[3]') # pylint: disable=C0122 assert 'test1.test[3]' != Reference( 'test.test[3]') # pylint: disable=C0122 def test_reference_concatenation() -> None: assert Reference('test') + Reference('test2') == 'test.test2' assert Reference('test') + Identifier('test2') == 'test.test2' assert Reference('test') + 5 == 'test[5]' assert Reference('test') + [Identifier('test2'), 5] == 'test.test2[5]' assert Reference('test[5]') + Reference('test2[3]') == 'test[5].test2[3]' assert Reference('test[5]') + Identifier('test2') == 'test[5].test2' assert Reference('test[5]') + 3 == 'test[5][3]' assert (Reference('test[5]') + [3, Identifier('test2')] == 'test[5][3].test2') def test_reference_io() -> None: load_reference = yatiml.load_function(Reference, Identifier) text = 'test[12]' doc = load_reference(text) assert str(doc[0]) == 'test' assert doc[1] == 12 dump_reference = yatiml.dumps_function(Identifier, Reference) doc = Reference('test[12].testing.ok.index[3][5]') text = dump_reference(doc) assert text == 'test[12].testing.ok.index[3][5]\n...\n'
30.053476
79
0.637011
0
0
0
0
0
0
0
0
1,262
0.224555
3fc9e66e2e4c81e88a2f6282ca33a85ca40e0ad7
1,262
py
Python
molecule/loadbalancer/tests/test_default.py
mvdheenux/OpenConext-deploy
9c75866cba7675cafa8946e591ffac0fe528f7b3
[ "Apache-2.0" ]
11
2015-07-05T10:38:10.000Z
2019-06-27T07:49:32.000Z
molecule/loadbalancer/tests/test_default.py
mvdheenux/OpenConext-deploy
9c75866cba7675cafa8946e591ffac0fe528f7b3
[ "Apache-2.0" ]
201
2015-02-03T14:52:30.000Z
2022-03-09T08:45:00.000Z
molecule/loadbalancer/tests/test_default.py
domgon/OpenConext-deploy
80b28f59bdef2ac683744c07bb938c889cb43681
[ "Apache-2.0" ]
48
2015-03-10T13:28:23.000Z
2021-11-28T23:15:32.000Z
import os import pytest import testinfra.utils.ansible_runner testinfra_hosts = testinfra.utils.ansible_runner.AnsibleRunner( os.environ['MOLECULE_INVENTORY_FILE']).get_hosts('all') @pytest.mark.parametrize("installed_packages", [ ("haproxy20"), ("socat"), ("keepalived"), ("bind"), ]) def test_packages_installed(host, installed_packages): rpackage = host.package(installed_packages) assert rpackage.is_installed @pytest.mark.parametrize("services", [ ("haproxy"), # ("keepalive"), ("named"), ]) def test_services_running_and_enabled(host, services): service = host.service(services) assert service.is_enabled assert service.is_running @pytest.mark.parametrize("files", [ ("/etc/pki/haproxy/star_haproxy.pem"), ]) def test_star_haproxy_pem(host, files): star_haproxy_pem = host.file(files) assert star_haproxy_pem.user == "root" assert star_haproxy_pem.group == "root" assert star_haproxy_pem.mode == 0o600 assert star_haproxy_pem.contains('-----BEGIN CERTIFICATE-----') assert star_haproxy_pem.contains('-----BEGIN RSA PRIVATE KEY-----') def test_sysctl_non_local_bind(host): non_local_bind = host.sysctl("net.ipv4.ip_nonlocal_bind") assert non_local_bind == 1
26.291667
71
0.717116
0
0
0
0
932
0.73851
0
0
271
0.214739
3fca93e41547a1ae70fbe0d1268f42c02b9128db
4,237
py
Python
tiledb/cloud/_results/results.py
TileDB-Inc/TileDB-Cloud-Py
e73f6e0ae3fc595218abd3be606c68f62ad5ac9b
[ "MIT" ]
4
2019-12-04T23:19:35.000Z
2021-06-21T21:42:53.000Z
tiledb/cloud/_results/results.py
TileDB-Inc/TileDB-Cloud-Py
e73f6e0ae3fc595218abd3be606c68f62ad5ac9b
[ "MIT" ]
106
2019-11-07T22:40:43.000Z
2022-03-29T22:31:18.000Z
tiledb/cloud/_results/results.py
TileDB-Inc/TileDB-Cloud-Py
e73f6e0ae3fc595218abd3be606c68f62ad5ac9b
[ "MIT" ]
1
2020-10-04T18:54:37.000Z
2020-10-04T18:54:37.000Z
"""Things that help you keep track of task results and how to decode them.""" import abc import dataclasses import threading import uuid from concurrent import futures from typing import Callable, Generic, Optional, TypeVar, Union import urllib3 from tiledb.cloud import rest_api from tiledb.cloud import tiledb_cloud_error as tce from tiledb.cloud._results import decoders from tiledb.cloud._results import stored_params TASK_ID_HEADER = "X-TILEDB-CLOUD-TASK-ID" _T = TypeVar("_T") class Result(Generic[_T], metaclass=abc.ABCMeta): @abc.abstractmethod def get(self) -> _T: """Gets the value stored in this Result.""" raise NotImplementedError() def to_stored_param(self) -> stored_params.StoredParam: raise TypeError("This result cannot be converted to a StoredParam.") # Not frozen to avoid generating unsafe methods like `__hash__`, # but you should still *treat* these subclasses like they're frozen. @dataclasses.dataclass() class LocalResult(Result[_T], Generic[_T]): """A result from running a function in a Node locally.""" it: _T def get(self) -> _T: return self.it @classmethod def wrap(cls, func: Callable[..., _T]) -> Callable[..., Result[_T]]: return lambda *args, **kwargs: cls(func(*args, **kwargs)) @dataclasses.dataclass() class RemoteResult(Result[_T], Generic[_T]): """A response from running a UDF remotely.""" def get(self) -> _T: """Decodes the response from the server.""" try: return self.decoder.decode(self.body) except ValueError as ve: inner_msg = f": {ve.args[0]}" if ve.args else "" raise tce.TileDBCloudError( f"Error decoding response from TileDB Cloud{inner_msg}" ) from ve def to_stored_param(self) -> stored_params.StoredParam: if not (self.results_stored and self.task_id): raise ValueError("A result must be stored to create a StoredParam.") return stored_params.StoredParam( decoder=self.decoder, task_id=self.task_id, ) # The HTTP content of the body that was returned. body: bytes # The server-generated UUID of the task. task_id: Optional[uuid.UUID] # The decoder that was used to decode the results. decoder: decoders.AbstractDecoder[_T] # True if the results were stored, false otherwise. results_stored: bool class AsyncResult(Generic[_T]): """Asynchronous wrapper for compatibility with the old array.TaskResult.""" def __init__(self, future: "futures.Future[Result[_T]]"): """Creates a new AsyncResponse wrapping the given Future.""" self._future = future self._id_lock = threading.Lock() self._task_id: Optional[uuid.UUID] = None self._future.add_done_callback(self._set_task_id) def get(self, timeout: Optional[float] = None) -> _T: """Gets the result from this response, with Future's timeout rules.""" return self._future.result(timeout).get() @property def task_id(self) -> Optional[uuid.UUID]: """Gets the task ID, or None if not complete or failed with no ID.""" with self._id_lock: return self._task_id def _set_task_id(self, _): """Sets the task ID once the Future has completed.""" try: res = self._future.result() except rest_api.ApiException as exc: with self._id_lock: self._task_id = extract_task_id(exc) except: # noqa: E722 We don't care about other exceptions, period. pass else: with self._id_lock: self._task_id = res.task_id def extract_task_id( thing: Union[rest_api.ApiException, urllib3.HTTPResponse], ) -> Optional[uuid.UUID]: """Pulls the task ID out of a response or an exception.""" id_hdr = thing.headers and thing.headers.get(TASK_ID_HEADER) return _maybe_uuid(id_hdr) def _maybe_uuid(id_str: Optional[str]) -> Optional[uuid.UUID]: """Parses a hex string into a UUID if present and valid.""" if not id_str: return None try: return uuid.UUID(hex=id_str) except ValueError: return None
32.343511
80
0.660609
3,024
0.713713
0
0
1,806
0.426245
0
0
1,320
0.311541
3fca96dd670cc10df7dd85a3eaf8c8ace2dc5c34
3,676
py
Python
test2/mining/mining.py
gr0mph/OceanOfCode
336caa00e22ae06e12d32971f84c82e3c0c9a3a4
[ "MIT" ]
null
null
null
test2/mining/mining.py
gr0mph/OceanOfCode
336caa00e22ae06e12d32971f84c82e3c0c9a3a4
[ "MIT" ]
null
null
null
test2/mining/mining.py
gr0mph/OceanOfCode
336caa00e22ae06e12d32971f84c82e3c0c9a3a4
[ "MIT" ]
null
null
null
import sys sys.path.append('../../') # Global variables from test2.test_main import TREASURE_MAP from test2.test_main import MINE_MAP # From OceanOfCode # Class from OceanOfCode import MineAndTrigger from OceanOfCode import Submarine from OceanOfCode import Board # Global from OceanOfCode import EMPTY_SYMBOLS from OceanOfCode import DIRS # Method from OceanOfCode import square import unittest class _mining(unittest.TestCase): def _set_up(self): print("0. START test_set_up") me = MineAndTrigger(None) me.set_up(TREASURE_MAP) print(len(me.legal)) def _mine(self): print("1. START test_mine") me = MineAndTrigger(None) me.set_up(TREASURE_MAP) print("Length: {}".format(len(me.legal))) board = Board(None) board.x,board.y = 10,3 orientation = me.mine(board) for p in me.minefield: print(p) me = MineAndTrigger(me) print("Orientation: {} Legal Length: {} Minefield Length {}".format( orientation, len(me.legal), len(me.minefield))) orientation = me.mine(board) for p in me.minefield: print(p) me = MineAndTrigger(me) print("Orientation: {} Legal Length: {} Minefield Length {}".format( orientation, len(me.legal), len(me.minefield))) orientation = me.mine(board) for p in me.minefield: print(p) me = MineAndTrigger(me) print("Orientation: {} Legal Length: {} Minefield Length {}".format( orientation, len(me.legal), len(me.minefield))) orientation = me.mine(board) for p in me.minefield: print(p) me = MineAndTrigger(me) print("Orientation: {} Legal Length: {} Minefield Length {}".format( orientation, len(me.legal), len(me.minefield))) orientation = me.mine(board) for p in me.minefield: print(p) me = MineAndTrigger(me) print("Orientation: {} Legal Length: {} Minefield Length {}".format( orientation, len(me.legal), len(me.minefield))) def _nearby(self): print("3. START test_nearby") me = MineAndTrigger(None) me.set_up(TREASURE_MAP) print("Length: {}".format(len(me.legal))) board1 = Board(None) board1.x,board1.y = 10,3 orientation = me.mine(board1) for p in me.minefield: print(p) print("Orientation: {} Legal Length: {} Minefield Length {}".format( orientation, len(me.legal), len(me.minefield))) board2 = Board(None) board2.x,board2.y = 10,3 mine = me.nearby(board1,board2) print("Mine: {}".format(mine)) if mine is not None: me.trigger(mine) print("Legal Length: {} Minefield Length {}".format( len(me.legal), len(me.minefield))) board1.x,board1.y = 5,5 mine = me.nearby(board1,board2) print("Mine: {}".format(mine)) if mine is not None: me.trigger(mine) print("Legal Length: {} Minefield Length {}".format( len(me.legal), len(me.minefield))) def test_filter(self): #print("4. START test_filter") lambda_n = lambda t1, m1 : '.' if t1 == '.' and m1 == '.' else ' ' for i1 in range(15): MINE_MAP[i1] = [ lambda_n(t1,m1) for t1, m1 in zip(TREASURE_MAP[i1],MINE_MAP[i1]) ] print() print("TREASURE_MAP",end='\t') print("MINE_MAP") for t_r, m_r in zip(TREASURE_MAP, MINE_MAP): print(''.join(t_r),end='\t') print(''.join(m_r)) if __name__ == '__main__': unittest.main()
28.276923
95
0.586235
3,225
0.877312
0
0
0
0
0
0
663
0.180359
3fcb54fe77197f1040f44681301381a698a9f1e0
831
py
Python
dfdatetime/__init__.py
joachimmetz/dfdatetime
de6da30114b952abeac8909906862e78aa7286dc
[ "Apache-2.0" ]
null
null
null
dfdatetime/__init__.py
joachimmetz/dfdatetime
de6da30114b952abeac8909906862e78aa7286dc
[ "Apache-2.0" ]
null
null
null
dfdatetime/__init__.py
joachimmetz/dfdatetime
de6da30114b952abeac8909906862e78aa7286dc
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- """Digital Forensics Date and Time (dfDateTime). dfDateTime, or Digital Forensics date and time, provides date and time objects to preserve accuracy and precision. """ # Imports for date time values factory. from dfdatetime import apfs_time from dfdatetime import cocoa_time from dfdatetime import delphi_date_time from dfdatetime import fat_date_time from dfdatetime import filetime from dfdatetime import hfs_time from dfdatetime import golang_time from dfdatetime import java_time from dfdatetime import ole_automation_date from dfdatetime import posix_time from dfdatetime import rfc2579_date_time from dfdatetime import semantic_time from dfdatetime import systemtime from dfdatetime import time_elements from dfdatetime import uuid_time from dfdatetime import webkit_time __version__ = '20211229'
29.678571
70
0.839952
0
0
0
0
0
0
0
0
240
0.288809
3fcbaff4724b7b17a4f047879b9dde04a4754a7c
1,267
py
Python
common/data/selectionhelper.py
alainjungo/reliability-challenges-uncertainty
21e86f6e2a5d2520b5767dce48bbcf2b11773788
[ "MIT" ]
56
2019-07-10T06:02:11.000Z
2021-12-21T08:11:22.000Z
common/data/selectionhelper.py
alainjungo/reliability-challenges-uncertainty
21e86f6e2a5d2520b5767dce48bbcf2b11773788
[ "MIT" ]
4
2019-09-26T08:51:58.000Z
2021-06-08T20:27:53.000Z
common/data/selectionhelper.py
alainjungo/reliability-challenges-uncertainty
21e86f6e2a5d2520b5767dce48bbcf2b11773788
[ "MIT" ]
8
2019-10-21T12:43:08.000Z
2021-12-02T08:14:38.000Z
import logging import json import zlib import os import pymia.data.extraction as extr def save_indices(file_path: str, indices: list): config = {'indices': indices} with open(file_path, 'w') as f: json.dump(config, f) def load_indices(file_path: str): with open(file_path, 'r') as f: config = json.load(f) return config['indices'] def calculate_or_load_indices(dataset: extr.ParameterizableDataset, selection: extr.SelectionStrategy): to_hash = os.path.basename(dataset.dataset_path) + ''.join(sorted(dataset.subject_subset)) + \ repr(dataset.indexing_strategy) + repr(selection) crc32 = hex(zlib.crc32(bytes(to_hash, encoding='utf-8')) & 0xffffffff) indices_dir = os.path.join(os.path.dirname(dataset.dataset_path), 'indices') file_path = os.path.join(indices_dir, '{}.json'.format(crc32)) if os.path.exists(file_path): return load_indices(file_path) logging.info('\t- need to calculate indices: {}'.format(repr(selection))) indices = extr.select_indices(dataset, selection) if not os.path.isdir(indices_dir): os.makedirs(indices_dir) save_indices(file_path, indices) logging.info('\t- written to file {}'.format(file_path)) return indices
28.155556
103
0.694554
0
0
0
0
0
0
0
0
110
0.086819
3fce44aec3e71efcc655d5db43f3f8dd2acd2d0c
1,191
py
Python
src/main/TextLemmatizer.py
alschmut/code2semantics
af1daf0b8320b534344c5352ae972fb600e21e43
[ "MIT" ]
2
2020-02-26T22:50:38.000Z
2020-10-29T10:46:10.000Z
src/main/TextLemmatizer.py
alschmut/linguistic-parser
af1daf0b8320b534344c5352ae972fb600e21e43
[ "MIT" ]
null
null
null
src/main/TextLemmatizer.py
alschmut/linguistic-parser
af1daf0b8320b534344c5352ae972fb600e21e43
[ "MIT" ]
null
null
null
import sys from util.Timer import Timer from util.FileOpener import FileOpener from util.Logger import Logger from util.PathExtractor import PathExtractor from util.PathValidator import PathValidator from service import SpacyModel def lemmatize_text(file_path: str, timer: Timer): logger = Logger() output_file = FileOpener().get_new_file("wiki.en.lemmatized.txt", "a") with open(file_path, "r") as file: for line in file: lemmatized_list = [word.lemma_ for word in SpacyModel.instance.get_en_spacy_line(line)] lemmazized_line = " ".join(lemmatized_list) output_file.write(lemmazized_line) logger.every_n_wiki_status(10, timer.get_duration()) logger.every_n_wiki_status(1) def main(): script_name: str = PathExtractor().get_file_name(sys.argv[0]) if len(sys.argv) != 2: Logger().usage(f"python {script_name} <wiki.en.filtered.txt>") return file_path = sys.argv[1] if PathValidator().is_valid_files([file_path]): Logger().info(f'Input file: "{file_path}"') Logger().info("Starting to lemmatize text") timer = Timer() lemmatize_text(file_path, timer) Logger().finish_script(timer.get_duration(), script_name) if __name__ == '__main__': main()
28.357143
90
0.74979
0
0
0
0
0
0
0
0
145
0.121746
3fce57d4964a0ce253965c723aa6fb69e1b90bf3
4,069
py
Python
mat2py/core/graph2d.py
mat2py/mat2py
2776fbe9ca4ad2aaa3eac6aa79d17747a9ec24a8
[ "MIT" ]
null
null
null
mat2py/core/graph2d.py
mat2py/mat2py
2776fbe9ca4ad2aaa3eac6aa79d17747a9ec24a8
[ "MIT" ]
37
2021-12-23T03:22:20.000Z
2022-02-16T15:40:47.000Z
mat2py/core/graph2d.py
mat2py/mat2py
2776fbe9ca4ad2aaa3eac6aa79d17747a9ec24a8
[ "MIT" ]
2
2022-01-23T07:59:10.000Z
2022-02-03T09:15:54.000Z
# type: ignore __all__ = [ "plotyy", "figtoolset", "getscribecontextmenu", "getobj", "scribeeventhandler", "setscribecontextmenu", "putdowntext", "gtext", "scribetextdlg", "doresize", "prepdrag", "scriberestoresavefcns", "zoom", "scribeclearmode", "domymenu", "ylabel", "getscribeobjectdata", "enddrag", "texlabel", "setscribeobjectdata", "polar", "getcolumn", "plotedit", "semilogx", "jpropeditutils", "basicfitdatastat", "plot", "box", "axis", "title", "loglog", "dokeypress", "semilogy", "doclick", "middrag", "text", "pan", "subplot", "xlabel", "rbbox", "grid", "moveaxis", "getorcreateobj", ] from mat2py.common.backends import numpy as np from ._internal import M def plotyy(*args): raise NotImplementedError("plotyy") def figtoolset(*args): raise NotImplementedError("figtoolset") def getscribecontextmenu(*args): raise NotImplementedError("getscribecontextmenu") def getobj(*args): raise NotImplementedError("getobj") def scribeeventhandler(*args): raise NotImplementedError("scribeeventhandler") def setscribecontextmenu(*args): raise NotImplementedError("setscribecontextmenu") def putdowntext(*args): raise NotImplementedError("putdowntext") def gtext(*args): raise NotImplementedError("gtext") def scribetextdlg(*args): raise NotImplementedError("scribetextdlg") def doresize(*args): raise NotImplementedError("doresize") def prepdrag(*args): raise NotImplementedError("prepdrag") def scriberestoresavefcns(*args): raise NotImplementedError("scriberestoresavefcns") def zoom(*args): raise NotImplementedError("zoom") def scribeclearmode(*args): raise NotImplementedError("scribeclearmode") def domymenu(*args): raise NotImplementedError("domymenu") def ylabel(*args): raise NotImplementedError("ylabel") def getscribeobjectdata(*args): raise NotImplementedError("getscribeobjectdata") def enddrag(*args): raise NotImplementedError("enddrag") def texlabel(*args): raise NotImplementedError("texlabel") def setscribeobjectdata(*args): raise NotImplementedError("setscribeobjectdata") def polar(*args): raise NotImplementedError("polar") def getcolumn(*args): raise NotImplementedError("getcolumn") def plotedit(*args): raise NotImplementedError("plotedit") def semilogx(*args): raise NotImplementedError("semilogx") def jpropeditutils(*args): raise NotImplementedError("jpropeditutils") def basicfitdatastat(*args): raise NotImplementedError("basicfitdatastat") def plot(*args): import matplotlib.pyplot as plt fig, ax = plt.subplots() while args: x, y, *args = args if args and isinstance(args[0], str): style, *args = args style = (style,) else: style = tuple() x = M[x].reshape(-1) y = M[y].reshape(-1) ax.plot(x, y, *style) return fig def box(*args): raise NotImplementedError("box") def axis(*args): raise NotImplementedError("axis") def title(*args): raise NotImplementedError("title") def loglog(*args): raise NotImplementedError("loglog") def dokeypress(*args): raise NotImplementedError("dokeypress") def semilogy(*args): raise NotImplementedError("semilogy") def doclick(*args): raise NotImplementedError("doclick") def middrag(*args): raise NotImplementedError("middrag") def text(*args): raise NotImplementedError("text") def pan(*args): raise NotImplementedError("pan") def subplot(*args): raise NotImplementedError("subplot") def xlabel(*args): raise NotImplementedError("xlabel") def rbbox(*args): raise NotImplementedError("rbbox") def grid(*args): raise NotImplementedError("grid") def moveaxis(*args): raise NotImplementedError("moveaxis") def getorcreateobj(*args): raise NotImplementedError("getorcreateobj")
17.168776
54
0.673876
0
0
0
0
0
0
0
0
974
0.239371
3fce96f02b43f368aab74e2c6e770ef0bfeee1f2
107
py
Python
run.py
Arthurdb1999/dash-plotly-example
a54dce5e233aab75746a433665a4a958a77e4b58
[ "MIT" ]
null
null
null
run.py
Arthurdb1999/dash-plotly-example
a54dce5e233aab75746a433665a4a958a77e4b58
[ "MIT" ]
null
null
null
run.py
Arthurdb1999/dash-plotly-example
a54dce5e233aab75746a433665a4a958a77e4b58
[ "MIT" ]
null
null
null
from app import app if __name__ == '__main__': app.run_server(port=5000, debug=True, host='localhost')
26.75
59
0.719626
0
0
0
0
0
0
0
0
21
0.196262
3fcf781a8eea0228e1eb54ee4f6768c262da5120
748
py
Python
rasa/train_init.py
BarnikRay/chatbot
4191f3064f6dae90b108ecf4e08130cda39ed370
[ "MIT" ]
1
2020-05-03T07:30:18.000Z
2020-05-03T07:30:18.000Z
rasa/train_init.py
privykurura1/chatbot
4191f3064f6dae90b108ecf4e08130cda39ed370
[ "MIT" ]
8
2019-12-04T23:20:56.000Z
2022-02-10T07:47:03.000Z
rasa/train_init.py
privykurura1/chatbot
4191f3064f6dae90b108ecf4e08130cda39ed370
[ "MIT" ]
1
2021-11-14T07:45:24.000Z
2021-11-14T07:45:24.000Z
from __future__ import absolute_import from __future__ import division from __future__ import unicode_literals import logging from rasa_core.agent import Agent from rasa_core.policies.keras_policy import KerasPolicy from rasa_core.policies.memoization import MemoizationPolicy def run_faq(domain_file="config/faq_domain.yml", training_data_file='data/stories.md'): agent = Agent(domain_file, policies=[MemoizationPolicy(max_history=2), KerasPolicy(max_history=3, epochs=100, batch_size=50)]) data = agent.load_data(training_data_file) model_path = './models/dialogue' agent.train(data) agent.persist(model_path) if __name__ == '__main__': logging.basicConfig(level="INFO") run_faq()
28.769231
117
0.758021
0
0
0
0
0
0
0
0
75
0.100267
3fcf9b0ce8ecad5b900f4b1d09dd5ed1b9a47ad4
6,123
py
Python
examples/passage_ranking.py
skirdey/FARM
2fc801d1d0c973cb36bc867907d4250d1084493b
[ "Apache-2.0" ]
1,551
2019-07-17T18:21:08.000Z
2022-03-24T18:09:07.000Z
examples/passage_ranking.py
skirdey/FARM
2fc801d1d0c973cb36bc867907d4250d1084493b
[ "Apache-2.0" ]
555
2019-07-23T09:00:54.000Z
2022-03-31T15:31:06.000Z
examples/passage_ranking.py
skirdey/FARM
2fc801d1d0c973cb36bc867907d4250d1084493b
[ "Apache-2.0" ]
259
2019-07-22T08:12:01.000Z
2022-03-26T09:41:00.000Z
# fmt: off import logging from pathlib import Path from farm.data_handler.data_silo import DataSilo from farm.data_handler.processor import RegressionProcessor, TextPairClassificationProcessor from farm.experiment import initialize_optimizer from farm.infer import Inferencer from farm.modeling.adaptive_model import AdaptiveModel from farm.modeling.language_model import LanguageModel from farm.modeling.prediction_head import RegressionHead, TextClassificationHead from farm.modeling.tokenization import Tokenizer from farm.train import Trainer from farm.utils import set_all_seeds, MLFlowLogger, initialize_device_settings, reformat_msmarco_train, reformat_msmarco_dev, write_msmarco_results from farm.evaluation.msmarco_passage_farm import msmarco_evaluation def text_pair_classification(): logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO) ml_logger = MLFlowLogger(tracking_uri="https://public-mlflow.deepset.ai/") ml_logger.init_experiment(experiment_name="Public_FARM", run_name="Run_text_pair_classification") ########################## ########## Settings ########################## set_all_seeds(seed=42) device, n_gpu = initialize_device_settings(use_cuda=True) n_epochs = 2 batch_size = 64 evaluate_every = 500 lang_model = "bert-base-cased" label_list = ["0", "1"] train_filename = "train.tsv" dev_filename = "dev_200k.tsv" # The source data can be found here https://github.com/microsoft/MSMARCO-Passage-Ranking generate_data = False data_dir = Path("../data/msmarco_passage") predictions_raw_filename = "predictions_raw.txt" predictions_filename = "predictions.txt" train_source_filename = "triples.train.1m.tsv" qrels_filename = "qrels.dev.tsv" queries_filename = "queries.dev.tsv" passages_filename = "collection.tsv" top1000_filename = "top1000.dev" # 0. Preprocess and save MSMarco data in a format that can be ingested by FARM models. Only needs to be done once! # The final format is a tsv file with 3 columns (text, text_b and label) if generate_data: reformat_msmarco_train(data_dir / train_source_filename, data_dir / train_filename) reformat_msmarco_dev(data_dir / queries_filename, data_dir / passages_filename, data_dir / qrels_filename, data_dir / top1000_filename, data_dir / dev_filename) # 1.Create a tokenizer tokenizer = Tokenizer.load( pretrained_model_name_or_path=lang_model, do_lower_case=False) # 2. Create a DataProcessor that handles all the conversion from raw text into a pytorch Dataset # Evaluation during training will be performed on a slice of the train set # We will be using the msmarco dev set as our final evaluation set processor = TextPairClassificationProcessor(tokenizer=tokenizer, label_list=label_list, metric="f1_macro", train_filename=train_filename, test_filename=None, dev_split=0.001, max_seq_len=128, data_dir=data_dir, delimiter="\t") # 3. Create a DataSilo that loads several datasets (train/dev/test), provides DataLoaders for them and calculates a few descriptive statistics of our datasets data_silo = DataSilo( processor=processor, batch_size=batch_size) # 4. Create an AdaptiveModel # a) which consists of a pretrained language model as a basis language_model = LanguageModel.load(lang_model) # b) and a prediction head on top that is suited for our task prediction_head = TextClassificationHead(num_labels=len(label_list), class_weights=data_silo.calculate_class_weights( task_name="text_classification"), ) model = AdaptiveModel( language_model=language_model, prediction_heads=[prediction_head], embeds_dropout_prob=0.1, lm_output_types=["per_sequence_continuous"], device=device) # 5. Create an optimizer model, optimizer, lr_schedule = initialize_optimizer( model=model, learning_rate=1e-5, device=device, n_batches=len(data_silo.loaders["train"]), n_epochs=n_epochs) # 6. Feed everything to the Trainer, which keeps care of growing our model into powerful plant and evaluates it from time to time trainer = Trainer( model=model, optimizer=optimizer, data_silo=data_silo, epochs=n_epochs, n_gpu=n_gpu, lr_schedule=lr_schedule, evaluate_every=evaluate_every, device=device) # 7. Let it grow trainer.train() # 8. Hooray! You have a model. Store it: save_dir = Path("saved_models/passage_ranking_model") model.save(save_dir) processor.save(save_dir) # 9. Load it & harvest your fruits (Inference) # Add your own text adapted to the dataset you provide model = Inferencer.load(save_dir, gpu=True, max_seq_len=128, batch_size=128) result = model.inference_from_file(data_dir / dev_filename) write_msmarco_results(result, save_dir / predictions_raw_filename) msmarco_evaluation(preds_file=save_dir / predictions_raw_filename, dev_file=data_dir / dev_filename, qrels_file=data_dir / qrels_filename, output_file=save_dir / predictions_filename) model.close_multiprocessing_pool() if __name__ == "__main__": text_pair_classification() # fmt: on
41.653061
162
0.644619
0
0
0
0
0
0
0
0
1,708
0.278948
3fd06fe52f4de9eab41206707f2484a26a7e0deb
2,723
py
Python
extended_data_provider.py
NicolaOrritos/pricenet
1667e564d48bf0021eb16dcd529017cd00643b03
[ "MIT" ]
null
null
null
extended_data_provider.py
NicolaOrritos/pricenet
1667e564d48bf0021eb16dcd529017cd00643b03
[ "MIT" ]
null
null
null
extended_data_provider.py
NicolaOrritos/pricenet
1667e564d48bf0021eb16dcd529017cd00643b03
[ "MIT" ]
null
null
null
#!/usr/bin/env python import numpy as np import pandas as pd import json import pytz def _get_data(file): return pd.read_csv(file) def _get_prices(data): df = data rome_tz = pytz.timezone('Europe/Rome') df['time'] = pd.to_datetime(df['Timestamp'], unit='s') df['time'].dt.tz_localize(pytz.UTC).dt.tz_convert(rome_tz) del(df['Timestamp']) del(df['Weighted_Price']) df = df.rename(columns={'Volume_(BTC)': 'volume_btc', 'Volume_(Currency)': 'volume_fiat'}) df = df.rename(columns={'Open': 'open', 'Close': 'close'}) df = df.rename(columns={'Low': 'low', 'High': 'high'}) return df def _group(data, step=4): data['group_info'] = ['data' if (index+1)%step != 0 else 'target' for index, _ in data.iterrows()] data['type'] = data['group_info'].astype('category') del(data['group_info']) return data def _bundle_groups(data, index, group_size): return np.concatenate([data.iloc[index + a] for a in range(0, group_size)]) def scale(data_frame): data_frame -= data_frame.min() data_frame /= data_frame.max() return data_frame def remove_fields(data, fields): for field in fields: del(data[field]) return data def split_to_X_y(data, groups_size): semi_grouped = _group(data, step=groups_size) grouped_data = semi_grouped.loc[semi_grouped['type'] == 'data'] grouped_targets = semi_grouped.loc[semi_grouped['type'] == 'target'] del(grouped_data['type']) del(grouped_targets['type']) # Make them their own DataFrame to avoid operating on copies of `semi_grouped` one: grouped_data = grouped_data.copy() grouped_targets = grouped_targets.copy() usable_items = groups_size - 1 X = [_bundle_groups(grouped_data, index, usable_items) for index in range(0, len(grouped_data), usable_items)] y = grouped_targets['close'].values.tolist() return X, y def cut_trailing(data, groups_size=4): # Cut trailing data (remember that we are grouping by 'groups_size'): while len(data) % groups_size > 0: data = data.drop(len(data) - 1) return data def load(): """ Returns `X` and `y` arrays, the former being the training data and the former the targets. """ # Get data: data = _get_data('coinbaseUSD_1-min_data_2014-12-01_to_2018-03-27.csv') prices = _get_prices(data) prices['day_of_week'] = prices['time'].dt.dayofweek prices['day_of_month'] = prices['time'].dt.day prices['day_of_month_scaled'] = prices['time'].dt.day / prices['time'].dt.days_in_month prices['month'] = prices['time'].dt.month prices['time_of_day'] = prices['time'].dt.time.apply(lambda time: str(time).split(':')[0]).astype(int) return prices
28.072165
114
0.667646
0
0
0
0
0
0
0
0
725
0.26625
3fd08ba20ef96dd8738b44a611be2e078eaec1a9
789
py
Python
django_alive/tests/test_command.py
lincolnloop/django-alive
608fd0a1d94f90f51a48a943348e9038f402a504
[ "MIT" ]
25
2018-08-22T12:42:14.000Z
2022-01-18T19:03:05.000Z
django_alive/tests/test_command.py
lincolnloop/django-alive
608fd0a1d94f90f51a48a943348e9038f402a504
[ "MIT" ]
7
2019-11-05T23:52:49.000Z
2020-07-01T18:03:32.000Z
django_alive/tests/test_command.py
lincolnloop/django-alive
608fd0a1d94f90f51a48a943348e9038f402a504
[ "MIT" ]
null
null
null
import sys from django.core.management import CommandError, call_command from django.test import TestCase from .side_effects import bad_database_check try: from unittest.mock import patch except ImportError: from mock import patch # Python 2.7 support if sys.version_info > (3, 0): from io import StringIO else: from io import BytesIO as StringIO class CommandTestCase(TestCase): def test_command(self): out = StringIO() call_command("healthcheck", stdout=out) self.assertIn("OK", out.getvalue()) def test_command_failed(self): with patch( "django_alive.checks.check_database", side_effect=bad_database_check ): with self.assertRaises(CommandError): call_command("healthcheck")
24.65625
80
0.697085
419
0.531052
0
0
0
0
0
0
86
0.108999
3fd0cbcd561a8f1e4b20915840399b1fbffc54a0
2,579
py
Python
main.py
fanicia/file-backup
f85d59a77d3168def9805e70b8a2a1dacf99c69d
[ "MIT" ]
null
null
null
main.py
fanicia/file-backup
f85d59a77d3168def9805e70b8a2a1dacf99c69d
[ "MIT" ]
null
null
null
main.py
fanicia/file-backup
f85d59a77d3168def9805e70b8a2a1dacf99c69d
[ "MIT" ]
null
null
null
from watchdog.observers import Observer from watchdog.events import FileSystemEventHandler # importing the modules import os.path import shutil import datetime import time import re # getting the current working directory src_dir = os.getcwd() # printing current directory print("########## File-backup started ###########") class FileHandler(FileSystemEventHandler): def on_modified(self, event): if not event.is_directory: self.copy_file(event.src_path) def on_created(self, event): if not event.is_directory: self.copy_file(event.src_path) def copy_file(self, src): src_file_name = src.split(os.path.sep).pop() destination_sub_path = self.extract_changed_sub_path(folder_to_track, src) sub_path_list = destination_sub_path.split(os.path.sep) changed_file_name = sub_path_list.pop() path_to_file = f"{os.path.sep.join(sub_path_list)}{os.path.sep}" timestamp = datetime.datetime.now().strftime("%d-%m-%y-%H-%M") # not the prettiest datetime-format, but it's filename-friendly target = f"{destination}{path_to_file}{timestamp}-{changed_file_name}" print(os.linesep) print(src) print(" |") print(" |") print(" V") print(target) print(os.linesep) print("----------------------------------------") os.makedirs(f"{destination}{path_to_file}", exist_ok = True) shutil.copy(src, target) def extract_changed_sub_path(self, base_path, changed_path): # This turns the annoying "\" into "/", in case we are on windows base_path = base_path.replace(os.path.sep, "/") changed_path = changed_path.replace(os.path.sep, "/") # use positive lookbehind assertion to find the part of the path after the base_path of the source regex = re.compile(f"(?<={base_path})(.*)") match = re.search(regex, changed_path) sub_path = match.group().replace("/", os.path.sep) return sub_path folder_to_track = f"{os.getcwd()}{os.path.sep}testsubject{os.path.sep}source" destination = f"{os.getcwd()}{os.path.sep}testsubject{os.path.sep}destination" print(f"{folder_to_track} --> {destination}") event_handler = FileHandler() observer = Observer() observer.schedule(event_handler, folder_to_track, recursive=True) observer.start() try: while True: time.sleep(10) except KeyboardInterrupt: observer.stop() observer.join() print("########## File-backup ended ###########")
32.2375
134
0.643273
1,748
0.677782
0
0
0
0
0
0
823
0.319116
3fd11ac451a6a98e1c44245e5db55488106cc6f1
24,449
py
Python
tests/ignite/distributed/comp_models/test_native.py
Eunjnnn/ignite
743089705b2b252aa5e2a0f310da3a8724d6711e
[ "BSD-3-Clause" ]
4,119
2017-11-23T18:10:37.000Z
2022-03-31T05:31:27.000Z
tests/ignite/distributed/comp_models/test_native.py
Eunjnnn/ignite
743089705b2b252aa5e2a0f310da3a8724d6711e
[ "BSD-3-Clause" ]
1,838
2017-11-24T11:19:25.000Z
2022-03-31T09:08:18.000Z
tests/ignite/distributed/comp_models/test_native.py
Eunjnnn/ignite
743089705b2b252aa5e2a0f310da3a8724d6711e
[ "BSD-3-Clause" ]
691
2017-11-24T10:57:33.000Z
2022-03-29T02:19:44.000Z
import os import pytest import torch import torch.distributed as dist from ignite.distributed.comp_models import has_native_dist_support if not has_native_dist_support: pytest.skip("Skip if no native dist support", allow_module_level=True) else: from ignite.distributed.comp_models.native import _expand_hostlist, _NativeDistModel, _setup_ddp_vars_from_slurm_env # tests from https://github.com/LLNL/py-hostlist/blob/master/hostlist/unittest_hostlist.py @pytest.mark.parametrize( "hostlist, expected", [ ("localhost", "localhost"), ("compute!:b24_[1-2].r", "compute!:b24_1.r,compute!:b24_2.r"), ("quartz[4-8]", "quartz4,quartz5,quartz6,quartz7,quartz8"), ("c1001a-[11,17]", "c1001a-11,c1001a-17"), ("c1001a-s[11,17]", "c1001a-s11,c1001a-s17"), ("c1009a-s17,c1010a-s11", "c1009a-s17,c1010a-s11"), ( "gpu-compute-on-demand-dy-g4dnxlarge-[1-4]", "gpu-compute-on-demand-dy-g4dnxlarge-1," "gpu-compute-on-demand-dy-g4dnxlarge-2," "gpu-compute-on-demand-dy-g4dnxlarge-3," "gpu-compute-on-demand-dy-g4dnxlarge-4", ), ( "node[18-19,1-16,21-22]", "node1,node2,node3,node4,node5," "node6,node7,node8,node9,node10," "node11,node12,node13,node14,node15," "node16,node18,node19,node21,node22", ), ( "node[4-8,12,16-20,22,24-26]", "node4,node5,node6,node7,node8," "node12,node16,node17,node18," "node19,node20,node22,node24," "node25,node26", ), ("machine2-[02-4]vm1", "machine2-02vm1,machine2-03vm1,machine2-04vm1"), ( "machine2-[02-3]vm1, machine4-[0003-5].vml2", "machine2-02vm1,machine2-03vm1,machine4-0003.vml2,machine4-0004.vml2,machine4-0005.vml2", ), ("machine2-[009-11]vm1", "machine2-009vm1,machine2-010vm1,machine2-011vm1"), ("node[1,2,3]", "node1,node2,node3"), ( "compute-b24-[1-3,5-9], compute-b25-[1,4,8],compute-b25-[2-9,13]", "compute-b24-1,compute-b24-2,compute-b24-3,compute-b24-5,compute-b24-6," "compute-b24-7,compute-b24-8,compute-b24-9,compute-b25-1,compute-b25-4," "compute-b25-8,compute-b25-2,compute-b25-3,compute-b25-4,compute-b25-5," "compute-b25-6,compute-b25-7,compute-b25-8,compute-b25-9,compute-b25-13", ), ], ) def test_expand_hostlist(hostlist, expected): assert _expand_hostlist(hostlist) == expected.split(",") def test_expand_hostlist_invalid(): with pytest.raises(ValueError, match=r"hostlist invalid"): _expand_hostlist("invalid[]") @pytest.mark.distributed def test__native_dist_model(): available_backends = _NativeDistModel.available_backends if dist.is_nccl_available(): assert "nccl" in available_backends else: assert "nccl" not in available_backends if dist.is_gloo_available(): assert "gloo" in available_backends else: assert "gloo" not in available_backends if dist.is_mpi_available(): assert "mpi" in available_backends else: assert "mpi" not in available_backends with pytest.raises(ValueError, match=r"Backend should be one of"): _NativeDistModel.create_from_backend("abc") @pytest.mark.distributed @pytest.mark.skipif(not dist.is_nccl_available(), reason="Skip if nccl not available") @pytest.mark.skipif("WORLD_SIZE" in os.environ, reason="Skip if launched as multiproc") def test__native_nccl_but_no_gpu(mock_gpu_is_not_available): with pytest.raises(RuntimeError, match=r"Nccl backend is required but no cuda capable devices"): _NativeDistModel(backend="nccl") @pytest.mark.distributed @pytest.mark.skipif("WORLD_SIZE" in os.environ, reason="Skip if launched as multiproc") def test__native_dist_model_create_from_backend_bad_config(): import os from datetime import timedelta os.environ["RANK"] = "1" with pytest.raises(RuntimeError, match=r"PyTorch distributed configuration should define env variables"): _NativeDistModel.create_from_backend(backend="gloo", timeout=timedelta(seconds=10)) del os.environ["RANK"] @pytest.mark.distributed @pytest.mark.skipif("WORLD_SIZE" in os.environ, reason="Skip if launched as multiproc") def test__native_dist_model_create_from_backend_bad_slurm_config(): import os from datetime import timedelta os.environ["SLURM_JOB_ID"] = "1" with pytest.raises(RuntimeError, match=r"SLURM distributed configuration is missing"): _NativeDistModel.create_from_backend(backend="gloo", timeout=timedelta(seconds=10)) with pytest.raises(ValueError, match=r"Arguments rank and world_size should not be specified with SLURM"): _NativeDistModel.create_from_backend( backend="gloo", timeout=timedelta(seconds=10), rank=1, init_method="", world_size=1 ) os.environ["SLURM_PROCID"] = "0" os.environ["SLURM_LOCALID"] = "0" os.environ["SLURM_NTASKS"] = "1" os.environ["SLURM_JOB_NODELIST"] = "localhost" os.environ["SLURM_JOB_NUM_NODES"] = "1" os.environ["RANK"] = "1" with pytest.warns(UserWarning, match=r"We detected the following env variables"): model = _NativeDistModel.create_from_backend(backend="gloo", timeout=timedelta(seconds=10)) model.finalize() del os.environ["SLURM_JOB_ID"] del os.environ["SLURM_PROCID"] del os.environ["SLURM_LOCALID"] del os.environ["SLURM_NTASKS"] del os.environ["SLURM_JOB_NODELIST"] del os.environ["SLURM_JOB_NUM_NODES"] del os.environ["RANK"] def _assert_model(model, true_conf): assert model.device() == torch.device(true_conf["device"]) assert model.get_local_rank() == true_conf["local_rank"] assert model.get_rank() == true_conf["rank"] assert model.get_world_size() == true_conf["world_size"] assert model.get_node_rank() == true_conf["node_index"] assert model.get_nnodes() == true_conf["nnodes"] assert model.get_nproc_per_node() == true_conf["nproc_per_node"] def _test__native_dist_model_create_from_backend_no_dist(backend, true_device): from datetime import timedelta model = _NativeDistModel.create_from_backend(backend=backend, timeout=timedelta(seconds=20)) assert dist.is_available() and dist.is_initialized() assert dist.get_backend() == backend _assert_model( model, { "device": true_device, "local_rank": 0, "rank": 0, "world_size": 1, "node_index": 0, "nnodes": 1, "nproc_per_node": 1, }, ) model.finalize() def _test__native_dist_model_create_from_backend_dist(init_method, local_rank, rank, world_size, backend, true_device): import os from datetime import timedelta timeout = timedelta(seconds=20) os.environ["RANK"] = f"{rank}" assert "MASTER_ADDR" not in os.environ assert "MASTER_PORT" not in os.environ model = _NativeDistModel.create_from_backend(backend=backend, timeout=timeout, init_method=init_method) assert dist.is_available() and dist.is_initialized() assert dist.get_backend() == backend with pytest.raises(RuntimeError, match=r"Can not create new distributed process group if default one is"): _NativeDistModel.create_from_backend(backend=backend, timeout=timeout) _assert_model( model, { "device": true_device, "local_rank": local_rank, "rank": rank, "world_size": world_size, "node_index": 0, "nnodes": 1, "nproc_per_node": world_size, }, ) if init_method is None: assert model._init_method == "env://" else: assert model._init_method == init_method model.finalize() del os.environ["RANK"] assert "MASTER_ADDR" not in os.environ assert "MASTER_PORT" not in os.environ assert "RANK" not in os.environ def _test__native_dist_model_create_from_backend_slurm(local_rank, rank, world_size, backend, true_device): import os from datetime import timedelta timeout = timedelta(seconds=20) assert "MASTER_ADDR" not in os.environ assert "MASTER_PORT" not in os.environ del os.environ["WORLD_SIZE"] del os.environ["LOCAL_RANK"] os.environ["SLURM_JOB_ID"] = "15000" os.environ["SLURM_PROCID"] = str(rank) os.environ["SLURM_LOCALID"] = str(local_rank) os.environ["SLURM_NTASKS"] = str(world_size) os.environ["SLURM_JOB_NODELIST"] = "localhost" os.environ["SLURM_JOB_NUM_NODES"] = "1" model = _NativeDistModel.create_from_backend(backend=backend, timeout=timeout) assert dist.is_available() and dist.is_initialized() assert dist.get_backend() == backend with pytest.raises(RuntimeError, match=r"Can not create new distributed process group if default one is"): _NativeDistModel.create_from_backend(backend=backend, timeout=timeout) _assert_model( model, { "device": true_device, "local_rank": local_rank, "rank": rank, "world_size": world_size, "node_index": 0, "nnodes": 1, "nproc_per_node": world_size, }, ) model.finalize() del os.environ["SLURM_JOB_ID"] del os.environ["SLURM_PROCID"] del os.environ["SLURM_LOCALID"] del os.environ["SLURM_NTASKS"] del os.environ["SLURM_JOB_NODELIST"] del os.environ["SLURM_JOB_NUM_NODES"] assert "MASTER_ADDR" not in os.environ assert "MASTER_PORT" not in os.environ assert "RANK" not in os.environ os.environ["WORLD_SIZE"] = str(world_size) os.environ["LOCAL_RANK"] = str(local_rank) def _test__native_dist_model_create_from_context_no_local_rank(): if "LOCAL_RANK" in os.environ: del os.environ["LOCAL_RANK"] from ignite.distributed.comp_models.base import ComputationModel if ComputationModel._ext_local_rank is not None: ComputationModel._ext_local_rank = None with pytest.warns(UserWarning, match=r"Local rank information for native distributed setting will be initialized"): _NativeDistModel.create_from_context() def _test__native_dist_model_create_from_context_env_local_rank(true_conf): import os remove_lrank = False if "LOCAL_RANK" not in os.environ: os.environ["LOCAL_RANK"] = str(true_conf["local_rank"]) remove_lrank = True model = _NativeDistModel.create_from_context() _assert_model(model, true_conf) if remove_lrank: del os.environ["LOCAL_RANK"] def _test__native_dist_model_create_from_context_set_local_rank(true_conf): from ignite.distributed.comp_models.base import ComputationModel lrank = None if "LOCAL_RANK" in os.environ: lrank = os.environ["LOCAL_RANK"] del os.environ["LOCAL_RANK"] ComputationModel._ext_local_rank = true_conf["local_rank"] model = _NativeDistModel.create_from_context() _assert_model(model, true_conf) ComputationModel._ext_local_rank = None if lrank is not None: os.environ["LOCAL_RANK"] = lrank def _test__native_dist_model_create_from_context_no_dist(true_backend, true_device): assert _NativeDistModel.create_from_context() is None dist.init_process_group(true_backend, "tcp://0.0.0.0:2222", world_size=1, rank=0) dist.barrier() _test__native_dist_model_create_from_context_no_local_rank() true_conf = { "device": true_device, "local_rank": 0, "rank": 0, "world_size": 1, "node_index": 0, "nnodes": 1, "nproc_per_node": 1, } _test__native_dist_model_create_from_context_env_local_rank(true_conf) _test__native_dist_model_create_from_context_set_local_rank(true_conf) dist.destroy_process_group() def _test__native_dist_model_create_from_context_dist(local_rank, rank, world_size, true_backend, true_device): assert _NativeDistModel.create_from_context() is None dist.init_process_group(true_backend, "tcp://0.0.0.0:2222", world_size=world_size, rank=rank) dist.barrier() if torch.cuda.is_available(): torch.cuda.set_device(local_rank) true_conf = { "device": true_device, "local_rank": local_rank, "rank": rank, "world_size": world_size, "node_index": 0, "nnodes": 1, "nproc_per_node": world_size, } _test__native_dist_model_create_from_context_env_local_rank(true_conf) _test__native_dist_model_create_from_context_set_local_rank(true_conf) dist.destroy_process_group() @pytest.mark.distributed @pytest.mark.skipif("WORLD_SIZE" in os.environ, reason="Should be no-dist config") def test__native_dist_model_create_no_dist_gloo(clean_env): device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") _test__native_dist_model_create_from_backend_no_dist("gloo", device) _test__native_dist_model_create_from_context_no_dist("gloo", device) @pytest.mark.distributed @pytest.mark.skipif("WORLD_SIZE" in os.environ, reason="Should be no-dist config") @pytest.mark.skipif(torch.cuda.device_count() < 1, reason="Skip if no GPU") def test__native_dist_model_create_no_dist_nccl(clean_env): device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") _test__native_dist_model_create_from_backend_no_dist("nccl", device) _test__native_dist_model_create_from_context_no_dist("nccl", device) @pytest.mark.distributed @pytest.mark.parametrize("init_method", [None, "tcp://0.0.0.0:22334", "FILE"]) def test__native_dist_model_create_dist_gloo_1(init_method, get_fixed_dirname, local_rank, world_size): if init_method == "FILE": init_method = f"file://{get_fixed_dirname('native_dist_model_create_dist_gloo_1')}/shared" device = torch.device(f"cuda:{local_rank}" if torch.cuda.is_available() else "cpu") _test__native_dist_model_create_from_backend_dist(init_method, local_rank, local_rank, world_size, "gloo", device) if init_method is None: _test__native_dist_model_create_from_backend_slurm(local_rank, local_rank, world_size, "gloo", device) @pytest.mark.distributed def test__native_dist_model_create_dist_gloo_2(local_rank, world_size): device = torch.device(f"cuda:{local_rank}" if torch.cuda.is_available() else "cpu") _test__native_dist_model_create_from_context_dist(local_rank, local_rank, world_size, "gloo", device) _test__native_dist_model_create_from_backend_slurm(local_rank, local_rank, world_size, "gloo", device) @pytest.mark.distributed @pytest.mark.skipif(torch.cuda.device_count() < 1, reason="Skip if no GPU") @pytest.mark.parametrize("init_method", [None, "tcp://0.0.0.0:22334", "FILE"]) def test__native_dist_model_create_dist_nccl_1(init_method, get_fixed_dirname, local_rank, world_size): if init_method == "FILE": init_method = f"file://{get_fixed_dirname('native_dist_model_create_dist_nccl_1')}/shared" _test__native_dist_model_create_from_backend_dist( init_method, local_rank, local_rank, world_size, "nccl", f"cuda:{local_rank}" ) if init_method is None: _test__native_dist_model_create_from_backend_slurm( local_rank, local_rank, world_size, "nccl", f"cuda:{local_rank}" ) @pytest.mark.distributed @pytest.mark.skipif(torch.cuda.device_count() < 1, reason="Skip if no GPU") def test__native_dist_model_create_dist_nccl_2(local_rank, world_size): _test__native_dist_model_create_from_context_dist(local_rank, local_rank, world_size, "nccl", f"cuda:{local_rank}") @pytest.mark.distributed @pytest.mark.skipif(torch.cuda.device_count() < 2, reason="Skip if less than 2 GPUs") def test__native_dist_model_warning_index_less_localrank(local_rank, world_size): assert _NativeDistModel.create_from_context() is None dist.init_process_group("nccl", "tcp://0.0.0.0:2222", world_size=world_size, rank=local_rank) dist.barrier() # We deliberately incorrectly set cuda device to 0 torch.cuda.set_device(0) model = _NativeDistModel.create_from_context() assert isinstance(model, _NativeDistModel), f"{type(model)} vs _NativeDistModel" if local_rank == 1: with pytest.warns(UserWarning, match=r"Current device index is less than current local rank."): model.device() dist.destroy_process_group() def _test_dist_spawn_fn(local_rank, backend, world_size, device): from ignite.distributed.utils import _model assert dist.is_available() and dist.is_initialized() assert dist.get_backend() == backend assert isinstance(_model, _NativeDistModel), f"{type(_model)} vs _NativeDistModel" assert _model.get_local_rank() == local_rank assert _model.get_world_size() == world_size assert _model.device().type == torch.device(device).type def _test__native_dist_model_spawn(backend, num_workers_per_machine, device, init_method=None, **spawn_kwargs): _NativeDistModel.spawn( _test_dist_spawn_fn, args=(backend, num_workers_per_machine, device), kwargs_dict={}, backend=backend, nproc_per_node=num_workers_per_machine, init_method=init_method, **spawn_kwargs, ) @pytest.mark.distributed @pytest.mark.skipif("WORLD_SIZE" in os.environ, reason="Skip if launched as multiproc") @pytest.mark.parametrize("init_method", [None, "env://", "tcp://0.0.0.0:22334", "FILE"]) def test__native_dist_model_spawn_gloo(init_method, dirname): if init_method == "FILE": init_method = f"file://{dirname}/shared" nproc = torch.cuda.device_count() if torch.cuda.is_available() else 4 device = torch.device("cuda" if torch.cuda.is_available() else "cpu") _test__native_dist_model_spawn("gloo", num_workers_per_machine=nproc, device=device, init_method=init_method) if device.type == "cpu": _test__native_dist_model_spawn( "gloo", num_workers_per_machine=nproc, device=device, start_method="fork", init_method=init_method ) @pytest.mark.distributed @pytest.mark.skipif("WORLD_SIZE" in os.environ, reason="Skip if launched as multiproc") @pytest.mark.skipif(torch.cuda.device_count() < 1, reason="Skip if no GPU") @pytest.mark.parametrize("init_method", [None, "tcp://0.0.0.0:22334", "FILE"]) def test__native_dist_model_spawn_nccl(init_method, dirname): if init_method == "FILE": init_method = f"file://{dirname}/shared" num_workers_per_machine = torch.cuda.device_count() _test__native_dist_model_spawn( "nccl", num_workers_per_machine=num_workers_per_machine, device="cuda", init_method=init_method ) @pytest.mark.distributed @pytest.mark.skipif("WORLD_SIZE" in os.environ, reason="Skip if launched as multiproc") @pytest.mark.skipif(not has_native_dist_support, reason="Skip if no native dist support") def test__native_dist_model_init_method_is_none(world_size): with pytest.raises(ValueError, match=r"Arguments rank and world_size should be None"): _NativeDistModel.create_from_backend(backend="gloo", world_size=world_size) @pytest.mark.distributed @pytest.mark.skipif("WORLD_SIZE" in os.environ, reason="Skip if launched as multiproc") @pytest.mark.skipif(not has_native_dist_support, reason="Skip if no native dist support") def test__native_dist_model_init_method_is_not_none(world_size, local_rank, get_fixed_dirname): init_method = f"file://{get_fixed_dirname('native_dist_model_init_method_is_not_none')}/shared" with pytest.raises(ValueError, match=r"Both rank and world_size should be provided"): _NativeDistModel.create_from_backend(backend="gloo", world_size=world_size, init_method=init_method) with pytest.raises(ValueError, match=r"Both rank and world_size should be provided"): _NativeDistModel.create_from_backend(backend="gloo", rank=local_rank, init_method=init_method) @pytest.mark.parametrize( "environ, expected", [ # fmt: off # usual SLURM env ( { "SLURM_PROCID": "1", "SLURM_LOCALID": "1", "SLURM_NTASKS": "2", "SLURM_JOB_NUM_NODES": "1", "SLURM_JOB_NODELIST": "c1", "SLURM_JOB_ID": "12345", }, [1, 1, 2, "c1", 17345] ), # usual SLURM env mnode ( { "SLURM_PROCID": "5", "SLURM_LOCALID": "1", "SLURM_NTASKS": "8", "SLURM_JOB_NUM_NODES": "2", "SLURM_JOB_NODELIST": "c1, c2", "SLURM_JOB_ID": "12345", }, [5, 1, 8, "c1", 17345] ), # usual SLURM env 1 node, 1 task + torch.distributed.launch ( { "SLURM_PROCID": "0", "SLURM_LOCALID": "0", "SLURM_NTASKS": "1", "SLURM_JOB_NUM_NODES": "1", "SLURM_JOB_NODELIST": "c1", "SLURM_JOB_ID": "12345", "MASTER_ADDR": "127.0.0.1", "MASTER_PORT": "2233", "RANK": "2", "LOCAL_RANK": "2", "WORLD_SIZE": "8", }, [2, 2, 8, "127.0.0.1", 2233] ), # usual SLURM env + enroot's pytorch hook ( { "SLURM_PROCID": "3", "SLURM_LOCALID": "3", "SLURM_NTASKS": "4", "SLURM_JOB_NUM_NODES": "1", "SLURM_JOB_NODELIST": "c1", "SLURM_JOB_ID": "12345", "MASTER_ADDR": "c1", "MASTER_PORT": "12233", "RANK": "3", "LOCAL_RANK": "3", "WORLD_SIZE": "4", }, [3, 3, 4, "c1", 12233] ), # usual SLURM env mnode + enroot's pytorch hook ( { "SLURM_PROCID": "3", "SLURM_LOCALID": "1", "SLURM_NTASKS": "4", "SLURM_JOB_NUM_NODES": "2", "SLURM_JOB_NODELIST": "c1, c2", "SLURM_JOB_ID": "12345", "MASTER_ADDR": "c1", "MASTER_PORT": "12233", "RANK": "3", "LOCAL_RANK": "1", "WORLD_SIZE": "4" }, [3, 1, 4, "c1", 12233] ), # fmt: on ], ) def test__setup_ddp_vars_from_slurm_env(environ, expected): ddp_keys = ["RANK", "LOCAL_RANK", "WORLD_SIZE", "MASTER_ADDR", "MASTER_PORT"] ddp_vars = _setup_ddp_vars_from_slurm_env(environ) for key, value in zip(ddp_keys, expected): assert key in ddp_vars assert ddp_vars[key] == value def test__setup_ddp_vars_from_slurm_env_bad_configs(): with pytest.raises( RuntimeError, match=r"Environment variable defined for PyTorch Distributed context is inconsistent" ): environ = { "SLURM_PROCID": "3", "SLURM_LOCALID": "1", "SLURM_NTASKS": "4", "SLURM_JOB_NUM_NODES": "2", "SLURM_JOB_NODELIST": "c1, c2", "SLURM_JOB_ID": "12345", "MASTER_ADDR": "another-addr", "MASTER_PORT": "12233", "RANK": "1", "LOCAL_RANK": "1", "WORLD_SIZE": "2", } _setup_ddp_vars_from_slurm_env(environ) with pytest.raises( RuntimeError, match=r"Environment variable defined for PyTorch Distributed context is inconsistent" ): environ = { "SLURM_PROCID": "1", "SLURM_LOCALID": "1", "SLURM_NTASKS": "4", "SLURM_JOB_NUM_NODES": "1", "SLURM_JOB_NODELIST": "c1", "SLURM_JOB_ID": "12345", "MASTER_ADDR": "another-addr", "MASTER_PORT": "12233", "RANK": "1", "LOCAL_RANK": "1", "WORLD_SIZE": "2", } _setup_ddp_vars_from_slurm_env(environ) with pytest.warns(UserWarning, match=r"We detected the following env variables"): environ = { "SLURM_PROCID": "3", "SLURM_LOCALID": "1", "SLURM_NTASKS": "4", "SLURM_JOB_NUM_NODES": "2", "SLURM_JOB_NODELIST": "c1, c2", "SLURM_JOB_ID": "12345", "RANK": "1", "LOCAL_RANK": "1", "WORLD_SIZE": "2", } _setup_ddp_vars_from_slurm_env(environ) with pytest.raises(RuntimeError, match=r"No hostname detected in SLURM_JOB_NODELIST by ignite"): environ = { "SLURM_PROCID": "1", "SLURM_LOCALID": "1", "SLURM_NTASKS": "4", "SLURM_JOB_NUM_NODES": "1", "SLURM_JOB_NODELIST": "[]", "SLURM_JOB_ID": "12345", } _setup_ddp_vars_from_slurm_env(environ)
36.491045
120
0.674261
0
0
0
0
13,751
0.562436
0
0
7,199
0.29445
3fd17ae0190fb0fd9c0e5b30d818a6da541ac894
1,114
py
Python
src/popular_consistent_items/popular_consistent_items.py
masinag/popular_twitter_topics_mining
b86e05d7700cfca4dbf9db67cde50664d99e60f7
[ "MIT" ]
null
null
null
src/popular_consistent_items/popular_consistent_items.py
masinag/popular_twitter_topics_mining
b86e05d7700cfca4dbf9db67cde50664d99e60f7
[ "MIT" ]
null
null
null
src/popular_consistent_items/popular_consistent_items.py
masinag/popular_twitter_topics_mining
b86e05d7700cfca4dbf9db67cde50664d99e60f7
[ "MIT" ]
null
null
null
import pandas as pd from .apriori_opt import apriori as apriori_opt from .apriori_basic import apriori as apriori_basic # from memory_profiler import profile from .utils import log def get_frequent_items_in_time(tweets, s, r, a, start=None, end=None, basic=False): if tweets.empty: return [] if not start: start = pd.Timestamp(tweets.time.min().date()) if not end: end = tweets.time.max() frequent_itemset_f = apriori_basic if basic else apriori_opt log("File read") topics_counter = {} # number of times a topic is frequent in a period of time time_periods = 0 grouper = pd.Grouper(key = "time", origin = start, freq=f"{a}s") for group, batch in tweets.groupby(grouper): if group >= end: break log(f"Period of {group}") frequent_items = frequent_itemset_f(batch.tokens, s) for i in frequent_items: topics_counter[i] = topics_counter.get(i, 0) + 1 time_periods += 1 min_support = r * time_periods return [(i) for i, o in topics_counter.items() if o >= min_support]
30.108108
83
0.653501
0
0
0
0
0
0
0
0
138
0.123878
3fd22b642b9f6e7837ab39991845866acb71bd9d
929
py
Python
txt/test/teste.py
juliano777/apostila_python
521c05c1579a52d22d6b670af92e3763366b6301
[ "BSD-3-Clause" ]
3
2020-04-18T20:07:39.000Z
2021-06-17T18:41:34.000Z
txt/test/teste.py
juliano777/apostila_python
521c05c1579a52d22d6b670af92e3763366b6301
[ "BSD-3-Clause" ]
null
null
null
txt/test/teste.py
juliano777/apostila_python
521c05c1579a52d22d6b670af92e3763366b6301
[ "BSD-3-Clause" ]
1
2020-04-18T20:07:46.000Z
2020-04-18T20:07:46.000Z
#_*_ encoding: utf-8 _*_ import time ''' Fibonacci function ''' def fibo(n): if (n < 2): return n else: return fibo(n - 1) + fibo(n - 2) ''' Memoize function ''' def memoize(f): # dictionary mem = {} ''' Helper function ''' def memoizer(*param): key = repr(param) if not key in mem: mem[key] = f(*param) return mem[key] return memoizer # Start time t1 = time.time() # Loop for i in range(35): print('fib(%s) = %s' % (i, fibo(i))) # End time t2 = time.time() # Total time print('Tempo de execução: %.3fs' % (t2 - t1)) # Take a pause raw_input('Pressione <ENTER> para continuar\n') # Memoization of fibo (closure) fibo = memoize(fibo) # Start time t1 = time.time() # loop after memoization for i in range(40): print('fib(%s) = %s' % (i, fibo(i))) # End time t2 = time.time() # Total time print('Tempo de execução: %.3fs' % (t2 - t1))
16.298246
47
0.568353
0
0
0
0
0
0
0
0
373
0.399786
3fd2e3175b855481fd32ee5d4ebc2f50e3468d9a
4,101
py
Python
Tests/Methods/Mesh/test_get_field.py
IrakozeFD/pyleecan
5a93bd98755d880176c1ce8ac90f36ca1b907055
[ "Apache-2.0" ]
null
null
null
Tests/Methods/Mesh/test_get_field.py
IrakozeFD/pyleecan
5a93bd98755d880176c1ce8ac90f36ca1b907055
[ "Apache-2.0" ]
null
null
null
Tests/Methods/Mesh/test_get_field.py
IrakozeFD/pyleecan
5a93bd98755d880176c1ce8ac90f36ca1b907055
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- import pytest import numpy as np from unittest import TestCase from SciDataTool import DataTime, Data1D, DataLinspace, VectorField from pyleecan.Classes.SolutionData import SolutionData from pyleecan.Classes.SolutionMat import SolutionMat from pyleecan.Classes.SolutionVector import SolutionVector @pytest.mark.MeshSol @pytest.mark.METHODS class Test_get_field(TestCase): """ Tests for get_field method from Solution classes""" def test_SolutionMat(self): DELTA = 1e-10 solution = SolutionMat() solution.field = np.array([[1, 2, 3], [2, 3, 4]]) solution.axis_name = ["time", "indice"] solution.axis_size = [2, 3] field = solution.get_field() correction = np.array([[1, 2, 3], [2, 3, 4]]) result = np.sum(np.abs(correction - field)) msg = "Wrong result: returned " + str(field) + ", expected: " + str(correction) self.assertAlmostEqual(result, 0, msg=msg, delta=DELTA) field = solution.get_field("time[0]", "indice[1,2]") correction = np.array([[2, 3]]) result = np.sum(np.abs(correction - field)) msg = "Wrong result: returned " + str(field) + ", expected: " + str(correction) self.assertAlmostEqual(result, 0, msg=msg, delta=DELTA) def test_SolutionVector(self): DELTA = 1e-10 Indices_Cell = Data1D(name="indice", values=[0, 1, 2, 4], is_components=True) Time = DataLinspace( name="time", unit="s", initial=0, final=1, number=10, ) H = np.ones((10, 4, 2)) # Store the results for H componentsH = {} Hx_data = DataTime( name="Magnetic Field Hx", unit="A/m", symbol="Hx", axes=[Time, Indices_Cell], values=H[:, :, 0], ) componentsH["comp_x"] = Hx_data Hy_data = DataTime( name="Magnetic Field Hy", unit="A/m", symbol="Hy", axes=[Time, Indices_Cell], values=H[:, :, 1], ) componentsH["comp_y"] = Hy_data vecH = VectorField(name="Magnetic Field", symbol="H", components=componentsH) solution = SolutionVector(field=vecH, type_cell="triangle", label="H") field = solution.get_field() correction = np.ones((10, 4, 2)) result = np.sum(np.abs(correction - field)) msg = "Wrong result: returned " + str(field) + ", expected: " + str(correction) self.assertAlmostEqual(result, 0, msg=msg, delta=DELTA) field = solution.get_field("time[0]", "indice[1,2]") correction = np.ones((2, 2)) result = np.sum(np.abs(correction - field)) msg = "Wrong result: returned " + str(field) + ", expected: " + str(correction) self.assertAlmostEqual(result, 0, msg=msg, delta=DELTA) def test_SolutionData(self): DELTA = 1e-10 Indices_Cell = Data1D(name="indice", values=[0, 1, 2, 4], is_components=True) Time = DataLinspace( name="time", unit="s", initial=0, final=1, number=10, ) # Store the results for H H = DataTime( name="Magnetic Field Hx", unit="A/m", symbol="Hx", axes=[Time, Indices_Cell], values=np.ones((10, 4)), ) solution = SolutionData(field=H, type_cell="triangle", label="H") field = solution.get_field() correction = np.ones((10, 4)) result = np.sum(np.abs(correction - field)) msg = "Wrong result: returned " + str(field) + ", expected: " + str(correction) self.assertAlmostEqual(result, 0, msg=msg, delta=DELTA) field = solution.get_field("time[0]", "indice[1,2]") correction = correction[0, 1:3] result = np.sum(np.abs(correction - field)) msg = "Wrong result: returned " + str(field) + ", expected: " + str(correction) self.assertAlmostEqual(result, 0, msg=msg, delta=DELTA)
32.039063
87
0.566935
3,731
0.909778
0
0
3,773
0.92002
0
0
621
0.151426
3fd35632335b7013aa84b5d96f778f88b22e2bbe
17,026
py
Python
python/services/compute/beta/reservation.py
trodge/declarative-resource-client-library
2cb7718a5074776b3113cc18a7483b54022238f3
[ "Apache-2.0" ]
16
2021-01-08T19:35:22.000Z
2022-03-23T16:23:49.000Z
python/services/compute/beta/reservation.py
trodge/declarative-resource-client-library
2cb7718a5074776b3113cc18a7483b54022238f3
[ "Apache-2.0" ]
1
2021-08-18T19:12:20.000Z
2021-08-18T19:12:20.000Z
python/services/compute/beta/reservation.py
LaudateCorpus1/declarative-resource-client-library
a559c4333587fe9531cef150532e6fcafff153e4
[ "Apache-2.0" ]
11
2021-03-18T11:27:28.000Z
2022-03-12T06:49:14.000Z
# Copyright 2021 Google LLC. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from connector import channel from google3.cloud.graphite.mmv2.services.google.compute import reservation_pb2 from google3.cloud.graphite.mmv2.services.google.compute import reservation_pb2_grpc from typing import List class Reservation(object): def __init__( self, id: int = None, self_link: str = None, zone: str = None, description: str = None, name: str = None, specific_reservation: dict = None, commitment: str = None, specific_reservation_required: bool = None, status: str = None, project: str = None, service_account_file: str = "", ): channel.initialize() self.id = id self.zone = zone self.description = description self.name = name self.specific_reservation = specific_reservation self.commitment = commitment self.specific_reservation_required = specific_reservation_required self.project = project self.service_account_file = service_account_file def apply(self): stub = reservation_pb2_grpc.ComputeBetaReservationServiceStub(channel.Channel()) request = reservation_pb2.ApplyComputeBetaReservationRequest() if Primitive.to_proto(self.id): request.resource.id = Primitive.to_proto(self.id) if Primitive.to_proto(self.zone): request.resource.zone = Primitive.to_proto(self.zone) if Primitive.to_proto(self.description): request.resource.description = Primitive.to_proto(self.description) if Primitive.to_proto(self.name): request.resource.name = Primitive.to_proto(self.name) if ReservationSpecificReservation.to_proto(self.specific_reservation): request.resource.specific_reservation.CopyFrom( ReservationSpecificReservation.to_proto(self.specific_reservation) ) else: request.resource.ClearField("specific_reservation") if Primitive.to_proto(self.commitment): request.resource.commitment = Primitive.to_proto(self.commitment) if Primitive.to_proto(self.specific_reservation_required): request.resource.specific_reservation_required = Primitive.to_proto( self.specific_reservation_required ) if Primitive.to_proto(self.project): request.resource.project = Primitive.to_proto(self.project) request.service_account_file = self.service_account_file response = stub.ApplyComputeBetaReservation(request) self.id = Primitive.from_proto(response.id) self.self_link = Primitive.from_proto(response.self_link) self.zone = Primitive.from_proto(response.zone) self.description = Primitive.from_proto(response.description) self.name = Primitive.from_proto(response.name) self.specific_reservation = ReservationSpecificReservation.from_proto( response.specific_reservation ) self.commitment = Primitive.from_proto(response.commitment) self.specific_reservation_required = Primitive.from_proto( response.specific_reservation_required ) self.status = ReservationStatusEnum.from_proto(response.status) self.project = Primitive.from_proto(response.project) def delete(self): stub = reservation_pb2_grpc.ComputeBetaReservationServiceStub(channel.Channel()) request = reservation_pb2.DeleteComputeBetaReservationRequest() request.service_account_file = self.service_account_file if Primitive.to_proto(self.id): request.resource.id = Primitive.to_proto(self.id) if Primitive.to_proto(self.zone): request.resource.zone = Primitive.to_proto(self.zone) if Primitive.to_proto(self.description): request.resource.description = Primitive.to_proto(self.description) if Primitive.to_proto(self.name): request.resource.name = Primitive.to_proto(self.name) if ReservationSpecificReservation.to_proto(self.specific_reservation): request.resource.specific_reservation.CopyFrom( ReservationSpecificReservation.to_proto(self.specific_reservation) ) else: request.resource.ClearField("specific_reservation") if Primitive.to_proto(self.commitment): request.resource.commitment = Primitive.to_proto(self.commitment) if Primitive.to_proto(self.specific_reservation_required): request.resource.specific_reservation_required = Primitive.to_proto( self.specific_reservation_required ) if Primitive.to_proto(self.project): request.resource.project = Primitive.to_proto(self.project) response = stub.DeleteComputeBetaReservation(request) @classmethod def list(self, project, zone, service_account_file=""): stub = reservation_pb2_grpc.ComputeBetaReservationServiceStub(channel.Channel()) request = reservation_pb2.ListComputeBetaReservationRequest() request.service_account_file = service_account_file request.Project = project request.Zone = zone return stub.ListComputeBetaReservation(request).items def to_proto(self): resource = reservation_pb2.ComputeBetaReservation() if Primitive.to_proto(self.id): resource.id = Primitive.to_proto(self.id) if Primitive.to_proto(self.zone): resource.zone = Primitive.to_proto(self.zone) if Primitive.to_proto(self.description): resource.description = Primitive.to_proto(self.description) if Primitive.to_proto(self.name): resource.name = Primitive.to_proto(self.name) if ReservationSpecificReservation.to_proto(self.specific_reservation): resource.specific_reservation.CopyFrom( ReservationSpecificReservation.to_proto(self.specific_reservation) ) else: resource.ClearField("specific_reservation") if Primitive.to_proto(self.commitment): resource.commitment = Primitive.to_proto(self.commitment) if Primitive.to_proto(self.specific_reservation_required): resource.specific_reservation_required = Primitive.to_proto( self.specific_reservation_required ) if Primitive.to_proto(self.project): resource.project = Primitive.to_proto(self.project) return resource class ReservationSpecificReservation(object): def __init__( self, instance_properties: dict = None, count: int = None, in_use_count: int = None, ): self.instance_properties = instance_properties self.count = count self.in_use_count = in_use_count @classmethod def to_proto(self, resource): if not resource: return None res = reservation_pb2.ComputeBetaReservationSpecificReservation() if ReservationSpecificReservationInstanceProperties.to_proto( resource.instance_properties ): res.instance_properties.CopyFrom( ReservationSpecificReservationInstanceProperties.to_proto( resource.instance_properties ) ) else: res.ClearField("instance_properties") if Primitive.to_proto(resource.count): res.count = Primitive.to_proto(resource.count) if Primitive.to_proto(resource.in_use_count): res.in_use_count = Primitive.to_proto(resource.in_use_count) return res @classmethod def from_proto(self, resource): if not resource: return None return ReservationSpecificReservation( instance_properties=ReservationSpecificReservationInstanceProperties.from_proto( resource.instance_properties ), count=Primitive.from_proto(resource.count), in_use_count=Primitive.from_proto(resource.in_use_count), ) class ReservationSpecificReservationArray(object): @classmethod def to_proto(self, resources): if not resources: return resources return [ReservationSpecificReservation.to_proto(i) for i in resources] @classmethod def from_proto(self, resources): return [ReservationSpecificReservation.from_proto(i) for i in resources] class ReservationSpecificReservationInstanceProperties(object): def __init__( self, machine_type: str = None, guest_accelerators: list = None, min_cpu_platform: str = None, local_ssds: list = None, ): self.machine_type = machine_type self.guest_accelerators = guest_accelerators self.min_cpu_platform = min_cpu_platform self.local_ssds = local_ssds @classmethod def to_proto(self, resource): if not resource: return None res = ( reservation_pb2.ComputeBetaReservationSpecificReservationInstanceProperties() ) if Primitive.to_proto(resource.machine_type): res.machine_type = Primitive.to_proto(resource.machine_type) if ReservationSpecificReservationInstancePropertiesGuestAcceleratorsArray.to_proto( resource.guest_accelerators ): res.guest_accelerators.extend( ReservationSpecificReservationInstancePropertiesGuestAcceleratorsArray.to_proto( resource.guest_accelerators ) ) if Primitive.to_proto(resource.min_cpu_platform): res.min_cpu_platform = Primitive.to_proto(resource.min_cpu_platform) if ReservationSpecificReservationInstancePropertiesLocalSsdsArray.to_proto( resource.local_ssds ): res.local_ssds.extend( ReservationSpecificReservationInstancePropertiesLocalSsdsArray.to_proto( resource.local_ssds ) ) return res @classmethod def from_proto(self, resource): if not resource: return None return ReservationSpecificReservationInstanceProperties( machine_type=Primitive.from_proto(resource.machine_type), guest_accelerators=ReservationSpecificReservationInstancePropertiesGuestAcceleratorsArray.from_proto( resource.guest_accelerators ), min_cpu_platform=Primitive.from_proto(resource.min_cpu_platform), local_ssds=ReservationSpecificReservationInstancePropertiesLocalSsdsArray.from_proto( resource.local_ssds ), ) class ReservationSpecificReservationInstancePropertiesArray(object): @classmethod def to_proto(self, resources): if not resources: return resources return [ ReservationSpecificReservationInstanceProperties.to_proto(i) for i in resources ] @classmethod def from_proto(self, resources): return [ ReservationSpecificReservationInstanceProperties.from_proto(i) for i in resources ] class ReservationSpecificReservationInstancePropertiesGuestAccelerators(object): def __init__(self, accelerator_type: str = None, accelerator_count: int = None): self.accelerator_type = accelerator_type self.accelerator_count = accelerator_count @classmethod def to_proto(self, resource): if not resource: return None res = ( reservation_pb2.ComputeBetaReservationSpecificReservationInstancePropertiesGuestAccelerators() ) if Primitive.to_proto(resource.accelerator_type): res.accelerator_type = Primitive.to_proto(resource.accelerator_type) if Primitive.to_proto(resource.accelerator_count): res.accelerator_count = Primitive.to_proto(resource.accelerator_count) return res @classmethod def from_proto(self, resource): if not resource: return None return ReservationSpecificReservationInstancePropertiesGuestAccelerators( accelerator_type=Primitive.from_proto(resource.accelerator_type), accelerator_count=Primitive.from_proto(resource.accelerator_count), ) class ReservationSpecificReservationInstancePropertiesGuestAcceleratorsArray(object): @classmethod def to_proto(self, resources): if not resources: return resources return [ ReservationSpecificReservationInstancePropertiesGuestAccelerators.to_proto( i ) for i in resources ] @classmethod def from_proto(self, resources): return [ ReservationSpecificReservationInstancePropertiesGuestAccelerators.from_proto( i ) for i in resources ] class ReservationSpecificReservationInstancePropertiesLocalSsds(object): def __init__(self, disk_size_gb: int = None, interface: str = None): self.disk_size_gb = disk_size_gb self.interface = interface @classmethod def to_proto(self, resource): if not resource: return None res = ( reservation_pb2.ComputeBetaReservationSpecificReservationInstancePropertiesLocalSsds() ) if Primitive.to_proto(resource.disk_size_gb): res.disk_size_gb = Primitive.to_proto(resource.disk_size_gb) if ReservationSpecificReservationInstancePropertiesLocalSsdsInterfaceEnum.to_proto( resource.interface ): res.interface = ReservationSpecificReservationInstancePropertiesLocalSsdsInterfaceEnum.to_proto( resource.interface ) return res @classmethod def from_proto(self, resource): if not resource: return None return ReservationSpecificReservationInstancePropertiesLocalSsds( disk_size_gb=Primitive.from_proto(resource.disk_size_gb), interface=ReservationSpecificReservationInstancePropertiesLocalSsdsInterfaceEnum.from_proto( resource.interface ), ) class ReservationSpecificReservationInstancePropertiesLocalSsdsArray(object): @classmethod def to_proto(self, resources): if not resources: return resources return [ ReservationSpecificReservationInstancePropertiesLocalSsds.to_proto(i) for i in resources ] @classmethod def from_proto(self, resources): return [ ReservationSpecificReservationInstancePropertiesLocalSsds.from_proto(i) for i in resources ] class ReservationSpecificReservationInstancePropertiesLocalSsdsInterfaceEnum(object): @classmethod def to_proto(self, resource): if not resource: return resource return reservation_pb2.ComputeBetaReservationSpecificReservationInstancePropertiesLocalSsdsInterfaceEnum.Value( "ComputeBetaReservationSpecificReservationInstancePropertiesLocalSsdsInterfaceEnum%s" % resource ) @classmethod def from_proto(self, resource): if not resource: return resource return reservation_pb2.ComputeBetaReservationSpecificReservationInstancePropertiesLocalSsdsInterfaceEnum.Name( resource )[ len( "ComputeBetaReservationSpecificReservationInstancePropertiesLocalSsdsInterfaceEnum" ) : ] class ReservationStatusEnum(object): @classmethod def to_proto(self, resource): if not resource: return resource return reservation_pb2.ComputeBetaReservationStatusEnum.Value( "ComputeBetaReservationStatusEnum%s" % resource ) @classmethod def from_proto(self, resource): if not resource: return resource return reservation_pb2.ComputeBetaReservationStatusEnum.Name(resource)[ len("ComputeBetaReservationStatusEnum") : ] class Primitive(object): @classmethod def to_proto(self, s): if not s: return "" return s @classmethod def from_proto(self, s): return s
36.615054
119
0.681017
16,171
0.949783
0
0
8,482
0.498179
0
0
917
0.053859
3fd4a59a910de7324648c153841dea6bd5328a4e
4,682
py
Python
Examples/cimpleCraft/cimple4.py
shaesaert/TuLiPXML
56cf4d58a9d7e17b6f6aebe6de8d5a1231035671
[ "BSD-3-Clause" ]
1
2021-05-28T23:44:28.000Z
2021-05-28T23:44:28.000Z
Examples/cimpleCraft/cimple4.py
shaesaert/TuLiPXML
56cf4d58a9d7e17b6f6aebe6de8d5a1231035671
[ "BSD-3-Clause" ]
2
2017-10-03T18:54:08.000Z
2018-08-21T09:50:09.000Z
Examples/cimpleCraft/cimple4.py
shaesaert/TuLiPXML
56cf4d58a9d7e17b6f6aebe6de8d5a1231035671
[ "BSD-3-Clause" ]
1
2018-10-06T12:58:52.000Z
2018-10-06T12:58:52.000Z
# Import modules from __future__ import print_function import sys import numpy as np from polytope import box2poly from tulip import hybrid from tulip.abstract import prop2part, discretize import Interface.DSL as DSL from Interface import Statechart as dumpsmach from Interface.Reduce import * from Interface.Transform import * print("----------------------------------\n Script options \n----------------------------------") verbose = 1 # Decrease printed output = 0, increase= 1 print("""----------------------------------\n System Definition \n---------------------------------- -- System Constants -- System Label State Space & partition """) # System constants input_bound = 1.0 disturbance_bound = 0.1 # The system dynamics A = np.array([[1., 0, 2., 0], [0, 1., 0, 2], [0, 0, 0.5, 0], [0, 0, 0, 0.5]]) B = np.array([[0, 0, 0, 0], [0, 0, 0, 0], [5, -5, 0, 0], [0, 0, 5, -5]]) E = np.array([[1., 0, 0, 0], [0, 1., 0, 0], [0, 0, 1., 0], [0, 0, 0, 1.]]) # $x^+=Ax+Bu+E W$ # Size of the sets X = box2poly([[0, 100.], [0, 100.], [-5, 5.], [-5, 5.]]) U = box2poly(input_bound*np.array([[0, 1], [0, 1], [0, 1], [0, 1]])) W = box2poly(disturbance_bound*np.array([[0, 10], [0, 10], [-0.1, 0.1], [-0.1, 0.1]])) print("----------------------------------\n Define system\n----------------------------------") # Intermezzo polytope tutorial # https://github.com/tulip-control/polytope/blob/master/doc/tutorial.md sys_dyn = hybrid.LtiSysDyn(A, B, E, None, U, W, X) print(str(sys_dyn)) print("----------------------------------\n Define labelling \n----------------------------------") cprops ={} cprops["inA"] = box2poly([[0, 10], [45, 55], [-0.1, 0.1], [-0.1, 0.1]]) cprops["inB"] = box2poly([[90, 100], [45, 55], [-0.1, 0.1], [-0.1, 0.1]]) cprops["inObj1"] = box2poly([[15, 35], [30, 70], [-5, 5], [-5, 5]]) cprops["inObj2"] = box2poly([[65, 85], [30, 70], [-5, 5], [-5, 5]]) cpartition = prop2part(X, cprops) if verbose == 1: print("partition before refinement") print(cpartition) print("---------------------------------\n System partition State Space \n----------------------------------") disc_dynamics = discretize(cpartition, sys_dyn, N=5, min_cell_volume=1, closed_loop=True, conservative=True) states=[state for (state, label) in disc_dynamics.ts.states.find(with_attr_dict={'ap': {'inA'}})] disc_dynamics.ts.states.initial|=states print("----------------------------------\n Define specification \n----------------------------------") # Specifications # Environment variables and assumptions env_vars = list() env_init = list() env_safe = list() env_prog = list() # System variables and requirements sys_vars = ['inA', 'inB'] sys_init = ['inA'] sys_safe = ['!inObj1', '!inObj2'] sys_prog = ['inA', 'inB'] (ctrl_modes, grspec) = transform2control(disc_dynamics.ts, statevar='ctrl') print("----------------------------------\n Combine sys and spec \n----------------------------------") phi = grspec | spec.GRSpec(env_vars, sys_vars, env_init, sys_init, env_safe, sys_safe, env_prog, sys_prog) phi.qinit = '\A \E' phi.moore = False phi.plus_one = False ctrl = synth.synthesize(phi,ignore_sys_init=True) # # print("----------------------------------\n Reduce states \n----------------------------------") # # Events_init = {('fullGas', True)} # # # ctrl_red=reduce_mealy(ctrl,relabel=False,outputs={'ctrl'}, prune_set=Events_init, combine_trans=False) # print("----------------------------------\n Output results \n----------------------------------") if verbose == 1: print(" (Verbose) ") try: disc_dynamics.ts.save("cimple_aircraft_orig.png") ctrl_modes.save("cimple_aircraft_modes.png") # ctrl_red.save('cimple_aircraft_ctrl_red.png') ctrl.save("cimple_aircraft_ctrl_orig.png") print(" (Verbose): saved all Finite State Transition Systems ") except Exception: pass print('nodes in ctrl:') print(len(ctrl.nodes())) print(len(ctrl.transitions())) print('\n') # # print('nodes in ctrl_red:') # print(len(ctrl_red.nodes())) # print(len(ctrl_red.transitions())) # print('\n') # # print("----------------------------------\n Convert controller to Xmi \n----------------------------------") sys.stdout.flush() # --------------- Writing the statechart ----------- try: filename = str(__file__) filename = filename[0:-3] + "_gen" except NameError: filename = "test_gen" # write strategy plus control modes at the same time to a statechart with open(filename+".xml", "w") as f: # f.write(dumpsmach.tulip_to_xmi(ctrl_red,ctrl_modes)) f.write(dumpsmach.tulip_to_xmi(ctrl, ctrl_modes))
32.971831
110
0.548056
0
0
0
0
0
0
0
0
2,184
0.466467
3fd50d9f4c976d633be6e56345cbe4edfe16b20b
561
py
Python
CableClub/cable_club_colosseum.py
V-FEXrt/Pokemon-Spoof-Plus
d397d680742496b7f64b401511da7eb57f63c973
[ "MIT" ]
2
2017-05-04T20:24:19.000Z
2017-05-04T20:58:07.000Z
CableClub/cable_club_colosseum.py
V-FEXrt/Pokemon-Spoof-Plus
d397d680742496b7f64b401511da7eb57f63c973
[ "MIT" ]
null
null
null
CableClub/cable_club_colosseum.py
V-FEXrt/Pokemon-Spoof-Plus
d397d680742496b7f64b401511da7eb57f63c973
[ "MIT" ]
null
null
null
from AI.team_manager import TeamManager from CableClub.cable_club_constants import Com out_byte = 0 last_recieved = 0 count = 0 def colosseum_process_byte(byte): global out_byte, last_recieved, count if byte >= Com.ATTACK_MOVE_1 and byte <= Com.SWITCH_POKEMON_6: if count == 12: last_recieved = 0 if last_recieved == byte: count += 1 return out_byte count = 0 last_recieved = byte out_byte = TeamManager.colosseum.processTurn(byte) return out_byte return byte
24.391304
66
0.654189
0
0
0
0
0
0
0
0
0
0
3fd6f8b99302959fd856c0174a84ad3698e8de10
931
py
Python
workflow/wrappers/bio/popoolation2/indel_filtering_identify_indel_regions/wrapper.py
NBISweden/manticore-smk
fd0b4ccd4239dc91dac423d0ea13478d36702561
[ "MIT" ]
null
null
null
workflow/wrappers/bio/popoolation2/indel_filtering_identify_indel_regions/wrapper.py
NBISweden/manticore-smk
fd0b4ccd4239dc91dac423d0ea13478d36702561
[ "MIT" ]
null
null
null
workflow/wrappers/bio/popoolation2/indel_filtering_identify_indel_regions/wrapper.py
NBISweden/manticore-smk
fd0b4ccd4239dc91dac423d0ea13478d36702561
[ "MIT" ]
2
2021-08-23T16:09:51.000Z
2021-11-12T21:35:56.000Z
#!/usr/bin/env python3 # -*- coding: utf-8 -*- __author__ = "Per Unneberg" __copyright__ = "Copyright 2020, Per Unneberg" __email__ = "per.unneberg@scilifelab.se" __license__ = "MIT" import os import re import tempfile from snakemake.shell import shell from snakemake.utils import logger log = snakemake.log_fmt_shell(stdout=True, stderr=True) conda_prefix = os.getenv("CONDA_PREFIX") script = os.path.join( conda_prefix, "opt/popoolation2-code/indel_filtering/identify-indel-regions.pl" ) options = snakemake.params.get("options", "") mpileup = snakemake.input.mpileup tmp = os.path.basename(tempfile.mkstemp()[1]) fifo = f"{mpileup}{tmp}.fifo" if os.path.exists(fifo): os.unlink(fifo) shell("mkfifo {fifo}") shell("zcat {mpileup} > {fifo} &") shell( "perl " "{script} " "{options} " "--input {fifo} " "--output {snakemake.output.gtf} " "{log}" ) if os.path.exists(fifo): os.unlink(fifo)
22.707317
83
0.692803
0
0
0
0
0
0
0
0
364
0.390977
3fd71b6b624dc062e8df4e8fc57377ace10d329d
6,741
py
Python
open_publishing/provision/progression_rule.py
open-publishing/open-publishing-api
0d1646bb2460c6f35cba610a355941d2e07bfefd
[ "BSD-3-Clause" ]
null
null
null
open_publishing/provision/progression_rule.py
open-publishing/open-publishing-api
0d1646bb2460c6f35cba610a355941d2e07bfefd
[ "BSD-3-Clause" ]
null
null
null
open_publishing/provision/progression_rule.py
open-publishing/open-publishing-api
0d1646bb2460c6f35cba610a355941d2e07bfefd
[ "BSD-3-Clause" ]
null
null
null
from open_publishing.core import SequenceItem, SequenceField, SequenceItemProperty from open_publishing.core import FieldDescriptor, DatabaseObjectField, SimpleField from open_publishing.user import User from open_publishing.core.enums import ValueStatus from open_publishing.core.enums import ProvisionRuleRole, ProvisionChannelType, ProvisionChannelBase from open_publishing.core.enums import ProvisionRuleAlgorithm from .rule import ProvisionRule from .filter_list import ProvisionFilterList class Progression(SequenceItem): def __init__(self, threshold, rate): super(Progression, self).__init__(ValueStatus.soft) self.threshold = threshold self.rate = rate self._status = ValueStatus.soft threshold = SequenceItemProperty('threshold') rate = SequenceItemProperty('rate') @classmethod def from_gjp(cls, gjp, database_object): threshold = gjp['threshold'] rate = gjp['value'] return cls(threshold, rate) def to_gjp(self): return {'threshold': self.threshold, 'value': self.rate} class ChannelProgressionList(SequenceField): _item_type = Progression def __init__(self, rule): super(ChannelProgressionList, self).__init__(rule, 'channels.*', 'progressions') def add(self, threshold, value): self._list.append(Progression(threshold, value)) self._status = ValueStatus.hard return self[-1] def from_gjp(self, gjp): self._list = [] for item in gjp['progressions'] if gjp['progressions'] else []: self._list.append(self._item_type.from_gjp(item, self.database_object)) self._status = ValueStatus.soft def to_gjp(self): return [item.to_gjp() for item in self._list] class ProgressionChannel(SequenceItem): def __init__(self, rule, channel_type, base, group): super(ProgressionChannel, self).__init__(ValueStatus.soft) self._rule = rule self.channel_type = channel_type self.base = base self.progressions = ChannelProgressionList(self._rule) self.group = group self._status = ValueStatus.soft channel_type = SequenceItemProperty('channel_type') base = SequenceItemProperty('base') group = SequenceItemProperty('group') @property def rule(self): return self._rule @property def status(self): if self.progressions.status is ValueStatus.hard: return ValueStatus.hard else: return super(ProgressionChannel, self).status @classmethod def from_gjp(cls, gjp, database_object): channel_type = ProvisionChannelType.from_id(gjp['channel']) base = ProvisionChannelBase.from_id(gjp['basis']) group = gjp['group'] res = cls(database_object, channel_type, base, group if group !='' else None) res.progressions.from_gjp(gjp) return res def to_gjp(self): res = {'channel': self.channel_type.identifier, 'basis': self.base.identifier, 'group': self.group if self.group else '', 'progressions': self.progressions.to_gjp()} return res class ProgressionChannelsList(SequenceField): _item_type = ProgressionChannel def __init__(self, rule): super(ProgressionChannelsList, self).__init__(rule, 'channels.*', 'channels') def add(self, rate, channel_type = ProvisionChannelType.book_and_ebook, base = ProvisionChannelBase.net_price, progressions = None, group = None): progression_channel = ProgressionChannel(self.database_object, channel_type, base, group) progression_channel.progressions.add(1, rate) if progressions is not None: for threshold, rate in progressions: progression_channel.progressions.add(threshold, rate) self._list.append(progression_channel) self._status = ValueStatus.hard return self[-1] class ProgressionRule(ProvisionRule): def __init__(self, context, rule_id): super(ProgressionRule, self).__init__(context, rule_id) self._fields['recipient'] = DatabaseObjectField(parent=self, aspect='*', field_locator='recipient_user_id', dtype=User) self._fields['role'] = SimpleField(database_object=self, aspect='*', field_locator='role', dtype=ProvisionRuleRole) self._fields['channels'] = ProgressionChannelsList(rule=self) recipient = FieldDescriptor('recipient') role = FieldDescriptor('role') channels = FieldDescriptor('channels') class ProgressionList(ProvisionFilterList): _filter = ProvisionRuleAlgorithm.progression def __init__(self, provision_list): super(ProgressionList, self).__init__(provision_list) def add(self, recipient, role): with ProgressionRule._create(self._provision_list._database_object._context, channels=[]) as rule: rule._algorithm = ProvisionRuleAlgorithm.progression rule._source_type = 'DOCUMENT' rule._reference_id = self._provision_list._document.document_id rule._scope = 'SALE' rule.recipient = recipient rule.role = role new_rule = ProgressionRule(self._provision_list._database_object._context, rule.rule_id) self._provision_list._objects[rule.rule_id] = new_rule self._provision_list._ids.append(rule.rule_id) return self[-1]
35.856383
100
0.558374
6,209
0.92108
0
0
838
0.124314
0
0
321
0.047619
3fd8a3a7cd4b29135af9a933907e8e7ce8de084c
2,746
py
Python
forms/utils.py
braceio/forms
deb12f37447d6167ad284ae68085a02454c8f649
[ "MIT" ]
36
2015-01-02T05:15:02.000Z
2018-03-06T11:36:41.000Z
forms/utils.py
braceio/forms
deb12f37447d6167ad284ae68085a02454c8f649
[ "MIT" ]
1
2015-02-16T20:03:41.000Z
2016-01-01T23:42:25.000Z
forms/utils.py
braceio/forms
deb12f37447d6167ad284ae68085a02454c8f649
[ "MIT" ]
20
2015-01-04T21:38:12.000Z
2021-01-17T12:59:10.000Z
from datetime import timedelta from functools import update_wrapper from flask import make_response, current_app, request, url_for, jsonify import uuid # decorators def crossdomain(origin=None, methods=None, headers=None, max_age=21600, attach_to_all=True, automatic_options=True): if methods is not None: methods = ', '.join(sorted(x.upper() for x in methods)) if headers is not None and not isinstance(headers, basestring): headers = ', '.join(x.upper() for x in headers) if not isinstance(origin, basestring): origin = ', '.join(origin) if isinstance(max_age, timedelta): max_age = max_age.total_seconds() def get_methods(): if methods is not None: return methods options_resp = current_app.make_default_options_response() return options_resp.headers['allow'] def decorator(f): def wrapped_function(*args, **kwargs): if automatic_options and request.method == 'OPTIONS': resp = current_app.make_default_options_response() else: resp = make_response(f(*args, **kwargs)) if not attach_to_all and request.method != 'OPTIONS': return resp h = resp.headers h['Access-Control-Allow-Origin'] = origin if request.method == 'OPTIONS': h['Access-Control-Allow-Methods'] = get_methods() h['Access-Control-Max-Age'] = str(max_age) if headers is not None: h['Access-Control-Allow-Headers'] = headers return resp f.provide_automatic_options = False return update_wrapper(wrapped_function, f) return decorator def request_wants_json(): if request.headers.get('X_REQUESTED_WITH','').lower() == 'xmlhttprequest': return True best = request.accept_mimetypes \ .best_match(['application/json', 'text/html']) return best == 'application/json' and \ request.accept_mimetypes[best] > \ request.accept_mimetypes['text/html'] def jsonerror(code, *args, **kwargs): resp = jsonify(*args, **kwargs) resp.status_code = code return resp def uuidslug(): return uuid2slug(uuid.uuid4()) def uuid2slug(uuidobj): return uuidobj.bytes.encode('base64').rstrip('=\n').replace('/', '_') def slug2uuid(slug): return str(uuid.UUID(bytes=(slug + '==').replace('_', '/').decode('base64'))) def get_url(endpoint, secure=False, **values): ''' protocol preserving url_for ''' path = url_for(endpoint, **values) if secure: url_parts = request.url.split('/', 3) path = "https://" + url_parts[2] + path return path
31.563218
81
0.621267
0
0
0
0
0
0
0
0
350
0.127458
3fd8c6ef2dca4f5f0372db69829883a2a443d40b
4,536
py
Python
tests/ref_test.py
lykme516/pykka
d66b0c49658fc0e7c4e1ae46a0f9c50c7e964ca5
[ "Apache-2.0" ]
1
2021-01-03T09:25:23.000Z
2021-01-03T09:25:23.000Z
tests/ref_test.py
hujunxianligong/pykka
d66b0c49658fc0e7c4e1ae46a0f9c50c7e964ca5
[ "Apache-2.0" ]
null
null
null
tests/ref_test.py
hujunxianligong/pykka
d66b0c49658fc0e7c4e1ae46a0f9c50c7e964ca5
[ "Apache-2.0" ]
null
null
null
import time import unittest from pykka import ActorDeadError, ThreadingActor, ThreadingFuture, Timeout class AnActor(object): def __init__(self, received_message): super(AnActor, self).__init__() self.received_message = received_message def on_receive(self, message): if message.get('command') == 'ping': self.sleep(0.01) return 'pong' else: self.received_message.set(message) class RefTest(object): def setUp(self): self.received_message = self.future_class() self.ref = self.AnActor.start(self.received_message) def tearDown(self): self.ref.stop() def test_repr_is_wrapped_in_lt_and_gt(self): result = repr(self.ref) self.assertTrue(result.startswith('<')) self.assertTrue(result.endswith('>')) def test_repr_reveals_that_this_is_a_ref(self): self.assertTrue('ActorRef' in repr(self.ref)) def test_repr_contains_actor_class_name(self): self.assertTrue('AnActor' in repr(self.ref)) def test_repr_contains_actor_urn(self): self.assertTrue(self.ref.actor_urn in repr(self.ref)) def test_str_contains_actor_class_name(self): self.assertTrue('AnActor' in str(self.ref)) def test_str_contains_actor_urn(self): self.assertTrue(self.ref.actor_urn in str(self.ref)) def test_is_alive_returns_true_for_running_actor(self): self.assertTrue(self.ref.is_alive()) def test_is_alive_returns_false_for_dead_actor(self): self.ref.stop() self.assertFalse(self.ref.is_alive()) def test_stop_returns_true_if_actor_is_stopped(self): self.assertTrue(self.ref.stop()) def test_stop_does_not_stop_already_dead_actor(self): self.ref.stop() try: self.assertFalse(self.ref.stop()) except ActorDeadError: self.fail('Should never raise ActorDeadError') def test_tell_delivers_message_to_actors_custom_on_receive(self): self.ref.tell({'command': 'a custom message'}) self.assertEqual( {'command': 'a custom message'}, self.received_message.get()) def test_tell_fails_if_actor_is_stopped(self): self.ref.stop() try: self.ref.tell({'command': 'a custom message'}) self.fail('Should raise ActorDeadError') except ActorDeadError as exception: self.assertEqual('%s not found' % self.ref, str(exception)) def test_ask_blocks_until_response_arrives(self): result = self.ref.ask({'command': 'ping'}) self.assertEqual('pong', result) def test_ask_can_timeout_if_blocked_too_long(self): try: self.ref.ask({'command': 'ping'}, timeout=0) self.fail('Should raise Timeout exception') except Timeout: pass def test_ask_can_return_future_instead_of_blocking(self): future = self.ref.ask({'command': 'ping'}, block=False) self.assertEqual('pong', future.get()) def test_ask_fails_if_actor_is_stopped(self): self.ref.stop() try: self.ref.ask({'command': 'ping'}) self.fail('Should raise ActorDeadError') except ActorDeadError as exception: self.assertEqual('%s not found' % self.ref, str(exception)) def test_ask_nonblocking_fails_future_if_actor_is_stopped(self): self.ref.stop() future = self.ref.ask({'command': 'ping'}, block=False) try: future.get() self.fail('Should raise ActorDeadError') except ActorDeadError as exception: self.assertEqual('%s not found' % self.ref, str(exception)) def ConcreteRefTest(actor_class, future_class, sleep_function): class C(RefTest, unittest.TestCase): class AnActor(AnActor, actor_class): def sleep(self, seconds): sleep_function(seconds) C.__name__ = '%sRefTest' % (actor_class.__name__,) C.future_class = future_class return C ThreadingActorRefTest = ConcreteRefTest( ThreadingActor, ThreadingFuture, time.sleep) try: import gevent from pykka.gevent import GeventActor, GeventFuture GeventActorRefTest = ConcreteRefTest( GeventActor, GeventFuture, gevent.sleep) except ImportError: pass try: import eventlet from pykka.eventlet import EventletActor, EventletFuture EventletActorRefTest = ConcreteRefTest( EventletActor, EventletFuture, eventlet.sleep) except ImportError: pass
31.068493
74
0.668651
3,744
0.825397
0
0
0
0
0
0
430
0.094797
3fda3cc0af3e5e42cd6c1e11390f1713cf4c09d1
3,365
py
Python
tests/unit/test_baseObject.py
asaranprasad/nvda
e9609694acbfb06398eb6552067a0dcd532d67af
[ "bzip2-1.0.6" ]
1
2018-11-16T10:15:59.000Z
2018-11-16T10:15:59.000Z
tests/unit/test_baseObject.py
asaranprasad/nvda
e9609694acbfb06398eb6552067a0dcd532d67af
[ "bzip2-1.0.6" ]
3
2017-09-29T17:14:18.000Z
2019-05-20T16:13:39.000Z
tests/unit/test_baseObject.py
asaranprasad/nvda
e9609694acbfb06398eb6552067a0dcd532d67af
[ "bzip2-1.0.6" ]
1
2017-09-29T08:53:52.000Z
2017-09-29T08:53:52.000Z
#tests/unit/test_baseObject.py #A part of NonVisual Desktop Access (NVDA) #This file is covered by the GNU General Public License. #See the file COPYING for more details. #Copyright (C) 2018 NV Access Limited, Babbage B.V. """Unit tests for the baseObject module, its classes and their derivatives.""" import unittest from baseObject import ScriptableObject from objectProvider import PlaceholderNVDAObject from scriptHandler import script class NVDAObjectWithDecoratedScript(PlaceholderNVDAObject): """An object with a decorated script.""" @script(gestures=["kb:a"]) def script_alpha(self, gesture): return class NVDAObjectWithGesturesDictionary(PlaceholderNVDAObject): """An object with a script that is bound to a gesture in a L{__gestures} dictionary.""" def script_bravo(self, gesture): return __gestures = { "kb:b": "bravo" } class NVDAObjectWithDecoratedScriptAndGesturesDictionary(PlaceholderNVDAObject): """An object with a decorated script and a script that is bound to a gesture in a L{__gestures} dictionary. """ @script(gestures=["kb:c"]) def script_charlie(self, gesture): return def script_delta(self, gesture): return __gestures = { "kb:d": "delta", } class SubclassedNVDAObjectWithDecoratedScriptAndGesturesDictionary( NVDAObjectWithDecoratedScript, NVDAObjectWithGesturesDictionary, NVDAObjectWithDecoratedScriptAndGesturesDictionary ): """An object with decorated scripts and L{__gestures} dictionaries, based on subclassing.""" @script(gestures=["kb:e"]) def script_echo(self, gesture): return def script_foxtrot(self, gesture): return __gestures = { "kb:f": "foxtrot", } class DynamicNVDAObjectWithDecoratedScriptAndGesturesDictionary(PlaceholderNVDAObject): """An object with decorated scripts and L{__gestures} dictionaries, using the chooseOverlayClasses logic to construct a dynamic object.""" def findOverlayClasses(self, clsList): clsList.extend([ NVDAObjectWithDecoratedScript, NVDAObjectWithGesturesDictionary, NVDAObjectWithDecoratedScriptAndGesturesDictionary ]) @script(gestures=["kb:g"]) def script_golf(self, gesture): return def script_hotel(self, gesture): return __gestures = { "kb:h": "hotel", } class TestScriptableObject(unittest.TestCase): """A test that verifies whether scripts are properly bound to associated gestures.""" def test_decoratedScript(self): obj = NVDAObjectWithDecoratedScript() self.assertIn("kb:a", obj._gestureMap) def test_gesturesDictionary(self): obj = NVDAObjectWithGesturesDictionary() self.assertIn("kb:b", obj._gestureMap) def test_decoratedScriptAndGesturesDictionary(self): obj = NVDAObjectWithDecoratedScriptAndGesturesDictionary() self.assertIn("kb:c", obj._gestureMap) self.assertIn("kb:d", obj._gestureMap) def test_decoratedScriptsAndGestureDictionariesIfSubclassed(self): obj = SubclassedNVDAObjectWithDecoratedScriptAndGesturesDictionary() for key in ("a", "b", "c", "d", "e", "f"): self.assertIn("kb:%s" % key, obj._gestureMap) def test_decoratedScriptsAndGestureDictionariesIfDynamic(self): obj = DynamicNVDAObjectWithDecoratedScriptAndGesturesDictionary() for key in ("a", "b", "c", "d", "g", "h"): self.assertIn("kb:%s" % key, obj._gestureMap)
30.044643
94
0.744428
2,887
0.857949
0
0
284
0.084398
0
0
1,012
0.300743
3fda75ffd417e01dfff80ddf791281704e021a18
3,960
py
Python
querybook/server/lib/query_executor/connection_string/hive.py
shivammmmm/querybook
71263eb7db79e56235ea752f2cf3339ca9b3a092
[ "Apache-2.0" ]
1,144
2021-03-30T05:06:16.000Z
2022-03-31T10:40:31.000Z
querybook/server/lib/query_executor/connection_string/hive.py
shivammmmm/querybook
71263eb7db79e56235ea752f2cf3339ca9b3a092
[ "Apache-2.0" ]
593
2021-07-01T10:34:25.000Z
2022-03-31T23:24:40.000Z
querybook/server/lib/query_executor/connection_string/hive.py
shivammmmm/querybook
71263eb7db79e56235ea752f2cf3339ca9b3a092
[ "Apache-2.0" ]
113
2021-03-30T00:07:20.000Z
2022-03-31T07:18:43.000Z
import re from typing import Dict, Tuple, List, NamedTuple, Optional from lib.utils.decorators import with_exception_retry from .helpers.common import ( split_hostport, get_parsed_variables, merge_hostport, random_choice, ) from .helpers.zookeeper import get_hostname_and_port_from_zk # TODO: make these configurable? MAX_URI_FETCH_ATTEMPTS = 10 MAX_DELAY_BETWEEN_ZK_ATTEMPTS_SEC = 5 class RawHiveConnectionConf(NamedTuple): # Raw Connection Configuration that's from a string -> dict transformation hosts: List[Tuple[str, Optional[int]]] default_db: str session_variables: Dict[str, str] conf_list: Dict[str, str] var_list: Dict[str, str] class HiveConnectionConf(NamedTuple): host: str port: Optional[int] default_db: str configuration: Dict[str, str] def _extract_connection_url(connection_string: str) -> RawHiveConnectionConf: # Parser for Hive JDBC string # Loosely based on https://cwiki.apache.org/confluence/display/Hive/HiveServer2+Clients#HiveServer2Clients-JDBC match = re.search( r"^(?:jdbc:)?hive2:\/\/([\w.-]+(?:\:\d+)?(?:,[\w.-]+(?:\:\d+)?)*)\/(\w*)((?:;[\w.-]+=[\w.-]+)*)(\?[\w.-]+=[\w.-]+(?:;[\w.-]+=[\w.-]+)*)?(\#[\w.-]+=[\w.-]+(?:;[\w.-]+=[\w.-]+)*)?$", # noqa: E501 connection_string, ) hosts = match.group(1) default_db = match.group(2) or "default" session_variables = match.group(3) or "" conf_list = match.group(4) or "" var_list = match.group(5) or "" parsed_hosts = [] for hostport in hosts.split(","): parsed_hosts.append(split_hostport(hostport)) parsed_session_variables = get_parsed_variables(session_variables[1:]) parsed_conf_list = get_parsed_variables(conf_list[1:]) parsed_var_list = get_parsed_variables(var_list[1:]) return RawHiveConnectionConf( hosts=parsed_hosts, default_db=default_db, session_variables=parsed_session_variables, conf_list=parsed_conf_list, var_list=parsed_var_list, ) @with_exception_retry( max_retry=MAX_URI_FETCH_ATTEMPTS, get_retry_delay=lambda retry: min(MAX_DELAY_BETWEEN_ZK_ATTEMPTS_SEC, retry), ) def get_hive_host_port_from_zk( connection_conf: RawHiveConnectionConf, ) -> Tuple[str, int]: zk_quorum = ",".join( map(lambda hostport: merge_hostport(hostport), connection_conf.hosts) ) zk_namespace = connection_conf.session_variables.get("zooKeeperNamespace") raw_server_uris = get_hostname_and_port_from_zk(zk_quorum, zk_namespace) or [] server_uri_dicts = filter( lambda d: d is not None, [_server_uri_to_dict(raw_server_uri) for raw_server_uri in raw_server_uris], ) server_uris = list(map(lambda d: d["serverUri"], server_uri_dicts)) random_server_uri = random_choice(server_uris) if not random_server_uri: raise Exception("Failed to get hostname and port from Zookeeper") return split_hostport(random_server_uri) def _server_uri_to_dict(server_uri: str) -> Optional[Dict[str, str]]: match = re.search(r"serverUri=(.*);version=(.*);sequence=(.*)", server_uri) if match: return { "serverUri": match.group(1), "version": match.group(2), "sequence": match.group(3), } def get_hive_connection_conf(connection_string: str) -> HiveConnectionConf: hostname = None port = None connection_conf = _extract_connection_url(connection_string) # We use zookeeper to find host name if connection_conf.session_variables.get("serviceDiscoveryMode") == "zooKeeper": hostname, port = get_hive_host_port_from_zk(connection_conf) else: # We just return a normal host hostname, port = random_choice(connection_conf.hosts, default=(None, None)) return HiveConnectionConf( host=hostname, port=port, default_db=connection_conf.default_db, configuration=connection_conf.conf_list, )
33.846154
202
0.689899
408
0.10303
0
0
942
0.237879
0
0
710
0.179293
3fdb9c34cb8887a4abfe9945968ed8dd70631d27
137
py
Python
flopz/__init__.py
Flopz-Project/flopz
eb470811e4a8be5e5d625209b0f8eb7ccd1d5da3
[ "Apache-2.0" ]
7
2021-11-19T15:53:58.000Z
2022-03-28T03:38:52.000Z
flopz/__init__.py
Flopz-Project/flopz
eb470811e4a8be5e5d625209b0f8eb7ccd1d5da3
[ "Apache-2.0" ]
null
null
null
flopz/__init__.py
Flopz-Project/flopz
eb470811e4a8be5e5d625209b0f8eb7ccd1d5da3
[ "Apache-2.0" ]
1
2022-03-25T12:44:01.000Z
2022-03-25T12:44:01.000Z
""" flopz. Low Level Assembler and Firmware Instrumentation Toolkit """ __version__ = "0.2.0" __author__ = "Noelscher Consulting GmbH"
15.222222
56
0.744526
0
0
0
0
0
0
0
0
106
0.773723
3fdde609468413e798c5347a27251969395c0fce
2,294
py
Python
OracleCASB_API_Client/occs.py
ftnt-cse/Oracle_CASB_API_Client
00c92c7383d62d029736481f079773253e05589c
[ "Apache-2.0" ]
null
null
null
OracleCASB_API_Client/occs.py
ftnt-cse/Oracle_CASB_API_Client
00c92c7383d62d029736481f079773253e05589c
[ "Apache-2.0" ]
null
null
null
OracleCASB_API_Client/occs.py
ftnt-cse/Oracle_CASB_API_Client
00c92c7383d62d029736481f079773253e05589c
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python3 import sys, logging import requests, json, argparse, textwrap from requests.packages.urllib3.exceptions import InsecureRequestWarning requests.packages.urllib3.disable_warnings(InsecureRequestWarning) from oracle_casb_api import * parser = argparse.ArgumentParser( prog='Oracle CASB API Client', formatter_class=argparse.RawDescriptionHelpFormatter, epilog=textwrap.dedent('''\ ./OCCS_api_client.py: an API client impelmentation to fetch Oracle CASB Events and reports. It then parses it and sends it as syslog to a Syslog server/SIEM Solution ''')) parser.add_argument('-s', '--syslog-server',type=str, required=True, help="Syslog Server where to send the fetched OCCS data as syslog") parser.add_argument('-b', '--base-url',type=str, required=True, help="Oracle CASB base url, typically https://XXXXXXXX.palerra.net") parser.add_argument('-k', '--access-key',type=str, required=True, help="Oracle CASB Access Key") parser.add_argument('-a', '--access-secret',type=str, required=True, help='Oracle CASB Access Secret') parser.add_argument('-t', '--time-period',type=int, required=True, help='time period of the events expressed as number of hours') args = parser.parse_args() logger = logging.getLogger('OCCS_Logger') logger.setLevel(logging.ERROR) ch = logging.StreamHandler() formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s') ch.setFormatter(formatter) logger.addHandler(ch) def occs_init(): try: occs = occs_api.OracleCasbCS( base_url=args.base_url, access_key = args.access_key, access_secret = args.access_secret, verify_ssl=False, logger = logger ) return occs except Exception as e: print("Failed to connect: {}".format(e)) sys.exit(1) occs_object=occs_init() start_date = arrow.now().shift(hours=(-1 * args.time_period)).format('YYYY-MM-DDTHH:mm:ss.SSS') end_date = arrow.now().format('YYYY-MM-DDTHH:mm:ss.SSS') res = occs_object.get_risk_events(start_date) send_syslog(args.syslog_server,(prepare_risk_events_for_syslog(res))) res = occs_object.get_user_risk_score_report('userrisk',start_date,end_date,'100') send_syslog(args.syslog_server,(prepare_users_risk_scores_for_syslog(res)))
37.606557
170
0.732781
0
0
0
0
0
0
0
0
710
0.309503
3fde07047223da1d88704610e639913da4a2c4f4
1,787
py
Python
src/classification_metrics.py
crmauceri/ReferringExpressions
d2ca43bf6df88f83fbe6dfba99b1105dd14592f4
[ "Apache-2.0" ]
6
2020-06-05T06:52:59.000Z
2021-05-27T11:38:16.000Z
src/classification_metrics.py
crmauceri/ReferringExpressions
d2ca43bf6df88f83fbe6dfba99b1105dd14592f4
[ "Apache-2.0" ]
1
2021-03-28T13:27:21.000Z
2021-04-29T17:58:28.000Z
src/classification_metrics.py
crmauceri/ReferringExpressions
d2ca43bf6df88f83fbe6dfba99b1105dd14592f4
[ "Apache-2.0" ]
2
2019-12-09T09:14:47.000Z
2019-12-22T13:57:08.000Z
import argparse import json from data_management.DatasetFactory import datasetFactory from config import cfg import numpy as np if __name__ == "__main__": parser = argparse.ArgumentParser(description='Calculates metrics from output of a Classification network.' + ' Run `run_network.py <config> test` first.') parser.add_argument('config_file', help='config file path') parser.add_argument('results_file', help='results file path') parser.add_argument( "opts", help="Modify config options using the command-line", default=None, nargs=argparse.REMAINDER, ) args = parser.parse_args() cfg.merge_from_file(args.config_file) cfg.merge_from_list(args.opts) cfg.freeze() refer = datasetFactory(cfg) hamming_loss = 0.0 TP = np.zeros((cfg.IMG_NET.N_LABELS+1,)) FP = np.zeros((cfg.IMG_NET.N_LABELS+1,)) FN = np.zeros((cfg.IMG_NET.N_LABELS+1,)) total = 0.0 # load generation outputs with open(args.results_file, 'r') as f: genData = json.load(f) for row in genData: total += 1.0 hamming_loss += row['Hamming_Loss'] TP[row['TP_classes']] += 1 FP[row['FP_classes']] += 1 FN[row['FN_classes']] += 1 print("Mean Hamming Loss: %3.3f" % (hamming_loss/total)) print("Mean precision: %3.3f" % (np.sum(TP)/(np.sum(TP)+np.sum(FP)))) print("Mean recall: %3.3f" % (np.sum(TP)/(np.sum(TP)+np.sum(FN)))) print("Class\tPrecision\tRecall") for idx in range(cfg.IMG_NET.N_LABELS): label = refer[0].coco.cats[refer[0].coco_cat_map[idx]] print("%s\t%3.3f\t%3.3f" % (label['name'].ljust(20), TP[idx]/(TP[idx]+FP[idx]), TP[idx]/(TP[idx]+FN[idx])))
34.365385
115
0.614997
0
0
0
0
0
0
0
0
428
0.239508
3fe076a26915fb3a8a0df4e110f97d0bbe198980
6,448
py
Python
base_model.py
Unmesh-Kumar/DMRM
f1c24049bd527c9dcc5ab6e6727dfa6c8e794c02
[ "MIT" ]
23
2019-12-19T02:46:33.000Z
2022-03-22T07:52:28.000Z
base_model.py
Unmesh-Kumar/DMRM
f1c24049bd527c9dcc5ab6e6727dfa6c8e794c02
[ "MIT" ]
5
2020-07-28T14:25:45.000Z
2022-03-08T14:30:21.000Z
base_model.py
Unmesh-Kumar/DMRM
f1c24049bd527c9dcc5ab6e6727dfa6c8e794c02
[ "MIT" ]
5
2019-12-20T15:46:08.000Z
2021-11-23T01:15:32.000Z
import torch import torch.nn as nn from attention import Attention, NewAttention from language_model import WordEmbedding, QuestionEmbedding, QuestionEmbedding2 from classifier import SimpleClassifier from fc import FCNet from Decoders.decoder1 import _netG as netG import torch.nn.functional as F from torch.autograd import Variable from misc.utils import LayerNorm class BaseModel2(nn.Module): def __init__(self, w_emb, q_emb, h_emb, v_att, h_att, q_net, v_net, h_net, qih_att, qhi_att, qih_net, qhi_net, decoder, args, qhih_att, qihi_att): super(BaseModel2, self).__init__() self.ninp = args.ninp self.w_emb = w_emb self.q_emb = q_emb self.h_emb = h_emb self.decoder = decoder self.img_embed = nn.Linear(args.img_feat_size, 2 * args.nhid) self.w1 = nn.Linear(args.nhid*2, args.nhid*2) self.w2 = nn.Linear(args.nhid*2, args.nhid*2) self.track_1 = v_att self.locate_1 = h_att self.locate_2 = qih_att self.track_2 = qhi_att self.locate_3 = qhih_att self.track_3 = qihi_att self.q_net = q_net self.v_net = v_net self.h_net = h_net self.qih_net = qih_net self.qhi_net = qhi_net self.fc1 = nn.Linear(args.nhid * 4, self.ninp) self.dropout = args.dropout self.vocab_size = args.vocab_size # self.fch = FCNet([args.nhid * 2, args.nhid * 2]) # self.layernorm = LayerNorm(args.nhid*2) def forward(self, image, question, history, answer, tans, rnd, Training=True, sampling=False): # prepare I, Q, H image = self.img_embed(image) w_emb = self.w_emb(question) q_emb, ques_hidden = self.q_emb(w_emb) # [batch, q_dim] hw_emb = self.w_emb(history) h_emb, _ = self.h_emb(hw_emb) # [batch * rnd, h_dim] h_emb = h_emb.view(-1, rnd, h_emb.size(1)) # cap & image # qc_att = self.v_att(image, h_emb[:, 0, :]) # qc_emb = (qc_att * image).sum(1) # qc_emb = self.fch(qc_emb * q_emb) # question & image --> qi qv_att = self.track_1(image, q_emb) qv_emb = (qv_att * image).sum(1) # [batch, v_dim] # question & history --> qh qh_att = self.locate_1(h_emb, q_emb) qh_emb = (qh_att * h_emb).sum(1) # [batch, h_dim] # qh_emb = self.fch(qh_emb+q_emb) # qh_emb = self.layernorm(qh_emb+h_emb[:,0,:]) # qh & image --> qhi qhi_att = self.track_2(image, qh_emb) qhi_emb = (qhi_att * image).sum(1) # [batch, v_dim] # qi & history --> qih qih_att = self.locate_2(h_emb, qv_emb) qih_emb = (qih_att * h_emb).sum(1) # [batch, h_dim] q_re = self.q_net(q_emb) qih_emb = self.h_net(qih_emb) qih_emb = q_re * qih_emb qhi_emb = self.v_net(qhi_emb) qhi_emb = q_re * qhi_emb # qih & i --> qihi qihi_att = self.track_3(image, qih_emb) qihi_emb = (qihi_att * image).sum(1) # qhi & his --> qhih qhih_att = self.locate_3(h_emb, qhi_emb) qhih_emb = (qhih_att * h_emb).sum(1) q_repr = self.q_net(q_emb) qhi_repr = self.qhi_net(qihi_emb) qqhi_joint_repr = q_repr * qhi_repr qih_repr = self.qih_net(qhih_emb) qqih_joint_repr = q_repr * qih_repr joint_repr = torch.cat([self.w1(qqhi_joint_repr), self.w2(qqih_joint_repr)], 1) # [batch, h_dim * 2 joint_repr = F.tanh(self.fc1(F.dropout(joint_repr, self.dropout, training=self.training))) _, ques_hidden = self.decoder(joint_repr.view(-1, 1, self.ninp), ques_hidden) if sampling: batch_size, _, _ = image.size() sample_ans_input = Variable(torch.LongTensor(batch_size, 1).fill_(2).cuda()) sample_opt = {'beam_size': 1} seq, seqLogprobs = self.decoder.sample(self.w_emb, sample_ans_input, ques_hidden, sample_opt) sample_ans = self.w_emb(Variable(seq)) ans_emb = self.w_emb(tans) sample_ans = torch.cat([w_emb, joint_repr.view(batch_size, -1, self.ninp),sample_ans], 1) ans_emb = torch.cat([w_emb, joint_repr.view(batch_size, -1, self.ninp), ans_emb], 1) return sample_ans, ans_emb if not Training: batch_size, _, hid_size = image.size() hid_size = int(hid_size / 2) hidden_replicated = [] for hid in ques_hidden: hidden_replicated.append(hid.view(2, batch_size, 1,hid_size).expand(2, batch_size, 100, hid_size).clone().view(2, -1, hid_size)) hidden_replicated = tuple(hidden_replicated) ques_hidden = hidden_replicated emb = self.w_emb(answer) pred, _ = self.decoder(emb, ques_hidden) return pred def build_baseline0_newatt2(args, num_hid): w_emb = WordEmbedding(args.vocab_size, args.ninp, 0.0) q_emb = QuestionEmbedding2(args.ninp, num_hid, args.nlayers, True, 0.0) h_emb = QuestionEmbedding2(args.ninp, num_hid, args.nlayers, True, 0.0) v_att = NewAttention(args.nhid*2, q_emb.num_hid*2, num_hid*2) h_att = NewAttention(args.nhid*2, q_emb.num_hid*2, num_hid*2) qih_att = NewAttention(args.nhid*2, q_emb.num_hid*2, num_hid*2) qhi_att = NewAttention(args.nhid*2, q_emb.num_hid*2, num_hid*2) q_net = FCNet([q_emb.num_hid*2, num_hid*2]) v_net = FCNet([args.nhid*2, num_hid*2]) h_net = FCNet([args.nhid*2, num_hid*2]) qih_net = FCNet([args.nhid*2, num_hid*2]) qhi_net = FCNet([args.nhid*2, num_hid*2]) qhih_att = NewAttention(args.nhid*2, q_emb.num_hid*2, num_hid*2) qihi_att = NewAttention(args.nhid*2, q_emb.num_hid*2, num_hid*2) decoder = netG(args) return BaseModel2(w_emb, q_emb, h_emb, v_att, h_att, q_net, v_net, h_net, qih_att, qhi_att, qih_net, qhi_net, decoder, args, qhih_att, qihi_att) class attflat(nn.Module): def __init__(self, args): super(attflat, self).__init__() self.mlp = FCNet([args.nhid * 2, args.nhid, 1]) self.fc = nn.Linear(args.nhid*2, args.nhid*2) def forward(self, x): batch_size, q_len, nhid = x.size() att = self.mlp(x.view(-1, nhid)) att = F.softmax(att, dim=1) x_atted = (att.view(batch_size, q_len, -1) * x.view(batch_size, q_len, -1)).sum(1) x_atted = self.fc(x_atted) return x_atted
40.049689
114
0.618021
4,991
0.774038
0
0
0
0
0
0
577
0.089485
3fe105950fe7c097a0cf82f9fd41aa14438e8996
66
py
Python
qymel/core/__init__.py
hal1932/QyMEL
4fdf2409aaa34516f021a37aac0f011fe6ea6073
[ "MIT" ]
6
2019-12-23T05:20:29.000Z
2021-01-30T21:17:32.000Z
qymel/core/__init__.py
hal1932/QyMEL
4fdf2409aaa34516f021a37aac0f011fe6ea6073
[ "MIT" ]
null
null
null
qymel/core/__init__.py
hal1932/QyMEL
4fdf2409aaa34516f021a37aac0f011fe6ea6073
[ "MIT" ]
1
2020-03-05T08:17:44.000Z
2020-03-05T08:17:44.000Z
# coding: utf-8 from .force_reload import * from .scopes import *
16.5
27
0.727273
0
0
0
0
0
0
0
0
15
0.227273
3fe18d763d2aae257f541fc27bf3a672136ac390
5,244
py
Python
lambda/nodemanager.py
twosdai/cloud-enablement-aws
145bf88acc1781cdd696e2d77a5c2d3b796e16c3
[ "Apache-2.0" ]
11
2018-05-25T18:48:30.000Z
2018-11-30T22:06:58.000Z
lambda/nodemanager.py
twosdai/cloud-enablement-aws
145bf88acc1781cdd696e2d77a5c2d3b796e16c3
[ "Apache-2.0" ]
10
2019-01-29T19:39:46.000Z
2020-07-01T07:37:08.000Z
lambda/nodemanager.py
twosdai/cloud-enablement-aws
145bf88acc1781cdd696e2d77a5c2d3b796e16c3
[ "Apache-2.0" ]
18
2019-01-29T05:31:23.000Z
2021-09-16T20:04:24.000Z
# Copyright 2002-2018 MarkLogic Corporation. All Rights Reserved. import boto3 import botocore import logging import hashlib import json import time from botocore.exceptions import ClientError log = logging.getLogger() log.setLevel(logging.INFO) # global variables ec2_client = boto3.client('ec2') asg_client = boto3.client('autoscaling') ec2_resource = boto3.resource('ec2') def eni_wait_for_attachment(eni_id): max_rety = 10 retries = 0 sleep_interval = 10 eni_info = None while True and retries < max_rety: try: eni_info = ec2_resource.NetworkInterface(id=eni_id) except ClientError as e: reason = "Failed to get network interface by id %s" % eni_id log.exception(reason) time.sleep(sleep_interval) retries += 1 continue if not eni_info.attachment: time.sleep(sleep_interval) retries += 1 continue status = eni_info.attachment["Status"] if status == "attached": break elif status == "attaching": time.sleep(sleep_interval) retries += 1 continue else: log.warning( "Network interface %s in unexpected status: %s" % (eni_id, status) ) retries += 1 continue else: log.warning( "Waiting for network interface %s attachment timed out" % eni_id ) def handler(event, context): msg_text = event["Records"][0]["Sns"]["Message"] msg = json.loads(msg_text) if "LifecycleTransition" in msg and \ msg["LifecycleTransition"] == "autoscaling:EC2_INSTANCE_LAUNCHING": log.info("Handle EC2_INSTANCE_LAUNCHING event %s" % (json.dumps(event, indent=2))) on_launch(msg) # continue with the life cycle event try: asg_client.complete_lifecycle_action( LifecycleHookName=msg['LifecycleHookName'], AutoScalingGroupName=msg['AutoScalingGroupName'], LifecycleActionToken=msg['LifecycleActionToken'], LifecycleActionResult='CONTINUE' ) except botocore.exceptions.ClientError as e: reason = "Error completing life cycle hook for instance" log.exception(reason) time.sleep(5) # sleep for 5 seconds to allow exception info being sent to CloudWatch def on_launch(msg): instance_id = msg["EC2InstanceId"] log.info("Launch event of instance %s" % instance_id) try: instance = ec2_client.describe_instances(InstanceIds=[instance_id]) except botocore.exceptions.ClientError as e: reason = "Failed to describe instance %s" % instance_id log.exception(reason) time.sleep(5) return False # manage ENI subnet_id = instance['Reservations'][0]['Instances'][0]['SubnetId'] tags = instance['Reservations'][0]['Instances'][0]['Tags'] stack_name = None stack_id = None for tag in tags: if tag["Key"] == "marklogic:stack:name": stack_name = tag["Value"] if tag["Key"] == "marklogic:stack:id": stack_id = tag["Value"] if stack_name and stack_id: log.info("Subnet: %s, Stack Name: %s, Stack Id: %s" % (str(subnet_id), stack_name, stack_id)) id_hash = hashlib.md5(stack_id.encode()).hexdigest() eni_tag_prefix = stack_name + "-" + id_hash + "_" for i in range(0,200): tag = eni_tag_prefix + str(i) log.info("Querying unattached ENI with tag %s" % tag) # query response = ec2_client.describe_network_interfaces( Filters=[ { "Name": "tag:cluster-eni-id", "Values": [tag] }, { "Name": "status", "Values": ["available"] }, { "Name": "subnet-id", "Values": [subnet_id] } ] ) if len(response["NetworkInterfaces"]) == 0: log.info("No qualified ENI found") continue # attach the available ENI for eni_info in response["NetworkInterfaces"]: eni_id = eni_info["NetworkInterfaceId"] try: attachment = ec2_client.attach_network_interface( NetworkInterfaceId=eni_id, InstanceId=instance_id, DeviceIndex=1 ) log.info("Attaching ENI %s to instance %s" % (eni_id, instance_id)) except botocore.exceptions.ClientError as e: reason = "Error attaching network interface %s" % eni_id log.exception(reason) time.sleep(5) continue eni_wait_for_attachment(eni_id) break else: continue break else: log.warning("Tags for stack name or stack id not found")
35.432432
101
0.54939
0
0
0
0
0
0
0
0
1,273
0.242754
3fe27cb210e5f440aba20265f1b60a9554e9c206
5,724
py
Python
pyABC/0.10.14/petab/amici.py
ICB-DCM/lookahead-study
b9849ce2b0cebbe55d6c9f7a248a5f4dff191007
[ "MIT" ]
3
2021-01-20T14:14:04.000Z
2022-02-23T21:21:18.000Z
pyABC/0.10.14/petab/amici.py
ICB-DCM/lookahead-study
b9849ce2b0cebbe55d6c9f7a248a5f4dff191007
[ "MIT" ]
3
2021-01-20T23:11:20.000Z
2021-02-15T14:36:39.000Z
pyABC/Modified/petab/amici.py
ICB-DCM/lookahead-study
b9849ce2b0cebbe55d6c9f7a248a5f4dff191007
[ "MIT" ]
null
null
null
import logging from collections.abc import Sequence, Mapping from typing import Callable, Union import copy import pyabc from .base import PetabImporter, rescale logger = logging.getLogger(__name__) try: import petab import petab.C as C except ImportError: petab = C = None logger.error("Install petab (see https://github.com/icb-dcm/petab) to use " "the petab functionality.") try: import amici import amici.petab_import from amici.petab_objective import simulate_petab, LLH, RDATAS except ImportError: amici = amici.petab_import = simulate_petab = LLH = RDATAS = None logger.error("Install amici (see https://github.com/icb-dcm/amici) to use " "the amici functionality.") class AmiciPetabImporter(PetabImporter): """ Import a PEtab model using AMICI to simulate it as a deterministic ODE. Parameters ---------- petab_problem: A PEtab problem containing all information on the parameter estimation problem. amici_model: A corresponding compiled AMICI model that allows simulating data for parameters. If not provided, one is created using `amici.petab_import.import_petab_problem`. amici_solver: An AMICI solver to simulate the model. If not provided, one is created using `amici_model.getSolver()`. """ def __init__( self, petab_problem: petab.Problem, amici_model: amici.Model = None, amici_solver: amici.Solver = None): super().__init__(petab_problem=petab_problem) if amici_model is None: amici_model = amici.petab_import.import_petab_problem( petab_problem) self.amici_model = amici_model if amici_solver is None: amici_solver = self.amici_model.getSolver() self.amici_solver = amici_solver def create_model( self, return_simulations: bool = False, return_rdatas: bool = False, ) -> Callable[[Union[Sequence, Mapping]], Mapping]: """Create model. Note that since AMICI uses deterministic ODE simulations, it is usually not necessary to store simulations, as these can be reproduced from the parameters. Parameters ---------- return_simulations: Whether to return the simulations also (large, can be stored in database). return_rdatas: Whether to return the full `List[amici.ExpData]` objects (large, cannot be stored in database). Returns ------- model: The model function, taking parameters and returning simulations. The model returns already the likelihood value. """ # parameter ids to consider x_free_ids = self.petab_problem.get_x_ids(free=True, fixed=False) # fixed parameters x_fixed_ids = self.petab_problem.get_x_ids( free=False, fixed=True) x_fixed_vals = self.petab_problem.get_x_nominal( scaled=True, free=False, fixed=True) # extract variables for improved pickling petab_problem = self.petab_problem amici_model = self.amici_model amici_solver = self.amici_solver prior_scales = self.prior_scales scaled_scales = self.scaled_scales if set(prior_scales.keys()) != set(x_free_ids): # this should not happen raise AssertionError("Parameter id mismatch") # no gradients for pyabc amici_solver.setSensitivityOrder(0) def model(par: Union[Sequence, Mapping]) -> Mapping: """The model function. Note: The parameters are assumed to be passed on prior scale. """ # copy since we add fixed parameters par = copy.deepcopy(par) # convenience to allow calling model not only with dicts if not isinstance(par, Mapping): par = {key: val for key, val in zip(x_free_ids, par)} # add fixed parameters for key, val in zip(x_fixed_ids, x_fixed_vals): par[key] = val # scale parameters whose priors are not on scale for key in prior_scales.keys(): par[key] = rescale( val=par[key], origin_scale=prior_scales, target_scale=scaled_scales, ) # simulate model sim = simulate_petab( petab_problem=petab_problem, amici_model=amici_model, solver=amici_solver, problem_parameters=par, scaled_parameters=True) # return values of interest ret = {'llh': sim[LLH]} if return_simulations: for i_rdata, rdata in enumerate(sim[RDATAS]): ret[f'y_{i_rdata}'] = rdata['y'] if return_rdatas: ret[RDATAS] = sim[RDATAS] return ret return model def create_kernel( self, ) -> pyabc.StochasticKernel: """ Create acceptance kernel. Returns ------- kernel: A pyabc distribution encoding the kernel function. """ def kernel_fun(x, x_0, t, par) -> float: """The kernel function.""" # the kernel value is computed by amici already return x['llh'] # create a kernel from function, returning log-scaled values kernel = pyabc.distance.SimpleFunctionKernel( kernel_fun, ret_scale=pyabc.distance.SCALE_LOG) return kernel
32.338983
79
0.601328
4,973
0.868798
0
0
0
0
0
0
2,249
0.392907
3fe32adbae6d30f0649147cee237cf1904d94533
99
py
Python
ui_automation_core/helpers/browser/alert_action_type.py
Harshavardhanchowdary/python-ui-testing-automation
a624c6b945276c05722be2919d95aa9e5539d0d0
[ "MIT" ]
null
null
null
ui_automation_core/helpers/browser/alert_action_type.py
Harshavardhanchowdary/python-ui-testing-automation
a624c6b945276c05722be2919d95aa9e5539d0d0
[ "MIT" ]
null
null
null
ui_automation_core/helpers/browser/alert_action_type.py
Harshavardhanchowdary/python-ui-testing-automation
a624c6b945276c05722be2919d95aa9e5539d0d0
[ "MIT" ]
null
null
null
from enum import Enum, auto class AlertActionType(Enum): ACCEPT = auto() DISMISS = auto()
16.5
28
0.676768
69
0.69697
0
0
0
0
0
0
0
0
3fe331ae497b79a61bbb73e932ba9991e96f0b3f
18,769
py
Python
xsertion/test_layers.py
karazijal/xsertion
102c1a4f07b049647064a968257d56b00a064d6c
[ "MIT" ]
null
null
null
xsertion/test_layers.py
karazijal/xsertion
102c1a4f07b049647064a968257d56b00a064d6c
[ "MIT" ]
null
null
null
xsertion/test_layers.py
karazijal/xsertion
102c1a4f07b049647064a968257d56b00a064d6c
[ "MIT" ]
1
2021-11-09T09:06:48.000Z
2021-11-09T09:06:48.000Z
import unittest from xsertion.layers import * from keras.layers import Input, MaxPooling2D, Convolution2D, Activation, merge, Dense, Flatten from keras.models import Model import json def desc(model : Model): base_model_disc = json.loads(model.to_json()) return base_model_disc['config'] def topo_check(layerlist): ind = {layer: i for i,layer in enumerate(layerlist)} for i, layer in enumerate(layerlist): if any(ind[l] > i for l in layer.get_inbound()): # all incoming must be before i return False if any(ind[l] < i for l in layer._get_outbound()): # all outgoing must be after i return False return True class ParsingTestCase(unittest.TestCase): def test_layer_con_and_config(self): it = Input(shape=(3, 32, 32), name='TestInput') c1 = Convolution2D(32, 3, 3, activation='relu', name='TestLayer') config = json.loads(json.dumps(c1.get_config())) # transform all tuples to lists model=Model(input=it, output=c1(it)) layers, model_inputs, model_outputs = parse_model_description(desc(model)) self.assertDictEqual(config, layers[1].config) self.assertEqual(layers[0], list(layers[1].get_inbound())[0]) self.assertEqual(layers[1], list(layers[0]._get_outbound())[0]) self.assertTrue(topo_check(layers)) def test_linear_model(self): it = Input(shape=(3,32,32), name='TestInput') c1 = Convolution2D(32, 3, 3, activation='relu')(it) a1 = Flatten()(c1) d1 = Dense(10, activation='softmax', name="TestOutput")(a1) model = Model(input=it, output=d1) layers, model_inputs, model_outputs = parse_model_description(desc(model)) self.assertEqual(4, len(layers)) self.assertEqual(1, len(model_inputs)) self.assertEqual(1, len(model_outputs)) self.assertEqual("TestInput", layers[0].get_name()) self.assertEqual("TestOutput", layers[-1].get_name()) self.assertTrue(topo_check(layers)) def test_branching_model(self): it = Input(shape=(3,32,32), name='TestInput') c1 = Convolution2D(32, 3, 3, activation='relu')(it) c2 = Convolution2D(32, 3, 3, activation='relu')(it) c3 = Convolution2D(32, 3, 3, activation='relu')(it) m1 = merge([c1, c2, c3], mode='sum') a1 = Flatten()(m1) d1 = Dense(10, activation='softmax', name="TestOutput")(a1) model = Model(input=it, output=d1) layers, model_inputs, model_outputs = parse_model_description(desc(model)) self.assertEqual(7, len(layers)) self.assertEqual(1, len(model_inputs)) self.assertEqual(1, len(model_outputs)) self.assertEqual("TestInput", layers[0].get_name()) self.assertEqual("TestOutput", layers[-1].get_name()) self.assertTrue(topo_check(layers)) def test_branching_multistage_model(self): it = Input(shape=(3,32,32), name='TestInput') c1 = Convolution2D(32, 3, 3, activation='relu')(it) b1 = Activation('relu')(c1) c2 = Convolution2D(32, 3, 3, activation='relu')(it) b2 = Activation('relu')(c2) c3 = Convolution2D(32, 3, 3, activation='relu')(it) b3 = Activation('relu')(c3) m1 = merge([b1, b2, b3], mode='sum') a1 = Flatten()(m1) d1 = Dense(10, activation='softmax', name="TestOutput")(a1) model = Model(input=it, output=d1) layers, model_inputs, model_outputs = parse_model_description(desc(model)) self.assertEqual(10, len(layers)) self.assertEqual(1, len(model_inputs)) self.assertEqual(1, len(model_outputs)) self.assertEqual("TestInput", layers[0].get_name()) self.assertEqual("TestOutput", layers[-1].get_name()) self.assertTrue(topo_check(layers)) def test_skip_connnection(self): it = Input(shape=(3,32,32), name='TestInput') c1 = Convolution2D(3, 3, 3, border_mode='same', dim_ordering='th')(it) #dim_ordering to force match on inputshape b1 = Activation('relu')(c1) m1 = merge([b1, it], mode='sum') a1 = Flatten()(m1) d1 = Dense(10, activation='softmax', name="TestOutput")(a1) model = Model(input=it, output=d1) layers, model_inputs, model_outputs = parse_model_description(desc(model)) self.assertEqual(6, len(layers)) self.assertEqual(1, len(model_inputs)) self.assertEqual(1, len(model_outputs)) self.assertEqual("TestInput", layers[0].get_name()) self.assertEqual("TestOutput", layers[-1].get_name()) self.assertTrue(topo_check(layers)) def test_complex_skip(self): l1 = Input((3,32,32), name='1') l2 = Activation('relu', name='2')(l1) l3 = Activation('relu', name='3')(l1) l4 = Activation('relu', name='4')(l2) l5 = merge([l2,l3], name='5') l6 = merge([l1,l4], name='6') l7 = Activation('relu', name='7')(l5) l8 = merge([l6,l7], name='8') model = Model(input=l1, output=l8) layers, model_inputs, model_outputs = parse_model_description(desc(model)) self.assertEqual('1', layers[0].get_name()) self.assertTrue(topo_check(layers)) self.assertListEqual(['1','2','3','4','5','7','6','8'], [l.get_name() for l in layers]) class ReplicationTestCase(unittest.TestCase): def test_replication_layer_properties(self): #use keras layers to quickly fill the list l1 = Input((3, 32, 32), name='1') l2 = Activation('relu', name='2')(l1) l3 = Activation('relu', name='3')(l1) l4 = Activation('relu', name='4')(l2) l5 = merge([l2, l3], name='5') l6 = merge([l1, l4], name='6') l7 = Activation('relu', name='7')(l5) l8 = merge([l6, l7], name='8') model = Model(input=l1, output=l8) layers, model_inputs, model_outputs = parse_model_description(desc(model)) repl_list = replicate_layerlist(layers) for l1, l2 in zip(layers, repl_list): self.assertEqual(l1.class_name, l2.class_name) self.assertEqual(l1.get_name(), l2.get_name()) self.assertDictEqual(l1.config, l2.config) def test_replication_layer_connections(self): # use keras layers to quickly fill the list l1 = Input((3, 32, 32), name='1') l2 = Activation('relu', name='2')(l1) l3 = Activation('relu', name='3')(l1) l4 = Activation('relu', name='4')(l2) l5 = merge([l2, l3], name='5') l6 = merge([l1, l4], name='6') l7 = Activation('relu', name='7')(l5) l8 = merge([l6, l7], name='8') model = Model(input=l1, output=l8) layers, model_inputs, model_outputs = parse_model_description(desc(model)) def assertSameLayer(l1, l2): self.assertEqual(l1.class_name, l2.class_name) self.assertEqual(l1.get_name(), l2.get_name()) self.assertDictEqual(l1.config, l2.config) repl_list = replicate_layerlist(layers) for l1, l2 in zip(layers, repl_list): # build matching inbound lists for il in l1.get_inbound(): for il2 in l2.get_inbound(): if layers.index(il) == repl_list.index(il2): assertSameLayer(il, il2) def test_replication_layer_con_consitency(self): # use keras layers to quickly fill the list l1 = Input((3, 32, 32), name='1') l2 = Activation('relu', name='2')(l1) l3 = Activation('relu', name='3')(l1) l4 = Activation('relu', name='4')(l2) l5 = merge([l2, l3], name='5') l6 = merge([l1, l4], name='6') l7 = Activation('relu', name='7')(l5) l8 = merge([l6, l7], name='8') model = Model(input=l1, output=l8) layers, model_inputs, model_outputs = parse_model_description(desc(model)) llayers = layers[3:] # only take 4, 5, 6, 7, 8 repl_layers = replicate_layerlist(llayers) self.assertEqual(0, len(repl_layers[0].get_inbound())) # no connections for 4 been inserted self.assertEqual(0, len(repl_layers[1].get_inbound())) # no connections for 5 has been inserted self.assertEqual(1, len(repl_layers[3].get_inbound())) # only connection to 4 has been included for 6 def assertSameLayer(l1, l2): self.assertEqual(l1.class_name, l2.class_name) self.assertEqual(l1.get_name(), l2.get_name()) self.assertDictEqual(l1.config, l2.config) assertSameLayer(list(repl_layers[3].get_inbound())[0], layers[3]) def test_xspot_replication(self): # use keras layers to quickly fill the list l1 = Input((3, 32, 32), name='1') l2 = Activation('relu', name='2')(l1) l3 = Activation('relu', name='3')(l1) l4 = Activation('relu', name='4')(l2) l5 = merge([l2, l3], name='5') l6 = merge([l1, l4], name='6') l7 = Activation('relu', name='7')(l5) l8 = merge([l6, l7], name='8') model = Model(input=l1, output=l8) layers, model_inputs, model_outputs = parse_model_description(desc(model)) xspot = XLayerBP.insertXspot(layers[4], 16) layers.insert(5, xspot) repl_layers = replicate_layerlist(layers) self.assertEqual('XSpot', repl_layers[5].class_name) self.assertEqual(4, repl_layers.index(list(repl_layers[5].get_inbound())[0])) class XLayerTestCase(unittest.TestCase): def test_xspot_insertion_simple(self): l1 = Input((3, 32, 32), name='1') l2 = Activation('relu', name='2')(l1) l3 = Activation('relu', name='3')(l1) l4 = Activation('relu', name='4')(l1) l5 = merge([l2, l3, l4], name='5') model = Model(l1, l5) layers, model_inputs, model_outputs = parse_model_description(desc(model)) xspot = XLayerBP.insertXspot(layers[2], 16) # insert after 3 # check that l3 is now only connected to xspot self.assertEqual(list(layers[2]._get_outbound())[0], xspot) def test_xspot_insertion_branching(self): l1 = Input((3, 32, 32), name='1') l2 = Activation('relu', name='2')(l1) l3 = Activation('relu', name='3')(l1) l4 = Activation('relu', name='4')(l1) l5 = merge([l2, l3, l4], name='5') model = Model(l1, l5) layers, model_inputs, model_outputs = parse_model_description(desc(model)) xspot = XLayerBP.insertXspot(layers[2], 16) # insert after 3 # check that l5 is now connected to l2, l4, and xspot b = layers[-1].get_inbound() self.assertTrue(xspot in b) self.assertTrue(layers[1] in b) self.assertTrue(layers[3] in b) class RenderingTestCase(unittest.TestCase): def test_parse_render(self): it = Input(shape=(3, 32, 32), name='TestInput') c1 = Convolution2D(32, 3, 3, activation='relu', dim_ordering='th')(it) b1 = Activation('relu')(c1) c2 = Convolution2D(32, 3, 3, activation='relu', dim_ordering='th')(it) b2 = Activation('relu')(c2) c3 = Convolution2D(32, 3, 3, activation='relu', dim_ordering='th')(it) b3 = Activation('relu')(c3) m1 = merge([b1, b2, b3], mode='sum') a1 = Flatten()(m1) d1 = Dense(10, activation='softmax', name="TestOutput")(a1) model = Model(input=it, output=d1) mdescs = desc(model) layers, model_inputs, model_outputs = parse_model_description(mdescs) rend_descs = render(model_inputs, layers, model_outputs) for inp in mdescs['input_layers']: nm, p1, p2 = inp[0], inp[1], inp[2] for inp2 in rend_descs['input_layers']: nm2, p12, p22 = inp2[0], inp2[1], inp2[2] if nm2 == nm and p12==p1 and p22==p2: self.assertTrue(True) break else: self.assertTrue(False) for inp in mdescs['output_layers']: nm, p1, p2 = inp[0], inp[1], inp[2] for inp2 in rend_descs['output_layers']: nm2, p12, p22 = inp2[0], inp2[1], inp2[2] if nm2 == nm and p12==p1 and p22==p2: self.assertTrue(True) break else: self.assertTrue(False) for layer in mdescs['layers']: for llayer in rend_descs['layers']: if layer['name'] == llayer['name']: self.assertDictEqual(layer['config'], llayer['config']) if len(layer['inbound_nodes']) > 0: for inp in layer['inbound_nodes'][0]: nm, p1, p2 = inp[0], inp[1], inp[2] for inp2 in llayer['inbound_nodes'][0]: nm2, p12, p22 = inp2[0], inp2[1], inp2[2] if nm2 == nm and p12 == p1 and p22 == p2: self.assertTrue(True) break else: self.assertTrue(False) break else: self.assertTrue(False) def test_render_xsport_skip(self): it = Input(shape=(3, 32, 32), name='TestInput') c1 = Convolution2D(32, 3, 3, activation='relu', dim_ordering='th')(it) b1 = Activation('relu')(c1) c2 = Convolution2D(32, 3, 3, activation='relu', dim_ordering='th')(it) b2 = Activation('relu')(c2) c3 = Convolution2D(32, 3, 3, activation='relu', dim_ordering='th')(it) b3 = Activation('relu')(c3) m1 = merge([b1, b2, b3], mode='sum') a1 = Flatten()(m1) d1 = Dense(10, activation='softmax', name="TestOutput")(a1) model = Model(input=it, output=d1) mdescs = desc(model) layers, model_inputs, model_outputs = parse_model_description(mdescs) xspots = [] for i,layer in enumerate(layers): if layer.class_name == "Convolution2D": xspot = XLayerBP.insertXspot(layer, 32) xspots.append((i, xspot)) for c, (i, xs) in enumerate(xspots): layers.insert(i+1+c, xs) rend_descs = render(model_inputs, layers, model_outputs) for inp in mdescs['input_layers']: nm, p1, p2 = inp[0], inp[1], inp[2] for inp2 in rend_descs['input_layers']: nm2, p12, p22 = inp2[0], inp2[1], inp2[2] if nm2 == nm and p12==p1 and p22==p2: self.assertTrue(True) break else: self.assertTrue(False) for inp in mdescs['output_layers']: nm, p1, p2 = inp[0], inp[1], inp[2] for inp2 in rend_descs['output_layers']: nm2, p12, p22 = inp2[0], inp2[1], inp2[2] if nm2 == nm and p12==p1 and p22==p2: self.assertTrue(True) break else: self.assertTrue(False) for layer in mdescs['layers']: for llayer in rend_descs['layers']: if layer['name'] == llayer['name']: self.assertDictEqual(layer['config'], llayer['config']) if len(layer['inbound_nodes']) > 0: for inp in layer['inbound_nodes'][0]: nm, p1, p2 = inp[0], inp[1], inp[2] for inp2 in llayer['inbound_nodes'][0]: nm2, p12, p22 = inp2[0], inp2[1], inp2[2] if nm2 == nm and p12 == p1 and p22 == p2: self.assertTrue(True) break else: self.assertTrue(False) break else: self.assertTrue(False) def test_render_xsport_skip_merge(self): it = Input(shape=(3, 32, 32), name='TestInput') c1 = Convolution2D(32, 3, 3, activation='relu', dim_ordering='th')(it) b1 = Activation('relu')(c1) c2 = Convolution2D(32, 3, 3, activation='relu', dim_ordering='th')(it) b2 = Activation('relu')(c2) c3 = Convolution2D(32, 3, 3, activation='relu', dim_ordering='th')(it) b3 = Activation('relu')(c3) m1 = merge([b1, b2, b3], mode='sum') a1 = Flatten()(m1) d1 = Dense(10, activation='softmax', name="TestOutput")(a1) model = Model(input=it, output=d1) mdescs = desc(model) layers, model_inputs, model_outputs = parse_model_description(mdescs) xspots = [] for i, layer in enumerate(layers): if layer.class_name == "Activation": xspot = XLayerBP.insertXspot(layer, 32) xspots.append((i, xspot)) for c, (i, xs) in enumerate(xspots): layers.insert(i + 1 + c, xs) rend_descs = render(model_inputs, layers, model_outputs) for inp in mdescs['input_layers']: nm, p1, p2 = inp[0], inp[1], inp[2] for inp2 in rend_descs['input_layers']: nm2, p12, p22 = inp2[0], inp2[1], inp2[2] if nm2 == nm and p12==p1 and p22==p2: self.assertTrue(True) break else: self.assertTrue(False) for inp in mdescs['output_layers']: nm, p1, p2 = inp[0], inp[1], inp[2] for inp2 in rend_descs['output_layers']: nm2, p12, p22 = inp2[0], inp2[1], inp2[2] if nm2 == nm and p12==p1 and p22==p2: self.assertTrue(True) break else: self.assertTrue(False) for layer in mdescs['layers']: for llayer in rend_descs['layers']: if layer['name'] == llayer['name']: self.assertDictEqual(layer['config'], llayer['config']) if len(layer['inbound_nodes']) > 0: for inp in layer['inbound_nodes'][0]: nm, p1, p2 = inp[0], inp[1], inp[2] for inp2 in llayer['inbound_nodes'][0]: nm2, p12, p22 = inp2[0], inp2[1], inp2[2] if nm2 == nm and p12 == p1 and p22 == p2: self.assertTrue(True) break else: self.assertTrue(False) break else: self.assertTrue(False) if __name__=="__main__": unittest.main()
42.656818
121
0.553146
18,045
0.961426
0
0
0
0
0
0
2,033
0.108317
3fe371c906222e31026634c1cd2e9e52427c680b
151
py
Python
language/python/modules/websocket/websocket_module.py
bigfoolliu/liu_aistuff
aa661d37c05c257ee293285dd0868fb7e8227628
[ "MIT" ]
1
2019-11-25T07:23:42.000Z
2019-11-25T07:23:42.000Z
language/python/modules/websocket/websocket_module.py
bigfoolliu/liu_aistuff
aa661d37c05c257ee293285dd0868fb7e8227628
[ "MIT" ]
13
2020-01-07T16:09:47.000Z
2022-03-02T12:51:44.000Z
language/python/modules/websocket/websocket_module.py
bigfoolliu/liu_aistuff
aa661d37c05c257ee293285dd0868fb7e8227628
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 # -*- coding:utf-8 -*- # author: bigfoolliu """ web socket可用于实时聊天 """ import websocket if __name__ == '__main__': pass
10.066667
26
0.629139
0
0
0
0
0
0
0
0
113
0.684848
3fe5513bca482d43a59c15049895c9303427b971
85
py
Python
engines/__init__.py
mukeran/simple_sandbox
a2a97d13d814548f313871f0bd5c48f65b1a6180
[ "MIT" ]
null
null
null
engines/__init__.py
mukeran/simple_sandbox
a2a97d13d814548f313871f0bd5c48f65b1a6180
[ "MIT" ]
null
null
null
engines/__init__.py
mukeran/simple_sandbox
a2a97d13d814548f313871f0bd5c48f65b1a6180
[ "MIT" ]
null
null
null
from .watcher import FileWatcher from .fpm_sniffer import FPMSniffer, FPMSnifferMode
28.333333
51
0.858824
0
0
0
0
0
0
0
0
0
0
3fe6078d322f58b763a2e00d815b964e8911f9bf
885
py
Python
PyTrinamic/modules/TMC_EvalShield.py
trinamic-AA/PyTrinamic
b054f4baae8eb6d3f5d2574cf69c232f66abb4ee
[ "MIT" ]
37
2019-01-13T11:08:45.000Z
2022-03-25T07:18:15.000Z
PyTrinamic/modules/TMC_EvalShield.py
AprDec/PyTrinamic
a9db10071f8fbeebafecb55c619e5893757dd0ce
[ "MIT" ]
56
2019-02-25T02:48:27.000Z
2022-03-31T08:45:34.000Z
PyTrinamic/modules/TMC_EvalShield.py
AprDec/PyTrinamic
a9db10071f8fbeebafecb55c619e5893757dd0ce
[ "MIT" ]
26
2019-01-14T05:20:16.000Z
2022-03-08T13:27:35.000Z
''' Created on 18.03.2020 @author: LK ''' class TMC_EvalShield(object): """ Arguments: connection: Type: connection interface The connection interface used for this module. shield: Type: class The EvalShield class used for every axis on this module. For every axis connected, an instance of this class will be created, which can be used later. """ def __init__(self, connection, shield, moduleID=1): self.GPs = _GPs self.shields = [] while(not(connection.globalParameter(self.GPs.attachedAxes, 0, moduleID))): pass attachedAxes = connection.globalParameter(self.GPs.attachedAxes, 0, moduleID) for i in range(attachedAxes): self.shields.append(shield(connection, i, moduleID)) class _GPs(): attachedAxes = 6
26.818182
85
0.615819
838
0.946893
0
0
0
0
0
0
413
0.466667
3fe68b75dfeb56985a424ac16b45a678c22019cc
285
py
Python
kattis/rollcall.py
terror/Solutions
1ad33daec95b565a38ac4730261593bcf249ac86
[ "CC0-1.0" ]
2
2021-04-05T14:26:37.000Z
2021-06-10T04:22:01.000Z
kattis/rollcall.py
terror/Solutions
1ad33daec95b565a38ac4730261593bcf249ac86
[ "CC0-1.0" ]
null
null
null
kattis/rollcall.py
terror/Solutions
1ad33daec95b565a38ac4730261593bcf249ac86
[ "CC0-1.0" ]
null
null
null
import sys d, n = [], {} for i in sys.stdin: if i.rstrip() == "": break a, b = map(str, i.split()) d.append([a, b]) if a in n: n[a] += 1 else: n[a] = 1 d = sorted(d, key=lambda x: (x[1], x[0])) for k, v in d: if n[k] > 1: print(k, v) else: print(k)
14.25
41
0.45614
0
0
0
0
0
0
0
0
2
0.007018
3fe82d5a85daeba3d97651074742e05e1165543c
1,697
py
Python
test/vizier/test_nodes.py
robotarium/vizier
6ce2be4fc0edcdaf5ba246094c2e79bff32e219d
[ "MIT" ]
11
2016-08-18T20:37:06.000Z
2019-11-24T17:34:27.000Z
test/vizier/test_nodes.py
robotarium/vizier
6ce2be4fc0edcdaf5ba246094c2e79bff32e219d
[ "MIT" ]
6
2018-10-07T17:01:40.000Z
2019-11-24T17:41:16.000Z
test/vizier/test_nodes.py
robotarium/vizier
6ce2be4fc0edcdaf5ba246094c2e79bff32e219d
[ "MIT" ]
3
2016-08-22T13:58:24.000Z
2018-06-07T21:06:35.000Z
import json import vizier.node as node import unittest class TestVizierNodes(unittest.TestCase): def setUp(self): path_a = '../config/node_desc_a.json' path_b = '../config/node_desc_b.json' try: f = open(path_a, 'r') node_descriptor_a = json.load(f) f.close() except Exception as e: print(repr(e)) print('Could not open given node file {}'.format(path_a)) return -1 try: f = open(path_b, 'r') node_descriptor_b = json.load(f) f.close() except Exception as e: print(repr(e)) print('Could not open given node file {}'.format(path_b)) return -1 self.node_a = node.Node('localhost', 1883, node_descriptor_a) self.node_a.start() self.node_b = node.Node('localhost', 1883, node_descriptor_b) self.node_b.start() def test_publishable_links(self): self.assertEqual(self.node_a.publishable_links, {'a/a_sub'}) self.assertEqual(self.node_b.publishable_links, set()) def test_subscribable_links(self): self.assertEqual(self.node_a.subscribable_links, set()) self.assertEqual(self.node_b.subscribable_links, {'a/a_sub'}) def test_gettable_links(self): self.assertEqual(self.node_a.gettable_links, set()) self.assertEqual(self.node_b.gettable_links, {'a/a_sub2'}) def test_puttable_links(self): self.assertEqual(self.node_a.puttable_links, {'a/a_sub2'}) self.assertEqual(self.node_b.puttable_links, {'b/b_sub'}) def tearDown(self): self.node_a.stop() self.node_b.stop()
30.854545
69
0.614614
1,639
0.965822
0
0
0
0
0
0
201
0.118444
3fe84decaa2c4b931f2c3a8a70e6c95473baf73c
457
py
Python
tests/not_test_basics.py
kipfer/simple_modbus_server
f16caea62311e1946498392ab4cb5f3d2e1306cb
[ "MIT" ]
1
2021-03-11T13:04:00.000Z
2021-03-11T13:04:00.000Z
tests/not_test_basics.py
kipfer/simple_modbus_server
f16caea62311e1946498392ab4cb5f3d2e1306cb
[ "MIT" ]
null
null
null
tests/not_test_basics.py
kipfer/simple_modbus_server
f16caea62311e1946498392ab4cb5f3d2e1306cb
[ "MIT" ]
null
null
null
import modbus_server s = modbus_server.Server( host="localhost", port=5020, daemon=True, loglevel="WARNING", autostart=False ) s.start() s.set_coil(1, True) s.set_coils(2, [True, False, True]) s.set_discrete_input(1, True) s.set_discrete_inputs(2, [True, False, True]) s.set_input_register(1, 1234, "h") s.set_input_registers(2, [1, 2, 3, 4, 5], "h") s.set_holding_register(1, 1234, "h") s.set_holding_registers(2, [1, 2, 3, 4, 5], "h") s.stop()
20.772727
81
0.68709
0
0
0
0
0
0
0
0
32
0.070022
3fe8ccedd5919a259d55f873b8eeacc8ac42d24a
5,417
py
Python
cuda/rrnn_semiring.py
Noahs-ARK/rational-recurrences
3b7ef54520bcaa2b24551cf42a125c9251124229
[ "MIT" ]
27
2018-09-28T02:17:07.000Z
2020-10-15T14:57:16.000Z
cuda/rrnn_semiring.py
Noahs-ARK/rational-recurrences
3b7ef54520bcaa2b24551cf42a125c9251124229
[ "MIT" ]
1
2021-03-25T22:08:35.000Z
2021-03-25T22:08:35.000Z
cuda/rrnn_semiring.py
Noahs-ARK/rational-recurrences
3b7ef54520bcaa2b24551cf42a125c9251124229
[ "MIT" ]
5
2018-11-06T05:49:51.000Z
2019-10-26T03:36:43.000Z
RRNN_SEMIRING = """ extern "C" { __global__ void rrnn_semiring_fwd( const float * __restrict__ u, const float * __restrict__ eps, const float * __restrict__ c1_init, const float * __restrict__ c2_init, const int len, const int batch, const int dim, const int k, float * __restrict__ c1, float * __restrict__ c2, int semiring_type) { assert (k == K); int ncols = batch*dim; int col = blockIdx.x * blockDim.x + threadIdx.x; if (col >= ncols) return; int ncols_u = ncols*k; const float *up = u + (col*k); float *c1p = c1 + col; float *c2p = c2 + col; float cur_c1 = *(c1_init + col); float cur_c2 = *(c2_init + col); const float eps_val = *(eps + (col%dim)); for (int row = 0; row < len; ++row) { float u1 = *(up); float u2 = *(up+1); float forget1 = *(up+2); float forget2 = *(up+3); float prev_c1 = cur_c1; float op1 = times_forward(semiring_type, cur_c1, forget1); cur_c1 = plus_forward(semiring_type, op1, u1); float op2 = times_forward(semiring_type, cur_c2, forget2); float op3_ = plus_forward(semiring_type, eps_val, prev_c1); float op3 = times_forward(semiring_type, op3_, u2); cur_c2 = plus_forward(semiring_type, op2, op3); *c1p = cur_c1; *c2p = cur_c2; up += ncols_u; c1p += ncols; c2p += ncols; } } __global__ void rrnn_semiring_bwd( const float * __restrict__ u, const float * __restrict__ eps, const float * __restrict__ c1_init, const float * __restrict__ c2_init, const float * __restrict__ c1, const float * __restrict__ c2, const float * __restrict__ grad_c1, const float * __restrict__ grad_c2, const float * __restrict__ grad_last_c1, const float * __restrict__ grad_last_c2, const int len, const int batch, const int dim, const int k, float * __restrict__ grad_u, float * __restrict__ grad_eps, float * __restrict__ grad_c1_init, float * __restrict__ grad_c2_init, int semiring_type) { assert (k == K); int ncols = batch*dim; int col = blockIdx.x * blockDim.x + threadIdx.x; if (col >= ncols) return; int ncols_u = ncols*k; float cur_c1 = *(grad_last_c1 + col); float cur_c2 = *(grad_last_c2 + col); const float eps_val = *(eps + (col%dim)); const float *up = u + (col*k) + (len-1)*ncols_u; const float *c1p = c1 + col + (len-1)*ncols; const float *c2p = c2 + col + (len-1)*ncols; const float *gc1p = grad_c1 + col + (len-1)*ncols; const float *gc2p = grad_c2 + col + (len-1)*ncols; float *gup = grad_u + (col*k) + (len-1)*ncols_u; float geps = 0.f; for (int row = len-1; row >= 0; --row) { float u1 = *(up); float u2 = *(up+1); float forget1 = *(up+2); float forget2 = *(up+3); const float c1_val = *c1p; const float c2_val = *c2p; const float prev_c1 = (row>0) ? (*(c1p-ncols)) : (*(c1_init+col)); const float prev_c2 = (row>0) ? (*(c2p-ncols)) : (*(c2_init+col)); const float gc1 = *(gc1p) + cur_c1; const float gc2 = *(gc2p) + cur_c2; cur_c1 = cur_c2 = 0.f; float op1 = times_forward(semiring_type, prev_c1, forget1); float gop1 = 0.f, gu1 = 0.f; plus_backward(semiring_type, op1, u1, gc1, gop1, gu1); float gprev_c1 = 0.f, gprev_c2 = 0.f, gforget1=0.f; times_backward(semiring_type, prev_c1, forget1, gop1, gprev_c1, gforget1); *(gup) = gu1; *(gup+2) = gforget1; cur_c1 += gprev_c1; float op2 = times_forward(semiring_type, prev_c2, forget2); float op3_ = plus_forward(semiring_type, eps_val, prev_c1); float op3 = times_forward(semiring_type, op3_, u2); float gop2 = 0.f, gop3 = 0.f; plus_backward(semiring_type, op2, op3, gc2, gop2, gop3); float gop3_ = 0.f, gu2 = 0.f, gforget2 = 0.f, cur_geps=0.f; times_backward(semiring_type, prev_c2, forget2, gop2, gprev_c2, gforget2); times_backward(semiring_type, op3_, u2, gop3, gop3_, gu2); plus_backward(semiring_type, eps_val, prev_c1, gop3_, cur_geps, gprev_c1); *(gup+1) = gu2; *(gup+3) = gforget2; geps += cur_geps; cur_c1 += gprev_c1; cur_c2 += gprev_c2; up -= ncols_u; c1p -= ncols; c2p -= ncols; gup -= ncols_u; gc1p -= ncols; gc2p -= ncols; } *(grad_c1_init + col) = cur_c1; *(grad_c2_init + col) = cur_c2; *(grad_eps + col%dim) = geps; } } """
36.601351
86
0.502677
0
0
0
0
0
0
0
0
5,400
0.996862
3fe8e4411ff091a355fe9346309f0659c9b08983
1,841
py
Python
tests.py
c-okelly/movie_script_analytics
6fee40c0378921199ab14ca0b4db447b9f4e7bcf
[ "MIT" ]
1
2017-11-09T13:24:47.000Z
2017-11-09T13:24:47.000Z
tests.py
c-okelly/movie_script_analytics
6fee40c0378921199ab14ca0b4db447b9f4e7bcf
[ "MIT" ]
null
null
null
tests.py
c-okelly/movie_script_analytics
6fee40c0378921199ab14ca0b4db447b9f4e7bcf
[ "MIT" ]
null
null
null
import re import text_objects import numpy as np import pickle # f = open("Data/scripts_text/17-Again.txt", 'r') # text = f.read() # text = text[900:1500] # print(text) # count = len(re.findall("\W+",text)) # print(count) # # lines = text.split('\n') # lines_on_empty = re.split("\n\s+\n", text) # print(len(lines)) # print(len(lines_on_empty)) # # # Find empty lines # count = 0 # for item in lines: # if re.search("\A\s+\Z", item): # print(count) # count += 1 # # # Search for character names in list # for item in lines: # if re.search("\A\s*Name_character\s*(\(.*\))?\s*\Z", item): # print(item) # # Generate list of characters from the script # characters = dict() # # # for line in lines: # #Strip whitespace and check if whole line is in capital letters # line = line.strip() # if (line.isupper()): # # # Exclude lines with EXT / INT in them # s1 = re.search('EXT\.', line) # s2 = re.search('INT\.', line) # # # Select correct lines and strip out and elements within parathenses. Normally continued # if (not(s1 or s2)): # line = re.sub("\s*\(.*\)","",line) # # If character no in dict add them. If a already in increase count by 1 # if line in characters: # characters[line] = characters[line] + 1 # else: # characters[line] = 1 # # print(characters) # Get description lines if __name__ == '__main__': # # string = " -EARLY APRIL, 1841" # print(re.match("^\s+-(\w+\s{0,3},?/?){0,4}(\s\d{0,5})-\s+",string)) # for i in np.arange(0,1,0.1): # print(i,"to",i+0.1) # array= [1,3,5,6,1] # # count = 0 var = pickle.load(open("Data/Pickled_objects/400.dat","rb")) object_1 = var[0] print(object_1.info_dict)
23.303797
98
0.558935
0
0
0
0
0
0
0
0
1,576
0.856056
3fea883542666ba0f05267690f8d99f2d06892ea
1,945
py
Python
malcolm/modules/demo/parts/countermovepart.py
dinojugosloven/pymalcolm
0b856ee1113efdb42f2f3b15986f8ac5f9e1b35a
[ "Apache-2.0" ]
null
null
null
malcolm/modules/demo/parts/countermovepart.py
dinojugosloven/pymalcolm
0b856ee1113efdb42f2f3b15986f8ac5f9e1b35a
[ "Apache-2.0" ]
null
null
null
malcolm/modules/demo/parts/countermovepart.py
dinojugosloven/pymalcolm
0b856ee1113efdb42f2f3b15986f8ac5f9e1b35a
[ "Apache-2.0" ]
null
null
null
import time from annotypes import Anno, add_call_types from malcolm.core import PartRegistrar from malcolm.modules import builtin # Pull re-used annotypes into our namespace in case we are subclassed APartName = builtin.parts.APartName AMri = builtin.parts.AMri with Anno("The demand value to move our counter motor to"): ADemand = float with Anno("The amount of time to get to the demand position"): ADuration = float # How long between ticks of the "motor" position while moving UPDATE_TICK = 0.1 # We will set these attributes on the child block, so don't save them @builtin.util.no_save("counter") class CounterMovePart(builtin.parts.ChildPart): """Provides control of a `counter_block` within a `ManagerController`""" def __init__(self, name, mri): # type: (APartName, AMri) -> None super(CounterMovePart, self).__init__( name, mri, stateful=False, initial_visibility=True) def setup(self, registrar): # type: (PartRegistrar) -> None super(CounterMovePart, self).setup(registrar) # Method registrar.add_method_model( self.move, self.name + "Move", needs_context=True) @add_call_types def move(self, context, demand, duration=0): # type: (builtin.hooks.AContext, ADemand, ADuration) -> None """Move the counter to the demand value, taking duration seconds like a motor would do""" start = time.time() child = context.block_view(self.mri) distance = demand - child.counter.value remaining = duration # "Move" the motor, ticking at UPDATE_TICK rate while remaining > 0: child.counter.put_value(demand - distance * remaining / duration) context.sleep(min(remaining, UPDATE_TICK)) remaining = start + duration - time.time() # Final move to make sure we end up at the right place child.counter.put_value(demand)
36.018519
77
0.679177
1,327
0.682262
0
0
1,360
0.699229
0
0
713
0.366581
3fea9db35ea3c9741fed546bd70ab750ac964bbd
12,740
py
Python
scripts/run_temporal_averaging.py
alexkaiser/heart_valves
53f30ec3680503542890a84949b7fb51d1734272
[ "BSD-3-Clause" ]
null
null
null
scripts/run_temporal_averaging.py
alexkaiser/heart_valves
53f30ec3680503542890a84949b7fb51d1734272
[ "BSD-3-Clause" ]
null
null
null
scripts/run_temporal_averaging.py
alexkaiser/heart_valves
53f30ec3680503542890a84949b7fb51d1734272
[ "BSD-3-Clause" ]
null
null
null
import pyvista import os, sys, glob import subprocess import math from natsort import natsorted import multiprocessing def write_pvd(base_name, dt, nsteps, extension, nprocs_sim=1): prefix = '''<?xml version="1.0"?> <VTKFile type="Collection" version="0.1" byte_order="LittleEndian" compressor="vtkZLibDataCompressor"> <Collection> ''' suffix = ''' </Collection> </VTKFile> ''' initialized = False for n in range(nsteps): for proc in range(nprocs_sim): if not initialized: filename_out = base_name + '.pvd' print("filename_out = ", filename_out) f_write = open(filename_out, 'w') f_write.write(prefix) initialized = True tmp_str = ' <DataSet timestep="' tmp_str += '{:.14f}'.format(dt * n) tmp_str += '" group="" part="' tmp_str += str(proc) + '"' tmp_str += ' file="' if nprocs_sim > 1: tmp_str += base_name + str(n).zfill(4) + '/' # sorted into directories tmp_str += base_name + str(n).zfill(4) + '.' if nprocs_sim > 1: tmp_str += str(proc) + '.' tmp_str += extension tmp_str += '"/>\n' f_write.write(tmp_str) f_write.write(suffix) f_write.close() def read_distributed_vtr(dir_name): files = natsorted(glob.glob(dir_name + "/*.vtr")) #print("files = ", files) blocks = pyvista.MultiBlock([pyvista.read(f) for f in files]) return blocks.combine() def average_eulerian_mesh_one_step(idx_mri_read, eulerian_var_names, times, cycle_duration, cycles_to_output, dt_mri_read, base_dir, base_name_out, extension): # always start with initial eulerian mesh dir_name = "eulerian_vars" + str(0).zfill(4) mesh = read_distributed_vtr(dir_name) n_to_average = 0 for var_name in eulerian_var_names: mesh[var_name] *= 0.0 # average over times for idx, t in enumerate(times): # check if time in range cycle_num = math.floor(t / cycle_duration) # skip cycle one if cycle_num in cycles_to_output: dir_name = "eulerian_vars" + str(idx).zfill(4) # time since start of this cycle t_reduced = t % cycle_duration idx_mri_read_temp = math.floor(t_reduced / dt_mri_read) if idx_mri_read == idx_mri_read_temp: print("processing step ", idx) mesh_tmp = read_distributed_vtr(dir_name) for var_name in eulerian_var_names: mesh[var_name] += mesh_tmp[var_name] n_to_average += 1.0 # print("t = ", t, "t_reduced = ", t_reduced, "idx_mri_read = ", idx_mri_read) for var_name in eulerian_var_names: # if none to average, mesh output as all zeros if n_to_average != 0: mesh[var_name] /= float(n_to_average) fname = base_name_out + str(idx_mri_read).zfill(4) + '.' + extension mesh.save(base_dir + "/" + fname) if __name__ == '__main__': if len(sys.argv) >= 2: nprocs_sim = int(sys.argv[1]) # number of procs in the sim, which determines how many files go into the decomposed data else: print("using default nprocs_sim = 1") nprocs_sim = 1 # first make sure there is a times file if not os.path.isfile('times.txt'): subprocess.call('visit -cli -nowin -s ~/copies_scripts/write_times_file_visit.py', shell=True) times = [] times_file = open('times.txt', 'r') for line in times_file: times.append(float(line)) eulerian = True lagrangian = True first_cycle = True second_cycle = False if first_cycle: cycles_to_output = [0] # zero indexed # set up some directories base_dir = "vis_data_averaged_cycle_1" elif second_cycle: cycles_to_output = [1] # zero indexed # set up some directories base_dir = "vis_data_averaged_cycle_2" else: cycles_to_output = [1,2,3] # zero indexed # set up some directories base_dir = "vis_data_averaged_cycle_2_3_4" cycle_duration = 8.3250000000000002e-01 mri_read_times_per_cycle = 10 dt_mri_read = cycle_duration / mri_read_times_per_cycle output_times_per_cycle = 20 dt_output = cycle_duration / output_times_per_cycle if not os.path.exists(base_dir): os.mkdir(base_dir) if eulerian: eulerian_var_names = ['P','Omega', 'U'] # output file extension extension = 'vtu' suffix = "_averaged" base_name_out = "eulerian_vars_mri_freq" # average all the Eulerian files here # for idx_mri_read in range(mri_read_times_per_cycle): # average_eulerian_mesh_one_step(idx_mri_read, eulerian_var_names, times, cycle_duration, cycles_to_output, dt_mri_read, base_dir, base_name_out, extension) jobs = [] for idx_mri_read in range(mri_read_times_per_cycle): p = multiprocessing.Process(target=average_eulerian_mesh_one_step, args=(idx_mri_read, eulerian_var_names, times, cycle_duration, cycles_to_output, dt_mri_read, base_dir, base_name_out, extension)) jobs.append(p) p.start() for p in jobs: p.join() # for idx_output in range(output_times_per_cycle): # eulerian_dir_name = base_dir + '/' + 'eulerian_vars' + suffix + str(idx_output).zfill(4) # if not os.path.exists(eulerian_dir_name): # os.mkdir(eulerian_dir_name) # only average cycle 2 # cycles_to_include = [2] # loops over parallel data structure as outer loop # for proc_num in range(nprocs_sim): # read and zero meshes to use to accumulate from first mesh dir_name = "eulerian_vars" + str(0).zfill(4) # read all time zero meshes # meshes_mri_read = [] # n_to_average = [] # for idx_mri_read in range(mri_read_times_per_cycle): # meshes_mri_read.append(read_distributed_vtr(dir_name)) # n_to_average.append(0) # for var_name in eulerian_var_names: # meshes_mri_read[idx_mri_read][var_name] *= 0.0 meshes_mri_read = [] for idx_mri_read in range(mri_read_times_per_cycle): fname = base_name_out + str(idx_mri_read).zfill(4) + '.' + extension meshes_mri_read.append( pyvista.read(base_dir + "/" + fname) ) meshes_output = [] for idx_output in range(output_times_per_cycle): meshes_output.append(read_distributed_vtr(dir_name)) for var_name in eulerian_var_names: meshes_output[idx_output][var_name] *= 0.0 # # average over times # for idx, t in enumerate(times): # # check if time in range # cycle_num = math.floor(t / cycle_duration) # # skip cycle one # if cycle_num in cycles_to_output: # print("processing step ", idx) # dir_name = "eulerian_vars" + str(idx).zfill(4) # # time since start of this cycle # t_reduced = t % cycle_duration # idx_mri_read = math.floor(t_reduced / dt_mri_read) # mesh_tmp = read_distributed_vtr(dir_name) # for var_name in eulerian_var_names: # meshes_mri_read[idx_mri_read][var_name] += mesh_tmp[var_name] # n_to_average[idx_mri_read] += 1.0 # # print("t = ", t, "t_reduced = ", t_reduced, "idx_mri_read = ", idx_mri_read) # print("n_to_average = ", n_to_average) # # convert sums to averages # for idx_mri_read in range(mri_read_times_per_cycle): # for var_name in eulerian_var_names: # meshes_mri_read[idx_mri_read][var_name] /= float(n_to_average[idx_mri_read]) # linearly interpolate before output for idx_mri_read in range(mri_read_times_per_cycle): for var_name in eulerian_var_names: meshes_output[2*idx_mri_read][var_name] = meshes_mri_read[idx_mri_read][var_name] for idx_mri_read in range(mri_read_times_per_cycle): idx_mri_read_next = (idx_mri_read + 1) % mri_read_times_per_cycle for var_name in eulerian_var_names: meshes_output[2*idx_mri_read + 1][var_name] = 0.5 * (meshes_mri_read[idx_mri_read][var_name] + meshes_mri_read[idx_mri_read_next][var_name]) for idx_output in range(output_times_per_cycle): eulerian_dir_name = base_dir fname = "eulerian_vars" + suffix + str(idx_output).zfill(4) + '.' + extension meshes_output[idx_output].save(eulerian_dir_name + "/" + fname) # summary file nprocs_output = 1 write_pvd("eulerian_vars" + suffix, dt_output, output_times_per_cycle, extension, nprocs_output) os.rename("eulerian_vars" + suffix + '.pvd', base_dir + "/eulerian_vars" + suffix + '.pvd') if lagrangian: suffix = "_averaged" for lag_file in os.listdir('..'): if lag_file.endswith('.vertex'): print("found lag file ", lag_file, ", processing ") base_name_lag = lag_file.rsplit('.', 1)[0] print("base_name_lag = ", base_name_lag) # read and zero meshes to use to accumulate from first mesh fname = base_name_lag + str(0).zfill(4) + '.vtu' if not os.path.isfile(fname): print("vtu file not found, cannot process this file, continuing") continue meshes_mri_read = [] n_to_average = [] for idx_mri_read in range(mri_read_times_per_cycle): meshes_mri_read.append(pyvista.read(fname)) n_to_average.append(0) meshes_mri_read[idx_mri_read].points *= 0.0 meshes_output = [] for idx_output in range(output_times_per_cycle): meshes_output.append(pyvista.read(fname)) meshes_output[idx_output].points *= 0.0 # average over times for idx, t in enumerate(times): # check if time in range cycle_num = math.floor(t / cycle_duration) # skip cycle one if cycle_num in cycles_to_output: fname = base_name_lag + str(idx).zfill(4) + '.vtu' # time since start of this cycle t_reduced = t % cycle_duration idx_mri_read = math.floor(t_reduced / dt_mri_read) mesh_tmp = pyvista.read(fname) meshes_mri_read[idx_mri_read].points += mesh_tmp.points n_to_average[idx_mri_read] += 1.0 # print("t = ", t, "t_reduced = ", t_reduced, "idx_mri_read = ", idx_mri_read) print("n_to_average = ", n_to_average) # convert sums to averages for idx_mri_read in range(mri_read_times_per_cycle): meshes_mri_read[idx_mri_read].points /= float(n_to_average[idx_mri_read]) # linearly interpolate before output for idx_mri_read in range(mri_read_times_per_cycle): meshes_output[2*idx_mri_read].points = meshes_mri_read[idx_mri_read].points for idx_mri_read in range(mri_read_times_per_cycle): idx_mri_read_next = (idx_mri_read + 1) % mri_read_times_per_cycle meshes_output[2*idx_mri_read + 1].points = 0.5 * (meshes_mri_read[idx_mri_read].points + meshes_mri_read[idx_mri_read_next].points) for idx_output in range(output_times_per_cycle): fname = base_name_lag + suffix + str(idx_output).zfill(4) + '.vtu' meshes_output[idx_output].save(base_dir + "/" + fname) # os.rename(fname, base_dir + "/" + base_name_lag + suffix + '.pvd') # summary file extension = 'vtu' write_pvd(base_name_lag + suffix, dt_output, output_times_per_cycle, extension, 1) os.rename(base_name_lag + suffix + '.pvd', base_dir + "/" + base_name_lag + suffix + '.pvd')
33.882979
209
0.586499
0
0
0
0
0
0
0
0
3,968
0.31146
3fec010889ccbdbd07b4bb7fe68a11cde75d9565
3,641
py
Python
server.py
MVHSiot/yelperhelper
a94dc9e80e301241da58b678770338e3fa9b642e
[ "MIT" ]
null
null
null
server.py
MVHSiot/yelperhelper
a94dc9e80e301241da58b678770338e3fa9b642e
[ "MIT" ]
null
null
null
server.py
MVHSiot/yelperhelper
a94dc9e80e301241da58b678770338e3fa9b642e
[ "MIT" ]
null
null
null
import sys try: sys.path.append('/opt/python3/lib/python3.4/site-packages') except: pass import yelp_api import pickle import calc pub_key = 'pub-c-2c436bc0-666e-4975-baaf-63f16a61558d' sub_key = 'sub-c-0442432a-3312-11e7-bae3-02ee2ddab7fe' from pubnub.callbacks import SubscribeCallback from pubnub.enums import PNStatusCategory from pubnub.pnconfiguration import PNConfiguration from pubnub.pubnub import PubNub pnconfig = PNConfiguration() pnconfig.subscribe_key = sub_key pnconfig.publish_key = pub_key pubnub = PubNub(pnconfig) def publishCallback(result, status): pass class subscribeCallback(SubscribeCallback): def status(self, pubnub, status): pass def presence(self, pubnub, presence): pass # handle incoming presence data def message(self, pubnub, message): if message.message['cmdtype'] == "request": print(message.message) try: print('searching current loc') best_restaurants = calc.process(message.message['latitude'],message.message['longitude']) except: print('searching city') print(message.message['city'].replace("%20", "+")) best_restaurants = calc.process(city=message.message['city'].replace("%20", "+")) review = yelp_api.get_business_review(best_restaurants[0]['id']) review1 = yelp_api.get_business_review(best_restaurants[1]['id']) review2 = yelp_api.get_business_review(best_restaurants[2]['id']) id1 = best_restaurants[0]['id'] id2 = best_restaurants[1]['id'] id3 = best_restaurants[2]['id'] loc = best_restaurants[0]['location'] name = best_restaurants[0]['name'] rating = best_restaurants[0]['rating'] price = best_restaurants[0]['price'] image = best_restaurants[0]['image_url'] url = best_restaurants[0]['url'] loc1 = best_restaurants[1]['location'] name1 = best_restaurants[1]['name'] rating1 = best_restaurants[1]['rating'] price1 = best_restaurants[1]['price'] image1 = best_restaurants[1]['image_url'] url1 = best_restaurants[1]['url'] loc2 = best_restaurants[2]['location'] name2 = best_restaurants[2]['name'] rating2 = best_restaurants[2]['rating'] price2 = best_restaurants[2]['price'] image2 = best_restaurants[2]['image_url'] url2 = best_restaurants[2]['url'] print(name,name1,name2) pubnub.publish().channel('main_channel').message([{"name":name,"rating":rating,"price":price,"loc":loc,"image":image,"url":url, "review":review, "id":id1}, {"name":name1,"rating":rating1,"price":price1,"loc":loc1,"image":image1,"url":url1, "review":review1, "id":id2}, {"name":name2,"rating":rating2,"price":price2,"loc":loc2,"image":image2,"url":url2, "review":review2, "id":id3}]).async(publishCallback) elif message.message['cmdtype'] == "append": print("new restaurant received") with open("restaurant_data.dat", "rb") as f: rl = pickle.load(f) rl.append(yelp_api.convertFormat(yelp_api.get_business_by_id(message.message['id']))) with open("restaurant_data.dat", "wb") as f: pickle.dump(rl,f) pubnub.add_listener(subscribeCallback()) pubnub.subscribe().channels('secondary_channel').execute() while True: pass
44.402439
198
0.611096
2,925
0.803351
0
0
0
0
0
0
711
0.195276
3fed58a2f0d55e3c995e8a4ab026bd1e2fa3c343
59
py
Python
gmaploader/__init__.py
cormac-rynne/gmaploader
eec679af9a5d36b691bde05ffd6043bfef7e1acf
[ "MIT" ]
2
2022-02-02T16:41:17.000Z
2022-03-16T08:43:18.000Z
gmaploader/__init__.py
cormac-rynne/gmaploader
eec679af9a5d36b691bde05ffd6043bfef7e1acf
[ "MIT" ]
null
null
null
gmaploader/__init__.py
cormac-rynne/gmaploader
eec679af9a5d36b691bde05ffd6043bfef7e1acf
[ "MIT" ]
null
null
null
__version__ = '0.1.1' from .gmaploader import GMapLoader
11.8
34
0.745763
0
0
0
0
0
0
0
0
7
0.118644
3feef5a3e0cc27bf16fbab36a842bb9bb4ecc2cd
643
py
Python
machina/templatetags/forum_tracking_tags.py
jujinesy/initdjango-machina
93c24877f546521867b3ef77fa278237af932d42
[ "BSD-3-Clause" ]
1
2021-10-08T03:31:24.000Z
2021-10-08T03:31:24.000Z
machina/templatetags/forum_tracking_tags.py
jujinesy/initdjango-machina
93c24877f546521867b3ef77fa278237af932d42
[ "BSD-3-Clause" ]
7
2020-02-12T01:11:13.000Z
2022-03-11T23:26:32.000Z
machina/templatetags/forum_tracking_tags.py
jujinesy/initdjango-machina
93c24877f546521867b3ef77fa278237af932d42
[ "BSD-3-Clause" ]
1
2019-04-20T05:26:27.000Z
2019-04-20T05:26:27.000Z
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django import template from machina.core.loading import get_class TrackingHandler = get_class('forum_tracking.handler', 'TrackingHandler') register = template.Library() @register.simple_tag(takes_context=True) def get_unread_topics(context, topics, user): """ This will return a list of unread topics for the given user from a given set of topics. Usage:: {% get_unread_topics topics request.user as unread_topics %} """ request = context.get('request', None) return TrackingHandler(request=request).get_unread_topics(topics, user)
24.730769
91
0.738725
0
0
0
0
396
0.615863
0
0
259
0.402799
3fef44aadd222f045efc994567ce2c00bef12f97
1,194
py
Python
xmodaler/modeling/layers/attention_pooler.py
cclauss/xmodaler
1368fba6c550e97008628edbf01b59a0a6c8fde5
[ "Apache-2.0" ]
830
2021-06-26T07:16:33.000Z
2022-03-25T10:31:32.000Z
xmodaler/modeling/layers/attention_pooler.py
kevinjunwei/xmodaler
3e128a816876988c5fb07d842fde4a140e699dde
[ "Apache-2.0" ]
28
2021-08-19T12:39:02.000Z
2022-03-14T13:04:19.000Z
xmodaler/modeling/layers/attention_pooler.py
kevinjunwei/xmodaler
3e128a816876988c5fb07d842fde4a140e699dde
[ "Apache-2.0" ]
85
2021-08-15T06:58:29.000Z
2022-02-19T07:30:56.000Z
# Copyright 2021 JD.com, Inc., JD AI """ @author: Yehao Li @contact: yehaoli.sysu@gmail.com """ import torch import torch.nn as nn __all__ = ["AttentionPooler"] class AttentionPooler(nn.Module): def __init__( self, *, hidden_size: int, output_size: int, dropout: float, use_bn: bool ): super(AttentionPooler, self).__init__() self.att = nn.Sequential( nn.Linear(hidden_size, hidden_size), nn.ReLU(inplace=True), nn.Dropout(p=dropout), nn.Linear(hidden_size, 1) ) self.embed = nn.Linear(hidden_size, output_size) self.softmax = nn.Softmax(dim=-1) self.bn = nn.BatchNorm1d(output_size) if use_bn else None def forward(self, hidden_states, masks = None, **kwargs): score = self.att(hidden_states).squeeze(-1) if masks is not None: score = score + masks.view(score.size(0), -1) score = self.softmax(score) output = score.unsqueeze(1).matmul(hidden_states).squeeze(1) output = self.embed(output) if self.bn is not None: output = self.bn(output) return output
29.85
68
0.593802
1,031
0.863484
0
0
0
0
0
0
111
0.092965
3fefc1a6bf75d8c0151f7c8fa8710346285e3ae9
281
py
Python
aas_core_meta/__init__.py
aas-core-works/aas-core3-meta
88b618c82f78392a47ee58cf2657ae6df8e5a418
[ "MIT" ]
null
null
null
aas_core_meta/__init__.py
aas-core-works/aas-core3-meta
88b618c82f78392a47ee58cf2657ae6df8e5a418
[ "MIT" ]
null
null
null
aas_core_meta/__init__.py
aas-core-works/aas-core3-meta
88b618c82f78392a47ee58cf2657ae6df8e5a418
[ "MIT" ]
null
null
null
"""Provide meta-models for Asset Administration Shell information model.""" __version__ = "2021.11.20a2" __author__ = ( "Nico Braunisch, Marko Ristin, Robert Lehmann, Marcin Sadurski, Manuel Sauer" ) __license__ = "License :: OSI Approved :: MIT License" __status__ = "Alpha"
31.222222
81
0.736655
0
0
0
0
0
0
0
0
213
0.758007
3ff189fdd25a003504ca018c6776d007950e9fc2
2,937
py
Python
arxivmail/web.py
dfm/ArXivMailer
f217466b83ae3009330683d1c53ba5a44b4bab29
[ "MIT" ]
1
2020-09-15T11:59:44.000Z
2020-09-15T11:59:44.000Z
arxivmail/web.py
dfm/ArXivMailer
f217466b83ae3009330683d1c53ba5a44b4bab29
[ "MIT" ]
null
null
null
arxivmail/web.py
dfm/ArXivMailer
f217466b83ae3009330683d1c53ba5a44b4bab29
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- import flask from .mail import send_email from .models import db, Subscriber, Category __all__ = ["web"] web = flask.Blueprint("web", __name__) @web.route("/", methods=["GET", "POST"]) def index(): if flask.request.method == "POST": email = flask.request.form.get("email", None) if email is None: flask.flash("Missing email address.") category = flask.request.form.get("category", None) if category is None: flask.flash("Missing arXiv category.") if email is not None and category is not None: category = category.strip() email = email.strip() cat = Category.query.filter_by(arxiv_name=category).first() user = Subscriber.query.filter_by(email=email).first() if user is None: user = Subscriber(email) db.session.add(user) db.session.commit() html_body = flask.render_template("welcome_email.html", user=user) send_email(email, "Welcome", html_body) if cat in user.subscriptions: flask.flash("Already subscribed to {0}".format(category)) else: user.subscriptions.append(cat) db.session.add(user) db.session.commit() flask.flash("{0} subscribed to {1}".format(email, category)) categories = Category.query.order_by("arxiv_name").all() return flask.render_template("index.html", categories=categories) @web.route("/confirm/<token>") def confirm(token): user = Subscriber.check_token(token) if user is None: return flask.abort(404) user.confirmed = True db.session.add(user) db.session.commit() flask.flash("Confirmed {0}.".format(user.email)) return flask.redirect(flask.url_for(".manage", token=token)) @web.route("/manage/<token>", methods=["GET", "POST"]) def manage(token): user = Subscriber.check_token(token) if user is None: return flask.abort(404) categories = Category.query.order_by("arxiv_name").all() cdict = dict((c.arxiv_name, c) for c in categories) if flask.request.method == "POST": cats = [cdict.get(c, None) for c in flask.request.form.getlist("category")] user.subscriptions = [c for c in cats if c is not None] return flask.render_template("manage.html", categories=categories, user=user) @web.route("/unsubscribe/<token_or_email>") def unsubscribe(token_or_email): user = Subscriber.query.filter_by(email=token_or_email).first() if user is None: user = Subscriber.check_token(token_or_email) if user is not None: db.session.delete(user) db.session.commit() flask.flash("Unsubscribed.") return flask.redirect(flask.url_for(".index"))
34.964286
76
0.606742
0
0
0
0
2,755
0.938032
0
0
388
0.132108
3ff244c8c0c0b1265e61249a530b3e42331c5fc4
13,794
py
Python
qiskit/pulse/timeslots.py
lerongil/qiskit-terra
a25af2a2378bc3d4f5ec73b948d048d1b707454c
[ "Apache-2.0" ]
3
2019-11-20T08:15:28.000Z
2020-11-01T15:32:57.000Z
qiskit/pulse/timeslots.py
lerongil/qiskit-terra
a25af2a2378bc3d4f5ec73b948d048d1b707454c
[ "Apache-2.0" ]
null
null
null
qiskit/pulse/timeslots.py
lerongil/qiskit-terra
a25af2a2378bc3d4f5ec73b948d048d1b707454c
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- # This code is part of Qiskit. # # (C) Copyright IBM 2017, 2019. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. """ Timeslots for channels. """ from collections import defaultdict import itertools from typing import Tuple, Union, Optional from .channels import Channel from .exceptions import PulseError # pylint: disable=missing-return-doc class Interval: """Time interval.""" def __init__(self, start: int, stop: int): """Create an interval, (start, stop). Args: start: Starting value of interval stop: Stopping value of interval Raises: PulseError: when invalid time or duration is specified """ if start < 0: raise PulseError("Cannot create Interval with negative starting value") if stop < 0: raise PulseError("Cannot create Interval with negative stopping value") if start > stop: raise PulseError("Cannot create Interval with value start after stop") self._start = start self._stop = stop @property def start(self): """Start of interval.""" return self._start @property def stop(self): """Stop of interval.""" return self._stop @property def duration(self): """Duration of this interval.""" return self.stop - self.start def has_overlap(self, interval: 'Interval') -> bool: """Check if self has overlap with `interval`. Args: interval: interval to be examined Returns: bool: True if self has overlap with `interval` otherwise False """ return self.start < interval.stop and interval.start < self.stop def shift(self, time: int) -> 'Interval': """Return a new interval shifted by `time` from self Args: time: time to be shifted Returns: Interval: interval shifted by `time` """ return Interval(self.start + time, self.stop + time) def __eq__(self, other): """Two intervals are the same if they have the same starting and stopping values. Args: other (Interval): other Interval Returns: bool: are self and other equal. """ return self.start == other.start and self.stop == other.stop def stops_before(self, other): """Whether intervals stops at value less than or equal to the other interval's starting time. Args: other (Interval): other Interval Returns: bool: are self and other equal. """ return self.stop <= other.start def starts_after(self, other): """Whether intervals starts at value greater than or equal to the other interval's stopping time. Args: other (Interval): other Interval Returns: bool: are self and other equal. """ return self.start >= other.stop def __repr__(self): """Return a readable representation of Interval Object""" return "{}({}, {})".format(self.__class__.__name__, self.start, self.stop) class Timeslot: """Named tuple of (Interval, Channel).""" def __init__(self, interval: Interval, channel: Channel): self._interval = interval self._channel = channel @property def interval(self): """Interval of this time slot.""" return self._interval @property def channel(self): """Channel of this time slot.""" return self._channel @property def start(self): """Start of timeslot.""" return self.interval.start @property def stop(self): """Stop of timeslot.""" return self.interval.stop @property def duration(self): """Duration of this timeslot.""" return self.interval.duration def shift(self, time: int) -> 'Timeslot': """Return a new Timeslot shifted by `time`. Args: time: time to be shifted """ return Timeslot(self.interval.shift(time), self.channel) def has_overlap(self, other: 'Timeslot') -> bool: """Check if self has overlap with `interval`. Args: other: Other Timeslot to check for overlap with Returns: bool: True if intervals overlap and are on the same channel """ return self.interval.has_overlap(other) and self.channel == other.channel def __eq__(self, other) -> bool: """Two time-slots are the same if they have the same interval and channel. Args: other (Timeslot): other Timeslot """ return self.interval == other.interval and self.channel == other.channel def __repr__(self): """Return a readable representation of Timeslot Object""" return "{}({}, {})".format(self.__class__.__name__, self.channel, (self.interval.start, self.interval.stop)) class TimeslotCollection: """Collection of `Timeslot`s.""" def __init__(self, *timeslots: Union[Timeslot, 'TimeslotCollection']): """Create a new time-slot collection. Args: *timeslots: list of time slots Raises: PulseError: when overlapped time slots are specified """ self._table = defaultdict(list) for timeslot in timeslots: if isinstance(timeslot, TimeslotCollection): self._merge_timeslot_collection(timeslot) else: self._merge_timeslot(timeslot) @property def timeslots(self) -> Tuple[Timeslot]: """Sorted tuple of `Timeslot`s in collection.""" return tuple(itertools.chain.from_iterable(self._table.values())) @property def channels(self) -> Tuple[Timeslot]: """Channels within the timeslot collection.""" return tuple(k for k, v in self._table.items() if v) @property def start_time(self) -> int: """Return earliest start time in this collection.""" return self.ch_start_time(*self.channels) @property def stop_time(self) -> int: """Return maximum time of timeslots over all channels.""" return self.ch_stop_time(*self.channels) @property def duration(self) -> int: """Return maximum duration of timeslots over all channels.""" return self.stop_time def _merge_timeslot_collection(self, other: 'TimeslotCollection'): """Mutably merge timeslot collections into this TimeslotCollection. Args: other: TimeSlotCollection to merge """ for channel, other_ch_timeslots in other._table.items(): if channel not in self._table: self._table[channel] += other_ch_timeslots # extend to copy items else: # if channel is in self there might be an overlap for idx, other_ch_timeslot in enumerate(other_ch_timeslots): insert_idx = self._merge_timeslot(other_ch_timeslot) if insert_idx == len(self._table[channel]) - 1: # Timeslot was inserted at end of list. The rest can be appended. self._table[channel] += other_ch_timeslots[idx + 1:] break def _merge_timeslot(self, timeslot: Timeslot) -> int: """Mutably merge timeslots into this TimeslotCollection. Note timeslots are sorted internally on their respective channel Args: timeslot: Timeslot to merge Returns: int: Return the index in which timeslot was inserted Raises: PulseError: If timeslots overlap """ interval = timeslot.interval ch_timeslots = self._table[timeslot.channel] insert_idx = len(ch_timeslots) # merge timeslots by insertion sort. # Worst case O(n_channels), O(1) for append # could be improved by implementing an interval tree for ch_timeslot in reversed(ch_timeslots): ch_interval = ch_timeslot.interval if interval.start >= ch_interval.stop: break elif interval.has_overlap(ch_interval): raise PulseError("Timeslot: {0} overlaps with existing" "Timeslot: {1}".format(timeslot, ch_timeslot)) insert_idx -= 1 ch_timeslots.insert(insert_idx, timeslot) return insert_idx def ch_timeslots(self, channel: Channel) -> Tuple[Timeslot]: """Sorted tuple of `Timeslot`s for channel in this TimeslotCollection.""" if channel in self._table: return tuple(self._table[channel]) return tuple() def ch_start_time(self, *channels: Channel) -> int: """Return earliest start time in this collection. Args: *channels: Channels over which to obtain start_time. """ timeslots = list(itertools.chain(*(self._table[chan] for chan in channels if chan in self._table))) if timeslots: return min(timeslot.start for timeslot in timeslots) return 0 def ch_stop_time(self, *channels: Channel) -> int: """Return maximum time of timeslots over all channels. Args: *channels: Channels over which to obtain stop time. """ timeslots = list(itertools.chain(*(self._table[chan] for chan in channels if chan in self._table))) if timeslots: return max(timeslot.stop for timeslot in timeslots) return 0 def ch_duration(self, *channels: Channel) -> int: """Return maximum duration of timeslots over all channels. Args: *channels: Channels over which to obtain the duration. """ return self.ch_stop_time(*channels) def is_mergeable_with(self, other: 'TimeslotCollection') -> bool: """Return if self is mergeable with `timeslots`. Args: other: TimeslotCollection to be checked for mergeability """ common_channels = set(self.channels) & set(other.channels) for channel in common_channels: ch_timeslots = self.ch_timeslots(channel) other_ch_timeslots = other.ch_timeslots(channel) if ch_timeslots[-1].stop < other_ch_timeslots[0].start: continue # We are appending along this channel i = 0 # iterate through this j = 0 # iterate through other while i < len(ch_timeslots) and j < len(other_ch_timeslots): if ch_timeslots[i].interval.has_overlap(other_ch_timeslots[j].interval): return False if ch_timeslots[i].stop <= other_ch_timeslots[j].start: i += 1 else: j += 1 return True def merge(self, timeslots: 'TimeslotCollection') -> 'TimeslotCollection': """Return a new TimeslotCollection with `timeslots` merged into it. Args: timeslots: TimeslotCollection to be merged """ return TimeslotCollection(self, timeslots) def shift(self, time: int) -> 'TimeslotCollection': """Return a new TimeslotCollection shifted by `time`. Args: time: time to be shifted by """ slots = [slot.shift(time) for slot in self.timeslots] return TimeslotCollection(*slots) def complement(self, stop_time: Optional[int] = None) -> 'TimeslotCollection': """Return a complement TimeSlotCollection containing all unoccupied Timeslots within this TimeSlotCollection. Args: stop_time: Final time too which complement Timeslot's will be returned. If not set, defaults to last time in this TimeSlotCollection """ timeslots = [] stop_time = stop_time or self.stop_time for channel in self.channels: curr_time = 0 for timeslot in self.ch_timeslots(channel): next_time = timeslot.interval.start if next_time-curr_time > 0: timeslots.append(Timeslot(Interval(curr_time, next_time), channel)) curr_time = timeslot.interval.stop # pad out channel to stop_time if stop_time-curr_time > 0: timeslots.append(Timeslot(Interval(curr_time, stop_time), channel)) return TimeslotCollection(*timeslots) def __eq__(self, other) -> bool: """Two time-slot collections are the same if they have the same time-slots. Args: other (TimeslotCollection): other TimeslotCollection """ if set(self.channels) != set(other.channels): return False for channel in self.channels: if self.ch_timeslots(channel) != self.ch_timeslots(channel): return False return True def __repr__(self): """Return a readable representation of TimeslotCollection Object""" rep = dict() for key, val in self._table.items(): rep[key] = [(timeslot.start, timeslot.stop) for timeslot in val] return self.__class__.__name__ + str(rep)
32.456471
89
0.603741
13,044
0.945629
0
0
1,602
0.116137
0
0
5,982
0.433667
3ff2f2040265231a2d5824e04f8c8d39faec1ec0
22,499
py
Python
core/assembler.py
iahuang/scratch-gcc
bc4989f3dc54f0cdc3098f66078d17750c111bec
[ "MIT" ]
null
null
null
core/assembler.py
iahuang/scratch-gcc
bc4989f3dc54f0cdc3098f66078d17750c111bec
[ "MIT" ]
null
null
null
core/assembler.py
iahuang/scratch-gcc
bc4989f3dc54f0cdc3098f66078d17750c111bec
[ "MIT" ]
null
null
null
""" A basic two-pass MIPS assembler. Outputs a binary file in a custom format that can then be loaded into Scratch """ import struct import re import json import os """ Diagram of the Scratch MIPS VM memory space +--------------------- <- 0x0000000 | i/o space (see below) +--------------------- <- 0x0000100 | data segment +--------------------- | program | +--------------------- <- everything from here up ^^^ is included in the scratch binary file | | stack ^^^^ +--------------------- <- stack_pointer | uninitialized/heap | | +--------------------- <- mem_end Static memory segment for interfacing with the Scratch VM (256 bytes wide) Definitions for interfacing with this part of memory can be found in "lib/sys.h" io { 0x00000 char stdout_buffer - write to this address to print to the "console" 0x00004 uint32 mem_end - pointer to the last address in memory 0x00008 uint32 stack_start - pointer to the bottom of the stack 0x0000C uint8 halt - set this byte to halt execution of the program for whatever reason } ... Scratch executable binary format (the file outputted by Assembly.outputBinaryFile() ) header (100 bytes) { char[4] identifier - set to "SBIN" uint32 program_counter - the location in memory to begin execution uint32 stack_pointer - initial location of the stack pointer uint32 alloc_size - total amount of system memory to allocate } vvvv to be loaded in starting at address 0x00000000 program_data (n bytes) { byte[256] - i/o segment data (zero initialized) byte[n] - program data } """ class AssemblyMessage: def __init__(self, message, line=None): self.message = message self.line = line class InstructionArgument: """ Class that represents an instruction argument These are all examples of arguments: %hi(a) # hi value of address of label a %lo(a)($2) # r2 offset by lo value of address of label a 4($sp) # stack ptr offset by 4 $sp # register 29 -8 # constant integer -8 For an argument like 4($sp), the corresponding InstructionArgument returned by InstructionArgument.evaluate() would be: value: 29 # register number of the stack pointer offset: 4 Not all arguments will have a corresponding offset """ def __init__(self, value): self.value = value self.offset = None def __radd__(self, offset): self.offset = offset return self def __repr__(self): return f"<Argument value={self.value} offset={self.offset}>" @staticmethod def getRegisterNumber(registerName): """ Find the register number (0-31) from a mnemonic register name like "$fp" """ assert registerName[0] == "$", Exception( "Register name must start with $") registerName = registerName[1:] names = { "zero": 0, "gp": 28, "sp": 29, "fp": 30, "ra": 31 } if registerName in names: return names[registerName] else: return int(registerName) @staticmethod def evaluate(expr, labels=None): """ Evaluate the integer value of this argument. Requires a [labels] argument in case this instruction argument references a label. If this is the first pass, and we don't know the labels yet, set this to None. A placeholder label with at address 0 will be used instead. Return the value of this argument plus an AssemblyMessage argument if this operation returned an error, otherwise None """ # to evaluate these expressions, we're going to use eval(), since i dont feel like writing a parser # to mitigate security risks, we're going to restrict use of builtins and the global scope # per https://realpython.com/python-eval-function, panic if the name __class__ is used if "__class__" in expr: raise Exception("Name in expression not allowed") if not labels: # if we don't know any of the labels yet we're going to have to find them manually labels = {} # matches a string of characters that starts with a letter or underscore and is not preceded by # a $ or % for match in re.findall(r'(?<![$%])\b[a-zA-Z_]\w{0,}', string=expr): labels[match] = 0 # replace the % operator prefix with two underscores (%hi -> __hi) expr = expr.replace("%", "__") # replace instances of stuff like, 4($sp) with 4+($sp) def repl(matchObject: re.Match): boundary = matchObject.group() return boundary[0]+"+"+boundary[1] # match boundaries between a symbol and an opening parentheses expr = re.sub(r'[\d\)]\(', repl=repl, string=expr) # replace $sp, $31, etc. with a getRegisterNumber expression def repl(matchObject: re.Match): registerName = matchObject.group() return '__reg("{}")'.format(registerName) expr = re.sub(r'\$\w+', repl=repl, string=expr) # build global scope with relevant operator definitions and variables globalScope = { "__builtins__": {}, # used to prevent security risks "__reg": lambda r: InstructionArgument(InstructionArgument.getRegisterNumber(r)), "__lo": lambda n: (n << 16) >> 16, # find low 16 bits of word "__hi": lambda n: (n >> 16) # find high 16 bits of word } # insert label definitions into global scope for labelName, labelAddress in labels.items(): globalScope[labelName] = labelAddress evald = 0 # default to 0 in case there is an error parsing err = None try: evald = eval(expr, globalScope, {}) except NameError as e: nameNotDefined = str(e).split("'")[1] # parse from the exception err = AssemblyMessage(f'Label "{nameNotDefined}" is not defined') except SyntaxError as e: err = AssemblyMessage(f'Syntax Error') if type(evald) == int: return InstructionArgument(evald), err return evald, err """ Utility class for loading and packing arguments into a 32-bit instruction """ class MIPSInstructionFormat: def __init__(self, name=None): self.name = name self._args = [] def argument(self, name, bits): self._args.append([name, bits]) return self @property def argNames(self): return list([a[0] for a in self._args]) def _toBits(self, n, numBits): """ convert [n] into a bit array [numBits] bits long example: _toBits(50, 6) -> [1, 1, 0, 0, 1, 0] """ bitArray = [] for i in range(0, numBits): positionValue = 2**(i) bit = (n//positionValue) % 2 bitArray.insert(0, bit) return bitArray def _bitsToInt(self, bitArray): """ convert [bitArray] into a single number example: _bitArrayToInt([1, 1, 0, 0, 1, 0]) -> 50 (0b110010) """ n = 0 for i in range(len(bitArray)-1, -1, -1): positionValue = 2**(len(bitArray)-i-1) bit = bitArray[i] n += bit*positionValue return n def byteCodeFromArgs(self, argValues): """ With the provided argument values, create a bytes-like representation of an instruction with this format """ bits = [] for argName, argSize in self._args: bits += self._toBits(argValues[argName], argSize) # Use big endian so the order is correct idk man return struct.pack(">I", self._bitsToInt(bits)) def buildInstructionCode(self, argFormatString, argStrings, presetArgs={}, labels=None): """ Build a complete sequence of bytes representing the finished instruction given unparsed and preset instruction arguments Arguments: argFormatString - a string dictating how to parse the values provided in argStrings argStrings - a list of strings directly corresponding to the arguments of the instruction presetArgs - other arguments to be set manually (not parsed) labels - assembler label table to assist in parsing (not required for first-pass) argFormat examples: "rs,rt,imm" // args[0] is rs, args[1] is rt and so on "rs,imm+rt" // args[0] is rs, args[1] is rt offset by imm """ # parse argFormat argCorresponding = [arg.split("+") for arg in argFormatString.split(",")] # parse arg strings argValues = {k:v for k,v in presetArgs.items()} # copy presetArgs into argValues to avoid modifying the argument errors = [] # any errors that arose from parsing for argFormat, argExpr in zip(argCorresponding, argStrings): if len(argFormat) == 1: # no offset argName = argFormat[0] val, err = InstructionArgument.evaluate(argExpr, labels) argValues[argName] = val.value if err: errors.append(err) else: # there is an offset offsetArgName, argName = argFormat argParsed = InstructionArgument.evaluate(argExpr) val, err = argParsed argValues[argName] = val.value offset = 0 # default to 0 if no offset parsable if val.offset == None: # if there was no offset parsable, add an error errors.append(AssemblyMessage(f'Argument of format "{argFormat}" expected offset, but none was found')) else: offset = val.offset argValues[offsetArgName] = offset if err: errors.append(err) # fill missing arguments with value 0 for requiredArg in self.argNames: if not requiredArg in argValues: argValues[requiredArg] = 0 # check for extraneous arguments for suppliedArg in argValues: if not suppliedArg in self.argNames: errors.append(AssemblyMessage(f'Extraneous argument with name "{suppliedArg}"')) code = InstructionFormats.IType.byteCodeFromArgs(argValues) return code, errors a class InstructionFormats: IType = ( MIPSInstructionFormat() .argument("op", bits=6) .argument("rs", bits=5) .argument("rt", bits=5) .argument("imm", bits=16) ) RType = ( MIPSInstructionFormat() .argument("op", bits=6) .argument("rs", bits=5) .argument("rt", bits=5) .argument("rd", bits=5) .argument("func", bits=6) ) JType = ( MIPSInstructionFormat() .argument("op", bits=6) .argument("addr", bits=26) ) class AssemblerDataTable: """ A wrapper for a file containing information about the various instructions and assembly symbols for the assembler to use """ def __init__(self, tableFile): with open(tableFile) as fl: _data = json.load(fl) self.meta = _data["meta"] self.ignoredDirectives = _data["directives"]["ignore"] self.itypeInstructions = _data["instructions"]["i_type"] class Assembly: def __init__(self): # Stores labels [labelName : codePosition] self.labels = {} # Stores forward references to labels [codePosition : labelName] self.labelReferences = {} # Stores forward references to labels in the code [lineNumber : labelName] # Sole purpose of outputting error messages for invalid label names self.codeLabelReferences = {} # Debug: self.machCodeLines = [] self.positionAtLastLine = 0 # Outputted machine code self.machCode = bytearray() self.currentPos = 0 # Current line number in processing self.currentLine = 1 # Any warnings or errors created during assembly self.errors: list[AssemblyMessage] = [] self.warnings: list[AssemblyMessage] = [] # Contents of current source file (split by line) self.sourceLines = [] # Has this source been processed yet? (Assembly source can only be processed once per Assembly instance) self.polluted = False # data table dataTablePath = os.path.dirname(os.path.realpath(__file__)) self.asmDataTable = AssemblerDataTable(dataTablePath+"/asm_data_table.json") # other self.ident = None # the info set by the .ident directive # Settings self.WARN_UNKNOWN_DIRECTIVE = True self.MAX_STACK_SIZE = 1024 self.MAX_HEAP_SIZE = 0 # VM Constants self._IO_SPACE_SIZE = 256 def addBytesToCode(self, bytes): for b in bytes: self.machCode.append(b) self.currentPos += 1 def toWord(self, n: int): # Converts an int32 to an array of four bytes return struct.pack("I", n) def createWarning(self, message): # Creates a new assembler warning at the current line self.warnings.append( AssemblyMessage(message, self.currentLine) ) def createError(self, message): # Creates a new assembler error at the current line self.errors.append( AssemblyMessage(message, self.currentLine) ) def onDirective(self, directive, args, isFirstPass): if directive == "word": self.addBytesToCode(self.toWord(int(args[0]))) elif directive == "ident": self.ident = args[0] elif directive in self.asmDataTable.ignoredDirectives: pass else: if self.WARN_UNKNOWN_DIRECTIVE and isFirstPass: msg = 'Unknown assembler directive "{}"'.format(directive) self.createWarning(msg) def onLabel(self, labelName): self.labels[labelName] = self.currentPos def trackErrorsToCurrentLine(self, errors): """ Add list of errors to current assembly errors. Sets the line number of these errors to the current line number """ # track errors for err in errors: # errors that were created by the parsing function # did not track the line number err.line = self.currentLine self.errors.append(err) def onInstruction(self, instruction, args, isFirstPass): # Process pseudo-instructions if instruction == "nop": return self.onInstruction("sll", ["$zero", "$zero", "0"], isFirstPass) labels = None if isFirstPass else self.labels # Process I-Type instructions if instruction in self.asmDataTable.itypeInstructions: instructionData = self.asmDataTable.itypeInstructions[instruction] argFormat = instructionData["arg_format"] opcode = instructionData["opcode"] code, errors = InstructionFormats.IType.buildInstructionCode( argFormatString=argFormat, argStrings=args, presetArgs={"op": opcode}, labels=labels ) self.trackErrorsToCurrentLine(errors) self.addBytesToCode(code) return self.createError('Unknown instruction "{}"'.format(instruction)) def loadSourceFile(self, fl): if self.sourceLines: raise Exception("Assembly source already loaded") with open(fl) as fl: flContents = fl.read() # Convert windows line endings to unix ones flContents = flContents.replace("\r\n", "\n") self.sourceLines = flContents.split("\n") def runPass(self, isFirstPass=True): # adds i/o space to program for i in range(self._IO_SPACE_SIZE): self.addBytesToCode(bytes([0])) for line in self.sourceLines: self.processLine(line, isFirstPass=isFirstPass) # for debug purposes only bytesAddedThisLine = self.machCode[self.positionAtLastLine:] self.machCodeLines.append(bytesAddedThisLine) self.positionAtLastLine = self.currentPos def assemble(self, verbose=True): if self.polluted: raise Exception( "Assembly source can only be processed once per Assembly instance") self.runPass() # reset variables and whatnot for the second pass self.currentPos = 0 self.currentLine = 1 self.machCode = bytearray() self.runPass(isFirstPass=False) self.polluted = True if verbose: for error in self.errors: print("Error:", error.message) print(' on line {}: "{}"'.format( error.line, self.sourceLines[error.line-1].strip())) print() for warn in self.warnings: print("Warning:", warn.message) print(' on line {}: "{}"'.format( warn.line, self.sourceLines[warn.line-1].strip())) print() print("Assembly finished with {} errors and {} warnings".format( len(self.errors), len(self.warnings) )) def _removeComments(self, line): """ return [line] with any comments removed """ if not "#" in line: return line # Find the first instance of a # character that isn't enclosed inside a string for i, c in enumerate(line): if c == "#": if not self._isCharEnclosed(i, line): return line[:i] def _split(self, string, delimiter): """ split [string] on any delimiters that aren't enclosed in strings. delimiter can only be one character """ segment = "" segments = [] for i, c in enumerate(string): if c == delimiter and not self._isCharEnclosed(i, string): segments.append(segment) segment = "" else: segment += c if segment: segments.append(segment) return segments def _isCharEnclosed(self, charIndex, string): """ Return true if the character at charIndex is enclosed in double quotes (a string) """ numQuotes = 0 # if the number of quotes past this character is odd, than this character lies inside a string for i in range(charIndex, len(string)): if string[i] == '"': numQuotes += 1 return numQuotes % 2 == 1 def processLine(self, line, isFirstPass): # Determine type of line line = line.strip() # remove trailing and leading whitespace line = self._removeComments(line) # remove comments from line # Convert tabs into single spaces (makes parsing easier) line = line.replace("\t", " ") # Remove comments if line == "": # is line empty? return elif line.endswith(":"): # is the line a label? if not isFirstPass: return # don't parse labels twice self.onLabel(line.rstrip(":")) elif line.startswith("."): # is the line a directive? line = line.lstrip(".") # remove the dot from the directive # results in a thing like ["align", "2"] parts = self._split(line, " ") directive = parts[0] argString = "" # there might not be any arguments if len(parts) > 1: argString = parts[1] args = self._split(argString, ",") # remove surrounding whitespace from arguments (usually only applicable if the commas args = list([arg.strip() for arg in args]) # separating the arguments have trailing spaces) self.onDirective(directive, args, isFirstPass) else: # it's probably an instruction # results in a thing like ["lui", "$2,%hi(a)"] parts = self._split(line, " ") instruction = parts[0] argString = "" # there might not be any arguments if len(parts) > 1: argString = parts[1] args = self._split(argString, ",") # remove surrounding whitespace from arguments (usually only applicable if the commas args = list([arg.strip() for arg in args]) # separating the arguments have trailing spaces) self.onInstruction(instruction, args, isFirstPass) self.currentLine += 1 def findEntryPoint(self): """ return memory address of main routine """ return self.labels["main"] def getMachineCode(self): return bytes(self.machCode) def makeHeader(self, programSize, programCounter, stackSize, heapSize): # see header format above headerFormat = "IIII" totalMemorySize = programSize+stackSize+heapSize stackPointer = programSize+stackSize structData = [0x4E494253, programCounter, stackPointer, totalMemorySize] return struct.pack(headerFormat, *structData) def exportAsBinary(self, filename): # see format above with open(filename, 'wb') as fl: programData = self.getMachineCode() header = self.makeHeader( programSize=len(programData), programCounter=self.findEntryPoint(), stackSize=self.MAX_STACK_SIZE, heapSize=self.MAX_HEAP_SIZE ) fl.write(header + programData) def exportDebugFile(self, filename): with open(filename, "w") as fl: for sourceLine, lineCode in zip(self.sourceLines, self.machCodeLines): fl.write(sourceLine+"\n") if lineCode: codeHex = lineCode.hex(" ") codeBin = "" for i in range(0, len(lineCode)): byte = lineCode[i] codeBin += "{:08b}".format(byte)+" " fl.write(f" [{codeHex}] {codeBin}\n\n")
34.089394
126
0.586382
20,702
0.92013
0
0
3,724
0.165518
0
0
8,873
0.394373
3ff3b22779c14ce17a4d6563f15286360782e0ac
3,237
py
Python
qvdfile/tests/test_qvdfile.py
cosmocracy/qvdfile
c1f92ec153c07f607fd57c6f6679e3c7269d643e
[ "Apache-2.0" ]
17
2019-07-18T12:50:33.000Z
2021-05-25T06:26:45.000Z
qvdfile/tests/test_qvdfile.py
cosmocracy/qvdfile
c1f92ec153c07f607fd57c6f6679e3c7269d643e
[ "Apache-2.0" ]
2
2021-05-15T03:53:08.000Z
2021-07-22T14:31:15.000Z
qvdfile/tests/test_qvdfile.py
cosmocracy/qvdfile
c1f92ec153c07f607fd57c6f6679e3c7269d643e
[ "Apache-2.0" ]
5
2019-07-18T12:55:31.000Z
2021-12-21T15:09:37.000Z
import pytest import errno import os import glob import shutil import xml.etree.ElementTree as ET from qvdfile.qvdfile import QvdFile, BadFormat @pytest.fixture(scope="function") def qvd(): """ standard setup for most of the tests """ yield QvdFile("data/tab1.qvd") @pytest.fixture(scope="function") def bigqvd(): """ standard setup for tests with bigger qvd""" yield QvdFile("data/tab2.qvd") # READING QVD ================================================================== # init def test_init_smoke(qvd): # metadata is in attribs assert "TableName" in qvd.attribs.keys() assert qvd.attribs["TableName"] == "tab1" # fields info is in fields assert len(qvd.fields) == 3 assert "ID" in [ f["FieldName"] for f in qvd.fields ] def test_init_no_file(): with pytest.raises(FileNotFoundError): qvd = QvdFile("data/no_such_file.qvd") def test_init_not_qvd_or_bad_file(): with pytest.raises(BadFormat): qvd = QvdFile(__file__) # getFieldVal def test_get_field_val_smoke(qvd): assert qvd.getFieldVal("ID",0) == "123.12" assert qvd.getFieldVal("NAME",2) == "Vaysa" assert qvd.getFieldVal("ONEVAL",0) == "0" def test_get_field_val_bad_name(qvd): with pytest.raises(KeyError): qvd.getFieldVal("NOFILED",0) def test_get_field_val_bad_index(qvd): with pytest.raises(IndexError): qvd.getFieldVal("ID",10) # fieldsInRow def test_fields_in_row_smoke(qvd): rowf = qvd.fieldsInRow() assert next(rowf)["FieldName"] == "NAME" assert next(rowf)["FieldName"] == "ID" with pytest.raises(StopIteration): next(rowf) def test_fields_in_row_bigger(bigqvd): rowf = bigqvd.fieldsInRow() assert next(rowf)["FieldName"] == "NAME" assert next(rowf)["FieldName"] == "PHONE" assert next(rowf)["FieldName"] == "VAL" assert next(rowf)["FieldName"] == "ID" with pytest.raises(StopIteration): next(rowf) # createMask def test_create_mask_smoke(qvd): assert qvd.createMask() == "uint:5,uint:3" def test_create_mask_bigger(bigqvd): assert bigqvd.createMask() == "uint:6,uint:5,uint:5,uint:8" # getRow def test_get_row_smoke(qvd): row = qvd.getRow(0) assert row["ID"] == "123.12" assert row["NAME"] == "Pete" assert row["ONEVAL"] == "0" def test_get_row_bad_index(qvd): with pytest.raises(IndexError): qvd.getRow(10) def test_get_row_null(qvd): row = qvd.getRow(4) assert row["ID"] == qvd.NoneValueStr def test_get_row_bigger(bigqvd): row = bigqvd.getRow(0) assert row["ID"] == "1" assert row["VAL"] == "100001" assert row["NAME"] == "Pete1" assert row["PHONE"] == "1234567890" assert row["SINGLE"] == "single value" def test_get_row_bigger_nulls(bigqvd): row = bigqvd.getRow(17) assert row["ID"] == "-18" assert row["VAL"] == bigqvd.NoneValueStr assert row["NAME"] == "Pete17" assert row["PHONE"] == bigqvd.NoneValueStr assert row["SINGLE"] == "single value" # WRITING QVD =================================================================== # code and tests will follow....
22.957447
81
0.611369
0
0
196
0.06055
264
0.081557
0
0
863
0.266605
3ff5387e0936b375509e91f2742e4bc5ae6feee1
4,221
py
Python
app/__init__.py
i2nes/app-engine-blog
94cdc25674c946ad643f7f140cbedf095773de3f
[ "MIT" ]
null
null
null
app/__init__.py
i2nes/app-engine-blog
94cdc25674c946ad643f7f140cbedf095773de3f
[ "MIT" ]
null
null
null
app/__init__.py
i2nes/app-engine-blog
94cdc25674c946ad643f7f140cbedf095773de3f
[ "MIT" ]
null
null
null
from flask import Flask from app.models import Article, Feature import logging def create_app(config, blog_config): """This initiates the Flask app and starts your app engine instance. Startup Steps: 1. Instantiate the Flask app with the config settings. 2. Register bluprints. 3. Create the Contact and About Pages in the datastore if they don't exist yet. 4. Load the blog_config settings from the datatstore. Or add them if they don't exist yet. """ logging.info('STARTUP: Getting ready to launch the Flask App') app = Flask(__name__) app.config.update(config) # Register blueprints logging.info('STARTUP: Register Blueprints') from .main import app as main_blueprint app.register_blueprint(main_blueprint, url_prefix='/') from .editor import app as editor_blueprint app.register_blueprint(editor_blueprint, url_prefix='/editor') # Add Contact and About pages to the datastore when first launching the blog logging.info('STARTUP: Set up Contact and About pages') # Contact page creation query = Article.query(Article.slug == 'contact-page') result = query.fetch(1) if result: logging.info('STARTUP: Contact page exists') else: logging.info('STARTUP: Creating a contact page') contact_page = Article() contact_page.title1 = 'Contact Me' contact_page.title2 = 'Have questions? I have answers (maybe).' contact_page.slug = 'contact-page' contact_page.author = '' contact_page.content = 'Want to get in touch with me? Fill out the form below to send me a message and I ' \ 'will try to get back to you within 24 hours! ' contact_page.published = False contact_page.put() # About page creation query = Article.query(Article.slug == 'about-page') result = query.fetch(1) if result: logging.info('STARTUP: About page exists') else: logging.info('STARTUP: Creating an about page') about_page = Article() about_page.title1 = 'About Me' about_page.title2 = 'This is what I do.' about_page.slug = 'about-page' about_page.author = '' about_page.content = '' about_page.published = False about_page.put() # Register blog configurations # The Blog is initially configured with blog_conf settings # The settings are added to the datastore and will take precedence from now on # You can change the settings in the datastore. # The settings are only updated on Startup, so you need to restart the instances to apply changes. logging.info('STARTUP: Register Blog Configurations') query = Feature.query() for feature in blog_config: # TODO: Add the accesslist to the datastore. The access list is still read only from the config file. if feature == 'EDITOR_ACCESS_LIST': pass # TODO: The posts limit is an int and needs to be converted. Find a better way of doing this. elif feature == 'POSTS_LIST_LIMIT': result = query.filter(Feature.title == feature).fetch() if result: logging.info('STARTUP: Loading {}'.format(result[0].title)) blog_config['POSTS_LIST_LIMIT'] = int(result[0].value) else: logging.info('STARTUP: Adding to datastore: {}'.format(feature)) f = Feature() f.title = feature f.value = str(blog_config[feature]) f.put() # Load the configs or add them to the datastore if they don't exist yet else: result = query.filter(Feature.title == feature).fetch() if result: logging.info('STARTUP: Loading {}'.format(result[0].title)) blog_config[result[0].title] = result[0].value else: logging.info('STARTUP: Adding to datastore: {}'.format(feature)) f = Feature() f.title = feature f.value = blog_config[feature] f.put() # Startup complete logging.info('STARTUP: READY TO ROCK!!!') return app
33.768
116
0.630419
0
0
0
0
0
0
0
0
1,854
0.439232
3ff664299cdf95218a7f9411379521d7b5cdbaa4
430
py
Python
libs/msfpayload.py
darkoperator/SideStep
2c75af77ee2241595de4c65d7e4f8342dcc0bb50
[ "BSL-1.0" ]
3
2015-09-16T16:09:14.000Z
2017-01-14T21:53:08.000Z
libs/msfpayload.py
darkoperator/SideStep
2c75af77ee2241595de4c65d7e4f8342dcc0bb50
[ "BSL-1.0" ]
null
null
null
libs/msfpayload.py
darkoperator/SideStep
2c75af77ee2241595de4c65d7e4f8342dcc0bb50
[ "BSL-1.0" ]
2
2016-04-22T04:44:50.000Z
2021-12-18T15:12:22.000Z
""" Generates the Meterpreter payload from msfvenom """ import subprocess def payloadGenerator(msfpath, msfvenom, msfpayload, ip, port): payload = subprocess.Popen('ruby ' + msfpath + msfvenom + ' -p ' + msfpayload + ' LHOST=' + ip + ' LPORT=' + str(port) + ' EXITFUNC=thread -e x86/alpha_mixed -f raw BufferRegister=EAX', stdout=subprocess.PIPE, stderr=subprocess.PIPE, stdin=subprocess.PIPE).communicate()[0] return payload
53.75
275
0.727907
0
0
0
0
0
0
0
0
149
0.346512
3ff6b1161dba69f783ae2e124e780852ea91eaaa
9,689
py
Python
RevitPythonShell_Scripts/GoogleTools.extension/GoogleTools.tab/Ontologies.Panel/BOS_SetValues.pushbutton/script.py
arupiot/create_revit_families
9beab3c7e242426b2dca99ca5477fdb433e39db2
[ "MIT" ]
1
2021-02-04T18:20:58.000Z
2021-02-04T18:20:58.000Z
RevitPythonShell_Scripts/GoogleTools.extension/GoogleTools.tab/Ontologies.Panel/BOS_SetValues.pushbutton/script.py
arupiot/DBOTools
9beab3c7e242426b2dca99ca5477fdb433e39db2
[ "MIT" ]
null
null
null
RevitPythonShell_Scripts/GoogleTools.extension/GoogleTools.tab/Ontologies.Panel/BOS_SetValues.pushbutton/script.py
arupiot/DBOTools
9beab3c7e242426b2dca99ca5477fdb433e39db2
[ "MIT" ]
null
null
null
# Select an element # Open yaml file with entity types # If parameters are already present, set values according to yaml input import sys import clr import System import rpw import yaml import pprint from System.Collections.Generic import * clr.AddReference("RevitAPI") from Autodesk.Revit.DB import * from rpw.ui.forms import * from Autodesk.Revit.UI.Selection import ObjectType doc = __revit__.ActiveUIDocument.Document uidoc = __revit__.ActiveUIDocument app = doc.Application pp = pprint.PrettyPrinter(indent=1) shared_param_file = app.OpenSharedParameterFile() selection = [doc.GetElement(element_Id) for element_Id in uidoc.Selection.GetElementIds()] def createnewgroup(shared_parameter_file, new_group_name): try: newgroup = shared_parameter_file.Groups.Create(new_group_name) print("Group successfully created with name: {}".format(new_group_name)) except: all_groups = [] for group in shared_parameter_file.Groups: all_groups.append(group.Name) if new_group_name in all_groups: print("A group already exists with the following name: {}".format(new_group_name)) for group in shared_parameter_file.Groups: if group.Name == new_group_name: newgroup = group else: print("Something went wrong. The group with name {} was not created. Please check Shared Parameter File is not read-only.".format(new_group_name)) sys.exit("Script has ended") return newgroup def builtinGroupFromName(builtin_group_name): b_i_groups = System.Enum.GetValues(BuiltInParameterGroup) builtin_group = None for g in b_i_groups: if g.ToString() == builtin_group_name: builtin_group = g if builtin_group != None: return builtin_group else: print("Built-in Group not valid: {}".format(builtin_group_name)) return None def parameterName2ExternalDefinition(sharedParamFile, definitionName): """ Given the name of a parameter, return the definition from the shared parameter file """ externalDefinition = None for group in sharedParamFile.Groups: for definition in group.Definitions: if definition.Name == definitionName: externalDefinition = definition return externalDefinition def NameAndGroup2ExternalDefinition(sharedParamFile, definitionName, groupName): external_definition = None group_found = False group_matches = None for group in sharedParamFile.Groups: if group.Name == groupName: group_found = True group_matches = group if group_found == True: for definition in group_matches.Definitions: if definition.Name == definitionName: external_definition = definition else: print("Group not found with name: {}".format(groupName)) return external_definition def create_definition (group_name, shared_parameter_file, param_name, param_type, usermodifiable, description): new_definition = None group_matches = False group = None definition_matches = False for existing_group in shared_parameter_file.Groups: if existing_group.Name == group_name: group_matches = True group = existing_group print("Group_matches: {}".format(group_matches)) if group_matches == True: for existing_definition in group.Definitions: if existing_definition.Name == param_name: definition_matches = True print("Definition matches:".format(definition_matches)) if definition_matches == False: ext_def_creation_options = ExternalDefinitionCreationOptions(param_name, param_type) ext_def_creation_options.UserModifiable = usermodifiable ext_def_creation_options.Description = description new_definition = group.Definitions.Create(ext_def_creation_options) print("Created external definition \"{}\" in group \"{}\"".format(new_definition.Name, group.Name)) else: print("Extenal definition already exists with name \"{}\" in group \"{}\"".format(param_name, group.Name)) else: print("Group doesn't match") family_instances = [] not_family_instances = [] print("Selected {} items".format(len(selection))) for item in selection: if type(item).__name__ == "FamilyInstance": family_instances.append(item) else: not_family_instances.append(item) print("The following elements are family instances and will receive the parameter values from the ontology:") if family_instances == []: print("None") else: print([item.Id.ToString() for item in family_instances]) print("The following elements are not family instances and will be dropped from the selection:") if not_family_instances == []: print("None") else: print([item.Id.ToString() for item in not_family_instances]) yaml_path = select_file("Yaml File (*.yaml)|*.yaml", "Select the yaml file with the parameters", multiple = False, restore_directory = True) if yaml_path: with open(yaml_path, "r") as stream: ontology_yaml = yaml.safe_load(stream) file_name_split = yaml_path.split("\\") file_name_with_ext = file_name_split[-1] file_name_with_ext_split = file_name_with_ext.split(".") group_name = file_name_with_ext_split[0] canonical_types = dict(filter(lambda elem : elem[1].get("is_canonical") == True, ontology_yaml.items())) parameter_names = [] for canonical_type in canonical_types.items(): implements_params = canonical_type[1]["implements"] for implement_param in implements_params: parameter_names.append(implement_param) parameter_names = list(dict.fromkeys(parameter_names)) param_names_with_prefix = [] for pn in parameter_names: param_name_with_prefix = "Implements_" + pn param_names_with_prefix.append(param_name_with_prefix) param_names_with_prefix.append("Entity_Type") #print(param_names_with_prefix) # Check if item has the parameters: print("Checking if family instances have the required parameters...") for family_instance in family_instances: all_params = family_instance.Parameters all_params_names = [param.Definition.Name for param in all_params] #pp.pprint(all_params_names) missing_params = [] for param_name in param_names_with_prefix: if param_name in all_params_names: pass else: missing_params.append(param_name) if missing_params == []: print("Family instance {} has all required parameters.".format(family_instance.Id.ToString())) else: print("Family instance {} is missing the following parameters".format(family_instance.Id)) pp.pprint(missing_params) family_instances.remove(family_instance) print("Family instance {} removed from the list of objects to modify") # ADD SELECTION OF TYPE THROUGH MENU print("Please select an entity type from the yaml ontology...") form_title = "Select an entity type:" canonical_types = dict(filter(lambda elem : elem[1].get("is_canonical") == True, ontology_yaml.items())) options = canonical_types.keys() entity_type_name = rpw.ui.forms.SelectFromList(form_title,options,description=None,sort=True,exit_on_close=True) entity_type_dict = (dict(filter(lambda elem: elem [0] == entity_type_name, canonical_types.items()))) print("Printing selected entity type:") pp.pprint(entity_type_dict) implements = entity_type_dict[entity_type_name]["implements"] params_to_edit_names = [] for i in implements: params_to_edit_names.append("Implements_"+i) print(params_to_edit_names) print("The following instances will be modified according to Entity Type: {}".format(entity_type_name)) pp.pprint(family_instances) warnings = [] t = Transaction(doc, "Populate BOS parameters") t.Start() for family_instance in family_instances: print("Editing family instance {}...".format(family_instance.Id.ToString())) # MODIFY ENTITY TYPE try: p_entity_type = family_instance.LookupParameter("Entity_Type") p_entity_type.Set(entity_type_name) print("Entity_Type parameter successfully edited for family instance {}.".format(family_instance.Id.ToString())) except: message = "Couldn't edit parameter Entity_Type for family instance {}.".format(family_instance.Id.ToString()) warnings.append(message) # MODIFY YESNO PARAMETERS all_implements_params = [] for p in family_instance.Parameters: if "Implements_" in p.Definition.Name: all_implements_params.append(p) for p in all_implements_params: try: if p.Definition.Name in params_to_edit_names: p.Set(True) else: p.Set(False) print("{} parameter successfully edited for family instance {}.".format(p.Definition.Name, family_instance.Id.ToString())) except: message = "Couldn't edit parameter {} for family instance {}.".format(p.Definition.Name, family_instance.Id.ToString()) warnings.append(message) t.Commit() print("Script has ended") if warnings == []: print("Warnings: None") else: print("Warnings:") for w in warnings: print(w)
38.601594
158
0.680462
0
0
0
0
0
0
0
0
2,064
0.213025
3ff6bad744395c2228278988f9b9886b23c17ebf
8,110
py
Python
Code/src/models/optim/SimCLR_trainer.py
antoine-spahr/X-ray-Anomaly-Detection
850b6195d6290a50eee865b4d5a66f5db5260e8f
[ "MIT" ]
2
2020-10-12T08:25:13.000Z
2021-08-16T08:43:43.000Z
Code/src/models/optim/SimCLR_trainer.py
antoine-spahr/X-ray-Anomaly-Detection
850b6195d6290a50eee865b4d5a66f5db5260e8f
[ "MIT" ]
null
null
null
Code/src/models/optim/SimCLR_trainer.py
antoine-spahr/X-ray-Anomaly-Detection
850b6195d6290a50eee865b4d5a66f5db5260e8f
[ "MIT" ]
1
2020-06-17T07:40:17.000Z
2020-06-17T07:40:17.000Z
import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim import numpy as np import time import logging from sklearn.manifold import TSNE from src.models.optim.CustomLosses import NT_Xent_loss, SupervisedContrastiveLoss from src.utils.utils import print_progessbar class SimCLR_trainer: """ """ def __init__(self, tau, n_epoch=100, batch_size=32,lr=1e-3, weight_decay=1e-6, lr_milestones=(), n_job_dataloader=0, supervised_loss=False, device='cuda', print_batch_progress=False): """ """ self.tau = tau self.n_epoch = n_epoch self.batch_size = batch_size self.lr = lr self.weight_decay = weight_decay self.lr_milestones = lr_milestones self.n_job_dataloader = n_job_dataloader self.supervised_loss = supervised_loss self.device = device self.print_batch_progress = print_batch_progress self.train_time = None self.train_loss = None self.eval_repr = None def train(self, dataset, net, valid_dataset=None): """ dataset yield two batch of images with different transformations Train on NT-Xent loss """ logger = logging.getLogger() # make dataloader (with drop_last = True to ensure that the loss can be computed) train_loader = torch.utils.data.DataLoader(dataset, batch_size=self.batch_size, shuffle=True, num_workers=self.n_job_dataloader, drop_last=True) # put net on device net = net.to(self.device) # define loss function, supervised or self-supervised if self.supervised_loss: loss_fn = SupervisedContrastiveLoss(self.tau, self.batch_size, y_list=[1], device=self.device) else: loss_fn = NT_Xent_loss(self.tau, self.batch_size, device=self.device) # define the optimizer optimizer = optim.Adam(net.parameters(), lr=self.lr, weight_decay=self.weight_decay) # define the learning rate scheduler : 90% reduction at each steps scheduler = optim.lr_scheduler.MultiStepLR(optimizer, milestones=self.lr_milestones, gamma=0.1) # Training logger.info('Start Training SimCLR.') start_time = time.time() epoch_loss_list = [] n_batch = len(train_loader) for epoch in range(self.n_epoch): net.train() epoch_loss = 0.0 epoch_start_time = time.time() for b, data in enumerate(train_loader): # get data on device input_1, input_2, semi_label, _ = data input_1 = input_1.to(self.device).float().requires_grad_(True) input_2 = input_2.to(self.device).float().requires_grad_(True) semi_label = semi_label.to(self.device) # Update by Backpropagation : Fowrad + Backward + step optimizer.zero_grad() _, z_1 = net(input_1) _, z_2 = net(input_2) # normalize embeddings z_1 = F.normalize(z_1, dim=1) z_2 = F.normalize(z_2, dim=1) # compute the loss if self.supervised_loss: y = torch.where(semi_label == -1, torch.ones_like(semi_label), torch.zeros_like(semi_label)) # generate labels (1 if known abnormal, else it's considered normal) loss = loss_fn(z_1, z_2, y) else: loss = loss_fn(z_1, z_2) loss.backward() optimizer.step() epoch_loss += loss.item() if self.print_batch_progress: print_progessbar(b, n_batch, Name='\t\tTrain Batch', Size=40, erase=True) # compute valid_loss if required valid_loss = '' if valid_dataset: loss = self.evaluate(valid_dataset, net, save_tSNE=False, return_loss=True, print_to_logger=False) valid_loss = f' Valid Loss {loss:.6f} |' # display epoch statistics logger.info(f'----| Epoch {epoch + 1:03}/{self.n_epoch:03} ' f'| Time {time.time() - epoch_start_time:.3f} [s]' f'| Loss {epoch_loss / n_batch:.6f} |' + valid_loss) # store loss epoch_loss_list.append([epoch+1, epoch_loss/n_batch]) # update learning rate if milestone is reached scheduler.step() if epoch + 1 in self.lr_milestones: logger.info(f'---- LR Scheduler : new learning rate {scheduler.get_lr()[0]:g}') # Save results self.train_time = time.time() - start_time self.train_loss = epoch_loss_list logger.info(f'---- Finished Training SimCLR in {self.train_time:.3f} [s].') return net def evaluate(self, dataset, net, save_tSNE=False, return_loss=True, print_to_logger=True): """ """ if print_to_logger: logger = logging.getLogger() # make dataloader (with drop_last = True to ensure that the loss can be computed) loader = torch.utils.data.DataLoader(dataset, batch_size=self.batch_size, shuffle=True, num_workers=self.n_job_dataloader, drop_last=True) # put net on device net = net.to(self.device) # define loss function, supervised or self-supervised if self.supervised_loss: loss_fn = SupervisedContrastiveLoss(self.tau, self.batch_size, y_list=[1], device=self.device) else: loss_fn = NT_Xent_loss(self.tau, self.batch_size, device=self.device) if print_to_logger: logger.info("Start Evaluating SimCLR.") net.eval() with torch.no_grad(): sum_loss = 0.0 idx_h_z = [] n_batch = len(loader) for b, data in enumerate(loader): # get input input_1, input_2, semi_label, idx = data input_1 = input_1.to(self.device).float() input_2 = input_2.to(self.device).float() semi_label = semi_label.to(self.device) idx = idx.to(self.device) # forward h_1, z_1 = net(input_1) h_2, z_2 = net(input_2) # normalize z_1 = F.normalize(z_1, dim=1) z_2 = F.normalize(z_2, dim=1) # compute loss if self.supervised_loss: y = torch.where(semi_label == -1, torch.ones_like(semi_label), torch.zeros_like(semi_label)) # generate labels (1 if known abnormal, else it's considered normal) loss = loss_fn(z_1, z_2, y) else: loss = loss_fn(z_1, z_2) sum_loss += loss.item() # save embeddings if save_tSNE: idx_h_z += list(zip(idx.cpu().data.numpy().tolist(), h_1.cpu().data.numpy().tolist(), z_1.cpu().data.numpy().tolist())) if self.print_batch_progress: print_progessbar(b, n_batch, Name='\t\tEvaluation Batch', Size=40, erase=True) if save_tSNE: if print_to_logger: logger.info("Computing the t-SNE representation.") # Apply t-SNE transform on embeddings index, h, z = zip(*idx_h_z) h, z = np.array(h), np.array(z) h = TSNE(n_components=2).fit_transform(h) z = TSNE(n_components=2).fit_transform(z) self.eval_repr = list(zip(index, h.tolist(), z.tolist())) if print_to_logger: logger.info("Succesfully computed the t-SNE representation ") if return_loss: return loss / n_batch
38.990385
181
0.561159
7,804
0.962269
0
0
0
0
0
0
1,518
0.187176
3ff6e816cd8b898e3be215d0d77841e6ad25c848
543
py
Python
patients/migrations/0008_alter_patient_age.py
Curewell-Homeo-Clinic/admin-system
c8ce56a2bdbccfe1e6bec09068932f1943498b9f
[ "MIT" ]
1
2021-11-29T15:24:41.000Z
2021-11-29T15:24:41.000Z
patients/migrations/0008_alter_patient_age.py
Curewell-Homeo-Clinic/admin-system
c8ce56a2bdbccfe1e6bec09068932f1943498b9f
[ "MIT" ]
46
2021-11-29T16:05:55.000Z
2022-03-01T13:04:45.000Z
patients/migrations/0008_alter_patient_age.py
Curewell-Homeo-Clinic/admin-system
c8ce56a2bdbccfe1e6bec09068932f1943498b9f
[ "MIT" ]
null
null
null
# Generated by Django 3.2.9 on 2021-11-20 16:13 import django.core.validators from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('patients', '0007_alter_patient_age'), ] operations = [ migrations.AlterField( model_name='patient', name='age', field=models.PositiveSmallIntegerField(blank=True, null=True, validators=[django.core.validators.MaxValueValidator(100), django.core.validators.MinValueValidator(1)]), ), ]
27.15
179
0.67035
420
0.773481
0
0
0
0
0
0
95
0.174954
3ff70f0f8e53ee1c511ea409b894a75564f6138d
4,348
py
Python
kitsune/questions/tests/test_utils.py
AndrewDVXI/kitsune
84bd4fa60346681c3fc5a03b0b1540fd1335cee2
[ "BSD-3-Clause" ]
1
2021-07-18T00:41:16.000Z
2021-07-18T00:41:16.000Z
kitsune/questions/tests/test_utils.py
AndrewDVXI/kitsune
84bd4fa60346681c3fc5a03b0b1540fd1335cee2
[ "BSD-3-Clause" ]
9
2021-04-08T22:05:53.000Z
2022-03-12T00:54:11.000Z
kitsune/questions/tests/test_utils.py
AndrewDVXI/kitsune
84bd4fa60346681c3fc5a03b0b1540fd1335cee2
[ "BSD-3-Clause" ]
1
2020-07-28T15:53:02.000Z
2020-07-28T15:53:02.000Z
from kitsune.questions.models import Answer, Question from kitsune.questions.tests import AnswerFactory, QuestionFactory from kitsune.questions.utils import ( get_mobile_product_from_ua, mark_content_as_spam, num_answers, num_questions, num_solutions, ) from kitsune.sumo.tests import TestCase from kitsune.users.tests import UserFactory from nose.tools import eq_ from parameterized import parameterized class ContributionCountTestCase(TestCase): def test_num_questions(self): """Answers are counted correctly on a user.""" u = UserFactory() eq_(num_questions(u), 0) q1 = QuestionFactory(creator=u) eq_(num_questions(u), 1) q2 = QuestionFactory(creator=u) eq_(num_questions(u), 2) q1.delete() eq_(num_questions(u), 1) q2.delete() eq_(num_questions(u), 0) def test_num_answers(self): u = UserFactory() q = QuestionFactory() eq_(num_answers(u), 0) a1 = AnswerFactory(creator=u, question=q) eq_(num_answers(u), 1) a2 = AnswerFactory(creator=u, question=q) eq_(num_answers(u), 2) a1.delete() eq_(num_answers(u), 1) a2.delete() eq_(num_answers(u), 0) def test_num_solutions(self): u = UserFactory() q1 = QuestionFactory() q2 = QuestionFactory() a1 = AnswerFactory(creator=u, question=q1) a2 = AnswerFactory(creator=u, question=q2) eq_(num_solutions(u), 0) q1.solution = a1 q1.save() eq_(num_solutions(u), 1) q2.solution = a2 q2.save() eq_(num_solutions(u), 2) q1.solution = None q1.save() eq_(num_solutions(u), 1) a2.delete() eq_(num_solutions(u), 0) class FlagUserContentAsSpamTestCase(TestCase): def test_flag_content_as_spam(self): # Create some questions and answers by the user. u = UserFactory() QuestionFactory(creator=u) QuestionFactory(creator=u) AnswerFactory(creator=u) AnswerFactory(creator=u) AnswerFactory(creator=u) # Verify they are not marked as spam yet. eq_(2, Question.objects.filter(is_spam=False, creator=u).count()) eq_(0, Question.objects.filter(is_spam=True, creator=u).count()) eq_(3, Answer.objects.filter(is_spam=False, creator=u).count()) eq_(0, Answer.objects.filter(is_spam=True, creator=u).count()) # Flag content as spam and verify it is updated. mark_content_as_spam(u, UserFactory()) eq_(0, Question.objects.filter(is_spam=False, creator=u).count()) eq_(2, Question.objects.filter(is_spam=True, creator=u).count()) eq_(0, Answer.objects.filter(is_spam=False, creator=u).count()) eq_(3, Answer.objects.filter(is_spam=True, creator=u).count()) class GetMobileProductFromUATests(TestCase): @parameterized.expand( [ ("Mozilla/5.0 (Android; Mobile; rv:40.0) Gecko/40.0 Firefox/40.0", "mobile"), ("Mozilla/5.0 (Android; Tablet; rv:40.0) Gecko/40.0 Firefox/40.0", "mobile"), ("Mozilla/5.0 (Android 4.4; Mobile; rv:41.0) Gecko/41.0 Firefox/41.0", "mobile"), ("Mozilla/5.0 (Android 4.4; Tablet; rv:41.0) Gecko/41.0 Firefox/41.0", "mobile"), ( "Mozilla/5.0 (iPhone; CPU iPhone OS 12_1 like Mac OS X) AppleWebKit/605.1.15 (KHTML, like Gecko) FxiOS/7.0.4 Mobile/16B91 Safari/605.1.15", # noqa: E501 "ios", ), ( "Mozilla/5.0 (Android 10; Mobile; rv:76.0) Gecko/76.0 Firefox/76.0", "firefox-preview", ), ( "Mozilla/5.0 (Linux; Android 8.1.0; Redmi 6A Build/O11019; rv) AppleWebKit/537.36 (KHTML, like Gecko) Version/4.0 Rocket/1.9.2(13715) Chrome/76.0.3809.132 Mobile Safari/537.36", # noqa: E501 "firefox-lite", ), ( # Chrome on Android: "Mozilla/5.0 (Linux; Android 8.0.0; Pixel 2 XL Build/OPD1.170816.004) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/67.0.3396.87 Mobile Safari/537.36", # noqa: E501 None, ), ] ) def test_user_agents(self, ua, expected): eq_(expected, get_mobile_product_from_ua(ua))
34.507937
207
0.606486
3,914
0.900184
0
0
1,411
0.324517
0
0
1,102
0.25345
3ff942a422edefd4743417af8a01150a5a71f98a
10,122
py
Python
scripts/create_fluseverity_figs_v2/export_zOR_classif_swap.py
eclee25/flu-SDI-exploratory-age
2f5a4d97b84d2116e179e85fe334edf4556aa946
[ "MIT" ]
3
2018-03-29T23:02:43.000Z
2020-08-10T12:01:50.000Z
scripts/create_fluseverity_figs_v2/export_zOR_classif_swap.py
eclee25/flu-SDI-exploratory-age
2f5a4d97b84d2116e179e85fe334edf4556aa946
[ "MIT" ]
null
null
null
scripts/create_fluseverity_figs_v2/export_zOR_classif_swap.py
eclee25/flu-SDI-exploratory-age
2f5a4d97b84d2116e179e85fe334edf4556aa946
[ "MIT" ]
null
null
null
#!/usr/bin/python ############################################## ###Python template ###Author: Elizabeth Lee ###Date: 10/14/14 ###Function: Export zOR retrospective and early warning classifications into csv file format (SDI and ILINet, national and regional for SDI) ### Use nation-level peak-based retrospective classification for SDI region analysis # 10/14/14 swap OR age groups ###Import data: R_export/OR_zip3_week_outpatient_cl.csv, R_export/allpopstat_zip3_season_cl.csv #### These data were cleaned with data_extraction/clean_OR_hhsreg_week_outpatient.R and exported with OR_zip3_week.sql #### allpopstat_zip3_season_cl.csv includes child, adult, and other populations; popstat_zip3_season_cl.csv includes only child and adult populations ###Command Line: python export_zOR_classif_swap.py ############################################## ### notes ### # Incidence per 100,000 is normalized by total population by second calendar year of the flu season ### packages/modules ### import csv ## local modules ## import functions_v2 as fxn ### data structures ### ### called/local plotting parameters ### nw = fxn.gp_normweeks # number of normalization weeks in baseline period ### functions ### def print_dict_to_file(dic, filename): with open(filename, 'w+') as fwriter: fwriter.write("season,mn_retro,mn_early\n") for key, value in dic.items(): fwriter.write("%s,%s,%s\n" % (key, value[0], value[1])) def print_dict_to_file2(dic, filename): with open(filename, 'w+') as fwriter: fwriter.write("season,region,mn_retro,mn_early\n") for key, value in dic.items(): fwriter.write("%s,%s,%s,%s\n" % (key[0], key[1], value[0], value[1])) def print_dict_to_file3(dic, filename): with open(filename, 'w+') as fwriter: fwriter.write('season,state,mn_retro,mn_early\n') for key, value in dic.items(): fwriter.write("%s,%s,%s,%s\n" % (key[0], key[1], value[0], value[1])) ############################################## # SDI NATIONAL # national files incidin = open('/home/elee/Dropbox/Elizabeth_Bansal_Lab/SDI_Data/explore/SQL_export/OR_allweeks_outpatient.csv','r') incid = csv.reader(incidin, delimiter=',') popin = open('/home/elee/Dropbox/Elizabeth_Bansal_Lab/SDI_Data/explore/SQL_export/totalpop_age.csv', 'r') pop = csv.reader(popin, delimiter=',') thanksin=open('/home/elee/Dropbox/My_Bansal_Lab/Clean_Data_for_Import/ThanksgivingWeekData_cl.csv', 'r') thanksin.readline() # remove header thanks=csv.reader(thanksin, delimiter=',') # dict_wk[week] = seasonnum, dict_incid[week] = ILI cases per 10,000 in US population in second calendar year of flu season, dict_OR[week] = OR d_wk, d_incid, d_OR = fxn.week_OR_processing(incid, pop) d_zOR = fxn.week_zOR_processing(d_wk, d_OR) # d_incid53ls[seasonnum] = [ILI wk 40 per 100000, ILI wk 41 per 100000,...], d_OR53ls[seasonnum] = [OR wk 40, OR wk 41, ...], d_zOR53ls[seasonnum] = [zOR wk 40, zOR wk 41, ...] d_incid53ls, d_OR53ls, d_zOR53ls = fxn.week_plotting_dicts(d_wk, d_incid, d_OR, d_zOR) # d_classifzOR[seasonnum] = (mean retrospective zOR, mean early warning zOR) d_classifzOR = fxn.classif_zOR_processing(d_wk, d_incid53ls, d_zOR53ls, thanks) # ############################################## # # ILINet NATIONAL # # national files # incidin = open('/home/elee/Dropbox/Elizabeth_Bansal_Lab/CDC_Source/Import_Data/all_cdc_source_data.csv','r') # incidin.readline() # remove header # incid = csv.reader(incidin, delimiter=',') # popin = open('/home/elee/Dropbox/Elizabeth_Bansal_Lab/Census/Import_Data/totalpop_age_Census_98-14.csv', 'r') # pop = csv.reader(popin, delimiter=',') # thanksin=open('/home/elee/Dropbox/My_Bansal_Lab/Clean_Data_for_Import/ThanksgivingWeekData_cl.csv', 'r') # thanksin.readline() # remove header # thanks=csv.reader(thanksin, delimiter=',') # # dict_wk[week] = seasonnum, dict_incid[week] = ILI cases per 10,000 in US population in second calendar year of flu season, dict_OR[week] = OR # d_wk, d_incid, d_OR = fxn.ILINet_week_OR_processing(incid, pop) # d_zOR = fxn.week_zOR_processing(d_wk, d_OR) # # d_incid53ls[seasonnum] = [ILI wk 40 per 100000, ILI wk 41 per 100000,...], d_OR53ls[seasonnum] = [OR wk 40, OR wk 41, ...], d_zOR53ls[seasonnum] = [zOR wk 40, zOR wk 41, ...] # d_incid53ls, d_OR53ls, d_zOR53ls = fxn.week_plotting_dicts(d_wk, d_incid, d_OR, d_zOR) # # d_ILINet_classifzOR[seasonnum] = (mean retrospective zOR, mean early warning zOR) # d_ILINet_classifzOR = fxn.classif_zOR_processing(d_wk, d_incid53ls, d_zOR53ls, thanks) ############################################## # SDI REGION: region-level peak-basesd retrospective classification # regional files reg_incidin = open('/home/elee/Dropbox/Elizabeth_Bansal_Lab/SDI_Data/explore/R_export/OR_zip3_week_outpatient_cl.csv', 'r') reg_incidin.readline() regincid = csv.reader(reg_incidin, delimiter=',') reg_popin = open('/home/elee/Dropbox/Elizabeth_Bansal_Lab/SDI_Data/explore/R_export/allpopstat_zip3_season_cl.csv','r') reg_popin.readline() regpop = csv.reader(reg_popin, delimiter=',') # national files incidin = open('/home/elee/Dropbox/Elizabeth_Bansal_Lab/SDI_Data/explore/SQL_export/OR_allweeks_outpatient.csv','r') incid = csv.reader(incidin, delimiter=',') popin = open('/home/elee/Dropbox/Elizabeth_Bansal_Lab/SDI_Data/explore/SQL_export/totalpop_age.csv', 'r') pop = csv.reader(popin, delimiter=',') thanksin=open('/home/elee/Dropbox/My_Bansal_Lab/Clean_Data_for_Import/ThanksgivingWeekData_cl.csv', 'r') thanksin.readline() # remove header thanks=csv.reader(thanksin, delimiter=',') # dict_wk[week] = seasonnum, dict_incid[week] = ILI cases per 10,000 in US population in second calendar year of flu season, dict_OR[week] = OR d_wk, d_incid, d_OR = fxn.week_OR_processing(incid, pop) d_zOR = fxn.week_zOR_processing(d_wk, d_OR) # d_incid53ls[seasonnum] = [ILI wk 40 per 100000, ILI wk 41 per 100000,...], d_OR53ls[seasonnum] = [OR wk 40, OR wk 41, ...], d_zOR53ls[seasonnum] = [zOR wk 40, zOR wk 41, ...] d_incid53ls, d_OR53ls, d_zOR53ls = fxn.week_plotting_dicts(d_wk, d_incid, d_OR, d_zOR) _, d_zip3_reg, d_incid_reg, d_OR_reg = fxn.week_OR_processing_region(regincid, regpop) # dict_zOR_reg[(week, hhsreg)] = zOR d_zOR_reg = fxn.week_zOR_processing_region(d_wk, d_OR_reg) # dict_incid53ls_reg[(seasonnum, region)] = [ILI wk 40, ILI wk 41,...], dict_OR53ls_reg[(seasonnum, region)] = [OR wk 40, OR wk 41, ...], dict_zOR53ls_reg[(seasonnum, region)] = [zOR wk 40, zOR wk 41, ...] d_incid53ls_reg, d_OR53ls_reg, d_zOR53ls_reg = fxn.week_plotting_dicts_region(d_wk, d_incid_reg, d_OR_reg, d_zOR_reg) # dict_classifindex[seasonnum] = (index of first retro period week, index of first early warning period week) d_classifindex = fxn.classif_zOR_index(d_wk, d_incid53ls, d_incid53ls_reg, 'region', thanks) # d_classifzOR_reg[(seasonnum, region)] = (mean retrospective zOR, mean early warning zOR) d_classifzOR_reg = fxn.classif_zOR_region_processing(d_classifindex, d_wk, d_zOR53ls_reg) ############################################## # SDI STATE: state-level peak-basesd retrospective classification # import same files as regional files reg_incidin = open('/home/elee/Dropbox/Elizabeth_Bansal_Lab/SDI_Data/explore/R_export/OR_zip3_week_outpatient_cl.csv', 'r') reg_incidin.readline() regincid = csv.reader(reg_incidin, delimiter=',') reg_popin = open('/home/elee/Dropbox/Elizabeth_Bansal_Lab/SDI_Data/explore/R_export/allpopstat_zip3_season_cl.csv','r') reg_popin.readline() regpop = csv.reader(reg_popin, delimiter=',') # national files incidin = open('/home/elee/Dropbox/Elizabeth_Bansal_Lab/SDI_Data/explore/SQL_export/OR_allweeks_outpatient.csv','r') incid = csv.reader(incidin, delimiter=',') popin = open('/home/elee/Dropbox/Elizabeth_Bansal_Lab/SDI_Data/explore/SQL_export/totalpop_age.csv', 'r') pop = csv.reader(popin, delimiter=',') thanksin=open('/home/elee/Dropbox/My_Bansal_Lab/Clean_Data_for_Import/ThanksgivingWeekData_cl.csv', 'r') thanksin.readline() # remove header thanks=csv.reader(thanksin, delimiter=',') # dict_wk[week] = seasonnum, dict_incid[week] = ILI cases per 10,000 in US population in second calendar year of flu season, dict_OR[week] = OR d_wk, d_incid, d_OR = fxn.week_OR_processing(incid, pop) d_zOR = fxn.week_zOR_processing(d_wk, d_OR) # d_incid53ls[seasonnum] = [ILI wk 40 per 100000, ILI wk 41 per 100000,...], d_OR53ls[seasonnum] = [OR wk 40, OR wk 41, ...], d_zOR53ls[seasonnum] = [zOR wk 40, zOR wk 41, ...] d_incid53ls, d_OR53ls, d_zOR53ls = fxn.week_plotting_dicts(d_wk, d_incid, d_OR, d_zOR) _, d_zip3_reg, d_incid_state, d_OR_state = fxn.week_OR_processing_state(regincid, regpop) # dict_zOR_state[(week, state)] = zOR d_zOR_state = fxn.week_zOR_processing_state(d_wk, d_OR_state) # dict_incid53ls_state[(seasonnum, state)] = [ILI wk 40, ILI wk 41,...], dict_OR53ls_reg[(seasonnum, state)] = [OR wk 40, OR wk 41, ...], dict_zOR53ls_state[(seasonnum, state)] = [zOR wk 40, zOR wk 41, ...] d_incid53ls_state, d_OR53ls_state, d_zOR53ls_state = fxn.week_plotting_dicts_state(d_wk, d_incid_state, d_OR_state, d_zOR_state) # dict_classifindex[seasonnum] = (index of first retro period week, index of first early warning period week) d_classifindex = fxn.classif_zOR_index_state(d_wk, d_incid53ls, d_incid53ls_state, 'state', thanks) # d_classifzOR_state[(seasonnum, state)] = (mean retrospective zOR, mean early warning zOR) d_classifzOR_state = fxn.classif_zOR_state_processing(d_classifindex, d_wk, d_zOR53ls_state) ############################################## print d_classifzOR print d_classifzOR_reg fn1 = '/home/elee/Dropbox/Elizabeth_Bansal_Lab/SDI_Data/explore/Py_export/SDI_national_classifications_%s_swap.csv' %(nw) print_dict_to_file(d_classifzOR, fn1) # fn2 = '/home/elee/Dropbox/Elizabeth_Bansal_Lab/SDI_Data/explore/Py_export/ILINet_national_classifications_%s_swap.csv' %(nw) # print_dict_to_file(d_ILINet_classifzOR, fn2) fn3 = '/home/elee/Dropbox/Elizabeth_Bansal_Lab/SDI_Data/explore/Py_export/SDI_regional_classifications_%sreg_swap.csv' %(nw) print_dict_to_file2(d_classifzOR_reg, fn3) fn4 = '/home/elee/Dropbox/Elizabeth_Bansal_Lab/SDI_Data/explore/Py_export/SDI_state_classifications_%sst_swap.csv' %(nw) print_dict_to_file3(d_classifzOR_state, fn4)
59.893491
206
0.742936
0
0
0
0
0
0
0
0
6,751
0.666963
3ff99e7156481e3c6520089236ad30d435cc64ca
3,346
py
Python
sonar/endpoints.py
sharm294/sonar
99de16dd16d0aa77734584e67263c78a37abef86
[ "MIT" ]
5
2018-11-21T02:33:38.000Z
2020-10-30T12:22:05.000Z
sonar/endpoints.py
sharm294/sonar
99de16dd16d0aa77734584e67263c78a37abef86
[ "MIT" ]
2
2018-12-28T18:31:45.000Z
2020-06-12T19:24:57.000Z
sonar/endpoints.py
sharm294/sonar
99de16dd16d0aa77734584e67263c78a37abef86
[ "MIT" ]
1
2019-03-10T13:48:50.000Z
2019-03-10T13:48:50.000Z
""" Signal endpoints that can be used in testbenches """ import textwrap from typing import Dict import sonar.base_types as base class Endpoint(base.SonarObject): """ Endpoint class """ arguments: Dict[str, int] = {} @classmethod def instantiate(cls, _indent): """ Instantiate the endpoint logic Args: _indent (str): Indentation to add to each line Returns: str: Updated ip_inst """ return "" @classmethod def asdict(cls): tmp = { "instantiate": False, } return tmp class InterfaceEndpoint(Endpoint): """ InterfaceEndpoints class """ actions: Dict[str, Dict] = {} @staticmethod def import_packages_local(_interface): """ Specifies any packages that must be imported once per endpoint Args: interface (Interface): The interface belonging to the endpoint Returns: str: Packages to be imported """ return "" @staticmethod def initial_blocks(_indent): """ Any text that should be inside an initial block Args: indent (str): Indentation to add to each line Returns: list[str]: List of strings that go into separate initial blocks """ return [] @staticmethod def prologue(_indent): """ Any text that should be part of the testbench as a prologue outside any blocks such as variable declarations. Args: prologue (str): The preceding text to append to indent (str): Indentation to add to each line Returns: str: Updated prologue """ return "" @staticmethod def source_tcl(_interface, _path): """ Any TCL files that should be sourced as part of initializing the interface Args: interface (AXI4LiteSlave): AXI4LiteSlave object path (str): Path where to place the TCL source files """ return None @classmethod def asdict(cls): tmp = super().asdict() tmp["import_packages_local"] = False tmp["initial_blocks"] = False tmp["source_tcl"] = False tmp["prologue"] = False return tmp class PeriodicSignal(Endpoint): """ Endpoint class """ @classmethod def instantiate(cls, indent): """ Any modules that this interface instantiates in SV. Args: indent (str): Indentation to add to each line Returns: str: Updated ip_inst """ name = cls.arguments["name"] initial_value = cls.arguments["value"] period = cls.arguments["period"] block = textwrap.indent( textwrap.dedent( f"""\ initial begin {name}_endpoint[$$endpointIndex] = {initial_value}; forever begin #({period}/2) {name}_endpoint[$$endpointIndex] <= ~{name}_endpoint[$$endpointIndex]; end end """ ), indent, ) return block @classmethod def asdict(cls): tmp = { "instantiate": False, } return tmp
22.456376
104
0.545129
3,206
0.958159
0
0
2,868
0.857143
0
0
1,979
0.591452
3ff9c9e147dda16eeaf022e601e081b35faea86c
15,400
py
Python
minemeld/ft/condition/BoolExprParser.py
zul126/minemeld-core
2eb9b9bfd7654aee57aabd5fb280d4e89a438daf
[ "Apache-2.0" ]
1
2021-01-02T07:25:04.000Z
2021-01-02T07:25:04.000Z
minemeld/ft/condition/BoolExprParser.py
zul126/minemeld-core
2eb9b9bfd7654aee57aabd5fb280d4e89a438daf
[ "Apache-2.0" ]
null
null
null
minemeld/ft/condition/BoolExprParser.py
zul126/minemeld-core
2eb9b9bfd7654aee57aabd5fb280d4e89a438daf
[ "Apache-2.0" ]
1
2019-03-14T06:52:52.000Z
2019-03-14T06:52:52.000Z
# Generated from BoolExpr.g4 by ANTLR 4.5.1 # encoding: utf-8 from __future__ import print_function from antlr4 import * from io import StringIO # flake8: noqa def serializedATN(): with StringIO() as buf: buf.write(u"\3\u0430\ud6d1\u8206\uad2d\u4417\uaef1\u8d80\uaadd\3") buf.write(u"\22\63\4\2\t\2\4\3\t\3\4\4\t\4\4\5\t\5\4\6\t\6\4\7\t") buf.write(u"\7\4\b\t\b\3\2\3\2\3\2\3\2\3\3\3\3\5\3\27\n\3\3\4\3\4") buf.write(u"\3\4\5\4\34\n\4\3\5\3\5\3\5\3\6\3\6\3\6\3\6\3\6\5\6&") buf.write(u"\n\6\7\6(\n\6\f\6\16\6+\13\6\3\6\3\6\3\7\3\7\3\b\3\b") buf.write(u"\3\b\2\2\t\2\4\6\b\n\f\16\2\4\3\2\6\13\4\2\f\16\20\21") buf.write(u"/\2\20\3\2\2\2\4\26\3\2\2\2\6\30\3\2\2\2\b\35\3\2\2\2") buf.write(u"\n \3\2\2\2\f.\3\2\2\2\16\60\3\2\2\2\20\21\5\4\3\2\21") buf.write(u"\22\5\f\7\2\22\23\5\16\b\2\23\3\3\2\2\2\24\27\7\17\2") buf.write(u"\2\25\27\5\6\4\2\26\24\3\2\2\2\26\25\3\2\2\2\27\5\3\2") buf.write(u"\2\2\30\33\7\17\2\2\31\34\5\b\5\2\32\34\5\n\6\2\33\31") buf.write(u"\3\2\2\2\33\32\3\2\2\2\34\7\3\2\2\2\35\36\7\3\2\2\36") buf.write(u"\37\7\4\2\2\37\t\3\2\2\2 !\7\3\2\2!)\5\4\3\2\"%\7\5\2") buf.write(u"\2#&\5\4\3\2$&\5\16\b\2%#\3\2\2\2%$\3\2\2\2&(\3\2\2\2") buf.write(u"\'\"\3\2\2\2(+\3\2\2\2)\'\3\2\2\2)*\3\2\2\2*,\3\2\2\2") buf.write(u"+)\3\2\2\2,-\7\4\2\2-\13\3\2\2\2./\t\2\2\2/\r\3\2\2\2") buf.write(u"\60\61\t\3\2\2\61\17\3\2\2\2\6\26\33%)") return buf.getvalue() class BoolExprParser ( Parser ): grammarFileName = "BoolExpr.g4" atn = ATNDeserializer().deserialize(serializedATN()) decisionsToDFA = [ DFA(ds, i) for i, ds in enumerate(atn.decisionToState) ] sharedContextCache = PredictionContextCache() literalNames = [ u"<INVALID>", u"'('", u"')'", u"','", u"'<'", u"'<='", u"'=='", u"'>='", u"'>'", u"'!='", u"'true'", u"'false'", u"'null'" ] symbolicNames = [ u"<INVALID>", u"<INVALID>", u"<INVALID>", u"<INVALID>", u"<INVALID>", u"<INVALID>", u"<INVALID>", u"<INVALID>", u"<INVALID>", u"<INVALID>", u"<INVALID>", u"<INVALID>", u"<INVALID>", u"JAVASCRIPTIDENTIFIER", u"STRING", u"NUMBER", u"WS" ] RULE_booleanExpression = 0 RULE_expression = 1 RULE_functionExpression = 2 RULE_noArgs = 3 RULE_oneOrMoreArgs = 4 RULE_comparator = 5 RULE_value = 6 ruleNames = [ u"booleanExpression", u"expression", u"functionExpression", u"noArgs", u"oneOrMoreArgs", u"comparator", u"value" ] EOF = Token.EOF T__0=1 T__1=2 T__2=3 T__3=4 T__4=5 T__5=6 T__6=7 T__7=8 T__8=9 T__9=10 T__10=11 T__11=12 JAVASCRIPTIDENTIFIER=13 STRING=14 NUMBER=15 WS=16 def __init__(self, input): super(BoolExprParser, self).__init__(input) self.checkVersion("4.5.1") self._interp = ParserATNSimulator(self, self.atn, self.decisionsToDFA, self.sharedContextCache) self._predicates = None class BooleanExpressionContext(ParserRuleContext): def __init__(self, parser, parent=None, invokingState=-1): super(BoolExprParser.BooleanExpressionContext, self).__init__(parent, invokingState) self.parser = parser def expression(self): return self.getTypedRuleContext(BoolExprParser.ExpressionContext,0) def comparator(self): return self.getTypedRuleContext(BoolExprParser.ComparatorContext,0) def value(self): return self.getTypedRuleContext(BoolExprParser.ValueContext,0) def getRuleIndex(self): return BoolExprParser.RULE_booleanExpression def enterRule(self, listener): if hasattr(listener, "enterBooleanExpression"): listener.enterBooleanExpression(self) def exitRule(self, listener): if hasattr(listener, "exitBooleanExpression"): listener.exitBooleanExpression(self) def booleanExpression(self): localctx = BoolExprParser.BooleanExpressionContext(self, self._ctx, self.state) self.enterRule(localctx, 0, self.RULE_booleanExpression) try: self.enterOuterAlt(localctx, 1) self.state = 14 self.expression() self.state = 15 self.comparator() self.state = 16 self.value() except RecognitionException as re: localctx.exception = re self._errHandler.reportError(self, re) self._errHandler.recover(self, re) finally: self.exitRule() return localctx class ExpressionContext(ParserRuleContext): def __init__(self, parser, parent=None, invokingState=-1): super(BoolExprParser.ExpressionContext, self).__init__(parent, invokingState) self.parser = parser def JAVASCRIPTIDENTIFIER(self): return self.getToken(BoolExprParser.JAVASCRIPTIDENTIFIER, 0) def functionExpression(self): return self.getTypedRuleContext(BoolExprParser.FunctionExpressionContext,0) def getRuleIndex(self): return BoolExprParser.RULE_expression def enterRule(self, listener): if hasattr(listener, "enterExpression"): listener.enterExpression(self) def exitRule(self, listener): if hasattr(listener, "exitExpression"): listener.exitExpression(self) def expression(self): localctx = BoolExprParser.ExpressionContext(self, self._ctx, self.state) self.enterRule(localctx, 2, self.RULE_expression) try: self.state = 20 la_ = self._interp.adaptivePredict(self._input,0,self._ctx) if la_ == 1: self.enterOuterAlt(localctx, 1) self.state = 18 self.match(BoolExprParser.JAVASCRIPTIDENTIFIER) pass elif la_ == 2: self.enterOuterAlt(localctx, 2) self.state = 19 self.functionExpression() pass except RecognitionException as re: localctx.exception = re self._errHandler.reportError(self, re) self._errHandler.recover(self, re) finally: self.exitRule() return localctx class FunctionExpressionContext(ParserRuleContext): def __init__(self, parser, parent=None, invokingState=-1): super(BoolExprParser.FunctionExpressionContext, self).__init__(parent, invokingState) self.parser = parser def JAVASCRIPTIDENTIFIER(self): return self.getToken(BoolExprParser.JAVASCRIPTIDENTIFIER, 0) def noArgs(self): return self.getTypedRuleContext(BoolExprParser.NoArgsContext,0) def oneOrMoreArgs(self): return self.getTypedRuleContext(BoolExprParser.OneOrMoreArgsContext,0) def getRuleIndex(self): return BoolExprParser.RULE_functionExpression def enterRule(self, listener): if hasattr(listener, "enterFunctionExpression"): listener.enterFunctionExpression(self) def exitRule(self, listener): if hasattr(listener, "exitFunctionExpression"): listener.exitFunctionExpression(self) def functionExpression(self): localctx = BoolExprParser.FunctionExpressionContext(self, self._ctx, self.state) self.enterRule(localctx, 4, self.RULE_functionExpression) try: self.enterOuterAlt(localctx, 1) self.state = 22 self.match(BoolExprParser.JAVASCRIPTIDENTIFIER) self.state = 25 la_ = self._interp.adaptivePredict(self._input,1,self._ctx) if la_ == 1: self.state = 23 self.noArgs() pass elif la_ == 2: self.state = 24 self.oneOrMoreArgs() pass except RecognitionException as re: localctx.exception = re self._errHandler.reportError(self, re) self._errHandler.recover(self, re) finally: self.exitRule() return localctx class NoArgsContext(ParserRuleContext): def __init__(self, parser, parent=None, invokingState=-1): super(BoolExprParser.NoArgsContext, self).__init__(parent, invokingState) self.parser = parser def getRuleIndex(self): return BoolExprParser.RULE_noArgs def enterRule(self, listener): if hasattr(listener, "enterNoArgs"): listener.enterNoArgs(self) def exitRule(self, listener): if hasattr(listener, "exitNoArgs"): listener.exitNoArgs(self) def noArgs(self): localctx = BoolExprParser.NoArgsContext(self, self._ctx, self.state) self.enterRule(localctx, 6, self.RULE_noArgs) try: self.enterOuterAlt(localctx, 1) self.state = 27 self.match(BoolExprParser.T__0) self.state = 28 self.match(BoolExprParser.T__1) except RecognitionException as re: localctx.exception = re self._errHandler.reportError(self, re) self._errHandler.recover(self, re) finally: self.exitRule() return localctx class OneOrMoreArgsContext(ParserRuleContext): def __init__(self, parser, parent=None, invokingState=-1): super(BoolExprParser.OneOrMoreArgsContext, self).__init__(parent, invokingState) self.parser = parser def expression(self, i=None): if i is None: return self.getTypedRuleContexts(BoolExprParser.ExpressionContext) else: return self.getTypedRuleContext(BoolExprParser.ExpressionContext,i) def value(self, i=None): if i is None: return self.getTypedRuleContexts(BoolExprParser.ValueContext) else: return self.getTypedRuleContext(BoolExprParser.ValueContext,i) def getRuleIndex(self): return BoolExprParser.RULE_oneOrMoreArgs def enterRule(self, listener): if hasattr(listener, "enterOneOrMoreArgs"): listener.enterOneOrMoreArgs(self) def exitRule(self, listener): if hasattr(listener, "exitOneOrMoreArgs"): listener.exitOneOrMoreArgs(self) def oneOrMoreArgs(self): localctx = BoolExprParser.OneOrMoreArgsContext(self, self._ctx, self.state) self.enterRule(localctx, 8, self.RULE_oneOrMoreArgs) self._la = 0 # Token type try: self.enterOuterAlt(localctx, 1) self.state = 30 self.match(BoolExprParser.T__0) self.state = 31 self.expression() self.state = 39 self._errHandler.sync(self) _la = self._input.LA(1) while _la==BoolExprParser.T__2: self.state = 32 self.match(BoolExprParser.T__2) self.state = 35 token = self._input.LA(1) if token in [BoolExprParser.JAVASCRIPTIDENTIFIER]: self.state = 33 self.expression() elif token in [BoolExprParser.T__9, BoolExprParser.T__10, BoolExprParser.T__11, BoolExprParser.STRING, BoolExprParser.NUMBER]: self.state = 34 self.value() else: raise NoViableAltException(self) self.state = 41 self._errHandler.sync(self) _la = self._input.LA(1) self.state = 42 self.match(BoolExprParser.T__1) except RecognitionException as re: localctx.exception = re self._errHandler.reportError(self, re) self._errHandler.recover(self, re) finally: self.exitRule() return localctx class ComparatorContext(ParserRuleContext): def __init__(self, parser, parent=None, invokingState=-1): super(BoolExprParser.ComparatorContext, self).__init__(parent, invokingState) self.parser = parser def getRuleIndex(self): return BoolExprParser.RULE_comparator def enterRule(self, listener): if hasattr(listener, "enterComparator"): listener.enterComparator(self) def exitRule(self, listener): if hasattr(listener, "exitComparator"): listener.exitComparator(self) def comparator(self): localctx = BoolExprParser.ComparatorContext(self, self._ctx, self.state) self.enterRule(localctx, 10, self.RULE_comparator) self._la = 0 # Token type try: self.enterOuterAlt(localctx, 1) self.state = 44 _la = self._input.LA(1) if not((((_la) & ~0x3f) == 0 and ((1 << _la) & ((1 << BoolExprParser.T__3) | (1 << BoolExprParser.T__4) | (1 << BoolExprParser.T__5) | (1 << BoolExprParser.T__6) | (1 << BoolExprParser.T__7) | (1 << BoolExprParser.T__8))) != 0)): self._errHandler.recoverInline(self) else: self.consume() except RecognitionException as re: localctx.exception = re self._errHandler.reportError(self, re) self._errHandler.recover(self, re) finally: self.exitRule() return localctx class ValueContext(ParserRuleContext): def __init__(self, parser, parent=None, invokingState=-1): super(BoolExprParser.ValueContext, self).__init__(parent, invokingState) self.parser = parser def STRING(self): return self.getToken(BoolExprParser.STRING, 0) def NUMBER(self): return self.getToken(BoolExprParser.NUMBER, 0) def getRuleIndex(self): return BoolExprParser.RULE_value def enterRule(self, listener): if hasattr(listener, "enterValue"): listener.enterValue(self) def exitRule(self, listener): if hasattr(listener, "exitValue"): listener.exitValue(self) def value(self): localctx = BoolExprParser.ValueContext(self, self._ctx, self.state) self.enterRule(localctx, 12, self.RULE_value) self._la = 0 # Token type try: self.enterOuterAlt(localctx, 1) self.state = 46 _la = self._input.LA(1) if not((((_la) & ~0x3f) == 0 and ((1 << _la) & ((1 << BoolExprParser.T__9) | (1 << BoolExprParser.T__10) | (1 << BoolExprParser.T__11) | (1 << BoolExprParser.STRING) | (1 << BoolExprParser.NUMBER))) != 0)): self._errHandler.recoverInline(self) else: self.consume() except RecognitionException as re: localctx.exception = re self._errHandler.reportError(self, re) self._errHandler.recover(self, re) finally: self.exitRule() return localctx
33.04721
241
0.586104
13,879
0.901234
0
0
0
0
0
0
1,710
0.111039
3ffb7c0442cbda7e7c873ec775ef33cdb0c000d2
398
py
Python
nodes/networkedSingleStepper/temporaryURLNode.py
imoyer/pygestalt
d332df64264cce4a2bec8a73d698c386f1eaca7b
[ "MIT" ]
1
2017-07-03T08:34:39.000Z
2017-07-03T08:34:39.000Z
nodes/networkedSingleStepper/temporaryURLNode.py
imoyer/pygestalt
d332df64264cce4a2bec8a73d698c386f1eaca7b
[ "MIT" ]
3
2015-12-04T23:14:50.000Z
2016-11-08T16:24:32.000Z
nodes/networkedSingleStepper/temporaryURLNode.py
imnp/pygestalt
d332df64264cce4a2bec8a73d698c386f1eaca7b
[ "MIT" ]
1
2017-09-13T00:17:39.000Z
2017-09-13T00:17:39.000Z
<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML 2.0//EN"> <html><head> <title>404 Not Found</title> </head><body> <h1>Not Found</h1> <p>The requested URL /vn/testNode.py was not found on this server.</p> <p>Additionally, a 404 Not Found error was encountered while trying to use an ErrorDocument to handle the request.</p> <hr> <address>Apache Server at www.pygestalt.org Port 80</address> </body></html>
33.166667
85
0.718593
0
0
0
0
0
0
0
0
27
0.067839
3ffbaac7ded264cd662d18071c85e8138b2662eb
4,761
py
Python
cppwg/writers/header_collection_writer.py
josephsnyder/cppwg
265117455ed57eb250643a28ea6029c2bccf3ab3
[ "MIT" ]
21
2017-10-03T14:29:36.000Z
2021-12-07T08:54:43.000Z
cppwg/writers/header_collection_writer.py
josephsnyder/cppwg
265117455ed57eb250643a28ea6029c2bccf3ab3
[ "MIT" ]
2
2017-12-29T19:17:44.000Z
2020-03-27T14:59:27.000Z
cppwg/writers/header_collection_writer.py
josephsnyder/cppwg
265117455ed57eb250643a28ea6029c2bccf3ab3
[ "MIT" ]
6
2019-03-21T11:55:52.000Z
2021-07-13T20:49:50.000Z
#!/usr/bin/env python """ Generate the file classes_to_be_wrapped.hpp, which contains includes, instantiation and naming typedefs for all classes that are to be automatically wrapped. """ import os import ntpath class CppHeaderCollectionWriter(): """ This class manages generation of the header collection file for parsing by CastXML """ def __init__(self, package_info, wrapper_root): self.wrapper_root = wrapper_root self.package_info = package_info self.header_file_name = "wrapper_header_collection.hpp" self.hpp_string = "" self.class_dict = {} self.free_func_dict = {} for eachModule in self.package_info.module_info: for eachClassInfo in eachModule.class_info: self.class_dict[eachClassInfo.name] = eachClassInfo for eachFuncInfo in eachModule.free_function_info: self.free_func_dict[eachFuncInfo.name] = eachFuncInfo def add_custom_header_code(self): """ Any custom header code goes here """ pass def write_file(self): """ The actual write """ if not os.path.exists(self.wrapper_root + "/"): os.makedirs(self.wrapper_root + "/") file_path = self.wrapper_root + "/" + self.header_file_name hpp_file = open(file_path, 'w') hpp_file.write(self.hpp_string) hpp_file.close() def should_include_all(self): """ Return whether all source files in the module source locs should be included """ for eachModule in self.package_info.module_info: if eachModule.use_all_classes or eachModule.use_all_free_functions: return True return False def write(self): """ Main method for generating the header file output string """ hpp_header_dict = {'package_name': self.package_info.name} hpp_header_template = """\ #ifndef {package_name}_HEADERS_HPP_ #define {package_name}_HEADERS_HPP_ // Includes """ self.hpp_string = hpp_header_template.format(**hpp_header_dict) # Now our own includes if self.should_include_all(): for eachFile in self.package_info.source_hpp_files: include_name = ntpath.basename(eachFile) self.hpp_string += '#include "' + include_name + '"\n' else: for eachModule in self.package_info.module_info: for eachClassInfo in eachModule.class_info: if eachClassInfo.source_file is not None: self.hpp_string += '#include "' + eachClassInfo.source_file + '"\n' elif eachClassInfo.source_file_full_path is not None: include_name = ntpath.basename(eachClassInfo.source_file_full_path) self.hpp_string += '#include "' + include_name + '"\n' for eachFuncInfo in eachModule.free_function_info: if eachFuncInfo.source_file_full_path is not None: include_name = ntpath.basename(eachFuncInfo.source_file_full_path) self.hpp_string += '#include "' + include_name + '"\n' # Add the template instantiations self.hpp_string += "\n// Instantiate Template Classes \n" for eachModule in self.package_info.module_info: for eachClassInfo in eachModule.class_info: full_names = eachClassInfo.get_full_names() if len(full_names) == 1: continue prefix = "template class " for eachTemplateName in full_names: self.hpp_string += prefix + eachTemplateName.replace(" ","") + ";\n" # Add typdefs for nice naming self.hpp_string += "\n// Typedef for nicer naming\n" self.hpp_string += "namespace cppwg{ \n" for eachModule in self.package_info.module_info: for eachClassInfo in eachModule.class_info: full_names = eachClassInfo.get_full_names() if len(full_names) == 1: continue short_names = eachClassInfo.get_short_names() for idx, eachTemplateName in enumerate(full_names): short_name = short_names[idx] typdef_prefix = "typedef " + eachTemplateName.replace(" ","") + " " self.hpp_string += typdef_prefix + short_name + ";\n" self.hpp_string += "}\n" self.add_custom_header_code() self.hpp_string += "\n#endif // {}_HEADERS_HPP_\n".format(self.package_info.name) self.write_file()
36.068182
91
0.603235
4,544
0.954421
0
0
0
0
0
0
1,046
0.219702
3ffbd01add7dfacc772a2751a5811b5cb60b641e
6,590
py
Python
22-crab-combat/solution22_2.py
johntelforduk/advent-of-code-2020
138df3a7b12e418f371f641fed02e57a98a7392e
[ "MIT" ]
1
2020-12-03T13:20:49.000Z
2020-12-03T13:20:49.000Z
22-crab-combat/solution22_2.py
johntelforduk/advent-of-code-2020
138df3a7b12e418f371f641fed02e57a98a7392e
[ "MIT" ]
null
null
null
22-crab-combat/solution22_2.py
johntelforduk/advent-of-code-2020
138df3a7b12e418f371f641fed02e57a98a7392e
[ "MIT" ]
null
null
null
# Solution to part 2 of day 22 of AOC 2020, Crab Combat. # https://adventofcode.com/2020/day/22 import sys VERBOSE = ('-v' in sys.argv) class Deck: def __init__(self, player: int, cards: list): self.player = player self.cards = cards def take_top_card(self) -> int: """Remove the top card from the deck. Return the value of that card.""" card = self.cards.pop(0) if VERBOSE: print(self.player, 'plays:', card) return card def top_cards(self, top: int) -> list: """Return a list of the top cards in the deck. The number of cards is the parm of this method.""" return self.cards[:top].copy() def card_on_bottom(self, card: int): """Put the parm card on the bottom of the deck.""" self.cards.append(card) def display(self): """Print out info about the deck to stdout.""" print('Player', str(self.player) + "'s deck: ", end='') first = True for card in self.cards: if not first: print(', ', end='') first = False print(card, end='') print() class Combat: def __init__(self, game: int, p1_cards: list, p2_cards: list): self.p1_deck = Deck(player=1, cards=p1_cards) # Player 1's deck of cards. self.p2_deck = Deck(player=2, cards=p2_cards) # Player 2's card deck. self.previous_rounds = [] # List of decks that each player had in previous rounds. self.game = game if VERBOSE: print('=== Game', self.game, '===') print() self.round = 1 self.winner = 0 # 0 indicates no winner yet. while self.winner == 0: self.winner = self.play_a_round() def play_a_round(self) -> int: """Play a round of the game. If one of the players wins the game in this round, return their player number. Otherwise, return 0, to indicate no winner after this round.""" if VERBOSE: print('-- Round', self.round, '(Game ' + str(self.game) + ')--') self.p1_deck.display() self.p2_deck.display() # "Before either player deals a card, if there was a previous round in this game that had exactly the same # cards in the same order in the same players' decks, the game instantly ends in a win for player 1." if (self.p1_deck.cards, self.p2_deck.cards) in self.previous_rounds: if VERBOSE: print('Stalemate, hence Player 1 wins') return 1 self.previous_rounds.append((self.p1_deck.cards.copy(), self.p2_deck.cards.copy())) # "... both players draw their top card..." p1_card = self.p1_deck.take_top_card() p2_card = self.p2_deck.take_top_card() # "If both players have at least as many cards remaining in their deck as the value of the card they just drew, # the winner of the round is determined by playing a new game of Recursive Combat." if p1_card <= len(self.p1_deck.cards) and p2_card <= len(self.p2_deck.cards): if VERBOSE: print('Playing a sub-game to determine the winner...') p1_new_game_cards = self.p1_deck.top_cards(top=p1_card) p2_new_game_cards = self.p2_deck.top_cards(top=p2_card) new_game = Combat(game=self.game + 1, p1_cards=p1_new_game_cards, p2_cards=p2_new_game_cards) round_winner = new_game.winner if VERBOSE: print('...anyway, back to game', self.game) elif p1_card > p2_card: # "The player with the higher-valued card wins the round." round_winner = 1 else: round_winner = 2 if round_winner == 1: if VERBOSE: print('Player 1 wins round', self.round, 'of game', self.game) # "The winner keeps both cards, placing them on the bottom of their own deck so that the winner's card # is above the other card." self.p1_deck.card_on_bottom(p1_card) self.p1_deck.card_on_bottom(p2_card) else: if VERBOSE: print('Player 2 wins round', self.round, 'of game', self.game) self.p2_deck.card_on_bottom(p2_card) self.p2_deck.card_on_bottom(p1_card) if VERBOSE: print() self.round += 1 # "If this causes a player to have all of the cards, they win, and the game ends." if len(self.p1_deck.cards) == 0: # p1 has no cards left, so p2 wins. if VERBOSE: print('The winner of game', self.game, 'is player 2') return 2 elif len(self.p2_deck.cards) == 0: # p2 has no cards left, so p1 wins. if VERBOSE: print('The winner of game', self.game, 'is player 1') return 1 return 0 # 0 indicates no winner of the game during this round. def calculate_winning_score(self) -> int: """Return score of winning deck.""" # "The bottom card in their deck is worth the value of the card multiplied by 1, the second-from-the-bottom # card is worth the value of the card multiplied by 2, and so on." if self.winner == 1: cards = self.p1_deck.cards else: cards = self.p2_deck.cards score = 0 multiplier = 1 for card in cards[::-1]: # Go through the winner's cards backwards. score += card * multiplier multiplier += 1 return score def text_to_cards(text: str) -> list: """For parm text file, return a list of integers which are the cards in that text file.""" cards = [] # Each card starts on a new line. Ignore the first line, as it is the player number. for card in text.split('\n')[1:]: cards.append(int(card)) return cards def main(): filename = sys.argv[1] f = open(filename) whole_text = f.read() f.close() p1_text, p2_text = whole_text.split('\n\n') # There is a blank line between the 2 players. p1_cards_list = text_to_cards(p1_text) p2_cards_list = text_to_cards(p2_text) game = Combat(game=1, p1_cards=p1_cards_list, p2_cards=p2_cards_list) print('== Post-game results ==') game.p1_deck.display() game.p2_deck.display() print('Part 2:', game.calculate_winning_score()) if __name__ == "__main__": main()
35.621622
119
0.582398
5,569
0.845068
0
0
0
0
0
0
2,355
0.35736
3ffc66c1a55abdcb165f5612bc7ea3c265086406
246
py
Python
consts.py
mauroreisvieira/sublime-tailwindcss-intellisense
140edc90c59c045fc8a9d7f6bcff0b727660ee64
[ "MIT" ]
null
null
null
consts.py
mauroreisvieira/sublime-tailwindcss-intellisense
140edc90c59c045fc8a9d7f6bcff0b727660ee64
[ "MIT" ]
null
null
null
consts.py
mauroreisvieira/sublime-tailwindcss-intellisense
140edc90c59c045fc8a9d7f6bcff0b727660ee64
[ "MIT" ]
null
null
null
import os # @see https://marketplace.visualstudio.com/items?itemName=bradlc.vscode-tailwindcss EXTENSION_UID = "bradlc.vscode-tailwindcss" EXTENSION_VERSION = "0.5.2" SERVER_BINARY_PATH = os.path.join("extension", "dist", "server", "index.js")
30.75
84
0.764228
0
0
0
0
0
0
0
0
153
0.621951
3ffe70804c74668d12ccd199fbcd96d4fb1cfb92
2,426
py
Python
backend/app/alembic/versions/491383f70589_add_separate_reported_and_deleted_tables.py
Pinafore/Karl-flashcards-web-app
2f4d9925c545f83eb3289dfef85d9b0bf9bfeb8c
[ "Apache-2.0" ]
7
2020-09-13T06:06:32.000Z
2021-11-15T11:37:16.000Z
backend/app/alembic/versions/491383f70589_add_separate_reported_and_deleted_tables.py
Pinafore/Karl-flashcards-web-app
2f4d9925c545f83eb3289dfef85d9b0bf9bfeb8c
[ "Apache-2.0" ]
16
2020-08-28T20:38:27.000Z
2021-03-18T04:03:00.000Z
backend/app/alembic/versions/491383f70589_add_separate_reported_and_deleted_tables.py
Pinafore/Karl-flashcards-web-app
2f4d9925c545f83eb3289dfef85d9b0bf9bfeb8c
[ "Apache-2.0" ]
null
null
null
"""add separate reported and deleted tables Revision ID: 491383f70589 Revises: 9afc4e3a9bf3 Create Date: 2020-06-26 05:23:30.267933 """ from alembic import op import sqlalchemy as sa from sqlalchemy.dialects import postgresql # revision identifiers, used by Alembic. revision = '491383f70589' down_revision = '9afc4e3a9bf3' branch_labels = None depends_on = None def upgrade(): # ### commands auto generated by Alembic - please adjust! ### op.create_table('deleted', sa.Column('id', sa.Integer(), nullable=False), sa.Column('fact_id', sa.Integer(), nullable=False), sa.Column('user_id', sa.Integer(), nullable=False), sa.Column('date_deleted', sa.TIMESTAMP(timezone=True), nullable=False), sa.ForeignKeyConstraint(['fact_id'], ['fact.fact_id'], ), sa.ForeignKeyConstraint(['user_id'], ['user.id'], ), sa.PrimaryKeyConstraint('id') ) op.create_index(op.f('ix_deleted_id'), 'deleted', ['id'], unique=False) op.create_table('reported', sa.Column('id', sa.Integer(), nullable=False), sa.Column('fact_id', sa.Integer(), nullable=False), sa.Column('user_id', sa.Integer(), nullable=False), sa.Column('date_reported', sa.TIMESTAMP(timezone=True), nullable=False), sa.Column('suggestion', postgresql.JSONB(astext_type=sa.Text()), nullable=True), sa.ForeignKeyConstraint(['fact_id'], ['fact.fact_id'], ), sa.ForeignKeyConstraint(['user_id'], ['user.id'], ), sa.PrimaryKeyConstraint('id') ) op.create_index(op.f('ix_reported_id'), 'reported', ['id'], unique=False) op.drop_column('suspended', 'comment') op.drop_column('suspended', 'suspend_type') op.drop_column('suspended', 'suggestion') # ### end Alembic commands ### def downgrade(): # ### commands auto generated by Alembic - please adjust! ### op.add_column('suspended', sa.Column('suggestion', postgresql.JSONB(astext_type=sa.Text()), autoincrement=False, nullable=True)) op.add_column('suspended', sa.Column('suspend_type', postgresql.ENUM('delete', 'suspend', 'report', name='suspendtype'), autoincrement=False, nullable=False)) op.add_column('suspended', sa.Column('comment', sa.VARCHAR(), autoincrement=False, nullable=True)) op.drop_index(op.f('ix_reported_id'), table_name='reported') op.drop_table('reported') op.drop_index(op.f('ix_deleted_id'), table_name='deleted') op.drop_table('deleted') # ### end Alembic commands ###
41.827586
162
0.694559
0
0
0
0
0
0
0
0
882
0.363561
3fffb39e0047b218b9939ad4a6b88417807e3ce7
17,935
py
Python
test/test_viscous.py
nchristensen/mirgecom
f27285d1fc7e077e0b1ac6872712d88517588e33
[ "MIT" ]
null
null
null
test/test_viscous.py
nchristensen/mirgecom
f27285d1fc7e077e0b1ac6872712d88517588e33
[ "MIT" ]
null
null
null
test/test_viscous.py
nchristensen/mirgecom
f27285d1fc7e077e0b1ac6872712d88517588e33
[ "MIT" ]
null
null
null
"""Test the viscous fluid helper functions.""" __copyright__ = """ Copyright (C) 2021 University of Illinois Board of Trustees """ __license__ = """ Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ import numpy as np import numpy.random import numpy.linalg as la # noqa import pyopencl.clmath # noqa import logging import pytest # noqa from pytools.obj_array import make_obj_array from meshmode.dof_array import thaw from meshmode.mesh import BTAG_ALL import grudge.op as op from grudge.eager import ( EagerDGDiscretization, interior_trace_pair ) from meshmode.array_context import ( # noqa pytest_generate_tests_for_pyopencl_array_context as pytest_generate_tests) from mirgecom.fluid import make_conserved from mirgecom.transport import ( SimpleTransport, PowerLawTransport ) from mirgecom.eos import IdealSingleGas logger = logging.getLogger(__name__) @pytest.mark.parametrize("transport_model", [0, 1]) def test_viscous_stress_tensor(actx_factory, transport_model): """Test tau data structure and values against exact.""" actx = actx_factory() dim = 3 nel_1d = 4 from meshmode.mesh.generation import generate_regular_rect_mesh mesh = generate_regular_rect_mesh( a=(1.0,) * dim, b=(2.0,) * dim, nelements_per_axis=(nel_1d,) * dim ) order = 1 discr = EagerDGDiscretization(actx, mesh, order=order) nodes = thaw(actx, discr.nodes()) zeros = discr.zeros(actx) ones = zeros + 1.0 # assemble velocities for simple, unique grad components velocity_x = nodes[0] + 2*nodes[1] + 3*nodes[2] velocity_y = 4*nodes[0] + 5*nodes[1] + 6*nodes[2] velocity_z = 7*nodes[0] + 8*nodes[1] + 9*nodes[2] velocity = make_obj_array([velocity_x, velocity_y, velocity_z]) mass = 2*ones energy = zeros + 2.5 mom = mass * velocity cv = make_conserved(dim, mass=mass, energy=energy, momentum=mom) grad_cv = make_conserved(dim, q=op.local_grad(discr, cv.join())) if transport_model: tv_model = SimpleTransport(bulk_viscosity=1.0, viscosity=0.5) else: tv_model = PowerLawTransport() eos = IdealSingleGas(transport_model=tv_model) mu = tv_model.viscosity(eos, cv) lam = tv_model.volume_viscosity(eos, cv) # Exact answer for tau exp_grad_v = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) exp_grad_v_t = np.array([[1, 4, 7], [2, 5, 8], [3, 6, 9]]) exp_div_v = 15 exp_tau = (mu*(exp_grad_v + exp_grad_v_t) + lam*exp_div_v*np.eye(3)) from mirgecom.viscous import viscous_stress_tensor tau = viscous_stress_tensor(discr, eos, cv, grad_cv) # The errors come from grad_v assert discr.norm(tau - exp_tau, np.inf) < 1e-12 # Box grid generator widget lifted from @majosm and slightly bent def _get_box_mesh(dim, a, b, n, t=None): dim_names = ["x", "y", "z"] bttf = {} for i in range(dim): bttf["-"+str(i+1)] = ["-"+dim_names[i]] bttf["+"+str(i+1)] = ["+"+dim_names[i]] from meshmode.mesh.generation import generate_regular_rect_mesh as gen return gen(a=a, b=b, npoints_per_axis=n, boundary_tag_to_face=bttf, mesh_type=t) @pytest.mark.parametrize("order", [2, 3, 4]) @pytest.mark.parametrize("kappa", [0.0, 1.0, 2.3]) def test_poiseuille_fluxes(actx_factory, order, kappa): """Test the viscous fluxes using a Poiseuille input state.""" actx = actx_factory() dim = 2 from pytools.convergence import EOCRecorder e_eoc_rec = EOCRecorder() p_eoc_rec = EOCRecorder() base_pressure = 100000.0 pressure_ratio = 1.001 mu = 42 # arbitrary left_boundary_location = 0 right_boundary_location = 0.1 ybottom = 0. ytop = .02 nspecies = 0 spec_diffusivity = 0 * np.ones(nspecies) transport_model = SimpleTransport(viscosity=mu, thermal_conductivity=kappa, species_diffusivity=spec_diffusivity) xlen = right_boundary_location - left_boundary_location p_low = base_pressure p_hi = pressure_ratio*base_pressure dpdx = (p_low - p_hi) / xlen rho = 1.0 eos = IdealSingleGas(transport_model=transport_model) from mirgecom.initializers import PlanarPoiseuille initializer = PlanarPoiseuille(density=rho, mu=mu) def _elbnd_flux(discr, compute_interior_flux, compute_boundary_flux, int_tpair, boundaries): return (compute_interior_flux(int_tpair) + sum(compute_boundary_flux(btag) for btag in boundaries)) from mirgecom.flux import gradient_flux_central def cv_flux_interior(int_tpair): normal = thaw(actx, discr.normal(int_tpair.dd)) flux_weak = gradient_flux_central(int_tpair, normal) return discr.project(int_tpair.dd, "all_faces", flux_weak) def cv_flux_boundary(btag): boundary_discr = discr.discr_from_dd(btag) bnd_nodes = thaw(actx, boundary_discr.nodes()) cv_bnd = initializer(x_vec=bnd_nodes, eos=eos) bnd_nhat = thaw(actx, discr.normal(btag)) from grudge.trace_pair import TracePair bnd_tpair = TracePair(btag, interior=cv_bnd, exterior=cv_bnd) flux_weak = gradient_flux_central(bnd_tpair, bnd_nhat) return discr.project(bnd_tpair.dd, "all_faces", flux_weak) for nfac in [1, 2, 4]: npts_axis = nfac*(11, 21) box_ll = (left_boundary_location, ybottom) box_ur = (right_boundary_location, ytop) mesh = _get_box_mesh(2, a=box_ll, b=box_ur, n=npts_axis) logger.info( f"Number of {dim}d elements: {mesh.nelements}" ) discr = EagerDGDiscretization(actx, mesh, order=order) nodes = thaw(actx, discr.nodes()) # compute max element size from grudge.dt_utils import h_max_from_volume h_max = h_max_from_volume(discr) # form exact cv cv = initializer(x_vec=nodes, eos=eos) cv_int_tpair = interior_trace_pair(discr, cv) boundaries = [BTAG_ALL] cv_flux_bnd = _elbnd_flux(discr, cv_flux_interior, cv_flux_boundary, cv_int_tpair, boundaries) from mirgecom.operators import grad_operator grad_cv = make_conserved(dim, q=grad_operator(discr, cv.join(), cv_flux_bnd.join())) xp_grad_cv = initializer.exact_grad(x_vec=nodes, eos=eos, cv_exact=cv) xp_grad_v = 1/cv.mass * xp_grad_cv.momentum xp_tau = mu * (xp_grad_v + xp_grad_v.transpose()) # sanity check the gradient: relerr_scale_e = 1.0 / discr.norm(xp_grad_cv.energy, np.inf) relerr_scale_p = 1.0 / discr.norm(xp_grad_cv.momentum, np.inf) graderr_e = discr.norm((grad_cv.energy - xp_grad_cv.energy), np.inf) graderr_p = discr.norm((grad_cv.momentum - xp_grad_cv.momentum), np.inf) graderr_e *= relerr_scale_e graderr_p *= relerr_scale_p assert graderr_e < 5e-7 assert graderr_p < 5e-11 zeros = discr.zeros(actx) ones = zeros + 1 pressure = eos.pressure(cv) # grad of p should be dp/dx xp_grad_p = make_obj_array([dpdx*ones, zeros]) grad_p = op.local_grad(discr, pressure) dpscal = 1.0/np.abs(dpdx) temperature = eos.temperature(cv) tscal = rho*eos.gas_const()*dpscal xp_grad_t = xp_grad_p/(cv.mass*eos.gas_const()) grad_t = op.local_grad(discr, temperature) # sanity check assert discr.norm(grad_p - xp_grad_p, np.inf)*dpscal < 5e-9 assert discr.norm(grad_t - xp_grad_t, np.inf)*tscal < 5e-9 # verify heat flux from mirgecom.viscous import conductive_heat_flux heat_flux = conductive_heat_flux(discr, eos, cv, grad_t) xp_heat_flux = -kappa*xp_grad_t assert discr.norm(heat_flux - xp_heat_flux, np.inf) < 2e-8 # verify diffusive mass flux is zilch (no scalar components) from mirgecom.viscous import diffusive_flux j = diffusive_flux(discr, eos, cv, grad_cv) assert len(j) == 0 xp_e_flux = np.dot(xp_tau, cv.velocity) - xp_heat_flux xp_mom_flux = xp_tau from mirgecom.viscous import viscous_flux vflux = viscous_flux(discr, eos, cv, grad_cv, grad_t) efluxerr = ( discr.norm(vflux.energy - xp_e_flux, np.inf) / discr.norm(xp_e_flux, np.inf) ) momfluxerr = ( discr.norm(vflux.momentum - xp_mom_flux, np.inf) / discr.norm(xp_mom_flux, np.inf) ) assert discr.norm(vflux.mass, np.inf) == 0 e_eoc_rec.add_data_point(h_max, efluxerr) p_eoc_rec.add_data_point(h_max, momfluxerr) assert ( e_eoc_rec.order_estimate() >= order - 0.5 or e_eoc_rec.max_error() < 3e-9 ) assert ( p_eoc_rec.order_estimate() >= order - 0.5 or p_eoc_rec.max_error() < 2e-12 ) def test_species_diffusive_flux(actx_factory): """Test species diffusive flux and values against exact.""" actx = actx_factory() dim = 3 nel_1d = 4 from meshmode.mesh.generation import generate_regular_rect_mesh mesh = generate_regular_rect_mesh( a=(1.0,) * dim, b=(2.0,) * dim, nelements_per_axis=(nel_1d,) * dim ) order = 1 discr = EagerDGDiscretization(actx, mesh, order=order) nodes = thaw(actx, discr.nodes()) zeros = discr.zeros(actx) ones = zeros + 1.0 # assemble velocities for simple, unique grad components velocity_x = nodes[0] + 2*nodes[1] + 3*nodes[2] velocity_y = 4*nodes[0] + 5*nodes[1] + 6*nodes[2] velocity_z = 7*nodes[0] + 8*nodes[1] + 9*nodes[2] velocity = make_obj_array([velocity_x, velocity_y, velocity_z]) # assemble y so that each one has simple, but unique grad components nspecies = 2*dim y = make_obj_array([ones for _ in range(nspecies)]) for idim in range(dim): ispec = 2*idim y[ispec] = (ispec+1)*(idim*dim+1)*sum([(iidim+1)*nodes[iidim] for iidim in range(dim)]) y[ispec+1] = -y[ispec] massval = 2 mass = massval*ones energy = zeros + 2.5 mom = mass * velocity species_mass = mass*y cv = make_conserved(dim, mass=mass, energy=energy, momentum=mom, species_mass=species_mass) grad_cv = make_conserved(dim, q=op.local_grad(discr, cv.join())) mu_b = 1.0 mu = 0.5 kappa = 5.0 # assemble d_alpha so that every species has a unique j d_alpha = np.array([(ispec+1) for ispec in range(nspecies)]) tv_model = SimpleTransport(bulk_viscosity=mu_b, viscosity=mu, thermal_conductivity=kappa, species_diffusivity=d_alpha) eos = IdealSingleGas(transport_model=tv_model) from mirgecom.viscous import diffusive_flux j = diffusive_flux(discr, eos, cv, grad_cv) tol = 1e-10 for idim in range(dim): ispec = 2*idim exact_dy = np.array([((ispec+1)*(idim*dim+1))*(iidim+1) for iidim in range(dim)]) exact_j = -massval * d_alpha[ispec] * exact_dy assert discr.norm(j[ispec] - exact_j, np.inf) < tol exact_j = massval * d_alpha[ispec+1] * exact_dy assert discr.norm(j[ispec+1] - exact_j, np.inf) < tol def test_diffusive_heat_flux(actx_factory): """Test diffusive heat flux and values against exact.""" actx = actx_factory() dim = 3 nel_1d = 4 from meshmode.mesh.generation import generate_regular_rect_mesh mesh = generate_regular_rect_mesh( a=(1.0,) * dim, b=(2.0,) * dim, nelements_per_axis=(nel_1d,) * dim ) order = 1 discr = EagerDGDiscretization(actx, mesh, order=order) nodes = thaw(actx, discr.nodes()) zeros = discr.zeros(actx) ones = zeros + 1.0 # assemble velocities for simple, unique grad components velocity_x = nodes[0] + 2*nodes[1] + 3*nodes[2] velocity_y = 4*nodes[0] + 5*nodes[1] + 6*nodes[2] velocity_z = 7*nodes[0] + 8*nodes[1] + 9*nodes[2] velocity = make_obj_array([velocity_x, velocity_y, velocity_z]) # assemble y so that each one has simple, but unique grad components nspecies = 2*dim y = make_obj_array([ones for _ in range(nspecies)]) for idim in range(dim): ispec = 2*idim y[ispec] = (ispec+1)*(idim*dim+1)*sum([(iidim+1)*nodes[iidim] for iidim in range(dim)]) y[ispec+1] = -y[ispec] massval = 2 mass = massval*ones energy = zeros + 2.5 mom = mass * velocity species_mass = mass*y cv = make_conserved(dim, mass=mass, energy=energy, momentum=mom, species_mass=species_mass) grad_cv = make_conserved(dim, q=op.local_grad(discr, cv.join())) mu_b = 1.0 mu = 0.5 kappa = 5.0 # assemble d_alpha so that every species has a unique j d_alpha = np.array([(ispec+1) for ispec in range(nspecies)]) tv_model = SimpleTransport(bulk_viscosity=mu_b, viscosity=mu, thermal_conductivity=kappa, species_diffusivity=d_alpha) eos = IdealSingleGas(transport_model=tv_model) from mirgecom.viscous import diffusive_flux j = diffusive_flux(discr, eos, cv, grad_cv) tol = 1e-10 for idim in range(dim): ispec = 2*idim exact_dy = np.array([((ispec+1)*(idim*dim+1))*(iidim+1) for iidim in range(dim)]) exact_j = -massval * d_alpha[ispec] * exact_dy assert discr.norm(j[ispec] - exact_j, np.inf) < tol exact_j = massval * d_alpha[ispec+1] * exact_dy assert discr.norm(j[ispec+1] - exact_j, np.inf) < tol @pytest.mark.parametrize("array_valued", [False, True]) @pytest.mark.parametrize("dim", [1, 2, 3]) def test_local_max_species_diffusivity(actx_factory, dim, array_valued): """Test the local maximum species diffusivity.""" actx = actx_factory() nel_1d = 4 from meshmode.mesh.generation import generate_regular_rect_mesh mesh = generate_regular_rect_mesh( a=(1.0,) * dim, b=(2.0,) * dim, nelements_per_axis=(nel_1d,) * dim ) order = 1 discr = EagerDGDiscretization(actx, mesh, order=order) nodes = thaw(actx, discr.nodes()) zeros = discr.zeros(actx) ones = zeros + 1.0 vel = .32 velocity = make_obj_array([zeros+vel for _ in range(dim)]) massval = 1 mass = massval*ones energy = zeros + 1.0 / (1.4*.4) mom = mass * velocity species_mass = np.array([1., 2., 3.], dtype=object) cv = make_conserved(dim, mass=mass, energy=energy, momentum=mom, species_mass=species_mass) d_alpha_input = np.array([.1, .2, .3]) if array_valued: f = 1 + 0.1*actx.np.sin(nodes[0]) d_alpha_input *= f tv_model = SimpleTransport(species_diffusivity=d_alpha_input) eos = IdealSingleGas(transport_model=tv_model) d_alpha = tv_model.species_diffusivity(eos, cv) from mirgecom.viscous import get_local_max_species_diffusivity expected = .3*ones if array_valued: expected *= f calculated = get_local_max_species_diffusivity(actx, discr, d_alpha) assert discr.norm(calculated-expected, np.inf) == 0 @pytest.mark.parametrize("dim", [1, 2, 3]) @pytest.mark.parametrize("mu", [-1, 0, 1, 2]) @pytest.mark.parametrize("vel", [0, 1]) def test_viscous_timestep(actx_factory, dim, mu, vel): """Test timestep size.""" actx = actx_factory() nel_1d = 4 from meshmode.mesh.generation import generate_regular_rect_mesh mesh = generate_regular_rect_mesh( a=(1.0,) * dim, b=(2.0,) * dim, nelements_per_axis=(nel_1d,) * dim ) order = 1 discr = EagerDGDiscretization(actx, mesh, order=order) zeros = discr.zeros(actx) ones = zeros + 1.0 velocity = make_obj_array([zeros+vel for _ in range(dim)]) massval = 1 mass = massval*ones # I *think* this energy should yield c=1.0 energy = zeros + 1.0 / (1.4*.4) mom = mass * velocity species_mass = None cv = make_conserved(dim, mass=mass, energy=energy, momentum=mom, species_mass=species_mass) from grudge.dt_utils import characteristic_lengthscales chlen = characteristic_lengthscales(actx, discr) from grudge.op import nodal_min chlen_min = nodal_min(discr, "vol", chlen) mu = mu*chlen_min if mu < 0: mu = 0 tv_model = None else: tv_model = SimpleTransport(viscosity=mu) eos = IdealSingleGas(transport_model=tv_model) from mirgecom.viscous import get_viscous_timestep dt_field = get_viscous_timestep(discr, eos, cv) speed_total = actx.np.sqrt(np.dot(velocity, velocity)) + eos.sound_speed(cv) dt_expected = chlen / (speed_total + (mu / chlen)) error = (dt_expected - dt_field) / dt_expected assert discr.norm(error, np.inf) == 0
34.292543
84
0.652188
0
0
0
0
10,783
0.601227
0
0
2,401
0.133872
b200470663bb7eee02e9c82ffb877d8af91ad93e
216
py
Python
aiobotocore_refreshable_credentials/__init__.py
aweber/aiobotocore-refreshable-credentials
3310d3fa29ac657f7cd5f64829da5f9b12c7a86d
[ "BSD-3-Clause" ]
null
null
null
aiobotocore_refreshable_credentials/__init__.py
aweber/aiobotocore-refreshable-credentials
3310d3fa29ac657f7cd5f64829da5f9b12c7a86d
[ "BSD-3-Clause" ]
2
2021-05-21T14:18:52.000Z
2022-03-15T12:34:45.000Z
aiobotocore_refreshable_credentials/__init__.py
aweber/aiobotocore-refreshable-credentials
3310d3fa29ac657f7cd5f64829da5f9b12c7a86d
[ "BSD-3-Clause" ]
1
2021-06-18T18:37:15.000Z
2021-06-18T18:37:15.000Z
""" aiobotocore-refreshable-credentials =================================== """ from aiobotocore_refreshable_credentials.session import get_session version = '1.0.3' __all__ = [ 'get_session', 'version' ]
15.428571
67
0.606481
0
0
0
0
0
0
0
0
109
0.50463
b2021676535704ccb7bbd4b21a330bdfa74bae2e
702
py
Python
g13gui/bitwidgets/label_tests.py
jtgans/g13gui
aa07ee91b0fd89eb8d9991291e11ca3a97ca11cc
[ "MIT" ]
3
2021-10-16T01:28:24.000Z
2021-12-07T21:49:54.000Z
g13gui/bitwidgets/label_tests.py
jtgans/g13gui
aa07ee91b0fd89eb8d9991291e11ca3a97ca11cc
[ "MIT" ]
12
2021-05-09T16:57:18.000Z
2021-06-16T19:20:57.000Z
g13gui/bitwidgets/label_tests.py
jtgans/g13gui
aa07ee91b0fd89eb8d9991291e11ca3a97ca11cc
[ "MIT" ]
null
null
null
import unittest import time from g13gui.bitwidgets.display import Display from g13gui.bitwidgets.x11displaydevice import X11DisplayDevice from g13gui.bitwidgets.label import Label class LabelTests(unittest.TestCase): def setUp(self): self.dd = X11DisplayDevice(self.__class__.__name__) self.dd.start() time.sleep(0.25) self.d = Display(self.dd) def tearDown(self): time.sleep(1) self.dd.shutdown() self.dd.join() def testDraw(self): label = Label(0, 0, "Hello world!") ctx = self.d.getContext() label.show() label.draw(ctx) self.d.commit() if __name__ == '__main__': unittest.main()
22.645161
63
0.64245
469
0.668091
0
0
0
0
0
0
24
0.034188
b206b349123d73fd230c868195f898309f10c8ec
7,772
py
Python
padre/git_utils.py
krislindgren/padre
56e3342a953fdc472adc11ce301acabf6c595760
[ "MIT" ]
null
null
null
padre/git_utils.py
krislindgren/padre
56e3342a953fdc472adc11ce301acabf6c595760
[ "MIT" ]
null
null
null
padre/git_utils.py
krislindgren/padre
56e3342a953fdc472adc11ce301acabf6c595760
[ "MIT" ]
null
null
null
#!/usr/bin/python # -*- coding: utf-8 -*- # MIT License # # Modified from https://github.com/wzpan/git-repo-sync/ import os import subprocess import sys def print_blocked(output): print("=" * len(output)) print(output) print("=" * len(output)) def check_output(cmd, **kwargs): tmp_cmd = subprocess.list2cmdline(cmd) print("Running command '%s'" % tmp_cmd) return subprocess.check_output(cmd, **kwargs) def call(cmd, **kwargs): tmp_cmd = subprocess.list2cmdline(cmd) print("Running command '%s'" % tmp_cmd) return subprocess.call(cmd, **kwargs) def get_remote_branches(working_dir, remote, skip_branches): remote_branches = check_output(["git", "branch", "-r"], cwd=working_dir) remote_branches = remote_branches.split("\n") tmp_branches = [] for branch in remote_branches: branch = branch.strip() if not branch: continue if branch.find("->") == -1: tmp_branches.append(branch) else: tmp_branch, tmp_alias = branch.split("->", 1) tmp_branch = tmp_branch.strip() if tmp_branch: tmp_branches.append(tmp_branch) long_branches = [] short_branches = [] for branch in tmp_branches: tmp_remote, short_branch = branch.split('/', 1) if tmp_remote != remote: continue if short_branch in skip_branches: continue long_branches.append(branch) short_branches.append(short_branch) return long_branches, short_branches def get_remote_tags(remote, working_dir): cmd = ['git', 'ls-remote', '--tags', remote] tags = check_output(cmd, cwd=working_dir) tags = tags.split("\n") tmp_tags = [] for tag in tags: tag = tag.strip() if not tag: continue tag_pieces = tag.split(None) if len(tag_pieces) != 2: continue tag_sha, tag = tag_pieces if tag.endswith("^{}"): continue if not tag.startswith("refs/tags/"): continue tag = tag[len("refs/tags/"):] if tag and tag not in tmp_tags: tmp_tags.append(tag) return tmp_tags def get_local_branches(working_dir): local_branches = check_output(["git", "branch"], cwd=working_dir) local_branches = local_branches.split("\n") tmp_branches = [] for branch in local_branches: branch = branch.replace("*", "") branch = branch.strip() if not branch: continue tmp_branches.append(branch) return tmp_branches def get_local_tags(working_dir): local_tags = check_output(["git", "tag"], cwd=working_dir) local_tags = local_tags.split("\n") tmp_tags = [] for tag in local_tags: tag = tag.strip() if not tag: continue tmp_tags.append(tag) return tmp_tags def sync_push(working_folder, target, push_tags, push_branches, push_tags_to_branches): source_folder = os.path.join(working_folder, "source") res = call(['git', 'remote', 'add', 'target', target], cwd=source_folder) if res != 0: sys.stderr.write("Unable to add remote to %s\n" % target) return 1 print_blocked("Interrogating") remote_branches, remote_short_branches = get_remote_branches( source_folder, 'origin', ['HEAD']) all_success = True branches_checked = 0 for branch, short_branch in zip(remote_branches, remote_short_branches): branches_checked += 1 print("Checking out branch '%s'" % branch) git_cmd = ['git', 'checkout'] if short_branch != "master": git_cmd.append('-t') git_cmd.append(branch) res = call(git_cmd, cwd=source_folder) if res != 0: sys.stderr.write("Unable to checkout remote" " branch '%s'\n" % (branch)) all_success = False else: res = call(['git', 'checkout', short_branch], cwd=source_folder) if res != 0: sys.stderr.write("Unable to checkout" " branch '%s'\n" % (branch)) all_success = False if not all_success: sys.stderr.write("Failed interrogating %s" " branches\n" % (branches_checked)) return 1 res = call(['git', 'fetch', '-t'], cwd=source_folder) if res != 0: sys.stderr.write("Failed fetching tags\n") return 1 remote_tags = get_remote_tags("target", source_folder) local_branches = get_local_branches(source_folder) local_tags = get_local_tags(source_folder) print_blocked("Validating") for tag in push_tags: if tag not in local_tags: sys.stderr.write("Unable to find tag '%s'\n" % (tag)) return 1 for tag_branch in push_tags_to_branches: tmp_tag, tmp_branch = tag_branch if tmp_tag not in local_tags: sys.stderr.write("Unable to find tag '%s'\n" % (tmp_tag)) return 1 for branch in push_branches: if branch not in local_branches: sys.stderr.write("Unable to find branch '%s'\n" % (branch)) return 1 print_blocked("Pushing") push_fails = 0 branches_to_push = [] for branch in local_branches: if branch not in push_branches: continue branches_to_push.append(branch) if branches_to_push: for branch in branches_to_push: print("Pushing branch '%s'" % (branch)) res = call(['git', 'push', '-u', 'target', branch], cwd=source_folder) if res != 0: sys.stderr.write("Pushing branch '%s' failed\n" % branch) push_fails += 1 else: print("No branches to push.") tags_to_push = [] for tag in local_tags: if tag in remote_tags or tag not in push_tags: continue tags_to_push.append(tag) if tags_to_push: for tag in tags_to_push: print("Pushing tag '%s'" % (tag)) res = call(['git', 'push', '-u', 'target', tag], cwd=source_folder) if res != 0: sys.stderr.write("Pushing tag '%s' failed\n" % tag) push_fails += 1 else: print("No tags to push.") tags_to_push_as_branches = [] for tag_branch in push_tags_to_branches: tmp_tag, tmp_branch = tag_branch tags_to_push_as_branches.append((tmp_tag, tmp_branch)) if tags_to_push_as_branches: for tag, branch in tags_to_push_as_branches: print("Pushing tag '%s' as branch '%s'" % (tag, branch)) res = call(['git', 'checkout', tag], cwd=source_folder) if res != 0: sys.stderr.write("Checkout of tag '%s' failed\n" % tag) push_fails += 1 else: res = call(['git', 'checkout', "-b", branch], cwd=source_folder) if res != 0: sys.stderr.write("Checkout of branch '%s'" " failed\n" % branch) push_fails += 1 else: res = call(['git', 'push', "target", "%s:%s" % (branch, branch)], cwd=source_folder) if res != 0: sys.stderr.write("Pushing tag '%s' as branch" " '%s' failed\n" % (tag, branch)) push_fails += 1 else: print("No tags to push as branches.") if push_fails: return 1 return 0
34.237885
76
0.556356
0
0
0
0
0
0
0
0
1,131
0.145522
b2080b7d4050889b2b37d9d988f89eaa6cb3c1e8
11,358
py
Python
domain_clf_analysis.py
xiaoleihuang/Domain_Adaptation_ACL2018
c077ceb7f67f1836043df88ac16ffed53cd3a9cb
[ "Apache-2.0" ]
3
2018-06-12T01:43:18.000Z
2019-10-01T16:21:43.000Z
domain_clf_analysis.py
xiaoleihuang/Domain_Adaptation_ACL2018
c077ceb7f67f1836043df88ac16ffed53cd3a9cb
[ "Apache-2.0" ]
null
null
null
domain_clf_analysis.py
xiaoleihuang/Domain_Adaptation_ACL2018
c077ceb7f67f1836043df88ac16ffed53cd3a9cb
[ "Apache-2.0" ]
null
null
null
""" Test on one domain, and train on the other domains, Output f1 scores and visualize them by heat map """ from utils import data_helper, model_helper from sklearn.metrics import f1_score from imblearn.over_sampling import RandomOverSampler from sklearn.preprocessing import LabelEncoder from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.model_selection import cross_val_score import numpy as np np.random.seed(0) from pandas import DataFrame import seaborn as sns import matplotlib.pyplot as plt import argparse def domain2year(domain, name): domain = int(domain) if 'vaccine' == name: if domain == 2013: return '2013' elif domain == 2014: return '2014' elif domain == 2015: return '2015' elif domain == 2016: return '2016' elif 'amazon' in name: if domain == 1: return '1997-99' elif domain == 2: return '2000-02' elif domain == 3: return '2003-05' elif domain == 4: return '2006-08' elif domain == 5: return '2009-11' elif domain == 6: return '2012-14' elif 'yelp' in name: if domain == 1: return '2006-08' elif domain == 2: return '2009-11' elif domain == 3: return '2012-14' elif domain == 4: return '2015-17' elif 'economy' in name: if domain == 1: return '1985-89' elif domain == 2: return '1990-94' elif domain == 3: return '1995-99' elif domain == 4: return '2000-04' elif domain == 5: return '2005-09' elif domain == 6: return '2010-14' elif 'parties' in name: if domain == 1: return '1948-56' elif domain == 2: return '1960-68' elif domain == 3: return '1972-80' elif domain == 4: return '1984-92' elif domain == 5: return '1996-2004' elif domain == 6: return '2008-16' def domain2month(domain, name=None): if domain == 1: return 'Jan-Mar' elif domain == 2: return 'Apr-Jun' elif domain == 3: return 'Jul-Sep' else: return 'Oct-Dec' def cross_test_domain_clf(dataset, domain2label, data_name=None, balance=False, binary=False, ): """ Train on one domain, test on others :return: """ uniq_domains = sorted(list(set([item[-2] for item in dataset]))) results = DataFrame([[0.0]*len(uniq_domains)]*len(uniq_domains), index=[domain2label(item, data_name) for item in uniq_domains], columns=[domain2label(item, data_name) for item in uniq_domains]) print(uniq_domains) # loop through each domain for domain in uniq_domains: # build train_data train_x = [] train_y = [] for item in dataset: if domain == item[-2]: train_x.append(item[0]) train_y.append(item[-1]) # build vectorizer and encoder label_encoder = LabelEncoder() if len(dataset) > 15469: # this number is length of "./yelp/yelp_Hotels_year_sample.tsv" - 1000 if not binary: vectorizer = TfidfVectorizer(min_df=2, tokenizer=lambda x: x.split()) else: vectorizer = TfidfVectorizer(min_df=2, tokenizer=lambda x: x.split(), binary=True, use_idf=False, smooth_idf=False) else: if not binary: vectorizer = TfidfVectorizer(ngram_range=(1, 3), min_df=2) else: vectorizer = TfidfVectorizer(min_df=2, ngram_range=(1, 3), binary=True, use_idf=False, smooth_idf=False) # encode the data train_y = label_encoder.fit_transform(train_y) train_x = vectorizer.fit_transform(train_x) # balance if balance: random_sampler = RandomOverSampler(random_state=0) train_x, train_y = random_sampler.fit_sample(train_x, train_y) # build classifier clf = model_helper.build_lr_clf() clf.fit(train_x, train_y) # instead of skipping self-domain, we take the 5-fold cross-validation for this domain results[domain2label(domain, data_name)][domain2label(domain, data_name)] = np.mean( cross_val_score(model_helper.build_lr_clf(), train_x, train_y, cv=5, scoring='f1_weighted') ) train_x = None train_y = None # test and evaluation for test_domain in [item for item in uniq_domains if item != domain]: if int(test_domain) == int(domain): continue test_x = [] test_y = [] for item in dataset: if test_domain == item[-2]: test_x.append(item[0]) test_y.append(item[-1]) # encode the data test_y = label_encoder.transform(test_y) test_x = vectorizer.transform(test_x) tmp_result = str(f1_score(y_true=test_y, y_pred=clf.predict(test_x), average='weighted')) # results[domain][test_domain] = str(f1_score(y_true=test_y, y_pred=clf.predict(test_x), average='weighted')) # print(str(domain)+','+str(test_domain)+','+str(f1_score(y_true=test_y, y_pred=clf.predict(test_x), average='weighted'))) results[domain2label(test_domain, data_name)][domain2label(domain, data_name)] = tmp_result test_x = None test_y = None # pickle.dump(results, open('cross_test_domain_results_'+str(balance)+'.pkl', 'wb')) print(results) return results def viz_perform(df, title, outpath='./image/output.pdf'): """ Heatmap visualization :param df: an instance of pandas DataFrame :return: """ a4_dims = (11.7, 11.27) fig, ax = plt.subplots(figsize=a4_dims) sns.set(font_scale=1.2) viz_plot = sns.heatmap(df, annot=True, cbar=False, ax=ax, annot_kws={"size": 24}, cmap="YlGnBu", vmin=df.values.min(), fmt='.3f') plt.xticks(rotation=20, fontsize=25) plt.xlabel('Train', fontsize=25) plt.ylabel('Test', fontsize=25) plt.title(title, fontsize=25) viz_plot.get_figure().savefig(outpath, format='pdf') plt.close() if __name__ == '__main__': """ """ # parser = argparse.ArgumentParser() # parser.add_argument('--month', default=None, # type=str, help='The path raw csv or tsv file') # parser.add_argument('--year', default=None, # type=str, help='The path raw csv or tsv file') # parser.add_argument('--output', default='vaccine', # type=str, help='data source name') # args = parser.parse_args() # for is_binary in [True, False]: # # on month # if args.month: # dataset = data_helper.load_data(args.month) # # test on balanced data # print('Test on balanced data') # test_balance = cross_test_domain_clf(dataset, balance=True, binary=is_binary) # # print('Test on unbalanced data') # test_unbalance = cross_test_domain_clf(dataset, balance=False, binary=is_binary) # # viz_perform(test_balance, './image/'+args.output+'/cross_clf_balance_month_'+str(is_binary)+'.png') # viz_perform(test_unbalance, './image/'+args.output+'/cross_clf_unbalance_month_'+str(is_binary)+'.png') # # # on year # if args.year: # dataset = data_helper.load_data(args.year) # # test on balanced data # print('Test on balanced data') # test_balance = cross_test_domain_clf(dataset, balance=True, binary=is_binary) # # print('Test on unbalanced data') # test_unbalance = cross_test_domain_clf(dataset, balance=False, binary=is_binary) # # viz_perform(test_balance, './image/'+args.output+'/cross_clf_balance_year_'+str(is_binary)+'.png') # viz_perform(test_unbalance, './image/'+args.output+'/cross_clf_unbalance_year_'+str(is_binary)+'.png') file_list = [ ('./data/vaccine/vaccine_month_sample.tsv', './data/vaccine/vaccine_year_sample.tsv', 'vaccine', 'Twitter data - vaccine'), ('./data/amazon/amazon_month_sample.tsv', './data/amazon/amazon_year_sample.tsv', 'amazon', 'Reviews data - music'),# './data/amazon/amazon_review_month_sample.tsv' ('./data/yelp/yelp_Hotels_month_sample.tsv', './data/yelp/yelp_Hotels_year_sample.tsv', 'yelp_hotel', 'Reviews data - hotels'), (None, './data/parties/parties_year_sample.tsv', 'parties', 'Politics - US political data'), ('./data/economy/economy_month_sample.tsv', './data/economy/economy_year_sample.tsv', 'economy', 'News data - economy'), ('./data/yelp/yelp_Restaurants_month_sample.tsv', './data/yelp/yelp_Restaurants_year_sample.tsv', 'yelp_rest', 'Reviews data - restaurants'), # './data/yelp/yelp_Restaurants_month_sample.tsv' ] for pair in file_list: print(pair) for is_binary in [False]: # True, skip binary currently # on month month_file = pair[0] year_file = pair[1] output = pair[2] if month_file: dataset = data_helper.load_data(month_file) # test on balanced data print('Test on balanced data') test_balance = cross_test_domain_clf(dataset, domain2month, data_name=None, balance=True, binary=is_binary) test_balance.to_csv('./tmp/' + output+ '_month.tsv', sep='\t') viz_perform(test_balance, pair[3],'./image/' + output + '/cross_clf_balance_month_' + str(is_binary) + '.pdf') test_balance = None # print('Test on unbalanced data') # test_unbalance = cross_test_domain_clf(dataset, domain2month, data_name=None, balance=False, binary=is_binary) # viz_perform(test_unbalance, pair[3], './image/'+output+'/cross_clf_unbalance_month_'+str(is_binary)+'.pdf') # test_unbalance = None # dataset = None # on year if year_file: dataset = data_helper.load_data(year_file) # test on balanced data print('Test on balanced data') test_balance = cross_test_domain_clf(dataset, domain2year, data_name=output, balance=True, binary=is_binary) test_balance.to_csv('./tmp/' + output+ '_year.tsv', sep='\t') viz_perform(test_balance, pair[3], './image/' + output + '/cross_clf_balance_year_' + str(is_binary) + '.pdf') test_balance = None # print('Test on unbalanced data') # test_unbalance = cross_test_domain_clf(dataset, domain2year, data_name=output, balance=False, binary=is_binary) # viz_perform(test_unbalance, pair[3], './image/'+output+'/cross_clf_unbalance_year_'+str(is_binary)+'.pdf') test_unbalance = None
39.992958
199
0.588044
0
0
0
0
0
0
0
0
4,639
0.408435
b209d756a7a9dd9b0a6aa608dc616fb5501e9ff4
219
py
Python
01 - Expressions, variables and assignments/exercises/perimeter-of-rectangle.py
PableraShow/python-exercises
e1648fd42f3009ec6fb1e2096852b6d399e91d5b
[ "MIT" ]
8
2018-10-01T17:35:57.000Z
2022-02-01T08:12:12.000Z
01 - Expressions, variables and assignments/exercises/perimeter-of-rectangle.py
PableraShow/python-exercises
e1648fd42f3009ec6fb1e2096852b6d399e91d5b
[ "MIT" ]
null
null
null
01 - Expressions, variables and assignments/exercises/perimeter-of-rectangle.py
PableraShow/python-exercises
e1648fd42f3009ec6fb1e2096852b6d399e91d5b
[ "MIT" ]
6
2018-07-22T19:15:21.000Z
2022-02-05T07:54:58.000Z
""" Prints the length in inches of the perimeter of a rectangle with sides of length 4 and 7 inches. """ # Rectangle perimeter formula length = 4 inches = 7 perimeter = 2 * length + 2 * inches # Output print perimeter
18.25
59
0.726027
0
0
0
0
0
0
0
0
141
0.643836
b20a4404ed9e15d9b510a71724e0f8e9d7cc1046
645
py
Python
tools/leetcode.128.Longest Consecutive Sequence/leetcode.128.Longest Consecutive Sequence.submission1.py
tedye/leetcode
975d7e3b8cb9b6be9e80e07febf4bcf6414acd46
[ "MIT" ]
4
2015-10-10T00:30:55.000Z
2020-07-27T19:45:54.000Z
tools/leetcode.128.Longest Consecutive Sequence/leetcode.128.Longest Consecutive Sequence.submission1.py
tedye/leetcode
975d7e3b8cb9b6be9e80e07febf4bcf6414acd46
[ "MIT" ]
null
null
null
tools/leetcode.128.Longest Consecutive Sequence/leetcode.128.Longest Consecutive Sequence.submission1.py
tedye/leetcode
975d7e3b8cb9b6be9e80e07febf4bcf6414acd46
[ "MIT" ]
null
null
null
class Solution: # @param {integer[]} nums # @return {integer} def longestConsecutive(self, nums): if not nums: return 0 result = 0 hashtable = set(nums) while hashtable: i = hashtable.pop() cnt = 1 temp = i while temp+1 in hashtable: cnt += 1 temp += 1 hashtable.remove(temp) temp = i while temp-1 in hashtable: cnt += 1 temp -=1 hashtable.remove(temp) result = max(result, cnt) return result
645
645
0.432558
645
1
0
0
0
0
0
0
625
0.968992
b20aba712b1ab01e3fb65465b63bc20687698132
123
py
Python
x_3_4.py
ofl/kuku2
7247fb1862d917d23258ebe7a93dca5939433225
[ "MIT" ]
null
null
null
x_3_4.py
ofl/kuku2
7247fb1862d917d23258ebe7a93dca5939433225
[ "MIT" ]
1
2021-11-13T08:03:04.000Z
2021-11-13T08:03:04.000Z
x_3_4.py
ofl/kuku2
7247fb1862d917d23258ebe7a93dca5939433225
[ "MIT" ]
null
null
null
# x_3_4 # # mathモジュールからfloor関数だけインポートして切り捨て計算を行ってください from statistics import mean data = [7, 4, 3, 9] print(mean(data))
12.3
43
0.739837
0
0
0
0
0
0
0
0
115
0.614973
b20c24ef9d6d64b2c1eb48b70a055569f3cf0291
690
py
Python
2018/21/reverse_engineered.py
lvaughn/advent
ff3f727b8db1fd9b2a04aad5dcda9a6c8d1c271e
[ "CC0-1.0" ]
null
null
null
2018/21/reverse_engineered.py
lvaughn/advent
ff3f727b8db1fd9b2a04aad5dcda9a6c8d1c271e
[ "CC0-1.0" ]
null
null
null
2018/21/reverse_engineered.py
lvaughn/advent
ff3f727b8db1fd9b2a04aad5dcda9a6c8d1c271e
[ "CC0-1.0" ]
null
null
null
#!/usr/bin/env python3 def simulate(reg_0, find_non_loop): seen = set() c = 0 last_unique_c = -1 while True: a = c | 65536 c = reg_0 while True: c = (((c + (a & 255)) & 16777215) * 65899) & 16777215 if a < 256: if find_non_loop: return c else: if c not in seen: seen.add(c) last_unique_c = c break else: return last_unique_c else: a //= 256 print(simulate(7041048, True)) print(simulate(7041048, False))
22.258065
65
0.401449
0
0
0
0
0
0
0
0
22
0.031884
b20ca1a11af5328342bece8c8b28ae8ca5c425a2
7,025
py
Python
pybilt/lipid_grid/lipid_grid_curv.py
blakeaw/ORBILT
ed402dd496534dccd00f3e75b57007d944c58c1d
[ "MIT" ]
11
2019-07-29T16:21:53.000Z
2022-02-02T11:44:57.000Z
pybilt/lipid_grid/lipid_grid_curv.py
blakeaw/ORBILT
ed402dd496534dccd00f3e75b57007d944c58c1d
[ "MIT" ]
11
2019-05-15T09:30:05.000Z
2021-07-19T16:49:59.000Z
pybilt/lipid_grid/lipid_grid_curv.py
blakeaw/ORBILT
ed402dd496534dccd00f3e75b57007d944c58c1d
[ "MIT" ]
9
2019-08-12T11:14:45.000Z
2020-12-22T18:22:55.000Z
''' Classes and functions to implement gridding and curvature correlation analysis for lipid bilayers. The gridding and anlaysis procedures are based on the decription given in section "Correlation between bilayer surface curvature and the clustering of lipid molecules" of Koldso H, Shorthouse D, He lie J, Sansom MSP (2014) Lipid Clustering Correlates with Membrane Curvature as Revealed by Molecular Simulations of Complex Lipid Bilayers. PLoS Comput Biol 10(10): e1003911. doi:10.1371/journal.pcbi.1003911 However, this implementation currently uses the z position (or normal position) of the lipids' centers of mass, while their implementaion uses "the z coordinate of the interface between the head groups of the lipids (excluding the current species being calculated and tails in that box." ''' import numpy as np from six.moves import range class LipidGrid_2d(object): def __init__(self, com_frame, com_frame_indices,plane,nxbins=20,nybins=20): #store the frame and leaflet self.frame = com_frame #self.leaflet = ms_leaflet #get the x and y indices ix = plane[0] iy = plane[1] iz = [i for i in [0,1,2] if i not in plane][0] #get the box dimemsions box = com_frame.box boxx = box[ix] boxy = box[iy] #box_com = com_frame.mem_com #box_com_x = box_com[ix] #box_com_y = box_com[iy] #save the numbers of bins self.x_nbins = nxbins self.y_nbins = nybins #initialize the edges of the and centers of the gridpoints # x #self.x_min = -box_com_x #self.x_max = boxx - box_com_x self.x_min = 0.0 self.x_max = boxx self.x_edges = np.linspace(self.x_min,self.x_max,(nxbins+1),endpoint=True) self.x_incr = self.x_edges[1]-self.x_edges[0] x_incr_h = self.x_incr/2.0 self.x_centers = np.zeros(nxbins) self.x_nedges = len(self.x_edges) for i in range(1,self.x_nedges): j=i-1 self.x_centers[j]=self.x_edges[j]+x_incr_h # y #self.y_min = -box_com_y #self.y_max = boxy - box_com_y self.y_min = 0.0 self.y_max = boxy self.y_edges = np.linspace(self.y_min,self.y_max,(nybins+1),endpoint=True) self.y_incr = self.y_edges[1]-self.y_edges[0] y_incr_h = self.y_incr/2.0 self.y_centers = np.zeros(nybins) self.y_nedges = len(self.y_edges) for i in range(1,self.y_nedges): j=i-1 self.y_centers[j]=self.y_edges[j]+y_incr_h self.x_length = self.x_max-self.x_min self.y_length = self.y_max-self.y_min # get the lipid indices for this leaflet indices = com_frame_indices #now assign lipids to the gridpoints self.lipid_grid = [] #cx = 0 #print self.x_edges mx_x = -1000.0 mn_x = 1000.0 for cx in range(len(self.x_edges)-1): self.lipid_grid.append([]) x_lower = self.x_edges[cx] x_upper = self.x_edges[cx+1] #print "x_upper ",x_upper, " x_lower ",x_lower for cy in range(len(self.y_edges)-1): self.lipid_grid[cx].append([]) y_lower = self.y_edges[cy] y_upper = self.y_edges[cy+1] #check lipid COMs for i in indices: xi = com_frame.lipidcom[i].com[ix] yi = com_frame.lipidcom[i].com[iy] zi = com_frame.lipidcom[i].com_unwrap[iz] x_box = xi > x_lower and xi < x_upper y_box = yi > y_lower and yi < y_upper if xi < mn_x: mn_x = xi if xi > mx_x: mx_x = xi if x_box and y_box: #add to this grid self.lipid_grid[cx][cy].append((i, com_frame.lipidcom[i].type, zi)) def get_index_at(self,ix,iy): return self.lipid_grid[ix][iy][:,0] def get_z_at(self,ix,iy): return self.lipid_grid[ix][iy][:,2] class LipidGrids(object): def __init__(self, com_frame, leaflets,plane,nxbins=3,nybins=3): #store the frame and leaflet self.frame = com_frame self.leaflets = leaflets self.plane = plane self.norm = [i for i in [0,1,2] if i not in plane][0] self.nbins_x = nxbins self.nbins_y = nybins self.leaf_grid = {} self.myframe = com_frame.mdnumber #initialize the grids #upper upper_indices = leaflets['upper'].get_member_indices() self.leaf_grid['upper'] = LipidGrid_2d(com_frame,upper_indices,plane,nxbins=nxbins,nybins=nybins) #lower lower_indices = leaflets['lower'].get_member_indices() self.leaf_grid['lower'] = LipidGrid_2d(com_frame,lower_indices,plane,nxbins=nxbins,nybins=nybins) return def norm_displacement_cross_correlation(self): output = dict() for leaf in self.leaflets.keys(): output[leaf] = dict() ll_types = self.leaflets[leaf].get_group_names() for l_type in ll_types: #loop over grid boxes count = [] z_vals = [] n_box = 0.0 for xb in self.leaf_grid[leaf].lipid_grid: for yb in xb: box_count = 0 box_z_vals = [] for lipid in yb: # print(lipid) lipid_type = lipid[1] lipid_z = lipid[2] #print "lipid_z: ",lipid_z if lipid_type == l_type: box_count+=1 else: box_z_vals.append(lipid_z) n_box+=1 if len(box_z_vals) > 0: #n_box+=1.0 box_z_avg = box_z_vals[0] if len(box_z_vals) > 1: box_z_avg = np.array(box_z_vals).mean() count.append(float(box_count)) z_vals.append(box_z_avg) cross_corr = 0.0 if len(count) > 1 and len(z_vals) >1: count = np.array(count) z_vals = np.array(z_vals) count_mean = count.mean() count_std = count.std() z_mean = z_vals.mean() z_std = z_vals.std() cross_sum = np.dot(count-count_mean, z_vals-z_mean) cross_corr = cross_sum/(count_std*z_std*n_box) if np.isnan(cross_corr): cross_corr = 0.0 output[leaf][l_type] = cross_corr #quit() return output
39.914773
117
0.540641
6,157
0.876441
0
0
0
0
0
0
1,540
0.219217
b20cc44e10c5f1d7b1d539469ba4792e3e3334fc
492
py
Python
security.py
Raghav714/intruder-alarm
c27825e5b483b6dc18704e0da76500b348174432
[ "MIT" ]
4
2018-10-02T06:37:50.000Z
2021-10-31T16:41:59.000Z
security.py
Raghav714/intruder-alarm
c27825e5b483b6dc18704e0da76500b348174432
[ "MIT" ]
null
null
null
security.py
Raghav714/intruder-alarm
c27825e5b483b6dc18704e0da76500b348174432
[ "MIT" ]
null
null
null
import numpy as np import cv2 import pygame cap = cv2.VideoCapture(0) fgbg = cv2.createBackgroundSubtractorMOG2() pygame.mixer.init() pygame.mixer.music.load("1.mp3") while(1): ret, frame = cap.read() fgmask = fgbg.apply(frame) flag = np.std(fgmask) if flag>50: print("some one came") pygame.mixer.music.play() cv2.imshow('fgmask',frame) cv2.imshow('frame',fgmask) k = cv2.waitKey(30) & 0xff if k == 27: pygame.mixer.music.stop() break cap.release() cv2.destroyAllWindows()
20.5
43
0.707317
0
0
0
0
0
0
0
0
37
0.075203
b20cdd9f8c550b03afcaa9236a4a608b7379d8bd
453
py
Python
pygeos/measurements.py
jorisvandenbossche/pygeos
0a25af4ae1c96d11752318d2755f4f3342611b17
[ "BSD-3-Clause" ]
null
null
null
pygeos/measurements.py
jorisvandenbossche/pygeos
0a25af4ae1c96d11752318d2755f4f3342611b17
[ "BSD-3-Clause" ]
null
null
null
pygeos/measurements.py
jorisvandenbossche/pygeos
0a25af4ae1c96d11752318d2755f4f3342611b17
[ "BSD-3-Clause" ]
null
null
null
from . import ufuncs __all__ = ["area", "distance", "length", "hausdorff_distance"] def area(geometries): return ufuncs.area(geometries) def distance(a, b): return ufuncs.distance(a, b) def length(geometries): return ufuncs.length(geometries) def hausdorff_distance(a, b, densify=None): if densify is None: return ufuncs.hausdorff_distance(a, b) else: return ufuncs.haussdorf_distance_densify(a, b, densify)
19.695652
63
0.697572
0
0
0
0
0
0
0
0
44
0.09713
b20ea0b58e52db3ee0246fdb58558d2834cf2129
9,539
py
Python
naff/models/naff/extension.py
Discord-Snake-Pit/dis_snek
45748467838b31d871a7166dbeb3aaa238ad94e3
[ "MIT" ]
64
2021-10-12T15:31:36.000Z
2022-03-29T18:25:47.000Z
naff/models/naff/extension.py
Discord-Snake-Pit/dis_snek
45748467838b31d871a7166dbeb3aaa238ad94e3
[ "MIT" ]
166
2021-10-10T16:27:52.000Z
2022-03-30T09:04:54.000Z
naff/models/naff/extension.py
Discord-Snake-Pit/dis_snek
45748467838b31d871a7166dbeb3aaa238ad94e3
[ "MIT" ]
34
2021-10-10T13:26:41.000Z
2022-03-23T13:59:35.000Z
import asyncio import inspect import logging from typing import Awaitable, List, TYPE_CHECKING, Callable, Coroutine, Optional import naff.models.naff as naff from naff.client.const import logger_name, MISSING from naff.client.utils.misc_utils import wrap_partial from naff.models.naff.tasks import Task if TYPE_CHECKING: from naff.client import Client from naff.models.naff import AutoDefer, BaseCommand, Listener from naff.models.naff import Context log = logging.getLogger(logger_name) __all__ = ("Extension",) class Extension: """ A class that allows you to separate your commands and listeners into separate files. Skins require an entrypoint in the same file called `setup`, this function allows client to load the Extension. ??? Hint "Example Usage:" ```python class ExampleExt(Extension): def __init__(self, bot): print("Extension Created") @prefixed_command() async def some_command(self, context): await ctx.send(f"I was sent from a extension called {self.name}") ``` Attributes: bot Client: A reference to the client name str: The name of this Extension (`read-only`) description str: A description of this Extension extension_checks str: A list of checks to be ran on any command in this extension extension_prerun List: A list of coroutines to be run before any command in this extension extension_postrun List: A list of coroutines to be run after any command in this extension """ bot: "Client" name: str extension_name: str description: str extension_checks: List extension_prerun: List extension_postrun: List extension_error: Optional[Callable[..., Coroutine]] _commands: List _listeners: List auto_defer: "AutoDefer" def __new__(cls, bot: "Client", *args, **kwargs) -> "Extension": new_cls = super().__new__(cls) new_cls.bot = bot new_cls.name = cls.__name__ new_cls.extension_checks = [] new_cls.extension_prerun = [] new_cls.extension_postrun = [] new_cls.extension_error = None new_cls.auto_defer = MISSING new_cls.description = kwargs.get("Description", None) if not new_cls.description: new_cls.description = inspect.cleandoc(cls.__doc__) if cls.__doc__ else None # load commands from class new_cls._commands = [] new_cls._listeners = [] for _name, val in inspect.getmembers( new_cls, predicate=lambda x: isinstance(x, (naff.BaseCommand, naff.Listener, Task)) ): if isinstance(val, naff.BaseCommand): val.extension = new_cls val = wrap_partial(val, new_cls) if not isinstance(val, naff.PrefixedCommand) or not val.is_subcommand: # we do not want to add prefixed subcommands new_cls._commands.append(val) if isinstance(val, naff.ModalCommand): bot.add_modal_callback(val) elif isinstance(val, naff.ComponentCommand): bot.add_component_callback(val) elif isinstance(val, naff.InteractionCommand): bot.add_interaction(val) else: bot.add_prefixed_command(val) elif isinstance(val, naff.Listener): val = wrap_partial(val, new_cls) bot.add_listener(val) new_cls.listeners.append(val) elif isinstance(val, Task): wrap_partial(val, new_cls) log.debug( f"{len(new_cls._commands)} commands and {len(new_cls.listeners)} listeners" f" have been loaded from `{new_cls.name}`" ) new_cls.extension_name = inspect.getmodule(new_cls).__name__ new_cls.bot.ext[new_cls.name] = new_cls if hasattr(new_cls, "async_start"): if inspect.iscoroutinefunction(new_cls.async_start): bot.async_startup_tasks.append(new_cls.async_start()) else: raise TypeError("async_start is a reserved method and must be a coroutine") return new_cls @property def __name__(self) -> str: return self.name @property def commands(self) -> List["BaseCommand"]: """Get the commands from this Extension.""" return self._commands @property def listeners(self) -> List["Listener"]: """Get the listeners from this Extension.""" return self._listeners def drop(self) -> None: """Called when this Extension is being removed.""" for func in self._commands: if isinstance(func, naff.ModalCommand): for listener in func.listeners: # noinspection PyProtectedMember self.bot._modal_callbacks.pop(listener) elif isinstance(func, naff.ComponentCommand): for listener in func.listeners: # noinspection PyProtectedMember self.bot._component_callbacks.pop(listener) elif isinstance(func, naff.InteractionCommand): for scope in func.scopes: if self.bot.interactions.get(scope): self.bot.interactions[scope].pop(func.resolved_name, []) elif isinstance(func, naff.PrefixedCommand): if not func.is_subcommand: self.bot.prefixed_commands.pop(func.name, None) for alias in func.aliases: self.bot.prefixed_commands.pop(alias, None) for func in self.listeners: self.bot.listeners[func.event].remove(func) self.bot.ext.pop(self.name, None) log.debug(f"{self.name} has been drop") def add_ext_auto_defer(self, ephemeral: bool = False, time_until_defer: float = 0.0) -> None: """ Add a auto defer for all commands in this extension. Args: ephemeral: Should the command be deferred as ephemeral time_until_defer: How long to wait before deferring automatically """ self.auto_defer = naff.AutoDefer(enabled=True, ephemeral=ephemeral, time_until_defer=time_until_defer) def add_ext_check(self, coroutine: Callable[["Context"], Awaitable[bool]]) -> None: """ Add a coroutine as a check for all commands in this extension to run. This coroutine must take **only** the parameter `context`. ??? Hint "Example Usage:" ```python def __init__(self, bot): self.add_ext_check(self.example) @staticmethod async def example(context: Context): if context.author.id == 123456789: return True return False ``` Args: coroutine: The coroutine to use as a check """ if not asyncio.iscoroutinefunction(coroutine): raise TypeError("Check must be a coroutine") if not self.extension_checks: self.extension_checks = [] self.extension_checks.append(coroutine) def add_extension_prerun(self, coroutine: Callable[..., Coroutine]) -> None: """ Add a coroutine to be run **before** all commands in this Extension. Note: Pre-runs will **only** be run if the commands checks pass ??? Hint "Example Usage:" ```python def __init__(self, bot): self.add_extension_prerun(self.example) async def example(self, context: Context): await ctx.send("I ran first") ``` Args: coroutine: The coroutine to run """ if not asyncio.iscoroutinefunction(coroutine): raise TypeError("Callback must be a coroutine") if not self.extension_prerun: self.extension_prerun = [] self.extension_prerun.append(coroutine) def add_extension_postrun(self, coroutine: Callable[..., Coroutine]) -> None: """ Add a coroutine to be run **after** all commands in this Extension. ??? Hint "Example Usage:" ```python def __init__(self, bot): self.add_extension_postrun(self.example) async def example(self, context: Context): await ctx.send("I ran first") ``` Args: coroutine: The coroutine to run """ if not asyncio.iscoroutinefunction(coroutine): raise TypeError("Callback must be a coroutine") if not self.extension_postrun: self.extension_postrun = [] self.extension_postrun.append(coroutine) def set_extension_error(self, coroutine: Callable[..., Coroutine]) -> None: """ Add a coroutine to handle any exceptions raised in this extension. ??? Hint "Example Usage:" ```python def __init__(self, bot): self.set_extension_error(self.example) Args: coroutine: The coroutine to run """ if not asyncio.iscoroutinefunction(coroutine): raise TypeError("Callback must be a coroutine") if self.extension_error: log.warning("Extension error callback has been overridden!") self.extension_error = coroutine
35.726592
200
0.605095
9,007
0.944229
0
0
341
0.035748
0
0
3,799
0.39826
b20eabd7816b307c80c7a57deaf784b914a0c831
2,619
py
Python
model/State.py
BrandonTheBuilder/thermawesome
b2f2cb95e1181f05a112193be11baa18e10d39b1
[ "MIT" ]
null
null
null
model/State.py
BrandonTheBuilder/thermawesome
b2f2cb95e1181f05a112193be11baa18e10d39b1
[ "MIT" ]
null
null
null
model/State.py
BrandonTheBuilder/thermawesome
b2f2cb95e1181f05a112193be11baa18e10d39b1
[ "MIT" ]
null
null
null
from CoolProp import CoolProp as CP class State(object): """ The state of a fluid is defined with two unique intensive properties this class keeps track of the state of the fluid and solves for all other intensive properties. """ def __init__(self, fluid, **kwargs): """ fluid: The type of fluid this is. flowRate: The mass flow rate of the stream, kg/s kwargs: intensive properties to define the state. The Properties that we are interested in are: h, specific Enthalpy u, specific Internal Energy v, specific Volume s, specific Entropy m, specific mass flow rate """ self.defined = False self.fluid = fluid self.properties = dict() if kwargs is not None: self.properties.update(kwargs) def define(self, **kwargs): """ Define the fluid state based off of the inputed properties """ #Make a list of defined properties inputProp = [] if kwargs is not None: self.properties.update(kwargs) for key in self.properties.keys(): inputProp.extend([key.capitalize(), self.properties[key]]) inputProp.append(self.fluid) try: self.properties.update( T = CP.PropsSI('T', *inputProp), P = CP.PropsSI('P', *inputProp), h = CP.PropsSI('H', *inputProp), s = CP.PropsSI('S',*inputProp), u = CP.PropsSI('U', *inputProp), v = 1/CP.PropsSI('D', *inputProp)) self.defined = True except Exception as ex: self.defined = False print ex return self.defined def exergy_f(self, t0, p0): deadState = State('Water', T=t0, P=p0) if deadState.define(): self._exergy_f = ((self.properties['h'] - deadState.properties['h']) -t0*(self.properties['s']-deadState.properties['s'])) return self._exergy_f else: return False def exergy(self, t0, p0): deadState = State('Water', T=t0, P=p0) if deadState.define(): self._exergy = ((self.properties['u'] - deadState.properties['u']) +p0*(self.properties['v'] - deadState.properties['v']) -t0*(self.properties['s']-deadState.properties['s'])) return self._exergy else: return False def __add__(self, other): pass def isDefined(self): pass
33.576923
82
0.544101
2,577
0.983963
0
0
0
0
0
0
762
0.290951
b20ed9c65d8b7c88f2047aafe3f3e3d7c3016629
2,401
py
Python
dashboard_api/widget_def/migrations/0059_auto_20160701_0929.py
data61/Openboard
aaf7ef49e05c0771094efc6be811c6ae88055252
[ "Apache-2.0" ]
2
2017-08-29T23:05:51.000Z
2019-04-02T21:11:35.000Z
dashboard_api/widget_def/migrations/0059_auto_20160701_0929.py
data61/Openboard
aaf7ef49e05c0771094efc6be811c6ae88055252
[ "Apache-2.0" ]
1
2019-04-02T21:11:26.000Z
2019-04-03T15:12:57.000Z
dashboard_api/widget_def/migrations/0059_auto_20160701_0929.py
data61/Openboard
aaf7ef49e05c0771094efc6be811c6ae88055252
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- # Generated by Django 1.9.7 on 2016-06-30 23:29 from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('widget_def', '0058_auto_20160617_1124'), ] operations = [ migrations.AlterUniqueTogether( name='geodatasetdeclaration', unique_together=set([]), ), migrations.RemoveField( model_name='geodatasetdeclaration', name='dataset', ), migrations.RemoveField( model_name='geodatasetdeclaration', name='frequency', ), migrations.RemoveField( model_name='geodatasetdeclaration', name='location', ), migrations.RemoveField( model_name='geodatasetdeclaration', name='theme', ), migrations.RemoveField( model_name='location', name='geo_window', ), migrations.AlterUniqueTogether( name='widgetdeclaration', unique_together=set([]), ), migrations.RemoveField( model_name='widgetdeclaration', name='definition', ), migrations.RemoveField( model_name='widgetdeclaration', name='frequency', ), migrations.RemoveField( model_name='widgetdeclaration', name='location', ), migrations.RemoveField( model_name='widgetdeclaration', name='theme', ), migrations.AddField( model_name='graphdefinition', name='cluster_label', field=models.CharField(default=b'cluster', help_text=b'Not used for line graphs', max_length=120), ), migrations.AddField( model_name='graphdefinition', name='dataset_label', field=models.CharField(default=b'dataset', max_length=120), ), migrations.DeleteModel( name='Frequency', ), migrations.DeleteModel( name='GeoDatasetDeclaration', ), migrations.DeleteModel( name='Location', ), migrations.DeleteModel( name='Theme', ), migrations.DeleteModel( name='WidgetDeclaration', ), ]
28.247059
110
0.549354
2,244
0.934611
0
0
0
0
0
0
597
0.248646
b74658fcd0b086ae391a31278701946a2e7748a0
7,649
py
Python
ngraph/python/tests/test_ngraph/test_ops_reshape.py
mnosov/openvino
c52c4916be0369f092f7da6c162b6c61c37c08d7
[ "Apache-2.0" ]
null
null
null
ngraph/python/tests/test_ngraph/test_ops_reshape.py
mnosov/openvino
c52c4916be0369f092f7da6c162b6c61c37c08d7
[ "Apache-2.0" ]
21
2021-02-16T13:02:05.000Z
2022-02-21T13:05:06.000Z
ngraph/python/tests/test_ngraph/test_ops_reshape.py
mmakridi/openvino
769bb7709597c14debdaa356dd60c5a78bdfa97e
[ "Apache-2.0" ]
null
null
null
# ****************************************************************************** # Copyright 2017-2021 Intel Corporation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ****************************************************************************** import numpy as np import pytest import ngraph as ng from tests.runtime import get_runtime from tests.test_ngraph.util import run_op_node, run_op_numeric_data from tests import xfail_issue_40957 def test_concat(): a = np.array([[1, 2], [3, 4]]) b = np.array([[5, 6]]) axis = 0 expected = np.concatenate((a, b), axis=0) runtime = get_runtime() parameter_a = ng.parameter(list(a.shape), name="A", dtype=np.float32) parameter_b = ng.parameter(list(b.shape), name="B", dtype=np.float32) node = ng.concat([parameter_a, parameter_b], axis) computation = runtime.computation(node, parameter_a, parameter_b) result = computation(a, b) assert np.allclose(result, expected) @xfail_issue_40957 @pytest.mark.parametrize( "val_type, value", [(bool, False), (bool, np.empty((2, 2), dtype=bool))] ) def test_constant_from_bool(val_type, value): expected = np.array(value, dtype=val_type) result = run_op_numeric_data(value, ng.constant, val_type) assert np.allclose(result, expected) @pytest.mark.parametrize( "val_type, value", [ pytest.param(np.float32, np.float32(0.1234), marks=xfail_issue_40957), pytest.param(np.float64, np.float64(0.1234), marks=xfail_issue_40957), pytest.param(np.int8, np.int8(-63), marks=xfail_issue_40957), pytest.param(np.int16, np.int16(-12345), marks=xfail_issue_40957), pytest.param(np.int32, np.int32(-123456), marks=xfail_issue_40957), pytest.param(np.int64, np.int64(-1234567), marks=xfail_issue_40957), pytest.param(np.uint8, np.uint8(63), marks=xfail_issue_40957), pytest.param(np.uint16, np.uint16(12345), marks=xfail_issue_40957), pytest.param(np.uint32, np.uint32(123456), marks=xfail_issue_40957), pytest.param(np.uint64, np.uint64(1234567), marks=xfail_issue_40957), ], ) def test_constant_from_scalar(val_type, value): expected = np.array(value, dtype=val_type) result = run_op_numeric_data(value, ng.constant, val_type) assert np.allclose(result, expected) @pytest.mark.parametrize( "val_type", [ pytest.param(np.float32, marks=xfail_issue_40957), pytest.param(np.float64, marks=xfail_issue_40957), ], ) def test_constant_from_float_array(val_type): np.random.seed(133391) input_data = np.array(-1 + np.random.rand(2, 3, 4) * 2, dtype=val_type) result = run_op_numeric_data(input_data, ng.constant, val_type) assert np.allclose(result, input_data) @xfail_issue_40957 @pytest.mark.parametrize( "val_type, range_start, range_end", [ (np.int8, -8, 8), (np.int16, -64, 64), (np.int32, -1024, 1024), (np.int64, -16383, 16383), (np.uint8, 0, 8), (np.uint16, 0, 64), (np.uint32, 0, 1024), (np.uint64, 0, 16383), ], ) def test_constant_from_integer_array(val_type, range_start, range_end): np.random.seed(133391) input_data = np.array( np.random.randint(range_start, range_end, size=(2, 2)), dtype=val_type ) result = run_op_numeric_data(input_data, ng.constant, val_type) assert np.allclose(result, input_data) def test_broadcast_numpy(): data_shape = [16, 1, 1] target_shape_shape = [4] data_parameter = ng.parameter(data_shape, name="Data", dtype=np.float32) target_shape_parameter = ng.parameter( target_shape_shape, name="Target_shape", dtype=np.int64 ) node = ng.broadcast(data_parameter, target_shape_parameter) assert node.get_type_name() == "Broadcast" assert node.get_output_size() == 1 def test_broadcast_bidirectional(): data_shape = [16, 1, 1] target_shape_shape = [4] data_parameter = ng.parameter(data_shape, name="Data", dtype=np.float32) target_shape_parameter = ng.parameter( target_shape_shape, name="Target_shape", dtype=np.int64 ) node = ng.broadcast(data_parameter, target_shape_parameter, "BIDIRECTIONAL") assert node.get_type_name() == "Broadcast" assert node.get_output_size() == 1 def test_gather(): input_data = np.array( [1.0, 1.1, 1.2, 2.0, 2.1, 2.2, 3.0, 3.1, 3.2], np.float32 ).reshape((3, 3)) input_indices = np.array([0, 2], np.int32).reshape(1, 2) input_axes = np.array([1], np.int32) expected = np.array([1.0, 1.2, 2.0, 2.2, 3.0, 3.2], dtype=np.float32).reshape( (3, 1, 2) ) result = run_op_node([input_data], ng.gather, input_indices, input_axes) assert np.allclose(result, expected) def test_transpose(): input_tensor = np.arange(3 * 3 * 224 * 224, dtype=np.int32).reshape( (3, 3, 224, 224) ) input_order = np.array([0, 2, 3, 1], dtype=np.int32) result = run_op_node([input_tensor], ng.transpose, input_order) expected = np.transpose(input_tensor, input_order) assert np.allclose(result, expected) @pytest.mark.xfail( reason="Tile operation has a form that is not supported. Tile_2 should be converted to TileIE operation." ) def test_tile(): input_tensor = np.arange(6, dtype=np.int32).reshape((2, 1, 3)) repeats = np.array([2, 1], dtype=np.int32) result = run_op_node([input_tensor], ng.tile, repeats) expected = np.array([0, 1, 2, 0, 1, 2, 3, 4, 5, 3, 4, 5]).reshape((2, 2, 3)) assert np.allclose(result, expected) @pytest.mark.xfail( reason="RuntimeError: Check 'shape_size(get_input_shape(0)) == shape_size(output_shape)'" ) def test_strided_slice(): input_tensor = np.arange(2 * 3 * 4, dtype=np.float32).reshape((2, 3, 4)) begin = np.array([1, 0], dtype=np.int32) end = np.array([0, 0], dtype=np.int32) strides = np.array([1, 1], dtype=np.int32) begin_mask = np.array([0, 0, 0], dtype=np.int32) end_mask = np.array([0, 0, 0], dtype=np.int32) new_axis_mask = np.array([0, 1, 0], dtype=np.int32) shrink_axis_mask = np.array([1, 0, 0], dtype=np.int32) ellipsis_mask = np.array([0, 0, 0], dtype=np.int32) result = run_op_node( [input_tensor], ng.strided_slice, begin, end, strides, begin_mask, end_mask, new_axis_mask, shrink_axis_mask, ellipsis_mask, ) expected = np.array( [12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23], dtype=np.float32 ).reshape((1, 3, 4)) assert np.allclose(result, expected) def test_reshape_v1(): A = np.arange(1200, dtype=np.float32).reshape((2, 5, 5, 24)) shape = np.array([0, -1, 4], dtype=np.int32) special_zero = True expected_shape = np.array([2, 150, 4]) expected = np.reshape(A, expected_shape) result = run_op_node([A], ng.reshape, shape, special_zero) assert np.allclose(result, expected) def test_shape_of(): input_tensor = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]], dtype=np.float32) result = run_op_node([input_tensor], ng.shape_of) assert np.allclose(result, [3, 3])
32.969828
109
0.651458
0
0
0
0
3,913
0.51157
0
0
1,074
0.140411
b746b8cda074f334edc7ccba71a84d7a2cd55be1
1,980
py
Python
malwarescan/wsclient.py
lbahtarliev/MalwareScan
495e2fd3ceb3498c651ddd360a4cc2eb9571a10b
[ "Unlicense" ]
3
2018-12-06T03:09:16.000Z
2021-02-25T01:13:05.000Z
malwarescan/wsclient.py
lbahtarliev/MalwareScan
495e2fd3ceb3498c651ddd360a4cc2eb9571a10b
[ "Unlicense" ]
9
2018-12-10T18:44:14.000Z
2019-02-06T21:13:31.000Z
malwarescan/wsclient.py
lbahtarliev/MalwareScan
495e2fd3ceb3498c651ddd360a4cc2eb9571a10b
[ "Unlicense" ]
4
2019-06-04T13:46:24.000Z
2021-02-25T02:23:50.000Z
#!/usr/bin/env python # -*- coding: utf-8 -*- import sys import json import ssl import click from json.decoder import JSONDecodeError from websocket import WebSocketException from websocket import WebSocketConnectionClosedException from websocket import create_connection from datetime import datetime as dtime from .app import create_app flask_app = create_app() def websocket_scan_thread(ws): from mods.api.tasks import eval_result while True: msg = "" try: msg = ws.recv() # print(dtime.now(), "[RESPONSE]", type(msg)) msg = json.loads(msg) # print(dtime.now(), "[PARSED]", msg) eval_result.apply_async(args=(msg,)) print( dtime.now(), "[!] [{server_time}] Result for file with SHA1 Hash: {sha1} | cas id: {id}" .format(**msg)) except (KeyError, JSONDecodeError, WebSocketException, OSError, WebSocketConnectionClosedException) as e: print(dtime.now(), "[ERROR]: %s" % (e)) sys.exit(1) pass @click.command( context_settings=dict(ignore_unknown_options=True, help_option_names=[])) def run_wsclient(): """Websocket listener for evaluation results""" CAS_API = flask_app.config['CAS_API'] secure_prefix = "s" token = CAS_API['token'] print(f"Loading token from app.config... {token}") host = CAS_API['host'] print(f"Loading host from app.config... {host}") headers = {'X-API-TOKEN': token} # Subscribe to the websocket publisher. url = "ws%s://%s/rapi/ws/cas_task" % (secure_prefix, host) try: ws = create_connection( url, sslopt={"cert_reqs": ssl.CERT_NONE}, header=headers) except (OSError,) as e: print(dtime.now(), "[ERROR]: %s" % (e)) sys.exit(2) pass thread = websocket_scan_thread(ws) thread.start()
33
92
0.59899
0
0
0
0
838
0.423232
0
0
481
0.242929