hexsha
stringlengths
40
40
size
int64
5
2.06M
ext
stringclasses
10 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
3
248
max_stars_repo_name
stringlengths
5
125
max_stars_repo_head_hexsha
stringlengths
40
78
max_stars_repo_licenses
listlengths
1
10
max_stars_count
int64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
3
248
max_issues_repo_name
stringlengths
5
125
max_issues_repo_head_hexsha
stringlengths
40
78
max_issues_repo_licenses
listlengths
1
10
max_issues_count
int64
1
67k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
3
248
max_forks_repo_name
stringlengths
5
125
max_forks_repo_head_hexsha
stringlengths
40
78
max_forks_repo_licenses
listlengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
5
2.06M
avg_line_length
float64
1
1.02M
max_line_length
int64
3
1.03M
alphanum_fraction
float64
0
1
count_classes
int64
0
1.6M
score_classes
float64
0
1
count_generators
int64
0
651k
score_generators
float64
0
1
count_decorators
int64
0
990k
score_decorators
float64
0
1
count_async_functions
int64
0
235k
score_async_functions
float64
0
1
count_documentation
int64
0
1.04M
score_documentation
float64
0
1
fb8b63ad2ffbee810610ac48848eca279fdeb691
47
py
Python
primeiro programa/primeiro_programa.py
Cesario115/Ola-mundo
2949ff2c9dc1b5f8bc70825072751b19920019af
[ "MIT" ]
null
null
null
primeiro programa/primeiro_programa.py
Cesario115/Ola-mundo
2949ff2c9dc1b5f8bc70825072751b19920019af
[ "MIT" ]
null
null
null
primeiro programa/primeiro_programa.py
Cesario115/Ola-mundo
2949ff2c9dc1b5f8bc70825072751b19920019af
[ "MIT" ]
null
null
null
print('='*50) print("Olá mundo!") print('='*50)
15.666667
19
0.574468
0
0
0
0
0
0
0
0
19
0.395833
fb8c8cf1deb8bca5c92c0e2fc8aa8a95783848a5
6,922
py
Python
src/third_party/swiftshader/third_party/subzero/pydir/wasm-run-torture-tests.py
rhencke/engine
1016db292c4e73374a0a11536b18303c9522a224
[ "BSD-3-Clause" ]
2,151
2020-04-18T07:31:17.000Z
2022-03-31T08:39:18.000Z
src/third_party/swiftshader/third_party/subzero/pydir/wasm-run-torture-tests.py
rhencke/engine
1016db292c4e73374a0a11536b18303c9522a224
[ "BSD-3-Clause" ]
395
2020-04-18T08:22:18.000Z
2021-12-08T13:04:49.000Z
src/third_party/swiftshader/third_party/subzero/pydir/wasm-run-torture-tests.py
rhencke/engine
1016db292c4e73374a0a11536b18303c9522a224
[ "BSD-3-Clause" ]
338
2020-04-18T08:03:10.000Z
2022-03-29T12:33:22.000Z
#!/usr/bin/env python2 #===- subzero/wasm-run-torture-tests.py - Subzero WASM Torture Test Driver ===// # # The Subzero Code Generator # # This file is distributed under the University of Illinois Open Source # License. See LICENSE.TXT for details. # #===-----------------------------------------------------------------------===// from __future__ import print_function import argparse import glob import multiprocessing import os import Queue import shutil import StringIO import sys import threading IGNORED_TESTS = set([ # The remaining tests are known waterfall failures '20010122-1.c.wasm', '20031003-1.c.wasm', '20071018-1.c.wasm', '20071120-1.c.wasm', '20071220-1.c.wasm', '20071220-2.c.wasm', '20101011-1.c.wasm', 'alloca-1.c.wasm', 'bitfld-3.c.wasm', 'bitfld-5.c.wasm', 'builtin-bitops-1.c.wasm', 'conversion.c.wasm', 'eeprof-1.c.wasm', 'frame-address.c.wasm', 'pr17377.c.wasm', 'pr32244-1.c.wasm', 'pr34971.c.wasm', 'pr36765.c.wasm', 'pr39228.c.wasm', 'pr43008.c.wasm', 'pr47237.c.wasm', 'pr60960.c.wasm', 'va-arg-pack-1.c.wasm', '20000717-5.c.wasm', # abort() (also works without emcc) '20001203-2.c.wasm', # assert fail (works without emcc) '20040811-1.c.wasm', # OOB trap '20070824-1.c.wasm', # abort() (also works without emcc) 'arith-rand-ll.c.wasm', # abort() (works without emcc) 'arith-rand.c.wasm', # abort() (works without emcc) 'pr23135.c.wasm', # OOB trap (works without emcc) 'pr34415.c.wasm', # (empty output?) 'pr36339.c.wasm', # abort() (works without emcc) 'pr38048-2.c.wasm', # abort() (works without emcc) 'pr42691.c.wasm', # abort() (works without emcc) 'pr43220.c.wasm', # OOB trap (works without emcc) 'pr43269.c.wasm', # abort() (works without emcc) 'vla-dealloc-1.c.wasm', # OOB trap (works without emcc) '20051012-1.c.wasm', # error reading binary '921208-2.c.wasm', # error reading binary '920501-1.c.wasm', # error reading binary 'call-trap-1.c.wasm', # error reading binary 'pr44942.c.wasm', # error reading binary '920625-1.c.wasm', # abort() (also fails without emcc) '931004-10.c.wasm', # abort() (also fails without emcc) '931004-12.c.wasm', # abort() (also fails without emcc) '931004-14.c.wasm', # abort() (also fails without emcc) '931004-6.c.wasm', # abort() (also fails without emcc) 'pr38051.c.wasm', # (empty output?) (fails without emcc) 'pr38151.c.wasm', # abort() (fails without emcc) 'pr44575.c.wasm', # abort() (fails without emcc) 'strct-stdarg-1.c.wasm', # abort() (fails without emcc) 'strct-varg-1.c.wasm', # abort() (fails without emcc) 'va-arg-22.c.wasm', # abort() (fails without emcc) 'stdarg-3.c.wasm', # abort() (fails without emcc) 'pr56982.c.wasm', # missing setjmp (wasm.js check did not catch) '20010605-2.c.wasm', # missing __netf2 '20020413-1.c.wasm', # missing __lttf2 '20030914-1.c.wasm', # missing __floatsitf '20040709-1.c.wasm', # missing __netf2 '20040709-2.c.wasm', # missing __netf2 '20050121-1.c.wasm', # missing __floatsitf '20080502-1.c.wasm', # missing __eqtf2 '920501-8.c.wasm', # missing __extenddftf2 '930513-1.c.wasm', # missing __extenddftf2 '930622-2.c.wasm', # missing __floatditf '960215-1.c.wasm', # missing __addtf3 '960405-1.c.wasm', # missing __eqtf2 '960513-1.c.wasm', # missing __subtf3 'align-2.c.wasm', # missing __eqtf2 'complex-6.c.wasm', # missing __subtf3 'complex-7.c.wasm', # missing __netf2 'pr49218.c.wasm', # missing __fixsfti 'pr54471.c.wasm', # missing __multi3 'regstack-1.c.wasm', # missing __addtf3 'stdarg-1.c.wasm', # missing __netf2 'stdarg-2.c.wasm', # missing __floatsitf 'va-arg-5.c.wasm', # missing __eqtf2 'va-arg-6.c.wasm', # missing __eqtf2 'struct-ret-1.c.wasm', # missing __extenddftf2 ]) parser = argparse.ArgumentParser() parser.add_argument('-v', '--verbose', action='store_true') parser.add_argument('--translate-only', action='store_true') parser.add_argument('tests', nargs='*') args = parser.parse_args() OUT_DIR = "./build/wasm-torture" results_lock = threading.Lock() compile_count = 0 compile_failures = [] run_count = 0 run_failures = [] def run_test(test_file, verbose=False): global args global compile_count global compile_failures global results_lock global run_count global run_failures global OUT_DIR global IGNORED_TESTS run_test = not args.translate_only test_name = os.path.basename(test_file) obj_file = os.path.join(OUT_DIR, test_name + ".o") exe_file = os.path.join(OUT_DIR, test_name + ".exe") if not verbose and test_name in IGNORED_TESTS: print("\033[1;34mSkipping {}\033[1;m".format(test_file)) return cmd = """LD_LIBRARY_PATH=../../../../v8/out/native/lib.target ./pnacl-sz \ -filetype=obj -target=x8632 {} -threads=0 -O2 \ -verbose=wasm -o {}""".format(test_file, obj_file) if not verbose: cmd += " &> /dev/null" out = StringIO.StringIO() out.write(test_file + " ..."); status = os.system(cmd); if status != 0: print('\033[1;31m[compile fail]\033[1;m', file=out) with results_lock: compile_failures.append(test_file) else: compile_count += 1 # Try to link and run the program. cmd = "clang -g -m32 {} -o {} " + \ "./runtime/szrt.c ./runtime/wasm-runtime.cpp -lm -lstdc++" cmd = cmd.format(obj_file, exe_file) if not run_test or os.system(cmd) == 0: if not run_test or os.system(exe_file) == 0: with results_lock: run_count += 1 print('\033[1;32m[ok]\033[1;m', file=out) else: with results_lock: run_failures.append(test_file) print('\033[1;33m[run fail]\033[1;m', file=out) else: with results_lock: run_failures.append(test_file) print('\033[1;33m[run fail]\033[1;m', file=out) sys.stdout.write(out.getvalue()) verbose = args.verbose if len(args.tests) > 0: test_files = args.tests else: test_files = glob.glob("./emwasm-torture-out/*.wasm") if os.path.exists(OUT_DIR): shutil.rmtree(OUT_DIR) os.mkdir(OUT_DIR) tasks = Queue.Queue() def worker(): while True: run_test(tasks.get(), verbose) tasks.task_done() for i in range(multiprocessing.cpu_count()): t = threading.Thread(target=worker) t.daemon = True t.start() for test_file in test_files: tasks.put(test_file) tasks.join() if len(compile_failures) > 0: print() print("Compilation failures:") print("=====================\n") for f in compile_failures: print(" \033[1;31m" + f + "\033[1;m") if len(run_failures) > 0: print() print("Run failures:") print("=============\n") for f in run_failures: print(" \033[1;33m" + f + "\033[1;m") print("\n\033[1;32m{}\033[1;m / \033[1;33m{}\033[1;m / {} tests passed" .format(run_count, compile_count - run_count, run_count + len(compile_failures) + len(run_failures)))
30.095652
80
0.647501
0
0
0
0
0
0
0
0
3,998
0.577579
fb8c8d25a3c49500542e0cea8201311268f861d1
4,455
py
Python
game_vs_ai.py
fernandojosuece/Minimax_AI_connect4
e0110b7d3d25494b7e950c078eacd1337ee14f17
[ "MIT" ]
null
null
null
game_vs_ai.py
fernandojosuece/Minimax_AI_connect4
e0110b7d3d25494b7e950c078eacd1337ee14f17
[ "MIT" ]
null
null
null
game_vs_ai.py
fernandojosuece/Minimax_AI_connect4
e0110b7d3d25494b7e950c078eacd1337ee14f17
[ "MIT" ]
null
null
null
import numpy as np import pygame import sys import math import random from board import Board from ai import Minimax_AI # function to draw the board in pygame def draw_board(board): for c in range(COLUMN_COUNT): for r in range(ROW_COUNT): pygame.draw.rect(screen, colors["blue"], (c*SQUARESIZE, r * SQUARESIZE+SQUARESIZE, SQUARESIZE, SQUARESIZE)) pygame.draw.circle(screen, colors["black"], (int( c*SQUARESIZE+SQUARESIZE/2), int(r*SQUARESIZE+SQUARESIZE+SQUARESIZE/2)), RADIUS) for c in range(COLUMN_COUNT): for r in range(ROW_COUNT): if board[r][c] == 1: pygame.draw.circle(screen, colors["red"], (int( c*SQUARESIZE+SQUARESIZE/2), height-int(r*SQUARESIZE+SQUARESIZE/2)), RADIUS) elif board[r][c] == 2: pygame.draw.circle(screen, colors["yellow"], (int( c*SQUARESIZE+SQUARESIZE/2), height-int(r*SQUARESIZE+SQUARESIZE/2)), RADIUS) pygame.display.update() if __name__ == '__main__': # colors for game colors = {"blue": (0, 0, 255), "black": (0, 0, 0), "red": (255, 0, 0), "yellow": (255, 255, 0)} # size of board ROW_COUNT = 6 COLUMN_COUNT = 7 # create board board = Board(ROW_COUNT, COLUMN_COUNT) # players players = [1, 2] # initialize AI ai_depth = 6 ai_player = random.choice(players) ai = Minimax_AI(ai_depth, ai_player, ROW_COUNT, COLUMN_COUNT) # decide turns; if turn is 0 player moves first if ai_player == 2: turn = 0 else: turn = 1 pygame.init() SQUARESIZE = 100 width = COLUMN_COUNT * SQUARESIZE height = (ROW_COUNT+1) * SQUARESIZE size = (width, height) RADIUS = int(SQUARESIZE/2 - 5) screen = pygame.display.set_mode(size) draw_board(board.status) pygame.display.update() myfont = pygame.font.SysFont("monospace", 75) game_over = False while not game_over: # Ask for Player 1 Input if turn == 0: turn_over = False while not turn_over: for event in pygame.event.get(): if event.type == pygame.QUIT: sys.exit() if event.type == pygame.MOUSEMOTION: pygame.draw.rect( screen, colors["black"], (0, 0, width, SQUARESIZE)) posx = event.pos[0] if turn == 0: pygame.draw.circle( screen, colors["red"], (posx, int(SQUARESIZE/2)), RADIUS) else: pygame.draw.circle( screen, colors["yellow"], (posx, int(SQUARESIZE/2)), RADIUS) pygame.display.update() if event.type == pygame.MOUSEBUTTONDOWN: pygame.draw.rect( screen, colors["black"], (0, 0, width, SQUARESIZE)) # print(event.pos) posx = event.pos[0] col = int(math.floor(posx/SQUARESIZE)) if board.is_valid_location(col): row = board.get_next_open_row(col) board.insert_piece(row, col, 1) turn_over = True if board.is_winning_position(1): label = myfont.render( "You win!!", 1, colors["red"]) screen.blit(label, (40, 10)) game_over = True draw_board(board.status) # Ask for Player 2 Input else: col = ai.make_move(board.status) if board.is_valid_location(col): row = board.get_next_open_row(col) board.insert_piece(row, col, 2) if board.is_winning_position(2): label = myfont.render( "AI win!!", 1, colors["red"]) screen.blit(label, (40, 10)) game_over = True draw_board(board.status) turn += 1 turn = turn % 2 if game_over: pygame.time.wait(3000)
32.05036
101
0.489787
0
0
0
0
0
0
0
0
352
0.079012
fb8cf968314b4148ab23bd50a8ea481955bbd517
963
py
Python
{{cookiecutter.project_slug}}/sources/app/config/settings/components/security.py
AsheKR/cookiecutter-django
d0402aefcc2eeaffa747faa7ef50ad97286bfcca
[ "BSD-3-Clause" ]
null
null
null
{{cookiecutter.project_slug}}/sources/app/config/settings/components/security.py
AsheKR/cookiecutter-django
d0402aefcc2eeaffa747faa7ef50ad97286bfcca
[ "BSD-3-Clause" ]
null
null
null
{{cookiecutter.project_slug}}/sources/app/config/settings/components/security.py
AsheKR/cookiecutter-django
d0402aefcc2eeaffa747faa7ef50ad97286bfcca
[ "BSD-3-Clause" ]
null
null
null
# https://docs.djangoproject.com/en/dev/ref/settings/#secure-proxy-ssl-header SECURE_PROXY_SSL_HEADER = ("HTTP_X_FORWARDED_PROTO", "https") # https://docs.djangoproject.com/en/dev/ref/settings/#secure-ssl-redirect SECURE_SSL_REDIRECT = True # https://docs.djangoproject.com/en/dev/ref/settings/#session-cookie-secure SESSION_COOKIE_SECURE = True # https://docs.djangoproject.com/en/dev/ref/settings/#csrf-cookie-secure CSRF_COOKIE_SECURE = True # https://docs.djangoproject.com/en/dev/topics/security/#ssl-https # https://docs.djangoproject.com/en/dev/ref/settings/#secure-hsts-preload SECURE_HSTS_PRELOAD = True # https://docs.djangoproject.com/en/dev/ref/settings/#secure-hsts-include-subdomains SECURE_HSTS_INCLUDE_SUBDOMAINS = True # https://docs.djangoproject.com/en/dev/ref/settings/#secure-hsts-seconds SECURE_HSTS_SECONDS = 31536000 # https://docs.djangoproject.com/en/dev/ref/middleware/#x-content-type-options-nosniff SECURE_CONTENT_TYPE_NOSNIFF = True
53.5
86
0.805815
0
0
0
0
0
0
0
0
710
0.737279
fb8cffb83eb9a76e5f50b56af16a0174fdb1dc32
12,118
py
Python
dabest/bootstrap_tools.py
nitishkumarmishra/DABEST
82490f587e9b0180f29baa2daf44aa86cc3f52aa
[ "BSD-3-Clause-Clear" ]
null
null
null
dabest/bootstrap_tools.py
nitishkumarmishra/DABEST
82490f587e9b0180f29baa2daf44aa86cc3f52aa
[ "BSD-3-Clause-Clear" ]
null
null
null
dabest/bootstrap_tools.py
nitishkumarmishra/DABEST
82490f587e9b0180f29baa2daf44aa86cc3f52aa
[ "BSD-3-Clause-Clear" ]
null
null
null
#!/usr/bin/python # -*-coding: utf-8 -*- # Author: Joses Ho # Email : joseshowh@gmail.com from __future__ import division class bootstrap: '''Computes the summary statistic and a bootstrapped confidence interval. Keywords: x1, x2: array-like The data in a one-dimensional array form. Only x1 is required. If x2 is given, the bootstrapped summary difference between the two groups (x2-x1) is computed. NaNs are automatically discarded. paired: boolean, default False Whether or not x1 and x2 are paired samples. statfunction: callable, default np.mean The summary statistic called on data. smoothboot: boolean, default False Taken from seaborn.algorithms.bootstrap. If True, performs a smoothed bootstrap (draws samples from a kernel destiny estimate). alpha: float, default 0.05 Denotes the likelihood that the confidence interval produced _does not_ include the true summary statistic. When alpha = 0.05, a 95% confidence interval is produced. reps: int, default 5000 Number of bootstrap iterations to perform. Returns: An `bootstrap` object reporting the summary statistics, percentile CIs, bias-corrected and accelerated (BCa) CIs, and the settings used. summary: float The summary statistic. is_difference: boolean Whether or not the summary is the difference between two groups. If False, only x1 was supplied. is_paired: boolean Whether or not the difference reported is between 2 paired groups. statistic: callable The function used to compute the summary. reps: int The number of bootstrap iterations performed. stat_array: array. A sorted array of values obtained by bootstrapping the input arrays. ci: float The size of the confidence interval reported (in percentage). pct_ci_low, pct_ci_high: floats The upper and lower bounds of the confidence interval as computed by taking the percentage bounds. pct_low_high_indices: array An array with the indices in `stat_array` corresponding to the percentage confidence interval bounds. bca_ci_low, bca_ci_high: floats The upper and lower bounds of the bias-corrected and accelerated (BCa) confidence interval. See Efron 1977. bca_low_high_indices: array An array with the indices in `stat_array` corresponding to the BCa confidence interval bounds. pvalue_1samp_ttest: float P-value obtained from scipy.stats.ttest_1samp. If 2 arrays were (x1 and x2), returns 'NIL'. See https://docs.scipy.org/doc/scipy-1.0.0/reference/generated/scipy.stats.ttest_1samp.html pvalue_2samp_ind_ttest: float P-value obtained from scipy.stats.ttest_ind. If a single array was given (x1 only), or if `paired` is True, returns 'NIL'. See https://docs.scipy.org/doc/scipy-1.0.0/reference/generated/scipy.stats.ttest_ind.html pvalue_2samp_related_ttest: float P-value obtained from scipy.stats.ttest_rel. If a single array was given (x1 only), or if `paired` is False, returns 'NIL'. See https://docs.scipy.org/doc/scipy-1.0.0/reference/generated/scipy.stats.ttest_rel.html pvalue_wilcoxon: float P-value obtained from scipy.stats.wilcoxon. If a single array was given (x1 only), or if `paired` is False, returns 'NIL'. The Wilcoxons signed-rank test is a nonparametric paired test of the null hypothesis that the related samples x1 and x2 are from the same distribution. See https://docs.scipy.org/doc/scipy-1.0.0/reference/scipy.stats.wilcoxon.html pvalue_mann_whitney: float Two-sided p-value obtained from scipy.stats.mannwhitneyu. If a single array was given (x1 only), returns 'NIL'. The Mann-Whitney U-test is a nonparametric unpaired test of the null hypothesis that x1 and x2 are from the same distribution. See https://docs.scipy.org/doc/scipy-1.0.0/reference/generated/scipy.stats.mannwhitneyu.html ''' def __init__(self, x1, x2=None, paired=False, statfunction=None, smoothboot=False, alpha_level=0.05, reps=5000): import numpy as np import pandas as pd import seaborn as sns from scipy.stats import norm from numpy.random import randint from scipy.stats import ttest_1samp, ttest_ind, ttest_rel from scipy.stats import mannwhitneyu, wilcoxon, norm import warnings # Turn to pandas series. x1 = pd.Series(x1).dropna() diff = False # Initialise statfunction if statfunction == None: statfunction = np.mean # Compute two-sided alphas. if alpha_level > 1. or alpha_level < 0.: raise ValueError("alpha_level must be between 0 and 1.") alphas = np.array([alpha_level/2., 1-alpha_level/2.]) sns_bootstrap_kwargs = {'func': statfunction, 'n_boot': reps, 'smooth': smoothboot} if paired: # check x2 is not None: if x2 is None: raise ValueError('Please specify x2.') else: x2 = pd.Series(x2).dropna() if len(x1)!=len(x2): raise ValueError('x1 and x2 are not the same length.') if (x2 is None) or (paired is True) : if x2 is None: tx = x1 paired = False ttest_single = ttest_1samp(x1,0)[1] ttest_2_ind = 'NIL' ttest_2_paired = 'NIL' wilcoxonresult = 'NIL' else: diff = True tx = x2 - x1 ttest_single = 'NIL' ttest_2_ind = 'NIL' ttest_2_paired = ttest_rel(x1,x2)[1] wilcoxonresult = wilcoxon(x1,x2)[1] mannwhitneyresult = 'NIL' # Turns data into array, then tuple. tdata = (tx,) # The value of the statistic function applied # just to the actual data. summ_stat = statfunction(*tdata) statarray = sns.algorithms.bootstrap(tx, **sns_bootstrap_kwargs) statarray.sort() # Get Percentile indices pct_low_high = np.round((reps-1)*alphas) pct_low_high = np.nan_to_num(pct_low_high).astype('int') elif x2 is not None and paired is False: diff = True x2 = pd.Series(x2).dropna() # Generate statarrays for both arrays. ref_statarray = sns.algorithms.bootstrap(x1, **sns_bootstrap_kwargs) exp_statarray = sns.algorithms.bootstrap(x2, **sns_bootstrap_kwargs) tdata = exp_statarray - ref_statarray statarray = tdata.copy() statarray.sort() tdata=(tdata,) # Note tuple form. # The difference as one would calculate it. summ_stat = statfunction(x2) - statfunction(x1) # Get Percentile indices pct_low_high = np.round((reps-1)*alphas) pct_low_high = np.nan_to_num(pct_low_high).astype('int') # Statistical tests. ttest_single='NIL' ttest_2_ind = ttest_ind(x1,x2)[1] ttest_2_paired='NIL' mannwhitneyresult = mannwhitneyu(x1, x2, alternative='two-sided')[1] wilcoxonresult='NIL' # Get Bias-Corrected Accelerated indices convenience function invoked. bca_low_high = bca(tdata, alphas, statarray, statfunction, summ_stat, reps) # Warnings for unstable or extreme indices. for ind in [pct_low_high, bca_low_high]: if np.any(ind == 0) or np.any(ind == reps-1): warnings.warn("Some values used extremal samples;" " results are probably unstable.") elif np.any(ind<10) or np.any(ind>=reps-10): warnings.warn("Some values used top 10 low/high samples;" " results may be unstable.") self.summary = summ_stat self.is_paired = paired self.is_difference = diff self.statistic = str(statfunction) self.n_reps = reps self.ci=(1-alpha_level)*100 self.stat_array = np.array(statarray) self.pct_ci_low = statarray[pct_low_high[0]] self.pct_ci_high = statarray[pct_low_high[1]] self.pct_low_high_indices = pct_low_high self.bca_ci_low = statarray[bca_low_high[0]] self.bca_ci_high = statarray[bca_low_high[1]] self.bca_low_high_indices = bca_low_high self.pvalue_1samp_ttest = ttest_single self.pvalue_2samp_ind_ttest = ttest_2_ind self.pvalue_2samp_paired_ttest = ttest_2_paired self.pvalue_wilcoxon = wilcoxonresult self.pvalue_mann_whitney = mannwhitneyresult self.results = {'stat_summary': self.summary, 'is_difference': diff, 'is_paired': paired, 'bca_ci_low': self.bca_ci_low, 'bca_ci_high': self.bca_ci_high, 'ci': self.ci} def __repr__(self): import numpy as np if 'mean' in self.statistic: stat = 'mean' elif 'median' in self.statistic: stat = 'median' else: stat = self.statistic diff_types = {True: 'paired', False: 'unpaired'} if self.is_difference: a = 'The {} {} difference is {}.'.format(diff_types[self.is_paired], stat, self.summary) else: a = 'The {} is {}.'.format(stat, self.summary) b = '[{} CI: {}, {}]'.format(self.ci, self.bca_ci_low, self.bca_ci_high) return '\n'.join([a, b]) def jackknife_indexes(data): # Taken without modification from scikits.bootstrap package. """ From the scikits.bootstrap package. Given an array, returns a list of arrays where each array is a set of jackknife indexes. For a given set of data Y, the jackknife sample J[i] is defined as the data set Y with the ith data point deleted. """ import numpy as np base = np.arange(0,len(data)) return (np.delete(base,i) for i in base) def bca(data, alphas, statarray, statfunction, ostat, reps): ''' Subroutine called to calculate the BCa statistics. Borrowed heavily from scikits.bootstrap code. ''' import warnings import numpy as np import pandas as pd import seaborn as sns from scipy.stats import norm from numpy.random import randint # The bias correction value. z0 = norm.ppf( ( 1.0*np.sum(statarray < ostat, axis = 0) ) / reps ) # Statistics of the jackknife distribution jackindexes = jackknife_indexes(data[0]) jstat = [statfunction(*(x[indexes] for x in data)) for indexes in jackindexes] jmean = np.mean(jstat,axis = 0) # Acceleration value a = np.divide(np.sum( (jmean - jstat)**3, axis = 0 ), ( 6.0 * np.sum( (jmean - jstat)**2, axis = 0)**1.5 ) ) if np.any(np.isnan(a)): nanind = np.nonzero(np.isnan(a)) warnings.warn("Some acceleration values were undefined." "This is almost certainly because all values" "for the statistic were equal. Affected" "confidence intervals will have zero width and" "may be inaccurate (indexes: {})".format(nanind)) zs = z0 + norm.ppf(alphas).reshape(alphas.shape+(1,)*z0.ndim) avals = norm.cdf(z0 + zs/(1-a*zs)) nvals = np.round((reps-1)*avals) nvals = np.nan_to_num(nvals).astype('int') return nvals
36.173134
104
0.605793
10,124
0.835451
0
0
0
0
0
0
6,180
0.509985
fb8db21fcb68449e4d69cc6ce7881b29676db85c
864
py
Python
Numbers/floor_tiles_cost.py
lucasc896/Projects
01ec687b07e4b56554c89ecc244fe5979c489826
[ "MIT" ]
null
null
null
Numbers/floor_tiles_cost.py
lucasc896/Projects
01ec687b07e4b56554c89ecc244fe5979c489826
[ "MIT" ]
null
null
null
Numbers/floor_tiles_cost.py
lucasc896/Projects
01ec687b07e4b56554c89ecc244fe5979c489826
[ "MIT" ]
null
null
null
import math as ma # note all sizes in m^2 # all costs in pounds def get_details(): return {'w': get_value("Width:", float), 'h': get_value("Height:", float), 'cost': get_value("Cost per tile:", float),} def get_value(text = "enter_val", expected_type = None): while True: r_in = raw_input(text) try: r_in = expected_type(r_in) return r_in except ValueError: print "Incorrect variable type entered. Expected: %s" % expected_type def get_cost(d = {}): for key in ['w', 'h', 'cost', 'tile_area']: assert key in d total_cost = d['w']*d['h']*d['cost']/d['tile_area'] return total_cost if __name__ == "__main__": vals = get_details() vals['tile_area'] = 0.04 #0.2m squared tiles print "\n > Total cost: %.2f\n" % get_cost(vals)
23.351351
81
0.572917
0
0
0
0
0
0
0
0
260
0.300926
fb8ef4de168793f84748b01a69155748193991bb
2,579
py
Python
pyflow/demo/cwdDemo/cwdDemo.py
quejebo/pyflow
99718942f9ea4ac0ceacde17c8006068ef19f2c8
[ "BSD-2-Clause" ]
3
2019-05-29T23:01:51.000Z
2020-02-20T21:36:55.000Z
pyflow/demo/cwdDemo/cwdDemo.py
quejebo/pyflow
99718942f9ea4ac0ceacde17c8006068ef19f2c8
[ "BSD-2-Clause" ]
null
null
null
pyflow/demo/cwdDemo/cwdDemo.py
quejebo/pyflow
99718942f9ea4ac0ceacde17c8006068ef19f2c8
[ "BSD-2-Clause" ]
2
2020-10-31T00:49:40.000Z
2021-04-28T18:56:40.000Z
#!/usr/bin/env python # # pyFlow - a lightweight parallel task engine # # Copyright (c) 2012-2017 Illumina, Inc. # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions # are met: # # 1. Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in # the documentation and/or other materials provided with the # distribution. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS # FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE # COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, # INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, # BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT # LIABILITY, OR TORT INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY # WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. # # # # demonstrate/test addTask() cwd option # import os.path import sys # add module path by hand # scriptDir=os.path.abspath(os.path.dirname(__file__)) sys.path.append(scriptDir+"/../../src") from pyflow import WorkflowRunner # all pyflow workflows are written into classes derived from # pyflow.WorkflowRunner: # class CwdWorkflow(WorkflowRunner) : # a workflow is defined by overloading the # WorkflowRunner.workflow() method: # def workflow(self) : # get cwd and its parent for the addTask cwd test # cwd=os.getcwd() parentdir=os.path.abspath(os.path.join(cwd,"..")) self.flowLog("testing pyflow cwd: '%s' parentdir: '%s'" % (cwd,parentdir)) # task will fail unless pwd == parentdir: # # test both absolute and relative cwd arguments: # self.addTask("testAbsCwd","[ $(pwd) == '%s' ]; exit $?" % (parentdir),cwd=parentdir) self.addTask("testRelCwd","[ $(pwd) == '%s' ]; exit $?" % (parentdir),cwd="..") # Instantiate the workflow # wflow = CwdWorkflow() # Run the worklow: # retval=wflow.run(mode="local") sys.exit(retval)
29.643678
92
0.711904
698
0.270648
0
0
0
0
0
0
1,969
0.763474
fb90339a9b070648b3ffa1426d143af98658172e
345
py
Python
cc/apps/coder/admin.py
mavroskardia/codechallenge
a5fee4ba73be186d90daafca50819a6817ad3d27
[ "MIT" ]
null
null
null
cc/apps/coder/admin.py
mavroskardia/codechallenge
a5fee4ba73be186d90daafca50819a6817ad3d27
[ "MIT" ]
null
null
null
cc/apps/coder/admin.py
mavroskardia/codechallenge
a5fee4ba73be186d90daafca50819a6817ad3d27
[ "MIT" ]
null
null
null
from django.contrib import admin from .models import Coder, Level class CoderAdmin(admin.ModelAdmin): pass class LevelAdmin(admin.ModelAdmin): list_display_links = ('id',) list_display = ('id', 'name', 'starting_xp') list_editable = ('name', 'starting_xp') admin.site.register(Coder, CoderAdmin) admin.site.register(Level, LevelAdmin)
20.294118
45
0.750725
193
0.55942
0
0
0
0
0
0
46
0.133333
fb906bc559344cfcb6abb67edb4b96c49dafc738
4,423
py
Python
src/py/env.py
timgates42/lithp
607d20fe18ca0a2af026c12d223bb802746fe7e7
[ "MIT" ]
76
2015-01-10T08:16:15.000Z
2022-02-18T05:22:29.000Z
mi/env.py
mountain/mu
9834a5aea2ade8ad4462fa959d2d00c129335b7c
[ "MIT" ]
null
null
null
mi/env.py
mountain/mu
9834a5aea2ade8ad4462fa959d2d00c129335b7c
[ "MIT" ]
14
2015-01-11T17:07:10.000Z
2021-07-25T00:23:59.000Z
# The `Environment` class represents the dynamic environment of McCarthy's original Lisp. The creation of # this class is actually an interesting story. As many of you probably know, [Paul Graham wrote a paper and # code for McCarthy's original Lisp](http://www.paulgraham.com/rootsoflisp.html) and it was my first exposure to # the stark simplicity of the language. The simplicity is breath-taking! # # However, while playing around with the code I found that in using the core functions (i.e. `null.`, `not.`, etc.) # I was not experiencing the full effect of the original. That is, the original Lisp was dynamically scoped, but # the Common Lisp used to implement and run (CLisp in the latter case) Graham's code was lexically scoped. Therefore, # by attempting to write high-level functions using only the magnificent 7 and Graham's core functions in the Common Lisp # I was taking advantage of lexical scope; something not available to McCarthy and company. Of course, the whole reason # that Graham wrote `eval.` was to enforce dynamic scoping (he used a list of symbol-value pairs where the dynamic variables # were added to its front when introduced). However, that was extremely cumbersome to use: # # (eval. 'a '((a 1) (a 2))) # ;=> 1 # # So I then implemented a simple REPL in Common Lisp that fed input into `eval.` and maintained the current environment list. # That was fun, but I wasn't sure that I was learning anything at all. Therefore, years later I came across the simple # REPL and decided to try to implement my own core environment for the magnificent 7 to truly get a feel for what it took # to build a simple language up from scratch. I suppose if I were a real manly guy then I would have found an IBM 704, but # that would be totally insane. (email me if you have one that you'd like to sell for cheap) # # Anyway, the point of this is that I needed to start with creating an `Environment` that provided dynamic scoping, and the # result is this. class Environment: # The binding are stored in a simple dict and the stack discipline is emulated through the `parent` link def __init__(self, par=None, bnd=None): if bnd: self.binds = bnd else: self.binds = {} self.parent = par if par: self.level = self.parent.level + 1 else: self.level = 0 # Getting a binding potentially requires the traversal of the parent link def get(self, key): if key in self.binds: return self.binds[key] elif self.parent: return self.parent.get(key) else: raise ValueError("Invalid symbol " + key) # Setting a binding is symmetric to getting def set(self, key, value): if key in self.binds: self.binds[key] = value elif self.parent: self.parent.set(key,value) else: self.binds[key] = value def definedp(self, key): if key in self.binds.keys(): return True return False # Push a new binding by creating a new Env # # Dynamic scope works like a stack. Whenever a variable is created it's binding is pushed onto a # global stack. In this case, the stack is simulated through a chain of parent links. So if you were to # create the following: # # (label a nil) # (label frobnicate (lambda () (cons a nil))) # # ((lambda (a) # (frobnicate)) # (quote x)) # # Then the stack would look like the figure below within the body of `frobnicate`: # # | | # | | # | a = 'x | # | ------- | # | a = nil | # +---------+ # # Meaning that when accessing `a`, `frobnicate` will get the binding at the top of the stack, producing the result `(x)`. This push/pop # can become difficult, so people have to do all kinds of tricks to avoid confusion (i.e. pseudo-namespace via variable naming schemes). # def push(self, bnd=None): return Environment(self, bnd) def pop(self): return self.parent def __repr__( self): ret = "\nEnvironment %s:\n" % self.level keys = [i for i in self.binds.keys() if not i[:2] == "__"] for key in keys: ret = ret + " %5s: %s\n" % (key, self.binds[key]) return ret
42.941748
141
0.640968
2,423
0.547818
0
0
0
0
0
0
3,111
0.703369
fb90bddf16d6e083178b78c9099cb96b4aea6048
4,416
py
Python
tests/storage/test_filesystem.py
dilyanpalauzov/vdirsyncer
a3cf8e67f6396c91172b34896b828a0293ecf3c5
[ "BSD-3-Clause" ]
888
2016-03-16T12:03:14.000Z
2022-03-28T17:45:44.000Z
tests/storage/test_filesystem.py
dilyanpalauzov/vdirsyncer
a3cf8e67f6396c91172b34896b828a0293ecf3c5
[ "BSD-3-Clause" ]
499
2016-03-15T14:18:47.000Z
2022-03-30T02:12:40.000Z
tests/storage/test_filesystem.py
dilyanpalauzov/vdirsyncer
a3cf8e67f6396c91172b34896b828a0293ecf3c5
[ "BSD-3-Clause" ]
135
2016-03-25T12:50:14.000Z
2022-03-25T00:28:59.000Z
import subprocess import aiostream import pytest from vdirsyncer.storage.filesystem import FilesystemStorage from vdirsyncer.vobject import Item from . import StorageTests class TestFilesystemStorage(StorageTests): storage_class = FilesystemStorage @pytest.fixture def get_storage_args(self, tmpdir): async def inner(collection="test"): rv = {"path": str(tmpdir), "fileext": ".txt", "collection": collection} if collection is not None: rv = await self.storage_class.create_collection(**rv) return rv return inner def test_is_not_directory(self, tmpdir): with pytest.raises(OSError): f = tmpdir.join("hue") f.write("stub") self.storage_class(str(tmpdir) + "/hue", ".txt") @pytest.mark.asyncio async def test_broken_data(self, tmpdir): s = self.storage_class(str(tmpdir), ".txt") class BrokenItem: raw = "Ц, Ш, Л, ж, Д, З, Ю".encode() uid = "jeezus" ident = uid with pytest.raises(TypeError): await s.upload(BrokenItem) assert not tmpdir.listdir() @pytest.mark.asyncio async def test_ident_with_slash(self, tmpdir): s = self.storage_class(str(tmpdir), ".txt") await s.upload(Item("UID:a/b/c")) (item_file,) = tmpdir.listdir() assert "/" not in item_file.basename and item_file.isfile() @pytest.mark.asyncio async def test_ignore_tmp_files(self, tmpdir): """Test that files with .tmp suffix beside .ics files are ignored.""" s = self.storage_class(str(tmpdir), ".ics") await s.upload(Item("UID:xyzxyz")) (item_file,) = tmpdir.listdir() item_file.copy(item_file.new(ext="tmp")) assert len(tmpdir.listdir()) == 2 assert len(await aiostream.stream.list(s.list())) == 1 @pytest.mark.asyncio async def test_ignore_tmp_files_empty_fileext(self, tmpdir): """Test that files with .tmp suffix are ignored with empty fileext.""" s = self.storage_class(str(tmpdir), "") await s.upload(Item("UID:xyzxyz")) (item_file,) = tmpdir.listdir() item_file.copy(item_file.new(ext="tmp")) assert len(tmpdir.listdir()) == 2 # assert False, tmpdir.listdir() # enable to see the created filename assert len(await aiostream.stream.list(s.list())) == 1 @pytest.mark.asyncio async def test_ignore_files_typical_backup(self, tmpdir): """Test file-name ignorance with typical backup ending ~.""" ignorext = "~" # without dot storage = self.storage_class(str(tmpdir), "", fileignoreext=ignorext) await storage.upload(Item("UID:xyzxyz")) (item_file,) = tmpdir.listdir() item_file.copy(item_file.new(basename=item_file.basename + ignorext)) assert len(tmpdir.listdir()) == 2 assert len(await aiostream.stream.list(storage.list())) == 1 @pytest.mark.asyncio async def test_too_long_uid(self, tmpdir): storage = self.storage_class(str(tmpdir), ".txt") item = Item("UID:" + "hue" * 600) href, etag = await storage.upload(item) assert item.uid not in href @pytest.mark.asyncio async def test_post_hook_inactive(self, tmpdir, monkeypatch): def check_call_mock(*args, **kwargs): raise AssertionError() monkeypatch.setattr(subprocess, "call", check_call_mock) s = self.storage_class(str(tmpdir), ".txt", post_hook=None) await s.upload(Item("UID:a/b/c")) @pytest.mark.asyncio async def test_post_hook_active(self, tmpdir, monkeypatch): calls = [] exe = "foo" def check_call_mock(call, *args, **kwargs): calls.append(True) assert len(call) == 2 assert call[0] == exe monkeypatch.setattr(subprocess, "call", check_call_mock) s = self.storage_class(str(tmpdir), ".txt", post_hook=exe) await s.upload(Item("UID:a/b/c")) assert calls @pytest.mark.asyncio async def test_ignore_git_dirs(self, tmpdir): tmpdir.mkdir(".git").mkdir("foo") tmpdir.mkdir("a") tmpdir.mkdir("b") expected = {"a", "b"} actual = { c["collection"] async for c in self.storage_class.discover(str(tmpdir)) } assert actual == expected
33.969231
83
0.619339
4,245
0.959756
0
0
3,898
0.881302
3,587
0.810988
567
0.128194
fb910124233c9edcba63460a96cd8cc70f5f9da6
1,635
py
Python
covid_sicilia.py
Cip0/covid-ita-graph
cb788b845940168ce45abbd6203f464bfe91ea46
[ "CC0-1.0" ]
null
null
null
covid_sicilia.py
Cip0/covid-ita-graph
cb788b845940168ce45abbd6203f464bfe91ea46
[ "CC0-1.0" ]
null
null
null
covid_sicilia.py
Cip0/covid-ita-graph
cb788b845940168ce45abbd6203f464bfe91ea46
[ "CC0-1.0" ]
null
null
null
import pandas as pd from datetime import timedelta, date import matplotlib.pyplot as plt def daterange(start_date, end_date): for n in range(int((end_date - start_date).days)): yield start_date + timedelta(n) def getFileByDate(date = 'latest'): url = 'https://raw.githubusercontent.com/pcm-dpc/COVID-19/master/dati-regioni/dpc-covid19-ita-regioni-' + date + '.csv' #20200927.csv' df = pd.read_csv(url, error_bad_lines=False) return df #default region is Sicily def getValue(daily, column = 'nuovi_positivi', region='Sicilia'): regRaw = daily.loc[daily['denominazione_regione'] == region] regRaw.loc[regRaw['denominazione_regione'] == region] return regRaw[column].to_numpy()[0] #regRaw.at[16, column] #return daily.iloc[2, 17] def getAll(column, region): start_date = date(2020, 2, 24) end_date = date(2020, 4, 10) end_date = date.today() result = [] for single_date in daterange(start_date, end_date): day = single_date.strftime("%Y%m%d") result.append(getValue(getFileByDate(day), column, region)) return result nuovi_positivi = getAll('nuovi_positivi', 'Sicilia') #deceduti = getAll('deceduti', 'Sicilia') #dimessi_guariti = getAll('dimessi_guariti', 'Sicilia') nuovi_positivi = pd.Series(nuovi_positivi, index=pd.date_range('2/24/2020', periods=len(nuovi_positivi))) #deceduti = pd.Series(deceduti, index=pd.date_range('2/24/2020', periods=len(deceduti))) #dimessi_guariti = pd.Series(dimessi_guariti, index=pd.date_range('2/24/2020', periods=len(dimessi_guariti))) plt.figure(); ax = nuovi_positivi.plot() #deceduti.plot(ax=ax) #dimessi_guariti.plot(ax=ax) plt.show()
24.402985
135
0.727217
0
0
131
0.080122
0
0
0
0
656
0.401223
fb91820e24893ea883a473af50f1667df4df55ca
28,698
py
Python
mhcflurry/select_allele_specific_models_command.py
ignatovmg/mhcflurry
a4b0ac96ebe7f8be7e4b37f21c430f567ac630e6
[ "Apache-2.0" ]
113
2018-02-07T05:01:40.000Z
2022-03-24T14:22:58.000Z
mhcflurry/select_allele_specific_models_command.py
ignatovmg/mhcflurry
a4b0ac96ebe7f8be7e4b37f21c430f567ac630e6
[ "Apache-2.0" ]
106
2015-09-15T20:12:20.000Z
2017-12-23T01:54:54.000Z
mhcflurry/select_allele_specific_models_command.py
ignatovmg/mhcflurry
a4b0ac96ebe7f8be7e4b37f21c430f567ac630e6
[ "Apache-2.0" ]
33
2018-07-09T18:16:44.000Z
2022-02-21T17:38:26.000Z
""" Model select class1 single allele models. """ import argparse import os import signal import sys import time import traceback import random from functools import partial from pprint import pprint import numpy import pandas from scipy.stats import kendalltau, percentileofscore, pearsonr from sklearn.metrics import roc_auc_score import tqdm # progress bar tqdm.monitor_interval = 0 # see https://github.com/tqdm/tqdm/issues/481 from .class1_affinity_predictor import Class1AffinityPredictor from .common import normalize_allele_name from .encodable_sequences import EncodableSequences from .common import configure_logging, random_peptides from .local_parallelism import worker_pool_with_gpu_assignments_from_args, add_local_parallelism_args from .regression_target import from_ic50 # To avoid pickling large matrices to send to child processes when running in # parallel, we use this global variable as a place to store data. Data that is # stored here before creating the thread pool will be inherited to the child # processes upon fork() call, allowing us to share large data with the workers # via shared memory. GLOBAL_DATA = {} parser = argparse.ArgumentParser(usage=__doc__) parser.add_argument( "--data", metavar="FILE.csv", required=False, help=( "Model selection data CSV. Expected columns: " "allele, peptide, measurement_value")) parser.add_argument( "--exclude-data", metavar="FILE.csv", required=False, help=( "Data to EXCLUDE from model selection. Useful to specify the original " "training data used")) parser.add_argument( "--models-dir", metavar="DIR", required=True, help="Directory to read models") parser.add_argument( "--out-models-dir", metavar="DIR", required=True, help="Directory to write selected models") parser.add_argument( "--out-unselected-predictions", metavar="FILE.csv", help="Write predictions for validation data using unselected predictor to " "FILE.csv") parser.add_argument( "--unselected-accuracy-scorer", metavar="SCORER", default="combined:mass-spec,mse") parser.add_argument( "--unselected-accuracy-scorer-num-samples", type=int, default=1000) parser.add_argument( "--unselected-accuracy-percentile-threshold", type=float, metavar="X", default=95) parser.add_argument( "--allele", default=None, nargs="+", help="Alleles to select models for. If not specified, all alleles with " "enough measurements will be used.") parser.add_argument( "--combined-min-models", type=int, default=8, metavar="N", help="Min number of models to select per allele when using combined selector") parser.add_argument( "--combined-max-models", type=int, default=1000, metavar="N", help="Max number of models to select per allele when using combined selector") parser.add_argument( "--combined-min-contribution-percent", type=float, default=1.0, metavar="X", help="Use only model selectors that can contribute at least X %% to the " "total score. Default: %(default)s") parser.add_argument( "--mass-spec-min-measurements", type=int, metavar="N", default=1, help="Min number of measurements required for an allele to use mass-spec model " "selection") parser.add_argument( "--mass-spec-min-models", type=int, default=8, metavar="N", help="Min number of models to select per allele when using mass-spec selector") parser.add_argument( "--mass-spec-max-models", type=int, default=1000, metavar="N", help="Max number of models to select per allele when using mass-spec selector") parser.add_argument( "--mse-min-measurements", type=int, metavar="N", default=1, help="Min number of measurements required for an allele to use MSE model " "selection") parser.add_argument( "--mse-min-models", type=int, default=8, metavar="N", help="Min number of models to select per allele when using MSE selector") parser.add_argument( "--mse-max-models", type=int, default=1000, metavar="N", help="Max number of models to select per allele when using MSE selector") parser.add_argument( "--scoring", nargs="+", default=["mse", "consensus"], help="Scoring procedures to use in order") parser.add_argument( "--consensus-min-models", type=int, default=8, metavar="N", help="Min number of models to select per allele when using consensus selector") parser.add_argument( "--consensus-max-models", type=int, default=1000, metavar="N", help="Max number of models to select per allele when using consensus selector") parser.add_argument( "--consensus-num-peptides-per-length", type=int, default=10000, help="Num peptides per length to use for consensus scoring") parser.add_argument( "--mass-spec-regex", metavar="REGEX", default="mass[- ]spec", help="Regular expression for mass-spec data. Runs on measurement_source col." "Default: %(default)s.") parser.add_argument( "--verbosity", type=int, help="Keras verbosity. Default: %(default)s", default=0) add_local_parallelism_args(parser) def run(argv=sys.argv[1:]): global GLOBAL_DATA # On sigusr1 print stack trace print("To show stack trace, run:\nkill -s USR1 %d" % os.getpid()) signal.signal(signal.SIGUSR1, lambda sig, frame: traceback.print_stack()) args = parser.parse_args(argv) args.out_models_dir = os.path.abspath(args.out_models_dir) configure_logging(verbose=args.verbosity > 1) input_predictor = Class1AffinityPredictor.load(args.models_dir) print("Loaded: %s" % input_predictor) if args.allele: alleles = [normalize_allele_name(a) for a in args.allele] else: alleles = input_predictor.supported_alleles metadata_dfs = {} if args.data: df = pandas.read_csv(args.data) print("Loaded data: %s" % (str(df.shape))) df = df.loc[ (df.peptide.str.len() >= 8) & (df.peptide.str.len() <= 15) ] print("Subselected to 8-15mers: %s" % (str(df.shape))) # Allele names in data are assumed to be already normalized. df = df.loc[df.allele.isin(alleles)].dropna() print("Selected %d alleles: %s" % (len(alleles), ' '.join(alleles))) if args.exclude_data: exclude_df = pandas.read_csv(args.exclude_data) metadata_dfs["model_selection_exclude"] = exclude_df print("Loaded exclude data: %s" % (str(df.shape))) df["_key"] = df.allele + "__" + df.peptide exclude_df["_key"] = exclude_df.allele + "__" + exclude_df.peptide df["_excluded"] = df._key.isin(exclude_df._key.unique()) print("Excluding measurements per allele (counts): ") print(df.groupby("allele")._excluded.sum()) print("Excluding measurements per allele (fractions): ") print(df.groupby("allele")._excluded.mean()) df = df.loc[~df._excluded] del df["_excluded"] del df["_key"] print("Reduced data to: %s" % (str(df.shape))) metadata_dfs["model_selection_data"] = df df["mass_spec"] = df.measurement_source.str.contains( args.mass_spec_regex) else: df = None if args.out_unselected_predictions: df["unselected_prediction"] = input_predictor.predict( alleles=df.allele.values, peptides=df.peptide.values) df.to_csv(args.out_unselected_predictions) print("Wrote: %s" % args.out_unselected_predictions) selectors = {} selector_to_model_selection_kwargs = {} def make_selector( scoring, combined_min_contribution_percent=args.combined_min_contribution_percent): if scoring in selectors: return ( selectors[scoring], selector_to_model_selection_kwargs[scoring]) start = time.time() if scoring.startswith("combined:"): model_selection_kwargs = { 'min_models': args.combined_min_models, 'max_models': args.combined_max_models, } component_selectors = [] for component_selector in scoring.split(":", 1)[1].split(","): component_selectors.append( make_selector( component_selector)[0]) selector = CombinedModelSelector( component_selectors, min_contribution_percent=combined_min_contribution_percent) elif scoring == "mse": model_selection_kwargs = { 'min_models': args.mse_min_models, 'max_models': args.mse_max_models, } min_measurements = args.mse_min_measurements selector = MSEModelSelector( df=df.loc[~df.mass_spec], predictor=input_predictor, min_measurements=min_measurements) elif scoring == "mass-spec": mass_spec_df = df.loc[df.mass_spec] model_selection_kwargs = { 'min_models': args.mass_spec_min_models, 'max_models': args.mass_spec_max_models, } min_measurements = args.mass_spec_min_measurements selector = MassSpecModelSelector( df=mass_spec_df, predictor=input_predictor, min_measurements=min_measurements) elif scoring == "consensus": model_selection_kwargs = { 'min_models': args.consensus_min_models, 'max_models': args.consensus_max_models, } selector = ConsensusModelSelector( predictor=input_predictor, num_peptides_per_length=args.consensus_num_peptides_per_length) else: raise ValueError("Unsupported scoring method: %s" % scoring) print("Instantiated model selector %s in %0.2f sec." % ( scoring, time.time() - start)) return (selector, model_selection_kwargs) for scoring in args.scoring: (selector, model_selection_kwargs) = make_selector(scoring) selectors[scoring] = selector selector_to_model_selection_kwargs[scoring] = model_selection_kwargs unselected_accuracy_scorer = None if args.unselected_accuracy_scorer: # Force running all selectors by setting combined_min_contribution_percent=0. unselected_accuracy_scorer = make_selector( args.unselected_accuracy_scorer, combined_min_contribution_percent=0.0)[0] print("Using unselected accuracy scorer: %s" % unselected_accuracy_scorer) GLOBAL_DATA["unselected_accuracy_scorer"] = unselected_accuracy_scorer print("Selectors for alleles:") allele_to_selector = {} allele_to_model_selection_kwargs = {} for allele in alleles: selector = None for possible_selector in args.scoring: if selectors[possible_selector].usable_for_allele(allele=allele): selector = selectors[possible_selector] print("%20s %s" % (allele, selector.plan_summary(allele))) break if selector is None: raise ValueError("No selectors usable for allele: %s" % allele) allele_to_selector[allele] = selector allele_to_model_selection_kwargs[allele] = ( selector_to_model_selection_kwargs[possible_selector]) GLOBAL_DATA["args"] = args GLOBAL_DATA["input_predictor"] = input_predictor GLOBAL_DATA["unselected_accuracy_scorer"] = unselected_accuracy_scorer GLOBAL_DATA["allele_to_selector"] = allele_to_selector GLOBAL_DATA["allele_to_model_selection_kwargs"] = allele_to_model_selection_kwargs if not os.path.exists(args.out_models_dir): print("Attempting to create directory: %s" % args.out_models_dir) os.mkdir(args.out_models_dir) print("Done.") result_predictor = Class1AffinityPredictor(metadata_dataframes=metadata_dfs) worker_pool = worker_pool_with_gpu_assignments_from_args(args) start = time.time() if worker_pool is None: # Serial run print("Running in serial.") results = ( model_select(allele) for allele in alleles) else: # Parallel run random.shuffle(alleles) results = worker_pool.imap_unordered( partial(model_select, constant_data=GLOBAL_DATA), alleles, chunksize=1) unselected_summary = [] model_selection_dfs = [] for result in tqdm.tqdm(results, total=len(alleles)): pprint(result) summary_dict = dict(result) summary_dict["retained"] = result["selected"] is not None del summary_dict["selected"] unselected_summary.append(summary_dict) if result['selected'] is not None: model_selection_dfs.append( result['selected'].metadata_dataframes['model_selection']) result_predictor.merge_in_place([result['selected']]) if model_selection_dfs: model_selection_df = pandas.concat( model_selection_dfs, ignore_index=True) model_selection_df["selector"] = model_selection_df.allele.map( allele_to_selector) result_predictor.metadata_dataframes["model_selection"] = ( model_selection_df) result_predictor.metadata_dataframes["unselected_summary"] = ( pandas.DataFrame(unselected_summary)) print("Done model selecting for %d alleles." % len(alleles)) result_predictor.save(args.out_models_dir) model_selection_time = time.time() - start if worker_pool: worker_pool.close() worker_pool.join() print("Model selection time %0.2f min." % (model_selection_time / 60.0)) print("Predictor written to: %s" % args.out_models_dir) class ScrambledPredictor(object): def __init__(self, predictor): self.predictor = predictor self._predictions = {} self._allele = None def predict(self, peptides, allele): if peptides not in self._predictions: self._predictions[peptides] = pandas.Series( self.predictor.predict(peptides=peptides, allele=allele)) self._allele = allele assert allele == self._allele return self._predictions[peptides].sample(frac=1.0).values def model_select(allele, constant_data=GLOBAL_DATA): unselected_accuracy_scorer = constant_data["unselected_accuracy_scorer"] selector = constant_data["allele_to_selector"][allele] model_selection_kwargs = constant_data[ "allele_to_model_selection_kwargs" ][allele] predictor = constant_data["input_predictor"] args = constant_data["args"] unselected_accuracy_scorer_samples = constant_data["args"].unselected_accuracy_scorer_num_samples result_dict = { "allele": allele } unselected_score = None unselected_score_percentile = None unselected_score_scrambled_mean = None if unselected_accuracy_scorer: unselected_score_function = ( unselected_accuracy_scorer.score_function(allele)) additional_metadata = {} unselected_score = unselected_score_function( predictor, additional_metadata_out=additional_metadata) scrambled_predictor = ScrambledPredictor(predictor) scrambled_scores = numpy.array([ unselected_score_function( scrambled_predictor) for _ in range(unselected_accuracy_scorer_samples) ]) unselected_score_scrambled_mean = scrambled_scores.mean() unselected_score_percentile = percentileofscore( scrambled_scores, unselected_score) print( "Unselected score and percentile", allele, unselected_score, unselected_score_percentile, additional_metadata) result_dict.update( dict(("unselected_%s" % key, value) for (key, value) in additional_metadata.items())) selected = None threshold = args.unselected_accuracy_percentile_threshold if unselected_score_percentile is None or unselected_score_percentile >= threshold: selected = predictor.model_select( score_function=selector.score_function(allele=allele), alleles=[allele], **model_selection_kwargs) result_dict["unselected_score_plan"] = ( unselected_accuracy_scorer.plan_summary(allele) if unselected_accuracy_scorer else None) result_dict["selector_score_plan"] = selector.plan_summary(allele) result_dict["unselected_accuracy_score_percentile"] = unselected_score_percentile result_dict["unselected_score"] = unselected_score result_dict["unselected_score_scrambled_mean"] = unselected_score_scrambled_mean result_dict["selected"] = selected result_dict["num_models"] = len(selected.neural_networks) if selected else None return result_dict def cache_encoding(predictor, peptides): # Encode the peptides for each neural network, so the encoding # becomes cached. for network in predictor.neural_networks: network.peptides_to_network_input(peptides) class ScoreFunction(object): """ Thin wrapper over a score function (Class1AffinityPredictor -> float). Used to keep a summary string associated with the function. """ def __init__(self, function, summary=None): self.function = function self.summary = summary if summary else "(n/a)" def __call__(self, *args, **kwargs): return self.function(*args, **kwargs) class CombinedModelSelector(object): """ Model selector that computes a weighted average over other model selectors. """ def __init__(self, model_selectors, weights=None, min_contribution_percent=1.0): if weights is None: weights = numpy.ones(shape=(len(model_selectors),)) self.model_selectors = model_selectors self.selector_to_weight = dict(zip(self.model_selectors, weights)) self.min_contribution_percent = min_contribution_percent def usable_for_allele(self, allele): return any( selector.usable_for_allele(allele) for selector in self.model_selectors) def plan_summary(self, allele): return self.score_function(allele, dry_run=True).summary def score_function(self, allele, dry_run=False): selector_to_max_weighted_score = {} for selector in self.model_selectors: weight = self.selector_to_weight[selector] if selector.usable_for_allele(allele): max_weighted_score = selector.max_absolute_value(allele) * weight else: max_weighted_score = 0 selector_to_max_weighted_score[selector] = max_weighted_score max_total_score = sum(selector_to_max_weighted_score.values()) # Use only selectors that can contribute >1% to the total score selectors_to_use = [ selector for selector in self.model_selectors if ( selector_to_max_weighted_score[selector] > max_total_score * self.min_contribution_percent / 100.0) ] summary = ", ".join([ "%s(|%.3f|)" % ( selector.plan_summary(allele), selector_to_max_weighted_score[selector]) for selector in selectors_to_use ]) if dry_run: score = None else: score_functions_and_weights = [ (selector.score_function(allele=allele), self.selector_to_weight[selector]) for selector in selectors_to_use ] def score(predictor, additional_metadata_out=None): scores = numpy.array([ score_function( predictor, additional_metadata_out=additional_metadata_out) * weight for (score_function, weight) in score_functions_and_weights ]) if additional_metadata_out is not None: additional_metadata_out["combined_score_terms"] = str( list(scores)) return scores.sum() return ScoreFunction(score, summary=summary) class ConsensusModelSelector(object): """ Model selector that scores sub-ensembles based on their Kendall tau consistency with the full ensemble over a set of random peptides. """ def __init__( self, predictor, num_peptides_per_length=10000, multiply_score_by_value=10.0): (min_length, max_length) = predictor.supported_peptide_lengths peptides = [] for length in range(min_length, max_length + 1): peptides.extend( random_peptides(num_peptides_per_length, length=length)) self.peptides = EncodableSequences.create(peptides) self.predictor = predictor self.multiply_score_by_value = multiply_score_by_value cache_encoding(self.predictor, self.peptides) def usable_for_allele(self, allele): return True def max_absolute_value(self, allele): return self.multiply_score_by_value def plan_summary(self, allele): return "consensus (%d points)" % len(self.peptides) def score_function(self, allele): full_ensemble_predictions = self.predictor.predict( allele=allele, peptides=self.peptides) def score(predictor, additional_metadata_out=None): predictions = predictor.predict( allele=allele, peptides=self.peptides, ) tau = kendalltau(predictions, full_ensemble_predictions).correlation if additional_metadata_out is not None: additional_metadata_out["score_consensus_tau"] = tau return tau * self.multiply_score_by_value return ScoreFunction( score, summary=self.plan_summary(allele)) class MSEModelSelector(object): """ Model selector that uses mean-squared error to score models. Inequalities are supported. """ def __init__( self, df, predictor, min_measurements=1, multiply_score_by_data_size=True): self.df = df self.predictor = predictor self.min_measurements = min_measurements self.multiply_score_by_data_size = multiply_score_by_data_size def usable_for_allele(self, allele): return (self.df.allele == allele).sum() >= self.min_measurements def max_absolute_value(self, allele): if self.multiply_score_by_data_size: return (self.df.allele == allele).sum() else: return 1.0 def plan_summary(self, allele): return self.score_function(allele).summary def score_function(self, allele): sub_df = self.df.loc[self.df.allele == allele].reset_index(drop=True) peptides = EncodableSequences.create(sub_df.peptide.values) def score(predictor, additional_metadata_out=None): predictions = predictor.predict( allele=allele, peptides=peptides, ) deviations = from_ic50(predictions) - from_ic50( sub_df.measurement_value) if 'measurement_inequality' in sub_df.columns: # Must reverse meaning of inequality since we are working with # transformed 0-1 values, which are anti-correlated with the ic50s. # The measurement_inequality column is given in terms of ic50s. deviations.loc[ ( (sub_df.measurement_inequality == "<") & (deviations > 0)) | ((sub_df.measurement_inequality == ">") & (deviations < 0)) ] = 0.0 score_mse = (1 - (deviations ** 2).mean()) if additional_metadata_out is not None: additional_metadata_out["score_MSE"] = 1 - score_mse # We additionally include other scores on (=) measurements as # a convenience eq_df = sub_df if 'measurement_inequality' in sub_df.columns: eq_df = sub_df.loc[ sub_df.measurement_inequality == "=" ] additional_metadata_out["score_pearsonr"] = ( pearsonr( numpy.log(eq_df.measurement_value.values), numpy.log(predictions[eq_df.index.values]))[0]) for threshold in [500, 5000, 15000]: if (eq_df.measurement_value < threshold).nunique() == 2: additional_metadata_out["score_AUC@%d" % threshold] = ( roc_auc_score( (eq_df.measurement_value < threshold).values, -1 * predictions[eq_df.index.values])) return score_mse * ( len(sub_df) if self.multiply_score_by_data_size else 1) summary = "mse (%d points)" % (len(sub_df)) return ScoreFunction(score, summary=summary) class MassSpecModelSelector(object): """ Model selector that uses PPV of differentiating decoys from hits from mass-spec experiments. """ def __init__( self, df, predictor, decoys_per_length=0, min_measurements=100, multiply_score_by_data_size=True): # Index is peptide, columns are alleles hit_matrix = df.groupby( ["peptide", "allele"]).measurement_value.count().unstack().fillna( 0).astype(bool) if decoys_per_length: (min_length, max_length) = predictor.supported_peptide_lengths decoys = [] for length in range(min_length, max_length + 1): decoys.extend( random_peptides(decoys_per_length, length=length)) decoy_matrix = pandas.DataFrame( index=decoys, columns=hit_matrix.columns, dtype=bool) decoy_matrix[:] = False full_matrix = pandas.concat([hit_matrix, decoy_matrix]) else: full_matrix = hit_matrix if len(full_matrix) > 0: full_matrix = full_matrix.sample(frac=1.0).astype(float) self.df = full_matrix self.predictor = predictor self.min_measurements = min_measurements self.multiply_score_by_data_size = multiply_score_by_data_size self.peptides = EncodableSequences.create(full_matrix.index.values) cache_encoding(self.predictor, self.peptides) @staticmethod def ppv(y_true, predictions): df = pandas.DataFrame({"prediction": predictions, "y_true": y_true}) return df.sort_values("prediction", ascending=True)[ : int(y_true.sum()) ].y_true.mean() def usable_for_allele(self, allele): return allele in self.df.columns and ( self.df[allele].sum() >= self.min_measurements) def max_absolute_value(self, allele): if self.multiply_score_by_data_size: return self.df[allele].sum() else: return 1.0 def plan_summary(self, allele): return self.score_function(allele).summary def score_function(self, allele): total_hits = self.df[allele].sum() total_decoys = (self.df[allele] == 0).sum() multiplier = total_hits if self.multiply_score_by_data_size else 1 def score(predictor, additional_metadata_out=None): predictions = predictor.predict( allele=allele, peptides=self.peptides, ) ppv = self.ppv(self.df[allele], predictions) if additional_metadata_out is not None: additional_metadata_out["score_mass_spec_PPV"] = ppv # We additionally compute AUC score. additional_metadata_out["score_mass_spec_AUC"] = roc_auc_score( self.df[allele].values, -1 * predictions) return ppv * multiplier summary = "mass-spec (%d hits / %d decoys)" % (total_hits, total_decoys) return ScoreFunction(score, summary=summary) if __name__ == '__main__': run()
36.007528
101
0.643703
11,746
0.409297
0
0
241
0.008398
0
0
5,750
0.200362
fb93199fe7cc80dd48c6b172980feb9638eeb2ac
623
py
Python
CircuitPython_Made_Easy_On_CPX/cpx_temperature_neopixels.py
joewalk102/Adafruit_Learning_System_Guides
2bda607f8c433c661a2d9d40b4db4fd132334c9a
[ "MIT" ]
665
2017-09-27T21:20:14.000Z
2022-03-31T09:09:25.000Z
CircuitPython_Made_Easy_On_CPX/cpx_temperature_neopixels.py
joewalk102/Adafruit_Learning_System_Guides
2bda607f8c433c661a2d9d40b4db4fd132334c9a
[ "MIT" ]
641
2017-10-03T19:46:37.000Z
2022-03-30T18:28:46.000Z
CircuitPython_Made_Easy_On_CPX/cpx_temperature_neopixels.py
joewalk102/Adafruit_Learning_System_Guides
2bda607f8c433c661a2d9d40b4db4fd132334c9a
[ "MIT" ]
734
2017-10-02T22:47:38.000Z
2022-03-30T14:03:51.000Z
import time from adafruit_circuitplayground.express import cpx import simpleio cpx.pixels.auto_write = False cpx.pixels.brightness = 0.3 # Set these based on your ambient temperature for best results! minimum_temp = 24 maximum_temp = 30 while True: # temperature value remapped to pixel position peak = simpleio.map_range(cpx.temperature, minimum_temp, maximum_temp, 0, 10) print(cpx.temperature) print(int(peak)) for i in range(0, 10, 1): if i <= peak: cpx.pixels[i] = (0, 255, 255) else: cpx.pixels[i] = (0, 0, 0) cpx.pixels.show() time.sleep(0.05)
24.92
81
0.667737
0
0
0
0
0
0
0
0
109
0.17496
fb944044bfb463a8599ee79bec50521d35a9aa25
1,086
py
Python
Python_Fundamentals/06_Object_And_Classes/task_object_and_classes/d_exercises.py
Dochko0/Python
e9612c4e842cfd3d9a733526cc7485765ef2238f
[ "MIT" ]
null
null
null
Python_Fundamentals/06_Object_And_Classes/task_object_and_classes/d_exercises.py
Dochko0/Python
e9612c4e842cfd3d9a733526cc7485765ef2238f
[ "MIT" ]
null
null
null
Python_Fundamentals/06_Object_And_Classes/task_object_and_classes/d_exercises.py
Dochko0/Python
e9612c4e842cfd3d9a733526cc7485765ef2238f
[ "MIT" ]
null
null
null
class Exercises: def __init__(self, topic, course_name, judge_contest_link, problems): self.topic = topic self.course_name = course_name self.judge_contest_link = judge_contest_link self.problems = [*problems] def get_info(self): info = f'Exercises: {self.topic}\n' \ f'Problems for exercises and homework for the "{self.course_name}" course @ SoftUni.' \ f'\nCheck your solutions here: {self.judge_contest_link}\n' for p in range(len(self.problems)): if p == len(self.problems) - 1: info += f'{p + 1}. {self.problems[p]}' else: info += f'{p + 1}. {self.problems[p]}\n' return info num = 1 items = [] while True: line_input = input() if line_input == 'go go go': break topic, course_name, judge_contest_link, all_problems = list(line_input.split(' -> ')) problems = all_problems.split(', ') items.append(Exercises(topic, course_name, judge_contest_link, problems)) for i in items: print(i.get_info())
29.351351
99
0.604052
727
0.669429
0
0
0
0
0
0
254
0.233886
fb9503385f519e775914f1b2f2d3dd6a4f2477ad
15,037
py
Python
Machine Learning Summer School 2019 (London, UK)/tutorials/mcmc/2 - markov_chain_monte_carlo.py
xuedong/rlss2019
d7468c2fcf269d8afd6fb0f44993aa9797867944
[ "MIT" ]
null
null
null
Machine Learning Summer School 2019 (London, UK)/tutorials/mcmc/2 - markov_chain_monte_carlo.py
xuedong/rlss2019
d7468c2fcf269d8afd6fb0f44993aa9797867944
[ "MIT" ]
null
null
null
Machine Learning Summer School 2019 (London, UK)/tutorials/mcmc/2 - markov_chain_monte_carlo.py
xuedong/rlss2019
d7468c2fcf269d8afd6fb0f44993aa9797867944
[ "MIT" ]
null
null
null
############################################################ # Copyright 2019 Michael Betancourt # Licensed under the new BSD (3-clause) license: # # https://opensource.org/licenses/BSD-3-Clause ############################################################ ############################################################ # # Initial setup # ############################################################ import matplotlib.pyplot as plot import scipy.stats as stats import numpy import math light = "#DCBCBC" light_highlight = "#C79999" mid = "#B97C7C" mid_highlight = "#A25050" dark = "#8F2727" dark_highlight = "#7C0000" green = "#00FF00" # To facilitate the computation of Markov chain Monte Carlo estimators # let's define a _Welford accumulator_ that computes empirical summaries # of a sample in a single pass def welford_summary(x, L = 100): summary = [0] * (L + 1) for n in range(len(x)): delta = x[n] - summary[0] summary[0] += delta / (n + 1) for l in range(L): if n > l: summary[l + 1] += delta * (x[n - l] - summary[0]) norm = 1.0 / (len(x) - 1) for l in range(L): summary[l + 1] *= norm return summary # We can then use the Welford accumulator output to compute the # Markov chain Monte Carlo estimators and their properties def compute_mcmc_stats(x, L = 20): summary = welford_summary(x, L) mean = summary[0] var = summary[1] acov = summary[1:(L + 1)] # Compute the effective sample size rho_hat_s = [0] * L rho_hat_s[1] = acov[1] / var # First we transform our autocovariances into Geyer's initial positive sequence max_s = 1 for s in [ 2 * i + 1 for i in range((L - 1) / 2) ]: rho_hat_even = acov[s + 1] / var rho_hat_odd = acov[s + 2] / var; max_s = s + 2 if rho_hat_even + rho_hat_odd > 0: rho_hat_s[s + 1] = rho_hat_even rho_hat_s[s + 2] = rho_hat_odd else: break # Then we transform this output into Geyer's initial monotone sequence for s in [ 2 * i + 3 for i in range((max_s - 2)/ 2) ]: if rho_hat_s[s + 1] + rho_hat_s[s + 2] > rho_hat_s[s - 1] + rho_hat_s[s]: rho_hat_s[s + 1] = 0.5 * (rho_hat_s[s - 1] + rho_hat_s[s]) rho_hat_s[s + 2] = rho_hat_s[s + 1] ess = len(x) / (1.0 + 2 * sum(rho_hat_s)) return [mean, math.sqrt(var / ess), math.sqrt(var), ess] # To generate our samples we'll use numpy's pseudo random number # generator which needs to be seeded to achieve reproducible # results numpy.random.seed(seed=8675309) # To ensure accurate results let's generate pretty large samples N = 10000 # To see how results scale with dimension we'll consider # behavior one thorugh ten dimensions Ds = [ n + 1 for n in range(10) ] idxs = [ idx for idx in range(Ds[-1]) for r in range(2) ] plot_Ds = [ D + delta for D in Ds for delta in [-0.5, 0.5]] ############################################################ # # How does the Random Walk Metropolis algorithm perform # on a target distribution with a two-dimensional Gaussian # density function? # ############################################################ # Target density def target_lpdf(x): return - 0.5 * ( (x[0] - 1)**2 + (x[1] + 1)**2 ) \ - 0.5 * 2 * math.log(6.283185307179586) # Tune proposal density sigma = 1.4 # A place to store our Markov chain # D columns for the parameters and one extra column # for the Metropolis acceptance probability D = 2 mcmc_samples = [[0] * (D + 1) for _ in range(N)] # Randomly seed the initial state mcmc_samples[0][0] = stats.norm.rvs(0, 3) mcmc_samples[0][1] = stats.norm.rvs(0, 3) mcmc_samples[0][2] = 1 for n in range(1, N): x0 = [ mcmc_samples[n - 1][0], mcmc_samples[n - 1][1]] xp = [ stats.norm.rvs(x0[0], sigma), stats.norm.rvs(x0[1], sigma) ] # Compute acceptance probability accept_prob = 1 if target_lpdf(xp) < target_lpdf(x0): accept_prob = math.exp(target_lpdf(xp) - target_lpdf(x0)) mcmc_samples[n][D] = accept_prob # Apply Metropolis correction u = stats.uniform.rvs(0, 1) if accept_prob > u: mcmc_samples[n][0] = xp[0] mcmc_samples[n][1] = xp[1] else: mcmc_samples[n][0] = x0[0] mcmc_samples[n][1] = x0[1] # Compute MCMC estimator statistics, leaving # out the first 100 samples as warmup compute_mcmc_stats([ s[0] for s in mcmc_samples[100:] ]) compute_mcmc_stats([ s[1] for s in mcmc_samples[100:] ]) # Plot convergence of MCMC estimators for each parameter stride = 250 M = N / stride iters = [ stride * (i + 1) for i in range(N / stride) ] x1_mean = [0] * M x1_se = [0] * M x2_mean = [0] * M x2_se = [0] * M for m in range(M): running_samples = [ s[0] for s in mcmc_samples[100:iters[m]] ] mcmc_stats = compute_mcmc_stats(running_samples) x1_mean[m] = mcmc_stats[0] x1_se[m] = mcmc_stats[1] running_samples = [ s[1] for s in mcmc_samples[100:iters[m]] ] mcmc_stats = compute_mcmc_stats(running_samples) x2_mean[m] = mcmc_stats[0] x2_se[m] = mcmc_stats[1] plot.fill_between(iters, [ x1_mean[m] - 2 * x1_se[m] for m in range(M) ], [ x1_mean[m] + 2 * x1_se[m] for m in range(M) ], facecolor=light, color=light) plot.plot(iters, x1_mean, color=dark) plot.plot([iters[0], iters[-1]], [1, 1], color='grey', linestyle='--') plot.gca().set_xlim([0, N]) plot.gca().set_xlabel("Iteration") plot.gca().set_ylim([-2, 2]) plot.gca().set_ylabel("Monte Carlo Estimator") plot.show() plot.fill_between(iters, [ x2_mean[m] - 2 * x2_se[m] for m in range(M) ], [ x2_mean[m] + 2 * x2_se[m] for m in range(M) ], facecolor=light, color=light) plot.plot(iters, x2_mean, color=dark) plot.plot([iters[0], iters[-1]], [-1, -1], color='grey', linestyle='--') plot.gca().set_xlim([0, N]) plot.gca().set_xlabel("Iteration") plot.gca().set_ylim([-2, 2]) plot.gca().set_ylabel("Monte Carlo Estimator") plot.show() ############################################################ # # How does the Random Walk Metropolis algorithm perform # on a target distribution with a funnel density function? # ############################################################ # Target density def target_lpdf(x): return - 0.5 * ( x[0]**2 + x[1]**2 + ( (x[2] - x[0]) / math.exp(x[1]) )**2 ) \ - 0.5 * 3 * math.log(6.283185307179586) - 0.5 * x[2] # Tune proposal density sigma = 1.4 # A place to store our Markov chain # D columns for the parameters and one extra column # for the Metropolis acceptance probability D = 3 mcmc_samples = [[0] * (D + 1) for _ in range(N)] # Randomly seed the initial state mcmc_samples[0][0] = stats.norm.rvs(0, 3) mcmc_samples[0][1] = stats.norm.rvs(0, 3) mcmc_samples[0][2] = stats.norm.rvs(0, 3) mcmc_samples[0][3] = 1 for n in range(1, N): x0 = [ mcmc_samples[n - 1][0], mcmc_samples[n - 1][1], mcmc_samples[n - 1][2]] xp = [ stats.norm.rvs(x0[0], sigma), stats.norm.rvs(x0[1], sigma), stats.norm.rvs(x0[2], sigma) ] # Compute acceptance probability accept_prob = 1 if target_lpdf(xp) < target_lpdf(x0): accept_prob = math.exp(target_lpdf(xp) - target_lpdf(x0)) mcmc_samples[n][D] = accept_prob # Apply Metropolis correction u = stats.uniform.rvs(0, 1) if accept_prob > u: mcmc_samples[n][0] = xp[0] mcmc_samples[n][1] = xp[1] mcmc_samples[n][2] = xp[2] else: mcmc_samples[n][0] = x0[0] mcmc_samples[n][1] = x0[1] mcmc_samples[n][2] = x0[2] # Compute MCMC estimator statistics, leaving # out the first 100 samples as warmup compute_mcmc_stats([ s[0] for s in mcmc_samples[100:] ]) compute_mcmc_stats([ s[1] for s in mcmc_samples[100:] ]) compute_mcmc_stats([ s[2] for s in mcmc_samples[100:] ]) # Plot convergence of MCMC estimators for each parameter stride = 250 M = N / stride iters = [ stride * (i + 1) for i in range(N / stride) ] mu_mean = [0] * M mu_se = [0] * M log_tau_mean = [0] * M log_tau_se = [0] * M for m in range(M): running_samples = [ s[0] for s in mcmc_samples[100:iters[m]] ] mcmc_stats = compute_mcmc_stats(running_samples) mu_mean[m] = mcmc_stats[0] mu_se[m] = mcmc_stats[1] running_samples = [ s[1] for s in mcmc_samples[100:iters[m]] ] mcmc_stats = compute_mcmc_stats(running_samples) log_tau_mean[m] = mcmc_stats[0] log_tau_se[m] = mcmc_stats[1] plot.fill_between(iters, [ mu_mean[m] - 2 * mu_se[m] for m in range(M) ], [ mu_mean[m] + 2 * mu_se[m] for m in range(M) ], facecolor=light, color=light) plot.plot(iters, mu_mean, color=dark) plot.plot([iters[0], iters[-1]], [0, 0], color='grey', linestyle='--') plot.gca().set_xlim([0, N]) plot.gca().set_xlabel("Iteration") plot.gca().set_ylim([-1, 1]) plot.gca().set_ylabel("Monte Carlo Estimator") plot.show() plot.fill_between(iters, [ log_tau_mean[m] - 2 * log_tau_se[m] for m in range(M) ], [ log_tau_mean[m] + 2 * log_tau_se[m] for m in range(M) ], facecolor=light, color=light) plot.plot(iters, log_tau_mean, color=dark) plot.plot([iters[0], iters[-1]], [0, 0], color='grey', linestyle='--') plot.gca().set_xlim([0, N]) plot.gca().set_xlabel("Iteration") plot.gca().set_ylim([-1, 8]) plot.gca().set_ylabel("Monte Carlo Estimator") plot.show() ############################################################ # # How does the effective sample size of a Random Walk # Metropolis Markov chain vary with the dimension of # the target distribution? # ############################################################ def target_lpdf(x): return - 0.5 * sum([ x_n**2 for x_n in x ]) \ - 0.5 * len(x) * math.log(6.283185307179586) ############################################################ # First let's use a constant Markov transition ############################################################ accept_prob_means = [0] * len(Ds) accept_prob_ses = [0] * len(Ds) ave_eff_sample_sizes = [0] * len(Ds) # Tune proposal density sigma = 1.4 for D in Ds: # A place to store our Markov chain # D columns for the parameters and one extra column # for the Metropolis acceptance probability mcmc_samples = [[0] * (D + 1) for _ in range(N)] # Seeding the initial state with an exact sample # from the target distribution ensures that we # start in the typical set and avoid having to # worry about warmup. for d in range(D): mcmc_samples[0][d] = stats.norm.rvs(0, 3) mcmc_samples[0][D] = 1 for n in range(1, N): x0 = [ mcmc_samples[n - 1][d] for d in range(D) ] xp = [ stats.norm.rvs(x0[d], sigma) for d in range(D) ] # Compute acceptance probability accept_prob = 1 if target_lpdf(xp) < target_lpdf(x0): accept_prob = math.exp(target_lpdf(xp) - target_lpdf(x0)) mcmc_samples[n][D] = accept_prob # Apply Metropolis correction u = stats.uniform.rvs(0, 1) if accept_prob > u: mcmc_samples[n][0:D] = xp else: mcmc_samples[n][0:D] = x0 # Estimate average acceptance probability # Compute MCMC estimator statistics mcmc_stats = compute_mcmc_stats([ s[D] for s in mcmc_samples]) accept_prob_means[D - 1] = mcmc_stats[0] accept_prob_ses[D - 1] = mcmc_stats[1] # Estimate effective sample size eff_sample_sizes = [ compute_mcmc_stats([ s[d] for s in mcmc_samples])[3] \ for d in range(D) ] ave_eff_sample_sizes[D - 1] = sum(eff_sample_sizes) / D f, axarr = plot.subplots(1, 2) axarr[0].set_title("") axarr[0].fill_between(plot_Ds, [ accept_prob_means[idx] - 2 * accept_prob_ses[idx] for idx in idxs ], [ accept_prob_means[idx] + 2 * accept_prob_ses[idx] for idx in idxs ], facecolor=dark, color=dark) axarr[0].plot(plot_Ds, [ accept_prob_means[idx] for idx in idxs], color=dark_highlight) axarr[0].set_xlim([Ds[0], Ds[-1]]) axarr[0].set_xlabel("Dimension") axarr[0].set_ylim([0, 1]) axarr[0].set_ylabel("Average Acceptance Probability") axarr[1].set_title("") axarr[1].plot(plot_Ds, [ ave_eff_sample_sizes[idx] / N for idx in idxs], color=dark_highlight) axarr[1].set_xlim([Ds[0], Ds[-1]]) axarr[1].set_xlabel("Dimension") axarr[1].set_ylim([0, 0.3]) axarr[1].set_ylabel("Average Effective Sample Size Per Iteration") plot.show() ############################################################ # Now let's use an (approximately) optimally tuned Markov # transition for each dimension ############################################################ accept_prob_means = [0] * len(Ds) accept_prob_ses = [0] * len(Ds) ave_eff_sample_sizes = [0] * len(Ds) # Approximately optimal proposal tuning opt_sigmas = [2.5, 1.75, 1.5, 1.2, 1.15, 1.0, 0.95, 0.85, 0.8, 0.75] # Tune proposal density sigma = 1.4 for D in Ds: # A place to store our Markov chain # D columns for the parameters and one extra column # for the Metropolis acceptance probability mcmc_samples = [[0] * (D + 1) for _ in range(N)] # Seeding the initial state with an exact sample # from the target distribution ensures that we # start in the typical set and avoid having to # worry about warmup. for d in range(D): mcmc_samples[0][d] = stats.norm.rvs(0, 3) mcmc_samples[0][D] = 1 for n in range(1, N): x0 = [ mcmc_samples[n - 1][d] for d in range(D) ] xp = [ stats.norm.rvs(x0[d], opt_sigmas[D - 1]) for d in range(D) ] # Compute acceptance probability accept_prob = 1 if target_lpdf(xp) < target_lpdf(x0): accept_prob = math.exp(target_lpdf(xp) - target_lpdf(x0)) mcmc_samples[n][D] = accept_prob # Apply Metropolis correction u = stats.uniform.rvs(0, 1) if accept_prob > u: mcmc_samples[n][0:D] = xp else: mcmc_samples[n][0:D] = x0 # Estimate average acceptance probability # Compute MCMC estimator statistics mcmc_stats = compute_mcmc_stats([ s[D] for s in mcmc_samples]) accept_prob_means[D - 1] = mcmc_stats[0] accept_prob_ses[D - 1] = mcmc_stats[1] # Estimate effective sample size eff_sample_sizes = [ compute_mcmc_stats([ s[d] for s in mcmc_samples])[3] \ for d in range(D) ] ave_eff_sample_sizes[D - 1] = sum(eff_sample_sizes) / D f, axarr = plot.subplots(1, 2) axarr[0].set_title("") axarr[0].fill_between(plot_Ds, [ accept_prob_means[idx] - 2 * accept_prob_ses[idx] for idx in idxs ], [ accept_prob_means[idx] + 2 * accept_prob_ses[idx] for idx in idxs ], facecolor=dark, color=dark) axarr[0].plot(plot_Ds, [ accept_prob_means[idx] for idx in idxs], color=dark_highlight) axarr[0].set_xlim([Ds[0], Ds[-1]]) axarr[0].set_xlabel("Dimension") axarr[0].set_ylim([0, 1]) axarr[0].set_ylabel("Average Acceptance Probability") axarr[1].set_title("") axarr[1].plot(plot_Ds, [ ave_eff_sample_sizes[idx] / N for idx in idxs], color=dark_highlight) axarr[1].set_xlim([Ds[0], Ds[-1]]) axarr[1].set_xlabel("Dimension") axarr[1].set_ylim([0, 0.3]) axarr[1].set_ylabel("Average Effective Sample Size Per Iteration") plot.show()
31.524109
92
0.608499
0
0
0
0
0
0
0
0
4,517
0.300392
fb9534493c6c33c290455dafb3878a1f3ed9246b
454
py
Python
opendbc/generator/test_generator.py
darknight111/openpilot3
a0c755fbe1889f26404a8225816f57e89fde7bc2
[ "MIT" ]
116
2018-03-07T09:00:10.000Z
2020-04-06T18:37:45.000Z
opendbc/generator/test_generator.py
darknight111/openpilot3
a0c755fbe1889f26404a8225816f57e89fde7bc2
[ "MIT" ]
66
2020-04-09T20:27:57.000Z
2022-01-27T14:39:24.000Z
opendbc/generator/test_generator.py
darknight111/openpilot3
a0c755fbe1889f26404a8225816f57e89fde7bc2
[ "MIT" ]
154
2020-04-08T21:41:22.000Z
2022-03-17T21:05:33.000Z
#!/usr/bin/env python3 import os import filecmp import tempfile from opendbc.generator.generator import create_all, opendbc_root def test_generator(): with tempfile.TemporaryDirectory() as d: create_all(d) ignore = [f for f in os.listdir(opendbc_root) if not f.endswith('_generated.dbc')] comp = filecmp.dircmp(opendbc_root, d, ignore=ignore) assert len(comp.diff_files) == 0, f"Different files: {comp.diff_files}" test_generator()
26.705882
86
0.746696
0
0
0
0
0
0
0
0
75
0.165198
fb95d8cb21b1ef70d5c86b417371dd007196c3a0
3,575
py
Python
src/vigorish/scrape/brooks_pitchfx/scrape_task.py
a-luna/vigorish
6cede5ced76c7d2c9ad0aacdbd2b18c2f1ee4ee6
[ "MIT" ]
2
2021-07-15T13:53:33.000Z
2021-07-25T17:03:29.000Z
src/vigorish/scrape/brooks_pitchfx/scrape_task.py
a-luna/vigorish
6cede5ced76c7d2c9ad0aacdbd2b18c2f1ee4ee6
[ "MIT" ]
650
2019-05-18T07:00:12.000Z
2022-01-21T19:38:55.000Z
src/vigorish/scrape/brooks_pitchfx/scrape_task.py
a-luna/vigorish
6cede5ced76c7d2c9ad0aacdbd2b18c2f1ee4ee6
[ "MIT" ]
2
2020-03-28T21:01:31.000Z
2022-01-06T05:16:11.000Z
import vigorish.database as db from vigorish.enums import DataSet, ScrapeCondition from vigorish.scrape.brooks_pitchfx.parse_html import parse_pitchfx_log from vigorish.scrape.scrape_task import ScrapeTaskABC from vigorish.status.update_status_brooks_pitchfx import update_status_brooks_pitchfx_log from vigorish.util.dt_format_strings import DATE_ONLY_2 from vigorish.util.result import Result class ScrapeBrooksPitchFx(ScrapeTaskABC): def __init__(self, app, db_job): self.data_set = DataSet.BROOKS_PITCHFX self.req_data_set = DataSet.BROOKS_PITCH_LOGS super().__init__(app, db_job) def check_prerequisites(self, game_date): brooks_pitch_logs = db.DateScrapeStatus.verify_all_brooks_pitch_logs_scraped_for_date( self.db_session, game_date ) if brooks_pitch_logs: return Result.Ok() date_str = game_date.strftime(DATE_ONLY_2) error = ( f"Brooks pitch logs for date {date_str} have not been scraped, unable to scrape " "Brooks pitchfx data until this has been done." ) return Result.Fail(error) def check_current_status(self, game_date): if self.scrape_condition == ScrapeCondition.ALWAYS: return Result.Ok() scraped_brooks_pitchfx = db.DateScrapeStatus.verify_all_brooks_pitchfx_scraped_for_date( self.db_session, game_date ) return Result.Ok() if not scraped_brooks_pitchfx else Result.Fail("skip") def parse_scraped_html(self): parsed = 0 for game_date in self.date_range: pitch_logs_for_date = self.scraped_data.get_all_brooks_pitch_logs_for_date(game_date) if not pitch_logs_for_date: date_str = game_date.strftime(DATE_ONLY_2) error = f"Failed to retrieve {self.req_data_set} for date: {date_str}" return Result.Fail(error) for pitch_logs_for_game in pitch_logs_for_date: game_id = pitch_logs_for_game.bbref_game_id self.spinner.text = self.url_tracker.parse_html_report(parsed, game_id) for pitch_log in pitch_logs_for_game.pitch_logs: if not pitch_log.parsed_all_info: continue if pitch_log.pitch_app_id not in self.url_tracker.parse_url_ids: continue html = self.url_tracker.get_html(pitch_log.pitch_app_id) result = parse_pitchfx_log(html, pitch_log) if result.failure: return result pitchfx_log = result.value result = self.scraped_data.save_json(self.data_set, pitchfx_log) if result.failure: return Result.Fail(f"Error! {result.error} (ID: {pitch_log.pitch_app_id})") result = self.update_status(pitchfx_log) if result.failure: return Result.Fail(f"Error! {result.error} (ID: {pitch_log.pitch_app_id})") parsed += 1 self.spinner.text = self.url_tracker.parse_html_report(parsed, game_id) self.db_session.commit() return Result.Ok() def parse_html(self, url_details): pass def update_status(self, parsed_data): result = update_status_brooks_pitchfx_log(self.db_session, parsed_data) if result.failure: return result self.db_session.commit() return Result.Ok()
45.833333
99
0.645315
3,177
0.888671
0
0
0
0
0
0
306
0.085594
fb96d6004d5d3c7514625831b9038ed27e6e0930
10,309
py
Python
mayan/apps/rest_api/classes.py
atitaya1412/Mayan-EDMS
bda9302ba4b743e7d829ad118b8b836221888172
[ "Apache-2.0" ]
336
2019-05-09T07:05:19.000Z
2022-03-25T09:50:22.000Z
mayan/apps/rest_api/classes.py
atitaya1412/Mayan-EDMS
bda9302ba4b743e7d829ad118b8b836221888172
[ "Apache-2.0" ]
9
2019-10-29T00:12:27.000Z
2021-09-09T15:16:51.000Z
mayan/apps/rest_api/classes.py
atitaya1412/Mayan-EDMS
bda9302ba4b743e7d829ad118b8b836221888172
[ "Apache-2.0" ]
257
2019-05-14T10:26:37.000Z
2022-03-30T03:37:36.000Z
from collections import namedtuple import io import json from furl import furl from django.core.handlers.wsgi import WSGIRequest from django.http.request import QueryDict from django.template import Variable, VariableDoesNotExist from django.test.client import MULTIPART_CONTENT from django.urls import resolve from django.urls.exceptions import Resolver404 from mayan.apps.organizations.settings import setting_organization_url_base_path from mayan.apps.templating.classes import Template from .literals import API_VERSION class BatchResponse: def __init__(self, name, status_code, data, headers): self.name = name self.status_code = status_code self.data = data self.headers = headers class NestableLazyIterator: def __init__( self, iterable_string, context, context_list_index, parent_iterator=None ): self.iterable_string = iterable_string self.context = context self.context_list_index = context_list_index self.parent_iterator = parent_iterator self.items = None self.index = 0 def __iter__(self): return self def __next__(self): # Setup the initial values on the initial access. if not self.items: if self.parent_iterator: next(self.parent_iterator) self.update_iterable_object() if self.index == len(self.items): self.index = 0 if self.parent_iterator: next(self.parent_iterator) else: raise StopIteration self.update_iterable_object() value = self.items[self.index] self.context['iterables'][self.context_list_index] = value self.index += 1 return value def update_iterable_object(self): self.items = Variable(var=self.iterable_string).resolve(context=self.context) RenderedContent = namedtuple( typename='RenderedContent', field_names=( 'body', 'include', 'method', 'name', 'url' ) ) class BatchRequest: def __init__( self, collection, name, url, body=None, group_name=None, include='true', iterables=None, method='GET' ): self.collection = collection self.body = body or {} self.include = include self.group_name = group_name self.iterables = iterables self.method = method self.name = name self.url = url def execute(self): if self.iterables: # Initialize the iterables list to allow using any index. self.collection.context['iterables'] = [None] * len(self.iterables) iterator = None for iterable_index, iterable in enumerate(self.iterables): iterator = NestableLazyIterator( context=self.collection.context, context_list_index=iterable_index, iterable_string=iterable, parent_iterator=iterator ) while True: try: next(iterator) except StopIteration: break except VariableDoesNotExist as exception: self.collection.responses[self.name] = { 'data': {'error': str(exception)}, 'include': 'true', 'is_response': True } return else: rendered_content = self.render_content() BatchRequest( collection=self.collection, body=rendered_content.body, group_name=self.group_name, include=rendered_content.include, method=rendered_content.method, name=rendered_content.name, url=rendered_content.url ).execute() else: rendered_content = self.render_content() url_parts = furl(rendered_content.url) try: resolver_match = resolve(path=url_parts.pathstr) except Resolver404 as exception: self.collection.responses[rendered_content.name] = { 'data': { 'error': '"{}" not found'.format(exception.args[0]['path']) }, 'include': 'true', 'is_response': True, 'status_code': 404 } return else: environ = getattr( self.collection.view_request, 'environ', {} ).copy() environ['REQUEST_METHOD'] = rendered_content.method environ['PATH_INFO'] = self.url environ['QUERY_STRING'] = url_parts.querystr post_query_dict = QueryDict(mutable=True) post_query_dict.update(rendered_content.body) json_body = json.dumps(post_query_dict) request_data = json_body.encode('utf-8') environ['wsgi.input'] = io.BytesIO(request_data) environ['CONTENT_LENGTH'] = str(len(request_data)) if rendered_content.method == 'POST': environ['CONTENT_TYPE'] = MULTIPART_CONTENT else: environ['CONTENT_TYPE'] = 'application/octet-stream' request = WSGIRequest(environ=environ) request.LANGUAGE_CODE = getattr( self.collection.view_request, 'LANGUAGE_CODE', None ) request.POST = post_query_dict request._read_started = True request.auth = getattr( self.collection.view_request, 'auth', None ) request.csrf_processing_done = True request.session = getattr( self.collection.view_request, 'session', None ) request.user = getattr( self.collection.view_request, 'user', None ) response = resolver_match.func( request=request, **resolver_match.kwargs ) result = { 'data': response.data, 'headers': {key: value for key, value in response.items()}, 'include': rendered_content.include, 'is_response': True, 'status_code': response.status_code } self.collection.context[rendered_content.name] = result self.collection.responses[rendered_content.name] = result if self.group_name: self.collection.context.setdefault('groups', {}) self.collection.context['groups'].setdefault( self.group_name, [] ) self.collection.context['groups'][self.group_name].append( result ) def render_content(self): rendered_body = {} for key, value in self.body.items(): rendered_key = Template(template_string=key).render( context=self.collection.context ) rendered_value = Template(template_string=value).render( context=self.collection.context ) rendered_body[rendered_key] = rendered_value rendered_include = Template(template_string=self.include).render( context=self.collection.context ) rendered_method = Template(template_string=self.method).render( context=self.collection.context ) rendered_name = Template(template_string=self.name).render( context=self.collection.context ) rendered_url = Template(template_string=self.url).render( context=self.collection.context ) return RenderedContent( body=rendered_body, include=rendered_include, method=rendered_method, name=rendered_name, url=rendered_url ) class BatchRequestCollection: def __init__(self, request_list=None): self.requests = [] for request_index, request_dict in enumerate(request_list): request_dict.update( {'collection': self} ) try: self.requests.append(BatchRequest(**request_dict)) except Exception as exception: raise ValueError( 'Error instantiating request #{}; {}'.format( request_index, exception ) ) from exception def execute(self, view_request): self.context = {'view_request': view_request} self.responses = {} self.view_request = view_request for request in self.requests: request.execute() # Convert responses in context into response class instances. result = [] for key, value in self.responses.items(): if json.loads(s=value.get('include', 'true')): result.append( BatchResponse( name=key, status_code=value.get('status_code', 0), data=value.get('data', {}), headers=value.get('headers', {}), ) ) return result class Endpoint: def __init__(self, label, viewname=None, kwargs=None): self.label = label self.kwargs = kwargs if viewname: self.viewname = viewname else: installation_base_url = setting_organization_url_base_path.value if installation_base_url: installation_base_url = '/{}'.format(installation_base_url) else: installation_base_url = '' self.url = '{}/api/v{}/{}/'.format( installation_base_url, API_VERSION, self.label ) try: self.viewname = resolve(path=self.url).view_name except Resolver404: self.viewname = None
34.363333
85
0.549811
9,629
0.934038
0
0
0
0
0
0
752
0.072946
fb97354673fa2e5ae7cab8bfd23169b53bcbcce7
254
py
Python
python/griddly/util/rllib/torch/agents/common.py
maichmueller/Griddly
25b978a08f13226de2831d0941af0f37fea12718
[ "MIT" ]
93
2020-05-29T14:36:46.000Z
2022-03-28T02:58:04.000Z
python/griddly/util/rllib/torch/agents/common.py
maichmueller/Griddly
25b978a08f13226de2831d0941af0f37fea12718
[ "MIT" ]
35
2020-07-22T16:43:03.000Z
2022-03-30T19:50:20.000Z
python/griddly/util/rllib/torch/agents/common.py
maichmueller/Griddly
25b978a08f13226de2831d0941af0f37fea12718
[ "MIT" ]
13
2020-07-22T08:24:28.000Z
2022-01-28T06:58:38.000Z
import numpy as np from torch import nn def layer_init(layer, std=np.sqrt(2), bias_const=0.0): """ Simple function to init layers """ nn.init.orthogonal_(layer.weight, std) nn.init.constant_(layer.bias, bias_const) return layer
21.166667
54
0.685039
0
0
0
0
0
0
0
0
46
0.181102
fb97fb152011251fca82737d7f9e6211e38b167b
9,414
py
Python
turnitin/src9.py
alvaedu/NYUsakai11
2434f320c49072d23af77062ea763228374f4c25
[ "ECL-2.0" ]
4
2017-03-22T16:57:42.000Z
2020-04-07T17:34:41.000Z
turnitin/src9.py
alvaedu/NYUsakai11
2434f320c49072d23af77062ea763228374f4c25
[ "ECL-2.0" ]
216
2016-06-23T14:02:32.000Z
2021-08-31T17:11:24.000Z
turnitin/src9.py
alvaedu/NYUsakai11
2434f320c49072d23af77062ea763228374f4c25
[ "ECL-2.0" ]
15
2016-06-17T16:26:08.000Z
2017-08-19T21:06:33.000Z
""" Test script for src=9 provisioning Below are some odd examples and notes: Adding a class { 'src': '9', 'uln': 'Githens', 'ufn': 'Steven', 'aid': '56021', 'utp': '2', 'said': '56021', 'fid': '2', 'username': 'swgithen', 'ctl': 'CourseTitleb018b622-b425-4af7-bb3d-d0d2b4deb35c', 'diagnostic': '0', 'encrypt': '0', 'uem': 'swgithen@mtu.edu', 'cid': 'CourseTitleb018b622-b425-4af7-bb3d-d0d2b4deb35c', 'fcmd': '2' } {rmessage=Successful!, userid=17463901, classid=2836785, rcode=21} Adding an assignment { 'fid': '4', 'diagnostic': '0', 'ufn': 'Steven', 'uln': 'Githens', 'username': 'swgithen', 'assignid': 'AssignmentTitlec717957d-254f-4d6d-a64c-952e630db872', 'aid': '56021', 'src': '9', 'cid': 'CourseTitleb018b622-b425-4af7-bb3d-d0d2b4deb35c', 'said': '56021', 'dtstart': '20091225', 'encrypt': '0', 'assign': 'AssignmentTitlec717957d-254f-4d6d-a64c-952e630db872', 'uem': 'swgithen@mtu.edu', 'utp': '2', 'fcmd': '2', 'ctl': 'CourseTitleb018b622-b425-4af7-bb3d-d0d2b4deb35c', 'dtdue': '20100101'} {rmessage=Successful!, userid=17463901, classid=2836785, assignmentid=7902977, rcode=41} Adding an assignment with another inst {'fid': '4', 'diagnostic': '0', 'ufn': 'StevenIU', 'uln': 'GithensIU', 'username': 'sgithens', 'assignid': 'AssignmentTitle5ae51e10-fd60-4720-931b-ed4f58057d00', 'aid': '56021', 'src': '9', 'cid': '2836785', 'said': '56021', 'dtstart': '20091225', 'encrypt': '0', 'assign': 'AssignmentTitle5ae51e10-fd60-4720-931b-ed4f58057d00', 'uem': 'sgithens@iupui.edu', 'utp': '2', 'fcmd': '2', 'ctl': 'CourseTitleb018b622-b425-4af7-bb3d-d0d2b4deb35c', 'dtdue': '20100101'} {rmessage=Successful!, userid=17463902, classid=2836786, assignmentid=7902978, rcode=41} Adding a class {'src': '9', 'uln': 'Githens', 'ufn': 'Steven', 'aid': '56021', 'utp': '2', 'said': '56021', 'fid': '2', 'username': 'swgithen', 'ctl': 'CourseTitle46abd163-7464-4d21-a2c0-90c5af3312ab', 'diagnostic': '0', 'encrypt': '0', 'uem': 'swgithen@mtu.edu', 'fcmd': '2'} {rmessage=Successful!, userid=17259618, classid=2836733, rcode=21} Adding an assignment {'fid': '4', 'diagnostic': '0', 'ufn': 'Steven', 'uln': 'Githens', 'username': 'swgithen', 'assignid': 'AssignmentTitlec4f211c1-2c38-4daf-86dc-3c57c6ef5b7b', 'aid': '56021', 'src': '9', 'cid': '2836733', 'said': '56021', 'dtstart': '20091225', 'encrypt': '0', 'assign': 'AssignmentTitlec4f211c1-2c38-4daf-86dc-3c57c6ef5b7b', 'uem': 'swgithen@mtu.edu', 'utp': '2', 'fcmd': '2', 'ctl': 'CourseTitle46abd163-7464-4d21-a2c0-90c5af3312ab', 'dtdue': '20100101'} {rmessage=Successful!, userid=17463581, classid=2836734, assignmentid=7902887, rcode=41} Adding an assignment with another inst {'fid': '4', 'diagnostic': '0', 'ufn': 'StevenIU', 'uln': 'GithensIU', 'username': 'sgithens', 'assignid': 'AssignmentTitle2650fcca-b96e-42bd-926e-63660076d2ad', 'aid': '56021', 'src': '9', 'cid': '2836733', 'said': '56021', 'dtstart': '20091225', 'encrypt': '0', 'assign': 'AssignmentTitle2650fcca-b96e-42bd-926e-63660076d2ad', 'uem': 'sgithens@iupui.edu', 'utp': '2', 'fcmd': '2', 'ctl': 'CourseTitle46abd163-7464-4d21-a2c0-90c5af3312ab', 'dtdue': '20100101'} {rmessage=Successful!, userid=17463581, classid=2836734, assignmentid=7902888, rcode=41} """ import unittest import random import sys from org.sakaiproject.component.cover import ComponentManager from java.net import InetSocketAddress, Proxy, InetAddress from java.util import HashMap debug_proxy = Proxy(Proxy.Type.HTTP, InetSocketAddress(InetAddress.getByName("127.0.0.1"),8008)) tiireview_serv = ComponentManager.get("org.sakaiproject.contentreview.service.ContentReviewService") class SakaiUuid(object): """My Current Jython impl doens't seem to have UUID, so re-implementing it for now""" def __init__(self): self.idmanager = ComponentManager.get("org.sakaiproject.id.api.IdManager") def uuid1(self): return self.idmanager.createUuid() uuid = SakaiUuid() def getJavaMap(d=None,**kwargs): m = HashMap() if d is not None: for key,val in d.iteritems(): m.put(key,val) for key,val in kwargs.iteritems(): m.put(key,val) return m defaults = { "aid": "56021", "said": "56021", "diagnostic": "0", "encrypt": "0", "src": "9" } userdummy = { "uem": "swgithenaabb1234124@mtu.edu", "ufn": "Stevenaabb1234", "uln": "Githensaaabb234", "utp": "2", "uid": "1979092312341234124aabb", "username": "swgithenaabb1234124" } user = { "uem": "swgithen@mtu.edu", "ufn": "Steven", "uln": "Githens", "utp": "2", #"uid": "19790923", "username": "swgithen" } user2 = { "uem": "sgithens@iupui.edu", "ufn": "StevenIU", "uln": "GithensIU", "utp": "2", "username": "sgithens" } adduser = { "fcmd" : "2", "fid" : "1" } def callTIIReviewServ(params): """Use the Sakai Turnitin Service to make a raw call to TII with the dictionary of parameters. Returns the API results in map/dict form.""" return tiireview_serv.callTurnitinWDefaultsReturnMap(getJavaMap(params)) def makeNewCourseTitle(): "Make and return a new random title to use for integration test courses" return "CourseTitle"+str(uuid.uuid1()) def makeNewAsnnTitle(): "Make and return a new random title to use for integration test assignments" return "AssignmentTitle"+str(uuid.uuid1()) def addSampleInst(): """This will add/update a user to Turnitin. A successful return looks as follows: {rmessage=Successful!, userid=17259618, rcode=11} It important to note that the userid returned is the userid of whoever made this API call, and not necessarily the user that was just added. """ adduser_cmd = {} adduser_cmd.update(adduser) adduser_cmd.update(user) adduser_cmd.update(defaults) return callTIIReviewServ(adduser_cmd) def addSampleClass(): """Add a simple class using Sakai Source 9 parameters. Successful results should look as follows: {rmessage=Successful!, userid=17259618, classid=2833470, rcode=21} """ addclass_cmd = {} addclass_cmd.update(user) addclass_cmd.update(defaults) addclass_cmd.update({ "ctl": makeNewCourseTitle(), "utp":"2", "fid":"2", "fcmd":"2" }) return callTIIReviewServ(addclass_cmd) def addSampleAssignment(): """Add a simple assignment.""" course_title = makeNewCourseTitle() addclass_cmd = {} addclass_cmd.update(user) addclass_cmd.update(defaults) addclass_cmd.update({ "ctl": course_title, "cid": course_title, "utp":"2", "fid":"2", "fcmd":"2" }) print("Adding a class\n"+str(addclass_cmd)) addclass_results = callTIIReviewServ(addclass_cmd) print(addclass_results) cid = addclass_results["classid"] asnn_title = makeNewAsnnTitle() addasnn_cmd = {} addasnn_cmd.update(user) addasnn_cmd.update(defaults) addasnn_cmd.update({ "fid":"4", "fcmd":"2", "ctl":course_title, "assign":asnn_title, "assignid":asnn_title, "utp":"2", "dtstart":"20091225", "dtdue":"20100101", "cid":course_title #"ced":"20110101" }) print("Adding an assignment\n"+str(addasnn_cmd)) print(callTIIReviewServ(addasnn_cmd)) # Trying with a second instructor now asnn_title = makeNewAsnnTitle() addasnn_cmd = {} addasnn_cmd.update(user2) addasnn_cmd.update(defaults) addasnn_cmd.update({ "fid":"4", "fcmd":"2", "ctl":course_title, "assign":asnn_title, "assignid":asnn_title, "utp":"2", "dtstart":"20091225", "dtdue":"20100101", "cid":cid #"ced":"20110101" }) print("Adding an assignment with another inst\n"+str(addasnn_cmd)) print(callTIIReviewServ(addasnn_cmd)) # Temporarily change to straight HTTP so I can intercept with WebScarab to get a parameter dump #tiiresult = tiireview_serv.callTurnitinReturnMap("http://www.turnitin.com/api.asp?", # getJavaMap(adduser_cmd), "sakai123", debug_proxy # ); class TestRawTurnitinSource9(unittest.TestCase): """ This set of test cases is going to flex using the raw Turnitin API by sending the hand crafted maps to the server and examing the return results. Additionally all these tests will use the source 9 setup. """ def setUp(self): self.tiireview_serv = ComponentManager.get("org.sakaiproject.contentreview.service.ContentReviewService") def testAdduser(self): results = addSampleInst() self.assertEquals(results["rmessage"],"Successful!") self.assertEquals(results["rcode"],"11") def testAddclass(self): results = addSampleClass() self.assertEquals(results["rmessage"],"Successful!") self.assertEquals(results["rcode"],"21") def main(args): if len(args) > 0 and args[0] == "runtests": print("Running the tests") tii_suites = [] tii_suites.append(unittest.TestLoader().loadTestsFromTestCase(TestRawTurnitinSource9)) alltests = unittest.TestSuite(tii_suites) unittest.TextTestRunner(verbosity=2).run(alltests) else: addSampleAssignment() if __name__ == "__main__": main(sys.argv[1:])
34.866667
461
0.652008
1,069
0.113554
0
0
0
0
0
0
5,759
0.611748
fb99379467ad51c39cd5405a13aedf9d925212e0
40
py
Python
test.py
probot1511/test_repo
9dee2d2eb1c44c09d04d91861b3f9bd2b63c4e0f
[ "MIT" ]
null
null
null
test.py
probot1511/test_repo
9dee2d2eb1c44c09d04d91861b3f9bd2b63c4e0f
[ "MIT" ]
null
null
null
test.py
probot1511/test_repo
9dee2d2eb1c44c09d04d91861b3f9bd2b63c4e0f
[ "MIT" ]
1
2022-01-31T19:24:49.000Z
2022-01-31T19:24:49.000Z
print("RUnning!!!") print("Updated!!!")
13.333333
19
0.6
0
0
0
0
0
0
0
0
24
0.6
fb9987081ed710e35f756b48711ebeb1fdc7fbe0
2,309
py
Python
tests/parser/choice.47.test.py
veltri/DLV2
944aaef803aa75e7ec51d7e0c2b0d964687fdd0e
[ "Apache-2.0" ]
null
null
null
tests/parser/choice.47.test.py
veltri/DLV2
944aaef803aa75e7ec51d7e0c2b0d964687fdd0e
[ "Apache-2.0" ]
null
null
null
tests/parser/choice.47.test.py
veltri/DLV2
944aaef803aa75e7ec51d7e0c2b0d964687fdd0e
[ "Apache-2.0" ]
null
null
null
input = """ % This is a synthetic example documenting a bug in an early version of DLV's % backjumping algorithm. % The abstract computation tree looks as follows (choice order should be fixed % by disabling heuristics with -OH-): % % o % a / \ -a % / \_..._ % o \ % b / \ -b {-a,-b,f} % / \ % o o % incons incons based on a and b % based % only % on b % % The backjumping algorithm wrongly determined that in the bottom left % subtree both inconsistencies are based only on the choice of b and % therefore stopped the entire search, missing the model on the right. a | -a. b | -b. % taking b causes inconsistency x :- b. y :- b. :- x,y. % taking -b causes m1 to be MBT, but only with a % taking -b unconditionally causes d to be false :- -b, a, not m1. :- -b, d. % the constraint is violated if m1 is MBT and d is false % the reasons are obviously the choice for b and the choice for a :- m1, not d. % give m1 a chance to be true % if not allow a model with f m1 | f. % avoid d to be always false % and allow a model with f d | f. """ output = """ % This is a synthetic example documenting a bug in an early version of DLV's % backjumping algorithm. % The abstract computation tree looks as follows (choice order should be fixed % by disabling heuristics with -OH-): % % o % a / \ -a % / \_..._ % o \ % b / \ -b {-a,-b,f} % / \ % o o % incons incons based on a and b % based % only % on b % % The backjumping algorithm wrongly determined that in the bottom left % subtree both inconsistencies are based only on the choice of b and % therefore stopped the entire search, missing the model on the right. a | -a. b | -b. % taking b causes inconsistency x :- b. y :- b. :- x,y. % taking -b causes m1 to be MBT, but only with a % taking -b unconditionally causes d to be false :- -b, a, not m1. :- -b, d. % the constraint is violated if m1 is MBT and d is false % the reasons are obviously the choice for b and the choice for a :- m1, not d. % give m1 a chance to be true % if not allow a model with f m1 | f. % avoid d to be always false % and allow a model with f d | f. """
23.323232
79
0.60589
0
0
0
0
0
0
0
0
2,290
0.991771
fb9ad71d95d0e5101ca350ea6c907e1e31dc4b55
7,189
py
Python
functions.py
brupoon/blackfork
8acf49907b7140894f72255f5ccd3e3e7cd638a0
[ "MIT" ]
null
null
null
functions.py
brupoon/blackfork
8acf49907b7140894f72255f5ccd3e3e7cd638a0
[ "MIT" ]
null
null
null
functions.py
brupoon/blackfork
8acf49907b7140894f72255f5ccd3e3e7cd638a0
[ "MIT" ]
null
null
null
from __future__ import division from random import * #...(former location of probability as a FN GLOBAL) #OUR SUPERCOOL GENETIC MUTANT NINJA TURTALGORITHM def genetics(sampleList): winLoss = [] #win/loss arrays for each sample for sample in range(sampleList): winLoss.append(isWinSample(sampleList[sample])) #The algorithm which dictates what our hand does #bustThreshold is the determinant for whether we hit or stay def lettuce(game, bustThreshold=0.5): print("Pile given to lettuce", game[0]) # value = calculateValue(hand) # if value < threshold: # newCard = randomCard(pile) # deal(pile, newCard, hand) # if value >= threshold: i = 0 dealer = dealerLikely(game, 1) while dealerLikely < 17: print("in dealerLikely loop in lettuce") i += 1 dealer = dealerLikely(game, i) #Used to make sure that we get accurate numbers for when the dealer #algo actually stays. print("Pile after dealerLikely loop" , game[0]) handValue = calculateValue(game[1][1]) #our hand equation = ((handValue - dealer[0])) if equation <= 0: #dealer likely is higher #deal the hand if bustChance(game, 1, 1) <= bustThreshold: print("attempting to deal to me") deal(game[0],randomCard(game[0]),game[1][1]) print("Game before lettuce round", game) lettuce(game) #recursive where it will continue until print("pile after recursion", game[0]) dealerValue = calculateValue(game[1][0]) print("right before deathloop") while dealerValue < 17: print("in dealerValue/algorithm loop in lettuce") print("pile prior to algorithm", game[0]) algorithm(game[1][0],game[0]) print("dealer hand:", game[1][0]) dealerValue = calculateValue(game[1][0]) #things we need #a 'goodness equation" which can be run for each sample in our simulation #we can use a function which creates an array of True/False for wins or losses #a semi-random generator which selects what hands to hit on and stay #beginning with simple hit/stay on 15,16,17 etc #continuing onto dealing with percentages given certain #returns a list with [highest probable dealer hand value, percentage of getting that value] def dealerLikely(game, cards, handNum = 0): probabilityList = callEstimate(game[0],game[1][handNum], cards) print("pile in dealerLikely", game[0]) highestProbableValue = 0 for i in probabilityList: if probabilityList[i] > highestProbableValue: highestProbableValue = i percentage = probabilityList[i] return [highestProbableValue, percentage] #Returns a float that is the chance of busting def bustChance(game, handNum, cards): bustList = callEstimate(game[0], game[1][handNum], cards) print("This is bust list ", bustList) bust = 0 notBust = 0 for i in range(len(bustList)): if i < 21: notBust = notBust + bustList[i] else: bust = bust + bustList[i] print(bust) print(notBust) return bust/(bust + notBust) #returns the total number of cards in the pile def total(pile): total = 0 for i in range(len(pile)): total = total + pile[i] return total #creates a list of hands incl dealer and initializes the non-dealer hands def handList(dealer, pile, numhands): handList = [] handList.append(dealer) for i in range(numhands): handList.append(initHand(pile)) return handList #Give it a pile, hand, and the amount of cards to deal #Returns an array where the index is the value of the hand and the value is the chance of getting it def callEstimate(pile, hand, numberOfCards): probability = [] print("pile in callestimate", pile) for i in range((len(hand) + 1) * 11): probability.append(0) pileEstimate = pile estimate(calculateValue(hand), pileEstimate, numberOfCards, probability) print("pile after estimate / for loop in callestimate", pile) return probability def estimate(value, pile, cards, probability): newpile = pile print("pile in estimate", cards, "newpile:", newpile) if cards == 0: probability[value] = probability[value] + 1 return probability else: for i in range(0,13): while newpile[i] > 0: newpile[i] = newpile[i] - 1 probability = estimate(value + calculateValue([i]), newpile, cards - 1, probability) #changable algorithm default to soft 17 hit, updating dealer's hand / dealer decision algorithm def algorithm(hand, pile, threshold = 17): print("algorithm start pile", pile) value = calculateValue(hand) while value < threshold: value = calculateValue(hand) print("pile before randomCard", pile) newCard = randomCard(pile) deal(pile, newCard, hand) #chooses a random card from the pile, value 0-12 #DON'T TOUCH def randomCard(pile): print("totalpile:",total(pile)) goal = randrange(0,total(pile)) card = 0 if goal < pile[0]: return 0 while goal >= pile[card]: goal = goal - pile[card] card = card + 1 return card #removes a card from the pile, value 0-12 def deal(pile, card, hand): if pile[card] > 0: pile[card] = pile[card] - 1 addToHand(hand, card) else: return None #adds a card to hand def addToHand(hand, card): hand.append(card) return hand #calculates value of a hand #figure out how to deal with an Ace (card = 0) def calculateValue(hand): total = 0 aces = 0 for i in hand: if i == 10: #jack total = total + 10 elif i == 11: #queen total = total + 10 elif i == 12: #king total = total + 10 elif i == 0: #ace total = aces + 1 else: total = total + (i+1) return total #Given threshold, returns True to hit, False to stay #need to make it possible to get probability of going over def hitStay(threshold, pile, card): probability = chance(pile, card) if probability >= threshold: return True #hit else: return False #stay #calculates probability of drawing a card from the pile def chance(pile, card): probability = amount(pile, card) / total(pile) return probability #returns the number of a specific kind of card in the pile def amount(pile, card): return pile[card] #checks each hand in handList to see if it has busted, returns true if over. def checkList(handList): busted = [] for hand in handList: if calculateValue(hand) <= 21: busted.append(False) else: busted.append(True) return busted def isWin(game): if calculateValue(game[1][1]) > calculateValue([1][0]): return True else: return False def isWinSample(sample): winList = [] for i in sample: winList.append(isWin(sample[i])) numberWon = [] numberLost = [] for j in winList: if winList == True: numberWon += 1 else: numberLost += 1 return [numberWon, numberLost]
31.669604
100
0.640979
0
0
0
0
0
0
0
0
2,381
0.3312
fb9c65b9797d0529bc740e716a16f8507c95db85
1,567
py
Python
testframework/checkers/spanner_checker.py
emartech/ems-dataflow-testframework
c70b0768573e9c4af98173bb0b444dee442de53a
[ "MIT" ]
null
null
null
testframework/checkers/spanner_checker.py
emartech/ems-dataflow-testframework
c70b0768573e9c4af98173bb0b444dee442de53a
[ "MIT" ]
null
null
null
testframework/checkers/spanner_checker.py
emartech/ems-dataflow-testframework
c70b0768573e9c4af98173bb0b444dee442de53a
[ "MIT" ]
1
2022-02-17T19:56:44.000Z
2022-02-17T19:56:44.000Z
import logging from collections import Generator from typing import Dict from spanner import ems_spanner_client from tenacity import retry, stop_after_attempt, wait_fixed class SpannerChecker: STOP_AFTER_ATTEMPT_SECS = 15 WAIT_FIXED = 3 def __init__(self, project_id: str, instance_id: str, db_name: str) -> None: self._client = ems_spanner_client.EmsSpannerClient(project_id, instance_id, db_name) def execute_sql(self, query: str) -> Generator: logging.info(f"Executing query: {query}") return self._client.execute_sql(query) def execute_update(self, query: str): logging.info(f"Executing update: {query}") self._client.execute_update(query) def has_row_for(self, table_name: str, conditions: Dict): @retry(stop=stop_after_attempt(self.STOP_AFTER_ATTEMPT_SECS), wait=wait_fixed(self.WAIT_FIXED)) def is_found(query: str): if list(self.execute_sql(query))[0][0] == 0: raise ValueError("Spanner table row not found.") return True query = self._compose_query(table_name, conditions) return is_found(query) @staticmethod def _compose_query(table_name, conditions) -> str: normalized_conditions = [] for key, value in conditions.items(): quoted_value = f"'{value}'" if isinstance(value, str) else value normalized_conditions.append(f'{key} = {quoted_value}') where = ' AND '.join(normalized_conditions) return f'SELECT COUNT(*) FROM {table_name} WHERE {where}'
37.309524
103
0.685386
1,392
0.888322
0
0
687
0.438417
0
0
179
0.114231
fb9c6e6bdafc518cc8754d80b7344aed59410824
458
py
Python
src/sniptly/output.py
jjaakko/sniptly
c8190294f75a7b3db26af40e4b3592b5c5971b91
[ "MIT" ]
null
null
null
src/sniptly/output.py
jjaakko/sniptly
c8190294f75a7b3db26af40e4b3592b5c5971b91
[ "MIT" ]
null
null
null
src/sniptly/output.py
jjaakko/sniptly
c8190294f75a7b3db26af40e4b3592b5c5971b91
[ "MIT" ]
null
null
null
from typing import Any from click import echo, style def out(message: str, new_line: bool = True, **styles: Any) -> None: if "bold" not in styles: styles["bold"] = True message = style(message, **styles) echo(message, nl=new_line) def err(message: str, new_line: bool = True, **styles: Any) -> None: if "fg" not in styles: styles["fg"] = "red" message = style(message, **styles) echo(message, nl=new_line)
26.941176
68
0.615721
0
0
0
0
0
0
0
0
25
0.054585
fb9d867e25a8da5be0e4b33fa5b6bfbaf98a5fde
298
py
Python
bookmarks/images/signals.py
hiteshgarg14/Django-Social-Website
750f3b6e457a0da84e3fe4eaa56f54cb007d9e1e
[ "MIT" ]
1
2020-11-19T19:33:10.000Z
2020-11-19T19:33:10.000Z
bookmarks/images/signals.py
hiteshgarg14/Django-Social-Website
750f3b6e457a0da84e3fe4eaa56f54cb007d9e1e
[ "MIT" ]
null
null
null
bookmarks/images/signals.py
hiteshgarg14/Django-Social-Website
750f3b6e457a0da84e3fe4eaa56f54cb007d9e1e
[ "MIT" ]
null
null
null
from django.db.models.signals import m2m_changed from django.dispatch import receiver from .models import Image @receiver(m2m_changed, sender=Image.users_likes.through) def users_like_changed(sender, instance, **kwargs): instance.total_likes = instance.users_likes.count() instance.save()
33.111111
56
0.802013
0
0
0
0
184
0.61745
0
0
0
0
fb9daa303c7186ca7833c4c97259f8015245fe48
4,579
py
Python
src/nemo/transforms.py
thomasjo/nemo-redux
c4196c0d99633dca011d60008be0cb7667c348b7
[ "MIT" ]
null
null
null
src/nemo/transforms.py
thomasjo/nemo-redux
c4196c0d99633dca011d60008be0cb7667c348b7
[ "MIT" ]
null
null
null
src/nemo/transforms.py
thomasjo/nemo-redux
c4196c0d99633dca011d60008be0cb7667c348b7
[ "MIT" ]
null
null
null
import random from typing import List, Union import torch import torchvision.transforms as T import torchvision.transforms.functional as F from PIL import Image class RandomDiscreteRotation(): def __init__(self, angles, resample=0, expand=False): self.angles = angles self.resample = resample self.expand = expand def __call__(self, image, target=None): if target is not None: raise NotImplementedError("target transformation not implemented") angle = random.choice(self.angles) image = F.rotate(image, angle, self.resample, self.expand) return image def __repr__(self): return f"{self.__class__.__name__}(angles={self.angles})" class Compose(): def __init__(self, transforms): self.transforms = transforms def __call__(self, image, target): for t in self.transforms: image, target = t(image, target) return image, target class RandomHorizontalFlip(): def __init__(self, p=0.5): self.p = p def __call__(self, image, target): if torch.rand(1) < self.p: image = F.hflip(image) width, _ = _get_image_size(image) boxes = target["boxes"] boxes[:, [0, 2]] = width - boxes[:, [2, 0]] target["boxes"] = boxes if "masks" in target: target["masks"] = F.hflip(target["masks"]) return image, target class RandomVerticalFlip(): def __init__(self, p=0.5): self.p = p def __call__(self, image, target): if torch.rand(1) < self.p: image = F.vflip(image) _, height = _get_image_size(image) boxes = target["boxes"] boxes[:, [1, 3]] = height - boxes[:, [3, 1]] target["boxes"] = boxes if "masks" in target: target["masks"] = F.vflip(target["masks"]) return image, target class RandomFlip(): def __init__(self, p=0.5): self.p = p self.transforms = [ RandomHorizontalFlip(p), RandomVerticalFlip(p), ] def __call__(self, image, target): t = random.choice(self.transforms) return t(image, target) class GammaJitter(): def __init__(self, gamma=0): self.gamma = self._check_input(gamma, "gamma") def _check_input(self, value, name, center=1, bound=(0, float('inf')), clip_first_on_zero=True): if isinstance(value, (int, float)): if value < 0: raise ValueError("If {} is a single number, it must be non negative.".format(name)) value = [center - float(value), center + float(value)] if clip_first_on_zero: value[0] = max(value[0], 0.0) elif isinstance(value, (tuple, list)) and len(value) == 2: if not bound[0] <= value[0] <= value[1] <= bound[1]: raise ValueError("{} values should be between {}".format(name, bound)) else: raise TypeError("{} should be a single number or a list/tuple with lenght 2.".format(name)) if value[0] == value[1] == center: value = None return value def __call__(self, image, target): gamma = torch.tensor(1.0).uniform_(self.gamma[0], self.gamma[1]).item() image = F.adjust_gamma(image, gamma) return image, target class ColorJitter(): def __init__(self, brightness=0, contrast=0, saturation=0, hue=0): self.color_jitter = T.ColorJitter(brightness, contrast, saturation, hue) def __call__(self, image, target): image = self.color_jitter(image) return image, target class RandomChoice(): def __init__(self, transforms): self.transforms = transforms def __call__(self, image, target): t = random.choice(self.transforms) return t(image, target) class ToTensor(): def __call__(self, image, target): image = F.to_tensor(image) return image, target def _get_image_size(img: Union[Image.Image, torch.Tensor]): if isinstance(img, torch.Tensor): return _get_tensor_image_size(img) elif isinstance(img, Image.Image): return img.size raise TypeError("Unexpected input type") def _is_tensor_a_torch_image(x: torch.Tensor) -> bool: return x.ndim >= 2 def _get_tensor_image_size(img: torch.Tensor) -> List[int]: """Returns (w, h) of tensor image""" if _is_tensor_a_torch_image(img): return [img.shape[-1], img.shape[-2]] raise TypeError("Unexpected input type")
28.798742
103
0.602752
3,825
0.835335
0
0
0
0
0
0
398
0.086919
fb9fdfc27bb90a2635e9ed5a41c5798497074c0d
154
py
Python
zadania-python/zadanie#8.01-03/zadanie_8_01.py
Qeentissue/wizualizacja-danych
36914230ff1c28d8a5cd05a2d4dfd5d3f4ddc1b0
[ "MIT" ]
null
null
null
zadania-python/zadanie#8.01-03/zadanie_8_01.py
Qeentissue/wizualizacja-danych
36914230ff1c28d8a5cd05a2d4dfd5d3f4ddc1b0
[ "MIT" ]
null
null
null
zadania-python/zadanie#8.01-03/zadanie_8_01.py
Qeentissue/wizualizacja-danych
36914230ff1c28d8a5cd05a2d4dfd5d3f4ddc1b0
[ "MIT" ]
null
null
null
import pandas as pd # Wczytaj do DataFrame arkusz z narodzinami dzieci # w Polsce dostępny pod adresem df = pd.read_csv('Imiona_dzieci_2000-2019.csv')
22
50
0.779221
0
0
0
0
0
0
0
0
112
0.722581
fba184b6f53f7d77cbaf5e8e08d7ed47d47fd543
5,950
py
Python
vgg16_imagenet.py
jamccomb92/TransferLearningPneuomia
d476cb89dc75e51ea7bbbea3542590fe0e74dfaa
[ "MIT" ]
null
null
null
vgg16_imagenet.py
jamccomb92/TransferLearningPneuomia
d476cb89dc75e51ea7bbbea3542590fe0e74dfaa
[ "MIT" ]
null
null
null
vgg16_imagenet.py
jamccomb92/TransferLearningPneuomia
d476cb89dc75e51ea7bbbea3542590fe0e74dfaa
[ "MIT" ]
null
null
null
\ import os from keras import applications import keras import tensorflow as tf import time config = tf.ConfigProto() config.gpu_options.allow_growth = True keras.backend.tensorflow_backend.set_session(tf.Session(config=config)) from keras.models import Model from keras.layers import Input, Conv2D, MaxPooling2D, Flatten, Dense, Dropout from keras.preprocessing.image import ImageDataGenerator from keras.optimizers import Adam,SGD from keras.callbacks import ModelCheckpoint,CSVLogger from keras import backend as k DATASET_PATH = '/deepLearning/jamccomb/chest_xray/' IMAGE_SIZE = (150,150) NUM_CLASSES = 2 BATCH_SIZE = 32 # try reducing batch size or freeze more layers if your GPU runs out of memory NUM_EPOCHS = 35 WEIGHTS_FINAL = 'model-transfer-Chest-MobileNet-000001--final.h5' train_datagen = ImageDataGenerator( rescale=1.0 / 255.0, rotation_range=40, width_shift_range=0.2, height_shift_range=0.2, shear_range=0.2, zoom_range=0.2, channel_shift_range=10, horizontal_flip=True, fill_mode='nearest') train_batches = train_datagen.flow_from_directory(DATASET_PATH + '/train', target_size=IMAGE_SIZE, interpolation='bicubic', class_mode='categorical', shuffle=True, batch_size=BATCH_SIZE) valid_datagen = ImageDataGenerator(rescale=1.0/255.0) valid_batches = valid_datagen.flow_from_directory(DATASET_PATH + '/test', target_size=IMAGE_SIZE, interpolation='bicubic', class_mode='categorical', shuffle=False, batch_size=BATCH_SIZE) lrelu = lambda x: tensorflow.keras.activations.relu(x, alpha=0.1) # Load VGG16 model architecture with the ImageNet weights model = applications.VGG16(weights = "imagenet", include_top=False, input_shape=[150,150,3]) # Freeze the layers which you don't want to train. Here I am freezing the first 5 layers. for layer in model.layers[:14]: layer.trainable = False # Build classifier x = model.output x = Flatten()(x) x = Dense(32, activation="sigmoid")(x) predictions = Dense(2, activation="softmax")(x) #Use Adam optimizer (instead of plain SGD), set learning rate to explore. adam = Adam(lr=.00001) #instantiate model model = Model(input=model.input, output=predictions) #Compile model model.compile(optimizer = adam, loss='categorical_crossentropy', metrics=['accuracy']) #Print layers for resulting model model.summary() #Log training data into csv file csv_logger = CSVLogger(filename="vgg16-imagenet-log.csv") checkpointer = ModelCheckpoint(filepath='MobileNet/000001//weights.{epoch:02d}-{val_acc:.2f}.hdf5',monitor='val_loss', verbose=1, save_best_only=True, mode='min') cblist = [csv_logger, checkpointer] # train the model model.fit_generator(train_batches, steps_per_epoch = train_batches.samples // BATCH_SIZE, validation_data = valid_batches, validation_steps = valid_batches.samples // BATCH_SIZE, epochs = NUM_EPOCHS, callbacks=cblist) # save trained model and weights model.save(WEIGHTS_FINAL)
58.910891
271
0.381849
0
0
0
0
0
0
0
0
2,809
0.472101
fba2be86b846eae4b6b694478e685649917f0dba
7,761
py
Python
mvpa2/tests/test_procrust.py
mortonne/PyMVPA
98644c5cd9733edd39fac746ea7cf67398674645
[ "MIT" ]
null
null
null
mvpa2/tests/test_procrust.py
mortonne/PyMVPA
98644c5cd9733edd39fac746ea7cf67398674645
[ "MIT" ]
null
null
null
mvpa2/tests/test_procrust.py
mortonne/PyMVPA
98644c5cd9733edd39fac746ea7cf67398674645
[ "MIT" ]
null
null
null
# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*- # vi: set ft=python sts=4 ts=4 sw=4 et: ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## # # See COPYING file distributed along with the PyMVPA package for the # copyright and license terms. # ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## """Unit tests for PyMVPA Procrustean mapper""" import unittest import numpy as np import itertools from numpy.linalg import norm from mvpa2.base import externals from mvpa2.datasets.base import dataset_wizard from mvpa2.testing import * from mvpa2.testing.datasets import * from mvpa2.mappers.procrustean import ProcrusteanMapper svds = ["numpy"] if externals.exists("liblapack.so"): svds += ["dgesvd"] if externals.exists("scipy"): svds += ["scipy"] class ProcrusteanMapperTests(unittest.TestCase): @sweepargs(oblique=(False, True)) @sweepargs(svd=svds) @reseed_rng() def test_simple(self, svd, oblique): d_orig = datasets["uni2large"].samples d_orig2 = datasets["uni4large"].samples for sdim, nf_s, nf_t, full_test in ( ("Same 2D", 2, 2, True), ("Same 10D", 10, 10, True), ("2D -> 3D", 2, 3, True), ("3D -> 2D", 3, 2, False), ): # figure out some "random" rotation d = max(nf_s, nf_t) R = get_random_rotation(nf_s, nf_t, d_orig) if nf_s == nf_t: adR = np.abs(1.0 - np.linalg.det(R)) self.assertTrue( adR < 1e-10, "Determinant of rotation matrix should " "be 1. Got it 1+%g" % adR, ) self.assertTrue(norm(np.dot(R, R.T) - np.eye(R.shape[0])) < 1e-10) for (s, scaling), demean in itertools.product( ((0.3, True), (1.0, False)), (False, True) ): pm = ProcrusteanMapper( scaling=scaling, oblique=oblique, svd=svd, demean=demean ) # pm2 = ProcrusteanMapper(scaling=scaling, oblique=oblique) if demean: t1, t2 = d_orig[23, 1], d_orig[22, 1] else: t1, t2 = 0, 0 full_test = False # although runs, not intended to perform properly # Create source/target data d = d_orig[:, :nf_s] d_s = d + t1 d_t = np.dot(s * d, R) + t2 # train bloody mapper(s) ds = dataset_wizard(samples=d_s, targets=d_t) pm.train(ds) ## not possible with new interface # pm2.train(d_s, d_t) ## verify that both created the same transformation # npm2proj = norm(pm.proj - pm2.proj) # self.assertTrue(npm2proj <= 1e-10, # msg="Got transformation different by norm %g." # " Had to be less than 1e-10" % npm2proj) # self.assertTrue(norm(pm._offset_in - pm2._offset_in) <= 1e-10) # self.assertTrue(norm(pm._offset_out - pm2._offset_out) <= 1e-10) # do forward transformation on the same source data d_s_f = pm.forward(d_s) self.assertEqual( d_s_f.shape, d_t.shape, msg="Mapped shape should be identical to the d_t", ) dsf = d_s_f - d_t ndsf = norm(dsf) / norm(d_t) if full_test: dsR = norm(s * R - pm.proj) if not oblique: self.assertTrue( dsR <= 1e-12, msg="We should have got reconstructed rotation+scaling " "perfectly. Now got d scale*R=%g" % dsR, ) self.assertTrue( np.abs(s - pm._scale) < 1e-12, msg="We should have got reconstructed scale " "perfectly. Now got %g for %g" % (pm._scale, s), ) self.assertTrue( ndsf <= 1e-12, msg="%s: Failed to get to the target space correctly." " normed error=%g" % (sdim, ndsf), ) # Test if we get back d_s_f_r = pm.reverse(d_s_f) # Test if recon proj is true inverse except for high->low projection if nf_s <= nf_t: assert_almost_equal( np.dot(pm._proj, pm._recon), np.eye(pm._proj.shape[0]), err_msg="Deviation from identity matrix is too large", ) dsfr = d_s_f_r - d_s ndsfr = norm(dsfr) / norm(d_s) if full_test: self.assertTrue( ndsfr <= 1e-12, msg="%s: Failed to reconstruct into source space correctly." " normed error=%g" % (sdim, ndsfr), ) @reseed_rng() def test_reflection(self, rep=10): for i in range(rep): from mvpa2.testing.datasets import get_random_rotation d = np.random.random((100, 2)) T = get_random_rotation(d.shape[1]) d2 = np.dot(d, T) # scale it up a bit d2 *= 1.2 # add a reflection by flipping the first dimension d2[:, 0] *= -1 ds = dataset_wizard(samples=d, targets=d2) norm0 = np.linalg.norm(d - d2) mapper = ProcrusteanMapper(scaling=False, reflection=False) mapper.train(ds) norm1 = np.linalg.norm(d2 - mapper.forward(ds).samples) eps = 1e-7 self.assertLess( norm1, norm0 + eps, msg="Procrustes should reduce difference, " "but %f > %f" % (norm1, norm0), ) mapper = ProcrusteanMapper(scaling=True, reflection=False) mapper.train(ds) norm2 = np.linalg.norm(d2 - mapper.forward(ds).samples) self.assertLess( norm2, norm1 + eps, msg="Procrustes with scaling should work better, " "but %f > %f" % (norm2, norm1), ) mapper = ProcrusteanMapper(scaling=False, reflection=True) mapper.train(ds) norm3 = np.linalg.norm(d2 - mapper.forward(ds).samples) self.assertLess( norm3, norm1 + eps, msg="Procrustes with reflection should work better, " "but %f > %f" % (norm3, norm1), ) mapper = ProcrusteanMapper(scaling=True, reflection=True) mapper.train(ds) norm4 = np.linalg.norm(d2 - mapper.forward(ds).samples) self.assertLess( norm4, norm3 + eps, msg="Procrustes with scaling should work better, " "but %f > %f" % (norm4, norm3), ) self.assertLess( norm4, norm2 + eps, msg="Procrustes with reflection should work better, " "but %f > %f" % (norm4, norm2), ) def suite(): # pragma: no cover return unittest.makeSuite(ProcrusteanMapperTests) if __name__ == "__main__": # pragma: no cover from . import runner runner.run()
37.492754
88
0.47365
6,735
0.867801
0
0
6,676
0.860198
0
0
2,141
0.275867
fba413cbbac04e4578ce84a8676b8bf632b9cb46
431
py
Python
configs/production.py
syz247179876/Flask-Sports
ed2d21c5a6172e7b6f3fc479bd5114fdb171896d
[ "Apache-2.0" ]
2
2020-12-02T14:20:44.000Z
2020-12-08T15:36:51.000Z
configs/production.py
syz247179876/Flask-Sports
ed2d21c5a6172e7b6f3fc479bd5114fdb171896d
[ "Apache-2.0" ]
1
2020-12-05T13:44:14.000Z
2020-12-05T13:44:14.000Z
configs/production.py
syz247179876/Flask-Sports
ed2d21c5a6172e7b6f3fc479bd5114fdb171896d
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- # @Time : 2020/12/1 下午11:24 # @Author : 司云中 # @File : production.py # @Software: Pycharm from configs.default import DefaultConfig class ProductionConfig(DefaultConfig): """the config of production env""" DEBUG = False TESTING = False MONGODB_DB = '' MONGODB_HOST = '' MONGODB_PORT = '' MONGODB_USERNAME = '' MONGODB_PASSWORD = '' production_config = ProductionConfig()
20.52381
41
0.656613
231
0.52381
0
0
0
0
0
0
163
0.369615
fba528d6b9c993f8745f860d915d34b0353a4f4d
426
py
Python
glider/test/test_gliderRadio.py
ezeakeal/glider_drone
f0d5bb973d38245351a0fe1f4833827d94d0b0e4
[ "Apache-2.0" ]
null
null
null
glider/test/test_gliderRadio.py
ezeakeal/glider_drone
f0d5bb973d38245351a0fe1f4833827d94d0b0e4
[ "Apache-2.0" ]
null
null
null
glider/test/test_gliderRadio.py
ezeakeal/glider_drone
f0d5bb973d38245351a0fe1f4833827d94d0b0e4
[ "Apache-2.0" ]
null
null
null
from unittest import TestCase from glider.modules.glider_radio import GliderRadio class TestGliderRadio(TestCase): def setUp(self): self.radio = GliderRadio(self.test_callback) self.radio.start() def tearDown(self): self.radio.stop() def test_callback(self, msgdict): print("Received message: %s" % msgdict) def test_send_data(self): self.radio.send_data(["test"])
23.666667
52
0.678404
341
0.800469
0
0
0
0
0
0
28
0.065728
fba67a228cffbfee38985da067132482c7b8a08a
1,052
py
Python
apps/warframes/migrations/0001_initial.py
tufbel/wFocus
ee0f02053b8a5bc9c40dd862306fc5df1a063b9d
[ "Apache-2.0" ]
null
null
null
apps/warframes/migrations/0001_initial.py
tufbel/wFocus
ee0f02053b8a5bc9c40dd862306fc5df1a063b9d
[ "Apache-2.0" ]
11
2020-06-06T01:51:51.000Z
2022-02-10T14:31:21.000Z
apps/warframes/migrations/0001_initial.py
tufbel/wFocus
ee0f02053b8a5bc9c40dd862306fc5df1a063b9d
[ "Apache-2.0" ]
null
null
null
# Generated by Django 2.2.7 on 2019-12-15 12:15 from django.db import migrations, models class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='Warframe', fields=[ ('id', models.AutoField(primary_key=True, serialize=False)), ('name', models.CharField(max_length=100, unique=True)), ('health', models.IntegerField()), ('shield', models.IntegerField()), ('armor', models.IntegerField()), ('power', models.IntegerField()), ('sprint_speed', models.FloatField()), ('power_strength', models.FloatField(default=1)), ('power_duration', models.FloatField(default=1)), ('power_range', models.FloatField(default=1)), ('power_efficiency', models.FloatField(default=1)), ('img', models.URLField(max_length=255, null=True)), ], ), ]
32.875
76
0.543726
959
0.911597
0
0
0
0
0
0
179
0.170152
fba6946e547a329b3ac4d404e2ef31baf20b094f
5,290
py
Python
pxr/base/tf/testenv/testTfStringUtils.py
DougRogers-DigitalFish/USD
d8a405a1344480f859f025c4f97085143efacb53
[ "BSD-2-Clause" ]
3,680
2016-07-26T18:28:11.000Z
2022-03-31T09:55:05.000Z
pxr/base/tf/testenv/testTfStringUtils.py
DougRogers-DigitalFish/USD
d8a405a1344480f859f025c4f97085143efacb53
[ "BSD-2-Clause" ]
1,759
2016-07-26T19:19:59.000Z
2022-03-31T21:24:00.000Z
pxr/base/tf/testenv/testTfStringUtils.py
DougRogers-DigitalFish/USD
d8a405a1344480f859f025c4f97085143efacb53
[ "BSD-2-Clause" ]
904
2016-07-26T18:33:40.000Z
2022-03-31T09:55:16.000Z
#!/pxrpythonsubst # # Copyright 2016 Pixar # # Licensed under the Apache License, Version 2.0 (the "Apache License") # with the following modification; you may not use this file except in # compliance with the Apache License and the following modification to it: # Section 6. Trademarks. is deleted and replaced with: # # 6. Trademarks. This License does not grant permission to use the trade # names, trademarks, service marks, or product names of the Licensor # and its affiliates, except as required to comply with Section 4(c) of # the License and to reproduce the content of the NOTICE file. # # You may obtain a copy of the Apache License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the Apache License with the above modification is # distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the Apache License for the specific # language governing permissions and limitations under the Apache License. # from pxr import Tf import logging import unittest class TestStringUtils(unittest.TestCase): """ Test Tf String Utils (The python wrapped porting of the utility functions). """ def setUp(self): self.log = logging.getLogger() def test_StringSplit(self): """Testing StringSplit() function. This function is supposed to behave like the split method on python string objects.""" self.log.info("Testing string split cases") self.assertEqual([], Tf.StringSplit("","")) self.assertEqual([], Tf.StringSplit("abcd","")) self.assertEqual([], Tf.StringSplit("","ccc")) s = "abcd" self.assertEqual(s.split("a"), Tf.StringSplit(s, "a")) self.assertEqual(s.split("b"), Tf.StringSplit(s, "b")) self.assertEqual(s.split("c"), Tf.StringSplit(s, "c")) self.assertEqual(s.split("d"), Tf.StringSplit(s, "d")) self.assertEqual(s.split("abcd"), Tf.StringSplit(s, "abcd")) self.assertEqual(s.split("ab"), Tf.StringSplit(s, "ab")) s = "a:+b:+c:+d" self.assertEqual(s.split(":+"), Tf.StringSplit(s, ":+")) s = "a:+b:+c:d" self.assertEqual(s.split(":+"), Tf.StringSplit(s, ":+")) def test_Unicode(self): """Testing that we can pass python unicode objects to wrapped functions expecting std::string""" self.log.info("Testing unicode calls") self.assertEqual(Tf.StringSplit('123', '2'), ['1', '3']) self.assertEqual(Tf.StringSplit('123', u'2'), ['1', '3']) self.assertEqual(Tf.StringSplit(u'123', '2'), ['1', '3']) self.assertEqual(Tf.StringSplit(u'123', u'2'), ['1', '3']) self.assertEqual(Tf.DictionaryStrcmp('apple', 'banana'), -1) self.assertEqual(Tf.DictionaryStrcmp('apple', u'banana'), -1) self.assertEqual(Tf.DictionaryStrcmp(u'apple', 'banana'), -1) self.assertEqual(Tf.DictionaryStrcmp(u'apple', u'banana'), -1) def test_StringToLong(self): def checks(val): self.assertEqual(Tf.StringToLong(repr(val)), val) def checku(val): self.assertEqual(Tf.StringToULong(repr(val)), val) # A range of valid values. for i in range(1000000): checku(i) for i in range(-500000, 500000): checks(i) # A wider range of valid values. for i in range(0, 1000000000, 9337): checks(i) for i in range(-500000000, 500000000, 9337): checks(i) # Get the max/min values. ulmax, lmax, lmin = ( Tf._GetULongMax(), Tf._GetLongMax(), Tf._GetLongMin()) # Check the extrema and one before to ensure they work. for n in [ulmax-1, ulmax]: checku(n) for n in [lmin, lmin+1, lmax-1, lmax]: checks(n) # Check that some beyond the extrema over/underflow. # # Unsigned overflow. for i in range(1, 1000): with self.assertRaises(ValueError): checku(ulmax + i) with self.assertRaises(ValueError): checks(lmax + i) with self.assertRaises(ValueError): checks(lmin - i) def test_Identifiers(self): self.assertFalse(Tf.IsValidIdentifier('')) self.assertTrue(Tf.IsValidIdentifier('hello9')) self.assertFalse(Tf.IsValidIdentifier('9hello')) self.assertTrue(Tf.IsValidIdentifier('hello_world')) self.assertTrue(Tf.IsValidIdentifier('HELLO_WORLD')) self.assertTrue(Tf.IsValidIdentifier('hello_world_1234')) self.assertFalse(Tf.IsValidIdentifier('hello_#world#_1234')) self.assertFalse(Tf.IsValidIdentifier('h e l l o')) self.assertEqual(Tf.MakeValidIdentifier(''), '_') self.assertEqual(Tf.MakeValidIdentifier('hello9'), 'hello9') self.assertEqual(Tf.MakeValidIdentifier('9hello'), '_hello') self.assertEqual( Tf.MakeValidIdentifier('hello_#world#_1234'), 'hello__world__1234') self.assertFalse(Tf.IsValidIdentifier('h e l l o'), 'h_e_l_l_o') self.assertFalse(Tf.IsValidIdentifier('!@#$%'), '_____') if __name__ == '__main__': unittest.main()
38.613139
79
0.633648
4,111
0.777127
0
0
0
0
0
0
2,087
0.394518
fba6b995d133300dd22ec22078918d89b609c5b5
4,300
py
Python
oui/return_arp.py
sukhjinderpalsingh/ansible
07669bfc1e072af670f32a6ba037513c470caf8d
[ "Unlicense" ]
4
2019-04-17T13:16:58.000Z
2020-05-05T23:07:35.000Z
oui/return_arp.py
sukhjinderpalsingh/ansible
07669bfc1e072af670f32a6ba037513c470caf8d
[ "Unlicense" ]
null
null
null
oui/return_arp.py
sukhjinderpalsingh/ansible
07669bfc1e072af670f32a6ba037513c470caf8d
[ "Unlicense" ]
1
2019-05-23T17:24:16.000Z
2019-05-23T17:24:16.000Z
#!/usr/bin/python import subprocess import sys import cgi import datetime import re import requests validMac = False ERROR = False form = cgi.FieldStorage() user = "READONLY_USER_HERE" pwd = "PASSWORD" OUI = form.getvalue('OUI') host = form.getvalue('HOST') def formatOUI(OUI): ot=OUI[0:2] tf=OUI[2:4] fs=OUI[5:7] fmac = ot+":"+tf+":"+fs+":00:00:00" return fmac fOUI = formatOUI(OUI) webCmd = "show ip arp | i {}".format(OUI[0:7]) def printHeader(): print "Content-type: text/html" print "" print "<html><head>" print "<title>OUI Finder</title></head><body>" print "<br />Time run: " + str(datetime.datetime.now()) + "<br>" def checkInput(): pattern = re.compile('[a-fA-F0-9]{4}.[a-fA-F0-9]{2}') if re.match(pattern,OUI[0:7]): return True else: return False def sanitize(outp): item=[] outp = outp.split('# STATS ')[0] outp = outp.split(' * ') del outp[0] print "<BR>" item = [] for i in outp: entry = [] i = i.replace('changed=False','') if "Internet" not in i: entry.append(i.split(' ')[0]) else: entry.append(i.split(' ')[0]) i = i.split(' Internet ') del i[0] for j in i: j = j.split(' ') j = [k for k in j if k] del j[1] del j[2] entry.append(j) item.append(entry) return item def displaySanitized(hosts): totHosts = 0 for i in hosts: if len(i)>1: totHosts+=(len(i)-1) print "<CENTER>" print "Number of hosts found: " + str(totHosts) print "<TABLE border='1' cellpadding='10'> " for item in hosts: if len(item) == 1: print "<TR><TH colspan='3'>" print item[0] print "</TH></TR>" print "<TR><TH>IP</TH><TH>MAC</TH><TH>VLAN</TH>" print "<TR><TD colspan='3'>No hosts found</TD></TR>" else: print "<TR><TH colspan='3'>" print item[0] print "</TH></TR>" print "<TR><TH>IP</TH><TH>MAC</TH><TH>VLAN</TH>" for i in range(1,len(item)): print "<TR><TD>" print item[i][0] print "</TD><TD>" print item[i][1] print "</TD><TD>" print item[i][2] print "</TD></TR>" print "</TABLE>" def executeCmd(host): cmd = """ansible-playbook /ansible/plays/show_cmd.yml --limit '"""+host+"""' -e 'user="{0}" pass="{1}" cmd="{2}"' | sed 's/\\\\n/\\n/g'""".format(user,pwd,webCmd) p = subprocess.Popen(cmd, stdout=subprocess.PIPE, shell=True) outp = str(p.communicate()[0]) if 'Authentication failed.' in outp: print "<CENTER><H1>***ERROR!***<br>Authentication failed.</H1><h3>Check credentials</h3></CENTER>" displaySanitized(sanitize(outp)) def lookup(OUI): MAC_URL = 'http://macvendors.co/api/%s' r = requests.get(MAC_URL % OUI) print "<CENTER><h3>Vendor Name: "+(r.json()['result']['company'])+"</h3></CENTER>" printHeader() validMac = checkInput() if validMac == False: print "<CENTER><h3>{} OUI not formatted correctly, please use xxxx.xx (Cisco format).</h3></CENTER>".format(OUI) else: try: lookup(fOUI) except: ERROR = True print "<CENTER>OUI not found in database!<br>Check and try again</CENTER>" if ERROR == False: executeCmd(host)
33.858268
172
0.428837
0
0
0
0
0
0
0
0
1,121
0.260698
fba8bbf32782335bea4f2efd30632d40070c98c8
1,801
py
Python
scripts/propogate_elab_labels.py
dmort27/elab-order
5fdca996eea8ab5c6520f9ba565f2fc2cf3e9d0a
[ "MIT" ]
1
2021-09-22T00:28:54.000Z
2021-09-22T00:28:54.000Z
scripts/propogate_elab_labels.py
dmort27/elab-order
5fdca996eea8ab5c6520f9ba565f2fc2cf3e9d0a
[ "MIT" ]
null
null
null
scripts/propogate_elab_labels.py
dmort27/elab-order
5fdca996eea8ab5c6520f9ba565f2fc2cf3e9d0a
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 import csv import glob import os.path from collections import deque from tqdm import tqdm def read_csv(fnin): with open(fnin) as f: return {tuple(e) for e in csv.reader(f)} def write_tagged_span(fout, buffer, count): b_token = buffer.popleft() print(f'{b_token}\tB', file=fout) for i_token in buffer: print(f'{i_token}\tI', file=fout) buffer.clear() def write_outside_token(fout, token): print(f'{token}\tO', file=fout) def tag_file(fn, fnout, elabs): buffer = deque() count =0 with open(fn) as fin, open(fnout, 'w') as fout: for line in fin: token = line.strip().split() assert type(token) is list token = "" if not token else token[0] buffer.append(token) if len(buffer) > 4: token = buffer.popleft() if token: write_outside_token(fout, token) else: print('', file=fout) if tuple(buffer) in elabs: write_tagged_span(fout, buffer, count) count += 1 for token in buffer: if token: write_outside_token(fout, token) else: print('', file=fout) def main(elabs_filename, input_dir, output_dir): elabs = read_csv(elabs_filename) input_filenames = glob.glob(os.path.join(input_dir, '*.conll')) for fn in tqdm(input_filenames): root, ext = os.path.splitext(os.path.basename(fn)) fnout = os.path.join(output_dir, root + '.conll') tag_file(fn, fnout, elabs) if __name__ == '__main__': main('../data/hmong/extracted_elabs/elabs_extracted.csv', '../data/hmong/sch_corpus2_conll', '../data/hmong/sch_corpus2_elab')
30.525424
67
0.583009
0
0
0
0
0
0
0
0
217
0.120489
fba8db75cec306c3be997ed165eb4fd61c2a754f
1,691
py
Python
python/ml_preproc/pipeline/beam_classes/parse_csv.py
gmogr/dataflow-production-ready
838dc45d0a01db184ce3f88728303d8ed69361f3
[ "Apache-2.0" ]
1
2021-01-26T16:58:20.000Z
2021-01-26T16:58:20.000Z
python/ml_preproc/pipeline/beam_classes/parse_csv.py
gmogr/dataflow-production-ready
838dc45d0a01db184ce3f88728303d8ed69361f3
[ "Apache-2.0" ]
null
null
null
python/ml_preproc/pipeline/beam_classes/parse_csv.py
gmogr/dataflow-production-ready
838dc45d0a01db184ce3f88728303d8ed69361f3
[ "Apache-2.0" ]
1
2021-04-15T09:18:27.000Z
2021-04-15T09:18:27.000Z
# Copyright 2020 Google LLC. # This software is provided as-is, without warranty or representation for any use or purpose. # Your use of it is subject to your agreement with Google. from apache_beam import DoFn, pvalue from apache_beam.metrics import Metrics from ..model import data_classes from ..model.data_classes import Record class ParseCSVDoFn(DoFn): CORRECT_OUTPUT_TAG = 'accommodations' WRONG_OUTPUT_TAG = 'parse_errors' def __init__(self, header_line: str): """ Parse the CSV data and create a PCollection of Accommodation. Args: header_line: The header line used in the CSV line, it will be ignored by the parser. """ self._header_line = header_line # Metrics to report the number of records self.input_records_counter = Metrics.counter("ParseCSVDoFn", 'input_records') self.correct_records_counter = Metrics.counter("ParseCSVDoFn", 'correct_records') self.wrong_records_counter = Metrics.counter("ParseCSVDoFn", 'wrong_records') def process(self, element: str): self.input_records_counter.inc() # We have two outputs: one for well formed input lines, and another one with potential parsing errors # (the parsing error output will be written to a different BigQuery table) try: # ignore header row if element != self._header_line: record: Record = data_classes.line2record(element) self.correct_records_counter.inc() yield pvalue.TaggedOutput(ParseCSVDoFn.CORRECT_OUTPUT_TAG, record) except TypeError as err: self.wrong_records_counter.inc() msg = str(err) yield pvalue.TaggedOutput(ParseCSVDoFn.WRONG_OUTPUT_TAG, {'error': msg, 'line': element})
39.325581
105
0.738025
1,353
0.800118
692
0.409225
0
0
0
0
726
0.429332
fba917b2c0de9b130231e038b70145fe9679fe7d
2,285
py
Python
src/sentry/integrations/pagerduty/client.py
pombredanne/django-sentry
4ad09417fb3cfa3aa4a0d4175ae49fe02837c567
[ "BSD-3-Clause" ]
null
null
null
src/sentry/integrations/pagerduty/client.py
pombredanne/django-sentry
4ad09417fb3cfa3aa4a0d4175ae49fe02837c567
[ "BSD-3-Clause" ]
null
null
null
src/sentry/integrations/pagerduty/client.py
pombredanne/django-sentry
4ad09417fb3cfa3aa4a0d4175ae49fe02837c567
[ "BSD-3-Clause" ]
null
null
null
from __future__ import absolute_import from sentry.integrations.client import ApiClient from sentry.models import EventCommon from sentry.api.serializers import serialize, ExternalEventSerializer LEVEL_SEVERITY_MAP = { "debug": "info", "info": "info", "warning": "warning", "error": "error", "fatal": "critical", } class PagerDutyClient(ApiClient): allow_redirects = False integration_name = "pagerduty" base_url = "https://events.pagerduty.com/v2/enqueue" def __init__(self, integration_key): self.integration_key = integration_key super(PagerDutyClient, self).__init__() def request(self, method, path, headers=None, data=None, params=None): if not headers: headers = {"Content-Type": "application/json"} return self._request(method, path, headers=headers, data=data, params=params) def send_trigger(self, data): # expected payload: https://v2.developer.pagerduty.com/docs/send-an-event-events-api-v2 # for now, only construct the payload if data is an event if isinstance(data, EventCommon): source = data.transaction or data.culprit or "<unknown>" group = data.group level = data.get_tag("level") or "error" custom_details = serialize(data, None, ExternalEventSerializer()) payload = { "routing_key": self.integration_key, "event_action": "trigger", "dedup_key": group.qualified_short_id, "payload": { "summary": data.message or data.title, "severity": LEVEL_SEVERITY_MAP[level], "source": source, "component": group.project.slug, "custom_details": custom_details, }, "links": [ { "href": group.get_absolute_url( params={"referrer": "pagerduty_integration"} ), "text": "Issue Details", } ], } return self.post("/", data=payload) def send_acknowledge(self, data): pass def send_resolve(self, data): pass
34.621212
95
0.569365
1,945
0.851204
0
0
0
0
0
0
507
0.221882
fbaa2cc659c7ec0bddf4650c7e382079513809ba
3,192
py
Python
darling_ansible/python_venv/lib/python3.7/site-packages/oci/monitoring/models/failed_metric_record.py
revnav/sandbox
f9c8422233d093b76821686b6c249417502cf61d
[ "Apache-2.0" ]
null
null
null
darling_ansible/python_venv/lib/python3.7/site-packages/oci/monitoring/models/failed_metric_record.py
revnav/sandbox
f9c8422233d093b76821686b6c249417502cf61d
[ "Apache-2.0" ]
null
null
null
darling_ansible/python_venv/lib/python3.7/site-packages/oci/monitoring/models/failed_metric_record.py
revnav/sandbox
f9c8422233d093b76821686b6c249417502cf61d
[ "Apache-2.0" ]
1
2020-06-25T03:12:58.000Z
2020-06-25T03:12:58.000Z
# coding: utf-8 # Copyright (c) 2016, 2020, Oracle and/or its affiliates. All rights reserved. # This software is dual-licensed to you under the Universal Permissive License (UPL) 1.0 as shown at https://oss.oracle.com/licenses/upl or Apache License 2.0 as shown at http://www.apache.org/licenses/LICENSE-2.0. You may choose either license. from oci.util import formatted_flat_dict, NONE_SENTINEL, value_allowed_none_or_none_sentinel # noqa: F401 from oci.decorators import init_model_state_from_kwargs @init_model_state_from_kwargs class FailedMetricRecord(object): """ The record of a single metric object that failed input validation and the reason for the failure. """ def __init__(self, **kwargs): """ Initializes a new FailedMetricRecord object with values from keyword arguments. The following keyword arguments are supported (corresponding to the getters/setters of this class): :param message: The value to assign to the message property of this FailedMetricRecord. :type message: str :param metric_data: The value to assign to the metric_data property of this FailedMetricRecord. :type metric_data: MetricDataDetails """ self.swagger_types = { 'message': 'str', 'metric_data': 'MetricDataDetails' } self.attribute_map = { 'message': 'message', 'metric_data': 'metricData' } self._message = None self._metric_data = None @property def message(self): """ **[Required]** Gets the message of this FailedMetricRecord. An error message indicating the reason that the indicated metric object failed input validation. :return: The message of this FailedMetricRecord. :rtype: str """ return self._message @message.setter def message(self, message): """ Sets the message of this FailedMetricRecord. An error message indicating the reason that the indicated metric object failed input validation. :param message: The message of this FailedMetricRecord. :type: str """ self._message = message @property def metric_data(self): """ **[Required]** Gets the metric_data of this FailedMetricRecord. Identifier of a metric object that failed input validation. :return: The metric_data of this FailedMetricRecord. :rtype: MetricDataDetails """ return self._metric_data @metric_data.setter def metric_data(self, metric_data): """ Sets the metric_data of this FailedMetricRecord. Identifier of a metric object that failed input validation. :param metric_data: The metric_data of this FailedMetricRecord. :type: MetricDataDetails """ self._metric_data = metric_data def __repr__(self): return formatted_flat_dict(self) def __eq__(self, other): if other is None: return False return self.__dict__ == other.__dict__ def __ne__(self, other): return not self == other
31.294118
245
0.658835
2,652
0.830827
0
0
2,682
0.840226
0
0
2,087
0.653822
fbab99a6802fc429bbfb9a29c754e3ca6d940978
3,352
py
Python
PyBlend/pyblend_prism.py
nfb2021/PrismPyTrace
d4f28cd4156b5543abc3b5634383a81b0663d28e
[ "MIT" ]
null
null
null
PyBlend/pyblend_prism.py
nfb2021/PrismPyTrace
d4f28cd4156b5543abc3b5634383a81b0663d28e
[ "MIT" ]
null
null
null
PyBlend/pyblend_prism.py
nfb2021/PrismPyTrace
d4f28cd4156b5543abc3b5634383a81b0663d28e
[ "MIT" ]
null
null
null
import bpy import numpy as np import math import mathutils import time import os class Prism: """ ^""" """ / \\""" """ / ^ \\""" """ / | \\""" """ /'alpha'\\ <-- lenght of this side is calculated based on 'width' and 'alpha'""" """/ \\""" """----------- """ """ ^""" """ |""" """This side is defined via 'width',""" """parallel to z-axis of Sigray defined""" """The angle opposite to this side is 'alpha'""" """'height' defines the distance between the two triangular sides of the prism""" def __init__(self, width, height, alpha): self.width = width self.height = height self.alpha = math.radians(alpha) def clear_scene(self): """This function clears the whole scene and all objects contained in it""" bpy.ops.object.select_all(action='SELECT') bpy.ops.object.delete(use_global=False) def define_prism(self, loc = (0, 0, 0), angle = None, base_width = None): """The default location assigned is (0, 0, 0). Using the 'update_coordinates'-function allows for reassignment of coordinates""" x, y, z = loc name = "prism" meshes = bpy.data.meshes if angle == None: angle = self.alpha else: angle = math.radians(angle) if base_width == None: base_width = self.width else: base_width = base_width points = [ [x, y, z], [x + base_width, y, z], [x + (base_width / 2), y + (base_width / (2 * np.tan(angle / 2))), z], [x, y, z + self.height], [x + base_width, y, z + self.height], [x + (base_width / 2), y + (base_width / (2 * np.tan(angle / 2))), z + self.height] ] faces = [ [4,5,2],[1,0,3],[2,5,3],[4,3,5],[1,2,0],[1,4,2],[4,1,3],[0,2,3] ] shape_vertices = [] for p in points: print(p) shape_vertices.append ( mathutils.Vector((p[0],p[1],p[2])) ) new_mesh = bpy.data.meshes.new ( name + "_mesh" ) new_mesh.from_pydata ( shape_vertices, [], faces ) new_mesh.update() new_obj = bpy.data.objects.new ( name, new_mesh ) return new_obj def link_prism(self, object): """Any created object in Blender needs to be linked to the scene, in order to be displayed""" bpy.context.collection.objects.link(object) def update_coordinates(self, new_location): """This function allows for reassignment of coordinates""" return self.define_prism(loc = new_location) def update_alpha(self, new_alpha): """This function allows for reassignment of the angle alpha""" return self.define_prism(angle = new_alpha) def update_width(self, new_width): """This function allows for reassignment of the width of the prism""" return self.define_prism(base_width = new_width) def make_array(self, x, y, no_of_prisms, separation): for p in range(no_of_prisms): if p == 0: self.link_prism(self.update_coordinates((x, y, 0))) else: self.link_prism(self.update_coordinates( (p * (self.width + separation) + x, y, 0)))
34.556701
171
0.545346
3,251
0.969869
0
0
0
0
0
0
923
0.275358
fbac3a021640dbdfd78f68fea5a2c6021008a044
88
py
Python
Source/RainyDay_utilities_Py3/__init__.py
Dewberry/RainyDay2
ed3206b1d81ca4ffded4ed79bf156e4b8d87d143
[ "MIT" ]
12
2019-03-24T02:59:51.000Z
2021-11-05T07:45:08.000Z
Source/RainyDay_utilities_Py3/__init__.py
Dewberry/RainyDay2
ed3206b1d81ca4ffded4ed79bf156e4b8d87d143
[ "MIT" ]
null
null
null
Source/RainyDay_utilities_Py3/__init__.py
Dewberry/RainyDay2
ed3206b1d81ca4ffded4ed79bf156e4b8d87d143
[ "MIT" ]
13
2017-08-10T17:18:16.000Z
2022-02-10T00:08:47.000Z
# -*- coding: utf-8 -*- """ Created on Fri Feb 6 17:38:00 2015 @author: dbwrigh3 """
11
35
0.568182
0
0
0
0
0
0
0
0
85
0.965909
fbad3dd268d46eacf42426eb3b88f2a9c9f71d9f
526
py
Python
setup.py
Lewinta/ProcesosLab
223ddff1dd8d92403f9ded9f7a42b8f2fa8605f7
[ "MIT" ]
null
null
null
setup.py
Lewinta/ProcesosLab
223ddff1dd8d92403f9ded9f7a42b8f2fa8605f7
[ "MIT" ]
null
null
null
setup.py
Lewinta/ProcesosLab
223ddff1dd8d92403f9ded9f7a42b8f2fa8605f7
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- from setuptools import setup, find_packages with open('requirements.txt') as f: install_requires = f.read().strip().split('\n') # get version from __version__ variable in proceso/__init__.py from proceso import __version__ as version setup( name='proceso', version=version, description='A customization app for Proceso', author='Lewin Villar', author_email='lewinvillar@tzcode.tech', packages=find_packages(), zip_safe=False, include_package_data=True, install_requires=install_requires )
25.047619
62
0.76616
0
0
0
0
0
0
0
0
188
0.357414
fbad48a7594776e5f25fe4470488384a1f723e04
3,650
py
Python
eye/widgets/misc.py
hydrargyrum/eye
b4a6994fee74b7a70d4f918bc3a29184fe8d5526
[ "WTFPL" ]
12
2015-09-07T18:32:15.000Z
2021-02-21T17:29:15.000Z
eye/widgets/misc.py
hydrargyrum/eye
b4a6994fee74b7a70d4f918bc3a29184fe8d5526
[ "WTFPL" ]
20
2016-08-01T19:24:43.000Z
2020-12-23T21:29:04.000Z
eye/widgets/misc.py
hydrargyrum/eye
b4a6994fee74b7a70d4f918bc3a29184fe8d5526
[ "WTFPL" ]
1
2018-09-07T14:26:24.000Z
2018-09-07T14:26:24.000Z
# this project is licensed under the WTFPLv2, see COPYING.txt for details import logging from weakref import ref from PyQt5.QtCore import QEventLoop from PyQt5.QtWidgets import QPlainTextEdit, QLabel, QWidget, QRubberBand, QApplication from ..app import qApp from ..qt import Slot, Signal from .helpers import WidgetMixin __all__ = ('LogWidget', 'PositionIndicator', 'WidgetPicker', 'interactiveWidgetPick') class LogWidget(QPlainTextEdit): class LogHandler(logging.Handler): def __init__(self, widget): super(LogWidget.LogHandler, self).__init__() self.widget = widget self.setFormatter(logging.Formatter('%(asctime)s %(message)s')) def emit(self, record): self.widget.appendPlainText(self.format(record)) def __init__(self, parent=None): super(LogWidget, self).__init__(parent=parent) self.handler = LogWidget.LogHandler(self) self.setReadOnly(True) def install(self): qApp().logger.addHandler(self.handler) def uninstall(self): qApp().logger.removeHandler(self.handler) class PositionIndicator(QLabel, WidgetMixin): """Widget indicating cursor position of currently focused editor When cursor position changes or focus goes to another editor widget, the text of this label is refreshed. """ format = '{percent:3.0f}% {line:5d}:{vcol:3d}' """Text format of the label Uses PEP-3101 string formatting. Usable keys are `line`, `col`, `percent`, `offset`, `path`, `title` and `editor`. """ def __init__(self, format=None, **kwargs): super(PositionIndicator, self).__init__(**kwargs) if format is not None: self.format = format self.lastFocus = lambda: None qApp().focusChanged.connect(self.focusChanged) @Slot('QWidget*', 'QWidget*') def focusChanged(self, _, new): if not hasattr(new, 'categories'): return if 'editor' not in new.categories(): return if new.window() != self.window(): return lastFocus = self.lastFocus() if lastFocus: lastFocus.cursorPositionChanged.disconnect(self.updateLabel) lastFocus.linesChanged.disconnect(self.updateLabel) self.lastFocus = ref(new) new.cursorPositionChanged.connect(self.updateLabel) new.linesChanged.connect(self.updateLabel) self.updateLabel() @Slot() def updateLabel(self): ed = self.lastFocus() line, col = ed.getCursorPosition() offset = ed.cursorOffset() line, col = line + 1, col + 1 lines = ed.lines() d = { 'line': line, 'col': col, 'vcol': ed.cursorVisualColumn() + 1, 'percent': line * 100. / lines, 'offset': offset, 'path': ed.path, 'title': ed.windowTitle(), 'editor': ed, } self.setText(self.format.format(**d)) class WidgetPicker(QWidget): """Widget for letting user point at another widget.""" selected = Signal() def __init__(self): super(WidgetPicker, self).__init__() self.band = QRubberBand(QRubberBand.Rectangle) self.setMouseTracking(True) self.el = QEventLoop() def mousePressEvent(self, ev): self.el.quit() self.widget = QApplication.widgetAt(ev.globalPos()) self.band.hide() def mouseMoveEvent(self, ev): widget = QApplication.widgetAt(ev.globalPos()) if widget: rect = widget.frameGeometry() if widget.parent(): rect.moveTo(widget.parent().mapToGlobal(rect.topLeft())) self.band.setGeometry(rect) self.band.show() else: self.band.hide() def run(self): self.grabMouse() try: self.el.exec_() finally: self.releaseMouse() return self.widget def interactiveWidgetPick(): """Let user peek a widget by clicking on it. The user can point at open EYE widgets and click on one. Return the widget that was clicked by the user. """ w = WidgetPicker() return w.run()
25
115
0.712603
3,002
0.822466
0
0
943
0.258356
0
0
834
0.228493
fbadf16ea0f58eaa3cba965310bc72b10eb1a906
10,437
py
Python
envelopes/envelope.py
siyaoyao/envelopes
8ad190a55d0d8b805b6ae545b896e719467253b7
[ "MIT" ]
202
2015-01-04T10:40:04.000Z
2022-03-17T16:58:22.000Z
envelopes/envelope.py
siyaoyao/envelopes
8ad190a55d0d8b805b6ae545b896e719467253b7
[ "MIT" ]
12
2015-04-29T08:12:36.000Z
2021-06-03T01:34:33.000Z
envelopes/envelope.py
siyaoyao/envelopes
8ad190a55d0d8b805b6ae545b896e719467253b7
[ "MIT" ]
48
2015-01-04T10:39:52.000Z
2022-02-28T03:25:16.000Z
# -*- coding: utf-8 -*- # Copyright (c) 2013 Tomasz Wójcik <tomek@bthlabs.pl> # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # """ envelopes.envelope ================== This module contains the Envelope class. """ import sys if sys.version_info[0] == 2: from email import Encoders as email_encoders elif sys.version_info[0] == 3: from email import encoders as email_encoders basestring = str def unicode(_str, _charset): return str(_str.encode(_charset), _charset) else: raise RuntimeError('Unsupported Python version: %d.%d.%d' % ( sys.version_info[0], sys.version_info[1], sys.version_info[2] )) from email.header import Header from email.mime.base import MIMEBase from email.mime.multipart import MIMEMultipart from email.mime.application import MIMEApplication from email.mime.audio import MIMEAudio from email.mime.image import MIMEImage from email.mime.text import MIMEText import mimetypes import os import re from .conn import SMTP from .compat import encoded class MessageEncodeError(Exception): pass class Envelope(object): """ The Envelope class. **Address formats** The following formats are supported for e-mail addresses: * ``"user@server.com"`` - just the e-mail address part as a string, * ``"Some User <user@server.com>"`` - name and e-mail address parts as a string, * ``("user@server.com", "Some User")`` - e-mail address and name parts as a tuple. Whenever you come to manipulate addresses feel free to use any (or all) of the formats above. :param to_addr: ``To`` address or list of ``To`` addresses :param from_addr: ``From`` address :param subject: message subject :param html_body: optional HTML part of the message :param text_body: optional plain text part of the message :param cc_addr: optional single CC address or list of CC addresses :param bcc_addr: optional single BCC address or list of BCC addresses :param headers: optional dictionary of headers :param charset: message charset """ ADDR_FORMAT = '%s <%s>' ADDR_REGEXP = re.compile(r'^(.*) <([^@]+@[^@]+)>$') def __init__(self, to_addr=None, from_addr=None, subject=None, html_body=None, text_body=None, cc_addr=None, bcc_addr=None, headers=None, charset='utf-8'): if to_addr: if isinstance(to_addr, list): self._to = to_addr else: self._to = [to_addr] else: self._to = [] self._from = from_addr self._subject = subject self._parts = [] if text_body: self._parts.append(('text/plain', text_body, charset)) if html_body: self._parts.append(('text/html', html_body, charset)) if cc_addr: if isinstance(cc_addr, list): self._cc = cc_addr else: self._cc = [cc_addr] else: self._cc = [] if bcc_addr: if isinstance(bcc_addr, list): self._bcc = bcc_addr else: self._bcc = [bcc_addr] else: self._bcc = [] if headers: self._headers = headers else: self._headers = {} self._charset = charset self._addr_format = unicode(self.ADDR_FORMAT, charset) def __repr__(self): return u'<Envelope from="%s" to="%s" subject="%s">' % ( self._addrs_to_header([self._from]), self._addrs_to_header(self._to), self._subject ) @property def to_addr(self): """List of ``To`` addresses.""" return self._to def add_to_addr(self, to_addr): """Adds a ``To`` address.""" self._to.append(to_addr) def clear_to_addr(self): """Clears list of ``To`` addresses.""" self._to = [] @property def from_addr(self): return self._from @from_addr.setter def from_addr(self, from_addr): self._from = from_addr @property def cc_addr(self): """List of CC addresses.""" return self._cc def add_cc_addr(self, cc_addr): """Adds a CC address.""" self._cc.append(cc_addr) def clear_cc_addr(self): """Clears list of CC addresses.""" self._cc = [] @property def bcc_addr(self): """List of BCC addresses.""" return self._bcc def add_bcc_addr(self, bcc_addr): """Adds a BCC address.""" self._bcc.append(bcc_addr) def clear_bcc_addr(self): """Clears list of BCC addresses.""" self._bcc = [] @property def charset(self): """Message charset.""" return self._charset @charset.setter def charset(self, charset): self._charset = charset self._addr_format = unicode(self.ADDR_FORMAT, charset) def _addr_tuple_to_addr(self, addr_tuple): addr = '' if len(addr_tuple) == 2 and addr_tuple[1]: addr = self._addr_format % ( self._header(addr_tuple[1] or ''), addr_tuple[0] or '' ) elif addr_tuple[0]: addr = addr_tuple[0] return addr @property def headers(self): """Dictionary of custom headers.""" return self._headers def add_header(self, key, value): """Adds a custom header.""" self._headers[key] = value def clear_headers(self): """Clears custom headers.""" self._headers = {} def _addrs_to_header(self, addrs): _addrs = [] for addr in addrs: if not addr: continue if isinstance(addr, basestring): if self._is_ascii(addr): _addrs.append(self._encoded(addr)) else: # these headers need special care when encoding, see: # http://tools.ietf.org/html/rfc2047#section-8 # Need to break apart the name from the address if there are # non-ascii chars m = self.ADDR_REGEXP.match(addr) if m: t = (m.group(2), m.group(1)) _addrs.append(self._addr_tuple_to_addr(t)) else: # What can we do? Just pass along what the user gave us and hope they did it right _addrs.append(self._encoded(addr)) elif isinstance(addr, tuple): _addrs.append(self._addr_tuple_to_addr(addr)) else: self._raise(MessageEncodeError, '%s is not a valid address' % str(addr)) _header = ','.join(_addrs) return _header def _raise(self, exc_class, message): raise exc_class(self._encoded(message)) def _header(self, _str): if self._is_ascii(_str): return _str return Header(_str, self._charset).encode() def _is_ascii(self, _str): return all(ord(c) < 128 for c in _str) def _encoded(self, _str): return encoded(_str, self._charset) def to_mime_message(self): """Returns the envelope as :py:class:`email.mime.multipart.MIMEMultipart`.""" msg = MIMEMultipart('alternative') msg['Subject'] = self._header(self._subject or '') msg['From'] = self._encoded(self._addrs_to_header([self._from])) msg['To'] = self._encoded(self._addrs_to_header(self._to)) if self._cc: msg['CC'] = self._addrs_to_header(self._cc) if self._headers: for key, value in self._headers.items(): msg[key] = self._header(value) for part in self._parts: type_maj, type_min = part[0].split('/') if type_maj == 'text' and type_min in ('html', 'plain'): msg.attach(MIMEText(part[1], type_min, self._charset)) else: msg.attach(part[1]) return msg def add_attachment(self, file_path, mimetype=None): """Attaches a file located at *file_path* to the envelope. If *mimetype* is not specified an attempt to guess it is made. If nothing is guessed then `application/octet-stream` is used.""" if not mimetype: mimetype, _ = mimetypes.guess_type(file_path) if mimetype is None: mimetype = 'application/octet-stream' type_maj, type_min = mimetype.split('/') with open(file_path, 'rb') as fh: part_data = fh.read() part = MIMEBase(type_maj, type_min) part.set_payload(part_data) email_encoders.encode_base64(part) part_filename = os.path.basename(self._encoded(file_path)) part.add_header('Content-Disposition', 'attachment; filename="%s"' % part_filename) self._parts.append((mimetype, part)) def send(self, *args, **kwargs): """Sends the envelope using a freshly created SMTP connection. *args* and *kwargs* are passed directly to :py:class:`envelopes.conn.SMTP` constructor. Returns a tuple of SMTP object and whatever its send method returns.""" conn = SMTP(*args, **kwargs) send_result = conn.send(self) return conn, send_result
31.531722
106
0.598927
8,407
0.805422
0
0
767
0.073482
0
0
3,664
0.351025
fbaea2b0a2ec669b63e49046a42524be78db8577
4,929
py
Python
dependencies/panda/Pmw/Pmw_2_0_1/lib/PmwOptionMenu.py
SuperM0use24/Project-Altis
8dec7518a4d3f902cee261fd522ebebc3c171a42
[ "Apache-2.0" ]
null
null
null
dependencies/panda/Pmw/Pmw_2_0_1/lib/PmwOptionMenu.py
SuperM0use24/Project-Altis
8dec7518a4d3f902cee261fd522ebebc3c171a42
[ "Apache-2.0" ]
null
null
null
dependencies/panda/Pmw/Pmw_2_0_1/lib/PmwOptionMenu.py
SuperM0use24/Project-Altis
8dec7518a4d3f902cee261fd522ebebc3c171a42
[ "Apache-2.0" ]
null
null
null
import types import tkinter import Pmw import sys import collections class OptionMenu(Pmw.MegaWidget): def __init__(self, parent = None, **kw): # Define the megawidget options. INITOPT = Pmw.INITOPT optiondefs = ( ('command', None, None), ('items', (), INITOPT), ('initialitem', None, INITOPT), ('labelmargin', 0, INITOPT), ('labelpos', None, INITOPT), ('sticky', 'ew', INITOPT), ) self.defineoptions(kw, optiondefs) # Initialise the base class (after defining the options). Pmw.MegaWidget.__init__(self, parent) # Create the components. interior = self.interior() self._menubutton = self.createcomponent('menubutton', (), None, tkinter.Menubutton, (interior,), borderwidth = 2, indicatoron = 1, relief = 'raised', anchor = 'c', highlightthickness = 2, direction = 'flush', takefocus = 1, ) self._menubutton.grid(column = 2, row = 2, sticky = self['sticky']) self._menu = self.createcomponent('menu', (), None, tkinter.Menu, (self._menubutton,), tearoff=0 ) self._menubutton.configure(menu = self._menu) interior.grid_columnconfigure(2, weight = 1) interior.grid_rowconfigure(2, weight = 1) # Create the label. self.createlabel(interior) # Add the items specified by the initialisation option. self._itemList = [] self.setitems(self['items'], self['initialitem']) # Check keywords and initialise options. self.initialiseoptions() def setitems(self, items, index = None): #cleaning up old items only required for Python < 2.5.4 if sys.version_info < (2, 5, 4): # Clean up old items and callback commands. for oldIndex in range(len(self._itemList)): tclCommandName = str(self._menu.entrycget(oldIndex, 'command')) if tclCommandName != '': self._menu.deletecommand(tclCommandName) self._menu.delete(0, 'end') self._itemList = list(items) # Set the items in the menu component. for item in items: self._menu.add_command(label = item, command = lambda self = self, item = item: self._invoke(item)) # Set the currently selected value. if index is None: var = str(self._menubutton.cget('textvariable')) if var != '': # None means do not change text variable. return if len(items) == 0: text = '' elif str(self._menubutton.cget('text')) in items: # Do not change selection if it is still valid return else: text = items[0] else: index = self.index(index) text = self._itemList[index] self.setvalue(text) def getcurselection(self): var = str(self._menubutton.cget('textvariable')) if var == '': return str(self._menubutton.cget('text')) else: return self._menu.tk.globalgetvar(var) def getvalue(self): return self.getcurselection() def setvalue(self, text): var = str(self._menubutton.cget('textvariable')) if var == '': self._menubutton.configure(text = text) else: self._menu.tk.globalsetvar(var, text) def index(self, index): listLength = len(self._itemList) if type(index) == int: if index < listLength: return index else: raise ValueError('index "%s" is out of range' % index) elif index is Pmw.END: if listLength > 0: return listLength - 1 else: raise ValueError('OptionMenu has no items') else: if index is Pmw.SELECT: if listLength > 0: index = self.getcurselection() else: raise ValueError('OptionMenu has no items') if index in self._itemList: return self._itemList.index(index) raise ValueError('bad index "%s": must be a ' \ 'name, a number, Pmw.END or Pmw.SELECT' % (index,)) def invoke(self, index = Pmw.SELECT): index = self.index(index) text = self._itemList[index] return self._invoke(text) def _invoke(self, text): self.setvalue(text) command = self['command'] if isinstance(command, collections.Callable): return command(text)
33.080537
79
0.529113
4,858
0.985595
0
0
0
0
0
0
845
0.171434
fbaf22f54791d4657c17a86b0e49e13fd65f1463
7,614
py
Python
options/train_options.py
fatalfeel/DeblurGAN
cc4ccf09d23b91389dbea70a34797cb80331819c
[ "BSD-3-Clause" ]
3
2021-07-12T07:38:32.000Z
2021-11-16T04:56:00.000Z
options/train_options.py
fatalfeel/DeblurGAN
cc4ccf09d23b91389dbea70a34797cb80331819c
[ "BSD-3-Clause" ]
1
2021-11-03T09:57:31.000Z
2021-11-04T03:00:49.000Z
options/train_options.py
fatalfeel/DeblurGAN
cc4ccf09d23b91389dbea70a34797cb80331819c
[ "BSD-3-Clause" ]
null
null
null
import os import torch import argparse from util import util def str2bool(b_str): if b_str.lower() in ('yes', 'true', 't', 'y', '1'): return True elif b_str.lower() in ('no', 'false', 'f', 'n', '0'): return False class TrainOptions(): def __init__(self): self.parser = argparse.ArgumentParser() self.parser.add_argument('--dataroot', type=str, default='./data/combined', help='path to images (should have subfolders train, val, test)') self.parser.add_argument('--batchSize', type=int, default=1, help='input batch size') self.parser.add_argument('--loadSizeX', type=int, default=640, help='scale images to this size') self.parser.add_argument('--loadSizeY', type=int, default=360, help='scale images to this size') self.parser.add_argument('--fineSize', type=int, default=256, help='then crop to this size') self.parser.add_argument('--input_nc', type=int, default=3, help='# of input image channels') self.parser.add_argument('--output_nc', type=int, default=3, help='# of output image channels') self.parser.add_argument('--ngf', type=int, default=64, help='# of gen filters in first conv layer') self.parser.add_argument('--ndf', type=int, default=64, help='# of discrim filters in first conv layer') self.parser.add_argument('--which_model_netG', type=str, default='RESNET', help='RESNET, FPN50, FPN101, FPN152') self.parser.add_argument('--learn_residual', type=str2bool, default=True, help='if specified, model would learn only the residual to the input') self.parser.add_argument('--resume', type=str2bool, default=False, help='continue training') self.parser.add_argument('--gan_type', type=str, default='gan', help='gan is faster, wgan-gp is stable') self.parser.add_argument('--n_layers_D', type=int, default=3, help='only used if which_model_netD==n_layers') self.parser.add_argument('--n_layers_G', type=int, default=3, help='2 layers features 2^6~2^8, 3 layers features 2^6~2^9') self.parser.add_argument('--n_blocks_G', type=int, default=12, help='ResnetBlocks at 6, 9, 12...') #self.parser.add_argument('--gpu_ids', type=str, default='0', help='gpu ids: e.g. 0 0,1,2, 0,2. use -1 for CPU') self.parser.add_argument('--cuda', type=str2bool, default=False, help='using gpu training') self.parser.add_argument('--dataset_mode', type=str, default='aligned', help='chooses how datasets are loaded. [unaligned | aligned | single]') self.parser.add_argument('--model', type=str, default='content_gan', help='chooses which model to use. content_gan, pix2pix, test') self.parser.add_argument('--which_direction', type=str, default='AtoB', help='AtoB or BtoA') self.parser.add_argument('--nThreads', type=int, default=1, help='# threads for loading data') self.parser.add_argument('--checkpoints_dir', type=str, default='./checkpoint', help='models are saved here') self.parser.add_argument('--norm', type=str, default='instance', help='instance normalization or batch normalization') self.parser.add_argument('--serial_batches', action='store_true', help='if true, takes images in order to make batches, otherwise takes them randomly') self.parser.add_argument('--display_winsize', type=int, default=256, help='display window size') self.parser.add_argument('--display_id', type=int, default=-1, help='window id of the web display') self.parser.add_argument('--display_port', type=int, default=8097, help='visdom port of the web display') self.parser.add_argument('--display_single_pane_ncols', type=int, default=0, help='if positive, display all images in a single visdom web panel with certain number of images per row.') self.parser.add_argument('--no_dropout', action='store_true', help='no dropout for the generator') self.parser.add_argument('--max_dataset_size', type=int, default=float("inf"), help='Maximum number of samples allowed per dataset. If the dataset directory contains more than max_dataset_size, only a subset is loaded.') self.parser.add_argument('--resize_or_crop', type=str, default='crop', help='scaling and cropping of images at load time [resize_and_crop|crop|scale_width|scale_width_and_crop]') self.parser.add_argument('--no_flip', action='store_true', help='if specified, do not flip the images for data augmentation') self.parser.add_argument('--display_freq', type=int, default=100, help='frequency of showing training results on screen') self.parser.add_argument('--print_freq', type=int, default=20, help='frequency of showing training results on console') self.parser.add_argument('--save_epoch_freq', type=int, default=10, help='frequency of saving checkpoints at the end of epochs') self.parser.add_argument('--phase', type=str, default='train', help='train, val, test, etc') self.parser.add_argument('--e_epoch', type=int, default=2000, help='number repeat to train') self.parser.add_argument('--beta1', type=float, default=0.5, help='momentum term of adam') self.parser.add_argument('--lr', type=float, default=0.00001, help='initial learning rate for adam') self.parser.add_argument('--content_weight', type=float, default=100.0, help='fast-neural-style content weight') self.parser.add_argument('--pool_size', type=int, default=50, help='the size of image buffer that stores previously generated images') self.parser.add_argument('--no_html', action='store_true', help='do not save intermediate training results to [opt.checkpoints_dir]/[opt.name]/web/') self.isTrain = True def GetOption(self): self.opt = self.parser.parse_args() self.opt.isTrain = self.isTrain #train or test args = vars(self.opt) print('------------ Options -------------') for k, v in sorted(args.items()): print('%s: %s' % (str(k), str(v))) #print('-------------- End ----------------') # save to the disk #expr_dir = os.path.join(self.opt.checkpoints_dir, self.opt.name) expr_dir = self.opt.checkpoints_dir util.mkdirs(expr_dir) file_name = os.path.join(expr_dir, 'opt.txt') with open(file_name, 'wt') as opt_file: opt_file.write('------------ Options -------------\n') for k, v in sorted(args.items()): opt_file.write('%s: %s\n' % (str(k), str(v))) opt_file.write('-------------- End ----------------\n') return self.opt
89.576471
237
0.582217
7,374
0.968479
0
0
0
0
0
0
3,036
0.398739
fbb096d17208c7f5930144a24371f1c241611091
1,991
py
Python
bin/tabletest.py
tjoneslo/pypdflite
ac2501f30d6619eae9dea5644717575ca9263d0a
[ "MIT" ]
7
2016-05-19T02:23:42.000Z
2020-04-16T16:19:13.000Z
bin/tabletest.py
tjoneslo/pypdflite
ac2501f30d6619eae9dea5644717575ca9263d0a
[ "MIT" ]
5
2016-11-29T19:21:39.000Z
2019-08-18T09:44:25.000Z
bin/tabletest.py
tjoneslo/pypdflite
ac2501f30d6619eae9dea5644717575ca9263d0a
[ "MIT" ]
6
2017-01-23T02:12:52.000Z
2020-07-07T22:34:44.000Z
import os from pypdflite.pdflite import PDFLite from pypdflite.pdfobjects.pdfcolor import PDFColor def TableTest(test_dir): """ Functional test for text, paragraph, and page splitting. """ data = [["Heading1", "Heading2", "Heading3"], ["Cell a2", "Cell b2", "Cell c2"], ["Cell a3", "Cell b3", "Cell c3"]] #Create PDFLITE object, initialize with path & filename. writer = PDFLite(os.path.join(test_dir, "tests/TableTest.pdf")) # If desired (in production code), set compression # writer.setCompression(True) # Set general information metadata writer.set_information(title="Testing Table") # set optional information # Use get_document method to get the generated document object. document = writer.get_document() document.set_cursor(100, 100) document.set_font(family='arial', style='UB', size=12) underline = document.get_font() document.set_font(family='arial', size=12) default_font = document.get_font() # Example for adding short and long text and whitespaces mytable = document.add_table(3, 3) green = PDFColor(name='green') default = document.add_cell_format({'font': default_font, 'align': 'left', 'border': (0, 1)}) justleft = document.add_cell_format({'left': (0, 1)}) header_format = document.add_cell_format({'font': underline, 'align': 'right', 'border': (0, 1)}) green_format = document.add_cell_format({'font': default_font, 'border': (0, 1), 'fill_color': green}) #mytable.set_column_width(1, 200) #mytable.set_row_height(2, 200) mytable.write_row(0, 0, data[0], header_format) mytable.write_row(1, 0, data[1], justleft) mytable.write_row(2, 0, data[2], green_format) document.draw_table(mytable) document.add_newline(4) document.add_text("Testing followup text") # Close writer writer.close() if __name__ == "__main__": TableTest()
32.639344
107
0.656454
0
0
0
0
0
0
0
0
743
0.373179
fbb17de1e27a39093c5016a288d1b4d494da72ba
2,227
py
Python
backend/app/literature/schemas/cross_reference_schemas.py
alliance-genome/agr_literature_service
2278316422d5c3ab65e21bb97d91e861e48853c5
[ "MIT" ]
null
null
null
backend/app/literature/schemas/cross_reference_schemas.py
alliance-genome/agr_literature_service
2278316422d5c3ab65e21bb97d91e861e48853c5
[ "MIT" ]
39
2021-10-18T17:02:49.000Z
2022-03-28T20:56:24.000Z
backend/app/literature/schemas/cross_reference_schemas.py
alliance-genome/agr_literature_service
2278316422d5c3ab65e21bb97d91e861e48853c5
[ "MIT" ]
1
2021-10-21T00:11:18.000Z
2021-10-21T00:11:18.000Z
from typing import List, Optional from pydantic import BaseModel from pydantic import validator class CrossReferenceSchemaRelated(BaseModel): curie: str pages: Optional[List[str]] = None is_obsolete: Optional[bool] = None @validator('curie') def name_must_contain_space(cls, v): if v.count(":") != 1 and not v.startswith("DOI:"): raise ValueError('must contain a single colon') return v class Config(): orm_mode = True extra = "forbid" schema_extra = { "example": { "curie": "MOD:curie", "pages": [ "reference" ] } } class CrossReferenceSchemaPost(CrossReferenceSchemaRelated): resource_curie: Optional[str] = None reference_curie: Optional[str] = None class Config(): orm_mod = True extra = "forbid" schema_extra = { "example": { "curie": "MOD:curie", "pages": [ "reference" ], "reference_curie": "AGR:AGRReference<number>" } } class CrossReferencePageSchemaShow(BaseModel): name: Optional[str] = None url: Optional[str] = None class Config(): orm_mode = True extra = "forbid" class CrossReferenceSchemaShow(BaseModel): curie: str url: Optional[str] = None pages: Optional[List[CrossReferencePageSchemaShow]] = None is_obsolete: bool class CrossReferenceSchema(BaseModel): curie: str pages: Optional[List[CrossReferencePageSchemaShow]] = None url: Optional[str] = None is_obsolete: Optional[bool] = False resource_curie: Optional[str] = None reference_curie: Optional[str] = None author_ids: Optional[List[int]] = None editor_ids: Optional[List[int]] = None class Config(): orm_mode = True extra = "forbid" class CrossReferenceSchemaUpdate(BaseModel): pages: Optional[List[str]] = None resource_curie: Optional[str] = None reference_curie: Optional[str] = None is_obsolete: Optional[bool] = None class Config(): orm_mode = True extra = "forbid"
24.472527
62
0.594073
2,112
0.948361
0
0
196
0.088011
0
0
218
0.09789
fbb2c4cd37463a15b46ecf098fc46612a9561fb6
325
py
Python
leetcode/53.py
jasonlmfong/leetcode
490764b4212735915fa73e1a1bdfd40b8c8ad9ea
[ "MIT" ]
null
null
null
leetcode/53.py
jasonlmfong/leetcode
490764b4212735915fa73e1a1bdfd40b8c8ad9ea
[ "MIT" ]
null
null
null
leetcode/53.py
jasonlmfong/leetcode
490764b4212735915fa73e1a1bdfd40b8c8ad9ea
[ "MIT" ]
null
null
null
class Solution(object): def maxSubArray(self, nums): """ :type nums: List[int] :rtype: int """ Max = -float("inf") currMax = -float("inf") for num in nums: currMax = max(num, num + currMax) Max = max(Max, currMax) return Max
25
45
0.461538
325
1
0
0
0
0
0
0
75
0.230769
fbb2df16b7c104eb5bf6d5b9289bada959a6f3e9
967
py
Python
tests/test_resolver.py
manz/a816
2338ebf87039d6a4a4db8014c48c1d0d2488ceca
[ "MIT" ]
2
2018-06-11T23:37:02.000Z
2018-09-06T04:02:19.000Z
tests/test_resolver.py
manz/a816
2338ebf87039d6a4a4db8014c48c1d0d2488ceca
[ "MIT" ]
8
2015-10-30T11:20:45.000Z
2021-11-21T12:59:33.000Z
tests/test_resolver.py
manz/a816
2338ebf87039d6a4a4db8014c48c1d0d2488ceca
[ "MIT" ]
1
2021-03-29T03:21:54.000Z
2021-03-29T03:21:54.000Z
import unittest from a816.parse.ast.expression import eval_expression_str from a816.symbols import Resolver class ResolverTest(unittest.TestCase): def test_math_expr_eval(self) -> None: expr = "0x100+toto & 0xFFFF" resolver = Resolver() resolver.current_scope.add_symbol("toto", 0x108000) self.assertEqual(eval_expression_str(expr, resolver), 0x8100) def test_symbols_resolved_through_eval(self) -> None: expr = "toto" resolver = Resolver() resolver.current_scope.add_symbol("toto", 0x1234) self.assertEqual(eval_expression_str(expr, resolver), 0x1234) def test_eval(self) -> None: r = Resolver() r.current_scope.add_symbol("name.data", 4) value = eval_expression_str("name.data", r) self.assertEqual(value, 4) def test_unary(self) -> None: r = Resolver() value = eval_expression_str("-1", r) self.assertEqual(value, -1)
28.441176
69
0.663909
855
0.884178
0
0
0
0
0
0
65
0.067218
fbb43010f529aa881832d163b127b8c90dbb0317
4,445
py
Python
syft_proto/frameworks/crypten/onnx_model_pb2.py
vkkhare/syft-proto
513b4af50d7476bd5b1ff9dfb6da8528100f961d
[ "Apache-2.0" ]
null
null
null
syft_proto/frameworks/crypten/onnx_model_pb2.py
vkkhare/syft-proto
513b4af50d7476bd5b1ff9dfb6da8528100f961d
[ "Apache-2.0" ]
null
null
null
syft_proto/frameworks/crypten/onnx_model_pb2.py
vkkhare/syft-proto
513b4af50d7476bd5b1ff9dfb6da8528100f961d
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- # Generated by the protocol buffer compiler. DO NOT EDIT! # source: syft_proto/frameworks/crypten/onnx_model.proto from google.protobuf import descriptor as _descriptor from google.protobuf import message as _message from google.protobuf import reflection as _reflection from google.protobuf import symbol_database as _symbol_database # @@protoc_insertion_point(imports) _sym_db = _symbol_database.Default() from syft_proto.types.syft.v1 import id_pb2 as syft__proto_dot_types_dot_syft_dot_v1_dot_id__pb2 DESCRIPTOR = _descriptor.FileDescriptor( name='syft_proto/frameworks/crypten/onnx_model.proto', package='syft_proto.frameworks.torch.tensors.interpreters.v1', syntax='proto3', serialized_options=b'\n@org.openmined.syftproto.frameworks.torch.tensors.interpreters.v1', create_key=_descriptor._internal_create_key, serialized_pb=b'\n.syft_proto/frameworks/crypten/onnx_model.proto\x12\x33syft_proto.frameworks.torch.tensors.interpreters.v1\x1a!syft_proto/types/syft/v1/id.proto\"\x9a\x01\n\tOnnxModel\x12,\n\x02id\x18\x01 \x01(\x0b\x32\x1c.syft_proto.types.syft.v1.IdR\x02id\x12)\n\x10serialized_model\x18\x02 \x01(\x0cR\x0fserializedModel\x12\x12\n\x04tags\x18\x03 \x03(\tR\x04tags\x12 \n\x0b\x64\x65scription\x18\x04 \x01(\tR\x0b\x64\x65scriptionBB\n@org.openmined.syftproto.frameworks.torch.tensors.interpreters.v1b\x06proto3' , dependencies=[syft__proto_dot_types_dot_syft_dot_v1_dot_id__pb2.DESCRIPTOR,]) _ONNXMODEL = _descriptor.Descriptor( name='OnnxModel', full_name='syft_proto.frameworks.torch.tensors.interpreters.v1.OnnxModel', filename=None, file=DESCRIPTOR, containing_type=None, create_key=_descriptor._internal_create_key, fields=[ _descriptor.FieldDescriptor( name='id', full_name='syft_proto.frameworks.torch.tensors.interpreters.v1.OnnxModel.id', index=0, number=1, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, json_name='id', file=DESCRIPTOR, create_key=_descriptor._internal_create_key), _descriptor.FieldDescriptor( name='serialized_model', full_name='syft_proto.frameworks.torch.tensors.interpreters.v1.OnnxModel.serialized_model', index=1, number=2, type=12, cpp_type=9, label=1, has_default_value=False, default_value=b"", message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, json_name='serializedModel', file=DESCRIPTOR, create_key=_descriptor._internal_create_key), _descriptor.FieldDescriptor( name='tags', full_name='syft_proto.frameworks.torch.tensors.interpreters.v1.OnnxModel.tags', index=2, number=3, type=9, cpp_type=9, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, json_name='tags', file=DESCRIPTOR, create_key=_descriptor._internal_create_key), _descriptor.FieldDescriptor( name='description', full_name='syft_proto.frameworks.torch.tensors.interpreters.v1.OnnxModel.description', index=3, number=4, type=9, cpp_type=9, label=1, has_default_value=False, default_value=b"".decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, json_name='description', file=DESCRIPTOR, create_key=_descriptor._internal_create_key), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=139, serialized_end=293, ) _ONNXMODEL.fields_by_name['id'].message_type = syft__proto_dot_types_dot_syft_dot_v1_dot_id__pb2._ID DESCRIPTOR.message_types_by_name['OnnxModel'] = _ONNXMODEL _sym_db.RegisterFileDescriptor(DESCRIPTOR) OnnxModel = _reflection.GeneratedProtocolMessageType('OnnxModel', (_message.Message,), { 'DESCRIPTOR' : _ONNXMODEL, '__module__' : 'syft_proto.frameworks.crypten.onnx_model_pb2' # @@protoc_insertion_point(class_scope:syft_proto.frameworks.torch.tensors.interpreters.v1.OnnxModel) }) _sym_db.RegisterMessage(OnnxModel) DESCRIPTOR._options = None # @@protoc_insertion_point(module_scope)
46.302083
516
0.783127
0
0
0
0
0
0
0
0
1,553
0.349381
fbb5a43012f90f186d93e303de06bb99a2be6844
3,333
py
Python
Actor_CriticPointer_Network-TSP/knapsack_env.py
GeoffNN/DLforCombin
02553a50491420ab0d51860faff4f9d5aee59616
[ "MIT" ]
5
2017-12-29T12:16:37.000Z
2020-05-24T22:53:56.000Z
Actor_CriticPointer_Network-TSP/knapsack_env.py
GeoffNN/DLforCombin
02553a50491420ab0d51860faff4f9d5aee59616
[ "MIT" ]
1
2018-01-28T20:09:44.000Z
2018-01-28T20:09:44.000Z
Actor_CriticPointer_Network-TSP/knapsack_env.py
GeoffNN/DLforCombin
02553a50491420ab0d51860faff4f9d5aee59616
[ "MIT" ]
1
2020-05-24T22:53:50.000Z
2020-05-24T22:53:50.000Z
import numpy as np import knapsack class Knapsack: def __init__(self, K, max_weight, state_shape = 'flat', penalize_repeat = False): self.K = K self.max_weight = max_weight self.penalize_repeat = penalize_repeat # Not used for now, have to figure out details self.env_name = 'Knapsack' self.state_shape = state_shape if self.state_shape == 'flat': self.state_shape = [self.K * 3] else: self.state_shape = [self.K, 3] self.num_actions = self.K def reset(self): self.values = np.random.rand(self.K) self.weights = np.random.rand(self.K) self.xs = np.zeros(self.K) self.episode_rewards = [] if self.state_shape == 'flat': return np.concatenate([self.values, self.weights, self.xs]) else: return np.array([self.values, self.weights, self.xs]).T def optimal_solution(self): total_reward, choices = knapsack.knapsack(self.weights, self.values).solve(self.max_weight) xs = np.zeros(self.K) for i in choices: xs[i] = 1 return total_reward, xs def at_random_solution(self): current_xs = np.zeros(self.K) next_xs = np.zeros(self.K) while np.sum(current_xs) < self.K: next_xs[np.random.randint(self.K)] = 1 if np.sum(self.weights * next_xs) > self.max_weight: break current_xs = np.copy(next_xs) return np.sum(self.values * current_xs), current_xs, \ np.sum(self.weights * current_xs) def accumulated_reward(self): return np.sum(self.values * self.xs) def max_reward_to_go(self): remaining_weight_capacity = self.max_weight - np.sum(self.weights[self.xs == 1]) max_rtg, _ = knapsack.knapsack(self.weights[self.xs != 1], self.values[self.xs != 1]).solve(remaining_weight_capacity) return max_rtg def step(self, action): # Action is the index of the next object to add current_sacks_weight = np.sum(self.weights * self.xs) if self.xs[action] == 1 or current_sacks_weight + self.weights[action] > self.max_weight: # Do nothing if self.state_shape == 'flat': new_state = np.concatenate([self.values, self.weights, self.xs]) else: new_state = np.array([self.values, self.weights, self.xs]).T self.episode_rewards.append(0) return new_state, 0, False else: self.xs[action] = 1 current_sacks_weight = np.sum(self.weights * self.xs) if self.state_shape == 'flat': new_state = np.concatenate([self.values, self.weights, self.xs]) else: new_state = np.array([self.values, self.weights, self.xs]).T reward = self.values[action] self.episode_rewards.append(reward) if np.sum(self.xs) == self.K: return new_state, reward, True next_lightest_weight = np.min(self.weights[self.xs != 1]) if current_sacks_weight + next_lightest_weight > self.max_weight: done = True else: done = False return new_state, reward, done
38.310345
110
0.584158
3,295
0.988599
0
0
0
0
0
0
145
0.043504
fbb6af8f01f84caaa96ba70cd3d046f928150b4b
3,063
py
Python
plotmonitor.py
mjlosch/python_scripts
7e3c81382484a70a598e81da9ca260e45ad85a00
[ "MIT" ]
1
2020-11-20T20:07:06.000Z
2020-11-20T20:07:06.000Z
plotmonitor.py
mjlosch/python_scripts
7e3c81382484a70a598e81da9ca260e45ad85a00
[ "MIT" ]
null
null
null
plotmonitor.py
mjlosch/python_scripts
7e3c81382484a70a598e81da9ca260e45ad85a00
[ "MIT" ]
null
null
null
#!/usr/bin/env python # -*- coding: iso-8859-15 -*- ######################## -*- coding: utf-8 -*- """Usage: plotres.py variable INPUTFILE(S) """ import sys from getopt import gnu_getopt as getopt import matplotlib.pyplot as plt import numpy as np import datetime # parse command-line arguments try: optlist,args = getopt(sys.argv[1:], ':', ['verbose']) assert len(args) > 1 except (AssertionError): sys.exit(__doc__) files=[] mystr=args[0] if len(args)<2: from glob import glob for infile in glob(args[1]): files.append(infile) else: files=args[1:] # def getKey(item): return item[0] def get_output (fnames, mystring): """parse fname and get some numbers out""" timev = [] myvar = [] pp = [] for fname in fnames: try: f=open(fname) except: print(fname + " does not exist, continuing") else: # p = [] for line in f: if "time_secondsf" in line: ll = line.split() # p.append(float(ll[-1].replace('D','e'))) # p.append(np.NaN) timev.append(float(ll[-1].replace('D','e'))) myvar.append(np.NaN) if mystring in line: ll = line.split() # p[1] = float(ll[-1].replace('D','e')) # pp.append(p) # p = [] myvar[-1] = float(ll[-1].replace('D','e')) f.close() timevs=np.asarray(timev) myvars=np.asarray(myvar) isort = np.argsort(timevs) timevs=timevs[isort] myvars=myvars[isort] # ppp = sorted( pp, key = getKey ) # indx = sorted(range(len(timev)), key=lambda k: timev[k]) # myvars=[] # timevs=[] # for k in range(len(pp)): # myvars.append(ppp[k][1]) # timevs.append(ppp[k][0]) return timevs, myvars # done fig = plt.figure(figsize=(12, 4)) ax=fig.add_subplot(111) refdate = datetime.datetime(1,1,1,0,0) #refdate = datetime.datetime(1979,1,1,0,0) #refdate = datetime.datetime(1958,1,1,0,0) # determine start date with open(files[0]) as f: for line in f: if 'startDate_1' in line: ll = line.strip().split('=')[-1] refdate = datetime.datetime(int(ll[0:4]),int(ll[4:6]),int(ll[6:8])) #refdate = datetime.datetime(2001,1,1) timesec, h = get_output(files, mystr) if np.all(np.isnan(h)): sys.exit("only nans in timeseries") timeday = np.asarray(timesec)/86400. #xdays = refdate + timeday * datetime.timedelta(days=1) xdays = np.array([refdate + datetime.timedelta(days=i) for i in timeday]) # now plot everything #print timesec[0:2], timesec[-3:-1] #print h[0:2], h[-3:-1] #print timesec #print h ax.plot(xdays, h, '-x', linewidth=1.0) plt.grid() plt.title(mystr) hh=np.ma.masked_array(h,np.isnan(h)) print("mean = "+str(np.mean(hh))) print("min = "+str(np.min(hh))) print("max = "+str(np.max(hh))) print("std = "+str(np.std(hh))) print("last-first = "+str(h[-1]-h[0])) plt.show()
26.179487
79
0.555664
0
0
0
0
0
0
0
0
1,165
0.380346
fbb7a78d183671e9c2e148567652110d81c620e9
14,266
py
Python
src/primaires/communication/contextes/immersion.py
vlegoff/tsunami
36b3b974f6eefbf15cd5d5f099fc14630e66570b
[ "BSD-3-Clause" ]
14
2015-08-21T19:15:21.000Z
2017-11-26T13:59:17.000Z
src/primaires/communication/contextes/immersion.py
vincent-lg/tsunami
36b3b974f6eefbf15cd5d5f099fc14630e66570b
[ "BSD-3-Clause" ]
20
2015-09-29T20:50:45.000Z
2018-06-21T12:58:30.000Z
src/primaires/communication/contextes/immersion.py
vlegoff/tsunami
36b3b974f6eefbf15cd5d5f099fc14630e66570b
[ "BSD-3-Clause" ]
3
2015-05-02T19:42:03.000Z
2018-09-06T10:55:00.000Z
# -*-coding:Utf-8 -* # Copyright (c) 2010-2017 LE GOFF Vincent # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # * Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # * Neither the name of the copyright holder nor the names of its contributors # may be used to endorse or promote products derived from this software # without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE # LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR # CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT # OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN # CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. """Fichier contenant le contexte 'communication:immersion'""" from primaires.format.constantes import ponctuations_finales from primaires.interpreteur.contexte import Contexte from primaires.communication.contextes.invitation import Invitation class Immersion(Contexte): """Contexte d'immersion dans un canal de communication. """ def __init__(self, pere): """Constructeur du contexte""" Contexte.__init__(self, pere) self.opts.prompt_prf = "" self.opts.prompt_clr = "" self.canal = None self.options = { # Options d'user "q" : self.opt_quit, "w" : self.opt_who, "h" : self.opt_help, "i" : self.opt_invite, "me" : self.opt_emote, # Options de modo "e" : self.opt_eject, "b" : self.opt_ban, "a" : self.opt_announce, # Options d'admin "p" : self.opt_promote, "ed" : self.opt_edit, "d" : self.opt_dissolve, } def __getstate__(self): """Nettoyage des options""" dico_attr = Contexte.__getstate__(self) dico_attr["options"] = dico_attr["options"].copy() for rac, fonction in dico_attr["options"].items(): dico_attr["options"][rac] = fonction.__name__ return dico_attr def __setstate__(self, dico_attr): """Récupération du contexte""" Contexte.__setstate__(self, dico_attr) for rac, nom in self.options.items(): fonction = getattr(self, nom) self.options[rac] = fonction @property def u_nom(self): return "immersion:" + self.canal.nom def accueil(self): """Message d'accueil du contexte""" canal = self.canal res = canal.clr + ">|ff| Immersion dans le canal " + canal.nom res += "\n Entrez |ent|/h|ff| pour afficher l'aide." return res def opt_quit(self, arguments): """Option quitter : /q""" canal = self.canal personnage = self.pere.joueur canal.immerger_ou_sortir(personnage) personnage << canal.clr + ">|ff| Retour au jeu." def opt_who(self, arguments): """Option qui : /w""" personnage = self.pere.joueur res = self.canal.clr + ">|ff| Joueurs connectés :" for connecte in self.canal.connectes: if connecte in type(self).importeur.connex.joueurs_connectes: if connecte is self.canal.auteur: statut = "|rgc|@" elif connecte in self.canal.moderateurs: statut = "|jn|*" else: statut = "|bc|" res += "\n " + statut + connecte.nom + "|ff|" if connecte in self.canal.immerges: res += " (immergé)" personnage << res def opt_help(self, arguments): """Options d'affichage de l'aide : /h""" personnage = self.pere.joueur canal = self.canal res = canal.clr + ">|ff| Aide du canal |ent|{}|ff| ({}) :\n".format( canal.nom, canal.resume) res += str(canal.description) res += "\n Administrateur : |rgc|" res += (canal.auteur and canal.auteur.nom or "aucun") + "|ff|" modos = "" if len(canal.moderateurs) == 1: modos = "\n Modérateur : |jn|" + canal.moderateurs[0].nom + "|ff|" elif len(canal.moderateurs) > 1: modos = "\n Modérateurs : |jn|" + "|ff|, |jn|".join( sorted([modo.nom for modo in canal.moderateurs])) + "|ff|" res += modos res += "\n Commandes disponibles :" res += "\n - |cmd|/h|ff| : affiche ce message d'aide" res += "\n - |cmd|/w|ff| : liste les joueurs connectés au canal" res += "\n - |cmd|/i <joueur>|ff| : invite un joueur à rejoindre " res += "le canal" res += "\n - |cmd|/me <message>|ff| : joue une emote dans le canal" res += "\n - |cmd|/q|ff| : permet de sortir du mode immersif" if personnage in canal.moderateurs or personnage is canal.auteur \ or personnage.est_immortel(): res += "\n Commandes de modération :" res += "\n - |cmd|/e <joueur>|ff| : éjecte un joueur" res += "\n - |cmd|/b <joueur>|ff| : bannit ou rappelle un joueur" res += "\n - |cmd|/a <message>|ff| : permet d'envoyer une " res += "annonce impersonnelle" if personnage is canal.auteur or personnage.est_immortel(): res += "\n Commandes d'administration :" res += "\n - |cmd|/p <joueur>|ff| : promeut ou déchoit un joueur " res += "modérateur" res += "\n - |cmd|/ed|ff| : ouvre l'éditeur du canal" res += "\n - |cmd|/d|ff| : dissout le canal" personnage << res def opt_invite(self, arguments): """Option pour inviter un ami à rejoindre le cana : /i <joueur>""" canal = self.canal if not arguments or arguments.isspace(): self.pere.joueur << "|err|Vous devez spécifier un joueur.|ff|" return nom_joueur = arguments.split(" ")[0] joueur = None for t_joueur in type(self).importeur.connex.joueurs_connectes: if nom_joueur == t_joueur.nom.lower(): joueur = t_joueur break if joueur is None: self.pere.joueur << "|err|Le joueur passé en paramètre n'a pu " \ "être trouvé.|ff|" return if joueur in canal.connectes: self.pere.joueur << "|err|Ce joueur est déjà connecté au canal.|ff|" return contexte = Invitation(joueur.instance_connexion) contexte.emetteur = self.pere.joueur contexte.canal = canal contexte.actualiser() self.pere.joueur << "|att|Vous venez d'inviter {} à rejoindre le " \ "canal {}.|ff|".format(joueur.nom, canal.nom) def opt_emote(self, arguments): """Option d'emote dans le contexte immersif""" canal = self.canal joueur = self.pere.joueur if not arguments or arguments.isspace(): joueur << "|err|Vous devez préciser une action.|ff|" return message = arguments.rstrip(" \n") if not message[-1] in ponctuations_finales: message += "." im = canal.clr + "<" + joueur.nom + " " + message + ">|ff|" ex = canal.clr + "[" + canal.nom + "] " + joueur.nom + " " ex += message + "|ff|" for connecte in canal.connectes: if connecte in type(self).importeur.connex.joueurs_connectes: if connecte in canal.immerges: connecte << im else: connecte << ex def opt_eject(self, arguments): """Option permettant d'éjecter un joueur connecté : /e <joueur>""" canal = self.canal if not self.pere.joueur in canal.moderateurs and \ self.pere.joueur is not canal.auteur and not \ self.pere.joueur.est_immortel(): self.pere.joueur << "|err|Vous n'avez pas accès à cette option.|ff|" return if not arguments or arguments.isspace(): self.pere.joueur << "|err|Vous devez spécifier un joueur.|ff|" return nom_joueur = arguments.split(" ")[0] joueur = None for connecte in canal.connectes: if nom_joueur == connecte.nom.lower(): joueur = connecte break if joueur is None: self.pere.joueur << "|err|Ce joueur n'est pas connecté au " \ "canal.|ff|" return if joueur is self.pere.joueur: self.pere.joueur << "|err|Vous ne pouvez vous éjecter " \ "vous-même.|ff|" return if joueur in canal.moderateurs or joueur is canal.auteur: self.pere.joueur << "|err|Vous ne pouvez éjecter ce joueur.|ff|" return canal.ejecter(joueur) def opt_ban(self, arguments): """Option permettant de bannir un joueur connecté : /b <joueur>""" canal = self.canal if not self.pere.joueur in canal.moderateurs and \ self.pere.joueur is not canal.auteur and not \ self.pere.joueur.est_immortel(): self.pere.joueur << "|err|Vous n'avez pas accès à cette option.|ff|" return nom_joueur = arguments.split(" ")[0] joueur = None for t_joueur in type(self).importeur.connex.joueurs: if nom_joueur == t_joueur.nom.lower(): joueur = t_joueur break if joueur is None: self.pere.joueur << "|err|Le joueur passé en paramètre n'a pu " \ "être trouvé.|ff|" return if joueur is self.pere.joueur: self.pere.joueur << "|err|Vous ne pouvez vous bannir vous-même.|ff|" return if joueur in canal.moderateurs or joueur is canal.auteur: self.pere.joueur << "|err|Vous ne pouvez éjecter ce joueur.|ff|" return canal.bannir(joueur) def opt_announce(self, arguments): """Option permettant d'envoyer une annonce : /a <message>""" canal = self.canal if not self.pere.joueur in canal.moderateurs and \ self.pere.joueur is not canal.auteur and not \ self.pere.joueur.est_immortel(): self.pere.joueur << "|err|Vous n'avez pas accès à cette option.|ff|" return message = arguments.rstrip(" \n") canal.envoyer_imp(message) def opt_promote(self, arguments): """Option permettant de promouvoir un joueur connecté : /p <joueur>""" canal = self.canal if self.pere.joueur is not canal.auteur and not \ self.pere.joueur.est_immortel(): self.pere.joueur << "|err|Vous n'avez pas accès à cette option.|ff|" return nom_joueur = arguments.split(" ")[0] joueur = None for connecte in canal.connectes: if nom_joueur == connecte.nom.lower(): joueur = connecte break if joueur is None: self.pere.joueur << "|err|Ce joueur n'est pas connecté au " \ "canal.|ff|" return if joueur is self.pere.joueur: self.pere.joueur << "|err|Vous ne pouvez vous promouvoir " \ "vous-même.|ff|" return if joueur is canal.auteur: self.pere.joueur << "|err|Ce joueur est déjà administrateur.|ff|" return canal.promouvoir_ou_dechoir(joueur) def opt_edit(self, arguments): """Option ouvrant un éditeur du canal""" canal = self.canal if self.pere.joueur is not canal.auteur and not \ self.pere.joueur.est_immortel(): self.pere.joueur << "|err|Vous n'avez pas accès à cette option.|ff|" return editeur = type(self).importeur.interpreteur.construire_editeur( "chedit", self.pere.joueur, canal) self.pere.joueur.contextes.ajouter(editeur) editeur.actualiser() def opt_dissolve(self, arguments): """Option permettant de dissoudre le canal""" canal = self.canal if self.pere.joueur is not canal.auteur and not \ self.pere.joueur.est_immortel(): self.pere.joueur << "|err|Vous n'avez pas accès à cette option.|ff|" return joueur = self.pere.joueur canal.immerger_ou_sortir(joueur, False) canal.rejoindre_ou_quitter(joueur, False) joueur << "|err|Le canal {} a été dissous.|ff|".format(canal.nom) canal.dissoudre() def interpreter(self, msg): """Méthode d'interprétation du contexte""" if msg.startswith("/"): # C'est une option # On extrait le nom de l'option mots = msg.split(" ") option = mots[0][1:] arguments = " ".join(mots[1:]) if option not in self.options.keys(): self.pere << "|err|Option invalide ({}).|ff|".format(option) else: # On appelle la fonction correspondante à l'option fonction = self.options[option] fonction(arguments) else: self.canal.envoyer(self.pere.joueur, msg)
42.207101
80
0.570798
12,509
0.873107
0
0
75
0.005235
0
0
4,913
0.342919
fbb9ce8232b91bd4820115cf24c512ee8d3b9a6c
2,104
py
Python
Projects/ABM_DA/experiments/ukf_experiments/tests/arc_test.py
RobertClay/DUST-RC
09f7ec9d8d093021d068dff8a7a48c15ea318b86
[ "MIT" ]
15
2018-11-21T14:57:24.000Z
2022-03-04T15:42:09.000Z
Projects/ABM_DA/experiments/ukf_experiments/tests/arc_test.py
RobertClay/DUST-RC
09f7ec9d8d093021d068dff8a7a48c15ea318b86
[ "MIT" ]
125
2019-11-06T13:03:35.000Z
2022-03-07T13:38:33.000Z
Projects/ABM_DA/experiments/ukf_experiments/tests/arc_test.py
RobertClay/DUST-RC
09f7ec9d8d093021d068dff8a7a48c15ea318b86
[ "MIT" ]
6
2018-11-20T15:56:49.000Z
2021-10-08T10:21:06.000Z
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Mon Jan 13 12:07:22 2020 @author: medrclaa Stand alone script for testing arc in ARC. simply run pytest arc_test.py To ensure the working environment is suitable for running experiments. If you only wish to run a single experiment then you an easily hash the other 2 for quicker testing time. """ import unittest import os """ run file in ukf_experiments. putting test at top level allows the large number of """ "if running this file on its own. this will move cwd up to ukf_experiments." if os.path.split(os.getcwd())[1] != "ukf_experiments": os.chdir("..") import arc.arc as arc from modules.ukf_fx import HiddenPrints class Test_arc(unittest.TestCase): """test the ukf runs for all 3 experiments in arc this is a fairly long test but tests vitually everything runs bar the plotting. """ @classmethod def setUpClass(cls): pass def test_ex0(self): """run the arc test for the experiment 0 module pass the test if the whole arc test completes. Note that arc_test.py does similar but is actually runnable in arc to check the environment is suitable there. """ with HiddenPrints(): arc.main(arc.ex0_input, arc.ex0_save, test=True) def test_ex1(self): """another arc module for experiment 1 We choose n =5 and proportion observed prop = 0.5 """ with HiddenPrints(): arc.main(arc.ex1_input, test=True) def test_ex2(self): """another arc module test for experiment 2 We choose n = 5 and aggregate square size bin_size = 50 """ with HiddenPrints(): arc.main(arc.ex2_input, test=True) if __name__ == '__main__': "test the three experiments arc functions are working" " each test uses 5 agents and some arbitrary parameters for the sake of speed" arc_tests =Test_arc.setUpClass() unittest.main()
25.047619
82
0.63308
1,163
0.552757
0
0
50
0.023764
0
0
1,330
0.632129
fbbb3304e214d67619ec0cdb7ec6c61b33484d73
646
py
Python
setup.py
dunkgray/nomics-python
1e19647522f62e32218fa4cf859db68d26696d10
[ "MIT" ]
null
null
null
setup.py
dunkgray/nomics-python
1e19647522f62e32218fa4cf859db68d26696d10
[ "MIT" ]
null
null
null
setup.py
dunkgray/nomics-python
1e19647522f62e32218fa4cf859db68d26696d10
[ "MIT" ]
null
null
null
import setuptools with open("README.md", "r") as fh: long_description = fh.read() setuptools.setup( name = "nomics-python", version = "3.1.0", author = "Taylor Facen", author_email = "taylor.facen@gmail.com", description = "A python wrapper for the Nomics API", long_description = long_description, long_description_content_type = "text/markdown", url = "https://github.com/TaylorFacen/nomics-python", packages = setuptools.find_packages(), install_requires = ['requests>=2'], classifiers = [ "Programming Language :: Python :: 3", "License :: OSI Approved :: MIT License" ] )
30.761905
57
0.653251
0
0
0
0
0
0
0
0
262
0.405573
fbbbe5438f901d187d2db29f2722a9a76b8e6ff6
2,177
py
Python
tests/test_day3.py
ullumullu/adventofcode2020
0ad0e6ac7af7d3c21fe2cb42cbb8d29a992ae6d0
[ "MIT" ]
null
null
null
tests/test_day3.py
ullumullu/adventofcode2020
0ad0e6ac7af7d3c21fe2cb42cbb8d29a992ae6d0
[ "MIT" ]
null
null
null
tests/test_day3.py
ullumullu/adventofcode2020
0ad0e6ac7af7d3c21fe2cb42cbb8d29a992ae6d0
[ "MIT" ]
null
null
null
import os from pathlib import Path from typing import List from challenges.day3 import frequency_character def _read_input() -> List[str]: """Read the input file.""" travel_map = [] current_path = Path(os.path.dirname(os.path.realpath(__file__))) image_path = current_path / "resources" / "day3_puzzle_input.txt" with image_path.open("r", encoding="utf-8") as input_file: for line in input_file: travel_map.append(str(line.strip())) return travel_map def test_sample_input_part1(): sample_input = ["..##.......", "#...#...#..", ".#....#..#.", "..#.#...#.#", ".#...##..#.", "..#.##.....", ".#.#.#....#", ".#........#", "#.##...#...", "#...##....#", ".#..#...#.#"] expected_trees_hit = 7 hit_trees = frequency_character( sample_input, right=3, down=1, char="#") assert hit_trees == expected_trees_hit def test_puzzle_input_part1(): input_map = _read_input() result = frequency_character( input_map, right=3, down=1, char="#") print(f"Result: {result}") assert result == 276 def test_sample_input_part2(): sample_input = ["..##.......", "#...#...#..", ".#....#..#.", "..#.#...#.#", ".#...##..#.", "..#.##.....", ".#.#.#....#", ".#........#", "#.##...#...", "#...##....#", ".#..#...#.#"] expected_trees_multiplier = 336 # right, down, expected test_paths = [(1, 1, 2), (3, 1, 7), (5, 1, 3), (7, 1, 4), (1, 2, 2)] result = 1 for test_path in test_paths: hit_trees = frequency_character( sample_input, right=test_path[0], down=test_path[1], char="#") assert hit_trees == test_path[2] result *= hit_trees assert result == expected_trees_multiplier def test_puzzle_input_part2(): input_map = _read_input() test_paths = [(1, 1, 2), (3, 1, 7), (5, 1, 3), (7, 1, 4), (1, 2, 2)] result = 1 for test_path in test_paths: hit_trees = frequency_character( input_map, right=test_path[0], down=test_path[1], char="#") result *= hit_trees print(f"Result: {result}") assert result == 7812180000
32.984848
94
0.521819
0
0
0
0
0
0
0
0
429
0.19706
fbbc3f98679b551d2bd048c8773e0364748a4e51
2,333
py
Python
test/test_format.py
GuyTuval/msgpack-python
8fb709f2e0438862020d8810fa70a81fb5dac7d4
[ "Apache-2.0" ]
1,252
2015-01-05T18:18:10.000Z
2022-03-27T16:40:44.000Z
test/test_format.py
GuyTuval/msgpack-python
8fb709f2e0438862020d8810fa70a81fb5dac7d4
[ "Apache-2.0" ]
298
2015-01-06T12:21:09.000Z
2022-03-11T23:57:58.000Z
test/test_format.py
GuyTuval/msgpack-python
8fb709f2e0438862020d8810fa70a81fb5dac7d4
[ "Apache-2.0" ]
199
2015-01-09T04:33:00.000Z
2022-03-30T15:04:37.000Z
#!/usr/bin/env python # coding: utf-8 from msgpack import unpackb def check(src, should, use_list=0, raw=True): assert unpackb(src, use_list=use_list, raw=raw, strict_map_key=False) == should def testSimpleValue(): check(b"\x93\xc0\xc2\xc3", (None, False, True)) def testFixnum(): check(b"\x92\x93\x00\x40\x7f\x93\xe0\xf0\xff", ((0, 64, 127), (-32, -16, -1))) def testFixArray(): check(b"\x92\x90\x91\x91\xc0", ((), ((None,),))) def testFixRaw(): check(b"\x94\xa0\xa1a\xa2bc\xa3def", (b"", b"a", b"bc", b"def")) def testFixMap(): check( b"\x82\xc2\x81\xc0\xc0\xc3\x81\xc0\x80", {False: {None: None}, True: {None: {}}} ) def testUnsignedInt(): check( b"\x99\xcc\x00\xcc\x80\xcc\xff\xcd\x00\x00\xcd\x80\x00" b"\xcd\xff\xff\xce\x00\x00\x00\x00\xce\x80\x00\x00\x00" b"\xce\xff\xff\xff\xff", (0, 128, 255, 0, 32768, 65535, 0, 2147483648, 4294967295), ) def testSignedInt(): check( b"\x99\xd0\x00\xd0\x80\xd0\xff\xd1\x00\x00\xd1\x80\x00" b"\xd1\xff\xff\xd2\x00\x00\x00\x00\xd2\x80\x00\x00\x00" b"\xd2\xff\xff\xff\xff", (0, -128, -1, 0, -32768, -1, 0, -2147483648, -1), ) def testRaw(): check( b"\x96\xda\x00\x00\xda\x00\x01a\xda\x00\x02ab\xdb\x00\x00" b"\x00\x00\xdb\x00\x00\x00\x01a\xdb\x00\x00\x00\x02ab", (b"", b"a", b"ab", b"", b"a", b"ab"), ) check( b"\x96\xda\x00\x00\xda\x00\x01a\xda\x00\x02ab\xdb\x00\x00" b"\x00\x00\xdb\x00\x00\x00\x01a\xdb\x00\x00\x00\x02ab", ("", "a", "ab", "", "a", "ab"), raw=False, ) def testArray(): check( b"\x96\xdc\x00\x00\xdc\x00\x01\xc0\xdc\x00\x02\xc2\xc3\xdd\x00" b"\x00\x00\x00\xdd\x00\x00\x00\x01\xc0\xdd\x00\x00\x00\x02" b"\xc2\xc3", ((), (None,), (False, True), (), (None,), (False, True)), ) def testMap(): check( b"\x96" b"\xde\x00\x00" b"\xde\x00\x01\xc0\xc2" b"\xde\x00\x02\xc0\xc2\xc3\xc2" b"\xdf\x00\x00\x00\x00" b"\xdf\x00\x00\x00\x01\xc0\xc2" b"\xdf\x00\x00\x00\x02\xc0\xc2\xc3\xc2", ( {}, {None: False}, {True: False, None: False}, {}, {None: False}, {True: False, None: False}, ), )
25.358696
88
0.533648
0
0
0
0
0
0
0
0
1,037
0.444492
fbbc5a0d2746e83d3a087caa18124913a0952155
519
py
Python
src/main/resources/pytz/zoneinfo/Asia/Brunei.py
TheEin/swagger-maven-plugin
cf93dce2d5c8d3534f4cf8c612b11e2d2313871b
[ "Apache-2.0" ]
65
2015-11-14T13:46:01.000Z
2021-08-14T05:54:04.000Z
lib/pytz/zoneinfo/Asia/Brunei.py
tjsavage/polymer-dashboard
19bc467f1206613f8eec646b6f2bc43cc319ef75
[ "CNRI-Python", "Linux-OpenIB" ]
13
2016-03-31T20:00:17.000Z
2021-08-20T14:52:31.000Z
lib/pytz/zoneinfo/Asia/Brunei.py
tjsavage/polymer-dashboard
19bc467f1206613f8eec646b6f2bc43cc319ef75
[ "CNRI-Python", "Linux-OpenIB" ]
20
2015-03-18T08:41:37.000Z
2020-12-18T02:58:30.000Z
'''tzinfo timezone information for Asia/Brunei.''' from pytz.tzinfo import DstTzInfo from pytz.tzinfo import memorized_datetime as d from pytz.tzinfo import memorized_ttinfo as i class Brunei(DstTzInfo): '''Asia/Brunei timezone definition. See datetime.tzinfo for details''' zone = 'Asia/Brunei' _utc_transition_times = [ d(1,1,1,0,0,0), d(1926,2,28,16,20,20), d(1932,12,31,16,30,0), ] _transition_info = [ i(27600,0,'LMT'), i(27000,0,'BNT'), i(28800,0,'BNT'), ] Brunei = Brunei()
20.76
74
0.674374
318
0.612717
0
0
0
0
0
0
148
0.285164
fbbc6e1e7a5fe37234c1f6cec6987abfae3a501e
4,184
py
Python
raiden/tests/unit/test_messages.py
ConsenSysMesh/raiden
76510e5535fa0a1ceb26107b560f805f3d7d26d9
[ "MIT" ]
3
2017-04-24T01:09:28.000Z
2017-05-26T18:32:34.000Z
raiden/tests/unit/test_messages.py
ConsenSysMesh/raiden
76510e5535fa0a1ceb26107b560f805f3d7d26d9
[ "MIT" ]
1
2021-10-31T12:41:15.000Z
2021-10-31T12:41:15.000Z
raiden/tests/unit/test_messages.py
isabella232/raiden
76510e5535fa0a1ceb26107b560f805f3d7d26d9
[ "MIT" ]
1
2021-10-31T12:05:52.000Z
2021-10-31T12:05:52.000Z
# -*- coding: utf-8 -*- import pytest from raiden.messages import Ping, Ack, decode, Lock, MediatedTransfer from raiden.utils import make_privkey_address, sha3 PRIVKEY, ADDRESS = make_privkey_address() def test_signature(): ping = Ping(nonce=0) ping.sign(PRIVKEY, ADDRESS) assert ping.sender == ADDRESS def test_encoding(): ping = Ping(nonce=0) ping.sign(PRIVKEY, ADDRESS) decoded_ping = decode(ping.encode()) assert isinstance(decoded_ping, Ping) assert decoded_ping.sender == ADDRESS == ping.sender assert ping.nonce == decoded_ping.nonce assert ping.signature == decoded_ping.signature assert ping.cmdid == decoded_ping.cmdid assert ping.hash == decoded_ping.hash def test_hash(): ping = Ping(nonce=0) ping.sign(PRIVKEY, ADDRESS) data = ping.encode() msghash = sha3(data) decoded_ping = decode(data) assert sha3(decoded_ping.encode()) == msghash def test_ack(): echo = sha3(PRIVKEY) ack = Ack(ADDRESS, echo) assert ack.echo == echo data = ack.encode() msghash = sha3(data) decoded_ack = decode(data) assert decoded_ack.echo == ack.echo assert decoded_ack.sender == ack.sender assert sha3(decoded_ack.encode()) == msghash def test_mediated_transfer(): nonce = balance = 1 token = recipient = target = initiator = ADDRESS hashlock = locksroot = sha3(ADDRESS) amount = expiration = 1 fee = 0 lock = Lock(amount, expiration, hashlock) mediated_transfer = MediatedTransfer( 1, # TODO: fill in identifier nonce, token, balance, recipient, locksroot, lock, target, initiator, fee, ) assert roundtrip_serialize_mediated_transfer(mediated_transfer) def make_lock_with_amount(amount): return Lock(amount, 1, "a" * 32) def make_mediated_transfer_with_amount(amount): return MediatedTransfer( 0, 1, ADDRESS, amount, ADDRESS, "", make_lock_with_amount(amount), ADDRESS, ADDRESS, 0 ) def make_mediated_transfer_with_nonce(nonce): return MediatedTransfer( 0, nonce, ADDRESS, 1, ADDRESS, "", make_lock_with_amount(1), ADDRESS, ADDRESS, 0 ) def make_mediated_transfer_with_fee(fee): return MediatedTransfer( 0, 1, ADDRESS, 1, ADDRESS, "", make_lock_with_amount(1), ADDRESS, ADDRESS, fee ) def roundtrip_serialize_mediated_transfer(mediated_transfer): mediated_transfer.sign(PRIVKEY, ADDRESS) decoded_mediated_transfer = decode(mediated_transfer.encode()) assert decoded_mediated_transfer == mediated_transfer return True @pytest.mark.parametrize("amount", [-1, 2 ** 256]) @pytest.mark.parametrize("make", [make_lock_with_amount, make_mediated_transfer_with_amount]) def test_amount_out_of_bounds(amount, make): with pytest.raises(ValueError): make(amount) @pytest.mark.parametrize("amount", [0, 2 ** 256 - 1]) def test_mediated_transfer_amount_min_max(amount): mediated_transfer = make_mediated_transfer_with_amount(amount) assert roundtrip_serialize_mediated_transfer(mediated_transfer) @pytest.mark.parametrize("nonce", [2 ** 64]) def test_mediated_transfer_nonce_out_of_bounds(nonce): with pytest.raises(ValueError): make_mediated_transfer_with_nonce(nonce) @pytest.mark.parametrize("nonce", [2 ** 64 - 1]) def test_mediated_transfer_nonce_max(nonce): mediated_transfer = make_mediated_transfer_with_nonce(nonce) assert roundtrip_serialize_mediated_transfer(mediated_transfer) @pytest.mark.parametrize("fee", [2 ** 256]) def test_mediated_transfer_fee_out_of_bounds(fee): with pytest.raises(ValueError): make_mediated_transfer_with_fee(fee) @pytest.mark.parametrize("fee", [0, 2 ** 256 - 1]) def test_mediated_transfer_fee_min_max(fee): mediated_transfer = make_mediated_transfer_with_fee(fee) assert roundtrip_serialize_mediated_transfer(mediated_transfer)
25.668712
70
0.675908
0
0
0
0
1,328
0.3174
0
0
104
0.024857
fbbdd496f48c965142da201326e11323ba150849
6,428
py
Python
python/helpful_scripts/circle_packing.py
Oilgrim/ivs_sim
95dc017ef2aec32173e73dc397ba00177d4f92ce
[ "MIT" ]
null
null
null
python/helpful_scripts/circle_packing.py
Oilgrim/ivs_sim
95dc017ef2aec32173e73dc397ba00177d4f92ce
[ "MIT" ]
null
null
null
python/helpful_scripts/circle_packing.py
Oilgrim/ivs_sim
95dc017ef2aec32173e73dc397ba00177d4f92ce
[ "MIT" ]
1
2019-08-07T03:16:47.000Z
2019-08-07T03:16:47.000Z
#!/usr/bin/env python2 # -*- coding: utf-8 -*- """ Created on Wed Jul 5 12:41:09 2017 @author: lracuna """ #!/usr/bin/env python """ This program uses a simple implementation of the ADMM algorithm to solve the circle packing problem. We solve minimize 1 subject to |x_i - x_j| > 2R, R < x_i, y_i < L - R We put a bunch of equal radius balls inside a square. Type --help to see the options of the program. Must create a directory .figs. Guilherme Franca guifranca@gmail.com November 2015 """ import sys, os, optparse import numpy as np import matplotlib.pyplot as plt from matplotlib.patches import Rectangle, Circle def nonoverlap(a, i, omega, R): """No overlap constraint. This function receives a 1D array which is the row of a matrix. Each element is a vector. i is which row we are passing. """ nonzeroi = np.nonzero(omega[i])[0] x = a n1, n2 = a[nonzeroi] vec = n1 - n2 norm = np.linalg.norm(vec) if norm < 2*R: # push the balls appart disp = R - norm/2 x[nonzeroi] = n1 + (disp/norm)*vec, n2 - (disp/norm)*vec return x def insidebox(a, i, omega, R, L): """Keep the balls inside the box.""" j = np.nonzero(omega[i])[0][0] x = a n = a[j] if n[0] < R: x[j,0] = R elif n[0] > L-R: x[j,0] = L-R if n[1] < R: x[j,1] = R elif n[1] > L-R: x[j,1] = L-R return x def make_graph(t, z, imgpath, R, L): """Create a plot of a given time. z contains a list of vectors with the position of the center of each ball. t is the iteration time. """ fig = plt.figure() ax = fig.add_subplot(1, 1, 1) fig.suptitle('t=%i' % t) ax.add_patch(Rectangle((0,0), L, L, fill=False, linestyle='solid', linewidth=2, color='blue')) plt.xlim(-0.5, L+0.5) plt.ylim(-0.5, L+0.5) plt.axes().set_aspect('equal') colors = iter(plt.cm.prism_r(np.linspace(0,1,N))) for x in z: c = next(colors) ax.add_patch(Circle(x, radius=R, color=c, alpha=.6)) plt.axis('off') fig.tight_layout() fig.savefig(imgpath % t, format='png') print imgpath plt.close(fig) def make_omega(N): """Topology matrix Columns label variables, and rows the functions. You must order all the "nonoverlap" functions first and the "inside box" function last. We also create a vectorized version of omega. """ o1 = [] o2 = [] one = np.array([1,1]) zero = np.array([0,0]) # TODO: this is the most expensive way of creating these matrices. # Maybe improve this. for i in range(N): for j in range(i+1, N): row1 = [0]*N row1[i], row1[j] = 1, 1 o1.append(row1) row2 = [zero]*N row2[i], row2[j] = one, one o2.append(row2) for i in range(N): row = [0]*N row[i] = 1 o1.append(row) row2 = [zero]*N row2[i] = one o2.append(row2) o1 = np.array(o1) o2 = np.array(o2) return o1, o2 ############################################################################### if __name__ == '__main__': usg = "%prog -L box -R radius -N balls -M iter [-r rate -o output]" dsc = "Use ADMM optimization algorithm to fit balls into a box." parser = optparse.OptionParser(usage=usg, description=dsc) parser.add_option('-L', '--box_size', action='store', dest='L', type='float', help='size of the box') parser.add_option('-R', '--radius', action='store', dest='R', type='float', help='radius of the balls') parser.add_option('-N', '--num_balls', action='store', dest='N', type='int', help='number of balls') parser.add_option('-M', '--iter', action='store', dest='M', type='int', help='number of iterations') parser.add_option('-r', '--rate', action='store', dest='rate', default=10, type='float', help='frame rate for the movie') parser.add_option('-o', '--output', action='store', dest='out', default='out.mp4', type='str', help='movie output file') parser.add_option('-a', '--alpha', action='store', dest='alpha', default=0.05, type='float', help='alpha parameter') parser.add_option('-p', '--rho', action='store', dest='rho', default=0.5, type='float', help='rho parameter') options, args = parser.parse_args() if not options.L: parser.error("-L option is mandatory") if not options.R: parser.error("-R option is mandatory") if not options.N: parser.error("-N option is mandatory") if not options.M: parser.error("-M option is mandatory") # initialization L = options.L R = options.R N = options.N max_iter = options.M rate = options.rate output = options.out omega, omega_vec = make_omega(N) num_funcs = len(omega) num_vars = len(omega[0]) s = (num_funcs, num_vars, 2) alpha = float(options.alpha) x = np.ones(s)*omega_vec z = np.random.random_sample(size=(num_vars, 2))+\ (L/2.)*np.ones((num_vars, 2)) zz = np.array([z]*num_funcs)*omega_vec u = np.ones(s)*omega_vec n = np.ones(s)*omega_vec rho = float(options.rho)*omega_vec # performing optimization if not os.path.exists('.figs'): os.makedirs('.figs') os.system("rm -rf .figs/*") imgpath = '.figs/fig%04d.png' for k in range(max_iter): n = zz - u # proximal operator for i in range(num_funcs): if i < num_funcs - num_vars: x[i] = nonoverlap(n[i], i, omega, R) else: x[i] = insidebox(n[i], i, omega, R, L) m = x + u z = np.sum(rho*m, axis=0)/np.sum(rho, axis=0) zz = np.array([z]*num_funcs)*omega_vec u = u + alpha*(x-zz) if k == (max_iter-1): make_graph(k, z, imgpath, R, L) print "doing %i/%i" % (k, max_iter) print "Generating animation '%s' ..." % (output) os.system("ffmpeg -y -r %f -sameq -i %s %s > /dev/null 2>&1" % \ (rate, imgpath, output)) #os.system("rm -rf .figs/*") #os.rmdir('.figs') print "Done!" print "Playing ..." os.system("mplayer %s > /dev/null 2>&1" % output)
31.665025
79
0.549471
0
0
0
0
0
0
0
0
2,245
0.349253
fbc1e336b5068fcf3a34a0e6490251bfd7d85954
7,658
py
Python
models/train/train_seq2seq.py
Chucooleg/alfred
250cdc8b1e75dd6acb9e20d3c616beec63307a46
[ "MIT" ]
1
2021-07-19T01:58:51.000Z
2021-07-19T01:58:51.000Z
models/train/train_seq2seq.py
Chucooleg/alfred
250cdc8b1e75dd6acb9e20d3c616beec63307a46
[ "MIT" ]
null
null
null
models/train/train_seq2seq.py
Chucooleg/alfred
250cdc8b1e75dd6acb9e20d3c616beec63307a46
[ "MIT" ]
null
null
null
import os import sys import random sys.path.append(os.path.join(os.environ['ALFRED_ROOT'])) sys.path.append(os.path.join(os.environ['ALFRED_ROOT'], 'models')) import torch import pprint import json from data.preprocess import Dataset from importlib import import_module from argparse import ArgumentDefaultsHelpFormatter, ArgumentParser from models.utils.helper_utils import optimizer_to if __name__ == '__main__': # parser parser = ArgumentParser(formatter_class=ArgumentDefaultsHelpFormatter) # settings parser.add_argument('--seed', help='random seed', default=123, type=int) parser.add_argument('--data', help='dataset folder', default='data/json_feat_2.1.0') parser.add_argument('--splits', help='json file containing train/dev/test splits', default='data/splits/may17.json') parser.add_argument('--preprocess', help='store preprocessed data to json files', action='store_true') parser.add_argument('--pp_folder', help='folder name for preprocessed data') parser.add_argument('--object_vocab', help='object_vocab version, should be file with .object_vocab ending. default is none', default='none') parser.add_argument('--save_every_epoch', help='save model after every epoch (warning: consumes a lot of space)', action='store_true') parser.add_argument('--model', help='model to use', required=True) parser.add_argument('--gpu', help='use gpu', action='store_true') parser.add_argument('--dout', help='where to save model', default='exp/model:{model}') parser.add_argument('--resume', help='load a checkpoint') # hyper parameters parser.add_argument('--batch', help='batch size', default=8, type=int) parser.add_argument('--epoch', help='number of epochs', default=20, type=int) parser.add_argument('--lr', help='optimizer learning rate', default=1e-4, type=float) parser.add_argument('--decay_epoch', help='num epoch to adjust learning rate', default=10, type=int) parser.add_argument('--dhid', help='hidden layer size', default=512, type=int) parser.add_argument('--dframe', help='image feature vec size', default=2500, type=int) parser.add_argument('--demb', help='language embedding size', default=100, type=int) parser.add_argument('--pframe', help='image pixel size (assuming square shape eg: 300x300)', default=300, type=int) parser.add_argument('--mask_loss_wt', help='weight of mask loss', default=1., type=float) parser.add_argument('--action_loss_wt', help='weight of action loss', default=1., type=float) parser.add_argument('--subgoal_aux_loss_wt', help='weight of subgoal completion predictor', default=0., type=float) parser.add_argument('--pm_aux_loss_wt', help='weight of progress monitor', default=0., type=float) # architecture ablations parser.add_argument('--encoder_addons', type=str, default='none', choices=['none', 'max_pool_obj', 'biattn_obj']) parser.add_argument('--decoder_addons', type=str, default='none', choices=['none', 'aux_loss']) parser.add_argument('--object_repr', type=str, default='type', choices=['none', 'type', 'instance']) parser.add_argument('--reweight_aux_bce', help='reweight binary CE for auxiliary tasks', action='store_true') # target parser.add_argument('--predict_goal_level_instruction', help='predict abstract single goal level instruction for entire task.', action='store_true') # dropouts parser.add_argument('--zero_goal', help='zero out goal language', action='store_true') parser.add_argument('--zero_instr', help='zero out step-by-step instr language', action='store_true') parser.add_argument('--act_dropout', help='dropout rate for action input sequence', default=0., type=float) parser.add_argument('--lang_dropout', help='dropout rate for language (goal + instr)', default=0., type=float) parser.add_argument('--input_dropout', help='dropout rate for concatted input feats', default=0., type=float) parser.add_argument('--vis_dropout', help='dropout rate for Resnet feats', default=0.3, type=float) parser.add_argument('--hstate_dropout', help='dropout rate for LSTM hidden states during unrolling', default=0.3, type=float) parser.add_argument('--attn_dropout', help='dropout rate for attention', default=0., type=float) parser.add_argument('--actor_dropout', help='dropout rate for actor fc', default=0., type=float) parser.add_argument('--word_dropout', help='dropout rate for word fc', default=0., type=float) # other settings parser.add_argument('--train_teacher_forcing', help='use gpu', action='store_true') parser.add_argument('--train_student_forcing_prob', help='bernoulli probability', default=0.1, type=float) parser.add_argument('--temp_no_history', help='use gpu', action='store_true') # debugging parser.add_argument('--fast_epoch', help='fast epoch during debugging', action='store_true') parser.add_argument('--dataset_fraction', help='use fraction of the dataset for debugging (0 indicates full size)', default=0, type=int) # args and init args = parser.parse_args() args.dout = args.dout.format(**vars(args)) torch.manual_seed(args.seed) # check if dataset has been preprocessed if not os.path.exists(os.path.join(args.data, "%s.vocab" % args.pp_folder)) and not args.preprocess: raise Exception("Dataset not processed; run with --preprocess") # make output dir pprint.pprint(args) if not os.path.isdir(args.dout): os.makedirs(args.dout) # load train/valid/tests splits with open(args.splits) as f: splits = json.load(f) # create sanity check split as a small sample of train set if not 'train_sanity' in splits: print('Creating train_sanity split. Will save an updated split file.') splits['train_sanity'] = random.sample(splits['train'], k=len(splits['valid_seen'])) with open(args.splits, 'w') as f: json.dump(splits, f) pprint.pprint({k: len(v) for k, v in splits.items()}) # preprocess and save if args.preprocess: print("\nPreprocessing dataset and saving to %s folders ... This will take a while. Do this once as required." % args.pp_folder) dataset = Dataset(args, None) dataset.preprocess_splits(splits, args.pp_folder) vocab = torch.load(os.path.join(args.dout, "%s.vocab" % args.pp_folder)) else: vocab = torch.load(os.path.join(args.data, "%s.vocab" % args.pp_folder)) # load object vocab if args.object_vocab != 'none': object_vocab = torch.load(os.path.join(args.data, '%s' % args.object_vocab)) else: object_vocab = None # load model M = import_module('model.{}'.format(args.model)) if args.resume: print("Loading: " + args.resume) model, optimizer, start_epoch, start_iters = M.Module.load(args.resume) end_epoch = args.epoch if start_epoch >= end_epoch: print('Checkpoint already finished {}/{} epochs.'.format(start_epoch, end_epoch)) sys.exit(0) else: print("Restarting at epoch {}/{}".format(start_epoch, end_epoch-1)) else: model = M.Module(args, vocab, object_vocab) optimizer = None start_epoch = 0 start_iters = None end_epoch = args.epoch # to gpu if args.gpu: model = model.to(torch.device('cuda')) model.demo_mode = False if not optimizer is None: optimizer_to(optimizer, torch.device('cuda')) # start train loop model.run_train(splits, optimizer=optimizer, start_epoch=start_epoch, end_epoch=end_epoch, start_iters=start_iters)
53.180556
152
0.69953
0
0
0
0
0
0
0
0
2,988
0.39018
fbc201d1881ba8593f71b1f223ddd8ebc3cad88f
474
py
Python
tests/search_test.py
martingaston/billy-search
60bdfa0cf740675c3afd86ad68f83755c9cd6596
[ "MIT" ]
null
null
null
tests/search_test.py
martingaston/billy-search
60bdfa0cf740675c3afd86ad68f83755c9cd6596
[ "MIT" ]
17
2018-11-28T19:20:01.000Z
2019-01-06T18:00:58.000Z
tests/search_test.py
martingaston/billy-search
60bdfa0cf740675c3afd86ad68f83755c9cd6596
[ "MIT" ]
null
null
null
import pytest from billy.utils.search import google_book_search class TestGoogleBookSearch(object): def test_search_returns_200(self, mock): """Ensure a basic search returns a 200 request""" assert google_book_search("Harry Potter")["status"] == 200 def test_search_body_returns_dict(self, mock): """Ensure we're getting a JSON dict back from google_book_search()""" assert type(google_book_search("Harry Potter")["body"]) is dict
36.461538
77
0.721519
407
0.85865
0
0
0
0
0
0
160
0.337553
fbc22fb24183b91ed5d90aa53daf5acd378bad49
2,981
py
Python
src/config.py
Clloud/MostPopularRoute
fd89c103b1635e4028913263fb667949d35c3986
[ "MIT" ]
7
2019-08-22T06:34:02.000Z
2021-12-20T00:00:36.000Z
src/config.py
Clloud/MostPopularRoute
fd89c103b1635e4028913263fb667949d35c3986
[ "MIT" ]
null
null
null
src/config.py
Clloud/MostPopularRoute
fd89c103b1635e4028913263fb667949d35c3986
[ "MIT" ]
2
2022-01-15T11:48:57.000Z
2022-02-10T05:24:38.000Z
import math class Config_1: DATASET_ROOT_DIR = '../data/test1/Data' # The data set root directory DATASET_SCALE = 0 # How many users' trajectory data are choosed TRAJACTORY_SCALE = 20 # How many trajectories are choosed per user RANGE = { # To pick trajectory points within the range 'status': False } GROUP_SIZE_THRESHOLD = 3 # group size threshold φ COHERENCE_THRESHOLD = 0.4 # coherence threshold τ SCALING_FACTOR = 1.5 # scaling factor δ TURNING_ALPHA = 5 # tuning parameter α TURNING_BETA = 2 # tuning parameter β RADIUS = SCALING_FACTOR * \ ((-math.log(COHERENCE_THRESHOLD)) ** (1 / TURNING_ALPHA)) class Config_2: DATASET_ROOT_DIR = '../data/test2/Data' # The data set root directory DATASET_SCALE = 3 # How many users' trajectory data are choosed TRAJACTORY_SCALE = 4 # How many trajectories are choosed per user RANGE = { # To pick trajectory points within the range 'status': True, 'longitude_upper_bound': 116.32, 'longitude_lower_bound': 116.304, 'latitude_upper_bound': 40.018, 'latitude_lower_bound': 40.004, } GROUP_SIZE_THRESHOLD = 3 # group size threshold φ COHERENCE_THRESHOLD = 0.99 # coherence threshold τ SCALING_FACTOR = 15e-4 # scaling factor δ TURNING_ALPHA = 5 # tuning parameter α TURNING_BETA = 2 # tuning parameter β RADIUS = SCALING_FACTOR * \ ((-math.log(COHERENCE_THRESHOLD)) ** (1 / TURNING_ALPHA)) class Config_3: DATASET_ROOT_DIR = '../data/test3/Data' # The data set root directory DATASET_SCALE = 0 # How many users' trajectory data are choosed TRAJACTORY_SCALE = 20 # How many trajectories are choosed per user RANGE = { # To pick trajectory points within the range 'status': False } GROUP_SIZE_THRESHOLD = 3 # group size threshold φ COHERENCE_THRESHOLD = 0.49 # coherence threshold τ SCALING_FACTOR = 1.1 # scaling factor δ TURNING_ALPHA = 5 # tuning parameter α TURNING_BETA = 2 # tuning parameter β RADIUS = SCALING_FACTOR * \ ((-math.log(COHERENCE_THRESHOLD)) ** (1 / TURNING_ALPHA)) class Config(Config_3): __attr__ = ['DATASET_ROOT_DIR', 'DATASET_SCALE', 'TRAJACTORY_SCALE', 'RANGE', 'GROUP_SIZE_THRESHOLD', 'COHERENCE_THRESHOLD', 'SCALING_FACTOR', 'TURNING_ALPHA', 'TURNING_BETA', 'RADIUS'] def __str__(self): s = "" for attr in self.__attr__: s += attr + ' ' + str(getattr(self, attr)) + '\n' return s def __repr__(self): return self.__str__()
40.835616
85
0.578665
2,974
0.992657
0
0
0
0
0
0
1,153
0.384846
fbc2e6fec230818b054f8a5d8e0894e49655314a
766
py
Python
Python/first01.py
praseedpai/WhetYourApettite
d71780f5b52401eea71e631ba030270fca5d6005
[ "MIT" ]
null
null
null
Python/first01.py
praseedpai/WhetYourApettite
d71780f5b52401eea71e631ba030270fca5d6005
[ "MIT" ]
null
null
null
Python/first01.py
praseedpai/WhetYourApettite
d71780f5b52401eea71e631ba030270fca5d6005
[ "MIT" ]
null
null
null
import sys from sys import exit if len(sys.argv) == 1 : print ("No command line argument" ) sys.exit() #else : # print ("rest of the program ") #numbers = sys.argv[1:] #print (sorted(numbers, key=lambda x: float(x))) numbers = [] i=1 n= len(sys.argv) while ( i < n ): numbers.append(sys.argv[i]) i=i+1 # bubbleSort(numbers) n = len(numbers) # Traverse through all array elements for i in range(n): # Last i elements are already in place for j in range(0, n-i-1): # traverse the array from 0 to n-i-1 # Swap if the element found is greater # than the next element if numbers[j] > numbers[j+1] : numbers[j], numbers[j+1] = numbers[j+1], numbers[j] print(numbers)
15.632653
67
0.590078
0
0
0
0
0
0
0
0
336
0.438642
fbc2ffbc7159afa22106299ea24d3e4ca2b28846
4,553
py
Python
library/gui.py
bwbryant1/Library
be8f9bb4fef448ca8630cdae36136bf16b691412
[ "MIT" ]
null
null
null
library/gui.py
bwbryant1/Library
be8f9bb4fef448ca8630cdae36136bf16b691412
[ "MIT" ]
null
null
null
library/gui.py
bwbryant1/Library
be8f9bb4fef448ca8630cdae36136bf16b691412
[ "MIT" ]
null
null
null
from . import dbFuncs import sys, os import pkg_resources from PyQt5.QtCore import Qt from PyQt5.QtWidgets import QApplication, qApp, QHBoxLayout, QMainWindow, QAction, QMessageBox, QFileDialog, QPushButton from PyQt5.QtGui import QIcon class MainWindow(QMainWindow): def __init__(self): super(MainWindow,self).__init__() self.resource_package = __name__ self.iconsFolder = 'icons' self.setWindowTitle('Library Manager 0.1') self.setMinimumSize(800,400) self.createActions() self.createMenuBar() self.createToolBar() def getFileResource(self,name,type): if type == 'icon': self.resourceFolder = self.iconsFolder resource_path = '/'.join((self.resourceFolder, name)) return pkg_resources.resource_filename(self.resource_package, resource_path) def createActions(self): self.newAct = QAction(QIcon(self.getFileResource('sync.svg','icon')),'&New Library', self) self.newAct.setShortcut('Ctrl+n') self.newAct.setStatusTip('New Library') self.newAct.triggered.connect(self.newDialog) self.openAct = QAction(QIcon(self.getFileResource('gear.svg','icon')),'&Open Library', self) self.openAct.setShortcut('Ctrl+o') self.openAct.setStatusTip('Open Library') self.openAct.triggered.connect(self.openDialog) self.exitAct = QAction(QIcon(self.getFileResource('x.svg','icon')),'&Exit LibMan', self) self.exitAct.setShortcut('Ctrl+Q') self.exitAct.setStatusTip('Exit application') self.exitAct.triggered.connect(qApp.quit) self.aboutAct = QAction("&About", self, statusTip="Show the application's About box", triggered=self.about) def createMenuBar(self): menu = self.menuBar() menu.setNativeMenuBar(False) fileMenu = menu.addMenu('File') fileMenu.addAction(self.newAct) fileMenu.addAction('Recent') fileMenu.addSeparator() fileMenu.addAction('Import items') fileMenu.addAction('Export items') fileMenu.addAction(self.openAct) fileMenu.addSeparator() fileMenu.addAction(self.exitAct) editMenu = menu.addMenu('Edit') editMenu.addAction('Undo') editMenu.addAction('Redo') editMenu.addAction('Add Selected to Reading List') editMenu.addAction('Delete Selected') editMenu.addAction('Preferences') viewMenu = menu.addMenu('View') viewMenu.addAction('Hide Sidebar') viewMenu.addAction('Increase List Size') viewMenu.addAction('Decrease List Size') viewMenu.addAction('Go Fullscreen') aboutMenu = menu.addMenu('About') aboutMenu.addAction(self.aboutAct) def createToolBar(self): self.toolbar = self.addToolBar("Toolbar") self.toolbar.addAction(self.openAct) self.toolbar.addSeparator() self.toolbar.addAction(self.exitAct) def setStatusBar(self,msg): self.statusBar().showMessage(str(msg)) def about(self): QMessageBox.about(self, "About Library Manager", "The <b>Library Manger</b> app was made for CYEN 481" "<br>Its Authors are: Brandon Bryant, Caroline Fontenot, and Sai Spurthy") def openDialog(self): fileName = QFileDialog.getOpenFileName(self, 'Open file') libPath = fileName[0] msg = QMessageBox.information(self, 'Open Library', "Opening your library located at:" + libPath , QMessageBox.Ok | QMessageBox.Cancel) if msg == QMessageBox.Ok: self.listLibrary(libPath) else: print('Cancel clicked.') def newDialog(self): fileName, filter = QFileDialog.getSaveFileName(self, 'Save file', '', filter ="Allfiles (*)") locationOf = os.getcwd() nameOf = os.path.basename(fileName) dbFuncs.makeNewLibrary(nameOf,locationOf) def listLibrary(self,libPath): bookListTuple = dbFuncs.listBooksInLibrary(libPath)['bookListTuple'] listLen = len(bookListTuple) #TESTING PURPOSE for _book,_bookmark in bookListTuple: print("Title: "+ _book + " | Bookmark: "+ str(_bookmark)) def launch(): app = None if ( not QApplication.instance() ): # create a new application app = QApplication(sys.argv) window = MainWindow() window.setStatusBar("Welcome Back") window.showMaximized() window.show() app.exec_()
36.717742
143
0.648144
4,038
0.886888
0
0
0
0
0
0
795
0.17461
fbc4f59dc823de1070c620320ec7ff2dee6fbd35
135
py
Python
du/ps_utils.py
diogo149/doo
d83a1715fb9d4e5eac9f5d3d384a45cfc26fec2f
[ "MIT" ]
1
2016-11-17T06:34:39.000Z
2016-11-17T06:34:39.000Z
du/ps_utils.py
diogo149/doo
d83a1715fb9d4e5eac9f5d3d384a45cfc26fec2f
[ "MIT" ]
null
null
null
du/ps_utils.py
diogo149/doo
d83a1715fb9d4e5eac9f5d3d384a45cfc26fec2f
[ "MIT" ]
null
null
null
import os import psutil import time def process_time(): p = psutil.Process(os.getpid()) return time.time() - p.create_time()
15
40
0.688889
0
0
0
0
0
0
0
0
0
0
fbc4fa09de1f509b411b286d8439548aa1647a45
544
py
Python
config.py
Laikos38/rockopy
3816ebb8466a27c65e76a387abc36c96df688ef7
[ "CC0-1.0" ]
null
null
null
config.py
Laikos38/rockopy
3816ebb8466a27c65e76a387abc36c96df688ef7
[ "CC0-1.0" ]
null
null
null
config.py
Laikos38/rockopy
3816ebb8466a27c65e76a387abc36c96df688ef7
[ "CC0-1.0" ]
null
null
null
# ================================================= # SERVER CONFIGURATIONS # ================================================= CLIENT_ID='' CLIENT_SECRET='' REDIRECT_URI='http://ROCKOPY/' # ================================================= # SERVER CONFIGURATIONS # ================================================= SERVER_IP = "127.0.0.1" SERVER_PORT = 5043 # ================================================= # OTHER OPTIONS # ================================================= # how many track search results show: TRACKS_TO_SEARCH = 5
24.727273
51
0.318015
0
0
0
0
0
0
0
0
436
0.801471
fbc9208f2d120f0ad2e9b2264fc8cd7812726bef
1,356
py
Python
upcfcardsearch/c269.py
ProfessorSean/Kasutamaiza
7a69a69258f67bbb88bebbac6da4e6e1434947e6
[ "MIT" ]
null
null
null
upcfcardsearch/c269.py
ProfessorSean/Kasutamaiza
7a69a69258f67bbb88bebbac6da4e6e1434947e6
[ "MIT" ]
null
null
null
upcfcardsearch/c269.py
ProfessorSean/Kasutamaiza
7a69a69258f67bbb88bebbac6da4e6e1434947e6
[ "MIT" ]
null
null
null
import discord from discord.ext import commands from discord.utils import get class c269(commands.Cog, name="c269"): def __init__(self, bot: commands.Bot): self.bot = bot @commands.command(name='Vir_the_True_Elementalist', aliases=['c269', 'Elementalist_1', 'Distasta_Master_1']) async def example_embed(self, ctx): embed = discord.Embed(title='Vir the True Elementalist', color=0xFDE68A) embed.set_thumbnail(url='https://www.duelingbook.com/images/custom-pics/2300000/2360695.jpg') embed.add_field(name='Status (Archetype)', value='Casual:3/Tournament:3 (Elementalist/Distasta Master)', inline=True) embed.add_field(name='Type (Attribute)', value='Spellcaster/Normal (LIGHT)', inline=False) embed.add_field(name='Level (ATK/DEF)', value='3 (1200/950)', inline=False) embed.add_field(name='Lore Text', value='Some say that whenever a disaster occurs, Vir is near by practicing his magic. However, if Vir ever learns the secrets of the Book of Natural Disasters, with knowledge of the ancient scriptures, he will be able to tame the Distasta Masters and bring the world into a new age of doom.', inline=False) embed.set_footer(text='Set Code: GMMP') await ctx.send(embed=embed) def setup(bot: commands.Bot): bot.add_cog(c269(bot))
56.5
348
0.702802
1,219
0.898968
0
0
1,109
0.817847
992
0.731563
632
0.466077
fbc9265e10993b34830de5472d64bcc90ad75783
6,116
py
Python
test/method_comparison.py
kiyami/stad
492f5d4467553159ba11a17e46bae43e19fd7b6a
[ "MIT" ]
2
2020-03-21T20:36:20.000Z
2021-09-02T20:02:17.000Z
test/method_comparison.py
kiyami/stad
492f5d4467553159ba11a17e46bae43e19fd7b6a
[ "MIT" ]
null
null
null
test/method_comparison.py
kiyami/stad
492f5d4467553159ba11a17e46bae43e19fd7b6a
[ "MIT" ]
null
null
null
from soad import AsymmetricData as asyd import matplotlib.pyplot as plt # This script is prepared for showing the difference between methods of handling asymmetric errors. class Data: control_variable_parameters = [10.0, 1.0, 1.0] control_variable = [] variable_list = [] def __init__(self, mu, sigma_n, sigma_p): self.mu = float(mu) self.sigma_n = float(sigma_n) self.sigma_p = float(sigma_p) self.avg_std = (self.sigma_n + self.sigma_p) * 0.5 def get_params(self): return [float(self.mu), float(self.sigma_n), float(self.sigma_p)] @classmethod def set_control_variable(cls): cls.control_variable = Data(*cls.control_variable_parameters) @classmethod def print_variables(cls): for variable in cls.variable_list: print(variable.get_params()) @staticmethod def calculate_asym_index(sigma_n, sigma_p): sigma_n = float(sigma_n) sigma_p = float(sigma_p) return float((sigma_p - sigma_n) / (sigma_p + sigma_n)) @staticmethod def calculate_sigma_p(sigma_n, asym_index): sigma_n = float(sigma_n) asym_index = float(asym_index) return float(sigma_n * (1.0 + asym_index) / (1.0 - asym_index)) @staticmethod def calculate_sigma_n(sigma_p, asym_index): sigma_p = float(sigma_p) asym_index = float(asym_index) return float(sigma_p * (1.0 - asym_index) / (1.0 + asym_index)) def generate_single_variable(*args): Data.variable_list.append(Data(*args)) def generate_control_variable(*args): Data.control_variable = Data(*args) def generate_multiple_variable(): n = 15 asym_index = 0.2 mu, sigma_n, sigma_p = Data.control_variable.get_params() start = float(sigma_p) stop = float(Data.calculate_sigma_p(sigma_n, asym_index)) step = (stop - start) / float(n) for i in range(n+1): temp_sigma_p = float(sigma_p) + (float(i)*float(step)) print("###### New sigma_p: ", temp_sigma_p) generate_single_variable(mu, sigma_n, temp_sigma_p) class AverageMethod: result_list = [] @classmethod def sum(cls, val_1): val_2 = Data.control_variable mu_result = val_1.mu + val_2.mu std_result = (val_1.avg_std**2.0 + val_2.avg_std**2.0)**0.5 cls.result_list.append(Data(mu_result, std_result, std_result)) @classmethod def mul(cls, val_1): val_2 = Data.control_variable mu_result = val_1.mu * val_2.mu std_result = mu_result * ((val_1.avg_std / val_1.mu)**2.0 + (val_2.avg_std / val_2.mu)**2.0)**0.5 cls.result_list.append(Data(mu_result, std_result, std_result)) @classmethod def print_results(cls): print("Results for AverageMethod") for result in cls.result_list: print(result.get_params()) class MonteCarloMethod: N = 50000 result_list = [] control_variable = [] @classmethod def generate_control_variable(cls): mu, sigma_n, sigma_p = Data.control_variable.get_params() cls.control_variable = asyd(mu, sigma_n, sigma_p, N=cls.N) @classmethod def sum(cls, val): if not cls.control_variable: cls.generate_control_variable() mu, sigma_n, sigma_p = val.get_params() asym_val = asyd(mu, sigma_n, sigma_p, N=cls.N) result = cls.control_variable + asym_val result_val = [result.mu, result.sigma_n, result.sigma_p] cls.result_list.append(result) @classmethod def mul(cls, val): if not cls.control_variable: cls.generate_control_variable() mu, sigma_n, sigma_p = val.get_params() asym_val = asyd(mu, sigma_n, sigma_p, N=cls.N) result = cls.control_variable * asym_val cls.result_list.append(result) @classmethod def print_results(cls): print("Results for MonteCarloMethod") for result in cls.result_list: print([result.mu, result.sigma_n, result.sigma_p]) class CompareMethods: methods = [AverageMethod, MonteCarloMethod] @classmethod def calculate_sum(cls): for variable in Data.variable_list: for method in cls.methods: method.sum(variable) @classmethod def calculate_mul(cls): for variable in Data.variable_list: for method in cls.methods: method.mul(variable) @classmethod def print_results(cls): print("Result Comparison") for method in cls.methods: method.print_results() # plotu düzelt @classmethod def plot_results(cls, save=True): plt.clf() fig, ax = plt.subplots(figsize=(6, 3)) plot_counter = 0 colors = ["deepskyblue", "tomato"] ecolors = ["lightskyblue", "salmon"] plot_shift_delta = 0.002 for method in cls.methods: plot_shift = plot_counter * plot_shift_delta print(plot_counter, plot_shift) x = [(Data.calculate_asym_index(x.sigma_n, x.sigma_p)+plot_shift) for x in Data.variable_list] print("x", x) y = [x.mu for x in method.result_list] yerr_neg = [x.sigma_n for x in method.result_list] yerr_poz = [x.sigma_p for x in method.result_list] plt.errorbar(x, y, yerr=[yerr_neg, yerr_poz], fmt='o', color=colors[plot_counter], ecolor=ecolors[plot_counter], elinewidth=3, capsize=0) plot_counter += 1 plt.axhline(y=AverageMethod.result_list[0].mu, color="black", linewidth=2) plt.title("Method Comparison") plt.xlabel("Asymmetry Index") plt.ylabel("Result") plt.grid("True") ax.set_facecolor('whitesmoke') if save: plt.savefig("comparison.png", dpi=100) plt.show() if __name__ == "__main__": Data.set_control_variable() generate_multiple_variable() Data.print_variables() CompareMethods.calculate_sum() #CompareMethods.calculate_mul() CompareMethods.print_results() CompareMethods.plot_results(save=True)
29.980392
149
0.641269
5,040
0.823933
0
0
4,307
0.704103
0
0
387
0.063266
fbca8cfcb196a659d097cf5eeb8837d15ab42525
3,211
py
Python
python/ex4/ex4.py
SHIMengjie/Machine-Learning-Andrew-Ng-Matlab
2f54790e33dc538aea1534f40342791fb7c3abb1
[ "MIT" ]
6
2017-12-27T04:47:18.000Z
2018-03-02T14:28:38.000Z
python/ex4/ex4.py
SHIMengjie/Machine-Learning-Andrew-Ng-Matlab
2f54790e33dc538aea1534f40342791fb7c3abb1
[ "MIT" ]
null
null
null
python/ex4/ex4.py
SHIMengjie/Machine-Learning-Andrew-Ng-Matlab
2f54790e33dc538aea1534f40342791fb7c3abb1
[ "MIT" ]
2
2018-05-31T08:04:40.000Z
2018-08-26T13:37:21.000Z
import scipy.io as scio import numpy as np import matplotlib.pyplot as plt import scipy.optimize as opt from displayData import display_data from costFunction import nn_cost_function from sigmoid import sigmoid_gradient from randInitializeWeights import rand_init_weights from checkNNGradients import check_nn_gradients from predict import predict_nn # ==================== 1.读取数据,并显示随机样例 ============================== # 使用scipy.io中的函数读取mat文件,data的格式是字典 data = scio.loadmat('ex4data1.mat') # 根据关键字,分别获得输入数据和输出的真值 # print(type(Y),type(X)) # X和Y都是numpy.narray格式,也就是数组格式 X = data['X'] Y = data['y'].flatten() # 随机取出其中的100个样本,显示结果 m = X.shape[0] # 从[0,m-1]之间,随机生成一个序列 rand_indices = np.random.permutation(range(m)) selected = X[rand_indices[1:100],:] # 显示手写数字样例 display_data(selected) # plt.show() # ==================== 2.读取参数,并计算代价 ================================== weights = scio.loadmat('ex4weights.mat') theta1 = weights['Theta1'] # 25*401 theta2 = weights['Theta2'] # 10*26 # theta1.flatten()把数组变成一列的形式,等价于theta1.reshape(theta1.size) # 把两个列向量按行拼接起来,此时nn_paramters.shape=(10285,) nn_paramters = np.concatenate([theta1.flatten(),theta2.flatten()],axis =0) # 设置参数 input_layer = 400 hidden_layer = 25 out_layer = 10 # 计算代价 lmd = 0 cost,grad = nn_cost_function(X,Y,nn_paramters,input_layer,hidden_layer,out_layer,lmd) print('Cost at parameters (loaded from ex4weights): {:0.6f}\n(This value should be about 0.287629)'.format(cost)) # 带入正则项 lmd = 1 cost,grad = nn_cost_function(X,Y,nn_paramters,input_layer,hidden_layer,out_layer,lmd) print('Cost at parameters (loaded from ex4weights): {:0.6f}\n(This value should be about 0.383770)'.format(cost)) # 验证sigmoid的梯度 g = sigmoid_gradient(np.array([-1, -0.5, 0, 0.5, 1])) print('Sigmoid gradient evaluated at [-1 -0.5 0 0.5 1]:\n{}'.format(g)) # =========================== 3.初始化网络参数 ================================= random_theta1 = rand_init_weights(input_layer,hidden_layer) random_theta2 = rand_init_weights(hidden_layer,out_layer) rand_nn_parameters = np.concatenate([random_theta1.flatten(),random_theta2.flatten()]) # 检查BP算法 lmd =3 check_nn_gradients(lmd) debug_cost, _ = nn_cost_function(X,Y,nn_paramters,input_layer,hidden_layer,out_layer,lmd) print('Cost at (fixed) debugging parameters (w/ lambda = {}): {:0.6f}\n(for lambda = 3, this value should be about 0.576051)'.format(lmd, debug_cost)) # ========================== 4.训练NN ========================================== lmd = 1 def cost_func(p): return nn_cost_function(X,Y,p,input_layer,hidden_layer,out_layer,lmd)[0] def grad_func(p): return nn_cost_function(X,Y,p,input_layer,hidden_layer,out_layer,lmd)[1] nn_params, *unused = opt.fmin_cg(cost_func, fprime=grad_func, x0=rand_nn_parameters, maxiter=400, disp=True, full_output=True) # Obtain theta1 and theta2 back from nn_params theta1 = nn_params[:hidden_layer * (input_layer + 1)].reshape(hidden_layer, input_layer + 1) theta2 = nn_params[hidden_layer * (input_layer + 1):].reshape(out_layer, hidden_layer + 1) # ======================= 5.可视化系数和预测 =================================== display_data(theta1[:, 1:]) plt.show() pred = predict_nn(X,theta1, theta2) print('Training set accuracy: {}'.format(np.mean(pred == Y)*100))
39.158537
150
0.690439
0
0
0
0
0
0
0
0
1,531
0.429935
fbca957948e0eda8e87f337b852c488037b3df59
2,432
py
Python
examples/complex_filtering.py
ITgladiator/tortoise-orm
9a2bd0edd078ae12e5837c22f88c19f8cc84e7d7
[ "Apache-2.0" ]
null
null
null
examples/complex_filtering.py
ITgladiator/tortoise-orm
9a2bd0edd078ae12e5837c22f88c19f8cc84e7d7
[ "Apache-2.0" ]
5
2020-03-24T17:23:14.000Z
2021-12-13T20:12:49.000Z
examples/complex_filtering.py
ITgladiator/tortoise-orm
9a2bd0edd078ae12e5837c22f88c19f8cc84e7d7
[ "Apache-2.0" ]
null
null
null
""" This example shows some more complex querying Key points are filtering by related names and using Q objects """ import asyncio from tortoise import Tortoise, fields from tortoise.models import Model from tortoise.query_utils import Q class Tournament(Model): id = fields.IntField(pk=True) name = fields.TextField() def __str__(self): return self.name class Event(Model): id = fields.IntField(pk=True) name = fields.TextField() tournament = fields.ForeignKeyField("models.Tournament", related_name="events") participants = fields.ManyToManyField( "models.Team", related_name="events", through="event_team" ) def __str__(self): return self.name class Team(Model): id = fields.IntField(pk=True) name = fields.TextField() def __str__(self): return self.name async def run(): await Tortoise.init(config_file="config.json") await Tortoise.generate_schemas() tournament = Tournament(name="Tournament") await tournament.save() second_tournament = Tournament(name="Tournament 2") await second_tournament.save() event_first = Event(name="1", tournament=tournament) await event_first.save() event_second = await Event.create(name="2", tournament=second_tournament) await Event.create(name="3", tournament=tournament) await Event.create(name="4", tournament=second_tournament) await Event.filter(tournament=tournament) team_first = Team(name="First") await team_first.save() team_second = Team(name="Second") await team_second.save() await team_first.events.add(event_first) await event_second.participants.add(team_second) print( await Event.filter(Q(id__in=[event_first.id, event_second.id]) | Q(name="3")) .filter(participants__not=team_second.id) .order_by("tournament__id") .distinct() ) print(await Team.filter(events__tournament_id=tournament.id).order_by("-events__name")) print( await Tournament.filter(events__name__in=["1", "3"]) .order_by("-events__participants__name") .distinct() ) print(await Team.filter(name__icontains="CON")) print(await Tournament.filter(events__participants__name__startswith="Fir")) print(await Tournament.filter(id__icontains=1).count()) if __name__ == "__main__": loop = asyncio.get_event_loop() loop.run_until_complete(run())
27.022222
91
0.701891
600
0.246711
0
0
0
0
1,480
0.608553
331
0.136102
fbcb4e1d16ab428716daad73e4a82b2e4b6883b2
3,012
py
Python
igmp/packet/PacketIpHeader.py
pedrofran12/igmp
fec8d366536cbe10b0fe1c14f6a82cd03fe0772a
[ "MIT" ]
3
2020-08-07T21:26:09.000Z
2021-06-12T10:21:41.000Z
igmp/packet/PacketIpHeader.py
pedrofran12/igmp
fec8d366536cbe10b0fe1c14f6a82cd03fe0772a
[ "MIT" ]
2
2021-08-25T14:58:54.000Z
2022-01-26T12:00:13.000Z
igmp/packet/PacketIpHeader.py
pedrofran12/igmp
fec8d366536cbe10b0fe1c14f6a82cd03fe0772a
[ "MIT" ]
3
2022-01-24T12:59:00.000Z
2022-03-25T14:28:56.000Z
import struct import socket class PacketIpHeader: """ 0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |Version| +-+-+-+-+ """ IP_HDR = "! B" IP_HDR_LEN = struct.calcsize(IP_HDR) def __init__(self, ver, hdr_len): self.version = ver self.hdr_length = hdr_len def __len__(self): return self.hdr_length @staticmethod def parse_bytes(data: bytes): (verhlen, ) = struct.unpack(PacketIpHeader.IP_HDR, data[:PacketIpHeader.IP_HDR_LEN]) ver = (verhlen & 0xF0) >> 4 print("ver:", ver) return PACKET_HEADER.get(ver).parse_bytes(data) class PacketIpv4Header(PacketIpHeader): """ 0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |Version| IHL |Type of Service| Total Length | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Identification |Flags| Fragment Offset | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Time to Live | Protocol | Header Checksum | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Source Address | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Destination Address | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Options | Padding | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ """ IP_HDR = "! BBH HH BBH 4s 4s" IP_HDR_LEN = struct.calcsize(IP_HDR) def __init__(self, ver, hdr_len, ttl, proto, ip_src, ip_dst): super().__init__(ver, hdr_len) self.ttl = ttl self.proto = proto self.ip_src = ip_src self.ip_dst = ip_dst def __len__(self): return self.hdr_length @staticmethod def parse_bytes(data: bytes): (verhlen, tos, iplen, ipid, frag, ttl, proto, cksum, src, dst) = \ struct.unpack(PacketIpv4Header.IP_HDR, data[:PacketIpv4Header.IP_HDR_LEN]) ver = (verhlen & 0xf0) >> 4 hlen = (verhlen & 0x0f) * 4 ''' "VER": ver, "HLEN": hlen, "TOS": tos, "IPLEN": iplen, "IPID": ipid, "FRAG": frag, "TTL": ttl, "PROTO": proto, "CKSUM": cksum, "SRC": socket.inet_ntoa(src), "DST": socket.inet_ntoa(dst) ''' src_ip = socket.inet_ntoa(src) dst_ip = socket.inet_ntoa(dst) return PacketIpv4Header(ver, hlen, ttl, proto, src_ip, dst_ip) PACKET_HEADER = { 4: PacketIpv4Header, }
33.098901
92
0.404714
2,931
0.973108
0
0
988
0.328021
0
0
1,621
0.538181
fbcbce60af2ea40ef9771cd4e2bb6d4016db9a38
1,547
py
Python
shopping_mall/shopping_mall/utils/fastdfs/fdfs_storage.py
lzy00001/SHOP_CENTER
1e26b9694afc89d86f2f3db9c0b0ff1f98ab1369
[ "MIT" ]
null
null
null
shopping_mall/shopping_mall/utils/fastdfs/fdfs_storage.py
lzy00001/SHOP_CENTER
1e26b9694afc89d86f2f3db9c0b0ff1f98ab1369
[ "MIT" ]
null
null
null
shopping_mall/shopping_mall/utils/fastdfs/fdfs_storage.py
lzy00001/SHOP_CENTER
1e26b9694afc89d86f2f3db9c0b0ff1f98ab1369
[ "MIT" ]
null
null
null
from django.conf import settings from django.core.files.storage import Storage from django.utils.deconstruct import deconstructible from fdfs_client.client import Fdfs_client @deconstructible class FastDFSStorage(Storage): def __init__(self, base_url=None, client_conf=None): """ 初始化 :param base_url: 用于构造图片完整路径使用,图片服务器的域名 :param client_conf: FastDFS客户端配置文件的路径 """ if base_url is None: base_url = settings.FDFS_URL self.base_url = base_url if client_conf is None: client_conf = settings.FDFS_CLIENT_CONF self.client_conf = client_conf def _open(self, name, mode='rb'): """ 用不到打开文件,所以省略 """ pass def _save(self, name, content): """ 在FastDFS中保存文件 :param name: 传入的文件名 :param content: 文件内容 :return: 保存到数据库中的FastDFS的文件名 """ client = Fdfs_client(self.client_conf) ret = client.upload_by_buffer(content.read()) if ret.get("Status") != "Upload successed.": raise Exception("upload file failed") file_name = ret.get("Remote file_id") return file_name def url(self, name): """ 返回文件的完整URL路径 :param name: 数据库中保存的文件名 :return: 完整的URL """ return self.base_url + name def exists(self, name): """ 判断文件是否存在,FastDFS可以自行解决文件的重名问题 所以此处返回False,告诉Django上传的都是新文件 :param name: 文件名 :return: False """ return False
26.672414
56
0.599871
1,628
0.893033
0
0
1,645
0.902359
0
0
861
0.472298
fbcc3437214daafca043a3fde76d32524788bacf
664
py
Python
src/sovereign/server.py
bochuxt/envoy-control-plane-python3
6d63ad6e1ecff5365bb571f0021951b066f8e270
[ "Apache-2.0" ]
1
2020-07-08T19:37:09.000Z
2020-07-08T19:37:09.000Z
src/sovereign/server.py
bochuxt/envoy-control-plane-python3
6d63ad6e1ecff5365bb571f0021951b066f8e270
[ "Apache-2.0" ]
null
null
null
src/sovereign/server.py
bochuxt/envoy-control-plane-python3
6d63ad6e1ecff5365bb571f0021951b066f8e270
[ "Apache-2.0" ]
null
null
null
import gunicorn.app.base from sovereign import asgi_config from sovereign.app import app class StandaloneApplication(gunicorn.app.base.BaseApplication): def __init__(self, application, options=None): self.options = options or {} self.application = application super().__init__() def load_config(self): for key, value in self.options.items(): self.cfg.set(key.lower(), value) def load(self): return self.application def main(): asgi = StandaloneApplication( application=app, options=asgi_config.as_gunicorn_conf() ) asgi.run() if __name__ == '__main__': main()
22.133333
63
0.661145
391
0.588855
0
0
0
0
0
0
10
0.01506
fbceb552efb8ef0ad3ab8ba19aa7104619c9f206
495
py
Python
Python/CeV/Exercicios/ex71.py
WerickL/Learning
5a9a488f0422454e612439b89093d5bc11242e65
[ "MIT" ]
null
null
null
Python/CeV/Exercicios/ex71.py
WerickL/Learning
5a9a488f0422454e612439b89093d5bc11242e65
[ "MIT" ]
null
null
null
Python/CeV/Exercicios/ex71.py
WerickL/Learning
5a9a488f0422454e612439b89093d5bc11242e65
[ "MIT" ]
null
null
null
Val = int(input('Digite o valor que você quer sacar:')) c50 = c20 = c10 = c1 = 0 if Val // 50 != 0: c50 = Val // 50 Val = Val % 50 if Val // 20 != 0: c20 = Val // 20 Val = Val % 20 if Val // 10 != 0: c10 = Val // 10 Val = Val % 10 if Val // 1 != 0: c1 = Val // 1 if c50 != 0: print(f'{c50} Cédulas de R$50.00') if c20 != 0: print(f'{c20} Cédulas de R$20.00') if c10 != 0: print(f'{c10} Cédulas de R$10.00') if c1 != 0: print(f'{c1} Cédulas de R$1.00')
23.571429
55
0.50303
0
0
0
0
0
0
0
0
148
0.296
fbd0e3db5f9cf99e22751e706aab58c1843471e9
801
bzl
Python
model/oppia_proto_library.bzl
bhaktideshmukh/oppia-android
94626909570ddbbd06d2cd691b49f357b986db0f
[ "Apache-2.0" ]
null
null
null
model/oppia_proto_library.bzl
bhaktideshmukh/oppia-android
94626909570ddbbd06d2cd691b49f357b986db0f
[ "Apache-2.0" ]
null
null
null
model/oppia_proto_library.bzl
bhaktideshmukh/oppia-android
94626909570ddbbd06d2cd691b49f357b986db0f
[ "Apache-2.0" ]
null
null
null
""" Bazel macros for defining proto libraries. """ load("@rules_proto//proto:defs.bzl", "proto_library") # TODO(#4096): Remove this once it's no longer needed. def oppia_proto_library(name, **kwargs): """ Defines a new proto library. Note that the library is defined with a stripped import prefix which ensures that protos have a common import directory (which is needed since Gradle builds protos in the same directory whereas Bazel doesn't by default). This common import directory is needed for cross-proto textprotos to work correctly. Args: name: str. The name of the proto library. **kwargs: additional parameters to pass into proto_library. """ proto_library( name = name, strip_import_prefix = "", **kwargs )
30.807692
99
0.689139
0
0
0
0
0
0
0
0
647
0.80774
fbd1627e659fe085f390ad7f199095412b24f0f3
1,533
py
Python
tests/test_cbers_ndvi.py
RemotePixel/remotepixel-py
bd58db7a394c84651d05c4e6f83da4cd3d4c26f3
[ "BSD-2-Clause" ]
5
2017-09-29T15:21:39.000Z
2021-02-23T02:03:18.000Z
tests/test_cbers_ndvi.py
RemotePixel/remotepixel-py
bd58db7a394c84651d05c4e6f83da4cd3d4c26f3
[ "BSD-2-Clause" ]
3
2017-11-03T13:24:31.000Z
2018-09-18T13:55:52.000Z
tests/test_cbers_ndvi.py
RemotePixel/remotepixel-py
bd58db7a394c84651d05c4e6f83da4cd3d4c26f3
[ "BSD-2-Clause" ]
4
2017-10-04T10:42:45.000Z
2019-06-21T07:49:35.000Z
import os from remotepixel import cbers_ndvi CBERS_SCENE = "CBERS_4_MUX_20171121_057_094_L2" CBERS_BUCKET = os.path.join(os.path.dirname(__file__), "fixtures", "cbers-pds") CBERS_PATH = os.path.join( CBERS_BUCKET, "CBERS4/MUX/057/094/CBERS_4_MUX_20171121_057_094_L2/" ) def test_point_valid(monkeypatch): """Should work as expected (read data, calculate NDVI and return json info).""" monkeypatch.setattr(cbers_ndvi, "CBERS_BUCKET", CBERS_BUCKET) expression = "(b8 - b7) / (b8 + b7)" coords = [53.9097, 5.3674] expectedContent = { "date": "2017-11-21", "scene": CBERS_SCENE, "ndvi": -0.1320754716981132, } assert cbers_ndvi.point(CBERS_SCENE, coords, expression) == expectedContent def test_point_invalid(monkeypatch): """Should work as expected and retour 0 for outside point.""" monkeypatch.setattr(cbers_ndvi, "CBERS_BUCKET", CBERS_BUCKET) expression = "(b8 - b7) / (b8 + b7)" coords = [53.9097, 2.3674] expectedContent = {"date": "2017-11-21", "scene": CBERS_SCENE, "ndvi": 0.} assert cbers_ndvi.point(CBERS_SCENE, coords, expression) == expectedContent def test_area_valid(monkeypatch): """Should work as expected (read data, calculate NDVI and return img).""" monkeypatch.setattr(cbers_ndvi, "CBERS_BUCKET", CBERS_BUCKET) expression = "(b8 - b7) / (b8 + b7)" bbox = [53.0859375, 5.266007882805496, 53.4375, 5.615985819155334] res = cbers_ndvi.area(CBERS_SCENE, bbox, expression) assert res["date"] == "2017-11-21"
36.5
83
0.692107
0
0
0
0
0
0
0
0
511
0.333333
fbd2de928f07cf44790d6956008e6625c654e85c
2,270
py
Python
test/scons-time/time/no-result.py
moroten/scons
20927b42ed4f0cb87f51287fa3b4b6cf915afcf8
[ "MIT" ]
1,403
2017-11-23T14:24:01.000Z
2022-03-30T20:59:39.000Z
test/scons-time/time/no-result.py
moroten/scons
20927b42ed4f0cb87f51287fa3b4b6cf915afcf8
[ "MIT" ]
3,708
2017-11-27T13:47:12.000Z
2022-03-29T17:21:17.000Z
test/scons-time/time/no-result.py
moroten/scons
20927b42ed4f0cb87f51287fa3b4b6cf915afcf8
[ "MIT" ]
281
2017-12-01T23:48:38.000Z
2022-03-31T15:25:44.000Z
#!/usr/bin/env python # # __COPYRIGHT__ # # Permission is hereby granted, free of charge, to any person obtaining # a copy of this software and associated documentation files (the # "Software"), to deal in the Software without restriction, including # without limitation the rights to use, copy, modify, merge, publish, # distribute, sublicense, and/or sell copies of the Software, and to # permit persons to whom the Software is furnished to do so, subject to # the following conditions: # # The above copyright notice and this permission notice shall be included # in all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY # KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE # WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND # NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE # LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION # OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION # WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. # __revision__ = "__FILE__ __REVISION__ __DATE__ __DEVELOPER__" """ Verify that the time subcommand's --which option doesn't fail, and prints an appropriate error message, if a log file doesn't have its specific requested results. """ import TestSCons_time test = TestSCons_time.TestSCons_time() header = """\ set key bottom left plot '-' title "Startup" with lines lt 1 # Startup """ footer = """\ e """ line_fmt = "%s 11.123456\n" lines = [] for i in range(9): logfile_name = 'foo-%s-0.log' % i if i == 5: test.write(test.workpath(logfile_name), "NO RESULTS HERE!\n") else: test.fake_logfile(logfile_name) lines.append(line_fmt % i) expect = [header] + lines + [footer] stderr = "file 'foo-5-0.log' has no results!\n" test.run(arguments = 'time --fmt gnuplot --which total foo*.log', stdout = ''.join(expect), stderr = stderr) expect = [header] + [footer] test.run(arguments = 'time --fmt gnuplot foo-5-0.log', stdout = ''.join(expect), stderr = stderr) test.pass_test() # Local Variables: # tab-width:4 # indent-tabs-mode:nil # End: # vim: set expandtab tabstop=4 shiftwidth=4:
27.682927
73
0.711013
0
0
0
0
0
0
0
0
1,653
0.728194
fbd3456398088e022605db823242b0036ee40344
25,955
py
Python
alipy/index/index_collections.py
Houchaoqun/ALiPy
93aff0379db2a1994803d19026c434c2b12a2485
[ "BSD-3-Clause" ]
1
2019-07-10T10:55:18.000Z
2019-07-10T10:55:18.000Z
alipy/index/index_collections.py
Houchaoqun/ALiPy
93aff0379db2a1994803d19026c434c2b12a2485
[ "BSD-3-Clause" ]
null
null
null
alipy/index/index_collections.py
Houchaoqun/ALiPy
93aff0379db2a1994803d19026c434c2b12a2485
[ "BSD-3-Clause" ]
null
null
null
""" The container to store indexes in active learning. Serve as the basic type of 'set' operation. """ # Authors: Ying-Peng Tang # License: BSD 3 clause from __future__ import division import collections import copy import numpy as np from .multi_label_tools import check_index_multilabel, infer_label_size_multilabel, flattern_multilabel_index, \ integrate_multilabel_index from ..utils.ace_warnings import * from ..utils.interface import BaseCollection from ..utils.misc import randperm class IndexCollection(BaseCollection): """Index Collection. Index Collection class is a basic data type of setting operation. Multiple different type of element is supported for Active learning. Also check the validity of given operation. Note that: 1. The types of elements should be same 1. If multiple elements to update, it should be a list, numpy.ndarray or IndexCollection object, otherwise, it will be cheated as one single element. (If single element contains multiple values, take tuple as the type of element.) Parameters ---------- data : list or np.ndarray or object, optional (default=None) shape [n_element]. Element should be int or tuple. The meaning of elements can be defined by users. Some examples of elements: (example_index, label_index) for instance-label pair query. (example_index, feature_index) for feature query, (example_index, example_index) for active clustering; If int, it may be the index of an instance, for example. Attributes ---------- index: list, shape (1, n_elements) A list contains all elements in this container. Examples -------- >>> a = IndexCollection([1, 2, 3]) >>> a.update([4,5]) [1, 2, 3, 4, 5] >>> a.difference_update([1,2]) [3, 4, 5] """ def __init__(self, data=None): if data is None or len(data) == 0: self._innercontainer = [] else: if isinstance(data, IndexCollection): self._innercontainer = copy.deepcopy(data.index) self._element_type = data.get_elementType() return if not isinstance(data, (list, np.ndarray)): data = [data] self._innercontainer = list(np.unique([i for i in data], axis=0)) if len(self._innercontainer) != len(data): warnings.warn("There are %d same elements in the given data" % (len(data) - len(self._innercontainer)), category=RepeatElementWarning, stacklevel=3) datatype = collections.Counter([type(i) for i in self._innercontainer]) if len(datatype) != 1: raise TypeError("Different types found in the given _indexes.") tmp_data = self._innercontainer[0] if isinstance(tmp_data, np.generic): # self._element_type = type(np.asscalar(tmp_data)) # deprecated in numpy v1.16 self._element_type = type(tmp_data.item()) else: self._element_type = type(tmp_data) @property def index(self): """ Get the index of data. """ return copy.deepcopy(self._innercontainer) def __getitem__(self, item): return self._innercontainer.__getitem__(item) def get_elementType(self): """ Return the type of data. """ return self._element_type def pop(self): """ Return the popped value. Raise KeyError if empty. """ return self._innercontainer.pop() def add(self, value): """ Add element. It will warn if the value to add is existent. Parameters ---------- value: object same type of the element already in the set. Raise if unknown type is given. Returns ------- self: object return self. """ if self._element_type is None: self._element_type = type(value) # check validation if isinstance(value, np.generic): # value = np.asscalar(value) # deprecated in numpy v1.16 value = value.item() if not isinstance(value, self._element_type): raise TypeError( "A %s parameter is expected, but received: %s" % (str(self._element_type), str(type(value)))) if value in self._innercontainer: warnings.warn("Adding element %s has already in the collection, skip." % (value.__str__()), category=RepeatElementWarning, stacklevel=3) else: self._innercontainer.append(value) return self def discard(self, value): """Remove an element. It will warn if the value to discard is inexistent. Parameters ---------- value: object Value to discard. Returns ------- self: object Return self. """ if value not in self._innercontainer: warnings.warn("Element %s to discard is not in the collection, skip." % (value.__str__()), category=InexistentElementWarning, stacklevel=3) else: self._innercontainer.remove(value) return self def difference_update(self, other): """Remove all elements of another array from this container. Parameters ---------- other: object Elements to discard. Note that, if multiple indexes are contained, a list, numpy.ndarray or IndexCollection should be given. Otherwise, it will be cheated as an object. Returns ------- self: object Return self. """ if not isinstance(other, (list, np.ndarray, IndexCollection)): other = [other] for item in other: self.discard(item) return self def update(self, other): """Update self with the union of itself and others. Parameters ---------- other: object Elements to add. Note that, if multiple indexes are contained, a list, numpy.ndarray or IndexCollection should be given. Otherwise, it will be cheated as an object. Returns ------- self: object Return self. """ if not isinstance(other, (list, np.ndarray, IndexCollection)): other = [other] for item in other: self.add(item) return self def random_sampling(self, rate=0.3): """Return a random sampled subset of this collection. Parameters ---------- rate: float, optional (default=None) The rate of sampling. Must be a number in [0,1]. Returns ------- array: IndexCollection The sampled index collection. """ assert (0 < rate < 1) perm = randperm(len(self) - 1, round(rate * len(self))) return IndexCollection([self.index[i] for i in perm]) class MultiLabelIndexCollection(IndexCollection): """Class for managing multi-label indexes. This class stores indexes in multi-label. Each element should be a tuple. A single index should only have 1 element (example_index, ) to query all labels or 2 elements (example_index, [label_indexes]) to query specific labels. Some examples of valid multi-label indexes include: queried_index = (1, [3,4]) queried_index = (1, [3]) queried_index = (1, 3) queried_index = (1, (3)) queried_index = (1, (3,4)) queried_index = (1, ) # query all labels Several validity checking are implemented in this class. Such as repeated elements, Index out of bound. Parameters ---------- data : list or np.ndarray of a single tuple, optional (default=None) shape [n_element]. All elements should be tuples. label_size: int, optional (default=None) The number of classes. If not provided, an infer is attempted, raise if fail. Attributes ---------- index: list, shape (1, n_elements) A list contains all elements in this container. Examples -------- >>> multi_lab_ind1 = MultiLabelIndexCollection([(0, 1), (0, 2), (0, (3, 4)), (1, (0, 1))], label_size=5) {(0, 1), (1, 1), (0, 4), (1, 0), (0, 2), (0, 3)} >>> multi_lab_ind1.update((0, 0)) {(0, 1), (0, 0), (1, 1), (0, 4), (1, 0), (0, 2), (0, 3)} >>> multi_lab_ind1.update([(1, 2), (1, (3, 4))]) {(0, 1), (1, 2), (0, 0), (1, 3), (1, 4), (1, 1), (0, 4), (1, 0), (0, 2), (0, 3)} >>> multi_lab_ind1.update([(2,)]) {(0, 1), (1, 2), (0, 0), (1, 3), (2, 2), (1, 4), (2, 1), (2, 0), (1, 1), (2, 3), (2, 4), (0, 4), (1, 0), (0, 2), (0, 3)} >>> multi_lab_ind1.difference_update([(0,)]) {(1, 2), (1, 3), (2, 2), (1, 4), (2, 1), (2, 0), (1, 1), (2, 3), (2, 4), (1, 0)} """ def __init__(self, data=None, label_size=None): if data is None or len(data) == 0: self._innercontainer = set() if label_size is None: warnings.warn("This collection does not have a label_size value, set it manually or " "it will raise when decomposing indexes.", category=ValidityWarning) self._label_size = label_size else: if isinstance(data, MultiLabelIndexCollection): self._innercontainer = copy.deepcopy(data.index) self._label_size = data._label_size return # check given indexes data = check_index_multilabel(data) if label_size is None: self._label_size = infer_label_size_multilabel(data, check_arr=False) else: self._label_size = label_size # decompose all label queries. decomposed_data = flattern_multilabel_index(data, self._label_size, check_arr=False) self._innercontainer = set(decomposed_data) if len(self._innercontainer) != len(decomposed_data): warnings.warn( "There are %d same elements in the given data" % (len(data) - len(self._innercontainer)), category=RepeatElementWarning, stacklevel=3) @property def index(self): """ Get the index of data. """ return list(self._innercontainer) def add(self, value): """Add element. It will warn if the value to add is existent. Raise if invalid type of value is given. Parameters ---------- value: tuple Index for adding. Raise if index is out of bound. Returns ------- self: object return self. """ # check validation assert (isinstance(value, tuple)) if len(value) == 1: value = [(value[0], i) for i in range(self._label_size)] return self.update(value) elif len(value) == 2: if isinstance(value[1], collections.Iterable): for item in value[1]: if item >= self._label_size: raise ValueError("Index %s is out of bound %s" % (str(item), str(self._label_size))) else: if value[1] >= self._label_size: raise ValueError("Index %s is out of bound %s" % (str(value[1]), str(self._label_size))) else: raise ValueError("A tuple with 1 or 2 elements is expected, but received: %s" % str(value)) if value in self._innercontainer: warnings.warn("Adding element %s has already in the collection, skip." % (value.__str__()), category=RepeatElementWarning, stacklevel=3) else: self._innercontainer.add(value) return self def discard(self, value): """Remove an element. It will warn if the value to discard is inexistent. Raise if invalid type of value is given. Parameters ---------- value: tuple Index for adding. Raise if index is out of bound. Returns ------- self: object return self. """ assert (isinstance(value, tuple)) if len(value) == 1: value = [(value[0], i) for i in range(self._label_size)] return self.difference_update(value) if value not in self._innercontainer: warnings.warn("Element %s to discard is not in the collection, skip." % (value.__str__()), category=InexistentElementWarning, stacklevel=3) else: self._innercontainer.discard(value) return self def difference_update(self, other): """Remove all elements of another array from this container. Parameters ---------- other: object Elements to discard. Note that, if multiple indexes are contained, a list, numpy.ndarray or MultiLabelIndexCollection should be given. Otherwise, a tuple should be given. Returns ------- self: object Return self. """ if isinstance(other, (list, np.ndarray, MultiLabelIndexCollection)): label_ind = flattern_multilabel_index(other, self._label_size) for j in label_ind: self.discard(j) elif isinstance(other, tuple): self.discard(other) else: raise TypeError( "A list or np.ndarray is expected if multiple indexes are " "contained. Otherwise, a tuple should be provided") return self def update(self, other): """Update self with the union of itself and others. Parameters ---------- other: object Elements to add. Note that, if multiple indexes are contained, a list, numpy.ndarray or MultiLabelIndexCollection should be given. Otherwise, a tuple should be given. Returns ------- self: object Return self. """ if isinstance(other, (list, np.ndarray, MultiLabelIndexCollection)): label_ind = flattern_multilabel_index(other, self._label_size) for j in label_ind: self.add(j) elif isinstance(other, tuple): self.add(other) else: raise TypeError( "A list or np.ndarray is expected if multiple indexes are " "contained. Otherwise, a tuple should be provided") return self def get_onedim_index(self, order='C', ins_num=None): """Get the 1d index. Parameters ---------- order : {'C', 'F'}, optional (default='C') Determines whether the indices should be viewed as indexing in row-major (C-style) or column-major (Matlab-style) order. ins_num: int, optional The total number of instance. Must be provided if the order is 'F'. Examples -------- >>> b = [1, 4, 11] >>> mi = MultiLabelIndexCollection.construct_by_1d_array(array=b, label_mat_shape=(3, 4)) >>> print(mi) {(1, 0), (2, 3), (1, 1)} >>> print('col major:', mi.get_onedim_index(order='F', ins_num=3)) col major: [1, 11, 4] >>> print('row major:', mi.get_onedim_index(order='C')) row major: [4, 11, 5] """ if order == 'F': if ins_num is None: raise ValueError("The ins_num must be provided if the order is 'F'.") return [tup[0] + tup[1] * ins_num for tup in self._innercontainer] elif order == 'C': return [tup[0] * self._label_size + tup[1] for tup in self._innercontainer] else: raise ValueError("The value of order must be one of {'C', 'F'}") def get_instance_index(self): """Get the index of instances contained in this object. If it is a labeled set, it is equivalent to the indexes of fully and partially labeled instances. Returns ------- partlab: list The indexes of partially labeled instances. """ return np.unique([tp[0] for tp in self._innercontainer]) def _get_cond_instance(self, cond): """Return the indexes of instances according to the cond. cond = 0: return the instances which are unbroken. cond = 1: return the instances which have missing entries. """ tmp = integrate_multilabel_index(self.index, label_size=self._label_size, check_arr=False) if cond == 0: return [tp[0] for tp in tmp if len(tp) == 1] else: return [tp[0] for tp in tmp if len(tp) > 1] def get_unbroken_instances(self): """Return the indexes of unbroken instances whose entries are all known.""" return self._get_cond_instance(cond=0) def get_break_instances(self): """Return the indexes of break instances which have missing entries.""" return self._get_cond_instance(cond=1) def get_matrix_mask(self, mat_shape, fill_value=1, sparse=True, sparse_format='lil_matrix'): """Return an array which has the same shape with the label matrix. If an entry is known, then, the corresponding value in the mask is 1, otherwise, 0. Parameters ---------- mat_shape: tuple The shape of label matrix. [n_samples, n_classes] fill_value: int The value filled in the mask when the entry is in the container. sparse: bool Whether to return a sparse matrix or a dense matrix (numpy.ndarray). sparse_format: str The format of the returned sparse matrix. Only available if sparse==True should be one onf [bsr_matrix, coo_matrix, csc_matrix, csr_matrix, dia_matrix, dok_matrix, lil_matrix]. Please refer to https://docs.scipy.org/doc/scipy-0.18.1/reference/sparse.html for the definition of each sparse format. Returns ------- mask: {scipy.sparse.csr_matrix, scipy.sparse.csc_matrix} The mask of the label matrix. """ assert isinstance(mat_shape, tuple) if sparse: try: exec("from scipy.sparse import " + sparse_format) except: raise ValueError( "sparse format " + sparse_format + "is not defined. Valid format should be one of " "[bsr_matrix, coo_matrix, csc_matrix, csr_matrix, " "dia_matrix, dok_matrix, lil_matrix].") mask = eval(sparse_format + '(mat_shape)') else: if fill_value == 1: mask = np.zeros(mat_shape, dtype=bool) for item in self._innercontainer: mask[item] = True else: mask = np.zeros(mat_shape) for item in self._innercontainer: mask[item] = fill_value return mask @classmethod def construct_by_1d_array(cls, array, label_mat_shape, order='F'): """Construct a MultiLabelIndexCollection object by providing a 1d array, and the number of classes. Parameters ---------- array: {list, np.ndarray} An 1d array of indexes. label_mat_shape: tuple of ints The shape of label matrix. The 1st element is the number of instances, and the 2nd element is the total classes. order : {'C', 'F'}, optional Determines whether the indices should be viewed as indexing in row-major (C-style) or column-major (Matlab-style) order. Returns ------- multi_ind: MultiLabelIndexCollection The MultiLabelIndexCollection object. Examples -------- >>> b = [1, 4, 11] >>> mi = MultiLabelIndexCollection.construct_by_1d_array(array=b, label_mat_shape=(3, 4)) >>> print(mi) {(1, 0), (2, 3), (1, 1)} >>> print('col major:', mi.get_onedim_index(order='F', ins_num=3)) col major: [1, 11, 4] >>> print('row major:', mi.get_onedim_index(order='C')) row major: [4, 11, 5] """ assert len(label_mat_shape) == 2 row, col = np.unravel_index(array, dims=label_mat_shape, order=order) return cls(data=[(row[i], col[i]) for i in range(len(row))], label_size=label_mat_shape[1]) @classmethod def construct_by_element_mask(cls, mask): """Construct a MultiLabelIndexCollection object by providing a 2d array whose shape should be the same as the matrix shape. Parameters ---------- mask: {list, np.ndarray} The 2d mask matrix of elements. There must be only 1 and 0 in the matrix, in which, 1 means the corresponding element is known, and will be added to the MultiLabelIndexCollection container. Otherwise, it will be cheated as an unknown element. Examples -------- >>> import numpy as np >>> mask = np.asarray([ [0, 1], [1, 0], [1, 0] ]) # 3 rows, 2 lines >>> mi = MultiLabelIndexCollection.construct_by_element_mask(mask=mask) >>> print(mi) {(0, 1), (2, 0), (1, 0)} """ mask = np.asarray(mask) ue = np.unique(mask) if not (len(mask.shape) == 2 and len(ue) == 2 and 0 in ue and 1 in ue): raise ValueError("The mask matrix should be a 2d array, and there must be only " "1 and 0 in the matrix, in which, 1 means the corresponding " "element is known, and will be added to the MultiLabelIndexCollection container.") nz_row, nz_col = np.nonzero(mask) return cls(data=[(nz_row[i], nz_col[i]) for i in range(len(nz_row))], label_size=mask.shape[1]) class FeatureIndexCollection(MultiLabelIndexCollection): """Container to store the indexes in feature querying scenario. This class stores indexes in incomplete feature matrix setting. Each element should be a tuple. A single index should only have 1 element (example_index, ) to query all features or 2 elements (example_index, [feature_indexes]) to query specific features. Some examples of valid indexes include: queried_index = (1, [3,4]) queried_index = (1, [3]) queried_index = (1, 3) queried_index = (1, (3)) queried_index = (1, (3,4)) queried_index = (1, ) # query all _labels Several validity checking are implemented in this class. Such as repeated elements, Index out of bound. Parameters ---------- data : list or np.ndarray of a single tuple, optional (default=None) shape [n_element]. All elements should be tuples. feature_size: int, optional (default=None) The number of features. If not provided, an infer is attempted, raise if fail. Attributes ---------- index: list, shape (1, n_elements) A list contains all elements in this container. Examples -------- >>> fea_ind1 = FeatureIndexCollection([(0, 1), (0, 2), (0, (3, 4)), (1, (0, 1))], feature_size=5) {(0, 1), (1, 1), (0, 4), (1, 0), (0, 2), (0, 3)} >>> fea_ind1.update((0, 0)) {(0, 1), (0, 0), (1, 1), (0, 4), (1, 0), (0, 2), (0, 3)} >>> fea_ind1.update([(1, 2), (1, (3, 4))]) {(0, 1), (1, 2), (0, 0), (1, 3), (1, 4), (1, 1), (0, 4), (1, 0), (0, 2), (0, 3)} >>> fea_ind1.update([(2,)]) {(0, 1), (1, 2), (0, 0), (1, 3), (2, 2), (1, 4), (2, 1), (2, 0), (1, 1), (2, 3), (2, 4), (0, 4), (1, 0), (0, 2), (0, 3)} >>> fea_ind1.difference_update([(0,)]) {(1, 2), (1, 3), (2, 2), (1, 4), (2, 1), (2, 0), (1, 1), (2, 3), (2, 4), (1, 0)} """ def __init__(self, data, feature_size=None): try: super(FeatureIndexCollection, self).__init__(data=data, label_size=feature_size) except(Exception, ValueError): raise Exception("The inference of feature_size is failed, please set a specific value.") def map_whole_index_to_train(train_idx, index_in_whole): """Map the indexes from whole dataset to training set. Parameters ---------- train_idx: {list, numpy.ndarray} The training indexes. index_in_whole: {IndexCollection, MultiLabelIndexCollection} The indexes need to be mapped of the whole data. Returns ------- index_in_train: {IndexCollection, MultiLabelIndexCollection} The mapped indexes. Examples -------- >>> train_idx = [231, 333, 423] >>> index_in_whole = IndexCollection([333, 423]) >>> print(map_whole_index_to_train(train_idx, index_in_whole)) [1, 2] """ if isinstance(index_in_whole, MultiLabelIndexCollection): ind_type = 2 elif isinstance(index_in_whole, IndexCollection): ind_type = 1 else: raise TypeError("index_in_whole must be one of {IndexCollection, MultiLabelIndexCollection} type.") tr_ob = [] for entry in index_in_whole: if ind_type == 2: assert entry[0] in train_idx ind_in_train = np.argwhere(train_idx == entry[0])[0][0] tr_ob.append((ind_in_train, entry[1])) else: assert entry in train_idx tr_ob.append(np.argwhere(train_idx == entry)[0][0]) if ind_type == 2: return MultiLabelIndexCollection(tr_ob) else: return IndexCollection(tr_ob)
36.607898
124
0.571335
24,045
0.926411
0
0
3,195
0.123098
0
0
15,268
0.588249
fbd3b3b8ed744c1417f498327a5a9678f19a086e
327
py
Python
keycache/util.py
psytron/keycache
0b69e21719dbe76908476c01e3e487aae2612fd2
[ "Apache-2.0" ]
2
2020-04-27T07:48:54.000Z
2020-10-21T17:47:54.000Z
keycache/util.py
psytron/keycache
0b69e21719dbe76908476c01e3e487aae2612fd2
[ "Apache-2.0" ]
null
null
null
keycache/util.py
psytron/keycache
0b69e21719dbe76908476c01e3e487aae2612fd2
[ "Apache-2.0" ]
null
null
null
import platform as p import uuid import hashlib def basic(): sb = [] sb.append(p.node()) sb.append( ''.join([ x for x in p.architecture() ]) ) sb.append(p.machine()) sb.append(p.processor()) sb.append(p.system()) sb.append(str(uuid.getnode())) # MAC address text = '.'.join(sb) return text
21.8
57
0.599388
0
0
0
0
0
0
0
0
18
0.055046
fbd4db8145e5a07f88303ba81f436838785ffa65
995
py
Python
the biggidy back end/rawText.py
jlekas/recipe-site
e1c54cb0c19e2c28a968abe8988d7b57fdadbb46
[ "MIT" ]
1
2019-09-06T00:16:27.000Z
2019-09-06T00:16:27.000Z
the biggidy back end/rawText.py
jlekas/recipe-site
e1c54cb0c19e2c28a968abe8988d7b57fdadbb46
[ "MIT" ]
6
2021-03-09T17:29:30.000Z
2022-02-26T17:43:15.000Z
the biggidy back end/rawText.py
jlekas/recipe-site
e1c54cb0c19e2c28a968abe8988d7b57fdadbb46
[ "MIT" ]
null
null
null
url = "https://www.delish.com/cooking/recipe-ideas/recipes/a53823/easy-pad-thai-recipe/" url2 = "https://www.allrecipes.com/recipe/92462/slow-cooker-texas-pulled-pork/" # opener = urllib.URLopener() # opener.addheader(('User-Agent', 'Mozilla/5.0')) # f = urllib.urlopen(url) import requests import html2text h = html2text.HTML2Text() h.ignore_links = True f = requests.get(url2) g = h.handle(f.text) arrayOflines = g.split("\n") isPrinting = False chunk = [] chunks = [] for line in arrayOflines: if(len(line) != 0): chunk.append(line) else: chunks.append(chunk) chunk = [] print(chunks) for c in chunks: print(c) print("\n \n") # if 'ingredients' in line.lower() and len(line) < 15: # print(line) # if "ingredients" in line and len(line) < : # print(len(line)) # isPrinting = True # if(isPrinting): # print(line) # if(len(line) == 0): # isPrinting = False # print(arrayOflines)
20.729167
88
0.613065
0
0
0
0
0
0
0
0
532
0.534673
fbd4f0ccd22a107526cc04a4572d5b45f8b8bf9b
21,796
py
Python
tests/test_service_desk.py
p-tombez/jira
a2d9311aa81384382cb3cbe6c9a6bc8f56387feb
[ "BSD-2-Clause" ]
null
null
null
tests/test_service_desk.py
p-tombez/jira
a2d9311aa81384382cb3cbe6c9a6bc8f56387feb
[ "BSD-2-Clause" ]
null
null
null
tests/test_service_desk.py
p-tombez/jira
a2d9311aa81384382cb3cbe6c9a6bc8f56387feb
[ "BSD-2-Clause" ]
null
null
null
#!/usr/bin/env python from __future__ import print_function import inspect import logging import os import platform import sys from time import sleep from flaky import flaky import pytest import requests from jira_test_manager import JiraTestManager # _non_parallel is used to prevent some tests from failing due to concurrency # issues because detox, Travis or Jenkins can run test in parallel for multiple # python versions. # The current workaround is to run these problematic tests only on py27 _non_parallel = True if platform.python_version() < '3': _non_parallel = False try: import unittest2 as unittest except ImportError: import pip if hasattr(sys, 'real_prefix'): pip.main(['install', '--upgrade', 'unittest2']) else: pip.main(['install', '--upgrade', '--user', 'unittest2']) import unittest2 as unittest else: import unittest cmd_folder = os.path.abspath(os.path.join(os.path.split(inspect.getfile( inspect.currentframe()))[0], "..")) if cmd_folder not in sys.path: sys.path.insert(0, cmd_folder) import jira # noqa from jira import Role, Issue, JIRA, JIRAError, Project # noqa from jira.resources import Resource, cls_for_resource # noqa TEST_ROOT = os.path.dirname(__file__) TEST_ICON_PATH = os.path.join(TEST_ROOT, 'icon.png') TEST_ATTACH_PATH = os.path.join(TEST_ROOT, 'tests.py') OAUTH = False CONSUMER_KEY = 'oauth-consumer' KEY_CERT_FILE = '/home/bspeakmon/src/atlassian-oauth-examples/rsa.pem' KEY_CERT_DATA = None try: with open(KEY_CERT_FILE, 'r') as cert: KEY_CERT_DATA = cert.read() OAUTH = True except Exception: pass if 'CI_JIRA_URL' in os.environ: not_on_custom_jira_instance = pytest.mark.skipif(True, reason="Not applicable for custom JIRA instance") logging.info('Picked up custom JIRA engine.') else: def noop(arg): return arg not_on_custom_jira_instance = noop def jira_servicedesk_detection(): if 'CI_JIRA_URL' in os.environ: url = os.environ['CI_JIRA_URL'] else: url = 'https://pycontribs.atlassian.net' url += '/rest/servicedeskapi/info' return requests.get(url).status_code != 200 jira_servicedesk = pytest.mark.skipif(jira_servicedesk_detection(), reason="JIRA Service Desk is not available.") @flaky @jira_servicedesk class ServiceDeskTests(unittest.TestCase): def setUp(self): self.test_manager = JiraTestManager() self.jira = self.test_manager.jira_admin self.desk = self.jira.desk self.test_fullname_a = "TestCustomerFullName %s" % self.test_manager.project_a self.test_email_a = "test_customer_%s@example.com" % self.test_manager.project_a self.test_fullname_b = "TestCustomerFullName %s" % self.test_manager.project_b self.test_email_b = "test_customer_%s@example.com" % self.test_manager.project_b self.test_organization_name_a = "test_organization_%s" % self.test_manager.project_a self.test_organization_name_b = "test_organization_%s" % self.test_manager.project_b def test_create_and_delete_customer(self): try: self.jira.delete_user(self.test_email_a) except JIRAError: pass customer = self.desk.create_customer(self.test_email_a, self.test_fullname_a) self.assertEqual(customer.emailAddress, self.test_email_a) self.assertEqual(customer.displayName, self.test_fullname_a) result = self.jira.delete_user(self.test_email_a) self.assertTrue(result) def test_get_servicedesk_info(self): result = self.desk.servicedesk_info() self.assertNotEqual(result, False) def test_create_and_delete_organization(self): organization = self.desk.create_organization(self.test_organization_name_a) self.assertEqual(organization.name, self.test_organization_name_a) result = self.desk.delete_organization(organization.id) self.assertTrue(result) def test_get_organization(self): organization = self.desk.create_organization(self.test_organization_name_a) self.assertEqual(organization.name, self.test_organization_name_a) result = self.desk.organization(organization.id) self.assertEqual(result.id, organization.id) self.assertEqual(result.name, self.test_organization_name_a) result = self.desk.delete_organization(organization.id) self.assertTrue(result) def test_add_users_to_organization(self): organization = self.desk.create_organization(self.test_organization_name_a) self.assertEqual(organization.name, self.test_organization_name_a) try: self.jira.delete_user(self.test_email_a) except JIRAError: pass try: self.jira.delete_user(self.test_email_b) except JIRAError: pass customer_a = self.desk.create_customer(self.test_email_a, self.test_fullname_a) self.assertEqual(customer_a.emailAddress, self.test_email_a) self.assertEqual(customer_a.displayName, self.test_fullname_a) customer_b = self.desk.create_customer(self.test_email_b, self.test_fullname_b) self.assertEqual(customer_b.emailAddress, self.test_email_b) self.assertEqual(customer_b.displayName, self.test_fullname_b) result = self.desk.add_users_to_organization(organization.id, [self.test_email_a, self.test_email_b]) self.assertTrue(result) result = self.jira.delete_user(self.test_email_a) self.assertTrue(result) result = self.jira.delete_user(self.test_email_b) self.assertTrue(result) result = self.desk.delete_organization(organization.id) self.assertTrue(result) def test_remove_users_from_organization(self): organization = self.desk.create_organization(self.test_organization_name_a) self.assertEqual(organization.name, self.test_organization_name_a) try: self.jira.delete_user(self.test_email_a) except JIRAError: pass try: self.jira.delete_user(self.test_email_b) except JIRAError: pass customer_a = self.desk.create_customer(self.test_email_a, self.test_fullname_a) self.assertEqual(customer_a.emailAddress, self.test_email_a) self.assertEqual(customer_a.displayName, self.test_fullname_a) customer_b = self.desk.create_customer(self.test_email_b, self.test_fullname_b) self.assertEqual(customer_b.emailAddress, self.test_email_b) self.assertEqual(customer_b.displayName, self.test_fullname_b) result = self.desk.add_users_to_organization(organization.id, [self.test_email_a, self.test_email_b]) self.assertTrue(result) result = self.desk.remove_users_from_organization(organization.id, [self.test_email_a, self.test_email_b]) self.assertTrue(result) result = self.jira.delete_user(self.test_email_a) self.assertTrue(result) result = self.jira.delete_user(self.test_email_b) self.assertTrue(result) result = self.desk.delete_organization(organization.id) self.assertTrue(result) def test_get_organizations(self): organization_a = self.desk.create_organization(self.test_organization_name_a) self.assertEqual(organization_a.name, self.test_organization_name_a) organization_b = self.desk.create_organization(self.test_organization_name_b) self.assertEqual(organization_b.name, self.test_organization_name_b) organizations = self.desk.organizations(0, 1) self.assertEqual(len(organizations), 1) result = self.desk.delete_organization(organization_a.id) self.assertTrue(result) result = self.desk.delete_organization(organization_b.id) self.assertTrue(result) def test_get_users_in_organization(self): organization = self.desk.create_organization(self.test_organization_name_a) self.assertEqual(organization.name, self.test_organization_name_a) try: self.jira.delete_user(self.test_email_a) except JIRAError: pass try: self.jira.delete_user(self.test_email_b) except JIRAError: pass customer_a = self.desk.create_customer(self.test_email_a, self.test_fullname_a) self.assertEqual(customer_a.emailAddress, self.test_email_a) self.assertEqual(customer_a.displayName, self.test_fullname_a) customer_b = self.desk.create_customer(self.test_email_b, self.test_fullname_b) self.assertEqual(customer_b.emailAddress, self.test_email_b) self.assertEqual(customer_b.displayName, self.test_fullname_b) result = self.desk.add_users_to_organization(organization.id, [self.test_email_a, self.test_email_b]) self.assertTrue(result) result = self.desk.get_users_from_organization(organization.id) self.assertEqual(len(result), 2) result = self.jira.delete_user(self.test_email_a) self.assertTrue(result) result = self.jira.delete_user(self.test_email_b) self.assertTrue(result) result = self.desk.delete_organization(organization.id) self.assertTrue(result) def test_service_desks(self): service_desks = self.desk.service_desks() self.assertGreater(len(service_desks), 0) def test_servicedesk(self): service_desks = self.desk.service_desks() self.assertGreater(len(service_desks), 0) service_desk = self.desk.service_desk(service_desks[0].id) self.assertEqual(service_desk.id, service_desks[0].id) def test_request_types(self): service_desks = self.desk.service_desks() self.assertGreater(len(service_desks), 0) request_types = self.desk.request_types(service_desks[0].id) self.assertGreater(len(request_types), 0) def test_request_type(self): service_desks = self.desk.service_desks() self.assertGreater(len(service_desks), 0) request_types = self.desk.request_types(service_desks[0].id) self.assertGreater(len(request_types), 0) request_type = self.desk.request_type(service_desks[0].id, request_types[0].id) self.assertEqual(request_type.id, request_types[0].id) self.assertEqual(request_type.name, request_types[0].name) def test_request_type_by_name(self): service_desks = self.desk.service_desks() self.assertGreater(len(service_desks), 0) request_types = self.desk.request_types(service_desks[0].id) self.assertGreater(len(request_types), 0) request_type_by_name = self.desk.request_type_by_name(service_desks[0].id, request_types[0].name) self.assertEqual(request_types[0].id, request_type_by_name.id) self.assertEqual(request_types[0].name, request_type_by_name.name) def test_create_and_delete_customer_request_with_prefetch(self): service_desks = self.desk.service_desks() self.assertGreater(len(service_desks), 0) request_types = self.desk.request_types(service_desks[0].id) self.assertGreater(len(request_types), 0) fields = { "serviceDeskId": int(service_desks[0].id), "requestTypeId": int(request_types[0].id), "raiseOnBehalfOf": self.test_manager.CI_JIRA_USER, "requestFieldValues": { "summary": "Request summary", "description": "Request description" } } request = self.desk.create_request(fields, prefetch=True) self.jira.delete_issue(request.id) self.assertIsNotNone(request.id) self.assertIsNotNone(request.key) self.assertEqual(request.fields.summary, "Request summary") self.assertEqual(request.fields.description, "Request description") def test_create_and_delete_customer_request_without_prefetch(self): service_desks = self.desk.service_desks() self.assertGreater(len(service_desks), 0) request_types = self.desk.request_types(service_desks[0].id) self.assertGreater(len(request_types), 0) fields = { "serviceDeskId": int(service_desks[0].id), "requestTypeId": int(request_types[0].id), "raiseOnBehalfOf": self.test_manager.CI_JIRA_USER, "requestFieldValues": { "summary": "Request summary", "description": "Request description" } } request = self.desk.create_request(fields, prefetch=False) self.jira.delete_issue(request.id) self.assertIsNotNone(request.id) self.assertIsNotNone(request.key) self.assertEqual(request.fields.summary, "Request summary") self.assertEqual(request.fields.description, "Request description") def test_get_customer_request_by_key_or_id(self): service_desks = self.desk.service_desks() self.assertGreater(len(service_desks), 0) request_types = self.desk.request_types(service_desks[0].id) self.assertGreater(len(request_types), 0) fields = { "serviceDeskId": int(service_desks[0].id), "requestTypeId": int(request_types[0].id), "raiseOnBehalfOf": self.test_manager.CI_JIRA_USER, "requestFieldValues": { "summary": "Request summary", "description": "Request description" } } request = self.desk.create_request(fields, prefetch=False) expand = 'serviceDesk,requestType,participant,sla,status' request_by_key = self.desk.request(request.key, expand=expand) self.assertEqual(request.id, request_by_key.id) self.assertEqual(request.key, request_by_key.key) self.assertEqual(request_by_key.fields.summary, "Request summary") self.assertEqual(request_by_key.fields.description, "Request description") expand = 'serviceDesk,requestType,participant,sla,status' request_by_id = self.desk.request(request.id, expand=expand) self.jira.delete_issue(request.id) self.assertEqual(request.id, request_by_id.id) self.assertEqual(request.key, request_by_id.key) self.assertEqual(request_by_id.fields.summary, "Request summary") self.assertEqual(request_by_id.fields.description, "Request description") def test_get_my_customer_requests(self): service_desks = self.desk.service_desks() self.assertGreater(len(service_desks), 0) request_types = self.desk.request_types(service_desks[0].id) self.assertGreater(len(request_types), 0) fields = { "serviceDeskId": int(service_desks[0].id), "requestTypeId": int(request_types[0].id), "raiseOnBehalfOf": self.test_manager.CI_JIRA_USER, "requestFieldValues": { "summary": "Request summary", "description": "Request description" } } request1 = self.desk.create_request(fields, prefetch=False) fields = { "serviceDeskId": int(service_desks[0].id), "requestTypeId": int(request_types[0].id), "raiseOnBehalfOf": self.test_manager.CI_JIRA_ADMIN, "requestFieldValues": { "summary": "Request summary", "description": "Request description" } } request2 = self.desk.create_request(fields, prefetch=False) result = self.desk.my_customer_requests(request_ownership='OWNED_REQUESTS', servicedesk_id=int(service_desks[0].id), request_type_id=int(request_types[0].id)) count = 0 requests = (request1.id, request2.id) for i in result: if i.id in requests: count += 1 self.assertEqual(count, 1) result = self.desk.my_customer_requests(request_ownership='PARTICIPATED_REQUESTS', servicedesk_id=int(service_desks[0].id), request_type_id=int(request_types[0].id)) count = 0 requests_list = (request1.id, request2.id) for i in result: if i.id in requests_list: count += 1 self.jira.delete_issue(request1.id) self.jira.delete_issue(request2.id) self.assertEqual(count, 0) def test_request_comments(self): service_desks = self.desk.service_desks() self.assertGreater(len(service_desks), 0) request_types = self.desk.request_types(service_desks[0].id) self.assertGreater(len(request_types), 0) fields = { "serviceDeskId": int(service_desks[0].id), "requestTypeId": int(request_types[0].id), "raiseOnBehalfOf": self.test_manager.CI_JIRA_USER, "requestFieldValues": { "summary": "Request summary", "description": "Request description" } } request = self.desk.create_request(fields, prefetch=False) self.jira.add_comment(request.id, "Public comment #1", is_internal=False) self.jira.add_comment(request.id, "Internal comment #1", is_internal=True) self.jira.add_comment(request.id, "Public comment #2", is_internal=False) self.jira.add_comment(request.id, "Public comment #3", is_internal=False) sleep(1) public_comments = self.desk.request_comments(request.id, public=True, internal=False) internal_comments = self.desk.request_comments(request.id, public=False, internal=True) all_comments = self.desk.request_comments(request.id) self.assertEqual(len(public_comments), 3) self.assertEqual(len(internal_comments), 1) self.assertEqual(len(all_comments), 4) for comment in public_comments: self.assertEqual(comment.public, True) for comment in internal_comments: self.assertEqual(comment.public, False) self.jira.delete_issue(request.id) def test_create_attachment(self): service_desks = self.desk.service_desks() self.assertGreater(len(service_desks), 0) request_types = self.desk.request_types(service_desks[0].id) self.assertGreater(len(request_types), 0) fields = { "serviceDeskId": int(service_desks[0].id), "requestTypeId": int(request_types[0].id), "raiseOnBehalfOf": self.test_manager.CI_JIRA_USER, "requestFieldValues": { "summary": "Request summary", "description": "Request description" } } request = self.desk.create_request(fields) tmp_attachment = self.desk.attach_temporary_file(service_desks[0].id, open(TEST_ICON_PATH, 'rb'), "test.png") self.assertEqual(len(tmp_attachment.temporaryAttachments), 1) self.assertEqual(tmp_attachment.temporaryAttachments[0].fileName, 'test.png') request_attachment = self.desk.servicedesk_attachment(request.id, tmp_attachment, is_public=False, comment='Comment text') self.jira.delete_issue(request.id) self.assertEqual(request_attachment.comment.body, 'Comment text\n\n!test.png|thumbnail!') if hasattr(request_attachment.attachments, 'values'): # For Jira Servicedesk Cloud self.assertGreater(len(request_attachment.attachments.values), 0) self.assertEqual(request_attachment.attachments.values[0].filename, 'test.png') self.assertGreater(request_attachment.attachments.values[0].size, 0) else: # For Jira Servicedesk Server self.assertGreater(len(request_attachment.attachments), 0) self.assertEqual(request_attachment.attachments[0].filename, 'test.png') self.assertGreater(request_attachment.attachments[0].size, 0) def test_attach_temporary_file(self): service_desks = self.desk.service_desks() self.assertGreater(len(service_desks), 0) tmp_attachment = self.desk.attach_temporary_file(service_desks[0].id, open(TEST_ICON_PATH, 'rb'), "test.png") self.assertEqual(len(tmp_attachment.temporaryAttachments), 1) self.assertEqual(tmp_attachment.temporaryAttachments[0].fileName, 'test.png') def test_create_customer_request(self): try: self.jira.create_project('TESTSD', template_name='IT Service Desk') except JIRAError: pass service_desk = self.desk.service_desks()[0] request_type = self.desk.request_types(service_desk.id)[0] request = self.desk.create_customer_request(dict( serviceDeskId=service_desk.id, requestTypeId=int(request_type.id), requestFieldValues=dict( summary='Ticket title here', description='Ticket body here' ) )) self.assertEqual(request.fields.summary, 'Ticket title here') self.assertEqual(request.fields.description, 'Ticket body here') if __name__ == '__main__': # when running tests we expect various errors and we don't want to display them by default logging.getLogger("requests").setLevel(logging.FATAL) logging.getLogger("urllib3").setLevel(logging.FATAL) logging.getLogger("jira").setLevel(logging.FATAL) # j = JIRA("https://issues.citrite.net") # print(j.session()) dirname = "test-reports-%s%s" % (sys.version_info[0], sys.version_info[1]) unittest.main() # pass
38.991055
117
0.677097
18,978
0.87071
0
0
19,003
0.871857
0
0
2,578
0.118279
fbd4f1c85388584979a3225e172df289b9b181ba
1,761
py
Python
mods/goofile.py
Natto97/discover
101d5457bad9345598720a49e4323b047030e496
[ "MIT" ]
1
2018-08-11T10:28:00.000Z
2018-08-11T10:28:00.000Z
mods/goofile.py
Natto97/discover
101d5457bad9345598720a49e4323b047030e496
[ "MIT" ]
null
null
null
mods/goofile.py
Natto97/discover
101d5457bad9345598720a49e4323b047030e496
[ "MIT" ]
1
2018-11-02T18:33:00.000Z
2018-11-02T18:33:00.000Z
#!/usr/bin/env python # Goofile v1.5a # by Thomas (G13) Richards # www.g13net.com # Project Page: code.google.com/p/goofile # TheHarvester used for inspiration # A many thanks to the Edge-Security team! # Modified by Lee Baird import getopt import httplib import re import string import sys global result result =[] def usage(): print "\nusage: goofile <options>" print " -d: domain" print " -f: filetype\n" print "example: goofile.py -d target.com -f txt\n\n" sys.exit() def run(domain,file): h = httplib.HTTP('www.google.com') h.putrequest('GET',"/search?num=500&q=site:"+domain+"+filetype:"+file) h.putheader('Host', 'www.google.com') h.putheader('User-agent', 'Internet Explorer 6.0 ') h.putheader('Referrer', 'www.g13net.com') h.endheaders() returncode, returnmsg, headers = h.getreply() data=h.getfile().read() data=re.sub('<b>','',data) for e in ('>','=','<','\\','(',')','"','http',':','//'): data = string.replace(data,e,' ') r1 = re.compile('[-_.a-zA-Z0-9.-_]*'+'\.'+file) res = r1.findall(data) return res def search(argv): global limit limit = 100 if len(sys.argv) < 2: usage() try : opts, args = getopt.getopt(argv,"d:f:") except getopt.GetoptError: usage() sys.exit() for opt,arg in opts : if opt == '-f' : file=arg elif opt == '-d': domain=arg cant = 0 while cant < limit: res = run(domain,file) for x in res: if result.count(x) == 0: result.append(x) cant+=100 if result==[]: print "No results were found." else: for x in result: print x if __name__ == "__main__": try: search(sys.argv[1:]) except KeyboardInterrupt: print "Search interrupted by user." except: sys.exit()
20.717647
71
0.609313
0
0
0
0
0
0
0
0
626
0.35548
fbd4fbdd0e8caf1bb4e01991f3ba92b60968ec1e
211
py
Python
Atividade do Livro-Nilo Ney(PYTHON)/Cap.05/exe 5.25.py
EduardoJonathan0/Python
0e4dff4703515a6454ba25c6f401960b6155f32f
[ "MIT" ]
null
null
null
Atividade do Livro-Nilo Ney(PYTHON)/Cap.05/exe 5.25.py
EduardoJonathan0/Python
0e4dff4703515a6454ba25c6f401960b6155f32f
[ "MIT" ]
null
null
null
Atividade do Livro-Nilo Ney(PYTHON)/Cap.05/exe 5.25.py
EduardoJonathan0/Python
0e4dff4703515a6454ba25c6f401960b6155f32f
[ "MIT" ]
null
null
null
n = int(input('Insira um número e calcule sua raiz: ')) b = 2 while True: p = (b + (n / b)) / 2 res = p ** 2 b = p if abs(n - res) < 0.0001: break print(f'p = {p}') print(f'p² = {res}')
17.583333
55
0.469194
0
0
0
0
0
0
0
0
64
0.300469
fbd741a2b97e35d13af8722f7601c0365f0d7506
1,732
py
Python
wolframclient/utils/six.py
krbarker/WolframClientForPython
f2198b15cad0f406b78ad40a4d1e3ca76125b408
[ "MIT" ]
null
null
null
wolframclient/utils/six.py
krbarker/WolframClientForPython
f2198b15cad0f406b78ad40a4d1e3ca76125b408
[ "MIT" ]
null
null
null
wolframclient/utils/six.py
krbarker/WolframClientForPython
f2198b15cad0f406b78ad40a4d1e3ca76125b408
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- from __future__ import absolute_import, print_function, unicode_literals import datetime import decimal import platform import sys import types from itertools import chain #stripped version of SIX PY2 = sys.version_info[0] == 2 PY3 = sys.version_info[0] == 3 PY_35 = sys.version_info >= (3, 5) PY_36 = sys.version_info >= (3, 6) PY_37 = sys.version_info >= (3, 7) WINDOWS = platform.system() == 'Windows' LINUX = platform.system() == 'Linux' MACOS = platform.system() == 'Darwin' JYTHON = sys.platform.startswith('java') if PY3: string_types = str, integer_types = int, class_types = type, text_type = str binary_type = bytes none_type = type(None) import io StringIO = io.StringIO BytesIO = io.BytesIO memoryview = memoryview buffer_types = (bytes, bytearray, memoryview) else: string_types = basestring, integer_types = (int, long) class_types = (type, types.ClassType) text_type = unicode binary_type = str none_type = types.NoneType import StringIO StringIO = BytesIO = StringIO.StringIO # memoryview and buffer are not strictly equivalent, but should be fine for # django core usage (mainly BinaryField). However, Jython doesn't support # buffer (see http://bugs.jython.org/issue1521), so we have to be careful. if JYTHON: memoryview = memoryview else: memoryview = buffer buffer_types = (bytearray, memoryview, buffer) iterable_types = (list, tuple, set, frozenset, types.GeneratorType, chain) protected_types = tuple( chain(string_types, integer_types, (float, decimal.Decimal, datetime.date, datetime.datetime, datetime.time, bool, none_type)))
25.850746
79
0.691686
0
0
0
0
0
0
0
0
299
0.172633
fbd89ae0e3bc378776e8ecafb307ef98cc2d28f8
3,388
py
Python
Lib/site-packages/pynput/mouse/_xorg.py
djaldave/laevad-python-2.7.18
df9aac191d554295db45d638e528880a9ab9a3ec
[ "bzip2-1.0.6" ]
null
null
null
Lib/site-packages/pynput/mouse/_xorg.py
djaldave/laevad-python-2.7.18
df9aac191d554295db45d638e528880a9ab9a3ec
[ "bzip2-1.0.6" ]
null
null
null
Lib/site-packages/pynput/mouse/_xorg.py
djaldave/laevad-python-2.7.18
df9aac191d554295db45d638e528880a9ab9a3ec
[ "bzip2-1.0.6" ]
null
null
null
# coding=utf-8 # pynput # Copyright (C) 2015-2016 Moses Palmér # # This program is free software: you can redistribute it and/or modify it under # the terms of the GNU Lesser General Public License as published by the Free # Software Foundation, either version 3 of the License, or (at your option) any # later version. # # This program is distributed in the hope that it will be useful, but WITHOUT # ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS # FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more # details. # # You should have received a copy of the GNU Lesser General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. import enum import Xlib.display import Xlib.ext import Xlib.ext.xtest import Xlib.X import Xlib.protocol from pynput._util.xorg import * from . import _base class Button(enum.Enum): """The various buttons. """ left = 1 middle = 2 right = 3 scroll_up = 4 scroll_down = 5 scroll_left = 6 scroll_right = 7 class Controller(_base.Controller): def __init__(self): self._display = Xlib.display.Display() def __del__(self): if hasattr(self, '_display'): self._display.close() def _position_get(self): with display_manager(self._display) as d: data = d.screen().root.query_pointer()._data return (data["root_x"], data["root_y"]) def _position_set(self, pos): x, y = pos with display_manager(self._display) as d: Xlib.ext.xtest.fake_input(d, Xlib.X.MotionNotify, x=x, y=y) def _scroll(self, dx, dy): if dy: self.click( button=Button.scroll_up if dy > 0 else Button.scroll_down, count=abs(dy)) if dx: self.click( button=Button.scroll_right if dx > 0 else Button.scroll_left, count=abs(dx)) def _press(self, button): with display_manager(self._display) as d: Xlib.ext.xtest.fake_input(d, Xlib.X.ButtonPress, button.value) def _release(self, button): with display_manager(self._display) as d: Xlib.ext.xtest.fake_input(d, Xlib.X.ButtonRelease, button.value) class Listener(ListenerMixin, _base.Listener): #: A mapping from button values to scroll directions _SCROLL_BUTTONS = { Button.scroll_up.value: (0, 1), Button.scroll_down.value: (0, -1), Button.scroll_right.value: (1, 0), Button.scroll_left.value: (-1, 0)} _EVENTS = ( Xlib.X.ButtonPressMask, Xlib.X.ButtonReleaseMask) def _handle(self, display, event): x = event.root_x y = event.root_y if event.type == Xlib.X.ButtonPress: # Scroll events are sent as button presses with the scroll # button codes scroll = self._SCROLL_BUTTONS.get(event.detail, None) if scroll: self.on_scroll(x, y, *scroll) else: self.on_click(x, y, Button(event.detail), True) elif event.type == Xlib.X.ButtonRelease: # Send an event only if this was not a scroll event if event.detail not in self._SCROLL_BUTTONS: self.on_click(x, y, Button(event.detail), False) else: self.on_move(x, y)
30.522523
79
0.631641
2,502
0.738271
0
0
0
0
0
0
935
0.275893
fbdc68b03f388458c541749b935a1b91cef73dc0
155,379
py
Python
automate_online-materials/census2010.py
kruschk/automate-the-boring-stuff
2172fa9d1846b2ba9ead4e86971d72edd54f97b3
[ "MIT" ]
2
2020-01-18T16:01:24.000Z
2020-02-29T19:27:17.000Z
automate_online-materials/census2010.py
kruschk/automate-the-boring-stuff
2172fa9d1846b2ba9ead4e86971d72edd54f97b3
[ "MIT" ]
88
2019-10-31T12:30:02.000Z
2020-08-14T12:17:12.000Z
automate_online-materials/census2010.py
kruschk/automate-the-boring-stuff
2172fa9d1846b2ba9ead4e86971d72edd54f97b3
[ "MIT" ]
4
2020-08-17T16:49:06.000Z
2022-02-14T06:45:29.000Z
allData = {'AK': {'Aleutians East': {'pop': 3141, 'tracts': 1}, 'Aleutians West': {'pop': 5561, 'tracts': 2}, 'Anchorage': {'pop': 291826, 'tracts': 55}, 'Bethel': {'pop': 17013, 'tracts': 3}, 'Bristol Bay': {'pop': 997, 'tracts': 1}, 'Denali': {'pop': 1826, 'tracts': 1}, 'Dillingham': {'pop': 4847, 'tracts': 2}, 'Fairbanks North Star': {'pop': 97581, 'tracts': 19}, 'Haines': {'pop': 2508, 'tracts': 1}, 'Hoonah-Angoon': {'pop': 2150, 'tracts': 2}, 'Juneau': {'pop': 31275, 'tracts': 6}, 'Kenai Peninsula': {'pop': 55400, 'tracts': 13}, 'Ketchikan Gateway': {'pop': 13477, 'tracts': 4}, 'Kodiak Island': {'pop': 13592, 'tracts': 5}, 'Lake and Peninsula': {'pop': 1631, 'tracts': 1}, 'Matanuska-Susitna': {'pop': 88995, 'tracts': 24}, 'Nome': {'pop': 9492, 'tracts': 2}, 'North Slope': {'pop': 9430, 'tracts': 3}, 'Northwest Arctic': {'pop': 7523, 'tracts': 2}, 'Petersburg': {'pop': 3815, 'tracts': 1}, 'Prince of Wales-Hyder': {'pop': 5559, 'tracts': 4}, 'Sitka': {'pop': 8881, 'tracts': 2}, 'Skagway': {'pop': 968, 'tracts': 1}, 'Southeast Fairbanks': {'pop': 7029, 'tracts': 2}, 'Valdez-Cordova': {'pop': 9636, 'tracts': 3}, 'Wade Hampton': {'pop': 7459, 'tracts': 1}, 'Wrangell': {'pop': 2369, 'tracts': 1}, 'Yakutat': {'pop': 662, 'tracts': 1}, 'Yukon-Koyukuk': {'pop': 5588, 'tracts': 4}}, 'AL': {'Autauga': {'pop': 54571, 'tracts': 12}, 'Baldwin': {'pop': 182265, 'tracts': 31}, 'Barbour': {'pop': 27457, 'tracts': 9}, 'Bibb': {'pop': 22915, 'tracts': 4}, 'Blount': {'pop': 57322, 'tracts': 9}, 'Bullock': {'pop': 10914, 'tracts': 3}, 'Butler': {'pop': 20947, 'tracts': 9}, 'Calhoun': {'pop': 118572, 'tracts': 31}, 'Chambers': {'pop': 34215, 'tracts': 9}, 'Cherokee': {'pop': 25989, 'tracts': 6}, 'Chilton': {'pop': 43643, 'tracts': 9}, 'Choctaw': {'pop': 13859, 'tracts': 4}, 'Clarke': {'pop': 25833, 'tracts': 9}, 'Clay': {'pop': 13932, 'tracts': 4}, 'Cleburne': {'pop': 14972, 'tracts': 4}, 'Coffee': {'pop': 49948, 'tracts': 14}, 'Colbert': {'pop': 54428, 'tracts': 14}, 'Conecuh': {'pop': 13228, 'tracts': 5}, 'Coosa': {'pop': 11539, 'tracts': 3}, 'Covington': {'pop': 37765, 'tracts': 14}, 'Crenshaw': {'pop': 13906, 'tracts': 6}, 'Cullman': {'pop': 80406, 'tracts': 18}, 'Dale': {'pop': 50251, 'tracts': 14}, 'Dallas': {'pop': 43820, 'tracts': 15}, 'DeKalb': {'pop': 71109, 'tracts': 14}, 'Elmore': {'pop': 79303, 'tracts': 15}, 'Escambia': {'pop': 38319, 'tracts': 9}, 'Etowah': {'pop': 104430, 'tracts': 30}, 'Fayette': {'pop': 17241, 'tracts': 5}, 'Franklin': {'pop': 31704, 'tracts': 9}, 'Geneva': {'pop': 26790, 'tracts': 6}, 'Greene': {'pop': 9045, 'tracts': 3}, 'Hale': {'pop': 15760, 'tracts': 6}, 'Henry': {'pop': 17302, 'tracts': 6}, 'Houston': {'pop': 101547, 'tracts': 22}, 'Jackson': {'pop': 53227, 'tracts': 11}, 'Jefferson': {'pop': 658466, 'tracts': 163}, 'Lamar': {'pop': 14564, 'tracts': 3}, 'Lauderdale': {'pop': 92709, 'tracts': 22}, 'Lawrence': {'pop': 34339, 'tracts': 9}, 'Lee': {'pop': 140247, 'tracts': 27}, 'Limestone': {'pop': 82782, 'tracts': 16}, 'Lowndes': {'pop': 11299, 'tracts': 4}, 'Macon': {'pop': 21452, 'tracts': 12}, 'Madison': {'pop': 334811, 'tracts': 73}, 'Marengo': {'pop': 21027, 'tracts': 6}, 'Marion': {'pop': 30776, 'tracts': 8}, 'Marshall': {'pop': 93019, 'tracts': 18}, 'Mobile': {'pop': 412992, 'tracts': 114}, 'Monroe': {'pop': 23068, 'tracts': 7}, 'Montgomery': {'pop': 229363, 'tracts': 65}, 'Morgan': {'pop': 119490, 'tracts': 27}, 'Perry': {'pop': 10591, 'tracts': 3}, 'Pickens': {'pop': 19746, 'tracts': 5}, 'Pike': {'pop': 32899, 'tracts': 8}, 'Randolph': {'pop': 22913, 'tracts': 6}, 'Russell': {'pop': 52947, 'tracts': 13}, 'Shelby': {'pop': 195085, 'tracts': 48}, 'St. Clair': {'pop': 83593, 'tracts': 13}, 'Sumter': {'pop': 13763, 'tracts': 4}, 'Talladega': {'pop': 82291, 'tracts': 22}, 'Tallapoosa': {'pop': 41616, 'tracts': 10}, 'Tuscaloosa': {'pop': 194656, 'tracts': 47}, 'Walker': {'pop': 67023, 'tracts': 18}, 'Washington': {'pop': 17581, 'tracts': 5}, 'Wilcox': {'pop': 11670, 'tracts': 4}, 'Winston': {'pop': 24484, 'tracts': 7}}, 'AR': {'Arkansas': {'pop': 19019, 'tracts': 8}, 'Ashley': {'pop': 21853, 'tracts': 7}, 'Baxter': {'pop': 41513, 'tracts': 9}, 'Benton': {'pop': 221339, 'tracts': 49}, 'Boone': {'pop': 36903, 'tracts': 7}, 'Bradley': {'pop': 11508, 'tracts': 5}, 'Calhoun': {'pop': 5368, 'tracts': 2}, 'Carroll': {'pop': 27446, 'tracts': 5}, 'Chicot': {'pop': 11800, 'tracts': 4}, 'Clark': {'pop': 22995, 'tracts': 5}, 'Clay': {'pop': 16083, 'tracts': 6}, 'Cleburne': {'pop': 25970, 'tracts': 7}, 'Cleveland': {'pop': 8689, 'tracts': 2}, 'Columbia': {'pop': 24552, 'tracts': 5}, 'Conway': {'pop': 21273, 'tracts': 6}, 'Craighead': {'pop': 96443, 'tracts': 17}, 'Crawford': {'pop': 61948, 'tracts': 11}, 'Crittenden': {'pop': 50902, 'tracts': 20}, 'Cross': {'pop': 17870, 'tracts': 6}, 'Dallas': {'pop': 8116, 'tracts': 3}, 'Desha': {'pop': 13008, 'tracts': 5}, 'Drew': {'pop': 18509, 'tracts': 5}, 'Faulkner': {'pop': 113237, 'tracts': 25}, 'Franklin': {'pop': 18125, 'tracts': 3}, 'Fulton': {'pop': 12245, 'tracts': 2}, 'Garland': {'pop': 96024, 'tracts': 20}, 'Grant': {'pop': 17853, 'tracts': 4}, 'Greene': {'pop': 42090, 'tracts': 9}, 'Hempstead': {'pop': 22609, 'tracts': 5}, 'Hot Spring': {'pop': 32923, 'tracts': 7}, 'Howard': {'pop': 13789, 'tracts': 3}, 'Independence': {'pop': 36647, 'tracts': 8}, 'Izard': {'pop': 13696, 'tracts': 4}, 'Jackson': {'pop': 17997, 'tracts': 5}, 'Jefferson': {'pop': 77435, 'tracts': 24}, 'Johnson': {'pop': 25540, 'tracts': 6}, 'Lafayette': {'pop': 7645, 'tracts': 2}, 'Lawrence': {'pop': 17415, 'tracts': 6}, 'Lee': {'pop': 10424, 'tracts': 4}, 'Lincoln': {'pop': 14134, 'tracts': 4}, 'Little River': {'pop': 13171, 'tracts': 4}, 'Logan': {'pop': 22353, 'tracts': 6}, 'Lonoke': {'pop': 68356, 'tracts': 16}, 'Madison': {'pop': 15717, 'tracts': 4}, 'Marion': {'pop': 16653, 'tracts': 4}, 'Miller': {'pop': 43462, 'tracts': 12}, 'Mississippi': {'pop': 46480, 'tracts': 12}, 'Monroe': {'pop': 8149, 'tracts': 3}, 'Montgomery': {'pop': 9487, 'tracts': 3}, 'Nevada': {'pop': 8997, 'tracts': 3}, 'Newton': {'pop': 8330, 'tracts': 2}, 'Ouachita': {'pop': 26120, 'tracts': 6}, 'Perry': {'pop': 10445, 'tracts': 3}, 'Phillips': {'pop': 21757, 'tracts': 6}, 'Pike': {'pop': 11291, 'tracts': 3}, 'Poinsett': {'pop': 24583, 'tracts': 7}, 'Polk': {'pop': 20662, 'tracts': 6}, 'Pope': {'pop': 61754, 'tracts': 11}, 'Prairie': {'pop': 8715, 'tracts': 3}, 'Pulaski': {'pop': 382748, 'tracts': 95}, 'Randolph': {'pop': 17969, 'tracts': 4}, 'Saline': {'pop': 107118, 'tracts': 21}, 'Scott': {'pop': 11233, 'tracts': 3}, 'Searcy': {'pop': 8195, 'tracts': 3}, 'Sebastian': {'pop': 125744, 'tracts': 26}, 'Sevier': {'pop': 17058, 'tracts': 4}, 'Sharp': {'pop': 17264, 'tracts': 4}, 'St. Francis': {'pop': 28258, 'tracts': 6}, 'Stone': {'pop': 12394, 'tracts': 3}, 'Union': {'pop': 41639, 'tracts': 10}, 'Van Buren': {'pop': 17295, 'tracts': 5}, 'Washington': {'pop': 203065, 'tracts': 32}, 'White': {'pop': 77076, 'tracts': 13}, 'Woodruff': {'pop': 7260, 'tracts': 2}, 'Yell': {'pop': 22185, 'tracts': 6}}, 'AZ': {'Apache': {'pop': 71518, 'tracts': 16}, 'Cochise': {'pop': 131346, 'tracts': 32}, 'Coconino': {'pop': 134421, 'tracts': 28}, 'Gila': {'pop': 53597, 'tracts': 16}, 'Graham': {'pop': 37220, 'tracts': 9}, 'Greenlee': {'pop': 8437, 'tracts': 3}, 'La Paz': {'pop': 20489, 'tracts': 9}, 'Maricopa': {'pop': 3817117, 'tracts': 916}, 'Mohave': {'pop': 200186, 'tracts': 43}, 'Navajo': {'pop': 107449, 'tracts': 31}, 'Pima': {'pop': 980263, 'tracts': 241}, 'Pinal': {'pop': 375770, 'tracts': 75}, 'Santa Cruz': {'pop': 47420, 'tracts': 10}, 'Yavapai': {'pop': 211033, 'tracts': 42}, 'Yuma': {'pop': 195751, 'tracts': 55}}, 'CA': {'Alameda': {'pop': 1510271, 'tracts': 360}, 'Alpine': {'pop': 1175, 'tracts': 1}, 'Amador': {'pop': 38091, 'tracts': 9}, 'Butte': {'pop': 220000, 'tracts': 51}, 'Calaveras': {'pop': 45578, 'tracts': 10}, 'Colusa': {'pop': 21419, 'tracts': 5}, 'Contra Costa': {'pop': 1049025, 'tracts': 208}, 'Del Norte': {'pop': 28610, 'tracts': 7}, 'El Dorado': {'pop': 181058, 'tracts': 43}, 'Fresno': {'pop': 930450, 'tracts': 199}, 'Glenn': {'pop': 28122, 'tracts': 6}, 'Humboldt': {'pop': 134623, 'tracts': 30}, 'Imperial': {'pop': 174528, 'tracts': 31}, 'Inyo': {'pop': 18546, 'tracts': 6}, 'Kern': {'pop': 839631, 'tracts': 151}, 'Kings': {'pop': 152982, 'tracts': 27}, 'Lake': {'pop': 64665, 'tracts': 15}, 'Lassen': {'pop': 34895, 'tracts': 9}, 'Los Angeles': {'pop': 9818605, 'tracts': 2343}, 'Madera': {'pop': 150865, 'tracts': 23}, 'Marin': {'pop': 252409, 'tracts': 55}, 'Mariposa': {'pop': 18251, 'tracts': 6}, 'Mendocino': {'pop': 87841, 'tracts': 20}, 'Merced': {'pop': 255793, 'tracts': 49}, 'Modoc': {'pop': 9686, 'tracts': 4}, 'Mono': {'pop': 14202, 'tracts': 3}, 'Monterey': {'pop': 415057, 'tracts': 93}, 'Napa': {'pop': 136484, 'tracts': 40}, 'Nevada': {'pop': 98764, 'tracts': 20}, 'Orange': {'pop': 3010232, 'tracts': 583}, 'Placer': {'pop': 348432, 'tracts': 85}, 'Plumas': {'pop': 20007, 'tracts': 7}, 'Riverside': {'pop': 2189641, 'tracts': 453}, 'Sacramento': {'pop': 1418788, 'tracts': 317}, 'San Benito': {'pop': 55269, 'tracts': 11}, 'San Bernardino': {'pop': 2035210, 'tracts': 369}, 'San Diego': {'pop': 3095313, 'tracts': 628}, 'San Francisco': {'pop': 805235, 'tracts': 196}, 'San Joaquin': {'pop': 685306, 'tracts': 139}, 'San Luis Obispo': {'pop': 269637, 'tracts': 53}, 'San Mateo': {'pop': 718451, 'tracts': 158}, 'Santa Barbara': {'pop': 423895, 'tracts': 90}, 'Santa Clara': {'pop': 1781642, 'tracts': 372}, 'Santa Cruz': {'pop': 262382, 'tracts': 52}, 'Shasta': {'pop': 177223, 'tracts': 48}, 'Sierra': {'pop': 3240, 'tracts': 1}, 'Siskiyou': {'pop': 44900, 'tracts': 14}, 'Solano': {'pop': 413344, 'tracts': 96}, 'Sonoma': {'pop': 483878, 'tracts': 99}, 'Stanislaus': {'pop': 514453, 'tracts': 94}, 'Sutter': {'pop': 94737, 'tracts': 21}, 'Tehama': {'pop': 63463, 'tracts': 11}, 'Trinity': {'pop': 13786, 'tracts': 5}, 'Tulare': {'pop': 442179, 'tracts': 78}, 'Tuolumne': {'pop': 55365, 'tracts': 11}, 'Ventura': {'pop': 823318, 'tracts': 174}, 'Yolo': {'pop': 200849, 'tracts': 41}, 'Yuba': {'pop': 72155, 'tracts': 14}}, 'CO': {'Adams': {'pop': 441603, 'tracts': 97}, 'Alamosa': {'pop': 15445, 'tracts': 4}, 'Arapahoe': {'pop': 572003, 'tracts': 147}, 'Archuleta': {'pop': 12084, 'tracts': 4}, 'Baca': {'pop': 3788, 'tracts': 2}, 'Bent': {'pop': 6499, 'tracts': 1}, 'Boulder': {'pop': 294567, 'tracts': 68}, 'Broomfield': {'pop': 55889, 'tracts': 18}, 'Chaffee': {'pop': 17809, 'tracts': 5}, 'Cheyenne': {'pop': 1836, 'tracts': 1}, 'Clear Creek': {'pop': 9088, 'tracts': 3}, 'Conejos': {'pop': 8256, 'tracts': 2}, 'Costilla': {'pop': 3524, 'tracts': 2}, 'Crowley': {'pop': 5823, 'tracts': 1}, 'Custer': {'pop': 4255, 'tracts': 1}, 'Delta': {'pop': 30952, 'tracts': 7}, 'Denver': {'pop': 600158, 'tracts': 144}, 'Dolores': {'pop': 2064, 'tracts': 1}, 'Douglas': {'pop': 285465, 'tracts': 61}, 'Eagle': {'pop': 52197, 'tracts': 14}, 'El Paso': {'pop': 622263, 'tracts': 130}, 'Elbert': {'pop': 23086, 'tracts': 7}, 'Fremont': {'pop': 46824, 'tracts': 14}, 'Garfield': {'pop': 56389, 'tracts': 11}, 'Gilpin': {'pop': 5441, 'tracts': 1}, 'Grand': {'pop': 14843, 'tracts': 3}, 'Gunnison': {'pop': 15324, 'tracts': 4}, 'Hinsdale': {'pop': 843, 'tracts': 1}, 'Huerfano': {'pop': 6711, 'tracts': 2}, 'Jackson': {'pop': 1394, 'tracts': 1}, 'Jefferson': {'pop': 534543, 'tracts': 138}, 'Kiowa': {'pop': 1398, 'tracts': 1}, 'Kit Carson': {'pop': 8270, 'tracts': 3}, 'La Plata': {'pop': 51334, 'tracts': 10}, 'Lake': {'pop': 7310, 'tracts': 2}, 'Larimer': {'pop': 299630, 'tracts': 73}, 'Las Animas': {'pop': 15507, 'tracts': 6}, 'Lincoln': {'pop': 5467, 'tracts': 2}, 'Logan': {'pop': 22709, 'tracts': 6}, 'Mesa': {'pop': 146723, 'tracts': 29}, 'Mineral': {'pop': 712, 'tracts': 1}, 'Moffat': {'pop': 13795, 'tracts': 4}, 'Montezuma': {'pop': 25535, 'tracts': 7}, 'Montrose': {'pop': 41276, 'tracts': 10}, 'Morgan': {'pop': 28159, 'tracts': 8}, 'Otero': {'pop': 18831, 'tracts': 7}, 'Ouray': {'pop': 4436, 'tracts': 1}, 'Park': {'pop': 16206, 'tracts': 5}, 'Phillips': {'pop': 4442, 'tracts': 2}, 'Pitkin': {'pop': 17148, 'tracts': 4}, 'Prowers': {'pop': 12551, 'tracts': 5}, 'Pueblo': {'pop': 159063, 'tracts': 55}, 'Rio Blanco': {'pop': 6666, 'tracts': 2}, 'Rio Grande': {'pop': 11982, 'tracts': 3}, 'Routt': {'pop': 23509, 'tracts': 8}, 'Saguache': {'pop': 6108, 'tracts': 2}, 'San Juan': {'pop': 699, 'tracts': 1}, 'San Miguel': {'pop': 7359, 'tracts': 4}, 'Sedgwick': {'pop': 2379, 'tracts': 1}, 'Summit': {'pop': 27994, 'tracts': 5}, 'Teller': {'pop': 23350, 'tracts': 6}, 'Washington': {'pop': 4814, 'tracts': 2}, 'Weld': {'pop': 252825, 'tracts': 77}, 'Yuma': {'pop': 10043, 'tracts': 2}}, 'CT': {'Fairfield': {'pop': 916829, 'tracts': 211}, 'Hartford': {'pop': 894014, 'tracts': 224}, 'Litchfield': {'pop': 189927, 'tracts': 51}, 'Middlesex': {'pop': 165676, 'tracts': 36}, 'New Haven': {'pop': 862477, 'tracts': 190}, 'New London': {'pop': 274055, 'tracts': 66}, 'Tolland': {'pop': 152691, 'tracts': 29}, 'Windham': {'pop': 118428, 'tracts': 25}}, 'DC': {'District of Columbia': {'pop': 601723, 'tracts': 179}}, 'DE': {'Kent': {'pop': 162310, 'tracts': 33}, 'New Castle': {'pop': 538479, 'tracts': 131}, 'Sussex': {'pop': 197145, 'tracts': 54}}, 'FL': {'Alachua': {'pop': 247336, 'tracts': 56}, 'Baker': {'pop': 27115, 'tracts': 4}, 'Bay': {'pop': 168852, 'tracts': 44}, 'Bradford': {'pop': 28520, 'tracts': 4}, 'Brevard': {'pop': 543376, 'tracts': 113}, 'Broward': {'pop': 1748066, 'tracts': 361}, 'Calhoun': {'pop': 14625, 'tracts': 3}, 'Charlotte': {'pop': 159978, 'tracts': 39}, 'Citrus': {'pop': 141236, 'tracts': 27}, 'Clay': {'pop': 190865, 'tracts': 30}, 'Collier': {'pop': 321520, 'tracts': 73}, 'Columbia': {'pop': 67531, 'tracts': 12}, 'DeSoto': {'pop': 34862, 'tracts': 9}, 'Dixie': {'pop': 16422, 'tracts': 3}, 'Duval': {'pop': 864263, 'tracts': 173}, 'Escambia': {'pop': 297619, 'tracts': 71}, 'Flagler': {'pop': 95696, 'tracts': 20}, 'Franklin': {'pop': 11549, 'tracts': 4}, 'Gadsden': {'pop': 46389, 'tracts': 9}, 'Gilchrist': {'pop': 16939, 'tracts': 5}, 'Glades': {'pop': 12884, 'tracts': 4}, 'Gulf': {'pop': 15863, 'tracts': 3}, 'Hamilton': {'pop': 14799, 'tracts': 3}, 'Hardee': {'pop': 27731, 'tracts': 6}, 'Hendry': {'pop': 39140, 'tracts': 7}, 'Hernando': {'pop': 172778, 'tracts': 45}, 'Highlands': {'pop': 98786, 'tracts': 27}, 'Hillsborough': {'pop': 1229226, 'tracts': 321}, 'Holmes': {'pop': 19927, 'tracts': 4}, 'Indian River': {'pop': 138028, 'tracts': 30}, 'Jackson': {'pop': 49746, 'tracts': 11}, 'Jefferson': {'pop': 14761, 'tracts': 3}, 'Lafayette': {'pop': 8870, 'tracts': 2}, 'Lake': {'pop': 297052, 'tracts': 56}, 'Lee': {'pop': 618754, 'tracts': 166}, 'Leon': {'pop': 275487, 'tracts': 68}, 'Levy': {'pop': 40801, 'tracts': 9}, 'Liberty': {'pop': 8365, 'tracts': 2}, 'Madison': {'pop': 19224, 'tracts': 5}, 'Manatee': {'pop': 322833, 'tracts': 78}, 'Marion': {'pop': 331298, 'tracts': 63}, 'Martin': {'pop': 146318, 'tracts': 35}, 'Miami-Dade': {'pop': 2496435, 'tracts': 519}, 'Monroe': {'pop': 73090, 'tracts': 30}, 'Nassau': {'pop': 73314, 'tracts': 12}, 'Okaloosa': {'pop': 180822, 'tracts': 41}, 'Okeechobee': {'pop': 39996, 'tracts': 12}, 'Orange': {'pop': 1145956, 'tracts': 207}, 'Osceola': {'pop': 268685, 'tracts': 41}, 'Palm Beach': {'pop': 1320134, 'tracts': 337}, 'Pasco': {'pop': 464697, 'tracts': 134}, 'Pinellas': {'pop': 916542, 'tracts': 245}, 'Polk': {'pop': 602095, 'tracts': 154}, 'Putnam': {'pop': 74364, 'tracts': 17}, 'Santa Rosa': {'pop': 151372, 'tracts': 25}, 'Sarasota': {'pop': 379448, 'tracts': 94}, 'Seminole': {'pop': 422718, 'tracts': 86}, 'St. Johns': {'pop': 190039, 'tracts': 40}, 'St. Lucie': {'pop': 277789, 'tracts': 44}, 'Sumter': {'pop': 93420, 'tracts': 19}, 'Suwannee': {'pop': 41551, 'tracts': 7}, 'Taylor': {'pop': 22570, 'tracts': 4}, 'Union': {'pop': 15535, 'tracts': 3}, 'Volusia': {'pop': 494593, 'tracts': 113}, 'Wakulla': {'pop': 30776, 'tracts': 4}, 'Walton': {'pop': 55043, 'tracts': 11}, 'Washington': {'pop': 24896, 'tracts': 7}}, 'GA': {'Appling': {'pop': 18236, 'tracts': 5}, 'Atkinson': {'pop': 8375, 'tracts': 3}, 'Bacon': {'pop': 11096, 'tracts': 3}, 'Baker': {'pop': 3451, 'tracts': 2}, 'Baldwin': {'pop': 45720, 'tracts': 9}, 'Banks': {'pop': 18395, 'tracts': 4}, 'Barrow': {'pop': 69367, 'tracts': 18}, 'Bartow': {'pop': 100157, 'tracts': 15}, 'Ben Hill': {'pop': 17634, 'tracts': 5}, 'Berrien': {'pop': 19286, 'tracts': 6}, 'Bibb': {'pop': 155547, 'tracts': 44}, 'Bleckley': {'pop': 13063, 'tracts': 3}, 'Brantley': {'pop': 18411, 'tracts': 3}, 'Brooks': {'pop': 16243, 'tracts': 5}, 'Bryan': {'pop': 30233, 'tracts': 7}, 'Bulloch': {'pop': 70217, 'tracts': 12}, 'Burke': {'pop': 23316, 'tracts': 6}, 'Butts': {'pop': 23655, 'tracts': 3}, 'Calhoun': {'pop': 6694, 'tracts': 2}, 'Camden': {'pop': 50513, 'tracts': 10}, 'Candler': {'pop': 10998, 'tracts': 3}, 'Carroll': {'pop': 110527, 'tracts': 17}, 'Catoosa': {'pop': 63942, 'tracts': 11}, 'Charlton': {'pop': 12171, 'tracts': 2}, 'Chatham': {'pop': 265128, 'tracts': 72}, 'Chattahoochee': {'pop': 11267, 'tracts': 5}, 'Chattooga': {'pop': 26015, 'tracts': 6}, 'Cherokee': {'pop': 214346, 'tracts': 26}, 'Clarke': {'pop': 116714, 'tracts': 30}, 'Clay': {'pop': 3183, 'tracts': 1}, 'Clayton': {'pop': 259424, 'tracts': 50}, 'Clinch': {'pop': 6798, 'tracts': 2}, 'Cobb': {'pop': 688078, 'tracts': 120}, 'Coffee': {'pop': 42356, 'tracts': 9}, 'Colquitt': {'pop': 45498, 'tracts': 10}, 'Columbia': {'pop': 124053, 'tracts': 20}, 'Cook': {'pop': 17212, 'tracts': 4}, 'Coweta': {'pop': 127317, 'tracts': 20}, 'Crawford': {'pop': 12630, 'tracts': 3}, 'Crisp': {'pop': 23439, 'tracts': 6}, 'Dade': {'pop': 16633, 'tracts': 4}, 'Dawson': {'pop': 22330, 'tracts': 3}, 'DeKalb': {'pop': 691893, 'tracts': 145}, 'Decatur': {'pop': 27842, 'tracts': 7}, 'Dodge': {'pop': 21796, 'tracts': 6}, 'Dooly': {'pop': 14918, 'tracts': 3}, 'Dougherty': {'pop': 94565, 'tracts': 27}, 'Douglas': {'pop': 132403, 'tracts': 20}, 'Early': {'pop': 11008, 'tracts': 5}, 'Echols': {'pop': 4034, 'tracts': 2}, 'Effingham': {'pop': 52250, 'tracts': 10}, 'Elbert': {'pop': 20166, 'tracts': 5}, 'Emanuel': {'pop': 22598, 'tracts': 6}, 'Evans': {'pop': 11000, 'tracts': 3}, 'Fannin': {'pop': 23682, 'tracts': 5}, 'Fayette': {'pop': 106567, 'tracts': 20}, 'Floyd': {'pop': 96317, 'tracts': 20}, 'Forsyth': {'pop': 175511, 'tracts': 45}, 'Franklin': {'pop': 22084, 'tracts': 5}, 'Fulton': {'pop': 920581, 'tracts': 204}, 'Gilmer': {'pop': 28292, 'tracts': 5}, 'Glascock': {'pop': 3082, 'tracts': 1}, 'Glynn': {'pop': 79626, 'tracts': 15}, 'Gordon': {'pop': 55186, 'tracts': 9}, 'Grady': {'pop': 25011, 'tracts': 6}, 'Greene': {'pop': 15994, 'tracts': 7}, 'Gwinnett': {'pop': 805321, 'tracts': 113}, 'Habersham': {'pop': 43041, 'tracts': 8}, 'Hall': {'pop': 179684, 'tracts': 36}, 'Hancock': {'pop': 9429, 'tracts': 2}, 'Haralson': {'pop': 28780, 'tracts': 5}, 'Harris': {'pop': 32024, 'tracts': 5}, 'Hart': {'pop': 25213, 'tracts': 5}, 'Heard': {'pop': 11834, 'tracts': 3}, 'Henry': {'pop': 203922, 'tracts': 25}, 'Houston': {'pop': 139900, 'tracts': 23}, 'Irwin': {'pop': 9538, 'tracts': 2}, 'Jackson': {'pop': 60485, 'tracts': 11}, 'Jasper': {'pop': 13900, 'tracts': 3}, 'Jeff Davis': {'pop': 15068, 'tracts': 3}, 'Jefferson': {'pop': 16930, 'tracts': 4}, 'Jenkins': {'pop': 8340, 'tracts': 2}, 'Johnson': {'pop': 9980, 'tracts': 3}, 'Jones': {'pop': 28669, 'tracts': 6}, 'Lamar': {'pop': 18317, 'tracts': 3}, 'Lanier': {'pop': 10078, 'tracts': 2}, 'Laurens': {'pop': 48434, 'tracts': 13}, 'Lee': {'pop': 28298, 'tracts': 5}, 'Liberty': {'pop': 63453, 'tracts': 14}, 'Lincoln': {'pop': 7996, 'tracts': 2}, 'Long': {'pop': 14464, 'tracts': 3}, 'Lowndes': {'pop': 109233, 'tracts': 25}, 'Lumpkin': {'pop': 29966, 'tracts': 4}, 'Macon': {'pop': 14740, 'tracts': 4}, 'Madison': {'pop': 28120, 'tracts': 6}, 'Marion': {'pop': 8742, 'tracts': 2}, 'McDuffie': {'pop': 21875, 'tracts': 5}, 'McIntosh': {'pop': 14333, 'tracts': 4}, 'Meriwether': {'pop': 21992, 'tracts': 4}, 'Miller': {'pop': 6125, 'tracts': 3}, 'Mitchell': {'pop': 23498, 'tracts': 5}, 'Monroe': {'pop': 26424, 'tracts': 5}, 'Montgomery': {'pop': 9123, 'tracts': 3}, 'Morgan': {'pop': 17868, 'tracts': 5}, 'Murray': {'pop': 39628, 'tracts': 8}, 'Muscogee': {'pop': 189885, 'tracts': 53}, 'Newton': {'pop': 99958, 'tracts': 13}, 'Oconee': {'pop': 32808, 'tracts': 6}, 'Oglethorpe': {'pop': 14899, 'tracts': 4}, 'Paulding': {'pop': 142324, 'tracts': 19}, 'Peach': {'pop': 27695, 'tracts': 6}, 'Pickens': {'pop': 29431, 'tracts': 6}, 'Pierce': {'pop': 18758, 'tracts': 4}, 'Pike': {'pop': 17869, 'tracts': 4}, 'Polk': {'pop': 41475, 'tracts': 7}, 'Pulaski': {'pop': 12010, 'tracts': 3}, 'Putnam': {'pop': 21218, 'tracts': 5}, 'Quitman': {'pop': 2513, 'tracts': 1}, 'Rabun': {'pop': 16276, 'tracts': 5}, 'Randolph': {'pop': 7719, 'tracts': 2}, 'Richmond': {'pop': 200549, 'tracts': 47}, 'Rockdale': {'pop': 85215, 'tracts': 15}, 'Schley': {'pop': 5010, 'tracts': 2}, 'Screven': {'pop': 14593, 'tracts': 5}, 'Seminole': {'pop': 8729, 'tracts': 3}, 'Spalding': {'pop': 64073, 'tracts': 12}, 'Stephens': {'pop': 26175, 'tracts': 5}, 'Stewart': {'pop': 6058, 'tracts': 2}, 'Sumter': {'pop': 32819, 'tracts': 8}, 'Talbot': {'pop': 6865, 'tracts': 3}, 'Taliaferro': {'pop': 1717, 'tracts': 1}, 'Tattnall': {'pop': 25520, 'tracts': 5}, 'Taylor': {'pop': 8906, 'tracts': 3}, 'Telfair': {'pop': 16500, 'tracts': 3}, 'Terrell': {'pop': 9315, 'tracts': 4}, 'Thomas': {'pop': 44720, 'tracts': 11}, 'Tift': {'pop': 40118, 'tracts': 9}, 'Toombs': {'pop': 27223, 'tracts': 6}, 'Towns': {'pop': 10471, 'tracts': 3}, 'Treutlen': {'pop': 6885, 'tracts': 2}, 'Troup': {'pop': 67044, 'tracts': 14}, 'Turner': {'pop': 8930, 'tracts': 2}, 'Twiggs': {'pop': 9023, 'tracts': 2}, 'Union': {'pop': 21356, 'tracts': 6}, 'Upson': {'pop': 27153, 'tracts': 7}, 'Walker': {'pop': 68756, 'tracts': 13}, 'Walton': {'pop': 83768, 'tracts': 15}, 'Ware': {'pop': 36312, 'tracts': 9}, 'Warren': {'pop': 5834, 'tracts': 2}, 'Washington': {'pop': 21187, 'tracts': 5}, 'Wayne': {'pop': 30099, 'tracts': 6}, 'Webster': {'pop': 2799, 'tracts': 2}, 'Wheeler': {'pop': 7421, 'tracts': 2}, 'White': {'pop': 27144, 'tracts': 5}, 'Whitfield': {'pop': 102599, 'tracts': 18}, 'Wilcox': {'pop': 9255, 'tracts': 4}, 'Wilkes': {'pop': 10593, 'tracts': 4}, 'Wilkinson': {'pop': 9563, 'tracts': 3}, 'Worth': {'pop': 21679, 'tracts': 5}}, 'HI': {'Hawaii': {'pop': 185079, 'tracts': 34}, 'Honolulu': {'pop': 953207, 'tracts': 244}, 'Kalawao': {'pop': 90, 'tracts': 1}, 'Kauai': {'pop': 67091, 'tracts': 16}, 'Maui': {'pop': 154834, 'tracts': 37}}, 'IA': {'Adair': {'pop': 7682, 'tracts': 3}, 'Adams': {'pop': 4029, 'tracts': 2}, 'Allamakee': {'pop': 14330, 'tracts': 5}, 'Appanoose': {'pop': 12887, 'tracts': 5}, 'Audubon': {'pop': 6119, 'tracts': 3}, 'Benton': {'pop': 26076, 'tracts': 7}, 'Black Hawk': {'pop': 131090, 'tracts': 38}, 'Boone': {'pop': 26306, 'tracts': 7}, 'Bremer': {'pop': 24276, 'tracts': 8}, 'Buchanan': {'pop': 20958, 'tracts': 6}, 'Buena Vista': {'pop': 20260, 'tracts': 6}, 'Butler': {'pop': 14867, 'tracts': 5}, 'Calhoun': {'pop': 9670, 'tracts': 4}, 'Carroll': {'pop': 20816, 'tracts': 6}, 'Cass': {'pop': 13956, 'tracts': 5}, 'Cedar': {'pop': 18499, 'tracts': 5}, 'Cerro Gordo': {'pop': 44151, 'tracts': 11}, 'Cherokee': {'pop': 12072, 'tracts': 4}, 'Chickasaw': {'pop': 12439, 'tracts': 4}, 'Clarke': {'pop': 9286, 'tracts': 3}, 'Clay': {'pop': 16667, 'tracts': 4}, 'Clayton': {'pop': 18129, 'tracts': 6}, 'Clinton': {'pop': 49116, 'tracts': 12}, 'Crawford': {'pop': 17096, 'tracts': 5}, 'Dallas': {'pop': 66135, 'tracts': 15}, 'Davis': {'pop': 8753, 'tracts': 2}, 'Decatur': {'pop': 8457, 'tracts': 3}, 'Delaware': {'pop': 17764, 'tracts': 4}, 'Des Moines': {'pop': 40325, 'tracts': 11}, 'Dickinson': {'pop': 16667, 'tracts': 5}, 'Dubuque': {'pop': 93653, 'tracts': 26}, 'Emmet': {'pop': 10302, 'tracts': 4}, 'Fayette': {'pop': 20880, 'tracts': 7}, 'Floyd': {'pop': 16303, 'tracts': 5}, 'Franklin': {'pop': 10680, 'tracts': 3}, 'Fremont': {'pop': 7441, 'tracts': 3}, 'Greene': {'pop': 9336, 'tracts': 4}, 'Grundy': {'pop': 12453, 'tracts': 4}, 'Guthrie': {'pop': 10954, 'tracts': 3}, 'Hamilton': {'pop': 15673, 'tracts': 5}, 'Hancock': {'pop': 11341, 'tracts': 4}, 'Hardin': {'pop': 17534, 'tracts': 6}, 'Harrison': {'pop': 14928, 'tracts': 5}, 'Henry': {'pop': 20145, 'tracts': 5}, 'Howard': {'pop': 9566, 'tracts': 3}, 'Humboldt': {'pop': 9815, 'tracts': 4}, 'Ida': {'pop': 7089, 'tracts': 3}, 'Iowa': {'pop': 16355, 'tracts': 4}, 'Jackson': {'pop': 19848, 'tracts': 6}, 'Jasper': {'pop': 36842, 'tracts': 9}, 'Jefferson': {'pop': 16843, 'tracts': 4}, 'Johnson': {'pop': 130882, 'tracts': 24}, 'Jones': {'pop': 20638, 'tracts': 5}, 'Keokuk': {'pop': 10511, 'tracts': 4}, 'Kossuth': {'pop': 15543, 'tracts': 6}, 'Lee': {'pop': 35862, 'tracts': 11}, 'Linn': {'pop': 211226, 'tracts': 45}, 'Louisa': {'pop': 11387, 'tracts': 3}, 'Lucas': {'pop': 8898, 'tracts': 4}, 'Lyon': {'pop': 11581, 'tracts': 3}, 'Madison': {'pop': 15679, 'tracts': 3}, 'Mahaska': {'pop': 22381, 'tracts': 7}, 'Marion': {'pop': 33309, 'tracts': 8}, 'Marshall': {'pop': 40648, 'tracts': 10}, 'Mills': {'pop': 15059, 'tracts': 5}, 'Mitchell': {'pop': 10776, 'tracts': 3}, 'Monona': {'pop': 9243, 'tracts': 4}, 'Monroe': {'pop': 7970, 'tracts': 3}, 'Montgomery': {'pop': 10740, 'tracts': 4}, 'Muscatine': {'pop': 42745, 'tracts': 10}, "O'Brien": {'pop': 14398, 'tracts': 4}, 'Osceola': {'pop': 6462, 'tracts': 2}, 'Page': {'pop': 15932, 'tracts': 6}, 'Palo Alto': {'pop': 9421, 'tracts': 4}, 'Plymouth': {'pop': 24986, 'tracts': 6}, 'Pocahontas': {'pop': 7310, 'tracts': 3}, 'Polk': {'pop': 430640, 'tracts': 98}, 'Pottawattamie': {'pop': 93158, 'tracts': 30}, 'Poweshiek': {'pop': 18914, 'tracts': 5}, 'Ringgold': {'pop': 5131, 'tracts': 2}, 'Sac': {'pop': 10350, 'tracts': 4}, 'Scott': {'pop': 165224, 'tracts': 47}, 'Shelby': {'pop': 12167, 'tracts': 4}, 'Sioux': {'pop': 33704, 'tracts': 7}, 'Story': {'pop': 89542, 'tracts': 20}, 'Tama': {'pop': 17767, 'tracts': 6}, 'Taylor': {'pop': 6317, 'tracts': 3}, 'Union': {'pop': 12534, 'tracts': 4}, 'Van Buren': {'pop': 7570, 'tracts': 2}, 'Wapello': {'pop': 35625, 'tracts': 11}, 'Warren': {'pop': 46225, 'tracts': 12}, 'Washington': {'pop': 21704, 'tracts': 5}, 'Wayne': {'pop': 6403, 'tracts': 3}, 'Webster': {'pop': 38013, 'tracts': 12}, 'Winnebago': {'pop': 10866, 'tracts': 3}, 'Winneshiek': {'pop': 21056, 'tracts': 5}, 'Woodbury': {'pop': 102172, 'tracts': 26}, 'Worth': {'pop': 7598, 'tracts': 3}, 'Wright': {'pop': 13229, 'tracts': 5}}, 'ID': {'Ada': {'pop': 392365, 'tracts': 59}, 'Adams': {'pop': 3976, 'tracts': 2}, 'Bannock': {'pop': 82839, 'tracts': 22}, 'Bear Lake': {'pop': 5986, 'tracts': 2}, 'Benewah': {'pop': 9285, 'tracts': 2}, 'Bingham': {'pop': 45607, 'tracts': 8}, 'Blaine': {'pop': 21376, 'tracts': 4}, 'Boise': {'pop': 7028, 'tracts': 1}, 'Bonner': {'pop': 40877, 'tracts': 9}, 'Bonneville': {'pop': 104234, 'tracts': 21}, 'Boundary': {'pop': 10972, 'tracts': 2}, 'Butte': {'pop': 2891, 'tracts': 1}, 'Camas': {'pop': 1117, 'tracts': 1}, 'Canyon': {'pop': 188923, 'tracts': 29}, 'Caribou': {'pop': 6963, 'tracts': 2}, 'Cassia': {'pop': 22952, 'tracts': 6}, 'Clark': {'pop': 982, 'tracts': 1}, 'Clearwater': {'pop': 8761, 'tracts': 2}, 'Custer': {'pop': 4368, 'tracts': 1}, 'Elmore': {'pop': 27038, 'tracts': 5}, 'Franklin': {'pop': 12786, 'tracts': 2}, 'Fremont': {'pop': 13242, 'tracts': 3}, 'Gem': {'pop': 16719, 'tracts': 3}, 'Gooding': {'pop': 15464, 'tracts': 2}, 'Idaho': {'pop': 16267, 'tracts': 5}, 'Jefferson': {'pop': 26140, 'tracts': 4}, 'Jerome': {'pop': 22374, 'tracts': 5}, 'Kootenai': {'pop': 138494, 'tracts': 25}, 'Latah': {'pop': 37244, 'tracts': 7}, 'Lemhi': {'pop': 7936, 'tracts': 3}, 'Lewis': {'pop': 3821, 'tracts': 3}, 'Lincoln': {'pop': 5208, 'tracts': 1}, 'Madison': {'pop': 37536, 'tracts': 6}, 'Minidoka': {'pop': 20069, 'tracts': 5}, 'Nez Perce': {'pop': 39265, 'tracts': 10}, 'Oneida': {'pop': 4286, 'tracts': 1}, 'Owyhee': {'pop': 11526, 'tracts': 3}, 'Payette': {'pop': 22623, 'tracts': 4}, 'Power': {'pop': 7817, 'tracts': 2}, 'Shoshone': {'pop': 12765, 'tracts': 3}, 'Teton': {'pop': 10170, 'tracts': 1}, 'Twin Falls': {'pop': 77230, 'tracts': 14}, 'Valley': {'pop': 9862, 'tracts': 3}, 'Washington': {'pop': 10198, 'tracts': 3}}, 'IL': {'Adams': {'pop': 67103, 'tracts': 18}, 'Alexander': {'pop': 8238, 'tracts': 4}, 'Bond': {'pop': 17768, 'tracts': 4}, 'Boone': {'pop': 54165, 'tracts': 7}, 'Brown': {'pop': 6937, 'tracts': 2}, 'Bureau': {'pop': 34978, 'tracts': 10}, 'Calhoun': {'pop': 5089, 'tracts': 2}, 'Carroll': {'pop': 15387, 'tracts': 6}, 'Cass': {'pop': 13642, 'tracts': 5}, 'Champaign': {'pop': 201081, 'tracts': 43}, 'Christian': {'pop': 34800, 'tracts': 10}, 'Clark': {'pop': 16335, 'tracts': 4}, 'Clay': {'pop': 13815, 'tracts': 4}, 'Clinton': {'pop': 37762, 'tracts': 8}, 'Coles': {'pop': 53873, 'tracts': 12}, 'Cook': {'pop': 5194675, 'tracts': 1318}, 'Crawford': {'pop': 19817, 'tracts': 6}, 'Cumberland': {'pop': 11048, 'tracts': 3}, 'De Witt': {'pop': 16561, 'tracts': 5}, 'DeKalb': {'pop': 105160, 'tracts': 21}, 'Douglas': {'pop': 19980, 'tracts': 5}, 'DuPage': {'pop': 916924, 'tracts': 216}, 'Edgar': {'pop': 18576, 'tracts': 5}, 'Edwards': {'pop': 6721, 'tracts': 3}, 'Effingham': {'pop': 34242, 'tracts': 8}, 'Fayette': {'pop': 22140, 'tracts': 7}, 'Ford': {'pop': 14081, 'tracts': 5}, 'Franklin': {'pop': 39561, 'tracts': 12}, 'Fulton': {'pop': 37069, 'tracts': 12}, 'Gallatin': {'pop': 5589, 'tracts': 2}, 'Greene': {'pop': 13886, 'tracts': 5}, 'Grundy': {'pop': 50063, 'tracts': 10}, 'Hamilton': {'pop': 8457, 'tracts': 3}, 'Hancock': {'pop': 19104, 'tracts': 7}, 'Hardin': {'pop': 4320, 'tracts': 2}, 'Henderson': {'pop': 7331, 'tracts': 3}, 'Henry': {'pop': 50486, 'tracts': 13}, 'Iroquois': {'pop': 29718, 'tracts': 9}, 'Jackson': {'pop': 60218, 'tracts': 14}, 'Jasper': {'pop': 9698, 'tracts': 3}, 'Jefferson': {'pop': 38827, 'tracts': 11}, 'Jersey': {'pop': 22985, 'tracts': 6}, 'Jo Daviess': {'pop': 22678, 'tracts': 6}, 'Johnson': {'pop': 12582, 'tracts': 4}, 'Kane': {'pop': 515269, 'tracts': 82}, 'Kankakee': {'pop': 113449, 'tracts': 29}, 'Kendall': {'pop': 114736, 'tracts': 10}, 'Knox': {'pop': 52919, 'tracts': 16}, 'La Salle': {'pop': 113924, 'tracts': 28}, 'Lake': {'pop': 703462, 'tracts': 153}, 'Lawrence': {'pop': 16833, 'tracts': 5}, 'Lee': {'pop': 36031, 'tracts': 9}, 'Livingston': {'pop': 38950, 'tracts': 10}, 'Logan': {'pop': 30305, 'tracts': 8}, 'Macon': {'pop': 110768, 'tracts': 34}, 'Macoupin': {'pop': 47765, 'tracts': 13}, 'Madison': {'pop': 269282, 'tracts': 61}, 'Marion': {'pop': 39437, 'tracts': 12}, 'Marshall': {'pop': 12640, 'tracts': 5}, 'Mason': {'pop': 14666, 'tracts': 6}, 'Massac': {'pop': 15429, 'tracts': 4}, 'McDonough': {'pop': 32612, 'tracts': 10}, 'McHenry': {'pop': 308760, 'tracts': 52}, 'McLean': {'pop': 169572, 'tracts': 41}, 'Menard': {'pop': 12705, 'tracts': 3}, 'Mercer': {'pop': 16434, 'tracts': 4}, 'Monroe': {'pop': 32957, 'tracts': 6}, 'Montgomery': {'pop': 30104, 'tracts': 8}, 'Morgan': {'pop': 35547, 'tracts': 10}, 'Moultrie': {'pop': 14846, 'tracts': 4}, 'Ogle': {'pop': 53497, 'tracts': 11}, 'Peoria': {'pop': 186494, 'tracts': 48}, 'Perry': {'pop': 22350, 'tracts': 6}, 'Piatt': {'pop': 16729, 'tracts': 4}, 'Pike': {'pop': 16430, 'tracts': 5}, 'Pope': {'pop': 4470, 'tracts': 2}, 'Pulaski': {'pop': 6161, 'tracts': 2}, 'Putnam': {'pop': 6006, 'tracts': 2}, 'Randolph': {'pop': 33476, 'tracts': 9}, 'Richland': {'pop': 16233, 'tracts': 5}, 'Rock Island': {'pop': 147546, 'tracts': 40}, 'Saline': {'pop': 24913, 'tracts': 9}, 'Sangamon': {'pop': 197465, 'tracts': 53}, 'Schuyler': {'pop': 7544, 'tracts': 3}, 'Scott': {'pop': 5355, 'tracts': 2}, 'Shelby': {'pop': 22363, 'tracts': 6}, 'St. Clair': {'pop': 270056, 'tracts': 60}, 'Stark': {'pop': 5994, 'tracts': 2}, 'Stephenson': {'pop': 47711, 'tracts': 13}, 'Tazewell': {'pop': 135394, 'tracts': 30}, 'Union': {'pop': 17808, 'tracts': 5}, 'Vermilion': {'pop': 81625, 'tracts': 24}, 'Wabash': {'pop': 11947, 'tracts': 4}, 'Warren': {'pop': 17707, 'tracts': 5}, 'Washington': {'pop': 14716, 'tracts': 4}, 'Wayne': {'pop': 16760, 'tracts': 5}, 'White': {'pop': 14665, 'tracts': 5}, 'Whiteside': {'pop': 58498, 'tracts': 18}, 'Will': {'pop': 677560, 'tracts': 152}, 'Williamson': {'pop': 66357, 'tracts': 15}, 'Winnebago': {'pop': 295266, 'tracts': 77}, 'Woodford': {'pop': 38664, 'tracts': 9}}, 'IN': {'Adams': {'pop': 34387, 'tracts': 7}, 'Allen': {'pop': 355329, 'tracts': 96}, 'Bartholomew': {'pop': 76794, 'tracts': 15}, 'Benton': {'pop': 8854, 'tracts': 3}, 'Blackford': {'pop': 12766, 'tracts': 4}, 'Boone': {'pop': 56640, 'tracts': 10}, 'Brown': {'pop': 15242, 'tracts': 4}, 'Carroll': {'pop': 20155, 'tracts': 7}, 'Cass': {'pop': 38966, 'tracts': 11}, 'Clark': {'pop': 110232, 'tracts': 26}, 'Clay': {'pop': 26890, 'tracts': 6}, 'Clinton': {'pop': 33224, 'tracts': 8}, 'Crawford': {'pop': 10713, 'tracts': 3}, 'Daviess': {'pop': 31648, 'tracts': 7}, 'DeKalb': {'pop': 42223, 'tracts': 9}, 'Dearborn': {'pop': 50047, 'tracts': 10}, 'Decatur': {'pop': 25740, 'tracts': 6}, 'Delaware': {'pop': 117671, 'tracts': 30}, 'Dubois': {'pop': 41889, 'tracts': 7}, 'Elkhart': {'pop': 197559, 'tracts': 36}, 'Fayette': {'pop': 24277, 'tracts': 7}, 'Floyd': {'pop': 74578, 'tracts': 20}, 'Fountain': {'pop': 17240, 'tracts': 5}, 'Franklin': {'pop': 23087, 'tracts': 5}, 'Fulton': {'pop': 20836, 'tracts': 6}, 'Gibson': {'pop': 33503, 'tracts': 7}, 'Grant': {'pop': 70061, 'tracts': 16}, 'Greene': {'pop': 33165, 'tracts': 9}, 'Hamilton': {'pop': 274569, 'tracts': 39}, 'Hancock': {'pop': 70002, 'tracts': 10}, 'Harrison': {'pop': 39364, 'tracts': 6}, 'Hendricks': {'pop': 145448, 'tracts': 21}, 'Henry': {'pop': 49462, 'tracts': 13}, 'Howard': {'pop': 82752, 'tracts': 20}, 'Huntington': {'pop': 37124, 'tracts': 9}, 'Jackson': {'pop': 42376, 'tracts': 10}, 'Jasper': {'pop': 33478, 'tracts': 8}, 'Jay': {'pop': 21253, 'tracts': 7}, 'Jefferson': {'pop': 32428, 'tracts': 7}, 'Jennings': {'pop': 28525, 'tracts': 6}, 'Johnson': {'pop': 139654, 'tracts': 22}, 'Knox': {'pop': 38440, 'tracts': 10}, 'Kosciusko': {'pop': 77358, 'tracts': 19}, 'LaGrange': {'pop': 37128, 'tracts': 8}, 'LaPorte': {'pop': 111467, 'tracts': 28}, 'Lake': {'pop': 496005, 'tracts': 117}, 'Lawrence': {'pop': 46134, 'tracts': 10}, 'Madison': {'pop': 131636, 'tracts': 37}, 'Marion': {'pop': 903393, 'tracts': 224}, 'Marshall': {'pop': 47051, 'tracts': 12}, 'Martin': {'pop': 10334, 'tracts': 3}, 'Miami': {'pop': 36903, 'tracts': 10}, 'Monroe': {'pop': 137974, 'tracts': 31}, 'Montgomery': {'pop': 38124, 'tracts': 9}, 'Morgan': {'pop': 68894, 'tracts': 13}, 'Newton': {'pop': 14244, 'tracts': 4}, 'Noble': {'pop': 47536, 'tracts': 10}, 'Ohio': {'pop': 6128, 'tracts': 2}, 'Orange': {'pop': 19840, 'tracts': 6}, 'Owen': {'pop': 21575, 'tracts': 5}, 'Parke': {'pop': 17339, 'tracts': 4}, 'Perry': {'pop': 19338, 'tracts': 5}, 'Pike': {'pop': 12845, 'tracts': 4}, 'Porter': {'pop': 164343, 'tracts': 32}, 'Posey': {'pop': 25910, 'tracts': 7}, 'Pulaski': {'pop': 13402, 'tracts': 4}, 'Putnam': {'pop': 37963, 'tracts': 7}, 'Randolph': {'pop': 26171, 'tracts': 8}, 'Ripley': {'pop': 28818, 'tracts': 6}, 'Rush': {'pop': 17392, 'tracts': 5}, 'Scott': {'pop': 24181, 'tracts': 5}, 'Shelby': {'pop': 44436, 'tracts': 10}, 'Spencer': {'pop': 20952, 'tracts': 5}, 'St. Joseph': {'pop': 266931, 'tracts': 75}, 'Starke': {'pop': 23363, 'tracts': 7}, 'Steuben': {'pop': 34185, 'tracts': 9}, 'Sullivan': {'pop': 21475, 'tracts': 5}, 'Switzerland': {'pop': 10613, 'tracts': 3}, 'Tippecanoe': {'pop': 172780, 'tracts': 37}, 'Tipton': {'pop': 15936, 'tracts': 4}, 'Union': {'pop': 7516, 'tracts': 2}, 'Vanderburgh': {'pop': 179703, 'tracts': 49}, 'Vermillion': {'pop': 16212, 'tracts': 5}, 'Vigo': {'pop': 107848, 'tracts': 28}, 'Wabash': {'pop': 32888, 'tracts': 8}, 'Warren': {'pop': 8508, 'tracts': 2}, 'Warrick': {'pop': 59689, 'tracts': 11}, 'Washington': {'pop': 28262, 'tracts': 6}, 'Wayne': {'pop': 68917, 'tracts': 17}, 'Wells': {'pop': 27636, 'tracts': 7}, 'White': {'pop': 24643, 'tracts': 8}, 'Whitley': {'pop': 33292, 'tracts': 7}}, 'KS': {'Allen': {'pop': 13371, 'tracts': 5}, 'Anderson': {'pop': 8102, 'tracts': 2}, 'Atchison': {'pop': 16924, 'tracts': 4}, 'Barber': {'pop': 4861, 'tracts': 2}, 'Barton': {'pop': 27674, 'tracts': 8}, 'Bourbon': {'pop': 15173, 'tracts': 5}, 'Brown': {'pop': 9984, 'tracts': 3}, 'Butler': {'pop': 65880, 'tracts': 13}, 'Chase': {'pop': 2790, 'tracts': 1}, 'Chautauqua': {'pop': 3669, 'tracts': 1}, 'Cherokee': {'pop': 21603, 'tracts': 6}, 'Cheyenne': {'pop': 2726, 'tracts': 1}, 'Clark': {'pop': 2215, 'tracts': 1}, 'Clay': {'pop': 8535, 'tracts': 2}, 'Cloud': {'pop': 9533, 'tracts': 4}, 'Coffey': {'pop': 8601, 'tracts': 3}, 'Comanche': {'pop': 1891, 'tracts': 1}, 'Cowley': {'pop': 36311, 'tracts': 11}, 'Crawford': {'pop': 39134, 'tracts': 11}, 'Decatur': {'pop': 2961, 'tracts': 2}, 'Dickinson': {'pop': 19754, 'tracts': 6}, 'Doniphan': {'pop': 7945, 'tracts': 3}, 'Douglas': {'pop': 110826, 'tracts': 22}, 'Edwards': {'pop': 3037, 'tracts': 2}, 'Elk': {'pop': 2882, 'tracts': 1}, 'Ellis': {'pop': 28452, 'tracts': 6}, 'Ellsworth': {'pop': 6497, 'tracts': 2}, 'Finney': {'pop': 36776, 'tracts': 12}, 'Ford': {'pop': 33848, 'tracts': 7}, 'Franklin': {'pop': 25992, 'tracts': 5}, 'Geary': {'pop': 34362, 'tracts': 8}, 'Gove': {'pop': 2695, 'tracts': 2}, 'Graham': {'pop': 2597, 'tracts': 2}, 'Grant': {'pop': 7829, 'tracts': 2}, 'Gray': {'pop': 6006, 'tracts': 2}, 'Greeley': {'pop': 1247, 'tracts': 1}, 'Greenwood': {'pop': 6689, 'tracts': 3}, 'Hamilton': {'pop': 2690, 'tracts': 1}, 'Harper': {'pop': 6034, 'tracts': 3}, 'Harvey': {'pop': 34684, 'tracts': 6}, 'Haskell': {'pop': 4256, 'tracts': 1}, 'Hodgeman': {'pop': 1916, 'tracts': 1}, 'Jackson': {'pop': 13462, 'tracts': 3}, 'Jefferson': {'pop': 19126, 'tracts': 4}, 'Jewell': {'pop': 3077, 'tracts': 2}, 'Johnson': {'pop': 544179, 'tracts': 130}, 'Kearny': {'pop': 3977, 'tracts': 1}, 'Kingman': {'pop': 7858, 'tracts': 3}, 'Kiowa': {'pop': 2553, 'tracts': 1}, 'Labette': {'pop': 21607, 'tracts': 8}, 'Lane': {'pop': 1750, 'tracts': 1}, 'Leavenworth': {'pop': 76227, 'tracts': 16}, 'Lincoln': {'pop': 3241, 'tracts': 1}, 'Linn': {'pop': 9656, 'tracts': 2}, 'Logan': {'pop': 2756, 'tracts': 1}, 'Lyon': {'pop': 33690, 'tracts': 8}, 'Marion': {'pop': 12660, 'tracts': 4}, 'Marshall': {'pop': 10117, 'tracts': 4}, 'McPherson': {'pop': 29180, 'tracts': 7}, 'Meade': {'pop': 4575, 'tracts': 2}, 'Miami': {'pop': 32787, 'tracts': 8}, 'Mitchell': {'pop': 6373, 'tracts': 2}, 'Montgomery': {'pop': 35471, 'tracts': 13}, 'Morris': {'pop': 5923, 'tracts': 2}, 'Morton': {'pop': 3233, 'tracts': 1}, 'Nemaha': {'pop': 10178, 'tracts': 3}, 'Neosho': {'pop': 16512, 'tracts': 5}, 'Ness': {'pop': 3107, 'tracts': 2}, 'Norton': {'pop': 5671, 'tracts': 1}, 'Osage': {'pop': 16295, 'tracts': 5}, 'Osborne': {'pop': 3858, 'tracts': 1}, 'Ottawa': {'pop': 6091, 'tracts': 2}, 'Pawnee': {'pop': 6973, 'tracts': 2}, 'Phillips': {'pop': 5642, 'tracts': 3}, 'Pottawatomie': {'pop': 21604, 'tracts': 4}, 'Pratt': {'pop': 9656, 'tracts': 3}, 'Rawlins': {'pop': 2519, 'tracts': 1}, 'Reno': {'pop': 64511, 'tracts': 17}, 'Republic': {'pop': 4980, 'tracts': 3}, 'Rice': {'pop': 10083, 'tracts': 3}, 'Riley': {'pop': 71115, 'tracts': 14}, 'Rooks': {'pop': 5181, 'tracts': 2}, 'Rush': {'pop': 3307, 'tracts': 2}, 'Russell': {'pop': 6970, 'tracts': 2}, 'Saline': {'pop': 55606, 'tracts': 12}, 'Scott': {'pop': 4936, 'tracts': 1}, 'Sedgwick': {'pop': 498365, 'tracts': 124}, 'Seward': {'pop': 22952, 'tracts': 5}, 'Shawnee': {'pop': 177934, 'tracts': 43}, 'Sheridan': {'pop': 2556, 'tracts': 2}, 'Sherman': {'pop': 6010, 'tracts': 2}, 'Smith': {'pop': 3853, 'tracts': 2}, 'Stafford': {'pop': 4437, 'tracts': 2}, 'Stanton': {'pop': 2235, 'tracts': 1}, 'Stevens': {'pop': 5724, 'tracts': 2}, 'Sumner': {'pop': 24132, 'tracts': 6}, 'Thomas': {'pop': 7900, 'tracts': 2}, 'Trego': {'pop': 3001, 'tracts': 1}, 'Wabaunsee': {'pop': 7053, 'tracts': 2}, 'Wallace': {'pop': 1485, 'tracts': 1}, 'Washington': {'pop': 5799, 'tracts': 2}, 'Wichita': {'pop': 2234, 'tracts': 1}, 'Wilson': {'pop': 9409, 'tracts': 4}, 'Woodson': {'pop': 3309, 'tracts': 2}, 'Wyandotte': {'pop': 157505, 'tracts': 70}}, 'KY': {'Adair': {'pop': 18656, 'tracts': 7}, 'Allen': {'pop': 19956, 'tracts': 6}, 'Anderson': {'pop': 21421, 'tracts': 5}, 'Ballard': {'pop': 8249, 'tracts': 3}, 'Barren': {'pop': 42173, 'tracts': 10}, 'Bath': {'pop': 11591, 'tracts': 3}, 'Bell': {'pop': 28691, 'tracts': 9}, 'Boone': {'pop': 118811, 'tracts': 22}, 'Bourbon': {'pop': 19985, 'tracts': 6}, 'Boyd': {'pop': 49542, 'tracts': 13}, 'Boyle': {'pop': 28432, 'tracts': 7}, 'Bracken': {'pop': 8488, 'tracts': 3}, 'Breathitt': {'pop': 13878, 'tracts': 7}, 'Breckinridge': {'pop': 20059, 'tracts': 6}, 'Bullitt': {'pop': 74319, 'tracts': 18}, 'Butler': {'pop': 12690, 'tracts': 5}, 'Caldwell': {'pop': 12984, 'tracts': 3}, 'Calloway': {'pop': 37191, 'tracts': 9}, 'Campbell': {'pop': 90336, 'tracts': 25}, 'Carlisle': {'pop': 5104, 'tracts': 3}, 'Carroll': {'pop': 10811, 'tracts': 3}, 'Carter': {'pop': 27720, 'tracts': 7}, 'Casey': {'pop': 15955, 'tracts': 5}, 'Christian': {'pop': 73955, 'tracts': 19}, 'Clark': {'pop': 35613, 'tracts': 10}, 'Clay': {'pop': 21730, 'tracts': 6}, 'Clinton': {'pop': 10272, 'tracts': 3}, 'Crittenden': {'pop': 9315, 'tracts': 4}, 'Cumberland': {'pop': 6856, 'tracts': 2}, 'Daviess': {'pop': 96656, 'tracts': 23}, 'Edmonson': {'pop': 12161, 'tracts': 4}, 'Elliott': {'pop': 7852, 'tracts': 2}, 'Estill': {'pop': 14672, 'tracts': 4}, 'Fayette': {'pop': 295803, 'tracts': 82}, 'Fleming': {'pop': 14348, 'tracts': 4}, 'Floyd': {'pop': 39451, 'tracts': 10}, 'Franklin': {'pop': 49285, 'tracts': 11}, 'Fulton': {'pop': 6813, 'tracts': 2}, 'Gallatin': {'pop': 8589, 'tracts': 2}, 'Garrard': {'pop': 16912, 'tracts': 4}, 'Grant': {'pop': 24662, 'tracts': 4}, 'Graves': {'pop': 37121, 'tracts': 9}, 'Grayson': {'pop': 25746, 'tracts': 7}, 'Green': {'pop': 11258, 'tracts': 4}, 'Greenup': {'pop': 36910, 'tracts': 9}, 'Hancock': {'pop': 8565, 'tracts': 3}, 'Hardin': {'pop': 105543, 'tracts': 22}, 'Harlan': {'pop': 29278, 'tracts': 11}, 'Harrison': {'pop': 18846, 'tracts': 5}, 'Hart': {'pop': 18199, 'tracts': 5}, 'Henderson': {'pop': 46250, 'tracts': 11}, 'Henry': {'pop': 15416, 'tracts': 5}, 'Hickman': {'pop': 4902, 'tracts': 1}, 'Hopkins': {'pop': 46920, 'tracts': 12}, 'Jackson': {'pop': 13494, 'tracts': 3}, 'Jefferson': {'pop': 741096, 'tracts': 191}, 'Jessamine': {'pop': 48586, 'tracts': 9}, 'Johnson': {'pop': 23356, 'tracts': 6}, 'Kenton': {'pop': 159720, 'tracts': 41}, 'Knott': {'pop': 16346, 'tracts': 5}, 'Knox': {'pop': 31883, 'tracts': 8}, 'Larue': {'pop': 14193, 'tracts': 4}, 'Laurel': {'pop': 58849, 'tracts': 13}, 'Lawrence': {'pop': 15860, 'tracts': 5}, 'Lee': {'pop': 7887, 'tracts': 3}, 'Leslie': {'pop': 11310, 'tracts': 3}, 'Letcher': {'pop': 24519, 'tracts': 7}, 'Lewis': {'pop': 13870, 'tracts': 4}, 'Lincoln': {'pop': 24742, 'tracts': 6}, 'Livingston': {'pop': 9519, 'tracts': 2}, 'Logan': {'pop': 26835, 'tracts': 6}, 'Lyon': {'pop': 8314, 'tracts': 3}, 'Madison': {'pop': 82916, 'tracts': 19}, 'Magoffin': {'pop': 13333, 'tracts': 4}, 'Marion': {'pop': 19820, 'tracts': 6}, 'Marshall': {'pop': 31448, 'tracts': 6}, 'Martin': {'pop': 12929, 'tracts': 3}, 'Mason': {'pop': 17490, 'tracts': 5}, 'McCracken': {'pop': 65565, 'tracts': 17}, 'McCreary': {'pop': 18306, 'tracts': 4}, 'McLean': {'pop': 9531, 'tracts': 3}, 'Meade': {'pop': 28602, 'tracts': 8}, 'Menifee': {'pop': 6306, 'tracts': 2}, 'Mercer': {'pop': 21331, 'tracts': 5}, 'Metcalfe': {'pop': 10099, 'tracts': 3}, 'Monroe': {'pop': 10963, 'tracts': 4}, 'Montgomery': {'pop': 26499, 'tracts': 6}, 'Morgan': {'pop': 13923, 'tracts': 5}, 'Muhlenberg': {'pop': 31499, 'tracts': 9}, 'Nelson': {'pop': 43437, 'tracts': 9}, 'Nicholas': {'pop': 7135, 'tracts': 2}, 'Ohio': {'pop': 23842, 'tracts': 7}, 'Oldham': {'pop': 60316, 'tracts': 14}, 'Owen': {'pop': 10841, 'tracts': 3}, 'Owsley': {'pop': 4755, 'tracts': 2}, 'Pendleton': {'pop': 14877, 'tracts': 3}, 'Perry': {'pop': 28712, 'tracts': 8}, 'Pike': {'pop': 65024, 'tracts': 19}, 'Powell': {'pop': 12613, 'tracts': 2}, 'Pulaski': {'pop': 63063, 'tracts': 14}, 'Robertson': {'pop': 2282, 'tracts': 1}, 'Rockcastle': {'pop': 17056, 'tracts': 4}, 'Rowan': {'pop': 23333, 'tracts': 4}, 'Russell': {'pop': 17565, 'tracts': 5}, 'Scott': {'pop': 47173, 'tracts': 14}, 'Shelby': {'pop': 42074, 'tracts': 9}, 'Simpson': {'pop': 17327, 'tracts': 4}, 'Spencer': {'pop': 17061, 'tracts': 4}, 'Taylor': {'pop': 24512, 'tracts': 5}, 'Todd': {'pop': 12460, 'tracts': 4}, 'Trigg': {'pop': 14339, 'tracts': 5}, 'Trimble': {'pop': 8809, 'tracts': 2}, 'Union': {'pop': 15007, 'tracts': 4}, 'Warren': {'pop': 113792, 'tracts': 24}, 'Washington': {'pop': 11717, 'tracts': 3}, 'Wayne': {'pop': 20813, 'tracts': 5}, 'Webster': {'pop': 13621, 'tracts': 4}, 'Whitley': {'pop': 35637, 'tracts': 8}, 'Wolfe': {'pop': 7355, 'tracts': 2}, 'Woodford': {'pop': 24939, 'tracts': 8}}, 'LA': {'Acadia': {'pop': 61773, 'tracts': 12}, 'Allen': {'pop': 25764, 'tracts': 5}, 'Ascension': {'pop': 107215, 'tracts': 14}, 'Assumption': {'pop': 23421, 'tracts': 6}, 'Avoyelles': {'pop': 42073, 'tracts': 9}, 'Beauregard': {'pop': 35654, 'tracts': 7}, 'Bienville': {'pop': 14353, 'tracts': 5}, 'Bossier': {'pop': 116979, 'tracts': 22}, 'Caddo': {'pop': 254969, 'tracts': 64}, 'Calcasieu': {'pop': 192768, 'tracts': 44}, 'Caldwell': {'pop': 10132, 'tracts': 3}, 'Cameron': {'pop': 6839, 'tracts': 3}, 'Catahoula': {'pop': 10407, 'tracts': 3}, 'Claiborne': {'pop': 17195, 'tracts': 5}, 'Concordia': {'pop': 20822, 'tracts': 5}, 'De Soto': {'pop': 26656, 'tracts': 7}, 'East Baton Rouge': {'pop': 440171, 'tracts': 92}, 'East Carroll': {'pop': 7759, 'tracts': 3}, 'East Feliciana': {'pop': 20267, 'tracts': 5}, 'Evangeline': {'pop': 33984, 'tracts': 8}, 'Franklin': {'pop': 20767, 'tracts': 6}, 'Grant': {'pop': 22309, 'tracts': 5}, 'Iberia': {'pop': 73240, 'tracts': 15}, 'Iberville': {'pop': 33387, 'tracts': 7}, 'Jackson': {'pop': 16274, 'tracts': 5}, 'Jefferson': {'pop': 432552, 'tracts': 127}, 'Jefferson Davis': {'pop': 31594, 'tracts': 7}, 'La Salle': {'pop': 14890, 'tracts': 3}, 'Lafayette': {'pop': 221578, 'tracts': 43}, 'Lafourche': {'pop': 96318, 'tracts': 23}, 'Lincoln': {'pop': 46735, 'tracts': 10}, 'Livingston': {'pop': 128026, 'tracts': 17}, 'Madison': {'pop': 12093, 'tracts': 5}, 'Morehouse': {'pop': 27979, 'tracts': 8}, 'Natchitoches': {'pop': 39566, 'tracts': 9}, 'Orleans': {'pop': 343829, 'tracts': 177}, 'Ouachita': {'pop': 153720, 'tracts': 40}, 'Plaquemines': {'pop': 23042, 'tracts': 9}, 'Pointe Coupee': {'pop': 22802, 'tracts': 6}, 'Rapides': {'pop': 131613, 'tracts': 33}, 'Red River': {'pop': 9091, 'tracts': 2}, 'Richland': {'pop': 20725, 'tracts': 6}, 'Sabine': {'pop': 24233, 'tracts': 7}, 'St. Bernard': {'pop': 35897, 'tracts': 18}, 'St. Charles': {'pop': 52780, 'tracts': 13}, 'St. Helena': {'pop': 11203, 'tracts': 2}, 'St. James': {'pop': 22102, 'tracts': 7}, 'St. John the Baptist': {'pop': 45924, 'tracts': 11}, 'St. Landry': {'pop': 83384, 'tracts': 19}, 'St. Martin': {'pop': 52160, 'tracts': 11}, 'St. Mary': {'pop': 54650, 'tracts': 16}, 'St. Tammany': {'pop': 233740, 'tracts': 43}, 'Tangipahoa': {'pop': 121097, 'tracts': 20}, 'Tensas': {'pop': 5252, 'tracts': 3}, 'Terrebonne': {'pop': 111860, 'tracts': 21}, 'Union': {'pop': 22721, 'tracts': 6}, 'Vermilion': {'pop': 57999, 'tracts': 12}, 'Vernon': {'pop': 52334, 'tracts': 12}, 'Washington': {'pop': 47168, 'tracts': 11}, 'Webster': {'pop': 41207, 'tracts': 11}, 'West Baton Rouge': {'pop': 23788, 'tracts': 5}, 'West Carroll': {'pop': 11604, 'tracts': 3}, 'West Feliciana': {'pop': 15625, 'tracts': 3}, 'Winn': {'pop': 15313, 'tracts': 4}}, 'MA': {'Barnstable': {'pop': 215888, 'tracts': 57}, 'Berkshire': {'pop': 131219, 'tracts': 39}, 'Bristol': {'pop': 548285, 'tracts': 126}, 'Dukes': {'pop': 16535, 'tracts': 4}, 'Essex': {'pop': 743159, 'tracts': 163}, 'Franklin': {'pop': 71372, 'tracts': 18}, 'Hampden': {'pop': 463490, 'tracts': 103}, 'Hampshire': {'pop': 158080, 'tracts': 36}, 'Middlesex': {'pop': 1503085, 'tracts': 318}, 'Nantucket': {'pop': 10172, 'tracts': 6}, 'Norfolk': {'pop': 670850, 'tracts': 130}, 'Plymouth': {'pop': 494919, 'tracts': 100}, 'Suffolk': {'pop': 722023, 'tracts': 204}, 'Worcester': {'pop': 798552, 'tracts': 172}}, 'MD': {'Allegany': {'pop': 75087, 'tracts': 23}, 'Anne Arundel': {'pop': 537656, 'tracts': 104}, 'Baltimore': {'pop': 805029, 'tracts': 214}, 'Baltimore City': {'pop': 620961, 'tracts': 200}, 'Calvert': {'pop': 88737, 'tracts': 18}, 'Caroline': {'pop': 33066, 'tracts': 9}, 'Carroll': {'pop': 167134, 'tracts': 38}, 'Cecil': {'pop': 101108, 'tracts': 19}, 'Charles': {'pop': 146551, 'tracts': 30}, 'Dorchester': {'pop': 32618, 'tracts': 10}, 'Frederick': {'pop': 233385, 'tracts': 61}, 'Garrett': {'pop': 30097, 'tracts': 7}, 'Harford': {'pop': 244826, 'tracts': 57}, 'Howard': {'pop': 287085, 'tracts': 55}, 'Kent': {'pop': 20197, 'tracts': 5}, 'Montgomery': {'pop': 971777, 'tracts': 215}, "Prince George's": {'pop': 863420, 'tracts': 218}, "Queen Anne's": {'pop': 47798, 'tracts': 12}, 'Somerset': {'pop': 26470, 'tracts': 8}, "St. Mary's": {'pop': 105151, 'tracts': 18}, 'Talbot': {'pop': 37782, 'tracts': 10}, 'Washington': {'pop': 147430, 'tracts': 32}, 'Wicomico': {'pop': 98733, 'tracts': 19}, 'Worcester': {'pop': 51454, 'tracts': 17}}, 'ME': {'Androscoggin': {'pop': 107702, 'tracts': 28}, 'Aroostook': {'pop': 71870, 'tracts': 24}, 'Cumberland': {'pop': 281674, 'tracts': 67}, 'Franklin': {'pop': 30768, 'tracts': 9}, 'Hancock': {'pop': 54418, 'tracts': 17}, 'Kennebec': {'pop': 122151, 'tracts': 31}, 'Knox': {'pop': 39736, 'tracts': 11}, 'Lincoln': {'pop': 34457, 'tracts': 9}, 'Oxford': {'pop': 57833, 'tracts': 17}, 'Penobscot': {'pop': 153923, 'tracts': 46}, 'Piscataquis': {'pop': 17535, 'tracts': 8}, 'Sagadahoc': {'pop': 35293, 'tracts': 8}, 'Somerset': {'pop': 52228, 'tracts': 17}, 'Waldo': {'pop': 38786, 'tracts': 8}, 'Washington': {'pop': 32856, 'tracts': 14}, 'York': {'pop': 197131, 'tracts': 41}}, 'MI': {'Alcona': {'pop': 10942, 'tracts': 5}, 'Alger': {'pop': 9601, 'tracts': 3}, 'Allegan': {'pop': 111408, 'tracts': 25}, 'Alpena': {'pop': 29598, 'tracts': 10}, 'Antrim': {'pop': 23580, 'tracts': 7}, 'Arenac': {'pop': 15899, 'tracts': 5}, 'Baraga': {'pop': 8860, 'tracts': 2}, 'Barry': {'pop': 59173, 'tracts': 11}, 'Bay': {'pop': 107771, 'tracts': 26}, 'Benzie': {'pop': 17525, 'tracts': 5}, 'Berrien': {'pop': 156813, 'tracts': 48}, 'Branch': {'pop': 45248, 'tracts': 12}, 'Calhoun': {'pop': 136146, 'tracts': 39}, 'Cass': {'pop': 52293, 'tracts': 11}, 'Charlevoix': {'pop': 25949, 'tracts': 13}, 'Cheboygan': {'pop': 26152, 'tracts': 8}, 'Chippewa': {'pop': 38520, 'tracts': 14}, 'Clare': {'pop': 30926, 'tracts': 11}, 'Clinton': {'pop': 75382, 'tracts': 22}, 'Crawford': {'pop': 14074, 'tracts': 5}, 'Delta': {'pop': 37069, 'tracts': 11}, 'Dickinson': {'pop': 26168, 'tracts': 7}, 'Eaton': {'pop': 107759, 'tracts': 28}, 'Emmet': {'pop': 32694, 'tracts': 8}, 'Genesee': {'pop': 425790, 'tracts': 131}, 'Gladwin': {'pop': 25692, 'tracts': 9}, 'Gogebic': {'pop': 16427, 'tracts': 7}, 'Grand Traverse': {'pop': 86986, 'tracts': 16}, 'Gratiot': {'pop': 42476, 'tracts': 10}, 'Hillsdale': {'pop': 46688, 'tracts': 12}, 'Houghton': {'pop': 36628, 'tracts': 11}, 'Huron': {'pop': 33118, 'tracts': 12}, 'Ingham': {'pop': 280895, 'tracts': 81}, 'Ionia': {'pop': 63905, 'tracts': 13}, 'Iosco': {'pop': 25887, 'tracts': 9}, 'Iron': {'pop': 11817, 'tracts': 5}, 'Isabella': {'pop': 70311, 'tracts': 15}, 'Jackson': {'pop': 160248, 'tracts': 38}, 'Kalamazoo': {'pop': 250331, 'tracts': 57}, 'Kalkaska': {'pop': 17153, 'tracts': 5}, 'Kent': {'pop': 602622, 'tracts': 128}, 'Keweenaw': {'pop': 2156, 'tracts': 2}, 'Lake': {'pop': 11539, 'tracts': 4}, 'Lapeer': {'pop': 88319, 'tracts': 24}, 'Leelanau': {'pop': 21708, 'tracts': 6}, 'Lenawee': {'pop': 99892, 'tracts': 23}, 'Livingston': {'pop': 180967, 'tracts': 61}, 'Luce': {'pop': 6631, 'tracts': 3}, 'Mackinac': {'pop': 11113, 'tracts': 6}, 'Macomb': {'pop': 840978, 'tracts': 216}, 'Manistee': {'pop': 24733, 'tracts': 9}, 'Marquette': {'pop': 67077, 'tracts': 24}, 'Mason': {'pop': 28705, 'tracts': 8}, 'Mecosta': {'pop': 42798, 'tracts': 11}, 'Menominee': {'pop': 24029, 'tracts': 7}, 'Midland': {'pop': 83629, 'tracts': 19}, 'Missaukee': {'pop': 14849, 'tracts': 4}, 'Monroe': {'pop': 152021, 'tracts': 39}, 'Montcalm': {'pop': 63342, 'tracts': 13}, 'Montmorency': {'pop': 9765, 'tracts': 5}, 'Muskegon': {'pop': 172188, 'tracts': 42}, 'Newaygo': {'pop': 48460, 'tracts': 11}, 'Oakland': {'pop': 1202362, 'tracts': 338}, 'Oceana': {'pop': 26570, 'tracts': 7}, 'Ogemaw': {'pop': 21699, 'tracts': 7}, 'Ontonagon': {'pop': 6780, 'tracts': 4}, 'Osceola': {'pop': 23528, 'tracts': 6}, 'Oscoda': {'pop': 8640, 'tracts': 5}, 'Otsego': {'pop': 24164, 'tracts': 6}, 'Ottawa': {'pop': 263801, 'tracts': 53}, 'Presque Isle': {'pop': 13376, 'tracts': 6}, 'Roscommon': {'pop': 24449, 'tracts': 10}, 'Saginaw': {'pop': 200169, 'tracts': 56}, 'Sanilac': {'pop': 43114, 'tracts': 12}, 'Schoolcraft': {'pop': 8485, 'tracts': 3}, 'Shiawassee': {'pop': 70648, 'tracts': 17}, 'St. Clair': {'pop': 163040, 'tracts': 49}, 'St. Joseph': {'pop': 61295, 'tracts': 17}, 'Tuscola': {'pop': 55729, 'tracts': 13}, 'Van Buren': {'pop': 76258, 'tracts': 15}, 'Washtenaw': {'pop': 344791, 'tracts': 100}, 'Wayne': {'pop': 1820584, 'tracts': 610}, 'Wexford': {'pop': 32735, 'tracts': 8}}, 'MN': {'Aitkin': {'pop': 16202, 'tracts': 6}, 'Anoka': {'pop': 330844, 'tracts': 83}, 'Becker': {'pop': 32504, 'tracts': 10}, 'Beltrami': {'pop': 44442, 'tracts': 10}, 'Benton': {'pop': 38451, 'tracts': 9}, 'Big Stone': {'pop': 5269, 'tracts': 3}, 'Blue Earth': {'pop': 64013, 'tracts': 16}, 'Brown': {'pop': 25893, 'tracts': 8}, 'Carlton': {'pop': 35386, 'tracts': 7}, 'Carver': {'pop': 91042, 'tracts': 19}, 'Cass': {'pop': 28567, 'tracts': 10}, 'Chippewa': {'pop': 12441, 'tracts': 4}, 'Chisago': {'pop': 53887, 'tracts': 10}, 'Clay': {'pop': 58999, 'tracts': 13}, 'Clearwater': {'pop': 8695, 'tracts': 3}, 'Cook': {'pop': 5176, 'tracts': 3}, 'Cottonwood': {'pop': 11687, 'tracts': 4}, 'Crow Wing': {'pop': 62500, 'tracts': 16}, 'Dakota': {'pop': 398552, 'tracts': 95}, 'Dodge': {'pop': 20087, 'tracts': 5}, 'Douglas': {'pop': 36009, 'tracts': 9}, 'Faribault': {'pop': 14553, 'tracts': 6}, 'Fillmore': {'pop': 20866, 'tracts': 6}, 'Freeborn': {'pop': 31255, 'tracts': 10}, 'Goodhue': {'pop': 46183, 'tracts': 10}, 'Grant': {'pop': 6018, 'tracts': 2}, 'Hennepin': {'pop': 1152425, 'tracts': 299}, 'Houston': {'pop': 19027, 'tracts': 5}, 'Hubbard': {'pop': 20428, 'tracts': 7}, 'Isanti': {'pop': 37816, 'tracts': 8}, 'Itasca': {'pop': 45058, 'tracts': 11}, 'Jackson': {'pop': 10266, 'tracts': 4}, 'Kanabec': {'pop': 16239, 'tracts': 4}, 'Kandiyohi': {'pop': 42239, 'tracts': 12}, 'Kittson': {'pop': 4552, 'tracts': 2}, 'Koochiching': {'pop': 13311, 'tracts': 4}, 'Lac qui Parle': {'pop': 7259, 'tracts': 3}, 'Lake': {'pop': 10866, 'tracts': 3}, 'Lake of the Woods': {'pop': 4045, 'tracts': 2}, 'Le Sueur': {'pop': 27703, 'tracts': 6}, 'Lincoln': {'pop': 5896, 'tracts': 2}, 'Lyon': {'pop': 25857, 'tracts': 7}, 'Mahnomen': {'pop': 5413, 'tracts': 2}, 'Marshall': {'pop': 9439, 'tracts': 4}, 'Martin': {'pop': 20840, 'tracts': 6}, 'McLeod': {'pop': 36651, 'tracts': 7}, 'Meeker': {'pop': 23300, 'tracts': 6}, 'Mille Lacs': {'pop': 26097, 'tracts': 7}, 'Morrison': {'pop': 33198, 'tracts': 8}, 'Mower': {'pop': 39163, 'tracts': 11}, 'Murray': {'pop': 8725, 'tracts': 3}, 'Nicollet': {'pop': 32727, 'tracts': 7}, 'Nobles': {'pop': 21378, 'tracts': 6}, 'Norman': {'pop': 6852, 'tracts': 3}, 'Olmsted': {'pop': 144248, 'tracts': 33}, 'Otter Tail': {'pop': 57303, 'tracts': 17}, 'Pennington': {'pop': 13930, 'tracts': 5}, 'Pine': {'pop': 29750, 'tracts': 8}, 'Pipestone': {'pop': 9596, 'tracts': 5}, 'Polk': {'pop': 31600, 'tracts': 10}, 'Pope': {'pop': 10995, 'tracts': 4}, 'Ramsey': {'pop': 508640, 'tracts': 137}, 'Red Lake': {'pop': 4089, 'tracts': 2}, 'Redwood': {'pop': 16059, 'tracts': 6}, 'Renville': {'pop': 15730, 'tracts': 6}, 'Rice': {'pop': 64142, 'tracts': 13}, 'Rock': {'pop': 9687, 'tracts': 3}, 'Roseau': {'pop': 15629, 'tracts': 5}, 'Scott': {'pop': 129928, 'tracts': 21}, 'Sherburne': {'pop': 88499, 'tracts': 11}, 'Sibley': {'pop': 15226, 'tracts': 4}, 'St. Louis': {'pop': 200226, 'tracts': 66}, 'Stearns': {'pop': 150642, 'tracts': 29}, 'Steele': {'pop': 36576, 'tracts': 8}, 'Stevens': {'pop': 9726, 'tracts': 3}, 'Swift': {'pop': 9783, 'tracts': 4}, 'Todd': {'pop': 24895, 'tracts': 8}, 'Traverse': {'pop': 3558, 'tracts': 2}, 'Wabasha': {'pop': 21676, 'tracts': 6}, 'Wadena': {'pop': 13843, 'tracts': 3}, 'Waseca': {'pop': 19136, 'tracts': 5}, 'Washington': {'pop': 238136, 'tracts': 50}, 'Watonwan': {'pop': 11211, 'tracts': 3}, 'Wilkin': {'pop': 6576, 'tracts': 2}, 'Winona': {'pop': 51461, 'tracts': 10}, 'Wright': {'pop': 124700, 'tracts': 17}, 'Yellow Medicine': {'pop': 10438, 'tracts': 4}}, 'MO': {'Adair': {'pop': 25607, 'tracts': 7}, 'Andrew': {'pop': 17291, 'tracts': 4}, 'Atchison': {'pop': 5685, 'tracts': 2}, 'Audrain': {'pop': 25529, 'tracts': 7}, 'Barry': {'pop': 35597, 'tracts': 7}, 'Barton': {'pop': 12402, 'tracts': 3}, 'Bates': {'pop': 17049, 'tracts': 4}, 'Benton': {'pop': 19056, 'tracts': 6}, 'Bollinger': {'pop': 12363, 'tracts': 3}, 'Boone': {'pop': 162642, 'tracts': 29}, 'Buchanan': {'pop': 89201, 'tracts': 25}, 'Butler': {'pop': 42794, 'tracts': 10}, 'Caldwell': {'pop': 9424, 'tracts': 2}, 'Callaway': {'pop': 44332, 'tracts': 8}, 'Camden': {'pop': 44002, 'tracts': 11}, 'Cape Girardeau': {'pop': 75674, 'tracts': 16}, 'Carroll': {'pop': 9295, 'tracts': 3}, 'Carter': {'pop': 6265, 'tracts': 2}, 'Cass': {'pop': 99478, 'tracts': 20}, 'Cedar': {'pop': 13982, 'tracts': 3}, 'Chariton': {'pop': 7831, 'tracts': 3}, 'Christian': {'pop': 77422, 'tracts': 14}, 'Clark': {'pop': 7139, 'tracts': 3}, 'Clay': {'pop': 221939, 'tracts': 44}, 'Clinton': {'pop': 20743, 'tracts': 4}, 'Cole': {'pop': 75990, 'tracts': 15}, 'Cooper': {'pop': 17601, 'tracts': 5}, 'Crawford': {'pop': 24696, 'tracts': 6}, 'Dade': {'pop': 7883, 'tracts': 2}, 'Dallas': {'pop': 16777, 'tracts': 3}, 'Daviess': {'pop': 8433, 'tracts': 2}, 'DeKalb': {'pop': 12892, 'tracts': 2}, 'Dent': {'pop': 15657, 'tracts': 4}, 'Douglas': {'pop': 13684, 'tracts': 3}, 'Dunklin': {'pop': 31953, 'tracts': 10}, 'Franklin': {'pop': 101492, 'tracts': 17}, 'Gasconade': {'pop': 15222, 'tracts': 5}, 'Gentry': {'pop': 6738, 'tracts': 2}, 'Greene': {'pop': 275174, 'tracts': 62}, 'Grundy': {'pop': 10261, 'tracts': 4}, 'Harrison': {'pop': 8957, 'tracts': 3}, 'Henry': {'pop': 22272, 'tracts': 6}, 'Hickory': {'pop': 9627, 'tracts': 3}, 'Holt': {'pop': 4912, 'tracts': 3}, 'Howard': {'pop': 10144, 'tracts': 3}, 'Howell': {'pop': 40400, 'tracts': 8}, 'Iron': {'pop': 10630, 'tracts': 4}, 'Jackson': {'pop': 674158, 'tracts': 199}, 'Jasper': {'pop': 117404, 'tracts': 22}, 'Jefferson': {'pop': 218733, 'tracts': 42}, 'Johnson': {'pop': 52595, 'tracts': 9}, 'Knox': {'pop': 4131, 'tracts': 2}, 'Laclede': {'pop': 35571, 'tracts': 6}, 'Lafayette': {'pop': 33381, 'tracts': 7}, 'Lawrence': {'pop': 38634, 'tracts': 7}, 'Lewis': {'pop': 10211, 'tracts': 4}, 'Lincoln': {'pop': 52566, 'tracts': 7}, 'Linn': {'pop': 12761, 'tracts': 5}, 'Livingston': {'pop': 15195, 'tracts': 5}, 'Macon': {'pop': 15566, 'tracts': 5}, 'Madison': {'pop': 12226, 'tracts': 3}, 'Maries': {'pop': 9176, 'tracts': 3}, 'Marion': {'pop': 28781, 'tracts': 8}, 'McDonald': {'pop': 23083, 'tracts': 4}, 'Mercer': {'pop': 3785, 'tracts': 2}, 'Miller': {'pop': 24748, 'tracts': 5}, 'Mississippi': {'pop': 14358, 'tracts': 4}, 'Moniteau': {'pop': 15607, 'tracts': 4}, 'Monroe': {'pop': 8840, 'tracts': 3}, 'Montgomery': {'pop': 12236, 'tracts': 4}, 'Morgan': {'pop': 20565, 'tracts': 5}, 'New Madrid': {'pop': 18956, 'tracts': 6}, 'Newton': {'pop': 58114, 'tracts': 12}, 'Nodaway': {'pop': 23370, 'tracts': 5}, 'Oregon': {'pop': 10881, 'tracts': 3}, 'Osage': {'pop': 13878, 'tracts': 4}, 'Ozark': {'pop': 9723, 'tracts': 2}, 'Pemiscot': {'pop': 18296, 'tracts': 6}, 'Perry': {'pop': 18971, 'tracts': 5}, 'Pettis': {'pop': 42201, 'tracts': 11}, 'Phelps': {'pop': 45156, 'tracts': 10}, 'Pike': {'pop': 18516, 'tracts': 5}, 'Platte': {'pop': 89322, 'tracts': 20}, 'Polk': {'pop': 31137, 'tracts': 4}, 'Pulaski': {'pop': 52274, 'tracts': 9}, 'Putnam': {'pop': 4979, 'tracts': 2}, 'Ralls': {'pop': 10167, 'tracts': 3}, 'Randolph': {'pop': 25414, 'tracts': 6}, 'Ray': {'pop': 23494, 'tracts': 4}, 'Reynolds': {'pop': 6696, 'tracts': 2}, 'Ripley': {'pop': 14100, 'tracts': 4}, 'Saline': {'pop': 23370, 'tracts': 8}, 'Schuyler': {'pop': 4431, 'tracts': 2}, 'Scotland': {'pop': 4843, 'tracts': 2}, 'Scott': {'pop': 39191, 'tracts': 10}, 'Shannon': {'pop': 8441, 'tracts': 2}, 'Shelby': {'pop': 6373, 'tracts': 3}, 'St. Charles': {'pop': 360485, 'tracts': 79}, 'St. Clair': {'pop': 9805, 'tracts': 3}, 'St. Francois': {'pop': 65359, 'tracts': 11}, 'St. Louis': {'pop': 998954, 'tracts': 199}, 'St. Louis City': {'pop': 319294, 'tracts': 106}, 'Ste. Genevieve': {'pop': 18145, 'tracts': 4}, 'Stoddard': {'pop': 29968, 'tracts': 8}, 'Stone': {'pop': 32202, 'tracts': 6}, 'Sullivan': {'pop': 6714, 'tracts': 3}, 'Taney': {'pop': 51675, 'tracts': 10}, 'Texas': {'pop': 26008, 'tracts': 4}, 'Vernon': {'pop': 21159, 'tracts': 6}, 'Warren': {'pop': 32513, 'tracts': 5}, 'Washington': {'pop': 25195, 'tracts': 5}, 'Wayne': {'pop': 13521, 'tracts': 4}, 'Webster': {'pop': 36202, 'tracts': 8}, 'Worth': {'pop': 2171, 'tracts': 1}, 'Wright': {'pop': 18815, 'tracts': 4}}, 'MS': {'Adams': {'pop': 32297, 'tracts': 9}, 'Alcorn': {'pop': 37057, 'tracts': 7}, 'Amite': {'pop': 13131, 'tracts': 3}, 'Attala': {'pop': 19564, 'tracts': 6}, 'Benton': {'pop': 8729, 'tracts': 2}, 'Bolivar': {'pop': 34145, 'tracts': 8}, 'Calhoun': {'pop': 14962, 'tracts': 5}, 'Carroll': {'pop': 10597, 'tracts': 2}, 'Chickasaw': {'pop': 17392, 'tracts': 4}, 'Choctaw': {'pop': 8547, 'tracts': 3}, 'Claiborne': {'pop': 9604, 'tracts': 3}, 'Clarke': {'pop': 16732, 'tracts': 4}, 'Clay': {'pop': 20634, 'tracts': 5}, 'Coahoma': {'pop': 26151, 'tracts': 7}, 'Copiah': {'pop': 29449, 'tracts': 6}, 'Covington': {'pop': 19568, 'tracts': 4}, 'DeSoto': {'pop': 161252, 'tracts': 33}, 'Forrest': {'pop': 74934, 'tracts': 17}, 'Franklin': {'pop': 8118, 'tracts': 2}, 'George': {'pop': 22578, 'tracts': 5}, 'Greene': {'pop': 14400, 'tracts': 2}, 'Grenada': {'pop': 21906, 'tracts': 5}, 'Hancock': {'pop': 43929, 'tracts': 7}, 'Harrison': {'pop': 187105, 'tracts': 46}, 'Hinds': {'pop': 245285, 'tracts': 64}, 'Holmes': {'pop': 19198, 'tracts': 5}, 'Humphreys': {'pop': 9375, 'tracts': 3}, 'Issaquena': {'pop': 1406, 'tracts': 1}, 'Itawamba': {'pop': 23401, 'tracts': 5}, 'Jackson': {'pop': 139668, 'tracts': 28}, 'Jasper': {'pop': 17062, 'tracts': 4}, 'Jefferson': {'pop': 7726, 'tracts': 2}, 'Jefferson Davis': {'pop': 12487, 'tracts': 3}, 'Jones': {'pop': 67761, 'tracts': 14}, 'Kemper': {'pop': 10456, 'tracts': 2}, 'Lafayette': {'pop': 47351, 'tracts': 10}, 'Lamar': {'pop': 55658, 'tracts': 8}, 'Lauderdale': {'pop': 80261, 'tracts': 19}, 'Lawrence': {'pop': 12929, 'tracts': 3}, 'Leake': {'pop': 23805, 'tracts': 5}, 'Lee': {'pop': 82910, 'tracts': 19}, 'Leflore': {'pop': 32317, 'tracts': 8}, 'Lincoln': {'pop': 34869, 'tracts': 6}, 'Lowndes': {'pop': 59779, 'tracts': 14}, 'Madison': {'pop': 95203, 'tracts': 21}, 'Marion': {'pop': 27088, 'tracts': 6}, 'Marshall': {'pop': 37144, 'tracts': 6}, 'Monroe': {'pop': 36989, 'tracts': 9}, 'Montgomery': {'pop': 10925, 'tracts': 3}, 'Neshoba': {'pop': 29676, 'tracts': 7}, 'Newton': {'pop': 21720, 'tracts': 5}, 'Noxubee': {'pop': 11545, 'tracts': 3}, 'Oktibbeha': {'pop': 47671, 'tracts': 8}, 'Panola': {'pop': 34707, 'tracts': 6}, 'Pearl River': {'pop': 55834, 'tracts': 9}, 'Perry': {'pop': 12250, 'tracts': 3}, 'Pike': {'pop': 40404, 'tracts': 8}, 'Pontotoc': {'pop': 29957, 'tracts': 6}, 'Prentiss': {'pop': 25276, 'tracts': 5}, 'Quitman': {'pop': 8223, 'tracts': 3}, 'Rankin': {'pop': 141617, 'tracts': 27}, 'Scott': {'pop': 28264, 'tracts': 6}, 'Sharkey': {'pop': 4916, 'tracts': 2}, 'Simpson': {'pop': 27503, 'tracts': 5}, 'Smith': {'pop': 16491, 'tracts': 3}, 'Stone': {'pop': 17786, 'tracts': 3}, 'Sunflower': {'pop': 29450, 'tracts': 7}, 'Tallahatchie': {'pop': 15378, 'tracts': 4}, 'Tate': {'pop': 28886, 'tracts': 5}, 'Tippah': {'pop': 22232, 'tracts': 4}, 'Tishomingo': {'pop': 19593, 'tracts': 4}, 'Tunica': {'pop': 10778, 'tracts': 3}, 'Union': {'pop': 27134, 'tracts': 6}, 'Walthall': {'pop': 15443, 'tracts': 3}, 'Warren': {'pop': 48773, 'tracts': 12}, 'Washington': {'pop': 51137, 'tracts': 19}, 'Wayne': {'pop': 20747, 'tracts': 4}, 'Webster': {'pop': 10253, 'tracts': 3}, 'Wilkinson': {'pop': 9878, 'tracts': 2}, 'Winston': {'pop': 19198, 'tracts': 5}, 'Yalobusha': {'pop': 12678, 'tracts': 3}, 'Yazoo': {'pop': 28065, 'tracts': 6}}, 'MT': {'Beaverhead': {'pop': 9246, 'tracts': 3}, 'Big Horn': {'pop': 12865, 'tracts': 5}, 'Blaine': {'pop': 6491, 'tracts': 4}, 'Broadwater': {'pop': 5612, 'tracts': 2}, 'Carbon': {'pop': 10078, 'tracts': 5}, 'Carter': {'pop': 1160, 'tracts': 1}, 'Cascade': {'pop': 81327, 'tracts': 22}, 'Chouteau': {'pop': 5813, 'tracts': 2}, 'Custer': {'pop': 11699, 'tracts': 6}, 'Daniels': {'pop': 1751, 'tracts': 1}, 'Dawson': {'pop': 8966, 'tracts': 3}, 'Deer Lodge': {'pop': 9298, 'tracts': 3}, 'Fallon': {'pop': 2890, 'tracts': 1}, 'Fergus': {'pop': 11586, 'tracts': 2}, 'Flathead': {'pop': 90928, 'tracts': 19}, 'Gallatin': {'pop': 89513, 'tracts': 22}, 'Garfield': {'pop': 1206, 'tracts': 1}, 'Glacier': {'pop': 13399, 'tracts': 4}, 'Golden Valley': {'pop': 884, 'tracts': 1}, 'Granite': {'pop': 3079, 'tracts': 1}, 'Hill': {'pop': 16096, 'tracts': 6}, 'Jefferson': {'pop': 11406, 'tracts': 3}, 'Judith Basin': {'pop': 2072, 'tracts': 1}, 'Lake': {'pop': 28746, 'tracts': 8}, 'Lewis and Clark': {'pop': 63395, 'tracts': 14}, 'Liberty': {'pop': 2339, 'tracts': 1}, 'Lincoln': {'pop': 19687, 'tracts': 5}, 'Madison': {'pop': 7691, 'tracts': 3}, 'McCone': {'pop': 1734, 'tracts': 1}, 'Meagher': {'pop': 1891, 'tracts': 1}, 'Mineral': {'pop': 4223, 'tracts': 2}, 'Missoula': {'pop': 109299, 'tracts': 20}, 'Musselshell': {'pop': 4538, 'tracts': 2}, 'Park': {'pop': 15636, 'tracts': 6}, 'Petroleum': {'pop': 494, 'tracts': 1}, 'Phillips': {'pop': 4253, 'tracts': 1}, 'Pondera': {'pop': 6153, 'tracts': 2}, 'Powder River': {'pop': 1743, 'tracts': 1}, 'Powell': {'pop': 7027, 'tracts': 2}, 'Prairie': {'pop': 1179, 'tracts': 1}, 'Ravalli': {'pop': 40212, 'tracts': 10}, 'Richland': {'pop': 9746, 'tracts': 4}, 'Roosevelt': {'pop': 10425, 'tracts': 3}, 'Rosebud': {'pop': 9233, 'tracts': 4}, 'Sanders': {'pop': 11413, 'tracts': 3}, 'Sheridan': {'pop': 3384, 'tracts': 2}, 'Silver Bow': {'pop': 34200, 'tracts': 8}, 'Stillwater': {'pop': 9117, 'tracts': 3}, 'Sweet Grass': {'pop': 3651, 'tracts': 1}, 'Teton': {'pop': 6073, 'tracts': 3}, 'Toole': {'pop': 5324, 'tracts': 3}, 'Treasure': {'pop': 718, 'tracts': 1}, 'Valley': {'pop': 7369, 'tracts': 3}, 'Wheatland': {'pop': 2168, 'tracts': 1}, 'Wibaux': {'pop': 1017, 'tracts': 1}, 'Yellowstone': {'pop': 147972, 'tracts': 32}}, 'NC': {'Alamance': {'pop': 151131, 'tracts': 36}, 'Alexander': {'pop': 37198, 'tracts': 7}, 'Alleghany': {'pop': 11155, 'tracts': 3}, 'Anson': {'pop': 26948, 'tracts': 6}, 'Ashe': {'pop': 27281, 'tracts': 6}, 'Avery': {'pop': 17797, 'tracts': 5}, 'Beaufort': {'pop': 47759, 'tracts': 11}, 'Bertie': {'pop': 21282, 'tracts': 4}, 'Bladen': {'pop': 35190, 'tracts': 6}, 'Brunswick': {'pop': 107431, 'tracts': 33}, 'Buncombe': {'pop': 238318, 'tracts': 56}, 'Burke': {'pop': 90912, 'tracts': 18}, 'Cabarrus': {'pop': 178011, 'tracts': 37}, 'Caldwell': {'pop': 83029, 'tracts': 17}, 'Camden': {'pop': 9980, 'tracts': 2}, 'Carteret': {'pop': 66469, 'tracts': 38}, 'Caswell': {'pop': 23719, 'tracts': 6}, 'Catawba': {'pop': 154358, 'tracts': 31}, 'Chatham': {'pop': 63505, 'tracts': 13}, 'Cherokee': {'pop': 27444, 'tracts': 7}, 'Chowan': {'pop': 14793, 'tracts': 3}, 'Clay': {'pop': 10587, 'tracts': 2}, 'Cleveland': {'pop': 98078, 'tracts': 22}, 'Columbus': {'pop': 58098, 'tracts': 13}, 'Craven': {'pop': 103505, 'tracts': 21}, 'Cumberland': {'pop': 319431, 'tracts': 68}, 'Currituck': {'pop': 23547, 'tracts': 8}, 'Dare': {'pop': 33920, 'tracts': 11}, 'Davidson': {'pop': 162878, 'tracts': 34}, 'Davie': {'pop': 41240, 'tracts': 7}, 'Duplin': {'pop': 58505, 'tracts': 11}, 'Durham': {'pop': 267587, 'tracts': 60}, 'Edgecombe': {'pop': 56552, 'tracts': 14}, 'Forsyth': {'pop': 350670, 'tracts': 93}, 'Franklin': {'pop': 60619, 'tracts': 12}, 'Gaston': {'pop': 206086, 'tracts': 65}, 'Gates': {'pop': 12197, 'tracts': 3}, 'Graham': {'pop': 8861, 'tracts': 3}, 'Granville': {'pop': 59916, 'tracts': 13}, 'Greene': {'pop': 21362, 'tracts': 4}, 'Guilford': {'pop': 488406, 'tracts': 119}, 'Halifax': {'pop': 54691, 'tracts': 12}, 'Harnett': {'pop': 114678, 'tracts': 27}, 'Haywood': {'pop': 59036, 'tracts': 16}, 'Henderson': {'pop': 106740, 'tracts': 27}, 'Hertford': {'pop': 24669, 'tracts': 5}, 'Hoke': {'pop': 46952, 'tracts': 9}, 'Hyde': {'pop': 5810, 'tracts': 2}, 'Iredell': {'pop': 159437, 'tracts': 44}, 'Jackson': {'pop': 40271, 'tracts': 9}, 'Johnston': {'pop': 168878, 'tracts': 25}, 'Jones': {'pop': 10153, 'tracts': 3}, 'Lee': {'pop': 57866, 'tracts': 13}, 'Lenoir': {'pop': 59495, 'tracts': 15}, 'Lincoln': {'pop': 78265, 'tracts': 18}, 'Macon': {'pop': 33922, 'tracts': 9}, 'Madison': {'pop': 20764, 'tracts': 6}, 'Martin': {'pop': 24505, 'tracts': 6}, 'McDowell': {'pop': 44996, 'tracts': 10}, 'Mecklenburg': {'pop': 919628, 'tracts': 233}, 'Mitchell': {'pop': 15579, 'tracts': 4}, 'Montgomery': {'pop': 27798, 'tracts': 6}, 'Moore': {'pop': 88247, 'tracts': 18}, 'Nash': {'pop': 95840, 'tracts': 18}, 'New Hanover': {'pop': 202667, 'tracts': 45}, 'Northampton': {'pop': 22099, 'tracts': 5}, 'Onslow': {'pop': 177772, 'tracts': 32}, 'Orange': {'pop': 133801, 'tracts': 28}, 'Pamlico': {'pop': 13144, 'tracts': 4}, 'Pasquotank': {'pop': 40661, 'tracts': 10}, 'Pender': {'pop': 52217, 'tracts': 16}, 'Perquimans': {'pop': 13453, 'tracts': 3}, 'Person': {'pop': 39464, 'tracts': 7}, 'Pitt': {'pop': 168148, 'tracts': 32}, 'Polk': {'pop': 20510, 'tracts': 7}, 'Randolph': {'pop': 141752, 'tracts': 28}, 'Richmond': {'pop': 46639, 'tracts': 11}, 'Robeson': {'pop': 134168, 'tracts': 31}, 'Rockingham': {'pop': 93643, 'tracts': 21}, 'Rowan': {'pop': 138428, 'tracts': 30}, 'Rutherford': {'pop': 67810, 'tracts': 13}, 'Sampson': {'pop': 63431, 'tracts': 11}, 'Scotland': {'pop': 36157, 'tracts': 7}, 'Stanly': {'pop': 60585, 'tracts': 13}, 'Stokes': {'pop': 47401, 'tracts': 9}, 'Surry': {'pop': 73673, 'tracts': 22}, 'Swain': {'pop': 13981, 'tracts': 5}, 'Transylvania': {'pop': 33090, 'tracts': 7}, 'Tyrrell': {'pop': 4407, 'tracts': 1}, 'Union': {'pop': 201292, 'tracts': 41}, 'Vance': {'pop': 45422, 'tracts': 10}, 'Wake': {'pop': 900993, 'tracts': 187}, 'Warren': {'pop': 20972, 'tracts': 6}, 'Washington': {'pop': 13228, 'tracts': 3}, 'Watauga': {'pop': 51079, 'tracts': 13}, 'Wayne': {'pop': 122623, 'tracts': 26}, 'Wilkes': {'pop': 69340, 'tracts': 14}, 'Wilson': {'pop': 81234, 'tracts': 19}, 'Yadkin': {'pop': 38406, 'tracts': 7}, 'Yancey': {'pop': 17818, 'tracts': 5}}, 'ND': {'Adams': {'pop': 2343, 'tracts': 1}, 'Barnes': {'pop': 11066, 'tracts': 4}, 'Benson': {'pop': 6660, 'tracts': 4}, 'Billings': {'pop': 783, 'tracts': 1}, 'Bottineau': {'pop': 6429, 'tracts': 3}, 'Bowman': {'pop': 3151, 'tracts': 2}, 'Burke': {'pop': 1968, 'tracts': 1}, 'Burleigh': {'pop': 81308, 'tracts': 19}, 'Cass': {'pop': 149778, 'tracts': 33}, 'Cavalier': {'pop': 3993, 'tracts': 2}, 'Dickey': {'pop': 5289, 'tracts': 3}, 'Divide': {'pop': 2071, 'tracts': 1}, 'Dunn': {'pop': 3536, 'tracts': 1}, 'Eddy': {'pop': 2385, 'tracts': 1}, 'Emmons': {'pop': 3550, 'tracts': 1}, 'Foster': {'pop': 3343, 'tracts': 1}, 'Golden Valley': {'pop': 1680, 'tracts': 1}, 'Grand Forks': {'pop': 66861, 'tracts': 18}, 'Grant': {'pop': 2394, 'tracts': 1}, 'Griggs': {'pop': 2420, 'tracts': 1}, 'Hettinger': {'pop': 2477, 'tracts': 2}, 'Kidder': {'pop': 2435, 'tracts': 1}, 'LaMoure': {'pop': 4139, 'tracts': 2}, 'Logan': {'pop': 1990, 'tracts': 1}, 'McHenry': {'pop': 5395, 'tracts': 2}, 'McIntosh': {'pop': 2809, 'tracts': 1}, 'McKenzie': {'pop': 6360, 'tracts': 4}, 'McLean': {'pop': 8962, 'tracts': 2}, 'Mercer': {'pop': 8424, 'tracts': 3}, 'Morton': {'pop': 27471, 'tracts': 5}, 'Mountrail': {'pop': 7673, 'tracts': 3}, 'Nelson': {'pop': 3126, 'tracts': 1}, 'Oliver': {'pop': 1846, 'tracts': 1}, 'Pembina': {'pop': 7413, 'tracts': 5}, 'Pierce': {'pop': 4357, 'tracts': 2}, 'Ramsey': {'pop': 11451, 'tracts': 3}, 'Ransom': {'pop': 5457, 'tracts': 3}, 'Renville': {'pop': 2470, 'tracts': 1}, 'Richland': {'pop': 16321, 'tracts': 6}, 'Rolette': {'pop': 13937, 'tracts': 4}, 'Sargent': {'pop': 3829, 'tracts': 2}, 'Sheridan': {'pop': 1321, 'tracts': 1}, 'Sioux': {'pop': 4153, 'tracts': 2}, 'Slope': {'pop': 727, 'tracts': 1}, 'Stark': {'pop': 24199, 'tracts': 8}, 'Steele': {'pop': 1975, 'tracts': 1}, 'Stutsman': {'pop': 21100, 'tracts': 6}, 'Towner': {'pop': 2246, 'tracts': 1}, 'Traill': {'pop': 8121, 'tracts': 4}, 'Walsh': {'pop': 11119, 'tracts': 6}, 'Ward': {'pop': 61675, 'tracts': 13}, 'Wells': {'pop': 4207, 'tracts': 2}, 'Williams': {'pop': 22398, 'tracts': 7}}, 'NE': {'Adams': {'pop': 31364, 'tracts': 9}, 'Antelope': {'pop': 6685, 'tracts': 3}, 'Arthur': {'pop': 460, 'tracts': 1}, 'Banner': {'pop': 690, 'tracts': 1}, 'Blaine': {'pop': 478, 'tracts': 1}, 'Boone': {'pop': 5505, 'tracts': 2}, 'Box Butte': {'pop': 11308, 'tracts': 3}, 'Boyd': {'pop': 2099, 'tracts': 1}, 'Brown': {'pop': 3145, 'tracts': 1}, 'Buffalo': {'pop': 46102, 'tracts': 11}, 'Burt': {'pop': 6858, 'tracts': 3}, 'Butler': {'pop': 8395, 'tracts': 3}, 'Cass': {'pop': 25241, 'tracts': 6}, 'Cedar': {'pop': 8852, 'tracts': 2}, 'Chase': {'pop': 3966, 'tracts': 1}, 'Cherry': {'pop': 5713, 'tracts': 2}, 'Cheyenne': {'pop': 9998, 'tracts': 3}, 'Clay': {'pop': 6542, 'tracts': 2}, 'Colfax': {'pop': 10515, 'tracts': 3}, 'Cuming': {'pop': 9139, 'tracts': 3}, 'Custer': {'pop': 10939, 'tracts': 4}, 'Dakota': {'pop': 21006, 'tracts': 4}, 'Dawes': {'pop': 9182, 'tracts': 2}, 'Dawson': {'pop': 24326, 'tracts': 7}, 'Deuel': {'pop': 1941, 'tracts': 1}, 'Dixon': {'pop': 6000, 'tracts': 2}, 'Dodge': {'pop': 36691, 'tracts': 9}, 'Douglas': {'pop': 517110, 'tracts': 156}, 'Dundy': {'pop': 2008, 'tracts': 1}, 'Fillmore': {'pop': 5890, 'tracts': 2}, 'Franklin': {'pop': 3225, 'tracts': 2}, 'Frontier': {'pop': 2756, 'tracts': 1}, 'Furnas': {'pop': 4959, 'tracts': 1}, 'Gage': {'pop': 22311, 'tracts': 7}, 'Garden': {'pop': 2057, 'tracts': 1}, 'Garfield': {'pop': 2049, 'tracts': 1}, 'Gosper': {'pop': 2044, 'tracts': 1}, 'Grant': {'pop': 614, 'tracts': 1}, 'Greeley': {'pop': 2538, 'tracts': 1}, 'Hall': {'pop': 58607, 'tracts': 14}, 'Hamilton': {'pop': 9124, 'tracts': 3}, 'Harlan': {'pop': 3423, 'tracts': 1}, 'Hayes': {'pop': 967, 'tracts': 1}, 'Hitchcock': {'pop': 2908, 'tracts': 1}, 'Holt': {'pop': 10435, 'tracts': 4}, 'Hooker': {'pop': 736, 'tracts': 1}, 'Howard': {'pop': 6274, 'tracts': 2}, 'Jefferson': {'pop': 7547, 'tracts': 3}, 'Johnson': {'pop': 5217, 'tracts': 2}, 'Kearney': {'pop': 6489, 'tracts': 2}, 'Keith': {'pop': 8368, 'tracts': 3}, 'Keya Paha': {'pop': 824, 'tracts': 1}, 'Kimball': {'pop': 3821, 'tracts': 1}, 'Knox': {'pop': 8701, 'tracts': 3}, 'Lancaster': {'pop': 285407, 'tracts': 74}, 'Lincoln': {'pop': 36288, 'tracts': 8}, 'Logan': {'pop': 763, 'tracts': 1}, 'Loup': {'pop': 632, 'tracts': 1}, 'Madison': {'pop': 34876, 'tracts': 9}, 'McPherson': {'pop': 539, 'tracts': 1}, 'Merrick': {'pop': 7845, 'tracts': 3}, 'Morrill': {'pop': 5042, 'tracts': 1}, 'Nance': {'pop': 3735, 'tracts': 1}, 'Nemaha': {'pop': 7248, 'tracts': 2}, 'Nuckolls': {'pop': 4500, 'tracts': 2}, 'Otoe': {'pop': 15740, 'tracts': 5}, 'Pawnee': {'pop': 2773, 'tracts': 1}, 'Perkins': {'pop': 2970, 'tracts': 1}, 'Phelps': {'pop': 9188, 'tracts': 3}, 'Pierce': {'pop': 7266, 'tracts': 2}, 'Platte': {'pop': 32237, 'tracts': 7}, 'Polk': {'pop': 5406, 'tracts': 2}, 'Red Willow': {'pop': 11055, 'tracts': 3}, 'Richardson': {'pop': 8363, 'tracts': 3}, 'Rock': {'pop': 1526, 'tracts': 1}, 'Saline': {'pop': 14200, 'tracts': 4}, 'Sarpy': {'pop': 158840, 'tracts': 43}, 'Saunders': {'pop': 20780, 'tracts': 5}, 'Scotts Bluff': {'pop': 36970, 'tracts': 11}, 'Seward': {'pop': 16750, 'tracts': 4}, 'Sheridan': {'pop': 5469, 'tracts': 2}, 'Sherman': {'pop': 3152, 'tracts': 1}, 'Sioux': {'pop': 1311, 'tracts': 1}, 'Stanton': {'pop': 6129, 'tracts': 2}, 'Thayer': {'pop': 5228, 'tracts': 2}, 'Thomas': {'pop': 647, 'tracts': 1}, 'Thurston': {'pop': 6940, 'tracts': 2}, 'Valley': {'pop': 4260, 'tracts': 2}, 'Washington': {'pop': 20234, 'tracts': 5}, 'Wayne': {'pop': 9595, 'tracts': 2}, 'Webster': {'pop': 3812, 'tracts': 2}, 'Wheeler': {'pop': 818, 'tracts': 1}, 'York': {'pop': 13665, 'tracts': 4}}, 'NH': {'Belknap': {'pop': 60088, 'tracts': 15}, 'Carroll': {'pop': 47818, 'tracts': 11}, 'Cheshire': {'pop': 77117, 'tracts': 16}, 'Coos': {'pop': 33055, 'tracts': 11}, 'Grafton': {'pop': 89118, 'tracts': 19}, 'Hillsborough': {'pop': 400721, 'tracts': 86}, 'Merrimack': {'pop': 146445, 'tracts': 36}, 'Rockingham': {'pop': 295223, 'tracts': 66}, 'Strafford': {'pop': 123143, 'tracts': 25}, 'Sullivan': {'pop': 43742, 'tracts': 10}}, 'NJ': {'Atlantic': {'pop': 274549, 'tracts': 69}, 'Bergen': {'pop': 905116, 'tracts': 179}, 'Burlington': {'pop': 448734, 'tracts': 114}, 'Camden': {'pop': 513657, 'tracts': 127}, 'Cape May': {'pop': 97265, 'tracts': 32}, 'Cumberland': {'pop': 156898, 'tracts': 35}, 'Essex': {'pop': 783969, 'tracts': 210}, 'Gloucester': {'pop': 288288, 'tracts': 63}, 'Hudson': {'pop': 634266, 'tracts': 166}, 'Hunterdon': {'pop': 128349, 'tracts': 26}, 'Mercer': {'pop': 366513, 'tracts': 77}, 'Middlesex': {'pop': 809858, 'tracts': 175}, 'Monmouth': {'pop': 630380, 'tracts': 144}, 'Morris': {'pop': 492276, 'tracts': 100}, 'Ocean': {'pop': 576567, 'tracts': 126}, 'Passaic': {'pop': 501226, 'tracts': 100}, 'Salem': {'pop': 66083, 'tracts': 24}, 'Somerset': {'pop': 323444, 'tracts': 68}, 'Sussex': {'pop': 149265, 'tracts': 41}, 'Union': {'pop': 536499, 'tracts': 108}, 'Warren': {'pop': 108692, 'tracts': 23}}, 'NM': {'Bernalillo': {'pop': 662564, 'tracts': 153}, 'Catron': {'pop': 3725, 'tracts': 1}, 'Chaves': {'pop': 65645, 'tracts': 16}, 'Cibola': {'pop': 27213, 'tracts': 7}, 'Colfax': {'pop': 13750, 'tracts': 3}, 'Curry': {'pop': 48376, 'tracts': 12}, 'De Baca': {'pop': 2022, 'tracts': 1}, 'Dona Ana': {'pop': 209233, 'tracts': 41}, 'Eddy': {'pop': 53829, 'tracts': 12}, 'Grant': {'pop': 29514, 'tracts': 8}, 'Guadalupe': {'pop': 4687, 'tracts': 1}, 'Harding': {'pop': 695, 'tracts': 1}, 'Hidalgo': {'pop': 4894, 'tracts': 2}, 'Lea': {'pop': 64727, 'tracts': 18}, 'Lincoln': {'pop': 20497, 'tracts': 5}, 'Los Alamos': {'pop': 17950, 'tracts': 4}, 'Luna': {'pop': 25095, 'tracts': 6}, 'McKinley': {'pop': 71492, 'tracts': 17}, 'Mora': {'pop': 4881, 'tracts': 1}, 'Otero': {'pop': 63797, 'tracts': 16}, 'Quay': {'pop': 9041, 'tracts': 3}, 'Rio Arriba': {'pop': 40246, 'tracts': 9}, 'Roosevelt': {'pop': 19846, 'tracts': 5}, 'San Juan': {'pop': 130044, 'tracts': 33}, 'San Miguel': {'pop': 29393, 'tracts': 7}, 'Sandoval': {'pop': 131561, 'tracts': 28}, 'Santa Fe': {'pop': 144170, 'tracts': 50}, 'Sierra': {'pop': 11988, 'tracts': 4}, 'Socorro': {'pop': 17866, 'tracts': 6}, 'Taos': {'pop': 32937, 'tracts': 6}, 'Torrance': {'pop': 16383, 'tracts': 4}, 'Union': {'pop': 4549, 'tracts': 1}, 'Valencia': {'pop': 76569, 'tracts': 18}}, 'NV': {'Carson City': {'pop': 55274, 'tracts': 14}, 'Churchill': {'pop': 24877, 'tracts': 7}, 'Clark': {'pop': 1951269, 'tracts': 487}, 'Douglas': {'pop': 46997, 'tracts': 17}, 'Elko': {'pop': 48818, 'tracts': 14}, 'Esmeralda': {'pop': 783, 'tracts': 1}, 'Eureka': {'pop': 1987, 'tracts': 1}, 'Humboldt': {'pop': 16528, 'tracts': 4}, 'Lander': {'pop': 5775, 'tracts': 1}, 'Lincoln': {'pop': 5345, 'tracts': 2}, 'Lyon': {'pop': 51980, 'tracts': 10}, 'Mineral': {'pop': 4772, 'tracts': 2}, 'Nye': {'pop': 43946, 'tracts': 10}, 'Pershing': {'pop': 6753, 'tracts': 1}, 'Storey': {'pop': 4010, 'tracts': 1}, 'Washoe': {'pop': 421407, 'tracts': 112}, 'White Pine': {'pop': 10030, 'tracts': 3}}, 'NY': {'Albany': {'pop': 304204, 'tracts': 75}, 'Allegany': {'pop': 48946, 'tracts': 13}, 'Bronx': {'pop': 1385108, 'tracts': 339}, 'Broome': {'pop': 200600, 'tracts': 55}, 'Cattaraugus': {'pop': 80317, 'tracts': 21}, 'Cayuga': {'pop': 80026, 'tracts': 20}, 'Chautauqua': {'pop': 134905, 'tracts': 35}, 'Chemung': {'pop': 88830, 'tracts': 22}, 'Chenango': {'pop': 50477, 'tracts': 12}, 'Clinton': {'pop': 82128, 'tracts': 19}, 'Columbia': {'pop': 63096, 'tracts': 21}, 'Cortland': {'pop': 49336, 'tracts': 12}, 'Delaware': {'pop': 47980, 'tracts': 14}, 'Dutchess': {'pop': 297488, 'tracts': 79}, 'Erie': {'pop': 919040, 'tracts': 237}, 'Essex': {'pop': 39370, 'tracts': 13}, 'Franklin': {'pop': 51599, 'tracts': 14}, 'Fulton': {'pop': 55531, 'tracts': 15}, 'Genesee': {'pop': 60079, 'tracts': 15}, 'Greene': {'pop': 49221, 'tracts': 15}, 'Hamilton': {'pop': 4836, 'tracts': 4}, 'Herkimer': {'pop': 64519, 'tracts': 19}, 'Jefferson': {'pop': 116229, 'tracts': 26}, 'Kings': {'pop': 2504700, 'tracts': 760}, 'Lewis': {'pop': 27087, 'tracts': 7}, 'Livingston': {'pop': 65393, 'tracts': 15}, 'Madison': {'pop': 73442, 'tracts': 16}, 'Monroe': {'pop': 744344, 'tracts': 192}, 'Montgomery': {'pop': 50219, 'tracts': 16}, 'Nassau': {'pop': 1339532, 'tracts': 280}, 'New York': {'pop': 1585873, 'tracts': 288}, 'Niagara': {'pop': 216469, 'tracts': 61}, 'Oneida': {'pop': 234878, 'tracts': 74}, 'Onondaga': {'pop': 467026, 'tracts': 140}, 'Ontario': {'pop': 107931, 'tracts': 25}, 'Orange': {'pop': 372813, 'tracts': 79}, 'Orleans': {'pop': 42883, 'tracts': 11}, 'Oswego': {'pop': 122109, 'tracts': 29}, 'Otsego': {'pop': 62259, 'tracts': 17}, 'Putnam': {'pop': 99710, 'tracts': 19}, 'Queens': {'pop': 2230722, 'tracts': 669}, 'Rensselaer': {'pop': 159429, 'tracts': 42}, 'Richmond': {'pop': 468730, 'tracts': 109}, 'Rockland': {'pop': 311687, 'tracts': 65}, 'Saratoga': {'pop': 219607, 'tracts': 50}, 'Schenectady': {'pop': 154727, 'tracts': 43}, 'Schoharie': {'pop': 32749, 'tracts': 8}, 'Schuyler': {'pop': 18343, 'tracts': 5}, 'Seneca': {'pop': 35251, 'tracts': 10}, 'St. Lawrence': {'pop': 111944, 'tracts': 28}, 'Steuben': {'pop': 98990, 'tracts': 30}, 'Suffolk': {'pop': 1493350, 'tracts': 322}, 'Sullivan': {'pop': 77547, 'tracts': 24}, 'Tioga': {'pop': 51125, 'tracts': 10}, 'Tompkins': {'pop': 101564, 'tracts': 23}, 'Ulster': {'pop': 182493, 'tracts': 47}, 'Warren': {'pop': 65707, 'tracts': 19}, 'Washington': {'pop': 63216, 'tracts': 17}, 'Wayne': {'pop': 93772, 'tracts': 23}, 'Westchester': {'pop': 949113, 'tracts': 223}, 'Wyoming': {'pop': 42155, 'tracts': 11}, 'Yates': {'pop': 25348, 'tracts': 5}}, 'OH': {'Adams': {'pop': 28550, 'tracts': 6}, 'Allen': {'pop': 106331, 'tracts': 33}, 'Ashland': {'pop': 53139, 'tracts': 11}, 'Ashtabula': {'pop': 101497, 'tracts': 25}, 'Athens': {'pop': 64757, 'tracts': 15}, 'Auglaize': {'pop': 45949, 'tracts': 11}, 'Belmont': {'pop': 70400, 'tracts': 20}, 'Brown': {'pop': 44846, 'tracts': 9}, 'Butler': {'pop': 368130, 'tracts': 80}, 'Carroll': {'pop': 28836, 'tracts': 7}, 'Champaign': {'pop': 40097, 'tracts': 10}, 'Clark': {'pop': 138333, 'tracts': 44}, 'Clermont': {'pop': 197363, 'tracts': 40}, 'Clinton': {'pop': 42040, 'tracts': 9}, 'Columbiana': {'pop': 107841, 'tracts': 24}, 'Coshocton': {'pop': 36901, 'tracts': 10}, 'Crawford': {'pop': 43784, 'tracts': 13}, 'Cuyahoga': {'pop': 1280122, 'tracts': 447}, 'Darke': {'pop': 52959, 'tracts': 12}, 'Defiance': {'pop': 39037, 'tracts': 9}, 'Delaware': {'pop': 174214, 'tracts': 35}, 'Erie': {'pop': 77079, 'tracts': 19}, 'Fairfield': {'pop': 146156, 'tracts': 28}, 'Fayette': {'pop': 29030, 'tracts': 7}, 'Franklin': {'pop': 1163414, 'tracts': 284}, 'Fulton': {'pop': 42698, 'tracts': 9}, 'Gallia': {'pop': 30934, 'tracts': 7}, 'Geauga': {'pop': 93389, 'tracts': 21}, 'Greene': {'pop': 161573, 'tracts': 35}, 'Guernsey': {'pop': 40087, 'tracts': 10}, 'Hamilton': {'pop': 802374, 'tracts': 222}, 'Hancock': {'pop': 74782, 'tracts': 13}, 'Hardin': {'pop': 32058, 'tracts': 7}, 'Harrison': {'pop': 15864, 'tracts': 5}, 'Henry': {'pop': 28215, 'tracts': 7}, 'Highland': {'pop': 43589, 'tracts': 9}, 'Hocking': {'pop': 29380, 'tracts': 7}, 'Holmes': {'pop': 42366, 'tracts': 8}, 'Huron': {'pop': 59626, 'tracts': 13}, 'Jackson': {'pop': 33225, 'tracts': 7}, 'Jefferson': {'pop': 69709, 'tracts': 23}, 'Knox': {'pop': 60921, 'tracts': 12}, 'Lake': {'pop': 230041, 'tracts': 59}, 'Lawrence': {'pop': 62450, 'tracts': 16}, 'Licking': {'pop': 166492, 'tracts': 32}, 'Logan': {'pop': 45858, 'tracts': 11}, 'Lorain': {'pop': 301356, 'tracts': 73}, 'Lucas': {'pop': 441815, 'tracts': 127}, 'Madison': {'pop': 43435, 'tracts': 12}, 'Mahoning': {'pop': 238823, 'tracts': 70}, 'Marion': {'pop': 66501, 'tracts': 18}, 'Medina': {'pop': 172332, 'tracts': 37}, 'Meigs': {'pop': 23770, 'tracts': 6}, 'Mercer': {'pop': 40814, 'tracts': 9}, 'Miami': {'pop': 102506, 'tracts': 21}, 'Monroe': {'pop': 14642, 'tracts': 4}, 'Montgomery': {'pop': 535153, 'tracts': 153}, 'Morgan': {'pop': 15054, 'tracts': 4}, 'Morrow': {'pop': 34827, 'tracts': 6}, 'Muskingum': {'pop': 86074, 'tracts': 19}, 'Noble': {'pop': 14645, 'tracts': 3}, 'Ottawa': {'pop': 41428, 'tracts': 13}, 'Paulding': {'pop': 19614, 'tracts': 5}, 'Perry': {'pop': 36058, 'tracts': 6}, 'Pickaway': {'pop': 55698, 'tracts': 13}, 'Pike': {'pop': 28709, 'tracts': 6}, 'Portage': {'pop': 161419, 'tracts': 35}, 'Preble': {'pop': 42270, 'tracts': 12}, 'Putnam': {'pop': 34499, 'tracts': 7}, 'Richland': {'pop': 124475, 'tracts': 30}, 'Ross': {'pop': 78064, 'tracts': 17}, 'Sandusky': {'pop': 60944, 'tracts': 15}, 'Scioto': {'pop': 79499, 'tracts': 20}, 'Seneca': {'pop': 56745, 'tracts': 14}, 'Shelby': {'pop': 49423, 'tracts': 10}, 'Stark': {'pop': 375586, 'tracts': 86}, 'Summit': {'pop': 541781, 'tracts': 135}, 'Trumbull': {'pop': 210312, 'tracts': 55}, 'Tuscarawas': {'pop': 92582, 'tracts': 21}, 'Union': {'pop': 52300, 'tracts': 10}, 'Van Wert': {'pop': 28744, 'tracts': 9}, 'Vinton': {'pop': 13435, 'tracts': 3}, 'Warren': {'pop': 212693, 'tracts': 33}, 'Washington': {'pop': 61778, 'tracts': 16}, 'Wayne': {'pop': 114520, 'tracts': 32}, 'Williams': {'pop': 37642, 'tracts': 9}, 'Wood': {'pop': 125488, 'tracts': 28}, 'Wyandot': {'pop': 22615, 'tracts': 6}}, 'OK': {'Adair': {'pop': 22683, 'tracts': 5}, 'Alfalfa': {'pop': 5642, 'tracts': 3}, 'Atoka': {'pop': 14182, 'tracts': 4}, 'Beaver': {'pop': 5636, 'tracts': 3}, 'Beckham': {'pop': 22119, 'tracts': 4}, 'Blaine': {'pop': 11943, 'tracts': 5}, 'Bryan': {'pop': 42416, 'tracts': 11}, 'Caddo': {'pop': 29600, 'tracts': 8}, 'Canadian': {'pop': 115541, 'tracts': 29}, 'Carter': {'pop': 47557, 'tracts': 11}, 'Cherokee': {'pop': 46987, 'tracts': 9}, 'Choctaw': {'pop': 15205, 'tracts': 5}, 'Cimarron': {'pop': 2475, 'tracts': 2}, 'Cleveland': {'pop': 255755, 'tracts': 62}, 'Coal': {'pop': 5925, 'tracts': 2}, 'Comanche': {'pop': 124098, 'tracts': 32}, 'Cotton': {'pop': 6193, 'tracts': 2}, 'Craig': {'pop': 15029, 'tracts': 5}, 'Creek': {'pop': 69967, 'tracts': 21}, 'Custer': {'pop': 27469, 'tracts': 5}, 'Delaware': {'pop': 41487, 'tracts': 9}, 'Dewey': {'pop': 4810, 'tracts': 3}, 'Ellis': {'pop': 4151, 'tracts': 2}, 'Garfield': {'pop': 60580, 'tracts': 12}, 'Garvin': {'pop': 27576, 'tracts': 9}, 'Grady': {'pop': 52431, 'tracts': 10}, 'Grant': {'pop': 4527, 'tracts': 2}, 'Greer': {'pop': 6239, 'tracts': 2}, 'Harmon': {'pop': 2922, 'tracts': 1}, 'Harper': {'pop': 3685, 'tracts': 2}, 'Haskell': {'pop': 12769, 'tracts': 4}, 'Hughes': {'pop': 14003, 'tracts': 5}, 'Jackson': {'pop': 26446, 'tracts': 8}, 'Jefferson': {'pop': 6472, 'tracts': 3}, 'Johnston': {'pop': 10957, 'tracts': 3}, 'Kay': {'pop': 46562, 'tracts': 11}, 'Kingfisher': {'pop': 15034, 'tracts': 4}, 'Kiowa': {'pop': 9446, 'tracts': 3}, 'Latimer': {'pop': 11154, 'tracts': 3}, 'Le Flore': {'pop': 50384, 'tracts': 12}, 'Lincoln': {'pop': 34273, 'tracts': 7}, 'Logan': {'pop': 41848, 'tracts': 8}, 'Love': {'pop': 9423, 'tracts': 3}, 'Major': {'pop': 7527, 'tracts': 3}, 'Marshall': {'pop': 15840, 'tracts': 4}, 'Mayes': {'pop': 41259, 'tracts': 9}, 'McClain': {'pop': 34506, 'tracts': 6}, 'McCurtain': {'pop': 33151, 'tracts': 8}, 'McIntosh': {'pop': 20252, 'tracts': 6}, 'Murray': {'pop': 13488, 'tracts': 3}, 'Muskogee': {'pop': 70990, 'tracts': 16}, 'Noble': {'pop': 11561, 'tracts': 4}, 'Nowata': {'pop': 10536, 'tracts': 4}, 'Okfuskee': {'pop': 12191, 'tracts': 4}, 'Oklahoma': {'pop': 718633, 'tracts': 241}, 'Okmulgee': {'pop': 40069, 'tracts': 10}, 'Osage': {'pop': 47472, 'tracts': 11}, 'Ottawa': {'pop': 31848, 'tracts': 9}, 'Pawnee': {'pop': 16577, 'tracts': 5}, 'Payne': {'pop': 77350, 'tracts': 17}, 'Pittsburg': {'pop': 45837, 'tracts': 13}, 'Pontotoc': {'pop': 37492, 'tracts': 10}, 'Pottawatomie': {'pop': 69442, 'tracts': 16}, 'Pushmataha': {'pop': 11572, 'tracts': 3}, 'Roger Mills': {'pop': 3647, 'tracts': 1}, 'Rogers': {'pop': 86905, 'tracts': 28}, 'Seminole': {'pop': 25482, 'tracts': 9}, 'Sequoyah': {'pop': 42391, 'tracts': 9}, 'Stephens': {'pop': 45048, 'tracts': 11}, 'Texas': {'pop': 20640, 'tracts': 5}, 'Tillman': {'pop': 7992, 'tracts': 5}, 'Tulsa': {'pop': 603403, 'tracts': 175}, 'Wagoner': {'pop': 73085, 'tracts': 22}, 'Washington': {'pop': 50976, 'tracts': 13}, 'Washita': {'pop': 11629, 'tracts': 4}, 'Woods': {'pop': 8878, 'tracts': 3}, 'Woodward': {'pop': 20081, 'tracts': 5}}, 'OR': {'Baker': {'pop': 16134, 'tracts': 6}, 'Benton': {'pop': 85579, 'tracts': 18}, 'Clackamas': {'pop': 375992, 'tracts': 80}, 'Clatsop': {'pop': 37039, 'tracts': 12}, 'Columbia': {'pop': 49351, 'tracts': 10}, 'Coos': {'pop': 63043, 'tracts': 13}, 'Crook': {'pop': 20978, 'tracts': 4}, 'Curry': {'pop': 22364, 'tracts': 6}, 'Deschutes': {'pop': 157733, 'tracts': 24}, 'Douglas': {'pop': 107667, 'tracts': 22}, 'Gilliam': {'pop': 1871, 'tracts': 1}, 'Grant': {'pop': 7445, 'tracts': 2}, 'Harney': {'pop': 7422, 'tracts': 2}, 'Hood River': {'pop': 22346, 'tracts': 4}, 'Jackson': {'pop': 203206, 'tracts': 41}, 'Jefferson': {'pop': 21720, 'tracts': 6}, 'Josephine': {'pop': 82713, 'tracts': 16}, 'Klamath': {'pop': 66380, 'tracts': 20}, 'Lake': {'pop': 7895, 'tracts': 2}, 'Lane': {'pop': 351715, 'tracts': 86}, 'Lincoln': {'pop': 46034, 'tracts': 18}, 'Linn': {'pop': 116672, 'tracts': 21}, 'Malheur': {'pop': 31313, 'tracts': 8}, 'Marion': {'pop': 315335, 'tracts': 58}, 'Morrow': {'pop': 11173, 'tracts': 2}, 'Multnomah': {'pop': 735334, 'tracts': 171}, 'Polk': {'pop': 75403, 'tracts': 12}, 'Sherman': {'pop': 1765, 'tracts': 1}, 'Tillamook': {'pop': 25250, 'tracts': 8}, 'Umatilla': {'pop': 75889, 'tracts': 15}, 'Union': {'pop': 25748, 'tracts': 8}, 'Wallowa': {'pop': 7008, 'tracts': 3}, 'Wasco': {'pop': 25213, 'tracts': 8}, 'Washington': {'pop': 529710, 'tracts': 104}, 'Wheeler': {'pop': 1441, 'tracts': 1}, 'Yamhill': {'pop': 99193, 'tracts': 17}}, 'PA': {'Adams': {'pop': 101407, 'tracts': 23}, 'Allegheny': {'pop': 1223348, 'tracts': 402}, 'Armstrong': {'pop': 68941, 'tracts': 19}, 'Beaver': {'pop': 170539, 'tracts': 51}, 'Bedford': {'pop': 49762, 'tracts': 11}, 'Berks': {'pop': 411442, 'tracts': 90}, 'Blair': {'pop': 127089, 'tracts': 34}, 'Bradford': {'pop': 62622, 'tracts': 14}, 'Bucks': {'pop': 625249, 'tracts': 143}, 'Butler': {'pop': 183862, 'tracts': 44}, 'Cambria': {'pop': 143679, 'tracts': 42}, 'Cameron': {'pop': 5085, 'tracts': 2}, 'Carbon': {'pop': 65249, 'tracts': 12}, 'Centre': {'pop': 153990, 'tracts': 31}, 'Chester': {'pop': 498886, 'tracts': 116}, 'Clarion': {'pop': 39988, 'tracts': 10}, 'Clearfield': {'pop': 81642, 'tracts': 20}, 'Clinton': {'pop': 39238, 'tracts': 9}, 'Columbia': {'pop': 67295, 'tracts': 15}, 'Crawford': {'pop': 88765, 'tracts': 23}, 'Cumberland': {'pop': 235406, 'tracts': 49}, 'Dauphin': {'pop': 268100, 'tracts': 65}, 'Delaware': {'pop': 558979, 'tracts': 144}, 'Elk': {'pop': 31946, 'tracts': 9}, 'Erie': {'pop': 280566, 'tracts': 72}, 'Fayette': {'pop': 136606, 'tracts': 36}, 'Forest': {'pop': 7716, 'tracts': 3}, 'Franklin': {'pop': 149618, 'tracts': 27}, 'Fulton': {'pop': 14845, 'tracts': 3}, 'Greene': {'pop': 38686, 'tracts': 9}, 'Huntingdon': {'pop': 45913, 'tracts': 12}, 'Indiana': {'pop': 88880, 'tracts': 23}, 'Jefferson': {'pop': 45200, 'tracts': 13}, 'Juniata': {'pop': 24636, 'tracts': 5}, 'Lackawanna': {'pop': 214437, 'tracts': 59}, 'Lancaster': {'pop': 519445, 'tracts': 98}, 'Lawrence': {'pop': 91108, 'tracts': 28}, 'Lebanon': {'pop': 133568, 'tracts': 31}, 'Lehigh': {'pop': 349497, 'tracts': 76}, 'Luzerne': {'pop': 320918, 'tracts': 104}, 'Lycoming': {'pop': 116111, 'tracts': 29}, 'McKean': {'pop': 43450, 'tracts': 12}, 'Mercer': {'pop': 116638, 'tracts': 30}, 'Mifflin': {'pop': 46682, 'tracts': 12}, 'Monroe': {'pop': 169842, 'tracts': 33}, 'Montgomery': {'pop': 799874, 'tracts': 211}, 'Montour': {'pop': 18267, 'tracts': 4}, 'Northampton': {'pop': 297735, 'tracts': 68}, 'Northumberland': {'pop': 94528, 'tracts': 24}, 'Perry': {'pop': 45969, 'tracts': 10}, 'Philadelphia': {'pop': 1526006, 'tracts': 384}, 'Pike': {'pop': 57369, 'tracts': 18}, 'Potter': {'pop': 17457, 'tracts': 5}, 'Schuylkill': {'pop': 148289, 'tracts': 40}, 'Snyder': {'pop': 39702, 'tracts': 8}, 'Somerset': {'pop': 77742, 'tracts': 21}, 'Sullivan': {'pop': 6428, 'tracts': 2}, 'Susquehanna': {'pop': 43356, 'tracts': 11}, 'Tioga': {'pop': 41981, 'tracts': 10}, 'Union': {'pop': 44947, 'tracts': 10}, 'Venango': {'pop': 54984, 'tracts': 16}, 'Warren': {'pop': 41815, 'tracts': 13}, 'Washington': {'pop': 207820, 'tracts': 59}, 'Wayne': {'pop': 52822, 'tracts': 14}, 'Westmoreland': {'pop': 365169, 'tracts': 100}, 'Wyoming': {'pop': 28276, 'tracts': 7}, 'York': {'pop': 434972, 'tracts': 90}}, 'RI': {'Bristol': {'pop': 49875, 'tracts': 11}, 'Kent': {'pop': 166158, 'tracts': 39}, 'Newport': {'pop': 82888, 'tracts': 22}, 'Providence': {'pop': 626667, 'tracts': 141}, 'Washington': {'pop': 126979, 'tracts': 29}}, 'SC': {'Abbeville': {'pop': 25417, 'tracts': 6}, 'Aiken': {'pop': 160099, 'tracts': 33}, 'Allendale': {'pop': 10419, 'tracts': 3}, 'Anderson': {'pop': 187126, 'tracts': 39}, 'Bamberg': {'pop': 15987, 'tracts': 4}, 'Barnwell': {'pop': 22621, 'tracts': 6}, 'Beaufort': {'pop': 162233, 'tracts': 41}, 'Berkeley': {'pop': 177843, 'tracts': 45}, 'Calhoun': {'pop': 15175, 'tracts': 3}, 'Charleston': {'pop': 350209, 'tracts': 86}, 'Cherokee': {'pop': 55342, 'tracts': 13}, 'Chester': {'pop': 33140, 'tracts': 11}, 'Chesterfield': {'pop': 46734, 'tracts': 10}, 'Clarendon': {'pop': 34971, 'tracts': 12}, 'Colleton': {'pop': 38892, 'tracts': 10}, 'Darlington': {'pop': 68681, 'tracts': 16}, 'Dillon': {'pop': 32062, 'tracts': 6}, 'Dorchester': {'pop': 136555, 'tracts': 25}, 'Edgefield': {'pop': 26985, 'tracts': 6}, 'Fairfield': {'pop': 23956, 'tracts': 5}, 'Florence': {'pop': 136885, 'tracts': 33}, 'Georgetown': {'pop': 60158, 'tracts': 15}, 'Greenville': {'pop': 451225, 'tracts': 111}, 'Greenwood': {'pop': 69661, 'tracts': 14}, 'Hampton': {'pop': 21090, 'tracts': 5}, 'Horry': {'pop': 269291, 'tracts': 72}, 'Jasper': {'pop': 24777, 'tracts': 5}, 'Kershaw': {'pop': 61697, 'tracts': 15}, 'Lancaster': {'pop': 76652, 'tracts': 14}, 'Laurens': {'pop': 66537, 'tracts': 17}, 'Lee': {'pop': 19220, 'tracts': 7}, 'Lexington': {'pop': 262391, 'tracts': 74}, 'Marion': {'pop': 33062, 'tracts': 8}, 'Marlboro': {'pop': 28933, 'tracts': 7}, 'McCormick': {'pop': 10233, 'tracts': 3}, 'Newberry': {'pop': 37508, 'tracts': 8}, 'Oconee': {'pop': 74273, 'tracts': 15}, 'Orangeburg': {'pop': 92501, 'tracts': 20}, 'Pickens': {'pop': 119224, 'tracts': 28}, 'Richland': {'pop': 384504, 'tracts': 89}, 'Saluda': {'pop': 19875, 'tracts': 5}, 'Spartanburg': {'pop': 284307, 'tracts': 69}, 'Sumter': {'pop': 107456, 'tracts': 23}, 'Union': {'pop': 28961, 'tracts': 9}, 'Williamsburg': {'pop': 34423, 'tracts': 11}, 'York': {'pop': 226073, 'tracts': 46}}, 'SD': {'Aurora': {'pop': 2710, 'tracts': 1}, 'Beadle': {'pop': 17398, 'tracts': 6}, 'Bennett': {'pop': 3431, 'tracts': 2}, 'Bon Homme': {'pop': 7070, 'tracts': 2}, 'Brookings': {'pop': 31965, 'tracts': 6}, 'Brown': {'pop': 36531, 'tracts': 8}, 'Brule': {'pop': 5255, 'tracts': 2}, 'Buffalo': {'pop': 1912, 'tracts': 1}, 'Butte': {'pop': 10110, 'tracts': 2}, 'Campbell': {'pop': 1466, 'tracts': 1}, 'Charles Mix': {'pop': 9129, 'tracts': 3}, 'Clark': {'pop': 3691, 'tracts': 1}, 'Clay': {'pop': 13864, 'tracts': 3}, 'Codington': {'pop': 27227, 'tracts': 7}, 'Corson': {'pop': 4050, 'tracts': 2}, 'Custer': {'pop': 8216, 'tracts': 2}, 'Davison': {'pop': 19504, 'tracts': 4}, 'Day': {'pop': 5710, 'tracts': 3}, 'Deuel': {'pop': 4364, 'tracts': 2}, 'Dewey': {'pop': 5301, 'tracts': 2}, 'Douglas': {'pop': 3002, 'tracts': 1}, 'Edmunds': {'pop': 4071, 'tracts': 2}, 'Fall River': {'pop': 7094, 'tracts': 2}, 'Faulk': {'pop': 2364, 'tracts': 1}, 'Grant': {'pop': 7356, 'tracts': 2}, 'Gregory': {'pop': 4271, 'tracts': 2}, 'Haakon': {'pop': 1937, 'tracts': 1}, 'Hamlin': {'pop': 5903, 'tracts': 2}, 'Hand': {'pop': 3431, 'tracts': 2}, 'Hanson': {'pop': 3331, 'tracts': 1}, 'Harding': {'pop': 1255, 'tracts': 1}, 'Hughes': {'pop': 17022, 'tracts': 4}, 'Hutchinson': {'pop': 7343, 'tracts': 3}, 'Hyde': {'pop': 1420, 'tracts': 1}, 'Jackson': {'pop': 3031, 'tracts': 2}, 'Jerauld': {'pop': 2071, 'tracts': 1}, 'Jones': {'pop': 1006, 'tracts': 1}, 'Kingsbury': {'pop': 5148, 'tracts': 2}, 'Lake': {'pop': 11200, 'tracts': 3}, 'Lawrence': {'pop': 24097, 'tracts': 5}, 'Lincoln': {'pop': 44828, 'tracts': 11}, 'Lyman': {'pop': 3755, 'tracts': 2}, 'Marshall': {'pop': 4656, 'tracts': 1}, 'McCook': {'pop': 5618, 'tracts': 2}, 'McPherson': {'pop': 2459, 'tracts': 1}, 'Meade': {'pop': 25434, 'tracts': 5}, 'Mellette': {'pop': 2048, 'tracts': 1}, 'Miner': {'pop': 2389, 'tracts': 1}, 'Minnehaha': {'pop': 169468, 'tracts': 42}, 'Moody': {'pop': 6486, 'tracts': 2}, 'Pennington': {'pop': 100948, 'tracts': 23}, 'Perkins': {'pop': 2982, 'tracts': 1}, 'Potter': {'pop': 2329, 'tracts': 1}, 'Roberts': {'pop': 10149, 'tracts': 4}, 'Sanborn': {'pop': 2355, 'tracts': 1}, 'Shannon': {'pop': 13586, 'tracts': 3}, 'Spink': {'pop': 6415, 'tracts': 3}, 'Stanley': {'pop': 2966, 'tracts': 1}, 'Sully': {'pop': 1373, 'tracts': 1}, 'Todd': {'pop': 9612, 'tracts': 2}, 'Tripp': {'pop': 5644, 'tracts': 2}, 'Turner': {'pop': 8347, 'tracts': 2}, 'Union': {'pop': 14399, 'tracts': 3}, 'Walworth': {'pop': 5438, 'tracts': 2}, 'Yankton': {'pop': 22438, 'tracts': 5}, 'Ziebach': {'pop': 2801, 'tracts': 1}}, 'TN': {'Anderson': {'pop': 75129, 'tracts': 18}, 'Bedford': {'pop': 45058, 'tracts': 9}, 'Benton': {'pop': 16489, 'tracts': 5}, 'Bledsoe': {'pop': 12876, 'tracts': 3}, 'Blount': {'pop': 123010, 'tracts': 28}, 'Bradley': {'pop': 98963, 'tracts': 19}, 'Campbell': {'pop': 40716, 'tracts': 11}, 'Cannon': {'pop': 13801, 'tracts': 3}, 'Carroll': {'pop': 28522, 'tracts': 8}, 'Carter': {'pop': 57424, 'tracts': 17}, 'Cheatham': {'pop': 39105, 'tracts': 9}, 'Chester': {'pop': 17131, 'tracts': 3}, 'Claiborne': {'pop': 32213, 'tracts': 9}, 'Clay': {'pop': 7861, 'tracts': 2}, 'Cocke': {'pop': 35662, 'tracts': 9}, 'Coffee': {'pop': 52796, 'tracts': 12}, 'Crockett': {'pop': 14586, 'tracts': 5}, 'Cumberland': {'pop': 56053, 'tracts': 14}, 'Davidson': {'pop': 626681, 'tracts': 161}, 'DeKalb': {'pop': 18723, 'tracts': 4}, 'Decatur': {'pop': 11757, 'tracts': 4}, 'Dickson': {'pop': 49666, 'tracts': 10}, 'Dyer': {'pop': 38335, 'tracts': 8}, 'Fayette': {'pop': 38413, 'tracts': 11}, 'Fentress': {'pop': 17959, 'tracts': 4}, 'Franklin': {'pop': 41052, 'tracts': 9}, 'Gibson': {'pop': 49683, 'tracts': 14}, 'Giles': {'pop': 29485, 'tracts': 8}, 'Grainger': {'pop': 22657, 'tracts': 5}, 'Greene': {'pop': 68831, 'tracts': 15}, 'Grundy': {'pop': 13703, 'tracts': 4}, 'Hamblen': {'pop': 62544, 'tracts': 12}, 'Hamilton': {'pop': 336463, 'tracts': 82}, 'Hancock': {'pop': 6819, 'tracts': 2}, 'Hardeman': {'pop': 27253, 'tracts': 6}, 'Hardin': {'pop': 26026, 'tracts': 6}, 'Hawkins': {'pop': 56833, 'tracts': 13}, 'Haywood': {'pop': 18787, 'tracts': 6}, 'Henderson': {'pop': 27769, 'tracts': 6}, 'Henry': {'pop': 32330, 'tracts': 9}, 'Hickman': {'pop': 24690, 'tracts': 6}, 'Houston': {'pop': 8426, 'tracts': 3}, 'Humphreys': {'pop': 18538, 'tracts': 5}, 'Jackson': {'pop': 11638, 'tracts': 4}, 'Jefferson': {'pop': 51407, 'tracts': 9}, 'Johnson': {'pop': 18244, 'tracts': 5}, 'Knox': {'pop': 432226, 'tracts': 112}, 'Lake': {'pop': 7832, 'tracts': 2}, 'Lauderdale': {'pop': 27815, 'tracts': 9}, 'Lawrence': {'pop': 41869, 'tracts': 11}, 'Lewis': {'pop': 12161, 'tracts': 2}, 'Lincoln': {'pop': 33361, 'tracts': 9}, 'Loudon': {'pop': 48556, 'tracts': 10}, 'Macon': {'pop': 22248, 'tracts': 4}, 'Madison': {'pop': 98294, 'tracts': 27}, 'Marion': {'pop': 28237, 'tracts': 6}, 'Marshall': {'pop': 30617, 'tracts': 6}, 'Maury': {'pop': 80956, 'tracts': 17}, 'McMinn': {'pop': 52266, 'tracts': 10}, 'McNairy': {'pop': 26075, 'tracts': 7}, 'Meigs': {'pop': 11753, 'tracts': 3}, 'Monroe': {'pop': 44519, 'tracts': 7}, 'Montgomery': {'pop': 172331, 'tracts': 39}, 'Moore': {'pop': 6362, 'tracts': 2}, 'Morgan': {'pop': 21987, 'tracts': 5}, 'Obion': {'pop': 31807, 'tracts': 10}, 'Overton': {'pop': 22083, 'tracts': 7}, 'Perry': {'pop': 7915, 'tracts': 2}, 'Pickett': {'pop': 5077, 'tracts': 1}, 'Polk': {'pop': 16825, 'tracts': 5}, 'Putnam': {'pop': 72321, 'tracts': 15}, 'Rhea': {'pop': 31809, 'tracts': 6}, 'Roane': {'pop': 54181, 'tracts': 11}, 'Robertson': {'pop': 66283, 'tracts': 14}, 'Rutherford': {'pop': 262604, 'tracts': 49}, 'Scott': {'pop': 22228, 'tracts': 5}, 'Sequatchie': {'pop': 14112, 'tracts': 3}, 'Sevier': {'pop': 89889, 'tracts': 18}, 'Shelby': {'pop': 927644, 'tracts': 221}, 'Smith': {'pop': 19166, 'tracts': 5}, 'Stewart': {'pop': 13324, 'tracts': 5}, 'Sullivan': {'pop': 156823, 'tracts': 39}, 'Sumner': {'pop': 160645, 'tracts': 42}, 'Tipton': {'pop': 61081, 'tracts': 13}, 'Trousdale': {'pop': 7870, 'tracts': 2}, 'Unicoi': {'pop': 18313, 'tracts': 4}, 'Union': {'pop': 19109, 'tracts': 4}, 'Van Buren': {'pop': 5548, 'tracts': 2}, 'Warren': {'pop': 39839, 'tracts': 9}, 'Washington': {'pop': 122979, 'tracts': 23}, 'Wayne': {'pop': 17021, 'tracts': 4}, 'Weakley': {'pop': 35021, 'tracts': 11}, 'White': {'pop': 25841, 'tracts': 6}, 'Williamson': {'pop': 183182, 'tracts': 37}, 'Wilson': {'pop': 113993, 'tracts': 21}}, 'TX': {'Anderson': {'pop': 58458, 'tracts': 11}, 'Andrews': {'pop': 14786, 'tracts': 4}, 'Angelina': {'pop': 86771, 'tracts': 17}, 'Aransas': {'pop': 23158, 'tracts': 5}, 'Archer': {'pop': 9054, 'tracts': 3}, 'Armstrong': {'pop': 1901, 'tracts': 1}, 'Atascosa': {'pop': 44911, 'tracts': 8}, 'Austin': {'pop': 28417, 'tracts': 6}, 'Bailey': {'pop': 7165, 'tracts': 1}, 'Bandera': {'pop': 20485, 'tracts': 5}, 'Bastrop': {'pop': 74171, 'tracts': 10}, 'Baylor': {'pop': 3726, 'tracts': 1}, 'Bee': {'pop': 31861, 'tracts': 7}, 'Bell': {'pop': 310235, 'tracts': 65}, 'Bexar': {'pop': 1714773, 'tracts': 366}, 'Blanco': {'pop': 10497, 'tracts': 2}, 'Borden': {'pop': 641, 'tracts': 1}, 'Bosque': {'pop': 18212, 'tracts': 7}, 'Bowie': {'pop': 92565, 'tracts': 18}, 'Brazoria': {'pop': 313166, 'tracts': 51}, 'Brazos': {'pop': 194851, 'tracts': 42}, 'Brewster': {'pop': 9232, 'tracts': 3}, 'Briscoe': {'pop': 1637, 'tracts': 1}, 'Brooks': {'pop': 7223, 'tracts': 2}, 'Brown': {'pop': 38106, 'tracts': 12}, 'Burleson': {'pop': 17187, 'tracts': 5}, 'Burnet': {'pop': 42750, 'tracts': 8}, 'Caldwell': {'pop': 38066, 'tracts': 8}, 'Calhoun': {'pop': 21381, 'tracts': 6}, 'Callahan': {'pop': 13544, 'tracts': 3}, 'Cameron': {'pop': 406220, 'tracts': 86}, 'Camp': {'pop': 12401, 'tracts': 3}, 'Carson': {'pop': 6182, 'tracts': 2}, 'Cass': {'pop': 30464, 'tracts': 7}, 'Castro': {'pop': 8062, 'tracts': 3}, 'Chambers': {'pop': 35096, 'tracts': 6}, 'Cherokee': {'pop': 50845, 'tracts': 12}, 'Childress': {'pop': 7041, 'tracts': 2}, 'Clay': {'pop': 10752, 'tracts': 3}, 'Cochran': {'pop': 3127, 'tracts': 1}, 'Coke': {'pop': 3320, 'tracts': 2}, 'Coleman': {'pop': 8895, 'tracts': 3}, 'Collin': {'pop': 782341, 'tracts': 152}, 'Collingsworth': {'pop': 3057, 'tracts': 1}, 'Colorado': {'pop': 20874, 'tracts': 5}, 'Comal': {'pop': 108472, 'tracts': 24}, 'Comanche': {'pop': 13974, 'tracts': 4}, 'Concho': {'pop': 4087, 'tracts': 1}, 'Cooke': {'pop': 38437, 'tracts': 8}, 'Coryell': {'pop': 75388, 'tracts': 19}, 'Cottle': {'pop': 1505, 'tracts': 1}, 'Crane': {'pop': 4375, 'tracts': 1}, 'Crockett': {'pop': 3719, 'tracts': 1}, 'Crosby': {'pop': 6059, 'tracts': 3}, 'Culberson': {'pop': 2398, 'tracts': 1}, 'Dallam': {'pop': 6703, 'tracts': 2}, 'Dallas': {'pop': 2368139, 'tracts': 529}, 'Dawson': {'pop': 13833, 'tracts': 4}, 'DeWitt': {'pop': 20097, 'tracts': 5}, 'Deaf Smith': {'pop': 19372, 'tracts': 4}, 'Delta': {'pop': 5231, 'tracts': 2}, 'Denton': {'pop': 662614, 'tracts': 137}, 'Dickens': {'pop': 2444, 'tracts': 1}, 'Dimmit': {'pop': 9996, 'tracts': 2}, 'Donley': {'pop': 3677, 'tracts': 2}, 'Duval': {'pop': 11782, 'tracts': 3}, 'Eastland': {'pop': 18583, 'tracts': 5}, 'Ector': {'pop': 137130, 'tracts': 28}, 'Edwards': {'pop': 2002, 'tracts': 1}, 'El Paso': {'pop': 800647, 'tracts': 161}, 'Ellis': {'pop': 149610, 'tracts': 31}, 'Erath': {'pop': 37890, 'tracts': 8}, 'Falls': {'pop': 17866, 'tracts': 6}, 'Fannin': {'pop': 33915, 'tracts': 9}, 'Fayette': {'pop': 24554, 'tracts': 7}, 'Fisher': {'pop': 3974, 'tracts': 2}, 'Floyd': {'pop': 6446, 'tracts': 2}, 'Foard': {'pop': 1336, 'tracts': 1}, 'Fort Bend': {'pop': 585375, 'tracts': 76}, 'Franklin': {'pop': 10605, 'tracts': 3}, 'Freestone': {'pop': 19816, 'tracts': 7}, 'Frio': {'pop': 17217, 'tracts': 3}, 'Gaines': {'pop': 17526, 'tracts': 3}, 'Galveston': {'pop': 291309, 'tracts': 67}, 'Garza': {'pop': 6461, 'tracts': 1}, 'Gillespie': {'pop': 24837, 'tracts': 5}, 'Glasscock': {'pop': 1226, 'tracts': 1}, 'Goliad': {'pop': 7210, 'tracts': 2}, 'Gonzales': {'pop': 19807, 'tracts': 6}, 'Gray': {'pop': 22535, 'tracts': 7}, 'Grayson': {'pop': 120877, 'tracts': 26}, 'Gregg': {'pop': 121730, 'tracts': 25}, 'Grimes': {'pop': 26604, 'tracts': 6}, 'Guadalupe': {'pop': 131533, 'tracts': 29}, 'Hale': {'pop': 36273, 'tracts': 9}, 'Hall': {'pop': 3353, 'tracts': 1}, 'Hamilton': {'pop': 8517, 'tracts': 3}, 'Hansford': {'pop': 5613, 'tracts': 2}, 'Hardeman': {'pop': 4139, 'tracts': 1}, 'Hardin': {'pop': 54635, 'tracts': 11}, 'Harris': {'pop': 4092459, 'tracts': 786}, 'Harrison': {'pop': 65631, 'tracts': 14}, 'Hartley': {'pop': 6062, 'tracts': 1}, 'Haskell': {'pop': 5899, 'tracts': 2}, 'Hays': {'pop': 157107, 'tracts': 25}, 'Hemphill': {'pop': 3807, 'tracts': 1}, 'Henderson': {'pop': 78532, 'tracts': 17}, 'Hidalgo': {'pop': 774769, 'tracts': 113}, 'Hill': {'pop': 35089, 'tracts': 11}, 'Hockley': {'pop': 22935, 'tracts': 7}, 'Hood': {'pop': 51182, 'tracts': 10}, 'Hopkins': {'pop': 35161, 'tracts': 9}, 'Houston': {'pop': 23732, 'tracts': 7}, 'Howard': {'pop': 35012, 'tracts': 10}, 'Hudspeth': {'pop': 3476, 'tracts': 1}, 'Hunt': {'pop': 86129, 'tracts': 19}, 'Hutchinson': {'pop': 22150, 'tracts': 7}, 'Irion': {'pop': 1599, 'tracts': 1}, 'Jack': {'pop': 9044, 'tracts': 3}, 'Jackson': {'pop': 14075, 'tracts': 3}, 'Jasper': {'pop': 35710, 'tracts': 8}, 'Jeff Davis': {'pop': 2342, 'tracts': 1}, 'Jefferson': {'pop': 252273, 'tracts': 72}, 'Jim Hogg': {'pop': 5300, 'tracts': 2}, 'Jim Wells': {'pop': 40838, 'tracts': 7}, 'Johnson': {'pop': 150934, 'tracts': 28}, 'Jones': {'pop': 20202, 'tracts': 6}, 'Karnes': {'pop': 14824, 'tracts': 4}, 'Kaufman': {'pop': 103350, 'tracts': 18}, 'Kendall': {'pop': 33410, 'tracts': 6}, 'Kenedy': {'pop': 416, 'tracts': 1}, 'Kent': {'pop': 808, 'tracts': 1}, 'Kerr': {'pop': 49625, 'tracts': 10}, 'Kimble': {'pop': 4607, 'tracts': 2}, 'King': {'pop': 286, 'tracts': 1}, 'Kinney': {'pop': 3598, 'tracts': 1}, 'Kleberg': {'pop': 32061, 'tracts': 6}, 'Knox': {'pop': 3719, 'tracts': 2}, 'La Salle': {'pop': 6886, 'tracts': 1}, 'Lamar': {'pop': 49793, 'tracts': 12}, 'Lamb': {'pop': 13977, 'tracts': 5}, 'Lampasas': {'pop': 19677, 'tracts': 5}, 'Lavaca': {'pop': 19263, 'tracts': 6}, 'Lee': {'pop': 16612, 'tracts': 4}, 'Leon': {'pop': 16801, 'tracts': 3}, 'Liberty': {'pop': 75643, 'tracts': 14}, 'Limestone': {'pop': 23384, 'tracts': 8}, 'Lipscomb': {'pop': 3302, 'tracts': 2}, 'Live Oak': {'pop': 11531, 'tracts': 4}, 'Llano': {'pop': 19301, 'tracts': 6}, 'Loving': {'pop': 82, 'tracts': 1}, 'Lubbock': {'pop': 278831, 'tracts': 68}, 'Lynn': {'pop': 5915, 'tracts': 3}, 'Madison': {'pop': 13664, 'tracts': 4}, 'Marion': {'pop': 10546, 'tracts': 4}, 'Martin': {'pop': 4799, 'tracts': 2}, 'Mason': {'pop': 4012, 'tracts': 2}, 'Matagorda': {'pop': 36702, 'tracts': 10}, 'Maverick': {'pop': 54258, 'tracts': 9}, 'McCulloch': {'pop': 8283, 'tracts': 3}, 'McLennan': {'pop': 234906, 'tracts': 51}, 'McMullen': {'pop': 707, 'tracts': 1}, 'Medina': {'pop': 46006, 'tracts': 8}, 'Menard': {'pop': 2242, 'tracts': 1}, 'Midland': {'pop': 136872, 'tracts': 27}, 'Milam': {'pop': 24757, 'tracts': 7}, 'Mills': {'pop': 4936, 'tracts': 2}, 'Mitchell': {'pop': 9403, 'tracts': 2}, 'Montague': {'pop': 19719, 'tracts': 6}, 'Montgomery': {'pop': 455746, 'tracts': 59}, 'Moore': {'pop': 21904, 'tracts': 4}, 'Morris': {'pop': 12934, 'tracts': 3}, 'Motley': {'pop': 1210, 'tracts': 1}, 'Nacogdoches': {'pop': 64524, 'tracts': 13}, 'Navarro': {'pop': 47735, 'tracts': 10}, 'Newton': {'pop': 14445, 'tracts': 4}, 'Nolan': {'pop': 15216, 'tracts': 5}, 'Nueces': {'pop': 340223, 'tracts': 81}, 'Ochiltree': {'pop': 10223, 'tracts': 3}, 'Oldham': {'pop': 2052, 'tracts': 1}, 'Orange': {'pop': 81837, 'tracts': 21}, 'Palo Pinto': {'pop': 28111, 'tracts': 9}, 'Panola': {'pop': 23796, 'tracts': 6}, 'Parker': {'pop': 116927, 'tracts': 19}, 'Parmer': {'pop': 10269, 'tracts': 2}, 'Pecos': {'pop': 15507, 'tracts': 4}, 'Polk': {'pop': 45413, 'tracts': 10}, 'Potter': {'pop': 121073, 'tracts': 34}, 'Presidio': {'pop': 7818, 'tracts': 2}, 'Rains': {'pop': 10914, 'tracts': 2}, 'Randall': {'pop': 120725, 'tracts': 29}, 'Reagan': {'pop': 3367, 'tracts': 1}, 'Real': {'pop': 3309, 'tracts': 1}, 'Red River': {'pop': 12860, 'tracts': 4}, 'Reeves': {'pop': 13783, 'tracts': 5}, 'Refugio': {'pop': 7383, 'tracts': 2}, 'Roberts': {'pop': 929, 'tracts': 1}, 'Robertson': {'pop': 16622, 'tracts': 5}, 'Rockwall': {'pop': 78337, 'tracts': 11}, 'Runnels': {'pop': 10501, 'tracts': 4}, 'Rusk': {'pop': 53330, 'tracts': 13}, 'Sabine': {'pop': 10834, 'tracts': 3}, 'San Augustine': {'pop': 8865, 'tracts': 3}, 'San Jacinto': {'pop': 26384, 'tracts': 4}, 'San Patricio': {'pop': 64804, 'tracts': 16}, 'San Saba': {'pop': 6131, 'tracts': 2}, 'Schleicher': {'pop': 3461, 'tracts': 1}, 'Scurry': {'pop': 16921, 'tracts': 4}, 'Shackelford': {'pop': 3378, 'tracts': 1}, 'Shelby': {'pop': 25448, 'tracts': 6}, 'Sherman': {'pop': 3034, 'tracts': 1}, 'Smith': {'pop': 209714, 'tracts': 41}, 'Somervell': {'pop': 8490, 'tracts': 2}, 'Starr': {'pop': 60968, 'tracts': 15}, 'Stephens': {'pop': 9630, 'tracts': 3}, 'Sterling': {'pop': 1143, 'tracts': 1}, 'Stonewall': {'pop': 1490, 'tracts': 1}, 'Sutton': {'pop': 4128, 'tracts': 1}, 'Swisher': {'pop': 7854, 'tracts': 3}, 'Tarrant': {'pop': 1809034, 'tracts': 357}, 'Taylor': {'pop': 131506, 'tracts': 38}, 'Terrell': {'pop': 984, 'tracts': 1}, 'Terry': {'pop': 12651, 'tracts': 3}, 'Throckmorton': {'pop': 1641, 'tracts': 1}, 'Titus': {'pop': 32334, 'tracts': 8}, 'Tom Green': {'pop': 110224, 'tracts': 25}, 'Travis': {'pop': 1024266, 'tracts': 218}, 'Trinity': {'pop': 14585, 'tracts': 5}, 'Tyler': {'pop': 21766, 'tracts': 5}, 'Upshur': {'pop': 39309, 'tracts': 7}, 'Upton': {'pop': 3355, 'tracts': 2}, 'Uvalde': {'pop': 26405, 'tracts': 5}, 'Val Verde': {'pop': 48879, 'tracts': 10}, 'Van Zandt': {'pop': 52579, 'tracts': 10}, 'Victoria': {'pop': 86793, 'tracts': 23}, 'Walker': {'pop': 67861, 'tracts': 10}, 'Waller': {'pop': 43205, 'tracts': 6}, 'Ward': {'pop': 10658, 'tracts': 3}, 'Washington': {'pop': 33718, 'tracts': 6}, 'Webb': {'pop': 250304, 'tracts': 61}, 'Wharton': {'pop': 41280, 'tracts': 11}, 'Wheeler': {'pop': 5410, 'tracts': 2}, 'Wichita': {'pop': 131500, 'tracts': 37}, 'Wilbarger': {'pop': 13535, 'tracts': 4}, 'Willacy': {'pop': 22134, 'tracts': 6}, 'Williamson': {'pop': 422679, 'tracts': 89}, 'Wilson': {'pop': 42918, 'tracts': 11}, 'Winkler': {'pop': 7110, 'tracts': 3}, 'Wise': {'pop': 59127, 'tracts': 11}, 'Wood': {'pop': 41964, 'tracts': 10}, 'Yoakum': {'pop': 7879, 'tracts': 2}, 'Young': {'pop': 18550, 'tracts': 4}, 'Zapata': {'pop': 14018, 'tracts': 3}, 'Zavala': {'pop': 11677, 'tracts': 4}}, 'UT': {'Beaver': {'pop': 6629, 'tracts': 2}, 'Box Elder': {'pop': 49975, 'tracts': 11}, 'Cache': {'pop': 112656, 'tracts': 26}, 'Carbon': {'pop': 21403, 'tracts': 5}, 'Daggett': {'pop': 1059, 'tracts': 1}, 'Davis': {'pop': 306479, 'tracts': 54}, 'Duchesne': {'pop': 18607, 'tracts': 3}, 'Emery': {'pop': 10976, 'tracts': 3}, 'Garfield': {'pop': 5172, 'tracts': 2}, 'Grand': {'pop': 9225, 'tracts': 2}, 'Iron': {'pop': 46163, 'tracts': 8}, 'Juab': {'pop': 10246, 'tracts': 2}, 'Kane': {'pop': 7125, 'tracts': 2}, 'Millard': {'pop': 12503, 'tracts': 3}, 'Morgan': {'pop': 9469, 'tracts': 2}, 'Piute': {'pop': 1556, 'tracts': 1}, 'Rich': {'pop': 2264, 'tracts': 1}, 'Salt Lake': {'pop': 1029655, 'tracts': 212}, 'San Juan': {'pop': 14746, 'tracts': 4}, 'Sanpete': {'pop': 27822, 'tracts': 5}, 'Sevier': {'pop': 20802, 'tracts': 5}, 'Summit': {'pop': 36324, 'tracts': 13}, 'Tooele': {'pop': 58218, 'tracts': 11}, 'Uintah': {'pop': 32588, 'tracts': 6}, 'Utah': {'pop': 516564, 'tracts': 128}, 'Wasatch': {'pop': 23530, 'tracts': 4}, 'Washington': {'pop': 138115, 'tracts': 21}, 'Wayne': {'pop': 2778, 'tracts': 1}, 'Weber': {'pop': 231236, 'tracts': 50}}, 'VA': {'Accomack': {'pop': 33164, 'tracts': 11}, 'Albemarle': {'pop': 98970, 'tracts': 22}, 'Alexandria': {'pop': 139966, 'tracts': 38}, 'Alleghany': {'pop': 16250, 'tracts': 6}, 'Amelia': {'pop': 12690, 'tracts': 2}, 'Amherst': {'pop': 32353, 'tracts': 9}, 'Appomattox': {'pop': 14973, 'tracts': 3}, 'Arlington': {'pop': 207627, 'tracts': 59}, 'Augusta': {'pop': 73750, 'tracts': 13}, 'Bath': {'pop': 4731, 'tracts': 1}, 'Bedford': {'pop': 68676, 'tracts': 16}, 'Bedford City': {'pop': 6222, 'tracts': 1}, 'Bland': {'pop': 6824, 'tracts': 2}, 'Botetourt': {'pop': 33148, 'tracts': 8}, 'Bristol': {'pop': 17835, 'tracts': 4}, 'Brunswick': {'pop': 17434, 'tracts': 5}, 'Buchanan': {'pop': 24098, 'tracts': 7}, 'Buckingham': {'pop': 17146, 'tracts': 4}, 'Buena Vista': {'pop': 6650, 'tracts': 1}, 'Campbell': {'pop': 54842, 'tracts': 12}, 'Caroline': {'pop': 28545, 'tracts': 7}, 'Carroll': {'pop': 30042, 'tracts': 7}, 'Charles City': {'pop': 7256, 'tracts': 3}, 'Charlotte': {'pop': 12586, 'tracts': 3}, 'Charlottesville': {'pop': 43475, 'tracts': 12}, 'Chesapeake': {'pop': 222209, 'tracts': 41}, 'Chesterfield': {'pop': 316236, 'tracts': 71}, 'Clarke': {'pop': 14034, 'tracts': 3}, 'Colonial Heights': {'pop': 17411, 'tracts': 5}, 'Covington': {'pop': 5961, 'tracts': 2}, 'Craig': {'pop': 5190, 'tracts': 1}, 'Culpeper': {'pop': 46689, 'tracts': 8}, 'Cumberland': {'pop': 10052, 'tracts': 2}, 'Danville': {'pop': 43055, 'tracts': 16}, 'Dickenson': {'pop': 15903, 'tracts': 4}, 'Dinwiddie': {'pop': 28001, 'tracts': 7}, 'Emporia': {'pop': 5927, 'tracts': 2}, 'Essex': {'pop': 11151, 'tracts': 3}, 'Fairfax': {'pop': 1081726, 'tracts': 258}, 'Fairfax City': {'pop': 22565, 'tracts': 5}, 'Falls Church': {'pop': 12332, 'tracts': 3}, 'Fauquier': {'pop': 65203, 'tracts': 17}, 'Floyd': {'pop': 15279, 'tracts': 3}, 'Fluvanna': {'pop': 25691, 'tracts': 4}, 'Franklin': {'pop': 56159, 'tracts': 10}, 'Franklin City': {'pop': 8582, 'tracts': 2}, 'Frederick': {'pop': 78305, 'tracts': 14}, 'Fredericksburg': {'pop': 24286, 'tracts': 6}, 'Galax': {'pop': 7042, 'tracts': 2}, 'Giles': {'pop': 17286, 'tracts': 4}, 'Gloucester': {'pop': 36858, 'tracts': 8}, 'Goochland': {'pop': 21717, 'tracts': 5}, 'Grayson': {'pop': 15533, 'tracts': 5}, 'Greene': {'pop': 18403, 'tracts': 3}, 'Greensville': {'pop': 12243, 'tracts': 3}, 'Halifax': {'pop': 36241, 'tracts': 9}, 'Hampton': {'pop': 137436, 'tracts': 34}, 'Hanover': {'pop': 99863, 'tracts': 23}, 'Harrisonburg': {'pop': 48914, 'tracts': 11}, 'Henrico': {'pop': 306935, 'tracts': 64}, 'Henry': {'pop': 54151, 'tracts': 14}, 'Highland': {'pop': 2321, 'tracts': 1}, 'Hopewell': {'pop': 22591, 'tracts': 7}, 'Isle of Wight': {'pop': 35270, 'tracts': 8}, 'James City': {'pop': 67009, 'tracts': 11}, 'King George': {'pop': 23584, 'tracts': 5}, 'King William': {'pop': 15935, 'tracts': 4}, 'King and Queen': {'pop': 6945, 'tracts': 2}, 'Lancaster': {'pop': 11391, 'tracts': 3}, 'Lee': {'pop': 25587, 'tracts': 6}, 'Lexington': {'pop': 7042, 'tracts': 1}, 'Loudoun': {'pop': 312311, 'tracts': 65}, 'Louisa': {'pop': 33153, 'tracts': 6}, 'Lunenburg': {'pop': 12914, 'tracts': 3}, 'Lynchburg': {'pop': 75568, 'tracts': 19}, 'Madison': {'pop': 13308, 'tracts': 2}, 'Manassas': {'pop': 37821, 'tracts': 7}, 'Manassas Park': {'pop': 14273, 'tracts': 2}, 'Martinsville': {'pop': 13821, 'tracts': 5}, 'Mathews': {'pop': 8978, 'tracts': 2}, 'Mecklenburg': {'pop': 32727, 'tracts': 9}, 'Middlesex': {'pop': 10959, 'tracts': 4}, 'Montgomery': {'pop': 94392, 'tracts': 16}, 'Nelson': {'pop': 15020, 'tracts': 3}, 'New Kent': {'pop': 18429, 'tracts': 3}, 'Newport News': {'pop': 180719, 'tracts': 44}, 'Norfolk': {'pop': 242803, 'tracts': 81}, 'Northampton': {'pop': 12389, 'tracts': 4}, 'Northumberland': {'pop': 12330, 'tracts': 3}, 'Norton': {'pop': 3958, 'tracts': 1}, 'Nottoway': {'pop': 15853, 'tracts': 4}, 'Orange': {'pop': 33481, 'tracts': 5}, 'Page': {'pop': 24042, 'tracts': 5}, 'Patrick': {'pop': 18490, 'tracts': 4}, 'Petersburg': {'pop': 32420, 'tracts': 11}, 'Pittsylvania': {'pop': 63506, 'tracts': 16}, 'Poquoson': {'pop': 12150, 'tracts': 3}, 'Portsmouth': {'pop': 95535, 'tracts': 31}, 'Powhatan': {'pop': 28046, 'tracts': 5}, 'Prince Edward': {'pop': 23368, 'tracts': 5}, 'Prince George': {'pop': 35725, 'tracts': 7}, 'Prince William': {'pop': 402002, 'tracts': 83}, 'Pulaski': {'pop': 34872, 'tracts': 10}, 'Radford': {'pop': 16408, 'tracts': 3}, 'Rappahannock': {'pop': 7373, 'tracts': 2}, 'Richmond': {'pop': 9254, 'tracts': 2}, 'Richmond City': {'pop': 204214, 'tracts': 66}, 'Roanoke': {'pop': 92376, 'tracts': 18}, 'Roanoke City': {'pop': 97032, 'tracts': 23}, 'Rockbridge': {'pop': 22307, 'tracts': 4}, 'Rockingham': {'pop': 76314, 'tracts': 19}, 'Russell': {'pop': 28897, 'tracts': 7}, 'Salem': {'pop': 24802, 'tracts': 5}, 'Scott': {'pop': 23177, 'tracts': 6}, 'Shenandoah': {'pop': 41993, 'tracts': 9}, 'Smyth': {'pop': 32208, 'tracts': 9}, 'Southampton': {'pop': 18570, 'tracts': 5}, 'Spotsylvania': {'pop': 122397, 'tracts': 30}, 'Stafford': {'pop': 128961, 'tracts': 27}, 'Staunton': {'pop': 23746, 'tracts': 6}, 'Suffolk': {'pop': 84585, 'tracts': 28}, 'Surry': {'pop': 7058, 'tracts': 2}, 'Sussex': {'pop': 12087, 'tracts': 5}, 'Tazewell': {'pop': 45078, 'tracts': 11}, 'Virginia Beach': {'pop': 437994, 'tracts': 100}, 'Warren': {'pop': 37575, 'tracts': 8}, 'Washington': {'pop': 54876, 'tracts': 13}, 'Waynesboro': {'pop': 21006, 'tracts': 5}, 'Westmoreland': {'pop': 17454, 'tracts': 4}, 'Williamsburg': {'pop': 14068, 'tracts': 3}, 'Winchester': {'pop': 26203, 'tracts': 5}, 'Wise': {'pop': 41452, 'tracts': 11}, 'Wythe': {'pop': 29235, 'tracts': 6}, 'York': {'pop': 65464, 'tracts': 14}}, 'VT': {'Addison': {'pop': 36821, 'tracts': 10}, 'Bennington': {'pop': 37125, 'tracts': 12}, 'Caledonia': {'pop': 31227, 'tracts': 10}, 'Chittenden': {'pop': 156545, 'tracts': 35}, 'Essex': {'pop': 6306, 'tracts': 3}, 'Franklin': {'pop': 47746, 'tracts': 10}, 'Grand Isle': {'pop': 6970, 'tracts': 2}, 'Lamoille': {'pop': 24475, 'tracts': 7}, 'Orange': {'pop': 28936, 'tracts': 10}, 'Orleans': {'pop': 27231, 'tracts': 10}, 'Rutland': {'pop': 61642, 'tracts': 20}, 'Washington': {'pop': 59534, 'tracts': 19}, 'Windham': {'pop': 44513, 'tracts': 18}, 'Windsor': {'pop': 56670, 'tracts': 18}}, 'WA': {'Adams': {'pop': 18728, 'tracts': 5}, 'Asotin': {'pop': 21623, 'tracts': 6}, 'Benton': {'pop': 175177, 'tracts': 37}, 'Chelan': {'pop': 72453, 'tracts': 14}, 'Clallam': {'pop': 71404, 'tracts': 22}, 'Clark': {'pop': 425363, 'tracts': 104}, 'Columbia': {'pop': 4078, 'tracts': 1}, 'Cowlitz': {'pop': 102410, 'tracts': 24}, 'Douglas': {'pop': 38431, 'tracts': 8}, 'Ferry': {'pop': 7551, 'tracts': 3}, 'Franklin': {'pop': 78163, 'tracts': 13}, 'Garfield': {'pop': 2266, 'tracts': 1}, 'Grant': {'pop': 89120, 'tracts': 16}, 'Grays Harbor': {'pop': 72797, 'tracts': 17}, 'Island': {'pop': 78506, 'tracts': 22}, 'Jefferson': {'pop': 29872, 'tracts': 7}, 'King': {'pop': 1931249, 'tracts': 397}, 'Kitsap': {'pop': 251133, 'tracts': 55}, 'Kittitas': {'pop': 40915, 'tracts': 8}, 'Klickitat': {'pop': 20318, 'tracts': 3}, 'Lewis': {'pop': 75455, 'tracts': 20}, 'Lincoln': {'pop': 10570, 'tracts': 4}, 'Mason': {'pop': 60699, 'tracts': 14}, 'Okanogan': {'pop': 41120, 'tracts': 10}, 'Pacific': {'pop': 20920, 'tracts': 8}, 'Pend Oreille': {'pop': 13001, 'tracts': 5}, 'Pierce': {'pop': 795225, 'tracts': 172}, 'San Juan': {'pop': 15769, 'tracts': 5}, 'Skagit': {'pop': 116901, 'tracts': 30}, 'Skamania': {'pop': 11066, 'tracts': 5}, 'Snohomish': {'pop': 713335, 'tracts': 151}, 'Spokane': {'pop': 471221, 'tracts': 105}, 'Stevens': {'pop': 43531, 'tracts': 12}, 'Thurston': {'pop': 252264, 'tracts': 49}, 'Wahkiakum': {'pop': 3978, 'tracts': 1}, 'Walla Walla': {'pop': 58781, 'tracts': 12}, 'Whatcom': {'pop': 201140, 'tracts': 34}, 'Whitman': {'pop': 44776, 'tracts': 10}, 'Yakima': {'pop': 243231, 'tracts': 45}}, 'WI': {'Adams': {'pop': 20875, 'tracts': 7}, 'Ashland': {'pop': 16157, 'tracts': 7}, 'Barron': {'pop': 45870, 'tracts': 10}, 'Bayfield': {'pop': 15014, 'tracts': 5}, 'Brown': {'pop': 248007, 'tracts': 54}, 'Buffalo': {'pop': 13587, 'tracts': 5}, 'Burnett': {'pop': 15457, 'tracts': 6}, 'Calumet': {'pop': 48971, 'tracts': 11}, 'Chippewa': {'pop': 62415, 'tracts': 11}, 'Clark': {'pop': 34690, 'tracts': 8}, 'Columbia': {'pop': 56833, 'tracts': 12}, 'Crawford': {'pop': 16644, 'tracts': 6}, 'Dane': {'pop': 488073, 'tracts': 107}, 'Dodge': {'pop': 88759, 'tracts': 20}, 'Door': {'pop': 27785, 'tracts': 9}, 'Douglas': {'pop': 44159, 'tracts': 12}, 'Dunn': {'pop': 43857, 'tracts': 8}, 'Eau Claire': {'pop': 98736, 'tracts': 20}, 'Florence': {'pop': 4423, 'tracts': 2}, 'Fond du Lac': {'pop': 101633, 'tracts': 20}, 'Forest': {'pop': 9304, 'tracts': 4}, 'Grant': {'pop': 51208, 'tracts': 12}, 'Green': {'pop': 36842, 'tracts': 8}, 'Green Lake': {'pop': 19051, 'tracts': 6}, 'Iowa': {'pop': 23687, 'tracts': 6}, 'Iron': {'pop': 5916, 'tracts': 3}, 'Jackson': {'pop': 20449, 'tracts': 5}, 'Jefferson': {'pop': 83686, 'tracts': 20}, 'Juneau': {'pop': 26664, 'tracts': 7}, 'Kenosha': {'pop': 166426, 'tracts': 35}, 'Kewaunee': {'pop': 20574, 'tracts': 4}, 'La Crosse': {'pop': 114638, 'tracts': 25}, 'Lafayette': {'pop': 16836, 'tracts': 5}, 'Langlade': {'pop': 19977, 'tracts': 6}, 'Lincoln': {'pop': 28743, 'tracts': 10}, 'Manitowoc': {'pop': 81442, 'tracts': 19}, 'Marathon': {'pop': 134063, 'tracts': 27}, 'Marinette': {'pop': 41749, 'tracts': 12}, 'Marquette': {'pop': 15404, 'tracts': 5}, 'Menominee': {'pop': 4232, 'tracts': 2}, 'Milwaukee': {'pop': 947735, 'tracts': 297}, 'Monroe': {'pop': 44673, 'tracts': 9}, 'Oconto': {'pop': 37660, 'tracts': 10}, 'Oneida': {'pop': 35998, 'tracts': 14}, 'Outagamie': {'pop': 176695, 'tracts': 40}, 'Ozaukee': {'pop': 86395, 'tracts': 18}, 'Pepin': {'pop': 7469, 'tracts': 2}, 'Pierce': {'pop': 41019, 'tracts': 8}, 'Polk': {'pop': 44205, 'tracts': 10}, 'Portage': {'pop': 70019, 'tracts': 14}, 'Price': {'pop': 14159, 'tracts': 6}, 'Racine': {'pop': 195408, 'tracts': 44}, 'Richland': {'pop': 18021, 'tracts': 5}, 'Rock': {'pop': 160331, 'tracts': 38}, 'Rusk': {'pop': 14755, 'tracts': 5}, 'Sauk': {'pop': 61976, 'tracts': 13}, 'Sawyer': {'pop': 16557, 'tracts': 6}, 'Shawano': {'pop': 41949, 'tracts': 11}, 'Sheboygan': {'pop': 115507, 'tracts': 26}, 'St. Croix': {'pop': 84345, 'tracts': 14}, 'Taylor': {'pop': 20689, 'tracts': 6}, 'Trempealeau': {'pop': 28816, 'tracts': 8}, 'Vernon': {'pop': 29773, 'tracts': 7}, 'Vilas': {'pop': 21430, 'tracts': 5}, 'Walworth': {'pop': 102228, 'tracts': 22}, 'Washburn': {'pop': 15911, 'tracts': 5}, 'Washington': {'pop': 131887, 'tracts': 28}, 'Waukesha': {'pop': 389891, 'tracts': 86}, 'Waupaca': {'pop': 52410, 'tracts': 12}, 'Waushara': {'pop': 24496, 'tracts': 7}, 'Winnebago': {'pop': 166994, 'tracts': 41}, 'Wood': {'pop': 74749, 'tracts': 17}}, 'WV': {'Barbour': {'pop': 16589, 'tracts': 4}, 'Berkeley': {'pop': 104169, 'tracts': 14}, 'Boone': {'pop': 24629, 'tracts': 8}, 'Braxton': {'pop': 14523, 'tracts': 3}, 'Brooke': {'pop': 24069, 'tracts': 6}, 'Cabell': {'pop': 96319, 'tracts': 29}, 'Calhoun': {'pop': 7627, 'tracts': 2}, 'Clay': {'pop': 9386, 'tracts': 3}, 'Doddridge': {'pop': 8202, 'tracts': 2}, 'Fayette': {'pop': 46039, 'tracts': 12}, 'Gilmer': {'pop': 8693, 'tracts': 2}, 'Grant': {'pop': 11937, 'tracts': 3}, 'Greenbrier': {'pop': 35480, 'tracts': 7}, 'Hampshire': {'pop': 23964, 'tracts': 5}, 'Hancock': {'pop': 30676, 'tracts': 8}, 'Hardy': {'pop': 14025, 'tracts': 3}, 'Harrison': {'pop': 69099, 'tracts': 22}, 'Jackson': {'pop': 29211, 'tracts': 6}, 'Jefferson': {'pop': 53498, 'tracts': 15}, 'Kanawha': {'pop': 193063, 'tracts': 53}, 'Lewis': {'pop': 16372, 'tracts': 5}, 'Lincoln': {'pop': 21720, 'tracts': 5}, 'Logan': {'pop': 36743, 'tracts': 9}, 'Marion': {'pop': 56418, 'tracts': 18}, 'Marshall': {'pop': 33107, 'tracts': 9}, 'Mason': {'pop': 27324, 'tracts': 6}, 'McDowell': {'pop': 22113, 'tracts': 8}, 'Mercer': {'pop': 62264, 'tracts': 16}, 'Mineral': {'pop': 28212, 'tracts': 7}, 'Mingo': {'pop': 26839, 'tracts': 7}, 'Monongalia': {'pop': 96189, 'tracts': 24}, 'Monroe': {'pop': 13502, 'tracts': 3}, 'Morgan': {'pop': 17541, 'tracts': 4}, 'Nicholas': {'pop': 26233, 'tracts': 7}, 'Ohio': {'pop': 44443, 'tracts': 18}, 'Pendleton': {'pop': 7695, 'tracts': 3}, 'Pleasants': {'pop': 7605, 'tracts': 2}, 'Pocahontas': {'pop': 8719, 'tracts': 4}, 'Preston': {'pop': 33520, 'tracts': 8}, 'Putnam': {'pop': 55486, 'tracts': 10}, 'Raleigh': {'pop': 78859, 'tracts': 17}, 'Randolph': {'pop': 29405, 'tracts': 7}, 'Ritchie': {'pop': 10449, 'tracts': 3}, 'Roane': {'pop': 14926, 'tracts': 4}, 'Summers': {'pop': 13927, 'tracts': 4}, 'Taylor': {'pop': 16895, 'tracts': 4}, 'Tucker': {'pop': 7141, 'tracts': 3}, 'Tyler': {'pop': 9208, 'tracts': 3}, 'Upshur': {'pop': 24254, 'tracts': 6}, 'Wayne': {'pop': 42481, 'tracts': 11}, 'Webster': {'pop': 9154, 'tracts': 3}, 'Wetzel': {'pop': 16583, 'tracts': 5}, 'Wirt': {'pop': 5717, 'tracts': 2}, 'Wood': {'pop': 86956, 'tracts': 26}, 'Wyoming': {'pop': 23796, 'tracts': 6}}, 'WY': {'Albany': {'pop': 36299, 'tracts': 10}, 'Big Horn': {'pop': 11668, 'tracts': 3}, 'Campbell': {'pop': 46133, 'tracts': 7}, 'Carbon': {'pop': 15885, 'tracts': 5}, 'Converse': {'pop': 13833, 'tracts': 4}, 'Crook': {'pop': 7083, 'tracts': 2}, 'Fremont': {'pop': 40123, 'tracts': 10}, 'Goshen': {'pop': 13249, 'tracts': 4}, 'Hot Springs': {'pop': 4812, 'tracts': 2}, 'Johnson': {'pop': 8569, 'tracts': 2}, 'Laramie': {'pop': 91738, 'tracts': 21}, 'Lincoln': {'pop': 18106, 'tracts': 4}, 'Natrona': {'pop': 75450, 'tracts': 18}, 'Niobrara': {'pop': 2484, 'tracts': 1}, 'Park': {'pop': 28205, 'tracts': 5}, 'Platte': {'pop': 8667, 'tracts': 2}, 'Sheridan': {'pop': 29116, 'tracts': 6}, 'Sublette': {'pop': 10247, 'tracts': 2}, 'Sweetwater': {'pop': 43806, 'tracts': 12}, 'Teton': {'pop': 21294, 'tracts': 4}, 'Uinta': {'pop': 21118, 'tracts': 3}, 'Washakie': {'pop': 8533, 'tracts': 3}, 'Weston': {'pop': 7208, 'tracts': 2}}}
49.436526
65
0.452481
0
0
0
0
0
0
0
0
69,441
0.446914
fbdc81d7845fea02b2d263cc5ca73eecc6dfae8e
2,259
py
Python
piecutter/engines/mock.py
diecutter/piecutter
250a90a4cae1b72ff3c141dffb8c58de74dbedfd
[ "BSD-3-Clause" ]
2
2016-05-02T02:22:34.000Z
2021-02-08T18:17:30.000Z
piecutter/engines/mock.py
diecutter/piecutter
250a90a4cae1b72ff3c141dffb8c58de74dbedfd
[ "BSD-3-Clause" ]
2
2016-03-22T10:09:13.000Z
2016-07-01T08:04:43.000Z
piecutter/engines/mock.py
diecutter/piecutter
250a90a4cae1b72ff3c141dffb8c58de74dbedfd
[ "BSD-3-Clause" ]
null
null
null
# -*- coding: utf-8 -*- """Mock template engine, for use in tests.""" from piecutter.engines import Engine #: Default value used as :py:attr:`MockEngine.render_result` default_render_result = u'RENDER WITH ARGS={args!s} AND KWARGS={kwargs!s}' class MockEngine(Engine): """Template engine mock. Typical usage: >>> from piecutter.engines.mock import MockEngine >>> mock_result = u'this is expected result' >>> mock = MockEngine(mock_result) >>> args = ('arg 1', 'arg 2') >>> kwargs = {'kwarg1': 'kwarg 1', 'kwarg2': 'kwarg 2'} >>> mock.render(*args, **kwargs) == mock_result True >>> mock.args == args True >>> mock.kwargs == kwargs True You can use ``{args}`` and ``{kwargs}`` in mock result, because render() uses ``self.render_result.format(args=args, kwargs=kwargs)``. This feature is used by default: >>> mock = MockEngine() >>> mock.render_result u'RENDER WITH ARGS={args!s} AND KWARGS={kwargs!s}' >>> mock.render() u'RENDER WITH ARGS=() AND KWARGS={}' If you setup an exception as :py:attr:`fail` attribute, then :py:meth:`render` will raise that exception. >>> mock = MockEngine(fail=Exception('An error occured')) >>> mock.render() # Doctest: +ELLIPSIS Traceback (most recent call last): ... Exception: An error occured """ def __init__(self, render_result=default_render_result, fail=None): #: Value to be returned by :py:meth:`render`. self.render_result = render_result #: Whether to raise a :py:class:`TemplateError` or not. #: Also, value used as message in the exception. self.fail = fail #: Stores positional arguments of the last call to :py:meth:`render`. self.args = None #: Stores keyword arguments of the last call to :py:meth:`render`. self.kwargs = None def render(self, *args, **kwargs): """Return self.render_result + populates args and kwargs. If self.fail is not None, then raises a TemplateError(self.fail). """ if self.fail is not None: raise self.fail self.args = args self.kwargs = kwargs return self.render_result.format(args=args, kwargs=kwargs)
31.375
77
0.626826
2,011
0.890217
0
0
0
0
0
0
1,687
0.746791
fbdcdec6f6daabaf8ab83907c267233eb37da60d
4,276
py
Python
Groups/Group_ID_18/CWMVFE.py
shekhar-sharma/DataScience
1fd771f873a9bc0800458fd7c05e228bb6c4e8a0
[ "MIT" ]
5
2020-12-13T07:53:22.000Z
2020-12-20T18:49:27.000Z
Groups/Group_ID_18/CWMVFE.py
Gulnaz-Tabassum/DataScience
1fd771f873a9bc0800458fd7c05e228bb6c4e8a0
[ "MIT" ]
null
null
null
Groups/Group_ID_18/CWMVFE.py
Gulnaz-Tabassum/DataScience
1fd771f873a9bc0800458fd7c05e228bb6c4e8a0
[ "MIT" ]
24
2020-12-12T11:23:28.000Z
2021-10-04T13:09:38.000Z
#MCCA (Multiview Canonical Correlation Analysis) import numpy as np from scipy import linalg as lin from sklearn.preprocessing import StandardScaler from sklearn.neighbors import KNeighborsClassifier class CWMVFE: def __init__(self,n_components=2,reg_param=0.01 , L): self.n_components = n_components self.reg_param = reg_param self.dimen = [] self.C = [[]] #covariance matix #To normalize data so that mean=0 and std dev=1 def normalize(self,X): return StandardScaler().fit_transform(X) #for adding regularization parameter def add_reg_param(self,c): I = np.identity(c.shape[0]) R = np.dot(self.reg_param,I) c = c+R return c #for calculating covariance matrix def cov_mat(self,X_list): views = len(X_list) N = len(X_list[0]) C = [[np.array([]) for i in range(views)] for j in range(views)] for i in range(views): for j in range(views): C[i][j]=np.dot(X_list[i].T,X_list[j]) C[i][j]=np.divide(C[i][j],float(N)) if i==j: C[i][j]=self.add_reg_param(C[i][j]) self.C = C return C # it will find the k nearest element def k_nearest(a_list , b_list , n_neighbors): knn = KNeighborsClassifier(n_neighbors) knn.fit(a_list , b_list) return (a_list , b_list) # it will calculate ecludian distance for jenson shannon algorithm. def ecludian_distance(x_list): size = len(x_list) d = [[]]*size for i in range(size): for j in range(size): m=x[i] - x[j] if (m >= 0): d[i][j]=m else: d[i][j]= -m # while the i and j value is not specified is not specified in the algo so i am taking i=0 and j=size. upperis = pow((1+pow(d[i][j] , 2) , -1) for i in range(size): for j in range(i): loweris = pow((1+pow(d[i][j] , 2) , -1) q= float(upperis / loweris) return q def jenson_shannon(self ,a_list , b_list , L): mid_q = ((ecludian_distance(a_list) + ecludian_distance(b_list))/2) num_a = 0 num_b = 0 for i in range(L): num_a = num_a + (ecludian_distance(a_list)log10(ecludian_distance(a_list)/mid_q)) num_b = num_b + (ecludian_distance(b_list)log10(ecludian_distance(b_list)/mid_q)) js=(0.5(num_a)+num_b) return js def sigh(a_list , b_list): old_a_list = a_list old_b_list = b_list sigh_a[] = 0*len(a_list) sigh_b[] = 0*len(b_list) k_nearest(a_list , b_list , 5) for i in range(len(a_list)): sigh_a sigh_b[i]= (old_b_list[i] - b_list[i]) sigh_a[i] = (old_a_list[i] - a_list[i]) return (sigh_a , sigh_b) def transform(self,X_list): views = len(X_list) X_list = [self.normalize(x) for x in X_list] X_reduced = [[]]*views for i in range(views): for i in range(views): X_reduced[i]=np.dot(X_list[i],self.weights[i].T) return X_reduced def fit(self , a_list , b_list): view = len(a_list) #normalize the data a_list = [self.normalize(x) for x in a_list] b_list = [self.normalize(x) for x in b_list] for i in range(view): sigh(a_list[i] ,b_list[i]) first_term =first_term + (jenson_shannon(a_list[i] , b_list[i] ,i)(sigh_a)(sigh_b.T)(np.dot(cov_mat(a_list[i]).T , cov_mat(b_list[i])))) second_term =second_term + (jenson_shannon(a_list[i] , b_list[i] ,i)(sigh_a)(sigh_a.T )(np.dot(cov_mat(a_list[i]).T ,cov_mat(a_list[i]))) # n order to get more generalized flexibility, a parameter γ > 0 is introduced to balance the above two terms, so i assume lamda is 0.5 lamda=0.5 final_value = (first_term - (lamda)*(second_term)) return final_value def fit_transform(self , a_list , b_list): self.fit(a_list , b_list) final_value=np.transpose(final_value) return final_value
32.641221
149
0.563143
1,948
0.455459
0
0
0
0
0
0
545
0.127426
fbddad4ad03be76385839104dc7ae9091a1e919e
1,331
py
Python
scripts/lda.py
flatironinstitute/catvae
4bfdce83a24c0fb0e55215dd24cda5dcaa9d418a
[ "BSD-3-Clause" ]
6
2021-05-23T18:50:48.000Z
2022-02-23T20:57:36.000Z
scripts/lda.py
flatironinstitute/catvae
4bfdce83a24c0fb0e55215dd24cda5dcaa9d418a
[ "BSD-3-Clause" ]
24
2021-05-19T17:43:33.000Z
2022-03-03T21:41:13.000Z
scripts/lda.py
mortonjt/catvae
003a46682fc33e5b0d66c17e85e59e464a465c53
[ "BSD-3-Clause" ]
2
2021-05-19T16:21:13.000Z
2021-09-23T01:11:29.000Z
import argparse from sklearn.decomposition import LatentDirichletAllocation as LDA import pickle from biom import load_table def main(args): model = LDA(n_components=args.n_latent, max_iter=args.iterations, verbose=1, learning_method='online') table = load_table(args.train_biom) X = table.matrix_data.T model.fit(X) with open(args.model_checkpoint, 'wb') as f: pickle.dump(model, f) if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--train-biom', help='Training biom file', required=True) parser.add_argument('--n-latent', type=int, help='Number of components') parser.add_argument('--iterations', type=int, default=10000, required=False, help='Number of iterations.') parser.add_argument('--batch-size', type=int, default=256, required=False, help='Batch size') parser.add_argument('--n-jobs', type=int, default=-1, required=False, help='Number of concurrent jobs.') parser.add_argument('--model-checkpoint', required=True, help='Location of saved model.') args = parser.parse_args() main(args)
36.972222
76
0.596544
0
0
0
0
0
0
0
0
237
0.178062
fbdf88f92268a5b7f1908449c372b3ef7604c3eb
2,984
py
Python
splitjoin.py
sonicskye/senarai
1d531372b9d290812df97c2be644fe1d4d4ffb1c
[ "MIT" ]
1
2018-12-31T02:55:26.000Z
2018-12-31T02:55:26.000Z
splitjoin.py
sonicskye/senarai
1d531372b9d290812df97c2be644fe1d4d4ffb1c
[ "MIT" ]
null
null
null
splitjoin.py
sonicskye/senarai
1d531372b9d290812df97c2be644fe1d4d4ffb1c
[ "MIT" ]
null
null
null
''' splitjoin.py sonicskye@2018 The functions are used to split and join files based on: https://stonesoupprogramming.com/2017/09/16/python-split-and-join-file/ with modification by adding natural sort ''' import os import re # https://stackoverflow.com/questions/11150239/python-natural-sorting def natural_sort(l): convert = lambda text: int(text) if text.isdigit() else text.lower() alphanum_key = lambda key: [convert(c) for c in re.split('([0-9]+)', key)] return sorted(l, key = alphanum_key) def split(source, dest_folder, write_size): # Make a destination folder if it doesn't exist yet if not os.path.exists(dest_folder): os.mkdir(dest_folder) else: # Otherwise clean out all files in the destination folder for file in os.listdir(dest_folder): os.remove(os.path.join(dest_folder, file)) partnum = 0 # Open the source file in binary mode input_file = open(source, 'rb') while True: # Read a portion of the input file chunk = input_file.read(write_size) # End the loop if we have hit EOF if not chunk: break # Increment partnum partnum += 1 # Create a new file name filename = os.path.join(dest_folder, ('part-' + str(partnum))) # Create a destination file dest_file = open(filename, 'wb') # Write to this portion of the destination file dest_file.write(chunk) # Explicitly close dest_file.close() # Explicitly close input_file.close() # Return the number of files created by the split return partnum def join(source_dir, dest_file, read_size): # Create a new destination file output_file = open(dest_file, 'wb') # Get a list of the file parts parts = os.listdir(source_dir) # Sort them by name (remember that the order num is part of the file name) # should use natural sort #parts.sort() parts = natural_sort(parts) # Go through each portion one by one for file in parts: # Assemble the full path to the file path = os.path.join(source_dir, file) # Open the part input_file = open(path, 'rb') while True: # Read all bytes of the part bytes = input_file.read(read_size) # Break out of loop if we are at end of file if not bytes: break # Write the bytes to the output file output_file.write(bytes) # Close the input file input_file.close() # Close the output file output_file.close() # example ''' imageFilePath = os.path.join(os.path.dirname(__file__), 'cryptocurrency.jpg') destinationFolderPath = os.path.join(os.path.dirname(__file__), 'tmp') imageFilePath2 = os.path.join(os.path.dirname(__file__), 'cryptocurrency2.jpg') split(imageFilePath, destinationFolderPath, 2350) join(destinationFolderPath, imageFilePath2, 4700) '''
25.724138
79
0.647118
0
0
0
0
0
0
0
0
1,487
0.498324
fbdfcde9b6324f3991c172b4af39c20e74cff120
9,653
py
Python
daily_leader_board.py
bundgus/hadoop-yarn-resource-consumption-report
92ef200b4dbd5fd9d7877817b72d4d407126896f
[ "MIT" ]
1
2019-04-29T18:32:19.000Z
2019-04-29T18:32:19.000Z
daily_leader_board.py
bundgus/hadoop-yarn-resource-consumption-report
92ef200b4dbd5fd9d7877817b72d4d407126896f
[ "MIT" ]
null
null
null
daily_leader_board.py
bundgus/hadoop-yarn-resource-consumption-report
92ef200b4dbd5fd9d7877817b72d4d407126896f
[ "MIT" ]
null
null
null
# Mark Bundgus 2019 import luigi import logging from yarn_api_client import ResourceManager # https://python-client-for-hadoop-yarn-api.readthedocs.io from datetime import datetime from datetime import timedelta import pandas as pd from tabulate import tabulate import os import configuration log = logging.getLogger("luigi-interface") class LeaderBoard(luigi.Task): jobs_year = luigi.Parameter() jobs_month = luigi.Parameter() jobs_day = luigi.Parameter() def output(self): output_path = os.path.join('daily_leader_boards', 'leader_board_' + str(self.jobs_year) + '-' + str(self.jobs_month).zfill(2) + '-' + str(self.jobs_day).zfill(2) + '.csv') return luigi.LocalTarget(output_path) def run(self): analysis_timestamp = str(datetime.now()) output_path = os.path.join('daily_leader_boards', 'leader_board_' + str(self.jobs_year) + '-' + str(self.jobs_month).zfill(2) + '-' + str(self.jobs_day).zfill(2) + '.csv') rm = ResourceManager(configuration.yarn_resource_managers) metrics = rm.cluster_metrics() cluster_vcores_total = metrics.data['clusterMetrics']['totalVirtualCores'] cluster_daily_vcore_seconds = int(cluster_vcores_total * 60 * 60 * 24) cluster_memory_total_mb = metrics.data['clusterMetrics']['totalMB'] cluster_daily_megabyte_memory_seconds = int(cluster_memory_total_mb * 60 * 60 * 24) begin_date = datetime(int(str(self.jobs_year)), int(str(self.jobs_month)), int(str(self.jobs_day))) end_date = begin_date + timedelta(1) begin_ms = str(int(begin_date.timestamp() * 1000)) end_ms = str(int(end_date.timestamp() * 1000)) # filter out jobs that started after the end of the analyzed day apps = rm.cluster_applications( # finished_time_begin=begin_ms, started_time_end=end_ms ) applist = apps.data['apps']['app'] total_vcore_seconds = 0 total_mb_seconds = 0 sum_elapsed_time_ms = 0 overall_started_time_ms = 9999999999999 overall_finished_time_ms = 0 total_yarn_apps = 0 users = {} app_file = 'app_lists/apps_' + str(self.jobs_year) \ + '-' + str(self.jobs_month).zfill(2) \ + '-' + str(self.jobs_day).zfill(2) + '.csv' apps_df = pd.DataFrame(applist) apps_df.to_csv(app_file) for app in applist: begin_ms_int = int(begin_ms) end_ms_int = int(end_ms) started_time = app['startedTime'] finished_time = app['finishedTime'] elapsed_time = app['elapsedTime'] # disregard apps that haven't ever or yet consumed any resources if app['state'] not in ['FINISHED', 'FAILED', 'KILLED', 'RUNNING']: continue # disregard apps that finished before the beginning of the analyzed day if 0 < finished_time < begin_ms_int: continue # for scenario where job began and ended in the same day percent_within_day = 1.0 # scenario where job began before the beginning of the day and ended before the end of the day if started_time < begin_ms_int < finished_time < end_ms_int: percent_within_day = (finished_time - begin_ms_int)/elapsed_time # scenario where job began before the beginning of the day and continued beyond the end of the day if started_time < begin_ms_int and (finished_time == 0 or finished_time > end_ms_int): percent_within_day = 86400000/elapsed_time # scenario where job began before the end of the day and continued beyond the end of the day if begin_ms_int < started_time < end_ms_int \ and (finished_time == 0 or end_ms_int < finished_time): percent_within_day = (end_ms_int-started_time)/elapsed_time weighted_app_vcore_seconds = int(app['vcoreSeconds'] * percent_within_day) weighted_app_memory_seconds = int(app['memorySeconds'] * percent_within_day) user = users.setdefault(app['user'], {'user_first_task_started_time_ms': 9999999999999, 'last_task_finished_time_ms': 0}) total_vcore_seconds += weighted_app_vcore_seconds total_mb_seconds += weighted_app_memory_seconds user['user_first_task_started_time_ms'] = app['startedTime'] \ if app['startedTime'] < user['user_first_task_started_time_ms'] \ else user['user_first_task_started_time_ms'] user['last_task_finished_time_ms'] = app['finishedTime'] \ if app['finishedTime'] > user['last_task_finished_time_ms'] \ else user['last_task_finished_time_ms'] overall_started_time_ms = app['startedTime'] if app['startedTime'] < overall_started_time_ms \ else overall_started_time_ms overall_finished_time_ms = app['finishedTime'] if app['finishedTime'] > overall_finished_time_ms \ else overall_finished_time_ms sum_elapsed_time_ms += app['elapsedTime'] total_yarn_apps += 1 user_total_vcore_seconds = user.setdefault('total_vcore_seconds', 0) user['total_vcore_seconds'] = user_total_vcore_seconds + weighted_app_vcore_seconds user_total_mb_seconds = user.setdefault('total_MB_seconds', 0) user['total_MB_seconds'] = user_total_mb_seconds + weighted_app_memory_seconds header = ['jobs_year', 'jobs_month', 'jobs_day', 'cluster_daily_vcore_seconds', 'cluster_daily_megabyte_memory_seconds', 'user', 'used_vcore_seconds', 'percent_used_of_all_used_vcore_seconds', 'percent_used_of_total_cluster_vcore_seconds', 'used_MB_seconds', 'percent_used_of_all_used_MB_seconds', 'percent_used_of_total_cluster_MB_seconds', 'user_first_task_started_time', 'user_last_task_finished_time' ] table = [] for user in users: # set last_task_finished_time to None if timestamp == 0 representing that the task hasn't finished yet if int(users[user]['last_task_finished_time_ms']) == 0: last_task_finished_time_string = '' else: last_task_finished_time_string = \ datetime.fromtimestamp(users[user]['last_task_finished_time_ms'] / 1000.0)\ .strftime('%Y-%m-%d %H:%M') row = [ self.jobs_year, self.jobs_month, self.jobs_day, cluster_daily_vcore_seconds, cluster_daily_megabyte_memory_seconds, user, round(users[user]['total_vcore_seconds'], 0), round(100 * users[user]['total_vcore_seconds'] / total_vcore_seconds, 2), round(100 * users[user]['total_vcore_seconds'] / cluster_daily_vcore_seconds, 2), round(users[user]['total_MB_seconds'], 0), round(100 * users[user]['total_MB_seconds'] / total_mb_seconds, 2), round(100 * users[user]['total_MB_seconds'] / cluster_daily_megabyte_memory_seconds, 2), datetime.fromtimestamp(users[user]['user_first_task_started_time_ms'] / 1000.0) .strftime('%Y-%m-%d %H:%M'), last_task_finished_time_string, ] table.append(row) df = pd.DataFrame(table, columns=header) df = df.sort_values(by='used_MB_seconds', ascending=False) print() print('analysis timestamp: ' + analysis_timestamp) # print('functional account:', job_user) print('jobs date: ' + begin_date.strftime('%Y-%m-%d')) print('----------------------') print('count of yarn apps: ' + str(total_yarn_apps)) print('overall daily jobs started time ', datetime.fromtimestamp(overall_started_time_ms / 1000.0).strftime('%Y-%m-%d %H:%M')) print('overall daily jobs finished time', datetime.fromtimestamp(overall_finished_time_ms / 1000.0).strftime('%Y-%m-%d %H:%M')) print() print(tabulate(df, headers='keys', showindex=False)) df.to_csv(output_path, index=False) # create leader boards for the last 3 days class CreateDailyLeaderBoards(luigi.Task): def complete(self): return False def requires(self): required = [] now = datetime.now() log.info('Attempting to create leader board') for days_int in range(1, 3): date = now - timedelta(days_int) year = date.year month = date.month day = date.day required.append( LeaderBoard( jobs_year=str(year), jobs_month=str(month), jobs_day=str(day))) return required
43.09375
114
0.58531
9,266
0.959909
0
0
0
0
0
0
2,461
0.254947
fbdfdcb0c2a9cd822c60b6faedf5d56ff354a6c6
1,071
py
Python
bfxhfindicators/wma.py
quadramadery/bfx-hf-indicators-py
fe523607ae6c16fc26f1bb1d5e8062a3770b43e4
[ "Apache-2.0" ]
1
2022-01-12T09:31:45.000Z
2022-01-12T09:31:45.000Z
bfxhfindicators/wma.py
quadramadery/bfx-hf-indicators-py
fe523607ae6c16fc26f1bb1d5e8062a3770b43e4
[ "Apache-2.0" ]
null
null
null
bfxhfindicators/wma.py
quadramadery/bfx-hf-indicators-py
fe523607ae6c16fc26f1bb1d5e8062a3770b43e4
[ "Apache-2.0" ]
null
null
null
from bfxhfindicators.indicator import Indicator class WMA(Indicator): def __init__(self, args = []): [ period ] = args d = 0 for i in range(period): d += (i + 1) self._d = d self._p = period self._buffer = [] super().__init__({ 'args': args, 'id': 'wma', 'name': 'WMA(%f)' % period, 'seed_period': period }) def reset(self): super().reset() self._buffer = [] def update(self, v): if len(self._buffer) == 0: self._buffer.append(v) else: self._buffer[-1] = v if len(self._buffer) < self._p: return n = 0 for i in range(self._p): n += self._buffer[-i - 1] * (self._p - i) super().update(n / self._d) return self.v() def add(self, v): self._buffer.append(v) if len(self._buffer) > self._p: del self._buffer[0] elif len(self._buffer) < self._p: return n = 0 for i in range(self._p): n += self._buffer[-i - 1] * (self._p - i) super().add(n / self._d) return self.v()
18.152542
47
0.519141
1,021
0.953315
0
0
0
0
0
0
43
0.040149
fbe1cc6565e4765aae8322647fc0bb9752036f7c
5,021
py
Python
src/scripts/train_image.py
paavalipopov/introspection
ee486a9e8c8b6ddb7ab257eae9e14aac5d637527
[ "Apache-2.0" ]
null
null
null
src/scripts/train_image.py
paavalipopov/introspection
ee486a9e8c8b6ddb7ab257eae9e14aac5d637527
[ "Apache-2.0" ]
null
null
null
src/scripts/train_image.py
paavalipopov/introspection
ee486a9e8c8b6ddb7ab257eae9e14aac5d637527
[ "Apache-2.0" ]
null
null
null
import argparse from datetime import datetime import os from catalyst import dl, utils from catalyst.contrib.data import AllTripletsSampler from catalyst.contrib.losses import TripletMarginLossWithSampler from catalyst.data import BatchBalanceClassSampler from torch import nn, optim from torch.utils.data import DataLoader from torchvision import datasets, transforms from src.modules import resnet9 from src.settings import LOGS_ROOT class CustomRunner(dl.Runner): def handle_batch(self, batch) -> None: images, targets = batch embeddings, logits = self.model(images) self.batch = { "embeddings": embeddings, "targets": targets, "logits": logits, } def get_loggers(self): return { "console": dl.ConsoleLogger(), "wandb": dl.WandbLogger(project="wandb_test", name="experiment_1"), } def main(use_ml: bool = False): # data transform_train = transforms.Compose( [ transforms.RandomCrop(32, padding=4), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)), ] ) transform_valid = transforms.Compose( [ transforms.ToTensor(), transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)), ] ) train_dataset = datasets.CIFAR10( os.getcwd(), train=True, download=True, transform=transform_train ) valid_dataset = datasets.CIFAR10( os.getcwd(), train=False, download=True, transform=transform_valid ) # loaders labels = train_dataset.targets sampler = BatchBalanceClassSampler(labels=labels, num_classes=10, num_samples=10) bs = sampler.batch_size loaders = { "train": DataLoader(train_dataset, batch_sampler=sampler, num_workers=4), "valid": DataLoader(valid_dataset, batch_size=bs, num_workers=4, shuffle=False), } # model model = resnet9(in_channels=3, num_classes=10) criterion = nn.CrossEntropyLoss() optimizer = optim.SGD(model.parameters(), lr=0.1, momentum=0.9, weight_decay=5e-4) scheduler = optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=200) # optimizer = optim.Adam(model.parameters(), lr=1e-3) # scheduler = optim.lr_scheduler.MultiStepLR(optimizer, [5, 8], gamma=0.3) criterion_ce = nn.CrossEntropyLoss() sampler_inbatch = AllTripletsSampler() criterion_ml = TripletMarginLossWithSampler(margin=0.5, sampler_inbatch=sampler_inbatch) criterion = {"ce": criterion_ce, "ml": criterion_ml} # runner runner = CustomRunner() # callbacks callbacks = [ dl.CriterionCallback( input_key="logits", target_key="targets", metric_key="loss_ce", criterion_key="ce", ), dl.AccuracyCallback(input_key="logits", target_key="targets", topk=(1, 3, 5)), dl.BackwardCallback(metric_key="loss" if use_ml else "loss_ce"), dl.OptimizerCallback(metric_key="loss" if use_ml else "loss_ce"), dl.SchedulerCallback(), ] if use_ml: callbacks.extend( [ dl.ControlFlowCallbackWrapper( base_callback=dl.CriterionCallback( input_key="embeddings", target_key="targets", metric_key="loss_ml", criterion_key="ml", ), loaders=["train"], ), dl.ControlFlowCallbackWrapper( base_callback=dl.MetricAggregationCallback( metric_key="loss", metrics=["loss_ce", "loss_ml"], mode="mean", ), loaders=["train"], ), ] ) # train strtime = datetime.now().strftime("%Y%m%d-%H%M%S") ml_flag = int(use_ml) runner.train( model=model, criterion=criterion, optimizer=optimizer, scheduler=scheduler, loaders=loaders, num_epochs=200, callbacks=callbacks, logdir=f"{LOGS_ROOT}/image-ml{ml_flag}-{strtime}", valid_loader="valid", valid_metric="accuracy01", minimize_valid_metric=False, verbose=True, load_best_on_end=True, ) # evaluate metrics = runner.evaluate_loader( loader=loaders["valid"], callbacks=[ dl.AccuracyCallback(input_key="logits", target_key="targets", topk=(1, 3, 5)), dl.PrecisionRecallF1SupportCallback( input_key="logits", target_key="targets", num_classes=10 ), ], ) print(metrics) if __name__ == "__main__": parser = argparse.ArgumentParser() utils.boolean_flag(parser, "use-ml", default=False) args = parser.parse_args() main(args.use_ml)
31.778481
92
0.601075
465
0.092611
0
0
0
0
0
0
568
0.113125
836bc2bf5ec4d2f69e9599977608bd55913a2fd3
22,536
py
Python
aegea/batch.py
MrOlm/aegea
5599ddaf7947918a5c7a0282ab993cfa304790f8
[ "Apache-2.0" ]
null
null
null
aegea/batch.py
MrOlm/aegea
5599ddaf7947918a5c7a0282ab993cfa304790f8
[ "Apache-2.0" ]
null
null
null
aegea/batch.py
MrOlm/aegea
5599ddaf7947918a5c7a0282ab993cfa304790f8
[ "Apache-2.0" ]
null
null
null
""" Manage AWS Batch jobs, queues, and compute environments. """ from __future__ import absolute_import, division, print_function, unicode_literals import os, sys, argparse, base64, collections, io, subprocess, json, time, re, hashlib, concurrent.futures, itertools from botocore.exceptions import ClientError from . import logger from .ls import register_parser, register_listing_parser from .ecr import ecr_image_name_completer from .util import Timestamp, paginate, get_mkfs_command from .util.crypto import ensure_ssh_key from .util.cloudinit import get_user_data from .util.exceptions import AegeaException from .util.printing import page_output, tabulate, YELLOW, RED, GREEN, BOLD, ENDC from .util.aws import (resources, clients, ensure_iam_role, ensure_instance_profile, make_waiter, ensure_vpc, ensure_security_group, ensure_log_group, IAMPolicyBuilder, resolve_ami, instance_type_completer, expect_error_codes, instance_storage_shellcode) from .util.aws.spot import SpotFleetBuilder from .util.aws.logs import CloudwatchLogReader from .util.aws.batch import ensure_job_definition, get_command_and_env def complete_queue_name(**kwargs): return [q["jobQueueName"] for q in paginate(clients.batch.get_paginator("describe_job_queues"))] def complete_ce_name(**kwargs): return [c["computeEnvironmentName"] for c in paginate(clients.batch.get_paginator("describe_compute_environments"))] def batch(args): batch_parser.print_help() batch_parser = register_parser(batch, help="Manage AWS Batch resources", description=__doc__) def queues(args): page_output(tabulate(paginate(clients.batch.get_paginator("describe_job_queues")), args)) parser = register_listing_parser(queues, parent=batch_parser, help="List Batch queues") def create_queue(args): ces = [dict(computeEnvironment=e, order=i) for i, e in enumerate(args.compute_environments)] logger.info("Creating queue %s in %s", args.name, ces) queue = clients.batch.create_job_queue(jobQueueName=args.name, priority=args.priority, computeEnvironmentOrder=ces) make_waiter(clients.batch.describe_job_queues, "jobQueues[].status", "VALID", "pathAny").wait(jobQueues=[args.name]) return queue parser = register_parser(create_queue, parent=batch_parser, help="Create a Batch queue") parser.add_argument("name") parser.add_argument("--priority", type=int, default=5) parser.add_argument("--compute-environments", nargs="+", required=True) def delete_queue(args): clients.batch.update_job_queue(jobQueue=args.name, state="DISABLED") make_waiter(clients.batch.describe_job_queues, "jobQueues[].status", "VALID", "pathAny").wait(jobQueues=[args.name]) clients.batch.delete_job_queue(jobQueue=args.name) parser = register_parser(delete_queue, parent=batch_parser, help="Delete a Batch queue") parser.add_argument("name").completer = complete_queue_name def compute_environments(args): page_output(tabulate(paginate(clients.batch.get_paginator("describe_compute_environments")), args)) parser = register_listing_parser(compute_environments, parent=batch_parser, help="List Batch compute environments") def ensure_launch_template(prefix=__name__.replace(".", "_"), **kwargs): name = prefix + "_" + hashlib.sha256(json.dumps(kwargs, sort_keys=True).encode()).hexdigest()[:32] try: clients.ec2.create_launch_template(LaunchTemplateName=name, LaunchTemplateData=kwargs) except ClientError as e: expect_error_codes(e, "InvalidLaunchTemplateName.AlreadyExistsException") return name def get_ssm_parameter(name): return clients.ssm.get_parameter(Name=name)["Parameter"]["Value"] def create_compute_environment(args): commands = instance_storage_shellcode.strip().format(mountpoint="/mnt", mkfs=get_mkfs_command()).split("\n") user_data = get_user_data(commands=commands, mime_multipart_archive=True) if args.ecs_container_instance_ami: ecs_ami_id = args.ecs_container_instance_ami elif args.ecs_container_instance_ami_tags: # TODO: build ECS CI AMI on demand ecs_ami_id = resolve_ami(**args.ecs_container_instance_ami_tags) else: ecs_ami_id = get_ssm_parameter("/aws/service/ecs/optimized-ami/amazon-linux-2/recommended/image_id") launch_template = ensure_launch_template(ImageId=ecs_ami_id, # TODO: add configurable BDM for Docker image cache space UserData=base64.b64encode(user_data).decode()) batch_iam_role = ensure_iam_role(args.service_role, trust=["batch"], policies=["service-role/AWSBatchServiceRole"]) vpc = ensure_vpc() ssh_key_name = ensure_ssh_key(args.ssh_key_name, base_name=__name__) instance_profile = ensure_instance_profile(args.instance_role, policies={"service-role/AmazonAPIGatewayPushToCloudWatchLogs", "service-role/AmazonEC2ContainerServiceforEC2Role", IAMPolicyBuilder(action="sts:AssumeRole", resource="*")}) compute_resources = dict(type=args.compute_type, minvCpus=args.min_vcpus, desiredvCpus=args.desired_vcpus, maxvCpus=args.max_vcpus, instanceTypes=args.instance_types, subnets=[subnet.id for subnet in vpc.subnets.all()], securityGroupIds=[ensure_security_group("aegea.launch", vpc).id], instanceRole=instance_profile.name, bidPercentage=100, spotIamFleetRole=SpotFleetBuilder.get_iam_fleet_role().name, ec2KeyPair=ssh_key_name, launchTemplate=dict(launchTemplateName=launch_template)) logger.info("Creating compute environment %s in %s", args.name, vpc) compute_environment = clients.batch.create_compute_environment(computeEnvironmentName=args.name, type=args.type, computeResources=compute_resources, serviceRole=batch_iam_role.name) wtr = make_waiter(clients.batch.describe_compute_environments, "computeEnvironments[].status", "VALID", "pathAny", delay=2, max_attempts=300) wtr.wait(computeEnvironments=[args.name]) return compute_environment cce_parser = register_parser(create_compute_environment, parent=batch_parser, help="Create a Batch compute environment") cce_parser.add_argument("name") cce_parser.add_argument("--type", choices={"MANAGED", "UNMANAGED"}) cce_parser.add_argument("--compute-type", choices={"EC2", "SPOT"}) cce_parser.add_argument("--min-vcpus", type=int) cce_parser.add_argument("--desired-vcpus", type=int) cce_parser.add_argument("--max-vcpus", type=int) cce_parser.add_argument("--instance-types", nargs="+").completer = instance_type_completer cce_parser.add_argument("--ssh-key-name") cce_parser.add_argument("--instance-role", default=__name__ + ".ecs_container_instance") cce_parser.add_argument("--service-role", default=__name__ + ".service") cce_parser.add_argument("--ecs-container-instance-ami") cce_parser.add_argument("--ecs-container-instance-ami-tags") def update_compute_environment(args): update_compute_environment_args = dict(computeEnvironment=args.name, computeResources={}) if args.min_vcpus is not None: update_compute_environment_args["computeResources"].update(minvCpus=args.min_vcpus) if args.desired_vcpus is not None: update_compute_environment_args["computeResources"].update(desiredvCpus=args.desired_vcpus) if args.max_vcpus is not None: update_compute_environment_args["computeResources"].update(maxvCpus=args.max_vcpus) return clients.batch.update_compute_environment(**update_compute_environment_args) uce_parser = register_parser(update_compute_environment, parent=batch_parser, help="Update a Batch compute environment") uce_parser.add_argument("name").completer = complete_ce_name uce_parser.add_argument("--min-vcpus", type=int) uce_parser.add_argument("--desired-vcpus", type=int) uce_parser.add_argument("--max-vcpus", type=int) def delete_compute_environment(args): clients.batch.update_compute_environment(computeEnvironment=args.name, state="DISABLED") wtr = make_waiter(clients.batch.describe_compute_environments, "computeEnvironments[].status", "VALID", "pathAny") wtr.wait(computeEnvironments=[args.name]) clients.batch.delete_compute_environment(computeEnvironment=args.name) parser = register_parser(delete_compute_environment, parent=batch_parser, help="Delete a Batch compute environment") parser.add_argument("name").completer = complete_ce_name def ensure_queue(name): cq_args = argparse.Namespace(name=name, priority=5, compute_environments=[name]) try: return create_queue(cq_args) except ClientError: create_compute_environment(cce_parser.parse_args(args=[name])) return create_queue(cq_args) def submit(args): if args.job_definition_arn is None: if not any([args.command, args.execute, args.cwl]): raise AegeaException("One of the arguments --command --execute --cwl is required") elif args.name is None: raise AegeaException("The argument --name is required") ensure_log_group("docker") ensure_log_group("syslog") if args.job_definition_arn is None: command, environment = get_command_and_env(args) container_overrides = dict(command=command, environment=environment) jd_res = ensure_job_definition(args) args.job_definition_arn = jd_res["jobDefinitionArn"] args.name = args.name or "{}_{}".format(jd_res["jobDefinitionName"], jd_res["revision"]) else: container_overrides = {} if args.command: container_overrides["command"] = args.command if args.environment: container_overrides["environment"] = args.environment submit_args = dict(jobName=args.name, jobQueue=args.queue, dependsOn=[dict(jobId=dep) for dep in args.depends_on], jobDefinition=args.job_definition_arn, parameters={k: v for k, v in args.parameters}, containerOverrides=container_overrides) if args.dry_run: print("The following command would be run: {0}".format(submit_args)) return {"Dry run succeeded": True} try: job = clients.batch.submit_job(**submit_args) except ClientError as e: if not re.search("JobQueue .+ not found", str(e)): raise ensure_queue(args.queue) job = clients.batch.submit_job(**submit_args) if args.watch: watch(watch_parser.parse_args([job["jobId"]])) if args.cwl: job.update(resources.dynamodb.Table("aegea-batch-jobs").get_item(Key={"job_id": job["jobId"]})["Item"]) elif args.wait: raise NotImplementedError() return job submit_parser = register_parser(submit, parent=batch_parser, help="Submit a job to a Batch queue") submit_parser.add_argument("--name") submit_parser.add_argument("--queue", default=__name__.replace(".", "_")).completer = complete_queue_name submit_parser.add_argument("--depends-on", nargs="+", metavar="JOB_ID", default=[]) submit_parser.add_argument("--job-definition-arn") def add_command_args(parser): group = parser.add_mutually_exclusive_group() group.add_argument("--watch", action="store_true", help="Monitor submitted job, stream log until job completes") group.add_argument("--wait", action="store_true", help="Block on job. Exit with code 0 if job succeeded, 1 if failed") group = parser.add_mutually_exclusive_group() group.add_argument("--command", nargs="+", help="Run these commands as the job (using " + BOLD("bash -c") + ")") group.add_argument("--execute", type=argparse.FileType("rb"), metavar="EXECUTABLE", help="Read this executable file and run it as the job") group.add_argument("--cwl", metavar="CWL_DEFINITION", help="Read this Common Workflow Language definition file and run it as the job") parser.add_argument("--cwl-input", type=argparse.FileType("rb"), metavar="CWLINPUT", default=sys.stdin, help="With --cwl, use this file as the CWL job input (default: stdin)") parser.add_argument("--environment", nargs="+", metavar="NAME=VALUE", type=lambda x: dict(zip(["name", "value"], x.split("=", 1))), default=[]) parser.add_argument("--staging-s3-bucket", help=argparse.SUPPRESS) def add_job_defn_args(parser): parser.add_argument("--ulimits", nargs="*", help="Separate ulimit name and value with colon, for example: --ulimits nofile:20000", default=["nofile:100000"]) img_group = parser.add_mutually_exclusive_group() img_group.add_argument("--image", default="ubuntu", metavar="DOCKER_IMAGE", help="Docker image URL to use for running job/task") ecs_img_help = "Name of Docker image residing in this account's Elastic Container Registry" ecs_img_arg = img_group.add_argument("--ecs-image", "--ecr-image", "-i", metavar="REPO[:TAG]", help=ecs_img_help) ecs_img_arg.completer = ecr_image_name_completer parser.add_argument("--volumes", nargs="+", metavar="HOST_PATH=GUEST_PATH", type=lambda x: x.split("=", 1), default=[]) parser.add_argument("--memory-mb", dest="memory", type=int, default=1024) add_command_args(submit_parser) group = submit_parser.add_argument_group(title="job definition parameters", description=""" See http://docs.aws.amazon.com/batch/latest/userguide/job_definitions.html""") add_job_defn_args(group) group.add_argument("--vcpus", type=int, default=1) group.add_argument("--gpus", type=int, default=0) group.add_argument("--privileged", action="store_true", default=False) group.add_argument("--volume-type", choices={"standard", "io1", "gp2", "sc1", "st1"}, help="io1, PIOPS SSD; gp2, general purpose SSD; sc1, cold HDD; st1, throughput optimized HDD") group.add_argument("--parameters", nargs="+", metavar="NAME=VALUE", type=lambda x: x.split("=", 1), default=[]) group.add_argument("--job-role", metavar="IAM_ROLE", default=__name__ + ".worker", help="Name of IAM role to grant to the job") group.add_argument("--storage", nargs="+", metavar="MOUNTPOINT=SIZE_GB", type=lambda x: x.rstrip("GBgb").split("=", 1), default=[]) group.add_argument("--efs-storage", action="store", dest="efs_storage", default=False, help="Mount EFS network filesystem to the mount point specified. Example: --efs-storage /mnt") group.add_argument("--mount-instance-storage", nargs="?", const="/mnt", help="Assemble (MD RAID0), format and mount ephemeral instance storage on this mount point") submit_parser.add_argument("--timeout", help="Terminate (and possibly restart) the job after this time (use suffix s, m, h, d, w)") submit_parser.add_argument("--retry-attempts", type=int, default=1, help="Number of times to restart the job upon failure") submit_parser.add_argument("--dry-run", action="store_true", help="Gather arguments and stop short of submitting job") def terminate(args): def terminate_one(job_id): return clients.batch.terminate_job(jobId=job_id, reason=args.reason) with concurrent.futures.ThreadPoolExecutor() as executor: result = list(executor.map(terminate_one, args.job_id)) logger.info("Sent termination requests for %d jobs", len(result)) parser = register_parser(terminate, parent=batch_parser, help="Terminate Batch jobs") parser.add_argument("job_id", nargs="+") parser.add_argument("--reason", help="A message to attach to the job that explains the reason for canceling it") def ls(args, page_size=100): queues = args.queues or [q["jobQueueName"] for q in clients.batch.describe_job_queues()["jobQueues"]] def list_jobs_worker(list_jobs_worker_args): queue, status = list_jobs_worker_args return [j["jobId"] for j in clients.batch.list_jobs(jobQueue=queue, jobStatus=status)["jobSummaryList"]] with concurrent.futures.ThreadPoolExecutor() as executor: job_ids = sum(executor.map(list_jobs_worker, itertools.product(queues, args.status)), []) def describe_jobs_worker(start_index): return clients.batch.describe_jobs(jobs=job_ids[start_index:start_index + page_size])["jobs"] table = sum(executor.map(describe_jobs_worker, range(0, len(job_ids), page_size)), []) page_output(tabulate(table, args, cell_transforms={"createdAt": Timestamp})) job_status_colors = dict(SUBMITTED=YELLOW(), PENDING=YELLOW(), RUNNABLE=BOLD() + YELLOW(), STARTING=GREEN(), RUNNING=GREEN(), SUCCEEDED=BOLD() + GREEN(), FAILED=BOLD() + RED()) job_states = job_status_colors.keys() parser = register_listing_parser(ls, parent=batch_parser, help="List Batch jobs") parser.add_argument("--queues", nargs="+").completer = complete_queue_name parser.add_argument("--status", nargs="+", default=job_states, choices=job_states) def describe(args): return clients.batch.describe_jobs(jobs=[args.job_id])["jobs"][0] parser = register_parser(describe, parent=batch_parser, help="Describe a Batch job") parser.add_argument("job_id") def format_job_status(status): return job_status_colors[status] + status + ENDC() def get_logs(args): for event in CloudwatchLogReader(args.log_stream_name, head=args.head, tail=args.tail): print(str(Timestamp(event["timestamp"])), event["message"]) def save_job_desc(job_desc): try: cprops = dict(image="busybox", vcpus=1, memory=4, environment=[dict(name="job_desc", value=json.dumps(job_desc))]) jd_name = "{}_job_desc_{}".format(__name__.replace(".", "_"), job_desc["jobId"]) clients.batch.register_job_definition(jobDefinitionName=jd_name, type="container", containerProperties=cprops) except Exception as e: logger.debug("Error while saving job description: %s", e) def get_job_desc(job_id): try: return clients.batch.describe_jobs(jobs=[job_id])["jobs"][0] except IndexError: jd_name = "{}_job_desc_{}".format(__name__.replace(".", "_"), job_id) jd = clients.batch.describe_job_definitions(jobDefinitionName=jd_name)["jobDefinitions"][0] return json.loads(jd["containerProperties"]["environment"][0]["value"]) def watch(args): job_desc = get_job_desc(args.job_id) args.job_name = job_desc["jobName"] logger.info("Watching job %s (%s)", args.job_id, args.job_name) last_status = None while last_status not in {"SUCCEEDED", "FAILED"}: job_desc = get_job_desc(args.job_id) if job_desc["status"] != last_status: logger.info("Job %s %s", args.job_id, format_job_status(job_desc["status"])) last_status = job_desc["status"] if job_desc["status"] in {"RUNNING", "SUCCEEDED", "FAILED"}: logger.info("Job %s log stream: %s", args.job_id, job_desc.get("container", {}).get("logStreamName")) save_job_desc(job_desc) if job_desc["status"] in {"RUNNING", "SUCCEEDED", "FAILED"} and "logStreamName" in job_desc["container"]: args.log_stream_name = job_desc["container"]["logStreamName"] get_logs(args) if "statusReason" in job_desc: logger.info("Job %s: %s", args.job_id, job_desc["statusReason"]) if job_desc.get("container", {}).get("exitCode"): return SystemExit(job_desc["container"]["exitCode"]) time.sleep(1) get_logs_parser = register_parser(get_logs, parent=batch_parser, help="Retrieve logs for a Batch job") get_logs_parser.add_argument("log_stream_name") watch_parser = register_parser(watch, parent=batch_parser, help="Monitor a running Batch job and stream its logs") watch_parser.add_argument("job_id") for parser in get_logs_parser, watch_parser: lines_group = parser.add_mutually_exclusive_group() lines_group.add_argument("--head", type=int, nargs="?", const=10, help="Retrieve this number of lines from the beginning of the log (default 10)") lines_group.add_argument("--tail", type=int, nargs="?", const=10, help="Retrieve this number of lines from the end of the log (default 10)") def ssh(args): job_desc = clients.batch.describe_jobs(jobs=[args.job_id])["jobs"][0] job_queue_desc = clients.batch.describe_job_queues(jobQueues=[job_desc["jobQueue"]])["jobQueues"][0] ce = job_queue_desc["computeEnvironmentOrder"][0]["computeEnvironment"] ce_desc = clients.batch.describe_compute_environments(computeEnvironments=[ce])["computeEnvironments"][0] ecs_ci_arn = job_desc["container"]["containerInstanceArn"] ecs_ci_desc = clients.ecs.describe_container_instances(cluster=ce_desc["ecsClusterArn"], containerInstances=[ecs_ci_arn])["containerInstances"][0] ecs_ci_ec2_id = ecs_ci_desc["ec2InstanceId"] for reservation in paginate(clients.ec2.get_paginator("describe_instances"), InstanceIds=[ecs_ci_ec2_id]): ecs_ci_address = reservation["Instances"][0]["PublicDnsName"] logger.info("Job {} is on ECS container instance {} ({})".format(args.job_id, ecs_ci_ec2_id, ecs_ci_address)) ssh_args = ["ssh", "-l", "ec2-user", ecs_ci_address, "docker", "ps", "--filter", "name=" + args.job_id, "--format", "{{.ID}}"] logger.info("Running: {}".format(" ".join(ssh_args))) container_id = subprocess.check_output(ssh_args).decode().strip() subprocess.call(["ssh", "-t", "-l", "ec2-user", ecs_ci_address, "docker", "exec", "--interactive", "--tty", container_id] + (args.ssh_args or ["/bin/bash", "-l"])) ssh_parser = register_parser(ssh, parent=batch_parser, help="Log in to a running Batch job via SSH") ssh_parser.add_argument("job_id") ssh_parser.add_argument("ssh_args", nargs=argparse.REMAINDER)
57.489796
120
0.693734
0
0
0
0
0
0
0
0
5,378
0.23864
836c208587b33a187a0445b8a77d2420c941ff8d
10,897
py
Python
src/run_joint_confidence_generator-only.py
williamsashbee/Confident_classifier
cba3ef862b310afc3af6c4a62b524f032f45549e
[ "MIT" ]
null
null
null
src/run_joint_confidence_generator-only.py
williamsashbee/Confident_classifier
cba3ef862b310afc3af6c4a62b524f032f45549e
[ "MIT" ]
null
null
null
src/run_joint_confidence_generator-only.py
williamsashbee/Confident_classifier
cba3ef862b310afc3af6c4a62b524f032f45549e
[ "MIT" ]
null
null
null
############################################## # This code is based on samples from pytorch # ############################################## # Writer: Kimin Lee from __future__ import print_function import argparse import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim import data_loader import numpy as np import torchvision.utils as vutils import models from torchvision import datasets, transforms from torch.autograd import Variable import os os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID" # see issue #152 os.environ["CUDA_VISIBLE_DEVICES"] = "4" # Training settings parser = argparse.ArgumentParser(description='Training code - joint confidence') parser.add_argument('--batch-size', type=int, default=128, help='input batch size for training') parser.add_argument('--save-interval', type=int, default=3, help='save interval') parser.add_argument('--epochs', type=int, default=100, help='number of epochs to train') parser.add_argument('--lr', type=float, default=0.0002, help='learning rate') parser.add_argument('--no-cuda', action='store_true', default=False, help='disables CUDA training') parser.add_argument('--seed', type=int, default=1, help='random seed') parser.add_argument('--log-interval', type=int, default=100, help='how many batches to wait before logging training status') parser.add_argument('--dataset', default='cifar10', help='mnist | cifar10 | svhn') parser.add_argument('--dataroot', required=True, help='path to dataset') parser.add_argument('--imageSize', type=int, default=32, help='the height / width of the input image to network') parser.add_argument('--outf', default='.', help='folder to output images and model checkpoints') parser.add_argument('--wd', type=float, default=0.0, help='weight decay') parser.add_argument('--droprate', type=float, default=0.1, help='learning rate decay') parser.add_argument('--decreasing_lr', default='60', help='decreasing strategy') parser.add_argument('--num_classes', type=int, default=10, help='the # of classes') parser.add_argument('--beta', type=float, default=8, help='penalty parameter for KL term') args = parser.parse_args() if args.dataset == 'cifar10': args.beta = 0.1 args.batch_size = 64 print(args) args.cuda = not args.no_cuda and torch.cuda.is_available() print("Random Seed: ", args.seed) torch.manual_seed(args.seed) if args.cuda: torch.cuda.manual_seed(args.seed) kwargs = {'num_workers': 1, 'pin_memory': True} if args.cuda else {} print('load data: ', args.dataset) if args.dataset == 'mnist': transform = transforms.Compose([ transforms.Scale(32), transforms.ToTensor(), transforms.Lambda(lambda x: x.repeat(3, 1, 1)), transforms.Normalize(mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5)) ]) train_loader = torch.utils.data.DataLoader( datasets.MNIST('data', train=True, download=True, transform=transform), batch_size=128, shuffle=True) test_loader = torch.utils.data.DataLoader( datasets.MNIST('data', train=False, download=True, transform=transform), batch_size=128, shuffle=True) else: train_loader, test_loader = data_loader.getTargetDataSet(args.dataset, args.batch_size, args.imageSize, args.dataroot) print('Load model') model = models.vgg13() print(model) print('load GAN') nz = 100 G = models.cGenerator(1, nz, 64, 3) # ngpu, nz, ngf, nc D = models.cDiscriminator(1, 3, 64) # ngpu, nc, ndf G.weight_init(mean=0.0, std=0.02) D.weight_init(mean=0.0, std=0.02) # Initial setup for GAN real_label = 1 fake_label = 0 criterion = nn.BCELoss() nz = 100 #fixed_noise = torch.FloatTensor(64, nz, 1, 1).normal_(0, 1) # fixed_noise = torch.randn((128, 100)).view(-1, 100, 1, 1) if args.cuda: model.cuda() D.cuda() G.cuda() criterion.cuda() #fixed_noise = fixed_noise.cuda() #fixed_noise = Variable(fixed_noise) print('Setup optimizer') lr = 0.0002 batch_size = 128 optimizer = optim.Adam(model.parameters(), lr=args.lr, weight_decay=args.wd) G_optimizer = optim.Adam(G.parameters(), lr=lr, betas=(0.5, 0.999)) D_optimizer = optim.Adam(D.parameters(), lr=lr, betas=(0.5, 0.999)) decreasing_lr = list(map(int, args.decreasing_lr.split(','))) img_size = 32 num_labels = 10 # os.environ["CUDA_LAUNCH_BLOCKING"]="1" # Binary Cross Entropy loss BCE_loss = nn.BCELoss() # fixed_noise = torch.FloatTensor(64, nz, 1, 1).normal_(0, 1) fixed_noise = torch.randn((64, 100)).view(-1, 100, 1, 1).cuda() fixed_label = 0 first = True def train(epoch): model.train() # D_train_loss = 0 # G_train_loss = 3 trg = 0 trd = 0 for batch_idx, (data, y_labels) in enumerate(train_loader): global first global fixed_noise global fixed_label if first: global first global fixed_noise global fixed_label first = False fixed_label = y_labels.squeeze()[:64].type(torch.cuda.LongTensor) assert fixed_label.shape == (64,) print( "saving fixed_label!") vutils.save_image(data[:64], '{}/{}2jointConfidencerealReference{}.png'.format(args.outf,args.dataset, epoch), normalize=True) uniform_dist = torch.Tensor(data.size(0), args.num_classes).fill_((1. / args.num_classes)).cuda() x_ = data.cuda() assert x_[0, :, :, :].shape == (3, 32, 32) # train discriminator D mini_batch = x_.size()[0] """ D.zero_grad() y_ = y_labels y_real_ = torch.ones(mini_batch) y_fake_ = torch.zeros(mini_batch) y_real_, y_fake_ = Variable(y_real_.cuda()), Variable(y_fake_.cuda()) D_result = D(x_, y_).squeeze() D_real_loss = BCE_loss(D_result, y_real_) z_ = torch.randn((mini_batch, 100)).view(-1, 100, 1, 1).cuda() y_ = (torch.rand(mini_batch, 1) * num_labels).type(torch.cuda.LongTensor).squeeze() z_, y_ = Variable(z_.cuda()), Variable(y_.cuda()) G_result = G(z_, y_.squeeze()) D_result = D(G_result, y_).squeeze() D_fake_loss = BCE_loss(D_result, y_fake_) D_fake_score = D_result.data.mean() D_train_loss = D_real_loss + D_fake_loss D_train_loss.backward() # D_losses.append(D_train_loss.item()) """ # train generator G G.zero_grad() #z_ = torch.randn((mini_batch, 100)).view(-1, 100, 1, 1).cuda() #y_ = (torch.rand(mini_batch, 1) * num_labels).type(torch.cuda.LongTensor).squeeze() #z_, y_ = Variable(z_.cuda()), Variable(y_.cuda()) z_ = torch.randn((mini_batch, 100)).view(-1, 100, 1, 1).cuda() y_ = (torch.rand(mini_batch, 1) * num_labels).type(torch.cuda.LongTensor).squeeze() z_, y_ = Variable(z_.cuda()), Variable(y_.cuda()) G_result = G(z_, y_.squeeze()) #D_result = D(G_result, y_).squeeze() #G_train_loss = BCE_loss(D_result, y_real_) # minimize the true distribution KL_fake_output = F.log_softmax(model(G_result)) errG_KL = F.kl_div(KL_fake_output, uniform_dist)*args.num_classes #generator_loss = G_train_loss + args.beta * errG_KL # 12.0, .65, 0e-8 generator_loss = errG_KL # 12.0, .65, 0e-8 generator_loss.backward() ########################### # (3) Update classifier # ########################### # cross entropy loss optimizer.zero_grad() x_ = Variable(x_) output = F.log_softmax(model(x_)) loss = F.nll_loss(output.cuda(), y_labels.type(torch.cuda.LongTensor).squeeze()) # KL divergence #### # z_ = torch.randn((mini_batch, 100)).view(-1, 100, 1, 1).cuda() # y_ = (torch.rand(mini_batch, 1) * num_labels).type(torch.cuda.LongTensor).squeeze() # z_, y_ = Variable(z_.cuda()), Variable(y_.cuda()) G_result = G(z_, y_.squeeze()) # !!!#D_result = D(G_result, y_fill_).squeeze() #### KL_fake_output = F.log_softmax(model(G_result)) KL_loss_fake = F.kl_div(KL_fake_output, uniform_dist) * args.num_classes total_loss = loss + args.beta * KL_loss_fake # total_loss = loss total_loss.backward() trg += 1 trd += 1 D_optimizer.step() G_optimizer.step() optimizer.step() if batch_idx % args.log_interval == 0: #print('Classification Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}, KL fake Loss: {:.6f}'.format( # epoch, batch_idx * len(data), len(train_loader.dataset), # 100. * batch_idx / len(train_loader), loss.data.item(), KL_loss_fake.data.item())) print('Classification Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}, KL fake Loss: {:.6f}'.format( epoch, batch_idx * len(data), len(train_loader.dataset), 100. * batch_idx / len(train_loader), loss.data.item(), KL_loss_fake.data.item())) fake = G(fixed_noise, fixed_label) vutils.save_image(fake.data, '{}/{}2jointConfidenceCDCgan_samples_epoch_{}.png'.format(args.outf,args.dataset, epoch), normalize=True) def test(epoch): model.eval() test_loss = 0 correct = 0 total = 0 for data, target in test_loader: total += data.size(0) if args.cuda: data, target = data.cuda(), target.cuda() # data, target = Variable(data, volatile=True), Variable(target) output = F.log_softmax(model(data)) target = target.type( torch.LongTensor) # https://discuss.pytorch.org/t/runtimeerror-multi-target-not-supported-newbie/10216/4 if args.cuda: output = output.cuda() target = target.cuda() target = torch.squeeze(target) test_loss += F.nll_loss(output, target).data.item() pred = output.data.max(1)[1] # get the index of the max log-probability correct += pred.eq(target.data).cpu().sum() test_loss = test_loss test_loss /= len(test_loader) # loss function already averages over batch size print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format( test_loss, correct, total, 100. * correct / total)) for epoch in range(1, args.epochs + 1): train(epoch) test(epoch) if epoch in decreasing_lr: G_optimizer.param_groups[0]['lr'] *= args.droprate D_optimizer.param_groups[0]['lr'] *= args.droprate optimizer.param_groups[0]['lr'] *= args.droprate if epoch % 20 == 0: # do checkpointing torch.save(G.state_dict(), '%s/2netG_epoch_%d.pth' % (args.outf, epoch)) torch.save(D.state_dict(), '%s/2netD_epoch_%d.pth' % (args.outf, epoch)) torch.save(model.state_dict(), '%s/2model_epoch_%d.pth' % (args.outf, epoch))
35.727869
146
0.626962
0
0
0
0
0
0
0
0
4,011
0.368083
836ce39bcde99da750d6f14d0f025be31157aa0f
302
py
Python
450/Nagendra/greedy/Swap and Maximize .py
Nagendracse1/Competitive-Programming
325e151b9259dbc31d331c8932def42e3ab09913
[ "MIT" ]
3
2020-12-20T10:23:11.000Z
2021-06-16T10:34:18.000Z
450/Nagendra/greedy/Swap and Maximize .py
Spring-dot/Competitive-Programming
98add277a8b029710c749d1082de25c524e12408
[ "MIT" ]
null
null
null
450/Nagendra/greedy/Swap and Maximize .py
Spring-dot/Competitive-Programming
98add277a8b029710c749d1082de25c524e12408
[ "MIT" ]
null
null
null
#code https://practice.geeksforgeeks.org/problems/swap-and-maximize/0 for _ in range(int(input())): n = int(input()) arr = list(map(int, input().split())) arr.sort() max = 0 for i in range(n//2): max -= 2*arr[i] max += 2*arr[n-i-1] print(max)
21.571429
69
0.523179
0
0
0
0
0
0
0
0
69
0.228477
836d607bb4f413a3224c84e9b615d0b74908dbb0
2,304
py
Python
ga4stpg/tree/generate.py
GiliardGodoi/ppgi-stpg-gpx
2097b086111e1cde423031c9a9d58f45b2b96353
[ "MIT" ]
null
null
null
ga4stpg/tree/generate.py
GiliardGodoi/ppgi-stpg-gpx
2097b086111e1cde423031c9a9d58f45b2b96353
[ "MIT" ]
5
2021-01-26T17:28:32.000Z
2021-03-14T13:46:48.000Z
ga4stpg/tree/generate.py
GiliardGodoi/ppgi-stpg-gpx
2097b086111e1cde423031c9a9d58f45b2b96353
[ "MIT" ]
1
2021-01-25T16:35:59.000Z
2021-01-25T16:35:59.000Z
from random import sample, shuffle from ga4stpg.graph import UGraph from ga4stpg.graph.disjointsets import DisjointSets class GenerateBasedPrimRST: def __init__(self, stpg): self.stpg = stpg def __call__(self): result = UGraph() terminals = self.stpg.terminals.copy() GRAPH = self.stpg.graph edges = set() # or is it better a list? vi = sample(range(1, self.stpg.nro_nodes+1), k=1)[0] terminals.discard(vi) for w in GRAPH.adjacent_to(vi): edges.add((vi, w)) while terminals and edges: edge = sample(edges, k=1)[0] # need to ensure randomness v, w = edge if w not in result: terminals.discard(w) result.add_edge(v, w) for u in GRAPH.adjacent_to(w): if u not in result: edges.add((w, u)) edges.remove(edge) # to remove from a list it can take O(n) return result class GenerateBasedKruskalRST: def __init__(self, stpg): self.stpg = stpg def __call__(self): result = UGraph() done = DisjointSets() edges = [(u, v) for u, v in self.stpg.graph.gen_undirect_edges()] shuffle(edges) for v in self.stpg.terminals: done.make_set(v) while edges and len(done.get_disjoint_sets()) > 1: edge = edges.pop() y, z = edge[0], edge[1] if y not in done: done.make_set(y) if z not in done: done.make_set(z) if done.find(y) != done.find(z): result.add(y, z) done.union(y, z) return result class GenerateBasedRandomWalk: def __init__(self, stpg): self.stpg = stpg def __call__(self): GRAPH = self.stpg.graph terminals = self.stpg.terminals.copy() result = UGraph() v = terminals.pop() while terminals: adjacents = GRAPH.adjacent_to(v, lazy=False) u = sample(adjacents, k=1)[0] if u not in result: result.add_edge(v, u) terminals.discard(u) v = u return result
27.105882
74
0.521267
2,163
0.938802
0
0
0
0
0
0
95
0.041233
83703f7128768cbf161b1e6803712f5beeb2dcb8
10,284
py
Python
Probabilistic_Matching.py
Data-Linkage/Rwandan_linkage
2c9e504b510f5ec54d207779e20b5ad491c4c5df
[ "MIT" ]
null
null
null
Probabilistic_Matching.py
Data-Linkage/Rwandan_linkage
2c9e504b510f5ec54d207779e20b5ad491c4c5df
[ "MIT" ]
null
null
null
Probabilistic_Matching.py
Data-Linkage/Rwandan_linkage
2c9e504b510f5ec54d207779e20b5ad491c4c5df
[ "MIT" ]
null
null
null
import pandas as pd import rapidfuzz import math import numpy as np # ------------------------- # # --------- DATA ---------- # # ------------------------- # # Read in mock census and PES data CEN = pd.read_csv('Data/Mock_Rwanda_Data_Census.csv') PES = pd.read_csv('Data/Mock_Rwanda_Data_Pes.csv') # select needed columns CEN = CEN[['id_indi_cen', 'firstnm_cen', 'lastnm_cen', 'age_cen', 'month_cen', 'year_cen', 'sex_cen', 'province_cen']] PES = PES[['id_indi_pes', 'firstnm_pes', 'lastnm_pes', 'age_pes', 'month_pes', 'year_pes', 'sex_pes', 'province_pes']] # ----------------------------- # # --------- BLOCKING ---------- # # ----------------------------- # # Block on province geographic variable BP1 = 'province' # Combine for i, BP in enumerate([BP1], 1): if i == 1: combined_blocks = PES.merge(CEN, left_on = BP + '_pes', right_on = BP + '_cen', how = 'inner').drop_duplicates(['id_indi_cen', 'id_indi_pes']) print("1" + str(combined_blocks.count())) # Count len(combined_blocks) # 50042 # -------------------------------------------------- # # --------------- AGREEMENT VECTORS ---------------- # # -------------------------------------------------- # # Agreement vector is created which is then inputted into the EM Algorithm. # Set v1, v2,... vn as the agreement variables # Select agreement variables v1 = 'firstnm' v2 = 'lastnm' v3 = 'month' v4 = 'year' v5 = 'sex' # All agreement variables used to calculate match weights & probabilities all_variables = [v1, v2, v3, v4, v5] # Variables using partial agreement (string similarity) edit_distance_variables = [v1, v2] dob_variables = [v3, v4] remaining_variables = [v5] # Cut off values for edit distance variables cutoff_values = [0.45, 0.45] # Replace NaN with blank spaces to assure the right data types for string similarity metrics for variable in edit_distance_variables: cen_var = variable+ '_cen' pes_var = variable + '_pes' combined_blocks[cen_var] = combined_blocks[cen_var].fillna("") combined_blocks[pes_var] = combined_blocks[pes_var].fillna("") def SLD(s,t): # Computing the standardised levenshtein edit distance between two strings # using the rapidfuzz string matching library for it's fast string comparisons # Dividing result by 100 to return a score between 0 and 1 standardised = (rapidfuzz.string_metric.normalized_levenshtein(s, t)/100) return standardised; # Create forename/ last name Edit Distance score columns for all pairs combined_blocks['firstnm_agreement'] = combined_blocks.apply(lambda x: SLD(x['firstnm_pes'], x['firstnm_cen']), axis=1) combined_blocks['lastnm_agreement'] = combined_blocks.apply(lambda x: SLD(x['lastnm_pes'], x['lastnm_cen']), axis=1) # --------------------------------------------------------- # # ---------------- INITIAL M & U VALUES ------------------- # # --------------------------------------------------------- # # Read in M and U values m_values = pd.read_csv('Data/m_values.csv') u_values = pd.read_csv('Data/u_values.csv') # Save individual M values from file FN_M = m_values[m_values.variable == 'firstnm'].iloc[0][1] SN_M = m_values[m_values.variable == 'lastnm'].iloc[0][1] SEX_M = m_values[m_values.variable == 'sex'].iloc[0][1] MONTH_M = m_values[m_values.variable == 'month'].iloc[0][1] YEAR_M = m_values[m_values.variable == 'year'].iloc[0][1] # Save individual U values from file FN_U = u_values[u_values.variable == 'firstnm'].iloc[0][1] SN_U = u_values[u_values.variable == 'lastnm'].iloc[0][1] SEX_U = u_values[u_values.variable == 'sex'].iloc[0][1] MONTH_U = u_values[u_values.variable == 'month'].iloc[0][1] YEAR_U = u_values[u_values.variable == 'year'].iloc[0][1] # Add M values to unlinked data combined_blocks['firstnm_m'] = FN_M combined_blocks['lastnm_m'] = SN_M combined_blocks['sex_m'] = SEX_M combined_blocks['month_m'] = MONTH_M combined_blocks['year_m'] = YEAR_M # Add U values to unlinked data combined_blocks['firstnm_u'] = FN_U combined_blocks['lastnm_u'] = SN_U combined_blocks['sex_u'] = SEX_U combined_blocks['month_u'] = MONTH_U combined_blocks['year_u'] = YEAR_U # Add Agreement / Disagreement Weights for var in all_variables: # apply calculations: agreement weight = log base 2 (m/u) combined_blocks[var + "_agreement_weight"] = combined_blocks.apply(lambda x: (math.log2(x[var + "_m"] / x[var + "_u"])), axis = 1) # disagreement weight = log base 2 ((1-m)/(1-u)) combined_blocks[var + "_disagreement_weight"] = combined_blocks.apply(lambda x: (math.log2((1 - x[var + "_m"]) / (1 - x[var + "_u"]))), axis = 1) # show sample of agreement/disagreement weights calculated print(combined_blocks[[var + "_m", var + "_u", var + "_agreement_weight", var + "_disagreement_weight"]].head(1)) ''' Alter the M and U values above (i.e. FN_M, FN_U etc. currently lines 100 - 112) to see the effect on variable agreement/disagreement weights ''' # --------------------------------------------------- # # ------------------ MATCH SCORES ------------------ # # --------------------------------------------------- # ''' An agreement value between 0 and 1 is calculated for each agreeement variable ''' ''' This is done for every candidate record pair ''' # --------------------------------------- # # ------------- DOB SCORE -------------- # # --------------------------------------- # # Partial scores combined_blocks['month_agreement'] = np.where(combined_blocks['month_pes'] == combined_blocks['month_cen'], 1/3, 0) combined_blocks['year_agreement'] = np.where(combined_blocks['year_pes'] == combined_blocks['year_cen'], 1/2, 0) # Compute final Score and drop extra score columns dob_score_columns = ['month_agreement', 'year_agreement'] combined_blocks['DOB_agreement'] = combined_blocks[dob_score_columns].sum(axis=1) # combined_blocks = combined_blocks.drop(dob_score_columns, axis = 1) # ---------------------------------------- # # ---------- PARTIAL CUT OFFS ------------ # # ---------------------------------------- # # All partial variables except DOB for variable, cutoff in zip(edit_distance_variables, cutoff_values): # If agreement below a certain level, set agreement to 0. Else, leave agreeement as it is combined_blocks[variable + '_agreement'] = np.where(combined_blocks[variable + "_agreement"] <= cutoff, 0, combined_blocks[variable + "_agreement"]) # Remaining variables (no partial scores) for variable in remaining_variables: # Calculate 1/0 Agreement Score (no partial scoring) combined_blocks[variable + '_agreement'] = np.where(combined_blocks[variable + "_cen"] == combined_blocks[variable + "_pes"], 1, 0) # ------------------------------------------------------------------ # # ------------------------- WEIGHTS ------------------------------- # # ------------------------------------------------------------------ # # Start by giving all records agreement weights for variable in all_variables: combined_blocks[variable + "_weight"] = combined_blocks[variable + "_agreement_weight"] # Update for partial agreement / disagreement (only when agreement < 1) # source: https://www.census.gov/content/dam/Census/library/working-papers/1991/adrm/rr91-9.pdf # weight = Agreement_Weight if Agreement = 1, and # MAX{(Agreement_Weight - (Agreement_Weight - Disgreement_Weight)*(1-Agreement)*(9/2)), Disgreement_Weight} if 0 <= Agreement < 1. for variable in all_variables: combined_blocks[variable + "_weight"] = np.where(combined_blocks[variable + "_agreement"] < 1, np.maximum(((combined_blocks[variable + "_agreement_weight"]) - ((combined_blocks[variable + "_agreement_weight"] - combined_blocks[variable + "_disagreement_weight"]) * (1 - combined_blocks[variable + "_agreement"]) * (9/2))), combined_blocks[variable + "_disagreement_weight"]), combined_blocks[variable + "_weight"]) # Set weights to 0 (instead of disagreement_weight) if there is missingess in PES or CEN variable (agreement == 0 condition needed for DOB) for variable in all_variables: combined_blocks[variable + "_weight"] = np.where(combined_blocks[variable + '_pes'].isnull() | combined_blocks[variable + '_cen'].isnull() & (combined_blocks[variable + '_agreement'] == 0), 0, combined_blocks[variable + '_weight']) # Sum column wise across the above columns - create match score combined_blocks["match_score"] = combined_blocks[['firstnm_weight', 'lastnm_weight', 'month_weight', 'year_weight', 'sex_weight']].sum(axis=1) # ------------------------------------------------------------------ # # ----------------------- ADJUSTMENTS ----------------------------- # # ------------------------------------------------------------------ # # To reduce false matches going to clerical, if ages are dissimilar set score to 0 combined_blocks['match_score'] = np.where((combined_blocks['age_pes'].notnull() == False) & combined_blocks['age_cen'].notnull() & (combined_blocks['age_pes'] - combined_blocks['age_cen'] > 5), 0, combined_blocks['match_score']) ''' let's view some example clusters produced to check if the scores assigned are sensible''' # high-scoring candidate record pairs cen_vars = [s + '_cen' for s in all_variables] pes_vars = [s + '_pes' for s in all_variables] display(combined_blocks[cen_vars + pes_vars + ['match_score']].sort_values(by=['match_score'], ascending=False).head(50)) # and low-scoring candidate pairs display(combined_blocks[cen_vars + pes_vars + ['match_score']].sort_values(by=['match_score']).head(50)) # -------------------------------------- # # -------------- SAVE ----------------- # # -------------------------------------- # combined_blocks.to_csv('Data/Probabilistic_Scores.csv')
46.533937
160
0.587417
0
0
0
0
0
0
0
0
5,533
0.53802