hexsha
stringlengths
40
40
size
int64
5
2.06M
ext
stringclasses
10 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
3
248
max_stars_repo_name
stringlengths
5
125
max_stars_repo_head_hexsha
stringlengths
40
78
max_stars_repo_licenses
listlengths
1
10
max_stars_count
int64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
3
248
max_issues_repo_name
stringlengths
5
125
max_issues_repo_head_hexsha
stringlengths
40
78
max_issues_repo_licenses
listlengths
1
10
max_issues_count
int64
1
67k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
3
248
max_forks_repo_name
stringlengths
5
125
max_forks_repo_head_hexsha
stringlengths
40
78
max_forks_repo_licenses
listlengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
5
2.06M
avg_line_length
float64
1
1.02M
max_line_length
int64
3
1.03M
alphanum_fraction
float64
0
1
count_classes
int64
0
1.6M
score_classes
float64
0
1
count_generators
int64
0
651k
score_generators
float64
0
1
count_decorators
int64
0
990k
score_decorators
float64
0
1
count_async_functions
int64
0
235k
score_async_functions
float64
0
1
count_documentation
int64
0
1.04M
score_documentation
float64
0
1
73eee2fb344cce481c9e4bf622cf22c5054e99f7
3,833
py
Python
tests/template_tests/filter_tests/test_unordered_list.py
DasAllFolks/django
9f427617e4559012e1c2fd8fce46cbe225d8515d
[ "BSD-3-Clause" ]
1
2015-01-09T08:45:54.000Z
2015-01-09T08:45:54.000Z
tests/template_tests/filter_tests/test_unordered_list.py
DasAllFolks/django
9f427617e4559012e1c2fd8fce46cbe225d8515d
[ "BSD-3-Clause" ]
null
null
null
tests/template_tests/filter_tests/test_unordered_list.py
DasAllFolks/django
9f427617e4559012e1c2fd8fce46cbe225d8515d
[ "BSD-3-Clause" ]
null
null
null
import warnings from django.test import SimpleTestCase from django.utils.deprecation import RemovedInDjango20Warning from django.utils.safestring import mark_safe from ..utils import render, setup class UnorderedListTests(SimpleTestCase): @setup({'unordered_list01': '{{ a|unordered_list }}'}) def test_unordered_list01(self): output = render('unordered_list01', {'a': ['x>', ['<y']]}) self.assertEqual(output, '\t<li>x&gt;\n\t<ul>\n\t\t<li>&lt;y</li>\n\t</ul>\n\t</li>') @setup({'unordered_list02': '{% autoescape off %}{{ a|unordered_list }}{% endautoescape %}'}) def test_unordered_list02(self): with warnings.catch_warnings(): warnings.simplefilter('ignore', RemovedInDjango20Warning) output = render('unordered_list02', {'a': ['x>', ['<y']]}) self.assertEqual(output, '\t<li>x>\n\t<ul>\n\t\t<li><y</li>\n\t</ul>\n\t</li>') @setup({'unordered_list03': '{{ a|unordered_list }}'}) def test_unordered_list03(self): output = render('unordered_list03', {'a': ['x>', [mark_safe('<y')]]}) self.assertEqual(output, '\t<li>x&gt;\n\t<ul>\n\t\t<li><y</li>\n\t</ul>\n\t</li>') @setup({'unordered_list04': '{% autoescape off %}{{ a|unordered_list }}{% endautoescape %}'}) def test_unordered_list04(self): output = render('unordered_list04', {'a': ['x>', [mark_safe('<y')]]}) self.assertEqual(output, '\t<li>x>\n\t<ul>\n\t\t<li><y</li>\n\t</ul>\n\t</li>') @setup({'unordered_list05': '{% autoescape off %}{{ a|unordered_list }}{% endautoescape %}'}) def test_unordered_list05(self): output = render('unordered_list05', {'a': ['x>', ['<y']]}) self.assertEqual(output, '\t<li>x>\n\t<ul>\n\t\t<li><y</li>\n\t</ul>\n\t</li>') class DeprecatedUnorderedListSyntaxTests(SimpleTestCase): @setup({'unordered_list01': '{{ a|unordered_list }}'}) def test_unordered_list01(self): with warnings.catch_warnings(): warnings.simplefilter('ignore', RemovedInDjango20Warning) output = render('unordered_list01', {'a': ['x>', [['<y', []]]]}) self.assertEqual(output, '\t<li>x&gt;\n\t<ul>\n\t\t<li>&lt;y</li>\n\t</ul>\n\t</li>') @setup({'unordered_list02': '{% autoescape off %}{{ a|unordered_list }}{% endautoescape %}'}) def test_unordered_list02(self): with warnings.catch_warnings(): warnings.simplefilter('ignore', RemovedInDjango20Warning) output = render('unordered_list02', {'a': ['x>', [['<y', []]]]}) self.assertEqual(output, '\t<li>x>\n\t<ul>\n\t\t<li><y</li>\n\t</ul>\n\t</li>') @setup({'unordered_list03': '{{ a|unordered_list }}'}) def test_unordered_list03(self): with warnings.catch_warnings(): warnings.simplefilter('ignore', RemovedInDjango20Warning) output = render('unordered_list03', {'a': ['x>', [[mark_safe('<y'), []]]]}) self.assertEqual(output, '\t<li>x&gt;\n\t<ul>\n\t\t<li><y</li>\n\t</ul>\n\t</li>') @setup({'unordered_list04': '{% autoescape off %}{{ a|unordered_list }}{% endautoescape %}'}) def test_unordered_list04(self): with warnings.catch_warnings(): warnings.simplefilter('ignore', RemovedInDjango20Warning) output = render('unordered_list04', {'a': ['x>', [[mark_safe('<y'), []]]]}) self.assertEqual(output, '\t<li>x>\n\t<ul>\n\t\t<li><y</li>\n\t</ul>\n\t</li>') @setup({'unordered_list05': '{% autoescape off %}{{ a|unordered_list }}{% endautoescape %}'}) def test_unordered_list05(self): with warnings.catch_warnings(): warnings.simplefilter('ignore', RemovedInDjango20Warning) output = render('unordered_list05', {'a': ['x>', [['<y', []]]]}) self.assertEqual(output, '\t<li>x>\n\t<ul>\n\t\t<li><y</li>\n\t</ul>\n\t</li>')
50.434211
97
0.60527
3,628
0.946517
0
0
3,470
0.905296
0
0
1,540
0.401774
73efefef974776a64a4da11b84a452736ff6369e
5,218
py
Python
models/train_classifier.py
jcardenas14/Disaster-Response
303cbbc9098e3e1d163e8a6a7bc4bcdc8f134395
[ "MIT" ]
null
null
null
models/train_classifier.py
jcardenas14/Disaster-Response
303cbbc9098e3e1d163e8a6a7bc4bcdc8f134395
[ "MIT" ]
null
null
null
models/train_classifier.py
jcardenas14/Disaster-Response
303cbbc9098e3e1d163e8a6a7bc4bcdc8f134395
[ "MIT" ]
null
null
null
import numpy as np import nltk import re import pandas as pd import sys import pickle from sklearn.pipeline import Pipeline from sklearn.metrics import classification_report from sklearn.model_selection import train_test_split from sklearn.multioutput import MultiOutputClassifier from sklearn.ensemble import RandomForestClassifier from sklearn.feature_extraction.text import CountVectorizer, TfidfTransformer from sklearn.model_selection import GridSearchCV from sklearn.metrics import f1_score, precision_score, recall_score from nltk.tokenize import word_tokenize from nltk.stem import WordNetLemmatizer from nltk.corpus import stopwords from sqlalchemy import create_engine # download nltk libraries and stopwords nltk.download(['punkt', 'wordnet','stopwords','averaged_perceptron_tagger']) stop_words = stopwords.words('english') # function to load data def load_data(database_filepath): ''' load data from sql database given the database file path. Returns: X (DataFrame): DataFrame - each row is a message Y (DataFrame): DataFrame - each column is a category categories (list): List of category names ''' engine = create_engine('sqlite:///'+database_filepath) df = pd.read_sql_table('disaster_cleaned', con=engine) X = df['message'].values Y = df.drop(columns = ['id', 'message', 'original', 'genre']).values categories = df.drop(columns = ['id', 'message', 'original', 'genre']).columns return X, Y, categories def tokenize(text): """Returns list of processed and tokenized text given input text.""" # tokenize text and convert to lower case tokens = [tok.lower() for tok in word_tokenize(text)] # remove stop words and non alpha-numeric characters tokens = [tok for tok in tokens if tok not in stop_words and tok.isalnum()] # initialize WordNetLemmatizer object lemmatizer = WordNetLemmatizer() # create list of lemmatized tokens clean_tokens = [] for tok in tokens: clean_tok = lemmatizer.lemmatize(tok).strip() clean_tokens.append(clean_tok) return clean_tokens def build_model(): ''' Returns multi-output random forest classifier pipeline. Construct pipeline for count vectorization of input text, TF-IDF transformation, and initialization of multi-output random forest classifier. Initialize hyperparameter tuning using GridSearchCV. ''' pipeline = Pipeline([ ('vect', CountVectorizer(tokenizer=tokenize)), ('tfidf', TfidfTransformer()), ('clf', MultiOutputClassifier(RandomForestClassifier())) ]) parameters = { 'clf__estimator__n_estimators': [50, 100, 200], 'clf__estimator__min_samples_split': [2, 3, 4] } cv = GridSearchCV(pipeline, param_grid=parameters) return cv def evaluate_model(model, X_test, Y_test, category_names): ''' Returns f1 score, precision, and recall for each category. Parameters: model: trained model object X_test: DataFrame of test messages Y_test: DataFrame of test classified categories category_names: List of category names Returns: eval_df: DataFrame of f1 score, precision, and recall per category. ''' # predict on test data y_pred = model.predict(X_test) # calculate f1 score, precision, and recall f1 = [] precision = [] recall = [] for i in range(y_pred.shape[1]): f1.append(f1_score(Y_test[:,i], y_pred[:,i], average='macro', zero_division=0)) precision.append(precision_score(Y_test[:,i], y_pred[:,i], average='macro', zero_division=0)) recall.append(recall_score(Y_test[:,i], y_pred[:,i], average='macro')) eval_df = pd.DataFrame({"f1":f1, "precision":precision, "recall":recall}, index=category_names) return eval_df def save_model(model, model_filepath): """Save trained model as pickle file to given path.""" with open(model_filepath, 'wb') as file: pickle.dump(model, file) def main(): if len(sys.argv) == 3: database_filepath, model_filepath = sys.argv[1:] print('Loading data...\n DATABASE: {}'.format(database_filepath)) X, Y, category_names = load_data(database_filepath) X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.2, random_state=21) print('Building model...') model = build_model() print('Training model...') model.fit(X_train, Y_train) print('Evaluating model...') evaluate_model(model, X_test, Y_test, category_names) print('Saving model...\n MODEL: {}'.format(model_filepath)) save_model(model, model_filepath) print('Trained model saved!') else: print('Please provide the filepath of the disaster messages database '\ 'as the first argument and the filepath of the pickle file to '\ 'save the model to as the second argument. \n\nExample: python '\ 'train_classifier.py ../data/DisasterResponse.db classifier.pkl') if __name__ == '__main__': main()
33.025316
101
0.675929
0
0
0
0
0
0
0
0
2,052
0.393254
73f111cc65a7da55125e7eb4f996288413f32c34
3,850
py
Python
getauditrecords.py
muzznak/pyviyatools
58a99656e0a773370c050de191999fbc98ac5f03
[ "Apache-2.0" ]
25
2019-04-09T19:52:54.000Z
2022-03-07T02:11:58.000Z
getauditrecords.py
muzznak/pyviyatools
58a99656e0a773370c050de191999fbc98ac5f03
[ "Apache-2.0" ]
49
2018-12-13T15:53:16.000Z
2022-03-09T15:31:13.000Z
getauditrecords.py
muzznak/pyviyatools
58a99656e0a773370c050de191999fbc98ac5f03
[ "Apache-2.0" ]
25
2019-08-23T19:58:29.000Z
2022-02-24T16:14:03.000Z
#!/usr/bin/python # -*- coding: utf-8 -*- # # getauditrecords.py January 2020 # # Extract list of audit records from SAS Infrastructure Data Server using REST API. # # Examples: # # 1. Return list of audit events from all users and applications # ./getauditrecords.py # # Change History # # 10JAN2020 Comments added # # Copyright © 2018, SAS Institute Inc., Cary, NC, USA. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the License); you may not use this file except in compliance with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either # express or implied. See the License for the specific language governing permissions and limitations under the License. # # Import Python modules import json import socket import argparse, sys from sharedfunctions import callrestapi,getinputjson,simpleresults,getbaseurl,printresult # Sample reqval="/audit/entries?filter=and(eq(application,'reports'),eq(state,'success'),ge(timeStamp,'2018-11-20'),le(timeStamp,'2020-11-20T23:59:59.999Z'))&sortBy=timeStamp&limit=1000" # Parse arguments based on parameters that are passed in on the command line parser = argparse.ArgumentParser() parser.add_argument("-a","--application", help="Filter by Application or Service name",default=None) parser.add_argument("-l","--limit", help="Maximum number of records to display",default='1000') parser.add_argument("-t","--type", help="Filter by entry Type",default=None) parser.add_argument("-c","--action", help="Filter by entry Action",default=None) parser.add_argument("-s","--state", help="Filter by entry State",default=None) parser.add_argument("-u","--user", help="Filter by Username",default=None) parser.add_argument("-A","--after", help="Filter entries that are created after the specified timestamp. For example: 2020-01-03 or 2020-01-03T18:15Z",default=None) parser.add_argument("-B","--before", help="Filter entries that are created before the specified timestamp. For example: 2020-01-03 or 2020-01-03T18:15Z",default=None) parser.add_argument("-S","--sortby", help="Sort the output ascending by this field",default='timeStamp') parser.add_argument("-o","--output", help="Output Style", choices=['csv','json','simple','simplejson'],default='csv') args = parser.parse_args() appname=args.application output_style=args.output sort_order=args.sortby output_limit=args.limit username=args.user entry_type=args.type entry_action=args.action entry_state=args.state ts_after=args.after ts_before=args.before # Create list for filter conditions filtercond=[] if appname!=None: filtercond.append("eq(application,'"+appname+"')") if username!=None: filtercond.append("eq(user,'"+username+"')") if entry_type!=None: filtercond.append("eq(type,'"+entry_type+"')") if entry_action!=None: filtercond.append("eq(action,'"+entry_action+"')") if entry_state!=None: filtercond.append("eq(state,'"+entry_state+"')") if ts_after!=None: filtercond.append("ge(timeStamp,'"+ts_after+"')") if ts_before!=None: filtercond.append("le(timeStamp,'"+ts_before+"')") # Construct filter delimiter = ',' completefilter = 'and('+delimiter.join(filtercond)+')' # Set request reqtype = 'get' reqval = "/audit/entries?filter="+completefilter+"&limit="+output_limit+"&sortBy="+sort_order # Construct & print endpoint URL baseurl=getbaseurl() endpoint=baseurl+reqval # print("REST endpoint: " +endpoint) # Make REST API call, and process & print results files_result_json=callrestapi(reqval,reqtype) cols=['id','timeStamp','type','action','state','user','remoteAddress','application','description','uri'] printresult(files_result_json,output_style,cols)
43.258427
189
0.751169
0
0
0
0
0
0
0
0
2,293
0.59543
73f1a91dc045f413a69942d834270e344133624f
6,345
py
Python
async_blp/handlers.py
rockscie/async_blp
acb8777ccf2499681bde87d76ca780b61219699c
[ "MIT" ]
12
2019-08-05T16:56:54.000Z
2021-02-02T11:09:37.000Z
async_blp/handlers.py
lightning-like/async_blp
acb8777ccf2499681bde87d76ca780b61219699c
[ "MIT" ]
null
null
null
async_blp/handlers.py
lightning-like/async_blp
acb8777ccf2499681bde87d76ca780b61219699c
[ "MIT" ]
5
2019-12-08T15:43:13.000Z
2021-11-14T08:38:07.000Z
""" File contains handler for ReferenceDataRequest """ import asyncio import uuid from typing import Dict from typing import List from .base_handler import HandlerBase from .base_request import RequestBase from .requests import Subscription from .utils.blp_name import RESPONSE_ERROR from .utils.log import get_logger # pylint: disable=ungrouped-imports try: import blpapi except ImportError: from async_blp.utils import env_test as blpapi LOGGER = get_logger() class RequestHandler(HandlerBase): """ Handler gets response events from Bloomberg from other thread, then puts it to request queue. Each handler opens its own session Sends requests and processes incoming responses. """ def __init__(self, session_options: blpapi.SessionOptions, loop: asyncio.AbstractEventLoop = None): super().__init__(session_options, loop) local_methods = { blpapi.Event.RESPONSE: self._response_handler, blpapi.Event.PARTIAL_RESPONSE: self._partial_response_handler, # according to BLPAPI-Core-Developer-Guide section 10.1, # REQUEST_STATUS event is send only with RequestFailure messages blpapi.Event.REQUEST_STATUS: self._raise_exception, } self._method_map.update(local_methods) async def send_requests(self, requests: List[RequestBase]): """ Send requests to Bloomberg Wait until session is started and required service is opened, then send requests """ await self.session_started.wait() for request in requests: corr_id = blpapi.CorrelationId(uuid.uuid4()) self._current_requests[corr_id] = request # wait until the necessary service is opened service = await self._get_service(request.service_name) blp_request = request.create(service) self._session.sendRequest(blp_request, correlationId=corr_id) LOGGER.debug('%s: request send:\n%s', self.__class__.__name__, blp_request) @classmethod def _is_error_msg(cls, msg: blpapi.Message) -> bool: """ Return True if msg contains responseError element. It indicates errors such as lost connection, request limit reached etc. """ if msg.hasElement(RESPONSE_ERROR): LOGGER.debug('%s: error message received:\n%s', cls.__name__, msg) return True return False def _partial_response_handler(self, event_: blpapi.Event): """ Process blpapi.Event.PARTIAL_RESPONSE events. Send all valid messages from the given event to the requests with the corresponding correlation id """ for msg in event_: if self._is_error_msg(msg): self._close_requests(msg.correlationIds()) continue for cor_id in msg.correlationIds(): request = self._current_requests[cor_id] request.send_queue_message(msg) def _response_handler(self, event_: blpapi.Event): """ Process blpapi.Event.RESPONSE events. This is the last event for the corresponding requests, therefore after processing all messages from the event, None will be send to the corresponding requests. """ self._partial_response_handler(event_) for msg in event_: self._close_requests(msg.correlationIds()) class SubscriptionHandler(HandlerBase): """ Handler gets response events from Bloomberg from other thread, then puts it to request queue. Each handler opens its own session Used for handling subscription requests and responses """ def __init__(self, session_options: blpapi.SessionOptions, loop: asyncio.AbstractEventLoop = None): super().__init__(session_options, loop) # only for typing self._current_requests: Dict[blpapi.CorrelationId, Subscription] = {} local_methods = { blpapi.Event.SUBSCRIPTION_STATUS: self._subscriber_status_handler, blpapi.Event.SUBSCRIPTION_DATA: self._subscriber_data_handler, } self._method_map.update(local_methods) def _subscriber_data_handler(self, event_: blpapi.Event): """ Redirect data to the request queue. """ for msg in event_: for cor_id in msg.correlationIds(): self._current_requests[cor_id].send_queue_message(msg) def _subscriber_status_handler(self, event_: blpapi.Event): """ Raise exception if something goes wrong """ for msg in event_: if msg.asElement().name() not in ("SubscriptionStarted", "SubscriptionStreamsActivated", ): self._raise_exception(msg) async def subscribe(self, subscriptions: List[Subscription]): """ Send subscriptions to Bloomberg Wait until session is started, then send subscription """ await self.session_started.wait() for subscription in subscriptions: corr_id = blpapi.CorrelationId(str(uuid.uuid4())) self._current_requests[corr_id] = subscription blp_subscription = subscription.create_subscription(corr_id) self._session.subscribe(blp_subscription) LOGGER.debug('%s: subscription send:\n%s', self.__class__.__name__, blp_subscription) async def read_subscribers(self, security_id: str = None): """ You can check what are already come from Bloomberg """ if security_id is None: tasks = [asyncio.create_task(request.process()) for request in self._current_requests.values()] else: tasks = [asyncio.create_task(request.process()) for request in self._current_requests.values() if security_id in request.securities] requests_result = await asyncio.gather(*tasks) return requests_result
33.571429
78
0.628684
5,865
0.92435
0
0
450
0.070922
2,054
0.323719
1,851
0.291726
73f2bc3599ec98d3aba14c518c543be223219c33
4,759
py
Python
cytochrome-b6f-nn-np-model-kinetics.py
vstadnyt/cytochrome
546aa450fa6dc2758b079aba258e3572dd24d60c
[ "MIT" ]
null
null
null
cytochrome-b6f-nn-np-model-kinetics.py
vstadnyt/cytochrome
546aa450fa6dc2758b079aba258e3572dd24d60c
[ "MIT" ]
null
null
null
cytochrome-b6f-nn-np-model-kinetics.py
vstadnyt/cytochrome
546aa450fa6dc2758b079aba258e3572dd24d60c
[ "MIT" ]
1
2021-09-28T17:17:48.000Z
2021-09-28T17:17:48.000Z
import cytochrome_lib #This is a cytochrome library import matplotlib.pyplot as plt import numpy as np version = "Last update: Aug 8, 2017" desription = "This code calculates population distribution in the cytochrome b6f protein and plots kinetic profiles for two different models: \n'nn' and 'np' models \n The outputs are: \n Figure 1: \n Figure 2: The ppulation distributions for different oxydations states of the cytochrome proteins. \n Figure 3: the resulting absorbance and circular dichroism kinetics for two different models" print desription print version #the eclusions_lst is a list of hemes that are taken into account during calculations (1 - include; 0 - exclude); #There are 8 values for 4 hemes and 2 dipoles per heme: [Qx_p1, Qy_p1, Qx_n1, Qy_n1, Qx_p2, Qy_p2, Qx_n2, Qy_n2] ##This is a main part of a code #This part creates two lists of several instances of a cyt class (see cytochrome library) with different input files exclusions_lst = [] exclusions_lst.append([0,0,0,0,0,0,0,0]) exclusions_lst.append([0,0,1,1,0,0,0,0]) exclusions_lst.append([1,1,1,1,0,0,0,0]) exclusions_lst.append([1,1,1,1,0,0,1,1]) exclusions_lst.append([1,1,1,1,1,1,1,1]) cyt_b6f_np = [] for excl in exclusions_lst: cyt_b6f_np.append(cytochrome_lib.cyt('cytochrome_b6f.txt',excl)) for i in range(len(exclusions_lst)): cyt_b6f_np[i].read_structure_file() cyt_b6f_np[i].Hamiltonian() cyt_b6f_np[i].D_and_R_strength() cyt_b6f_np[i].spectra_plot() exclusions_lst = [] exclusions_lst.append([0,0,0,0,0,0,0,0]) exclusions_lst.append([0,0,1,1,0,0,0,0]) exclusions_lst.append([0,0,1,1,0,0,1,1]) exclusions_lst.append([1,1,1,1,0,0,1,1]) exclusions_lst.append([1,1,1,1,1,1,1,1]) cyt_b6f_nn = [] for excl in exclusions_lst: cyt_b6f_nn.append(cytochrome_lib.cyt('cytochrome_b6f.txt',excl)) for i in range(len(exclusions_lst)): cyt_b6f_nn[i].read_structure_file() cyt_b6f_nn[i].Hamiltonian() cyt_b6f_nn[i].D_and_R_strength() cyt_b6f_nn[i].spectra_plot() x_range_nm = cyt_b6f_nn[0].x_range_nm plt.figure(1) plt.ion() plt.subplot(2,2,1) for i in range(len(exclusions_lst)): plt.plot(x_range_nm,np.sum(cyt_b6f_nn[i].specR,axis = 0),linewidth=2) #plt.plot(x_range_nm,np.sum(specR_full,axis = 0),linewidth=5) #plt.legend(['n1p1','n1n2','n1p2','p1n2','p1p2','n2p2']); plt.title('cytochrome b6f np model') plt.subplot(2,2,2) for i in range(len(exclusions_lst)): plt.plot(x_range_nm,np.sum(cyt_b6f_np[i].specR,axis = 0),linewidth=2) #plt.plot(x_range_nm,np.sum(specR_full,axis = 0),linewidth=5) plt.title('cytochrome b6f nn model') plt.subplot(2,2,3) for i in range(len(exclusions_lst)): plt.plot(x_range_nm,np.sum(cyt_b6f_nn[i].specD,axis = 0),linewidth=2) #plt.plot(x_range_nm,np.sum(specR_full,axis = 0),linewidth=5) plt.subplot(2,2,4) for i in range(len(exclusions_lst)): plt.plot(x_range_nm,np.sum(cyt_b6f_np[i].specD,axis = 0),linewidth=2) plt.show() length = 10000 population = cytochrome_lib.kinetics_solve(np.array([1,1,1,1,0,0,0]),length) plt.figure(2) plt.ion() for i in range(5): plt.plot(range(length),population[i,:]) plt.title("Population distribution of proteins in different oxydation states") plt.legend(['0e- state (fully oxydized)','1e- state','2e- state','3e- state','4e- state(fully reduced)']) plt.show() Absorbance_lst_b6f_nn = [] Circular_Dichroism_lst_b6f_nn = [] for i in range(5): Absorbance_lst_b6f_nn.append(population[i,:]*np.sum(np.sum(cyt_b6f_nn[i].specD,axis = 0))) Circular_Dichroism_lst_b6f_nn.append(population[i,:]*np.sum(np.abs(np.sum(cyt_b6f_nn[i].specR,axis = 0)))) Absorbance_b6f_nn = np.asarray(Absorbance_lst_b6f_nn) Circular_Dichroism_b6f_nn = np.asarray(Circular_Dichroism_lst_b6f_nn) Absorbance_lst_b6f_np = [] Circular_Dichroism_lst_b6f_np = [] for i in range(5): Absorbance_lst_b6f_np.append(population[i,:]*np.sum(np.sum(cyt_b6f_np[i].specD,axis = 0))) Circular_Dichroism_lst_b6f_np.append(population[i,:]*np.sum(np.abs(np.sum(cyt_b6f_np[i].specR,axis = 0)))) Absorbance_b6f_np = np.asarray(Absorbance_lst_b6f_np) Circular_Dichroism_b6f_np = np.asarray(Circular_Dichroism_lst_b6f_np) plt.figure(3) plt.ion() plt.title('cytochrome b6f nn and np models') plt.plot(range(length),np.sum(Absorbance_b6f_nn, axis = 0)/np.max(np.sum(Absorbance_b6f_nn, axis = 0))) plt.plot(range(length),np.sum(Absorbance_b6f_np, axis = 0)/np.max(np.sum(Absorbance_b6f_np, axis = 0))) plt.plot(range(length),np.sum(Circular_Dichroism_b6f_nn, axis = 0)/np.max(np.sum(Circular_Dichroism_b6f_nn, axis = 0))) plt.plot(range(length),np.sum(Circular_Dichroism_b6f_np, axis = 0)/np.max(np.sum(Circular_Dichroism_b6f_np, axis = 0))) plt.legend(['OD_nn','OD_np','CD_nn','CD_np']) plt.show() print "\nCalculations are finished. Please, see figures 1-3"
36.328244
394
0.741963
0
0
0
0
0
0
0
0
1,408
0.29586
73f3505bc64c937e900a105ef529d5195af953f8
10,062
py
Python
moderation/models.py
raja-creoit/django-moderation
627afeeeb272d8d7e8f4893e8418d8942ccb80ba
[ "BSD-3-Clause" ]
null
null
null
moderation/models.py
raja-creoit/django-moderation
627afeeeb272d8d7e8f4893e8418d8942ccb80ba
[ "BSD-3-Clause" ]
1
2020-01-31T20:37:53.000Z
2020-01-31T20:37:53.000Z
moderation/models.py
raja-creoit/django-moderation
627afeeeb272d8d7e8f4893e8418d8942ccb80ba
[ "BSD-3-Clause" ]
null
null
null
from __future__ import unicode_literals from django.conf import settings try: from django.contrib.contenttypes.fields import GenericForeignKey except ImportError: from django.contrib.contenttypes.generic import GenericForeignKey from django.contrib.contenttypes.models import ContentType from django.db import models, transaction from django.utils.translation import ugettext_lazy as _ from model_utils import Choices from . import moderation from .constants import (MODERATION_READY_STATE, MODERATION_DRAFT_STATE, MODERATION_STATUS_REJECTED, MODERATION_STATUS_APPROVED, MODERATION_STATUS_PENDING) from .diff import get_changes_between_models from .fields import SerializedObjectField from .managers import ModeratedObjectManager from .signals import post_moderation, pre_moderation from .utils import django_19 import datetime MODERATION_STATES = Choices( (MODERATION_READY_STATE, 'ready', _('Ready for moderation')), (MODERATION_DRAFT_STATE, 'draft', _('Draft')), ) STATUS_CHOICES = Choices( (MODERATION_STATUS_REJECTED, 'rejected', _("Rejected")), (MODERATION_STATUS_APPROVED, 'approved', _("Approved")), (MODERATION_STATUS_PENDING, 'pending', _("Pending")), ) class ModeratedObject(models.Model): content_type = models.ForeignKey(ContentType, null=True, blank=True, on_delete=models.SET_NULL, editable=False) object_pk = models.PositiveIntegerField(null=True, blank=True, editable=False, db_index=True) content_object = GenericForeignKey(ct_field="content_type", fk_field="object_pk") created = models.DateTimeField(auto_now_add=True, editable=False) updated = models.DateTimeField(auto_now=True) state = models.SmallIntegerField(choices=MODERATION_STATES, default=MODERATION_DRAFT_STATE, editable=False) status = models.SmallIntegerField( choices=STATUS_CHOICES, default=MODERATION_STATUS_PENDING, editable=False) by = models.ForeignKey( getattr(settings, 'AUTH_USER_MODEL', 'auth.User'), blank=True, null=True, editable=False, on_delete=models.SET_NULL, related_name='moderated_objects') on = models.DateTimeField(editable=False, blank=True, null=True) reason = models.TextField(blank=True, null=True) changed_object = SerializedObjectField(serialize_format='json', editable=False) changed_by = models.ForeignKey( getattr(settings, 'AUTH_USER_MODEL', 'auth.User'), blank=True, null=True, editable=True, on_delete=models.SET_NULL, related_name='changed_by_set') objects = ModeratedObjectManager() content_type.content_type_filter = True def __init__(self, *args, **kwargs): self.instance = kwargs.get('content_object') super(ModeratedObject, self).__init__(*args, **kwargs) def __unicode__(self): return "%s" % self.changed_object def __str__(self): return "%s" % self.changed_object def save(self, *args, **kwargs): if self.instance: self.changed_object = self.instance super(ModeratedObject, self).save(*args, **kwargs) class Meta: verbose_name = _('Moderated Object') verbose_name_plural = _('Moderated Objects') ordering = ['status', 'created'] def automoderate(self, user=None): '''Auto moderate object for given user. Returns status of moderation. ''' if user is None: user = self.changed_by else: self.changed_by = user # No need to save here, both reject() and approve() will save us. # Just save below if the moderation result is PENDING. if self.moderator.visible_until_rejected: changed_object = self.get_object_for_this_type() else: changed_object = self.changed_object status, reason = self._get_moderation_status_and_reason( changed_object, user) if status == MODERATION_STATUS_REJECTED: self.reject(by=self.by, reason=reason) elif status == MODERATION_STATUS_APPROVED: self.approve(by=self.by, reason=reason) else: # MODERATION_STATUS_PENDING self.save() return status def _get_moderation_status_and_reason(self, obj, user): ''' Returns tuple of moderation status and reason for auto moderation ''' reason = self.moderator.is_auto_reject(obj, user) if reason: return MODERATION_STATUS_REJECTED, reason else: reason = self.moderator.is_auto_approve(obj, user) if reason: return MODERATION_STATUS_APPROVED, reason return MODERATION_STATUS_PENDING, None def get_object_for_this_type(self): pk = self.object_pk obj = self.content_type.model_class()._default_unmoderated_manager.get(pk=pk) return obj def get_absolute_url(self): if hasattr(self.changed_object, 'get_absolute_url'): return self.changed_object.get_absolute_url() return None def get_admin_moderate_url(self): if django_19(): return "/admin/moderation/moderatedobject/%s/change/" % self.pk else: return "/admin/moderation/moderatedobject/%s/" % self.pk @property def moderator(self): model_class = self.content_type.model_class() return moderation.get_moderator(model_class) def _send_signals_and_moderate(self, new_status, by, reason): pre_moderation.send(sender=self.changed_object.__class__, instance=self.changed_object, status=new_status) self._moderate(new_status, by, reason) post_moderation.send(sender=self.content_type.model_class(), instance=self.content_object, status=new_status) def _moderate(self, new_status, by, reason): # See register.py pre_save_handler() for the case where the model is # reset to its old values, and the new values are stored in the # ModeratedObject. In such cases, on approval, we should restore the # changes to the base object by saving the one attached to the # ModeratedObject. if (self.status == MODERATION_STATUS_PENDING and new_status == MODERATION_STATUS_APPROVED and not self.moderator.visible_until_rejected): base_object = self.changed_object base_object_force_save = True else: # The model in the database contains the most recent data already, # or we're not ready to approve the changes stored in # ModeratedObject. obj_class = self.changed_object.__class__ pk = self.changed_object.pk base_object = obj_class._default_unmoderated_manager.get(pk=pk) base_object_force_save = False if new_status == MODERATION_STATUS_APPROVED: # This version is now approved, and will be reverted to if # future changes are rejected by a moderator. self.state = MODERATION_READY_STATE self.status = new_status self.on = datetime.datetime.now() self.by = by self.reason = reason self.save() if self.moderator.visibility_column: old_visible = getattr(base_object, self.moderator.visibility_column) if new_status == MODERATION_STATUS_APPROVED: new_visible = True elif new_status == MODERATION_STATUS_REJECTED: new_visible = False else: # MODERATION_STATUS_PENDING new_visible = self.moderator.visible_until_rejected if new_visible != old_visible: setattr(base_object, self.moderator.visibility_column, new_visible) base_object_force_save = True if base_object_force_save: # avoid triggering pre/post_save_handler with transaction.atomic(using=None, savepoint=False): base_object.save_base(raw=True) # The _save_parents call is required for models with an # inherited visibility_column. base_object._save_parents(base_object.__class__, None, None) if self.changed_by: self.moderator.inform_user(self.content_object, self.changed_by) def has_object_been_changed(self, original_obj, only_excluded=False, update_fields=None): excludes = includes = None if only_excluded: if update_fields: includes = list(update_fields & set(self.moderator.fields_exclude)) else: includes = self.moderator.fields_exclude else: if update_fields: includes = list(update_fields - set(self.moderator.fields_exclude)) else: excludes = self.moderator.fields_exclude changes = get_changes_between_models(original_obj, self.changed_object, excludes, includes) for change in changes: left_change, right_change = changes[change].change if left_change != right_change: return True return False def approve(self, by=None, reason=None): self._send_signals_and_moderate(MODERATION_STATUS_APPROVED, by, reason) def reject(self, by=None, reason=None): self._send_signals_and_moderate(MODERATION_STATUS_REJECTED, by, reason)
38.7
93
0.633174
8,764
0.871
0
0
142
0.014113
0
0
1,401
0.139237
73f3c138d83e22bb6c02d12e03c089fb61651fa0
3,684
py
Python
hygnd/munge.py
thodson-usgs/hygnd
04d3596f79350ba19e08851e494c8feb7d68c0e0
[ "MIT" ]
2
2018-07-27T22:29:27.000Z
2020-03-04T18:01:47.000Z
hygnd/munge.py
thodson-usgs/hygnd
04d3596f79350ba19e08851e494c8feb7d68c0e0
[ "MIT" ]
null
null
null
hygnd/munge.py
thodson-usgs/hygnd
04d3596f79350ba19e08851e494c8feb7d68c0e0
[ "MIT" ]
null
null
null
from math import floor import pandas as pd def filter_param_cd(df, code): """Return df filtered by approved data """ approved_df = df.copy() params = [param.strip('_cd') for param in df.columns if param.endswith('_cd')] for param in params: #filter out records where param_cd doesn't contain 'A' for approved. approved_df[param].where(approved_df[param + '_cd'].str.contains(code), inplace=True) # drop any rows where all params are nan and return #return approved_df.dropna(axis=0, how='all', subset=params) return approved_df def interp_to_freq(df, freq=15, interp_limit=120, fields=None): """ WARNING: for now this only works on one site at a time, Also must review this function further Args: df (DataFrame): a dataframe with a datetime index freq (int): frequency in minutes interp_limit (int): max time to interpolate over Returns: DataFrame """ #XXX assumes no? multiindex df = df.copy() if type(df) == pd.core.series.Series: df = df.to_frame() #df.reset_index(level=0, inplace=True) limit = floor(interp_limit/freq) freq_str = '{}min'.format(freq) start = df.index[0] end = df.index[-1] new_index = pd.date_range(start=start, end=end, periods=None, freq=freq_str) #new_index = new_index.union(df.index) new_df = pd.DataFrame(index=new_index) new_df = new_df.merge(df, how='outer', left_index=True, right_index=True) #new_df = pd.merge(df, new_df, how='outer', left_index=True, right_index=True) #this resampling eould be more efficient out_df = new_df.interpolate(method='time',limit=limit, limit_direction='both').asfreq(freq_str) out_df = out_df.resample('{}T'.format(freq)).asfreq() out_df.index.name = 'datetime' return out_df #out_df.set_index('site_no', append=True, inplace=True) #return out_df.reorder_levels(['site_no','datetime']) def fill_iv_w_dv(iv_df, dv_df, freq='15min', col='00060'): """Fill gaps in an instantaneous discharge record with daily average estimates Args: iv_df (DataFrame): instantaneous discharge record dv_df (DataFrame): Average daily discharge record. freq (int): frequency of iv record Returns: DataFrame: filled-in discharge record """ #double brackets makes this a dataframe dv_df.rename(axis='columns', mapper={'00060_Mean':'00060'}, inplace=True) #limit ffill to one day or 96 samples at 15min intervals updating_field = dv_df[[col]].asfreq(freq).ffill(limit=96) iv_df.update(updating_field, overwrite=False) #return update_merge(iv_df, updating_field, na_only=True) return iv_df #This function may be deprecated once pandas.update support joins besides left. def update_merge(left, right, na_only=False, on=None): """Performs a combination Args: left (DataFrame): original data right (DataFrame): updated data na_only (bool): if True, only update na values TODO: na_only """ df = left.merge(right, how='outer', left_index=True, right_index=True) # check for column overlap and resolve update for column in df.columns: #if duplicated column, use the value from right if column[-2:] == '_x': name = column[:-2] # find column name if na_only: df[name] = df[name+'_x'].fillna(df[name+'_y']) else: df[name+'_x'].update(df[name+'_y']) df[name] = df[name+'_x'] df.drop([name + '_x', name + '_y'], axis=1, inplace=True) return df
32.034783
99
0.646851
0
0
0
0
0
0
0
0
1,849
0.5019
73f42c1536b7cbae9884bce03cfe3067637e0ad1
3,681
py
Python
get_stock_data.py
jeremychonggg/Alpaca-Trading-Bot
82df00e327e2e55f5a0cdf85cd950c49c59bf669
[ "MIT" ]
null
null
null
get_stock_data.py
jeremychonggg/Alpaca-Trading-Bot
82df00e327e2e55f5a0cdf85cd950c49c59bf669
[ "MIT" ]
null
null
null
get_stock_data.py
jeremychonggg/Alpaca-Trading-Bot
82df00e327e2e55f5a0cdf85cd950c49c59bf669
[ "MIT" ]
null
null
null
import json import requests import pandas as pd import websocket # Get Alpaca API Credential endpoint = "https://data.alpaca.markets/v2" headers = json.loads(open("key.txt", 'r').read()) def hist_data(symbols, start="2021-01-01", timeframe="1Hour", limit=50, end=""): """ returns historical bar data for a string of symbols separated by comma symbols should be in a string format separated by comma e.g. symbols = "MSFT,AMZN,GOOG" """ df_data_tickers = {} for symbol in symbols: bar_url = endpoint + "/stocks/{}/bars".format(symbol) params = {"start":start, "limit" :limit, "timeframe":timeframe} data = {"bars": [], "next_page_token":'', "symbol":symbol} while True: r = requests.get(bar_url, headers = headers, params = params) r = r.json() if r["next_page_token"] == None: data["bars"]+=r["bars"] break else: params["page_token"] = r["next_page_token"] data["bars"]+=r["bars"] data["next_page_token"] = r["next_page_token"] df_data = pd.DataFrame(data["bars"]) df_data.rename({"t":"time","o":"open","h":"high","l":"low","c":"close","v":"volume"},axis=1, inplace=True) df_data["time"] = pd.to_datetime(df_data["time"]) df_data.set_index("time",inplace=True) df_data.index = df_data.index.tz_convert("America/Indiana/Petersburg") df_data_tickers[symbol] = df_data return df_data_tickers def get_historical_data(ticker_list, start_date, end_date=None, limit=10000, timeframe="1Day"): """ returns historical bar data for a string of symbols separated by comma symbols should be in a string format separated by comma e.g. symbols = "MSFT,AMZN,GOOG" * timeframe - Timeframe for the aggregation. Available values are: `1Min`, `1Hour`, `1Day` https://alpaca.markets/docs/api-documentation/api-v2/market-data/alpaca-data-api-v2/historical/#bars """ df_data_tickers = {} for symbol in ticker_list: bar_url = endpoint + "/stocks/{}/bars".format(symbol) params = {"start":start_date, "end": end_date, "limit": limit, "timeframe":timeframe} data = {"bars": [], "next_page_token": '', "symbol": symbol} # r = requests.get(bar_url, headers=headers, params=params) # r = r.json() # data["bars"] += r["bars"] while True: r = requests.get(bar_url, headers=headers, params=params) r = r.json() try: if r["next_page_token"] == None: data["bars"] += r["bars"] break else: params["page_token"] = r["next_page_token"] data["bars"] += r["bars"] data["next_page_token"] = r["next_page_token"] except: break # Create a DataFrame for the data["bars"] of each stock df_data = pd.DataFrame(data["bars"]) df_data.rename({"t":"time","o":"open","h":"high","l":"low","c":"close","v":"volume"},axis=1, inplace=True) try: df_data["time"] = pd.to_datetime(df_data["time"]) df_data.set_index("time",inplace=True) df_data.index = df_data.index.tz_convert("America/New_York") df_data_tickers[symbol] = df_data except: pass print("---- Created for [{}]".format(symbol)) return df_data_tickers
39.159574
115
0.551481
0
0
0
0
0
0
0
0
1,421
0.386036
73f83bfdf1bdf3cc0ae0369940411280ceef339a
4,420
py
Python
yaps/server/subscription.py
victorhook/vqtt
f79f9826ce91bf77a75047c22d7a729d539f83f9
[ "MIT" ]
null
null
null
yaps/server/subscription.py
victorhook/vqtt
f79f9826ce91bf77a75047c22d7a729d539f83f9
[ "MIT" ]
null
null
null
yaps/server/subscription.py
victorhook/vqtt
f79f9826ce91bf77a75047c22d7a729d539f83f9
[ "MIT" ]
1
2021-03-02T19:18:30.000Z
2021-03-02T19:18:30.000Z
import asyncio from yaps.api import protocol from yaps.utils.log import Log SLEEP_SLOT_TIME = 1 # In seconds. class State: PING_PONG = 1 PING_PONG_1_MISS = 2 PING_PONG_2_MISS = 3 class Subscription: """ Abstraction for handling a subscription. This class has utilites that lets it increment a counter and indicate if it has timed out or not. It can also send new data to the subscriber. """ def __init__(self, topic: str, reader: asyncio.StreamReader, writer: asyncio.StreamWriter): self._time = 0 self._state = State.PING_PONG self._reader = reader self._writer = writer self._alive = True self._set_identifier(topic) async def start_idle(self) -> None: """ Sets the task into idle sleep, count up a timer. When the timer reaches timeout, timed_out() will return True. """ while self._alive: # Go idle so other tasks can run. await asyncio.sleep(SLEEP_SLOT_TIME) # Update timer. self._time += SLEEP_SLOT_TIME self.die() def _next_state(self) -> bool: """ Advances to the next state. Returns true if the subscription should be kept alive, and false if it should die. """ alive = True if self._state == State.PING_PONG: self._state = State.PING_PONG_1_MISS elif self._state == State.PING_PONG_1_MISS: self._state = State.PING_PONG_2_MISS elif self._state == State.PING_PONG_2_MISS: alive = False return alive async def ping(self) -> None: """ Pings the subscriber and waits for a PONG back. If the subscriber doesn't pong back, the subscription is closed. """ await protocol.send_packet(self._writer, protocol.Commands.PING) Log.debug(f'Ping {self}') pong = await protocol.read_packet(self._reader) if await protocol.async_cmd_ok(pong, protocol.Commands.PONG): # If PONG, reset timer. self._time = 0 else: Log.err(f'Bad ping! {self._alive} -> {self._state}') # If no PONG, advance to next state, and potentially close. alive = self._next_state() if not alive: self.die() async def new_data(self, message: str) -> bool: """ Sends the new data to the subscriber. Returns true if succesful, false if not. """ send_ok = True try: # Send new data to subscriber await protocol.send_packet(self._writer, protocol.Commands.NEW_DATA, data=message.encode('utf-8')) # Wait for SUBSCRIBE_ACK response = await protocol.read_packet(self._reader) except (BrokenPipeError, ConnectionResetError): send_ok = False if send_ok: # If no ACK is recieved, close the connection. if not await protocol.async_cmd_ok(response, protocol.Commands.NEW_DATA_ACK, self._writer): send_ok = False if not send_ok: self.die() # Reset timer. self._time = 0 return send_ok def timed_out(self): return self._time > protocol.PING_PONG_TIMEOUT def is_dead(self) -> bool: return not self._alive def die(self) -> None: if not self._alive: return self._alive = False Log.debug(f'Subscription died {self}') def _set_identifier(self, topic: str) -> None: """ Sets the identification of the subscription. This consists of: 1. Topic 2. File descripter number from reader/writer stream. """ self.topic = topic try: self.fd = self._writer.get_extra_info('socket').fileno() except AttributeError: # Streams are incorrect Log.err(f'Incorrect streams to subscription to {self.topic}') self.fd = None def __repr__(self): return f'| ID:{self.fd} Topic: {self.topic} |' def __lt__(self, other): return self._time - other._time
31.126761
78
0.563801
4,293
0.971267
0
0
0
0
2,156
0.487783
1,394
0.315385
73fb16f86099e7cc34882ec8e6eb8ce6cb617a74
487
py
Python
processing/1_comset.py
acleclair/ICPC2020_GNN
a8b03de597e8f25c17503c3834c7956ecc8f2247
[ "MIT" ]
58
2020-04-09T20:29:34.000Z
2022-03-28T11:38:40.000Z
processing/1_comset.py
acleclair/ICPC2020_GNN
a8b03de597e8f25c17503c3834c7956ecc8f2247
[ "MIT" ]
11
2020-04-11T14:19:01.000Z
2021-11-27T07:38:41.000Z
processing/1_comset.py
acleclair/ICPC2020_GNN
a8b03de597e8f25c17503c3834c7956ecc8f2247
[ "MIT" ]
14
2020-06-15T14:32:03.000Z
2022-01-23T10:33:15.000Z
import pickle bad_fid = pickle.load(open('autogenfid.pkl', 'rb')) comdata = 'com_pp.txt' good_fid = [] outfile = './output/dataset.coms' fo = open(outfile, 'w') for line in open(comdata): tmp = line.split(',') fid = int(tmp[0].strip()) if bad_fid[fid]: continue com = tmp[1].strip() com = com.split() if len(com) > 13 or len(com) < 3: continue com = ' '.join(com) fo.write('{}, <s> {} </s>\n'.format(fid, com)) fo.close()
20.291667
51
0.546201
0
0
0
0
0
0
0
0
83
0.170431
73fb988d86cc41ea1f693ac556af57905fca2bc3
22,588
py
Python
shibuya/cubesym.py
Parcly-Taxel/Shibuya
aa79b47d2a5fc859acb9645ebd635578fe2f145b
[ "MIT" ]
null
null
null
shibuya/cubesym.py
Parcly-Taxel/Shibuya
aa79b47d2a5fc859acb9645ebd635578fe2f145b
[ "MIT" ]
null
null
null
shibuya/cubesym.py
Parcly-Taxel/Shibuya
aa79b47d2a5fc859acb9645ebd635578fe2f145b
[ "MIT" ]
null
null
null
""" Cubic symmetric graphs. Most of the embeddings realised here were taken from MathWorld. """ from mpmath import * from functools import reduce from shibuya.generators import cu, star_radius, ring_edges, lcf_edges from shibuya.generators import all_unit_distances, circumcentre from shibuya.generators import fixparams_unitdist, symmetrise # F4A = tetrahedron() or complete(4) (not unit-distance) # F6A = circulant(6, (1, 3)) or mobiusladder(3) (not unit-distance) # F8A = genpetersen("cube") # F10A = genpetersen("petersen") def heawood(): """Return the symmetric unit-distance embedding of the Heawood graph (F14A) tucked away in Mathematica's GraphData.""" P = [10485760, 78643200, 263192576, 543686656, 812777472, 942080000, 843317248, 552468480, 208879616, -31170560, -99213312, -76779520, -32795648, 7878144, 17269760, 16256512, 11392032, 4836080, 3014064, 361320, 69498, -165789] v0 = findroot(lambda v: polyval(P, v), 0.275) p0 = mpc(0.5, v0) p1 = mpc(sqrt(1-(v0+0.5)**2)-0.5, -0.5) p2 = cu(p0, -p0) p3 = cu(p1, -p1) p4 = cu(p2, p3) vertices = [mpc(s*re(v), im(v)) for s in (1, -1) for v in (p0, -p0, p1, -p1, p2, p3, p4)] return all_unit_distances(vertices) # F16A = genpetersen("mobiuskantor") def pappus(): """Return a unit-distance embedding of the Pappus graph (F18A).""" u6 = unitroots(6) r0 = [u*0.5j for u in u6] z1 = cu(r0[2], r0[0]) r1 = [z1*u for u in u6] z2 = cu(0, z1) r2 = [z2*u for u in u6] vertices = r0 + r1 + r2 edges = ring_edges(6, ((0, 0, 3), (0, 1, 0), (0, 1, -2), (2, 2, 1), (1, 2, 0))) return (vertices, edges) # F20A = genpetersen("dodecahedron") # F20B = genpetersen("desargues") # F24A = genpetersen("nauru") def f26a_vertices(t): A, B, C = unitroots(6)[4:1:-1] p2 = mpc(t, sqrt(1-t**2)) / 2 p1 = p2 * root(1, 6, 1) p3 = p2 * root(1, 6, 5) p4 = cu(p1, B) p5 = cu(p2, C) p6 = cu(p3, -A) p7 = cu(p1, -p6) p8 = cu(p4, p2) p9 = cu(p5, p3) p10 = cu(-p8, p7) V = (A, B, C, p1, p2, p3, p4, p5, p6, p7, p8, p9, p10) return ([v*s for v in V for s in (1, -1)], abs(p9 - p10) - 1) def f26a(): """Return a unit-distance embedding of the F26A graph.""" t0 = findroot(lambda t: f26a_vertices(t)[1], 0.2) return all_unit_distances(f26a_vertices(t0)[0]) def coxeter(): """Return a unit-distance embedding of the Coxeter graph (F28A).""" u7 = unitroots(7) s1 = star_radius(7) s2 = star_radius(7, 2) s3 = star_radius(7, 3) r0 = [-s2*u for u in u7] r1 = [s3*u for u in u7] z2 = cu(r0[0], r1[3]) r2 = [z2*u for u in u7] z3 = cu(0, z2, s1, 1) r3 = [z3*u for u in u7] vertices = r0 + r1 + r2 + r3 edges = ring_edges(7, ((0, 0, 2), (1, 1, 3), (3, 3, 1), (0, 2, 0), (1, 2, -3), (2, 3, 0))) return (vertices, edges) @fixparams_unitdist(-1.76, -0.76) def tutte8(a, b): z1 = 1.69j z2 = z1 + expj(a) z3 = z2 + sign(-z2) z4 = cu(z1*root(1,5,2), z1*root(1,5,-2)) d1 = abs(z3-z4) - 1 z5 = z2 + expj(b) z6 = cu(z5*root(1,5,2), z5) d2 = abs(z6-z3*root(1,5,1)) - 1 vertices = symmetrise((z1, z2, z3, z4, z5, z6), "C5") return (vertices, (d1, d2)) def dyck(): """Return a unit-distance embedding of the Dyck graph (F32A).""" r0 = unitroots(8) r1 = [sqrt(2)*u for u in r0] z2 = cu(r0[1], 0, 1, star_radius(8)) r2 = [z2*u for u in r0] z3 = cu(0, r1[0], star_radius(8, 3), 1) r3 = [z3*u for u in r0] vertices = r0 + r1 + r2 + r3 edges = ring_edges(8, ((0, 1, 1), (0, 1, -1), (0, 2, -1), (2, 2, 1), (1, 3, 0), (3, 3, 3))) return (vertices, edges) def dyck2_vertices(a): p1 = mpc(a, 0.5) p2 = mpc(3*a, 0.5) p3 = cu(p1, -1j*p1) p4 = cu(p2, -1j*p2) vertices = [u*p for u in (1, 1j, -1, -1j) for p in (p1, p2, p3, p4)] vertices.extend([conj(p) for p in vertices]) return (vertices, abs(p3 - conj(p4)) - 1) def dyck2(): """Return a unit-distance embedding of the Dyck graph with D4 symmetry.""" t0 = findroot(lambda t: dyck2_vertices(t)[1], 0.1) return all_unit_distances(dyck2_vertices(t0)[0]) def f38a_vertices(t): u6 = unitroots(6) vertices = [] p0 = 1 p1 = 2 p2 = rect(0.5, t) p3 = cu(p2, p1) p4 = cu(p3, 2*u6[1]) for (i, u) in enumerate(u6): p5 = cu(u6[4]*p2, p4) if i in (2, 5) else cu(p4, u6[4]*p2) vertices.extend(p*u for p in (p0, p1, p2, p3, p4, p5)) p6 = circumcentre(vertices[5], vertices[17], vertices[29]) vertices.extend((p6, -p6)) return (vertices, abs(p6 - vertices[5]) - 1) def f38a(): """Return a unit-distance embedding of the F38A graph.""" t0 = findroot(lambda t: f38a_vertices(t)[1], 0.29) return all_unit_distances(f38a_vertices(t0)[0]) def f40a(x=0.75): """Return a unit-distance embedding of F40A (bipartite double cover of F20A). x can be anything between (sqrt(5)-1)/2 and 1.""" u10 = unitroots(10) z0 = star_radius(10) r0 = [z0*u for u in u10] z1 = cu(r0[1], 0, 1, x) r1 = [z1*u for u in u10] z2 = cu(r1[2], r1[-2]) r2 = [z2*u for u in u10] z3 = cu(0, z2, z0, 1) r3 = [z3*u for u in u10] vertices = r0 + r1 + r2 + r3 return all_unit_distances(vertices) def f42a_vertices(a, b, c): u7 = unitroots(7) pa = mpc(a, 0.5) pb = mpc(b, 0.5) pc = mpc(c, 0.5) pac, pbc, pcc = (conj(p) for p in (pa, pb, pc)) d1 = abs(pa - u7[1]*pbc)**2 - 1 d2 = abs(pb - u7[2]*pcc)**2 - 1 d3 = abs(pc - u7[4]*pac)**2 - 1 vertices = [u*p for u in u7 for p in (pa, pb, pc, pac, pbc, pcc)] return (vertices, (d1, d2, d3)) def f42a(mode=0): """Return a unit-distance embedding of the F42A graph. mode (0 or 1) selects between two algebraically related forms.""" x0 = (0.27, 1.36, 0.52) if mode == 0 else (1.24, 0.18, -0.53) t0 = findroot(lambda *t: f42a_vertices(*t)[1], x0) return all_unit_distances(f42a_vertices(*t0)[0]) # F48A = genpetersen("f48a") but the resulting embedding is vertex-edge-degenerate, so... def f48a(): """Return a non-degenerate unit-distance embedding of the F48A graph.""" R = (2 + 3*sqrt(2) + sqrt(12*sqrt(6)-26)) / 4 r = (2 + 3*sqrt(2) - sqrt(12*sqrt(6)-26)) / 4 L = R-1 l = r-1 u24 = unitroots(24) ring_R = [u*R for u in u24[::2]] ring_r = [u*r for u in u24[1::2]] ring_L = [u*L for u in u24[::2]] ring_l = [u*l for u in u24[1::2]] vertices = ring_R + ring_r + ring_L + ring_l edges = ring_edges(12, ((0, 1, 0), (0, 1, -1), (0, 2, 0), (1, 3, 0), (2, 3, 2), (2, 3, -3))) return (vertices, edges) def f50a_vertices(t): u = root(1, 5, 1) table = {(): (0, 3, 4, 5, 6), (1,): (2, 35, 36, 37, 38), (1, 1, 1, 1): (48, 21, 22, 23, 24), (2,): (1, 28, 27, 26, 25), (1, 1): (34, 17, 18, 39, 40), (1, 2): (49, 46, 45, 44, 43), (1, 1, 1): (16, 19, 20, 41, 42), (2, 1): (33, 30, 29, 8, 7), (1, 1, 2): (47, 14, 13, 12, 11), (2, 1, 1): (15, 32, 31, 10, 9)} p0 = rect(star_radius(10), 0.9*pi) p3 = rect(star_radius(10, 3), -0.7*pi) p4 = cu(p3, -conj(p3)) p5 = p4 + expj(t) p6 = cu(p5, u*p5) seeds = [p0, p3, p4, p5, p6] vertices = [None] * 50 ops = {1: lambda z: u*z, 2: conj} for (aut, coset) in table.items(): for (ring, i) in enumerate(coset): vertices[i] = -1j * reduce(lambda z, k: ops[k](z), aut, seeds[ring]) return (vertices, re(vertices[40]) + 0.5) def f50a(): """Return a unit-distance embedding of the F50A graph, an embedding found by the computer (specifically the embedding_run() function in embeddingsearch).""" t0 = findroot(lambda t: f50a_vertices(t)[1], 2) return (f50a_vertices(t0)[0], lcf_edges(50, [21, -21, -19, 19, -19, 19, -19, 19, 21, -21])) def f54a_vertices(t): u18 = unitroots(18) r0 = [u/2 for u in u18] z1 = cu(r0[1], r0[-1]) r1 = [z1*u for u in u18] z2a = r1[0] + expj(t) z2b = circumcentre(z2a, u18[2]*z2a, r1[1]) r2 = [u*z for u in unitroots(9) for z in (z2a, z2b)] vertices = r0 + r1 + r2 return (vertices, abs(z2b - r1[1]) - 1) def f54a(i=2): """Return one of three (depending on i in {0, 1, 2}) algebraically related unit-distance embeddings of the F54A graph.""" px = [[3], [-10, -12], [13, 6, 34], [-17, -5, -14]] # x = a(1-c) py = [[3], [2, -2, -10], [1, -6, 9], [-19, 41, -10]] # y = c(1-a) pz = [[3], [5, -8, 2], [11, -14, -13], [-19, 41, -10]] # z = b(1-b) x = polyroots([polyval(l, 2*cos(pi/9)) for l in px])[i] y = polyroots([polyval(l, 2*cos(pi/9)) for l in py])[i] sxy = sqrt((1+x-y)**2 - 4*x) a = (1+x-y+sxy) / 2 c = (1-x+y+sxy) / 2 z = polyroots([polyval(l, 2*cos(pi/9)) for l in pz])[(1-i)%3] b = (1 + (-1 if i else 1)*sqrt(1-4*z)) / 2 triple = [a, b, c] line = [p-d for p in triple for d in (0, 1)] return all_unit_distances(symmetrise(line, "C9")) def f56a(): """Return a unit-distance embedding of the F56A graph. Note that MathWorld's LCF notation for this is incorrect; it should be [11, 13, -13, -11]^14.""" t = tan(pi/14) u = sqrt(polyval([-21, 98, 71], t*t)) z1 = 2*sqrt(14*polyval([31*u, -20, -154*u, 104, 87*u, -68], t)) z2 = 7*t*(t*t-3)**2 - 4*u a = (z1 + z2) / 64 b = (z1 - z2) / 64 u14 = unitroots(14) pa = mpc(a, 0.5) pb = mpc(b, 0.5) pac, pbc = conj(pa), conj(pb) d1 = abs(pa - u14[-1]*pb)**2 - 1 d2 = abs(pb - u14[-2]*pa)**2 - 1 vertices = [u*p for u in u14 for p in (pa, pb, pac, pbc)] return all_unit_distances(vertices) def klein(a1=4.47, a2=2.42, a3=0.7, s1=1, s2=-1): """Return a unit-distance embedding of the cubic Klein graph (F56B).""" u7 = unitroots(7) z0 = star_radius(7) r0 = [z0*u for u in u7] z1 = z0 + expj(a1) z2 = z1 + expj(a2) z3 = z1 + expj(a3) r1 = [z1*u for u in u7] r2 = [z2*u for u in u7] r3 = [z3*u for u in u7] z4 = cu(*(r2[2], r3[0])[::s1]) z5 = cu(*(r2[0], r3[1])[::s2]) r4 = [z4*u for u in u7] r5 = [z5*u for u in u7] z6 = cu(0, r4[0], star_radius(7, 2), 1) z7 = cu(0, r5[0], star_radius(7, 3), 1) r6 = [z6*u for u in u7] r7 = [z7*u for u in u7] vertices = r0 + r1 + r2 + r3 + r4 + r5 + r6 + r7 edges = ring_edges(7, ((0, 0, 1), (0, 1, 0), (1, 2, 0), (1, 3, 0), (2, 4, -2), (3, 4, 0), (2, 5, 0), (3, 5, -1), (4, 6, 0), (5, 7, 0), (6, 6, 2), (7, 7, 3))) return (vertices, edges) def f56c(): """Return a unit-distance embedding of the F56C graph, the bipartite double cover of the Coxeter graph.""" u14 = unitroots(14) z0 = star_radius(14, 5) r0 = [z0*u for u in u14] z1 = star_radius(14, 3) r1 = [z1*u for u in u14] z2 = cu(r1[4], r0[0]) r2 = [z2*u for u in u14] z3 = cu(0, z2, star_radius(14), 1) r3 = [z3*u for u in u14] vertices = r0 + r1 + r2 + r3 edges = ring_edges(14, ((0, 0, 5), (1, 1, 3), (2, 1, 4), (2, 0, 0), (2, 3, 0), (3, 3, 1))) return (vertices, edges) def f60a(t=-0.35): """Return a unit-distance embedding of the F60A graph.""" u15 = unitroots(15) z0 = star_radius(15, 7) r0 = [z0*u for u in u15] z1 = z0 + expj(t) r1 = [z1*u for u in u15] z2 = cu(r1[3], r1[0]) r2 = [z2*u for u in u15] z3 = cu(0, z2, star_radius(15, 2), 1) r3 = [z3*u for u in u15] vertices = r0 + r1 + r2 + r3 edges = ring_edges(15, ((0, 0, 7), (0, 1, 0), (2, 1, 0), (2, 1, 3), (2, 3, 0), (3, 3, 2))) return (vertices, edges) def f62a_vertices(*params): u6 = unitroots(6) tree = [1j, 2j] tree.append(tree[-1] + expj(2.939)) tree.append(tree[-1] + expj(-1.025)) for (i, v) in enumerate((3, 1, 5, 6, 6)): tree.append(tree[v] + expj(params[i])) star = mpc(params[-2], params[-1]) cc1 = circumcentre(tree[8], star, u6[4]*tree[7]) cc2 = circumcentre(u6[2]*tree[8], star, tree[7]) cc3 = circumcentre(u6[4]*tree[8], star, u6[2]*tree[7]) cons = (abs(tree[2] - u6[1]*tree[5])**2 - 1, abs(tree[4] - u6[1]*tree[7])**2 - 1, abs(tree[3] - tree[8])**2 - 1, 4*abs(tree[4])**2 - 1, abs(star - cc1)**2 - 1, abs(star - cc2)**2 - 1, abs(star - cc3)**2 - 1) vertices = [u*t for u in u6 for t in tree] vertices.extend(s*v for s in (1, -1) for v in (cc1, cc2, cc3, star)) return (vertices, cons) def f62a(): """Return a unit-distance embedding of the F62A graph.""" t0 = [-1.017, -0.819, 2.96, -0.282, -1.091, -0.624, 0.354] t0 = findroot(lambda *t: f62a_vertices(*t)[1], t0) return all_unit_distances(f62a_vertices(*t0)[0]) def f64a_vertices(a, b): u8 = unitroots(8) p1 = mpc(a, 0.5) p2 = mpc(b, 0.5) p3 = cu(u8[3]*p1, conj(p2), 2, 1) p4 = (u8[3]*p1 + p3) / 2 d1 = abs(u8[1]*p3 - p4)**2 - 1 d2 = abs(p1 - u8[1]*conj(p2))**2 - 1 vertices = [u*p for u in u8 for p in (p1, p2, p3, p4)] vertices += [conj(p) for p in vertices] return vertices, (d1, d2) def f64a(): """Return a unit-distance embedding of the F64A graph.""" t0 = findroot(lambda *t: f64a_vertices(*t)[1], (0.53, 1.6)) return all_unit_distances(f64a_vertices(*t0)[0]) def f72a_vertices(t): u24 = unitroots(24) u12 = unitroots(12) z0 = star_radius(24, 11) r0 = [u*z0 for u in u24] z1 = star_radius(24, 7) * expj(t) r1 = [u*z1 for u in u24] z2 = cu(r0[0], r1[9]) r2 = [u*z2 for u in u12] z3 = cu(r0[15], r1[6]) r3 = [u*z3 for u in u12] vertices = r0 + r1 + r2 + r3 return (vertices, abs(z2 - z3) - 1) def f72a(): """Return a unit-distance embedding of the F72A graph.""" t0 = findroot(lambda t: f72a_vertices(t)[1], 2.2) return all_unit_distances(f72a_vertices(t0)[0]) def f74a_vertices(*params): u6 = unitroots(6) tree = [1j, 2j, 2j-expj(-pi/6), 2j+expj(pi/6)] params = [-1.04, 3.92] + list(params) for (i, v) in enumerate((2, 3, 4, 5, 5, 6, 7)): tree.append(tree[v] + expj(params[i])) star = mpc(params[-2], params[-1]) cc1 = circumcentre(tree[8], star, -tree[9]) cc2 = circumcentre(u6[2]*tree[8], star, -u6[2]*tree[9]) cc3 = circumcentre(u6[4]*tree[8], star, -u6[4]*tree[9]) cons = (abs(tree[6] - u6[1]*tree[8])**2 - 1, abs(tree[4] - tree[7])**2 - 1, abs(tree[9] + tree[10])**2 - 1, 4*abs(tree[10])**2 - 1, abs(star - cc1)**2 - 1, abs(star - cc2)**2 - 1, abs(star - cc3)**2 - 1) vertices = [u*t for u in u6 for t in tree] vertices.extend(s*v for s in (1, -1) for v in (star, cc1, cc2, cc3)) return (vertices, cons) def f74a(): """Return a unit-distance embedding of the F74A graph.""" t0 = [2.91, 4.74, 5.5, 4.88, 5, -0.05, 0.07] t0 = findroot(lambda *t: f74a_vertices(*t)[1], t0) return all_unit_distances(f74a_vertices(*t0)[0]) @fixparams_unitdist(-1.1, 1.6, 2.2) def f78a(a, b, c): u = unitroots(13) pa = mpc(a, 0.5) pb = mpc(b, 0.5) pc = mpc(c, 0.5) d1 = abs(pa - u[5]*conj(pb))**2 - 1 d2 = abs(pb - u[2]*conj(pc))**2 - 1 d3 = abs(pc - u[6]*conj(pa))**2 - 1 return (symmetrise((pa, pb, pc), "D13"), (d1, d2, d3)) def f80a(t=1.39): """Return a unit-distance embedding of the F80A graph.""" u20 = unitroots(20) z0 = star_radius(20, 7) r0 = [z0*u for u in u20] z1 = z0 + expj(t) r1 = [z1*u for u in u20] z2 = cu(r1[2], r1[0]) r2 = [z2*u for u in u20] z3 = cu(0, z2, star_radius(20, 3), 1) r3 = [z3*u for u in u20] vertices = r0 + r1 + r2 + r3 edges = ring_edges(20, ((0, 0, 7), (0, 1, 0), (2, 1, 0), (2, 1, 2), (2, 3, 0), (3, 3, 3))) return (vertices, edges) def f84a_vertices(p2, a, b, c): u7 = unitroots(7) p0 = star_radius(7) p1 = p0 + 1 p3 = p2 + 1 # has a sign variation p4 = cu(p2, u7[3]*p1) p5 = mpc(a, 0.5) p6 = mpc(b, 0.5) p7 = mpc(c, 0.5) d1 = abs(p3 - u7[4]*p5)**2 - 1 d2 = abs(p4 - u7[2]*p7)**2 - 1 d3 = abs(p5 - u7[4]*conj(p6))**2 - 1 d4 = abs(p6 - u7[-1]*p7)**2 - 1 vertices = [u*p for u in u7 for p in (p0, p1, p2, p3, p4, p5, p6, p7)] vertices.extend([u*conj(p) for u in u7 for p in (p4, p5, p6, p7)]) vertices = list(map(lambda z: z*1j, vertices)) return (vertices, (d1, d2, d3, d4)) def f84a(): """Return a unit-distance embedding of the F84A graph - not degenerate despite its looks. The graph is notable in having the simple PSL(2,8) as its automorphism group.""" t0 = findroot(lambda *t: f84a_vertices(*t)[1], (-0.46, -1.44, 0.25, 0.75)) return all_unit_distances(f84a_vertices(*t0)[0]) def f86a_vertices(*params): u6 = unitroots(6) tree = [1j, 2j, 2j-expj(-pi/6), 2j+expj(pi/6)] params = [5.24451, 5.34434, 5.00597] + list(params) for (i, v) in enumerate((2, 3, 4, 5, 5, 6, 7, 8, 9)): tree.append(tree[v] + expj(params[i])) star = mpc(params[-2], params[-1]) cc1 = circumcentre(tree[10], star, tree[11]) cc2 = circumcentre(u6[2]*tree[10], star, u6[2]*tree[11]) cc3 = circumcentre(u6[4]*tree[10], star, u6[4]*tree[11]) cons = (abs(tree[6] - u6[1]*tree[8])**2 - 1, abs(tree[4] - tree[7])**2 - 1, abs(tree[12] - tree[10])**2 - 1, 4*abs(tree[9])**2 - 1, abs(tree[12] - u6[4]*tree[11])**2 - 1, abs(star - cc1)**2 - 1, abs(star - cc2)**2 - 1, abs(star - cc3)**2 - 1) vertices = [u*t for u in u6 for t in tree] vertices.extend(s*v for s in (1, -1) for v in (star, cc1, cc2, cc3)) return (vertices, cons) def f86a(): """Return a unit-distance embedding of the F86A graph.""" t0 = [3.60383, 3.44007, 4.34048, 5.63174, 3.26345, 0.488743, 0.113378, 0.236693] t0 = findroot(lambda *t: f86a_vertices(*t)[1], t0) return all_unit_distances(f86a_vertices(*t0)[0]) def foster_vertices(n, t): s2, s3 = (n&2)-1, ((n&1)<<1)-1 c = star_radius(10) cp = c*root(1, 30, 1) a = rect(sec(pi/10), t) ap = rect(tan(pi/10), t+2*pi/5) b = cu(*(a, c)[::s2]) bp = cu(*(ap, cp)[::s3]) arc = (cp, bp, ap, a, b, c) vertices = [u*p for u in unitroots(15) for p in arc] return (vertices, abs(vertices[1] - vertices[82]) - 1) def foster(i=5): """Return any one of six (depending on 0 <= i <= 5) unit-distance embeddings of the Foster graph (F90A).""" n, t0 = [(0, 0.38), (1, 1.35), (2, 0.15), (2, 1.18), (2, 4.68), (3, [1.5, 1.6])][i] tstar = findroot(lambda t: foster_vertices(n, t)[1], t0) return (foster_vertices(n, tstar)[0], lcf_edges(90, (17, -9, 37, -37, 9, -17))) def foster_old_vertices(r): v3a = 0.265 v3 = v3a * root(1, 5, 2) v2 = cu(v3, v3a) v5r = root(1, 20, 7) * r v5r2 = -v5r.conjugate() v5 = v5r * root(1, 15, 14) v0 = cu(v5r, v5r2) v1 = cu(v2, v0) v4 = cu(v3, v5) vgens = (v0, v1, v2, v3, v4, v5) vertices = [v*u for v in vgens for u in unitroots(15)] return (vertices, abs(v1 - v4*root(1, 15, 2)) - 1) def foster_old(): """Return the unit-distance embedding of the Foster graph (F90A) originally in Dounreay.""" r0 = findroot(lambda r: foster_old_vertices(r)[1], 0.35) vertices = foster_old_vertices(r0)[0] edges = ring_edges(15, ((0, 1, 0), (1, 2, 0), (2, 3, 0), (3, 4, 0), (4, 5, 0), (5, 0, -1), (0, 5, -2), (2, 3, -6), (4, 1, -2))) return (vertices, edges) def f96a_vertices(a): u12 = unitroots(12) p1 = a+0.5j p2 = 2.3+0.5j p3 = cu(u12[-1]*p1, p2) # ring 3 p4 = cu(p2, u12[1]*p1) # ring 2 vertices = [u*p for u in u12 for p in (p1, p2, p3, p4)] vertices.extend([conj(p) for p in vertices]) return (vertices, abs(p3 - u12[3]*conj(p4)) - 1) def f96a(): """Return a unit-distance embedding of the F96A graph.""" a0 = findroot(lambda a: f96a_vertices(a)[1], 0.7) return all_unit_distances(f96a_vertices(a0)[0]) def f96b(a=2.32, b=1.92, c=-0.26, s1=-1, s2=1, s3=1, s4=-1): """Return a unit-distance embedding of the F96B graph.""" u12 = unitroots(12) z2 = star_radius(12, 5) r2 = [u*z2 for u in u12] z3 = z2 + expj(a) r3 = [u*z3 for u in u12] z1 = z3 + expj(b) r1 = [u*z1 for u in u12] z4 = cu(*(u12[3]*z1, z3)[::s1]) r4 = [u*z4 for u in u12] z5 = z1 + expj(c) r5 = [u*z5 for u in u12] z6 = cu(*(u12[-5]*z5, z4)[::s2]) r6 = [u*z6 for u in u12] z8 = cu(*(u12[-4]*z6, z5)[::s3]) r8 = [u*z8 for u in u12] z7 = cu(z8, 0, 1, star_radius(12)) if s4 == 1 else cu(0, z8, star_radius(12), 1) r7 = [u*z7 for u in u12] vertices = r1 + r2 + r3 + r4 + r5 + r6 + r7 + r8 edges = ring_edges(12, ((1, 1, 5), (1, 2, 0), (2, 0, 0), (3, 0, 3), (3, 2, 0), (4, 0, 0), (5, 4, -5), (5, 3, 0), (7, 5, -4), (7, 4, 0), (6, 7, 0), (6, 6, 1))) return (vertices, edges) @fixparams_unitdist(1.43, 2.28) def f98a(a, b): r = root(1,7,1) p1 = 1.2+0.5j p7 = 2.3+0.5j p3 = mpc(a, -0.5)*sqrt(r) p6 = cu(conj(p7)*r, p1) p2 = (p1+expj(b))/r p4 = conj(cu(p2, p3/r)) p5 = conj(cu(p2, p7))*r cons = (abs(p3 - conj(p6)) - 1, abs(p4 - conj(p5)) - 1) return (symmetrise((p1, p2, p3, p4, p5, p6, p7), "D7"), cons) @fixparams_unitdist(3.2, -2.5, 2.7, -2.7, -3.2) def f98b(a, b, c, d, e): u = root(1, 7, 1) z1 = 3.175+0.5j z2 = z1+expj(a) z3 = z1+expj(b) z4 = z3+expj(c) z5 = z3+expj(d) z6 = z4+expj(e) z7 = -0.0375+0.5j cons = (abs(z2 - conj(z2)*u) - 1, abs(z2 - z5*u) - 1, abs(z4 - z7/u**2) - 1, abs(z5 - z6/u) - 1, abs(z6 - conj(z7)/u) - 1) vertices = symmetrise((z1, z2, z3, z4, z5, z6, z7), "D7") return (vertices, cons) def biggssmith(): """Return a unit-distance embedding of the Biggs–Smith graph (F102A).""" s1 = star_radius(17) s2 = star_radius(17, 2) s4 = star_radius(17, 4) s8 = star_radius(17, 8) u17 = unitroots(17) r1 = [s1*u*1j for u in u17] r4 = [s4*u*1j for u in u17] r8 = [s8*u*-1j for u in u17] sh1 = cu(r1[0], r4[0]) rh1 = [sh1*u for u in u17] sh2 = cu(sh1, r8[7]) rh2 = [sh2*u for u in u17] s2 = cu(sh2, 0, 1, s2) r2 = [s2*u for u in u17] vertices = r1 + r4 + rh1 + r8 + rh2 + r2 edges = ring_edges(17, ((0, 0, 1), (1, 1, 4), (3, 3, 8), (5, 5, 2), (0, 2, 0), (1, 2, 0), (2, 4, 0), (4, 5, 0), (4, 3, 7))) return (vertices, edges)
35.91097
230
0.527625
0
0
0
0
1,547
0.068482
0
0
3,025
0.133909
73fbbcb7d6e336ad39011f035279ed591c9a4ab4
937
py
Python
src/create_scatterplot.py
djparente/coevol-utils
966a1f16872d72886b92cc3fa51f803412acc481
[ "BSD-3-Clause" ]
1
2016-03-13T05:26:40.000Z
2016-03-13T05:26:40.000Z
src/create_scatterplot.py
djparente/coevol-utils
966a1f16872d72886b92cc3fa51f803412acc481
[ "BSD-3-Clause" ]
null
null
null
src/create_scatterplot.py
djparente/coevol-utils
966a1f16872d72886b92cc3fa51f803412acc481
[ "BSD-3-Clause" ]
null
null
null
#!/cygdrive/c/Python27/python.exe # Daniel J. Parente, Ph.D. # Swint-Kruse Laboratory # Physician Scientist Training Program # University of Kansas Medical Center # This code is adapted from the example available at # http://pandasplotting.blogspot.com/2012/04/added-kde-to-scatter-matrix-diagonals.html # Creates a scatterplot matrix (off-diagonals) with a kernal density estimate (KDE) # of the distribution of (univariate) data on the diagonal import numpy as np import matplotlib.pyplot as plt import pandas import sys infile=sys.argv[1] outfile=sys.argv[2] maindata = pandas.read_csv(infile, sep="\t") plt.rcParams['patch.facecolor'] = 'k' # Make the markers black # Plot ax = pandas.tools.plotting.scatter_matrix(maindata, alpha=0.1, marker='k.', figsize=(8,8), diagonal='kde', range_padding=0.1) # Give a small inter-plot spacing plt.subplots_adjust(wspace=.05, hspace=.05) #Save the figure plt.savefig(outfile, dpi=600)
28.393939
125
0.760939
0
0
0
0
0
0
0
0
550
0.58698
73fdabf0cf89f2998b7ab3d1732e81dfc49cf70e
4,143
py
Python
core/perspective_projection.py
sam-lb/python-grapher
657c423fa6e1f2260988749807db9a5beaf1fef2
[ "MIT" ]
2
2019-08-21T15:02:51.000Z
2019-09-03T00:26:48.000Z
core/perspective_projection.py
sam-lb/mathgraph3d
657c423fa6e1f2260988749807db9a5beaf1fef2
[ "MIT" ]
6
2019-07-28T21:28:11.000Z
2019-11-05T12:08:23.000Z
core/perspective_projection.py
sam-lb/mathgraph3d
657c423fa6e1f2260988749807db9a5beaf1fef2
[ "MIT" ]
null
null
null
import pygame; import numpy as np; from math import sin, cos; pygame.init(); width, height, depth = 640, 480, 800; camera = [width // 2, height // 2, depth]; units_x, units_y, units_z = 8, 8, 8; scale_x, scale_y, scale_z = width / units_x, height / units_y, depth / units_z; screen = pygame.display.set_mode((width, height)); pygame.display.set_caption("3D perspective projection test"); pygame.key.set_repeat(100, 50); def scale(p): """ scale a point by the number of pixels per unit in each direction """ return p[0] * scale_x, p[1] * scale_y, p[2] * scale_z; def translate_to_screen(p): """ convert from projected cartesian coordinates to canvas coordinates """ return p[0] + width // 2, height // 2 - p[1]; def project(p): """ project a point onto the 2D plane """ proj_x = (camera[2] * (p[0] - camera[0])) / (camera[2] + p[2]) + camera[0]; proj_y = (camera[2] * (p[1] - camera[1])) / (camera[2] + p[2]) + camera[1]; return proj_x, proj_y; def rproj(a, tx, ty, tz): rotation = rot_mat_x(tx).dot(rot_mat_y(ty)).dot(rot_mat_z(tz)); sub = np.array([a]) - np.array([camera]); d = list(sub.dot(rotation)[0]); e = width, height, depth; return e[2] / d[2] * d[0] + e[0], e[2] / d[2] * d[1] + e[1]; def screen_point(p): """ convert a point in 3D cartesian space to a point in 2D canvas space """ return translate_to_screen(project(scale(p))); def project_triangle(tri): """ return the screen coordinates of a triangle """ angs = (tx, ty, tz); return rproj(tri[0], *angs), rproj(tri[1], *angs), rproj(tri[2], *angs); ## return screen_point(tri[0]), screen_point(tri[1]), screen_point(tri[2]); def project_line(line): """ return the screen coordinates of a line """ return screen_point(line[0]), screen_point(line[1]); def rot_mat_x(theta): return np.array([ [1, 0, 0], [0, cos(theta), -sin(theta)], [0, sin(theta), cos(theta)], ]); def rot_mat_y(theta): return np.array([ [cos(theta), 0, sin(theta)], [0, 1, 0], [-sin(theta), 0, cos(theta)], ]); def rot_mat_z(theta): return np.array([ [cos(theta), -sin(theta), 0], [sin(theta), cos(theta), 0], [0, 0, 1], ]); triangle = ((1, 1, 1), (2, 2, 2), (1, 2, 1)); x_axis = ((-2, 0, 0), (2, 0, 0)); y_axis = ((0, -2, 0), (0, 2, 0)); z_axis = ((0, 0, -2), (0, 0, 2)); tx, ty, tz = 0, 0, 0; clock = pygame.time.Clock(); running = True; while running: screen.fill((255, 255, 200)); proj_triangle = project_triangle(triangle); pygame.draw.polygon(screen, (255, 0, 200), proj_triangle); pygame.draw.polygon(screen, (0, 0, 0), proj_triangle, 1); pygame.draw.rect(screen, (255, 0, 0), (*proj_triangle[0], 10, 10)); pygame.draw.rect(screen, (0, 255, 0), (*proj_triangle[1], 10, 10)); pygame.draw.rect(screen, (0, 0, 255), (*proj_triangle[2], 10, 10)); ## proj_ax, proj_ay, proj_az = project_line(x_axis), project_line(y_axis), project_line(z_axis); ## pygame.draw.line(screen, (255, 0, 0), proj_ax[0], proj_ax[1], 1); ## pygame.draw.line(screen, (0, 255, 0), proj_ay[0], proj_ay[1], 1); ## pygame.draw.line(screen, (0, 0, 255), proj_az[0], proj_az[1], 1); pygame.display.flip(); for event in pygame.event.get(): if event.type == pygame.QUIT: running = False; break; elif event.type == pygame.KEYDOWN: if event.key == pygame.K_LEFT: #camera[0] -= 25; ## camera = list(np.array([camera]).dot(rot_mat_y(0.2).dot(rot_mat_z(0.1)))[0]); tx += 0.1; elif event.key == pygame.K_RIGHT: #camera[0] += 25; ## camera = list(np.array([camera]).dot(rot_mat_z(-0.1))[0]); tx -= 0.1; elif event.key == pygame.K_UP: ty += 0.1; elif event.key == pygame.K_DOWN: ty -= 0.1; elif event.key == pygame.K_SPACE: print(camera); elif event.key == pygame.K_ESCAPE: running = False; break; clock.tick(30); pygame.quit();
34.525
99
0.565291
0
0
0
0
0
0
0
0
987
0.238233
73fea2fbc1c54c3ba581a8b82427643b53be014d
1,444
py
Python
manu_sawyer/src/tensorflow_model_is_gripping/grasp_example.py
robertocalandra/the-feeling-of-success
7bb895897e369ae9f5fcaeed61d401e019a9cdf1
[ "MIT" ]
10
2018-05-31T04:57:25.000Z
2021-05-28T11:22:29.000Z
manu_sawyer/src/tensorflow_model_is_gripping/grasp_example.py
robertocalandra/the-feeling-of-success
7bb895897e369ae9f5fcaeed61d401e019a9cdf1
[ "MIT" ]
null
null
null
manu_sawyer/src/tensorflow_model_is_gripping/grasp_example.py
robertocalandra/the-feeling-of-success
7bb895897e369ae9f5fcaeed61d401e019a9cdf1
[ "MIT" ]
3
2018-05-31T05:00:08.000Z
2019-02-25T06:32:45.000Z
import grasp_net, grasp_params, h5py, aolib.img as ig, os, numpy as np, aolib.util as ut net_pr = grasp_params.im_fulldata_v5() net_pr = grasp_params.gel_im_fulldata_v5() checkpoint_file = '/home/manu/ros_ws/src/manu_research/manu_sawyer/src/tensorflow_model_is_gripping/training/net.tf-6499' gpu = '/gpu:0' db_file = '/media/backup_disk/dataset_manu/ver2/2017-06-22/2017-06-22_212702.hdf5' with h5py.File(db_file, 'r') as db: pre, mid, _ = grasp_net.milestone_frames(db) # sc = lambda x : ig.scale(x, (224, 224)) def sc(x): """ do a center crop (helps with gelsight) """ x = ig.scale(x, (256, 256)) return ut.crop_center(x, 224) u = ig.uncompress crop = grasp_net.crop_kinect inputs = dict( gel0_pre=sc(u(db['GelSightA_image'].value[pre])), gel1_pre=sc(u(db['GelSightB_image'].value[pre])), gel0_post=sc(u(db['GelSightA_image'].value[mid])), gel1_post=sc(u(db['GelSightB_image'].value[mid])), im0_pre=sc(crop(u(db['color_image_KinectA'].value[pre]))), im0_post=sc(crop(u(db['color_image_KinectA'].value[mid]))), # these are probably unnecessary depth0_pre=sc(crop(db['depth_image_KinectA'].value[pre].astype('float32'))), depth0_post=sc(crop(db['depth_image_KinectA'].value[mid].astype('float32')))) net = grasp_net.NetClf(net_pr, checkpoint_file, gpu) prob = net.predict(**inputs) print 'prob = ', prob
40.111111
121
0.668975
0
0
0
0
0
0
0
0
484
0.33518
73febbee1eb35f8161409705d1117c1808557690
3,683
py
Python
API/models/models.py
Rkanehisa/Stone_Projeto
b022cc7031ba2c3b29181df2720197ca9edc1ab3
[ "MIT" ]
null
null
null
API/models/models.py
Rkanehisa/Stone_Projeto
b022cc7031ba2c3b29181df2720197ca9edc1ab3
[ "MIT" ]
null
null
null
API/models/models.py
Rkanehisa/Stone_Projeto
b022cc7031ba2c3b29181df2720197ca9edc1ab3
[ "MIT" ]
null
null
null
from API.db import db from datetime import datetime from passlib.apps import custom_app_context as pwd_context class User(db.Model): __tablename__ = "users" def __init__(self, username, password): self.username = username self.password = pwd_context.hash(password) self.limit = 0 self.user_limit = 0 def verify_password(self, password): return pwd_context.verify(password, self.password) def json(self): return {"id": self.id, "username": self.username, "password": str(self.password), "limit": self.limit, "user limit": self.user_limit, "spent_limit": self.get_spent()} def save_in_db(self): db.session.add(self) db.session.commit() @classmethod def get_by_id(cls, user_id): return cls.query.filter_by(id=user_id).first() @classmethod def get_by_username(cls, username): return cls.query.filter_by(username=username).first() def get_limit(self): return self.limit def get_user_limit(self): return self.user_limit def set_limit(self, limit): self.limit = limit def set_user_limit(self, limit): self.user_limit = limit def get_cards(self): return self.cards def delete(self): db.session.delete(self) db.session.commit() def get_cards(self): return self.cards.order_by(Card.spent_limit).all() def get_spent(self): return sum(x.spent_limit for x in self.cards.all()) class Card(db.Model): __tablename__ = "card" id = db.Column(db.Integer, primary_key=True, autoincrement=True) name = db.Column(db.String(255), nullable=False) number = db.Column(db.String(16), nullable=False) ccv = db.Column(db.String(3), nullable=False) due_date = db.Column(db.DateTime, nullable=False, default=datetime.utcnow) expiration_date = db.Column(db.DateTime, nullable=False, default=datetime.utcnow) limit = db.Column(db.Float, nullable=False) spent_limit = db.Column(db.Float, nullable=False) user_id = db.Column(db.Integer, db.ForeignKey("users.id"), nullable=False) user = db.relationship("User", back_populates="cards") def __init__(self, username, name, number, ccv, due_date, expiration_date, limit): # Parse strings to convert to to datetime datetime_due_date = datetime.strptime(due_date, "%Y/%m/%d") datetime_expiration_date = datetime.strptime(expiration_date, "%Y/%m/%d") self.user_id = User.query.filter_by(username=username).first().id self.name = name self. number = number self.ccv = ccv self.due_date = datetime_due_date self.expiration_date = datetime_expiration_date self.limit = limit self.spent_limit = 0 def json(self): return {"id": self.id, "name": self.name, "number": self.number, "ccv": self.ccv, "due_date": str(self.due_date), "expiration_date": str(self.expiration_date), "limit": self.limit, "spent limit": self.spent_limit, "user_id": self.user_id} def save_in_db(self): db.session.add(self) db.session.commit() @classmethod def get_by_number(cls, number): return cls.query.filter_by(number=number).first() def get_limit(self): return self.limit def get_spent_limit(self): return self.spent_limit def set_spent_limit(self, spent_limit): self.spent_limit = spent_limit def delete(self): user = User.query.filter_by(id=self.user_id).first() user.set_limit(user.limit-self.limit) db.session.delete(self) db.session.commit()
31.211864
114
0.65653
3,564
0.967689
0
0
320
0.086886
0
0
232
0.062992
73fecce467712a52b8aaf68f72a88091d6f9da83
418
py
Python
src/TestDice.py
Yamanama/CodeMonkeyApplication
4dc24016b96dbed5b8e833d5248dd76d1f3dfc08
[ "MIT" ]
null
null
null
src/TestDice.py
Yamanama/CodeMonkeyApplication
4dc24016b96dbed5b8e833d5248dd76d1f3dfc08
[ "MIT" ]
null
null
null
src/TestDice.py
Yamanama/CodeMonkeyApplication
4dc24016b96dbed5b8e833d5248dd76d1f3dfc08
[ "MIT" ]
null
null
null
import unittest from Dice import Dice class TestDice(unittest.TestCase): def setUp(self): self.sides = 8 self.dice = Dice(self.sides) def test_roll(self): for i in range(1000): self.assertLessEqual(self.dice.roll(), self.sides) def test_error(self): self.assertRaises(ValueError, Dice, 0) if __name__ == '__main__': # pragma no cover unittest.main()
19.904762
62
0.636364
309
0.739234
0
0
0
0
0
0
27
0.064593
73fef45c289e3867a6d35ff55ed2c6e15b25c65c
16,694
py
Python
accProcess.py
CASSON-LAB/BiobankActivityCSF
d3e6d7283aed72fa329da1e045fa49cc7e6b2e9c
[ "BSD-2-Clause" ]
3
2020-08-03T12:08:34.000Z
2021-03-16T11:31:01.000Z
accProcess.py
CASSON-LAB/BiobankActivityCSF
d3e6d7283aed72fa329da1e045fa49cc7e6b2e9c
[ "BSD-2-Clause" ]
null
null
null
accProcess.py
CASSON-LAB/BiobankActivityCSF
d3e6d7283aed72fa329da1e045fa49cc7e6b2e9c
[ "BSD-2-Clause" ]
1
2020-08-05T16:13:02.000Z
2020-08-05T16:13:02.000Z
"""Command line tool to extract meaningful health info from accelerometer data.""" import accelerometer.accUtils import argparse import collections import datetime import accelerometer.device import json import os import accelerometer.summariseEpoch import sys import pandas as pd import numpy as np import matplotlib.pyplot as plt from filter_data import data_filter from import_npy import import_npy def main(): """ Application entry point responsible for parsing command line requests """ parser = argparse.ArgumentParser( description="""A tool to extract physical activity information from raw accelerometer files.""", add_help=True ) # required parser.add_argument('rawFile', metavar='input file', type=str, help="""the <.cwa/.cwa.gz> file to process (e.g. sample.cwa.gz). If the file path contains spaces,it must be enclosed in quote marks (e.g. \"../My Documents/sample.cwa\") """) #optional inputs parser.add_argument('--startTime', metavar='e.g. 1991-01-01T23:59', default=None, type=str2date, help="""removes data before this time in the final analysis (default : %(default)s)""") parser.add_argument('--endTime', metavar='e.g 1991-01-01T23:59', default=None, type=str2date, help="""removes data after this time in the final analysis (default : %(default)s)""") parser.add_argument('--timeSeriesDateColumn', metavar='True/False', default=False, type=str2bool, help="""adds a date/time column to the timeSeries file, so acceleration and imputation values can be compared easily. This increases output filesize (default : %(default)s)""") parser.add_argument('--processRawFile', metavar='True/False', default=True, type=str2bool, help="""False will skip processing of the .cwa file (the epoch.csv file must already exist for this to work) (default : %(default)s)""") parser.add_argument('--epochPeriod', metavar='length', default=30, type=int, help="""length in seconds of a single epoch (default : %(default)ss, must be an integer)""") parser.add_argument('--sampleRate', metavar='Hz, or samples/second', default=100, type=int, help="""resample data to n Hz (default : %(default)ss, must be an integer)""") parser.add_argument('--useAbs', metavar='useAbs', default=False, type=str2bool, help="""use abs(VM) instead of trunc(VM) (default : %(default)s)""") parser.add_argument('--skipFiltering', metavar='True/False', default=False, type=str2bool, help="""Skip filtering stage (default : %(default)s)""") # calibration parameters parser.add_argument('--skipCalibration', metavar='True/False', default=False, type=str2bool, help="""skip calibration? (default : %(default)s)""") parser.add_argument('--calOffset', metavar=('x', 'y', 'z'),default=[0.0, 0.0, 0.0], type=float, nargs=3, help="""accelerometer calibration offset (default : %(default)s)""") parser.add_argument('--calSlope', metavar=('x', 'y', 'z'), default=[1.0, 1.0, 1.0], type=float, nargs=3, help="""accelerometer calibration slope linking offset to temperature (default : %(default)s)""") parser.add_argument('--calTemp', metavar=('x', 'y', 'z'), default=[0.0, 0.0, 0.0], type=float, nargs=3, help="""mean temperature in degrees Celsius of stationary data for calibration (default : %(default)s)""") parser.add_argument('--meanTemp', metavar="temp", default=20.0, type=float, help="""mean calibration temperature in degrees Celsius (default : %(default)s)""") parser.add_argument('--stationaryStd', metavar='mg', default=13, type=int, help="""stationary mg threshold (default : %(default)s mg))""") parser.add_argument('--calibrationSphereCriteria', metavar='mg', default=0.3, type=float, help="""calibration sphere threshold (default : %(default)s mg))""") # activity parameters parser.add_argument('--mgMVPA', metavar="mg", default=100, type=int, help="""MVPA threshold (default : %(default)s)""") parser.add_argument('--mgVPA', metavar="mg", default=425, type=int, help="""VPA threshold (default : %(default)s)""") # calling helper processess and conducting multi-threadings parser.add_argument('--rawDataParser', metavar="rawDataParser", default="AxivityAx3Epochs", type=str, help="""file containing a java program to process raw .cwa binary file, must end with .class (omitted) (default : %(default)s)""") parser.add_argument('--javaHeapSpace', metavar="amount in MB", default="", type=str, help="""amount of heap space allocated to the java subprocesses,useful for limiting RAM usage (default : unlimited)""") # activity classification arguments parser.add_argument('--activityClassification', metavar='True/False', default=True, type=str2bool, help="""Use pre-trained random forest to predict activity type (default : %(default)s)""") parser.add_argument('--activityModel', type=str, default="activityModels/doherty2018.tar", help="""trained activity model .tar file""") parser.add_argument('--rawOutput', metavar='True/False', default=False, type=str2bool, help="""output calibrated and resampled raw data to a .csv.gz file? NOTE: requires ~50MB per day. (default : %(default)s)""") parser.add_argument('--npyOutput', metavar='True/False', default=True, type=str2bool, help="""output calibrated and resampled raw data to .npy file? NOTE: requires ~60MB per day. (default : %(default)s)""") parser.add_argument('--fftOutput', metavar='True/False', default=False, type=str2bool, help="""output FFT epochs to a .csv file? NOTE: requires ~0.1GB per day. (default : %(default)s)""") # optional outputs parser.add_argument('--outputFolder', metavar='filename',default="", help="""folder for all of the output files, \ unless specified using other options""") parser.add_argument('--summaryFolder', metavar='filename',default="", help="folder for -summary.json summary stats") parser.add_argument('--epochFolder', metavar='filename', default="", help="""folder -epoch.csv.gz - must be an existing file if "-processRawFile" is set to False""") parser.add_argument('--timeSeriesFolder', metavar='filename', default="", help="folder for -timeSeries.csv.gz file") parser.add_argument('--nonWearFolder', metavar='filename',default="", help="folder for -nonWearBouts.csv.gz file") parser.add_argument('--stationaryFolder', metavar='filename', default="", help="folder -stationaryPoints.csv.gz file") parser.add_argument('--rawFolder', metavar='filename', default="", help="folder for raw .csv.gz file") parser.add_argument('--verbose', metavar='True/False', default=False, type=str2bool, help="""enable verbose logging? (default : %(default)s)""") parser.add_argument('--deleteIntermediateFiles', metavar='True/False', default=True, type=str2bool, help="""True will remove extra "helper" files created by the program (default : %(default)s)""") parser.add_argument('--intensityDistribution', metavar='True/False', default=False, type=str2bool, help="""Save intensity distribution (default : %(default)s)""") # # check that enough command line arguments are entered # if len(sys.argv) < 2: msg = "\nInvalid input, please enter at least 1 parameter, e.g." msg += "\npython accProcess.py data/sample.cwa.gz \n" accelerometer.accUtils.toScreen(msg) parser.print_help() sys.exit(-1) processingStartTime = datetime.datetime.now() args = parser.parse_args() ########################## # check input/output files/dirs exist and validate input args ########################## if args.processRawFile is False: #! TODO: this breaks for .cwa.gz files if len(args.rawFile.split('.')) < 2: args.rawFile += ".cwa" # TODO edge case since we still need a name? elif not os.path.isfile(args.rawFile): if args.rawFile: print("error: specified file " + args.rawFile + " does not exist. Exiting..") else: print("error: no file specified. Exiting..") sys.exit(-2) # get file extension rawFilePath, rawFileName = os.path.split(args.rawFile) rawFileName = rawFileName.split('.')[0] # remove any extension # check target output folders exist for path in [args.summaryFolder, args.nonWearFolder, args.epochFolder, args.stationaryFolder, args.timeSeriesFolder, args.outputFolder]: if len(path) > 0 and not os.access(path, os.F_OK): print("error: " + path + " is not a valid directory") sys.exit(-3) # assign output file names if args.outputFolder == "" and rawFilePath != "": args.outputFolder = rawFilePath + '/' if args.summaryFolder == "": args.summaryFolder = args.outputFolder if args.nonWearFolder == "": args.nonWearFolder = args.outputFolder if args.epochFolder == "": args.epochFolder = args.outputFolder if args.stationaryFolder == "": args.stationaryFolder = args.outputFolder if args.timeSeriesFolder == "": args.timeSeriesFolder = args.outputFolder if args.rawFolder == "": args.rawFolder = args.outputFolder args.summaryFile = args.summaryFolder + rawFileName + "-summary.json" args.nonWearFile = args.nonWearFolder + rawFileName + "-nonWearBouts.csv.gz" args.epochFile = args.epochFolder + rawFileName + "-epoch.csv.gz" args.stationaryFile = args.stationaryFolder + rawFileName + "-stationaryPoints.csv" args.tsFile = args.timeSeriesFolder + rawFileName + "-timeSeries.csv.gz" args.rawOutputFile = args.rawFolder + rawFileName + ".csv.gz" args.npyOutputFile = args.rawFolder + rawFileName + ".npy" # check user specified end time is not before start time if args.startTime and args.endTime: if args.startTime >= args.endTime: print("start and end time arguments are invalid!") print("startTime:", args.startTime.strftime("%Y-%m-%dT%H:%M")) print("endTime:", args.endTime.strftime("%Y-%m-%dT%H:%M")) sys.exit(-4) # print processing options to screen print("processing file " + args.rawFile + "' with these arguments:\n") for key, value in sorted(vars(args).items()): if not (isinstance(value, str) and len(value)==0): print(key.ljust(15), ':', value) print("\n") ########################## # start processing file ########################## summary = {} # now process the .CWA file if args.processRawFile: summary['file-name'] = args.rawFile accelerometer.device.processRawFileToEpoch(args.rawFile, args.epochFile, args.stationaryFile, summary, skipCalibration=args.skipCalibration, stationaryStd=args.stationaryStd, xIntercept=args.calOffset[0], yIntercept=args.calOffset[1], zIntercept=args.calOffset[2], xSlope=args.calSlope[0], ySlope=args.calSlope[1], zSlope=args.calSlope[2], xTemp=args.calTemp[0], yTemp=args.calTemp[1], zTemp=args.calTemp[2], meanTemp=args.meanTemp, rawDataParser=args.rawDataParser, javaHeapSpace=args.javaHeapSpace, skipFiltering=args.skipFiltering, sampleRate=args.sampleRate, epochPeriod=args.epochPeriod, useAbs=args.useAbs, activityClassification=args.activityClassification, rawOutput=args.rawOutput, rawOutputFile=args.rawOutputFile, npyOutput=args.npyOutput, npyOutputFile=args.npyOutputFile, fftOutput=args.fftOutput, startTime=args.startTime, endTime=args.endTime, verbose=args.verbose) print(args.rawFile) else: summary['file-name'] = args.epochFile data, time = import_npy(args.rawFile) # Place your code here ########################## # remove helper files and close program ########################## if args.deleteIntermediateFiles: try: os.remove(args.stationaryFile) os.remove(args.epochFile) os.remove(args.rawFile[:-4] + '.npy') except: accelerometer.accUtils.toScreen('could not delete helper file') # finally, print out processing summary message processingEndTime = datetime.datetime.now() processingTime = (processingEndTime - processingStartTime).total_seconds() accelerometer.accUtils.toScreen("in total, processing took " + \ str(processingTime) + " seconds") def str2bool(v): """ Used to parse true/false values from the command line. E.g. "True" -> True """ return v.lower() in ("yes", "true", "t", "1") def str2date(v): """ Used to parse date values from the command line. E.g. "1994-11-30T12:00" -> time.datetime """ eg = "1994-11-30T12:00" # example date if v.count("-")!=eg.count("-"): print("ERROR: not enough dashes in date") elif v.count("T")!=eg.count("T"): print("ERROR: no T seperator in date") elif v.count(":")!=eg.count(":"): print("ERROR: no ':' seperator in date") elif len(v.split("-")[0])!=4: print("ERROR: year in date must be 4 numbers") elif len(v.split("-")[1])!=2 and len(v.split("-")[1])!=1: print("ERROR: month in date must be 1-2 numbers") elif len(v.split("-")[2].split("T")[0])!=2 and len(v.split("-")[2].split("T")[0])!=1: print("ERROR: day in date must be 1-2 numbers") else: return pd.datetime.strptime(v, "%Y-%m-%dT%H:%M") print("please change your input date:") print('"'+v+'"') print("to match the example date format:") print('"'+eg+'"') raise ValueError("date in incorrect format") if __name__ == '__main__': main() # Standard boilerplate to call the main() function to begin the program.
49.684524
93
0.547622
0
0
0
0
0
0
0
0
7,337
0.439499
fb3f354629384e19edefd222de21d0f75d624bfc
382
py
Python
VetsApp/views.py
Sabrinax3/Pet-Clinic-1
776955d118a46c8d4eaa74de22ea0280b82debc9
[ "MIT" ]
2
2020-04-13T14:26:54.000Z
2022-01-19T01:30:25.000Z
VetsApp/views.py
Sabrinax3/Pet-Clinic-1
776955d118a46c8d4eaa74de22ea0280b82debc9
[ "MIT" ]
2
2020-05-29T18:52:55.000Z
2020-05-30T02:06:28.000Z
VetsApp/views.py
Sabrinax3/Pet-Clinic-1
776955d118a46c8d4eaa74de22ea0280b82debc9
[ "MIT" ]
8
2020-04-11T08:30:44.000Z
2020-05-30T03:26:13.000Z
from django.shortcuts import render from .models import VetsInfoTable # Create your views here. def home(request): context = { "name": "Home" } return render(request, 'index.html', context) def view_vets(request): obj = VetsInfoTable.objects.all() context = { "vets_data": obj } return render(request, 'vets/vets.html', context)
15.916667
53
0.641361
0
0
0
0
0
0
0
0
76
0.198953
fb40883451f136e23adf11a2d1d1d175606ca586
542
py
Python
generate.py
IsaacPeters/Closest-Pair-of-Points
3c71efcbeae12b0b187117a671b782e392ea71b2
[ "MIT" ]
1
2021-07-18T03:59:55.000Z
2021-07-18T03:59:55.000Z
generate.py
IsaacPeters/Closest-Pair-of-Points
3c71efcbeae12b0b187117a671b782e392ea71b2
[ "MIT" ]
null
null
null
generate.py
IsaacPeters/Closest-Pair-of-Points
3c71efcbeae12b0b187117a671b782e392ea71b2
[ "MIT" ]
null
null
null
import sys import math import random # Figure out what we should name our output file, and how big it should be if len(sys.argv) != 3: # Make sure we get a file argument, and only that print("Incorrect number of arguments found, should be \"generate <file> 10^<x>\"") for i in range(10): with open("./gen/%s%d" % (sys.argv[1], i), "w") as file: for x in range(pow(10, int(sys.argv[2]))): xNum = random.randint(1, 10000) yNum = random.randint(1, 10000) file.write("%d %d\n" % (xNum, yNum))
38.714286
86
0.612546
0
0
0
0
0
0
0
0
222
0.409594
fb40d608ac0b102b80003c2f549912877d9e3d53
963
py
Python
wagtail/snippets/urls.py
brownaa/wagtail
c97bc56c6822eb1b6589d5c33e07f71acfc48845
[ "BSD-3-Clause" ]
2
2021-03-18T21:41:05.000Z
2021-03-18T21:41:08.000Z
wagtail/snippets/urls.py
brownaa/wagtail
c97bc56c6822eb1b6589d5c33e07f71acfc48845
[ "BSD-3-Clause" ]
13
2015-05-08T12:27:10.000Z
2020-01-23T14:45:57.000Z
wagtail/snippets/urls.py
brownaa/wagtail
c97bc56c6822eb1b6589d5c33e07f71acfc48845
[ "BSD-3-Clause" ]
2
2020-09-03T20:12:32.000Z
2021-03-29T08:29:23.000Z
from django.urls import path from wagtail.snippets.views import chooser, snippets app_name = 'wagtailsnippets' urlpatterns = [ path('', snippets.index, name='index'), path('choose/', chooser.choose, name='choose_generic'), path('choose/<slug:app_label>/<slug:model_name>/', chooser.choose, name='choose'), path('choose/<slug:app_label>/<slug:model_name>/<str:pk>/', chooser.chosen, name='chosen'), path('<slug:app_label>/<slug:model_name>/', snippets.list, name='list'), path('<slug:app_label>/<slug:model_name>/add/', snippets.create, name='add'), path('<slug:app_label>/<slug:model_name>/<str:pk>/', snippets.edit, name='edit'), path('<slug:app_label>/<slug:model_name>/multiple/delete/', snippets.delete, name='delete-multiple'), path('<slug:app_label>/<slug:model_name>/<str:pk>/delete/', snippets.delete, name='delete'), path('<slug:app_label>/<slug:model_name>/<str:pk>/usage/', snippets.usage, name='usage'), ]
45.857143
105
0.688474
0
0
0
0
0
0
0
0
495
0.514019
fb413304ce562fca6f9892396c8901821a208e1e
1,974
py
Python
ding/envs/env/tests/test_env_implementation_check.py
jayyoung0802/DI-engine
efbb35ddaf184d1009291e6842fbbae09f193492
[ "Apache-2.0" ]
1
2022-03-21T16:15:39.000Z
2022-03-21T16:15:39.000Z
ding/envs/env/tests/test_env_implementation_check.py
jayyoung0802/DI-engine
efbb35ddaf184d1009291e6842fbbae09f193492
[ "Apache-2.0" ]
null
null
null
ding/envs/env/tests/test_env_implementation_check.py
jayyoung0802/DI-engine
efbb35ddaf184d1009291e6842fbbae09f193492
[ "Apache-2.0" ]
null
null
null
import pytest from easydict import EasyDict import numpy as np import gym from copy import deepcopy from ding.envs.env import check_array_space, check_different_memory, check_all, demonstrate_correct_procedure from ding.envs.env.tests import DemoEnv @pytest.mark.unittest def test_an_implemented_env(): demo_env = DemoEnv({}) check_all(demo_env) demonstrate_correct_procedure(DemoEnv) @pytest.mark.unittest def test_check_array_space(): seq_array = (np.array([1, 2, 3], dtype=np.int64), np.array([4., 5., 6.], dtype=np.float32)) seq_space = [gym.spaces.Box(low=0, high=10, shape=(3, ), dtype=np.int64) for _ in range(2)] with pytest.raises(AssertionError): check_array_space(seq_array, seq_space, 'test_sequence') dict_array = {'a': np.array([1, 2, 3], dtype=np.int64), 'b': np.array([4., 5., 6.], dtype=np.float32)} int_box = gym.spaces.Box(low=0, high=10, shape=(3, ), dtype=np.int64) dict_space = {'a': deepcopy(int_box), 'b': deepcopy(int_box)} with pytest.raises(AssertionError): check_array_space(dict_array, dict_space, 'test_dict') with pytest.raises(TypeError): check_array_space(1, dict_space, 'test_type_error') @pytest.mark.unittest def test_check_different_memory(): int_seq = np.array([1, 2, 3], dtype=np.int64) seq_array1 = (int_seq, np.array([4., 5., 6.], dtype=np.float32)) seq_array2 = (int_seq, np.array([4., 5., 6.], dtype=np.float32)) with pytest.raises(AssertionError): check_different_memory(seq_array1, seq_array2, -1) dict_array1 = {'a': np.array([4., 5., 6.], dtype=np.float32), 'b': int_seq} dict_array2 = {'a': np.array([4., 5., 6.], dtype=np.float32), 'b': int_seq} with pytest.raises(AssertionError): check_different_memory(dict_array1, dict_array2, -1) with pytest.raises(AssertionError): check_different_memory(1, dict_array1, -1) with pytest.raises(TypeError): check_different_memory(1, 2, -1)
37.961538
109
0.691489
0
0
0
0
1,714
0.868288
0
0
67
0.033941
fb421f779844bb484b1c9c0a35a1b99901994f6f
18,474
py
Python
tests/evergreen/metrics/test_buildmetrics.py
jamesbroadhead/evergreen.py
08418bf53bb7cd8de8a68aa6ae0847f28e9e0a30
[ "Apache-2.0" ]
null
null
null
tests/evergreen/metrics/test_buildmetrics.py
jamesbroadhead/evergreen.py
08418bf53bb7cd8de8a68aa6ae0847f28e9e0a30
[ "Apache-2.0" ]
null
null
null
tests/evergreen/metrics/test_buildmetrics.py
jamesbroadhead/evergreen.py
08418bf53bb7cd8de8a68aa6ae0847f28e9e0a30
[ "Apache-2.0" ]
null
null
null
# -*- encoding: utf-8 -*- """Unit tests for src/evergreen/metrics/buildmetrics.py.""" from __future__ import absolute_import from unittest.mock import MagicMock import pytest import evergreen.metrics.buildmetrics as under_test from evergreen.errors.exceptions import ActiveTaskMetricsException from evergreen.task import Task def create_mock_build(task_list=None): mock_build = MagicMock(id="build_id") mock_build.get_tasks.return_value = task_list if task_list else [] return mock_build class TestBuildMetrics(object): def test_build_metrics_empty_for_no_builds(self): mock_build = create_mock_build() build_metrics = under_test.BuildMetrics(mock_build).calculate() assert build_metrics.total_tasks == 0 assert build_metrics.total_processing_time == 0 assert build_metrics.estimated_build_costs == 0 assert build_metrics.pct_tasks_undispatched == 0 assert build_metrics.pct_tasks_failed == 0 assert build_metrics.pct_tasks_timed_out == 0 assert build_metrics.pct_tasks_success == 0 assert build_metrics.total_display_tasks == 0 assert build_metrics.pct_display_tasks_success == 0 assert build_metrics.pct_display_tasks_failed == 0 assert build_metrics.pct_display_tasks_timed_out == 0 assert build_metrics.pct_display_tasks_success == 0 assert not build_metrics.create_time assert not build_metrics.start_time assert not build_metrics.end_time assert not build_metrics.makespan assert not build_metrics.wait_time def test_various_tasks(self, sample_task): n_tasks = 5 task_list = [Task(sample_task, None) for _ in range(n_tasks)] mock_build = create_mock_build(task_list) build_metrics = under_test.BuildMetrics(mock_build).calculate() assert build_metrics.total_tasks == n_tasks assert build_metrics.pct_tasks_success == 1 assert len(build_metrics._create_times) == n_tasks assert len(build_metrics._start_times) == n_tasks assert len(build_metrics._finish_times) == n_tasks def test_adding_successful_task(self, sample_task): sample_task["status"] = "success" task = Task(sample_task, None) mock_build = create_mock_build() build_metrics = under_test.BuildMetrics(mock_build) build_metrics._count_task(task) build_metrics._count_display_tasks() assert build_metrics.undispatched_count == 0 assert build_metrics.total_tasks == 1 assert len(build_metrics._start_times) == 1 assert build_metrics.failure_count == 0 assert build_metrics.success_count == 1 assert build_metrics.pct_tasks_success == 1 assert build_metrics.system_failure_count == 0 assert build_metrics.timed_out_count == 0 assert build_metrics.display_undispatched_count == 0 assert build_metrics.total_display_tasks == 1 assert build_metrics.display_failure_count == 0 assert build_metrics.display_success_count == 1 assert build_metrics.pct_display_tasks_success == 1 assert build_metrics.display_system_failure_count == 0 assert build_metrics.display_timed_out_count == 0 def test_adding_successful_generated_task(self, sample_task): n_tasks = 2 sample_task["status"] = "success" sample_task["generated_by"] = "foobar" task_list = [Task(sample_task, None) for _ in range(n_tasks)] mock_build = create_mock_build(task_list) build_metrics = under_test.BuildMetrics(mock_build).calculate() assert build_metrics.display_success_count == 1 assert build_metrics.total_display_tasks == 1 assert build_metrics.pct_display_tasks_success == 1 def test_adding_undispatched_task(self, sample_task): sample_task["status"] = "undispatched" task = Task(sample_task, None) mock_build = create_mock_build() build_metrics = under_test.BuildMetrics(mock_build) build_metrics._count_task(task) build_metrics._count_display_tasks() assert build_metrics.undispatched_count == 1 assert build_metrics.pct_tasks_undispatched == 1 assert build_metrics.total_tasks == 1 assert len(build_metrics._start_times) == 0 assert build_metrics.display_undispatched_count == 1 assert build_metrics.pct_display_tasks_undispatched == 1 assert build_metrics.total_display_tasks == 1 def test_adding_undispatched_generated_task(self, sample_task): n_tasks = 2 sample_task["status"] = "undispatched" sample_task["generated_by"] = "foobar" task_list = [Task(sample_task, None) for _ in range(n_tasks)] mock_build = create_mock_build(task_list) build_metrics = under_test.BuildMetrics(mock_build).calculate() assert build_metrics.display_undispatched_count == 1 assert build_metrics.total_display_tasks == 1 assert build_metrics.pct_display_tasks_undispatched == 1 def test_adding_failed_task(self, sample_task): sample_task["status"] = "failed" task = Task(sample_task, None) mock_build = create_mock_build() build_metrics = under_test.BuildMetrics(mock_build) build_metrics._count_task(task) build_metrics._count_display_tasks() assert build_metrics.undispatched_count == 0 assert build_metrics.total_tasks == 1 assert len(build_metrics._start_times) == 1 assert build_metrics.failure_count == 1 assert build_metrics.pct_tasks_failed == 1 assert build_metrics.success_count == 0 assert build_metrics.system_failure_count == 0 assert build_metrics.timed_out_count == 0 assert build_metrics.display_undispatched_count == 0 assert build_metrics.total_display_tasks == 1 assert build_metrics.display_failure_count == 1 assert build_metrics.pct_display_tasks_failed == 1 assert build_metrics.display_success_count == 0 assert build_metrics.display_system_failure_count == 0 assert build_metrics.display_timed_out_count == 0 def test_adding_failed_generated_task(self, sample_task): n_tasks = 2 sample_task["status"] = "failed" sample_task["generated_by"] = "foobar" task_list = [Task(sample_task, None) for _ in range(n_tasks)] mock_build = create_mock_build(task_list) build_metrics = under_test.BuildMetrics(mock_build).calculate() assert build_metrics.display_failure_count == 1 assert build_metrics.total_display_tasks == 1 assert build_metrics.pct_display_tasks_failed == 1 assert build_metrics.pct_display_tasks_system_failure == 0 assert build_metrics.pct_display_tasks_timed_out == 0 def test_adding_system_failed_task(self, sample_task): sample_task["status"] = "failed" sample_task["status_details"]["type"] = "system" sample_task["status_details"]["timed_out"] = True task = Task(sample_task, None) mock_build = create_mock_build() build_metrics = under_test.BuildMetrics(mock_build) build_metrics._count_task(task) build_metrics._count_display_tasks() assert build_metrics.undispatched_count == 0 assert build_metrics.total_tasks == 1 assert len(build_metrics._start_times) == 1 assert build_metrics.failure_count == 1 assert build_metrics.system_failure_count == 1 assert build_metrics.pct_tasks_system_failure == 1 assert build_metrics.timed_out_count == 1 assert build_metrics.success_count == 0 assert build_metrics.display_undispatched_count == 0 assert build_metrics.total_display_tasks == 1 assert build_metrics.display_failure_count == 1 assert build_metrics.display_system_failure_count == 1 assert build_metrics.pct_display_tasks_system_failure == 1 assert build_metrics.display_timed_out_count == 1 assert build_metrics.display_success_count == 0 def test_adding_system_failed_display_task(self, sample_task): n_tasks = 2 sample_task["status"] = "failed" sample_task["status_details"]["type"] = "system" sample_task["status_details"]["timed_out"] = False sample_task["generated_by"] = "foobar" task_list = [Task(sample_task, None) for _ in range(n_tasks)] mock_build = create_mock_build(task_list) build_metrics = under_test.BuildMetrics(mock_build).calculate() assert build_metrics.display_failure_count == 1 assert build_metrics.total_display_tasks == 1 assert build_metrics.pct_display_tasks_failed == 1 assert build_metrics.pct_display_tasks_system_failure == 1 assert build_metrics.pct_display_tasks_timed_out == 0 def test_adding_timed_out_display_task(self, sample_task): n_tasks = 2 sample_task["status"] = "failed" sample_task["status_details"]["type"] = "system" sample_task["status_details"]["timed_out"] = True sample_task["generated_by"] = "foobar" task_list = [Task(sample_task, None) for _ in range(n_tasks)] mock_build = create_mock_build(task_list) build_metrics = under_test.BuildMetrics(mock_build).calculate() assert build_metrics.display_timed_out_count == 1 assert build_metrics.total_display_tasks == 1 assert build_metrics.pct_display_tasks_failed == 1 assert build_metrics.pct_display_tasks_system_failure == 0 assert build_metrics.pct_display_tasks_timed_out == 1 def test_generate_by_failure_priority(self, sample_task_list): sample_task_list[0]["status"] = "failure" sample_task_list[1]["status"] = "success" sample_task_list[2]["status"] = "success" sample_task_list[0]["generated_by"] = "foo" sample_task_list[1]["generated_by"] = "foo" sample_task_list[2]["generated_by"] = "foo" mock_build = create_mock_build( [ Task(sample_task_list[0], None), Task(sample_task_list[1], None), Task(sample_task_list[2], None), ] ) build_metrics = under_test.BuildMetrics(mock_build).calculate() assert build_metrics.success_count == 2 assert build_metrics.failure_count == 1 assert build_metrics.display_success_count == 0 assert build_metrics.display_failure_count == 1 assert build_metrics.total_display_tasks == 1 def test_generate_by_system_failure_priority(self, sample_task_list): sample_task_list[0]["status"] = "failure" sample_task_list[0]["status_details"]["type"] = "system" sample_task_list[0]["status_details"]["timed_out"] = False sample_task_list[1]["status"] = "failure" sample_task_list[2]["status"] = "success" sample_task_list[0]["generated_by"] = "foo" sample_task_list[1]["generated_by"] = "foo" sample_task_list[2]["generated_by"] = "foo" mock_build = create_mock_build( [ Task(sample_task_list[0], None), Task(sample_task_list[1], None), Task(sample_task_list[2], None), ] ) build_metrics = under_test.BuildMetrics(mock_build).calculate() assert build_metrics.success_count == 1 assert build_metrics.failure_count == 2 assert build_metrics.system_failure_count == 1 assert build_metrics.display_success_count == 0 assert build_metrics.display_failure_count == 1 assert build_metrics.display_system_failure_count == 1 assert build_metrics.total_display_tasks == 1 def test_generate_by_system_timeout_priority(self, sample_task_list): sample_task_list[0]["status"] = "success" sample_task_list[1]["status"] = "failure" sample_task_list[1]["status_details"]["type"] = "system" sample_task_list[1]["status_details"]["timed_out"] = True sample_task_list[2]["status"] = "failure" sample_task_list[0]["generated_by"] = "foo" sample_task_list[1]["generated_by"] = "foo" sample_task_list[2]["generated_by"] = "foo" mock_build = create_mock_build( [ Task(sample_task_list[0], None), Task(sample_task_list[1], None), Task(sample_task_list[2], None), ] ) build_metrics = under_test.BuildMetrics(mock_build).calculate() assert build_metrics.success_count == 1 assert build_metrics.failure_count == 2 assert build_metrics.system_failure_count == 1 assert build_metrics.timed_out_count == 1 assert build_metrics.display_failure_count == 1 assert build_metrics.display_timed_out_count == 1 assert build_metrics.display_success_count == 0 assert build_metrics.display_failure_count == 1 assert build_metrics.display_system_failure_count == 0 assert build_metrics.total_display_tasks == 1 def test_generate_by_system_undispatched_priority(self, sample_task_list): sample_task_list[0]["status"] = "undispatched" sample_task_list[1]["status"] = "failure" sample_task_list[1]["status_details"]["type"] = "system" sample_task_list[1]["status_details"]["timed_out"] = True sample_task_list[2]["status"] = "failure" sample_task_list[0]["generated_by"] = "foo" sample_task_list[1]["generated_by"] = "foo" sample_task_list[2]["generated_by"] = "foo" mock_build = create_mock_build( [ Task(sample_task_list[0], None), Task(sample_task_list[1], None), Task(sample_task_list[2], None), ] ) build_metrics = under_test.BuildMetrics(mock_build).calculate() assert build_metrics.undispatched_count == 1 assert build_metrics.failure_count == 2 assert build_metrics.system_failure_count == 1 assert build_metrics.timed_out_count == 1 assert build_metrics.display_success_count == 0 assert build_metrics.display_failure_count == 0 assert build_metrics.display_system_failure_count == 0 assert build_metrics.display_timed_out_count == 0 assert build_metrics.display_undispatched_count == 1 def test_adding_task_without_ingest_time(self, sample_task): del sample_task["ingest_time"] task = Task(sample_task, None) mock_build = create_mock_build() build_metrics = under_test.BuildMetrics(mock_build) build_metrics._count_task(task) build_metrics._count_display_tasks() assert build_metrics.undispatched_count == 0 assert build_metrics.total_tasks == 1 assert len(build_metrics._start_times) == 1 assert build_metrics.failure_count == 0 assert build_metrics.success_count == 1 assert build_metrics.system_failure_count == 0 assert build_metrics.timed_out_count == 0 assert build_metrics.display_undispatched_count == 0 assert build_metrics.total_display_tasks == 1 assert build_metrics.display_failure_count == 0 assert build_metrics.display_success_count == 1 assert build_metrics.display_system_failure_count == 0 assert build_metrics.display_timed_out_count == 0 def test_dict_format(self, sample_task): task = Task(sample_task, None) mock_build = create_mock_build() build_metrics = under_test.BuildMetrics(mock_build) build_metrics._count_task(task) build_metrics._count_display_tasks() bm_dict = build_metrics.as_dict() assert bm_dict["build"] == mock_build.id assert "tasks" not in bm_dict def test_dict_format_with_children(self, sample_task): task = Task(sample_task, None) mock_build = create_mock_build([task]) build_metrics = under_test.BuildMetrics(mock_build) build_metrics.calculate() bm_dict = build_metrics.as_dict(include_children=True) assert bm_dict["build"] == mock_build.id assert len(bm_dict["tasks"]) == 1 assert bm_dict["tasks"][0]["task_id"] == task.task_id def test_string_format(self, sample_task): task = Task(sample_task, None) mock_build = create_mock_build([task]) build_metrics = under_test.BuildMetrics(mock_build) build_metrics._count_task(task) build_metrics._count_display_tasks() assert mock_build.id in str(build_metrics) def test_display_tasks_are_filtered(self, sample_task): sample_task["display_only"] = True task = Task(sample_task, None) mock_build = create_mock_build([task]) build_metrics = under_test.BuildMetrics(mock_build) build_metrics.calculate() assert len(build_metrics.task_list) == 1 assert build_metrics.total_tasks == 0 def test_task_filter(self, sample_task): n_tasks = 5 task_list = [Task(sample_task, None) for _ in range(n_tasks)] sample_task_2 = sample_task.copy() filter_task_name = "filter me" sample_task_2["display_name"] = filter_task_name task_list_2 = [Task(sample_task_2, None) for _ in range(n_tasks)] mock_build = create_mock_build(task_list + task_list_2) build_metrics = under_test.BuildMetrics(mock_build) build_metrics.calculate(lambda t: filter_task_name not in t.display_name) assert build_metrics.total_tasks == n_tasks def test_in_progress_task(self, sample_task): sample_task["finish_time"] = None task = Task(sample_task, None) mock_build = create_mock_build() build_metrics = under_test.BuildMetrics(mock_build) with pytest.raises(ActiveTaskMetricsException): build_metrics._count_task(task) class TestPercentTasks(object): def test_percent_of_zero_tasks_is_zero(self): build_metrics = under_test.BuildMetrics("build") assert build_metrics._percent_tasks(5) == 0 def test_percent_of_non_zero_works(self): build_metrics = under_test.BuildMetrics("build") build_metrics.success_count = 10 assert build_metrics._percent_tasks(5) == 0.5
41.053333
81
0.691783
17,963
0.97234
0
0
0
0
0
0
1,264
0.06842
fb427d81000b8506419aa7780e97ffc579670c50
813
py
Python
tools_d2/convert-pretrain-model-to-d2.py
nguyentritai2906/panoptic-deeplab
6bbe17801488a417ed9586acab285ee6a05d68cb
[ "Apache-2.0" ]
506
2020-06-12T01:07:56.000Z
2022-03-26T00:56:52.000Z
tools_d2/convert-pretrain-model-to-d2.py
MrMa-T/panoptic-deeplab
cf8e20bbbf1cf540c7593434b965a93c4a889890
[ "Apache-2.0" ]
85
2020-06-12T04:51:31.000Z
2022-03-23T16:19:44.000Z
tools_d2/convert-pretrain-model-to-d2.py
MrMa-T/panoptic-deeplab
cf8e20bbbf1cf540c7593434b965a93c4a889890
[ "Apache-2.0" ]
102
2020-06-12T06:45:44.000Z
2022-03-22T14:03:04.000Z
#!/usr/bin/env python # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved import pickle as pkl import sys import torch """ Usage: # download your pretrained model: wget https://github.com/LikeLy-Journey/SegmenTron/releases/download/v0.1.0/tf-xception65-270e81cf.pth -O x65.pth # run the conversion ./convert-pretrained-model-to-d2.py x65.pth x65.pkl # Then, use x65.pkl with the following changes in config: MODEL: WEIGHTS: "/path/to/x65.pkl" PIXEL_MEAN: [128, 128, 128] PIXEL_STD: [128, 128, 128] INPUT: FORMAT: "RGB" """ if __name__ == "__main__": input = sys.argv[1] obj = torch.load(input, map_location="cpu") res = {"model": obj, "__author__": "third_party", "matching_heuristics": True} with open(sys.argv[2], "wb") as f: pkl.dump(res, f)
24.636364
114
0.681427
0
0
0
0
0
0
0
0
585
0.719557
fb4386dbb22354c808375368f8d1474f3605a181
2,953
py
Python
test_geo.py
OrrEos/IA-Flood-Warning-Project
af485560050c6e387aabf0bd7500b13de62f810f
[ "MIT" ]
null
null
null
test_geo.py
OrrEos/IA-Flood-Warning-Project
af485560050c6e387aabf0bd7500b13de62f810f
[ "MIT" ]
null
null
null
test_geo.py
OrrEos/IA-Flood-Warning-Project
af485560050c6e387aabf0bd7500b13de62f810f
[ "MIT" ]
1
2022-01-24T09:57:24.000Z
2022-01-24T09:57:24.000Z
import random from floodsystem.utils import sorted_by_key # noqa from floodsystem.geo import stations_by_distance, stations_within_radius, rivers_with_station, stations_by_river,rivers_by_station_number from floodsystem.stationdata import build_station_list '''def test_geo(): #Task 1A #does the function give an output & if it's a list: out = build_station_list() assert type(out) == list #checking that list is a reasonable length assert len(out) >1700 assert len(out) <2500''' #Task 1B def test_stations_by_distance(): stations = build_station_list() p = (52.2053, 0.1218)#putting in Cambridge value from task out = stations_by_distance(stations, p) #check that list is returned assert type(out) == list #check that items are tuples assert type(out[0]) == tuple #check that first station is Jesus Lock assert out[0] == ('Cambridge Jesus Lock', 'Cambridge', 0.840237595667494) #check that furthest station is Penberth assert out[-1] == ('Penberth', 'Penberth', 467.53431870130544) #Task 1C def test_stations_within_radius(): stations = build_station_list() out = stations_within_radius(stations, (52.2053, 0.1218), 10) #check that list is returned assert type(out) == list #checking first value, which is checking the sorting, too assert out[0] == 'Bin Brook' #checking length of list assert len(out) == 11 #Task 1D def test_rivers_with_station(): stations = build_station_list() out = rivers_with_station(stations) #check that out is a set assert type(out) == set #check that each item in list is a string out = list(out) assert type(out[0]) == str #check that out is of a reasonable length - no. of stations might change in the future? assert len(out) > 900 assert len(out) < 1000 #checking for duplicates #if set(out) is shorter than list (out), then there are duplicates assert len(out) == len(set(out)) def test_stations_by_rivers(): stations = build_station_list out = stations_by_river(stations) #check that output is a dictionary assert type(out) == dict #check number of stations listed for Aire: aire = out['River Aire'] assert len(aire) ==24 #check that it's a list assert type(out['River Thames']) == list #Task1E def test_rivers_by_station_number(): stations = build_station_list() N = random.randint(0,9) out = rivers_by_station_number(stations, N) #check that output is a list assert type(out)==list #check that items are tuples #assert(type(out[0])) == tuple #check that list is of length N assert len(out) == N #checking that list is sorted by number of stations ret = sorted_by_key(out, 1, reverse=True)#sorting the list by decreasing distance from p (the 3rd thing in tuple - distance_p) assert ret == out
29.828283
137
0.679986
0
0
0
0
0
0
0
0
1,256
0.42533
fb43e8774473bcb7c7cfe41180999e085bda6d33
724
py
Python
app.py
aws-samples/aws-cdk-service-catalog-pipeline
e6e3eab0dec3fc41e7621971453131fd0d5b6e32
[ "MIT-0" ]
null
null
null
app.py
aws-samples/aws-cdk-service-catalog-pipeline
e6e3eab0dec3fc41e7621971453131fd0d5b6e32
[ "MIT-0" ]
null
null
null
app.py
aws-samples/aws-cdk-service-catalog-pipeline
e6e3eab0dec3fc41e7621971453131fd0d5b6e32
[ "MIT-0" ]
null
null
null
#!/usr/bin/env python3 import os import aws_cdk as cdk # For consistency with TypeScript code, `cdk` is the preferred import name for # the CDK's core module. The following line also imports it as `core` for use # with examples from the CDK Developer's Guide, which are in the process of # being updated to use `cdk`. You may delete this import if you don't need it. from cdk_pipelines.cdk_pipelines import CdkPipelineStack app = cdk.App() CdkPipelineStack(app, "AWSomeServiceCatalogPipeline", description="CI/CD CDK Pipelines for Service Catalog Example", env={ 'region': app.node.try_get_context("region"), 'account': app.node.try_get_context("pipeline_account") } ) app.synth()
31.478261
79
0.727901
0
0
0
0
0
0
0
0
454
0.627072
fb4452119142d00f8ea5508e610548a9fa55bde5
1,565
py
Python
Generator/Sheet3/PDF.py
trngb/watools
57b9074d59d856886675aa26014bfd6673d5da76
[ "Apache-2.0" ]
11
2018-09-25T08:58:26.000Z
2021-02-13T18:58:05.000Z
Generator/Sheet3/PDF.py
trngbich/watools
57b9074d59d856886675aa26014bfd6673d5da76
[ "Apache-2.0" ]
1
2020-07-03T02:36:41.000Z
2021-03-21T22:20:47.000Z
Generator/Sheet3/PDF.py
trngbich/watools
57b9074d59d856886675aa26014bfd6673d5da76
[ "Apache-2.0" ]
16
2018-09-28T22:55:11.000Z
2021-02-22T13:03:56.000Z
# -*- coding: utf-8 -*- """ Authors: Tim Hessels UNESCO-IHE 2017 Contact: t.hessels@unesco-ihe.org Repository: https://github.com/wateraccounting/wa Module: Generator/Sheet3 """ import os def Create(Dir_Basin, Basin, Simulation, Dir_Basin_CSV_a, Dir_Basin_CSV_b): """ This functions create the monthly and yearly sheet 3 in pdf format, based on the csv files. Parameters ---------- Dir_Basin : str Path to all the output data of the Basin Basin : str Name of the basin Simulation : int Defines the simulation Dir_Basin_CSV_a : str Data path pointing to the CSV output files for sheet a Dir_Basin_CSV_b : str Data path pointing to the CSV output files for sheet b """ # import wa module from watools.Sheets import create_sheet3 # Create output folder for PDF files Dir_Basin_PDF = os.path.join(Dir_Basin, "Simulations", "Simulation_%d" %Simulation, "PDF") if not os.path.exists(Dir_Basin_PDF): os.mkdir(Dir_Basin_PDF) # Create output filename for PDFs FileName_Splitted = Dir_Basin_CSV_a.split('_') Year = str(FileName_Splitted[-1].split('.')[0]) outFile_a = os.path.join(Dir_Basin_PDF,'Sheet3a_Sim%s_%s_%s.pdf' %(Simulation, Basin, Year)) outFile_b = os.path.join(Dir_Basin_PDF,'Sheet3b_Sim%s_%s_%s.pdf' %(Simulation, Basin, Year)) # Create PDFs sheet3a_fh, sheet3b_fh = create_sheet3(Basin, str(Year), ['km3/year', 'kg/ha/year', 'kg/m3'], [Dir_Basin_CSV_a, Dir_Basin_CSV_b], [outFile_a, outFile_b]) return()
33.297872
157
0.681789
0
0
0
0
0
0
0
0
882
0.563578
fb446c8a40864dcf38289e8b379abbb25374263e
2,481
py
Python
bonita/commands/user.py
dantebarba/bonita-cli
f750a6a1ff802e5197644b2363aea406bf29b6bf
[ "WTFPL" ]
2
2017-09-02T08:05:03.000Z
2018-09-17T13:48:03.000Z
bonita/commands/user.py
dantebarba/bonita-cli
f750a6a1ff802e5197644b2363aea406bf29b6bf
[ "WTFPL" ]
null
null
null
bonita/commands/user.py
dantebarba/bonita-cli
f750a6a1ff802e5197644b2363aea406bf29b6bf
[ "WTFPL" ]
null
null
null
"""The user command.""" from json import dumps from .base import Base from bonita.api.bonita_client import BonitaClient class User(Base): """Manage user""" def run(self): # bonita process [deploy <filename_on_server>|get <process_id>|enable <process_id>|disable <process_id>] #print('You supplied the following options:', dumps(self.options, indent=2, sort_keys=True)) self.bonita_client = BonitaClient(self.loadConfiguration()) if self.hasOption('add'): self.add() # if self.hasOption('update'): # self.add() elif self.hasOption('get'): self.get() elif self.hasOption('remove'): self.remove() elif self.hasOption('enable'): self.enable() elif self.hasOption('disable'): self.disable() else: print('Nothing to do.') def add(self): payload = { 'userName': self.getOption("<login>"), 'password': self.getOption("<password>"), 'password_confirm': self.getOption("<password>"), 'icon': self.getOption("<icon>", ""), 'firstName': self.getOption("<firstName>", ""), 'lastName': self.getOption("<lastName>", ""), 'title': self.getOption("<title>", ""), 'job_title': self.getOption("<job_title>", ""), 'manager_id': self.getOption("<manager_id>", 0) } rc, datas = self.bonita_client.addUser(payload) self.processResults(rc, datas) def get(self): if self.hasOption('<user_id>'): user_id = self.options['<user_id>'] rc, datas = self.bonita_client.getUser(user_id) self.processResults(rc, datas) else: rc, datas = self.bonita_client.searchUsers({ 'p': 0, 'c': 20 }) self.processResults(rc, datas) def remove(self): if self.hasOption('<user_id>'): user_id = self.options['<user_id>'] rc, datas = self.bonita_client.deleteUser(user_id) self.processResults(rc, datas) def enable(self): user_id = self.options['<user_id>'] rc, datas = self.bonita_client.enableUser(user_id) self.processResults(rc, datas) def disable(self): user_id = self.options['<user_id>'] rc, datas = self.bonita_client.disableUser(user_id) self.processResults(rc, datas)
33.986301
112
0.563886
2,357
0.95002
0
0
0
0
0
0
611
0.246272
fb4520cbe2999728bc66894639cfa8a36d53fb16
1,809
py
Python
pyActionRec/action_flow.py
Xiatian-Zhu/anet2016_cuhk
a0df08cbbe65013e9a259d5412c33a99c2c84127
[ "BSD-2-Clause" ]
253
2016-07-01T22:57:55.000Z
2022-03-01T10:59:31.000Z
pyActionRec/action_flow.py
Xiatian-Zhu/anet2016_cuhk
a0df08cbbe65013e9a259d5412c33a99c2c84127
[ "BSD-2-Clause" ]
39
2016-08-31T08:42:24.000Z
2021-12-11T06:56:47.000Z
pyActionRec/action_flow.py
Xiatian-Zhu/anet2016_cuhk
a0df08cbbe65013e9a259d5412c33a99c2c84127
[ "BSD-2-Clause" ]
101
2016-07-01T22:57:57.000Z
2022-03-08T07:26:53.000Z
from config import ANET_CFG import sys sys.path.append(ANET_CFG.DENSE_FLOW_ROOT+'/build') from libpydenseflow import TVL1FlowExtractor import action_caffe import numpy as np class FlowExtractor(object): def __init__(self, dev_id, bound=20): TVL1FlowExtractor.set_device(dev_id) self._et = TVL1FlowExtractor(bound) def extract_flow(self, frame_list, new_size=None): """ This function extracts the optical flow and interleave x and y channels :param frame_list: :return: """ frame_size = frame_list[0].shape[:2] rst = self._et.extract_flow([x.tostring() for x in frame_list], frame_size[1], frame_size[0]) n_out = len(rst) if new_size is None: ret = np.zeros((n_out*2, frame_size[0], frame_size[1])) for i in xrange(n_out): ret[2*i, :] = np.fromstring(rst[i][0], dtype='uint8').reshape(frame_size) ret[2*i+1, :] = np.fromstring(rst[i][1], dtype='uint8').reshape(frame_size) else: import cv2 ret = np.zeros((n_out*2, new_size[1], new_size[0])) for i in xrange(n_out): ret[2*i, :] = cv2.resize(np.fromstring(rst[i][0], dtype='uint8').reshape(frame_size), new_size) ret[2*i+1, :] = cv2.resize(np.fromstring(rst[i][1], dtype='uint8').reshape(frame_size), new_size) return ret if __name__ == "__main__": import cv2 im1 = cv2.imread('../data/img_1.jpg') im2 = cv2.imread('../data/img_2.jpg') f = FlowExtractor(0) flow_frames = f.extract_flow([im1, im2]) from pylab import * plt.figure() plt.imshow(flow_frames[0]) plt.figure() plt.imshow(flow_frames[1]) plt.figure() plt.imshow(im1) plt.show() print flow_frames
30.15
113
0.611388
1,234
0.682145
0
0
0
0
0
0
223
0.123273
fb4743a6ee0568d1f98e6dec89a2138670b26a6f
9,921
py
Python
aqme/qdesc.py
patonlab/aqme
080d8e85ee905718ddf78f7fdee2ee308a293ad1
[ "MIT" ]
null
null
null
aqme/qdesc.py
patonlab/aqme
080d8e85ee905718ddf78f7fdee2ee308a293ad1
[ "MIT" ]
null
null
null
aqme/qdesc.py
patonlab/aqme
080d8e85ee905718ddf78f7fdee2ee308a293ad1
[ "MIT" ]
null
null
null
#####################################################. # This file stores all the functions # # used for genrating all parameters # #####################################################. from rdkit.Chem import AllChem as Chem from rdkit.Chem import rdMolTransforms import os import pandas as pd from aqme.csearch import getDihedralMatches def get_data(rdkit_mols,min_mols,dft_mols,lot,bs,name_mol,args,type_csearch,type_min,w_dir_initial): geom_data = pd.DataFrame() for j, mol_j in enumerate(rdkit_mols): name = mol_j.GetProp('_Name') name_dft= '_'.join(mol_j.GetProp('_Name').split())+'_'+type_min geom_data.at[j,'Name'] = name if len(args.dihedral) != 0: for d,dh in enumerate(args.dihedral): dihedral_rdkit = rdMolTransforms.GetDihedralDeg(mol_j.GetConformer(),dh[0],dh[1],dh[2],dh[3]) geom_data.at[j,args.geom_par_name+'-Dihedral-'+type_csearch+'-'+str(dh[0])+'-'+str(dh[1])+'-'+str(dh[2])+'-'+str(dh[3])] = dihedral_rdkit if len(args.angle) != 0: for a,an in enumerate(args.angle): angle_rdkit = rdMolTransforms.GetAngleDeg(mol_j.GetConformer(),an[0],an[1],an[2]) geom_data.at[j,args.geom_par_name+'-Angle-'+type_csearch+'-'+str(an[0])+'-'+str(an[1])+'-'+str(an[2])] = angle_rdkit if len(args.bond) != 0: for b,bd in enumerate(args.angle): bond_rdkit = rdMolTransforms.GetBondLength(mol_j.GetConformer(),bd[0],bd[1]) geom_data.at[j,args.geom_par_name+'-Bond-'+type_csearch+'-'+str(bd[0])+'-'+str(bd[1])] = bond_rdkit if min_mols is not None: if type_min =='ani' or type_min=='xtb': for i, mol_i in enumerate(min_mols): if mol_i.GetProp('_Name') == name+' '+type_min: if len(args.dihedral) != 0: for d,dh in enumerate(args.dihedral): dihedral_min = rdMolTransforms.GetDihedralDeg(mol_i.GetConformer(),dh[0],dh[1],dh[2],dh[3]) geom_data.at[j,args.geom_par_name+'-Dihedral-'+type_min+'-'+str(dh[0])+'-'+str(dh[1])+'-'+str(dh[2])+'-'+str(dh[3])] = dihedral_min if len(args.angle) != 0: for a,an in enumerate(args.angle): angle_min = rdMolTransforms.GetAngleDeg(mol_i.GetConformer(),an[0],an[1],an[2]) geom_data.at[j,args.geom_par_name+'-Angle-'+type_min+'-'+str(an[0])+'-'+str(an[1])+'-'+str(an[2])] = angle_min if len(args.bond) != 0: for b,bd in enumerate(args.angle): bond_min = rdMolTransforms.GetBondLength(mol_i.GetConformer(),bd[0],bd[1]) if dft_mols is not None: if type_min =='ani' or type_min=='xtb': for i, mol_i in enumerate(dft_mols): if mol_i.GetProp('_Name').split('/')[-1].split('.log')[0] == name_dft: if len(args.dihedral) != 0: for d,dh in enumerate(args.dihedral): dihedral_min = rdMolTransforms.GetDihedralDeg(mol_i.GetConformer(),dh[0],dh[1],dh[2],dh[3]) geom_data.at[j,args.geom_par_name+'-Dihedral-'+lot+'-'+bs+'-'+str(dh[0])+'-'+str(dh[1])+'-'+str(dh[2])+'-'+str(dh[3])] = dihedral_min if len(args.angle) != 0: for a,an in enumerate(args.angle): angle_min = rdMolTransforms.GetAngleDeg(mol_i.GetConformer(),an[0],an[1],an[2]) geom_data.at[j,args.geom_par_name+'-Angle-'+lot+'-'+bs+'-'+str(an[0])+'-'+str(an[1])+'-'+str(an[2])] = angle_min if len(args.bond) != 0: for b,bd in enumerate(args.angle): bond_min = rdMolTransforms.GetBondLength(mol_i.GetConformer(),bd[0],bd[1]) geom_data.at[j,args.geom_par_name+'-Bond-'+lot+'-'+bs+'-'+str(bd[0])+'-'+str(bd[1])] = bond_min return geom_data def calculate_parameters(sdf_rdkit,sdf_ani,sdf_xtb,qm_files,args,log,w_dir_initial,name_mol,lot,bs): #creating folder for all molecules to write geom parameter folder = w_dir_initial + '/QSTAT/geom_parameters' try: os.makedirs(folder) os.chdir(folder) except OSError: if os.path.isdir(folder): os.chdir(folder) else: raise #get mol objects dft_mols= [] rdkit_mols = Chem.SDMolSupplier(sdf_rdkit, removeHs=False) if args.rot_dihedral: args.dihedral = getDihedralMatches(rdkit_mols[0], args.heavyonly,log) if sdf_ani is not None: ani_mols = Chem.SDMolSupplier(sdf_ani, removeHs=False) if sdf_xtb is not None: xtb_mols = Chem.SDMolSupplier(sdf_xtb, removeHs=False) ob_compat = True try: import openbabel as ob except (ModuleNotFoundError,AttributeError): ob_compat = False log.write('\nx Open Babel is not installed correctly, it is not possible to get molecular descriptors') if ob_compat: obConversion = ob.OBConversion() obConversion.SetInAndOutFormats("log", "mol") ob_mol = ob.OBMol() for file in qm_files: if str(bs).find('/') > -1: obConversion.ReadFile(ob_mol, args.path + str(lot) + '-' + str(bs).split('/')[0] +'/success/output_files/'+file) obConversion.WriteFile(ob_mol, args.path + str(lot) + '-' + str(bs).split('/')[0] +'/success/output_files/'+file.split('.')[0]+'.mol') obConversion.CloseOutFile() dft_mols.append(Chem.MolFromMolFile(args.path + str(lot) + '-' + str(bs).split('/')[0] +'/success/output_files/'+file.split('.')[0]+'.mol', removeHs=False)) else: obConversion.ReadFile(ob_mol, args.path + str(lot) + '-' + str(bs) +'/success/output_files/'+file) obConversion.WriteFile(ob_mol, args.path + str(lot) + '-' + str(bs) +'/success/output_files/'+file.split('.')[0]+'.mol') obConversion.CloseOutFile() dft_mols.append(Chem.MolFromMolFile(args.path + str(lot) + '-' + str(bs) +'/success/output_files/'+file.split('.')[0]+'.mol', removeHs=False)) if os.path.exists(w_dir_initial+'/CSEARCH/xtb/'+name_mol+'_xtb.sdf') and os.path.exists(w_dir_initial+'/CSEARCH/rdkit/'+name_mol+'_rdkit.sdf'): geom_data = get_data(rdkit_mols,xtb_mols,dft_mols,lot,bs,name_mol,args,'rdkit','xtb',w_dir_initial) geom_data.to_csv(name_mol+'-all-geom-data-with-rdkit-xtb.csv',index=False) if os.path.exists(w_dir_initial+'/CSEARCH/ani/'+name_mol+'_ani.sdf') and os.path.exists(w_dir_initial+'/CSEARCH/rdkit/'+name_mol+'_rdkit.sdf'): geom_data = get_data(rdkit_mols,ani_mols,dft_mols,lot,bs,name_mol,args,'rdkit','ani',w_dir_initial) geom_data.to_csv(name_mol+'-all-geom-data-with-rdkit-ani.csv',index=False) ########## if os.path.exists(w_dir_initial+'/CSEARCH/xtb/'+name_mol+'_xtb.sdf') and os.path.exists(w_dir_initial+'/CSEARCH/summ/'+name_mol+'_summ.sdf'): geom_data = get_data(rdkit_mols,xtb_mols,dft_mols,lot,bs,name_mol,args,'summ','xtb',w_dir_initial) geom_data.to_csv(name_mol+'-all-geom-data-with-summ-xtb.csv',index=False) if os.path.exists(w_dir_initial+'/CSEARCH/ani/'+name_mol+'_ani.sdf') and os.path.exists(w_dir_initial+'/CSEARCH/summ/'+name_mol+'_summ.sdf'): geom_data = get_data(rdkit_mols,ani_mols,dft_mols,lot,bs,name_mol,args,'summ','ani',w_dir_initial) geom_data.to_csv(name_mol+'-all-geom-data-with-summ-ani.csv',index=False) ############# if os.path.exists(w_dir_initial+'/CSEARCH/xtb/'+name_mol+'_xtb.sdf') and os.path.exists(w_dir_initial+'/CSEARCH/fullmonte/'+name_mol+'_fullmonte.sdf'): geom_data = get_data(rdkit_mols,xtb_mols,dft_mols,lot,bs,name_mol,args,'fullmonte','xtb',w_dir_initial) geom_data.to_csv(name_mol+'-all-geom-data-with-fullmonte-xtb.csv',index=False) if os.path.exists(w_dir_initial+'/CSEARCH/ani/'+name_mol+'_ani.sdf') and os.path.exists(w_dir_initial+'/CSEARCH/fullmonte/'+name_mol+'_fullmonte.sdf'): geom_data = get_data(rdkit_mols,ani_mols,dft_mols,lot,bs,name_mol,args,'fullmonte','ani',w_dir_initial) geom_data.to_csv(name_mol+'-all-geom-data-with-fullmonte-ani.csv',index=False) ############ if os.path.exists(w_dir_initial+'/CSEARCH/summ/'+name_mol+'_summ.sdf') and not os.path.exists(w_dir_initial+'/CSEARCH/xtb/'+name_mol+'_xtb.sdf') and not os.path.exists(w_dir_initial+'/CSEARCH/ani/'+name_mol+'_ani.sdf'): geom_data = get_data(rdkit_mols,None,dft_mols,lot,bs,name_mol,args,'summ',None,w_dir_initial) geom_data.to_csv(name_mol+'-all-geom-data-with-summ.csv',index=False) if os.path.exists(w_dir_initial+'/CSEARCH/rdkit/'+name_mol+'_rdkit.sdf') and not os.path.exists(w_dir_initial+'/CSEARCH/xtb/'+name_mol+'_xtb.sdf') and not os.path.exists(w_dir_initial+'/CSEARCH/ani/'+name_mol+'_ani.sdf') : geom_data = get_data(rdkit_mols,None,dft_mols,lot,bs,name_mol,args,'rdkit',None,w_dir_initial) geom_data.to_csv(name_mol+'-all-geom-data-with-rdkit.csv',index=False) if os.path.exists(w_dir_initial+'/CSEARCH/fullmonte/'+name_mol+'_fullmonte.sdf') and not os.path.exists(w_dir_initial+'/CSEARCH/xtb/'+name_mol+'_xtb.sdf') and not os.path.exists(w_dir_initial+'/CSEARCH/ani/'+name_mol+'_ani.sdf') : geom_data = get_data(rdkit_mols,None,dft_mols,lot,bs,name_mol,args,'rdkit',None,w_dir_initial) geom_data.to_csv(name_mol+'-all-geom-data-with-fullmonte.csv',index=False)
65.269737
238
0.603467
0
0
0
0
0
0
0
0
1,884
0.1899
fb49836ffdfff81dfa3d877748d3c2b47f98f7fb
3,446
py
Python
googlecode-issues-exporter/generate_user_map.py
ballschin52/support-tools
85be996e89d292c7f20031dde88198acc63d5e6c
[ "Apache-2.0" ]
41
2016-05-03T02:27:07.000Z
2021-10-14T13:54:16.000Z
googlecode-issues-exporter/generate_user_map.py
ballschin52/support-tools
85be996e89d292c7f20031dde88198acc63d5e6c
[ "Apache-2.0" ]
7
2016-05-05T13:53:37.000Z
2021-06-27T20:25:13.000Z
googlecode-issues-exporter/generate_user_map.py
ballschin52/support-tools
85be996e89d292c7f20031dde88198acc63d5e6c
[ "Apache-2.0" ]
30
2016-05-05T13:26:21.000Z
2021-10-13T09:39:21.000Z
# Copyright 2014 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tool for generating a user mapping from Google Code user to BitBucket user. """ import argparse import json import sys import issues class OptionalMap(dict): """Dictionary that returns the key for missing items. """ def __missing__(self, key): """Implements the dict interface. """ return key def addIfNotPresent(users, user): """Adds a user if it is not already set.""" if user not in users: users[user] = user def _CreateUsersDict(issue_data, project_name): """Extract users from list of issues into a dict. Args: issue_data: Issue data project_name: The name of the project being exported. Returns: Dict of users associated with a list of issues """ users = {} for issue in issue_data: googlecode_issue = issues.GoogleCodeIssue( issue, project_name, OptionalMap()) reporting_user = googlecode_issue.GetAuthor() addIfNotPresent(users, reporting_user) assignee_user = googlecode_issue.GetOwner() addIfNotPresent(users, assignee_user) googlecode_comments = googlecode_issue.GetComments() for comment in googlecode_comments: googlecode_comment = issues.GoogleCodeComment(googlecode_issue, comment) commenting_user = googlecode_comment.GetAuthor() addIfNotPresent(users, commenting_user) return { "users": users } def Generate(issue_file_path, project_name): """Generates a user map for the specified issues. """ issue_data = None user_file = open(issue_file_path) user_data = json.load(user_file) user_projects = user_data["projects"] for project in user_projects: if project_name in project["name"]: issue_data = project["issues"]["items"] break if issue_data is None: raise issues.ProjectNotFoundError( "Project %s not found" % project_name) users = _CreateUsersDict(issue_data, project_name) with open("users.json", "w") as users_file: user_json = json.dumps(users, sort_keys=True, indent=4, separators=(",", ": "), ensure_ascii=False) users_file.write(unicode(user_json)) print "\nCreated file users.json.\n" def main(args): """The main function. Args: args: The command line arguments. Raises: issues.ProjectNotFoundError: The user passed in an invalid project name. """ parser = argparse.ArgumentParser() parser.add_argument("--issue_file_path", required=True, help="The path to the file containing the issues from" "Google Code.") parser.add_argument("--project_name", required=True, help="The name of the Google Code project you wish to" "export") parsed_args, _ = parser.parse_known_args(args) Generate(parsed_args.issue_file_path, parsed_args.project_name) if __name__ == "__main__": main(sys.argv)
28.716667
78
0.702844
172
0.049913
0
0
0
0
0
0
1,506
0.437028
fb4998788840ae0b088496c0b1aec6536f521b03
952
py
Python
apps/auth/views/wxlogin.py
rainydaygit/testtcloudserver
8037603efe4502726a4d794fb1fc0a3f3cc80137
[ "MIT" ]
349
2020-08-04T10:21:01.000Z
2022-03-23T08:31:29.000Z
apps/auth/views/wxlogin.py
rainydaygit/testtcloudserver
8037603efe4502726a4d794fb1fc0a3f3cc80137
[ "MIT" ]
2
2021-01-07T06:17:05.000Z
2021-04-01T06:01:30.000Z
apps/auth/views/wxlogin.py
rainydaygit/testtcloudserver
8037603efe4502726a4d794fb1fc0a3f3cc80137
[ "MIT" ]
70
2020-08-24T06:46:14.000Z
2022-03-25T13:23:27.000Z
from flask import Blueprint from apps.auth.business.wxlogin import WxLoginBusiness from apps.auth.extentions import validation, parse_json_form from library.api.render import json_detail_render wxlogin = Blueprint("wxlogin", __name__) @wxlogin.route('/', methods=['POST']) @validation('POST:wx_user_code') def wxuser_index_handler(): """ @api {post} /v1/wxlogin/ 登录 微信 @apiName WxLogin @apiGroup 用户 @apiDescription 登录微信 @apiParam {string} user_code 用户编码 @apiParamExample {json} Request-Example: { "user_code":"j2qL3QjNXXwa_4A0WJFDNJyPEx88HTHytARgRbr176g" } @apiSuccessExample {json} Success-Response: HTTP/1.1 200 OK { "code": 0, "data": { "token": "asdasdasd" }, "message": "" } """ user_code = parse_json_form('wx_user_code') ret, data, msg = WxLoginBusiness.get_user(user_code[0]) return json_detail_render(ret, data, msg)
25.052632
65
0.668067
0
0
0
0
740
0.755102
0
0
532
0.542857
fb4ad13207c5ca10ca59d1294d3d67f91a07e8bb
4,374
py
Python
servidor/jornada_teorica.py
angeloide78/wShifts
d88a3284c8a3829a7fbda127eb23c4d5392033f3
[ "ECL-2.0", "Apache-2.0" ]
3
2019-12-21T22:07:11.000Z
2021-09-24T15:08:45.000Z
servidor/jornada_teorica.py
angeloide78/wShifts
d88a3284c8a3829a7fbda127eb23c4d5392033f3
[ "ECL-2.0", "Apache-2.0" ]
1
2018-03-24T23:10:40.000Z
2018-03-24T23:10:40.000Z
servidor/jornada_teorica.py
angeloide78/wShifts
d88a3284c8a3829a7fbda127eb23c4d5392033f3
[ "ECL-2.0", "Apache-2.0" ]
1
2022-01-26T21:47:10.000Z
2022-01-26T21:47:10.000Z
# -*- coding: utf-8 -* # ALGG 03-01-2017 Creación de módulo jornada_teorica. class JornadaTeorica(object): def __init__(self, conn): '''Constructor''' # Conexión. self.__conn = conn def get_jt(self, centro_fisico_id = None, anno = None): '''Devuelve: (id, cf_id, cf_cod, cf_desc, anno, total_horas_anual, observaciones) Tabla: jornada_teorica Opciones de filtrado: Id de centro físico <centro_fisico_id>, año de calendario laboral <anno> ''' # Se recuperan todos las jornadas teóricas. ret = self.__conn.get_jt(centro_fisico_id, anno) # Diccionario principal. data = {} # Valor del diccionario data, que será una lista de diccionarios. lista = [] for i in range(len(ret)): # Se crea diccionario. d = {} # ID ficticio. ID = str(ret[i].anno) + str(ret[i].cf_id) # Se forma diccionario. d.setdefault('id', ID) d.setdefault('cf_id', ret[i].cf_id) d.setdefault('cf_cod', ret[i].cf_cod) d.setdefault('cf_desc', ret[i].cf_desc) d.setdefault('anno', ret[i].anno) d.setdefault('total_horas_anual', ret[i].total_horas_anual) d.setdefault('observaciones', ret[i].observaciones) # Se añade diccionario a la lista. lista.append(d) # Se incluye clave, valor que será "data" : lista de diccionarios data.setdefault('data', lista) print(data) return data def set_jt(self, datos): ret = True msj = '' # Lista de celdas a modificar. Cada elemento es un diccionario que # contiene los elementos necesarios para modificar el campo. celdas = datos['celdas_a_modificar'] # Lista de filas a insertar. filas_a_insertar = datos['filas_a_insertar'] # Lista de filas a eliminar. filas_a_eliminar = datos['filas_a_eliminar'] ; # ############################### # TRATAMIENTO DE FILAS A ELIMINAR # ############################### # Eliminamos identificadores 0, que son aquellos de filas nuevas que # se eliminaron antes de ser guardadas en BD. try: while True: filas_a_eliminar.remove(0) except: pass # ################################# # TRATAMIENTO DE CELDAS A MODIFICAR # ################################# # Eliminamos celdas con identificador 0, ya que son celdas que # pertenecen a filas que son nuevas y que se insertarán como elementos # nuevos. También eliminamos aquellas celdas que pertenezcan a filas # que ya hayan sido eliminadas, ya que puede darse el caso de # modificar celdas y luego eliminar la fila de la celda modificada. aux = [] for i in celdas: if i is None: continue if i['id'] == 0: continue if i['id'] in filas_a_eliminar: continue try: if i['field'] == 'total_horas_anual': int(i['valor_nuevo']) except: ret = False msj = u'Solo se permiten valores numéricos' break aux.append(i) celdas = aux # ############################### # TRATAMIENTO DE FILAS A INSERTAR # ############################### # Se comprueba que los datos son numéricos. for i in filas_a_insertar: try: int(i['total_horas_anual']) except: ret = False msj = u'Solo se permiten valores numéricos' break # ############## # ENVÍO DE DATOS # ############## if ret: ret, msj = self.__conn.actualizar_jt(celdas, \ filas_a_insertar, \ filas_a_eliminar) ret = {'data' : [{'estado' : ret}, {'mensaje' : msj}]} # Devolvemos estado. return ret
32.887218
79
0.486968
4,294
0.978355
0
0
0
0
0
0
2,034
0.463431
fb4e27ed9f0165f7474ca1a89bce202114f9a019
3,645
py
Python
app.py
jasoncordis/spotify-flask
1e7f2955ab9d825a5f32f494b2966f18c460f311
[ "Apache-2.0" ]
58
2017-04-20T17:25:25.000Z
2021-02-05T21:41:25.000Z
app.py
jasoncordis/spotify-flask
1e7f2955ab9d825a5f32f494b2966f18c460f311
[ "Apache-2.0" ]
3
2018-04-08T22:03:25.000Z
2020-05-07T06:03:21.000Z
app.py
jasoncordis/spotify-flask
1e7f2955ab9d825a5f32f494b2966f18c460f311
[ "Apache-2.0" ]
17
2017-12-03T04:26:48.000Z
2021-01-26T21:18:27.000Z
''' This code was based on these repositories, so special thanks to: https://github.com/datademofun/spotify-flask https://github.com/drshrey/spotify-flask-auth-example ''' from flask import Flask, request, redirect, g, render_template, session from spotify_requests import spotify app = Flask(__name__) app.secret_key = 'some key for session' # ----------------------- AUTH API PROCEDURE ------------------------- @app.route("/auth") def auth(): return redirect(spotify.AUTH_URL) @app.route("/callback/") def callback(): auth_token = request.args['code'] auth_header = spotify.authorize(auth_token) session['auth_header'] = auth_header return profile() def valid_token(resp): return resp is not None and not 'error' in resp # -------------------------- API REQUESTS ---------------------------- @app.route("/") def index(): return render_template('index.html') @app.route('/search/') def search(): try: search_type = request.args['search_type'] name = request.args['name'] return make_search(search_type, name) except: return render_template('search.html') @app.route('/search/<search_type>/<name>') def search_item(search_type, name): return make_search(search_type, name) def make_search(search_type, name): if search_type not in ['artist', 'album', 'playlist', 'track']: return render_template('index.html') data = spotify.search(search_type, name) api_url = data[search_type + 's']['href'] items = data[search_type + 's']['items'] return render_template('search.html', name=name, results=items, api_url=api_url, search_type=search_type) @app.route('/artist/<id>') def artist(id): artist = spotify.get_artist(id) if artist['images']: image_url = artist['images'][0]['url'] else: image_url = 'http://bit.ly/2nXRRfX' tracksdata = spotify.get_artist_top_tracks(id) tracks = tracksdata['tracks'] related = spotify.get_related_artists(id) related = related['artists'] return render_template('artist.html', artist=artist, related_artists=related, image_url=image_url, tracks=tracks) @app.route('/profile') def profile(): if 'auth_header' in session: auth_header = session['auth_header'] # get profile data profile_data = spotify.get_users_profile(auth_header) # get user playlist data playlist_data = spotify.get_users_playlists(auth_header) # get user recently played tracks recently_played = spotify.get_users_recently_played(auth_header) if valid_token(recently_played): return render_template("profile.html", user=profile_data, playlists=playlist_data["items"], recently_played=recently_played["items"]) return render_template('profile.html') @app.route('/contact') def contact(): return render_template('contact.html') @app.route('/featured_playlists') def featured_playlists(): if 'auth_header' in session: auth_header = session['auth_header'] hot = spotify.get_featured_playlists(auth_header) if valid_token(hot): return render_template('featured_playlists.html', hot=hot) return render_template('profile.html') if __name__ == "__main__": app.run(debug=True, port=spotify.PORT)
27.613636
72
0.609877
0
0
0
0
2,452
0.672702
0
0
927
0.254321
fb4e569bf8fd09a1c7d6371a76f1b851a6a2772b
7,275
py
Python
ckanext-datagathering/ckanext/datagathering/commands/migrate.py
smallmedia/iod-ckan
dfd85b41286fe86924ec16b0a88efc7292848ceb
[ "Apache-2.0" ]
4
2017-06-12T15:18:30.000Z
2019-10-11T15:12:43.000Z
ckanext-datagathering/ckanext/datagathering/commands/migrate.py
smallmedia/iod-ckan
dfd85b41286fe86924ec16b0a88efc7292848ceb
[ "Apache-2.0" ]
64
2017-05-14T22:15:53.000Z
2020-03-08T15:26:49.000Z
ckanext-datagathering/ckanext/datagathering/commands/migrate.py
smallmedia/iod-ckan
dfd85b41286fe86924ec16b0a88efc7292848ceb
[ "Apache-2.0" ]
2
2018-09-08T08:02:25.000Z
2020-04-24T13:02:06.000Z
from ckan import model from ckan.lib.cli import CkanCommand from ckan.lib.munge import munge_title_to_name, substitute_ascii_equivalents from ckan.logic import get_action from ckan.lib.helpers import render_markdown from ckan.plugins import toolkit import logging log = logging.getLogger(__name__) class MigrationCommand(CkanCommand): ''' CKAN 'Related Items' to 'Datagathering' migration command. Usage:: paster datagathering migrate -c <path to config file> - Migrate Related Items to Datagatherings paster datagathering migrate -c <path to config file> [--allow-duplicates] - Migrate Related Items to Datagatherings and allow duplicates paster datagathering markdown-to-html -c <path to config file> - Migrate the notes of all datagatherings from markdown to html. Must be run from the ckanext-datagathering directory. ''' summary = __doc__.split('\n')[0] usage = __doc__ def __init__(self,name): super(CkanCommand, self).__init__(name) self.parser.add_option('--allow-duplicates', dest='allow_duplicates', default=False, help='''Use this option to allow related items with duplicate titles to be migrated. Duplicate datagatherings will be created as 'duplicate_<related-name>_<related-id>'.''', action='store_true') def command(self): ''' Parse command line arguments and call appropriate method. ''' if not self.args or self.args[0] in ['--help', '-h', 'help']: print(self.__doc__) return cmd = self.args[0] self._load_config() if cmd == 'migrate': self.migrate() elif cmd == 'markdown-to-html': self.markdown_to_html() else: print('Command "{0}" not recognized'.format(cmd)) def migrate(self): ''' ''' # determine whether migration should allow duplicates allow_duplicates = self.options.allow_duplicates related_items = get_action('related_list')(data_dict={}) # preflight: # related items must have unique titles before migration related_titles = [i['title'] for i in related_items] # make a list of duplicate titles duplicate_titles = self._find_duplicates(related_titles) if duplicate_titles and allow_duplicates == False: print( """All Related Items must have unique titles before migration. The following Related Item titles are used more than once and need to be corrected before migration can continue. Please correct and try again:""" ) for i in duplicate_titles: print(i) return for related in related_items: existing_datagathering = get_action('package_search')( data_dict={'fq': '+dataset_type:datagathering original_related_item_id:{0}'.format(related['id'])}) normalized_title = substitute_ascii_equivalents(related['title']) if existing_datagathering['count'] > 0: print('Datagathering for Related Item "{0}" already exists.'.format( normalized_title)) else: datagathering_title = self._gen_new_title(related.get('title'), related['id']) data_dict = { 'original_related_item_id': related.get('id'), 'title': datagathering_title, 'name': munge_title_to_name(datagathering_title), 'notes': related.get('description'), 'image_url': related.get('image_url'), 'url': related.get('url'), 'tags': [{"name": related.get('type').lower()}] } # make the datagathering try: new_datagathering = get_action('ckanext_datagathering_create')( data_dict=data_dict) except Exception as e: print('There was a problem migrating "{0}": {1}'.format( normalized_title, e)) else: print('Created Datagathering from the Related Item "{0}"'.format(normalized_title)) # make the datagathering_package_association, if needed try: related_pkg_id = self._get_related_dataset( related['id']) if related_pkg_id: get_action('ckanext_datagathering_package_association_create')( data_dict={'datagathering_id': new_datagathering['id'], 'package_id': related_pkg_id}) except Exception as e: print('There was a problem creating the datagathering_package_association for "{0}": {1}'.format( normalized_title, e)) def _get_related_dataset(self, related_id): '''Get the id of a package from related_dataset, if one exists.''' related_dataset = model.Session.query(model.RelatedDataset).filter_by( related_id=related_id).first() if related_dataset: return related_dataset.dataset_id def _find_duplicates(self, lst): '''From a list, return a set of duplicates. >>> MigrationCommand('cmd')._find_duplicates([1, 2, 3, 4, 5]) [] >>> MigrationCommand('cmd')._find_duplicates([1, 2, 3, 4, 3, 1, 1]) [1, 3] >>> MigrationCommand('cmd')._find_duplicates(['one', 'two', 'three', 'four', 'two', 'three']) ['two', 'three'] ''' return list(set(x for x in lst if lst.count(x) >= 2)) def _gen_new_title(self, title, related_id): name = munge_title_to_name(title) pkg_obj = model.Session.query(model.Package).filter_by(name=name).first() if pkg_obj: title.replace('duplicate_', '') return 'duplicate_' + title + '_' + related_id else: return title def markdown_to_html(self): ''' Migrates the notes of all datagatherings from markdown to html. When using CKEditor, notes on datagatherings are stored in html instead of markdown, this command will migrate all nothes using CKAN's render_markdown core helper. ''' datagatherings = toolkit.get_action('ckanext_datagathering_list')(data_dict={}) site_user = toolkit.get_action('get_site_user')({ 'model': model, 'ignore_auth': True}, {} ) context = { 'model': model, 'session': model.Session, 'ignore_auth': True, 'user': site_user['name'], } for datagathering in datagatherings: toolkit.get_action('package_patch')( context, { 'id': datagathering['id'], 'notes': render_markdown(datagathering['notes']) } ) print('All notes were migrated successfully.')
39.538043
121
0.576082
6,972
0.958351
0
0
0
0
0
0
2,979
0.409485
fb4fa127bfbce18cd4fdeeaf2d1ebf19b58badc3
13,826
py
Python
run.py
openmg/mg-phm
e3bb05d6352f90ee40fdc4415ad8e1ed5857196f
[ "Apache-2.0" ]
null
null
null
run.py
openmg/mg-phm
e3bb05d6352f90ee40fdc4415ad8e1ed5857196f
[ "Apache-2.0" ]
null
null
null
run.py
openmg/mg-phm
e3bb05d6352f90ee40fdc4415ad8e1ed5857196f
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- import numpy as np import cv2 from scipy.misc import imsave import matplotlib.pyplot as plt import analysis import imageprocess import datainterface import imagemosaicking town_names = ['昂素镇', '敖勒召其镇', '布拉格苏木', '城川镇', '二道川乡', \ '毛盖图苏木', '三段地镇', '上海庙镇', '珠和苏木'] for index in range(len(town_names)): town_names[index] = unicode(town_names[index], 'utf8') geojson_path = 'testdata/' #12月 winter12933 = 'LC81290332016343LGN00_MTL' winter12833 = 'LC81280332016336LGN00_MTL' winter12834 = 'LC81280342016336LGN00_MTL' winter12 = (winter12933, winter12833, winter12834) #01月 winter12933 = 'LC81290332017025LGN00_MTL' winter12833 = 'LC81280332017002LGN00_MTL' winter12834 = 'LC81280342017002LGN00_MTL' winter01 = (winter12933, winter12833, winter12834) #02月 winter12933 = 'LC81290332017089LGN00_MTL'#3月,2月数据不可用 winter12833 = 'LC81280332017034LGN00_MTL' winter12834 = 'LC81280342017034LGN00_MTL' winter02 = (winter12933, winter12833, winter12834) #06 summer12933 = 'LC81290332016151LGN00_MTL' summer12833 = 'LC81280332016176LGN00_MTL' summer12834 = 'LC81280342016176LGN00_MTL' summer06 = (summer12933, summer12833, summer12834) #07 summer12933 = 'LC81290332016183LGN00_MTL' summer12833 = 'LC81280332016208LGN00_MTL' summer12834 = 'LC81280342016208LGN00_MTL' summer07 = (summer12933, summer12833, summer12834) #08 summer12933 = 'LC81290332016247LGN00_MTL' summer12833 = 'LC81280332016240LGN00_MTL' summer12834 = 'LC81280342016240LGN00_MTL' summer08 = (summer12933, summer12833, summer12834) cases = (summer08,) case_name = ('Aug',) #cases = (winter12, winter01, winter02, summer06, summer07, summer08) #case_name = ('Nov','Jan','Feb','Jun','Jul','Aug',) #cases = (wintercode,) #case_name = ('winter') for ii in range(len(cases)): case = cases[ii] # image load imgcode1 = case[0] imgcode2 = case[1] imgcode3 = case[2] path1 = 'testdata/1-12933/' path2 = 'testdata/2-12833/' path3 = 'testdata/3-12834/' corner1 = datainterface.get_corner(imgcode1, path1) corner2 = datainterface.get_corner(imgcode2, path2) corner3 = datainterface.get_corner(imgcode3, path3) img1 = datainterface.get_band(imgcode1, 4, path1) img2 = datainterface.get_band(imgcode2, 4, path2) img3 = datainterface.get_band(imgcode3, 4, path3) bqa1 = datainterface.get_bqa(imgcode1, path1) bqa2 = datainterface.get_bqa(imgcode2, path2) bqa3 = datainterface.get_bqa(imgcode3, path3) file_date1 = datainterface.get_date(imgcode1, path1) file_date2 = datainterface.get_date(imgcode2, path2) file_date3 = datainterface.get_date(imgcode3, path3) # image analysis ndvi1, vfc1 = analysis.get_plant(imgcode1, path1) ndvi2, vfc2 = analysis.get_plant(imgcode2, path2) ndvi3, vfc3 = analysis.get_plant(imgcode3, path3) print 'complete ndvi calculation...' Ts1 = analysis.get_temperature(imgcode1, path1) Ts2 = analysis.get_temperature(imgcode2, path2) Ts3 = analysis.get_temperature(imgcode3, path3) print 'complete Ts calculation...' tvdi1, cover1 = analysis.get_drought(ndvi1, Ts1, bqa1) tvdi2, cover2 = analysis.get_drought(ndvi2, Ts2, bqa2) tvdi3, cover3 = analysis.get_drought(ndvi3, Ts3, bqa3) print 'complete tvdi calculation...' ndvi1_d = cv2.resize(ndvi1,None,fx=0.1,fy=0.1) ndvi2_d = cv2.resize(ndvi2,None,fx=0.1,fy=0.1) ndvi3_d = cv2.resize(ndvi3,None,fx=0.1,fy=0.1) vfc1_d = cv2.resize(vfc1,None,fx=0.1,fy=0.1) vfc2_d = cv2.resize(vfc2,None,fx=0.1,fy=0.1) vfc3_d = cv2.resize(vfc3,None,fx=0.1,fy=0.1) Ts1_d = cv2.resize(Ts1,None,fx=0.1,fy=0.1) Ts2_d = cv2.resize(Ts2,None,fx=0.1,fy=0.1) Ts3_d = cv2.resize(Ts3,None,fx=0.1,fy=0.1) tvdi1_d = cv2.resize(tvdi1,None,fx=0.1,fy=0.1) tvdi2_d = cv2.resize(tvdi2,None,fx=0.1,fy=0.1) tvdi3_d = cv2.resize(tvdi3,None,fx=0.1,fy=0.1) print 'complete image analyzing...' save_filename = 'output/' + case_name[ii] + '_' + 'ndvi1' + '.png' imsave(save_filename, ndvi1) save_filename = 'output/' + case_name[ii] + '_' + 'vfc1' + '.png' imsave(save_filename, vfc1) save_filename = 'output/' + case_name[ii] + '_' + 'ndvi2' + '.png' imsave(save_filename, ndvi2) save_filename = 'output/' + case_name[ii] + '_' + 'vfc2' + '.png' imsave(save_filename, vfc2) save_filename = 'output/' + case_name[ii] + '_' + 'ndvi3' + '.png' imsave(save_filename, ndvi3) save_filename = 'output/' + case_name[ii] + '_' + 'vfc3' + '.png' imsave(save_filename, vfc3) save_filename = 'output/' + case_name[ii] + '_' + 'Ts1' + '.png' imsave(save_filename, Ts1) save_filename = 'output/' + case_name[ii] + '_' + 'Ts2' + '.png' imsave(save_filename, Ts2) save_filename = 'output/' + case_name[ii] + '_' + 'Ts3' + '.png' imsave(save_filename, Ts3) save_filename = 'output/' + case_name[ii] + '_' + 'tvdi1' + '.png' imsave(save_filename, tvdi1) save_filename = 'output/' + case_name[ii] + '_' + 'tvdi2' + '.png' imsave(save_filename, tvdi2) save_filename = 'output/' + case_name[ii] + '_' + 'tvdi3' + '.png' imsave(save_filename, tvdi3) save_filename = 'output/d' + case_name[ii] + '_' + 'ndvi1_d' + '.png' imsave(save_filename, ndvi1_d) save_filename = 'output/d' + case_name[ii] + '_' + 'vfc1_d' + '.png' imsave(save_filename, vfc1_d) save_filename = 'output/d' + case_name[ii] + '_' + 'ndvi2_d' + '.png' imsave(save_filename, ndvi2_d) save_filename = 'output/d' + case_name[ii] + '_' + 'vfc2_d' + '.png' imsave(save_filename, vfc2_d) save_filename = 'output/d' + case_name[ii] + '_' + 'ndvi3_d' + '.png' imsave(save_filename, ndvi3_d) save_filename = 'output/d' + case_name[ii] + '_' + 'vfc3_d' + '.png' imsave(save_filename, vfc3_d) save_filename = 'output/d' + case_name[ii] + '_' + 'Ts1_d' + '.png' imsave(save_filename, Ts1_d) save_filename = 'output/d' + case_name[ii] + '_' + 'Ts2_d' + '.png' imsave(save_filename, Ts2_d) save_filename = 'output/d' + case_name[ii] + '_' + 'Ts3_d' + '.png' imsave(save_filename, Ts3_d) save_filename = 'output/d' + case_name[ii] + '_' + 'tvdi1_d' + '.png' imsave(save_filename, tvdi1_d) save_filename = 'output/d' + case_name[ii] + '_' + 'tvdi2_d' + '.png' imsave(save_filename, tvdi2_d) save_filename = 'output/d' + case_name[ii] + '_' + 'tvdi3_d' + '.png' imsave(save_filename, tvdi3_d) # image mosaicking imgall_origin, corner_origin = imagemosaicking.cut_img_easy(img1, img2, img3, corner1, corner2, corner3) imgall_ndvi, corner_ndvi = imagemosaicking.cut_img_easy(ndvi1, ndvi2, ndvi3, corner1, corner2, corner3) imgall_vfc, corner_vfc = imagemosaicking.cut_img_easy(vfc1, vfc2, vfc3, corner1, corner2, corner3) imgall_Ts, corner_Ts = imagemosaicking.cut_img_easy(Ts1, Ts2, Ts3, corner1, corner2, corner3) imgall_tvdi, corner_tvdi = imagemosaicking.cut_img_easy(tvdi1, tvdi2, tvdi3, corner1, corner2, corner3) imgall_tvdi_cover, corner_cover = imagemosaicking.cut_img_easy(cover1, cover2, cover3, corner1, corner2, corner3) save_filename = 'output/' + case_name[ii] + '_' + 'imgall_origin' + '.png' imsave(save_filename, imgall_origin) save_filename = 'output/' + case_name[ii] + '_' + 'imgall_ndvi' + '.png' imsave(save_filename, imgall_ndvi) save_filename = 'output/' + case_name[ii] + '_' + 'imgall_vfc' + '.png' imsave(save_filename, imgall_vfc) save_filename = 'output/' + case_name[ii] + '_' + 'imgall_Ts' + '.png' imsave(save_filename, imgall_Ts) save_filename = 'output/' + case_name[ii] + '_' + 'imgall_tvdi' + '.png' imsave(save_filename, imgall_tvdi) imgall_origin_d = cv2.resize(imgall_origin, None, fx=0.2, fy=0.2) imgall_ndvi_d = cv2.resize(imgall_ndvi, None, fx=0.2, fy=0.2) imgall_vfc_d = cv2.resize(imgall_vfc, None, fx=0.2, fy=0.2) imgall_Ts_d = cv2.resize(imgall_Ts, None, fx=0.2, fy=0.2) imgall_tvdi_d = cv2.resize(imgall_tvdi, None, fx=0.2, fy=0.2) imgall_tvdi_cover_d = cv2.resize(imgall_tvdi_cover, None, fx=0.2, fy=0.2) save_filename = 'output/d' + case_name[ii] + '_' + 'imgall_origin_d' + '.png' imsave(save_filename, imgall_origin_d) save_filename = 'output/d' + case_name[ii] + '_' + 'imgall_ndvi_d' + '.png' imsave(save_filename, imgall_ndvi_d) save_filename = 'output/d' + case_name[ii] + '_' + 'imgall_vfc_d' + '.png' imsave(save_filename, imgall_vfc_d) save_filename = 'output/d' + case_name[ii] + '_' + 'imgall_Ts_d' + '.png' imsave(save_filename, imgall_Ts_d) save_filename = 'output/d' + case_name[ii] + '_' + 'imgall_tvdi_d' + '.png' imsave(save_filename, imgall_tvdi_d) print 'complete image mosaicking...' # image filtering filter_box = 20 imgall_origin_filtered = imageprocess.mean_filter(imgall_origin_d, filter_box) imgall_ndvi_filtered = imageprocess.mean_filter(imgall_ndvi_d, filter_box) imgall_vfc_filtered = imageprocess.mean_filter(imgall_vfc_d, filter_box) imgall_Ts_filtered = imageprocess.mean_filter(imgall_Ts_d, filter_box) imgall_tvdi_filtered = imageprocess.mean_filter(imgall_tvdi_d, filter_box) print 'complete image filtering...' """ save_filename = 'output/' + case_name[ii] + '_' + 'imgall_origin_filtered' + '.png' imsave(save_filename, imgall_origin_filtered) save_filename = 'output/' + case_name[ii] + '_' + 'imgall_ndvi_filtered' + '.png' imsave(save_filename, imgall_ndvi_filtered) save_filename = 'output/' + case_name[ii] + '_' + 'imgall_vfc_filtered' + '.png' imsave(save_filename, imgall_vfc_filtered) save_filename = 'output/' + case_name[ii] + '_' + 'imgall_Ts_filtered' + '.png' imsave(save_filename, imgall_Ts_filtered) save_filename = 'output/' + case_name[ii] + '_' + 'imgall_tvdi_filtered' + '.png' imsave(save_filename, imgall_tvdi_filtered) """ filter_box = 5 imgall_origin = imageprocess.mean_filter(imgall_origin_d, filter_box) imgall_ndvi = imageprocess.mean_filter(imgall_ndvi_d, filter_box) imgall_vfc = imageprocess.mean_filter(imgall_vfc_d, filter_box) imgall_Ts = imageprocess.mean_filter(imgall_Ts_d, filter_box) imgall_tvdi = imageprocess.mean_filter(imgall_tvdi_d, filter_box) print 'complete image filtering...' # density divide vfc_3d = analysis.vfc_divide(imgall_vfc, imgall_ndvi) tvdi_3d = analysis.tvdi_divide(imgall_tvdi, imgall_ndvi, imgall_tvdi_cover_d) print 'complete density divide...' save_filename = 'output/' + case_name[ii] + '_' + 'vfc_3d' + '.png' imsave(save_filename, vfc_3d) save_filename = 'output/' + case_name[ii] + '_' + 'tvdi_3d' + '.png' imsave(save_filename, tvdi_3d) """ #pn_poly county_cover = np.zeros_like(imgall_origin) for town_num in range(len(town_names)): print town_num + 1 geo_filename = geojson_path + town_names[town_num] + '.geojson' geodata = datainterface.geojson_read(geo_filename) town_cover = imageprocess.pn_poly(imgall_origin, corner_origin, geodata) county_cover += town_cover town_origin = town_cover * imgall_origin town_vfc = town_cover * imgall_vfc town_Ts = town_cover * imgall_Ts town_tvdi = town_cover * imgall_tvdi town_vfc_4d = np.zeros((vfc_3d.shape[0], vfc_3d.shape[1], 4)) town_tvdi_4d = np.zeros((tvdi_3d.shape[0], tvdi_3d.shape[1], 4)) for i in range(3): town_vfc_4d[:, :, i] = vfc_3d[:, :, i] / 255.0 town_tvdi_4d[:, :, i] = tvdi_3d[:, :, i] / 255.0 town_vfc_4d[:,:,3] = town_cover town_tvdi_4d[:,:,3] = town_cover var_names = ('town_origin', 'town_vfc', 'town_Ts', 'town_tvdi',\ 'town_vfc_4d', 'town_tvdi_4d') for var_name in var_names: save_filename = 'output/' + case_name[ii] + town_names[town_num] + var_name + '_' + '.png' print 'saving images of '+ town_names[town_num] + var_name + '...' if (var_name != 'town_vfc_4d') and (var_name != 'town_tvdi_4d'): imsave(save_filename, eval(var_name) * town_cover) else: # img_temp = np.zeros((town_cover.shape[0], town_cover.shape[1],4)) # img_temp[:,:,0:3] = eval(var_name) # img_temp[:,:,3] = town_cover # imsave(save_filename, img_temp) imsave(save_filename, eval(var_name)) print 'saving images of county...' county_origin = county_cover * imgall_origin county_vfc = county_cover * imgall_vfc county_Ts = county_cover * imgall_Ts county_tvdi = county_cover * imgall_tvdi county_vfc_4d = np.zeros((vfc_3d.shape[0], vfc_3d.shape[1], 4)) county_tvdi_4d = np.zeros((tvdi_3d.shape[0], tvdi_3d.shape[1], 4)) for i in range(3): county_vfc_4d[:, :, i] = vfc_3d[:, :, i] / 255.0 county_tvdi_4d[:, :, i] = tvdi_3d[:, :, i] / 255.0 county_vfc_4d[:,:,3] = county_cover county_tvdi_4d[:,:,3] = county_cover # save county var_names = ('county_origin', 'county_vfc', 'county_Ts', 'county_tvdi',\ 'county_vfc_4d', 'county_tvdi_4d') for var_name in var_names: print var_name save_filename = 'output/' + case_name[ii] + var_name + '_' + '.png' print 'saving images of ' + var_name +'...' if (var_name != 'county_vfc_4d') and (var_name != 'county_tvdi_4d'): imsave(save_filename, eval(var_name) * county_cover) else: imsave(save_filename, eval(var_name)) # img_temp = np.zeros((county_cover.shape[0], county_cover.shape[1],4)) # img_temp[:,:,0:3] = eval(var_name) # img_temp[:,:,3] = county_cover # imsave(save_filename, img_temp) """
41.39521
117
0.667872
0
0
0
0
0
0
0
0
6,001
0.431044
fb4fc030e59a7a7273510289cf7ba58993b6464b
2,593
py
Python
tests/tests_lambda.py
schwin007/Lambda-Metric-Shipper
8659794cfbf54fe74eaa8bb3f956555d101af604
[ "Apache-2.0" ]
null
null
null
tests/tests_lambda.py
schwin007/Lambda-Metric-Shipper
8659794cfbf54fe74eaa8bb3f956555d101af604
[ "Apache-2.0" ]
2
2019-04-05T21:38:16.000Z
2019-12-25T07:15:37.000Z
tests/tests_lambda.py
schwin007/Lambda-Metric-Shipper
8659794cfbf54fe74eaa8bb3f956555d101af604
[ "Apache-2.0" ]
6
2018-07-29T11:41:35.000Z
2020-12-02T12:22:52.000Z
import logging import os import unittest from logging.config import fileConfig from src.lambda_function import validate_configurations as validate # create logger assuming running from ./run script fileConfig('tests/logging_config.ini') logger = logging.getLogger(__name__) class TestLambdaFunction(unittest.TestCase): """ Unit testing logzio lambda function """ def setUp(self): # Set os.environ for tests os.environ['FILEPATH'] = "tests/configurations/valid_configure.json" os.environ['URL'] = "url" os.environ['TOKEN'] = "1234567890" def test_good_config_file(self): logger.info("TEST: test_good_config_file") try: validate() except (ValueError, KeyError, RuntimeError, EnvironmentError): assert True, "Failed to validate a good configuration file" def test_wrong_variable(self): logger.info("TEST: test_wrong_variable") os.environ['FILEPATH'] = "wrong" with self.assertRaises(EnvironmentError): validate() logger.info("Catched the correct exception, wrong no such file at FILEPATH") os.environ['FILEPATH'] = "tests/configurations/missing_variable.json" with self.assertRaises(KeyError): validate() logger.info("Catched the correct exception, missing TimeInterval") del os.environ['FILEPATH'] with self.assertRaises(RuntimeError): validate() logger.info("Catched the correct exception, no 'FILEPATH'") def test_wrong_variable_format(self): logger.info("TEST: test_wrong_variable_format") os.environ['FILEPATH'] = "tests/configurations/wrong_variable_format.json" with self.assertRaises(RuntimeError): validate() logger.info("Catched the correct exception, wrong format for period") def test_wrong_time_ranges(self): logger.info("TEST: test_wrong_time_ranges") os.environ['FILEPATH'] = "tests/configurations/wrong_time_ranges.json" with self.assertRaises(RuntimeError): validate() logger.info("Catched the correct exception, period can't be bigger than timeInterval") def test_duplicate_statistics(self): logger.info("TEST: test_duplicate_statistics") os.environ['FILEPATH'] = "tests/configurations/duplicate_statistics.json" with self.assertRaises(RuntimeError): validate() logger.info("Catched the correct exception, can't have both Statistics and ExtendedStatistics") if __name__ == '__main__': unittest.main()
35.520548
103
0.687235
2,266
0.873891
0
0
0
0
0
0
1,062
0.409564
fb4fd1b54e5406173715c8f8b6132187b8fbeda2
1,954
py
Python
script/QA_LSTM.py
xjtushilei/Answer_Selection
4a827f64e5361eab951713c2350632c5278404dd
[ "MIT" ]
4
2017-06-19T01:15:55.000Z
2020-02-29T03:45:26.000Z
script/QA_LSTM_v2.py
xjtushilei/Answer_Selection
4a827f64e5361eab951713c2350632c5278404dd
[ "MIT" ]
null
null
null
script/QA_LSTM_v2.py
xjtushilei/Answer_Selection
4a827f64e5361eab951713c2350632c5278404dd
[ "MIT" ]
null
null
null
import numpy as np import tensorflow from keras import Input, optimizers from keras import backend as K from keras.engine import Model from keras import layers from keras.layers import Bidirectional, LSTM, merge, Reshape, Lambda, Dense, BatchNormalization K.clear_session() print("设置显卡信息...") # 设置tendorflow对显存使用按需增长 config = tensorflow.ConfigProto() config.gpu_options.allow_growth = True session = tensorflow.Session(config=config) question_max_len = 40 answer_max_len = 40 embedding_dim = 300 input_question = Input(shape=(question_max_len, embedding_dim)) input_answer = Input(shape=(answer_max_len, embedding_dim)) # 双向lstm question_lstm = Bidirectional(LSTM(64)) answer_lstm = Bidirectional(LSTM(64)) encoded_question = question_lstm(input_question) encoded_answer = answer_lstm(input_answer) cos_distance = merge([encoded_question, encoded_answer], mode='cos', dot_axes=1) cos_distance = Reshape((1,))(cos_distance) cos_similarity = Lambda(lambda x: 1 - x)(cos_distance) predictions = Dense(1, activation='sigmoid')(cos_similarity) model = Model([input_question, input_answer], [predictions]) sgd = optimizers.SGD(lr=0.1, clipvalue=0.5) model.compile(optimizer=sgd, loss='binary_crossentropy', metrics=['binary_accuracy']) model.summary() # 下面是训练 questions = np.load('train' + '_' + 'questions' + '.npy') answers = np.load('train' + '_' + 'answers' + '.npy') labels = np.load('train' + '_' + 'labels' + '.npy') # 下面是 dev 验证 dev_questions = np.load('dev' + '_' + 'questions' + '.npy') dev_answers = np.load('dev' + '_' + 'answers' + '.npy') dev_labels = np.load('dev' + '_' + 'labels' + '.npy') # 开始迭代 model.fit([questions, answers], [labels], epochs=2, batch_size=256, validation_data=([dev_questions, dev_answers], [dev_labels])) # 预测 print('开始预测!') predict = model.predict([dev_questions, dev_answers], verbose=1, batch_size=256) print(predict) np.save('predict.npy', predict)
31.516129
95
0.720061
0
0
0
0
0
0
0
0
369
0.181416
fb515bfaa92002625ae59283942eea3a360391f0
467
py
Python
lib/mysocket.py
vanphuong12a2/pposter
fac6e289985909de059150ca860677dba9ade6c9
[ "MIT" ]
null
null
null
lib/mysocket.py
vanphuong12a2/pposter
fac6e289985909de059150ca860677dba9ade6c9
[ "MIT" ]
null
null
null
lib/mysocket.py
vanphuong12a2/pposter
fac6e289985909de059150ca860677dba9ade6c9
[ "MIT" ]
null
null
null
from flask_socketio import SocketIO NOTI = 'notification' class MySocket(): def __init__(self, app, async_mode): self.socketio = SocketIO(app, async_mode=async_mode) def get_socketio(self): return self.socketio def noti_emit(self, msg, room=None): if room: self.socketio.emit(NOTI, {'data': msg}, namespace='/noti', room=room) else: self.socketio.emit(NOTI, {'data': msg}, namespace='/noti')
23.35
81
0.62955
404
0.865096
0
0
0
0
0
0
40
0.085653
fb51e6590cca3f878c6c2b90af8869c140eb763b
2,128
py
Python
server/tests/steps/sql_translator/test_filter.py
davinov/weaverbird
3f907f080729ba70be8872d6c5ed0fdcec9b8a9a
[ "BSD-3-Clause" ]
54
2019-11-20T15:07:39.000Z
2022-03-24T22:13:51.000Z
server/tests/steps/sql_translator/test_filter.py
ToucanToco/weaverbird
7cbd3cc612437a876470cc872efba69526694d62
[ "BSD-3-Clause" ]
786
2019-10-20T11:48:37.000Z
2022-03-23T08:58:18.000Z
server/tests/steps/sql_translator/test_filter.py
davinov/weaverbird
3f907f080729ba70be8872d6c5ed0fdcec9b8a9a
[ "BSD-3-Clause" ]
10
2019-11-21T10:16:16.000Z
2022-03-21T10:34:06.000Z
import pytest from weaverbird.backends.sql_translator.metadata import SqlQueryMetadataManager from weaverbird.backends.sql_translator.steps import translate_filter from weaverbird.backends.sql_translator.types import SQLQuery from weaverbird.pipeline.conditions import ComparisonCondition from weaverbird.pipeline.steps import FilterStep def test_translate_filter(mocker): step = FilterStep( name='filter', condition=ComparisonCondition(column='amount', operator='eq', value=10) ) query = SQLQuery( query_name='SELECT_STEP_0', transformed_query='WITH SELECT_STEP_0 AS (SELECT TOTO, TATA FROM products)', selection_query='SELECT TOTO, TATA FROM SELECT_STEP_0', metadata_manager=SqlQueryMetadataManager( tables_metadata={'table1': {'toto': 'text', 'tata': 'int'}}, ), ) mocker.patch( 'weaverbird.backends.sql_translator.steps.utils.query_transformation.apply_condition', return_value='SELECT TOTO, TATA FROM SELECT_STEP_0 WHERE amount = 10', ) res = translate_filter(step, query, index=1) assert ( res.transformed_query == 'WITH SELECT_STEP_0 AS (SELECT TOTO, TATA FROM products), FILTER_STEP_1 AS (SELECT TOTO, TATA FROM ' 'SELECT_STEP_0 WHERE amount = 10)' ) assert res.selection_query == 'SELECT TOTO, TATA FROM FILTER_STEP_1' def test_translate_filter_error(mocker): step = FilterStep( name='filter', condition=ComparisonCondition(column='amount', operator='eq', value=10) ) query = SQLQuery( query_name='SELECT_STEP_0', transformed_query='WITH SELECT_STEP_0 AS (SELECT * FROM products), SELECT * FROM SELECT_STEP_0', selection_query='SELECT * FROM SELECT_STEP_0', metadata_manager=SqlQueryMetadataManager( tables_metadata={'table1': {'toto': 'text', 'tata': 'int'}}, ), ) mocker.patch( 'weaverbird.backends.sql_translator.steps.filter.apply_condition', side_effect=NotImplementedError, ) with pytest.raises(NotImplementedError): translate_filter(step, query, index=1)
40.150943
111
0.706767
0
0
0
0
0
0
0
0
711
0.334117
fb5248790acad20b7f6c753089b4b879cf218187
4,322
py
Python
nose2/plugins/loader/testcases.py
leth/nose2
a8fb776a0533264e0b123fc01237b9d2a039e9d0
[ "BSD-2-Clause" ]
null
null
null
nose2/plugins/loader/testcases.py
leth/nose2
a8fb776a0533264e0b123fc01237b9d2a039e9d0
[ "BSD-2-Clause" ]
null
null
null
nose2/plugins/loader/testcases.py
leth/nose2
a8fb776a0533264e0b123fc01237b9d2a039e9d0
[ "BSD-2-Clause" ]
null
null
null
""" Load tests from :class:`unittest.TestCase` subclasses. This plugin implements :func:`loadTestsFromName` and :func:`loadTestsFromModule` to load tests from :class:`unittest.TestCase` subclasses found in modules or named on the command line. """ # Adapted from unittest2/loader.py from the unittest2 plugins branch. # This module contains some code copied from unittest2/loader.py and other # code developed in reference to that module and others within unittest2. # unittest2 is Copyright (c) 2001-2010 Python Software Foundation; All # Rights Reserved. See: http://docs.python.org/license.html import logging import unittest from nose2 import events, util __unittest = True log = logging.getLogger(__name__) class TestCaseLoader(events.Plugin): """Loader plugin that loads from test cases""" alwaysOn = True configSection = 'testcases' def registerInSubprocess(self, event): event.pluginClasses.append(self.__class__) def loadTestsFromModule(self, event): """Load tests in :class:`unittest.TestCase` subclasses""" seen = set() module = event.module for name in dir(module): obj = getattr(module, name) if id(obj) in seen: continue seen.add(id(obj)) if isinstance(obj, type) and issubclass(obj, unittest.TestCase): event.extraTests.append( self._loadTestsFromTestCase(event, obj)) def loadTestsFromName(self, event): """Load tests from event.name if it names a test case/method""" name = event.name module = event.module log.debug("load %s from %s", name, module) try: result = util.test_from_name(name, module) except (AttributeError, ImportError) as e: event.handled = True return event.loader.failedLoadTests(name, e) if result is None: return parent, obj, name, index = result if isinstance(obj, type) and issubclass(obj, unittest.TestCase): # name is a test case class event.extraTests.append(self._loadTestsFromTestCase(event, obj)) elif (isinstance(parent, type) and issubclass(parent, unittest.TestCase) and not util.isgenerator(obj) and not hasattr(obj, 'paramList')): # name is a single test method event.extraTests.append(parent(obj.__name__)) def _loadTestsFromTestCase(self, event, testCaseClass): evt = events.LoadFromTestCaseEvent(event.loader, testCaseClass) result = self.session.hooks.loadTestsFromTestCase(evt) if evt.handled: loaded_suite = result or event.loader.suiteClass() else: names = self._getTestCaseNames(event, testCaseClass) if not names and hasattr(testCaseClass, 'runTest'): names = ['runTest'] # FIXME return failure test case if name not in testcase class loaded_suite = event.loader.suiteClass(map(testCaseClass, names)) if evt.extraTests: loaded_suite.addTests(evt.extraTests) return loaded_suite def _getTestCaseNames(self, event, testCaseClass): excluded = set() def isTestMethod(attrname, testCaseClass=testCaseClass, excluded=excluded): prefix = evt.testMethodPrefix or self.session.testMethodPrefix return ( attrname.startswith(prefix) and hasattr(getattr(testCaseClass, attrname), '__call__') and attrname not in excluded ) evt = events.GetTestCaseNamesEvent( event.loader, testCaseClass, isTestMethod) result = self.session.hooks.getTestCaseNames(evt) if evt.handled: test_names = result or [] else: excluded.update(evt.excludedNames) test_names = [entry for entry in dir(testCaseClass) if isTestMethod(entry)] if evt.extraNames: test_names.extend(evt.extraNames) sortkey = getattr( testCaseClass, 'sortTestMethodsUsing', event.loader.sortTestMethodsUsing) if sortkey: test_names.sort( key=sortkey) return test_names
37.258621
85
0.635817
3,599
0.832716
0
0
0
0
0
0
969
0.224202
fb52ea45a86609e7040cf2f5adb9df43b0bf1496
265
py
Python
todo/main.py
shuayb/simple-todo
7a6c840d38ada098b5cc3458d652c7db02ffd791
[ "MIT" ]
null
null
null
todo/main.py
shuayb/simple-todo
7a6c840d38ada098b5cc3458d652c7db02ffd791
[ "MIT" ]
null
null
null
todo/main.py
shuayb/simple-todo
7a6c840d38ada098b5cc3458d652c7db02ffd791
[ "MIT" ]
null
null
null
from app import app, db import models import views if __name__ == '__main__': app.run() # No need to do (debug=True), as in config.py, debug = true is already set. # app.run(debug=True) # app.run(debug=True, use_debugger=False, use_reloader=False)
26.5
79
0.683019
0
0
0
0
0
0
0
0
167
0.630189
fb53c7de261609a0deb36f13cdae3c4c1cc92433
789
py
Python
Libraries/DUTs/Community/di_vsphere/pysphere/revertToNamedSnapshot.py
nneul/iTest-assets
478659d176891e45d81f7fdb27440a86a21965bb
[ "MIT" ]
10
2017-12-28T10:15:56.000Z
2020-10-19T18:13:58.000Z
Libraries/DUTs/Community/di_vsphere/pysphere/revertToNamedSnapshot.py
nneul/iTest-assets
478659d176891e45d81f7fdb27440a86a21965bb
[ "MIT" ]
37
2018-03-07T00:48:37.000Z
2021-03-22T20:03:48.000Z
Libraries/DUTs/Community/di_vsphere/pysphere/revertToNamedSnapshot.py
nneul/iTest-assets
478659d176891e45d81f7fdb27440a86a21965bb
[ "MIT" ]
27
2018-03-06T19:56:01.000Z
2022-03-23T04:18:23.000Z
import sys sys.path.append("./pysphere") from pysphere import VIServer from pysphere.resources.vi_exception import VIException, VIApiException, \ FaultTypes import sys if len(sys.argv) != 6: sys.exit("error = please check arguments") serverName = sys.argv[1] login = sys.argv[2] passwd = sys.argv[3] vm_name = sys.argv[4] snap_name = sys.argv[5] server = VIServer() server.connect(serverName, login, passwd) myVm = server.get_vm_by_name(vm_name) try: revertTask = myVm.revert_to_named_snapshot(snap_name) server.disconnect() except (VIException), err: print "RevertResult = " + err.message sys.exit(1) if revertTask is None: print "RevertResult = success" else: print "RevertResult = failure"
29.222222
75
0.673004
0
0
0
0
0
0
0
0
110
0.139417
fb56942879beca982f2985123f64367d7b06b779
1,431
py
Python
easy_rec/python/utils/fg_util.py
xia-huang-411303/EasyRec
7b2050dddc0bfec9e551e2199a36414a3ee82588
[ "Apache-2.0" ]
61
2021-08-19T06:10:03.000Z
2021-10-09T06:44:54.000Z
easy_rec/python/utils/fg_util.py
xia-huang-411303/EasyRec
7b2050dddc0bfec9e551e2199a36414a3ee82588
[ "Apache-2.0" ]
41
2021-09-08T03:02:42.000Z
2021-09-29T09:00:57.000Z
easy_rec/python/utils/fg_util.py
xia-huang-411303/EasyRec
7b2050dddc0bfec9e551e2199a36414a3ee82588
[ "Apache-2.0" ]
11
2021-08-20T06:19:08.000Z
2021-10-02T14:55:39.000Z
import json import logging import tensorflow as tf from easy_rec.python.protos.dataset_pb2 import DatasetConfig from easy_rec.python.protos.feature_config_pb2 import FeatureConfig from easy_rec.python.utils.config_util import get_compatible_feature_configs from easy_rec.python.utils.convert_rtp_fg import load_input_field_and_feature_config # NOQA if tf.__version__ >= '2.0': tf = tf.compat.v1 def load_fg_json_to_config(pipeline_config): fg_json_path = pipeline_config.fg_json_path if not fg_json_path: return label_fields = pipeline_config.data_config.label_fields with tf.gfile.GFile(fg_json_path, 'r') as fin: rtp_fg = json.load(fin) fg_config = load_input_field_and_feature_config( rtp_fg, label_fields=label_fields) pipeline_config.data_config.ClearField('input_fields') pipeline_config.ClearField('feature_configs') pipeline_config.feature_config.ClearField('features') for input_config in fg_config.data_config.input_fields: in_config = DatasetConfig.Field() in_config.CopyFrom(input_config) pipeline_config.data_config.input_fields.append(in_config) fg_fea_config = get_compatible_feature_configs(fg_config) for fc in fg_fea_config: fea_config = FeatureConfig() fea_config.CopyFrom(fc) pipeline_config.feature_config.features.append(fea_config) logging.info('data_config and feature_config has been replaced by fg_json.') return pipeline_config
34.071429
92
0.811321
0
0
0
0
0
0
0
0
117
0.081761
fb56b6a8fcadb6c716511c7be794553961db8e2e
529
py
Python
modules/api/functional_test/live_tests/conftest.py
exoego/vinyldns
aac4c2afe4c599ac8c96ad3a826f3a6dff887104
[ "Apache-2.0" ]
null
null
null
modules/api/functional_test/live_tests/conftest.py
exoego/vinyldns
aac4c2afe4c599ac8c96ad3a826f3a6dff887104
[ "Apache-2.0" ]
1
2019-02-06T21:38:12.000Z
2019-02-06T21:38:12.000Z
modules/api/functional_test/live_tests/conftest.py
exoego/vinyldns
aac4c2afe4c599ac8c96ad3a826f3a6dff887104
[ "Apache-2.0" ]
null
null
null
import pytest @pytest.fixture(scope="session") def shared_zone_test_context(request): from shared_zone_test_context import SharedZoneTestContext ctx = SharedZoneTestContext() def fin(): ctx.tear_down() request.addfinalizer(fin) return ctx @pytest.fixture(scope="session") def zone_history_context(request): from zone_history_context import ZoneHistoryContext context = ZoneHistoryContext() def fin(): context.tear_down() request.addfinalizer(fin) return context
18.241379
62
0.725898
0
0
0
0
510
0.964083
0
0
18
0.034026
fb57d98140afeca2dc5e728adfc2de4c920c0f82
15,642
py
Python
calculate_best_ball_scores.py
arnmishra/sleeper-best-ball
926d673eebe3a0f114a60f4749dcc451db792b4d
[ "MIT" ]
null
null
null
calculate_best_ball_scores.py
arnmishra/sleeper-best-ball
926d673eebe3a0f114a60f4749dcc451db792b4d
[ "MIT" ]
null
null
null
calculate_best_ball_scores.py
arnmishra/sleeper-best-ball
926d673eebe3a0f114a60f4749dcc451db792b4d
[ "MIT" ]
null
null
null
from enum import Enum import requests import argparse import nflgame def get_user_id_to_team_name(league_id): """ Gets a map of fantasy player user id to their team name """ user_id_to_team_name = {} r = requests.get("https://api.sleeper.app/v1/league/%s/users" % league_id) user_data = r.json() for user in user_data: user_id_to_team_name[user['user_id']] = user['display_name'] return user_id_to_team_name def get_roster_id_to_owner(user_id_to_team_name, league_id): """ Gets a map of the roster id to the fantasy owner team name """ roster_id_to_owner = {} r = requests.get('https://api.sleeper.app/v1/league/%s/rosters' % league_id) roster_info = r.json() for roster in roster_info: name = user_id_to_team_name[roster['owner_id']] roster_id_to_owner[roster['roster_id']] = name return roster_id_to_owner def get_owner_to_roster(player_id_to_custom_id, roster_id_to_owner, league_id, week): """ Gets a map of the owner team name to the roster players Also determines which two teams are in each matchup by getting a map of matchu pid to the two owners playing the game """ owner_to_roster = {} matchup_id_to_owners = {} r = requests.get('https://api.sleeper.app/v1/league/%s/matchups/%s' % (league_id, week)) rosters = r.json() for roster in rosters: owner = roster_id_to_owner[roster['roster_id']] player_ids = roster['players'] custom_ids = [player_id_to_custom_id[player_id] for player_id in player_ids] owner_to_roster[owner] = custom_ids matchup_id = roster['matchup_id'] if matchup_id in matchup_id_to_owners: matchup_id_to_owners[matchup_id].append(owner) else: matchup_id_to_owners[matchup_id] = [owner] return owner_to_roster, matchup_id_to_owners def get_player_id(first_name, last_name, team): """ Returns a custom player ID of first initial + last name + team i.e. for Tom Brady in New England that is T.Brady-NE """ if (team == None): team = 'None' return first_name[0] + "." + last_name + "-" + team def get_custom_id_to_info(): """ Gets a map of player name/team to position """ custom_id_to_info = {} player_id_to_custom_id = {} r = requests.get('https://api.sleeper.app/v1/players/nfl') players = r.json() for player_id in players: player = players[player_id] if player['fantasy_positions']: position = player['fantasy_positions'][0] if position in ('RB', 'WR', 'QB', 'TE'): custom_id = get_player_id(player['first_name'], player['last_name'], player['team']) if not custom_id: continue player_id_to_custom_id[player_id] = custom_id custom_id_to_info[custom_id] = position return custom_id_to_info, player_id_to_custom_id def calculate_player_points(player): rushing_score = player.rushing_yds * 0.1 + player.rushing_tds * 6 + player.rushing_twoptm * 2 passing_score = player.passing_yds * 0.04 + player.passing_tds * 4 + player.passing_twoptm * 2 receiving_score = player.receiving_yds * 0.1 + player.receiving_tds * 6 + player.receiving_rec * 0.5 + player.receiving_twoptm * 2 negative_scores = player.passing_ints * 2 + player.fumbles_lost * 2 return rushing_score + passing_score + receiving_score - negative_scores def get_player_to_points(year, week, custom_id_to_info): """ Gets a map of player ID to a tuple of the player's points and position """ player_id_to_points = {} games = nflgame.games(int(year), week=int(week)) players = nflgame.combine_game_stats(games) for player in players: custom_id = player.name + "-" + player.team if (custom_id in custom_id_to_info): points = calculate_player_points(player) player_id_to_points[custom_id] = (points, custom_id_to_info[custom_id]) print (player_id_to_points) return player_id_to_points def get_points(rbs, wrs, qbs, tes, roster_count): """ Gets the number of points a set of players makes up given the roster counts """ flex = rbs[roster_count['rb']:] + \ wrs[roster_count['wr']:] + \ tes[roster_count['te']:] flex.sort(reverse=True) return sum(rbs[:roster_count['rb']]) + \ sum(wrs[:roster_count['wr']]) + \ sum(qbs[:roster_count['qb']]) + \ sum(tes[:roster_count['te']]) + \ sum(flex[:roster_count['flex']]) def get_owner_to_score(owner_to_roster, player_to_points, roster_count): """ Gets a map of the owner to their fantasy score """ owner_to_score = {} for owner in owner_to_roster: rbs = [] wrs = [] qbs = [] tes = [] for player in owner_to_roster[owner]: if player in player_to_points: points, position = player_to_points[player] if position == 'RB': rbs.append(points) elif position == 'WR': wrs.append(points) elif position == 'QB': qbs.append(points) elif position == 'TE': tes.append(points) rbs.sort(reverse=True) wrs.sort(reverse=True) qbs.sort(reverse=True) tes.sort(reverse=True) owner_to_score[owner] = get_points(rbs, wrs, qbs, tes, roster_count) return owner_to_score def get_owner_to_weekly_record(matchup_id_to_owners, final_owner_to_score): """ Gets a map of the owner to their best ball record """ owner_to_record = {} for matchup_id in matchup_id_to_owners: owner_1 = matchup_id_to_owners[matchup_id][0] owner_2 = matchup_id_to_owners[matchup_id][1] score_1 = final_owner_to_score[owner_1] score_2 = final_owner_to_score[owner_2] if score_1 > score_2: owner_to_record[owner_1] = [1, 0, 0] owner_to_record[owner_2] = [0, 1, 0] elif score_1 == score_2: owner_to_record[owner_1] = [0, 0, 1] owner_to_record[owner_2] = [0, 0, 1] else: owner_to_record[owner_1] = [0, 1, 0] owner_to_record[owner_2] = [1, 0, 0] return owner_to_record def parse_args(): parser = argparse.ArgumentParser( description='Get Sleeper App Best Ball Scores') parser.add_argument( '-i', '--league_id', help='The ID of your Sleeper League', required=True ) parser.add_argument( '-y','--year', help='Which year to work with (i.e. 2018).', required=True) parser.add_argument( '-w', '--week', help='Which week to work with (i.e. 1), for full season leave blank', required=False) parser.add_argument( '-e', '--end_week', help='Sum of all weeks till the end week. Default to 13 for 13 week season.', required=False, default=13, type=int) parser.add_argument( '-b', '--num_rb', help='Number of Starting Running Backs in your league (Default 2)', required=False, default=2, type=int) parser.add_argument( '-r', '--num_wr', help='Number of Starting Wide Receivers in your league (Default 2)', required=False, default=2, type=int) parser.add_argument( '-q', '--num_qb', help='Number of Starting Quarterbacks in your league (Default 1)', required=False, default=1, type=int) parser.add_argument( '-t', '--num_te', help='Number of Starting Tight Ends in your league (Default 1)', required=False, default=1, type=int) parser.add_argument( '-f', '--num_flex', help='Number of Starting Flex(WR/RB/TE) in your league (Default 2)', required=False, default=2, type=int) parser.add_argument( '-s', '--sort_by', help='Sort by score, record, rank, top6. (Default Score)', required=False, default='score', type=str) return vars(parser.parse_args()) if __name__ == "__main__": "Parses all the arguments into variables" args = parse_args() league_id = args['league_id'] year = args['year'] week = args['week'] end_week = args['end_week'] roster_count = {} roster_count['rb'] = args['num_rb'] roster_count['wr'] = args['num_wr'] roster_count['qb'] = args['num_qb'] roster_count['te'] = args['num_te'] roster_count['flex'] = args['num_flex'] # Gets a map of the user id to the owner team name user_id_to_team_name = get_user_id_to_team_name(league_id) # Gets a map of the roster id to the owner team name roster_id_to_owner = get_roster_id_to_owner(user_id_to_team_name, league_id) # Gets a map of each player id to their name and position custom_id_to_info, player_id_to_custom_id = get_custom_id_to_info() # A map to track the owner name to its best ball score final_owner_to_score = {} # A map of each owner to their best ball record final_owner_to_record = {} # A map of each owner to their best ball rank final_owner_to_rank = {} # A map of each owner to number of top 6 best ball performances final_owner_to_top_half_or_bottom = {} num_teams = len(user_id_to_team_name) if week: # If we are getting it for an individual week, calculate that data # Get the number of fantasy points each player scored that week player_to_points = get_player_to_points(year, week, custom_id_to_info) # Gets the map of each owner to their players and which two teams are playing each other owner_to_roster, matchup_id_to_owners = get_owner_to_roster( player_id_to_custom_id, roster_id_to_owner, league_id, week) # Gets the best ball score for each owner final_owner_to_score = get_owner_to_score(owner_to_roster, player_to_points, roster_count) # Gets the best ball record for each owner final_owner_to_record = get_owner_to_weekly_record( matchup_id_to_owners, final_owner_to_score) # Sorts the teams by score and determines if they are top 6 sorted_by_score = sorted(final_owner_to_score.items(), key=lambda kv: kv[1]) for i in range(len(sorted_by_score)): owner = sorted_by_score[i][0] final_owner_to_rank[owner] = [num_teams-i] if(i >= 6): final_owner_to_top_half_or_bottom[owner] = 1 else: # If we are getting it for the whole season, calculate that data for each week for week in range(1, end_week + 1): # Get the number of fantasy points each player scored that week player_to_points = get_player_to_points(year, week, custom_id_to_info) # Gets the map of each owner to their players and which two teams are playing each other owner_to_roster, matchup_id_to_owners = get_owner_to_roster( player_id_to_custom_id, roster_id_to_owner, league_id, week) # Gets the best ball score for each owner owner_to_score = get_owner_to_score(owner_to_roster, player_to_points, roster_count) # Gets the best ball record for each owner owner_to_record = get_owner_to_weekly_record( matchup_id_to_owners, owner_to_score) # Adds the total scores and records for each team for owner in owner_to_score: if owner in final_owner_to_score: final_owner_to_score[owner] += owner_to_score[owner] records = final_owner_to_record[owner] new_record = owner_to_record[owner] final_owner_to_record[owner] = [sum(x) for x in zip(records, new_record)] else: final_owner_to_score[owner] = owner_to_score[owner] final_owner_to_record[owner] = owner_to_record[owner] # Creates list of tuple of (owner, score) sorted by score sorted_by_score = sorted(final_owner_to_score.items(), key=lambda kv: kv[1]) # Sorts the teams by score and determines if they are top 6 for i in range(num_teams): owner = sorted_by_score[i][0] if owner in final_owner_to_rank: final_owner_to_rank[owner].append(num_teams-i) else: final_owner_to_rank[owner] = [num_teams-i] if(i >= 6): if owner in final_owner_to_top_half_or_bottom: final_owner_to_top_half_or_bottom[owner] += 1 else: final_owner_to_top_half_or_bottom[owner] = 1 # Prints out all the information sorted as the user wants for owner in final_owner_to_record: final_owner_to_record[owner] = ("-").join([str(elem) for elem in final_owner_to_record[owner]]) final_owner_to_rank[owner] = round(float(sum(final_owner_to_rank[owner])) / len(final_owner_to_rank[owner]), 2) if owner not in final_owner_to_top_half_or_bottom: final_owner_to_top_half_or_bottom[owner] = 0 if args['sort_by'] == 'record': sorted_records = final_owner_to_record.items() sorted_records = sorted(sorted_records, key=lambda tup: int(tup[1].split("-")[0])) # sort by the records print("{0:<20}{1:<20}{2:<20}{3:<20}{4:<20}".format('Team', 'Record(W-L-T)', 'Score', 'Top 6 Performances', 'Average Rank')) for record in sorted_records: owner = record[0] print("{0:<20}{1:<20}{2:<20}{3:<20}{4:<20}".format(owner, record[1], final_owner_to_score[owner], final_owner_to_top_half_or_bottom[owner], final_owner_to_rank[owner])) elif args['sort_by'] == 'rank': sorted_rank = final_owner_to_rank.items() sorted_rank = sorted(sorted_rank, key=lambda tup: tup[1], reverse=True) # sort by the ranks print("{0:<20}{1:<20}{2:<20}{3:<20}{4:<20}".format('Team', 'Average Rank', 'Score', 'Record(W-L-T)', 'Top 6 Performances')) for rank in sorted_rank: owner = rank[0] print("{0:<20}{1:<20}{2:<20}{3:<20}{4:<20}".format(owner, rank[1], final_owner_to_score[owner], final_owner_to_record[owner], final_owner_to_top_half_or_bottom[owner])) elif args['sort_by'] == 'top6': sorted_top6 = final_owner_to_top_half_or_bottom.items() sorted_top6 = sorted(sorted_top6, key=lambda tup: tup[1]) # sort by the top 6 performances print("{0:<20}{1:<20}{2:<20}{3:<20}{4:<20}".format('Team', 'Top 6 Performances', 'Score', 'Record(W-L-T)', 'Average Rank')) for top6 in sorted_top6: owner = top6[0] print("{0:<20}{1:<20}{2:<20}{3:<20}{4:<20}".format(owner, top6[1], final_owner_to_score[owner], final_owner_to_record[owner], final_owner_to_rank[owner])) elif args['sort_by'] == 'score': sorted_scores = final_owner_to_score.items() sorted_scores = sorted(sorted_scores, key=lambda tup: tup[1]) # sort by the scores print("{0:<20}{1:<20}{2:<20}{3:<20}{4:<20}".format('Team', 'Score', 'Record(W-L-T)', 'Top 6 Performances', 'Average Rank')) for score in sorted_scores: owner = score[0] print("{0:<20}{1:<20}{2:<20}{3:<20}{4:<20}".format(owner, score[1], final_owner_to_record[owner], final_owner_to_top_half_or_bottom[owner], final_owner_to_rank[owner])) else: print("Please enter either 'score', 'record', 'rank', or 'top6' for the sort option. %s isn't recognized" % args['sort_by'])
47.256798
180
0.637642
0
0
0
0
0
0
0
0
4,208
0.269019
fb593493c97b14b708bc0b8b5a7f5e7166948d28
10,489
py
Python
Kelp/kelp.py
trondkr/particleDistributions
1f5be088150db92c985c00210951ab62521bf694
[ "MIT" ]
null
null
null
Kelp/kelp.py
trondkr/particleDistributions
1f5be088150db92c985c00210951ab62521bf694
[ "MIT" ]
1
2019-07-11T15:02:32.000Z
2019-07-11T16:57:03.000Z
Kelp/kelp.py
trondkr/particleDistributions
1f5be088150db92c985c00210951ab62521bf694
[ "MIT" ]
1
2019-12-23T06:49:29.000Z
2019-12-23T06:49:29.000Z
#!/usr/bin/env python from datetime import datetime, timedelta import numpy as np from opendrift.readers import reader_basemap_landmask from opendrift.readers import reader_ROMS_native from kelp.kelpClass import PelagicPlanktonDrift from opendrift.readers import reader_netCDF_CF_generic import logging import gdal import os from netCDF4 import Dataset, datetime, date2num,num2date from numpy.random import RandomState import random import glob import matplotlib.pyplot as plt try: import ogr import osr except Exception as e: print(e) raise ValueError('OGR library is needed to read shapefiles.') def setupSeed(hoursBetweenTimestepInROMSFiles,startTime,endTime,startReleaseTime,endReleaseTime,releaseParticles): ################################################## # Create seed variation as function of day ################################################## # Make datetime array from start to end at 3 hour interval #interval = timedelta(hours=hoursBetweenTimestepInROMSFiles) difference=endTime-startTime hoursOfSimulation=divmod(difference.total_seconds(), 3600) difference=endReleaseTime-startReleaseTime hoursOfRelease=divmod(difference.total_seconds(), 3600) #startSimulationJD=startTime.timetuple().tm_yday #endSimulationJD=endTime.timetuple().tm_yday timeStepsSimulation=int(int(hoursOfSimulation[0])/hoursBetweenTimestepInROMSFiles) #startReleaseJD=startReleaseTime.timetuple().tm_yday #endReleaseJD=endReleaseTime.timetuple().tm_yday #timeStepsRelease=int(int(hoursOfRelease[0])/hoursBetweenTimestepInROMSFiles) print("=>SIMULATION: Drift simulation will run for %s simulation hours" %(timeStepsSimulation)) print("=>Release: Simulated Release will run for %s simulation hours\n initiated on %s and ending on %s"%(timeStepsSimulation,startReleaseTime,endReleaseTime)) interval = timedelta(hours=6) hoursPerRelease=divmod(interval.total_seconds(), 3600) #hours per Release event timeStepsRelease=int(int(hoursOfRelease[0])/int(hoursPerRelease[0])) #number of Release timesteps ReleaseTimes = [startReleaseTime + interval*n for n in range(timeStepsRelease)] #times of Release num=np.random.normal(releaseParticles,int(releaseParticles/2)-1, size=len(ReleaseTimes)).astype(int) num=np.sort(num) #sort particles in increasing order #num=np.concatenate((num[len(num)%2::2],num[::-2]),axis=0) #release the highest number of particles at the midpoint of the Release period print("Release: Simulated Release will release %s kelp particles"%(np.sum(num))) return num, ReleaseTimes def kelpProperties(num): kelpProps=np.zeros((len(num), 4)) mylist=[0,1,2] weights=[0.5069324, 0.4485244,0.10138648] volumes=[0.000140226, 0.000753867, 2.80452E-05] areas=[0.1149934, 0.05, 0.02299868] densities=[2000,1100,300] for i in range(len(num)): ind=random.choice(mylist) kelpProps[i,0]=weights[ind] kelpProps[i,1]=volumes[ind] kelpProps[i,2]=areas[ind] # Calculate the density of the kelp density=weights[ind]/volumes[ind] kelpProps[i,3]=densities[ind] return kelpProps def createOutputFilenames(startTime,endTime,polygonIndex,shapefile,verticalBehavior): startDate='' if startTime.day<10: startDate+='0%s'%(startTime.day) else: startDate+='%s'%(startTime.day) if startTime.month<10: startDate+='0%s'%(startTime.month) else: startDate+='%s'%(startTime.month) startDate+='%s'%(startTime.year) endDate='' if endTime.day<10: endDate+='0%s'%(endTime.day) else: endDate+='%s'%(endTime.day) if endTime.month<10: endDate+='0%s'%(endTime.month) else: endDate+='%s'%(endTime.month) endDate+='%s'%(endTime.year) # Special file naming for KINO. Each layer has name 'species.shp' and we want teh species name only. head,tail=os.path.split(shapefile) specie="Kelp" if verticalBehavior: outputFilename='results/%s_polygon_%s_kelp_opendrift_%s_to_%s_vertical.nc'%(specie,polygonIndex,startDate,endDate) animationFilename='figures/%s_polygon_%s_kelp_animation_%s_to_%s_vertical.mp4'%(specie,polygonIndex,startDate,endDate) plotFilename='figures/%s_polygon_%s_kelp_plot_%s_to_%s_vertical.png'%(specie,polygonIndex,startDate,endDate) else: outputFilename='results/%s_polygon_%s_kelp_opendrift_%s_to_%s_novertical.nc'%(specie,polygonIndex,startDate,endDate) animationFilename='figures/%s_polygon_%s_kelp_animation_%s_to_%s_novertical.mp4'%(specie,polygonIndex,startDate,endDate) plotFilename='figures/%s_polygon_%s_kelp_plot_%s_to_%s_novertical.png'%(specie,polygonIndex,startDate,endDate) if not os.path.exists('figures'): os.makedirs('figures') if not os.path.exists('results'): os.makedirs('results') return outputFilename, animationFilename, plotFilename def createAndRunSimulation(lowDepth,highDepth,endTime,layer,polygonIndex,shapefile,outputFilename,animationFilename,plotFilename,releaseParticles,kinoDirectory,pattern_kino,svimDirectory,pattern_svim,verticalBehavior): # Setup a new simulation o = PelagicPlanktonDrift(loglevel=0) # Set loglevel to 0 for debug information ####################### # Preparing readers ####################### reader_basemap = reader_basemap_landmask.Reader( llcrnrlon=16, llcrnrlat=68, urcrnrlon=20, urcrnrlat=72, resolution='f', projection='merc') o.add_reader([reader_basemap]) #Do not include basemap when stranding is deactivated print([s for s in pattern_kino]) reader_kino = reader_ROMS_native.Reader([s for s in pattern_kino]) reader_kino.interpolation = 'linearNDFast' #linearND reader_svim = reader_ROMS_native.Reader(svimDirectory+pattern_svim) reader_svim.interpolation = 'linearNDFast' #linearND #reader_arome = reader_netCDF_CF_generic.Reader('http://thredds.met.no/thredds/dodsC/arome25/arome_metcoop_default2_5km_latest.nc') o.add_reader([reader_kino,reader_svim]) num, ReleaseTimes = setupSeed(hoursBetweenTimestepInROMSFiles,startTime,endTime,startReleaseTime,endReleaseTime,releaseParticles) ####################### #Adjusting configuration ####################### o.set_config('processes:turbulentmixing', True) o.set_config('turbulentmixing:diffusivitymodel','environment') o.set_config('turbulentmixing:timestep', 30) # seconds o.set_config('turbulentmixing:verticalresolution', 1) # default is 1 meter, but since we have longer timestep we justify it o.set_config('processes:verticaladvection', True) o.set_config('turbulentmixing:TSprofiles', True) # o.set_config('drift:scheme', 'euler') o.set_config('drift:scheme', 'runge-kutta') #del o.fallback_values['x_sea_water_velocity'] #del o.fallback_values['y_sea_water_velocity'] o.set_config('general:coastline_action', 'stranding') #Prevent stranding, jump back to previous position ####################### # Seed kelp particles ####################### kelpProps=kelpProperties(num) for i, nums in enumerate(num): if nums <= 0: continue print("Running i=%s num=%s and polygon=%s"%(i,nums,polygonIndex)) o.seed_from_shapefile(shapefile, nums,featurenum=[polygonIndex], z=np.random.randint(low=lowDepth, high=highDepth, size=np.shape(nums)), weight=kelpProps[i,0], volume=kelpProps[i,1], diameter=kelpProps[i,2], density=kelpProps[i,3], time=ReleaseTimes[i]) #reader_basemap.plot() ######################### # Run the model ######################### o.run(end_time=endTime, time_step=timedelta(hours=2), outfile=outputFilename) #export_variables=['lon', 'lat', 'z','temp','length','weight','survival']) print(o) ######################### # SETUP FOR KELP PROJECT ######################### startTime=datetime(2016,4,10,12,0,0) endTime=datetime(2016,5,26,23,0,0) startReleaseTime=startTime endReleaseTime=datetime(2016,4,12,12,0,0) releaseParticles=4 # Per timestep multiplied by gaussian bell (so maximum is releaseParticles and minimum is close to zero) lowDepth, highDepth = -7, -2 # in negative meters verticalBehavior=False hoursBetweenTimestepInROMSFiles=1 #kinoDirectory='/work/users/trondk/KINO/FORWARD/Run/RESULTS/'+str(startTime.year)+'/' kinoDirectory='/work/shared/nn9297k/Nordfjord/' kinoDirectory='/imr/vol1/NorFjords5/Malangen-160m_AUG2015-AUG2016/' svimDirectory='/work/shared/imr/SVIM/'+str(startTime.year)+'/' firstkino = int(date2num(startTime,units="days since 1948-01-01 00:00:00",calendar="standard")) lastkino = int(date2num(endTime,units="days since 1948-01-01 00:00:00",calendar="standard")) apattern = 'norfjords_160m_his.nc4_%s*'%(startTime.year) argument="%s%s"%(kinoDirectory,apattern) pattern_kino = glob.glob(argument) pattern_kino.sort() print(pattern_kino) pattern_svim='ocean_avg_*.nc' shapefile='/work/shared/nn9297k/Kelp/Shapefile/KelpExPol_utenNASAland.shp' print("=> Using shapefile %s"%(shapefile)) s = ogr.Open(shapefile) for layer in s: polygons=[x+1 for x in range(layer.GetFeatureCount()-1)] #polygons=[1,2,3,4,7] #N.Trench,Dogger bank C, Dogger bank, German bight, Viking bank #polygons=[2] #N.Trench,Dogger bank C, Dogger bank, German bight, Viking bank for polygonIndex in polygons: feature = layer.GetFeature(polygonIndex-1) print("Area",feature.GetGeometryRef().GetArea()) geom = feature.GetGeometryRef() points = geom.GetGeometryCount() ring = geom.GetGeometryRef(0) print("jj",polygonIndex, points) if ring.GetPointCount() > 3: outputFilename, animationFilename, plotFilename = createOutputFilenames(startTime,endTime,polygonIndex,shapefile,verticalBehavior) print("Result files will be stored as:\nnetCDF=> %s\nmp4=> %s"%(outputFilename,animationFilename)) createAndRunSimulation(lowDepth,highDepth,endTime, layer,polygonIndex,shapefile, outputFilename,animationFilename,plotFilename,releaseParticles, kinoDirectory,pattern_kino,svimDirectory,pattern_svim,verticalBehavior)
38.992565
218
0.695586
0
0
0
0
0
0
0
0
3,701
0.352846
fb59a435d0311305f0e15444f804e1c503ccd050
6,818
py
Python
evernotebot/bot/storage.py
AuroraDysis/evernote-telegram-bot
eca7b7c53d2e034e366f1e715211dbe98b4991f7
[ "MIT" ]
1
2021-03-29T07:31:22.000Z
2021-03-29T07:31:22.000Z
evernotebot/bot/storage.py
AuroraDysis/evernote-telegram-bot
eca7b7c53d2e034e366f1e715211dbe98b4991f7
[ "MIT" ]
null
null
null
evernotebot/bot/storage.py
AuroraDysis/evernote-telegram-bot
eca7b7c53d2e034e366f1e715211dbe98b4991f7
[ "MIT" ]
null
null
null
import json import sqlite3 import typing from typing import Optional, Dict from copy import deepcopy from contextlib import suppress from bson.objectid import ObjectId from pymongo import MongoClient from pymongo.errors import ConfigurationError class MongoStorageException(Exception): pass class Mongo: def __init__(self, connection_string, *, collection=None, db_name=None): if collection is None: raise MongoStorageException('`collection` is required') self._driver = MongoClient(connection_string) with suppress(ConfigurationError): db = self._driver.get_database(db_name) if db is None: raise MongoStorageException( 'You have to specify database name ' 'either in connection string or as `db_name` parameter') self._collection = db.get_collection(collection) def create(self, data: dict, auto_generate_id=False): data = deepcopy(data) if "id" in data: data["_id"] = data["id"] del data["id"] elif not auto_generate_id: raise MongoStorageException("`id` required") object_id = self._collection.insert_one(data).inserted_id if isinstance(object_id, ObjectId): object_id = str(object_id) return object_id def get(self, object_id, fail_if_not_exists=False): query = object_id if isinstance(object_id, dict) else {"_id": object_id} data = self._collection.find_one(query) if fail_if_not_exists and not data: raise MongoStorageException(f"Object not found. Query: {query}") if data: data["id"] = data["_id"] del data["_id"] return data def get_all(self, query): for document in self._collection.find(query): document["id"] = document["_id"] del document["_id"] yield document def save(self, data: dict): object_id = data.get("id") if object_id: data["_id"] = object_id del data["id"] query = {"_id": object_id} result = self._collection.update_one(query, {"$set": data}) if result.matched_count == 0: raise MongoStorageException(f"Object `{object_id}` not found") data["id"] = object_id else: object_id = str(self._collection.insert_one(data).inserted_id) if isinstance(object_id, ObjectId): object_id = str(object_id) data["id"] = object_id return object_id def delete(self, object_id, check_deleted_count=True): result = self._collection.delete_one({"_id": object_id}) if check_deleted_count and result.deleted_count != 1: raise MongoStorageException(f"Object `{object_id}` not found") def close(self): self._driver.close() class Sqlite: def __init__(self, dirpath: str, *, collection: str = None, db_name: str = None) -> None: db_filepath = f'{dirpath}/{db_name}' self._connection = sqlite3.connect(db_filepath) self._table_name = collection self.__execute_sql( f'CREATE TABLE IF NOT EXISTS {collection}' '(id INTEGER PRIMARY KEY AUTOINCREMENT, data TEXT)' ) def __execute_sql(self, sql: str, *args) -> sqlite3.Cursor: sql = sql.strip().upper() cursor = self._connection.execute(sql, args) if not sql.startswith('SELECT'): self._connection.commit() return cursor def create(self, data: dict, auto_generate_id: bool = False) -> int: table = self._table_name if auto_generate_id: if 'id' in data: del data['id'] sql = f'INSERT INTO {table}(data) VALUES(?)' cursor = self.__execute_sql(sql, json.dumps(data)) else: object_id = data['id'] if object_id <= 0: raise Exception(f'Invalid id `{object_id}`. Id must be >= 0') cursor = self.__execute_sql(f'INSERT INTO {table}(id, data) VALUES(?, ?)', object_id, json.dumps(data)) return cursor.lastrowid def get(self, object_id: int, fail_if_not_exists: bool = False) -> Dict: query = object_id if isinstance(object_id, dict) else {'id': object_id} objects = self.get_all(query) result = list(objects) if fail_if_not_exists and not result: raise Exception(f'Object not found. Query: {query}') return result and result[0] def get_all(self, query: Optional[Dict] = None) -> typing.Generator: if query is None: query = {} table = self._table_name args = tuple() if 'id' in query: sql = f'SELECT id, data FROM {table} WHERE id=?' args = (query['id'],) else: sql = f'SELECT id, data FROM {table}' cursor = self.__execute_sql(sql, *args) objects = cursor.fetchall() if not objects: return tuple() for object_id, json_data in objects: data = json.loads(json_data) data['id'] = object_id if self._check_query(data, query): yield data def _check_query(self, document: dict, query: dict) -> bool: matched = True for k, query_value in query.items(): key_value = document for name in k.split('.'): key_value = key_value.get(name) if isinstance(key_value, dict) else None if key_value is None: break if isinstance(query_value, dict): matched = self._check_query(key_value, query_value) else: matched = key_value == query_value if not matched: return False return matched def save(self, data: dict) -> int: object_id = data['id'] if not object_id: object_id = self.create(data, auto_generate_id=True) else: table = self._table_name sql = f'UPDATE {table} SET data=? WHERE id=?' cursor = self.__execute_sql(sql, json.dumps(data), object_id) if cursor.rowcount == 0: raise Exception(f'Object `{object_id}` not found') return object_id def delete(self, object_id: int, check_deleted_count: bool = True) -> None: table = self._table_name sql = f'DELETE FROM {table} WHERE id=?' cursor = self.__execute_sql(sql, object_id) if check_deleted_count and cursor.rowcount != 1: raise Exception(f'Object `{object_id}` not found') def close(self) -> None: self._connection.commit() self._connection.close()
37.668508
93
0.589909
6,563
0.962599
871
0.12775
0
0
0
0
851
0.124817
fb59b4889f363415f77eaf0d9d1624d307371014
13,486
py
Python
tests/models/programdb/opstress/opstress_integration_test.py
TahaEntezari/ramstk
f82e5b31ef5c4e33cc02252263247b99a9abe129
[ "BSD-3-Clause" ]
26
2019-05-15T02:03:47.000Z
2022-02-21T07:28:11.000Z
tests/models/programdb/opstress/opstress_integration_test.py
TahaEntezari/ramstk
f82e5b31ef5c4e33cc02252263247b99a9abe129
[ "BSD-3-Clause" ]
815
2019-05-10T12:31:52.000Z
2022-03-31T12:56:26.000Z
tests/models/programdb/opstress/opstress_integration_test.py
TahaEntezari/ramstk
f82e5b31ef5c4e33cc02252263247b99a9abe129
[ "BSD-3-Clause" ]
9
2019-04-20T23:06:29.000Z
2022-01-24T21:21:04.000Z
# pylint: skip-file # type: ignore # -*- coding: utf-8 -*- # # tests.models.opstress.opstress_integration_test.py is part of The RAMSTK Project # # All rights reserved. # Copyright since 2007 Doyle "weibullguy" Rowland doyle.rowland <AT> reliaqual <DOT> com """Class for testing operating stress integrations.""" # Third Party Imports import pytest from pubsub import pub from treelib import Tree # RAMSTK Package Imports from ramstk.models import RAMSTKOpStressRecord, RAMSTKOpStressTable @pytest.fixture(scope="class") def test_tablemodel(test_program_dao): """Get a data manager instance for each test class.""" # Create the device under test (dut) and connect to the database. dut = RAMSTKOpStressTable() dut.do_connect(test_program_dao) dut.do_select_all( { "revision_id": 1, "hardware_id": 1, "mode_id": 6, "mechanism_id": 3, "load_id": 3, } ) yield dut # Unsubscribe from pypubsub topics. pub.unsubscribe(dut.do_get_attributes, "request_get_opstress_attributes") pub.unsubscribe(dut.do_set_attributes, "request_set_opstress_attributes") pub.unsubscribe(dut.do_set_attributes, "wvw_editing_opstress") pub.unsubscribe(dut.do_update, "request_update_opstress") pub.unsubscribe(dut.do_select_all, "selected_revision") pub.unsubscribe(dut.do_get_tree, "request_get_opstress_tree") pub.unsubscribe(dut.do_delete, "request_delete_opstress") pub.unsubscribe(dut.do_insert, "request_insert_opstress") # Delete the device under test. del dut @pytest.mark.usefixtures("test_attributes", "test_tablemodel") class TestSelectMethods: """Class for testing data manager select_all() and select() methods.""" def on_succeed_select_all(self, tree): assert isinstance(tree, Tree) assert isinstance(tree.get_node(1).data["opstress"], RAMSTKOpStressRecord) print("\033[36m\nsucceed_retrieve_opstress topic was broadcast.") @pytest.mark.integration def test_do_select_all_populated_tree(self, test_attributes, test_tablemodel): """do_select_all() should return a Tree() object populated with RAMSTKOpStressRecord instances on success.""" pub.subscribe(self.on_succeed_select_all, "succeed_retrieve_opstress") pub.sendMessage("selected_revision", attributes=test_attributes) pub.unsubscribe(self.on_succeed_select_all, "succeed_retrieve_opstress") @pytest.mark.usefixtures("test_attributes", "test_tablemodel") class TestInsertMethods: """Class for testing the data manager insert() method.""" def on_succeed_insert_sibling(self, node_id, tree): assert node_id == 5 assert isinstance(tree, Tree) assert isinstance(tree.get_node(5).data["opstress"], RAMSTKOpStressRecord) print("\033[36m\nsucceed_insert_opstress topic was broadcast.") def on_fail_insert_no_parent(self, error_message): assert error_message == ( "do_insert: Database error when attempting to add a record. Database " "returned:\n\tKey (fld_load_id)=(100) is not present in table " '"ramstk_op_load".' ) print("\033[35m\nfail_insert_opstress topic was broadcast.") @pytest.mark.integration def test_do_insert_sibling(self, test_attributes, test_tablemodel): """should send success message, add record to record tree and update last_id.""" pub.subscribe(self.on_succeed_insert_sibling, "succeed_insert_opstress") pub.sendMessage("request_insert_opstress", attributes=test_attributes) assert test_tablemodel.last_id == 5 pub.unsubscribe(self.on_succeed_insert_sibling, "succeed_insert_opstress") @pytest.mark.integration def test_do_insert_no_parent(self, test_attributes, test_tablemodel): """should send the fail message when load ID does not exist.""" pub.subscribe(self.on_fail_insert_no_parent, "fail_insert_opstress") test_attributes["load_id"] = 100 pub.sendMessage("request_insert_opstress", attributes=test_attributes) assert test_tablemodel.last_id == 5 pub.unsubscribe(self.on_fail_insert_no_parent, "fail_insert_opstress") @pytest.mark.usefixtures("test_tablemodel") class TestDeleteMethods: """Class for testing the data manager delete() method.""" def on_succeed_delete(self, tree): assert isinstance(tree, Tree) print( "\033[36m\nsucceed_delete_opstress topic was broadcast when deleting " "a failure mode." ) def on_fail_delete_non_existent_id(self, error_message): assert error_message == ("Attempted to delete non-existent Opstress ID 300.") print("\033[35m\nfail_delete_opstress topic was broadcast.") def on_fail_delete_not_in_tree(self, error_message): assert error_message == ("Attempted to delete non-existent Opstress ID 4.") print("\033[35m\nfail_delete_opstress topic was broadcast.") @pytest.mark.integration def test_do_delete(self, test_tablemodel): """should remove the record from the record tree and update last_id.""" pub.subscribe(self.on_succeed_delete, "succeed_delete_opstress") pub.sendMessage("request_delete_opstress", node_id=3) assert test_tablemodel.last_id == 4 assert test_tablemodel.tree.get_node(3) is None pub.unsubscribe(self.on_succeed_delete, "succeed_delete_opstress") @pytest.mark.integration def test_do_delete_non_existent_id(self): """should send the fail message when stress ID does not exist.""" pub.subscribe(self.on_fail_delete_non_existent_id, "fail_delete_opstress") pub.sendMessage("request_delete_opstress", node_id=300) pub.unsubscribe(self.on_fail_delete_non_existent_id, "fail_delete_opstress") @pytest.mark.integration def test_do_delete_not_in_tree(self, test_tablemodel): """should send the fail message record does not exist in record tree.""" pub.subscribe(self.on_fail_delete_not_in_tree, "fail_delete_opstress") test_tablemodel.tree.remove_node(4) pub.sendMessage("request_delete_opstress", node_id=4) pub.unsubscribe(self.on_fail_delete_not_in_tree, "fail_delete_opstress") @pytest.mark.usefixtures("test_tablemodel") class TestUpdateMethods: """Class for testing update() and update_all() methods.""" def on_succeed_update(self, tree): assert isinstance(tree, Tree) assert tree.get_node(3).data["opstress"].description == ( "Test failure opstress" ) assert tree.get_node(3).data["opstress"].measurable_parameter == "Parameter" print("\033[36m\nsucceed_update_opstress topic was broadcast") def on_succeed_update_all(self): print("\033[36m\nsucceed_update_all topic was broadcast") def on_fail_update_wrong_data_type(self, error_message): assert error_message == ( "do_update: The value for one or more attributes for opstress ID 3 was " "the wrong type." ) print("\033[35m\nfail_update_opstress topic was broadcast on wrong data type.") def on_fail_update_root_node_wrong_data_type(self, error_message): assert error_message == ("do_update: Attempting to update the root node 0.") print("\033[35m\nfail_update_opstress topic was broadcast on root node.") def on_fail_update_non_existent_id(self, error_message): assert error_message == ( "do_update: Attempted to save non-existent opstress with opstress ID 100." ) print("\033[35m\nfail_update_opstress topic was broadcast on non-existent ID.") def on_fail_update_no_data_package(self, error_message): assert error_message == ("do_update: No data package found for opstress ID 3.") print("\033[35m\nfail_update_opstress topic was broadcast on no data package.") @pytest.mark.integration def test_do_update(self, test_tablemodel): """do_update() should return a zero error code on success.""" pub.subscribe(self.on_succeed_update, "succeed_update_opstress") test_tablemodel.tree.get_node(3).data[ "opstress" ].description = "Test failure opstress" test_tablemodel.tree.get_node(3).data[ "opstress" ].measurable_parameter = "Parameter" pub.sendMessage("request_update_opstress", node_id=3, table="opstress") pub.unsubscribe(self.on_succeed_update, "succeed_update_opstress") @pytest.mark.integration def test_do_update_all(self, test_tablemodel): """do_update_all() should broadcast the succeed message on success.""" pub.subscribe(self.on_succeed_update_all, "succeed_update_all") pub.sendMessage("request_update_all_opstresss") pub.unsubscribe(self.on_succeed_update_all, "succeed_update_all") @pytest.mark.integration def test_do_update_wrong_data_type(self, test_tablemodel): """do_update() should return a non-zero error code when passed a Requirement ID that doesn't exist.""" pub.subscribe(self.on_fail_update_wrong_data_type, "fail_update_opstress") _opstress = test_tablemodel.do_select(3) _opstress.measurable_parameter = {1: 2} pub.sendMessage("request_update_opstress", node_id=3, table="opstress") pub.unsubscribe(self.on_fail_update_wrong_data_type, "fail_update_opstress") @pytest.mark.integration def test_do_update_root_node_wrong_data_type(self, test_tablemodel): """do_update() should return a non-zero error code when passed a Requirement ID that doesn't exist.""" pub.subscribe( self.on_fail_update_root_node_wrong_data_type, "fail_update_opstress" ) _opstress = test_tablemodel.do_select(3) _opstress.measurable_parameter = {1: 2} pub.sendMessage("request_update_opstress", node_id=0, table="opstress") pub.unsubscribe( self.on_fail_update_root_node_wrong_data_type, "fail_update_opstress" ) @pytest.mark.integration def test_do_update_non_existent_id(self, test_tablemodel): """do_update() should return a non-zero error code when passed an OpStress ID that doesn't exist.""" pub.subscribe(self.on_fail_update_non_existent_id, "fail_update_opstress") pub.sendMessage("request_update_opstress", node_id=100, table="opstress") pub.unsubscribe(self.on_fail_update_non_existent_id, "fail_update_opstress") @pytest.mark.integration def test_do_update_no_data_package(self, test_tablemodel): """do_update() should return a non-zero error code when passed a FMEA ID that has no data package.""" pub.subscribe(self.on_fail_update_no_data_package, "fail_update_opstress") test_tablemodel.tree.get_node(3).data.pop("opstress") pub.sendMessage("request_update_opstress", node_id=3, table="opstress") pub.unsubscribe(self.on_fail_update_no_data_package, "fail_update_opstress") @pytest.mark.usefixtures("test_tablemodel") class TestGetterSetter: """Class for testing methods that get or set.""" def on_succeed_get_attributes(self, attributes): assert isinstance(attributes, dict) assert attributes["load_id"] == 3 assert attributes["description"] == "" print("\033[36m\nsucceed_get_opstress_attributes topic was broadcast.") def on_succeed_get_data_manager_tree(self, tree): assert isinstance(tree, Tree) assert isinstance(tree.get_node(3).data["opstress"], RAMSTKOpStressRecord) print("\033[36m\nsucceed_get_opstress_tree topic was broadcast") def on_succeed_set_attributes(self, tree): assert isinstance(tree, Tree) assert ( tree.get_node(3).data["opstress"].description == "Big test operating load." ) print("\033[36m\nsucceed_get_opstress_tree topic was broadcast") @pytest.mark.integration def test_do_get_attributes(self, test_tablemodel): """do_get_attributes() should return a dict of mode attributes on success.""" pub.subscribe(self.on_succeed_get_attributes, "succeed_get_opstress_attributes") pub.sendMessage("request_get_opstress_attributes", node_id=3, table="opstress") pub.unsubscribe( self.on_succeed_get_attributes, "succeed_get_opstress_attributes" ) @pytest.mark.integration def test_on_get_tree_data_manager(self, test_tablemodel): """on_get_tree() should return the PoF treelib Tree.""" pub.subscribe( self.on_succeed_get_data_manager_tree, "succeed_get_opstress_tree" ) pub.sendMessage("request_get_opstress_tree") pub.unsubscribe( self.on_succeed_get_data_manager_tree, "succeed_get_opstress_tree" ) @pytest.mark.integration def test_do_set_attributes(self, test_tablemodel): """do_set_attributes() should return None when successfully setting operating load attributes.""" pub.subscribe(self.on_succeed_set_attributes, "succeed_get_opstress_tree") pub.sendMessage( "request_set_opstress_attributes", node_id=[3], package={"description": "Big test operating load."}, ) pub.unsubscribe(self.on_succeed_set_attributes, "succeed_get_opstress_tree")
39.899408
88
0.710811
11,613
0.861115
1,068
0.079193
12,970
0.961738
0
0
5,383
0.399155
fb5a0434cd62419bd4c146c19aafa8c01ca37afb
1,159
py
Python
rssant_async/views.py
landlordlycat/rssant
12d9182154a3ffaa35310f1258de4be4822cf1e6
[ "BSD-3-Clause" ]
null
null
null
rssant_async/views.py
landlordlycat/rssant
12d9182154a3ffaa35310f1258de4be4822cf1e6
[ "BSD-3-Clause" ]
null
null
null
rssant_async/views.py
landlordlycat/rssant
12d9182154a3ffaa35310f1258de4be4822cf1e6
[ "BSD-3-Clause" ]
null
null
null
import os from validr import T from aiohttp.web import json_response from aiohttp.web_request import Request from rssant_common import timezone from rssant_common.image_token import ImageToken, ImageTokenDecodeError from rssant_config import CONFIG from .rest_validr import ValidrRouteTableDef from .image_proxy import image_proxy routes = ValidrRouteTableDef() @routes.get('/image/proxy') async def image_proxy_view_v2( request: Request, token: T.str, url: T.url.maxlen(4096), ): try: image_token = ImageToken.decode( token, secret=CONFIG.image_token_secret, expires=CONFIG.image_token_expires) except ImageTokenDecodeError as ex: return json_response({'message': str(ex)}, status=400) response = await image_proxy(request, url, image_token.referrer) return response @routes.get('/image/_health') async def get_health(request): build_id = os.getenv('RSSANT_BUILD_ID') commit_id = os.getenv('RSSANT_COMMIT_ID') now = timezone.now().isoformat() info = dict( build_id=build_id, commit_id=commit_id, now=now, ) return json_response(info)
26.340909
71
0.724763
0
0
0
0
787
0.679034
729
0.628991
74
0.063848
fb5bb09cbb3eed2ec9bb972fd01943b3b7af90ee
2,785
py
Python
tests/test_matching.py
grickly-nyu/grickly
39fbf796ea5918d0183b3aa1b3ae23dcb3d84f22
[ "MIT" ]
3
2021-02-04T02:53:35.000Z
2021-07-22T01:09:36.000Z
tests/test_matching.py
grickly-nyu/grickly
39fbf796ea5918d0183b3aa1b3ae23dcb3d84f22
[ "MIT" ]
17
2021-02-19T23:25:29.000Z
2021-05-16T04:18:00.000Z
tests/test_matching.py
grickly-nyu/grickly
39fbf796ea5918d0183b3aa1b3ae23dcb3d84f22
[ "MIT" ]
null
null
null
from testing_config import BaseTestConfig from application.models import User from application.models import Chatroom import json from application.utils import auth class TestMatch(BaseTestConfig): test_group = { "name": "test_group", "tag": "Poker", } test_group2 = { "name": "test_group2", "tag": "Study", } tag_p = {"query_tag": "Poker"} tag_s = {"query_tag": "Study"} tag_o = {"query_tag": "Outdoor"} tag_l = {"query_tag": "Life"} tag_t = {"query_tag": "Test"} testrm_1 = {"room_id": 1} testrm_2 = {"room_id": 185} testrm_3 = {"room_id": 4} def test_get_suggestions(self): res = self.app.post( "/api/get_suggestions", data=json.dumps(self.tag_p), content_type='application/json' ) res1 = self.app.post( "/api/get_suggestions", data=json.dumps(self.tag_s), content_type='application/json' ) res2 = self.app.post( "/api/get_suggestions", data=json.dumps(self.tag_o), content_type='application/json' ) self.assertEqual(res.status_code,200) self.assertEqual(res1.status_code,200) self.assertEqual(res2.status_code,200) res3 = self.app.post( "/api/get_suggestions", data=json.dumps(self.tag_t), content_type='application/json' ) self.assertEqual(res2.status_code,200) def test_create_group(self): res = self.app.post( "/api/create_group", data=json.dumps(self.test_group), content_type='application/json' ) self.assertEqual(json.loads(res.data.decode("utf-8"))["results"], 2) self.assertEqual(res.status_code, 200) res = self.app.post( "/api/create_group", data=json.dumps(self.test_group2), content_type='application/json' ) self.assertEqual(json.loads(res.data.decode("utf-8"))["results"], 3) # def test_join_chatroom(self): # res = self.app.post( # "/api/join_chatroom", # data=json.dumps(self.testrm_1), # content_type='application/json' # ) # res1 = self.app.post( # "/api/join_chatroom", # data=json.dumps(self.testrm_2), # content_type='application/json' # ) # res2 = self.app.post( # "/api/join_chatroom", # data=json.dumps(self.testrm_3), # content_type='application/json' # ) # self.assertEqual(res.status_code,201) # self.assertEqual(res1.status_code,201) # self.assertEqual(res2.status_code,201)
29.315789
76
0.560144
2,614
0.9386
0
0
0
0
0
0
994
0.356912
fb5d367b92efd326d4327262afe891263095720b
1,633
py
Python
examples/pycaffe/layers/aggregation_cross_entropy_layer.py
HannaRiver/all-caffe
eae31715d903c1e3ef7035702d66b23d9cdf45c3
[ "BSD-2-Clause" ]
null
null
null
examples/pycaffe/layers/aggregation_cross_entropy_layer.py
HannaRiver/all-caffe
eae31715d903c1e3ef7035702d66b23d9cdf45c3
[ "BSD-2-Clause" ]
null
null
null
examples/pycaffe/layers/aggregation_cross_entropy_layer.py
HannaRiver/all-caffe
eae31715d903c1e3ef7035702d66b23d9cdf45c3
[ "BSD-2-Clause" ]
null
null
null
import sys sys.path.insert(0, '/home/hena/caffe-ocr/buildcmake/install/python') sys.path.insert(0, '/home/hena/tool/protobuf-3.1.0/python') import caffe import math import numpy as np def SoftMax(net_ans): tmp_net = [math.exp(i) for i in net_ans] sum_exp = sum(tmp_net) return [i/sum_exp for i in tmp_net] class AggregationCrossEntropyLayer(caffe.Layer): """ Comput the Aggregation Cross Entropy loss for ocr rec plan """ def setup(self, bottom, top): print("==============================================================Hi") self.dict_size = 1220 if len(bottom) != 2: raise Exception("Need two inputs to computer loss.") def reshape(self, bottom, top): self.diff = np.zeros_like(bottom[0].data, dtype=np.float32) # top[0].reshape(*bottom[0].data.shape) def forward(self, bottom, top): print("==============================================================Hi1") # score = bottom[0].data # label = bottom[1].data # print(score) # print(type(score)) # print(score.shape) # T_ = len(score) self.diff[...] = bottom[0].data - bottom[1].data top[0].data[...] = np.sum(self.diff**2) / bottom[0].num / 2. def backward(self, top, propagate_down, bottom): for i in range(2): if not propagate_down[i]: continue if i == 0: sign = 1 else: sign = -1 bottom[i].diff[...] = sign * self.diff / bottom[i].num def get_n_k(self, label): pass
29.160714
82
0.515615
1,302
0.797306
0
0
0
0
0
0
487
0.298224
fb5dda247bf82e8dba4c4c4fbaea1e533adc2c8f
2,530
py
Python
pyroms/sta_hgrid.py
ChuningWang/pyroms2
090a1a6d614088612f586f80b335ddb0dc0077a2
[ "MIT" ]
null
null
null
pyroms/sta_hgrid.py
ChuningWang/pyroms2
090a1a6d614088612f586f80b335ddb0dc0077a2
[ "MIT" ]
null
null
null
pyroms/sta_hgrid.py
ChuningWang/pyroms2
090a1a6d614088612f586f80b335ddb0dc0077a2
[ "MIT" ]
null
null
null
""" Tools for creating and working with Line (Station) Grids """ from typing import Union import pyproj import numpy as np _atype = Union[type(None), np.ndarray] _ptype = Union[type(None), pyproj.Proj] class StaHGrid: """ Stations Grid EXAMPLES: -------- >>> x = arange(8) >>> y = arange(8)*2-1 >>> grd = pyroms.grid.StaHGrid(x, y) >>> print grd.x [4.5 4.5 4.5 4.5 4.5 4.5 4.5] """ def __init__(self, x: np.ndarray, y: np.ndarray, angle: _atype = None): assert x.ndim == 1 and y.ndim == 1 and x.shape == y.shape, \ 'x and y must be 2D arrays of the same size.' mask = np.isnan(x) | np.isnan(y) if np.any(mask): x = np.ma.masked_where(mask, x) y = np.ma.masked_where(mask, y) self.spherical = False self._x, self._y = x, y if angle is None: self.angle = np.zeros(len(self.y)) else: self.angle = angle return x = property(lambda self: self._x) y = property(lambda self: self._y) class StaHGridGeo(StaHGrid): """ Stations Grid EXAMPLES: -------- >>> lon = arange(8) >>> lat = arange(8)*2-1 >>> proj = pyproj() >>> grd = pyroms.grid.StaHGridGeo(lon, lat, proj) >>> print grd.x [xxx, xxx, xxx, xxx, xxx, xxx, xxx, xxx] """ def __init__(self, lon: np.ndarray, lat: np.ndarray, x: _atype = None, y: _atype = None, angle: _atype = None, proj: _ptype = None): self.spherical = True self._lon, self._lat = lon, lat self.proj = proj if x is not None and y is not None: super(StaHGridGeo, self).__init__(x, y, angle) self.spherical = True else: if proj is not None: self._x, self._y = proj(lon, lat) else: raise ValueError('Projection transformer must be ' + 'provided if x/y are missing.') return @property def lon(self): return self._lon @lon.setter def lon(self, lon): if self.proj is not None: self.__init__(lon, self._lat, angle=self.angle, proj=self.proj) else: self._lon = lon @property def lat(self): return self._lat @lat.setter def lat(self, lat): if self.proj is not None: self.__init__(self._lon, lat, angle=self.angle, proj=self.proj) else: self._lat = lat
24.326923
75
0.527273
2,319
0.916601
0
0
480
0.189723
0
0
626
0.247431
fb5e69fb9347917ede848ed32aab714b5ee1edac
3,364
py
Python
lstchain/visualization/camera.py
misabelber/cta-lstchain
08fc4dccfe8a05a77fa46fb4ffb6e26f439c0a93
[ "BSD-3-Clause" ]
null
null
null
lstchain/visualization/camera.py
misabelber/cta-lstchain
08fc4dccfe8a05a77fa46fb4ffb6e26f439c0a93
[ "BSD-3-Clause" ]
null
null
null
lstchain/visualization/camera.py
misabelber/cta-lstchain
08fc4dccfe8a05a77fa46fb4ffb6e26f439c0a93
[ "BSD-3-Clause" ]
null
null
null
import numpy as np from ..reco.disp import disp_vector import astropy.units as u import matplotlib.pyplot as plt from ctapipe.visualization import CameraDisplay __all__ = [ 'overlay_disp_vector', 'overlay_hillas_major_axis', 'overlay_source', 'display_dl1_event', ] def display_dl1_event(event, camera_geometry, tel_id=1, axes=None, **kwargs): """ Display a DL1 event (image and pulse time map) side by side Parameters ---------- event: ctapipe event tel_id: int axes: list of `matplotlib.pyplot.axes` of shape (2,) or None kwargs: kwargs for `ctapipe.visualization.CameraDisplay` Returns ------- axes: `matplotlib.pyplot.axes` """ if axes is None: fig, axes = plt.subplots(1, 2, figsize=(12, 5)) image = event.dl1.tel[tel_id].image peak_time = event.dl1.tel[tel_id].peak_time if image is None or peak_time is None: raise Exception(f"There is no calibrated image or pulse time map for telescope {tel_id}") d1 = CameraDisplay(camera_geometry, image, ax=axes[0], **kwargs) d1.add_colorbar(ax=axes[0]) d2 = CameraDisplay(camera_geometry, peak_time, ax=axes[1], **kwargs) d2.add_colorbar(ax=axes[1]) return axes def overlay_source(display, source_pos_x, source_pos_y, **kwargs): """ Display the source (event) position in the camera Parameters ---------- display: `ctapipe.visualization.CameraDisplay` source_pos_x: `astropy.units.Quantity` source_pos_y: `astropy.units.Quantity` kwargs: args for `matplotlib.pyplot.scatter` Returns ------- `matplotlib.pyplot.axes` """ kwargs['marker'] = 'x' if 'marker' not in kwargs else kwargs['marker'] kwargs['color'] = 'red' if 'color' not in kwargs else kwargs['color'] display.axes.scatter(source_pos_x, source_pos_y, **kwargs) def overlay_disp_vector(display, disp, hillas, **kwargs): """ Overlay disp vector on a CameraDisplay Parameters ---------- display: `ctapipe.visualization.CameraDisplay` disp: `DispContainer` hillas: `ctapipe.containers.HillasParametersContainer` kwargs: args for `matplotlib.pyplot.quiver` """ assert np.isfinite([hillas.x.value, hillas.y.value]).all() if not np.isfinite([disp.dx.value, disp.dy.value]).all(): disp_vector(disp) display.axes.quiver(hillas.x, hillas.y, disp.dx, disp.dy, units='xy', scale=1*u.m, angles='xy', **kwargs, ) display.axes.quiver(hillas.x.value, hillas.y.value, disp.dx.value, disp.dy.value, units='xy', scale=1) def overlay_hillas_major_axis(display, hillas, **kwargs): """ Overlay hillas ellipse major axis on a CameraDisplay. Parameters ---------- display: `ctapipe.visualization.CameraDisplay` hillas: `ctapipe.containers.HillaParametersContainer` kwargs: args for `matplotlib.pyplot.plot` """ kwargs['color'] = 'black' if 'color' not in kwargs else kwargs['color'] length = hillas.length * 2 x = -length + 2 * length * np.arange(10) / 10 display.axes.plot(hillas.x + x * np.cos(hillas.psi.to(u.rad).value), hillas.y + x * np.sin(hillas.psi.to(u.rad).value), **kwargs, )
29.769912
106
0.633472
0
0
0
0
0
0
0
0
1,443
0.428954
fb5ee7c913a1ddd435fb481e4af6d53922603786
14,537
py
Python
QFlow-2.0/QFlow/Process_Data.py
jpzwolak/QFlow-suite
d34d74d8690908137adbce0e71587884758b5ecf
[ "MIT" ]
null
null
null
QFlow-2.0/QFlow/Process_Data.py
jpzwolak/QFlow-suite
d34d74d8690908137adbce0e71587884758b5ecf
[ "MIT" ]
null
null
null
QFlow-2.0/QFlow/Process_Data.py
jpzwolak/QFlow-suite
d34d74d8690908137adbce0e71587884758b5ecf
[ "MIT" ]
1
2022-02-16T22:25:22.000Z
2022-02-16T22:25:22.000Z
import numpy as np import random from scipy.stats import skew as scipy_skew from skimage.transform import resize as skimage_resize from QFlow import config ## set of functions for loading and preparing a dataset for training. def get_num_min_class(labels): ''' Get the number of the minimum represented class in label vector. Used for resampling data. input: labels: np.ndarray of labels outputs: num_samples: int number of samples for minimum class ''' # use argmax as example's class argmax_labels = np.argmax(labels, axis=-1) # max of num_samples is all one label num_samples = labels.shape[0] for i in range(labels.shape[-1]): lab_elems = np.sum(argmax_labels==i) if lab_elems < num_samples: num_samples = lab_elems return num_samples def resample_data(features, state_labels, labels=None, seed=None): ''' Resample data to be evenly distributed across classes in labels by cutting number of examples for each class to be equal to the number of examples in the least represented class. (classes assumed to be last axis of labels). Shuffles after resampling. inputs: features: ndarray of features to be resampled. Resample along first axis. state_labels: ndarray of labels to be used for resampling labels: ndarray of labels to be resampled. return_state: bool specifying whether to return state labels seed: Seed of random number generator for shuffling idxs during resample and for shuffling resampled features and labels. outputs: features: list of resampled features labels: list of resampled labels ''' rng = np.random.default_rng(seed) num_samples = get_num_min_class(state_labels) features_resamp = []; state_labels_resamp = []; labels_resamp = [] for i in range(state_labels.shape[-1]): s_idxs = state_labels.argmax(axis=-1)==i # first get full array of single state features_s_full = features[s_idxs] state_labels_s_full = state_labels[s_idxs] if labels is not None: labels_s_full = labels[s_idxs] # then get idxs (0-length), shuffle, and slice to num_samples # shuffle idxs to be sure labels and features are shuffled together idxs = list(range(features_s_full.shape[0])) rng.shuffle(idxs) features_resamp.append(features_s_full[idxs[:num_samples]]) state_labels_resamp.append(state_labels_s_full[idxs[:num_samples]]) if labels is not None: labels_resamp.append(labels_s_full[idxs[:num_samples]]) features_resamp_arr = np.concatenate(features_resamp, axis=0) state_labels_resamp_arr = np.concatenate(state_labels_resamp, axis=0) if labels is not None: labels_resamp_arr = np.concatenate(labels_resamp, axis=0) idxs = list(range(features_resamp_arr.shape[0])) rng.shuffle(idxs) if labels is not None: return features_resamp_arr[idxs], labels_resamp_arr[idxs] elif labels is None: return features_resamp_arr[idxs], state_labels_resamp_arr[idxs] def noise_mag_to_class(state_labels, noise_mags, low_thresholds=None, high_thresholds=None): ''' Function to convert noise magnitudes to noise classes. Noise class thresholds are defined here. Thresholds for states order is: no dot, left dot, central dot, right dot, double dot Default low thresholds is the linear extrapolation to 100 % accuracy of an average noisy-trained model vs. noise_mag. Default high thresholds are from linear extrapolation to 0 % accuracy of an average noisy trained model vs. noise_mag. inputs: state_labels: list of state labels. shape assumed to be (num_examples, num_states). noise_mags: list of float noise_mags for state_labels. shape assumed to be (num_examples, ). low_thresholds: list of floats of shape (num_state, ) specifying high signal to noise class thresholds. high_thresholds: list of floats of shape (num_state, ) specifying high signal to noise class thresholds. ''' # set number of noise classes and states. # length of thresholds must be equal to num_states. # no num_quality_classes != 3 are supported. num_quality_classes = config.NUM_QUALITY_CLASSES num_states = config.NUM_STATES # set default thresholds if high_thresholds is None: high_thresholds = [1.22, 1.00, 1.21, 0.68, 2.00] if low_thresholds is None: low_thresholds = [0.31, 0.32, 0.41, 0.05, 0.47] low_thresholds = np.array(low_thresholds) high_thresholds = np.array(high_thresholds) quality_classes = np.zeros(noise_mags.shape+(num_quality_classes,)) # use fractional labels by taking weighted average after # applying thresholds num_states = state_labels.shape[-1] # get per state classes then sum across last axis later per_state_classes = np.zeros( noise_mags.shape + (num_quality_classes,) + (num_states,)) # use boolean indexing to define classes from noise mags/threshold arrays for i in range(num_states): per_state_classes[noise_mags <= low_thresholds[i],0, i] = 1 per_state_classes[(noise_mags > low_thresholds[i]) &\ (noise_mags <= high_thresholds[i]), 1, i] = 1 per_state_classes[noise_mags > high_thresholds[i], 2, i] = 1 # multiply each first axis element then sum across last axes quality_classes = np.einsum('ijk,ik->ij', per_state_classes, state_labels) return quality_classes def get_data(f, train_test_split=0.9, dat_key='sensor', label_key='state', resample=True, seed=None, low_thresholds=None, high_thresholds=None): ''' Reads in the subregion data and converts it to a format useful for training Note that the data is shuffled after reading in. inputs: f: one of: str path to .npz file containing cropped data dict of cropped data. train_test_split: float fraction of data to use for training. resample: bool specifying whether to resample data to get even state representation. seed: int random seed for file shuffling. label_key: string key for data used for the label. One of: 'data_quality', 'noise_mag_factor', 'state'. low_threshold: list of noise levels to use for high/moderate signal to noise ratio threshold. high_threshold: list of noise levels to use for moderate/low signal to noise ratio threshold. outputs: train_data: np.ndarray of training data. train_labels: np.ndarray of training labels. eval_data: np.ndarray of training data. eval_labels: np.ndarray of training labels. ''' # treat f as path, or if TypeError treat as dict. try: dict_of_dicts = np.load(f, allow_pickle = True) file_on_disk = True except TypeError: dict_of_dicts = f file_on_disk = False files = list(dict_of_dicts.keys()) random.Random(seed).shuffle(files) inp = [] oup_state = [] # if we want a nonstate label load it so we can resample if label_key!='state': oup_labels = [] else: oup_labels = None train_labels = None eval_labels = None # if label is noise class, we need to get noise mag labels first # then process to turn the mag into a class label if label_key == 'data_quality': data_quality = True label_key = 'noise_mag_factor' else: data_quality = False for file in files: # for compressed data, file is the key of the dict of dicts if file_on_disk: data_dict = dict_of_dicts[file].item() else: data_dict = dict_of_dicts[file] dat = data_dict[dat_key] # generates a list of arrays inp.append(dat.reshape(config.SUB_SIZE,config.SUB_SIZE,1)) oup_state.append(data_dict['state']) # generates a list of arrays if oup_labels is not None: oup_labels.append(data_dict[label_key]) inp = np.array(inp) # converts the list to np.array oup_state = np.array(oup_state) # converts the list to np.array if oup_labels is not None: oup_labels = np.array(oup_labels) # split data into train and evaluatoin data/labels n_samples = inp.shape[0] print("Total number of samples :", n_samples) n_train = int(train_test_split * n_samples) train_data = inp[:n_train] print("Training data info:", train_data.shape) train_states = oup_state[:n_train] if oup_labels is not None: train_labels = oup_labels[:n_train] eval_data = inp[n_train:] print("Evaluation data info:", eval_data.shape) eval_states = oup_state[n_train:] if oup_labels is not None: eval_labels = oup_labels[n_train:] # convert noise mag to class before resampling/getting noise mags if # needed because resampling doesnt return state labels if data_quality: train_labels = noise_mag_to_class( train_states, train_labels, low_thresholds=low_thresholds, high_thresholds=high_thresholds, ) eval_labels = noise_mag_to_class( eval_states, eval_labels, low_thresholds=low_thresholds, high_thresholds=high_thresholds, ) # resample to make state representation even if resample: train_data, train_labels = resample_data( train_data, train_states, train_labels) eval_data, eval_labels = resample_data( eval_data, eval_states, eval_labels) elif not resample and label_key=='state': train_labels = train_states eval_labels = eval_states # expand dim of labels to make sure that they have proper shape if oup_labels is not None and len(train_labels.shape)==1: np.expand_dims(train_labels, 1) if oup_labels is not None and len(eval_labels.shape)==1: np.expand_dims(eval_labels, 1) return train_data, train_labels, eval_data, eval_labels ## preprocess functions def gradient(x): ''' Take gradient of an ndarray in specified direction. Thin wrapper around np.gradient(). Also note that x -> axis=1 and y-> axis=0 input: x: An numpy ndarray to take the gradient of output: numpy ndarray containing gradient in x direction. ''' return np.gradient(x, axis=1) def apply_threshold(x, threshold_val=10, threshold_to=0): ''' Thresholds an numpy ndarray to remove Args: x = numpy array with data to be filtered threshold_val = percentile below which to set values to zero ''' x[x < np.abs(np.percentile(x.flatten(),threshold_val))] = threshold_to return x def apply_clipping(x, clip_val=3, clip_to='clip_val'): ''' Clip input symmetrically at clip_val number of std devs. Do not zscore norm x, but apply thresholds using normed x ''' x_clipped = np.copy(x) mean = np.mean(x) std = np.std(x) norm_x = (x - mean) / std # set clipped values to either the mean or clip threshold if clip_to.lower() == 'clip_val': x_clipped[norm_x < -clip_val] = -clip_val * std + mean x_clipped[norm_x > clip_val] = clip_val * std + mean elif clip_to.lower() == 'mean': x_clipped[norm_x < -clip_val] = mean x_clipped[norm_x > clip_val] = mean else: raise KeyError('"clip_to" option not valid: ' +str(clip_to) +\ 'Valid options: clip_val, mean') return x_clipped def autoflip_skew(data): ''' Autoflip a numpy ndarray based on the skew of the values (effective for gradient data). ''' skew_sign = np.sign(scipy_skew(np.ravel(data))) return data*skew_sign def zscore_norm(x): ''' Takes a numpy ndarray and returns a z-score normalized version ''' return (x-x.mean())/x.std() class Preprocessor(): def __init__(self, autoflip=False, denoising=[], clip_val=None, thresh_val=None): ''' Class for doing preprocessing of data. inputs: autoflip: bool specifying whether to autoflip data. denoising: list of str specifying denoising to apply to data. clip_val: value for clipping denoising. Unused if 'clip' not in denoising. thresh_val ''' self.autoflip = autoflip valid_denoising = ['threshold', 'clip'] if not set(denoising).issubset(valid_denoising): raise ValueError( 'invalid denoising ', denoising, ' Valid values:', valid_denoising) self.denoising = denoising self.clip_val = clip_val self.thresh_val = thresh_val def proc_subimage(self, x): ''' Takes the gradient of the measured data, applies denoising if specified, normalizes, autoflips if specified, and then adjusts the size (if necessary) Args: x = an array with data ''' # take gradient x = gradient(x) # apply thresholding if 'threshold' in self.denoising: if self.threshold_val is not None: grad_x = apply_threshold(x, self.threshold_val) else: grad_x = apply_threshold(x) # apply clipping if 'clip' in self.denoising: if self.clip_val is not None: grad_x = apply_clipping(grad_x, self.clip_val) else: grad_x = apply_clipping(grad_x) # normalize with zscore normalization x = zscore_norm(x) # autoflip by skew of image gradient if self.autoflip: x = autoflip_skew(x) target_shape = (config.SUB_SIZE, config.SUB_SIZE, 1) if x.shape != target_shape: x = skimage_resize(x, target_shape) return x def proc_subimage_set(self, x_arr): ''' Loop through subimages and apply preprocessing to each one. inputs: x: full dataset of images. First axis assumed to be example index. returns: Full dataset of images with same shape, processed. ''' return np.array([self.proc_subimage(x) for x in x_arr])
35.982673
81
0.65323
2,380
0.16372
0
0
0
0
0
0
6,623
0.455596
fb5eea86a746925440911830c3d41121077c7f7a
472
py
Python
vimfiles/bundle/vim-python/submodules/pylint/tests/functional/s/star/star_needs_assignment_target_py35.py
ciskoinch8/vimrc
5bf77a7e7bc70fac5173ab2e9ea05d7dda3e52b8
[ "MIT" ]
463
2015-01-15T08:17:42.000Z
2022-03-28T15:10:20.000Z
vimfiles/bundle/vim-python/submodules/pylint/tests/functional/s/star/star_needs_assignment_target_py35.py
ciskoinch8/vimrc
5bf77a7e7bc70fac5173ab2e9ea05d7dda3e52b8
[ "MIT" ]
52
2015-01-06T02:43:59.000Z
2022-03-14T11:15:21.000Z
vimfiles/bundle/vim-python/submodules/pylint/tests/functional/s/star/star_needs_assignment_target_py35.py
ciskoinch8/vimrc
5bf77a7e7bc70fac5173ab2e9ea05d7dda3e52b8
[ "MIT" ]
249
2015-01-07T22:49:49.000Z
2022-03-18T02:32:06.000Z
""" Test PEP 0448 -- Additional Unpacking Generalizations https://www.python.org/dev/peps/pep-0448/ """ # pylint: disable=superfluous-parens, unnecessary-comprehension UNPACK_TUPLE = (*range(4), 4) UNPACK_LIST = [*range(4), 4] UNPACK_SET = {*range(4), 4} UNPACK_DICT = {'a': 1, **{'b': '2'}} UNPACK_DICT2 = {**UNPACK_DICT, "x": 1, "y": 2} UNPACK_DICT3 = {**{'a': 1}, 'a': 2, **{'a': 3}} UNPACK_IN_COMP = {elem for elem in (*range(10))} # [star-needs-assignment-target]
29.5
81
0.641949
0
0
0
0
0
0
0
0
222
0.470339
fb5ffc354d2d854524531b1d4f70227336db8f87
238
py
Python
src/ikazuchi/errors.py
t2y/ikazuchi
7023111e92fa47360c50cfefd1398c554475f2c6
[ "Apache-2.0" ]
null
null
null
src/ikazuchi/errors.py
t2y/ikazuchi
7023111e92fa47360c50cfefd1398c554475f2c6
[ "Apache-2.0" ]
null
null
null
src/ikazuchi/errors.py
t2y/ikazuchi
7023111e92fa47360c50cfefd1398c554475f2c6
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- class IkazuchiError(Exception): """ ikazuchi root exception """ pass class TranslatorError(IkazuchiError): """ ikazuchi translator exception """ pass class NeedApiKeyError(TranslatorError): pass
19.833333
44
0.693277
208
0.87395
0
0
0
0
0
0
91
0.382353
fb607c62040621d2cd1122da4b43413ea79de0be
4,331
py
Python
engine/resources.py
gerizim16/MP2_GRP19
591fbb47fec6c5471d4e63151f494641452b4cb7
[ "CC0-1.0" ]
1
2020-09-25T02:46:00.000Z
2020-09-25T02:46:00.000Z
engine/resources.py
gerizim16/MP2_GRP19
591fbb47fec6c5471d4e63151f494641452b4cb7
[ "CC0-1.0" ]
null
null
null
engine/resources.py
gerizim16/MP2_GRP19
591fbb47fec6c5471d4e63151f494641452b4cb7
[ "CC0-1.0" ]
null
null
null
import pyglet print('Loading resources') def center_image(image): """Sets an image's anchor point to its center""" image.anchor_x = image.width / 2 image.anchor_y = image.height / 2 # Tell pyglet where to find the resources pyglet.resource.path = ['./resources', './resources/backgrounds'] pyglet.resource.reindex() images = list() # Load the three main resources and get them to draw centered tank_body_img = pyglet.resource.image('tank_body.png') images.append(tank_body_img) tank_head_img = pyglet.resource.image('tank_head.png') images.append(tank_head_img) boxlife_img = pyglet.resource.image('boxlife.png') images.append(boxlife_img) boxlife_dead_img = pyglet.resource.image('boxlife_dead.png') images.append(boxlife_dead_img) wheel_img = pyglet.resource.image('wheel.png') images.append(wheel_img) thread_img = pyglet.resource.image('thread.png') images.append(thread_img) motorbike_chassis_img = pyglet.resource.image('motorbike_chassis.png') images.append(motorbike_chassis_img) mb_wheel_img = pyglet.resource.image('mb_wheel.png') images.append(mb_wheel_img) mb_holder_img = pyglet.resource.image('mb_holder.png') images.append(mb_holder_img) vbv_chassis_img = pyglet.resource.image('vbv_chassis.png') images.append(vbv_chassis_img) vbv_wheels_img = pyglet.resource.image('vbv_wheels.png') images.append(vbv_wheels_img) vbv_platform_img = pyglet.resource.image('vbv_platform.png') images.append(vbv_platform_img) vb_net_img = pyglet.resource.image('vb_net.png') images.append(vb_net_img) vb_ball_img = pyglet.resource.image('vb_ball.png') images.append(vb_ball_img) game1_button_img = pyglet.resource.image('game1.png') images.append(game1_button_img) game1_button_hover_img = pyglet.resource.image('game1_hover.png') images.append(game1_button_hover_img) game2_button_img = pyglet.resource.image('game2.png') images.append(game2_button_img) game2_button_hover_img = pyglet.resource.image('game2_hover.png') images.append(game2_button_hover_img) game3_button_img = pyglet.resource.image('game3.png') images.append(game3_button_img) game3_button_hover_img = pyglet.resource.image('game3_hover.png') images.append(game3_button_hover_img) game1_hs_button_img = pyglet.resource.image('game1_hs.png') images.append(game1_hs_button_img) game1_hs_button_hover_img = pyglet.resource.image('game1_hs_hover.png') images.append(game1_hs_button_hover_img) game2_hs_button_img = pyglet.resource.image('game2_hs.png') images.append(game2_hs_button_img) game2_hs_button_hover_img = pyglet.resource.image('game2_hs_hover.png') images.append(game2_hs_button_hover_img) menu_button_img = pyglet.resource.image('menu.png') images.append(menu_button_img) gravity_button_img = pyglet.resource.image('gravity.png') images.append(gravity_button_img) fullscreen_button_img = pyglet.resource.image('fullscreen.png') images.append(fullscreen_button_img) restart_button_img = pyglet.resource.image('restart_button.png') images.append(restart_button_img) enter_button_img = pyglet.resource.image('enter_button.png') images.append(enter_button_img) enter_button_hover_img = pyglet.resource.image('enter_button_hover.png') images.append(enter_button_hover_img) circle_meter_img = pyglet.resource.image('circle_meter.png') images.append(circle_meter_img) pointer_img = pyglet.resource.image('pointer.png') images.append(pointer_img) finishflag_img = pyglet.resource.image('finishflag.png') images.append(finishflag_img) goal_meter_img = pyglet.resource.image('goal_meter.png') images.append(goal_meter_img) bg_goal_meter_img = pyglet.resource.image('bg_goal_meter.png') images.append(bg_goal_meter_img) background_img = pyglet.resource.image('background.png') images.append(background_img) for image in images: center_image(image) # load backgrounds parallax_bgs = list() layer_counts = (3, 2, 2, 2, 3, 4) for bg_i, layer_count in enumerate(layer_counts): bg_set = list() for layer_i in range(layer_count): bg_set.append(pyglet.resource.image('{}layer_{}.png'.format(bg_i, layer_i))) parallax_bgs.append(tuple(bg_set)) parallax_bgs = tuple(parallax_bgs) # Load sfx without streaming engine_sfx = pyglet.media.load('./resources/engine_sfx.wav', streaming=False) bg_music = pyglet.media.load('./resources/bg_music.wav', streaming=False) print('Resource loading successful')
30.286713
84
0.803048
0
0
0
0
0
0
0
0
915
0.211268
fb61944ce32d6c5a99c9e008904e108e5bfd2d77
2,517
py
Python
search_for_similar_images__perceptual_hash__phash/ui/SelectDirBox.py
DazEB2/SimplePyScripts
1dde0a42ba93fe89609855d6db8af1c63b1ab7cc
[ "CC-BY-4.0" ]
117
2015-12-18T07:18:27.000Z
2022-03-28T00:25:54.000Z
search_for_similar_images__perceptual_hash__phash/ui/SelectDirBox.py
DazEB2/SimplePyScripts
1dde0a42ba93fe89609855d6db8af1c63b1ab7cc
[ "CC-BY-4.0" ]
8
2018-10-03T09:38:46.000Z
2021-12-13T19:51:09.000Z
search_for_similar_images__perceptual_hash__phash/ui/SelectDirBox.py
DazEB2/SimplePyScripts
1dde0a42ba93fe89609855d6db8af1c63b1ab7cc
[ "CC-BY-4.0" ]
28
2016-08-02T17:43:47.000Z
2022-03-21T08:31:12.000Z
#!/usr/bin/env python3 # -*- coding: utf-8 -*- __author__ = 'ipetrash' # SOURCE: https://github.com/gil9red/VideoStreamingWithEncryption/blob/37cf7f501460a286ec44a20db7b2403e8cb05d97/server_GUI_Qt/inner_libs/gui/SelectDirBox.py import os from PyQt5.QtWidgets import QWidget, QLineEdit, QLabel, QPushButton, QHBoxLayout, QFileDialog, QStyle from PyQt5.QtCore import pyqtSignal class SelectDirBox(QWidget): valueChanged = pyqtSignal(str) valueEdited = pyqtSignal(str) def __init__(self, value='', visible_label=True): super().__init__() self._label = QLabel('Directory:') self._label.setVisible(visible_label) self._value = QLineEdit() self._value.textChanged.connect(self.valueChanged.emit) self._value.textEdited.connect(self.valueEdited.emit) icon_open_dir = self.style().standardIcon(QStyle.SP_DirOpenIcon) action_open_dir = self._value.addAction(icon_open_dir, QLineEdit.TrailingPosition) action_open_dir.setToolTip('Open directory') action_open_dir.triggered.connect(self._on_open_dir) self._button_select_path = QPushButton('...') self._button_select_path.setFixedWidth(24) self._button_select_path.setToolTip('Select directory') self._button_select_path.clicked.connect(self._on_select_path) self.setValue(value) layout = QHBoxLayout() layout.setSpacing(5) layout.setContentsMargins(0, 0, 0, 0) layout.addWidget(self._label) layout.addWidget(self._value, stretch=1) layout.addWidget(self._button_select_path) self.setLayout(layout) def setValue(self, value: str): self._value.setText(value) self._value.setToolTip(value) def getValue(self) -> str: return self._value.text() def _on_select_path(self): path = QFileDialog.getExistingDirectory(self, None, self._value.text()) if not path: return self.setValue(path) def _on_open_dir(self): path = self._value.text() if os.path.isdir(path): os.startfile(path) def resizeEvent(self, event): super().resizeEvent(event) self._button_select_path.setFixedHeight(self._value.height()) if __name__ == '__main__': from PyQt5.QtWidgets import QApplication app = QApplication([]) mw = SelectDirBox() mw.valueChanged.connect( lambda value: print(f'Selected directory: {value}') ) mw.show() app.exec()
28.931034
156
0.684148
1,881
0.747318
0
0
0
0
0
0
304
0.120779
fb623387f3a45681b01c77927c90b4d6cbbd3ef4
3,503
py
Python
ImageStabilizer.py
arthurscholz/UMN-AFM-Scripts
86b4d11f9f70f378200899c930d1fa38ad393c66
[ "MIT" ]
null
null
null
ImageStabilizer.py
arthurscholz/UMN-AFM-Scripts
86b4d11f9f70f378200899c930d1fa38ad393c66
[ "MIT" ]
null
null
null
ImageStabilizer.py
arthurscholz/UMN-AFM-Scripts
86b4d11f9f70f378200899c930d1fa38ad393c66
[ "MIT" ]
null
null
null
import numpy as np import picoscript import cv2 import HeightTracker import atexit print "Setting Parameters..." zDacRange = 0.215 # Sensor specific number windowSize = 3e-6 # window size in meters windowBLHCX = 3.5e-6 # window bottom left hand corner X-axis in meters windowBLHCY = 3.5e-6 # window bottom left hand corner Y-axis in meters imageBuffer = 0 # buffer for tracking image (0-7) binary = True servoRange = picoscript.GetServoTopographyRange() imageRange = servoRange * zDacRange MAX_SHORT = 2**15 def PlaneLevel(im): x, y = np.indices(im.shape) A = np.vstack([x.flatten(), y.flatten(), np.ones(im.size)]).T z = im.flatten() a,b,c = np.linalg.lstsq(A, z)[0] plane = a*x + b*y + c return im - plane def LineLevel(im): output = np.empty_like(im) for i in range(im.shape[0]): output[i] = im[i] - np.median(im[i]) return output def LoadBuffer(i): xSize = picoscript.GetScanXPixels() ySize = picoscript.GetScanYPixels() # Read in image data buffer im = np.asarray(picoscript.ReadImageDataBuffer(imageBuffer)) im = im.reshape(ySize,xSize) im = im * imageRange / MAX_SHORT return im # Calculates scan offset for new image. Takes an image, roi template and bottom # left hand corner def CalculateOffset(im,template,blhc): res = cv2.matchTemplate(im.astype('float32'),template.astype('float32'),cv2.TM_CCORR_NORMED) min_val, max_val, min_loc, max_loc = cv2.minMaxLoc(res) # returns vector to feature return np.asarray(max_loc)-blhc def Stabilize(): position = picoscript.GetStatusApproachPosition() im = LoadBuffer(0) im = PlaneLevel(im) im = LineLevel(im) ref_image = im im_size = picoscript.GetScanSize() x0 = int(windowBLHCX / im_size * im.shape[1]) y0 = int(windowBLHCY / im_size * im.shape[0]) x1 = int((windowBLHCX + windowSize)/im_size * im.shape[1]) y1 = int((windowBLHCY + windowSize)/im_size * im.shape[0]) template = ref_image[y0:y1,x0:x1] while(position == picoscript.GetStatusApproachPosition()): picoscript.ScanStartDown() picoscript.WaitForStatusScanning(True) picoscript.WaitForStatusScanning(False) im = LoadBuffer(0) im = PlaneLevel(im) im = LineLevel(im) offset = CalculateOffset(im,template,np.array([x0,y0])) x_offset = picoscript.GetScanXOffset() + offset[0]*im_size/im.shape[1] y_offset = picoscript.GetScanYOffset() + offset[1]*im_size/im.shape[0] picoscript.SetScanXOffset(x_offset) picoscript.SetScanYOffset(y_offset) x0_new = offset[0] + x0 x1_new = offset[0] + x1 y0_new = offset[1] + y0 y1_new = offset[1] + y1 print '{0}, {1}'.format(x_offset, y_offset) template = im[y0_new:y1_new,x0_new:x1_new] if __name__ == "__main__": atexit.register(picoscript.Disconnect) heighttrack = HeightTracker.Track() heighttrack.start() RunStabilize = True print "Waiting for current scan to end..." picoscript.WaitForStatusScanning(False) print "Starting stabilization..." while True: if RunStabilize: Stabilize() position = picoscript.GetStatusApproachPosition() picoscript.ScanStartDown() picoscript.WaitForStatusScanning(True) picoscript.WaitForStatusScanning(False) RunStabilize = position == picoscript.GetStatusApproachPosition()
30.198276
96
0.663717
0
0
0
0
0
0
0
0
453
0.129318
fb6262762a9edf203b455a0bed2e167c184ce590
1,947
py
Python
Twitter Data Extraction.py
scottblender/twitter-covid-19-vaccine-analysis
a4d273b8b885fc33db075dfc910fa39645fa3789
[ "MIT" ]
null
null
null
Twitter Data Extraction.py
scottblender/twitter-covid-19-vaccine-analysis
a4d273b8b885fc33db075dfc910fa39645fa3789
[ "MIT" ]
null
null
null
Twitter Data Extraction.py
scottblender/twitter-covid-19-vaccine-analysis
a4d273b8b885fc33db075dfc910fa39645fa3789
[ "MIT" ]
null
null
null
import snscrape.modules.twitter as sntwitter import pandas as pd # Creating list to append tweet data to tweets_list2 = [] # Using TwitterSearchScraper to scrape data and append tweets to list for i,tweet in enumerate(sntwitter.TwitterSearchScraper('covid vaccine until:2021-05-24').get_items()): if i>100000: break tweets_list2.append([tweet.date, tweet.id, tweet.content, tweet.user.username, tweet.user.verified, tweet.user.followersCount, tweet.user.friendsCount, tweet.likeCount, tweet.retweetCount, tweet.quoteCount, tweet.user.created, tweet.user.location, tweet.user.displayname, tweet.lang, tweet.coordinates, tweet.place]) # Creating a dataframe from the tweets list above tweets_df2 = pd.DataFrame(tweets_list2, columns=['Datetime', 'Tweet Id', 'Text', 'Username', 'Verified', 'Followers Count', 'Friends Count', 'Like Count', 'Retweet Count', 'Quote Count', 'Created','Location','Display Name', 'Language', 'Coordinates', 'Place']) tweets_df2.to_csv('First Extract.csv') # Creating list to append tweet data to tweets_list2 = [] # Using TwitterSearchScraper to scrape data and append tweets to list for i,tweet in enumerate(sntwitter.TwitterSearchScraper('covid vaccine until:2021-05-13').get_items()): if i>100000: break tweets_list2.append([tweet.date, tweet.id, tweet.content, tweet.user.username, tweet.user.verified, tweet.user.followersCount, tweet.user.friendsCount, tweet.likeCount, tweet.retweetCount, tweet.quoteCount, tweet.user.created, tweet.user.location, tweet.user.displayname, tweet.lang, tweet.coordinates, tweet.place]) # Creating a dataframe from the tweets list above tweets_df3 = pd.DataFrame(tweets_list2, columns=['Datetime', 'Tweet Id', 'Text', 'Username', 'Verified', 'Followers Count', 'Friends Count', 'Like Count', 'Retweet Count', 'Quote Count', 'Created','Location','Display Name', 'Language', 'Coordinates', 'Place']) tweets_df3.to_csv('Second Extract.csv')
69.535714
320
0.757062
0
0
0
0
0
0
0
0
779
0.400103
fb62f3f5a5769a80a5d13a6f4d1ccd457d5f9675
138
py
Python
hugs/__init__.py
Bogdanp/hugs
e7f16f15369fbe3da11d89882d76c7ef432f3709
[ "BSD-3-Clause" ]
22
2017-07-20T18:02:27.000Z
2021-06-10T13:06:22.000Z
hugs/__init__.py
Bogdanp/hugs
e7f16f15369fbe3da11d89882d76c7ef432f3709
[ "BSD-3-Clause" ]
null
null
null
hugs/__init__.py
Bogdanp/hugs
e7f16f15369fbe3da11d89882d76c7ef432f3709
[ "BSD-3-Clause" ]
2
2019-12-11T20:44:08.000Z
2021-02-02T04:37:04.000Z
from .repository import Repository from .manager import Manager __all__ = ["Manager", "Repository", "__version__"] __version__ = "0.2.0"
23
50
0.746377
0
0
0
0
0
0
0
0
41
0.297101
fb62f6a8cb550f9476912173180ad44a3f1fe7d0
44,876
py
Python
Source/Git/wb_git_project.py
barry-scott/git-workbench
9f352875ab097ce5e45f85bf255b1fa02a196807
[ "Apache-2.0" ]
24
2017-03-23T06:24:02.000Z
2022-03-19T13:35:44.000Z
Source/Git/wb_git_project.py
barry-scott/scm-workbench
5607f12056f8245e0178816603e4922b7f5805ac
[ "Apache-2.0" ]
14
2016-06-21T10:06:27.000Z
2020-07-25T11:56:23.000Z
Source/Git/wb_git_project.py
barry-scott/git-workbench
9f352875ab097ce5e45f85bf255b1fa02a196807
[ "Apache-2.0" ]
11
2016-12-25T12:36:16.000Z
2022-03-23T14:25:25.000Z
''' ==================================================================== Copyright (c) 2016-2017 Barry A Scott. All rights reserved. This software is licensed as described in the file LICENSE.txt, which you should have received as part of this distribution. ==================================================================== wb_git_project.py ''' import sys import os import pathlib import wb_annotate_node import wb_platform_specific import wb_git_callback_server import git import git.exc import git.index GitCommandError = git.exc.GitCommandError def gitInit( app, progress_handler, wc_path ): progress = Progress( progress_handler ) try: git.repo.Repo.init( str(wc_path) ) return True except GitCommandError: for line in progress.allErrorLines(): app.log.error( line ) return False __callback_server = None git_extra_environ = {} def initCallbackServer( app ): #pylint disable=global-statement global __callback_server assert __callback_server is None, 'Cannot call initCallbackServer twice' __callback_server = wb_git_callback_server.WbGitCallbackServer( app ) __callback_server.start() if sys.platform == 'win32': callback = wb_platform_specific.getAppDir() / 'scm-workbench-git-callback.exe' if not callback.exists(): app.log.info( 'Cannot find %s' % (callback,) ) # assume in development environment callback = wb_platform_specific.getAppDir() / 'scm_workbench_git_callback.cmd' else: callback = wb_platform_specific.getAppDir() / 'scm-workbench-git-callback' if not callback.exists(): app.log.error( 'Cannot find %s' % (callback,) ) return if 'GIT_ASKPASS' in os.environ: app.log.info( "Using user's GIT_ASKPASS program %s" % (os.environ[ 'GIT_ASKPASS' ],) ) else: git_extra_environ['GIT_ASKPASS'] = '"%s" askpass' % (str(callback),) app.log.info( "Using Workbench's GIT_ASKPASS program" ) git_extra_environ['GIT_SEQUENCE_EDITOR'] = '"%s" sequence-editor' % (str(callback),) git_extra_environ['GIT_EDITOR'] = '"%s" editor' % (str(callback),) app.log.info( "Setup Workbench's GIT callback program" ) def setCallbackCredentialsHandler( handler ): __callback_server.setCallbackCredentialsHandler( handler ) def setCallbackRebaseSequenceHandler( handler ): __callback_server.setCallbackRebaseSequenceHandler( handler ) def setCallbackRebaseEditorHandler( handler ): __callback_server.setCallbackRebaseEditorHandler( handler ) def setCallbackReply( code, value ): __callback_server.setReply( code, value ) class GitProject: def __init__( self, app, prefs_project, ui_components ): self.app = app self.ui_components = ui_components self.debugLog = self.app.debug_options.debugLogGitProject self.debugLogTree = self.app.debug_options.debugLogGitUpdateTree self.prefs_project = prefs_project # repo will be setup on demand - this speeds up start up especically on macOS self.__repo = None self.index = None self.tree = GitProjectTreeNode( self, prefs_project.name, pathlib.Path( '.' ) ) self.flat_tree = GitProjectTreeNode( self, prefs_project.name, pathlib.Path( '.' ) ) self.all_file_state = {} self.__stale_index = False self.__num_staged_files = 0 self.__num_modified_files = 0 def getMasterBranchName( self ): if self.prefs_project.master_branch_name is None: return 'master' else: return self.prefs_project.master_branch_name def setMasterBranchName( self, master_branch_name ): if master_branch_name == 'master': self.prefs_project.master_branch_name = None else: self.prefs_project.master_branch_name = master_branch_name def cloneFrom( self, url, progress_handler ): assert self.__repo is None progress = Progress( progress_handler ) try: self.__repo = git.repo.Repo.clone_from( url, str(self.prefs_project.path), progress ) return True except GitCommandError: for line in progress.allErrorLines(): self.app.log.error( line ) return False def repo( self ): # setup repo on demand if self.__repo is None: self.__repo = git.Repo( str( self.prefs_project.path ) ) self.__repo.git.update_environment( **git_extra_environ ) return self.__repo def scmType( self ): return 'git' # return a new GitProject that can be used in another thread def newInstance( self ): return GitProject( self.app, self.prefs_project, self.ui_components ) def isNotEqual( self, other ): return self.prefs_project.name != other.prefs_project.name def __repr__( self ): return '<GitProject: %s (id:%d>' % (self.prefs_project.name, id(self)) def pathForGit( self, path ): assert isinstance( path, pathlib.Path ) # return abs path return str( self.projectPath() / path ) def pathForWb( self, str_path ): assert type( str_path ) == str wb_path = pathlib.Path( str_path ) if wb_path.is_absolute(): wb_path = wb_path.relative_to( self.projectPath() ) return wb_path def hasCommits( self ): try: self.repo().head.ref.commit return True except ValueError: return False def projectName( self ): return self.prefs_project.name def projectPath( self ): return pathlib.Path( self.prefs_project.path ) def configReader( self, level ): return self.repo().config_reader( level ) def configWriter( self, level ): return self.repo().config_writer( level ) def addRemote( self, name, url ): self.repo().create_remote( name, url ) def getHeadCommit( self ): return self.repo().head.ref.commit def getShortCommitId( self, commit_id, size=7 ): return self.repo().git.rev_parse( commit_id, short=size ) def switchToBranch( self, branch ): self.cmdCheckout( branch ) def getBranchName( self ): return self.repo().head.ref.name def getAllBranchNames( self ): all_branch_names = sorted( [b.name for b in self.repo().branches] ) # detect the case of a new, empty git repo if len(all_branch_names) == 0: all_branch_names = [self.getBranchName()] return all_branch_names def getTrackingBranchName( self ): tracking_branch = self.repo().head.ref.tracking_branch() return tracking_branch.name if tracking_branch is not None else None def getTrackingBranchCommit( self ): tracking_branch = self.repo().head.ref.tracking_branch() if tracking_branch is None: return None return tracking_branch.commit def getRemote( self, name ): try: return self.repo().remote( name ) except ValueError: return None def cmdAddRemote( self, name, url ): git.Remote.create( self.repo(), name, url ) def cmdDeleteRemote( self, name ): git.Remote.remove( self.repo(), name ) def cmdUpdateRemote( self, name, url ): remote = self.getRemote( name ) remote.set_url( url, remote.url ) def numStagedFiles( self ): return self.__num_staged_files def numModifiedFiles( self ): return self.__num_modified_files def saveChanges( self ): self.debugLog( 'saveChanges() __stale_index %r' % (self.__stale_index,) ) if self.__stale_index: self.updateState( 'QQQ' ) self.__stale_index = False def updateState( self, tree_leaf ): self.debugLog( 'updateState( %r ) repo=%s' % (tree_leaf, self.projectPath()) ) # rebuild the tree self.tree = GitProjectTreeNode( self, self.prefs_project.name, pathlib.Path( '.' ) ) self.flat_tree = GitProjectTreeNode( self, self.prefs_project.name, pathlib.Path( '.' ) ) if not self.projectPath().exists(): self.app.log.error( T_('Project %(name)s folder %(folder)s has been deleted') % {'name': self.projectName() ,'folder': self.projectPath()} ) self.all_file_state = {} else: self.__calculateStatus() for path in self.all_file_state: self.__updateTree( path ) self.dumpTree() def __calculateStatus( self ): self.all_file_state = {} repo_root = self.projectPath() git_dir = repo_root / '.git' all_folders = set( [repo_root] ) while len(all_folders) > 0: folder = all_folders.pop() for filename in folder.iterdir(): abs_path = folder / filename repo_relative = abs_path.relative_to( repo_root ) if abs_path.is_dir(): if abs_path != git_dir: all_folders.add( abs_path ) self.all_file_state[ repo_relative ] = WbGitFileState( self, repo_relative ) self.all_file_state[ repo_relative ].setIsDir() else: self.all_file_state[ repo_relative ] = WbGitFileState( self, repo_relative ) # ---------------------------------------- # can only get info from the index if there is at least 1 commit self.index = git.index.IndexFile( self.repo() ) if self.hasCommits(): head_vs_index = self.index.diff( self.repo().head.commit ) index_vs_working = self.index.diff( None ) else: head_vs_index = [] index_vs_working = [] # each ref to self.repo().untracked_files creates a new object # cache the value once/update untracked_files = self.repo().untracked_files for entry in self.index.entries.values(): filepath = pathlib.Path( entry.path ) if filepath not in self.all_file_state: # filepath has been deleted self.all_file_state[ filepath ] = WbGitFileState( self, filepath ) self.all_file_state[ filepath ].setIndexEntry( entry ) self.__num_staged_files = 0 for diff in head_vs_index: self.__num_staged_files += 1 filepath = pathlib.Path( diff.b_path ) if filepath not in self.all_file_state: self.all_file_state[ filepath ] = WbGitFileState( self, filepath ) if diff.renamed: self.all_file_state[ pathlib.Path( diff.rename_from ) ]._addStaged( diff ) else: self.all_file_state[ filepath ]._addStaged( diff ) self.__num_modified_files = 0 for diff in index_vs_working: self.__num_modified_files += 1 filepath = pathlib.Path( diff.a_path ) if filepath not in self.all_file_state: self.all_file_state[ filepath ] = WbGitFileState( self, filepath ) self.all_file_state[ filepath ]._addUnstaged( diff ) for path in untracked_files: filepath = pathlib.Path( path ) if filepath not in self.all_file_state: self.all_file_state[ filepath ] = WbGitFileState( self, filepath ) self.all_file_state[ filepath ]._setUntracked() def __updateTree( self, path ): assert isinstance( path, pathlib.Path ), 'path %r' % (path,) self.debugLogTree( '__updateTree path %r' % (path,) ) node = self.tree self.debugLogTree( '__updateTree path.parts %r' % (path.parts,) ) for index, name in enumerate( path.parts[0:-1] ): self.debugLogTree( '__updateTree name %r at node %r' % (name,node) ) if not node.hasFolder( name ): node.addFolder( name, GitProjectTreeNode( self, name, pathlib.Path( *path.parts[0:index+1] ) ) ) node = node.getFolder( name ) self.debugLogTree( '__updateTree addFile %r to node %r' % (path, node) ) node.addFileByName( path ) self.flat_tree.addFileByPath( path ) def dumpTree( self ): if self.debugLogTree.isEnabled(): self.tree._dumpTree( 0 ) #------------------------------------------------------------ # # functions to retrive interesting info from the repo # #------------------------------------------------------------ def hasFileState( self, filename ): assert isinstance( filename, pathlib.Path ) return filename in self.all_file_state def getFileState( self, filename ): assert isinstance( filename, pathlib.Path ) # status only has enties for none CURRENT status files return self.all_file_state[ filename ] def getReportStagedFiles( self ): all_staged_files = [] for filename, file_state in self.all_file_state.items(): if file_state.isStagedNew(): all_staged_files.append( (T_('New file'), filename, None) ) elif file_state.isStagedModified(): all_staged_files.append( (T_('Modified'), filename, None) ) elif file_state.isStagedDeleted(): all_staged_files.append( (T_('Deleted'), filename, None) ) elif file_state.isStagedRenamed(): all_staged_files.append( (T_('Renamed'), file_state.renamedFromFilename(), file_state.renamedToFilename()) ) return all_staged_files def getReportUntrackedFiles( self ): all_untracked_files = [] for filename, file_state in self.all_file_state.items(): if file_state.isUncontrolled(): all_untracked_files.append( (T_('New file'), filename) ) elif file_state.isUnstagedModified(): all_untracked_files.append( (T_('Modified'), filename) ) elif file_state.isUnstagedDeleted(): all_untracked_files.append( (T_('Deleted'), filename) ) return all_untracked_files def canPush( self ): if not self.hasCommits(): return False remote_commit = self.getTrackingBranchCommit() if remote_commit is None: return False head_commit = self.repo().head.ref.commit return head_commit != remote_commit def canPull( self ): return self.repo().head.ref.tracking_branch() is not None def getUnpushedCommits( self ): tracking_commit = self.getTrackingBranchCommit() if tracking_commit is None: return [] last_pushed_commit_id = tracking_commit.hexsha all_unpushed_commits = [] for commit in self.repo().iter_commits( None ): commit_id = commit.hexsha if last_pushed_commit_id == commit_id: break all_unpushed_commits.append( commit ) return all_unpushed_commits #------------------------------------------------------------ # # all functions starting with "cmd" are like the git <cmd> in behavior # #------------------------------------------------------------ def cmdCheckout( self, branch_name ): try: branch = self.repo().branches[ branch_name ] branch.checkout() except GitCommandError as e: self.app.log.error( str(e) ) def cmdStage( self, filename ): self.debugLog( 'cmdStage( %r )' % (filename,) ) self.repo().git.add( filename ) self.__stale_index = True def cmdUnstage( self, rev, filename ): self.debugLog( 'cmdUnstage( %r )' % (filename,) ) self.repo().git.reset( 'HEAD', filename, mixed=True ) self.__stale_index = True def cmdRevert( self, rev, file_state ): self.debugLog( 'cmdRevert( %r, %s:%r )' % (rev, file_state.relativePath(), file_state) ) try: if file_state.isStagedRenamed(): self.debugLog( 'cmdRevert renamedFromFilename %r renamedToFilename %r' % (file_state.renamedFromFilename(), file_state.renamedToFilename()) ) self.repo().git.reset( rev, file_state.renamedFromFilename(), mixed=True ) self.repo().git.reset( rev, file_state.renamedToFilename(), mixed=True ) self.repo().git.checkout( rev, file_state.renamedFromFilename() ) self.cmdDelete( file_state.renamedToFilename() ) elif( file_state.isStagedNew() or file_state.isStagedModified() ): self.repo().git.reset( rev, file_state.relativePath(), mixed=True ) else: self.repo().git.checkout( rev, file_state.relativePath() ) except GitCommandError as e: if e.stderr is not None: # stderr unfortuently is prefixed with "\n stderr: '" self.app.log.error( e.stderr.split( "'", 1 )[1][:-1] ) else: self.app.log.error( str(e) ) self.__stale_index = True def cmdDelete( self, filename ): (self.prefs_project.path / filename).unlink() self.__stale_index = True def cmdRename( self, filename, new_filename ): filestate = self.getFileState( filename ) if filestate.isControlled(): self.repo().git.mv( filename, new_filename ) else: abs_path = filestate.absolutePath() new_abs_path = self.prefs_project.path / new_filename try: abs_path.rename( new_abs_path ) except IOError as e: self.app.log.error( 'Renamed failed - %s' % (e,) ) self.__stale_index = True def cmdRebase( self, commit_id, all_rebase_commands, new_commit_message=None ): all_text = [] for command in all_rebase_commands: all_text.append( ' '.join( command ) ) all_text.append( '' ) rebase_commands = '\n'.join( all_text ) def rebaseHandler( filename ): if self.debugLog.isEnabled(): with open( filename, 'r', encoding='utf-8' ) as f: for line in f: self.debugLog( 'Old Rebase: %r' % (line,) ) with open( filename, 'w', encoding='utf-8' ) as f: if self.debugLog.isEnabled(): for line in all_text: self.debugLog( 'New Rebase: %r' %(line,) ) f.write( rebase_commands ) return 0, '' def newCommitMessage( filename ): if self.debugLog.isEnabled(): with open( filename, 'r', encoding='utf-8' ) as f: for line in f: self.debugLog( 'Old Commit Message: %r' % (line,) ) with open( filename, 'w', encoding='utf-8' ) as f: if self.debugLog.isEnabled(): for line in new_commit_message.split('\n'): self.debugLog( 'New Commit Message: %r' % (line,) ) f.write( new_commit_message ) return 0, '' def unexpectedCallback( filename ): return 1, 'Unexpected callback with %r' % (filename,) setCallbackRebaseSequenceHandler( rebaseHandler ) if new_commit_message is None: setCallbackRebaseEditorHandler( unexpectedCallback ) else: setCallbackRebaseEditorHandler( newCommitMessage ) rc, stdout, stderr = self.repo().git.execute( [git.Git.GIT_PYTHON_GIT_EXECUTABLE, 'rebase', '--interactive', '%s^1' % (commit_id,)], with_extended_output=True, with_exceptions=False, universal_newlines=False, # GitPython bug will TB if true stdout_as_string=True ) self.debugLog( '%s rebase --interactive %s -> rc %d' % (git.Git.GIT_PYTHON_GIT_EXECUTABLE, commit_id, rc) ) if rc != 0: # assume need to abort rebase on failure self.repo().git.execute( [git.Git.GIT_PYTHON_GIT_EXECUTABLE, 'rebase', '--abort'], with_extended_output=True, with_exceptions=False, universal_newlines=False, # GitPython bug will TB if true stdout_as_string=True ) setCallbackRebaseSequenceHandler( None ) setCallbackRebaseEditorHandler( None ) return rc, stdout.replace( '\r', '' ).split('\n'), stderr.replace( '\r', '' ).split('\n') def cmdCreateTag( self, tag_name, ref ): self.repo().create_tag( tag_name, ref=ref ) def cmdDiffFolder( self, folder, head, staged ): if head and staged: return self.repo().git.diff( 'HEAD', self.pathForGit( folder ), staged=staged ) elif staged: return self.repo().git.diff( self.pathForGit( folder ), staged=True ) elif head: return self.repo().git.diff( 'HEAD', self.pathForGit( folder ), staged=False ) else: return self.repo().git.diff( self.pathForGit( folder ), staged=False ) def cmdDiffWorkingVsCommit( self, filename, commit ): return self.repo().git.diff( commit, self.pathForGit( filename ), staged=False ) def cmdDiffStagedVSCommit( self, filename, commit ): return self.repo().git.diff( commit, self.pathForGit( filename ), staged=True ) def cmdDiffCommitVsCommit( self, filename, old_commit, new_commit ): return self.repo().git.diff( old_commit, new_commit, '--', self.pathForGit( filename ) ) def cmdShow( self, what ): return self.repo().git.show( what ) def getTextLinesForCommit( self, filepath, commit_id ): assert isinstance( filepath, pathlib.Path ), 'expecting pathlib.Path got %r' % (filepath,) # git show wants a posix path, it does not work with '\' path seperators git_filepath = pathlib.PurePosixPath( filepath ) text = self.cmdShow( '%s:%s' % (commit_id, git_filepath) ) all_lines = text.split('\n') if all_lines[-1] == '': return all_lines[:-1] else: return all_lines def cmdCommit( self, message ): self.__stale_index = True return self.index.commit( message ) def cmdCommitLogAfterCommitId( self, commit_id ): if not self.hasCommits(): return [] all_commit_logs = [] for commit in self.repo().iter_commits( None ): if commit.hexsha == commit_id: break all_commit_logs.append( GitCommitLogNode( commit ) ) return all_commit_logs def cmdCommitLogForRepository( self, progress_callback, limit=None, since=None, until=None, rev=None, paths='' ): if not self.hasCommits(): return [] all_commit_logs = [] kwds = {} if limit is not None: kwds['max_count'] = limit if since is not None: kwds['since'] = since if since is not None: kwds['until'] = until for commit in self.repo().iter_commits( rev, paths, **kwds ): all_commit_logs.append( GitCommitLogNode( commit ) ) total = len(all_commit_logs) progress_callback( 0, total ) self.__addCommitChangeInformation( progress_callback, all_commit_logs ) progress_callback( total, total ) return all_commit_logs def cmdCommitLogForFile( self, progress_callback, filename, limit=None, since=None, until=None, rev=None ): return self.cmdCommitLogForRepository( progress_callback, paths=filename, limit=limit, since=since, until=until, rev=rev ) def cmdTagsForRepository( self ): tag_name_by_id = {} for tag in self.repo().tags: try: tag_name_by_id[ tag.commit.hexsha ] = tag.name except ValueError: # cannot get the tag - may be a deteched ref pass return tag_name_by_id def doesTagExist( self, tag_name ): return tag_name in self.repo().tags def __addCommitChangeInformation( self, progress_callback, all_commit_logs ): # now calculate what was added, deleted and modified in each commit total = len(all_commit_logs) for offset in range( total ): progress_callback( offset, total ) all_files = all_commit_logs[ offset ].commitStats().files new_tree = all_commit_logs[ offset ].commitTree() old_tree = all_commit_logs[ offset ].commitPreviousTree() all_new = {} self.__treeToDict( all_files, new_tree, all_new ) new_set = set(all_new) if old_tree is None: all_commit_logs[ offset ]._addChanges( new_set, set(), [], set() ) else: all_old = {} self.__treeToDict( all_files, old_tree, all_old ) old_set = set(all_old) all_added = new_set - old_set all_deleted = old_set - new_set all_renamed = [] # look for renames if len(all_added) > 0 and len(all_deleted) > 0: all_old_id_to_name = {} for name in all_deleted: all_old_id_to_name[ all_old[ name ] ] = name for name in list(all_added): id_ = all_new[ name ] if id_ in all_old_id_to_name: old_name = all_old_id_to_name[ id_ ] # converted svn repos can have trees that cannot # be used to figure out the rename # for example when the checkin deletes a folder # which cannot be expressed in git trees if( old_name in all_added and old_name in all_deleted ): all_added.remove( name ) all_deleted.remove( old_name ) all_renamed.append( (name, old_name) ) all_modified = set() for key in all_new: if( key in all_old and all_new[ key ] != all_old[ key ] ): all_modified.add( key ) all_commit_logs[ offset ]._addChanges( all_added, all_deleted, all_renamed, all_modified ) def __treeToDict( self, all_files, tree, all_entries ): for file in all_files: all_parts = file.split('/') node = tree # walk down the tree (aka folders) until we have # the tree that has the blob (aka file) in it # tree.path is the full name of the folder for index in range(1, len(all_parts)): prefix = '/'.join( all_parts[:index] ) for child in node.trees: if child.path == prefix: node = child break # blob.path is the full path to the file for blob in node: if blob.path == file: all_entries[ blob.path ] = blob.hexsha break def cmdAnnotationForFile( self, filename, rev=None ): if rev is None: rev = 'HEAD' all_annotate_nodes = [] line_num = 0 for commit, all_lines in self.repo().blame( rev, self.pathForGit( filename ) ): commit_id = commit.hexsha for line_text in all_lines: line_num += 1 all_annotate_nodes.append( wb_annotate_node.AnnotateNode( line_num, line_text, commit_id ) ) return all_annotate_nodes def cmdCommitLogForAnnotateFile( self, filename, all_commit_ids ): all_commit_logs = {} for commit_id in all_commit_ids: commit = self.repo().commit( commit_id ) all_commit_logs[ commit_id ] = GitCommitLogNode( commit ) return all_commit_logs def cmdPull( self, progress_callback, info_callback ): tracking_branch = self.repo().head.ref.tracking_branch() remote = self.repo().remote( tracking_branch.remote_name ) progress = Progress( progress_callback ) try: for info in remote.pull( progress=progress ): info_callback( info ) for line in progress.allDroppedLines(): self.app.log.info( line ) except GitCommandError: for line in progress.allErrorLines(): self.app.log.error( line ) raise def cmdPush( self, progress_callback, info_callback ): progress = Progress( progress_callback ) tracking_branch = self.repo().head.ref.tracking_branch() remote = self.repo().remote( tracking_branch.remote_name ) try: for info in remote.push( progress=progress ): info_callback( info ) for line in progress.allDroppedLines(): self.app.log.info( line ) except GitCommandError: for line in progress.allErrorLines(): self.app.log.error( line ) raise def cmdStashSave( self, message=None ): cmd = [git.Git.GIT_PYTHON_GIT_EXECUTABLE, 'stash', 'push'] if message is not None: cmd.append( '--message' ) cmd.append( message ) rc, stdout, stderr = self.repo().git.execute( cmd, with_extended_output=True, with_exceptions=False, universal_newlines=False, # GitPython bug will TB if true stdout_as_string=True ) self.debugLog( '%s stash save -> rc %d' % (git.Git.GIT_PYTHON_GIT_EXECUTABLE, rc) ) if rc != 0: for line in stderr.split( '\n' ): line = line.strip() self.app.log.error( line ) return rc == 0 def cmdStashPop( self, stash_id ): cmd = [git.Git.GIT_PYTHON_GIT_EXECUTABLE, 'stash', 'pop', '--quiet', stash_id] self.debugLog( 'cmdStashPop: %r' % (cmd,) ) rc, stdout, stderr = self.repo().git.execute( cmd, with_extended_output=True, with_exceptions=False, universal_newlines=False, # GitPython bug will TB if true stdout_as_string=True ) self.debugLog( '%s stash apply %s -> rc %d' % (git.Git.GIT_PYTHON_GIT_EXECUTABLE, stash_id, rc) ) for line in stdout.split( '\n' ): line = line.strip() self.app.log.info( line ) if rc != 0: for line in stderr.split( '\n' ): line = line.strip() self.app.log.error( line ) return rc == 0 def cmdStashList( self ): rc, stdout, stderr = self.repo().git.execute( [git.Git.GIT_PYTHON_GIT_EXECUTABLE, 'stash', 'list'], with_extended_output=True, with_exceptions=False, universal_newlines=False, # GitPython bug will TB if true stdout_as_string=True ) self.debugLog( '%s stash list -> rc %d' % (git.Git.GIT_PYTHON_GIT_EXECUTABLE, rc) ) if rc != 0: for line in stderr.split( '\n' ): line = line.strip() self.app.log.error( line ) return [] all_stashes = [] for line in stdout.split( '\n' ): line = line.strip() if line == '': continue stash_id, stash_branch, stash_message = line.split( ': ', 2 ) for branch_prefix in ('WIP on ', 'On '): if stash_branch.startswith( branch_prefix ): stash_branch = stash_branch[len(branch_prefix):] break all_stashes.append( WbGitStashInfo( stash_id, stash_branch, stash_message ) ) return all_stashes class WbGitStashInfo: def __init__( self, stash_id, stash_branch, stash_message ): self.stash_id = stash_id self.stash_branch = stash_branch self.stash_message = stash_message def __repr__( self ): return ('<WbGitStashInfo: id=%s branch=%s msg=%s>' % (self.stash_id, self.stash_branch, self.stash_message)) class WbGitFileState: def __init__( self, project, filepath ): assert isinstance( project, GitProject ),'expecting GitProject got %r' % (project,) assert isinstance( filepath, pathlib.Path ), 'expecting pathlib.Path got %r' % (filepath,) self.__project = project self.__filepath = filepath self.__is_dir = False self.__index_entry = None self.__unstaged_diff = None self.__staged_diff = None self.__untracked = False # from the above calculate the following self.__state_calculated = False self.__staged_is_modified = False self.__unstaged_is_modified = False self.__staged_abbrev = None self.__unstaged_abbrev = None self.__head_blob = None self.__staged_blob = None def __repr__( self ): return ('<WbGitFileState: calc %r, S=%r, U=%r' % (self.__state_calculated, self.__staged_abbrev, self.__unstaged_abbrev)) def relativePath( self ): return self.__filepath def absolutePath( self ): return self.__project.projectPath() / self.__filepath def renamedToFilename( self ): assert self.isStagedRenamed() return pathlib.Path( self.__staged_diff.rename_from ) def renamedFromFilename( self ): assert self.isStagedRenamed() return pathlib.Path( self.__staged_diff.rename_to ) def setIsDir( self ): self.__is_dir = True def isDir( self ): return self.__is_dir def setIndexEntry( self, index_entry ): self.__index_entry = index_entry def _addStaged( self, diff ): self.__state_calculated = False self.__staged_diff = diff def _addUnstaged( self, diff ): self.__state_calculated = False self.__unstaged_diff = diff def _setUntracked( self ): self.__untracked = True # from the provided info work out # interesting properies def __calculateState( self ): if self.__state_calculated: return if self.__staged_diff is None: self.__staged_abbrev = '' else: if self.__staged_diff.renamed: self.__staged_abbrev = 'R' elif self.__staged_diff.deleted_file: self.__staged_abbrev = 'A' elif self.__staged_diff.new_file: self.__staged_abbrev = 'D' else: self.__staged_abbrev = 'M' self.__staged_is_modified = True self.__head_blob = self.__staged_diff.b_blob self.__staged_blob = self.__staged_diff.a_blob if self.__unstaged_diff is None: self.__unstaged_abbrev = '' else: if self.__unstaged_diff.deleted_file: self.__unstaged_abbrev = 'D' elif self.__unstaged_diff.new_file: self.__unstaged_abbrev = 'A' else: self.__unstaged_abbrev = 'M' self.__unstaged_is_modified = True if self.__head_blob is None: self.__head_blob = self.__unstaged_diff.a_blob self.__state_calculated = True def getStagedAbbreviatedStatus( self ): self.__calculateState() return self.__staged_abbrev def getUnstagedAbbreviatedStatus( self ): self.__calculateState() return self.__unstaged_abbrev #------------------------------------------------------------ def isControlled( self ): if self.__staged_diff is not None: return True return self.__index_entry is not None def isUncontrolled( self ): return self.__untracked def isIgnored( self ): if self.__staged_diff is not None: return False if self.__index_entry is not None: return False # untracked files have had ignored files striped out if self.__untracked: return False return True # ------------------------------ def isStagedNew( self ): self.__calculateState() return self.__staged_abbrev == 'A' def isStagedModified( self ): self.__calculateState() return self.__staged_abbrev == 'M' def isStagedDeleted( self ): self.__calculateState() return self.__staged_abbrev == 'D' def isStagedRenamed( self ): self.__calculateState() return self.__staged_abbrev == 'R' def isUnstagedModified( self ): self.__calculateState() return self.__unstaged_abbrev == 'M' def isUnstagedDeleted( self ): self.__calculateState() return self.__unstaged_abbrev == 'D' # ------------------------------------------------------------ def canCommit( self ): return self.__staged_abbrev != '' def canStage( self ): return self.__unstaged_abbrev != '' or self.__untracked def canUnstage( self ): return self.__staged_abbrev != '' def canRevert( self ): return (self.isUnstagedDeleted() or self.isUnstagedModified() or self.isStagedNew() or self.isStagedRenamed() or self.isStagedDeleted() or self.isStagedModified()) # ------------------------------------------------------------ def canDiffHeadVsStaged( self ): self.__calculateState() return self.__staged_is_modified def canDiffStagedVsWorking( self ): self.__calculateState() return self.__unstaged_is_modified and self.__staged_is_modified def canDiffHeadVsWorking( self ): self.__calculateState() return self.__unstaged_is_modified def getTextLinesWorking( self ): path = self.absolutePath() with path.open( encoding='utf-8' ) as f: all_lines = f.read().split( '\n' ) if all_lines[-1] == '': return all_lines[:-1] else: return all_lines def getTextLinesHead( self ): return self.__getTextLinesFromBlob( self.getHeadBlob() ) def getTextLinesStaged( self ): return self.__getTextLinesFromBlob( self.getStagedBlob() ) def __getTextLinesFromBlob( self, blob ): data = blob.data_stream.read() text = data.decode( 'utf-8' ) all_lines = text.split('\n') if all_lines[-1] == '': return all_lines[:-1] else: return all_lines def getTextLinesForCommit( self, commit_id ): git_filepath = pathlib.PurePosixPath( self.__filepath ) text = self.__project.cmdShow( '%s:%s' % (commit_id, git_filepath) ) all_lines = text.split('\n') if all_lines[-1] == '': return all_lines[:-1] else: return all_lines def getHeadBlob( self ): return self.__head_blob def getStagedBlob( self ): return self.__staged_blob class GitCommitLogNode: def __init__( self, commit ): self.__commit = commit self.__all_changes = [] def _addChanges( self, all_added, all_deleted, all_renamed, all_modified ): for name in all_added: self.__all_changes.append( ('A', name, '' ) ) for name in all_deleted: self.__all_changes.append( ('D', name, '' ) ) for name, old_name in all_renamed: self.__all_changes.append( ('R', name, old_name ) ) for name in all_modified: self.__all_changes.append( ('M', name, '' ) ) def commitStats( self ): return self.__commit.stats def commitTree( self ): return self.__commit.tree def commitPreviousTree( self ): if len(self.__commit.parents) == 0: return None previous_commit = self.__commit.parents[0] return previous_commit.tree def commitId( self ): return self.__commit.hexsha def commitIdString( self ): return self.__commit.hexsha def commitAuthor( self ): return self.__commit.author.name def commitAuthorEmail( self ): return self.__commit.author.email def commitDate( self ): return self.__commit.committed_datetime def commitMessage( self ): return self.__commit.message def commitMessageHeadline( self ): return self.__commit.message.split('\n')[0] def commitFileChanges( self ): return self.__all_changes class GitProjectTreeNode: def __init__( self, project, name, path ): self.project = project self.name = name self.is_by_path = False self.__path = path self.__all_folders = {} self.__all_files = {} def __repr__( self ): return '<GitProjectTreeNode: project %r, path %s>' % (self.project, self.__path) def updateTreeNode( self ): pass def isByPath( self ): return self.is_by_path def addFileByName( self, path ): assert path.name != '' self.__all_files[ path.name ] = path def addFileByPath( self, path ): assert path.name != '' self.is_by_path = True path = path self.__all_files[ path ] = path def getAllFileNames( self ): return self.__all_files.keys() def addFolder( self, name, node ): assert type(name) == str and name != '', 'name %r, node %r' % (name, node) assert isinstance( node, GitProjectTreeNode ) self.__all_folders[ name ] = node def getFolder( self, name ): assert type(name) == str return self.__all_folders[ name ] def getAllFolderNodes( self ): return self.__all_folders.values() def getAllFolderNames( self ): return self.__all_folders.keys() def hasFolder( self, name ): assert type(name) == str return name in self.__all_folders def _dumpTree( self, indent ): self.project.debugLog( 'dump: %*s%r' % (indent, '', self) ) for file in sorted( self.__all_files ): self.project.debugLog( 'dump %*s file: %r' % (indent, '', file) ) for folder in sorted( self.__all_folders ): self.__all_folders[ folder ]._dumpTree( indent+4 ) def isNotEqual( self, other ): return (self.relativePath() != other.relativePath() or self.project.isNotEqual( other.project )) def __lt__( self, other ): return self.name < other.name def relativePath( self ): return self.__path def absolutePath( self ): return self.project.projectPath() / self.__path def getStatusEntry( self, name ): path = self.__all_files[ name ] if path in self.project.all_file_state: entry = self.project.all_file_state[ path ] else: entry = WbGitFileState( self.project, path ) return entry class Progress(git.RemoteProgress): def __init__( self, progress_call_back ): self.progress_call_back = progress_call_back super().__init__() self.__all_dropped_lines = [] all_update_stages = { git.RemoteProgress.COUNTING: 'Counting', git.RemoteProgress.COMPRESSING: 'Compressing', git.RemoteProgress.WRITING: 'Writing', git.RemoteProgress.RECEIVING: 'Receiving', git.RemoteProgress.RESOLVING: 'Resolving', git.RemoteProgress.FINDING_SOURCES: 'Finding Sources', git.RemoteProgress.CHECKING_OUT: 'Checking Out', } def update( self, op_code, cur_count, max_count=None, message='' ): stage_name = self.all_update_stages.get( op_code&git.RemoteProgress.OP_MASK, 'Unknown' ) is_begin = op_code&git.RemoteProgress.BEGIN != 0 is_end = op_code&git.RemoteProgress.END != 0 self.progress_call_back( is_begin, is_end, stage_name, cur_count, max_count, message ) def line_dropped( self, line ): if line.startswith( 'POST git-upload-pack' ): return self.__all_dropped_lines.append( line ) def allErrorLines( self ): return self.error_lines + self.__all_dropped_lines def allDroppedLines( self ): return self.__all_dropped_lines
33.741353
130
0.586661
42,194
0.940235
0
0
0
0
0
0
4,444
0.099028
fb64c2c423679d3b9a605145467c5cb4184c77b4
443
py
Python
stackflowCrawl/spiders/stackoverflow/constants/consult.py
matheuslins/stackflowCrawl
b6adacc29bfc2e6210a24968f691a54854952b2e
[ "MIT" ]
null
null
null
stackflowCrawl/spiders/stackoverflow/constants/consult.py
matheuslins/stackflowCrawl
b6adacc29bfc2e6210a24968f691a54854952b2e
[ "MIT" ]
2
2021-03-31T19:47:59.000Z
2021-12-13T20:41:06.000Z
stackflowCrawl/spiders/stackoverflow/constants/consult.py
matheuslins/stackflowCrawl
b6adacc29bfc2e6210a24968f691a54854952b2e
[ "MIT" ]
null
null
null
XPAHS_CONSULT = { 'jobs_urls': '//div[contains(@class, "listResults")]//div[contains(@data-jobid, "")]//h2//a/@href', 'results': '//span[@class="description fc-light fs-body1"]//text()', 'pagination_indicator': '//a[contains(@class, "s-pagination--item")][last()]//span[contains(text(), "next")]', 'pagination_url': '//a[contains(@class, "s-pagination--item")][last()]/@href', } START_URL = 'https://stackoverflow.com/jobs/'
44.3
114
0.629797
0
0
0
0
0
0
0
0
376
0.848758
fb6699684cb8142168142ff3619e29cd5107fcf6
3,676
py
Python
mainSample.py
snipeso/sample_psychopy
332cd34cf2c584f9ba01302050964649dd2e5367
[ "Linux-OpenIB" ]
null
null
null
mainSample.py
snipeso/sample_psychopy
332cd34cf2c584f9ba01302050964649dd2e5367
[ "Linux-OpenIB" ]
3
2021-06-02T00:56:48.000Z
2021-09-08T01:35:53.000Z
mainSample.py
snipeso/sample_psychopy
332cd34cf2c584f9ba01302050964649dd2e5367
[ "Linux-OpenIB" ]
null
null
null
import logging import os import random import time import datetime import sys import math from screen import Screen from scorer import Scorer from trigger import Trigger from psychopy import core, event, sound from psychopy.hardware import keyboard from pupil_labs import PupilCore from datalog import Datalog from config.configSample import CONF ######################################################################### ###################################### # Initialize screen, logger and inputs logging.basicConfig( level=CONF["loggingLevel"], format='%(asctime)s-%(levelname)s-%(message)s', ) # This is a log for debugging the script, and prints messages to the terminal # needs to be first, so that if it doesn't succeed, it doesn't freeze everything eyetracker = PupilCore(ip=CONF["pupillometry"] ["ip"], port=CONF["pupillometry"]["port"], shouldRecord=CONF["recordEyetracking"]) trigger = Trigger(CONF["trigger"]["serial_device"], CONF["sendTriggers"], CONF["trigger"]["labels"]) screen = Screen(CONF) datalog = Datalog(OUTPUT_FOLDER=os.path.join( 'output', CONF["participant"] + "_" + CONF["session"], datetime.datetime.now().strftime("%Y-%m-%d")), CONF=CONF) # This is for saving data kb = keyboard.Keyboard() mainClock = core.MonotonicClock() # starts clock for timestamping events alarm = sound.Sound(os.path.join('sounds', CONF["instructions"]["alarm"]), stereo=True) questionnaireReminder = sound.Sound(os.path.join( 'sounds', CONF["instructions"]["questionnaireReminder"]), stereo=True) scorer = Scorer() logging.info('Initialization completed') ######################################################################### def quitExperimentIf(shouldQuit): "Quit experiment if condition is met" if shouldQuit: trigger.send("Quit") scorer.getScore() logging.info('quit experiment') eyetracker.stop_recording() trigger.reset() sys.exit(2) def onFlip(stimName, logName): "send trigger on flip, set keyboard clock, and save timepoint" trigger.send(stimName) kb.clock.reset() # this starts the keyboard clock as soon as stimulus appears datalog[logName] = mainClock.getTime() ############## # Introduction ############## # Display overview of session screen.show_overview() core.wait(CONF["timing"]["overview"]) # Optionally, display instructions if CONF["showInstructions"]: screen.show_instructions() key = event.waitKeys() quitExperimentIf(key[0] == 'q') eyetracker.start_recording(os.path.join( CONF["participant"], CONF["session"], CONF["task"]["name"])) # Blank screen for initial rest screen.show_blank() logging.info('Starting blank period') trigger.send("StartBlank") core.wait(CONF["timing"]["rest"]) trigger.send("EndBlank") # Cue start of the experiment screen.show_cue("START") trigger.send("Start") core.wait(CONF["timing"]["cue"]) ################# # Main experiment ################# # customize datalog["trialID"] = trigger.sendTriggerId() eyetracker.send_trigger("Stim", {"id": 1, "condition": "sample"}) datalog["pupilSize"] = eyetracker.getPupildiameter() # save data to file datalog.flush() ########### # Concluion ########### # End main experiment screen.show_cue("DONE!") trigger.send("End") core.wait(CONF["timing"]["cue"]) # Blank screen for final rest screen.show_blank() logging.info('Starting blank period') trigger.send("StartBlank") core.wait(CONF["timing"]["rest"]) trigger.send("EndBlank") logging.info('Finished') scorer.getScore() trigger.reset() eyetracker.stop_recording() questionnaireReminder.play() core.wait(2)
24.344371
105
0.658052
0
0
0
0
0
0
0
0
1,563
0.42519
fb67712141abf405660b20968e896ccaf386184f
3,696
py
Python
src/commercetools/services/inventory.py
labd/commercetools-python-sdk
d8ec285f08d56ede2e4cad45c74833f5b609ab5c
[ "MIT" ]
15
2018-11-02T14:35:52.000Z
2022-03-16T07:51:44.000Z
src/commercetools/services/inventory.py
lime-green/commercetools-python-sdk
63b77f6e5abe43e2b3ebbf3cdbbe00c7cf80dca6
[ "MIT" ]
84
2018-11-02T12:50:32.000Z
2022-03-22T01:25:54.000Z
src/commercetools/services/inventory.py
lime-green/commercetools-python-sdk
63b77f6e5abe43e2b3ebbf3cdbbe00c7cf80dca6
[ "MIT" ]
13
2019-01-03T09:16:50.000Z
2022-02-15T18:37:19.000Z
# DO NOT EDIT! This file is automatically generated import typing from commercetools.helpers import RemoveEmptyValuesMixin from commercetools.platform.models.inventory import ( InventoryEntry, InventoryEntryDraft, InventoryEntryUpdate, InventoryEntryUpdateAction, InventoryPagedQueryResponse, ) from commercetools.typing import OptionalListStr from . import abstract, traits class _InventoryEntryQuerySchema( traits.ExpandableSchema, traits.SortableSchema, traits.PagingSchema, traits.QuerySchema, ): pass class _InventoryEntryUpdateSchema(traits.ExpandableSchema, traits.VersionedSchema): pass class _InventoryEntryDeleteSchema(traits.VersionedSchema, traits.ExpandableSchema): pass class InventoryEntryService(abstract.AbstractService): """Inventory allows you to track stock quantities.""" def get_by_id(self, id: str, *, expand: OptionalListStr = None) -> InventoryEntry: params = self._serialize_params({"expand": expand}, traits.ExpandableSchema) return self._client._get( endpoint=f"inventory/{id}", params=params, response_class=InventoryEntry ) def query( self, *, expand: OptionalListStr = None, sort: OptionalListStr = None, limit: int = None, offset: int = None, with_total: bool = None, where: OptionalListStr = None, predicate_var: typing.Dict[str, str] = None, ) -> InventoryPagedQueryResponse: """Inventory allows you to track stock quantities.""" params = self._serialize_params( { "expand": expand, "sort": sort, "limit": limit, "offset": offset, "with_total": with_total, "where": where, "predicate_var": predicate_var, }, _InventoryEntryQuerySchema, ) return self._client._get( endpoint="inventory", params=params, response_class=InventoryPagedQueryResponse, ) def create( self, draft: InventoryEntryDraft, *, expand: OptionalListStr = None ) -> InventoryEntry: """Inventory allows you to track stock quantities.""" params = self._serialize_params({"expand": expand}, traits.ExpandableSchema) return self._client._post( endpoint="inventory", params=params, data_object=draft, response_class=InventoryEntry, ) def update_by_id( self, id: str, version: int, actions: typing.List[InventoryEntryUpdateAction], *, expand: OptionalListStr = None, force_update: bool = False, ) -> InventoryEntry: params = self._serialize_params({"expand": expand}, _InventoryEntryUpdateSchema) update_action = InventoryEntryUpdate(version=version, actions=actions) return self._client._post( endpoint=f"inventory/{id}", params=params, data_object=update_action, response_class=InventoryEntry, force_update=force_update, ) def delete_by_id( self, id: str, version: int, *, expand: OptionalListStr = None, force_delete: bool = False, ) -> InventoryEntry: params = self._serialize_params( {"version": version, "expand": expand}, _InventoryEntryDeleteSchema ) return self._client._delete( endpoint=f"inventory/{id}", params=params, response_class=InventoryEntry, force_delete=force_delete, )
30.545455
88
0.623106
3,287
0.88934
0
0
0
0
0
0
387
0.104708
fb685e91f9d3ddb25b69ea95c37b26cc21ab500f
8,008
py
Python
qmla/remote_model_learning.py
flynnbr11/QMD
ac8cfe1603658ee9b916452f29b99460ee5e3d44
[ "MIT" ]
9
2021-01-08T12:49:01.000Z
2021-12-29T06:59:32.000Z
qmla/remote_model_learning.py
flynnbr11/QMD
ac8cfe1603658ee9b916452f29b99460ee5e3d44
[ "MIT" ]
2
2021-02-22T20:42:25.000Z
2021-02-22T22:22:59.000Z
qmla/remote_model_learning.py
flynnbr11/QMD
ac8cfe1603658ee9b916452f29b99460ee5e3d44
[ "MIT" ]
9
2021-02-15T14:18:48.000Z
2021-12-17T04:02:07.000Z
from __future__ import print_function # so print doesn't show brackets import copy import numpy as np import time as time import matplotlib.pyplot as plt import pickle import redis import qmla.model_for_learning import qmla.redis_settings import qmla.logging pickle.HIGHEST_PROTOCOL = 4 plt.switch_backend("agg") __all__ = ["remote_learn_model_parameters"] def remote_learn_model_parameters( name, model_id, branch_id, exploration_rule, qmla_core_info_dict=None, remote=False, host_name="localhost", port_number=6379, qid=0, log_file="rq_output.log", ): """ Standalone function to perform Quantum Hamiltonian Learning on individual models. Used in conjunction with redis databases so this calculation can be performed without any knowledge of the QMLA instance. Given model ids and names are used to instantiate the ModelInstanceForLearning class, which is then used for learning the models parameters. QMLA info is unpickled from a redis databse, containing true operator, params etc. Once parameters are learned, we pickle the results to dictionaries held on a redis database which can be accessed by other actors. :param str name: model name string :param int model_id: unique model id :param int branch_id: QMLA branch where the model was generated :param str exploration_rule: string corresponding to a unique exploration strategy, used by get_exploration_class to generate a ExplorationStrategy (or subclass) instance. :param dict qmla_core_info_dict: crucial data for QMLA, such as number of experiments/particles etc. Default None: core info is stored on the redis database so can be retrieved there on a server; if running locally, can be passed to save pickling. :param bool remote: whether QMLA is running remotely via RQ workers. :param str host_name: name of host server on which redis database exists. :param int port_number: this QMLA instance's unique port number, on which redis database exists. :param int qid: QMLA id, unique to a single instance within a run. Used to identify the redis database corresponding to this instance. :param str log_file: Path of the log file. """ def log_print(to_print_list): qmla.logging.print_to_log( to_print_list=to_print_list, log_file=log_file, log_identifier="RemoteLearnModel {}".format(model_id), ) log_print(["Starting QHL for Model {} on branch {}".format(model_id, branch_id)]) time_start = time.time() num_redis_retries = 5 # Access databases redis_databases = qmla.redis_settings.get_redis_databases_by_qmla_id( host_name, port_number, qid ) qmla_core_info_database = redis_databases["qmla_core_info_database"] learned_models_info_db = redis_databases["learned_models_info_db"] learned_models_ids = redis_databases["learned_models_ids"] active_branches_learning_models = redis_databases["active_branches_learning_models"] any_job_failed_db = redis_databases["any_job_failed"] if qmla_core_info_dict is not None: # for local runs, qmla_core_info_dict passed, with probe_dict included # in it. probe_dict = qmla_core_info_dict["probe_dict"] else: qmla_core_info_dict = pickle.loads(qmla_core_info_database["qmla_settings"]) probe_dict = pickle.loads(qmla_core_info_database["probes_system"]) true_model_terms_matrices = qmla_core_info_dict["true_oplist"] qhl_plots = qmla_core_info_dict["qhl_plots"] plots_directory = qmla_core_info_dict["plots_directory"] long_id = qmla_core_info_dict["long_id"] # Generate model instance qml_instance = qmla.model_for_learning.ModelInstanceForLearning( model_id=model_id, model_name=name, qid=qid, log_file=log_file, exploration_rule=exploration_rule, host_name=host_name, port_number=port_number, ) try: # Learn parameters update_timer_start = time.time() qml_instance.update_model() log_print( ["Time for update alone: {}".format(time.time() - update_timer_start)] ) # Evaluate learned parameterisation # qml_instance.compute_likelihood_after_parameter_learning() except NameError: log_print( [ "Model learning failed. QHL failed for model id {}. Setting job failure model_building_utilities.".format( model_id ) ] ) any_job_failed_db.set("Status", 1) raise except BaseException: log_print( [ "Model learning failed. QHL failed for model id {}. Setting job failure model_building_utilities.".format( model_id ) ] ) any_job_failed_db.set("Status", 1) raise if qhl_plots: log_print(["Drawing plots for QHL"]) try: if len(true_model_terms_matrices) == 1: # TODO buggy qml_instance.plot_distribution_progression( save_to_file=str( plots_directory + "qhl_distribution_progression_" + str(long_id) + ".png" ) ) qml_instance.plot_distribution_progression( renormalise=False, save_to_file=str( plots_directory + "qhl_distribution_progression_uniform_" + str(long_id) + ".png" ), ) except BaseException: pass # Throw away model instance; only need to store results. updated_model_info = copy.deepcopy(qml_instance.learned_info_dict()) compressed_info = pickle.dumps(updated_model_info, protocol=4) # Store the (compressed) result set on the redis database. for k in range(num_redis_retries): try: learned_models_info_db.set(str(model_id), compressed_info) log_print( [ "learned_models_info_db added to db for model {} after {} attempts".format( str(model_id), k ) ] ) break except Exception as e: if k == num_redis_retries - 1: log_print( ["Model learning failed at the storage stage. Error: {}".format(e)] ) any_job_failed_db.set("Status", 1) pass # Update databases to record that this model has finished. for k in range(num_redis_retries): try: active_branches_learning_models.incr(int(branch_id), 1) learned_models_ids.set(str(model_id), 1) log_print( [ "Updated model/branch learned on redis db {}/{}".format( model_id, branch_id ) ] ) break except Exception as e: if k == num_redis_retries - 1: log_print(["Model learning failed to update branch info. Error: ", e]) any_job_failed_db.set("Status", 1) if remote: del updated_model_info del compressed_info del qml_instance log_print( [ "Learned model; remote time:", str(np.round((time.time() - time_start), 2)), ] ) return None else: return updated_model_info
35.591111
123
0.604146
0
0
0
0
0
0
0
0
3,127
0.390485
fb69066846fdd4ee95649e7481b0ff3dce03d604
9,390
py
Python
pylinex/quantity/CompiledQuantity.py
CU-NESS/pylinex
b6f342595b6a154e129eb303782e5268088f34d5
[ "Apache-2.0" ]
null
null
null
pylinex/quantity/CompiledQuantity.py
CU-NESS/pylinex
b6f342595b6a154e129eb303782e5268088f34d5
[ "Apache-2.0" ]
null
null
null
pylinex/quantity/CompiledQuantity.py
CU-NESS/pylinex
b6f342595b6a154e129eb303782e5268088f34d5
[ "Apache-2.0" ]
null
null
null
""" File: pylinex/quantity/CompiledQuantity.py Author: Keith Tauscher Date: 3 Sep 2017 Description: File containing a class representing a list of Quantities to be evaluated with the same (or overlapping) arguments. When it is called, each underlying Quantity is called. """ from ..util import int_types, sequence_types, Savable, Loadable from .Quantity import Quantity from .AttributeQuantity import AttributeQuantity from .ConstantQuantity import ConstantQuantity from .FunctionQuantity import FunctionQuantity try: # this runs with no issues in python 2 but raises error in python 3 basestring except: # this try/except allows for python 2/3 compatible string type checking basestring = str class CompiledQuantity(Quantity, Savable, Loadable): """ Class representing a list of Quantities to be evaluated with the same (or overlapping) arguments. When it is called, each underlying Quantity is called. """ def __init__(self, name, *quantities): """ Initialized a new CompiledQuantity made of the given quantities. name: string identifier of this Quantity *quantities: unpacked list of quantities to call when this object is called """ Quantity.__init__(self, name) self.quantities = quantities @property def quantities(self): """ Property storing the individual quantities underlying this CompiledQuantity. """ if not hasattr(self, '_quantities'): raise AttributeError("quantities was referenced before it was " +\ "set.") return self._quantities @quantities.setter def quantities(self, value): """ Setter for the quantities property. value: must be a sequence of Quantity objects """ if type(value) in sequence_types: if all([isinstance(quantity, Quantity) for quantity in value]): self._quantities = value else: raise TypeError("Not all elements of the sequence to " +\ "which quantities was set were Quantity " +\ "objects.") else: raise TypeError("quantities was set to a non-sequence.") @property def num_quantities(self): """ Property storing the number of quantities compiled in this object. """ if not hasattr(self, '_num_quantities'): self._num_quantities = len(self.quantities) return self._num_quantities @property def names(self): """ Property storing the list of names of the quantities underlying this object. """ if not hasattr(self, '_names'): self._names = [quantity.name for quantity in self.quantities] return self._names @property def index_dict(self): """ Property storing a dictionary that connects the names of quantities to their indices in the list of Quantity objects underlying this object. """ if not hasattr(self, '_index_dict'): self._index_dict = {} for (iquantity, quantity) in enumerate(self.quantities): self._index_dict[quantity.name] = iquantity return self._index_dict @property def can_index_by_string(self): """ Property storing a Boolean describing whether this Quantity can be indexed by string. This essentially checks whether the names of the quantities underlying this object are unique. """ if not hasattr(self, '_can_index_by_string'): self._can_index_by_string =\ (self.num_quantities == len(set(self.names))) return self._can_index_by_string def __getitem__(self, index): """ Gets the quantity associated with the index. index: if index is a string, it is assumed to be the name of one of the Quantity objects underlying this object. (index can only be a string if the can_index_by_string property is True.) if index is an int, it is taken to be the index of one of the Quantity objects underlying this one. returns: the Quantity object described by the given index """ if type(index) in int_types: return self.quantities[index] elif isinstance(index, basestring): if self.can_index_by_string: return self.quantities[self.index_dict[index]] else: raise TypeError("CompiledQuantity can only be indexed by " +\ "string if the names of the quantities " +\ "underlying it are unique.") else: raise IndexError("CompiledQuantity can only be indexed by an " +\ "integer index or a string quantity name.") def __add__(self, other): """ Appends other to this CompiledQuantity. other: CompiledQuantity (or some other Quantity) returns: if other is another CompiledQuantity, names quantity lists of both CompiledQuantity objects are combined otherwise, other must be a Quantity object. It will be added to the quantity list of this CompiledQuantity (whose name won't change) """ if isinstance(other, CompiledQuantity): new_name = '{0!s}+{1!s}'.format(self.name, other.name) new_quantities = self.quantities + other.quantities elif isinstance(other, Quantity): new_name = self.name new_quantities = [quantity for quantity in self.quantities] new_quantities.append(other) else: raise TypeError("Only Quantity objects can be added to " +\ "compiled quantities.") return CompiledQuantity(new_name, *new_quantities) def __call__(self, *args, **kwargs): """ Finds the values of all of the Quantity objects underlying this obejct. args: list of arguments to pass on to the constituent Quantity objects kwargs: list of keyword arguments to pass on to the constituent Quantity objects returns: list containing the values of all of the Quantity objects underlying this one """ return [quantity(*args, **kwargs) for quantity in self.quantities] def __contains__(self, key): """ Checks if a quantity with the given name exists in this CompiledQuantity. key: string name of Quantity to check for returns: True if there exists at least one Quantity named key """ return any([(quantity.name == key) for quantity in self.quantities]) def fill_hdf5_group(self, group, exclude=[]): """ Fills given hdf5 file group with data about this CompiledQuantity. group: hdf5 file group to fill with data about this CompiledQuantity """ iquantity = 0 group.attrs['name'] = self.name group.attrs['class'] = 'CompiledQuantity' for quantity in self.quantities: excluded = (quantity.name in exclude) savable = isinstance(quantity, Savable) if (not excluded) and savable: subgroup = group.create_group('quantity_{}'.format(iquantity)) if isinstance(quantity, Savable): quantity.fill_hdf5_group(subgroup) else: raise TypeError("This CompiledQuantity cannot be saved " +\ "because it contains Quantity objects which cannot " +\ "be saved.") iquantity += 1 @staticmethod def load_from_hdf5_group(group): """ Loads a CompiledQuantity from the given hdf5 group. group: hdf5 file group from which to load a CompiledQuantity returns: CompiledQuantity loaded from given hdf5 file group """ try: assert group.attrs['class'] == 'CompiledQuantity' except: raise TypeError("This hdf5 file group does not seem to contain " +\ "a CompiledQuantity.") name = group.attrs['name'] iquantity = 0 quantities = [] while 'quantity_{}'.format(iquantity) in group: subgroup = group['quantity_{}'.format(iquantity)] try: class_name = subgroup.attrs['class'] cls = eval(class_name) except: raise TypeError("One of the quantities in this " +\ "CompiledQuantity could not be loaded; its class was " +\ "not recognized.") quantities.append(cls.load_from_hdf5_group(subgroup)) iquantity += 1 return CompiledQuantity(name, *quantities)
39.620253
79
0.583174
8,650
0.921193
0
0
3,638
0.387433
0
0
4,831
0.514483
fb6a3d12a6011f130cb0dca995f5e63b890b615a
184
py
Python
Desafios/desafio48.py
ArthurBrito1/MY-SCRIPTS-PYTHON
86967fe293715a705ac50e908d3369fa3257b5a2
[ "MIT" ]
1
2019-11-21T02:08:58.000Z
2019-11-21T02:08:58.000Z
Desafios/desafio48.py
ArthurBrito1/MY-SCRIPTS-PYTHON
86967fe293715a705ac50e908d3369fa3257b5a2
[ "MIT" ]
null
null
null
Desafios/desafio48.py
ArthurBrito1/MY-SCRIPTS-PYTHON
86967fe293715a705ac50e908d3369fa3257b5a2
[ "MIT" ]
null
null
null
s = 0 cont = 0 for c in range(1, 501, 2): if c % 3 == 0: s = s + c cont = cont + 1 print('A soma de todos os {} valores solicitados é {}'.format(cont, s))
20.444444
72
0.483696
0
0
0
0
0
0
0
0
49
0.264865
fb6d1002b4582dd7b3bb100c3a8d3d43f66ca13b
8,588
py
Python
tests/test_k8s_cronjob.py
riconnon/kubernetes-py
42a4537876985ed105ee44b6529763ba5d57c179
[ "Apache-2.0" ]
null
null
null
tests/test_k8s_cronjob.py
riconnon/kubernetes-py
42a4537876985ed105ee44b6529763ba5d57c179
[ "Apache-2.0" ]
null
null
null
tests/test_k8s_cronjob.py
riconnon/kubernetes-py
42a4537876985ed105ee44b6529763ba5d57c179
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python # -*- coding: utf-8 -*- # # This file is subject to the terms and conditions defined in # file 'LICENSE.md', which is part of this source code package. # import time import uuid from kubernetes.K8sCronJob import K8sCronJob from kubernetes.K8sPod import K8sPod from kubernetes.models.v2alpha1.CronJob import CronJob from kubernetes.K8sExceptions import CronJobAlreadyRunningException from tests import _constants from tests import _utils from tests.BaseTest import BaseTest class K8sCronJobTests(BaseTest): def setUp(self): _utils.cleanup_cronjobs() _utils.cleanup_jobs() _utils.cleanup_pods() def tearDown(self): _utils.cleanup_cronjobs() _utils.cleanup_jobs() _utils.cleanup_pods() # --------------------------------------------------------------------------------- init def test_init_no_args(self): try: K8sCronJob() self.fail("Should not fail.") except SyntaxError: pass except IOError: pass except Exception as err: self.fail("Unhandled exception: [ {0} ]".format(err)) def test_init_with_invalid_config(self): config = object() with self.assertRaises(SyntaxError): K8sCronJob(config=config) def test_init_with_invalid_name(self): name = object() with self.assertRaises(SyntaxError): _utils.create_cronjob(name=name) def test_init_with_name(self): name = "yomama" rc = _utils.create_cronjob(name=name) self.assertIsNotNone(rc) self.assertIsInstance(rc, K8sCronJob) self.assertEqual(rc.name, name) # --------------------------------------------------------------------------------- containers def test_containers(self): c_name = "redis" c_image = "redis:latest" c_image_2 = "redis:3.2.3" container = _utils.create_container(name=c_name, image=c_image) name = "job-{}".format(uuid.uuid4()) cj = _utils.create_cronjob(name=name) cj.add_container(container) self.assertEqual(1, len(cj.containers)) self.assertIn(c_name, cj.container_image) self.assertEqual(c_image, cj.container_image[c_name]) container = _utils.create_container(name=c_name, image=c_image_2) cj.add_container(container) self.assertEqual(1, len(cj.containers)) self.assertEqual(c_image_2, cj.container_image[c_name]) # --------------------------------------------------------------------------------- imagePullSecrets def test_add_image_pull_secrets(self): cfg = _utils.create_config() cfg.pull_secret = [ {'name': 'secret-name'}, {'name': 'other-secret-name'}, {'name': 'secret-name'} # duplicate ] cj = _utils.create_cronjob(config=cfg, name="yo") self.assertEqual(2, len(cj.image_pull_secrets)) # duplicate not present # --------------------------------------------------------------------------------- api - create def test_api_create(self): name = "job-{}".format(uuid.uuid4()) job = CronJob(_constants.scheduledjob()) k8s_cronjob = _utils.create_cronjob(name=name) k8s_cronjob.model = job if _utils.is_reachable(k8s_cronjob.config): k8s_cronjob.create() self.assertIsInstance(k8s_cronjob, K8sCronJob) def test_api_create_long_running_with_concurrency(self): name = "job-{}".format(uuid.uuid4()) job = CronJob(_constants.scheduledjob_90()) k8s_cronjob = _utils.create_cronjob(name=name) k8s_cronjob.model = job k8s_cronjob.concurrency_policy = "Allow" if _utils.is_reachable(k8s_cronjob.config): k8s_cronjob.create() self.assertIsInstance(k8s_cronjob, K8sCronJob) self.assertEqual('Allow', k8s_cronjob.concurrency_policy) def test_api_create_long_running_no_concurrency(self): name = "job-{}".format(uuid.uuid4()) job = CronJob(_constants.scheduledjob_90()) k8s_cronjob = _utils.create_cronjob(name=name) k8s_cronjob.model = job k8s_cronjob.concurrency_policy = "Forbid" k8s_cronjob.starting_deadline_seconds = 10 if _utils.is_reachable(k8s_cronjob.config): k8s_cronjob.create() self.assertIsInstance(k8s_cronjob, K8sCronJob) self.assertEqual('Forbid', k8s_cronjob.concurrency_policy) self.assertEqual(10, k8s_cronjob.starting_deadline_seconds) # --------------------------------------------------------------------------------- api - list def test_list(self): name = "job-{}".format(uuid.uuid4()) job = CronJob(_constants.scheduledjob_90()) k8s_cronjob = _utils.create_cronjob(name=name) k8s_cronjob.model = job k8s_cronjob.concurrency_policy = "Forbid" k8s_cronjob.starting_deadline_seconds = 10 if _utils.is_reachable(k8s_cronjob.config): k8s_cronjob.create() crons = k8s_cronjob.list() for c in crons: self.assertIsInstance(c, K8sCronJob) # --------------------------------------------------------------------------------- api - last scheduled time def test_last_schedule_time(self): name = "job-{}".format(uuid.uuid4()) job = CronJob(_constants.scheduledjob_90()) k8s_cronjob = _utils.create_cronjob(name=name) k8s_cronjob.model = job k8s_cronjob.concurrency_policy = "Forbid" k8s_cronjob.starting_deadline_seconds = 10 if _utils.is_reachable(k8s_cronjob.config): k8s_cronjob.create() while not k8s_cronjob.last_schedule_time: k8s_cronjob.get() time.sleep(2) lst = k8s_cronjob.last_schedule_time self.assertIsNotNone(lst) self.assertIsInstance(lst, str) # --------------------------------------------------------------------------------- api - pod def test_pod(self): name = "job-{}".format(uuid.uuid4()) model = CronJob(_constants.scheduledjob_90()) cj = _utils.create_cronjob(name=name) cj.model = model cj.concurrency_policy = "Forbid" cj.starting_deadline_seconds = 10 if _utils.is_reachable(cj.config): cj.create() while not cj.last_schedule_time: cj.get() time.sleep(2) pod = cj.pod self.assertIsInstance(pod, K8sPod) # --------------------------------------------------------------------------------- api - run def test_run_already_running(self): name = "job-{}".format(uuid.uuid4()) model = CronJob(_constants.scheduledjob_90()) cj = _utils.create_cronjob(name=name) cj.model = model cj.concurrency_policy = "Forbid" cj.starting_deadline_seconds = 10 if _utils.is_reachable(cj.config): cj.create() while not cj.last_schedule_time: cj.get() time.sleep(2) with self.assertRaises(CronJobAlreadyRunningException): cj.run() def test_run(self): name = "job-{}".format(uuid.uuid4()) model = CronJob(_constants.scheduledjob_90()) cj = _utils.create_cronjob(name=name) cj.model = model cj.concurrency_policy = "Forbid" cj.starting_deadline_seconds = 10 if _utils.is_reachable(cj.config): cj.create() self.assertFalse(cj.suspend) cj.run() self.assertFalse(cj.suspend) # --------------------------------------------------------------------------------- api - activeDeadlineSeconds def test_active_deadline_seconds(self): ads = 50 cfg = _utils.create_config() cj = CronJob(_constants.cronjob()) k8s = K8sCronJob(config=cfg, name="yo") k8s.model = cj self.assertIsNone(k8s.active_deadline_seconds) k8s.active_deadline_seconds = ads self.assertIsNotNone(k8s.active_deadline_seconds) self.assertEqual(k8s.active_deadline_seconds, ads) def test_observe_active_deadline_seconds(self): cfg = _utils.create_config() cj = CronJob(_constants.cronjob_exit_1()) k8s = K8sCronJob(config=cfg, name="yo") k8s.model = cj if _utils.is_reachable(cfg): k8s.create() self.assertIsInstance(k8s, K8sCronJob)
35.053061
115
0.577317
8,087
0.941663
0
0
0
0
0
0
1,389
0.161737
fb6d4b7447432a3d88c9b0ce1e3fc024eb47008f
9,054
py
Python
code/nn/optimization.py
serced/rcnn
1c5949c7ae5652a342b359e9defa72b2a6a6666b
[ "Apache-2.0" ]
372
2016-01-26T02:41:51.000Z
2022-03-31T02:03:13.000Z
code/nn/optimization.py
serced/rcnn
1c5949c7ae5652a342b359e9defa72b2a6a6666b
[ "Apache-2.0" ]
17
2016-08-23T17:28:02.000Z
2020-05-11T15:54:50.000Z
code/nn/optimization.py
serced/rcnn
1c5949c7ae5652a342b359e9defa72b2a6a6666b
[ "Apache-2.0" ]
143
2016-01-13T05:33:33.000Z
2021-12-10T16:48:42.000Z
''' This file implements various optimization methods, including -- SGD with gradient norm clipping -- AdaGrad -- AdaDelta -- Adam Transparent to switch between CPU / GPU. @author: Tao Lei (taolei@csail.mit.edu) ''' import random from collections import OrderedDict import numpy as np import theano import theano.tensor as T from theano.sandbox.cuda.basic_ops import HostFromGpu from theano.sandbox.cuda.var import CudaNdarraySharedVariable from theano.printing import debugprint from .initialization import default_mrng def create_optimization_updates( cost, params, method="sgd", max_norm=5, updates=None, gradients=None, lr=0.01, eps=None, rho=0.99, gamma=0.999, beta1=0.9, beta2=0.999, momentum=0.0): _momentum = momentum lr = theano.shared(np.float64(lr).astype(theano.config.floatX)) rho = theano.shared(np.float64(rho).astype(theano.config.floatX)) beta1 = theano.shared(np.float64(beta1).astype(theano.config.floatX)) beta2 = theano.shared(np.float64(beta2).astype(theano.config.floatX)) momentum = theano.shared(np.float64(momentum).astype(theano.config.floatX)) gamma = theano.shared(np.float64(gamma).astype(theano.config.floatX)) if eps is None: eps = 1e-8 if method.lower() != "esgd" else 1e-4 eps = np.float64(eps).astype(theano.config.floatX) gparams = T.grad(cost, params) if gradients is None else gradients g_norm = 0 for g in gparams: g_norm = g_norm + g.norm(2)**2 g_norm = T.sqrt(g_norm) # max_norm is useful for sgd if method != "sgd": max_norm = None if max_norm is not None and max_norm is not False: max_norm = theano.shared(np.float64(max_norm).astype(theano.config.floatX)) shrink_factor = T.minimum(max_norm, g_norm + eps) / (g_norm + eps) gparams_clipped = [ ] for g in gparams: g = shrink_factor * g gparams_clipped.append(g) gparams = gparams_clipped if updates is None: updates = OrderedDict() gsums = create_accumulators(params) if method != "sgd" or _momentum > 0.0 else \ [ None for p in params ] xsums = create_accumulators(params) if method != "sgd" and method != "adagrad" else None if method == "sgd": create_sgd_updates(updates, params, gparams, gsums, lr, momentum) elif method == "adagrad": create_adagrad_updates(updates, params, gparams, gsums, lr, eps) elif method == "adadelta": create_adadelta_updates(updates, params, gparams, gsums, xsums, lr, eps, rho) elif method == "adam": create_adam_updates(updates, params, gparams, gsums, xsums, lr, eps, beta1, beta2) elif method == "esgd": create_esgd_updates(updates, params, gparams, gsums, xsums, lr, eps, gamma, momentum) else: raise Exception("Unknown optim method: {}\n".format(method)) if method == "adadelta": lr = rho return updates, lr, g_norm, gsums, xsums, max_norm def is_subtensor_op(p): if hasattr(p, 'owner') and hasattr(p.owner, 'op'): return isinstance(p.owner.op, T.AdvancedSubtensor1) or \ isinstance(p.owner.op, T.Subtensor) return False def get_subtensor_op_inputs(p): origin, indexes = p.owner.inputs if hasattr(origin, 'owner') and hasattr(origin.owner, 'op') and \ isinstance(origin.owner.op, HostFromGpu): origin = origin.owner.inputs[0] assert isinstance(origin, CudaNdarraySharedVariable) return origin, indexes def get_similar_subtensor(matrix, indexes, param_op): ''' So far there is only two possible subtensor operation used. ''' if isinstance(param_op.owner.op, T.AdvancedSubtensor1): return matrix[indexes] else: # indexes is start index in this case return matrix[indexes:] def create_accumulators(params): accums = [ ] for p in params: if is_subtensor_op(p): origin, _ = get_subtensor_op_inputs(p) acc = theano.shared(np.zeros_like(origin.get_value(borrow=True), \ dtype=theano.config.floatX)) else: acc = theano.shared(np.zeros_like(p.get_value(borrow=True), \ dtype=theano.config.floatX)) accums.append(acc) return accums def create_sgd_updates(updates, params, gparams, gsums, lr, momentum): has_momentum = momentum.get_value() > 0.0 for p, g, acc in zip(params, gparams, gsums): if is_subtensor_op(p): origin, indexes = get_subtensor_op_inputs(p) if has_momentum: acc_slices = get_similar_subtensor(acc, indexes, p) new_acc = acc_slices*momentum + g updates[acc] = T.set_subtensor(acc_slices, new_acc) else: new_acc = g updates[origin] = T.inc_subtensor(p, - lr * new_acc) else: if has_momentum: new_acc = acc*momentum + g updates[acc] = new_acc else: new_acc = g updates[p] = p - lr * new_acc def create_adagrad_updates(updates, params, gparams, gsums, lr, eps): for p, g, acc in zip(params, gparams, gsums): if is_subtensor_op(p): origin, indexes = get_subtensor_op_inputs(p) #acc_slices = acc[indexes] acc_slices = get_similar_subtensor(acc, indexes, p) new_acc = acc_slices + g**2 updates[acc] = T.set_subtensor(acc_slices, new_acc) updates[origin] = T.inc_subtensor(p, \ - lr * (g / T.sqrt(new_acc + eps))) else: new_acc = acc + g**2 updates[acc] = new_acc updates[p] = p - lr * (g / T.sqrt(new_acc + eps)) #updates[p] = p - lr * (g / (T.sqrt(new_acc) + eps)) # which one to use? def create_adadelta_updates(updates, params, gparams, gsums, xsums,\ lr, eps, rho): for p, g, gacc, xacc in zip(params, gparams, gsums, xsums): if is_subtensor_op(p): origin, indexes = get_subtensor_op_inputs(p) gacc_slices = gacc[indexes] xacc_slices = xacc[indexes] new_gacc = rho * gacc_slices + (1.0-rho) * g**2 d = -T.sqrt((xacc_slices + eps)/(new_gacc + eps)) * g new_xacc = rho * xacc_slices + (1.0-rho) * d**2 updates[gacc] = T.set_subtensor(gacc_slices, new_gacc) updates[xacc] = T.set_subtensor(xacc_slices, new_xacc) updates[origin] = T.inc_subtensor(p, d) else: new_gacc = rho * gacc + (1.0-rho) * g**2 d = -T.sqrt((xacc + eps)/(new_gacc + eps)) * g new_xacc = rho * xacc + (1.0-rho) * d**2 updates[gacc] = new_gacc updates[xacc] = new_xacc updates[p] = p + d def create_adam_updates(updates, params, gparams, gsums, xsums, \ lr, eps, beta1, beta2): i = theano.shared(np.float64(0.0).astype(theano.config.floatX)) i_t = i + 1.0 omb1_t = 1.0 - beta1**i_t omb2_t = 1.0 - beta2**i_t lr_t = lr * (T.sqrt(omb2_t) / omb1_t) for p, g, m, v in zip(params, gparams, gsums, xsums): if is_subtensor_op(p): origin, indexes = get_subtensor_op_inputs(p) m_sub = m[indexes] v_sub = v[indexes] m_t = beta1*m_sub + (1.0-beta1)*g v_t = beta2*v_sub + (1.0-beta2)*T.sqr(g) g_t = m_t / (T.sqrt(v_t) + eps) updates[m] = T.set_subtensor(m_sub, m_t) updates[v] = T.set_subtensor(v_sub, v_t) updates[origin] = T.inc_subtensor(p, -lr_t*g_t) else: m_t = beta1*m + (1.0-beta1)*g v_t = beta2*v + (1.0-beta2)*T.sqr(g) g_t = m_t / (T.sqrt(v_t) + eps) updates[m] = m_t updates[v] = v_t updates[p] = p - lr_t*g_t updates[i] = i_t def create_esgd_updates(updates, params, gparams, gsums, xsums, lr, eps, gamma, momentum): has_momentum = momentum.get_value() > 0.0 samples = [ default_mrng.normal(size=p.shape, avg=0, std=1, dtype=theano.config.floatX) for p in params ] HVs = T.Lop(gparams, params, samples) i = theano.shared(np.float64(0.0).astype(theano.config.floatX)) i_t = i + 1.0 omg_t = 1.0 - gamma**i_t for p, g, m, D, Hv in zip(params, gparams, gsums, xsums, HVs): if is_subtensor_op(p): raise Exception("ESGD subtensor update not implemented!") else: D_t = D * gamma + T.sqr(Hv) * (1.0-gamma) if has_momentum: m_t = m*momentum + g updates[m] = m_t else: m_t = g g_t = m_t / ( T.sqrt(D_t/omg_t + eps) ) #g_t = m_t / ( T.sqrt(D_t + eps) ) updates[D] = D_t updates[p] = p - lr*g_t updates[i] = i_t
37.882845
93
0.587254
0
0
0
0
0
0
0
0
707
0.078087
fb704422d64cb57af346521f6ec226890742b70a
883
py
Python
projectlaika/looseWindow.py
TheSgtPepper23/LaikaIA
fc73aa17f74462b211c4a4159b663ed7c3cdb1bd
[ "MIT" ]
null
null
null
projectlaika/looseWindow.py
TheSgtPepper23/LaikaIA
fc73aa17f74462b211c4a4159b663ed7c3cdb1bd
[ "MIT" ]
null
null
null
projectlaika/looseWindow.py
TheSgtPepper23/LaikaIA
fc73aa17f74462b211c4a4159b663ed7c3cdb1bd
[ "MIT" ]
null
null
null
import sys from PyQt5.QtWidgets import QMainWindow from PyQt5.QtGui import QPixmap, QIcon from PyQt5 import uic from internationalization import LANGUAGE class Loose(QMainWindow): def __init__(self, lang): QMainWindow.__init__(self) uic.loadUi("windows/Looser.ui", self) self.lang = lang self.reload_text() self.loser = QPixmap("resources/loser.png") self.lose_button.clicked.connect(self.end_game) self.lose_image.setPixmap(self.loser) def reload_text(self): """Change the language of the window according to the chosen previously""" self.language=LANGUAGE.get(self.lang) self.setWindowTitle(self.language["lose_title"]) self.lose_label.setText(self.language["lose_text"]) self.lose_button.setText(self.language["return_to_menu"]) def end_game(self): self.close()
35.32
82
0.698754
728
0.824462
0
0
0
0
0
0
153
0.173273
fb705b9a868266542cc3de66cc5408c3859e9bcd
617
py
Python
messenger/helper/http/post.py
gellowmellow/python-messenger-bot
01aaba569add8a6ed1349fc4774e3c7e64439dc0
[ "MIT" ]
null
null
null
messenger/helper/http/post.py
gellowmellow/python-messenger-bot
01aaba569add8a6ed1349fc4774e3c7e64439dc0
[ "MIT" ]
null
null
null
messenger/helper/http/post.py
gellowmellow/python-messenger-bot
01aaba569add8a6ed1349fc4774e3c7e64439dc0
[ "MIT" ]
null
null
null
import requests class Post: def __init__(self, page_access_token, **kwargs): self.page_access_token = page_access_token return super().__init__(**kwargs) def send(self, url, json): try: request_session = requests.Session() params = {'access_token': self.page_access_token} request = requests.Request('POST', url = url, params = params, json = json) prepare = request.prepare() response = request_session.send(prepare) finally: request_session.close() return response.text
30.85
87
0.593193
599
0.96769
0
0
0
0
0
0
20
0.03231
fb70843b616618f2f4796598ec6f5433ecaca7a0
2,424
py
Python
scripts/Feature_Generation/calculateSREstrengthDifferenceBetweenWTandMUT_perCluster.py
JayKu4418/Computational-Experimental-framework-for-predicting-effects-of-variants-on-alternative-splicing
4cb33b94bb8a864bc63fd5a3c96dae547914b20f
[ "CC0-1.0" ]
null
null
null
scripts/Feature_Generation/calculateSREstrengthDifferenceBetweenWTandMUT_perCluster.py
JayKu4418/Computational-Experimental-framework-for-predicting-effects-of-variants-on-alternative-splicing
4cb33b94bb8a864bc63fd5a3c96dae547914b20f
[ "CC0-1.0" ]
null
null
null
scripts/Feature_Generation/calculateSREstrengthDifferenceBetweenWTandMUT_perCluster.py
JayKu4418/Computational-Experimental-framework-for-predicting-effects-of-variants-on-alternative-splicing
4cb33b94bb8a864bc63fd5a3c96dae547914b20f
[ "CC0-1.0" ]
null
null
null
import argparse import Functions_Features.functionsToDetermineMotifStrength as fdm import pandas as pd parser = argparse.ArgumentParser() parser.add_argument("-w","--tmpfolder",type=str,help="Input the upperlevel folder containing folder to Write to") parser.add_argument("-t","--foldertitle",type=str,help="Input the title of the mutation file") parser.add_argument("-m","--mutationfile",type=str,help="Input a mutation file") parser.add_argument("-q","--quantile",nargs='?',default=0.95,type=float,help="Input a quantile value to set a threshold strength score for each motif cluster, default is 0.95") args = parser.parse_args() TMPfolder=args.tmpfolder folderTitle=args.foldertitle MUTATION_FILE=args.mutationfile QUANTILE=args.quantile dict_NumCluster={"ESE":8,"ESS":7,"ISE":7,"ISS":8} strength_threshold_dict=fdm.createSREclusterThresholdDictionary(TMPfolder,dict_NumCluster,QUANTILE) with open(MUTATION_FILE) as f: #with open("../data/MAPT_MUTs_ToTest.tsv") as f: mutations=[line.strip().split("\t") for line in f] #mutsToIgnore=["Mut3","Mut10","Mut33"] to_write = [] # Go through each mutation for mut in mutations: mutID=mut[0] ESE_motifStrengths = fdm.getSumOfMotifScoreDiffsPerSRECluster(TMPfolder,folderTitle,mutID,"ESE",dict_NumCluster["ESE"],strength_threshold_dict) ESS_motifStrengths = fdm.getSumOfMotifScoreDiffsPerSRECluster(TMPfolder,folderTitle,mutID,"ESS",dict_NumCluster["ESS"],strength_threshold_dict) ISE_motifStrengths = fdm.getSumOfMotifScoreDiffsPerSRECluster(TMPfolder,folderTitle,mutID,"ISE",dict_NumCluster["ISE"],strength_threshold_dict) ISS_motifStrengths = fdm.getSumOfMotifScoreDiffsPerSRECluster(TMPfolder,folderTitle,mutID,"ISS",dict_NumCluster["ISS"],strength_threshold_dict) motifStrengths_forMut = [mutID]+ESE_motifStrengths+ESS_motifStrengths+ISE_motifStrengths+ISS_motifStrengths to_write.append(motifStrengths_forMut) with open(TMPfolder+MUTATION_FILE.split("/")[2].split(".")[0]+"_SREstrengthsDifferences_perCluster.tsv","w") as fw: #with open(TMPfolder+motifType+"_MUTsToTest_ScoreDifferences.tsv","w") as fw: fw.write("MutID") for motifType in ["ESE","ESS","ISE","ISS"]: for cluster in range(1,dict_NumCluster[motifType]+1): fw.write("\t") fw.write(motifType+"_Cluster"+str(cluster)) fw.write("\n") for i in to_write: fw.write("\t".join(i)) fw.write("\n")
47.529412
176
0.757426
0
0
0
0
0
0
0
0
650
0.268152
fb7155177920bff87f0b52005b1ab66f25856784
964
py
Python
asciinema/asciicast.py
alex/asciinema
ff23896174c07719d3b2ace6320a193934a0ac71
[ "MIT" ]
1
2015-11-08T13:00:51.000Z
2015-11-08T13:00:51.000Z
asciinema/asciicast.py
alex/asciinema
ff23896174c07719d3b2ace6320a193934a0ac71
[ "MIT" ]
null
null
null
asciinema/asciicast.py
alex/asciinema
ff23896174c07719d3b2ace6320a193934a0ac71
[ "MIT" ]
null
null
null
import os import subprocess import time class Asciicast(object): def __init__(self, env=os.environ): self.command = None self.title = None self.shell = env.get('SHELL', '/bin/sh') self.term = env.get('TERM') self.username = env.get('USER') @property def meta_data(self): lines = int(get_command_output(['tput', 'lines'])) columns = int(get_command_output(['tput', 'cols'])) return { 'username' : self.username, 'duration' : self.duration, 'title' : self.title, 'command' : self.command, 'shell' : self.shell, 'term' : { 'type' : self.term, 'lines' : lines, 'columns': columns } } def get_command_output(args): process = subprocess.Popen(args, stdout=subprocess.PIPE) return process.communicate()[0].strip()
26.054054
60
0.520747
784
0.813278
0
0
534
0.553942
0
0
124
0.128631
fb71ff02d4840f857aab0f05feb1b65683b1dfad
88
py
Python
software_engineering-project/project/admin.py
mahdiieh/software_engineering_PROJECT
f0c40ccf0452f6da83fbb253050848b49c4f6153
[ "MIT" ]
null
null
null
software_engineering-project/project/admin.py
mahdiieh/software_engineering_PROJECT
f0c40ccf0452f6da83fbb253050848b49c4f6153
[ "MIT" ]
null
null
null
software_engineering-project/project/admin.py
mahdiieh/software_engineering_PROJECT
f0c40ccf0452f6da83fbb253050848b49c4f6153
[ "MIT" ]
null
null
null
from django.contrib import admin from .models import Movie admin.site.register(Movie)
14.666667
32
0.806818
0
0
0
0
0
0
0
0
0
0
fb731e02437da6274e8e54fa035f9eeb59f57f17
17,808
py
Python
datasets/alt/alt.py
NihalHarish/datasets
67574a8d74796bc065a8b9b49ec02f7b1200c172
[ "Apache-2.0" ]
9
2021-04-26T14:43:52.000Z
2021-11-08T09:47:24.000Z
datasets/alt/alt.py
NihalHarish/datasets
67574a8d74796bc065a8b9b49ec02f7b1200c172
[ "Apache-2.0" ]
null
null
null
datasets/alt/alt.py
NihalHarish/datasets
67574a8d74796bc065a8b9b49ec02f7b1200c172
[ "Apache-2.0" ]
1
2021-03-24T18:33:32.000Z
2021-03-24T18:33:32.000Z
#!/usr/bin/env python # -*- coding: utf-8 -*- """Asian Language Treebank (ALT) Project""" from __future__ import absolute_import, division, print_function import os import datasets _CITATION = """\ @inproceedings{riza2016introduction, title={Introduction of the asian language treebank}, author={Riza, Hammam and Purwoadi, Michael and Uliniansyah, Teduh and Ti, Aw Ai and Aljunied, Sharifah Mahani and Mai, Luong Chi and Thang, Vu Tat and Thai, Nguyen Phuong and Chea, Vichet and Sam, Sethserey and others}, booktitle={2016 Conference of The Oriental Chapter of International Committee for Coordination and Standardization of Speech Databases and Assessment Techniques (O-COCOSDA)}, pages={1--6}, year={2016}, organization={IEEE} } """ _HOMEPAGE = "https://www2.nict.go.jp/astrec-att/member/mutiyama/ALT/" _DESCRIPTION = """\ The ALT project aims to advance the state-of-the-art Asian natural language processing (NLP) techniques through the open collaboration for developing and using ALT. It was first conducted by NICT and UCSY as described in Ye Kyaw Thu, Win Pa Pa, Masao Utiyama, Andrew Finch and Eiichiro Sumita (2016). Then, it was developed under ASEAN IVO as described in this Web page. The process of building ALT began with sampling about 20,000 sentences from English Wikinews, and then these sentences were translated into the other languages. ALT now has 13 languages: Bengali, English, Filipino, Hindi, Bahasa Indonesia, Japanese, Khmer, Lao, Malay, Myanmar (Burmese), Thai, Vietnamese, Chinese (Simplified Chinese). """ _URLs = { "alt": "https://www2.nict.go.jp/astrec-att/member/mutiyama/ALT/ALT-Parallel-Corpus-20191206.zip", "alt-en": "https://www2.nict.go.jp/astrec-att/member/mutiyama/ALT/English-ALT-20170107.zip", "alt-jp": "https://www2.nict.go.jp/astrec-att/member/mutiyama/ALT/Japanese-ALT-20170330.zip", "alt-my": "https://www2.nict.go.jp/astrec-att/member/mutiyama/ALT/my-alt-190530.zip", "alt-my-transliteration": "https://www2.nict.go.jp/astrec-att/member/mutiyama/ALT/my-en-transliteration.zip", "alt-my-west-transliteration": "https://www2.nict.go.jp/astrec-att/member/mutiyama/ALT/western-myanmar-transliteration.zip", "alt-km": "https://www2.nict.go.jp/astrec-att/member/mutiyama/ALT/km-nova-181101.zip", } _SPLIT = { "train": "https://www2.nict.go.jp/astrec-att/member/mutiyama/ALT/URL-train.txt", "dev": "https://www2.nict.go.jp/astrec-att/member/mutiyama/ALT/URL-dev.txt", "test": "https://www2.nict.go.jp/astrec-att/member/mutiyama/ALT/URL-test.txt", } _WIKI_URL = "https://www2.nict.go.jp/astrec-att/member/mutiyama/ALT/ALT-Parallel-Corpus-20191206/URL.txt" class AltParallelConfig(datasets.BuilderConfig): """BuilderConfig for ALT.""" def __init__(self, languages, **kwargs): """BuilderConfig for ALT. Args: for the `datasets.features.text.TextEncoder` used for the features feature. languages: languages that will be used for translation. it should be one of the **kwargs: keyword arguments forwarded to super. """ name = "alt-parallel" description = "ALT Parallel Corpus" super(AltParallelConfig, self).__init__( name=name, description=description, version=datasets.Version("1.0.0", ""), **kwargs, ) available_langs = set( ["bg", "en", "en_tok", "fil", "hi", "id", "ja", "khm", "lo", "ms", "my", "th", "vi", "zh"] ) for language in languages: assert language in available_langs self.languages = languages class Alt(datasets.GeneratorBasedBuilder): """Asian Language Treebank (ALT) Project""" BUILDER_CONFIGS = [ AltParallelConfig( languages=["bg", "en", "en_tok", "fil", "hi", "id", "ja", "khm", "lo", "ms", "my", "th", "vi", "zh"] ), datasets.BuilderConfig(name="alt-en", version=datasets.Version("1.0.0"), description="English ALT"), datasets.BuilderConfig(name="alt-jp", version=datasets.Version("1.0.0"), description="Japanese ALT"), datasets.BuilderConfig(name="alt-my", version=datasets.Version("1.0.0"), description="Myanmar ALT"), datasets.BuilderConfig(name="alt-km", version=datasets.Version("1.0.0"), description="Khmer ALT"), datasets.BuilderConfig( name="alt-my-transliteration", version=datasets.Version("1.0.0"), description="Myanmar-English Transliteration Dataset", ), datasets.BuilderConfig( name="alt-my-west-transliteration", version=datasets.Version("1.0.0"), description="Latin-Myanmar Transliteration Dataset", ), ] DEFAULT_CONFIG_NAME = "alt-parallel" def _info(self): if self.config.name.startswith("alt-parallel"): features = datasets.Features( { "SNT.URLID": datasets.Value("string"), "SNT.URLID.SNTID": datasets.Value("string"), "url": datasets.Value("string"), "translation": datasets.features.Translation(languages=self.config.languages), } ) elif self.config.name == "alt-en": features = datasets.Features( { "SNT.URLID": datasets.Value("string"), "SNT.URLID.SNTID": datasets.Value("string"), "url": datasets.Value("string"), "status": datasets.Value("string"), "value": datasets.Value("string"), } ) elif self.config.name == "alt-jp": features = datasets.Features( { "SNT.URLID": datasets.Value("string"), "SNT.URLID.SNTID": datasets.Value("string"), "url": datasets.Value("string"), "status": datasets.Value("string"), "value": datasets.Value("string"), "word_alignment": datasets.Value("string"), "jp_tokenized": datasets.Value("string"), "en_tokenized": datasets.Value("string"), } ) elif self.config.name == "alt-my": features = datasets.Features( { "SNT.URLID": datasets.Value("string"), "SNT.URLID.SNTID": datasets.Value("string"), "url": datasets.Value("string"), "value": datasets.Value("string"), } ) elif self.config.name == "alt-my-transliteration": features = datasets.Features( { "en": datasets.Value("string"), "my": datasets.Sequence(datasets.Value("string")), } ) elif self.config.name == "alt-my-west-transliteration": features = datasets.Features( { "en": datasets.Value("string"), "my": datasets.Sequence(datasets.Value("string")), } ) elif self.config.name == "alt-km": features = datasets.Features( { "SNT.URLID": datasets.Value("string"), "SNT.URLID.SNTID": datasets.Value("string"), "url": datasets.Value("string"), "km_pos_tag": datasets.Value("string"), "km_tokenized": datasets.Value("string"), } ) else: raise return datasets.DatasetInfo( description=_DESCRIPTION, features=features, supervised_keys=None, homepage=_HOMEPAGE, citation=_CITATION, ) def _split_generators(self, dl_manager): if self.config.name.startswith("alt-parallel"): data_path = dl_manager.download_and_extract(_URLs["alt"]) else: data_path = dl_manager.download_and_extract(_URLs[self.config.name]) if self.config.name == "alt-my-transliteration" or self.config.name == "alt-my-west-transliteration": return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={"basepath": data_path, "split": None}, ) ] else: data_split = {} for k in _SPLIT: data_split[k] = dl_manager.download_and_extract(_SPLIT[k]) return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={"basepath": data_path, "split": data_split["train"]}, ), datasets.SplitGenerator( name=datasets.Split.VALIDATION, gen_kwargs={"basepath": data_path, "split": data_split["dev"]}, ), datasets.SplitGenerator( name=datasets.Split.TEST, gen_kwargs={"basepath": data_path, "split": data_split["test"]}, ), ] def _generate_examples(self, basepath, split=None): allow_urls = {} if split is not None: with open(split, encoding="utf-8") as fin: for line in fin: sp = line.strip().split("\t") urlid = sp[0].replace("URL.", "") allow_urls[urlid] = {"SNT.URLID": urlid, "url": sp[1]} data = {} if self.config.name.startswith("alt-parallel"): files = self.config.languages data = {} for lang in files: file_path = os.path.join(basepath, "ALT-Parallel-Corpus-20191206", f"data_{lang}.txt") fin = open(file_path, encoding="utf-8") for line in fin: line = line.strip() sp = line.split("\t") _, urlid, sntid = sp[0].split(".") if urlid not in allow_urls: continue if sntid not in data: data[sntid] = {} data[sntid]["SNT.URLID"] = urlid data[sntid]["SNT.URLID.SNTID"] = sntid data[sntid]["url"] = allow_urls[urlid]["url"] data[sntid]["translation"] = {} # Note that Japanese and Myanmar texts have empty sentence fields in this release. if len(sp) >= 2: data[sntid]["translation"][lang] = sp[1] fin.close() elif self.config.name == "alt-en": data = {} for fname in ["English-ALT-Draft.txt", "English-ALT-Reviewed.txt"]: file_path = os.path.join(basepath, "English-ALT-20170107", fname) fin = open(file_path, encoding="utf-8") for line in fin: line = line.strip() sp = line.split("\t") _, urlid, sntid = sp[0].split(".") if urlid not in allow_urls: continue d = { "SNT.URLID": urlid, "SNT.URLID.SNTID": sntid, "url": allow_urls[urlid]["url"], "status": None, "value": None, } d["value"] = sp[1] if fname == "English-ALT-Draft.txt": d["status"] = "draft" else: d["status"] = "reviewed" data[sntid] = d fin.close() elif self.config.name == "alt-jp": data = {} for fname in ["Japanese-ALT-Draft.txt", "Japanese-ALT-Reviewed.txt"]: file_path = os.path.join(basepath, "Japanese-ALT-20170330", fname) fin = open(file_path, encoding="utf-8") for line in fin: line = line.strip() sp = line.split("\t") _, urlid, sntid = sp[0].split(".") if urlid not in allow_urls: continue d = { "SNT.URLID": urlid, "SNT.URLID.SNTID": sntid, "url": allow_urls[urlid]["url"], "value": None, "status": None, "word_alignment": None, "en_tokenized": None, "jp_tokenized": None, } d["value"] = sp[1] if fname == "Japanese-ALT-Draft.txt": d["status"] = "draft" else: d["status"] = "reviewed" data[sntid] = d fin.close() keys = { "word_alignment": "word-alignment/data_ja.en-ja", "en_tokenized": "word-alignment/data_ja.en-tok", "jp_tokenized": "word-alignment/data_ja.ja-tok", } for k in keys: file_path = os.path.join(basepath, "Japanese-ALT-20170330", keys[k]) fin = open(file_path, encoding="utf-8") for line in fin: line = line.strip() sp = line.split("\t") # Note that Japanese and Myanmar texts have empty sentence fields in this release. if len(sp) < 2: continue _, urlid, sntid = sp[0].split(".") if urlid not in allow_urls: continue if sntid in data: data[sntid][k] = sp[1] fin.close() elif self.config.name == "alt-my": data = {} for fname in ["data"]: file_path = os.path.join(basepath, "my-alt-190530", fname) fin = open(file_path, encoding="utf-8") for line in fin: line = line.strip() sp = line.split("\t") _, urlid, sntid = sp[0].split(".") if urlid not in allow_urls: continue data[sntid] = { "SNT.URLID": urlid, "SNT.URLID.SNTID": sntid, "url": allow_urls[urlid]["url"], "value": sp[1], } fin.close() elif self.config.name == "alt-km": data = {} for fname in ["data_km.km-tag.nova", "data_km.km-tok.nova"]: file_path = os.path.join(basepath, "km-nova-181101", fname) fin = open(file_path, encoding="utf-8") for line in fin: line = line.strip() sp = line.split("\t") _, urlid, sntid = sp[0].split(".") if urlid not in allow_urls: continue k = "km_pos_tag" if fname == "data_km.km-tag.nova" else "km_tokenized" if sntid in data: data[sntid][k] = sp[1] else: data[sntid] = { "SNT.URLID": urlid, "SNT.URLID.SNTID": sntid, "url": allow_urls[urlid]["url"], "km_pos_tag": None, "km_tokenized": None, } data[sntid][k] = sp[1] fin.close() elif self.config.name == "alt-my-transliteration": file_path = os.path.join(basepath, "my-en-transliteration", "data.txt") # Need to set errors='ignore' because of the unknown error # UnicodeDecodeError: 'utf-8' codec can't decode byte 0xff in position 0: invalid start byte # It might due to some issues related to Myanmar alphabets fin = open(file_path, encoding="utf-8", errors="ignore") _id = 0 for line in fin: line = line.strip() # I don't know why there are \x00 between |||. They don't show in the editor. line = line.replace("\x00", "") sp = line.split("|||") # When I read data, it seems to have empty sentence betweem the actual sentence. Don't know why? if len(sp) < 2: continue data[_id] = {"en": sp[0].strip(), "my": [sp[1].strip()]} _id += 1 fin.close() elif self.config.name == "alt-my-west-transliteration": file_path = os.path.join(basepath, "western-myanmar-transliteration", "321.txt") # Need to set errors='ignore' because of the unknown error # UnicodeDecodeError: 'utf-8' codec can't decode byte 0xff in position 0: invalid start byte # It might due to some issues related to Myanmar alphabets fin = open(file_path, encoding="utf-8", errors="ignore") _id = 0 for line in fin: line = line.strip() line = line.replace("\x00", "") sp = line.split("|||") data[_id] = {"en": sp[0].strip(), "my": [k.strip() for k in sp[1].split("|")]} _id += 1 fin.close() _id = 1 for k in data: yield _id, data[k] _id += 1
41.901176
706
0.500898
15,142
0.850292
8,591
0.482424
0
0
0
0
6,039
0.339117
fb747216a8e33dd3a7c21862ae471a10d4ad3882
246
py
Python
setup.py
whistlebee/awis-py
01793c72b369e5e41c4d11b7ba67f71e47cee3ef
[ "Apache-2.0" ]
1
2020-09-04T18:50:32.000Z
2020-09-04T18:50:32.000Z
setup.py
whistlebee/awis-py
01793c72b369e5e41c4d11b7ba67f71e47cee3ef
[ "Apache-2.0" ]
1
2020-09-06T05:51:43.000Z
2020-09-19T09:27:56.000Z
setup.py
whistlebee/awis-py
01793c72b369e5e41c4d11b7ba67f71e47cee3ef
[ "Apache-2.0" ]
null
null
null
from setuptools import setup, find_packages setup( name='awis-py', version='0.0.2', url='https://github.com/whistlebee/awis-py', packages=find_packages(), install_requires=['requests', 'lxml'], python_requires='>=3.6' )
20.5
48
0.658537
0
0
0
0
0
0
0
0
78
0.317073
fb74a99668bbeadd3a3026fa2344b01e7a173609
17,918
py
Python
src/validation/aux_functions.py
christianhilscher/dynasim
881cfd3bd9d4b9291d289d703ec7da4a617a479a
[ "MIT" ]
null
null
null
src/validation/aux_functions.py
christianhilscher/dynasim
881cfd3bd9d4b9291d289d703ec7da4a617a479a
[ "MIT" ]
2
2020-08-06T10:01:59.000Z
2021-05-17T12:14:44.000Z
src/validation/aux_functions.py
christianhilscher/dynasim
881cfd3bd9d4b9291d289d703ec7da4a617a479a
[ "MIT" ]
2
2020-08-19T06:52:09.000Z
2021-12-10T08:57:54.000Z
import sys from pathlib import Path import numpy as np import pandas as pd from bokeh.models import ColumnDataSource from bokeh.io import export_png from bokeh.plotting import figure def plot_lifetime(df, type, path): df = df.copy() palette = ["#c9d9d3", "#718dbf", "#e84d60", "#648450"] ylist = [] list0 = [] list1 = [] list2 = [] list3 = [] interv = np.sort(df["age_real"].unique()) for a in interv: df_rel = df[df["age_real"]==a] n = len(df_rel) status0 = sum(df_rel["employment_status_" + type] == 0)/n status1 = sum(df_rel["employment_status_" + type] == 1)/n status2 = sum(df_rel["employment_status_" + type] == 2)/n status3 = sum(df_rel["employment_status_" + type] == 3)/n ylist.append(str(a)) list0.append(status0) list1.append(status1) list2.append(status2) list3.append(status3) dici = {"age": ylist, "0": list0, "1": list1, "2": list2, "3": list3} #alllist = ["0", "1", "2", "3"] #labels = ["N.E.", "Rente", "Teilzeit", "Vollzeit"] alllist = ["3", "2", "0", "1"] labels = ["Vollzeit", "Teilzeit", "N.E.", "Rente"] p = figure(x_range=ylist, plot_height=250, plot_width=1500, title="Employment Status by age: West Germany / type: " + type) p.vbar_stack(alllist, x='age', width=0.9, color=palette, source=dici, legend_label=labels) p.y_range.start = 0 p.x_range.range_padding = 0.1 p.xgrid.grid_line_color = None p.axis.minor_tick_line_color = None p.outline_line_color = None p.legend.location = "bottom_left" p.legend.orientation = "horizontal" str_path = "employment_" + type + ".png" export_png(p, filename=str(path/ str_path)) def var_by_method(dataf, variable): dataf_out = pd.DataFrame() dataf_out["pid"] = dataf["pid"] dataf_out["year"] = dataf["year"] dataf_out["hid"] = dataf["hid_real"] dataf_out["age"] = dataf["age_real"] for m in ["real", "ext"]: dataf_out[m] = dataf[variable + "_" + m] return dataf_out def plot_mean_by_age(dataf, m_list, variable, path): m_list = ["real", "ext"] dataf = dataf.copy() df = var_by_method(dataf, variable) df_plot = df.groupby("age")[m_list].mean() fig_title = variable file_title = variable + ".png" # return df plot_age(df_plot, fig_title, file_title, path) def make_pretty(p): p.xgrid.grid_line_color = None p.yaxis.minor_tick_line_width=0 p.xaxis.minor_tick_line_width=0 # p.legend.location = "bottom_right" return p def plot_employment_status_by_age(dataf, employment_status, path, female=None, east=None): dataf = dataf.copy() dataf_rest = rest_dataf(dataf, female, east) status_list = ["N_E", "Rente", "Teilzeit", "Vollzeit"] status = status_list[employment_status] df_tmp = var_by_method(dataf_rest, "employment_status") tmp = df_tmp[["real", "ext"]] == employment_status df_plot = pd.concat([df_tmp["age"], tmp], axis=1) df_plot = df_plot.groupby("age").mean() # Plotting fig_title, file_title = get_titles(female, east, status) plot_age(df_plot, fig_title, file_title, path, interv=1) def plot_age(dataf, fig_title, file_title, path, interv=0): source = ColumnDataSource(dataf) if interv==1: p = figure(title = fig_title, y_range=(0, 1)) else: p = figure(title = fig_title) p.line(x="age", y="real", source=source, line_color="black", line_dash = "solid", line_width=2, legend_label = "Real") p.line(x="age", y="ext", source=source, line_color="black", line_dash = "dotted", line_width=2, legend_label = "Ext") p.xaxis.axis_label = "Age" p = make_pretty(p) export_png(p, filename=str(path/ file_title)) def plot_year(dataf, fig_title, file_title, path, interv=0): source = ColumnDataSource(dataf) if interv==1: p = figure(title = fig_title, y_range=(0, 1)) else: p = figure(title = fig_title) p.line(x="year", y="real", source=source, line_color="black", line_dash = "solid", line_width=2, legend_label = "Real") p.line(x="year", y="ext", source=source, line_color="black", line_dash = "dotted", line_width=2, legend_label = "Ext") p.xaxis.axis_label = "Year" p = make_pretty(p) export_png(p, filename=str(path/ file_title)) def plot_year_age(ploto, by="year"): source = ColumnDataSource(ploto.df_plot) if ploto.y_range is None: p = figure(title = ploto.fig_title) else: p = figure(title = ploto.fig_title, y_range=ploto.y_range) p.line(x=by, y="real", source=source, line_color="black", line_dash = "solid", line_width=2, legend_label = "Real") p.line(x=by, y="ext", source=source, line_color="black", line_dash = "dotted", line_width=2, legend_label = "Ext") if by == "year": p.xaxis.axis_label = "Year" elif by == "age": p.xaxis.axis_label = "Age" p = make_pretty(p) export_png(p, filename=str(ploto.path/ ploto.file_title)) def rest_dataf(dataf, female, east): dataf = dataf.copy() method = "real" # Gender and East do not change during the simulation # Including either all people, or only male and female if female == 1: condition_female = dataf["female_" + method] == 1 elif female == 0: condition_female = dataf["female_" + method] == 0 else: condition_female = np.ones(len(dataf)) # Including either all people, or only east or west germans if east == 1: condition_east = dataf["east_" + method] == 1 elif east == 0: condition_east = dataf["east_" + method] == 0 else: condition_east = np.ones(len(dataf)) # Output is then sum of both conditions final_condition = (condition_female).astype(int) \ + (condition_east).astype(int) df_out = dataf[final_condition == 2] return df_out def get_titles(female, east, status): title = "" shorttitle = status if (female==None) & (east==None): title = "Employment status: " + status + "; all people" shorttitle += "_mfew.png" elif (female==None) & (east==0): title = "Employment status: " + status + "; all genders, west Germany" shorttitle += "_mfw.png" elif (female==None) & (east==1): title = "Employment status: " + status + "; all genders, east Germany" shorttitle += "_mfe.png" elif (female==0) & (east==None): title = "Employment status: " + status + "; male, whole Germany" shorttitle += "_mew.png" elif (female==1) & (east==None): title = "Employment status: " + status + "; female, whole Germany" shorttitle += "_few.png" elif (female==0) & (east==0): title = "Employment status: " + status + "; male, west Germany" shorttitle += "_mw.png" elif (female==0) & (east==1): title = "Employment status: " + status + "; male, east Germany" shorttitle += "_me.png" elif (female==1) & (east==0): title = "Employment status: " + status + "; female, west Germany" shorttitle += "_fw.png" elif (female==1) & (east==1): title = "Employment status: " + status + "; female, east Germany" shorttitle += "_fe.png" return title, shorttitle def get_titles_incomes(suffix, variable, working, female, fulltime, measure): w_string = "" f_string = "" t_string = "" if working==1: w_string = "_working" else: pass if female==1: f_string = "_female" elif female==0: f_string = "_male" else: pass if fulltime==1: t_string = "_fulltime" elif fulltime==0: t_string = "_parttime" else: pass fig_title = suffix + measure + "_" + variable + w_string + f_string + t_string file_title = fig_title + ".png" return fig_title, file_title def wrap_employment_plots(dataf, path): dataf = dataf.copy() for emp in np.arange(4): # All people, all employment status plot_employment_status_by_age(dataf, emp, path) # Males, all employment status plot_employment_status_by_age(dataf, emp, path, female=0) # Females, all employment status plot_employment_status_by_age(dataf, emp, path, female=1) # All_people, east Germany, all employment status plot_employment_status_by_age(dataf, emp, path, east=1) # All_people, west Germany, all employment status plot_employment_status_by_age(dataf, emp, path, east=0) # Males, east Germany, all employment status plot_employment_status_by_age(dataf, emp, path, female=0, east=1) # Males, west Germany, all employment status plot_employment_status_by_age(dataf, emp, path, female=0, east=0) # Females, east Germany, all employment status plot_employment_status_by_age(dataf, emp, path, female=1, east=1) # Females, west Germany, all employment status plot_employment_status_by_age(dataf, emp, path, female=1, east=0) def condition_by_type(dataf, method, working=False, female=None, fulltime=None): dataf = dataf.copy() # Condition to include all or only working people if working: condition_work = dataf["working_" + method] == 1 else: condition_work = np.ones(len(dataf)) # Including either all people, or only male and female if female == 1: condition_female = dataf["female_" + method] == 1 elif female == 0: condition_female = dataf["female_" + method] == 0 else: condition_female = np.ones(len(dataf)) # Including either all people, or only male and female if fulltime == 1: condition_fulltime = dataf["fulltime_" + method] == 1 elif fulltime == 0: condition_fulltime = dataf["parttimetime_" + method] == 1 else: condition_fulltime = np.ones(len(dataf)) # Output is then sum of both conditions final_condition = (condition_female).astype(int) \ + (condition_work).astype(int) \ + (condition_fulltime).astype(int) df_out = dataf[final_condition == 3] return df_out def restrict(dataf, working=False, female=None, fulltime=None): dataf = dataf.copy() out_dici = {"real": condition_by_type(dataf, "real", working, female, fulltime), "ext": condition_by_type(dataf, "ext", working, female, fulltime)} return out_dici def var_by_method_dici(dici, variable, group, measure): tmp = {} m_list = ["real", "ext"] for m in m_list: if measure == "mean": tmp[m] = dici[m].groupby(group)[variable + "_" + m].mean() elif measure == "median": tmp[m] = dici[m].groupby(group)[variable + "_" + m].median() elif measure == "p90p50": p90 = dici[m].groupby(group)[variable + "_" + m].quantile(0.9) p50 = dici[m].groupby(group)[variable + "_" + m].quantile(0.5) tmp[m] = p90/p50 elif measure == "p90p10": p90 = dici[m].groupby(group)[variable + "_" + m].quantile(0.9) p10 = dici[m].groupby(group)[variable + "_" + m].quantile(0.1) tmp[m] = p90/p10 elif measure == "p50p10": p50 = dici[m].groupby(group)[variable + "_" + m].quantile(0.5) p10 = dici[m].groupby(group)[variable + "_" + m].quantile(0.1) tmp[m] = p50/p10 elif measure == "gini": tmp[m] = dici[m].groupby(group)[variable + "_" + m].agg(gini_coefficient) df_out = pd.DataFrame(tmp) return df_out def plot_income_age(dataf, variable, path, working=None, female=None, fulltime=None, measure="mean"): dataf = dataf.copy() dici = restrict(dataf, working, female, fulltime) df_plot = var_by_method_dici(dici, variable, group="age_real", measure=measure) df_plot = df_plot.fillna(0) df_plot.reset_index(inplace=True) df_plot.rename(columns={"age_real": "age"}, inplace=True) fig_title, file_title = get_titles_incomes("age_", variable, working, female, fulltime, measure) plot_age(df_plot, fig_title, file_title, path) def wrap_income_age_plots(dataf, path): dataf = dataf.copy() variables = ["gross_earnings", "hours"] for var in variables: for m in ["mean", "median"]: # All people plot_income_age(dataf, var, path=path, measure=m) plot_income_age(dataf, var, path=path, female=0, measure=m) plot_income_age(dataf, var, path=path, female=1, measure=m) # Conditional on working plot_income_age(dataf, var, path=path, working=1, measure=m) plot_income_age(dataf, var, path=path, working=1, female=0, measure=m) plot_income_age(dataf, var, path=path, working=1, female=1, measure=m) # Conditional on fulltime plot_income_age(dataf, var, path=path, fulltime=1, measure=m) plot_income_age(dataf, var, path=path, fulltime=1, female=0, measure=m) plot_income_age(dataf, var, path=path, fulltime=1, female=1, measure=m) def plot_income_year(dataf, variable, path, working=None, female=None, fulltime=None, measure="mean"): dataf = dataf.copy() dici = restrict(dataf, working, female, fulltime) df_plot = var_by_method_dici(dici, variable, group="year", measure=measure) df_plot = df_plot.fillna(0) df_plot.reset_index(inplace=True) fig_title, file_title = get_titles_incomes("year_", variable, working, female, fulltime, measure) plot_year(df_plot, fig_title, file_title, path) def plot_income_year2(ploto, measure="mean"): dici = restrict(ploto.data, ploto.working, ploto.female, ploto.fulltime) df_plot = var_by_method_dici(dici, ploto.var, group="year", measure=measure) df_plot = df_plot.fillna(0) df_plot.reset_index(inplace=True) fig_title, file_title = get_titles_incomes("year_", ploto.var, ploto.working, ploto.female, ploto.fulltime, measure) plot_year2(df_plot, fig_title, file_title, ploto) def wrap_income_year_plots(dataf, path): dataf = dataf.copy() variables = ["gross_earnings", "hours"] for var in variables: for m in ["mean", "median"]: # All people plot_income_year(dataf, var, path=path, measure=m) plot_income_year(dataf, var, path=path, female=0, measure=m) plot_income_year(dataf, var, path=path, female=1, measure=m) # Conditional on working plot_income_year(dataf, var, path=path, working=1, measure=m) plot_income_year(dataf, var, path=path, working=1, female=0, measure=m) plot_income_year(dataf, var, path=path, working=1, female=1, measure=m) # Conditional on fulltime plot_income_year(dataf, var, path=path, fulltime=1, measure=m) plot_income_year(dataf, var, path=path, fulltime=1, female=0, measure=m) plot_income_year(dataf, var, path=path, fulltime=1, female=1, measure=m) def plot_inequality_year(dataf, variable, path, working=None, female=None, fulltime=None, measure="mean"): dataf = dataf.copy() dici = restrict(dataf, working, female, fulltime) df_plot = var_by_method_dici(dici, variable, group="year", measure=measure) df_plot = df_plot.fillna(0) df_plot.reset_index(inplace=True) fig_title, file_title = get_titles_incomes("ineq_", variable, working, female, fulltime, measure) plot_year(df_plot, fig_title, file_title, path) def wrap_inequality_year_plots(dataf, path): dataf = dataf.copy() var = ["gross_earnings", "hours"] for v in var: for m in ["p90p50", "p90p10", "p50p10", "gini"]: plot_inequality_year(dataf, v, path, working=1, measure=m) plot_inequality_year(dataf, v, path, working=1, female=0, measure=m) plot_inequality_year(dataf, v, path, working=1, female=1, measure=m) def gini_coefficient(x): """Compute Gini coefficient of array of values""" diffsum = 0 for i, xi in enumerate(x[:-1], 1): diffsum += np.sum(np.abs(xi - x[i:])) return diffsum / (len(x)**2 * np.mean(x)) def make_quantile(dataf, var, m_list, q): dataf = dataf.copy() for m in m_list: variable = var + "_" + m real_q = dataf.groupby(["year"])[variable].quantile(q).to_frame() real_q.rename(columns={variable: "var"}, inplace=True) dataf = pd.merge(dataf, real_q, how="left", on="year") dataf.loc[dataf[variable]>dataf["var"], variable] = dataf["var"] dataf.drop("var", axis=1, inplace=True) return dataf def cap_outliers(dataf, m_list): dataf = dataf.copy() # # Hours # dataf = make_quantile(dataf, "hours", m_list, 0.99) # dataf = make_quantile(dataf, "hours_t1", m_list, 0.99) # dataf = make_quantile(dataf, "hours_t2", m_list, 0.99) # Gross earnings dataf = make_quantile(dataf, "gross_earnings", m_list, 0.95) dataf = make_quantile(dataf, "gross_earnings_t1", m_list, 0.95) dataf = make_quantile(dataf, "gross_earnings_t2", m_list, 0.95) return dataf
34.194656
127
0.60509
0
0
0
0
0
0
0
0
3,012
0.168099
fb7583ba835e078f93bcf270c20be6606ba135d8
98
py
Python
test.py
krithikV/vaccineregistration
5d9aa52c7d8c9b196e23a73525dbaaf1e791e3e2
[ "Apache-2.0" ]
null
null
null
test.py
krithikV/vaccineregistration
5d9aa52c7d8c9b196e23a73525dbaaf1e791e3e2
[ "Apache-2.0" ]
null
null
null
test.py
krithikV/vaccineregistration
5d9aa52c7d8c9b196e23a73525dbaaf1e791e3e2
[ "Apache-2.0" ]
null
null
null
from multiprocessing import Process server = Process(target=app.run)# ... server.terminate()
19.6
38
0.734694
0
0
0
0
0
0
0
0
6
0.061224
fb7811b122904a7fba10519297aa03213ea6aa2e
755
py
Python
deep-rl/lib/python2.7/site-packages/OpenGL/GLES2/vboimplementation.py
ShujaKhalid/deep-rl
99c6ba6c3095d1bfdab81bd01395ced96bddd611
[ "MIT" ]
210
2016-04-09T14:26:00.000Z
2022-03-25T18:36:19.000Z
deep-rl/lib/python2.7/site-packages/OpenGL/GLES2/vboimplementation.py
ShujaKhalid/deep-rl
99c6ba6c3095d1bfdab81bd01395ced96bddd611
[ "MIT" ]
72
2016-09-04T09:30:19.000Z
2022-03-27T17:06:53.000Z
deep-rl/lib/python2.7/site-packages/OpenGL/GLES2/vboimplementation.py
ShujaKhalid/deep-rl
99c6ba6c3095d1bfdab81bd01395ced96bddd611
[ "MIT" ]
64
2016-04-09T14:26:49.000Z
2022-03-21T11:19:47.000Z
from OpenGL.arrays import vbo from OpenGL.GLES2.VERSION import GLES2_2_0 from OpenGL.GLES2.OES import mapbuffer class Implementation( vbo.Implementation ): """OpenGL-based implementation of VBO interfaces""" def __init__( self ): for name in self.EXPORTED_NAMES: for source in [ GLES2_2_0, mapbuffer ]: for possible in (name,name+'OES'): try: setattr( self, name, getattr( source, possible )) except AttributeError as err: pass else: found = True assert found, name if GLES2_2_0.glBufferData: self.available = True Implementation.register()
35.952381
73
0.561589
615
0.81457
0
0
0
0
0
0
56
0.074172
fb79110d81706eec2a558890fdef6435d3ebf1bb
8,457
py
Python
tests/test_model.py
zeta1999/OpenJij
0fe03f07af947f519a32ad58fe20423919651634
[ "Apache-2.0" ]
null
null
null
tests/test_model.py
zeta1999/OpenJij
0fe03f07af947f519a32ad58fe20423919651634
[ "Apache-2.0" ]
null
null
null
tests/test_model.py
zeta1999/OpenJij
0fe03f07af947f519a32ad58fe20423919651634
[ "Apache-2.0" ]
1
2021-04-09T09:13:56.000Z
2021-04-09T09:13:56.000Z
import unittest import numpy as np import openjij as oj import cxxjij as cj def calculate_ising_energy(h, J, spins): energy = 0.0 for (i, j), Jij in J.items(): energy += Jij*spins[i]*spins[j] for i, hi in h.items(): energy += hi * spins[i] return energy def calculate_qubo_energy(Q, binary): energy = 0.0 for (i, j), Qij in Q.items(): energy += Qij*binary[i]*binary[j] return energy class VariableTypeTest(unittest.TestCase): def test_variable_type(self): spin = oj.cast_var_type('SPIN') self.assertEqual(spin, oj.SPIN) binary = oj.cast_var_type('BINARY') self.assertEqual(binary, oj.BINARY) class ModelTest(unittest.TestCase): def setUp(self): self.h = {0: 1, 1: -2} self.J = {(0, 1): -1, (1, 2): -3, (2, 3): 0.5} self.spins = {0: 1, 1: -1, 2: 1, 3: 1} self.Q = {(0, 0): 1, (1, 2): -1, (2, 0): -0.2, (1, 3): 3} self.binaries = {0: 0, 1: 1, 2: 1, 3: 0} def test_bqm_constructor(self): # Test BinaryQuadraticModel constructor bqm = oj.BinaryQuadraticModel(self.h, self.J) self.assertEqual(type(bqm.interaction_matrix()), np.ndarray) self.assertEqual(bqm.vartype, oj.SPIN) dense_graph = bqm.get_cxxjij_ising_graph(sparse=False) self.assertTrue(isinstance(dense_graph, cj.graph.Dense)) bqm_qubo = oj.BinaryQuadraticModel.from_qubo(Q=self.Q) self.assertEqual(bqm_qubo.vartype, oj.BINARY) def test_interaction_matrix(self): bqm = oj.BinaryQuadraticModel(self.h, self.J) ising_matrix = np.array([ [1, -1, 0, 0], [-1, -2, -3, 0], [0, -3, 0, 0.5], [0, 0, 0.5, 0] ]) np.testing.assert_array_equal( bqm.interaction_matrix(), ising_matrix ) # check Hij = Jij + Jji J = self.J.copy() J[0, 1] /= 3 J[1, 0] = J[0, 1] * 2 bqm = oj.BinaryQuadraticModel(self.h, J) np.testing.assert_array_equal(bqm.interaction_matrix(), ising_matrix) def test_transfer_to_cxxjij(self): bqm = oj.BinaryQuadraticModel(self.h, self.J) # to Dense ising_graph = bqm.get_cxxjij_ising_graph(sparse=False) self.assertEqual(ising_graph.size(), len(bqm.indices)) for i in range(len(bqm.indices)): for j in range(len(bqm.indices)): if i != j: self.assertAlmostEqual(bqm.interaction_matrix()[i,j], ising_graph.get_interactions()[i, j]) else: # i == j self.assertAlmostEqual(bqm.interaction_matrix()[i,j], ising_graph.get_interactions()[i, len(bqm.indices)]) self.assertAlmostEqual(bqm.interaction_matrix()[i,j], ising_graph.get_interactions()[len(bqm.indices), i]) self.assertEqual(ising_graph.get_interactions()[i,i], 0) self.assertEqual(ising_graph.get_interactions()[len(bqm.indices),len(bqm.indices)], 1) # to Sparse ising_graph = bqm.get_cxxjij_ising_graph(sparse=True) self.assertEqual(ising_graph.size(), len(bqm.indices)) for i in range(ising_graph.size()): for j in ising_graph.adj_nodes(i): self.assertEqual(bqm.interaction_matrix()[i,j], ising_graph[i,j]) def test_bqm_calc_energy(self): # Test to calculate energy # Test Ising energy bqm = oj.BinaryQuadraticModel(self.h, self.J) ising_energy_bqm = bqm.energy(self.spins) true_ising_e = calculate_ising_energy(self.h, self.J, self.spins) self.assertEqual(ising_energy_bqm, true_ising_e) # Test QUBO energy bqm = oj.BinaryQuadraticModel.from_qubo(Q=self.Q) qubo_energy_bqm = bqm.energy(self.binaries) true_qubo_e = calculate_qubo_energy(self.Q, self.binaries) self.assertEqual(qubo_energy_bqm, true_qubo_e) # QUBO == Ising spins = {0: 1, 1: 1, 2: -1, 3: 1} binary = {0: 1, 1: 1, 2: 0, 3: 1} qubo_bqm = oj.BinaryQuadraticModel.from_qubo(Q=self.Q) # ising_mat = qubo_bqm.ising_interactions() # h, J = {}, {} # for i in range(len(ising_mat)-1): # for j in range(i, len(ising_mat)): # if i == j: # h[i] = ising_mat[i][i] # else: # J[(i, j)] = ising_mat[i][j] qubo_energy = qubo_bqm.energy(binary) self.assertEqual(qubo_energy, qubo_bqm.energy(spins, convert_sample=True)) def test_energy_consistency(self): bqm = oj.BinaryQuadraticModel(self.h, self.J, var_type='SPIN') dense_ising_graph = bqm.get_cxxjij_ising_graph(sparse=False) sparse_ising_graph = bqm.get_cxxjij_ising_graph(sparse=True) spins = {0: -1, 1: -1, 2: -1, 3: -1} self.assertAlmostEqual(dense_ising_graph.calc_energy([spins[i] for i in range(len(spins))]), bqm.energy(spins)) self.assertAlmostEqual(sparse_ising_graph.calc_energy([spins[i] for i in range(len(spins))]), bqm.energy(spins)) def test_bqm(self): h = {} J = {(0, 1): -1.0, (1, 2): -3.0} bqm = oj.BinaryQuadraticModel(h, J) self.assertEqual(J, bqm.get_quadratic()) self.assertEqual(type(bqm.interaction_matrix()), np.ndarray) correct_mat = np.array([[0, -1, 0, ], [-1, 0, -3], [0, -3, 0]]) np.testing.assert_array_equal( bqm.interaction_matrix(), correct_mat.astype(np.float)) def test_chimera_converter(self): h = {} J = {(0, 4): -1.0, (6, 2): -3.0, (16, 0): 4} chimera = oj.ChimeraModel(h, J, offset=0, unit_num_L=2) self.assertEqual(chimera.chimera_coordinate( 4, unit_num_L=2), (0, 0, 4)) self.assertEqual(chimera.chimera_coordinate( 12, unit_num_L=2), (0, 1, 4)) self.assertEqual(chimera.chimera_coordinate( 16, unit_num_L=2), (1, 0, 0)) def test_chimera(self): h = {} J = {(0, 4): -1.0, (6, 2): -3.0} bqm = oj.ChimeraModel(h, J, offset=0, unit_num_L=3) self.assertTrue(bqm.validate_chimera()) J = {(0, 1): -1} bqm = oj.ChimeraModel(h, J, unit_num_L=3) with self.assertRaises(ValueError): bqm.validate_chimera() J = {(4, 12): -1} bqm = oj.ChimeraModel(h, J, unit_num_L=2) self.assertTrue(bqm.validate_chimera()) J = {(0, 4): -1, (5, 13): 1, (24, 8): 2, (18, 20): 1, (16, 0): 0.5, (19, 23): -2} h = {13: 2} chimera = oj.ChimeraModel(h, J, unit_num_L=2) self.assertEqual(chimera.to_index(1, 1, 1, unit_num_L=2), 25) self.assertTrue(chimera.validate_chimera()) def test_ising_dict(self): Q = {(0, 4): -1.0, (6, 2): -3.0} bqm = oj.ChimeraModel.from_qubo(Q=Q, unit_num_L=3) def test_king_graph(self): h = {} J = {(0, 1): -1.0, (1, 2): -3.0} king_interaction = [[0, 0, 1, 0, -1.0], [1, 0, 2, 0, -3.0]] king_graph = oj.KingGraph(machine_type="ASIC", linear=h, quadratic=J) correct_mat = np.array([[0, -1, 0, ], [-1, 0, -3], [0, -3, 0]]) np.testing.assert_array_equal( king_graph.interaction_matrix(), correct_mat.astype(np.float)) self.assertCountEqual(king_interaction, king_graph._ising_king_graph) king_graph = oj.KingGraph( machine_type="ASIC", king_graph=king_interaction) np.testing.assert_array_equal( king_interaction, king_graph._ising_king_graph) king_graph = oj.KingGraph.from_qubo(Q={(0, 1): -1}, machine_type='ASIC') king_interaction = [[0, 0, 0, 0, -0.25], [0, 0, 1, 0, -0.25], [1, 0, 1, 0, -0.25]] self.assertCountEqual(king_interaction, king_graph._ising_king_graph) def test_get_chimera_graph(self): c_model = oj.ChimeraModel.from_qubo(Q={(0, 4): -1, (1, 1): -1, (1, 5): 1}, unit_num_L=2) chimera = c_model.get_cxxjij_ising_graph() self.assertIsInstance(chimera, cj.graph.Chimera) c_model = oj.ChimeraModel.from_qubo(Q={((0, 0, 1), (0, 0, 4)): -1, ((0, 0, 4), (0, 0, 2)): -1}, unit_num_L=2) chimera = c_model.get_cxxjij_ising_graph() self.assertIsInstance(chimera, cj.graph.Chimera) if __name__ == '__main__': unittest.main()
37.255507
126
0.578101
7,962
0.941469
0
0
0
0
0
0
462
0.054629
fb795f78cbeba316633c5e08d2759b19e5be4e41
18,273
py
Python
src/bgp-acl-agent/bgp-acl-agent.py
jbemmel/srl-bgp-acl
18d2b625ea24cc1a269513798e0e58e84f3eaca8
[ "Apache-2.0" ]
1
2022-01-25T16:03:02.000Z
2022-01-25T16:03:02.000Z
src/bgp-acl-agent/bgp-acl-agent.py
jbemmel/srl-bgp-acl
18d2b625ea24cc1a269513798e0e58e84f3eaca8
[ "Apache-2.0" ]
null
null
null
src/bgp-acl-agent/bgp-acl-agent.py
jbemmel/srl-bgp-acl
18d2b625ea24cc1a269513798e0e58e84f3eaca8
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python # coding=utf-8 import grpc from datetime import datetime import sys import logging import socket import os from ipaddress import ip_network, ip_address, IPv4Address import json import signal import traceback import re from concurrent.futures import ThreadPoolExecutor import sdk_service_pb2 import sdk_service_pb2_grpc import config_service_pb2 # To report state back import telemetry_service_pb2 import telemetry_service_pb2_grpc from pygnmi.client import gNMIclient, telemetryParser from logging.handlers import RotatingFileHandler ############################################################ ## Agent will start with this name ############################################################ agent_name='bgp_acl_agent' acl_sequence_start=1000 # Default ACL sequence number base, can be configured acl_count=0 # Number of ACL entries created/managed ############################################################ ## Open a GRPC channel to connect to sdk_mgr on the dut ## sdk_mgr will be listening on 50053 ############################################################ channel = grpc.insecure_channel('unix:///opt/srlinux/var/run/sr_sdk_service_manager:50053') # channel = grpc.insecure_channel('127.0.0.1:50053') metadata = [('agent_name', agent_name)] stub = sdk_service_pb2_grpc.SdkMgrServiceStub(channel) ############################################################ ## Subscribe to required event ## This proc handles subscription of: Interface, LLDP, ## Route, Network Instance, Config ############################################################ def Subscribe(stream_id, option): op = sdk_service_pb2.NotificationRegisterRequest.AddSubscription if option == 'cfg': entry = config_service_pb2.ConfigSubscriptionRequest() entry.key.js_path = '.' + agent_name # filter out .commit.end notifications request = sdk_service_pb2.NotificationRegisterRequest(op=op, stream_id=stream_id, config=entry) subscription_response = stub.NotificationRegister(request=request, metadata=metadata) print('Status of subscription response for {}:: {}'.format(option, subscription_response.status)) ############################################################ ## Subscribe to all the events that Agent needs ############################################################ def Subscribe_Notifications(stream_id): ''' Agent will receive notifications to what is subscribed here. ''' if not stream_id: logging.info("Stream ID not sent.") return False # Subscribe to config changes, first Subscribe(stream_id, 'cfg') ################################################################## ## Proc to process the config Notifications received by auto_config_agent ## At present processing config from js_path = .fib-agent ################################################################## def Handle_Notification(obj): if obj.HasField('config'): logging.info(f"GOT CONFIG :: {obj.config.key.js_path}") if obj.config.key.js_path == ".bgp_acl_agent": logging.info(f"Got config for agent, now will handle it :: \n{obj.config}\ Operation :: {obj.config.op}\nData :: {obj.config.data.json}") if obj.config.op == 2: logging.info(f"Delete bgp-acl-agent cli scenario") # if file_name != None: # Update_Result(file_name, action='delete') response=stub.AgentUnRegister(request=sdk_service_pb2.AgentRegistrationRequest(), metadata=metadata) logging.info('Handle_Config: Unregister response:: {}'.format(response)) else: json_acceptable_string = obj.config.data.json.replace("'", "\"") data = json.loads(json_acceptable_string) if 'acl_sequence_start' in data: acl_sequence_start = data['acl_sequence_start']['value'] logging.info(f"Got init sequence :: {acl_sequence_start}") return 'acl_sequence_start' in data else: logging.info(f"Unexpected notification : {obj}") return False def Gnmi_subscribe_bgp_changes(): subscribe = { 'subscription': [ { # 'path': '/srl_nokia-network-instance:network-instance[name=*]/protocols/srl_nokia-bgp:bgp/neighbor[peer-address=*]/admin-state', # Possible to subscribe without '/admin-state', but then too many events # Like this, no 'delete' is received when the neighbor is deleted # Also, 'enable' event is followed by 'disable' - broken # 'path': '/network-instance[name=*]/protocols/bgp/neighbor[peer-address=*]/admin-state', # This leads to too many events, hitting the max 60/minute gNMI limit # 10 events per CLI change to a bgp neighbor, many duplicates # 'path': '/network-instance[name=*]/protocols/bgp/neighbor[peer-address=*]', 'path': '/network-instance[name=*]/protocols/bgp/neighbor[peer-address=*]', 'mode': 'on_change', # 'heartbeat_interval': 10 * 1000000000 # ns between, i.e. 10s # Mode 'sample' results in polling # 'mode': 'sample', # 'sample_interval': 10 * 1000000000 # ns between samples, i.e. 10s }, { # Also monitor dynamic-neighbors sections 'path': '/network-instance[name=*]/protocols/bgp/dynamic-neighbors/accept/match[prefix=*]', 'mode': 'on_change', } ], 'use_aliases': False, 'mode': 'stream', 'encoding': 'json' } _bgp = re.compile( r'^network-instance\[name=([^]]*)\]/protocols/bgp/neighbor\[peer-address=([^]]*)\]/admin-state$' ) _dyn = re.compile( r'^network-instance\[name=([^]]*)\]/protocols/bgp/dynamic-neighbors/accept/match\[prefix=([^]]*)\]/peer-group$' ) # with Namespace('/var/run/netns/srbase-mgmt', 'net'): with gNMIclient(target=('unix:///opt/srlinux/var/run/sr_gnmi_server',57400), username="admin",password="admin", insecure=True, debug=False) as c: telemetry_stream = c.subscribe(subscribe=subscribe) for m in telemetry_stream: try: if m.HasField('update'): # both update and delete events # Filter out only toplevel events parsed = telemetryParser(m) logging.info(f"gNMI change event :: {parsed}") update = parsed['update'] if update['update']: path = update['update'][0]['path'] # Only look at top level neighbor = _bgp.match( path ) if neighbor: net_inst = neighbor.groups()[0] ip_prefix = neighbor.groups()[1] # plain ip peer_type = "static" logging.info(f"Got neighbor change event :: {ip_prefix}") else: dyn_group = _dyn.match( path ) if dyn_group: net_inst = dyn_group.groups()[0] ip_prefix = dyn_group.groups()[1] # ip/prefix peer_type = "dynamic" logging.info(f"Got dynamic-neighbor change event :: {ip_prefix}") else: logging.info(f"Ignoring gNMI change event :: {path}") continue # No-op if already exists Add_ACL(c,ip_prefix.split('/'),net_inst,peer_type) else: # pygnmi does not provide 'path' for delete events handleDelete(c,m) except Exception as e: traceback_str = ''.join(traceback.format_tb(e.__traceback__)) logging.error(f'Exception caught in gNMI :: {e} m={m} stack:{traceback_str}') logging.info("Leaving BGP event loop") def handleDelete(gnmi,m): logging.info(f"handleDelete :: {m}") for e in m.update.delete: for p in e.elem: # TODO dynamic-neighbors, also modify of prefix in dynamic-neighbors if p.name == "neighbor": for n,v in p.key.items(): logging.info(f"n={n} v={v}") if n=="peer-address": peer_ip = v Remove_ACL(gnmi,peer_ip) return # XXX could be multiple peers deleted in 1 go? # # Checks if this is an IPv4 or IPv6 address, and normalizes host prefixes # def checkIP( ip_prefix ): try: v = 4 if type(ip_address(ip_prefix[0])) is IPv4Address else 6 prefix = ip_prefix[1] if len(ip_prefix)>1 else ('32' if v==4 else '128') return v, ip_prefix[0], prefix except ValueError: return None def Add_Telemetry(js_path, dict): telemetry_stub = telemetry_service_pb2_grpc.SdkMgrTelemetryServiceStub(channel) telemetry_update_request = telemetry_service_pb2.TelemetryUpdateRequest() telemetry_info = telemetry_update_request.state.add() telemetry_info.key.js_path = js_path telemetry_info.data.json_content = json.dumps(dict) logging.info(f"Telemetry_Update_Request :: {telemetry_update_request}") telemetry_response = telemetry_stub.TelemetryAddOrUpdate(request=telemetry_update_request, metadata=metadata) logging.info(f"TelemetryAddOrUpdate response:{telemetry_response}") return telemetry_response def Update_ACL_Counter(delta): global acl_count acl_count += delta _ts = datetime.now().strftime("%Y-%m-%dT%H:%M:%SZ") Add_Telemetry( ".bgp_acl_agent", { "acl_count" : acl_count, "last_change" : _ts } ) def Add_ACL(gnmi,ip_prefix,net_inst,peer_type): seq, next_seq, v, ip, prefix = Find_ACL_entry(gnmi,ip_prefix) # Also returns next available entry if seq is None: acl_entry = { "created-by-bgp-acl-agent": datetime.now().strftime("%Y-%m-%d %H:%M:%S UTC"), "description": f"BGP ({peer_type}) peer in network-instance {net_inst}", "match": { ("protocol" if v==4 else "next-header"): "tcp", "source-ip": { "prefix": ip + '/' + prefix }, "destination-port": { "operator": "eq", "value": 179 } }, "action": { "accept": { } }, } path = f'/acl/cpm-filter/ipv{v}-filter/entry[sequence-id={next_seq}]' logging.info(f"Update: {path}={acl_entry}") gnmi.set( encoding='json_ietf', update=[(path,acl_entry)] ) # Need to set state separately, not via gNMI. Uses underscores in path # Tried extending ACL entries, but system won't accept these updates # js_path = (f'.acl.cpm_filter.ipv{v}_filter.entry' + # '{.sequence_id==' + str(next_seq) + '}.bgp_acl_agent_state') # js_path = '.bgp_acl_agent.entry{.ip=="'+peer_ip+'"}' # Add_Telemetry( js_path, { "sequence_id": next_seq } ) Update_ACL_Counter( +1 ) def Remove_ACL(gnmi,peer_ip): seq, next_seq, v, ip, prefix = Find_ACL_entry(gnmi,[peer_ip]) if seq is not None: logging.info(f"Remove_ACL: Deleting ACL entry :: {seq}") path = f'/acl/cpm-filter/ipv{v}-filter/entry[sequence-id={seq}]' gnmi.set( encoding='json_ietf', delete=[path] ) Update_ACL_Counter( -1 ) else: logging.info(f"Remove_ACL: No entry found for peer_ip={peer_ip}") # # Because it is possible that ACL entries get saved to 'startup', the agent may # not have a full map of sequence number to peer_ip. Therefore, we perform a # lookup based on IP address each time # Since 'prefix' is not a key, we have to loop through all entries with a prefix # def Find_ACL_entry(gnmi,ip_prefix): v, ip, prefix = checkIP( ip_prefix ) # # Can do it like this and add custom state, but then we cannot find the next # available sequence number we can use # path = f"/bgp-acl-agent/entry[ip={peer_ip}]" path = f'/acl/cpm-filter/ipv{v}-filter/entry/match/' # could add /source-ip/prefix but then we cannot check for dest-port # Could filter like this to reduce #entries, limits to max 999 entries # path = '/acl/cpm-filter/ipv4-filter/entry[sequence-id=1*]/match # Interestingly, datatype='config' is required to see custom config state # The default datatype='all' does not show it acl_entries = gnmi.get( encoding='json_ietf', path=[path] ) logging.info(f"Find_ACL_entry({ip_prefix}): GOT GET response :: {acl_entries}") searched = ip + '/' + prefix next_seq = acl_sequence_start for e in acl_entries['notification']: try: if 'update' in e: logging.info(f"GOT Update :: {e['update']}") for u in e['update']: for j in u['val']['entry']: logging.info(f"Check ACL entry :: {j}") match = j['match'] # Users could change acl_sequence_start if 'source-ip' in match: # and j['sequence-id'] >= acl_sequence_start: src_ip = match['source-ip'] if 'prefix' in src_ip: if (src_ip['prefix'] == searched): logging.info(f"Find_ACL_entry: Found matching entry :: {j}") # Perform extra sanity check if ('destination-port' in match and 'value' in match['destination-port'] and match['destination-port']['value'] == 179): return (j['sequence-id'],None,v,ip,prefix) else: logging.info( "Source IP match but not BGP port" ) if j['sequence-id']==next_seq: logging.info( f"Increment next_seq (={next_seq})" ) next_seq += 1 else: logging.info( "No source-ip in entry" ) except Exception as e: logging.error(f'Exception caught in Find_ACL_entry :: {e}') logging.info(f"Find_ACL_entry: no match for searched={searched} next_seq={next_seq}") return (None,next_seq,v,ip,prefix) ################################################################################################## ## This is the main proc where all processing for auto_config_agent starts. ## Agent registration, notification registration, Subscrition to notifications. ## Waits on the subscribed Notifications and once any config is received, handles that config ## If there are critical errors, Unregisters the fib_agent gracefully. ################################################################################################## def Run(): sub_stub = sdk_service_pb2_grpc.SdkNotificationServiceStub(channel) response = stub.AgentRegister(request=sdk_service_pb2.AgentRegistrationRequest(), metadata=metadata) logging.info(f"Registration response : {response.status}") request=sdk_service_pb2.NotificationRegisterRequest(op=sdk_service_pb2.NotificationRegisterRequest.Create) create_subscription_response = stub.NotificationRegister(request=request, metadata=metadata) stream_id = create_subscription_response.stream_id logging.info(f"Create subscription response received. stream_id : {stream_id}") Subscribe_Notifications(stream_id) stream_request = sdk_service_pb2.NotificationStreamRequest(stream_id=stream_id) stream_response = sub_stub.NotificationStream(stream_request, metadata=metadata) # Gnmi_subscribe_bgp_changes() executor = ThreadPoolExecutor(max_workers=1) executor.submit(Gnmi_subscribe_bgp_changes) try: for r in stream_response: logging.info(f"NOTIFICATION:: \n{r.notification}") for obj in r.notification: Handle_Notification(obj) except grpc._channel._Rendezvous as err: logging.info(f'GOING TO EXIT NOW: {err}') except Exception as e: logging.error(f'Exception caught :: {e}') #if file_name != None: # Update_Result(file_name, action='delete') try: response = stub.AgentUnRegister(request=sdk_service_pb2.AgentRegistrationRequest(), metadata=metadata) logging.error(f'Run try: Unregister response:: {response}') except grpc._channel._Rendezvous as err: logging.info(f'GOING TO EXIT NOW: {err}') sys.exit() return True sys.exit() return True ############################################################ ## Gracefully handle SIGTERM signal ## When called, will unregister Agent and gracefully exit ############################################################ def Exit_Gracefully(signum, frame): logging.info("Caught signal :: {}\n will unregister bgp acl agent".format(signum)) try: response=stub.AgentUnRegister(request=sdk_service_pb2.AgentRegistrationRequest(), metadata=metadata) logging.error('try: Unregister response:: {}'.format(response)) sys.exit() except grpc._channel._Rendezvous as err: logging.info('GOING TO EXIT NOW: {}'.format(err)) sys.exit() ################################################################################################## ## Main from where the Agent starts ## Log file is written to: /var/log/srlinux/stdout/bgp_acl_agent.log ## Signals handled for graceful exit: SIGTERM ################################################################################################## if __name__ == '__main__': # hostname = socket.gethostname() stdout_dir = '/var/log/srlinux/stdout' # PyTEnv.SRL_STDOUT_DIR signal.signal(signal.SIGTERM, Exit_Gracefully) if not os.path.exists(stdout_dir): os.makedirs(stdout_dir, exist_ok=True) log_filename = f'{stdout_dir}/{agent_name}.log' logging.basicConfig( handlers=[RotatingFileHandler(log_filename, maxBytes=3000000,backupCount=5)], format='%(asctime)s,%(msecs)03d %(name)s %(levelname)s %(message)s', datefmt='%H:%M:%S', level=logging.INFO) logging.info("START TIME :: {}".format(datetime.now())) if Run(): logging.info('Agent unregistered') else: logging.info('Should not happen')
46.614796
150
0.591747
0
0
0
0
0
0
0
0
8,594
0.470311
fb7b00cf08bb11ddac21a6f98e99ab8e31ed948a
1,003
py
Python
tests/test_35_cfgrib_.py
shoyer/cfgrib
fe11a1b638b1779e51da87eaa30f1f12b2d0911c
[ "Apache-2.0" ]
null
null
null
tests/test_35_cfgrib_.py
shoyer/cfgrib
fe11a1b638b1779e51da87eaa30f1f12b2d0911c
[ "Apache-2.0" ]
null
null
null
tests/test_35_cfgrib_.py
shoyer/cfgrib
fe11a1b638b1779e51da87eaa30f1f12b2d0911c
[ "Apache-2.0" ]
null
null
null
from __future__ import absolute_import, division, print_function, unicode_literals import os.path import pytest xr = pytest.importorskip('xarray') # noqa from cfgrib import cfgrib_ SAMPLE_DATA_FOLDER = os.path.join(os.path.dirname(__file__), 'sample-data') TEST_DATA = os.path.join(SAMPLE_DATA_FOLDER, 'era5-levels-members.grib') def test_CfGribDataStore(): datastore = cfgrib_.CfGribDataStore(TEST_DATA, encode_cf=()) expected = {'number': 10, 'dataDate': 2, 'dataTime': 2, 'level': 2, 'values': 7320} assert datastore.get_dimensions() == expected def test_xarray_open_dataset(): datastore = cfgrib_.CfGribDataStore(TEST_DATA, encode_cf=(), lock=cfgrib_.SerializableLock()) res = xr.open_dataset(datastore) assert res.attrs['GRIB_edition'] == 1 assert res['t'].attrs['GRIB_gridType'] == 'regular_ll' assert res['t'].attrs['GRIB_units'] == 'K' assert res['t'].dims == ('number', 'dataDate', 'dataTime', 'level', 'values') assert res['t'].mean() > 0.
31.34375
97
0.705882
0
0
0
0
0
0
0
0
207
0.206381
fb7b2416a898fcaefa5788048c29968341cc3540
4,578
py
Python
apps/stream_ty_gn_threaded/camera_processor.py
MichelleLau/ncappzoo
d222058e9bf16fbfa2670ff686d11fe521a976e0
[ "MIT" ]
1
2018-11-23T01:48:59.000Z
2018-11-23T01:48:59.000Z
apps/stream_ty_gn_threaded/camera_processor.py
MichelleLau/ncappzoo
d222058e9bf16fbfa2670ff686d11fe521a976e0
[ "MIT" ]
1
2018-03-25T19:36:41.000Z
2018-03-25T19:53:27.000Z
apps/stream_ty_gn_threaded/camera_processor.py
MichelleLau/ncappzoo
d222058e9bf16fbfa2670ff686d11fe521a976e0
[ "MIT" ]
1
2020-10-01T15:38:04.000Z
2020-10-01T15:38:04.000Z
#! /usr/bin/env python3 # Copyright(c) 2017 Intel Corporation. # License: MIT See LICENSE file in root directory. # NPS # pulls images from camera device and places them in a Queue # if the queue is full will start to skip camera frames. #import numpy as np import cv2 import queue import threading import time class camera_processor: # initializer for the class # Parameters: # output_queue is an instance of queue.Queue in which the camera # images will be placed # queue_put_wait_max is the max number of seconds to wait when putting # images into the output queue. # camera_index is the index of the camera in the system. if only one camera # it will typically be index 0 # request_video_width is the width to request for the camera stream # request_video_height is the height to request for the camera stream # queue_full_sleep_seconds is the number of seconds to sleep when the # output queue is full. def __init__(self, output_queue, queue_put_wait_max = 0.01, camera_index = 0, request_video_width=640, request_video_height = 480, queue_full_sleep_seconds = 0.1): self._queue_full_sleep_seconds = queue_full_sleep_seconds self._queue_put_wait_max = queue_put_wait_max self._camera_index = camera_index self._request_video_width = request_video_width self._request_video_height = request_video_height # create the camera device self._camera_device = cv2.VideoCapture(self._camera_index) if ((self._camera_device == None) or (not self._camera_device.isOpened())): print('\n\n') print('Error - could not open camera. Make sure it is plugged in.') print('Also, if you installed python opencv via pip or pip3 you') print('need to uninstall it and install from source with -D WITH_V4L=ON') print('Use the provided script: install-opencv-from_source.sh') print('\n\n') return # Request the dimensions self._camera_device.set(cv2.CAP_PROP_FRAME_WIDTH, self._request_video_width) self._camera_device.set(cv2.CAP_PROP_FRAME_HEIGHT, self._request_video_height) # save the actual dimensions self._actual_camera_width = self._camera_device.get(cv2.CAP_PROP_FRAME_WIDTH) self._actual_camera_height = self._camera_device.get(cv2.CAP_PROP_FRAME_HEIGHT) print('actual camera resolution: ' + str(self._actual_camera_width) + ' x ' + str(self._actual_camera_height)) self._output_queue = output_queue self._worker_thread = threading.Thread(target=self._do_work, args=()) # the width of the images that will be put in the queue def get_actual_camera_width(self): return self._actual_camera_width # the height of the images that will be put in the queue def get_actual_camera_height(self): return self._actual_camera_height # start reading from the camera and placing images in the output queue def start_processing(self): self._end_flag = False self._worker_thread.start() # stop reading from camera and placing images in the output queue def stop_processing(self): self._end_flag = True self._worker_thread.join() # thread target. when call start_processing this function will be called # in its own thread. it will keep working until stop_processing is called. # or an error is encountered. def _do_work(self): print('in camera_processor worker thread') if (self._camera_device == None): print('camera_processor camera_device is None, returning.') return while (not self._end_flag): try: ret_val, input_image = self._camera_device.read() if (not ret_val): print("No image from camera, exiting") break self._output_queue.put(input_image, True, self._queue_put_wait_max) except queue.Full: # the camera is probably way faster than the processing # so if our output queue is full sleep a little while before # trying the next image from the camera. time.sleep(self._queue_full_sleep_seconds) print('exiting camera_processor worker thread') # should be called once for each class instance when finished with it. def cleanup(self): # close camera self._camera_device.release()
42
118
0.676933
4,262
0.930974
0
0
0
0
0
0
2,033
0.44408
fb7bbc55fb1c9399f6c93d62c5a66100a843787f
175
py
Python
examples/domainby.py
ipfinder/ip-finder-python
48ba093801d244c12a4583c138d62c94355baf28
[ "Apache-2.0" ]
8
2019-07-12T22:20:49.000Z
2022-03-01T09:03:58.000Z
examples/domainby.py
ipfinder/ip-finder-python
48ba093801d244c12a4583c138d62c94355baf28
[ "Apache-2.0" ]
2
2019-08-29T23:24:57.000Z
2021-02-01T15:15:16.000Z
examples/domainby.py
ipfinder/ip-finder-python
48ba093801d244c12a4583c138d62c94355baf28
[ "Apache-2.0" ]
5
2019-07-12T23:01:03.000Z
2021-07-07T11:11:44.000Z
import ipfinder con = ipfinder.config('f67f788f8a02a188ec84502e0dff066ed4413a85') # YOUR_TOKEN_GOES_HERE # domain name by = 'DZ'; dby = con.getDomainBy(by) print(dby.all)
15.909091
88
0.771429
0
0
0
0
0
0
0
0
81
0.462857
fb7be7756110402e4a2ea628f2c6bc51fd0dd0f4
139
py
Python
manager.py
thangbk2209/pretraining_auto_scaling_ng
0b98b311c75ec4b87b3e8168f93eeb53ed0d16f5
[ "MIT" ]
null
null
null
manager.py
thangbk2209/pretraining_auto_scaling_ng
0b98b311c75ec4b87b3e8168f93eeb53ed0d16f5
[ "MIT" ]
null
null
null
manager.py
thangbk2209/pretraining_auto_scaling_ng
0b98b311c75ec4b87b3e8168f93eeb53ed0d16f5
[ "MIT" ]
null
null
null
""" Author: bkc@data_analysis Project: autoencoder_ng Created: 7/29/20 10:51 Purpose: START SCRIPT FOR AUTOENCODER_NG PROJECT """
19.857143
50
0.726619
0
0
0
0
0
0
0
0
138
0.992806
fb7dc85f21a97ece3e0b036a3c4e6d6962f9001a
49
py
Python
netvisor_api_client/schemas/sales_payments/__init__.py
kiuru/netvisor-api-client
2af3e4ca400497ace5a86d0a1807ec3b9c530cf4
[ "MIT" ]
5
2019-04-17T08:10:47.000Z
2021-11-27T12:26:15.000Z
netvisor_api_client/schemas/sales_payments/__init__.py
kiuru/netvisor-api-client
2af3e4ca400497ace5a86d0a1807ec3b9c530cf4
[ "MIT" ]
7
2019-06-25T17:02:50.000Z
2021-07-21T10:14:38.000Z
netvisor_api_client/schemas/sales_payments/__init__.py
kiuru/netvisor-api-client
2af3e4ca400497ace5a86d0a1807ec3b9c530cf4
[ "MIT" ]
10
2019-06-25T15:37:33.000Z
2021-10-16T19:40:37.000Z
from .list import SalesPaymentListSchema # noqa
24.5
48
0.816327
0
0
0
0
0
0
0
0
6
0.122449
fb7ec52a5b793917a80604774ec9ccdc87a89f1d
858
py
Python
derive_cubic.py
vuonglv1612/page-dewarp
68063db040ba97964a22f68a6056467dacd2952f
[ "MIT" ]
9
2021-05-15T21:18:03.000Z
2022-03-31T16:56:36.000Z
derive_cubic.py
vuonglv1612/page-dewarp
68063db040ba97964a22f68a6056467dacd2952f
[ "MIT" ]
5
2021-04-23T17:59:23.000Z
2021-05-23T17:03:40.000Z
derive_cubic.py
vuonglv1612/page-dewarp
68063db040ba97964a22f68a6056467dacd2952f
[ "MIT" ]
3
2022-02-22T12:09:49.000Z
2022-03-16T21:33:49.000Z
import numpy as np from matplotlib import pyplot as plt from sympy import symbols, solve a, b, c, d, x, α, β = symbols("a b c d x α β") # polynomial function f(x) = ax³ + bx² + cx + d f = a * x ** 3 + b * x ** 2 + c * x + d fp = f.diff(x) # derivative f'(x) # evaluate both at x=0 and x=1 f0, f1 = [f.subs(x, i) for i in range(2)] fp0, fp1 = [fp.subs(x, i) for i in range(2)] # we want a, b, c, d such that the following conditions hold: # # f(0) = 0 # f(1) = 0 # f'(0) = α # f'(1) = β S = solve([f0, f1, fp0 - α, fp1 - β], [a, b, c, d]) # print the analytic solution and plot a graphical example coeffs = [] num_α = 0.3 num_β = -0.03 for key in [a, b, c, d]: print(key, "=", S[key]) coeffs.append(S[key].subs(dict(α=num_α, β=num_β))) xvals = np.linspace(0, 1, 101) yvals = np.polyval(coeffs, xvals) plt.plot(xvals, yvals) plt.show()
21.45
61
0.581585
0
0
0
0
0
0
0
0
285
0.326087
fb80aeb666b891b4a2d73d6188ae90784a764de1
13,614
py
Python
test/test_admin.py
image72/browserscope
44a63558ee376704d996851099bc7703128201cc
[ "Apache-2.0" ]
22
2015-10-26T15:20:37.000Z
2022-03-11T06:38:17.000Z
test/test_admin.py
image72/browserscope
44a63558ee376704d996851099bc7703128201cc
[ "Apache-2.0" ]
10
2016-01-22T18:46:19.000Z
2019-07-19T12:49:51.000Z
test/test_admin.py
mcauer/browserscope
a9c0e1a250774f14689e06f93ad274d0b9d725e4
[ "Apache-2.0" ]
12
2015-10-17T09:40:44.000Z
2019-06-08T19:54:36.000Z
#!/usr/bin/python2.5 # # Copyright 2009 Google Inc. # # Licensed under the Apache License, Version 2.0 (the 'License') # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an 'AS IS' BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Test admin_rankers.""" __author__ = 'slamm@google.com (Stephen Lamm)' import datetime import logging import unittest import mock_data import settings from django.test.client import Client from django.utils import simplejson from google.appengine.api import memcache from google.appengine.ext import db from categories import all_test_sets from models import result_stats from models.result import ResultParent from models.result import ResultTime from models.user_agent import UserAgent from third_party import mox from base import admin USER_AGENT_STRINGS = { 'Firefox 3.0.6': ('Mozilla/5.0 (X11; U; Linux i686; en-US; rv:1.9.0.6) ' 'Gecko/2009011912 Firefox/3.0.6'), 'Firefox 3.5': ('Mozilla/5.0 (X11; U; Linux i686; en-US; rv:1.9.0.6) ' 'Gecko/2009011912 Firefox/3.5'), 'Firefox 3.0.9': ('Mozilla/5.0 (X11; U; Linux i686; en-US; rv:1.9.0.6) ' 'Gecko/2009011912 Firefox/3.0.9'), } class TestConfirmUa(unittest.TestCase): def setUp(self): self.client = Client() ua_string = ('Mozilla/5.0 (X11 U Linux armv6l de-DE rv:1.9a6pre) ' 'Gecko/20080606 ' 'Firefox/3.0a1 Tablet browser 0.3.7 ' 'RX-34+RX-44+RX-48_DIABLO_4.2008.23-14') self.ua = UserAgent.factory(ua_string) def testConfirmBasic(self): params = { 'submit': 1, 'ac_%s' % self.ua.key(): 'confirm', 'cht_%s' % self.ua.key(): '', 'csrf_token': self.client.get('/get_csrf').content, } response = self.client.get('/admin/confirm-ua', params) self.assertEqual(302, response.status_code) self.assertTrue(self.ua.get(self.ua.key()).confirmed) class TestDataDump(unittest.TestCase): def setUp(self): self.test_set = mock_data.MockTestSet() all_test_sets.AddTestSet(self.test_set) self.client = Client() def tearDown(self): all_test_sets.RemoveTestSet(self.test_set) def testNoParamsGivesError(self): params = {} response = self.client.get('/admin/data_dump', params) self.assertEqual(400, response.status_code) def testNoModelGivesError(self): params = {'keys': 'car,home,heart'} response = self.client.get('/admin/data_dump', params) self.assertEqual(400, response.status_code) def testNonExistentKeyIsMarkedLost(self): for model in ('ResultParent', 'UserAgent'): params = { 'keys': 'agt1YS1wcm9maWxlcnIRCxIJVXNlckFnZW50GN6JIgw', 'model': model} response = self.client.get('/admin/data_dump', params) self.assertEqual(200, response.status_code) response_params = simplejson.loads(response.content) expected_data = [{ 'model_class': model, 'lost_key': 'agt1YS1wcm9maWxlcnIRCxIJVXNlckFnZW50GN6JIgw', }] self.assertEqual(expected_data, response_params['data']) def testDumpAll(self): keys = [] for scores in ((1, 4, 50), (1, 1, 20), (0, 2, 30), (1, 0, 10), (1, 3, 10)): result = ResultParent.AddResult( self.test_set, '1.2.2.5', mock_data.GetUserAgentString('Firefox 3.5'), 'apple=%s,banana=%s,coconut=%s' % scores) keys.append(str(result.key())) params = { 'model': 'ResultParent', 'keys': ','.join(keys), } response = self.client.get('/admin/data_dump', params) self.assertEqual(200, response.status_code) response_params = simplejson.loads(response.content) self.assertEqual(20, len(response_params['data'])) # 5 parents + 15 times class TestDataDumpKeys(unittest.TestCase): def setUp(self): self.test_set = mock_data.MockTestSet() all_test_sets.AddTestSet(self.test_set) self.client = Client() def tearDown(self): all_test_sets.RemoveTestSet(self.test_set) def testCreated(self): created_base = datetime.datetime(2009, 9, 9, 9, 9, 0) keys = [] for scores in ((0, 10, 100), (1, 20, 200)): ip = '1.2.2.%s' % scores[1] result = ResultParent.AddResult( self.test_set, ip, mock_data.GetUserAgentString('Firefox 3.5'), 'apple=%s,banana=%s,coconut=%s' % scores, created=created_base + datetime.timedelta(seconds=scores[1])) keys.append(str(result.key())) params = { 'model': 'ResultParent', 'created': created_base + datetime.timedelta(seconds=15), } response = self.client.get('/admin/data_dump_keys', params) self.assertEqual(200, response.status_code) response_params = simplejson.loads(response.content) self.assertEqual(None, response_params['bookmark']) self.assertEqual(keys[1:], response_params['keys']) def testBookmarkRestart(self): expected_keys = [] for scores in ((1, 4, 50), (1, 1, 20), (0, 2, 30), (1, 0, 10), (1, 3, 10)): result = ResultParent.AddResult( self.test_set, '1.2.2.5', mock_data.GetUserAgentString('Firefox 3.5'), 'apple=%s,banana=%s,coconut=%s' % scores) expected_keys.append(str(result.key())) params = { 'model': 'ResultParent', 'fetch_limit': '3' } response = self.client.get('/admin/data_dump_keys', params) keys = [] self.assertEqual(200, response.status_code) response_params = simplejson.loads(response.content) self.assertNotEqual(None, response_params['bookmark']) keys.extend(response_params['keys']) self.assertEqual(3, len(keys)) del response_params['keys'] response = self.client.get('/admin/data_dump_keys', response_params) self.assertEqual(200, response.status_code) response_params = simplejson.loads(response.content) self.assertEqual(None, response_params['bookmark']) keys.extend(response_params['keys']) self.assertEqual(sorted(expected_keys), sorted(keys)) class TestUploadCategoryBrowsers(unittest.TestCase): def setUp(self): self.client = Client() self.manager = result_stats.CategoryBrowserManager self.mox = mox.Mox() def tearDown(self): self.mox.UnsetStubs() def testNoBrowsersGivesError(self): params = {} response = self.client.get('/admin/upload_category_browsers', params) self.assertTrue('Must set "browsers"' in response.content) self.assertEqual(500, response.status_code) def testNoCategoryGivesError(self): params = { 'version_level': 4, 'browsers': 'Firefox,IE', } response = self.client.get('/admin/upload_category_browsers', params) self.assertEqual('Must set "category".', response.content) self.assertEqual(500, response.status_code) def testBadVersionLevelGivesError(self): params = { 'category': 'network', 'version_level': 4, 'browsers': 'Firefox,IE', } response = self.client.get('/admin/upload_category_browsers', params) self.assertTrue('Version level' in response.content) self.assertEqual(500, response.status_code) def testNoBrowsersGivesError(self): params = { 'category': 'network', 'version_level': 0, } response = self.client.get('/admin/upload_category_browsers', params) self.assertTrue('Must set "browsers"' in response.content) self.assertEqual(500, response.status_code) def testBasic(self): self.mox.StubOutWithMock( result_stats.CategoryBrowserManager, 'UpdateSummaryBrowsers') categories = [ts.category for ts in all_test_sets.GetVisibleTestSets()] # Use mox to make sure UpdateSummaryBrowsers gets called. result_stats.CategoryBrowserManager.UpdateSummaryBrowsers(categories) self.mox.ReplayAll() params = { 'category': 'network', 'version_level': 0, 'browsers': 'IE,Firefox', } response = self.client.get('/admin/upload_category_browsers', params) self.assertEqual('Success.', response.content) self.assertEqual(200, response.status_code) self.assertEqual(['Firefox', 'IE'], self.manager.GetBrowsers('network', 0)) self.mox.VerifyAll() class TestUpdateStatsCache(unittest.TestCase): def setUp(self): self.client = Client() self.mox = mox.Mox() self.manager = result_stats.CategoryStatsManager def tearDown(self): self.mox.UnsetStubs() def testNoCategoryGivesError(self): params = { 'browsers': 'Firefox,IE', } response = self.client.get('/admin/update_stats_cache', params) self.assertEqual('Must set "category".', response.content) self.assertEqual(500, response.status_code) def testNoBrowsersGivesError(self): params = { 'category': 'network', } response = self.client.get('/admin/update_stats_cache', params) self.assertTrue('Must set "browsers"' in response.content) self.assertEqual(500, response.status_code) def testBasic(self): self.mox.StubOutWithMock(self.manager, 'UpdateStatsCache') self.manager.UpdateStatsCache('network', ['IE']).InAnyOrder() self.manager.UpdateStatsCache('network', ['Firefox']).InAnyOrder() params = { 'category': 'network', 'browsers': 'IE,Firefox', } self.mox.ReplayAll() response = self.client.get('/admin/update_stats_cache', params) self.mox.VerifyAll() self.assertEqual('Success.', response.content) self.assertEqual(200, response.status_code) class TestUpdateAllUncachedStats(unittest.TestCase): def setUp(self): self.test_set_1 = mock_data.MockTestSet(category='foo') self.test_set_2 = mock_data.MockTestSet(category='bar') all_test_sets.AddTestSet(self.test_set_1) all_test_sets.AddTestSet(self.test_set_2) self.client = Client() def tearDown(self): all_test_sets.RemoveTestSet(self.test_set_1) all_test_sets.RemoveTestSet(self.test_set_2) def testUpdateAllUncachedStats(self): category_browsers = { self.test_set_1: ('Firefox 2.5.1', 'Firefox 3.0.7', 'Firefox 3.1.7', 'Firefox 3.1.8', 'Firefox 3.5', 'IE 7.0'), self.test_set_2: ('Firefox 2.5.1', 'Firefox 3.5', 'IE 7.0'), } for test_set, browsers in category_browsers.items(): for browser in browsers: ua = mock_data.GetUserAgentString(browser) result = ResultParent.AddResult( test_set, '1.2.2.5', ua, 'apple=1,banana=1,coconut=1') params = {'categories': 'foo,bar'} response = self.client.get('/admin/update_all_uncached_stats', params) # Instead of checking actual stats, I tried to mock out UpdateStatsCache # as is done in testBasic. However, it did not work for some unknown reason. # it would not verify the calls. VerifyAll succeeded no matter what I called # or did not call. Grrr. expected_stats = { 'summary_display': '3', 'total_runs': 5, 'summary_score': 104, 'results': { 'apple': {'score': 100, 'raw_score': 1, 'display': 'yes'}, 'banana': {'score': 2, 'raw_score': 1, 'display': 'd:2'}, 'coconut': {'score': 2, 'raw_score': 1, 'display': 'd:2'}, } } self.assertEqual( expected_stats, memcache.get('Firefox', **result_stats.CategoryStatsManager.MemcacheParams('foo'))) class TestUpdateAllStatsCache(unittest.TestCase): def setUp(self): self.test_set_1 = mock_data.MockTestSet(category='foo') self.test_set_2 = mock_data.MockTestSet(category='bar') all_test_sets.AddTestSet(self.test_set_1) all_test_sets.AddTestSet(self.test_set_2) self.client = Client() def tearDown(self): all_test_sets.RemoveTestSet(self.test_set_1) all_test_sets.RemoveTestSet(self.test_set_2) def testUpdateAllStatsCache(self): category_browsers = { self.test_set_1: ('Firefox 2.5.1', 'Firefox 3.0.7', 'Firefox 3.1.7', 'Firefox 3.1.8', 'Firefox 3.5', 'IE 7.0'), self.test_set_2: ('Firefox 2.5.1', 'Firefox 3.5', 'IE 7.0'), } for test_set, browsers in category_browsers.items(): for browser in browsers: ua = mock_data.GetUserAgentString(browser) result = ResultParent.AddResult( test_set, '1.2.2.5', ua, 'apple=1,banana=1,coconut=1') params = {'categories': 'foo,bar'} response = self.client.get('/admin/update_all_stats_cache', params) # Instead of checking actual stats, I tried to mock out UpdateStatsCache # as is done in testBasic. However, it did not work for some unknown reason. # it would not verify the calls. VerifyAll succeeded no matter what I called # or did not call. Grrr. expected_stats = { 'summary_display': '3', 'total_runs': 5, 'summary_score': 104, 'results': { 'apple': {'score': 100, 'raw_score': 1, 'display': 'yes'}, 'banana': {'score': 2, 'raw_score': 1, 'display': 'd:2'}, 'coconut': {'score': 2, 'raw_score': 1, 'display': 'd:2'}, } } self.assertEqual( expected_stats, memcache.get('Firefox', **result_stats.CategoryStatsManager.MemcacheParams('foo')))
36.40107
80
0.659027
12,023
0.883135
0
0
0
0
0
0
3,935
0.289041
fb8120f79917456a521cb4d10307f0c3faeada82
3,198
py
Python
ml/rl/models/example_sequence_model.py
ccphillippi/Horizon
a18d8941f663eea55488781c804e6305a36f1b58
[ "BSD-3-Clause" ]
1
2020-07-30T06:15:20.000Z
2020-07-30T06:15:20.000Z
ml/rl/models/example_sequence_model.py
ccphillippi/Horizon
a18d8941f663eea55488781c804e6305a36f1b58
[ "BSD-3-Clause" ]
null
null
null
ml/rl/models/example_sequence_model.py
ccphillippi/Horizon
a18d8941f663eea55488781c804e6305a36f1b58
[ "BSD-3-Clause" ]
1
2019-06-05T15:52:18.000Z
2019-06-05T15:52:18.000Z
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. import logging from dataclasses import dataclass from typing import Dict, List import torch import torch.nn as nn from ml.rl import types as rlt from ml.rl.models.base import ModelBase logger = logging.getLogger(__name__) HISTORY_LENGTH = 5 @dataclass class VideoIDFeatures(rlt.IdFeatureBase): page_id: rlt.ValueType @classmethod def get_feature_config(cls) -> Dict[str, rlt.IdFeatureConfig]: return {"page_id": rlt.IdFeatureConfig(feature_id=2002, id_mapping_name="page")} @dataclass class WatchedVideoSequence(rlt.SequenceFeatureBase): id_features: VideoIDFeatures @classmethod def get_max_length(cls) -> int: return HISTORY_LENGTH @classmethod def get_float_feature_infos(cls) -> List[rlt.FloatFeatureInfo]: return [ rlt.FloatFeatureInfo(name="f{}".format(f_id), feature_id=f_id) for f_id in [1001, 1002] ] @dataclass class SequenceFeatures(rlt.SequenceFeatures): """ The whole class hierarchy can be created dynamically from config. Another diff will show this. """ watched_videos: WatchedVideoSequence @dataclass class ExampleSequenceModelOutput: value: torch.Tensor class ExampleSequenceModel(ModelBase): def __init__(self, state_dim): super().__init__() self.state_dim = state_dim self.embedding_dim = 4 self.history_length = HISTORY_LENGTH self.embedding_size = 20 self.page_embedding = nn.Embedding(self.embedding_size, self.embedding_dim) self.hidden_size = 10 # ONNX cannot export batch_first=True self.gru = nn.GRU( self.embedding_dim + len(WatchedVideoSequence.get_float_feature_infos()), self.hidden_size, ) self.linear = nn.Linear(10 + self.state_dim, 1) def input_prototype(self): return rlt.StateInput( state=rlt.FeatureVector( float_features=torch.randn(1, self.state_dim), sequence_features=SequenceFeatures.prototype(), ) ) def feature_config(self): return rlt.ModelFeatureConfig( id_mapping_config={ "page": rlt.IdMapping(ids=list(range(100, 100 + self.embedding_size))) }, sequence_features_type=SequenceFeatures, ) def forward(self, state): page_embedding = self.page_embedding( state.state.sequence_features.watched_videos.id_features.page_id ) gru_input = torch.cat( ( page_embedding, state.state.sequence_features.watched_videos.float_features, ), dim=2, ).transpose(0, 1) h_0 = torch.zeros(1, gru_input.shape[1], self.hidden_size) gru_output, h_n = self.gru(gru_input, h_0) last_gru_output = gru_output[-1, :, :] float_features = state.state.float_features linear_input = torch.cat((float_features, last_gru_output), dim=1) value = self.linear(linear_input) return ExampleSequenceModelOutput(value=value)
29.072727
88
0.6601
2,797
0.874609
0
0
943
0.294872
0
0
270
0.084428
fb8171ca82d4da70cd7cdba0a82012d267002dc5
4,227
py
Python
compuG/transformacionesPCarte copia.py
alejoso76/Computaci-n-gr-fica
474a498a328b8951aa0bfa1db2d0d1f3d8cc914b
[ "MIT" ]
null
null
null
compuG/transformacionesPCarte copia.py
alejoso76/Computaci-n-gr-fica
474a498a328b8951aa0bfa1db2d0d1f3d8cc914b
[ "MIT" ]
null
null
null
compuG/transformacionesPCarte copia.py
alejoso76/Computaci-n-gr-fica
474a498a328b8951aa0bfa1db2d0d1f3d8cc914b
[ "MIT" ]
null
null
null
import pygame import math #Dibuja triangulo y lo escala con el teclado ANCHO=600 ALTO=480 def dibujarPlano(o, pantalla): pygame.draw.line(pantalla, [0, 255, 0], [o[0], 0], [o[0], 480] ) pygame.draw.line(pantalla, [0, 255, 0], [0, o[1]], [640, o[1]] ) def dibujarTriangulo(a, b, c, plano): ''' pygame.draw.line(plano, [0, 255, 0], [a[0], a[1]], [b[0], b[1]] ) pygame.draw.line(plano, [0, 255, 0], [b[0], b[1]], [c[0], c[1]] ) pygame.draw.line(plano, [0, 255, 0], [c[0], c[1]], [a[0], a[1]] ) ''' pygame.draw.polygon(plano, [0, 255, 0], [a,b,c]) pygame.display.flip() return a, b, c def mostrarPos(): pos=pygame.mouse.get_pos() return pos def escalarPunto (a, factor): x=a[0]*factor y=a[1]*factor return x, y def rotacionHoraria(a): #xcos+ysen, -xsen+ycos x=int(a[0]*math.cos(math.pi/2) + a[1]*math.sin(math.pi/2)) y=int(-(a[0]*math.sin(math.pi/2)) + a[1]*math.cos(math.pi/2)) return x, y def rotacionAntiHoraria(a): #xcos-ysen, xsen+ycos x=int(a[0]*math.cos(math.pi/2) - a[1]*math.sin(math.pi/2)) y=int(a[0]*math.sin(math.pi/2) + a[1]*math.cos(math.pi/2)) return x, y def calcularPosPlano(o, pos): x=pos[0]-o[0] y=-1*(pos[1]-o[1]) return x, y def calcularPosPantalla(o, p): x=o[0]+p[0] y=o[1]-p[1] return x, y if __name__ == '__main__': pygame.init() pantalla=pygame.display.set_mode([ANCHO, ALTO]) #Crea la ventana o=[ANCHO/2, ALTO/2] dibujarPlano(o, pantalla) pygame.display.flip() print 'Funciona' cont=0 lista=[] fin=False while not fin: for event in pygame.event.get(): if event.type == pygame.QUIT: fin=True if event.type == pygame.MOUSEBUTTONDOWN: cont+=1 lista.append(mostrarPos()) if event.type == pygame.KEYDOWN: if event.key==pygame.K_RIGHT: pantalla.fill([0, 0, 0]) dibujarPlano(o, pantalla) pygame.display.flip() puntos=lista puntos[0]=calcularPosPlano(o, puntos[0]) puntos[1]=calcularPosPlano(o, puntos[1]) puntos[2]=calcularPosPlano(o, puntos[2]) ''' print 'Puntos iniciales:' print puntos ''' puntos[0]=rotacionHoraria(puntos[0]) puntos[1]=rotacionHoraria(puntos[1]) puntos[2]=rotacionHoraria(puntos[2]) puntos[0]=calcularPosPantalla(o, puntos[0]) puntos[1]=calcularPosPantalla(o, puntos[1]) puntos[2]=calcularPosPantalla(o, puntos[2]) '''' print 'Puntos finales:' print puntos ''' dibujarTriangulo(puntos[0], puntos[1], puntos[2], pantalla) if event.key==pygame.K_LEFT: pantalla.fill([0, 0, 0]) dibujarPlano(o, pantalla) pygame.display.flip() puntos=lista puntos[0]=calcularPosPlano(o, puntos[0]) puntos[1]=calcularPosPlano(o, puntos[1]) puntos[2]=calcularPosPlano(o, puntos[2]) ''' print 'Puntos iniciales:' print puntos ''' puntos[0]=rotacionAntiHoraria(puntos[0]) puntos[1]=rotacionAntiHoraria(puntos[1]) puntos[2]=rotacionAntiHoraria(puntos[2]) puntos[0]=calcularPosPantalla(o, puntos[0]) puntos[1]=calcularPosPantalla(o, puntos[1]) puntos[2]=calcularPosPantalla(o, puntos[2]) ''' print 'Puntos finales:' print puntos ''' dibujarTriangulo(puntos[0], puntos[1], puntos[2], pantalla) if cont==3: dibujarTriangulo(lista[0], lista[1], lista[2], pantalla) cont=0 #lista=[]
32.767442
79
0.492548
0
0
0
0
0
0
0
0
774
0.183109
fb81ef1eb1f00a9abc20cdf31b290c4e33722c10
10,692
py
Python
eval.py
CLT29/pvse
bf5232148396ee5051564ef68a48538de0ddbc84
[ "MIT" ]
119
2019-06-18T19:10:04.000Z
2022-03-25T02:24:26.000Z
eval.py
CLT29/pvse
bf5232148396ee5051564ef68a48538de0ddbc84
[ "MIT" ]
18
2019-08-28T09:32:24.000Z
2021-09-08T15:25:01.000Z
eval.py
CLT29/pvse
bf5232148396ee5051564ef68a48538de0ddbc84
[ "MIT" ]
19
2019-07-11T08:19:18.000Z
2022-02-07T12:59:05.000Z
from __future__ import print_function import os, sys import pickle import time import glob import numpy as np import torch from model import PVSE from loss import cosine_sim, order_sim from vocab import Vocabulary from data import get_test_loader from logger import AverageMeter from option import parser, verify_input_args ORDER_BATCH_SIZE = 100 def encode_data(model, data_loader, use_gpu=False): """Encode all images and sentences loadable by data_loader""" # switch to evaluate mode model.eval() use_mil = model.module.mil if hasattr(model, 'module') else model.mil # numpy array to keep all the embeddings img_embs, txt_embs = None, None for i, data in enumerate(data_loader): img, txt, txt_len, ids = data if torch.cuda.is_available(): img, txt, txt_len = img.cuda(), txt.cuda(), txt_len.cuda() # compute the embeddings img_emb, txt_emb, _, _, _, _ = model.forward(img, txt, txt_len) del img, txt, txt_len # initialize the output embeddings if img_embs is None: if use_gpu: emb_sz = [len(data_loader.dataset), img_emb.size(1), img_emb.size(2)] \ if use_mil else [len(data_loader.dataset), img_emb.size(1)] img_embs = torch.zeros(emb_sz, dtype=img_emb.dtype, requires_grad=False).cuda() txt_embs = torch.zeros(emb_sz, dtype=txt_emb.dtype, requires_grad=False).cuda() else: emb_sz = (len(data_loader.dataset), img_emb.size(1), img_emb.size(2)) \ if use_mil else (len(data_loader.dataset), img_emb.size(1)) img_embs = np.zeros(emb_sz) txt_embs = np.zeros(emb_sz) # preserve the embeddings by copying from gpu and converting to numpy img_embs[ids] = img_emb if use_gpu else img_emb.data.cpu().numpy().copy() txt_embs[ids] = txt_emb if use_gpu else txt_emb.data.cpu().numpy().copy() return img_embs, txt_embs def i2t(images, sentences, nreps=1, npts=None, return_ranks=False, order=False, use_gpu=False): """ Images->Text (Image Annotation) Images: (nreps*N, K) matrix of images Captions: (nreps*N, K) matrix of sentences """ if use_gpu: assert not order, 'Order embedding not supported in GPU mode' if npts is None: npts = int(images.shape[0] / nreps) index_list = [] ranks, top1 = np.zeros(npts), np.zeros(npts) for index in range(npts): # Get query image im = images[nreps * index] im = im.reshape((1,) + im.shape) # Compute scores if use_gpu: if len(sentences.shape) == 2: sim = im.mm(sentences.t()).view(-1) else: _, K, D = im.shape sim_kk = im.view(-1, D).mm(sentences.view(-1, D).t()) sim_kk = sim_kk.view(im.size(0), K, sentences.size(0), K) sim_kk = sim_kk.permute(0,1,3,2).contiguous() sim_kk = sim_kk.view(im.size(0), -1, sentences.size(0)) sim, _ = sim_kk.max(dim=1) sim = sim.flatten() else: if order: if index % ORDER_BATCH_SIZE == 0: mx = min(images.shape[0], nreps * (index + ORDER_BATCH_SIZE)) im2 = images[nreps * index:mx:nreps] sim_batch = order_sim(torch.Tensor(im2).cuda(), torch.Tensor(sentences).cuda()) sim_batch = sim_batch.cpu().numpy() sim = sim_batch[index % ORDER_BATCH_SIZE] else: sim = np.tensordot(im, sentences, axes=[2, 2]).max(axis=(0,1,3)).flatten() \ if len(sentences.shape) == 3 else np.dot(im, sentences.T).flatten() if use_gpu: _, inds_gpu = sim.sort() inds = inds_gpu.cpu().numpy().copy()[::-1] else: inds = np.argsort(sim)[::-1] index_list.append(inds[0]) # Score rank = 1e20 for i in range(nreps * index, nreps * (index + 1), 1): tmp = np.where(inds == i)[0][0] if tmp < rank: rank = tmp ranks[index] = rank top1[index] = inds[0] # Compute metrics r1 = 100.0 * len(np.where(ranks < 1)[0]) / len(ranks) r5 = 100.0 * len(np.where(ranks < 5)[0]) / len(ranks) r10 = 100.0 * len(np.where(ranks < 10)[0]) / len(ranks) medr = np.floor(np.median(ranks)) + 1 meanr = ranks.mean() + 1 if return_ranks: return (r1, r5, r10, medr, meanr), (ranks, top1) else: return (r1, r5, r10, medr, meanr) def t2i(images, sentences, nreps=1, npts=None, return_ranks=False, order=False, use_gpu=False): """ Text->Images (Image Search) Images: (nreps*N, K) matrix of images Captions: (nreps*N, K) matrix of sentences """ if use_gpu: assert not order, 'Order embedding not supported in GPU mode' if npts is None: npts = int(images.shape[0] / nreps) if use_gpu: ims = torch.stack([images[i] for i in range(0, len(images), nreps)]) else: ims = np.array([images[i] for i in range(0, len(images), nreps)]) ranks, top1 = np.zeros(nreps * npts), np.zeros(nreps * npts) for index in range(npts): # Get query sentences queries = sentences[nreps * index:nreps * (index + 1)] # Compute scores if use_gpu: if len(sentences.shape) == 2: sim = queries.mm(ims.t()) else: sim_kk = queries.view(-1, queries.size(-1)).mm(ims.view(-1, ims.size(-1)).t()) sim_kk = sim_kk.view(queries.size(0), queries.size(1), ims.size(0), ims.size(1)) sim_kk = sim_kk.permute(0,1,3,2).contiguous() sim_kk = sim_kk.view(queries.size(0), -1, ims.size(0)) sim, _ = sim_kk.max(dim=1) else: if order: if nreps * index % ORDER_BATCH_SIZE == 0: mx = min(sentences.shape[0], nreps * index + ORDER_BATCH_SIZE) sentences_batch = sentences[nreps * index:mx] sim_batch = order_sim(torch.Tensor(images).cuda(), torch.Tensor(sentences_batch).cuda()) sim_batch = sim_batch.cpu().numpy() sim = sim_batch[:, (nreps * index) % ORDER_BATCH_SIZE:(nreps * index) % ORDER_BATCH_SIZE + nreps].T else: sim = np.tensordot(queries, ims, axes=[2, 2]).max(axis=(1,3)) \ if len(sentences.shape) == 3 else np.dot(queries, ims.T) inds = np.zeros(sim.shape) for i in range(len(inds)): if use_gpu: _, inds_gpu = sim[i].sort() inds[i] = inds_gpu.cpu().numpy().copy()[::-1] else: inds[i] = np.argsort(sim[i])[::-1] ranks[nreps * index + i] = np.where(inds[i] == index)[0][0] top1[nreps * index + i] = inds[i][0] # Compute metrics r1 = 100.0 * len(np.where(ranks < 1)[0]) / len(ranks) r5 = 100.0 * len(np.where(ranks < 5)[0]) / len(ranks) r10 = 100.0 * len(np.where(ranks < 10)[0]) / len(ranks) medr = np.floor(np.median(ranks)) + 1 meanr = ranks.mean() + 1 if return_ranks: return (r1, r5, r10, medr, meanr), (ranks, top1) else: return (r1, r5, r10, medr, meanr) def convert_old_state_dict(x, model, multi_gpu=False): params = model.state_dict() prefix = ['module.img_enc.', 'module.txt_enc.'] \ if multi_gpu else ['img_enc.', 'txt_enc.'] for i, old_params in enumerate(x): for key, val in old_params.items(): key = prefix[i] + key.replace('module.','').replace('our_model', 'pie_net') assert key in params, '{} not found in model state_dict'.format(key) params[key] = val return params def evalrank(model, args, split='test'): print('Loading dataset') data_loader = get_test_loader(args, vocab) print('Computing results... (eval_on_gpu={})'.format(args.eval_on_gpu)) img_embs, txt_embs = encode_data(model, data_loader, args.eval_on_gpu) n_samples = img_embs.shape[0] nreps = 5 if args.data_name == 'coco' else 1 print('Images: %d, Sentences: %d' % (img_embs.shape[0] / nreps, txt_embs.shape[0])) # 5fold cross-validation, only for MSCOCO mean_metrics = None if args.data_name == 'coco': results = [] for i in range(5): r, rt0 = i2t(img_embs[i*5000:(i + 1)*5000], txt_embs[i*5000:(i + 1)*5000], nreps=nreps, return_ranks=True, order=args.order, use_gpu=args.eval_on_gpu) r = (r[0], r[1], r[2], r[3], r[3] / n_samples, r[4], r[4] / n_samples) print("Image to text: %.2f, %.2f, %.2f, %.2f (%.2f), %.2f (%.2f)" % r) ri, rti0 = t2i(img_embs[i*5000:(i + 1)*5000], txt_embs[i*5000:(i + 1)*5000], nreps=nreps, return_ranks=True, order=args.order, use_gpu=args.eval_on_gpu) if i == 0: rt, rti = rt0, rti0 ri = (ri[0], ri[1], ri[2], ri[3], ri[3] / n_samples, ri[4], ri[4] / n_samples) print("Text to image: %.2f, %.2f, %.2f, %.2f (%.2f), %.2f (%.2f)" % ri) ar = (r[0] + r[1] + r[2]) / 3 ari = (ri[0] + ri[1] + ri[2]) / 3 rsum = r[0] + r[1] + r[2] + ri[0] + ri[1] + ri[2] print("rsum: %.2f ar: %.2f ari: %.2f" % (rsum, ar, ari)) results += [list(r) + list(ri) + [ar, ari, rsum]] mean_metrics = tuple(np.array(results).mean(axis=0).flatten()) print("-----------------------------------") print("Mean metrics from 5-fold evaluation: ") print("rsum: %.2f" % (mean_metrics[-1] * 6)) print("Average i2t Recall: %.2f" % mean_metrics[-3]) print("Image to text: %.2f %.2f %.2f %.2f (%.2f) %.2f (%.2f)" % mean_metrics[:7]) print("Average t2i Recall: %.2f" % mean_metrics[-2]) print("Text to image: %.2f %.2f %.2f %.2f (%.2f) %.2f (%.2f)" % mean_metrics[7:14]) # no cross-validation, full evaluation r, rt = i2t(img_embs, txt_embs, nreps=nreps, return_ranks=True, use_gpu=args.eval_on_gpu) ri, rti = t2i(img_embs, txt_embs, nreps=nreps, return_ranks=True, use_gpu=args.eval_on_gpu) ar = (r[0] + r[1] + r[2]) / 3 ari = (ri[0] + ri[1] + ri[2]) / 3 rsum = r[0] + r[1] + r[2] + ri[0] + ri[1] + ri[2] r = (r[0], r[1], r[2], r[3], r[3] / n_samples, r[4], r[4] / n_samples) ri = (ri[0], ri[1], ri[2], ri[3], ri[3] / n_samples, ri[4], ri[4] / n_samples) print("rsum: %.2f" % rsum) print("Average i2t Recall: %.2f" % ar) print("Image to text: %.2f %.2f %.2f %.2f (%.2f) %.2f (%.2f)" % r) print("Average t2i Recall: %.2f" % ari) print("Text to image: %.2f %.2f %.2f %.2f (%.2f) %.2f (%.2f)" % ri) return mean_metrics if __name__ == '__main__': multi_gpu = torch.cuda.device_count() > 1 args = verify_input_args(parser.parse_args()) opt = verify_input_args(parser.parse_args()) # load vocabulary used by the model with open('./vocab/%s_vocab.pkl' % args.data_name, 'rb') as f: vocab = pickle.load(f) args.vocab_size = len(vocab) # load model and options assert os.path.isfile(args.ckpt) model = PVSE(vocab.word2idx, args) if torch.cuda.is_available(): model = torch.nn.DataParallel(model).cuda() if multi_gpu else model torch.backends.cudnn.benchmark = True model.load_state_dict(torch.load(args.ckpt)) # evaluate metrics = evalrank(model, args, split='test')
36.742268
107
0.607931
0
0
0
0
0
0
0
0
1,693
0.158343
fb82fbf2f9c2c62b4641f184634a4204b573ebe0
13,286
py
Python
paddlex/ppdet/modeling/heads/detr_head.py
xiaolao/PaddleX
4fa58cd0e485418ba353a87414052bd8a19204e5
[ "Apache-2.0" ]
3,655
2020-03-28T09:19:50.000Z
2022-03-31T13:28:39.000Z
paddlex/ppdet/modeling/heads/detr_head.py
BDGZhengzhou/PaddleX
a07b54c6eaa363cb8008b26cba83eed734c52044
[ "Apache-2.0" ]
829
2020-03-28T04:03:18.000Z
2022-03-31T14:34:30.000Z
paddlex/ppdet/modeling/heads/detr_head.py
BDGZhengzhou/PaddleX
a07b54c6eaa363cb8008b26cba83eed734c52044
[ "Apache-2.0" ]
738
2020-03-28T03:56:46.000Z
2022-03-31T13:11:03.000Z
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function import paddle import paddle.nn as nn import paddle.nn.functional as F from paddlex.ppdet.core.workspace import register import pycocotools.mask as mask_util from ..initializer import linear_init_, constant_ from ..transformers.utils import inverse_sigmoid __all__ = ['DETRHead', 'DeformableDETRHead'] class MLP(nn.Layer): def __init__(self, input_dim, hidden_dim, output_dim, num_layers): super().__init__() self.num_layers = num_layers h = [hidden_dim] * (num_layers - 1) self.layers = nn.LayerList( nn.Linear(n, k) for n, k in zip([input_dim] + h, h + [output_dim])) self._reset_parameters() def _reset_parameters(self): for l in self.layers: linear_init_(l) def forward(self, x): for i, layer in enumerate(self.layers): x = F.relu(layer(x)) if i < self.num_layers - 1 else layer(x) return x class MultiHeadAttentionMap(nn.Layer): """This is a 2D attention module, which only returns the attention softmax (no multiplication by value)""" def __init__(self, query_dim, hidden_dim, num_heads, dropout=0.0, bias=True): super().__init__() self.num_heads = num_heads self.hidden_dim = hidden_dim self.dropout = nn.Dropout(dropout) weight_attr = paddle.ParamAttr( initializer=paddle.nn.initializer.XavierUniform()) bias_attr = paddle.framework.ParamAttr( initializer=paddle.nn.initializer.Constant()) if bias else False self.q_proj = nn.Linear(query_dim, hidden_dim, weight_attr, bias_attr) self.k_proj = nn.Conv2D( query_dim, hidden_dim, 1, weight_attr=weight_attr, bias_attr=bias_attr) self.normalize_fact = float(hidden_dim / self.num_heads)**-0.5 def forward(self, q, k, mask=None): q = self.q_proj(q) k = self.k_proj(k) bs, num_queries, n, c, h, w = q.shape[0], q.shape[1], self.num_heads,\ self.hidden_dim // self.num_heads, k.shape[-2], k.shape[-1] qh = q.reshape([bs, num_queries, n, c]) kh = k.reshape([bs, n, c, h, w]) # weights = paddle.einsum("bqnc,bnchw->bqnhw", qh * self.normalize_fact, kh) qh = qh.transpose([0, 2, 1, 3]).reshape([-1, num_queries, c]) kh = kh.reshape([-1, c, h * w]) weights = paddle.bmm(qh * self.normalize_fact, kh).reshape( [bs, n, num_queries, h, w]).transpose([0, 2, 1, 3, 4]) if mask is not None: weights += mask # fix a potenial bug: https://github.com/facebookresearch/detr/issues/247 weights = F.softmax(weights.flatten(3), axis=-1).reshape(weights.shape) weights = self.dropout(weights) return weights class MaskHeadFPNConv(nn.Layer): """ Simple convolutional head, using group norm. Upsampling is done using a FPN approach """ def __init__(self, input_dim, fpn_dims, context_dim, num_groups=8): super().__init__() inter_dims = [input_dim, ] + [context_dim // (2**i) for i in range(1, 5)] weight_attr = paddle.ParamAttr( initializer=paddle.nn.initializer.KaimingUniform()) bias_attr = paddle.framework.ParamAttr( initializer=paddle.nn.initializer.Constant()) self.conv0 = self._make_layers(input_dim, input_dim, 3, num_groups, weight_attr, bias_attr) self.conv_inter = nn.LayerList() for in_dims, out_dims in zip(inter_dims[:-1], inter_dims[1:]): self.conv_inter.append( self._make_layers(in_dims, out_dims, 3, num_groups, weight_attr, bias_attr)) self.conv_out = nn.Conv2D( inter_dims[-1], 1, 3, padding=1, weight_attr=weight_attr, bias_attr=bias_attr) self.adapter = nn.LayerList() for i in range(len(fpn_dims)): self.adapter.append( nn.Conv2D( fpn_dims[i], inter_dims[i + 1], 1, weight_attr=weight_attr, bias_attr=bias_attr)) def _make_layers(self, in_dims, out_dims, kernel_size, num_groups, weight_attr=None, bias_attr=None): return nn.Sequential( nn.Conv2D( in_dims, out_dims, kernel_size, padding=kernel_size // 2, weight_attr=weight_attr, bias_attr=bias_attr), nn.GroupNorm(num_groups, out_dims), nn.ReLU()) def forward(self, x, bbox_attention_map, fpns): x = paddle.concat([ x.tile([bbox_attention_map.shape[1], 1, 1, 1]), bbox_attention_map.flatten(0, 1) ], 1) x = self.conv0(x) for inter_layer, adapter_layer, feat in zip(self.conv_inter[:-1], self.adapter, fpns): feat = adapter_layer(feat).tile( [bbox_attention_map.shape[1], 1, 1, 1]) x = inter_layer(x) x = feat + F.interpolate(x, size=feat.shape[-2:]) x = self.conv_inter[-1](x) x = self.conv_out(x) return x @register class DETRHead(nn.Layer): __shared__ = ['num_classes', 'hidden_dim', 'use_focal_loss'] __inject__ = ['loss'] def __init__(self, num_classes=80, hidden_dim=256, nhead=8, num_mlp_layers=3, loss='DETRLoss', fpn_dims=[1024, 512, 256], with_mask_head=False, use_focal_loss=False): super(DETRHead, self).__init__() # add background class self.num_classes = num_classes if use_focal_loss else num_classes + 1 self.hidden_dim = hidden_dim self.loss = loss self.with_mask_head = with_mask_head self.use_focal_loss = use_focal_loss self.score_head = nn.Linear(hidden_dim, self.num_classes) self.bbox_head = MLP(hidden_dim, hidden_dim, output_dim=4, num_layers=num_mlp_layers) if self.with_mask_head: self.bbox_attention = MultiHeadAttentionMap(hidden_dim, hidden_dim, nhead) self.mask_head = MaskHeadFPNConv(hidden_dim + nhead, fpn_dims, hidden_dim) self._reset_parameters() def _reset_parameters(self): linear_init_(self.score_head) @classmethod def from_config(cls, cfg, hidden_dim, nhead, input_shape): return { 'hidden_dim': hidden_dim, 'nhead': nhead, 'fpn_dims': [i.channels for i in input_shape[::-1]][1:] } @staticmethod def get_gt_mask_from_polygons(gt_poly, pad_mask): out_gt_mask = [] for polygons, padding in zip(gt_poly, pad_mask): height, width = int(padding[:, 0].sum()), int(padding[0, :].sum()) masks = [] for obj_poly in polygons: rles = mask_util.frPyObjects(obj_poly, height, width) rle = mask_util.merge(rles) masks.append( paddle.to_tensor(mask_util.decode(rle)).astype('float32')) masks = paddle.stack(masks) masks_pad = paddle.zeros( [masks.shape[0], pad_mask.shape[1], pad_mask.shape[2]]) masks_pad[:, :height, :width] = masks out_gt_mask.append(masks_pad) return out_gt_mask def forward(self, out_transformer, body_feats, inputs=None): r""" Args: out_transformer (Tuple): (feats: [num_levels, batch_size, num_queries, hidden_dim], memory: [batch_size, hidden_dim, h, w], src_proj: [batch_size, h*w, hidden_dim], src_mask: [batch_size, 1, 1, h, w]) body_feats (List(Tensor)): list[[B, C, H, W]] inputs (dict): dict(inputs) """ feats, memory, src_proj, src_mask = out_transformer outputs_logit = self.score_head(feats) outputs_bbox = F.sigmoid(self.bbox_head(feats)) outputs_seg = None if self.with_mask_head: bbox_attention_map = self.bbox_attention(feats[-1], memory, src_mask) fpn_feats = [a for a in body_feats[::-1]][1:] outputs_seg = self.mask_head(src_proj, bbox_attention_map, fpn_feats) outputs_seg = outputs_seg.reshape([ feats.shape[1], feats.shape[2], outputs_seg.shape[-2], outputs_seg.shape[-1] ]) if self.training: assert inputs is not None assert 'gt_bbox' in inputs and 'gt_class' in inputs gt_mask = self.get_gt_mask_from_polygons( inputs['gt_poly'], inputs['pad_mask']) if 'gt_poly' in inputs else None return self.loss( outputs_bbox, outputs_logit, inputs['gt_bbox'], inputs['gt_class'], masks=outputs_seg, gt_mask=gt_mask) else: return (outputs_bbox[-1], outputs_logit[-1], outputs_seg) @register class DeformableDETRHead(nn.Layer): __shared__ = ['num_classes', 'hidden_dim'] __inject__ = ['loss'] def __init__(self, num_classes=80, hidden_dim=512, nhead=8, num_mlp_layers=3, loss='DETRLoss'): super(DeformableDETRHead, self).__init__() self.num_classes = num_classes self.hidden_dim = hidden_dim self.nhead = nhead self.loss = loss self.score_head = nn.Linear(hidden_dim, self.num_classes) self.bbox_head = MLP(hidden_dim, hidden_dim, output_dim=4, num_layers=num_mlp_layers) self._reset_parameters() def _reset_parameters(self): linear_init_(self.score_head) constant_(self.score_head.bias, -4.595) constant_(self.bbox_head.layers[-1].weight) bias = paddle.zeros_like(self.bbox_head.layers[-1].bias) bias[2:] = -2.0 self.bbox_head.layers[-1].bias.set_value(bias) @classmethod def from_config(cls, cfg, hidden_dim, nhead, input_shape): return {'hidden_dim': hidden_dim, 'nhead': nhead} def forward(self, out_transformer, body_feats, inputs=None): r""" Args: out_transformer (Tuple): (feats: [num_levels, batch_size, num_queries, hidden_dim], memory: [batch_size, \sum_{l=0}^{L-1} H_l \cdot W_l, hidden_dim], reference_points: [batch_size, num_queries, 2]) body_feats (List(Tensor)): list[[B, C, H, W]] inputs (dict): dict(inputs) """ feats, memory, reference_points = out_transformer reference_points = inverse_sigmoid(reference_points.unsqueeze(0)) outputs_bbox = self.bbox_head(feats) # It's equivalent to "outputs_bbox[:, :, :, :2] += reference_points", # but the gradient is wrong in paddle. outputs_bbox = paddle.concat( [ outputs_bbox[:, :, :, :2] + reference_points, outputs_bbox[:, :, :, 2:] ], axis=-1) outputs_bbox = F.sigmoid(outputs_bbox) outputs_logit = self.score_head(feats) if self.training: assert inputs is not None assert 'gt_bbox' in inputs and 'gt_class' in inputs return self.loss(outputs_bbox, outputs_logit, inputs['gt_bbox'], inputs['gt_class']) else: return (outputs_bbox[-1], outputs_logit[-1], None)
37.215686
110
0.553967
12,228
0.920367
0
0
6,977
0.525139
0
0
2,321
0.174695
fb83c2db2b3565baeaebf20f605f38a7b225d465
3,911
py
Python
python/raspberryPi.py
FirewallRobotics/Vinnie-2019
2bc74f9947d41960ffe06e39bfc8dbe321ef2ae1
[ "BSD-3-Clause" ]
null
null
null
python/raspberryPi.py
FirewallRobotics/Vinnie-2019
2bc74f9947d41960ffe06e39bfc8dbe321ef2ae1
[ "BSD-3-Clause" ]
null
null
null
python/raspberryPi.py
FirewallRobotics/Vinnie-2019
2bc74f9947d41960ffe06e39bfc8dbe321ef2ae1
[ "BSD-3-Clause" ]
null
null
null
#!/usr/bin/env python3 import json import time import sys #import numpy as np import cv2 from cscore import CameraServer, VideoSource, CvSource, VideoMode, CvSink, UsbCamera from networktables import NetworkTablesInstance def Track(frame, sd): Lower = (0,0,0) Upper = (0,0,0) if sd.getNumber("Track", 0): Lower = (0,103,105) Upper = (150,255,255) #hatch panel sd.putNumber("Tracking", 0) elif sd.getNumber("Track", 1): Lower = (16,18,108) #Tape Upper = (32,52,127) sd.putNumber("Tracking", 1) else: print("Could not get smartdashboard value, using hatch panel") Lower = (0,103,105) Upper = (150,255,255) #none selected using hatch sd.putNumber("Tracking", 2) #frame = cv2.flip(frame, 1) #Blur out the Image #blurred = cv2.GaussianBlur(frame, (11,11), 0) hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV) #Make a mask for the pixals that meet yhe HSV filter #then run a bunch of dolations and #erosions to remove any small blobs still in the mask mask = cv2.inRange(hsv, Lower, Upper) mask = cv2.erode(mask, None, iterations = 2) mask = cv2.dilate(mask, None, iterations = 2) #find the Contours in the mask and initialize the #current (x,y) center of the ball a, cnts, b = cv2.findContours(mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE) center = None #only do stuff if a single contor was found if len(cnts) > 0: #find the largest contour in the mask, then use it #to compute the minimum enclosing circle and centroid c = max(cnts, key=cv2.contourArea) ((x,y), radius) = cv2.minEnclosingCircle(c) M = cv2.moments(c) center = (int(M["m10"] / M["m00"]), int (M["m01"] / M["m00"])) #if the dectected contour has a radius big enough, we will send it if radius > 15: #draw a circle around the target and publish values to smart dashboard cv2.circle(frame, (int(x), int(y)), int(radius), (255,255,8), 2) cv2.circle(frame, center, 3, (0,0,225), -1) sd.putNumber('X',x) sd.putNumber('Y',y) sd.putNumber('R', radius) print("X: " + repr(round(x, 1)) + " Y: " + repr(round(y, 1)) + " Radius: " + repr(round(radius, 1))) else: print("WTF") #let the RoboRio Know no target has been detected with -1 sd.putNumber('X', -1) sd.putNumber('Y', -1) sd.putNumber('R', -1) cap1 = cv2.VideoCapture(0) cap2 = cv2.VideoCapture(1) #HatchPanel = HatchPanelPipeline() team = None ntinst = NetworkTablesInstance.getDefault() ntinst.startClientTeam(team) SmartDashBoardValues = ntinst.getTable('SmartDashboard') while(True): # Capture frame-by-frame if SmartDashBoardValues.getNumber("Camera to Use", 0): ret, frame = cap1.read() #use camera 0 SmartDashBoardValues.putNumber("Using Camera", 0) elif SmartDashBoardValues.getNumber("Camera to Use", 1): ret, frame = cap2.read() #use camera 1 SmartDashBoardValues.putNumber("Using Camera", 1) else: print("No camera selected using camera 0") ret, frame = cap1.read() #found no value for camera to use, using cam 0 SmartDashBoardValues.putNumber("Using Camera", 2) # Our operations on the frame come here Track(frame, SmartDashBoardValues) cv2.imshow('frame',frame) #print(type(mask)) #res = cv2.bitwise_and(frame,frame, mask=mask) #cv2.imshow('frame',frame) #cv2.imshow('mask',mask) #cv2.imshow('res',res) if cv2.waitKey(1) & 0xFF == ord('q'): break # When everything done, release the capture cap1.release() cap2.release() cv2.destroyAllWindows()
36.212963
112
0.604449
0
0
0
0
0
0
0
0
1,384
0.353874
fb8406595f2e94d2539b01b5e80bd41db3092f8b
1,667
py
Python
soccer_stats_calc/soccer_var_ana.py
steffens21/diesunddas
35222ff2ddac0b115dfd2e5b6764c6878af8d228
[ "MIT" ]
null
null
null
soccer_stats_calc/soccer_var_ana.py
steffens21/diesunddas
35222ff2ddac0b115dfd2e5b6764c6878af8d228
[ "MIT" ]
null
null
null
soccer_stats_calc/soccer_var_ana.py
steffens21/diesunddas
35222ff2ddac0b115dfd2e5b6764c6878af8d228
[ "MIT" ]
null
null
null
import sys from collections import deque import soccer_toolbox import csv_tools def fileToStats(csvfile, stat, nbrAgg): header, listRawData = csv_tools.loadData(csvfile) dictCol = csv_tools.getColumns(header) setTeams = csv_tools.getTeams(listRawData, dictCol['nColHomeTeam'], dictCol['nColAwayTeam']) resultDict = {team: list() for team in setTeams} teamDataDict = {team: list() for team in setTeams} for data in listRawData: teamDataDict[data[dictCol['nColHomeTeam']]].append(data) teamDataDict[data[dictCol['nColAwayTeam']]].append(data) for team in teamDataDict: currentData = deque() for data in teamDataDict[team]: currentData.append(data) if len(currentData) <= nbrAgg: continue else: currentData.popleft() # calc statsDict = soccer_toolbox.getStatsForTeam(team, dictCol, list(currentData)) resultDict[team].append(statsDict[stat]) if currentData: statsDict = soccer_toolbox.getStatsForTeam(team, dictCol, currentData) resultDict[team].append(statsDict[stat]) return resultDict def main(): if len(sys.argv) > 1: csvfile = sys.argv[1] else: csvfile = 'D1.csv' stat = 'Rating' if len(sys.argv) > 2: stat = sys.argv[2] nbrAgg = 1 if len(sys.argv) > 3: nbrAgg = int(sys.argv[3]) dictTeamStats = fileToStats(csvfile, stat, nbrAgg) for name, val in sorted(dictTeamStats.items()): print ','.join([name] + map(str, val)) if __name__ == "__main__": main()
29.245614
96
0.619076
0
0
0
0
0
0
0
0
91
0.054589
fb8546895b2c19d3192fb1d824c0ca8782071aeb
895
py
Python
HelloWorldWebsite/searchTest/views.py
404NotFound-401/DjangoTutorial
8218b5308245b309c7cb36386306152378602b6d
[ "MIT" ]
null
null
null
HelloWorldWebsite/searchTest/views.py
404NotFound-401/DjangoTutorial
8218b5308245b309c7cb36386306152378602b6d
[ "MIT" ]
10
2019-09-07T20:30:34.000Z
2019-09-08T19:22:11.000Z
HelloWorldWebsite/searchTest/views.py
404NotFound-401/DjangoTutorial
8218b5308245b309c7cb36386306152378602b6d
[ "MIT" ]
1
2019-09-08T19:38:54.000Z
2019-09-08T19:38:54.000Z
from __future__ import unicode_literals from django.shortcuts import render, redirect from django.template import loader from django.http import HttpResponse from django.views import generic from .models import Movie from . import searchapi from django.urls import reverse # Create your views here. class Search(generic.DetailView): model = Movie template_name = 'searchTest.html' def get(self, request, *args, **kwargs): context = {'movieId':'Please enter the film name'} return render(request, self.template_name, context) def post(self, request, *args, **kwargs): if 'movieName' in request.POST: print("Get movie name") context = searchapi.getName(request.POST['movieName']) else: print("Wrong act") return redirect('mainpage') return render(request, "home/result.html", context)
28.870968
66
0.684916
590
0.659218
0
0
0
0
0
0
156
0.174302
fb8662bca964b254e5cebea057da8c25555e063b
27,693
py
Python
mapreduce/handlers.py
igeeker/v2ex
9fa81f7c82aa7d162a924d357494b241eb8a6207
[ "BSD-3-Clause" ]
161
2019-07-23T06:53:45.000Z
2022-03-24T01:07:19.000Z
mapreduce/handlers.py
igeeker/v2ex
9fa81f7c82aa7d162a924d357494b241eb8a6207
[ "BSD-3-Clause" ]
null
null
null
mapreduce/handlers.py
igeeker/v2ex
9fa81f7c82aa7d162a924d357494b241eb8a6207
[ "BSD-3-Clause" ]
26
2019-08-05T06:09:38.000Z
2021-07-08T02:05:13.000Z
#!/usr/bin/env python # # Copyright 2010 Google Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # """Defines executor tasks handlers for MapReduce implementation.""" # Disable "Invalid method name" # pylint: disable-msg=C6409 import datetime import logging import math import os from mapreduce.lib import simplejson import time from google.appengine.api import memcache from google.appengine.api.labs import taskqueue from google.appengine.ext import db from mapreduce import base_handler from mapreduce import context from mapreduce import quota from mapreduce import model from mapreduce import quota from mapreduce import util # TODO(user): Make this a product of the reader or in quotas.py _QUOTA_BATCH_SIZE = 20 # The amount of time to perform scanning in one slice. New slice will be # scheduled as soon as current one takes this long. _SLICE_DURATION_SEC = 15 # Delay between consecutive controller callback invocations. _CONTROLLER_PERIOD_SEC = 2 class Error(Exception): """Base class for exceptions in this module.""" class NotEnoughArgumentsError(Error): """Required argument is missing.""" class NoDataError(Error): """There is no data present for a desired input.""" class MapperWorkerCallbackHandler(base_handler.BaseHandler): """Callback handler for mapreduce worker task. Request Parameters: mapreduce_spec: MapreduceSpec of the mapreduce serialized to json. shard_id: id of the shard. slice_id: id of the slice. """ def __init__(self, time_function=time.time): """Constructor. Args: time_function: time function to use to obtain current time. """ base_handler.BaseHandler.__init__(self) self._time = time_function def post(self): """Handle post request.""" spec = model.MapreduceSpec.from_json_str( self.request.get("mapreduce_spec")) self._start_time = self._time() shard_id = self.shard_id() # TODO(user): Make this prettier logging.debug("post: shard=%s slice=%s headers=%s", shard_id, self.slice_id(), self.request.headers) shard_state, control = db.get([ model.ShardState.get_key_by_shard_id(shard_id), model.MapreduceControl.get_key_by_job_id(spec.mapreduce_id), ]) if not shard_state: # We're letting this task to die. It's up to controller code to # reinitialize and restart the task. logging.error("State not found for shard ID %r; shutting down", shard_id) return if control and control.command == model.MapreduceControl.ABORT: logging.info("Abort command received by shard %d of job '%s'", shard_state.shard_number, shard_state.mapreduce_id) shard_state.active = False shard_state.result_status = model.ShardState.RESULT_ABORTED shard_state.put() model.MapreduceControl.abort(spec.mapreduce_id) return input_reader = self.input_reader(spec.mapper) if spec.mapper.params.get("enable_quota", True): quota_consumer = quota.QuotaConsumer( quota.QuotaManager(memcache.Client()), shard_id, _QUOTA_BATCH_SIZE) else: quota_consumer = None ctx = context.Context(spec, shard_state) context.Context._set(ctx) try: # consume quota ahead, because we do not want to run a datastore # query if there's not enough quota for the shard. if not quota_consumer or quota_consumer.check(): scan_aborted = False entity = None # We shouldn't fetch an entity from the reader if there's not enough # quota to process it. Perform all quota checks proactively. if not quota_consumer or quota_consumer.consume(): for entity in input_reader: if isinstance(entity, db.Model): shard_state.last_work_item = repr(entity.key()) else: shard_state.last_work_item = repr(entity)[:100] scan_aborted = not self.process_entity(entity, ctx) # Check if we've got enough quota for the next entity. if (quota_consumer and not scan_aborted and not quota_consumer.consume()): scan_aborted = True if scan_aborted: break else: scan_aborted = True if not scan_aborted: logging.info("Processing done for shard %d of job '%s'", shard_state.shard_number, shard_state.mapreduce_id) # We consumed extra quota item at the end of for loop. # Just be nice here and give it back :) if quota_consumer: quota_consumer.put(1) shard_state.active = False shard_state.result_status = model.ShardState.RESULT_SUCCESS # TODO(user): Mike said we don't want this happen in case of # exception while scanning. Figure out when it's appropriate to skip. ctx.flush() finally: context.Context._set(None) if quota_consumer: quota_consumer.dispose() # Rescheduling work should always be the last statement. It shouldn't happen # if there were any exceptions in code before it. if shard_state.active: self.reschedule(spec, input_reader) def process_entity(self, entity, ctx): """Process a single entity. Call mapper handler on the entity. Args: entity: an entity to process. ctx: current execution context. Returns: True if scan should be continued, False if scan should be aborted. """ ctx.counters.increment(context.COUNTER_MAPPER_CALLS) handler = ctx.mapreduce_spec.mapper.handler if util.is_generator_function(handler): for result in handler(entity): if callable(result): result(ctx) else: try: if len(result) == 2: logging.error("Collectors not implemented yet") else: logging.error("Got bad output tuple of length %d", len(result)) except TypeError: logging.error( "Handler yielded type %s, expected a callable or a tuple", result.__class__.__name__) else: handler(entity) if self._time() - self._start_time > _SLICE_DURATION_SEC: logging.debug("Spent %s seconds. Rescheduling", self._time() - self._start_time) return False return True def shard_id(self): """Get shard unique identifier of this task from request. Returns: shard identifier as string. """ return str(self.request.get("shard_id")) def slice_id(self): """Get slice unique identifier of this task from request. Returns: slice identifier as int. """ return int(self.request.get("slice_id")) def input_reader(self, mapper_spec): """Get the reader from mapper_spec initialized with the request's state. Args: mapper_spec: a mapper spec containing the immutable mapper state. Returns: An initialized InputReader. """ input_reader_spec_dict = simplejson.loads( self.request.get("input_reader_state")) return mapper_spec.input_reader_class().from_json( input_reader_spec_dict) @staticmethod def worker_parameters(mapreduce_spec, shard_id, slice_id, input_reader): """Fill in mapper worker task parameters. Returned parameters map is to be used as task payload, and it contains all the data, required by mapper worker to perform its function. Args: mapreduce_spec: specification of the mapreduce. shard_id: id of the shard (part of the whole dataset). slice_id: id of the slice (part of the shard). input_reader: InputReader containing the remaining inputs for this shard. Returns: string->string map of parameters to be used as task payload. """ return {"mapreduce_spec": mapreduce_spec.to_json_str(), "shard_id": shard_id, "slice_id": str(slice_id), "input_reader_state": input_reader.to_json_str()} @staticmethod def get_task_name(shard_id, slice_id): """Compute single worker task name. Args: shard_id: id of the shard (part of the whole dataset) as string. slice_id: id of the slice (part of the shard) as int. Returns: task name which should be used to process specified shard/slice. """ # Prefix the task name with something unique to this framework's # namespace so we don't conflict with user tasks on the queue. return "appengine-mrshard-%s-%s" % (shard_id, slice_id) def reschedule(self, mapreduce_spec, input_reader): """Reschedule worker task to continue scanning work. Args: mapreduce_spec: mapreduce specification. input_reader: remaining input reader to process. """ MapperWorkerCallbackHandler.schedule_slice( self.base_path(), mapreduce_spec, self.shard_id(), self.slice_id() + 1, input_reader) @classmethod def schedule_slice(cls, base_path, mapreduce_spec, shard_id, slice_id, input_reader, queue_name=None, eta=None, countdown=None): """Schedule slice scanning by adding it to the task queue. Args: base_path: base_path of mapreduce request handlers as string. mapreduce_spec: mapreduce specification as MapreduceSpec. shard_id: current shard id as string. slice_id: slice id as int. input_reader: remaining InputReader for given shard. queue_name: Optional queue to run on; uses the current queue of execution or the default queue if unspecified. eta: Absolute time when the MR should execute. May not be specified if 'countdown' is also supplied. This may be timezone-aware or timezone-naive. countdown: Time in seconds into the future that this MR should execute. Defaults to zero. """ task_params = MapperWorkerCallbackHandler.worker_parameters( mapreduce_spec, shard_id, slice_id, input_reader) task_name = MapperWorkerCallbackHandler.get_task_name(shard_id, slice_id) queue_name = os.environ.get("HTTP_X_APPENGINE_QUEUENAME", queue_name or "default") try: taskqueue.Task(url=base_path + "/worker_callback", params=task_params, name=task_name, eta=eta, countdown=countdown).add(queue_name) except (taskqueue.TombstonedTaskError, taskqueue.TaskAlreadyExistsError), e: logging.warning("Task %r with params %r already exists. %s: %s", task_name, task_params, e.__class__, e) class ControllerCallbackHandler(base_handler.BaseHandler): """Supervises mapreduce execution. Is also responsible for gathering execution status from shards together. This task is "continuously" running by adding itself again to taskqueue if mapreduce is still active. """ def __init__(self, time_function=time.time): """Constructor. Args: time_function: time function to use to obtain current time. """ base_handler.BaseHandler.__init__(self) self._time = time_function def post(self): """Handle post request.""" spec = model.MapreduceSpec.from_json_str( self.request.get("mapreduce_spec")) # TODO(user): Make this logging prettier. logging.debug("post: id=%s headers=%s", spec.mapreduce_id, self.request.headers) state, control = db.get([ model.MapreduceState.get_key_by_job_id(spec.mapreduce_id), model.MapreduceControl.get_key_by_job_id(spec.mapreduce_id), ]) if not state: logging.error("State not found for mapreduce_id '%s'; skipping", spec.mapreduce_id) return shard_states = model.ShardState.find_by_mapreduce_id(spec.mapreduce_id) if state.active and len(shard_states) != spec.mapper.shard_count: # Some shards were lost logging.error("Incorrect number of shard states: %d vs %d; " "aborting job '%s'", len(shard_states), spec.mapper.shard_count, spec.mapreduce_id) state.active = False state.result_status = model.MapreduceState.RESULT_FAILED model.MapreduceControl.abort(spec.mapreduce_id) active_shards = [s for s in shard_states if s.active] failed_shards = [s for s in shard_states if s.result_status == model.ShardState.RESULT_FAILED] aborted_shards = [s for s in shard_states if s.result_status == model.ShardState.RESULT_ABORTED] if state.active: state.active = bool(active_shards) state.active_shards = len(active_shards) state.failed_shards = len(failed_shards) state.aborted_shards = len(aborted_shards) if (not state.active and control and control.command == model.MapreduceControl.ABORT): # User-initiated abort *after* all shards have completed. logging.info("Abort signal received for job '%s'", spec.mapreduce_id) state.result_status = model.MapreduceState.RESULT_ABORTED if not state.active: state.active_shards = 0 if not state.result_status: # Set final result status derived from shard states. if [s for s in shard_states if s.result_status != model.ShardState.RESULT_SUCCESS]: state.result_status = model.MapreduceState.RESULT_FAILED else: state.result_status = model.MapreduceState.RESULT_SUCCESS logging.info("Final result for job '%s' is '%s'", spec.mapreduce_id, state.result_status) # We don't need a transaction here, since we change only statistics data, # and we don't care if it gets overwritten/slightly inconsistent. self.aggregate_state(state, shard_states) poll_time = state.last_poll_time state.last_poll_time = datetime.datetime.utcfromtimestamp(self._time()) if not state.active: # This is the last execution. # Enqueue done_callback if needed. def put_state(state): state.put() done_callback = spec.params.get( model.MapreduceSpec.PARAM_DONE_CALLBACK) if done_callback: taskqueue.Task( url=done_callback, headers={"Mapreduce-Id": spec.mapreduce_id}).add( spec.params.get( model.MapreduceSpec.PARAM_DONE_CALLBACK_QUEUE, "default"), transactional=True) db.run_in_transaction(put_state, state) return else: state.put() processing_rate = int(spec.mapper.params.get( "processing_rate") or model._DEFAULT_PROCESSING_RATE_PER_SEC) self.refill_quotas(poll_time, processing_rate, active_shards) ControllerCallbackHandler.reschedule( self.base_path(), spec, self.serial_id() + 1) def aggregate_state(self, mapreduce_state, shard_states): """Update current mapreduce state by aggregating shard states. Args: mapreduce_state: current mapreduce state as MapreduceState. shard_states: all shard states (active and inactive). list of ShardState. """ processed_counts = [] mapreduce_state.counters_map.clear() for shard_state in shard_states: mapreduce_state.counters_map.add_map(shard_state.counters_map) processed_counts.append(shard_state.counters_map.get( context.COUNTER_MAPPER_CALLS)) mapreduce_state.set_processed_counts(processed_counts) def refill_quotas(self, last_poll_time, processing_rate, active_shard_states): """Refill quotas for all active shards. Args: last_poll_time: Datetime with the last time the job state was updated. processing_rate: How many items to process per second overall. active_shard_states: All active shard states, list of ShardState. """ if not active_shard_states: return quota_manager = quota.QuotaManager(memcache.Client()) current_time = int(self._time()) last_poll_time = time.mktime(last_poll_time.timetuple()) total_quota_refill = processing_rate * max(0, current_time - last_poll_time) quota_refill = int(math.ceil( 1.0 * total_quota_refill / len(active_shard_states))) if not quota_refill: return # TODO(user): use batch memcache API to refill quota in one API call. for shard_state in active_shard_states: quota_manager.put(shard_state.shard_id, quota_refill) def serial_id(self): """Get serial unique identifier of this task from request. Returns: serial identifier as int. """ return int(self.request.get("serial_id")) @staticmethod def get_task_name(mapreduce_spec, serial_id): """Compute single controller task name. Args: mapreduce_spec: specification of the mapreduce. serial_id: id of the invocation as int. Returns: task name which should be used to process specified shard/slice. """ # Prefix the task name with something unique to this framework's # namespace so we don't conflict with user tasks on the queue. return "appengine-mrcontrol-%s-%s" % ( mapreduce_spec.mapreduce_id, serial_id) @staticmethod def controller_parameters(mapreduce_spec, serial_id): """Fill in controller task parameters. Returned parameters map is to be used as task payload, and it contains all the data, required by controller to perform its function. Args: mapreduce_spec: specification of the mapreduce. serial_id: id of the invocation as int. Returns: string->string map of parameters to be used as task payload. """ return {"mapreduce_spec": mapreduce_spec.to_json_str(), "serial_id": str(serial_id)} @classmethod def reschedule(cls, base_path, mapreduce_spec, serial_id, queue_name=None): """Schedule new update status callback task. Args: base_path: mapreduce handlers url base path as string. mapreduce_spec: mapreduce specification as MapreduceSpec. serial_id: id of the invocation as int. queue_name: The queue to schedule this task on. Will use the current queue of execution if not supplied. """ task_name = ControllerCallbackHandler.get_task_name( mapreduce_spec, serial_id) task_params = ControllerCallbackHandler.controller_parameters( mapreduce_spec, serial_id) if not queue_name: queue_name = os.environ.get("HTTP_X_APPENGINE_QUEUENAME", "default") try: taskqueue.Task(url=base_path + "/controller_callback", name=task_name, params=task_params, countdown=_CONTROLLER_PERIOD_SEC).add(queue_name) except (taskqueue.TombstonedTaskError, taskqueue.TaskAlreadyExistsError), e: logging.warning("Task %r with params %r already exists. %s: %s", task_name, task_params, e.__class__, e) class KickOffJobHandler(base_handler.BaseHandler): """Taskqueue handler which kicks off a mapreduce processing. Request Parameters: mapreduce_spec: MapreduceSpec of the mapreduce serialized to json. input_readers: List of InputReaders objects separated by semi-colons. """ def post(self): """Handles kick off request.""" spec = model.MapreduceSpec.from_json_str( self._get_required_param("mapreduce_spec")) input_readers_json = simplejson.loads( self._get_required_param("input_readers")) queue_name = os.environ.get("HTTP_X_APPENGINE_QUEUENAME", "default") mapper_input_reader_class = spec.mapper.input_reader_class() input_readers = [mapper_input_reader_class.from_json_str(reader_json) for reader_json in input_readers_json] KickOffJobHandler._schedule_shards( spec, input_readers, queue_name, self.base_path()) ControllerCallbackHandler.reschedule( self.base_path(), spec, queue_name=queue_name, serial_id=0) def _get_required_param(self, param_name): """Get a required request parameter. Args: param_name: name of request parameter to fetch. Returns: parameter value Raises: NotEnoughArgumentsError: if parameter is not specified. """ value = self.request.get(param_name) if not value: raise NotEnoughArgumentsError(param_name + " not specified") return value @classmethod def _schedule_shards(cls, spec, input_readers, queue_name, base_path): """Prepares shard states and schedules their execution. Args: spec: mapreduce specification as MapreduceSpec. input_readers: list of InputReaders describing shard splits. queue_name: The queue to run this job on. base_path: The base url path of mapreduce callbacks. """ # Note: it's safe to re-attempt this handler because: # - shard state has deterministic and unique key. # - schedule_slice will fall back gracefully if a task already exists. shard_states = [] for shard_number, input_reader in enumerate(input_readers): shard = model.ShardState.create_new(spec.mapreduce_id, shard_number) shard.shard_description = str(input_reader) shard_states.append(shard) # Retrievs already existing shards. existing_shard_states = db.get(shard.key() for shard in shard_states) existing_shard_keys = set(shard.key() for shard in existing_shard_states if shard is not None) # Puts only non-existing shards. db.put(shard for shard in shard_states if shard.key() not in existing_shard_keys) for shard_number, input_reader in enumerate(input_readers): shard_id = model.ShardState.shard_id_from_number( spec.mapreduce_id, shard_number) MapperWorkerCallbackHandler.schedule_slice( base_path, spec, shard_id, 0, input_reader, queue_name=queue_name) class StartJobHandler(base_handler.JsonHandler): """Command handler starts a mapreduce job.""" def handle(self): """Handles start request.""" # Mapper spec as form arguments. mapreduce_name = self._get_required_param("name") mapper_input_reader_spec = self._get_required_param("mapper_input_reader") mapper_handler_spec = self._get_required_param("mapper_handler") mapper_params = self._get_params( "mapper_params_validator", "mapper_params.") params = self._get_params( "params_validator", "params.") # Set some mapper param defaults if not present. mapper_params["processing_rate"] = int(mapper_params.get( "processing_rate") or model._DEFAULT_PROCESSING_RATE_PER_SEC) queue_name = mapper_params["queue_name"] = mapper_params.get( "queue_name", "default") # Validate the Mapper spec, handler, and input reader. mapper_spec = model.MapperSpec( mapper_handler_spec, mapper_input_reader_spec, mapper_params, int(mapper_params.get("shard_count", model._DEFAULT_SHARD_COUNT))) mapreduce_id = type(self)._start_map( mapreduce_name, mapper_spec, params, base_path=self.base_path(), queue_name=queue_name, _app=mapper_params.get("_app")) self.json_response["mapreduce_id"] = mapreduce_id def _get_params(self, validator_parameter, name_prefix): """Retrieves additional user-supplied params for the job and validates them. Args: validator_parameter: name of the request parameter which supplies validator for this parameter set. name_prefix: common prefix for all parameter names in the request. Raises: Any exception raised by the 'params_validator' request parameter if the params fail to validate. """ params_validator = self.request.get(validator_parameter) user_params = {} for key in self.request.arguments(): if key.startswith(name_prefix): values = self.request.get_all(key) adjusted_key = key[len(name_prefix):] if len(values) == 1: user_params[adjusted_key] = values[0] else: user_params[adjusted_key] = values if params_validator: resolved_validator = util.for_name(params_validator) resolved_validator(user_params) return user_params def _get_required_param(self, param_name): """Get a required request parameter. Args: param_name: name of request parameter to fetch. Returns: parameter value Raises: NotEnoughArgumentsError: if parameter is not specified. """ value = self.request.get(param_name) if not value: raise NotEnoughArgumentsError(param_name + " not specified") return value @classmethod def _start_map(cls, name, mapper_spec, mapreduce_params, base_path="/mapreduce", queue_name="default", eta=None, countdown=None, _app=None): # Check that handler can be instantiated. mapper_spec.get_handler() mapper_input_reader_class = mapper_spec.input_reader_class() mapper_input_readers = mapper_input_reader_class.split_input(mapper_spec) if not mapper_input_readers: raise NoDataError("Found no mapper input readers to process.") mapper_spec.shard_count = len(mapper_input_readers) state = model.MapreduceState.create_new() mapreduce_spec = model.MapreduceSpec( name, state.key().id_or_name(), mapper_spec.to_json(), mapreduce_params) state.mapreduce_spec = mapreduce_spec state.active = True state.active_shards = mapper_spec.shard_count if _app: state.app_id = _app # TODO(user): Initialize UI fields correctly. state.char_url = "" state.sparkline_url = "" def schedule_mapreduce(state, mapper_input_readers, eta, countdown): state.put() readers_json = [reader.to_json_str() for reader in mapper_input_readers] taskqueue.Task( url=base_path + "/kickoffjob_callback", params={"mapreduce_spec": state.mapreduce_spec.to_json_str(), "input_readers": simplejson.dumps(readers_json)}, eta=eta, countdown=countdown).add(queue_name, transactional=True) # Point of no return: We're actually going to run this job! db.run_in_transaction( schedule_mapreduce, state, mapper_input_readers, eta, countdown) return state.key().id_or_name() class CleanUpJobHandler(base_handler.JsonHandler): """Command to kick off tasks to clean up a job's data.""" def handle(self): # TODO(user): Have this kick off a task to clean up all MapreduceState, # ShardState, and MapreduceControl entities for a job ID. self.json_response["status"] = "This does nothing yet." class AbortJobHandler(base_handler.JsonHandler): """Command to abort a running job.""" def handle(self): model.MapreduceControl.abort(self.request.get("mapreduce_id")) self.json_response["status"] = "Abort signal sent."
35.188056
80
0.680605
26,198
0.946015
0
0
8,739
0.315567
0
0
10,991
0.396887
fb886601d83ea5836e86da12edc2cb8f001f8166
382
py
Python
radiomicsfeatureextractionpipeline/backend/src/logic/entities/ct_series.py
Maastro-CDS-Imaging-Group/SQLite4Radiomics
e3a7afc181eec0fe04c18da00edc3772064e6758
[ "Apache-2.0" ]
null
null
null
radiomicsfeatureextractionpipeline/backend/src/logic/entities/ct_series.py
Maastro-CDS-Imaging-Group/SQLite4Radiomics
e3a7afc181eec0fe04c18da00edc3772064e6758
[ "Apache-2.0" ]
6
2021-06-09T19:39:27.000Z
2021-09-30T16:41:40.000Z
radiomicsfeatureextractionpipeline/backend/src/logic/entities/ct_series.py
Maastro-CDS-Imaging-Group/SQLite4Radiomics
e3a7afc181eec0fe04c18da00edc3772064e6758
[ "Apache-2.0" ]
null
null
null
""" This module is used to represent a CTSeries object from the DICOMSeries table in the database. Inherits SeriesWithImageSlices module. """ from logic.entities.series_with_image_slices import SeriesWithImageSlices class CtSeries(SeriesWithImageSlices): """ This class stores all information about a CT-series from the DICOMSeries table in the database. """ pass
29.384615
99
0.780105
163
0.426702
0
0
0
0
0
0
252
0.659686
fb88b8dcfd3fd4a86eaad1ea35d9e6acff02b1b6
8,108
py
Python
models/pointSIFT_pointnet_age.py
KelvinTao/pointSIFT_Age2
b0684ee989b5f6f3dca25e9bbf15b3c5fd8cf1cf
[ "Apache-2.0" ]
null
null
null
models/pointSIFT_pointnet_age.py
KelvinTao/pointSIFT_Age2
b0684ee989b5f6f3dca25e9bbf15b3c5fd8cf1cf
[ "Apache-2.0" ]
null
null
null
models/pointSIFT_pointnet_age.py
KelvinTao/pointSIFT_Age2
b0684ee989b5f6f3dca25e9bbf15b3c5fd8cf1cf
[ "Apache-2.0" ]
null
null
null
import os import sys import tensorflow as tf import tf_utils.tf_util as tf_util from tf_utils.pointSIFT_util import pointSIFT_module, pointSIFT_res_module, pointnet_fp_module, pointnet_sa_module def placeholder_inputs(batch_size,num_point,num_class): #num_class=numofclasses*2 pointclouds_pl = tf.placeholder(tf.float32, shape=(batch_size, num_point, 3)) labels_pl = tf.placeholder(tf.int32, shape=(batch_size, num_class//2,2)) smpws_pl = tf.placeholder(tf.float32, shape=(batch_size)) return pointclouds_pl, labels_pl, smpws_pl def get_model(point_cloud, is_training, num_class, bn_decay=None, feature=None): """ Semantic segmentation PointNet, input is B x N x 3, output B x num_class """ end_points = {} l0_xyz = point_cloud l0_points = feature end_points['l0_xyz'] = l0_xyz # c0: 1024*128 c0_l0_xyz, c0_l0_points, c0_l0_indices = pointSIFT_res_module(l0_xyz, l0_points, radius=0.15, out_channel=64, is_training=is_training, bn_decay=bn_decay, scope='layer0_c0', merge='concat') l1_xyz, l1_points, l1_indices = pointnet_sa_module(c0_l0_xyz, c0_l0_points, npoint=1024, radius=0.1, nsample=32, mlp=[64,128], mlp2=None, group_all=False, is_training=is_training, bn_decay=bn_decay, scope='layer1') # c1: 256*256 c0_l1_xyz, c0_l1_points, c0_l1_indices = pointSIFT_res_module(l1_xyz, l1_points, radius=0.25, out_channel=128, is_training=is_training, bn_decay=bn_decay, scope='layer1_c0') l2_xyz, l2_points, l2_indices = pointnet_sa_module(c0_l1_xyz, c0_l1_points, npoint=256, radius=0.2, nsample=32, mlp=[128,256], mlp2=None, group_all=False, is_training=is_training, bn_decay=bn_decay, scope='layer2') # c2: 256*512 c0_l2_xyz, c0_l2_points, c0_l2_indices = pointSIFT_res_module(l2_xyz, l2_points, radius=0.5, out_channel=256, is_training=is_training, bn_decay=bn_decay, scope='layer2_c0') c1_l2_xyz, c1_l2_points, c1_l2_indices = pointSIFT_res_module(c0_l2_xyz, c0_l2_points, radius=0.5, out_channel=512, is_training=is_training, bn_decay=bn_decay, scope='layer2_c1', same_dim=True) l2_cat_points = tf.concat([c0_l2_points, c1_l2_points], axis=-1) fc_l2_points = tf_util.conv1d(l2_cat_points, 512, 1, padding='VALID', bn=True, is_training=is_training, scope='layer2_conv_c2', bn_decay=bn_decay) # c3: 64*512 l3_xyz, l3_points, l3_indices = pointnet_sa_module(c1_l2_xyz, fc_l2_points, npoint=64, radius=0.4, nsample=32, mlp=[512,512], mlp2=None, group_all=False, is_training=is_training, bn_decay=bn_decay, scope='layer3') # FC layers:64*256->64*128---8192 net = tf_util.conv1d(l3_points, 256, 1, padding='VALID', bn=True, is_training=is_training, scope='layer4_conv', bn_decay=bn_decay) #net = tf_util.dropout(net, keep_prob=0.7, is_training=is_training, scope='dp1') net = tf_util.conv1d(net, 128, 1, padding='VALID', bn=True, is_training=is_training, scope='layer5_conv', bn_decay=bn_decay) ##flatten:B*8192 flat = tf.reshape(net, [-1,64*128]) ##dense layer:4096 dense = tf_util.fully_connected(flat,4096,scope='layer6_dense',bn=True,bn_decay=bn_decay,is_training=is_training) dense = tf_util.fully_connected(dense,4096,scope='layer7_dense',bn=True,bn_decay=bn_decay,is_training=is_training) dense = tf_util.dropout(dense, keep_prob=0.5, is_training=is_training, scope='dp') logits = tf_util.fully_connected(dense,num_class,scope='layer8_dense',activation_fn=None,bn=True,bn_decay=bn_decay,is_training=is_training)#logits return logits, end_points ''' l2_points = pointnet_fp_module(l2_xyz, l3_xyz, l2_points, l3_points, [512,512], is_training, bn_decay, scope='fa_layer2') _, l2_points_1, _ = pointSIFT_module(l2_xyz, l2_points, radius=0.5, out_channel=512, is_training=is_training, bn_decay=bn_decay, scope='fa_layer2_c0') _, l2_points_2, _ = pointSIFT_module(l2_xyz, l2_points, radius=0.5, out_channel=512, is_training=is_training, bn_decay=bn_decay, scope='fa_layer2_c1') _, l2_points_3, _ = pointSIFT_module(l2_xyz, l2_points, radius=0.5, out_channel=512, is_training=is_training, bn_decay=bn_decay, scope='fa_layer2_c2') l2_points = tf.concat([l2_points_1, l2_points_2, l2_points_3], axis=-1) l2_points = tf_util.conv1d(l2_points, 512, 1, padding='VALID', bn=True, is_training=is_training, scope='fa_2_fc', bn_decay=bn_decay) l1_points = pointnet_fp_module(l1_xyz, l2_xyz, l1_points, l2_points, [256,256], is_training, bn_decay, scope='fa_layer3') _, l1_points_1, _ = pointSIFT_module(l1_xyz, l1_points, radius=0.25, out_channel=256, is_training=is_training, bn_decay=bn_decay, scope='fa_layer3_c0') _, l1_points_2, _ = pointSIFT_module(l1_xyz, l1_points_1, radius=0.25, out_channel=256, is_training=is_training, bn_decay=bn_decay, scope='fa_layer3_c1') l1_points = tf.concat([l1_points_1, l1_points_2], axis=-1) l1_points = tf_util.conv1d(l1_points, 256, 1, padding='VALID', bn=True, is_training=is_training, scope='fa_1_fc', bn_decay=bn_decay) l0_points = pointnet_fp_module(l0_xyz, l1_xyz, l0_points, l1_points, [128,128,128], is_training, bn_decay, scope='fa_layer4') _, l0_points, _ = pointSIFT_module(l0_xyz, l0_points, radius=0.1, out_channel=128, is_training=is_training, bn_decay=bn_decay, scope='fa_layer4_c0') # FC layers net = tf_util.conv1d(l0_points, 128, 1, padding='VALID', bn=True, is_training=is_training, scope='fc1', bn_decay=bn_decay) net = tf_util.dropout(net, keep_prob=0.5, is_training=is_training, scope='dp1') net = tf_util.conv1d(net, num_class, 1, padding='VALID', activation_fn=None, scope='fc2') return net, end_points ''' def get_loss(logits,labels,num_class,smpws=1): """ :param logits: Bx(C*2)--Bx200(100*2) :param labels: BxCx2--Bx100x2 :param smpw: B ; sample weight :num_class:200 --class_number*2 """ labels=tf.cast(labels, tf.float32) part_logits=tf.reshape(logits,[-1,num_class//2,2]) classify_loss=tf.reduce_mean(tf.multiply(tf.reduce_sum(tf.nn.softmax_cross_entropy_with_logits(logits=part_logits, labels=labels),1),smpws)) #classify_loss0=classify_loss #tf.summary.scalar('classify loss 0', classify_loss0) ###attention!!! #regularization_loss=tf.reduce_mean(tf.contrib.slim.losses.get_regularization_losses()) #regularization_loss=tf.reduce_mean(tf.losses.get_regularization_losses(scope)) #reg=1;classify_loss+=reg*regularization_loss ##scalar #tf.summary.scalar('classify loss', classify_loss) tf.summary.scalar('part logits shape 0', part_logits.shape[0]) tf.summary.scalar('part logits shape 1', part_logits.shape[1]) tf.summary.scalar('part logits shape 2', part_logits.shape[2]) tf.summary.scalar('labels shape 0', labels.shape[0]) tf.summary.scalar('labels shape 1', labels.shape[1]) tf.summary.scalar('labels shape 2', labels.shape[2]) tf.add_to_collection('losses', classify_loss) return classify_loss def eval_pred(logits,input_labels,num_class,wt=1):#预测结果评估 """ :param logits: Bx(C*2)--Bx200(100*2);>< age_thresh """ input_labels=tf.cast(input_labels, tf.float32) wt=tf.cast(wt, tf.float32) part_logits=tf.reshape(logits,[-1,num_class//2,2]) part_logits1=tf.map_fn(lambda x:x[:,0],tf.nn.softmax(part_logits)) pred=tf.cast(tf.reduce_sum(part_logits1,1),tf.float32) labb=tf.reduce_sum(tf.map_fn(lambda x:x[:,0],input_labels),1) #mae_wt=tf.cast(tf.reduce_mean(tf.multiply(tf.abs(pred-labb),wt)), tf.float64) mae_wt=tf.reduce_mean(tf.multiply(tf.abs(pred-labb),wt)) #mae=tf.cast(tf.reduce_mean(tf.abs(pred-labb)), tf.float64) mae=tf.reduce_mean(tf.abs(pred-labb)) #tf.summary.scalar('Test set MAE', mae) #tf.summary.scalar('Test set MAE_weighted', mae_wt) return pred,mae,mae_wt ''' def get_loss(pred, label, smpw): """ :param pred: BxNxC :param label: BxN :param smpw: BxN :return: """ classify_loss = tf.losses.sparse_softmax_cross_entropy(labels=label, logits=pred, weights=smpw) tf.summary.scalar('classify loss', classify_loss) tf.add_to_collection('losses', classify_loss) return classify_loss '''
57.503546
218
0.741737
0
0
0
0
0
0
0
0
3,916
0.482266
fb89161fb05f2325ee9a0854f9561e3db343bc07
89
py
Python
cwl_airflow_parser/operators/__init__.py
lrodri29/cwl-airflow-parser
3854022fc7a5c62cfd92e93fdb7a97d528918239
[ "Apache-2.0" ]
14
2018-05-01T01:31:07.000Z
2019-09-02T15:41:06.000Z
cwl_airflow_parser/operators/__init__.py
lrodri29/cwl-airflow-parser
3854022fc7a5c62cfd92e93fdb7a97d528918239
[ "Apache-2.0" ]
1
2018-08-06T17:28:51.000Z
2018-08-27T16:05:10.000Z
cwl_airflow_parser/operators/__init__.py
lrodri29/cwl-airflow-parser
3854022fc7a5c62cfd92e93fdb7a97d528918239
[ "Apache-2.0" ]
8
2018-08-06T16:47:31.000Z
2020-05-12T20:21:01.000Z
from .cwljobdispatcher import CWLJobDispatcher from .cwljobgatherer import CWLJobGatherer
44.5
46
0.898876
0
0
0
0
0
0
0
0
0
0