text
stringlengths
0
828
bounds = ((lower_bound, upper_bound), ) * len(self.SUPPORTED_COINS)
return minimize(
fun=func, x0=weights, jac=func_deriv, bounds=bounds,
constraints=constraints, method='SLSQP', options={'disp': False}
)"
729,"def allocate(self):
""""""
Returns an efficient portfolio allocation for the given risk index.
""""""
df = self.manager.get_historic_data()[self.SUPPORTED_COINS]
#==== Calculate the daily changes ====#
change_columns = []
for column in df:
if column in self.SUPPORTED_COINS:
change_column = '{}_change'.format(column)
values = pd.Series(
(df[column].shift(-1) - df[column]) /
-df[column].shift(-1)
).values
df[change_column] = values
change_columns.append(change_column)
# print(df.head())
# print(df.tail())
#==== Variances and returns ====#
columns = change_columns
# NOTE: `risks` is not used, but may be used in the future
risks = df[columns].apply(np.nanvar, axis=0)
# print('\nVariance:\n{}\n'.format(risks))
returns = df[columns].apply(np.nanmean, axis=0)
# print('\nExpected returns:\n{}\n'.format(returns))
#==== Calculate risk and expected return ====#
cov_matrix = df[columns].cov()
# NOTE: The diagonal variances weren't calculated correctly, so here is a fix.
cov_matrix.values[[np.arange(len(self.SUPPORTED_COINS))] * 2] = df[columns].apply(np.nanvar, axis=0)
weights = np.array([1/len(self.SUPPORTED_COINS)] * len(self.SUPPORTED_COINS)).reshape(len(self.SUPPORTED_COINS), 1)
#==== Calculate portfolio with the minimum risk ====#
min_risk = self.get_min_risk(weights, cov_matrix)
min_return = np.dot(min_risk, returns.values)
#==== Calculate portfolio with the maximum return ====#
max_return = self.get_max_return(weights, returns)
#==== Calculate efficient frontier ====#
frontier = self.efficient_frontier(
returns, cov_matrix, min_return, max_return, 6
)
return frontier"
730,"def handle_default_options(options):
""""""
Pass in a Values instance from OptionParser. Handle settings and pythonpath
options - Values from OptionParser
""""""
if options.settings:
#Set the percept_settings_module (picked up by settings in conf.base)
os.environ['PERCEPT_SETTINGS_MODULE'] = options.settings
if options.pythonpath:
#Append the pythonpath and the directory one up from the pythonpath to sys.path for importing
options.pythonpath = os.path.abspath(os.path.expanduser(options.pythonpath))
up_one_path = os.path.abspath(os.path.join(options.pythonpath, ""..""))
sys.path.append(options.pythonpath)
sys.path.append(up_one_path)
return options"
731,"def create_parser(self, prog_name, subcommand):
""""""
Create an OptionParser
prog_name - Name of a command
subcommand - Name of a subcommand
""""""
parser = OptionParser(prog=prog_name,
usage=self.usage(subcommand),
option_list=self.option_list)
return parser"
732,"def hook(name=None, *args, **kwargs):
""""""Decorator to register the function as a hook
""""""
def decorator(f):
if not hasattr(f, ""hooks""):
f.hooks = []
f.hooks.append((name or f.__name__, args, kwargs))
return f
return decorator"
733,"def register_hooks(func, hooks, obj):
""""""Register func on obj via hooks.
Hooks should be a tuple of (name, args, kwargs) where
name is a method name of obj. If args or kwargs are not empty,
the method will be called first and expect a new function as return.
""""""
for name, args, kwargs in hooks:
hook = getattr(obj, name)
force_call = kwargs.pop(""_force_call"", False)
if force_call or len(args) > 0 or len(kwargs) > 0:
hook = hook(*args, **kwargs)
hook(func)"