text
stringlengths 0
828
|
|---|
bounds = ((lower_bound, upper_bound), ) * len(self.SUPPORTED_COINS)
|
return minimize(
|
fun=func, x0=weights, jac=func_deriv, bounds=bounds,
|
constraints=constraints, method='SLSQP', options={'disp': False}
|
)"
|
729,"def allocate(self):
|
""""""
|
Returns an efficient portfolio allocation for the given risk index.
|
""""""
|
df = self.manager.get_historic_data()[self.SUPPORTED_COINS]
|
#==== Calculate the daily changes ====#
|
change_columns = []
|
for column in df:
|
if column in self.SUPPORTED_COINS:
|
change_column = '{}_change'.format(column)
|
values = pd.Series(
|
(df[column].shift(-1) - df[column]) /
|
-df[column].shift(-1)
|
).values
|
df[change_column] = values
|
change_columns.append(change_column)
|
# print(df.head())
|
# print(df.tail())
|
#==== Variances and returns ====#
|
columns = change_columns
|
# NOTE: `risks` is not used, but may be used in the future
|
risks = df[columns].apply(np.nanvar, axis=0)
|
# print('\nVariance:\n{}\n'.format(risks))
|
returns = df[columns].apply(np.nanmean, axis=0)
|
# print('\nExpected returns:\n{}\n'.format(returns))
|
#==== Calculate risk and expected return ====#
|
cov_matrix = df[columns].cov()
|
# NOTE: The diagonal variances weren't calculated correctly, so here is a fix.
|
cov_matrix.values[[np.arange(len(self.SUPPORTED_COINS))] * 2] = df[columns].apply(np.nanvar, axis=0)
|
weights = np.array([1/len(self.SUPPORTED_COINS)] * len(self.SUPPORTED_COINS)).reshape(len(self.SUPPORTED_COINS), 1)
|
#==== Calculate portfolio with the minimum risk ====#
|
min_risk = self.get_min_risk(weights, cov_matrix)
|
min_return = np.dot(min_risk, returns.values)
|
#==== Calculate portfolio with the maximum return ====#
|
max_return = self.get_max_return(weights, returns)
|
#==== Calculate efficient frontier ====#
|
frontier = self.efficient_frontier(
|
returns, cov_matrix, min_return, max_return, 6
|
)
|
return frontier"
|
730,"def handle_default_options(options):
|
""""""
|
Pass in a Values instance from OptionParser. Handle settings and pythonpath
|
options - Values from OptionParser
|
""""""
|
if options.settings:
|
#Set the percept_settings_module (picked up by settings in conf.base)
|
os.environ['PERCEPT_SETTINGS_MODULE'] = options.settings
|
if options.pythonpath:
|
#Append the pythonpath and the directory one up from the pythonpath to sys.path for importing
|
options.pythonpath = os.path.abspath(os.path.expanduser(options.pythonpath))
|
up_one_path = os.path.abspath(os.path.join(options.pythonpath, ""..""))
|
sys.path.append(options.pythonpath)
|
sys.path.append(up_one_path)
|
return options"
|
731,"def create_parser(self, prog_name, subcommand):
|
""""""
|
Create an OptionParser
|
prog_name - Name of a command
|
subcommand - Name of a subcommand
|
""""""
|
parser = OptionParser(prog=prog_name,
|
usage=self.usage(subcommand),
|
option_list=self.option_list)
|
return parser"
|
732,"def hook(name=None, *args, **kwargs):
|
""""""Decorator to register the function as a hook
|
""""""
|
def decorator(f):
|
if not hasattr(f, ""hooks""):
|
f.hooks = []
|
f.hooks.append((name or f.__name__, args, kwargs))
|
return f
|
return decorator"
|
733,"def register_hooks(func, hooks, obj):
|
""""""Register func on obj via hooks.
|
Hooks should be a tuple of (name, args, kwargs) where
|
name is a method name of obj. If args or kwargs are not empty,
|
the method will be called first and expect a new function as return.
|
""""""
|
for name, args, kwargs in hooks:
|
hook = getattr(obj, name)
|
force_call = kwargs.pop(""_force_call"", False)
|
if force_call or len(args) > 0 or len(kwargs) > 0:
|
hook = hook(*args, **kwargs)
|
hook(func)"
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.