text
stringlengths 0
828
|
|---|
""""""The objective function that minimizes variance.""""""
|
return np.matmul(np.matmul(weights.transpose(), cov_matrix), weights)
|
def func_deriv(weights):
|
""""""The derivative of the objective function.""""""
|
return (
|
np.matmul(weights.transpose(), cov_matrix.transpose()) +
|
np.matmul(weights.transpose(), cov_matrix)
|
)
|
constraints = ({'type': 'eq', 'fun': lambda weights: (weights.sum() - 1)})
|
solution = self.solve_minimize(func, weights, constraints, func_deriv=func_deriv)
|
# NOTE: `min_risk` is unused, but may be helpful later.
|
# min_risk = solution.fun
|
allocation = solution.x
|
return allocation"
|
726,"def get_max_return(self, weights, returns):
|
""""""
|
Maximizes the returns of a portfolio.
|
""""""
|
def func(weights):
|
""""""The objective function that maximizes returns.""""""
|
return np.dot(weights, returns.values) * -1
|
constraints = ({'type': 'eq', 'fun': lambda weights: (weights.sum() - 1)})
|
solution = self.solve_minimize(func, weights, constraints)
|
max_return = solution.fun * -1
|
# NOTE: `max_risk` is not used anywhere, but may be helpful in the future.
|
# allocation = solution.x
|
# max_risk = np.matmul(
|
# np.matmul(allocation.transpose(), cov_matrix), allocation
|
# )
|
return max_return"
|
727,"def efficient_frontier(
|
self,
|
returns,
|
cov_matrix,
|
min_return,
|
max_return,
|
count
|
):
|
""""""
|
Returns a DataFrame of efficient portfolio allocations for `count` risk
|
indices.
|
""""""
|
columns = [coin for coin in self.SUPPORTED_COINS]
|
# columns.append('Return')
|
# columns.append('Risk')
|
values = pd.DataFrame(columns=columns)
|
weights = [1/len(self.SUPPORTED_COINS)] * len(self.SUPPORTED_COINS)
|
def func(weights):
|
""""""The objective function that minimizes variance.""""""
|
return np.matmul(np.matmul(weights.transpose(), cov_matrix), weights)
|
def func_deriv(weights):
|
""""""The derivative of the objective function.""""""
|
return (
|
np.matmul(weights.transpose(), cov_matrix.transpose()) +
|
np.matmul(weights.transpose(), cov_matrix)
|
)
|
for point in np.linspace(min_return, max_return, count):
|
constraints = (
|
{'type': 'eq', 'fun': lambda weights: (weights.sum() - 1)},
|
{'type': 'ineq', 'fun': lambda weights, i=point: (
|
np.dot(weights, returns.values) - i
|
)}
|
)
|
solution = self.solve_minimize(func, weights, constraints, func_deriv=func_deriv)
|
columns = {}
|
for index, coin in enumerate(self.SUPPORTED_COINS):
|
columns[coin] = math.floor(solution.x[index] * 100 * 100) / 100
|
# NOTE: These lines could be helpful, but are commented out right now.
|
# columns['Return'] = round(np.dot(solution.x, returns), 6)
|
# columns['Risk'] = round(solution.fun, 6)
|
values = values.append(columns, ignore_index=True)
|
return values"
|
728,"def solve_minimize(
|
self,
|
func,
|
weights,
|
constraints,
|
lower_bound=0.0,
|
upper_bound=1.0,
|
func_deriv=False
|
):
|
""""""
|
Returns the solution to a minimization problem.
|
""""""
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.