exec_outcome
stringclasses 1
value | code_uid
stringlengths 32
32
| file_name
stringclasses 111
values | prob_desc_created_at
stringlengths 10
10
| prob_desc_description
stringlengths 63
3.8k
| prob_desc_memory_limit
stringclasses 18
values | source_code
stringlengths 117
65.5k
| lang_cluster
stringclasses 1
value | prob_desc_sample_inputs
stringlengths 2
802
| prob_desc_time_limit
stringclasses 27
values | prob_desc_sample_outputs
stringlengths 2
796
| prob_desc_notes
stringlengths 4
3k
⌀ | lang
stringclasses 5
values | prob_desc_input_from
stringclasses 3
values | tags
listlengths 0
11
| src_uid
stringlengths 32
32
| prob_desc_input_spec
stringlengths 28
2.37k
⌀ | difficulty
int64 -1
3.5k
⌀ | prob_desc_output_spec
stringlengths 17
1.47k
⌀ | prob_desc_output_to
stringclasses 3
values | hidden_unit_tests
stringclasses 1
value |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
PASSED
|
78109ca4523912c692bb0676e83fe354
|
train_110.jsonl
|
1613658900
|
There are $$$n$$$ cities and $$$m$$$ bidirectional roads in the country. The roads in the country form an undirected weighted graph. The graph is not guaranteed to be connected. Each road has it's own parameter $$$w$$$. You can travel through the roads, but the government made a new law: you can only go through two roads at a time (go from city $$$a$$$ to city $$$b$$$ and then from city $$$b$$$ to city $$$c$$$) and you will have to pay $$$(w_{ab} + w_{bc})^2$$$ money to go through those roads. Find out whether it is possible to travel from city $$$1$$$ to every other city $$$t$$$ and what's the minimum amount of money you need to get from $$$1$$$ to $$$t$$$.
|
512 megabytes
|
import java.io.*;
import java.util.*;
public class CF703E {
static final int N = (int)(2e5 + 11), INF = (int)(1e9 + 11);
static int n, m, v, u, w;
static ArrayList< int[] > g[] = new ArrayList[N];
static int[][] d;
static PriorityQueue<Node> pq;
public static void main (String[] args) throws IOException {
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
// BufferedWriter bw = new BufferedWriter(new OutputStreamWriter(System.out));
StringTokenizer st = new StringTokenizer(br.readLine());
n = Integer.parseInt(st.nextToken());
m = Integer.parseInt(st.nextToken());
for (int i = 0; i < n; ++i)
g[i] = new ArrayList<>();
while (m-- > 0) {
st = new StringTokenizer(br.readLine());
v = Integer.parseInt(st.nextToken());
u = Integer.parseInt(st.nextToken());
w = Integer.parseInt(st.nextToken());
--v;
--u;
g[v].add(new int[] {u, w});
g[u].add(new int[] {v, w});
}
d = new int[n][];
for (int i = 0; i < n; ++i) {
d[i] = new int[51];
for (int j = 0; j < 51; ++j)
d[i][j] = INF;
}
d[0][0] = 0;
Node V;
pq = new PriorityQueue<Node>();
pq.add(new Node(0, 0, d[0][0]));
while (pq.size() > 0) {
V = pq.remove();
int v = V.v;
int lvl = V.lvl;
int cost = V.cost;
if (d[v][lvl] != cost)
continue;
for (int[] u : g[v]) {
int to = u[0], w = u[1], lvl1;
if (lvl == 0) {
lvl1 = w;
w = w*w;
} else {
lvl1 = 0;
w = w*w + 2*lvl*w;
}
if (d[to][lvl1] > w + d[v][lvl]) {
d[to][lvl1] = w + d[v][lvl];
pq.add(new Node(to, lvl1, d[to][lvl1]));
}
}
}
for (int i = 0; i < n; ++i)
if (d[i][0] == INF)
System.out.print("-1 ");
else
System.out.print(d[i][0] + " ");
}
static class Node implements Comparable<Node> {
public int v, lvl, cost;
Node (int v1, int lvl1, int cost1) {
v = v1;
lvl = lvl1;
cost = cost1;
}
@Override
public int compareTo (Node a) {
return Integer.compare(cost, a.cost);
}
}
}
|
Java
|
["5 6\n1 2 3\n2 3 4\n3 4 5\n4 5 6\n1 5 1\n2 4 2", "3 2\n1 2 1\n2 3 2"]
|
4 seconds
|
["0 98 49 25 114", "0 -1 9"]
|
NoteThe graph in the first example looks like this.In the second example the path from $$$1$$$ to $$$3$$$ goes through $$$2$$$, so the resulting payment is $$$(1 + 2)^2 = 9$$$.
|
Java 11
|
standard input
|
[
"binary search",
"brute force",
"constructive algorithms",
"dp",
"flows",
"graphs",
"shortest paths"
] |
abee4d188bb59d82fcf4579c7416a343
|
First line contains two integers $$$n$$$, $$$m$$$ ($$$2 \leq n \leq 10^5$$$, $$$1 \leq m \leq min(\frac{n \cdot (n - 1)}{2}, 2 \cdot 10^5)$$$). Next $$$m$$$ lines each contain three integers $$$v_i$$$, $$$u_i$$$, $$$w_i$$$ ($$$1 \leq v_i, u_i \leq n$$$, $$$1 \leq w_i \leq 50$$$, $$$u_i \neq v_i$$$). It's guaranteed that there are no multiple edges, i.e. for any edge $$$(u_i, v_i)$$$ there are no other edges $$$(u_i, v_i)$$$ or $$$(v_i, u_i)$$$.
| 2,200
|
For every city $$$t$$$ print one integer. If there is no correct path between $$$1$$$ and $$$t$$$ output $$$-1$$$. Otherwise print out the minimum amount of money needed to travel from $$$1$$$ to $$$t$$$.
|
standard output
| |
PASSED
|
1c757c8938c07973d351c374dcfde071
|
train_110.jsonl
|
1613658900
|
There are $$$n$$$ cities and $$$m$$$ bidirectional roads in the country. The roads in the country form an undirected weighted graph. The graph is not guaranteed to be connected. Each road has it's own parameter $$$w$$$. You can travel through the roads, but the government made a new law: you can only go through two roads at a time (go from city $$$a$$$ to city $$$b$$$ and then from city $$$b$$$ to city $$$c$$$) and you will have to pay $$$(w_{ab} + w_{bc})^2$$$ money to go through those roads. Find out whether it is possible to travel from city $$$1$$$ to every other city $$$t$$$ and what's the minimum amount of money you need to get from $$$1$$$ to $$$t$$$.
|
512 megabytes
|
import java.io.*;
import java.util.*;
public class CF703E {
static final int N = (int)(2e5 + 11), INF = (int)(1e9 + 11);
static int n, m, v, u, w;
static ArrayList< int[] > g[] = new ArrayList[N];
static int[][] d;
static PriorityQueue<Node> pq;
public static void main (String[] args) throws IOException {
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
BufferedWriter bw = new BufferedWriter(new OutputStreamWriter(System.out));
StringTokenizer st = new StringTokenizer(br.readLine());
n = Integer.parseInt(st.nextToken());
m = Integer.parseInt(st.nextToken());
for (int i = 0; i < n; ++i)
g[i] = new ArrayList<>();
while (m-- > 0) {
st = new StringTokenizer(br.readLine());
v = Integer.parseInt(st.nextToken());
u = Integer.parseInt(st.nextToken());
w = Integer.parseInt(st.nextToken());
--v;
--u;
// bw.write(v + " " + u + " " + w + "\n");
g[v].add(new int[] {u, w});
g[u].add(new int[] {v, w});
}
d = new int[n][];
for (int i = 0; i < n; ++i) {
d[i] = new int[51];
for (int j = 0; j < 51; ++j)
d[i][j] = INF;
}
d[0][0] = 0;
Node V;
pq = new PriorityQueue<Node>();
pq.add(new Node(0, 0, d[0][0]));
while (pq.size() > 0) {
V = pq.remove();
int v = V.v;
int lvl = V.lvl;
int cost = V.cost;
if (d[v][lvl] != cost)
continue;
for (int[] u : g[v]) {
int to = u[0], w = u[1], lvl1;
if (lvl == 0) {
lvl1 = w;
w = w*w;
} else {
lvl1 = 0;
w = w*w + 2*lvl*w;
}
if (d[to][lvl1] > w + d[v][lvl]) {
d[to][lvl1] = w + d[v][lvl];
pq.add(new Node(to, lvl1, d[to][lvl1]));
}
}
}
for (int i = 0; i < n; ++i)
if (d[i][0] == INF)
bw.write(-1 + " ");
else
bw.write(d[i][0] + " ");
bw.close();
}
static class Node implements Comparable<Node> {
public int v, lvl, cost;
Node (int v1, int lvl1, int cost1) {
v = v1;
lvl = lvl1;
cost = cost1;
}
@Override
public int compareTo (Node a) {
return Integer.compare(cost, a.cost);
}
}
}
|
Java
|
["5 6\n1 2 3\n2 3 4\n3 4 5\n4 5 6\n1 5 1\n2 4 2", "3 2\n1 2 1\n2 3 2"]
|
4 seconds
|
["0 98 49 25 114", "0 -1 9"]
|
NoteThe graph in the first example looks like this.In the second example the path from $$$1$$$ to $$$3$$$ goes through $$$2$$$, so the resulting payment is $$$(1 + 2)^2 = 9$$$.
|
Java 11
|
standard input
|
[
"binary search",
"brute force",
"constructive algorithms",
"dp",
"flows",
"graphs",
"shortest paths"
] |
abee4d188bb59d82fcf4579c7416a343
|
First line contains two integers $$$n$$$, $$$m$$$ ($$$2 \leq n \leq 10^5$$$, $$$1 \leq m \leq min(\frac{n \cdot (n - 1)}{2}, 2 \cdot 10^5)$$$). Next $$$m$$$ lines each contain three integers $$$v_i$$$, $$$u_i$$$, $$$w_i$$$ ($$$1 \leq v_i, u_i \leq n$$$, $$$1 \leq w_i \leq 50$$$, $$$u_i \neq v_i$$$). It's guaranteed that there are no multiple edges, i.e. for any edge $$$(u_i, v_i)$$$ there are no other edges $$$(u_i, v_i)$$$ or $$$(v_i, u_i)$$$.
| 2,200
|
For every city $$$t$$$ print one integer. If there is no correct path between $$$1$$$ and $$$t$$$ output $$$-1$$$. Otherwise print out the minimum amount of money needed to travel from $$$1$$$ to $$$t$$$.
|
standard output
| |
PASSED
|
e72a9215c56667a4c15855b299f365f8
|
train_110.jsonl
|
1613658900
|
There are $$$n$$$ cities and $$$m$$$ bidirectional roads in the country. The roads in the country form an undirected weighted graph. The graph is not guaranteed to be connected. Each road has it's own parameter $$$w$$$. You can travel through the roads, but the government made a new law: you can only go through two roads at a time (go from city $$$a$$$ to city $$$b$$$ and then from city $$$b$$$ to city $$$c$$$) and you will have to pay $$$(w_{ab} + w_{bc})^2$$$ money to go through those roads. Find out whether it is possible to travel from city $$$1$$$ to every other city $$$t$$$ and what's the minimum amount of money you need to get from $$$1$$$ to $$$t$$$.
|
512 megabytes
|
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.util.*;
public class problemE {
static class Solution {
Node[] nodes;
void solve() {
int n = fs.nextInt(), m = fs.nextInt();
nodes = new Node[n+1];
for (int i = 1; i <= n; i ++) nodes[i] = new Node(i);
for (int i = 0 ; i < m ; i ++ ) {
int u = fs.nextInt(), v = fs.nextInt(), w = fs.nextInt();
nodes[u].edges.addLast(new Edge(v, w));
nodes[v].edges.addLast(new Edge(u, w));
}
PriorityQueue<Item> pQ = new PriorityQueue<>();
pQ.add(new Item(0, 0, 1));
nodes[1].D[0] = 0;
while (!pQ.isEmpty()) {
Item top = pQ.poll();
int dist = top.dist, ind = top.ind, node = top.node;
if (nodes[node].D[ind] < dist) continue;
nodes[node].D[ind] = dist;
for (Edge edge : nodes[node].edges) {
if (ind == 0) {
if (nodes[edge.v].D[edge.w] > nodes[node].D[ind]) {
pQ.add(new Item(nodes[node].D[ind], edge.w, edge.v));
nodes[edge.v].D[edge.w] = nodes[node].D[ind];
}
} else {
int newDist = nodes[node].D[ind] + square((ind+edge.w));
if (nodes[edge.v].D[0] > newDist) {
pQ.add(new Item(newDist, 0, edge.v));
nodes[edge.v].D[0] = newDist;
}
}
}
}
for (int i = 1; i <= n ; i ++ ) {
int dist = nodes[i].D[0];
out.print(dist == Integer.MAX_VALUE ? -1 : dist);
out.print(' ');
}
out.println();
}
int square(int x) { return x * x ; }
class Item implements Comparable<Item> {
int dist;
int ind;
int node;
Item(int dist, int ind, int node) {
this.dist = dist; this.ind = ind; this.node = node;
}
@Override
public int compareTo(Item other) {
if (this.dist == other.dist) return Integer.compare(this.node, other.node);
return Integer.compare(this.dist, other.dist);
}
}
class Node {
int ind;
int[] D = new int[51];
LinkedList<Edge> edges = new LinkedList<>();
Node(int ind) {
this.ind = ind;
Arrays.fill(this.D, Integer.MAX_VALUE);
}
}
class Edge {
int v, w;
Edge(int v, int w) {
this.v = v; this.w = w;
}
}
}
public static void main(String[] args) throws Exception {
int T = 1;
Solution solution = new Solution();
for (int t = 0; t < T; t++) solution.solve();
out.close();
}
static void debug(Object... O) {
System.err.println("DEBUG: " + Arrays.deepToString(O));
}
private static FastScanner fs = new FastScanner();
private static PrintWriter out = new PrintWriter(System.out);
static class FastScanner { // Thanks SecondThread.
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
StringTokenizer st = new StringTokenizer("");
String next() {
while (!st.hasMoreTokens())
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
int[] readArray(int n) {
int[] a = new int[n];
for (int i = 0; i < n; i++) a[i] = nextInt();
return a;
}
long[] readLongArray(int n) {
long[] a = new long[n];
for (int i = 0; i < n; i++) a[i] = nextLong();
return a;
}
ArrayList<Integer> readArrayList(int n) {
ArrayList<Integer> a = new ArrayList<>(n);
for (int i = 0 ; i < n; i ++ ) a.add(fs.nextInt());
return a;
}
long nextLong() {
return Long.parseLong(next());
}
double nextDouble() {
return Double.parseDouble(next());
}
String nextString() {
return next();
}
}
}
|
Java
|
["5 6\n1 2 3\n2 3 4\n3 4 5\n4 5 6\n1 5 1\n2 4 2", "3 2\n1 2 1\n2 3 2"]
|
4 seconds
|
["0 98 49 25 114", "0 -1 9"]
|
NoteThe graph in the first example looks like this.In the second example the path from $$$1$$$ to $$$3$$$ goes through $$$2$$$, so the resulting payment is $$$(1 + 2)^2 = 9$$$.
|
Java 11
|
standard input
|
[
"binary search",
"brute force",
"constructive algorithms",
"dp",
"flows",
"graphs",
"shortest paths"
] |
abee4d188bb59d82fcf4579c7416a343
|
First line contains two integers $$$n$$$, $$$m$$$ ($$$2 \leq n \leq 10^5$$$, $$$1 \leq m \leq min(\frac{n \cdot (n - 1)}{2}, 2 \cdot 10^5)$$$). Next $$$m$$$ lines each contain three integers $$$v_i$$$, $$$u_i$$$, $$$w_i$$$ ($$$1 \leq v_i, u_i \leq n$$$, $$$1 \leq w_i \leq 50$$$, $$$u_i \neq v_i$$$). It's guaranteed that there are no multiple edges, i.e. for any edge $$$(u_i, v_i)$$$ there are no other edges $$$(u_i, v_i)$$$ or $$$(v_i, u_i)$$$.
| 2,200
|
For every city $$$t$$$ print one integer. If there is no correct path between $$$1$$$ and $$$t$$$ output $$$-1$$$. Otherwise print out the minimum amount of money needed to travel from $$$1$$$ to $$$t$$$.
|
standard output
| |
PASSED
|
07744b018585c9f3429d217801539386
|
train_110.jsonl
|
1613658900
|
There are $$$n$$$ cities and $$$m$$$ bidirectional roads in the country. The roads in the country form an undirected weighted graph. The graph is not guaranteed to be connected. Each road has it's own parameter $$$w$$$. You can travel through the roads, but the government made a new law: you can only go through two roads at a time (go from city $$$a$$$ to city $$$b$$$ and then from city $$$b$$$ to city $$$c$$$) and you will have to pay $$$(w_{ab} + w_{bc})^2$$$ money to go through those roads. Find out whether it is possible to travel from city $$$1$$$ to every other city $$$t$$$ and what's the minimum amount of money you need to get from $$$1$$$ to $$$t$$$.
|
512 megabytes
|
import java.util.*;
import java.lang.*;
import java.io.*;
public class Codechef {
static class Pair {
Integer v;
int w;
Pair(Integer v, Integer w) {
this.v = v;
this.w = w;
}
}
static class Group {
Integer distance;
Pair pair;
Group(int distance, Pair pair) {
this.distance = distance;
this.pair = pair;
}
}
static int N = 100005, W = 51;
static int[][] dist = new int[N][W];
static boolean[][] visited = new boolean[N][W];
public static void main(String[] args) throws java.lang.Exception {
out = new PrintWriter(new BufferedOutputStream(System.out));
sc = new FastReader();
int test = 1;
for (int t = 0; t < test; t++) {
int n = sc.nextInt();
int m = sc.nextInt();
Map<Integer, List<Pair>> map = new HashMap<>();
for (int i = 1; i <= n; i++) {
map.put(i, new ArrayList<>());
}
for (int i = 0; i < m; i++) {
int u = sc.nextInt();
int v = sc.nextInt();
int w = sc.nextInt();
map.get(u).add(new Pair(v, w));
map.get(v).add(new Pair(u, w));
}
PriorityQueue<Group> pq = new PriorityQueue<>(new Comparator<Group>() {
@Override
public int compare(Group o1, Group o2) {
return o2.distance - o1.distance;
}
});
pq.add(new Group(1, new Pair(1, 0)));
for (int i = 0; i < dist.length; i++) {
for (int j = 0; j < dist[0].length; j++) {
dist[i][j] = -1;
visited[i][j] = false;
}
}
dist[1][0] = 0;
while (!pq.isEmpty()) {
Pair p = pq.peek().pair;
pq.poll();
if (visited[p.v][p.w]) {
continue;
}
visited[p.v][p.w] = true;
if (p.w == 0) {
for(Pair adj : map.get(p.v)) {
if (dist[adj.v][adj.w] == -1 || dist[adj.v][adj.w] > dist[p.v][p.w] + adj.w * adj.w) {
dist[adj.v][adj.w] = dist[p.v][p.w] + adj.w * adj.w;
pq.add(new Group(-dist[adj.v][adj.w], new Pair(adj.v, adj.w)));
}
}
}else {
for(Pair adj : map.get(p.v)) {
if (dist[adj.v][0] == -1 || dist[adj.v][0] > dist[p.v][p.w] + adj.w * adj.w + 2 * p.w * adj.w) {
dist[adj.v][0] = dist[p.v][p.w] + adj.w * adj.w + 2 * p.w * adj.w;
pq.add(new Group(-dist[adj.v][0], new Pair(adj.v, 0)));
}
}
}
}
for (int v = 1; v <= n; v++) {
out.print(dist[v][0] + " ");
}
out.println();
}
out.close();
}
public static FastReader sc;
public static PrintWriter out;
static class FastReader
{
BufferedReader br;
StringTokenizer st;
public FastReader()
{
br = new BufferedReader(new
InputStreamReader(System.in));
}
String next()
{
while (st == null || !st.hasMoreElements())
{
try
{
st = new StringTokenizer(br.readLine());
}
catch (IOException e)
{
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt()
{
return Integer.parseInt(next());
}
long nextLong()
{
return Long.parseLong(next());
}
double nextDouble()
{
return Double.parseDouble(next());
}
String nextLine()
{
String str = "";
try
{
str = br.readLine();
}
catch (IOException e)
{
e.printStackTrace();
}
return str;
}
}
}
|
Java
|
["5 6\n1 2 3\n2 3 4\n3 4 5\n4 5 6\n1 5 1\n2 4 2", "3 2\n1 2 1\n2 3 2"]
|
4 seconds
|
["0 98 49 25 114", "0 -1 9"]
|
NoteThe graph in the first example looks like this.In the second example the path from $$$1$$$ to $$$3$$$ goes through $$$2$$$, so the resulting payment is $$$(1 + 2)^2 = 9$$$.
|
Java 11
|
standard input
|
[
"binary search",
"brute force",
"constructive algorithms",
"dp",
"flows",
"graphs",
"shortest paths"
] |
abee4d188bb59d82fcf4579c7416a343
|
First line contains two integers $$$n$$$, $$$m$$$ ($$$2 \leq n \leq 10^5$$$, $$$1 \leq m \leq min(\frac{n \cdot (n - 1)}{2}, 2 \cdot 10^5)$$$). Next $$$m$$$ lines each contain three integers $$$v_i$$$, $$$u_i$$$, $$$w_i$$$ ($$$1 \leq v_i, u_i \leq n$$$, $$$1 \leq w_i \leq 50$$$, $$$u_i \neq v_i$$$). It's guaranteed that there are no multiple edges, i.e. for any edge $$$(u_i, v_i)$$$ there are no other edges $$$(u_i, v_i)$$$ or $$$(v_i, u_i)$$$.
| 2,200
|
For every city $$$t$$$ print one integer. If there is no correct path between $$$1$$$ and $$$t$$$ output $$$-1$$$. Otherwise print out the minimum amount of money needed to travel from $$$1$$$ to $$$t$$$.
|
standard output
| |
PASSED
|
5dc52f0434ef749c2d7262ff15a717ac
|
train_110.jsonl
|
1613658900
|
There are $$$n$$$ cities and $$$m$$$ bidirectional roads in the country. The roads in the country form an undirected weighted graph. The graph is not guaranteed to be connected. Each road has it's own parameter $$$w$$$. You can travel through the roads, but the government made a new law: you can only go through two roads at a time (go from city $$$a$$$ to city $$$b$$$ and then from city $$$b$$$ to city $$$c$$$) and you will have to pay $$$(w_{ab} + w_{bc})^2$$$ money to go through those roads. Find out whether it is possible to travel from city $$$1$$$ to every other city $$$t$$$ and what's the minimum amount of money you need to get from $$$1$$$ to $$$t$$$.
|
512 megabytes
|
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Comparator;
import java.util.List;
import java.util.PriorityQueue;
import java.util.Random;
import java.util.StringTokenizer;
public final class E {
public static void main(String[] args) {
final FastScanner fs = new FastScanner();
final int n = fs.nextInt();
final int m = fs.nextInt();
final List<List<int[]>> g = new ArrayList<>();
for (int i = 0; i < n; i++) {
g.add(new ArrayList<>());
}
for (int i = 0; i < m; i++) {
final int u = fs.nextInt() - 1;
final int v = fs.nextInt() - 1;
final int w = fs.nextInt();
g.get(u).add(new int[] { v, w });
g.get(v).add(new int[] { u, w });
}
final int[][] d = new int[n][55];
final int inf = (int) 2e9;
for (int i = 0; i < n; i++) {
for (int j = 0; j <= 50; j++) {
d[i][j] = inf;
}
}
d[0][0] = 0;
final PriorityQueue<int[]> pq = new PriorityQueue<>(Comparator.comparingInt(val -> val[0]));
pq.offer(new int[] { 0, 0, 0 });
while (!pq.isEmpty()) {
final int[] curr = pq.remove();
final int u = curr[1];
final int w = curr[2];
if (curr[0] > d[u][w]) {
continue;
}
for (int[] next : g.get(u)) {
final int v = next[0];
final int w1 = next[1];
int nw = 0;
final int total;
if (w == 0) {
nw = w1;
total = d[u][0];
} else {
total = d[u][w] + (w1 + w) * (w1 + w);
}
if (total < d[v][nw]) {
d[v][nw] = total;
pq.offer(new int[] { total, v, nw });
}
}
}
final StringBuilder sb = new StringBuilder();
for (int i = 0; i < n; i++) {
sb.append(d[i][0] == inf ? -1 : d[i][0]);
sb.append(' ');
}
System.out.println(sb);
}
static final class Utils {
public static void shuffleSort(int[] x) {
shuffle(x);
Arrays.sort(x);
}
public static void shuffleSort(long[] x) {
shuffle(x);
Arrays.sort(x);
}
public static void shuffle(int[] x) {
final Random r = new Random();
for (int i = 0; i <= x.length - 2; i++) {
final int j = i + r.nextInt(x.length - i);
swap(x, i, j);
}
}
public static void shuffle(long[] x) {
final Random r = new Random();
for (int i = 0; i <= x.length - 2; i++) {
final int j = i + r.nextInt(x.length - i);
swap(x, i, j);
}
}
public static void swap(int[] x, int i, int j) {
final int t = x[i];
x[i] = x[j];
x[j] = t;
}
public static void swap(long[] x, int i, int j) {
final long t = x[i];
x[i] = x[j];
x[j] = t;
}
private Utils() {}
}
static class FastScanner {
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
StringTokenizer st = new StringTokenizer("");
private String next() {
while (!st.hasMoreTokens()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
//noinspection CallToPrintStackTrace
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
long nextLong() {
return Long.parseLong(next());
}
int[] nextIntArray(int n) {
final int[] a = new int[n];
for (int i = 0; i < n; i++) { a[i] = nextInt(); }
return a;
}
long[] nextLongArray(int n) {
final long[] a = new long[n];
for (int i = 0; i < n; i++) { a[i] = nextLong(); }
return a;
}
}
}
|
Java
|
["5 6\n1 2 3\n2 3 4\n3 4 5\n4 5 6\n1 5 1\n2 4 2", "3 2\n1 2 1\n2 3 2"]
|
4 seconds
|
["0 98 49 25 114", "0 -1 9"]
|
NoteThe graph in the first example looks like this.In the second example the path from $$$1$$$ to $$$3$$$ goes through $$$2$$$, so the resulting payment is $$$(1 + 2)^2 = 9$$$.
|
Java 11
|
standard input
|
[
"binary search",
"brute force",
"constructive algorithms",
"dp",
"flows",
"graphs",
"shortest paths"
] |
abee4d188bb59d82fcf4579c7416a343
|
First line contains two integers $$$n$$$, $$$m$$$ ($$$2 \leq n \leq 10^5$$$, $$$1 \leq m \leq min(\frac{n \cdot (n - 1)}{2}, 2 \cdot 10^5)$$$). Next $$$m$$$ lines each contain three integers $$$v_i$$$, $$$u_i$$$, $$$w_i$$$ ($$$1 \leq v_i, u_i \leq n$$$, $$$1 \leq w_i \leq 50$$$, $$$u_i \neq v_i$$$). It's guaranteed that there are no multiple edges, i.e. for any edge $$$(u_i, v_i)$$$ there are no other edges $$$(u_i, v_i)$$$ or $$$(v_i, u_i)$$$.
| 2,200
|
For every city $$$t$$$ print one integer. If there is no correct path between $$$1$$$ and $$$t$$$ output $$$-1$$$. Otherwise print out the minimum amount of money needed to travel from $$$1$$$ to $$$t$$$.
|
standard output
| |
PASSED
|
52aa06a5855487dc57d3c00fcc772b16
|
train_110.jsonl
|
1613658900
|
There are $$$n$$$ cities and $$$m$$$ bidirectional roads in the country. The roads in the country form an undirected weighted graph. The graph is not guaranteed to be connected. Each road has it's own parameter $$$w$$$. You can travel through the roads, but the government made a new law: you can only go through two roads at a time (go from city $$$a$$$ to city $$$b$$$ and then from city $$$b$$$ to city $$$c$$$) and you will have to pay $$$(w_{ab} + w_{bc})^2$$$ money to go through those roads. Find out whether it is possible to travel from city $$$1$$$ to every other city $$$t$$$ and what's the minimum amount of money you need to get from $$$1$$$ to $$$t$$$.
|
512 megabytes
|
import java.util.*;
public class pairedPaymentCF {
public static void main (String[]args) {
Scanner scan = new Scanner (System.in);
int nodeNumber = scan.nextInt();
int edgeNumber = scan.nextInt();
Hashtable <Integer, ArrayList<edge>> weightedGraph = new Hashtable <Integer, ArrayList<edge>>();
for (int i = 0; i < nodeNumber; i++) {
weightedGraph.put(i, new ArrayList<edge>());
}
for (int i = 0; i < edgeNumber; i++) {
int firstNode = scan.nextInt();
int secondNode = scan.nextInt();
int edgeCost = scan.nextInt();
firstNode--;
secondNode--;
ArrayList<edge> temp = weightedGraph.get(firstNode);
edge addingEdge = new edge (secondNode, edgeCost);
temp.add(addingEdge);
weightedGraph.put(firstNode, temp);
ArrayList<edge> tempTwo = weightedGraph.get(secondNode);
addingEdge = new edge (firstNode, edgeCost);
tempTwo.add(addingEdge);
weightedGraph.put(secondNode, tempTwo);
}
// Dp table represents the shortest distance from node 1 to node i and being on the ith step and hav
int [][][] dp = new int [nodeNumber][2][55];
// Initialization
for (int i = 0; i < nodeNumber; i++) {
for (int j = 0; j < 2; j++) {
Arrays.fill(dp[i][j], Integer.MAX_VALUE);
}
}
// Base Case
dp[0][0][0] = 0;
pqPair startingPair = new pqPair (0, 0, 0, 0);
PriorityQueue <pqPair> pq = new PriorityQueue <pqPair>();
pq.add(startingPair);
while (pq.isEmpty() == false) {
pqPair curPair = pq.poll();
int curNode = curPair.node;
int curStep = curPair.stepNumber;
int firstEdgeWeight = curPair.edgeWeight;
int curDist = curPair.distanceFromStart;
ArrayList<edge> neighbors = weightedGraph.get(curNode);
for (int i = 0; i < neighbors.size(); i++) {
int neighborNode = neighbors.get(i).secondNode;
int nextEdgeWeight = neighbors.get(i).edgeCost;
if (curStep == 0) {
if (dp[neighborNode][1][nextEdgeWeight] > dp[curNode][0][0]) {
dp[neighborNode][1][nextEdgeWeight] = dp[curNode][0][0];
pqPair addingPair = new pqPair (neighborNode, 1, nextEdgeWeight, dp[neighborNode][1][nextEdgeWeight]);
pq.add(addingPair);
}
}
else {
int nextAdd = (firstEdgeWeight + nextEdgeWeight) * (firstEdgeWeight + nextEdgeWeight);
if (dp[neighborNode][0][0] > dp[curNode][1][firstEdgeWeight] + nextAdd) {
dp[neighborNode][0][0] = dp[curNode][1][firstEdgeWeight] + nextAdd;
pqPair addingPair = new pqPair (neighborNode, 0, 0, dp[neighborNode][0][0]);
pq.add(addingPair);
}
}
}
}
for (int i = 0; i < nodeNumber; i++) {
int curAnswer = Integer.MAX_VALUE;
for (int j = 0; j < 55; j++) {
curAnswer = Math.min(dp[i][0][j], curAnswer);
}
if (curAnswer == Integer.MAX_VALUE) {
curAnswer = -1;
}
System.out.print(curAnswer + " ");
}
}
private static class pqPair implements Comparable<pqPair> {
int node;
int stepNumber;
int edgeWeight;
int distanceFromStart;
public pqPair (int node, int stepNumber, int edgeWeight, int distanceFromStart) {
this.node = node;
this.stepNumber = stepNumber;
this.edgeWeight = edgeWeight;
this.distanceFromStart = distanceFromStart;
}
public int compareTo (pqPair p) {
return (distanceFromStart - p.distanceFromStart);
}
}
private static class edge {
int secondNode;
int edgeCost;
public edge (int secondNode, int edgeCost) {
this.secondNode = secondNode;
this.edgeCost = edgeCost;
}
}
}
|
Java
|
["5 6\n1 2 3\n2 3 4\n3 4 5\n4 5 6\n1 5 1\n2 4 2", "3 2\n1 2 1\n2 3 2"]
|
4 seconds
|
["0 98 49 25 114", "0 -1 9"]
|
NoteThe graph in the first example looks like this.In the second example the path from $$$1$$$ to $$$3$$$ goes through $$$2$$$, so the resulting payment is $$$(1 + 2)^2 = 9$$$.
|
Java 11
|
standard input
|
[
"binary search",
"brute force",
"constructive algorithms",
"dp",
"flows",
"graphs",
"shortest paths"
] |
abee4d188bb59d82fcf4579c7416a343
|
First line contains two integers $$$n$$$, $$$m$$$ ($$$2 \leq n \leq 10^5$$$, $$$1 \leq m \leq min(\frac{n \cdot (n - 1)}{2}, 2 \cdot 10^5)$$$). Next $$$m$$$ lines each contain three integers $$$v_i$$$, $$$u_i$$$, $$$w_i$$$ ($$$1 \leq v_i, u_i \leq n$$$, $$$1 \leq w_i \leq 50$$$, $$$u_i \neq v_i$$$). It's guaranteed that there are no multiple edges, i.e. for any edge $$$(u_i, v_i)$$$ there are no other edges $$$(u_i, v_i)$$$ or $$$(v_i, u_i)$$$.
| 2,200
|
For every city $$$t$$$ print one integer. If there is no correct path between $$$1$$$ and $$$t$$$ output $$$-1$$$. Otherwise print out the minimum amount of money needed to travel from $$$1$$$ to $$$t$$$.
|
standard output
| |
PASSED
|
4faec1b2cf8209a05573113abb324209
|
train_110.jsonl
|
1613658900
|
There are $$$n$$$ cities and $$$m$$$ bidirectional roads in the country. The roads in the country form an undirected weighted graph. The graph is not guaranteed to be connected. Each road has it's own parameter $$$w$$$. You can travel through the roads, but the government made a new law: you can only go through two roads at a time (go from city $$$a$$$ to city $$$b$$$ and then from city $$$b$$$ to city $$$c$$$) and you will have to pay $$$(w_{ab} + w_{bc})^2$$$ money to go through those roads. Find out whether it is possible to travel from city $$$1$$$ to every other city $$$t$$$ and what's the minimum amount of money you need to get from $$$1$$$ to $$$t$$$.
|
512 megabytes
|
import static java.lang.Math.max;
import static java.lang.Math.min;
import static java.lang.Math.abs;
import java.io.*;
import java.util.*;
public class A
{
static int n, m;
static int[] arr;
static char[] s;
static List<int[]>[] adj;
public static void main(String[] args) throws IOException
{
f = new Flash();
out = new PrintWriter(System.out);
int T = 1; //ni();
for(int tc = 1; tc <= T; tc++){
n = ni(); m = ni();
adj = new ArrayList[n];
for(int i = 0; i < n; i++) adj[i] = new ArrayList<>();
for(int i = 1; i <= m; i++) {
int u = ni()-1, v = ni()-1, w = ni();
adj[u].add(new int[] {v, w});
adj[v].add(new int[] {u, w});
}
fn();
}
out.flush(); out.close();
}
static void fn()
{
long[][] dp = new long[n][51];
boolean[][] vis = new boolean[n][51];
for(int i = 0; i < n; i++) Arrays.fill(dp[i], inf);
dp[0][0] = 0L;
PriorityQueue<Node> pq = new PriorityQueue<>();
pq.add(new Node(0, 0, 0L));
while(!pq.isEmpty()) {
Node cur = pq.poll();
if(vis[cur.u][cur.tag]) continue;
vis[cur.u][cur.tag] = true;
for(int[] vw : adj[cur.u]) {
int v = vw[0], w = vw[1];
if(cur.tag == 0) {
if(dp[v][w] > cur.dist) {
dp[v][w] = cur.dist;
pq.add(new Node(v, w, cur.dist));
}
}
else {
long cost = (cur.tag+w) * (cur.tag+w);
if(dp[v][0] > cur.dist+cost) {
dp[v][0] = cur.dist+cost;
pq.add(new Node(v, 0, cur.dist+cost));
}
}
}
}
long[] ans = new long[n];
for(int i = 0; i < n; i++) {
if(dp[i][0] == inf) dp[i][0] = -1;
ans[i] = dp[i][0];
}
print(ans);
}
static class Node implements Comparable<Node>{
int u, tag;
long dist;
Node(int i, int t, long d){
u = i; tag = t; dist = d;
}
public int compareTo(Node n2) {
return Long.compare(this.dist, n2.dist);
}
}
static Flash f;
static PrintWriter out;
static final long mod = (long)1e9+7;
static final long inf = Long.MAX_VALUE;
static final int _inf = Integer.MAX_VALUE;
static final int maxN = (int)5e5+5;
static long[] fact, inv;
static void sort(int[] a){
List<Integer> A = new ArrayList<>();
for(int i : a) A.add(i);
Collections.sort(A);
for(int i = 0; i < A.size(); i++) a[i] = A.get(i);
}
static void sort(long[] a){
List<Long> A = new ArrayList<>();
for(long i : a) A.add(i);
Collections.sort(A);
for(int i = 0; i < A.size(); i++) a[i] = A.get(i);
}
static void print(int[] a){
StringBuilder sb = new StringBuilder();
for(int i = 0; i < a.length; i++) sb.append(a[i] + " ");
sop(sb);
}
static void print(long[] a){
StringBuilder sb = new StringBuilder();
for(int i = 0; i < a.length; i++) sb.append(a[i] + " ");
sop(sb);
}
static int swap(int itself, int dummy){return itself;}
static long swap(long itself, long dummy){return itself;}
static void sop(Object o){out.println(o);}
static int ni(){return f.ni();}
static long nl(){return f.nl();}
static double nd(){return f.nd();}
static String next(){return f.next();}
static String ns(){return f.ns();}
static char[] nc(){return f.nc();}
static int[] arr(int len){return f.arr(len);}
static int gcd(int a, int b){if(b == 0) return a; return gcd(b, a%b);}
static long gcd(long a, long b){if(b == 0) return a; return gcd(b, a%b);}
static int lcm(int a, int b){return (a*b)/gcd(a, b);}
static long lcm(long a, long b){return (a*b)/gcd(a, b);}
static class Flash
{
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
StringTokenizer st = new StringTokenizer("");
String next(){
while(!st.hasMoreTokens()){
try{
st = new StringTokenizer(br.readLine());
}catch(IOException e){
e.printStackTrace();
}
}
return st.nextToken();
}
String ns(){
String s = new String();
try{
s = br.readLine().trim();
}catch(IOException e){
e.printStackTrace();
}
return s;
}
int[] arr(int n){
int[] a = new int[n];
for(int i = 0; i < n; i++) a[i] = ni();
return a;
}
char[] nc(){return ns().toCharArray();}
int ni(){return Integer.parseInt(next());}
long nl(){return Long.parseLong(next());}
double nd(){return Double.parseDouble(next());}
}
}
|
Java
|
["5 6\n1 2 3\n2 3 4\n3 4 5\n4 5 6\n1 5 1\n2 4 2", "3 2\n1 2 1\n2 3 2"]
|
4 seconds
|
["0 98 49 25 114", "0 -1 9"]
|
NoteThe graph in the first example looks like this.In the second example the path from $$$1$$$ to $$$3$$$ goes through $$$2$$$, so the resulting payment is $$$(1 + 2)^2 = 9$$$.
|
Java 11
|
standard input
|
[
"binary search",
"brute force",
"constructive algorithms",
"dp",
"flows",
"graphs",
"shortest paths"
] |
abee4d188bb59d82fcf4579c7416a343
|
First line contains two integers $$$n$$$, $$$m$$$ ($$$2 \leq n \leq 10^5$$$, $$$1 \leq m \leq min(\frac{n \cdot (n - 1)}{2}, 2 \cdot 10^5)$$$). Next $$$m$$$ lines each contain three integers $$$v_i$$$, $$$u_i$$$, $$$w_i$$$ ($$$1 \leq v_i, u_i \leq n$$$, $$$1 \leq w_i \leq 50$$$, $$$u_i \neq v_i$$$). It's guaranteed that there are no multiple edges, i.e. for any edge $$$(u_i, v_i)$$$ there are no other edges $$$(u_i, v_i)$$$ or $$$(v_i, u_i)$$$.
| 2,200
|
For every city $$$t$$$ print one integer. If there is no correct path between $$$1$$$ and $$$t$$$ output $$$-1$$$. Otherwise print out the minimum amount of money needed to travel from $$$1$$$ to $$$t$$$.
|
standard output
| |
PASSED
|
6565506ffd13d61b557d556fb4b2c419
|
train_110.jsonl
|
1613658900
|
There are $$$n$$$ cities and $$$m$$$ bidirectional roads in the country. The roads in the country form an undirected weighted graph. The graph is not guaranteed to be connected. Each road has it's own parameter $$$w$$$. You can travel through the roads, but the government made a new law: you can only go through two roads at a time (go from city $$$a$$$ to city $$$b$$$ and then from city $$$b$$$ to city $$$c$$$) and you will have to pay $$$(w_{ab} + w_{bc})^2$$$ money to go through those roads. Find out whether it is possible to travel from city $$$1$$$ to every other city $$$t$$$ and what's the minimum amount of money you need to get from $$$1$$$ to $$$t$$$.
|
512 megabytes
|
import java.io.*;
import java.util.*;
public class CF1486E extends PrintWriter {
CF1486E() { super(System.out, true); }
Scanner sc = new Scanner(System.in);
public static void main(String[] $) {
CF1486E o = new CF1486E(); o.main(); o.flush();
}
static final int W = 51, INF = 0x3f3f3f3f;
int[] eo; int[][] ej; byte[][] ew;
void append(int i, int j, byte w) {
int o = eo[i]++;
if (o >= 2 && (o & o - 1) == 0) {
ej[i] = Arrays.copyOf(ej[i], o << 1);
ew[i] = Arrays.copyOf(ew[i], o << 1);
}
ej[i][o] = j;
ew[i][o] = w;
}
int[] dd, pq, iq; int cnt;
boolean lt(int i, int j) {
return dd[i] < dd[j];
}
int p2(int p) {
return (p *= 2) > cnt ? 0 : p < cnt && lt(iq[p + 1], iq[p]) ? p + 1 : p;
}
void pq_up(int i) {
int j, p, q;
for (p = pq[i]; (q = p / 2) > 0 && lt(i, j = iq[q]); p = q)
iq[pq[j] = p] = j;
iq[pq[i] = p] = i;
}
void pq_dn(int i) {
int j, p, q;
for (p = pq[i]; (q = p2(p)) > 0 && lt(j = iq[q], i); p = q)
iq[pq[j] = p] = j;
iq[pq[i] = p] = i;
}
void pq_add_last(int i) {
iq[pq[i] = ++cnt] = i;
}
int pq_remove_first() {
int i = iq[1], j = iq[cnt--];
if (j != i)
pq[j] = 1; pq_dn(j);
pq[i] = 0;
return i;
}
void main() {
int n = sc.nextInt();
int m = sc.nextInt();
eo = new int[n];
ej = new int[n][2];
ew = new byte[n][2];
while (m-- > 0) {
int i = sc.nextInt() - 1;
int j = sc.nextInt() - 1;
byte w = (byte) sc.nextInt();
append(i, j, w);
append(j, i, w);
}
dd = new int[n * W]; Arrays.fill(dd, INF);
pq = new int[n * W]; iq = new int[1 + n * W];
dd[0] = 0; pq_add_last(0);
while (cnt > 0) {
int iw = pq_remove_first();
int i = iw / W, u = iw % W, d = dd[iw];
for (int o = eo[i]; o-- > 0; ) {
int j = ej[i][o], v = ew[i][o], jv, d_;
if (u == 0) {
jv = j * W + v;
d_ = d;
} else {
jv = j * W;
d_ = d + (u + v) * (u + v);
}
if (dd[jv] > d_) {
if (dd[jv] == INF)
pq_add_last(jv);
dd[jv] = d_; pq_up(jv);
}
}
}
for (int i = 0; i < n; i++) {
int d = dd[i * W];
if (d == INF)
d = -1;
print(d + " ");
}
println();
}
}
|
Java
|
["5 6\n1 2 3\n2 3 4\n3 4 5\n4 5 6\n1 5 1\n2 4 2", "3 2\n1 2 1\n2 3 2"]
|
4 seconds
|
["0 98 49 25 114", "0 -1 9"]
|
NoteThe graph in the first example looks like this.In the second example the path from $$$1$$$ to $$$3$$$ goes through $$$2$$$, so the resulting payment is $$$(1 + 2)^2 = 9$$$.
|
Java 11
|
standard input
|
[
"binary search",
"brute force",
"constructive algorithms",
"dp",
"flows",
"graphs",
"shortest paths"
] |
abee4d188bb59d82fcf4579c7416a343
|
First line contains two integers $$$n$$$, $$$m$$$ ($$$2 \leq n \leq 10^5$$$, $$$1 \leq m \leq min(\frac{n \cdot (n - 1)}{2}, 2 \cdot 10^5)$$$). Next $$$m$$$ lines each contain three integers $$$v_i$$$, $$$u_i$$$, $$$w_i$$$ ($$$1 \leq v_i, u_i \leq n$$$, $$$1 \leq w_i \leq 50$$$, $$$u_i \neq v_i$$$). It's guaranteed that there are no multiple edges, i.e. for any edge $$$(u_i, v_i)$$$ there are no other edges $$$(u_i, v_i)$$$ or $$$(v_i, u_i)$$$.
| 2,200
|
For every city $$$t$$$ print one integer. If there is no correct path between $$$1$$$ and $$$t$$$ output $$$-1$$$. Otherwise print out the minimum amount of money needed to travel from $$$1$$$ to $$$t$$$.
|
standard output
| |
PASSED
|
65ffe17c8db041cf40ca517d92853b31
|
train_110.jsonl
|
1613658900
|
There are $$$n$$$ cities and $$$m$$$ bidirectional roads in the country. The roads in the country form an undirected weighted graph. The graph is not guaranteed to be connected. Each road has it's own parameter $$$w$$$. You can travel through the roads, but the government made a new law: you can only go through two roads at a time (go from city $$$a$$$ to city $$$b$$$ and then from city $$$b$$$ to city $$$c$$$) and you will have to pay $$$(w_{ab} + w_{bc})^2$$$ money to go through those roads. Find out whether it is possible to travel from city $$$1$$$ to every other city $$$t$$$ and what's the minimum amount of money you need to get from $$$1$$$ to $$$t$$$.
|
512 megabytes
|
import java.io.*;
import java.text.CollationElementIterator;
import java.util.*;
public class Main {
static final long INF = (long) 1e18;
static ArrayList<Edge> adjList[];
static int n;
public static void main(String[] args) throws IOException {
Scanner sc = new Scanner();
PrintWriter out = new PrintWriter(System.out);
n = sc.nextInt();
int m = sc.nextInt();
adjList = new ArrayList[n];
for (int i = 0; i < n; i++)
adjList[i] = new ArrayList<>();
while (m-- > 0) {
int u = sc.nextInt() - 1, v = sc.nextInt() - 1, w = sc.nextInt();
adjList[u].add(new Edge(v, w));
adjList[v].add(new Edge(u, w));
}
long[] dist = new long[n];
Arrays.fill(dist, INF);
PriorityQueue<Edge> pq = new PriorityQueue<>();
pq.add(new Edge(0, 0));
dist[0] = 0;
while (!pq.isEmpty()) {
Edge cur = pq.remove();
int u = cur.u;
long cost = cur.w;
if (dist[u] < cost) continue;
for (Edge a : adjList[u])
for (Edge b : adjList[a.u]) {
long next = cost + sq(a.w + b.w);
if (next < dist[b.u])
pq.add(new Edge(b.u, dist[b.u] = next));
}
}
for (long d : dist)
if (d == INF)
out.print(-1 + " ");
else out.print(d + " ");
out.flush();
out.close();
}
static long sq(long x) {
return x * x;
}
static class Edge implements Comparable<Edge> {
int u;
long w;
public Edge(int u, long w) {
this.u = u;
this.w = w;
}
@Override
public int compareTo(Edge o) {
return Long.compare(w, o.w);
}
}
static class Scanner {
StringTokenizer st;
BufferedReader br;
public Scanner() {
br = new BufferedReader(new InputStreamReader(System.in));
}
public Scanner(String s) throws FileNotFoundException {
br = new BufferedReader(new FileReader(s));
}
public String next() throws IOException {
while (st == null || !st.hasMoreTokens())
st = new StringTokenizer(br.readLine());
return st.nextToken();
}
public int nextInt() throws IOException {
return Integer.parseInt(next());
}
public int[] nextIntArray(int n) throws IOException {
int[] ans = new int[n];
for (int i = 0; i < n; i++)
ans[i] = nextInt();
return ans;
}
public long[] nextLongArray(int n) throws IOException {
long[] ans = new long[n];
for (int i = 0; i < n; i++)
ans[i] = nextLong();
return ans;
}
public Integer[] nextIntegerArray(int n) throws IOException {
Integer[] ans = new Integer[n];
for (int i = 0; i < n; i++)
ans[i] = nextInt();
return ans;
}
public char nextChar() throws IOException {
return next().charAt(0);
}
public long nextLong() throws IOException {
return Long.parseLong(next());
}
public String nextLine() throws IOException {
return br.readLine();
}
public double nextDouble() throws IOException {
return Double.parseDouble(next());
}
public boolean ready() throws IOException {
return br.ready();
}
}
}
|
Java
|
["5 6\n1 2 3\n2 3 4\n3 4 5\n4 5 6\n1 5 1\n2 4 2", "3 2\n1 2 1\n2 3 2"]
|
4 seconds
|
["0 98 49 25 114", "0 -1 9"]
|
NoteThe graph in the first example looks like this.In the second example the path from $$$1$$$ to $$$3$$$ goes through $$$2$$$, so the resulting payment is $$$(1 + 2)^2 = 9$$$.
|
Java 11
|
standard input
|
[
"binary search",
"brute force",
"constructive algorithms",
"dp",
"flows",
"graphs",
"shortest paths"
] |
abee4d188bb59d82fcf4579c7416a343
|
First line contains two integers $$$n$$$, $$$m$$$ ($$$2 \leq n \leq 10^5$$$, $$$1 \leq m \leq min(\frac{n \cdot (n - 1)}{2}, 2 \cdot 10^5)$$$). Next $$$m$$$ lines each contain three integers $$$v_i$$$, $$$u_i$$$, $$$w_i$$$ ($$$1 \leq v_i, u_i \leq n$$$, $$$1 \leq w_i \leq 50$$$, $$$u_i \neq v_i$$$). It's guaranteed that there are no multiple edges, i.e. for any edge $$$(u_i, v_i)$$$ there are no other edges $$$(u_i, v_i)$$$ or $$$(v_i, u_i)$$$.
| 2,200
|
For every city $$$t$$$ print one integer. If there is no correct path between $$$1$$$ and $$$t$$$ output $$$-1$$$. Otherwise print out the minimum amount of money needed to travel from $$$1$$$ to $$$t$$$.
|
standard output
| |
PASSED
|
819b59784e2ee73d1dc61c8523512284
|
train_110.jsonl
|
1613658900
|
There are $$$n$$$ cities and $$$m$$$ bidirectional roads in the country. The roads in the country form an undirected weighted graph. The graph is not guaranteed to be connected. Each road has it's own parameter $$$w$$$. You can travel through the roads, but the government made a new law: you can only go through two roads at a time (go from city $$$a$$$ to city $$$b$$$ and then from city $$$b$$$ to city $$$c$$$) and you will have to pay $$$(w_{ab} + w_{bc})^2$$$ money to go through those roads. Find out whether it is possible to travel from city $$$1$$$ to every other city $$$t$$$ and what's the minimum amount of money you need to get from $$$1$$$ to $$$t$$$.
|
512 megabytes
|
//package round703;
import java.io.*;
import java.util.ArrayDeque;
import java.util.Arrays;
import java.util.InputMismatchException;
import java.util.Queue;
public class E {
InputStream is;
FastWriter out;
String INPUT = "";
void solve()
{
int n = ni(), m = ni();
int[] from = new int[m];
int[] to = new int[m];
int[] ws = new int[m];
for(int i = 0;i < m;i++){
from[i] = ni()-1;
to[i] = ni()-1;
ws[i] = ni();
}
int[][][] g = packWU(n, from, to, ws);
long[] ptns = new long[n];
for(int i = 0;i < n;i++){
for(int[] e : g[i]){
ptns[i] |= 1L<<e[1];
}
}
long[] td = new long[n*51];
Arrays.fill(td, Long.MAX_VALUE / 2);
MinHeapL q = new MinHeapL(n*51);
q.add(0, 0);
td[0] = 0;
while(q.size() > 0){
int cur = q.argmin();
q.remove(cur);
if(cur < n){
for(int[] e : g[cur]){
int next = e[0];
for(long i = ptns[next];i != 0;i &= i-1){
int o = Long.numberOfTrailingZeros(i);
long nd = td[cur] + (long)(e[1] + o) * (e[1] + o);
int ne = next + o * n;
if(nd < td[ne]){
td[ne] = nd;
q.update(ne, nd);
}
}
}
}else{
int ww = cur / n;
for(int[] e : g[cur%n]){
if(e[1] == ww){
if(td[cur] < td[e[0]]){
td[e[0]] = td[cur];
q.update(e[0], td[e[0]]);
}
}
}
}
}
for(int i = 0;i < n;i++){
out.print(td[i] >= Long.MAX_VALUE / 3 ? -1 : td[i]).print(" ");
}
out.println();
}
public static class MinHeapL {
public long[] a;
public int[] map;
public int[] imap;
public int n;
public int pos;
public static long INF = Long.MAX_VALUE;
public MinHeapL(int m)
{
n = Integer.highestOneBit((m+1)<<1);
a = new long[n];
map = new int[n];
imap = new int[n];
Arrays.fill(a, INF);
Arrays.fill(map, -1);
Arrays.fill(imap, -1);
pos = 1;
}
public long add(int ind, long x)
{
int ret = imap[ind];
if(imap[ind] < 0){
a[pos] = x; map[pos] = ind; imap[ind] = pos;
pos++;
up(pos-1);
}
return ret != -1 ? a[ret] : x;
}
public long update(int ind, long x)
{
int ret = imap[ind];
if(imap[ind] < 0){
a[pos] = x; map[pos] = ind; imap[ind] = pos;
pos++;
up(pos-1);
}else{
a[ret] = x;
up(ret);
down(ret);
}
return x;
}
public long remove(int ind)
{
if(pos == 1)return INF;
if(imap[ind] == -1)return INF;
pos--;
int rem = imap[ind];
long ret = a[rem];
map[rem] = map[pos];
imap[map[pos]] = rem;
imap[ind] = -1;
a[rem] = a[pos];
a[pos] = INF;
map[pos] = -1;
up(rem);
down(rem);
return ret;
}
public long min() { return a[1]; }
public int argmin() { return map[1]; }
public int size() { return pos-1; }
private void up(int cur)
{
for(int c = cur, p = c>>>1;p >= 1 && a[p] > a[c];c>>>=1, p>>>=1){
long d = a[p]; a[p] = a[c]; a[c] = d;
int e = imap[map[p]]; imap[map[p]] = imap[map[c]]; imap[map[c]] = e;
e = map[p]; map[p] = map[c]; map[c] = e;
}
}
private void down(int cur)
{
for(int c = cur;2*c < pos;){
int b = a[2*c] < a[2*c+1] ? 2*c : 2*c+1;
if(a[b] < a[c]){
long d = a[c]; a[c] = a[b]; a[b] = d;
int e = imap[map[c]]; imap[map[c]] = imap[map[b]]; imap[map[b]] = e;
e = map[c]; map[c] = map[b]; map[b] = e;
c = b;
}else{
break;
}
}
}
}
public static int[][][] packWU(int n, int[] from, int[] to, int[] w) {
return packWU(n, from, to, w, from.length);
}
public static int[][][] packWU(int n, int[] from, int[] to, int[] w, int sup) {
int[][][] g = new int[n][][];
int[] p = new int[n];
for (int i = 0; i < sup; i++) p[from[i]]++;
for (int i = 0; i < sup; i++) p[to[i]]++;
for (int i = 0; i < n; i++) g[i] = new int[p[i]][2];
for (int i = 0; i < sup; i++) {
--p[from[i]];
g[from[i]][p[from[i]]][0] = to[i];
g[from[i]][p[from[i]]][1] = w[i];
--p[to[i]];
g[to[i]][p[to[i]]][0] = from[i];
g[to[i]][p[to[i]]][1] = w[i];
}
return g;
}
void run() throws Exception
{
is = oj ? System.in : new ByteArrayInputStream(INPUT.getBytes());
out = new FastWriter(System.out);
long s = System.currentTimeMillis();
solve();
out.flush();
tr(System.currentTimeMillis()-s+"ms");
}
public static void main(String[] args) throws Exception { new E().run(); }
private byte[] inbuf = new byte[1024];
public int lenbuf = 0, ptrbuf = 0;
private int readByte()
{
if(lenbuf == -1)throw new InputMismatchException();
if(ptrbuf >= lenbuf){
ptrbuf = 0;
try { lenbuf = is.read(inbuf); } catch (IOException e) { throw new InputMismatchException(); }
if(lenbuf <= 0)return -1;
}
return inbuf[ptrbuf++];
}
private boolean isSpaceChar(int c) { return !(c >= 33 && c <= 126); }
private int skip() { int b; while((b = readByte()) != -1 && isSpaceChar(b)); return b; }
private double nd() { return Double.parseDouble(ns()); }
private char nc() { return (char)skip(); }
private String ns()
{
int b = skip();
StringBuilder sb = new StringBuilder();
while(!(isSpaceChar(b))){ // when nextLine, (isSpaceChar(b) && b != ' ')
sb.appendCodePoint(b);
b = readByte();
}
return sb.toString();
}
private char[] ns(int n)
{
char[] buf = new char[n];
int b = skip(), p = 0;
while(p < n && !(isSpaceChar(b))){
buf[p++] = (char)b;
b = readByte();
}
return n == p ? buf : Arrays.copyOf(buf, p);
}
private int[] na(int n)
{
int[] a = new int[n];
for(int i = 0;i < n;i++)a[i] = ni();
return a;
}
private long[] nal(int n)
{
long[] a = new long[n];
for(int i = 0;i < n;i++)a[i] = nl();
return a;
}
private char[][] nm(int n, int m) {
char[][] map = new char[n][];
for(int i = 0;i < n;i++)map[i] = ns(m);
return map;
}
private int[][] nmi(int n, int m) {
int[][] map = new int[n][];
for(int i = 0;i < n;i++)map[i] = na(m);
return map;
}
private int ni() { return (int)nl(); }
private long nl()
{
long num = 0;
int b;
boolean minus = false;
while((b = readByte()) != -1 && !((b >= '0' && b <= '9') || b == '-'));
if(b == '-'){
minus = true;
b = readByte();
}
while(true){
if(b >= '0' && b <= '9'){
num = num * 10 + (b - '0');
}else{
return minus ? -num : num;
}
b = readByte();
}
}
public static class FastWriter
{
private static final int BUF_SIZE = 1<<13;
private final byte[] buf = new byte[BUF_SIZE];
private final OutputStream out;
private int ptr = 0;
private FastWriter(){out = null;}
public FastWriter(OutputStream os)
{
this.out = os;
}
public FastWriter(String path)
{
try {
this.out = new FileOutputStream(path);
} catch (FileNotFoundException e) {
throw new RuntimeException("FastWriter");
}
}
public FastWriter write(byte b)
{
buf[ptr++] = b;
if(ptr == BUF_SIZE)innerflush();
return this;
}
public FastWriter write(char c)
{
return write((byte)c);
}
public FastWriter write(char[] s)
{
for(char c : s){
buf[ptr++] = (byte)c;
if(ptr == BUF_SIZE)innerflush();
}
return this;
}
public FastWriter write(String s)
{
s.chars().forEach(c -> {
buf[ptr++] = (byte)c;
if(ptr == BUF_SIZE)innerflush();
});
return this;
}
private static int countDigits(int l) {
if (l >= 1000000000) return 10;
if (l >= 100000000) return 9;
if (l >= 10000000) return 8;
if (l >= 1000000) return 7;
if (l >= 100000) return 6;
if (l >= 10000) return 5;
if (l >= 1000) return 4;
if (l >= 100) return 3;
if (l >= 10) return 2;
return 1;
}
public FastWriter write(int x)
{
if(x == Integer.MIN_VALUE){
return write((long)x);
}
if(ptr + 12 >= BUF_SIZE)innerflush();
if(x < 0){
write((byte)'-');
x = -x;
}
int d = countDigits(x);
for(int i = ptr + d - 1;i >= ptr;i--){
buf[i] = (byte)('0'+x%10);
x /= 10;
}
ptr += d;
return this;
}
private static int countDigits(long l) {
if (l >= 1000000000000000000L) return 19;
if (l >= 100000000000000000L) return 18;
if (l >= 10000000000000000L) return 17;
if (l >= 1000000000000000L) return 16;
if (l >= 100000000000000L) return 15;
if (l >= 10000000000000L) return 14;
if (l >= 1000000000000L) return 13;
if (l >= 100000000000L) return 12;
if (l >= 10000000000L) return 11;
if (l >= 1000000000L) return 10;
if (l >= 100000000L) return 9;
if (l >= 10000000L) return 8;
if (l >= 1000000L) return 7;
if (l >= 100000L) return 6;
if (l >= 10000L) return 5;
if (l >= 1000L) return 4;
if (l >= 100L) return 3;
if (l >= 10L) return 2;
return 1;
}
public FastWriter write(long x)
{
if(x == Long.MIN_VALUE){
return write("" + x);
}
if(ptr + 21 >= BUF_SIZE)innerflush();
if(x < 0){
write((byte)'-');
x = -x;
}
int d = countDigits(x);
for(int i = ptr + d - 1;i >= ptr;i--){
buf[i] = (byte)('0'+x%10);
x /= 10;
}
ptr += d;
return this;
}
public FastWriter write(double x, int precision)
{
if(x < 0){
write('-');
x = -x;
}
x += Math.pow(10, -precision)/2;
// if(x < 0){ x = 0; }
write((long)x).write(".");
x -= (long)x;
for(int i = 0;i < precision;i++){
x *= 10;
write((char)('0'+(int)x));
x -= (int)x;
}
return this;
}
public FastWriter writeln(char c){
return write(c).writeln();
}
public FastWriter writeln(int x){
return write(x).writeln();
}
public FastWriter writeln(long x){
return write(x).writeln();
}
public FastWriter writeln(double x, int precision){
return write(x, precision).writeln();
}
public FastWriter write(int... xs)
{
boolean first = true;
for(int x : xs) {
if (!first) write(' ');
first = false;
write(x);
}
return this;
}
public FastWriter write(long... xs)
{
boolean first = true;
for(long x : xs) {
if (!first) write(' ');
first = false;
write(x);
}
return this;
}
public FastWriter writeln()
{
return write((byte)'\n');
}
public FastWriter writeln(int... xs)
{
return write(xs).writeln();
}
public FastWriter writeln(long... xs)
{
return write(xs).writeln();
}
public FastWriter writeln(char[] line)
{
return write(line).writeln();
}
public FastWriter writeln(char[]... map)
{
for(char[] line : map)write(line).writeln();
return this;
}
public FastWriter writeln(String s)
{
return write(s).writeln();
}
private void innerflush()
{
try {
out.write(buf, 0, ptr);
ptr = 0;
} catch (IOException e) {
throw new RuntimeException("innerflush");
}
}
public void flush()
{
innerflush();
try {
out.flush();
} catch (IOException e) {
throw new RuntimeException("flush");
}
}
public FastWriter print(byte b) { return write(b); }
public FastWriter print(char c) { return write(c); }
public FastWriter print(char[] s) { return write(s); }
public FastWriter print(String s) { return write(s); }
public FastWriter print(int x) { return write(x); }
public FastWriter print(long x) { return write(x); }
public FastWriter print(double x, int precision) { return write(x, precision); }
public FastWriter println(char c){ return writeln(c); }
public FastWriter println(int x){ return writeln(x); }
public FastWriter println(long x){ return writeln(x); }
public FastWriter println(double x, int precision){ return writeln(x, precision); }
public FastWriter print(int... xs) { return write(xs); }
public FastWriter print(long... xs) { return write(xs); }
public FastWriter println(int... xs) { return writeln(xs); }
public FastWriter println(long... xs) { return writeln(xs); }
public FastWriter println(char[] line) { return writeln(line); }
public FastWriter println(char[]... map) { return writeln(map); }
public FastWriter println(String s) { return writeln(s); }
public FastWriter println() { return writeln(); }
}
public void trnz(int... o)
{
for(int i = 0;i < o.length;i++)if(o[i] != 0)System.out.print(i+":"+o[i]+" ");
System.out.println();
}
// print ids which are 1
public void trt(long... o)
{
Queue<Integer> stands = new ArrayDeque<>();
for(int i = 0;i < o.length;i++){
for(long x = o[i];x != 0;x &= x-1)stands.add(i<<6|Long.numberOfTrailingZeros(x));
}
System.out.println(stands);
}
public void tf(boolean... r)
{
for(boolean x : r)System.out.print(x?'#':'.');
System.out.println();
}
public void tf(boolean[]... b)
{
for(boolean[] r : b) {
for(boolean x : r)System.out.print(x?'#':'.');
System.out.println();
}
System.out.println();
}
public void tf(long[]... b)
{
if(INPUT.length() != 0) {
for (long[] r : b) {
for (long x : r) {
for (int i = 0; i < 64; i++) {
System.out.print(x << ~i < 0 ? '#' : '.');
}
}
System.out.println();
}
System.out.println();
}
}
public void tf(long... b)
{
if(INPUT.length() != 0) {
for (long x : b) {
for (int i = 0; i < 64; i++) {
System.out.print(x << ~i < 0 ? '#' : '.');
}
}
System.out.println();
}
}
private boolean oj = System.getProperty("ONLINE_JUDGE") != null;
private void tr(Object... o) { if(!oj)System.out.println(Arrays.deepToString(o)); }
}
|
Java
|
["5 6\n1 2 3\n2 3 4\n3 4 5\n4 5 6\n1 5 1\n2 4 2", "3 2\n1 2 1\n2 3 2"]
|
4 seconds
|
["0 98 49 25 114", "0 -1 9"]
|
NoteThe graph in the first example looks like this.In the second example the path from $$$1$$$ to $$$3$$$ goes through $$$2$$$, so the resulting payment is $$$(1 + 2)^2 = 9$$$.
|
Java 11
|
standard input
|
[
"binary search",
"brute force",
"constructive algorithms",
"dp",
"flows",
"graphs",
"shortest paths"
] |
abee4d188bb59d82fcf4579c7416a343
|
First line contains two integers $$$n$$$, $$$m$$$ ($$$2 \leq n \leq 10^5$$$, $$$1 \leq m \leq min(\frac{n \cdot (n - 1)}{2}, 2 \cdot 10^5)$$$). Next $$$m$$$ lines each contain three integers $$$v_i$$$, $$$u_i$$$, $$$w_i$$$ ($$$1 \leq v_i, u_i \leq n$$$, $$$1 \leq w_i \leq 50$$$, $$$u_i \neq v_i$$$). It's guaranteed that there are no multiple edges, i.e. for any edge $$$(u_i, v_i)$$$ there are no other edges $$$(u_i, v_i)$$$ or $$$(v_i, u_i)$$$.
| 2,200
|
For every city $$$t$$$ print one integer. If there is no correct path between $$$1$$$ and $$$t$$$ output $$$-1$$$. Otherwise print out the minimum amount of money needed to travel from $$$1$$$ to $$$t$$$.
|
standard output
| |
PASSED
|
f8259770784fd3f0c3900d7d2f7aec42
|
train_110.jsonl
|
1613658900
|
There are $$$n$$$ cities and $$$m$$$ bidirectional roads in the country. The roads in the country form an undirected weighted graph. The graph is not guaranteed to be connected. Each road has it's own parameter $$$w$$$. You can travel through the roads, but the government made a new law: you can only go through two roads at a time (go from city $$$a$$$ to city $$$b$$$ and then from city $$$b$$$ to city $$$c$$$) and you will have to pay $$$(w_{ab} + w_{bc})^2$$$ money to go through those roads. Find out whether it is possible to travel from city $$$1$$$ to every other city $$$t$$$ and what's the minimum amount of money you need to get from $$$1$$$ to $$$t$$$.
|
512 megabytes
|
import java.io.*;
import java.math.*;
import java.security.*;
import java.text.*;
import java.util.*;
import java.util.concurrent.*;
import java.util.regex.*;
public class C {
static class FastReader {
BufferedReader br;
StringTokenizer st;
public FastReader() {
br = new BufferedReader(new InputStreamReader(System.in));
}
String next() {
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
long nextLong() {
return Long.parseLong(next());
}
String nextLine() {
String str = "";
try {
str = br.readLine();
} catch (IOException e) {
e.printStackTrace();
}
return str;
}
double nextDouble() {
return Double.parseDouble(next());
}
}
static boolean Vist[];
static List<List<node>> Ady;
static PriorityQueue<node> Q;
static long Dist[];
static long INF = Long.MAX_VALUE;
static class node implements Comparable<node> {
int node;
long weight;
public node(int node, long weight) {
this.node = node;
this.weight = weight;
}
public int compareTo(node o) {
return (weight - o.weight < 0) ? -1 : (weight - o.weight == 0) ? 0 : 1;
}
}
static void relax(int actual, int ady, long peso) {
if (Dist[actual] + peso < Dist[ady]) {
Dist[ady] = Dist[actual] + peso;
Q.add(new node(ady, Dist[ady]));
}
}
static void dijkstra(int ini) {
Q.add(new node(ini, 0));
Dist[ini] = 0;
int actual, Tady;
long peso;
while (!Q.isEmpty()) {
actual = Q.poll().node;
if (Vist[actual]) {
continue;
}
Vist[actual] = true;
for (int i = 0; i < Ady.get(actual).size(); i++) {
List<node> adyActual = Ady.get(Ady.get(actual).get(i).node);
long w1 = Ady.get(actual).get(i).weight;
for (int j = 0; j < adyActual.size(); j++) {
Tady = adyActual.get(j).node;
if(Tady == actual) continue;
long w2 = adyActual.get(j).weight;
peso = (w1+w2)*(w1+w2);
if (!Vist[Tady]) {
relax(actual, Tady, peso);
}
}
}
}
}
static void ini(int n) {
Vist = new boolean[n];
Ady = new ArrayList<List<node>>();
Dist = new long[n];
Q = new PriorityQueue<node>();
Arrays.fill(Dist, INF);
for (int i = 0; i < n; i++) {
Ady.add(new ArrayList<node>());
}
}//END DYKSTRA
public static void main(String[] args) throws IOException {
FastReader fr = new FastReader();
PrintWriter pw = new PrintWriter(new OutputStreamWriter(System.out));
int n, m;
n = fr.nextInt();
m = fr.nextInt();
ini(n);
for (int i = 0; i < m; i++) {
int f, t, w;
f = fr.nextInt() - 1;
t = fr.nextInt() - 1;
w = fr.nextInt();
Ady.get(f).add(new node(t, w));
Ady.get(t).add(new node(f, w));
}
dijkstra(0);
for (int i = 0; i < Dist.length; i++) {
if(Dist[i] == Long.MAX_VALUE){
pw.print("-1 ");
}else{
pw.print(Dist[i]+" ");
}
}
pw.println();
pw.flush();
}
}
|
Java
|
["5 6\n1 2 3\n2 3 4\n3 4 5\n4 5 6\n1 5 1\n2 4 2", "3 2\n1 2 1\n2 3 2"]
|
4 seconds
|
["0 98 49 25 114", "0 -1 9"]
|
NoteThe graph in the first example looks like this.In the second example the path from $$$1$$$ to $$$3$$$ goes through $$$2$$$, so the resulting payment is $$$(1 + 2)^2 = 9$$$.
|
Java 11
|
standard input
|
[
"binary search",
"brute force",
"constructive algorithms",
"dp",
"flows",
"graphs",
"shortest paths"
] |
abee4d188bb59d82fcf4579c7416a343
|
First line contains two integers $$$n$$$, $$$m$$$ ($$$2 \leq n \leq 10^5$$$, $$$1 \leq m \leq min(\frac{n \cdot (n - 1)}{2}, 2 \cdot 10^5)$$$). Next $$$m$$$ lines each contain three integers $$$v_i$$$, $$$u_i$$$, $$$w_i$$$ ($$$1 \leq v_i, u_i \leq n$$$, $$$1 \leq w_i \leq 50$$$, $$$u_i \neq v_i$$$). It's guaranteed that there are no multiple edges, i.e. for any edge $$$(u_i, v_i)$$$ there are no other edges $$$(u_i, v_i)$$$ or $$$(v_i, u_i)$$$.
| 2,200
|
For every city $$$t$$$ print one integer. If there is no correct path between $$$1$$$ and $$$t$$$ output $$$-1$$$. Otherwise print out the minimum amount of money needed to travel from $$$1$$$ to $$$t$$$.
|
standard output
| |
PASSED
|
c1536ab63dbb6dab93a804e8a12075ad
|
train_110.jsonl
|
1613658900
|
There are $$$n$$$ cities and $$$m$$$ bidirectional roads in the country. The roads in the country form an undirected weighted graph. The graph is not guaranteed to be connected. Each road has it's own parameter $$$w$$$. You can travel through the roads, but the government made a new law: you can only go through two roads at a time (go from city $$$a$$$ to city $$$b$$$ and then from city $$$b$$$ to city $$$c$$$) and you will have to pay $$$(w_{ab} + w_{bc})^2$$$ money to go through those roads. Find out whether it is possible to travel from city $$$1$$$ to every other city $$$t$$$ and what's the minimum amount of money you need to get from $$$1$$$ to $$$t$$$.
|
512 megabytes
|
import java.util.*;
import java.io.*;
public class Main {
public static void main(String args[]) {new Main().run();}
FastReader in = new FastReader();
PrintWriter out = new PrintWriter(System.out);
void run() {
work();
out.flush();
}
long mod=1000000007;
long gcd(long a,long b) {
return a==0?b:gcd(b%a,a);
}
long inf=Long.MAX_VALUE/3;
ArrayList<int[]>[] graph;
void work() {
int n=ni(),m=ni();
graph=new ArrayList[n];
for(int i=0;i<n;i++){
graph[i]=new ArrayList<>();
}
for(int i=0;i<m;i++){
int s=ni()-1,e=ni()-1,w=ni();
graph[s].add(new int[]{e,w});
graph[e].add(new int[]{s,w});
}
int[][] vis=new int[n][51];
for(int[] d:vis){
Arrays.fill(d,Integer.MAX_VALUE);
}
PriorityQueue<int[]> pq=new PriorityQueue<>((a1,a2)->a1[1]-a2[1]);
pq.add(new int[]{0,0,0});//node,dis,state
vis[0][0]=0;
while(pq.size()>0){
int[] q = pq.poll();
int node=q[0],dis=q[1],state=q[2];
if(vis[node][state]<dis)continue;
for(int[] nn:graph[node]){
int n1=nn[0],w=nn[1];
if(state==0){
int d=dis+w*w;
if(d<vis[n1][w]){
vis[n1][w]=d;
pq.add(new int[]{n1,d,w});
}
}else{
int d=dis+2*w*state+w*w;
if(d<vis[n1][0]){
vis[n1][0]=d;
pq.add(new int[]{n1,d,0});
}
}
}
}
for(int i=0;i<n;i++){
out.print((vis[i][0]==Integer.MAX_VALUE?-1:vis[i][0])+" ");
}
}
@SuppressWarnings("unused")
private ArrayList<Integer>[] ng(int n, int m) {
ArrayList<Integer>[] graph=(ArrayList<Integer>[])new ArrayList[n];
for(int i=0;i<n;i++) {
graph[i]=new ArrayList<>();
}
for(int i=1;i<=m;i++) {
int s=in.nextInt()-1,e=in.nextInt()-1;
graph[s].add(e);
graph[e].add(s);
}
return graph;
}
private ArrayList<long[]>[] ngw(int n, int m) {
ArrayList<long[]>[] graph=(ArrayList<long[]>[])new ArrayList[n];
for(int i=0;i<n;i++) {
graph[i]=new ArrayList<>();
}
for(int i=1;i<=m;i++) {
long s=in.nextLong()-1,e=in.nextLong()-1,w=in.nextLong();
graph[(int)s].add(new long[] {e,w});
graph[(int)e].add(new long[] {s,w});
}
return graph;
}
private int ni() {
return in.nextInt();
}
private long nl() {
return in.nextLong();
}
private double nd() {
return in.nextDouble();
}
private String ns() {
return in.next();
}
private long[] na(int n) {
long[] A=new long[n];
for(int i=0;i<n;i++) {
A[i]=in.nextLong();
}
return A;
}
private int[] nia(int n) {
int[] A=new int[n];
for(int i=0;i<n;i++) {
A[i]=in.nextInt();
}
return A;
}
}
class FastReader
{
BufferedReader br;
StringTokenizer st;
InputStreamReader input;//no buffer
public FastReader()
{
br=new BufferedReader(new InputStreamReader(System.in));
}
public FastReader(boolean isBuffer)
{
if(!isBuffer){
input=new InputStreamReader(System.in);
}else{
br=new BufferedReader(new InputStreamReader(System.in));
}
}
public boolean hasNext(){
try{
String s=br.readLine();
if(s==null){
return false;
}
st=new StringTokenizer(s);
}catch(IOException e){
e.printStackTrace();
}
return true;
}
public String next()
{
if(input!=null){
try {
StringBuilder sb=new StringBuilder();
int ch=input.read();
while(ch=='\n'||ch=='\r'||ch==32){
ch=input.read();
}
while(ch!='\n'&&ch!='\r'&&ch!=32){
sb.append((char)ch);
ch=input.read();
}
return sb.toString();
}catch (Exception e){
e.printStackTrace();
}
}
while(st==null || !st.hasMoreElements())//回车,空行情况
{
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
public int nextInt()
{
return (int)nextLong();
}
public long nextLong() {
try {
if(input!=null){
long ret=0;
int b=input.read();
while(b<'0'||b>'9'){
b=input.read();
}
while(b>='0'&&b<='9'){
ret=ret*10+(b-'0');
b=input.read();
}
return ret;
}
}catch (Exception e){
e.printStackTrace();
}
return Long.parseLong(next());
}
public double nextDouble()
{
return Double.parseDouble(next());
}
}
|
Java
|
["5 6\n1 2 3\n2 3 4\n3 4 5\n4 5 6\n1 5 1\n2 4 2", "3 2\n1 2 1\n2 3 2"]
|
4 seconds
|
["0 98 49 25 114", "0 -1 9"]
|
NoteThe graph in the first example looks like this.In the second example the path from $$$1$$$ to $$$3$$$ goes through $$$2$$$, so the resulting payment is $$$(1 + 2)^2 = 9$$$.
|
Java 8
|
standard input
|
[
"binary search",
"brute force",
"constructive algorithms",
"dp",
"flows",
"graphs",
"shortest paths"
] |
abee4d188bb59d82fcf4579c7416a343
|
First line contains two integers $$$n$$$, $$$m$$$ ($$$2 \leq n \leq 10^5$$$, $$$1 \leq m \leq min(\frac{n \cdot (n - 1)}{2}, 2 \cdot 10^5)$$$). Next $$$m$$$ lines each contain three integers $$$v_i$$$, $$$u_i$$$, $$$w_i$$$ ($$$1 \leq v_i, u_i \leq n$$$, $$$1 \leq w_i \leq 50$$$, $$$u_i \neq v_i$$$). It's guaranteed that there are no multiple edges, i.e. for any edge $$$(u_i, v_i)$$$ there are no other edges $$$(u_i, v_i)$$$ or $$$(v_i, u_i)$$$.
| 2,200
|
For every city $$$t$$$ print one integer. If there is no correct path between $$$1$$$ and $$$t$$$ output $$$-1$$$. Otherwise print out the minimum amount of money needed to travel from $$$1$$$ to $$$t$$$.
|
standard output
| |
PASSED
|
a1b471273b6f74ec548908da6721de2f
|
train_110.jsonl
|
1613658900
|
There are $$$n$$$ cities and $$$m$$$ bidirectional roads in the country. The roads in the country form an undirected weighted graph. The graph is not guaranteed to be connected. Each road has it's own parameter $$$w$$$. You can travel through the roads, but the government made a new law: you can only go through two roads at a time (go from city $$$a$$$ to city $$$b$$$ and then from city $$$b$$$ to city $$$c$$$) and you will have to pay $$$(w_{ab} + w_{bc})^2$$$ money to go through those roads. Find out whether it is possible to travel from city $$$1$$$ to every other city $$$t$$$ and what's the minimum amount of money you need to get from $$$1$$$ to $$$t$$$.
|
512 megabytes
|
// Don't place your source in a package
import java.lang.reflect.Array;
import java.text.DecimalFormat;
import java.util.*;
import java.lang.*;
import java.io.*;
import java.math.*;
import java.util.stream.Stream;
// Please name your class Main
public class Main {
static FastScanner fs=new FastScanner();
static class FastScanner {
BufferedReader br=new BufferedReader(new InputStreamReader(System.in));
StringTokenizer st=new StringTokenizer("");
public String next() {
while (!st.hasMoreElements())
try {
st=new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
return st.nextToken();
}
int Int() {
return Integer.parseInt(next());
}
long Long() {
return Long.parseLong(next());
}
String Str(){
return next();
}
}
public static void main (String[] args) throws java.lang.Exception {
PrintWriter out = new PrintWriter(System.out);
int T=1;
for(int t=0;t<T;t++){
int n=Int();int m=Int();
List<int[]>g[]=new ArrayList[n];
for(int i=0;i<g.length;i++){
g[i]=new ArrayList<>();
}
for(int i=0;i<m;i++){
int u=Int()-1,v=Int()-1,w=Int();
g[u].add(new int[]{v,w});
g[v].add(new int[]{u,w});
}
Solution sol=new Solution();
sol.solution(out,g);
}
out.flush();
}
public static int Int(){
return fs.Int();
}
public static long Long(){
return fs.Long();
}
public static String Str(){
return fs.Str();
}
}
class Solution{
public void solution(PrintWriter out,List<int[]>g[]){
int n=g.length;
int dis[][][]=new int[51][n][2];
for(int i=0;i<dis.length;i++){
for(int j=0;j<dis[0].length;j++){
Arrays.fill(dis[i][j],Integer.MAX_VALUE);
}
}
PriorityQueue<int[]>q=new PriorityQueue<>((a,b)->{
return a[3]-b[3];
});
q.add(new int[]{0,0,0,0});
dis[0][0][0]=0;
while(q.size()>0){
int top[]=q.poll();
int pre=top[0],root=top[1],level=top[2];
level%=2;
if(top[3]!=dis[pre][root][level])continue;
for(int p[]:g[root]){
int next=p[0],w=p[1];
int mn=Integer.MAX_VALUE;
if(level%2==0){
mn=Math.min(mn,dis[pre][root][level]);
}
else{
mn=Math.min(mn,dis[pre][root][level]+(pre+w)*(pre+w));
}
if(mn!=Integer.MAX_VALUE && dis[w][next][(level+1)%2]>mn){
dis[w][next][(level+1)%2]=mn;
q.add(new int[]{w,next,(level+1)%2,mn});
}
}
}
for(int i=0;i<dis[0].length;i++){
int mn=Integer.MAX_VALUE;
for(int j=0;j<dis.length;j++){
mn=Math.min(mn,dis[j][i][0]);
}
if(mn==Integer.MAX_VALUE)out.print("-1 ");
else out.print(mn+" ");
}
}
}
|
Java
|
["5 6\n1 2 3\n2 3 4\n3 4 5\n4 5 6\n1 5 1\n2 4 2", "3 2\n1 2 1\n2 3 2"]
|
4 seconds
|
["0 98 49 25 114", "0 -1 9"]
|
NoteThe graph in the first example looks like this.In the second example the path from $$$1$$$ to $$$3$$$ goes through $$$2$$$, so the resulting payment is $$$(1 + 2)^2 = 9$$$.
|
Java 8
|
standard input
|
[
"binary search",
"brute force",
"constructive algorithms",
"dp",
"flows",
"graphs",
"shortest paths"
] |
abee4d188bb59d82fcf4579c7416a343
|
First line contains two integers $$$n$$$, $$$m$$$ ($$$2 \leq n \leq 10^5$$$, $$$1 \leq m \leq min(\frac{n \cdot (n - 1)}{2}, 2 \cdot 10^5)$$$). Next $$$m$$$ lines each contain three integers $$$v_i$$$, $$$u_i$$$, $$$w_i$$$ ($$$1 \leq v_i, u_i \leq n$$$, $$$1 \leq w_i \leq 50$$$, $$$u_i \neq v_i$$$). It's guaranteed that there are no multiple edges, i.e. for any edge $$$(u_i, v_i)$$$ there are no other edges $$$(u_i, v_i)$$$ or $$$(v_i, u_i)$$$.
| 2,200
|
For every city $$$t$$$ print one integer. If there is no correct path between $$$1$$$ and $$$t$$$ output $$$-1$$$. Otherwise print out the minimum amount of money needed to travel from $$$1$$$ to $$$t$$$.
|
standard output
| |
PASSED
|
2a32d3e07bc3d97f674d9379a16c16f9
|
train_110.jsonl
|
1613658900
|
There are $$$n$$$ cities and $$$m$$$ bidirectional roads in the country. The roads in the country form an undirected weighted graph. The graph is not guaranteed to be connected. Each road has it's own parameter $$$w$$$. You can travel through the roads, but the government made a new law: you can only go through two roads at a time (go from city $$$a$$$ to city $$$b$$$ and then from city $$$b$$$ to city $$$c$$$) and you will have to pay $$$(w_{ab} + w_{bc})^2$$$ money to go through those roads. Find out whether it is possible to travel from city $$$1$$$ to every other city $$$t$$$ and what's the minimum amount of money you need to get from $$$1$$$ to $$$t$$$.
|
512 megabytes
|
import java.io.*;
import java.math.BigInteger;
import java.util.*;
public class Main {
public static void main(String[] args) throws IOException {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
PrintWriter out = new PrintWriter(outputStream);
InputReader in = new InputReader(inputStream);
// for(int i=4;i<=4;i++) {
// InputStream uinputStream = new FileInputStream("timeline.in");
//String f = i+".in";
//InputStream uinputStream = new FileInputStream(f);
// InputReader in = new InputReader(uinputStream);
// PrintWriter out = new PrintWriter(new BufferedWriter(new FileWriter("timeline.out")));
// }
Task t = new Task();
t.solve(in, out);
out.close();
}
static class Task{
public void solve(InputReader in, PrintWriter out) throws IOException {
int n = in.nextInt();
int m = in.nextInt();
ArrayList<edge>[] g = new ArrayList[n];
for(int i=0;i<n;i++) g[i] = new ArrayList<edge>();
for(int i=0;i<m;i++) {
int f = in.nextInt()-1;
int t = in.nextInt()-1;
int l = in.nextInt();
g[f].add(new edge(f,t,l,i,0));
g[t].add(new edge(t,f,l,i,0));
}
int dist[][] = dijkstra(g,n);
for(int i=0;i<n;i++) {
if(dist[i][0]==999999999) out.print(-1+" ");
else out.print(dist[i][0]+" ");
}
out.println();
}
int[][] dijkstra(ArrayList<edge>[] g, int n) {
boolean vis[][] = new boolean[n][101];
int dist[][] = new int[n][101];
PriorityQueue<edge> pq = new PriorityQueue<edge>();
vis[0][0] = true;
for(int i=0;i<n;i++) Arrays.fill(dist[i], 999999999);
dist[0][0] = 0;
for(edge e:g[0]) {
pq.add(new edge(e.f,e.t,e.len,1,e.len));
}
while(!pq.isEmpty()) {
edge e = pq.poll();
if(e.id==0&&vis[e.t][0]) continue;
if(e.id==1&&vis[e.t][e.short_len]) continue;
if(e.id==0) {
dist[e.t][0] = e.len;
vis[e.t][0] = true;
}else {
dist[e.t][e.short_len] = e.len;
vis[e.t][e.short_len] = true;
}
for(edge nxt:g[e.t]) {
int cost = nxt.len;
if(e.id==1) cost = (e.short_len+nxt.len)*(e.short_len+nxt.len);
if(e.id==0) {
if(dist[nxt.t][cost] > dist[nxt.f][0]+cost) {
dist[nxt.t][cost] = dist[nxt.f][0]+cost;
pq.add(new edge(nxt.f,nxt.t,dist[nxt.t][cost],1,cost));
}
}else {
if(dist[nxt.t][0] > dist[e.f][0]+cost) {
dist[nxt.t][0] = dist[e.f][0]+cost;
pq.add(new edge(nxt.f,nxt.t,dist[nxt.t][0],0,nxt.len));
}
}
}
}
return dist;
}
private static int combx(int n, int k) {
int comb[][] = new int[n+1][n+1];
for(int i = 0; i <=n; i ++){
comb[i][0] = comb[i][i] = 1;
for(int j = 1; j < i; j++){
comb[i][j] = comb[i-1][j] + comb[i-1][j-1];
comb[i][j] %= 1000000007;
}
}
return comb[n][k];
}
class trie_node{
boolean end;
int val;
int lvl;
trie_node zero;
trie_node one;
public trie_node() {
zero = null;
one = null;
end = false;
val = -1;
lvl = -1;
}
}
class trie{
trie_node root = new trie_node();
public void build(int x, int sz) {
trie_node cur = root;
for(int i=sz;i>=0;i--) {
int v = (x&(1<<i))==0?0:1;
if(v==0&&cur.zero==null) {
cur.zero = new trie_node();
}
if(v==1&&cur.one==null) {
cur.one = new trie_node();
}
cur.lvl = i;
if(i==0) {
cur.end = true;
cur.val = x;
}else {
if(v==0)
cur = cur.zero;
else
cur = cur.one;
cur.val = v;
cur.lvl = i;
}
}
}
int search(int num, int limit, trie_node r, int lvl) {
if(r==null) return -1;
if(r.end) return r.val;
int f = -1;
int num_val = (num&1<<lvl)==0?0:1;
int limit_val = (limit&1<<lvl)==0?0:1;
if(limit_val==1) {
if(num_val==0) {
int t = search(num,limit,r.one,lvl-1);
if(t>f) return t;
t = search(num,limit,r.zero,lvl-1);
if(t>f) return t;
}else {
int t = search(num,limit,r.zero,lvl-1);
if(t>f) return t;
t = search(num,limit,r.one,lvl-1);
if(t>f) return t;
}
}else {
int t = search(num,limit,r.zero,lvl-1);
if(t>f) return t;
}
return f;
}
}
public int[] maximizeXor(int[] nums, int[][] queries) {
int m = queries.length;
int ret[] = new int[m];
trie t = new trie();
int sz = 5;
for(int i:nums) t.build(i,sz);
int p = 0;
for(int x[]:queries) {
if(p==1) {
Dumper.print("here");
}
ret[p++] = t.search(x[0], x[1], t.root, sz);
}
return ret;
}
class edge implements Comparable<edge>{
int id,f,t; int len;int short_len;
public edge(int a, int b, int c, int d, int e) {
f=a;t=b;len=c;id=d;short_len = e;
}
@Override
public int compareTo(edge t) {
if(this.len-t.len>0) return 1;
else if(this.len-t.len<0) return -1;
return 0;
}
}
static class lca_naive{
int n;
ArrayList<edge>[] g;
int lvl[];
int pare[];
int dist[];
public lca_naive(int t, ArrayList<edge>[] x) {
n=t;
g=x;
lvl = new int[n];
pare = new int[n];
dist = new int[n];
}
void pre_process() {
dfs(0,-1,g,lvl,pare,dist);
}
void dfs(int cur, int pre, ArrayList<edge>[] g, int lvl[], int pare[], int dist[]) {
for(edge nxt_edge:g[cur]) {
if(nxt_edge.t!=pre) {
lvl[nxt_edge.t] = lvl[cur]+1;
dist[nxt_edge.t] = dist[cur]+nxt_edge.len;
pare[nxt_edge.t] = cur;
dfs(nxt_edge.t,cur,g,lvl,pare,dist);
}
}
}
public int work(int p, int q) {
int a = p;
int b = q;
while(lvl[p]<lvl[q]) q = pare[q];
while(lvl[p]>lvl[q]) p = pare[p];
while(p!=q){p = pare[p]; q = pare[q];}
int c = p;
return dist[a]+dist[b]-dist[c]*2;
}
}
static class lca_binary_lifting{
int n;
ArrayList<edge>[] g;
int lvl[];
int pare[];
int dist[];
int table[][];
public lca_binary_lifting(int a, ArrayList<edge>[] t) {
n = a;
g = t;
lvl = new int[n];
pare = new int[n];
dist = new int[n];
table = new int[20][n];
}
void pre_process() {
dfs(0,-1,g,lvl,pare,dist);
for(int i=0;i<20;i++) {
for(int j=0;j<n;j++) {
if(i==0) table[0][j] = pare[j];
else table[i][j] = table[i-1][table[i-1][j]];
}
}
}
void dfs(int cur, int pre, ArrayList<edge>[] g, int lvl[], int pare[], int dist[]) {
for(edge nxt_edge:g[cur]) {
if(nxt_edge.t!=pre) {
lvl[nxt_edge.t] = lvl[cur]+1;
dist[nxt_edge.t] = dist[cur]+nxt_edge.len;
pare[nxt_edge.t] = cur;
dfs(nxt_edge.t,cur,g,lvl,pare,dist);
}
}
}
public int work(int p, int q) {
int a = p;
int b = q;
if(lvl[p]>lvl[q]) {
int tmp = p;
p=q;
q=tmp;
}
for(int i=19;i>=0;i--) {
if(lvl[table[i][q]]>=lvl[p]) q=table[i][q];
}
if(p==q) return p;// return dist[a]+dist[b]-dist[p]*2;
for(int i=19;i>=0;i--) {
if(table[i][p]!=table[i][q]) {
p = table[i][p];
q = table[i][q];
}
}
return table[0][p];
//return dist[a]+dist[b]-dist[table[0][p]]*2;
}
}
static class lca_sqrt_root{
int n;
ArrayList<edge>[] g;
int lvl[];
int pare[];
int dist[];
int jump[];
int sz;
public lca_sqrt_root(int a, ArrayList<edge>[] b) {
n=a;
g=b;
lvl = new int[n];
pare = new int[n];
dist = new int[n];
jump = new int[n];
sz = (int) Math.sqrt(n);
}
void pre_process() {
dfs(0,-1,g,lvl,pare,dist,jump);
}
void dfs(int cur, int pre, ArrayList<edge>[] g, int lvl[], int pare[], int dist[], int[] jump) {
for(edge nxt_edge:g[cur]) {
if(nxt_edge.t!=pre) {
lvl[nxt_edge.t] = lvl[cur]+1;
dist[nxt_edge.t] = dist[cur]+nxt_edge.len;
pare[nxt_edge.t] = cur;
if(lvl[nxt_edge.t]%sz==0) {
jump[nxt_edge.t] = cur;
}else {
jump[nxt_edge.t] = jump[cur];
}
dfs(nxt_edge.t,cur,g,lvl,pare,dist,jump);
}
}
}
int work(int p, int q) {
int a = p; int b = q;
if(lvl[p]>lvl[q]) {
int tmp = p;
p=q;
q=tmp;
}
while(jump[p]!=jump[q]) {
if(lvl[p]>lvl[q]) p = jump[p];
else q = jump[q];
}
while(p!=q) {
if(lvl[p]>lvl[q]) p = pare[p];
else q = pare[q];
}
return dist[a]+dist[b]-dist[p]*2;
}
}
// class edge implements Comparable<edge>{
// int f,t,len;
// public edge(int a, int b, int c) {
// f=a;t=b;len=c;
// }
// @Override
// public int compareTo(edge t) {
// return t.len-this.len;
// }
// }
class pair implements Comparable<pair>{
int idx,lvl;
public pair(int a, int b) {
idx = a;
lvl = b;
}
@Override
public int compareTo(pair t) {
return t.lvl-this.lvl;
}
}
static class lca_RMQ{
int n;
ArrayList<edge>[] g;
int lvl[];
int dist[];
int tour[];
int tour_rank[];
int first_occ[];
int c;
sgt s;
public lca_RMQ(int a, ArrayList<edge>[] b) {
n=a;
g=b;
c=0;
lvl = new int[n];
dist = new int[n];
tour = new int[2*n];
tour_rank = new int[2*n];
first_occ = new int[n];
Arrays.fill(first_occ, -1);
}
void pre_process() {
tour[c++] = 0;
dfs(0,-1);
for(int i=0;i<2*n;i++) {
tour_rank[i] = lvl[tour[i]];
if(first_occ[tour[i]]==-1) first_occ[tour[i]] = i;
}
s = new sgt(0,2*n,tour_rank);
}
void dfs(int cur, int pre) {
for(edge nxt_edge:g[cur]) {
if(nxt_edge.t!=pre) {
lvl[nxt_edge.t] = lvl[cur]+1;
dist[nxt_edge.t] = dist[cur]+nxt_edge.len;
tour[c++] = nxt_edge.t;
dfs(nxt_edge.t,cur);
tour[c++] = cur;
}
}
}
int work(int p,int q) {
int a = Math.max(first_occ[p], first_occ[q]);
int b = Math.min(first_occ[p], first_occ[q]);
int idx = s.query_min_idx(b, a+1);
//Dumper.print(a+" "+b+" "+idx);
int c = tour[idx];
return dist[p]+dist[q]-dist[c]*2;
}
}
static class sgt{
sgt lt;
sgt rt;
int l,r;
int sum, max, min, lazy;
int min_idx;
public sgt(int L, int R, int arr[]) {
l=L;r=R;
if(l==r-1) {
sum = max = min = arr[l];
lazy = 0;
min_idx = l;
return;
}
lt = new sgt(l, l+r>>1, arr);
rt = new sgt(l+r>>1, r, arr);
pop_up();
}
void pop_up() {
this.sum = lt.sum + rt.sum;
this.max = Math.max(lt.max, rt.max);
this.min = Math.min(lt.min, rt.min);
if(lt.min<rt.min)
this.min_idx = lt.min_idx;
else if(lt.min>rt.min) this.min_idx = rt.min_idx;
else this.min = Math.min(lt.min_idx, rt.min_idx);
}
void push_down() {
if(this.lazy!=0) {
lt.sum+=lazy;
rt.sum+=lazy;
lt.max+=lazy;
lt.min+=lazy;
rt.max+=lazy;
rt.min+=lazy;
lt.lazy+=this.lazy;
rt.lazy+=this.lazy;
this.lazy = 0;
}
}
void change(int L, int R, int v) {
if(R<=l||r<=L) return;
if(L<=l&&r<=R) {
this.max+=v;
this.min+=v;
this.sum+=v*(r-l);
this.lazy+=v;
return;
}
push_down();
lt.change(L, R, v);
rt.change(L, R, v);
pop_up();
}
int query_max(int L, int R) {
if(L<=l&&r<=R) return this.max;
if(r<=L||R<=l) return Integer.MIN_VALUE;
push_down();
return Math.max(lt.query_max(L, R), rt.query_max(L, R));
}
int query_min(int L, int R) {
if(L<=l&&r<=R) return this.min;
if(r<=L||R<=l) return Integer.MAX_VALUE;
push_down();
return Math.min(lt.query_min(L, R), rt.query_min(L, R));
}
int query_sum(int L, int R) {
if(L<=l&&r<=R) return this.sum;
if(r<=L||R<=l) return 0;
push_down();
return lt.query_sum(L, R) + rt.query_sum(L, R);
}
int query_min_idx(int L, int R) {
if(L<=l&&r<=R) return this.min_idx;
if(r<=L||R<=l) return Integer.MAX_VALUE;
int a = lt.query_min_idx(L, R);
int b = rt.query_min_idx(L, R);
int aa = lt.query_min(L, R);
int bb = rt.query_min(L, R);
if(aa<bb) return a;
else if(aa>bb) return b;
return Math.min(a,b);
}
}
List<List<Integer>> convert(int arr[][]){
int n = arr.length;
List<List<Integer>> ret = new ArrayList<>();
for(int i=0;i<n;i++) {
ArrayList<Integer> tmp = new ArrayList<Integer>();
for(int j=0;j<arr[i].length;j++) tmp.add(arr[i][j]);
ret.add(tmp);
}
return ret;
}
public class TreeNode {
int val;
TreeNode left;
TreeNode right;
TreeNode(int x) { val = x; }
}
public int GCD(int a, int b) {
if (b==0) return a;
return GCD(b,a%b);
}
public long GCD(long a, long b) {
if (b==0) return a;
return GCD(b,a%b);
}
}
static class ArrayUtils {
static final long seed = System.nanoTime();
static final Random rand = new Random(seed);
public static void sort(int[] a) {
shuffle(a);
Arrays.sort(a);
}
public static void shuffle(int[] a) {
for (int i = 0; i < a.length; i++) {
int j = rand.nextInt(i + 1);
int t = a[i];
a[i] = a[j];
a[j] = t;
}
}
public static void sort(long[] a) {
shuffle(a);
Arrays.sort(a);
}
public static void shuffle(long[] a) {
for (int i = 0; i < a.length; i++) {
int j = rand.nextInt(i + 1);
long t = a[i];
a[i] = a[j];
a[j] = t;
}
}
}
static class BIT{
int arr[];
int n;
public BIT(int a) {
n=a;
arr = new int[n];
}
int sum(int p) {
int s=0;
while(p>0) {
s+=arr[p];
p-=p&(-p);
}
return s;
}
void add(int p, int v) {
while(p<n) {
arr[p]+=v;
p+=p&(-p);
}
}
}
static class DSU{
int[] arr;
int[] sz;
public DSU(int n) {
arr = new int[n];
sz = new int[n];
for(int i=0;i<n;i++) arr[i] = i;
Arrays.fill(sz, 1);
}
public int find(int a) {
if(arr[a]!=a) arr[a] = find(arr[a]);
return arr[a];
}
public void union(int a, int b) {
int x = find(a);
int y = find(b);
if(x==y) return;
arr[y] = x;
sz[x] += sz[y];
}
public int size(int x) {
return sz[find(x)];
}
}
static class MinHeap<Key> implements Iterable<Key> {
private int maxN;
private int n;
private int[] pq;
private int[] qp;
private Key[] keys;
private Comparator<Key> comparator;
public MinHeap(int capacity){
if (capacity < 0) throw new IllegalArgumentException();
this.maxN = capacity;
n=0;
pq = new int[maxN+1];
qp = new int[maxN+1];
keys = (Key[]) new Object[capacity+1];
Arrays.fill(qp, -1);
}
public MinHeap(int capacity, Comparator<Key> c){
if (capacity < 0) throw new IllegalArgumentException();
this.maxN = capacity;
n=0;
pq = new int[maxN+1];
qp = new int[maxN+1];
keys = (Key[]) new Object[capacity+1];
Arrays.fill(qp, -1);
comparator = c;
}
public boolean isEmpty() { return n==0; }
public int size() { return n; }
public boolean contains(int i) {
if (i < 0 || i >= maxN) throw new IllegalArgumentException();
return qp[i] != -1;
}
public int peekIdx() {
if (n == 0) throw new NoSuchElementException("Priority queue underflow");
return pq[1];
}
public Key peek(){
if(isEmpty()) throw new NoSuchElementException("Priority queue underflow");
return keys[pq[1]];
}
public int poll(){
if(isEmpty()) throw new NoSuchElementException("Priority queue underflow");
int min = pq[1];
exch(1,n--);
down(1);
assert min==pq[n+1];
qp[min] = -1;
keys[min] = null;
pq[n+1] = -1;
return min;
}
public void update(int i, Key key) {
if (i < 0 || i >= maxN) throw new IllegalArgumentException();
if (!contains(i)) {
this.add(i, key);
}else {
keys[i] = key;
up(qp[i]);
down(qp[i]);
}
}
private void add(int i, Key x){
if (i < 0 || i >= maxN) throw new IllegalArgumentException();
if (contains(i)) throw new IllegalArgumentException("index is already in the priority queue");
n++;
qp[i] = n;
pq[n] = i;
keys[i] = x;
up(n);
}
private void up(int k){
while(k>1&&less(k,k/2)){
exch(k,k/2);
k/=2;
}
}
private void down(int k){
while(2*k<=n){
int j=2*k;
if(j<n&&less(j+1,j)) j++;
if(less(k,j)) break;
exch(k,j);
k=j;
}
}
public boolean less(int i, int j){
if (comparator == null) {
return ((Comparable<Key>) keys[pq[i]]).compareTo(keys[pq[j]]) < 0;
}
else {
return comparator.compare(keys[pq[i]], keys[pq[j]]) < 0;
}
}
public void exch(int i, int j){
int swap = pq[i];
pq[i] = pq[j];
pq[j] = swap;
qp[pq[i]] = i;
qp[pq[j]] = j;
}
@Override
public Iterator<Key> iterator() {
// TODO Auto-generated method stub
return null;
}
}
private static class InputReader
{
private InputStream stream;
private byte[] buf = new byte[1024];
private int zcurChar;
private int znumChars;
private SpaceCharFilter filter;
public InputReader(InputStream stream)
{
this.stream = stream;
}
public int read()
{
if (znumChars == -1)
throw new InputMismatchException();
if (zcurChar >= znumChars)
{
zcurChar = 0;
try
{
znumChars = stream.read(buf);
} catch (IOException e)
{
throw new InputMismatchException();
}
if (znumChars <= 0)
return -1;
}
return buf[zcurChar++];
}
public int nextInt()
{
int c = read();
while (isSpaceChar(c))
c = read();
int sgn = 1;
if (c == '-')
{
sgn = -1;
c = read();
}
int res = 0;
do
{
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
} while (!isSpaceChar(c));
return res * sgn;
}
public String nextString()
{
int c = read();
while (isSpaceChar(c))
c = read();
StringBuilder res = new StringBuilder();
do
{
res.appendCodePoint(c);
c = read();
} while (!isSpaceChar(c));
return res.toString();
}
public double nextDouble()
{
int c = read();
while (isSpaceChar(c))
c = read();
int sgn = 1;
if (c == '-')
{
sgn = -1;
c = read();
}
double res = 0;
while (!isSpaceChar(c) && c != '.')
{
if (c == 'e' || c == 'E')
return res * Math.pow(10, nextInt());
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
}
if (c == '.')
{
c = read();
double m = 1;
while (!isSpaceChar(c))
{
if (c == 'e' || c == 'E')
return res * Math.pow(10, nextInt());
if (c < '0' || c > '9')
throw new InputMismatchException();
m /= 10;
res += (c - '0') * m;
c = read();
}
}
return res * sgn;
}
public long nextLong()
{
int c = read();
while (isSpaceChar(c))
c = read();
int sgn = 1;
if (c == '-')
{
sgn = -1;
c = read();
}
long res = 0;
do
{
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
} while (!isSpaceChar(c));
return res * sgn;
}
public boolean isSpaceChar(int c)
{
if (filter != null)
return filter.isSpaceChar(c);
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
public String next()
{
return nextString();
}
public interface SpaceCharFilter
{
public boolean isSpaceChar(int ch);
}
public int[] readIntArray(int n) {
int[] ret = new int[n];
for (int i = 0; i < n; i++) {
ret[i] = nextInt();
}
return ret;
}
}
static class Dumper {
static void print_int_arr(int[] arr) {
for (int i = 0; i < arr.length; i++) {
System.out.print(arr[i] + " ");
}
System.out.println();
System.out.println("---------------------");
}
static void print_char_arr(char[] arr) {
for (int i = 0; i < arr.length; i++) {
System.out.print(arr[i] + " ");
}
System.out.println();
System.out.println("---------------------");
}
static void print_double_arr(double[] arr) {
for (int i = 0; i < arr.length; i++) {
System.out.print(arr[i] + " ");
}
System.out.println();
System.out.println("---------------------");
}
static void print_2d_arr(int[][] arr, int x, int y) {
for (int i = 0; i < x; i++) {
for (int j = 0; j < y; j++) {
System.out.print(arr[i][j] + " ");
}
System.out.println();
}
System.out.println();
System.out.println("---------------------");
}
static void print_2d_arr(boolean[][] arr, int x, int y) {
for (int i = 0; i < x; i++) {
for (int j = 0; j < y; j++) {
System.out.print(arr[i][j] + " ");
}
System.out.println();
}
System.out.println();
System.out.println("---------------------");
}
static void print(Object o) {
System.out.println(o.toString());
}
static void getc() {
System.out.println("here");
}
}
}
|
Java
|
["5 6\n1 2 3\n2 3 4\n3 4 5\n4 5 6\n1 5 1\n2 4 2", "3 2\n1 2 1\n2 3 2"]
|
4 seconds
|
["0 98 49 25 114", "0 -1 9"]
|
NoteThe graph in the first example looks like this.In the second example the path from $$$1$$$ to $$$3$$$ goes through $$$2$$$, so the resulting payment is $$$(1 + 2)^2 = 9$$$.
|
Java 8
|
standard input
|
[
"binary search",
"brute force",
"constructive algorithms",
"dp",
"flows",
"graphs",
"shortest paths"
] |
abee4d188bb59d82fcf4579c7416a343
|
First line contains two integers $$$n$$$, $$$m$$$ ($$$2 \leq n \leq 10^5$$$, $$$1 \leq m \leq min(\frac{n \cdot (n - 1)}{2}, 2 \cdot 10^5)$$$). Next $$$m$$$ lines each contain three integers $$$v_i$$$, $$$u_i$$$, $$$w_i$$$ ($$$1 \leq v_i, u_i \leq n$$$, $$$1 \leq w_i \leq 50$$$, $$$u_i \neq v_i$$$). It's guaranteed that there are no multiple edges, i.e. for any edge $$$(u_i, v_i)$$$ there are no other edges $$$(u_i, v_i)$$$ or $$$(v_i, u_i)$$$.
| 2,200
|
For every city $$$t$$$ print one integer. If there is no correct path between $$$1$$$ and $$$t$$$ output $$$-1$$$. Otherwise print out the minimum amount of money needed to travel from $$$1$$$ to $$$t$$$.
|
standard output
| |
PASSED
|
4ef4f7a309cc7008a59d1d5abb6c3982
|
train_110.jsonl
|
1613658900
|
There are $$$n$$$ cities and $$$m$$$ bidirectional roads in the country. The roads in the country form an undirected weighted graph. The graph is not guaranteed to be connected. Each road has it's own parameter $$$w$$$. You can travel through the roads, but the government made a new law: you can only go through two roads at a time (go from city $$$a$$$ to city $$$b$$$ and then from city $$$b$$$ to city $$$c$$$) and you will have to pay $$$(w_{ab} + w_{bc})^2$$$ money to go through those roads. Find out whether it is possible to travel from city $$$1$$$ to every other city $$$t$$$ and what's the minimum amount of money you need to get from $$$1$$$ to $$$t$$$.
|
512 megabytes
|
import java.util.*;
import java.io.*;
public class A{
public static void main(String [] args)throws IOException{
BufferedReader br=new BufferedReader(new InputStreamReader(System.in));
FastReader sc=new FastReader();
PrintWriter pw=new PrintWriter(System.out);
int test=1;
StringBuffer ans=new StringBuffer();
while(test-->0){
int n=sc.nextInt();
int m=sc.nextInt();
ArrayList<Pair> arr[]=new ArrayList[n+1];
for(int i=0;i<=n;i++) arr[i]=new ArrayList<Pair>();
while(m-->0){
int source=sc.nextInt();
int dest = sc.nextInt();
int weight = sc.nextInt();
arr[source].add(new Pair(dest,weight));
arr[dest].add(new Pair(source,weight));
}
int [][] d=djikstra(1,n,arr);
for(int i=1;i<=n;i++){
if(d[i][0] == Integer.MAX_VALUE) d[i][0]=-1;
ans.append(d[i][0]+" ");
}
pw.println(ans);
pw.close();
}
}
static class Pair{
int dest=0;
int wt=0;
int lastEdg=0;
Pair(){}
Pair(int d,int w){
dest=d;
wt =w;
}
Pair(int d,int v,int lastEdg){
dest=d;
wt=v;
this.lastEdg=lastEdg;
}
}
static class customSort implements Comparator<Pair>{
public int compare(Pair a,Pair b){
if(a.wt<b.wt){
return -1;
}
else if(a.wt>b.wt){
return 1;
}
return 0;
}
}
public static int [][] djikstra(int source,int n,ArrayList<Pair> arr[]){
int dp[][]=new int[n+1][51];
for(int i=0;i<=n;i++) Arrays.fill(dp[i], Integer.MAX_VALUE);
PriorityQueue<Pair> pq=new PriorityQueue<>(new customSort());
boolean vis[][]=new boolean[n+1][51];
pq.add(new Pair(source,0));
dp[1][0]=0;
while(!pq.isEmpty()){
Pair x=pq.poll();
int nd =x.dest;
int wt =x.wt;
int lastEdg =x.lastEdg;
if(vis[nd][lastEdg]){
continue;
}
vis[nd][lastEdg]=true;
for(int i=0;i<arr[nd].size();i++){
Pair y=arr[nd].get(i);
int ch=y.dest;
int wtc=y.wt;
int newDist = wt;
if(lastEdg>0) {
newDist +=((lastEdg+wtc)*(lastEdg+wtc));
wtc=0;
}
if(dp[ch][wtc]>newDist) {
dp[ch][wtc]=newDist;
pq.add(new Pair(ch,newDist,wtc));
}
}
}
return dp;
}
/**
* Fast I/O
*/
static class FastReader
{
BufferedReader br;
StringTokenizer st;
public FastReader()
{
br = new BufferedReader(new
InputStreamReader(System.in));
}
String next()
{
while (st == null || !st.hasMoreElements())
{
try
{
st = new StringTokenizer(br.readLine());
}
catch (IOException e)
{
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt()
{
return Integer.parseInt(next());
}
long nextLong()
{
return Long.parseLong(next());
}
double nextDouble()
{
return Double.parseDouble(next());
}
String nextLine()
{
String str = "";
try
{
str = br.readLine();
}
catch (IOException e)
{
e.printStackTrace();
}
return str;
}
}
}
|
Java
|
["5 6\n1 2 3\n2 3 4\n3 4 5\n4 5 6\n1 5 1\n2 4 2", "3 2\n1 2 1\n2 3 2"]
|
4 seconds
|
["0 98 49 25 114", "0 -1 9"]
|
NoteThe graph in the first example looks like this.In the second example the path from $$$1$$$ to $$$3$$$ goes through $$$2$$$, so the resulting payment is $$$(1 + 2)^2 = 9$$$.
|
Java 8
|
standard input
|
[
"binary search",
"brute force",
"constructive algorithms",
"dp",
"flows",
"graphs",
"shortest paths"
] |
abee4d188bb59d82fcf4579c7416a343
|
First line contains two integers $$$n$$$, $$$m$$$ ($$$2 \leq n \leq 10^5$$$, $$$1 \leq m \leq min(\frac{n \cdot (n - 1)}{2}, 2 \cdot 10^5)$$$). Next $$$m$$$ lines each contain three integers $$$v_i$$$, $$$u_i$$$, $$$w_i$$$ ($$$1 \leq v_i, u_i \leq n$$$, $$$1 \leq w_i \leq 50$$$, $$$u_i \neq v_i$$$). It's guaranteed that there are no multiple edges, i.e. for any edge $$$(u_i, v_i)$$$ there are no other edges $$$(u_i, v_i)$$$ or $$$(v_i, u_i)$$$.
| 2,200
|
For every city $$$t$$$ print one integer. If there is no correct path between $$$1$$$ and $$$t$$$ output $$$-1$$$. Otherwise print out the minimum amount of money needed to travel from $$$1$$$ to $$$t$$$.
|
standard output
| |
PASSED
|
82d3b17f44c70c036086865f3854c10a
|
train_110.jsonl
|
1613658900
|
There are $$$n$$$ cities and $$$m$$$ bidirectional roads in the country. The roads in the country form an undirected weighted graph. The graph is not guaranteed to be connected. Each road has it's own parameter $$$w$$$. You can travel through the roads, but the government made a new law: you can only go through two roads at a time (go from city $$$a$$$ to city $$$b$$$ and then from city $$$b$$$ to city $$$c$$$) and you will have to pay $$$(w_{ab} + w_{bc})^2$$$ money to go through those roads. Find out whether it is possible to travel from city $$$1$$$ to every other city $$$t$$$ and what's the minimum amount of money you need to get from $$$1$$$ to $$$t$$$.
|
512 megabytes
|
import java.util.*;
import java.io.*;
public class A{
public static void main(String [] args)throws IOException{
BufferedReader br=new BufferedReader(new InputStreamReader(System.in));
FastReader sc=new FastReader();
PrintWriter pw=new PrintWriter(System.out);
int test=1;
while(test-->0){
int n=sc.nextInt();
int m=sc.nextInt();
ArrayList<Pair> arr[]=new ArrayList[n+1];
for(int i=0;i<=n;i++) arr[i]=new ArrayList<Pair>();
try{
while(m-->0){
int source=sc.nextInt();
int dest = sc.nextInt();
int weight = sc.nextInt();
arr[source].add(new Pair(dest,weight));
arr[dest].add(new Pair(source,weight));
}
}
catch(Exception e){
}
int [][] d=djikstra(1,n,arr);
for(int i=1;i<=n;i++){
if(d[i][0] == Integer.MAX_VALUE) d[i][0]=-1;
pw.print(d[i][0]+" ");
}
pw.println();
pw.close();
}
}
static class Pair{
int dest=0;
int wt=0;
int lastEdg=0;
Pair(){}
Pair(int d,int w){
dest=d;
wt =w;
}
Pair(int d,int v,int lastEdg){
dest=d;
wt=v;
this.lastEdg=lastEdg;
}
}
static class customSort implements Comparator<Pair>{
public int compare(Pair a,Pair b){
if(a.wt<b.wt){
return -1;
}
else if(a.wt>b.wt){
return 1;
}
return 0;
}
}
public static int [][] djikstra(int source,int n,ArrayList<Pair> arr[]){
int dp[][]=new int[n+1][51];
for(int i=0;i<=n;i++) Arrays.fill(dp[i], Integer.MAX_VALUE);
PriorityQueue<Pair> pq=new PriorityQueue<>(new customSort());
boolean vis[][]=new boolean[n+1][51];
pq.add(new Pair(source,0));
dp[1][0]=0;
while(!pq.isEmpty()){
Pair x=pq.poll();
int nd =x.dest;
int wt =x.wt;
int lastEdg =x.lastEdg;
if(vis[nd][lastEdg]){
continue;
}
vis[nd][lastEdg]=true;
for(int i=0;i<arr[nd].size();i++){
Pair y=arr[nd].get(i);
int ch=y.dest;
int wtc=y.wt;
int newDist = wt;
if(lastEdg>0) {
newDist +=((lastEdg+wtc)*(lastEdg+wtc));
wtc=0;
}
if(dp[ch][wtc]>newDist) {
dp[ch][wtc]=newDist;
pq.add(new Pair(ch,newDist,wtc));
}
}
}
return dp;
}
/**
* Fast I/O
*/
static class FastReader
{
BufferedReader br;
StringTokenizer st;
public FastReader()
{
br = new BufferedReader(new
InputStreamReader(System.in));
}
String next()
{
while (st == null || !st.hasMoreElements())
{
try
{
st = new StringTokenizer(br.readLine());
}
catch (IOException e)
{
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt()
{
return Integer.parseInt(next());
}
long nextLong()
{
return Long.parseLong(next());
}
double nextDouble()
{
return Double.parseDouble(next());
}
String nextLine()
{
String str = "";
try
{
str = br.readLine();
}
catch (IOException e)
{
e.printStackTrace();
}
return str;
}
}
}
|
Java
|
["5 6\n1 2 3\n2 3 4\n3 4 5\n4 5 6\n1 5 1\n2 4 2", "3 2\n1 2 1\n2 3 2"]
|
4 seconds
|
["0 98 49 25 114", "0 -1 9"]
|
NoteThe graph in the first example looks like this.In the second example the path from $$$1$$$ to $$$3$$$ goes through $$$2$$$, so the resulting payment is $$$(1 + 2)^2 = 9$$$.
|
Java 8
|
standard input
|
[
"binary search",
"brute force",
"constructive algorithms",
"dp",
"flows",
"graphs",
"shortest paths"
] |
abee4d188bb59d82fcf4579c7416a343
|
First line contains two integers $$$n$$$, $$$m$$$ ($$$2 \leq n \leq 10^5$$$, $$$1 \leq m \leq min(\frac{n \cdot (n - 1)}{2}, 2 \cdot 10^5)$$$). Next $$$m$$$ lines each contain three integers $$$v_i$$$, $$$u_i$$$, $$$w_i$$$ ($$$1 \leq v_i, u_i \leq n$$$, $$$1 \leq w_i \leq 50$$$, $$$u_i \neq v_i$$$). It's guaranteed that there are no multiple edges, i.e. for any edge $$$(u_i, v_i)$$$ there are no other edges $$$(u_i, v_i)$$$ or $$$(v_i, u_i)$$$.
| 2,200
|
For every city $$$t$$$ print one integer. If there is no correct path between $$$1$$$ and $$$t$$$ output $$$-1$$$. Otherwise print out the minimum amount of money needed to travel from $$$1$$$ to $$$t$$$.
|
standard output
| |
PASSED
|
985dd4e360bdfd1458244e5769622c60
|
train_110.jsonl
|
1613658900
|
There are $$$n$$$ cities and $$$m$$$ bidirectional roads in the country. The roads in the country form an undirected weighted graph. The graph is not guaranteed to be connected. Each road has it's own parameter $$$w$$$. You can travel through the roads, but the government made a new law: you can only go through two roads at a time (go from city $$$a$$$ to city $$$b$$$ and then from city $$$b$$$ to city $$$c$$$) and you will have to pay $$$(w_{ab} + w_{bc})^2$$$ money to go through those roads. Find out whether it is possible to travel from city $$$1$$$ to every other city $$$t$$$ and what's the minimum amount of money you need to get from $$$1$$$ to $$$t$$$.
|
512 megabytes
|
import java.io.*;
import java.util.*;
public class E {
static class node implements Comparable<node> {
int node, p;
Cost cost;
node(int u, int par, Cost c) {
node = u;
p = par;
cost = c;
}
@Override
public int compareTo(node o) {
// TODO Auto-generated method stub
return cost.compareTo(o.cost);
}
}
static class Cost {
long cost;
int last;
Cost(long c, int l) {
cost = c;
last = l;
}
public int compareTo(Cost other) {
if (cost != other.cost)
return Long.compare(cost, other.cost);
return last - other.last;
}
}
static int n, m;
static ArrayList<int[]> adj[];
static long INF = (long) 1e18;
static long[] solve() {
PriorityQueue<node> pq = new PriorityQueue();
long[][] dist2 = new long[n][51];
long[] dist = new long[n];
Arrays.fill(dist, INF);
for (long[] x : dist2)
Arrays.fill(x, INF);
dist[0] = 0;
pq.add(new node(0, 0, new Cost(0, 0)));
while (!pq.isEmpty()) {
node curr = pq.poll();
int u = curr.node, p = curr.p;
Cost cost = curr.cost;
if (p == 0 && cost.cost > dist[u])
continue;
if (p == 1 && cost.cost > dist2[u][cost.last])
continue;
for (int[] nxt : adj[u]) {
int v = nxt[0];
int w = nxt[1];
if (p == 0) {
if (dist2[v][w] > cost.cost)
pq.add(new node(v, p ^ 1, new Cost(dist2[v][w] = cost.cost, w)));
} else {
long total = cost.cost + (w + cost.last) * 1L * (w + cost.last);
if (dist[v] > total)
pq.add(new node(v, p ^ 1, new Cost(dist[v] = total, 0)));
}
}
}
return dist;
}
public static void main(String[] args) throws IOException {
Scanner sc = new Scanner();
PrintWriter out = new PrintWriter(System.out);
n = sc.nextInt();
m = sc.nextInt();
adj = new ArrayList[n];
for (int i = 0; i < n; i++)
adj[i] = new ArrayList();
while (m-- > 0) {
int u = sc.nextInt() - 1, v = sc.nextInt() - 1, w = sc.nextInt();
adj[u].add(new int[] { v, w });
adj[v].add(new int[] { u, w });
}
long[] ans = solve();
for (long x : ans) {
if (x == INF)
out.print(-1 + " ");
else
out.print(x + " ");
}
out.println();
out.close();
}
static class Scanner {
BufferedReader br;
StringTokenizer st;
Scanner() {
br = new BufferedReader(new InputStreamReader(System.in));
}
Scanner(String fileName) throws FileNotFoundException {
br = new BufferedReader(new FileReader(fileName));
}
String next() throws IOException {
while (st == null || !st.hasMoreTokens())
st = new StringTokenizer(br.readLine());
return st.nextToken();
}
String nextLine() throws IOException {
return br.readLine();
}
int nextInt() throws IOException {
return Integer.parseInt(next());
}
long nextLong() throws NumberFormatException, IOException {
return Long.parseLong(next());
}
double nextDouble() throws NumberFormatException, IOException {
return Double.parseDouble(next());
}
boolean ready() throws IOException {
return br.ready() || st.hasMoreTokens();
}
int[] nxtArr(int n) throws IOException {
int[] ans = new int[n];
for (int i = 0; i < n; i++)
ans[i] = nextInt();
return ans;
}
}
static void sort(int[] a) {
shuffle(a);
Arrays.sort(a);
}
static void shuffle(int[] a) {
int n = a.length;
Random rand = new Random();
for (int i = 0; i < n; i++) {
int tmpIdx = rand.nextInt(n);
int tmp = a[i];
a[i] = a[tmpIdx];
a[tmpIdx] = tmp;
}
}
}
|
Java
|
["5 6\n1 2 3\n2 3 4\n3 4 5\n4 5 6\n1 5 1\n2 4 2", "3 2\n1 2 1\n2 3 2"]
|
4 seconds
|
["0 98 49 25 114", "0 -1 9"]
|
NoteThe graph in the first example looks like this.In the second example the path from $$$1$$$ to $$$3$$$ goes through $$$2$$$, so the resulting payment is $$$(1 + 2)^2 = 9$$$.
|
Java 8
|
standard input
|
[
"binary search",
"brute force",
"constructive algorithms",
"dp",
"flows",
"graphs",
"shortest paths"
] |
abee4d188bb59d82fcf4579c7416a343
|
First line contains two integers $$$n$$$, $$$m$$$ ($$$2 \leq n \leq 10^5$$$, $$$1 \leq m \leq min(\frac{n \cdot (n - 1)}{2}, 2 \cdot 10^5)$$$). Next $$$m$$$ lines each contain three integers $$$v_i$$$, $$$u_i$$$, $$$w_i$$$ ($$$1 \leq v_i, u_i \leq n$$$, $$$1 \leq w_i \leq 50$$$, $$$u_i \neq v_i$$$). It's guaranteed that there are no multiple edges, i.e. for any edge $$$(u_i, v_i)$$$ there are no other edges $$$(u_i, v_i)$$$ or $$$(v_i, u_i)$$$.
| 2,200
|
For every city $$$t$$$ print one integer. If there is no correct path between $$$1$$$ and $$$t$$$ output $$$-1$$$. Otherwise print out the minimum amount of money needed to travel from $$$1$$$ to $$$t$$$.
|
standard output
| |
PASSED
|
e95764f259adba36cb57164c10a10dd8
|
train_110.jsonl
|
1613658900
|
There are $$$n$$$ cities and $$$m$$$ bidirectional roads in the country. The roads in the country form an undirected weighted graph. The graph is not guaranteed to be connected. Each road has it's own parameter $$$w$$$. You can travel through the roads, but the government made a new law: you can only go through two roads at a time (go from city $$$a$$$ to city $$$b$$$ and then from city $$$b$$$ to city $$$c$$$) and you will have to pay $$$(w_{ab} + w_{bc})^2$$$ money to go through those roads. Find out whether it is possible to travel from city $$$1$$$ to every other city $$$t$$$ and what's the minimum amount of money you need to get from $$$1$$$ to $$$t$$$.
|
512 megabytes
|
import java.util.*;
import java.io.*;
public class E1486 {
static ArrayList<int[]>[] adjList;
public static void main(String[] args) throws IOException {
Scanner sc = new Scanner(System.in);
PrintWriter pw = new PrintWriter(System.out);
int n = sc.nextInt();
int m = sc.nextInt();
adjList = new ArrayList[n];
for (int i = 0; i < n; i++) {
adjList[i] = new ArrayList<int[]>();
}
while (m-- > 0) {
int u = sc.nextInt() - 1;
int v = sc.nextInt() - 1;
int w = sc.nextInt();
adjList[u].add(new int[] { v, w });
adjList[v].add(new int[] { u, w });
}
int[][] dist = new int[51][n];
for (int[] x : dist)
Arrays.fill(x, (int) 1e9);
dist[0][0] = 0;
PriorityQueue<int[]> pq = new PriorityQueue<int[]>((u, v) -> u[2] - v[2]);
pq.add(new int[] { 0, 0, 0 });
while (!pq.isEmpty()) {
int[] cur = pq.poll();
if (cur[2] > dist[cur[1]][cur[0]])
continue;
if (cur[1] == 0) {
for (int[] x : adjList[cur[0]]) {
if (cur[2] < dist[x[1]][x[0]]) {
pq.add(new int[] { x[0], x[1], dist[x[1]][x[0]] = cur[2] });
}
}
} else {
for (int[] x : adjList[cur[0]]) {
if (cur[2] + (cur[1] + x[1]) * (cur[1] + x[1]) < dist[0][x[0]]) {
pq.add(new int[] { x[0], 0, dist[0][x[0]] = cur[2] + (cur[1] + x[1]) * (cur[1] + x[1]) });
}
}
}
}
for (int x : dist[0]) {
pw.print((x == (int) 1e9 ? -1 : x) + " ");
}
pw.println();
pw.close();
}
static class Scanner {
BufferedReader br;
StringTokenizer st;
public Scanner(InputStream s) {
br = new BufferedReader(new InputStreamReader(s));
}
public Scanner(FileReader f) {
br = new BufferedReader(f);
}
public String next() throws IOException {
while (st == null || !st.hasMoreTokens())
st = new StringTokenizer(br.readLine());
return st.nextToken();
}
public int nextInt() throws IOException {
return Integer.parseInt(next());
}
public long nextLong() throws IOException {
return Long.parseLong(next());
}
public double nextDouble() throws IOException {
return Double.parseDouble(next());
}
public int[] nextIntArr(int n) throws IOException {
int[] arr = new int[n];
for (int i = 0; i < n; i++) {
arr[i] = Integer.parseInt(next());
}
return arr;
}
}
}
|
Java
|
["5 6\n1 2 3\n2 3 4\n3 4 5\n4 5 6\n1 5 1\n2 4 2", "3 2\n1 2 1\n2 3 2"]
|
4 seconds
|
["0 98 49 25 114", "0 -1 9"]
|
NoteThe graph in the first example looks like this.In the second example the path from $$$1$$$ to $$$3$$$ goes through $$$2$$$, so the resulting payment is $$$(1 + 2)^2 = 9$$$.
|
Java 8
|
standard input
|
[
"binary search",
"brute force",
"constructive algorithms",
"dp",
"flows",
"graphs",
"shortest paths"
] |
abee4d188bb59d82fcf4579c7416a343
|
First line contains two integers $$$n$$$, $$$m$$$ ($$$2 \leq n \leq 10^5$$$, $$$1 \leq m \leq min(\frac{n \cdot (n - 1)}{2}, 2 \cdot 10^5)$$$). Next $$$m$$$ lines each contain three integers $$$v_i$$$, $$$u_i$$$, $$$w_i$$$ ($$$1 \leq v_i, u_i \leq n$$$, $$$1 \leq w_i \leq 50$$$, $$$u_i \neq v_i$$$). It's guaranteed that there are no multiple edges, i.e. for any edge $$$(u_i, v_i)$$$ there are no other edges $$$(u_i, v_i)$$$ or $$$(v_i, u_i)$$$.
| 2,200
|
For every city $$$t$$$ print one integer. If there is no correct path between $$$1$$$ and $$$t$$$ output $$$-1$$$. Otherwise print out the minimum amount of money needed to travel from $$$1$$$ to $$$t$$$.
|
standard output
| |
PASSED
|
374cbfcd344f81c2f029f861c4c4292e
|
train_110.jsonl
|
1613658900
|
There are $$$n$$$ cities and $$$m$$$ bidirectional roads in the country. The roads in the country form an undirected weighted graph. The graph is not guaranteed to be connected. Each road has it's own parameter $$$w$$$. You can travel through the roads, but the government made a new law: you can only go through two roads at a time (go from city $$$a$$$ to city $$$b$$$ and then from city $$$b$$$ to city $$$c$$$) and you will have to pay $$$(w_{ab} + w_{bc})^2$$$ money to go through those roads. Find out whether it is possible to travel from city $$$1$$$ to every other city $$$t$$$ and what's the minimum amount of money you need to get from $$$1$$$ to $$$t$$$.
|
512 megabytes
|
import java.util.*;
import java.io.*;
public class Div708 {
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
//////// /////////
//////// /////////
//////// HHHH HHHH EEEEEEEEEEEEE MMMM MMMM OOOOOO SSSSSSS EEEEEEEEEEEEE /////////
//////// HHHH HHHH EEEEEEEEEEEEE MMMMMM MMMMMM OOO OOO SSSS SSS EEEEEEEEEEEEE /////////
//////// HHHH HHHH EEEEE MMMM MMM MMM MMMM OOO OOO SSSS SSS EEEEE /////////
//////// HHHH HHHH EEEEE MMMM MMMMMM MMMM OOO OOO SSSS EEEEE /////////
//////// HHHH HHHH EEEEE MMMM MMMM OOO OOO SSSSSSS EEEEE /////////
//////// HHHHHHHHHHHHHHHH EEEEEEEEEEE MMMM MMMM OOO OOO SSSSSS EEEEEEEEEEE /////////
//////// HHHHHHHHHHHHHHHH EEEEEEEEEEE MMMM MMMM OOO OOO SSSSSSS EEEEEEEEEEE /////////
//////// HHHH HHHH EEEEE MMMM MMMM OOO OOO SSSS EEEEE /////////
//////// HHHH HHHH EEEEE MMMM MMMM OOO OOO SSS SSSS EEEEE /////////
//////// HHHH HHHH EEEEEEEEEEEEE MMMM MMMM OOO OOO SSS SSSS EEEEEEEEEEEEE /////////
//////// HHHH HHHH EEEEEEEEEEEEE MMMM MMMM OOOOOO SSSSSSS EEEEEEEEEEEEE /////////
//////// /////////
//////// /////////
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
public static void main(String[] args) throws IOException {
Scanner sc = new Scanner(System.in);
PrintWriter pw = new PrintWriter(System.out);
int n = sc.nextInt();
int m = sc.nextInt();
ArrayList<int[]> adj[] = new ArrayList[n];
for (int i = 0; i < n; i++) {
adj[i] = new ArrayList<>();
}
while (m-- > 0) {
int u = sc.nextInt() - 1;
int v = sc.nextInt() - 1;
int w = sc.nextInt();
adj[u].add(new int[]{v, w});
adj[v].add(new int[]{u, w});
}
long[][][] dis = new long[2][51][n];
for (long[][] x : dis) for (long[] y : x) Arrays.fill(y, -1);
PriorityQueue<long[]> pq = new PriorityQueue<>((x, y) -> Long.compare(x[3], y[3]));
long[] st = new long[]{1, 0, 0, 0};
pq.add(st);
dis[1][0][0] = 0;
while (!pq.isEmpty()) {
long[] cur = pq.poll();
int s = (int) cur[0];
int w = (int) cur[1];
int u = (int) cur[2];
long cost = cur[3];
if (dis[s][w][u] < cost)
continue;
// System.err.println(Arrays.toString(cur));
if (s == 0) {
for (int[] v : adj[u]) {
long ncost = cost + (w + v[1]) * (w + v[1]);
if (dis[1][v[1]][v[0]] == -1 || ncost < dis[1][v[1]][v[0]]) {
pq.add(new long[]{1, v[1], v[0], dis[1][v[1]][v[0]] = ncost});
}
}
} else {
for (int[] v : adj[u]) {
if (dis[0][v[1]][v[0]] == -1 || cost < dis[0][v[1]][v[0]]) {
pq.add(new long[]{0, v[1], v[0], dis[0][v[1]][v[0]] = cost});
}
}
}
}
long[] cost = new long[n];
Arrays.fill(cost, -1);
for (int i = 0; i < n; i++) {
for (int w = 0; w <= 50; w++) {
if (dis[1][w][i] == -1)
continue;
if (cost[i] == -1 || dis[1][w][i] < cost[i])
cost[i] = dis[1][w][i];
}
pw.print(cost[i] + " ");
}
pw.println();
pw.flush();
}
static class Scanner {
StringTokenizer st;
BufferedReader br;
public Scanner(FileReader r) {
br = new BufferedReader(r);
}
public Scanner(InputStream s) {
br = new BufferedReader(new InputStreamReader(s));
}
public String next() throws IOException {
while (st == null || !st.hasMoreTokens())
st = new StringTokenizer(br.readLine());
return st.nextToken();
}
public int[] nextIntArr(int n) throws IOException {
int[] a = new int[n];
for (int i = 0; i < n; i++) {
a[i] = nextInt();
}
return a;
}
public int nextInt() throws IOException {
return Integer.parseInt(next());
}
public long nextLong() throws IOException {
return Long.parseLong(next());
}
public String nextLine() throws IOException {
return br.readLine();
}
public double nextDouble() throws IOException {
String x = next();
StringBuilder sb = new StringBuilder("0");
double res = 0, f = 1;
boolean dec = false, neg = false;
int start = 0;
if (x.charAt(0) == '-') {
neg = true;
start++;
}
for (int i = start; i < x.length(); i++)
if (x.charAt(i) == '.') {
res = Long.parseLong(sb.toString());
sb = new StringBuilder("0");
dec = true;
} else {
sb.append(x.charAt(i));
if (dec)
f *= 10;
}
res += Long.parseLong(sb.toString()) / f;
return res * (neg ? -1 : 1);
}
public boolean ready() throws IOException {
return br.ready();
}
}
}
|
Java
|
["5 6\n1 2 3\n2 3 4\n3 4 5\n4 5 6\n1 5 1\n2 4 2", "3 2\n1 2 1\n2 3 2"]
|
4 seconds
|
["0 98 49 25 114", "0 -1 9"]
|
NoteThe graph in the first example looks like this.In the second example the path from $$$1$$$ to $$$3$$$ goes through $$$2$$$, so the resulting payment is $$$(1 + 2)^2 = 9$$$.
|
Java 8
|
standard input
|
[
"binary search",
"brute force",
"constructive algorithms",
"dp",
"flows",
"graphs",
"shortest paths"
] |
abee4d188bb59d82fcf4579c7416a343
|
First line contains two integers $$$n$$$, $$$m$$$ ($$$2 \leq n \leq 10^5$$$, $$$1 \leq m \leq min(\frac{n \cdot (n - 1)}{2}, 2 \cdot 10^5)$$$). Next $$$m$$$ lines each contain three integers $$$v_i$$$, $$$u_i$$$, $$$w_i$$$ ($$$1 \leq v_i, u_i \leq n$$$, $$$1 \leq w_i \leq 50$$$, $$$u_i \neq v_i$$$). It's guaranteed that there are no multiple edges, i.e. for any edge $$$(u_i, v_i)$$$ there are no other edges $$$(u_i, v_i)$$$ or $$$(v_i, u_i)$$$.
| 2,200
|
For every city $$$t$$$ print one integer. If there is no correct path between $$$1$$$ and $$$t$$$ output $$$-1$$$. Otherwise print out the minimum amount of money needed to travel from $$$1$$$ to $$$t$$$.
|
standard output
| |
PASSED
|
a21691ca9a82c0945fb44e8bdea712cc
|
train_110.jsonl
|
1613658900
|
There are $$$n$$$ cities and $$$m$$$ bidirectional roads in the country. The roads in the country form an undirected weighted graph. The graph is not guaranteed to be connected. Each road has it's own parameter $$$w$$$. You can travel through the roads, but the government made a new law: you can only go through two roads at a time (go from city $$$a$$$ to city $$$b$$$ and then from city $$$b$$$ to city $$$c$$$) and you will have to pay $$$(w_{ab} + w_{bc})^2$$$ money to go through those roads. Find out whether it is possible to travel from city $$$1$$$ to every other city $$$t$$$ and what's the minimum amount of money you need to get from $$$1$$$ to $$$t$$$.
|
512 megabytes
|
import java.io.OutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.PrintWriter;
import java.util.Arrays;
import java.util.PriorityQueue;
import java.util.AbstractQueue;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.ArrayList;
import java.util.AbstractCollection;
import java.util.StringTokenizer;
import java.io.BufferedReader;
import java.io.FileReader;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
*
* @author Khater
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
Scanner in = new Scanner(inputStream);
PrintWriter out = new PrintWriter(outputStream);
EPairedPayment solver = new EPairedPayment();
solver.solve(1, in, out);
out.close();
}
static class EPairedPayment {
long INF = (long) 1e15;
ArrayList<EPairedPayment.Edge>[] adjList;
long[] dist;
int[] cnt;
int V;
public void solve(int testNumber, Scanner sc, PrintWriter pw) {
int t = 1;
// t = sc.nextInt();
while (t-- > 0) {
int n = sc.nextInt();
int m = sc.nextInt();
V = n;
adjList = new ArrayList[n];
for (int i = 0; i < n; i++) adjList[i] = new ArrayList<>();
for (int i = 0; i < m; i++) {
int x = sc.nextInt() - 1;
int y = sc.nextInt() - 1;
long w = sc.nextLong();
adjList[x].add(new EPairedPayment.Edge(y, w));
adjList[y].add(new EPairedPayment.Edge(x, w));
}
}
dijkstra(0, -1);
for (long x : dist) pw.print((x == (long) 1e15 ? -1 : x) + " ");
pw.println();
}
long dijkstra(int S, int T) {
dist = new long[V];
Arrays.fill(dist, INF);
cnt = new int[V];
Arrays.fill(cnt, 0);
PriorityQueue<EPairedPayment.Edge> pq = new PriorityQueue<EPairedPayment.Edge>();
dist[S] = 0;
pq.add(new EPairedPayment.Edge(S, 0)); //may add more in case of MSSP (Mult-Source)
while (!pq.isEmpty()) {
EPairedPayment.Edge cur = pq.remove();
if (cur.cost > dist[cur.node]) //lazy deletion
continue;
for (EPairedPayment.Edge nxt : adjList[cur.node]) {
if (cnt[nxt.node] < 100) {
for (EPairedPayment.Edge nxtnxt : adjList[nxt.node]) {
if (nxtnxt.node != cur.node)
if (cur.cost + (nxt.cost + nxtnxt.cost) * (nxt.cost + nxtnxt.cost) < dist[nxtnxt.node])
pq.add(new EPairedPayment.Edge(nxtnxt.node, dist[nxtnxt.node] = cur.cost + (nxt.cost + nxtnxt.cost) * (nxt.cost + nxtnxt.cost)));
}
}
cnt[nxt.node] += 1;
}
}
return -1;
}
static class Edge implements Comparable<EPairedPayment.Edge> {
int node;
long cost;
Edge(int a, long b) {
node = a;
cost = b;
}
public int compareTo(EPairedPayment.Edge e) {
return Long.compare(cost, e.cost);
}
}
}
static class Scanner {
StringTokenizer st;
BufferedReader br;
public Scanner(FileReader r) {
br = new BufferedReader(r);
}
public Scanner(InputStream s) {
br = new BufferedReader(new InputStreamReader(s));
}
public String next() {
while (st == null || !st.hasMoreTokens()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
throw new RuntimeException(e);
}
}
return st.nextToken();
}
public int nextInt() {
return Integer.parseInt(next());
}
public long nextLong() {
return Long.parseLong(next());
}
}
}
|
Java
|
["5 6\n1 2 3\n2 3 4\n3 4 5\n4 5 6\n1 5 1\n2 4 2", "3 2\n1 2 1\n2 3 2"]
|
4 seconds
|
["0 98 49 25 114", "0 -1 9"]
|
NoteThe graph in the first example looks like this.In the second example the path from $$$1$$$ to $$$3$$$ goes through $$$2$$$, so the resulting payment is $$$(1 + 2)^2 = 9$$$.
|
Java 8
|
standard input
|
[
"binary search",
"brute force",
"constructive algorithms",
"dp",
"flows",
"graphs",
"shortest paths"
] |
abee4d188bb59d82fcf4579c7416a343
|
First line contains two integers $$$n$$$, $$$m$$$ ($$$2 \leq n \leq 10^5$$$, $$$1 \leq m \leq min(\frac{n \cdot (n - 1)}{2}, 2 \cdot 10^5)$$$). Next $$$m$$$ lines each contain three integers $$$v_i$$$, $$$u_i$$$, $$$w_i$$$ ($$$1 \leq v_i, u_i \leq n$$$, $$$1 \leq w_i \leq 50$$$, $$$u_i \neq v_i$$$). It's guaranteed that there are no multiple edges, i.e. for any edge $$$(u_i, v_i)$$$ there are no other edges $$$(u_i, v_i)$$$ or $$$(v_i, u_i)$$$.
| 2,200
|
For every city $$$t$$$ print one integer. If there is no correct path between $$$1$$$ and $$$t$$$ output $$$-1$$$. Otherwise print out the minimum amount of money needed to travel from $$$1$$$ to $$$t$$$.
|
standard output
| |
PASSED
|
0cd3d20d3406d78bf100443445d45d2e
|
train_110.jsonl
|
1613658900
|
There are $$$n$$$ cities and $$$m$$$ bidirectional roads in the country. The roads in the country form an undirected weighted graph. The graph is not guaranteed to be connected. Each road has it's own parameter $$$w$$$. You can travel through the roads, but the government made a new law: you can only go through two roads at a time (go from city $$$a$$$ to city $$$b$$$ and then from city $$$b$$$ to city $$$c$$$) and you will have to pay $$$(w_{ab} + w_{bc})^2$$$ money to go through those roads. Find out whether it is possible to travel from city $$$1$$$ to every other city $$$t$$$ and what's the minimum amount of money you need to get from $$$1$$$ to $$$t$$$.
|
512 megabytes
|
import java.io.OutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.PrintWriter;
import java.util.Arrays;
import java.util.PriorityQueue;
import java.util.AbstractQueue;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.ArrayList;
import java.util.AbstractCollection;
import java.util.StringTokenizer;
import java.io.BufferedReader;
import java.io.FileReader;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
*
* @author Khater
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
Scanner in = new Scanner(inputStream);
PrintWriter out = new PrintWriter(outputStream);
EPairedPayment solver = new EPairedPayment();
solver.solve(1, in, out);
out.close();
}
static class EPairedPayment {
long INF = (long) 1e15;
ArrayList<EPairedPayment.Edge>[] adjList;
long[] dist;
long[] dist2;
int V;
public void solve(int testNumber, Scanner sc, PrintWriter pw) {
int t = 1;
// t = sc.nextInt();
while (t-- > 0) {
int n = sc.nextInt();
int m = sc.nextInt();
V = n;
adjList = new ArrayList[n];
for (int i = 0; i < n; i++) adjList[i] = new ArrayList<>();
for (int i = 0; i < m; i++) {
int x = sc.nextInt() - 1;
int y = sc.nextInt() - 1;
long w = sc.nextLong();
adjList[x].add(new EPairedPayment.Edge(y, w));
adjList[y].add(new EPairedPayment.Edge(x, w));
}
}
dijkstra(0, -1);
for (long x : dist) pw.print((x == (long) 1e15 ? -1 : x) + " ");
pw.println();
}
long dijkstra(int S, int T) {
dist = new long[V];
Arrays.fill(dist, INF);
dist2 = new long[V];
Arrays.fill(dist2, INF);
PriorityQueue<EPairedPayment.Edge> pq = new PriorityQueue<EPairedPayment.Edge>();
dist[S] = 0;
pq.add(new EPairedPayment.Edge(S, 0)); //may add more in case of MSSP (Mult-Source)
while (!pq.isEmpty()) {
EPairedPayment.Edge cur = pq.remove();
if (cur.cost > dist[cur.node]) //lazy deletion
continue;
for (EPairedPayment.Edge nxt : adjList[cur.node]) {
if (dist2[nxt.node] > nxt.cost) {
for (EPairedPayment.Edge nxtnxt : adjList[nxt.node]) {
if (nxtnxt.node != cur.node)
if (cur.cost + (nxt.cost + nxtnxt.cost) * (nxt.cost + nxtnxt.cost) < dist[nxtnxt.node])
pq.add(new EPairedPayment.Edge(nxtnxt.node, dist[nxtnxt.node] = cur.cost + (nxt.cost + nxtnxt.cost) * (nxt.cost + nxtnxt.cost)));
}
}
dist2[nxt.node] = nxt.cost;
}
}
return -1;
}
static class Edge implements Comparable<EPairedPayment.Edge> {
int node;
long cost;
Edge(int a, long b) {
node = a;
cost = b;
}
public int compareTo(EPairedPayment.Edge e) {
return Long.compare(cost, e.cost);
}
}
}
static class Scanner {
StringTokenizer st;
BufferedReader br;
public Scanner(FileReader r) {
br = new BufferedReader(r);
}
public Scanner(InputStream s) {
br = new BufferedReader(new InputStreamReader(s));
}
public String next() {
while (st == null || !st.hasMoreTokens()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
throw new RuntimeException(e);
}
}
return st.nextToken();
}
public int nextInt() {
return Integer.parseInt(next());
}
public long nextLong() {
return Long.parseLong(next());
}
}
}
|
Java
|
["5 6\n1 2 3\n2 3 4\n3 4 5\n4 5 6\n1 5 1\n2 4 2", "3 2\n1 2 1\n2 3 2"]
|
4 seconds
|
["0 98 49 25 114", "0 -1 9"]
|
NoteThe graph in the first example looks like this.In the second example the path from $$$1$$$ to $$$3$$$ goes through $$$2$$$, so the resulting payment is $$$(1 + 2)^2 = 9$$$.
|
Java 8
|
standard input
|
[
"binary search",
"brute force",
"constructive algorithms",
"dp",
"flows",
"graphs",
"shortest paths"
] |
abee4d188bb59d82fcf4579c7416a343
|
First line contains two integers $$$n$$$, $$$m$$$ ($$$2 \leq n \leq 10^5$$$, $$$1 \leq m \leq min(\frac{n \cdot (n - 1)}{2}, 2 \cdot 10^5)$$$). Next $$$m$$$ lines each contain three integers $$$v_i$$$, $$$u_i$$$, $$$w_i$$$ ($$$1 \leq v_i, u_i \leq n$$$, $$$1 \leq w_i \leq 50$$$, $$$u_i \neq v_i$$$). It's guaranteed that there are no multiple edges, i.e. for any edge $$$(u_i, v_i)$$$ there are no other edges $$$(u_i, v_i)$$$ or $$$(v_i, u_i)$$$.
| 2,200
|
For every city $$$t$$$ print one integer. If there is no correct path between $$$1$$$ and $$$t$$$ output $$$-1$$$. Otherwise print out the minimum amount of money needed to travel from $$$1$$$ to $$$t$$$.
|
standard output
| |
PASSED
|
1ac780ff2ad16a78728180eb8f26827e
|
train_110.jsonl
|
1613658900
|
There are $$$n$$$ cities and $$$m$$$ bidirectional roads in the country. The roads in the country form an undirected weighted graph. The graph is not guaranteed to be connected. Each road has it's own parameter $$$w$$$. You can travel through the roads, but the government made a new law: you can only go through two roads at a time (go from city $$$a$$$ to city $$$b$$$ and then from city $$$b$$$ to city $$$c$$$) and you will have to pay $$$(w_{ab} + w_{bc})^2$$$ money to go through those roads. Find out whether it is possible to travel from city $$$1$$$ to every other city $$$t$$$ and what's the minimum amount of money you need to get from $$$1$$$ to $$$t$$$.
|
512 megabytes
|
import java.io.OutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.PrintWriter;
import java.util.Arrays;
import java.util.PriorityQueue;
import java.util.AbstractQueue;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.ArrayList;
import java.util.AbstractCollection;
import java.util.StringTokenizer;
import java.io.BufferedReader;
import java.io.FileReader;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
*
* @author Khater
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
Scanner in = new Scanner(inputStream);
PrintWriter out = new PrintWriter(outputStream);
EPairedPayment solver = new EPairedPayment();
solver.solve(1, in, out);
out.close();
}
static class EPairedPayment {
long INF = (long) 1e15;
ArrayList<EPairedPayment.Edge>[] adjList;
long[] dist;
int V;
public void solve(int testNumber, Scanner sc, PrintWriter pw) {
int t = 1;
// t = sc.nextInt();
while (t-- > 0) {
int n = sc.nextInt();
int m = sc.nextInt();
V = n;
adjList = new ArrayList[n];
for (int i = 0; i < n; i++) adjList[i] = new ArrayList<>();
for (int i = 0; i < m; i++) {
int x = sc.nextInt() - 1;
int y = sc.nextInt() - 1;
long w = sc.nextLong();
adjList[x].add(new EPairedPayment.Edge(y, w));
adjList[y].add(new EPairedPayment.Edge(x, w));
}
}
dijkstra(0, -1);
for (long x : dist) pw.print((x == (long) 1e15 ? -1 : x) + " ");
pw.println();
}
long dijkstra(int S, int T) {
dist = new long[V];
Arrays.fill(dist, INF);
PriorityQueue<EPairedPayment.Edge> pq = new PriorityQueue<EPairedPayment.Edge>();
dist[S] = 0;
pq.add(new EPairedPayment.Edge(S, 0)); //may add more in case of MSSP (Mult-Source)
while (!pq.isEmpty()) {
EPairedPayment.Edge cur = pq.remove();
if (cur.cost > dist[cur.node]) //lazy deletion
continue;
for (EPairedPayment.Edge nxt : adjList[cur.node]) {
for (EPairedPayment.Edge nxtnxt : adjList[nxt.node]) {
if (nxtnxt.node != cur.node)
if (cur.cost + (nxt.cost + nxtnxt.cost) * (nxt.cost + nxtnxt.cost) < dist[nxtnxt.node])
pq.add(new EPairedPayment.Edge(nxtnxt.node, dist[nxtnxt.node] = cur.cost + (nxt.cost + nxtnxt.cost) * (nxt.cost + nxtnxt.cost)));
}
}
}
return -1;
}
static class Edge implements Comparable<EPairedPayment.Edge> {
int node;
long cost;
Edge(int a, long b) {
node = a;
cost = b;
}
public int compareTo(EPairedPayment.Edge e) {
return Long.compare(cost, e.cost);
}
}
}
static class Scanner {
StringTokenizer st;
BufferedReader br;
public Scanner(FileReader r) {
br = new BufferedReader(r);
}
public Scanner(InputStream s) {
br = new BufferedReader(new InputStreamReader(s));
}
public String next() {
while (st == null || !st.hasMoreTokens()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
throw new RuntimeException(e);
}
}
return st.nextToken();
}
public int nextInt() {
return Integer.parseInt(next());
}
public long nextLong() {
return Long.parseLong(next());
}
}
}
|
Java
|
["5 6\n1 2 3\n2 3 4\n3 4 5\n4 5 6\n1 5 1\n2 4 2", "3 2\n1 2 1\n2 3 2"]
|
4 seconds
|
["0 98 49 25 114", "0 -1 9"]
|
NoteThe graph in the first example looks like this.In the second example the path from $$$1$$$ to $$$3$$$ goes through $$$2$$$, so the resulting payment is $$$(1 + 2)^2 = 9$$$.
|
Java 8
|
standard input
|
[
"binary search",
"brute force",
"constructive algorithms",
"dp",
"flows",
"graphs",
"shortest paths"
] |
abee4d188bb59d82fcf4579c7416a343
|
First line contains two integers $$$n$$$, $$$m$$$ ($$$2 \leq n \leq 10^5$$$, $$$1 \leq m \leq min(\frac{n \cdot (n - 1)}{2}, 2 \cdot 10^5)$$$). Next $$$m$$$ lines each contain three integers $$$v_i$$$, $$$u_i$$$, $$$w_i$$$ ($$$1 \leq v_i, u_i \leq n$$$, $$$1 \leq w_i \leq 50$$$, $$$u_i \neq v_i$$$). It's guaranteed that there are no multiple edges, i.e. for any edge $$$(u_i, v_i)$$$ there are no other edges $$$(u_i, v_i)$$$ or $$$(v_i, u_i)$$$.
| 2,200
|
For every city $$$t$$$ print one integer. If there is no correct path between $$$1$$$ and $$$t$$$ output $$$-1$$$. Otherwise print out the minimum amount of money needed to travel from $$$1$$$ to $$$t$$$.
|
standard output
| |
PASSED
|
f62f047cdd2e949c6233fcb949fdc423
|
train_110.jsonl
|
1613658900
|
There are $$$n$$$ cities and $$$m$$$ bidirectional roads in the country. The roads in the country form an undirected weighted graph. The graph is not guaranteed to be connected. Each road has it's own parameter $$$w$$$. You can travel through the roads, but the government made a new law: you can only go through two roads at a time (go from city $$$a$$$ to city $$$b$$$ and then from city $$$b$$$ to city $$$c$$$) and you will have to pay $$$(w_{ab} + w_{bc})^2$$$ money to go through those roads. Find out whether it is possible to travel from city $$$1$$$ to every other city $$$t$$$ and what's the minimum amount of money you need to get from $$$1$$$ to $$$t$$$.
|
512 megabytes
|
import java.util.*;
import java.io.*;
public class E {
public static void main(String[] args) {
FastScanner sc = new FastScanner();
int n = sc.nextInt();
int m = sc.nextInt();
ArrayList<Edge>[] g = new ArrayList[n];
for(int i = 0; i < n; i++){
g[i] = new ArrayList<>();
}
for(int i = 0; i < m; i++){
int u = sc.nextInt()-1;
int v = sc.nextInt()-1;
int w = sc.nextInt();
g[u].add(new Edge(v, w));
g[v].add(new Edge(u, w));
}
long maxv = 2000000000;
PriorityQueue<Pair> q = new PriorityQueue<>();
long[][] dist = new long[n][51];
for(int i = 0; i < n; i++){
Arrays.fill(dist[i], maxv);
}
dist[0][0] = 0;
q.add(new Pair(0, 0, 0));
while(!q.isEmpty()) {
Pair p = q.poll();
for(Edge e: g[p.u]) {
if(p.k == 0) {
if(dist[e.u][e.w] > p.w) {
dist[e.u][e.w] = p.w;
q.add(new Pair(e.u, e.w, p.w));
}
}
else {
long ww = p.w + (p.k + e.w) * (p.k + e.w);
if(dist[e.u][0] > ww) {
dist[e.u][0] = ww;
q.add(new Pair(e.u, 0, ww));
}
}
}
}
StringBuilder sb = new StringBuilder();
for(int i = 0; i < n; i++){
if(dist[i][0] == maxv) sb.append("-1 ");
else sb.append(dist[i][0]+" ");
}
sb.replace(sb.length()-1, sb.length(), "\n");
PrintWriter pw = new PrintWriter(System.out);
pw.println(sb.toString().trim());
pw.flush();
}
static class Edge implements Comparable<Edge>{
int u, w;
public Edge(int u, int w){
this.u = u; this.w = w;
}
public int compareTo(Edge p){
if(w == p.w) return u - p.u; //if you delete this line you will die
else return w - p.w;
}
public String toString(){
return u + " " + w;
}
}
static class Pair implements Comparable<Pair>{
int u, k; long w;
public Pair(int u, int k, long w){
this.u = u; this.k = k; this.w = w;
}
public int compareTo(Pair p){
return Long.compare(w, p.w);
}
public String toString(){
return u + ", " + k + ": " + w;
}
}
static class FastScanner {
public BufferedReader reader;
public StringTokenizer tokenizer;
public FastScanner() {
reader = new BufferedReader(new InputStreamReader(System.in), 32768);
tokenizer = null;
}
public String next() {
while (tokenizer == null || !tokenizer.hasMoreTokens()) {
try {
tokenizer = new StringTokenizer(reader.readLine());
} catch (IOException e) {
throw new RuntimeException(e);
}
}
return tokenizer.nextToken();
}
public int nextInt() {
return Integer.parseInt(next());
}
public long nextLong() {
return Long.parseLong(next());
}
public double nextDouble() {
return Double.parseDouble(next());
}
public String nextLine() {
try {
return reader.readLine();
} catch(IOException e) {
throw new RuntimeException(e);
}
}
}
}
|
Java
|
["5 6\n1 2 3\n2 3 4\n3 4 5\n4 5 6\n1 5 1\n2 4 2", "3 2\n1 2 1\n2 3 2"]
|
4 seconds
|
["0 98 49 25 114", "0 -1 9"]
|
NoteThe graph in the first example looks like this.In the second example the path from $$$1$$$ to $$$3$$$ goes through $$$2$$$, so the resulting payment is $$$(1 + 2)^2 = 9$$$.
|
Java 8
|
standard input
|
[
"binary search",
"brute force",
"constructive algorithms",
"dp",
"flows",
"graphs",
"shortest paths"
] |
abee4d188bb59d82fcf4579c7416a343
|
First line contains two integers $$$n$$$, $$$m$$$ ($$$2 \leq n \leq 10^5$$$, $$$1 \leq m \leq min(\frac{n \cdot (n - 1)}{2}, 2 \cdot 10^5)$$$). Next $$$m$$$ lines each contain three integers $$$v_i$$$, $$$u_i$$$, $$$w_i$$$ ($$$1 \leq v_i, u_i \leq n$$$, $$$1 \leq w_i \leq 50$$$, $$$u_i \neq v_i$$$). It's guaranteed that there are no multiple edges, i.e. for any edge $$$(u_i, v_i)$$$ there are no other edges $$$(u_i, v_i)$$$ or $$$(v_i, u_i)$$$.
| 2,200
|
For every city $$$t$$$ print one integer. If there is no correct path between $$$1$$$ and $$$t$$$ output $$$-1$$$. Otherwise print out the minimum amount of money needed to travel from $$$1$$$ to $$$t$$$.
|
standard output
| |
PASSED
|
33f6b1167f4f4c52820b2f7c982ae9ac
|
train_110.jsonl
|
1613658900
|
There are $$$n$$$ cities and $$$m$$$ bidirectional roads in the country. The roads in the country form an undirected weighted graph. The graph is not guaranteed to be connected. Each road has it's own parameter $$$w$$$. You can travel through the roads, but the government made a new law: you can only go through two roads at a time (go from city $$$a$$$ to city $$$b$$$ and then from city $$$b$$$ to city $$$c$$$) and you will have to pay $$$(w_{ab} + w_{bc})^2$$$ money to go through those roads. Find out whether it is possible to travel from city $$$1$$$ to every other city $$$t$$$ and what's the minimum amount of money you need to get from $$$1$$$ to $$$t$$$.
|
512 megabytes
|
import java.util.*;
import java.io.*;
public class E {
public static void main(String[] args) {
FastScanner sc = new FastScanner();
int n = sc.nextInt();
int m = sc.nextInt();
ArrayList<Edge>[] g = new ArrayList[n];
for(int i = 0; i < n; i++){
g[i] = new ArrayList<>();
}
for(int i = 0; i < m; i++){
int u = sc.nextInt()-1;
int v = sc.nextInt()-1;
int w = sc.nextInt();
g[u].add(new Edge(v, w));
g[v].add(new Edge(u, w));
}
long maxv = 2000000000;
PriorityQueue<Pair> q = new PriorityQueue<>();
long[][] dist = new long[n][51];
boolean[][] seen = new boolean[n][51];
for(int i = 0; i < n; i++){
Arrays.fill(dist[i], maxv);
}
dist[0][0] = 0;
q.add(new Pair(0, 0, 0));
while(!q.isEmpty()) {
Pair p = q.poll();
if(seen[p.u][p.k]) continue;
seen[p.u][p.k] = true;
for(Edge e: g[p.u]) {
if(p.k == 0) {
if(dist[e.u][e.w] > p.w) {
dist[e.u][e.w] = p.w;
q.add(new Pair(e.u, e.w, p.w));
}
}
else {
long ww = p.w + (p.k + e.w) * (p.k + e.w);
if(dist[e.u][0] > ww) {
dist[e.u][0] = ww;
q.add(new Pair(e.u, 0, ww));
}
}
}
}
StringBuilder sb = new StringBuilder();
for(int i = 0; i < n; i++){
if(dist[i][0] == maxv) sb.append("-1 ");
else sb.append(dist[i][0]+" ");
}
sb.replace(sb.length()-1, sb.length(), "\n");
PrintWriter pw = new PrintWriter(System.out);
pw.println(sb.toString().trim());
pw.flush();
}
static class Edge{
int u, w;
public Edge(int u, int w){
this.u = u; this.w = w;
}
public String toString(){
return u + " " + w;
}
}
static class Pair implements Comparable<Pair>{
int u, k; long w;
public Pair(int u, int k, long w){
this.u = u; this.k = k; this.w = w;
}
public int compareTo(Pair p){
return Long.compare(w, p.w);
}
public String toString(){
return u + ", " + k + ": " + w;
}
}
static class FastScanner {
public BufferedReader reader;
public StringTokenizer tokenizer;
public FastScanner() {
reader = new BufferedReader(new InputStreamReader(System.in), 32768);
tokenizer = null;
}
public String next() {
while (tokenizer == null || !tokenizer.hasMoreTokens()) {
try {
tokenizer = new StringTokenizer(reader.readLine());
} catch (IOException e) {
throw new RuntimeException(e);
}
}
return tokenizer.nextToken();
}
public int nextInt() {
return Integer.parseInt(next());
}
public long nextLong() {
return Long.parseLong(next());
}
public double nextDouble() {
return Double.parseDouble(next());
}
public String nextLine() {
try {
return reader.readLine();
} catch(IOException e) {
throw new RuntimeException(e);
}
}
}
}
|
Java
|
["5 6\n1 2 3\n2 3 4\n3 4 5\n4 5 6\n1 5 1\n2 4 2", "3 2\n1 2 1\n2 3 2"]
|
4 seconds
|
["0 98 49 25 114", "0 -1 9"]
|
NoteThe graph in the first example looks like this.In the second example the path from $$$1$$$ to $$$3$$$ goes through $$$2$$$, so the resulting payment is $$$(1 + 2)^2 = 9$$$.
|
Java 8
|
standard input
|
[
"binary search",
"brute force",
"constructive algorithms",
"dp",
"flows",
"graphs",
"shortest paths"
] |
abee4d188bb59d82fcf4579c7416a343
|
First line contains two integers $$$n$$$, $$$m$$$ ($$$2 \leq n \leq 10^5$$$, $$$1 \leq m \leq min(\frac{n \cdot (n - 1)}{2}, 2 \cdot 10^5)$$$). Next $$$m$$$ lines each contain three integers $$$v_i$$$, $$$u_i$$$, $$$w_i$$$ ($$$1 \leq v_i, u_i \leq n$$$, $$$1 \leq w_i \leq 50$$$, $$$u_i \neq v_i$$$). It's guaranteed that there are no multiple edges, i.e. for any edge $$$(u_i, v_i)$$$ there are no other edges $$$(u_i, v_i)$$$ or $$$(v_i, u_i)$$$.
| 2,200
|
For every city $$$t$$$ print one integer. If there is no correct path between $$$1$$$ and $$$t$$$ output $$$-1$$$. Otherwise print out the minimum amount of money needed to travel from $$$1$$$ to $$$t$$$.
|
standard output
| |
PASSED
|
392c18941517e1d256ceb462bdffe2c3
|
train_110.jsonl
|
1613658900
|
There are $$$n$$$ cities and $$$m$$$ bidirectional roads in the country. The roads in the country form an undirected weighted graph. The graph is not guaranteed to be connected. Each road has it's own parameter $$$w$$$. You can travel through the roads, but the government made a new law: you can only go through two roads at a time (go from city $$$a$$$ to city $$$b$$$ and then from city $$$b$$$ to city $$$c$$$) and you will have to pay $$$(w_{ab} + w_{bc})^2$$$ money to go through those roads. Find out whether it is possible to travel from city $$$1$$$ to every other city $$$t$$$ and what's the minimum amount of money you need to get from $$$1$$$ to $$$t$$$.
|
512 megabytes
|
import java.io.*;
import java.util.*;
public class tr1 {
static PrintWriter out;
static StringBuilder sb;
static long mod = (long) 1e9 + 7;
static int[] memo;
static int[][][] memo1;
static int n, m;
static ArrayList<long[]>[] ad;
static HashMap<Integer, Integer>[] going;
static long inf = Long.MAX_VALUE;
static char[][] g;
static boolean[] vis;
static int[] dep;
static int hh;
static HashMap<Integer, Integer> hmC, hmG;
public static void main(String[] args) throws Exception {
Scanner sc = new Scanner(System.in);
out = new PrintWriter(System.out);
n = sc.nextInt();
m = sc.nextInt();
ad = new ArrayList[n];
for (int i = 0; i < n; i++)
ad[i] = new ArrayList<>();
for (int i = 0; i < m; i++) {
int a = sc.nextInt() - 1;
int b = sc.nextInt() - 1;
int w = sc.nextInt();
ad[a].add(new long[] { b, w });
ad[b].add(new long[] { a, w });
}
long INF = Long.MAX_VALUE;
long[] dist = new long[n];
Arrays.fill(dist, INF);
PriorityQueue<long[]> pq = new PriorityQueue<long[]>((x, y) -> Long.compare(x[1], y[1]));
dist[0] = 0;
pq.add(new long[] { 0, 0 });
long[] vis1 = new long[n];
Arrays.fill(vis1, INF);
while (!pq.isEmpty()) {
long[] cur = pq.remove();
if (cur[1] > dist[(int) cur[0]])
continue;
int u = (int) cur[0];
long cost = cur[1];
ArrayList<long[]> fresh = new ArrayList<>();
for (long[] v : ad[u])
if (vis1[(int) v[0]] <= v[1])
continue;
else {
vis1[(int) v[0]] = v[1];
fresh.add(new long[] { v[0], v[1] });
}
for (long[] y : fresh) {
for (long[] v : ad[(int) y[0]])
if (dist[(int) v[0]] > cost + (v[1] + y[1]) * (v[1] + y[1])) {
dist[(int) v[0]] = cost + (v[1] + y[1]) * (v[1] + y[1]);
pq.add(new long[] { v[0], dist[(int) v[0]] });
}
}
}
for (int i = 0; i < n; i++)
if (dist[i] == Long.MAX_VALUE)
out.print(-1 + " ");
else
out.print(dist[i] + " ");
out.flush();
}
static class Scanner {
StringTokenizer st;
BufferedReader br;
public Scanner(InputStream system) {
br = new BufferedReader(new InputStreamReader(system));
}
public Scanner(String file) throws Exception {
br = new BufferedReader(new FileReader(file));
}
public String next() throws IOException {
while (st == null || !st.hasMoreTokens())
st = new StringTokenizer(br.readLine());
return st.nextToken();
}
public String nextLine() throws IOException {
return br.readLine();
}
public int nextInt() throws IOException {
return Integer.parseInt(next());
}
public double nextDouble() throws IOException {
return Double.parseDouble(next());
}
public char nextChar() throws IOException {
return next().charAt(0);
}
public Long nextLong() throws IOException {
return Long.parseLong(next());
}
public int[] nextArrInt(int n) throws IOException {
int[] a = new int[n];
for (int i = 0; i < n; i++)
a[i] = nextInt();
return a;
}
public long[] nextArrLong(int n) throws IOException {
long[] a = new long[n];
for (int i = 0; i < n; i++)
a[i] = nextLong();
return a;
}
public int[] nextArrIntSorted(int n) throws IOException {
int[] a = new int[n];
Integer[] a1 = new Integer[n];
for (int i = 0; i < n; i++)
a1[i] = nextInt();
Arrays.sort(a1);
for (int i = 0; i < n; i++)
a[i] = a1[1].intValue();
return a;
}
public long[] nextArrLongSorted(int n) throws IOException {
long[] a = new long[n];
Long[] a1 = new Long[n];
for (int i = 0; i < n; i++)
a1[i] = nextLong();
Arrays.sort(a1);
for (int i = 0; i < n; i++)
a[i] = a1[1].longValue();
return a;
}
public boolean ready() throws IOException {
return br.ready();
}
public void waitForInput() throws InterruptedException {
Thread.sleep(3000);
}
}
}
|
Java
|
["5 6\n1 2 3\n2 3 4\n3 4 5\n4 5 6\n1 5 1\n2 4 2", "3 2\n1 2 1\n2 3 2"]
|
4 seconds
|
["0 98 49 25 114", "0 -1 9"]
|
NoteThe graph in the first example looks like this.In the second example the path from $$$1$$$ to $$$3$$$ goes through $$$2$$$, so the resulting payment is $$$(1 + 2)^2 = 9$$$.
|
Java 8
|
standard input
|
[
"binary search",
"brute force",
"constructive algorithms",
"dp",
"flows",
"graphs",
"shortest paths"
] |
abee4d188bb59d82fcf4579c7416a343
|
First line contains two integers $$$n$$$, $$$m$$$ ($$$2 \leq n \leq 10^5$$$, $$$1 \leq m \leq min(\frac{n \cdot (n - 1)}{2}, 2 \cdot 10^5)$$$). Next $$$m$$$ lines each contain three integers $$$v_i$$$, $$$u_i$$$, $$$w_i$$$ ($$$1 \leq v_i, u_i \leq n$$$, $$$1 \leq w_i \leq 50$$$, $$$u_i \neq v_i$$$). It's guaranteed that there are no multiple edges, i.e. for any edge $$$(u_i, v_i)$$$ there are no other edges $$$(u_i, v_i)$$$ or $$$(v_i, u_i)$$$.
| 2,200
|
For every city $$$t$$$ print one integer. If there is no correct path between $$$1$$$ and $$$t$$$ output $$$-1$$$. Otherwise print out the minimum amount of money needed to travel from $$$1$$$ to $$$t$$$.
|
standard output
| |
PASSED
|
ae5bb8965b681ad1e48cd5c428f84ffb
|
train_110.jsonl
|
1613658900
|
There are $$$n$$$ cities and $$$m$$$ bidirectional roads in the country. The roads in the country form an undirected weighted graph. The graph is not guaranteed to be connected. Each road has it's own parameter $$$w$$$. You can travel through the roads, but the government made a new law: you can only go through two roads at a time (go from city $$$a$$$ to city $$$b$$$ and then from city $$$b$$$ to city $$$c$$$) and you will have to pay $$$(w_{ab} + w_{bc})^2$$$ money to go through those roads. Find out whether it is possible to travel from city $$$1$$$ to every other city $$$t$$$ and what's the minimum amount of money you need to get from $$$1$$$ to $$$t$$$.
|
512 megabytes
|
import java.util.*;
import java.awt.geom.AffineTransform;
import java.io.*;
public class Main {
public static void main(String[] args) throws Exception {
int n=sc.nextInt();
int m=sc.nextInt();
ArrayList<pair>[]gr=new ArrayList[n];
for(int i=0;i<n;i++)gr[i]=new ArrayList<pair>();
for(int i=0;i<m;i++) {
int x=sc.nextInt()-1;
int y=sc.nextInt()-1;
int v=sc.nextInt();
gr[x].add(new pair(y, v));
gr[y].add(new pair(x, v));
}
PriorityQueue<tuble>pq=new PriorityQueue<Main.tuble>();
Integer[][]ans=new Integer[51][n];
Integer[][]dist=new Integer[51][n];
dist[0][0]=0;
pq.add(new tuble(0, 0, 0));
while(!pq.isEmpty()) {
// pw.println(pq);
tuble z =pq.poll();
if(ans[(int) z.y][(int) z.z]==null) {
ans[(int) z.y][(int) z.z]=(int) (z.x);
// pw.println(z);
for(pair i:gr[(int) z.z]) {
if(z.y==0) {
if(dist[(int) i.y][(int) i.x]==null||dist[(int) i.y][(int) i.x]>(z.x+i.y)) {
dist[(int) i.y][(int) i.x]=(int) (z.x+i.y);
pq.add(new tuble(z.x+i.y, i.y, i.x));
}
}else {
if(dist[0][(int) i.x]==null||dist[0][(int) i.x]>(z.x-z.y+(i.y+z.y)*(i.y+z.y))) {
dist[0][(int) i.x]=(int) (z.x-z.y+(i.y+z.y)*(i.y+z.y));
pq.add(new tuble(z.x-z.y+(i.y+z.y)*(i.y+z.y), 0, i.x));
}
}
}
}
}
for(int i=0;i<n;i++) {
if(ans[0][i]==null) {
pw.print(-1+" ");
}else {
pw.print(ans[0][i]+" ");
}
}
pw.close();
}
static class Scanner {
StringTokenizer st;
BufferedReader br;
public Scanner(InputStream s) {
br = new BufferedReader(new InputStreamReader(s));
}
public Scanner(FileReader r) {
br = new BufferedReader(r);
}
public String next() throws IOException {
while (st == null || !st.hasMoreTokens())
st = new StringTokenizer(br.readLine());
return st.nextToken();
}
public int nextInt() throws IOException {
return Integer.parseInt(next());
}
public long nextLong() throws IOException {
return Long.parseLong(next());
}
public String nextLine() throws IOException {
return br.readLine();
}
public double nextDouble() throws IOException {
String x = next();
StringBuilder sb = new StringBuilder("0");
double res = 0, f = 1;
boolean dec = false, neg = false;
int start = 0;
if (x.charAt(0) == '-') {
neg = true;
start++;
}
for (int i = start; i < x.length(); i++)
if (x.charAt(i) == '.') {
res = Long.parseLong(sb.toString());
sb = new StringBuilder("0");
dec = true;
} else {
sb.append(x.charAt(i));
if (dec)
f *= 10;
}
res += Long.parseLong(sb.toString()) / f;
return res * (neg ? -1 : 1);
}
public long[] nextlongArray(int n) throws IOException {
long[] a = new long[n];
for (int i = 0; i < n; i++)
a[i] = nextLong();
return a;
}
public Long[] nextLongArray(int n) throws IOException {
Long[] a = new Long[n];
for (int i = 0; i < n; i++)
a[i] = nextLong();
return a;
}
public int[] nextIntArray(int n) throws IOException {
int[] a = new int[n];
for (int i = 0; i < n; i++)
a[i] = nextInt();
return a;
}
public Integer[] nextIntegerArray(int n) throws IOException {
Integer[] a = new Integer[n];
for (int i = 0; i < n; i++)
a[i] = nextInt();
return a;
}
public boolean ready() throws IOException {
return br.ready();
}
}
static class pair implements Comparable<pair> {
long x;
long y;
public pair(long x, long y) {
this.x = x;
this.y = y;
}
public String toString() {
return x + " " + y;
}
public boolean equals(Object o) {
if (o instanceof pair) {
pair p = (pair) o;
return p.x == x && p.y == y;
}
return false;
}
public int hashCode() {
return new Double(x).hashCode() * 31 + new Double(y).hashCode();
}
public int compareTo(pair other) {
if (this.x == other.x) {
return Long.compare(this.y, other.y);
}
return Long.compare(this.x, other.x);
}
}
static class tuble implements Comparable<tuble> {
long x;
long y;
long z;
public tuble(long x, long y, long z) {
this.x = x;
this.y = y;
this.z = z;
}
public String toString() {
return x + " " + y + " " + z;
}
public int compareTo(tuble other) {
if (this.x == other.x) {
if (this.y == other.y) {
return Long.compare(this.z , other.z);
}
return Long.compare(this.y , other.y);
} else {
return Long.compare(this.x , other.x);
}
}
}
static long mod = 1000000007;
static Random rn = new Random();
static Scanner sc = new Scanner(System.in);
static PrintWriter pw = new PrintWriter(System.out);
}
|
Java
|
["5 6\n1 2 3\n2 3 4\n3 4 5\n4 5 6\n1 5 1\n2 4 2", "3 2\n1 2 1\n2 3 2"]
|
4 seconds
|
["0 98 49 25 114", "0 -1 9"]
|
NoteThe graph in the first example looks like this.In the second example the path from $$$1$$$ to $$$3$$$ goes through $$$2$$$, so the resulting payment is $$$(1 + 2)^2 = 9$$$.
|
Java 8
|
standard input
|
[
"binary search",
"brute force",
"constructive algorithms",
"dp",
"flows",
"graphs",
"shortest paths"
] |
abee4d188bb59d82fcf4579c7416a343
|
First line contains two integers $$$n$$$, $$$m$$$ ($$$2 \leq n \leq 10^5$$$, $$$1 \leq m \leq min(\frac{n \cdot (n - 1)}{2}, 2 \cdot 10^5)$$$). Next $$$m$$$ lines each contain three integers $$$v_i$$$, $$$u_i$$$, $$$w_i$$$ ($$$1 \leq v_i, u_i \leq n$$$, $$$1 \leq w_i \leq 50$$$, $$$u_i \neq v_i$$$). It's guaranteed that there are no multiple edges, i.e. for any edge $$$(u_i, v_i)$$$ there are no other edges $$$(u_i, v_i)$$$ or $$$(v_i, u_i)$$$.
| 2,200
|
For every city $$$t$$$ print one integer. If there is no correct path between $$$1$$$ and $$$t$$$ output $$$-1$$$. Otherwise print out the minimum amount of money needed to travel from $$$1$$$ to $$$t$$$.
|
standard output
| |
PASSED
|
624b5739a05382c5b6b9df71b621c4e7
|
train_110.jsonl
|
1613658900
|
There are $$$n$$$ cities and $$$m$$$ bidirectional roads in the country. The roads in the country form an undirected weighted graph. The graph is not guaranteed to be connected. Each road has it's own parameter $$$w$$$. You can travel through the roads, but the government made a new law: you can only go through two roads at a time (go from city $$$a$$$ to city $$$b$$$ and then from city $$$b$$$ to city $$$c$$$) and you will have to pay $$$(w_{ab} + w_{bc})^2$$$ money to go through those roads. Find out whether it is possible to travel from city $$$1$$$ to every other city $$$t$$$ and what's the minimum amount of money you need to get from $$$1$$$ to $$$t$$$.
|
512 megabytes
|
import java.util.*;
import java.awt.geom.AffineTransform;
import java.io.*;
public class Main {
public static void main(String[] args) throws Exception {
int n=sc.nextInt();
int m=sc.nextInt();
ArrayList<pair>[]gr=new ArrayList[n];
for(int i=0;i<n;i++)gr[i]=new ArrayList<pair>();
for(int i=0;i<m;i++) {
int x=sc.nextInt()-1;
int y=sc.nextInt()-1;
int v=sc.nextInt();
gr[x].add(new pair(y, v));
gr[y].add(new pair(x, v));
}
PriorityQueue<tuble>pq=new PriorityQueue<Main.tuble>();
Integer[][]ans=new Integer[n][51];
Integer[][]dist=new Integer[n][51];
dist[0][0]=0;
pq.add(new tuble(0, 0, 0));
while(!pq.isEmpty()) {
// pw.println(pq);
tuble z =pq.poll();
if(ans[(int) z.z][(int) z.y]==null) {
ans[(int) z.z][(int) z.y]=(int) (z.x);
// pw.println(z);
for(pair i:gr[(int) z.z]) {
if(z.y==0) {
if(dist[(int) i.x][(int) i.y]==null||dist[(int) i.x][(int) i.y]>(z.x+i.y)) {
dist[(int) i.x][(int) i.y]=(int) (z.x+i.y);
pq.add(new tuble(z.x+i.y, i.y, i.x));
}
}else {
if(dist[(int) i.x][0]==null||dist[(int) i.x][0]>(z.x-z.y+(i.y+z.y)*(i.y+z.y))) {
dist[(int) i.x][0]=(int) (z.x-z.y+(i.y+z.y)*(i.y+z.y));
pq.add(new tuble(z.x-z.y+(i.y+z.y)*(i.y+z.y), 0, i.x));
}
}
}
}
}
for(int i=0;i<n;i++) {
if(ans[i][0]==null) {
pw.print(-1+" ");
}else {
pw.print(ans[i][0]+" ");
}
}
pw.close();
}
static class Scanner {
StringTokenizer st;
BufferedReader br;
public Scanner(InputStream s) {
br = new BufferedReader(new InputStreamReader(s));
}
public Scanner(FileReader r) {
br = new BufferedReader(r);
}
public String next() throws IOException {
while (st == null || !st.hasMoreTokens())
st = new StringTokenizer(br.readLine());
return st.nextToken();
}
public int nextInt() throws IOException {
return Integer.parseInt(next());
}
public long nextLong() throws IOException {
return Long.parseLong(next());
}
public String nextLine() throws IOException {
return br.readLine();
}
public double nextDouble() throws IOException {
String x = next();
StringBuilder sb = new StringBuilder("0");
double res = 0, f = 1;
boolean dec = false, neg = false;
int start = 0;
if (x.charAt(0) == '-') {
neg = true;
start++;
}
for (int i = start; i < x.length(); i++)
if (x.charAt(i) == '.') {
res = Long.parseLong(sb.toString());
sb = new StringBuilder("0");
dec = true;
} else {
sb.append(x.charAt(i));
if (dec)
f *= 10;
}
res += Long.parseLong(sb.toString()) / f;
return res * (neg ? -1 : 1);
}
public long[] nextlongArray(int n) throws IOException {
long[] a = new long[n];
for (int i = 0; i < n; i++)
a[i] = nextLong();
return a;
}
public Long[] nextLongArray(int n) throws IOException {
Long[] a = new Long[n];
for (int i = 0; i < n; i++)
a[i] = nextLong();
return a;
}
public int[] nextIntArray(int n) throws IOException {
int[] a = new int[n];
for (int i = 0; i < n; i++)
a[i] = nextInt();
return a;
}
public Integer[] nextIntegerArray(int n) throws IOException {
Integer[] a = new Integer[n];
for (int i = 0; i < n; i++)
a[i] = nextInt();
return a;
}
public boolean ready() throws IOException {
return br.ready();
}
}
static class pair implements Comparable<pair> {
long x;
long y;
public pair(long x, long y) {
this.x = x;
this.y = y;
}
public String toString() {
return x + " " + y;
}
public boolean equals(Object o) {
if (o instanceof pair) {
pair p = (pair) o;
return p.x == x && p.y == y;
}
return false;
}
public int hashCode() {
return new Double(x).hashCode() * 31 + new Double(y).hashCode();
}
public int compareTo(pair other) {
if (this.x == other.x) {
return Long.compare(this.y, other.y);
}
return Long.compare(this.x, other.x);
}
}
static class tuble implements Comparable<tuble> {
long x;
long y;
long z;
public tuble(long x, long y, long z) {
this.x = x;
this.y = y;
this.z = z;
}
public String toString() {
return x + " " + y + " " + z;
}
public int compareTo(tuble other) {
if (this.x == other.x) {
if (this.y == other.y) {
return Long.compare(this.z , other.z);
}
return Long.compare(this.y , other.y);
} else {
return Long.compare(this.x , other.x);
}
}
}
static long mod = 1000000007;
static Random rn = new Random();
static Scanner sc = new Scanner(System.in);
static PrintWriter pw = new PrintWriter(System.out);
}
|
Java
|
["5 6\n1 2 3\n2 3 4\n3 4 5\n4 5 6\n1 5 1\n2 4 2", "3 2\n1 2 1\n2 3 2"]
|
4 seconds
|
["0 98 49 25 114", "0 -1 9"]
|
NoteThe graph in the first example looks like this.In the second example the path from $$$1$$$ to $$$3$$$ goes through $$$2$$$, so the resulting payment is $$$(1 + 2)^2 = 9$$$.
|
Java 8
|
standard input
|
[
"binary search",
"brute force",
"constructive algorithms",
"dp",
"flows",
"graphs",
"shortest paths"
] |
abee4d188bb59d82fcf4579c7416a343
|
First line contains two integers $$$n$$$, $$$m$$$ ($$$2 \leq n \leq 10^5$$$, $$$1 \leq m \leq min(\frac{n \cdot (n - 1)}{2}, 2 \cdot 10^5)$$$). Next $$$m$$$ lines each contain three integers $$$v_i$$$, $$$u_i$$$, $$$w_i$$$ ($$$1 \leq v_i, u_i \leq n$$$, $$$1 \leq w_i \leq 50$$$, $$$u_i \neq v_i$$$). It's guaranteed that there are no multiple edges, i.e. for any edge $$$(u_i, v_i)$$$ there are no other edges $$$(u_i, v_i)$$$ or $$$(v_i, u_i)$$$.
| 2,200
|
For every city $$$t$$$ print one integer. If there is no correct path between $$$1$$$ and $$$t$$$ output $$$-1$$$. Otherwise print out the minimum amount of money needed to travel from $$$1$$$ to $$$t$$$.
|
standard output
| |
PASSED
|
eb22a195fb72b3a6bbb03c35a9c0d0c9
|
train_110.jsonl
|
1613658900
|
There are $$$n$$$ cities and $$$m$$$ bidirectional roads in the country. The roads in the country form an undirected weighted graph. The graph is not guaranteed to be connected. Each road has it's own parameter $$$w$$$. You can travel through the roads, but the government made a new law: you can only go through two roads at a time (go from city $$$a$$$ to city $$$b$$$ and then from city $$$b$$$ to city $$$c$$$) and you will have to pay $$$(w_{ab} + w_{bc})^2$$$ money to go through those roads. Find out whether it is possible to travel from city $$$1$$$ to every other city $$$t$$$ and what's the minimum amount of money you need to get from $$$1$$$ to $$$t$$$.
|
512 megabytes
|
import java.io.*;
import java.util.*;
public class CF703E {
static final int N = (int)(2e5 + 11), INF = (int)(1e9 + 11);
static int n, m, v, u, w;
static ArrayList< int[] > g[] = new ArrayList[N];
static int[][] d;
static PriorityQueue<Node> pq;
public static void main (String[] args) throws IOException {
// BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
Scanner sc = new Scanner(System.in);
PrintWriter out = new PrintWriter(System.out);
// StringTokenizer st = new StringTokenizer(br.readLine());
// n = Integer.parseInt(st.nextToken());
// m = Integer.parseInt(st.nextToken());
n = sc.nextInt();
m = sc.nextInt();
for (int i = 0; i < n; ++i)
g[i] = new ArrayList<>();
while (m-- > 0) {
// st = new StringTokenizer(br.readLine());
// v = Integer.parseInt(st.nextToken());
// u = Integer.parseInt(st.nextToken());
// w = Integer.parseInt(st.nextToken());
v = sc.nextInt();
u = sc.nextInt();
w = sc.nextInt();
--v;
--u;
g[v].add(new int[] {u, w});
g[u].add(new int[] {v, w});
}
d = new int[n][];
for (int i = 0; i < n; ++i) {
d[i] = new int[51];
for (int j = 0; j < 51; ++j)
d[i][j] = INF;
}
d[0][0] = 0;
Node V;
pq = new PriorityQueue<Node>();
pq.add(new Node(0, 0, d[0][0]));
while (pq.size() > 0) {
V = pq.remove();
int v = V.v;
int lvl = V.lvl;
int cost = V.cost;
if (d[v][lvl] != cost)
continue;
for (int[] u : g[v]) {
int to = u[0], w = u[1], lvl1;
if (lvl == 0) {
lvl1 = w;
w = w*w;
} else {
lvl1 = 0;
w = w*w + 2*lvl*w;
}
if (d[to][lvl1] > w + d[v][lvl]) {
d[to][lvl1] = w + d[v][lvl];
pq.add(new Node(to, lvl1, d[to][lvl1]));
}
}
}
for (int i = 0; i < n; ++i)
if (d[i][0] == INF)
out.print("-1 ");
else
out.print(d[i][0] + " ");
out.close();
}
static class Node implements Comparable<Node> {
public int v, lvl, cost;
Node (int v1, int lvl1, int cost1) {
v = v1;
lvl = lvl1;
cost = cost1;
}
@Override
public int compareTo (Node a) {
return Integer.compare(cost, a.cost);
}
}
}
|
Java
|
["5 6\n1 2 3\n2 3 4\n3 4 5\n4 5 6\n1 5 1\n2 4 2", "3 2\n1 2 1\n2 3 2"]
|
4 seconds
|
["0 98 49 25 114", "0 -1 9"]
|
NoteThe graph in the first example looks like this.In the second example the path from $$$1$$$ to $$$3$$$ goes through $$$2$$$, so the resulting payment is $$$(1 + 2)^2 = 9$$$.
|
Java 8
|
standard input
|
[
"binary search",
"brute force",
"constructive algorithms",
"dp",
"flows",
"graphs",
"shortest paths"
] |
abee4d188bb59d82fcf4579c7416a343
|
First line contains two integers $$$n$$$, $$$m$$$ ($$$2 \leq n \leq 10^5$$$, $$$1 \leq m \leq min(\frac{n \cdot (n - 1)}{2}, 2 \cdot 10^5)$$$). Next $$$m$$$ lines each contain three integers $$$v_i$$$, $$$u_i$$$, $$$w_i$$$ ($$$1 \leq v_i, u_i \leq n$$$, $$$1 \leq w_i \leq 50$$$, $$$u_i \neq v_i$$$). It's guaranteed that there are no multiple edges, i.e. for any edge $$$(u_i, v_i)$$$ there are no other edges $$$(u_i, v_i)$$$ or $$$(v_i, u_i)$$$.
| 2,200
|
For every city $$$t$$$ print one integer. If there is no correct path between $$$1$$$ and $$$t$$$ output $$$-1$$$. Otherwise print out the minimum amount of money needed to travel from $$$1$$$ to $$$t$$$.
|
standard output
| |
PASSED
|
25056bbdbfe6421d0a8ecb34d186fad3
|
train_110.jsonl
|
1613658900
|
There are $$$n$$$ cities and $$$m$$$ bidirectional roads in the country. The roads in the country form an undirected weighted graph. The graph is not guaranteed to be connected. Each road has it's own parameter $$$w$$$. You can travel through the roads, but the government made a new law: you can only go through two roads at a time (go from city $$$a$$$ to city $$$b$$$ and then from city $$$b$$$ to city $$$c$$$) and you will have to pay $$$(w_{ab} + w_{bc})^2$$$ money to go through those roads. Find out whether it is possible to travel from city $$$1$$$ to every other city $$$t$$$ and what's the minimum amount of money you need to get from $$$1$$$ to $$$t$$$.
|
512 megabytes
|
import java.io.*;
import java.util.*;
public class CF703E {
static final int N = (int)(2e5 + 11), INF = (int)(1e9 + 11);
static int n, m, v, u, w;
static ArrayList< int[] > g[] = new ArrayList[N];
static int[][] d;
static PriorityQueue<Node> pq;
public static void main (String[] args) throws IOException {
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
PrintWriter out = new PrintWriter(System.out);
StringTokenizer st = new StringTokenizer(br.readLine());
n = Integer.parseInt(st.nextToken());
m = Integer.parseInt(st.nextToken());
for (int i = 0; i < n; ++i)
g[i] = new ArrayList<>();
while (m-- > 0) {
st = new StringTokenizer(br.readLine());
v = Integer.parseInt(st.nextToken());
u = Integer.parseInt(st.nextToken());
w = Integer.parseInt(st.nextToken());
--v;
--u;
g[v].add(new int[] {u, w});
g[u].add(new int[] {v, w});
}
d = new int[n][];
for (int i = 0; i < n; ++i) {
d[i] = new int[51];
for (int j = 0; j < 51; ++j)
d[i][j] = INF;
}
d[0][0] = 0;
Node V;
pq = new PriorityQueue<Node>();
pq.add(new Node(0, 0, d[0][0]));
while (pq.size() > 0) {
V = pq.remove();
int v = V.v;
int lvl = V.lvl;
int cost = V.cost;
if (d[v][lvl] != cost)
continue;
for (int[] u : g[v]) {
int to = u[0], w = u[1], lvl1;
if (lvl == 0) {
lvl1 = w;
w = w*w;
} else {
lvl1 = 0;
w = w*w + 2*lvl*w;
}
if (d[to][lvl1] > w + d[v][lvl]) {
d[to][lvl1] = w + d[v][lvl];
pq.add(new Node(to, lvl1, d[to][lvl1]));
}
}
}
for (int i = 0; i < n; ++i)
if (d[i][0] == INF)
out.print("-1 ");
else
out.print(d[i][0] + " ");
out.close();
}
static class Node implements Comparable<Node> {
public int v, lvl, cost;
Node (int v1, int lvl1, int cost1) {
v = v1;
lvl = lvl1;
cost = cost1;
}
@Override
public int compareTo (Node a) {
return Integer.compare(cost, a.cost);
}
}
}
|
Java
|
["5 6\n1 2 3\n2 3 4\n3 4 5\n4 5 6\n1 5 1\n2 4 2", "3 2\n1 2 1\n2 3 2"]
|
4 seconds
|
["0 98 49 25 114", "0 -1 9"]
|
NoteThe graph in the first example looks like this.In the second example the path from $$$1$$$ to $$$3$$$ goes through $$$2$$$, so the resulting payment is $$$(1 + 2)^2 = 9$$$.
|
Java 8
|
standard input
|
[
"binary search",
"brute force",
"constructive algorithms",
"dp",
"flows",
"graphs",
"shortest paths"
] |
abee4d188bb59d82fcf4579c7416a343
|
First line contains two integers $$$n$$$, $$$m$$$ ($$$2 \leq n \leq 10^5$$$, $$$1 \leq m \leq min(\frac{n \cdot (n - 1)}{2}, 2 \cdot 10^5)$$$). Next $$$m$$$ lines each contain three integers $$$v_i$$$, $$$u_i$$$, $$$w_i$$$ ($$$1 \leq v_i, u_i \leq n$$$, $$$1 \leq w_i \leq 50$$$, $$$u_i \neq v_i$$$). It's guaranteed that there are no multiple edges, i.e. for any edge $$$(u_i, v_i)$$$ there are no other edges $$$(u_i, v_i)$$$ or $$$(v_i, u_i)$$$.
| 2,200
|
For every city $$$t$$$ print one integer. If there is no correct path between $$$1$$$ and $$$t$$$ output $$$-1$$$. Otherwise print out the minimum amount of money needed to travel from $$$1$$$ to $$$t$$$.
|
standard output
| |
PASSED
|
7b7bc7b3e1b1fb07eb04602e5e151ca8
|
train_110.jsonl
|
1613658900
|
There are $$$n$$$ cities and $$$m$$$ bidirectional roads in the country. The roads in the country form an undirected weighted graph. The graph is not guaranteed to be connected. Each road has it's own parameter $$$w$$$. You can travel through the roads, but the government made a new law: you can only go through two roads at a time (go from city $$$a$$$ to city $$$b$$$ and then from city $$$b$$$ to city $$$c$$$) and you will have to pay $$$(w_{ab} + w_{bc})^2$$$ money to go through those roads. Find out whether it is possible to travel from city $$$1$$$ to every other city $$$t$$$ and what's the minimum amount of money you need to get from $$$1$$$ to $$$t$$$.
|
512 megabytes
|
//package round703;
import java.io.*;
import java.util.ArrayDeque;
import java.util.Arrays;
import java.util.InputMismatchException;
import java.util.Queue;
public class E {
InputStream is;
FastWriter out;
String INPUT = "";
void solve()
{
int n = ni(), m = ni();
int[] from = new int[m];
int[] to = new int[m];
int[] ws = new int[m];
for(int i = 0;i < m;i++){
from[i] = ni()-1;
to[i] = ni()-1;
ws[i] = ni();
}
int[][][] g = packWU(n, from, to, ws);
long[] ptns = new long[n];
for(int i = 0;i < n;i++){
for(int[] e : g[i]){
ptns[i] |= 1L<<e[1];
}
}
long[] td = new long[n*51];
Arrays.fill(td, Long.MAX_VALUE / 2);
MinHeapL q = new MinHeapL(n*51);
q.add(0, 0);
td[0] = 0;
while(q.size() > 0){
int cur = q.argmin();
q.remove(cur);
if(cur < n){
for(int[] e : g[cur]){
int next = e[0];
for(long i = ptns[next];i != 0;i &= i-1){
int o = Long.numberOfTrailingZeros(i);
long nd = td[cur] + (long)(e[1] + o) * (e[1] + o);
int ne = next + o * n;
if(nd < td[ne]){
td[ne] = nd;
q.update(ne, nd);
}
}
}
}else{
int ww = cur / n;
for(int[] e : g[cur%n]){
if(e[1] == ww){
if(td[cur] < td[e[0]]){
td[e[0]] = td[cur];
q.update(e[0], td[e[0]]);
}
}
}
}
}
for(int i = 0;i < n;i++){
out.print(td[i] >= Long.MAX_VALUE / 3 ? -1 : td[i]).print(" ");
}
out.println();
}
public static class MinHeapL {
public long[] a;
public int[] map;
public int[] imap;
public int n;
public int pos;
public static long INF = Long.MAX_VALUE;
public MinHeapL(int m)
{
n = Integer.highestOneBit((m+1)<<1);
a = new long[n];
map = new int[n];
imap = new int[n];
Arrays.fill(a, INF);
Arrays.fill(map, -1);
Arrays.fill(imap, -1);
pos = 1;
}
public long add(int ind, long x)
{
int ret = imap[ind];
if(imap[ind] < 0){
a[pos] = x; map[pos] = ind; imap[ind] = pos;
pos++;
up(pos-1);
}
return ret != -1 ? a[ret] : x;
}
public long update(int ind, long x)
{
int ret = imap[ind];
if(imap[ind] < 0){
a[pos] = x; map[pos] = ind; imap[ind] = pos;
pos++;
up(pos-1);
}else{
a[ret] = x;
up(ret);
down(ret);
}
return x;
}
public long remove(int ind)
{
if(pos == 1)return INF;
if(imap[ind] == -1)return INF;
pos--;
int rem = imap[ind];
long ret = a[rem];
map[rem] = map[pos];
imap[map[pos]] = rem;
imap[ind] = -1;
a[rem] = a[pos];
a[pos] = INF;
map[pos] = -1;
up(rem);
down(rem);
return ret;
}
public long min() { return a[1]; }
public int argmin() { return map[1]; }
public int size() { return pos-1; }
private void up(int cur)
{
for(int c = cur, p = c>>>1;p >= 1 && a[p] > a[c];c>>>=1, p>>>=1){
long d = a[p]; a[p] = a[c]; a[c] = d;
int e = imap[map[p]]; imap[map[p]] = imap[map[c]]; imap[map[c]] = e;
e = map[p]; map[p] = map[c]; map[c] = e;
}
}
private void down(int cur)
{
for(int c = cur;2*c < pos;){
int b = a[2*c] < a[2*c+1] ? 2*c : 2*c+1;
if(a[b] < a[c]){
long d = a[c]; a[c] = a[b]; a[b] = d;
int e = imap[map[c]]; imap[map[c]] = imap[map[b]]; imap[map[b]] = e;
e = map[c]; map[c] = map[b]; map[b] = e;
c = b;
}else{
break;
}
}
}
}
public static int[][][] packWU(int n, int[] from, int[] to, int[] w) {
return packWU(n, from, to, w, from.length);
}
public static int[][][] packWU(int n, int[] from, int[] to, int[] w, int sup) {
int[][][] g = new int[n][][];
int[] p = new int[n];
for (int i = 0; i < sup; i++) p[from[i]]++;
for (int i = 0; i < sup; i++) p[to[i]]++;
for (int i = 0; i < n; i++) g[i] = new int[p[i]][2];
for (int i = 0; i < sup; i++) {
--p[from[i]];
g[from[i]][p[from[i]]][0] = to[i];
g[from[i]][p[from[i]]][1] = w[i];
--p[to[i]];
g[to[i]][p[to[i]]][0] = from[i];
g[to[i]][p[to[i]]][1] = w[i];
}
return g;
}
void run() throws Exception
{
is = oj ? System.in : new ByteArrayInputStream(INPUT.getBytes());
out = new FastWriter(System.out);
long s = System.currentTimeMillis();
solve();
out.flush();
tr(System.currentTimeMillis()-s+"ms");
}
public static void main(String[] args) throws Exception { new E().run(); }
private byte[] inbuf = new byte[1024];
public int lenbuf = 0, ptrbuf = 0;
private int readByte()
{
if(lenbuf == -1)throw new InputMismatchException();
if(ptrbuf >= lenbuf){
ptrbuf = 0;
try { lenbuf = is.read(inbuf); } catch (IOException e) { throw new InputMismatchException(); }
if(lenbuf <= 0)return -1;
}
return inbuf[ptrbuf++];
}
private boolean isSpaceChar(int c) { return !(c >= 33 && c <= 126); }
private int skip() { int b; while((b = readByte()) != -1 && isSpaceChar(b)); return b; }
private double nd() { return Double.parseDouble(ns()); }
private char nc() { return (char)skip(); }
private String ns()
{
int b = skip();
StringBuilder sb = new StringBuilder();
while(!(isSpaceChar(b))){ // when nextLine, (isSpaceChar(b) && b != ' ')
sb.appendCodePoint(b);
b = readByte();
}
return sb.toString();
}
private char[] ns(int n)
{
char[] buf = new char[n];
int b = skip(), p = 0;
while(p < n && !(isSpaceChar(b))){
buf[p++] = (char)b;
b = readByte();
}
return n == p ? buf : Arrays.copyOf(buf, p);
}
private int[] na(int n)
{
int[] a = new int[n];
for(int i = 0;i < n;i++)a[i] = ni();
return a;
}
private long[] nal(int n)
{
long[] a = new long[n];
for(int i = 0;i < n;i++)a[i] = nl();
return a;
}
private char[][] nm(int n, int m) {
char[][] map = new char[n][];
for(int i = 0;i < n;i++)map[i] = ns(m);
return map;
}
private int[][] nmi(int n, int m) {
int[][] map = new int[n][];
for(int i = 0;i < n;i++)map[i] = na(m);
return map;
}
private int ni() { return (int)nl(); }
private long nl()
{
long num = 0;
int b;
boolean minus = false;
while((b = readByte()) != -1 && !((b >= '0' && b <= '9') || b == '-'));
if(b == '-'){
minus = true;
b = readByte();
}
while(true){
if(b >= '0' && b <= '9'){
num = num * 10 + (b - '0');
}else{
return minus ? -num : num;
}
b = readByte();
}
}
public static class FastWriter
{
private static final int BUF_SIZE = 1<<13;
private final byte[] buf = new byte[BUF_SIZE];
private final OutputStream out;
private int ptr = 0;
private FastWriter(){out = null;}
public FastWriter(OutputStream os)
{
this.out = os;
}
public FastWriter(String path)
{
try {
this.out = new FileOutputStream(path);
} catch (FileNotFoundException e) {
throw new RuntimeException("FastWriter");
}
}
public FastWriter write(byte b)
{
buf[ptr++] = b;
if(ptr == BUF_SIZE)innerflush();
return this;
}
public FastWriter write(char c)
{
return write((byte)c);
}
public FastWriter write(char[] s)
{
for(char c : s){
buf[ptr++] = (byte)c;
if(ptr == BUF_SIZE)innerflush();
}
return this;
}
public FastWriter write(String s)
{
s.chars().forEach(c -> {
buf[ptr++] = (byte)c;
if(ptr == BUF_SIZE)innerflush();
});
return this;
}
private static int countDigits(int l) {
if (l >= 1000000000) return 10;
if (l >= 100000000) return 9;
if (l >= 10000000) return 8;
if (l >= 1000000) return 7;
if (l >= 100000) return 6;
if (l >= 10000) return 5;
if (l >= 1000) return 4;
if (l >= 100) return 3;
if (l >= 10) return 2;
return 1;
}
public FastWriter write(int x)
{
if(x == Integer.MIN_VALUE){
return write((long)x);
}
if(ptr + 12 >= BUF_SIZE)innerflush();
if(x < 0){
write((byte)'-');
x = -x;
}
int d = countDigits(x);
for(int i = ptr + d - 1;i >= ptr;i--){
buf[i] = (byte)('0'+x%10);
x /= 10;
}
ptr += d;
return this;
}
private static int countDigits(long l) {
if (l >= 1000000000000000000L) return 19;
if (l >= 100000000000000000L) return 18;
if (l >= 10000000000000000L) return 17;
if (l >= 1000000000000000L) return 16;
if (l >= 100000000000000L) return 15;
if (l >= 10000000000000L) return 14;
if (l >= 1000000000000L) return 13;
if (l >= 100000000000L) return 12;
if (l >= 10000000000L) return 11;
if (l >= 1000000000L) return 10;
if (l >= 100000000L) return 9;
if (l >= 10000000L) return 8;
if (l >= 1000000L) return 7;
if (l >= 100000L) return 6;
if (l >= 10000L) return 5;
if (l >= 1000L) return 4;
if (l >= 100L) return 3;
if (l >= 10L) return 2;
return 1;
}
public FastWriter write(long x)
{
if(x == Long.MIN_VALUE){
return write("" + x);
}
if(ptr + 21 >= BUF_SIZE)innerflush();
if(x < 0){
write((byte)'-');
x = -x;
}
int d = countDigits(x);
for(int i = ptr + d - 1;i >= ptr;i--){
buf[i] = (byte)('0'+x%10);
x /= 10;
}
ptr += d;
return this;
}
public FastWriter write(double x, int precision)
{
if(x < 0){
write('-');
x = -x;
}
x += Math.pow(10, -precision)/2;
// if(x < 0){ x = 0; }
write((long)x).write(".");
x -= (long)x;
for(int i = 0;i < precision;i++){
x *= 10;
write((char)('0'+(int)x));
x -= (int)x;
}
return this;
}
public FastWriter writeln(char c){
return write(c).writeln();
}
public FastWriter writeln(int x){
return write(x).writeln();
}
public FastWriter writeln(long x){
return write(x).writeln();
}
public FastWriter writeln(double x, int precision){
return write(x, precision).writeln();
}
public FastWriter write(int... xs)
{
boolean first = true;
for(int x : xs) {
if (!first) write(' ');
first = false;
write(x);
}
return this;
}
public FastWriter write(long... xs)
{
boolean first = true;
for(long x : xs) {
if (!first) write(' ');
first = false;
write(x);
}
return this;
}
public FastWriter writeln()
{
return write((byte)'\n');
}
public FastWriter writeln(int... xs)
{
return write(xs).writeln();
}
public FastWriter writeln(long... xs)
{
return write(xs).writeln();
}
public FastWriter writeln(char[] line)
{
return write(line).writeln();
}
public FastWriter writeln(char[]... map)
{
for(char[] line : map)write(line).writeln();
return this;
}
public FastWriter writeln(String s)
{
return write(s).writeln();
}
private void innerflush()
{
try {
out.write(buf, 0, ptr);
ptr = 0;
} catch (IOException e) {
throw new RuntimeException("innerflush");
}
}
public void flush()
{
innerflush();
try {
out.flush();
} catch (IOException e) {
throw new RuntimeException("flush");
}
}
public FastWriter print(byte b) { return write(b); }
public FastWriter print(char c) { return write(c); }
public FastWriter print(char[] s) { return write(s); }
public FastWriter print(String s) { return write(s); }
public FastWriter print(int x) { return write(x); }
public FastWriter print(long x) { return write(x); }
public FastWriter print(double x, int precision) { return write(x, precision); }
public FastWriter println(char c){ return writeln(c); }
public FastWriter println(int x){ return writeln(x); }
public FastWriter println(long x){ return writeln(x); }
public FastWriter println(double x, int precision){ return writeln(x, precision); }
public FastWriter print(int... xs) { return write(xs); }
public FastWriter print(long... xs) { return write(xs); }
public FastWriter println(int... xs) { return writeln(xs); }
public FastWriter println(long... xs) { return writeln(xs); }
public FastWriter println(char[] line) { return writeln(line); }
public FastWriter println(char[]... map) { return writeln(map); }
public FastWriter println(String s) { return writeln(s); }
public FastWriter println() { return writeln(); }
}
public void trnz(int... o)
{
for(int i = 0;i < o.length;i++)if(o[i] != 0)System.out.print(i+":"+o[i]+" ");
System.out.println();
}
// print ids which are 1
public void trt(long... o)
{
Queue<Integer> stands = new ArrayDeque<>();
for(int i = 0;i < o.length;i++){
for(long x = o[i];x != 0;x &= x-1)stands.add(i<<6|Long.numberOfTrailingZeros(x));
}
System.out.println(stands);
}
public void tf(boolean... r)
{
for(boolean x : r)System.out.print(x?'#':'.');
System.out.println();
}
public void tf(boolean[]... b)
{
for(boolean[] r : b) {
for(boolean x : r)System.out.print(x?'#':'.');
System.out.println();
}
System.out.println();
}
public void tf(long[]... b)
{
if(INPUT.length() != 0) {
for (long[] r : b) {
for (long x : r) {
for (int i = 0; i < 64; i++) {
System.out.print(x << ~i < 0 ? '#' : '.');
}
}
System.out.println();
}
System.out.println();
}
}
public void tf(long... b)
{
if(INPUT.length() != 0) {
for (long x : b) {
for (int i = 0; i < 64; i++) {
System.out.print(x << ~i < 0 ? '#' : '.');
}
}
System.out.println();
}
}
private boolean oj = System.getProperty("ONLINE_JUDGE") != null;
private void tr(Object... o) { if(!oj)System.out.println(Arrays.deepToString(o)); }
}
|
Java
|
["5 6\n1 2 3\n2 3 4\n3 4 5\n4 5 6\n1 5 1\n2 4 2", "3 2\n1 2 1\n2 3 2"]
|
4 seconds
|
["0 98 49 25 114", "0 -1 9"]
|
NoteThe graph in the first example looks like this.In the second example the path from $$$1$$$ to $$$3$$$ goes through $$$2$$$, so the resulting payment is $$$(1 + 2)^2 = 9$$$.
|
Java 8
|
standard input
|
[
"binary search",
"brute force",
"constructive algorithms",
"dp",
"flows",
"graphs",
"shortest paths"
] |
abee4d188bb59d82fcf4579c7416a343
|
First line contains two integers $$$n$$$, $$$m$$$ ($$$2 \leq n \leq 10^5$$$, $$$1 \leq m \leq min(\frac{n \cdot (n - 1)}{2}, 2 \cdot 10^5)$$$). Next $$$m$$$ lines each contain three integers $$$v_i$$$, $$$u_i$$$, $$$w_i$$$ ($$$1 \leq v_i, u_i \leq n$$$, $$$1 \leq w_i \leq 50$$$, $$$u_i \neq v_i$$$). It's guaranteed that there are no multiple edges, i.e. for any edge $$$(u_i, v_i)$$$ there are no other edges $$$(u_i, v_i)$$$ or $$$(v_i, u_i)$$$.
| 2,200
|
For every city $$$t$$$ print one integer. If there is no correct path between $$$1$$$ and $$$t$$$ output $$$-1$$$. Otherwise print out the minimum amount of money needed to travel from $$$1$$$ to $$$t$$$.
|
standard output
| |
PASSED
|
f31603ed5f2ac47cfdc570bb5f8fb248
|
train_110.jsonl
|
1613658900
|
There are $$$n$$$ cities and $$$m$$$ bidirectional roads in the country. The roads in the country form an undirected weighted graph. The graph is not guaranteed to be connected. Each road has it's own parameter $$$w$$$. You can travel through the roads, but the government made a new law: you can only go through two roads at a time (go from city $$$a$$$ to city $$$b$$$ and then from city $$$b$$$ to city $$$c$$$) and you will have to pay $$$(w_{ab} + w_{bc})^2$$$ money to go through those roads. Find out whether it is possible to travel from city $$$1$$$ to every other city $$$t$$$ and what's the minimum amount of money you need to get from $$$1$$$ to $$$t$$$.
|
512 megabytes
|
import java.io.*;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.StringTokenizer;
import java.util.List;
import java.util.*;
public class realfast implements Runnable
{
private static final int INF = (int) 1e9;
long in= 1000000007;
long fac[]= new long[1000001];
long inv[]=new long[1000001];
public void solve() throws IOException
{
//int t = readInt();
int n = readInt();
int m = readInt();
ArrayList<edge> adj[]=new ArrayList[n+1];
for(int i =0;i<=n;i++)
adj[i]= new ArrayList<edge>();
long dist[][]=new long[n+1][51];
long inf =0;
for(int i =0;i<=n;i++)
{
for(int j=0;j<=50;j++)
{
dist[i][j]=2000000000;
dist[i][j]= dist[i][j]*10;
inf=dist[i][j];
}
}
boolean visited[][]=new boolean[n+1][51];
for(int i =0;i<m;i++)
{
int u = readInt();
int v = readInt();
int w = readInt();
adj[u].add(new edge(v,0,w));
adj[v].add(new edge(u,0,w));
}
PriorityQueue<edge> h = new PriorityQueue<edge>();
dist[1][0]=0;
h.add(new edge(1,0,0));
while(h.size()!=0)
{
edge lo = h.poll();
int cur= lo.u;
int s = lo.state;
long dist1 = lo.dist;
if(visited[cur][s])
continue;
visited[cur][s]= true;
if(s==0)
{
for(int j =0;j<adj[cur].size();j++)
{
int v = adj[cur].get(j).u;
int dl= (int)adj[cur].get(j).dist;
if(!visited[v][dl]&&(dl*dl)+dist1<dist[v][dl])
{
dist[v][dl]= (dl*dl)+dist1;
h.add(new edge(v,dl,dist[v][dl]));
}
}
}
else
{
for(int j =0;j<adj[cur].size();j++)
{
int v = adj[cur].get(j).u;
int dl= (int)adj[cur].get(j).dist;
if(!visited[v][0]&&((dl*dl)+dist1+2*dl*s<dist[v][0]))
{
dist[v][0]= (dl*dl)+dist1+2*dl*s;
h.add(new edge(v,0,dist[v][0]));
}
}
}
}
for(int i =1;i<=n;i++)
{
if(dist[i][0]<inf)
out.print(dist[i][0]+" ");
else
out.print((-1)+" ");
}
}
public int value (int seg[], int left , int right ,int index, int l, int r)
{
if(left>right)
{
return -100000000;
}
if(right<l||left>r)
return -100000000;
if(left>=l&&right<=r)
return seg[index];
int mid = left+(right-left)/2;
int val = value(seg,left,mid,2*index+1,l,r);
int val2 = value(seg,mid+1,right,2*index+2,l,r);
return Math.max(val,val2);
}
public int gcd(int a , int b )
{
if(a<b)
{
int t =a;
a=b;
b=t;
}
if(a%b==0)
return b ;
return gcd(b,a%b);
}
public long pow(long n , long p,long m)
{
if(p==0)
return 1;
long val = pow(n,p/2,m);;
val= (val*val)%m;
if(p%2==0)
return val;
else
return (val*n)%m;
}
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////
public static void main(String[] args) {
new Thread(null, new realfast(), "", 128 * (1L << 20)).start();
}
private static final boolean ONLINE_JUDGE = System.getProperty("ONLINE_JUDGE") != null;
private BufferedReader reader;
private StringTokenizer tokenizer;
private PrintWriter out;
@Override
public void run() {
try {
if (ONLINE_JUDGE || !new File("input.txt").exists()) {
reader = new BufferedReader(new InputStreamReader(System.in));
out = new PrintWriter(System.out);
} else {
reader = new BufferedReader(new FileReader("input.txt"));
out = new PrintWriter("output.txt");
}
solve();
} catch (IOException e) {
throw new RuntimeException(e);
} finally {
try {
reader.close();
} catch (IOException e) {
// nothing
}
out.close();
}
}
private String readString() throws IOException {
while (tokenizer == null || !tokenizer.hasMoreTokens()) {
tokenizer = new StringTokenizer(reader.readLine());
}
return tokenizer.nextToken();
}
@SuppressWarnings("unused")
private int readInt() throws IOException {
return Integer.parseInt(readString());
}
@SuppressWarnings("unused")
private long readLong() throws IOException {
return Long.parseLong(readString());
}
@SuppressWarnings("unused")
private double readDouble() throws IOException {
return Double.parseDouble(readString());
}
}
class edge implements Comparable<edge>{
int u;
int state;
long dist;
edge(int u, int state, long dist)
{
this.u=u;
this.state=state;
this.dist= dist;
}
public int compareTo(edge e)
{
if(this.dist-e.dist>0)
return 1;
else if(this.dist==e.dist)
return 0;
else
return -1;
}
}
|
Java
|
["5 6\n1 2 3\n2 3 4\n3 4 5\n4 5 6\n1 5 1\n2 4 2", "3 2\n1 2 1\n2 3 2"]
|
4 seconds
|
["0 98 49 25 114", "0 -1 9"]
|
NoteThe graph in the first example looks like this.In the second example the path from $$$1$$$ to $$$3$$$ goes through $$$2$$$, so the resulting payment is $$$(1 + 2)^2 = 9$$$.
|
Java 8
|
standard input
|
[
"binary search",
"brute force",
"constructive algorithms",
"dp",
"flows",
"graphs",
"shortest paths"
] |
abee4d188bb59d82fcf4579c7416a343
|
First line contains two integers $$$n$$$, $$$m$$$ ($$$2 \leq n \leq 10^5$$$, $$$1 \leq m \leq min(\frac{n \cdot (n - 1)}{2}, 2 \cdot 10^5)$$$). Next $$$m$$$ lines each contain three integers $$$v_i$$$, $$$u_i$$$, $$$w_i$$$ ($$$1 \leq v_i, u_i \leq n$$$, $$$1 \leq w_i \leq 50$$$, $$$u_i \neq v_i$$$). It's guaranteed that there are no multiple edges, i.e. for any edge $$$(u_i, v_i)$$$ there are no other edges $$$(u_i, v_i)$$$ or $$$(v_i, u_i)$$$.
| 2,200
|
For every city $$$t$$$ print one integer. If there is no correct path between $$$1$$$ and $$$t$$$ output $$$-1$$$. Otherwise print out the minimum amount of money needed to travel from $$$1$$$ to $$$t$$$.
|
standard output
| |
PASSED
|
2b32d6a59b01975f510dfd1550a3344b
|
train_110.jsonl
|
1613658900
|
There are $$$n$$$ cities and $$$m$$$ bidirectional roads in the country. The roads in the country form an undirected weighted graph. The graph is not guaranteed to be connected. Each road has it's own parameter $$$w$$$. You can travel through the roads, but the government made a new law: you can only go through two roads at a time (go from city $$$a$$$ to city $$$b$$$ and then from city $$$b$$$ to city $$$c$$$) and you will have to pay $$$(w_{ab} + w_{bc})^2$$$ money to go through those roads. Find out whether it is possible to travel from city $$$1$$$ to every other city $$$t$$$ and what's the minimum amount of money you need to get from $$$1$$$ to $$$t$$$.
|
512 megabytes
|
import java.io.*;
import java.util.*;
public class E {
static class node implements Comparable<node> {
int node, p;
Cost cost;
node(int u, int par, Cost c) {
node = u;
p = par;
cost = c;
}
@Override
public int compareTo(node o) {
// TODO Auto-generated method stub
return cost.compareTo(o.cost);
}
}
static class Cost {
long cost;
int last;
Cost(long c, int l) {
cost = c;
last = l;
}
public int compareTo(Cost other) {
if (cost != other.cost)
return Long.compare(cost, other.cost);
return last - other.last;
}
}
static int n, m;
static ArrayList<int[]> adj[];
static long INF = (long) 1e18;
static long[] solve() {
PriorityQueue<node> pq = new PriorityQueue();
long[][] dist2 = new long[n][51];
long[] dist = new long[n];
Arrays.fill(dist, INF);
for (long[] x : dist2)
Arrays.fill(x, INF);
dist[0] = 0;
pq.add(new node(0, 0, new Cost(0, 0)));
while (!pq.isEmpty()) {
node curr = pq.poll();
int u = curr.node, p = curr.p;
Cost cost = curr.cost;
if (p == 0 && cost.cost > dist[u])
continue;
if (p == 1 && cost.cost > dist2[u][cost.last])
continue;
for (int[] nxt : adj[u]) {
int v = nxt[0];
int w = nxt[1];
if (p == 0) {
if (dist2[v][w] > cost.cost)
pq.add(new node(v, p ^ 1, new Cost(dist2[v][w] = cost.cost, w)));
} else {
long total = cost.cost + (w + cost.last) * 1L * (w + cost.last);
if (dist[v] > total)
pq.add(new node(v, p ^ 1, new Cost(dist[v] = total, 0)));
}
}
}
return dist;
}
public static void main(String[] args) throws IOException {
Scanner sc = new Scanner();
PrintWriter out = new PrintWriter(System.out);
n = sc.nextInt();
m = sc.nextInt();
adj = new ArrayList[n];
for (int i = 0; i < n; i++)
adj[i] = new ArrayList();
while (m-- > 0) {
int u = sc.nextInt() - 1, v = sc.nextInt() - 1, w = sc.nextInt();
adj[u].add(new int[] { v, w });
adj[v].add(new int[] { u, w });
}
long[] ans = solve();
for (long x : ans) {
if (x == INF)
out.print(-1 + " ");
else
out.print(x + " ");
}
out.println();
out.close();
}
static class Scanner {
BufferedReader br;
StringTokenizer st;
Scanner() {
br = new BufferedReader(new InputStreamReader(System.in));
}
Scanner(String fileName) throws FileNotFoundException {
br = new BufferedReader(new FileReader(fileName));
}
String next() throws IOException {
while (st == null || !st.hasMoreTokens())
st = new StringTokenizer(br.readLine());
return st.nextToken();
}
String nextLine() throws IOException {
return br.readLine();
}
int nextInt() throws IOException {
return Integer.parseInt(next());
}
long nextLong() throws NumberFormatException, IOException {
return Long.parseLong(next());
}
double nextDouble() throws NumberFormatException, IOException {
return Double.parseDouble(next());
}
boolean ready() throws IOException {
return br.ready() || st.hasMoreTokens();
}
int[] nxtArr(int n) throws IOException {
int[] ans = new int[n];
for (int i = 0; i < n; i++)
ans[i] = nextInt();
return ans;
}
}
static void sort(int[] a) {
shuffle(a);
Arrays.sort(a);
}
static void shuffle(int[] a) {
int n = a.length;
Random rand = new Random();
for (int i = 0; i < n; i++) {
int tmpIdx = rand.nextInt(n);
int tmp = a[i];
a[i] = a[tmpIdx];
a[tmpIdx] = tmp;
}
}
}
|
Java
|
["5 6\n1 2 3\n2 3 4\n3 4 5\n4 5 6\n1 5 1\n2 4 2", "3 2\n1 2 1\n2 3 2"]
|
4 seconds
|
["0 98 49 25 114", "0 -1 9"]
|
NoteThe graph in the first example looks like this.In the second example the path from $$$1$$$ to $$$3$$$ goes through $$$2$$$, so the resulting payment is $$$(1 + 2)^2 = 9$$$.
|
Java 8
|
standard input
|
[
"binary search",
"brute force",
"constructive algorithms",
"dp",
"flows",
"graphs",
"shortest paths"
] |
abee4d188bb59d82fcf4579c7416a343
|
First line contains two integers $$$n$$$, $$$m$$$ ($$$2 \leq n \leq 10^5$$$, $$$1 \leq m \leq min(\frac{n \cdot (n - 1)}{2}, 2 \cdot 10^5)$$$). Next $$$m$$$ lines each contain three integers $$$v_i$$$, $$$u_i$$$, $$$w_i$$$ ($$$1 \leq v_i, u_i \leq n$$$, $$$1 \leq w_i \leq 50$$$, $$$u_i \neq v_i$$$). It's guaranteed that there are no multiple edges, i.e. for any edge $$$(u_i, v_i)$$$ there are no other edges $$$(u_i, v_i)$$$ or $$$(v_i, u_i)$$$.
| 2,200
|
For every city $$$t$$$ print one integer. If there is no correct path between $$$1$$$ and $$$t$$$ output $$$-1$$$. Otherwise print out the minimum amount of money needed to travel from $$$1$$$ to $$$t$$$.
|
standard output
| |
PASSED
|
c994e7dca75506883fe8e2ab8f1901c6
|
train_110.jsonl
|
1613658900
|
There are $$$n$$$ cities and $$$m$$$ bidirectional roads in the country. The roads in the country form an undirected weighted graph. The graph is not guaranteed to be connected. Each road has it's own parameter $$$w$$$. You can travel through the roads, but the government made a new law: you can only go through two roads at a time (go from city $$$a$$$ to city $$$b$$$ and then from city $$$b$$$ to city $$$c$$$) and you will have to pay $$$(w_{ab} + w_{bc})^2$$$ money to go through those roads. Find out whether it is possible to travel from city $$$1$$$ to every other city $$$t$$$ and what's the minimum amount of money you need to get from $$$1$$$ to $$$t$$$.
|
512 megabytes
|
import java.io.*;
import java.util.*;
public class Main2{
static int INF=(int)2e9;
static ArrayList<int[]>[] adjListW;
static int n;
static int[] dijkstra(int S) //O(E log E)
{
int[][][] dist = new int[2][51][n];
for(int i=0;i<2;i++) {
for(int j=0;j<=50;j++) {
for(int o=0;o<n;o++)dist[i][j][o]=INF;
}
}
PriorityQueue<int[]> pq = new PriorityQueue<int[]>((x,y)->x[0]-y[0]);
dist[0][0][S] = 0;
pq.add(new int[] {0,0,0,S});
while(!pq.isEmpty())
{
int[] cur = pq.remove();
int node=cur[3],cost=cur[0],p=cur[1],prevW=cur[2];
if(cost > dist[p][prevW][node])
continue;
for(int[] nxt: adjListW[node]) {
if(p==0) {
if(cost < dist[1][nxt[1]][nxt[0]])
pq.add(new int[] {dist[1][nxt[1]][nxt[0]] = cost,1,nxt[1],nxt[0]});
}
else {
int curCost=(prevW+nxt[1])*(prevW+nxt[1]);
if(cost + curCost < dist[0][0][nxt[0]])
pq.add(new int[] {dist[0][0][nxt[0]] = cost+curCost,0,0,nxt[0]});
}
}
}
int[]ans=new int[n];
for(int i=0;i<n;i++)ans[i]=dist[0][0][i]==INF?-1:dist[0][0][i];
return ans;
}
static void main() throws Exception{
n=sc.nextInt();int m=sc.nextInt();
adjListW=new ArrayList[n];
for(int i=0;i<n;i++)adjListW[i]=new ArrayList<int[]>();
for(int i=0;i<m;i++) {
int x=sc.nextInt()-1,y=sc.nextInt()-1,w=sc.nextInt();
adjListW[x].add(new int[] {y,w});
adjListW[y].add(new int[] {x,w});
}
int[]ans=dijkstra(0);
for(int i=0;i<n;i++)pw.print(ans[i]+ " ");
pw.println();
}
public static void main(String[] args) throws Exception{
sc=new MScanner(System.in);
pw = new PrintWriter(System.out);
int tc=1;
// tc=sc.nextInt();
for(int i=1;i<=tc;i++) {
// pw.printf("Case %d:\n", i);
main();
}
pw.flush();
}
static PrintWriter pw;
static MScanner sc;
static class MScanner {
StringTokenizer st;
BufferedReader br;
public MScanner(InputStream system) {
br = new BufferedReader(new InputStreamReader(system));
}
public MScanner(String file) throws Exception {
br = new BufferedReader(new FileReader(file));
}
public String next() throws IOException {
while (st == null || !st.hasMoreTokens())
st = new StringTokenizer(br.readLine());
return st.nextToken();
}
public int[] intArr(int n) throws IOException {
int[]in=new int[n];for(int i=0;i<n;i++)in[i]=nextInt();
return in;
}
public long[] longArr(int n) throws IOException {
long[]in=new long[n];for(int i=0;i<n;i++)in[i]=nextLong();
return in;
}
public int[] intSortedArr(int n) throws IOException {
int[]in=new int[n];for(int i=0;i<n;i++)in[i]=nextInt();
shuffle(in);
Arrays.sort(in);
return in;
}
public long[] longSortedArr(int n) throws IOException {
long[]in=new long[n];for(int i=0;i<n;i++)in[i]=nextLong();
shuffle(in);
Arrays.sort(in);
return in;
}
public Integer[] IntegerArr(int n) throws IOException {
Integer[]in=new Integer[n];for(int i=0;i<n;i++)in[i]=nextInt();
return in;
}
public Long[] LongArr(int n) throws IOException {
Long[]in=new Long[n];for(int i=0;i<n;i++)in[i]=nextLong();
return in;
}
public String nextLine() throws IOException {
return br.readLine();
}
public int nextInt() throws IOException {
return Integer.parseInt(next());
}
public double nextDouble() throws IOException {
return Double.parseDouble(next());
}
public char nextChar() throws IOException {
return next().charAt(0);
}
public long nextLong() throws IOException {
return Long.parseLong(next());
}
public boolean ready() throws IOException {
return br.ready();
}
public void waitForInput() throws InterruptedException {
Thread.sleep(3000);
}
}
static void shuffle(int[]in) {
for(int i=0;i<in.length;i++) {
int idx=(int)(Math.random()*in.length);
int tmp=in[i];
in[i]=in[idx];
in[idx]=tmp;
}
}
static void shuffle(long[]in) {
for(int i=0;i<in.length;i++) {
int idx=(int)(Math.random()*in.length);
long tmp=in[i];
in[i]=in[idx];
in[idx]=tmp;
}
}
}
|
Java
|
["5 6\n1 2 3\n2 3 4\n3 4 5\n4 5 6\n1 5 1\n2 4 2", "3 2\n1 2 1\n2 3 2"]
|
4 seconds
|
["0 98 49 25 114", "0 -1 9"]
|
NoteThe graph in the first example looks like this.In the second example the path from $$$1$$$ to $$$3$$$ goes through $$$2$$$, so the resulting payment is $$$(1 + 2)^2 = 9$$$.
|
Java 8
|
standard input
|
[
"binary search",
"brute force",
"constructive algorithms",
"dp",
"flows",
"graphs",
"shortest paths"
] |
abee4d188bb59d82fcf4579c7416a343
|
First line contains two integers $$$n$$$, $$$m$$$ ($$$2 \leq n \leq 10^5$$$, $$$1 \leq m \leq min(\frac{n \cdot (n - 1)}{2}, 2 \cdot 10^5)$$$). Next $$$m$$$ lines each contain three integers $$$v_i$$$, $$$u_i$$$, $$$w_i$$$ ($$$1 \leq v_i, u_i \leq n$$$, $$$1 \leq w_i \leq 50$$$, $$$u_i \neq v_i$$$). It's guaranteed that there are no multiple edges, i.e. for any edge $$$(u_i, v_i)$$$ there are no other edges $$$(u_i, v_i)$$$ or $$$(v_i, u_i)$$$.
| 2,200
|
For every city $$$t$$$ print one integer. If there is no correct path between $$$1$$$ and $$$t$$$ output $$$-1$$$. Otherwise print out the minimum amount of money needed to travel from $$$1$$$ to $$$t$$$.
|
standard output
| |
PASSED
|
1c79e71906596be9ddd89d837c611562
|
train_110.jsonl
|
1613658900
|
There are $$$n$$$ cities and $$$m$$$ bidirectional roads in the country. The roads in the country form an undirected weighted graph. The graph is not guaranteed to be connected. Each road has it's own parameter $$$w$$$. You can travel through the roads, but the government made a new law: you can only go through two roads at a time (go from city $$$a$$$ to city $$$b$$$ and then from city $$$b$$$ to city $$$c$$$) and you will have to pay $$$(w_{ab} + w_{bc})^2$$$ money to go through those roads. Find out whether it is possible to travel from city $$$1$$$ to every other city $$$t$$$ and what's the minimum amount of money you need to get from $$$1$$$ to $$$t$$$.
|
512 megabytes
|
import java.io.BufferedWriter;
import java.io.IOException;
import java.io.InputStream;
import java.io.OutputStreamWriter;
import java.math.BigInteger;
import java.math.BigDecimal;
import java.math.MathContext;
import java.math.RoundingMode;
import java.util.ArrayDeque;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Collections;
import java.util.HashMap;
import java.util.HashSet;
import java.util.Locale;
import java.util.Map.Entry;
import java.util.PriorityQueue;
import java.util.Random;
import java.util.Scanner;
import java.util.TreeSet;
public final class CF_703_D2_E {
static boolean verb=true;
static void log(Object X){if (verb) System.err.println(X);}
static void log(Object[] X){if (verb) {for (Object U:X) System.err.print(U+" ");System.err.println("");}}
static void log(int[] X){if (verb) {for (int U:X) System.err.print(U+" ");System.err.println("");}}
static void log(int[] X,int L){if (verb) {for (int i=0;i<L;i++) System.err.print(X[i]+" ");System.err.println("");}}
static void log(long[] X){if (verb) {for (long U:X) System.err.print(U+" ");System.err.println("");}}
static void logWln(Object X){if (verb) System.err.print(X);}
static void info(Object o){ System.out.println(o);}
static void output(Object o){outputWln(""+o+"\n"); }
static void outputWln(Object o){try {out.write(""+ o);} catch (Exception e) {}}
// Global vars
static BufferedWriter out;
static InputReader reader;
static long powerMod(long b,long e,long m){
long x=1;
while (e>0) {
if (e%2==1)
x=(b*x)%m;
b=(b*b)%m;
e=e/2;
}
return x;
}
/*
static void test() {
log("testing");
Random r=new Random();
int NTESTS=1000000000;
int NMAX=40;
//int MMAX=10000;
int VMAX=50;
for( int t=0;t<NTESTS;t++) {
int n=r.nextInt(NMAX)+2;
int MMAX=(n*(n-1))/2;
int m=r.nextInt(MMAX)+1;
HashSet<String> hs=new HashSet<String>();
ArrayList<Integer>[] friends=new ArrayList[n];
ArrayList<Integer>[] cost=new ArrayList[n];
for (int u=0;u<n;u++) {
friends[u]=new ArrayList<Integer>();
cost[u]=new ArrayList<Integer>();
}
StringBuffer script=new StringBuffer();
for (int i=0;i<m;i++) {
boolean goon=true;
while (goon) {
int u=r.nextInt(n);
int v=r.nextInt(n);
if (u!=v) {
if (u>v) {
int w=u;
u=v;
v=w;
}
String s=u+" "+v;
if (!hs.contains(s)) {
hs.add(s);
goon=false;
int w=r.nextInt(VMAX)+1;
friends[u].add(v);
friends[v].add(u);
cost[u].add(w);
cost[v].add(w);
script.append((u+1)+" "+(v+1)+" "+w+"\n");
}
}
}
}
long[] ans1=solveSubtil(friends,cost);
long[] ans2=solveBourrin(friends,cost);
for (int i=0;i<n;i++) {
if (ans1[i]!=ans2[i]) {
log("Error");
log(n+" "+m);
log(script);
log(ans1);
log(ans2);
return;
}
}
}
log("done");
}
*/
static int sign(int x) {
if (x>0)
return 1;
if (x==0)
return 0;
return -1;
}
static class Segment implements Comparable<Segment>{
int a;
int b;
public int compareTo(Segment X) {
if (a!=X.a)
return a-X.a;
if (b!=X.b)
return b-X.b;
return 0;
}
public Segment(int a, int b) {
this.a = a;
this.b = b;
}
}
static int order;
static int BYA=0;
static int BYB=1;
static class Composite implements Comparable<Composite>{
int p;
long v;
int idx;
int temp;
public int compareTo(Composite X) {
if (v<X.v)
return -1;
if (v>X.v)
return 1;
if (p!=X.p)
return p-X.p;
if (temp!=X.temp)
return temp-X.temp;
return idx-X.idx;
}
public Composite(int p, long v, int idx, int temp) {
this.p = p;
this.v = v;
this.idx = idx;
this.temp = temp;
}
public String toString() {
return "p:"+p+" dist:"+v+" node:"+(idx+1)+" temp:"+temp;
}
}
static class BIT {
int[] tree;
int N;
BIT(int N){
tree=new int[N+1];
this.N=N;
}
void add(int idx,int val){
idx++;
while (idx<=N){
tree[idx]+=val;
idx+=idx & (-idx);
}
}
int read(int idx){
idx++;
int sum=0;
while (idx>0){
sum+=tree[idx];
idx-=idx & (-idx);
}
return sum;
}
}
static ArrayList<ArrayList<Integer>> generatePermutations(ArrayList<Integer> items){
ArrayList<ArrayList<Integer>> globalRes=new ArrayList<ArrayList<Integer>>();
if (items.size()>1) {
for (Integer item:items){
ArrayList<Integer> itemsTmp=new ArrayList<Integer>(items);
itemsTmp.remove(item);
ArrayList<ArrayList<Integer>> res=generatePermutations(itemsTmp);
for (ArrayList<Integer> list:res){
list.add(item);
}
globalRes.addAll(res);
}
}
else {
Integer item=items.get(0);
ArrayList<Integer> list=new ArrayList<Integer>();
list.add(item);
globalRes.add(list);
}
return globalRes;
}
static int VX=51;
static long[] solveSubtil(int[][] friends,int[][] cost) {
int n=friends.length;
long[] ct=new long[n];
Arrays.fill(ct,MX);
ct[0]=0;
long[][] cst=new long[VX][n];
for (int e=0;e<VX;e++)
Arrays.fill(cst[e],MX);
//int[] tmp=new int[n];
PriorityQueue<Composite> pq=new PriorityQueue<Composite>();
pq.add(new Composite(0,0,0,0));
while (pq.size()>0) {
Composite X=pq.poll();
// don't process obsolete values
//if (X.v==cst[X.p][X.idx])
{
//log("processing X:"+X);
int u=X.idx;
int L=friends[u].length;
int p=X.p;
for (int t=0;t<L;t++) {
int node=friends[u][t];
int price=cost[u][t];
//log("considering node:"+(node+1));
if (p==0) {
long dist=cst[price][node];
if (dist>X.v) {
cst[price][node]=X.v;
//tmp[node]=price;
Composite Y=new Composite(1-p,X.v,node,price);
pq.add(Y);
//log("--adding : "+Y);
} else {
//log("--not interesting");
}
} else {
long nextDest=X.v+(X.temp+price)*(X.temp+price);
if (ct[node]>nextDest) {
ct[node]=nextDest;
Composite Y=new Composite(1-p,nextDest,node,0);
pq.add(Y);
//log("--adding : "+Y);
} else {
//log("--not interesting");
}
}
}
}
}
////logWln("cst1:");
////log(cst[1]);
return ct;
}
static long[] solveSubtilSlow(ArrayList<Integer>[] friends,ArrayList<Integer>[] cost) {
int n=friends.length;
long[][] cst=new long[2][n];
for (int e=0;e<2;e++)
Arrays.fill(cst[e],MX);
cst[0][0]=0;
//int[] tmp=new int[n];
Composite[][] ref=new Composite[2][n];
for (int e=0;e<2;e++)
for (int i=0;i<n;i++)
ref[e][i]=new Composite(e,cst[e][i],i,0);
PriorityQueue<Composite> pq=new PriorityQueue<Composite>();
pq.add(ref[0][0]);
while (pq.size()>0) {
Composite X=pq.poll();
// don't process obsolete values
//if (X.v==cst[X.p][X.idx])
{
//log("processing X:"+X);
int u=X.idx;
int L=friends[u].size();
int p=X.p;
for (int t=0;t<L;t++) {
int node=friends[u].get(t);
int price=cost[u].get(t);
long dst=cst[1-p][node];
//log("considering node:"+(node+1));
if (p==0) {
long worstv=dst+(100*100);
long best=X.v+(price+1)*(price+1);
if (worstv>best) {
cst[1-p][node]=X.v;
//tmp[node]=price;
Composite Y=new Composite(1-p,X.v,node,price);
pq.add(Y);
//log("--adding");
} else {
//log("--not interesting // "+worstv+" "+best);
}
} else {
long nextDest=X.v+(X.temp+price)*(X.temp+price);
if (dst>nextDest) {
cst[1-p][node]=nextDest;
Composite Y=new Composite(1-p,nextDest,node,0);
pq.add(Y);
//log("--adding");
} else {
//log("--not interesting");
}
}
}
}
}
//logWln("cst1:");
//log(cst[1]);
return cst[0];
}
static long MX=Long.MAX_VALUE/2;
static long[] solveBourrin(int[][] friends,int[][] cost) {
int n=friends.length;
long[] cst=new long[n];
Arrays.fill(cst,MX);
cst[0]=0;
int[] tmp=new int[n];
Composite[] ref=new Composite[n];
for (int i=0;i<n;i++)
ref[i]=new Composite(0,cst[i],i,0);
PriorityQueue<Composite> pq=new PriorityQueue<Composite>();
pq.add(ref[0]);
while (pq.size()>0) {
Composite X=pq.poll();
int u=X.idx;
int LU=friends[u].length;
for (int tu=0;tu<LU;tu++) {
int v=friends[u][tu];
int cv=cost[u][tu];
int LV=friends[v].length;
for (int tv=0;tv<LV;tv++) {
int w=friends[v][tv];
int cw=cost[v][tv];
long diff=(cw+cv);
diff*=diff;
long nxt=X.v+diff;
if (cst[w]>nxt) {
cst[w]=nxt;
pq.add(new Composite(0,cst[w],w,0));
}
}
}
}
return cst;
}
static long mod=1000000007;
static void process() throws Exception {
out = new BufferedWriter(new OutputStreamWriter(System.out));
reader=new InputReader(System.in);
Locale.setDefault(Locale.US);
//test();
int n=reader.readInt();
int m=reader.readInt();
int[] ed=new int[m];
int[] to=new int[m];
int[] from=new int[m];
int[] cst=new int[m];
int[] ptr=new int[n];
for (int i=0;i<m;i++) {
int u=reader.readInt()-1;
int v=reader.readInt()-1;
int w=reader.readInt();
ptr[u]++;
ptr[v]++;
from[i]=u;
to[i]=v;
cst[i]=w;
}
int[][] friends=new int[n][];
int[][] cost=new int[n][];
for (int i=0;i<n;i++) {
friends[i]=new int[ptr[i]];
cost[i]=new int[ptr[i]];
}
for (int i=0;i<m;i++) {
int u=from[i];
int v=to[i];
int w=cst[i];
friends[u][ptr[u]-1]=v;
cost[u][ptr[u]-1]=w;
friends[v][ptr[v]-1]=u;
cost[v][ptr[v]-1]=w;
ptr[u]--;
ptr[v]--;
}
//long[] ans=solveBourrin(friends,cost);
long[] ans=solveSubtil(friends,cost);
//log(ans);
//log(alt);
for (long x:ans) {
if (x!=MX)
outputWln(x+" ");
else
outputWln("-1 ");
}
output("");
try {
out.close();
}
catch (Exception EX){}
}
public static void main(String[] args) throws Exception {
process();
}
static final class InputReader {
private final InputStream stream;
private final byte[] buf = new byte[1024];
private int curChar;
private int numChars;
public InputReader(InputStream stream) {
this.stream = stream;
}
private int read() throws IOException {
if (curChar >= numChars) {
curChar = 0;
numChars = stream.read(buf);
if (numChars <= 0) {
return -1;
}
}
return buf[curChar++];
}
public final String readString() throws IOException {
int c = read();
while (isSpaceChar(c)) {
c = read();
}
StringBuilder res=new StringBuilder();
do {
res.append((char)c);
c = read();
} while (!isSpaceChar(c));
return res.toString();
}
public final int readInt() throws IOException {
int c = read();
boolean neg=false;
while (isSpaceChar(c)) {
c = read();
}
char d=(char)c;
//log("d:"+d);
if (d=='-') {
neg=true;
c = read();
}
int res = 0;
do {
res *= 10;
res += c - '0';
c = read();
} while (!isSpaceChar(c));
//log("res:"+res);
if (neg)
return -res;
return res;
}
public final long readLong() throws IOException {
int c = read();
boolean neg=false;
while (isSpaceChar(c)) {
c = read();
}
char d=(char)c;
//log("d:"+d);
if (d=='-') {
neg=true;
c = read();
}
long res = 0;
do {
res *= 10;
res += c - '0';
c = read();
} while (!isSpaceChar(c));
//log("res:"+res);
if (neg)
return -res;
return res;
}
private boolean isSpaceChar(int c) {
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
}
}
|
Java
|
["5 6\n1 2 3\n2 3 4\n3 4 5\n4 5 6\n1 5 1\n2 4 2", "3 2\n1 2 1\n2 3 2"]
|
4 seconds
|
["0 98 49 25 114", "0 -1 9"]
|
NoteThe graph in the first example looks like this.In the second example the path from $$$1$$$ to $$$3$$$ goes through $$$2$$$, so the resulting payment is $$$(1 + 2)^2 = 9$$$.
|
Java 8
|
standard input
|
[
"binary search",
"brute force",
"constructive algorithms",
"dp",
"flows",
"graphs",
"shortest paths"
] |
abee4d188bb59d82fcf4579c7416a343
|
First line contains two integers $$$n$$$, $$$m$$$ ($$$2 \leq n \leq 10^5$$$, $$$1 \leq m \leq min(\frac{n \cdot (n - 1)}{2}, 2 \cdot 10^5)$$$). Next $$$m$$$ lines each contain three integers $$$v_i$$$, $$$u_i$$$, $$$w_i$$$ ($$$1 \leq v_i, u_i \leq n$$$, $$$1 \leq w_i \leq 50$$$, $$$u_i \neq v_i$$$). It's guaranteed that there are no multiple edges, i.e. for any edge $$$(u_i, v_i)$$$ there are no other edges $$$(u_i, v_i)$$$ or $$$(v_i, u_i)$$$.
| 2,200
|
For every city $$$t$$$ print one integer. If there is no correct path between $$$1$$$ and $$$t$$$ output $$$-1$$$. Otherwise print out the minimum amount of money needed to travel from $$$1$$$ to $$$t$$$.
|
standard output
| |
PASSED
|
7d9e454d762d48fa9377a491af29b03a
|
train_110.jsonl
|
1613658900
|
There are $$$n$$$ cities and $$$m$$$ bidirectional roads in the country. The roads in the country form an undirected weighted graph. The graph is not guaranteed to be connected. Each road has it's own parameter $$$w$$$. You can travel through the roads, but the government made a new law: you can only go through two roads at a time (go from city $$$a$$$ to city $$$b$$$ and then from city $$$b$$$ to city $$$c$$$) and you will have to pay $$$(w_{ab} + w_{bc})^2$$$ money to go through those roads. Find out whether it is possible to travel from city $$$1$$$ to every other city $$$t$$$ and what's the minimum amount of money you need to get from $$$1$$$ to $$$t$$$.
|
512 megabytes
|
/**
* BaZ :D
*/
import java.util.*;
import java.io.*;
import static java.lang.Math.*;
public class Main
{
static MyScanner scan;
static PrintWriter pw;
static long MOD = 1_000_000_007;
static long INF = 2_000_000_000_000_000_000L;
static long inf = 2_000_000_000;
public static void main(String[] args) {
new Thread(null, null, "BaZ", 1 << 27) {
public void run() {
try {
solve();
} catch (Exception e) {
e.printStackTrace();
System.exit(1);
}
}
}.start();
}
static void solve() throws java.lang.Exception {
//initIo(true, "");
initIo(false, "");
StringBuilder sb = new StringBuilder();
int n = ni(), m = ni();
ArrayList<Pair> adj[] = new ArrayList[n+1];
for(int i=1;i<=n;i++) {
adj[i] = new ArrayList<>();
}
for(int i=0;i<m;i++) {
int u = ni(), v = ni(), w = ni();
adj[u].add(new Pair(v,w));
adj[v].add(new Pair(u,w));
}
boolean vis[][] = new boolean[n+1][51];
int dis[][] = new int[n+1][51];
for(int i=1;i<=n;i++) {
for(int j=0;j<=50;j++) {
dis[i][j] = Integer.MAX_VALUE;
}
}
PriorityQueue<Pair> queue = new PriorityQueue<>();
queue.add(new Pair(0, (n+1) * 0 + 1));
dis[1][0] = 0;
while (!queue.isEmpty()) {
Pair curr = queue.poll();
int v = curr.y % (n+1);
int last_weight = curr.y / (n+1);
if(vis[v][last_weight]) {
continue;
}
vis[v][last_weight] = true;
for(Pair p : adj[v]) {
if(last_weight==0) {
if(!vis[p.x][p.y] && dis[p.x][p.y] > curr.x) {
dis[p.x][p.y] = curr.x;
queue.add(new Pair(curr.x, (n+1) * p.y + p.x));
}
}
else {
if(!vis[p.x][0] && dis[p.x][0] > curr.x + (last_weight + p.y) * (last_weight + p.y)) {
dis[p.x][0] = curr.x + (last_weight + p.y) * (last_weight + p.y);
queue.add(new Pair(dis[p.x][0], (n+1) * 0 + p.x));
}
}
}
}
for(int i=1;i<=n;i++) {
if(dis[i][0]==Integer.MAX_VALUE) {
p(-1);
}
else {
p(dis[i][0]);
}
}
pl();
pw.flush();
pw.close();
}
static class Pair implements Comparable<Pair>
{
int x,y;
Pair(int x,int y)
{
this.x=x;
this.y=y;
}
public int compareTo(Pair other)
{
if(this.x!=other.x)
return this.x-other.x;
return this.y-other.y;
}
public String toString()
{
return "("+x+","+y+")";
}
}
static void assert_in_range(String varName, int n, int l, int r) {
if (n >=l && n<=r) return;
System.out.println(varName + " is not in range. Actual: "+n+" l : "+l+" r: "+r);
System.exit(1);
}
static void assert_in_range(String varName, long n, long l, long r) {
if (n>=l && n<=r) return;
System.out.println(varName + " is not in range. Actual: "+n+" l : "+l+" r: "+r);
System.exit(1);
}
static void initIo(boolean isFileIO, String suffix) throws IOException {
scan = new MyScanner(isFileIO, suffix);
if(isFileIO) {
pw = new PrintWriter("/Users/amandeep/Desktop/output"+suffix+".txt");
}
else {
pw = new PrintWriter(System.out, true);
}
}
static int ni() throws IOException
{
return scan.nextInt();
}
static long nl() throws IOException
{
return scan.nextLong();
}
static double nd() throws IOException
{
return scan.nextDouble();
}
static String ne() throws IOException
{
return scan.next();
}
static String nel() throws IOException
{
return scan.nextLine();
}
static void pl()
{
pw.println();
}
static void p(Object o)
{
pw.print(o+" ");
}
static void pl(Object o)
{
pw.println(o);
}
static void psb(StringBuilder sb)
{
pw.print(sb);
}
static void pa(String arrayName, Object arr[])
{
pl(arrayName+" : ");
for(Object o : arr)
p(o);
pl();
}
static void pa(String arrayName, int arr[])
{
pl(arrayName+" : ");
for(int o : arr)
p(o);
pl();
}
static void pa(String arrayName, long arr[])
{
pl(arrayName+" : ");
for(long o : arr)
p(o);
pl();
}
static void pa(String arrayName, double arr[])
{
pl(arrayName+" : ");
for(double o : arr)
p(o);
pl();
}
static void pa(String arrayName, char arr[])
{
pl(arrayName+" : ");
for(char o : arr)
p(o);
pl();
}
static void pa(String arrayName, boolean arr[])
{
pl(arrayName+" : ");
for(boolean o : arr)
p(o);
pl();
}
static void pa(String listName, List list)
{
pl(listName+" : ");
for(Object o : list)
p(o);
pl();
}
static void pa(String arrayName, Object[][] arr) {
pl(arrayName+" : ");
for(int i=0;i<arr.length;++i) {
for(Object o : arr[i])
p(o);
pl();
}
}
static void pa(String arrayName, int[][] arr) {
pl(arrayName+" : ");
for(int i=0;i<arr.length;++i) {
for(int o : arr[i])
p(o);
pl();
}
}
static void pa(String arrayName, long[][] arr) {
pl(arrayName+" : ");
for(int i=0;i<arr.length;++i) {
for(long o : arr[i])
p(o);
pl();
}
}
static void pa(String arrayName, char[][] arr) {
pl(arrayName+" : ");
for(int i=0;i<arr.length;++i) {
for(char o : arr[i])
p(o);
pl();
}
}
static void pa(String arrayName, double[][] arr) {
pl(arrayName+" : ");
for(int i=0;i<arr.length;++i) {
for(double o : arr[i])
p(o);
pl();
}
}
static void pa(String arrayName, boolean[][] arr) {
pl(arrayName+" : ");
for(int i=0;i<arr.length;++i) {
for(boolean o : arr[i])
p(o);
pl();
}
}
static class MyScanner
{
BufferedReader br;
StringTokenizer st;
MyScanner(boolean readingFromFile, String suffix) throws IOException
{
if(readingFromFile) {
br = new BufferedReader(new FileReader("/Users/amandeep/Desktop/input"+suffix+".txt"));
}
else {
br = new BufferedReader(new InputStreamReader(System.in));
}
}
String nextLine()throws IOException
{
return br.readLine();
}
String next() throws IOException
{
if(st==null || !st.hasMoreTokens())
st = new StringTokenizer(br.readLine());
return st.nextToken();
}
int nextInt() throws IOException
{
return Integer.parseInt(next());
}
long nextLong() throws IOException
{
return Long.parseLong(next());
}
double nextDouble() throws IOException
{
return Double.parseDouble(next());
}
}
}
|
Java
|
["5 6\n1 2 3\n2 3 4\n3 4 5\n4 5 6\n1 5 1\n2 4 2", "3 2\n1 2 1\n2 3 2"]
|
4 seconds
|
["0 98 49 25 114", "0 -1 9"]
|
NoteThe graph in the first example looks like this.In the second example the path from $$$1$$$ to $$$3$$$ goes through $$$2$$$, so the resulting payment is $$$(1 + 2)^2 = 9$$$.
|
Java 8
|
standard input
|
[
"binary search",
"brute force",
"constructive algorithms",
"dp",
"flows",
"graphs",
"shortest paths"
] |
abee4d188bb59d82fcf4579c7416a343
|
First line contains two integers $$$n$$$, $$$m$$$ ($$$2 \leq n \leq 10^5$$$, $$$1 \leq m \leq min(\frac{n \cdot (n - 1)}{2}, 2 \cdot 10^5)$$$). Next $$$m$$$ lines each contain three integers $$$v_i$$$, $$$u_i$$$, $$$w_i$$$ ($$$1 \leq v_i, u_i \leq n$$$, $$$1 \leq w_i \leq 50$$$, $$$u_i \neq v_i$$$). It's guaranteed that there are no multiple edges, i.e. for any edge $$$(u_i, v_i)$$$ there are no other edges $$$(u_i, v_i)$$$ or $$$(v_i, u_i)$$$.
| 2,200
|
For every city $$$t$$$ print one integer. If there is no correct path between $$$1$$$ and $$$t$$$ output $$$-1$$$. Otherwise print out the minimum amount of money needed to travel from $$$1$$$ to $$$t$$$.
|
standard output
| |
PASSED
|
db23a38f9396f27f20395fb838068ccb
|
train_110.jsonl
|
1613658900
|
There are $$$n$$$ cities and $$$m$$$ bidirectional roads in the country. The roads in the country form an undirected weighted graph. The graph is not guaranteed to be connected. Each road has it's own parameter $$$w$$$. You can travel through the roads, but the government made a new law: you can only go through two roads at a time (go from city $$$a$$$ to city $$$b$$$ and then from city $$$b$$$ to city $$$c$$$) and you will have to pay $$$(w_{ab} + w_{bc})^2$$$ money to go through those roads. Find out whether it is possible to travel from city $$$1$$$ to every other city $$$t$$$ and what's the minimum amount of money you need to get from $$$1$$$ to $$$t$$$.
|
512 megabytes
|
import java.io.*;
import java.util.*;
/*
polyakoff
*/
public class Main {
static FastReader in;
static PrintWriter out;
static Random rand = new Random();
static final int oo = (int) 1e9 + 10;
static final long OO = (long) 2e18 + 10;
static final int MOD = (int) 1e9 + 7;
static class Edge {
int v, w;
Edge(int v, int w) {
this.v = v;
this.w = w;
}
}
static class State {
int v, x;
long d;
State(int v, int x, long d) {
this.v = v;
this.x = x;
this.d = d;
}
}
static long square(long x) {
return x * x;
}
static void solve() {
int n = in.nextInt();
int m = in.nextInt();
ArrayList<Edge>[] g = new ArrayList[n]; Arrays.setAll(g, i -> new ArrayList<>());
for (int i = 0; i < m; i++) {
int v = in.nextInt() - 1;
int u = in.nextInt() - 1;
int w = in.nextInt();
g[v].add(new Edge(u, w));
g[u].add(new Edge(v, w));
}
// dijkstra
long[][] dp = new long[n][51];
for (int i = 0; i < n; i++) {
Arrays.fill(dp[i], -1);
}
dp[0][0] = 0;
TreeSet<State> set = new TreeSet<>((o1, o2) -> {
if (o1.d == o2.d)
return Integer.compare(o1.x * n + o1.v, o2.x * n + o2.v);
return Long.compare(o1.d, o2.d);
});
set.add(new State(0, 0, dp[0][0]));
while (!set.isEmpty()) {
State st0 = set.pollFirst();
int v = st0.v;
int x = st0.x;
long d = st0.d;
for (Edge e : g[st0.v]) {
if (x == 0) {
if (dp[e.v][e.w] == -1 || dp[v][0] < dp[e.v][e.w]) {
if (dp[e.v][e.w] != -1)
set.remove(new State(e.v, e.w, dp[e.v][e.w]));
dp[e.v][e.w] = dp[v][0];
set.add(new State(e.v, e.w, dp[e.v][e.w]));
}
} else {
if (dp[e.v][0] == -1 || d + square(x + e.w) < dp[e.v][0]) {
if (dp[e.v][0] != -1)
set.remove(new State(e.v, 0, dp[e.v][0]));
dp[e.v][0] = d + square(x + e.w);
set.add(new State(e.v, 0, dp[e.v][0]));
}
}
}
}
for (int i = 0; i < n; i++) {
out.print(dp[i][0] + " ");
}
out.println();
}
public static void main(String[] args) {
in = new FastReader();
out = new PrintWriter(System.out);
int T = 1;
// T = in.nextInt();
while (T-- > 0)
solve();
out.flush();
out.close();
}
static class FastReader {
BufferedReader br;
StringTokenizer st;
FastReader() {
this(System.in);
}
FastReader(String file) throws FileNotFoundException {
this(new FileInputStream(file));
}
FastReader(InputStream is) {
br = new BufferedReader(new InputStreamReader(is));
}
int nextInt() {
return Integer.parseInt(next());
}
long nextLong() {
return Long.parseLong(next());
}
double nextDouble() {
return Double.parseDouble(next());
}
String next() {
while (st == null || !st.hasMoreTokens()) {
st = new StringTokenizer(nextLine());
}
return st.nextToken();
}
String nextLine() {
String line;
try {
line = br.readLine();
} catch (IOException e) {
throw new RuntimeException(e);
}
return line;
}
}
}
|
Java
|
["5 6\n1 2 3\n2 3 4\n3 4 5\n4 5 6\n1 5 1\n2 4 2", "3 2\n1 2 1\n2 3 2"]
|
4 seconds
|
["0 98 49 25 114", "0 -1 9"]
|
NoteThe graph in the first example looks like this.In the second example the path from $$$1$$$ to $$$3$$$ goes through $$$2$$$, so the resulting payment is $$$(1 + 2)^2 = 9$$$.
|
Java 8
|
standard input
|
[
"binary search",
"brute force",
"constructive algorithms",
"dp",
"flows",
"graphs",
"shortest paths"
] |
abee4d188bb59d82fcf4579c7416a343
|
First line contains two integers $$$n$$$, $$$m$$$ ($$$2 \leq n \leq 10^5$$$, $$$1 \leq m \leq min(\frac{n \cdot (n - 1)}{2}, 2 \cdot 10^5)$$$). Next $$$m$$$ lines each contain three integers $$$v_i$$$, $$$u_i$$$, $$$w_i$$$ ($$$1 \leq v_i, u_i \leq n$$$, $$$1 \leq w_i \leq 50$$$, $$$u_i \neq v_i$$$). It's guaranteed that there are no multiple edges, i.e. for any edge $$$(u_i, v_i)$$$ there are no other edges $$$(u_i, v_i)$$$ or $$$(v_i, u_i)$$$.
| 2,200
|
For every city $$$t$$$ print one integer. If there is no correct path between $$$1$$$ and $$$t$$$ output $$$-1$$$. Otherwise print out the minimum amount of money needed to travel from $$$1$$$ to $$$t$$$.
|
standard output
| |
PASSED
|
1c3c35dbacbcf095f3628baab2ab8a31
|
train_110.jsonl
|
1613658900
|
There are $$$n$$$ cities and $$$m$$$ bidirectional roads in the country. The roads in the country form an undirected weighted graph. The graph is not guaranteed to be connected. Each road has it's own parameter $$$w$$$. You can travel through the roads, but the government made a new law: you can only go through two roads at a time (go from city $$$a$$$ to city $$$b$$$ and then from city $$$b$$$ to city $$$c$$$) and you will have to pay $$$(w_{ab} + w_{bc})^2$$$ money to go through those roads. Find out whether it is possible to travel from city $$$1$$$ to every other city $$$t$$$ and what's the minimum amount of money you need to get from $$$1$$$ to $$$t$$$.
|
512 megabytes
|
import java.util.*;
import java.io.*;
import java.math.*;
/**
*
* @Har_Har_Mahadev
*/
public class E {
private static long INF = 2000000000000000000L, M = 1000000007, MM = 998244353;
private static int N = 0;
static ArrayList<Edge>[] edges;
public static void process() throws IOException {
int N = sc.nextInt();
int M = sc.nextInt();
edges = new ArrayList[N];
for(int i=0; i < N; i++)
edges[i] = new ArrayList<E.Edge>();
while(M-->0)
{
int u = sc.nextInt()-1;
int v = sc.nextInt()-1;
int w = sc.nextInt();
edges[u].add(new Edge(v, w));
edges[v].add(new Edge(u, w));
}
long[][] dp = new long[N][51];
for(int i=0; i < N; i++)
Arrays.fill(dp[i], INF);
boolean[][] seen = new boolean[N][51];
PriorityQueue<Node> pq = new PriorityQueue<Node>();
pq.add(new Node(0, 0, 0L));
dp[0][0] = 0L;
while(pq.size() > 0)
{
Node curr = pq.poll();
if(seen[curr.id][curr.tag])
continue;
seen[curr.id][curr.tag] = true;
for(Edge e: edges[curr.id])
{
if(curr.tag == 0)
{
if(dp[e.to][e.weight] > curr.dist)
{
dp[e.to][e.weight] = curr.dist;
pq.add(new Node(e.to, e.weight, curr.dist));
}
}
else
{
int add = (e.weight+curr.tag)*(e.weight+curr.tag);
if(dp[e.to][0] > curr.dist+add)
{
dp[e.to][0] = curr.dist+add;
pq.add(new Node(e.to, 0, curr.dist+add));
}
}
}
}
for(int v=0; v < N; v++)
{
if(dp[v][0] == INF)
dp[v][0] = -1;
print(dp[v][0]+" ");
}
println();
}
static class Node implements Comparable<Node>
{
public int id;
public int tag;
public long dist;
public Node(int a, int b, long d)
{
id = a;
tag = b;
dist = d;
}
public int compareTo(Node oth)
{
return Long.compare(dist, oth.dist);
}
}
static class Edge
{
public int to;
public int weight;
public Edge(int a, int b)
{
to = a;
weight = b;
}
}
//=============================================================================
//--------------------------The End---------------------------------
//=============================================================================
static FastScanner sc;
static PrintWriter out;
public static void main(String[] args) throws IOException {
boolean oj = true;
if (oj) {
sc = new FastScanner();
out = new PrintWriter(System.out);
} else {
sc = new FastScanner(100);
out = new PrintWriter("output.txt");
}
int t = 1;
// t = sc.nextInt();
while (t-- > 0) {
process();
}
out.flush();
out.close();
}
static class Pair implements Comparable<Pair> {
int x, y;
Pair(int x, int y) {
this.x = x;
this.y = y;
}
@Override
public int compareTo(Pair o) {
return Integer.compare(this.x, o.x);
}
// @Override
// public boolean equals(Object o) {
// if (this == o) return true;
// if (!(o instanceof Pair)) return false;
// Pair key = (Pair) o;
// return x == key.x && y == key.y;
// }
//
// @Override
// public int hashCode() {
// int result = x;
// result = 31 * result + y;
// return result;
// }
}
/////////////////////////////////////////////////////////////////////////////////////////////////////////
static void println(Object o) {
out.println(o);
}
static void println() {
out.println();
}
static void print(Object o) {
out.print(o);
}
static void pflush(Object o) {
out.println(o);
out.flush();
}
static int ceil(int x, int y) {
return (x % y == 0 ? x / y : (x / y + 1));
}
static long ceil(long x, long y) {
return (x % y == 0 ? x / y : (x / y + 1));
}
static int max(int x, int y) {
return Math.max(x, y);
}
static int min(int x, int y) {
return Math.min(x, y);
}
static int abs(int x) {
return Math.abs(x);
}
static long abs(long x) {
return Math.abs(x);
}
static int log2(int N) {
int result = (int) (Math.log(N) / Math.log(2));
return result;
}
static long max(long x, long y) {
return Math.max(x, y);
}
static long min(long x, long y) {
return Math.min(x, y);
}
public static int gcd(int a, int b) {
BigInteger b1 = BigInteger.valueOf(a);
BigInteger b2 = BigInteger.valueOf(b);
BigInteger gcd = b1.gcd(b2);
return gcd.intValue();
}
public static long gcd(long a, long b) {
BigInteger b1 = BigInteger.valueOf(a);
BigInteger b2 = BigInteger.valueOf(b);
BigInteger gcd = b1.gcd(b2);
return gcd.longValue();
}
public static long lcm(long a, long b) {
return (a * b) / gcd(a, b);
}
public static int lcm(int a, int b) {
return (a * b) / gcd(a, b);
}
public static int lower_bound(int[] arr, int x) {
int low = 0, high = arr.length, mid = -1;
while (low < high) {
mid = (low + high) / 2;
if (arr[mid] >= x)
high = mid;
else
low = mid + 1;
}
return low;
}
public static int upper_bound(int[] arr, int x) {
int low = 0, high = arr.length, mid = -1;
while (low < high) {
mid = (low + high) / 2;
if (arr[mid] > x)
high = mid;
else
low = mid + 1;
}
return low;
}
/////////////////////////////////////////////////////////////////////////////////////////////////////////
static class FastScanner {
BufferedReader br;
StringTokenizer st;
FastScanner() throws FileNotFoundException {
br = new BufferedReader(new InputStreamReader(System.in));
}
FastScanner(int a) throws FileNotFoundException {
br = new BufferedReader(new FileReader("input.txt"));
}
String next() throws IOException {
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt() throws IOException {
return Integer.parseInt(next());
}
long nextLong() throws IOException {
return Long.parseLong(next());
}
double nextDouble() throws IOException {
return Double.parseDouble(next());
}
String nextLine() throws IOException {
String str = "";
try {
str = br.readLine();
} catch (IOException e) {
e.printStackTrace();
}
return str;
}
int[] readArray(int n) throws IOException {
int[] A = new int[n];
for (int i = 0; i != n; i++) {
A[i] = sc.nextInt();
}
return A;
}
long[] readArrayLong(int n) throws IOException {
long[] A = new long[n];
for (int i = 0; i != n; i++) {
A[i] = sc.nextLong();
}
return A;
}
}
static void ruffleSort(int[] a) {
Random get = new Random();
for (int i = 0; i < a.length; i++) {
int r = get.nextInt(a.length);
int temp = a[i];
a[i] = a[r];
a[r] = temp;
}
Arrays.sort(a);
}
static void ruffleSort(long[] a) {
Random get = new Random();
for (int i = 0; i < a.length; i++) {
int r = get.nextInt(a.length);
long temp = a[i];
a[i] = a[r];
a[r] = temp;
}
Arrays.sort(a);
}
}
|
Java
|
["5 6\n1 2 3\n2 3 4\n3 4 5\n4 5 6\n1 5 1\n2 4 2", "3 2\n1 2 1\n2 3 2"]
|
4 seconds
|
["0 98 49 25 114", "0 -1 9"]
|
NoteThe graph in the first example looks like this.In the second example the path from $$$1$$$ to $$$3$$$ goes through $$$2$$$, so the resulting payment is $$$(1 + 2)^2 = 9$$$.
|
Java 8
|
standard input
|
[
"binary search",
"brute force",
"constructive algorithms",
"dp",
"flows",
"graphs",
"shortest paths"
] |
abee4d188bb59d82fcf4579c7416a343
|
First line contains two integers $$$n$$$, $$$m$$$ ($$$2 \leq n \leq 10^5$$$, $$$1 \leq m \leq min(\frac{n \cdot (n - 1)}{2}, 2 \cdot 10^5)$$$). Next $$$m$$$ lines each contain three integers $$$v_i$$$, $$$u_i$$$, $$$w_i$$$ ($$$1 \leq v_i, u_i \leq n$$$, $$$1 \leq w_i \leq 50$$$, $$$u_i \neq v_i$$$). It's guaranteed that there are no multiple edges, i.e. for any edge $$$(u_i, v_i)$$$ there are no other edges $$$(u_i, v_i)$$$ or $$$(v_i, u_i)$$$.
| 2,200
|
For every city $$$t$$$ print one integer. If there is no correct path between $$$1$$$ and $$$t$$$ output $$$-1$$$. Otherwise print out the minimum amount of money needed to travel from $$$1$$$ to $$$t$$$.
|
standard output
| |
PASSED
|
848dde397f313fca9dc88a09e5237e34
|
train_110.jsonl
|
1613658900
|
There are $$$n$$$ cities and $$$m$$$ bidirectional roads in the country. The roads in the country form an undirected weighted graph. The graph is not guaranteed to be connected. Each road has it's own parameter $$$w$$$. You can travel through the roads, but the government made a new law: you can only go through two roads at a time (go from city $$$a$$$ to city $$$b$$$ and then from city $$$b$$$ to city $$$c$$$) and you will have to pay $$$(w_{ab} + w_{bc})^2$$$ money to go through those roads. Find out whether it is possible to travel from city $$$1$$$ to every other city $$$t$$$ and what's the minimum amount of money you need to get from $$$1$$$ to $$$t$$$.
|
512 megabytes
|
import java.io.BufferedReader;
import java.io.Closeable;
import java.io.IOException;
import java.io.InputStream;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.util.ArrayList;
import java.util.Comparator;
import java.util.List;
import java.util.PriorityQueue;
import java.util.StringTokenizer;
public class PairedPayment implements Closeable {
private InputReader in = new InputReader(System.in);
private PrintWriter out = new PrintWriter(System.out);
public void solve() {
read();
dijkstra();
for (int i = 0; i < n; i++) {
out.print(dist[i] == oo ? -1 : dist[i]);
out.print(' ');
}
}
private void read() {
n = in.ni();
m = in.ni();
graph = new ArrayList<>();
for (int i = 0; i <= n; i++) {
graph.add(new ArrayList<>());
}
for (int i = 0; i < m; i++) {
int from = in.ni() - 1, to = in.ni() - 1;
long weight = in.nl();
graph.get(from).add(new Edge(to, weight));
graph.get(to).add(new Edge(from, weight));
}
dist = new long[n];
for (int i = 0; i < n; i++) {
dist[i] = oo;
}
}
private final long oo = (long) 1e16;
private int n, m;
private long[] dist;
private List<List<Edge>> graph;
private class Edge {
private int to;
private long cost;
private Edge(int to, long cost) {
this.to = to;
this.cost = cost;
}
public long getCost() {
return cost;
}
}
private void dijkstra() {
PriorityQueue<Edge> queue = new PriorityQueue<>(Comparator.comparingLong(Edge::getCost));
queue.add(new Edge(0, 0));
dist[0] = 0;
while (queue.size() > 0) {
Edge top = queue.poll();
int u = top.to;
for (Edge first : graph.get(u)) {
long wa = first.cost;
for (Edge second : graph.get(first.to)) {
long wb = second.cost;
int v = second.to;
long relax = dist[u] + (wa + wb) * (wa + wb);
if (relax < dist[v]) {
queue.add(new Edge(v, relax));
dist[v] = relax;
}
}
}
}
}
@Override
public void close() throws IOException {
in.close();
out.close();
}
static class InputReader {
public BufferedReader reader;
public StringTokenizer tokenizer;
public InputReader(InputStream stream) {
reader = new BufferedReader(new InputStreamReader(stream), 32768);
tokenizer = null;
}
public String next() {
while (tokenizer == null || !tokenizer.hasMoreTokens()) {
try {
tokenizer = new StringTokenizer(reader.readLine());
} catch (IOException e) {
throw new RuntimeException(e);
}
}
return tokenizer.nextToken();
}
public int ni() {
return Integer.parseInt(next());
}
public long nl() {
return Long.parseLong(next());
}
public void close() throws IOException {
reader.close();
}
}
public static void main(String[] args) throws IOException {
try (PairedPayment instance = new PairedPayment()) {
instance.solve();
}
}
}
|
Java
|
["5 6\n1 2 3\n2 3 4\n3 4 5\n4 5 6\n1 5 1\n2 4 2", "3 2\n1 2 1\n2 3 2"]
|
4 seconds
|
["0 98 49 25 114", "0 -1 9"]
|
NoteThe graph in the first example looks like this.In the second example the path from $$$1$$$ to $$$3$$$ goes through $$$2$$$, so the resulting payment is $$$(1 + 2)^2 = 9$$$.
|
Java 8
|
standard input
|
[
"binary search",
"brute force",
"constructive algorithms",
"dp",
"flows",
"graphs",
"shortest paths"
] |
abee4d188bb59d82fcf4579c7416a343
|
First line contains two integers $$$n$$$, $$$m$$$ ($$$2 \leq n \leq 10^5$$$, $$$1 \leq m \leq min(\frac{n \cdot (n - 1)}{2}, 2 \cdot 10^5)$$$). Next $$$m$$$ lines each contain three integers $$$v_i$$$, $$$u_i$$$, $$$w_i$$$ ($$$1 \leq v_i, u_i \leq n$$$, $$$1 \leq w_i \leq 50$$$, $$$u_i \neq v_i$$$). It's guaranteed that there are no multiple edges, i.e. for any edge $$$(u_i, v_i)$$$ there are no other edges $$$(u_i, v_i)$$$ or $$$(v_i, u_i)$$$.
| 2,200
|
For every city $$$t$$$ print one integer. If there is no correct path between $$$1$$$ and $$$t$$$ output $$$-1$$$. Otherwise print out the minimum amount of money needed to travel from $$$1$$$ to $$$t$$$.
|
standard output
| |
PASSED
|
8848d25133efd7f6358f5e9b6f8ab9bb
|
train_110.jsonl
|
1613658900
|
There are $$$n$$$ cities and $$$m$$$ bidirectional roads in the country. The roads in the country form an undirected weighted graph. The graph is not guaranteed to be connected. Each road has it's own parameter $$$w$$$. You can travel through the roads, but the government made a new law: you can only go through two roads at a time (go from city $$$a$$$ to city $$$b$$$ and then from city $$$b$$$ to city $$$c$$$) and you will have to pay $$$(w_{ab} + w_{bc})^2$$$ money to go through those roads. Find out whether it is possible to travel from city $$$1$$$ to every other city $$$t$$$ and what's the minimum amount of money you need to get from $$$1$$$ to $$$t$$$.
|
512 megabytes
|
import java.io.*;
import java.util.*;
public class A {
static FastScanner fs;
public static void main(String[] args) {
fs=new FastScanner();
// int t = fs.nextInt();
// while (t-->0)
solve();
}
public static void solve() {
int n = fs.nextInt();
int m = fs.nextInt();
HashMap<Integer, ArrayList<pair>> g = new HashMap<>();
for (int i=0; i<n; i++) g.put(i, new ArrayList<>());
for (int i=0; i<m; i++) {
int x = fs.nextInt()-1;
int y = fs.nextInt()-1;
int d = fs.nextInt();
g.get(x).add(new pair(y, d));
g.get(y).add(new pair(x, d));
}
int[] dist = new int[n];
Arrays.fill(dist, Integer.MAX_VALUE);
dist[0] = 0;
boolean[] finalized = new boolean[n];
PriorityQueue<pair> list = new PriorityQueue<pair>(n, (a, b) -> a.di - b.di);
pair p0 = new pair(0, 0);
list.add(p0);
while(!list.isEmpty()) {
pair p = list.poll();
int i = p.de;
if( finalized[i] ) continue;
if( dist[i]==Integer.MAX_VALUE ) break;
finalized[i] = true;
for (pair np : g.get(i)) {
for (pair n2p : g.get(np.de)) {
int j = n2p.de;
int di = n2p.di;
if(!finalized[j] && dist[i] + (di+np.di)*(di+np.di) < dist[j]) {
dist[j] = dist[i] + (di+np.di)*(di+np.di);
list.add( new pair(j, dist[j]));
}
}
}
}
for (int i=0; i<n; i++) {
if (i!=0) System.out.print(" ");
if (dist[i] == Integer.MAX_VALUE)
System.out.print(-1);
else
System.out.print(dist[i]);
}
System.out.println();
}
static class pair {
int de, di;
pair(int a, int b) {
de=a; di=b;
}
}
static void ruffleSort(int[] a) {
int n=a.length;//shuffle, then sort
for (int i=0; i<n; i++) {
int oi=random.nextInt(n), temp=a[oi];
a[oi]=a[i]; a[i]=temp;
}
Arrays.sort(a);
}
static final Random random =new Random();
static class FastScanner {
BufferedReader br=new BufferedReader(new InputStreamReader(System.in));
StringTokenizer st=new StringTokenizer("");
String next() {
while (!st.hasMoreTokens())
try {
st=new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
int[] readArray(int n) {
int[] a=new int[n];
for (int i=0; i<n; i++) a[i]=nextInt();
return a;
}
long nextLong() {
return Long.parseLong(next());
}
}
static int[] reverse(int[] a) {
int n=a.length;
int[] res=new int[n];
for (int i=0; i<n; i++) res[i]=a[n-1-i];
return res;
}
}
|
Java
|
["5 6\n1 2 3\n2 3 4\n3 4 5\n4 5 6\n1 5 1\n2 4 2", "3 2\n1 2 1\n2 3 2"]
|
4 seconds
|
["0 98 49 25 114", "0 -1 9"]
|
NoteThe graph in the first example looks like this.In the second example the path from $$$1$$$ to $$$3$$$ goes through $$$2$$$, so the resulting payment is $$$(1 + 2)^2 = 9$$$.
|
Java 8
|
standard input
|
[
"binary search",
"brute force",
"constructive algorithms",
"dp",
"flows",
"graphs",
"shortest paths"
] |
abee4d188bb59d82fcf4579c7416a343
|
First line contains two integers $$$n$$$, $$$m$$$ ($$$2 \leq n \leq 10^5$$$, $$$1 \leq m \leq min(\frac{n \cdot (n - 1)}{2}, 2 \cdot 10^5)$$$). Next $$$m$$$ lines each contain three integers $$$v_i$$$, $$$u_i$$$, $$$w_i$$$ ($$$1 \leq v_i, u_i \leq n$$$, $$$1 \leq w_i \leq 50$$$, $$$u_i \neq v_i$$$). It's guaranteed that there are no multiple edges, i.e. for any edge $$$(u_i, v_i)$$$ there are no other edges $$$(u_i, v_i)$$$ or $$$(v_i, u_i)$$$.
| 2,200
|
For every city $$$t$$$ print one integer. If there is no correct path between $$$1$$$ and $$$t$$$ output $$$-1$$$. Otherwise print out the minimum amount of money needed to travel from $$$1$$$ to $$$t$$$.
|
standard output
| |
PASSED
|
e10b713a00542f1e20140e5617a53375
|
train_110.jsonl
|
1613658900
|
There are $$$n$$$ cities and $$$m$$$ bidirectional roads in the country. The roads in the country form an undirected weighted graph. The graph is not guaranteed to be connected. Each road has it's own parameter $$$w$$$. You can travel through the roads, but the government made a new law: you can only go through two roads at a time (go from city $$$a$$$ to city $$$b$$$ and then from city $$$b$$$ to city $$$c$$$) and you will have to pay $$$(w_{ab} + w_{bc})^2$$$ money to go through those roads. Find out whether it is possible to travel from city $$$1$$$ to every other city $$$t$$$ and what's the minimum amount of money you need to get from $$$1$$$ to $$$t$$$.
|
512 megabytes
|
import java.util.*;
import java.io.*;
public class E1486 {
static ArrayList<int[]>[] adjList;
public static void main(String[] args) throws IOException {
Scanner sc = new Scanner(System.in);
PrintWriter pw = new PrintWriter(System.out);
int n = sc.nextInt();
int m = sc.nextInt();
adjList = new ArrayList[n];
for (int i = 0; i < n; i++) {
adjList[i] = new ArrayList<int[]>();
}
while (m-- > 0) {
int u = sc.nextInt() - 1;
int v = sc.nextInt() - 1;
int w = sc.nextInt();
adjList[u].add(new int[] { v, w });
adjList[v].add(new int[] { u, w });
}
int[][] dist = new int[51][n];
for (int[] x : dist)
Arrays.fill(x, (int) 1e9);
dist[0][0] = 0;
PriorityQueue<int[]> pq = new PriorityQueue<int[]>((u, v) -> u[2] - v[2]);
pq.add(new int[] { 0, 0, 0 });
while (!pq.isEmpty()) {
int[] cur = pq.poll();
if (cur[2] > dist[cur[1]][cur[0]])
continue;
if (cur[1] == 0) {
for (int[] x : adjList[cur[0]]) {
if (cur[2] < dist[x[1]][x[0]]) {
pq.add(new int[] { x[0], x[1], dist[x[1]][x[0]] = cur[2] });
}
}
} else {
for (int[] x : adjList[cur[0]]) {
if (cur[2] + (cur[1] + x[1]) * (cur[1] + x[1]) < dist[0][x[0]]) {
pq.add(new int[] { x[0], 0, dist[0][x[0]] = cur[2] + (cur[1] + x[1]) * (cur[1] + x[1]) });
}
}
}
}
for (int x : dist[0]) {
pw.print((x == (int) 1e9 ? -1 : x) + " ");
}
pw.println();
pw.close();
}
static class Scanner {
BufferedReader br;
StringTokenizer st;
public Scanner(InputStream s) {
br = new BufferedReader(new InputStreamReader(s));
}
public Scanner(FileReader f) {
br = new BufferedReader(f);
}
public String next() throws IOException {
while (st == null || !st.hasMoreTokens())
st = new StringTokenizer(br.readLine());
return st.nextToken();
}
public int nextInt() throws IOException {
return Integer.parseInt(next());
}
public long nextLong() throws IOException {
return Long.parseLong(next());
}
public double nextDouble() throws IOException {
return Double.parseDouble(next());
}
public int[] nextIntArr(int n) throws IOException {
int[] arr = new int[n];
for (int i = 0; i < n; i++) {
arr[i] = Integer.parseInt(next());
}
return arr;
}
}
}
|
Java
|
["5 6\n1 2 3\n2 3 4\n3 4 5\n4 5 6\n1 5 1\n2 4 2", "3 2\n1 2 1\n2 3 2"]
|
4 seconds
|
["0 98 49 25 114", "0 -1 9"]
|
NoteThe graph in the first example looks like this.In the second example the path from $$$1$$$ to $$$3$$$ goes through $$$2$$$, so the resulting payment is $$$(1 + 2)^2 = 9$$$.
|
Java 8
|
standard input
|
[
"binary search",
"brute force",
"constructive algorithms",
"dp",
"flows",
"graphs",
"shortest paths"
] |
abee4d188bb59d82fcf4579c7416a343
|
First line contains two integers $$$n$$$, $$$m$$$ ($$$2 \leq n \leq 10^5$$$, $$$1 \leq m \leq min(\frac{n \cdot (n - 1)}{2}, 2 \cdot 10^5)$$$). Next $$$m$$$ lines each contain three integers $$$v_i$$$, $$$u_i$$$, $$$w_i$$$ ($$$1 \leq v_i, u_i \leq n$$$, $$$1 \leq w_i \leq 50$$$, $$$u_i \neq v_i$$$). It's guaranteed that there are no multiple edges, i.e. for any edge $$$(u_i, v_i)$$$ there are no other edges $$$(u_i, v_i)$$$ or $$$(v_i, u_i)$$$.
| 2,200
|
For every city $$$t$$$ print one integer. If there is no correct path between $$$1$$$ and $$$t$$$ output $$$-1$$$. Otherwise print out the minimum amount of money needed to travel from $$$1$$$ to $$$t$$$.
|
standard output
| |
PASSED
|
6ade6c259775dae3ff6c6e7cdbee568c
|
train_110.jsonl
|
1613658900
|
There are $$$n$$$ cities and $$$m$$$ bidirectional roads in the country. The roads in the country form an undirected weighted graph. The graph is not guaranteed to be connected. Each road has it's own parameter $$$w$$$. You can travel through the roads, but the government made a new law: you can only go through two roads at a time (go from city $$$a$$$ to city $$$b$$$ and then from city $$$b$$$ to city $$$c$$$) and you will have to pay $$$(w_{ab} + w_{bc})^2$$$ money to go through those roads. Find out whether it is possible to travel from city $$$1$$$ to every other city $$$t$$$ and what's the minimum amount of money you need to get from $$$1$$$ to $$$t$$$.
|
512 megabytes
|
//stan hu tao
import static java.lang.Math.max;
import static java.lang.Math.min;
import static java.lang.Math.abs;
import java.util.*;
import java.io.*;
import java.math.*;
public class x1486E
{
static final long INF = (Long.MAX_VALUE-420)/3;
static ArrayDeque<Edge>[] edges;
public static void main(String hi[]) throws Exception
{
FastScanner infile = new FastScanner();
int N = infile.nextInt();
int M = infile.nextInt();
edges = new ArrayDeque[N];
for(int i=0; i < N; i++)
edges[i] = new ArrayDeque<Edge>();
while(M-->0)
{
int u = infile.nextInt()-1;
int v = infile.nextInt()-1;
int w = infile.nextInt();
edges[u].add(new Edge(v, w));
edges[v].add(new Edge(u, w));
}
long[][] dp = new long[N][51];
for(int i=0; i < N; i++)
Arrays.fill(dp[i], INF);
boolean[][] seen = new boolean[N][51];
PriorityQueue<Node> pq = new PriorityQueue<Node>();
pq.add(new Node(0, 0, 0L));
dp[0][0] = 0L;
while(pq.size() > 0)
{
Node curr = pq.poll();
if(seen[curr.id][curr.tag])
continue;
seen[curr.id][curr.tag] = true;
for(Edge e: edges[curr.id])
{
if(curr.tag == 0)
{
if(dp[e.to][e.weight] > curr.dist)
{
dp[e.to][e.weight] = curr.dist;
pq.add(new Node(e.to, e.weight, curr.dist));
}
}
else
{
int add = (e.weight+curr.tag)*(e.weight+curr.tag);
if(dp[e.to][0] > curr.dist+add)
{
dp[e.to][0] = curr.dist+add;
pq.add(new Node(e.to, 0, curr.dist+add));
}
}
}
}
StringBuilder sb = new StringBuilder();
for(int v=0; v < N; v++)
{
if(dp[v][0] == INF)
dp[v][0] = -1;
sb.append(dp[v][0]+" ");
}
System.out.println(sb);
}
}
class Node implements Comparable<Node>
{
public int id;
public int tag;
public long dist;
public Node(int a, int b, long d)
{
id = a;
tag = b;
dist = d;
}
public int compareTo(Node oth)
{
return Long.compare(dist, oth.dist);
}
}
class Edge
{
public int to;
public int weight;
public Edge(int a, int b)
{
to = a;
weight = b;
}
}
class FastScanner
{
private int BS = 1 << 16;
private char NC = (char) 0;
private byte[] buf = new byte[BS];
private int bId = 0, size = 0;
private char c = NC;
private double cnt = 1;
private BufferedInputStream in;
public FastScanner() {
in = new BufferedInputStream(System.in, BS);
}
public FastScanner(String s) {
try {
in = new BufferedInputStream(new FileInputStream(new File(s)), BS);
} catch (Exception e) {
in = new BufferedInputStream(System.in, BS);
}
}
private char getChar() {
while (bId == size) {
try {
size = in.read(buf);
} catch (Exception e) {
return NC;
}
if (size == -1) return NC;
bId = 0;
}
return (char) buf[bId++];
}
public int nextInt() {
return (int) nextLong();
}
public int[] nextInts(int N) {
int[] res = new int[N];
for (int i = 0; i < N; i++) {
res[i] = (int) nextLong();
}
return res;
}
public long[] nextLongs(int N) {
long[] res = new long[N];
for (int i = 0; i < N; i++) {
res[i] = nextLong();
}
return res;
}
public long nextLong() {
cnt = 1;
boolean neg = false;
if (c == NC) c = getChar();
for (; (c < '0' || c > '9'); c = getChar()) {
if (c == '-') neg = true;
}
long res = 0;
for (; c >= '0' && c <= '9'; c = getChar()) {
res = (res << 3) + (res << 1) + c - '0';
cnt *= 10;
}
return neg ? -res : res;
}
public double nextDouble() {
double cur = nextLong();
return c != '.' ? cur : cur + nextLong() / cnt;
}
public double[] nextDoubles(int N) {
double[] res = new double[N];
for (int i = 0; i < N; i++) {
res[i] = nextDouble();
}
return res;
}
public String next() {
StringBuilder res = new StringBuilder();
while (c <= 32) c = getChar();
while (c > 32) {
res.append(c);
c = getChar();
}
return res.toString();
}
public String nextLine() {
StringBuilder res = new StringBuilder();
while (c <= 32) c = getChar();
while (c != '\n') {
res.append(c);
c = getChar();
}
return res.toString();
}
public boolean hasNext() {
if (c > 32) return true;
while (true) {
c = getChar();
if (c == NC) return false;
else if (c > 32) return true;
}
}
}
|
Java
|
["5 6\n1 2 3\n2 3 4\n3 4 5\n4 5 6\n1 5 1\n2 4 2", "3 2\n1 2 1\n2 3 2"]
|
4 seconds
|
["0 98 49 25 114", "0 -1 9"]
|
NoteThe graph in the first example looks like this.In the second example the path from $$$1$$$ to $$$3$$$ goes through $$$2$$$, so the resulting payment is $$$(1 + 2)^2 = 9$$$.
|
Java 8
|
standard input
|
[
"binary search",
"brute force",
"constructive algorithms",
"dp",
"flows",
"graphs",
"shortest paths"
] |
abee4d188bb59d82fcf4579c7416a343
|
First line contains two integers $$$n$$$, $$$m$$$ ($$$2 \leq n \leq 10^5$$$, $$$1 \leq m \leq min(\frac{n \cdot (n - 1)}{2}, 2 \cdot 10^5)$$$). Next $$$m$$$ lines each contain three integers $$$v_i$$$, $$$u_i$$$, $$$w_i$$$ ($$$1 \leq v_i, u_i \leq n$$$, $$$1 \leq w_i \leq 50$$$, $$$u_i \neq v_i$$$). It's guaranteed that there are no multiple edges, i.e. for any edge $$$(u_i, v_i)$$$ there are no other edges $$$(u_i, v_i)$$$ or $$$(v_i, u_i)$$$.
| 2,200
|
For every city $$$t$$$ print one integer. If there is no correct path between $$$1$$$ and $$$t$$$ output $$$-1$$$. Otherwise print out the minimum amount of money needed to travel from $$$1$$$ to $$$t$$$.
|
standard output
| |
PASSED
|
64d01a0151ebc56a06ef9d96ec53c3f4
|
train_110.jsonl
|
1613658900
|
There are $$$n$$$ cities and $$$m$$$ bidirectional roads in the country. The roads in the country form an undirected weighted graph. The graph is not guaranteed to be connected. Each road has it's own parameter $$$w$$$. You can travel through the roads, but the government made a new law: you can only go through two roads at a time (go from city $$$a$$$ to city $$$b$$$ and then from city $$$b$$$ to city $$$c$$$) and you will have to pay $$$(w_{ab} + w_{bc})^2$$$ money to go through those roads. Find out whether it is possible to travel from city $$$1$$$ to every other city $$$t$$$ and what's the minimum amount of money you need to get from $$$1$$$ to $$$t$$$.
|
512 megabytes
|
import java.util.*;
import java.io.*;
public class Div708 {
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
//////// /////////
//////// /////////
//////// HHHH HHHH EEEEEEEEEEEEE MMMM MMMM OOOOOO SSSSSSS EEEEEEEEEEEEE /////////
//////// HHHH HHHH EEEEEEEEEEEEE MMMMMM MMMMMM OOO OOO SSSS SSS EEEEEEEEEEEEE /////////
//////// HHHH HHHH EEEEE MMMM MMM MMM MMMM OOO OOO SSSS SSS EEEEE /////////
//////// HHHH HHHH EEEEE MMMM MMMMMM MMMM OOO OOO SSSS EEEEE /////////
//////// HHHH HHHH EEEEE MMMM MMMM OOO OOO SSSSSSS EEEEE /////////
//////// HHHHHHHHHHHHHHHH EEEEEEEEEEE MMMM MMMM OOO OOO SSSSSS EEEEEEEEEEE /////////
//////// HHHHHHHHHHHHHHHH EEEEEEEEEEE MMMM MMMM OOO OOO SSSSSSS EEEEEEEEEEE /////////
//////// HHHH HHHH EEEEE MMMM MMMM OOO OOO SSSS EEEEE /////////
//////// HHHH HHHH EEEEE MMMM MMMM OOO OOO SSS SSSS EEEEE /////////
//////// HHHH HHHH EEEEEEEEEEEEE MMMM MMMM OOO OOO SSS SSSS EEEEEEEEEEEEE /////////
//////// HHHH HHHH EEEEEEEEEEEEE MMMM MMMM OOOOOO SSSSSSS EEEEEEEEEEEEE /////////
//////// /////////
//////// /////////
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
public static void main(String[] args) throws IOException {
Scanner sc = new Scanner(System.in);
PrintWriter pw = new PrintWriter(System.out);
int n = sc.nextInt();
int m = sc.nextInt();
ArrayList<int[]> adj[] = new ArrayList[n];
for (int i = 0; i < n; i++) {
adj[i] = new ArrayList<>();
}
while (m-- > 0) {
int u = sc.nextInt() - 1;
int v = sc.nextInt() - 1;
int w = sc.nextInt();
adj[u].add(new int[]{v, w});
adj[v].add(new int[]{u, w});
}
long[][][] dis = new long[2][51][n];
for (long[][] x : dis) for (long[] y : x) Arrays.fill(y, -1);
PriorityQueue<long[]> pq = new PriorityQueue<>((x, y) -> Long.compare(x[3], y[3]));
long[] st = new long[]{1, 0, 0, 0};
pq.add(st);
dis[1][0][0] = 0;
while (!pq.isEmpty()) {
long[] cur = pq.poll();
int s = (int) cur[0];
int w = (int) cur[1];
int u = (int) cur[2];
long cost = cur[3];
if (dis[s][w][u] < cost)
continue;
// System.err.println(Arrays.toString(cur));
if (s == 0) {
for (int[] v : adj[u]) {
long ncost = cost + (w + v[1]) * (w + v[1]);
if (dis[1][v[1]][v[0]] == -1 || ncost < dis[1][v[1]][v[0]]) {
pq.add(new long[]{1, v[1], v[0], dis[1][v[1]][v[0]] = ncost});
}
}
} else {
for (int[] v : adj[u]) {
if (dis[0][v[1]][v[0]] == -1 || cost < dis[0][v[1]][v[0]]) {
pq.add(new long[]{0, v[1], v[0], dis[0][v[1]][v[0]] = cost});
}
}
}
}
long[] cost = new long[n];
Arrays.fill(cost, -1);
for (int i = 0; i < n; i++) {
for (int w = 0; w <= 50; w++) {
if (dis[1][w][i] == -1)
continue;
if (cost[i] == -1 || dis[1][w][i] < cost[i])
cost[i] = dis[1][w][i];
}
pw.print(cost[i] + " ");
}
pw.println();
pw.flush();
}
static class Scanner {
StringTokenizer st;
BufferedReader br;
public Scanner(FileReader r) {
br = new BufferedReader(r);
}
public Scanner(InputStream s) {
br = new BufferedReader(new InputStreamReader(s));
}
public String next() throws IOException {
while (st == null || !st.hasMoreTokens())
st = new StringTokenizer(br.readLine());
return st.nextToken();
}
public int[] nextIntArr(int n) throws IOException {
int[] a = new int[n];
for (int i = 0; i < n; i++) {
a[i] = nextInt();
}
return a;
}
public int nextInt() throws IOException {
return Integer.parseInt(next());
}
public long nextLong() throws IOException {
return Long.parseLong(next());
}
public String nextLine() throws IOException {
return br.readLine();
}
public double nextDouble() throws IOException {
String x = next();
StringBuilder sb = new StringBuilder("0");
double res = 0, f = 1;
boolean dec = false, neg = false;
int start = 0;
if (x.charAt(0) == '-') {
neg = true;
start++;
}
for (int i = start; i < x.length(); i++)
if (x.charAt(i) == '.') {
res = Long.parseLong(sb.toString());
sb = new StringBuilder("0");
dec = true;
} else {
sb.append(x.charAt(i));
if (dec)
f *= 10;
}
res += Long.parseLong(sb.toString()) / f;
return res * (neg ? -1 : 1);
}
public boolean ready() throws IOException {
return br.ready();
}
}
}
|
Java
|
["5 6\n1 2 3\n2 3 4\n3 4 5\n4 5 6\n1 5 1\n2 4 2", "3 2\n1 2 1\n2 3 2"]
|
4 seconds
|
["0 98 49 25 114", "0 -1 9"]
|
NoteThe graph in the first example looks like this.In the second example the path from $$$1$$$ to $$$3$$$ goes through $$$2$$$, so the resulting payment is $$$(1 + 2)^2 = 9$$$.
|
Java 8
|
standard input
|
[
"binary search",
"brute force",
"constructive algorithms",
"dp",
"flows",
"graphs",
"shortest paths"
] |
abee4d188bb59d82fcf4579c7416a343
|
First line contains two integers $$$n$$$, $$$m$$$ ($$$2 \leq n \leq 10^5$$$, $$$1 \leq m \leq min(\frac{n \cdot (n - 1)}{2}, 2 \cdot 10^5)$$$). Next $$$m$$$ lines each contain three integers $$$v_i$$$, $$$u_i$$$, $$$w_i$$$ ($$$1 \leq v_i, u_i \leq n$$$, $$$1 \leq w_i \leq 50$$$, $$$u_i \neq v_i$$$). It's guaranteed that there are no multiple edges, i.e. for any edge $$$(u_i, v_i)$$$ there are no other edges $$$(u_i, v_i)$$$ or $$$(v_i, u_i)$$$.
| 2,200
|
For every city $$$t$$$ print one integer. If there is no correct path between $$$1$$$ and $$$t$$$ output $$$-1$$$. Otherwise print out the minimum amount of money needed to travel from $$$1$$$ to $$$t$$$.
|
standard output
| |
PASSED
|
796ef787dcfa83f8a99d1ed74bbbdb45
|
train_110.jsonl
|
1621152000
|
There are $$$n$$$ robots driving along an OX axis. There are also two walls: one is at coordinate $$$0$$$ and one is at coordinate $$$m$$$.The $$$i$$$-th robot starts at an integer coordinate $$$x_i~(0 < x_i < m)$$$ and moves either left (towards the $$$0$$$) or right with the speed of $$$1$$$ unit per second. No two robots start at the same coordinate.Whenever a robot reaches a wall, it turns around instantly and continues his ride in the opposite direction with the same speed.Whenever several robots meet at the same integer coordinate, they collide and explode into dust. Once a robot has exploded, it doesn't collide with any other robot. Note that if several robots meet at a non-integer coordinate, nothing happens.For each robot find out if it ever explodes and print the time of explosion if it happens and $$$-1$$$ otherwise.
|
256 megabytes
|
/*
* To change this license header, choose License Headers in Project Properties.
* To change this template file, choose Tools | Templates
* and open the template in the editor.
*/
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.util.ArrayList;
import java.util.Collections;
import java.util.Comparator;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
import java.util.PriorityQueue;
import java.util.StringTokenizer;
import java.util.TreeMap;
/**
*
* @author is2ac
*/
public class C_CF {
public static void main(String[] args) {
FastScanner57 fs = new FastScanner57();
PrintWriter pw = new PrintWriter(System.out);
int t = fs.ni();
//int t = 1;
for (int tc = 0; tc < t; tc++) {
int n = fs.ni();
int m = fs.ni();
Map<Integer,Integer> map = new HashMap();
int[][] a = new int[n][2];
for (int i = 0; i < n; i++) {
a[i][0] = fs.ni();
}
for (int i = 0; i < n; i++) {
String s = fs.next();
if (s.equals("R")) {
a[i][1] = 1;
} else {
a[i][1] = -1;
}
}
TreeMap<Integer,Integer> tm = new TreeMap();
List<int[]> left = new ArrayList();
for (int i = 0; i < n; i++) {
if (a[i][0]%2==0) {
continue;
}
if (a[i][1]==-1) {
left.add(new int[] {a[i][0],i});
} else {
tm.put(a[i][0], i);
}
}
List<int[]> exl = new ArrayList();
List<int[]> exr = new ArrayList();
Collections.sort(left,new Comparator<int[]>(){
public int compare(int[] a, int[] b) {
return a[0]-b[0];
}
});
for (int i = 0; i < left.size(); i++) {
int[] l = left.get(i);
Integer lower = tm.lowerKey(l[0]);
if (lower==null) {
exl.add(l);
continue;
}
int[] r = new int[] {lower,tm.get(lower)};
int d = Math.abs(l[0]-r[0])/2;
map.put(l[1], d);
map.put(r[1],d);
tm.remove(lower);
}
for (int key: tm.keySet()) {
exr.add(new int[] {key,tm.get(key)});
}
Collections.sort(exr,new Comparator<int[]>(){
public int compare(int[] a, int[] b) {
return a[0]-b[0];
}
});
int lp = 0;
while (lp+1<exl.size()) {
int[] l = exl.get(lp);
int[] r = exl.get(lp+1);
l[0] *= -1;
int d = Math.abs(l[0]-r[0])/2;
map.put(l[1], d);
map.put(r[1],d);
lp += 2;
}
int rp = exr.size()-1;
while (rp-1>-1) {
int[] l = exr.get(rp-1);
int[] r = exr.get(rp);
r[0] = (m-r[0]) + m;
int d = Math.abs(l[0]-r[0])/2;
map.put(l[1], d);
map.put(r[1],d);
rp-=2;
}
if (rp==0 && lp==exl.size()-1) {
int[]l = exl.get(lp);
int[]r = exr.get(0);
l[0] *= -1;
r[0] = m-r[0]+m;
int d = Math.abs(l[0]-r[0])/2;
map.put(l[1], d);
map.put(r[1],d);
}
tm = new TreeMap();
left = new ArrayList();
for (int i = 0; i < n; i++) {
if (a[i][0]%2==1) {
continue;
}
if (a[i][1]==-1) {
left.add(new int[] {a[i][0],i});
} else {
tm.put(a[i][0], i);
}
}
exl = new ArrayList();
exr = new ArrayList();
Collections.sort(left,new Comparator<int[]>(){
public int compare(int[] a, int[] b) {
return a[0]-b[0];
}
});
for (int i = 0; i < left.size(); i++) {
int[] l = left.get(i);
Integer lower = tm.lowerKey(l[0]);
if (lower==null) {
exl.add(l);
continue;
}
int[] r = new int[] {lower,tm.get(lower)};
int d = Math.abs(l[0]-r[0])/2;
map.put(l[1], d);
map.put(r[1],d);
tm.remove(lower);
}
for (int key: tm.keySet()) {
exr.add(new int[] {key,tm.get(key)});
}
Collections.sort(exr,new Comparator<int[]>(){
public int compare(int[] a, int[] b) {
return a[0]-b[0];
}
});
lp = 0;
while (lp+1<exl.size()) {
int[] l = exl.get(lp);
int[] r = exl.get(lp+1);
l[0] *= -1;
int d = Math.abs(l[0]-r[0])/2;
map.put(l[1], d);
map.put(r[1],d);
lp += 2;
}
rp = exr.size()-1;
while (rp-1>-1) {
int[] l = exr.get(rp-1);
int[] r = exr.get(rp);
r[0] = (m-r[0]) + m;
int d = Math.abs(l[0]-r[0])/2;
map.put(l[1], d);
map.put(r[1],d);
rp-=2;
}
if (rp==0 && lp==exl.size()-1) {
int[]l = exl.get(lp);
int[]r = exr.get(0);
l[0] *= -1;
r[0] = m-r[0]+m;
int d = Math.abs(l[0]-r[0])/2;
map.put(l[1], d);
map.put(r[1],d);
}
for (int i = 0; i < n; i++) {
if (map.containsKey(i)) {
pw.print(map.get(i));
} else {
pw.print(-1);
}
pw.print(" ");
}
pw.println();
}
pw.close();
}
public static boolean good(int[] a, int[] b) {
for (int i = 0; i < a.length; i++) {
if (a[i]<b[i]) return true;
if (a[i]>b[i]) return false;
}
return true;
}
public static String print(int[] b) {
StringBuilder sb = new StringBuilder();
for (int i = 0; i < b.length; i++) {
sb.append(b[i]);
}
return sb.toString();
}
public static int recur(int ind, int p, int[] a, Integer[][] dp) {
if (ind==a.length) return 0;
int n = (int)(1e9);
if (dp[ind][p]!=null) return dp[ind][p];
for (int i = 0; i < 3; i++) {
int c = 1;
if (i==a[ind]) c--;
if (i==p) continue;
n = Math.min(n,recur(ind+1,i,a,dp)+c);
}
return dp[ind][p] = n;
}
public static void sort(long[] a) {
List<Long> list = new ArrayList();
for (int i = 0; i < a.length; i++) {
list.add(a[i]);
}
Collections.sort(list);
for (int i = 0; i < a.length; i++) {
a[i] = list.get(i);
}
}
public static int gcd(int n1, int n2) {
if (n2 == 0) {
return n1;
}
return gcd(n2, n1 % n2);
}
}
class UnionFind16 {
int[] id;
public UnionFind16(int size) {
id = new int[size];
for (int i = 0; i < size; i++) {
id[i] = i;
}
}
public int find(int p) {
int root = p;
while (root != id[root]) {
root = id[root];
}
while (p != root) {
int next = id[p];
id[p] = root;
p = next;
}
return root;
}
public void union(int p, int q) {
int a = find(p), b = find(q);
if (a == b) {
return;
}
id[b] = a;
}
}
class FastScanner57 {
BufferedReader br;
StringTokenizer st;
public FastScanner57() {
br = new BufferedReader(new InputStreamReader(System.in), 32768);
st = null;
}
String next() {
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
int ni() {
return Integer.parseInt(next());
}
int[] intArray(int N) {
int[] ret = new int[N];
for (int i = 0; i < N; i++) {
ret[i] = ni();
}
return ret;
}
long nl() {
return Long.parseLong(next());
}
long[] longArray(int N) {
long[] ret = new long[N];
for (int i = 0; i < N; i++) {
ret[i] = nl();
}
return ret;
}
double nd() {
return Double.parseDouble(next());
}
String nextLine() {
String str = "";
try {
str = br.readLine();
} catch (IOException e) {
e.printStackTrace();
}
return str;
}
}
|
Java
|
["5\n7 12\n1 2 3 4 9 10 11\nR R L L R R R\n2 10\n1 6\nR R\n2 10\n1 3\nL L\n1 10\n5\nR\n7 8\n6 1 7 2 3 5 4\nR L R L L L L"]
|
2 seconds
|
["1 1 1 1 2 -1 2 \n-1 -1 \n2 2 \n-1 \n-1 2 7 3 2 7 3"]
|
NoteHere is the picture for the seconds $$$0, 1, 2$$$ and $$$3$$$ of the first testcase: Notice that robots $$$2$$$ and $$$3$$$ don't collide because they meet at the same point $$$2.5$$$, which is not integer.After second $$$3$$$ robot $$$6$$$ just drive infinitely because there's no robot to collide with.
|
Java 11
|
standard input
|
[
"data structures",
"greedy",
"implementation",
"sortings"
] |
1a28b972e77966453cd8239cc5c8f59a
|
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$) — the number of testcases. Then the descriptions of $$$t$$$ testcases follow. The first line of each testcase contains two integers $$$n$$$ and $$$m$$$ ($$$1 \le n \le 3 \cdot 10^5$$$; $$$2 \le m \le 10^8$$$) — the number of robots and the coordinate of the right wall. The second line of each testcase contains $$$n$$$ integers $$$x_1, x_2, \dots, x_n$$$ ($$$0 < x_i < m$$$) — the starting coordinates of the robots. The third line of each testcase contains $$$n$$$ space-separated characters 'L' or 'R' — the starting directions of the robots ('L' stands for left and 'R' stands for right). All coordinates $$$x_i$$$ in the testcase are distinct. The sum of $$$n$$$ over all testcases doesn't exceed $$$3 \cdot 10^5$$$.
| 2,000
|
For each testcase print $$$n$$$ integers — for the $$$i$$$-th robot output the time it explodes at if it does and $$$-1$$$ otherwise.
|
standard output
| |
PASSED
|
db9283f2db3f6fc265ac613099540e27
|
train_110.jsonl
|
1621152000
|
There are $$$n$$$ robots driving along an OX axis. There are also two walls: one is at coordinate $$$0$$$ and one is at coordinate $$$m$$$.The $$$i$$$-th robot starts at an integer coordinate $$$x_i~(0 < x_i < m)$$$ and moves either left (towards the $$$0$$$) or right with the speed of $$$1$$$ unit per second. No two robots start at the same coordinate.Whenever a robot reaches a wall, it turns around instantly and continues his ride in the opposite direction with the same speed.Whenever several robots meet at the same integer coordinate, they collide and explode into dust. Once a robot has exploded, it doesn't collide with any other robot. Note that if several robots meet at a non-integer coordinate, nothing happens.For each robot find out if it ever explodes and print the time of explosion if it happens and $$$-1$$$ otherwise.
|
256 megabytes
|
import java.util.*;
import java.io.*;
public class Main {
static long mod = 1000000007;
static PrintWriter out = new PrintWriter(new BufferedOutputStream(System.out));
public static void main(String[] args) throws IOException {
FastReader sc = new FastReader();
int t = sc.nextInt();
while( t-- > 0) {
ArrayList<pair> odd = new ArrayList<>();
ArrayList<pair> even = new ArrayList<>();
int n = sc.nextInt();
int m= sc.nextInt();
int arr[] = new int[n];
for( int i =0 ; i< n ;i++) {
arr[i] = sc.nextInt();
}
char a[] = new char[n];
for( int i =0 ; i< n; i++) {
a[i] = sc.next().charAt(0);
}
for( int i = 0 ;i< n; i++) {
if( arr[i]%2 != 0) {
odd.add( new pair(arr[i] , a[i] , i+1));
}
else{
even.add( new pair( arr[i] , a[i], i+1));
}
}
int ans[] =new int[n+1];
Arrays.fill( ans, -1);
solve( odd , ans , m );
solve( even , ans , m);
for(int i = 1 ;i <= n; i++) {
out.print(ans[i] + " ");
}
out.println();
}
out.flush();
}
private static void solve(ArrayList<pair> arr, int[] ans, int m) {
int n = arr.size();
Stack<pair> s = new Stack<>();
Collections.sort( arr , new sort());
for( int i = 0 ;i <n; i++) {
if( arr.get(i).c == 'L') {
if( !s.isEmpty() && s.peek().c == 'R') {
pair pr = s.pop();
int fst = pr.val;
int scnd = arr.get(i).val;
ans[pr.idx] = ans[arr.get(i).idx] = (scnd-fst)/2;
}
else {
s.add( arr.get(i));
}
}
else {
s.add( arr.get(i));
}
}
arr = new ArrayList<>();
Stack<pair> S = new Stack<>();
while(!s.isEmpty()) {
// out.println(s.peek().val);
S.add(s.pop());
// arr.add( s.pop());
}
while(!S.isEmpty()) {
// out.println(s.peek().val);
// S.add(s.pop());
arr.add( S.pop());
}
n = arr.size();
// Collections.sort( arr , new sort());
int i =0 ;
while( i < n && i+1 < n && arr.get(i).c == 'L' && arr.get(i+1).c == 'L') {
// out.println( arr.get(i).val + " " + arr.get(i+1).val);
ans[arr.get(i).idx] = ans[arr.get(i+1).idx] = (arr.get(i+1).val - arr.get(i).val)/2 + arr.get(i).val;
i+=2;
}
int j = n-1;
while( j >= 0 && j-1 >= 0 && arr.get(j).c == 'R' && arr.get(j-1).c == 'R') {
// out.println( arr.get(j).idx + " " +arr.get(j-1).idx + " " + (arr.get(j).val ));
ans[arr.get(j).idx] = ans[arr.get(j-1).idx] = (arr.get(j).val - arr.get(j-1).val)/2 + m - arr.get(j).val;
j-=2;
}
if( j > i) {
ans[arr.get(j).idx] = ans[arr.get(j-1).idx] = (arr.get(j).val - arr.get(j-1).val)/2 + m - arr.get(j).val+arr.get(j-1).val;
}
}
static class pair {
int val;
char c;
int idx;
pair( int val , char c ,int idx){
this.val = val;
this.c = c;
this.idx = idx;
}
}
static class sort implements Comparator<pair>{
@Override
public int compare(Main.pair o1, Main.pair o2) {
return o1.val - o2.val;
}
}
/*
* use the hints
* Read the question again
* think of binary search
* look at test cases
* do significant case work
*/
static class DSU{
int n;
int[] leaders,size;
public DSU(int n){
this.n=n;
leaders=new int[n+1];
size=new int[n+1];
for(int i=1;i<=n;i++){
leaders[i]=i;
size[i]=1;
}
}
public int find(int a){
if(leaders[a]==a) return a;
return leaders[a]=find (leaders[a]);
}
public void merge(int a,int b){
a = find(a);
b = find(b);
if (a == b) return;
if (size[a] < size[b]) swap(a, b);
leaders[b] = a;
size[a] += size[b];
}
public void swap(int a,int b){
int temp=a;
a=b;
b=temp;
}
}
static long power(long x, long y, long p)
{
long res = 1;
x = x % p;
if (x == 0)
return 0;
while (y > 0)
{
if ((y & 1) != 0)
res = (res * x) % p;
y = y >> 1;
x = (x * x) % p;
}
return res%p;
}
public static boolean ifpowof2(long n ) {
return ((n&(n-1)) == 0);
}
static boolean isprime(long x ) {
if( x== 2) {
return true;
}
if( x%2 == 0) {
return false;
}
for( long i = 3 ;i*i <= x ;i+=2) {
if( x%i == 0) {
return false;
}
}
return true;
}
static boolean[] sieveOfEratosthenes(long n) {
boolean prime[] = new boolean[(int)n + 1];
for (int i = 0; i <= n; i++) {
prime[i] = true;
}
for (long p = 2; p * p <= n; p++) {
if (prime[(int)p] == true) {
for (long i = p * p; i <= n; i += p)
prime[(int)i] = false;
}
}
return prime;
}
public List<Integer> goodIndices(int[] nums, int k) {
int n = nums.length;
int fst[] = nextLargerElement(nums, n);
int scnd[] = nextlargerElement(nums, n);
List<Integer> ans = new ArrayList<>();
for( int i = 0 ;i < n; i++) {
if( fst[i] == -1 || scnd[i] == -1) {
continue;
}
if( fst[i]-i >= k && i - scnd[i] >= k) {
ans.add(i);
}
}
return ans;
}
public static int[] nextLargerElement(int[] arr, int n) {
Stack<Integer> stack = new Stack<>();
int rtrn[] = new int[n];
rtrn[n-1] = -1;
stack.push( n-1);
for( int i = n-2 ;i >= 0 ; i--){
int temp = arr[i];
int lol = -1;
while( !stack.isEmpty() && arr[stack.peek()] <= temp){
if(arr[stack.peek()] == temp ) {
lol = stack.peek();
}
stack.pop();
}
if( stack.isEmpty()){
if( lol != -1) {
rtrn[i] = lol;
}
else {
rtrn[i] = -1;
}
}
else{
rtrn[i] = stack.peek();
}
stack.push( i);
}
return rtrn;
}
public static int[] nextlargerElement(int[] arr, int n) {
Stack<Integer> stack = new Stack<>();
int rtrn[] = new int[n];
rtrn[0] = -1;
stack.add( 0);
for( int i = 1 ;i < n ; i++){
int temp = arr[i];
int lol = -1;
while( !stack.isEmpty() && arr[stack.peek()] <= temp){
if(arr[stack.peek()] == temp ) {
lol = stack.peek();
}
stack.pop();
}
if( stack.isEmpty()){
if( lol != -1) {
rtrn[i] = lol;
}
else {
rtrn[i] = -1;
}
}
else{
rtrn[i] = stack.peek();
}
stack.add( i);
}
return rtrn;
}
static void mysort(int[] arr) {
for(int i=0;i<arr.length;i++) {
int rand = (int) (Math.random() * arr.length);
int loc = arr[rand];
arr[rand] = arr[i];
arr[i] = loc;
}
Arrays.sort(arr);
}
static void mySort(long[] arr) {
for(int i=0;i<arr.length;i++) {
int rand = (int) (Math.random() * arr.length);
long loc = arr[rand];
arr[rand] = arr[i];
arr[i] = loc;
}
Arrays.sort(arr);
}
static long gcd(long a, long b)
{
if (a == 0)
return b;
return gcd(b % a, a);
}
static long lcm(long a, long b)
{
return (a / gcd(a, b)) * b;
}
static long rightmostsetbit(long n) {
return n&-n;
}
static long leftmostsetbit(long n)
{
long k = (long)(Math.log(n) / Math.log(2));
return k;
}
static HashMap<Long,Long> primefactor( long n){
HashMap<Long ,Long> hm = new HashMap<>();
long temp = 0;
while( n%2 == 0) {
temp++;
n/=2;
}
if( temp!= 0) {
hm.put( 2L, temp);
}
long c = (long)Math.sqrt(n);
for( long i = 3 ; i <= c ; i+=2) {
temp = 0;
while( n% i == 0) {
temp++;
n/=i;
}
if( temp!= 0) {
hm.put( i, temp);
}
}
if( n!= 1) {
hm.put( n , 1L);
}
return hm;
}
static TreeSet<Long> allfactors(long abs) {
HashMap<Long,Integer> hm = new HashMap<>();
TreeSet<Long> rtrn = new TreeSet<>();
rtrn.add(1L);
for( long i = 2 ;i*i <= abs; i++) {
if( abs% i == 0) {
hm.put( i , 0);
hm.put(abs/i, 0);
}
}
for( long x : hm.keySet()) {
rtrn.add(x);
}
if( abs != 0) {
rtrn.add(abs);
}
return rtrn;
}
public static int[][] prefixsum( int n , int m , int arr[][] ){
int prefixsum[][] = new int[n+1][m+1];
for( int i = 1 ;i <= n ;i++) {
for( int j = 1 ; j<= m ; j++) {
int toadd = 0;
if( arr[i-1][j-1] == 1) {
toadd = 1;
}
prefixsum[i][j] = toadd + prefixsum[i][j-1] + prefixsum[i-1][j] - prefixsum[i-1][j-1];
}
}
return prefixsum;
}
static class FastReader {
BufferedReader br;
StringTokenizer st;
public FastReader()
{
br = new BufferedReader(new InputStreamReader(System.in));
}
String next()
{
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(br.readLine());
}
catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt() { return Integer.parseInt(next()); }
long nextLong() { return Long.parseLong(next()); }
double nextDouble()
{
return Double.parseDouble(next());
}
String nextLine()
{
String str = "";
try {
str = br.readLine();
}
catch (IOException e) {
e.printStackTrace();
}
return str;
}
}
}
|
Java
|
["5\n7 12\n1 2 3 4 9 10 11\nR R L L R R R\n2 10\n1 6\nR R\n2 10\n1 3\nL L\n1 10\n5\nR\n7 8\n6 1 7 2 3 5 4\nR L R L L L L"]
|
2 seconds
|
["1 1 1 1 2 -1 2 \n-1 -1 \n2 2 \n-1 \n-1 2 7 3 2 7 3"]
|
NoteHere is the picture for the seconds $$$0, 1, 2$$$ and $$$3$$$ of the first testcase: Notice that robots $$$2$$$ and $$$3$$$ don't collide because they meet at the same point $$$2.5$$$, which is not integer.After second $$$3$$$ robot $$$6$$$ just drive infinitely because there's no robot to collide with.
|
Java 11
|
standard input
|
[
"data structures",
"greedy",
"implementation",
"sortings"
] |
1a28b972e77966453cd8239cc5c8f59a
|
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$) — the number of testcases. Then the descriptions of $$$t$$$ testcases follow. The first line of each testcase contains two integers $$$n$$$ and $$$m$$$ ($$$1 \le n \le 3 \cdot 10^5$$$; $$$2 \le m \le 10^8$$$) — the number of robots and the coordinate of the right wall. The second line of each testcase contains $$$n$$$ integers $$$x_1, x_2, \dots, x_n$$$ ($$$0 < x_i < m$$$) — the starting coordinates of the robots. The third line of each testcase contains $$$n$$$ space-separated characters 'L' or 'R' — the starting directions of the robots ('L' stands for left and 'R' stands for right). All coordinates $$$x_i$$$ in the testcase are distinct. The sum of $$$n$$$ over all testcases doesn't exceed $$$3 \cdot 10^5$$$.
| 2,000
|
For each testcase print $$$n$$$ integers — for the $$$i$$$-th robot output the time it explodes at if it does and $$$-1$$$ otherwise.
|
standard output
| |
PASSED
|
916c7d2d77de42bb60053d1216e9df94
|
train_110.jsonl
|
1621152000
|
There are $$$n$$$ robots driving along an OX axis. There are also two walls: one is at coordinate $$$0$$$ and one is at coordinate $$$m$$$.The $$$i$$$-th robot starts at an integer coordinate $$$x_i~(0 < x_i < m)$$$ and moves either left (towards the $$$0$$$) or right with the speed of $$$1$$$ unit per second. No two robots start at the same coordinate.Whenever a robot reaches a wall, it turns around instantly and continues his ride in the opposite direction with the same speed.Whenever several robots meet at the same integer coordinate, they collide and explode into dust. Once a robot has exploded, it doesn't collide with any other robot. Note that if several robots meet at a non-integer coordinate, nothing happens.For each robot find out if it ever explodes and print the time of explosion if it happens and $$$-1$$$ otherwise.
|
256 megabytes
|
import java.util.*;
import java.io.*;
public class Solution
{
static class FastReader
{
BufferedReader br;
StringTokenizer st;
public FastReader()
{
br = new BufferedReader(new
InputStreamReader(System.in));
}
String next()
{
while (st == null || !st.hasMoreElements())
{
try
{
st = new StringTokenizer(br.readLine());
}
catch (IOException e)
{
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt()
{
return Integer.parseInt(next());
}
long nextLong()
{
return Long.parseLong(next());
}
double nextDouble()
{
return Double.parseDouble(next());
}
String nextLine()
{
String str = "";
try
{
str = br.readLine();
}
catch (IOException e)
{
e.printStackTrace();
}
return str;
}
}
static final long mod=(long)1e9+7;
public static long pow(long a,int p)
{
long res=1;
while(p>0)
{
if(p%2==1)
{
p--;
res*=a;
res%=mod;
}
else
{
a*=a;
a%=mod;
p/=2;
}
}
return res;
}
/*static class Pair
{
int i,j;
Pair(int i,int j)
{
this.i=i;
this.j=j;
}
}*/
static class Pair implements Comparable<Pair>
{
int v,l;
Pair(int v,int l)
{
this.v=v;
this.l=l;
}
public int compareTo(Pair p)
{
return l-p.l;
}
}
static int gcd(int a,int b)
{
if(b%a==0)
return a;
return gcd(b%a,a);
}
public static void dfs(int u,int dist[],int sub[],int mxv[],int par[],ArrayList<Integer> edge[])
{
sub[u]=1;
for(int v:edge[u])
{
if(dist[v]==-1)
{
par[v]=u;
dist[v]=dist[u]+1;
dfs(v,dist,sub,mxv,par,edge);
if(sub[v]+1>sub[u])
{
sub[u]=sub[v]+1;
mxv[u]=v;
}
}
}
}
public static void main(String args[])throws Exception
{
FastReader fs=new FastReader();
PrintWriter pw=new PrintWriter(System.out);
int tc=fs.nextInt();
while(tc-->0)
{
int n=fs.nextInt();
int m=fs.nextInt();
int a[]=new int[n];
for(int i=0;i<n;i++)
a[i]=fs.nextInt();
char d[]=new char[n];
String str[]=fs.nextLine().split(" ");
for(int i=0;i<str.length;i++)
d[i]=str[i].charAt(0);
TreeSet<Pair> re=new TreeSet<>();
TreeSet<Pair> ro=new TreeSet<>();
TreeSet<Pair> le=new TreeSet<>();
TreeSet<Pair> lo=new TreeSet<>();
int ans[]=new int[n];
Arrays.fill(ans,-1);
for(int i=0;i<n;i++)
{
if(d[i]=='L')
{
if(a[i]%2==0)
le.add(new Pair(i,a[i]));
else
lo.add(new Pair(i,a[i]));
}
else
{
if(a[i]%2==0)
re.add(new Pair(i,a[i]));
else
ro.add(new Pair(i,a[i]));
}
}
TreeSet<Pair> temp=new TreeSet<>();
for(Pair p:le)
{
if(re.floor(new Pair(0,p.l))!=null)
{
temp.add(p);
Pair pp=re.floor(new Pair(0,p.l));
ans[pp.v]=ans[p.v]=(p.l-pp.l)/2;
re.remove(pp);
}
}
for(Pair p:temp)
le.remove(p);
temp.clear();
for(Pair p:lo)
{
if(ro.floor(new Pair(0,p.l))!=null)
{
temp.add(p);
Pair pp=ro.floor(new Pair(0,p.l));
ans[pp.v]=ans[p.v]=(p.l-pp.l)/2;
ro.remove(pp);
}
}
for(Pair p:temp)
lo.remove(p);
while(le.size()>1)
{
Pair t1=le.pollFirst(),t2=le.pollFirst();
ans[t1.v]=ans[t2.v]=t1.l+(t2.l-t1.l)/2;
}
while(lo.size()>1)
{
Pair t1=lo.pollFirst(),t2=lo.pollFirst();
ans[t1.v]=ans[t2.v]=t1.l+(t2.l-t1.l)/2;
}
while(re.size()>1)
{
Pair t2=re.pollLast(),t1=re.pollLast();
ans[t1.v]=ans[t2.v]=m-t2.l+(t2.l-t1.l)/2;
}
while(ro.size()>1)
{
Pair t2=ro.pollLast(),t1=ro.pollLast();
ans[t1.v]=ans[t2.v]=m-t2.l+(t2.l-t1.l)/2;
}
if(le.size()==1&&re.size()==1)
{
Pair p1=le.pollFirst();
Pair p2=re.pollFirst();
int pos1=p1.l,pos2=p2.l;
int mx=Math.max(p1.l,m-p2.l);
if(mx==p1.l)
{
pos1=0;
int rem=mx-(m-pos2);
pos2=m-rem;
}
else
{
pos1=mx-p1.l;
pos2=m;
}
ans[p1.v]=ans[p2.v]=mx+(pos2-pos1)/2;
}
if(lo.size()==1&&ro.size()==1)
{
Pair p1=lo.pollFirst();
Pair p2=ro.pollFirst();
int pos1=p1.l,pos2=p2.l;
int mx=Math.max(p1.l,m-p2.l);
if(mx==p1.l)
{
pos1=0;
int rem=mx-(m-pos2);
pos2=m-rem;
}
else
{
pos1=mx-p1.l;
pos2=m;
}
ans[p1.v]=ans[p2.v]=mx+(pos2-pos1)/2;
}
for(int i:ans)
pw.print(i+" ");
pw.println();
}
pw.flush();
pw.close();
}
}
|
Java
|
["5\n7 12\n1 2 3 4 9 10 11\nR R L L R R R\n2 10\n1 6\nR R\n2 10\n1 3\nL L\n1 10\n5\nR\n7 8\n6 1 7 2 3 5 4\nR L R L L L L"]
|
2 seconds
|
["1 1 1 1 2 -1 2 \n-1 -1 \n2 2 \n-1 \n-1 2 7 3 2 7 3"]
|
NoteHere is the picture for the seconds $$$0, 1, 2$$$ and $$$3$$$ of the first testcase: Notice that robots $$$2$$$ and $$$3$$$ don't collide because they meet at the same point $$$2.5$$$, which is not integer.After second $$$3$$$ robot $$$6$$$ just drive infinitely because there's no robot to collide with.
|
Java 11
|
standard input
|
[
"data structures",
"greedy",
"implementation",
"sortings"
] |
1a28b972e77966453cd8239cc5c8f59a
|
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$) — the number of testcases. Then the descriptions of $$$t$$$ testcases follow. The first line of each testcase contains two integers $$$n$$$ and $$$m$$$ ($$$1 \le n \le 3 \cdot 10^5$$$; $$$2 \le m \le 10^8$$$) — the number of robots and the coordinate of the right wall. The second line of each testcase contains $$$n$$$ integers $$$x_1, x_2, \dots, x_n$$$ ($$$0 < x_i < m$$$) — the starting coordinates of the robots. The third line of each testcase contains $$$n$$$ space-separated characters 'L' or 'R' — the starting directions of the robots ('L' stands for left and 'R' stands for right). All coordinates $$$x_i$$$ in the testcase are distinct. The sum of $$$n$$$ over all testcases doesn't exceed $$$3 \cdot 10^5$$$.
| 2,000
|
For each testcase print $$$n$$$ integers — for the $$$i$$$-th robot output the time it explodes at if it does and $$$-1$$$ otherwise.
|
standard output
| |
PASSED
|
3a6475ea5ccbfba3cf850b6eac024421
|
train_110.jsonl
|
1621152000
|
There are $$$n$$$ robots driving along an OX axis. There are also two walls: one is at coordinate $$$0$$$ and one is at coordinate $$$m$$$.The $$$i$$$-th robot starts at an integer coordinate $$$x_i~(0 < x_i < m)$$$ and moves either left (towards the $$$0$$$) or right with the speed of $$$1$$$ unit per second. No two robots start at the same coordinate.Whenever a robot reaches a wall, it turns around instantly and continues his ride in the opposite direction with the same speed.Whenever several robots meet at the same integer coordinate, they collide and explode into dust. Once a robot has exploded, it doesn't collide with any other robot. Note that if several robots meet at a non-integer coordinate, nothing happens.For each robot find out if it ever explodes and print the time of explosion if it happens and $$$-1$$$ otherwise.
|
256 megabytes
|
import java.util.*;
import java.lang.*;
import java.io.*;
public class feb20 {
// *** ++
// +=-==+ +++=-
// +-:---==+ *+=----=
// +-:------==+ ++=------==
// =-----------=++=========================
// +--:::::---:-----============-=======+++====
// +---:..:----::-===============-======+++++++++
// =---:...---:-===================---===++++++++++
// +----:...:-=======================--==+++++++++++
// +-:------====================++===---==++++===+++++
// +=-----======================+++++==---==+==-::=++**+
// +=-----================---=======++=========::.:-+*****
// +==::-====================--: --:-====++=+===:..-=+*****
// +=---=====================-... :=..:-=+++++++++===++*****
// +=---=====+=++++++++++++++++=-:::::-====+++++++++++++*****+
// +=======++++++++++++=+++++++============++++++=======+******
// +=====+++++++++++++++++++++++++==++++==++++++=:... . .+****
// ++====++++++++++++++++++++++++++++++++++++++++-. ..-+****
// +======++++++++++++++++++++++++++++++++===+====:. ..:=++++
// +===--=====+++++++++++++++++++++++++++=========-::....::-=++*
// ====--==========+++++++==+++===++++===========--:::....:=++*
// ====---===++++=====++++++==+++=======-::--===-:. ....:-+++
// ==--=--====++++++++==+++++++++++======--::::...::::::-=+++
// ===----===++++++++++++++++++++============--=-==----==+++
// =--------====++++++++++++++++=====================+++++++
// =---------=======++++++++====+++=================++++++++
// -----------========+++++++++++++++=================+++++++
// =----------==========++++++++++=====================++++++++
// =====------==============+++++++===================+++==+++++
// =======------==========================================++++++
// created by : Nitesh Gupta
public static void main(String[] args) throws Exception {
first();
// sec();
}
private static void first() throws Exception {
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
int t = Integer.parseInt(br.readLine());
StringBuilder sb = new StringBuilder();
while (t-- > 0) {
String[] scn = (br.readLine()).trim().split(" ");
int n = Integer.parseInt(scn[0]);
int m = Integer.parseInt(scn[1]);
int[] arr = new int[n];
scn = (br.readLine()).trim().split(" ");
for (int i = 0; i < n; i++) {
arr[i] = (int) Long.parseLong(scn[i]);
}
char[] brr = new char[n];
scn = (br.readLine()).trim().split(" ");
for (int i = 0; i < n; i++) {
brr[i] = scn[i].charAt(0);
}
ArrayList<pair> odd = new ArrayList<>();
ArrayList<pair> even = new ArrayList<>();
for (int i = 0; i < n; i++) {
if (arr[i] % 2 == 1) {
odd.add(new pair(i, arr[i], brr[i]));
} else {
even.add(new pair(i, arr[i], brr[i]));
}
}
int[] ans = new int[n];
Arrays.fill(ans, -1);
fun(even, ans, n, m);
fun(odd, ans, n, m);
for (int ele : ans)
sb.append(ele + " ");
sb.append("\n");
}
System.out.println(sb);
return;
}
public static void fun(ArrayList<pair> list, int[] ans, int n, int m) {
Stack<pair> st = new Stack<>();
Collections.sort(list, (a, b) -> {
return a.pos - b.pos;
});
ArrayList<pair> sl = new ArrayList<>();
for (pair ele : list) {
// System.out.println(ele.pos + " " + ele.idx + " " + ele.ch);
if (ele.ch == 'R') {
st.push(ele);
} else {
if (st.isEmpty()) {
sl.add(ele);
} else {
pair rp = st.pop();
int dis = ele.pos - rp.pos;
dis /= 2;
ans[rp.idx] = ans[ele.idx] = dis;
}
}
}
// System.out.println();
while (!st.isEmpty()) {
sl.add(st.pop());
}
if (sl.size() <= 1) {
return;
}
//
// for (pair ele : sl) {
// System.out.println(ele.pos + " " + ele.idx + " " + ele.ch);
// }
// System.out.println();
Collections.sort(sl, (a, b) -> {
return a.pos - b.pos;
});
int i = 0, j = 1;
int ll = -1;
while (true) {
pair first = sl.get(i);
pair second = sl.get(j);
if (first.ch == second.ch && first.ch == 'L') {
int diff = (second.pos - first.pos) / 2;
diff += first.pos;
ans[first.idx] = ans[second.idx] = diff;
} else if (second.ch == 'R' && first.ch == 'L') {
ll = i;
break;
} else {
break;
}
i += 2;
j += 2;
if (i == sl.size()) {
break;
}
if (j == sl.size()) {
break;
}
}
i = sl.size() - 2;
j = i + 1;
int rr = -1;
while (true) {
pair first = sl.get(i);
pair second = sl.get(j);
if (first.ch == second.ch && first.ch == 'R') {
int diff = (second.pos - first.pos) / 2;
diff += (m - second.pos);
ans[second.idx] = ans[first.idx] = diff;
} else if (second.ch == 'R' && first.ch == 'L') {
rr = j;
break;
} else {
break;
}
i -= 2;
j -= 2;
if (i == -1) {
break;
}
if (j == -1) {
break;
}
}
if (ll != -1 && rr != -1) {
pair first = sl.get(ll);
pair second = sl.get(rr);
int ff = first.pos;
int ss = m - second.pos;
int diff = Math.max(ff, ss);
if (ff > ss) {
ss = m - (ff - ss);
ff = 0;
} else {
ff = 0 + (ss - ff);
ss = m;
}
diff += (ss - ff) / 2;
ans[second.idx] = ans[first.idx] = diff;
}
}
static class pair {
int idx;
int pos;
char ch;
pair(int a, int b, char c) {
idx = a;
pos = b;
ch = c;
}
}
private static void sec() throws Exception {
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
int t = Integer.parseInt(br.readLine());
StringBuilder sb = new StringBuilder();
while (t-- > 0) {
String[] scn = (br.readLine()).trim().split(" ");
int n = Integer.parseInt(scn[0]);
long[] arr = new long[n];
scn = (br.readLine()).trim().split(" ");
for (int i = 0; i < n; i++) {
arr[i] = Long.parseLong(scn[i]);
}
sb.append("\n");
}
System.out.println(sb);
return;
}
private static void third() throws Exception {
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
StringBuilder sb = new StringBuilder();
String[] scn = (br.readLine()).trim().split(" ");
int n = Integer.parseInt(scn[0]);
long[] arr = new long[n];
scn = (br.readLine()).trim().split(" ");
for (int i = 0; i < n; i++) {
arr[i] = Long.parseLong(scn[i]);
}
System.out.println(sb);
return;
}
public static void sort(long[] arr) {
int n = arr.length;
for (int i = 0; i < n; i++) {
int idx = (int) Math.random() * n;
long temp = arr[i];
arr[i] = arr[idx];
arr[idx] = temp;
}
Arrays.sort(arr);
}
public static void sort(int[] arr) {
int n = arr.length;
for (int i = 0; i < n; i++) {
int idx = (int) Math.random() * n;
int temp = arr[i];
arr[i] = arr[idx];
arr[idx] = temp;
}
Arrays.sort(arr);
}
public static void print(long[][] dp) {
for (long[] a : dp) {
for (long ele : a) {
System.out.print(ele + " ");
}
System.out.println();
}
}
public static void print(int[][] dp) {
for (int[] a : dp) {
for (int ele : a) {
System.out.print(ele + " ");
}
System.out.println();
}
}
public static void print(int[] dp) {
for (int ele : dp) {
System.out.print(ele + " ");
}
System.out.println();
}
public static void print(long[] dp) {
for (long ele : dp) {
System.out.print(ele + " ");
}
System.out.println();
}
}
|
Java
|
["5\n7 12\n1 2 3 4 9 10 11\nR R L L R R R\n2 10\n1 6\nR R\n2 10\n1 3\nL L\n1 10\n5\nR\n7 8\n6 1 7 2 3 5 4\nR L R L L L L"]
|
2 seconds
|
["1 1 1 1 2 -1 2 \n-1 -1 \n2 2 \n-1 \n-1 2 7 3 2 7 3"]
|
NoteHere is the picture for the seconds $$$0, 1, 2$$$ and $$$3$$$ of the first testcase: Notice that robots $$$2$$$ and $$$3$$$ don't collide because they meet at the same point $$$2.5$$$, which is not integer.After second $$$3$$$ robot $$$6$$$ just drive infinitely because there's no robot to collide with.
|
Java 11
|
standard input
|
[
"data structures",
"greedy",
"implementation",
"sortings"
] |
1a28b972e77966453cd8239cc5c8f59a
|
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$) — the number of testcases. Then the descriptions of $$$t$$$ testcases follow. The first line of each testcase contains two integers $$$n$$$ and $$$m$$$ ($$$1 \le n \le 3 \cdot 10^5$$$; $$$2 \le m \le 10^8$$$) — the number of robots and the coordinate of the right wall. The second line of each testcase contains $$$n$$$ integers $$$x_1, x_2, \dots, x_n$$$ ($$$0 < x_i < m$$$) — the starting coordinates of the robots. The third line of each testcase contains $$$n$$$ space-separated characters 'L' or 'R' — the starting directions of the robots ('L' stands for left and 'R' stands for right). All coordinates $$$x_i$$$ in the testcase are distinct. The sum of $$$n$$$ over all testcases doesn't exceed $$$3 \cdot 10^5$$$.
| 2,000
|
For each testcase print $$$n$$$ integers — for the $$$i$$$-th robot output the time it explodes at if it does and $$$-1$$$ otherwise.
|
standard output
| |
PASSED
|
333b183e6aec84743471088f58f24ad6
|
train_110.jsonl
|
1621152000
|
There are $$$n$$$ robots driving along an OX axis. There are also two walls: one is at coordinate $$$0$$$ and one is at coordinate $$$m$$$.The $$$i$$$-th robot starts at an integer coordinate $$$x_i~(0 < x_i < m)$$$ and moves either left (towards the $$$0$$$) or right with the speed of $$$1$$$ unit per second. No two robots start at the same coordinate.Whenever a robot reaches a wall, it turns around instantly and continues his ride in the opposite direction with the same speed.Whenever several robots meet at the same integer coordinate, they collide and explode into dust. Once a robot has exploded, it doesn't collide with any other robot. Note that if several robots meet at a non-integer coordinate, nothing happens.For each robot find out if it ever explodes and print the time of explosion if it happens and $$$-1$$$ otherwise.
|
256 megabytes
|
import java.util.*;
public class j
{
static class Robot implements Comparable<Robot>
{
int val,ind;
char ch;
Robot(int val,char ch,int ind)
{
this.ind=ind;this.ch=ch;
this.val=val;
}
@Override
public int compareTo(Robot r)
{
return this.val-r.val;
}
}
public static void main(String args[])
{
Scanner in=new Scanner(System.in);
int t=in.nextInt();
while(t-->0)
{
int n=in.nextInt();
int m=in.nextInt();
int ind[]=new int[n];
char dir[]=new char[n];
for(int i=0;i<n;i++)
ind[i]=in.nextInt();
for(int i=0;i<n;i++)
dir[i]=in.next().charAt(0);
ArrayList<Robot> odd=new ArrayList<>();
ArrayList<Robot> even=new ArrayList<>();
for(int i=0;i<n;i++)
{
if(ind[i]%2==0)
even.add(new Robot(ind[i],dir[i],i));
else
odd.add(new Robot(ind[i],dir[i],i));
}
Collections.sort(odd);
Collections.sort(even);
int ans[]=new int[n];
Arrays.fill(ans,-1);
findans(even,ans,m);
findans(odd,ans,m);
for(int i:ans)
System.out.print(i+" ");
System.out.println();
}
}
public static void findans(ArrayList<Robot> al,int ans[],int m)
{
Stack<Robot> st=new Stack<>();
for(Robot r:al)
{
if(r.ch=='R')
st.add(r);
else
{
if(st.isEmpty())
{
st.add(r);
}
else
{
Robot right=st.pop();
if(right.ch=='R')
{
ans[r.ind]=Math.abs(r.val-right.val)/2;
ans[right.ind]=ans[r.ind];
}
else
{
ans[r.ind]=Math.abs(right.val+r.val)/2;;
ans[right.ind]=Math.abs(right.val+r.val)/2;
}
}
}
}
while(st.size()>=2)
{
Robot a=st.pop();
Robot b=st.pop();
if(b.ch=='R')
{
ans[a.ind]=Math.abs(m-a.val+m-b.val)/2;
ans[b.ind]=ans[a.ind];
}
else
{
ans[a.ind]=Math.abs(m-a.val+m+b.val)/2;
ans[b.ind]=ans[a.ind];
}
}
}
}
|
Java
|
["5\n7 12\n1 2 3 4 9 10 11\nR R L L R R R\n2 10\n1 6\nR R\n2 10\n1 3\nL L\n1 10\n5\nR\n7 8\n6 1 7 2 3 5 4\nR L R L L L L"]
|
2 seconds
|
["1 1 1 1 2 -1 2 \n-1 -1 \n2 2 \n-1 \n-1 2 7 3 2 7 3"]
|
NoteHere is the picture for the seconds $$$0, 1, 2$$$ and $$$3$$$ of the first testcase: Notice that robots $$$2$$$ and $$$3$$$ don't collide because they meet at the same point $$$2.5$$$, which is not integer.After second $$$3$$$ robot $$$6$$$ just drive infinitely because there's no robot to collide with.
|
Java 11
|
standard input
|
[
"data structures",
"greedy",
"implementation",
"sortings"
] |
1a28b972e77966453cd8239cc5c8f59a
|
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$) — the number of testcases. Then the descriptions of $$$t$$$ testcases follow. The first line of each testcase contains two integers $$$n$$$ and $$$m$$$ ($$$1 \le n \le 3 \cdot 10^5$$$; $$$2 \le m \le 10^8$$$) — the number of robots and the coordinate of the right wall. The second line of each testcase contains $$$n$$$ integers $$$x_1, x_2, \dots, x_n$$$ ($$$0 < x_i < m$$$) — the starting coordinates of the robots. The third line of each testcase contains $$$n$$$ space-separated characters 'L' or 'R' — the starting directions of the robots ('L' stands for left and 'R' stands for right). All coordinates $$$x_i$$$ in the testcase are distinct. The sum of $$$n$$$ over all testcases doesn't exceed $$$3 \cdot 10^5$$$.
| 2,000
|
For each testcase print $$$n$$$ integers — for the $$$i$$$-th robot output the time it explodes at if it does and $$$-1$$$ otherwise.
|
standard output
| |
PASSED
|
5701123e0cee0319ccf6cb25ccf0d654
|
train_110.jsonl
|
1621152000
|
There are $$$n$$$ robots driving along an OX axis. There are also two walls: one is at coordinate $$$0$$$ and one is at coordinate $$$m$$$.The $$$i$$$-th robot starts at an integer coordinate $$$x_i~(0 < x_i < m)$$$ and moves either left (towards the $$$0$$$) or right with the speed of $$$1$$$ unit per second. No two robots start at the same coordinate.Whenever a robot reaches a wall, it turns around instantly and continues his ride in the opposite direction with the same speed.Whenever several robots meet at the same integer coordinate, they collide and explode into dust. Once a robot has exploded, it doesn't collide with any other robot. Note that if several robots meet at a non-integer coordinate, nothing happens.For each robot find out if it ever explodes and print the time of explosion if it happens and $$$-1$$$ otherwise.
|
256 megabytes
|
import java.util.*;
public class Practice {
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
int t = sc.nextInt();
while (t-- > 0) {
int n = sc.nextInt(); int m = sc.nextInt();
int[] start = new int[n];
char[] dir = new char[n];
ArrayList<Node> even = new ArrayList<>();
ArrayList<Node> odd = new ArrayList<>();
for(int i=0;i<n;i++) start[i] = sc.nextInt();
for (int i=0;i<n;i++) {
dir[i] = sc.next().charAt(0);
if(start[i]%2==0) even.add(new Node(start[i], dir[i], i));
else odd.add(new Node(start[i], dir[i], i));
}
Collections.sort(even); Collections.sort(odd);
int[] ans = new int[n]; Arrays.fill(ans, -1);
findAns(even, ans, m);
findAns(odd,ans,m);
for(int x: ans) System.out.print(x + " ");
System.out.println();
}
}
private static void findAns(ArrayList<Node> val, int[] ans, int m) {
Stack<Node> stack = new Stack<>();
for(Node x : val) {
if(x.dir == 'R'){
stack.add(x);
}else{
if(stack.empty()) stack.add(x);
else{
Node right = stack.pop();
if(right.dir == 'R'){
ans[x.idx] = Math.abs(right.value - x.value)/2;
ans[right.idx] = Math.abs(right.value - x.value)/2;
}else{
ans[x.idx] = (right.value + x.value)/2;
ans[right.idx] = (right.value + x.value)/2;
}
}
}
}
while (stack.size() >=2){
Node a = stack.pop();
Node b = stack.pop();
if(b.dir == 'R'){
ans[a.idx] = (m-a.value+m-b.value)/2;
ans[b.idx] = (m-a.value+m-b.value)/2;
}else{
ans[a.idx] = (m-a.value+m+b.value)/2;
ans[b.idx] = (m-a.value+m+b.value)/2;
}
}
}
private static class Node implements Comparable<Node>{
int value; char dir; int idx;
Node(int value, char dir, int idx){
this.value = value;
this.dir = dir;
this.idx = idx;
}
@Override
public int compareTo(Node o) {
return this.value - o.value;
}
}
}
|
Java
|
["5\n7 12\n1 2 3 4 9 10 11\nR R L L R R R\n2 10\n1 6\nR R\n2 10\n1 3\nL L\n1 10\n5\nR\n7 8\n6 1 7 2 3 5 4\nR L R L L L L"]
|
2 seconds
|
["1 1 1 1 2 -1 2 \n-1 -1 \n2 2 \n-1 \n-1 2 7 3 2 7 3"]
|
NoteHere is the picture for the seconds $$$0, 1, 2$$$ and $$$3$$$ of the first testcase: Notice that robots $$$2$$$ and $$$3$$$ don't collide because they meet at the same point $$$2.5$$$, which is not integer.After second $$$3$$$ robot $$$6$$$ just drive infinitely because there's no robot to collide with.
|
Java 11
|
standard input
|
[
"data structures",
"greedy",
"implementation",
"sortings"
] |
1a28b972e77966453cd8239cc5c8f59a
|
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$) — the number of testcases. Then the descriptions of $$$t$$$ testcases follow. The first line of each testcase contains two integers $$$n$$$ and $$$m$$$ ($$$1 \le n \le 3 \cdot 10^5$$$; $$$2 \le m \le 10^8$$$) — the number of robots and the coordinate of the right wall. The second line of each testcase contains $$$n$$$ integers $$$x_1, x_2, \dots, x_n$$$ ($$$0 < x_i < m$$$) — the starting coordinates of the robots. The third line of each testcase contains $$$n$$$ space-separated characters 'L' or 'R' — the starting directions of the robots ('L' stands for left and 'R' stands for right). All coordinates $$$x_i$$$ in the testcase are distinct. The sum of $$$n$$$ over all testcases doesn't exceed $$$3 \cdot 10^5$$$.
| 2,000
|
For each testcase print $$$n$$$ integers — for the $$$i$$$-th robot output the time it explodes at if it does and $$$-1$$$ otherwise.
|
standard output
| |
PASSED
|
938f80ca89bb32d4b5328bb6ab54043e
|
train_110.jsonl
|
1621152000
|
There are $$$n$$$ robots driving along an OX axis. There are also two walls: one is at coordinate $$$0$$$ and one is at coordinate $$$m$$$.The $$$i$$$-th robot starts at an integer coordinate $$$x_i~(0 < x_i < m)$$$ and moves either left (towards the $$$0$$$) or right with the speed of $$$1$$$ unit per second. No two robots start at the same coordinate.Whenever a robot reaches a wall, it turns around instantly and continues his ride in the opposite direction with the same speed.Whenever several robots meet at the same integer coordinate, they collide and explode into dust. Once a robot has exploded, it doesn't collide with any other robot. Note that if several robots meet at a non-integer coordinate, nothing happens.For each robot find out if it ever explodes and print the time of explosion if it happens and $$$-1$$$ otherwise.
|
256 megabytes
|
import java.util.*;
// import java.lang.*;
import java.io.*;
// THIS TEMPLATE MADE BY AKSH BANSAL.
public class Solution {
static class FastReader {
BufferedReader br;
StringTokenizer st;
public FastReader() {
br = new BufferedReader(new InputStreamReader(System.in));
}
String next() {
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
long nextLong() {
return Long.parseLong(next());
}
double nextDouble() {
return Double.parseDouble(next());
}
String nextLine() {
String str = "";
try {
str = br.readLine();
} catch (IOException e) {
e.printStackTrace();
}
return str;
}
}
private static boolean[] isPrime;
private static void primes(){
int num = (int)1e6; // PRIMES FROM 1 TO NUM
isPrime = new boolean[num];
for (int i = 2; i< isPrime.length; i++) {
isPrime[i] = true;
}
for (int i = 2; i< Math.sqrt(num); i++) {
if(isPrime[i] == true) {
for(int j = (i*i); j<num; j = j+i) {
isPrime[j] = false;
}
}
}
}
private static long gcd(long a, long b){
if(b==0)return a;
return gcd(b,a%b);
}
private static long pow(long x,long y){
if(y==0)return 1;
long temp = pow(x, y/2);
if(y%2==1){
return x*temp*temp;
}
else{
return temp*temp;
}
}
// static ArrayList<Integer>[] adj;
// static void getAdj(int n,int q, FastReader sc){
// adj = new ArrayList[n+1];
// for(int i=1;i<=n;i++){
// adj[i] = new ArrayList<>();
// }
// for(int i=0;i<q;i++){
// int a = sc.nextInt();
// int b = sc.nextInt();
// adj[a].add(b);
// adj[b].add(a);
// }
// }
public static void main(String[] args) throws IOException {
FastReader sc = new FastReader();
PrintWriter out = new PrintWriter(System.out);
// primes();
// ________________________________
int t = sc.nextInt();
StringBuilder output = new StringBuilder();
while (t-- > 0) {
int n = sc.nextInt();
int k = sc.nextInt();
int[][] arr = new int[n][3];
for(int i=0;i<n;i++){
arr[i][1] = sc.nextInt();
arr[i][0] = i;
}
String[] s = sc.nextLine().split(" ");
for(int i=0;i<n;i++){
if(s[i].equals("R")){
arr[i][2] = 1;
}
else{
arr[i][2] = -1;
}
}
Arrays.sort(arr, (a,b)->a[1]-b[1]);
// output.append().append("\n");
solver(n,k,arr, out);
}
out.println(output);
// _______________________________
// int n = sc.nextInt();
// out.println(solver());
// ________________________________
out.flush();
}
public static void solver(int n, int k, int[][] arr, PrintWriter out) {
map = new HashMap<>();
dir = new HashMap<>();
ArrayList<Integer> odd = new ArrayList<>();
ArrayList<Integer> even = new ArrayList<>();
for(int i=0;i<n;i++){
map.put(arr[i][0], arr[i][1]);
dir.put(arr[i][0], arr[i][2]);
if(arr[i][1]%2==0){
even.add(arr[i][0]);
}
else{
odd.add(arr[i][0]);
}
}
// System.out.println("__"+ odd);
// System.out.println("__"+ even);
int[] res = new int[n];
Arrays.fill(res, -1);
helper(odd, res, n, k);
helper(even, res, n, k);
for(int i=0;i<n;i++){
out.print(res[i]+" ");
}
out.println();
}
static HashMap<Integer, Integer> map;
static HashMap<Integer, Integer> dir;
private static void helper(ArrayList<Integer> arr, int[] res, int n, int m){
Stack<Integer> stack = new Stack<>();
HashSet<Integer> temp = new HashSet<>();
for(int e: arr){
if(dir.get(e)==1){
stack.push(e);
}
else{
if(stack.isEmpty()){
continue;
}
else{
int cur = stack.pop();
int ans = Math.abs(map.get(cur)-map.get(e))/2;
res[cur] = ans;
res[e] = ans;
temp.add(cur);
temp.add(e);
}
}
}
ArrayList<Integer> copy = new ArrayList<>();
for(int e: arr){
if(!temp.contains(e)){
copy.add(e);
}
}
temp.clear();
arr = copy;
for(int i=0;i<arr.size()-1;i++){
if(
dir.get(arr.get(i))==dir.get(arr.get(i+1)) &&
dir.get(arr.get(i))==-1
){
int pos1 = map.get(arr.get(i));
int pos2 = map.get(arr.get(i+1));
int ans = Math.abs(pos1-pos2)/2;
if(dir.get(arr.get(i))==-1){
ans+=Math.min(pos1, pos2);
}
else{
ans+=m-Math.max(pos1, pos2);
}
res[arr.get(i)] = ans;
res[arr.get(i+1)] = ans;
temp.add(arr.get(i));
temp.add(arr.get(i+1));
i++;
}
else{
break;
}
}
for(int i=arr.size()-2;i>=0;i--){
if(
dir.get(arr.get(i))==dir.get(arr.get(i+1)) &&
dir.get(arr.get(i))==1
){
int pos1 = map.get(arr.get(i));
int pos2 = map.get(arr.get(i+1));
int ans = Math.abs(pos1-pos2)/2;
if(dir.get(arr.get(i))==-1){
ans+=Math.min(pos1, pos2);
}
else{
ans+=m-Math.max(pos1, pos2);
}
res[arr.get(i)] = ans;
res[arr.get(i+1)] = ans;
temp.add(arr.get(i));
temp.add(arr.get(i+1));
i--;
}
else{
break;
}
}
// System.out.println("__"+ arr);
ArrayList<Integer> copy2 = new ArrayList<>();
for(int e: arr){
if(!temp.contains(e)){
copy2.add(e);
}
}
arr = copy2;
// System.out.println("__"+ arr);
// System.out.println("__"+ copy2);
// for(int e: temp){
// arr.remove(Integer.valueOf(e));
// }
// System.out.println("__"+ arr);
if(arr.size()==2){
int pos1 = map.get(arr.get(0));
int pos2 = map.get(arr.get(1));
int ans = (2*m-Math.abs(pos1-pos2))/2;
res[arr.get(0)] = ans;
res[arr.get(1)] = ans;
}
}
}
|
Java
|
["5\n7 12\n1 2 3 4 9 10 11\nR R L L R R R\n2 10\n1 6\nR R\n2 10\n1 3\nL L\n1 10\n5\nR\n7 8\n6 1 7 2 3 5 4\nR L R L L L L"]
|
2 seconds
|
["1 1 1 1 2 -1 2 \n-1 -1 \n2 2 \n-1 \n-1 2 7 3 2 7 3"]
|
NoteHere is the picture for the seconds $$$0, 1, 2$$$ and $$$3$$$ of the first testcase: Notice that robots $$$2$$$ and $$$3$$$ don't collide because they meet at the same point $$$2.5$$$, which is not integer.After second $$$3$$$ robot $$$6$$$ just drive infinitely because there's no robot to collide with.
|
Java 11
|
standard input
|
[
"data structures",
"greedy",
"implementation",
"sortings"
] |
1a28b972e77966453cd8239cc5c8f59a
|
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$) — the number of testcases. Then the descriptions of $$$t$$$ testcases follow. The first line of each testcase contains two integers $$$n$$$ and $$$m$$$ ($$$1 \le n \le 3 \cdot 10^5$$$; $$$2 \le m \le 10^8$$$) — the number of robots and the coordinate of the right wall. The second line of each testcase contains $$$n$$$ integers $$$x_1, x_2, \dots, x_n$$$ ($$$0 < x_i < m$$$) — the starting coordinates of the robots. The third line of each testcase contains $$$n$$$ space-separated characters 'L' or 'R' — the starting directions of the robots ('L' stands for left and 'R' stands for right). All coordinates $$$x_i$$$ in the testcase are distinct. The sum of $$$n$$$ over all testcases doesn't exceed $$$3 \cdot 10^5$$$.
| 2,000
|
For each testcase print $$$n$$$ integers — for the $$$i$$$-th robot output the time it explodes at if it does and $$$-1$$$ otherwise.
|
standard output
| |
PASSED
|
a648297d0fb2cf74ace78efc62792906
|
train_110.jsonl
|
1621152000
|
There are $$$n$$$ robots driving along an OX axis. There are also two walls: one is at coordinate $$$0$$$ and one is at coordinate $$$m$$$.The $$$i$$$-th robot starts at an integer coordinate $$$x_i~(0 < x_i < m)$$$ and moves either left (towards the $$$0$$$) or right with the speed of $$$1$$$ unit per second. No two robots start at the same coordinate.Whenever a robot reaches a wall, it turns around instantly and continues his ride in the opposite direction with the same speed.Whenever several robots meet at the same integer coordinate, they collide and explode into dust. Once a robot has exploded, it doesn't collide with any other robot. Note that if several robots meet at a non-integer coordinate, nothing happens.For each robot find out if it ever explodes and print the time of explosion if it happens and $$$-1$$$ otherwise.
|
256 megabytes
|
import java.util.*;
public class Robots {
public static void main(String[] args) {
Scanner in = new Scanner(System.in);
StringBuffer out = new StringBuffer();
int t = in.nextInt();
while (t-- != 0) {
int n = in.nextInt(), m = in.nextInt();
int x[] = new int[n];
for (int i = 0; i < n; i++)
x[i] = in.nextInt();
HashMap<Integer, Character> map = new HashMap<>();
for (int i = 0; i < n; i++)
map.put(x[i], in.next().charAt(0));
List<Integer> values[] = new ArrayList[2];
for (int i = 0; i < 2; i++)
values[i] = new ArrayList<>();
for (int item : x) {
values[item % 2].add(item);
}
HashMap<Integer, Integer> ans = new HashMap<>();
for (int i = 0; i < 2; i++) {
Collections.sort(values[i]);
// System.out.println(values[i]);
LinkedList<Integer> left = new LinkedList<>(), right = new LinkedList<>();
for (int item : values[i]) {
if (map.get(item) == 'L') {
if (!right.isEmpty()) {
int ant1 = right.pollLast(), ant2 = item;
ans.put(ant1, Math.abs(ant1 - ant2) / 2);
ans.put(ant2, Math.abs(ant1 - ant2) / 2);
} else {
left.add(item);
}
} else {
right.add(item);
}
}
// System.out.println(left + " " + right + " " + ans);
while (left.size() >= 2) {
int ant1 = left.pollFirst(), ant2 = left.pollFirst();
ans.put(ant1, ant1 + Math.abs(ant1 - ant2) / 2);
ans.put(ant2, ant1 + Math.abs(ant1 - ant2) / 2);
}
// System.out.println(left + " " + right + " " + ans);
while (right.size() >= 2) {
int ant1 = right.pollLast(), ant2 = right.pollLast();
ans.put(ant1, (m - ant1) + Math.abs(ant1 - ant2) / 2);
ans.put(ant2, (m - ant1) + Math.abs(ant1 - ant2) / 2);
}
// System.out.println(left + " " + right + " " + ans);
if (left.size() == 1 && right.size() == 1) {
int ant1 = left.poll(), ant2 = right.poll();
int min = Math.min(ant1, (m - ant2));
int max = Math.max(ant1, (m - ant2));
int diff = (ant2 + min) - (ant1 - min);
ans.put(ant1, max + diff / 2);
ans.put(ant2, max + diff / 2);
}
// System.out.println(left + " " + right + " " + ans);
if (!left.isEmpty())
ans.put(left.poll(), -1);
if (!right.isEmpty())
ans.put(right.poll(), -1);
// System.out.println(left + " " + right + " " + ans);
}
for (int item : x)
out.append(ans.get(item) + " ");
out.append("\n");
}
System.out.println(out);
}
private static int GCD(int a, int b) {
if (a == 0)
return b;
return GCD(b % a, a);
}
}
|
Java
|
["5\n7 12\n1 2 3 4 9 10 11\nR R L L R R R\n2 10\n1 6\nR R\n2 10\n1 3\nL L\n1 10\n5\nR\n7 8\n6 1 7 2 3 5 4\nR L R L L L L"]
|
2 seconds
|
["1 1 1 1 2 -1 2 \n-1 -1 \n2 2 \n-1 \n-1 2 7 3 2 7 3"]
|
NoteHere is the picture for the seconds $$$0, 1, 2$$$ and $$$3$$$ of the first testcase: Notice that robots $$$2$$$ and $$$3$$$ don't collide because they meet at the same point $$$2.5$$$, which is not integer.After second $$$3$$$ robot $$$6$$$ just drive infinitely because there's no robot to collide with.
|
Java 11
|
standard input
|
[
"data structures",
"greedy",
"implementation",
"sortings"
] |
1a28b972e77966453cd8239cc5c8f59a
|
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$) — the number of testcases. Then the descriptions of $$$t$$$ testcases follow. The first line of each testcase contains two integers $$$n$$$ and $$$m$$$ ($$$1 \le n \le 3 \cdot 10^5$$$; $$$2 \le m \le 10^8$$$) — the number of robots and the coordinate of the right wall. The second line of each testcase contains $$$n$$$ integers $$$x_1, x_2, \dots, x_n$$$ ($$$0 < x_i < m$$$) — the starting coordinates of the robots. The third line of each testcase contains $$$n$$$ space-separated characters 'L' or 'R' — the starting directions of the robots ('L' stands for left and 'R' stands for right). All coordinates $$$x_i$$$ in the testcase are distinct. The sum of $$$n$$$ over all testcases doesn't exceed $$$3 \cdot 10^5$$$.
| 2,000
|
For each testcase print $$$n$$$ integers — for the $$$i$$$-th robot output the time it explodes at if it does and $$$-1$$$ otherwise.
|
standard output
| |
PASSED
|
f3ce271da082ed5c1e4b81cc634a9511
|
train_110.jsonl
|
1621152000
|
There are $$$n$$$ robots driving along an OX axis. There are also two walls: one is at coordinate $$$0$$$ and one is at coordinate $$$m$$$.The $$$i$$$-th robot starts at an integer coordinate $$$x_i~(0 < x_i < m)$$$ and moves either left (towards the $$$0$$$) or right with the speed of $$$1$$$ unit per second. No two robots start at the same coordinate.Whenever a robot reaches a wall, it turns around instantly and continues his ride in the opposite direction with the same speed.Whenever several robots meet at the same integer coordinate, they collide and explode into dust. Once a robot has exploded, it doesn't collide with any other robot. Note that if several robots meet at a non-integer coordinate, nothing happens.For each robot find out if it ever explodes and print the time of explosion if it happens and $$$-1$$$ otherwise.
|
256 megabytes
|
/*input
5
7 12
1 2 3 4 9 10 11
R R L L R R R
2 10
1 6
R R
2 10
1 3
L L
1 10
5
R
7 8
6 1 7 2 3 5 4
R L R L L L L
*/
import java.util.*;
import java.lang.*;
import java.io.*;
public class Main
{
static PrintWriter out;
static int MOD = 1000000007;
static FastReader scan;
/*-------- I/O usaing short named function ---------*/
public static String ns(){return scan.next();}
public static int ni(){return scan.nextInt();}
public static long nl(){return scan.nextLong();}
public static double nd(){return scan.nextDouble();}
public static String nln(){return scan.nextLine();}
public static void p(Object o){out.print(o);}
public static void ps(Object o){out.print(o + " ");}
public static void pn(Object o){out.println(o);}
/*-------- for output of an array ---------------------*/
static void iPA(int arr []){
StringBuilder output = new StringBuilder();
for(int i=0; i<arr.length; i++)output.append(arr[i] + " ");out.println(output);
}
static void lPA(long arr []){
StringBuilder output = new StringBuilder();
for(int i=0; i<arr.length; i++)output.append(arr[i] + " ");out.println(output);
}
static void sPA(String arr []){
StringBuilder output = new StringBuilder();
for(int i=0; i<arr.length; i++)output.append(arr[i] + " ");out.println(output);
}
static void dPA(double arr []){
StringBuilder output = new StringBuilder();
for(int i=0; i<arr.length; i++)output.append(arr[i] + " ");out.println(output);
}
/*-------------- for input in an array ---------------------*/
static void iIA(int arr[]){
for(int i=0; i<arr.length; i++)arr[i] = ni();
}
static void lIA(long arr[]){
for(int i=0; i<arr.length; i++)arr[i] = nl();
}
static void sIA(String arr[]){
for(int i=0; i<arr.length; i++)arr[i] = ns();
}
static void dIA(double arr[]){
for(int i=0; i<arr.length; i++)arr[i] = nd();
}
/*------------ for taking input faster ----------------*/
static class FastReader
{
BufferedReader br;
StringTokenizer st;
public FastReader()
{
br = new BufferedReader(new InputStreamReader(System.in));
}
String next()
{
while (st == null || !st.hasMoreElements())
{
try
{
st = new StringTokenizer(br.readLine());
}
catch (IOException e)
{
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt()
{
return Integer.parseInt(next());
}
long nextLong()
{
return Long.parseLong(next());
}
double nextDouble()
{
return Double.parseDouble(next());
}
String nextLine()
{
String str = "";
try
{
str = br.readLine();
}
catch (IOException e)
{
e.printStackTrace();
}
return str;
}
}
// Method to check if x is power of 2
static boolean isPowerOfTwo (int x) { return x!=0 && ((x&(x-1)) == 0);}
//Method to return lcm of two numbers
static int gcd(int a, int b){return a==0?b:gcd(b % a, a); }
//Method to count digit of a number
static int countDigit(long n){return (int)Math.floor(Math.log10(n) + 1);}
//Method for sorting
static void ruffle_sort(int[] a) {
//shandom_ruffle
Random r=new Random();
int n=a.length;
for (int i=0; i<n; i++) {
int oi=r.nextInt(n);
int temp=a[i];
a[i]=a[oi];
a[oi]=temp;
}
//sort
Arrays.sort(a);
}
//Method for checking if a number is prime or not
static boolean isPrime(int n) {
if (n <= 1) return false;
if (n <= 3) return true;
if (n % 2 == 0 || n % 3 == 0) return false;
for (int i = 5; i * i <= n; i = i + 6)
if (n % i == 0 || n % (i + 2) == 0)
return false;
return true;
}
public static void main (String[] args) throws java.lang.Exception
{
OutputStream outputStream =System.out;
out =new PrintWriter(outputStream);
scan =new FastReader();
//for fast output sometimes
StringBuilder sb = new StringBuilder();
int t = ni();
while(t-->0){
int n = ni(), m = ni();
int pos[] = new int[n];
iIA(pos);
char dir[] = new char[n];
for(int i=0; i<n; i++)
dir[i] = ns().charAt(0);
int res[] = new int[n];
Arrays.fill(res, -1);
Pair p[] = new Pair[n];
for(int i=0; i<n; i++){
p[i] = new Pair(i, pos[i]);
}
Arrays.sort(p, new CustomSort());
Stack<Pair> odd = new Stack<>();
Stack<Pair> even = new Stack<>();
for(int i=0; i<n; i++){
if(p[i].position%2 == 0){
if(even.isEmpty()){
even.add(p[i]);
}
else{
if(dir[p[i].idx] == 'R'){
even.add(p[i]);
}
else{
if(dir[even.peek().idx] == 'R'){
Pair p1 = even.pop(), p2 = p[i];
int colTime = (p2.position - p1.position)/2;
res[p1.idx] = colTime;
res[p2.idx] = colTime;
}else{
Pair p1 = even.pop(), p2 = p[i];
int colTime = (p2.position + p1.position)/2;
res[p1.idx] = colTime;
res[p2.idx] = colTime;
}
}
}
}else{
if(odd.isEmpty()){
odd.add(p[i]);
}
else{
if(dir[p[i].idx] == 'R'){
odd.add(p[i]);
}
else{
if(dir[odd.peek().idx] == 'R'){
Pair p1 = odd.pop(), p2 = p[i];
int colTime = (p2.position - p1.position)/2;
res[p1.idx] = colTime;
res[p2.idx] = colTime;
}else{
Pair p1 = odd.pop(), p2 = p[i];
int colTime = (p2.position + p1.position)/2;
res[p1.idx] = colTime;
res[p2.idx] = colTime;
}
}
}
}
}
//Pair evenLeft =
while(even.size() > 1){
Pair p1 = even.pop();
Pair p2 = even.pop();
if(dir[p1.idx] == 'R' && dir[p2.idx] == 'R'){
int colTime = (m - p2.position + m - p1.position)/2;
res[p1.idx] = colTime;
res[p2.idx] = colTime;
}
else
if(dir[p1.idx] == 'L' && dir[p2.idx] == 'L'){
int colTime = (p2.position + p1.position)/2;
res[p1.idx] = colTime;
res[p2.idx] = colTime;
}
else
if(dir[p1.idx] == 'R' && dir[p2.idx] == 'L'){
if(even.size()%2 == 0){
int colTime = (p2.position + m - p1.position + m)/2;
res[p1.idx] = colTime;
res[p2.idx] = colTime;
}else{
even.push(p2);
}
}
}
while(odd.size() > 1){
Pair p1 = odd.pop();
Pair p2 = odd.pop();
if(dir[p1.idx] == 'R' && dir[p2.idx] == 'R'){
int colTime = (m - p2.position + m - p1.position)/2;
res[p1.idx] = colTime;
res[p2.idx] = colTime;
}
else
if(dir[p1.idx] == 'L' && dir[p2.idx] == 'L'){
int colTime = (p2.position + p1.position)/2;
res[p1.idx] = colTime;
res[p2.idx] = colTime;
}
else
if(dir[p1.idx] == 'R' && dir[p2.idx] == 'L'){
if(odd.size()%2 == 0){
int colTime = (p2.position + m - p1.position + m)/2;
res[p1.idx] = colTime;
res[p2.idx] = colTime;
}else{
odd.push(p2);
}
}
}
iPA(res);
}
out.flush();
out.close();
}
static class CustomSort implements Comparator<Pair>{
@Override
public int compare(Pair p1, Pair p2){
return p1.position - p2.position;
}
}
}
class Pair{
int idx, position;
Pair(int idx, int position){
this.idx = idx;
this.position = position;
}
}
|
Java
|
["5\n7 12\n1 2 3 4 9 10 11\nR R L L R R R\n2 10\n1 6\nR R\n2 10\n1 3\nL L\n1 10\n5\nR\n7 8\n6 1 7 2 3 5 4\nR L R L L L L"]
|
2 seconds
|
["1 1 1 1 2 -1 2 \n-1 -1 \n2 2 \n-1 \n-1 2 7 3 2 7 3"]
|
NoteHere is the picture for the seconds $$$0, 1, 2$$$ and $$$3$$$ of the first testcase: Notice that robots $$$2$$$ and $$$3$$$ don't collide because they meet at the same point $$$2.5$$$, which is not integer.After second $$$3$$$ robot $$$6$$$ just drive infinitely because there's no robot to collide with.
|
Java 11
|
standard input
|
[
"data structures",
"greedy",
"implementation",
"sortings"
] |
1a28b972e77966453cd8239cc5c8f59a
|
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$) — the number of testcases. Then the descriptions of $$$t$$$ testcases follow. The first line of each testcase contains two integers $$$n$$$ and $$$m$$$ ($$$1 \le n \le 3 \cdot 10^5$$$; $$$2 \le m \le 10^8$$$) — the number of robots and the coordinate of the right wall. The second line of each testcase contains $$$n$$$ integers $$$x_1, x_2, \dots, x_n$$$ ($$$0 < x_i < m$$$) — the starting coordinates of the robots. The third line of each testcase contains $$$n$$$ space-separated characters 'L' or 'R' — the starting directions of the robots ('L' stands for left and 'R' stands for right). All coordinates $$$x_i$$$ in the testcase are distinct. The sum of $$$n$$$ over all testcases doesn't exceed $$$3 \cdot 10^5$$$.
| 2,000
|
For each testcase print $$$n$$$ integers — for the $$$i$$$-th robot output the time it explodes at if it does and $$$-1$$$ otherwise.
|
standard output
| |
PASSED
|
7e4bbc057ea73a67d67ef3f059d79e4e
|
train_110.jsonl
|
1621152000
|
There are $$$n$$$ robots driving along an OX axis. There are also two walls: one is at coordinate $$$0$$$ and one is at coordinate $$$m$$$.The $$$i$$$-th robot starts at an integer coordinate $$$x_i~(0 < x_i < m)$$$ and moves either left (towards the $$$0$$$) or right with the speed of $$$1$$$ unit per second. No two robots start at the same coordinate.Whenever a robot reaches a wall, it turns around instantly and continues his ride in the opposite direction with the same speed.Whenever several robots meet at the same integer coordinate, they collide and explode into dust. Once a robot has exploded, it doesn't collide with any other robot. Note that if several robots meet at a non-integer coordinate, nothing happens.For each robot find out if it ever explodes and print the time of explosion if it happens and $$$-1$$$ otherwise.
|
256 megabytes
|
import java.io.PrintWriter;
import java.util.*;
public class C {
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
PrintWriter pw = new PrintWriter(System.out);
int t = sc.nextInt();
for (int i = 0; i < t; i++) {
solve(sc, pw);
}
pw.close();
}
static void solve(Scanner in, PrintWriter out){
int n = in.nextInt(), m = in.nextInt();
int[] arr = new int[n];
String[] cs = new String[n];
for (int i = 0; i < n; i++) {
arr[i] = in.nextInt();
}
for (int i = 0; i < n; i++) {
cs[i] = in.next();
}
TreeSet<Integer> evenR = new TreeSet<>();
TreeSet<Integer> evenL = new TreeSet<>();
TreeSet<Integer> oddR = new TreeSet<>();
TreeSet<Integer> oddL = new TreeSet<>();
Map<Integer, Integer> mp = new HashMap<>();
for (int i = 0; i < n; i++) {
if (arr[i] % 2 == 0){
if (cs[i].equals("L")){
evenL.add(arr[i]);
}else{
evenR.add(arr[i]);
}
}else{
if (cs[i].equals("L")){
oddL.add(arr[i]);
}else{
oddR.add(arr[i]);
}
}
mp.put(arr[i], i);
}
Map<Integer, Integer> a1 = new HashMap<>();
Map<Integer, Integer> a2 = new HashMap<>();
helper(a1, evenL, evenR, m);
helper(a2, oddL, oddR, m);
int[] ans = new int[n];
Arrays.fill(ans, -1);
for(int x : a1.keySet()){
ans[mp.get(x)] = a1.get(x);
}
for(int x : a2.keySet()){
ans[mp.get(x)] = a2.get(x);
}
for(int x : ans){
out.print(x+" ");
}
out.println();
}
static void helper(Map<Integer, Integer> ans, TreeSet<Integer> l, TreeSet<Integer> r, int m){
LinkedList<Integer> ql = new LinkedList<>();
LinkedList<Integer> qr = new LinkedList<>();
// System.out.println(ql+" "+qr);
for(int x : l){
Integer get = r.lower(x);
if (get != null){
int time = (x - get) / 2;
ans.put(x, time);
ans.put(get, time);
r.remove(get);
}
}
// System.out.println("r"+r);
while (r.size() > 1){
int v = r.last();
r.remove(v);
int vv = r.last();
r.remove(vv);
int time = (m - v) + (v - vv) / 2;
ans.put(v, time);
ans.put(vv, time);
}
for(int x : ans.keySet()){
if (l.contains(x)) l.remove(x);
}
while (l.size() > 1){
int v = l.first();
l.remove(v);
int vv = l.first();
l.remove(vv);
int time = v + (vv - v) / 2;
ans.put(v, time);
ans.put(vv, time);
}
if (r.size() > 0 && l.size() > 0){
int ok = l.last();
int ok2 = r.last();
int time = (2 * m - (ok2 - ok)) / 2;
ans.put(ok, time);
ans.put(ok2, time);
}
}
static boolean isPrime(long n)
{
// Corner cases
if (n <= 1)
return false;
if (n <= 3)
return true;
// This is checked so that we can skip
// middle five numbers in below loop
if (n % 2 == 0 || n % 3 == 0)
return false;
for (int i = 5; i * i <= n; i = i + 6)
if (n % i == 0 || n % (i + 2) == 0)
return false;
return true;
}
static long gcd(long a, long b)
{
if (a == 0)
return b;
return gcd(b % a, a);
}
// method to return LCM of two numbers
static long lcm(long a, long b)
{
return (a / gcd(a, b)) * b;
}
public static int[] sieveEratosthenes(int n) {
if (n <= 32) {
int[] primes = {2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31};
for (int i = 0; i < primes.length; i++) {
if (n < primes[i]) {
return Arrays.copyOf(primes, i);
}
}
return primes;
}
int u = n + 32;
double lu = Math.log(u);
int[] ret = new int[(int) (u / lu + u / lu / lu * 1.5)];
ret[0] = 2;
int pos = 1;
int[] isnp = new int[(n + 1) / 32 / 2 + 1];
int sup = (n + 1) / 32 / 2 + 1;
int[] tprimes = {3, 5, 7, 11, 13, 17, 19, 23, 29, 31};
for (int tp : tprimes) {
ret[pos++] = tp;
int[] ptn = new int[tp];
for (int i = (tp - 3) / 2; i < tp << 5; i += tp) ptn[i >> 5] |= 1 << (i & 31);
for (int j = 0; j < sup; j += tp) {
for (int i = 0; i < tp && i + j < sup; i++) {
isnp[j + i] |= ptn[i];
}
}
}
// 3,5,7
// 2x+3=n
int[] magic = {0, 1, 23, 2, 29, 24, 19, 3, 30, 27, 25, 11, 20, 8, 4, 13, 31, 22, 28, 18, 26, 10, 7, 12, 21, 17, 9, 6, 16, 5, 15, 14};
int h = n / 2;
for (int i = 0; i < sup; i++) {
for (int j = ~isnp[i]; j != 0; j &= j - 1) {
int pp = i << 5 | magic[(j & -j) * 0x076be629 >>> 27];
int p = 2 * pp + 3;
if (p > n) break;
ret[pos++] = p;
if ((long) p * p > n) continue;
for (int q = (p * p - 3) / 2; q <= h; q += p) isnp[q >> 5] |= 1 << q;
}
}
return Arrays.copyOf(ret, pos);
}
// reverse division for 2
public static long[] rdiv2(int n, int mod){
long[] arr = new long[n + 5];
arr[0] = 1;
long rev2 = (mod + 1) / 2;
for (int i = 1; i < n; i++) {
arr[i] = arr[i - 1] * rev2 % mod;
}
return arr;
}
static List<Integer> primeFactors(int n)
{
// Print the number of 2s that divide n
List<Integer> ls = new ArrayList<>();
if (n % 2 == 0) ls.add(2);
while (n%2==0)
{
n /= 2;
}
// n must be odd at this point. So we can
// skip one element (Note i = i +2)
for (int i = 3; i <= Math.sqrt(n); i+= 2)
{
// While i divides n, print i and divide n
if (n % i == 0) ls.add(i);
while (n%i == 0)
{
n /= i;
}
}
if (n > 1) ls.add(n);
return ls;
}
static int find(int i, int[] par){
if (par[i] < 0) return i;
return par[i] = find(par[i], par);
}
static boolean union(int i, int j, int[] par){
int pi = find(i, par);
int pj = find(j, par);
if (pi == pj) return false;
if (par[pi] < par[pj]){
par[pi] += par[pj];
par[pj] = pi;
}else{
par[pj] += par[pi];
par[pi] = pj;
}
return true;
}
}
|
Java
|
["5\n7 12\n1 2 3 4 9 10 11\nR R L L R R R\n2 10\n1 6\nR R\n2 10\n1 3\nL L\n1 10\n5\nR\n7 8\n6 1 7 2 3 5 4\nR L R L L L L"]
|
2 seconds
|
["1 1 1 1 2 -1 2 \n-1 -1 \n2 2 \n-1 \n-1 2 7 3 2 7 3"]
|
NoteHere is the picture for the seconds $$$0, 1, 2$$$ and $$$3$$$ of the first testcase: Notice that robots $$$2$$$ and $$$3$$$ don't collide because they meet at the same point $$$2.5$$$, which is not integer.After second $$$3$$$ robot $$$6$$$ just drive infinitely because there's no robot to collide with.
|
Java 11
|
standard input
|
[
"data structures",
"greedy",
"implementation",
"sortings"
] |
1a28b972e77966453cd8239cc5c8f59a
|
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$) — the number of testcases. Then the descriptions of $$$t$$$ testcases follow. The first line of each testcase contains two integers $$$n$$$ and $$$m$$$ ($$$1 \le n \le 3 \cdot 10^5$$$; $$$2 \le m \le 10^8$$$) — the number of robots and the coordinate of the right wall. The second line of each testcase contains $$$n$$$ integers $$$x_1, x_2, \dots, x_n$$$ ($$$0 < x_i < m$$$) — the starting coordinates of the robots. The third line of each testcase contains $$$n$$$ space-separated characters 'L' or 'R' — the starting directions of the robots ('L' stands for left and 'R' stands for right). All coordinates $$$x_i$$$ in the testcase are distinct. The sum of $$$n$$$ over all testcases doesn't exceed $$$3 \cdot 10^5$$$.
| 2,000
|
For each testcase print $$$n$$$ integers — for the $$$i$$$-th robot output the time it explodes at if it does and $$$-1$$$ otherwise.
|
standard output
| |
PASSED
|
50e03b6886407b22e777a85f3891e77b
|
train_110.jsonl
|
1621152000
|
There are $$$n$$$ robots driving along an OX axis. There are also two walls: one is at coordinate $$$0$$$ and one is at coordinate $$$m$$$.The $$$i$$$-th robot starts at an integer coordinate $$$x_i~(0 < x_i < m)$$$ and moves either left (towards the $$$0$$$) or right with the speed of $$$1$$$ unit per second. No two robots start at the same coordinate.Whenever a robot reaches a wall, it turns around instantly and continues his ride in the opposite direction with the same speed.Whenever several robots meet at the same integer coordinate, they collide and explode into dust. Once a robot has exploded, it doesn't collide with any other robot. Note that if several robots meet at a non-integer coordinate, nothing happens.For each robot find out if it ever explodes and print the time of explosion if it happens and $$$-1$$$ otherwise.
|
256 megabytes
|
import java.util.*;
import java.lang.*;
import java.io.*;
// Created by @thesupremeone on 16/05/21
public class C {
static class Robot implements Comparable<Robot>{
int index;
int location;
boolean right;
public Robot(int index, int location, boolean right) {
this.index = index;
this.location = location;
this.right = right;
}
@Override
public int compareTo(Robot robot) {
return Integer.compare(location, robot.location);
}
}
HashMap<Integer, Integer> map = new HashMap<>();
int index(int value){
return map.get(value);
}
void solveForPair(TreeSet<Integer> leftSet, TreeSet<Integer> rightSet, int[] time, int m){
while (leftSet.size()>=2){
int first = leftSet.pollFirst();
int second = leftSet.pollFirst();
int t = Math.abs(first-second)/2+Math.min(first, second);
time[index(first)] = t;
time[index(second)] = t;
}
while (rightSet.size()>=2){
int first = rightSet.pollLast();
int second = rightSet.pollLast();
int t = Math.abs(first-second)/2+Math.min(m-first, m-second);
time[index(first)] = t;
time[index(second)] = t;
}
if(leftSet.size()+rightSet.size()==2){
int left = leftSet.pollFirst();
int right = rightSet.pollFirst();
int li = index(left);
int ri = index(right);
int t;
if(left>m-right){
t = left;
int p = left-(m-right);
right = m-p;
t += right/2;
}else {
t = m-right;
left = m-right-left;
right = m;
t += (right-left)/2;
}
time[li] = t;
time[ri] = t;
}
}
void solve() throws IOException {
int ts = getInt();
for (int test = 1; test <= ts; test++){
int n = getInt();
int m = getInt();
int[] x = new int[n];
int[] time = new int[n];
Arrays.fill(time, -1);
for (int i = 0; i < n; i++){
x[i] = getInt();
map.put(x[i], i);
}
TreeSet<Integer> oddRightSet = new TreeSet<>();
TreeSet<Integer> evenRightSet = new TreeSet<>();
TreeSet<Integer> oddLeftSet = new TreeSet<>();
TreeSet<Integer> evenLeftSet = new TreeSet<>();
Robot[] robots = new Robot[n];
for (int i = 0; i < n; i++){
String dir = getToken();
robots[i] = new Robot(i,x[i], dir.equals("R"));
}
Arrays.sort(robots);
for (int i = 0; i < n; i++) {
Robot robot = robots[i];
int xi = robot.location;
if(robot.right){
if(xi%2==0){
evenRightSet.add(xi);
}else {
oddRightSet.add(xi);
}
}else {
Integer right;
if(xi%2==0){
right = evenRightSet.lower(xi);
}else {
right = oddRightSet.lower(xi);
}
if(right!=null){
int t = Math.abs((right-xi)/2);
time[robot.index] = t;
time[index(right)] = t;
evenRightSet.remove(right);
oddRightSet.remove(right);
}else {
if(xi%2==0){
evenLeftSet.add(xi);
}else {
oddLeftSet.add(xi);
}
}
}
}
solveForPair(oddLeftSet, oddRightSet, time, m);
solveForPair(evenLeftSet, evenRightSet, time, m);
for (int i = 0; i < n; i++) {
print(time[i]+" ");
}
println("");
}
}
public static void main(String[] args) throws Exception {
if (isOnlineJudge()) {
in = new BufferedReader(new InputStreamReader(System.in));
out = new BufferedWriter(new OutputStreamWriter(System.out));
new C().solve();
out.flush();
} else {
localJudge = new Thread();
in = new BufferedReader(new FileReader("input.txt"));
out = new BufferedWriter(new FileWriter("output.txt"));
localJudge.start();
new C().solve();
out.flush();
localJudge.suspend();
}
}
static boolean isOnlineJudge(){
try {
return System.getProperty("ONLINE_JUDGE")!=null
|| System.getProperty("LOCAL")==null;
}catch (Exception e){
return true;
}
}
// Fast Input & Output
static Thread localJudge = null;
static BufferedReader in;
static StringTokenizer st;
static BufferedWriter out;
static String getLine() throws IOException{
return in.readLine();
}
static String getToken() throws IOException{
if(st==null || !st.hasMoreTokens())
st = new StringTokenizer(getLine());
return st.nextToken();
}
static int getInt() throws IOException {
return Integer.parseInt(getToken());
}
static long getLong() throws IOException {
return Long.parseLong(getToken());
}
static void print(Object s) throws IOException{
out.write(String.valueOf(s));
}
static void println(Object s) throws IOException{
out.write(String.valueOf(s));
out.newLine();
}
}
|
Java
|
["5\n7 12\n1 2 3 4 9 10 11\nR R L L R R R\n2 10\n1 6\nR R\n2 10\n1 3\nL L\n1 10\n5\nR\n7 8\n6 1 7 2 3 5 4\nR L R L L L L"]
|
2 seconds
|
["1 1 1 1 2 -1 2 \n-1 -1 \n2 2 \n-1 \n-1 2 7 3 2 7 3"]
|
NoteHere is the picture for the seconds $$$0, 1, 2$$$ and $$$3$$$ of the first testcase: Notice that robots $$$2$$$ and $$$3$$$ don't collide because they meet at the same point $$$2.5$$$, which is not integer.After second $$$3$$$ robot $$$6$$$ just drive infinitely because there's no robot to collide with.
|
Java 11
|
standard input
|
[
"data structures",
"greedy",
"implementation",
"sortings"
] |
1a28b972e77966453cd8239cc5c8f59a
|
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$) — the number of testcases. Then the descriptions of $$$t$$$ testcases follow. The first line of each testcase contains two integers $$$n$$$ and $$$m$$$ ($$$1 \le n \le 3 \cdot 10^5$$$; $$$2 \le m \le 10^8$$$) — the number of robots and the coordinate of the right wall. The second line of each testcase contains $$$n$$$ integers $$$x_1, x_2, \dots, x_n$$$ ($$$0 < x_i < m$$$) — the starting coordinates of the robots. The third line of each testcase contains $$$n$$$ space-separated characters 'L' or 'R' — the starting directions of the robots ('L' stands for left and 'R' stands for right). All coordinates $$$x_i$$$ in the testcase are distinct. The sum of $$$n$$$ over all testcases doesn't exceed $$$3 \cdot 10^5$$$.
| 2,000
|
For each testcase print $$$n$$$ integers — for the $$$i$$$-th robot output the time it explodes at if it does and $$$-1$$$ otherwise.
|
standard output
| |
PASSED
|
e18a502fa740a07e5610537ca040fcec
|
train_110.jsonl
|
1621152000
|
There are $$$n$$$ robots driving along an OX axis. There are also two walls: one is at coordinate $$$0$$$ and one is at coordinate $$$m$$$.The $$$i$$$-th robot starts at an integer coordinate $$$x_i~(0 < x_i < m)$$$ and moves either left (towards the $$$0$$$) or right with the speed of $$$1$$$ unit per second. No two robots start at the same coordinate.Whenever a robot reaches a wall, it turns around instantly and continues his ride in the opposite direction with the same speed.Whenever several robots meet at the same integer coordinate, they collide and explode into dust. Once a robot has exploded, it doesn't collide with any other robot. Note that if several robots meet at a non-integer coordinate, nothing happens.For each robot find out if it ever explodes and print the time of explosion if it happens and $$$-1$$$ otherwise.
|
256 megabytes
|
import java.io.*;
import java.util.*;
import java.text.*;
import java.math.*;
import java.util.regex.*;
import java.lang.*;
public class JaiShreeRam{
static class pair{
int first;
int second;
public pair(int x,int y) {
first=x;
second=y;
}
}
static Scanner in=new Scanner();
static long mod = 1000000007;
static int seive[]=new int[1000001];
static int level[]=new int[200001];
static int parent[][]=new int[200001][18];
static int ans[];
static int b1,n;
static ArrayList<ArrayList<Integer>> al=new ArrayList<>();
public static void main(String[] args) throws Exception{
int t=in.readInt();
while(t-->0) {
n=in.readInt();
ArrayList<pair> e=new ArrayList<>();
ArrayList<pair> o=new ArrayList<>();
b1=in.readInt();
int a[]=nextIntArray(n);
for(int i=0;i<n;i++) {
if(a[i]%2==0) {
e.add(new pair(a[i],i));
}
else {
o.add(new pair(a[i],i));
}
}
ans=new int[n];
int d[]=new int[n];
for(int i=0;i<n;i++) {
char c=in.readString().charAt(0);
if(c=='R') {
d[i]=1;
}
else {
d[i]=0;
}
}
Collections.sort(e,(x,y)->(x.first-y.first));
Collections.sort(o,(x,y)->(x.first-y.first));
func(e,d);
func(o,d);
for(int i=0;i<n;i++) {
System.out.print(ans[i]+" ");
}
System.out.println();
}
}
static void func(ArrayList<pair> al,int d[]) {
Stack<pair> st=new Stack<>();
for(int i=0;i<al.size();i++) {
int idx=al.get(i).second;
if(d[idx]==0) {
if(st.isEmpty()) {
st.add(new pair(-al.get(i).first,idx));
}
else {
pair peek=st.pop();
int time=(al.get(i).first-peek.first)/2;
ans[peek.second]=time;
ans[al.get(i).second]=time;
}
}
else {
st.add(al.get(i));
}
}
while(st.size()>1) {
pair p1=st.pop();
pair p2=st.pop();
int time=(b1+b1-p1.first-p2.first)/2;
ans[p1.second]=time;
ans[p2.second]=time;
}
if(!st.isEmpty()) {
ans[st.peek().second]=-1;
}
return;
}
static void seive() {
Arrays.fill(seive, 1);
seive[0]=0;
seive[1]=0;
for(int i=2;i*i<1000001;i++) {
if(seive[i]==1) {
for(int j=i*i;j<1000001;j+=i) {
if(seive[j]==1) {
seive[j]=0;
}
}
}
}
}
static int[] nextIntArray(int n){
int[] arr= new int[n];
int i=0;
while(i<n){
arr[i++]=in.readInt();
}
return arr;
}
static int[] nextIntArray1(int n){
int[] arr= new int[n+1];
int i=1;
while(i<=n){
arr[i++]=in.readInt();
}
return arr;
}
static long gcd(long a, long b) {
if (b==0) return a;
return gcd(b, a%b);
}
static void ruffleSort(long[] a) {
int n=a.length;
Random r=new Random();
for (int i=0; i<a.length; i++) {
int oi=r.nextInt(n); long temp=a[i];
a[i]=a[oi];
a[oi]=temp;
}
Arrays.sort(a);
}
static class Scanner{
BufferedReader br=new BufferedReader(new InputStreamReader(System.in));
StringTokenizer st=new StringTokenizer("");
String readString() {
while (!st.hasMoreTokens())
try {
st=new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
return st.nextToken();
}
double readDouble() {
return Double.parseDouble(readString());
}
int readInt() {
return Integer.parseInt(readString());
}
long readLong() {
return Long.parseLong(readString());
}
}
}
|
Java
|
["5\n7 12\n1 2 3 4 9 10 11\nR R L L R R R\n2 10\n1 6\nR R\n2 10\n1 3\nL L\n1 10\n5\nR\n7 8\n6 1 7 2 3 5 4\nR L R L L L L"]
|
2 seconds
|
["1 1 1 1 2 -1 2 \n-1 -1 \n2 2 \n-1 \n-1 2 7 3 2 7 3"]
|
NoteHere is the picture for the seconds $$$0, 1, 2$$$ and $$$3$$$ of the first testcase: Notice that robots $$$2$$$ and $$$3$$$ don't collide because they meet at the same point $$$2.5$$$, which is not integer.After second $$$3$$$ robot $$$6$$$ just drive infinitely because there's no robot to collide with.
|
Java 11
|
standard input
|
[
"data structures",
"greedy",
"implementation",
"sortings"
] |
1a28b972e77966453cd8239cc5c8f59a
|
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$) — the number of testcases. Then the descriptions of $$$t$$$ testcases follow. The first line of each testcase contains two integers $$$n$$$ and $$$m$$$ ($$$1 \le n \le 3 \cdot 10^5$$$; $$$2 \le m \le 10^8$$$) — the number of robots and the coordinate of the right wall. The second line of each testcase contains $$$n$$$ integers $$$x_1, x_2, \dots, x_n$$$ ($$$0 < x_i < m$$$) — the starting coordinates of the robots. The third line of each testcase contains $$$n$$$ space-separated characters 'L' or 'R' — the starting directions of the robots ('L' stands for left and 'R' stands for right). All coordinates $$$x_i$$$ in the testcase are distinct. The sum of $$$n$$$ over all testcases doesn't exceed $$$3 \cdot 10^5$$$.
| 2,000
|
For each testcase print $$$n$$$ integers — for the $$$i$$$-th robot output the time it explodes at if it does and $$$-1$$$ otherwise.
|
standard output
| |
PASSED
|
3091decc51a299583d06ad86db8f7435
|
train_110.jsonl
|
1621152000
|
There are $$$n$$$ robots driving along an OX axis. There are also two walls: one is at coordinate $$$0$$$ and one is at coordinate $$$m$$$.The $$$i$$$-th robot starts at an integer coordinate $$$x_i~(0 < x_i < m)$$$ and moves either left (towards the $$$0$$$) or right with the speed of $$$1$$$ unit per second. No two robots start at the same coordinate.Whenever a robot reaches a wall, it turns around instantly and continues his ride in the opposite direction with the same speed.Whenever several robots meet at the same integer coordinate, they collide and explode into dust. Once a robot has exploded, it doesn't collide with any other robot. Note that if several robots meet at a non-integer coordinate, nothing happens.For each robot find out if it ever explodes and print the time of explosion if it happens and $$$-1$$$ otherwise.
|
256 megabytes
|
//https://codeforces.com/contest/1525/problem/C
//C. Robot Collisions
import java.util.*;
import java.io.*;
public class CF_1525_C{
public static void main(String[] args) throws Exception{
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
PrintWriter pw = new PrintWriter(new OutputStreamWriter(System.out));
StringBuilder sb = new StringBuilder();
StringTokenizer st, st1;
int t = Integer.parseInt(br.readLine());
while(t-->0){
st = new StringTokenizer(br.readLine().trim());
int n = Integer.parseInt(st.nextToken());
int m = Integer.parseInt(st.nextToken());
Triplet x[] = new Triplet[n];
st = new StringTokenizer(br.readLine());
st1 = new StringTokenizer(br.readLine());
for(int i=0;i<n;i++){
int xi = Integer.parseInt(st.nextToken());
char lri = st1.nextToken().charAt(0);
x[i] = new Triplet(xi, i, lri);
}
Arrays.sort(x);
int ans[] = new int[n];
Arrays.fill(ans, -1);
for(int i=0;i<2;i++){ //even and odd places
Stack<Triplet> s = new Stack<Triplet>();
for(int j=0;j<n;j++){
if(x[j].x%2==i){
if(x[j].lr=='R')
s.push(x[j]);
else{
if(s.size()==0){
x[j].x = -x[j].x;
s.push(x[j]);
}
else{
Triplet y = s.pop();
int time = (x[j].x-y.x)/2;
ans[x[j].pos] = time;
ans[y.pos] = time;
}
}
}
}
while(s.size()>1){
Triplet y = s.pop();
Triplet z = s.pop();
int time = (m-y.x)+(y.x-z.x)/2;
ans[y.pos] = time;
ans[z.pos] = time;
}
}
for(int i=0;i<n;i++)
sb.append(ans[i]+" ");
sb.append("\n");
}
pw.print(sb);
pw.flush();
pw.close();
}
}
class Triplet implements Comparable<Triplet>{
int x, pos;
char lr;
Triplet(int x, int pos, char lr){
this.x = x;
this.pos = pos;
this.lr = lr;
}
public int compareTo(Triplet A){
return this.x-A.x;
}
}
|
Java
|
["5\n7 12\n1 2 3 4 9 10 11\nR R L L R R R\n2 10\n1 6\nR R\n2 10\n1 3\nL L\n1 10\n5\nR\n7 8\n6 1 7 2 3 5 4\nR L R L L L L"]
|
2 seconds
|
["1 1 1 1 2 -1 2 \n-1 -1 \n2 2 \n-1 \n-1 2 7 3 2 7 3"]
|
NoteHere is the picture for the seconds $$$0, 1, 2$$$ and $$$3$$$ of the first testcase: Notice that robots $$$2$$$ and $$$3$$$ don't collide because they meet at the same point $$$2.5$$$, which is not integer.After second $$$3$$$ robot $$$6$$$ just drive infinitely because there's no robot to collide with.
|
Java 11
|
standard input
|
[
"data structures",
"greedy",
"implementation",
"sortings"
] |
1a28b972e77966453cd8239cc5c8f59a
|
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$) — the number of testcases. Then the descriptions of $$$t$$$ testcases follow. The first line of each testcase contains two integers $$$n$$$ and $$$m$$$ ($$$1 \le n \le 3 \cdot 10^5$$$; $$$2 \le m \le 10^8$$$) — the number of robots and the coordinate of the right wall. The second line of each testcase contains $$$n$$$ integers $$$x_1, x_2, \dots, x_n$$$ ($$$0 < x_i < m$$$) — the starting coordinates of the robots. The third line of each testcase contains $$$n$$$ space-separated characters 'L' or 'R' — the starting directions of the robots ('L' stands for left and 'R' stands for right). All coordinates $$$x_i$$$ in the testcase are distinct. The sum of $$$n$$$ over all testcases doesn't exceed $$$3 \cdot 10^5$$$.
| 2,000
|
For each testcase print $$$n$$$ integers — for the $$$i$$$-th robot output the time it explodes at if it does and $$$-1$$$ otherwise.
|
standard output
| |
PASSED
|
bec23cbad233b8b04e9a6df76acf9ef6
|
train_110.jsonl
|
1621152000
|
There are $$$n$$$ robots driving along an OX axis. There are also two walls: one is at coordinate $$$0$$$ and one is at coordinate $$$m$$$.The $$$i$$$-th robot starts at an integer coordinate $$$x_i~(0 < x_i < m)$$$ and moves either left (towards the $$$0$$$) or right with the speed of $$$1$$$ unit per second. No two robots start at the same coordinate.Whenever a robot reaches a wall, it turns around instantly and continues his ride in the opposite direction with the same speed.Whenever several robots meet at the same integer coordinate, they collide and explode into dust. Once a robot has exploded, it doesn't collide with any other robot. Note that if several robots meet at a non-integer coordinate, nothing happens.For each robot find out if it ever explodes and print the time of explosion if it happens and $$$-1$$$ otherwise.
|
256 megabytes
|
import java.io.OutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.PrintWriter;
import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.util.*;
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
InputReader in = new InputReader(inputStream);
PrintWriter out = new PrintWriter(outputStream);
solve(in, out);
out.close();
}
static String reverse(String s) {
return (new StringBuilder(s)).reverse().toString();
}
static void sieveOfEratosthenes(int n, int factors[], ArrayList<Integer> ar)
{
factors[1]=1;
int p;
for(p = 2; p*p <=n; p++)
{
if(factors[p] == 0)
{
ar.add(p);
factors[p]=p;
for(int i = p*p; i <= n; i += p)
factors[i] = p;
}
}
for(;p<=n;p++){
if(factors[p] == 0)
{
ar.add(p);
}
}
}
static void sort(int ar[]) {
int n = ar.length;
ArrayList<Integer> a = new ArrayList<>();
for (int i = 0; i < n; i++)
a.add(ar[i]);
Collections.sort(a);
for (int i = 0; i < n; i++)
ar[i] = a.get(i);
}
static void sort1(long ar[]) {
int n = ar.length;
ArrayList<Long> a = new ArrayList<>();
for (int i = 0; i < n; i++)
a.add(ar[i]);
Collections.sort(a);
for (int i = 0; i < n; i++)
ar[i] = a.get(i);
}
static long ncr(long n, long r, long mod) {
if (r == 0)
return 1;
long val = ncr(n - 1, r - 1, mod);
val = (n * val) % mod;
val = (val * modInverse(r, mod)) % mod;
return val;
}
static int findMax(int a[], int n, int vis[], int i, int d){
if(i>=n)
return 0;
if(vis[i]==1)
return findMax(a, n, vis, i+1, d);
int max = 0;
for(int j=i+1;j<n;j++){
if(Math.abs(a[i]-a[j])>d||vis[j]==1)
continue;
vis[j] = 1;
max = Math.max(max, 1 + findMax(a, n, vis, i+1, d));
vis[j] = 0;
}
return max;
}
static int dfs(int u, int par, ArrayList<Integer> removed, ArrayList<Integer> added, ArrayList<Integer> ar[]){
int num = 0;
int end = u;
for(int v: ar[u]){
if(v==par)
continue;
int endprev = dfs(v,u,removed,added,ar);
if(endprev==-1)
continue;
num++;
if(num==1){
end = endprev;
}
else if(num==2){
removed.add(u);
removed.add(par);
added.add(end);
added.add(endprev);
end = -1;
}
else{
removed.add(u);
removed.add(v);
added.add(v);
added.add(endprev);
}
}
return end;
}
public static void solve(InputReader sc, PrintWriter pw) {
int i, j = 0;
// int t = 1;
int t = sc.nextInt();
int k = 1;
u: while (t-- > 0) {
int n = sc.nextInt();
int m = sc.nextInt();
int a[] = new int[n];
int dir[] = new int[n];
int o = 0, e = 0;
for(i=0;i<n;i++){
a[i] = sc.nextInt();
if(a[i]%2==0)
e++;
else
o++;
}
for(i=0;i<n;i++){
dir[i] = (sc.next().charAt(0)=='L'?0:1);
}
Pair odd[] = new Pair[o];
Pair even[] = new Pair[e];
o = 0;
e = 0;
for(i=0;i<n;i++){
if(a[i]%2==0){
even[e++] = new Pair(a[i],i);
}
else{
odd[o++] = new Pair(a[i],i);
}
}
Arrays.sort(odd);
Arrays.sort(even);
int ans[] = new int[n];
Arrays.fill(ans,-1);
Stack<Integer> st1 = new Stack<>();
Stack<Integer> st2 = new Stack<>();
for(i=0;i<o;i++){
j = odd[i].b;
if(dir[j]==0){
if(st2.size()>0){
int val = st2.pop();
ans[odd[val].b] = ans[j] = (odd[i].a-odd[val].a)/2;
continue;
}
st1.push(i);
}
else{
st2.push(i);
}
}
int left = -1, right = -1;
if(st1.size()%2==1){
left = st1.pop();
}
while(st1.size()>0){
int y1 = st1.pop();
int y2 = st1.pop();
ans[odd[y1].b] = ans[odd[y2].b] = (odd[y1].a+odd[y2].a)/2;
}
while(st2.size()>1){
int y1 = st2.pop();
int y2 = st2.pop();
ans[odd[y1].b] = ans[odd[y2].b] = (m-odd[y1].a+m-odd[y2].a)/2;
}
if(st2.size()%2==1){
right = st2.pop();
}
if(left>=0&&right>=0){
ans[odd[left].b] = ans[odd[right].b] = (2*m-odd[right].a+odd[left].a)/2;
}
st1 = new Stack<>();
st2 = new Stack<>();
for(i=0;i<e;i++){
j = even[i].b;
if(dir[j]==0){
if(st2.size()>0){
int val = st2.pop();
ans[even[val].b] = ans[j] = (even[i].a-even[val].a)/2;
continue;
}
st1.push(i);
}
else{
st2.push(i);
}
}
left = -1;
right = -1;
if(st1.size()%2==1){
left = st1.pop();
}
while(st1.size()>0){
int y1 = st1.pop();
int y2 = st1.pop();
ans[even[y1].b] = ans[even[y2].b] = (even[y1].a+even[y2].a)/2;
}
while(st2.size()>1){
int y1 = st2.pop();
int y2 = st2.pop();
ans[even[y1].b] = ans[even[y2].b] = (m-even[y1].a+m-even[y2].a)/2;
}
if(st2.size()%2==1){
right = st2.pop();
}
if(left>=0&&right>=0){
ans[even[left].b] = ans[even[right].b] = (2*m-even[right].a+even[left].a)/2;
}
for(i=0;i<n;i++){
pw.print(ans[i]+" ");
}
pw.println();
}
}
static int findLCA(int a, int b, int par[][], int depth[]){
if(depth[a]>depth[b]){
a = a^b;
b = a^b;
a = a^b;
}
int diff = depth[b] - depth[a];
for(int i=19;i>=0;i--){
if((diff&(1<<i))>0){
b = par[b][i];
}
}
if(a==b)
return a;
for(int i=19;i>=0;i--){
if(par[b][i]!=par[a][i]){
b = par[b][i];
a = par[a][i];
}
}
return par[a][0];
}
static void formArrayForBinaryLifting(int n, int par[][]){
for(int j=1;j<20;j++){
for(int i=0;i<n;i++){
if(par[i][j-1]==-1)
continue;
par[i][j] = par[par[i][j-1]][j-1];
}
}
}
static long lcm(int a, int b){
return a*b/gcd(a,b);
}
static class Pair1 {
long a;
long b;
Pair1(long a, long b) {
this.a = a;
this.b = b;
}
}
static class Pair implements Comparable<Pair> {
int a;
int b;
// int c;
Pair(int a, int b) {
this.a = a;
this.b = b;
// this.c = c;
}
public int compareTo(Pair p) {
if(a!=p.a)
return a-p.a;
return b-p.b;
}
}
// static boolean isPrime(long n) {
// if (n <= 1)
// return false;
// if (n <= 999)
// return true;
// if (n % 2 == 0 || n % 999 == 0)
// return false;
// for (int i = 5; i * i <= n; i = i + 6)
// if (n % i == 0 || n % (i + 2) == 0)
// return false;
// return true;
// }
static long gcd(long a, long b) {
if (b == 0)
return a;
return gcd(b, a % b);
}
static long fast_pow(long base, long n, long M) {
if (n == 0)
return 1;
if (n == 1)
return base % M;
long halfn = fast_pow(base, n / 2, M);
if (n % 2 == 0)
return (halfn * halfn) % M;
else
return (((halfn * halfn) % M) * base) % M;
}
static long modInverse(long n, long M) {
return fast_pow(n, M - 2, M);
}
static class InputReader {
public BufferedReader reader;
public StringTokenizer tokenizer;
public InputReader(InputStream stream) {
reader = new BufferedReader(new InputStreamReader(stream), 9992768);
tokenizer = null;
}
public String next() {
while (tokenizer == null || !tokenizer.hasMoreTokens()) {
try {
tokenizer = new StringTokenizer(reader.readLine());
} catch (IOException e) {
throw new RuntimeException(e);
}
}
return tokenizer.nextToken();
}
public int nextInt() {
return Integer.parseInt(next());
}
public long nextLong() {
return Long.parseLong(next());
}
}
}
|
Java
|
["5\n7 12\n1 2 3 4 9 10 11\nR R L L R R R\n2 10\n1 6\nR R\n2 10\n1 3\nL L\n1 10\n5\nR\n7 8\n6 1 7 2 3 5 4\nR L R L L L L"]
|
2 seconds
|
["1 1 1 1 2 -1 2 \n-1 -1 \n2 2 \n-1 \n-1 2 7 3 2 7 3"]
|
NoteHere is the picture for the seconds $$$0, 1, 2$$$ and $$$3$$$ of the first testcase: Notice that robots $$$2$$$ and $$$3$$$ don't collide because they meet at the same point $$$2.5$$$, which is not integer.After second $$$3$$$ robot $$$6$$$ just drive infinitely because there's no robot to collide with.
|
Java 11
|
standard input
|
[
"data structures",
"greedy",
"implementation",
"sortings"
] |
1a28b972e77966453cd8239cc5c8f59a
|
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$) — the number of testcases. Then the descriptions of $$$t$$$ testcases follow. The first line of each testcase contains two integers $$$n$$$ and $$$m$$$ ($$$1 \le n \le 3 \cdot 10^5$$$; $$$2 \le m \le 10^8$$$) — the number of robots and the coordinate of the right wall. The second line of each testcase contains $$$n$$$ integers $$$x_1, x_2, \dots, x_n$$$ ($$$0 < x_i < m$$$) — the starting coordinates of the robots. The third line of each testcase contains $$$n$$$ space-separated characters 'L' or 'R' — the starting directions of the robots ('L' stands for left and 'R' stands for right). All coordinates $$$x_i$$$ in the testcase are distinct. The sum of $$$n$$$ over all testcases doesn't exceed $$$3 \cdot 10^5$$$.
| 2,000
|
For each testcase print $$$n$$$ integers — for the $$$i$$$-th robot output the time it explodes at if it does and $$$-1$$$ otherwise.
|
standard output
| |
PASSED
|
1e5d80bbb641f3bd4a9b8d6a8f28d778
|
train_110.jsonl
|
1621152000
|
There are $$$n$$$ robots driving along an OX axis. There are also two walls: one is at coordinate $$$0$$$ and one is at coordinate $$$m$$$.The $$$i$$$-th robot starts at an integer coordinate $$$x_i~(0 < x_i < m)$$$ and moves either left (towards the $$$0$$$) or right with the speed of $$$1$$$ unit per second. No two robots start at the same coordinate.Whenever a robot reaches a wall, it turns around instantly and continues his ride in the opposite direction with the same speed.Whenever several robots meet at the same integer coordinate, they collide and explode into dust. Once a robot has exploded, it doesn't collide with any other robot. Note that if several robots meet at a non-integer coordinate, nothing happens.For each robot find out if it ever explodes and print the time of explosion if it happens and $$$-1$$$ otherwise.
|
256 megabytes
|
import java.util.*;
import java.io.*;
import static java.lang.System.currentTimeMillis;
public class Sol{
static class Pair{
int dir, id , pos,life;
public Pair(int id, int pos ,int dir ,int life){
this.pos = pos;
this.id = id;
this.dir =dir;
this.life=life;
}
}
public static void main(String []args){
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
FastReader in=new FastReader(inputStream);
PrintWriter out=new PrintWriter(outputStream);
//long start = currentTimeMillis();
int t=in.nextInt();
while(t-->0){
int n=in.nextInt();int m=in.nextInt();
/*--------Start---------*/
Pair p[]=new Pair[n+1];int e=0;int a[]=new int[n+1];
for(int i=1;i<=n;i++){a[i]=in.nextInt();if(a[i]%2==0)e++;}String s=in.nextLine();
int c[]=new int[n+1];for(int i=1;i<=n;i++){char b=s.charAt(2*i-2);if(b=='L'){c[i]=-1;}else c[i]=1;}
p[0]=new Pair(0,0,0,0);
for(int i=1;i<=n;i++){p[i]=new Pair(i,a[i],c[i],-1);}
Arrays.sort(p,(o1,o2)->o1.pos-o2.pos);
Pair x[]=new Pair[n-e+1];
Pair y[]=new Pair[e+1];
int i=1;int j=1;int k=1;
while(k<=n){if(p[k].pos%2==0){y[j]=p[k];k++;j++;}else{x[i]=p[k];k++;i++;}}
int N=n;int ci=1;j=1;int l=0;
i=1;n=N-e;boolean check[]=new boolean[N+1];
while(i<n){
if(x[i].dir==1 && x[i+1].dir==-1)
{l=(-x[i].pos+x[i+1].pos)/2;
x[i].life=l;x[i+1].life=l;
check[x[i].id]=true;check[x[i+1].id]=true;
ci=i-1;i+=2;
while(ci>=1&&i<=n)
{ if(x[i].dir==1)break;
else{
if(x[ci].dir==1&&!check[x[ci].id]){
l=(-x[ci].pos+x[i].pos)/2;
x[ci].life=l;x[i].life=l;check[x[ci].id]=true;check[x[i].id]=true;ci--;i++;
}
else {ci--;}
}
}
}
else{i++;}
}
i=1;
while(i<n){
if(!check[x[i].id]&&x[i].dir==-1){
j=i+1;
while(x[i].dir!=x[j].dir || check[x[j].id]){j++;if(j>n)break;}
if(j<=n)
{if(x[i].dir==-1){l=(x[i].pos+x[j].pos)/2;}else{l=m+(-x[i].pos-x[j].pos)/2;}x[i].life=l;x[j].life=l;check[x[i].id]=true;check[x[j].id]=true;i=j+1;}
else{i++;}
}
else{i++;}
}
i=n;
while(i>1){
if(!check[x[i].id]&&x[i].dir==1){
j=i-1;
while(x[i].dir!=x[j].dir || check[x[j].id]){j--;if(j<1)break;}
if(j>=1)
{l=m+(-x[i].pos-x[j].pos)/2;x[i].life=l;x[j].life=l;check[x[i].id]=true;check[x[j].id]=true;i=j-1;}
else{i--;}
}
else{i--;}
}
int count=0;
i=1;
while(i<=n){if(!check[x[i].id]){count++;}i++;}
i=1;
if(count>1){
while(check[x[i].id]){i++;}
j=i+1;while(check[x[j].id]){j++;}
check[x[i].id]=true;check[x[j].id]=true;
l=(m+m-x[j].pos+x[i].pos)/2;x[i].life=l;x[j].life=l;
}
i=1;n=e;
while(i<n){
if(y[i].dir==1 && y[i+1].dir==-1)
{l=(-y[i].pos+y[i+1].pos)/2;
y[i].life=l;y[i+1].life=l;
check[y[i].id]=true;check[y[i+1].id]=true;
ci=i-1;i+=2;
while(ci>=1&&i<=n)
{
if(y[i].dir==1)break;
else{
if(y[ci].dir==1&&!check[y[ci].id]){
l=(-y[ci].pos+y[i].pos)/2;
y[ci].life=l;y[i].life=l;check[y[ci].id]=true;check[y[i].id]=true;ci--;i++;
}
else{ci--;}
}
}
}
else{i++;}
}
i=1;
while(i<n){
if(!check[y[i].id]&&y[i].dir==-1){
j=i+1;
while(y[i].dir!=y[j].dir || check[y[j].id]){j++;if(j>n)break;}
if(j<=n)
{l=(y[i].pos+y[j].pos)/2;y[i].life=l;y[j].life=l;check[y[i].id]=true;check[y[j].id]=true;i=j+1;}
else{i++;}
}
else{i++;}
}
i=n;
while(i>1){
if(!check[y[i].id]&&y[i].dir==1){
j=i-1;
while(y[i].dir!=y[j].dir || check[y[j].id]){j--;if(j<1)break;}
if(j>=1)
{l=m+(-y[i].pos-y[j].pos)/2;y[i].life=l;y[j].life=l;check[y[i].id]=true;check[y[j].id]=true;i=j-1;}
else{i--;}
}
else{i--;}
}
count=0;
i=1;
while(i<=n){if(!check[y[i].id]){count++;}i++;}
i=1;
if(count>1){
while(check[y[i].id])i++;
j=i+1;while(true){if(check[y[j].id])j++;else break;}
l=(m+m-y[j].pos+y[i].pos)/2;y[i].life=l;y[j].life=l;
}
i=1;k=1;j=1;
while(i<=N-e){p[k]=x[i];i++;k++;}
while(j<=e){p[k]=y[j];j++;k++;}
Arrays.sort(p,(o1,o2)-> o1.id-o2.id);
/*for(i=1;i<=N;i++)out.print(check[i]+" ");
out.println();
for(i=1;i<=N;i++)out.print(p[i].dir+" ");
out.println();*/
for(i=1;i<=N;i++)out.print(p[i].life+" ");
/*out.println();
for(i=1;i<=N;i++)out.print(p[i].id+" ");
*/
out.println();
}
out.close();
//System.out.println(currentTimeMillis() - start);
}
static class FastReader
{
BufferedReader br;
StringTokenizer st;
public FastReader(InputStream in)
{
br = new BufferedReader(new
InputStreamReader(System.in));
}
public String next()
{
while (st == null || !st.hasMoreElements())
{
try
{
st = new StringTokenizer(br.readLine());
}
catch (IOException e)
{
e.printStackTrace();
}
}
return st.nextToken();
}
public int nextInt()
{
return Integer.parseInt(next());
}
public long nextLong()
{
return Long.parseLong(next());
}
public double nextDouble()
{
return Double.parseDouble(next());
}
String nextLine()
{
String str = "";
try
{
str = br.readLine();
}
catch (IOException e)
{
e.printStackTrace();
}
return str;
}
}
}
|
Java
|
["5\n7 12\n1 2 3 4 9 10 11\nR R L L R R R\n2 10\n1 6\nR R\n2 10\n1 3\nL L\n1 10\n5\nR\n7 8\n6 1 7 2 3 5 4\nR L R L L L L"]
|
2 seconds
|
["1 1 1 1 2 -1 2 \n-1 -1 \n2 2 \n-1 \n-1 2 7 3 2 7 3"]
|
NoteHere is the picture for the seconds $$$0, 1, 2$$$ and $$$3$$$ of the first testcase: Notice that robots $$$2$$$ and $$$3$$$ don't collide because they meet at the same point $$$2.5$$$, which is not integer.After second $$$3$$$ robot $$$6$$$ just drive infinitely because there's no robot to collide with.
|
Java 11
|
standard input
|
[
"data structures",
"greedy",
"implementation",
"sortings"
] |
1a28b972e77966453cd8239cc5c8f59a
|
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$) — the number of testcases. Then the descriptions of $$$t$$$ testcases follow. The first line of each testcase contains two integers $$$n$$$ and $$$m$$$ ($$$1 \le n \le 3 \cdot 10^5$$$; $$$2 \le m \le 10^8$$$) — the number of robots and the coordinate of the right wall. The second line of each testcase contains $$$n$$$ integers $$$x_1, x_2, \dots, x_n$$$ ($$$0 < x_i < m$$$) — the starting coordinates of the robots. The third line of each testcase contains $$$n$$$ space-separated characters 'L' or 'R' — the starting directions of the robots ('L' stands for left and 'R' stands for right). All coordinates $$$x_i$$$ in the testcase are distinct. The sum of $$$n$$$ over all testcases doesn't exceed $$$3 \cdot 10^5$$$.
| 2,000
|
For each testcase print $$$n$$$ integers — for the $$$i$$$-th robot output the time it explodes at if it does and $$$-1$$$ otherwise.
|
standard output
| |
PASSED
|
2f9791c87e95543ea01b9bb87dd90b15
|
train_110.jsonl
|
1621152000
|
There are $$$n$$$ robots driving along an OX axis. There are also two walls: one is at coordinate $$$0$$$ and one is at coordinate $$$m$$$.The $$$i$$$-th robot starts at an integer coordinate $$$x_i~(0 < x_i < m)$$$ and moves either left (towards the $$$0$$$) or right with the speed of $$$1$$$ unit per second. No two robots start at the same coordinate.Whenever a robot reaches a wall, it turns around instantly and continues his ride in the opposite direction with the same speed.Whenever several robots meet at the same integer coordinate, they collide and explode into dust. Once a robot has exploded, it doesn't collide with any other robot. Note that if several robots meet at a non-integer coordinate, nothing happens.For each robot find out if it ever explodes and print the time of explosion if it happens and $$$-1$$$ otherwise.
|
256 megabytes
|
import java.io.*;
import java.util.*;
public class RobotCollision
{
static class FastReader
{
BufferedReader br;
StringTokenizer st;
public FastReader()
{
br = new BufferedReader(new InputStreamReader(System.in));
}
String next()
{
while (st == null || !st.hasMoreElements())
{
try
{
st = new StringTokenizer(br.readLine());
}
catch (IOException e)
{
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt()
{
return Integer.parseInt(next());
}
long nextLong()
{
return Long.parseLong(next());
}
double nextDouble()
{
return Double.parseDouble(next());
}
String nextLine()
{
String str = "";
try
{
str = br.readLine();
}
catch (IOException e)
{
e.printStackTrace();
}
return str;
}
}
static class Output
{
private final PrintWriter writer;
public Output(OutputStream outputStream)
{
writer = new PrintWriter(new BufferedWriter(new OutputStreamWriter(outputStream)));
}
public Output(Writer writer)
{
this.writer = new PrintWriter(writer);
}
public void print(Object...objects)
{
for (int i = 0; i < objects.length; i++)
{
if (i != 0)
writer.print(' ');
writer.print(objects[i]);
}
}
public void printLine(Object...objects)
{
print(objects);
writer.println();
}
public void close()
{
writer.close();
}
public void flush() {
writer.flush();
}
}
public static void main(String args[])
{
FastReader sc=new FastReader();
Output out=new Output(System.out);
int t=sc.nextInt();
while(t-->0)
{
int n=sc.nextInt();
int m=sc.nextInt();
int a[]=new int[n];
char ch[]=new char[n];
int ans[]=new int[n];
List<Integer> odd=new ArrayList();
List<Integer> even=new ArrayList();
HashMap<Integer,Integer> map=new HashMap();
for(int i=0;i<n;i++)
{
a[i]=sc.nextInt();
map.put(a[i],i);
if(a[i]%2==0)
even.add(a[i]);
else
odd.add(a[i]);
}
Collections.sort(even);
Collections.sort(odd);
for(int i=0;i<n;i++)
ch[i]=sc.next().charAt(0);
Stack<Integer> r1=new Stack();
int f=0;
for(int i=0;i<odd.size();i++)
{
if(ch[map.get(odd.get(i))]=='R')
r1.push(odd.get(i));
else
{
if(r1.isEmpty())
{
r1.push(odd.get(i));
f++;
continue;
}
if(r1.size()==1 && f>0)
{
int x=r1.pop();
int cal=(odd.get(i)+x)/2;
ans[map.get(x)]=cal;
ans[map.get(odd.get(i))]=cal;
f=0;
continue;
}
int x=r1.pop();
int cal=(odd.get(i)-x)/2;
ans[map.get(x)]=cal;
ans[map.get(odd.get(i))]=cal;
}
}
if(!r1.isEmpty())
{
while(r1.size()>1)
{
int x1=r1.pop();
int x2=r1.pop();
int cal=0;
if(f>0 && r1.size()==0)
cal=((m-x1)+(m+x2))/2;
else
cal=((m-x1)+(m-x2))/2;
ans[map.get(x1)]=cal;
ans[map.get(x2)]=cal;
}
if(!r1.isEmpty())
ans[map.get(r1.pop())]=-1;
}
Stack<Integer> r2=new Stack();
int z=0;
for(int i=0;i<even.size();i++)
{
if(ch[map.get(even.get(i))]=='R')
r2.push(even.get(i));
else
{
if(r2.isEmpty())
{
r2.push(even.get(i));
z++;
continue;
}
if(r2.size()==1 && z>0)
{
int x=r2.pop();
int cal=(even.get(i)+x)/2;
ans[map.get(x)]=cal;
ans[map.get(even.get(i))]=cal;
z=0;
continue;
}
int x=r2.pop();
int cal=(even.get(i)-x)/2;
ans[map.get(x)]=cal;
ans[map.get(even.get(i))]=cal;
}
}
if(!r2.isEmpty())
{
while(r2.size()>1)
{
int x1=r2.pop();
int x2=r2.pop();
int cal=0;
if(z>0 && r2.size()==0)
cal=((m-x1)+(m+x2))/2;
else
cal=((m-x1)+(m-x2))/2;
ans[map.get(x1)]=cal;
ans[map.get(x2)]=cal;
}
if(!r2.isEmpty())
ans[map.get(r2.pop())]=-1;
}
for(int i=0;i<n;i++)
out.print(ans[i]+" ");
out.printLine();
out.flush();
}
}
}
|
Java
|
["5\n7 12\n1 2 3 4 9 10 11\nR R L L R R R\n2 10\n1 6\nR R\n2 10\n1 3\nL L\n1 10\n5\nR\n7 8\n6 1 7 2 3 5 4\nR L R L L L L"]
|
2 seconds
|
["1 1 1 1 2 -1 2 \n-1 -1 \n2 2 \n-1 \n-1 2 7 3 2 7 3"]
|
NoteHere is the picture for the seconds $$$0, 1, 2$$$ and $$$3$$$ of the first testcase: Notice that robots $$$2$$$ and $$$3$$$ don't collide because they meet at the same point $$$2.5$$$, which is not integer.After second $$$3$$$ robot $$$6$$$ just drive infinitely because there's no robot to collide with.
|
Java 11
|
standard input
|
[
"data structures",
"greedy",
"implementation",
"sortings"
] |
1a28b972e77966453cd8239cc5c8f59a
|
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$) — the number of testcases. Then the descriptions of $$$t$$$ testcases follow. The first line of each testcase contains two integers $$$n$$$ and $$$m$$$ ($$$1 \le n \le 3 \cdot 10^5$$$; $$$2 \le m \le 10^8$$$) — the number of robots and the coordinate of the right wall. The second line of each testcase contains $$$n$$$ integers $$$x_1, x_2, \dots, x_n$$$ ($$$0 < x_i < m$$$) — the starting coordinates of the robots. The third line of each testcase contains $$$n$$$ space-separated characters 'L' or 'R' — the starting directions of the robots ('L' stands for left and 'R' stands for right). All coordinates $$$x_i$$$ in the testcase are distinct. The sum of $$$n$$$ over all testcases doesn't exceed $$$3 \cdot 10^5$$$.
| 2,000
|
For each testcase print $$$n$$$ integers — for the $$$i$$$-th robot output the time it explodes at if it does and $$$-1$$$ otherwise.
|
standard output
| |
PASSED
|
3d056293583e68c8a81896c16ff9034e
|
train_110.jsonl
|
1621152000
|
There are $$$n$$$ robots driving along an OX axis. There are also two walls: one is at coordinate $$$0$$$ and one is at coordinate $$$m$$$.The $$$i$$$-th robot starts at an integer coordinate $$$x_i~(0 < x_i < m)$$$ and moves either left (towards the $$$0$$$) or right with the speed of $$$1$$$ unit per second. No two robots start at the same coordinate.Whenever a robot reaches a wall, it turns around instantly and continues his ride in the opposite direction with the same speed.Whenever several robots meet at the same integer coordinate, they collide and explode into dust. Once a robot has exploded, it doesn't collide with any other robot. Note that if several robots meet at a non-integer coordinate, nothing happens.For each robot find out if it ever explodes and print the time of explosion if it happens and $$$-1$$$ otherwise.
|
256 megabytes
|
import com.sun.source.tree.Tree;
import java.util.*;
import java.io.*;
public class C {
PrintWriter out;
StringTokenizer st;
BufferedReader br;
final int imax = Integer.MAX_VALUE, imin = Integer.MIN_VALUE;
final int mod = 1000000007;
Map<Integer, Integer> map;
long[] ans;
void solve() throws Exception {
int t= 1;
t= ni();
for (int ii = 0; ii < t; ii++) {
map= new HashMap<>();
int n= ni(), m= ni();
int[] arr= new int[n];
for (int i = 0; i < n; i++) {
arr[i]= ni();
map.put(arr[i], i);
}
char[] dir= new char[n];
for (int i = 0; i < n; i++) dir[i]= nc();
ans= new long[n]; Arrays.fill(ans, -1l);
List<Integer> list= new ArrayList<>();
List<Character> d = new ArrayList<>();
for(int i=0;i<n;i++) if(arr[i]%2== 0) { list.add(arr[i]); d.add(dir[i]); }
helper(list, d, m);
list= new ArrayList<>();
d= new ArrayList<>();
for(int i=0;i<n;i++) if(arr[i]%2!= 0) { list.add(arr[i]); d.add(dir[i]); }
helper(list, d, m);
print(ans);
}
}
private void helper(List<Integer> arr, List<Character> dir, int m) {
TreeSet<Integer> left= new TreeSet<>();
TreeSet<Integer> right= new TreeSet<>();
for (int i = 0; i < dir.size(); i++) {
if(dir.get(i)== 'L') left.add(arr.get(i));
else right.add(arr.get(i));
}
// -> <- right, left
List<Integer> deleted = new ArrayList<>();
for(int i: left) {
if(right.lower(i)!= null) {
int j= right.lower(i);
right.remove(j);
deleted.add(i);
int i1= map.get(i);
int i2= map.get(j);
ans[i1]= (i-j)/2;
ans[i2]= ans[i1];
}
}
for(int i: deleted) left.remove(i);
List<Integer> l = new ArrayList<>();
List<Integer> r = new ArrayList<>();
for(int i: left) l.add(i);
for(int i: right) r.add(i);
Collections.sort(l);
Collections.sort(r, Collections.reverseOrder());
// <- <-
for(int i=0;i<l.size()-1;i+=2) {
int i1= map.get(l.get(i));
int i2= map.get(l.get(i+1));
ans[i1]= (l.get(i+1)- l.get(i))/2+ l.get(i);;
ans[i2]= ans[i1];
}
// -> ->
for(int i=0;i<r.size()-1;i+=2) {
int i1= map.get(r.get(i));
int i2= map.get(r.get(i+1));
ans[i1]= (r.get(i)- r.get(i+1))/2+ (m- r.get(i));
ans[i2]= ans[i1];
}
// <- ->
if(l.size()%2== 1 && r.size()%2== 1) {
int index1 = map.get(l.get(l.size() - 1));
int index2 = map.get(r.get(r.size() - 1));
int d1 = l.get(l.size() - 1);
int d2 = m - r.get(r.size() - 1);
if (d1 < d2) {
d1 = d1 ^ d2;
d2 = d1 ^ d2;
d1 = d1 ^ d2;
}
ans[index1] = d1 + (m - (d1 - d2)) / 2;
ans[index2] = d1 + (m - (d1 - d2)) / 2;
}
}
public static void main(String[] args) throws Exception {
new C().run();
}
void run() throws Exception {
if (System.getProperty("ONLINE_JUDGE") == null) {
File file = new File("C:\\college\\CodeForces\\inputf.txt");
br = new BufferedReader(new FileReader(file));
out = new PrintWriter("C:\\college\\CodeForces\\outputf.txt");
} else {
out = new PrintWriter(System.out);
br = new BufferedReader(new InputStreamReader(System.in));
}
st = new StringTokenizer("");
while (true) {
solve();
String s = br.readLine();
if (s == null) break;
else st = new StringTokenizer(s);
}
out.flush();
}
void read() throws Exception { st = new StringTokenizer(br.readLine()); }
int ni() throws Exception { if (!st.hasMoreTokens()) read(); return Integer.parseInt(st.nextToken()); }
char nc() throws Exception { if (!st.hasMoreTokens()) read(); return st.nextToken().charAt(0); }
long nl() throws Exception { if (!st.hasMoreTokens()) read(); return Long.parseLong(st.nextToken()); }
double nd() throws Exception { if (!st.hasMoreTokens()) read(); return Double.parseDouble(st.nextToken());}
String ns() throws Exception { String s = br.readLine(); return s.length() == 0 ? br.readLine() : s; }
void print(int[] arr) { for (int i : arr) out.print(i + " "); out.println();}
void print(long[] arr) { for (long i : arr) out.print(i + " "); out.println();}
void print(int[][] arr) { for (int[] i : arr) { for (int j : i) out.print(j + " "); out.println(); } }
void print(long[][] arr) { for (long[] i : arr) { for (long j : i) out.print(j + " "); out.println(); } }
long add(long a, long b) { if (a + b >= mod) return (a + b) - mod; else return a + b >= 0 ? a + b : a + b + mod; }
long mul(long a, long b) { return (a * b) % mod; }
void print(boolean b) { if (b) out.println("YES"); else out.println("NO"); }
long binExp(long base, long power ) {
long res= 1l;
while(power!= 0) {
if((power&1)== 1) res= mul(res, base);
base= mul(base, base);
power>>= 1;
}
return res;
}
}
|
Java
|
["5\n7 12\n1 2 3 4 9 10 11\nR R L L R R R\n2 10\n1 6\nR R\n2 10\n1 3\nL L\n1 10\n5\nR\n7 8\n6 1 7 2 3 5 4\nR L R L L L L"]
|
2 seconds
|
["1 1 1 1 2 -1 2 \n-1 -1 \n2 2 \n-1 \n-1 2 7 3 2 7 3"]
|
NoteHere is the picture for the seconds $$$0, 1, 2$$$ and $$$3$$$ of the first testcase: Notice that robots $$$2$$$ and $$$3$$$ don't collide because they meet at the same point $$$2.5$$$, which is not integer.After second $$$3$$$ robot $$$6$$$ just drive infinitely because there's no robot to collide with.
|
Java 11
|
standard input
|
[
"data structures",
"greedy",
"implementation",
"sortings"
] |
1a28b972e77966453cd8239cc5c8f59a
|
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$) — the number of testcases. Then the descriptions of $$$t$$$ testcases follow. The first line of each testcase contains two integers $$$n$$$ and $$$m$$$ ($$$1 \le n \le 3 \cdot 10^5$$$; $$$2 \le m \le 10^8$$$) — the number of robots and the coordinate of the right wall. The second line of each testcase contains $$$n$$$ integers $$$x_1, x_2, \dots, x_n$$$ ($$$0 < x_i < m$$$) — the starting coordinates of the robots. The third line of each testcase contains $$$n$$$ space-separated characters 'L' or 'R' — the starting directions of the robots ('L' stands for left and 'R' stands for right). All coordinates $$$x_i$$$ in the testcase are distinct. The sum of $$$n$$$ over all testcases doesn't exceed $$$3 \cdot 10^5$$$.
| 2,000
|
For each testcase print $$$n$$$ integers — for the $$$i$$$-th robot output the time it explodes at if it does and $$$-1$$$ otherwise.
|
standard output
| |
PASSED
|
fa3726858e6a7c9260e77619e1ad0c3d
|
train_110.jsonl
|
1621152000
|
There are $$$n$$$ robots driving along an OX axis. There are also two walls: one is at coordinate $$$0$$$ and one is at coordinate $$$m$$$.The $$$i$$$-th robot starts at an integer coordinate $$$x_i~(0 < x_i < m)$$$ and moves either left (towards the $$$0$$$) or right with the speed of $$$1$$$ unit per second. No two robots start at the same coordinate.Whenever a robot reaches a wall, it turns around instantly and continues his ride in the opposite direction with the same speed.Whenever several robots meet at the same integer coordinate, they collide and explode into dust. Once a robot has exploded, it doesn't collide with any other robot. Note that if several robots meet at a non-integer coordinate, nothing happens.For each robot find out if it ever explodes and print the time of explosion if it happens and $$$-1$$$ otherwise.
|
256 megabytes
|
import java.util.Arrays;
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.ArrayList;
import java.util.Collections;
import java.util.Stack;
import java.util.StringTokenizer;
public class C {
public static class Robot {
public int pos, dir;
}
public static void main(String[] args) {
// Write code here
FastScanner fs = new FastScanner();
int t = fs.nextInt();
while (t-- > 0) {
int n = fs.nextInt();
int m = fs.nextInt();
int[] pos = fs.readArray(n);
String[] dir = fs.readStrArray(n);
Robot[] rbs = new Robot[n];
for (int i = 0; i < n; i++) {
rbs[i] = new Robot();
rbs[i].dir = (dir[i].compareTo("L")==0) ? -1 : 1;
rbs[i].pos = pos[i];
}
Integer[] ord = new Integer[n];
for (int i = 0; i < n; i++) {
ord[i] = i;
}
Arrays.sort(ord, (a, b) -> Integer.compare(rbs[a].pos, rbs[b].pos));
int[] cols = robotCollision(m, ord, rbs);
System.out.print(cols[0]);
for (int i = 1; i < n; i++) {
System.out.print(" " + cols[i]);
}
System.out.println();
}
}
static int[] robotCollision(int m, Integer[] ord, Robot[] rbs) {
int[] ans = new int[ord.length];
for (int i=0;i<ord.length;i++) ans[i] = -1;
Stack<Integer>[] robBuf = new Stack[2];
robBuf[0] = new Stack<>();
robBuf[1] = new Stack<>();
for (int o: ord){
int op = (rbs[o].pos%2);
// Left
if (rbs[o].dir==-1){
if (robBuf[op].empty()){
robBuf[op].push(o);
} else {
int l = robBuf[op].pop();
if (rbs[l].dir==-1){
int time = (rbs[o].pos + rbs[l].pos)/2;
ans[o] = time;
ans[l] = time;
} else {
int time = (rbs[o].pos - rbs[l].pos)/2;
ans[o] = time;
ans[l] = time;
}
}
} else {
robBuf[op].push(o);
}
}
for (int i=0;i<2;i++){
while (robBuf[i].size()>1){
int p = robBuf[i].pop();
int q = robBuf[i].pop();
int time = (2*m - rbs[p].pos - ((rbs[q].dir==1)?rbs[q].pos:-rbs[q].pos))/2;
ans[p] = time;
ans[q] = time;
}
}
return ans;
}
static void sort(int[] a) {
ArrayList<Integer> l = new ArrayList<>();
for (int i : a) {
l.add(i);
}
Collections.sort(l);
for (int i = 0; i < a.length; i++) {
a[i] = l.get(i);
}
}
static class FastScanner {
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
StringTokenizer st = new StringTokenizer("");
String next() {
while (!st.hasMoreTokens()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
int[] readArray(int n) {
int[] a = new int[n];
for (int i = 0; i < n; i++) {
a[i] = nextInt();
}
return a;
}
String[] readStrArray(int n) {
String[] a = new String[n];
for (int i = 0; i < n; i++) {
a[i] = next();
}
return a;
}
long nextLong() {
return Long.parseLong(next());
}
}
}
|
Java
|
["5\n7 12\n1 2 3 4 9 10 11\nR R L L R R R\n2 10\n1 6\nR R\n2 10\n1 3\nL L\n1 10\n5\nR\n7 8\n6 1 7 2 3 5 4\nR L R L L L L"]
|
2 seconds
|
["1 1 1 1 2 -1 2 \n-1 -1 \n2 2 \n-1 \n-1 2 7 3 2 7 3"]
|
NoteHere is the picture for the seconds $$$0, 1, 2$$$ and $$$3$$$ of the first testcase: Notice that robots $$$2$$$ and $$$3$$$ don't collide because they meet at the same point $$$2.5$$$, which is not integer.After second $$$3$$$ robot $$$6$$$ just drive infinitely because there's no robot to collide with.
|
Java 11
|
standard input
|
[
"data structures",
"greedy",
"implementation",
"sortings"
] |
1a28b972e77966453cd8239cc5c8f59a
|
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$) — the number of testcases. Then the descriptions of $$$t$$$ testcases follow. The first line of each testcase contains two integers $$$n$$$ and $$$m$$$ ($$$1 \le n \le 3 \cdot 10^5$$$; $$$2 \le m \le 10^8$$$) — the number of robots and the coordinate of the right wall. The second line of each testcase contains $$$n$$$ integers $$$x_1, x_2, \dots, x_n$$$ ($$$0 < x_i < m$$$) — the starting coordinates of the robots. The third line of each testcase contains $$$n$$$ space-separated characters 'L' or 'R' — the starting directions of the robots ('L' stands for left and 'R' stands for right). All coordinates $$$x_i$$$ in the testcase are distinct. The sum of $$$n$$$ over all testcases doesn't exceed $$$3 \cdot 10^5$$$.
| 2,000
|
For each testcase print $$$n$$$ integers — for the $$$i$$$-th robot output the time it explodes at if it does and $$$-1$$$ otherwise.
|
standard output
| |
PASSED
|
e244929ee2a715a24e586cf349f1a952
|
train_110.jsonl
|
1621152000
|
There are $$$n$$$ robots driving along an OX axis. There are also two walls: one is at coordinate $$$0$$$ and one is at coordinate $$$m$$$.The $$$i$$$-th robot starts at an integer coordinate $$$x_i~(0 < x_i < m)$$$ and moves either left (towards the $$$0$$$) or right with the speed of $$$1$$$ unit per second. No two robots start at the same coordinate.Whenever a robot reaches a wall, it turns around instantly and continues his ride in the opposite direction with the same speed.Whenever several robots meet at the same integer coordinate, they collide and explode into dust. Once a robot has exploded, it doesn't collide with any other robot. Note that if several robots meet at a non-integer coordinate, nothing happens.For each robot find out if it ever explodes and print the time of explosion if it happens and $$$-1$$$ otherwise.
|
256 megabytes
|
import java.util.*;
public class C {
public static void solve(List<Robot> v, int[] ans, int m) {
Stack<Robot> stk = new Stack<>();
for (Robot r: v) {
if (r.dir == -1) {
if (stk.isEmpty()) {
stk.push(r);
} else {
Robot r2 = stk.pop();
if (r2.dir == 1) {
ans[r.id] = (r.x - r2.x) / 2;
ans[r2.id] = (r.x - r2.x) / 2;
} else {
ans[r.id] = (r.x + r2.x) / 2;
ans[r2.id] = (r.x + r2.x) / 2;
}
}
} else {
stk.push(r);
}
}
while (stk.size() >= 2) {
Robot r = stk.pop();
Robot r2 = stk.pop();
if (r2.dir == 1) {
ans[r.id] = (m - r.x + m - r2.x) / 2;
ans[r2.id] = (m - r.x + m - r2.x) / 2;
} else {
ans[r.id] = (m - r.x + m + r2.x) / 2;
ans[r2.id] = (m - r.x + m + r2.x) / 2;
}
}
}
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
int t = sc.nextInt();
while (t-- > 0) {
int n = sc.nextInt();
int m = sc.nextInt();
int[] pos = new int[n];
String[] dir = new String[n];
for (int i = 0; i < n; i++) pos[i] = sc.nextInt();
for (int i = 0; i < n; i++) dir[i] = sc.next();
Robot[] robots = new Robot[n];
for (int i = 0; i < n; i++) {
robots[i] = new Robot(pos[i], dir[i].equals("R") ? 1 : -1, i);
}
Arrays.sort(robots, (a, b) -> a.x - b.x);
List<Robot> e = new ArrayList<>();
List<Robot> o = new ArrayList<>();
for (Robot r: robots) {
if (r.x % 2 == 0) {
e.add(r);
} else {
o.add(r);
}
}
int[] ans = new int[n];
for (int i = 0; i < n; i++) {
ans[i] = -1;
}
solve(e, ans, m);
solve(o, ans, m);
for (int i = 0; i < n; i++)
System.out.print(ans[i] + " ");
System.out.println("");
}
}
}
class Robot {
int x, dir, id;
Robot(int x, int dir, int id) {
this.x = x;
this.dir = dir;
this.id = id;
}
}
|
Java
|
["5\n7 12\n1 2 3 4 9 10 11\nR R L L R R R\n2 10\n1 6\nR R\n2 10\n1 3\nL L\n1 10\n5\nR\n7 8\n6 1 7 2 3 5 4\nR L R L L L L"]
|
2 seconds
|
["1 1 1 1 2 -1 2 \n-1 -1 \n2 2 \n-1 \n-1 2 7 3 2 7 3"]
|
NoteHere is the picture for the seconds $$$0, 1, 2$$$ and $$$3$$$ of the first testcase: Notice that robots $$$2$$$ and $$$3$$$ don't collide because they meet at the same point $$$2.5$$$, which is not integer.After second $$$3$$$ robot $$$6$$$ just drive infinitely because there's no robot to collide with.
|
Java 11
|
standard input
|
[
"data structures",
"greedy",
"implementation",
"sortings"
] |
1a28b972e77966453cd8239cc5c8f59a
|
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$) — the number of testcases. Then the descriptions of $$$t$$$ testcases follow. The first line of each testcase contains two integers $$$n$$$ and $$$m$$$ ($$$1 \le n \le 3 \cdot 10^5$$$; $$$2 \le m \le 10^8$$$) — the number of robots and the coordinate of the right wall. The second line of each testcase contains $$$n$$$ integers $$$x_1, x_2, \dots, x_n$$$ ($$$0 < x_i < m$$$) — the starting coordinates of the robots. The third line of each testcase contains $$$n$$$ space-separated characters 'L' or 'R' — the starting directions of the robots ('L' stands for left and 'R' stands for right). All coordinates $$$x_i$$$ in the testcase are distinct. The sum of $$$n$$$ over all testcases doesn't exceed $$$3 \cdot 10^5$$$.
| 2,000
|
For each testcase print $$$n$$$ integers — for the $$$i$$$-th robot output the time it explodes at if it does and $$$-1$$$ otherwise.
|
standard output
| |
PASSED
|
5fe189d0866998e703aa1104cf992397
|
train_110.jsonl
|
1621152000
|
There are $$$n$$$ robots driving along an OX axis. There are also two walls: one is at coordinate $$$0$$$ and one is at coordinate $$$m$$$.The $$$i$$$-th robot starts at an integer coordinate $$$x_i~(0 < x_i < m)$$$ and moves either left (towards the $$$0$$$) or right with the speed of $$$1$$$ unit per second. No two robots start at the same coordinate.Whenever a robot reaches a wall, it turns around instantly and continues his ride in the opposite direction with the same speed.Whenever several robots meet at the same integer coordinate, they collide and explode into dust. Once a robot has exploded, it doesn't collide with any other robot. Note that if several robots meet at a non-integer coordinate, nothing happens.For each robot find out if it ever explodes and print the time of explosion if it happens and $$$-1$$$ otherwise.
|
256 megabytes
|
import java.util.*;
public class Robots {
public static void main(String[] args) {
Scanner in = new Scanner(System.in);
StringBuffer out = new StringBuffer();
int t = in.nextInt();
while (t-- != 0) {
int n = in.nextInt(), m = in.nextInt();
int x[] = new int[n];
for (int i = 0; i < n; i++)
x[i] = in.nextInt();
HashMap<Integer, Character> map = new HashMap<>();
for (int i = 0; i < n; i++)
map.put(x[i], in.next().charAt(0));
List<Integer> values[] = new ArrayList[2];
for (int i = 0; i < 2; i++)
values[i] = new ArrayList<>();
for (int item : x) {
values[item % 2].add(item);
}
HashMap<Integer, Integer> ans = new HashMap<>();
for (int i = 0; i < 2; i++) {
Collections.sort(values[i]);
// System.out.println(values[i]);
LinkedList<Integer> left = new LinkedList<>(), right = new LinkedList<>();
for (int item : values[i]) {
if (map.get(item) == 'L') {
if (!right.isEmpty()) {
int ant1 = right.pollLast(), ant2 = item;
ans.put(ant1, Math.abs(ant1 - ant2) / 2);
ans.put(ant2, Math.abs(ant1 - ant2) / 2);
} else {
left.add(item);
}
} else {
right.add(item);
}
}
// System.out.println(left + " " + right + " " + ans);
while (left.size() >= 2) {
int ant1 = left.pollFirst(), ant2 = left.pollFirst();
ans.put(ant1, ant1 + Math.abs(ant1 - ant2) / 2);
ans.put(ant2, ant1 + Math.abs(ant1 - ant2) / 2);
}
// System.out.println(left + " " + right + " " + ans);
while (right.size() >= 2) {
int ant1 = right.pollLast(), ant2 = right.pollLast();
ans.put(ant1, (m - ant1) + Math.abs(ant1 - ant2) / 2);
ans.put(ant2, (m - ant1) + Math.abs(ant1 - ant2) / 2);
}
// System.out.println(left + " " + right + " " + ans);
if (left.size() == 1 && right.size() == 1) {
int ant1 = left.poll(), ant2 = right.poll();
int min = Math.min(ant1, (m - ant2));
int max = Math.max(ant1, (m - ant2));
int diff = (ant2 + min) - (ant1 - min);
ans.put(ant1, max + diff / 2);
ans.put(ant2, max + diff / 2);
}
// System.out.println(left + " " + right + " " + ans);
if (!left.isEmpty())
ans.put(left.poll(), -1);
if (!right.isEmpty())
ans.put(right.poll(), -1);
// System.out.println(left + " " + right + " " + ans);
}
for (int item : x)
out.append(ans.get(item) + " ");
out.append("\n");
}
System.out.println(out);
}
private static int GCD(int a, int b) {
if (a == 0)
return b;
return GCD(b % a, a);
}
}
|
Java
|
["5\n7 12\n1 2 3 4 9 10 11\nR R L L R R R\n2 10\n1 6\nR R\n2 10\n1 3\nL L\n1 10\n5\nR\n7 8\n6 1 7 2 3 5 4\nR L R L L L L"]
|
2 seconds
|
["1 1 1 1 2 -1 2 \n-1 -1 \n2 2 \n-1 \n-1 2 7 3 2 7 3"]
|
NoteHere is the picture for the seconds $$$0, 1, 2$$$ and $$$3$$$ of the first testcase: Notice that robots $$$2$$$ and $$$3$$$ don't collide because they meet at the same point $$$2.5$$$, which is not integer.After second $$$3$$$ robot $$$6$$$ just drive infinitely because there's no robot to collide with.
|
Java 11
|
standard input
|
[
"data structures",
"greedy",
"implementation",
"sortings"
] |
1a28b972e77966453cd8239cc5c8f59a
|
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$) — the number of testcases. Then the descriptions of $$$t$$$ testcases follow. The first line of each testcase contains two integers $$$n$$$ and $$$m$$$ ($$$1 \le n \le 3 \cdot 10^5$$$; $$$2 \le m \le 10^8$$$) — the number of robots and the coordinate of the right wall. The second line of each testcase contains $$$n$$$ integers $$$x_1, x_2, \dots, x_n$$$ ($$$0 < x_i < m$$$) — the starting coordinates of the robots. The third line of each testcase contains $$$n$$$ space-separated characters 'L' or 'R' — the starting directions of the robots ('L' stands for left and 'R' stands for right). All coordinates $$$x_i$$$ in the testcase are distinct. The sum of $$$n$$$ over all testcases doesn't exceed $$$3 \cdot 10^5$$$.
| 2,000
|
For each testcase print $$$n$$$ integers — for the $$$i$$$-th robot output the time it explodes at if it does and $$$-1$$$ otherwise.
|
standard output
| |
PASSED
|
362661d9d80d3b30667163c78eb16cd7
|
train_110.jsonl
|
1621152000
|
There are $$$n$$$ robots driving along an OX axis. There are also two walls: one is at coordinate $$$0$$$ and one is at coordinate $$$m$$$.The $$$i$$$-th robot starts at an integer coordinate $$$x_i~(0 < x_i < m)$$$ and moves either left (towards the $$$0$$$) or right with the speed of $$$1$$$ unit per second. No two robots start at the same coordinate.Whenever a robot reaches a wall, it turns around instantly and continues his ride in the opposite direction with the same speed.Whenever several robots meet at the same integer coordinate, they collide and explode into dust. Once a robot has exploded, it doesn't collide with any other robot. Note that if several robots meet at a non-integer coordinate, nothing happens.For each robot find out if it ever explodes and print the time of explosion if it happens and $$$-1$$$ otherwise.
|
256 megabytes
|
import java.io.OutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.PrintWriter;
import java.util.Arrays;
import java.util.InputMismatchException;
import java.io.IOException;
import java.util.Stack;
import java.util.ArrayList;
import java.util.Vector;
import java.util.Comparator;
import java.util.Collections;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
*
* @author dauom
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
InputReader in = new InputReader(inputStream);
PrintWriter out = new PrintWriter(outputStream);
CRobotCollisions solver = new CRobotCollisions();
int testCount = Integer.parseInt(in.next());
for (int i = 1; i <= testCount; i++)
solver.solve(i, in, out);
out.close();
}
static class CRobotCollisions {
private static int L = 0;
private static int R = 1;
public final void solve(int testNumber, InputReader in, PrintWriter out) {
int n = in.nextInt();
int m = in.nextInt();
int[] x = in.nextIntArray(n);
String[] dir = in.nextStringArray(n);
int countOdd = 0, countEven = 0;
int[][] odds = new int[n][];
int[][] evens = new int[n][];
for (int i = 0; i < n; i++) {
int pos = x[i];
int d = dir[i].charAt(0) == 'R' ? R : L;
if (pos % 2 == 1) {
odds[countOdd++] = new int[]{pos, i + 1, d};
} else {
evens[countEven++] = new int[]{pos, i + 1, d};
}
}
odds = Arrays.copyOf(odds, countOdd);
evens = Arrays.copyOf(evens, countEven);
int[] ansOdd = solve(n, m, odds);
int[] ansEven = solve(n, m, evens);
for (int i = 1; i <= n; i++) {
out.print(Integer.max(ansOdd[i], ansEven[i]) + " ");
}
out.println();
}
private int[] solve(final int n, final int m, final int[][] robots) {
int[] ans = new int[n + 1];
Arrays.fill(ans, -1);
Stack<int[]> cur = new Stack<>();
Arrays.sort(robots, Comparators.singletonIntArr);
for (int[] r : robots) {
if (cur.empty()) {
cur.push(r);
} else {
int pos = r[0], idx = r[1], dir = r[2];
int opos = cur.peek()[0], oidx = cur.peek()[1], odir = cur.peek()[2];
if (dir == L && odir == R) {
ans[idx] = ans[oidx] = (pos - opos) / 2;
cur.pop();
} else {
cur.push(r);
}
}
}
ArrayList<int[]> unused = new ArrayList<>();
// Treat only the right going ones
while (cur.size() >= 2) {
int[] r1 = cur.pop();
int pos = r1[0], idx = r1[1], dir = r1[2];
int[] r2 = cur.pop();
int opos = r2[0], oidx = r2[1], odir = r2[2];
if (dir == L || odir == L) {
if (odir == L) cur.push(r2);
else unused.add(r2);
if (dir == L) cur.push(r1);
else unused.add(r1);
break;
}
int time = m - pos + (m - (opos + m - pos)) / 2;
ans[idx] = ans[oidx] = time;
}
ArrayList<int[]> leftList = new ArrayList<>(cur);
Collections.reverse(leftList);
cur.clear();
cur.addAll(leftList);
// Treat only the left going ones
while (cur.size() >= 2) {
int[] r1 = cur.pop();
int pos = r1[0], idx = r1[1];
int[] r2 = cur.pop();
int opos = r2[0], oidx = r2[1];
int time = pos + (opos - pos) / 2;
ans[idx] = ans[oidx] = time;
}
unused.addAll(cur);
if (unused.size() == 2) {
int[] right = unused.get(0);
int[] left = unused.get(1);
int time = Integer.min(m - right[0], left[0]);
right[0] += time;
left[0] -= time;
if (right[0] != m) {
time += m - right[0];
left[0] = m - right[0];
right[0] = m;
} else {
time += left[0];
right[0] -= left[0];
left[0] = 0;
}
time += (right[0] - left[0]) / 2;
ans[right[1]] = ans[left[1]] = time;
}
return ans;
}
}
static final class InputReader {
private final InputStream stream;
private final byte[] buf = new byte[1 << 18];
private int curChar;
private int numChars;
public InputReader() {
this.stream = System.in;
}
public InputReader(final InputStream stream) {
this.stream = stream;
}
private int read() {
if (this.numChars == -1) {
throw new UnknownError();
} else {
if (this.curChar >= this.numChars) {
this.curChar = 0;
try {
this.numChars = this.stream.read(this.buf);
} catch (IOException ex) {
throw new InputMismatchException();
}
if (this.numChars <= 0) {
return -1;
}
}
return this.buf[this.curChar++];
}
}
public final int nextInt() {
int c;
for (c = this.read(); isSpaceChar(c); c = this.read()) {
}
byte sgn = 1;
if (c == 45) { // 45 == '-'
sgn = -1;
c = this.read();
}
int res = 0;
while (c >= 48 && c <= 57) { // 48 == '0', 57 == '9'
res *= 10;
res += c - 48; // 48 == '0'
c = this.read();
if (isSpaceChar(c)) {
return res * sgn;
}
}
throw new InputMismatchException();
}
public final String next() {
int c;
while (isSpaceChar(c = this.read())) {
}
StringBuilder result = new StringBuilder();
result.appendCodePoint(c);
while (!isSpaceChar(c = this.read())) {
result.appendCodePoint(c);
}
return result.toString();
}
private static boolean isSpaceChar(final int c) {
return c == 32 || c == 10 || c == 13 || c == 9
|| c == -1; // 32 == ' ', 10 == '\n', 13 == '\r', 9 == '\t'
}
public final int[] nextIntArray(final int n) {
int[] arr = new int[n];
for (int i = 0; i < n; i++) {
arr[i] = nextInt();
}
return arr;
}
public final String[] nextStringArray(final int n) {
String[] arr = new String[n];
for (int i = 0; i < n; i++) {
arr[i] = next();
}
return arr;
}
}
static final class Comparators {
public static final Comparator<int[]> singletonIntArr = (x, y) -> compare(x[0], y[0]);
private static final int compare(final int x, final int y) {
return x < y ? -1 : (x == y ? 0 : 1);
}
}
}
|
Java
|
["5\n7 12\n1 2 3 4 9 10 11\nR R L L R R R\n2 10\n1 6\nR R\n2 10\n1 3\nL L\n1 10\n5\nR\n7 8\n6 1 7 2 3 5 4\nR L R L L L L"]
|
2 seconds
|
["1 1 1 1 2 -1 2 \n-1 -1 \n2 2 \n-1 \n-1 2 7 3 2 7 3"]
|
NoteHere is the picture for the seconds $$$0, 1, 2$$$ and $$$3$$$ of the first testcase: Notice that robots $$$2$$$ and $$$3$$$ don't collide because they meet at the same point $$$2.5$$$, which is not integer.After second $$$3$$$ robot $$$6$$$ just drive infinitely because there's no robot to collide with.
|
Java 11
|
standard input
|
[
"data structures",
"greedy",
"implementation",
"sortings"
] |
1a28b972e77966453cd8239cc5c8f59a
|
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$) — the number of testcases. Then the descriptions of $$$t$$$ testcases follow. The first line of each testcase contains two integers $$$n$$$ and $$$m$$$ ($$$1 \le n \le 3 \cdot 10^5$$$; $$$2 \le m \le 10^8$$$) — the number of robots and the coordinate of the right wall. The second line of each testcase contains $$$n$$$ integers $$$x_1, x_2, \dots, x_n$$$ ($$$0 < x_i < m$$$) — the starting coordinates of the robots. The third line of each testcase contains $$$n$$$ space-separated characters 'L' or 'R' — the starting directions of the robots ('L' stands for left and 'R' stands for right). All coordinates $$$x_i$$$ in the testcase are distinct. The sum of $$$n$$$ over all testcases doesn't exceed $$$3 \cdot 10^5$$$.
| 2,000
|
For each testcase print $$$n$$$ integers — for the $$$i$$$-th robot output the time it explodes at if it does and $$$-1$$$ otherwise.
|
standard output
| |
PASSED
|
660ee8147dd9d9a705985c541ee17975
|
train_110.jsonl
|
1621152000
|
There are $$$n$$$ robots driving along an OX axis. There are also two walls: one is at coordinate $$$0$$$ and one is at coordinate $$$m$$$.The $$$i$$$-th robot starts at an integer coordinate $$$x_i~(0 < x_i < m)$$$ and moves either left (towards the $$$0$$$) or right with the speed of $$$1$$$ unit per second. No two robots start at the same coordinate.Whenever a robot reaches a wall, it turns around instantly and continues his ride in the opposite direction with the same speed.Whenever several robots meet at the same integer coordinate, they collide and explode into dust. Once a robot has exploded, it doesn't collide with any other robot. Note that if several robots meet at a non-integer coordinate, nothing happens.For each robot find out if it ever explodes and print the time of explosion if it happens and $$$-1$$$ otherwise.
|
256 megabytes
|
import java.io.*;
import java.util.*;
public class Solution {
static class FastReader {
BufferedReader br;
StringTokenizer st;
public FastReader(String s) {
try {
br = new BufferedReader(new FileReader(s));
} catch (FileNotFoundException e) {
// TODO Auto-generated catch block
e.printStackTrace();
}
}
public FastReader() {
br = new BufferedReader(new InputStreamReader(System.in));
}
String nextToken() {
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
// TODO Auto-generated catch block
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(nextToken());
}
String nextLine() throws IOException {
return br.readLine();
}
long nextLong() {
return Long.parseLong(nextToken());
}
double nextDouble() {
return Double.parseDouble(nextToken());
}
float nextFloat() {
return Float.parseFloat(nextToken());
}
}
static FastReader f = new FastReader();
static StringBuilder sb = new StringBuilder();
static long[] fact;
static int[] inputArray(int n) throws IOException {
int[] a = new int[n];
for (int i = 0; i < n; i++) {
// a[i] = (int) (Math.random()*1e5 + 1);
a[i] = f.nextInt();
}
return a;
}
static void print2DArray(int[][] a) {
int n = a.length, m = a[0].length;
for (int i = 0; i < n; i++) {
for (int j = 0; j < m; j++) {
System.out.print(a[i][j] + " ");
}
System.out.println();
}
}
static void print2DArray(long[][] a) {
int n = a.length, m = a[0].length;
for (int i = 0; i < n; i++) {
for (int j = 0; j < m; j++) {
System.out.print(a[i][j] + " ");
}
System.out.println();
}
}
static long[] inputLongArray(int n) throws IOException {
long[] a = new long[n];
for (int i = 0; i < n; i++) {
a[i] = f.nextLong();
// a[i] = (long) (Math.random() * 1e9 + 1);
}
return a;
}
static long gcd(long a, long b) {
if (a == 0 || b == 0) {
return Math.max(a, b);
}
//System.out.println("a - " + a + " b - " + b);
if (a % b == 0) {
return b;
}
return gcd(b, a % b);
}
static void initializeFact() {
fact = new long[MAX_N];
for (int i = 0; i < fact.length; i++) {
if (i == 0) {
fact[i] = 1;
} else {
fact[i] = fact[i - 1] * i % mod;
}
}
}
static long longModulus(long x, long m) {
if (x < m) {
return x;
}
long d = x / m;
return x - d * m;
}
static BitSet sieveOfEratosthenes(int n) {
BitSet isPrime = new BitSet(n + 1);
isPrime.set(0, n + 1);
isPrime.set(0);
isPrime.set(1);
for (int i = 2; i * i <= n; i++) {
if (isPrime.get(i))
for (int j = i * i; j <= n; j += i)
isPrime.clear(j);
}
return isPrime;
}
static long moduloInversePrime(long a) {
//System.out.println("modulo inverse of " + a + " -> " + ans);
return modPow(a, mod - 2);
}
static long mult(long a, long b) {
return (a * b % mod);
}
static long modPow(long a, int step) {
long ans = 1;
while (step != 0) {
if ((step & 1) != 0)
ans = mult(ans, a);
a = mult(a, a);
step >>= 1;
}
return ans;
}
static int query(int t, int i, int j, int x) {
System.out.println("? " + t + " " + i + " " + j + " " + x);
System.out.flush();
return f.nextInt();
}
private static boolean isBipartite(ArrayList<ArrayList<Integer>> adj, int s, boolean[] visited, int[] color, int c, int parent) {
visited[s] = true;
color[s] = c;
for(int x: adj.get(s)) {
if(x == parent) continue;
if(color[x] == c) {
return false;
}
if(!visited[x]) {
if(!isBipartite(adj, x, visited, color, 1-c, s)) {
return false;
}
}
}
return true;
}
static class Pair implements Comparator<Pair>{
int x;
char dir;
int ind;
public Pair() {
}
public Pair(int x, char dir, int ind) {
this.x = x;
this.dir = dir;
this.ind = ind;
}
@Override
public String toString() {
return "Pair{" +
"x=" + x +
", dir=" + dir +
", ind=" + ind +
'}';
}
@Override
public int compare(Pair o1, Pair o2) {
return o1.x - o2.x;
}
}
static long explosionTime(Pair p1, Pair p2, int m) {
if(p1.dir == p2.dir) {
if(p1.dir == 'L') {
return p1.x + (p2.x - p1.x)/2;
}
else {
return (m-p2.x) + (p2.x - p1.x)/2;
}
}
else {
if(p1.dir == 'L') {
if(p1.x < (m-p2.x)) {
int dif = (m-p2.x) - p1.x;
return (m-p2.x) + (m-(dif))/2;
}
else {
int dif = p1.x - (m-p2.x);
return p1.x + (m-(dif))/2;
}
}
else {
return (p2.x - p1.x)/2;
}
}
}
private static int mod = (int) (1e9 + 7);
static int MAX_N = (int) Math.sqrt(1e9);
public static void main(String[] args) throws IOException {
int test = f.nextInt();
for (int t = 1 ; t <= test ; t++) {
int n = f.nextInt(), m = f.nextInt();
int x[] = inputArray(n);
char s[] = new char[n];
for(int i = 0 ; i < n ; i++) {
s[i] = f.nextToken().charAt(0);
}
ArrayList<Pair> even = new ArrayList<>();
ArrayList<Pair> odd = new ArrayList<>();
for(int i = 0 ; i < n ; i++) {
if(x[i] % 2 == 0) {
even.add(new Pair(x[i], s[i], i));
}
else {
odd.add(new Pair(x[i], s[i], i));
}
}
long[] res = new long[n];
Arrays.fill(res, -1);
even.sort(new Pair());
odd.sort(new Pair());
solve(even, m, res);
solve(odd, m, res);
for(long i : res) {
sb.append(i).append(" ");
}
sb.append("\n");
}
System.out.println(sb);
}
private static void solve(ArrayList<Pair> list, int m, long[] res) {
Stack<Pair> stack = new Stack<>();
ArrayList<Pair> second_list = new ArrayList<>();
for(Pair p : list) {
if(p.dir == 'L') {
if(!stack.isEmpty()) {
Pair temp = stack.pop();
long t = explosionTime(temp, p, m);
res[p.ind] = t;
res[temp.ind] = t;
}
else {
second_list.add(p);
}
}
else {
stack.push(p);
}
}
int left_cnt = second_list.size();
while(!stack.isEmpty()) {
second_list.add(stack.pop());
}
int left_done = 0, right_done = 0;
for(int i = 0 ; i < left_cnt ; i++) {
if(i + 1 < left_cnt) {
long t = explosionTime(second_list.get(i), second_list.get(i+1), m);
res[second_list.get(i).ind] = t;
res[second_list.get(i+1).ind] = t;
i++;
left_done += 2;
}
}
for(int i = left_cnt ; i < second_list.size() ; i++) {
if(i + 1 < second_list.size()) {
long t = explosionTime(second_list.get(i+1), second_list.get(i), m);
res[second_list.get(i+1).ind] = t;
res[second_list.get(i).ind] = t;
i++;
right_done += 2;
}
}
if(left_cnt - left_done > 0 && (second_list.size() - left_cnt) - right_done > 0) {
long t = explosionTime(second_list.get(left_cnt-1), second_list.get(second_list.size()-1), m);
res[second_list.get(left_cnt-1).ind] = t;
res[second_list.get(second_list.size()-1).ind] = t;
}
}
}
/*
1
10 15
1 3 4 5 6 7 11 12 14 9
R L R R L L L L R R
*/
|
Java
|
["5\n7 12\n1 2 3 4 9 10 11\nR R L L R R R\n2 10\n1 6\nR R\n2 10\n1 3\nL L\n1 10\n5\nR\n7 8\n6 1 7 2 3 5 4\nR L R L L L L"]
|
2 seconds
|
["1 1 1 1 2 -1 2 \n-1 -1 \n2 2 \n-1 \n-1 2 7 3 2 7 3"]
|
NoteHere is the picture for the seconds $$$0, 1, 2$$$ and $$$3$$$ of the first testcase: Notice that robots $$$2$$$ and $$$3$$$ don't collide because they meet at the same point $$$2.5$$$, which is not integer.After second $$$3$$$ robot $$$6$$$ just drive infinitely because there's no robot to collide with.
|
Java 11
|
standard input
|
[
"data structures",
"greedy",
"implementation",
"sortings"
] |
1a28b972e77966453cd8239cc5c8f59a
|
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$) — the number of testcases. Then the descriptions of $$$t$$$ testcases follow. The first line of each testcase contains two integers $$$n$$$ and $$$m$$$ ($$$1 \le n \le 3 \cdot 10^5$$$; $$$2 \le m \le 10^8$$$) — the number of robots and the coordinate of the right wall. The second line of each testcase contains $$$n$$$ integers $$$x_1, x_2, \dots, x_n$$$ ($$$0 < x_i < m$$$) — the starting coordinates of the robots. The third line of each testcase contains $$$n$$$ space-separated characters 'L' or 'R' — the starting directions of the robots ('L' stands for left and 'R' stands for right). All coordinates $$$x_i$$$ in the testcase are distinct. The sum of $$$n$$$ over all testcases doesn't exceed $$$3 \cdot 10^5$$$.
| 2,000
|
For each testcase print $$$n$$$ integers — for the $$$i$$$-th robot output the time it explodes at if it does and $$$-1$$$ otherwise.
|
standard output
| |
PASSED
|
449207cd65c00c62c98302bddc88909e
|
train_110.jsonl
|
1621152000
|
There are $$$n$$$ robots driving along an OX axis. There are also two walls: one is at coordinate $$$0$$$ and one is at coordinate $$$m$$$.The $$$i$$$-th robot starts at an integer coordinate $$$x_i~(0 < x_i < m)$$$ and moves either left (towards the $$$0$$$) or right with the speed of $$$1$$$ unit per second. No two robots start at the same coordinate.Whenever a robot reaches a wall, it turns around instantly and continues his ride in the opposite direction with the same speed.Whenever several robots meet at the same integer coordinate, they collide and explode into dust. Once a robot has exploded, it doesn't collide with any other robot. Note that if several robots meet at a non-integer coordinate, nothing happens.For each robot find out if it ever explodes and print the time of explosion if it happens and $$$-1$$$ otherwise.
|
256 megabytes
|
import java.math.BigInteger;
import java.util.*;
import java.io.*;
public class Div716 {
static int n, m;
static int[] a;
static int comp(int x, int y) {
return a[x] - a[y];
}
public static void main(String[] args) throws IOException {
Scanner sc = new Scanner(System.in);
PrintWriter pw = new PrintWriter(System.out);
int t = sc.nextInt();
while (t-- > 0) {
n = sc.nextInt();
m = sc.nextInt();
a = sc.nextIntArr(n);
TreeSet<Integer>[] left = new TreeSet[2], right = new TreeSet[2];
for (int j = 0; j < 2; j++) {
left[j] = new TreeSet<>((x, y) -> comp(x, y));
right[j] = new TreeSet<>((x, y) -> comp(x, y));
}
for (int i = 0; i < n; i++) {
if (sc.next().equals("L")) {
left[a[i] % 2].add(i);
} else {
right[a[i] % 2].add(i);
}
}
int[] ans = new int[n];
Arrays.fill(ans, -1);
for (int j = 0; j < 2; j++) {
TreeSet<Integer> rlef = new TreeSet<>((x, y) -> comp(x, y));
while (!left[j].isEmpty()) {
int u = left[j].pollFirst();
Integer v = right[j].floor(u);
if (v == null) {
rlef.add(u);
continue;
}
right[j].remove(v);
ans[u] = ans[v] = Math.abs(a[u] - a[v]) / 2;
}
left[j] = rlef;
while (left[j].size() > 1) {
int u = left[j].pollFirst();
int v = left[j].pollFirst();
ans[u] = ans[v] = a[u] + Math.abs(a[u] - a[v]) / 2;
}
while (right[j].size() > 1) {
int u = right[j].pollLast();
int v = right[j].pollLast();
ans[u] = ans[v] = (m - a[u]) + Math.abs(a[u] - a[v]) / 2;
}
if (left[j].size() == 1 && right[j].size() == 1) {
int u = left[j].pollFirst();
int v = right[j].pollFirst();
int va = a[u];
int vb = m - a[v];
ans[u] = ans[v] = va + vb + (Math.abs(a[u] - a[v]) / 2);
}
}
for (int x : ans)
pw.print(x + " ");
pw.println();
}
pw.flush();
}
static int gcd(int a, int b) {
if (a == 0)
return b;
return gcd(b % a, a);
}
static class Scanner {
StringTokenizer st;
BufferedReader br;
public Scanner(FileReader r) {
br = new BufferedReader(r);
}
public Scanner(InputStream s) {
br = new BufferedReader(new InputStreamReader(s));
}
public String next() throws IOException {
while (st == null || !st.hasMoreTokens())
st = new StringTokenizer(br.readLine());
return st.nextToken();
}
public int[] nextIntArr(int n) throws IOException {
int[] a = new int[n];
for (int i = 0; i < n; i++) {
a[i] = nextInt();
}
return a;
}
public int nextInt() throws IOException {
return Integer.parseInt(next());
}
public long nextLong() throws IOException {
return Long.parseLong(next());
}
public String nextLine() throws IOException {
return br.readLine();
}
public double nextDouble() throws IOException {
String x = next();
StringBuilder sb = new StringBuilder("0");
double res = 0, f = 1;
boolean dec = false, neg = false;
int start = 0;
if (x.charAt(0) == '-') {
neg = true;
start++;
}
for (int i = start; i < x.length(); i++)
if (x.charAt(i) == '.') {
res = Long.parseLong(sb.toString());
sb = new StringBuilder("0");
dec = true;
} else {
sb.append(x.charAt(i));
if (dec)
f *= 10;
}
res += Long.parseLong(sb.toString()) / f;
return res * (neg ? -1 : 1);
}
public boolean ready() throws IOException {
return br.ready();
}
}
}
|
Java
|
["5\n7 12\n1 2 3 4 9 10 11\nR R L L R R R\n2 10\n1 6\nR R\n2 10\n1 3\nL L\n1 10\n5\nR\n7 8\n6 1 7 2 3 5 4\nR L R L L L L"]
|
2 seconds
|
["1 1 1 1 2 -1 2 \n-1 -1 \n2 2 \n-1 \n-1 2 7 3 2 7 3"]
|
NoteHere is the picture for the seconds $$$0, 1, 2$$$ and $$$3$$$ of the first testcase: Notice that robots $$$2$$$ and $$$3$$$ don't collide because they meet at the same point $$$2.5$$$, which is not integer.After second $$$3$$$ robot $$$6$$$ just drive infinitely because there's no robot to collide with.
|
Java 11
|
standard input
|
[
"data structures",
"greedy",
"implementation",
"sortings"
] |
1a28b972e77966453cd8239cc5c8f59a
|
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$) — the number of testcases. Then the descriptions of $$$t$$$ testcases follow. The first line of each testcase contains two integers $$$n$$$ and $$$m$$$ ($$$1 \le n \le 3 \cdot 10^5$$$; $$$2 \le m \le 10^8$$$) — the number of robots and the coordinate of the right wall. The second line of each testcase contains $$$n$$$ integers $$$x_1, x_2, \dots, x_n$$$ ($$$0 < x_i < m$$$) — the starting coordinates of the robots. The third line of each testcase contains $$$n$$$ space-separated characters 'L' or 'R' — the starting directions of the robots ('L' stands for left and 'R' stands for right). All coordinates $$$x_i$$$ in the testcase are distinct. The sum of $$$n$$$ over all testcases doesn't exceed $$$3 \cdot 10^5$$$.
| 2,000
|
For each testcase print $$$n$$$ integers — for the $$$i$$$-th robot output the time it explodes at if it does and $$$-1$$$ otherwise.
|
standard output
| |
PASSED
|
97598d1a37801a2b0962af15ee6f6010
|
train_110.jsonl
|
1621152000
|
There are $$$n$$$ robots driving along an OX axis. There are also two walls: one is at coordinate $$$0$$$ and one is at coordinate $$$m$$$.The $$$i$$$-th robot starts at an integer coordinate $$$x_i~(0 < x_i < m)$$$ and moves either left (towards the $$$0$$$) or right with the speed of $$$1$$$ unit per second. No two robots start at the same coordinate.Whenever a robot reaches a wall, it turns around instantly and continues his ride in the opposite direction with the same speed.Whenever several robots meet at the same integer coordinate, they collide and explode into dust. Once a robot has exploded, it doesn't collide with any other robot. Note that if several robots meet at a non-integer coordinate, nothing happens.For each robot find out if it ever explodes and print the time of explosion if it happens and $$$-1$$$ otherwise.
|
256 megabytes
|
import java.io.*;
import java.util.*;
public class CCC {
public static void main(String[] args) throws IOException {
int T = readInt();
final Comparator<int[]> comparator = (a, b) -> a[POS] - b[POS];
while (T-- > 0) {
int n = readInt();
int m = readInt();
int[][] x = new int[n][3];
for (int i = 0; i < n; i++) {
x[i][POS] = readInt();
x[i][INDEX] = i;
}
for (int i = 0; i < n; i++) {
x[i][DIR] = readToken().charAt(0);
}
Arrays.sort(x, comparator);
ArrayList<int[]> evens = new ArrayList<>();
ArrayList<int[]> odds = new ArrayList<>();
for (int[] robot : x) {
(robot[POS] % 2 == 0 ? evens : odds).add(robot);
}
int[] answer = new int[n];
Arrays.fill(answer, -1);
process(m, evens, answer);
process(m, odds, answer);
for (int i = 0; i < n; i++) {
pw.print(answer[i] + " ");
}
pw.println();
}
pw.close();
}
static final int LEFT = 'L', RIGHT = 'R';
static final int POS = 0, DIR = 1, INDEX = 2;
private static void process(int m, ArrayList<int[]> evens, int[] answer) {
Deque<int[]> st = new ArrayDeque<>();
for (int[] robot : evens) {
if (st.isEmpty() || st.peekLast()[DIR] == LEFT || robot[DIR] == RIGHT) {
st.addLast(robot);
} else {
int[] rL = st.pollLast();
int time = (robot[POS] - rL[POS]) / 2;
answer[rL[INDEX]] = time;
answer[robot[INDEX]] = time;
}
}
int[] lastRight = null;
while (!st.isEmpty()) {
if (st.peekLast()[DIR] == LEFT) {
break;
} else {
int[] top = st.pollLast();
if (lastRight == null) {
lastRight = top;
} else {
int time = m - lastRight[POS] + (lastRight[POS] - top[POS]) / 2;
answer[lastRight[INDEX]] = time;
answer[top[INDEX]] = time;
lastRight = null;
}
}
}
int[] lastLeft = null;
while (!st.isEmpty()) {
int[] top = st.pollFirst();
if (lastLeft == null) {
lastLeft = top;
} else {
int time = lastLeft[POS] + (top[POS] - lastLeft[POS]) / 2;
answer[lastLeft[INDEX]] = time;
answer[top[INDEX]] = time;
lastLeft = null;
}
}
if (lastLeft != null && lastRight != null) {
int time = m - (lastRight[POS] - lastLeft[POS]) / 2;
answer[lastLeft[INDEX]] = time;
answer[lastRight[INDEX]] = time;
}
}
// @formatter:off
static final BufferedReader br=new BufferedReader(new InputStreamReader(System.in));static final PrintWriter pw=new PrintWriter(new BufferedWriter(new OutputStreamWriter(System.out)));static StringTokenizer st;static final String READ_ERROR="Error Reading.";static String readToken(){try{while(st==null||!st.hasMoreTokens())st=new StringTokenizer(br.readLine());return st.nextToken();}catch(IOException e){throw new RuntimeException(READ_ERROR);}}static int readInt(){return Integer.parseInt(readToken());}static int[]readIntArray(final int n){int[]a=new int[n];for(int i=0;i<n;i++)a[i]=readInt();return a;}static String[]readStringArray(final int n){String[]a=new String[n];for(int i=0;i<n;i++)a[i]=readToken();return a;}static long readLong(){return Long.parseLong(readToken());}static double readDouble(){return Double.parseDouble(readToken());}static char[]readLineAsCharArray(){try{return br.readLine().toCharArray();}catch(IOException e){throw new RuntimeException(READ_ERROR);}}static String readLine(){try{return br.readLine();}catch(IOException e){throw new RuntimeException(READ_ERROR);}}
}
|
Java
|
["5\n7 12\n1 2 3 4 9 10 11\nR R L L R R R\n2 10\n1 6\nR R\n2 10\n1 3\nL L\n1 10\n5\nR\n7 8\n6 1 7 2 3 5 4\nR L R L L L L"]
|
2 seconds
|
["1 1 1 1 2 -1 2 \n-1 -1 \n2 2 \n-1 \n-1 2 7 3 2 7 3"]
|
NoteHere is the picture for the seconds $$$0, 1, 2$$$ and $$$3$$$ of the first testcase: Notice that robots $$$2$$$ and $$$3$$$ don't collide because they meet at the same point $$$2.5$$$, which is not integer.After second $$$3$$$ robot $$$6$$$ just drive infinitely because there's no robot to collide with.
|
Java 11
|
standard input
|
[
"data structures",
"greedy",
"implementation",
"sortings"
] |
1a28b972e77966453cd8239cc5c8f59a
|
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$) — the number of testcases. Then the descriptions of $$$t$$$ testcases follow. The first line of each testcase contains two integers $$$n$$$ and $$$m$$$ ($$$1 \le n \le 3 \cdot 10^5$$$; $$$2 \le m \le 10^8$$$) — the number of robots and the coordinate of the right wall. The second line of each testcase contains $$$n$$$ integers $$$x_1, x_2, \dots, x_n$$$ ($$$0 < x_i < m$$$) — the starting coordinates of the robots. The third line of each testcase contains $$$n$$$ space-separated characters 'L' or 'R' — the starting directions of the robots ('L' stands for left and 'R' stands for right). All coordinates $$$x_i$$$ in the testcase are distinct. The sum of $$$n$$$ over all testcases doesn't exceed $$$3 \cdot 10^5$$$.
| 2,000
|
For each testcase print $$$n$$$ integers — for the $$$i$$$-th robot output the time it explodes at if it does and $$$-1$$$ otherwise.
|
standard output
| |
PASSED
|
56e2376f3b8390c71eade159ae2da4e7
|
train_110.jsonl
|
1621152000
|
There are $$$n$$$ robots driving along an OX axis. There are also two walls: one is at coordinate $$$0$$$ and one is at coordinate $$$m$$$.The $$$i$$$-th robot starts at an integer coordinate $$$x_i~(0 < x_i < m)$$$ and moves either left (towards the $$$0$$$) or right with the speed of $$$1$$$ unit per second. No two robots start at the same coordinate.Whenever a robot reaches a wall, it turns around instantly and continues his ride in the opposite direction with the same speed.Whenever several robots meet at the same integer coordinate, they collide and explode into dust. Once a robot has exploded, it doesn't collide with any other robot. Note that if several robots meet at a non-integer coordinate, nothing happens.For each robot find out if it ever explodes and print the time of explosion if it happens and $$$-1$$$ otherwise.
|
256 megabytes
|
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.nio.file.Paths;
import java.util.*;
public class Main extends PrintWriter {
static BufferedReader s = new BufferedReader(new InputStreamReader(System.in));Main () { super(System.out); }public static void main(String[] args) throws IOException{ Main d1=new Main ();d1.main();d1.flush(); }
void main() throws IOException {
StringBuilder sb = new StringBuilder();
StringBuilder sb1 = new StringBuilder();
int t = 1;
t = i(s()[0]);
while (t-- > 0) {
String[] s1 = s();
int n = i (s1[0]); int m = i(s1[1]);
int[] a=new int[n]; arri(a, n); char[] c = new char[n];
String[] s3 = s();
Pair[] p = new Pair[n];
for(int i=0;i<n;i++){
c[i] = s3[i].toCharArray()[0];
p[i] = new Pair(a[i], c[i], i);
}Arrays.sort(p, new Comparator<Pair>() {
@Override
public int compare(Pair o1, Pair o2) {
return o1.ind - o2.ind;
}
});
Stack<Integer> evenl = new Stack<>();
Deque<Integer> evenr = new LinkedList<>();
Stack<Integer> oddl = new Stack<>();
Deque<Integer> oddr = new LinkedList<>();
long[] ans = new long[n];
Arrays.fill(ans, -1);
for(int i = n - 1; i >= 0; i--){
if(p[i].ind % 2 == 0){
if(p[i].c == 'R'){
if(!evenl.isEmpty()){
int ind = evenl.pop();
ans[p[i].iind] = (p[ind].ind - p[i].ind) / 2;
ans[p[ind].iind] = ans[p[i].iind];
}else if(evenr.isEmpty() == false){
int ind = evenr.pollLast();
ans[p[i].iind] = (p[ind].ind - p[i].ind) / 2 + m - p[ind].ind;
ans[p[ind].iind] = ans[p[i].iind];
}else evenr.addFirst(i);
}else{
evenl.add(i);
}
}else{
if(p[i].c == 'R'){
if(!oddl.isEmpty()){
int ind = oddl.pop();
ans[p[i].iind] = (p[ind].ind - p[i].ind) / 2;
ans[p[ind].iind] = ans[p[i].iind];
}else if(oddr.isEmpty() == false){
int ind = oddr.pollLast();
ans[p[i].iind] = (p[ind].ind - p[i].ind) / 2 + m - p[ind].ind;
ans[p[ind].iind] = ans[p[i].iind];
}else oddr.addFirst(i);
}else{
oddl.add(i);
}
}
}
while(!evenl.isEmpty()){
int ind1 = evenl.pop();
if(evenl.isEmpty() == false){
int ind2 = evenl.pop();
ans[p[ind1].iind] = (p[ind2].ind - p[ind1].ind) / 2 + p[ind1].ind;
ans[p[ind2].iind] = ans[p[ind1].iind];
}else {evenl.push(ind1);break;}
}
while(!oddl.isEmpty()){
int ind1 = oddl.pop();
if(oddl.isEmpty() == false){
int ind2 = oddl.pop();
ans[p[ind1].iind] = (p[ind2].ind - p[ind1].ind) / 2 + p[ind1].ind;
ans[p[ind2].iind] = ans[p[ind1].iind];
}else {oddl.push(ind1);break;}
}
if(oddl.isEmpty() == false && oddr.isEmpty() == false){
int ind1 = oddl.pop();
int ind2 = oddr.pollLast();
ans[p[ind1].iind] = (p[ind2].ind - p[ind1].ind) / 2 + p[ind1].ind + m - p[ind2].ind;
ans[p[ind2].iind] = ans[p[ind1].iind];
}if(evenl.isEmpty() == false && evenr.isEmpty() == false){
int ind1 = evenl.pop();
int ind2 = evenr.pollLast();
ans[p[ind1].iind] = (p[ind2].ind - p[ind1].ind) / 2 + p[ind1].ind + m - p[ind2].ind;
ans[p[ind2].iind] = ans[p[ind1].iind];
}
for(int i=0;i<n;i++){
sb.append(ans[i] + " ");
}sb.append("\n");
}
System.out.println(sb);
}
static int maxdis;
public static void dfs(int i,ArrayList<Integer>[] adj,HashMap<Integer, Integer> vis, int d, HashMap<Integer, Integer> h, int[] dis){
vis.put(i, 0);
dis[i] = d;
if(h.containsKey(i)) {maxdis = Math.max(maxdis, d);}
if(adj[i]==null) return;
for(Integer j:adj[i]){
if(!vis.containsKey(j)){
dfs(j,adj,vis, d + 1, h, dis);
}
}
}
static String[] s() throws IOException { return s.readLine().trim().split("\\s+"); }
static int i(String ss) {return Integer.parseInt(ss); }
static long l(String ss) {return Long.parseLong(ss); }
public void arr(long[] a,int n) throws IOException {String[] s2=s();for(int i=0;i<n;i++){ a[i]=l(s2[i]); }}
public void arri(int[] a,int n) throws IOException {String[] s2=s();for(int i=0;i<n;i++){ a[i]=i(s2[i]); }}
}class Pair{
int ind;char c;int iind;
public Pair(int i, char cc, int ii){
ind = i; c = cc;iind = ii;
}
}
|
Java
|
["5\n7 12\n1 2 3 4 9 10 11\nR R L L R R R\n2 10\n1 6\nR R\n2 10\n1 3\nL L\n1 10\n5\nR\n7 8\n6 1 7 2 3 5 4\nR L R L L L L"]
|
2 seconds
|
["1 1 1 1 2 -1 2 \n-1 -1 \n2 2 \n-1 \n-1 2 7 3 2 7 3"]
|
NoteHere is the picture for the seconds $$$0, 1, 2$$$ and $$$3$$$ of the first testcase: Notice that robots $$$2$$$ and $$$3$$$ don't collide because they meet at the same point $$$2.5$$$, which is not integer.After second $$$3$$$ robot $$$6$$$ just drive infinitely because there's no robot to collide with.
|
Java 11
|
standard input
|
[
"data structures",
"greedy",
"implementation",
"sortings"
] |
1a28b972e77966453cd8239cc5c8f59a
|
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$) — the number of testcases. Then the descriptions of $$$t$$$ testcases follow. The first line of each testcase contains two integers $$$n$$$ and $$$m$$$ ($$$1 \le n \le 3 \cdot 10^5$$$; $$$2 \le m \le 10^8$$$) — the number of robots and the coordinate of the right wall. The second line of each testcase contains $$$n$$$ integers $$$x_1, x_2, \dots, x_n$$$ ($$$0 < x_i < m$$$) — the starting coordinates of the robots. The third line of each testcase contains $$$n$$$ space-separated characters 'L' or 'R' — the starting directions of the robots ('L' stands for left and 'R' stands for right). All coordinates $$$x_i$$$ in the testcase are distinct. The sum of $$$n$$$ over all testcases doesn't exceed $$$3 \cdot 10^5$$$.
| 2,000
|
For each testcase print $$$n$$$ integers — for the $$$i$$$-th robot output the time it explodes at if it does and $$$-1$$$ otherwise.
|
standard output
| |
PASSED
|
2ae53f5fd9b8cd22ead03f161c6f1bdc
|
train_110.jsonl
|
1621152000
|
There are $$$n$$$ robots driving along an OX axis. There are also two walls: one is at coordinate $$$0$$$ and one is at coordinate $$$m$$$.The $$$i$$$-th robot starts at an integer coordinate $$$x_i~(0 < x_i < m)$$$ and moves either left (towards the $$$0$$$) or right with the speed of $$$1$$$ unit per second. No two robots start at the same coordinate.Whenever a robot reaches a wall, it turns around instantly and continues his ride in the opposite direction with the same speed.Whenever several robots meet at the same integer coordinate, they collide and explode into dust. Once a robot has exploded, it doesn't collide with any other robot. Note that if several robots meet at a non-integer coordinate, nothing happens.For each robot find out if it ever explodes and print the time of explosion if it happens and $$$-1$$$ otherwise.
|
256 megabytes
|
import java.io.*;
import java.util.*;
public class C {
public static BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
public static PrintWriter out = new PrintWriter(new BufferedOutputStream(System.out));
public static void main(String[] args) throws IOException {
readInput();
out.close();
}
static class Info implements Comparable<Info>{
int ind;
int x;
char c;
public Info(int a, int b, char d) {
ind=a;
x=b;
c=d;
}
public int compareTo(Info o) {return x - o.x;}
}
public static void readInput() throws IOException {
// br = new BufferedReader(new FileReader(".in"));
// out = new PrintWriter(new FileWriter(".out"));
int t= Integer.parseInt(br.readLine());
while(t-->0) {
//System.out.println("Test case shitty ");
StringTokenizer st = new StringTokenizer(br.readLine());
int n =Integer.parseInt(st.nextToken());
int m = Integer.parseInt(st.nextToken());
char[] c = new char[n];
int[] a= new int[n];
st = new StringTokenizer(br.readLine());
for (int i = 0; i < n; i++) {
a[i] = Integer.parseInt(st.nextToken());
}
st = new StringTokenizer(br.readLine());
for (int i =0; i < n; i++) {
c[i] = st.nextToken().charAt(0);
}
Info[] info = new Info[n];
for (int i = 0; i < n; i++) info[i] = new Info(i,a[i],c[i]);
Arrays.sort(info);
for (int i = 0; i < n; i++) {
a[i] = info[i].x;
c[i] = info[i].c;
}
int[] ans = new int[n];
Arrays.fill(ans, -1);
Deque<Integer> collideRL = new ArrayDeque<Integer>();
Deque<Integer> collideLL = new ArrayDeque<Integer>();
for (int mod = 0; mod < 2; mod++) {
collideRL.clear();
collideLL.clear();
for (int i = 0; i < n; i++) {
if (a[i] % 2 == mod) {
if (c[i] == 'R') collideRL.addLast(i);
else if (c[i] == 'L' && collideRL.size() > 0) {
int x = collideRL.pollLast();
int mid = Math.abs(a[i] - a[x])/2;
ans[info[x].ind] = ans[info[i].ind] = mid;
}
else collideLL.addLast(i);
}
}
// Collide RL becomes collideRR
while (collideLL.size() >= 2) {
int a2 = collideLL.pollFirst();
int a1 = collideLL.pollFirst();
int anss = Math.min(a[a1],a[a2])+Math.abs(a[a2]-a[a1])/2;
ans[info[a1].ind]=ans[info[a2].ind]=anss;
}
while (collideRL.size() >= 2) {
int a2 = collideRL.pollLast();
int a1 = collideRL.pollLast();
int anss = m - Math.max(a[a1],a[a2])+Math.abs(a[a2]-a[a1])/2;
ans[info[a1].ind]=ans[info[a2].ind]= anss;
}
if (collideLL.size() == 1 && collideRL.size() == 1) {
int a1 = collideLL.pollFirst();
int a2 = collideRL.pollFirst();
//System.out.println(info[a1].ind + " " + info[a2].ind);
int flip = -Math.min(a[a1],a[a2]);
int flip2 = m+(m-Math.max(a[a2],a[a1]));
int avg = (flip2-flip)/2;
ans[info[a1].ind]=ans[info[a2].ind]=avg;
}
}
for (int x: ans) out.print(x + " ");
out.println();
}
}
}
|
Java
|
["5\n7 12\n1 2 3 4 9 10 11\nR R L L R R R\n2 10\n1 6\nR R\n2 10\n1 3\nL L\n1 10\n5\nR\n7 8\n6 1 7 2 3 5 4\nR L R L L L L"]
|
2 seconds
|
["1 1 1 1 2 -1 2 \n-1 -1 \n2 2 \n-1 \n-1 2 7 3 2 7 3"]
|
NoteHere is the picture for the seconds $$$0, 1, 2$$$ and $$$3$$$ of the first testcase: Notice that robots $$$2$$$ and $$$3$$$ don't collide because they meet at the same point $$$2.5$$$, which is not integer.After second $$$3$$$ robot $$$6$$$ just drive infinitely because there's no robot to collide with.
|
Java 11
|
standard input
|
[
"data structures",
"greedy",
"implementation",
"sortings"
] |
1a28b972e77966453cd8239cc5c8f59a
|
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$) — the number of testcases. Then the descriptions of $$$t$$$ testcases follow. The first line of each testcase contains two integers $$$n$$$ and $$$m$$$ ($$$1 \le n \le 3 \cdot 10^5$$$; $$$2 \le m \le 10^8$$$) — the number of robots and the coordinate of the right wall. The second line of each testcase contains $$$n$$$ integers $$$x_1, x_2, \dots, x_n$$$ ($$$0 < x_i < m$$$) — the starting coordinates of the robots. The third line of each testcase contains $$$n$$$ space-separated characters 'L' or 'R' — the starting directions of the robots ('L' stands for left and 'R' stands for right). All coordinates $$$x_i$$$ in the testcase are distinct. The sum of $$$n$$$ over all testcases doesn't exceed $$$3 \cdot 10^5$$$.
| 2,000
|
For each testcase print $$$n$$$ integers — for the $$$i$$$-th robot output the time it explodes at if it does and $$$-1$$$ otherwise.
|
standard output
| |
PASSED
|
850d5f8b5d7358a619cdf15756c16280
|
train_110.jsonl
|
1621152000
|
There are $$$n$$$ robots driving along an OX axis. There are also two walls: one is at coordinate $$$0$$$ and one is at coordinate $$$m$$$.The $$$i$$$-th robot starts at an integer coordinate $$$x_i~(0 < x_i < m)$$$ and moves either left (towards the $$$0$$$) or right with the speed of $$$1$$$ unit per second. No two robots start at the same coordinate.Whenever a robot reaches a wall, it turns around instantly and continues his ride in the opposite direction with the same speed.Whenever several robots meet at the same integer coordinate, they collide and explode into dust. Once a robot has exploded, it doesn't collide with any other robot. Note that if several robots meet at a non-integer coordinate, nothing happens.For each robot find out if it ever explodes and print the time of explosion if it happens and $$$-1$$$ otherwise.
|
256 megabytes
|
import java.util.*;
import java.io.*;
public class C
{
static FastIO f;
public static void main(String args[]) throws IOException
{
f = new FastIO();
int t, n, m, x[], ans[], i;
char d[];
Stack<Robot> o, e;
Robot r[], p, c;
t = f.ni();
while(t-->0)
{
n = f.ni();
m = f.ni();
o = new Stack<>();
e = new Stack<>();
x = f.nia(n);
d = f.nca(n);
r = new Robot[n];
ans = new int[n];
Arrays.fill(ans, -1);
for(i = 0; i < n; i++)
r[i] = new Robot(d[i], x[i], i);
Arrays.sort(r, new Comparator<Robot>(){
@Override
public int compare(Robot a, Robot b)
{
return a.x - b.x;
}
});
f.err(Arrays.toString(r) + "\n");
for(i = 0; i < n; i++)
{
if(r[i].x%2 == 1)
{
p = o.isEmpty() ? null : o.peek();
c = r[i];
if(p == null || p.d == 'L' || c.d == 'R')
o.push(c);
else
{
o.pop();
ans[p.i] = ans[c.i] = calculate(p, c);
}
}
else
{
p = e.isEmpty() ? null : e.peek();
c = r[i];
if(p == null || p.d == 'L' || c.d == 'R')
e.push(c);
else
{
e.pop();
ans[p.i] = ans[c.i] = calculate(p, c);
}
}
}
f.err(o + "\n" + e + "\n\n");
finish(o, ans, m);
finish(e, ans, m);
for(i = 0; i < n; i++)
f.out(ans[i] + " ");
f.out("\n");
}
f.flush();
}
public static void finish(Stack<Robot> s, int[] ans, int m)
{
Robot a, b, d;
while(s.size() > 1)
{
a = s.pop();
b = s.pop();
if(a.d == b.d)
{
if(a.d == 'R')
{
d = new Robot('L', m + (m - a.x), a.i);
ans[a.i] = ans[b.i] = calculate(b, d);
}
else
{
if(s.size()%2 == 0)
{
d = new Robot('R', 0 - b.x, b.i);
ans[a.i] = ans[b.i] = calculate(d, a);
}
else
{
s.push(b);
}
}
}
else
{
if(s.size()%2 == 0)
{
a = new Robot('L', m + (m - a.x), a.i);
b = new Robot('R', 0 - b.x, b.i);
ans[a.i] = ans[b.i] = calculate(b, a);
}
else
{
s.push(b);
}
}
}
}
public static int calculate(Robot a, Robot b)
{
return (b.x - a.x)/2;
}
static class Robot
{
char d;
int x, i;
Robot(char a, int b, int c)
{
d = a;
x = b;
i = c;
}
@Override
public int hashCode()
{
return x;
}
@Override
public boolean equals(Object obj)
{
Robot that = (Robot)obj;
return x == that.x;
}
@Override
public String toString()
{
return "[" + x + ", " + d + "]";
}
}
public static class FastIO
{
BufferedReader br;
BufferedWriter bw, be;
StringTokenizer st;
public FastIO()
{
br = new BufferedReader(new InputStreamReader(System.in));
bw = new BufferedWriter(new OutputStreamWriter(System.out));
be = new BufferedWriter(new OutputStreamWriter(System.err));
st = new StringTokenizer("");
}
private void read() throws IOException
{
st = new StringTokenizer(br.readLine());
}
public String ns() throws IOException
{
while(!st.hasMoreTokens())
read();
return st.nextToken();
}
public int ni() throws IOException
{
return Integer.parseInt(ns());
}
public long nl() throws IOException
{
return Long.parseLong(ns());
}
public float nf() throws IOException
{
return Float.parseFloat(ns());
}
public double nd() throws IOException
{
return Double.parseDouble(ns());
}
public char nc() throws IOException
{
return ns().charAt(0);
}
public int[] nia(int n) throws IOException
{
int[] a = new int[n];
for(int i = 0; i < n; i++)
a[i] = ni();
return a;
}
public long[] nla(int n) throws IOException
{
long[] a = new long[n];
for(int i = 0; i < n; i++)
a[i] = nl();
return a;
}
public char[] nca(int n) throws IOException
{
char[] a = new char[n];
for(int i = 0; i < n; i++)
a[i] = nc();
return a;
}
public void out(String s) throws IOException
{
bw.write(s);
}
public void flush() throws IOException
{
bw.flush();
be.flush();
}
public void err(String s) throws IOException
{
be.write(s);
}
}
}
|
Java
|
["5\n7 12\n1 2 3 4 9 10 11\nR R L L R R R\n2 10\n1 6\nR R\n2 10\n1 3\nL L\n1 10\n5\nR\n7 8\n6 1 7 2 3 5 4\nR L R L L L L"]
|
2 seconds
|
["1 1 1 1 2 -1 2 \n-1 -1 \n2 2 \n-1 \n-1 2 7 3 2 7 3"]
|
NoteHere is the picture for the seconds $$$0, 1, 2$$$ and $$$3$$$ of the first testcase: Notice that robots $$$2$$$ and $$$3$$$ don't collide because they meet at the same point $$$2.5$$$, which is not integer.After second $$$3$$$ robot $$$6$$$ just drive infinitely because there's no robot to collide with.
|
Java 11
|
standard input
|
[
"data structures",
"greedy",
"implementation",
"sortings"
] |
1a28b972e77966453cd8239cc5c8f59a
|
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$) — the number of testcases. Then the descriptions of $$$t$$$ testcases follow. The first line of each testcase contains two integers $$$n$$$ and $$$m$$$ ($$$1 \le n \le 3 \cdot 10^5$$$; $$$2 \le m \le 10^8$$$) — the number of robots and the coordinate of the right wall. The second line of each testcase contains $$$n$$$ integers $$$x_1, x_2, \dots, x_n$$$ ($$$0 < x_i < m$$$) — the starting coordinates of the robots. The third line of each testcase contains $$$n$$$ space-separated characters 'L' or 'R' — the starting directions of the robots ('L' stands for left and 'R' stands for right). All coordinates $$$x_i$$$ in the testcase are distinct. The sum of $$$n$$$ over all testcases doesn't exceed $$$3 \cdot 10^5$$$.
| 2,000
|
For each testcase print $$$n$$$ integers — for the $$$i$$$-th robot output the time it explodes at if it does and $$$-1$$$ otherwise.
|
standard output
| |
PASSED
|
f4fb345c5fec085b6ce0dcd0d137e576
|
train_110.jsonl
|
1621152000
|
There are $$$n$$$ robots driving along an OX axis. There are also two walls: one is at coordinate $$$0$$$ and one is at coordinate $$$m$$$.The $$$i$$$-th robot starts at an integer coordinate $$$x_i~(0 < x_i < m)$$$ and moves either left (towards the $$$0$$$) or right with the speed of $$$1$$$ unit per second. No two robots start at the same coordinate.Whenever a robot reaches a wall, it turns around instantly and continues his ride in the opposite direction with the same speed.Whenever several robots meet at the same integer coordinate, they collide and explode into dust. Once a robot has exploded, it doesn't collide with any other robot. Note that if several robots meet at a non-integer coordinate, nothing happens.For each robot find out if it ever explodes and print the time of explosion if it happens and $$$-1$$$ otherwise.
|
256 megabytes
|
import java.io.*;
import java.util.*;
public class gotoJapan {
public static void main(String[] args) throws java.lang.Exception {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
InputReader in = new InputReader(inputStream);
PrintWriter out = new PrintWriter(outputStream);
Solution solver = new Solution();
boolean isTest = true;
int tC = isTest ? Integer.parseInt(in.next()) : 1;
for (int i = 1; i <= tC; i++)
solver.solve(in, out, i);
out.close();
}
/* ............................................................. */
static class Solution {
InputReader in;
PrintWriter out;
public void solve(InputReader in, PrintWriter out, int test) {
this.in = in;
this.out = out;
int n=ni();
int m=ni();
ArrayList<Pair> ev=new ArrayList<>();
ArrayList<Pair> od=new ArrayList<>();
int a[]=new int[n];
char b[]=new char[n];
for(int i=0;i<n;i++) {
a[i]=ni();
}
for(int i=0;i<n;i++) {
b[i]=n().charAt(0);
}
for(int i=0;i<n;i++) {
if(a[i]%2==0) {
ev.add(new Pair(a[i], b[i],i));
}
else {
od.add(new Pair(a[i], b[i],i));
}
}
Collections.sort(ev,new Comparator<Pair>() {
public int compare(Pair p1,Pair p2) {
return p1.x-p2.x;
}
});
Collections.sort(od,new Comparator<Pair>() {
public int compare(Pair p1,Pair p2) {
return p1.x-p2.x;
}
});
int ans[]=new int[n];
Arrays.fill(ans, -1);
Stack<Pair> st=new Stack<>();
for(Pair i:ev) {
if(i.y=='R') {
st.add(i);
}
else {
if(st.empty())st.add(new Pair(i.x*-1, i.y, i.z));
else {
Pair p=st.pop();
ans[p.z]=(i.x-p.x)/2;
ans[i.z]=(i.x-p.x)/2;
}
}
}
while(st.size()>=2) {
Pair i=st.pop();
Pair p=st.pop();
ans[i.z]=(m*2-i.x-p.x)/2;
ans[p.z]=(m*2-i.x-p.x)/2;
}
st.clear();
for(Pair i:od) {
if(i.y=='R') {
st.add(i);
}
else {
if(st.empty())st.add(new Pair(i.x*-1, i.y, i.z));
else {
Pair p=st.pop();
ans[p.z]=(i.x-p.x)/2;
ans[i.z]=(i.x-p.x)/2;
}
}
}
while(st.size()>=2) {
Pair i=st.pop();
Pair p=st.pop();
ans[i.z]=(m*2-i.x-p.x)/2;
ans[p.z]=(m*2-i.x-p.x)/2;
}
for(int i:ans) {
out.print(i+" ");
}
out.println();
}
class Pair {
int x;
char y;
int z;
Pair(int x, char y,int z) {
this.x = x;
this.y = y;
this.z=z;
}
}
String n() {
return in.next();
}
int ni() {
return in.nextInt();
}
long nl() {
return in.nextLong();
}
long[] nal(int n) {
long a[] = new long[n];
for (int i = 0; i < n; i++)
a[i] = nl();
return a;
}
void pn(long zx) {
out.println(zx);
}
void pn(String sz) {
out.println(sz);
}
void pn(double dx) {
out.println(dx);
}
void pn(long ar[]) {
for (int i = 0; i < ar.length; i++)
out.print(ar[i] + " ");
out.println();
}
void pn(String ar[]) {
for (int i = 0; i < ar.length; i++)
out.println(ar[i]);
}
}
/* ......................Just Input............................. */
static class InputReader {
public BufferedReader reader;
public StringTokenizer tokenizer;
public InputReader(InputStream stream) {
reader = new BufferedReader(new InputStreamReader(stream), 32768);
tokenizer = null;
}
public String next() {
while (tokenizer == null || !tokenizer.hasMoreTokens()) {
try {
tokenizer = new StringTokenizer(reader.readLine());
} catch (IOException e) {
throw new RuntimeException(e);
}
}
return tokenizer.nextToken();
}
public int nextInt() {
return Integer.parseInt(next());
}
public long nextLong() {
return Long.parseLong(next());
}
}
/* ......................Just Input............................. */
}
|
Java
|
["5\n7 12\n1 2 3 4 9 10 11\nR R L L R R R\n2 10\n1 6\nR R\n2 10\n1 3\nL L\n1 10\n5\nR\n7 8\n6 1 7 2 3 5 4\nR L R L L L L"]
|
2 seconds
|
["1 1 1 1 2 -1 2 \n-1 -1 \n2 2 \n-1 \n-1 2 7 3 2 7 3"]
|
NoteHere is the picture for the seconds $$$0, 1, 2$$$ and $$$3$$$ of the first testcase: Notice that robots $$$2$$$ and $$$3$$$ don't collide because they meet at the same point $$$2.5$$$, which is not integer.After second $$$3$$$ robot $$$6$$$ just drive infinitely because there's no robot to collide with.
|
Java 11
|
standard input
|
[
"data structures",
"greedy",
"implementation",
"sortings"
] |
1a28b972e77966453cd8239cc5c8f59a
|
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$) — the number of testcases. Then the descriptions of $$$t$$$ testcases follow. The first line of each testcase contains two integers $$$n$$$ and $$$m$$$ ($$$1 \le n \le 3 \cdot 10^5$$$; $$$2 \le m \le 10^8$$$) — the number of robots and the coordinate of the right wall. The second line of each testcase contains $$$n$$$ integers $$$x_1, x_2, \dots, x_n$$$ ($$$0 < x_i < m$$$) — the starting coordinates of the robots. The third line of each testcase contains $$$n$$$ space-separated characters 'L' or 'R' — the starting directions of the robots ('L' stands for left and 'R' stands for right). All coordinates $$$x_i$$$ in the testcase are distinct. The sum of $$$n$$$ over all testcases doesn't exceed $$$3 \cdot 10^5$$$.
| 2,000
|
For each testcase print $$$n$$$ integers — for the $$$i$$$-th robot output the time it explodes at if it does and $$$-1$$$ otherwise.
|
standard output
| |
PASSED
|
4bca579e64acbbf7bc6cc54f65238b81
|
train_110.jsonl
|
1621152000
|
There are $$$n$$$ robots driving along an OX axis. There are also two walls: one is at coordinate $$$0$$$ and one is at coordinate $$$m$$$.The $$$i$$$-th robot starts at an integer coordinate $$$x_i~(0 < x_i < m)$$$ and moves either left (towards the $$$0$$$) or right with the speed of $$$1$$$ unit per second. No two robots start at the same coordinate.Whenever a robot reaches a wall, it turns around instantly and continues his ride in the opposite direction with the same speed.Whenever several robots meet at the same integer coordinate, they collide and explode into dust. Once a robot has exploded, it doesn't collide with any other robot. Note that if several robots meet at a non-integer coordinate, nothing happens.For each robot find out if it ever explodes and print the time of explosion if it happens and $$$-1$$$ otherwise.
|
256 megabytes
|
import java.io.DataInputStream;
import java.io.IOException;
import java.io.OutputStreamWriter;
import java.io.PrintWriter;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Comparator;
import java.util.PriorityQueue;
public class Main {
private static void run() throws IOException {
int n = in.nextInt();
int m = in.nextInt();
Node[] nodes = new Node[n];
int count_even = 0;
for (int i = 0; i < n; i++) {
nodes[i] = new Node(i);
nodes[i].pos = in.nextInt();
if ((nodes[i].pos & 1) == 0) {
count_even++;
}
}
for (int i = 0; i < n; i++) {
nodes[i].right = in.nc() == 'R';
}
Arrays.sort(nodes, Comparator.comparingInt((Node o) -> o.pos % 2).thenComparingInt(o -> o.pos));
solve(nodes, 0, count_even - 1, m);
solve(nodes, count_even, n - 1, m);
Arrays.sort(nodes, Comparator.comparingInt(o -> o.index));
for (int i = 0; i < n; i++) {
out.printf("%d ", nodes[i].ans);
}
out.println();
}
private static void solve(Node[] nodes, int left, int right, int m) {
if (left > right) return;
PriorityQueue<Node> queue = new PriorityQueue<>(Comparator.comparingInt(o -> o.pos_if_force_left));
for (int now = right; now >= left; now--) {
if (!nodes[now].right) {
nodes[now].pos_if_force_left = nodes[now].pos;
queue.add(nodes[now]);
} else {
Node right_node = queue.poll();
if (right_node == null) {
nodes[now].pos_if_force_left = m + m - nodes[now].pos;
queue.add(nodes[now]);
} else {
right_node.ans = nodes[now].ans = (right_node.pos_if_force_left - nodes[now].pos) / 2;
}
}
}
while (true) {
Node left_node = queue.poll();
Node right_node = queue.poll();
if (left_node == null || right_node == null) {
break;
}
left_node.ans = right_node.ans = (right_node.pos_if_force_left + left_node.pos_if_force_left) / 2;
}
}
static class Node {
int index;
int pos, pos_if_force_left;
boolean right;
int ans = -1;
public Node(int index) {
this.index = index;
}
}
public static void main(String[] args) throws IOException {
in = new Reader();
out = new PrintWriter(new OutputStreamWriter(System.out));
int t = in.nextInt();
for (int i = 0; i < t; i++) {
run();
}
out.flush();
in.close();
out.close();
}
private static int gcd(int a, int b) {
if (a == 0 || b == 0)
return 0;
while (b != 0) {
int tmp;
tmp = a % b;
a = b;
b = tmp;
}
return a;
}
static final long mod = 1000000007;
static long pow_mod(long a, long b) {
long result = 1;
while (b != 0) {
if ((b & 1) != 0) result = (result * a) % mod;
a = (a * a) % mod;
b >>= 1;
}
return result;
}
private static long multiplied_mod(long... longs) {
long ans = 1;
for (long now : longs) {
ans = (ans * now) % mod;
}
return ans;
}
@SuppressWarnings("FieldCanBeLocal")
private static Reader in;
private static PrintWriter out;
private static int[] read_int_array(int len) throws IOException {
int[] a = new int[len];
for (int i = 0; i < len; i++) {
a[i] = in.nextInt();
}
return a;
}
private static long[] read_long_array(int len) throws IOException {
long[] a = new long[len];
for (int i = 0; i < len; i++) {
a[i] = in.nextLong();
}
return a;
}
private static void print_array(int[] array) {
for (int now : array) {
out.print(now);
out.print(' ');
}
out.println();
}
private static void print_array(long[] array) {
for (long now : array) {
out.print(now);
out.print(' ');
}
out.println();
}
static class Reader {
private static final int BUFFER_SIZE = 1 << 16;
private final DataInputStream din;
private final byte[] buffer;
private int bufferPointer, bytesRead;
Reader() {
din = new DataInputStream(System.in);
buffer = new byte[BUFFER_SIZE];
bufferPointer = bytesRead = 0;
}
public String readLine() throws IOException {
final byte[] buf = new byte[1024]; // line length
int cnt = 0, c;
while ((c = read()) != -1) {
if (c == '\n') {
break;
}
buf[cnt++] = (byte) c;
}
return new String(buf, 0, cnt);
}
public int nextSign() throws IOException {
byte c = read();
while ('+' != c && '-' != c) {
c = read();
}
return '+' == c ? 0 : 1;
}
private static boolean isSpaceChar(int c) {
return !(c >= 33 && c <= 126);
}
public int skip() throws IOException {
int b;
// noinspection ALL
while ((b = read()) != -1 && isSpaceChar(b)) {
;
}
return b;
}
public char nc() throws IOException {
return (char) skip();
}
public String next() throws IOException {
int b = skip();
final StringBuilder sb = new StringBuilder();
while (!isSpaceChar(b)) { // when nextLine, (isSpaceChar(b) && b != ' ')
sb.appendCodePoint(b);
b = read();
}
return sb.toString();
}
public int nextInt() throws IOException {
int ret = 0;
byte c = read();
while (c <= ' ') {
c = read();
}
final boolean neg = c == '-';
if (neg) {
c = read();
}
do {
ret = ret * 10 + c - '0';
} while ((c = read()) >= '0' && c <= '9');
if (neg) {
return -ret;
}
return ret;
}
public long nextLong() throws IOException {
long ret = 0;
byte c = read();
while (c <= ' ') {
c = read();
}
final boolean neg = c == '-';
if (neg) {
c = read();
}
do {
ret = ret * 10 + c - '0';
}
while ((c = read()) >= '0' && c <= '9');
if (neg) {
return -ret;
}
return ret;
}
public double nextDouble() throws IOException {
double ret = 0, div = 1;
byte c = read();
while (c <= ' ') {
c = read();
}
final boolean neg = c == '-';
if (neg) {
c = read();
}
do {
ret = ret * 10 + c - '0';
}
while ((c = read()) >= '0' && c <= '9');
if (c == '.') {
while ((c = read()) >= '0' && c <= '9') {
ret += (c - '0') / (div *= 10);
}
}
if (neg) {
return -ret;
}
return ret;
}
private void fillBuffer() throws IOException {
bytesRead = din.read(buffer, bufferPointer = 0, BUFFER_SIZE);
if (bytesRead == -1) {
buffer[0] = -1;
}
}
private byte read() throws IOException {
if (bufferPointer == bytesRead) {
fillBuffer();
}
return buffer[bufferPointer++];
}
public void close() throws IOException {
din.close();
}
}
}
|
Java
|
["5\n7 12\n1 2 3 4 9 10 11\nR R L L R R R\n2 10\n1 6\nR R\n2 10\n1 3\nL L\n1 10\n5\nR\n7 8\n6 1 7 2 3 5 4\nR L R L L L L"]
|
2 seconds
|
["1 1 1 1 2 -1 2 \n-1 -1 \n2 2 \n-1 \n-1 2 7 3 2 7 3"]
|
NoteHere is the picture for the seconds $$$0, 1, 2$$$ and $$$3$$$ of the first testcase: Notice that robots $$$2$$$ and $$$3$$$ don't collide because they meet at the same point $$$2.5$$$, which is not integer.After second $$$3$$$ robot $$$6$$$ just drive infinitely because there's no robot to collide with.
|
Java 11
|
standard input
|
[
"data structures",
"greedy",
"implementation",
"sortings"
] |
1a28b972e77966453cd8239cc5c8f59a
|
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$) — the number of testcases. Then the descriptions of $$$t$$$ testcases follow. The first line of each testcase contains two integers $$$n$$$ and $$$m$$$ ($$$1 \le n \le 3 \cdot 10^5$$$; $$$2 \le m \le 10^8$$$) — the number of robots and the coordinate of the right wall. The second line of each testcase contains $$$n$$$ integers $$$x_1, x_2, \dots, x_n$$$ ($$$0 < x_i < m$$$) — the starting coordinates of the robots. The third line of each testcase contains $$$n$$$ space-separated characters 'L' or 'R' — the starting directions of the robots ('L' stands for left and 'R' stands for right). All coordinates $$$x_i$$$ in the testcase are distinct. The sum of $$$n$$$ over all testcases doesn't exceed $$$3 \cdot 10^5$$$.
| 2,000
|
For each testcase print $$$n$$$ integers — for the $$$i$$$-th robot output the time it explodes at if it does and $$$-1$$$ otherwise.
|
standard output
| |
PASSED
|
045d1a78b3a7c9f57ffee5d761f58796
|
train_110.jsonl
|
1621152000
|
There are $$$n$$$ robots driving along an OX axis. There are also two walls: one is at coordinate $$$0$$$ and one is at coordinate $$$m$$$.The $$$i$$$-th robot starts at an integer coordinate $$$x_i~(0 < x_i < m)$$$ and moves either left (towards the $$$0$$$) or right with the speed of $$$1$$$ unit per second. No two robots start at the same coordinate.Whenever a robot reaches a wall, it turns around instantly and continues his ride in the opposite direction with the same speed.Whenever several robots meet at the same integer coordinate, they collide and explode into dust. Once a robot has exploded, it doesn't collide with any other robot. Note that if several robots meet at a non-integer coordinate, nothing happens.For each robot find out if it ever explodes and print the time of explosion if it happens and $$$-1$$$ otherwise.
|
256 megabytes
|
//package edu109div2;
import java.util.*;
import java.util.stream.Collectors;
public class C_Robot_Collisions_2 {
static int m;
public static class Robot implements Comparable<Robot> {
int index;
int pos;
char dir;
int explosion = -1;
public Robot(int index, int pos, char dir) {
this.index = index;
this.pos = pos;
this.dir = dir;
}
@Override
public int compareTo(Robot o) {
// "exclude" from binary search
return this.pos - o.pos;
}
public void collideWith(Robot other) {
if (this.dir == 'R' && other.dir == 'L') {
other.collideWith(this);
return;
}
int dis;
if (this.dir == 'L' && other.dir == 'R' && this.pos < other.pos) {
dis = this.pos + (m - other.pos) + m;
} else if (this.dir == 'L' && other.dir == 'R') {
dis = this.pos - other.pos;
} else if (this.dir == 'L' && other.dir == 'L') {
dis = this.pos + other.pos;
} else if (this.dir == 'R' && other.dir == 'R') {
dis = (m - this.pos) + (m - other.pos);
} else {
throw new RuntimeException();
}
var timing = dis / 2;
this.explosion = timing;
other.explosion = timing;
}
}
static Scanner in = new Scanner(System.in);
public static void main(String[] args) {
int t = in.nextInt();
for (int i = 0; i < t; i++) {
solve();
}
}
public static void solve() {
int n = in.nextInt();
m = in.nextInt();
// Robots that are an odd number of positions apart can never collide
ArrayList<Robot> evenRobots = new ArrayList<>();
ArrayList<Robot> oddRobots = new ArrayList<>();
ArrayList<Robot> allRobots = new ArrayList<>();
for (int i = 0; i < n; i++) {
int pos = in.nextInt();
var robot = new Robot(i, pos, '-');
allRobots.add(robot);
if (pos % 2 == 0) {
evenRobots.add(robot);
} else {
oddRobots.add(robot);
}
}
var c = 0;
in.nextLine();
for (var dir : in.nextLine().split(" ")) {
allRobots.get(c++).dir = dir.charAt(0);
}
solveEvenOdd(evenRobots);
solveEvenOdd(oddRobots);
Collections.sort(allRobots, Comparator.comparing(r -> r.index));
System.out.println(allRobots.stream().map(r -> r.explosion + "").collect(Collectors.joining(
" ")));
}
/*
1
6 16
2 4 6 8 10 12
R R L L R R
*/
public static void solveEvenOdd(ArrayList<Robot> robots) {
robots.sort(Robot::compareTo);
var right = new Stack<Robot>();
var leftRemaining = new Stack<Robot>();
for (var robot : robots) {
if (robot.dir == 'R') {
right.push(robot);
} else {
if (right.size() > 0) {
right.pop().collideWith(robot);
} else {
leftRemaining.push(robot);
}
}
}
// left stack must be traversed left to right
Collections.reverse(leftRemaining);
while (leftRemaining.size() > 1) {
leftRemaining.pop().collideWith(leftRemaining.pop());
}
while (right.size() > 1) {
right.pop().collideWith(right.pop());
}
if (leftRemaining.size() > 0 && right.size() > 0) {
leftRemaining.pop().collideWith(right.pop());
}
}
}
|
Java
|
["5\n7 12\n1 2 3 4 9 10 11\nR R L L R R R\n2 10\n1 6\nR R\n2 10\n1 3\nL L\n1 10\n5\nR\n7 8\n6 1 7 2 3 5 4\nR L R L L L L"]
|
2 seconds
|
["1 1 1 1 2 -1 2 \n-1 -1 \n2 2 \n-1 \n-1 2 7 3 2 7 3"]
|
NoteHere is the picture for the seconds $$$0, 1, 2$$$ and $$$3$$$ of the first testcase: Notice that robots $$$2$$$ and $$$3$$$ don't collide because they meet at the same point $$$2.5$$$, which is not integer.After second $$$3$$$ robot $$$6$$$ just drive infinitely because there's no robot to collide with.
|
Java 11
|
standard input
|
[
"data structures",
"greedy",
"implementation",
"sortings"
] |
1a28b972e77966453cd8239cc5c8f59a
|
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$) — the number of testcases. Then the descriptions of $$$t$$$ testcases follow. The first line of each testcase contains two integers $$$n$$$ and $$$m$$$ ($$$1 \le n \le 3 \cdot 10^5$$$; $$$2 \le m \le 10^8$$$) — the number of robots and the coordinate of the right wall. The second line of each testcase contains $$$n$$$ integers $$$x_1, x_2, \dots, x_n$$$ ($$$0 < x_i < m$$$) — the starting coordinates of the robots. The third line of each testcase contains $$$n$$$ space-separated characters 'L' or 'R' — the starting directions of the robots ('L' stands for left and 'R' stands for right). All coordinates $$$x_i$$$ in the testcase are distinct. The sum of $$$n$$$ over all testcases doesn't exceed $$$3 \cdot 10^5$$$.
| 2,000
|
For each testcase print $$$n$$$ integers — for the $$$i$$$-th robot output the time it explodes at if it does and $$$-1$$$ otherwise.
|
standard output
| |
PASSED
|
3763590a911455550f830ed3984271d4
|
train_110.jsonl
|
1621152000
|
There are $$$n$$$ robots driving along an OX axis. There are also two walls: one is at coordinate $$$0$$$ and one is at coordinate $$$m$$$.The $$$i$$$-th robot starts at an integer coordinate $$$x_i~(0 < x_i < m)$$$ and moves either left (towards the $$$0$$$) or right with the speed of $$$1$$$ unit per second. No two robots start at the same coordinate.Whenever a robot reaches a wall, it turns around instantly and continues his ride in the opposite direction with the same speed.Whenever several robots meet at the same integer coordinate, they collide and explode into dust. Once a robot has exploded, it doesn't collide with any other robot. Note that if several robots meet at a non-integer coordinate, nothing happens.For each robot find out if it ever explodes and print the time of explosion if it happens and $$$-1$$$ otherwise.
|
256 megabytes
|
import java.io.OutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.OutputStream;
import java.io.PrintWriter;
import java.util.Arrays;
import java.io.BufferedWriter;
import java.util.HashMap;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.TreeSet;
import java.util.ArrayList;
import java.util.StringTokenizer;
import java.io.Writer;
import java.io.OutputStreamWriter;
import java.io.BufferedReader;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
InputReader in = new InputReader(inputStream);
OutputWriter out = new OutputWriter(outputStream);
CRobotCollisions solver = new CRobotCollisions();
int testCount = Integer.parseInt(in.next());
for (int i = 1; i <= testCount; i++)
solver.solve(i, in, out);
out.close();
}
static class CRobotCollisions {
public void solve(int testNumber, InputReader in, OutputWriter out) {
int n = in.nextInt(), m = in.nextInt();
HashMap<Integer, Integer> ids = new HashMap<>();
int[] arr = in.nextIntArray(n);
for (int i = 0; i < n; i++) ids.put(arr[i], i);
TreeSet<Integer> rightodd = new TreeSet<>();
TreeSet<Integer> righteven = new TreeSet<>();
TreeSet<Integer> leftodd = new TreeSet<>();
TreeSet<Integer> lefteven = new TreeSet<>();
for (int i = 0; i < n; i++) {
char c = in.next().charAt(0);
if (c == 'R') {
if (arr[i] % 2 == 0) {
righteven.add(arr[i]);
} else {
rightodd.add(arr[i]);
}
} else {
if (arr[i] % 2 == 0) {
lefteven.add(arr[i]);
} else {
leftodd.add(arr[i]);
}
}
}
int[] ans = new int[n];
Arrays.fill(ans, -1);
ArrayList<Integer> rem = new ArrayList<>();
for (int a : lefteven) {
if (righteven.lower(a) != null) {
int id = righteven.lower(a);
int dis = (a - id) / 2;
ans[ids.get(id)] = dis;
ans[ids.get(a)] = dis;
righteven.remove(id);
rem.add(a);
}
}
for (int a : rem) lefteven.remove(a);
rem = new ArrayList<>();
for (int a : leftodd) {
if (rightodd.lower(a) != null) {
int id = rightodd.lower(a);
int dis = (a - id) / 2;
ans[ids.get(id)] = dis;
ans[ids.get(a)] = dis;
rightodd.remove(id);
rem.add(a);
}
}
for (int a : rem) leftodd.remove(a);
int i = m;
while (righteven.lower(i) != null) {
int x = righteven.lower(i);
if (righteven.lower(x) != null) {
int y = righteven.lower(x);
int dis = (x - y) / 2 + m - x;
ans[ids.get(x)] = ans[ids.get(y)] = dis;
righteven.remove(x);
righteven.remove(y);
}
i = x;
}
i = m;
while (rightodd.lower(i) != null) {
int x = rightodd.lower(i);
if (rightodd.lower(x) != null) {
int y = rightodd.lower(x);
int dis = (x - y) / 2 + m - x;
ans[ids.get(x)] = ans[ids.get(y)] = dis;
rightodd.remove(x);
rightodd.remove(y);
}
i = x;
}
i = 0;
while (lefteven.higher(i) != null) {
int x = lefteven.higher(i);
if (lefteven.higher(x) != null) {
int y = lefteven.higher(x);
int dis = (y - x) / 2 + x;
ans[ids.get(x)] = ans[ids.get(y)] = dis;
lefteven.remove(x);
lefteven.remove(y);
}
i = x;
}
i = 0;
// for(int a:leftodd) out.println(a);
while (leftodd.higher(i) != null) {
int x = leftodd.higher(i);
if (leftodd.higher(x) != null) {
int y = leftodd.higher(x);
int dis = (y - x) / 2 + x;
ans[ids.get(x)] = ans[ids.get(y)] = dis;
leftodd.remove(x);
leftodd.remove(y);
}
i = x;
}
if (!lefteven.isEmpty() && !righteven.isEmpty()) {
int x = lefteven.first();
int y = righteven.first();
int dis = (y - x) / 2 + m - y + x;
ans[ids.get(x)] = ans[ids.get(y)] = dis;
}
if (!leftodd.isEmpty() && !rightodd.isEmpty()) {
int x = leftodd.first();
int y = rightodd.first();
int dis = (y - x) / 2 + m - y + x;
ans[ids.get(x)] = ans[ids.get(y)] = dis;
}
out.println(ans);
}
}
static class InputReader {
BufferedReader reader;
StringTokenizer tokenizer;
public InputReader(InputStream stream) {
reader = new BufferedReader(new InputStreamReader(stream), 32768);
tokenizer = null;
}
public String next() {
while (tokenizer == null || !tokenizer.hasMoreTokens()) {
try {
tokenizer = new StringTokenizer(reader.readLine());
} catch (IOException e) {
throw new RuntimeException(e);
}
}
return tokenizer.nextToken();
}
public int[] nextIntArray(int n) {
int[] array = new int[n];
for (int i = 0; i < n; ++i) array[i] = nextInt();
return array;
}
public int nextInt() {
return Integer.parseInt(next());
}
}
static class OutputWriter {
private final PrintWriter writer;
public OutputWriter(OutputStream outputStream) {
writer = new PrintWriter(new BufferedWriter(new OutputStreamWriter(outputStream)));
}
public OutputWriter(Writer writer) {
this.writer = new PrintWriter(writer);
}
public void print(int[] array) {
for (int i = 0; i < array.length; i++) {
if (i != 0) {
writer.print(' ');
}
writer.print(array[i]);
}
}
public void println(int[] array) {
print(array);
writer.println();
}
public void close() {
writer.close();
}
}
}
|
Java
|
["5\n7 12\n1 2 3 4 9 10 11\nR R L L R R R\n2 10\n1 6\nR R\n2 10\n1 3\nL L\n1 10\n5\nR\n7 8\n6 1 7 2 3 5 4\nR L R L L L L"]
|
2 seconds
|
["1 1 1 1 2 -1 2 \n-1 -1 \n2 2 \n-1 \n-1 2 7 3 2 7 3"]
|
NoteHere is the picture for the seconds $$$0, 1, 2$$$ and $$$3$$$ of the first testcase: Notice that robots $$$2$$$ and $$$3$$$ don't collide because they meet at the same point $$$2.5$$$, which is not integer.After second $$$3$$$ robot $$$6$$$ just drive infinitely because there's no robot to collide with.
|
Java 11
|
standard input
|
[
"data structures",
"greedy",
"implementation",
"sortings"
] |
1a28b972e77966453cd8239cc5c8f59a
|
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$) — the number of testcases. Then the descriptions of $$$t$$$ testcases follow. The first line of each testcase contains two integers $$$n$$$ and $$$m$$$ ($$$1 \le n \le 3 \cdot 10^5$$$; $$$2 \le m \le 10^8$$$) — the number of robots and the coordinate of the right wall. The second line of each testcase contains $$$n$$$ integers $$$x_1, x_2, \dots, x_n$$$ ($$$0 < x_i < m$$$) — the starting coordinates of the robots. The third line of each testcase contains $$$n$$$ space-separated characters 'L' or 'R' — the starting directions of the robots ('L' stands for left and 'R' stands for right). All coordinates $$$x_i$$$ in the testcase are distinct. The sum of $$$n$$$ over all testcases doesn't exceed $$$3 \cdot 10^5$$$.
| 2,000
|
For each testcase print $$$n$$$ integers — for the $$$i$$$-th robot output the time it explodes at if it does and $$$-1$$$ otherwise.
|
standard output
| |
PASSED
|
1b247bfa9e85723c45f2ba0369b31fb1
|
train_110.jsonl
|
1621152000
|
There are $$$n$$$ robots driving along an OX axis. There are also two walls: one is at coordinate $$$0$$$ and one is at coordinate $$$m$$$.The $$$i$$$-th robot starts at an integer coordinate $$$x_i~(0 < x_i < m)$$$ and moves either left (towards the $$$0$$$) or right with the speed of $$$1$$$ unit per second. No two robots start at the same coordinate.Whenever a robot reaches a wall, it turns around instantly and continues his ride in the opposite direction with the same speed.Whenever several robots meet at the same integer coordinate, they collide and explode into dust. Once a robot has exploded, it doesn't collide with any other robot. Note that if several robots meet at a non-integer coordinate, nothing happens.For each robot find out if it ever explodes and print the time of explosion if it happens and $$$-1$$$ otherwise.
|
256 megabytes
|
/*
"Everything in the universe is balanced. Every disappointment
you face in life will be balanced by something good for you!
Keep going, never give up."
Just have Patience + 1...
*/
import java.util.*;
import java.lang.*;
import java.io.*;
import java.util.concurrent.CopyOnWriteArrayList;
public class Solution {
static class Robot {
int position;
int direction;
int index;
Robot (int position, int direction, int index) {
this.position = position;
this.direction = direction;
this.index = index;
}
}
static int MAX = 300005;
static int[] positions = new int[MAX];
static int[] directions = new int[MAX];
static int[] timeOfCollision = new int[MAX];
static int rightWallPosition;
public static void main(String[] args) throws java.lang.Exception {
out = new PrintWriter(new BufferedOutputStream(System.out));
sc = new FastReader();
int test = sc.nextInt();
for (int t = 0; t < test; t++) {
solve();
}
out.close();
}
private static void solve() {
int n = sc.nextInt();
rightWallPosition = sc.nextInt();
for (int i = 1; i <= n; i++) {
timeOfCollision[i] = -1;
positions[i] = sc.nextInt();
}
for (int i = 1; i <= n; i++) {
char direction = sc.next().charAt(0);
directions[i] = direction == 'L' ? 0 : 1;
}
List<Robot> evenPositionRobots = new ArrayList<>();
List<Robot> oddPositionRobots = new ArrayList<>();
for (int i = 1; i <= n; i++) {
if (positions[i] % 2 == 0) {
evenPositionRobots.add(new Robot(positions[i], directions[i], i));
}else {
oddPositionRobots.add(new Robot(positions[i], directions[i], i));
}
}
findRobotCollisions(evenPositionRobots);
findRobotCollisions(oddPositionRobots);
for (int i = 1; i <= n; i++) {
out.print(timeOfCollision[i] + " ");
}
out.println();
}
private static void findRobotCollisions(List<Robot> robots) {
robots.sort(Comparator.comparingInt(a -> a.position));
Stack<Robot> rightMovingRobots = new Stack<>();
int n = robots.size();
for (int i = 0; i < n; i++) {
Robot currRobot = robots.get(i);
if (currRobot.direction == 1) {
rightMovingRobots.add(currRobot);
continue;
}
if (rightMovingRobots.size() > 0) {
Robot rightMostRobotMovingRight = rightMovingRobots.pop();
timeOfCollision[currRobot.index] = timeOfCollision[rightMostRobotMovingRight.index] = (currRobot.position - rightMostRobotMovingRight.position) / 2;
}else {
currRobot.position *= -1;
currRobot.direction = 1;
rightMovingRobots.add(currRobot);
}
}
while (rightMovingRobots.size() > 1) {
Robot right = rightMovingRobots.pop();
Robot left = rightMovingRobots.pop();
right.position = 2 * rightWallPosition - right.position;
timeOfCollision[left.index] = timeOfCollision[right.index] = (right.position - left.position) / 2;
}
}
public static FastReader sc;
public static PrintWriter out;
static class FastReader
{
BufferedReader br;
StringTokenizer str;
public FastReader()
{
br = new BufferedReader(new
InputStreamReader(System.in));
}
String next()
{
while (str == null || !str.hasMoreElements())
{
try
{
str = new StringTokenizer(br.readLine());
}
catch (IOException end)
{
end.printStackTrace();
}
}
return str.nextToken();
}
int nextInt()
{
return Integer.parseInt(next());
}
long nextLong()
{
return Long.parseLong(next());
}
double nextDouble()
{
return Double.parseDouble(next());
}
String nextLine()
{
String str = "";
try
{
str = br.readLine();
}
catch (IOException end)
{
end.printStackTrace();
}
return str;
}
}
}
|
Java
|
["5\n7 12\n1 2 3 4 9 10 11\nR R L L R R R\n2 10\n1 6\nR R\n2 10\n1 3\nL L\n1 10\n5\nR\n7 8\n6 1 7 2 3 5 4\nR L R L L L L"]
|
2 seconds
|
["1 1 1 1 2 -1 2 \n-1 -1 \n2 2 \n-1 \n-1 2 7 3 2 7 3"]
|
NoteHere is the picture for the seconds $$$0, 1, 2$$$ and $$$3$$$ of the first testcase: Notice that robots $$$2$$$ and $$$3$$$ don't collide because they meet at the same point $$$2.5$$$, which is not integer.After second $$$3$$$ robot $$$6$$$ just drive infinitely because there's no robot to collide with.
|
Java 11
|
standard input
|
[
"data structures",
"greedy",
"implementation",
"sortings"
] |
1a28b972e77966453cd8239cc5c8f59a
|
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$) — the number of testcases. Then the descriptions of $$$t$$$ testcases follow. The first line of each testcase contains two integers $$$n$$$ and $$$m$$$ ($$$1 \le n \le 3 \cdot 10^5$$$; $$$2 \le m \le 10^8$$$) — the number of robots and the coordinate of the right wall. The second line of each testcase contains $$$n$$$ integers $$$x_1, x_2, \dots, x_n$$$ ($$$0 < x_i < m$$$) — the starting coordinates of the robots. The third line of each testcase contains $$$n$$$ space-separated characters 'L' or 'R' — the starting directions of the robots ('L' stands for left and 'R' stands for right). All coordinates $$$x_i$$$ in the testcase are distinct. The sum of $$$n$$$ over all testcases doesn't exceed $$$3 \cdot 10^5$$$.
| 2,000
|
For each testcase print $$$n$$$ integers — for the $$$i$$$-th robot output the time it explodes at if it does and $$$-1$$$ otherwise.
|
standard output
| |
PASSED
|
5168a6b08a13960691cdeff1855c36d7
|
train_110.jsonl
|
1621152000
|
There are $$$n$$$ robots driving along an OX axis. There are also two walls: one is at coordinate $$$0$$$ and one is at coordinate $$$m$$$.The $$$i$$$-th robot starts at an integer coordinate $$$x_i~(0 < x_i < m)$$$ and moves either left (towards the $$$0$$$) or right with the speed of $$$1$$$ unit per second. No two robots start at the same coordinate.Whenever a robot reaches a wall, it turns around instantly and continues his ride in the opposite direction with the same speed.Whenever several robots meet at the same integer coordinate, they collide and explode into dust. Once a robot has exploded, it doesn't collide with any other robot. Note that if several robots meet at a non-integer coordinate, nothing happens.For each robot find out if it ever explodes and print the time of explosion if it happens and $$$-1$$$ otherwise.
|
256 megabytes
|
import java.io.*;
import java.util.*;
public class Collisions {
public static void main(String[] args) throws Exception {
FastIO in = new FastIO();
int t = in.nextInt();
for (int tc=0; tc<t; tc++) {
int n = in.nextInt();
int m = in.nextInt();
int[][] robotData = new int[n][2];
int[] ans = new int[n];
Arrays.fill(ans, -1);
for (int i=0; i<n; i++) {
robotData[i][0] = in.nextInt();
}
for (int i=0; i<n; i++) {
String s = in.next();
if (s.equals("L")) robotData[i][1] = -1;
else robotData[i][1] = 1;
}
ArrayList<Robot> evenRobots = new ArrayList<Robot>();
ArrayList<Robot> oddRobots = new ArrayList<Robot>();
for (int i=0; i<n; i++) {
Robot r = new Robot(robotData[i][0], robotData[i][1], i);
if (robotData[i][0]%2==0) {
evenRobots.add(r);
}
else oddRobots.add(r);
}
Collections.sort(evenRobots, (o1, o2) -> Integer.compare(o1.start, o2.start));
Collections.sort(oddRobots, (o1, o2) -> Integer.compare(o1.start, o2.start));
Stack<Robot> rightRobots = new Stack<Robot>();
for (int i=0; i<evenRobots.size(); i++) {
if (evenRobots.get(i).direction==1) {
rightRobots.add(evenRobots.get(i));
}
else {
if (rightRobots.isEmpty()) {
Robot r = evenRobots.get(i);
r.start*=(-1);
rightRobots.add(r);
}
else {
Robot prev = rightRobots.pop();
// System.out.println(prev.start+" "+evenRobots.get(i).start);
int answer = (evenRobots.get(i).start-prev.start)/2;
ans[prev.id] = answer;
ans[evenRobots.get(i).id] = answer;
}
}
}
while (rightRobots.size()>=2) {
Robot first = rightRobots.pop();
Robot second = rightRobots.pop();
int collision1 = m-first.start;
int answer = (m-(second.start+collision1))/2 + collision1;
ans[first.id] = answer;
ans[second.id] = answer;
}
rightRobots.clear();
for (int i=0; i<oddRobots.size(); i++) {
if (oddRobots.get(i).direction==1) {
rightRobots.add(oddRobots.get(i));
}
else {
if (rightRobots.isEmpty()) {
Robot r = oddRobots.get(i);
r.start*=(-1);
rightRobots.add(r);
}
else {
Robot prev = rightRobots.pop();
int answer = (oddRobots.get(i).start-prev.start)/2;
ans[prev.id] = answer;
ans[oddRobots.get(i).id] = answer;
}
}
}
while (rightRobots.size()>=2) {
Robot first = rightRobots.pop();
Robot second = rightRobots.pop();
int collision1 = m-first.start;
int answer = (m-(second.start+collision1))/2+collision1;
ans[first.id] = answer;
ans[second.id] = answer;
}
for (int i=0; i<n; i++) {
System.out.print(ans[i]+" ");
}
System.out.println();
}
}
static class Robot {
int start, direction, id;
public Robot(int start, int direction, int id) {
this.start = start;
this.direction = direction;
this.id = id;
}
}
static class FastIO {
BufferedReader br;
StringTokenizer st;
public FastIO() throws IOException
{
br = new BufferedReader(
new InputStreamReader(System.in));
}
public String next() throws IOException
{
while (st == null || !st.hasMoreElements()) {
st = new StringTokenizer(br.readLine());
}
return st.nextToken();
}
public int nextInt() throws NumberFormatException, IOException { return Integer.parseInt(next()); }
public long nextLong() throws NumberFormatException, IOException { return Long.parseLong(next()); }
public double nextDouble() throws NumberFormatException, IOException
{
return Double.parseDouble(next());
}
public String nextLine() throws IOException
{
String str = br.readLine();
return str;
}
}
}
|
Java
|
["5\n7 12\n1 2 3 4 9 10 11\nR R L L R R R\n2 10\n1 6\nR R\n2 10\n1 3\nL L\n1 10\n5\nR\n7 8\n6 1 7 2 3 5 4\nR L R L L L L"]
|
2 seconds
|
["1 1 1 1 2 -1 2 \n-1 -1 \n2 2 \n-1 \n-1 2 7 3 2 7 3"]
|
NoteHere is the picture for the seconds $$$0, 1, 2$$$ and $$$3$$$ of the first testcase: Notice that robots $$$2$$$ and $$$3$$$ don't collide because they meet at the same point $$$2.5$$$, which is not integer.After second $$$3$$$ robot $$$6$$$ just drive infinitely because there's no robot to collide with.
|
Java 11
|
standard input
|
[
"data structures",
"greedy",
"implementation",
"sortings"
] |
1a28b972e77966453cd8239cc5c8f59a
|
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$) — the number of testcases. Then the descriptions of $$$t$$$ testcases follow. The first line of each testcase contains two integers $$$n$$$ and $$$m$$$ ($$$1 \le n \le 3 \cdot 10^5$$$; $$$2 \le m \le 10^8$$$) — the number of robots and the coordinate of the right wall. The second line of each testcase contains $$$n$$$ integers $$$x_1, x_2, \dots, x_n$$$ ($$$0 < x_i < m$$$) — the starting coordinates of the robots. The third line of each testcase contains $$$n$$$ space-separated characters 'L' or 'R' — the starting directions of the robots ('L' stands for left and 'R' stands for right). All coordinates $$$x_i$$$ in the testcase are distinct. The sum of $$$n$$$ over all testcases doesn't exceed $$$3 \cdot 10^5$$$.
| 2,000
|
For each testcase print $$$n$$$ integers — for the $$$i$$$-th robot output the time it explodes at if it does and $$$-1$$$ otherwise.
|
standard output
| |
PASSED
|
f59479a567d2c779ef2f0049092a13c7
|
train_110.jsonl
|
1621152000
|
There are $$$n$$$ robots driving along an OX axis. There are also two walls: one is at coordinate $$$0$$$ and one is at coordinate $$$m$$$.The $$$i$$$-th robot starts at an integer coordinate $$$x_i~(0 < x_i < m)$$$ and moves either left (towards the $$$0$$$) or right with the speed of $$$1$$$ unit per second. No two robots start at the same coordinate.Whenever a robot reaches a wall, it turns around instantly and continues his ride in the opposite direction with the same speed.Whenever several robots meet at the same integer coordinate, they collide and explode into dust. Once a robot has exploded, it doesn't collide with any other robot. Note that if several robots meet at a non-integer coordinate, nothing happens.For each robot find out if it ever explodes and print the time of explosion if it happens and $$$-1$$$ otherwise.
|
256 megabytes
|
import java.io.*;
import java.util.*;
public class Main {
private static class Cow implements Comparable<Cow> {
private int pos;
private int dir;
private int idx;
private Cow() {}
@Override
public int compareTo(Cow o) {
return pos-o.pos;
}
}
private static int m;
private static int[] res;
private static void solve(ArrayList<Cow> cows) {
Collections.sort(cows);
Stack<Cow> right = new Stack<>();
Cow left = null;
for(Cow i: cows) {
if(i.dir == 1) {
right.push(i);
} else {
if(right.isEmpty()) {
if(left == null) {
left = i;
} else {
res[i.idx] = res[left.idx] = (i.pos+left.pos)/2;
left = null;
}
} else {
Cow j = right.pop();
res[i.idx] = res[j.idx] = (i.pos-j.pos)/2;
}
}
}
while(right.size() > 1) {
Cow i = right.pop();
Cow j = right.pop();
res[i.idx] = res[j.idx] = m-(i.pos+j.pos)/2;
}
if(!right.isEmpty() && left != null) {
Cow i = right.pop();
res[i.idx] = res[left.idx] = m-(i.pos-left.pos)/2;
}
}
public static void main(String[] args) throws IOException {
//BufferedReader f = new BufferedReader(new FileReader("uva.in"));
BufferedReader f = new BufferedReader(new InputStreamReader(System.in));
//PrintWriter out = new PrintWriter(new BufferedWriter(new FileWriter("cowjump.out")));
PrintWriter out = new PrintWriter(new BufferedWriter(new OutputStreamWriter(System.out)));
int t = Integer.parseInt(f.readLine());
while(t-- > 0) {
StringTokenizer st = new StringTokenizer(f.readLine());
int n = Integer.parseInt(st.nextToken());
m = Integer.parseInt(st.nextToken());
st = new StringTokenizer(f.readLine());
Cow[] cows = new Cow[n];
for(int i = 0; i < n; i++) {
cows[i] = new Cow();
cows[i].pos = Integer.parseInt(st.nextToken());
cows[i].idx = i;
}
st = new StringTokenizer(f.readLine());
ArrayList<Cow> even = new ArrayList<>();
ArrayList<Cow> odd = new ArrayList<>();
for(int i = 0; i < n; i++) {
cows[i].dir = st.nextToken().charAt(0) == 'L' ? -1 : 1;
if(cows[i].pos%2 == 0) {
even.add(cows[i]);
} else {
odd.add(cows[i]);
}
}
res = new int[n];
Arrays.fill(res, -1);
solve(even);
solve(odd);
out.print(res[0]);
for(int i = 1; i < n; i++) {
out.print(" " + res[i]);
}
out.println();
}
f.close();
out.close();
}
}
|
Java
|
["5\n7 12\n1 2 3 4 9 10 11\nR R L L R R R\n2 10\n1 6\nR R\n2 10\n1 3\nL L\n1 10\n5\nR\n7 8\n6 1 7 2 3 5 4\nR L R L L L L"]
|
2 seconds
|
["1 1 1 1 2 -1 2 \n-1 -1 \n2 2 \n-1 \n-1 2 7 3 2 7 3"]
|
NoteHere is the picture for the seconds $$$0, 1, 2$$$ and $$$3$$$ of the first testcase: Notice that robots $$$2$$$ and $$$3$$$ don't collide because they meet at the same point $$$2.5$$$, which is not integer.After second $$$3$$$ robot $$$6$$$ just drive infinitely because there's no robot to collide with.
|
Java 11
|
standard input
|
[
"data structures",
"greedy",
"implementation",
"sortings"
] |
1a28b972e77966453cd8239cc5c8f59a
|
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$) — the number of testcases. Then the descriptions of $$$t$$$ testcases follow. The first line of each testcase contains two integers $$$n$$$ and $$$m$$$ ($$$1 \le n \le 3 \cdot 10^5$$$; $$$2 \le m \le 10^8$$$) — the number of robots and the coordinate of the right wall. The second line of each testcase contains $$$n$$$ integers $$$x_1, x_2, \dots, x_n$$$ ($$$0 < x_i < m$$$) — the starting coordinates of the robots. The third line of each testcase contains $$$n$$$ space-separated characters 'L' or 'R' — the starting directions of the robots ('L' stands for left and 'R' stands for right). All coordinates $$$x_i$$$ in the testcase are distinct. The sum of $$$n$$$ over all testcases doesn't exceed $$$3 \cdot 10^5$$$.
| 2,000
|
For each testcase print $$$n$$$ integers — for the $$$i$$$-th robot output the time it explodes at if it does and $$$-1$$$ otherwise.
|
standard output
| |
PASSED
|
0f673a0fddb09bb0223e016c77d86cbe
|
train_110.jsonl
|
1621152000
|
There are $$$n$$$ robots driving along an OX axis. There are also two walls: one is at coordinate $$$0$$$ and one is at coordinate $$$m$$$.The $$$i$$$-th robot starts at an integer coordinate $$$x_i~(0 < x_i < m)$$$ and moves either left (towards the $$$0$$$) or right with the speed of $$$1$$$ unit per second. No two robots start at the same coordinate.Whenever a robot reaches a wall, it turns around instantly and continues his ride in the opposite direction with the same speed.Whenever several robots meet at the same integer coordinate, they collide and explode into dust. Once a robot has exploded, it doesn't collide with any other robot. Note that if several robots meet at a non-integer coordinate, nothing happens.For each robot find out if it ever explodes and print the time of explosion if it happens and $$$-1$$$ otherwise.
|
256 megabytes
|
import java.util.*;
import java.io.*;
public class _1525_C {
public static void main(String[] args) throws IOException {
BufferedReader in = new BufferedReader(new InputStreamReader(System.in));
PrintWriter out = new PrintWriter(System.out);
int t = Integer.parseInt(in.readLine());
while(t-- > 0) {
StringTokenizer line = new StringTokenizer(in.readLine());
int n = Integer.parseInt(line.nextToken());
int m = Integer.parseInt(line.nextToken());
int[][] x = new int[n][2];
int[] dir = new int[n];
line = new StringTokenizer(in.readLine());
for(int i = 0; i < n; i++) {
x[i][0] = Integer.parseInt(line.nextToken());
x[i][1] = i;
}
Arrays.sort(x, new Comparator<int[]>() {
@Override
public int compare(int[] a, int[] b) {
return a[0] - b[0];
}
});
line = new StringTokenizer(in.readLine());
for(int i = 0; i < n; i++) {
char c = line.nextToken().charAt(0);
if(c == 'R') {
dir[i] = 1;
}
}
int[] res = new int[n];
Arrays.fill(res, -1);
find_times(x, dir, 0, res, m);
find_times(x, dir, 1, res, m);
StringBuilder sb = new StringBuilder();
for(int i = 0; i < n; i++) {
sb.append(res[i]);
sb.append(' ');
}
out.println(sb.toString());
}
in.close();
out.close();
}
static void find_times(int[][] x, int[] dir, int parity, int[] res, int m) {
ArrayList<Robot> left = new ArrayList<Robot>();
for(int i = 0; i < x.length; i++) {
if(x[i][0] % 2 == parity) {
Robot top = left.size() > 0 ? left.get(left.size() - 1) : null;
if(top != null && top.d == 1 && dir[x[i][1]] == 0) {
int time = (x[i][0] - top.x) / 2;
res[top.i] = time;
res[x[i][1]] = time;
left.remove(left.size() - 1);
}else {
left.add(new Robot(x[i][0], dir[x[i][1]], x[i][1]));
}
}
}
for(int i = 1; i < left.size(); i += 2) {
Robot cur = left.get(i);
Robot prev = left.get(i - 1);
if(cur.d == 1) {
break;
}
int time = prev.x + (cur.x - prev.x) / 2;
res[prev.i] = time;
res[cur.i] = time;
}
for(int i = left.size() - 2; i >= 0; i -= 2) {
Robot cur = left.get(i);
Robot prev = left.get(i + 1);
if(cur.d == 0) {
break;
}
int time = m - prev.x + (prev.x - cur.x) / 2;
res[prev.i] = time;
res[cur.i] = time;
}
int start = left.size();
for(int i = 0; i < left.size(); i++) {
if(left.get(i).d == 1) {
start = i;
break;
}
}
int end = left.size() - start;
if(start % 2 == 1 && end % 2 == 1) {
Robot one = left.get(start - 1);
Robot two = left.get(start);
int time = (m + m - two.x + one.x) / 2;
res[one.i] = time;
res[two.i] = time;
}
}
static class Robot {
int x, d, i;
Robot(int xx, int dd, int ii) {
x = xx;
d = dd;
i = ii;
}
}
}
|
Java
|
["5\n7 12\n1 2 3 4 9 10 11\nR R L L R R R\n2 10\n1 6\nR R\n2 10\n1 3\nL L\n1 10\n5\nR\n7 8\n6 1 7 2 3 5 4\nR L R L L L L"]
|
2 seconds
|
["1 1 1 1 2 -1 2 \n-1 -1 \n2 2 \n-1 \n-1 2 7 3 2 7 3"]
|
NoteHere is the picture for the seconds $$$0, 1, 2$$$ and $$$3$$$ of the first testcase: Notice that robots $$$2$$$ and $$$3$$$ don't collide because they meet at the same point $$$2.5$$$, which is not integer.After second $$$3$$$ robot $$$6$$$ just drive infinitely because there's no robot to collide with.
|
Java 11
|
standard input
|
[
"data structures",
"greedy",
"implementation",
"sortings"
] |
1a28b972e77966453cd8239cc5c8f59a
|
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$) — the number of testcases. Then the descriptions of $$$t$$$ testcases follow. The first line of each testcase contains two integers $$$n$$$ and $$$m$$$ ($$$1 \le n \le 3 \cdot 10^5$$$; $$$2 \le m \le 10^8$$$) — the number of robots and the coordinate of the right wall. The second line of each testcase contains $$$n$$$ integers $$$x_1, x_2, \dots, x_n$$$ ($$$0 < x_i < m$$$) — the starting coordinates of the robots. The third line of each testcase contains $$$n$$$ space-separated characters 'L' or 'R' — the starting directions of the robots ('L' stands for left and 'R' stands for right). All coordinates $$$x_i$$$ in the testcase are distinct. The sum of $$$n$$$ over all testcases doesn't exceed $$$3 \cdot 10^5$$$.
| 2,000
|
For each testcase print $$$n$$$ integers — for the $$$i$$$-th robot output the time it explodes at if it does and $$$-1$$$ otherwise.
|
standard output
| |
PASSED
|
83e5293752fb3c67e43cd552f31f7fcd
|
train_110.jsonl
|
1621152000
|
There are $$$n$$$ robots driving along an OX axis. There are also two walls: one is at coordinate $$$0$$$ and one is at coordinate $$$m$$$.The $$$i$$$-th robot starts at an integer coordinate $$$x_i~(0 < x_i < m)$$$ and moves either left (towards the $$$0$$$) or right with the speed of $$$1$$$ unit per second. No two robots start at the same coordinate.Whenever a robot reaches a wall, it turns around instantly and continues his ride in the opposite direction with the same speed.Whenever several robots meet at the same integer coordinate, they collide and explode into dust. Once a robot has exploded, it doesn't collide with any other robot. Note that if several robots meet at a non-integer coordinate, nothing happens.For each robot find out if it ever explodes and print the time of explosion if it happens and $$$-1$$$ otherwise.
|
256 megabytes
|
import java.io.IOException;
import java.io.InputStream;
import java.io.PrintWriter;
import java.math.BigDecimal;
import java.math.RoundingMode;
import java.util.*;
public class Main {
static final long MOD=1000000007;
static final long MOD1=998244353;
static long ans=0;
//static ArrayList<Integer> ans=new ArrayList<>();
public static void main(String[] args){
PrintWriter out = new PrintWriter(System.out);
InputReader sc=new InputReader(System.in);
int t = sc.nextInt();
for (int i = 0; i < t; i++) {
int n = sc.nextInt();
int m = sc.nextInt();
int[] x = sc.nextIntArray(n);
String[] s = new String[n];
for (int j = 0; j < s.length; j++) {
s[j] = sc.next();
}
int[] ans = solve(n, m, x, s);
for (int j = 0; j < ans.length; j++) {
out.print(ans[j]+" ");
}
out.println();
}
out.flush();
}
static int[] solve(int n, int m, int[] x,String[] s){
TreeSet<Pair> oddL = new TreeSet<Pair>();
TreeSet<Pair> oddR = new TreeSet<Pair>();
TreeSet<Pair> evenL = new TreeSet<Pair>();
TreeSet<Pair> evenR = new TreeSet<Pair>();
for (int i = 0; i < s.length; i++) {
if (x[i]%2==0) {
if (s[i].equals("L")) {
evenL.add(new Pair(x[i], i));
}else {
evenR.add(new Pair(x[i], i));
}
}else {
if (s[i].equals("L")) {
oddL.add(new Pair(x[i], i));
}else {
oddR.add(new Pair(x[i], i));
}
}
}
int[] ans = new int[n];
Arrays.fill(ans, -1);
solve2(oddL, oddR, ans, m);
solve2(evenL, evenR, ans, m);
return ans;
}
static void solve2(TreeSet<Pair> setL,TreeSet<Pair> setR,int[] ans,int m) {
ArrayList<Pair> removelist = new ArrayList<Main.Pair>();
for (Pair p: setL) {
Pair colp = setR.lower(p);
if (colp!=null) {
int t = Math.abs(p.x-colp.x)/2;
ans[p.y] = t;
ans[colp.y] = t;
removelist.add(p);
setR.remove(colp);
}
}
for (Pair pair : removelist) {
setL.remove(pair);
}
while (setL.size()>1) {
Pair p1 = setL.pollFirst();
Pair p2 = setL.pollFirst();
int t = p1.x + (p2.x-p1.x)/2;
ans[p1.y] = t;
ans[p2.y] = t;
}
while (setR.size()>1) {
Pair p1 = setR.pollLast();
Pair p2 = setR.pollLast();
int t = m - p1.x + (p1.x-p2.x)/2;
ans[p1.y] = t;
ans[p2.y] = t;
}
if (setL.size()>0&&setR.size()>0) {
Pair p1 = setL.pollFirst();
Pair p2 = setR.pollFirst();
int t = 0;
if (p1.x<=m - p2.x) {
t = m - p2.x + (p1.x+p2.x)/2;
}else {
t = p1.x + m - (p1.x+p2.x)/2;
}
ans[p1.y] = t;
ans[p2.y] = t;
}
}
static class Pair implements Comparable<Pair>{
public int x;
public int y;
public Pair(int x,int y) {
this.x=x;
this.y=y;
}
@Override
public boolean equals(Object obj) {
if(obj instanceof Pair) {
Pair other = (Pair) obj;
return other.x==this.x && other.y==this.y;
}
return false;
}//同値の定義
@Override
public int hashCode() {
return Objects.hash(this.x,this.y);
}//これ書かないと正しく動作しない(要 勉強)
@Override
public int compareTo( Pair p){
if (this.x>p.x) {
return 1;
}
else if (this.x<p.x) {
return -1;
}
else {
return 0;
}
}
}
static class InputReader {
private InputStream in;
private byte[] buffer = new byte[1024];
private int curbuf;
private int lenbuf;
public InputReader(InputStream in) {
this.in = in;
this.curbuf = this.lenbuf = 0;
}
public boolean hasNextByte() {
if (curbuf >= lenbuf) {
curbuf = 0;
try {
lenbuf = in.read(buffer);
} catch (IOException e) {
throw new InputMismatchException();
}
if (lenbuf <= 0)
return false;
}
return true;
}
private int readByte() {
if (hasNextByte())
return buffer[curbuf++];
else
return -1;
}
private boolean isSpaceChar(int c) {
return !(c >= 33 && c <= 126);
}
private void skip() {
while (hasNextByte() && isSpaceChar(buffer[curbuf]))
curbuf++;
}
public boolean hasNext() {
skip();
return hasNextByte();
}
public String next() {
if (!hasNext())
throw new NoSuchElementException();
StringBuilder sb = new StringBuilder();
int b = readByte();
while (!isSpaceChar(b)) {
sb.appendCodePoint(b);
b = readByte();
}
return sb.toString();
}
public int nextInt() {
if (!hasNext())
throw new NoSuchElementException();
int c = readByte();
while (isSpaceChar(c))
c = readByte();
boolean minus = false;
if (c == '-') {
minus = true;
c = readByte();
}
int res = 0;
do {
if (c < '0' || c > '9')
throw new InputMismatchException();
res = res * 10 + c - '0';
c = readByte();
} while (!isSpaceChar(c));
return (minus) ? -res : res;
}
public long nextLong() {
if (!hasNext())
throw new NoSuchElementException();
int c = readByte();
while (isSpaceChar(c))
c = readByte();
boolean minus = false;
if (c == '-') {
minus = true;
c = readByte();
}
long res = 0;
do {
if (c < '0' || c > '9')
throw new InputMismatchException();
res = res * 10 + c - '0';
c = readByte();
} while (!isSpaceChar(c));
return (minus) ? -res : res;
}
public double nextDouble() {
return Double.parseDouble(next());
}
public int[] nextIntArray(int n) {
int[] a = new int[n];
for (int i = 0; i < n; i++)
a[i] = nextInt();
return a;
}
public double[] nextDoubleArray(int n) {
double[] a = new double[n];
for (int i = 0; i < n; i++)
a[i] = nextDouble();
return a;
}
public long[] nextLongArray(int n) {
long[] a = new long[n];
for (int i = 0; i < n; i++)
a[i] = nextLong();
return a;
}
public char[][] nextCharMap(int n, int m) {
char[][] map = new char[n][m];
for (int i = 0; i < n; i++)
map[i] = next().toCharArray();
return map;
}
}
}
|
Java
|
["5\n7 12\n1 2 3 4 9 10 11\nR R L L R R R\n2 10\n1 6\nR R\n2 10\n1 3\nL L\n1 10\n5\nR\n7 8\n6 1 7 2 3 5 4\nR L R L L L L"]
|
2 seconds
|
["1 1 1 1 2 -1 2 \n-1 -1 \n2 2 \n-1 \n-1 2 7 3 2 7 3"]
|
NoteHere is the picture for the seconds $$$0, 1, 2$$$ and $$$3$$$ of the first testcase: Notice that robots $$$2$$$ and $$$3$$$ don't collide because they meet at the same point $$$2.5$$$, which is not integer.After second $$$3$$$ robot $$$6$$$ just drive infinitely because there's no robot to collide with.
|
Java 11
|
standard input
|
[
"data structures",
"greedy",
"implementation",
"sortings"
] |
1a28b972e77966453cd8239cc5c8f59a
|
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$) — the number of testcases. Then the descriptions of $$$t$$$ testcases follow. The first line of each testcase contains two integers $$$n$$$ and $$$m$$$ ($$$1 \le n \le 3 \cdot 10^5$$$; $$$2 \le m \le 10^8$$$) — the number of robots and the coordinate of the right wall. The second line of each testcase contains $$$n$$$ integers $$$x_1, x_2, \dots, x_n$$$ ($$$0 < x_i < m$$$) — the starting coordinates of the robots. The third line of each testcase contains $$$n$$$ space-separated characters 'L' or 'R' — the starting directions of the robots ('L' stands for left and 'R' stands for right). All coordinates $$$x_i$$$ in the testcase are distinct. The sum of $$$n$$$ over all testcases doesn't exceed $$$3 \cdot 10^5$$$.
| 2,000
|
For each testcase print $$$n$$$ integers — for the $$$i$$$-th robot output the time it explodes at if it does and $$$-1$$$ otherwise.
|
standard output
| |
PASSED
|
f447e28d4486743ec6612839fbf83c1f
|
train_110.jsonl
|
1621152000
|
There are $$$n$$$ robots driving along an OX axis. There are also two walls: one is at coordinate $$$0$$$ and one is at coordinate $$$m$$$.The $$$i$$$-th robot starts at an integer coordinate $$$x_i~(0 < x_i < m)$$$ and moves either left (towards the $$$0$$$) or right with the speed of $$$1$$$ unit per second. No two robots start at the same coordinate.Whenever a robot reaches a wall, it turns around instantly and continues his ride in the opposite direction with the same speed.Whenever several robots meet at the same integer coordinate, they collide and explode into dust. Once a robot has exploded, it doesn't collide with any other robot. Note that if several robots meet at a non-integer coordinate, nothing happens.For each robot find out if it ever explodes and print the time of explosion if it happens and $$$-1$$$ otherwise.
|
256 megabytes
|
import java.io.IOException;
import java.io.InputStream;
import java.io.OutputStream;
import java.io.PrintWriter;
import java.math.BigInteger;
import java.util.*;
/**
* @author Mubtasim Shahriar
*/
public class RobotCollisions {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
InputReader sc = new InputReader(inputStream);
PrintWriter out = new PrintWriter(outputStream);
Solver solver = new Solver();
int t = sc.nextInt();
// int t = 1;
while (t-- != 0) {
solver.solve(sc, out);
}
out.close();
}
static class Solver {
public void solve(InputReader sc, PrintWriter out) {
int n = sc.nextInt();
int m = sc.nextInt();
int[] arr = sc.nextIntArray(n);
char[] dir = new char[n];
for (int i = 0; i < n; i++) {
dir[i] = sc.next().charAt(0);
}
int ecnt = 0;
for(int i : arr) if(i%2==0) ecnt++;
int ocnt = n-ecnt;
Node[] evenNodes = new Node[ecnt];
Node[] oddNodes = new Node[ocnt];
int eIdx = 0;
int oIdx = 0;
for (int i = 0; i < n; i++) {
int nowx = arr[i];
if(nowx%2==0) evenNodes[eIdx++] = new Node(nowx,dir[i],i);
else oddNodes[oIdx++] = new Node(nowx,dir[i],i);
}
Arrays.sort(evenNodes, new Comparator<Node>() {
@Override
public int compare(Node o1, Node o2) {
int o = Long.compare(o1.x,o2.x);
return o;
}
});
Arrays.sort(oddNodes, new Comparator<Node>() {
@Override
public int compare(Node o1, Node o2) {
int o = Long.compare(o1.x,o2.x);
return o;
}
});
long[] ans = new long[n];
work(evenNodes,ans,m);
work(oddNodes,ans,m);
for(int i = 0; i < n; i++) {
if(i>0) out.print(" ");
out.print(ans[i]);
}
out.println();
}
private void work(Node[] nodes, long[] ans, int rightLimit) {
Stack<Node> stk = new Stack<>();
int n = nodes.length;
for(int i = 0; i < n; i++) {
char dir = nodes[i].dir;
long x = nodes[i].x;
if(stk.isEmpty()) {
if(dir=='L') {
nodes[i].dir = 'R';
nodes[i].x = nodes[i].x*(-1);
}
stk.add(nodes[i]);
continue;
}
if(dir=='R') {
stk.add(nodes[i]);
continue;
}
Node top = stk.pop();
int idx1 = top.idx;
int idx2 = nodes[i].idx;
if(idx1==idx2) throw new RuntimeException();
long topx = top.x;
long time = Math.abs(topx-x)/2;
ans[idx1] = time;
ans[idx2] = time;
}
while(!stk.isEmpty()) {
if(stk.size()==1) {
ans[stk.pop().idx] = -1;
continue;
}
Node right = stk.pop();
Node left = stk.pop();
if(right.dir=='L' || left.dir=='L') throw new RuntimeException();
int idx1 = right.idx;
int idx2 = left.idx;
long rightx = right.x;
rightx = rightLimit+(rightLimit-rightx);
long leftx = left.x;
long time = Math.abs(rightx-leftx)/2;
ans[idx1] = time;
ans[idx2] = time;
}
}
}
static class Node {
long x;
char dir;
int idx;
public Node(long x, char dir, int idx) {
this.x = x;
this.dir = dir;
this.idx = idx;
}
@Override
public String toString() {
return "Node{" +
"x=" + x +
", dir=" + dir +
", idx=" + idx +
'}';
}
}
static void sort(int[] arr) {
Random rand = new Random();
int n = arr.length;
for (int i = 0; i < n; i++) {
int idx = rand.nextInt(n);
if (idx == i) continue;
arr[i] ^= arr[idx];
arr[idx] ^= arr[i];
arr[i] ^= arr[idx];
}
Arrays.sort(arr);
}
static void sort(long[] arr) {
Random rand = new Random();
int n = arr.length;
for (int i = 0; i < n; i++) {
int idx = rand.nextInt(n);
if (idx == i) continue;
arr[i] ^= arr[idx];
arr[idx] ^= arr[i];
arr[i] ^= arr[idx];
}
Arrays.sort(arr);
}
static void sortDec(int[] arr) {
Random rand = new Random();
int n = arr.length;
for (int i = 0; i < n; i++) {
int idx = rand.nextInt(n);
if (idx == i) continue;
arr[i] ^= arr[idx];
arr[idx] ^= arr[i];
arr[i] ^= arr[idx];
}
Arrays.sort(arr);
int l = 0;
int r = n - 1;
while (l < r) {
arr[l] ^= arr[r];
arr[r] ^= arr[l];
arr[l] ^= arr[r];
l++;
r--;
}
}
static void sortDec(long[] arr) {
Random rand = new Random();
int n = arr.length;
for (int i = 0; i < n; i++) {
int idx = rand.nextInt(n);
if (idx == i) continue;
arr[i] ^= arr[idx];
arr[idx] ^= arr[i];
arr[i] ^= arr[idx];
}
Arrays.sort(arr);
int l = 0;
int r = n - 1;
while (l < r) {
arr[l] ^= arr[r];
arr[r] ^= arr[l];
arr[l] ^= arr[r];
l++;
r--;
}
}
static class InputReader {
private boolean finished = false;
private InputStream stream;
private byte[] buf = new byte[1024];
private int curChar;
private int numChars;
private SpaceCharFilter filter;
public InputReader(InputStream stream) {
this.stream = stream;
}
public int read() {
if (numChars == -1) {
throw new InputMismatchException();
}
if (curChar >= numChars) {
curChar = 0;
try {
numChars = stream.read(buf);
} catch (IOException e) {
throw new InputMismatchException();
}
if (numChars <= 0) {
return -1;
}
}
return buf[curChar++];
}
public int peek() {
if (numChars == -1) {
return -1;
}
if (curChar >= numChars) {
curChar = 0;
try {
numChars = stream.read(buf);
} catch (IOException e) {
return -1;
}
if (numChars <= 0) {
return -1;
}
}
return buf[curChar];
}
public int nextInt() {
int c = read();
while (isSpaceChar(c)) {
c = read();
}
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
int res = 0;
do {
if (c < '0' || c > '9') {
throw new InputMismatchException();
}
res *= 10;
res += c - '0';
c = read();
} while (!isSpaceChar(c));
return res * sgn;
}
public long nextLong() {
int c = read();
while (isSpaceChar(c)) {
c = read();
}
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
long res = 0;
do {
if (c < '0' || c > '9') {
throw new InputMismatchException();
}
res *= 10;
res += c - '0';
c = read();
} while (!isSpaceChar(c));
return res * sgn;
}
public String nextString() {
int c = read();
while (isSpaceChar(c)) {
c = read();
}
StringBuilder res = new StringBuilder();
do {
if (Character.isValidCodePoint(c)) {
res.appendCodePoint(c);
}
c = read();
} while (!isSpaceChar(c));
return res.toString();
}
public boolean isSpaceChar(int c) {
if (filter != null) {
return filter.isSpaceChar(c);
}
return isWhitespace(c);
}
public static boolean isWhitespace(int c) {
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
private String readLine0() {
StringBuilder buf = new StringBuilder();
int c = read();
while (c != '\n' && c != -1) {
if (c != '\r') {
buf.appendCodePoint(c);
}
c = read();
}
return buf.toString();
}
public String readLine() {
String s = readLine0();
while (s.trim().length() == 0) {
s = readLine0();
}
return s;
}
public String readLine(boolean ignoreEmptyLines) {
if (ignoreEmptyLines) {
return readLine();
} else {
return readLine0();
}
}
public BigInteger readBigInteger() {
try {
return new BigInteger(nextString());
} catch (NumberFormatException e) {
throw new InputMismatchException();
}
}
public char nextCharacter() {
int c = read();
while (isSpaceChar(c)) {
c = read();
}
return (char) c;
}
public double nextDouble() {
int c = read();
while (isSpaceChar(c)) {
c = read();
}
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
double res = 0;
while (!isSpaceChar(c) && c != '.') {
if (c == 'e' || c == 'E') {
return res * Math.pow(10, nextInt());
}
if (c < '0' || c > '9') {
throw new InputMismatchException();
}
res *= 10;
res += c - '0';
c = read();
}
if (c == '.') {
c = read();
double m = 1;
while (!isSpaceChar(c)) {
if (c == 'e' || c == 'E') {
return res * Math.pow(10, nextInt());
}
if (c < '0' || c > '9') {
throw new InputMismatchException();
}
m /= 10;
res += (c - '0') * m;
c = read();
}
}
return res * sgn;
}
public boolean isExhausted() {
int value;
while (isSpaceChar(value = peek()) && value != -1) {
read();
}
return value == -1;
}
public String next() {
return nextString();
}
public SpaceCharFilter getFilter() {
return filter;
}
public void setFilter(SpaceCharFilter filter) {
this.filter = filter;
}
public interface SpaceCharFilter {
public boolean isSpaceChar(int ch);
}
public int[] nextIntArray(int n) {
int[] array = new int[n];
for (int i = 0; i < n; ++i) array[i] = nextInt();
return array;
}
public int[] nextSortedIntArray(int n) {
int array[] = nextIntArray(n);
Arrays.sort(array);
return array;
}
public int[] nextSumIntArray(int n) {
int[] array = new int[n];
array[0] = nextInt();
for (int i = 1; i < n; ++i) array[i] = array[i - 1] + nextInt();
return array;
}
public long[] nextLongArray(int n) {
long[] array = new long[n];
for (int i = 0; i < n; ++i) array[i] = nextLong();
return array;
}
public long[] nextSumLongArray(int n) {
long[] array = new long[n];
array[0] = nextInt();
for (int i = 1; i < n; ++i) array[i] = array[i - 1] + nextInt();
return array;
}
public long[] nextSortedLongArray(int n) {
long array[] = nextLongArray(n);
Arrays.sort(array);
return array;
}
}
}
|
Java
|
["5\n7 12\n1 2 3 4 9 10 11\nR R L L R R R\n2 10\n1 6\nR R\n2 10\n1 3\nL L\n1 10\n5\nR\n7 8\n6 1 7 2 3 5 4\nR L R L L L L"]
|
2 seconds
|
["1 1 1 1 2 -1 2 \n-1 -1 \n2 2 \n-1 \n-1 2 7 3 2 7 3"]
|
NoteHere is the picture for the seconds $$$0, 1, 2$$$ and $$$3$$$ of the first testcase: Notice that robots $$$2$$$ and $$$3$$$ don't collide because they meet at the same point $$$2.5$$$, which is not integer.After second $$$3$$$ robot $$$6$$$ just drive infinitely because there's no robot to collide with.
|
Java 11
|
standard input
|
[
"data structures",
"greedy",
"implementation",
"sortings"
] |
1a28b972e77966453cd8239cc5c8f59a
|
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$) — the number of testcases. Then the descriptions of $$$t$$$ testcases follow. The first line of each testcase contains two integers $$$n$$$ and $$$m$$$ ($$$1 \le n \le 3 \cdot 10^5$$$; $$$2 \le m \le 10^8$$$) — the number of robots and the coordinate of the right wall. The second line of each testcase contains $$$n$$$ integers $$$x_1, x_2, \dots, x_n$$$ ($$$0 < x_i < m$$$) — the starting coordinates of the robots. The third line of each testcase contains $$$n$$$ space-separated characters 'L' or 'R' — the starting directions of the robots ('L' stands for left and 'R' stands for right). All coordinates $$$x_i$$$ in the testcase are distinct. The sum of $$$n$$$ over all testcases doesn't exceed $$$3 \cdot 10^5$$$.
| 2,000
|
For each testcase print $$$n$$$ integers — for the $$$i$$$-th robot output the time it explodes at if it does and $$$-1$$$ otherwise.
|
standard output
| |
PASSED
|
0adfc3f21d606b1a61a25de005bf9880
|
train_110.jsonl
|
1621152000
|
There are $$$n$$$ robots driving along an OX axis. There are also two walls: one is at coordinate $$$0$$$ and one is at coordinate $$$m$$$.The $$$i$$$-th robot starts at an integer coordinate $$$x_i~(0 < x_i < m)$$$ and moves either left (towards the $$$0$$$) or right with the speed of $$$1$$$ unit per second. No two robots start at the same coordinate.Whenever a robot reaches a wall, it turns around instantly and continues his ride in the opposite direction with the same speed.Whenever several robots meet at the same integer coordinate, they collide and explode into dust. Once a robot has exploded, it doesn't collide with any other robot. Note that if several robots meet at a non-integer coordinate, nothing happens.For each robot find out if it ever explodes and print the time of explosion if it happens and $$$-1$$$ otherwise.
|
256 megabytes
|
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.*;
public class RobotCollisions {
static class Point {
int x;
boolean left;
int index;
public Point(int x, boolean left, int index) {
this.x = x;
this.left = left;
this.index = index;
}
}
public static void update (int n, int m, List<Point> list, int[] ans){
Collections.sort(list, new Comparator<Point>() {
@Override
public int compare(Point o1, Point o2) {
return o1.x - o2.x;
}
});
Stack<Point> stack = new Stack<>();
Point l = new Point (-1, true, -1);
for (Point i : list){
if (i.left){
if (stack.isEmpty()){
if (l.index == -1){
l = i;
}
else {
int t = (i.x+l.x)/2;
ans[l.index] = t;
ans[i.index] = t;
l.index = -1;
}
}
else {
Point p = stack.pop();
int t = (i.x-p.x)/2;
ans[p.index] = t;
ans[i.index] = t;
}
}
else {
stack.add(i);
}
}
while (stack.size() >= 2){
Point p1 = stack.pop();
Point p2 = stack.pop();
int t = (m*2-p1.x-p2.x)/2;
ans[p1.index] = t;
ans[p2.index] = t;
}
if (l.index != -1 && stack.size() == 1){
Point p1 = l;
Point p2 = stack.pop();
int t = (p1.x + m - p2.x + m)/2;
ans[p1.index] = t;
ans[p2.index] = t;
}
}
public static int[] solve (int n, int m, int[] pos, boolean[] left){
List<Point> list1 = new ArrayList<>();
List<Point> list2 = new ArrayList<>();
int[] ans = new int[n];
for (int i=0; i < n; i++){
ans[i] = -1;
}
for (int i=0; i < n; i++){
if (pos[i]%2 == 0){
list1.add(new Point (pos[i], left[i], i));
}
else {
list2.add(new Point (pos[i], left[i], i));
}
}
update (n, m, list1, ans);
update (n, m, list2, ans);
return ans;
}
public static void main(String[] args) throws IOException {
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
int t = Integer.parseInt(br.readLine());
for (int i = 0; i < t; i++) {
StringTokenizer st = new StringTokenizer(br.readLine());
int n = Integer.parseInt(st.nextToken());
int m = Integer.parseInt(st.nextToken());
int[] pos = new int[n];
st = new StringTokenizer(br.readLine());
for (int j=0; j < n; j++){
pos[j] = Integer.parseInt(st.nextToken());
}
boolean[] left = new boolean[n];
st = new StringTokenizer(br.readLine());
for (int j=0; j < n; j++){
left[j] = st.nextToken().charAt(0) == 'L';
}
int[] ans = solve (n, m, pos, left);
for (int j=0; j < n; j++){
if (j==0){
System.out.print(ans[j]);
}
else {
System.out.print(" " + ans[j]);
}
}
System.out.println();
}
}
}
|
Java
|
["5\n7 12\n1 2 3 4 9 10 11\nR R L L R R R\n2 10\n1 6\nR R\n2 10\n1 3\nL L\n1 10\n5\nR\n7 8\n6 1 7 2 3 5 4\nR L R L L L L"]
|
2 seconds
|
["1 1 1 1 2 -1 2 \n-1 -1 \n2 2 \n-1 \n-1 2 7 3 2 7 3"]
|
NoteHere is the picture for the seconds $$$0, 1, 2$$$ and $$$3$$$ of the first testcase: Notice that robots $$$2$$$ and $$$3$$$ don't collide because they meet at the same point $$$2.5$$$, which is not integer.After second $$$3$$$ robot $$$6$$$ just drive infinitely because there's no robot to collide with.
|
Java 11
|
standard input
|
[
"data structures",
"greedy",
"implementation",
"sortings"
] |
1a28b972e77966453cd8239cc5c8f59a
|
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$) — the number of testcases. Then the descriptions of $$$t$$$ testcases follow. The first line of each testcase contains two integers $$$n$$$ and $$$m$$$ ($$$1 \le n \le 3 \cdot 10^5$$$; $$$2 \le m \le 10^8$$$) — the number of robots and the coordinate of the right wall. The second line of each testcase contains $$$n$$$ integers $$$x_1, x_2, \dots, x_n$$$ ($$$0 < x_i < m$$$) — the starting coordinates of the robots. The third line of each testcase contains $$$n$$$ space-separated characters 'L' or 'R' — the starting directions of the robots ('L' stands for left and 'R' stands for right). All coordinates $$$x_i$$$ in the testcase are distinct. The sum of $$$n$$$ over all testcases doesn't exceed $$$3 \cdot 10^5$$$.
| 2,000
|
For each testcase print $$$n$$$ integers — for the $$$i$$$-th robot output the time it explodes at if it does and $$$-1$$$ otherwise.
|
standard output
| |
PASSED
|
c7e4995697115e700254580944f0953a
|
train_110.jsonl
|
1621152000
|
There are $$$n$$$ robots driving along an OX axis. There are also two walls: one is at coordinate $$$0$$$ and one is at coordinate $$$m$$$.The $$$i$$$-th robot starts at an integer coordinate $$$x_i~(0 < x_i < m)$$$ and moves either left (towards the $$$0$$$) or right with the speed of $$$1$$$ unit per second. No two robots start at the same coordinate.Whenever a robot reaches a wall, it turns around instantly and continues his ride in the opposite direction with the same speed.Whenever several robots meet at the same integer coordinate, they collide and explode into dust. Once a robot has exploded, it doesn't collide with any other robot. Note that if several robots meet at a non-integer coordinate, nothing happens.For each robot find out if it ever explodes and print the time of explosion if it happens and $$$-1$$$ otherwise.
|
256 megabytes
|
import java.io.*;
import java.nio.charset.StandardCharsets;
import java.util.*;
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
public class Solution {
static class FastReader {
BufferedReader br;
StringTokenizer st;
public FastReader() {
br = new BufferedReader(
new InputStreamReader(System.in));
}
String next() {
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
long nextLong() {
return Long.parseLong(next());
}
double nextDouble() {
return Double.parseDouble(next());
}
String nextLine() {
String str = "";
try {
str = br.readLine();
} catch (IOException e) {
e.printStackTrace();
}
return str;
}
}
public static void main(String[] args) throws Exception {
BufferedWriter out = new BufferedWriter(new OutputStreamWriter(new
FileOutputStream(java.io.FileDescriptor.out), StandardCharsets.US_ASCII), 512);
FastReader sc = new FastReader();
int t=sc.nextInt();
for(int k=0;k<t;k++){
int n= sc.nextInt();
int m = sc.nextInt();
int[] temp=new int[n];
Obj[] arr=new Obj[n];
for(int i=0;i<n;i++)
{
int key=sc.nextInt();
temp[i]=key;
arr[i]=new Obj(key,null);
}
for(int i=0;i<n;i++)
arr[i].setVal(sc.next().charAt(0));
Arrays.sort(arr, new Comparator<Obj>() {
@Override
public int compare(Obj o1, Obj o2) {
return o1.key.compareTo(o2.key);
}
});
Map<Integer,Long> map=new HashMap<>();
Stack<Obj>stk=new Stack<>();
for(int i=0;i<n;i++){
if(arr[i].key%2==1) continue;
if(arr[i].val=='R')
stk.push(arr[i]);
else if(arr[i].val=='L'&&!stk.isEmpty()){
long dist=(arr[i].key-stk.peek().key)/2;
map.put(arr[i].key,dist);
map.put(stk.peek().key,dist);
stk.pop();
}
else{
arr[i].setKey(arr[i].key*-1);
arr[i].setVal('R');
stk.push(arr[i]);
}
}
while(stk.size()>=2){
Obj a= stk.pop();
Obj b= stk.pop();
long dist=(m-((a.key+b.key)/2));
map.put(a.key,dist);
map.put(b.key,dist);
}
stk=new Stack<>();
for(int i=0;i<n;i++){
if(arr[i].key%2==0) continue;
if(arr[i].val=='R')
stk.push(arr[i]);
else if(arr[i].val=='L'&&!stk.isEmpty()){
long dist=(arr[i].key-stk.peek().key)/2;
map.put(arr[i].key,dist);
map.put(stk.peek().key,dist);
stk.pop();
}
else{
arr[i].setKey(arr[i].key*-1);
arr[i].setVal('R');
stk.push(arr[i]);
}
}
while(stk.size()>=2){
Obj a= stk.pop();
Obj b= stk.pop();
long dist=(m-((a.key+b.key)/2));
map.put(a.key,dist);
map.put(b.key,dist);
}
for(int i : temp){
if(!map.containsKey(i)&&!map.containsKey(i*-1))
out.write(-1+" ");
else if (map.containsKey(i*-1))
out.write(map.get(i*-1)+" ");
else
out.write(map.get(i)+" ");
}
out.write("\n");
out.flush();
}
}
static class Obj{
Integer key;
Character val;
Obj(Integer key, Character val){
this.key=key;
this.val=val;
}
void setVal(Character val){
this.val=val;
}
public void setKey(Integer key) {
this.key = key;
}
}
}
//import java.io.*;
|
Java
|
["5\n7 12\n1 2 3 4 9 10 11\nR R L L R R R\n2 10\n1 6\nR R\n2 10\n1 3\nL L\n1 10\n5\nR\n7 8\n6 1 7 2 3 5 4\nR L R L L L L"]
|
2 seconds
|
["1 1 1 1 2 -1 2 \n-1 -1 \n2 2 \n-1 \n-1 2 7 3 2 7 3"]
|
NoteHere is the picture for the seconds $$$0, 1, 2$$$ and $$$3$$$ of the first testcase: Notice that robots $$$2$$$ and $$$3$$$ don't collide because they meet at the same point $$$2.5$$$, which is not integer.After second $$$3$$$ robot $$$6$$$ just drive infinitely because there's no robot to collide with.
|
Java 11
|
standard input
|
[
"data structures",
"greedy",
"implementation",
"sortings"
] |
1a28b972e77966453cd8239cc5c8f59a
|
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$) — the number of testcases. Then the descriptions of $$$t$$$ testcases follow. The first line of each testcase contains two integers $$$n$$$ and $$$m$$$ ($$$1 \le n \le 3 \cdot 10^5$$$; $$$2 \le m \le 10^8$$$) — the number of robots and the coordinate of the right wall. The second line of each testcase contains $$$n$$$ integers $$$x_1, x_2, \dots, x_n$$$ ($$$0 < x_i < m$$$) — the starting coordinates of the robots. The third line of each testcase contains $$$n$$$ space-separated characters 'L' or 'R' — the starting directions of the robots ('L' stands for left and 'R' stands for right). All coordinates $$$x_i$$$ in the testcase are distinct. The sum of $$$n$$$ over all testcases doesn't exceed $$$3 \cdot 10^5$$$.
| 2,000
|
For each testcase print $$$n$$$ integers — for the $$$i$$$-th robot output the time it explodes at if it does and $$$-1$$$ otherwise.
|
standard output
| |
PASSED
|
761ed12456f2369a4d3280c271ad647c
|
train_110.jsonl
|
1621152000
|
There are $$$n$$$ robots driving along an OX axis. There are also two walls: one is at coordinate $$$0$$$ and one is at coordinate $$$m$$$.The $$$i$$$-th robot starts at an integer coordinate $$$x_i~(0 < x_i < m)$$$ and moves either left (towards the $$$0$$$) or right with the speed of $$$1$$$ unit per second. No two robots start at the same coordinate.Whenever a robot reaches a wall, it turns around instantly and continues his ride in the opposite direction with the same speed.Whenever several robots meet at the same integer coordinate, they collide and explode into dust. Once a robot has exploded, it doesn't collide with any other robot. Note that if several robots meet at a non-integer coordinate, nothing happens.For each robot find out if it ever explodes and print the time of explosion if it happens and $$$-1$$$ otherwise.
|
256 megabytes
|
import java.io.*;
import java.util.*;
public class robot_collisions {
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
int t = sc.nextInt();
while (t-- > 0) {
int n = sc.nextInt(); int m = sc.nextInt();
int[] start = new int[n];
char[] dir = new char[n];
ArrayList<Node> even = new ArrayList<>();
ArrayList<Node> odd = new ArrayList<>();
for(int i=0;i<n;i++) start[i] = sc.nextInt();
for (int i=0;i<n;i++) {
dir[i] = sc.next().charAt(0);
if(start[i]%2==0) even.add(new Node(start[i], dir[i], i));
else odd.add(new Node(start[i], dir[i], i));
}
Collections.sort(even);
Collections.sort(odd);
int[] ans = new int[n];
Arrays.fill(ans, -1);
findAns(even, ans, m);
findAns(odd,ans,m);
for (int i: ans) {
System.out.print(i + " ");
}
System.out.println();
}
}
static void findAns(ArrayList<Node> val, int[] ans, int m) {
Stack<Node> stack = new Stack<>();
for(Node x : val) {
if(x.dir == 'R'){
stack.add(x);
}else{
if(stack.empty()) stack.add(x);
else{
Node right = stack.pop();
if(right.dir == 'R'){
ans[x.idx] = Math.abs(right.value - x.value)/2;
ans[right.idx] = Math.abs(right.value - x.value)/2;
}else{
ans[x.idx] = (right.value + x.value)/2;
ans[right.idx] = (right.value + x.value)/2;
}
}
}
}
while (stack.size() >=2){
Node a = stack.pop();
Node b = stack.pop();
if(b.dir == 'R'){
ans[a.idx] = (m-a.value+m-b.value)/2;
ans[b.idx] = (m-a.value+m-b.value)/2;
}else{
ans[a.idx] = (m-a.value+m+b.value)/2;
ans[b.idx] = (m-a.value+m+b.value)/2;
}
}
}
static class Node implements Comparable<Node>{
int value; char dir; int idx;
Node(int value, char dir, int idx){
this.value = value;
this.dir = dir;
this.idx = idx;
}
@Override
public int compareTo(Node o) {
return this.value - o.value;
}
}
}
|
Java
|
["5\n7 12\n1 2 3 4 9 10 11\nR R L L R R R\n2 10\n1 6\nR R\n2 10\n1 3\nL L\n1 10\n5\nR\n7 8\n6 1 7 2 3 5 4\nR L R L L L L"]
|
2 seconds
|
["1 1 1 1 2 -1 2 \n-1 -1 \n2 2 \n-1 \n-1 2 7 3 2 7 3"]
|
NoteHere is the picture for the seconds $$$0, 1, 2$$$ and $$$3$$$ of the first testcase: Notice that robots $$$2$$$ and $$$3$$$ don't collide because they meet at the same point $$$2.5$$$, which is not integer.After second $$$3$$$ robot $$$6$$$ just drive infinitely because there's no robot to collide with.
|
Java 11
|
standard input
|
[
"data structures",
"greedy",
"implementation",
"sortings"
] |
1a28b972e77966453cd8239cc5c8f59a
|
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$) — the number of testcases. Then the descriptions of $$$t$$$ testcases follow. The first line of each testcase contains two integers $$$n$$$ and $$$m$$$ ($$$1 \le n \le 3 \cdot 10^5$$$; $$$2 \le m \le 10^8$$$) — the number of robots and the coordinate of the right wall. The second line of each testcase contains $$$n$$$ integers $$$x_1, x_2, \dots, x_n$$$ ($$$0 < x_i < m$$$) — the starting coordinates of the robots. The third line of each testcase contains $$$n$$$ space-separated characters 'L' or 'R' — the starting directions of the robots ('L' stands for left and 'R' stands for right). All coordinates $$$x_i$$$ in the testcase are distinct. The sum of $$$n$$$ over all testcases doesn't exceed $$$3 \cdot 10^5$$$.
| 2,000
|
For each testcase print $$$n$$$ integers — for the $$$i$$$-th robot output the time it explodes at if it does and $$$-1$$$ otherwise.
|
standard output
| |
PASSED
|
957a6742800715a3e12c01438dce6381
|
train_110.jsonl
|
1621152000
|
There are $$$n$$$ robots driving along an OX axis. There are also two walls: one is at coordinate $$$0$$$ and one is at coordinate $$$m$$$.The $$$i$$$-th robot starts at an integer coordinate $$$x_i~(0 < x_i < m)$$$ and moves either left (towards the $$$0$$$) or right with the speed of $$$1$$$ unit per second. No two robots start at the same coordinate.Whenever a robot reaches a wall, it turns around instantly and continues his ride in the opposite direction with the same speed.Whenever several robots meet at the same integer coordinate, they collide and explode into dust. Once a robot has exploded, it doesn't collide with any other robot. Note that if several robots meet at a non-integer coordinate, nothing happens.For each robot find out if it ever explodes and print the time of explosion if it happens and $$$-1$$$ otherwise.
|
256 megabytes
|
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Collections;
import java.util.Comparator;
import java.util.HashMap;
import java.util.Scanner;
import java.util.StringTokenizer;
import java.util.function.BiConsumer;
import javax.sound.midi.SysexMessage;
import java.io.IOException;
import java.io.BufferedOutputStream;
import java.io.BufferedReader;
import java.io.InputStream;
import java.io.InputStreamReader;
import java.io.OutputStream;
public class S2 {
static class Reader {
static BufferedReader reader;
static StringTokenizer tokenizer;
static void init(InputStream input) {
reader = new BufferedReader(new InputStreamReader(input));
tokenizer = new StringTokenizer("");
}
static String next() throws IOException {
while(!tokenizer.hasMoreTokens()) {
tokenizer = new StringTokenizer(reader.readLine());
}
return tokenizer.nextToken();
}
static int nextInt() throws IOException {
return Integer.parseInt(next());
}
static long nextLong() throws IOException {
return Long.parseLong(next());
}
}
private static void arrInp(int n1) throws IOException {
// TODO Auto-generated method stub
arr = new long[n1];
for(int i=0; i<n1; i++) {
long a = Reader.nextLong();
arr[i] = a;
}
}
static long[] merge(long[] a, long[] b) {
int m = a.length;
int n = b.length;
long [] c = new long[n+m];
int j=0, k=0;
while(j+k<m+n) {
if(j>=m) {
c[j+k] = b[k];
k++;
}
else if(k>=n) {
c[j+k] = a[j];
j++;
}
else {
if(a[j]<b[k]) {
c[j+k] = a[j];
j++;
}
else if(a[j]==b[k]) {
if(a[j]<b[k]) {
c[j+k] = a[j];
j++;
}
else {
c[j+k] = b[k];
k++;
}
}
else {
c[j+k] = b[k];
k++;
}
}
}
return c;
}
static long[] Msort(long[] unsorted){
int l = unsorted.length;
if(l<=1) {
return unsorted;
}
else {
long[] Msorted = new long[l];
long[] m1 = new long[l/2];
long[] m2 = new long[l-(l/2)];
for(int i=0; i<l; i++) {
if(i<l/2) {
m1[i] = unsorted[i];
}
else {
m2[i-(l/2)] = unsorted[i];
}
}
Msorted = merge(Msort(m1), Msort(m2));
return Msorted;
}
}
private static long inf = 1<<27;
private static long ans;
private static long n;
private static long k;
private static long[] arr;
private static char[] str;
private final static long qwerty = 1000000007;
private static boolean bruh;
private static class Node implements Comparable<Node> {
public int i;
public int v;
public char ch;
public Node(int ix, int x, char c) {
// TODO Auto-generated constructor stub
i=ix;
v=x;
ch=c;
}
@Override
public int compareTo(Node o) {
// TODO Auto-generated method stub
return this.v - o.v;
}
}
public static void main(String[] args) throws IOException {
ans = 0;
Reader.init(System.in);
OutputStream out = new BufferedOutputStream(System.out);
int tc=1;
tc = Reader.nextInt();
main_loop:
for(int tn=0; tn<tc; tn++) {
ans=0;
bruh = false;
n=tn+1;
n = Reader.nextInt();
k = Reader.nextInt();
int n1 = (int) n;
arrInp(n1);
Node[] odd = new Node[n1];
Node[] even = new Node[n1];
int io=0,ie=0;
for(int i=0; i<n1; i++) {
char dir = Reader.next().charAt(0);
if((arr[i]&1)==1)
odd[io++] = new Node(i, (int) arr[i], dir);
else
even[ie++] = new Node(i, (int) arr[i], dir);
}
for(int i=0; i<n; i++) {
arr[i]=-1;
}
odd = Msort(Arrays.copyOfRange(odd, 0, io));
even = Msort(Arrays.copyOfRange(even, 0, ie));
int a=-1,b=-1;
Node[] stack = new Node[n1];
int l=0;
for(int i=0; i<io; i++) {
if(odd[i].ch=='L' && l>0 && stack[l-1].ch=='R') {
int x = odd[i].v-stack[l-1].v;
x/=2;
int ix = odd[i].i;
arr[ix] = x;
ix = stack[l-1].i;
arr[ix] = x;
l--;
}
else {
stack[l++]=odd[i];
}
}
for(int i=1; i<l; i+=2) {
long x1 = stack[i-1].v;
long x2 = stack[i].v;
if(stack[i].ch=='L') {
long x = x1+x2;
x/=2;
int ix = stack[i-1].i;
arr[ix] = x;
ix = stack[i].i;
arr[ix] = x;
}
else {
if(stack[i-1].ch=='L') {
a=i-1;
}
break;
}
}
for(int i=l-2; i>=0; i-=2) {
long x1 = k-stack[i].v;
long x2 = k-stack[i+1].v;
if(stack[i].ch=='R') {
long x = x1+x2;
x/=2;
int ix = stack[i+1].i;
arr[ix] = x;
ix = stack[i].i;
arr[ix] = x;
}
else {
if(stack[i+1].ch=='R') {
b=i+1;
}
break;
}
}
if(a!=-1 && b!=-1) {
long x1 = stack[a].v;
long x2 = k-stack[b].v;
long x = k+x1+x2;
x/=2;
int ix = stack[a].i;
arr[ix] = x;
ix = stack[b].i;
arr[ix] = x;
}
a=-1;b=-1;
stack = new Node[n1];
l=0;
for(int i=0; i<ie; i++) {
if(even[i].ch=='L' && l>0 && stack[l-1].ch=='R') {
int x = even[i].v-stack[l-1].v;
x/=2;
int ix = even[i].i;
arr[ix] = x;
ix = stack[l-1].i;
arr[ix] = x;
l--;
}
else {
stack[l++]=even[i];
}
}
for(int i=1; i<l; i+=2) {
long x1 = stack[i-1].v;
long x2 = stack[i].v;
if(stack[i].ch=='L') {
long x = x1+x2;
x/=2;
int ix = stack[i-1].i;
arr[ix] = x;
ix = stack[i].i;
arr[ix] = x;
}
else {
if(stack[i-1].ch=='L') {
a=i-1;
}
break;
}
}
for(int i=l-2; i>=0; i-=2) {
long x1 = k-stack[i].v;
long x2 = k-stack[i+1].v;
if(stack[i].ch=='R') {
long x = x1+x2;
x/=2;
int ix = stack[i+1].i;
arr[ix] = x;
ix = stack[i].i;
arr[ix] = x;
}
else {
if(stack[i+1].ch=='R') {
b=i+1;
}
break;
}
}
if(a!=-1 && b!=-1) {
long x1 = stack[a].v;
long x2 = k-stack[b].v;
long x = k+x1+x2;
x/=2;
int ix = stack[a].i;
arr[ix] = x;
ix = stack[b].i;
arr[ix] = x;
}
for(int i=0; i<n1; i++) {
ans=arr[i];
out.write((ans+" ").getBytes());
}
// out.write(("YES").getBytes());
// out.write(("NO").getBytes());
// out.write((ans+" ").getBytes());
out.write(("\n").getBytes());
}
out.flush();
out.close();
}
static Node[] merge(Node[] a, Node[] b) {
int m = a.length;
int n = b.length;
Node [] c = new Node[n+m];
int j=0, k=0;
while(j+k<m+n) {
if(j>=m) {
c[j+k] = b[k];
k++;
}
else if(k>=n) {
c[j+k] = a[j];
j++;
}
else {
if(a[j].compareTo(b[k])<0) {
c[j+k] = a[j];
j++;
}
else {
c[j+k] = b[k];
k++;
}
}
}
return c;
}
static Node[] Msort(Node[] unsorted){
int l = unsorted.length;
if(l<=1) {
return unsorted;
}
else {
Node[] Msorted = new Node[l];
Node[] m1 = new Node[l/2];
Node[] m2 = new Node[l-(l/2)];
for(int i=0; i<l; i++) {
if(i<l/2) {
m1[i] = unsorted[i];
}
else {
m2[i-(l/2)] = unsorted[i];
}
}
Msorted = merge(Msort(m1), Msort(m2));
return Msorted;
}
}
}
|
Java
|
["5\n7 12\n1 2 3 4 9 10 11\nR R L L R R R\n2 10\n1 6\nR R\n2 10\n1 3\nL L\n1 10\n5\nR\n7 8\n6 1 7 2 3 5 4\nR L R L L L L"]
|
2 seconds
|
["1 1 1 1 2 -1 2 \n-1 -1 \n2 2 \n-1 \n-1 2 7 3 2 7 3"]
|
NoteHere is the picture for the seconds $$$0, 1, 2$$$ and $$$3$$$ of the first testcase: Notice that robots $$$2$$$ and $$$3$$$ don't collide because they meet at the same point $$$2.5$$$, which is not integer.After second $$$3$$$ robot $$$6$$$ just drive infinitely because there's no robot to collide with.
|
Java 11
|
standard input
|
[
"data structures",
"greedy",
"implementation",
"sortings"
] |
1a28b972e77966453cd8239cc5c8f59a
|
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$) — the number of testcases. Then the descriptions of $$$t$$$ testcases follow. The first line of each testcase contains two integers $$$n$$$ and $$$m$$$ ($$$1 \le n \le 3 \cdot 10^5$$$; $$$2 \le m \le 10^8$$$) — the number of robots and the coordinate of the right wall. The second line of each testcase contains $$$n$$$ integers $$$x_1, x_2, \dots, x_n$$$ ($$$0 < x_i < m$$$) — the starting coordinates of the robots. The third line of each testcase contains $$$n$$$ space-separated characters 'L' or 'R' — the starting directions of the robots ('L' stands for left and 'R' stands for right). All coordinates $$$x_i$$$ in the testcase are distinct. The sum of $$$n$$$ over all testcases doesn't exceed $$$3 \cdot 10^5$$$.
| 2,000
|
For each testcase print $$$n$$$ integers — for the $$$i$$$-th robot output the time it explodes at if it does and $$$-1$$$ otherwise.
|
standard output
| |
PASSED
|
5c74cedd4f83499cfbb5f57a251f3d38
|
train_110.jsonl
|
1621152000
|
There are $$$n$$$ robots driving along an OX axis. There are also two walls: one is at coordinate $$$0$$$ and one is at coordinate $$$m$$$.The $$$i$$$-th robot starts at an integer coordinate $$$x_i~(0 < x_i < m)$$$ and moves either left (towards the $$$0$$$) or right with the speed of $$$1$$$ unit per second. No two robots start at the same coordinate.Whenever a robot reaches a wall, it turns around instantly and continues his ride in the opposite direction with the same speed.Whenever several robots meet at the same integer coordinate, they collide and explode into dust. Once a robot has exploded, it doesn't collide with any other robot. Note that if several robots meet at a non-integer coordinate, nothing happens.For each robot find out if it ever explodes and print the time of explosion if it happens and $$$-1$$$ otherwise.
|
256 megabytes
|
import java.io.*;
import java.util.*;
import java.util.StringTokenizer;
public class Main {
public static void main(String[] args) throws IOException {
// InputReader sc = new InputReader(System.in);
// PrintWriter out = new PrintWriter(System.out);
BufferedReader br = new BufferedReader(
new InputStreamReader(System.in));
FastReader reader =new FastReader();
BufferedWriter output = new BufferedWriter(
new OutputStreamWriter(System.out));
int test = reader.nextInt();
for (int o = 0; o < test; o++){
int n = reader.nextInt(); int m = reader.nextInt();
int[] ans1 = new int[n];
int[] ans2 = new int[n];
for (int i = 0; i < n; i++){ans1[i] = reader.nextInt();}
for (int i = 0; i < n; i++){String jk = reader.next(); ans2[i] = jk.equals("R") ? 1 : -1;}
Robot[] robots = new Robot[n];
for (int i = 0; i < n; i++){robots[i] = new Robot(ans2[i], i, ans1[i]);}
int[] ans =new int[n];
Arrays.sort(robots, new Comparator<Robot>() {
@Override
public int compare(Robot o1, Robot o2) {
return o1.start - o2.start;
}
});
Arrays.fill(ans, -1);
ArrayList<Robot> even = new ArrayList<>();
ArrayList<Robot> odd = new ArrayList<>();
for (int i =0; i < n; i++){
if (robots[i].start % 2 == 0){even.add(robots[i]);}
else {odd.add(robots[i]);}
}
processing(even, ans, m);
processing(odd, ans, m);
for (int i = 0; i < n; i++){
System.out.print(ans[i] + " ");
}
System.out.println("");
}
}
public static void processing(ArrayList<Robot> robots, int[] ans, int m){
Stack<Robot> stack = new Stack<>();
Collections.sort(robots, new Comparator<Robot>() {
@Override
public int compare(Robot o1, Robot o2) {
return o1.start - o2.start;
}
});
for (Robot robot: robots){
if (robot.dir == -1){
if (stack.isEmpty()){
stack.push(robot);
}
else {
Robot kk = stack.pop();
int s1 = robot.start; int s2 = kk.start;
if (kk.dir == 1){
ans[kk.index] = ((s1 - s2)/2);
ans[robot.index] = ((s1 - s2)/2);
}
else {
ans[kk.index] = (s1 + s2)/2;
ans[robot.index] = (s1 + s2)/2;
}
}
}
else {
stack.push(robot);
}
}
while (stack.size() >= 2){
Robot r1 = stack.pop();
Robot r2 = stack.pop();
// System.out.println(r1.index + " " + r2.index);
if (r2.dir == 1){
ans[r1.index] = ((m - r1.start + m - r2.start)/2) ;
ans[r2.index] = ((m - r1.start + m - r2.start)/2) ;
}
else {
ans[r1.index] = ((m - r1.start + m + r2.start)/2) ;
ans[r2.index] = ((m - r1.start + m + r2.start)/2) ;
}
}
}
}
class Robot{
int dir; int index; int start;
public Robot(int dir, int index, int start){this.index = index; this.start = start; this.dir = dir; }
}
class FastReader {
BufferedReader br;
StringTokenizer st;
public FastReader() {
br = new BufferedReader(new
InputStreamReader(System.in));
}
String next() {
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
long nextLong() {
return Long.parseLong(next());
}
double nextDouble() {
return Double.parseDouble(next());
}
String nextLine() {
String str = "";
try {
str = br.readLine();
} catch (IOException e) {
e.printStackTrace();
}
return str;
}
}
|
Java
|
["5\n7 12\n1 2 3 4 9 10 11\nR R L L R R R\n2 10\n1 6\nR R\n2 10\n1 3\nL L\n1 10\n5\nR\n7 8\n6 1 7 2 3 5 4\nR L R L L L L"]
|
2 seconds
|
["1 1 1 1 2 -1 2 \n-1 -1 \n2 2 \n-1 \n-1 2 7 3 2 7 3"]
|
NoteHere is the picture for the seconds $$$0, 1, 2$$$ and $$$3$$$ of the first testcase: Notice that robots $$$2$$$ and $$$3$$$ don't collide because they meet at the same point $$$2.5$$$, which is not integer.After second $$$3$$$ robot $$$6$$$ just drive infinitely because there's no robot to collide with.
|
Java 11
|
standard input
|
[
"data structures",
"greedy",
"implementation",
"sortings"
] |
1a28b972e77966453cd8239cc5c8f59a
|
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$) — the number of testcases. Then the descriptions of $$$t$$$ testcases follow. The first line of each testcase contains two integers $$$n$$$ and $$$m$$$ ($$$1 \le n \le 3 \cdot 10^5$$$; $$$2 \le m \le 10^8$$$) — the number of robots and the coordinate of the right wall. The second line of each testcase contains $$$n$$$ integers $$$x_1, x_2, \dots, x_n$$$ ($$$0 < x_i < m$$$) — the starting coordinates of the robots. The third line of each testcase contains $$$n$$$ space-separated characters 'L' or 'R' — the starting directions of the robots ('L' stands for left and 'R' stands for right). All coordinates $$$x_i$$$ in the testcase are distinct. The sum of $$$n$$$ over all testcases doesn't exceed $$$3 \cdot 10^5$$$.
| 2,000
|
For each testcase print $$$n$$$ integers — for the $$$i$$$-th robot output the time it explodes at if it does and $$$-1$$$ otherwise.
|
standard output
| |
PASSED
|
0e6a28b0b15f1e499e32724742100702
|
train_110.jsonl
|
1621152000
|
There are $$$n$$$ robots driving along an OX axis. There are also two walls: one is at coordinate $$$0$$$ and one is at coordinate $$$m$$$.The $$$i$$$-th robot starts at an integer coordinate $$$x_i~(0 < x_i < m)$$$ and moves either left (towards the $$$0$$$) or right with the speed of $$$1$$$ unit per second. No two robots start at the same coordinate.Whenever a robot reaches a wall, it turns around instantly and continues his ride in the opposite direction with the same speed.Whenever several robots meet at the same integer coordinate, they collide and explode into dust. Once a robot has exploded, it doesn't collide with any other robot. Note that if several robots meet at a non-integer coordinate, nothing happens.For each robot find out if it ever explodes and print the time of explosion if it happens and $$$-1$$$ otherwise.
|
256 megabytes
|
import static java.lang.Math.max;
import static java.lang.Math.min;
import static java.lang.Math.abs;
import java.io.*;
import java.util.*;
public class A
{
static int n, m;
static int[] x;
static char[] d;
public static void main(String[] args) throws IOException
{
f = new Flash();
out = new PrintWriter(System.out);
int T = ni();
for(int tc = 1; tc <= T; tc++){
n = ni(); m = ni(); x = arr(n); d = new char[n];
for(int i = 0; i < n; i++) d[i] = next().charAt(0);
fn();
}
out.flush(); out.close();
}
static void fn()
{
Node[] arr = new Node[n];
for(int i = 0; i < n; i++) {
arr[i] = new Node(x[i], i, d[i]);
}
Arrays.sort(arr);
Stack<Node>[] st = new Stack[2];
int[] ans = new int[n];
Arrays.fill(ans, -1);
for(int i = 0; i < 2; i++) st[i] = new Stack<Node>();
for(Node N : arr) {
int p = N.x%2;
if(N.d == 'L') {
if(st[p].isEmpty()) st[p].push(N);
else {
Node N2 = st[p].pop();
ans[N.idx] = ans[N2.idx] = (N.x - (N2.d == 'R' ? N2.x : -N2.x)) / 2;
}
}
else st[p].push(N);
}
for(int i = 0; i < 2; i++) {
while(st[i].size() > 1) {
Node N = st[i].pop(), N2 = st[i].pop();
if(N2.d == 'R') ans[N.idx] = ans[N2.idx] = ((m-N.x) + (m-N2.x)) / 2;
else ans[N.idx] = ans[N2.idx] = ((m-N.x) + N2.x + m) / 2;
}
}
print(ans);
}
static class Node implements Comparable<Node>{
int x, idx;
char d;
Node(int x, int idx, char d){
this.x = x; this.idx = idx; this.d = d;
}
public int compareTo(Node n2) {
return Integer.compare(x, n2.x);
}
}
static Flash f;
static PrintWriter out;
static final long mod = (long)1e9+7;
static final long inf = Long.MAX_VALUE;
static final int _inf = Integer.MAX_VALUE;
static final int maxN = (int)5e5+5;
static long[] fact, inv;
static void sort(int[] a){
List<Integer> A = new ArrayList<>();
for(int i : a) A.add(i);
Collections.sort(A);
for(int i = 0; i < A.size(); i++) a[i] = A.get(i);
}
static void sort(long[] a){
List<Long> A = new ArrayList<>();
for(long i : a) A.add(i);
Collections.sort(A);
for(int i = 0; i < A.size(); i++) a[i] = A.get(i);
}
static void print(int[] a){
StringBuilder sb = new StringBuilder();
for(int i = 0; i < a.length; i++) sb.append(a[i] + " ");
sop(sb);
}
static void print(long[] a){
StringBuilder sb = new StringBuilder();
for(int i = 0; i < a.length; i++) sb.append(a[i] + " ");
sop(sb);
}
static int swap(int itself, int dummy){return itself;}
static long swap(long itself, long dummy){return itself;}
static void sop(Object o){out.println(o);}
static int ni(){return f.ni();}
static long nl(){return f.nl();}
static double nd(){return f.nd();}
static String next(){return f.next();}
static String ns(){return f.ns();}
static char[] nc(){return f.nc();}
static int[] arr(int len){return f.arr(len);}
static int gcd(int a, int b){if(b == 0) return a; return gcd(b, a%b);}
static long gcd(long a, long b){if(b == 0) return a; return gcd(b, a%b);}
static int lcm(int a, int b){return (a*b)/gcd(a, b);}
static long lcm(long a, long b){return (a*b)/gcd(a, b);}
static class Flash
{
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
StringTokenizer st = new StringTokenizer("");
String next(){
while(!st.hasMoreTokens()){
try{
st = new StringTokenizer(br.readLine());
}catch(IOException e){
e.printStackTrace();
}
}
return st.nextToken();
}
String ns(){
String s = new String();
try{
s = br.readLine().trim();
}catch(IOException e){
e.printStackTrace();
}
return s;
}
int[] arr(int n){
int[] a = new int[n];
for(int i = 0; i < n; i++) a[i] = ni();
return a;
}
char[] nc(){return ns().toCharArray();}
int ni(){return Integer.parseInt(next());}
long nl(){return Long.parseLong(next());}
double nd(){return Double.parseDouble(next());}
}
}
|
Java
|
["5\n7 12\n1 2 3 4 9 10 11\nR R L L R R R\n2 10\n1 6\nR R\n2 10\n1 3\nL L\n1 10\n5\nR\n7 8\n6 1 7 2 3 5 4\nR L R L L L L"]
|
2 seconds
|
["1 1 1 1 2 -1 2 \n-1 -1 \n2 2 \n-1 \n-1 2 7 3 2 7 3"]
|
NoteHere is the picture for the seconds $$$0, 1, 2$$$ and $$$3$$$ of the first testcase: Notice that robots $$$2$$$ and $$$3$$$ don't collide because they meet at the same point $$$2.5$$$, which is not integer.After second $$$3$$$ robot $$$6$$$ just drive infinitely because there's no robot to collide with.
|
Java 11
|
standard input
|
[
"data structures",
"greedy",
"implementation",
"sortings"
] |
1a28b972e77966453cd8239cc5c8f59a
|
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$) — the number of testcases. Then the descriptions of $$$t$$$ testcases follow. The first line of each testcase contains two integers $$$n$$$ and $$$m$$$ ($$$1 \le n \le 3 \cdot 10^5$$$; $$$2 \le m \le 10^8$$$) — the number of robots and the coordinate of the right wall. The second line of each testcase contains $$$n$$$ integers $$$x_1, x_2, \dots, x_n$$$ ($$$0 < x_i < m$$$) — the starting coordinates of the robots. The third line of each testcase contains $$$n$$$ space-separated characters 'L' or 'R' — the starting directions of the robots ('L' stands for left and 'R' stands for right). All coordinates $$$x_i$$$ in the testcase are distinct. The sum of $$$n$$$ over all testcases doesn't exceed $$$3 \cdot 10^5$$$.
| 2,000
|
For each testcase print $$$n$$$ integers — for the $$$i$$$-th robot output the time it explodes at if it does and $$$-1$$$ otherwise.
|
standard output
| |
PASSED
|
4530d4a10aca394b05977c8e16cd06d9
|
train_110.jsonl
|
1621152000
|
There are $$$n$$$ robots driving along an OX axis. There are also two walls: one is at coordinate $$$0$$$ and one is at coordinate $$$m$$$.The $$$i$$$-th robot starts at an integer coordinate $$$x_i~(0 < x_i < m)$$$ and moves either left (towards the $$$0$$$) or right with the speed of $$$1$$$ unit per second. No two robots start at the same coordinate.Whenever a robot reaches a wall, it turns around instantly and continues his ride in the opposite direction with the same speed.Whenever several robots meet at the same integer coordinate, they collide and explode into dust. Once a robot has exploded, it doesn't collide with any other robot. Note that if several robots meet at a non-integer coordinate, nothing happens.For each robot find out if it ever explodes and print the time of explosion if it happens and $$$-1$$$ otherwise.
|
256 megabytes
|
//------------------>>>>>>>>>>>>>>>> HI . HOW ARE YOU? <<<<<<<<<<<<<<<<<<<<<<<<<<<<<------------------------------
import java.util.*;
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.List;
import java.util.StringTokenizer;
//---------------------------->>>>>>>>>>>>>>>>>>>>>> FK OFF <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<-------------------
//--------------------------->>>>>>>>>>>>>>>>>>>>>>>> HACKER MF <<<<<<<<<<<<-------------------------------------
public class practice{
static long[] count,count1,count2;
static boolean[] prime;
static int[] spf;
static Node[] nodes,nodes1,nodes2;
static long[] arr;
static long[][] cost;
static int[] arrInt,darrInt,farrInt;
static long[][] dp;
static char[] ch,ch1,ch2;
static long[] darr,farr;
static long[][] mat,mat1;
static boolean[] vis;
static long x,h;
static long maxl,sum,total;
static double dec;
static long mx = (long)1e7;
static long inf = (long)1e18;
static String s,s1,s2,s3,s4;
static long minl;
static long mod = (long)1e9+7;
// static int minl = -1;
// static long n;
static int n,n1,n2,q,r1,c1,r2,c2;
static int arr_size = (int)2e5+10;
static long a;
static long b;
static long c;
static long d;
static long y,z;
static int m;
static int ans;
static long k;
static FastScanner sc;
static String[] str,str1;
static Set<Long> set,set1,set2;
static SortedSet<Long> ss;
static List<Long> list,list1,list2,list3;
static PriorityQueue<Node> pq,pq1;
static LinkedList<Node> ll,ll1,ll2;
static Map<Integer,List<Node>> map;
static Map<Integer,Integer> map2;
static Map<Integer,Node> map1;
static StringBuilder sb,sb1,sb2;
static int index;
static int[] dx = {0,-1,0,1,-1,1,-1,1};
static int[] dy = {-1,0,1,0,-1,-1,1,1};
static class Node{
long first;
char second;
Node(long f,char s){
this.first = f;
this.second = s;
}
}
// public static void solve(){
//
// FastScanner sc = new FastScanner();
// int t = sc.nextInt();
// // int t = 1;
// for(int tt = 1 ; tt <= t ; tt++){
//
//// int n = sc.nextInt();
//// arr = new long[n];
////
//// for(int i = 0 ; i < n ; i++){
//// arr[i] = sc.nextLong();
//// }
//
// System.out.println("Case #"+tt+": "+cost);
//
// }
//
// }
//--------------->>>>IF YOU ARE HERE FOR QUICKSORT HACK THEN SORRY NO HACK FOR YOU<<<------------------------------
public static void solve(){
LinkedList<Long> oddL = new LinkedList<>();
LinkedList<Long> evenL = new LinkedList<>();
LinkedList<Long> evenR = new LinkedList<>();
LinkedList<Long> oddR = new LinkedList<>();
Arrays.sort(nodes, new Comparator<Node>() {
@Override
public int compare(Node a, Node b) {
return Long.compare(a.first,b.first);
}
});
Map<Long,Long> map = new HashMap<>();
for(int i = 0 ; i < n ; i++){
Node node = nodes[i];
char dir = node.second;
long pos = node.first;
if(dir == 'R'){
if(pos%2 == 0)
evenR.addLast(pos);
else
oddR.addLast(pos);
}
else{
if(pos%2 == 0){
if(evenR.isEmpty())
evenL.addLast(pos);
else{
long num = evenR.removeLast();
long time = (pos-num)/2;
map.put(num,time);
map.put(pos,time);
}
}
else{
if(oddR.isEmpty())
oddL.addLast(pos);
else{
long num = oddR.removeLast();
long time = (pos-num)/2;
map.put(num,time);
map.put(pos,time);
}
}
}
}
while(evenR.size() > 1){
long first = evenR.removeLast();
long second = evenR.removeLast();
long time = (abs(first-second))/2 + k-first;
map.put(first,time);
map.put(second,time);
}
while(oddR.size() > 1){
long first = oddR.removeLast();
long second = oddR.removeLast();
long time = (abs(first-second))/2 + k-first;
map.put(first,time);
map.put(second,time);
}
while(evenL.size() > 1){
long first = evenL.removeFirst();
long second = evenL.removeFirst();
long time = (abs(second-first))/2 + first;
map.put(first,time);
map.put(second,time);
}
while(oddL.size() > 1){
long first = oddL.removeFirst();
long second = oddL.removeFirst();
long time = (abs(second-first))/2+first;
map.put(first,time);
map.put(second,time);
}
while(evenR.size() > 0 && evenL.size() > 0){
long r = evenR.removeLast();
long l = evenL.removeFirst();
long time = l+k-r+(r-l)/2;
map.put(l,time);
map.put(r,time);
}
while(oddR.size() > 0 && oddL.size() > 0){
long r = oddR.removeLast();
long l = oddL.removeFirst();
long time = l+k-r+(r-l)/2;
map.put(l,time);
map.put(r,time);
}
for(int i = 0 ; i < n ; i++){
long num = arr[i];
if(map.containsKey(num))
sb.append(map.get(num)+" ");
else
sb.append("-1 ");
}
sb.append("\n");
}
//----------->>>>>>> SPEED UP SPEED UP . THIS IS SPEEDFORCES . SPEED UP SPEEEEEEEEEEEEEEEEEEEEEEEEEEDDDDDD <<<<<<<------------------
public static void main(String[] args) {
sc = new FastScanner();
// Scanner sc = new Scanner(System.in);
sb = new StringBuilder();
int t = sc.nextInt();
// int t = 1;
while(t > 0){
// k = sc.nextLong();
// x = sc.nextLong();
// y = sc.nextLong();
// z = sc.nextLong();
// a = sc.nextLong();
// b = sc.nextLong();
// c = sc.nextLong();
// d = sc.nextLong();
// x = sc.nextLong();
// y = sc.nextLong();
// z = sc.nextLong();
// d = sc.nextLong();
n = sc.nextInt();
// n1 = sc.nextInt();
// m = sc.nextInt();
// q = sc.nextInt();
// a = sc.nextLong();
// b = sc.nextLong();
k = sc.nextLong();
// x = sc.nextLong();
// d = sc.nextLong();
// s = sc.next();
// ch = sc.next().toCharArray();
// ch1 = sc.next().toCharArray();
// m = sc.nextInt();
// n = 6;
arr = new long[n];
for(int i = 0 ; i < n ; i++){
arr[i] = sc.nextLong();
}
// arrInt = new int[n];
// for(int i = 0 ; i < n ; i++){
// arrInt[i] = sc.nextInt();
// }
// x = sc.nextLong();
// y = sc.nextLong();
// ch = sc.next().toCharArray();
// m = n;
//// m = sc.nextInt();
// darr = new long[m];
// for(int i = 0 ; i < m ; i++){
// darr[i] = sc.nextLong();
// }
// k = sc.nextLong();
// m = n;
// darrInt = new int[n];
// for(int i = 0 ; i < n ; i++){
// darrInt[i] = sc.nextInt();
// }
// farr = new long[m];
// for(int i = 0 ; i < m ; i++){
// farr[i] = sc.nextLong();
// }
// farrInt = new int[m];
// for(int i = 0; i < m ; i++){
// farrInt[i] = sc.nextInt();
// }
// m = n;
// mat = new long[n+1][m+1];
// for(int i = 1 ; i <= n ; i++){
// for(int j = 1 ; j <= m ; j++){
// mat[i][j] = sc.nextLong();
// }
// }
// m = n;
// mat = new char[n][m];
// for(int i = 0 ; i < n ; i++){
// String s = sc.next();
// for(int j = 0 ; j < m ; j++){
// mat[i][j] = s.charAt(j);
// }
// }
// str = new String[n];
// for(int i = 0 ; i < n ; i++)
// str[i] = sc.next();
nodes = new Node[n];
for(int i = 0 ; i < n ;i++)
nodes[i] = new Node(arr[i],sc.next().charAt(0));
solve();
t -= 1;
}
System.out.print(sb);
}
public static int log(double n,double base){
if(n == 0 || n == 1)
return 0;
if(n == base)
return 1;
double num = Math.log(n);
double den = Math.log(base);
if(den == 0)
return 0;
return (int)(num/den);
}
public static boolean isPrime(long n) {
// Corner cases
if (n <= 1)
return false;
if (n <= 3)
return true;
// This is checked so that we can skip
// middle five numbers in below loop
if (n%2 == 0 || n%3 == 0)
return false;
for (int i=5; i*i<=n; i=i+6)
if (n%i == 0 || n%(i+2) == 0)
return false;
return true;
}
public static void SpecialSieve(int MAXN)
{
spf = new int[MAXN];
spf[1] = 1;
for (int i=2; i<MAXN; i++)
// marking smallest prime factor for every
// number to be itself.
spf[i] = i;
// separately marking spf for every even
// number as 2
for (int i=4; i<MAXN; i+=2)
spf[i] = 2;
for (int i=3; i*i<MAXN; i++)
{
// checking if i is prime
if (spf[i] == i)
{
// marking SPF for all numbers divisible by i
for (int j=i*i; j<MAXN; j+=i)
// marking spf[j] if it is not
// previously marked
if (spf[j]==j)
spf[j] = i;
}
}
}
public static ArrayList<Integer> getFactorization(int x)
{
ArrayList<Integer> ret = new ArrayList<Integer>();
while (x != 1)
{
ret.add(spf[x]);
x = x / spf[x];
}
return ret;
}
public static long gcd(long a, long b)
{
if (b == 0)
return a;
return gcd(b, a % b);
}
public static long lcm(long a, long b)
{
return (b/gcd(b, a % b)) * a;
}
public static long mod_inverse(long a,long mod){
long x1=1,x2=0;
long p=mod,q,t;
while(a%p!=0){
q = a/p;
t = x1-q*x2;
x1=x2; x2=t;
t=a%p;
a=p; p=t;
}
return x2<0 ? x2+mod : x2;
}
public static void swap(int[] curr,int i,int j){
int temp = curr[j];
curr[j] = curr[i];
curr[i] = temp;
}
static final Random random=new Random();
static void ruffleSortLong(long[] a) {
int n=a.length;//shuffle, then sort
for (int i=0; i<n; i++) {
int oi=random.nextInt(n);
long temp=a[oi];
a[oi]=a[i]; a[i]=temp;
}
Arrays.sort(a);
}
static void ruffleSortInt(int[] a) {
int n=a.length;//shuffle, then sort
for (int i=0; i<n; i++) {
int oi=random.nextInt(n);
int temp=a[oi];
a[oi]=a[i]; a[i]=temp;
}
Arrays.sort(a);
}
static void ruffleSortChar(char[] a) {
int n=a.length;//shuffle, then sort
for (int i=0; i<n; i++) {
int oi=random.nextInt(n);
char temp=a[oi];
a[oi]=a[i]; a[i]=temp;
}
Arrays.sort(a);
}
static long binomialCoeff(long n, long k){
long res = 1;
// Since C(n, k) = C(n, n-k)
if (k > n - k)
k = n - k;
// Calculate value of
// [n * (n-1) *---* (n-k+1)] / [k * (k-1) *----* 1]
for (long i = 0; i < k; ++i) {
res = (res*(n - i));
res = (res/(i + 1));
}
return res;
}
static long mod(long x)
{
long y = mod;
long result = x % y;
if (result < 0)
{
result += y;
}
return result;
}
static long[] fact;
public static long inv(long n){
return power(n, mod-2);
}
public static void fact(int n){
fact = new long[n+1];
fact[0] = 1;
for(int j = 1;j<=n;j++)
fact[j] = (fact[j-1]*(long)j)%mod;
}
public static long binom(int n, int k){
long prod = fact[n];
prod*=inv(fact[n-k]);
prod%=mod;
prod*=inv(fact[k]);
prod%=mod;
return prod;
}
static long power(long x, long y){
if (y == 0)
return 1;
if (y%2 == 1)
return (x*power(x, y-1))%mod;
return power((x*x)%mod, y/2)%mod;
}
static void sieve(int n){
prime = new boolean[n+1];
for(int i=2;i<n;i++)
prime[i] = true;
for(int p = 2; p*p <=n; p++)
{
if(prime[p])
{
for(int i = p*p; i <= n; i += p)
prime[i] = false;
}
}
}
static long abs(long a){
return Math.abs(a);
}
static int abs(int a){
return Math.abs(a);
}
static int max(int a,int b){
if(a>b)
return a;
else
return b;
}
static double max(double a,double b){
if(a>b)
return a;
else
return b;
}
static double min(double a,double b){
if(a>b)
return b;
else
return a;
}
static int min(int a,int b){
if(a>b)
return b;
else
return a;
}
static long max(long a,long b){
if(a>b)
return a;
else
return b;
}
static long min(long a,long b){
if(a>b)
return b;
else
return a;
}
static long sq(long num){
return num*num;
}
static double sq(double num){
return num*num;
}
static long sqrt(long num){
return (long)Math.sqrt(num);
}
static double sqrt(double num){
return Math.sqrt(num);
}
static class FastScanner {
BufferedReader br=new BufferedReader(new InputStreamReader(System.in));
StringTokenizer st=new StringTokenizer("");
String next() {
while (!st.hasMoreTokens())
try {
st=new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
void readArray(int n) {
arr = new long[n];
for (int i = 0; i < n; i++)
arr[i] = nextLong();
}
long nextLong() {
return Long.parseLong(next());
}
}
}
|
Java
|
["5\n7 12\n1 2 3 4 9 10 11\nR R L L R R R\n2 10\n1 6\nR R\n2 10\n1 3\nL L\n1 10\n5\nR\n7 8\n6 1 7 2 3 5 4\nR L R L L L L"]
|
2 seconds
|
["1 1 1 1 2 -1 2 \n-1 -1 \n2 2 \n-1 \n-1 2 7 3 2 7 3"]
|
NoteHere is the picture for the seconds $$$0, 1, 2$$$ and $$$3$$$ of the first testcase: Notice that robots $$$2$$$ and $$$3$$$ don't collide because they meet at the same point $$$2.5$$$, which is not integer.After second $$$3$$$ robot $$$6$$$ just drive infinitely because there's no robot to collide with.
|
Java 11
|
standard input
|
[
"data structures",
"greedy",
"implementation",
"sortings"
] |
1a28b972e77966453cd8239cc5c8f59a
|
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$) — the number of testcases. Then the descriptions of $$$t$$$ testcases follow. The first line of each testcase contains two integers $$$n$$$ and $$$m$$$ ($$$1 \le n \le 3 \cdot 10^5$$$; $$$2 \le m \le 10^8$$$) — the number of robots and the coordinate of the right wall. The second line of each testcase contains $$$n$$$ integers $$$x_1, x_2, \dots, x_n$$$ ($$$0 < x_i < m$$$) — the starting coordinates of the robots. The third line of each testcase contains $$$n$$$ space-separated characters 'L' or 'R' — the starting directions of the robots ('L' stands for left and 'R' stands for right). All coordinates $$$x_i$$$ in the testcase are distinct. The sum of $$$n$$$ over all testcases doesn't exceed $$$3 \cdot 10^5$$$.
| 2,000
|
For each testcase print $$$n$$$ integers — for the $$$i$$$-th robot output the time it explodes at if it does and $$$-1$$$ otherwise.
|
standard output
| |
PASSED
|
2870351ff8b0b1a568494d8bc56ed807
|
train_110.jsonl
|
1621152000
|
There are $$$n$$$ robots driving along an OX axis. There are also two walls: one is at coordinate $$$0$$$ and one is at coordinate $$$m$$$.The $$$i$$$-th robot starts at an integer coordinate $$$x_i~(0 < x_i < m)$$$ and moves either left (towards the $$$0$$$) or right with the speed of $$$1$$$ unit per second. No two robots start at the same coordinate.Whenever a robot reaches a wall, it turns around instantly and continues his ride in the opposite direction with the same speed.Whenever several robots meet at the same integer coordinate, they collide and explode into dust. Once a robot has exploded, it doesn't collide with any other robot. Note that if several robots meet at a non-integer coordinate, nothing happens.For each robot find out if it ever explodes and print the time of explosion if it happens and $$$-1$$$ otherwise.
|
256 megabytes
|
import java.util.*;
public class GOOD_bot_collisions {
public static void solve(List<Robot> v, int[] ans, int m) {
Stack<Robot> stk = new Stack<>();
for (Robot r: v) {
if (r.dir == -1) {
if (stk.isEmpty()) {
stk.push(r);
} else {
Robot r2 = stk.pop();
if (r2.dir == 1) {
ans[r.id] = (r.x - r2.x) / 2;
ans[r2.id] = (r.x - r2.x) / 2;
} else {
ans[r.id] = (r.x + r2.x) / 2;
ans[r2.id] = (r.x + r2.x) / 2;
}
}
} else {
stk.push(r);
}
}
while (stk.size() >= 2) {
Robot r = stk.pop();
Robot r2 = stk.pop();
if (r2.dir == 1) {
ans[r.id] = (m - r.x + m - r2.x) / 2;
ans[r2.id] = (m - r.x + m - r2.x) / 2;
} else {
ans[r.id] = (m - r.x + m + r2.x) / 2;
ans[r2.id] = (m - r.x + m + r2.x) / 2;
}
}
}
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
int t = sc.nextInt();
while (t-- > 0) {
int n = sc.nextInt();
int m = sc.nextInt();
int[] pos = new int[n];
String[] dir = new String[n];
for (int i = 0; i < n; i++) pos[i] = sc.nextInt();
for (int i = 0; i < n; i++) dir[i] = sc.next();
Robot[] robots = new Robot[n];
for (int i = 0; i < n; i++) {
robots[i] = new Robot(pos[i], dir[i].equals("R") ? 1 : -1, i);
}
Arrays.sort(robots, (a, b) -> a.x - b.x);
List<Robot> e = new ArrayList<>();
List<Robot> o = new ArrayList<>();
for (int i=0 ; i<robots.length ; i++) {
if (robots[i].x % 2 == 0) {
e.add(robots[i]);
} else {
o.add(robots[i]);
}
}
int[] ans = new int[n];
for (int i = 0; i < n; i++) {
ans[i] = -1;
}
solve(e, ans, m);
solve(o, ans, m);
for (int i = 0; i < n; i++)
System.out.print(ans[i] + " ");
System.out.println("");
}
}
}
class Robot {
int x, dir, id;
Robot(int x, int dir, int id) {
this.x = x;
this.dir = dir;
this.id = id;
}
}
|
Java
|
["5\n7 12\n1 2 3 4 9 10 11\nR R L L R R R\n2 10\n1 6\nR R\n2 10\n1 3\nL L\n1 10\n5\nR\n7 8\n6 1 7 2 3 5 4\nR L R L L L L"]
|
2 seconds
|
["1 1 1 1 2 -1 2 \n-1 -1 \n2 2 \n-1 \n-1 2 7 3 2 7 3"]
|
NoteHere is the picture for the seconds $$$0, 1, 2$$$ and $$$3$$$ of the first testcase: Notice that robots $$$2$$$ and $$$3$$$ don't collide because they meet at the same point $$$2.5$$$, which is not integer.After second $$$3$$$ robot $$$6$$$ just drive infinitely because there's no robot to collide with.
|
Java 11
|
standard input
|
[
"data structures",
"greedy",
"implementation",
"sortings"
] |
1a28b972e77966453cd8239cc5c8f59a
|
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$) — the number of testcases. Then the descriptions of $$$t$$$ testcases follow. The first line of each testcase contains two integers $$$n$$$ and $$$m$$$ ($$$1 \le n \le 3 \cdot 10^5$$$; $$$2 \le m \le 10^8$$$) — the number of robots and the coordinate of the right wall. The second line of each testcase contains $$$n$$$ integers $$$x_1, x_2, \dots, x_n$$$ ($$$0 < x_i < m$$$) — the starting coordinates of the robots. The third line of each testcase contains $$$n$$$ space-separated characters 'L' or 'R' — the starting directions of the robots ('L' stands for left and 'R' stands for right). All coordinates $$$x_i$$$ in the testcase are distinct. The sum of $$$n$$$ over all testcases doesn't exceed $$$3 \cdot 10^5$$$.
| 2,000
|
For each testcase print $$$n$$$ integers — for the $$$i$$$-th robot output the time it explodes at if it does and $$$-1$$$ otherwise.
|
standard output
| |
PASSED
|
9985220218102714c9ee06619da663f7
|
train_110.jsonl
|
1621152000
|
There are $$$n$$$ robots driving along an OX axis. There are also two walls: one is at coordinate $$$0$$$ and one is at coordinate $$$m$$$.The $$$i$$$-th robot starts at an integer coordinate $$$x_i~(0 < x_i < m)$$$ and moves either left (towards the $$$0$$$) or right with the speed of $$$1$$$ unit per second. No two robots start at the same coordinate.Whenever a robot reaches a wall, it turns around instantly and continues his ride in the opposite direction with the same speed.Whenever several robots meet at the same integer coordinate, they collide and explode into dust. Once a robot has exploded, it doesn't collide with any other robot. Note that if several robots meet at a non-integer coordinate, nothing happens.For each robot find out if it ever explodes and print the time of explosion if it happens and $$$-1$$$ otherwise.
|
256 megabytes
|
import java.io.*;
import java.util.*;
public class C implements Runnable {
void solve() throws IOException {
int t = ri();
while (t-- > 0) {
int n = ri(), limit = ri();
Node[] x = new Node[n];
for (int i = 0; i < n; i++) {
x[i] = new Node(i, ri());
}
for (int i = 0; i < n; i++) {
x[i].setDir(rc());
}
Arrays.sort(x, Comparator.comparingInt(o -> o.val));
Node[] ans = new Node[n];
ArrayDeque<Node> odd = new ArrayDeque<>(), even = new ArrayDeque<>();
for (Node curr : x) {
if ((curr.val & 1) == 1) {
// If it is odd
if (curr.isLeft) {
// It should destroy some other robot if possible
if (!odd.isEmpty()) {
Node opp = odd.pollLast();
ans[opp.index] = curr;
ans[curr.index] = opp;
}else odd.add(curr);
} else {
odd.add(curr);
}
} else {
// If it is even
if (curr.isLeft) {
if (!even.isEmpty()) {
Node opp = even.pollLast();
ans[opp.index] = curr;
ans[curr.index] = opp;
}else even.add(curr);
} else {
even.add(curr);
}
}
}
while (odd.size() >= 2) {
Node first = odd.pollLast();
Node second = odd.pollLast();
ans[first.index] = second;
ans[second.index] = first;
}
while (even.size() >= 2) {
Node first = even.pollLast();
Node second = even.pollLast();
ans[first.index] = second;
ans[second.index] = first;
}
int[] res = iArr(n);
for (int i = 0; i < n; i++) {
Node curr = x[i];
int ansIndex = curr.index;
if (ans[curr.index] == null) {
res[curr.index] = -1;
} else {
// We have the answer
Node opp = ans[curr.index];
if (curr.val > opp.val) {
Node temp = curr;
curr = opp;
opp = temp;
}
if (!curr.isLeft && opp.isLeft) {
res[ansIndex] = (opp.val - curr.val) / 2;
} else if (curr.isLeft && opp.isLeft) {
res[ansIndex] = (opp.val + curr.val) / 2;
} else if (!curr.isLeft && !opp.isLeft) {
res[ansIndex] = (limit - curr.val + limit - opp.val) / 2;
} else {
res[ansIndex] = (limit + curr.val + limit - opp.val) / 2;
}
}
}
for (int i = 0; i < n; i++) {
sbr.append(res[i]).append(" ");
}
println(sbr.toString());
sbr = new StringBuilder();
}
}
class Node {
int index;
int val;
boolean isLeft;
public Node(int x, int val) {
index = x;
this.val = val;
}
void setDir(char c) {
isLeft = (c == 'L');
}
}
/************************************************************************************************************************************************/
public static void main(String[] args) throws IOException {
new Thread(null, new C(), "1").start();
}
static PrintWriter out = new PrintWriter(System.out);
static Reader read = new Reader();
static StringBuilder sbr = new StringBuilder();
static int mod = (int) 1e9 + 7;
static int dmax = Integer.MAX_VALUE;
static long lmax = Long.MAX_VALUE;
static int dmin = Integer.MIN_VALUE;
static long lmin = Long.MIN_VALUE;
@Override
public void run() {
try {
solve();
out.close();
} catch (IOException e) {
e.printStackTrace();
System.exit(1);
}
}
static class Reader {
private byte[] buf = new byte[1024];
private int index;
private InputStream in;
private int total;
public Reader() {
in = System.in;
}
public int scan() throws IOException {
if (total < 0)
throw new InputMismatchException();
if (index >= total) {
index = 0;
total = in.read(buf);
if (total <= 0)
return -1;
}
return buf[index++];
}
public int intNext() throws IOException {
int integer = 0;
int n = scan();
while (isWhiteSpace(n))
n = scan();
int neg = 1;
if (n == '-') {
neg = -1;
n = scan();
}
while (!isWhiteSpace(n)) {
if (n >= '0' && n <= '9') {
integer *= 10;
integer += n - '0';
n = scan();
} else
throw new InputMismatchException();
}
return neg * integer;
}
public double doubleNext() throws IOException {
double doub = 0;
int n = scan();
while (isWhiteSpace(n))
n = scan();
int neg = 1;
if (n == '-') {
neg = -1;
n = scan();
}
while (!isWhiteSpace(n) && n != '.') {
if (n >= '0' && n <= '9') {
doub *= 10;
doub += n - '0';
n = scan();
} else
throw new InputMismatchException();
}
if (n == '.') {
n = scan();
double temp = 1;
while (!isWhiteSpace(n)) {
if (n >= '0' && n <= '9') {
temp /= 10;
doub += (n - '0') * temp;
n = scan();
} else
throw new InputMismatchException();
}
}
return doub * neg;
}
public String read() throws IOException {
StringBuilder sb = new StringBuilder();
int n = scan();
while (isWhiteSpace(n))
n = scan();
while (!isWhiteSpace(n)) {
sb.append((char) n);
n = scan();
}
return sb.toString();
}
private boolean isWhiteSpace(int n) {
if (n == ' ' || n == '\n' || n == '\r' || n == '\t' || n == -1)
return true;
return false;
}
}
static void shuffle(int[] aa) {
int n = aa.length;
Random rand = new Random();
for (int i = 1; i < n; i++) {
int j = rand.nextInt(i + 1);
int tmp = aa[i];
aa[i] = aa[j];
aa[j] = tmp;
}
}
static void shuffle(int[][] aa) {
int n = aa.length;
Random rand = new Random();
for (int i = 1; i < n; i++) {
int j = rand.nextInt(i + 1);
int first = aa[i][0];
int second = aa[i][1];
aa[i][0] = aa[j][0];
aa[i][1] = aa[j][1];
aa[j][0] = first;
aa[j][1] = second;
}
}
// Gives strict lowerBound that previous number would be smaller than the target
int lowerBound(int[] arr, int val) {
int l = 0, r = arr.length - 1;
while (l < r) {
int mid = (r + l) >> 1;
if (arr[mid] >= val) {
r = mid;
} else
l = mid + 1;
}
return l;
}
// Gives strict upperBound that next number would be greater than the target
int upperBound(int[] arr, int val) {
int l = 0, r = arr.length - 1;
while (l < r) {
int mid = (r + l + 1) >> 1;
if (arr[mid] <= val) {
l = mid;
} else
r = mid - 1;
}
return l;
}
static void print(Object object) {
out.print(object);
}
static void println(Object object) {
out.println(object);
}
static int[] iArr(int len) {
return new int[len];
}
static long[] lArr(int len) {
return new long[len];
}
static long min(long a, long b) {
return Math.min(a, b);
}
static int min(int a, int b) {
return Math.min(a, b);
}
static long max(Long a, Long b) {
return Math.max(a, b);
}
static int max(int a, int b) {
return Math.max(a, b);
}
static int ri() throws IOException {
return read.intNext();
}
static long rl() throws IOException {
return Long.parseLong(read.read());
}
static String rs() throws IOException {
return read.read();
}
static char rc() throws IOException {
return rs().charAt(0);
}
static double rd() throws IOException {
return read.doubleNext();
}
}
|
Java
|
["5\n7 12\n1 2 3 4 9 10 11\nR R L L R R R\n2 10\n1 6\nR R\n2 10\n1 3\nL L\n1 10\n5\nR\n7 8\n6 1 7 2 3 5 4\nR L R L L L L"]
|
2 seconds
|
["1 1 1 1 2 -1 2 \n-1 -1 \n2 2 \n-1 \n-1 2 7 3 2 7 3"]
|
NoteHere is the picture for the seconds $$$0, 1, 2$$$ and $$$3$$$ of the first testcase: Notice that robots $$$2$$$ and $$$3$$$ don't collide because they meet at the same point $$$2.5$$$, which is not integer.After second $$$3$$$ robot $$$6$$$ just drive infinitely because there's no robot to collide with.
|
Java 11
|
standard input
|
[
"data structures",
"greedy",
"implementation",
"sortings"
] |
1a28b972e77966453cd8239cc5c8f59a
|
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$) — the number of testcases. Then the descriptions of $$$t$$$ testcases follow. The first line of each testcase contains two integers $$$n$$$ and $$$m$$$ ($$$1 \le n \le 3 \cdot 10^5$$$; $$$2 \le m \le 10^8$$$) — the number of robots and the coordinate of the right wall. The second line of each testcase contains $$$n$$$ integers $$$x_1, x_2, \dots, x_n$$$ ($$$0 < x_i < m$$$) — the starting coordinates of the robots. The third line of each testcase contains $$$n$$$ space-separated characters 'L' or 'R' — the starting directions of the robots ('L' stands for left and 'R' stands for right). All coordinates $$$x_i$$$ in the testcase are distinct. The sum of $$$n$$$ over all testcases doesn't exceed $$$3 \cdot 10^5$$$.
| 2,000
|
For each testcase print $$$n$$$ integers — for the $$$i$$$-th robot output the time it explodes at if it does and $$$-1$$$ otherwise.
|
standard output
| |
PASSED
|
a1b6dd090c775270edf1783e385bd82a
|
train_110.jsonl
|
1621152000
|
There are $$$n$$$ robots driving along an OX axis. There are also two walls: one is at coordinate $$$0$$$ and one is at coordinate $$$m$$$.The $$$i$$$-th robot starts at an integer coordinate $$$x_i~(0 < x_i < m)$$$ and moves either left (towards the $$$0$$$) or right with the speed of $$$1$$$ unit per second. No two robots start at the same coordinate.Whenever a robot reaches a wall, it turns around instantly and continues his ride in the opposite direction with the same speed.Whenever several robots meet at the same integer coordinate, they collide and explode into dust. Once a robot has exploded, it doesn't collide with any other robot. Note that if several robots meet at a non-integer coordinate, nothing happens.For each robot find out if it ever explodes and print the time of explosion if it happens and $$$-1$$$ otherwise.
|
256 megabytes
|
//package robotcollisions;
import java.util.*;
import java.io.*;
public class robotcollosions {
static int[] ans;
static boolean[] v;
static int m;
public static void solve(int[][] robots) {
//System.out.println("FUNCTION CALL");
TreeSet<int[]> left = new TreeSet<int[]>((a, b) -> a[0] - b[0]);
TreeSet<int[]> right = new TreeSet<int[]>((a, b) -> a[0] - b[0]);
for(int i = 0; i < robots.length; i++) {
if(robots[i][1] == 0) {
left.add(new int[] {robots[i][0], robots[i][2]});
}
else {
right.add(new int[] {robots[i][0], robots[i][2]});
}
}
//System.out.print("LEFT: ");
// for(int[] i : left) {
// //System.out.print("[" + i[0] + ", " + i[1] + "] ");
// }
//System.out.println();
//System.out.print("RIGHT: ");
// for(int[] i : right) {
// //System.out.print("[" + i[0] + ", " + i[1] + "] ");
// }
//System.out.println();
int[] pointer = new int[] {0, 0};
while(left.ceiling(pointer) != null) {
pointer = left.ceiling(pointer);
////System.out.println(pointer[0] + " " + pointer[1]);
if(right.floor(pointer) != null) {
int[] next = right.floor(pointer);
left.remove(pointer);
right.remove(next);
ans[pointer[1]] = (pointer[0] - next[0]) / 2;
ans[next[1]] = (pointer[0] - next[0]) / 2;
}
else {
pointer = new int[] {pointer[0] + 1, pointer[1]};
}
}
//System.out.println("REMAINING LEFT: " + left.size() + " REMAINING RIGHT: " + right.size());
while(left.size() > 1) {
int[] a = left.pollFirst();
int[] b = left.pollFirst();
ans[a[1]] = (a[0] + b[0]) / 2;
ans[b[1]] = (a[0] + b[0]) / 2;
//System.out.println("LEFTWARDS: " + a[0] + " " + b[0] + " " + v.length);
}
while(right.size() > 1) {
int[] a = right.pollLast();
int[] b = right.pollLast();
ans[a[1]] = ((m - a[0]) + (m - b[0])) / 2;
ans[b[1]] = ((m - a[0]) + (m - b[0])) / 2;
}
if(left.size() == 1 && right.size() == 1) {
int[] a = right.pollLast();
int[] b = left.pollFirst();
//System.out.println("FINAL CLAUSE: " + (m + (m - a[0])) + " " + b[0] + " " + a[0] + " " + b[0]);
ans[a[1]] = (m + (m - a[0]) + b[0]) / 2;
ans[b[1]] = (m + (m - a[0]) + b[0]) / 2;
}
//System.out.println();
}
public static void main(String[] args) throws IOException {
BufferedReader fin = new BufferedReader(new InputStreamReader(System.in));
int t = Integer.parseInt(fin.readLine());
StringBuilder fout = new StringBuilder();
while(t-- > 0) {
StringTokenizer st = new StringTokenizer(fin.readLine());
int n = Integer.parseInt(st.nextToken());
m = Integer.parseInt(st.nextToken());
int[] nums = new int[n];
char[] directions = new char[n];
st = new StringTokenizer(fin.readLine());
StringTokenizer st2 = new StringTokenizer(fin.readLine());
int numEven = 0;
for(int i = 0; i < n; i++) {
nums[i] = Integer.parseInt(st.nextToken());
directions[i] = st2.nextToken().charAt(0);
if(nums[i] % 2 == 0) {
numEven ++;
}
}
ans = new int[n];
v = new boolean[n];
Arrays.fill(ans, -1);
int[][] next = new int[numEven][3]; //initial position, direction, id
int pointer = 0;
//System.out.print("INPUT EVEN: ");
for(int i = 0; i < n; i++) {
if(nums[i] % 2 == 0) {
//System.out.print("{" + nums[i] + ", " + directions[i] + "} ");
next[pointer][0] = nums[i];
next[pointer][1] = directions[i] == 'R'? 1 : 0; //1 for right, 0 for left
next[pointer][2] = i;
pointer ++;
}
}
//System.out.println();
Arrays.sort(next, (a, b) -> a[0] - b[0]);
solve(next);
next = new int[n - numEven][3];
pointer = 0;
//System.out.print("INPUT ODD: ");
for(int i = 0; i < n; i++) {
if(nums[i] % 2 == 1) {
//System.out.print("{" + nums[i] + ", " + directions[i] + "} ");
next[pointer][0] = nums[i];
next[pointer][1] = directions[i] == 'R'? 1 : 0; //1 for right, 0 for left
next[pointer][2] = i;
pointer ++;
}
}
//System.out.println();
Arrays.sort(next, (a, b) -> a[0] - b[0]);
solve(next);
for(int i : ans) {
fout.append(i).append(" ");
}
fout.append("\n");
////System.out.print(fout);;
}
System.out.print(fout);
}
}
|
Java
|
["5\n7 12\n1 2 3 4 9 10 11\nR R L L R R R\n2 10\n1 6\nR R\n2 10\n1 3\nL L\n1 10\n5\nR\n7 8\n6 1 7 2 3 5 4\nR L R L L L L"]
|
2 seconds
|
["1 1 1 1 2 -1 2 \n-1 -1 \n2 2 \n-1 \n-1 2 7 3 2 7 3"]
|
NoteHere is the picture for the seconds $$$0, 1, 2$$$ and $$$3$$$ of the first testcase: Notice that robots $$$2$$$ and $$$3$$$ don't collide because they meet at the same point $$$2.5$$$, which is not integer.After second $$$3$$$ robot $$$6$$$ just drive infinitely because there's no robot to collide with.
|
Java 11
|
standard input
|
[
"data structures",
"greedy",
"implementation",
"sortings"
] |
1a28b972e77966453cd8239cc5c8f59a
|
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$) — the number of testcases. Then the descriptions of $$$t$$$ testcases follow. The first line of each testcase contains two integers $$$n$$$ and $$$m$$$ ($$$1 \le n \le 3 \cdot 10^5$$$; $$$2 \le m \le 10^8$$$) — the number of robots and the coordinate of the right wall. The second line of each testcase contains $$$n$$$ integers $$$x_1, x_2, \dots, x_n$$$ ($$$0 < x_i < m$$$) — the starting coordinates of the robots. The third line of each testcase contains $$$n$$$ space-separated characters 'L' or 'R' — the starting directions of the robots ('L' stands for left and 'R' stands for right). All coordinates $$$x_i$$$ in the testcase are distinct. The sum of $$$n$$$ over all testcases doesn't exceed $$$3 \cdot 10^5$$$.
| 2,000
|
For each testcase print $$$n$$$ integers — for the $$$i$$$-th robot output the time it explodes at if it does and $$$-1$$$ otherwise.
|
standard output
| |
PASSED
|
ed74a463f2c2542135e2f77bab164461
|
train_110.jsonl
|
1621152000
|
There are $$$n$$$ robots driving along an OX axis. There are also two walls: one is at coordinate $$$0$$$ and one is at coordinate $$$m$$$.The $$$i$$$-th robot starts at an integer coordinate $$$x_i~(0 < x_i < m)$$$ and moves either left (towards the $$$0$$$) or right with the speed of $$$1$$$ unit per second. No two robots start at the same coordinate.Whenever a robot reaches a wall, it turns around instantly and continues his ride in the opposite direction with the same speed.Whenever several robots meet at the same integer coordinate, they collide and explode into dust. Once a robot has exploded, it doesn't collide with any other robot. Note that if several robots meet at a non-integer coordinate, nothing happens.For each robot find out if it ever explodes and print the time of explosion if it happens and $$$-1$$$ otherwise.
|
256 megabytes
|
// Rohit Bohra | 18/05/2021 : 01:25:31
import java.io.*;
import java.util.*;
@SuppressWarnings("unchecked")
public class C{
static int[] ans;
static class Robot{
int id,x,dir;
Robot(int id,int x,int dir){
this.id=id;
this.x=x;
this.dir=dir;
}
}
public static void solve(Robot[] robots,int m){
Arrays.sort(robots,(a,b)->{
return a.x-b.x;
});
int n=robots.length;
Stack<Integer> rt = new Stack<>();
Queue<Integer> lq = new LinkedList<>();
for(int i=0;i<n;i++){
if(robots[i].dir==1) rt.add(i);
else if(!rt.isEmpty()){
// right-left collision
int j = rt.pop();
int time = (robots[i].x-robots[j].x)/2;
ans[robots[i].id]=time;
ans[robots[j].id]=time;
}else{
lq.add(i);
}
}
while(rt.size()>=2){
int i=rt.pop();
int j=rt.pop();
int time = (m-robots[i].x)+(robots[i].x-robots[j].x)/2;
ans[robots[i].id]=time;
ans[robots[j].id]=time;
}
while(lq.size()>=2){
int i=lq.poll();
int j=lq.poll();
int time = robots[i].x + (robots[j].x-robots[i].x)/2;
// out.printf("C2 %d %d %d\n",i,j,time);
ans[robots[i].id]=time;
ans[robots[j].id]=time;
}
// 0 1 3 6
// 0 4 - 1
// 1 5 - 2
// 2 6 - 3
// 4 4 - 3+2=5
// 1+(6-3)+(3-1)/2
// 1+3+1
if(lq.size()==1 && rt.size()==1){
int l=lq.poll();
int r=rt.pop();
int time = robots[l].x+(m-robots[r].x)+(robots[r].x-robots[l].x)/2;
ans[robots[l].id]=time;
ans[robots[r].id]=time;
}
}
public static void main(String args[])throws IOException{
int t=sc.nextInt();
while(t-->0){
int n=sc.nextInt();
int m=sc.nextInt();
int[] x = new int[n];
int cntOdd=0;
for(int i=0;i<n;i++){
x[i]=sc.nextInt();
cntOdd += x[i]%2==0 ? 0 : 1;
}
Robot[] evenRobots = new Robot[n-cntOdd];
Robot[] oddRobots = new Robot[cntOdd];
int j=0,k=0;
for(int i=0;i<n;i++){
int d = sc.next().equals("R") ? 1 : -1;
if(x[i]%2==0){
evenRobots[j++] = new Robot(i,x[i],d);
}else{
oddRobots[k++] = new Robot(i,x[i],d);
}
}
ans = new int[n];
Arrays.fill(ans,-1);
solve(evenRobots,m);
solve(oddRobots,m);
for(int a : ans){
out.print(a+" ");
}
out.println();
}
out.close();
}
static int M=(int)Math.pow(10,9)+7;
public static void sort(int[] arr,boolean reverse){
ArrayList<Integer> list = new ArrayList<Integer>();
int n =arr.length;
for(int i=0;i<n;i++){
list.add(arr[i]);
}
if(reverse)
Collections.sort(list,Collections.reverseOrder());
else
Collections.sort(list);
for(int i=0;i<n;i++){
arr[i] = list.get(i);
}
}
public static double min(double ...a){
double min=Double.MAX_VALUE;
for(double i : a)
min =Math.min(i,min);
return min;
}
public static long min(long ...a){
long min=Long.MAX_VALUE;
for(long i : a)
min =Math.min(i,min);
return min;
}
public static int min(int ...a){
int min=Integer.MAX_VALUE;
for(int i : a)
min =Math.min(i,min);
return min;
}
public static double max(double ...a){
double max=Double.MIN_VALUE;
for(double i : a)
max =Math.max(i,max);
return max;
}
public static long max(long ...a){
long max=Long.MIN_VALUE;
for(long i : a)
max =Math.max(i,max);
return max;
}
public static int max(int ...a){
int max=Integer.MIN_VALUE;
for(int i : a)
max =Math.max(i,max);
return max;
}
static class Pair{
// Implementing equals() and hashCode()
// Map<Pair, V> map = //...
private final int x;
private final int y;
public Pair(int x, int y) {
this.x = x;
this.y = y;
}
@Override
public boolean equals(Object o) {
if (this == o) return true;
if (!(o instanceof Pair)) return false;
Pair pair = (Pair) o;
return x == pair.x && y == pair.y;
}
@Override
public int hashCode() {
int result = x;
result = 31 * result + y;
return result;
}
}
static FastScanner sc = new FastScanner();
static PrintWriter out =new PrintWriter(System.out);
static class FastScanner {
BufferedReader br=new BufferedReader(new InputStreamReader(System.in));
StringTokenizer st=new StringTokenizer("");
String next() {
while (!st.hasMoreTokens())
try {
st=new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
int[] readArray(int n) {
int[] a=new int[n];
for (int i=0; i<n; i++) a[i]=nextInt();
return a;
}
long nextLong() {
return Long.parseLong(next());
}
public long[] readLongArray(int n) {
long[] a=new long[n];
for (int i=0; i<n; i++) a[i]=nextLong();
return a;
}
}
}
|
Java
|
["5\n7 12\n1 2 3 4 9 10 11\nR R L L R R R\n2 10\n1 6\nR R\n2 10\n1 3\nL L\n1 10\n5\nR\n7 8\n6 1 7 2 3 5 4\nR L R L L L L"]
|
2 seconds
|
["1 1 1 1 2 -1 2 \n-1 -1 \n2 2 \n-1 \n-1 2 7 3 2 7 3"]
|
NoteHere is the picture for the seconds $$$0, 1, 2$$$ and $$$3$$$ of the first testcase: Notice that robots $$$2$$$ and $$$3$$$ don't collide because they meet at the same point $$$2.5$$$, which is not integer.After second $$$3$$$ robot $$$6$$$ just drive infinitely because there's no robot to collide with.
|
Java 11
|
standard input
|
[
"data structures",
"greedy",
"implementation",
"sortings"
] |
1a28b972e77966453cd8239cc5c8f59a
|
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$) — the number of testcases. Then the descriptions of $$$t$$$ testcases follow. The first line of each testcase contains two integers $$$n$$$ and $$$m$$$ ($$$1 \le n \le 3 \cdot 10^5$$$; $$$2 \le m \le 10^8$$$) — the number of robots and the coordinate of the right wall. The second line of each testcase contains $$$n$$$ integers $$$x_1, x_2, \dots, x_n$$$ ($$$0 < x_i < m$$$) — the starting coordinates of the robots. The third line of each testcase contains $$$n$$$ space-separated characters 'L' or 'R' — the starting directions of the robots ('L' stands for left and 'R' stands for right). All coordinates $$$x_i$$$ in the testcase are distinct. The sum of $$$n$$$ over all testcases doesn't exceed $$$3 \cdot 10^5$$$.
| 2,000
|
For each testcase print $$$n$$$ integers — for the $$$i$$$-th robot output the time it explodes at if it does and $$$-1$$$ otherwise.
|
standard output
| |
PASSED
|
be7be79605806058e1fcf264c21a9d39
|
train_110.jsonl
|
1621152000
|
There are $$$n$$$ robots driving along an OX axis. There are also two walls: one is at coordinate $$$0$$$ and one is at coordinate $$$m$$$.The $$$i$$$-th robot starts at an integer coordinate $$$x_i~(0 < x_i < m)$$$ and moves either left (towards the $$$0$$$) or right with the speed of $$$1$$$ unit per second. No two robots start at the same coordinate.Whenever a robot reaches a wall, it turns around instantly and continues his ride in the opposite direction with the same speed.Whenever several robots meet at the same integer coordinate, they collide and explode into dust. Once a robot has exploded, it doesn't collide with any other robot. Note that if several robots meet at a non-integer coordinate, nothing happens.For each robot find out if it ever explodes and print the time of explosion if it happens and $$$-1$$$ otherwise.
|
256 megabytes
|
import java.util.*;
public class Robots {
public static void main(String[] args) {
Scanner in = new Scanner(System.in);
StringBuffer out = new StringBuffer();
int t = in.nextInt();
while (t-- != 0) {
int n = in.nextInt(), m = in.nextInt();
int x[] = new int[n];
for (int i = 0; i < n; i++)
x[i] = in.nextInt();
HashMap<Integer, Character> map = new HashMap<>();
for (int i = 0; i < n; i++)
map.put(x[i], in.next().charAt(0));
List<Integer> values[] = new ArrayList[2];
for (int i = 0; i < 2; i++)
values[i] = new ArrayList<>();
for (int item : x) {
values[item % 2].add(item);
}
HashMap<Integer, Integer> ans = new HashMap<>();
for (int i = 0; i < 2; i++) {
Collections.sort(values[i]);
// System.out.println(values[i]);
LinkedList<Integer> left = new LinkedList<>(), right = new LinkedList<>();
for (int item : values[i]) {
if (map.get(item) == 'L') {
if (!right.isEmpty()) {
int ant1 = right.pollLast(), ant2 = item;
ans.put(ant1, Math.abs(ant1 - ant2) / 2);
ans.put(ant2, Math.abs(ant1 - ant2) / 2);
} else {
left.add(item);
}
} else {
right.add(item);
}
}
// System.out.println(left + " " + right + " " + ans);
while (left.size() >= 2) {
int ant1 = left.pollFirst(), ant2 = left.pollFirst();
ans.put(ant1, ant1 + Math.abs(ant1 - ant2) / 2);
ans.put(ant2, ant1 + Math.abs(ant1 - ant2) / 2);
}
// System.out.println(left + " " + right + " " + ans);
while (right.size() >= 2) {
int ant1 = right.pollLast(), ant2 = right.pollLast();
ans.put(ant1, (m - ant1) + Math.abs(ant1 - ant2) / 2);
ans.put(ant2, (m - ant1) + Math.abs(ant1 - ant2) / 2);
}
// System.out.println(left + " " + right + " " + ans);
if (left.size() == 1 && right.size() == 1) {
int ant1 = left.poll(), ant2 = right.poll();
int min = Math.min(ant1, (m - ant2));
int max = Math.max(ant1, (m - ant2));
int diff = (ant2 + min) - (ant1 - min);
ans.put(ant1, max + diff / 2);
ans.put(ant2, max + diff / 2);
}
// System.out.println(left + " " + right + " " + ans);
if (!left.isEmpty())
ans.put(left.poll(), -1);
if (!right.isEmpty())
ans.put(right.poll(), -1);
// System.out.println(left + " " + right + " " + ans);
}
for (int item : x)
out.append(ans.get(item) + " ");
out.append("\n");
}
System.out.println(out);
}
private static int GCD(int a, int b) {
if (a == 0)
return b;
return GCD(b % a, a);
}
}
|
Java
|
["5\n7 12\n1 2 3 4 9 10 11\nR R L L R R R\n2 10\n1 6\nR R\n2 10\n1 3\nL L\n1 10\n5\nR\n7 8\n6 1 7 2 3 5 4\nR L R L L L L"]
|
2 seconds
|
["1 1 1 1 2 -1 2 \n-1 -1 \n2 2 \n-1 \n-1 2 7 3 2 7 3"]
|
NoteHere is the picture for the seconds $$$0, 1, 2$$$ and $$$3$$$ of the first testcase: Notice that robots $$$2$$$ and $$$3$$$ don't collide because they meet at the same point $$$2.5$$$, which is not integer.After second $$$3$$$ robot $$$6$$$ just drive infinitely because there's no robot to collide with.
|
Java 11
|
standard input
|
[
"data structures",
"greedy",
"implementation",
"sortings"
] |
1a28b972e77966453cd8239cc5c8f59a
|
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$) — the number of testcases. Then the descriptions of $$$t$$$ testcases follow. The first line of each testcase contains two integers $$$n$$$ and $$$m$$$ ($$$1 \le n \le 3 \cdot 10^5$$$; $$$2 \le m \le 10^8$$$) — the number of robots and the coordinate of the right wall. The second line of each testcase contains $$$n$$$ integers $$$x_1, x_2, \dots, x_n$$$ ($$$0 < x_i < m$$$) — the starting coordinates of the robots. The third line of each testcase contains $$$n$$$ space-separated characters 'L' or 'R' — the starting directions of the robots ('L' stands for left and 'R' stands for right). All coordinates $$$x_i$$$ in the testcase are distinct. The sum of $$$n$$$ over all testcases doesn't exceed $$$3 \cdot 10^5$$$.
| 2,000
|
For each testcase print $$$n$$$ integers — for the $$$i$$$-th robot output the time it explodes at if it does and $$$-1$$$ otherwise.
|
standard output
| |
PASSED
|
2d03ff91b8d192849348fa9c4e7ec533
|
train_110.jsonl
|
1621152000
|
There are $$$n$$$ robots driving along an OX axis. There are also two walls: one is at coordinate $$$0$$$ and one is at coordinate $$$m$$$.The $$$i$$$-th robot starts at an integer coordinate $$$x_i~(0 < x_i < m)$$$ and moves either left (towards the $$$0$$$) or right with the speed of $$$1$$$ unit per second. No two robots start at the same coordinate.Whenever a robot reaches a wall, it turns around instantly and continues his ride in the opposite direction with the same speed.Whenever several robots meet at the same integer coordinate, they collide and explode into dust. Once a robot has exploded, it doesn't collide with any other robot. Note that if several robots meet at a non-integer coordinate, nothing happens.For each robot find out if it ever explodes and print the time of explosion if it happens and $$$-1$$$ otherwise.
|
256 megabytes
|
import java.io.*;
import java.util.*;
public class Codeforces
{
public static void main(String args[])throws Exception
{
BufferedReader bu=new BufferedReader(new InputStreamReader(System.in));
StringBuilder sb=new StringBuilder();
int t=Integer.parseInt(bu.readLine());
while(t-->0)
{
String s[]=bu.readLine().split(" ");
int n=Integer.parseInt(s[0]),m=Integer.parseInt(s[1]);
ArrayList<Robot> o=new ArrayList<>(),e=new ArrayList<>();
s=bu.readLine().split(" ");
int i,a[]=new int[n];
for(i=0;i<n;i++) a[i]=Integer.parseInt(s[i]);
s=bu.readLine().split(" ");
for(i=0;i<n;i++)
{
int x=s[i].charAt(0);
if(x=='L') x=1;
else x=0;
if(a[i]%2==0) e.add(new Robot(i,a[i],x));
else o.add(new Robot(i,a[i],x));
}
long ans[]=new long[n];
fill(ans,e,m);
fill(ans,o,m);
for(i=0;i<n;i++)
sb.append(ans[i]+" ");
sb.append("\n");
}
System.out.print(sb);
}
static void fill(long ans[],ArrayList<Robot> a,int m)
{
if(a.size()==0) return;
Collections.sort(a, new Comparator<Robot>() {
@Override
public int compare(Robot o1, Robot o2) {
if(o1.v>o2.v) return 1;
else return -1;
}});
Deque<Integer> dq=new LinkedList<>(),bad=new LinkedList<>();
int i;
for(i=0;i<a.size();i++)
if(a.get(i).t==0) dq.add(i);
else
{
if(dq.isEmpty()) {bad.add(i); continue;}
int x=dq.pollLast();
long d=a.get(i).v-a.get(x).v;
d/=2;
ans[a.get(i).i]=d;
ans[a.get(x).i]=d;
}
int l=-1,r=-1;
while(bad.size()>1)
{
int u=bad.removeFirst(),v=bad.removeFirst();
long d=a.get(v).v-a.get(u).v;
d/=2;
d+=a.get(u).v;
ans[a.get(u).i]=d;
ans[a.get(v).i]=d;
}
if(!bad.isEmpty()) l=bad.removeFirst();
while(dq.size()>1)
{
int u=dq.removeLast(),v=dq.removeLast();
long d=a.get(u).v-a.get(v).v;
d/=2;
d+=m-a.get(u).v;
ans[a.get(u).i]=d;
ans[a.get(v).i]=d;
}
if(!dq.isEmpty()) r=dq.removeFirst();
if(l!=-1 && r!=-1)
{
int max=Math.max(a.get(l).v,m-a.get(r).v);
a.get(l).v-=max; a.get(r).v+=max;
long d=max;
a.get(l).v=Math.abs(a.get(l).v);
if(a.get(r).v>m) a.get(r).v=2*m-a.get(r).v;
d+=Math.abs(a.get(r).v-a.get(l).v)/2;
ans[a.get(l).i]=d;
ans[a.get(r).i]=d;
}
else
{
if(l!=-1) ans[a.get(l).i]=-1;
if(r!=-1) ans[a.get(r).i]=-1;
}
}
static class Robot
{
int i,v,t;
Robot(int a,int b,int c)
{
i=a;
v=b;
t=c;
}
}
}
|
Java
|
["5\n7 12\n1 2 3 4 9 10 11\nR R L L R R R\n2 10\n1 6\nR R\n2 10\n1 3\nL L\n1 10\n5\nR\n7 8\n6 1 7 2 3 5 4\nR L R L L L L"]
|
2 seconds
|
["1 1 1 1 2 -1 2 \n-1 -1 \n2 2 \n-1 \n-1 2 7 3 2 7 3"]
|
NoteHere is the picture for the seconds $$$0, 1, 2$$$ and $$$3$$$ of the first testcase: Notice that robots $$$2$$$ and $$$3$$$ don't collide because they meet at the same point $$$2.5$$$, which is not integer.After second $$$3$$$ robot $$$6$$$ just drive infinitely because there's no robot to collide with.
|
Java 11
|
standard input
|
[
"data structures",
"greedy",
"implementation",
"sortings"
] |
1a28b972e77966453cd8239cc5c8f59a
|
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$) — the number of testcases. Then the descriptions of $$$t$$$ testcases follow. The first line of each testcase contains two integers $$$n$$$ and $$$m$$$ ($$$1 \le n \le 3 \cdot 10^5$$$; $$$2 \le m \le 10^8$$$) — the number of robots and the coordinate of the right wall. The second line of each testcase contains $$$n$$$ integers $$$x_1, x_2, \dots, x_n$$$ ($$$0 < x_i < m$$$) — the starting coordinates of the robots. The third line of each testcase contains $$$n$$$ space-separated characters 'L' or 'R' — the starting directions of the robots ('L' stands for left and 'R' stands for right). All coordinates $$$x_i$$$ in the testcase are distinct. The sum of $$$n$$$ over all testcases doesn't exceed $$$3 \cdot 10^5$$$.
| 2,000
|
For each testcase print $$$n$$$ integers — for the $$$i$$$-th robot output the time it explodes at if it does and $$$-1$$$ otherwise.
|
standard output
| |
PASSED
|
7466058a1ac53cc07948de37029650df
|
train_110.jsonl
|
1621152000
|
There are $$$n$$$ robots driving along an OX axis. There are also two walls: one is at coordinate $$$0$$$ and one is at coordinate $$$m$$$.The $$$i$$$-th robot starts at an integer coordinate $$$x_i~(0 < x_i < m)$$$ and moves either left (towards the $$$0$$$) or right with the speed of $$$1$$$ unit per second. No two robots start at the same coordinate.Whenever a robot reaches a wall, it turns around instantly and continues his ride in the opposite direction with the same speed.Whenever several robots meet at the same integer coordinate, they collide and explode into dust. Once a robot has exploded, it doesn't collide with any other robot. Note that if several robots meet at a non-integer coordinate, nothing happens.For each robot find out if it ever explodes and print the time of explosion if it happens and $$$-1$$$ otherwise.
|
256 megabytes
|
import java.io.*;
import java.util.*;
/*
1
7 8
6 1 7 2 3 5 4
R L R L L L L
*/
public class P2 {
static FastReader sc=null;
static int ans[];
static int w;
public static void main(String[] args) {
sc=new FastReader();
PrintWriter out=new PrintWriter(System.out);
int t=sc.nextInt();
while(t-->0) {
int n=sc.nextInt();w=sc.nextInt();
ArrayList<Item> evens=new ArrayList<>(),odds=new ArrayList<>();
int a[]=sc.readArray(n);
char dir[]=new char[n];
char line[]=sc.nextLine().toCharArray();
for(int i=0;i<n;i++)dir[i]=line[2*i];
ans=new int[n];
Arrays.fill(ans, -1);
for(int i=0;i<n;i++) {
Item p=new Item(a[i],dir[i],i);
if(a[i]%2==0)evens.add(p);
else odds.add(p);
}
solve(evens);
solve(odds);
for(int e:ans)out.print(e+" ");
out.println();
}
out.close();
}
static void solve(ArrayList<Item> pos) {
if(pos.size()==1) {
return;
}
else if(pos.size()==2) {
if(pos.get(0).dir!=pos.get(1).dir) {
int time=2*w-Math.abs(pos.get(0).dist-pos.get(1).dist);
ans[pos.get(0).id]=ans[pos.get(1).id]=time/2;
return;
}
}
ArrayDeque<Item> p=new ArrayDeque<>();
Collections.sort(pos,Collections.reverseOrder());
for(Item e:pos) {
if(p.isEmpty() || e.dir=='L') {
p.addFirst(e);
}
else {
Item m=p.remove();
//m and e meet
//if they are traveling in opp then time=(m.c-e.c)/2
//else time = (d2-d1)/2 [d -> distance from the wall]
int time=0;
if(m.dir!=e.dir)time=(Math.abs(m.c-e.c)/2);
else time= Math.min(m.dist,e.dist)+Math.abs(m.dist-e.dist)/2;
ans[m.id]=ans[e.id]=time;
}
}
//TODO:GENERATE A SIMILAR PROCESS FOR THE LEFT MOVING CASE
if(!p.isEmpty()) {
ArrayList<Item>remains=new ArrayList<>();
for(Item e:p) {
e.dir=(e.dir=='L'?'R':'L');
e.dist=e.c;
e.c=w-e.c;
remains.add(e);
}
solve(remains);
}
}
static class Item implements Comparable<Item>{
int c,id,dist;
char dir;
Item(int c,char dir,int id){
this.c=c;
this.dir=dir;
this.id=id;
this.dist=w-c;
}
public int compareTo(Item o) {
return this.c-o.c;
}
@Override
public String toString() {
return "Item [c=" + c + ", dir=" + dir + "]";
}
}
static void reverseSort(int a[]) {
ArrayList<Integer> al=new ArrayList<>();
for(int i:a)al.add(i);
Collections.sort(al,Collections.reverseOrder());
for(int i=0;i<a.length;i++)a[i]=al.get(i);
}
static int gcd(int a,int b) {
if(b==0)return a;
else return gcd(b,a%b);
}
static long gcd(long a,long b) {
if(b==0)return a;
else return gcd(b,a%b);
}
static void reverse(int a[]) {
int n=a.length;
int b[]=new int[n];
for(int i=0;i<n;i++)b[i]=a[n-1-i];
for(int i=0;i<n;i++)a[i]=b[i];
}
static void reverse(char a[]) {
int n=a.length;
char b[]=new char[n];
for(int i=0;i<n;i++)b[i]=a[n-1-i];
for(int i=0;i<n;i++)a[i]=b[i];
}
static void ruffleSort(int a[]) {
ArrayList<Integer> al=new ArrayList<>();
for(int i:a)al.add(i);
Collections.sort(al);
for(int i=0;i<a.length;i++)a[i]=al.get(i);
}
static void print(int a[]) {
for(int e:a) {
System.out.print(e+" ");
}
System.out.println();
}
static void print(long a[]) {
for(long e:a) {
System.out.print(e+" ");
}
System.out.println();
}
static class FastReader
{
BufferedReader br;
StringTokenizer st;
public FastReader()
{
br = new BufferedReader(new
InputStreamReader(System.in));
}
String next()
{
while (st == null || !st.hasMoreElements())
{
try
{
st = new StringTokenizer(br.readLine());
}
catch (IOException e)
{
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt()
{
return Integer.parseInt(next());
}
long nextLong()
{
return Long.parseLong(next());
}
double nextDouble()
{
return Double.parseDouble(next());
}
String nextLine()
{
String str = "";
try
{
str = br.readLine();
}
catch (IOException e)
{
e.printStackTrace();
}
return str;
}
int[] readArray(int n) {
int a[]=new int [n];
for(int i=0;i<n;i++) {
a[i]=sc.nextInt();
}
return a;
}
long[] readArrayL(int n) {
long a[]=new long [n];
for(int i=0;i<n;i++) {
a[i]=sc.nextLong();
}
return a;
}
}
}
|
Java
|
["5\n7 12\n1 2 3 4 9 10 11\nR R L L R R R\n2 10\n1 6\nR R\n2 10\n1 3\nL L\n1 10\n5\nR\n7 8\n6 1 7 2 3 5 4\nR L R L L L L"]
|
2 seconds
|
["1 1 1 1 2 -1 2 \n-1 -1 \n2 2 \n-1 \n-1 2 7 3 2 7 3"]
|
NoteHere is the picture for the seconds $$$0, 1, 2$$$ and $$$3$$$ of the first testcase: Notice that robots $$$2$$$ and $$$3$$$ don't collide because they meet at the same point $$$2.5$$$, which is not integer.After second $$$3$$$ robot $$$6$$$ just drive infinitely because there's no robot to collide with.
|
Java 11
|
standard input
|
[
"data structures",
"greedy",
"implementation",
"sortings"
] |
1a28b972e77966453cd8239cc5c8f59a
|
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$) — the number of testcases. Then the descriptions of $$$t$$$ testcases follow. The first line of each testcase contains two integers $$$n$$$ and $$$m$$$ ($$$1 \le n \le 3 \cdot 10^5$$$; $$$2 \le m \le 10^8$$$) — the number of robots and the coordinate of the right wall. The second line of each testcase contains $$$n$$$ integers $$$x_1, x_2, \dots, x_n$$$ ($$$0 < x_i < m$$$) — the starting coordinates of the robots. The third line of each testcase contains $$$n$$$ space-separated characters 'L' or 'R' — the starting directions of the robots ('L' stands for left and 'R' stands for right). All coordinates $$$x_i$$$ in the testcase are distinct. The sum of $$$n$$$ over all testcases doesn't exceed $$$3 \cdot 10^5$$$.
| 2,000
|
For each testcase print $$$n$$$ integers — for the $$$i$$$-th robot output the time it explodes at if it does and $$$-1$$$ otherwise.
|
standard output
| |
PASSED
|
985f88cb254e7b2d9ef93bceac504630
|
train_110.jsonl
|
1621152000
|
There are $$$n$$$ robots driving along an OX axis. There are also two walls: one is at coordinate $$$0$$$ and one is at coordinate $$$m$$$.The $$$i$$$-th robot starts at an integer coordinate $$$x_i~(0 < x_i < m)$$$ and moves either left (towards the $$$0$$$) or right with the speed of $$$1$$$ unit per second. No two robots start at the same coordinate.Whenever a robot reaches a wall, it turns around instantly and continues his ride in the opposite direction with the same speed.Whenever several robots meet at the same integer coordinate, they collide and explode into dust. Once a robot has exploded, it doesn't collide with any other robot. Note that if several robots meet at a non-integer coordinate, nothing happens.For each robot find out if it ever explodes and print the time of explosion if it happens and $$$-1$$$ otherwise.
|
256 megabytes
|
import java.util.*;
import java.lang.*;
import java.io.*;
public class Codeforces {
public static class FastReader {
BufferedReader br;
StringTokenizer st;
public FastReader()
{
br = new BufferedReader(
new InputStreamReader(System.in));
}
String next()
{
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(br.readLine());
}
catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt() { return Integer.parseInt(next()); }
long nextLong() { return Long.parseLong(next()); }
double nextDouble()
{
return Double.parseDouble(next());
}
String nextLine()
{
String str = "";
try {
str = br.readLine();
}
catch (IOException e) {
e.printStackTrace();
}
return str;
}
}
public static void main (String[] args) throws java.lang.Exception
{
// your code goes here
FastReader sc=new FastReader();
int t=sc.nextInt();
while(t-->0)
{
int n=sc.nextInt();
int m=sc.nextInt();
int a[]=new int[n];
char c[]=new char[n];
int ans[]=new int[n];
for(int i=0;i<n;i++)
{
a[i]=sc.nextInt();
}
for(int i=0;i<n;i++)
{
c[i]=sc.next().charAt(0);
}
for(int j=0;j<2;j++)
{
ArrayList<Integer> arr=new ArrayList<>();
for(int i=0;i<n;i++)
{
if(a[i]%2==j)
arr.add(i);
}
Collections.sort(arr,(x,y)->Integer.compare(a[x],a[y]));
Stack<Integer> st=new Stack<>();
for(int i:arr)
{
if(c[i]=='R')
st.push(i);
else if(c[i]=='L')
{
if(!st.isEmpty())
{
int p=st.pop();
int mid=(a[p]+a[i])/2;
ans[i]=Math.abs(mid-a[i]);
ans[p]=Math.abs(mid-a[p]);
}
else
{
a[i]*=-1;
st.push(i);
}
}
}
while(!st.isEmpty())
{
if(st.size()==1)
ans[st.pop()]=-1;
else
{
int p=st.pop();
a[p]=2*m-a[p];
int q=st.pop();
int mid=(a[p]+a[q])/2;
ans[p]=Math.abs(mid-a[p]);
ans[q]=Math.abs(mid-a[q]);
}
}
}
StringBuffer sb=new StringBuffer();
for(int i=0;i<n;i++)
{
sb.append(ans[i]+" ");
}
System.out.println(sb.toString());
}
}
}
|
Java
|
["5\n7 12\n1 2 3 4 9 10 11\nR R L L R R R\n2 10\n1 6\nR R\n2 10\n1 3\nL L\n1 10\n5\nR\n7 8\n6 1 7 2 3 5 4\nR L R L L L L"]
|
2 seconds
|
["1 1 1 1 2 -1 2 \n-1 -1 \n2 2 \n-1 \n-1 2 7 3 2 7 3"]
|
NoteHere is the picture for the seconds $$$0, 1, 2$$$ and $$$3$$$ of the first testcase: Notice that robots $$$2$$$ and $$$3$$$ don't collide because they meet at the same point $$$2.5$$$, which is not integer.After second $$$3$$$ robot $$$6$$$ just drive infinitely because there's no robot to collide with.
|
Java 11
|
standard input
|
[
"data structures",
"greedy",
"implementation",
"sortings"
] |
1a28b972e77966453cd8239cc5c8f59a
|
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$) — the number of testcases. Then the descriptions of $$$t$$$ testcases follow. The first line of each testcase contains two integers $$$n$$$ and $$$m$$$ ($$$1 \le n \le 3 \cdot 10^5$$$; $$$2 \le m \le 10^8$$$) — the number of robots and the coordinate of the right wall. The second line of each testcase contains $$$n$$$ integers $$$x_1, x_2, \dots, x_n$$$ ($$$0 < x_i < m$$$) — the starting coordinates of the robots. The third line of each testcase contains $$$n$$$ space-separated characters 'L' or 'R' — the starting directions of the robots ('L' stands for left and 'R' stands for right). All coordinates $$$x_i$$$ in the testcase are distinct. The sum of $$$n$$$ over all testcases doesn't exceed $$$3 \cdot 10^5$$$.
| 2,000
|
For each testcase print $$$n$$$ integers — for the $$$i$$$-th robot output the time it explodes at if it does and $$$-1$$$ otherwise.
|
standard output
| |
PASSED
|
19dd59a0d1ae1c37158c0597253e0e2c
|
train_110.jsonl
|
1621152000
|
There are $$$n$$$ robots driving along an OX axis. There are also two walls: one is at coordinate $$$0$$$ and one is at coordinate $$$m$$$.The $$$i$$$-th robot starts at an integer coordinate $$$x_i~(0 < x_i < m)$$$ and moves either left (towards the $$$0$$$) or right with the speed of $$$1$$$ unit per second. No two robots start at the same coordinate.Whenever a robot reaches a wall, it turns around instantly and continues his ride in the opposite direction with the same speed.Whenever several robots meet at the same integer coordinate, they collide and explode into dust. Once a robot has exploded, it doesn't collide with any other robot. Note that if several robots meet at a non-integer coordinate, nothing happens.For each robot find out if it ever explodes and print the time of explosion if it happens and $$$-1$$$ otherwise.
|
256 megabytes
|
import java.io.DataInputStream;
import java.io.IOException;
import java.io.OutputStreamWriter;
import java.io.PrintWriter;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Comparator;
import java.util.PriorityQueue;
public class Main {
private static void run() throws IOException {
int n = in.nextInt();
int m = in.nextInt();
Node[] nodes = new Node[n];
int count_even = 0;
for (int i = 0; i < n; i++) {
nodes[i] = new Node(i);
nodes[i].pos = in.nextInt();
if ((nodes[i].pos & 1) == 0) {
count_even++;
}
}
for (int i = 0; i < n; i++) {
nodes[i].right = in.nc() == 'R';
}
Arrays.sort(nodes, Comparator.comparingInt((Node o) -> o.pos % 2).thenComparingInt(o -> o.pos));
solve(nodes, 0, count_even - 1, m);
solve(nodes, count_even, n - 1, m);
Arrays.sort(nodes, Comparator.comparingInt(o -> o.index));
for (int i = 0; i < n; i++) {
out.printf("%d ", nodes[i].ans);
}
out.println();
}
private static void solve(Node[] nodes, int left, int right, int m) {
if (left > right) return;
PriorityQueue<Node> queue = new PriorityQueue<>(Comparator.comparingInt(o -> o.pos_if_force_left));
for (int now = right; now >= left; now--) {
if (!nodes[now].right) {
nodes[now].pos_if_force_left = nodes[now].pos;
queue.add(nodes[now]);
} else {
Node right_node = queue.poll();
if (right_node == null) {
nodes[now].pos_if_force_left = m + m - nodes[now].pos;
queue.add(nodes[now]);
} else {
right_node.ans = nodes[now].ans = (right_node.pos_if_force_left - nodes[now].pos) / 2;
}
}
}
while (true) {
Node left_node = queue.poll();
Node right_node = queue.poll();
if (left_node == null || right_node == null) {
break;
}
left_node.ans = right_node.ans = (right_node.pos_if_force_left + left_node.pos_if_force_left) / 2;
}
}
static class Node {
int index;
int pos, pos_if_force_left;
boolean right;
int ans = -1;
public Node(int index) {
this.index = index;
}
}
public static void main(String[] args) throws IOException {
in = new Reader();
out = new PrintWriter(new OutputStreamWriter(System.out));
int t = in.nextInt();
for (int i = 0; i < t; i++) {
run();
}
out.flush();
in.close();
out.close();
}
private static int gcd(int a, int b) {
if (a == 0 || b == 0)
return 0;
while (b != 0) {
int tmp;
tmp = a % b;
a = b;
b = tmp;
}
return a;
}
static final long mod = 1000000007;
static long pow_mod(long a, long b) {
long result = 1;
while (b != 0) {
if ((b & 1) != 0) result = (result * a) % mod;
a = (a * a) % mod;
b >>= 1;
}
return result;
}
private static long multiplied_mod(long... longs) {
long ans = 1;
for (long now : longs) {
ans = (ans * now) % mod;
}
return ans;
}
@SuppressWarnings("FieldCanBeLocal")
private static Reader in;
private static PrintWriter out;
private static int[] read_int_array(int len) throws IOException {
int[] a = new int[len];
for (int i = 0; i < len; i++) {
a[i] = in.nextInt();
}
return a;
}
private static long[] read_long_array(int len) throws IOException {
long[] a = new long[len];
for (int i = 0; i < len; i++) {
a[i] = in.nextLong();
}
return a;
}
private static void print_array(int[] array) {
for (int now : array) {
out.print(now);
out.print(' ');
}
out.println();
}
private static void print_array(long[] array) {
for (long now : array) {
out.print(now);
out.print(' ');
}
out.println();
}
static class Reader {
private static final int BUFFER_SIZE = 1 << 16;
private final DataInputStream din;
private final byte[] buffer;
private int bufferPointer, bytesRead;
Reader() {
din = new DataInputStream(System.in);
buffer = new byte[BUFFER_SIZE];
bufferPointer = bytesRead = 0;
}
public String readLine() throws IOException {
final byte[] buf = new byte[1024]; // line length
int cnt = 0, c;
while ((c = read()) != -1) {
if (c == '\n') {
break;
}
buf[cnt++] = (byte) c;
}
return new String(buf, 0, cnt);
}
public int nextSign() throws IOException {
byte c = read();
while ('+' != c && '-' != c) {
c = read();
}
return '+' == c ? 0 : 1;
}
private static boolean isSpaceChar(int c) {
return !(c >= 33 && c <= 126);
}
public int skip() throws IOException {
int b;
// noinspection ALL
while ((b = read()) != -1 && isSpaceChar(b)) {
;
}
return b;
}
public char nc() throws IOException {
return (char) skip();
}
public String next() throws IOException {
int b = skip();
final StringBuilder sb = new StringBuilder();
while (!isSpaceChar(b)) { // when nextLine, (isSpaceChar(b) && b != ' ')
sb.appendCodePoint(b);
b = read();
}
return sb.toString();
}
public int nextInt() throws IOException {
int ret = 0;
byte c = read();
while (c <= ' ') {
c = read();
}
final boolean neg = c == '-';
if (neg) {
c = read();
}
do {
ret = ret * 10 + c - '0';
} while ((c = read()) >= '0' && c <= '9');
if (neg) {
return -ret;
}
return ret;
}
public long nextLong() throws IOException {
long ret = 0;
byte c = read();
while (c <= ' ') {
c = read();
}
final boolean neg = c == '-';
if (neg) {
c = read();
}
do {
ret = ret * 10 + c - '0';
}
while ((c = read()) >= '0' && c <= '9');
if (neg) {
return -ret;
}
return ret;
}
public double nextDouble() throws IOException {
double ret = 0, div = 1;
byte c = read();
while (c <= ' ') {
c = read();
}
final boolean neg = c == '-';
if (neg) {
c = read();
}
do {
ret = ret * 10 + c - '0';
}
while ((c = read()) >= '0' && c <= '9');
if (c == '.') {
while ((c = read()) >= '0' && c <= '9') {
ret += (c - '0') / (div *= 10);
}
}
if (neg) {
return -ret;
}
return ret;
}
private void fillBuffer() throws IOException {
bytesRead = din.read(buffer, bufferPointer = 0, BUFFER_SIZE);
if (bytesRead == -1) {
buffer[0] = -1;
}
}
private byte read() throws IOException {
if (bufferPointer == bytesRead) {
fillBuffer();
}
return buffer[bufferPointer++];
}
public void close() throws IOException {
din.close();
}
}
}
|
Java
|
["5\n7 12\n1 2 3 4 9 10 11\nR R L L R R R\n2 10\n1 6\nR R\n2 10\n1 3\nL L\n1 10\n5\nR\n7 8\n6 1 7 2 3 5 4\nR L R L L L L"]
|
2 seconds
|
["1 1 1 1 2 -1 2 \n-1 -1 \n2 2 \n-1 \n-1 2 7 3 2 7 3"]
|
NoteHere is the picture for the seconds $$$0, 1, 2$$$ and $$$3$$$ of the first testcase: Notice that robots $$$2$$$ and $$$3$$$ don't collide because they meet at the same point $$$2.5$$$, which is not integer.After second $$$3$$$ robot $$$6$$$ just drive infinitely because there's no robot to collide with.
|
Java 11
|
standard input
|
[
"data structures",
"greedy",
"implementation",
"sortings"
] |
1a28b972e77966453cd8239cc5c8f59a
|
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$) — the number of testcases. Then the descriptions of $$$t$$$ testcases follow. The first line of each testcase contains two integers $$$n$$$ and $$$m$$$ ($$$1 \le n \le 3 \cdot 10^5$$$; $$$2 \le m \le 10^8$$$) — the number of robots and the coordinate of the right wall. The second line of each testcase contains $$$n$$$ integers $$$x_1, x_2, \dots, x_n$$$ ($$$0 < x_i < m$$$) — the starting coordinates of the robots. The third line of each testcase contains $$$n$$$ space-separated characters 'L' or 'R' — the starting directions of the robots ('L' stands for left and 'R' stands for right). All coordinates $$$x_i$$$ in the testcase are distinct. The sum of $$$n$$$ over all testcases doesn't exceed $$$3 \cdot 10^5$$$.
| 2,000
|
For each testcase print $$$n$$$ integers — for the $$$i$$$-th robot output the time it explodes at if it does and $$$-1$$$ otherwise.
|
standard output
| |
PASSED
|
d57379b27941fe8447cf5ce2f75cf35f
|
train_110.jsonl
|
1621152000
|
There are $$$n$$$ robots driving along an OX axis. There are also two walls: one is at coordinate $$$0$$$ and one is at coordinate $$$m$$$.The $$$i$$$-th robot starts at an integer coordinate $$$x_i~(0 < x_i < m)$$$ and moves either left (towards the $$$0$$$) or right with the speed of $$$1$$$ unit per second. No two robots start at the same coordinate.Whenever a robot reaches a wall, it turns around instantly and continues his ride in the opposite direction with the same speed.Whenever several robots meet at the same integer coordinate, they collide and explode into dust. Once a robot has exploded, it doesn't collide with any other robot. Note that if several robots meet at a non-integer coordinate, nothing happens.For each robot find out if it ever explodes and print the time of explosion if it happens and $$$-1$$$ otherwise.
|
256 megabytes
|
import java.util.*;
import java.io.*;
import static java.lang.Math.*;
public class Main
{
static MyScanner scan;
static PrintWriter pw;
static long MOD = 1_000_000_007;
static long INF = 2_000_000_000_000_000_000L;
static long inf = 2_000_000_000;
public static void main(String[] args) {
new Thread(null, null, "_", 1 << 27) {
public void run() {
try {
solve();
} catch (Exception e) {
e.printStackTrace();
System.exit(1);
}
}
}.start();
}
static int n, m, ans[];
static void solve() throws java.lang.Exception {
//initIo(true, "");
initIo(false, "");
StringBuilder sb = new StringBuilder();
int t = ni();
while (t-->0) {
n = ni();
m = ni();
int pos[] = new int[n];
ans = new int[n];
Arrays.fill(ans, -1);
ArrayList<Point> even = new ArrayList<>();
ArrayList<Point> odd = new ArrayList<>();
for(int i=0;i<n;i++) {
pos[i] = ni();
}
for(int i=0;i<n;i++) {
char orn = ne().charAt(0);
if(pos[i]%2==0) {
even.add(new Point(pos[i], i, orn));
}
else {
odd.add(new Point(pos[i], i, orn));
}
}
Collections.sort(even);
Collections.sort(odd);
solve(even);
solve(odd);
for(int e : ans) {
p(e);
}
pl();
}
pw.flush();
pw.close();
}
static void solve(ArrayList<Point> list) {
Stack<Point> st = new Stack<>();
for(Point p : list) {
if(p.orn==0) {
if(st.isEmpty()) {
st.push(p);
}
else if(st.peek().orn==1) {
Point right = st.pop();
ans[right.idx] = ans[p.idx] = (p.pos - right.pos) / 2;
}
else {
st.push(p);
}
}
else {
st.push(p);
}
}
LinkedList<Point> right = new LinkedList<>();
LinkedList<Point> left = new LinkedList<>();
while(!st.isEmpty()) {
Point p = st.pop();
if(p.orn == 1) {
right.addFirst(p);
}
else {
left.addFirst(p);
}
}
// pa("right left", right);
// pa("left left", left);
while(right.size()>1) {
Point p1 = right.pollLast(), p2 = right.pollLast();
ans[p1.idx] = ans[p2.idx] = (m - p1.pos) + ((p1.pos - p2.pos)/2);
}
while (left.size()>1) {
Point p1 = left.pollFirst(), p2 = left.pollFirst();
ans[p1.idx] = ans[p2.idx] = p1.pos + ((p2.pos - p1.pos)/2);
}
if(left.size()==1 && right.size()==1) {
Point p1 = left.pollFirst(), p2 = right.pollFirst();
ans[p1.idx] = ans[p2.idx] = (2*m - (p2.pos - p1.pos))/2;
}
}
static class Point implements Comparable<Point> {
int pos, idx, orn;
Point(int pos, int idx, char orn) {
this.pos = pos;
this.idx = idx;
this.orn = (orn == 'L' ? 0 : 1);
}
public int compareTo(Point other) {
if(this.pos != other.pos) {
return this.pos - other.pos;
}
return this.idx - other.idx;
}
public String toString() {
return "{"+this.pos+","+this.idx+","+this.orn+"}";
}
}
static void assert_in_range(String varName, int n, int l, int r) {
if (n >=l && n<=r) return;
System.out.println(varName + " is not in range. Actual: "+n+" l : "+l+" r: "+r);
System.exit(1);
}
static void assert_in_range(String varName, long n, long l, long r) {
if (n>=l && n<=r) return;
System.out.println(varName + " is not in range. Actual: "+n+" l : "+l+" r: "+r);
System.exit(1);
}
static void initIo(boolean isFileIO, String suffix) throws IOException {
scan = new MyScanner(isFileIO, suffix);
if(isFileIO) {
pw = new PrintWriter("/Users/dsds/Desktop/output"+suffix+".txt");
}
else {
pw = new PrintWriter(System.out, true);
}
}
static int ni() throws IOException
{
return scan.nextInt();
}
static long nl() throws IOException
{
return scan.nextLong();
}
static double nd() throws IOException
{
return scan.nextDouble();
}
static String ne() throws IOException
{
return scan.next();
}
static String nel() throws IOException
{
return scan.nextLine();
}
static void pl()
{
pw.println();
}
static void p(Object o)
{
pw.print(o+" ");
}
static void pl(Object o)
{
pw.println(o);
}
static void psb(StringBuilder sb)
{
pw.print(sb);
}
static void pa(String arrayName, Object arr[])
{
pl(arrayName+" : ");
for(Object o : arr)
p(o);
pl();
}
static void pa(String arrayName, int arr[])
{
pl(arrayName+" : ");
for(int o : arr)
p(o);
pl();
}
static void pa(String arrayName, long arr[])
{
pl(arrayName+" : ");
for(long o : arr)
p(o);
pl();
}
static void pa(String arrayName, double arr[])
{
pl(arrayName+" : ");
for(double o : arr)
p(o);
pl();
}
static void pa(String arrayName, char arr[])
{
pl(arrayName+" : ");
for(char o : arr)
p(o);
pl();
}
static void pa(String arrayName, TreeSet<Integer> set)
{
pl(arrayName+" : ");
for(Object o : set)
p(o);
pl();
}
static void pa(String arrayName, boolean arr[])
{
pl(arrayName+" : ");
for(boolean o : arr)
p(o);
pl();
}
static void pa(String listName, List list)
{
pl(listName+" : ");
for(Object o : list)
p(o);
pl();
}
static void pa(String arrayName, Object[][] arr) {
pl(arrayName+" : ");
for(int i=0;i<arr.length;++i) {
for(Object o : arr[i])
p(o);
pl();
}
}
static void pa(String arrayName, int[][] arr) {
pl(arrayName+" : ");
for(int i=0;i<arr.length;++i) {
for(int o : arr[i])
p(o);
pl();
}
}
static void pa(String arrayName, long[][] arr) {
pl(arrayName+" : ");
for(int i=0;i<arr.length;++i) {
for(long o : arr[i])
p(o);
pl();
}
}
static void pa(String arrayName, char[][] arr) {
pl(arrayName+" : ");
for(int i=0;i<arr.length;++i) {
for(char o : arr[i])
p(o);
pl();
}
}
static void pa(String arrayName, double[][] arr) {
pl(arrayName+" : ");
for(int i=0;i<arr.length;++i) {
for(double o : arr[i])
p(o);
pl();
}
}
static void pa(String arrayName, boolean[][] arr) {
pl(arrayName+" : ");
for(int i=0;i<arr.length;++i) {
for(boolean o : arr[i])
p(o);
pl();
}
}
static class MyScanner
{
BufferedReader br;
StringTokenizer st;
MyScanner(boolean readingFromFile, String suffix) throws IOException
{
if(readingFromFile) {
br = new BufferedReader(new FileReader("/Users/ddfds/Desktop/input"+suffix+".txt"));
}
else {
br = new BufferedReader(new InputStreamReader(System.in));
}
}
String nextLine()throws IOException
{
return br.readLine();
}
String next() throws IOException
{
if(st==null || !st.hasMoreTokens())
st = new StringTokenizer(br.readLine());
return st.nextToken();
}
int nextInt() throws IOException
{
return Integer.parseInt(next());
}
long nextLong() throws IOException
{
return Long.parseLong(next());
}
double nextDouble() throws IOException
{
return Double.parseDouble(next());
}
}
}
|
Java
|
["5\n7 12\n1 2 3 4 9 10 11\nR R L L R R R\n2 10\n1 6\nR R\n2 10\n1 3\nL L\n1 10\n5\nR\n7 8\n6 1 7 2 3 5 4\nR L R L L L L"]
|
2 seconds
|
["1 1 1 1 2 -1 2 \n-1 -1 \n2 2 \n-1 \n-1 2 7 3 2 7 3"]
|
NoteHere is the picture for the seconds $$$0, 1, 2$$$ and $$$3$$$ of the first testcase: Notice that robots $$$2$$$ and $$$3$$$ don't collide because they meet at the same point $$$2.5$$$, which is not integer.After second $$$3$$$ robot $$$6$$$ just drive infinitely because there's no robot to collide with.
|
Java 11
|
standard input
|
[
"data structures",
"greedy",
"implementation",
"sortings"
] |
1a28b972e77966453cd8239cc5c8f59a
|
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$) — the number of testcases. Then the descriptions of $$$t$$$ testcases follow. The first line of each testcase contains two integers $$$n$$$ and $$$m$$$ ($$$1 \le n \le 3 \cdot 10^5$$$; $$$2 \le m \le 10^8$$$) — the number of robots and the coordinate of the right wall. The second line of each testcase contains $$$n$$$ integers $$$x_1, x_2, \dots, x_n$$$ ($$$0 < x_i < m$$$) — the starting coordinates of the robots. The third line of each testcase contains $$$n$$$ space-separated characters 'L' or 'R' — the starting directions of the robots ('L' stands for left and 'R' stands for right). All coordinates $$$x_i$$$ in the testcase are distinct. The sum of $$$n$$$ over all testcases doesn't exceed $$$3 \cdot 10^5$$$.
| 2,000
|
For each testcase print $$$n$$$ integers — for the $$$i$$$-th robot output the time it explodes at if it does and $$$-1$$$ otherwise.
|
standard output
| |
PASSED
|
b661beab42c8bd1ccd451bf56eca9251
|
train_110.jsonl
|
1621152000
|
There are $$$n$$$ robots driving along an OX axis. There are also two walls: one is at coordinate $$$0$$$ and one is at coordinate $$$m$$$.The $$$i$$$-th robot starts at an integer coordinate $$$x_i~(0 < x_i < m)$$$ and moves either left (towards the $$$0$$$) or right with the speed of $$$1$$$ unit per second. No two robots start at the same coordinate.Whenever a robot reaches a wall, it turns around instantly and continues his ride in the opposite direction with the same speed.Whenever several robots meet at the same integer coordinate, they collide and explode into dust. Once a robot has exploded, it doesn't collide with any other robot. Note that if several robots meet at a non-integer coordinate, nothing happens.For each robot find out if it ever explodes and print the time of explosion if it happens and $$$-1$$$ otherwise.
|
256 megabytes
|
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.util.*;
public class A{
static class FastReader {
BufferedReader br;
StringTokenizer st;
public FastReader()
{
br = new BufferedReader(
new InputStreamReader(System.in));
}
String next()
{
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(br.readLine());
}
catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt() { return Integer.parseInt(next()); }
long nextLong() { return Long.parseLong(next()); }
double nextDouble()
{
return Double.parseDouble(next());
}
String nextLine()
{
String str = "";
try {
str = br.readLine();
}
catch (IOException e) {
e.printStackTrace();
}
return str;
}
}
static int __gcd(int a, int b)
{
if (b == 0)
return a;
return __gcd(b, a % b);
}
static int mul(int a,int b){
return (a*b)%mod;
}
static int add(int a,int b){
return (a+b)%mod;
}
static int nC2(int n){
return mul(n,n-1)/2;
}
static int mod = (int)(1e9)+7;
public static void main(String args[]){
FastReader sc = new FastReader();
PrintWriter out = new PrintWriter(System.out);
int t = sc.nextInt();
while(t-->0){
int n = sc.nextInt();
int m = sc.nextInt();
int[][] robot = new int[n][4];
int[] dir = new int[n];
for(int i=0;i<n;i++){
robot[i][0] = sc.nextInt();
robot[i][2] = i;
}
String inp = sc.nextLine();
//System.out.println(inp);
for(int i=0;i<2*n;i+=2){
robot[i/2][1] = (inp.charAt(i) == 'L')?-1:1;
}
Arrays.sort(robot, Comparator.comparingInt(a -> a[0]));
Stack<int[]> evenXStack = new Stack<>();
Stack<int[]> oddXStack = new Stack<>();
int[] collidingTimes = new int[n];
Arrays.fill(collidingTimes,-1);
for(int i=0;i<n;i++){
if(robot[i][0]%2 == 0) {
if (robot[i][1] == -1) {
if (!evenXStack.isEmpty()) {
int[] collidingRobotX = evenXStack.pop();
int time = (robot[i][0]-collidingRobotX[0])/2;
collidingTimes[robot[i][2]] = time;
collidingTimes[robot[collidingRobotX[2]][2]] = time;
robot[i][3] = 1;
robot[collidingRobotX[2]][3] = 1;
}
}
else{
evenXStack.add(new int[]{robot[i][0],robot[i][2],i});
}
}
else{
if (robot[i][1] == -1) {
if (!oddXStack.isEmpty()) {
int[] collidingRobotX = oddXStack.pop();
int time = (robot[i][0]-collidingRobotX[0])/2;
collidingTimes[robot[i][2]] = time;
collidingTimes[robot[collidingRobotX[2]][2]] = time;
robot[i][3] = 1;
robot[collidingRobotX[2]][3] = 1;
}
}
else{
oddXStack.add(new int[]{robot[i][0],robot[i][2],i});
}
}
}
evenXStack.clear();
oddXStack.clear();
for(int i=n-1;i>=0;i--){
if(robot[i][3] != 1 && robot[i][1] == 1){
if(robot[i][0]%2 == 0) {
if (!evenXStack.isEmpty()) {
int[] collidingRobotX = evenXStack.pop();
int time = (robot[i][0]-collidingRobotX[0])/2 + m-robot[i][0];
collidingTimes[robot[i][2]] = time;
collidingTimes[robot[collidingRobotX[2]][2]] = time;
robot[i][3] = 1;
robot[collidingRobotX[2]][3] = 1;
}
else{
evenXStack.add(new int[]{robot[i][0],robot[i][2],i});
}
}
else{
if (!oddXStack.isEmpty()) {
int[] collidingRobotX = oddXStack.pop();
int time = (robot[i][0]-collidingRobotX[0])/2 + m-robot[i][0];
collidingTimes[robot[i][2]] = time;
collidingTimes[robot[collidingRobotX[2]][2]] = time;
robot[i][3] = 1;
robot[collidingRobotX[2]][3] = 1;
}
else{
oddXStack.add(new int[]{robot[i][0],robot[i][2],i});
}
}
}
}
evenXStack.clear();
oddXStack.clear();
for(int i=0;i<n;i++){
if(robot[i][3] != 1 && robot[i][1] == -1){
if(robot[i][0]%2 == 0) {
if (!evenXStack.isEmpty()) {
int[] collidingRobotX = evenXStack.pop();
int time = (robot[i][0]-collidingRobotX[0])/2 + collidingRobotX[0];
collidingTimes[robot[i][2]] = time;
collidingTimes[robot[collidingRobotX[2]][2]] = time;
robot[i][3] = 1;
robot[collidingRobotX[2]][3] = 1;
}
else{
evenXStack.add(new int[]{robot[i][0],robot[i][2],i});
}
}
else{
if (!oddXStack.isEmpty()) {
int[] collidingRobotX = oddXStack.pop();
int time = (robot[i][0]-collidingRobotX[0])/2 + collidingRobotX[0];
collidingTimes[robot[i][2]] = time;
collidingTimes[robot[collidingRobotX[2]][2]] = time;
robot[i][3] = 1;
robot[collidingRobotX[2]][3] = 1;
}
else{
oddXStack.add(new int[]{robot[i][0],robot[i][2],i});
}
}
}
}
evenXStack.clear();
oddXStack.clear();
for(int i=0;i<n;i++){
if(robot[i][3] == 1) continue;
if(robot[i][0]%2 == 0) {
if (robot[i][1] == 1) {
if (!evenXStack.isEmpty()) {
int[] collidingRobotX = evenXStack.pop();
int time = (robot[i][0]-collidingRobotX[0])/2 + collidingRobotX[0] + m-robot[i][0];
collidingTimes[robot[i][2]] = time;
collidingTimes[robot[collidingRobotX[2]][2]] = time;
robot[i][3] = 1;
robot[collidingRobotX[2]][3] = 1;
}
}
else{
evenXStack.add(new int[]{robot[i][0],robot[i][2],i});
}
}
else{
if (robot[i][1] == 1) {
if (!oddXStack.isEmpty()) {
int[] collidingRobotX = oddXStack.pop();
int time = (robot[i][0]-collidingRobotX[0])/2 + collidingRobotX[0] + m-robot[i][0];;
collidingTimes[robot[i][2]] = time;
collidingTimes[robot[collidingRobotX[2]][2]] = time;
robot[i][3] = 1;
robot[collidingRobotX[2]][3] = 1;
}
}
else{
oddXStack.add(new int[]{robot[i][0],robot[i][2],i});
}
}
}
for(int i:collidingTimes){
out.print(i+" ");
}
out.println();
}
out.close();
}
}
|
Java
|
["5\n7 12\n1 2 3 4 9 10 11\nR R L L R R R\n2 10\n1 6\nR R\n2 10\n1 3\nL L\n1 10\n5\nR\n7 8\n6 1 7 2 3 5 4\nR L R L L L L"]
|
2 seconds
|
["1 1 1 1 2 -1 2 \n-1 -1 \n2 2 \n-1 \n-1 2 7 3 2 7 3"]
|
NoteHere is the picture for the seconds $$$0, 1, 2$$$ and $$$3$$$ of the first testcase: Notice that robots $$$2$$$ and $$$3$$$ don't collide because they meet at the same point $$$2.5$$$, which is not integer.After second $$$3$$$ robot $$$6$$$ just drive infinitely because there's no robot to collide with.
|
Java 11
|
standard input
|
[
"data structures",
"greedy",
"implementation",
"sortings"
] |
1a28b972e77966453cd8239cc5c8f59a
|
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$) — the number of testcases. Then the descriptions of $$$t$$$ testcases follow. The first line of each testcase contains two integers $$$n$$$ and $$$m$$$ ($$$1 \le n \le 3 \cdot 10^5$$$; $$$2 \le m \le 10^8$$$) — the number of robots and the coordinate of the right wall. The second line of each testcase contains $$$n$$$ integers $$$x_1, x_2, \dots, x_n$$$ ($$$0 < x_i < m$$$) — the starting coordinates of the robots. The third line of each testcase contains $$$n$$$ space-separated characters 'L' or 'R' — the starting directions of the robots ('L' stands for left and 'R' stands for right). All coordinates $$$x_i$$$ in the testcase are distinct. The sum of $$$n$$$ over all testcases doesn't exceed $$$3 \cdot 10^5$$$.
| 2,000
|
For each testcase print $$$n$$$ integers — for the $$$i$$$-th robot output the time it explodes at if it does and $$$-1$$$ otherwise.
|
standard output
| |
PASSED
|
bcd6e27c170a2a2b840fd926408bad48
|
train_110.jsonl
|
1621152000
|
There are $$$n$$$ robots driving along an OX axis. There are also two walls: one is at coordinate $$$0$$$ and one is at coordinate $$$m$$$.The $$$i$$$-th robot starts at an integer coordinate $$$x_i~(0 < x_i < m)$$$ and moves either left (towards the $$$0$$$) or right with the speed of $$$1$$$ unit per second. No two robots start at the same coordinate.Whenever a robot reaches a wall, it turns around instantly and continues his ride in the opposite direction with the same speed.Whenever several robots meet at the same integer coordinate, they collide and explode into dust. Once a robot has exploded, it doesn't collide with any other robot. Note that if several robots meet at a non-integer coordinate, nothing happens.For each robot find out if it ever explodes and print the time of explosion if it happens and $$$-1$$$ otherwise.
|
256 megabytes
|
import java.util.*;
import java.io.*;
public class _109 {
static long m;
static long [] res;
public static void main(String[] args) {
MyScanner sc = new MyScanner();
PrintWriter out = new PrintWriter(new BufferedOutputStream(System.out));
int t = sc.nextInt();
while (t-- > 0) {
int n = sc.nextInt();
m = sc.nextLong();
// solve problem on evens and odds separately
long [] p = new long[n];
for (int i = 0; i < n; i++) p[i] = sc.nextInt();
char [] d = new char[n];
for (int i = 0; i < n; i++) d[i] = sc.next().equals("L") ? 'L' : 'R';
ArrayList<Pair> even = new ArrayList<>();
ArrayList<Pair> odd = new ArrayList<>();
for (int i = 0; i < n; i++) {
if (p[i] % 2 == 0) {
even.add(new Pair(p[i], d[i], i));
} else {
odd.add(new Pair(p[i], d[i], i));
}
}
res = new long[n];
Collections.sort(even, Comparator.comparingLong(x -> x.pos));
Collections.sort(odd, Comparator.comparingLong(x -> x.pos));
solve(even);
solve(odd);
for (int i = 0; i < n; i++) out.print(res[i] + " ");
out.println();
}
out.close();
}
static void solve(ArrayList<Pair> a) {
ArrayDeque<Pair> b = new ArrayDeque<>();
int sz = a.size();
ArrayDeque<Pair> left = new ArrayDeque<>();
for (int i = 0; i < sz; i++) {
if (a.get(i).dir == 'R') {
b.add(a.get(i));
} else {
if (b.size() > 0) {
Pair last = b.pollLast();
long ans = (a.get(i).pos - last.pos) / 2;
res[last.i] = ans;
res[a.get(i).i] = ans;
} else {
left.add(a.get(i));
}
}
}
while (b.size() >= 2) {
Pair second = b.pollLast();
Pair first = b.pollLast();
long to = m - second.pos;
long get = first.pos + to;
long finish = (m - get) / 2;
res[second.i] = res[first.i] = to + finish;
}
while (left.size() >= 2) {
Pair first = left.pollFirst();
Pair second = left.pollFirst();
long to = first.pos;
long get = second.pos - to;
long finish = get / 2;
res[second.i] = res[first.i] = to + finish;
}
if (left.size() + b.size() == 2) {
Pair second = b.pollFirst();
Pair first = left.pollFirst();
long firstPos = first.pos;
long secondPos = second.pos;
if (firstPos <= m - secondPos) {
long f = m - secondPos - firstPos;
long time = m - secondPos;
time += (m - f) / 2;
res[second.i] = res[first.i] = time;
} else {
long s = m - (firstPos - (m - secondPos));
long time = firstPos;
time += s / 2;
res[second.i] = res[first.i] = time;
}
} else {
if (left.size() > 0) {
Pair last = left.pollLast();
res[last.i] = -1;
}
if (b.size() > 0) {
Pair last = b.pollLast();
res[last.i] = -1;
}
}
}
static class Pair {
long pos; char dir; int i;
Pair(long pos, char dir, int i) {
this.pos = pos; this.dir = dir; this.i = i;
}
}
static void sort(int[] a) {
ArrayList<Integer> q = new ArrayList<>();
for (int i : a) q.add(i);
Collections.sort(q);
for (int i = 0; i < a.length; i++) a[i] = q.get(i);
}
static void sort(long[] a) {
ArrayList<Long> q = new ArrayList<>();
for (long i : a) q.add(i);
Collections.sort(q);
for (int i = 0; i < a.length; i++) a[i] = q.get(i);
}
//-----------MyScanner class for faster input----------
public static class MyScanner {
BufferedReader br;
StringTokenizer st;
public MyScanner() {
br = new BufferedReader(new InputStreamReader(System.in));
}
String next() {
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
long nextLong() {
return Long.parseLong(next());
}
double nextDouble() {
return Double.parseDouble(next());
}
String nextLine() {
String str = "";
try {
str = br.readLine();
} catch (IOException e) {
e.printStackTrace();
}
return str;
}
}
}
|
Java
|
["5\n7 12\n1 2 3 4 9 10 11\nR R L L R R R\n2 10\n1 6\nR R\n2 10\n1 3\nL L\n1 10\n5\nR\n7 8\n6 1 7 2 3 5 4\nR L R L L L L"]
|
2 seconds
|
["1 1 1 1 2 -1 2 \n-1 -1 \n2 2 \n-1 \n-1 2 7 3 2 7 3"]
|
NoteHere is the picture for the seconds $$$0, 1, 2$$$ and $$$3$$$ of the first testcase: Notice that robots $$$2$$$ and $$$3$$$ don't collide because they meet at the same point $$$2.5$$$, which is not integer.After second $$$3$$$ robot $$$6$$$ just drive infinitely because there's no robot to collide with.
|
Java 11
|
standard input
|
[
"data structures",
"greedy",
"implementation",
"sortings"
] |
1a28b972e77966453cd8239cc5c8f59a
|
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$) — the number of testcases. Then the descriptions of $$$t$$$ testcases follow. The first line of each testcase contains two integers $$$n$$$ and $$$m$$$ ($$$1 \le n \le 3 \cdot 10^5$$$; $$$2 \le m \le 10^8$$$) — the number of robots and the coordinate of the right wall. The second line of each testcase contains $$$n$$$ integers $$$x_1, x_2, \dots, x_n$$$ ($$$0 < x_i < m$$$) — the starting coordinates of the robots. The third line of each testcase contains $$$n$$$ space-separated characters 'L' or 'R' — the starting directions of the robots ('L' stands for left and 'R' stands for right). All coordinates $$$x_i$$$ in the testcase are distinct. The sum of $$$n$$$ over all testcases doesn't exceed $$$3 \cdot 10^5$$$.
| 2,000
|
For each testcase print $$$n$$$ integers — for the $$$i$$$-th robot output the time it explodes at if it does and $$$-1$$$ otherwise.
|
standard output
| |
PASSED
|
8cdaa7853f8cce2f41066ec8755b56ae
|
train_110.jsonl
|
1621152000
|
There are $$$n$$$ robots driving along an OX axis. There are also two walls: one is at coordinate $$$0$$$ and one is at coordinate $$$m$$$.The $$$i$$$-th robot starts at an integer coordinate $$$x_i~(0 < x_i < m)$$$ and moves either left (towards the $$$0$$$) or right with the speed of $$$1$$$ unit per second. No two robots start at the same coordinate.Whenever a robot reaches a wall, it turns around instantly and continues his ride in the opposite direction with the same speed.Whenever several robots meet at the same integer coordinate, they collide and explode into dust. Once a robot has exploded, it doesn't collide with any other robot. Note that if several robots meet at a non-integer coordinate, nothing happens.For each robot find out if it ever explodes and print the time of explosion if it happens and $$$-1$$$ otherwise.
|
256 megabytes
|
import java.io.*;
import java.util.*;
import javax.swing.text.DefaultStyledDocument.ElementSpec;
/**
__ __
( _) ( _)
/ / \\ / /\_\_
/ / \\ / / | \ \
/ / \\ / / |\ \ \
/ / , \ , / / /| \ \
/ / |\_ /| / / / \ \_\
/ / |\/ _ '_| \ / / / \ \\
| / |/ 0 \0\ / | | \ \\
| |\| \_\_ / / | \ \\
| | |/ \.\ o\o) / \ | \\
\ | /\\`v-v / | | \\
| \/ /_| \\_| / | | \ \\
| | /__/_ `-` / _____ | | \ \\
\| [__] \_/ |_________ \ | \ ()
/ [___] ( \ \ |\ | | //
| [___] |\| \| / |/
/| [____] \ |/\ / / ||
( \ [____ / ) _\ \ \ \| | ||
\ \ [_____| / / __/ \ / / //
| \ [_____/ / / \ | \/ //
| / '----| /=\____ _/ | / //
__ / / | / ___/ _/\ \ | ||
(/-(/-\) / \ (/\/\)/ | / | /
(/\/\) / / //
_________/ / /
\____________/ (
@author NTUDragons-Reborn
*/
public class A{
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
InputReader in = new InputReader(inputStream);
PrintWriter out = new PrintWriter(outputStream);
Task solver = new Task();
solver.solve(in, out);
out.close();
}
// main solver
static class Task{
double eps= 0.00000001;
static final int MAXN = 10000001;
// stores smallest prime factor for every number
static int spf[] = new int[MAXN];
Map<Integer,Set<Integer>> dp= new HashMap<>();
// Calculating SPF (Smallest Prime Factor) for every
// number till MAXN.
// Time Complexity : O(nloglogn)
public void sieve()
{
spf[1] = 1;
for (int i=2; i<MAXN; i++)
// marking smallest prime factor for every
// number to be itself.
spf[i] = i;
// separately marking spf for every even
// number as 2
for (int i=4; i<MAXN; i+=2)
spf[i] = 2;
for (int i=3; i*i<MAXN; i++)
{
// checking if i is prime
if (spf[i] == i)
{
// marking SPF for all numbers divisible by i
for (int j=i*i; j<MAXN; j+=i)
// marking spf[j] if it is not
// previously marked
if (spf[j]==j)
spf[j] = i;
}
}
}
// A O(log n) function returning primefactorization
// by dividing by smallest prime factor at every step
public Set<Integer> getFactorization(int x)
{
if(dp.containsKey(x)) return dp.get(x);
Set<Integer> ret = new HashSet<>();
while (x != 1)
{
if(spf[x]!=2) ret.add(spf[x]);
x = x / spf[x];
}
dp.put(x,ret);
return ret;
}
// function to find first index >= x
public int lowerIndex(List<Integer> arr, int n, int x)
{
int l = 0, h = n - 1;
while (l <= h)
{
int mid = (l + h) / 2;
if (arr.get(mid) >= x)
h = mid - 1;
else
l = mid + 1;
}
return l;
}
// function to find last index <= y
public int upperIndex(List<Integer> arr, int n, int y)
{
int l = 0, h = n - 1;
while (l <= h)
{
int mid = (l + h) / 2;
if (arr.get(mid) <= y)
l = mid + 1;
else
h = mid - 1;
}
return h;
}
// function to count elements within given range
public int countInRange(List<Integer> arr, int n, int x, int y)
{
// initialize result
int count = 0;
count = upperIndex(arr, n, y) -
lowerIndex(arr, n, x) + 1;
return count;
}
ArrayList<Tuple>odd = new ArrayList<>();
ArrayList<Tuple>even = new ArrayList<>();
int m;
Map<Integer, Integer> result = new HashMap<>();
public void solve(InputReader in, PrintWriter out) {
int t = in.nextInt();
while (t-- > 0){
even.clear();
odd.clear();
result.clear();
int n = in.nextInt();
m = in.nextInt();
int[] x = new int[n];
int[] direction = new int[n];
for(int i = 0; i < n; i++) x[i] = in.nextInt();
for(int i = 0; i < n; i++){
direction[i]= in.nextToken().charAt(0)=='L'?-1:1;
if (x[i] % 2 == 0){
even.add(new Tuple(x[i], direction[i], i));
}
else{
odd.add(new Tuple(x[i], direction[i], i));
}
}
solveOne(odd);
solveOne(even);
for (int i = 0; i < n; i++){
if (result.containsKey(i)){
out.print(result.get(i) + " ");
}
else{
out.print("-1 ");
}
}
out.println();
}
}
void solveOne(ArrayList<Tuple> arr){
Collections.sort(arr);
Stack<Tuple> right = new Stack();
List<Tuple> left = new ArrayList<>();
for (Tuple item : arr){
int pos = item.x;
int dir = item.y;
int index = item.z;
if (dir == -1){ // left;
if (right.isEmpty()){
left.add(item);
}
else{
Tuple top = right.pop();
int time = Math.abs(pos - top.x) / 2;
result.put(index, time);
result.put(top.z, time);
}
}
else{ // right;
right.push(item);
}
}
// process right;
while (right.size() >= 2){
Tuple first = right.pop();
Tuple second = right.pop();
int time = m - first.x + (first.x - second.x) / 2;
result.put(first.z, time);
result.put(second.z, time);
}
Collections.sort(left);
// process left;
for (int i = 0; i < left.size() - 1; i += 2){
Tuple first = left.get(i);
Tuple second = left.get(i+1);
int time = first.x + (second.x - first.x) / 2;
result.put(first.z, time);
result.put(second.z, time);
}
if (right.isEmpty() || left.size() % 2 == 0){
return;
}
Tuple first = right.peek();
Tuple second = left.get(left.size()-1);
int time = (2 * m - Math.abs(first.x - second.x)) / 2;
result.put(first.z, time);
result.put(second.z, time);
}
public int _gcd(int a, int b)
{
if(b == 0) {
return a;
}
else {
return _gcd(b, a % b);
}
}
}
static class Tuple implements Comparable<Tuple>{
int x, y, z;
public Tuple(int x, int y, int z){
this.x= x;
this.y= y;
this.z=z;
}
@Override
public int compareTo(Tuple o){
return this.x-o.x;
}
}
static class Pair implements Comparable<Pair>{
public int x;
public int y;
public Pair(int x, int y){
this.x= x;
this.y= y;
}
@Override
public int compareTo(Pair o) {
return this.x-o.x;
}
}
// fast input reader class;
static class InputReader {
BufferedReader br;
StringTokenizer st;
public InputReader(InputStream stream) {
br = new BufferedReader(new InputStreamReader(stream));
}
public String nextToken() {
while (st == null || !st.hasMoreTokens()) {
String line = null;
try {
line = br.readLine();
} catch (IOException e) {
throw new RuntimeException(e);
}
if (line == null) {
return null;
}
st = new StringTokenizer(line);
}
return st.nextToken();
}
public int nextInt() {
return Integer.parseInt(nextToken());
}
public double nextDouble(){
return Double.parseDouble(nextToken());
}
public long nextLong(){
return Long.parseLong(nextToken());
}
}
}
|
Java
|
["5\n7 12\n1 2 3 4 9 10 11\nR R L L R R R\n2 10\n1 6\nR R\n2 10\n1 3\nL L\n1 10\n5\nR\n7 8\n6 1 7 2 3 5 4\nR L R L L L L"]
|
2 seconds
|
["1 1 1 1 2 -1 2 \n-1 -1 \n2 2 \n-1 \n-1 2 7 3 2 7 3"]
|
NoteHere is the picture for the seconds $$$0, 1, 2$$$ and $$$3$$$ of the first testcase: Notice that robots $$$2$$$ and $$$3$$$ don't collide because they meet at the same point $$$2.5$$$, which is not integer.After second $$$3$$$ robot $$$6$$$ just drive infinitely because there's no robot to collide with.
|
Java 11
|
standard input
|
[
"data structures",
"greedy",
"implementation",
"sortings"
] |
1a28b972e77966453cd8239cc5c8f59a
|
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$) — the number of testcases. Then the descriptions of $$$t$$$ testcases follow. The first line of each testcase contains two integers $$$n$$$ and $$$m$$$ ($$$1 \le n \le 3 \cdot 10^5$$$; $$$2 \le m \le 10^8$$$) — the number of robots and the coordinate of the right wall. The second line of each testcase contains $$$n$$$ integers $$$x_1, x_2, \dots, x_n$$$ ($$$0 < x_i < m$$$) — the starting coordinates of the robots. The third line of each testcase contains $$$n$$$ space-separated characters 'L' or 'R' — the starting directions of the robots ('L' stands for left and 'R' stands for right). All coordinates $$$x_i$$$ in the testcase are distinct. The sum of $$$n$$$ over all testcases doesn't exceed $$$3 \cdot 10^5$$$.
| 2,000
|
For each testcase print $$$n$$$ integers — for the $$$i$$$-th robot output the time it explodes at if it does and $$$-1$$$ otherwise.
|
standard output
| |
PASSED
|
6d720f5fb4322b69a743dd1b1c809fd5
|
train_110.jsonl
|
1621152000
|
There are $$$n$$$ robots driving along an OX axis. There are also two walls: one is at coordinate $$$0$$$ and one is at coordinate $$$m$$$.The $$$i$$$-th robot starts at an integer coordinate $$$x_i~(0 < x_i < m)$$$ and moves either left (towards the $$$0$$$) or right with the speed of $$$1$$$ unit per second. No two robots start at the same coordinate.Whenever a robot reaches a wall, it turns around instantly and continues his ride in the opposite direction with the same speed.Whenever several robots meet at the same integer coordinate, they collide and explode into dust. Once a robot has exploded, it doesn't collide with any other robot. Note that if several robots meet at a non-integer coordinate, nothing happens.For each robot find out if it ever explodes and print the time of explosion if it happens and $$$-1$$$ otherwise.
|
256 megabytes
|
import java.io.*;
import java.util.*;
public class C {
private static BufferedReader reader = new BufferedReader(new InputStreamReader(System.in));
private static BufferedWriter writer = new BufferedWriter(new OutputStreamWriter(System.out));
private static StringTokenizer st;
public static void main(String[] args) throws IOException {
st = new StringTokenizer(reader.readLine());
int T = Integer.parseInt(st.nextToken());
for (int t = 0; t < T; t++) {
st = new StringTokenizer(reader.readLine());
int n = Integer.parseInt(st.nextToken());
int m = Integer.parseInt(st.nextToken());
int[] x = new int[n];
int[][] xAndIndex = new int[n][];
st = new StringTokenizer(reader.readLine());
for (int i = 0; i < n; i++) {
x[i] = Integer.parseInt(st.nextToken());
xAndIndex[i] = new int[]{x[i], i};
}
Arrays.sort(xAndIndex, Comparator.comparing(arr -> arr[0]));
int[] perm = new int[n];
for (int i = 0; i < n; i++) {
perm[xAndIndex[i][1]] = i;
}
for (int i = 0; i < n; i++) {
x[i] = xAndIndex[i][0];
}
String[] dirs = new String[n];
String[] originalDirs = new String[n];
st = new StringTokenizer(reader.readLine());
for (int i = 0; i < n; i++) {
originalDirs[i] = st.nextToken();
}
for (int i = 0; i < n; i++) {
dirs[i] = originalDirs[xAndIndex[i][1]];
}
//System.out.println("x: " + Arrays.toString(x));
//System.out.println("dirs: " + Arrays.toString(dirs));
Deque<Integer> evenCoord = new ArrayDeque<>();
Deque<Integer> oddCoord = new ArrayDeque<>();
int[] result = new int[n];
for (int i = 0; i < n; i++) {
if (x[i] % 2 == 0) {
if (evenCoord.isEmpty() || dirs[i].equals("R") || dirs[evenCoord.peekLast()].equals("L")) {
evenCoord.offerLast(i);
} else {
int prev = evenCoord.pollLast();
int halfDist = (x[i] - x[prev]) / 2;
result[prev] = halfDist;
result[i] = halfDist;
//System.out.println(x[prev] + "-" + x[i] + "-" + halfDist);
}
} else {
if (oddCoord.isEmpty() || dirs[i].equals("R") || dirs[oddCoord.peekLast()].equals("L")) {
oddCoord.offerLast(i);
} else {
int prev = oddCoord.pollLast();
int halfDist = (x[i] - x[prev]) / 2;
result[prev] = halfDist;
result[i] = halfDist;
//System.out.println(x[prev] + "-" + x[i] + "-" + halfDist);
}
}
}
fillResult(m, x, dirs, result, evenCoord);
fillResult(m, x, dirs, result, oddCoord);
//System.out.println("res:" + Arrays.toString(result));
for (int i = 0; i < n; i++) {
writer.write(result[perm[i]] + " ");
}
writer.newLine();
}
writer.flush();
}
static void fillResult(int m, int[] x, String[] dirs, int[] result, Deque<Integer> coord) {
//System.out.println("coord: " + coord);
while (coord.size() >= 2) {
if (dirs[coord.peekLast()].equals("R")) {
int right = coord.pollLast();
if (dirs[coord.peekLast()].equals("R")) {
int left = coord.pollLast();
int halfDist = (m + m - x[right] - x[left]) / 2;
result[left] = halfDist;
result[right] = halfDist;
//System.out.println(x[left] + "." + x[right] + "." + halfDist);
} else if (coord.size() == 1) {
int left = coord.pollFirst();
int halfDist = (m + x[left] + m - x[right]) / 2;
result[left] = halfDist;
result[right] = halfDist;
//System.out.println(x[left] + "." + x[right] + "." + halfDist);
} else {
coord.offerLast(right);
break;
}
} else {
break;
}
}
while (coord.size() >= 2) {
if (dirs[coord.peekFirst()].equals("L")) {
int left = coord.pollFirst();
if (dirs[coord.peekFirst()].equals("L")) {
int right = coord.pollFirst();
int halfDist = (x[left] + x[right]) / 2;
result[left] = halfDist;
result[right] = halfDist;
//System.out.println(x[left] + "+" + x[right] + "+" + halfDist);
} else if (coord.size() == 1) {
int right = coord.pollLast();
int halfDist = (m + x[left] + m - x[right]) / 2;
result[left] = halfDist;
result[right] = halfDist;
//System.out.println(x[left] + "+" + x[right] + "+" + halfDist);
} else {
coord.offerFirst(left);
break;
}
} else {
break;
}
}
//System.out.println("coord: " + coord);
while (!coord.isEmpty()) {
result[coord.pollFirst()] = -1;
}
}
}
|
Java
|
["5\n7 12\n1 2 3 4 9 10 11\nR R L L R R R\n2 10\n1 6\nR R\n2 10\n1 3\nL L\n1 10\n5\nR\n7 8\n6 1 7 2 3 5 4\nR L R L L L L"]
|
2 seconds
|
["1 1 1 1 2 -1 2 \n-1 -1 \n2 2 \n-1 \n-1 2 7 3 2 7 3"]
|
NoteHere is the picture for the seconds $$$0, 1, 2$$$ and $$$3$$$ of the first testcase: Notice that robots $$$2$$$ and $$$3$$$ don't collide because they meet at the same point $$$2.5$$$, which is not integer.After second $$$3$$$ robot $$$6$$$ just drive infinitely because there's no robot to collide with.
|
Java 11
|
standard input
|
[
"data structures",
"greedy",
"implementation",
"sortings"
] |
1a28b972e77966453cd8239cc5c8f59a
|
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$) — the number of testcases. Then the descriptions of $$$t$$$ testcases follow. The first line of each testcase contains two integers $$$n$$$ and $$$m$$$ ($$$1 \le n \le 3 \cdot 10^5$$$; $$$2 \le m \le 10^8$$$) — the number of robots and the coordinate of the right wall. The second line of each testcase contains $$$n$$$ integers $$$x_1, x_2, \dots, x_n$$$ ($$$0 < x_i < m$$$) — the starting coordinates of the robots. The third line of each testcase contains $$$n$$$ space-separated characters 'L' or 'R' — the starting directions of the robots ('L' stands for left and 'R' stands for right). All coordinates $$$x_i$$$ in the testcase are distinct. The sum of $$$n$$$ over all testcases doesn't exceed $$$3 \cdot 10^5$$$.
| 2,000
|
For each testcase print $$$n$$$ integers — for the $$$i$$$-th robot output the time it explodes at if it does and $$$-1$$$ otherwise.
|
standard output
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.