exec_outcome
stringclasses
1 value
code_uid
stringlengths
32
32
file_name
stringclasses
111 values
prob_desc_created_at
stringlengths
10
10
prob_desc_description
stringlengths
63
3.8k
prob_desc_memory_limit
stringclasses
18 values
source_code
stringlengths
117
65.5k
lang_cluster
stringclasses
1 value
prob_desc_sample_inputs
stringlengths
2
802
prob_desc_time_limit
stringclasses
27 values
prob_desc_sample_outputs
stringlengths
2
796
prob_desc_notes
stringlengths
4
3k
lang
stringclasses
5 values
prob_desc_input_from
stringclasses
3 values
tags
listlengths
0
11
src_uid
stringlengths
32
32
prob_desc_input_spec
stringlengths
28
2.37k
difficulty
int64
-1
3.5k
prob_desc_output_spec
stringlengths
17
1.47k
prob_desc_output_to
stringclasses
3 values
hidden_unit_tests
stringclasses
1 value
PASSED
f9e0c6251cad533b8b5c31187fd74af1
train_110.jsonl
1613658900
You are a given an array $$$a$$$ of length $$$n$$$. Find a subarray $$$a[l..r]$$$ with length at least $$$k$$$ with the largest median.A median in an array of length $$$n$$$ is an element which occupies position number $$$\lfloor \frac{n + 1}{2} \rfloor$$$ after we sort the elements in non-decreasing order. For example: $$$median([1, 2, 3, 4]) = 2$$$, $$$median([3, 2, 1]) = 2$$$, $$$median([2, 1, 2, 1]) = 1$$$.Subarray $$$a[l..r]$$$ is a contiguous part of the array $$$a$$$, i. e. the array $$$a_l,a_{l+1},\ldots,a_r$$$ for some $$$1 \leq l \leq r \leq n$$$, its length is $$$r - l + 1$$$.
256 megabytes
import java.util.*; import java.io.*; public class Main { static Scanner sc = new Scanner(System.in); static PrintWriter out = new PrintWriter(System.out); static BufferedReader reader = new BufferedReader(new InputStreamReader(System.in)); // long mod = 998244353; // long mod = (long)1e9+7; long mod = 998244353; public static void main(String[] args) throws Exception { Main main = new Main(); // int t = sc.nextInt(); int t = 1; for(int i=1; i<=t; i++){ main.solve(); } out.flush(); } void solve() throws Exception { int n = neInt(), k = neInt(); int[] a = new int[n+1]; for(int i=1; i<=n; i++){ a[i] = neInt(); } int lo = 1, hi = n+1; while(lo+1<hi){ int mid = (hi+lo)/2; if(valid(a, n, k, mid)) lo = mid; else hi = mid; } out.println(lo); } boolean valid(int[] a, int n, int k, int target){ int[] mini = new int[]{n+2, n+2}; int sum = 0; Deque<Integer> list = new LinkedList<>(); list.add(0); for(int i=1; i<=n; i++){ if(a[i]>=target) sum += 1; else sum -= 1; list.add(sum); if(list.size()>k){ int idx = i-k, j = idx%2; int val = list.pollFirst(); mini[j] = Math.min(mini[j], val); } if(i>=k){ if(sum - mini[i%2]>0) return true; if(sum - mini[1-i%2]>=0) return true; } } return false; } String neS(){ return sc.next(); } int neInt(){ return Integer.parseInt(sc.next()); } long neLong(){ return Long.parseLong(sc.next()); } int paIn(String s){return Integer.parseInt(s);} }
Java
["5 3\n1 2 3 2 1", "4 2\n1 2 3 4"]
2 seconds
["2", "3"]
NoteIn the first example all the possible subarrays are $$$[1..3]$$$, $$$[1..4]$$$, $$$[1..5]$$$, $$$[2..4]$$$, $$$[2..5]$$$ and $$$[3..5]$$$ and the median for all of them is $$$2$$$, so the maximum possible median is $$$2$$$ too.In the second example $$$median([3..4]) = 3$$$.
Java 8
standard input
[ "binary search", "data structures", "dp" ]
dddeb7663c948515def967374f2b8812
The first line contains two integers $$$n$$$ and $$$k$$$ ($$$1 \leq k \leq n \leq 2 \cdot 10^5$$$). The second line contains $$$n$$$ integers $$$a_1, a_2, \ldots, a_n$$$ ($$$1 \leq a_i \leq n$$$).
2,100
Output one integer $$$m$$$ — the maximum median you can get.
standard output
PASSED
35656e48f30c632ff40d5ee3a1634c18
train_110.jsonl
1613658900
You are a given an array $$$a$$$ of length $$$n$$$. Find a subarray $$$a[l..r]$$$ with length at least $$$k$$$ with the largest median.A median in an array of length $$$n$$$ is an element which occupies position number $$$\lfloor \frac{n + 1}{2} \rfloor$$$ after we sort the elements in non-decreasing order. For example: $$$median([1, 2, 3, 4]) = 2$$$, $$$median([3, 2, 1]) = 2$$$, $$$median([2, 1, 2, 1]) = 1$$$.Subarray $$$a[l..r]$$$ is a contiguous part of the array $$$a$$$, i. e. the array $$$a_l,a_{l+1},\ldots,a_r$$$ for some $$$1 \leq l \leq r \leq n$$$, its length is $$$r - l + 1$$$.
256 megabytes
import java.util.*; import java.io.*; public class Main { public static void main(String[] args) throws IOException { FastScanner in = new FastScanner(System.in); PrintWriter out = new PrintWriter(System.out); new Main().run(in, out); out.close(); } public static long mod = 17352642619633L; int N; int[] a; int K; void run(FastScanner in, PrintWriter out) { N = in.nextInt(); K = in.nextInt(); a = new int[N]; b = new int[N]; int max = 0; int[] sorted = new int[N]; for (int i = 0; i < N; i++) { a[i] = in.nextInt(); max = Math.max(a[i], max); sorted[i] = a[i]; } if (K == 1) { out.println(max); return; } Arrays.sort(sorted); int lo = 0; int hi = N; while (lo < hi) { int m = (lo+hi)>>1; if (can(sorted[m])) { lo = m+1; } else { hi = m; } } out.println(sorted[lo-1]); } // check there exists median of at least m int[] b; boolean can(int m) { for (int i = 0; i < N; i++) { b[i] = a[i] >= m ? 1 : -1; } // is there a positive subarray with length >= K? LinkedList<int[]> psums = new LinkedList<>(); int psum = 0; psums.offerLast(new int[] {0, -1}); for (int i = 0; i < N; i++) { psum += b[i]; if (psums.isEmpty() || psum < psums.peekLast()[0]) { psums.offerLast(new int[] {psum, i}); } } int maxlen = 0; for (int i = N-1; i >= 0 && !psums.isEmpty(); i--) { while (!psums.isEmpty() && psums.peekLast()[1] >= i) psums.pollLast(); while (!psums.isEmpty() && psum - psums.peekLast()[0] > 0) { int[] t = psums.pollLast(); maxlen = Math.max(maxlen, i-t[1]); } psum -= b[i]; } return maxlen >= K; } static class FastScanner { BufferedReader br; StringTokenizer st; public FastScanner(InputStream in) { br = new BufferedReader(new InputStreamReader(in)); st = null; } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } } }
Java
["5 3\n1 2 3 2 1", "4 2\n1 2 3 4"]
2 seconds
["2", "3"]
NoteIn the first example all the possible subarrays are $$$[1..3]$$$, $$$[1..4]$$$, $$$[1..5]$$$, $$$[2..4]$$$, $$$[2..5]$$$ and $$$[3..5]$$$ and the median for all of them is $$$2$$$, so the maximum possible median is $$$2$$$ too.In the second example $$$median([3..4]) = 3$$$.
Java 8
standard input
[ "binary search", "data structures", "dp" ]
dddeb7663c948515def967374f2b8812
The first line contains two integers $$$n$$$ and $$$k$$$ ($$$1 \leq k \leq n \leq 2 \cdot 10^5$$$). The second line contains $$$n$$$ integers $$$a_1, a_2, \ldots, a_n$$$ ($$$1 \leq a_i \leq n$$$).
2,100
Output one integer $$$m$$$ — the maximum median you can get.
standard output
PASSED
08f20aa83c963ae9402b88904f1495ae
train_110.jsonl
1613658900
You are a given an array $$$a$$$ of length $$$n$$$. Find a subarray $$$a[l..r]$$$ with length at least $$$k$$$ with the largest median.A median in an array of length $$$n$$$ is an element which occupies position number $$$\lfloor \frac{n + 1}{2} \rfloor$$$ after we sort the elements in non-decreasing order. For example: $$$median([1, 2, 3, 4]) = 2$$$, $$$median([3, 2, 1]) = 2$$$, $$$median([2, 1, 2, 1]) = 1$$$.Subarray $$$a[l..r]$$$ is a contiguous part of the array $$$a$$$, i. e. the array $$$a_l,a_{l+1},\ldots,a_r$$$ for some $$$1 \leq l \leq r \leq n$$$, its length is $$$r - l + 1$$$.
256 megabytes
import java.util.*; import java.io.*; public class Main { public static void main(String args[]) {new Main().run();} FastReader in = new FastReader(); PrintWriter out = new PrintWriter(System.out); void run(){ work(); out.flush(); } long mod=1000000007; long gcd(long a,long b) { return a==0?b:gcd(b%a,a); } void work() { int n=ni(),k=ni(); int[] A=nia(n); int l=1,r=n+1; while(l<r){ int m=(l+r)/2; if(check(m,A,k)){ l=m+1; }else{ r=m; } } out.println(l-1); } private boolean check(int m, int[] A,int k) { int n=A.length; int[] sum=new int[n]; for(int i=0;i<n;i++){ if(A[i]>=m){ sum[i]=1; }else{ sum[i]=-1; } if(i>0)sum[i]+=sum[i-1]; } int s1=0,s2=0; for(int i=k-1;i<n;i++){ s1=sum[i]; if(i-k>=0){ s2=Math.min(s2,sum[i-k]); } if(s1-s2>0){ return true; } } return false; } //input @SuppressWarnings("unused") private ArrayList<Integer>[] ng(int n, int m) { ArrayList<Integer>[] graph=(ArrayList<Integer>[])new ArrayList[n]; for(int i=0;i<n;i++) { graph[i]=new ArrayList<>(); } for(int i=1;i<=m;i++) { int s=in.nextInt()-1,e=in.nextInt()-1; graph[s].add(e); graph[e].add(s); } return graph; } private ArrayList<long[]>[] ngw(int n, int m) { ArrayList<long[]>[] graph=(ArrayList<long[]>[])new ArrayList[n]; for(int i=0;i<n;i++) { graph[i]=new ArrayList<>(); } for(int i=1;i<=m;i++) { long s=in.nextLong()-1,e=in.nextLong()-1,w=in.nextLong(); graph[(int)s].add(new long[] {e,w,i}); graph[(int)e].add(new long[] {s,w}); } return graph; } private int ni() { return in.nextInt(); } private long nl() { return in.nextLong(); } private String ns() { return in.next(); } private long[] na(int n) { long[] A=new long[n]; for(int i=0;i<n;i++) { A[i]=in.nextLong(); } return A; } private int[] nia(int n) { int[] A=new int[n]; for(int i=0;i<n;i++) { A[i]=in.nextInt(); } return A; } } class FastReader { BufferedReader br; StringTokenizer st; public FastReader() { br=new BufferedReader(new InputStreamReader(System.in)); } public String next() { while(st==null || !st.hasMoreElements())//回车,空行情况 { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } public int nextInt() { return Integer.parseInt(next()); } public long nextLong() { return Long.parseLong(next()); } }
Java
["5 3\n1 2 3 2 1", "4 2\n1 2 3 4"]
2 seconds
["2", "3"]
NoteIn the first example all the possible subarrays are $$$[1..3]$$$, $$$[1..4]$$$, $$$[1..5]$$$, $$$[2..4]$$$, $$$[2..5]$$$ and $$$[3..5]$$$ and the median for all of them is $$$2$$$, so the maximum possible median is $$$2$$$ too.In the second example $$$median([3..4]) = 3$$$.
Java 8
standard input
[ "binary search", "data structures", "dp" ]
dddeb7663c948515def967374f2b8812
The first line contains two integers $$$n$$$ and $$$k$$$ ($$$1 \leq k \leq n \leq 2 \cdot 10^5$$$). The second line contains $$$n$$$ integers $$$a_1, a_2, \ldots, a_n$$$ ($$$1 \leq a_i \leq n$$$).
2,100
Output one integer $$$m$$$ — the maximum median you can get.
standard output
PASSED
26b301075d21f8e65e5e518cf913bf3a
train_110.jsonl
1613658900
You are a given an array $$$a$$$ of length $$$n$$$. Find a subarray $$$a[l..r]$$$ with length at least $$$k$$$ with the largest median.A median in an array of length $$$n$$$ is an element which occupies position number $$$\lfloor \frac{n + 1}{2} \rfloor$$$ after we sort the elements in non-decreasing order. For example: $$$median([1, 2, 3, 4]) = 2$$$, $$$median([3, 2, 1]) = 2$$$, $$$median([2, 1, 2, 1]) = 1$$$.Subarray $$$a[l..r]$$$ is a contiguous part of the array $$$a$$$, i. e. the array $$$a_l,a_{l+1},\ldots,a_r$$$ for some $$$1 \leq l \leq r \leq n$$$, its length is $$$r - l + 1$$$.
256 megabytes
/** * BaZ :D */ import java.util.*; import java.io.*; import static java.lang.Math.*; public class Main { static MyScanner scan; static PrintWriter pw; static long MOD = 1_000_000_007; static long INF = 2_000_000_000_000_000_000L; static long inf = 2_000_000_000; public static void main(String[] args) { new Thread(null, null, "BaZ", 1 << 27) { public void run() { try { solve(); } catch (Exception e) { e.printStackTrace(); System.exit(1); } } }.start(); } static int n,k,arr[]; static void solve() throws java.lang.Exception { //initIo(true, ""); initIo(false, ""); StringBuilder sb = new StringBuilder(); n = ni(); k = ni(); arr = new int[n]; for(int i=0;i<n;i++) { arr[i] = ni(); } int low = 0, high = n+1, mid, ans = low; while (low<=high) { mid = (low+high)>>1; if(check(mid)) { ans = mid; low = ++mid; } else { high = --mid; } } pl(ans); pw.flush(); pw.close(); } static boolean check(int mid) { //pl("mid: "+mid); int t[] = new int[n]; for(int i=0;i<n;i++) { if(arr[i]>=mid) { t[i] = 1; } else { t[i] = -1; } } int pref[] = new int[n]; for(int i=0;i<n;i++) { pref[i] = t[i]; if(i>0) { pref[i]+=pref[i-1]; } } //pa("pref", pref); int suff_max_pref_sum[] = new int[n]; for(int i=n-1;i>=0;--i) { suff_max_pref_sum[i] = pref[i]; if(i+1<n) { suff_max_pref_sum[i] = max(suff_max_pref_sum[i+1], suff_max_pref_sum[i]); } } //pa("suff_max_pref_sum", suff_max_pref_sum); for(int i=0;i+k-1<n;i++) { int req = (i==0 ? 0 : pref[i-1]) + 1; if(suff_max_pref_sum[i+k-1]>=req) { //pl("ret true at "+i); return true; } } return false; } static void assert_in_range(String varName, int n, int l, int r) { if (n >=l && n<=r) return; System.out.println(varName + " is not in range. Actual: "+n+" l : "+l+" r: "+r); System.exit(1); } static void assert_in_range(String varName, long n, long l, long r) { if (n>=l && n<=r) return; System.out.println(varName + " is not in range. Actual: "+n+" l : "+l+" r: "+r); System.exit(1); } static void initIo(boolean isFileIO, String suffix) throws IOException { scan = new MyScanner(isFileIO, suffix); if(isFileIO) { pw = new PrintWriter("/Users/amandeep/Desktop/output"+suffix+".txt"); } else { pw = new PrintWriter(System.out, true); } } static int ni() throws IOException { return scan.nextInt(); } static long nl() throws IOException { return scan.nextLong(); } static double nd() throws IOException { return scan.nextDouble(); } static String ne() throws IOException { return scan.next(); } static String nel() throws IOException { return scan.nextLine(); } static void pl() { pw.println(); } static void p(Object o) { pw.print(o+" "); } static void pl(Object o) { pw.println(o); } static void psb(StringBuilder sb) { pw.print(sb); } static void pa(String arrayName, Object arr[]) { pl(arrayName+" : "); for(Object o : arr) p(o); pl(); } static void pa(String arrayName, int arr[]) { pl(arrayName+" : "); for(int o : arr) p(o); pl(); } static void pa(String arrayName, long arr[]) { pl(arrayName+" : "); for(long o : arr) p(o); pl(); } static void pa(String arrayName, double arr[]) { pl(arrayName+" : "); for(double o : arr) p(o); pl(); } static void pa(String arrayName, char arr[]) { pl(arrayName+" : "); for(char o : arr) p(o); pl(); } static void pa(String arrayName, boolean arr[]) { pl(arrayName+" : "); for(boolean o : arr) p(o); pl(); } static void pa(String listName, List list) { pl(listName+" : "); for(Object o : list) p(o); pl(); } static void pa(String arrayName, Object[][] arr) { pl(arrayName+" : "); for(int i=0;i<arr.length;++i) { for(Object o : arr[i]) p(o); pl(); } } static void pa(String arrayName, int[][] arr) { pl(arrayName+" : "); for(int i=0;i<arr.length;++i) { for(int o : arr[i]) p(o); pl(); } } static void pa(String arrayName, long[][] arr) { pl(arrayName+" : "); for(int i=0;i<arr.length;++i) { for(long o : arr[i]) p(o); pl(); } } static void pa(String arrayName, char[][] arr) { pl(arrayName+" : "); for(int i=0;i<arr.length;++i) { for(char o : arr[i]) p(o); pl(); } } static void pa(String arrayName, double[][] arr) { pl(arrayName+" : "); for(int i=0;i<arr.length;++i) { for(double o : arr[i]) p(o); pl(); } } static void pa(String arrayName, boolean[][] arr) { pl(arrayName+" : "); for(int i=0;i<arr.length;++i) { for(boolean o : arr[i]) p(o); pl(); } } static class MyScanner { BufferedReader br; StringTokenizer st; MyScanner(boolean readingFromFile, String suffix) throws IOException { if(readingFromFile) { br = new BufferedReader(new FileReader("/Users/amandeep/Desktop/input"+suffix+".txt")); } else { br = new BufferedReader(new InputStreamReader(System.in)); } } String nextLine()throws IOException { return br.readLine(); } String next() throws IOException { if(st==null || !st.hasMoreTokens()) st = new StringTokenizer(br.readLine()); return st.nextToken(); } int nextInt() throws IOException { return Integer.parseInt(next()); } long nextLong() throws IOException { return Long.parseLong(next()); } double nextDouble() throws IOException { return Double.parseDouble(next()); } } }
Java
["5 3\n1 2 3 2 1", "4 2\n1 2 3 4"]
2 seconds
["2", "3"]
NoteIn the first example all the possible subarrays are $$$[1..3]$$$, $$$[1..4]$$$, $$$[1..5]$$$, $$$[2..4]$$$, $$$[2..5]$$$ and $$$[3..5]$$$ and the median for all of them is $$$2$$$, so the maximum possible median is $$$2$$$ too.In the second example $$$median([3..4]) = 3$$$.
Java 8
standard input
[ "binary search", "data structures", "dp" ]
dddeb7663c948515def967374f2b8812
The first line contains two integers $$$n$$$ and $$$k$$$ ($$$1 \leq k \leq n \leq 2 \cdot 10^5$$$). The second line contains $$$n$$$ integers $$$a_1, a_2, \ldots, a_n$$$ ($$$1 \leq a_i \leq n$$$).
2,100
Output one integer $$$m$$$ — the maximum median you can get.
standard output
PASSED
686386571aaf4727e98dd554f3156c1e
train_110.jsonl
1613658900
You are a given an array $$$a$$$ of length $$$n$$$. Find a subarray $$$a[l..r]$$$ with length at least $$$k$$$ with the largest median.A median in an array of length $$$n$$$ is an element which occupies position number $$$\lfloor \frac{n + 1}{2} \rfloor$$$ after we sort the elements in non-decreasing order. For example: $$$median([1, 2, 3, 4]) = 2$$$, $$$median([3, 2, 1]) = 2$$$, $$$median([2, 1, 2, 1]) = 1$$$.Subarray $$$a[l..r]$$$ is a contiguous part of the array $$$a$$$, i. e. the array $$$a_l,a_{l+1},\ldots,a_r$$$ for some $$$1 \leq l \leq r \leq n$$$, its length is $$$r - l + 1$$$.
256 megabytes
import java.io.*; import java.math.BigInteger; import java.util.*; import java.util.concurrent.TimeUnit; public class d1486 implements Runnable{ public static void main(String[] args) { try{ new Thread(null, new d1486(), "process", 1<<26).start(); } catch(Exception e){ System.out.println(e); } } public void run() { FastReader scan = new FastReader(); PrintWriter out = new PrintWriter(new OutputStreamWriter(System.out)); //PrintWriter out = new PrintWriter("file.out"); Task solver = new Task(); //int t = scan.nextInt(); int t = 1; for(int i = 1; i <= t; i++) solver.solve(i, scan, out); out.close(); } static class Task { static final int oo = Integer.MAX_VALUE; static final long OO = Long.MAX_VALUE; public void solve(int testNumber, FastReader sc, PrintWriter out) { int N = sc.nextInt(); int K = sc.nextInt(); int[] arr = sc.readArray(N); int[] clone = arr.clone(); Arrays.sort(clone); int ans = -1; int lo = 0, hi = N-1; while (lo <= hi) { int mid = (lo + hi) / 2; if (test(arr, K, clone[mid])) { lo = mid+1; ans = mid; } else { hi = mid -1; } } out.println(clone[ans]); } boolean test(int[] arr, int K, int ans) { //dbg("TESTING: " + ans); int[] pSum = new int[arr.length]; pSum[0] = (arr[0] >= ans) ? 1 : -1; for(int i = 1; i < arr.length; i++) { pSum[i] = pSum[i-1] + ((arr[i] >= ans) ? 1: -1); } //dbg(pSum); TreeSet<Integer> set = new TreeSet<>(); set.add(0); for(int i = 0, j = K-1; j < arr.length; i++, j++) { if(set.lower(pSum[j]) != null) { //dbg("SUCCESS: " + ans); return true; } set.add(pSum[i]); } //dbg("FAIL: " + ans); return false; } } static long modInverse(long N, long MOD) { return binpow(N, MOD - 2, MOD); } static long modDivide(long a, long b, long MOD) { a %= MOD; return (binpow(b, MOD-2, MOD) * a) % MOD; } static long binpow(long a, long b, long m) { a %= m; long res = 1; while (b > 0) { if ((b & 1) == 1) res = res * a % m; a = a * a % m; b >>= 1; } return res; } static int[] reverse(int a[]) { int[] b = new int[a.length]; for (int i = 0, j = a.length; i < a.length; i++, j--) { b[j - 1] = a[i]; } return b; } static long[] reverse(long a[]) { long[] b = new long[a.length]; for (int i = 0, j = a.length; i < a.length; i++, j--) { b[j - 1] = a[i]; } return b; } static void shuffle(Object[] a) { Random get = new Random(); for (int i = 0; i < a.length; i++) { int r = get.nextInt(a.length); Object temp = a[i]; a[i] = a[r]; a[r] = temp; } } static void shuffle(int[] a) { Random get = new Random(); for (int i = 0; i < a.length; i++) { int r = get.nextInt(a.length); int temp = a[i]; a[i] = a[r]; a[r] = temp; } } static void shuffle(long[] a) { Random get = new Random(); for (int i = 0; i < a.length; i++) { int r = get.nextInt(a.length); long temp = a[i]; a[i] = a[r]; a[r] = temp; } } static class tup implements Comparable<tup>, Comparator<tup>{ int a, b; tup(int a,int b){ this.a=a; this.b=b; } public tup() { } @Override public int compareTo(tup o){ return Integer.compare(b,o.b); } @Override public int compare(tup o1, tup o2) { return Integer.compare(o1.b, o2.b); } @Override public int hashCode() { return Objects.hash(a, b); } @Override public boolean equals(Object obj) { if (this == obj) return true; if (obj == null) return false; if (getClass() != obj.getClass()) return false; tup other = (tup) obj; return a==other.a && b==other.b; } @Override public String toString() { return a + " " + b; } } static class FastReader { BufferedReader br; StringTokenizer st; public FastReader() { br = new BufferedReader(new InputStreamReader(System.in)); } public FastReader(String s) throws FileNotFoundException { br = new BufferedReader(new FileReader(new File(s))); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } int[] readArray(int size) { int[] a = new int[size]; for(int i = 0; i < size; i++) { a[i] = nextInt(); } return a; } long[] readLongArray(int size) { long[] a = new long[size]; for(int i = 0; i < size; i++) { a[i] = nextLong(); } return a; } } static void dbg(int[] arr) { System.out.println(Arrays.toString(arr)); } static void dbg(long[] arr) { System.out.println(Arrays.toString(arr)); } static void dbg(boolean[] arr) { System.out.println(Arrays.toString(arr)); } static void dbg(Object... args) { for (Object arg : args) System.out.print(arg + " "); System.out.println(); } }
Java
["5 3\n1 2 3 2 1", "4 2\n1 2 3 4"]
2 seconds
["2", "3"]
NoteIn the first example all the possible subarrays are $$$[1..3]$$$, $$$[1..4]$$$, $$$[1..5]$$$, $$$[2..4]$$$, $$$[2..5]$$$ and $$$[3..5]$$$ and the median for all of them is $$$2$$$, so the maximum possible median is $$$2$$$ too.In the second example $$$median([3..4]) = 3$$$.
Java 8
standard input
[ "binary search", "data structures", "dp" ]
dddeb7663c948515def967374f2b8812
The first line contains two integers $$$n$$$ and $$$k$$$ ($$$1 \leq k \leq n \leq 2 \cdot 10^5$$$). The second line contains $$$n$$$ integers $$$a_1, a_2, \ldots, a_n$$$ ($$$1 \leq a_i \leq n$$$).
2,100
Output one integer $$$m$$$ — the maximum median you can get.
standard output
PASSED
be8fdce4e3f212606a237fd463feabae
train_110.jsonl
1613658900
You are a given an array $$$a$$$ of length $$$n$$$. Find a subarray $$$a[l..r]$$$ with length at least $$$k$$$ with the largest median.A median in an array of length $$$n$$$ is an element which occupies position number $$$\lfloor \frac{n + 1}{2} \rfloor$$$ after we sort the elements in non-decreasing order. For example: $$$median([1, 2, 3, 4]) = 2$$$, $$$median([3, 2, 1]) = 2$$$, $$$median([2, 1, 2, 1]) = 1$$$.Subarray $$$a[l..r]$$$ is a contiguous part of the array $$$a$$$, i. e. the array $$$a_l,a_{l+1},\ldots,a_r$$$ for some $$$1 \leq l \leq r \leq n$$$, its length is $$$r - l + 1$$$.
256 megabytes
import java.util.*; import java.io.*; import java.math.*; /** * * @Har_Har_Mahadev */ public class D { private static long INF = 2000000000000000000L, M = 1000000007, MM = 998244353; private static int N = 0; public static void process() throws IOException { int n = sc.nextInt(),k = sc.nextInt(); int arr[] = sc.readArray(n); int l = 1,r = Integer.MAX_VALUE/100; int ans = -1; while(l<=r) { int mid = (l+r)/2; int temp[] = new int[n]; int sum = 0; for(int i=0; i<n; i++) { if(arr[i] >= mid)sum++; else sum--; temp[i] = sum; } int min = 0; boolean flag = false; for(int i=0; i<n-k+1; i++) { if(i == 0)min = 0; else min = min(min,temp[i-1]); if(temp[i+k-1] - min > 0) { flag = true; break; } } if(flag) { ans = mid; l = mid+1; } else { r = mid-1; } } System.out.println(ans); } //============================================================================= //--------------------------The End--------------------------------- //============================================================================= static FastScanner sc; static PrintWriter out; public static void main(String[] args) throws IOException { boolean oj = true; if (oj) { sc = new FastScanner(); out = new PrintWriter(System.out); } else { sc = new FastScanner(100); out = new PrintWriter("output.txt"); } int t = 1; // t = sc.nextInt(); while (t-- > 0) { process(); } out.flush(); out.close(); } static class Pair implements Comparable<Pair> { int x, y; Pair(int x, int y) { this.x = x; this.y = y; } @Override public int compareTo(Pair o) { return Integer.compare(this.x, o.x); } // @Override // public boolean equals(Object o) { // if (this == o) return true; // if (!(o instanceof Pair)) return false; // Pair key = (Pair) o; // return x == key.x && y == key.y; // } // // @Override // public int hashCode() { // int result = x; // result = 31 * result + y; // return result; // } } ///////////////////////////////////////////////////////////////////////////////////////////////////////// static void println(Object o) { out.println(o); } static void println() { out.println(); } static void print(Object o) { out.print(o); } static void pflush(Object o) { out.println(o); out.flush(); } static int ceil(int x, int y) { return (x % y == 0 ? x / y : (x / y + 1)); } static long ceil(long x, long y) { return (x % y == 0 ? x / y : (x / y + 1)); } static int max(int x, int y) { return Math.max(x, y); } static int min(int x, int y) { return Math.min(x, y); } static int abs(int x) { return Math.abs(x); } static long abs(long x) { return Math.abs(x); } static int log2(int N) { int result = (int) (Math.log(N) / Math.log(2)); return result; } static long max(long x, long y) { return Math.max(x, y); } static long min(long x, long y) { return Math.min(x, y); } public static int gcd(int a, int b) { BigInteger b1 = BigInteger.valueOf(a); BigInteger b2 = BigInteger.valueOf(b); BigInteger gcd = b1.gcd(b2); return gcd.intValue(); } public static long gcd(long a, long b) { BigInteger b1 = BigInteger.valueOf(a); BigInteger b2 = BigInteger.valueOf(b); BigInteger gcd = b1.gcd(b2); return gcd.longValue(); } public static long lcm(long a, long b) { return (a * b) / gcd(a, b); } public static int lcm(int a, int b) { return (a * b) / gcd(a, b); } public static int lower_bound(int[] arr, int x) { int low = 0, high = arr.length, mid = -1; while (low < high) { mid = (low + high) / 2; if (arr[mid] >= x) high = mid; else low = mid + 1; } return low; } public static int upper_bound(int[] arr, int x) { int low = 0, high = arr.length, mid = -1; while (low < high) { mid = (low + high) / 2; if (arr[mid] > x) high = mid; else low = mid + 1; } return low; } ///////////////////////////////////////////////////////////////////////////////////////////////////////// static class FastScanner { BufferedReader br; StringTokenizer st; FastScanner() throws FileNotFoundException { br = new BufferedReader(new InputStreamReader(System.in)); } FastScanner(int a) throws FileNotFoundException { br = new BufferedReader(new FileReader("input.txt")); } String next() throws IOException { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() throws IOException { return Integer.parseInt(next()); } long nextLong() throws IOException { return Long.parseLong(next()); } double nextDouble() throws IOException { return Double.parseDouble(next()); } String nextLine() throws IOException { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } int[] readArray(int n) throws IOException { int[] A = new int[n]; for (int i = 0; i != n; i++) { A[i] = sc.nextInt(); } return A; } long[] readArrayLong(int n) throws IOException { long[] A = new long[n]; for (int i = 0; i != n; i++) { A[i] = sc.nextLong(); } return A; } } static void ruffleSort(int[] a) { Random get = new Random(); for (int i = 0; i < a.length; i++) { int r = get.nextInt(a.length); int temp = a[i]; a[i] = a[r]; a[r] = temp; } Arrays.sort(a); } static void ruffleSort(long[] a) { Random get = new Random(); for (int i = 0; i < a.length; i++) { int r = get.nextInt(a.length); long temp = a[i]; a[i] = a[r]; a[r] = temp; } Arrays.sort(a); } }
Java
["5 3\n1 2 3 2 1", "4 2\n1 2 3 4"]
2 seconds
["2", "3"]
NoteIn the first example all the possible subarrays are $$$[1..3]$$$, $$$[1..4]$$$, $$$[1..5]$$$, $$$[2..4]$$$, $$$[2..5]$$$ and $$$[3..5]$$$ and the median for all of them is $$$2$$$, so the maximum possible median is $$$2$$$ too.In the second example $$$median([3..4]) = 3$$$.
Java 8
standard input
[ "binary search", "data structures", "dp" ]
dddeb7663c948515def967374f2b8812
The first line contains two integers $$$n$$$ and $$$k$$$ ($$$1 \leq k \leq n \leq 2 \cdot 10^5$$$). The second line contains $$$n$$$ integers $$$a_1, a_2, \ldots, a_n$$$ ($$$1 \leq a_i \leq n$$$).
2,100
Output one integer $$$m$$$ — the maximum median you can get.
standard output
PASSED
fe26c478987d63f4430718ad133c1914
train_110.jsonl
1613658900
You are a given an array $$$a$$$ of length $$$n$$$. Find a subarray $$$a[l..r]$$$ with length at least $$$k$$$ with the largest median.A median in an array of length $$$n$$$ is an element which occupies position number $$$\lfloor \frac{n + 1}{2} \rfloor$$$ after we sort the elements in non-decreasing order. For example: $$$median([1, 2, 3, 4]) = 2$$$, $$$median([3, 2, 1]) = 2$$$, $$$median([2, 1, 2, 1]) = 1$$$.Subarray $$$a[l..r]$$$ is a contiguous part of the array $$$a$$$, i. e. the array $$$a_l,a_{l+1},\ldots,a_r$$$ for some $$$1 \leq l \leq r \leq n$$$, its length is $$$r - l + 1$$$.
256 megabytes
import java.util.*; import java.io.*; public class D { public static void main(String[] args) { FastScanner sc = new FastScanner(); int n = sc.nextInt(); int k = sc.nextInt(); int[] arr = new int[n]; for(int i = 0; i < n; i++){ arr[i] = sc.nextInt(); } int a = 1, b = n+1; while(b - a > 1) { int c = (a+b)/2; //check if you can make the median >= c int[] d = new int[n+1]; for(int i = 1; i <= n; i++){ d[i] = d[i-1]; if(arr[i-1] >= c) d[i]++; else d[i]--; } int[] pref = new int[n+1], suff = new int[n+1]; for(int i = 1; i < n; i++){ pref[i] = Math.min(pref[i-1], d[i]); } suff[n] = d[n]; for(int i = n-1; i >= 0; i--){ suff[i] = Math.max(suff[i+1], d[i]); } boolean based = false; for(int i = 0, j = k; j <= n; i++, j++){ if(suff[j] - pref[i] >= 1) based = true; } if(based) a = c; else b = c; } System.out.println(a); } static class FastScanner { public BufferedReader reader; public StringTokenizer tokenizer; public FastScanner() { reader = new BufferedReader(new InputStreamReader(System.in), 32768); tokenizer = null; } public String next() { while (tokenizer == null || !tokenizer.hasMoreTokens()) { try { tokenizer = new StringTokenizer(reader.readLine()); } catch (IOException e) { throw new RuntimeException(e); } } return tokenizer.nextToken(); } public int nextInt() { return Integer.parseInt(next()); } public long nextLong() { return Long.parseLong(next()); } public double nextDouble() { return Double.parseDouble(next()); } public String nextLine() { try { return reader.readLine(); } catch(IOException e) { throw new RuntimeException(e); } } } }
Java
["5 3\n1 2 3 2 1", "4 2\n1 2 3 4"]
2 seconds
["2", "3"]
NoteIn the first example all the possible subarrays are $$$[1..3]$$$, $$$[1..4]$$$, $$$[1..5]$$$, $$$[2..4]$$$, $$$[2..5]$$$ and $$$[3..5]$$$ and the median for all of them is $$$2$$$, so the maximum possible median is $$$2$$$ too.In the second example $$$median([3..4]) = 3$$$.
Java 8
standard input
[ "binary search", "data structures", "dp" ]
dddeb7663c948515def967374f2b8812
The first line contains two integers $$$n$$$ and $$$k$$$ ($$$1 \leq k \leq n \leq 2 \cdot 10^5$$$). The second line contains $$$n$$$ integers $$$a_1, a_2, \ldots, a_n$$$ ($$$1 \leq a_i \leq n$$$).
2,100
Output one integer $$$m$$$ — the maximum median you can get.
standard output
PASSED
0b60e8a3cba4ba675a8270c5df42761a
train_110.jsonl
1613658900
You are a given an array $$$a$$$ of length $$$n$$$. Find a subarray $$$a[l..r]$$$ with length at least $$$k$$$ with the largest median.A median in an array of length $$$n$$$ is an element which occupies position number $$$\lfloor \frac{n + 1}{2} \rfloor$$$ after we sort the elements in non-decreasing order. For example: $$$median([1, 2, 3, 4]) = 2$$$, $$$median([3, 2, 1]) = 2$$$, $$$median([2, 1, 2, 1]) = 1$$$.Subarray $$$a[l..r]$$$ is a contiguous part of the array $$$a$$$, i. e. the array $$$a_l,a_{l+1},\ldots,a_r$$$ for some $$$1 \leq l \leq r \leq n$$$, its length is $$$r - l + 1$$$.
256 megabytes
import java.util.*; import java.io.*; public class Main { static long startTime = System.currentTimeMillis(); // for global initializations and methods starts here // global initialisations and methods end here static void run() { boolean tc = false; AdityaFastIO r = new AdityaFastIO(); //FastReader r = new FastReader(); try (OutputStream out = new BufferedOutputStream(System.out)) { //long startTime = System.currentTimeMillis(); int testcases = tc ? r.ni() : 1; int tcCounter = 1; // Hold Here Sparky------------------->>> // Solution Starts Here start: while (testcases-- > 0) { int n = r.ni(); int k = r.ni(); int[] arr = new int[n + 1]; for (int i = 1; i <= n; i++) arr[i] = r.ni(); int high = Arrays.stream(arr).max().getAsInt(); int low = Arrays.stream(arr).min().getAsInt(); int[] dp = new int[n + 1]; while (high > low) { int mid = (low + high + 1) >> 1; boolean ff = false; int min = n; for (int j = 1; j <= n; j++) { dp[j] = dp[j - 1]; if (arr[j] >= mid) dp[j]++; else dp[j]--; if (j >= k) { min = Math.min(min, dp[j - k]); ff |= dp[j] > min; } } if (ff) low = mid; else high = mid - 1; } out.write((low + " ").getBytes()); out.write(("\n").getBytes()); } // Solution Ends Here } catch (IOException e) { e.printStackTrace(); } } static class AdityaFastIO { final private int BUFFER_SIZE = 1 << 16; private final DataInputStream din; private final byte[] buffer; private int bufferPointer, bytesRead; public BufferedReader br; public StringTokenizer st; public AdityaFastIO() { br = new BufferedReader(new InputStreamReader(System.in)); din = new DataInputStream(System.in); buffer = new byte[BUFFER_SIZE]; bufferPointer = bytesRead = 0; } public AdityaFastIO(String file_name) throws IOException { din = new DataInputStream(new FileInputStream(file_name)); buffer = new byte[BUFFER_SIZE]; bufferPointer = bytesRead = 0; } public String word() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } public String line() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } public String readLine() throws IOException { byte[] buf = new byte[100000001]; // line length int cnt = 0, c; while ((c = read()) != -1) { if (c == '\n') break; buf[cnt++] = (byte) c; } return new String(buf, 0, cnt); } public int ni() throws IOException { int ret = 0; byte c = read(); while (c <= ' ') c = read(); boolean neg = (c == '-'); if (neg) c = read(); do { ret = ret * 10 + c - '0'; } while ((c = read()) >= '0' && c <= '9'); if (neg) return -ret; return ret; } public long nl() throws IOException { long ret = 0; byte c = read(); while (c <= ' ') c = read(); boolean neg = (c == '-'); if (neg) c = read(); do { ret = ret * 10 + c - '0'; } while ((c = read()) >= '0' && c <= '9'); if (neg) return -ret; return ret; } public double nd() throws IOException { double ret = 0, div = 1; byte c = read(); while (c <= ' ') c = read(); boolean neg = (c == '-'); if (neg) c = read(); do { ret = ret * 10 + c - '0'; } while ((c = read()) >= '0' && c <= '9'); if (c == '.') while ((c = read()) >= '0' && c <= '9') ret += (c - '0') / (div *= 10); if (neg) return -ret; return ret; } private void fillBuffer() throws IOException { bytesRead = din.read(buffer, bufferPointer = 0, BUFFER_SIZE); if (bytesRead == -1) buffer[0] = -1; } private byte read() throws IOException { if (bufferPointer == bytesRead) fillBuffer(); return buffer[bufferPointer++]; } public void close() throws IOException { if (din == null) return; din.close(); } } public static void main(String[] args) throws Exception { run(); } static long mod = 998244353; static long modInv(long base, long e) { long result = 1; base %= mod; while (e > 0) { if ((e & 1) > 0) result = result * base % mod; base = base * base % mod; e >>= 1; } return result; } static class FastReader { BufferedReader br; StringTokenizer st; public FastReader() { br = new BufferedReader(new InputStreamReader(System.in)); } String word() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } String line() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } int ni() { return Integer.parseInt(word()); } long nl() { return Long.parseLong(word()); } double nd() { return Double.parseDouble(word()); } } static int MOD = (int) (1e9 + 7); static long powerLL(long x, long n) { long result = 1; while (n > 0) { if (n % 2 == 1) result = result * x % MOD; n = n / 2; x = x * x % MOD; } return result; } static long powerStrings(int i1, int i2) { String sa = String.valueOf(i1); String sb = String.valueOf(i2); long a = 0, b = 0; for (int i = 0; i < sa.length(); i++) a = (a * 10 + (sa.charAt(i) - '0')) % MOD; for (int i = 0; i < sb.length(); i++) b = (b * 10 + (sb.charAt(i) - '0')) % (MOD - 1); return powerLL(a, b); } static long gcd(long a, long b) { if (a == 0) return b; else return gcd(b % a, a); } static long lcm(long a, long b) { return (a * b) / gcd(a, b); } static long lower_bound(List<Long> list, long k) { int s = 0; int e = list.size(); while (s != e) { int mid = (s + e) >> 1; if (list.get(mid) < k) s = mid + 1; else e = mid; } if (s == list.size()) return -1; return s; } static int upper_bound(List<Long> list, long k) { int s = 0; int e = list.size(); while (s != e) { int mid = (s + e) >> 1; if (list.get(mid) <= k) s = mid + 1; else e = mid; } if (s == list.size()) return -1; return s; } static void addEdge(ArrayList<ArrayList<Integer>> graph, int edge1, int edge2) { graph.get(edge1).add(edge2); graph.get(edge2).add(edge1); } public static class Pair implements Comparable<Pair> { int first; int second; public Pair(int first, int second) { this.first = first; this.second = second; } public String toString() { return "(" + first + "," + second + ")"; } public int compareTo(Pair o) { // TODO Auto-generated method stub if (this.first != o.first) return (int) (this.first - o.first); else return (int) (this.second - o.second); } } public static class PairC<X, Y> implements Comparable<PairC> { X first; Y second; public PairC(X first, Y second) { this.first = first; this.second = second; } public String toString() { return "(" + first + "," + second + ")"; } public int compareTo(PairC o) { // TODO Auto-generated method stub return o.compareTo((PairC) first); } } static boolean isCollectionsSorted(List<Long> list) { if (list.size() == 0 || list.size() == 1) return true; for (int i = 1; i < list.size(); i++) if (list.get(i) <= list.get(i - 1)) return false; return true; } static boolean isCollectionsSortedReverseOrder(List<Long> list) { if (list.size() == 0 || list.size() == 1) return true; for (int i = 1; i < list.size(); i++) if (list.get(i) >= list.get(i - 1)) return false; return true; } }
Java
["5 3\n1 2 3 2 1", "4 2\n1 2 3 4"]
2 seconds
["2", "3"]
NoteIn the first example all the possible subarrays are $$$[1..3]$$$, $$$[1..4]$$$, $$$[1..5]$$$, $$$[2..4]$$$, $$$[2..5]$$$ and $$$[3..5]$$$ and the median for all of them is $$$2$$$, so the maximum possible median is $$$2$$$ too.In the second example $$$median([3..4]) = 3$$$.
Java 8
standard input
[ "binary search", "data structures", "dp" ]
dddeb7663c948515def967374f2b8812
The first line contains two integers $$$n$$$ and $$$k$$$ ($$$1 \leq k \leq n \leq 2 \cdot 10^5$$$). The second line contains $$$n$$$ integers $$$a_1, a_2, \ldots, a_n$$$ ($$$1 \leq a_i \leq n$$$).
2,100
Output one integer $$$m$$$ — the maximum median you can get.
standard output
PASSED
23ee3032217da01fd4bf4c6215271906
train_110.jsonl
1613658900
You are a given an array $$$a$$$ of length $$$n$$$. Find a subarray $$$a[l..r]$$$ with length at least $$$k$$$ with the largest median.A median in an array of length $$$n$$$ is an element which occupies position number $$$\lfloor \frac{n + 1}{2} \rfloor$$$ after we sort the elements in non-decreasing order. For example: $$$median([1, 2, 3, 4]) = 2$$$, $$$median([3, 2, 1]) = 2$$$, $$$median([2, 1, 2, 1]) = 1$$$.Subarray $$$a[l..r]$$$ is a contiguous part of the array $$$a$$$, i. e. the array $$$a_l,a_{l+1},\ldots,a_r$$$ for some $$$1 \leq l \leq r \leq n$$$, its length is $$$r - l + 1$$$.
256 megabytes
import com.sun.org.apache.regexp.internal.RE; import java.util.*; public class Main { static int N = (int)2e5+10; static Scanner scan = new Scanner(System.in); static int[] a = new int[N]; static int[] sum =new int[N]; static int n; static int k; static boolean check(int x){ sum[0] = 0; int minn = N; for(int i=1;i<=n;i++){ if(a[i]>=x){ sum[i] = sum[i-1]+1; }else{ sum[i] = sum[i-1]-1; } if(i>=k){ minn = Math.min(minn,sum[i-k]); } if(sum[i] - minn >0){ return true; } } return false; } public static void slove(){ n = scan.nextInt(); k = scan.nextInt(); for(int i=1;i<=n;i++) a[i] = scan.nextInt(); int l = 1 , r = N; while(l<r){ int mid = l + r + 1 >>1; if(check(mid)){ l = mid ; }else{ r = mid - 1; } } System.out.println(l); } public static void main(String[] args) { //int T = scan.nextInt(); //while(T-->0){ slove(); //} } } class Node{ int x; int y; public Node(int x, int y) { this.x = x; this.y = y; } }
Java
["5 3\n1 2 3 2 1", "4 2\n1 2 3 4"]
2 seconds
["2", "3"]
NoteIn the first example all the possible subarrays are $$$[1..3]$$$, $$$[1..4]$$$, $$$[1..5]$$$, $$$[2..4]$$$, $$$[2..5]$$$ and $$$[3..5]$$$ and the median for all of them is $$$2$$$, so the maximum possible median is $$$2$$$ too.In the second example $$$median([3..4]) = 3$$$.
Java 8
standard input
[ "binary search", "data structures", "dp" ]
dddeb7663c948515def967374f2b8812
The first line contains two integers $$$n$$$ and $$$k$$$ ($$$1 \leq k \leq n \leq 2 \cdot 10^5$$$). The second line contains $$$n$$$ integers $$$a_1, a_2, \ldots, a_n$$$ ($$$1 \leq a_i \leq n$$$).
2,100
Output one integer $$$m$$$ — the maximum median you can get.
standard output
PASSED
5fc0a926531af0d90a4f0bd66b9908fb
train_110.jsonl
1613658900
You are a given an array $$$a$$$ of length $$$n$$$. Find a subarray $$$a[l..r]$$$ with length at least $$$k$$$ with the largest median.A median in an array of length $$$n$$$ is an element which occupies position number $$$\lfloor \frac{n + 1}{2} \rfloor$$$ after we sort the elements in non-decreasing order. For example: $$$median([1, 2, 3, 4]) = 2$$$, $$$median([3, 2, 1]) = 2$$$, $$$median([2, 1, 2, 1]) = 1$$$.Subarray $$$a[l..r]$$$ is a contiguous part of the array $$$a$$$, i. e. the array $$$a_l,a_{l+1},\ldots,a_r$$$ for some $$$1 \leq l \leq r \leq n$$$, its length is $$$r - l + 1$$$.
256 megabytes
import java.io.*; import java.util.*; public class Main { static int mod = (int) 1e9 + 7; static int[][] matMul(int[][] A, int[][] B, int p, int q, int r) // C(p x r) = A(p x q) x (q x r) -- O(p x q x r) { int[][] C = new int[p][r]; for (int i = 0; i < p; ++i) for (int j = 0; j < r; ++j) for (int k = 0; k < q; ++k) { C[i][j] += (A[i][k] * 1l * B[k][j]) % mod; C[i][j] %= mod; } return C; } /* * 4. Square Matrix Exponentiation */ static int[][] matPow(int[][] base, long p) { int n = base.length; int[][] ans = new int[n][n]; for (int i = 0; i < n; i++) ans[i][i] = 1; while (p != 0) { if ((p & 1) == 1) ans = matMul(ans, base, n, n, n); base = matMul(base, base, n, n, n); p >>= 1; } return ans; } public static void main(String args[]) throws Exception { Scanner sc = new Scanner(System.in); PrintWriter pw = new PrintWriter(System.out); int t = 1; while (t-- > 0) { int n = sc.nextInt(); k = sc.nextInt(); int[] d = new int[n]; for (int i = 0; i < n; i++) { d[i] = sc.nextInt(); } int s = 1; int e = n; int ans = -1; while (s <= e) { int mid = s + e >> 1; if (check(d, mid)) { s = mid + 1; ans = mid; } else { e = mid - 1; } } pw.println(ans); } pw.flush(); } static int k; static boolean check(int[] a, int mid) { int[] arr = new int[a.length + 1]; int[] min = new int[a.length + 1]; for (int i = 0; i < arr.length-1; i++) { if (a[i] >= mid) { arr[i + 1] = 1 + arr[i]; } else { arr[i + 1] = -1 + arr[i]; } min[i + 1] = Math.min(min[i], arr[i + 1]); } // System.out.println(Arrays.toString(arr)+" "+mid); // System.out.println(Arrays.toString(min)+" "+mid); boolean f = false; for (int i = k; i < min.length; i++) { int ans = arr[i]-min[i - k]; // System.out.println(ans); f |= ans > 0; } return f; } /////////////////////////////////////////////////////////////////////////////////////////// static class tri { int x, y, z; public tri(int x, int y, int z) { this.x = x; this.y = y; this.z = z; } } static class pair implements Comparable<pair> { int x, y; boolean w, l; PriorityQueue<Long> pq; public pair(boolean a, boolean b) { w = a; l = b; } pair(int s, int d) { x = s; y = d; } @Override public int compareTo(pair p) { return Long.compare(x, p.x); } @Override public String toString() { return x + " " + y; } } static long mod(long ans, int mod) { return (ans % mod + mod) % mod; } static long gcd(long a, long b) { if (a == 0) return b; return gcd(b % a, a); } static long lcm(long a, long b) { return (a * b) / gcd(a, b); } public static int log(int n, int base) { int ans = 0; while (n + 1 > base) { ans++; n /= base; } return ans; } static long pow(long b, long e) { long ans = 1; while (e > 0) { if ((e & 1) == 1) ans = ((ans * 1l * b)); e >>= 1; { } b = ((b * 1l * b)); } return ans; } static long powmod(long r, long e, int mod) { long ans = 1; r %= mod; while (e > 0) { if ((e & 1) == 1) ans = (int) ((ans * 1l * r) % mod); e >>= 1; r = (int) ((r * 1l * r) % mod); } return ans; } static int ceil(int a, int b) { int ans = a / b; return a % b == 0 ? ans : ans + 1; } static long ceil(long a, long b) { long ans = a / b; return a % b == 0 ? ans : ans + 1; } static HashMap<Integer, Integer> compress(int a[]) { TreeSet<Integer> ts = new TreeSet<>(); HashMap<Integer, Integer> hm = new HashMap<>(); for (int x : a) ts.add(x); for (int x : ts) { hm.put(x, hm.size() + 1); } return hm; } // Returns nCr % p static int C[]; static int nCrModp(int n, int r, int p) { if (r > n - r) r = n - r; if (C[r] != 0) return C[r]; // The array C is going to store last // row of pascal triangle at the end. // And last entry of last row is nCr C[0] = 1; // Top row of Pascal Triangle // One by constructs remaining rows of Pascal // Triangle from top to bottom for (int i = 1; i <= n; i++) { // Fill entries of current row using previous // row values for (int j = Math.min(i, r); j > 0; j--) // nCj = (n-1)Cj + (n-1)C(j-1); C[j] = (C[j] + C[j - 1]) % p; } return C[r]; } static class Scanner { StringTokenizer st; BufferedReader br; public Scanner(InputStream s) { br = new BufferedReader(new InputStreamReader(s)); } public Scanner(String file) throws Exception { br = new BufferedReader(new FileReader(file)); } public int[] intArr(int n) throws IOException { int a[] = new int[n]; for (int i = 0; i < a.length; i++) { a[i] = nextInt(); } return a; } public long[] longArr(int n) throws IOException { long a[] = new long[n]; for (int i = 0; i < a.length; i++) { a[i] = nextLong(); } return a; } public String next() throws IOException { while (st == null || !st.hasMoreTokens()) st = new StringTokenizer(br.readLine()); return st.nextToken(); } public int nextInt() throws IOException { return Integer.parseInt(next()); } public long nextLong() throws IOException { return Long.parseLong(next()); } public String nextLine() throws IOException { return br.readLine(); } public double nextDouble() throws IOException { String x = next(); StringBuilder sb = new StringBuilder("0"); double res = 0, f = 1; boolean dec = false, neg = false; int start = 0; if (x.charAt(0) == '-') { neg = true; start++; } for (int i = start; i < x.length(); i++) if (x.charAt(i) == '.') { res = Long.parseLong(sb.toString()); sb = new StringBuilder("0"); dec = true; } else { sb.append(x.charAt(i)); if (dec) f *= 10; } res += Long.parseLong(sb.toString()) / f; return res * (neg ? -1 : 1); } public boolean ready() throws IOException { return br.ready(); } } public static void shuffle(int[] times2) { int n = times2.length; for (int i = 0; i < n; i++) { int r = i + (int) (Math.random() * (n - i)); int tmp = times2[i]; times2[i] = times2[r]; times2[r] = tmp; } } }
Java
["5 3\n1 2 3 2 1", "4 2\n1 2 3 4"]
2 seconds
["2", "3"]
NoteIn the first example all the possible subarrays are $$$[1..3]$$$, $$$[1..4]$$$, $$$[1..5]$$$, $$$[2..4]$$$, $$$[2..5]$$$ and $$$[3..5]$$$ and the median for all of them is $$$2$$$, so the maximum possible median is $$$2$$$ too.In the second example $$$median([3..4]) = 3$$$.
Java 8
standard input
[ "binary search", "data structures", "dp" ]
dddeb7663c948515def967374f2b8812
The first line contains two integers $$$n$$$ and $$$k$$$ ($$$1 \leq k \leq n \leq 2 \cdot 10^5$$$). The second line contains $$$n$$$ integers $$$a_1, a_2, \ldots, a_n$$$ ($$$1 \leq a_i \leq n$$$).
2,100
Output one integer $$$m$$$ — the maximum median you can get.
standard output
PASSED
5c505895d6eb92446fd8aa00dc0c2f1a
train_110.jsonl
1613658900
You are a given an array $$$a$$$ of length $$$n$$$. Find a subarray $$$a[l..r]$$$ with length at least $$$k$$$ with the largest median.A median in an array of length $$$n$$$ is an element which occupies position number $$$\lfloor \frac{n + 1}{2} \rfloor$$$ after we sort the elements in non-decreasing order. For example: $$$median([1, 2, 3, 4]) = 2$$$, $$$median([3, 2, 1]) = 2$$$, $$$median([2, 1, 2, 1]) = 1$$$.Subarray $$$a[l..r]$$$ is a contiguous part of the array $$$a$$$, i. e. the array $$$a_l,a_{l+1},\ldots,a_r$$$ for some $$$1 \leq l \leq r \leq n$$$, its length is $$$r - l + 1$$$.
256 megabytes
import java.util.*; import java.io.*; public class Main { static BufferedReader in = new BufferedReader(new InputStreamReader(System.in)); static PrintWriter out = new PrintWriter(new OutputStreamWriter(System.out)); public static void main(String[] args) throws Exception { String [] s = in.readLine().split(" "); int n = Integer.parseInt(s[0]); int k = Integer.parseInt(s[1]); s = in.readLine().split(" "); int [] a = new int [n+1]; for(int i=0;i<n;i++) a[i] = Integer.parseInt(s[i]); int l = 1, r = n+1; while(r-l>1) { int [] b = new int [n]; int m = (l+r)/2; for(int i=0;i<n;i++) if(a[i]>=m) b[i] = 1; else b[i] = -1; for(int i=1;i<n;i++) b[i] += b[i-1]; int max = b[k-1]; int min = 0; for(int i=k;i<n;i++) { min = Math.min(min, b[i-k]); max = Math.max(max, b[i]-min); } if(max>0) l = m; else r = m; } out.println(l); out.flush(); } }
Java
["5 3\n1 2 3 2 1", "4 2\n1 2 3 4"]
2 seconds
["2", "3"]
NoteIn the first example all the possible subarrays are $$$[1..3]$$$, $$$[1..4]$$$, $$$[1..5]$$$, $$$[2..4]$$$, $$$[2..5]$$$ and $$$[3..5]$$$ and the median for all of them is $$$2$$$, so the maximum possible median is $$$2$$$ too.In the second example $$$median([3..4]) = 3$$$.
Java 8
standard input
[ "binary search", "data structures", "dp" ]
dddeb7663c948515def967374f2b8812
The first line contains two integers $$$n$$$ and $$$k$$$ ($$$1 \leq k \leq n \leq 2 \cdot 10^5$$$). The second line contains $$$n$$$ integers $$$a_1, a_2, \ldots, a_n$$$ ($$$1 \leq a_i \leq n$$$).
2,100
Output one integer $$$m$$$ — the maximum median you can get.
standard output
PASSED
1145e3703847a4fba68b25f3fdb58de6
train_110.jsonl
1613658900
You are a given an array $$$a$$$ of length $$$n$$$. Find a subarray $$$a[l..r]$$$ with length at least $$$k$$$ with the largest median.A median in an array of length $$$n$$$ is an element which occupies position number $$$\lfloor \frac{n + 1}{2} \rfloor$$$ after we sort the elements in non-decreasing order. For example: $$$median([1, 2, 3, 4]) = 2$$$, $$$median([3, 2, 1]) = 2$$$, $$$median([2, 1, 2, 1]) = 1$$$.Subarray $$$a[l..r]$$$ is a contiguous part of the array $$$a$$$, i. e. the array $$$a_l,a_{l+1},\ldots,a_r$$$ for some $$$1 \leq l \leq r \leq n$$$, its length is $$$r - l + 1$$$.
256 megabytes
import java.io.File; import java.io.FileNotFoundException; import java.util.Arrays; import java.util.HashMap; import java.util.HashSet; import java.util.Scanner; public class Main { static Scanner in = new Scanner(System.in); // static Scanner in = new Scanner( new File("javain.txt")); public static void main(String[] args) throws FileNotFoundException { if(args.length > 0){ in = new Scanner( new File("javain.txt")); } for(int i = 0; i < 1; i++){ solve(); } } public static void solve(){ int n = in.nextInt(); int k = in.nextInt(); int [] nums = new int[n]; for(int i = 0; i < n; i++){ nums[i] = in.nextInt(); } int [] sum = new int[n + 1]; int l = 1, r = n; while(l <= r){ int mid = (l + r) / 2; for(int i = 0; i < n; i++){ if(nums[i] >= mid){ sum[i + 1] = sum[i] + 1; }else{ sum[ i + 1] = sum[i] - 1; } } int min = 200000, max = -200000; for(int i = k; i <= n; i++){ min = Math.min(min, sum[i - k]); max = Math.max(max, sum[i] - min); } if(max > 0){ l = mid + 1; }else{ r = mid - 1; } } System.out.println(r); } }
Java
["5 3\n1 2 3 2 1", "4 2\n1 2 3 4"]
2 seconds
["2", "3"]
NoteIn the first example all the possible subarrays are $$$[1..3]$$$, $$$[1..4]$$$, $$$[1..5]$$$, $$$[2..4]$$$, $$$[2..5]$$$ and $$$[3..5]$$$ and the median for all of them is $$$2$$$, so the maximum possible median is $$$2$$$ too.In the second example $$$median([3..4]) = 3$$$.
Java 8
standard input
[ "binary search", "data structures", "dp" ]
dddeb7663c948515def967374f2b8812
The first line contains two integers $$$n$$$ and $$$k$$$ ($$$1 \leq k \leq n \leq 2 \cdot 10^5$$$). The second line contains $$$n$$$ integers $$$a_1, a_2, \ldots, a_n$$$ ($$$1 \leq a_i \leq n$$$).
2,100
Output one integer $$$m$$$ — the maximum median you can get.
standard output
PASSED
46f20891d0caa65cbaf7423c1244f2e0
train_110.jsonl
1613658900
You are a given an array $$$a$$$ of length $$$n$$$. Find a subarray $$$a[l..r]$$$ with length at least $$$k$$$ with the largest median.A median in an array of length $$$n$$$ is an element which occupies position number $$$\lfloor \frac{n + 1}{2} \rfloor$$$ after we sort the elements in non-decreasing order. For example: $$$median([1, 2, 3, 4]) = 2$$$, $$$median([3, 2, 1]) = 2$$$, $$$median([2, 1, 2, 1]) = 1$$$.Subarray $$$a[l..r]$$$ is a contiguous part of the array $$$a$$$, i. e. the array $$$a_l,a_{l+1},\ldots,a_r$$$ for some $$$1 \leq l \leq r \leq n$$$, its length is $$$r - l + 1$$$.
256 megabytes
import java.io.DataInputStream; import java.io.FileInputStream; import java.io.IOException; import java.io.PrintWriter; import java.util.Arrays; import java.util.Formatter; import java.util.Random; /** * Coder: SumitRaut * Date: 27-02-2021 14:23 */ public class Main { public static void main(String[] args) throws IOException { Fs = new FastReader(); out = new PrintWriter(System.out); int n = Fs.nextInt(), k = Fs.nextInt(); int a[] = Fs.readArray(n); int l = 0, r = n; while (l < r) { int md = (l + r + 1) >> 1; boolean f = false; int P[] = new int[n + 1], Mn[] = new int[n + 1]; for (int i = 1; i <= n; ++i) { P[i] = P[i - 1] + (a[i-1]>=md?1:-1); if (i >= k && P[i] - Mn[i - k] > 0) { f = true; break; } Mn[i] = Math.min(P[i], Mn[i - 1]); } if (f) l = md; else r = md - 1; } out.println(r); out.close(); } static PrintWriter out; static FastReader Fs; static final Random random = new Random(); static void ruffleSort(int[] a) { int n = a.length; for (int i = 0; i < n; ++i) { int oi = random.nextInt(n), tmp = a[oi]; a[oi] = a[i]; a[i] = tmp; } Arrays.sort(a); } static class FastReader { final private int BUFFER_SIZE = 1 << 16; private DataInputStream din; private byte[] buffer; private int bufferPointer, bytesRead; public FastReader() { din = new DataInputStream(System.in); buffer = new byte[BUFFER_SIZE]; bufferPointer = bytesRead = 0; } public FastReader(String file_name) throws IOException { din = new DataInputStream(new FileInputStream(file_name)); buffer = new byte[BUFFER_SIZE]; bufferPointer = bytesRead = 0; } public String nextLine() throws IOException { byte[] buf = new byte[64]; // 64 line length int cnt = 0, c; while ((c = read()) != -1) { if (c == '\n') { if (cnt != 0) { break; } else { continue; } } buf[cnt++] = (byte) c; } return new String(buf, 0, cnt); } public String next() throws IOException { byte[] buf = new byte[64]; // 64 line length int cnt = 0, c; while ((c = read()) != -1) { if (c == ' ' || c == '\n') { if (cnt != 0) { break; } else { continue; } } buf[cnt++] = (byte) c; } return new String(buf, 0, cnt); } public int nextInt() throws IOException { int ret = 0; byte c = read(); while (c <= ' ') c = read(); boolean neg = (c == '-'); if (neg) c = read(); do { ret = ret * 10 + c - '0'; } while ((c = read()) >= '0' && c <= '9'); if (neg) return -ret; return ret; } public long nextLong() throws IOException { long ret = 0; byte c = read(); while (c <= ' ') c = read(); boolean neg = (c == '-'); if (neg) c = read(); do { ret = ret * 10 + c - '0'; } while ((c = read()) >= '0' && c <= '9'); if (neg) return -ret; return ret; } public double nextDouble() throws IOException { double ret = 0, div = 1; byte c = read(); while (c <= ' ') c = read(); boolean neg = (c == '-'); if (neg) c = read(); do { ret = ret * 10 + c - '0'; } while ((c = read()) >= '0' && c <= '9'); if (c == '.') { while ((c = read()) >= '0' && c <= '9') { ret += (c - '0') / (div *= 10); } } if (neg) return -ret; return ret; } public int[] readArray(int n) throws IOException { int[] a = new int[n]; for (int i = 0; i < n; ++i) a[i] = nextInt(); return a; } private void fillBuffer() throws IOException { bytesRead = din.read(buffer, bufferPointer = 0, BUFFER_SIZE); if (bytesRead == -1) buffer[0] = -1; } private byte read() throws IOException { if (bufferPointer == bytesRead) fillBuffer(); return buffer[bufferPointer++]; } public void close() throws IOException { if (din == null) return; din.close(); } } }
Java
["5 3\n1 2 3 2 1", "4 2\n1 2 3 4"]
2 seconds
["2", "3"]
NoteIn the first example all the possible subarrays are $$$[1..3]$$$, $$$[1..4]$$$, $$$[1..5]$$$, $$$[2..4]$$$, $$$[2..5]$$$ and $$$[3..5]$$$ and the median for all of them is $$$2$$$, so the maximum possible median is $$$2$$$ too.In the second example $$$median([3..4]) = 3$$$.
Java 8
standard input
[ "binary search", "data structures", "dp" ]
dddeb7663c948515def967374f2b8812
The first line contains two integers $$$n$$$ and $$$k$$$ ($$$1 \leq k \leq n \leq 2 \cdot 10^5$$$). The second line contains $$$n$$$ integers $$$a_1, a_2, \ldots, a_n$$$ ($$$1 \leq a_i \leq n$$$).
2,100
Output one integer $$$m$$$ — the maximum median you can get.
standard output
PASSED
434c78b0555b33b834119538d1011e1e
train_110.jsonl
1613658900
You are a given an array $$$a$$$ of length $$$n$$$. Find a subarray $$$a[l..r]$$$ with length at least $$$k$$$ with the largest median.A median in an array of length $$$n$$$ is an element which occupies position number $$$\lfloor \frac{n + 1}{2} \rfloor$$$ after we sort the elements in non-decreasing order. For example: $$$median([1, 2, 3, 4]) = 2$$$, $$$median([3, 2, 1]) = 2$$$, $$$median([2, 1, 2, 1]) = 1$$$.Subarray $$$a[l..r]$$$ is a contiguous part of the array $$$a$$$, i. e. the array $$$a_l,a_{l+1},\ldots,a_r$$$ for some $$$1 \leq l \leq r \leq n$$$, its length is $$$r - l + 1$$$.
256 megabytes
import java.io.DataInputStream; import java.io.FileInputStream; import java.io.IOException; import java.util.*; public class Main { static class point { long val, time, t3; point(long val, long time, int t3) { this.val = val; this.time = time; this.t3 = t3; } } static class Reader { final private int BUFFER_SIZE = 1 << 16; private DataInputStream din; private byte[] buffer; private int bufferPointer, bytesRead; public Reader() { din = new DataInputStream(System.in); buffer = new byte[BUFFER_SIZE]; bufferPointer = bytesRead = 0; } public Reader(String file_name) throws IOException { din = new DataInputStream( new FileInputStream(file_name)); buffer = new byte[BUFFER_SIZE]; bufferPointer = bytesRead = 0; } public String readLine() throws IOException { byte[] buf = new byte[64]; // line length int cnt = 0, c; while ((c = read()) != -1) { if (c == '\n') { if (cnt != 0) { break; } else { continue; } } buf[cnt++] = (byte)c; } return new String(buf, 0, cnt); } public int nextInt() throws IOException { int ret = 0; byte c = read(); while (c <= ' ') { c = read(); } boolean neg = (c == '-'); if (neg) c = read(); do { ret = ret * 10 + c - '0'; } while ((c = read()) >= '0' && c <= '9'); if (neg) return -ret; return ret; } public long nextLong() throws IOException { long ret = 0; byte c = read(); while (c <= ' ') c = read(); boolean neg = (c == '-'); if (neg) c = read(); do { ret = ret * 10 + c - '0'; } while ((c = read()) >= '0' && c <= '9'); if (neg) return -ret; return ret; } public double nextDouble() throws IOException { double ret = 0, div = 1; byte c = read(); while (c <= ' ') c = read(); boolean neg = (c == '-'); if (neg) c = read(); do { ret = ret * 10 + c - '0'; } while ((c = read()) >= '0' && c <= '9'); if (c == '.') { while ((c = read()) >= '0' && c <= '9') { ret += (c - '0') / (div *= 10); } } if (neg) return -ret; return ret; } private void fillBuffer() throws IOException { bytesRead = din.read(buffer, bufferPointer = 0, BUFFER_SIZE); if (bytesRead == -1) buffer[0] = -1; } private byte read() throws IOException { if (bufferPointer == bytesRead) fillBuffer(); return buffer[bufferPointer++]; } public void close() throws IOException { if (din == null) return; din.close(); } } static class comp implements Comparator<point> { public int compare(point a, point b) { if (a.val == b.val) { return Long.compare(b.time, a.time); } return Long.compare(a.val, b.val); } } static class TreeNode { int val; TreeNode left,right; TreeNode(int val){ this.val=val;left=null;right=null; } } static TreeNode maxx(int start,int end,int[] arr){ if(start>end){ return null; } int ind=0; int max=-1; for(int j=start;j<=end;j++){ if(arr[j]>max){ max=arr[j]; ind=j; } } TreeNode jj=new TreeNode(arr[ind]); jj.left=maxx(start,ind-1,arr); jj.right=maxx(ind+1,end,arr); return jj; } static void dfs(TreeNode root,int dep){ if(root==null){ return; } ans[hashMap.get(root.val)]=dep; dfs(root.left,dep+1); dfs(root.right,dep+1); } static int[] ans; static HashMap<Integer,Integer> hashMap; static class pont{ int val,index; pont(int val,int index){ this.val=val; this.index=index; } } static class compr implements Comparator<pont>{ public int compare(pont a,pont b){ return a.val-b.val; } } static class poin{ int src; long val; poin(int src,long val){ this.src=src; this.val=val; } } public static void main(String[] args) throws IOException { Scanner scanner=new Scanner(System.in); int n=scanner.nextInt();int k=scanner.nextInt(); int[] arr=new int[n]; int min=Integer.MAX_VALUE,max=Integer.MIN_VALUE; for(int j=0;j<n;j++){ arr[j]=scanner.nextInt(); min=Math.min(min,arr[j]); max=Math.max(max,arr[j]); } int[] ar=new int[n]; int anss=min; while(min<=max){ int mid=min+(max-min)/2; for(int j=0;j<n;j++){ if(arr[j]>=mid){ ar[j]=1; }else{ ar[j]=-1; } } HashMap<Integer,Integer> has=new HashMap<>(); int sum=0; boolean ff=false; for(int j=0;j<n;j++){ sum=sum+ar[j]; if(j+1>=k && sum>0){ ff=true; break; } if(sum<=0 && has.get(sum-1)!=null && j-has.get(sum-1)>=k){ ff=true;break; } has.putIfAbsent(sum,j); } if(ff){ anss=mid; min=mid+1; }else{ max=mid-1; } } System.out.println(anss); // int t=s.nextInt(); // int t=1; // for(int jj=0;jj<t;jj++){ // int n=s.nextInt(); // HashMap<Integer,HashMap<Integer,Integer>> has=new HashMap<>(); // int m=s.nextInt(); // int x=s.nextInt(); // int y=s.nextInt(); // long[] ti=new long[m]; // long[] ki=new long[m]; // HashMap<Integer,HashSet<Integer>> hash=new HashMap<>(); // for(int i=0;i<=n;i++){ // has.put(i,new HashMap<>()); // hash.put(i,new HashSet<>()); // } // for(int i=0;i<m;i++){ // int a=s.nextInt(); // int b=s.nextInt(); //// if(has.get(a)==null){ //// has.put(a,new HashMap<>()); //// } //// if(has.get(b)==null){ //// has.put(b,new HashMap<>()); //// } // has.get(a).put(b,i); // has.get(b).put(a,i); // ti[i]=s.nextLong(); // ki[i]=s.nextLong(); // } // // long[] vis=new long[n+1]; // Arrays.fill(vis,Long.MAX_VALUE); // vis[x]=0; // Queue<poin> qu=new LinkedList<>(); // qu.add(new poin(x,0)); // long ans=Long.MAX_VALUE; // while(!qu.isEmpty()){ // poin te=qu.poll(); // if(te.src==y){ // ans=Math.min(ans,te.val);continue; // } // for(Integer v:has.get(te.src).keySet()){ // long ll=(ki[has.get(te.src).get(v)]+(te.val%ki[has.get(te.src).get(v)]))%ki[has.get(te.src).get(v)]+ti[has.get(te.src).get(v)]; //// if(te.val>ki[has.get(te.src).get(v)]){ //// long ij=(long)Math.ceil((double)te.val/(double)ki[has.get(te.src).get(v)]); //// ll=(long)((long)ij*(long)ki[has.get(te.src).get(v)]); //// }else{ //// // long ij=(long)Math.ceil((double)ki[has.get(te.src).get(v)]/(double)te.val); //// if(te.val==0){ //// ll=0; //// }else{ //// ll=(long)((long)(long)ki[has.get(te.src).get(v)]);} //// } //// ll=(long)((long)ll+(long)ti[has.get(te.src).get(v)]); //// long ll= (long)Math.max((long)((long)te.val+(long)ti[has.get(te.src).get(v)]), (long)((long)ki[has.get(te.src).get(v)]*(long)Math.floor((double)ki[has.get(te.src).get(v)]/(double)(te.val+ti[has.get(te.src).get(v)])))); //// if( !hash.get(v).contains(te.src) ){ //// vis[v]=ll; //// hash.get(v).add(te.src); //// qu.add(new poin( v,vis[v])); //// } // if(vis[v]>=ll){ // vis[v]=ll; //// hash.get(v).add(te.src); // qu.add(new poin( v,vis[v])); // // } // } // } // if(ans==Long.MAX_VALUE){ // System.out.println(-1); // }else{ // System.out.println(ans);} // } } }
Java
["5 3\n1 2 3 2 1", "4 2\n1 2 3 4"]
2 seconds
["2", "3"]
NoteIn the first example all the possible subarrays are $$$[1..3]$$$, $$$[1..4]$$$, $$$[1..5]$$$, $$$[2..4]$$$, $$$[2..5]$$$ and $$$[3..5]$$$ and the median for all of them is $$$2$$$, so the maximum possible median is $$$2$$$ too.In the second example $$$median([3..4]) = 3$$$.
Java 8
standard input
[ "binary search", "data structures", "dp" ]
dddeb7663c948515def967374f2b8812
The first line contains two integers $$$n$$$ and $$$k$$$ ($$$1 \leq k \leq n \leq 2 \cdot 10^5$$$). The second line contains $$$n$$$ integers $$$a_1, a_2, \ldots, a_n$$$ ($$$1 \leq a_i \leq n$$$).
2,100
Output one integer $$$m$$$ — the maximum median you can get.
standard output
PASSED
bc5ec4cd6e99211dc18a24900ac746c6
train_110.jsonl
1613658900
You are a given an array $$$a$$$ of length $$$n$$$. Find a subarray $$$a[l..r]$$$ with length at least $$$k$$$ with the largest median.A median in an array of length $$$n$$$ is an element which occupies position number $$$\lfloor \frac{n + 1}{2} \rfloor$$$ after we sort the elements in non-decreasing order. For example: $$$median([1, 2, 3, 4]) = 2$$$, $$$median([3, 2, 1]) = 2$$$, $$$median([2, 1, 2, 1]) = 1$$$.Subarray $$$a[l..r]$$$ is a contiguous part of the array $$$a$$$, i. e. the array $$$a_l,a_{l+1},\ldots,a_r$$$ for some $$$1 \leq l \leq r \leq n$$$, its length is $$$r - l + 1$$$.
256 megabytes
import java.io.OutputStream; import java.io.IOException; import java.io.InputStream; import java.io.PrintWriter; import java.util.stream.IntStream; import java.util.Arrays; import java.io.IOException; import java.util.OptionalInt; import java.io.InputStreamReader; import java.util.StringTokenizer; import java.io.BufferedReader; import java.io.InputStream; /** * Built using CHelper plug-in * Actual solution is at the top */ public class Main { public static void main(String[] args) { InputStream inputStream = System.in; OutputStream outputStream = System.out; FastScanner in = new FastScanner(inputStream); PrintWriter out = new PrintWriter(outputStream); DMaxMedian solver = new DMaxMedian(); solver.solve(1, in, out); out.close(); } static class DMaxMedian { public void solve(int testNumber, FastScanner in, PrintWriter out) { int n = in.nextInt(); int k = in.nextInt(); int[] a = new int[n]; Arrays.setAll(a, i -> in.nextInt()); int l = Arrays.stream(a).min().getAsInt(); int r = Arrays.stream(a).max().getAsInt(); int[] num = new int[n]; int ans = l; while (l <= r) { int mid = (l + r) / 2; Arrays.setAll(num, i -> (a[i] >= mid ? 1 : -1)); if (check(num, k)) { ans = mid; l = mid + 1; } else { r = mid - 1; } } out.println(ans); } private boolean check(int[] num, int k) { int len = num.length; int[] sum = new int[len + 1]; for (int i = 0; i < len; i++) { sum[i + 1] = sum[i] + num[i]; } int min = 0; for (int i = k; i <= len; i++) { int index = i - k; min = Math.min(sum[index], min); if (sum[i] - min > 0) return true; } return false; } } static class FastScanner { private BufferedReader in; private StringTokenizer st; public FastScanner(InputStream stream) { in = new BufferedReader(new InputStreamReader(stream)); } public String next() { while (st == null || !st.hasMoreTokens()) { try { st = new StringTokenizer(in.readLine()); } catch (IOException e) { throw new RuntimeException(e); } } return st.nextToken(); } public int nextInt() { return Integer.parseInt(next()); } } }
Java
["5 3\n1 2 3 2 1", "4 2\n1 2 3 4"]
2 seconds
["2", "3"]
NoteIn the first example all the possible subarrays are $$$[1..3]$$$, $$$[1..4]$$$, $$$[1..5]$$$, $$$[2..4]$$$, $$$[2..5]$$$ and $$$[3..5]$$$ and the median for all of them is $$$2$$$, so the maximum possible median is $$$2$$$ too.In the second example $$$median([3..4]) = 3$$$.
Java 8
standard input
[ "binary search", "data structures", "dp" ]
dddeb7663c948515def967374f2b8812
The first line contains two integers $$$n$$$ and $$$k$$$ ($$$1 \leq k \leq n \leq 2 \cdot 10^5$$$). The second line contains $$$n$$$ integers $$$a_1, a_2, \ldots, a_n$$$ ($$$1 \leq a_i \leq n$$$).
2,100
Output one integer $$$m$$$ — the maximum median you can get.
standard output
PASSED
be4aff2ba780e637b083021034493ff5
train_110.jsonl
1613658900
You are a given an array $$$a$$$ of length $$$n$$$. Find a subarray $$$a[l..r]$$$ with length at least $$$k$$$ with the largest median.A median in an array of length $$$n$$$ is an element which occupies position number $$$\lfloor \frac{n + 1}{2} \rfloor$$$ after we sort the elements in non-decreasing order. For example: $$$median([1, 2, 3, 4]) = 2$$$, $$$median([3, 2, 1]) = 2$$$, $$$median([2, 1, 2, 1]) = 1$$$.Subarray $$$a[l..r]$$$ is a contiguous part of the array $$$a$$$, i. e. the array $$$a_l,a_{l+1},\ldots,a_r$$$ for some $$$1 \leq l \leq r \leq n$$$, its length is $$$r - l + 1$$$.
256 megabytes
import java.io.*; import java.util.*; public class maxmedian { public static void main(String[] args) throws IOException { BufferedReader f = new BufferedReader(new InputStreamReader(System.in)); StringTokenizer st = new StringTokenizer(f.readLine()); int n = Integer.parseInt(st.nextToken()); int k = Integer.parseInt(st.nextToken()); int[] arr = new int[n]; st = new StringTokenizer(f.readLine()); for(int i = 0; i < n; i ++) { arr[i] = Integer.parseInt(st.nextToken()); } int low = 1; int high = n; while(low < high) { int mid = (low + high + 1) / 2; int[] conditional = new int[n]; for(int i = 0; i < n; i ++) { if(arr[i] >= mid) conditional[i] = 1; else conditional[i] = -1; } int[] psum = new int[n]; psum[0] = conditional[0]; for(int i = 1; i < n; i++) { psum[i] = psum[i - 1] + conditional[i]; } int min = 0; boolean yes = false; for(int i = k - 1; i < n; i ++) { if(i != k - 1) min = Math.min(psum[i - k], min); if(psum[i] - min > 0) yes = true; } if(yes) { low = mid; } else high = mid - 1; } System.out.println(low); } }
Java
["5 3\n1 2 3 2 1", "4 2\n1 2 3 4"]
2 seconds
["2", "3"]
NoteIn the first example all the possible subarrays are $$$[1..3]$$$, $$$[1..4]$$$, $$$[1..5]$$$, $$$[2..4]$$$, $$$[2..5]$$$ and $$$[3..5]$$$ and the median for all of them is $$$2$$$, so the maximum possible median is $$$2$$$ too.In the second example $$$median([3..4]) = 3$$$.
Java 8
standard input
[ "binary search", "data structures", "dp" ]
dddeb7663c948515def967374f2b8812
The first line contains two integers $$$n$$$ and $$$k$$$ ($$$1 \leq k \leq n \leq 2 \cdot 10^5$$$). The second line contains $$$n$$$ integers $$$a_1, a_2, \ldots, a_n$$$ ($$$1 \leq a_i \leq n$$$).
2,100
Output one integer $$$m$$$ — the maximum median you can get.
standard output
PASSED
c6b3e7953266e542a370fdf987b516e0
train_110.jsonl
1613658900
You are a given an array $$$a$$$ of length $$$n$$$. Find a subarray $$$a[l..r]$$$ with length at least $$$k$$$ with the largest median.A median in an array of length $$$n$$$ is an element which occupies position number $$$\lfloor \frac{n + 1}{2} \rfloor$$$ after we sort the elements in non-decreasing order. For example: $$$median([1, 2, 3, 4]) = 2$$$, $$$median([3, 2, 1]) = 2$$$, $$$median([2, 1, 2, 1]) = 1$$$.Subarray $$$a[l..r]$$$ is a contiguous part of the array $$$a$$$, i. e. the array $$$a_l,a_{l+1},\ldots,a_r$$$ for some $$$1 \leq l \leq r \leq n$$$, its length is $$$r - l + 1$$$.
256 megabytes
import java.io.*; import java.util.*; /* polyakoff */ public class Main { static FastReader in; static PrintWriter out; static Random rand = new Random(); static final int oo = (int) 1e9 + 10; static final long OO = (long) 2e18 + 10; static final int MOD = (int) 1e9 + 7; static void solve() { int n = in.nextInt(); int k = in.nextInt(); int[] a = new int[n]; for (int i = 0; i < n; i++) { a[i] = in.nextInt(); } int[] prefSum = new int[n + 1]; int[] minPref = new int[n + 1]; int low = 1, high = n; while (low < high) { int mid = (low + high + 1) / 2; boolean is = false; for (int i = 0; i < n; i++) { prefSum[i + 1] = prefSum[i] + (a[i] >= mid ? 1 : -1); minPref[i + 1] = Math.min(minPref[i], prefSum[i + 1]); if (i + 1 >= k && prefSum[i + 1] > minPref[i + 1 - k]) is = true; } if (is) low = mid; else high = mid - 1; } out.println(low); } public static void main(String[] args) { in = new FastReader(); out = new PrintWriter(System.out); int T = 1; // T = in.nextInt(); while (T-- > 0) solve(); out.flush(); out.close(); } static class FastReader { BufferedReader br; StringTokenizer st; FastReader() { this(System.in); } FastReader(String file) throws FileNotFoundException { this(new FileInputStream(file)); } FastReader(InputStream is) { br = new BufferedReader(new InputStreamReader(is)); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String next() { while (st == null || !st.hasMoreTokens()) { st = new StringTokenizer(nextLine()); } return st.nextToken(); } String nextLine() { String line; try { line = br.readLine(); } catch (IOException e) { throw new RuntimeException(e); } return line; } } }
Java
["5 3\n1 2 3 2 1", "4 2\n1 2 3 4"]
2 seconds
["2", "3"]
NoteIn the first example all the possible subarrays are $$$[1..3]$$$, $$$[1..4]$$$, $$$[1..5]$$$, $$$[2..4]$$$, $$$[2..5]$$$ and $$$[3..5]$$$ and the median for all of them is $$$2$$$, so the maximum possible median is $$$2$$$ too.In the second example $$$median([3..4]) = 3$$$.
Java 8
standard input
[ "binary search", "data structures", "dp" ]
dddeb7663c948515def967374f2b8812
The first line contains two integers $$$n$$$ and $$$k$$$ ($$$1 \leq k \leq n \leq 2 \cdot 10^5$$$). The second line contains $$$n$$$ integers $$$a_1, a_2, \ldots, a_n$$$ ($$$1 \leq a_i \leq n$$$).
2,100
Output one integer $$$m$$$ — the maximum median you can get.
standard output
PASSED
dff8c282cd5225faa3a47e2e04113f83
train_110.jsonl
1613658900
You are a given an array $$$a$$$ of length $$$n$$$. Find a subarray $$$a[l..r]$$$ with length at least $$$k$$$ with the largest median.A median in an array of length $$$n$$$ is an element which occupies position number $$$\lfloor \frac{n + 1}{2} \rfloor$$$ after we sort the elements in non-decreasing order. For example: $$$median([1, 2, 3, 4]) = 2$$$, $$$median([3, 2, 1]) = 2$$$, $$$median([2, 1, 2, 1]) = 1$$$.Subarray $$$a[l..r]$$$ is a contiguous part of the array $$$a$$$, i. e. the array $$$a_l,a_{l+1},\ldots,a_r$$$ for some $$$1 \leq l \leq r \leq n$$$, its length is $$$r - l + 1$$$.
256 megabytes
//package com.company; import java.io.*; import java.util.*; public class Main { static FastReader sc = new FastReader(); static PrintWriter out = new PrintWriter(System.out); private static int N = 200005; private static int[] a = new int[N]; private static int[] b = new int[N]; private static int n = 0, k = 0; private static boolean check(int mid){ for(int i = 1 ; i <= n ; ++i) b[i] = b[i - 1] + (a[i] >= mid ? 1 : -1); int lr = N , rs = 0; for(int i = k ; i <= n ; ++i){ lr = Math.min(lr , b[i - k]); rs = Math.max(rs , b[i] - lr); } return rs <= 0; } public static void main(String[] args) throws IOException{ // write your code here n = sc.nextInt(); k = sc.nextInt(); for(int i = 1 ; i <= n ; ++i) a[i] = sc.nextInt(); int l = 1 , r = N; while(l < r){ int mid = l + r + 1 >> 1; if(check(mid)) r = mid - 1; else l = mid; } out.print(l); out.flush(); } } /** 读取int和double的类 */ class FastReader { BufferedReader br; StringTokenizer st; public FastReader() { br = new BufferedReader(new InputStreamReader(System.in)); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); }String nextLine() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } }
Java
["5 3\n1 2 3 2 1", "4 2\n1 2 3 4"]
2 seconds
["2", "3"]
NoteIn the first example all the possible subarrays are $$$[1..3]$$$, $$$[1..4]$$$, $$$[1..5]$$$, $$$[2..4]$$$, $$$[2..5]$$$ and $$$[3..5]$$$ and the median for all of them is $$$2$$$, so the maximum possible median is $$$2$$$ too.In the second example $$$median([3..4]) = 3$$$.
Java 8
standard input
[ "binary search", "data structures", "dp" ]
dddeb7663c948515def967374f2b8812
The first line contains two integers $$$n$$$ and $$$k$$$ ($$$1 \leq k \leq n \leq 2 \cdot 10^5$$$). The second line contains $$$n$$$ integers $$$a_1, a_2, \ldots, a_n$$$ ($$$1 \leq a_i \leq n$$$).
2,100
Output one integer $$$m$$$ — the maximum median you can get.
standard output
PASSED
25460dc785c10b2a21e7ed8069c9d2a5
train_110.jsonl
1613658900
You are a given an array $$$a$$$ of length $$$n$$$. Find a subarray $$$a[l..r]$$$ with length at least $$$k$$$ with the largest median.A median in an array of length $$$n$$$ is an element which occupies position number $$$\lfloor \frac{n + 1}{2} \rfloor$$$ after we sort the elements in non-decreasing order. For example: $$$median([1, 2, 3, 4]) = 2$$$, $$$median([3, 2, 1]) = 2$$$, $$$median([2, 1, 2, 1]) = 1$$$.Subarray $$$a[l..r]$$$ is a contiguous part of the array $$$a$$$, i. e. the array $$$a_l,a_{l+1},\ldots,a_r$$$ for some $$$1 \leq l \leq r \leq n$$$, its length is $$$r - l + 1$$$.
256 megabytes
import java.util.*; import java.awt.font.TextMeasurer; import java.io.*; public class Main { public static void main(String[] args) throws Exception { int n=sc.nextInt(); int k=sc.nextInt(); Integer[]a=sc.nextIntegerArray(n); Integer[]b=a.clone(); Arrays.sort(b); int low=0; int high=n-1; int mid=(low+high)/2; while(low<=high) { boolean can=false; int[]c=new int[n]; for(int i=0;i<n;i++) { if(a[i]<b[mid]) { c[i]=-1; }else { c[i]=1; } } TreeSet<Integer>ts=new TreeSet<Integer>(); ts.add(0); for(int i=1;i<n;i++) { c[i]+=c[i-1]; } for(int i=k-1;i<n;i++) { if(c[i]-ts.first()>0) { can=true; } ts.add(c[i-k+1]); } if(can) { low=mid+1; }else { high=mid-1; } mid=(low+high)/2; } pw.println(b[high]); pw.close(); } static class Scanner { StringTokenizer st; BufferedReader br; public Scanner(InputStream s) { br = new BufferedReader(new InputStreamReader(s)); } public Scanner(FileReader r) { br = new BufferedReader(r); } public String next() throws IOException { while (st == null || !st.hasMoreTokens()) st = new StringTokenizer(br.readLine()); return st.nextToken(); } public int nextInt() throws IOException { return Integer.parseInt(next()); } public long nextLong() throws IOException { return Long.parseLong(next()); } public String nextLine() throws IOException { return br.readLine(); } public double nextDouble() throws IOException { String x = next(); StringBuilder sb = new StringBuilder("0"); double res = 0, f = 1; boolean dec = false, neg = false; int start = 0; if (x.charAt(0) == '-') { neg = true; start++; } for (int i = start; i < x.length(); i++) if (x.charAt(i) == '.') { res = Long.parseLong(sb.toString()); sb = new StringBuilder("0"); dec = true; } else { sb.append(x.charAt(i)); if (dec) f *= 10; } res += Long.parseLong(sb.toString()) / f; return res * (neg ? -1 : 1); } public long[] nextlongArray(int n) throws IOException { long[] a = new long[n]; for (int i = 0; i < n; i++) a[i] = nextLong(); return a; } public Long[] nextLongArray(int n) throws IOException { Long[] a = new Long[n]; for (int i = 0; i < n; i++) a[i] = nextLong(); return a; } public int[] nextIntArray(int n) throws IOException { int[] a = new int[n]; for (int i = 0; i < n; i++) a[i] = nextInt(); return a; } public Integer[] nextIntegerArray(int n) throws IOException { Integer[] a = new Integer[n]; for (int i = 0; i < n; i++) a[i] = nextInt(); return a; } public boolean ready() throws IOException { return br.ready(); } } static class pair implements Comparable<pair> { long x; long y; public pair(long x, long y) { this.x = x; this.y = y; } public String toString() { return x + " " + y; } public boolean equals(Object o) { if (o instanceof pair) { pair p = (pair) o; return p.x == x && p.y == y; } return false; } public int hashCode() { return new Double(x).hashCode() * 31 + new Double(y).hashCode(); } public int compareTo(pair other) { if (this.x == other.x) { return Long.compare(this.y, other.y); } return Long.compare(this.x, other.x); } } static class tuble implements Comparable<tuble> { int x; int y; int z; public tuble(int x, int y, int z) { this.x = x; this.y = y; this.z = z; } public String toString() { return x + " " + y + " " + z; } public int compareTo(tuble other) { if (this.x == other.x) { if (this.y == other.y) { return this.z - other.z; } return this.y - other.y; } else { return this.x - other.x; } } } static long mod = 1000000007; static Random rn = new Random(); static Scanner sc = new Scanner(System.in); static PrintWriter pw = new PrintWriter(System.out); }
Java
["5 3\n1 2 3 2 1", "4 2\n1 2 3 4"]
2 seconds
["2", "3"]
NoteIn the first example all the possible subarrays are $$$[1..3]$$$, $$$[1..4]$$$, $$$[1..5]$$$, $$$[2..4]$$$, $$$[2..5]$$$ and $$$[3..5]$$$ and the median for all of them is $$$2$$$, so the maximum possible median is $$$2$$$ too.In the second example $$$median([3..4]) = 3$$$.
Java 8
standard input
[ "binary search", "data structures", "dp" ]
dddeb7663c948515def967374f2b8812
The first line contains two integers $$$n$$$ and $$$k$$$ ($$$1 \leq k \leq n \leq 2 \cdot 10^5$$$). The second line contains $$$n$$$ integers $$$a_1, a_2, \ldots, a_n$$$ ($$$1 \leq a_i \leq n$$$).
2,100
Output one integer $$$m$$$ — the maximum median you can get.
standard output
PASSED
abe77143ba75bfa0a9f7d1ca5c089672
train_110.jsonl
1613658900
You are a given an array $$$a$$$ of length $$$n$$$. Find a subarray $$$a[l..r]$$$ with length at least $$$k$$$ with the largest median.A median in an array of length $$$n$$$ is an element which occupies position number $$$\lfloor \frac{n + 1}{2} \rfloor$$$ after we sort the elements in non-decreasing order. For example: $$$median([1, 2, 3, 4]) = 2$$$, $$$median([3, 2, 1]) = 2$$$, $$$median([2, 1, 2, 1]) = 1$$$.Subarray $$$a[l..r]$$$ is a contiguous part of the array $$$a$$$, i. e. the array $$$a_l,a_{l+1},\ldots,a_r$$$ for some $$$1 \leq l \leq r \leq n$$$, its length is $$$r - l + 1$$$.
256 megabytes
import java.io.*; import java.util.StringTokenizer; public class Solution { private static boolean TESTS = false; private final Input in; private final PrintStream out; public Solution(final Input in, final PrintStream out) { this.in = in; this.out = out; } public void solve() { for (int test = 1, tests = TESTS ? in.nextInt() : 1; test <= tests; test++) { final int n = in.nextInt(); final int k = in.nextInt(); final int[] a = in.nextInts(n); final int[] b = new int[n]; int l = 1; int r = n; while (l < r) { final int m = (l + r + 1) >>> 1; for (int i = 0; i < n; i++) { b[i] = a[i] < m ? -1 : 1; if (i > 0) { b[i] += b[i - 1]; } } int min = 0; int max = b[k - 1]; for (int i = k; i < n; i++) { min = Math.min(min, b[i - k]); max = Math.max(max, b[i] - min); } if (max > 0) { l = m; } else { r = m - 1; } } out.println(l); } } public static void main(final String[] args) { final Input in = new Input(); final PrintStream out = new PrintStream(new BufferedOutputStream(System.out)); try { new Solution(in, out).solve(); } finally { out.flush(); } } private static final class Input { private final BufferedReader reader = new BufferedReader(new InputStreamReader(System.in)); private StringTokenizer tokenizer = new StringTokenizer(""); public String nextString() { try { while (!tokenizer.hasMoreTokens()) { final String line = reader.readLine(); tokenizer = new StringTokenizer(line, " "); } return tokenizer.nextToken(); } catch (final IOException e) { throw new RuntimeException(e); } } public int nextInt() { return Integer.parseInt(nextString()); } public long nextLong() { return Long.parseLong(nextString()); } public double nextDouble() { return Double.parseDouble(nextString()); } public int[] nextInts(final int size) { final int[] array = new int[size]; for (int i = 0; i < size; i++) { array[i] = nextInt(); } return array; } public long[] nextLongs(final int size) { final long[] array = new long[size]; for (int i = 0; i < size; i++) { array[i] = nextLong(); } return array; } public double[] nextDoubles(final int size) { final double[] array = new double[size]; for (int i = 0; i < size; i++) { array[i] = nextDouble(); } return array; } } }
Java
["5 3\n1 2 3 2 1", "4 2\n1 2 3 4"]
2 seconds
["2", "3"]
NoteIn the first example all the possible subarrays are $$$[1..3]$$$, $$$[1..4]$$$, $$$[1..5]$$$, $$$[2..4]$$$, $$$[2..5]$$$ and $$$[3..5]$$$ and the median for all of them is $$$2$$$, so the maximum possible median is $$$2$$$ too.In the second example $$$median([3..4]) = 3$$$.
Java 8
standard input
[ "binary search", "data structures", "dp" ]
dddeb7663c948515def967374f2b8812
The first line contains two integers $$$n$$$ and $$$k$$$ ($$$1 \leq k \leq n \leq 2 \cdot 10^5$$$). The second line contains $$$n$$$ integers $$$a_1, a_2, \ldots, a_n$$$ ($$$1 \leq a_i \leq n$$$).
2,100
Output one integer $$$m$$$ — the maximum median you can get.
standard output
PASSED
6d22c250b69df1f8c99a031d6bc55e57
train_110.jsonl
1613658900
You are a given an array $$$a$$$ of length $$$n$$$. Find a subarray $$$a[l..r]$$$ with length at least $$$k$$$ with the largest median.A median in an array of length $$$n$$$ is an element which occupies position number $$$\lfloor \frac{n + 1}{2} \rfloor$$$ after we sort the elements in non-decreasing order. For example: $$$median([1, 2, 3, 4]) = 2$$$, $$$median([3, 2, 1]) = 2$$$, $$$median([2, 1, 2, 1]) = 1$$$.Subarray $$$a[l..r]$$$ is a contiguous part of the array $$$a$$$, i. e. the array $$$a_l,a_{l+1},\ldots,a_r$$$ for some $$$1 \leq l \leq r \leq n$$$, its length is $$$r - l + 1$$$.
256 megabytes
import java.io.*; import java.lang.reflect.Type; import java.math.BigDecimal; import java.math.BigInteger; import java.math.RoundingMode; import java.text.DecimalFormat; import java.util.*; import java.util.concurrent.ArrayBlockingQueue; import java.util.concurrent.Future; import java.util.concurrent.FutureTask; import java.util.concurrent.locks.LockSupport; public class Main { static class Task { public static String roundS(double result, int scale) { String fmt = String.format("%%.%df", scale); return String.format(fmt, result); // DecimalFormat df = new DecimalFormat("0.000000"); // double result = Double.parseDouble(df.format(result)); } int rt(int x) { if (x != fa[x]) { int to = rt(fa[x]); dp[x] ^= dp[fa[x]]; fa[x] = to; return to; } return x; } void combine(int x, int y, int val) { int rt1 = rt(x); int rt2 = rt(y); if (rt1 == rt2) return; fa[rt1] = rt2; dp[rt1] = dp[x] ^ dp[y] ^ val; g--; } int fa[], dp[]; int g; static int MAXN = 10000; static Random rd = new Random(348957438574659L); static int[] ch[],val,size,rnd,cnt; static int len=0,rt=0; // return new node, the node below s static int rotate(int s,int d){ // child int x=ch[s][d^1]; // give me grandson ch[s][d^1] = ch[x][d]; // child become father ch[x][d]=s; // update size, update new son first update(s); update(x); return x; } static void update(int s){ size[s] = size[ch[s][0]] + size[ch[s][1]] + cnt[s]; } // 0 for left, 1 for right static int cmp(int x,int num) { if (val[x] == num) return -1; return num < val[x] ? 0 : 1; } static int insert(int s,int num) { if(s==0){ s=++len; val[s]=num;size[s]=1;rnd[s]=rd.nextInt();cnt[s] = 1; }else{ int d=cmp(s,num); if(d!=-1) { ch[s][d]=insert(ch[s][d],num); // father's random should be greater if(rnd[s]<rnd[ch[s][d]]) { s=rotate(s,d^1); }else { update(s); } }else{ ++cnt[s];++size[s]; } } return s; } static int del(int s,int num) { int d = cmp(s, num); if (d != -1) { ch[s][d] = del(ch[s][d], num); update(s); }else if (ch[s][0] * ch[s][1] == 0) { if(--cnt[s]==0){ s = ch[s][0] + ch[s][1]; } } else { int k = rnd[ch[s][0]] < rnd[ch[s][1]] ? 0 : 1; // k points to smaller random value,then bigger one up s = rotate(s, k); // now the node with value num become the child ch[s][k] = del(ch[s][k], num); update(s); } return s; } static int getKth(int s, int k){ int lz = size[ch[s][0]]; if(k>=lz+1&&k<=lz+cnt[s]){ return val[s]; }else if(k<=lz){ return getKth(ch[s][0], k); }else{ return getKth(ch[s][1], k-lz-cnt[s]); } } static int getRank(int s,int value){ if(s==0)return 1; if(value==val[s])return size[ch[s][0]] + 1; if(value<val[s])return getRank(ch[s][0],value); return getRank(ch[s][1],value)+size[ch[s][0]] + cnt[s]; } static int getPre(int data){ int ans= -1; int p=rt; while(p>0){ if(data>val[p]){ if(ans==-1 || val[p]>val[ans]) ans=p; p=ch[p][1]; } else p=ch[p][0]; } return ans!=-1?val[ans]:(-2147483647); } static int getNext(int data){ int ans= -1; int p=rt; while(p>0){ if(data<val[p]){ if(ans==-1 || val[p]<val[ans]) ans=p; p=ch[p][0]; } else p=ch[p][1]; } return ans!=-1?val[ans]:2147483647; } static boolean find(int s,int num){ while(s!=0){ int d=cmp(s,num); if(d==-1) return true; else s=ch[s][d]; } return false; } static int ans = -10000000; static boolean findX(int s,int num){ while(s!=0){ if(val[s]<=num){ ans = num; } int d=cmp(s,num); if(d==-1) return true; else { s = ch[s][d]; } } return false; } long gcd(long a,long b){ if(b==0) return a; return gcd(b,a%b); } void linear_sort(int arr[]){ int d = 65536; ArrayDeque bucket[] = new ArrayDeque[d]; for(int j=0;j<d;++j){ bucket[j] = new ArrayDeque(); } for(int u:arr){ bucket[u%d].offer(u); } int pos = 0; for(int j=0;j<d;++j){ while(bucket[j].size()>0) { arr[pos++] = (int)bucket[j].pollFirst(); } } for(int u:arr){ bucket[u/d].offer(u); } pos = 0; for(int j=0;j<d;++j){ while(bucket[j].size()>0) { arr[pos++] = (int)bucket[j].pollFirst(); } } } public void solve(int testNumber, InputReader in, PrintWriter out) { // int a[] = {4,3,2,45,1,2,3,4,56,7,2,1,2}; // linear_sort(a); // for(int u:a){ // out.println(u); // } int t = 1; // // outer:for(int j=0;j<t;++j){ int n = in.nextInt(); int k = in.nextInt(); int a[] = in.nextArray(n); int lo =1;int hi = n; while(lo<hi){ int mi = (lo+hi+1)>>1; int s[ ] = new int[n+1]; for(int i=0;i<n;++i){ s[i+1] = a[i]>=mi?1:-1; } for(int i=1;i<=n;++i){ s[i] += s[i-1]; } int low = -1; int ok = 0; for(int i=1;i<=n;++i){ if(i>=k&&(low==-1||s[i-k]<s[low])){ low = i-k; } if(low!=-1 && s[i]-s[low]>0){ ok = 1; break; } } if(ok==1){ lo = mi; }else{ hi = mi-1; } } out.println(lo); } // while(true) { // int n = in.nextInt(); // // int m =in.nextInt(); // // fa = new int[n]; // dp = new int[n]; // for(int i=0;i<n;++i){ // fa[i] = i; // } // g = n; // int c = 0; // int as[] = new int[n]; // int bs[] = new int[n]; // char xs[] = new char[n]; // // int at = -1; // Set<Integer> st = new HashSet<>(); // // for (int i = 0; i < n; ++i) { // String line = in.next(); // int p = 0; // int a = 0; // while(Character.isDigit(line.charAt(p))){ // a = a*10 + (line.charAt(p)-'0'); p++; // } // char x = line.charAt(p++); // // int b = 0; // while(p<line.length()){ // b = b*10 + (line.charAt(p)-'0'); p++; // } // // as[i] = a; // xs[i] = x; // bs[i] = b; // // if(x=='='){ // int r1 = rt(a); int r2 = rt(b); // if(r1==r2){ // if(dp[a]!=dp[b]){ // c++; // at = i; // } // }else { // combine(a, b, 0); // } // }else if(x=='<'){ // int r1 = rt(a); int r2 = rt(b); // if(r1==r2){ // if(dp[a]>=dp[b]){ // c++; // at = i; // } // }else { // combine(a, b, -1); // } // }else{ // int r1 = rt(a); int r2 = rt(b); // if(r1==r2){ // if(dp[a]<=dp[b]){ // c++; // at = i; // } // }else { // combine(a, b, 1); // } // } // // // } // if(g==1||c>=2){ // out.println("Impossible"); // continue; // } // // // for(int xuan: st){ // // // // // } // // // // // // // } } static long mul(long a, long b, long p) { long res=0,base=a; while(b>0) { if((b&1L)>0) res=(res+base)%p; base=(base+base)%p; b>>=1; } return res; } static long mod_pow(long k,long n,long p){ long res = 1L; long temp = k%p; while(n!=0L){ if((n&1L)==1L){ res = mul(res,temp,p); } temp = mul(temp,temp,p); n = n>>1L; } return res%p; } public static double roundD(double result, int scale){ BigDecimal bg = new BigDecimal(result).setScale(scale, RoundingMode.UP); return bg.doubleValue(); } } private static void solve() { InputStream inputStream = System.in; // InputStream inputStream = null; // try { // inputStream = new FileInputStream(new File("D:\\chrome_download\\travel_restrictions_input.txt")); // } catch (FileNotFoundException e) { // e.printStackTrace(); // } OutputStream outputStream = System.out; // OutputStream outputStream = null; // File f = new File("D:\\chrome_download\\travel_restrictions_output.txt"); // try { // f.createNewFile(); // } catch (IOException e) { // e.printStackTrace(); // } // try { // outputStream = new FileOutputStream(f); // } catch (FileNotFoundException e) { // e.printStackTrace(); // } InputReader in = new InputReader(inputStream); PrintWriter out = new PrintWriter(outputStream); Task task = new Task(); task.solve(1, in, out); out.close(); } public static void main(String[] args) { // new Thread(null, () -> solve(), "1", (1 << 10 ) ).start(); solve(); } static class InputReader { public BufferedReader reader; public StringTokenizer tokenizer; public InputReader(InputStream stream) { reader = new BufferedReader(new InputStreamReader(stream), 32768); tokenizer = null; } public String nextLine() { String line = null; try { line = reader.readLine(); } catch (IOException e) { throw new RuntimeException(e); } return line; } public String next() { while (tokenizer == null || !tokenizer.hasMoreTokens()) { try { tokenizer = new StringTokenizer(reader.readLine()); } catch (IOException e) { throw new RuntimeException(e); } } return tokenizer.nextToken(); } public int nextInt() { return Integer.parseInt(next()); } public char nextChar() { return next().charAt(0); } public int[] nextArray(int n) { int res[] = new int[n]; for (int i = 0; i < n; ++i) { res[i] = nextInt(); } return res; } public long nextLong() { return Long.parseLong(next()); } public double nextDouble() { return Double.parseDouble(next()); } } }
Java
["5 3\n1 2 3 2 1", "4 2\n1 2 3 4"]
2 seconds
["2", "3"]
NoteIn the first example all the possible subarrays are $$$[1..3]$$$, $$$[1..4]$$$, $$$[1..5]$$$, $$$[2..4]$$$, $$$[2..5]$$$ and $$$[3..5]$$$ and the median for all of them is $$$2$$$, so the maximum possible median is $$$2$$$ too.In the second example $$$median([3..4]) = 3$$$.
Java 8
standard input
[ "binary search", "data structures", "dp" ]
dddeb7663c948515def967374f2b8812
The first line contains two integers $$$n$$$ and $$$k$$$ ($$$1 \leq k \leq n \leq 2 \cdot 10^5$$$). The second line contains $$$n$$$ integers $$$a_1, a_2, \ldots, a_n$$$ ($$$1 \leq a_i \leq n$$$).
2,100
Output one integer $$$m$$$ — the maximum median you can get.
standard output
PASSED
d7993a03b1735828a917af8e589c73a6
train_110.jsonl
1613658900
You are a given an array $$$a$$$ of length $$$n$$$. Find a subarray $$$a[l..r]$$$ with length at least $$$k$$$ with the largest median.A median in an array of length $$$n$$$ is an element which occupies position number $$$\lfloor \frac{n + 1}{2} \rfloor$$$ after we sort the elements in non-decreasing order. For example: $$$median([1, 2, 3, 4]) = 2$$$, $$$median([3, 2, 1]) = 2$$$, $$$median([2, 1, 2, 1]) = 1$$$.Subarray $$$a[l..r]$$$ is a contiguous part of the array $$$a$$$, i. e. the array $$$a_l,a_{l+1},\ldots,a_r$$$ for some $$$1 \leq l \leq r \leq n$$$, its length is $$$r - l + 1$$$.
256 megabytes
import java.io.*; import java.util.*; import java.lang.*; public class Main{ public static void main(String[] args) { InputStream inputStream = System.in; OutputStream outputStream = System.out; InputReader in = new InputReader(inputStream); PrintWriter out = new PrintWriter(outputStream); solve(in, out); out.close(); } static int L,R,top,bottom; static int cnt,edge; public static void solve(InputReader sc, PrintWriter pw) { // int t=sc.nextInt(); int t=1; u:while(t-->0){ int n=sc.nextInt(); int k=sc.nextInt(); int []arr=new int [n]; for(int i=0;i<n;i++) arr[i]=sc.nextInt(); int []brr=new int[n]; int l=1,r=n,m,min; boolean flag; while(l<=r){ m=(r-l)/2+l; min=Integer.MAX_VALUE; flag=false; for(int i=0;i<n;i++){ brr[i]=(i>0?brr[i-1]:0)+((arr[i]>=m)?1:-1); if(i>=k-1){ min=Math.min(min,i>=k?brr[i-k]:0); if(brr[i]-min>0){ flag=true; break; } } } if(flag) l=m+1; else r=m-1; } pw.println(r); } } public static int ask(int l, int r, InputReader sc){ System.out.println("? "+l+" "+r); System.out.flush(); return sc.nextInt(); } public static void sort(long []arr){ ArrayList<Long> list=new ArrayList<>(); for(int i=0;i<arr.length;i++) list.add(arr[i]); Collections.sort(list); for(int i=0;i<arr.length;i++) arr[i]=list.get(i); } public static void swap(char []chrr, int i, int j){ char temp=chrr[i]; chrr[i]=chrr[j]; chrr[j]=temp; } public static int num(int n){ int a=0; while(n>0){ a+=(n&1); n>>=1; } return a; } static class Pair{ int a, b; Pair(int a,int b){ this.a=a; this.b=b; } } // public int compareTo(Pair p){ // return (b-p.b); // } // public int hashCode(){ // int hashcode = (a+" "+b).hashCode(); // return hashcode; // } // public boolean equals(Object obj){ // if (obj instanceof Pair) { // Pair p = (Pair) obj; // return (p.a==this.a && p.b == this.b); // } // return false; // } static boolean isPrime(int n) { if (n <= 1) return false; if (n <= 3) return true; if (n % 2 == 0 || n % 3 == 0) return false; for (int i = 5; i * i <= n; i = i + 6) if (n % i == 0 || n % (i + 2) == 0) return false; return true; } static int gcd(int a, int b) { if (b == 0) return a; return a>b?gcd(b, a % b):gcd(a, b % a); } static long fast_pow(long base,long n,long M){ if(n==0) return 1; if(n==1) return base; long halfn=fast_pow(base,n/2,M); if(n%2==0) return ( halfn * halfn ) % M; else return ( ( ( halfn * halfn ) % M ) * base ) % M; } static long modInverse(long n,long M){ return fast_pow(n,M-2,M); } public static void feedArr(long []arr,InputReader sc){ for(int i=0;i<arr.length;i++) arr[i]=sc.nextLong(); } public static void feedArr(double []arr,InputReader sc){ for(int i=0;i<arr.length;i++) arr[i]=sc.nextDouble(); } public static void feedArr(int []arr,InputReader sc){ for(int i=0;i<arr.length;i++) arr[i]=sc.nextInt(); } public static void feedArr(String []arr,InputReader sc){ for(int i=0;i<arr.length;i++) arr[i]=sc.next(); } public static String printArr(int []arr){ StringBuilder sbr=new StringBuilder(); for(int i:arr) sbr.append(i+" "); return sbr.toString(); } public static String printArr(long []arr){ StringBuilder sbr=new StringBuilder(); for(long i:arr) sbr.append(i+" "); return sbr.toString(); } public static String printArr(String []arr){ StringBuilder sbr=new StringBuilder(); for(String i:arr) sbr.append(i+" "); return sbr.toString(); } public static String printArr(double []arr){ StringBuilder sbr=new StringBuilder(); for(double i:arr) sbr.append(i+" "); return sbr.toString(); } static class InputReader { public BufferedReader reader; public StringTokenizer tokenizer; public InputReader(InputStream stream) { reader = new BufferedReader(new InputStreamReader(stream), 32768); tokenizer = null; } public String next() { while (tokenizer == null || !tokenizer.hasMoreTokens()) { try { tokenizer = new StringTokenizer(reader.readLine()); } catch (IOException e) { throw new RuntimeException(e); } } return tokenizer.nextToken(); } public int nextInt() { return Integer.parseInt(next()); } public long nextLong() { return Long.parseLong(next()); } public double nextDouble() { return Double.parseDouble(next()); } } }
Java
["5 3\n1 2 3 2 1", "4 2\n1 2 3 4"]
2 seconds
["2", "3"]
NoteIn the first example all the possible subarrays are $$$[1..3]$$$, $$$[1..4]$$$, $$$[1..5]$$$, $$$[2..4]$$$, $$$[2..5]$$$ and $$$[3..5]$$$ and the median for all of them is $$$2$$$, so the maximum possible median is $$$2$$$ too.In the second example $$$median([3..4]) = 3$$$.
Java 8
standard input
[ "binary search", "data structures", "dp" ]
dddeb7663c948515def967374f2b8812
The first line contains two integers $$$n$$$ and $$$k$$$ ($$$1 \leq k \leq n \leq 2 \cdot 10^5$$$). The second line contains $$$n$$$ integers $$$a_1, a_2, \ldots, a_n$$$ ($$$1 \leq a_i \leq n$$$).
2,100
Output one integer $$$m$$$ — the maximum median you can get.
standard output
PASSED
c4f04186090c7e7621cc693742a2a344
train_110.jsonl
1613658900
You are a given an array $$$a$$$ of length $$$n$$$. Find a subarray $$$a[l..r]$$$ with length at least $$$k$$$ with the largest median.A median in an array of length $$$n$$$ is an element which occupies position number $$$\lfloor \frac{n + 1}{2} \rfloor$$$ after we sort the elements in non-decreasing order. For example: $$$median([1, 2, 3, 4]) = 2$$$, $$$median([3, 2, 1]) = 2$$$, $$$median([2, 1, 2, 1]) = 1$$$.Subarray $$$a[l..r]$$$ is a contiguous part of the array $$$a$$$, i. e. the array $$$a_l,a_{l+1},\ldots,a_r$$$ for some $$$1 \leq l \leq r \leq n$$$, its length is $$$r - l + 1$$$.
256 megabytes
import java.io.*; import java.util.*; public class D { public static void main(String[] args) { FastScanner in = new FastScanner(); PrintWriter out = new PrintWriter(System.out); int t = 1;//in.nextInt(); while(t-->0) { int n = in.nextInt(), k = in.nextInt(); int a[] = in.readArray(n); int low = 1, high = 2000_00; int mid; while(low<=high){ mid = (low+high)/2; int b[] = new int[n]; for(int i=0;i<n;i++){ if(a[i]<mid) b[i] = -1; else b[i] = 1; } int prefixSum[] = new int[n]; prefixSum[0] = b[0]; for(int i=1;i<n;i++) prefixSum[i] = prefixSum[i-1] + b[i]; int minPrefix[] = new int[n]; minPrefix[0] = b[0]; for(int i=1;i<n;i++) minPrefix[i] = Math.min(minPrefix[i-1],prefixSum[i]); boolean valid = false; for(int i=k-1;i<n;i++){ if(prefixSum[i]>0) valid = true; if(i-k>-1&&prefixSum[i]-minPrefix[i-k]>0) valid = true; if(valid) break; } if(valid) low = mid+1; else high = mid-1; } out.println(high); } out.flush(); } static class FastScanner { BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); StringTokenizer st = new StringTokenizer(""); String next() { while(!st.hasMoreTokens()) try { st = new StringTokenizer(br.readLine()); } catch(IOException e) {} return st.nextToken(); } String nextLine(){ try{ return br.readLine(); } catch(IOException e) { } return ""; } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } int[] readArray(int n) { int a[] = new int[n]; for(int i=0;i<n;i++) a[i] = nextInt(); return a; } } static final Random random = new Random(); static void ruffleSort(int[] a){ int n = a.length; for(int i=0;i<n;i++){ int j = random.nextInt(n), temp = a[j]; a[j] = a[i]; a[i] = temp; } Arrays.sort(a); } }
Java
["5 3\n1 2 3 2 1", "4 2\n1 2 3 4"]
2 seconds
["2", "3"]
NoteIn the first example all the possible subarrays are $$$[1..3]$$$, $$$[1..4]$$$, $$$[1..5]$$$, $$$[2..4]$$$, $$$[2..5]$$$ and $$$[3..5]$$$ and the median for all of them is $$$2$$$, so the maximum possible median is $$$2$$$ too.In the second example $$$median([3..4]) = 3$$$.
Java 8
standard input
[ "binary search", "data structures", "dp" ]
dddeb7663c948515def967374f2b8812
The first line contains two integers $$$n$$$ and $$$k$$$ ($$$1 \leq k \leq n \leq 2 \cdot 10^5$$$). The second line contains $$$n$$$ integers $$$a_1, a_2, \ldots, a_n$$$ ($$$1 \leq a_i \leq n$$$).
2,100
Output one integer $$$m$$$ — the maximum median you can get.
standard output
PASSED
357c1d7eaa0ec368b7922f6c08433843
train_110.jsonl
1613658900
You are a given an array $$$a$$$ of length $$$n$$$. Find a subarray $$$a[l..r]$$$ with length at least $$$k$$$ with the largest median.A median in an array of length $$$n$$$ is an element which occupies position number $$$\lfloor \frac{n + 1}{2} \rfloor$$$ after we sort the elements in non-decreasing order. For example: $$$median([1, 2, 3, 4]) = 2$$$, $$$median([3, 2, 1]) = 2$$$, $$$median([2, 1, 2, 1]) = 1$$$.Subarray $$$a[l..r]$$$ is a contiguous part of the array $$$a$$$, i. e. the array $$$a_l,a_{l+1},\ldots,a_r$$$ for some $$$1 \leq l \leq r \leq n$$$, its length is $$$r - l + 1$$$.
256 megabytes
//created by Whiplash99 import java.io.*; import java.util.*; public class D { private static boolean check(int[] a, int N, int K, int val) { int[] arr=new int[N]; int i; for(i=0;i<N;i++) arr[i]=a[i]<val?-1:1; int[] pref=new int[N+1]; int cur=0; for(i=0;i<N;i++) { cur+=arr[i]; pref[i+1]=Math.min(pref[i],cur); if(i<K-1) continue; if(cur-pref[i+1-K]>0) return true; } return false; } private static int bSearch(int[] a, int N, int K) { int l=1,r=N,mid,ans=-1; while (l<=r) { mid=(l+r)/2; if(check(a,N,K,mid)) { ans=mid; l=mid+1; } else r=mid-1; } return ans; } public static void main(String[] args) throws Exception { BufferedReader br=new BufferedReader(new InputStreamReader(System.in)); int i,N; String[] s=br.readLine().trim().split(" "); N=Integer.parseInt(s[0]); int K=Integer.parseInt(s[1]); int[] a=new int[N]; s=br.readLine().trim().split(" "); for(i=0;i<N;i++) a[i]=Integer.parseInt(s[i]); System.out.println(bSearch(a,N,K)); } }
Java
["5 3\n1 2 3 2 1", "4 2\n1 2 3 4"]
2 seconds
["2", "3"]
NoteIn the first example all the possible subarrays are $$$[1..3]$$$, $$$[1..4]$$$, $$$[1..5]$$$, $$$[2..4]$$$, $$$[2..5]$$$ and $$$[3..5]$$$ and the median for all of them is $$$2$$$, so the maximum possible median is $$$2$$$ too.In the second example $$$median([3..4]) = 3$$$.
Java 8
standard input
[ "binary search", "data structures", "dp" ]
dddeb7663c948515def967374f2b8812
The first line contains two integers $$$n$$$ and $$$k$$$ ($$$1 \leq k \leq n \leq 2 \cdot 10^5$$$). The second line contains $$$n$$$ integers $$$a_1, a_2, \ldots, a_n$$$ ($$$1 \leq a_i \leq n$$$).
2,100
Output one integer $$$m$$$ — the maximum median you can get.
standard output
PASSED
418146a8559d28c15ab30c4225f5756e
train_110.jsonl
1613658900
You are a given an array $$$a$$$ of length $$$n$$$. Find a subarray $$$a[l..r]$$$ with length at least $$$k$$$ with the largest median.A median in an array of length $$$n$$$ is an element which occupies position number $$$\lfloor \frac{n + 1}{2} \rfloor$$$ after we sort the elements in non-decreasing order. For example: $$$median([1, 2, 3, 4]) = 2$$$, $$$median([3, 2, 1]) = 2$$$, $$$median([2, 1, 2, 1]) = 1$$$.Subarray $$$a[l..r]$$$ is a contiguous part of the array $$$a$$$, i. e. the array $$$a_l,a_{l+1},\ldots,a_r$$$ for some $$$1 \leq l \leq r \leq n$$$, its length is $$$r - l + 1$$$.
256 megabytes
import java.io.*; import java.util.ArrayList; import java.util.Arrays; import java.util.StringTokenizer; import java.util.List; import java.util.*; public class realfast implements Runnable { private static final int INF = (int) 1e9; long in= 1000000007; long fac[]= new long[1000001]; long inv[]=new long[1000001]; public void solve() throws IOException { //int t = readInt(); int n = readInt(); int k = readInt(); int arr[]=new int[n+1]; ArrayList<Integer> mat=new ArrayList<Integer>(); // int seg[]=new int[8*n+8]; int pre[]=new int[n+1]; for(int i =1;i<=n;i++) { arr[i]=readInt(); mat.add(arr[i]); } Collections.sort(mat); int left =0; int right=n-1; int max[]=new int[2*n+10]; int ans=-1; while(left<=right) { // Arrays.fill(seg,-1); int mid = left+(right-left)/2; int gal = (int)mat.get(mid); pre[0]=n+1; // out.println(gal); for(int i=1;i<=n;i++) { if(arr[i]<gal) pre[i]= pre[i-1]-1; else pre[i]= pre[i-1]+1; } // int max[]=new int [2*n+1]; Arrays.fill(max,0); int start =-1; for(int i=n;i>=1;i--) { //int pal = pre[i]; if(pre[i]<=start) { continue; } for(int j=start+1;j<=pre[i];j++) { max[j]=i; } start=pre[i]; } int val =0; for(int i=0;i<n;i++) { int ll = max[pre[i]+1]-i; val=Math.max(val,ll); } if(val>=k) { left=mid+1; ans= mid; } else right=mid-1; } out.println(mat.get(ans)); } public int value (int seg[], int left , int right ,int index, int l, int r) { if(left>right) { return -100000000; } if(right<l||left>r) return -100000000; if(left>=l&&right<=r) return seg[index]; int mid = left+(right-left)/2; int val = value(seg,left,mid,2*index+1,l,r); int val2 = value(seg,mid+1,right,2*index+2,l,r); return Math.max(val,val2); } public int gcd(int a , int b ) { if(a<b) { int t =a; a=b; b=t; } if(a%b==0) return b ; return gcd(b,a%b); } public long pow(long n , long p,long m) { if(p==0) return 1; long val = pow(n,p/2,m);; val= (val*val)%m; if(p%2==0) return val; else return (val*n)%m; } /////////////////////////////////////////////////////////////////////////////////////////////////////////////////// public static void main(String[] args) { new Thread(null, new realfast(), "", 128 * (1L << 20)).start(); } private static final boolean ONLINE_JUDGE = System.getProperty("ONLINE_JUDGE") != null; private BufferedReader reader; private StringTokenizer tokenizer; private PrintWriter out; @Override public void run() { try { if (ONLINE_JUDGE || !new File("input.txt").exists()) { reader = new BufferedReader(new InputStreamReader(System.in)); out = new PrintWriter(System.out); } else { reader = new BufferedReader(new FileReader("input.txt")); out = new PrintWriter("output.txt"); } solve(); } catch (IOException e) { throw new RuntimeException(e); } finally { try { reader.close(); } catch (IOException e) { // nothing } out.close(); } } private String readString() throws IOException { while (tokenizer == null || !tokenizer.hasMoreTokens()) { tokenizer = new StringTokenizer(reader.readLine()); } return tokenizer.nextToken(); } @SuppressWarnings("unused") private int readInt() throws IOException { return Integer.parseInt(readString()); } @SuppressWarnings("unused") private long readLong() throws IOException { return Long.parseLong(readString()); } @SuppressWarnings("unused") private double readDouble() throws IOException { return Double.parseDouble(readString()); } } class edge implements Comparable<edge>{ int u ; int v; edge(int u, int v) { this.u=u; this.v=v; } public int compareTo(edge e) { return this.v-e.v; } }
Java
["5 3\n1 2 3 2 1", "4 2\n1 2 3 4"]
2 seconds
["2", "3"]
NoteIn the first example all the possible subarrays are $$$[1..3]$$$, $$$[1..4]$$$, $$$[1..5]$$$, $$$[2..4]$$$, $$$[2..5]$$$ and $$$[3..5]$$$ and the median for all of them is $$$2$$$, so the maximum possible median is $$$2$$$ too.In the second example $$$median([3..4]) = 3$$$.
Java 8
standard input
[ "binary search", "data structures", "dp" ]
dddeb7663c948515def967374f2b8812
The first line contains two integers $$$n$$$ and $$$k$$$ ($$$1 \leq k \leq n \leq 2 \cdot 10^5$$$). The second line contains $$$n$$$ integers $$$a_1, a_2, \ldots, a_n$$$ ($$$1 \leq a_i \leq n$$$).
2,100
Output one integer $$$m$$$ — the maximum median you can get.
standard output
PASSED
99387974322ebefbb7f4732526bc7265
train_110.jsonl
1613658900
You are a given an array $$$a$$$ of length $$$n$$$. Find a subarray $$$a[l..r]$$$ with length at least $$$k$$$ with the largest median.A median in an array of length $$$n$$$ is an element which occupies position number $$$\lfloor \frac{n + 1}{2} \rfloor$$$ after we sort the elements in non-decreasing order. For example: $$$median([1, 2, 3, 4]) = 2$$$, $$$median([3, 2, 1]) = 2$$$, $$$median([2, 1, 2, 1]) = 1$$$.Subarray $$$a[l..r]$$$ is a contiguous part of the array $$$a$$$, i. e. the array $$$a_l,a_{l+1},\ldots,a_r$$$ for some $$$1 \leq l \leq r \leq n$$$, its length is $$$r - l + 1$$$.
256 megabytes
import java.util.*; import java.io.*; public class Div708 { //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// //////// ///////// //////// ///////// //////// HHHH HHHH EEEEEEEEEEEEE MMMM MMMM OOOOOO SSSSSSS EEEEEEEEEEEEE ///////// //////// HHHH HHHH EEEEEEEEEEEEE MMMMMM MMMMMM OOO OOO SSSS SSS EEEEEEEEEEEEE ///////// //////// HHHH HHHH EEEEE MMMM MMM MMM MMMM OOO OOO SSSS SSS EEEEE ///////// //////// HHHH HHHH EEEEE MMMM MMMMMM MMMM OOO OOO SSSS EEEEE ///////// //////// HHHH HHHH EEEEE MMMM MMMM OOO OOO SSSSSSS EEEEE ///////// //////// HHHHHHHHHHHHHHHH EEEEEEEEEEE MMMM MMMM OOO OOO SSSSSS EEEEEEEEEEE ///////// //////// HHHHHHHHHHHHHHHH EEEEEEEEEEE MMMM MMMM OOO OOO SSSSSSS EEEEEEEEEEE ///////// //////// HHHH HHHH EEEEE MMMM MMMM OOO OOO SSSS EEEEE ///////// //////// HHHH HHHH EEEEE MMMM MMMM OOO OOO SSS SSSS EEEEE ///////// //////// HHHH HHHH EEEEEEEEEEEEE MMMM MMMM OOO OOO SSS SSSS EEEEEEEEEEEEE ///////// //////// HHHH HHHH EEEEEEEEEEEEE MMMM MMMM OOOOOO SSSSSSS EEEEEEEEEEEEE ///////// //////// ///////// //////// ///////// //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// static int[] memo, a; static int[] nxt; static int limit, n; static int dp(int i) { if (i == n) return 0; if (memo[i] != -2 * n) return memo[i]; int ans = 0; ans = Math.max(ans, (a[i] >= limit ? 1 : -1) + dp(i + 1)); return memo[i] = ans; } public static void main(String[] args) throws IOException { Scanner sc = new Scanner(System.in); PrintWriter pw = new PrintWriter(System.out); n = sc.nextInt(); int k = sc.nextInt(); a = sc.nextIntArr(n); memo = new int[n]; int low = 1; int hi = n; int res = 1; while (low <= hi) { int mid = low + hi >> 1; limit = mid; for (int i = 0; i < n; i++) memo[i] = -2 * n; int[] suf = new int[n + 1]; boolean ans = false; for (int i = n - 1; i >= 0; i--) { suf[i] += suf[i + 1] + (a[i] >= limit ? 1 : -1); if (i + k <= n) { int cur = suf[i] - suf[i + k]; cur += dp(i + k); if (cur > 0) { ans = true; break; } } } if (ans) { low = mid + 1; res = mid; } else hi = mid - 1; } pw.println(res); pw.flush(); } static class Scanner { StringTokenizer st; BufferedReader br; public Scanner(FileReader r) { br = new BufferedReader(r); } public Scanner(InputStream s) { br = new BufferedReader(new InputStreamReader(s)); } public String next() throws IOException { while (st == null || !st.hasMoreTokens()) st = new StringTokenizer(br.readLine()); return st.nextToken(); } public int[] nextIntArr(int n) throws IOException { int[] a = new int[n]; for (int i = 0; i < n; i++) { a[i] = nextInt(); } return a; } public int nextInt() throws IOException { return Integer.parseInt(next()); } public long nextLong() throws IOException { return Long.parseLong(next()); } public String nextLine() throws IOException { return br.readLine(); } public double nextDouble() throws IOException { String x = next(); StringBuilder sb = new StringBuilder("0"); double res = 0, f = 1; boolean dec = false, neg = false; int start = 0; if (x.charAt(0) == '-') { neg = true; start++; } for (int i = start; i < x.length(); i++) if (x.charAt(i) == '.') { res = Long.parseLong(sb.toString()); sb = new StringBuilder("0"); dec = true; } else { sb.append(x.charAt(i)); if (dec) f *= 10; } res += Long.parseLong(sb.toString()) / f; return res * (neg ? -1 : 1); } public boolean ready() throws IOException { return br.ready(); } } }
Java
["5 3\n1 2 3 2 1", "4 2\n1 2 3 4"]
2 seconds
["2", "3"]
NoteIn the first example all the possible subarrays are $$$[1..3]$$$, $$$[1..4]$$$, $$$[1..5]$$$, $$$[2..4]$$$, $$$[2..5]$$$ and $$$[3..5]$$$ and the median for all of them is $$$2$$$, so the maximum possible median is $$$2$$$ too.In the second example $$$median([3..4]) = 3$$$.
Java 8
standard input
[ "binary search", "data structures", "dp" ]
dddeb7663c948515def967374f2b8812
The first line contains two integers $$$n$$$ and $$$k$$$ ($$$1 \leq k \leq n \leq 2 \cdot 10^5$$$). The second line contains $$$n$$$ integers $$$a_1, a_2, \ldots, a_n$$$ ($$$1 \leq a_i \leq n$$$).
2,100
Output one integer $$$m$$$ — the maximum median you can get.
standard output
PASSED
f6d4cb7772f0e003a247efd27ff39426
train_110.jsonl
1613658900
You are a given an array $$$a$$$ of length $$$n$$$. Find a subarray $$$a[l..r]$$$ with length at least $$$k$$$ with the largest median.A median in an array of length $$$n$$$ is an element which occupies position number $$$\lfloor \frac{n + 1}{2} \rfloor$$$ after we sort the elements in non-decreasing order. For example: $$$median([1, 2, 3, 4]) = 2$$$, $$$median([3, 2, 1]) = 2$$$, $$$median([2, 1, 2, 1]) = 1$$$.Subarray $$$a[l..r]$$$ is a contiguous part of the array $$$a$$$, i. e. the array $$$a_l,a_{l+1},\ldots,a_r$$$ for some $$$1 \leq l \leq r \leq n$$$, its length is $$$r - l + 1$$$.
256 megabytes
import static java.lang.Math.max; import static java.lang.Math.min; import static java.lang.Math.abs; import static java.lang.System.out; import java.util.*; import java.io.*; import java.math.*; /* getOrDefault valueOf char[] arr=st.nextToken().toCharArray(); System.out.println(); List<Integer> l=new ArrayList<>(); List<int[]> l=new ArrayList<>(); Set<Integer> set=new HashSet<>(); Map<Integer,Integer> map=new HashMap<>(); Map<Integer,List<Integer>> map=new HashMap<>(); for(int i=1;i<=n;i++) map.put(i,new ArrayList<>()); Map<Integer,List<int[]>> map=new HashMap<>(); Deque<Integer> d=new ArrayDeque<>(); PriorityQueue<Integer> pq=new PriorityQueue<>(); st = new StringTokenizer(infile.readLine()); int x=Integer.parseInt(st.nextToken()); int y=Integer.parseInt(st.nextToken()); int z=Integer.parseInt(st.nextToken()); */ public class Solution{ //static int[][] dir={{0,1},{0,-1},{1,0},{-1,0}}; //static Map<Integer,Integer> map=new HashMap<>(); //static Map<Integer,List<Integer>> map=new HashMap<>(); //static Map<Integer,List<int[]>> map=new HashMap<>(); //static List<int[]> l=new ArrayList<>(); //static List<Integer> l=new ArrayList<>(); //static PriorityQueue<Integer> pq=new PriorityQueue<>(); //static Deque<Integer> d=new ArrayDeque<>(); //static Set<Integer> set=new HashSet<>(); //static StringBuilder sb=new StringBuilder(); static BufferedReader infile; static StringTokenizer st; static int n;static int k; static int[] a; static int[] b; static int[] preb; public static void main(String []args) throws Exception { /* infile = new BufferedReader(new InputStreamReader(System.in)); st = new StringTokenizer(infile.readLine()); int T=Integer.parseInt(st.nextToken()); for(int zz=1;zz<=T;zz++) solve(zz); */ solve(); } public static void solve() throws Exception{ infile = new BufferedReader(new InputStreamReader(System.in)); st = new StringTokenizer(infile.readLine()); n=Integer.parseInt(st.nextToken()); k=Integer.parseInt(st.nextToken()); a=new int[n+1]; b=new int[n+1]; preb=new int[n+1]; st = new StringTokenizer(infile.readLine()); for(int i=1;i<=n;i++) a[i]=Integer.parseInt(st.nextToken()); int lo=1; int hi=200000; while(lo<hi){ int mid=(lo+hi+1)/2; if(valid(mid)) lo=mid; else hi=mid-1; } System.out.println(lo); } public static boolean valid(int mid){ for(int i=0;i<=n;i++){ b[i]=0; preb[i]=0; } b[1] = a[1]>=(mid)?1:-1; for(int i=1;i<=n;i++){ int x=a[i]>=(mid)?1:-1; preb[i]=preb[i-1]+x; b[i]=Math.min(preb[i],b[i-1]); if(i>=k){ if(preb[i]-b[i-k]>0){ if(mid==1) System.out.println(i+" "+preb[i]+" "+b[i-k]); return true; } } } return false; } /* public static void solve(int zz) throws Exception{ st = new StringTokenizer(infile.readLine()); int n=Integer.parseInt(st.nextToken()); int m=Integer.parseInt(st.nextToken()); //char[] arr=st.nextToken().toCharArray(); System.out.println("Case #"+zz+": "+res); } */ }
Java
["5 3\n1 2 3 2 1", "4 2\n1 2 3 4"]
2 seconds
["2", "3"]
NoteIn the first example all the possible subarrays are $$$[1..3]$$$, $$$[1..4]$$$, $$$[1..5]$$$, $$$[2..4]$$$, $$$[2..5]$$$ and $$$[3..5]$$$ and the median for all of them is $$$2$$$, so the maximum possible median is $$$2$$$ too.In the second example $$$median([3..4]) = 3$$$.
Java 17
standard input
[ "binary search", "data structures", "dp" ]
dddeb7663c948515def967374f2b8812
The first line contains two integers $$$n$$$ and $$$k$$$ ($$$1 \leq k \leq n \leq 2 \cdot 10^5$$$). The second line contains $$$n$$$ integers $$$a_1, a_2, \ldots, a_n$$$ ($$$1 \leq a_i \leq n$$$).
2,100
Output one integer $$$m$$$ — the maximum median you can get.
standard output
PASSED
228c9a2a957845d3a0dad5cb2fba6ec7
train_110.jsonl
1613658900
You are a given an array $$$a$$$ of length $$$n$$$. Find a subarray $$$a[l..r]$$$ with length at least $$$k$$$ with the largest median.A median in an array of length $$$n$$$ is an element which occupies position number $$$\lfloor \frac{n + 1}{2} \rfloor$$$ after we sort the elements in non-decreasing order. For example: $$$median([1, 2, 3, 4]) = 2$$$, $$$median([3, 2, 1]) = 2$$$, $$$median([2, 1, 2, 1]) = 1$$$.Subarray $$$a[l..r]$$$ is a contiguous part of the array $$$a$$$, i. e. the array $$$a_l,a_{l+1},\ldots,a_r$$$ for some $$$1 \leq l \leq r \leq n$$$, its length is $$$r - l + 1$$$.
256 megabytes
import java.util.*; public class MaxMedian { public static void main(String... strings) { Scanner scanner = new Scanner(System.in); int n = scanner.nextInt(); int k = scanner.nextInt(); int[] a = new int[n]; for(int i = 0 ;i < n;i++){ a[i]=scanner.nextInt(); } solve(k,n,a); } public static void solve(int k, int n, int[] a) { int l = 1; int r = n+1 ; while(r!=l+1){ /*System.out.println("r "+ r); System.out.println("l "+ l);*/ int m = (r+l)/2; //System.out.println("m : "+m); int []b = new int [n]; for(int i=0;i<n;i++){ if(a[i]>=m){ b[i]=1; }else{ b[i]=-1; } } for(int i=1;i<n;i++){ b[i]+=b[i-1]; } /*for(int i=0;i<n;i++){ System.out.print("b[i] " +bb[i]); } System.out.println();*/ int min=0; int max=b[k-1]; for(int i=k;i<n;i++){ min=Math.min(b[i-(k)], min); //System.out.println("j "+j +" b[j] "+b[j]); max=Math.max(max, b[i]-min); } if(max>0){ l=m; }else{ r=m; } } System.out.println(l); } }
Java
["5 3\n1 2 3 2 1", "4 2\n1 2 3 4"]
2 seconds
["2", "3"]
NoteIn the first example all the possible subarrays are $$$[1..3]$$$, $$$[1..4]$$$, $$$[1..5]$$$, $$$[2..4]$$$, $$$[2..5]$$$ and $$$[3..5]$$$ and the median for all of them is $$$2$$$, so the maximum possible median is $$$2$$$ too.In the second example $$$median([3..4]) = 3$$$.
Java 11
standard input
[ "binary search", "data structures", "dp" ]
dddeb7663c948515def967374f2b8812
The first line contains two integers $$$n$$$ and $$$k$$$ ($$$1 \leq k \leq n \leq 2 \cdot 10^5$$$). The second line contains $$$n$$$ integers $$$a_1, a_2, \ldots, a_n$$$ ($$$1 \leq a_i \leq n$$$).
2,100
Output one integer $$$m$$$ — the maximum median you can get.
standard output
PASSED
331dbace4c20b5163bc80601ecb7dcf3
train_110.jsonl
1613658900
You are a given an array $$$a$$$ of length $$$n$$$. Find a subarray $$$a[l..r]$$$ with length at least $$$k$$$ with the largest median.A median in an array of length $$$n$$$ is an element which occupies position number $$$\lfloor \frac{n + 1}{2} \rfloor$$$ after we sort the elements in non-decreasing order. For example: $$$median([1, 2, 3, 4]) = 2$$$, $$$median([3, 2, 1]) = 2$$$, $$$median([2, 1, 2, 1]) = 1$$$.Subarray $$$a[l..r]$$$ is a contiguous part of the array $$$a$$$, i. e. the array $$$a_l,a_{l+1},\ldots,a_r$$$ for some $$$1 \leq l \leq r \leq n$$$, its length is $$$r - l + 1$$$.
256 megabytes
import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.io.PrintWriter; import java.util.*; import java.util.zip.CheckedInputStream; public class MaxMedian { static boolean isMedian(int[] arr, int median, int k, int n) { int[] diff = new int[n]; int[] prefix = new int[n + 1]; for(int i = 0; i < n; ++i) if(median <= arr[i]) diff[i] = 1; else diff[i] = -1; for(int i = 1; i <= n; ++i) prefix[i] = prefix[i - 1] + diff[i - 1]; int min = Integer.MAX_VALUE; for(int i = k; i <= n; ++i) { min = Math.min(min, prefix[i - k]); if(prefix[i] - min > 0) return true; } return false; } public static void main(String[] args) { FastScanner fs = new FastScanner(); PrintWriter out = new PrintWriter(System.out); int n = fs.nextInt(), k = fs.nextInt(); int[] arr = fs.readArray(n); int l = 1, r = n; int ans = 1; while(l <= r) { int m = (l + r) / 2; if(isMedian(arr, m, k, n)) { ans = m; l = m + 1; } else { r = m - 1; } } System.out.println(ans); } static void ruffleSort(int[] a) { int n = a.length; Random r = new Random(); for(int i = 0; i < a.length; ++i) { int oi = r.nextInt(n), t = a[i]; a[i] = a[oi]; a[oi] = t; } Arrays.sort(a); } static void sort(int[] a) { ArrayList<Integer> l = new ArrayList<>(); for(int i : a) l.add(i); Collections.sort(l); for(int i = 0; i < a.length; ++i) a[i] = l.get(i); } static class FastScanner { BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); StringTokenizer st = new StringTokenizer(""); String next() { while(!st.hasMoreTokens()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } int[] readArray(int n) { int[] a = new int[n]; for(int i = 0; i < n; ++i) a[i] = nextInt(); return a; } long nextLong() { return Long.parseLong(next()); } } }
Java
["5 3\n1 2 3 2 1", "4 2\n1 2 3 4"]
2 seconds
["2", "3"]
NoteIn the first example all the possible subarrays are $$$[1..3]$$$, $$$[1..4]$$$, $$$[1..5]$$$, $$$[2..4]$$$, $$$[2..5]$$$ and $$$[3..5]$$$ and the median for all of them is $$$2$$$, so the maximum possible median is $$$2$$$ too.In the second example $$$median([3..4]) = 3$$$.
Java 11
standard input
[ "binary search", "data structures", "dp" ]
dddeb7663c948515def967374f2b8812
The first line contains two integers $$$n$$$ and $$$k$$$ ($$$1 \leq k \leq n \leq 2 \cdot 10^5$$$). The second line contains $$$n$$$ integers $$$a_1, a_2, \ldots, a_n$$$ ($$$1 \leq a_i \leq n$$$).
2,100
Output one integer $$$m$$$ — the maximum median you can get.
standard output
PASSED
f854e43dbb99cdc87101e071858082ea
train_110.jsonl
1613658900
You are a given an array $$$a$$$ of length $$$n$$$. Find a subarray $$$a[l..r]$$$ with length at least $$$k$$$ with the largest median.A median in an array of length $$$n$$$ is an element which occupies position number $$$\lfloor \frac{n + 1}{2} \rfloor$$$ after we sort the elements in non-decreasing order. For example: $$$median([1, 2, 3, 4]) = 2$$$, $$$median([3, 2, 1]) = 2$$$, $$$median([2, 1, 2, 1]) = 1$$$.Subarray $$$a[l..r]$$$ is a contiguous part of the array $$$a$$$, i. e. the array $$$a_l,a_{l+1},\ldots,a_r$$$ for some $$$1 \leq l \leq r \leq n$$$, its length is $$$r - l + 1$$$.
256 megabytes
import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.io.PrintWriter; import java.util.*; import java.util.zip.CheckedInputStream; public class MaxMedian { static boolean isMedian(int[] arr, int median, int k, int n) { int[] diff = new int[n]; int[] prefix = new int[n + 1]; for(int i = 0; i < n; ++i) if(median <= arr[i]) diff[i] = 1; else diff[i] = -1; for(int i = 1; i <= n; ++i) prefix[i] = prefix[i - 1] + diff[i - 1]; int min = 0; for(int i = k; i <= n; ++i) { min = Math.min(min, prefix[i - k]); if(prefix[i] - min > 0) return true; } return false; } public static void main(String[] args) { FastScanner fs = new FastScanner(); PrintWriter out = new PrintWriter(System.out); int n = fs.nextInt(), k = fs.nextInt(); int[] arr = fs.readArray(n); int l = 1, r = n; int ans = 1; while(l <= r) { int m = (l + r) / 2; if(isMedian(arr, m, k, n)) { ans = m; l = m + 1; } else { r = m - 1; } } System.out.println(ans); } static void ruffleSort(int[] a) { int n = a.length; Random r = new Random(); for(int i = 0; i < a.length; ++i) { int oi = r.nextInt(n), t = a[i]; a[i] = a[oi]; a[oi] = t; } Arrays.sort(a); } static void sort(int[] a) { ArrayList<Integer> l = new ArrayList<>(); for(int i : a) l.add(i); Collections.sort(l); for(int i = 0; i < a.length; ++i) a[i] = l.get(i); } static class FastScanner { BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); StringTokenizer st = new StringTokenizer(""); String next() { while(!st.hasMoreTokens()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } int[] readArray(int n) { int[] a = new int[n]; for(int i = 0; i < n; ++i) a[i] = nextInt(); return a; } long nextLong() { return Long.parseLong(next()); } } }
Java
["5 3\n1 2 3 2 1", "4 2\n1 2 3 4"]
2 seconds
["2", "3"]
NoteIn the first example all the possible subarrays are $$$[1..3]$$$, $$$[1..4]$$$, $$$[1..5]$$$, $$$[2..4]$$$, $$$[2..5]$$$ and $$$[3..5]$$$ and the median for all of them is $$$2$$$, so the maximum possible median is $$$2$$$ too.In the second example $$$median([3..4]) = 3$$$.
Java 11
standard input
[ "binary search", "data structures", "dp" ]
dddeb7663c948515def967374f2b8812
The first line contains two integers $$$n$$$ and $$$k$$$ ($$$1 \leq k \leq n \leq 2 \cdot 10^5$$$). The second line contains $$$n$$$ integers $$$a_1, a_2, \ldots, a_n$$$ ($$$1 \leq a_i \leq n$$$).
2,100
Output one integer $$$m$$$ — the maximum median you can get.
standard output
PASSED
263747c89686a51528f62bf98d7af3ac
train_110.jsonl
1613658900
You are a given an array $$$a$$$ of length $$$n$$$. Find a subarray $$$a[l..r]$$$ with length at least $$$k$$$ with the largest median.A median in an array of length $$$n$$$ is an element which occupies position number $$$\lfloor \frac{n + 1}{2} \rfloor$$$ after we sort the elements in non-decreasing order. For example: $$$median([1, 2, 3, 4]) = 2$$$, $$$median([3, 2, 1]) = 2$$$, $$$median([2, 1, 2, 1]) = 1$$$.Subarray $$$a[l..r]$$$ is a contiguous part of the array $$$a$$$, i. e. the array $$$a_l,a_{l+1},\ldots,a_r$$$ for some $$$1 \leq l \leq r \leq n$$$, its length is $$$r - l + 1$$$.
256 megabytes
import java.util.Scanner; public class G_PRO { public static void main(String[] args) { Scanner cin = new Scanner(System.in); //所有数组都从1开始 int n = cin.nextInt(); int k = cin.nextInt(); int[] a = new int[n + 1]; int maxValue = 0; for (int i = 1; i <= n; i++) { a[i] = cin.nextInt(); maxValue = Math.max(a[i], maxValue); } int[] b = new int[n + 1]; int[] sum = new int[n + 1]; int min = 0, max = maxValue, x = maxValue; boolean ok; while (max - min > 1) { ok = false; int minSumj = 0; for (int j = 1; j <= n && !ok; j++) { if (a[j] >= x) b[j] = 1; else b[j] = -1; sum[j] = sum[j - 1] + b[j]; if (j >= k) { minSumj = Math.min(sum[j - k], minSumj); ok = (sum[j] - minSumj > 0); } } if (ok) { min = x; x = (max + min) / 2; } else { max = x; x = (max + min) / 2; } } System.out.println(x); } }
Java
["5 3\n1 2 3 2 1", "4 2\n1 2 3 4"]
2 seconds
["2", "3"]
NoteIn the first example all the possible subarrays are $$$[1..3]$$$, $$$[1..4]$$$, $$$[1..5]$$$, $$$[2..4]$$$, $$$[2..5]$$$ and $$$[3..5]$$$ and the median for all of them is $$$2$$$, so the maximum possible median is $$$2$$$ too.In the second example $$$median([3..4]) = 3$$$.
Java 11
standard input
[ "binary search", "data structures", "dp" ]
dddeb7663c948515def967374f2b8812
The first line contains two integers $$$n$$$ and $$$k$$$ ($$$1 \leq k \leq n \leq 2 \cdot 10^5$$$). The second line contains $$$n$$$ integers $$$a_1, a_2, \ldots, a_n$$$ ($$$1 \leq a_i \leq n$$$).
2,100
Output one integer $$$m$$$ — the maximum median you can get.
standard output
PASSED
3a3cd575a72d232107c6ec4888e61e8f
train_110.jsonl
1613658900
You are a given an array $$$a$$$ of length $$$n$$$. Find a subarray $$$a[l..r]$$$ with length at least $$$k$$$ with the largest median.A median in an array of length $$$n$$$ is an element which occupies position number $$$\lfloor \frac{n + 1}{2} \rfloor$$$ after we sort the elements in non-decreasing order. For example: $$$median([1, 2, 3, 4]) = 2$$$, $$$median([3, 2, 1]) = 2$$$, $$$median([2, 1, 2, 1]) = 1$$$.Subarray $$$a[l..r]$$$ is a contiguous part of the array $$$a$$$, i. e. the array $$$a_l,a_{l+1},\ldots,a_r$$$ for some $$$1 \leq l \leq r \leq n$$$, its length is $$$r - l + 1$$$.
256 megabytes
//package credit; import java.io.*; import java.util.*; import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.util.StringTokenizer; public class x{ static boolean v[]; static int ans[]; int size[]; static int count=0; static int dsu=0; static int c=0; static int e9=1000000007; int min=Integer.MAX_VALUE; int max=Integer.MIN_VALUE; long max1=Long.MIN_VALUE; long min1=Long.MAX_VALUE; boolean aBoolean=true; boolean y=false; long m=0; static boolean t1=false; static class FastReader { BufferedReader br; StringTokenizer st; public FastReader() { br = new BufferedReader(new InputStreamReader(System.in)); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } } int parent[]; int rank[]; int n=0; ArrayList<ArrayList<Integer>> arrayLists; boolean v1[]; static boolean t2=false; boolean r=false; int fib[]; int fib1[]; int ind[]; int min3=Integer.MAX_VALUE; public static void main(String[] args) throws IOException { x g = new x(); g.go(); } public void go() throws IOException { FastReader scanner = new FastReader(); // Scanner scanner = new Scanner(System.in); // BufferedReader bufferedReader=new BufferedReader(new InputStreamReader(System.in)); // String s; PrintWriter printWriter = new PrintWriter(System.out); int t =1; for (int i = 0; i < t; i++) { int n=scanner.nextInt(); int k=scanner.nextInt(); long arr[]=new long[n]; //0 1 2 3 4 5 6 7 8 9 for (int j =0; j <n; j++) { arr[j]=scanner.nextLong(); } int s=1; int e=n; int max=Integer.MIN_VALUE; int ans1=0; while(s<=e){ int m=(s+(e-s)/2); int y=0; int min=Integer.MAX_VALUE; boolean r=false; long ans[]=new long[n+1]; for(int j = 0; j < n; j++) { if (arr[j] >= m) { y += 1; } else { y += (-1); } ans[j+1]=y; } for (int j =k; j <=n; j++) { min = (int) Math.min(min, ans[j - (k)]); if(ans[j]-min>=1){ r=true; break; } } if(r){ ans1=m; s=m+1; }else{ e=m-1; } } printWriter.println(ans1); } printWriter.flush(); } }
Java
["5 3\n1 2 3 2 1", "4 2\n1 2 3 4"]
2 seconds
["2", "3"]
NoteIn the first example all the possible subarrays are $$$[1..3]$$$, $$$[1..4]$$$, $$$[1..5]$$$, $$$[2..4]$$$, $$$[2..5]$$$ and $$$[3..5]$$$ and the median for all of them is $$$2$$$, so the maximum possible median is $$$2$$$ too.In the second example $$$median([3..4]) = 3$$$.
Java 11
standard input
[ "binary search", "data structures", "dp" ]
dddeb7663c948515def967374f2b8812
The first line contains two integers $$$n$$$ and $$$k$$$ ($$$1 \leq k \leq n \leq 2 \cdot 10^5$$$). The second line contains $$$n$$$ integers $$$a_1, a_2, \ldots, a_n$$$ ($$$1 \leq a_i \leq n$$$).
2,100
Output one integer $$$m$$$ — the maximum median you can get.
standard output
PASSED
a6ef5526a7fabe3f626de235850dd7d0
train_110.jsonl
1613658900
You are a given an array $$$a$$$ of length $$$n$$$. Find a subarray $$$a[l..r]$$$ with length at least $$$k$$$ with the largest median.A median in an array of length $$$n$$$ is an element which occupies position number $$$\lfloor \frac{n + 1}{2} \rfloor$$$ after we sort the elements in non-decreasing order. For example: $$$median([1, 2, 3, 4]) = 2$$$, $$$median([3, 2, 1]) = 2$$$, $$$median([2, 1, 2, 1]) = 1$$$.Subarray $$$a[l..r]$$$ is a contiguous part of the array $$$a$$$, i. e. the array $$$a_l,a_{l+1},\ldots,a_r$$$ for some $$$1 \leq l \leq r \leq n$$$, its length is $$$r - l + 1$$$.
256 megabytes
import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.util.Arrays; import java.util.Random; import java.util.StringTokenizer; public final class D { public static void main(String[] args) { final FastScanner fs = new FastScanner(); final int n = fs.nextInt(); final int k = fs.nextInt(); final int[] arr = fs.nextIntArray(n); int lo = 1; int hi = n; while (lo < hi) { final int mid = (lo + hi + 1) >>> 1; final int[] pre = new int[n + 1]; final int[] minPre = new int[n + 1]; for (int i = 1; i <= n; i++) { pre[i] = pre[i - 1] + (arr[i - 1] >= mid ? 1 : -1); minPre[i] = Math.min(minPre[i - 1], pre[i]); } boolean ok = false; for (int i = k; i <= n; i++) { if (pre[i] > minPre[i - k]) { ok = true; break; } } if (!ok) { hi = mid - 1; } else { lo = mid; } } System.out.println(lo); } static final class Utils { public static void shuffleSort(int[] x) { shuffle(x); Arrays.sort(x); } public static void shuffleSort(long[] x) { shuffle(x); Arrays.sort(x); } public static void shuffle(int[] x) { final Random r = new Random(); for (int i = 0; i <= x.length - 2; i++) { final int j = i + r.nextInt(x.length - i); swap(x, i, j); } } public static void shuffle(long[] x) { final Random r = new Random(); for (int i = 0; i <= x.length - 2; i++) { final int j = i + r.nextInt(x.length - i); swap(x, i, j); } } public static void swap(int[] x, int i, int j) { final int t = x[i]; x[i] = x[j]; x[j] = t; } public static void swap(long[] x, int i, int j) { final long t = x[i]; x[i] = x[j]; x[j] = t; } private Utils() {} } static class FastScanner { BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); StringTokenizer st = new StringTokenizer(""); private String next() { while (!st.hasMoreTokens()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { //noinspection CallToPrintStackTrace e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } int[] nextIntArray(int n) { final int[] a = new int[n]; for (int i = 0; i < n; i++) { a[i] = nextInt(); } return a; } long[] nextLongArray(int n) { final long[] a = new long[n]; for (int i = 0; i < n; i++) { a[i] = nextLong(); } return a; } } }
Java
["5 3\n1 2 3 2 1", "4 2\n1 2 3 4"]
2 seconds
["2", "3"]
NoteIn the first example all the possible subarrays are $$$[1..3]$$$, $$$[1..4]$$$, $$$[1..5]$$$, $$$[2..4]$$$, $$$[2..5]$$$ and $$$[3..5]$$$ and the median for all of them is $$$2$$$, so the maximum possible median is $$$2$$$ too.In the second example $$$median([3..4]) = 3$$$.
Java 11
standard input
[ "binary search", "data structures", "dp" ]
dddeb7663c948515def967374f2b8812
The first line contains two integers $$$n$$$ and $$$k$$$ ($$$1 \leq k \leq n \leq 2 \cdot 10^5$$$). The second line contains $$$n$$$ integers $$$a_1, a_2, \ldots, a_n$$$ ($$$1 \leq a_i \leq n$$$).
2,100
Output one integer $$$m$$$ — the maximum median you can get.
standard output
PASSED
921d7fccc3e012c9e6a9c2fe4ab3fb63
train_110.jsonl
1613658900
You are a given an array $$$a$$$ of length $$$n$$$. Find a subarray $$$a[l..r]$$$ with length at least $$$k$$$ with the largest median.A median in an array of length $$$n$$$ is an element which occupies position number $$$\lfloor \frac{n + 1}{2} \rfloor$$$ after we sort the elements in non-decreasing order. For example: $$$median([1, 2, 3, 4]) = 2$$$, $$$median([3, 2, 1]) = 2$$$, $$$median([2, 1, 2, 1]) = 1$$$.Subarray $$$a[l..r]$$$ is a contiguous part of the array $$$a$$$, i. e. the array $$$a_l,a_{l+1},\ldots,a_r$$$ for some $$$1 \leq l \leq r \leq n$$$, its length is $$$r - l + 1$$$.
256 megabytes
import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.util.Arrays; import java.util.Random; import java.util.StringTokenizer; public final class D { public static void main(String[] args) { final FastScanner fs = new FastScanner(); final int n = fs.nextInt(); final int k = fs.nextInt(); final int[] arr = fs.nextIntArray(n); int lo = 1; int hi = n; while (lo < hi) { final int mid = (lo + hi + 1) >>> 1; final int[] pre = new int[n + 1]; final int[] minPre = new int[n + 1]; for (int i = 1; i <= n; i++) { pre[i] = pre[i - 1] + (arr[i - 1] >= mid ? 1 : -1); minPre[i] = Math.min(minPre[i - 1], pre[i]); } boolean ok = false; for (int i = k; i <= n; i++) { if (pre[i] > minPre[i - k]) { ok = true; break; } } if (!ok) { hi = mid - 1; } else { lo = mid; } } System.out.println(lo); } static final class Utils { public static void shuffleSort(int[] x) { shuffle(x); Arrays.sort(x); } public static void shuffleSort(long[] x) { shuffle(x); Arrays.sort(x); } public static void shuffle(int[] x) { final Random r = new Random(); for (int i = 0; i <= x.length - 2; i++) { final int j = i + r.nextInt(x.length - i); swap(x, i, j); } } public static void shuffle(long[] x) { final Random r = new Random(); for (int i = 0; i <= x.length - 2; i++) { final int j = i + r.nextInt(x.length - i); swap(x, i, j); } } public static void swap(int[] x, int i, int j) { final int t = x[i]; x[i] = x[j]; x[j] = t; } public static void swap(long[] x, int i, int j) { final long t = x[i]; x[i] = x[j]; x[j] = t; } private Utils() {} } static class FastScanner { BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); StringTokenizer st = new StringTokenizer(""); private String next() { while (!st.hasMoreTokens()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { //noinspection CallToPrintStackTrace e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } int[] nextIntArray(int n) { final int[] a = new int[n]; for (int i = 0; i < n; i++) { a[i] = nextInt(); } return a; } long[] nextLongArray(int n) { final long[] a = new long[n]; for (int i = 0; i < n; i++) { a[i] = nextLong(); } return a; } } }
Java
["5 3\n1 2 3 2 1", "4 2\n1 2 3 4"]
2 seconds
["2", "3"]
NoteIn the first example all the possible subarrays are $$$[1..3]$$$, $$$[1..4]$$$, $$$[1..5]$$$, $$$[2..4]$$$, $$$[2..5]$$$ and $$$[3..5]$$$ and the median for all of them is $$$2$$$, so the maximum possible median is $$$2$$$ too.In the second example $$$median([3..4]) = 3$$$.
Java 11
standard input
[ "binary search", "data structures", "dp" ]
dddeb7663c948515def967374f2b8812
The first line contains two integers $$$n$$$ and $$$k$$$ ($$$1 \leq k \leq n \leq 2 \cdot 10^5$$$). The second line contains $$$n$$$ integers $$$a_1, a_2, \ldots, a_n$$$ ($$$1 \leq a_i \leq n$$$).
2,100
Output one integer $$$m$$$ — the maximum median you can get.
standard output
PASSED
e226d72b00f09d9333a87a7ac512f4f2
train_110.jsonl
1613658900
You are a given an array $$$a$$$ of length $$$n$$$. Find a subarray $$$a[l..r]$$$ with length at least $$$k$$$ with the largest median.A median in an array of length $$$n$$$ is an element which occupies position number $$$\lfloor \frac{n + 1}{2} \rfloor$$$ after we sort the elements in non-decreasing order. For example: $$$median([1, 2, 3, 4]) = 2$$$, $$$median([3, 2, 1]) = 2$$$, $$$median([2, 1, 2, 1]) = 1$$$.Subarray $$$a[l..r]$$$ is a contiguous part of the array $$$a$$$, i. e. the array $$$a_l,a_{l+1},\ldots,a_r$$$ for some $$$1 \leq l \leq r \leq n$$$, its length is $$$r - l + 1$$$.
256 megabytes
import java.io.*; import java.util.*; public class MaxMedian { static int n, k; static int[] arr; public static void main(String[] args) throws IOException{ BufferedReader file = new BufferedReader(new InputStreamReader(System.in)); //BufferedReader file = new BufferedReader(new FileReader("MaxMedian.in")); //PrintWriter outfile = new PrintWriter (new BufferedWriter(new FileWriter("MaxMedian.out"))); StringTokenizer st = new StringTokenizer(file.readLine()); n = Integer.parseInt(st.nextToken()); k = Integer.parseInt(st.nextToken()); arr = new int[n]; st = new StringTokenizer(file.readLine()); for (int i=0; i<n; i++){ arr[i] = Integer.parseInt(st.nextToken()); } int low = 0; int high = (int)1e9; while (low < high){ int mid = (low + high + 1)/2; if (check(mid)){ low = mid; }else{ high = mid-1; } } System.out.println(low); } public static boolean check(int med){ long[] b = new long[n]; // -1 or 1 for (int i=0; i<n; i++){ b[i] = (arr[i] >= med) ? 1 : -1; } // Try to find the largest subarray sum with length at least k long[] ps = new long[n+1]; // Prefix sum long[] minPrefix = new long[n+1]; // Tracks the min prefix sums up to index i long max = Long.MIN_VALUE; for (int i=0; i<n; i++){ ps[i+1] = (long)(ps[i] + b[i]); minPrefix[i+1] = Math.min(minPrefix[i], ps[i+1]); if (i >= k-1){ max = Math.max(max, ps[i+1]); } if (i >= k){ // We have enough in our "window" to subtract out some elements if (minPrefix[i-k+1] < 0){ max = Math.max(max, (long)(ps[i+1]-minPrefix[i-k+1])); } } } return max > 0; } }
Java
["5 3\n1 2 3 2 1", "4 2\n1 2 3 4"]
2 seconds
["2", "3"]
NoteIn the first example all the possible subarrays are $$$[1..3]$$$, $$$[1..4]$$$, $$$[1..5]$$$, $$$[2..4]$$$, $$$[2..5]$$$ and $$$[3..5]$$$ and the median for all of them is $$$2$$$, so the maximum possible median is $$$2$$$ too.In the second example $$$median([3..4]) = 3$$$.
Java 11
standard input
[ "binary search", "data structures", "dp" ]
dddeb7663c948515def967374f2b8812
The first line contains two integers $$$n$$$ and $$$k$$$ ($$$1 \leq k \leq n \leq 2 \cdot 10^5$$$). The second line contains $$$n$$$ integers $$$a_1, a_2, \ldots, a_n$$$ ($$$1 \leq a_i \leq n$$$).
2,100
Output one integer $$$m$$$ — the maximum median you can get.
standard output
PASSED
37db6203acb48d813abe94ad239988e6
train_110.jsonl
1613658900
You are a given an array $$$a$$$ of length $$$n$$$. Find a subarray $$$a[l..r]$$$ with length at least $$$k$$$ with the largest median.A median in an array of length $$$n$$$ is an element which occupies position number $$$\lfloor \frac{n + 1}{2} \rfloor$$$ after we sort the elements in non-decreasing order. For example: $$$median([1, 2, 3, 4]) = 2$$$, $$$median([3, 2, 1]) = 2$$$, $$$median([2, 1, 2, 1]) = 1$$$.Subarray $$$a[l..r]$$$ is a contiguous part of the array $$$a$$$, i. e. the array $$$a_l,a_{l+1},\ldots,a_r$$$ for some $$$1 \leq l \leq r \leq n$$$, its length is $$$r - l + 1$$$.
256 megabytes
import java.util.Arrays; import java.util.Scanner; public class D { public static void main(String[] args) { Scanner scn = new Scanner(System.in); int n = scn.nextInt(); int k = scn.nextInt(); int[] arr = new int[n]; int[] sortedArr = new int[n]; for (int i = 0; i < n; i++) { arr[i] = scn.nextInt(); sortedArr[i] = arr[i] ; } Arrays.sort(sortedArr); if (k == 1) { System.out.println(sortedArr[n - 1]); return; } int low = 0; int high = n - 1; while (low <= high) { int mid = (low + high) >>> 1; if (isAtleast(sortedArr[mid], arr, k)) low = mid + 1; else high = mid - 1; } System.out.println(sortedArr[high]); } static boolean isAtleast(int value, int[] arr, int k) { int[] a = new int[arr.length]; for (int i = 0; i < arr.length; i++) { if (arr[i] >= value) a[i] = 1; else a[i] = -1; } long ans = maxSegmentWithK(a, k); return ans >= 1; } static long maxSegmentWithK(int[] arr, int k) { long[] prefixMaxSum = new long[arr.length]; long maxSum = 0; for (int i = 0; i < arr.length; i++) { maxSum = Long.max(maxSum + arr[i], arr[i]); prefixMaxSum[i] = maxSum; } long kSum = 0; for (int i = 0; i < k; i++) kSum += arr[i]; long globalMax = kSum; for (int i = k; i < arr.length; i++) { kSum += arr[i] - arr[i - k]; globalMax = Long.max(globalMax, kSum + prefixMaxSum[i - k]); globalMax = Long.max(globalMax, kSum); } return globalMax; } }
Java
["5 3\n1 2 3 2 1", "4 2\n1 2 3 4"]
2 seconds
["2", "3"]
NoteIn the first example all the possible subarrays are $$$[1..3]$$$, $$$[1..4]$$$, $$$[1..5]$$$, $$$[2..4]$$$, $$$[2..5]$$$ and $$$[3..5]$$$ and the median for all of them is $$$2$$$, so the maximum possible median is $$$2$$$ too.In the second example $$$median([3..4]) = 3$$$.
Java 11
standard input
[ "binary search", "data structures", "dp" ]
dddeb7663c948515def967374f2b8812
The first line contains two integers $$$n$$$ and $$$k$$$ ($$$1 \leq k \leq n \leq 2 \cdot 10^5$$$). The second line contains $$$n$$$ integers $$$a_1, a_2, \ldots, a_n$$$ ($$$1 \leq a_i \leq n$$$).
2,100
Output one integer $$$m$$$ — the maximum median you can get.
standard output
PASSED
174bde41f15b1ea14d63351f859f56ca
train_110.jsonl
1613658900
You are a given an array $$$a$$$ of length $$$n$$$. Find a subarray $$$a[l..r]$$$ with length at least $$$k$$$ with the largest median.A median in an array of length $$$n$$$ is an element which occupies position number $$$\lfloor \frac{n + 1}{2} \rfloor$$$ after we sort the elements in non-decreasing order. For example: $$$median([1, 2, 3, 4]) = 2$$$, $$$median([3, 2, 1]) = 2$$$, $$$median([2, 1, 2, 1]) = 1$$$.Subarray $$$a[l..r]$$$ is a contiguous part of the array $$$a$$$, i. e. the array $$$a_l,a_{l+1},\ldots,a_r$$$ for some $$$1 \leq l \leq r \leq n$$$, its length is $$$r - l + 1$$$.
256 megabytes
import java.io.*; import java.util.*; import java.math.*; public class Main { static int bs(int start,int end,int[] l,int k) { // System.out.println(start+" "+end); if(end<start) { return -1000000000; } int mid=(start+end)/2; int n=l.length; int[] temp=new int[n]; int[] mn=new int[n+1]; int mx=-1000000000; int sum=0; boolean flag=false; for(int i=0;i<n;i++) { if(l[i]>=mid) { temp[i]=1; } else{ temp[i]=-1; } // System.out.print(temp[i]+" "); } // System.out.println(); // System.out.print(mn[1]+" "); for(int i=0;i<n;i++) { sum+=temp[i]; mn[i+1]=Math.min(mn[i],sum); if ((i-k+1)>-1) { mx=Math.max(mx,sum-mn[i-k+1]); } // System.out.print(mn[i+1]+" "); } // System.out.println(); // System.out.println(mx); if(mx>0) { flag=true; } if(flag) { return Math.max(mid, bs(mid+1,end,l,k)); } else { return bs(start,mid-1,l,k); } } public static void main(String[] args) throws IOException { FastScanner f = new FastScanner(); int t=1; // t=f.nextInt(); PrintWriter out=new PrintWriter(System.out); int mod=1000000007; while(t>0) { t--; int n=f.nextInt(); int k=f.nextInt(); int[] l=f.readArray(n); System.out.println(bs(1,n,l,k)); } out.close(); } static void sort(int [] a) { ArrayList<Integer> q = new ArrayList<>(); for (int i: a) q.add(i); Collections.sort(q); for (int i = 0; i < a.length; i++) a[i] = q.get(i); } static class FastScanner { BufferedReader br=new BufferedReader(new InputStreamReader(System.in)); StringTokenizer st=new StringTokenizer(""); String next() { while (!st.hasMoreTokens()) try { st=new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } int[] readArray(int n) { int[] a=new int[n]; for (int i=0; i<n; i++) a[i]=nextInt(); return a; } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } long[] readLongArray(int n) { long[] a=new long[n]; for (int i=0; i<n; i++) a[i]=nextLong(); return a; } } }
Java
["5 3\n1 2 3 2 1", "4 2\n1 2 3 4"]
2 seconds
["2", "3"]
NoteIn the first example all the possible subarrays are $$$[1..3]$$$, $$$[1..4]$$$, $$$[1..5]$$$, $$$[2..4]$$$, $$$[2..5]$$$ and $$$[3..5]$$$ and the median for all of them is $$$2$$$, so the maximum possible median is $$$2$$$ too.In the second example $$$median([3..4]) = 3$$$.
Java 11
standard input
[ "binary search", "data structures", "dp" ]
dddeb7663c948515def967374f2b8812
The first line contains two integers $$$n$$$ and $$$k$$$ ($$$1 \leq k \leq n \leq 2 \cdot 10^5$$$). The second line contains $$$n$$$ integers $$$a_1, a_2, \ldots, a_n$$$ ($$$1 \leq a_i \leq n$$$).
2,100
Output one integer $$$m$$$ — the maximum median you can get.
standard output
PASSED
fee1f85940a2623df3e3ef0aef7bdb82
train_110.jsonl
1613658900
You are a given an array $$$a$$$ of length $$$n$$$. Find a subarray $$$a[l..r]$$$ with length at least $$$k$$$ with the largest median.A median in an array of length $$$n$$$ is an element which occupies position number $$$\lfloor \frac{n + 1}{2} \rfloor$$$ after we sort the elements in non-decreasing order. For example: $$$median([1, 2, 3, 4]) = 2$$$, $$$median([3, 2, 1]) = 2$$$, $$$median([2, 1, 2, 1]) = 1$$$.Subarray $$$a[l..r]$$$ is a contiguous part of the array $$$a$$$, i. e. the array $$$a_l,a_{l+1},\ldots,a_r$$$ for some $$$1 \leq l \leq r \leq n$$$, its length is $$$r - l + 1$$$.
256 megabytes
import java.io.*; import java.util.*; import java.math.*; public class Main { static int bs(int start,int end,int[] l,int k) { // System.out.println(start+" "+end); if(end<start) { return -1000000000; } int mid=(start+end)/2; int n=l.length; int[] temp=new int[n]; int[] mn=new int[n+1]; int mx=-1000000000; int sum=0; boolean flag=false; for(int i=0;i<n;i++) { if(l[i]>=mid) { temp[i]=1; } else{ temp[i]=-1; } // System.out.print(temp[i]+" "); } // System.out.println(); mn[1]=Math.min(0, temp[0]); sum=temp[0]; // mx=temp[0]; // System.out.print(mn[1]+" "); for(int i=1;i<n;i++) { sum+=temp[i]; mn[i+1]=Math.min(mn[i],sum); if ((i-k+1)>-1) { mx=Math.max(mx,sum-mn[i-k+1]); } // System.out.print(mn[i+1]+" "); } // System.out.println(); // System.out.println(mx); if(mx>0) { flag=true; } if(flag) { return Math.max(mid, bs(mid+1,end,l,k)); } else { return bs(start,mid-1,l,k); } } public static void main(String[] args) throws IOException { FastScanner f = new FastScanner(); int t=1; // t=f.nextInt(); PrintWriter out=new PrintWriter(System.out); int mod=1000000007; while(t>0) { t--; int n=f.nextInt(); int k=f.nextInt(); int[] l=f.readArray(n); if(n==1) { System.out.println(l[0]); } else { System.out.println(bs(1,n+1,l,k)); } } out.close(); } static void sort(int [] a) { ArrayList<Integer> q = new ArrayList<>(); for (int i: a) q.add(i); Collections.sort(q); for (int i = 0; i < a.length; i++) a[i] = q.get(i); } static class FastScanner { BufferedReader br=new BufferedReader(new InputStreamReader(System.in)); StringTokenizer st=new StringTokenizer(""); String next() { while (!st.hasMoreTokens()) try { st=new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } int[] readArray(int n) { int[] a=new int[n]; for (int i=0; i<n; i++) a[i]=nextInt(); return a; } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } long[] readLongArray(int n) { long[] a=new long[n]; for (int i=0; i<n; i++) a[i]=nextLong(); return a; } } }
Java
["5 3\n1 2 3 2 1", "4 2\n1 2 3 4"]
2 seconds
["2", "3"]
NoteIn the first example all the possible subarrays are $$$[1..3]$$$, $$$[1..4]$$$, $$$[1..5]$$$, $$$[2..4]$$$, $$$[2..5]$$$ and $$$[3..5]$$$ and the median for all of them is $$$2$$$, so the maximum possible median is $$$2$$$ too.In the second example $$$median([3..4]) = 3$$$.
Java 11
standard input
[ "binary search", "data structures", "dp" ]
dddeb7663c948515def967374f2b8812
The first line contains two integers $$$n$$$ and $$$k$$$ ($$$1 \leq k \leq n \leq 2 \cdot 10^5$$$). The second line contains $$$n$$$ integers $$$a_1, a_2, \ldots, a_n$$$ ($$$1 \leq a_i \leq n$$$).
2,100
Output one integer $$$m$$$ — the maximum median you can get.
standard output
PASSED
660de630b2a5596d6494af7b9ef3f03d
train_110.jsonl
1613658900
You are a given an array $$$a$$$ of length $$$n$$$. Find a subarray $$$a[l..r]$$$ with length at least $$$k$$$ with the largest median.A median in an array of length $$$n$$$ is an element which occupies position number $$$\lfloor \frac{n + 1}{2} \rfloor$$$ after we sort the elements in non-decreasing order. For example: $$$median([1, 2, 3, 4]) = 2$$$, $$$median([3, 2, 1]) = 2$$$, $$$median([2, 1, 2, 1]) = 1$$$.Subarray $$$a[l..r]$$$ is a contiguous part of the array $$$a$$$, i. e. the array $$$a_l,a_{l+1},\ldots,a_r$$$ for some $$$1 \leq l \leq r \leq n$$$, its length is $$$r - l + 1$$$.
256 megabytes
import java.io.BufferedWriter; import java.io.IOException; import java.io.InputStream; import java.io.OutputStreamWriter; import java.math.BigInteger; import java.math.BigDecimal; import java.math.MathContext; import java.math.RoundingMode; import java.util.ArrayDeque; import java.util.ArrayList; import java.util.Arrays; import java.util.Collections; import java.util.HashMap; import java.util.HashSet; import java.util.Locale; import java.util.Map.Entry; import java.util.PriorityQueue; import java.util.Random; import java.util.Scanner; import java.util.TreeSet; public final class CF_703_D2_D { static boolean verb=true; static void log(Object X){if (verb) System.err.println(X);} static void log(Object[] X){if (verb) {for (Object U:X) System.err.print(U+" ");System.err.println("");}} static void log(int[] X){if (verb) {for (int U:X) System.err.print(U+" ");System.err.println("");}} static void log(int[] X,int L){if (verb) {for (int i=0;i<L;i++) System.err.print(X[i]+" ");System.err.println("");}} static void log(long[] X){if (verb) {for (long U:X) System.err.print(U+" ");System.err.println("");}} static void logWln(Object X){if (verb) System.err.print(X);} static void info(Object o){ System.out.println(o);} static void output(Object o){outputWln(""+o+"\n"); } static void outputWln(Object o){try {out.write(""+ o);} catch (Exception e) {}} // Global vars static BufferedWriter out; static InputReader reader; static long powerMod(long b,long e,long m){ long x=1; while (e>0) { if (e%2==1) x=(b*x)%m; b=(b*b)%m; e=e/2; } return x; } static void test() { log("testing"); Random r=new Random(); int NTESTS=1000000000; int NMAX=100; //int MMAX=10000; int VMAX=100; for( int t=0;t<NTESTS;t++) { } log("done"); } static int sign(int x) { if (x>0) return 1; if (x==0) return 0; return -1; } static class Segment implements Comparable<Segment>{ int a; int b; public int compareTo(Segment X) { if (a!=X.a) return a-X.a; if (b!=X.b) return b-X.b; return 0; } public Segment(int a, int b) { this.a = a; this.b = b; } } static int order; static int BYA=0; static int BYB=1; static class Composite implements Comparable<Composite>{ int v; int idx; public int compareTo(Composite X) { if (v!=X.v) return X.v-v; return idx-X.idx; } public Composite(int v, int idx) { this.v = v; this.idx = idx; } public String toString() { return "["+v+","+idx+"]"; } } static class BIT { int[] tree; int N; BIT(int N){ tree=new int[N+1]; this.N=N; } void add(int idx,int val){ idx++; while (idx<=N){ tree[idx]+=val; idx+=idx & (-idx); } } int read(int idx){ idx++; int sum=0; while (idx>0){ sum+=tree[idx]; idx-=idx & (-idx); } return sum; } } static ArrayList<ArrayList<Integer>> generatePermutations(ArrayList<Integer> items){ ArrayList<ArrayList<Integer>> globalRes=new ArrayList<ArrayList<Integer>>(); if (items.size()>1) { for (Integer item:items){ ArrayList<Integer> itemsTmp=new ArrayList<Integer>(items); itemsTmp.remove(item); ArrayList<ArrayList<Integer>> res=generatePermutations(itemsTmp); for (ArrayList<Integer> list:res){ list.add(item); } globalRes.addAll(res); } } else { Integer item=items.get(0); ArrayList<Integer> list=new ArrayList<Integer>(); list.add(item); globalRes.add(list); } return globalRes; } static class Node { int v; int cn; Node prev; Node next; public Node(int v, int cn) { this.v = v; this.cn = cn; } } static boolean canDo(int v,int k,int[] a,int[] sum) { //log("can Do:"+v); int n=a.length; int cur=0; for (int i=0;i<n;i++) { int b=-1; if (a[i]>=v) b=1; cur+=b; sum[i]=cur; } int[] max=new int[n]; int mx=-n; int st=n-1; for (int i=n-1;i>=0;i--) { if (sum[i]>=mx) { max[st--]=i; mx=sum[i]; } } //log(b); //log(sum); //log(max); int e=st+1; //log("e:"+e+" n:"+n); for (int i=0;i+k<=n;i++) { while (e<n && max[e]<i+k-1) e++; if (e<n) { int j=max[e]; int bob=sum[j]; if (i>0) bob-=sum[i-1]; if (bob>0) { //log("found with i:"+i+" j:"+j+" bob:"+bob); //log("ok"); return true; } } } //log("ko"); return false; } static void process() throws Exception { out = new BufferedWriter(new OutputStreamWriter(System.out)); reader=new InputReader(System.in); Locale.setDefault(Locale.US); int n=reader.readInt(); int k=reader.readInt(); int[] a=new int[n]; int[] b=new int[n]; for (int i=0;i<n;i++) { a[i]=reader.readInt()-1; b[i]=a[i]; } Arrays.sort(b); //log(b); int pos=b[(n-1)/2]; int[] sum=new int[n]; int lo=pos; int hi=n; while (lo+1<hi) { int mid=(lo+hi)/2; boolean s=canDo(mid,k,a,sum); if (s) lo=mid; else hi=mid; } output(lo+1); try { out.close(); } catch (Exception EX){} } public static void main(String[] args) throws Exception { process(); } static final class InputReader { private final InputStream stream; private final byte[] buf = new byte[1024]; private int curChar; private int numChars; public InputReader(InputStream stream) { this.stream = stream; } private int read() throws IOException { if (curChar >= numChars) { curChar = 0; numChars = stream.read(buf); if (numChars <= 0) { return -1; } } return buf[curChar++]; } public final String readString() throws IOException { int c = read(); while (isSpaceChar(c)) { c = read(); } StringBuilder res=new StringBuilder(); do { res.append((char)c); c = read(); } while (!isSpaceChar(c)); return res.toString(); } public final int readInt() throws IOException { int c = read(); boolean neg=false; while (isSpaceChar(c)) { c = read(); } char d=(char)c; //log("d:"+d); if (d=='-') { neg=true; c = read(); } int res = 0; do { res *= 10; res += c - '0'; c = read(); } while (!isSpaceChar(c)); //log("res:"+res); if (neg) return -res; return res; } public final long readLong() throws IOException { int c = read(); boolean neg=false; while (isSpaceChar(c)) { c = read(); } char d=(char)c; //log("d:"+d); if (d=='-') { neg=true; c = read(); } long res = 0; do { res *= 10; res += c - '0'; c = read(); } while (!isSpaceChar(c)); //log("res:"+res); if (neg) return -res; return res; } private boolean isSpaceChar(int c) { return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; } } }
Java
["5 3\n1 2 3 2 1", "4 2\n1 2 3 4"]
2 seconds
["2", "3"]
NoteIn the first example all the possible subarrays are $$$[1..3]$$$, $$$[1..4]$$$, $$$[1..5]$$$, $$$[2..4]$$$, $$$[2..5]$$$ and $$$[3..5]$$$ and the median for all of them is $$$2$$$, so the maximum possible median is $$$2$$$ too.In the second example $$$median([3..4]) = 3$$$.
Java 11
standard input
[ "binary search", "data structures", "dp" ]
dddeb7663c948515def967374f2b8812
The first line contains two integers $$$n$$$ and $$$k$$$ ($$$1 \leq k \leq n \leq 2 \cdot 10^5$$$). The second line contains $$$n$$$ integers $$$a_1, a_2, \ldots, a_n$$$ ($$$1 \leq a_i \leq n$$$).
2,100
Output one integer $$$m$$$ — the maximum median you can get.
standard output
PASSED
67357643a8029f9ad33684286ceab097
train_110.jsonl
1613658900
You are a given an array $$$a$$$ of length $$$n$$$. Find a subarray $$$a[l..r]$$$ with length at least $$$k$$$ with the largest median.A median in an array of length $$$n$$$ is an element which occupies position number $$$\lfloor \frac{n + 1}{2} \rfloor$$$ after we sort the elements in non-decreasing order. For example: $$$median([1, 2, 3, 4]) = 2$$$, $$$median([3, 2, 1]) = 2$$$, $$$median([2, 1, 2, 1]) = 1$$$.Subarray $$$a[l..r]$$$ is a contiguous part of the array $$$a$$$, i. e. the array $$$a_l,a_{l+1},\ldots,a_r$$$ for some $$$1 \leq l \leq r \leq n$$$, its length is $$$r - l + 1$$$.
256 megabytes
import java.io.BufferedWriter; import java.io.IOException; import java.io.InputStream; import java.io.OutputStreamWriter; import java.math.BigInteger; import java.math.BigDecimal; import java.math.MathContext; import java.math.RoundingMode; import java.util.ArrayDeque; import java.util.ArrayList; import java.util.Arrays; import java.util.Collections; import java.util.HashMap; import java.util.HashSet; import java.util.Locale; import java.util.Map.Entry; import java.util.PriorityQueue; import java.util.Random; import java.util.Scanner; import java.util.TreeSet; public final class CF_703_D2_D { static boolean verb=true; static void log(Object X){if (verb) System.err.println(X);} static void log(Object[] X){if (verb) {for (Object U:X) System.err.print(U+" ");System.err.println("");}} static void log(int[] X){if (verb) {for (int U:X) System.err.print(U+" ");System.err.println("");}} static void log(int[] X,int L){if (verb) {for (int i=0;i<L;i++) System.err.print(X[i]+" ");System.err.println("");}} static void log(long[] X){if (verb) {for (long U:X) System.err.print(U+" ");System.err.println("");}} static void logWln(Object X){if (verb) System.err.print(X);} static void info(Object o){ System.out.println(o);} static void output(Object o){outputWln(""+o+"\n"); } static void outputWln(Object o){try {out.write(""+ o);} catch (Exception e) {}} // Global vars static BufferedWriter out; static InputReader reader; static long powerMod(long b,long e,long m){ long x=1; while (e>0) { if (e%2==1) x=(b*x)%m; b=(b*b)%m; e=e/2; } return x; } static void test() { log("testing"); Random r=new Random(); int NTESTS=1000000000; int NMAX=100; //int MMAX=10000; int VMAX=100; for( int t=0;t<NTESTS;t++) { } log("done"); } static int sign(int x) { if (x>0) return 1; if (x==0) return 0; return -1; } static class Segment implements Comparable<Segment>{ int a; int b; public int compareTo(Segment X) { if (a!=X.a) return a-X.a; if (b!=X.b) return b-X.b; return 0; } public Segment(int a, int b) { this.a = a; this.b = b; } } static int order; static int BYA=0; static int BYB=1; static class Composite implements Comparable<Composite>{ int v; int idx; public int compareTo(Composite X) { if (v!=X.v) return X.v-v; return idx-X.idx; } public Composite(int v, int idx) { this.v = v; this.idx = idx; } public String toString() { return "["+v+","+idx+"]"; } } static class BIT { int[] tree; int N; BIT(int N){ tree=new int[N+1]; this.N=N; } void add(int idx,int val){ idx++; while (idx<=N){ tree[idx]+=val; idx+=idx & (-idx); } } int read(int idx){ idx++; int sum=0; while (idx>0){ sum+=tree[idx]; idx-=idx & (-idx); } return sum; } } static ArrayList<ArrayList<Integer>> generatePermutations(ArrayList<Integer> items){ ArrayList<ArrayList<Integer>> globalRes=new ArrayList<ArrayList<Integer>>(); if (items.size()>1) { for (Integer item:items){ ArrayList<Integer> itemsTmp=new ArrayList<Integer>(items); itemsTmp.remove(item); ArrayList<ArrayList<Integer>> res=generatePermutations(itemsTmp); for (ArrayList<Integer> list:res){ list.add(item); } globalRes.addAll(res); } } else { Integer item=items.get(0); ArrayList<Integer> list=new ArrayList<Integer>(); list.add(item); globalRes.add(list); } return globalRes; } static class Node { int v; int cn; Node prev; Node next; public Node(int v, int cn) { this.v = v; this.cn = cn; } } static boolean canDo(int v,int k,int[] a) { //log("can Do:"+v); int n=a.length; int[] b=new int[n]; for (int i=0;i<n;i++) { if (a[i]>=v) b[i]=1; else b[i]=-1; } int[] sum=new int[n]; int cur=0; for (int i=0;i<n;i++) { cur+=b[i]; sum[i]=cur; } int[] max=new int[n]; int mx=-n; int st=n-1; for (int i=n-1;i>=0;i--) { if (sum[i]>=mx) { max[st--]=i; mx=sum[i]; } } //log(b); //log(sum); //log(max); int e=st+1; //log("e:"+e+" n:"+n); for (int i=0;i+k<=n;i++) { while (e<n && max[e]<i+k-1) e++; if (e<n) { int j=max[e]; int bob=sum[j]; if (i>0) bob-=sum[i-1]; if (bob>0) { //log("found with i:"+i+" j:"+j+" bob:"+bob); //log("ok"); return true; } } } //log("ko"); return false; } static void process() throws Exception { out = new BufferedWriter(new OutputStreamWriter(System.out)); reader=new InputReader(System.in); Locale.setDefault(Locale.US); int n=reader.readInt(); int k=reader.readInt(); int[] a=new int[n]; int[] b=new int[n]; for (int i=0;i<n;i++) { a[i]=reader.readInt()-1; b[i]=a[i]; } Arrays.sort(b); //log(b); int pos=b[(n-1)/2]; int lo=pos; int hi=n; while (lo+1<hi) { int mid=(lo+hi)/2; boolean s=canDo(mid,k,a); if (s) lo=mid; else hi=mid; } output(lo+1); try { out.close(); } catch (Exception EX){} } public static void main(String[] args) throws Exception { process(); } static final class InputReader { private final InputStream stream; private final byte[] buf = new byte[1024]; private int curChar; private int numChars; public InputReader(InputStream stream) { this.stream = stream; } private int read() throws IOException { if (curChar >= numChars) { curChar = 0; numChars = stream.read(buf); if (numChars <= 0) { return -1; } } return buf[curChar++]; } public final String readString() throws IOException { int c = read(); while (isSpaceChar(c)) { c = read(); } StringBuilder res=new StringBuilder(); do { res.append((char)c); c = read(); } while (!isSpaceChar(c)); return res.toString(); } public final int readInt() throws IOException { int c = read(); boolean neg=false; while (isSpaceChar(c)) { c = read(); } char d=(char)c; //log("d:"+d); if (d=='-') { neg=true; c = read(); } int res = 0; do { res *= 10; res += c - '0'; c = read(); } while (!isSpaceChar(c)); //log("res:"+res); if (neg) return -res; return res; } public final long readLong() throws IOException { int c = read(); boolean neg=false; while (isSpaceChar(c)) { c = read(); } char d=(char)c; //log("d:"+d); if (d=='-') { neg=true; c = read(); } long res = 0; do { res *= 10; res += c - '0'; c = read(); } while (!isSpaceChar(c)); //log("res:"+res); if (neg) return -res; return res; } private boolean isSpaceChar(int c) { return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; } } }
Java
["5 3\n1 2 3 2 1", "4 2\n1 2 3 4"]
2 seconds
["2", "3"]
NoteIn the first example all the possible subarrays are $$$[1..3]$$$, $$$[1..4]$$$, $$$[1..5]$$$, $$$[2..4]$$$, $$$[2..5]$$$ and $$$[3..5]$$$ and the median for all of them is $$$2$$$, so the maximum possible median is $$$2$$$ too.In the second example $$$median([3..4]) = 3$$$.
Java 11
standard input
[ "binary search", "data structures", "dp" ]
dddeb7663c948515def967374f2b8812
The first line contains two integers $$$n$$$ and $$$k$$$ ($$$1 \leq k \leq n \leq 2 \cdot 10^5$$$). The second line contains $$$n$$$ integers $$$a_1, a_2, \ldots, a_n$$$ ($$$1 \leq a_i \leq n$$$).
2,100
Output one integer $$$m$$$ — the maximum median you can get.
standard output
PASSED
b697a2ec13d28e7fd9f07a6cba0dbbef
train_110.jsonl
1613658900
You are a given an array $$$a$$$ of length $$$n$$$. Find a subarray $$$a[l..r]$$$ with length at least $$$k$$$ with the largest median.A median in an array of length $$$n$$$ is an element which occupies position number $$$\lfloor \frac{n + 1}{2} \rfloor$$$ after we sort the elements in non-decreasing order. For example: $$$median([1, 2, 3, 4]) = 2$$$, $$$median([3, 2, 1]) = 2$$$, $$$median([2, 1, 2, 1]) = 1$$$.Subarray $$$a[l..r]$$$ is a contiguous part of the array $$$a$$$, i. e. the array $$$a_l,a_{l+1},\ldots,a_r$$$ for some $$$1 \leq l \leq r \leq n$$$, its length is $$$r - l + 1$$$.
256 megabytes
/* 5 3 1 2 3 2 1 100 64 43 30 88 55 14 10 78 99 6 29 10 79 11 96 7 20 37 65 79 78 46 62 37 47 37 60 4 28 24 9 87 4 20 94 47 95 100 13 60 24 34 4 89 63 65 20 11 68 99 47 41 38 37 23 23 13 3 1 39 28 65 95 98 44 64 58 77 11 89 49 58 30 77 20 94 40 15 17 62 92 9 91 27 23 24 74 92 60 91 40 88 14 44 75 25 73 51 4 31 25 10 7 9 6 2 4 4 8 4 6 2 1 9 6 2 4 4 8 4 6 2 4 4 4 6 6 8 9 Bin search on the median, and then on the length of the subarray. Use prefix sums to determine if it is possible to create a subarray of len i with median j. */ import java.util.*; import java.io.*; public class Main { public static int N; public static int K; public static int[] arr; public static void main(String[] args) throws IOException{ BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); StringTokenizer details = new StringTokenizer(br.readLine()); N = Integer.parseInt(details.nextToken()); K = Integer.parseInt(details.nextToken()); StringTokenizer a = new StringTokenizer(br.readLine()); arr = new int[N]; for(int x = 0; x < N; x++) arr[x] = Integer.parseInt(a.nextToken()); int min = 0; int max = N; while(min < max){ int mid = (min + max + 1)/2; //System.out.println("\n" + min + " " + mid + " " + max); if(valid(mid)) min = mid; else max = mid - 1; } System.out.println(min); br.close(); } public static boolean valid(int median){ int[] min = new int[N + 1]; int[] a = new int[N + 1]; for(int x = 1; x <= N; x++){ if(arr[x - 1] >= median) a[x] = 1; else a[x] = -1; a[x] += a[x - 1]; min[x] = Math.min(a[x], min[x - 1]); } //System.out.println(Arrays.toString(arr)); //System.out.println(Arrays.toString(min)); // System.out.println(Arrays.toString(a)); for(int x = K; x <= N; x++){ //Want largest to be at least zero and the distance between start and x to be at least k //System.out.println(a[x] + " " + min[x - K - 1] + " " + x + " " + (x - K - 1)); if(a[x] - min[x - K] >= 1) return true; } // System.out.println("----NOT POSSIBLE----"); return false; } }
Java
["5 3\n1 2 3 2 1", "4 2\n1 2 3 4"]
2 seconds
["2", "3"]
NoteIn the first example all the possible subarrays are $$$[1..3]$$$, $$$[1..4]$$$, $$$[1..5]$$$, $$$[2..4]$$$, $$$[2..5]$$$ and $$$[3..5]$$$ and the median for all of them is $$$2$$$, so the maximum possible median is $$$2$$$ too.In the second example $$$median([3..4]) = 3$$$.
Java 11
standard input
[ "binary search", "data structures", "dp" ]
dddeb7663c948515def967374f2b8812
The first line contains two integers $$$n$$$ and $$$k$$$ ($$$1 \leq k \leq n \leq 2 \cdot 10^5$$$). The second line contains $$$n$$$ integers $$$a_1, a_2, \ldots, a_n$$$ ($$$1 \leq a_i \leq n$$$).
2,100
Output one integer $$$m$$$ — the maximum median you can get.
standard output
PASSED
39c45cbb134844197a23d176f5a5f105
train_110.jsonl
1613658900
You are a given an array $$$a$$$ of length $$$n$$$. Find a subarray $$$a[l..r]$$$ with length at least $$$k$$$ with the largest median.A median in an array of length $$$n$$$ is an element which occupies position number $$$\lfloor \frac{n + 1}{2} \rfloor$$$ after we sort the elements in non-decreasing order. For example: $$$median([1, 2, 3, 4]) = 2$$$, $$$median([3, 2, 1]) = 2$$$, $$$median([2, 1, 2, 1]) = 1$$$.Subarray $$$a[l..r]$$$ is a contiguous part of the array $$$a$$$, i. e. the array $$$a_l,a_{l+1},\ldots,a_r$$$ for some $$$1 \leq l \leq r \leq n$$$, its length is $$$r - l + 1$$$.
256 megabytes
import java.util.*; import java.lang.*; import java.io.*; import java.awt.*; // U KNOW THAT IF THIS DAY WILL BE URS THEN NO ONE CAN DEFEAT U HERE................ //JUst keep faith in ur strengths .................................................. // ASCII = 48 + i ;// 2^28 = 268,435,456 > 2* 10^8 // log 10 base 2 = 3.3219 // odd:: (x^2+1)/2 , (x^2-1)/2 ; x>=3// even:: (x^2/4)+1 ,(x^2/4)-1 x >=4 // FOR ANY ODD NO N : N,N-1,N-2 //ALL ARE PAIRWISE COPRIME //THEIR COMBINED LCM IS PRODUCT OF ALL THESE NOS // two consecutive odds are always coprime to each other // two consecutive even have always gcd = 2 ; // Rectangle r = new Rectangle(int x , int y,int widht,int height) //Creates a rect. with bottom left cordinates as (x, y) and top right as ((x+width),(y+height)) //BY DEFAULT Priority Queue is MIN in nature in java //to use as max , just push with negative sign and change sign after removal // We can make a sieve of max size 1e7 .(no time or space issue) // In 1e7 starting nos we have about 66*1e4 prime nos // In 1e6 starting nos we have about 78,498 prime nos public class Main { // static int[] arr = new int[100002] ; // static int[] dp = new int[100002] ; static PrintWriter out; static class FastReader{ BufferedReader br; StringTokenizer st; public FastReader(){ br=new BufferedReader(new InputStreamReader(System.in)); out=new PrintWriter(System.out); } String next(){ while(st==null || !st.hasMoreElements()){ try{ st= new StringTokenizer(br.readLine()); } catch (IOException e){ e.printStackTrace(); } } return st.nextToken(); } int nextInt(){ return Integer.parseInt(next()); } long nextLong(){ return Long.parseLong(next()); } double nextDouble(){ return Double.parseDouble(next()); } String nextLine(){ String str = ""; try{ str=br.readLine(); } catch(IOException e){ e.printStackTrace(); } return str; } } //////////////////////////////////////////////////////////////////////////////////// public static int countDigit(long n) { return (int)Math.floor(Math.log10(n) + 1); } ///////////////////////////////////////////////////////////////////////////////////////// public static int sumOfDigits(long n) { if( n< 0)return -1 ; int sum = 0; while( n > 0) { sum = sum + (int)( n %10) ; n /= 10 ; } return sum ; } ////////////////////////////////////////////////////////////////////////////////////////////////// public static long arraySum(int[] arr , int start , int end) { long ans = 0 ; for(int i = start ; i <= end ; i++)ans += arr[i] ; return ans ; } ///////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////// public static void swapArray(int[] arr , int start , int end) { while(start < end) { int temp = arr[start] ; arr[start] = arr[end]; arr[end] = temp; start++ ;end-- ; } } ////////////////////////////////////////////////////////////////////////////////// static long factorial(long a) { if(a== 0L || a==1L)return 1L ; return a*factorial(a-1L) ; } /////////////////////////////////////////////////////////////////////////////// public static int[][] rotate(int[][] input){ int n =input.length; int m = input[0].length ; int[][] output = new int [m][n]; for (int i=0; i<n; i++) for (int j=0;j<m; j++) output [j][n-1-i] = input[i][j]; return output; } /////////////////////////////////////////////////////////////////////////////////////////////////////// /////////////////////////////////////////// //////////////////////////////////////////////// public static boolean isPowerOfTwo(long n) { if(n==0) return false; if(((n ) & (n-1)) == 0 ) return true ; else return false ; } ///////////////////////////////////////////////////////////////////////////////////// /////////////////////////////////////////////////////////////////////////////////// public static String reverse(String input) { StringBuilder str = new StringBuilder("") ; for(int i =input.length()-1 ; i >= 0 ; i-- ) { str.append(input.charAt(i)); } return str.toString() ; } /////////////////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////////////////////////// public static boolean isPossibleTriangle(int a ,int b , int c) { if( a + b > c && c+b > a && a +c > b)return true ; else return false ; } //////////////////////////////////////////////////////////////////////////////////////////// static long xnor(long num1, long num2) { if (num1 < num2) { long temp = num1; num1 = num2; num2 = temp; } num1 = togglebit(num1); return num1 ^ num2; } static long togglebit(long n) { if (n == 0) return 1; long i = n; n |= n >> 1; n |= n >> 2; n |= n >> 4; n |= n >> 8; n |= n >> 16; return i ^ n; } /////////////////////////////////////////////////////////////////////////////////////////////// public static int xorOfFirstN(int n) { if( n % 4 ==0)return n ; else if( n % 4 == 1)return 1 ; else if( n % 4 == 2)return n+1 ; else return 0 ; } ////////////////////////////////////////////////////////////////////////////////////////////// public static int gcd(int a, int b ) { if(b==0)return a ; else return gcd(b,a%b) ; } public static long gcd(long a, long b ) { if(b==0)return a ; else return gcd(b,a%b) ; } //////////////////////////////////////////////////////////////////////////////////// public static int lcm(int a, int b ,int c , int d ) { int temp = lcm(a,b , c) ; int ans = lcm(temp ,d ) ; return ans ; } /////////////////////////////////////////////////////////////////////////////////////////// public static int lcm(int a, int b ,int c ) { int temp = lcm(a,b) ; int ans = lcm(temp ,c) ; return ans ; } //////////////////////////////////////////////////////////////////////////////////////// public static int lcm(int a , int b ) { int gc = gcd(a,b); return (a/gc)*b ; } public static long lcm(long a , long b ) { long gc = gcd(a,b); return (a/gc)*b; } /////////////////////////////////////////////////////////////////////////////////////////// static boolean isPrime(long n) { if(n==1) { return false ; } boolean ans = true ; for(long i = 2L; i*i <= n ;i++) { if(n% i ==0) { ans = false ;break ; } } return ans ; } static boolean isPrime(int n) { if(n==1) { return false ; } boolean ans = true ; for(int i = 2; i*i <= n ;i++) { if(n% i ==0) { ans = false ;break ; } } return ans ; } /////////////////////////////////////////////////////////////////////////// static int sieve = 1000000 ; static boolean[] prime = new boolean[sieve + 1] ; public static void sieveOfEratosthenes() { // FALSE == prime // TRUE == COMPOSITE // FALSE== 1 // time complexity = 0(NlogLogN)== o(N) // gives prime nos bw 1 to N for(int i = 4; i<= sieve ; i++) { prime[i] = true ; i++ ; } for(int p = 3; p*p <= sieve; p++) { if(prime[p] == false) { for(int i = p*p; i <= sieve; i += p) prime[i] = true; } p++ ; } } /////////////////////////////////////////////////////////////////////////////////// public static void sortD(int[] arr , int s , int e) { sort(arr ,s , e) ; int i =s ; int j = e ; while( i < j) { int temp = arr[i] ; arr[i] =arr[j] ; arr[j] = temp ; i++ ; j-- ; } return ; } ///////////////////////////////////////////////////////////////////////////////////////// public static long countSubarraysSumToK(long[] arr ,long sum ) { HashMap<Long,Long> map = new HashMap<>() ; int n = arr.length ; long prefixsum = 0 ; long count = 0L ; for(int i = 0; i < n ; i++) { prefixsum = prefixsum + arr[i] ; if(sum == prefixsum)count = count+1 ; if(map.containsKey(prefixsum -sum)) { count = count + map.get(prefixsum -sum) ; } if(map.containsKey(prefixsum )) { map.put(prefixsum , map.get(prefixsum) +1 ); } else{ map.put(prefixsum , 1L ); } } return count ; } /////////////////////////////////////////////////////////////////////////////////////////////// // KMP ALGORITHM : TIME COMPL:O(N+M) // FINDS THE OCCURENCES OF PATTERN AS A SUBSTRING IN STRING //RETURN THE ARRAYLIST OF INDEXES // IF SIZE OF LIST IS ZERO MEANS PATTERN IS NOT PRESENT IN STRING public static ArrayList<Integer> kmpAlgorithm(String str , String pat) { ArrayList<Integer> list =new ArrayList<>(); int n = str.length() ; int m = pat.length() ; String q = pat + "#" + str ; int[] lps =new int[n+m+1] ; longestPefixSuffix(lps, q,(n+m+1)) ; for(int i =m+1 ; i < (n+m+1) ; i++ ) { if(lps[i] == m) { list.add(i-2*m) ; } } return list ; } public static void longestPefixSuffix(int[] lps ,String str , int n) { lps[0] = 0 ; for(int i = 1 ; i<= n-1; i++) { int l = lps[i-1] ; while( l > 0 && str.charAt(i) != str.charAt(l)) { l = lps[l-1] ; } if(str.charAt(i) == str.charAt(l)) { l++ ; } lps[i] = l ; } } /////////////////////////////////////////////////////////////////////////////////////////////////// /////////////////////////////////////////////////////////////////////////////////////////////////// // CALCULATE TOTIENT Fn FOR ALL VALUES FROM 1 TO n // TOTIENT(N) = count of nos less than n and grater than 1 whose gcd with n is 1 // or n and the no will be coprime in nature //time : O(n*(log(logn))) public static void eulerTotientFunction(int[] arr ,int n ) { for(int i = 1; i <= n ;i++)arr[i] =i ; for(int i= 2 ; i<= n ;i++) { if(arr[i] == i) { arr[i] =i-1 ; for(int j =2*i ; j<= n ; j+= i ) { arr[j] = (arr[j]*(i-1))/i ; } } } return ; } ///////////////////////////////////////////////////////////////////////////////////////////// public static long nCr(int n,int k) { long ans=1L; k=k>n-k?n-k:k; int j=1; for(;j<=k;j++,n--) { if(n%j==0) { ans*=n/j; }else if(ans%j==0) { ans=ans/j*n; }else { ans=(ans*n)/j; } } return ans; } /////////////////////////////////////////////////////////////////////////////////////////// public static ArrayList<Integer> allFactors(int n) { ArrayList<Integer> list = new ArrayList<>() ; for(int i = 1; i*i <= n ;i++) { if( n % i == 0) { if(i*i == n) { list.add(i) ; } else{ list.add(i) ; list.add(n/i) ; } } } return list ; } public static ArrayList<Long> allFactors(long n) { ArrayList<Long> list = new ArrayList<>() ; for(long i = 1L; i*i <= n ;i++) { if( n % i == 0) { if(i*i == n) { list.add(i) ; } else{ list.add(i) ; list.add(n/i) ; } } } return list ; } //////////////////////////////////////////////////////////////////////////////////////////////////// static final int MAXN = 1000001; static int spf[] = new int[MAXN]; static void sieve() { spf[1] = 1; for (int i=2; i<MAXN; i++) spf[i] = i; for (int i=4; i<MAXN; i+=2) spf[i] = 2; for (int i=3; i*i<MAXN; i++) { if (spf[i] == i) { for (int j=i*i; j<MAXN; j+=i) if (spf[j]==j) spf[j] = i; } } } static ArrayList<Integer> getPrimeFactorization(int x) { ArrayList<Integer> ret = new ArrayList<Integer>(); while (x != 1) { ret.add(spf[x]); x = x / spf[x]; } return ret; } ////////////////////////////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////////////////////////////// public static void merge(int arr[], int l, int m, int r) { // Find sizes of two subarrays to be merged int n1 = m - l + 1; int n2 = r - m; /* Create temp arrays */ int L[] = new int[n1]; int R[] = new int[n2]; //Copy data to temp arrays for (int i=0; i<n1; ++i) L[i] = arr[l + i]; for (int j=0; j<n2; ++j) R[j] = arr[m + 1+ j]; /* Merge the temp arrays */ // Initial indexes of first and second subarrays int i = 0, j = 0; // Initial index of merged subarry array int k = l; while (i < n1 && j < n2) { if (L[i] <= R[j]) { arr[k] = L[i]; i++; } else { arr[k] = R[j]; j++; } k++; } /* Copy remaining elements of L[] if any */ while (i < n1) { arr[k] = L[i]; i++; k++; } /* Copy remaining elements of R[] if any */ while (j < n2) { arr[k] = R[j]; j++; k++; } } // Main function that sorts arr[l..r] using // merge() public static void sort(int arr[], int l, int r) { if (l < r) { // Find the middle point int m = (l+r)/2; // Sort first and second halves sort(arr, l, m); sort(arr , m+1, r); // Merge the sorted halves merge(arr, l, m, r); } } public static void sort(long arr[], int l, int r) { if (l < r) { // Find the middle point int m = (l+r)/2; // Sort first and second halves sort(arr, l, m); sort(arr , m+1, r); // Merge the sorted halves merge(arr, l, m, r); } } public static void merge(long arr[], int l, int m, int r) { // Find sizes of two subarrays to be merged int n1 = m - l + 1; int n2 = r - m; /* Create temp arrays */ long L[] = new long[n1]; long R[] = new long[n2]; //Copy data to temp arrays for (int i=0; i<n1; ++i) L[i] = arr[l + i]; for (int j=0; j<n2; ++j) R[j] = arr[m + 1+ j]; /* Merge the temp arrays */ // Initial indexes of first and second subarrays int i = 0, j = 0; // Initial index of merged subarry array int k = l; while (i < n1 && j < n2) { if (L[i] <= R[j]) { arr[k] = L[i]; i++; } else { arr[k] = R[j]; j++; } k++; } /* Copy remaining elements of L[] if any */ while (i < n1) { arr[k] = L[i]; i++; k++; } /* Copy remaining elements of R[] if any */ while (j < n2) { arr[k] = R[j]; j++; k++; } } ///////////////////////////////////////////////////////////////////////////////////////// public static long knapsack(int[] weight,long value[],int maxWeight){ int n= value.length ; //dp[i] stores the profit with KnapSack capacity "i" long []dp = new long[maxWeight+1]; //initially profit with 0 to W KnapSack capacity is 0 Arrays.fill(dp, 0); // iterate through all items for(int i=0; i < n; i++) //traverse dp array from right to left for(int j = maxWeight; j >= weight[i]; j--) dp[j] = Math.max(dp[j] , value[i] + dp[j - weight[i]]); /*above line finds out maximum of dp[j](excluding ith element value) and val[i] + dp[j-wt[i]] (including ith element value and the profit with "KnapSack capacity - ith element weight") */ return dp[maxWeight]; } /////////////////////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////////////////////// // to return max sum of any subarray in given array public static long kadanesAlgorithm(long[] arr) { if(arr.length == 0)return 0 ; long[] dp = new long[arr.length] ; dp[0] = arr[0] ; long max = dp[0] ; for(int i = 1; i < arr.length ; i++) { if(dp[i-1] > 0) { dp[i] = dp[i-1] + arr[i] ; } else{ dp[i] = arr[i] ; } if(dp[i] > max)max = dp[i] ; } return max ; } ///////////////////////////////////////////////////////////////////////////////////////////// public static long kadanesAlgorithm(int[] arr) { if(arr.length == 0)return 0 ; long[] dp = new long[arr.length] ; dp[0] = arr[0] ; long max = dp[0] ; for(int i = 1; i < arr.length ; i++) { if(dp[i-1] > 0) { dp[i] = dp[i-1] + arr[i] ; } else{ dp[i] = arr[i] ; } if(dp[i] > max)max = dp[i] ; } return max ; } /////////////////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////////// //TO GENERATE ALL(DUPLICATE ALSO EXIST) PERMUTATIONS OF A STRING // JUST CALL generatePermutation( str, start, end) start :inclusive ,end : exclusive //Function for swapping the characters at position I with character at position j public static String swapString(String a, int i, int j) { char[] b =a.toCharArray(); char ch; ch = b[i]; b[i] = b[j]; b[j] = ch; return String.valueOf(b); } //Function for generating different permutations of the string public static void generatePermutation(String str, int start, int end) { //Prints the permutations if (start == end-1) System.out.println(str); else { for (int i = start; i < end; i++) { //Swapping the string by fixing a character str = swapString(str,start,i); //Recursively calling function generatePermutation() for rest of the characters generatePermutation(str,start+1,end); //Backtracking and swapping the characters again. str = swapString(str,start,i); } } } //////////////////////////////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////////////////////////////////// public static long factMod(long n, long mod) { if (n <= 1) return 1; long ans = 1; for (int i = 1; i <= n; i++) { ans = (ans * i) % mod; } return ans; } ///////////////////////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////////////////////////////// public static long power(int a ,int b) { //time comp : o(logn) long x = (long)(a) ; long n = (long)(b) ; if(n==0)return 1 ; if(n==1)return x; long ans =1L ; while(n>0) { if(n % 2 ==1) { ans = ans *x ; } n = n/2L ; x = x*x ; } return ans ; } public static long power(long a ,long b) { //time comp : o(logn) long x = (a) ; long n = (b) ; if(n==0)return 1L ; if(n==1)return x; long ans =1L ; while(n>0) { if(n % 2 ==1) { ans = ans *x ; } n = n/2L ; x = x*x ; } return ans ; } //////////////////////////////////////////////////////////////////////////////////////////////////// public static long powerMod(long x, long n, long mod) { //time comp : o(logn) if(n==0)return 1L ; if(n==1)return x; long ans = 1; while (n > 0) { if (n % 2 == 1) ans = (ans * x) % mod; x = (x * x) % mod; n /= 2; } return ans; } ////////////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////////// /* lowerBound - finds largest element equal or less than value paased upperBound - finds smallest element equal or more than value passed if not present return -1; */ public static long lowerBound(long[] arr,long k) { long ans=-1; int start=0; int end=arr.length-1; while(start<=end) { int mid=(start+end)/2; if(arr[mid]<=k) { ans=arr[mid]; start=mid+1; } else { end=mid-1; } } return ans; } public static int lowerBound(int[] arr,int k) { int ans=-1; int start=0; int end=arr.length-1; while(start<=end) { int mid=(start+end)/2; if(arr[mid]<=k) { ans=arr[mid]; start=mid+1; } else { end=mid-1; } } return ans; } public static long upperBound(long[] arr,long k) { long ans=-1; int start=0; int end=arr.length-1; while(start<=end) { int mid=(start+end)/2; if(arr[mid]>=k) { ans=arr[mid]; end=mid-1; } else { start=mid+1; } } return ans; } public static int upperBound(int[] arr,int k) { int ans=-1; int start=0; int end=arr.length-1; while(start<=end) { int mid=(start+end)/2; if(arr[mid]>=k) { ans=arr[mid]; end=mid-1; } else { start=mid+1; } } return ans; } ////////////////////////////////////////////////////////////////////////////////////////// public static void printArray(int[] arr , int si ,int ei) { for(int i = si ; i <= ei ; i++) { out.print(arr[i] +" ") ; } } public static void printArrayln(int[] arr , int si ,int ei) { for(int i = si ; i <= ei ; i++) { out.print(arr[i] +" ") ; } out.println() ; } public static void printLArray(long[] arr , int si , int ei) { for(int i = si ; i <= ei ; i++) { out.print(arr[i] +" ") ; } } public static void printLArrayln(long[] arr , int si , int ei) { for(int i = si ; i <= ei ; i++) { out.print(arr[i] +" ") ; } out.println() ; } public static void printtwodArray(int[][] ans) { for(int i = 0; i< ans.length ; i++) { for(int j = 0 ; j < ans[0].length ; j++)out.print(ans[i][j] +" "); out.println() ; } out.println() ; } static long modPow(long a, long x, long p) { //calculates a^x mod p in logarithmic time. a = a % p ; if(a == 0)return 0L ; long res = 1L; while(x > 0) { if( x % 2 != 0) { res = (res * a) % p; } a = (a * a) % p; x =x/2; } return res; } static long modInverse(long a, long p) { //calculates the modular multiplicative of a mod p. //(assuming p is prime). return modPow(a, p-2, p); } static long[] factorial = new long[1000001] ; static void modfac(long mod) { factorial[0]=1L ; factorial[1]=1L ; for(int i = 2; i<= 1000000 ;i++) { factorial[i] = factorial[i-1] *(long)(i) ; factorial[i] = factorial[i] % mod ; } } static long modBinomial(long n, long r, long p) { // calculates C(n,r) mod p (assuming p is prime). if(n < r) return 0L ; long num = factorial[(int)(n)] ; long den = (factorial[(int)(r)]*factorial[(int)(n-r)]) % p ; long ans = num*(modInverse(den,p)) ; ans = ans % p ; return ans ; } static void update(int val , long[] bit ,int n) { for( ; val <= n ; val += (val &(-val)) ) { bit[val]++ ; } } static long query(int val , long[] bit , int n) { long ans = 0L; for( ; val >=1 ; val-=(val&(-val)) )ans += bit[val]; return ans ; } static int countSetBits(long n) { int count = 0; while (n > 0) { n = (n) & (n - 1L); count++; } return count; } static int abs(int x) { if(x < 0)x = -1*x ; return x ; } static long abs(long x) { if(x < 0)x = -1L*x ; return x ; } //////////////////////////////////////////////////////////////////////////////////////////////// static void p(int val) { out.print(val) ; } static void p() { out.print(" ") ; } static void pln(int val) { out.println(val) ; } static void pln() { out.println() ; } static void p(long val) { out.print(val) ; } static void pln(long val) { out.println(val) ; } static void yes() { out.println("YES") ; } static void no() { out.println("NO") ; } //////////////////////////////////////////////////////////////////////////////////////////// // calculate total no of nos greater than or equal to key in sorted array arr static int bs(int[] arr, int s ,int e ,int key) { if( s> e)return 0 ; int mid = (s+e)/2 ; if(arr[mid] <key) { return bs(arr ,mid+1,e , key) ; } else{ return bs(arr ,s ,mid-1, key) + e-mid+1; } } // static ArrayList<Integer>[] adj ; // static int mod= 1000000007 ; static int[] arr ; static int n,k ; static boolean check(int m) { int[] temp = new int[n+1]; for(int i = 1 ; i <= n ;i++) { if(arr[i]>= m )temp[i] =1; else temp[i] =-1 ; } int[] pre = new int[n+1] ; pre[1] = temp[1] ; for(int i = 2; i <= n ;i++)pre[i] = pre[i-1] + temp[i] ; int[] min = new int[n+1] ; min[1] = pre[1] ; if(min[1] > 0)min[1] = 0 ; for(int i= 2 ;i <= n ;i++) { min[i] = Math.min(min[i-1] ,pre[i]) ; } for(int i = k; i<= n ;i++) { if(pre[i] > min[i-k])return true ; } return false ; } ////////////////////////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////////////////// public static void solve() { FastReader scn = new FastReader() ; //Scanner scn = new Scanner(System.in); //int[] store = {2 ,3, 5 , 7 ,11 , 13 , 17 , 19 , 23 , 29 , 31 , 37 } ; // product of first 11 prime nos is greater than 10 ^ 12; //sieve() ; //ArrayList<Integer> arr[] = new ArrayList[n] ; ArrayList<Integer> list = new ArrayList<>() ; ArrayList<Long> lista = new ArrayList<>() ; ArrayList<Long> listb = new ArrayList<>() ; // ArrayList<Integer> lista = new ArrayList<>() ; // ArrayList<Integer> listb = new ArrayList<>() ; //ArrayList<String> lists = new ArrayList<>() ; HashMap<Integer,Integer> map = new HashMap<>() ; //HashMap<Long,Long> map = new HashMap<>() ; HashMap<Integer,Integer> mapx = new HashMap<>() ; HashMap<Integer,Integer> mapy = new HashMap<>() ; //HashMap<String,Integer> maps = new HashMap<>() ; //HashMap<Integer,Boolean> mapb = new HashMap<>() ; //HashMap<Point,Integer> point = new HashMap<>() ; Set<Integer> set = new HashSet<>() ; Set<Integer> setx = new HashSet<>() ; Set<Integer> sety = new HashSet<>() ; StringBuilder sb =new StringBuilder("") ; //Collections.sort(list); //if(map.containsKey(arr[i]))map.put(arr[i] , map.get(arr[i]) +1 ) ; //else map.put(arr[i],1) ; // if(map.containsKey(temp))map.put(temp , map.get(temp) +1 ) ; // else map.put(temp,1) ; //int bit =Integer.bitCount(n); // gives total no of set bits in n; // Arrays.sort(arr, new Comparator<Pair>() { // @Override // public int compare(Pair a, Pair b) { // if (a.first != b.first) { // return a.first - b.first; // for increasing order of first // } // return a.second - b.second ; //if first is same then sort on second basis // } // }); int testcase = 1; //testcase = scn.nextInt() ; for(int testcases =1 ; testcases <= testcase ;testcases++) { //if(map.containsKey(arr[i]))map.put(arr[i],map.get(arr[i])+1) ;else map.put(arr[i],1) ; //if(map.containsKey(temp))map.put(temp,map.get(temp)+1) ;else map.put(temp,1) ; //adj = new ArrayList[n] ; // for(int i = 0; i< n; i++) // { // adj[i] = new ArrayList<Integer>(); // } // long n = scn.nextLong() ; //String s = scn.next() ; n= scn.nextInt() ; k = scn.nextInt() ; arr= new int[n+1] ; for(int i=1; i <= n;i++) { arr[i]= scn.nextInt(); } int l = 1; int r= n ; int ans = 1 ; while(l<= r) { int m = (l+r)/2 ; // out.println(l+" " + r+" " + m ) ; if(check(m)) { ans = m; l=m+1 ; } else{ r =m-1 ; } } out.println(ans) ; //out.println(ans+" "+in) ; //out.println("Case #" + testcases + ": " + ans ) ; //out.println("@") ; set.clear() ; sb.delete(0 , sb.length()) ; list.clear() ;lista.clear() ;listb.clear() ; map.clear() ; mapx.clear() ; mapy.clear() ; setx.clear() ;sety.clear() ; } // test case end loop out.flush() ; } // solve fn ends public static void main (String[] args) throws java.lang.Exception { solve() ; } } class Pair { int first ; int second ; public Pair(int x, int y) { this.first = x ;this.second = y ; } @Override public boolean equals(Object obj) { if(obj == this)return true ; if(obj == null)return false ; if(this.getClass() != obj.getClass()) { return false ; } Pair other = (Pair)(obj) ; if(this.first != other.first)return false ; if(this.second != other.second)return false ; return true ; } @Override public int hashCode() { return this.first^this.second ; } @Override public String toString() { String ans = "" ; ans += this.first ; ans += " "; ans += this.second ; return ans ; } }
Java
["5 3\n1 2 3 2 1", "4 2\n1 2 3 4"]
2 seconds
["2", "3"]
NoteIn the first example all the possible subarrays are $$$[1..3]$$$, $$$[1..4]$$$, $$$[1..5]$$$, $$$[2..4]$$$, $$$[2..5]$$$ and $$$[3..5]$$$ and the median for all of them is $$$2$$$, so the maximum possible median is $$$2$$$ too.In the second example $$$median([3..4]) = 3$$$.
Java 11
standard input
[ "binary search", "data structures", "dp" ]
dddeb7663c948515def967374f2b8812
The first line contains two integers $$$n$$$ and $$$k$$$ ($$$1 \leq k \leq n \leq 2 \cdot 10^5$$$). The second line contains $$$n$$$ integers $$$a_1, a_2, \ldots, a_n$$$ ($$$1 \leq a_i \leq n$$$).
2,100
Output one integer $$$m$$$ — the maximum median you can get.
standard output
PASSED
48d9fa37d60afd8ea45fff7a978c762e
train_110.jsonl
1613658900
You are a given an array $$$a$$$ of length $$$n$$$. Find a subarray $$$a[l..r]$$$ with length at least $$$k$$$ with the largest median.A median in an array of length $$$n$$$ is an element which occupies position number $$$\lfloor \frac{n + 1}{2} \rfloor$$$ after we sort the elements in non-decreasing order. For example: $$$median([1, 2, 3, 4]) = 2$$$, $$$median([3, 2, 1]) = 2$$$, $$$median([2, 1, 2, 1]) = 1$$$.Subarray $$$a[l..r]$$$ is a contiguous part of the array $$$a$$$, i. e. the array $$$a_l,a_{l+1},\ldots,a_r$$$ for some $$$1 \leq l \leq r \leq n$$$, its length is $$$r - l + 1$$$.
256 megabytes
// d import java.util.*; // import java.lang.*; import java.io.*; // THIS TEMPLATE MADE BY AKSH BANSAL. public class Solution { static class FastReader { BufferedReader br; StringTokenizer st; public FastReader() { br = new BufferedReader(new InputStreamReader(System.in)); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } } public static void main(String[] args) throws IOException { FastReader sc = new FastReader(); PrintWriter out = new PrintWriter(System.out); // ________________________________ // int t = sc.nextInt(); // StringBuilder output = new StringBuilder(); // while (t-- > 0) { // int // output.append(solver()).append("\n"); // } // out.println(output); // _______________________________ int n = sc.nextInt(); int k = sc.nextInt(); Integer[] arr =new Integer[n]; int low = Integer.MAX_VALUE; int high = -1; for(int i=0;i<n;i++){ arr[i] = sc.nextInt(); low = Math.min(low, arr[i]); high = Math.max(high, arr[i]); } out.println(solver(n,k, arr, low, high)); // ________________________________ out.flush(); } public static int solver(int len, int k, Integer[] arr, int low, int high) { int start = low, end = high+1; // System.out.println(low+"__"+ high); while(start<end-1){ int mid = start+(end-start)/2; int[] dp = new int[len+1]; int cur = 0; boolean flag = true; for(int i=0;i<len;i++){ cur+=mid>arr[i]?-1:1; dp[i+1] = Math.min(dp[i],cur); if(i>=k-1 && cur-dp[i-k+1]>0){ start = mid; flag =false; i = len; } } if(flag)end = mid; } return start; } }
Java
["5 3\n1 2 3 2 1", "4 2\n1 2 3 4"]
2 seconds
["2", "3"]
NoteIn the first example all the possible subarrays are $$$[1..3]$$$, $$$[1..4]$$$, $$$[1..5]$$$, $$$[2..4]$$$, $$$[2..5]$$$ and $$$[3..5]$$$ and the median for all of them is $$$2$$$, so the maximum possible median is $$$2$$$ too.In the second example $$$median([3..4]) = 3$$$.
Java 11
standard input
[ "binary search", "data structures", "dp" ]
dddeb7663c948515def967374f2b8812
The first line contains two integers $$$n$$$ and $$$k$$$ ($$$1 \leq k \leq n \leq 2 \cdot 10^5$$$). The second line contains $$$n$$$ integers $$$a_1, a_2, \ldots, a_n$$$ ($$$1 \leq a_i \leq n$$$).
2,100
Output one integer $$$m$$$ — the maximum median you can get.
standard output
PASSED
c431aebf51962325431e386815fbae3f
train_110.jsonl
1613658900
You are a given an array $$$a$$$ of length $$$n$$$. Find a subarray $$$a[l..r]$$$ with length at least $$$k$$$ with the largest median.A median in an array of length $$$n$$$ is an element which occupies position number $$$\lfloor \frac{n + 1}{2} \rfloor$$$ after we sort the elements in non-decreasing order. For example: $$$median([1, 2, 3, 4]) = 2$$$, $$$median([3, 2, 1]) = 2$$$, $$$median([2, 1, 2, 1]) = 1$$$.Subarray $$$a[l..r]$$$ is a contiguous part of the array $$$a$$$, i. e. the array $$$a_l,a_{l+1},\ldots,a_r$$$ for some $$$1 \leq l \leq r \leq n$$$, its length is $$$r - l + 1$$$.
256 megabytes
import java.util.*; import java.io.*; public class D { private static PrintWriter out; private static class FS { StringTokenizer st; BufferedReader br; public FS() { br = new BufferedReader(new InputStreamReader(System.in)); } public String next() { while (st == null || !st.hasMoreElements()) { try {st = new StringTokenizer(br.readLine());} catch (IOException e) {e.printStackTrace();} } return st.nextToken(); } public String nextLine() { String s = null; try {s = br.readLine();} catch (IOException e) {e.printStackTrace();} return s; } public int nextInt() {return Integer.parseInt(next());} public long nextLong() {return Long.parseLong(next());} public double nextDouble() {return Double.parseDouble(next());} } private static boolean ok(int[] a, int k, int m) { int mx = 0, mn = 0, s2 = 0, s1 = 0; for (int i = 0; i < a.length && mx <= 0; ++i) { if (a[i] < m) --s2; else ++s2; if (i >= k) { if (a[i-k] < m) --s1; else ++s1; if (mn > s1) mn = s1; if (mx < s2 - mn) mx = s2 - mn; } } if (mx < s2 - mn) mx = s2 - mn; return mx > 0; } public static void main(String[] args) { FS sc = new FS(); out = new PrintWriter(new BufferedOutputStream(System.out)); int n = sc.nextInt(), k = sc.nextInt(); int[] a = new int[n]; for (int i = 0; i < n; ++i) a[i] = sc.nextInt(); int lo = 1, hi = n, m; while (lo <= hi) { m = lo + ((hi-lo)>>1); if(ok(a,k,m)) lo = m+1; else hi = m-1; } out.println(lo-1); out.close(); } }
Java
["5 3\n1 2 3 2 1", "4 2\n1 2 3 4"]
2 seconds
["2", "3"]
NoteIn the first example all the possible subarrays are $$$[1..3]$$$, $$$[1..4]$$$, $$$[1..5]$$$, $$$[2..4]$$$, $$$[2..5]$$$ and $$$[3..5]$$$ and the median for all of them is $$$2$$$, so the maximum possible median is $$$2$$$ too.In the second example $$$median([3..4]) = 3$$$.
Java 11
standard input
[ "binary search", "data structures", "dp" ]
dddeb7663c948515def967374f2b8812
The first line contains two integers $$$n$$$ and $$$k$$$ ($$$1 \leq k \leq n \leq 2 \cdot 10^5$$$). The second line contains $$$n$$$ integers $$$a_1, a_2, \ldots, a_n$$$ ($$$1 \leq a_i \leq n$$$).
2,100
Output one integer $$$m$$$ — the maximum median you can get.
standard output
PASSED
fe1872d1a04d0cac006b6792a2c9e76c
train_110.jsonl
1613658900
You are a given an array $$$a$$$ of length $$$n$$$. Find a subarray $$$a[l..r]$$$ with length at least $$$k$$$ with the largest median.A median in an array of length $$$n$$$ is an element which occupies position number $$$\lfloor \frac{n + 1}{2} \rfloor$$$ after we sort the elements in non-decreasing order. For example: $$$median([1, 2, 3, 4]) = 2$$$, $$$median([3, 2, 1]) = 2$$$, $$$median([2, 1, 2, 1]) = 1$$$.Subarray $$$a[l..r]$$$ is a contiguous part of the array $$$a$$$, i. e. the array $$$a_l,a_{l+1},\ldots,a_r$$$ for some $$$1 \leq l \leq r \leq n$$$, its length is $$$r - l + 1$$$.
256 megabytes
import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.util.StringTokenizer; public class Solution { static Reader input = new Reader(); static int n, k, t, r, sum, temp; static int[] a, arr, leftSum, rightSum, maxRight, maxLeft; public static void main(String[] args) throws IOException { n = input.nextInt(); k = input.nextInt(); a = new int[n]; arr = new int[n]; leftSum = new int[n]; rightSum = new int[n]; maxRight = new int[n]; maxLeft = new int[n]; t = n-k; for(int i = 0; i < n; ++i) a[i] = input.nextInt(); int left = min(a), right = max(a)+1, middle, answer = left; while(left < right) { middle = left+right>>1; if(ok(middle)) { answer = middle; left = middle+1; } else { right = middle; } } System.out.print(answer); } static boolean ok(int x) { for(int i = 0; i < n; ++i) { arr[i] = (a[i] >= x ? 1 : -1); } leftSum[0] = arr[0]; for(int i = 1; i < n; ++i) { leftSum[i] = leftSum[i-1]+arr[i]; } rightSum[n-1] = arr[n-1]; for(int i = n-2; i > -1; --i) { rightSum[i] = rightSum[i+1]+arr[i]; } maxLeft[0] = rightSum[0]; for(int i = 1; i < n; ++i) { maxLeft[i] = Math.max(maxLeft[i-1], rightSum[i]); } maxRight[n-1] = leftSum[n-1]; for(int i = n-2; i > -1; --i) { maxRight[i] = Math.max(maxRight[i+1], leftSum[i]); } for(int l = 0; l <= t; ++l) { r = l+k-1; sum = sum(l, r); if(l > 0) { temp = maxLeft[l-1]-rightSum[l]; sum += Math.max(0, temp); } if(r < n-1) { temp = maxRight[r+1]-leftSum[r]; sum += Math.max(0, temp); } if(sum > 0) { return true; } } return false; } static int sum(int l, int r) { if(l == 0) return leftSum[r]; return leftSum[r]-leftSum[l-1]; } static int min(int[] a) { int min = a[0]; for(int i = 1; i < a.length; ++i) { if(min > a[i]) min = a[i]; } return min; } static int max(int[] a) { int max = a[0]; for(int i = 1; i < a.length; ++i) { if(max < a[i]) max = a[i]; } return max; } static class Reader { BufferedReader bufferedReader; StringTokenizer string; public Reader() { InputStreamReader inr = new InputStreamReader(System.in); bufferedReader = new BufferedReader(inr); } public String next() throws IOException { while(string == null || ! string.hasMoreElements()) { string = new StringTokenizer(bufferedReader.readLine()); } return string.nextToken(); } public int nextInt() throws IOException { return Integer.parseInt(next()); } public long nextLong() throws IOException { return Long.parseLong(next()); } public double nextDouble() throws IOException { return Double.parseDouble(next()); } public String nextLine() throws IOException { return bufferedReader.readLine(); } } }
Java
["5 3\n1 2 3 2 1", "4 2\n1 2 3 4"]
2 seconds
["2", "3"]
NoteIn the first example all the possible subarrays are $$$[1..3]$$$, $$$[1..4]$$$, $$$[1..5]$$$, $$$[2..4]$$$, $$$[2..5]$$$ and $$$[3..5]$$$ and the median for all of them is $$$2$$$, so the maximum possible median is $$$2$$$ too.In the second example $$$median([3..4]) = 3$$$.
Java 11
standard input
[ "binary search", "data structures", "dp" ]
dddeb7663c948515def967374f2b8812
The first line contains two integers $$$n$$$ and $$$k$$$ ($$$1 \leq k \leq n \leq 2 \cdot 10^5$$$). The second line contains $$$n$$$ integers $$$a_1, a_2, \ldots, a_n$$$ ($$$1 \leq a_i \leq n$$$).
2,100
Output one integer $$$m$$$ — the maximum median you can get.
standard output
PASSED
993f043aad39efa4f677b2b7e82cc3b9
train_110.jsonl
1613658900
You are a given an array $$$a$$$ of length $$$n$$$. Find a subarray $$$a[l..r]$$$ with length at least $$$k$$$ with the largest median.A median in an array of length $$$n$$$ is an element which occupies position number $$$\lfloor \frac{n + 1}{2} \rfloor$$$ after we sort the elements in non-decreasing order. For example: $$$median([1, 2, 3, 4]) = 2$$$, $$$median([3, 2, 1]) = 2$$$, $$$median([2, 1, 2, 1]) = 1$$$.Subarray $$$a[l..r]$$$ is a contiguous part of the array $$$a$$$, i. e. the array $$$a_l,a_{l+1},\ldots,a_r$$$ for some $$$1 \leq l \leq r \leq n$$$, its length is $$$r - l + 1$$$.
256 megabytes
import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.io.PrintWriter; import java.util.Arrays; import java.util.Collections; import java.util.StringTokenizer; public class MaxMedianBinarySearch { public static void main(String[] args) throws IOException { BufferedReader read = new BufferedReader(new InputStreamReader(System.in));//new FileReader("cowdance.in") PrintWriter out = new PrintWriter(System.out);//new FileWriter("cowdance.out") StringTokenizer st = new StringTokenizer(read.readLine()); int n = Integer.parseInt(st.nextToken());//Long.parseLong(st.nextToken()); int k = Integer.parseInt(st.nextToken()); int [] a = new int [n]; int [] b; st = new StringTokenizer(read.readLine()); for (int i = 0; i < n; i++) { a[i] = Integer.parseInt(st.nextToken());//Long.parseLong(st.nextToken()); } int lo = 1; int hi = n+1; while (lo < hi-1) { int mid = (lo+hi)/2; b = new int [n]; for (int i = 0; i < n; i++) { if (a[i] < mid) { b[i] = -1; }else { b[i] = 1; } } for (int i = 1; i < n; i++) { b[i] += b[i-1]; } boolean work = false; int min = 0; int max = b[k-1]; for (int i = k; i < n; i++) { min = Math.min(min, b[i-k]); max = Math.max(max, b[i]-min); } if (max >= 1) { lo = mid; } else { hi = mid; } } out.println(lo); out.close(); } }
Java
["5 3\n1 2 3 2 1", "4 2\n1 2 3 4"]
2 seconds
["2", "3"]
NoteIn the first example all the possible subarrays are $$$[1..3]$$$, $$$[1..4]$$$, $$$[1..5]$$$, $$$[2..4]$$$, $$$[2..5]$$$ and $$$[3..5]$$$ and the median for all of them is $$$2$$$, so the maximum possible median is $$$2$$$ too.In the second example $$$median([3..4]) = 3$$$.
Java 11
standard input
[ "binary search", "data structures", "dp" ]
dddeb7663c948515def967374f2b8812
The first line contains two integers $$$n$$$ and $$$k$$$ ($$$1 \leq k \leq n \leq 2 \cdot 10^5$$$). The second line contains $$$n$$$ integers $$$a_1, a_2, \ldots, a_n$$$ ($$$1 \leq a_i \leq n$$$).
2,100
Output one integer $$$m$$$ — the maximum median you can get.
standard output
PASSED
8fb1265b98ff56437f64b6cf6a17f1e2
train_110.jsonl
1613658900
You are a given an array $$$a$$$ of length $$$n$$$. Find a subarray $$$a[l..r]$$$ with length at least $$$k$$$ with the largest median.A median in an array of length $$$n$$$ is an element which occupies position number $$$\lfloor \frac{n + 1}{2} \rfloor$$$ after we sort the elements in non-decreasing order. For example: $$$median([1, 2, 3, 4]) = 2$$$, $$$median([3, 2, 1]) = 2$$$, $$$median([2, 1, 2, 1]) = 1$$$.Subarray $$$a[l..r]$$$ is a contiguous part of the array $$$a$$$, i. e. the array $$$a_l,a_{l+1},\ldots,a_r$$$ for some $$$1 \leq l \leq r \leq n$$$, its length is $$$r - l + 1$$$.
256 megabytes
import java.util.*; import java.io.*; public class MaxMed2 { public static void main(String[] args) throws IOException{ BufferedReader f=new BufferedReader(new InputStreamReader(System.in)); PrintWriter out=new PrintWriter(System.out); StringTokenizer st=new StringTokenizer(f.readLine()); int n=Integer.parseInt(st.nextToken()); int k=Integer.parseInt(st.nextToken()); int[] arr=new int[n]; st=new StringTokenizer(f.readLine()); for(int i=0;i<n;i++) { arr[i]=Integer.parseInt(st.nextToken()); } int l=0; int r=n; while(l<r) { int mid=(l+r+1)/2; long[] pos=new long[n+1]; for(int i=1;i<=n;i++) { pos[i]=arr[i-1]>=mid?1:-1; pos[i]+=pos[i-1]; } long max=pos[k]; long min=0; for(int i=k+1;i<=n;i++) { min=Math.min(min, pos[i-k]); max=Math.max(max, pos[i]-min); } if(max>0) { l=mid; } else { r=mid-1; } } out.println(l); out.close(); f.close(); } }
Java
["5 3\n1 2 3 2 1", "4 2\n1 2 3 4"]
2 seconds
["2", "3"]
NoteIn the first example all the possible subarrays are $$$[1..3]$$$, $$$[1..4]$$$, $$$[1..5]$$$, $$$[2..4]$$$, $$$[2..5]$$$ and $$$[3..5]$$$ and the median for all of them is $$$2$$$, so the maximum possible median is $$$2$$$ too.In the second example $$$median([3..4]) = 3$$$.
Java 11
standard input
[ "binary search", "data structures", "dp" ]
dddeb7663c948515def967374f2b8812
The first line contains two integers $$$n$$$ and $$$k$$$ ($$$1 \leq k \leq n \leq 2 \cdot 10^5$$$). The second line contains $$$n$$$ integers $$$a_1, a_2, \ldots, a_n$$$ ($$$1 \leq a_i \leq n$$$).
2,100
Output one integer $$$m$$$ — the maximum median you can get.
standard output
PASSED
6f56dde4df78de423cc4c34417010e4f
train_110.jsonl
1613658900
You are a given an array $$$a$$$ of length $$$n$$$. Find a subarray $$$a[l..r]$$$ with length at least $$$k$$$ with the largest median.A median in an array of length $$$n$$$ is an element which occupies position number $$$\lfloor \frac{n + 1}{2} \rfloor$$$ after we sort the elements in non-decreasing order. For example: $$$median([1, 2, 3, 4]) = 2$$$, $$$median([3, 2, 1]) = 2$$$, $$$median([2, 1, 2, 1]) = 1$$$.Subarray $$$a[l..r]$$$ is a contiguous part of the array $$$a$$$, i. e. the array $$$a_l,a_{l+1},\ldots,a_r$$$ for some $$$1 \leq l \leq r \leq n$$$, its length is $$$r - l + 1$$$.
256 megabytes
import java.util.*; import java.io.*; public class _1486_D { public static void main(String[] args) throws IOException { BufferedReader in = new BufferedReader(new InputStreamReader(System.in)); PrintWriter out = new PrintWriter(System.out); StringTokenizer line = new StringTokenizer(in.readLine()); int n = Integer.parseInt(line.nextToken()); int k = Integer.parseInt(line.nextToken()); int[] a = new int[n]; line = new StringTokenizer(in.readLine()); for(int i = 0; i < n; i++) { a[i] = Integer.parseInt(line.nextToken()); } int l = 0; int r = n; int res = -1; while(l <= r) { int m = (l + r) / 2; if(possible(a, k, m)) { res = m; l = m + 1; }else { r = m - 1; } } out.println(res); in.close(); out.close(); } static boolean possible(int[] a, int k, int median) { int[] min = new int[a.length]; int dif = 0; for(int i = 0; i < a.length; i++) { if(a[i] >= median) { dif++; }else { dif--; } min[i] = Math.min(i > 0 ? min[i - 1] : 0, dif); if(i - k + 1 >= 0) { int prev = i - k >= 0 ? min[i - k] : 0; if(dif - prev > 0) { return true; } } } return false; } }
Java
["5 3\n1 2 3 2 1", "4 2\n1 2 3 4"]
2 seconds
["2", "3"]
NoteIn the first example all the possible subarrays are $$$[1..3]$$$, $$$[1..4]$$$, $$$[1..5]$$$, $$$[2..4]$$$, $$$[2..5]$$$ and $$$[3..5]$$$ and the median for all of them is $$$2$$$, so the maximum possible median is $$$2$$$ too.In the second example $$$median([3..4]) = 3$$$.
Java 11
standard input
[ "binary search", "data structures", "dp" ]
dddeb7663c948515def967374f2b8812
The first line contains two integers $$$n$$$ and $$$k$$$ ($$$1 \leq k \leq n \leq 2 \cdot 10^5$$$). The second line contains $$$n$$$ integers $$$a_1, a_2, \ldots, a_n$$$ ($$$1 \leq a_i \leq n$$$).
2,100
Output one integer $$$m$$$ — the maximum median you can get.
standard output
PASSED
567ff306aa287ba3a6740072e462ca4b
train_110.jsonl
1613658900
You are a given an array $$$a$$$ of length $$$n$$$. Find a subarray $$$a[l..r]$$$ with length at least $$$k$$$ with the largest median.A median in an array of length $$$n$$$ is an element which occupies position number $$$\lfloor \frac{n + 1}{2} \rfloor$$$ after we sort the elements in non-decreasing order. For example: $$$median([1, 2, 3, 4]) = 2$$$, $$$median([3, 2, 1]) = 2$$$, $$$median([2, 1, 2, 1]) = 1$$$.Subarray $$$a[l..r]$$$ is a contiguous part of the array $$$a$$$, i. e. the array $$$a_l,a_{l+1},\ldots,a_r$$$ for some $$$1 \leq l \leq r \leq n$$$, its length is $$$r - l + 1$$$.
256 megabytes
import java.io.*; import java.util.*; public class CFMaxMedian1486 { public static int n; public static int k; public static int[] array; public static void main (String[] args) throws IOException { BufferedReader r= new BufferedReader(new InputStreamReader(System.in)); PrintWriter pw = new PrintWriter(System.out); StringTokenizer st = new StringTokenizer(r.readLine()); n = Integer.parseInt(st.nextToken()); k = Integer.parseInt(st.nextToken()); st = new StringTokenizer(r.readLine()); array = new int[n]; for(int i = 0; i < n; i++) array[i] = Integer.parseInt(st.nextToken()); int lo = -1, hi = n+1, mid = (hi + lo)/2; while(lo < mid && mid < hi) { if(valid(mid)) lo = mid; else hi = mid; mid = (hi + lo)/2; } r.close(); pw.println(lo); pw.close(); } public static boolean valid(int med) { int[] binArray = new int[n]; for(int i = 0; i < n; i++) { if(array[i] >= med) binArray[i] = 1; else binArray[i] = -1; } int[] pArray = new int[n+1]; pArray[0] = 0; for(int i = 1; i < n+1; i++) pArray[i] = pArray[i-1] + binArray[i-1]; int[] minArray = new int[n+1]; minArray[0] = 0; for(int i = 1; i < n+1; i++) minArray[i] = Math.min(minArray[i-1], pArray[i]); for(int i = k; i < n+1; i++) { if(pArray[i] - minArray[i-k] > 0) return(true); } return(false); } }
Java
["5 3\n1 2 3 2 1", "4 2\n1 2 3 4"]
2 seconds
["2", "3"]
NoteIn the first example all the possible subarrays are $$$[1..3]$$$, $$$[1..4]$$$, $$$[1..5]$$$, $$$[2..4]$$$, $$$[2..5]$$$ and $$$[3..5]$$$ and the median for all of them is $$$2$$$, so the maximum possible median is $$$2$$$ too.In the second example $$$median([3..4]) = 3$$$.
Java 11
standard input
[ "binary search", "data structures", "dp" ]
dddeb7663c948515def967374f2b8812
The first line contains two integers $$$n$$$ and $$$k$$$ ($$$1 \leq k \leq n \leq 2 \cdot 10^5$$$). The second line contains $$$n$$$ integers $$$a_1, a_2, \ldots, a_n$$$ ($$$1 \leq a_i \leq n$$$).
2,100
Output one integer $$$m$$$ — the maximum median you can get.
standard output
PASSED
aaa41bd0a8d4567ec7ebd6bbc74caa8d
train_110.jsonl
1613658900
You are a given an array $$$a$$$ of length $$$n$$$. Find a subarray $$$a[l..r]$$$ with length at least $$$k$$$ with the largest median.A median in an array of length $$$n$$$ is an element which occupies position number $$$\lfloor \frac{n + 1}{2} \rfloor$$$ after we sort the elements in non-decreasing order. For example: $$$median([1, 2, 3, 4]) = 2$$$, $$$median([3, 2, 1]) = 2$$$, $$$median([2, 1, 2, 1]) = 1$$$.Subarray $$$a[l..r]$$$ is a contiguous part of the array $$$a$$$, i. e. the array $$$a_l,a_{l+1},\ldots,a_r$$$ for some $$$1 \leq l \leq r \leq n$$$, its length is $$$r - l + 1$$$.
256 megabytes
//package Algorithm.BinarySearch.Important; import java.util.Arrays; import java.util.Scanner; public class Max_Median { static int n, k; public static void main(String[] args) { Scanner scan = new Scanner(System.in); n = scan.nextInt(); k = scan.nextInt(); int[] a = new int[n+1], b = new int[n+1]; for (int i = 1; i <= n; i++) { a[i] = scan.nextInt(); b[i] = a[i]; } Arrays.sort(b); int ans = 0, L = 1, R = n; while (L <= R) { int mid = (L + R) / 2; if (check(a, b[mid])) { L = mid+1; ans = Math.max(ans, b[mid]); } else R = mid - 1; } System.out.println(ans); } static boolean check(int[] a, int median) { int[] temp = new int[n+1]; for (int i = 1; i <= n; i++) { if (a[i] >= median) temp[i]++; else temp[i]--; temp[i] += temp[i - 1]; } int curMin = Integer.MAX_VALUE; for (int i = k; i <= n; i++) { curMin = Math.min(curMin, temp[i-k]); if (temp[i] - curMin > 0) return true; } return false; } }
Java
["5 3\n1 2 3 2 1", "4 2\n1 2 3 4"]
2 seconds
["2", "3"]
NoteIn the first example all the possible subarrays are $$$[1..3]$$$, $$$[1..4]$$$, $$$[1..5]$$$, $$$[2..4]$$$, $$$[2..5]$$$ and $$$[3..5]$$$ and the median for all of them is $$$2$$$, so the maximum possible median is $$$2$$$ too.In the second example $$$median([3..4]) = 3$$$.
Java 11
standard input
[ "binary search", "data structures", "dp" ]
dddeb7663c948515def967374f2b8812
The first line contains two integers $$$n$$$ and $$$k$$$ ($$$1 \leq k \leq n \leq 2 \cdot 10^5$$$). The second line contains $$$n$$$ integers $$$a_1, a_2, \ldots, a_n$$$ ($$$1 \leq a_i \leq n$$$).
2,100
Output one integer $$$m$$$ — the maximum median you can get.
standard output
PASSED
1865ad47e0ddb331a70d0edab20d25f9
train_110.jsonl
1613658900
You are a given an array $$$a$$$ of length $$$n$$$. Find a subarray $$$a[l..r]$$$ with length at least $$$k$$$ with the largest median.A median in an array of length $$$n$$$ is an element which occupies position number $$$\lfloor \frac{n + 1}{2} \rfloor$$$ after we sort the elements in non-decreasing order. For example: $$$median([1, 2, 3, 4]) = 2$$$, $$$median([3, 2, 1]) = 2$$$, $$$median([2, 1, 2, 1]) = 1$$$.Subarray $$$a[l..r]$$$ is a contiguous part of the array $$$a$$$, i. e. the array $$$a_l,a_{l+1},\ldots,a_r$$$ for some $$$1 \leq l \leq r \leq n$$$, its length is $$$r - l + 1$$$.
256 megabytes
import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.io.PrintWriter; public class MaxMedian { static int n, k; public static void main(String[] args) throws NumberFormatException, IOException { BufferedReader scan = new BufferedReader(new InputStreamReader(System.in)); PrintWriter out = new PrintWriter(System.out); String[] in = scan.readLine().split(" "); n = parse(in[0]); k = parse(in[1]); long[] ray = new long[n]; in = scan.readLine().split(" "); for(int i = 0; i < n; i++) ray[i] = parse(in[i]); long max = getMax(ray); out.println(max); out.flush(); } private static long getMax(long[] ray) { long low = 1, high = (long) (2 * 1e5), mid; long value = 0; while(low <= high) { mid = (low + high) / 2; if(valid(mid, ray)) { value = Math.max(value, mid); low = mid + 1; } else high = mid - 1; } return value; } private static boolean valid(long target, long[] ray) { long[] rel = new long[n]; for(int i = 0; i < n; i++) rel[i] = ray[i] >= target ? 1 : -1; for(int i = 1; i < n; i++) rel[i] = rel[i-1] + rel[i]; long min = 0; if(rel[k-1] > 0) return true; for(int i = k; i < n; i++) { min = Math.min(min, rel[i-k]); if(rel[i] - min > 0) return true; } return false; } public static int parse(String num) { return Integer.parseInt(num); } }
Java
["5 3\n1 2 3 2 1", "4 2\n1 2 3 4"]
2 seconds
["2", "3"]
NoteIn the first example all the possible subarrays are $$$[1..3]$$$, $$$[1..4]$$$, $$$[1..5]$$$, $$$[2..4]$$$, $$$[2..5]$$$ and $$$[3..5]$$$ and the median for all of them is $$$2$$$, so the maximum possible median is $$$2$$$ too.In the second example $$$median([3..4]) = 3$$$.
Java 11
standard input
[ "binary search", "data structures", "dp" ]
dddeb7663c948515def967374f2b8812
The first line contains two integers $$$n$$$ and $$$k$$$ ($$$1 \leq k \leq n \leq 2 \cdot 10^5$$$). The second line contains $$$n$$$ integers $$$a_1, a_2, \ldots, a_n$$$ ($$$1 \leq a_i \leq n$$$).
2,100
Output one integer $$$m$$$ — the maximum median you can get.
standard output
PASSED
c4d577da946d97e40a9926f32ca57005
train_110.jsonl
1613658900
You are a given an array $$$a$$$ of length $$$n$$$. Find a subarray $$$a[l..r]$$$ with length at least $$$k$$$ with the largest median.A median in an array of length $$$n$$$ is an element which occupies position number $$$\lfloor \frac{n + 1}{2} \rfloor$$$ after we sort the elements in non-decreasing order. For example: $$$median([1, 2, 3, 4]) = 2$$$, $$$median([3, 2, 1]) = 2$$$, $$$median([2, 1, 2, 1]) = 1$$$.Subarray $$$a[l..r]$$$ is a contiguous part of the array $$$a$$$, i. e. the array $$$a_l,a_{l+1},\ldots,a_r$$$ for some $$$1 \leq l \leq r \leq n$$$, its length is $$$r - l + 1$$$.
256 megabytes
import java.io.BufferedReader; import java.io.IOException; import java.io.InputStream; import java.io.InputStreamReader; import java.util.InputMismatchException; import java.util.*; import java.io.*; import java.lang.*; public class Main{ public static class InputReader { private InputStream stream; private byte[] buf = new byte[1024]; private int curChar; private int numChars; private InputReader.SpaceCharFilter filter; private BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); public InputReader(InputStream stream) { this.stream = stream; } public int read() { if (numChars==-1) throw new InputMismatchException(); if (curChar >= numChars) { curChar = 0; try { numChars = stream.read(buf); } catch (IOException e) { throw new InputMismatchException(); } if(numChars <= 0) return -1; } return buf[curChar++]; } public String nextLine() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } public int nextInt() { int c = read(); while(isSpaceChar(c)) c = read(); int sgn = 1; if (c == '-') { sgn = -1; c = read(); } int res = 0; do { if(c<'0'||c>'9') throw new InputMismatchException(); res *= 10; res += c - '0'; c = read(); } while (!isSpaceChar(c)); return res * sgn; } public long nextLong() { int c = read(); while (isSpaceChar(c)) c = read(); int sgn = 1; if (c == '-') { sgn = -1; c = read(); } long res = 0; do { if (c < '0' || c > '9') throw new InputMismatchException(); res *= 10; res += c - '0'; c = read(); } while (!isSpaceChar(c)); return res * sgn; } public double nextDouble() { int c = read(); while (isSpaceChar(c)) c = read(); int sgn = 1; if (c == '-') { sgn = -1; c = read(); } double res = 0; while (!isSpaceChar(c) && c != '.') { if (c == 'e' || c == 'E') return res * Math.pow(10, nextInt()); if (c < '0' || c > '9') throw new InputMismatchException(); res *= 10; res += c - '0'; c = read(); } if (c == '.') { c = read(); double m = 1; while (!isSpaceChar(c)) { if (c == 'e' || c == 'E') return res * Math.pow(10, nextInt()); if (c < '0' || c > '9') throw new InputMismatchException(); m /= 10; res += (c - '0') * m; c = read(); } } return res * sgn; } public String readString() { int c = read(); while (isSpaceChar(c)) c = read(); StringBuilder res = new StringBuilder(); do { res.appendCodePoint(c); c = read(); } while (!isSpaceChar(c)); return res.toString(); } public boolean isSpaceChar(int c) { if (filter != null) return filter.isSpaceChar(c); return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; } public String next() { return readString(); } public interface SpaceCharFilter { public boolean isSpaceChar(int ch); } } static long gcd(long a, long b){ if (a == 0) return b; return gcd(b % a, a); } static long lcm(long a, long b) { return (a*b)/gcd(a, b); } public static void sortbyColumn(int arr[][], int col) { Arrays.sort(arr, new Comparator<int[]>() { @Override public int compare(final int[] entry1, final int[] entry2) { if (entry1[col] > entry2[col]) return 1; else return -1; } }); } static long func(long a[],int size,int s){ long max1=a[s]; long maxc=a[s]; for(int i=s+1;i<size;i++){ maxc=Math.max(a[i],maxc+a[i]); max1=Math.max(maxc,max1); } return max1; } public static class Pair<U extends Comparable<U>, V extends Comparable<V>> implements Comparable<Pair<U, V>> { public U x; public V y; public Pair(U x, V y) { this.x = x; this.y = y; } public int hashCode() { return (x == null ? 0 : x.hashCode() * 31) + (y == null ? 0 : y.hashCode()); } public boolean equals(Object o) { if (this == o) return true; if (o == null || getClass() != o.getClass()) return false; Pair<U, V> p = (Pair<U, V>) o; return (x == null ? p.x == null : x.equals(p.x)) && (y == null ? p.y == null : y.equals(p.y)); } public int compareTo(Pair<U, V> b) { int cmpU = x.compareTo(b.x); return cmpU != 0 ? cmpU : y.compareTo(b.y); } public String toString() { return String.format("(%s, %s)", x.toString(), y.toString()); } } static class MultiSet<U extends Comparable<U>> { public int sz = 0; public TreeMap<U, Integer> t; public MultiSet() { t = new TreeMap<>(); } public void add(U x) { t.put(x, t.getOrDefault(x, 0) + 1); sz++; } public void remove(U x) { if (t.get(x) == 1) t.remove(x); else t.put(x, t.get(x) - 1); sz--; } } static void shuffle(long[] a) { Random get = new Random(); for (int i = 0; i < a.length; i++) { int r = get.nextInt(a.length); long temp = a[i]; a[i] = a[r]; a[r] = temp; } } static long myceil(long a, long b){ return (a+b-1)/b; } static long C(long n,long r){ long count=0,temp=n; long ans=1; long num=n-r+1,div=1; while(num<=n){ ans*=num; //ans+=MOD; ans%=MOD; ans*=mypow(div,MOD-2); //ans+=MOD; ans%=MOD; num++; div++; } ans+=MOD; return ans%MOD; } static long fact(long a){ long i,ans=1; for(i=1;i<=a;i++){ ans*=i; ans%=MOD; } return ans%=MOD; } static void sieve(int n){ is_sieve[0]=1; is_sieve[1]=1; int i,j,k; for(i=2;i<n;i++){ if(is_sieve[i]==0){ sieve[i]=i; tr.add(i); for(j=i*i;j<n;j+=i){ if(j>n||j<0){ break; } is_sieve[j]=1; sieve[j]=i; } } } } static void calc(int n){ int i,j; dp[n-1]=0; if(n>1) dp[n-2]=1; for(i=n-3;i>=0;i--){ long ind=n-i-1; dp[i]=((ind*(long)mypow(10,ind-1))%MOD+dp[i+1])%MOD; } } static long mypow(long x,long y){ long temp; if( y == 0) return 1; temp = mypow(x, y/2); if (y%2 == 0) return (temp*temp)%MOD; else return ((x*temp)%MOD*(temp)%MOD)%MOD; } static long dist[],dp[]; static int visited[]; static ArrayList<Pair<Integer,String>> adj[]; //static int dp[][][]; static int R,G,B,MOD=1000000007; static int[] par,size,memo; static int[] sieve,is_sieve; static TreeSet<Integer> tr; static char ch[][], ch1[][]; // static void lengen(int arr[],int ind){ // memo[ind]=Math.max(lengen(arr,ind+1),lis(arr,)) // } static int lis(int arr[],int n,int ind,int cur){ if(ind>=n){ return memo[ind]=0; } else if(ind>=0&&memo[ind]>-1){ return memo[ind]; } else if(cur<arr[ind+1]){ return memo[ind]=Math.max(lis(arr,n,ind+1,arr[ind+1])+1,lis(arr,n,ind+1,cur)); }else{ return memo[ind]=lis(arr,n,ind+1,cur); } } public static void main(String args[]){ InputStream inputStream = System.in; OutputStream outputStream = System.out; InputReader in = new InputReader(inputStream); PrintWriter w = new PrintWriter(outputStream); int t,i,j,tno=0,tte; //t=in.nextInt(); t=1; //tte=t; while(t-->0){ int n=in.nextInt(); int k=in.nextInt(); int arr[]=new int[n]; for(i=0;i<n;i++){ arr[i]=in.nextInt(); } int l=1,r=n; int mid=(l+r)/2,ans=0; while(l<=r){ int curmin = 0; mid=(l+r)/2; //w.println(l+" "+mid+" "+r); int flag=0; int temp[]=new int[n]; int pre[]=new int[n]; for(i=0;i<n;i++){ if(arr[i]<mid){ temp[i]=-1; }else{ temp[i]=1; } if(i==0){ pre[i]=temp[i]; }else{ pre[i]=pre[i-1]+temp[i]; } if(i>=(k-1)){ if(i == k-1) { if(pre[i]-curmin>0){ l=mid+1; ans=mid; flag=1; break; } } else{ curmin = Math.min(curmin , pre[i-k]); if(pre[i]-curmin>0){ l=mid+1; ans=mid; flag=1; break; } } } } if(flag==0){ r=mid-1; } // w.println(l+" "+mid+" "+r); } w.println(ans); } w.close(); } }
Java
["5 3\n1 2 3 2 1", "4 2\n1 2 3 4"]
2 seconds
["2", "3"]
NoteIn the first example all the possible subarrays are $$$[1..3]$$$, $$$[1..4]$$$, $$$[1..5]$$$, $$$[2..4]$$$, $$$[2..5]$$$ and $$$[3..5]$$$ and the median for all of them is $$$2$$$, so the maximum possible median is $$$2$$$ too.In the second example $$$median([3..4]) = 3$$$.
Java 11
standard input
[ "binary search", "data structures", "dp" ]
dddeb7663c948515def967374f2b8812
The first line contains two integers $$$n$$$ and $$$k$$$ ($$$1 \leq k \leq n \leq 2 \cdot 10^5$$$). The second line contains $$$n$$$ integers $$$a_1, a_2, \ldots, a_n$$$ ($$$1 \leq a_i \leq n$$$).
2,100
Output one integer $$$m$$$ — the maximum median you can get.
standard output
PASSED
a2815047eaf5627c81b33a37fbbc03fb
train_110.jsonl
1613658900
You are a given an array $$$a$$$ of length $$$n$$$. Find a subarray $$$a[l..r]$$$ with length at least $$$k$$$ with the largest median.A median in an array of length $$$n$$$ is an element which occupies position number $$$\lfloor \frac{n + 1}{2} \rfloor$$$ after we sort the elements in non-decreasing order. For example: $$$median([1, 2, 3, 4]) = 2$$$, $$$median([3, 2, 1]) = 2$$$, $$$median([2, 1, 2, 1]) = 1$$$.Subarray $$$a[l..r]$$$ is a contiguous part of the array $$$a$$$, i. e. the array $$$a_l,a_{l+1},\ldots,a_r$$$ for some $$$1 \leq l \leq r \leq n$$$, its length is $$$r - l + 1$$$.
256 megabytes
import java.io.*; import java.util.*; @SuppressWarnings("unchecked") public class MaxMedian implements Runnable { void solve() throws IOException { int len = read.intNext(), k = read.intNext(); int[] arr = iArr(len); for(int i = 0; i < len; i++ ){ arr[i] = read.intNext(); } int l = 1, h = len + 1; while( h - l > 1){ int mid = (h + l)/2; int[] b = iArr(len); for(int i = 0; i < len; i++ ){ int curr = (arr[i] >= mid)? 1: -1; b[i] += curr; if( i != 0 ){ b[i] += b[i - 1]; } } int max = b[k - 1], min = 0; for(int i = k; i < len; i++ ){ min = min(min, b[i - k]); max = max( max, b[i] - min ); } if( max > 0 ){ l = mid; }else{ h = mid; } } println(l); } /************************************************************************************************************************************************/ public static void main(String[] args) throws IOException { new Thread(null, new MaxMedian(), "1").start(); } static PrintWriter out = new PrintWriter(System.out); static Reader read = new Reader(); static StringBuilder sbr = new StringBuilder(); static int mod = (int) 1e9 + 7; static int dmax = Integer.MAX_VALUE; static long lmax = Long.MAX_VALUE; static int dmin = Integer.MIN_VALUE; static long lmin = Long.MIN_VALUE; @Override public void run() { try { solve(); out.close(); } catch (IOException e) { e.printStackTrace(); System.exit(1); } } static class Reader { private byte[] buf = new byte[1024]; private int index; private InputStream in; private int total; public Reader() { in = System.in; } public int scan() throws IOException { if (total < 0) throw new InputMismatchException(); if (index >= total) { index = 0; total = in.read(buf); if (total <= 0) return -1; } return buf[index++]; } public int intNext() throws IOException { int integer = 0; int n = scan(); while (isWhiteSpace(n)) n = scan(); int neg = 1; if (n == '-') { neg = -1; n = scan(); } while (!isWhiteSpace(n)) { if (n >= '0' && n <= '9') { integer *= 10; integer += n - '0'; n = scan(); } else throw new InputMismatchException(); } return neg * integer; } public double doubleNext() throws IOException { double doub = 0; int n = scan(); while (isWhiteSpace(n)) n = scan(); int neg = 1; if (n == '-') { neg = -1; n = scan(); } while (!isWhiteSpace(n) && n != '.') { if (n >= '0' && n <= '9') { doub *= 10; doub += n - '0'; n = scan(); } else throw new InputMismatchException(); } if (n == '.') { n = scan(); double temp = 1; while (!isWhiteSpace(n)) { if (n >= '0' && n <= '9') { temp /= 10; doub += (n - '0') * temp; n = scan(); } else throw new InputMismatchException(); } } return doub * neg; } public String read() throws IOException { StringBuilder sb = new StringBuilder(); int n = scan(); while (isWhiteSpace(n)) n = scan(); while (!isWhiteSpace(n)) { sb.append((char) n); n = scan(); } return sb.toString(); } private boolean isWhiteSpace(int n) { if (n == ' ' || n == '\n' || n == '\r' || n == '\t' || n == -1) return true; return false; } } static void shuffle(int[] aa) { int n = aa.length; Random rand = new Random(); for (int i = 1; i < n; i++) { int j = rand.nextInt(i + 1); int tmp = aa[i]; aa[i] = aa[j]; aa[j] = tmp; } } static void shuffle(int[][] aa) { int n = aa.length; Random rand = new Random(); for (int i = 1; i < n; i++) { int j = rand.nextInt(i + 1); int first = aa[i][0]; int second = aa[i][1]; aa[i][0] = aa[j][0]; aa[i][1] = aa[j][1]; aa[j][0] = first; aa[j][1] = second; } } static final class Comparators { public static final Comparator<int[]> pairIntArr = (x, y) -> x[0] == y[0] ? compare(x[1], y[1]) : compare(x[0], y[0]); private static final int compare(final int x, final int y) { return Integer.compare(x, y); } } static void print(Object object) { out.print(object); } static void println(Object object) { out.println(object); } static int[] iArr(int len) { return new int[len]; } static long[] lArr(int len) { return new long[len]; } static long min(long a, long b) { return Math.min(a, b); } static int min(int a, int b) { return Math.min(a, b); } static long max(Long a, Long b) { return Math.max(a, b); } static int max(int a, int b) { return Math.max(a, b); } }
Java
["5 3\n1 2 3 2 1", "4 2\n1 2 3 4"]
2 seconds
["2", "3"]
NoteIn the first example all the possible subarrays are $$$[1..3]$$$, $$$[1..4]$$$, $$$[1..5]$$$, $$$[2..4]$$$, $$$[2..5]$$$ and $$$[3..5]$$$ and the median for all of them is $$$2$$$, so the maximum possible median is $$$2$$$ too.In the second example $$$median([3..4]) = 3$$$.
Java 11
standard input
[ "binary search", "data structures", "dp" ]
dddeb7663c948515def967374f2b8812
The first line contains two integers $$$n$$$ and $$$k$$$ ($$$1 \leq k \leq n \leq 2 \cdot 10^5$$$). The second line contains $$$n$$$ integers $$$a_1, a_2, \ldots, a_n$$$ ($$$1 \leq a_i \leq n$$$).
2,100
Output one integer $$$m$$$ — the maximum median you can get.
standard output
PASSED
d5b75ff9380ee69aa4f8b23c2e80b145
train_110.jsonl
1613658900
You are a given an array $$$a$$$ of length $$$n$$$. Find a subarray $$$a[l..r]$$$ with length at least $$$k$$$ with the largest median.A median in an array of length $$$n$$$ is an element which occupies position number $$$\lfloor \frac{n + 1}{2} \rfloor$$$ after we sort the elements in non-decreasing order. For example: $$$median([1, 2, 3, 4]) = 2$$$, $$$median([3, 2, 1]) = 2$$$, $$$median([2, 1, 2, 1]) = 1$$$.Subarray $$$a[l..r]$$$ is a contiguous part of the array $$$a$$$, i. e. the array $$$a_l,a_{l+1},\ldots,a_r$$$ for some $$$1 \leq l \leq r \leq n$$$, its length is $$$r - l + 1$$$.
256 megabytes
import java.io.*; import java.util.*; public class Codeforces { public static void main(String args[])throws Exception { BufferedReader bu=new BufferedReader(new InputStreamReader(System.in)); StringBuilder sb=new StringBuilder(); String s[]=bu.readLine().split(" "); int n=Integer.parseInt(s[0]),k=Integer.parseInt(s[1]); int a[]=new int[n],i; b=new int[n]; s=bu.readLine().split(" "); for(i=0;i<n;i++) a[i]=Integer.parseInt(s[i]); int l=1,r=n,ans=-1,mid; while(l<=r) { mid=(l+r)>>1; if(possible(a,mid,k)) { ans=mid; l=mid+1; } else r=mid-1; } System.out.print(ans); } static int b[]; static boolean possible(int a[],int m,int k) { int i,n=a.length; for(i=0;i<n;i++) { if(a[i]>=m) b[i]=1; else b[i]=-1; if(i>0) b[i]+=b[i-1]; } int mx=b[k-1]; int mn=0; for(i=k;i<n;i++) { mn=Math.min(mn,b[i-k]); mx=Math.max(mx,b[i]-mn); } return mx>0; } }
Java
["5 3\n1 2 3 2 1", "4 2\n1 2 3 4"]
2 seconds
["2", "3"]
NoteIn the first example all the possible subarrays are $$$[1..3]$$$, $$$[1..4]$$$, $$$[1..5]$$$, $$$[2..4]$$$, $$$[2..5]$$$ and $$$[3..5]$$$ and the median for all of them is $$$2$$$, so the maximum possible median is $$$2$$$ too.In the second example $$$median([3..4]) = 3$$$.
Java 11
standard input
[ "binary search", "data structures", "dp" ]
dddeb7663c948515def967374f2b8812
The first line contains two integers $$$n$$$ and $$$k$$$ ($$$1 \leq k \leq n \leq 2 \cdot 10^5$$$). The second line contains $$$n$$$ integers $$$a_1, a_2, \ldots, a_n$$$ ($$$1 \leq a_i \leq n$$$).
2,100
Output one integer $$$m$$$ — the maximum median you can get.
standard output
PASSED
177e14ed04e50bbb33be6f5636d81638
train_110.jsonl
1613658900
You are a given an array $$$a$$$ of length $$$n$$$. Find a subarray $$$a[l..r]$$$ with length at least $$$k$$$ with the largest median.A median in an array of length $$$n$$$ is an element which occupies position number $$$\lfloor \frac{n + 1}{2} \rfloor$$$ after we sort the elements in non-decreasing order. For example: $$$median([1, 2, 3, 4]) = 2$$$, $$$median([3, 2, 1]) = 2$$$, $$$median([2, 1, 2, 1]) = 1$$$.Subarray $$$a[l..r]$$$ is a contiguous part of the array $$$a$$$, i. e. the array $$$a_l,a_{l+1},\ldots,a_r$$$ for some $$$1 \leq l \leq r \leq n$$$, its length is $$$r - l + 1$$$.
256 megabytes
import java.util.*; import java.io.*; //My life seems to be a joke. But, one day I will conquer. public class B{ public static void main(String[] args) { FastScanner fs = new FastScanner(); PrintWriter out = new PrintWriter(System.out); int n = fs.nextInt(); int k = fs.nextInt(); int[] arr = fs.readArray(n); int left = 1;//good int right = n+1;//bad int[] temp = new int[n]; while(left+1<right) { int mid = (left+right)/2; for(int i=0;i<n;i++) { if(arr[i]>=mid) { temp[i] = 1; } else { temp[i] = -1; } } for(int i=1;i<n;i++) { temp[i] += temp[i-1]; } int max = temp[k - 1]; int min = 0; for (int i = k; i < n; ++i) { min = Math.min(min,temp[i - k]); max = Math.max(max, temp[i] - min); } if(max>0) { left = mid; } else { right = mid; } } out.println(left);//bcoz left is the best!! out.close(); } static class FastScanner { BufferedReader br=new BufferedReader(new InputStreamReader(System.in)); StringTokenizer st=new StringTokenizer(""); String next() { while (!st.hasMoreTokens()) try { st=new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } int[] readArray(int n) { int[] a=new int[n]; for (int i=0; i<n; i++) a[i]=nextInt(); return a; } long nextLong() { return Long.parseLong(next()); } } }
Java
["5 3\n1 2 3 2 1", "4 2\n1 2 3 4"]
2 seconds
["2", "3"]
NoteIn the first example all the possible subarrays are $$$[1..3]$$$, $$$[1..4]$$$, $$$[1..5]$$$, $$$[2..4]$$$, $$$[2..5]$$$ and $$$[3..5]$$$ and the median for all of them is $$$2$$$, so the maximum possible median is $$$2$$$ too.In the second example $$$median([3..4]) = 3$$$.
Java 11
standard input
[ "binary search", "data structures", "dp" ]
dddeb7663c948515def967374f2b8812
The first line contains two integers $$$n$$$ and $$$k$$$ ($$$1 \leq k \leq n \leq 2 \cdot 10^5$$$). The second line contains $$$n$$$ integers $$$a_1, a_2, \ldots, a_n$$$ ($$$1 \leq a_i \leq n$$$).
2,100
Output one integer $$$m$$$ — the maximum median you can get.
standard output
PASSED
8ffcd55357f8fabfa08cb37ac76dde3b
train_110.jsonl
1613658900
You are a given an array $$$a$$$ of length $$$n$$$. Find a subarray $$$a[l..r]$$$ with length at least $$$k$$$ with the largest median.A median in an array of length $$$n$$$ is an element which occupies position number $$$\lfloor \frac{n + 1}{2} \rfloor$$$ after we sort the elements in non-decreasing order. For example: $$$median([1, 2, 3, 4]) = 2$$$, $$$median([3, 2, 1]) = 2$$$, $$$median([2, 1, 2, 1]) = 1$$$.Subarray $$$a[l..r]$$$ is a contiguous part of the array $$$a$$$, i. e. the array $$$a_l,a_{l+1},\ldots,a_r$$$ for some $$$1 \leq l \leq r \leq n$$$, its length is $$$r - l + 1$$$.
256 megabytes
import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.io.PrintWriter; import java.util.ArrayList; import java.util.Arrays; import java.util.StringTokenizer; public class problemD { static class Solution { void solve() { int n = fs.nextInt(); int k = fs.nextInt(); int[] a = fs.readArray(n); b = new int[n+1]; pre = new int[n+1]; min = new int[n+1]; int ans = 0; for (int low = 1, high = n; low <= high; ) { int mid = (low+high)/2; if (possible(mid, a, k)) { ans = Math.max(ans, mid); low = mid+1; } else { high = mid-1; } } out.println(ans); } int[] b; int[] pre; int[] min; boolean possible(int x, int[] a, int k) { int n = a.length; pre[0] = 0; min[0] = 0; for (int i = 1; i <= n; i ++) { b[i] = a[i-1] >= x ? 1 : -1; pre[i] = pre[i-1]+b[i]; min[i] = Math.min(i == 0 ? Integer.MAX_VALUE : min[i-1], pre[i]); if (i >= k && pre[i] - min[i-k] > 0) return true; } return false; } } public static void main(String[] args) throws Exception { int T = 1; Solution solution = new Solution(); for (int t = 0; t < T; t++) solution.solve(); out.close(); } static void debug(Object... O) { System.err.println("DEBUG: " + Arrays.deepToString(O)); } private static FastScanner fs = new FastScanner(); private static PrintWriter out = new PrintWriter(System.out); static class FastScanner { // Thanks SecondThread. BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); StringTokenizer st = new StringTokenizer(""); String next() { while (!st.hasMoreTokens()) try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } int[] readArray(int n) { int[] a = new int[n]; for (int i = 0; i < n; i++) a[i] = nextInt(); return a; } long[] readLongArray(int n) { long[] a = new long[n]; for (int i = 0; i < n; i++) a[i] = nextLong(); return a; } ArrayList<Integer> readArrayList(int n) { ArrayList<Integer> a = new ArrayList<>(n); for (int i = 0 ; i < n; i ++ ) a.add(fs.nextInt()); return a; } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextString() { return next(); } } }
Java
["5 3\n1 2 3 2 1", "4 2\n1 2 3 4"]
2 seconds
["2", "3"]
NoteIn the first example all the possible subarrays are $$$[1..3]$$$, $$$[1..4]$$$, $$$[1..5]$$$, $$$[2..4]$$$, $$$[2..5]$$$ and $$$[3..5]$$$ and the median for all of them is $$$2$$$, so the maximum possible median is $$$2$$$ too.In the second example $$$median([3..4]) = 3$$$.
Java 11
standard input
[ "binary search", "data structures", "dp" ]
dddeb7663c948515def967374f2b8812
The first line contains two integers $$$n$$$ and $$$k$$$ ($$$1 \leq k \leq n \leq 2 \cdot 10^5$$$). The second line contains $$$n$$$ integers $$$a_1, a_2, \ldots, a_n$$$ ($$$1 \leq a_i \leq n$$$).
2,100
Output one integer $$$m$$$ — the maximum median you can get.
standard output
PASSED
280995a8547d873b01cf66715e5fc548
train_110.jsonl
1613658900
You are a given an array $$$a$$$ of length $$$n$$$. Find a subarray $$$a[l..r]$$$ with length at least $$$k$$$ with the largest median.A median in an array of length $$$n$$$ is an element which occupies position number $$$\lfloor \frac{n + 1}{2} \rfloor$$$ after we sort the elements in non-decreasing order. For example: $$$median([1, 2, 3, 4]) = 2$$$, $$$median([3, 2, 1]) = 2$$$, $$$median([2, 1, 2, 1]) = 1$$$.Subarray $$$a[l..r]$$$ is a contiguous part of the array $$$a$$$, i. e. the array $$$a_l,a_{l+1},\ldots,a_r$$$ for some $$$1 \leq l \leq r \leq n$$$, its length is $$$r - l + 1$$$.
256 megabytes
/* "Everything in the universe is balanced. Every disappointment you face in life will be balanced by something good for you! Keep going, never give up." Just have Patience + 1... */ import java.util.*; import java.lang.*; import java.io.*; public class Solution { public static void main(String[] args) throws java.lang.Exception { out = new PrintWriter(new BufferedOutputStream(System.out)); sc = new FastReader(); int test = 1; for (int t = 1; t <= test; t++) { solve(); } out.close(); } private static void solve() { int n = sc.nextInt(); int k = sc.nextInt(); int[] arr = new int[n]; for (int i = 0; i < n; i++) { arr[i] = sc.nextInt(); } int maxMedian = binarySearch(arr, n, k); out.println(maxMedian); } private static int binarySearch(int[] arr, int n, int k) { int low = 1, high = n; int maxMedian = -1; while (low <= high) { int mid = (low + high) >> 1; if (medianAtLeastRequired(arr, n, k, mid)) { maxMedian = mid; low = mid + 1; }else { high = mid - 1; } } return maxMedian; } private static boolean medianAtLeastRequired(int[] arr, int n, int k, int requiredMedian) { int[] assigned = new int[n]; for (int i = 0; i < n; i++) { assigned[i] = arr[i] < requiredMedian ? -1 : 1; } for (int i = 1; i < n; i++) { assigned[i] += assigned[i - 1]; } int maxSubarraySum = assigned[k - 1], minPrefixSum = 0; for (int i = k; i < n; i++) { minPrefixSum = Math.min(minPrefixSum, assigned[i - k]); maxSubarraySum = Math.max(maxSubarraySum, assigned[i] - minPrefixSum); } return maxSubarraySum > 0; } public static FastReader sc; public static PrintWriter out; static class FastReader { BufferedReader br; StringTokenizer str; public FastReader() { br = new BufferedReader(new InputStreamReader(System.in)); } String next() { while (str == null || !str.hasMoreElements()) { try { str = new StringTokenizer(br.readLine()); } catch (IOException lastMonthOfVacation) { lastMonthOfVacation.printStackTrace(); } } return str.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine() { String str = ""; try { str = br.readLine(); } catch (IOException lastMonthOfVacation) { lastMonthOfVacation.printStackTrace(); } return str; } } }
Java
["5 3\n1 2 3 2 1", "4 2\n1 2 3 4"]
2 seconds
["2", "3"]
NoteIn the first example all the possible subarrays are $$$[1..3]$$$, $$$[1..4]$$$, $$$[1..5]$$$, $$$[2..4]$$$, $$$[2..5]$$$ and $$$[3..5]$$$ and the median for all of them is $$$2$$$, so the maximum possible median is $$$2$$$ too.In the second example $$$median([3..4]) = 3$$$.
Java 11
standard input
[ "binary search", "data structures", "dp" ]
dddeb7663c948515def967374f2b8812
The first line contains two integers $$$n$$$ and $$$k$$$ ($$$1 \leq k \leq n \leq 2 \cdot 10^5$$$). The second line contains $$$n$$$ integers $$$a_1, a_2, \ldots, a_n$$$ ($$$1 \leq a_i \leq n$$$).
2,100
Output one integer $$$m$$$ — the maximum median you can get.
standard output
PASSED
ceca32490727141bc16b7d5fb8340bbe
train_110.jsonl
1613658900
You are a given an array $$$a$$$ of length $$$n$$$. Find a subarray $$$a[l..r]$$$ with length at least $$$k$$$ with the largest median.A median in an array of length $$$n$$$ is an element which occupies position number $$$\lfloor \frac{n + 1}{2} \rfloor$$$ after we sort the elements in non-decreasing order. For example: $$$median([1, 2, 3, 4]) = 2$$$, $$$median([3, 2, 1]) = 2$$$, $$$median([2, 1, 2, 1]) = 1$$$.Subarray $$$a[l..r]$$$ is a contiguous part of the array $$$a$$$, i. e. the array $$$a_l,a_{l+1},\ldots,a_r$$$ for some $$$1 \leq l \leq r \leq n$$$, its length is $$$r - l + 1$$$.
256 megabytes
import java.io.*; import java.util.*; public class Codeforces { public static void main(String[] args) throws IOException { BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); //int cases = Integer.parseInt(br.readLine()); //o:while(cases-- > 0) { String[] str = br.readLine().split(" "); int n = Integer.parseInt(str[0]); int k = Integer.parseInt(str[1]); str = br.readLine().split(" "); int a[] = new int[n]; for(int i=0; i<n; i++) { a[i] = Integer.parseInt(str[i]); } int l = 1, r = n, ans = -1; while(l <= r) { int mid = l + (r - l)/2; if(possible(a, mid, k)) { ans = mid; l = mid + 1; }else { r = mid - 1; } } System.out.println(ans); //} } public static boolean possible(int[] a, int m, int k) { int n = a.length; int b[] = new int[n]; for(int i=0; i<n; i++) { if(a[i] >= m) { b[i] = 1; }else { b[i] = -1; } if(i > 0) { b[i] += b[i-1]; } } int max = b[k-1]; int min = 0; for(int i=k; i<n; i++) { min = Math.min(min, b[i-k]); max = Math.max(max, b[i] - min); } return max > 0; } }
Java
["5 3\n1 2 3 2 1", "4 2\n1 2 3 4"]
2 seconds
["2", "3"]
NoteIn the first example all the possible subarrays are $$$[1..3]$$$, $$$[1..4]$$$, $$$[1..5]$$$, $$$[2..4]$$$, $$$[2..5]$$$ and $$$[3..5]$$$ and the median for all of them is $$$2$$$, so the maximum possible median is $$$2$$$ too.In the second example $$$median([3..4]) = 3$$$.
Java 11
standard input
[ "binary search", "data structures", "dp" ]
dddeb7663c948515def967374f2b8812
The first line contains two integers $$$n$$$ and $$$k$$$ ($$$1 \leq k \leq n \leq 2 \cdot 10^5$$$). The second line contains $$$n$$$ integers $$$a_1, a_2, \ldots, a_n$$$ ($$$1 \leq a_i \leq n$$$).
2,100
Output one integer $$$m$$$ — the maximum median you can get.
standard output
PASSED
54fc785251a0b3326e08413dec5e5e8d
train_110.jsonl
1613658900
You are a given an array $$$a$$$ of length $$$n$$$. Find a subarray $$$a[l..r]$$$ with length at least $$$k$$$ with the largest median.A median in an array of length $$$n$$$ is an element which occupies position number $$$\lfloor \frac{n + 1}{2} \rfloor$$$ after we sort the elements in non-decreasing order. For example: $$$median([1, 2, 3, 4]) = 2$$$, $$$median([3, 2, 1]) = 2$$$, $$$median([2, 1, 2, 1]) = 1$$$.Subarray $$$a[l..r]$$$ is a contiguous part of the array $$$a$$$, i. e. the array $$$a_l,a_{l+1},\ldots,a_r$$$ for some $$$1 \leq l \leq r \leq n$$$, its length is $$$r - l + 1$$$.
256 megabytes
//package maxmedian; import java.util.*; import java.io.*; public class maxmedian { public static boolean isValid(int[] nums, int val, int k) { TreeSet<Integer> before = new TreeSet<Integer>(); int sum = 0; int beforeSum = 0; for(int i = 0; i < k; i++) { if(nums[i] >= val) { sum ++; } else { sum --; } } before.add(0); if(sum > 0) { return true; } for(int i = k; i < nums.length; i++) { beforeSum += nums[i - k] >= val? 1 : -1; before.add(beforeSum); sum += nums[i] >= val? 1 : -1; if(before.floor(sum - 1) != null) { return true; } } return false; } public static void main(String[] args) throws IOException { BufferedReader fin = new BufferedReader(new InputStreamReader(System.in)); StringTokenizer st = new StringTokenizer(fin.readLine()); int n = Integer.parseInt(st.nextToken()); int k = Integer.parseInt(st.nextToken()); int[] nums = new int[n]; st = new StringTokenizer(fin.readLine()); for(int i = 0; i < n; i++) { nums[i] = Integer.parseInt(st.nextToken()); } int low = 0; int high = n; int ans = 0; int mid = low + (high - low) / 2; while(low <= high) { //System.out.println(mid); if(isValid(nums, mid, k)) { ans = Math.max(ans, mid); low = mid + 1; } else { high = mid - 1; } mid = low + (high - low) / 2; } System.out.println(ans); } }
Java
["5 3\n1 2 3 2 1", "4 2\n1 2 3 4"]
2 seconds
["2", "3"]
NoteIn the first example all the possible subarrays are $$$[1..3]$$$, $$$[1..4]$$$, $$$[1..5]$$$, $$$[2..4]$$$, $$$[2..5]$$$ and $$$[3..5]$$$ and the median for all of them is $$$2$$$, so the maximum possible median is $$$2$$$ too.In the second example $$$median([3..4]) = 3$$$.
Java 11
standard input
[ "binary search", "data structures", "dp" ]
dddeb7663c948515def967374f2b8812
The first line contains two integers $$$n$$$ and $$$k$$$ ($$$1 \leq k \leq n \leq 2 \cdot 10^5$$$). The second line contains $$$n$$$ integers $$$a_1, a_2, \ldots, a_n$$$ ($$$1 \leq a_i \leq n$$$).
2,100
Output one integer $$$m$$$ — the maximum median you can get.
standard output
PASSED
90ca87f0cf72f46c1f90b0b070605f73
train_110.jsonl
1613658900
You are a given an array $$$a$$$ of length $$$n$$$. Find a subarray $$$a[l..r]$$$ with length at least $$$k$$$ with the largest median.A median in an array of length $$$n$$$ is an element which occupies position number $$$\lfloor \frac{n + 1}{2} \rfloor$$$ after we sort the elements in non-decreasing order. For example: $$$median([1, 2, 3, 4]) = 2$$$, $$$median([3, 2, 1]) = 2$$$, $$$median([2, 1, 2, 1]) = 1$$$.Subarray $$$a[l..r]$$$ is a contiguous part of the array $$$a$$$, i. e. the array $$$a_l,a_{l+1},\ldots,a_r$$$ for some $$$1 \leq l \leq r \leq n$$$, its length is $$$r - l + 1$$$.
256 megabytes
import java.io.DataInputStream; import java.io.IOException; import java.io.OutputStreamWriter; import java.io.PrintWriter; public class Main { private static void run() throws IOException { int n = in.nextInt(); int k = in.nextInt(); int[] a = new int[n]; for (int i = 0; i < n; i++) { a[i] = in.nextInt(); } int left = 1; int right = n; while (left < right) { int mid = (left + right + 1) >> 1; if (is_ok(mid, a, k)) { left = mid; } else { right = mid - 1; } } out.println(left); } private static boolean is_ok(int x, int[] a, int k) { int[] b = new int[a.length]; for (int i = 0; i < a.length; i++) { b[i] = a[i] >= x ? 1 : -1; } int[] sum = new int[a.length]; sum[0] = b[0]; for (int i = 1; i < a.length; i++) { sum[i] = sum[i - 1] + b[i]; } int min = 1000000; for (int i = k - 1; i < a.length; i++) { int max_count = Math.max(sum[i] - min, sum[i]); if (max_count > 0) return true; min = Math.min(min, sum[i - k + 1]); } return false; } public static void main(String[] args) throws IOException { in = new Reader(); out = new PrintWriter(new OutputStreamWriter(System.out)); // int t = in.nextInt(); // for (int i = 0; i < t; i++) { // } run(); out.flush(); in.close(); out.close(); } private static int gcd(int a, int b) { if (a == 0 || b == 0) return 0; while (b != 0) { int tmp; tmp = a % b; a = b; b = tmp; } return a; } static final long mod = 1000000007; static long pow_mod(long a, long b) { long result = 1; while (b != 0) { if ((b & 1) != 0) result = (result * a) % mod; a = (a * a) % mod; b >>= 1; } return result; } private static long multiplied_mod(long... longs) { long ans = 1; for (long now : longs) { ans = (ans * now) % mod; } return ans; } @SuppressWarnings("FieldCanBeLocal") private static Reader in; private static PrintWriter out; private static void print_array(int[] array) { for (int now : array) { out.print(now); out.print(' '); } out.println(); } private static void print_array(long[] array) { for (long now : array) { out.print(now); out.print(' '); } out.println(); } static class Reader { private static final int BUFFER_SIZE = 1 << 16; private final DataInputStream din; private final byte[] buffer; private int bufferPointer, bytesRead; Reader() { din = new DataInputStream(System.in); buffer = new byte[BUFFER_SIZE]; bufferPointer = bytesRead = 0; } public String readLine() throws IOException { final byte[] buf = new byte[1024]; // line length int cnt = 0, c; while ((c = read()) != -1) { if (c == '\n') { break; } buf[cnt++] = (byte) c; } return new String(buf, 0, cnt); } public int nextSign() throws IOException { byte c = read(); while ('+' != c && '-' != c) { c = read(); } return '+' == c ? 0 : 1; } private static boolean isSpaceChar(int c) { return !(c >= 33 && c <= 126); } public int skip() throws IOException { int b; // noinspection ALL while ((b = read()) != -1 && isSpaceChar(b)) { ; } return b; } public char nc() throws IOException { return (char) skip(); } public String next() throws IOException { int b = skip(); final StringBuilder sb = new StringBuilder(); while (!isSpaceChar(b)) { // when nextLine, (isSpaceChar(b) && b != ' ') sb.appendCodePoint(b); b = read(); } return sb.toString(); } public int nextInt() throws IOException { int ret = 0; byte c = read(); while (c <= ' ') { c = read(); } final boolean neg = c == '-'; if (neg) { c = read(); } do { ret = ret * 10 + c - '0'; } while ((c = read()) >= '0' && c <= '9'); if (neg) { return -ret; } return ret; } public long nextLong() throws IOException { long ret = 0; byte c = read(); while (c <= ' ') { c = read(); } final boolean neg = c == '-'; if (neg) { c = read(); } do { ret = ret * 10 + c - '0'; } while ((c = read()) >= '0' && c <= '9'); if (neg) { return -ret; } return ret; } public double nextDouble() throws IOException { double ret = 0, div = 1; byte c = read(); while (c <= ' ') { c = read(); } final boolean neg = c == '-'; if (neg) { c = read(); } do { ret = ret * 10 + c - '0'; } while ((c = read()) >= '0' && c <= '9'); if (c == '.') { while ((c = read()) >= '0' && c <= '9') { ret += (c - '0') / (div *= 10); } } if (neg) { return -ret; } return ret; } private void fillBuffer() throws IOException { bytesRead = din.read(buffer, bufferPointer = 0, BUFFER_SIZE); if (bytesRead == -1) { buffer[0] = -1; } } private byte read() throws IOException { if (bufferPointer == bytesRead) { fillBuffer(); } return buffer[bufferPointer++]; } public void close() throws IOException { din.close(); } } }
Java
["5 3\n1 2 3 2 1", "4 2\n1 2 3 4"]
2 seconds
["2", "3"]
NoteIn the first example all the possible subarrays are $$$[1..3]$$$, $$$[1..4]$$$, $$$[1..5]$$$, $$$[2..4]$$$, $$$[2..5]$$$ and $$$[3..5]$$$ and the median for all of them is $$$2$$$, so the maximum possible median is $$$2$$$ too.In the second example $$$median([3..4]) = 3$$$.
Java 11
standard input
[ "binary search", "data structures", "dp" ]
dddeb7663c948515def967374f2b8812
The first line contains two integers $$$n$$$ and $$$k$$$ ($$$1 \leq k \leq n \leq 2 \cdot 10^5$$$). The second line contains $$$n$$$ integers $$$a_1, a_2, \ldots, a_n$$$ ($$$1 \leq a_i \leq n$$$).
2,100
Output one integer $$$m$$$ — the maximum median you can get.
standard output
PASSED
3f28d5ee11a084ab1f4269a4d52ca453
train_110.jsonl
1613658900
You are a given an array $$$a$$$ of length $$$n$$$. Find a subarray $$$a[l..r]$$$ with length at least $$$k$$$ with the largest median.A median in an array of length $$$n$$$ is an element which occupies position number $$$\lfloor \frac{n + 1}{2} \rfloor$$$ after we sort the elements in non-decreasing order. For example: $$$median([1, 2, 3, 4]) = 2$$$, $$$median([3, 2, 1]) = 2$$$, $$$median([2, 1, 2, 1]) = 1$$$.Subarray $$$a[l..r]$$$ is a contiguous part of the array $$$a$$$, i. e. the array $$$a_l,a_{l+1},\ldots,a_r$$$ for some $$$1 \leq l \leq r \leq n$$$, its length is $$$r - l + 1$$$.
256 megabytes
import java.util.*; import java.io.*; public class Main { static BufferedReader rd = new BufferedReader(new InputStreamReader(System.in)); static BufferedWriter wr = new BufferedWriter(new OutputStreamWriter(System.out)); static StringTokenizer tok; public static void main(String[] args) throws Exception { solution(); } public static void solution() throws Exception { tok = new StringTokenizer(rd.readLine()); int n = Integer.parseInt(tok.nextToken()); int k = Integer.parseInt(tok.nextToken()); tok = new StringTokenizer(rd.readLine()); int[] arr = new int[n]; int[] sorted_arr = new int[n]; for(int i=0;i<n;i++) { arr[i] = Integer.parseInt(tok.nextToken()); sorted_arr[i] = arr[i]; } Arrays.sort(sorted_arr); int l = 1, r = n+1; while(r - l > 1) { int m = (l+r)/2 ; int[] brr = new int[n]; for(int i=0;i<n;i++) { if(arr[i] < m) brr[i] = -1; else brr[i] = 1; } for(int i=1;i<n;i++) brr[i] = brr[i] + brr[i-1]; int min = 0, max = brr[k-1]; for(int i=k;i<n;i++) { min = Math.min(min, brr[i-k]); max = Math.max(max, brr[i] - min); } if(max > 0) l = m; else r = m; } System.out.println(l); } }
Java
["5 3\n1 2 3 2 1", "4 2\n1 2 3 4"]
2 seconds
["2", "3"]
NoteIn the first example all the possible subarrays are $$$[1..3]$$$, $$$[1..4]$$$, $$$[1..5]$$$, $$$[2..4]$$$, $$$[2..5]$$$ and $$$[3..5]$$$ and the median for all of them is $$$2$$$, so the maximum possible median is $$$2$$$ too.In the second example $$$median([3..4]) = 3$$$.
Java 11
standard input
[ "binary search", "data structures", "dp" ]
dddeb7663c948515def967374f2b8812
The first line contains two integers $$$n$$$ and $$$k$$$ ($$$1 \leq k \leq n \leq 2 \cdot 10^5$$$). The second line contains $$$n$$$ integers $$$a_1, a_2, \ldots, a_n$$$ ($$$1 \leq a_i \leq n$$$).
2,100
Output one integer $$$m$$$ — the maximum median you can get.
standard output
PASSED
d1ae4509311e654204f1e96f2305ca3a
train_110.jsonl
1613658900
You are a given an array $$$a$$$ of length $$$n$$$. Find a subarray $$$a[l..r]$$$ with length at least $$$k$$$ with the largest median.A median in an array of length $$$n$$$ is an element which occupies position number $$$\lfloor \frac{n + 1}{2} \rfloor$$$ after we sort the elements in non-decreasing order. For example: $$$median([1, 2, 3, 4]) = 2$$$, $$$median([3, 2, 1]) = 2$$$, $$$median([2, 1, 2, 1]) = 1$$$.Subarray $$$a[l..r]$$$ is a contiguous part of the array $$$a$$$, i. e. the array $$$a_l,a_{l+1},\ldots,a_r$$$ for some $$$1 \leq l \leq r \leq n$$$, its length is $$$r - l + 1$$$.
256 megabytes
/* Codeforces Problem 1486D */ import java.io.FileInputStream; import java.io.IOException; import java.io.InputStream; public class MaxMedian { public static void main(String[] args) throws IOException { FastIO in = new FastIO(System.in); int n = in.nextInt(); int k = in.nextInt(); int[] a = new int[n]; for (int i = 0; i < n; i++) a[i] = in.nextInt(); int l = 1; int r = n+1; while (r - l > 1) { int m = (l + r) / 2; int[] b = new int[n]; for (int i = 0; i < n; i++) { if (a[i] >= m) b[i] = 1; else b[i] = -1; if (i > 0) b[i] += b[i-1]; } int max = b[k-1]; int min = 0; for (int i = k; i < n; i++) { min = Math.min(min, b[i-k]); max = Math.max(max, b[i] - min); } if (max > 0) l = m; else r = m; } System.out.println(l); in.close(); } public static class FastIO { private InputStream dis; private byte[] buffer = new byte[1 << 17]; private int pointer = 0; public FastIO(String fileName) throws IOException { dis = new FileInputStream(fileName); } public FastIO(InputStream is) throws IOException { dis = is; } public int nextInt() throws IOException { int ret = 0; byte b; do { b = nextByte(); } while (b <= ' '); boolean negative = false; if (b == '-') { negative = true; b = nextByte(); } while (b >= '0' && b <= '9') { ret = 10 * ret + b - '0'; b = nextByte(); } return (negative) ? -ret : ret; } public long nextLong() throws IOException { long ret = 0; byte b; do { b = nextByte(); } while (b <= ' '); boolean negative = false; if (b == '-') { negative = true; b = nextByte(); } while (b >= '0' && b <= '9') { ret = 10 * ret + b - '0'; b = nextByte(); } return (negative) ? -ret : ret; } public byte nextByte() throws IOException { if (pointer == buffer.length) { dis.read(buffer, 0, buffer.length); pointer = 0; } return buffer[pointer++]; } public String next() throws IOException { StringBuffer ret = new StringBuffer(); byte b; do { b = nextByte(); } while (b <= ' '); while (b > ' ') { ret.appendCodePoint(b); b = nextByte(); } return ret.toString(); } public void close() throws IOException { dis.close(); } } }
Java
["5 3\n1 2 3 2 1", "4 2\n1 2 3 4"]
2 seconds
["2", "3"]
NoteIn the first example all the possible subarrays are $$$[1..3]$$$, $$$[1..4]$$$, $$$[1..5]$$$, $$$[2..4]$$$, $$$[2..5]$$$ and $$$[3..5]$$$ and the median for all of them is $$$2$$$, so the maximum possible median is $$$2$$$ too.In the second example $$$median([3..4]) = 3$$$.
Java 11
standard input
[ "binary search", "data structures", "dp" ]
dddeb7663c948515def967374f2b8812
The first line contains two integers $$$n$$$ and $$$k$$$ ($$$1 \leq k \leq n \leq 2 \cdot 10^5$$$). The second line contains $$$n$$$ integers $$$a_1, a_2, \ldots, a_n$$$ ($$$1 \leq a_i \leq n$$$).
2,100
Output one integer $$$m$$$ — the maximum median you can get.
standard output
PASSED
8a97d45c534c7d386737c2fb46189532
train_110.jsonl
1613658900
You are a given an array $$$a$$$ of length $$$n$$$. Find a subarray $$$a[l..r]$$$ with length at least $$$k$$$ with the largest median.A median in an array of length $$$n$$$ is an element which occupies position number $$$\lfloor \frac{n + 1}{2} \rfloor$$$ after we sort the elements in non-decreasing order. For example: $$$median([1, 2, 3, 4]) = 2$$$, $$$median([3, 2, 1]) = 2$$$, $$$median([2, 1, 2, 1]) = 1$$$.Subarray $$$a[l..r]$$$ is a contiguous part of the array $$$a$$$, i. e. the array $$$a_l,a_{l+1},\ldots,a_r$$$ for some $$$1 \leq l \leq r \leq n$$$, its length is $$$r - l + 1$$$.
256 megabytes
import java.util.ArrayDeque; import java.util.Queue; import java.util.Scanner; public class d1486 { public static void main(String[] args) { Scanner in = new Scanner(System.in); int length = in.nextInt(); int minSubarrayLength = in.nextInt(); int[] array = new int[length]; int min = Integer.MAX_VALUE, max = 0; for (int i = 0; i < array.length; i++) { array[i] = in.nextInt(); min = Math.min(min, array[i]); max = Math.max(max, array[i]); } while (min < max) { int attempt = ((max + min) / 2) + ((min + max) % 2); if (canGetMedian(array, minSubarrayLength, attempt)) { min = attempt; } else { max = attempt - 1; } } System.out.println(min); } private static boolean canGetMedian(int[] array, int minSubarrayLength, int attempt) { int tooLow = 0; int highEnough = 0; int couldRemoveTooLow = 0; int couldRemoveHighEnough = 0; int startIdx = 0; int endIdx = 0; while (endIdx < array.length) { if (array[endIdx] < attempt) { tooLow++; } else { highEnough++; } if (endIdx - startIdx + 1 > minSubarrayLength) { if (array[endIdx - minSubarrayLength] < attempt) { couldRemoveTooLow++; } else { couldRemoveHighEnough++; } } while (couldRemoveHighEnough < couldRemoveTooLow) { if (array[startIdx++] < attempt) { couldRemoveTooLow--; tooLow--; } else { couldRemoveHighEnough--; highEnough--; } } if ((endIdx - startIdx + 1 >= minSubarrayLength) && (highEnough > tooLow)) { return true; } endIdx++; } return false; } }
Java
["5 3\n1 2 3 2 1", "4 2\n1 2 3 4"]
2 seconds
["2", "3"]
NoteIn the first example all the possible subarrays are $$$[1..3]$$$, $$$[1..4]$$$, $$$[1..5]$$$, $$$[2..4]$$$, $$$[2..5]$$$ and $$$[3..5]$$$ and the median for all of them is $$$2$$$, so the maximum possible median is $$$2$$$ too.In the second example $$$median([3..4]) = 3$$$.
Java 11
standard input
[ "binary search", "data structures", "dp" ]
dddeb7663c948515def967374f2b8812
The first line contains two integers $$$n$$$ and $$$k$$$ ($$$1 \leq k \leq n \leq 2 \cdot 10^5$$$). The second line contains $$$n$$$ integers $$$a_1, a_2, \ldots, a_n$$$ ($$$1 \leq a_i \leq n$$$).
2,100
Output one integer $$$m$$$ — the maximum median you can get.
standard output
PASSED
4e03ba99b39e3d910fd93c158816ae0d
train_110.jsonl
1613658900
You are a given an array $$$a$$$ of length $$$n$$$. Find a subarray $$$a[l..r]$$$ with length at least $$$k$$$ with the largest median.A median in an array of length $$$n$$$ is an element which occupies position number $$$\lfloor \frac{n + 1}{2} \rfloor$$$ after we sort the elements in non-decreasing order. For example: $$$median([1, 2, 3, 4]) = 2$$$, $$$median([3, 2, 1]) = 2$$$, $$$median([2, 1, 2, 1]) = 1$$$.Subarray $$$a[l..r]$$$ is a contiguous part of the array $$$a$$$, i. e. the array $$$a_l,a_{l+1},\ldots,a_r$$$ for some $$$1 \leq l \leq r \leq n$$$, its length is $$$r - l + 1$$$.
256 megabytes
import java.util.*; import java.lang.*; import java.io.*; public class Codechef { public static void main(String[] args) throws java.lang.Exception { out = new PrintWriter(new BufferedOutputStream(System.out)); sc = new FastReader(); int test = 1; for (int t = 0; t < test; t++) { int n = sc.nextInt(); int k = sc.nextInt(); int[] arr = new int[n]; for (int i = 0; i < n; i++) { arr[i] = sc.nextInt(); } int l = 1, r = n; int res = -1; while (l <= r) { int mid = (l + r) / 2; int[] temp = new int[n]; for (int i = 0; i < n; i++) { if (arr[i] >= mid) { temp[i] = 1; }else { temp[i] = -1; } } for (int i = 1; i < n; i++) { temp[i] += temp[i - 1]; } int max = temp[k - 1]; int min = 0; for (int i = k; i < n; i++) { min = Math.min(min, temp[i - k]); max = Math.max(max, temp[i] - min); } if (max > 0) { res = mid; l = mid + 1; }else { r = mid - 1; } } out.println(res); } out.close(); } public static FastReader sc; public static PrintWriter out; static class FastReader { BufferedReader br; StringTokenizer st; public FastReader() { br = new BufferedReader(new InputStreamReader(System.in)); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } } }
Java
["5 3\n1 2 3 2 1", "4 2\n1 2 3 4"]
2 seconds
["2", "3"]
NoteIn the first example all the possible subarrays are $$$[1..3]$$$, $$$[1..4]$$$, $$$[1..5]$$$, $$$[2..4]$$$, $$$[2..5]$$$ and $$$[3..5]$$$ and the median for all of them is $$$2$$$, so the maximum possible median is $$$2$$$ too.In the second example $$$median([3..4]) = 3$$$.
Java 11
standard input
[ "binary search", "data structures", "dp" ]
dddeb7663c948515def967374f2b8812
The first line contains two integers $$$n$$$ and $$$k$$$ ($$$1 \leq k \leq n \leq 2 \cdot 10^5$$$). The second line contains $$$n$$$ integers $$$a_1, a_2, \ldots, a_n$$$ ($$$1 \leq a_i \leq n$$$).
2,100
Output one integer $$$m$$$ — the maximum median you can get.
standard output
PASSED
b4c724ad75d27753fe0558d4c0ed5bd8
train_110.jsonl
1613658900
You are a given an array $$$a$$$ of length $$$n$$$. Find a subarray $$$a[l..r]$$$ with length at least $$$k$$$ with the largest median.A median in an array of length $$$n$$$ is an element which occupies position number $$$\lfloor \frac{n + 1}{2} \rfloor$$$ after we sort the elements in non-decreasing order. For example: $$$median([1, 2, 3, 4]) = 2$$$, $$$median([3, 2, 1]) = 2$$$, $$$median([2, 1, 2, 1]) = 1$$$.Subarray $$$a[l..r]$$$ is a contiguous part of the array $$$a$$$, i. e. the array $$$a_l,a_{l+1},\ldots,a_r$$$ for some $$$1 \leq l \leq r \leq n$$$, its length is $$$r - l + 1$$$.
256 megabytes
import java.util.*; import java.lang.*; import java.io.*; public class Codechef { public static void main(String[] args) throws java.lang.Exception { out = new PrintWriter(new BufferedOutputStream(System.out)); sc = new FastReader(); int test = 1; for (int t = 0; t < test; t++) { int n = sc.nextInt(); int k = sc.nextInt(); int[] arr = new int[n]; for (int i = 0; i < n; i++) { arr[i] = sc.nextInt(); } int l = 1, r = n + 1; while (r - l > 1) { int mid = (l + r) / 2; int[] temp = new int[n]; for (int i = 0; i < n; i++) { if (arr[i] >= mid) { temp[i] = 1; }else { temp[i] = -1; } } for (int i = 1; i < n; i++) { temp[i] += temp[i - 1]; } int max = temp[k - 1]; int min = 0; for (int i = k; i < n; i++) { min = Math.min(min, temp[i - k]); max = Math.max(max, temp[i] - min); } if (max > 0) { l = mid; }else { r = mid; } } out.println(l); } out.close(); } public static FastReader sc; public static PrintWriter out; static class FastReader { BufferedReader br; StringTokenizer st; public FastReader() { br = new BufferedReader(new InputStreamReader(System.in)); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } } }
Java
["5 3\n1 2 3 2 1", "4 2\n1 2 3 4"]
2 seconds
["2", "3"]
NoteIn the first example all the possible subarrays are $$$[1..3]$$$, $$$[1..4]$$$, $$$[1..5]$$$, $$$[2..4]$$$, $$$[2..5]$$$ and $$$[3..5]$$$ and the median for all of them is $$$2$$$, so the maximum possible median is $$$2$$$ too.In the second example $$$median([3..4]) = 3$$$.
Java 11
standard input
[ "binary search", "data structures", "dp" ]
dddeb7663c948515def967374f2b8812
The first line contains two integers $$$n$$$ and $$$k$$$ ($$$1 \leq k \leq n \leq 2 \cdot 10^5$$$). The second line contains $$$n$$$ integers $$$a_1, a_2, \ldots, a_n$$$ ($$$1 \leq a_i \leq n$$$).
2,100
Output one integer $$$m$$$ — the maximum median you can get.
standard output
PASSED
836b5f03f87bc364f9a081eed4174d84
train_110.jsonl
1613658900
You are a given an array $$$a$$$ of length $$$n$$$. Find a subarray $$$a[l..r]$$$ with length at least $$$k$$$ with the largest median.A median in an array of length $$$n$$$ is an element which occupies position number $$$\lfloor \frac{n + 1}{2} \rfloor$$$ after we sort the elements in non-decreasing order. For example: $$$median([1, 2, 3, 4]) = 2$$$, $$$median([3, 2, 1]) = 2$$$, $$$median([2, 1, 2, 1]) = 1$$$.Subarray $$$a[l..r]$$$ is a contiguous part of the array $$$a$$$, i. e. the array $$$a_l,a_{l+1},\ldots,a_r$$$ for some $$$1 \leq l \leq r \leq n$$$, its length is $$$r - l + 1$$$.
256 megabytes
// coached by rainboy import java.io.*; import java.util.*; public class CF1486D extends PrintWriter { Scanner sc = new Scanner(System.in); CF1486D() { super(System.out, true); } public static void main(String[] $) { CF1486D o = new CF1486D(); o.main(); o.flush(); } void main() { int n = sc.nextInt(); int k = sc.nextInt(); int[] aa = new int[n]; int[] pp = new int[n + 1]; for (int i = 0; i < n; i++) aa[i] = sc.nextInt(); int lower = 1, upper = n + 1; while (upper - lower > 1) { int a = (lower + upper) / 2; boolean yes = false; int p = 0; for (int i = 1; i <= n; i++) { p += aa[i - 1] >= a ? 1 : -1; pp[i] = Math.min(p, pp[i - 1]); if (i >= k && p > pp[i - k]) { yes = true; break; } } if (yes) lower = a; else upper = a; } println(lower); } }
Java
["5 3\n1 2 3 2 1", "4 2\n1 2 3 4"]
2 seconds
["2", "3"]
NoteIn the first example all the possible subarrays are $$$[1..3]$$$, $$$[1..4]$$$, $$$[1..5]$$$, $$$[2..4]$$$, $$$[2..5]$$$ and $$$[3..5]$$$ and the median for all of them is $$$2$$$, so the maximum possible median is $$$2$$$ too.In the second example $$$median([3..4]) = 3$$$.
Java 11
standard input
[ "binary search", "data structures", "dp" ]
dddeb7663c948515def967374f2b8812
The first line contains two integers $$$n$$$ and $$$k$$$ ($$$1 \leq k \leq n \leq 2 \cdot 10^5$$$). The second line contains $$$n$$$ integers $$$a_1, a_2, \ldots, a_n$$$ ($$$1 \leq a_i \leq n$$$).
2,100
Output one integer $$$m$$$ — the maximum median you can get.
standard output
PASSED
41f2c9882ab35b70bcce2d1a092addb3
train_110.jsonl
1613658900
You are a given an array $$$a$$$ of length $$$n$$$. Find a subarray $$$a[l..r]$$$ with length at least $$$k$$$ with the largest median.A median in an array of length $$$n$$$ is an element which occupies position number $$$\lfloor \frac{n + 1}{2} \rfloor$$$ after we sort the elements in non-decreasing order. For example: $$$median([1, 2, 3, 4]) = 2$$$, $$$median([3, 2, 1]) = 2$$$, $$$median([2, 1, 2, 1]) = 1$$$.Subarray $$$a[l..r]$$$ is a contiguous part of the array $$$a$$$, i. e. the array $$$a_l,a_{l+1},\ldots,a_r$$$ for some $$$1 \leq l \leq r \leq n$$$, its length is $$$r - l + 1$$$.
256 megabytes
import java.io.*; import java.util.*; public class Main{ private static final String name = "triangles"; private static PrintWriter out; private static FastIO sc; private static final int mod = 1_000_000_007; public static void main(String[] args) throws Exception { try{ sc = new FastIO(name+".in"); out = new PrintWriter(name+".out"); }catch(FileNotFoundException e) { sc = new FastIO(System.in); out = new PrintWriter(new BufferedOutputStream(System.out)); } int N = sc.nextInt(), K = sc.nextInt(); int[] nums = new int[N]; for(int i = 0; i<N; i++) nums[i] = sc.nextInt(); int lo = 0, hi = N; int[] sum = new int[N]; for (int dif = hi - lo; dif > 0; dif /= 2) while (lo + dif <= hi && check(lo + dif, nums, K, sum, N)) lo += dif; out.println(lo); out.close(); } private static boolean check(int t, int[] nums, int k, int[] sum, int N) { for(int i = 0; i<N; i++) sum[i] = nums[i] < t ? -1:1; for(int i = 1; i<N; i++) sum[i]+=sum[i-1]; int min = 0; for(int i = k-1; i<N; i++) { if(sum[i]-min > 0) return true; min = Math.min(min, sum[i-k+1]); } return false; } private static class Two<A, B>{ public final A a; public final B b; public Two(A a, B b) { this.a = a; this.b = b; } @Override public boolean equals(Object obj) { if(!(obj instanceof Two)) return false; Two curr = (Two)obj; return curr.a.equals(a) && curr.b.equals(b); } @Override public int hashCode() { long seed = a.hashCode(); seed = seed<<32; seed|=b.hashCode(); Random r = new Random(); r.setSeed(seed); return r.nextInt(); } @Override public String toString() { return "("+a.toString()+", "+b.toString()+")"; } } public static class BIT { private final long[] bit; private final long[] arr; private final int len; public BIT(int len) { bit = new long[len + 1]; arr = new long[len]; this.len = len; } public void set(int ind, long val) { add(ind, val - arr[ind]); } public void add(int ind, long val) { arr[ind] += val; ind++; for (; ind <= len; ind += ind & -ind) bit[ind] += val; } public long prev(int ind) { ind++; long sum = 0; for (; ind > 0; ind -= ind & -ind) sum += bit[ind]; return sum; } public long sum(int a, int b) { return prev(b)-(a == 0 ? 0:prev(a-1)); } } private static class SegTree { public static interface Oper{ long solve(long a, long b); } private long[] tree; private final int n; private final Oper oper; public SegTree(int n, Oper oper) { this.n = n; tree = new long[n<<1]; this.oper = oper; } public long get(int a, int b) { a += n; b += n; long curr = 0; boolean checked = false; while (a <= b) { if ((a&1) == 1) { if(checked) curr = oper.solve(curr, tree[a++]); else curr = tree[a++]; checked = true; } if ((b&1) == 0) { if(checked) curr = oper.solve(curr, tree[b--]); else curr = tree[b--]; checked = true; } a = a>>1; b = b>>1; } return curr; } public void set(int index, long val) { index += n; tree[index] = val; for (index = index>>1; index >= 1; index = index>>1) tree[index] = oper.solve(tree[index<<1], tree[(index<<1)+1]); } public long get(int index) { return tree[index+n]; } } private static class FastIO { InputStream dis; byte[] buffer = new byte[1 << 17]; int pointer = 0, end = 0; public FastIO(String fileName) throws Exception { dis = new FileInputStream(fileName); } public FastIO(InputStream is) throws Exception { dis = is; } public int nextInt() throws Exception { int ret = 0; byte b; do { b = nextByte(); } while (b <= ' '); boolean negative = false; if (b == '-') { negative = true; b = nextByte(); } while (b >= '0' && b <= '9') { ret = 10 * ret + b - '0'; b = nextByte(); } return (negative) ? -ret : ret; } public long nextLong() throws Exception { long ret = 0; byte b; do { b = nextByte(); } while (b <= ' '); boolean negative = false; if (b == '-') { negative = true; b = nextByte(); } while (b >= '0' && b <= '9') { ret = 10 * ret + b - '0'; b = nextByte(); } return (negative) ? -ret : ret; } private byte nextByte() throws Exception { while(pointer >= end) { end = dis.read(buffer, 0, buffer.length); pointer = 0; } return buffer[pointer++]; } public double nextDouble() throws Exception { return Double.parseDouble(next()); } public String next() throws Exception { StringBuffer ret = new StringBuffer(); byte b; do { b = nextByte(); } while (b <= ' '); while (b > ' ') { ret.appendCodePoint(b); b = nextByte(); } return ret.toString(); } } }
Java
["5 3\n1 2 3 2 1", "4 2\n1 2 3 4"]
2 seconds
["2", "3"]
NoteIn the first example all the possible subarrays are $$$[1..3]$$$, $$$[1..4]$$$, $$$[1..5]$$$, $$$[2..4]$$$, $$$[2..5]$$$ and $$$[3..5]$$$ and the median for all of them is $$$2$$$, so the maximum possible median is $$$2$$$ too.In the second example $$$median([3..4]) = 3$$$.
Java 11
standard input
[ "binary search", "data structures", "dp" ]
dddeb7663c948515def967374f2b8812
The first line contains two integers $$$n$$$ and $$$k$$$ ($$$1 \leq k \leq n \leq 2 \cdot 10^5$$$). The second line contains $$$n$$$ integers $$$a_1, a_2, \ldots, a_n$$$ ($$$1 \leq a_i \leq n$$$).
2,100
Output one integer $$$m$$$ — the maximum median you can get.
standard output
PASSED
437b9f3cd0d5c9221b262e2f03d39ae2
train_110.jsonl
1613658900
You are a given an array $$$a$$$ of length $$$n$$$. Find a subarray $$$a[l..r]$$$ with length at least $$$k$$$ with the largest median.A median in an array of length $$$n$$$ is an element which occupies position number $$$\lfloor \frac{n + 1}{2} \rfloor$$$ after we sort the elements in non-decreasing order. For example: $$$median([1, 2, 3, 4]) = 2$$$, $$$median([3, 2, 1]) = 2$$$, $$$median([2, 1, 2, 1]) = 1$$$.Subarray $$$a[l..r]$$$ is a contiguous part of the array $$$a$$$, i. e. the array $$$a_l,a_{l+1},\ldots,a_r$$$ for some $$$1 \leq l \leq r \leq n$$$, its length is $$$r - l + 1$$$.
256 megabytes
import java.util.Scanner; public class Solution { public static void main(String[] args) { int N , M; Scanner scan = new Scanner(System.in); N=scan.nextInt(); M=scan.nextInt(); int[] a = new int[N+1]; int[] b = new int[N+1]; int[] s = new int[N+1]; for(int i = 1; i <= N; i++){ a[i]=scan.nextInt(); } int l = 1, r = N; while(l < r){ int mid = (l + r+1)/2; for(int i = 1; i <= N; i++){ if(a[i] >= mid) b[i] = 1; else b[i] = -1; s[i] = s[i-1] + b[i]; } int k = N+1; int ok = 0; for(int i = M; i <= N; i++){ k = Math.min(k, s[i-M]); if(s[i] > k) ok = 1; } if(ok==1) l = mid; else r = mid-1; } System.out.println(l); } }
Java
["5 3\n1 2 3 2 1", "4 2\n1 2 3 4"]
2 seconds
["2", "3"]
NoteIn the first example all the possible subarrays are $$$[1..3]$$$, $$$[1..4]$$$, $$$[1..5]$$$, $$$[2..4]$$$, $$$[2..5]$$$ and $$$[3..5]$$$ and the median for all of them is $$$2$$$, so the maximum possible median is $$$2$$$ too.In the second example $$$median([3..4]) = 3$$$.
Java 11
standard input
[ "binary search", "data structures", "dp" ]
dddeb7663c948515def967374f2b8812
The first line contains two integers $$$n$$$ and $$$k$$$ ($$$1 \leq k \leq n \leq 2 \cdot 10^5$$$). The second line contains $$$n$$$ integers $$$a_1, a_2, \ldots, a_n$$$ ($$$1 \leq a_i \leq n$$$).
2,100
Output one integer $$$m$$$ — the maximum median you can get.
standard output
PASSED
3bd9195c5b95721970b595e05723abea
train_110.jsonl
1613658900
You are a given an array $$$a$$$ of length $$$n$$$. Find a subarray $$$a[l..r]$$$ with length at least $$$k$$$ with the largest median.A median in an array of length $$$n$$$ is an element which occupies position number $$$\lfloor \frac{n + 1}{2} \rfloor$$$ after we sort the elements in non-decreasing order. For example: $$$median([1, 2, 3, 4]) = 2$$$, $$$median([3, 2, 1]) = 2$$$, $$$median([2, 1, 2, 1]) = 1$$$.Subarray $$$a[l..r]$$$ is a contiguous part of the array $$$a$$$, i. e. the array $$$a_l,a_{l+1},\ldots,a_r$$$ for some $$$1 \leq l \leq r \leq n$$$, its length is $$$r - l + 1$$$.
256 megabytes
import java.io.*; import java.util.*; public class MaxMedian { static FastScanner fs; static FastWriter fw; static boolean checkOnlineJudge = System.getProperty("ONLINE_JUDGE") == null; private static final int iMax = (int) (2e9), iMin = (int) (-2e9); private static final long lMax = (int) (1e16), lMin = (int) (-1e16); private static final int mod1 = (int) (1e9 + 7); private static final int mod2 = 998244353; private static int n, k; private static Integer[] arr; public static void main(String[] args) throws IOException { fs = new FastScanner(); fw = new FastWriter(); int t = 1; //t = fs.nextInt(); while (t-- > 0) { solve(); } fw.out.close(); } private static void solve() { n = fs.nextInt(); k = fs.nextInt(); arr = readIntArray(n); int l = 1, r = n; while (r - l > 1) { int mid = l + ((r - l) / 2); if (check(mid)) l = mid; else r = mid; } int result = check(r) ? r : l; fw.out.println(result); } private static boolean check(int x) { int[] prefix_sum = new int[n + 1]; for (int i = 1; i <= n; i++) { prefix_sum[i] = ((arr[i - 1] >= x) ? 1 : -1) + prefix_sum[i - 1]; } int j = 0, min = 0; for (int i = k; i <= n; i++) { min = (int) getMin(min, prefix_sum[j]); if (prefix_sum[i] - min > 0) return true; j++; } return false; } private static class UnionFind { private final int[] parent; private final int[] rank; UnionFind(int n) { parent = new int[n + 5]; rank = new int[n + 5]; for (int i = 0; i <= n; i++) { parent[i] = i; rank[i] = 0; } } private int find(int i) { if (parent[i] == i) return i; return parent[i] = find(parent[i]); } private void union(int a, int b) { a = find(a); b = find(b); if (a != b) { if (rank[a] < rank[b]) { int temp = a; a = b; b = temp; } parent[b] = a; if (rank[a] == rank[b]) rank[a]++; } } } private static int gcd(int a, int b) { return (b == 0 ? a : gcd(b, a % b)); } private static long pow(long a, long b) { long result = 1; while (b > 0) { if ((b & 1L) == 1) { result = (result * a) % mod1; } a = (a * a) % mod1; b >>= 1; } return result; } private static long ceilDiv(long a, long b) { return ((a + b - 1) / b); } private static long getMin(long... args) { long min = lMax; for (long arg : args) min = Math.min(min, arg); return min; } private static long getMax(long... args) { long max = lMin; for (long arg : args) max = Math.max(max, arg); return max; } private static List<Integer> primes(int n) { boolean[] primeArr = new boolean[n + 5]; Arrays.fill(primeArr, true); for (int i = 2; (i * i) <= n; i++) { if (primeArr[i]) { for (int j = i * i; j <= n; j += i) { primeArr[j] = false; } } } List<Integer> primeList = new ArrayList<>(); for (int i = 2; i <= n; i++) { if (primeArr[i]) primeList.add(i); } return primeList; } private static class Pair<U, V> { private final U first; private final V second; @Override public boolean equals(Object o) { if (this == o) return true; if (o == null || getClass() != o.getClass()) return false; Pair<?, ?> pair = (Pair<?, ?>) o; return first.equals(pair.first) && second.equals(pair.second); } @Override public int hashCode() { return Objects.hash(first, second); } @Override public String toString() { return "(" + first + ", " + second + ")"; } private Pair(U ff, V ss) { this.first = ff; this.second = ss; } } private static <T> void randomizeArr(T[] arr, int n) { Random r = new Random(); for (int i = (n - 1); i > 0; i--) { int j = r.nextInt(i + 1); swap(arr, i, j); } } private static Integer[] readIntArray(int n) { Integer[] arr = new Integer[n]; for (int i = 0; i < n; i++) arr[i] = fs.nextInt(); return arr; } private static List<Integer> readIntList(int n) { List<Integer> list = new ArrayList<>(); for (int i = 0; i < n; i++) list.add(fs.nextInt()); return list; } private static <T> void swap(T[] arr, int i, int j) { T temp = arr[i]; arr[i] = arr[j]; arr[j] = temp; } private static <T> void displayArr(T[] arr) { for (T x : arr) fw.out.print(x + " "); fw.out.println(); } private static <T> void displayList(List<T> list) { for (T x : list) fw.out.print(x + " "); fw.out.println(); } private static class FastScanner { BufferedReader br; StringTokenizer st; FastScanner() throws IOException { if (checkOnlineJudge) this.br = new BufferedReader(new FileReader("src/input.txt")); else this.br = new BufferedReader(new InputStreamReader(System.in)); this.st = new StringTokenizer(""); } public String next() { while (!st.hasMoreTokens()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException err) { err.printStackTrace(); } } return st.nextToken(); } public String nextLine() { if (st.hasMoreTokens()) { return st.nextToken("").trim(); } try { return br.readLine().trim(); } catch (IOException err) { err.printStackTrace(); } return ""; } public int nextInt() { return Integer.parseInt(next()); } public long nextLong() { return Long.parseLong(next()); } public double nextDouble() { return Double.parseDouble(next()); } } private static class FastWriter { PrintWriter out; FastWriter() throws IOException { if (checkOnlineJudge) out = new PrintWriter(new FileWriter("src/output.txt")); else out = new PrintWriter(System.out); } } }
Java
["5 3\n1 2 3 2 1", "4 2\n1 2 3 4"]
2 seconds
["2", "3"]
NoteIn the first example all the possible subarrays are $$$[1..3]$$$, $$$[1..4]$$$, $$$[1..5]$$$, $$$[2..4]$$$, $$$[2..5]$$$ and $$$[3..5]$$$ and the median for all of them is $$$2$$$, so the maximum possible median is $$$2$$$ too.In the second example $$$median([3..4]) = 3$$$.
Java 11
standard input
[ "binary search", "data structures", "dp" ]
dddeb7663c948515def967374f2b8812
The first line contains two integers $$$n$$$ and $$$k$$$ ($$$1 \leq k \leq n \leq 2 \cdot 10^5$$$). The second line contains $$$n$$$ integers $$$a_1, a_2, \ldots, a_n$$$ ($$$1 \leq a_i \leq n$$$).
2,100
Output one integer $$$m$$$ — the maximum median you can get.
standard output
PASSED
7f11996c4dc0e8c386fe9fe454a1922e
train_110.jsonl
1613658900
You are a given an array $$$a$$$ of length $$$n$$$. Find a subarray $$$a[l..r]$$$ with length at least $$$k$$$ with the largest median.A median in an array of length $$$n$$$ is an element which occupies position number $$$\lfloor \frac{n + 1}{2} \rfloor$$$ after we sort the elements in non-decreasing order. For example: $$$median([1, 2, 3, 4]) = 2$$$, $$$median([3, 2, 1]) = 2$$$, $$$median([2, 1, 2, 1]) = 1$$$.Subarray $$$a[l..r]$$$ is a contiguous part of the array $$$a$$$, i. e. the array $$$a_l,a_{l+1},\ldots,a_r$$$ for some $$$1 \leq l \leq r \leq n$$$, its length is $$$r - l + 1$$$.
256 megabytes
import java.io.ByteArrayInputStream; import java.io.IOException; import java.io.InputStream; import java.io.PrintWriter; import java.util.Arrays; import java.util.InputMismatchException; public class Main { private static final String NO = "NO"; private static final String YES = "YES"; InputStream is; PrintWriter out; String INPUT = ""; private static final long MOD = 998244353L; static int MAXN = 100000; void solve() { int T = 1;//ni(); for (int i = 0; i < T; i++) solve(i); } int n; void solve(int t) { n = ni(); int K = ni(); int[] a = na(n); int low = 0, high = n + 1; while (high - low > 1) { int h = high + low >> 1; if (ok(h, a, K)) { low = h; } else { high = h; } } out.println(low); } boolean ok(int h, int[] a, int K) { int pre = 0; int min = Integer.MAX_VALUE / 2; int[] cs = new int[n + 1]; for (int i = 0; i < n; i++) { pre += a[i] >= h ? 1 : -1; cs[i + 1] = pre; if (i >= K - 1) { min = Math.min(min, cs[i - (K - 1)]); } if (pre - min >= 1) return true; } return false; } // a^b long power(long a, long b) { long x = 1, y = a; while (b > 0) { if (b % 2 != 0) { x = (x * y) % MOD; } y = (y * y) % MOD; b /= 2; } return x % MOD; } private long gcd(long a, long b) { while (a != 0) { long tmp = b % a; b = a; a = tmp; } return b; } void run() throws Exception { is = INPUT.isEmpty() ? System.in : new ByteArrayInputStream(INPUT.getBytes()); out = new PrintWriter(System.out); long s = System.currentTimeMillis(); solve(); out.flush(); if (!INPUT.isEmpty()) tr(System.currentTimeMillis() - s + "ms"); } public static void main(String[] args) throws Exception { new Main().run(); } private byte[] inbuf = new byte[1024]; public int lenbuf = 0, ptrbuf = 0; private int readByte() { if (lenbuf == -1) throw new InputMismatchException(); if (ptrbuf >= lenbuf) { ptrbuf = 0; try { lenbuf = is.read(inbuf); } catch (IOException e) { throw new InputMismatchException(); } if (lenbuf <= 0) return -1; } return inbuf[ptrbuf++]; } private boolean isSpaceChar(int c) { return !(c >= 33 && c <= 126); } private int skip() { int b; while ((b = readByte()) != -1 && isSpaceChar(b)) ; return b; } private double nd() { return Double.parseDouble(ns()); } private char nc() { return (char) skip(); } private char[] nc(int n) { char[] ret = new char[n]; for (int i = 0; i < n; i++) ret[i] = nc(); return ret; } private String ns() { int b = skip(); StringBuilder sb = new StringBuilder(); while (!(isSpaceChar(b))) { // when nextLine, (isSpaceChar(b) && b != ' // ') sb.appendCodePoint(b); b = readByte(); } return sb.toString(); } private char[] ns(int n) { char[] buf = new char[n]; int b = skip(), p = 0; while (p < n) { if (!(isSpaceChar(b))) buf[p++] = (char) b; b = readByte(); } return n == p ? buf : Arrays.copyOf(buf, p); } private char[][] nm(int n, int m) { char[][] map = new char[n][]; for (int i = 0; i < n; i++) map[i] = ns(m); return map; } private int[] na(int n) { int[] a = new int[n]; for (int i = 0; i < n; i++) a[i] = ni(); return a; } private Integer[] na2(int n) { Integer[] a = new Integer[n]; for (int i = 0; i < n; i++) a[i] = ni(); return a; } private int[][] na(int n, int m) { int[][] a = new int[n][]; for (int i = 0; i < n; i++) a[i] = na(m); return a; } private int ni() { int num = 0, b; boolean minus = false; while ((b = readByte()) != -1 && !((b >= '0' && b <= '9') || b == '-')) ; if (b == '-') { minus = true; b = readByte(); } while (true) { if (b >= '0' && b <= '9') { num = num * 10 + (b - '0'); } else { return minus ? -num : num; } b = readByte(); } } private long[] nl(int n) { long[] a = new long[n]; for (int i = 0; i < n; i++) a[i] = nl(); return a; } private long[][] nl(int n, int m) { long[][] a = new long[n][]; for (int i = 0; i < n; i++) a[i] = nl(m); return a; } private long nl() { long num = 0; int b; boolean minus = false; while ((b = readByte()) != -1 && !((b >= '0' && b <= '9') || b == '-')) ; if (b == '-') { minus = true; b = readByte(); } while (true) { if (b >= '0' && b <= '9') { num = num * 10 + (b - '0'); } else { return minus ? -num : num; } b = readByte(); } } private static void tr(Object... o) { System.out.println(Arrays.deepToString(o)); } }
Java
["5 3\n1 2 3 2 1", "4 2\n1 2 3 4"]
2 seconds
["2", "3"]
NoteIn the first example all the possible subarrays are $$$[1..3]$$$, $$$[1..4]$$$, $$$[1..5]$$$, $$$[2..4]$$$, $$$[2..5]$$$ and $$$[3..5]$$$ and the median for all of them is $$$2$$$, so the maximum possible median is $$$2$$$ too.In the second example $$$median([3..4]) = 3$$$.
Java 11
standard input
[ "binary search", "data structures", "dp" ]
dddeb7663c948515def967374f2b8812
The first line contains two integers $$$n$$$ and $$$k$$$ ($$$1 \leq k \leq n \leq 2 \cdot 10^5$$$). The second line contains $$$n$$$ integers $$$a_1, a_2, \ldots, a_n$$$ ($$$1 \leq a_i \leq n$$$).
2,100
Output one integer $$$m$$$ — the maximum median you can get.
standard output
PASSED
1673e4971f5b5847e036df612e9bbd4d
train_110.jsonl
1613658900
You are a given an array $$$a$$$ of length $$$n$$$. Find a subarray $$$a[l..r]$$$ with length at least $$$k$$$ with the largest median.A median in an array of length $$$n$$$ is an element which occupies position number $$$\lfloor \frac{n + 1}{2} \rfloor$$$ after we sort the elements in non-decreasing order. For example: $$$median([1, 2, 3, 4]) = 2$$$, $$$median([3, 2, 1]) = 2$$$, $$$median([2, 1, 2, 1]) = 1$$$.Subarray $$$a[l..r]$$$ is a contiguous part of the array $$$a$$$, i. e. the array $$$a_l,a_{l+1},\ldots,a_r$$$ for some $$$1 \leq l \leq r \leq n$$$, its length is $$$r - l + 1$$$.
256 megabytes
import java.util.*; public class Sol{ public static void main(String [] args){ Scanner sc=new Scanner(System.in); int n=sc.nextInt(); int k=sc.nextInt(); int a[]=new int[n]; int b[]=new int[n]; for(int i=0;i<n;i++){a[i]=sc.nextInt();} int l=1;int r=n+1; while(r-l>1){ int m=(l+r)/2; for(int i=0;i<n;i++){if(a[i]>=m)b[i]=1;else{b[i]=-1;}} for(int i=1;i<n;i++){b[i]+=b[i-1];} int min=0; int max=b[k-1]; for(int i=k;i<n;i++){ min=Math.min(min,b[i-k]);max=Math.max(b[i]-min,max); } if(max>0){l=m;} else{r=m;} } System.out.println(l); } }
Java
["5 3\n1 2 3 2 1", "4 2\n1 2 3 4"]
2 seconds
["2", "3"]
NoteIn the first example all the possible subarrays are $$$[1..3]$$$, $$$[1..4]$$$, $$$[1..5]$$$, $$$[2..4]$$$, $$$[2..5]$$$ and $$$[3..5]$$$ and the median for all of them is $$$2$$$, so the maximum possible median is $$$2$$$ too.In the second example $$$median([3..4]) = 3$$$.
Java 11
standard input
[ "binary search", "data structures", "dp" ]
dddeb7663c948515def967374f2b8812
The first line contains two integers $$$n$$$ and $$$k$$$ ($$$1 \leq k \leq n \leq 2 \cdot 10^5$$$). The second line contains $$$n$$$ integers $$$a_1, a_2, \ldots, a_n$$$ ($$$1 \leq a_i \leq n$$$).
2,100
Output one integer $$$m$$$ — the maximum median you can get.
standard output
PASSED
984dc2232971d491442162038b57c2c0
train_110.jsonl
1613658900
You are a given an array $$$a$$$ of length $$$n$$$. Find a subarray $$$a[l..r]$$$ with length at least $$$k$$$ with the largest median.A median in an array of length $$$n$$$ is an element which occupies position number $$$\lfloor \frac{n + 1}{2} \rfloor$$$ after we sort the elements in non-decreasing order. For example: $$$median([1, 2, 3, 4]) = 2$$$, $$$median([3, 2, 1]) = 2$$$, $$$median([2, 1, 2, 1]) = 1$$$.Subarray $$$a[l..r]$$$ is a contiguous part of the array $$$a$$$, i. e. the array $$$a_l,a_{l+1},\ldots,a_r$$$ for some $$$1 \leq l \leq r \leq n$$$, its length is $$$r - l + 1$$$.
256 megabytes
import java.io.*; import java.util.*; public class CF { static class FastReader { BufferedReader br; StringTokenizer st; public FastReader() { br = new BufferedReader(new InputStreamReader(System.in)); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } } public static void main(String[] args) { try { System.setIn(new FileInputStream("input.txt")); System.setOut(new PrintStream(new FileOutputStream("output.txt"))); } catch (Exception e) { System.err.println("Error"); } FastReader fs = new FastReader(); int t = 1; int ans = 0; while(t-- > 0) { int n = fs.nextInt(); int k = fs.nextInt(); int[] a = new int[n+2]; for(int i=1; i<=n; i++) { a[i] = fs.nextInt(); } int l = 1, h = n; while(l <= h) { int m = (l+h)/2; int f = 0; int[] temp = new int[n+2]; int[] prefix = new int[n+2]; for(int i=1; i<n+1; i++) { if(a[i] >= m) temp[i] = 1; else temp[i] = -1; } for(int i=1; i<=n; i++) { prefix[i] += prefix[i-1] + temp[i]; } int min = Integer.MAX_VALUE; for(int i=k; i<=n; i++) { min = Math.min(min, prefix[i-k]); if(prefix[i] - min > 0) { f = 1; } } if(f == 1) { ans = m; l = m+1; } else h = m-1; } System.out.println(ans); } } }
Java
["5 3\n1 2 3 2 1", "4 2\n1 2 3 4"]
2 seconds
["2", "3"]
NoteIn the first example all the possible subarrays are $$$[1..3]$$$, $$$[1..4]$$$, $$$[1..5]$$$, $$$[2..4]$$$, $$$[2..5]$$$ and $$$[3..5]$$$ and the median for all of them is $$$2$$$, so the maximum possible median is $$$2$$$ too.In the second example $$$median([3..4]) = 3$$$.
Java 11
standard input
[ "binary search", "data structures", "dp" ]
dddeb7663c948515def967374f2b8812
The first line contains two integers $$$n$$$ and $$$k$$$ ($$$1 \leq k \leq n \leq 2 \cdot 10^5$$$). The second line contains $$$n$$$ integers $$$a_1, a_2, \ldots, a_n$$$ ($$$1 \leq a_i \leq n$$$).
2,100
Output one integer $$$m$$$ — the maximum median you can get.
standard output
PASSED
0c839a26af3777a6887eb382d1451d57
train_110.jsonl
1613658900
You are a given an array $$$a$$$ of length $$$n$$$. Find a subarray $$$a[l..r]$$$ with length at least $$$k$$$ with the largest median.A median in an array of length $$$n$$$ is an element which occupies position number $$$\lfloor \frac{n + 1}{2} \rfloor$$$ after we sort the elements in non-decreasing order. For example: $$$median([1, 2, 3, 4]) = 2$$$, $$$median([3, 2, 1]) = 2$$$, $$$median([2, 1, 2, 1]) = 1$$$.Subarray $$$a[l..r]$$$ is a contiguous part of the array $$$a$$$, i. e. the array $$$a_l,a_{l+1},\ldots,a_r$$$ for some $$$1 \leq l \leq r \leq n$$$, its length is $$$r - l + 1$$$.
256 megabytes
import java.util.*; public class cf703 { public static Scanner sc = new Scanner(System.in); public static int problemA(int n, int arr[]){ long tillNow=0; for(int i=0; i<n; i++){ tillNow+=arr[i]; if(tillNow<i) return 0; tillNow-=i; } return 1; } public static int binSrch(int arr[], int T){ //get index k of arr which is last element arr[k]<T and arr[k+1]>=T int n = arr.length; int start = 0, end=n-1; while(start<end){ int mid = (start+end)/2; if(arr[mid]<T && arr[mid+1]>=T) return mid; else if(arr[mid]>=T) end=mid-1; else start=mid; } return (end==0)?end:-1; } public static long calcD(int n, int id, long[] pr, int v){ long sum=0; if(id>=0){ sum = Math.abs((id+1)*v-pr[id])+Math.abs((pr[n-1]-pr[id]) - v* (n-1-id)); } else { sum= Math.abs((pr[n-1]) - v* (n)); } return sum; } public static int ask(int l, int r){ System.out.println("? "+l+" "+r); int index = sc.nextInt(); return index; } public static int[] setTemp(int arr[], int v){ int n = arr.length; int t[] = new int[n]; for(int i=0; i<n; i++){ if(arr[i]>=v) t[i]=1; else t[i]=-1; } return t; } public static boolean isMedianAtLeastX(int temp[], int k){ boolean ans = false; int n = temp.length; for(int i=1; i<n; i++) temp[i]+=temp[i-1]; if(temp[k-1]>0) return true; int minval=0; for(int i=k; i<n; i++){ minval=Math.min(minval,temp[i-k]); if (temp[i]-minval>0) ans=true; } return ans; } public static int problemD(int n, int k, int arr[]){ int start=1; int end = n+1; while((end-start)>1){ int mid = (end+start)/2; int[] temp = setTemp(arr,mid); boolean ans = isMedianAtLeastX(temp,k); if(ans) start=mid; else end=mid; } return start; } public static long problemB(int n, int x[], int y[]){ // int maxX = 1000000000; // int maxY = 1000000000; Arrays.sort(x); Arrays.sort(y); long res1 = x[(n/2)]-x[(n-1)/2] +1; long res2 = y[(n/2)]-y[(n-1)/2] +1; return res1*res2; } public static void problemCD(int n){ int smaxIndex = ask(1,n); int start=1; int end=n; if(smaxIndex==1 || ask(1,smaxIndex)!=smaxIndex){ //between smaxindex-n int l=smaxIndex; int r=n; while((r-l)>1){ int mid = (l+r)/2; if(ask(smaxIndex,mid)==smaxIndex) r=mid; else l=mid; } System.out.println("! "+r); System.out.flush(); } else{ //between 1-smaxindex int l=1; int r=smaxIndex; while((r-l)>1){ int mid = (l+r)/2; if(ask(mid,smaxIndex)==smaxIndex) l=mid; else r=mid; } System.out.println("! "+l); System.out.flush(); } } public static void main(String[] args) { int n,k; n = sc.nextInt(); k = sc.nextInt(); int arr[] = new int[n]; for(int i=0; i<n; i++) arr[i] = sc.nextInt(); System.out.println(problemD(n,k,arr)); } }
Java
["5 3\n1 2 3 2 1", "4 2\n1 2 3 4"]
2 seconds
["2", "3"]
NoteIn the first example all the possible subarrays are $$$[1..3]$$$, $$$[1..4]$$$, $$$[1..5]$$$, $$$[2..4]$$$, $$$[2..5]$$$ and $$$[3..5]$$$ and the median for all of them is $$$2$$$, so the maximum possible median is $$$2$$$ too.In the second example $$$median([3..4]) = 3$$$.
Java 11
standard input
[ "binary search", "data structures", "dp" ]
dddeb7663c948515def967374f2b8812
The first line contains two integers $$$n$$$ and $$$k$$$ ($$$1 \leq k \leq n \leq 2 \cdot 10^5$$$). The second line contains $$$n$$$ integers $$$a_1, a_2, \ldots, a_n$$$ ($$$1 \leq a_i \leq n$$$).
2,100
Output one integer $$$m$$$ — the maximum median you can get.
standard output
PASSED
6b3af662a23a7a566b71963760b7dd2f
train_110.jsonl
1613658900
You are a given an array $$$a$$$ of length $$$n$$$. Find a subarray $$$a[l..r]$$$ with length at least $$$k$$$ with the largest median.A median in an array of length $$$n$$$ is an element which occupies position number $$$\lfloor \frac{n + 1}{2} \rfloor$$$ after we sort the elements in non-decreasing order. For example: $$$median([1, 2, 3, 4]) = 2$$$, $$$median([3, 2, 1]) = 2$$$, $$$median([2, 1, 2, 1]) = 1$$$.Subarray $$$a[l..r]$$$ is a contiguous part of the array $$$a$$$, i. e. the array $$$a_l,a_{l+1},\ldots,a_r$$$ for some $$$1 \leq l \leq r \leq n$$$, its length is $$$r - l + 1$$$.
256 megabytes
import java.io.*; import java.util.*; public class Template { static long[] c = new long[(int)1e6+8432]; static long[] b = new long[(int)1e6+8432]; public static void main(String[] args) { FastScanner sc = new FastScanner(); // int yo = sc.nextInt(); // while (yo-- > 0) { int n = sc.nextInt(); int k = sc.nextInt(); int[] a = sc.readArray(n); long start = 0, end = (int) 1e7; while(start < end) { long mid = (start + end)/2; long sum = 0; long min = (long) 1e18; long best = (long) -1e18; c[0] = 0; for(int i = 0; i < n; i++) { b[i] = a[i] >= mid ? 1 : -1; sum += b[i]; c[i+1] = sum; if(i >= k-1) { min = Math.min(min, c[i-k+1]); best = Math.max(best, sum-min); } } if(best > 0) { start = mid+1; } else { end = mid; } } System.out.println(start-1); // } } static class Pair { int x; int y; public Pair(int x, int y) { this.x = x; this.y = y; } } static void ruffleSort(int[] a) { int n = a.length; Random r = new Random(); for (int i = 0; i < a.length; i++) { int oi = r.nextInt(n), temp = a[i]; a[i] = a[oi]; a[oi] = temp; } Arrays.sort(a); } static long gcd(long a, long b) { if (b == 0) return a; return gcd(b, a % b); } static boolean[] sieve(int n) { boolean isPrime[] = new boolean[n + 1]; for (int i = 2; i <= n; i++) { if (isPrime[i]) continue; for (int j = 2 * i; j <= n; j += i) { isPrime[j] = true; } } return isPrime; } static int mod = 1000000007; static long pow(int a, long b) { if (b == 0) { return 1; } if (b == 1) { return a; } if (b % 2 == 0) { long ans = pow(a, b / 2); return ans * ans; } else { long ans = pow(a, (b - 1) / 2); return a * ans * ans; } } static class FastScanner { BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); StringTokenizer st = new StringTokenizer(""); String next() { while (!st.hasMoreTokens()) try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } int[] readArray(int n) { int[] a = new int[n]; for (int i = 0; i < n; i++) a[i] = nextInt(); return a; } long nextLong() { return Long.parseLong(next()); } } // For Input.txt and Output.txt // FileInputStream in = new FileInputStream("input.txt"); // FileOutputStream out = new FileOutputStream("output.txt"); // PrintWriter pw = new PrintWriter(out); // Scanner sc = new Scanner(in); }
Java
["5 3\n1 2 3 2 1", "4 2\n1 2 3 4"]
2 seconds
["2", "3"]
NoteIn the first example all the possible subarrays are $$$[1..3]$$$, $$$[1..4]$$$, $$$[1..5]$$$, $$$[2..4]$$$, $$$[2..5]$$$ and $$$[3..5]$$$ and the median for all of them is $$$2$$$, so the maximum possible median is $$$2$$$ too.In the second example $$$median([3..4]) = 3$$$.
Java 11
standard input
[ "binary search", "data structures", "dp" ]
dddeb7663c948515def967374f2b8812
The first line contains two integers $$$n$$$ and $$$k$$$ ($$$1 \leq k \leq n \leq 2 \cdot 10^5$$$). The second line contains $$$n$$$ integers $$$a_1, a_2, \ldots, a_n$$$ ($$$1 \leq a_i \leq n$$$).
2,100
Output one integer $$$m$$$ — the maximum median you can get.
standard output
PASSED
f520cc8532a9ddb41d8d8e4ad85e4bba
train_110.jsonl
1613658900
You are a given an array $$$a$$$ of length $$$n$$$. Find a subarray $$$a[l..r]$$$ with length at least $$$k$$$ with the largest median.A median in an array of length $$$n$$$ is an element which occupies position number $$$\lfloor \frac{n + 1}{2} \rfloor$$$ after we sort the elements in non-decreasing order. For example: $$$median([1, 2, 3, 4]) = 2$$$, $$$median([3, 2, 1]) = 2$$$, $$$median([2, 1, 2, 1]) = 1$$$.Subarray $$$a[l..r]$$$ is a contiguous part of the array $$$a$$$, i. e. the array $$$a_l,a_{l+1},\ldots,a_r$$$ for some $$$1 \leq l \leq r \leq n$$$, its length is $$$r - l + 1$$$.
256 megabytes
import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.util.StringTokenizer; public class CF703D { public static final int N = (int)(2e5); public static int n, k; public static int[] a, b, c; public static SegmentTree T; static class SegmentTree { int mx[]; SegmentTree () { mx = new int[N << 2]; build(1, 0, n - 1); } public void build (int v, int tl, int tr) { if (tl == tr) { mx[v] = c[tl]; return; } int tm = (tl + tr) >> 1; build(v << 1, tl, tm); build(v << 1 | 1, tm + 1, tr); mx[v] = Math.max(mx[v << 1], mx[v << 1 | 1]); } public int get (int x, int v, int tl, int tr) { if (mx[v] < x) return -1; if (tl == tr) return tl; int tm = (tl + tr) >> 1; if (mx[v << 1 | 1] >= x) return get(x, v << 1 | 1, tm + 1, tr); return get(x, v << 1, tl, tm); } } public static boolean check (int x) { for (int i = 0; i < n; ++i) { b[i] = (i == 0 ? 0 : b[i - 1]); if (a[i] >= x) b[i]++; c[i] = b[i]*2 - i; // System.out.println(b[i] + " " + c[i]); } // System.out.println(); T = new SegmentTree(); for (int l = 0, r = k - 1; r < n; ++l, ++r) { int rr = T.get((l == 0 ? 1 : c[l - 1]) + 1, 1, 0, n - 1); // System.out.println(r + " " + rr); if (rr >= r) return true; } return false; } public static void main (String[] args) throws IOException{ BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); StringTokenizer st = new StringTokenizer(br.readLine()); n = Integer.parseInt(st.nextToken()); k = Integer.parseInt(st.nextToken()); st = new StringTokenizer(br.readLine()); a = new int[n]; b = new int[n]; c = new int[n]; for (int i = 0; i < n; ++i) a[i] = Integer.parseInt(st.nextToken()); int l = 0, r = n, res = 0; while (l <= r) { int mid = (l + r) >> 1; if (check(mid)) { res = mid; l = mid + 1; } else r = mid - 1; } System.out.println(res); } }
Java
["5 3\n1 2 3 2 1", "4 2\n1 2 3 4"]
2 seconds
["2", "3"]
NoteIn the first example all the possible subarrays are $$$[1..3]$$$, $$$[1..4]$$$, $$$[1..5]$$$, $$$[2..4]$$$, $$$[2..5]$$$ and $$$[3..5]$$$ and the median for all of them is $$$2$$$, so the maximum possible median is $$$2$$$ too.In the second example $$$median([3..4]) = 3$$$.
Java 11
standard input
[ "binary search", "data structures", "dp" ]
dddeb7663c948515def967374f2b8812
The first line contains two integers $$$n$$$ and $$$k$$$ ($$$1 \leq k \leq n \leq 2 \cdot 10^5$$$). The second line contains $$$n$$$ integers $$$a_1, a_2, \ldots, a_n$$$ ($$$1 \leq a_i \leq n$$$).
2,100
Output one integer $$$m$$$ — the maximum median you can get.
standard output
PASSED
e0b82b381da7bc99f76ca2bec96a80f0
train_110.jsonl
1613658900
You are a given an array $$$a$$$ of length $$$n$$$. Find a subarray $$$a[l..r]$$$ with length at least $$$k$$$ with the largest median.A median in an array of length $$$n$$$ is an element which occupies position number $$$\lfloor \frac{n + 1}{2} \rfloor$$$ after we sort the elements in non-decreasing order. For example: $$$median([1, 2, 3, 4]) = 2$$$, $$$median([3, 2, 1]) = 2$$$, $$$median([2, 1, 2, 1]) = 1$$$.Subarray $$$a[l..r]$$$ is a contiguous part of the array $$$a$$$, i. e. the array $$$a_l,a_{l+1},\ldots,a_r$$$ for some $$$1 \leq l \leq r \leq n$$$, its length is $$$r - l + 1$$$.
256 megabytes
import java.util.Scanner; public class Index { static final int MAXN = 200005; static int n, k; static int[] a = new int[MAXN]; static int[] b = new int[MAXN]; static int[] sum = new int[MAXN]; static Scanner scan = new Scanner(System.in); static boolean check(int x) { for (int i = 1; i <= n; i++) b[i] = a[i] >= x ? 1 : -1; for (int i = 1; i <= n; i++) sum[i] = sum[i - 1] + b[i]; int mx = -1000000000; for (int i = k; i <= n; i++) { mx = Math.max(mx + b[i], sum[i] - sum[i - k]); if (mx > 0) return true; } return false; } public static void main(String[] args) { n = scan.nextInt(); k = scan.nextInt(); for (int i = 1; i <= n; i++) a[i] = scan.nextInt(); int l = 1, r = n, mid; while (l <= r) { mid = (l + r) >> 1; if (check(mid)) l = mid + 1; else r = mid - 1; } System.out.println(l - 1); } }
Java
["5 3\n1 2 3 2 1", "4 2\n1 2 3 4"]
2 seconds
["2", "3"]
NoteIn the first example all the possible subarrays are $$$[1..3]$$$, $$$[1..4]$$$, $$$[1..5]$$$, $$$[2..4]$$$, $$$[2..5]$$$ and $$$[3..5]$$$ and the median for all of them is $$$2$$$, so the maximum possible median is $$$2$$$ too.In the second example $$$median([3..4]) = 3$$$.
Java 11
standard input
[ "binary search", "data structures", "dp" ]
dddeb7663c948515def967374f2b8812
The first line contains two integers $$$n$$$ and $$$k$$$ ($$$1 \leq k \leq n \leq 2 \cdot 10^5$$$). The second line contains $$$n$$$ integers $$$a_1, a_2, \ldots, a_n$$$ ($$$1 \leq a_i \leq n$$$).
2,100
Output one integer $$$m$$$ — the maximum median you can get.
standard output
PASSED
638aa73a8f8e60eb7cf74aec76a27ab1
train_110.jsonl
1613658900
You are a given an array $$$a$$$ of length $$$n$$$. Find a subarray $$$a[l..r]$$$ with length at least $$$k$$$ with the largest median.A median in an array of length $$$n$$$ is an element which occupies position number $$$\lfloor \frac{n + 1}{2} \rfloor$$$ after we sort the elements in non-decreasing order. For example: $$$median([1, 2, 3, 4]) = 2$$$, $$$median([3, 2, 1]) = 2$$$, $$$median([2, 1, 2, 1]) = 1$$$.Subarray $$$a[l..r]$$$ is a contiguous part of the array $$$a$$$, i. e. the array $$$a_l,a_{l+1},\ldots,a_r$$$ for some $$$1 \leq l \leq r \leq n$$$, its length is $$$r - l + 1$$$.
256 megabytes
import java.io.*; import java.util.*; public class abc { static BufferedReader br; public static void main(String ard[])throws IOException { br=new BufferedReader(new InputStreamReader(System.in)); String s[]=br.readLine().split(" "); int n=Integer.parseInt(s[0]); int k=Integer.parseInt(s[1]); s=br.readLine().split(" "); int a[]=new int[n]; for(int i=0;i<n;i++) a[i]=Integer.parseInt(s[i]); int l=1,r=n+1; while(r-l>1) { int b[]=new int[n]; int m=(l+r)/2; for(int i=0;i<n;i++) if(a[i]>=m) b[i]=1; else b[i]=-1; for(int i=1;i<n;i++) b[i]+=b[i-1]; int mx=b[k-1]; int mn=0; for(int i=k;i<n;i++) { mn=Math.min(mn,b[i-k]); mx=Math.max(mx,b[i]-mn); } if(mx>0) l=m; else r=m; } System.out.println(l); } }
Java
["5 3\n1 2 3 2 1", "4 2\n1 2 3 4"]
2 seconds
["2", "3"]
NoteIn the first example all the possible subarrays are $$$[1..3]$$$, $$$[1..4]$$$, $$$[1..5]$$$, $$$[2..4]$$$, $$$[2..5]$$$ and $$$[3..5]$$$ and the median for all of them is $$$2$$$, so the maximum possible median is $$$2$$$ too.In the second example $$$median([3..4]) = 3$$$.
Java 11
standard input
[ "binary search", "data structures", "dp" ]
dddeb7663c948515def967374f2b8812
The first line contains two integers $$$n$$$ and $$$k$$$ ($$$1 \leq k \leq n \leq 2 \cdot 10^5$$$). The second line contains $$$n$$$ integers $$$a_1, a_2, \ldots, a_n$$$ ($$$1 \leq a_i \leq n$$$).
2,100
Output one integer $$$m$$$ — the maximum median you can get.
standard output
PASSED
dc7d4431502d37cf3fb4a56a9fc220fd
train_110.jsonl
1613658900
You are a given an array $$$a$$$ of length $$$n$$$. Find a subarray $$$a[l..r]$$$ with length at least $$$k$$$ with the largest median.A median in an array of length $$$n$$$ is an element which occupies position number $$$\lfloor \frac{n + 1}{2} \rfloor$$$ after we sort the elements in non-decreasing order. For example: $$$median([1, 2, 3, 4]) = 2$$$, $$$median([3, 2, 1]) = 2$$$, $$$median([2, 1, 2, 1]) = 1$$$.Subarray $$$a[l..r]$$$ is a contiguous part of the array $$$a$$$, i. e. the array $$$a_l,a_{l+1},\ldots,a_r$$$ for some $$$1 \leq l \leq r \leq n$$$, its length is $$$r - l + 1$$$.
256 megabytes
import java.util.*; import java.io.*; public class D { public static class FastIO { BufferedReader br; BufferedWriter bw, be; StringTokenizer st; public FastIO() { br = new BufferedReader(new InputStreamReader(System.in)); bw = new BufferedWriter(new OutputStreamWriter(System.out)); be = new BufferedWriter(new OutputStreamWriter(System.err)); st = new StringTokenizer(""); } private void read() throws IOException { st = new StringTokenizer(br.readLine()); } public String ns() throws IOException { while(!st.hasMoreTokens()) read(); return st.nextToken(); } public int ni() throws IOException { return Integer.parseInt(ns()); } public long nl() throws IOException { return Long.parseLong(ns()); } public float nf() throws IOException { return Float.parseFloat(ns()); } public double nd() throws IOException { return Double.parseDouble(ns()); } public char nc() throws IOException { return ns().charAt(0); } public int[] nia(int n) throws IOException { int[] a = new int[n+1]; for(int i = 1; i <= n; i++) a[i] = ni(); return a; } public long[] nla(int n) throws IOException { long[] a = new long[n]; for(int i = 0; i < n; i++) a[i] = nl(); return a; } public char[] nca() throws IOException { return f.ns().toCharArray(); } public void out(String s) throws IOException { bw.write(s); } public void flush() throws IOException { bw.flush(); be.flush(); } public void err(String s) throws IOException { be.write(s); } } static FastIO f; static int n, k, a[], da[]; public static void main(String args[]) throws IOException { f = new FastIO(); n = f.ni(); k = f.ni(); a = f.nia(n); da = a.clone(); Arrays.sort(da); int ans = search(1, n); f.out(ans + "\n"); f.flush(); } public static int search(int l, int r) throws IOException { if(l == r) return da[l]; int mid = l + (r-l)/2 + 1; int b[] = new int[n+1]; int i; for(i = 1; i <= n; i++) b[i] = (a[i] >= da[mid]) ? 1 : -1; return prefix(b) ? search(mid, r) : search(l, mid-1); } public static boolean prefix(int[] b) { int p[] = new int[n+1], i, min; for(i = 1; i <= n; i++) p[i] = p[i-1] + b[i]; for(i = k, min = p[0]; i <= n; i++) { min = Math.min(min, p[i-k]); if(p[i] - min > 0) return true; } return false; } }
Java
["5 3\n1 2 3 2 1", "4 2\n1 2 3 4"]
2 seconds
["2", "3"]
NoteIn the first example all the possible subarrays are $$$[1..3]$$$, $$$[1..4]$$$, $$$[1..5]$$$, $$$[2..4]$$$, $$$[2..5]$$$ and $$$[3..5]$$$ and the median for all of them is $$$2$$$, so the maximum possible median is $$$2$$$ too.In the second example $$$median([3..4]) = 3$$$.
Java 11
standard input
[ "binary search", "data structures", "dp" ]
dddeb7663c948515def967374f2b8812
The first line contains two integers $$$n$$$ and $$$k$$$ ($$$1 \leq k \leq n \leq 2 \cdot 10^5$$$). The second line contains $$$n$$$ integers $$$a_1, a_2, \ldots, a_n$$$ ($$$1 \leq a_i \leq n$$$).
2,100
Output one integer $$$m$$$ — the maximum median you can get.
standard output
PASSED
1afc784abccd39937c6ee382bdd9df24
train_110.jsonl
1613658900
You are a given an array $$$a$$$ of length $$$n$$$. Find a subarray $$$a[l..r]$$$ with length at least $$$k$$$ with the largest median.A median in an array of length $$$n$$$ is an element which occupies position number $$$\lfloor \frac{n + 1}{2} \rfloor$$$ after we sort the elements in non-decreasing order. For example: $$$median([1, 2, 3, 4]) = 2$$$, $$$median([3, 2, 1]) = 2$$$, $$$median([2, 1, 2, 1]) = 1$$$.Subarray $$$a[l..r]$$$ is a contiguous part of the array $$$a$$$, i. e. the array $$$a_l,a_{l+1},\ldots,a_r$$$ for some $$$1 \leq l \leq r \leq n$$$, its length is $$$r - l + 1$$$.
256 megabytes
import java.io.BufferedReader; import java.io.FileReader; import java.io.IOException; import java.io.InputStreamReader; import java.util.StringTokenizer; import java.util.Arrays; import java.util.Random; import java.io.FileWriter; import java.io.PrintWriter; /* Solution Created: 12:43:51 20/02/2021 Custom Competitive programming helper. */ public class Main { public static void solve() { int n = in.nextInt(), k = in.nextInt(); int[] a = in.na(n); int l = 1, r = n, ans = 1; while(l<=r){ int median = (l+r)/2; int[] b = new int[n]; for(int i = 0; i<n; i++) b[i] = a[i]>=median?1:-1; for(int i = 1; i<n; i++) b[i] += b[i-1]; int mn = 0; boolean can = b[k-1]>0; for(int i = k; i<n; i++){ mn = Math.min(mn, b[i-k]); can |= b[i]-mn>0; } if(can){ ans = median; l = median+1; }else r = median-1; } out.println(ans); } public static void main(String[] args) { in = new Reader(); out = new Writer(); int t = 1; while (t-- > 0) solve(); out.exit(); } static Reader in; static Writer out; static class Reader { static BufferedReader br; static StringTokenizer st; public Reader() { this.br = new BufferedReader(new InputStreamReader(System.in)); } public Reader(String f){ try { this.br = new BufferedReader(new FileReader(f)); } catch (IOException e) { e.printStackTrace(); } } public int[] na(int n) { int[] a = new int[n]; for (int i = 0; i < n; i++) a[i] = nextInt(); return a; } public double[] nd(int n) { double[] a = new double[n]; for (int i = 0; i < n; i++) a[i] = nextDouble(); return a; } public long[] nl(int n) { long[] a = new long[n]; for (int i = 0; i < n; i++) a[i] = nextLong(); return a; } public char[] nca() { return next().toCharArray(); } public String[] ns(int n) { String[] a = new String[n]; for (int i = 0; i < n; i++) a[i] = next(); return a; } public int nextInt() { ensureNext(); return Integer.parseInt(st.nextToken()); } public double nextDouble() { ensureNext(); return Double.parseDouble(st.nextToken()); } public Long nextLong() { ensureNext(); return Long.parseLong(st.nextToken()); } public String next() { ensureNext(); return st.nextToken(); } public String nextLine() { try { return br.readLine(); } catch (Exception e) { e.printStackTrace(); return null; } } private void ensureNext() { if (st == null || !st.hasMoreTokens()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } } } static class Util{ private static Random random = new Random(); static long[] fact; public static void initFactorial(int n, long mod) { fact = new long[n+1]; fact[0] = 1; for (int i = 1; i < n+1; i++) fact[i] = (fact[i - 1] * i) % mod; } public static long modInverse(long a, long MOD) { long[] gcdE = gcdExtended(a, MOD); if (gcdE[0] != 1) return -1; // Inverted doesn't exist long x = gcdE[1]; return (x % MOD + MOD) % MOD; } public static long[] gcdExtended(long p, long q) { if (q == 0) return new long[] { p, 1, 0 }; long[] vals = gcdExtended(q, p % q); long tmp = vals[2]; vals[2] = vals[1] - (p / q) * vals[2]; vals[1] = tmp; return vals; } public static long nCr(int n, int r, long MOD) { if (r == 0) return 1; return (fact[n] * modInverse(fact[r], MOD) % MOD * modInverse(fact[n - r], MOD) % MOD) % MOD; } public static long nCr(int n, int r) { return (fact[n]/fact[r])/fact[n-r]; } public static long nPr(int n, int r, long MOD) { if (r == 0) return 1; return (fact[n] * modInverse(fact[n - r], MOD) % MOD) % MOD; } public static long nPr(int n, int r) { return fact[n]/fact[n-r]; } public static boolean isPrime(int n) { if (n <= 1) return false; if (n <= 3) return true; if (n % 2 == 0 || n % 3 == 0) return false; for (int i = 5; i * i <= n; i = i + 6) if (n % i == 0 || n % (i + 2) == 0) return false; return true; } public static boolean[] getSieve(int n) { boolean[] isPrime = new boolean[n+1]; for (int i = 2; i <= n; i++) isPrime[i] = true; for (int i = 2; i*i <= n; i++) if (isPrime[i]) for (int j = i; i*j <= n; j++) isPrime[i*j] = false; return isPrime; } public static int gcd(int a, int b) { int tmp = 0; while(b != 0) { tmp = b; b = a%b; a = tmp; } return a; } public static long gcd(long a, long b) { long tmp = 0; while(b != 0) { tmp = b; b = a%b; a = tmp; } return a; } public static int random(int min, int max) { return random.nextInt(max-min+1)+min; } public static void dbg(Object... o) { System.out.println(Arrays.deepToString(o)); } public static void reverse(int[] s, int l , int r) { for(int i = l; i<=(l+r)/2; i++) { int tmp = s[i]; s[i] = s[r+l-i]; s[r+l-i] = tmp; } } public static void reverse(int[] s) { reverse(s, 0, s.length-1); } public static void reverse(long[] s, int l , int r) { for(int i = l; i<=(l+r)/2; i++) { long tmp = s[i]; s[i] = s[r+l-i]; s[r+l-i] = tmp; } } public static void reverse(long[] s) { reverse(s, 0, s.length-1); } public static void reverse(float[] s, int l , int r) { for(int i = l; i<=(l+r)/2; i++) { float tmp = s[i]; s[i] = s[r+l-i]; s[r+l-i] = tmp; } } public static void reverse(float[] s) { reverse(s, 0, s.length-1); } public static void reverse(double[] s, int l , int r) { for(int i = l; i<=(l+r)/2; i++) { double tmp = s[i]; s[i] = s[r+l-i]; s[r+l-i] = tmp; } } public static void reverse(double[] s) { reverse(s, 0, s.length-1); } public static void reverse(char[] s, int l , int r) { for(int i = l; i<=(l+r)/2; i++) { char tmp = s[i]; s[i] = s[r+l-i]; s[r+l-i] = tmp; } } public static void reverse(char[] s) { reverse(s, 0, s.length-1); } public static <T> void reverse(T[] s, int l , int r) { for(int i = l; i<=(l+r)/2; i++) { T tmp = s[i]; s[i] = s[r+l-i]; s[r+l-i] = tmp; } } public static <T> void reverse(T[] s) { reverse(s, 0, s.length-1); } public static void shuffle(int[] s) { for (int i = 0; i < s.length; ++i) { int j = random.nextInt(i + 1); int t = s[i]; s[i] = s[j]; s[j] = t; } } public static void shuffle(long[] s) { for (int i = 0; i < s.length; ++i) { int j = random.nextInt(i + 1); long t = s[i]; s[i] = s[j]; s[j] = t; } } public static void shuffle(float[] s) { for (int i = 0; i < s.length; ++i) { int j = random.nextInt(i + 1); float t = s[i]; s[i] = s[j]; s[j] = t; } } public static void shuffle(double[] s) { for (int i = 0; i < s.length; ++i) { int j = random.nextInt(i + 1); double t = s[i]; s[i] = s[j]; s[j] = t; } } public static void shuffle(char[] s) { for (int i = 0; i < s.length; ++i) { int j = random.nextInt(i + 1); char t = s[i]; s[i] = s[j]; s[j] = t; } } public static <T> void shuffle(T[] s) { for (int i = 0; i < s.length; ++i) { int j = random.nextInt(i + 1); T t = s[i]; s[i] = s[j]; s[j] = t; } } public static void sortArray(int[] a) { shuffle(a); Arrays.sort(a); } public static void sortArray(long[] a) { shuffle(a); Arrays.sort(a); } public static void sortArray(float[] a) { shuffle(a); Arrays.sort(a); } public static void sortArray(double[] a) { shuffle(a); Arrays.sort(a); } public static void sortArray(char[] a) { shuffle(a); Arrays.sort(a); } public static <T extends Comparable<T>> void sortArray(T[] a) { Arrays.sort(a); } } static class Writer { private PrintWriter pw; public Writer(){ pw = new PrintWriter(System.out); } public Writer(String f){ try { pw = new PrintWriter(new FileWriter(f)); } catch (IOException e) { e.printStackTrace(); } } public void printArray(int[] a) { for(int i = 0; i<a.length; i++) print(a[i]+" "); } public void printlnArray(int[] a) { for(int i = 0; i<a.length; i++) print(a[i]+" "); pw.println(); } public void printArray(long[] a) { for(int i = 0; i<a.length; i++) print(a[i]+" "); } public void printlnArray(long[] a) { for(int i = 0; i<a.length; i++) print(a[i]+" "); pw.println(); } public void print(Object o) { pw.print(o.toString()); } public void println(Object o) { pw.println(o.toString()); } public void println() { pw.println(); } public void flush() { pw.flush(); } public void exit() { pw.close(); } } }
Java
["5 3\n1 2 3 2 1", "4 2\n1 2 3 4"]
2 seconds
["2", "3"]
NoteIn the first example all the possible subarrays are $$$[1..3]$$$, $$$[1..4]$$$, $$$[1..5]$$$, $$$[2..4]$$$, $$$[2..5]$$$ and $$$[3..5]$$$ and the median for all of them is $$$2$$$, so the maximum possible median is $$$2$$$ too.In the second example $$$median([3..4]) = 3$$$.
Java 11
standard input
[ "binary search", "data structures", "dp" ]
dddeb7663c948515def967374f2b8812
The first line contains two integers $$$n$$$ and $$$k$$$ ($$$1 \leq k \leq n \leq 2 \cdot 10^5$$$). The second line contains $$$n$$$ integers $$$a_1, a_2, \ldots, a_n$$$ ($$$1 \leq a_i \leq n$$$).
2,100
Output one integer $$$m$$$ — the maximum median you can get.
standard output
PASSED
310993266febbcbda7fee5d9241c41ff
train_110.jsonl
1613658900
You are a given an array $$$a$$$ of length $$$n$$$. Find a subarray $$$a[l..r]$$$ with length at least $$$k$$$ with the largest median.A median in an array of length $$$n$$$ is an element which occupies position number $$$\lfloor \frac{n + 1}{2} \rfloor$$$ after we sort the elements in non-decreasing order. For example: $$$median([1, 2, 3, 4]) = 2$$$, $$$median([3, 2, 1]) = 2$$$, $$$median([2, 1, 2, 1]) = 1$$$.Subarray $$$a[l..r]$$$ is a contiguous part of the array $$$a$$$, i. e. the array $$$a_l,a_{l+1},\ldots,a_r$$$ for some $$$1 \leq l \leq r \leq n$$$, its length is $$$r - l + 1$$$.
256 megabytes
import static java.lang.Math.max; import static java.lang.Math.min; import static java.lang.Math.abs; import java.io.*; import java.util.*; public class A { static int n, k; static int[] arr; static char[] s; public static void main(String[] args) throws IOException { f = new Flash(); out = new PrintWriter(System.out); int T = 1; //ni(); for(int tc = 1; tc <= T; tc++){ n = ni(); k = ni(); arr = arr(n); sop(fn()); } out.flush(); out.close(); } static int fn() { int l = 1, r = n; while(l < r) { int mid = l + (r - l + 1) / 2; if(ok(mid)) l = mid; else r = mid - 1; } return l; } static boolean ok(int x) { int[] b = new int[n]; for(int i = 0; i < n; i++) { if(arr[i] >= x) b[i] = 1; else b[i] = -1; } int[] pref = new int[n]; pref[0] = b[0]; for(int i = 1; i < n; i++) pref[i] += pref[i-1] + b[i]; int max = pref[k-1], min = 0; for(int i = k; i < n; i++) { min = min(min, pref[i-k]); max = max(max, pref[i] - min); } if(max > 0) return true; return false; } static Flash f; static PrintWriter out; static final long mod = (long)1e9+7; static final long inf = Long.MAX_VALUE; static final int _inf = Integer.MAX_VALUE; static final int maxN = (int)5e5+5; static long[] fact, inv; static void sort(int[] a){ List<Integer> A = new ArrayList<>(); for(int i : a) A.add(i); Collections.sort(A); for(int i = 0; i < A.size(); i++) a[i] = A.get(i); } static void sort(long[] a){ List<Long> A = new ArrayList<>(); for(long i : a) A.add(i); Collections.sort(A); for(int i = 0; i < A.size(); i++) a[i] = A.get(i); } static void print(int[] a){ StringBuilder sb = new StringBuilder(); for(int i = 0; i < a.length; i++) sb.append(a[i] + " "); sop(sb); } static void print(long[] a){ StringBuilder sb = new StringBuilder(); for(int i = 0; i < a.length; i++) sb.append(a[i] + " "); sop(sb); } static int swap(int itself, int dummy){return itself;} static long swap(long itself, long dummy){return itself;} static void sop(Object o){out.println(o);} static int ni(){return f.ni();} static long nl(){return f.nl();} static double nd(){return f.nd();} static String next(){return f.next();} static String ns(){return f.ns();} static char[] nc(){return f.nc();} static int[] arr(int len){return f.arr(len);} static int gcd(int a, int b){if(b == 0) return a; return gcd(b, a%b);} static long gcd(long a, long b){if(b == 0) return a; return gcd(b, a%b);} static int lcm(int a, int b){return (a*b)/gcd(a, b);} static long lcm(long a, long b){return (a*b)/gcd(a, b);} static class Flash { BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); StringTokenizer st = new StringTokenizer(""); String next(){ while(!st.hasMoreTokens()){ try{ st = new StringTokenizer(br.readLine()); }catch(IOException e){ e.printStackTrace(); } } return st.nextToken(); } String ns(){ String s = new String(); try{ s = br.readLine().trim(); }catch(IOException e){ e.printStackTrace(); } return s; } int[] arr(int n){ int[] a = new int[n]; for(int i = 0; i < n; i++) a[i] = ni(); return a; } char[] nc(){return ns().toCharArray();} int ni(){return Integer.parseInt(next());} long nl(){return Long.parseLong(next());} double nd(){return Double.parseDouble(next());} } }
Java
["5 3\n1 2 3 2 1", "4 2\n1 2 3 4"]
2 seconds
["2", "3"]
NoteIn the first example all the possible subarrays are $$$[1..3]$$$, $$$[1..4]$$$, $$$[1..5]$$$, $$$[2..4]$$$, $$$[2..5]$$$ and $$$[3..5]$$$ and the median for all of them is $$$2$$$, so the maximum possible median is $$$2$$$ too.In the second example $$$median([3..4]) = 3$$$.
Java 11
standard input
[ "binary search", "data structures", "dp" ]
dddeb7663c948515def967374f2b8812
The first line contains two integers $$$n$$$ and $$$k$$$ ($$$1 \leq k \leq n \leq 2 \cdot 10^5$$$). The second line contains $$$n$$$ integers $$$a_1, a_2, \ldots, a_n$$$ ($$$1 \leq a_i \leq n$$$).
2,100
Output one integer $$$m$$$ — the maximum median you can get.
standard output
PASSED
4f43b768df1c772b892841b810d69d09
train_110.jsonl
1613658900
You are a given an array $$$a$$$ of length $$$n$$$. Find a subarray $$$a[l..r]$$$ with length at least $$$k$$$ with the largest median.A median in an array of length $$$n$$$ is an element which occupies position number $$$\lfloor \frac{n + 1}{2} \rfloor$$$ after we sort the elements in non-decreasing order. For example: $$$median([1, 2, 3, 4]) = 2$$$, $$$median([3, 2, 1]) = 2$$$, $$$median([2, 1, 2, 1]) = 1$$$.Subarray $$$a[l..r]$$$ is a contiguous part of the array $$$a$$$, i. e. the array $$$a_l,a_{l+1},\ldots,a_r$$$ for some $$$1 \leq l \leq r \leq n$$$, its length is $$$r - l + 1$$$.
256 megabytes
//package com.company; import java.io.*; import java.util.*; public class Main { static FastReader sc = new FastReader(); static PrintWriter out = new PrintWriter(System.out); private static int N = 200005; private static int[] a = new int[N]; private static int[] b = new int[N]; private static int n = 0, k = 0; private static boolean check(int mid){ for(int i = 1 ; i <= n ; ++i) b[i] = b[i - 1] + (a[i] >= mid ? 1 : -1); int lr = N , rs = 0; for(int i = k ; i <= n ; ++i){ lr = Math.min(lr , b[i - k]); rs = Math.max(rs , b[i] - lr); } return rs <= 0; } public static void main(String[] args) throws IOException{ // write your code here n = sc.nextInt(); k = sc.nextInt(); for(int i = 1 ; i <= n ; ++i) a[i] = sc.nextInt(); int l = 1 , r = N; while(l < r){ int mid = l + r + 1 >> 1; if(check(mid)) r = mid - 1; else l = mid; } out.print(l); out.flush(); } } /** 读取int和double的类 */ class FastReader { BufferedReader br; StringTokenizer st; public FastReader() { br = new BufferedReader(new InputStreamReader(System.in)); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); }String nextLine() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } }
Java
["5 3\n1 2 3 2 1", "4 2\n1 2 3 4"]
2 seconds
["2", "3"]
NoteIn the first example all the possible subarrays are $$$[1..3]$$$, $$$[1..4]$$$, $$$[1..5]$$$, $$$[2..4]$$$, $$$[2..5]$$$ and $$$[3..5]$$$ and the median for all of them is $$$2$$$, so the maximum possible median is $$$2$$$ too.In the second example $$$median([3..4]) = 3$$$.
Java 11
standard input
[ "binary search", "data structures", "dp" ]
dddeb7663c948515def967374f2b8812
The first line contains two integers $$$n$$$ and $$$k$$$ ($$$1 \leq k \leq n \leq 2 \cdot 10^5$$$). The second line contains $$$n$$$ integers $$$a_1, a_2, \ldots, a_n$$$ ($$$1 \leq a_i \leq n$$$).
2,100
Output one integer $$$m$$$ — the maximum median you can get.
standard output
PASSED
b775db0434e50b5f6a26f062218278bf
train_110.jsonl
1613658900
You are a given an array $$$a$$$ of length $$$n$$$. Find a subarray $$$a[l..r]$$$ with length at least $$$k$$$ with the largest median.A median in an array of length $$$n$$$ is an element which occupies position number $$$\lfloor \frac{n + 1}{2} \rfloor$$$ after we sort the elements in non-decreasing order. For example: $$$median([1, 2, 3, 4]) = 2$$$, $$$median([3, 2, 1]) = 2$$$, $$$median([2, 1, 2, 1]) = 1$$$.Subarray $$$a[l..r]$$$ is a contiguous part of the array $$$a$$$, i. e. the array $$$a_l,a_{l+1},\ldots,a_r$$$ for some $$$1 \leq l \leq r \leq n$$$, its length is $$$r - l + 1$$$.
256 megabytes
import java.io.*; import java.util.*; public class Maxmed { public static void main(String[] args) { int n, k; Scanner in = new Scanner(System.in); n = in.nextInt(); k = in.nextInt(); int[] nums = new int[n]; for (int i = 0; i < n; i++) { nums[i] = in.nextInt(); } int l = 1; int r = n + 1; while (l + 1 < r) { int m = (l + r) / 2; int[] compare = new int[n]; for (int i = 0; i < n; i++) { if (m <= nums[i]) compare[i] = 1; else compare[i] = -1; if (i > 0) compare[i] += compare[i - 1]; } boolean possible; possible = false; if (compare[k - 1] > 0) possible = true; int minSum = 0; for (int i = k; i < n; i++) { minSum = Math.min(minSum, compare[i - k]); if (compare[i] > minSum) possible = true; } if (possible) l = m; else r = m; } System.out.println(l); } }
Java
["5 3\n1 2 3 2 1", "4 2\n1 2 3 4"]
2 seconds
["2", "3"]
NoteIn the first example all the possible subarrays are $$$[1..3]$$$, $$$[1..4]$$$, $$$[1..5]$$$, $$$[2..4]$$$, $$$[2..5]$$$ and $$$[3..5]$$$ and the median for all of them is $$$2$$$, so the maximum possible median is $$$2$$$ too.In the second example $$$median([3..4]) = 3$$$.
Java 11
standard input
[ "binary search", "data structures", "dp" ]
dddeb7663c948515def967374f2b8812
The first line contains two integers $$$n$$$ and $$$k$$$ ($$$1 \leq k \leq n \leq 2 \cdot 10^5$$$). The second line contains $$$n$$$ integers $$$a_1, a_2, \ldots, a_n$$$ ($$$1 \leq a_i \leq n$$$).
2,100
Output one integer $$$m$$$ — the maximum median you can get.
standard output
PASSED
1ecbbc4a757175957c59bbb1613c110f
train_110.jsonl
1613658900
You are a given an array $$$a$$$ of length $$$n$$$. Find a subarray $$$a[l..r]$$$ with length at least $$$k$$$ with the largest median.A median in an array of length $$$n$$$ is an element which occupies position number $$$\lfloor \frac{n + 1}{2} \rfloor$$$ after we sort the elements in non-decreasing order. For example: $$$median([1, 2, 3, 4]) = 2$$$, $$$median([3, 2, 1]) = 2$$$, $$$median([2, 1, 2, 1]) = 1$$$.Subarray $$$a[l..r]$$$ is a contiguous part of the array $$$a$$$, i. e. the array $$$a_l,a_{l+1},\ldots,a_r$$$ for some $$$1 \leq l \leq r \leq n$$$, its length is $$$r - l + 1$$$.
256 megabytes
import java.io.*; import java.util.*; import java.lang.*; public class Main { public static PrintWriter out = new PrintWriter(new BufferedOutputStream(System.out)); static long MOD = (long) (1e9 + 7); //static int MOD = 998244353; static long MOD2 = MOD * MOD; static FastReader sc = new FastReader(); static int pInf = Integer.MAX_VALUE; static int nInf = Integer.MIN_VALUE; static long ded = (long)(1e17)+9; public static void main(String[] args) throws Exception { int test = 1; //test = sc.nextInt(); for (int i = 1; i <= test; i++){ //out.print("Case #"+i+": "); solve(); } out.flush(); out.close(); } static int n,k; static int[] a; static void solve() throws Exception { n = sc.nextInt(); k = sc.nextInt(); a = new int[n]; for(int i = 0 ; i < n; i++){ a[i] = sc.nextInt(); } int l = 0; int r = 2_000_01; while(r-l>1){ int m = l+(r-l)/2; if(good(m)){ l = m; }else{ r = m; } } out.println(l); } static boolean good(int m){ int[] p = new int[n+1]; int sum = 0; int min = pInf; int best = nInf; for(int i = 0; i < n; i++){ if(a[i]<m){ sum += -1; }else{ sum += 1; } p[i+1] = sum; if(i-k+1>=0){ min = Math.min(min,p[i-k+1]); best = Math.max(best,sum-min); } } return best>0; } static int query(int l,int r){ out.println("? "+l+" "+r); out.flush(); return sc.nextInt(); } static class Pair implements Comparable<Pair> { int x; long y; int idx; public Pair(int x, long y) { this.x = x; this.y = y; } @Override public int compareTo(Pair o) { if ((this.x == o.x)) { //return (this.y - o.y); } return (this.x - o.x); } } public static long mul(long a, long b) { return ((a % MOD) * (b % MOD)) % MOD; } public static long add(long a, long b) { return ((a % MOD) + (b % MOD)) % MOD; } public static long c2(long n) { if ((n & 1) == 0) { return mul(n / 2, n - 1); } else { return mul(n, (n - 1) / 2); } } //Shuffle Sort static final Random random = new Random(); static void ruffleSort(int[] a) { int n = a.length;//shuffle, then sort for (int i = 0; i < n; i++) { int oi = random.nextInt(n); int temp= a[oi]; a[oi] = a[i]; a[i] = temp; } Arrays.sort(a); } //Brian Kernighans Algorithm static long countSetBits(long n) { if (n == 0) return 0; return 1 + countSetBits(n & (n - 1)); } //Euclidean Algorithm static long gcd(long A, long B) { if (B == 0) return A; return gcd(B, A % B); } //Modular Exponentiation static long fastExpo(long x, long n) { if (n == 0) return 1; if ((n & 1) == 0) return fastExpo((x * x) % MOD, n / 2) % MOD; return ((x % MOD) * fastExpo((x * x) % MOD, (n - 1) / 2)) % MOD; } //AKS Algorithm static boolean isPrime(long n) { if (n <= 1) return false; if (n <= 3) return true; if (n % 2 == 0 || n % 3 == 0) return false; for (int i = 5; i <= Math.sqrt(n); i += 6) if (n % i == 0 || n % (i + 2) == 0) return false; return true; } public static long modinv(long x) { return modpow(x, MOD - 2); } public static long modpow(long a, long b) { if (b == 0) { return 1; } long x = modpow(a, b / 2); x = (x * x) % MOD; if (b % 2 == 1) { return (x * a) % MOD; } return x; } static class FastReader { BufferedReader br; StringTokenizer st; public FastReader() { br = new BufferedReader(new InputStreamReader(System.in)); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } } }
Java
["5 3\n1 2 3 2 1", "4 2\n1 2 3 4"]
2 seconds
["2", "3"]
NoteIn the first example all the possible subarrays are $$$[1..3]$$$, $$$[1..4]$$$, $$$[1..5]$$$, $$$[2..4]$$$, $$$[2..5]$$$ and $$$[3..5]$$$ and the median for all of them is $$$2$$$, so the maximum possible median is $$$2$$$ too.In the second example $$$median([3..4]) = 3$$$.
Java 11
standard input
[ "binary search", "data structures", "dp" ]
dddeb7663c948515def967374f2b8812
The first line contains two integers $$$n$$$ and $$$k$$$ ($$$1 \leq k \leq n \leq 2 \cdot 10^5$$$). The second line contains $$$n$$$ integers $$$a_1, a_2, \ldots, a_n$$$ ($$$1 \leq a_i \leq n$$$).
2,100
Output one integer $$$m$$$ — the maximum median you can get.
standard output
PASSED
50fb9f254fe31a72699e9f829b291e83
train_110.jsonl
1613658900
You are a given an array $$$a$$$ of length $$$n$$$. Find a subarray $$$a[l..r]$$$ with length at least $$$k$$$ with the largest median.A median in an array of length $$$n$$$ is an element which occupies position number $$$\lfloor \frac{n + 1}{2} \rfloor$$$ after we sort the elements in non-decreasing order. For example: $$$median([1, 2, 3, 4]) = 2$$$, $$$median([3, 2, 1]) = 2$$$, $$$median([2, 1, 2, 1]) = 1$$$.Subarray $$$a[l..r]$$$ is a contiguous part of the array $$$a$$$, i. e. the array $$$a_l,a_{l+1},\ldots,a_r$$$ for some $$$1 \leq l \leq r \leq n$$$, its length is $$$r - l + 1$$$.
256 megabytes
import java.util.*; import java.io.*; public class _703 { static MyScanner sc; public static void main(String[] args) { sc = new MyScanner(); PrintWriter out = new PrintWriter(new BufferedOutputStream(System.out)); int t = 1; while (t-- > 0) { int n = sc.nextInt(); int k = sc.nextInt(); int [] a = new int[n]; for (int i = 0; i < n; i++) a[i] = sc.nextInt(); int l = 0; int r = n + 1; while (l < r) { int mid = (l + r) / 2; int [] b = new int[n]; for (int i = 0; i < n; i++) { if (a[i] >= mid) b[i] = 1; else b[i] = -1; } int [] pref = new int[n + 1]; for (int i = 1; i <= n; i++) pref[i] = pref[i - 1] + b[i - 1]; PriorityQueue<Integer> pq = new PriorityQueue<>(); pq.add(pref[0]); int max = (int) -1e7; for (int i = k; i <= n; i++) { max = Math.max(pref[i] - pq.peek(), max); pq.add(pref[i - k + 1]); } if (max > 0) { l = mid + 1; } else { r = mid; } } out.println(l - 1); } out.close(); } static void sort(int[] a) { ArrayList<Integer> q = new ArrayList<>(); for (int i : a) q.add(i); Collections.sort(q); for (int i = 0; i < a.length; i++) a[i] = q.get(i); } static void sort(long[] a) { ArrayList<Long> q = new ArrayList<>(); for (long i : a) q.add(i); Collections.sort(q); for (int i = 0; i < a.length; i++) a[i] = q.get(i); } //-----------MyScanner class for faster input---------- public static class MyScanner { BufferedReader br; StringTokenizer st; public MyScanner() { br = new BufferedReader(new InputStreamReader(System.in)); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } } }
Java
["5 3\n1 2 3 2 1", "4 2\n1 2 3 4"]
2 seconds
["2", "3"]
NoteIn the first example all the possible subarrays are $$$[1..3]$$$, $$$[1..4]$$$, $$$[1..5]$$$, $$$[2..4]$$$, $$$[2..5]$$$ and $$$[3..5]$$$ and the median for all of them is $$$2$$$, so the maximum possible median is $$$2$$$ too.In the second example $$$median([3..4]) = 3$$$.
Java 11
standard input
[ "binary search", "data structures", "dp" ]
dddeb7663c948515def967374f2b8812
The first line contains two integers $$$n$$$ and $$$k$$$ ($$$1 \leq k \leq n \leq 2 \cdot 10^5$$$). The second line contains $$$n$$$ integers $$$a_1, a_2, \ldots, a_n$$$ ($$$1 \leq a_i \leq n$$$).
2,100
Output one integer $$$m$$$ — the maximum median you can get.
standard output
PASSED
5ccb8dcb40044e742ce9e0a030be121c
train_110.jsonl
1613658900
You are a given an array $$$a$$$ of length $$$n$$$. Find a subarray $$$a[l..r]$$$ with length at least $$$k$$$ with the largest median.A median in an array of length $$$n$$$ is an element which occupies position number $$$\lfloor \frac{n + 1}{2} \rfloor$$$ after we sort the elements in non-decreasing order. For example: $$$median([1, 2, 3, 4]) = 2$$$, $$$median([3, 2, 1]) = 2$$$, $$$median([2, 1, 2, 1]) = 1$$$.Subarray $$$a[l..r]$$$ is a contiguous part of the array $$$a$$$, i. e. the array $$$a_l,a_{l+1},\ldots,a_r$$$ for some $$$1 \leq l \leq r \leq n$$$, its length is $$$r - l + 1$$$.
256 megabytes
//package round703; import java.io.*; import java.util.ArrayDeque; import java.util.Arrays; import java.util.InputMismatchException; import java.util.Queue; public class D { InputStream is; FastWriter out; String INPUT = ""; void solve() { int n = ni(), K = ni(); int[] a = na(n); int low = 0, high = n+1; while(high - low > 1){ int h = high+low>>1; if(ok(h, a, K)){ low = h; }else{ high = h; } } out.println(low); } boolean ok(int h, int[] a, int K) { int n = a.length; // higher >= lower + 1 int c = 0; int min = Integer.MAX_VALUE / 2; int[] cs = new int[n+1]; for(int i = 0;i < n;i++){ c += a[i] >= h ? 1 : -1; cs[i+1] = c; if(i >= K-1){ min = Math.min(min, cs[i-(K-1)]); } if(c-min >= 1)return true; } return false; } void run() throws Exception { is = oj ? System.in : new ByteArrayInputStream(INPUT.getBytes()); out = new FastWriter(System.out); long s = System.currentTimeMillis(); solve(); out.flush(); tr(System.currentTimeMillis()-s+"ms"); } public static void main(String[] args) throws Exception { new D().run(); } private byte[] inbuf = new byte[1024]; public int lenbuf = 0, ptrbuf = 0; private int readByte() { if(lenbuf == -1)throw new InputMismatchException(); if(ptrbuf >= lenbuf){ ptrbuf = 0; try { lenbuf = is.read(inbuf); } catch (IOException e) { throw new InputMismatchException(); } if(lenbuf <= 0)return -1; } return inbuf[ptrbuf++]; } private boolean isSpaceChar(int c) { return !(c >= 33 && c <= 126); } private int skip() { int b; while((b = readByte()) != -1 && isSpaceChar(b)); return b; } private double nd() { return Double.parseDouble(ns()); } private char nc() { return (char)skip(); } private String ns() { int b = skip(); StringBuilder sb = new StringBuilder(); while(!(isSpaceChar(b))){ // when nextLine, (isSpaceChar(b) && b != ' ') sb.appendCodePoint(b); b = readByte(); } return sb.toString(); } private char[] ns(int n) { char[] buf = new char[n]; int b = skip(), p = 0; while(p < n && !(isSpaceChar(b))){ buf[p++] = (char)b; b = readByte(); } return n == p ? buf : Arrays.copyOf(buf, p); } private int[] na(int n) { int[] a = new int[n]; for(int i = 0;i < n;i++)a[i] = ni(); return a; } private long[] nal(int n) { long[] a = new long[n]; for(int i = 0;i < n;i++)a[i] = nl(); return a; } private char[][] nm(int n, int m) { char[][] map = new char[n][]; for(int i = 0;i < n;i++)map[i] = ns(m); return map; } private int[][] nmi(int n, int m) { int[][] map = new int[n][]; for(int i = 0;i < n;i++)map[i] = na(m); return map; } private int ni() { return (int)nl(); } private long nl() { long num = 0; int b; boolean minus = false; while((b = readByte()) != -1 && !((b >= '0' && b <= '9') || b == '-')); if(b == '-'){ minus = true; b = readByte(); } while(true){ if(b >= '0' && b <= '9'){ num = num * 10 + (b - '0'); }else{ return minus ? -num : num; } b = readByte(); } } public static class FastWriter { private static final int BUF_SIZE = 1<<13; private final byte[] buf = new byte[BUF_SIZE]; private final OutputStream out; private int ptr = 0; private FastWriter(){out = null;} public FastWriter(OutputStream os) { this.out = os; } public FastWriter(String path) { try { this.out = new FileOutputStream(path); } catch (FileNotFoundException e) { throw new RuntimeException("FastWriter"); } } public FastWriter write(byte b) { buf[ptr++] = b; if(ptr == BUF_SIZE)innerflush(); return this; } public FastWriter write(char c) { return write((byte)c); } public FastWriter write(char[] s) { for(char c : s){ buf[ptr++] = (byte)c; if(ptr == BUF_SIZE)innerflush(); } return this; } public FastWriter write(String s) { s.chars().forEach(c -> { buf[ptr++] = (byte)c; if(ptr == BUF_SIZE)innerflush(); }); return this; } private static int countDigits(int l) { if (l >= 1000000000) return 10; if (l >= 100000000) return 9; if (l >= 10000000) return 8; if (l >= 1000000) return 7; if (l >= 100000) return 6; if (l >= 10000) return 5; if (l >= 1000) return 4; if (l >= 100) return 3; if (l >= 10) return 2; return 1; } public FastWriter write(int x) { if(x == Integer.MIN_VALUE){ return write((long)x); } if(ptr + 12 >= BUF_SIZE)innerflush(); if(x < 0){ write((byte)'-'); x = -x; } int d = countDigits(x); for(int i = ptr + d - 1;i >= ptr;i--){ buf[i] = (byte)('0'+x%10); x /= 10; } ptr += d; return this; } private static int countDigits(long l) { if (l >= 1000000000000000000L) return 19; if (l >= 100000000000000000L) return 18; if (l >= 10000000000000000L) return 17; if (l >= 1000000000000000L) return 16; if (l >= 100000000000000L) return 15; if (l >= 10000000000000L) return 14; if (l >= 1000000000000L) return 13; if (l >= 100000000000L) return 12; if (l >= 10000000000L) return 11; if (l >= 1000000000L) return 10; if (l >= 100000000L) return 9; if (l >= 10000000L) return 8; if (l >= 1000000L) return 7; if (l >= 100000L) return 6; if (l >= 10000L) return 5; if (l >= 1000L) return 4; if (l >= 100L) return 3; if (l >= 10L) return 2; return 1; } public FastWriter write(long x) { if(x == Long.MIN_VALUE){ return write("" + x); } if(ptr + 21 >= BUF_SIZE)innerflush(); if(x < 0){ write((byte)'-'); x = -x; } int d = countDigits(x); for(int i = ptr + d - 1;i >= ptr;i--){ buf[i] = (byte)('0'+x%10); x /= 10; } ptr += d; return this; } public FastWriter write(double x, int precision) { if(x < 0){ write('-'); x = -x; } x += Math.pow(10, -precision)/2; // if(x < 0){ x = 0; } write((long)x).write("."); x -= (long)x; for(int i = 0;i < precision;i++){ x *= 10; write((char)('0'+(int)x)); x -= (int)x; } return this; } public FastWriter writeln(char c){ return write(c).writeln(); } public FastWriter writeln(int x){ return write(x).writeln(); } public FastWriter writeln(long x){ return write(x).writeln(); } public FastWriter writeln(double x, int precision){ return write(x, precision).writeln(); } public FastWriter write(int... xs) { boolean first = true; for(int x : xs) { if (!first) write(' '); first = false; write(x); } return this; } public FastWriter write(long... xs) { boolean first = true; for(long x : xs) { if (!first) write(' '); first = false; write(x); } return this; } public FastWriter writeln() { return write((byte)'\n'); } public FastWriter writeln(int... xs) { return write(xs).writeln(); } public FastWriter writeln(long... xs) { return write(xs).writeln(); } public FastWriter writeln(char[] line) { return write(line).writeln(); } public FastWriter writeln(char[]... map) { for(char[] line : map)write(line).writeln(); return this; } public FastWriter writeln(String s) { return write(s).writeln(); } private void innerflush() { try { out.write(buf, 0, ptr); ptr = 0; } catch (IOException e) { throw new RuntimeException("innerflush"); } } public void flush() { innerflush(); try { out.flush(); } catch (IOException e) { throw new RuntimeException("flush"); } } public FastWriter print(byte b) { return write(b); } public FastWriter print(char c) { return write(c); } public FastWriter print(char[] s) { return write(s); } public FastWriter print(String s) { return write(s); } public FastWriter print(int x) { return write(x); } public FastWriter print(long x) { return write(x); } public FastWriter print(double x, int precision) { return write(x, precision); } public FastWriter println(char c){ return writeln(c); } public FastWriter println(int x){ return writeln(x); } public FastWriter println(long x){ return writeln(x); } public FastWriter println(double x, int precision){ return writeln(x, precision); } public FastWriter print(int... xs) { return write(xs); } public FastWriter print(long... xs) { return write(xs); } public FastWriter println(int... xs) { return writeln(xs); } public FastWriter println(long... xs) { return writeln(xs); } public FastWriter println(char[] line) { return writeln(line); } public FastWriter println(char[]... map) { return writeln(map); } public FastWriter println(String s) { return writeln(s); } public FastWriter println() { return writeln(); } } public void trnz(int... o) { for(int i = 0;i < o.length;i++)if(o[i] != 0)System.out.print(i+":"+o[i]+" "); System.out.println(); } // print ids which are 1 public void trt(long... o) { Queue<Integer> stands = new ArrayDeque<>(); for(int i = 0;i < o.length;i++){ for(long x = o[i];x != 0;x &= x-1)stands.add(i<<6|Long.numberOfTrailingZeros(x)); } System.out.println(stands); } public void tf(boolean... r) { for(boolean x : r)System.out.print(x?'#':'.'); System.out.println(); } public void tf(boolean[]... b) { for(boolean[] r : b) { for(boolean x : r)System.out.print(x?'#':'.'); System.out.println(); } System.out.println(); } public void tf(long[]... b) { if(INPUT.length() != 0) { for (long[] r : b) { for (long x : r) { for (int i = 0; i < 64; i++) { System.out.print(x << ~i < 0 ? '#' : '.'); } } System.out.println(); } System.out.println(); } } public void tf(long... b) { if(INPUT.length() != 0) { for (long x : b) { for (int i = 0; i < 64; i++) { System.out.print(x << ~i < 0 ? '#' : '.'); } } System.out.println(); } } private boolean oj = System.getProperty("ONLINE_JUDGE") != null; private void tr(Object... o) { if(!oj)System.out.println(Arrays.deepToString(o)); } }
Java
["5 3\n1 2 3 2 1", "4 2\n1 2 3 4"]
2 seconds
["2", "3"]
NoteIn the first example all the possible subarrays are $$$[1..3]$$$, $$$[1..4]$$$, $$$[1..5]$$$, $$$[2..4]$$$, $$$[2..5]$$$ and $$$[3..5]$$$ and the median for all of them is $$$2$$$, so the maximum possible median is $$$2$$$ too.In the second example $$$median([3..4]) = 3$$$.
Java 11
standard input
[ "binary search", "data structures", "dp" ]
dddeb7663c948515def967374f2b8812
The first line contains two integers $$$n$$$ and $$$k$$$ ($$$1 \leq k \leq n \leq 2 \cdot 10^5$$$). The second line contains $$$n$$$ integers $$$a_1, a_2, \ldots, a_n$$$ ($$$1 \leq a_i \leq n$$$).
2,100
Output one integer $$$m$$$ — the maximum median you can get.
standard output
PASSED
9bb234ac445aadc3292e541abb547ba0
train_110.jsonl
1613658900
You are given a tree consisting of $$$n$$$ vertices, and $$$m$$$ simple vertex paths. Your task is to find how many pairs of those paths intersect at exactly one vertex. More formally you have to find the number of pairs $$$(i, j)$$$ $$$(1 \leq i &lt; j \leq m)$$$ such that $$$path_i$$$ and $$$path_j$$$ have exactly one vertex in common.
512 megabytes
import java.io.BufferedReader; import java.io.File; import java.io.IOException; import java.io.InputStreamReader; import java.util.*; import java.util.stream.Collectors; import java.util.stream.IntStream; public class OnePointPathsLog { static final int jumps = 19; static int[][] parents; static int[] parent; // parents[0] static int[] deep; static int[] subTreeSize; static int[] subTree; static int[] extCount; static int vertices; static List<Set<Integer>> neibours; static int[] treeLine; static int tlc; static int jump(int a, int t) { for (int i = 0; i < jumps; ++i) { if (((1 << i) & t) != 0) a = parents[i][a]; } return a; } static int lca(int a, int b) { if (deep[a] > deep[b]) a = jump(a, deep[a] - deep[b]); if (deep[a] < deep[b]) b = jump(b, deep[b] - deep[a]); if (a == b) return a; for (int i = jumps - 1; i >= 0; --i) { if (parents[i][a] != parents[i][b]) { a = parents[i][a]; b = parents[i][b]; } } return parent[a]; } static class Path { int from; int to; int lca; int[] neibours; Path(int a, int b) { from = a; to = b; lca = lca(a, b); neibours = buildNeibours(a, b, lca); } private int[] buildNeibours(int a, int b, int c) { if(a==b) return new int[]{}; if(a == c) return new int[]{jump(b, deep[b]-deep[c]-1)}; if(b == c) return new int[]{jump(a, deep[a]-deep[c]-1)}; int n1 = jump(b, deep[b]-deep[c]-1); int n2 = jump(a, deep[a]-deep[c]-1); return new int[]{Math.min(n1,n2),Math.max(n1, n2)}; } public void update(int p, int v) { for(int i = 0; i<neibours.length;++i) if(neibours[i]==p) neibours[i] = v; } } static int marker; static int smallPaths; private static long findOnes(int root, List<Path> paths) { if (paths.isEmpty()) return 0; int n = subTreeSize[root]; // boolean type = false; //if (n>10000) { // type = true; // System.out.println(n); //} if (n == 1) { long p = paths.size(); return p * (p - 1) / 2; } if (n == 2) { long t1 = 0; long t2 = 0; long t3 = 0; for (Path p : paths) { if (p.from != p.to) ++t3; else if (p.from == root) ++t1; else ++t2; } return t3 * (t1 + t2) + t1 * (t1 - 1) / 2 + t2 * (t2 - 1) / 2; } if(n<10) return findOnesDropRoot(root, paths); if(paths.size()<300) { ++smallPaths; } int child = maxChild(root); if(subTreeSize[child]*2 <= n) { //if(type) System.out.println("center"); return findOnesDropRoot(root, paths); } // if(type) System.out.println("edge"); while (subTreeSize[child]*3>n) child = maxChild(child); child = parent[child]; int par = parent[child]; List<Path> inner = new ArrayList<>(); List<Path> outer = new ArrayList<>(); int v = vertices++; if(v>=subTree.length) while (true); neibours.get(par).remove(child); neibours.get(par).add(v); subTreeSize[v] = 1; parent[v] = par; int d = subTreeSize[child] - 1; while (true) { subTreeSize[par]-=d; if(par == root) break; par = parent[par]; } ++marker; expandTree(child); // markSubtree(child, marker); for(int i = 0; i<tlc; ++i) { extCount[treeLine[i]] = 0; subTree[treeLine[i]] = marker; } for(Path p: paths) { if(subTree[p.lca] == marker) { inner.add(p); continue; } if(subTree[p.from] == marker) { ++extCount[p.from]; p.from = v; p.update(child, v); } if(subTree[p.to] == marker) { ++extCount[p.to]; p.to = v; p.update(child, v); } outer.add(p); } // updateExtCount(child); for(int i = tlc-1; i>0; --i) { int j = treeLine[i]; extCount[parent[j]]+=extCount[j]; } long ans = 0; for(Path p: inner) { ans+=extCount[p.lca]; for(int i: p.neibours) ans-=extCount[i]; } return ans + findOnes(root, outer) + findOnes(child, inner); } private static int maxChild(int center) { return neibours.get(center).stream().mapToInt(i -> i) .reduce((a, b) -> subTreeSize[a] > subTreeSize[b] ? a : b) .getAsInt(); } private static long findOnesDropRoot(int root, List<Path> paths) { List<Path> center = new ArrayList<>(); Map<Integer, List<Path>> inner = new HashMap<>(); Map<Integer, Integer> markers = new HashMap<>(); expandTree(root); for(Integer i: neibours.get(root)) { int m = ++marker; markers.put(m, i); subTree[i] = m; extCount[i] = 0; inner.put(i, new ArrayList<>()); // markSubtree(i, m); } for(int i = 1+markers.size(); i<tlc; ++i) { int v = treeLine[i]; subTree[v] = subTree[parent[v]]; extCount[v] = 0; } for(Path p: paths) { if(p.lca == root) { ++extCount[p.from]; ++extCount[p.to]; center.add(p); } else { inner.get(markers.get(subTree[p.from])).add(p); } } //updateExtCount(root); for(int i = tlc-1; i>0; --i) { int j = treeLine[i]; extCount[parent[j]]+=extCount[j]; } long ans = findOnes(center); for(Map.Entry<Integer, List<Path>> p: inner.entrySet()) { for(Path path: p.getValue()) { ans+=extCount[path.lca]; for(int i: path.neibours) ans-=extCount[i]; } ans+=findOnes(p.getKey(), p.getValue()); } return ans; } static class PairCounter { Map<Integer, Integer> ones = new HashMap<>(); Map<Long, Integer> pairs = new HashMap<>(); int getAndAppend(int[] neibours) { if (neibours.length == 0) return 0; if (neibours.length == 1) { if (ones.containsKey(neibours[0])) { int t = ones.get(neibours[0]); ones.put(neibours[0], t + 1); return t; } else { ones.put(neibours[0], 1); return 0; } } int t = getAndAppend(new int[]{neibours[0]}) + getAndAppend(new int[]{neibours[1]}); long l = neibours[0] * 1000000L + neibours[1]; if (pairs.containsKey(l)) { int k = pairs.get(l); t -= k; pairs.put(l, k + 1); } else { pairs.put(l, 1); } return t; } } private static long findOnes(List<Path> center) { int cnt = 0; long ans = 0; PairCounter pcn = new PairCounter(); for (Path p : center) { ans += cnt - pcn.getAndAppend(p.neibours); ++cnt; } return ans; } static void expandTree(int vert) { tlc = 1; treeLine[0] = vert; for(int i = 0; i<tlc; ++i) { int v = treeLine[i]; if (subTreeSize[v]>1) for(int j: neibours.get(v)) treeLine[tlc++] = j; } } private static void updateExtCount(int vert) { if(vert>=neibours.size()) return; for (int i : neibours.get(vert)) { updateExtCount(i); extCount[vert] += extCount[i]; } } private static void markSubtree(int vert, int m) { subTree[vert] = m; extCount[vert] = 0; if(vert>=neibours.size()) return; for (int i : neibours.get(vert)) markSubtree(i, m); } static BufferedReader input; static StringTokenizer stoken = new StringTokenizer(""); static String nextString() throws IOException { while (!stoken.hasMoreTokens()){ String st = input.readLine(); stoken = new StringTokenizer(st); } return stoken.nextToken(); } static int nextInt() throws Exception { return Integer.parseInt(nextString()); } public static void main(String[] args) throws Exception{ long l1 = System.currentTimeMillis(); input = new BufferedReader( new InputStreamReader(System.in) ); //Scanner scanner = // new Scanner(new File("bigtest3.txt")); //new Scanner(System.in); int n = /*scanner.*/nextInt(); vertices = n; int nv = (int)(1.3*n); parents = new int[jumps][]; parent = new int[nv]; parents[0] = parent; for(int i = 1; i<jumps; ++i) parents[i] = new int[n]; deep = new int[n]; subTreeSize = new int[nv]; subTree = new int[nv]; extCount = new int[nv]; treeLine = new int[nv]; neibours = IntStream.range(0, n).mapToObj(i -> new HashSet<Integer>()).collect(Collectors.toList()); for (int i = 1; i < n; ++i) { int a = /*scanner.*/nextInt() - 1; int b = /*scanner.*/nextInt() - 1; neibours.get(a).add(b); neibours.get(b).add(a); } initDSP(0, 0, 0); for (int i = 1; i < jumps; ++i) for (int j = 0; j < n; ++j) parents[i][j] = parents[i - 1][parents[i - 1][j]]; for(int i = 0; i<n; ++i) neibours.get(i).remove(parent[i]); List<Path> paths = new ArrayList<>(); int m = /*scanner.*/nextInt(); for(int i = 0; i<m; ++i) paths.add(new Path(/*scanner.*/nextInt()-1, /*scanner.*/nextInt() - 1)); System.out.println(findOnes(0, paths)); //System.out.println(System.currentTimeMillis() - l1); //System.out.println(vertices); //System.out.println(smallPaths); } private static void initDSP(int vert, int prev, int d) { parent[vert] = prev; deep[vert] = d++; subTreeSize[vert] = 1; for (int i : neibours.get(vert)) if (i != prev) { initDSP(i, vert, d); subTreeSize[vert] += subTreeSize[i]; } } }
Java
["5\n1 2\n1 3\n1 4\n3 5\n4\n2 3\n2 4\n3 4\n3 5", "1\n3\n1 1\n1 1\n1 1", "5\n1 2\n1 3\n1 4\n3 5\n6\n2 3\n2 4\n3 4\n3 5\n1 1\n1 2"]
6 seconds
["2", "3", "7"]
NoteThe tree in the first example and paths look like this. Pairs $$$(1,4)$$$ and $$$(3,4)$$$ intersect at one vertex.In the second example all three paths contain the same single vertex, so all pairs $$$(1, 2)$$$, $$$(1, 3)$$$ and $$$(2, 3)$$$ intersect at one vertex.The third example is the same as the first example with two additional paths. Pairs $$$(1,4)$$$, $$$(1,5)$$$, $$$(2,5)$$$, $$$(3,4)$$$, $$$(3,5)$$$, $$$(3,6)$$$ and $$$(5,6)$$$ intersect at one vertex.
Java 8
standard input
[ "combinatorics", "data structures", "dfs and similar", "dp", "trees" ]
632afd3c714e4ab34fbc474f9f99d345
First line contains a single integer $$$n$$$ $$$(1 \leq n \leq 3 \cdot 10^5)$$$. Next $$$n - 1$$$ lines describe the tree. Each line contains two integers $$$u$$$ and $$$v$$$ $$$(1 \leq u, v \leq n)$$$ describing an edge between vertices $$$u$$$ and $$$v$$$. Next line contains a single integer $$$m$$$ $$$(1 \leq m \leq 3 \cdot 10^5)$$$. Next $$$m$$$ lines describe paths. Each line describes a path by it's two endpoints $$$u$$$ and $$$v$$$ $$$(1 \leq u, v \leq n)$$$. The given path is all the vertices on the shortest path from $$$u$$$ to $$$v$$$ (including $$$u$$$ and $$$v$$$).
2,600
Output a single integer — the number of pairs of paths that intersect at exactly one vertex.
standard output
PASSED
add1cfa5983b29aa99b33de5d976f269
train_110.jsonl
1613658900
You are given a tree consisting of $$$n$$$ vertices, and $$$m$$$ simple vertex paths. Your task is to find how many pairs of those paths intersect at exactly one vertex. More formally you have to find the number of pairs $$$(i, j)$$$ $$$(1 \leq i &lt; j \leq m)$$$ such that $$$path_i$$$ and $$$path_j$$$ have exactly one vertex in common.
512 megabytes
/** * author: derrick20 * created: 2/20/21 10:47 PM */ import java.io.*; import java.util.*; import static java.lang.Math.*; public class PairOfPaths { static FastScanner sc = new FastScanner(); static PrintWriter out = new PrintWriter(System.out); public static void main(String[] args) { N = sc.nextInt(); adjList = new ArrayList[N]; for (int i = 0; i < N; i++) { adjList[i] = new ArrayList<>(); } for (int i = 0; i < N - 1; i++) { int u = sc.nextInt() - 1; int v = sc.nextInt() - 1; adjList[u].add(v); adjList[v].add(u); } setupLCA(N); subtree = new long[N]; nonLCA = new long[N]; outside = new HashMap[N]; Arrays.setAll(outside, i -> new HashMap<>()); duplicates = new HashMap[N]; Arrays.setAll(duplicates, i -> new HashMap<>()); up = new long[N]; int M = sc.nextInt(); for (int p = 0; p < M; p++) { int u = sc.nextInt() - 1; int v = sc.nextInt() - 1; int lca = leastCommonAncestor(u, v); for (int node : new int[]{u, v}) { if (node != lca) { int anc = lastBelow(node, lca); nonLCA[node]++; outside[lca].merge(anc, 1L, Long::sum); up[node]++; up[anc]--; } } subtree[lca]++; if (u != lca && v != lca) { // must be from different subtrees, identify with child node int ancU = lastBelow(u, lca); int ancV = lastBelow(v, lca); if (ancU != ancV) { duplicates[lca].merge(new Pair(ancU, ancV), 1L, Long::sum); } } } propagate(0, -1); long ans = 0; for (int lca = 0; lca < N; lca++) { long allPairs = subtree[lca] * (subtree[lca] - 1) / 2; long upward = subtree[lca] * nonLCA[lca]; // two ways for us to include an upward path: // either use a non-lca path starting at this lca // or, use something that starts in a child branch and goes up long overCounted = 0; for (int adj : adjList[lca]) { if (adj != parent[0][lca]) { long outPaths = outside[lca].getOrDefault(adj, 0L); upward += up[adj] * (subtree[lca] - outPaths); overCounted += outPaths * (outPaths - 1) / 2; } } long underCounted = 0; for (long dup : duplicates[lca].values()) { underCounted += dup * (dup - 1) / 2; } long downward = allPairs - overCounted + underCounted; ans += downward + upward; } out.println(ans); out.close(); } static int N; static int[] depth; static int[][] parent; static ArrayList<Integer>[] adjList; static long[] subtree, nonLCA, up; static HashMap<Integer, Long>[] outside; static HashMap<Pair, Long>[] duplicates; static void propagate(int node, int par) { for (int adj : adjList[node]) { if (adj != par) { propagate(adj, node); up[node] += up[adj]; } } } static class Pair { int u, v; public Pair(int uu, int vv) { u = min(uu, vv); v = max(uu, vv); } @Override public boolean equals(Object o) { if (this == o) return true; if (o == null || getClass() != o.getClass()) return false; Pair pair = (Pair) o; return u == pair.u && v == pair.v; } @Override public int hashCode() { return Objects.hash(u, v); } } static int lastBelow(int curr, int goal) { for (int k = parent.length - 1; k >= 0; k--) { if (depth[parent[k][curr]] > depth[goal]) { curr = parent[k][curr]; } } ASSERT(parent[0][curr] == goal); return curr; } static void dfsSetup(int node, int par, int dep) { depth[node] = dep; for (int adj : adjList[node]) { if (adj != par) { parent[0][adj] = node; dfsSetup(adj, node, dep + 1); } } } static int leastCommonAncestor(int u, int v) { if (depth[u] < depth[v]) { u = u ^ v ^ (v = u); } for (int k = parent.length - 1; k >= 0; k--) { int par = parent[k][u]; if (depth[par] >= depth[v]) { u = par; } } if (u == v) { return u; } else { for (int k = parent.length - 1; k >= 0; k--) { if (parent[k][u] != parent[k][v]) { u = parent[k][u]; v = parent[k][v]; } } return parent[0][u]; } } static void setupLCA(int N) { depth = new int[N]; int LOG = -1; while ((1 << (LOG + 1)) < N) { LOG++; } parent = new int[LOG + 1][N]; dfsSetup(0, -1, 0); // if too many parent levels, just set to root for (int k = 1; k <= parent.length - 1; k++) { for (int node = 0; node < N; node++) { parent[k][node] = parent[k - 1][parent[k - 1][node]]; } } } static class FastScanner { private int BS = 1 << 16; private char NC = (char) 0; private byte[] buf = new byte[BS]; private int bId = 0, size = 0; private char c = NC; private double cnt = 1; private BufferedInputStream in; public FastScanner() { in = new BufferedInputStream(System.in, BS); } public FastScanner(String s) { try { in = new BufferedInputStream(new FileInputStream(new File(s)), BS); } catch (Exception e) { in = new BufferedInputStream(System.in, BS); } } char getChar() { while (bId == size) { try { size = in.read(buf); } catch (Exception e) { return NC; } if (size == -1) return NC; bId = 0; } return (char) buf[bId++]; } int nextInt() { return (int) nextLong(); } long nextLong() { cnt = 1; boolean neg = false; if (c == NC) c = getChar(); for (; (c < '0' || c > '9'); c = getChar()) { if (c == '-') neg = true; } long res = 0; for (; c >= '0' && c <= '9'; c = getChar()) { res = (res << 3) + (res << 1) + c - '0'; cnt *= 10; } return neg ? -res : res; } double nextDouble() { boolean neg = false; if (c == NC) c = getChar(); for (; (c < '0' || c > '9'); c = getChar()) { if (c == '-') neg = true; } double cur = nextLong(); if (c != '.') { return neg ? -cur : cur; } else { double frac = nextLong() / cnt; return neg ? -cur - frac : cur + frac; } } String next() { StringBuilder res = new StringBuilder(); while (c <= 32) c = getChar(); while (c > 32) { res.append(c); c = getChar(); } return res.toString(); } String nextLine() { StringBuilder res = new StringBuilder(); while (c <= 32) c = getChar(); while (c != '\n') { res.append(c); c = getChar(); } return res.toString(); } boolean hasNext() { if (c > 32) return true; while (true) { c = getChar(); if (c == NC) return false; else if (c > 32) return true; } } } static void ASSERT(boolean assertion, String message) { if (!assertion) throw new AssertionError(message); } static void ASSERT(boolean assertion) { if (!assertion) throw new AssertionError(); } }
Java
["5\n1 2\n1 3\n1 4\n3 5\n4\n2 3\n2 4\n3 4\n3 5", "1\n3\n1 1\n1 1\n1 1", "5\n1 2\n1 3\n1 4\n3 5\n6\n2 3\n2 4\n3 4\n3 5\n1 1\n1 2"]
6 seconds
["2", "3", "7"]
NoteThe tree in the first example and paths look like this. Pairs $$$(1,4)$$$ and $$$(3,4)$$$ intersect at one vertex.In the second example all three paths contain the same single vertex, so all pairs $$$(1, 2)$$$, $$$(1, 3)$$$ and $$$(2, 3)$$$ intersect at one vertex.The third example is the same as the first example with two additional paths. Pairs $$$(1,4)$$$, $$$(1,5)$$$, $$$(2,5)$$$, $$$(3,4)$$$, $$$(3,5)$$$, $$$(3,6)$$$ and $$$(5,6)$$$ intersect at one vertex.
Java 8
standard input
[ "combinatorics", "data structures", "dfs and similar", "dp", "trees" ]
632afd3c714e4ab34fbc474f9f99d345
First line contains a single integer $$$n$$$ $$$(1 \leq n \leq 3 \cdot 10^5)$$$. Next $$$n - 1$$$ lines describe the tree. Each line contains two integers $$$u$$$ and $$$v$$$ $$$(1 \leq u, v \leq n)$$$ describing an edge between vertices $$$u$$$ and $$$v$$$. Next line contains a single integer $$$m$$$ $$$(1 \leq m \leq 3 \cdot 10^5)$$$. Next $$$m$$$ lines describe paths. Each line describes a path by it's two endpoints $$$u$$$ and $$$v$$$ $$$(1 \leq u, v \leq n)$$$. The given path is all the vertices on the shortest path from $$$u$$$ to $$$v$$$ (including $$$u$$$ and $$$v$$$).
2,600
Output a single integer — the number of pairs of paths that intersect at exactly one vertex.
standard output
PASSED
e64fece2755dc3fff13c68e2ed6f862c
train_110.jsonl
1613658900
You are given a tree consisting of $$$n$$$ vertices, and $$$m$$$ simple vertex paths. Your task is to find how many pairs of those paths intersect at exactly one vertex. More formally you have to find the number of pairs $$$(i, j)$$$ $$$(1 \leq i &lt; j \leq m)$$$ such that $$$path_i$$$ and $$$path_j$$$ have exactly one vertex in common.
512 megabytes
/** * author: derrick20 * created: 2/20/21 10:47 PM */ import java.io.*; import java.util.*; import static java.lang.Math.*; public class PairOfPaths { static FastScanner sc = new FastScanner(); static PrintWriter out = new PrintWriter(System.out); public static void main(String[] args) { N = sc.nextInt(); adjList = new ArrayList[N]; for (int i = 0; i < N; i++) { adjList[i] = new ArrayList<>(); } for (int i = 0; i < N - 1; i++) { int u = sc.nextInt() - 1; int v = sc.nextInt() - 1; adjList[u].add(v); adjList[v].add(u); } setupLCA(); subtree = new long[N]; nonLCA = new long[N]; outside = new HashMap[N]; Arrays.setAll(outside, i -> new HashMap<>()); duplicates = new HashMap[N]; Arrays.setAll(duplicates, i -> new HashMap<>()); up = new long[N]; int M = sc.nextInt(); for (int p = 0; p < M; p++) { int u = sc.nextInt() - 1; int v = sc.nextInt() - 1; int lca = leastCommonAncestor(u, v); for (int node : new int[]{u, v}) { if (node != lca) { int anc = lastBelow(node, lca); nonLCA[node]++; outside[lca].merge(anc, 1L, Long::sum); up[node]++; up[anc]--; } } subtree[lca]++; if (u != lca && v != lca) { // must be from different subtrees, identify with child node int ancU = lastBelow(u, lca); int ancV = lastBelow(v, lca); if (ancU != ancV) { duplicates[lca].merge(new Pair(ancU, ancV), 1L, Long::sum); } } } propagate(0, -1); long ans = 0; for (int lca = 0; lca < N; lca++) { long allPairs = subtree[lca] * (subtree[lca] - 1) / 2; long upward = subtree[lca] * nonLCA[lca]; // two ways for us to include an upward path: // either use a non-lca path starting at this lca // or, use something that starts in a child branch and goes up long overCounted = 0; for (int adj : adjList[lca]) { if (adj != firstParents[lca]) { long outPaths = outside[lca].getOrDefault(adj, 0L); upward += up[adj] * (subtree[lca] - outPaths); // System.out.println("For adj = " + adj + " outpaths = " + outPaths); overCounted += outPaths * (outPaths - 1) / 2; } } long underCounted = 0; for (long dup : duplicates[lca].values()) { underCounted += dup * (dup - 1) / 2; } long downward = allPairs - overCounted + underCounted; // System.out.println(downward + " " + upward); ans += downward + upward; } out.println(ans); out.close(); } /* 8 1 2 2 3 3 4 4 5 4 6 5 7 6 8 5 7 8 7 8 1 4 1 4 1 4 */ static int N; static int maxDepth; static int[] depth; static int[][] parent; static int[] firstParents; static ArrayList<Integer>[] adjList; static long[] subtree, nonLCA, up; static HashMap<Integer, Long>[] outside; static HashMap<Pair, Long>[] duplicates; static void propagate(int node, int par) { for (int adj : adjList[node]) { if (adj != par) { propagate(adj, node); up[node] += up[adj]; } } } static class Pair { int u, v; public Pair(int uu, int vv) { u = min(uu, vv); v = max(uu, vv); } @Override public boolean equals(Object o) { if (this == o) return true; if (o == null || getClass() != o.getClass()) return false; Pair pair = (Pair) o; return u == pair.u && v == pair.v; } @Override public int hashCode() { return Objects.hash(u, v); } } static int lastBelow(int curr, int goal) { for (int k = parent.length - 1; k >= 0; k--) { if (depth[parent[k][curr]] > depth[goal]) { curr = parent[k][curr]; } } ASSERT(firstParents[curr] == goal); return curr; } static void setupLCA() { maxDepth = 0; depth = new int[N]; firstParents = new int[N]; firstParents[0] = 0; depth[0] = 0; dfs(0); int power = 1; while (1 << power <= maxDepth) { power++; } parent = new int[power][N]; for (int node = 0; node < N; node++) { parent[0][node] = firstParents[node]; } for (int p = 1; p < parent.length; p++) { for (int i = 0; i < N; i++) { parent[p][i] = -1; } } for (int p = 1; p < parent.length; p++) { for (int node = 0; node < N; node++) { if (parent[p - 1][node] != -1) { int myParent = parent[p - 1][node]; parent[p][node] = parent[p-1][myParent]; } } } } static void dfs(int node) { for (int adj : adjList[node]) { if (adj != firstParents[node]) { firstParents[adj] = node; depth[adj] = depth[node] + 1; maxDepth = Math.max(maxDepth, depth[adj]); dfs(adj); } } } static int leastCommonAncestor(int a, int b) { if (depth[b] > depth[a]) { int c = a; a = b; b = c; } int dist = depth[a] - depth[b]; while (dist > 0) { int power = (int) (Math.log(dist) / Math.log(2)); a = parent[power][a]; dist -= 1 << power; } if (a == b) { return a; } for (int j = parent.length - 1; j >= 0; j--) { if (parent[j][a] != parent[j][b]) { a = parent[j][a]; b = parent[j][b]; } } return parent[0][a]; } static class FastScanner { private int BS = 1 << 16; private char NC = (char) 0; private byte[] buf = new byte[BS]; private int bId = 0, size = 0; private char c = NC; private double cnt = 1; private BufferedInputStream in; public FastScanner() { in = new BufferedInputStream(System.in, BS); } public FastScanner(String s) { try { in = new BufferedInputStream(new FileInputStream(new File(s)), BS); } catch (Exception e) { in = new BufferedInputStream(System.in, BS); } } char getChar() { while (bId == size) { try { size = in.read(buf); } catch (Exception e) { return NC; } if (size == -1) return NC; bId = 0; } return (char) buf[bId++]; } int nextInt() { return (int) nextLong(); } long nextLong() { cnt = 1; boolean neg = false; if (c == NC) c = getChar(); for (; (c < '0' || c > '9'); c = getChar()) { if (c == '-') neg = true; } long res = 0; for (; c >= '0' && c <= '9'; c = getChar()) { res = (res << 3) + (res << 1) + c - '0'; cnt *= 10; } return neg ? -res : res; } double nextDouble() { boolean neg = false; if (c == NC) c = getChar(); for (; (c < '0' || c > '9'); c = getChar()) { if (c == '-') neg = true; } double cur = nextLong(); if (c != '.') { return neg ? -cur : cur; } else { double frac = nextLong() / cnt; return neg ? -cur - frac : cur + frac; } } String next() { StringBuilder res = new StringBuilder(); while (c <= 32) c = getChar(); while (c > 32) { res.append(c); c = getChar(); } return res.toString(); } String nextLine() { StringBuilder res = new StringBuilder(); while (c <= 32) c = getChar(); while (c != '\n') { res.append(c); c = getChar(); } return res.toString(); } boolean hasNext() { if (c > 32) return true; while (true) { c = getChar(); if (c == NC) return false; else if (c > 32) return true; } } } static void ASSERT(boolean assertion, String message) { if (!assertion) throw new AssertionError(message); } static void ASSERT(boolean assertion) { if (!assertion) throw new AssertionError(); } }
Java
["5\n1 2\n1 3\n1 4\n3 5\n4\n2 3\n2 4\n3 4\n3 5", "1\n3\n1 1\n1 1\n1 1", "5\n1 2\n1 3\n1 4\n3 5\n6\n2 3\n2 4\n3 4\n3 5\n1 1\n1 2"]
6 seconds
["2", "3", "7"]
NoteThe tree in the first example and paths look like this. Pairs $$$(1,4)$$$ and $$$(3,4)$$$ intersect at one vertex.In the second example all three paths contain the same single vertex, so all pairs $$$(1, 2)$$$, $$$(1, 3)$$$ and $$$(2, 3)$$$ intersect at one vertex.The third example is the same as the first example with two additional paths. Pairs $$$(1,4)$$$, $$$(1,5)$$$, $$$(2,5)$$$, $$$(3,4)$$$, $$$(3,5)$$$, $$$(3,6)$$$ and $$$(5,6)$$$ intersect at one vertex.
Java 8
standard input
[ "combinatorics", "data structures", "dfs and similar", "dp", "trees" ]
632afd3c714e4ab34fbc474f9f99d345
First line contains a single integer $$$n$$$ $$$(1 \leq n \leq 3 \cdot 10^5)$$$. Next $$$n - 1$$$ lines describe the tree. Each line contains two integers $$$u$$$ and $$$v$$$ $$$(1 \leq u, v \leq n)$$$ describing an edge between vertices $$$u$$$ and $$$v$$$. Next line contains a single integer $$$m$$$ $$$(1 \leq m \leq 3 \cdot 10^5)$$$. Next $$$m$$$ lines describe paths. Each line describes a path by it's two endpoints $$$u$$$ and $$$v$$$ $$$(1 \leq u, v \leq n)$$$. The given path is all the vertices on the shortest path from $$$u$$$ to $$$v$$$ (including $$$u$$$ and $$$v$$$).
2,600
Output a single integer — the number of pairs of paths that intersect at exactly one vertex.
standard output
PASSED
f2a07cce5fd669064dd68cde56b194bb
train_110.jsonl
1613658900
You are given a tree consisting of $$$n$$$ vertices, and $$$m$$$ simple vertex paths. Your task is to find how many pairs of those paths intersect at exactly one vertex. More formally you have to find the number of pairs $$$(i, j)$$$ $$$(1 \leq i &lt; j \leq m)$$$ such that $$$path_i$$$ and $$$path_j$$$ have exactly one vertex in common.
512 megabytes
import java.io.*; import java.util.*; /* polyakoff */ public class Main { static FastReader in; static PrintWriter out; static Random rand = new Random(); static final int oo = (int) 1e9 + 10; static final long OO = (long) 2e18 + 10; static final int MOD = (int) 1e9 + 7; static final int LOGN = 22; static int n, m; static ArrayList<Integer>[] g; static int[][] paths, par, childs, cntDown1, cntUp2; static int[] tin, tout, cntUp1; static ArrayList<Pair>[] forks; static HashMap<Long, Integer>[] cntDown2; static class Pair { int i1, i2; Pair(int i1, int i2) { this.i1 = i1; this.i2 = i2; } } static int timer = 0; static void dfs0(int v, int from) { tin[v] = timer++; par[v][0] = from; for (int i = 1; i < LOGN; i++) { par[v][i] = par[par[v][i - 1]][i - 1]; } for (int to : g[v]) { if (to == from) continue; dfs0(to, v); } tout[v] = timer++; } static boolean isAncestor(int v, int u) { return tin[v] < tin[u] && tout[u] < tout[v]; } static int lca(int v, int u) { if (v == u) return v; if (isAncestor(v, u)) return v; if (isAncestor(u, v)) return u; for (int i = LOGN - 1; i >= 0; i--) { if (!isAncestor(par[v][i], u)) v = par[v][i]; } return par[v][0]; } // get index of child in which tree u is static int getChild(int v, int u) { int low = 0, high = childs[v].length - 1; while (low < high) { int mid = (low + high) / 2; if (childs[v][mid] == u || isAncestor(childs[v][mid], u)) return mid; if (tout[childs[v][mid]] < tin[u]) low = mid + 1; else high = mid - 1; } return low; } static void dfs1(int v, int from) { int i = 0; for (int to : g[v]) { if (to == from) continue; dfs1(to, v); cntUp1[v] += cntUp1[to]; cntUp2[v][i++] = cntUp1[to]; } for (Pair p : forks[v]) { if (p.i1 != -1) { cntUp1[v]--; cntUp2[v][p.i1]--; } if (p.i2 != -1) { cntUp1[v]--; cntUp2[v][p.i2]--; } } } static void solve() { n = in.nextInt(); g = new ArrayList[n]; Arrays.setAll(g, i -> new ArrayList<>()); for (int i = 0; i < n - 1; i++) { int v = in.nextInt() - 1; int u = in.nextInt() - 1; g[v].add(u); g[u].add(v); } m = in.nextInt(); paths = new int[m][3]; for (int i = 0; i < m; i++) { int v = in.nextInt() - 1; int u = in.nextInt() - 1; paths[i][0] = v; paths[i][1] = u; } par = new int[n][LOGN]; tin = new int[n]; tout = new int[n]; dfs0(0, 0); childs = new int[n][]; childs[0] = new int[g[0].size()]; for (int i = 1; i < n; i++) { childs[i] = new int[g[i].size() - 1]; } forks = new ArrayList[n]; Arrays.setAll(forks, i -> new ArrayList<>()); cntDown1 = new int[n][]; Arrays.setAll(cntDown1, i -> new int[childs[i].length]); cntDown2 = new HashMap[n]; Arrays.setAll(cntDown2, i -> new HashMap<>()); for (int v = 0; v < n; v++) { int i = 0; for (int to : g[v]) { if (to == par[v][0]) continue; childs[v][i++] = to; } } // prepare for same lca for (int i = 0; i < m; i++) { int v = paths[i][0]; int u = paths[i][1]; int lca = lca(v, u); paths[i][2] = lca; if (v == u) { forks[v].add(new Pair(-1, -1)); continue; } // indices of childs where v and u are int i1 = lca != v ? getChild(lca, v) : -1; int i2 = lca != u ? getChild(lca, u) : -1; if (i2 < i1) { int temp = i1; i1 = i2; i2 = temp; } forks[lca].add(new Pair(i1, i2)); if (i1 != -1) cntDown1[lca][i1]++; if (i2 != -1) cntDown1[lca][i2]++; if (i1 != -1 && i2 != -1) { long hash = 1L * i1 * childs[lca].length + i2; cntDown2[lca].putIfAbsent(hash, 0); cntDown2[lca].put(hash, cntDown2[lca].get(hash) + 1); } } // prepare for different lca cntUp1 = new int[n]; cntUp2 = new int[n][]; Arrays.setAll(cntUp2, i -> new int[childs[i].length]); for (int i = 0; i < m; i++) { int v = paths[i][0]; int u = paths[i][1]; int lca = paths[i][2]; if (v != lca) cntUp1[v]++; if (u != lca) cntUp1[u]++; } dfs1(0, 0); long ans = 0; for (int v = 0; v < n; v++) { int total = forks[v].size(); long cnt = 1L * total * (total - 1); for (Pair p : forks[v]) { if (p.i1 != -1) cnt -= cntDown1[v][p.i1] - 1; if (p.i2 != -1) cnt -= cntDown1[v][p.i2] - 1; if (p.i1 != -1 && p.i2 != -1) { long hash = 1L * p.i1 * childs[v].length + p.i2; cnt += cntDown2[v].get(hash) - 1; } } cnt /= 2; ans += cnt; } for (int v = 0; v < n; v++) { for (Pair p : forks[v]) { long cnt = cntUp1[v]; if (p.i1 != -1) cnt -= cntUp2[v][p.i1]; if (p.i2 != -1) cnt -= cntUp2[v][p.i2]; ans += cnt; } } out.println(ans); } public static void main(String[] args) { in = new FastReader(); out = new PrintWriter(System.out); int T = 1; // T = in.nextInt(); while (T-- > 0) solve(); out.flush(); out.close(); } static class FastReader { BufferedReader br; StringTokenizer st; FastReader() { this(System.in); } FastReader(String file) throws FileNotFoundException { this(new FileInputStream(file)); } FastReader(InputStream is) { br = new BufferedReader(new InputStreamReader(is)); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String next() { while (st == null || !st.hasMoreTokens()) { st = new StringTokenizer(nextLine()); } return st.nextToken(); } String nextLine() { String line; try { line = br.readLine(); } catch (IOException e) { throw new RuntimeException(e); } return line; } } }
Java
["5\n1 2\n1 3\n1 4\n3 5\n4\n2 3\n2 4\n3 4\n3 5", "1\n3\n1 1\n1 1\n1 1", "5\n1 2\n1 3\n1 4\n3 5\n6\n2 3\n2 4\n3 4\n3 5\n1 1\n1 2"]
6 seconds
["2", "3", "7"]
NoteThe tree in the first example and paths look like this. Pairs $$$(1,4)$$$ and $$$(3,4)$$$ intersect at one vertex.In the second example all three paths contain the same single vertex, so all pairs $$$(1, 2)$$$, $$$(1, 3)$$$ and $$$(2, 3)$$$ intersect at one vertex.The third example is the same as the first example with two additional paths. Pairs $$$(1,4)$$$, $$$(1,5)$$$, $$$(2,5)$$$, $$$(3,4)$$$, $$$(3,5)$$$, $$$(3,6)$$$ and $$$(5,6)$$$ intersect at one vertex.
Java 8
standard input
[ "combinatorics", "data structures", "dfs and similar", "dp", "trees" ]
632afd3c714e4ab34fbc474f9f99d345
First line contains a single integer $$$n$$$ $$$(1 \leq n \leq 3 \cdot 10^5)$$$. Next $$$n - 1$$$ lines describe the tree. Each line contains two integers $$$u$$$ and $$$v$$$ $$$(1 \leq u, v \leq n)$$$ describing an edge between vertices $$$u$$$ and $$$v$$$. Next line contains a single integer $$$m$$$ $$$(1 \leq m \leq 3 \cdot 10^5)$$$. Next $$$m$$$ lines describe paths. Each line describes a path by it's two endpoints $$$u$$$ and $$$v$$$ $$$(1 \leq u, v \leq n)$$$. The given path is all the vertices on the shortest path from $$$u$$$ to $$$v$$$ (including $$$u$$$ and $$$v$$$).
2,600
Output a single integer — the number of pairs of paths that intersect at exactly one vertex.
standard output
PASSED
d5199e772cdccfd451487a2cdf1faf05
train_110.jsonl
1613658900
You are given a tree consisting of $$$n$$$ vertices, and $$$m$$$ simple vertex paths. Your task is to find how many pairs of those paths intersect at exactly one vertex. More formally you have to find the number of pairs $$$(i, j)$$$ $$$(1 \leq i &lt; j \leq m)$$$ such that $$$path_i$$$ and $$$path_j$$$ have exactly one vertex in common.
512 megabytes
import java.io.*; import java.util.*; import java.lang.*; public class Main { public static int inf = (int)1e9+7; public static int mod = (int)1e9+7; public static Map<Integer, List<Integer>> map; public static int[] deep; public static int[][] dp; public static int[] ldf; public static int[] rdf; public static int[] T; public static int n; public static int cnt; public static int dfn; public static void main(String[] args) throws IOException, InterruptedException { BufferedReader reader = new BufferedReader(new InputStreamReader(System.in)); BufferedWriter writer = new BufferedWriter(new OutputStreamWriter(System.out)); Scanner sc = new Scanner(System.in); //code part n = Integer.parseInt(reader.readLine()); map = new HashMap<>(); deep = new int[n + 1]; dp = new int[n + 1][21]; ldf = new int[n + 1]; rdf = new int[n + 1]; T = new int[n + 1]; cnt = n; dfn = 0; for (int i = 0; i <= n; i++){ map.put(i, new ArrayList<>()); } for (int i = 0; i < n - 1; i++) { String[] s = reader.readLine().split("\\s+"); int x = Integer.parseInt(s[0]); int y = Integer.parseInt(s[1]); map.get(x).add(y); map.get(y).add(x); } dfs(1, 0); int m = Integer.parseInt(reader.readLine()); //x, y, a, b, LCA int[][] paths = new int[m][5]; for (int i = 0; i < m; i++) { String[] s = reader.readLine().split("\\s+"); int x = Integer.parseInt(s[0]); int y = Integer.parseInt(s[1]); paths[i][0] = x; paths[i][1] = y; paths[i][4] = LCA(x, y); paths[i][2] = kthParent(x, deep[x] - deep[paths[i][4]] - 1); paths[i][3] = kthParent(y, deep[y] - deep[paths[i][4]] - 1); if(paths[i][2] > paths[i][3]){ int temp = paths[i][0]; paths[i][0] = paths[i][1]; paths[i][1] = temp; temp = paths[i][2]; paths[i][2] = paths[i][3]; paths[i][3] = temp; } } Arrays.sort(paths, new Comparator<int[]>() { @Override public int compare(int[] o1, int[] o2) { if(deep[o1[4]] != deep[o2[4]]){ return deep[o1[4]] - deep[o2[4]]; }else if(o1[4] != o2[4]){ return o1[4] - o2[4]; }else if(o1[2] != o2[2]){ return o2[2] - o1[2]; }else{ return o1[3] - o2[3]; } } }); long ans = 0L; int[] bucket = new int[cnt + 1]; for (int i = 0; i < m; i++){ int j = i; int count = 0; while (j < m - 1 && paths[i][4] == paths[j + 1][4]){ j++; } //第一种情况,两个路径的LCA相同 for (int k = i; k <= j; k++){ int t = k; //a相同 while (t < j && paths[t + 1][2] == paths[t][2]){ t++; } for (int p = k; p <= t; p++){ ans += count - bucket[paths[p][3]]; } for (int p = k; p <= t; p++){ bucket[paths[p][2]]++; bucket[paths[p][3]]++; } count += t - k + 1; k = t; } for (int k = i; k <= j; k++){ bucket[paths[k][2]] = bucket[paths[k][3]] = 0; } //第二种情况,两个路径的LCA不同,但是一个路径的LCA在另外一条路径上 for (int k = i; k <= j; k++){ ans += query(rdf[paths[k][4]]) - query(ldf[paths[k][4]] - 1); if(paths[k][2] <= n){ ans -= query(rdf[paths[k][2]]) - query(ldf[paths[k][2]] - 1); } if(paths[k][3] <= n){ ans -= query(rdf[paths[k][3]]) - query(ldf[paths[k][3]] - 1); } } for(int k = i; k <= j; k++){ add(ldf[paths[k][0]]); add(ldf[paths[k][1]]); } i = j; } System.out.println(ans); //code part sc.close(); writer.flush(); writer.close(); reader.close(); } public static void dfs(int cur, int fa){ ldf[cur] = ++dfn; deep[cur] = deep[fa] + 1; dp[cur][0] = fa; for(int j = 1; (1 << j) < deep[cur]; j++){ dp[cur][j] = dp[dp[cur][j - 1]][j - 1]; } for(int x : map.get(cur)){ if(x != fa){ dfs(x, cur); } } rdf[cur] = dfn; } //寻找x和y的最近公共祖先 public static int LCA(int x, int y){ if(deep[x] < deep[y]){ int temp = x; x = y; y = temp; } int d = deep[x] - deep[y]; for (int j = 0; d > 0 ; j++){ if(((d >> j) & 1) == 1){ x = dp[x][j]; d -= (1 << j); } } if(x == y){ return y; } for (int j = 20; j >= 0; j--){ if(dp[x][j] != dp[y][j]){ x = dp[x][j]; y = dp[y][j]; } } return dp[x][0]; } //寻找x的第k个祖先 public static int kthParent(int x, int k){ if(k < 0){ return ++cnt; } for(int j = 0; k > 0; j++){ if(((k >> j) & 1) == 1){ x = dp[x][j]; k -= 1 << j; } } return x; } public static void add(int x){ while (x <= n){ T[x]++; x += x & -x; } } public static int query(int x){ int sum = 0; while (x > 0){ sum += T[x]; x -= x & -x; } return sum; } }
Java
["5\n1 2\n1 3\n1 4\n3 5\n4\n2 3\n2 4\n3 4\n3 5", "1\n3\n1 1\n1 1\n1 1", "5\n1 2\n1 3\n1 4\n3 5\n6\n2 3\n2 4\n3 4\n3 5\n1 1\n1 2"]
6 seconds
["2", "3", "7"]
NoteThe tree in the first example and paths look like this. Pairs $$$(1,4)$$$ and $$$(3,4)$$$ intersect at one vertex.In the second example all three paths contain the same single vertex, so all pairs $$$(1, 2)$$$, $$$(1, 3)$$$ and $$$(2, 3)$$$ intersect at one vertex.The third example is the same as the first example with two additional paths. Pairs $$$(1,4)$$$, $$$(1,5)$$$, $$$(2,5)$$$, $$$(3,4)$$$, $$$(3,5)$$$, $$$(3,6)$$$ and $$$(5,6)$$$ intersect at one vertex.
Java 8
standard input
[ "combinatorics", "data structures", "dfs and similar", "dp", "trees" ]
632afd3c714e4ab34fbc474f9f99d345
First line contains a single integer $$$n$$$ $$$(1 \leq n \leq 3 \cdot 10^5)$$$. Next $$$n - 1$$$ lines describe the tree. Each line contains two integers $$$u$$$ and $$$v$$$ $$$(1 \leq u, v \leq n)$$$ describing an edge between vertices $$$u$$$ and $$$v$$$. Next line contains a single integer $$$m$$$ $$$(1 \leq m \leq 3 \cdot 10^5)$$$. Next $$$m$$$ lines describe paths. Each line describes a path by it's two endpoints $$$u$$$ and $$$v$$$ $$$(1 \leq u, v \leq n)$$$. The given path is all the vertices on the shortest path from $$$u$$$ to $$$v$$$ (including $$$u$$$ and $$$v$$$).
2,600
Output a single integer — the number of pairs of paths that intersect at exactly one vertex.
standard output
PASSED
15998d631e934fdca20f36cc5c927d6e
train_110.jsonl
1613658900
You are given a tree consisting of $$$n$$$ vertices, and $$$m$$$ simple vertex paths. Your task is to find how many pairs of those paths intersect at exactly one vertex. More formally you have to find the number of pairs $$$(i, j)$$$ $$$(1 \leq i &lt; j \leq m)$$$ such that $$$path_i$$$ and $$$path_j$$$ have exactly one vertex in common.
512 megabytes
//package round703; import java.io.*; import java.util.*; public class F { InputStream is; FastWriter out; String INPUT = ""; void solve() { int n = ni(); int[] from = new int[n - 1]; int[] to = new int[n - 1]; for (int i = 0; i < n - 1; i++) { from[i] = ni() - 1; to[i] = ni() - 1; } int[][] g = packU(n, from, to); int[][] pars = parents(g, 0); int[] par = pars[0], ord = pars[1], dep = pars[2]; int Q = ni(); int[][] qs = new int[Q][]; LCAFast2 lf = LCAFast2.build(g, 0); for(int z = 0;z < Q;z++){ qs[z] = new int[]{ni()-1, ni()-1, -1}; qs[z][2] = lf.lca(qs[z][0], qs[z][1]); if(qs[z][0] == qs[z][2]){ int d = qs[z][0]; qs[z][0] = qs[z][1]; qs[z][1] = d; } } Arrays.sort(qs, (x, y) -> x[2] - y[2]); int[] up = new int[n]; int[] leaf = new int[n]; int[] pin = new int[n]; for(int i = 0;i < Q;i++){ up[qs[i][0]]++; up[qs[i][1]]++; up[qs[i][2]] -= 2; if(qs[i][0] != qs[i][2])leaf[qs[i][0]]++; if(qs[i][1] != qs[i][2])leaf[qs[i][1]]++; if(qs[i][0] == qs[i][1])pin[qs[i][0]]++; } for(int i = n-1;i >= 1;i--){ int cur = ord[i]; up[par[cur]] += up[cur]; } int p = 0; int[] temp = new int[n]; long ans = 0; int[] upm = new int[n]; for(int i = 0;i < n;i++){ int cur = i; int op = p; while(p < Q && qs[p][2] == i)p++; ans += (long)(p-op-pin[cur]) * (up[cur]+pin[cur]); ans += (long)pin[cur] * up[cur]; // tr("aaa", cur, ans, op, p, leaf[cur], pin[cur], up[cur], pin[cur]); for(int e : g[cur]){ if(par[cur] == e)continue; upm[e] = up[e]; } for(int k = op;k < p;k++) { int[] q = qs[k]; if(q[1] != q[2]) { int ln = lf.anc(q[0], dep[q[0]] - dep[q[2]] - 1); int rn = lf.anc(q[1], dep[q[1]] - dep[q[2]] - 1); upm[ln]--; upm[rn]--; }else if(q[0] != q[2]) { int ln = lf.anc(q[0], dep[q[0]] - dep[q[2]] - 1); upm[ln]--; } } long lans = 0; lans += (long)(p-op-pin[cur]) * (p-op-pin[cur]); Map<Long, Integer> map = new HashMap<>(); for(int k = op;k < p;k++){ int[] q = qs[k]; if(q[1] != q[2]) { int ln = lf.anc(q[0], dep[q[0]] - dep[q[2]] - 1); int rn = lf.anc(q[1], dep[q[1]] - dep[q[2]] - 1); lans -= temp[ln] * 2 + 1; lans -= temp[rn] * 2 + 1; ans -= upm[ln]; ans -= upm[rn]; temp[ln]++; temp[rn]++; if (ln > rn) { int d = ln; ln = rn; rn = d; } map.merge((long) ln << 32 | rn, 1, Integer::sum); }else if(q[0] != q[2]){ int ln = lf.anc(q[0], dep[q[0]] - dep[q[2]] - 1); lans -= temp[ln] * 2 + 1; temp[ln]++; ans -= upm[ln]; int rn = q[2]; } } for(int t : map.values()){ lans += (long)t*t; } ans += lans/2; ans += (long)pin[cur] * (pin[cur]-1)/2; // tr(cur, ans, lans); for(int e : g[cur]){ if(par[cur] == e)continue; temp[e] = 0; } } out.println(ans); } public static class LCAFast2 { public int n, h; public int[][] bigst; public int[][] bigind; public long[][] smallb; public int[] vs, first, deps; public int lca(int a, int b) { return vs[rmqpos(Math.min(first[a], first[b]), Math.max(first[a], first[b]))]; } public int pointOnPath(int a, int b, int dfroma) { int lca = lca(a, b); if(dfroma <= dep(a) - dep(lca)){ return anc(a, dfroma); } int dfromb = dep(b) - dep(lca) - (dfroma - (dep(a) - dep(lca))); if(dfromb < 0)return -1; return anc(b, dfromb); } public int anc(int a, int d) { int da = dep(a); if(da < d)return -1; int danc = da - d; int low = 0, high = first[a] + 1; while(high - low > 1){ int h = high+low>>1; if(rmqval(h, first[a]) <= danc){ low = h; }else { high = h; } } return vs[low]; } public int d(int a, int b) { return dep(a) + dep(b) - 2 * rmqval(Math.min(first[a], first[b]), Math.max(first[a], first[b])); } public int dep(int x) { return deps[first[x]]; } public int rmqpos(int l, int r) { if(l > r)return -1; int cl = l>>>6; int cr = r>>>6; if(cl == cr){ return argmax(smallb[l&63][cl], r-l+1) + l; }else{ int min = deps[l] - max(smallb[l&63][cl], 63-(l&63)+1); int pos = argmax(smallb[l&63][cl], 63-(l&63)+1) + l; { int can = deps[r>>>6<<6] - max(smallb[0][cr], (r&63)-0+1); if(can < min){ min = can; pos = argmax(smallb[0][cr], (r&63)-0+1) + (r>>>6<<6); } } if(cl+1 <= cr-1){ int len = (cr-1)-(cl+1)+1; int h = 31-Integer.numberOfLeadingZeros(len); { int can = bigst[h][cl+1]; if(can < min){ min = can; pos = bigind[h][cl+1]; } } { int can = bigst[h][cr-1-(1<<h)+1]; if(can < min){ min = can; pos = bigind[h][cr-1-(1<<h)+1]; } } } return pos; } } public int rmqval(int l, int r) { if(l > r)return -1; int cl = l>>>6; int cr = r>>>6; if(cl == cr){ return deps[l] - max(smallb[l&63][cl], r-l+1); }else{ int min = deps[l] - max(smallb[l&63][cl], 63-(l&63)+1); min = Math.min(min, deps[r>>>6<<6] - max(smallb[0][cr], (r&63)-0+1)); if(cl+1 <= cr-1){ int len = (cr-1)-(cl+1)+1; int h = 31-Integer.numberOfLeadingZeros(len); min = Math.min(min, bigst[h][cl+1]); min = Math.min(min, bigst[h][cr-1-(1<<h)+1]); } return min; } } public static LCAFast2 build(int[][] g, int root) { LCAFast2 ret = new LCAFast2(); int[][] et = eulerTour(g, root); int[] vs = et[0], deps = et[1], first = et[2]; ret.vs = vs; ret.first = first; ret.deps = deps; int n = deps.length; int u = n+63>>>6; int h = 31-Integer.numberOfLeadingZeros(u) + 1; int[][] bigst = new int[h][]; int[][] bigind = new int[h][]; int[] cup = new int[u]; int[] cupind = new int[u]; Arrays.fill(cup, Integer.MAX_VALUE); for(int i = 0;i < n;i++){ if(deps[i] < cup[i>>>6]){ cup[i>>>6] = deps[i]; cupind[i>>>6] = i; } } bigst[0] = cup; bigind[0] = cupind; for(int i = 1;i < h;i++){ bigst[i] = new int[u-(1<<i)+1]; bigind[i] = new int[u-(1<<i)+1]; for(int j = 0;j + (1<<i) <= u;j++){ if(bigst[i-1][j] < bigst[i-1][j+(1<<i-1)]){ bigst[i][j] = bigst[i-1][j]; bigind[i][j] = bigind[i-1][j]; }else{ bigst[i][j] = bigst[i-1][j+(1<<i-1)]; bigind[i][j] = bigind[i-1][j+(1<<i-1)]; } } } long[][] smallb = new long[64][u]; for(int i = 0;i < u;i++){ long x = 0; for(int j = 0;j < 63 && (i<<6|j+1) < n;j++){ if(deps[i<<6|j] > deps[i<<6|j+1]){ x |= 1L<<j; } } long val = 0; for(int j = 63;j >= 0;j--){ val <<= 1; if(x<<~j<0){ val |= 1L; }else{ val &= val - 1; } smallb[j][i] = val; } // // for(int j = 0;j < 64;j++){ // smallb[j][i] = make(x>>>j); // } } ret.n = n; ret.h = h; ret.bigst = bigst; ret.bigind = bigind; ret.smallb = smallb; return ret; } public static int[][] eulerTour(int[][] g, int root) { int n = g.length; int[] vs = new int[2*n-1]; int[] deps = new int[2*n-1]; int[] first = new int[n]; Arrays.fill(first, -1); int p = 0; int[] stack = new int[n]; int[] inds = new int[n]; int sp = 0; stack[sp++] = root; outer: while(sp > 0){ int cur = stack[sp-1], ind = inds[sp-1]; vs[p] = cur; deps[p] = sp-1; if(first[cur] == -1)first[cur] = p; p++; while(ind < g[cur].length){ int nex = g[cur][ind++]; if(first[nex] == -1){ inds[sp-1] = ind; stack[sp] = nex; inds[sp] = 0; sp++; continue outer; } } inds[sp-1] = ind; if(ind == g[cur].length)sp--; } return new int[][]{vs, deps, first}; } // TinyRMQ public static long make(long x) { int h = 0; int max = 0; long ret = 0; for(int i = 0;i < 64;i++){ if(x<<~i<0){ h++; }else{ h--; } if(h > max){ max = h; ret |= 1L<<i; } } return ret; } public static int max(long x, int r) { assert r > 0; return Long.bitCount(x&(1L<<r-1)-1); } public static int argmax(long x, int r) { assert r > 0; return 64-Long.numberOfLeadingZeros(x&(1L<<r-1)-1); } } public static int[][] parents(int[][] g, int root) { int n = g.length; int[] par = new int[n]; Arrays.fill(par, -1); int[] depth = new int[n]; depth[0] = 0; int[] q = new int[n]; q[0] = root; for (int p = 0, r = 1; p < r; p++) { int cur = q[p]; for (int nex : g[cur]) { if (par[cur] != nex) { q[r++] = nex; par[nex] = cur; depth[nex] = depth[cur] + 1; } } } return new int[][]{par, q, depth}; } public static int[][] packU(int n, int[] from, int[] to) { return packU(n, from, to, from.length); } public static int[][] packU(int n, int[] from, int[] to, int sup) { int[][] g = new int[n][]; int[] p = new int[n]; for (int i = 0; i < sup; i++) p[from[i]]++; for (int i = 0; i < sup; i++) p[to[i]]++; for (int i = 0; i < n; i++) g[i] = new int[p[i]]; for (int i = 0; i < sup; i++) { g[from[i]][--p[from[i]]] = to[i]; g[to[i]][--p[to[i]]] = from[i]; } return g; } void run() throws Exception { is = oj ? System.in : new ByteArrayInputStream(INPUT.getBytes()); out = new FastWriter(System.out); long s = System.currentTimeMillis(); solve(); out.flush(); tr(System.currentTimeMillis()-s+"ms"); } public static void main(String[] args) throws Exception { new F().run(); } private byte[] inbuf = new byte[1024]; public int lenbuf = 0, ptrbuf = 0; private int readByte() { if(lenbuf == -1)throw new InputMismatchException(); if(ptrbuf >= lenbuf){ ptrbuf = 0; try { lenbuf = is.read(inbuf); } catch (IOException e) { throw new InputMismatchException(); } if(lenbuf <= 0)return -1; } return inbuf[ptrbuf++]; } private boolean isSpaceChar(int c) { return !(c >= 33 && c <= 126); } private int skip() { int b; while((b = readByte()) != -1 && isSpaceChar(b)); return b; } private double nd() { return Double.parseDouble(ns()); } private char nc() { return (char)skip(); } private String ns() { int b = skip(); StringBuilder sb = new StringBuilder(); while(!(isSpaceChar(b))){ // when nextLine, (isSpaceChar(b) && b != ' ') sb.appendCodePoint(b); b = readByte(); } return sb.toString(); } private char[] ns(int n) { char[] buf = new char[n]; int b = skip(), p = 0; while(p < n && !(isSpaceChar(b))){ buf[p++] = (char)b; b = readByte(); } return n == p ? buf : Arrays.copyOf(buf, p); } private int[] na(int n) { int[] a = new int[n]; for(int i = 0;i < n;i++)a[i] = ni(); return a; } private long[] nal(int n) { long[] a = new long[n]; for(int i = 0;i < n;i++)a[i] = nl(); return a; } private char[][] nm(int n, int m) { char[][] map = new char[n][]; for(int i = 0;i < n;i++)map[i] = ns(m); return map; } private int[][] nmi(int n, int m) { int[][] map = new int[n][]; for(int i = 0;i < n;i++)map[i] = na(m); return map; } private int ni() { return (int)nl(); } private long nl() { long num = 0; int b; boolean minus = false; while((b = readByte()) != -1 && !((b >= '0' && b <= '9') || b == '-')); if(b == '-'){ minus = true; b = readByte(); } while(true){ if(b >= '0' && b <= '9'){ num = num * 10 + (b - '0'); }else{ return minus ? -num : num; } b = readByte(); } } public static class FastWriter { private static final int BUF_SIZE = 1<<13; private final byte[] buf = new byte[BUF_SIZE]; private final OutputStream out; private int ptr = 0; private FastWriter(){out = null;} public FastWriter(OutputStream os) { this.out = os; } public FastWriter(String path) { try { this.out = new FileOutputStream(path); } catch (FileNotFoundException e) { throw new RuntimeException("FastWriter"); } } public FastWriter write(byte b) { buf[ptr++] = b; if(ptr == BUF_SIZE)innerflush(); return this; } public FastWriter write(char c) { return write((byte)c); } public FastWriter write(char[] s) { for(char c : s){ buf[ptr++] = (byte)c; if(ptr == BUF_SIZE)innerflush(); } return this; } public FastWriter write(String s) { s.chars().forEach(c -> { buf[ptr++] = (byte)c; if(ptr == BUF_SIZE)innerflush(); }); return this; } private static int countDigits(int l) { if (l >= 1000000000) return 10; if (l >= 100000000) return 9; if (l >= 10000000) return 8; if (l >= 1000000) return 7; if (l >= 100000) return 6; if (l >= 10000) return 5; if (l >= 1000) return 4; if (l >= 100) return 3; if (l >= 10) return 2; return 1; } public FastWriter write(int x) { if(x == Integer.MIN_VALUE){ return write((long)x); } if(ptr + 12 >= BUF_SIZE)innerflush(); if(x < 0){ write((byte)'-'); x = -x; } int d = countDigits(x); for(int i = ptr + d - 1;i >= ptr;i--){ buf[i] = (byte)('0'+x%10); x /= 10; } ptr += d; return this; } private static int countDigits(long l) { if (l >= 1000000000000000000L) return 19; if (l >= 100000000000000000L) return 18; if (l >= 10000000000000000L) return 17; if (l >= 1000000000000000L) return 16; if (l >= 100000000000000L) return 15; if (l >= 10000000000000L) return 14; if (l >= 1000000000000L) return 13; if (l >= 100000000000L) return 12; if (l >= 10000000000L) return 11; if (l >= 1000000000L) return 10; if (l >= 100000000L) return 9; if (l >= 10000000L) return 8; if (l >= 1000000L) return 7; if (l >= 100000L) return 6; if (l >= 10000L) return 5; if (l >= 1000L) return 4; if (l >= 100L) return 3; if (l >= 10L) return 2; return 1; } public FastWriter write(long x) { if(x == Long.MIN_VALUE){ return write("" + x); } if(ptr + 21 >= BUF_SIZE)innerflush(); if(x < 0){ write((byte)'-'); x = -x; } int d = countDigits(x); for(int i = ptr + d - 1;i >= ptr;i--){ buf[i] = (byte)('0'+x%10); x /= 10; } ptr += d; return this; } public FastWriter write(double x, int precision) { if(x < 0){ write('-'); x = -x; } x += Math.pow(10, -precision)/2; // if(x < 0){ x = 0; } write((long)x).write("."); x -= (long)x; for(int i = 0;i < precision;i++){ x *= 10; write((char)('0'+(int)x)); x -= (int)x; } return this; } public FastWriter writeln(char c){ return write(c).writeln(); } public FastWriter writeln(int x){ return write(x).writeln(); } public FastWriter writeln(long x){ return write(x).writeln(); } public FastWriter writeln(double x, int precision){ return write(x, precision).writeln(); } public FastWriter write(int... xs) { boolean first = true; for(int x : xs) { if (!first) write(' '); first = false; write(x); } return this; } public FastWriter write(long... xs) { boolean first = true; for(long x : xs) { if (!first) write(' '); first = false; write(x); } return this; } public FastWriter writeln() { return write((byte)'\n'); } public FastWriter writeln(int... xs) { return write(xs).writeln(); } public FastWriter writeln(long... xs) { return write(xs).writeln(); } public FastWriter writeln(char[] line) { return write(line).writeln(); } public FastWriter writeln(char[]... map) { for(char[] line : map)write(line).writeln(); return this; } public FastWriter writeln(String s) { return write(s).writeln(); } private void innerflush() { try { out.write(buf, 0, ptr); ptr = 0; } catch (IOException e) { throw new RuntimeException("innerflush"); } } public void flush() { innerflush(); try { out.flush(); } catch (IOException e) { throw new RuntimeException("flush"); } } public FastWriter print(byte b) { return write(b); } public FastWriter print(char c) { return write(c); } public FastWriter print(char[] s) { return write(s); } public FastWriter print(String s) { return write(s); } public FastWriter print(int x) { return write(x); } public FastWriter print(long x) { return write(x); } public FastWriter print(double x, int precision) { return write(x, precision); } public FastWriter println(char c){ return writeln(c); } public FastWriter println(int x){ return writeln(x); } public FastWriter println(long x){ return writeln(x); } public FastWriter println(double x, int precision){ return writeln(x, precision); } public FastWriter print(int... xs) { return write(xs); } public FastWriter print(long... xs) { return write(xs); } public FastWriter println(int... xs) { return writeln(xs); } public FastWriter println(long... xs) { return writeln(xs); } public FastWriter println(char[] line) { return writeln(line); } public FastWriter println(char[]... map) { return writeln(map); } public FastWriter println(String s) { return writeln(s); } public FastWriter println() { return writeln(); } } public void trnz(int... o) { for(int i = 0;i < o.length;i++)if(o[i] != 0)System.out.print(i+":"+o[i]+" "); System.out.println(); } // print ids which are 1 public void trt(long... o) { Queue<Integer> stands = new ArrayDeque<>(); for(int i = 0;i < o.length;i++){ for(long x = o[i];x != 0;x &= x-1)stands.add(i<<6|Long.numberOfTrailingZeros(x)); } System.out.println(stands); } public void tf(boolean... r) { for(boolean x : r)System.out.print(x?'#':'.'); System.out.println(); } public void tf(boolean[]... b) { for(boolean[] r : b) { for(boolean x : r)System.out.print(x?'#':'.'); System.out.println(); } System.out.println(); } public void tf(long[]... b) { if(INPUT.length() != 0) { for (long[] r : b) { for (long x : r) { for (int i = 0; i < 64; i++) { System.out.print(x << ~i < 0 ? '#' : '.'); } } System.out.println(); } System.out.println(); } } public void tf(long... b) { if(INPUT.length() != 0) { for (long x : b) { for (int i = 0; i < 64; i++) { System.out.print(x << ~i < 0 ? '#' : '.'); } } System.out.println(); } } private boolean oj = System.getProperty("ONLINE_JUDGE") != null; private void tr(Object... o) { if(!oj)System.out.println(Arrays.deepToString(o)); } }
Java
["5\n1 2\n1 3\n1 4\n3 5\n4\n2 3\n2 4\n3 4\n3 5", "1\n3\n1 1\n1 1\n1 1", "5\n1 2\n1 3\n1 4\n3 5\n6\n2 3\n2 4\n3 4\n3 5\n1 1\n1 2"]
6 seconds
["2", "3", "7"]
NoteThe tree in the first example and paths look like this. Pairs $$$(1,4)$$$ and $$$(3,4)$$$ intersect at one vertex.In the second example all three paths contain the same single vertex, so all pairs $$$(1, 2)$$$, $$$(1, 3)$$$ and $$$(2, 3)$$$ intersect at one vertex.The third example is the same as the first example with two additional paths. Pairs $$$(1,4)$$$, $$$(1,5)$$$, $$$(2,5)$$$, $$$(3,4)$$$, $$$(3,5)$$$, $$$(3,6)$$$ and $$$(5,6)$$$ intersect at one vertex.
Java 11
standard input
[ "combinatorics", "data structures", "dfs and similar", "dp", "trees" ]
632afd3c714e4ab34fbc474f9f99d345
First line contains a single integer $$$n$$$ $$$(1 \leq n \leq 3 \cdot 10^5)$$$. Next $$$n - 1$$$ lines describe the tree. Each line contains two integers $$$u$$$ and $$$v$$$ $$$(1 \leq u, v \leq n)$$$ describing an edge between vertices $$$u$$$ and $$$v$$$. Next line contains a single integer $$$m$$$ $$$(1 \leq m \leq 3 \cdot 10^5)$$$. Next $$$m$$$ lines describe paths. Each line describes a path by it's two endpoints $$$u$$$ and $$$v$$$ $$$(1 \leq u, v \leq n)$$$. The given path is all the vertices on the shortest path from $$$u$$$ to $$$v$$$ (including $$$u$$$ and $$$v$$$).
2,600
Output a single integer — the number of pairs of paths that intersect at exactly one vertex.
standard output
PASSED
62ce54e406716c4f1ff9730606a7777f
train_110.jsonl
1613658900
There are $$$n$$$ cities and $$$m$$$ bidirectional roads in the country. The roads in the country form an undirected weighted graph. The graph is not guaranteed to be connected. Each road has it's own parameter $$$w$$$. You can travel through the roads, but the government made a new law: you can only go through two roads at a time (go from city $$$a$$$ to city $$$b$$$ and then from city $$$b$$$ to city $$$c$$$) and you will have to pay $$$(w_{ab} + w_{bc})^2$$$ money to go through those roads. Find out whether it is possible to travel from city $$$1$$$ to every other city $$$t$$$ and what's the minimum amount of money you need to get from $$$1$$$ to $$$t$$$.
512 megabytes
import java.io.BufferedWriter; import java.io.IOException; import java.io.InputStream; import java.io.OutputStreamWriter; import java.math.BigInteger; import java.math.BigDecimal; import java.math.MathContext; import java.math.RoundingMode; import java.util.ArrayDeque; import java.util.ArrayList; import java.util.Arrays; import java.util.Collections; import java.util.HashMap; import java.util.HashSet; import java.util.Locale; import java.util.Map.Entry; import java.util.PriorityQueue; import java.util.Random; import java.util.Scanner; import java.util.TreeSet; public final class CF_703_D2_E { static boolean verb=true; static void log(Object X){if (verb) System.err.println(X);} static void log(Object[] X){if (verb) {for (Object U:X) System.err.print(U+" ");System.err.println("");}} static void log(int[] X){if (verb) {for (int U:X) System.err.print(U+" ");System.err.println("");}} static void log(int[] X,int L){if (verb) {for (int i=0;i<L;i++) System.err.print(X[i]+" ");System.err.println("");}} static void log(long[] X){if (verb) {for (long U:X) System.err.print(U+" ");System.err.println("");}} static void logWln(Object X){if (verb) System.err.print(X);} static void info(Object o){ System.out.println(o);} static void output(Object o){outputWln(""+o+"\n"); } static void outputWln(Object o){try {out.write(""+ o);} catch (Exception e) {}} // Global vars static BufferedWriter out; static InputReader reader; static long powerMod(long b,long e,long m){ long x=1; while (e>0) { if (e%2==1) x=(b*x)%m; b=(b*b)%m; e=e/2; } return x; } /* static void test() { log("testing"); Random r=new Random(); int NTESTS=1000000000; int NMAX=40; //int MMAX=10000; int VMAX=50; for( int t=0;t<NTESTS;t++) { int n=r.nextInt(NMAX)+2; int MMAX=(n*(n-1))/2; int m=r.nextInt(MMAX)+1; HashSet<String> hs=new HashSet<String>(); ArrayList<Integer>[] friends=new ArrayList[n]; ArrayList<Integer>[] cost=new ArrayList[n]; for (int u=0;u<n;u++) { friends[u]=new ArrayList<Integer>(); cost[u]=new ArrayList<Integer>(); } StringBuffer script=new StringBuffer(); for (int i=0;i<m;i++) { boolean goon=true; while (goon) { int u=r.nextInt(n); int v=r.nextInt(n); if (u!=v) { if (u>v) { int w=u; u=v; v=w; } String s=u+" "+v; if (!hs.contains(s)) { hs.add(s); goon=false; int w=r.nextInt(VMAX)+1; friends[u].add(v); friends[v].add(u); cost[u].add(w); cost[v].add(w); script.append((u+1)+" "+(v+1)+" "+w+"\n"); } } } } long[] ans1=solveSubtil(friends,cost); long[] ans2=solveBourrin(friends,cost); for (int i=0;i<n;i++) { if (ans1[i]!=ans2[i]) { log("Error"); log(n+" "+m); log(script); log(ans1); log(ans2); return; } } } log("done"); } */ static int sign(int x) { if (x>0) return 1; if (x==0) return 0; return -1; } static class Segment implements Comparable<Segment>{ int a; int b; public int compareTo(Segment X) { if (a!=X.a) return a-X.a; if (b!=X.b) return b-X.b; return 0; } public Segment(int a, int b) { this.a = a; this.b = b; } } static int order; static int BYA=0; static int BYB=1; static class Composite implements Comparable<Composite>{ int p; long v; int idx; int temp; public int compareTo(Composite X) { if (v<X.v) return -1; if (v>X.v) return 1; if (p!=X.p) return p-X.p; if (temp!=X.temp) return temp-X.temp; return idx-X.idx; } public Composite(int p, long v, int idx, int temp) { this.p = p; this.v = v; this.idx = idx; this.temp = temp; } public String toString() { return "p:"+p+" dist:"+v+" node:"+(idx+1)+" temp:"+temp; } } static class BIT { int[] tree; int N; BIT(int N){ tree=new int[N+1]; this.N=N; } void add(int idx,int val){ idx++; while (idx<=N){ tree[idx]+=val; idx+=idx & (-idx); } } int read(int idx){ idx++; int sum=0; while (idx>0){ sum+=tree[idx]; idx-=idx & (-idx); } return sum; } } static ArrayList<ArrayList<Integer>> generatePermutations(ArrayList<Integer> items){ ArrayList<ArrayList<Integer>> globalRes=new ArrayList<ArrayList<Integer>>(); if (items.size()>1) { for (Integer item:items){ ArrayList<Integer> itemsTmp=new ArrayList<Integer>(items); itemsTmp.remove(item); ArrayList<ArrayList<Integer>> res=generatePermutations(itemsTmp); for (ArrayList<Integer> list:res){ list.add(item); } globalRes.addAll(res); } } else { Integer item=items.get(0); ArrayList<Integer> list=new ArrayList<Integer>(); list.add(item); globalRes.add(list); } return globalRes; } static int VX=51; static long[] solveSubtil(int[][] friends,int[][] cost) { int n=friends.length; long[] ct=new long[n]; Arrays.fill(ct,MX); ct[0]=0; long[][] cst=new long[VX][n]; for (int e=0;e<VX;e++) Arrays.fill(cst[e],MX); //int[] tmp=new int[n]; PriorityQueue<Composite> pq=new PriorityQueue<Composite>(); pq.add(new Composite(0,0,0,0)); while (pq.size()>0) { Composite X=pq.poll(); // don't process obsolete values //if (X.v==cst[X.p][X.idx]) { //log("processing X:"+X); int u=X.idx; int L=friends[u].length; int p=X.p; for (int t=0;t<L;t++) { int node=friends[u][t]; int price=cost[u][t]; //log("considering node:"+(node+1)); if (p==0) { long dist=cst[price][node]; if (dist>X.v) { cst[price][node]=X.v; //tmp[node]=price; Composite Y=new Composite(1-p,X.v,node,price); pq.add(Y); //log("--adding : "+Y); } else { //log("--not interesting"); } } else { long nextDest=X.v+(X.temp+price)*(X.temp+price); if (ct[node]>nextDest) { ct[node]=nextDest; Composite Y=new Composite(1-p,nextDest,node,0); pq.add(Y); //log("--adding : "+Y); } else { //log("--not interesting"); } } } } } ////logWln("cst1:"); ////log(cst[1]); return ct; } static long[] solveSubtilSlow(ArrayList<Integer>[] friends,ArrayList<Integer>[] cost) { int n=friends.length; long[][] cst=new long[2][n]; for (int e=0;e<2;e++) Arrays.fill(cst[e],MX); cst[0][0]=0; //int[] tmp=new int[n]; Composite[][] ref=new Composite[2][n]; for (int e=0;e<2;e++) for (int i=0;i<n;i++) ref[e][i]=new Composite(e,cst[e][i],i,0); PriorityQueue<Composite> pq=new PriorityQueue<Composite>(); pq.add(ref[0][0]); while (pq.size()>0) { Composite X=pq.poll(); // don't process obsolete values //if (X.v==cst[X.p][X.idx]) { //log("processing X:"+X); int u=X.idx; int L=friends[u].size(); int p=X.p; for (int t=0;t<L;t++) { int node=friends[u].get(t); int price=cost[u].get(t); long dst=cst[1-p][node]; //log("considering node:"+(node+1)); if (p==0) { long worstv=dst+(100*100); long best=X.v+(price+1)*(price+1); if (worstv>best) { cst[1-p][node]=X.v; //tmp[node]=price; Composite Y=new Composite(1-p,X.v,node,price); pq.add(Y); //log("--adding"); } else { //log("--not interesting // "+worstv+" "+best); } } else { long nextDest=X.v+(X.temp+price)*(X.temp+price); if (dst>nextDest) { cst[1-p][node]=nextDest; Composite Y=new Composite(1-p,nextDest,node,0); pq.add(Y); //log("--adding"); } else { //log("--not interesting"); } } } } } //logWln("cst1:"); //log(cst[1]); return cst[0]; } static long MX=Long.MAX_VALUE/2; static long[] solveBourrin(int[][] friends,int[][] cost) { int n=friends.length; long[] cst=new long[n]; Arrays.fill(cst,MX); cst[0]=0; int[] tmp=new int[n]; Composite[] ref=new Composite[n]; for (int i=0;i<n;i++) ref[i]=new Composite(0,cst[i],i,0); PriorityQueue<Composite> pq=new PriorityQueue<Composite>(); pq.add(ref[0]); while (pq.size()>0) { Composite X=pq.poll(); int u=X.idx; int LU=friends[u].length; for (int tu=0;tu<LU;tu++) { int v=friends[u][tu]; int cv=cost[u][tu]; int LV=friends[v].length; for (int tv=0;tv<LV;tv++) { int w=friends[v][tv]; int cw=cost[v][tv]; long diff=(cw+cv); diff*=diff; long nxt=X.v+diff; if (cst[w]>nxt) { cst[w]=nxt; pq.add(new Composite(0,cst[w],w,0)); } } } } return cst; } static long mod=1000000007; static void process() throws Exception { out = new BufferedWriter(new OutputStreamWriter(System.out)); reader=new InputReader(System.in); Locale.setDefault(Locale.US); //test(); int n=reader.readInt(); int m=reader.readInt(); int[] ed=new int[m]; int[] to=new int[m]; int[] from=new int[m]; int[] cst=new int[m]; int[] ptr=new int[n]; for (int i=0;i<m;i++) { int u=reader.readInt()-1; int v=reader.readInt()-1; int w=reader.readInt(); ptr[u]++; ptr[v]++; from[i]=u; to[i]=v; cst[i]=w; } int[][] friends=new int[n][]; int[][] cost=new int[n][]; for (int i=0;i<n;i++) { friends[i]=new int[ptr[i]]; cost[i]=new int[ptr[i]]; } for (int i=0;i<m;i++) { int u=from[i]; int v=to[i]; int w=cst[i]; friends[u][ptr[u]-1]=v; cost[u][ptr[u]-1]=w; friends[v][ptr[v]-1]=u; cost[v][ptr[v]-1]=w; ptr[u]--; ptr[v]--; } //long[] ans=solveBourrin(friends,cost); long[] ans=solveSubtil(friends,cost); //log(ans); //log(alt); for (long x:ans) { if (x!=MX) outputWln(x+" "); else outputWln("-1 "); } output(""); try { out.close(); } catch (Exception EX){} } public static void main(String[] args) throws Exception { process(); } static final class InputReader { private final InputStream stream; private final byte[] buf = new byte[1024]; private int curChar; private int numChars; public InputReader(InputStream stream) { this.stream = stream; } private int read() throws IOException { if (curChar >= numChars) { curChar = 0; numChars = stream.read(buf); if (numChars <= 0) { return -1; } } return buf[curChar++]; } public final String readString() throws IOException { int c = read(); while (isSpaceChar(c)) { c = read(); } StringBuilder res=new StringBuilder(); do { res.append((char)c); c = read(); } while (!isSpaceChar(c)); return res.toString(); } public final int readInt() throws IOException { int c = read(); boolean neg=false; while (isSpaceChar(c)) { c = read(); } char d=(char)c; //log("d:"+d); if (d=='-') { neg=true; c = read(); } int res = 0; do { res *= 10; res += c - '0'; c = read(); } while (!isSpaceChar(c)); //log("res:"+res); if (neg) return -res; return res; } public final long readLong() throws IOException { int c = read(); boolean neg=false; while (isSpaceChar(c)) { c = read(); } char d=(char)c; //log("d:"+d); if (d=='-') { neg=true; c = read(); } long res = 0; do { res *= 10; res += c - '0'; c = read(); } while (!isSpaceChar(c)); //log("res:"+res); if (neg) return -res; return res; } private boolean isSpaceChar(int c) { return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; } } }
Java
["5 6\n1 2 3\n2 3 4\n3 4 5\n4 5 6\n1 5 1\n2 4 2", "3 2\n1 2 1\n2 3 2"]
4 seconds
["0 98 49 25 114", "0 -1 9"]
NoteThe graph in the first example looks like this.In the second example the path from $$$1$$$ to $$$3$$$ goes through $$$2$$$, so the resulting payment is $$$(1 + 2)^2 = 9$$$.
Java 11
standard input
[ "binary search", "brute force", "constructive algorithms", "dp", "flows", "graphs", "shortest paths" ]
abee4d188bb59d82fcf4579c7416a343
First line contains two integers $$$n$$$, $$$m$$$ ($$$2 \leq n \leq 10^5$$$, $$$1 \leq m \leq min(\frac{n \cdot (n - 1)}{2}, 2 \cdot 10^5)$$$). Next $$$m$$$ lines each contain three integers $$$v_i$$$, $$$u_i$$$, $$$w_i$$$ ($$$1 \leq v_i, u_i \leq n$$$, $$$1 \leq w_i \leq 50$$$, $$$u_i \neq v_i$$$). It's guaranteed that there are no multiple edges, i.e. for any edge $$$(u_i, v_i)$$$ there are no other edges $$$(u_i, v_i)$$$ or $$$(v_i, u_i)$$$.
2,200
For every city $$$t$$$ print one integer. If there is no correct path between $$$1$$$ and $$$t$$$ output $$$-1$$$. Otherwise print out the minimum amount of money needed to travel from $$$1$$$ to $$$t$$$.
standard output
PASSED
a00858eb04e047034d951c48821d723e
train_110.jsonl
1613658900
There are $$$n$$$ cities and $$$m$$$ bidirectional roads in the country. The roads in the country form an undirected weighted graph. The graph is not guaranteed to be connected. Each road has it's own parameter $$$w$$$. You can travel through the roads, but the government made a new law: you can only go through two roads at a time (go from city $$$a$$$ to city $$$b$$$ and then from city $$$b$$$ to city $$$c$$$) and you will have to pay $$$(w_{ab} + w_{bc})^2$$$ money to go through those roads. Find out whether it is possible to travel from city $$$1$$$ to every other city $$$t$$$ and what's the minimum amount of money you need to get from $$$1$$$ to $$$t$$$.
512 megabytes
import java.io.BufferedWriter; import java.io.IOException; import java.io.InputStream; import java.io.OutputStreamWriter; import java.math.BigInteger; import java.math.BigDecimal; import java.math.MathContext; import java.math.RoundingMode; import java.util.ArrayDeque; import java.util.ArrayList; import java.util.Arrays; import java.util.Collections; import java.util.HashMap; import java.util.HashSet; import java.util.Locale; import java.util.Map.Entry; import java.util.PriorityQueue; import java.util.Random; import java.util.Scanner; import java.util.TreeSet; public final class CF_703_D2_E { static boolean verb=true; static void log(Object X){if (verb) System.err.println(X);} static void log(Object[] X){if (verb) {for (Object U:X) System.err.print(U+" ");System.err.println("");}} static void log(int[] X){if (verb) {for (int U:X) System.err.print(U+" ");System.err.println("");}} static void log(int[] X,int L){if (verb) {for (int i=0;i<L;i++) System.err.print(X[i]+" ");System.err.println("");}} static void log(long[] X){if (verb) {for (long U:X) System.err.print(U+" ");System.err.println("");}} static void logWln(Object X){if (verb) System.err.print(X);} static void info(Object o){ System.out.println(o);} static void output(Object o){outputWln(""+o+"\n"); } static void outputWln(Object o){try {out.write(""+ o);} catch (Exception e) {}} // Global vars static BufferedWriter out; static InputReader reader; static long powerMod(long b,long e,long m){ long x=1; while (e>0) { if (e%2==1) x=(b*x)%m; b=(b*b)%m; e=e/2; } return x; } static void test() { log("testing"); Random r=new Random(); int NTESTS=1000000000; int NMAX=40; //int MMAX=10000; int VMAX=50; for( int t=0;t<NTESTS;t++) { int n=r.nextInt(NMAX)+2; int MMAX=(n*(n-1))/2; int m=r.nextInt(MMAX)+1; HashSet<String> hs=new HashSet<String>(); ArrayList<Integer>[] friends=new ArrayList[n]; ArrayList<Integer>[] cost=new ArrayList[n]; for (int u=0;u<n;u++) { friends[u]=new ArrayList<Integer>(); cost[u]=new ArrayList<Integer>(); } StringBuffer script=new StringBuffer(); for (int i=0;i<m;i++) { boolean goon=true; while (goon) { int u=r.nextInt(n); int v=r.nextInt(n); if (u!=v) { if (u>v) { int w=u; u=v; v=w; } String s=u+" "+v; if (!hs.contains(s)) { hs.add(s); goon=false; int w=r.nextInt(VMAX)+1; friends[u].add(v); friends[v].add(u); cost[u].add(w); cost[v].add(w); script.append((u+1)+" "+(v+1)+" "+w+"\n"); } } } } long[] ans1=solveSubtil(friends,cost); long[] ans2=solveBourrin(friends,cost); for (int i=0;i<n;i++) { if (ans1[i]!=ans2[i]) { log("Error"); log(n+" "+m); log(script); log(ans1); log(ans2); return; } } } log("done"); } static int sign(int x) { if (x>0) return 1; if (x==0) return 0; return -1; } static class Segment implements Comparable<Segment>{ int a; int b; public int compareTo(Segment X) { if (a!=X.a) return a-X.a; if (b!=X.b) return b-X.b; return 0; } public Segment(int a, int b) { this.a = a; this.b = b; } } static int order; static int BYA=0; static int BYB=1; static class Composite implements Comparable<Composite>{ int p; long v; int idx; int temp; public int compareTo(Composite X) { if (v<X.v) return -1; if (v>X.v) return 1; if (p!=X.p) return p-X.p; if (temp!=X.temp) return temp-X.temp; return idx-X.idx; } public Composite(int p, long v, int idx, int temp) { this.p = p; this.v = v; this.idx = idx; this.temp = temp; } public String toString() { return "p:"+p+" dist:"+v+" node:"+(idx+1)+" temp:"+temp; } } static class BIT { int[] tree; int N; BIT(int N){ tree=new int[N+1]; this.N=N; } void add(int idx,int val){ idx++; while (idx<=N){ tree[idx]+=val; idx+=idx & (-idx); } } int read(int idx){ idx++; int sum=0; while (idx>0){ sum+=tree[idx]; idx-=idx & (-idx); } return sum; } } static ArrayList<ArrayList<Integer>> generatePermutations(ArrayList<Integer> items){ ArrayList<ArrayList<Integer>> globalRes=new ArrayList<ArrayList<Integer>>(); if (items.size()>1) { for (Integer item:items){ ArrayList<Integer> itemsTmp=new ArrayList<Integer>(items); itemsTmp.remove(item); ArrayList<ArrayList<Integer>> res=generatePermutations(itemsTmp); for (ArrayList<Integer> list:res){ list.add(item); } globalRes.addAll(res); } } else { Integer item=items.get(0); ArrayList<Integer> list=new ArrayList<Integer>(); list.add(item); globalRes.add(list); } return globalRes; } static int VX=51; static long[] solveSubtil(ArrayList<Integer>[] friends,ArrayList<Integer>[] cost) { int n=friends.length; long[] ct=new long[n]; Arrays.fill(ct,MX); ct[0]=0; long[][] cst=new long[VX][n]; for (int e=0;e<VX;e++) Arrays.fill(cst[e],MX); //int[] tmp=new int[n]; PriorityQueue<Composite> pq=new PriorityQueue<Composite>(); pq.add(new Composite(0,0,0,0)); while (pq.size()>0) { Composite X=pq.poll(); // don't process obsolete values //if (X.v==cst[X.p][X.idx]) { //log("processing X:"+X); int u=X.idx; int L=friends[u].size(); int p=X.p; for (int t=0;t<L;t++) { int node=friends[u].get(t); int price=cost[u].get(t); //log("considering node:"+(node+1)); if (p==0) { long dist=cst[price][node]; if (dist>X.v) { cst[price][node]=X.v; //tmp[node]=price; Composite Y=new Composite(1-p,X.v,node,price); pq.add(Y); //log("--adding : "+Y); } else { //log("--not interesting"); } } else { long nextDest=X.v+(X.temp+price)*(X.temp+price); if (ct[node]>nextDest) { ct[node]=nextDest; Composite Y=new Composite(1-p,nextDest,node,0); pq.add(Y); //log("--adding : "+Y); } else { //log("--not interesting"); } } } } } ////logWln("cst1:"); ////log(cst[1]); return ct; } static long[] solveSubtilSlow(ArrayList<Integer>[] friends,ArrayList<Integer>[] cost) { int n=friends.length; long[][] cst=new long[2][n]; for (int e=0;e<2;e++) Arrays.fill(cst[e],MX); cst[0][0]=0; //int[] tmp=new int[n]; Composite[][] ref=new Composite[2][n]; for (int e=0;e<2;e++) for (int i=0;i<n;i++) ref[e][i]=new Composite(e,cst[e][i],i,0); PriorityQueue<Composite> pq=new PriorityQueue<Composite>(); pq.add(ref[0][0]); while (pq.size()>0) { Composite X=pq.poll(); // don't process obsolete values //if (X.v==cst[X.p][X.idx]) { //log("processing X:"+X); int u=X.idx; int L=friends[u].size(); int p=X.p; for (int t=0;t<L;t++) { int node=friends[u].get(t); int price=cost[u].get(t); long dst=cst[1-p][node]; //log("considering node:"+(node+1)); if (p==0) { long worstv=dst+(100*100); long best=X.v+(price+1)*(price+1); if (worstv>best) { cst[1-p][node]=X.v; //tmp[node]=price; Composite Y=new Composite(1-p,X.v,node,price); pq.add(Y); //log("--adding"); } else { //log("--not interesting // "+worstv+" "+best); } } else { long nextDest=X.v+(X.temp+price)*(X.temp+price); if (dst>nextDest) { cst[1-p][node]=nextDest; Composite Y=new Composite(1-p,nextDest,node,0); pq.add(Y); //log("--adding"); } else { //log("--not interesting"); } } } } } //logWln("cst1:"); //log(cst[1]); return cst[0]; } static long MX=Long.MAX_VALUE/2; static long[] solveBourrin(ArrayList<Integer>[] friends,ArrayList<Integer>[] cost) { int n=friends.length; long[] cst=new long[n]; Arrays.fill(cst,MX); cst[0]=0; int[] tmp=new int[n]; Composite[] ref=new Composite[n]; for (int i=0;i<n;i++) ref[i]=new Composite(0,cst[i],i,0); PriorityQueue<Composite> pq=new PriorityQueue<Composite>(); pq.add(ref[0]); while (pq.size()>0) { Composite X=pq.poll(); int u=X.idx; int LU=friends[u].size(); for (int tu=0;tu<LU;tu++) { int v=friends[u].get(tu); int cv=cost[u].get(tu); int LV=friends[v].size(); for (int tv=0;tv<LV;tv++) { int w=friends[v].get(tv); int cw=cost[v].get(tv); long diff=(cw+cv); diff*=diff; long nxt=X.v+diff; if (cst[w]>nxt) { cst[w]=nxt; pq.add(new Composite(0,cst[w],w,0)); } } } } return cst; } static long mod=1000000007; static void process() throws Exception { out = new BufferedWriter(new OutputStreamWriter(System.out)); reader=new InputReader(System.in); Locale.setDefault(Locale.US); //test(); int n=reader.readInt(); int m=reader.readInt(); int[] ed=new int[m]; ArrayList<Integer>[] friends=new ArrayList[n]; ArrayList<Integer>[] cost=new ArrayList[n]; for (int u=0;u<n;u++) { friends[u]=new ArrayList<Integer>(); cost[u]=new ArrayList<Integer>(); } for (int i=0;i<m;i++) { int u=reader.readInt()-1; int v=reader.readInt()-1; int w=reader.readInt(); friends[u].add(v); friends[v].add(u); cost[u].add(w); cost[v].add(w); } //long[] ans=solveBourrin(friends,cost); long[] ans=solveSubtil(friends,cost); //log(ans); //log(alt); for (long x:ans) { if (x!=MX) outputWln(x+" "); else outputWln("-1 "); } output(""); try { out.close(); } catch (Exception EX){} } public static void main(String[] args) throws Exception { process(); } static final class InputReader { private final InputStream stream; private final byte[] buf = new byte[1024]; private int curChar; private int numChars; public InputReader(InputStream stream) { this.stream = stream; } private int read() throws IOException { if (curChar >= numChars) { curChar = 0; numChars = stream.read(buf); if (numChars <= 0) { return -1; } } return buf[curChar++]; } public final String readString() throws IOException { int c = read(); while (isSpaceChar(c)) { c = read(); } StringBuilder res=new StringBuilder(); do { res.append((char)c); c = read(); } while (!isSpaceChar(c)); return res.toString(); } public final int readInt() throws IOException { int c = read(); boolean neg=false; while (isSpaceChar(c)) { c = read(); } char d=(char)c; //log("d:"+d); if (d=='-') { neg=true; c = read(); } int res = 0; do { res *= 10; res += c - '0'; c = read(); } while (!isSpaceChar(c)); //log("res:"+res); if (neg) return -res; return res; } public final long readLong() throws IOException { int c = read(); boolean neg=false; while (isSpaceChar(c)) { c = read(); } char d=(char)c; //log("d:"+d); if (d=='-') { neg=true; c = read(); } long res = 0; do { res *= 10; res += c - '0'; c = read(); } while (!isSpaceChar(c)); //log("res:"+res); if (neg) return -res; return res; } private boolean isSpaceChar(int c) { return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; } } }
Java
["5 6\n1 2 3\n2 3 4\n3 4 5\n4 5 6\n1 5 1\n2 4 2", "3 2\n1 2 1\n2 3 2"]
4 seconds
["0 98 49 25 114", "0 -1 9"]
NoteThe graph in the first example looks like this.In the second example the path from $$$1$$$ to $$$3$$$ goes through $$$2$$$, so the resulting payment is $$$(1 + 2)^2 = 9$$$.
Java 11
standard input
[ "binary search", "brute force", "constructive algorithms", "dp", "flows", "graphs", "shortest paths" ]
abee4d188bb59d82fcf4579c7416a343
First line contains two integers $$$n$$$, $$$m$$$ ($$$2 \leq n \leq 10^5$$$, $$$1 \leq m \leq min(\frac{n \cdot (n - 1)}{2}, 2 \cdot 10^5)$$$). Next $$$m$$$ lines each contain three integers $$$v_i$$$, $$$u_i$$$, $$$w_i$$$ ($$$1 \leq v_i, u_i \leq n$$$, $$$1 \leq w_i \leq 50$$$, $$$u_i \neq v_i$$$). It's guaranteed that there are no multiple edges, i.e. for any edge $$$(u_i, v_i)$$$ there are no other edges $$$(u_i, v_i)$$$ or $$$(v_i, u_i)$$$.
2,200
For every city $$$t$$$ print one integer. If there is no correct path between $$$1$$$ and $$$t$$$ output $$$-1$$$. Otherwise print out the minimum amount of money needed to travel from $$$1$$$ to $$$t$$$.
standard output
PASSED
98347176ef33e44d6f02beb041115d5b
train_110.jsonl
1613658900
There are $$$n$$$ cities and $$$m$$$ bidirectional roads in the country. The roads in the country form an undirected weighted graph. The graph is not guaranteed to be connected. Each road has it's own parameter $$$w$$$. You can travel through the roads, but the government made a new law: you can only go through two roads at a time (go from city $$$a$$$ to city $$$b$$$ and then from city $$$b$$$ to city $$$c$$$) and you will have to pay $$$(w_{ab} + w_{bc})^2$$$ money to go through those roads. Find out whether it is possible to travel from city $$$1$$$ to every other city $$$t$$$ and what's the minimum amount of money you need to get from $$$1$$$ to $$$t$$$.
512 megabytes
import java.util.*; import java.io.*; public class _1486_E { public static void main(String[] args) throws IOException { BufferedReader in = new BufferedReader(new InputStreamReader(System.in)); PrintWriter out = new PrintWriter(System.out); StringTokenizer line = new StringTokenizer(in.readLine()); int n = Integer.parseInt(line.nextToken()); int m = Integer.parseInt(line.nextToken()); ArrayList<Edge>[] graph = new ArrayList[n]; for(int i = 0; i < n; i++) { graph[i] = new ArrayList<Edge>(); } for(int i = 0; i < m; i++) { line = new StringTokenizer(in.readLine()); int v1 = Integer.parseInt(line.nextToken()) - 1; int v2 = Integer.parseInt(line.nextToken()) - 1; int w = Integer.parseInt(line.nextToken()); graph[v1].add(new Edge(v2, w)); graph[v2].add(new Edge(v1, w)); } long[][] d = new long[n][51]; for(int i = 0; i < n; i++) { Arrays.fill(d[i], -1); } d[0][0] = 0; PriorityQueue<Step> pq = new PriorityQueue<Step>(); pq.add(new Step(0, 0, 0)); while(pq.size() > 0) { Step cur = pq.poll(); if(cur.d > d[cur.n][cur.p]) { continue; } if(cur.p == 0) { for(Edge e : graph[cur.n]) { if(d[e.n][e.w] == -1 || cur.d < d[e.n][e.w]) { d[e.n][e.w] = cur.d; pq.add(new Step(e.n, e.w, cur.d)); } } }else { for(Edge e : graph[cur.n]) { int weight = (e.w + cur.p) * (e.w + cur.p); if(d[e.n][0] == -1 || cur.d + weight < d[e.n][0]) { d[e.n][0] = cur.d + weight; pq.add(new Step(e.n, 0, cur.d + weight)); } } } } StringBuilder res = new StringBuilder(); for(int i = 0; i < n; i++) { res.append(d[i][0]); res.append(' '); } out.println(res.toString()); in.close(); out.close(); } static class Step implements Comparable<Step> { int n, p; long d; Step(int nn, int pp, long dd) { n = nn; p = pp; d = dd; } @Override public int compareTo(Step o) { return Long.compare(d, o.d); } } static class Edge { int n, w; Edge(int nn, int ww) { n = nn; w = ww; } } }
Java
["5 6\n1 2 3\n2 3 4\n3 4 5\n4 5 6\n1 5 1\n2 4 2", "3 2\n1 2 1\n2 3 2"]
4 seconds
["0 98 49 25 114", "0 -1 9"]
NoteThe graph in the first example looks like this.In the second example the path from $$$1$$$ to $$$3$$$ goes through $$$2$$$, so the resulting payment is $$$(1 + 2)^2 = 9$$$.
Java 11
standard input
[ "binary search", "brute force", "constructive algorithms", "dp", "flows", "graphs", "shortest paths" ]
abee4d188bb59d82fcf4579c7416a343
First line contains two integers $$$n$$$, $$$m$$$ ($$$2 \leq n \leq 10^5$$$, $$$1 \leq m \leq min(\frac{n \cdot (n - 1)}{2}, 2 \cdot 10^5)$$$). Next $$$m$$$ lines each contain three integers $$$v_i$$$, $$$u_i$$$, $$$w_i$$$ ($$$1 \leq v_i, u_i \leq n$$$, $$$1 \leq w_i \leq 50$$$, $$$u_i \neq v_i$$$). It's guaranteed that there are no multiple edges, i.e. for any edge $$$(u_i, v_i)$$$ there are no other edges $$$(u_i, v_i)$$$ or $$$(v_i, u_i)$$$.
2,200
For every city $$$t$$$ print one integer. If there is no correct path between $$$1$$$ and $$$t$$$ output $$$-1$$$. Otherwise print out the minimum amount of money needed to travel from $$$1$$$ to $$$t$$$.
standard output
PASSED
e9bc4e41fd918c7306bc6ab610cdd00b
train_110.jsonl
1613658900
There are $$$n$$$ cities and $$$m$$$ bidirectional roads in the country. The roads in the country form an undirected weighted graph. The graph is not guaranteed to be connected. Each road has it's own parameter $$$w$$$. You can travel through the roads, but the government made a new law: you can only go through two roads at a time (go from city $$$a$$$ to city $$$b$$$ and then from city $$$b$$$ to city $$$c$$$) and you will have to pay $$$(w_{ab} + w_{bc})^2$$$ money to go through those roads. Find out whether it is possible to travel from city $$$1$$$ to every other city $$$t$$$ and what's the minimum amount of money you need to get from $$$1$$$ to $$$t$$$.
512 megabytes
import java.io.OutputStream; import java.io.IOException; import java.io.InputStream; import java.io.PrintWriter; import java.util.Arrays; import java.util.PriorityQueue; import java.util.AbstractQueue; import java.io.IOException; import java.io.InputStreamReader; import java.util.ArrayList; import java.util.AbstractCollection; import java.util.StringTokenizer; import java.io.BufferedReader; import java.io.FileReader; import java.io.InputStream; /** * Built using CHelper plug-in * Actual solution is at the top * * @author Khater */ public class Main { public static void main(String[] args) { InputStream inputStream = System.in; OutputStream outputStream = System.out; Scanner in = new Scanner(inputStream); PrintWriter out = new PrintWriter(outputStream); EPairedPayment solver = new EPairedPayment(); solver.solve(1, in, out); out.close(); } static class EPairedPayment { long INF = (long) 1e15; ArrayList<EPairedPayment.Edge>[] adjList; long[] dist; long[] dist2; int V; public void solve(int testNumber, Scanner sc, PrintWriter pw) { int t = 1; // t = sc.nextInt(); while (t-- > 0) { int n = sc.nextInt(); int m = sc.nextInt(); V = n; adjList = new ArrayList[n]; for (int i = 0; i < n; i++) adjList[i] = new ArrayList<>(); for (int i = 0; i < m; i++) { int x = sc.nextInt() - 1; int y = sc.nextInt() - 1; long w = sc.nextLong(); adjList[x].add(new EPairedPayment.Edge(y, w)); adjList[y].add(new EPairedPayment.Edge(x, w)); } } dijkstra(0, -1); for (long x : dist) pw.print((x == (long) 1e15 ? -1 : x) + " "); pw.println(); } long dijkstra(int S, int T) { dist = new long[V]; Arrays.fill(dist, INF); dist2 = new long[V]; Arrays.fill(dist2, INF); PriorityQueue<EPairedPayment.Edge> pq = new PriorityQueue<EPairedPayment.Edge>(); dist[S] = 0; pq.add(new EPairedPayment.Edge(S, 0)); //may add more in case of MSSP (Mult-Source) while (!pq.isEmpty()) { EPairedPayment.Edge cur = pq.remove(); if (cur.cost > dist[cur.node]) //lazy deletion continue; for (EPairedPayment.Edge nxt : adjList[cur.node]) { if (dist2[nxt.node] > nxt.cost) { for (EPairedPayment.Edge nxtnxt : adjList[nxt.node]) { if (nxtnxt.node != cur.node) if (cur.cost + (nxt.cost + nxtnxt.cost) * (nxt.cost + nxtnxt.cost) < dist[nxtnxt.node]) pq.add(new EPairedPayment.Edge(nxtnxt.node, dist[nxtnxt.node] = cur.cost + (nxt.cost + nxtnxt.cost) * (nxt.cost + nxtnxt.cost))); } dist2[nxt.node] = nxt.cost; } } } return -1; } static class Edge implements Comparable<EPairedPayment.Edge> { int node; long cost; Edge(int a, long b) { node = a; cost = b; } public int compareTo(EPairedPayment.Edge e) { return Long.compare(cost, e.cost); } } } static class Scanner { StringTokenizer st; BufferedReader br; public Scanner(FileReader r) { br = new BufferedReader(r); } public Scanner(InputStream s) { br = new BufferedReader(new InputStreamReader(s)); } public String next() { while (st == null || !st.hasMoreTokens()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { throw new RuntimeException(e); } } return st.nextToken(); } public int nextInt() { return Integer.parseInt(next()); } public long nextLong() { return Long.parseLong(next()); } } }
Java
["5 6\n1 2 3\n2 3 4\n3 4 5\n4 5 6\n1 5 1\n2 4 2", "3 2\n1 2 1\n2 3 2"]
4 seconds
["0 98 49 25 114", "0 -1 9"]
NoteThe graph in the first example looks like this.In the second example the path from $$$1$$$ to $$$3$$$ goes through $$$2$$$, so the resulting payment is $$$(1 + 2)^2 = 9$$$.
Java 11
standard input
[ "binary search", "brute force", "constructive algorithms", "dp", "flows", "graphs", "shortest paths" ]
abee4d188bb59d82fcf4579c7416a343
First line contains two integers $$$n$$$, $$$m$$$ ($$$2 \leq n \leq 10^5$$$, $$$1 \leq m \leq min(\frac{n \cdot (n - 1)}{2}, 2 \cdot 10^5)$$$). Next $$$m$$$ lines each contain three integers $$$v_i$$$, $$$u_i$$$, $$$w_i$$$ ($$$1 \leq v_i, u_i \leq n$$$, $$$1 \leq w_i \leq 50$$$, $$$u_i \neq v_i$$$). It's guaranteed that there are no multiple edges, i.e. for any edge $$$(u_i, v_i)$$$ there are no other edges $$$(u_i, v_i)$$$ or $$$(v_i, u_i)$$$.
2,200
For every city $$$t$$$ print one integer. If there is no correct path between $$$1$$$ and $$$t$$$ output $$$-1$$$. Otherwise print out the minimum amount of money needed to travel from $$$1$$$ to $$$t$$$.
standard output
PASSED
94bd1518ed331934b9b5c554e399199f
train_110.jsonl
1613658900
There are $$$n$$$ cities and $$$m$$$ bidirectional roads in the country. The roads in the country form an undirected weighted graph. The graph is not guaranteed to be connected. Each road has it's own parameter $$$w$$$. You can travel through the roads, but the government made a new law: you can only go through two roads at a time (go from city $$$a$$$ to city $$$b$$$ and then from city $$$b$$$ to city $$$c$$$) and you will have to pay $$$(w_{ab} + w_{bc})^2$$$ money to go through those roads. Find out whether it is possible to travel from city $$$1$$$ to every other city $$$t$$$ and what's the minimum amount of money you need to get from $$$1$$$ to $$$t$$$.
512 megabytes
import java.io.OutputStream; import java.io.IOException; import java.io.InputStream; import java.io.PrintWriter; import java.util.Arrays; import java.util.PriorityQueue; import java.util.AbstractQueue; import java.io.InputStreamReader; import java.util.ArrayList; import java.util.AbstractCollection; import java.util.StringTokenizer; import java.io.BufferedReader; import java.io.InputStream; /** * Built using CHelper plug-in * Actual solution is at the top */ public class Main { public static void main(String[] args) { InputStream inputStream = System.in; OutputStream outputStream = System.out; Scanner in = new Scanner(inputStream); PrintWriter out = new PrintWriter(outputStream); EPairedPayment solver = new EPairedPayment(); solver.solve(1, in, out); out.close(); } static class EPairedPayment { ArrayList<Edge>[] adjList; int n; long INF = (long) 1e18; int m; long[][] dijkstra(int S) { long[][] dist = new long[n][51]; for (long[] x : dist) Arrays.fill(x, INF); PriorityQueue<Edge> pq = new PriorityQueue<Edge>(); dist[S][0] = 0; pq.add(new Edge(S, 0, 0)); //may add more in case of MSSP (Mult-Source) while (!pq.isEmpty()) { Edge cur = pq.remove(); if (dist[cur.node][cur.prev] < cur.cost) continue; for (Edge nxt : adjList[cur.node]) { if (cur.prev == 0) { if (dist[nxt.node][(int) nxt.cost] > cur.cost + nxt.cost) { dist[nxt.node][(int) nxt.cost] = cur.cost + nxt.cost; pq.add(new Edge(nxt.node, cur.cost, (int) nxt.cost)); } } else { if (dist[nxt.node][0] > cur.cost + (cur.prev + nxt.cost) * (cur.prev + nxt.cost)) { dist[nxt.node][0] = cur.cost + (cur.prev + nxt.cost) * (cur.prev + nxt.cost); pq.add(new Edge(nxt.node, dist[nxt.node][0], 0)); } } } } return dist; } public void readInput(Scanner sc) { n = sc.nextInt(); m = sc.nextInt(); adjList = new ArrayList[n]; for (int i = 0; i < n; i++) adjList[i] = new ArrayList<>(); for (int i = 0; i < m; i++) { int u = sc.nextInt() - 1, v = sc.nextInt() - 1, cost = sc.nextInt(); adjList[u].add(new Edge(v, cost, 0)); adjList[v].add(new Edge(u, cost, 0)); } } public void solve(int testNumber, Scanner sc, PrintWriter pw) { int q = 1; while (q-- > 0) { readInput(sc); long[][] dist = dijkstra(0); for (int i = 0; i < n; i++) pw.print((dist[i][0] >= (long) 1e18 ? -1 : dist[i][0]) + " "); } } class Edge implements Comparable<Edge> { int node; long cost; int prev; Edge(int a, long b, int prev) { node = a; cost = b; this.prev = prev; } public int compareTo(Edge e) { return Long.compare(cost + prev, e.cost + prev); } } } static class Scanner { StringTokenizer st; BufferedReader br; public Scanner(InputStream s) { br = new BufferedReader(new InputStreamReader(s)); } public String next() { try { while (st == null || !st.hasMoreTokens()) st = new StringTokenizer(br.readLine()); return st.nextToken(); } catch (Exception e) { throw new RuntimeException(e); } } public int nextInt() { return Integer.parseInt(next()); } } }
Java
["5 6\n1 2 3\n2 3 4\n3 4 5\n4 5 6\n1 5 1\n2 4 2", "3 2\n1 2 1\n2 3 2"]
4 seconds
["0 98 49 25 114", "0 -1 9"]
NoteThe graph in the first example looks like this.In the second example the path from $$$1$$$ to $$$3$$$ goes through $$$2$$$, so the resulting payment is $$$(1 + 2)^2 = 9$$$.
Java 11
standard input
[ "binary search", "brute force", "constructive algorithms", "dp", "flows", "graphs", "shortest paths" ]
abee4d188bb59d82fcf4579c7416a343
First line contains two integers $$$n$$$, $$$m$$$ ($$$2 \leq n \leq 10^5$$$, $$$1 \leq m \leq min(\frac{n \cdot (n - 1)}{2}, 2 \cdot 10^5)$$$). Next $$$m$$$ lines each contain three integers $$$v_i$$$, $$$u_i$$$, $$$w_i$$$ ($$$1 \leq v_i, u_i \leq n$$$, $$$1 \leq w_i \leq 50$$$, $$$u_i \neq v_i$$$). It's guaranteed that there are no multiple edges, i.e. for any edge $$$(u_i, v_i)$$$ there are no other edges $$$(u_i, v_i)$$$ or $$$(v_i, u_i)$$$.
2,200
For every city $$$t$$$ print one integer. If there is no correct path between $$$1$$$ and $$$t$$$ output $$$-1$$$. Otherwise print out the minimum amount of money needed to travel from $$$1$$$ to $$$t$$$.
standard output
PASSED
be86665dfb1dabec58b173eb020a067b
train_110.jsonl
1613658900
There are $$$n$$$ cities and $$$m$$$ bidirectional roads in the country. The roads in the country form an undirected weighted graph. The graph is not guaranteed to be connected. Each road has it's own parameter $$$w$$$. You can travel through the roads, but the government made a new law: you can only go through two roads at a time (go from city $$$a$$$ to city $$$b$$$ and then from city $$$b$$$ to city $$$c$$$) and you will have to pay $$$(w_{ab} + w_{bc})^2$$$ money to go through those roads. Find out whether it is possible to travel from city $$$1$$$ to every other city $$$t$$$ and what's the minimum amount of money you need to get from $$$1$$$ to $$$t$$$.
512 megabytes
// copied import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.io.PrintWriter; import java.util.ArrayList; import java.util.PriorityQueue; import java.util.StringTokenizer; public class Main { static final int N = (int) (2e5 + 11), INF = (int) (1e9 + 11); static int n, m, v, u, w; static ArrayList<int[]> g[] = new ArrayList[N]; static int[][] d; static PriorityQueue<Node> pq; public static void main(String[] args) throws IOException { BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); PrintWriter out = new PrintWriter(System.out); StringTokenizer st = new StringTokenizer(br.readLine()); n = Integer.parseInt(st.nextToken()); m = Integer.parseInt(st.nextToken()); for (int i = 0; i < n; ++i) g[i] = new ArrayList<>(); while (m-- > 0) { st = new StringTokenizer(br.readLine()); v = Integer.parseInt(st.nextToken()); u = Integer.parseInt(st.nextToken()); w = Integer.parseInt(st.nextToken()); --v; --u; g[v].add(new int[] { u, w }); g[u].add(new int[] { v, w }); } d = new int[n][]; for (int i = 0; i < n; ++i) { d[i] = new int[51]; for (int j = 0; j < 51; ++j) d[i][j] = INF; } d[0][0] = 0; Node V; pq = new PriorityQueue<Node>(); pq.add(new Node(0, 0, d[0][0])); while (pq.size() > 0) { V = pq.remove(); int v = V.v; int lvl = V.lvl; int cost = V.cost; if (d[v][lvl] != cost) continue; for (int[] u : g[v]) { int to = u[0], w = u[1], lvl1; if (lvl == 0) { lvl1 = w; w = w * w; } else { lvl1 = 0; w = w * w + 2 * lvl * w; } if (d[to][lvl1] > w + d[v][lvl]) { d[to][lvl1] = w + d[v][lvl]; pq.add(new Node(to, lvl1, d[to][lvl1])); } } } for (int i = 0; i < n; ++i) if (d[i][0] == INF) out.print("-1 "); else out.print(d[i][0] + " "); out.close(); } static class Node implements Comparable<Node> { public int v, lvl, cost; Node(int v1, int lvl1, int cost1) { v = v1; lvl = lvl1; cost = cost1; } @Override public int compareTo(Node a) { return Integer.compare(cost, a.cost); } } }
Java
["5 6\n1 2 3\n2 3 4\n3 4 5\n4 5 6\n1 5 1\n2 4 2", "3 2\n1 2 1\n2 3 2"]
4 seconds
["0 98 49 25 114", "0 -1 9"]
NoteThe graph in the first example looks like this.In the second example the path from $$$1$$$ to $$$3$$$ goes through $$$2$$$, so the resulting payment is $$$(1 + 2)^2 = 9$$$.
Java 11
standard input
[ "binary search", "brute force", "constructive algorithms", "dp", "flows", "graphs", "shortest paths" ]
abee4d188bb59d82fcf4579c7416a343
First line contains two integers $$$n$$$, $$$m$$$ ($$$2 \leq n \leq 10^5$$$, $$$1 \leq m \leq min(\frac{n \cdot (n - 1)}{2}, 2 \cdot 10^5)$$$). Next $$$m$$$ lines each contain three integers $$$v_i$$$, $$$u_i$$$, $$$w_i$$$ ($$$1 \leq v_i, u_i \leq n$$$, $$$1 \leq w_i \leq 50$$$, $$$u_i \neq v_i$$$). It's guaranteed that there are no multiple edges, i.e. for any edge $$$(u_i, v_i)$$$ there are no other edges $$$(u_i, v_i)$$$ or $$$(v_i, u_i)$$$.
2,200
For every city $$$t$$$ print one integer. If there is no correct path between $$$1$$$ and $$$t$$$ output $$$-1$$$. Otherwise print out the minimum amount of money needed to travel from $$$1$$$ to $$$t$$$.
standard output
PASSED
7e3426a56f9fa7c5fb2bb3ef7d707e91
train_110.jsonl
1613658900
There are $$$n$$$ cities and $$$m$$$ bidirectional roads in the country. The roads in the country form an undirected weighted graph. The graph is not guaranteed to be connected. Each road has it's own parameter $$$w$$$. You can travel through the roads, but the government made a new law: you can only go through two roads at a time (go from city $$$a$$$ to city $$$b$$$ and then from city $$$b$$$ to city $$$c$$$) and you will have to pay $$$(w_{ab} + w_{bc})^2$$$ money to go through those roads. Find out whether it is possible to travel from city $$$1$$$ to every other city $$$t$$$ and what's the minimum amount of money you need to get from $$$1$$$ to $$$t$$$.
512 megabytes
import java.util.*; import java.io.*; public class A{ public static void main(String [] args)throws IOException{ BufferedReader br=new BufferedReader(new InputStreamReader(System.in)); FastReader sc=new FastReader(); PrintWriter pw=new PrintWriter(System.out); int test=1; while(test-->0){ int n=sc.nextInt(); int m=sc.nextInt(); ArrayList<Pair> arr[]=new ArrayList[n+1]; for(int i=0;i<=n;i++) arr[i]=new ArrayList<Pair>(); try{ while(m-->0){ int source=sc.nextInt(); int dest = sc.nextInt(); int weight = sc.nextInt(); arr[source].add(new Pair(dest,weight)); arr[dest].add(new Pair(source,weight)); } } catch(Exception e){ } int [][] d=djikstra(1,n,arr); for(int i=1;i<=n;i++){ if(d[i][0] == Integer.MAX_VALUE) d[i][0]=-1; pw.print(d[i][0]+" "); } pw.println(); pw.close(); } } static class Pair{ int dest=0; int wt=0; int lastEdg=0; Pair(){} Pair(int d,int w){ dest=d; wt =w; } Pair(int d,int v,int lastEdg){ dest=d; wt=v; this.lastEdg=lastEdg; } } static class customSort implements Comparator<Pair>{ public int compare(Pair a,Pair b){ if(a.wt<b.wt){ return -1; } else if(a.wt>b.wt){ return 1; } return 0; } } public static int [][] djikstra(int source,int n,ArrayList<Pair> arr[]){ int dp[][]=new int[n+1][51]; for(int i=0;i<=n;i++) Arrays.fill(dp[i], Integer.MAX_VALUE); PriorityQueue<Pair> pq=new PriorityQueue<>(new customSort()); boolean vis[][]=new boolean[n+1][51]; pq.add(new Pair(source,0)); dp[1][0]=0; while(!pq.isEmpty()){ Pair x=pq.poll(); int nd =x.dest; int wt =x.wt; int lastEdg =x.lastEdg; if(vis[nd][lastEdg]){ continue; } vis[nd][lastEdg]=true; for(int i=0;i<arr[nd].size();i++){ Pair y=arr[nd].get(i); int ch=y.dest; int wtc=y.wt; int newDist = wt; if(lastEdg>0) { newDist +=((lastEdg+wtc)*(lastEdg+wtc)); wtc=0; } if(dp[ch][wtc]>newDist) { dp[ch][wtc]=newDist; pq.add(new Pair(ch,newDist,wtc)); } } } return dp; } /** * Fast I/O */ static class FastReader { BufferedReader br; StringTokenizer st; public FastReader() { br = new BufferedReader(new InputStreamReader(System.in)); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } } }
Java
["5 6\n1 2 3\n2 3 4\n3 4 5\n4 5 6\n1 5 1\n2 4 2", "3 2\n1 2 1\n2 3 2"]
4 seconds
["0 98 49 25 114", "0 -1 9"]
NoteThe graph in the first example looks like this.In the second example the path from $$$1$$$ to $$$3$$$ goes through $$$2$$$, so the resulting payment is $$$(1 + 2)^2 = 9$$$.
Java 11
standard input
[ "binary search", "brute force", "constructive algorithms", "dp", "flows", "graphs", "shortest paths" ]
abee4d188bb59d82fcf4579c7416a343
First line contains two integers $$$n$$$, $$$m$$$ ($$$2 \leq n \leq 10^5$$$, $$$1 \leq m \leq min(\frac{n \cdot (n - 1)}{2}, 2 \cdot 10^5)$$$). Next $$$m$$$ lines each contain three integers $$$v_i$$$, $$$u_i$$$, $$$w_i$$$ ($$$1 \leq v_i, u_i \leq n$$$, $$$1 \leq w_i \leq 50$$$, $$$u_i \neq v_i$$$). It's guaranteed that there are no multiple edges, i.e. for any edge $$$(u_i, v_i)$$$ there are no other edges $$$(u_i, v_i)$$$ or $$$(v_i, u_i)$$$.
2,200
For every city $$$t$$$ print one integer. If there is no correct path between $$$1$$$ and $$$t$$$ output $$$-1$$$. Otherwise print out the minimum amount of money needed to travel from $$$1$$$ to $$$t$$$.
standard output
PASSED
a3e2982a93a08b7b6adee90469308b5a
train_110.jsonl
1613658900
There are $$$n$$$ cities and $$$m$$$ bidirectional roads in the country. The roads in the country form an undirected weighted graph. The graph is not guaranteed to be connected. Each road has it's own parameter $$$w$$$. You can travel through the roads, but the government made a new law: you can only go through two roads at a time (go from city $$$a$$$ to city $$$b$$$ and then from city $$$b$$$ to city $$$c$$$) and you will have to pay $$$(w_{ab} + w_{bc})^2$$$ money to go through those roads. Find out whether it is possible to travel from city $$$1$$$ to every other city $$$t$$$ and what's the minimum amount of money you need to get from $$$1$$$ to $$$t$$$.
512 megabytes
import java.util.*; import java.io.*; public class A{ public static void main(String [] args)throws IOException{ // BufferedReader br=new BufferedReader(new InputStreamReader(System.in)); FastReader sc=new FastReader(); PrintWriter pw=new PrintWriter(System.out); int test=1; while(test-->0){ int n=sc.nextInt(); int m=sc.nextInt(); ArrayList<Pair> arr[]=new ArrayList[n+1]; for(int i=0;i<=n;i++) arr[i]=new ArrayList<Pair>(); while(m-->0){ int source=sc.nextInt(); int dest = sc.nextInt(); int weight = sc.nextInt(); arr[source].add(new Pair(dest,weight)); arr[dest].add(new Pair(source,weight)); } int [][] d=djikstra(1,n,arr); for(int i=1;i<=n;i++){ if(d[i][0] == Integer.MAX_VALUE) d[i][0]=-1; pw.print(d[i][0]+" "); } pw.println(); pw.close(); } } static class Pair{ int dest=0; int wt=0; Pair(){} Pair(int d,int w){ dest=d; wt =w; } } static class customSort implements Comparator<Pair>{ public int compare(Pair a,Pair b){ if(a.wt<b.wt){ return -1; } else if(a.wt>b.wt){ return 1; } return 0; } } public static int [][] djikstra(int source,int n,ArrayList<Pair> arr[]){ int dist[][]=new int[n+1][52]; boolean vis[][]=new boolean[n+1][52]; for(int i=0;i<=n;i++) Arrays.fill(dist[i], Integer.MAX_VALUE); PriorityQueue<Pair> pq=new PriorityQueue<>(new customSort()); pq.add(new Pair(1*55+0,0)); while(!pq.isEmpty()) { Pair x=pq.poll(); int nd =x.dest/55; int lastEdgWt =x.dest%55; int distance =x.wt; if(vis[nd][lastEdgWt]) { continue; } vis[nd][lastEdgWt]=true; dist[nd][lastEdgWt]=distance; for(Pair y:arr[nd]) { int newWt= y.wt; int newDistance =distance; if(lastEdgWt>0) { newDistance +=((newWt+lastEdgWt)*(newWt+lastEdgWt)); newWt=0; } if(dist[y.dest][newWt] <= newDistance) continue; dist[y.dest][newWt] =newDistance; pq.add(new Pair(((y.dest*55)+newWt),newDistance)); } } return dist; } /** * Fast I/O */ static class FastReader { BufferedReader br; StringTokenizer st; public FastReader() { br = new BufferedReader(new InputStreamReader(System.in)); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } } }
Java
["5 6\n1 2 3\n2 3 4\n3 4 5\n4 5 6\n1 5 1\n2 4 2", "3 2\n1 2 1\n2 3 2"]
4 seconds
["0 98 49 25 114", "0 -1 9"]
NoteThe graph in the first example looks like this.In the second example the path from $$$1$$$ to $$$3$$$ goes through $$$2$$$, so the resulting payment is $$$(1 + 2)^2 = 9$$$.
Java 11
standard input
[ "binary search", "brute force", "constructive algorithms", "dp", "flows", "graphs", "shortest paths" ]
abee4d188bb59d82fcf4579c7416a343
First line contains two integers $$$n$$$, $$$m$$$ ($$$2 \leq n \leq 10^5$$$, $$$1 \leq m \leq min(\frac{n \cdot (n - 1)}{2}, 2 \cdot 10^5)$$$). Next $$$m$$$ lines each contain three integers $$$v_i$$$, $$$u_i$$$, $$$w_i$$$ ($$$1 \leq v_i, u_i \leq n$$$, $$$1 \leq w_i \leq 50$$$, $$$u_i \neq v_i$$$). It's guaranteed that there are no multiple edges, i.e. for any edge $$$(u_i, v_i)$$$ there are no other edges $$$(u_i, v_i)$$$ or $$$(v_i, u_i)$$$.
2,200
For every city $$$t$$$ print one integer. If there is no correct path between $$$1$$$ and $$$t$$$ output $$$-1$$$. Otherwise print out the minimum amount of money needed to travel from $$$1$$$ to $$$t$$$.
standard output
PASSED
6b39e638709d39adca0ba37d7d229293
train_110.jsonl
1613658900
There are $$$n$$$ cities and $$$m$$$ bidirectional roads in the country. The roads in the country form an undirected weighted graph. The graph is not guaranteed to be connected. Each road has it's own parameter $$$w$$$. You can travel through the roads, but the government made a new law: you can only go through two roads at a time (go from city $$$a$$$ to city $$$b$$$ and then from city $$$b$$$ to city $$$c$$$) and you will have to pay $$$(w_{ab} + w_{bc})^2$$$ money to go through those roads. Find out whether it is possible to travel from city $$$1$$$ to every other city $$$t$$$ and what's the minimum amount of money you need to get from $$$1$$$ to $$$t$$$.
512 megabytes
import java.io.*; import java.util.*; public class CF703E { static final int N = (int)(2e5 + 11), INF = (int)(1e9 + 11); static int n, m, v, u, w; static ArrayList< int[] > g[] = new ArrayList[N]; static int[][] d; static PriorityQueue<Node> pq; public static void main (String[] args) throws IOException { BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); PrintWriter out = new PrintWriter(System.out); StringTokenizer st = new StringTokenizer(br.readLine()); n = Integer.parseInt(st.nextToken()); m = Integer.parseInt(st.nextToken()); for (int i = 0; i < n; ++i) g[i] = new ArrayList<>(); while (m-- > 0) { st = new StringTokenizer(br.readLine()); v = Integer.parseInt(st.nextToken()); u = Integer.parseInt(st.nextToken()); w = Integer.parseInt(st.nextToken()); --v; --u; g[v].add(new int[] {u, w}); g[u].add(new int[] {v, w}); } d = new int[n][]; for (int i = 0; i < n; ++i) { d[i] = new int[51]; for (int j = 0; j < 51; ++j) d[i][j] = INF; } d[0][0] = 0; Node V; pq = new PriorityQueue<Node>(); pq.add(new Node(0, 0, d[0][0])); while (pq.size() > 0) { V = pq.remove(); int v = V.v; int lvl = V.lvl; int cost = V.cost; if (d[v][lvl] != cost) continue; for (int[] u : g[v]) { int to = u[0], w = u[1], lvl1; if (lvl == 0) { lvl1 = w; w = w*w; } else { lvl1 = 0; w = w*w + 2*lvl*w; } if (d[to][lvl1] > w + d[v][lvl]) { d[to][lvl1] = w + d[v][lvl]; pq.add(new Node(to, lvl1, d[to][lvl1])); } } } for (int i = 0; i < n; ++i) if (d[i][0] == INF) out.print("-1 "); else out.print(d[i][0] + " "); out.close(); } static class Node implements Comparable<Node> { public int v, lvl, cost; Node (int v1, int lvl1, int cost1) { v = v1; lvl = lvl1; cost = cost1; } @Override public int compareTo (Node a) { return Integer.compare(cost, a.cost); } } }
Java
["5 6\n1 2 3\n2 3 4\n3 4 5\n4 5 6\n1 5 1\n2 4 2", "3 2\n1 2 1\n2 3 2"]
4 seconds
["0 98 49 25 114", "0 -1 9"]
NoteThe graph in the first example looks like this.In the second example the path from $$$1$$$ to $$$3$$$ goes through $$$2$$$, so the resulting payment is $$$(1 + 2)^2 = 9$$$.
Java 11
standard input
[ "binary search", "brute force", "constructive algorithms", "dp", "flows", "graphs", "shortest paths" ]
abee4d188bb59d82fcf4579c7416a343
First line contains two integers $$$n$$$, $$$m$$$ ($$$2 \leq n \leq 10^5$$$, $$$1 \leq m \leq min(\frac{n \cdot (n - 1)}{2}, 2 \cdot 10^5)$$$). Next $$$m$$$ lines each contain three integers $$$v_i$$$, $$$u_i$$$, $$$w_i$$$ ($$$1 \leq v_i, u_i \leq n$$$, $$$1 \leq w_i \leq 50$$$, $$$u_i \neq v_i$$$). It's guaranteed that there are no multiple edges, i.e. for any edge $$$(u_i, v_i)$$$ there are no other edges $$$(u_i, v_i)$$$ or $$$(v_i, u_i)$$$.
2,200
For every city $$$t$$$ print one integer. If there is no correct path between $$$1$$$ and $$$t$$$ output $$$-1$$$. Otherwise print out the minimum amount of money needed to travel from $$$1$$$ to $$$t$$$.
standard output