exec_outcome
stringclasses
1 value
code_uid
stringlengths
32
32
file_name
stringclasses
111 values
prob_desc_created_at
stringlengths
10
10
prob_desc_description
stringlengths
63
3.8k
prob_desc_memory_limit
stringclasses
18 values
source_code
stringlengths
117
65.5k
lang_cluster
stringclasses
1 value
prob_desc_sample_inputs
stringlengths
2
802
prob_desc_time_limit
stringclasses
27 values
prob_desc_sample_outputs
stringlengths
2
796
prob_desc_notes
stringlengths
4
3k
lang
stringclasses
5 values
prob_desc_input_from
stringclasses
3 values
tags
listlengths
0
11
src_uid
stringlengths
32
32
prob_desc_input_spec
stringlengths
28
2.37k
difficulty
int64
-1
3.5k
prob_desc_output_spec
stringlengths
17
1.47k
prob_desc_output_to
stringclasses
3 values
hidden_unit_tests
stringclasses
1 value
PASSED
39e41a4bc0793fe587b7a8b0f45c8ff5
train_109.jsonl
1613658900
The only difference between the easy and the hard version is the limit to the number of queries.This is an interactive problem.There is an array $$$a$$$ of $$$n$$$ different numbers. In one query you can ask the position of the second maximum element in a subsegment $$$a[l..r]$$$. Find the position of the maximum element in the array in no more than 40 queries.A subsegment $$$a[l..r]$$$ is all the elements $$$a_l, a_{l + 1}, ..., a_r$$$. After asking this subsegment you will be given the position of the second maximum from this subsegment in the whole array.
256 megabytes
//package Div2.C; import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; public class GuessingTheGreatest { public static void main(String[] args) throws IOException { BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); int n = Integer.parseInt(br.readLine()); int u = 0; int v = n - 1; while (u < v) { System.out.format("? %d %d\n", u + 1, v + 1); int res = Integer.parseInt(br.readLine()); res--; if (v - u == 1) { if(res==u) u++; else v--; } else { int mid = (u + v) / 2; if (res <= mid) { System.out.format("? %d %d\n", u + 1, mid + 1); int res1 = Integer.parseInt(br.readLine()); res1--; if (res == res1) { v = mid; } else u = mid + 1; } else { System.out.format("? %d %d\n", mid + 1, v + 1); int res1 = Integer.parseInt(br.readLine()); res1--; if (res == res1) { u = mid; } else v = mid - 1; } } } System.out.format("! %d\n", u + 1); } }
Java
["5\n\n3\n\n4"]
1 second
["? 1 5\n\n? 4 5\n\n! 1"]
NoteIn the sample suppose $$$a$$$ is $$$[5, 1, 4, 2, 3]$$$. So after asking the $$$[1..5]$$$ subsegment $$$4$$$ is second to max value, and it's position is $$$3$$$. After asking the $$$[4..5]$$$ subsegment $$$2$$$ is second to max value and it's position in the whole array is $$$4$$$.Note that there are other arrays $$$a$$$ that would produce the same interaction, and the answer for them might be different. Example output is given in purpose of understanding the interaction.
Java 8
standard input
[ "binary search", "interactive" ]
b3e8fe76706ba17cb285c75459508334
The first line contains a single integer $$$n$$$ $$$(2 \leq n \leq 10^5)$$$ — the number of elements in the array.
1,600
null
standard output
PASSED
c9fc47f7fcb5eec27c5bb5b8a2252a10
train_109.jsonl
1613658900
The only difference between the easy and the hard version is the limit to the number of queries.This is an interactive problem.There is an array $$$a$$$ of $$$n$$$ different numbers. In one query you can ask the position of the second maximum element in a subsegment $$$a[l..r]$$$. Find the position of the maximum element in the array in no more than 40 queries.A subsegment $$$a[l..r]$$$ is all the elements $$$a_l, a_{l + 1}, ..., a_r$$$. After asking this subsegment you will be given the position of the second maximum from this subsegment in the whole array.
256 megabytes
import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.io.PrintWriter; import java.util.*; public class Main{ static class FastScanner { BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); StringTokenizer st = new StringTokenizer(""); String next() { while (!st.hasMoreTokens()) try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } int[] nextArray(int n) { int[] a = new int[n]; for (int i = 0; i < n; i++) a[i] = nextInt(); return a; } long[] nextArray(long n) { long[] a = new long[(int) n]; for (int i = 0; i < n; i++) a[i] = nextLong(); return a; } long nextLong() { return Long.parseLong(next()); } } static class FastWriter extends PrintWriter { FastWriter(){ super(System.out); } void println(int[] array) { for(int i=0; i<array.length; i++) { print(array[i]+" "); } println(); } void println(long [] array) { for(int i=0; i<array.length; i++) { print(array[i]+" "); } println(); } } static int MOD=998244353; public static void main(String[] args) throws IOException { FastScanner in = new FastScanner(); FastWriter out = new FastWriter(); //int t=in.nextInt(); int t=1; while (t-->0){ int n=in.nextInt(); out.println("? 1 "+n); out.flush(); int pos=in.nextInt(); int pos1=n; if(pos!=1){ out.println("? 1 "+pos); out.flush(); pos1=in.nextInt(); } int i=1,j=n; if(pos==pos1){ j=pos; while (i+1<j){ int mid=(i+j)/2; out.println("? "+mid+" "+pos); out.flush(); pos1=in.nextInt(); if(pos==pos1){ i=mid; }else { j=mid; } } out.println("! "+i); out.flush(); }else { i=pos; while (i+1<j){ int mid=(i+j)/2; out.println("? "+pos+" "+mid); out.flush(); pos1=in.nextInt(); if(pos==pos1){ j=mid; }else { i=mid; } } out.println("! "+j); out.flush(); } } out.close(); } static boolean check(int[] a){ for (int i = 0; i < a.length - 1; i++) { if(a[i]!=a[i+1]){ return false; } } return true; } //Arrays.sort(a, (o1, o2) -> (o1[0] - o2[0])); static int subarray_lessthan_k(int[] A,int n,int k){ int s=0,e=0,sum=0,cnt=0; while(e<n){ sum+=A[e]; while(s<=e&&sum>k){ sum-=A[s++]; } cnt+=e-s+1; e++; } return cnt; } static int totalPrimeFactors(int n) { int cnt=0; while (n%2==0) { cnt++; n /= 2; } int num= (int) Math.sqrt(n); for (int i = 3; i <= num; i+= 2) { while (n%i == 0) { cnt++; n /= i; num=(int)Math.sqrt(n); } } if (n > 2){ cnt++; } return cnt; } static char get(int i){ return (char)(i+'a'); } static boolean distinct(int num){ HashSet<Integer> set=new HashSet<>(); int len=String.valueOf(num).length(); while (num!=0){ set.add(num%10); num/=10; } return set.size()==len; } static int maxSubArraySum(int a[],int st,int en) { int max_s = Integer.MIN_VALUE, max_e = 0,ind=0,ind1=1; for (int i = st; i <= en; i++) { max_e+= a[i]; if (max_s < max_e){ max_s = max_e; ind=ind1; } if (max_e < 0){ max_e = 0; ind1=i+1; } } if(st==0){ return max_s; } if(ind==1){ return a[0]+2*max_s; }else { return 2*max_s+maxSubArraySum(a,0,ind-1); } //return max_s; } static void segmentedSieve(ArrayList<Integer> res,int low, int high) { if(low < 2){ low = 2; } ArrayList<Integer> prime = new ArrayList<>(); simpleSieve(high, prime); boolean[] mark = new boolean[high - low + 1]; for (int i = 0; i < mark.length; i++){ mark[i] = true; } for (int i = 0; i < prime.size(); i++) { int loLim = (low / prime.get(i)) * prime.get(i); if (loLim < low){ loLim += prime.get(i); } if (loLim == prime.get(i)){ loLim += prime.get(i); } for (int j = loLim; j <= high; j += prime.get(i)) { mark[j - low] = false; } } for (int i = low; i <= high; i++) { if (mark[i - low]){ res.add(i); } } } static void simpleSieve(int limit, ArrayList<Integer> prime) { int bound = (int)Math.sqrt(limit); boolean[] mark = new boolean[bound + 1]; for (int i = 0; i <= bound; i++){ mark[i] = true; } for (int i = 2; i * i <= bound; i++) { if (mark[i]) { for (int j = i * i; j <= bound; j += i){ mark[j] = false; } } } for (int i = 2; i <= bound; i++) { if (mark[i]){ prime.add(i); } } } static int highestPowerOf2(int n) { if (n < 1){ return 0; } int res = 1; for (int i = 0; i < 8 * Integer.BYTES; i++) { int curr = 1 << i; if (curr > n){ break; } res = curr; } return res; } static int reduceFraction(int x, int y) { int d= gcd(x, y); return x/d+y/d; } static boolean subset(int[] ar,int n,int sum){ if(sum==0){ return true; } if(n<0||sum<0){ return false; } return subset(ar,n-1,sum)||subset(ar,n-1,sum-ar[n]); } static boolean isPrime(int n){ if(n<=1) return false; for(int i = 2;i<=Math.sqrt(n);i++){ if (n % i == 0) return false; } return true; } static int gcd(int a, int b) { if (b == 0) return a; return gcd(b, a % b); } static long gcd(long a, long b) { if (b == 0) return a; return gcd(b, a % b); } static long lcm(long a, long b) { return (a * b) / gcd(a, b); } static int lcm(int a, int b) { return (a * b) / gcd(a, b); } static boolean isPowerOfTwo(long n) { if(n==0){ return false; } while (n%2==0){ n/=2; } return n==1; } static boolean isPerfectSquare(int x){ if (x >= 0) { int sr = (int)Math.sqrt(x); return ((sr * sr) == x); } return false; } static int lower_bound(int[] arr, int x) { int low_limit = 0, high_limit = arr.length, mid; while (low_limit < high_limit) { mid = (low_limit + high_limit) / 2; if (arr[mid] >= x){ high_limit = mid; }else{ low_limit = mid + 1; } } return low_limit; } static int upper_bound(int[] arr, int x) { int low_limit = 0, high_limit = arr.length, mid; while (low_limit < high_limit) { mid = (low_limit + high_limit) / 2; if (arr[mid] > x){ high_limit = mid; }else{ low_limit = mid + 1; } } return low_limit; } static int binarySearch(int[] ar,int n,int num){ int low=0,high=n-1; while (low<=high){ int mid=(low+high)/2; if(ar[mid]==num){ return mid; }else if(ar[mid]>num){ high=mid-1; }else { low=mid+1; } } return -1; } static int fib(int n) { long F[][] = new long[][]{{1,1},{1,0}}; if (n == 0){ return 0; } power(F, n-1); return (int)F[0][0]; } static void multiply(long F[][], long M[][]) { long x = (F[0][0]*M[0][0])%1000000007 + (F[0][1]*M[1][0])%1000000007; long y = (F[0][0]*M[0][1])%1000000007 + (F[0][1]*M[1][1])%1000000007; long z = (F[1][0]*M[0][0])%1000000007 + (F[1][1]*M[1][0])%1000000007; long w = (F[1][0]*M[0][1])%1000000007 + (F[1][1]*M[1][1])%1000000007; F[0][0] = x%1000000007; F[0][1] = y%1000000007; F[1][0] = z%1000000007; F[1][1] = w%1000000007; } static void power(long F[][], int n) { if( n == 0 || n == 1){ return; } long M[][] = new long[][]{{1,1},{1,0}}; power(F, n/2); multiply(F, F); if (n%2 != 0){ multiply(F, M); } } }
Java
["5\n\n3\n\n4"]
1 second
["? 1 5\n\n? 4 5\n\n! 1"]
NoteIn the sample suppose $$$a$$$ is $$$[5, 1, 4, 2, 3]$$$. So after asking the $$$[1..5]$$$ subsegment $$$4$$$ is second to max value, and it's position is $$$3$$$. After asking the $$$[4..5]$$$ subsegment $$$2$$$ is second to max value and it's position in the whole array is $$$4$$$.Note that there are other arrays $$$a$$$ that would produce the same interaction, and the answer for them might be different. Example output is given in purpose of understanding the interaction.
Java 8
standard input
[ "binary search", "interactive" ]
b3e8fe76706ba17cb285c75459508334
The first line contains a single integer $$$n$$$ $$$(2 \leq n \leq 10^5)$$$ — the number of elements in the array.
1,600
null
standard output
PASSED
30bc9cd673ff25b5e2afc80c650eaf09
train_109.jsonl
1613658900
The only difference between the easy and the hard version is the limit to the number of queries.This is an interactive problem.There is an array $$$a$$$ of $$$n$$$ different numbers. In one query you can ask the position of the second maximum element in a subsegment $$$a[l..r]$$$. Find the position of the maximum element in the array in no more than 40 queries.A subsegment $$$a[l..r]$$$ is all the elements $$$a_l, a_{l + 1}, ..., a_r$$$. After asking this subsegment you will be given the position of the second maximum from this subsegment in the whole array.
256 megabytes
import java.util.*; import java.io.*; public class C1 { public static void main(String[] args) throws IOException{ BufferedReader f = new BufferedReader(new InputStreamReader(System.in)); PrintWriter out = new PrintWriter(new OutputStreamWriter(System.out)); int n = Integer.parseInt(f.readLine()); solve(f, out, 0, n-1, -1); out.close(); } public static int query(BufferedReader f, PrintWriter out, int l, int r) throws IOException{ if(l == r) return -1; out.println("? " + (l+1) + " " + (r+1)); out.flush(); return Integer.parseInt(f.readLine())-1; } public static void solve(BufferedReader f, PrintWriter out, int l, int r, int pos) throws IOException{ if(l == r) { out.println("! " + (l + 1)); return; } if(pos == -1){ pos = query(f, out, l, r); } int mid = (l+r)/2; if(pos <= mid){ int npos = query(f, out, l, mid); if(pos == npos) { solve(f, out, l, mid, pos); }else{ solve(f, out, mid+1, r, -1); } }else{ int npos = query(f, out, mid+1, r); if(pos == npos) { solve(f, out, mid+1, r, pos); }else { solve(f, out, l, mid, -1); } } } }
Java
["5\n\n3\n\n4"]
1 second
["? 1 5\n\n? 4 5\n\n! 1"]
NoteIn the sample suppose $$$a$$$ is $$$[5, 1, 4, 2, 3]$$$. So after asking the $$$[1..5]$$$ subsegment $$$4$$$ is second to max value, and it's position is $$$3$$$. After asking the $$$[4..5]$$$ subsegment $$$2$$$ is second to max value and it's position in the whole array is $$$4$$$.Note that there are other arrays $$$a$$$ that would produce the same interaction, and the answer for them might be different. Example output is given in purpose of understanding the interaction.
Java 8
standard input
[ "binary search", "interactive" ]
b3e8fe76706ba17cb285c75459508334
The first line contains a single integer $$$n$$$ $$$(2 \leq n \leq 10^5)$$$ — the number of elements in the array.
1,600
null
standard output
PASSED
a876a787d6dd8fbdedfd0abbe0ca0332
train_109.jsonl
1613658900
The only difference between the easy and the hard version is the limit to the number of queries.This is an interactive problem.There is an array $$$a$$$ of $$$n$$$ different numbers. In one query you can ask the position of the second maximum element in a subsegment $$$a[l..r]$$$. Find the position of the maximum element in the array in no more than 40 queries.A subsegment $$$a[l..r]$$$ is all the elements $$$a_l, a_{l + 1}, ..., a_r$$$. After asking this subsegment you will be given the position of the second maximum from this subsegment in the whole array.
256 megabytes
import java.io.OutputStream; import java.io.IOException; import java.io.InputStream; import java.io.PrintWriter; import java.util.*; import java.io.BufferedReader; import java.io.InputStreamReader; public class First { public static void main(String[] args) { InputStream inputStream = System.in; OutputStream outputStream = System.out; InputReader in = new InputReader(inputStream); PrintWriter out = new PrintWriter(outputStream); TaskA solver = new TaskA(); //int a = 1; int t; //t = in.nextInt(); t = 1; while (t > 0) { //out.print("Case #"+(a++)+": "); solver.call(in,out); t--; } out.close(); } static class TaskA { public void call(InputReader in, PrintWriter out) { int n; n = in.nextInt(); int l, r, mid, a = 0, b = 0; l = 1; r = n; Map<String, Integer> map = new HashMap<>(); while(true){ if(r-l<=2){ break; } mid = (l + r) / 2; if(map.getOrDefault(l+" "+r, 0)==0) { System.out.println("? " + l + " " + r); a = in.nextInt(); System.out.flush(); map.put(l+" "+r, a); } else{ a = map.get(l+" "+r); } if(a<=mid){ if(map.getOrDefault(l+" "+mid, 0)==0) { System.out.println("? " + l + " " + mid); b = in.nextInt(); System.out.flush(); map.put(l+" "+mid, b); } else{ b = map.get(l+" "+mid); } if(b==a){ r = mid; } else{ l = mid+1; } } else{ if(map.getOrDefault((mid+1) + " "+r , 0)==0) { System.out.println("? " + (mid + 1) + " " + r); b = in.nextInt(); System.out.flush(); map.put((mid+1)+" "+r , b); } else{ b = map.get((mid+1)+" "+r); } if(b==a){ l = mid+1; } else{ r = mid; } } } if(map.getOrDefault(l+" "+r, 0)==0) { System.out.println("? " + l + " " + r); a = in.nextInt(); System.out.flush(); map.put(l+" "+r, a); } else{ a = map.get(l+" "+r); } if(r-l==1){ if(l==a){ out.println("! "+r); } else{ out.println("! "+l); } } else{ if(a==(l+r)/2){ if(map.getOrDefault((l+r)/2+" "+r,0)==0) { System.out.println("? " + (l + r) / 2 + " " + r); b = in.nextInt(); System.out.flush(); map.put((l+r)/2+" "+r,b); } else{ b = map.get((l+r)/2+" "+r); } if(b==a){ out.println("! "+r); } else{ out.println("! "+l); } return; } if(a==r){ if(map.getOrDefault(l+" "+(l+r)/2,0)==0) { System.out.println("? " + l + " " + (l + r) / 2); b = in.nextInt(); System.out.flush(); map.put(l+" "+(l+r)/2, b); } else{ b = map.get(l+" "+(l+r)/2); } if(b==l){ out.println("! "+(l+r)/2); } else{ out.println("! "+l); } } else{ int c; if(map.getOrDefault((l+r)/2+" "+r,0)==0) { System.out.println("? " + (l + r) / 2 + " " + r); c = in.nextInt(); System.out.flush(); map.put((l+r)/2+" "+r,c); } else{ c = map.get((l+r)/2+" "+r); } if(c==r){ out.println("! "+(l+r)/2); } else{ out.println("! "+r); } } } } } static int gcd(int a, int b) { if (a == 0) return b; return gcd(b % a, a); } static int lcm(int a, int b) { return (a / gcd(a, b)) * b; } static class answer implements Comparable<answer>{ int a; int b; public answer(int a, int b) { this.a = a; this.b = b; } @Override public int compareTo(answer o) { return o.a - this.a; } @Override public boolean equals(Object o){ if(o instanceof answer){ answer c = (answer)o; return a == c.a && b == c.b; } return false; } } static class answer1 implements Comparable<answer1>{ int a, b, c; public answer1(int a, int b, int c) { this.a = a; this.b = b; this.c = c; } @Override public int compareTo(answer1 o) { return this.a - o.a; } } static long gcd(long a, long b) { if (b == 0) return a; return gcd(b, a % b); } static void sort(long[] a) { ArrayList<Long> l=new ArrayList<>(); for (long i:a) l.add(i); Collections.sort(l); for (int i=0; i<a.length; i++) a[i]=l.get(i); } static final Random random=new Random(); static void shuffleSort(int[] a) { int n=a.length; for (int i=0; i<n; i++) { int oi=random.nextInt(n), temp=a[oi]; a[oi]=a[i]; a[i]=temp; } Arrays.sort(a); } static class InputReader { public BufferedReader reader; public StringTokenizer tokenizer; public InputReader(InputStream stream) { reader = new BufferedReader(new InputStreamReader(stream), 32768); tokenizer = null; } public String next() { while (tokenizer == null || !tokenizer.hasMoreTokens()) { try { tokenizer = new StringTokenizer(reader.readLine()); } catch (IOException e) { throw new RuntimeException(e); } } return tokenizer.nextToken(); } public int nextInt() { return Integer.parseInt(next()); } public long nextLong(){ return Long.parseLong(next()); } public double nextDouble() { return Double.parseDouble(next()); } } }
Java
["5\n\n3\n\n4"]
1 second
["? 1 5\n\n? 4 5\n\n! 1"]
NoteIn the sample suppose $$$a$$$ is $$$[5, 1, 4, 2, 3]$$$. So after asking the $$$[1..5]$$$ subsegment $$$4$$$ is second to max value, and it's position is $$$3$$$. After asking the $$$[4..5]$$$ subsegment $$$2$$$ is second to max value and it's position in the whole array is $$$4$$$.Note that there are other arrays $$$a$$$ that would produce the same interaction, and the answer for them might be different. Example output is given in purpose of understanding the interaction.
Java 8
standard input
[ "binary search", "interactive" ]
b3e8fe76706ba17cb285c75459508334
The first line contains a single integer $$$n$$$ $$$(2 \leq n \leq 10^5)$$$ — the number of elements in the array.
1,600
null
standard output
PASSED
8ff02311818260a78fa051153ad435dd
train_109.jsonl
1613658900
The only difference between the easy and the hard version is the limit to the number of queries.This is an interactive problem.There is an array $$$a$$$ of $$$n$$$ different numbers. In one query you can ask the position of the second maximum element in a subsegment $$$a[l..r]$$$. Find the position of the maximum element in the array in no more than 40 queries.A subsegment $$$a[l..r]$$$ is all the elements $$$a_l, a_{l + 1}, ..., a_r$$$. After asking this subsegment you will be given the position of the second maximum from this subsegment in the whole array.
256 megabytes
import java.io.OutputStream; import java.io.IOException; import java.io.InputStream; import java.io.PrintWriter; import java.util.*; import java.io.BufferedReader; import java.io.InputStreamReader; public class First { public static void main(String[] args) { InputStream inputStream = System.in; OutputStream outputStream = System.out; InputReader in = new InputReader(inputStream); PrintWriter out = new PrintWriter(outputStream); TaskA solver = new TaskA(); //int a = 1; int t; //t = in.nextInt(); t = 1; while (t > 0) { //out.print("Case #"+(a++)+": "); solver.call(in,out); t--; } out.close(); } static class TaskA { public void call(InputReader in, PrintWriter out) { int n; n = in.nextInt(); int l, r, mid, a, b; l = 1; r = n; while(true){ if(r-l<=2){ break; } mid = (l+r)/2; System.out.println("? "+l+" "+r); a = in.nextInt(); System.out.flush(); if(a<=mid){ System.out.println("? "+l+" "+ mid); b = in.nextInt(); System.out.flush(); if(b==a){ r = mid; } else{ l = mid+1; } } else{ System.out.println("? "+(mid+1)+" "+ r); b = in.nextInt(); System.out.flush(); if(b==a){ l = mid+1; } else{ r = mid; } } } System.out.println("? "+l+" "+r); a = in.nextInt(); System.out.flush(); if(r-l==1){ if(l==a){ out.println("! "+r); } else{ out.println("! "+l); } } else{ if(a==(l+r)/2){ System.out.println("? "+(l+r)/2+" "+r); b = in.nextInt(); System.out.flush(); if(b==a){ out.println("! "+r); } else{ out.println("! "+l); } return; } if(a==r){ System.out.println("? "+l+" "+(l+r)/2); b = in.nextInt(); System.out.flush(); if(b==l){ out.println("! "+(l+r)/2); } else{ out.println("! "+l); } } else{ System.out.println("? "+(l+r)/2+" "+r); int c = in.nextInt(); System.out.flush(); if(c==r){ out.println("! "+(l+r)/2); } else{ out.println("! "+r); } } } } } static int gcd(int a, int b) { if (a == 0) return b; return gcd(b % a, a); } static int lcm(int a, int b) { return (a / gcd(a, b)) * b; } static class answer implements Comparable<answer>{ int a; int b; public answer(int a, int b) { this.a = a; this.b = b; } @Override public int compareTo(answer o) { return o.a - this.a; } @Override public boolean equals(Object o){ if(o instanceof answer){ answer c = (answer)o; return a == c.a && b == c.b; } return false; } } static class answer1 implements Comparable<answer1>{ int a, b, c; public answer1(int a, int b, int c) { this.a = a; this.b = b; this.c = c; } @Override public int compareTo(answer1 o) { return this.a - o.a; } } static long gcd(long a, long b) { if (b == 0) return a; return gcd(b, a % b); } static void sort(long[] a) { ArrayList<Long> l=new ArrayList<>(); for (long i:a) l.add(i); Collections.sort(l); for (int i=0; i<a.length; i++) a[i]=l.get(i); } static final Random random=new Random(); static void shuffleSort(int[] a) { int n=a.length; for (int i=0; i<n; i++) { int oi=random.nextInt(n), temp=a[oi]; a[oi]=a[i]; a[i]=temp; } Arrays.sort(a); } static class InputReader { public BufferedReader reader; public StringTokenizer tokenizer; public InputReader(InputStream stream) { reader = new BufferedReader(new InputStreamReader(stream), 32768); tokenizer = null; } public String next() { while (tokenizer == null || !tokenizer.hasMoreTokens()) { try { tokenizer = new StringTokenizer(reader.readLine()); } catch (IOException e) { throw new RuntimeException(e); } } return tokenizer.nextToken(); } public int nextInt() { return Integer.parseInt(next()); } public long nextLong(){ return Long.parseLong(next()); } public double nextDouble() { return Double.parseDouble(next()); } } }
Java
["5\n\n3\n\n4"]
1 second
["? 1 5\n\n? 4 5\n\n! 1"]
NoteIn the sample suppose $$$a$$$ is $$$[5, 1, 4, 2, 3]$$$. So after asking the $$$[1..5]$$$ subsegment $$$4$$$ is second to max value, and it's position is $$$3$$$. After asking the $$$[4..5]$$$ subsegment $$$2$$$ is second to max value and it's position in the whole array is $$$4$$$.Note that there are other arrays $$$a$$$ that would produce the same interaction, and the answer for them might be different. Example output is given in purpose of understanding the interaction.
Java 8
standard input
[ "binary search", "interactive" ]
b3e8fe76706ba17cb285c75459508334
The first line contains a single integer $$$n$$$ $$$(2 \leq n \leq 10^5)$$$ — the number of elements in the array.
1,600
null
standard output
PASSED
d8849ec148c1a39f177f72df222bfd5b
train_109.jsonl
1613658900
The only difference between the easy and the hard version is the limit to the number of queries.This is an interactive problem.There is an array $$$a$$$ of $$$n$$$ different numbers. In one query you can ask the position of the second maximum element in a subsegment $$$a[l..r]$$$. Find the position of the maximum element in the array in no more than 40 queries.A subsegment $$$a[l..r]$$$ is all the elements $$$a_l, a_{l + 1}, ..., a_r$$$. After asking this subsegment you will be given the position of the second maximum from this subsegment in the whole array.
256 megabytes
import java.util.*; import java.io.*; public class Main { static BufferedReader in = new BufferedReader(new InputStreamReader(System.in)); static PrintWriter out = new PrintWriter(new OutputStreamWriter(System.out)); static int n; static Scanner sca = new Scanner(System.in); public static void main(String[] args) throws Exception { int n = sca.nextInt(); int l = 0; int r = n; while(r-l>1) { int m = (l+r)/2; int smax = ask(l,r-1); if(smax<m) { if(ask(l,m-1)==smax) { r = m; }else { l = m; } }else { if(ask(m,r-1)==smax) { l = m; }else { r = m; } } } System.out.println("! "+r); } static int ask(int l, int r) throws Exception { if(l>=r) return -1; System.out.println("? "+(l+1)+" "+(r+1)); int a = sca.nextInt(); return a-1; } }
Java
["5\n\n3\n\n4"]
1 second
["? 1 5\n\n? 4 5\n\n! 1"]
NoteIn the sample suppose $$$a$$$ is $$$[5, 1, 4, 2, 3]$$$. So after asking the $$$[1..5]$$$ subsegment $$$4$$$ is second to max value, and it's position is $$$3$$$. After asking the $$$[4..5]$$$ subsegment $$$2$$$ is second to max value and it's position in the whole array is $$$4$$$.Note that there are other arrays $$$a$$$ that would produce the same interaction, and the answer for them might be different. Example output is given in purpose of understanding the interaction.
Java 8
standard input
[ "binary search", "interactive" ]
b3e8fe76706ba17cb285c75459508334
The first line contains a single integer $$$n$$$ $$$(2 \leq n \leq 10^5)$$$ — the number of elements in the array.
1,600
null
standard output
PASSED
3fdc8a837ed89a428333f7c1349eb670
train_109.jsonl
1613658900
The only difference between the easy and the hard version is the limit to the number of queries.This is an interactive problem.There is an array $$$a$$$ of $$$n$$$ different numbers. In one query you can ask the position of the second maximum element in a subsegment $$$a[l..r]$$$. Find the position of the maximum element in the array in no more than 40 queries.A subsegment $$$a[l..r]$$$ is all the elements $$$a_l, a_{l + 1}, ..., a_r$$$. After asking this subsegment you will be given the position of the second maximum from this subsegment in the whole array.
256 megabytes
import java.util.*; import java.io.*; public class GuessingTheGreatestEasyVersion { public static void main(String[] args) throws IOException { Scanner in = new Scanner(System.in); int N = in.nextInt(); int l = 1, r = N; while (l < r) { System.out.println("? " + l + " " + r); System.out.flush(); int i = in.nextInt(); int mid = (l + r + 1) / 2; if (i < mid) { if (l + 1 == mid) { l = mid; } else { System.out.println("? " + l + " " + (mid - 1)); System.out.flush(); int j = in.nextInt(); if (j == i) { r = mid - 1; } else { l = mid; } } } else { if (mid == r) { r = mid - 1; } else { System.out.println("? " + mid + " " + r); System.out.flush(); int j = in.nextInt(); if (j == i) { l = mid; } else { r = mid - 1; } } } } System.out.println("! " + l); } }
Java
["5\n\n3\n\n4"]
1 second
["? 1 5\n\n? 4 5\n\n! 1"]
NoteIn the sample suppose $$$a$$$ is $$$[5, 1, 4, 2, 3]$$$. So after asking the $$$[1..5]$$$ subsegment $$$4$$$ is second to max value, and it's position is $$$3$$$. After asking the $$$[4..5]$$$ subsegment $$$2$$$ is second to max value and it's position in the whole array is $$$4$$$.Note that there are other arrays $$$a$$$ that would produce the same interaction, and the answer for them might be different. Example output is given in purpose of understanding the interaction.
Java 8
standard input
[ "binary search", "interactive" ]
b3e8fe76706ba17cb285c75459508334
The first line contains a single integer $$$n$$$ $$$(2 \leq n \leq 10^5)$$$ — the number of elements in the array.
1,600
null
standard output
PASSED
7fb06d7201f3cbde573d8c120cb2ce9e
train_109.jsonl
1613658900
The only difference between the easy and the hard version is the limit to the number of queries.This is an interactive problem.There is an array $$$a$$$ of $$$n$$$ different numbers. In one query you can ask the position of the second maximum element in a subsegment $$$a[l..r]$$$. Find the position of the maximum element in the array in no more than 40 queries.A subsegment $$$a[l..r]$$$ is all the elements $$$a_l, a_{l + 1}, ..., a_r$$$. After asking this subsegment you will be given the position of the second maximum from this subsegment in the whole array.
256 megabytes
import java.io.*; import java.util.*; import java.util.function.BiFunction; public class C { static FastReader reader = new FastReader(); static OutputWriter out = new OutputWriter(System.out); static int ask(int l, int r) { out.println("? " + l + " " + r);out.flush(); return reader.nextInt(); } static int solve(int l, int r) { if(l == r) { return l; } if(l + 1 == r) { return ask(l, r) == l ? r : l; } int t1 = ask(l, r); if(t1 != r && ask(t1, r) == t1) { //we are at left most point l = t1 + 1; while(l <= r) { int m = (l + r) / 2; int t2 = ask(t1, m); if(t2 == t1) { r = m - 1; } else { l = m + 1; } }//[1,2,4,3, 5] return l; } else { r = t1 - 1; while(l <= r) { int m = (l + r) / 2; int t2 = ask(m, t1); if(t2 == t1) { l = m + 1; } else { r = m - 1; } } return r; //we are at right most point } } public static void main(String[] args) { try { int n = reader.nextInt(); int ans = solve(1, n); out.println("! " + ans); } finally { out.flush(); } } static class FastReader { BufferedReader br; StringTokenizer st; public FastReader() { br = new BufferedReader(new InputStreamReader(System.in)); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } } public static class OutputWriter { private final PrintWriter writer; public OutputWriter(OutputStream outputStream) { writer = new PrintWriter(new BufferedWriter(new OutputStreamWriter(outputStream))); } public OutputWriter(Writer writer) { this.writer = new PrintWriter(writer); } public void print(char[] array) { writer.print(array); } public void print(Object... objects) { for (int i = 0; i < objects.length; i++) { if (i != 0) { writer.print(' '); } writer.print(objects[i]); } } public void print(int[] array) { for (int i = 0; i < array.length; i++) { if (i != 0) { writer.print(' '); } writer.print(array[i]); } } public void print(double[] array) { for (int i = 0; i < array.length; i++) { if (i != 0) { writer.print(' '); } writer.print(array[i]); } } public void print(long[] array) { for (int i = 0; i < array.length; i++) { if (i != 0) { writer.print(' '); } writer.print(array[i]); } } public void println(int[] array) { print(array); writer.println(); } public void println(double[] array) { print(array); writer.println(); } public void println(long[] array) { print(array); writer.println(); } public void println() { writer.println(); } public void println(Object... objects) { print(objects); writer.println(); } public void print(char i) { writer.print(i); } public void println(char i) { writer.println(i); } public void println(char[] array) { writer.println(array); } public void printf(String format, Object... objects) { writer.printf(format, objects); } public void close() { writer.close(); } public void flush() { writer.flush(); } public void print(long i) { writer.print(i); } public void println(long i) { writer.println(i); } public void print(int i) { writer.print(i); } public void println(int i) { writer.println(i); } public void separateLines(int[] array) { for (int i : array) { println(i); } } } }
Java
["5\n\n3\n\n4"]
1 second
["? 1 5\n\n? 4 5\n\n! 1"]
NoteIn the sample suppose $$$a$$$ is $$$[5, 1, 4, 2, 3]$$$. So after asking the $$$[1..5]$$$ subsegment $$$4$$$ is second to max value, and it's position is $$$3$$$. After asking the $$$[4..5]$$$ subsegment $$$2$$$ is second to max value and it's position in the whole array is $$$4$$$.Note that there are other arrays $$$a$$$ that would produce the same interaction, and the answer for them might be different. Example output is given in purpose of understanding the interaction.
Java 8
standard input
[ "binary search", "interactive" ]
b3e8fe76706ba17cb285c75459508334
The first line contains a single integer $$$n$$$ $$$(2 \leq n \leq 10^5)$$$ — the number of elements in the array.
1,600
null
standard output
PASSED
a4ac08ecc0e6fb94e6d0650266bbac44
train_109.jsonl
1613658900
The only difference between the easy and the hard version is the limit to the number of queries.This is an interactive problem.There is an array $$$a$$$ of $$$n$$$ different numbers. In one query you can ask the position of the second maximum element in a subsegment $$$a[l..r]$$$. Find the position of the maximum element in the array in no more than 40 queries.A subsegment $$$a[l..r]$$$ is all the elements $$$a_l, a_{l + 1}, ..., a_r$$$. After asking this subsegment you will be given the position of the second maximum from this subsegment in the whole array.
256 megabytes
import java.io.BufferedReader; import java.io.IOException; import java.io.InputStream; import java.io.InputStreamReader; import java.io.PrintWriter; import java.util.ArrayList; import java.util.Arrays; import java.util.HashMap; import java.util.List; import java.util.Map; import java.util.StringTokenizer; import java.util.TreeMap; public class Main implements Runnable { int n, m; static boolean use_n_tests = false; int N = -1; long mod = 1000000007; void solve(FastScanner in, PrintWriter out, int testNumber) { n = in.nextInt(); out.println("! " + rec(0, n, -1)); } int rec(int l, int r, int p) { if (r - l <= 1) { return r; } int bigPos = p; if (p == -1) { bigPos = ask(l, r - 1); } int mid = (l + r) / 2; if (bigPos < mid) { int left = ask(l, mid - 1); if (left == bigPos) { return rec(l, mid, left); } else { return rec(mid, r, -1); } } else { int right = ask(mid, r - 1); if (right == bigPos) { return rec(mid, r, right); } else { return rec(l, mid, -1); } } } // ****************************** template code *********** int ask(int l, int r) { if (l >= r) { return -1; } System.out.printf("? %d %d\n", l + 1, r + 1); System.out.flush(); return in.nextInt() - 1; } static int stack_size = 1 << 27; class Mod { long mod; Mod(long mod) { this.mod = mod; } long add(long a, long b) { a = mod(a); b = mod(b); return (a + b) % mod; } long sub(long a, long b) { a = mod(a); b = mod(b); return (a - b + mod) % mod; } long mul(long a, long b) { a = mod(a); b = mod(b); return a * b % mod; } long div(long a, long b) { a = mod(a); b = mod(b); return (a * inv(b)) % mod; } public long inv(long r) { if (r == 1) return 1; return ((mod - mod / r) * inv(mod % r)) % mod; } private long mod(long a) { return a % mod; } } class Coeff { long mod; long[][] C; long[] fact; boolean cycleWay = false; Coeff(int n, long mod) { this.mod = mod; fact = new long[n + 1]; fact[0] = 1; for (int i = 1; i <= n; i++) { fact[i] = i; fact[i] %= mod; fact[i] *= fact[i - 1]; fact[i] %= mod; } } Coeff(int n, int m, long mod) { // n > m cycleWay = true; this.mod = mod; C = new long[n + 1][m + 1]; for (int i = 0; i <= n; i++) { for (int j = 0; j <= Math.min(i, m); j++) { if (j == 0 || j == i) { C[i][j] = 1; } else { C[i][j] = C[i - 1][j - 1] + C[i - 1][j]; C[i][j] %= mod; } } } } public long C(int n, int m) { if (cycleWay) { return C[n][m]; } return fC(n, m); } private long fC(int n, int m) { return (fact[n] * inv(fact[n - m] * fact[m] % mod)) % mod; } private long inv(long r) { if (r == 1) return 1; return ((mod - mod / r) * inv(mod % r)) % mod; } } class Pair { int first; int second; public int getFirst() { return first; } public int getSecond() { return second; } } class MultisetTree<T> { int size = 0; TreeMap<T, Integer> mp = new TreeMap<>(); void add(T x) { mp.merge(x, 1, Integer::sum); size++; } void remove(T x) { if (mp.containsKey(x)) { mp.merge(x, -1, Integer::sum); if (mp.get(x) == 0) { mp.remove(x); } size--; } } boolean contains(T x) { return mp.containsKey(x); } T greatest() { return mp.lastKey(); } T smallest() { return mp.firstKey(); } int size() { return size; } int diffSize() { return mp.size(); } } class Multiset<T> { int size = 0; Map<T, Integer> mp = new HashMap<>(); void add(T x) { mp.merge(x, 1, Integer::sum); size++; } boolean contains(T x) { return mp.containsKey(x); } void remove(T x) { if (mp.containsKey(x)) { mp.merge(x, -1, Integer::sum); if (mp.get(x) == 0) { mp.remove(x); } size--; } } int size() { return size; } int diffSize() { return mp.size(); } } static class Range { int l, r; int id; public int getL() { return l; } public int getR() { return r; } public Range(int l, int r, int id) { this.l = l; this.r = r; this.id = id; } } static class Array { static Range[] readRanges(int n, FastScanner in) { Range[] result = new Range[n]; for (int i = 0; i < n; i++) { result[i] = new Range(in.nextInt(), in.nextInt(), i); } return result; } static List<List<Integer>> intInit2D(int n) { List<List<Integer>> res = new ArrayList<>(); for (int i = 0; i < n; i++) { res.add(new ArrayList<>()); } return res; } static boolean isSorted(Integer[] a) { for (int i = 0; i < a.length - 1; i++) { if (a[i] > a[i + 1]) { return false; } } return true; } static public long sum(int[] a) { long sum = 0; for (int x : a) { sum += x; } return sum; } static public long sum(long[] a) { long sum = 0; for (long x : a) { sum += x; } return sum; } static public long sum(Integer[] a) { long sum = 0; for (int x : a) { sum += x; } return sum; } static public int min(Integer[] a) { int mn = Integer.MAX_VALUE; for (int x : a) { mn = Math.min(mn, x); } return mn; } static public int min(int[] a) { int mn = Integer.MAX_VALUE; for (int x : a) { mn = Math.min(mn, x); } return mn; } static public int max(Integer[] a) { int mx = Integer.MIN_VALUE; for (int x : a) { mx = Math.max(mx, x); } return mx; } static public int max(int[] a) { int mx = Integer.MIN_VALUE; for (int x : a) { mx = Math.max(mx, x); } return mx; } static public int[] readint(int n, FastScanner in) { int[] out = new int[n]; for (int i = 0; i < out.length; i++) { out[i] = in.nextInt(); } return out; } } class Graph { List<List<Integer>> graph; Graph(int n) { create(n); } void create(int n) { List<List<Integer>> graph = new ArrayList<>(); for (int i = 0; i < n; i++) { graph.add(new ArrayList<>()); } this.graph = graph; } void readBi(int m, FastScanner in) { for (int i = 0; i < m; i++) { int v = in.nextInt() - 1; int u = in.nextInt() - 1; graph.get(v).add(u); graph.get(u).add(v); } } } class FastScanner { BufferedReader br; StringTokenizer st; public FastScanner(InputStream io) { br = new BufferedReader(new InputStreamReader(io)); } public String line() { String result = ""; try { result = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return result; } public String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } public int nextInt() { return Integer.parseInt(next()); } public int[] nextArray(int n) { int[] res = new int[n]; for (int i = 0; i < n; i++) { res[i] = in.nextInt(); } return res; } public long[] nextArrayL(int n) { long[] res = new long[n]; for (int i = 0; i < n; i++) { res[i] = in.nextLong(); } return res; } public Long[] nextArrayL2(int n) { Long[] res = new Long[n]; for (int i = 0; i < n; i++) { res[i] = in.nextLong(); } return res; } public Integer[] nextArray2(int n) { Integer[] res = new Integer[n]; for (int i = 0; i < n; i++) { res[i] = in.nextInt(); } return res; } public long nextLong() { return Long.parseLong(next()); } } void run_t_tests() { int t = in.nextInt(); int i = 0; while (t-- > 0) { solve(in, out, i++); } } void run_one() { solve(in, out, -1); } @Override public void run() { in = new FastScanner(System.in); out = new PrintWriter(System.out); if (use_n_tests) { run_t_tests(); } else { run_one(); } out.close(); } static FastScanner in; static PrintWriter out; public static void main(String[] args) throws InterruptedException { Thread thread = new Thread(null, new Main(), "", stack_size); thread.start(); thread.join(); } }
Java
["5\n\n3\n\n4"]
1 second
["? 1 5\n\n? 4 5\n\n! 1"]
NoteIn the sample suppose $$$a$$$ is $$$[5, 1, 4, 2, 3]$$$. So after asking the $$$[1..5]$$$ subsegment $$$4$$$ is second to max value, and it's position is $$$3$$$. After asking the $$$[4..5]$$$ subsegment $$$2$$$ is second to max value and it's position in the whole array is $$$4$$$.Note that there are other arrays $$$a$$$ that would produce the same interaction, and the answer for them might be different. Example output is given in purpose of understanding the interaction.
Java 8
standard input
[ "binary search", "interactive" ]
b3e8fe76706ba17cb285c75459508334
The first line contains a single integer $$$n$$$ $$$(2 \leq n \leq 10^5)$$$ — the number of elements in the array.
1,600
null
standard output
PASSED
7763e7d70d42e50259a1ad47efc0bf47
train_109.jsonl
1613658900
The only difference between the easy and the hard version is the limit to the number of queries.This is an interactive problem.There is an array $$$a$$$ of $$$n$$$ different numbers. In one query you can ask the position of the second maximum element in a subsegment $$$a[l..r]$$$. Find the position of the maximum element in the array in no more than 40 queries.A subsegment $$$a[l..r]$$$ is all the elements $$$a_l, a_{l + 1}, ..., a_r$$$. After asking this subsegment you will be given the position of the second maximum from this subsegment in the whole array.
256 megabytes
//I AM THE CREED /* //I AM THE CREED /* package codechef; // don't place package name! */ import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.util.StringTokenizer; import java.util.*; import java.awt.Point; public class Main{ static final Random random=new Random(); public static void main(String[] args) throws IOException { Scanner input=new Scanner(System.in); int n=input.nextInt(); System.out.println("? "+1+" "+n); System.out.flush(); int secondIndex=input.nextInt(); int left=1; int right=secondIndex-1; //Binary search in the left direction from the secondGreatest element if(right>=left){ while(right!=left){ int mid=left+((right-left)/2); System.out.println("? "+(secondIndex-mid)+" "+(secondIndex)); System.out.flush(); int curr=input.nextInt(); if(curr==secondIndex){ right=mid; continue; } left=mid+1; } System.out.println("? "+(secondIndex-right)+" "+(secondIndex)); System.out.flush(); int candidate=input.nextInt(); if(candidate==secondIndex){ System.out.println("! "+(secondIndex-right)); System.out.flush(); return; } } left=1; right=n-secondIndex; //Binary search in the right direction from the secondGreatest element while(right!=left){ int mid=left+((right-left)/2); System.out.println("? "+(secondIndex)+" "+(secondIndex+mid)); System.out.flush(); int curr=input.nextInt(); if(curr==secondIndex){ right=mid; continue; } left=mid+1; } System.out.println("! "+(secondIndex+right)); System.out.flush(); } static long pow(long num, long exp, long mod){ long ans=1; for(int i=1;i<=exp;i++){ ans=(ans*num)%mod; } return ans; } static boolean isPrime(int n) { // Check if number is less than // equal to 1 if (n <= 1) return false; // Check if number is 2 else if (n == 2) return true; // Check if n is a multiple of 2 else if (n % 2 == 0) return false; // If not, then just check the odds for (int i = 3; i <= Math.sqrt(n); i += 2) { if (n % i == 0) return false; } return true; } static int gcd(int a, int b) { if (a == 0) return b; return gcd(b % a, a); } // method to return LCM of two numbers static int lcm(int a, int b) { return (a / gcd(a, b)) * b; } public static void sort(long[][] arr) { //Sort an array (immune to quicksort TLE) Random rgen = new Random(); for (int i = 0; i < arr.length; i++) { int randomPosition = rgen.nextInt(arr.length); long[] temp = arr[i]; arr[i] = arr[randomPosition]; arr[randomPosition] = temp; } Arrays.sort(arr, new Comparator<long[]>() { @Override public int compare(long[] a, long[] b) { if (a[0] > b[0]) return 1; else if (a[0] < b[0]) return -1; else return 0; } }); } //Credits to SecondThread(https://codeforces.com/profile/SecondThread) for this tempelate. static class FastScanner { BufferedReader br=new BufferedReader(new InputStreamReader(System.in)); StringTokenizer st=new StringTokenizer(""); String next() { while (!st.hasMoreTokens()) try { st=new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } int[] readArray(int n) { int[] a=new int[n]; for (int i=0; i<n; i++) a[i]=nextInt(); return a; } long nextLong() { return Long.parseLong(next()); } } }
Java
["5\n\n3\n\n4"]
1 second
["? 1 5\n\n? 4 5\n\n! 1"]
NoteIn the sample suppose $$$a$$$ is $$$[5, 1, 4, 2, 3]$$$. So after asking the $$$[1..5]$$$ subsegment $$$4$$$ is second to max value, and it's position is $$$3$$$. After asking the $$$[4..5]$$$ subsegment $$$2$$$ is second to max value and it's position in the whole array is $$$4$$$.Note that there are other arrays $$$a$$$ that would produce the same interaction, and the answer for them might be different. Example output is given in purpose of understanding the interaction.
Java 8
standard input
[ "binary search", "interactive" ]
b3e8fe76706ba17cb285c75459508334
The first line contains a single integer $$$n$$$ $$$(2 \leq n \leq 10^5)$$$ — the number of elements in the array.
1,600
null
standard output
PASSED
f124f6265ebd1eae4b24ac51adaee91b
train_109.jsonl
1613658900
The only difference between the easy and the hard version is the limit to the number of queries.This is an interactive problem.There is an array $$$a$$$ of $$$n$$$ different numbers. In one query you can ask the position of the second maximum element in a subsegment $$$a[l..r]$$$. Find the position of the maximum element in the array in no more than 40 queries.A subsegment $$$a[l..r]$$$ is all the elements $$$a_l, a_{l + 1}, ..., a_r$$$. After asking this subsegment you will be given the position of the second maximum from this subsegment in the whole array.
256 megabytes
//I AM THE CREED /* //I AM THE CREED /* package codechef; // don't place package name! */ import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.util.StringTokenizer; import java.util.*; import java.awt.Point; public class Main{ static final Random random=new Random(); public static void main(String[] args) throws IOException { Scanner input=new Scanner(System.in); int n=input.nextInt(); System.out.println("? "+1+" "+n); System.out.flush(); int secondIndex=input.nextInt(); int left=1; int right=secondIndex-1; if(right>=left){ while(right!=left){ int mid=left+((right-left)/2); System.out.println("? "+(secondIndex-mid)+" "+(secondIndex)); System.out.flush(); int curr=input.nextInt(); if(curr==secondIndex){ right=mid; continue; } left=mid+1; } System.out.println("? "+(secondIndex-right)+" "+(secondIndex)); System.out.flush(); int candidate=input.nextInt(); if(candidate==secondIndex){ System.out.println("! "+(secondIndex-right)); System.out.flush(); return; } } left=1; right=n-secondIndex; while(right!=left){ int mid=left+((right-left)/2); System.out.println("? "+(secondIndex)+" "+(secondIndex+mid)); System.out.flush(); int curr=input.nextInt(); if(curr==secondIndex){ right=mid; continue; } left=mid+1; } System.out.println("! "+(secondIndex+right)); System.out.flush(); } static long pow(long num, long exp, long mod){ long ans=1; for(int i=1;i<=exp;i++){ ans=(ans*num)%mod; } return ans; } static boolean isPrime(int n) { // Check if number is less than // equal to 1 if (n <= 1) return false; // Check if number is 2 else if (n == 2) return true; // Check if n is a multiple of 2 else if (n % 2 == 0) return false; // If not, then just check the odds for (int i = 3; i <= Math.sqrt(n); i += 2) { if (n % i == 0) return false; } return true; } static int gcd(int a, int b) { if (a == 0) return b; return gcd(b % a, a); } // method to return LCM of two numbers static int lcm(int a, int b) { return (a / gcd(a, b)) * b; } public static void sort(long[][] arr) { //Sort an array (immune to quicksort TLE) Random rgen = new Random(); for (int i = 0; i < arr.length; i++) { int randomPosition = rgen.nextInt(arr.length); long[] temp = arr[i]; arr[i] = arr[randomPosition]; arr[randomPosition] = temp; } Arrays.sort(arr, new Comparator<long[]>() { @Override public int compare(long[] a, long[] b) { if (a[0] > b[0]) return 1; else if (a[0] < b[0]) return -1; else return 0; } }); } //Credits to SecondThread(https://codeforces.com/profile/SecondThread) for this tempelate. static class FastScanner { BufferedReader br=new BufferedReader(new InputStreamReader(System.in)); StringTokenizer st=new StringTokenizer(""); String next() { while (!st.hasMoreTokens()) try { st=new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } int[] readArray(int n) { int[] a=new int[n]; for (int i=0; i<n; i++) a[i]=nextInt(); return a; } long nextLong() { return Long.parseLong(next()); } } }
Java
["5\n\n3\n\n4"]
1 second
["? 1 5\n\n? 4 5\n\n! 1"]
NoteIn the sample suppose $$$a$$$ is $$$[5, 1, 4, 2, 3]$$$. So after asking the $$$[1..5]$$$ subsegment $$$4$$$ is second to max value, and it's position is $$$3$$$. After asking the $$$[4..5]$$$ subsegment $$$2$$$ is second to max value and it's position in the whole array is $$$4$$$.Note that there are other arrays $$$a$$$ that would produce the same interaction, and the answer for them might be different. Example output is given in purpose of understanding the interaction.
Java 8
standard input
[ "binary search", "interactive" ]
b3e8fe76706ba17cb285c75459508334
The first line contains a single integer $$$n$$$ $$$(2 \leq n \leq 10^5)$$$ — the number of elements in the array.
1,600
null
standard output
PASSED
d6ffb75654dc1d4d385b1a0901aef17b
train_109.jsonl
1613658900
The only difference between the easy and the hard version is the limit to the number of queries.This is an interactive problem.There is an array $$$a$$$ of $$$n$$$ different numbers. In one query you can ask the position of the second maximum element in a subsegment $$$a[l..r]$$$. Find the position of the maximum element in the array in no more than 40 queries.A subsegment $$$a[l..r]$$$ is all the elements $$$a_l, a_{l + 1}, ..., a_r$$$. After asking this subsegment you will be given the position of the second maximum from this subsegment in the whole array.
256 megabytes
import java.io.*; import java.util.StringTokenizer; public class Solution { private static boolean TESTS = false; private final Input in; private final PrintStream out; public Solution(final Input in, final PrintStream out) { this.in = in; this.out = out; } public void solve() { for (int test = 1, tests = TESTS ? in.nextInt() : 1; test <= tests; test++) { final int n = in.nextInt(); int l = 1; int r = n; while (l < r) { final int i = query(l, r); final int m = (l + r) >>> 1; final int ql = i <= m ? l : m + 1; final int qr = i <= m ? m : r; final int j = (ql == qr) ? -1 : query(ql, qr); if (i == j) { l = ql; r = qr; } else { l = i <= m ? m + 1 : l; r = i <= m ? r : m; } } out.println("! " + l); out.flush(); } } private int query(final int l, final int r) { out.println("? " + l + " " + r); out.flush(); return in.nextInt(); } public static void main(final String[] args) { final Input in = new Input(); final PrintStream out = new PrintStream(new BufferedOutputStream(System.out)); try { new Solution(in, out).solve(); } finally { out.flush(); } } private static final class Input { private final BufferedReader reader = new BufferedReader(new InputStreamReader(System.in)); private StringTokenizer tokenizer = new StringTokenizer(""); public String nextString() { try { while (!tokenizer.hasMoreTokens()) { final String line = reader.readLine(); tokenizer = new StringTokenizer(line, " "); } return tokenizer.nextToken(); } catch (final IOException e) { throw new RuntimeException(e); } } public int nextInt() { return Integer.parseInt(nextString()); } public long nextLong() { return Long.parseLong(nextString()); } public double nextDouble() { return Double.parseDouble(nextString()); } public int[] nextInts(final int size) { final int[] array = new int[size]; for (int i = 0; i < size; i++) { array[i] = nextInt(); } return array; } public long[] nextLongs(final int size) { final long[] array = new long[size]; for (int i = 0; i < size; i++) { array[i] = nextLong(); } return array; } public double[] nextDoubles(final int size) { final double[] array = new double[size]; for (int i = 0; i < size; i++) { array[i] = nextDouble(); } return array; } } }
Java
["5\n\n3\n\n4"]
1 second
["? 1 5\n\n? 4 5\n\n! 1"]
NoteIn the sample suppose $$$a$$$ is $$$[5, 1, 4, 2, 3]$$$. So after asking the $$$[1..5]$$$ subsegment $$$4$$$ is second to max value, and it's position is $$$3$$$. After asking the $$$[4..5]$$$ subsegment $$$2$$$ is second to max value and it's position in the whole array is $$$4$$$.Note that there are other arrays $$$a$$$ that would produce the same interaction, and the answer for them might be different. Example output is given in purpose of understanding the interaction.
Java 8
standard input
[ "binary search", "interactive" ]
b3e8fe76706ba17cb285c75459508334
The first line contains a single integer $$$n$$$ $$$(2 \leq n \leq 10^5)$$$ — the number of elements in the array.
1,600
null
standard output
PASSED
078b615be100ce738060eb5293d4569c
train_109.jsonl
1613658900
The only difference between the easy and the hard version is the limit to the number of queries.This is an interactive problem.There is an array $$$a$$$ of $$$n$$$ different numbers. In one query you can ask the position of the second maximum element in a subsegment $$$a[l..r]$$$. Find the position of the maximum element in the array in no more than 40 queries.A subsegment $$$a[l..r]$$$ is all the elements $$$a_l, a_{l + 1}, ..., a_r$$$. After asking this subsegment you will be given the position of the second maximum from this subsegment in the whole array.
256 megabytes
import java.io.*; import java.util.*; public class Solution { public static void main(String[] args) throws Exception { FastReader fr=new FastReader(); int n=fr.nextInt(); System.out.println("? "+1+" "+n); System.out.flush(); int smax=fr.nextInt();//idx int l=1; int r=smax-1; int ans=-1; int idx=0; while(l<=r) { int m=(l+r)/2; if(m==smax) { idx=-1; } else { System.out.println("? "+m+" "+smax); System.out.flush(); idx=fr.nextInt(); } if(idx==smax) { ans=m; l=m+1; } else r=m-1; } if(ans!=-1) { System.out.println("! "+ans); } else { l=smax+1; r=n; idx=0; while(l<=r) { int m=(l+r)/2; if(m==smax) { idx=-1; } else { System.out.println("? "+smax+" "+m); System.out.flush(); idx=fr.nextInt(); } if(idx==smax) { r=m-1; ans=m; } else l=m+1; } System.out.println("! "+ans); } } } // 1 2 3 4 5 // 5 1 4 2 3 // 2 ///1 2 class Pair{ int x; int y; Pair(int x,int y){ this.x=x; this.y=y; } } class FastReader { BufferedReader br; StringTokenizer st; public FastReader() { br = new BufferedReader(new InputStreamReader(System.in)); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } }
Java
["5\n\n3\n\n4"]
1 second
["? 1 5\n\n? 4 5\n\n! 1"]
NoteIn the sample suppose $$$a$$$ is $$$[5, 1, 4, 2, 3]$$$. So after asking the $$$[1..5]$$$ subsegment $$$4$$$ is second to max value, and it's position is $$$3$$$. After asking the $$$[4..5]$$$ subsegment $$$2$$$ is second to max value and it's position in the whole array is $$$4$$$.Note that there are other arrays $$$a$$$ that would produce the same interaction, and the answer for them might be different. Example output is given in purpose of understanding the interaction.
Java 8
standard input
[ "binary search", "interactive" ]
b3e8fe76706ba17cb285c75459508334
The first line contains a single integer $$$n$$$ $$$(2 \leq n \leq 10^5)$$$ — the number of elements in the array.
1,600
null
standard output
PASSED
7e10692e40f576d397838561f6e51fc5
train_109.jsonl
1613658900
The only difference between the easy and the hard version is the limit to the number of queries.This is an interactive problem.There is an array $$$a$$$ of $$$n$$$ different numbers. In one query you can ask the position of the second maximum element in a subsegment $$$a[l..r]$$$. Find the position of the maximum element in the array in no more than 40 queries.A subsegment $$$a[l..r]$$$ is all the elements $$$a_l, a_{l + 1}, ..., a_r$$$. After asking this subsegment you will be given the position of the second maximum from this subsegment in the whole array.
256 megabytes
import java.io.OutputStream; import java.io.IOException; import java.io.InputStream; import java.io.PrintWriter; import java.util.HashMap; import java.io.IOException; import java.io.InputStreamReader; import java.util.StringTokenizer; import java.util.Map; import java.io.BufferedReader; import java.io.InputStream; /** * Built using CHelper plug-in * Actual solution is at the top */ public class Main { public static void main(String[] args) { InputStream inputStream = System.in; OutputStream outputStream = System.out; FastReader in = new FastReader(inputStream); PrintWriter out = new PrintWriter(outputStream); C1GuessingTheGreatestEasyVersion solver = new C1GuessingTheGreatestEasyVersion(); solver.solve(1, in, out); out.close(); } static class C1GuessingTheGreatestEasyVersion { Map<String, Integer> map; public void solve(int testNumber, FastReader in, PrintWriter out) { map = new HashMap<>(); int n = in.nextInt(); int sed = query(1, n, in, out); out.println("! " + cal(1, n, sed, in, out)); out.flush(); } private int cal(int l, int r, int sed, FastReader in, PrintWriter out) { if (l == r) { return l; } //int p = query(l,r,in,out); //if (l+1 == r) return p == l ? r : l; int mid = (l + r) / 2; if (sed <= mid) { if (Math.min(sed, l) == mid) { return cal(mid + 1, r, sed, in, out); } int lp = query(Math.min(sed, l), mid, in, out); if (lp == sed) { return cal(l, mid, sed, in, out); } else { return cal(mid + 1, r, sed, in, out); } } else { if (mid + 1 == Math.max(r, sed)) { return cal(l, mid, sed, in, out); } int rp = query(mid + 1, Math.max(r, sed), in, out); if (rp == sed) { return cal(mid + 1, r, sed, in, out); } else { return cal(l, mid, sed, in, out); } } } private int query(int l, int r, FastReader in, PrintWriter out) { Integer num = map.get(l + "#" + r); if (num != null) return num; out.println("? " + l + " " + r); out.flush(); num = in.nextInt(); map.put(l + "#" + r, num); return num; } } static class FastReader { BufferedReader br; StringTokenizer st = new StringTokenizer(""); public FastReader() { br = new BufferedReader(new InputStreamReader(System.in)); } public FastReader(InputStream in) { br = new BufferedReader(new InputStreamReader(in)); } public String next() { while (st == null || (!st.hasMoreElements())) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } public int nextInt() { return Integer.parseInt(next()); } } }
Java
["5\n\n3\n\n4"]
1 second
["? 1 5\n\n? 4 5\n\n! 1"]
NoteIn the sample suppose $$$a$$$ is $$$[5, 1, 4, 2, 3]$$$. So after asking the $$$[1..5]$$$ subsegment $$$4$$$ is second to max value, and it's position is $$$3$$$. After asking the $$$[4..5]$$$ subsegment $$$2$$$ is second to max value and it's position in the whole array is $$$4$$$.Note that there are other arrays $$$a$$$ that would produce the same interaction, and the answer for them might be different. Example output is given in purpose of understanding the interaction.
Java 8
standard input
[ "binary search", "interactive" ]
b3e8fe76706ba17cb285c75459508334
The first line contains a single integer $$$n$$$ $$$(2 \leq n \leq 10^5)$$$ — the number of elements in the array.
1,600
null
standard output
PASSED
8d932cf557003c8e142d222593b465b4
train_109.jsonl
1613658900
The only difference between the easy and the hard version is the limit to the number of queries.This is an interactive problem.There is an array $$$a$$$ of $$$n$$$ different numbers. In one query you can ask the position of the second maximum element in a subsegment $$$a[l..r]$$$. Find the position of the maximum element in the array in no more than 40 queries.A subsegment $$$a[l..r]$$$ is all the elements $$$a_l, a_{l + 1}, ..., a_r$$$. After asking this subsegment you will be given the position of the second maximum from this subsegment in the whole array.
256 megabytes
import javax.print.DocFlavor; import javax.swing.text.html.parser.Entity; import java.awt.*; import java.io.*; import java.lang.reflect.Array; import java.util.*; import java.util.List; import java.util.stream.Collectors; public class Main { static FastScanner sc; static PrintWriter pw; static final long INF = 200000000000000l; static final int MOD = 1000000007; static final int N = 1005; static int mul(int a, int b) { return (int) ((a * 1l * b) % MOD); } public static int pow(int a, int n) { int res = -1; while(n != 0) { if((n & 1) == 1) { res = mul(res, a); } a = mul(a, a); n >>= 1; } return res; } public static int inv(int a) { return pow(a, MOD-2); } public static List<Integer> getPrimes() { List<Integer> ans = new ArrayList<>(); boolean[] prime = new boolean[N]; Arrays.fill(prime, true); prime[0] = prime[1] = false; for(int i = 2; i < N; ++i) { if(prime[i]) { ans.add(i); if (i * 1l * i <= N) for (int j = i * i; j < N; j += i) prime[j] = false; } } return ans; } public static long gcd(long a, long b) { if(b == 0) return a; else return gcd(b, a % b); } public static class A { long x; long y; A(long a, long b) { this.x = a; this.y = b; } } public static void solve() throws IOException { int n = sc.nextInt(); pw.println("? 1 " + n); pw.flush(); int second = sc.nextInt(); int l = 0, r = 0; boolean left = true; if(second == n) { left = false; r = second; l = 0; } else if(second == 1) { l = second; r = n + 1; } else { pw.println("? " + second + " " + n); pw.flush(); if(second == sc.nextInt() && second != n) { l = second; r = n + 1; } else { r = second; l = 0; left = false; } } while(r - l >= 2) { int mid = (l + r) / 2; if(left) { pw.println("? " + second + " " + mid); pw.flush(); int x = sc.nextInt(); if(x == second) r = mid; else l = mid; } else { pw.println("? " + mid + " " + second); pw.flush(); int x = sc.nextInt(); if(x == second) l = mid; else r = mid; } } pw.println("! " + (left ? (l + 1) : (l)) ); } public static void main(String[] args) throws IOException { sc = new FastScanner(System.in); pw = new PrintWriter(System.out); int xx = 1; while(xx > 0) { solve(); xx--; } pw.close(); } } class FastScanner { static StringTokenizer st = new StringTokenizer(""); static BufferedReader br; public FastScanner(InputStream inputStream) { br = new BufferedReader(new InputStreamReader(inputStream)); } public String next() throws IOException { while (!st.hasMoreTokens()) st = new StringTokenizer(br.readLine()); return st.nextToken(); } public int nextInt() throws IOException { return Integer.parseInt(next()); } public long nextLong() throws IOException { return Long.parseLong(next()); } public double nextDouble() throws IOException { return Double.parseDouble(next()); } }
Java
["5\n\n3\n\n4"]
1 second
["? 1 5\n\n? 4 5\n\n! 1"]
NoteIn the sample suppose $$$a$$$ is $$$[5, 1, 4, 2, 3]$$$. So after asking the $$$[1..5]$$$ subsegment $$$4$$$ is second to max value, and it's position is $$$3$$$. After asking the $$$[4..5]$$$ subsegment $$$2$$$ is second to max value and it's position in the whole array is $$$4$$$.Note that there are other arrays $$$a$$$ that would produce the same interaction, and the answer for them might be different. Example output is given in purpose of understanding the interaction.
Java 8
standard input
[ "binary search", "interactive" ]
b3e8fe76706ba17cb285c75459508334
The first line contains a single integer $$$n$$$ $$$(2 \leq n \leq 10^5)$$$ — the number of elements in the array.
1,600
null
standard output
PASSED
62ccc12d2dddd60fb38b4660fd50473f
train_109.jsonl
1613658900
The only difference between the easy and the hard version is the limit to the number of queries.This is an interactive problem.There is an array $$$a$$$ of $$$n$$$ different numbers. In one query you can ask the position of the second maximum element in a subsegment $$$a[l..r]$$$. Find the position of the maximum element in the array in no more than 40 queries.A subsegment $$$a[l..r]$$$ is all the elements $$$a_l, a_{l + 1}, ..., a_r$$$. After asking this subsegment you will be given the position of the second maximum from this subsegment in the whole array.
256 megabytes
import java.util.Scanner; public class GuessingtheGreatest { static Scanner input=new Scanner(System.in); public static void main(String[] args) { response(); } public static void response() { int n=input.nextInt(); int l=1; while(l!=n) { System.out.println("? "+l+" "+n); System.out.flush(); int temp1=input.nextInt(); if(n-l==1) { if(l==temp1) { System.out.println("! "+n); System.out.flush(); return; } else { System.out.println("! "+l); System.out.flush(); return; } } int mid=(l+n)/2; if(temp1>=mid) { System.out.println("? "+mid+" "+n); System.out.flush(); int temp2=input.nextInt(); if(temp2!=temp1) n=mid-1; else l=mid; } else { System.out.println("? "+l+" "+mid); System.out.flush(); int temp2=input.nextInt(); if(temp2!=temp1) l=mid+1; else n=mid; } } System.out.println("! "+l); System.out.flush(); } }
Java
["5\n\n3\n\n4"]
1 second
["? 1 5\n\n? 4 5\n\n! 1"]
NoteIn the sample suppose $$$a$$$ is $$$[5, 1, 4, 2, 3]$$$. So after asking the $$$[1..5]$$$ subsegment $$$4$$$ is second to max value, and it's position is $$$3$$$. After asking the $$$[4..5]$$$ subsegment $$$2$$$ is second to max value and it's position in the whole array is $$$4$$$.Note that there are other arrays $$$a$$$ that would produce the same interaction, and the answer for them might be different. Example output is given in purpose of understanding the interaction.
Java 8
standard input
[ "binary search", "interactive" ]
b3e8fe76706ba17cb285c75459508334
The first line contains a single integer $$$n$$$ $$$(2 \leq n \leq 10^5)$$$ — the number of elements in the array.
1,600
null
standard output
PASSED
98a034e0c1f87a5e93fc8ad1ca748fde
train_109.jsonl
1613658900
The only difference between the easy and the hard version is the limit to the number of queries.This is an interactive problem.There is an array $$$a$$$ of $$$n$$$ different numbers. In one query you can ask the position of the second maximum element in a subsegment $$$a[l..r]$$$. Find the position of the maximum element in the array in no more than 40 queries.A subsegment $$$a[l..r]$$$ is all the elements $$$a_l, a_{l + 1}, ..., a_r$$$. After asking this subsegment you will be given the position of the second maximum from this subsegment in the whole array.
256 megabytes
import java.io.*; import java.util.*; public class C { static BufferedReader br; public static void main(String[] args) throws NumberFormatException, IOException { // TODO Auto-generated method stub br = new BufferedReader(new InputStreamReader(System.in)); int n = Integer.parseInt(br.readLine()); System.out.println("? " + 1 + " " + n); System.out.flush(); int resp = Integer.parseInt(br.readLine()); if(n == 2) { if(resp == 1) System.out.println("! 2"); else System.out.println("! 1"); System.out.flush(); }else { boolean go = true; if(resp == 1) { go = false; } int x = 1; int mv = resp; if(go) { System.out.println("? " + x + " " + mv); System.out.flush(); resp = Integer.parseInt(br.readLine()); } if(resp == mv && go) { int l = 1; int r = mv; int mid; while(r - l > 1) { mid = (r + l) / 2; System.out.println("? " + mid + " " + mv); System.out.flush(); resp = Integer.parseInt(br.readLine()); if(resp == mv) { l = mid; }else { r = mid; } } System.out.println("? " + l + " " + r); System.out.flush(); resp = Integer.parseInt(br.readLine()); if(resp == l) System.out.println("! " + r); else System.out.println("! " + l); System.out.flush(); }else { int l = mv; int r = n; int mid; while(r-l > 1) { mid = (r + l)/2; System.out.println("? " + mv + " " + mid); System.out.flush(); resp = Integer.parseInt(br.readLine()); if(resp == mv) { r = mid; }else { l = mid; } } System.out.println("? " + l + " " + r); System.out.flush(); resp = Integer.parseInt(br.readLine()); if(resp == l) System.out.println("! " + r); else System.out.println("! " + l); System.out.flush(); } } } }
Java
["5\n\n3\n\n4"]
1 second
["? 1 5\n\n? 4 5\n\n! 1"]
NoteIn the sample suppose $$$a$$$ is $$$[5, 1, 4, 2, 3]$$$. So after asking the $$$[1..5]$$$ subsegment $$$4$$$ is second to max value, and it's position is $$$3$$$. After asking the $$$[4..5]$$$ subsegment $$$2$$$ is second to max value and it's position in the whole array is $$$4$$$.Note that there are other arrays $$$a$$$ that would produce the same interaction, and the answer for them might be different. Example output is given in purpose of understanding the interaction.
Java 8
standard input
[ "binary search", "interactive" ]
b3e8fe76706ba17cb285c75459508334
The first line contains a single integer $$$n$$$ $$$(2 \leq n \leq 10^5)$$$ — the number of elements in the array.
1,600
null
standard output
PASSED
d058b8c3fbb75758bbdbc5704cb25c36
train_109.jsonl
1613658900
The only difference between the easy and the hard version is the limit to the number of queries.This is an interactive problem.There is an array $$$a$$$ of $$$n$$$ different numbers. In one query you can ask the position of the second maximum element in a subsegment $$$a[l..r]$$$. Find the position of the maximum element in the array in no more than 40 queries.A subsegment $$$a[l..r]$$$ is all the elements $$$a_l, a_{l + 1}, ..., a_r$$$. After asking this subsegment you will be given the position of the second maximum from this subsegment in the whole array.
256 megabytes
// No sorcery shall prevail. // import java.util.*; import java.io.*; public class InVoker { //Variables static long mod = 1000000007; static long mod2 = 998244353; static FastReader inp= new FastReader(); static PrintWriter out= new PrintWriter(System.out); public static void main(String args[]) { InVoker g=new InVoker(); g.main(); out.close(); } //Main void main() { int n=inp.nextInt(); int l=1,r=n; int prev=query(l,r); while(l+1<r) { int mid=l+r>>1; int x=query(l,mid); int y=query(mid,r); if(x==prev) { r=mid; prev=x; }else if(y==prev){ l=mid; prev=y; }else { if(prev>=mid) { r=mid; prev=x; }else { l=mid; prev=y; } } } if(l==r) System.out.println("! "+l); else System.out.println(query(l,r)==l?"! "+r:"! "+l); } int query(int l, int r) { System.out.println("? "+l+" "+r); return inp.nextInt(); } /********************************************************************************************************************************************************************************************************* * ti;. .:,:i: :,;;itt;. fDDEDDEEEEEEKEEEEEKEEEEEEEEEEEEEEEEE###WKKKKKKKKKKKKKKKKKKKKWWWWWWWWWWWWWWWWWWW#WWWWWKKKKKEE :,:. f::::. .,ijLGDDDDDDDEEEEEEE* *ti;. .:,:i: .:,;itt;: GLDEEGEEEEEEEEEEEEEEEEEEDEEEEEEEEEEE#W#WEKKKKKKKKKKKKKKKKKKKKKKKWWWWWWWWWWWWWWWWWWWWWWKKKKKKG. .::. f:,...,ijLGDDDDDDDDEEEEEE * *ti;. .:,:i: :,;;iti, :fDDEEEEEEEEEEEEEEEKEEEEDEEEEEEEEEEEW##WEEEKKKKKKKKKKKKKKKKKKKKKWWWWWWWWWWWWWWWWWWWWWWWKKKKKKEG .::. .f,::,ijLGDDDDDDDDEEEEEE * *ti;. .:,:i: .,,;iti;. LDDEEEEEEEEEEKEEEEWEEEDDEEEEEEEEEEE#WWWEEEEEKKKKKKKKKKKKKKKKKKKKKKKKKWWWWWWWWWWWWWWWWWWWKKKKKEDj .::. .:L;;ijfGDDDDDDDDDEEEEE * *ti;. .:,:i: .:,;;iii:LLDEEEEEEEEEEEKEEEEEEEEDEEEEEEEEEEEW#WWEEEEEEEKKKKKKKKKKKKKKKKKKKKKKKKKWWKWWWWWWWWWWWWWWKKKKKKKEL .::. .:;LijLGGDDDDDDDDEEEEE * *ti;. .:,:;: :,;;ittfDEEEEEEEEEEEEEEEEKEEEGEEEEEEEEEEEKWWWEEEEEEEEEKKKKKKKKKKKKKKKKKKKKKKKKKKWWWWWWWWWWWWWWWKKKKKKKELj .::. :,;jffGGDDDDDDDDDEEEE * *ti;. .:,:i: .,;;tGGDEEEEEEEEEEEKEEEKEEEDEEEEEEEEEEEEWWWEEEEEEEEEEEEKKKKKKKKKKKKKKKKKKKKKKKKKKWWWWWWKWWWWWWKKKKKKKEEL .::. .:;itDGGDDDDDDDDDEEEE * *ti;. .:::;: :;ifDEEEEEEEEEEEEKEEEKEEEEEEEEEEEEEEEWWWEEEEEEEEEEEEEEKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKW#WWWKKKKKKKKEEf .::. :,itfGEDDDDDDDDDDDEE * *ti;. .:::;: :GGEEEEEEEEEEEKEKEEKEEEEEEEEEEEEEEEEWWEEEEEEEEEEEEEEEEEKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKW#WKKKKKKKKKEEDG .::. .,;jfLGKDLDDDDDDEEDD * *ti;. .:::;: fDEEEEEEKKKKKKKKKEKEEEEEEEEEEEEEEE#WEEEEEEEEEEEEEEEEEEKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKW#KKKKKKKKKKEEf .:::. .,;tfLGDEDDDDDDDDEEE * *ti;. :::;: fDEEEEEEKKKKKKKKKKWKEEEEEEEEEEEEEEEWKEEEEEEEEEEEEEEEEEEEEKEKKKKKKKKKKKKKKKKKKKKKKKKKKKKW##KKKKKKKKKEEft :::. .,;tfLGDDDKDDDDDDDDD * *ti;. .::;: fDEEEEEEKKKKKKKWKKKKKEEEEEEEEEEEEE#WEEWEEEEEDEEDEEEEEEEEEEEEKKKKKKKKKKKKKKKKKKKKKKKKKKKKW#WKKKKKKKKEEGG :,:. .,;tfLGGDDDKDDDDDDDD * *ti;. .:.;: tGDEEEEKKKKKKKKKKKKKKKKKEEEEEEEEEEEWEEKWEEEEEEEDEEEEEEEEEEEEEEKEKKKKKKKKKKKKKKKKKKKKKKKKKKWWWKKKKKKKEEDf :::. .,;tfLGGDDDDEDDDDDDD * *ti;. .::;: fDEEEEEKKKKKKKKKKKWKKKKKKKKEEEEEEEWWEEWEEEEEEEEEEEEEEEEEEEEEEEEEEKKKKKKKKKKKKKKKKKKKKKKKKKW##KKKKKKKEEEft.::. .,;tfLGGDDDDDDEDDDDD * *ti;. .:.;: tGDEEEKKKKKKKKKKKKKKKKKKKKKKEKEEEEE#EEWWEEEEEEEEEEEEEEEEEEEEEEEEEEEEKKKKKKKKKKKKKKKKKKKKKKKKW#WKKKKKKEEEGD:::. .,;tfLGGDDDDDDDEDDDD * *ti;. .:.,. LDEEEEKKKKKKKKKKWKWKKKKKKKKKKKKEEEKWEKW#EEEEEEEEEEEEEEEEKEEEEEEEEEEEEEEEKKKKKKKKKKKKKKKKKKKKW##KKKKKKEEEEf,,:. .,;tfLGGDDDDDDDDEDDD * *ti;. ..:.,. LGDEEEEKKKKKKKKKKWKKKKKKKKKKKKKKKKKWEEW#WEEEEEEEEEEEEEEEKEEEEEEEEEEEEEEEEEEEKEKKKKKKKKKKKKKKKK##KKKKKEEEEEfi;,. .,;tfLGGDDDDDDDDDKDD * *tt;. .:.,: jDEEEEKKKKKKKKKKWWKKKKKKKKKKKKKKKKKWKE#WWEEEEEEEEEEEEEEWEEEEEEEEEEEEEEEEEEEEEEEKKKKKKKKKKKKKKKKWWKKKKEEEEDfG;,: .,;tfLGGDDDDDDDDDDKD * *tii,. .:.,. tGDEEEEKKKKKKKKKKWWWKKKKKKKKKKKKKKKWKKWWWKEEEEEEEEEEEEEKEEEEEEEEEEEEEEEEEEEEEEEEEEEEEKKKKKKKKKKKW#KKKKEEEEDGGi;,. .,;tfLGGDDDDDDDDDDDE * *ti;;,:. .:.,: fDEEEEKKKKKKKKKKKWKKKKKKKKKKKKKKKKKWEK#WWKEEEEEEEEEEEEDEEEEEEEEEEEEEEGEEEEEEEEEEEEEEEEEEEKKKKKKKWWKKEEEEEEDDf;;;,. .,;tfLGGDDDDDDDDDDDD * *tii;,,:.. ...,. ;LEEEEEKKKKKKWKKKKWKKKKKKKKKKKKKKKKKEKKW#WEEEEEEEEEEEEEjEEEEEEEEEKEEEEGEEEEEEEEEKEEEEEEEEEEEEEEEEE#WKEEEEEEDDf;;;;,: .,itfLGGDDDDDDDDDDDD * *ti;,,,,,:. ...,. LDEEEEKKKKKKKKKKKWWWKKKKKKKKKKKKKKKWKK#W#WEEEEEEEEEEEDDLEEEEEEEEEWEEEEDEEEEEEEEEKEEEEEEEEEEEEEEEEEWWEEEEEEEDDfj,,,,,:. .,itfGGGDDDDDDDDDDDD * *tii,,,,::::. ...,: .fDEEEEKKKKKKWKKKKWWWKKKKKKKKKKKKKKKEKKW#WWEEEEEEEEEEEKiKEEKEEEEEEWEEEEDEEEEEEEEEEEEEEEEEEEEEEEEEEEWWEEEEEEEDDLD:::,,,:. .,ijfGGGDDDDDDDDDDDD * *ti;:::::::::.. .:.,: LDEEEEKKKKKKKWKKKKWWKKKKKKKKKKKKKKKKtKKWWWWKEEEEEEEEEDiiDEEEEEEEEWWEEEEEEDEEEEEEEEEEEEEEEEEEEEEEEEEEWKEEEEEDDDGL:. .:,,,: .,ijLGGGDDDDDDDDDDDD * *tt;. .::::::::.. ...,: :fDEEEKKKKKKKKKKKKWW#KKKKKKKKKKKKKKKKfKKWWWWKEEEEEEEEDti,DEKEEEEEEWWEEEDEEEEEEEEEKEEEEEEEEEEEEEDEEEEE#WEEEEEGGDGf:. .:,;,:. .,ijLGGDDDDDDDDDDDDD * *tt;. .:::::::.. ...,: GDEEEKKKKKKKKWKKKKWWWKKKWKKKKKKKWWWKDEKLWWWWKKEEEEEEDEi,LDEEEEEEEEWWEEEEEEEEEEEEEEEEEEEEEEEEEDEDEEEEEW#EEEEDDDDGf,. :,,,:...,ijLGGGDDDDDDDDDDDD * *tt;. .....::::.. ...,: fDEEEKKKKKKKKWKKKKWWWWKKKWKKKKKKKKKKfWKiWWW#KKEEEEEEEi;.EDfEEEDEEiWWEEEEEEEEEEEEDGKEEEEEEEEEEDEEEEEEEWWEEEEDDDGGLi. .,;,:::,ijLGGGDDDDDDDDDDDD * *tt;. ....:::::. ...,. iDEEEEKKKKKKKKWKKWKWWWWWKKWWWKKKKKKKKtWKt#WWWKKEEEEEDji..DDKDDEDEGiWKEEEEEEEEEEDDEjEEEEEEEEEEEDEEEEEEEKWKEEDDDDGGff. .:,;,,;ijLGGGDDDDDDDDDDDD * *tt;. ....::::.. .:.,: .LDEEEKKKKKKKKKKKKWWWWKWWWWWWWWWWKKKKWtKKiDWWWKKKEEEEKi:..DEDDDDDDiiWKEEEEEEEEEEDDEijDEEEEEKEEEEEEEEEEEEWWEEGDDDGGLG. .:,;;iijLGGGDDDDDDDDDDDD * *tt;. .....:::.. ...,. .fEEEEKKKKKKKKWKKKKWWWWWWWWWWWWWWKWKKKiKDiLWWWWKEEEEEi,..fD:DDDDDti;WEEEEEEEEEEKDDi:iDDEEEEWEEEEEEEEEEEE#WEEGDDDDGGG. :,iitjLGGGDDDDDDDDDDDD * *tti. .....:::.. ...,. GDEEEKKKKKKKKKWKKKWWW#WWWWWWWWWWWKWKKjiEjitWWWKKWEEEDi...DDLDDDDji;;WEEEEEEEEEEEDEj.iDDEEEEWEEEEEEEEEEEEWWEEDDDDDDGf. .,;tjfLGGDDDDDDDDDDDD * *tti. ....::::.. ...,. fEEEKKKKKKKKKKKKKKKW#WWWWWWWWWWWWWWWWtiEiiiWWWKKEWKEi....D.EDDDEi;.fWEEEEEEEEEEDDfL.;EDDEEEWEEEEEEEEEEEEWWEEEDDDDDGf. :;ijfLGGDDDDDDDDDDDD * *tti. ....::::.. ...,. LDEEEKKKKKKKKKKKKKKWWWWWWWWWWWWWWWW####WKiiiWWWKKKEEK,...:E:DDDEii..GWEEEEEEEEDWDDiL.,KDDEEEWEEEEEEEEEEEEWWKEEDDDDDGf: .,itfLGGDDDDDDDDDDDD * *tti. .....:::.. ...,. fDEEEKKKKKKKKKWKKKKWWWWWWWWWWWWW########WLiiWWWKKKEEjD...G,DDDDi;...EWEEEEEEEEDKDEii..LDDEEEWEEEEEEEEEEEEWWWEEDDDDDGfi .,;tfLGGGDDDDDDDDDDD * *tti. .....:::.. ...,. iGEEEKKKKKKKKKKWKKKKWWWWWWWWWWWW###########KiWWWKKEEE,.D..D.DDDii:...KKEEEEEEEEEDDj:...tEDEEEWEEEEEEEEEEEEWWWEEEDDDDDLL .,;tjLLGGDDDDDDDDDDD * *tti. ....::::......:. LEEEKKKKKKKKKKWWKKKWWW#KWWWWWWWW#####W####W##KWWKKEEL..:D.jjDDi;,....KKEEEEEEEDfDDi...:iKDEEEWKEEEEEEEEEEEWWWEEEEDDDDLG .,;tjLLGGDDDDDDDDDDD * *tti. ...::::::..,. :GEEEKKKKKKKKKKKKWWWWW##WWWWWWWWW##WKWK#W#W####WWKEEK.....G.DDti,.....KKEEEEEEDWGDf.,...iKDEEEWWEEEEEEEEEEEW#WEEEEEDDDGL .,;tjLLGGDDDDDDDDDDD * *tti. ....::::::,. GDEEKKKKKKKKKKKKKWWWW###WWWWWWWWWW#WWWK###W#####WKEKK.....jDDL;;......KKEEEEEEEEEDi.f...;KDEEEWWEEEEEEEEEEEWWWWEEEEEDDGf .,;tjLLGGDDDDDDDDDDD * *tti. ....:::,,. .LEEEKKKKKWKKKKKWWWWWW###WWWWWWWWWW#WWKW#WW##W#WWWKEKD:....:DD:;......;KEEEEEEEKiDD..f...,KKEEEWWEEEEEEEEEEEWWWWEEEEEDDDf .:;tjLLGGGDDDDDDDDDD * *tti. ...::,,,:. GDEEKKKKKKKKKKKKWWWWWWW#WWWWWWWWWWW#KjKWWWWWWWWWWWWEK.j,..;fD.;.......fKEEEEEDKG:Di..,....DKEEEWWEEEEEEKEKKKWWWWEEEEEEDDf .:;tjLLGGDDDDDDDDDDD * *jti. ...::,,,,:. .fEEEKKKKKWKKKKKKWWWWWWW#WWWWWWWWWWK#KKKWWWWWWWWWWWWWK..f:.:G.,:.......EKEEEEEKK;:E:.......fKEEEWWKEKEKKKKKKKW#WWEEEEEEDDf: .,;tfLLGGDDDDDDDDDDD * *tti. ...:,,,;;,: iDEEKKKKKWKKKKKKKWWWWWWW#WWWWWWWWWWK#WDKWWKKWWWWWWWWWE..;G:G..,........KKEEEEEKi.Gi..:.....tKEEKWWWKKKKKKKKKKW##WKEEEEEEDfi .,;tfLLGGGDDDDDDDDDD * *tti. ....::,,;;;,LEEKKKKKKWKKKKKWWWWWWW###WWWWWWWWWWKWWDKWEEEWKKWWWWWKKj.:LG..;.........EKEEEEKG;.G...;.....;KKEKWWWKKKKKKKKKKW##WWKEEEEEDfL .,;tfLGGGDDDDDDDDDDD * *jti. ...::::,;ijDEEKKKKKWKKKKKKWKWWWWW##WWWWWWWWWWWKK#KKGDGDWEEWKKWKKGE,.i;.:.........:EKEEEKE;.:L...j.....,KWEKWWWKKKKKKKKKK####WKKEEEEDLG .,;tfLGGGGDDDDDDDDDD * *jti. ...:...,,;GEEKKKKKWWKKKKKWWWWWWWW###WWWWWWWWWKKKWWKiLGGEDEDEKGKKiEG..;...........jKEEEKK;:.G....,.....:KKEWWWWKKKKKKKWKK####WKKKKEEEGL .,;tfLGGGGDDDDDDDDDD * *jti. ...:. .:,GEEKKKKKWKKKKKWWWWWWWW####WWWWWWWWWKKKWWKii;fDLGDK: EEi:E:.............EKEEKK;;..L...........KKKWWWWKKKKKKKWKK####WKKKWKEEDf .,;tfGGGGDDDDDDDDDDD * *jti. ...:. ,EEKKKKKWWKKKKKWWWWWWWWW###WWWWWWWWKKKKfWWLt;i,. fi EG..D:.............EKEKK;;..t....:.......KWKWWWWKKKKKKKWKK####WKKKWEEEDf:. .,;tfGGGGDDDDDDDDDDD * *jti. ...:. GEEKKKKKWKKKKKWWWWWWWWW####WWWWWWWKKKKKt;KKEfff .;t.................KKKKi;:..GtGGfG.......KWWWWWWKKKKKKKWKK###WWWKKKKEEEf,,: .,;tfGGGGDDDDDDDDDDD * *jti. ...:. GEKKKKKWWKKKKKWWWWWWWWWW##WWWWWWWKKKKKKt;EiKKKK, ...t................jEKKG;;..,.....,LGi....KWWWWWWKKKKKKWKKKW####WKKKKKEEL,,,:. .,;tfGGGDDDDDDDDDDDD * *jti. ...:. .GEEKKKKKWKKKKKWWWWWWWWWW###WWWWWWWKKKKKKtiE::tGG........................EEEj;;...,.........:D..DKWWWWWWKKKKK#KKW###W#WKKKKKEEfj:,,,:. .,;tfGGGDDDDDDDDDDDD * *jti. ...:. DEKKKKKWWKKKKKWWWWWWWWW####WWWWWWWKKKKKKiiE:::.::.......................EEi;;...j.....f......:iDKWWWWWWKKKKK#WW######WKKKKKEELG :,,,,:. .,;tfGGGDDDDDDDDDDDD * *jti. ...:. fEEKKKKWWKKKKWWWWWWWWWWW###WWWWWWWWKKKKKK;tE::..........................DD;.;,.::......;........EWWWWWWWKKKKW#WW#####WWKKKWKKELG .:,,,:::,;tfGGGDDDDDDDDDDDD * *jti. ...:. .DEKEKKKWWKKKKWWWWWWWWWWW###WWWWWWWWKKKKKE,iD::..........................D..,;.,;tLffi...........DWDWWWW#KKKWWWWW#####W#KKKWKEEGL .:,;,,,;tfGGGDDDDDDDDDDDD * *jti. ...:. ;EEKKKKWWKKKKKWWWWWW#WWWW####WWWWWWKKKKKEL:iD:..........................j ..;..;;:.....i,........DKtWWWWWKKWWWWWW#####WWWKKKEKEDf .:,;;;itfGGGDDDDDDDDDDDD * *jti. ...:. DEKKKKKWWKKKKWWWWWWW#WWWW####WWWWWWKKKKKEj:iG...............................:....................GKiWWWWWKKWW#WWW######WWKKKKKEEf .,;iitfGGGDDDDDDDDDDDD * *jti. ...:.:EKKKKKWWKKKKKWWWWWWW#WWW#####WWWWWKWKKKKEi:if:.................................iEKEKKKKKKDj......DKiWWWWWKWK##WW#######WWKKK:KEEL .:;itfGGGDDDDDDDDDDDD * *jji. ...:,DEEKKKWWWKWKKWWWWWWWWWWWW#####WWWWWWWKKKKEi:it..................................j. KKKKKKKKKKKf..DKiWWWWWKWW##WW#######WWKKK,KEEf .,;tfGGGDDDDDDDDDDDD * *jji. ..L:iDEEKKKWWKKKKKWWWWWWWWWWWW#####WWWWWKWKKKKKi.i;.................................. . KKKWWWWWWWWK..DGiWWWWWKK##WWW#####W#WWKKKjEKEL, .:;tfGGGDDDDDDDDDDDD * *jji. .f:::EEEKKKWWWKKKKKWWWWWWWWWWWW#####WWWWWKWKKKKK;.i,.................................:: KKEKWWWWWWfWK..EiiWWWWWKWW#WW##########KKKD,KELj .:;tfGGDDDDDDDDDDDDD * *jji. .t::::,DEEKKKWWKKKKWWWWWWWWW#WWWW#####WWWWKKWKKKEK;.i:.................................GDDEEEKKKWWWWWtWWD.E;iWWWWWW###WW#########WWKKK.EEDG .:;tfGGGDDDDDDDDDDDD * *jji. . j..::::EKEKKKWWWKKKKWWWWWWWWW#WWW######WWWWKKWKKKEK;.t:.................................ELLEDDEEEWWWWEtWK,.KiiWWWWWW###W##########WWKKK:EEEG .;tjfLLGDDDDDDDDDDDDDDD * *jji. i.::::::,EEEKKWWWKKKKKWWWWWWWWW#WWW#####WWWWWKWKKKKEE,.t..................................DfiEGDDDEEKKKttKWG.KiiWWWWW##WWW##########WWKKK:fEEL ,fGGGDDDDDDDDEEEDDDDDDDDDD * *jji. .;:..:::::DEEEKKWWWKKKKKWWWWWWWWW#WWWW####WWWWWWWKKKKED,.t..................................ifjDDGGEGDKK.ttKKE.DiWWWWW###WW##########WWWKKK:.KELiLGGGGDDDDDDDDDDDDEEEDDDDDDD * *jji. i.:.::::::,KEEKKWWWKKKKKKWWWWWWWWW#WWWW####WWWWWWWKKKKEL:.j..................................GGf,;ifLLED .iiKKi:fWWWWWW##W#W##########WWWKKK:.KKLGGDDDDDDDDDDDDDDDDEDDEEDDDDD * *jji. .j:.::::::::EEEKKKWWWKKKKKKWWWWWWWW##WWW#####WWWWWWWKKKKKf:.f..................................:EEfftf .,. ;iE,..jWWWWWWW###W############WWKKK,:KKGDDDDDDDDDDDDDDDDDDDDDDDEDDDD * *jji. .:.::::::::,,EEEKKWWWKKKKKKKWWWWWWWW##WWW#####WWWWWWWKKKKKt..G....................................EEELL; .j....tKWWWWWWW################WWWKKtfGKGEDDDDDDDDDDDDDDDDDDDDDDDEEDD * *jji. :...:::::::,,jEEKKWWWWKKKKKKWWWWWWWWW##KWW#####KWWWWWWKKKKEi..D....................................:jEEE.........;KKWWWWWWWW#WW##W##########WWKKDLGKEKDDDDDDDDDDDDDDDDDDDDDDDDDED * *jji. i:.::::::::,,,EEEKKWWWWKKKKKWWWWWWWWWW##WWW#####WWWWWWWKKKKKi..D......................................:::::......,KKKWWWWWWWWW#####W########WWWKKKGGKKEGGGGGGGGDDDDDDDDDDDDDDDDDDE * *jji. i..:::::::::,,tEEKKWWWWKKKKKWWWWWWWWWWW##WW######WWWWWWWKKKKKi..D......................................::::......:EKKKWWWWWWWWWWW##WW########W#WKKWGGKKGGGGGGGGGGGGGGGDDDDDDDDDDDDD * *jji. .:::::::::::,,,EEEKKWWWWKKKKKWWWWWWWWWWW##WW#####WWWWWWWWKKKKKi..D....................................:::::::::..tELii;KWWWWWWWWWW##WW######WWWWWWKWGGGKGGGGGGGGGGGGGGGGGGGGGGGGGGDG * *jjt. :.::::::::,,,,fEEKKWWWWKKKKKKWWWWWWWWWW###WW####WWWWWWW#WKKKKKi..D....................................:::::::.:.,;;;;;;,KKWWWWWWWWW#WW########WWWKKWGGGKGGGGGGGGGGGGGGGGGGGGGGGGGGGG * *jji. ;.::::::::,,,,;EEEKWWWWWKKKKKWWWWWWWWWWWW##WW###WKWWWWWK#WKKKKKi..G......................................:::::::,;;;;:...KKKWWWWWWWWWKWW#######WWWWKKGLGKDGGGGGGLLGGGGGGGGGGGGGGGGGGG * *jjt. f.:::::::::,,,,fEEKKWWWWWKKKKKWWWWWWWWWWW###WW##WKKWWWWWW#WKKKKK;.jt........i.............................:::::::;j;;....:E.KKKWWWWWWWKWW#####W#WWWWKKLLGWEEGGGGGLGGGGGGGGGGGGGGGGGGGG * *jjt. ...:::::::,,,,,;DEEKWWWWWKKKKKWWWWWWWWWWWW####WWWKKKWWWWWWWWKKKKK;.E;.........t.............................:::::ii;;.....D...KKWWWWWWWKWW#####WWEWWWKKGGGEKKGGGGGLGGGGGGGGGGGGGLGGGGGG * *fji. ;.:::::::,,,,,;LEEKKWWWWWKKKKKWWWWWWWWWWWW####KWKKKKWWWWWWWWKKKKKi.D;..........j.............................:::tt;,.....:.....KKWWWWWWKWWWW##WWWGWWWKKGGGGKEGGGGGGGGGGGGGGGGGGGLLGGGGL * *fji. t::::::::,,,,,,;EEEKWWWWWKKKKKKKWWWWWWWWWWW##WKWKKKKKWWWWWWWWKKKKKi:D;............j...........................::LL;,.............KKWWWWWKWWWWWWWWWGWWWKKGGGGKGGGGGGGGGGGGGGGGGGGGLLGGGGL * *fjt: .:::::::,,,,,,,DEEKWWWWWWKKKKKKKWWWWWWWWWWWWKKWKKKKKKWWWWK#WWKKKKWitE;........... ............................:G;;:...............KKKWWKKWWWWWWWWWGWWWKKGGGGWGGGGGGGGGGGGGGGGGGGGGGGGGGL * *fjji;:. .f:::::::,,,,,,,;EEEKWWWWWWKKKKKKWWWWWWWWWWWKKKKKKKKKKKWWKWWWWWKKKKWGKD;........................................L;;..................DKKWKKWWWWWWWWWGWWWKKDGGGKDGGGGGGGGGGGGGGGGGGGGGGGGGG * *fjjtii;,:. :::::::,,,,,,,;EEEKWWWWWWKKKKKKWWWWWWWWWWKKKKKKKKKKKKWWWWWW#WWKKKKWiEj;......................................:i,;....,...............;KKEKWWWWWWWWWGKWWKKDDGGDEGGGDGGGGGDGGGGGGGGGGGGGGGG * *fjtiiiii;;:. j::::::,,,,,,,;;EEEKWWWWW#KKKKKWWWWWWWWWKKKKKKWKKKKKKKWWWWWWWWWKKKKWtEL;:....................................;;;:...,;j................:KEEWWWWWWWWWDDWWKKDDDDDKDDDDDDDDDDDDDDDGGGGGGGGGGG * *fjti;;iiii;;,:::::::,,,,,,,,;EEEKWWWWWWWKKKKWWWWWWWWKKKKKKKWKKKKKKKWWWWWWW#W#KKKKWEEii;...................................f;:....,;L...................EEKWWWWWWWWDDWWKKDDDDDKEDDDDDDDDDDDDDDDDDDDDDGGGG * *fjt,,,;;;;ii;f::::::,,,,,,,;;EEKWWWWWWWKKKKKWWWKWWKKKKKKKKKKKKKKKKKWWWWWWW#W#KKKKWKEij;:...............................:G;,.....,;f....................:tKKWWWWWWWDDWWKKDDDDDKKDDDDDDDDDDDDDDDDDDDDDDDDD * *jjt. ..:,;;;;,::::,,,,,,,,;;GEEWWWWWWWWKKKKWKKWKKKKKKKKKKKKKKKKKKKKWWWWWWW#W#KKKKWEDi;j;............................,Li;L;;;..,;;f........................KKKKWWWKDDWWKKDDDGDKKGGGGGGGGDGDDDDDDDDDDDDDDD * *fjt. .:,,,:::::,,,,,,,;;;EEKWWWWWWWKKKKKKWKKKKKKKKKKKKKKKKKKKKKWKKKWKW##W#KKKKWEti;;G;........................tEEEL;;;;;;;;;;L..........................DKKKKKEDDWWKEDGftiLE;;;;itjLGGGGGGDDDDDDDDDDD * *fjt. .j::::,,,,,,,;;;DEEWWWWWWWWKKKKWKKKKKKKKKKKKKKKKKKKKKKKWKKWWWK##W#KKKKKEii;;;L;...................iDEEEEEEKKi;j;;;;jD.....:......................,KKKKDGGEKKE:::::;E::::::::::,tLGGDDDDDDDDDD * *fjt. .;:::,,,,,,,;;;;EEKWWWWWWWWKWKKKKKKKKKKKKKKKWKKKKKKKKKKWKKWWWW#WW#KKKKKKii;;;;f;.............:tDEEEEEKKKKKKKKEti;;;L...............................EEKf;:iKKE::::::E::::::::::::::ifDDDDDDDDD * *fjt: :::,,,,,,,,;;;DEEWWWWWWWWWEKKKKKKKKKKKKKKKKKKKKKKKKKKWWKKWWWW####KKKKKEiii;;;;f,.........iDEEEEKKKKKKKKKKKKKKKf;iG......i..........................fK::::KKE::::::E::::::::::::::::,tGGDDDDD * *fjt: t:::,,,,,,;;;;iDEKWWWWWWKEKKKKKKKKKKKKKKKKKKKKKKKKKKKKWWKKWWWW####WKKKKLiii;;;;;L,....,Li;EDEEEEKKKKKKKKKKKKKKKKiG......;:...........................:i:::KKE:::::,E,::::::::::::::::::iGDDDD * *jjt. f::,,,,,,,;;;;GEEWWWWKEEKEKKKKKKKKKKKKKKKKWKKKKKKKKKKKWWKWWWWW###WWKKKKiii;;;;;;;G,;L;;iiEEEEEEEKKKKKKKKKKKKKWWKE......;t.........:....................j::KEE:,::,,D,,::::,,,,,,:::::::::tDDD * *fjt:. ,::,,,,,,,;;;;EEWWKEEEEEEKKKKKKKKKKKKKKKKWKKKKKKKKKKKWWKKWWWWW#W#KKKKKKiiiiii;;;;;i;;iiiEEKEEKKWKKKKKKKWKKKKKWWWGi;...;t......,;;;;,....................:,EEE,,,,,,D,,,,,,,,,,,,,,,,::,::::tG * *fjt:. ,::,,,,,,,;;;;DEKEEEEEEEEKKKKKKKKKKKKKKKKKKKKKKKKKKKKKWWWWWWWWW#W#KKKKKKiiiii;;i;;;;;iiiKKKEKKKKWWKWWWWWWKKKKWWWWW;;;:;L.....;;;;;;;;;....................,KEE,,,,,,E,,,,,,,,,,,,,,,,,,,,,,,,; * *fjt:. f:,,,,,,,;;;;jEDEEEEEEEEEKKKKKKKKKKKKKKKKKKKKKKKKKKKKKWWWWWWWW#W##KKKKKKiiiiiiii;i;;iiiEKKKKKKKKWKWWWWWWWWKKKWWWWWKi;;i.....,jEEfGi;;;;;...................EED,,,,,,E,,,,,,,,,,,,,,,,,,,,,,,,, * *fjt:. .f::,,,,,,;;jEEDEEEEEEEEEEKKKKKKKKKKKKKKKWKKKKKKKKKKKKKWWWKWWWWW###KKKKKLiiiiiiiiiiiiiiEEKKKKKKKKWWWWWWWWWWWWKWWWWWWGi;i;,..;jDDDKEGi;;;;;;:................EED,,,,,,D,,,,,,,,,,,,,,,,,,,,,,,,, * *fjt:. .. ;::,,,,,;;EDDEEEEEEEEEEKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKWWKKW#WW####KWKKKiiiiiiiiiiiiijKKKKKKKKKKWWWWWWWWWWWWWWWWWWWWWt;i;;;;i;DDDDDDGi;;;;;;;;:.............EDf;,,,;,G;;;;;;;;;;;;;;;,,,,,,,,,, * *fjt:......:,,,,,,;LDDDEEEEEEEEEEEKKKKKKKKKKKKKKKKWKKKKKKKKKKKKKWWWWKWWWW####KKKKKiiiiiiiiiiijKEKKWKKKKKKKWWWWWWWWWWWWWWWWWWWWWWiLiii;i;DEEEEDDE;i;;;;;;;;;:..........EDi,;;;;;L;;;;;;;;;;;;;;;;;;,,,,,,, * *fjt:......:,,,,,;EDDDEEKEEEEEEEEEKKKKKKKKKKKKKKKWKKKKKKKKKKKKKKWWWWKKWWW##W#KWKKWEiiiiiijGKKKKKWWKKKKKKKKWWWWWWWWWWWWWWWWWWWWWWKi;iiiiDDEEEEEEDEi;;;;;;;;;;;;;,:.....ED;;;;;;;j;;;;;;;;;;;;;;;;;;;;;;;,, * *fjt:.....t,,,,,;DDDDEEEKEEEEEEEEKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKWWWKKKWWWW##WKWKKWKiiiKKKKKKKKKWWKKKKKKKKWWWWWWWWWWWWWWW#WWWWWWWWWiiiiifLEEEEEEEEDi;i;;;;;;;;;;;;.....DD;;;;;;;i;;;;;;;;;;;;;;;;;;;;;;;;; * *fjt:.....G,,,,,GDDDEEEEEEEEEEEEKKKKKKKKKKKKKKKKWKKKKKKKKKKKKKKKWWWKKKWWW###WKWKKWKitKKKKKKKKKWKKKKKKKKKKWWWWWWWWWWWWWW###WWWWWWWWEiiiiiiiEEEEEEEEDGiiii;;;;;;;;;.....GD;;;;;;;i;;;;;;;;;;;;;;;;;;;;;;;;; * *fjt:.....L,,,,;GDDDEEEEEEEEEEKEKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKWWWWWDGWWW###KKWWKWKKKKKKKKKKKKKKKKKKKKKKKWWWWWWWWWWWWW####WWWWWWWWWiiiiiiiiEEEEEEEEEEDi;i;;;;;;;;.....Lj;;;;;;i;iiiiii;;;;;;ii;;;;;;;;;;; * ***********************************************************************************************************************************************************************************************************/ void sort(int a[]) { ArrayList<Integer> list=new ArrayList<>(); for(int x: a) list.add(x); Collections.sort(list); for(int i=0;i<a.length;i++) a[i]=list.get(i); } void sort(long a[]) { ArrayList<Long> list=new ArrayList<>(); for(long x: a) list.add(x); Collections.sort(list); for(int i=0;i<a.length;i++) a[i]=list.get(i); } void ruffleSort(int a[]) { Random rand=new Random(); int n=a.length; for(int i=0;i<n;i++) { int j=rand.nextInt(n); int temp=a[i]; a[i]=a[j]; a[j]=temp; } Arrays.sort(a); } void ruffleSort(long a[]) { Random rand=new Random(); int n=a.length; for(int i=0;i<n;i++) { int j=rand.nextInt(n); long temp=a[i]; a[i]=a[j]; a[j]=temp; } Arrays.sort(a); } static long gcd(long a, long b) { return b==0?a:gcd(b,a%b); } long fact[]; long invFact[]; void init(int n) { fact=new long[n+1]; invFact=new long[n+1]; fact[0]=1; for(int i=1;i<=n;i++) { fact[i]=mul(i,fact[i-1]); } invFact[n]=power(fact[n],mod-2); for(int i=n-1;i>=0;i--) { invFact[i]=mul(invFact[i+1],i+1); } } long nCr(int n, int r) { if(n<r || r<0) return 0; return mul(fact[n],mul(invFact[r],invFact[n-r])); } long add(long a, long b) { return (a+b)%mod; } long mul(long a, long b) { return a*b%mod; } long power(long x, long y) { long gg=1; while(y>0) { if(y%2==1) gg=mul(gg,x); x=mul(x,x); y/=2; } return gg; } static class FastReader { BufferedReader br; StringTokenizer st; public FastReader() { br = new BufferedReader(new InputStreamReader(System.in)); } String next() { while (st==null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine() { String s=""; try { s=br.readLine(); } catch (IOException e) { e.printStackTrace(); } return s; } } // Functions static int gcd(int a, int b) { return b==0?a:gcd(b,a%b); } void print(int a[]) { int n=a.length; for(int i=0;i<n;i++) out.print(a[i]+" "); out.println(); } void print(long a[]) { int n=a.length; for(int i=0;i<n;i++) out.print(a[i]+" "); } //Input Arrays static void input(long a[], int n) { for(int i=0;i<n;i++) { a[i]=inp.nextLong(); } } static void input(int a[], int n) { for(int i=0;i<n;i++) { a[i]=inp.nextInt(); } } static void input(String s[],int n) { for(int i=0;i<n;i++) { s[i]=inp.next(); } } static void input(int a[][], int n, int m) { for(int i=0;i<n;i++) { for(int j=0;j<m;j++) { a[i][j]=inp.nextInt(); } } } static void input(long a[][], int n, int m) { for(int i=0;i<n;i++) { for(int j=0;j<m;j++) { a[i][j]=inp.nextLong(); } } } }
Java
["5\n\n3\n\n4"]
1 second
["? 1 5\n\n? 4 5\n\n! 1"]
NoteIn the sample suppose $$$a$$$ is $$$[5, 1, 4, 2, 3]$$$. So after asking the $$$[1..5]$$$ subsegment $$$4$$$ is second to max value, and it's position is $$$3$$$. After asking the $$$[4..5]$$$ subsegment $$$2$$$ is second to max value and it's position in the whole array is $$$4$$$.Note that there are other arrays $$$a$$$ that would produce the same interaction, and the answer for them might be different. Example output is given in purpose of understanding the interaction.
Java 8
standard input
[ "binary search", "interactive" ]
b3e8fe76706ba17cb285c75459508334
The first line contains a single integer $$$n$$$ $$$(2 \leq n \leq 10^5)$$$ — the number of elements in the array.
1,600
null
standard output
PASSED
74806841db666f206fe6389c07fe550c
train_109.jsonl
1613658900
The only difference between the easy and the hard version is the limit to the number of queries.This is an interactive problem.There is an array $$$a$$$ of $$$n$$$ different numbers. In one query you can ask the position of the second maximum element in a subsegment $$$a[l..r]$$$. Find the position of the maximum element in the array in no more than 40 queries.A subsegment $$$a[l..r]$$$ is all the elements $$$a_l, a_{l + 1}, ..., a_r$$$. After asking this subsegment you will be given the position of the second maximum from this subsegment in the whole array.
256 megabytes
import java.io.BufferedReader; import java.io.IOException; import java.io.InputStream; import java.io.InputStreamReader; import java.io.PrintWriter; import java.util.StringTokenizer; public class Solution1486C1 { public static void main(String[] args) { InputReader in = new InputReader(System.in); PrintWriter out = new PrintWriter(System.out); Solver1486C1 solver = new Solver1486C1(); solver.solve(0, in, out); out.close(); } static class Solver1486C1 { public void solve(int testNumber, InputReader in, PrintWriter out) { int n = in.nextInt(); int l = 1, r = n; int ind = -1; out.println("? " + l + " " + r); out.flush(); int res = in.nextInt(); if (r - l == 1) { if (r == res) { ind = l; } else { ind = r; } } else { while (l < r) { if (r - l == 1) { out.println("? " + l + " " + r); out.flush(); res = in.nextInt(); if (r == res) { ind = l; } else { ind = r; } break; } else { int mid = (l + r) / 2; if (res <= mid) { out.println("? " + l + " " + mid); out.flush(); } else { if (r != mid + 1) { out.println("? " + (mid + 1) + " " + r); out.flush(); } else { r = mid; continue; } } int tmp = in.nextInt(); if (res <= mid) { if (tmp == res) { r = mid; } else { l = mid + 1; if (r - l > 1) { out.println("? " + l + " " + r); out.flush(); res = in.nextInt(); } } } else { if (tmp == res) { l = mid + 1; } else { r = mid; if (r - l > 1) { out.println("? " + l + " " + r); out.flush(); res = in.nextInt(); } } } if (l == r) { ind = l; } } } } out.println("! " + ind); out.flush(); } } static class InputReader { public BufferedReader reader; public StringTokenizer tokenizer; public InputReader(InputStream stream) { reader = new BufferedReader(new InputStreamReader(stream), 32768); tokenizer = null; } public String next() { while (tokenizer == null || !tokenizer.hasMoreTokens()) { try { tokenizer = new StringTokenizer(reader.readLine()); } catch (IOException e) { throw new RuntimeException(e); } } return tokenizer.nextToken(); } public int nextInt() { return Integer.parseInt(next()); } } }
Java
["5\n\n3\n\n4"]
1 second
["? 1 5\n\n? 4 5\n\n! 1"]
NoteIn the sample suppose $$$a$$$ is $$$[5, 1, 4, 2, 3]$$$. So after asking the $$$[1..5]$$$ subsegment $$$4$$$ is second to max value, and it's position is $$$3$$$. After asking the $$$[4..5]$$$ subsegment $$$2$$$ is second to max value and it's position in the whole array is $$$4$$$.Note that there are other arrays $$$a$$$ that would produce the same interaction, and the answer for them might be different. Example output is given in purpose of understanding the interaction.
Java 8
standard input
[ "binary search", "interactive" ]
b3e8fe76706ba17cb285c75459508334
The first line contains a single integer $$$n$$$ $$$(2 \leq n \leq 10^5)$$$ — the number of elements in the array.
1,600
null
standard output
PASSED
3961ca36ece16df06c6276a0ceac6dc9
train_109.jsonl
1613658900
The only difference between the easy and the hard version is the limit to the number of queries.This is an interactive problem.There is an array $$$a$$$ of $$$n$$$ different numbers. In one query you can ask the position of the second maximum element in a subsegment $$$a[l..r]$$$. Find the position of the maximum element in the array in no more than 40 queries.A subsegment $$$a[l..r]$$$ is all the elements $$$a_l, a_{l + 1}, ..., a_r$$$. After asking this subsegment you will be given the position of the second maximum from this subsegment in the whole array.
256 megabytes
import java.io.*; import java.math.BigInteger; import java.util.*; import java.util.concurrent.TimeUnit; public class c1486 implements Runnable{ public static void main(String[] args) { try{ new Thread(null, new c1486(), "process", 1<<26).start(); } catch(Exception e){ System.out.println(e); } } public void run() { FastReader scan = new FastReader(); PrintWriter out = new PrintWriter(new OutputStreamWriter(System.out), true); //PrintWriter out = new PrintWriter("file.out"); Task solver = new Task(); //int t = scan.nextInt(); int t = 1; for(int i = 1; i <= t; i++) solver.solve(i, scan, out); out.close(); } static class Task { static final int oo = Integer.MAX_VALUE; static final long OO = Long.MAX_VALUE; public void solve(int testNumber, FastReader sc, PrintWriter out) { int N = sc.nextInt(); int secondMax = -1; int L = 1, R = N; while(L < R-2) { int M = (L+R)/2; if(secondMax == -1) { out.println("? " + L + " " + R); secondMax = sc.nextInt(); } if(secondMax <= M) { out.println("? " + L + " " + M); int q = sc.nextInt(); if(q == secondMax) { R = M; } else { secondMax = -1; L = M+1; } } else { out.println("? " + (M+1) + " " + R); int q = sc.nextInt(); if(q == secondMax) { L=M+1; } else { secondMax = -1; R=M; } } } if(L != R-1) { out.println("? " + L + " " + R); int q = sc.nextInt(); if(q == L) { L++; out.println("? " + L + " " + R); if(sc.nextInt() == L) { out.println("! "+ R); } else { out.println("! " + L); } } else if (q == R) { R--; out.println("? " + L + " " + R); if(sc.nextInt() == L) { out.println("! "+ R); } else { out.println("! " + L); } } else { out.println("? " + L + " " + (L+1)); int q2 = sc.nextInt(); if(q == q2) { out.println("! "+ L); } else { out.println("! " + R); } } } else { out.println("? " + L + " " + R); if(sc.nextInt() == L) { out.println("! "+ R); } else { out.println("! " + L); } } } } static long modInverse(long N, long MOD) { return binpow(N, MOD - 2, MOD); } static long modDivide(long a, long b, long MOD) { a %= MOD; return (binpow(b, MOD-2, MOD) * a) % MOD; } static long binpow(long a, long b, long m) { a %= m; long res = 1; while (b > 0) { if ((b & 1) == 1) res = res * a % m; a = a * a % m; b >>= 1; } return res; } static int[] reverse(int a[]) { int[] b = new int[a.length]; for (int i = 0, j = a.length; i < a.length; i++, j--) { b[j - 1] = a[i]; } return b; } static long[] reverse(long a[]) { long[] b = new long[a.length]; for (int i = 0, j = a.length; i < a.length; i++, j--) { b[j - 1] = a[i]; } return b; } static void shuffle(Object[] a) { Random get = new Random(); for (int i = 0; i < a.length; i++) { int r = get.nextInt(a.length); Object temp = a[i]; a[i] = a[r]; a[r] = temp; } } static void shuffle(int[] a) { Random get = new Random(); for (int i = 0; i < a.length; i++) { int r = get.nextInt(a.length); int temp = a[i]; a[i] = a[r]; a[r] = temp; } } static void shuffle(long[] a) { Random get = new Random(); for (int i = 0; i < a.length; i++) { int r = get.nextInt(a.length); long temp = a[i]; a[i] = a[r]; a[r] = temp; } } static class tup implements Comparable<tup>, Comparator<tup>{ int a, b; tup(int a,int b){ this.a=a; this.b=b; } public tup() { } @Override public int compareTo(tup o){ return Integer.compare(b,o.b); } @Override public int compare(tup o1, tup o2) { return Integer.compare(o1.b, o2.b); } @Override public int hashCode() { return Objects.hash(a, b); } @Override public boolean equals(Object obj) { if (this == obj) return true; if (obj == null) return false; if (getClass() != obj.getClass()) return false; tup other = (tup) obj; return a==other.a && b==other.b; } @Override public String toString() { return a + " " + b; } } static class FastReader { BufferedReader br; StringTokenizer st; public FastReader() { br = new BufferedReader(new InputStreamReader(System.in)); } public FastReader(String s) throws FileNotFoundException { br = new BufferedReader(new FileReader(new File(s))); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } int[] readArray(int size) { int[] a = new int[size]; for(int i = 0; i < size; i++) { a[i] = nextInt(); } return a; } long[] readLongArray(int size) { long[] a = new long[size]; for(int i = 0; i < size; i++) { a[i] = nextLong(); } return a; } } static void dbg(int[] arr) { System.out.println(Arrays.toString(arr)); } static void dbg(long[] arr) { System.out.println(Arrays.toString(arr)); } static void dbg(boolean[] arr) { System.out.println(Arrays.toString(arr)); } static void dbg(Object... args) { for (Object arg : args) System.out.print(arg + " "); System.out.println(); } }
Java
["5\n\n3\n\n4"]
1 second
["? 1 5\n\n? 4 5\n\n! 1"]
NoteIn the sample suppose $$$a$$$ is $$$[5, 1, 4, 2, 3]$$$. So after asking the $$$[1..5]$$$ subsegment $$$4$$$ is second to max value, and it's position is $$$3$$$. After asking the $$$[4..5]$$$ subsegment $$$2$$$ is second to max value and it's position in the whole array is $$$4$$$.Note that there are other arrays $$$a$$$ that would produce the same interaction, and the answer for them might be different. Example output is given in purpose of understanding the interaction.
Java 8
standard input
[ "binary search", "interactive" ]
b3e8fe76706ba17cb285c75459508334
The first line contains a single integer $$$n$$$ $$$(2 \leq n \leq 10^5)$$$ — the number of elements in the array.
1,600
null
standard output
PASSED
a30bef7b18284531dc00636d053a5fb6
train_109.jsonl
1613658900
The only difference between the easy and the hard version is the limit to the number of queries.This is an interactive problem.There is an array $$$a$$$ of $$$n$$$ different numbers. In one query you can ask the position of the second maximum element in a subsegment $$$a[l..r]$$$. Find the position of the maximum element in the array in no more than 40 queries.A subsegment $$$a[l..r]$$$ is all the elements $$$a_l, a_{l + 1}, ..., a_r$$$. After asking this subsegment you will be given the position of the second maximum from this subsegment in the whole array.
256 megabytes
import java.util.*; import java.io.*; public class C1486 { static int n; static Scanner sc; static PrintWriter pw; public static int query(int l, int r) throws IOException { pw.printf("? %d %d%n", l, r); pw.flush(); return sc.nextInt(); } public static void ans(int idx) throws IOException { pw.printf("! %d%n", idx); pw.flush(); } public static void main(String[] args) throws IOException { sc = new Scanner(System.in); pw = new PrintWriter(System.out); n = sc.nextInt(); int s = query(1, n); int lo = 2; int hi = n; int ans = 0; boolean sFirst = false; if (s == 1) { sFirst = true; } else { int g = query(1, s); if (g != s) { sFirst = true; } } if (sFirst) { while (lo <= hi) { int mid = lo + hi >> 1; int q = query(1, mid); if (q != s) { lo = mid + 1; } else { ans = mid; hi = mid - 1; } } } else { lo = 1; hi = n - 1; while (lo <= hi) { int mid = lo + hi >> 1; int q = query(mid, n); if (q != s) { hi = mid - 1; } else { ans = mid; lo = mid + 1; } } } ans(ans); pw.close(); } static class Scanner { BufferedReader br; StringTokenizer st; public Scanner(InputStream s) { br = new BufferedReader(new InputStreamReader(s)); } public Scanner(FileReader f) { br = new BufferedReader(f); } public String next() throws IOException { while (st == null || !st.hasMoreTokens()) st = new StringTokenizer(br.readLine()); return st.nextToken(); } public int nextInt() throws IOException { return Integer.parseInt(next()); } public long nextLong() throws IOException { return Long.parseLong(next()); } public double nextDouble() throws IOException { return Double.parseDouble(next()); } public int[] nextIntArr(int n) throws IOException { int[] arr = new int[n]; for (int i = 0; i < n; i++) { arr[i] = Integer.parseInt(next()); } return arr; } } }
Java
["5\n\n3\n\n4"]
1 second
["? 1 5\n\n? 4 5\n\n! 1"]
NoteIn the sample suppose $$$a$$$ is $$$[5, 1, 4, 2, 3]$$$. So after asking the $$$[1..5]$$$ subsegment $$$4$$$ is second to max value, and it's position is $$$3$$$. After asking the $$$[4..5]$$$ subsegment $$$2$$$ is second to max value and it's position in the whole array is $$$4$$$.Note that there are other arrays $$$a$$$ that would produce the same interaction, and the answer for them might be different. Example output is given in purpose of understanding the interaction.
Java 8
standard input
[ "binary search", "interactive" ]
b3e8fe76706ba17cb285c75459508334
The first line contains a single integer $$$n$$$ $$$(2 \leq n \leq 10^5)$$$ — the number of elements in the array.
1,600
null
standard output
PASSED
0a57537666256acdbfc84c5906c90593
train_109.jsonl
1613658900
The only difference between the easy and the hard version is the limit to the number of queries.This is an interactive problem.There is an array $$$a$$$ of $$$n$$$ different numbers. In one query you can ask the position of the second maximum element in a subsegment $$$a[l..r]$$$. Find the position of the maximum element in the array in no more than 40 queries.A subsegment $$$a[l..r]$$$ is all the elements $$$a_l, a_{l + 1}, ..., a_r$$$. After asking this subsegment you will be given the position of the second maximum from this subsegment in the whole array.
256 megabytes
import java.util.*; public class C { static Scanner sc; public static void main(String[] args) { sc = new Scanner(System.in); int n = sc.nextInt(); System.out.printf("? %d %d\n", 1, n); int m = sc.nextInt(); if(m > 1) { System.out.printf("? %d %d\n", 1, m); int r = sc.nextInt(); if(r == m) { findmaxleft(m, n); } else { findmaxright(m, n); } } else { findmaxright(1, n); } } static void findmaxleft(int m, int n) { int a = 1, b = m; while(b - a > 1) { int c = (a + b)/2; System.out.printf("? %d %d\n", c, m); int r = sc.nextInt(); if(r == m) a = c; else b = c; } System.out.printf("! %d\n", a); } static void findmaxright(int m, int n) { int a = m, b = n; while(b - a > 1) { int c = (a + b)/2; System.out.printf("? %d %d\n", m, c); int r = sc.nextInt(); if(r == m) b = c; else a = c; } System.out.printf("! %d\n", b); } }
Java
["5\n\n3\n\n4"]
1 second
["? 1 5\n\n? 4 5\n\n! 1"]
NoteIn the sample suppose $$$a$$$ is $$$[5, 1, 4, 2, 3]$$$. So after asking the $$$[1..5]$$$ subsegment $$$4$$$ is second to max value, and it's position is $$$3$$$. After asking the $$$[4..5]$$$ subsegment $$$2$$$ is second to max value and it's position in the whole array is $$$4$$$.Note that there are other arrays $$$a$$$ that would produce the same interaction, and the answer for them might be different. Example output is given in purpose of understanding the interaction.
Java 8
standard input
[ "binary search", "interactive" ]
b3e8fe76706ba17cb285c75459508334
The first line contains a single integer $$$n$$$ $$$(2 \leq n \leq 10^5)$$$ — the number of elements in the array.
1,600
null
standard output
PASSED
e211285fcbe3823de086221fff45efd7
train_109.jsonl
1613658900
The only difference between the easy and the hard version is the limit to the number of queries.This is an interactive problem.There is an array $$$a$$$ of $$$n$$$ different numbers. In one query you can ask the position of the second maximum element in a subsegment $$$a[l..r]$$$. Find the position of the maximum element in the array in no more than 40 queries.A subsegment $$$a[l..r]$$$ is all the elements $$$a_l, a_{l + 1}, ..., a_r$$$. After asking this subsegment you will be given the position of the second maximum from this subsegment in the whole array.
256 megabytes
import java.io.*; import java.util.*; public class Main { static BufferedReader bf; static PrintWriter out; static Scanner sc; static StringTokenizer st; static long mod = (long)(1e9+7); static long mod2 = 998244353; static long fact[] = new long[1001]; static long inverse[] = new long[1001]; public static void main (String[] args)throws IOException { bf = new BufferedReader(new InputStreamReader(System.in)); out = new PrintWriter(System.out); sc = new Scanner(System.in); // fact[0] = 1; // inverse[0] = 1; // for(int i = 1;i<fact.length;i++){ // fact[i] = (fact[i-1] * i)%mod; // inverse[i] = binaryExpo(fact[i], mod-2); // } // int t = nextInt(); // while(t-->0){ solve(); // } } public static void solve() throws IOException{ int n = nextInt(); req(1,n); int index = nextInt(); int left = 0; if(index != 1){ req(1,index); left= nextInt(); } int l = -1; int r = -1; if((index != 1) && left == index){ l = 1; r = index-1; } else{ l = index+1; r = n; } int ans = -1; while(l <= r){ int mid = (l + (r - l)/2); if(mid < index){ req(mid,index); int idx = nextInt(); if(idx == index){ ans = mid; l = mid+1; } else{ r = mid-1; } } else{ req(index,mid); int idx = nextInt(); if(idx == index){ ans = mid; r = mid-1; } else{ l = mid+1; } } } out.println("! " + ans); out.flush(); } public static void req(int l,int r){ out.println("? " + l + " " + r); out.flush(); } public static int[] bringSame(int u,int v ,int parent[][],int[]depth){ if(depth[u] < depth[v]){ int temp = u; u = v; v = temp; } int k = depth[u] - depth[v]; for(int i = 0;i<=18;i++){ if((k & (1<<i)) != 0){ u = parent[u][i]; } } return new int[]{u,v}; } public static void findDepth(List<List<Integer>>list,int cur,int parent,int[]depth,int[][]p){ List<Integer>temp = list.get(cur); p[cur][0] = parent; for(int i = 0;i<temp.size();i++){ int next = temp.get(i); if(next != parent){ depth[next] = depth[cur]+1; findDepth(list,next,cur,depth,p); } } } public static int lca(int u, int v,int[][]parent){ if(u == v)return u; for(int i = 18;i>=0;i--){ if(parent[u][i] != parent[v][i]){ u = parent[u][i]; v = parent[v][i]; } } return parent[u][0]; } public static void plus(int node,int low,int high,int tlow,int thigh,int[]tree){ if(low >= tlow && high <= thigh){ tree[node]++; return; } if(high < tlow || low > thigh)return; int mid = (low + high)/2; plus(node*2,low,mid,tlow,thigh,tree); plus(node*2 + 1 , mid + 1, high,tlow, thigh,tree); } public static boolean allEqual(int[]arr,int x){ for(int i = 0;i<arr.length;i++){ if(arr[i] != x)return false; } return true; } public static long helper(StringBuilder sb){ return Long.parseLong(sb.toString()); } public static int min(int node,int low,int high,int tlow,int thigh,int[][]tree){ if(low >= tlow&& high <= thigh)return tree[node][0]; if(high < tlow || low > thigh)return Integer.MAX_VALUE; int mid = (low + high)/2; // println(low+" "+high+" "+tlow+" "+thigh); return Math.min(min(node*2,low,mid,tlow,thigh,tree) ,min(node*2+1,mid+1,high,tlow,thigh,tree)); } public static int max(int node,int low,int high,int tlow,int thigh,int[][]tree){ if(low >= tlow && high <= thigh)return tree[node][1]; if(high < tlow || low > thigh)return Integer.MIN_VALUE; int mid = (low + high)/2; return Math.max(max(node*2,low,mid,tlow,thigh,tree) ,max(node*2+1,mid+1,high,tlow,thigh,tree)); } public static long[] help(List<List<Integer>>list,int[][]range,int cur){ List<Integer>temp = list.get(cur); if(temp.size() == 0)return new long[]{range[cur][1],1}; long sum = 0; long count = 0; for(int i = 0;i<temp.size();i++){ long []arr = help(list,range,temp.get(i)); sum += arr[0]; count += arr[1]; } if(sum < range[cur][0]){ count++; sum = range[cur][1]; } return new long[]{sum,count}; } public static long findSum(int node,int low, int high,int tlow,int thigh,long[]tree,long mod){ if(low >= tlow && high <= thigh)return tree[node]%mod; if(low > thigh || high < tlow)return 0; int mid = (low + high)/2; return((findSum(node*2,low,mid,tlow,thigh,tree,mod) % mod) + (findSum(node*2+1,mid+1,high,tlow,thigh,tree,mod)))%mod; } public static boolean allzero(long[]arr){ for(int i =0 ;i<arr.length;i++){ if(arr[i]!=0)return false; } return true; } public static long count(long[][]dp,int i,int[]arr,int drank,long sum){ if(i == arr.length)return 0; if(dp[i][drank]!=-1 && arr[i]+sum >=0)return dp[i][drank]; if(sum + arr[i] >= 0){ long count1 = 1 + count(dp,i+1,arr,drank+1,sum+arr[i]); long count2 = count(dp,i+1,arr,drank,sum); return dp[i][drank] = Math.max(count1,count2); } return dp[i][drank] = count(dp,i+1,arr,drank,sum); } public static void help(int[]arr,char[]signs,int l,int r){ if( l < r){ int mid = (l+r)/2; help(arr,signs,l,mid); help(arr,signs,mid+1,r); merge(arr,signs,l,mid,r); } } public static void merge(int[]arr,char[]signs,int l,int mid,int r){ int n1 = mid - l + 1; int n2 = r - mid; int[]a = new int[n1]; int []b = new int[n2]; char[]asigns = new char[n1]; char[]bsigns = new char[n2]; for(int i = 0;i<n1;i++){ a[i] = arr[i+l]; asigns[i] = signs[i+l]; } for(int i = 0;i<n2;i++){ b[i] = arr[i+mid+1]; bsigns[i] = signs[i+mid+1]; } int i = 0; int j = 0; int k = l; boolean opp = false; while(i<n1 && j<n2){ if(a[i] <= b[j]){ arr[k] = a[i]; if(opp){ if(asigns[i] == 'R'){ signs[k] = 'L'; } else{ signs[k] = 'R'; } } else{ signs[k] = asigns[i]; } i++; k++; } else{ arr[k] = b[j]; int times = n1 - i; if(times%2 == 1){ if(bsigns[j] == 'R'){ signs[k] = 'L'; } else{ signs[k] = 'R'; } } else{ signs[k] = bsigns[j]; } j++; opp = !opp; k++; } } while(i<n1){ arr[k] = a[i]; if(opp){ if(asigns[i] == 'R'){ signs[k] = 'L'; } else{ signs[k] = 'R'; } } else{ signs[k] = asigns[i]; } i++; k++; } while(j<n2){ arr[k] = b[j]; signs[k] = bsigns[j]; j++; k++; } } public static long nck(int n,int k){ return ((fact[n] * (inverse[n-k])%mod) * inverse[k])%mod; } public static long binaryExpo(long base,long expo){ if(expo == 0)return 1; long val; if(expo%2 == 1){ val = (binaryExpo(base, expo/2)); val = (val * val)%mod; val = (val * base)%mod; } else{ val = binaryExpo(base, expo/2); val = (val*val)%mod; } return (val%mod); } public static boolean isSorted(int[]arr){ for(int i =1;i<arr.length;i++){ if(arr[i] < arr[i-1]){ return false; } } return true; } //function to find the topological sort of the a DAG public static boolean hasCycle(int[]indegree,List<List<Integer>>list,int n,List<Integer>topo){ Queue<Integer>q = new LinkedList<>(); for(int i =1;i<indegree.length;i++){ if(indegree[i] == 0){ q.add(i); topo.add(i); } } while(!q.isEmpty()){ int cur = q.poll(); List<Integer>l = list.get(cur); for(int i = 0;i<l.size();i++){ indegree[l.get(i)]--; if(indegree[l.get(i)] == 0){ q.add(l.get(i)); topo.add(l.get(i)); } } } if(topo.size() == n)return false; return true; } // function to find the parent of any given node with path compression in DSU public static int find(int val,int[]parent){ if(val == parent[val])return val; return parent[val] = find(parent[val],parent); } // function to connect two components public static void union(int[]rank,int[]parent,int u,int v){ int a = find(u,parent); int b= find(v,parent); if(a == b)return; if(rank[a] == rank[b]){ parent[b] = a; rank[a]++; } else{ if(rank[a] > rank[b]){ parent[b] = a; } else{ parent[a] = b; } } } // public static int findN(int n){ int num = 1; while(num < n){ num *=2; } return num; } // code for input public static void print(String s ){ System.out.print(s); } public static void print(int num ){ System.out.print(num); } public static void print(long num ){ System.out.print(num); } public static void println(String s){ System.out.println(s); } public static void println(int num){ System.out.println(num); } public static void println(long num){ System.out.println(num); } public static void println(){ System.out.println(); } public static int Int(String s){ return Integer.parseInt(s); } public static long Long(String s){ return Long.parseLong(s); } public static String[] nextStringArray()throws IOException{ return bf.readLine().split(" "); } public static String nextString()throws IOException{ return bf.readLine(); } public static long[] nextLongArray(int n)throws IOException{ String[]str = bf.readLine().split(" "); long[]arr = new long[n]; for(int i =0;i<n;i++){ arr[i] = Long.parseLong(str[i]); } return arr; } public static int[][] newIntMatrix(int r,int c)throws IOException{ int[][]arr = new int[r][c]; for(int i =0;i<r;i++){ String[]str = bf.readLine().split(" "); for(int j =0;j<c;j++){ arr[i][j] = Integer.parseInt(str[j]); } } return arr; } public static long[][] newLongMatrix(int r,int c)throws IOException{ long[][]arr = new long[r][c]; for(int i =0;i<r;i++){ String[]str = bf.readLine().split(" "); for(int j =0;j<c;j++){ arr[i][j] = Long.parseLong(str[j]); } } return arr; } static class pair{ int one; int two; pair(int one,int two){ this.one = one ; this.two =two; } } public static long gcd(long a,long b){ if(b == 0)return a; return gcd(b,a%b); } public static long lcm(long a,long b){ return (a*b)/(gcd(a,b)); } public static boolean isPalindrome(String s){ int i = 0; int j = s.length()-1; while(i<=j){ if(s.charAt(i) != s.charAt(j)){ return false; } i++; j--; } return true; } // these functions are to calculate the number of smaller elements after self public static void sort(int[]arr,int l,int r){ if(l < r){ int mid = (l+r)/2; sort(arr,l,mid); sort(arr,mid+1,r); smallerNumberAfterSelf(arr, l, mid, r); } } public static void smallerNumberAfterSelf(int[]arr,int l,int mid,int r){ int n1 = mid - l +1; int n2 = r - mid; int []a = new int[n1]; int[]b = new int[n2]; for(int i = 0;i<n1;i++){ a[i] = arr[l+i]; } for(int i =0;i<n2;i++){ b[i] = arr[mid+i+1]; } int i = 0; int j =0; int k = l; while(i<n1 && j < n2){ if(a[i] < b[j]){ arr[k++] = a[i++]; } else{ arr[k++] = b[j++]; } } while(i<n1){ arr[k++] = a[i++]; } while(j<n2){ arr[k++] = b[j++]; } } public static String next(){ while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(bf.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } static int nextInt() { return Integer.parseInt(next()); } static long nextLong() { return Long.parseLong(next()); } static double nextDouble() { return Double.parseDouble(next()); } static String nextLine(){ String str = ""; try { str = bf.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } } // use some math tricks it might help // sometimes just try to think in straightforward plan in A and B problems don't always complecate the questions with thinking too much differently // always use long number to do 10^9+7 modulo // if a problem is related to binary string it could also be related to parenthesis // *****try to use binary search(it is a very beautiful thing it can work in some of the very unexpected problems ) in the question it might work****** // try sorting // try to think in opposite direction of question it might work in your way // if a problem is related to maths try to relate some of the continuous subarray with variables like - > a+b+c+d or a,b,c,d in general // if the question is to much related to left and/or right side of any element in an array then try monotonic stack it could work. // in range query sums try to do binary search it could work // analyse the time complexity of program thoroughly // anylyse the test cases properly // if we divide any number by 2 till it gets 1 then there will be (number - 1) operation required // try to do the opposite operation of what is given in the problem //think about the base cases properly //If a question is related to numbers try prime factorisation or something related to number theory // keep in mind unique strings //you can calculate the number of inversion in O(n log n) // in a matrix you could sometimes think about row and cols indenpendentaly. // Try to think in more constructive(means a way to look through various cases of a problem) way. // observe the problem carefully the answer could be hidden in the given test cases itself. (A, B , C); // when we have equations like (a+b = N) and we have to find the max of (a*b) then the values near to the N/2 must be chosen as (a and b); // give emphasis to the number of occurences of elements it might help. // if a number is even then we can find the pair for each and every number in that range whose bitwise AND is zero. // if a you find a problem related to the graph make a graph // There is atleast one prime number between the interval [n , 3n/2]; // If a problem is related to maths then try to form an mathematical equation.
Java
["5\n\n3\n\n4"]
1 second
["? 1 5\n\n? 4 5\n\n! 1"]
NoteIn the sample suppose $$$a$$$ is $$$[5, 1, 4, 2, 3]$$$. So after asking the $$$[1..5]$$$ subsegment $$$4$$$ is second to max value, and it's position is $$$3$$$. After asking the $$$[4..5]$$$ subsegment $$$2$$$ is second to max value and it's position in the whole array is $$$4$$$.Note that there are other arrays $$$a$$$ that would produce the same interaction, and the answer for them might be different. Example output is given in purpose of understanding the interaction.
Java 8
standard input
[ "binary search", "interactive" ]
b3e8fe76706ba17cb285c75459508334
The first line contains a single integer $$$n$$$ $$$(2 \leq n \leq 10^5)$$$ — the number of elements in the array.
1,600
null
standard output
PASSED
baa544e9f6ef824f2ce0485378f9c96a
train_109.jsonl
1613658900
The only difference between the easy and the hard version is the limit to the number of queries.This is an interactive problem.There is an array $$$a$$$ of $$$n$$$ different numbers. In one query you can ask the position of the second maximum element in a subsegment $$$a[l..r]$$$. Find the position of the maximum element in the array in no more than 40 queries.A subsegment $$$a[l..r]$$$ is all the elements $$$a_l, a_{l + 1}, ..., a_r$$$. After asking this subsegment you will be given the position of the second maximum from this subsegment in the whole array.
256 megabytes
import java.util.*; import java.io.*; public class Guessing_the_greatest { static StringBuilder sb; static dsu dsu; static long fact[]; static long mod = (int) (1e9); static void solve() { int n = i(); int lo = 1; int hi = n+1; while(lo+1 < hi){ int mid = lo + (hi-lo)/2; int idx = index(lo,hi-1); if(idx < mid){ int left2max = index(lo,mid-1); if(left2max == idx){ hi = mid; }else{ lo = mid; } }else{ int right2max = index(mid,hi-1); if(right2max == idx){ lo = mid; }else{ hi = mid; } } } sb.append("! "+(hi-1)+"\n"); } static int index(int lo,int hi){ if(lo == hi){ return -1; } System.out.println("? "+lo+" "+hi); System.out.flush(); int idx = i(); return idx; } public static void main(String[] args) { sb = new StringBuilder(); int test = 1; // test = i(); while (test-- > 0) { solve(); } System.out.println(sb); } /* * fact=new long[(int)1e6+10]; fact[0]=fact[1]=1; for(int i=2;i<fact.length;i++) * { fact[i]=((long)(i%mod)1L(long)(fact[i-1]%mod))%mod; } */ //**************NCR%P****************** static long ncr(int n, int r) { if (r > n) return (long) 0; long res = fact[n] % mod; // System.out.println(res); res = ((long) (res % mod) * (long) (p(fact[r], mod - 2) % mod)) % mod; res = ((long) (res % mod) * (long) (p(fact[n - r], mod - 2) % mod)) % mod; // System.out.println(res); return res; } static long p(long x, long y)// POWER FXN // { if (y == 0) return 1; long res = 1; while (y > 0) { if (y % 2 == 1) { res = (res * x) % mod; y--; } x = (x * x) % mod; y = y / 2; } return res; } //**************END****************** // *************Disjoint set // union*********// static class dsu { int parent[]; dsu(int n) { parent = new int[n]; for (int i = 0; i < n; i++) parent[i] = -1; } int find(int a) { if (parent[a] < 0) return a; else { int x = find(parent[a]); parent[a] = x; return x; } } void merge(int a, int b) { a = find(a); b = find(b); if (a == b) return; parent[b] = a; } } //**************PRIME FACTORIZE **********************************// static TreeMap<Integer, Integer> prime(long n) { TreeMap<Integer, Integer> h = new TreeMap<>(); long num = n; for (int i = 2; i <= Math.sqrt(num); i++) { if (n % i == 0) { int nt = 0; while (n % i == 0) { n = n / i; nt++; } h.put(i, nt); } } if (n != 1) h.put((int) n, 1); return h; } //****CLASS PAIR ************************************************ static class Pair implements Comparable<Pair> { int x; int y; Pair(int x, int y) { this.x = x; this.y = y; } public int compareTo(Pair o) { return (int) (this.y - o.y); } } //****CLASS PAIR ************************************************** static class InputReader { private InputStream stream; private byte[] buf = new byte[1024]; private int curChar; private int numChars; private SpaceCharFilter filter; public InputReader(InputStream stream) { this.stream = stream; } public int read() { if (numChars == -1) throw new InputMismatchException(); if (curChar >= numChars) { curChar = 0; try { numChars = stream.read(buf); } catch (IOException e) { throw new InputMismatchException(); } if (numChars <= 0) return -1; } return buf[curChar++]; } public int Int() { int c = read(); while (isSpaceChar(c)) c = read(); int sgn = 1; if (c == '-') { sgn = -1; c = read(); } int res = 0; do { if (c < '0' || c > '9') throw new InputMismatchException(); res *= 10; res += c - '0'; c = read(); } while (!isSpaceChar(c)); return res * sgn; } public String String() { int c = read(); while (isSpaceChar(c)) c = read(); StringBuilder res = new StringBuilder(); do { res.appendCodePoint(c); c = read(); } while (!isSpaceChar(c)); return res.toString(); } public boolean isSpaceChar(int c) { if (filter != null) return filter.isSpaceChar(c); return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; } public String next() { return String(); } public interface SpaceCharFilter { public boolean isSpaceChar(int ch); } } static class OutputWriter { private final PrintWriter writer; public OutputWriter(OutputStream outputStream) { writer = new PrintWriter(new BufferedWriter(new OutputStreamWriter(outputStream))); } public OutputWriter(Writer writer) { this.writer = new PrintWriter(writer); } public void print(Object... objects) { for (int i = 0; i < objects.length; i++) { if (i != 0) writer.print(' '); writer.print(objects[i]); } } public void printLine(Object... objects) { print(objects); writer.println(); } public void close() { writer.close(); } public void flush() { writer.flush(); } } static InputReader in = new InputReader(System.in); static OutputWriter out = new OutputWriter(System.out); public static long[] sort(long[] a2) { int n = a2.length; ArrayList<Long> l = new ArrayList<>(); for (long i : a2) l.add(i); Collections.sort(l); for (int i = 0; i < l.size(); i++) a2[i] = l.get(i); return a2; } public static int[] sort(int[] a2) { int n = a2.length; ArrayList<Integer> l = new ArrayList<>(); for (int i : a2) l.add(i); Collections.sort(l); for (int i = 0; i < l.size(); i++) a2[i] = l.get(i); return a2; } public static long pow(long x, long y) { long res = 1; while (y > 0) { if (y % 2 != 0) { res = (res * x);// % modulus; y--; } x = (x * x);// % modulus; y = y / 2; } return res; } //GCD___+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ public static long gcd(long x, long y) { if (x == 0) return y; else return gcd(y % x, x); } // ******LOWEST COMMON MULTIPLE // ********************************************* public static long lcm(long x, long y) { return (x * (y / gcd(x, y))); } //INPUT PATTERN******************************************************** public static int i() { return in.Int(); } public static long l() { String s = in.String(); return Long.parseLong(s); } public static String s() { return in.String(); } public static int[] readArrayi(int n) { int A[] = new int[n]; for (int i = 0; i < n; i++) { A[i] = i(); } return A; } public static long[] readArray(long n) { long A[] = new long[(int) n]; for (int i = 0; i < n; i++) { A[i] = l(); } return A; } }
Java
["5\n\n3\n\n4"]
1 second
["? 1 5\n\n? 4 5\n\n! 1"]
NoteIn the sample suppose $$$a$$$ is $$$[5, 1, 4, 2, 3]$$$. So after asking the $$$[1..5]$$$ subsegment $$$4$$$ is second to max value, and it's position is $$$3$$$. After asking the $$$[4..5]$$$ subsegment $$$2$$$ is second to max value and it's position in the whole array is $$$4$$$.Note that there are other arrays $$$a$$$ that would produce the same interaction, and the answer for them might be different. Example output is given in purpose of understanding the interaction.
Java 8
standard input
[ "binary search", "interactive" ]
b3e8fe76706ba17cb285c75459508334
The first line contains a single integer $$$n$$$ $$$(2 \leq n \leq 10^5)$$$ — the number of elements in the array.
1,600
null
standard output
PASSED
93a0a9f9383b76f5952a46c3d278001a
train_109.jsonl
1613658900
The only difference between the easy and the hard version is the limit to the number of queries.This is an interactive problem.There is an array $$$a$$$ of $$$n$$$ different numbers. In one query you can ask the position of the second maximum element in a subsegment $$$a[l..r]$$$. Find the position of the maximum element in the array in no more than 40 queries.A subsegment $$$a[l..r]$$$ is all the elements $$$a_l, a_{l + 1}, ..., a_r$$$. After asking this subsegment you will be given the position of the second maximum from this subsegment in the whole array.
256 megabytes
import java.io.*; import java.util.*; public class C { public static void main(String[] args) { FastReader f = new FastReader(); StringBuffer sb=new StringBuffer(); int n=f.nextInt(); int l=1,r=n; while(l<r) { System.out.println("? "+l+" "+r); int idx=f.nextInt(); int mid=(l+r)/2; if(idx<mid) { System.out.println("? "+l+" "+mid); int sec=f.nextInt(); if(idx==sec) r=mid; else l=mid; if(r-l == 1) { if(r==sec) { r=l; break; } else if(l==sec) break; } } else { System.out.println("? "+mid+" "+r); int sec=f.nextInt(); if(idx==sec) l=mid; else r=mid; if(r-l == 1) { if(r==sec) { r=l; break; } else if(l==sec) break; } } } System.out.println("! "+r); } static class FastReader { BufferedReader br; StringTokenizer st; public FastReader() { br = new BufferedReader(new InputStreamReader(System.in)); } String next() { while (st == null || !st.hasMoreElements()) { try{ st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine() { String str = ""; try{ str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } } }
Java
["5\n\n3\n\n4"]
1 second
["? 1 5\n\n? 4 5\n\n! 1"]
NoteIn the sample suppose $$$a$$$ is $$$[5, 1, 4, 2, 3]$$$. So after asking the $$$[1..5]$$$ subsegment $$$4$$$ is second to max value, and it's position is $$$3$$$. After asking the $$$[4..5]$$$ subsegment $$$2$$$ is second to max value and it's position in the whole array is $$$4$$$.Note that there are other arrays $$$a$$$ that would produce the same interaction, and the answer for them might be different. Example output is given in purpose of understanding the interaction.
Java 8
standard input
[ "binary search", "interactive" ]
b3e8fe76706ba17cb285c75459508334
The first line contains a single integer $$$n$$$ $$$(2 \leq n \leq 10^5)$$$ — the number of elements in the array.
1,600
null
standard output
PASSED
440859651192d8a3cafe04757375f2e4
train_109.jsonl
1613658900
The only difference between the easy and the hard version is the limit to the number of queries.This is an interactive problem.There is an array $$$a$$$ of $$$n$$$ different numbers. In one query you can ask the position of the second maximum element in a subsegment $$$a[l..r]$$$. Find the position of the maximum element in the array in no more than 40 queries.A subsegment $$$a[l..r]$$$ is all the elements $$$a_l, a_{l + 1}, ..., a_r$$$. After asking this subsegment you will be given the position of the second maximum from this subsegment in the whole array.
256 megabytes
import java.io.*; import java.util.*; public class Main { public static void main(String args[]) { FastReader input=new FastReader(); PrintWriter out=new PrintWriter(System.out); int T=1; while(T-->0) { int n=input.nextInt(); int l=1,r=n; while(l<r) { int mid=(l+r)/2; System.out.println("? "+l+" "+r); System.out.flush(); int p=input.nextInt(); if(p<=mid) { int l1=l,r1=mid; if(l1==r1) { l=mid+1; } else { System.out.println("? "+l+" "+mid); System.out.flush(); int p1=input.nextInt(); if(p==p1) { r=mid; } else { l=mid+1; } } } else { int l1=mid+1; int r1=r; if(l1==r1) { r=mid; } else { System.out.println("? "+(mid+1)+" "+r); System.out.flush(); int p1=input.nextInt(); if(p1==p) { l=mid+1; } else { r=mid; } } } } System.out.println("! "+l); } out.close(); } static class FastReader { BufferedReader br; StringTokenizer st; public FastReader() { br = new BufferedReader(new InputStreamReader(System.in)); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine() { String str=""; try { str=br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } } }
Java
["5\n\n3\n\n4"]
1 second
["? 1 5\n\n? 4 5\n\n! 1"]
NoteIn the sample suppose $$$a$$$ is $$$[5, 1, 4, 2, 3]$$$. So after asking the $$$[1..5]$$$ subsegment $$$4$$$ is second to max value, and it's position is $$$3$$$. After asking the $$$[4..5]$$$ subsegment $$$2$$$ is second to max value and it's position in the whole array is $$$4$$$.Note that there are other arrays $$$a$$$ that would produce the same interaction, and the answer for them might be different. Example output is given in purpose of understanding the interaction.
Java 8
standard input
[ "binary search", "interactive" ]
b3e8fe76706ba17cb285c75459508334
The first line contains a single integer $$$n$$$ $$$(2 \leq n \leq 10^5)$$$ — the number of elements in the array.
1,600
null
standard output
PASSED
3bc69ce453afd2cbc6310ae1e07bd20c
train_109.jsonl
1613658900
The only difference between the easy and the hard version is the limit to the number of queries.This is an interactive problem.There is an array $$$a$$$ of $$$n$$$ different numbers. In one query you can ask the position of the second maximum element in a subsegment $$$a[l..r]$$$. Find the position of the maximum element in the array in no more than 40 queries.A subsegment $$$a[l..r]$$$ is all the elements $$$a_l, a_{l + 1}, ..., a_r$$$. After asking this subsegment you will be given the position of the second maximum from this subsegment in the whole array.
256 megabytes
//package Current; import java.util.*; public class Main { static final long mod = (long) 1e9 + 7; static class pair { int x, y; public pair(int x, int y) { this.x = x; this.y = y; } } public static void main(String args[]) { Scanner sc = new Scanner(System.in); int t = 1; // t = sc.nextInt(); while (t-- > 0) { // Start code int n = sc.nextInt(); int ans = 0; int smax = ask(1, n, sc); if (smax == 1 || ask(1, smax, sc) != smax) { int l = smax + 1, r = n; while (l <= r) { int mid = l + (r - l) / 2; int p = ask(smax, mid, sc); if (p == smax) { ans = mid; r = mid - 1; } else l = mid + 1; } } else { int l = 1, r = smax - 1; while (l <= r) { int mid = l + (r - l) / 2; int p = ask(mid, smax, sc); if (p == smax) { ans = mid; l = mid + 1; } else r = mid - 1; } } println("! " + ans); } sc.close(); } static int ask(int l, int r, Scanner sc) { println("? " + l + " " + r); System.out.flush(); int x = sc.nextInt(); return x; } static void print(Object o) { System.out.print(o + " "); } static void println(Object o) { System.out.println(o); } static void swap(int arr[], int i, int j) { int temp = arr[i]; arr[i] = arr[j]; arr[j] = temp; } static ArrayList<Long> factorial(int num) { ArrayList<Long> fac = new ArrayList<>(); fac.add((long) 0); fac.add((long) 1); for (int i = 2; i < num; i++) { fac.add((fac.get(i - 1) * i) % mod); } return fac; } static long ncr(long x, long y, ArrayList<Long> fac) { if (y >= x) return (long) 1; long res = fac.get((int) x); long z = (fac.get((int) y) * fac.get((int) (x - y))) % mod; z = modInv(z); res = (res * z) % mod; return res; } static long modInv(long x) { return modExpo(x, mod - 2); } static long modExpo(long x, long y) { long res = 1; x = x % mod; while (y > 0) { if (y % 2 == 1) res = (res * x) % mod; y = y / 2; x = (x * x) % mod; } return res; } static int lowerBound(int n, long[] arr, long value) { int res = (int) 1e7; int l = 0, r = n - 1; while (l <= r) { int mid = l + (r - l) / 2; if (arr[mid] >= value) { res = mid; r = mid - 1; } else l = mid + 1; } return res; } }
Java
["5\n\n3\n\n4"]
1 second
["? 1 5\n\n? 4 5\n\n! 1"]
NoteIn the sample suppose $$$a$$$ is $$$[5, 1, 4, 2, 3]$$$. So after asking the $$$[1..5]$$$ subsegment $$$4$$$ is second to max value, and it's position is $$$3$$$. After asking the $$$[4..5]$$$ subsegment $$$2$$$ is second to max value and it's position in the whole array is $$$4$$$.Note that there are other arrays $$$a$$$ that would produce the same interaction, and the answer for them might be different. Example output is given in purpose of understanding the interaction.
Java 8
standard input
[ "binary search", "interactive" ]
b3e8fe76706ba17cb285c75459508334
The first line contains a single integer $$$n$$$ $$$(2 \leq n \leq 10^5)$$$ — the number of elements in the array.
1,600
null
standard output
PASSED
03533505d4e7abeb1039c04e7db209a6
train_109.jsonl
1613658900
The only difference between the easy and the hard version is the limit to the number of queries.This is an interactive problem.There is an array $$$a$$$ of $$$n$$$ different numbers. In one query you can ask the position of the second maximum element in a subsegment $$$a[l..r]$$$. Find the position of the maximum element in the array in no more than 40 queries.A subsegment $$$a[l..r]$$$ is all the elements $$$a_l, a_{l + 1}, ..., a_r$$$. After asking this subsegment you will be given the position of the second maximum from this subsegment in the whole array.
256 megabytes
import java.io.*; import java.util.*; import java.math.*; import java.lang.*; public class Main implements Runnable { static class InputReader { private InputStream stream; private byte[] buf = new byte[1024]; private int curChar; private int numChars; private SpaceCharFilter filter; private BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); public InputReader(InputStream stream) { this.stream = stream; } public int read() { if (numChars == -1) throw new InputMismatchException(); if (curChar >= numChars) { curChar = 0; try { numChars = stream.read(buf); } catch (IOException e) { throw new InputMismatchException(); } if (numChars <= 0) return -1; } return buf[curChar++]; } public String nextLine() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } public int nextInt() { int c = read(); while (isSpaceChar(c)) c = read(); int sgn = 1; if (c == '-') { sgn = -1; c = read(); } int res = 0; do { if (c < '0' || c > '9') throw new InputMismatchException(); res *= 10; res += c - '0'; c = read(); } while (!isSpaceChar(c)); return res * sgn; } public long nextLong() { int c = read(); while (isSpaceChar(c)) c = read(); int sgn = 1; if (c == '-') { sgn = -1; c = read(); } long res = 0; do { if (c < '0' || c > '9') throw new InputMismatchException(); res *= 10; res += c - '0'; c = read(); } while (!isSpaceChar(c)); return res * sgn; } public double nextDouble() { int c = read(); while (isSpaceChar(c)) c = read(); int sgn = 1; if (c == '-') { sgn = -1; c = read(); } double res = 0; while (!isSpaceChar(c) && c != '.') { if (c == 'e' || c == 'E') return res * Math.pow(10, nextInt()); if (c < '0' || c > '9') throw new InputMismatchException(); res *= 10; res += c - '0'; c = read(); } if (c == '.') { c = read(); double m = 1; while (!isSpaceChar(c)) { if (c == 'e' || c == 'E') return res * Math.pow(10, nextInt()); if (c < '0' || c > '9') throw new InputMismatchException(); m /= 10; res += (c - '0') * m; c = read(); } } return res * sgn; } public String readString() { int c = read(); while (isSpaceChar(c)) c = read(); StringBuilder res = new StringBuilder(); do { res.appendCodePoint(c); c = read(); } while (!isSpaceChar(c)); return res.toString(); } public boolean isSpaceChar(int c) { if (filter != null) return filter.isSpaceChar(c); return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; } public String next() { return readString(); } public interface SpaceCharFilter { public boolean isSpaceChar(int ch); } } public static void main(String args[]) throws Exception { new Thread(null, new Main(), "Main", 1 << 27).start(); } static class Pair { int f; int s; int p; PrintWriter w; // int t; Pair(int f, int s) { // Pair(int f,int s, PrintWriter w){ this.f = f; this.s = s; // this.p = p; // this.w = w; // this.t = t; } public static Comparator<Pair> wc = new Comparator<Pair>() { public int compare(Pair e1, Pair e2) { // 1 for swap if (Math.abs(e1.f) - Math.abs(e2.f) != 0) { // e1.w.println("**"+e1.f+" "+e2.f); return (Math.abs(e1.f) - Math.abs(e2.f)); } else { // e1.w.println("##"+e1.f+" "+e2.f); return (Math.abs(e1.s) - Math.abs(e2.s)); } } }; } public static ArrayList<Integer> sieve(int N) { int i, j, flag; ArrayList<Integer> p = new ArrayList<Integer>(); for (i = 1; i < N; i++) { if (i == 1 || i == 0) continue; flag = 1; for (j = 2; j <= i / 2; ++j) { if (i % j == 0) { flag = 0; break; } } if (flag == 1) { p.add(i); } } return p; } public static long gcd(long a, long b) { if (b == 0) return a; else return gcd(b, a % b); } //// recursive dfs public static int dfs(int s, ArrayList<Integer>[] g, long[] dist, boolean[] v, PrintWriter w, int p) { v[s] = true; int ans = 1; // int n = dist.length - 1; int t = g[s].size(); // int max = 1; for (int i = 0; i < t; i++) { int x = g[s].get(i); if (!v[x]) { // dist[x] = dist[s] + 1; ans = Math.min(ans, dfs(x, g, dist, v, w, s)); } else if (x != p) { // w.println("* " + s + " " + x + " " + p); ans = 0; } } // max = Math.max(max,(n-p)); return ans; } //// iterative BFS public static int bfs(int s, ArrayList<Integer>[] g, long[] dist, boolean[] b, PrintWriter w, int p) { b[s] = true; int siz = 1; // dist--; Queue<Integer> q = new LinkedList<>(); q.add(s); while (q.size() != 0) { int i = q.poll(); Iterator<Integer> it = g[i].listIterator(); int z = 0; while (it.hasNext()) { z = it.next(); if (!b[z]) { b[z] = true; // dist--; dist[z] = dist[i] + 1; // siz++; q.add(z); } else if (z != p) { siz = 0; } } } return siz; } public static int lower(int key, int[] a) { int l = 0; int r = a.length - 1; int res = 0; while (l <= r) { int mid = (l + r) / 2; if (a[mid] <= key) { l = mid + 1; res = mid + 1; } else { r = mid - 1; } } return res; } public static long power(long x, long y, long m) { if (y == 0) return 1; long p = power(x, y / 2, m) % m; p = (p * p) % m; if (y % 2 == 0) return p; else return (x * p) % m; } ////////////////////////////////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////////////////////////////////// // code here int[] parent; int[] dist; int[] height; boolean[] vis; ArrayList<Integer>[] g; int[] c; public void run() { InputReader sc = new InputReader(System.in); PrintWriter w = new PrintWriter(System.out); int defaultValue = 0; int mod = 1000000007; int oo = (int) 1e9; int test = 1; // test = sc.nextInt(); while (test-- > 0) { int n = sc.nextInt(); int l = 1; int r = n + 1; int m = 0; int sm = 0; while (l < r - 1) { int mid = (l + r) / 2; w.println("? " + l + " " + (r - 1)); w.flush(); m = sc.nextInt(); if (m < mid) { if (l < mid - 1) { w.println("? " + l + " " + (mid - 1)); w.flush(); sm = sc.nextInt(); if (sm == m) { r = mid; } else { l = mid; } } else { l = mid; } } else { if (mid < r - 1) { w.println("? " + mid + " " + (r - 1)); w.flush(); sm = sc.nextInt(); if (sm == m) { l = mid; } else { r = mid; } } else { r = mid; } } } w.println("! " + (r - 1)); } w.flush(); w.close(); } }
Java
["5\n\n3\n\n4"]
1 second
["? 1 5\n\n? 4 5\n\n! 1"]
NoteIn the sample suppose $$$a$$$ is $$$[5, 1, 4, 2, 3]$$$. So after asking the $$$[1..5]$$$ subsegment $$$4$$$ is second to max value, and it's position is $$$3$$$. After asking the $$$[4..5]$$$ subsegment $$$2$$$ is second to max value and it's position in the whole array is $$$4$$$.Note that there are other arrays $$$a$$$ that would produce the same interaction, and the answer for them might be different. Example output is given in purpose of understanding the interaction.
Java 8
standard input
[ "binary search", "interactive" ]
b3e8fe76706ba17cb285c75459508334
The first line contains a single integer $$$n$$$ $$$(2 \leq n \leq 10^5)$$$ — the number of elements in the array.
1,600
null
standard output
PASSED
7aa762c81628afc6ced68cec0937f83c
train_109.jsonl
1613658900
The only difference between the easy and the hard version is the limit to the number of queries.This is an interactive problem.There is an array $$$a$$$ of $$$n$$$ different numbers. In one query you can ask the position of the second maximum element in a subsegment $$$a[l..r]$$$. Find the position of the maximum element in the array in no more than 40 queries.A subsegment $$$a[l..r]$$$ is all the elements $$$a_l, a_{l + 1}, ..., a_r$$$. After asking this subsegment you will be given the position of the second maximum from this subsegment in the whole array.
256 megabytes
import java.io.*; import java.util.*; public class Main { static PrintWriter pw; static Scanner sc; static long ceildiv(long x, long y) { return (x+y-1)/y; } static int mod(long x, int m) { return (int)((x%m+m)%m); } static void put(HashMap<Integer, Integer> map, Integer p){if(map.containsKey(p)) map.replace(p, map.get(p)+1); else map.put(p, 1); } static void rem(TreeMap<Integer, Integer> map, Integer p){ if(map.get(p)==1) map.remove(p);else map.replace(p, map.get(p)-1); } static void printf(double x, int dig){ String s="%."+dig+"f"; pw.printf(s, x); } static int Int(boolean x){ return x?1:0; } static final int inf=(int)1e9, mod=998244353; static final long infL=inf*1l*inf; static final double eps=1e-9; public static long gcd(long x, long y) { return y==0? x: gcd(y, x%y); } public static void main(String[] args) throws Exception { sc = new Scanner(System.in); pw = new PrintWriter(System.out); // int t = sc.nextInt(); // while (t-- > 0) testcase(); pw.close(); } static int ask(int l, int r) throws IOException{ pw.println("? "+(l+1)+ " "+(r+1)); pw.flush(); return sc.nextInt()-1; } static void testcase() throws IOException { int n=sc.nextInt(); int prev=ask(0, n-1); int st=0, end=n-1; while(end-st>=3){ int mid=(st+end)/2; int x; if(prev<=mid){ x=ask(st, mid); if(x==prev){ end=mid; }else{ st=mid+1; prev=ask(mid+1, end); } }else{ x=ask(mid+1, end); if(x==prev){ st=mid+1; }else{ end=mid; prev=ask(st, mid); } } } if(end==st+1){ out(prev==end ? st: end); }else{ int x=prev; if(x==st+1){ x=ask(st, st+1); if(x==prev) out(st); else out(end); }else if(x==st){ x=ask(st+1, end); if(x==st+1) out(end); else out(st+1); }else{ x=ask(st, st+1); if(x==st+1) out(st); else out(st+1); } } } static void out(int x){ pw.println("! "+(x+1)); } static void printArr(int[] arr) { for (int i = 0; i < arr.length; i++) pw.print(arr[i] + " "); pw.println(); } static void printArr(long[] arr) { for (int i = 0; i < arr.length; i++) pw.print(arr[i] + " "); pw.println(); } static void printArr(double[] arr) { for (int i = 0; i < arr.length; i++) pw.print(arr[i] + " "); pw.println(); } static void printArr(Integer[] arr) { for (int i = 0; i < arr.length; i++) pw.print(arr[i] + " "); pw.println(); } static void printArr(ArrayList list) { for (int i = 0; i < list.size(); i++) pw.print(list.get(i)+" "); pw.println(); } static void printArr(boolean[] arr) { StringBuilder sb=new StringBuilder(); for(boolean b: arr) sb.append(Int(b)); pw.println(sb); } static class Scanner { StringTokenizer st; BufferedReader br; public Scanner(InputStream s) { br = new BufferedReader(new InputStreamReader(s)); } public Scanner(FileReader r) { br = new BufferedReader(r); } public String next() throws IOException { while (st == null || !st.hasMoreTokens()) st = new StringTokenizer(br.readLine()); return st.nextToken(); } public int nextInt() throws IOException { return Integer.parseInt(next()); } public long nextLong() throws IOException { return Long.parseLong(next()); } public String nextLine() throws IOException { return br.readLine(); } public double nextDouble() throws IOException { return Double.parseDouble(next()); } public int[] nextDigits() throws IOException{ String s=nextLine(); int[] arr=new int[s.length()]; for(int i=0; i<arr.length; i++) arr[i]=s.charAt(i)-'0'; return arr; } public int[] nextArr(int n) throws IOException { int[] arr = new int[n]; for (int i = 0; i < arr.length; i++) arr[i] = nextInt(); return arr; } public Integer[] nextsort(int n) throws IOException{ Integer[] arr=new Integer[n]; for(int i=0; i<n; i++) arr[i]=nextInt(); return arr; } public Pair nextPair() throws IOException{ return new Pair(nextInt(), nextInt()); } public long[] nextLongArr(int n) throws IOException{ long[] arr=new long[n]; for (int i = 0; i < n; i++) arr[i]=sc.nextLong(); return arr; } public Pair[] nextPairArr(int n) throws IOException{ Pair[] arr=new Pair[n]; for(int i=0; i<n; i++) arr[i]=nextPair(); return arr; } public boolean ready() throws IOException { return br.ready(); } } static class Pair implements Comparable<Pair>{ int x; int y; public Pair(int x, int y) { this.x=x; this.y=y; } public boolean contains(int a){ return x==a || y==a; } public int hashCode() { return (this.x*1000000000+this.y); } public int compareTo(Pair p){ if(x==p.x) return y-p.y; return x-p.x; } public boolean equals(Object obj) { if (obj == null) { return false; } if (this.getClass() != obj.getClass()) { return false; } Pair p = (Pair) obj; return this.x==p.x && this.y==p.y; } public Pair clone(){ return new Pair(x, y); } public String toString(){ return this.x+" "+this.y; } public void add(Pair p){ x+=p.x; y+=p.y; } public Pair negative(){ return new Pair(-x, -y); } } static class LP implements Comparable<LP>{ long x, y; public LP(long a, long b){ x=a; y=b; } public void add(LP p){ x+=p.x; y+=p.y; } public boolean equals(LP p){ return p.x==x && y==p.y; } public String toString(){ return this.x+" "+this.y; } public int compareTo(LP p){ int a=Long.compare(x, p.x); if(a!=0) return a; return Long.compare(y, p.y); } } static class Triple implements Comparable<Triple>{ int x, y, z; public Triple(int a, int b, int c){ x=a; y=b; z=c; } public int compareTo(Triple t){ if(this.y!=t.y) return y-t.y; return x-t.x; } public String toString(){ return x+" "+y+" "+z; } } // static class MaxSegmentTree{ // int n; // long[] tree; // public MaxSegmentTree(int len, long[] arr){ // n=len; // build(0, 0, n-1, arr); // } // public void build(int i, int l, int r, long[] arr){ // if(l==r){ // tree[i]=arr[l]; // return; // } // int mid=(l+r)/2, left=2*i+1, right=2*i+2; // build(left, l, mid, arr); // build(right, mid+1, r, arr); // tree[i]=Math.max(left, right); // } // public int query(int i){ // return query(0, 0, n-1, 0, i); // } // public int query(int node, int i, int j, int l, int r){ // if(l>j || r<i) // return -1; // // } // } static class SegmentTree { int n, size[]; long[] tree; public SegmentTree(int len) { n = len; tree=new long[2*n-1]; size=new int[2*n-1]; } public void set(int i, long x){ i+=n-1; tree[i]=x; size[i]++; i=(i-1)/2; while(true){ size[i]++; tree[i]=tree[i*2+1] + tree[i*2+2]; if(i==0) break; i=(i-1)/2; } } public long query(int x){ return query(0, 0, n-1, x+1, n-1); } public long query(int node, int i, int j, int l, int r){ if(j<l || i>r) return 0; if(i>=l && j<=r) return tree[node]; int mid=(i+j)/2, left=node*2+1, right=node*2+2; return query(left, i, mid, l, r) + query(right, mid+1, j, l, r); } public int size(int idx){ return size(0, 0, n-1, idx+1, n-1); } public int size(int node, int i, int j, int l, int r){ if(i>r || j<l) return 0; if(i>=l && j<=r) return size[node]; int mid=(i+j)/2, left=node*2+1, right=node*2+2; return size(left, i, mid, l, r)+size(right, mid+1, j, l, r); } } }
Java
["5\n\n3\n\n4"]
1 second
["? 1 5\n\n? 4 5\n\n! 1"]
NoteIn the sample suppose $$$a$$$ is $$$[5, 1, 4, 2, 3]$$$. So after asking the $$$[1..5]$$$ subsegment $$$4$$$ is second to max value, and it's position is $$$3$$$. After asking the $$$[4..5]$$$ subsegment $$$2$$$ is second to max value and it's position in the whole array is $$$4$$$.Note that there are other arrays $$$a$$$ that would produce the same interaction, and the answer for them might be different. Example output is given in purpose of understanding the interaction.
Java 8
standard input
[ "binary search", "interactive" ]
b3e8fe76706ba17cb285c75459508334
The first line contains a single integer $$$n$$$ $$$(2 \leq n \leq 10^5)$$$ — the number of elements in the array.
1,600
null
standard output
PASSED
6f2b37452ac46eb460ec0b08603ed284
train_109.jsonl
1613658900
The only difference between the easy and the hard version is the limit to the number of queries.This is an interactive problem.There is an array $$$a$$$ of $$$n$$$ different numbers. In one query you can ask the position of the second maximum element in a subsegment $$$a[l..r]$$$. Find the position of the maximum element in the array in no more than 40 queries.A subsegment $$$a[l..r]$$$ is all the elements $$$a_l, a_{l + 1}, ..., a_r$$$. After asking this subsegment you will be given the position of the second maximum from this subsegment in the whole array.
256 megabytes
/* * akshaygupta26 */ import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.util.Scanner; import java.util.Random; import java.util.Arrays; import java.util.StringTokenizer; import java.util.ArrayList; import java.util.HashMap; import java.util.HashSet; import java.util.Collections; public class D { static FastReader sc=new FastReader(); static HashMap<Integer,HashMap<Integer,Integer>> map=new HashMap<>(); public static void main(String[] args) { StringBuffer ans=new StringBuffer(); int test=1; while(test-->0) { int n=sc.nextInt(); int low =1; int high=n; while(low!=high) { if(high-low == 1) { int index =query(low,high); if(index == low) low=high; break; } int index =query(low,high); int mid = (low+high)/2; if(index>mid) { int index2 =query(mid,high); if(index == index2) { low=mid; continue; } else { high=mid; if(index2 == mid) high--; continue; } } else if(index<mid) { int index2 =query(low,mid); if(index == index2) { high=mid; continue; } else { low=mid; if(index2 == mid) low++; continue; } } else if(index == mid) { int index2 =query(mid,high); if(index2 == index) { low=mid+1; continue; } else { high=mid-1; continue; } } } System.out.println("! "+low); System.out.flush(); } System.out.print(ans); } static int query(int l,int r) { if(map.containsKey(l) && map.get(l).containsKey(r)) { return map.get(l).get(r); } System.out.println("? "+l+" "+r); System.out.flush(); int n =sc.nextInt(); if(!map.containsKey(l)) { map.put(l,new HashMap<Integer,Integer>()); } map.get(l).put(r,n); return n; } static final Random random=new Random(); static void ruffleSort(int[] a) { int n=a.length;//shuffle, then sort for (int i=0; i<n; i++) { int oi=random.nextInt(n), temp=a[oi]; a[oi]=a[i]; a[i]=temp; } Arrays.sort(a); } static void ruffleSort(long[] a) { int n=a.length;//shuffle, then sort for (int i=0; i<n; i++) { int oi=random.nextInt(n); long temp=a[oi]; a[oi]=a[i]; a[i]=temp; } Arrays.sort(a); } static class FastReader { BufferedReader br; StringTokenizer st; public FastReader() { br = new BufferedReader(new InputStreamReader(System.in)); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } } }
Java
["5\n\n3\n\n4"]
1 second
["? 1 5\n\n? 4 5\n\n! 1"]
NoteIn the sample suppose $$$a$$$ is $$$[5, 1, 4, 2, 3]$$$. So after asking the $$$[1..5]$$$ subsegment $$$4$$$ is second to max value, and it's position is $$$3$$$. After asking the $$$[4..5]$$$ subsegment $$$2$$$ is second to max value and it's position in the whole array is $$$4$$$.Note that there are other arrays $$$a$$$ that would produce the same interaction, and the answer for them might be different. Example output is given in purpose of understanding the interaction.
Java 8
standard input
[ "binary search", "interactive" ]
b3e8fe76706ba17cb285c75459508334
The first line contains a single integer $$$n$$$ $$$(2 \leq n \leq 10^5)$$$ — the number of elements in the array.
1,600
null
standard output
PASSED
ea52cb234c21ef2b4be9554f861809fc
train_109.jsonl
1613658900
The only difference between the easy and the hard version is the limit to the number of queries.This is an interactive problem.There is an array $$$a$$$ of $$$n$$$ different numbers. In one query you can ask the position of the second maximum element in a subsegment $$$a[l..r]$$$. Find the position of the maximum element in the array in no more than 40 queries.A subsegment $$$a[l..r]$$$ is all the elements $$$a_l, a_{l + 1}, ..., a_r$$$. After asking this subsegment you will be given the position of the second maximum from this subsegment in the whole array.
256 megabytes
/* * akshaygupta26 */ import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.util.Scanner; import java.util.Random; import java.util.Arrays; import java.util.StringTokenizer; import java.util.ArrayList; import java.util.HashMap; import java.util.HashSet; import java.util.Collections; public class C { public static void main(String[] args) { FastReader sc=new FastReader(); StringBuffer ans=new StringBuffer(); int test=1; while(test-->0) { int n=sc.nextInt(); int low =1; int high =n; System.out.println("? "+low+" "+high); int index =sc.nextInt();//2nd highest System.out.flush(); while(low != high) { if(high-low == 1) { if(index == low) low=high; break; } int mid = (low+high)/2; System.out.println("? "+low+" "+mid); System.out.flush(); int index2 =sc.nextInt(); if(index2 == index) { high =mid; continue; } System.out.println("? "+mid+" "+high); System.out.flush(); int index3 =sc.nextInt(); if(index3 == index) { low =mid; continue; } if(index>mid) { index=index2; high=mid; } else if(index<mid) { index=index3; low=mid; } } ans.append("! "+low+"\n"); } System.out.print(ans); } static final Random random=new Random(); static void ruffleSort(int[] a) { int n=a.length;//shuffle, then sort for (int i=0; i<n; i++) { int oi=random.nextInt(n), temp=a[oi]; a[oi]=a[i]; a[i]=temp; } Arrays.sort(a); } static void ruffleSort(long[] a) { int n=a.length;//shuffle, then sort for (int i=0; i<n; i++) { int oi=random.nextInt(n); long temp=a[oi]; a[oi]=a[i]; a[i]=temp; } Arrays.sort(a); } static class FastReader { BufferedReader br; StringTokenizer st; public FastReader() { br = new BufferedReader(new InputStreamReader(System.in)); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } } }
Java
["5\n\n3\n\n4"]
1 second
["? 1 5\n\n? 4 5\n\n! 1"]
NoteIn the sample suppose $$$a$$$ is $$$[5, 1, 4, 2, 3]$$$. So after asking the $$$[1..5]$$$ subsegment $$$4$$$ is second to max value, and it's position is $$$3$$$. After asking the $$$[4..5]$$$ subsegment $$$2$$$ is second to max value and it's position in the whole array is $$$4$$$.Note that there are other arrays $$$a$$$ that would produce the same interaction, and the answer for them might be different. Example output is given in purpose of understanding the interaction.
Java 8
standard input
[ "binary search", "interactive" ]
b3e8fe76706ba17cb285c75459508334
The first line contains a single integer $$$n$$$ $$$(2 \leq n \leq 10^5)$$$ — the number of elements in the array.
1,600
null
standard output
PASSED
b13c21e6207cbc225dc352fcc12bddf0
train_109.jsonl
1613658900
The only difference between the easy and the hard version is the limit to the number of queries.This is an interactive problem.There is an array $$$a$$$ of $$$n$$$ different numbers. In one query you can ask the position of the second maximum element in a subsegment $$$a[l..r]$$$. Find the position of the maximum element in the array in no more than 40 queries.A subsegment $$$a[l..r]$$$ is all the elements $$$a_l, a_{l + 1}, ..., a_r$$$. After asking this subsegment you will be given the position of the second maximum from this subsegment in the whole array.
256 megabytes
import java.io.*;import java.util.*;import java.math.*; public class Main { static long mod=1000000007l; static int max=Integer.MAX_VALUE,min=Integer.MIN_VALUE; static long maxl=Long.MAX_VALUE,minl=Long.MIN_VALUE; static BufferedReader br=new BufferedReader(new InputStreamReader(System.in)); static StringTokenizer st; static StringBuilder sb; // static public void main(String[] args)throws Exception // { // st=new StringTokenizer(br.readLine()); // int t=i(); // sb=new StringBuilder(1000000); // o: // while(t-->0) // { // int n=i(); // for(int x=0;x<n;x++) // { // int a=i(); // int b=i(); // } // } // p(sb); // } static public void main(String[] args)throws Exception { st=new StringTokenizer(br.readLine()); int n=i(); int i=1; int j=n; pl("? "+i+" "+j); System.out.flush(); int in=i(); while(i<=j) { int m=(i+j)/2; if(j-i==1) { if(in==i) { pl("! "+j); return; } pl("! "+i); return; } else if(j-i==2) { pl("? "+(i+1)+" "+j); System.out.flush(); int aa=i(); pl("? "+(i)+" "+(j-1)); System.out.flush(); int bb=i(); HashSet<Integer> h=new HashSet<>(3); h.add(i); h.add(i+1); h.add(i+2); h.remove(aa); h.remove(bb); h.remove(in); for(int e:h) { pl("! "+e); return; } } else { pl("? "+(i)+" "+m); System.out.flush(); int aa=i(); pl("? "+(m+1)+" "+j); System.out.flush(); int bb=i(); if(aa==in) { j=m; } else if(bb==in) { i=m+1; } else { if(in>=i&&in<=m) { in=bb; i=m+1; } else { in=aa; j=m; } } } } } static int[] so(int ar[]) { Integer r[]=new Integer[ar.length]; for(int x=0;x<ar.length;x++)r[x]=ar[x]; Arrays.sort(r); for(int x=0;x<ar.length;x++)ar[x]=r[x]; return ar; } static long[] so(long ar[]) { Long r[]=new Long[ar.length]; for(int x=0;x<ar.length;x++)r[x]=ar[x]; Arrays.sort(r); for(int x=0;x<ar.length;x++)ar[x]=r[x]; return ar; } static char[] so(char ar[]) { Character r[]=new Character[ar.length]; for(int x=0;x<ar.length;x++)r[x]=ar[x]; Arrays.sort(r); for(int x=0;x<ar.length;x++)ar[x]=r[x]; return ar; } static void s(String s){sb.append(s);} static void s(int s){sb.append(s);} static void s(long s){sb.append(s);} static void s(char s){sb.append(s);} static void s(double s){sb.append(s);} static void ss(){sb.append(' ');} static void sl(String s){sb.append(s);sb.append("\n");} static void sl(int s){sb.append(s);sb.append("\n");} static void sl(long s){sb.append(s);sb.append("\n");} static void sl(char s){sb.append(s);sb.append("\n");} static void sl(double s){sb.append(s);sb.append("\n");} static void sl(){sb.append("\n");} static int max(int ...a){int m=a[0];for(int e:a)m=(m>=e)?m:e;return m;} static int min(int ...a){int m=a[0];for(int e:a)m=(m<=e)?m:e;return m;} static int abs(int a){return Math.abs(a);} static long max(long ...a){long m=a[0];for(long e:a)m=(m>=e)?m:e;return m;} static long min(long ...a){long m=a[0];for(long e:a)m=(m<=e)?m:e;return m;} static long abs(long a){return Math.abs(a);} static int sq(int a){return (int)Math.sqrt(a);} static long sq(long a){return (long)Math.sqrt(a);} static long gcd(long a,long b){return b==0l?a:gcd(b,a%b);} static boolean pa(String s,int i,int j) { while(i<j)if(s.charAt(i++)!=s.charAt(j--))return false; return true; } static int ncr(int n,int c,long m) { long a=1l; for(int x=n-c+1;x<=n;x++)a=((a*x)%m); long b=1l; for(int x=2;x<=c;x++)b=((b*x)%m); return (int)((a*(mul((int)b,m-2,m)%m))%m); } static boolean[] si(int n) { boolean bo[]=new boolean[n+1]; bo[0]=true;bo[1]=true; for(int x=4;x<=n;x+=2)bo[x]=true; for(int x=3;x*x<=n;x+=2) { if(!bo[x]) { int vv=(x<<1); for(int y=x*x;y<=n;y+=vv)bo[y]=true; } } return bo; } static int[] fac(int n) { int bo[]=new int[n+1]; for(int x=1;x<=n;x++)for(int y=x;y<=n;y+=x)bo[y]++; return bo; } static long mul(long a,long b,long m) { long r=1l; a%=m; while(b>0) { if((b&1)==1)r=(r*a)%m; b>>=1; a=(a*a)%m; } return r; } static int i()throws IOException { if(!st.hasMoreTokens())st=new StringTokenizer(br.readLine()); return Integer.parseInt(st.nextToken()); } static long l()throws IOException { if(!st.hasMoreTokens())st=new StringTokenizer(br.readLine()); return Long.parseLong(st.nextToken()); } static String s()throws IOException { if(!st.hasMoreTokens())st=new StringTokenizer(br.readLine()); return st.nextToken(); } static double d()throws IOException { if(!st.hasMoreTokens())st=new StringTokenizer(br.readLine()); return Double.parseDouble(st.nextToken()); } static void p(Object p){System.out.print(p);} static void p(String p){System.out.print(p);} static void p(int p){System.out.print(p);} static void p(double p){System.out.print(p);} static void p(long p){System.out.print(p);} static void p(char p){System.out.print(p);} static void p(boolean p){System.out.print(p);} static void pl(Object p){System.out.println(p);} static void pl(String p){System.out.println(p);} static void pl(int p){System.out.println(p);} static void pl(char p){System.out.println(p);} static void pl(double p){System.out.println(p);} static void pl(long p){System.out.println(p);} static void pl(boolean p){System.out.println(p);} static void pl(){System.out.println();} static void s(int a[]) { for(int e:a) { sb.append(e); sb.append(' '); } sb.append("\n"); } static void s(long a[]) { for(long e:a) { sb.append(e); sb.append(' '); } sb.append("\n"); } static void s(int ar[][]) { for(int a[]:ar) { for(int e:a) { sb.append(e); sb.append(' '); } sb.append("\n"); } } static void s(char a[]) { for(char e:a) { sb.append(e); sb.append(' '); } sb.append("\n"); } static void s(char ar[][]) { for(char a[]:ar) { for(char e:a) { sb.append(e); sb.append(' '); } sb.append("\n"); } } static int[] ari(int n)throws IOException { int ar[]=new int[n]; if(!st.hasMoreTokens())st=new StringTokenizer(br.readLine()); for(int x=0;x<n;x++)ar[x]=Integer.parseInt(st.nextToken()); return ar; } static int[][] ari(int n,int m)throws IOException { int ar[][]=new int[n][m]; for(int x=0;x<n;x++) { if(!st.hasMoreTokens())st=new StringTokenizer(br.readLine()); for(int y=0;y<m;y++)ar[x][y]=Integer.parseInt(st.nextToken()); } return ar; } static long[] arl(int n)throws IOException { long ar[]=new long[n]; if(!st.hasMoreTokens())st=new StringTokenizer(br.readLine()); for(int x=0;x<n;x++) ar[x]=Long.parseLong(st.nextToken()); return ar; } static long[][] arl(int n,int m)throws IOException { long ar[][]=new long[n][m]; for(int x=0;x<n;x++) { if(!st.hasMoreTokens())st=new StringTokenizer(br.readLine()); for(int y=0;y<m;y++)ar[x][y]=Long.parseLong(st.nextToken()); } return ar; } static String[] ars(int n)throws IOException { String ar[]=new String[n]; if(!st.hasMoreTokens())st=new StringTokenizer(br.readLine()); for(int x=0;x<n;x++) ar[x]=st.nextToken(); return ar; } static double[] ard(int n)throws IOException { double ar[]=new double[n]; if(!st.hasMoreTokens())st=new StringTokenizer(br.readLine()); for(int x=0;x<n;x++)ar[x]=Double.parseDouble(st.nextToken()); return ar; } static double[][] ard(int n,int m)throws IOException { double ar[][]=new double[n][m]; for(int x=0;x<n;x++) { if(!st.hasMoreTokens())st=new StringTokenizer(br.readLine()); for(int y=0;y<m;y++)ar[x][y]=Double.parseDouble(st.nextToken()); } return ar; } static char[] arc(int n)throws IOException { char ar[]=new char[n]; if(!st.hasMoreTokens())st=new StringTokenizer(br.readLine()); for(int x=0;x<n;x++)ar[x]=st.nextToken().charAt(0); return ar; } static char[][] arc(int n,int m)throws IOException { char ar[][]=new char[n][m]; for(int x=0;x<n;x++) { String s=br.readLine(); for(int y=0;y<m;y++)ar[x][y]=s.charAt(y); } return ar; } static void p(int ar[]) { StringBuilder sb=new StringBuilder(2*ar.length); for(int a:ar) { sb.append(a); sb.append(' '); } System.out.println(sb); } static void p(int ar[][]) { StringBuilder sb=new StringBuilder(2*ar.length*ar[0].length); for(int a[]:ar) { for(int aa:a) { sb.append(aa); sb.append(' '); } sb.append("\n"); } p(sb); } static void p(long ar[]) { StringBuilder sb=new StringBuilder(2*ar.length); for(long a:ar) { sb.append(a); sb.append(' '); } System.out.println(sb); } static void p(long ar[][]) { StringBuilder sb=new StringBuilder(2*ar.length*ar[0].length); for(long a[]:ar) { for(long aa:a) { sb.append(aa); sb.append(' '); } sb.append("\n"); } p(sb); } static void p(String ar[]) { int c=0; for(String s:ar)c+=s.length()+1; StringBuilder sb=new StringBuilder(c); for(String a:ar) { sb.append(a); sb.append(' '); } System.out.println(sb); } static void p(double ar[]) { StringBuilder sb=new StringBuilder(2*ar.length); for(double a:ar) { sb.append(a); sb.append(' '); } System.out.println(sb); } static void p(double ar[][]) { StringBuilder sb=new StringBuilder(2*ar.length*ar[0].length); for(double a[]:ar) { for(double aa:a) { sb.append(aa); sb.append(' '); } sb.append("\n"); } p(sb); } static void p(char ar[]) { StringBuilder sb=new StringBuilder(2*ar.length); for(char aa:ar) { sb.append(aa); sb.append(' '); } System.out.println(sb); } static void p(char ar[][]) { StringBuilder sb=new StringBuilder(2*ar.length*ar[0].length); for(char a[]:ar) { for(char aa:a) { sb.append(aa); sb.append(' '); } sb.append("\n"); } p(sb); } }
Java
["5\n\n3\n\n4"]
1 second
["? 1 5\n\n? 4 5\n\n! 1"]
NoteIn the sample suppose $$$a$$$ is $$$[5, 1, 4, 2, 3]$$$. So after asking the $$$[1..5]$$$ subsegment $$$4$$$ is second to max value, and it's position is $$$3$$$. After asking the $$$[4..5]$$$ subsegment $$$2$$$ is second to max value and it's position in the whole array is $$$4$$$.Note that there are other arrays $$$a$$$ that would produce the same interaction, and the answer for them might be different. Example output is given in purpose of understanding the interaction.
Java 8
standard input
[ "binary search", "interactive" ]
b3e8fe76706ba17cb285c75459508334
The first line contains a single integer $$$n$$$ $$$(2 \leq n \leq 10^5)$$$ — the number of elements in the array.
1,600
null
standard output
PASSED
c7bf03c8437d4a7e43420c2f8b994e77
train_109.jsonl
1613658900
The only difference between the easy and the hard version is the limit to the number of queries.This is an interactive problem.There is an array $$$a$$$ of $$$n$$$ different numbers. In one query you can ask the position of the second maximum element in a subsegment $$$a[l..r]$$$. Find the position of the maximum element in the array in no more than 40 queries.A subsegment $$$a[l..r]$$$ is all the elements $$$a_l, a_{l + 1}, ..., a_r$$$. After asking this subsegment you will be given the position of the second maximum from this subsegment in the whole array.
256 megabytes
// package com.company; import java.io.*; import java.util.*; public class Main { public static void main(String[] args) { Main main = new Main(); main.solve(); } public void solve() { Scanner in = null; PrintWriter out = null; try { in = new Scanner(new File("input.txt")); out = new PrintWriter(new File("output.txt")); throw new FileNotFoundException(); } catch (FileNotFoundException e) { in = new Scanner(System.in); out = new PrintWriter(System.out); } int n = in.nextInt(); out.println("? " + 1 + " " + n); out.flush(); int maxi = in.nextInt() - 1; int ans = find(0, n, maxi, in, out) + 1; out.println("! " + ans); out.flush(); out.close(); } private int find(int l, int r, int maxi, Scanner in, PrintWriter out) { if (l + 2 == r) { return maxi == l ? l + 1 : l; } if (l + 3 == r) { int ll = l + 1; int lll = ll + 1; out.println("? " + ll + " " + lll); out.flush(); int newmaxi = in.nextInt() - 1; if (maxi == l) { if (newmaxi == maxi) { return l + 1; } else { return l + 2; } } else if (maxi == l + 1) { if (newmaxi == maxi) { return l; } else { return l + 2; } } else { if (newmaxi == l) { return l + 1; } else { return l; } } } int pivot = (l + r) / 2; int ll = l + 1; int pp = pivot + 1; if (maxi < pivot) { out.println("? " + ll + " " + pivot); out.flush(); int newmaxi = in.nextInt() - 1; if (maxi == newmaxi) { //max is in the same return find(l, pivot, newmaxi, in, out); } else { out.println("? " + pp + " " + r); out.flush(); int secondmaxi = in.nextInt() - 1; return find(pivot, r, secondmaxi, in, out); } } else { out.println("? " + pp + " " + r); out.flush(); int newmaxi = in.nextInt() - 1; if (maxi == newmaxi) { //max is in the same return find(pivot, r, newmaxi, in, out); } else { out.println("? " + ll + " " + pivot); out.flush(); int secondmaxi = in.nextInt() - 1; return find(l, pivot, secondmaxi, in, out); } } } }
Java
["5\n\n3\n\n4"]
1 second
["? 1 5\n\n? 4 5\n\n! 1"]
NoteIn the sample suppose $$$a$$$ is $$$[5, 1, 4, 2, 3]$$$. So after asking the $$$[1..5]$$$ subsegment $$$4$$$ is second to max value, and it's position is $$$3$$$. After asking the $$$[4..5]$$$ subsegment $$$2$$$ is second to max value and it's position in the whole array is $$$4$$$.Note that there are other arrays $$$a$$$ that would produce the same interaction, and the answer for them might be different. Example output is given in purpose of understanding the interaction.
Java 8
standard input
[ "binary search", "interactive" ]
b3e8fe76706ba17cb285c75459508334
The first line contains a single integer $$$n$$$ $$$(2 \leq n \leq 10^5)$$$ — the number of elements in the array.
1,600
null
standard output
PASSED
949c824e236b2d5a48c65f832903f615
train_109.jsonl
1613658900
The only difference between the easy and the hard version is the limit to the number of queries.This is an interactive problem.There is an array $$$a$$$ of $$$n$$$ different numbers. In one query you can ask the position of the second maximum element in a subsegment $$$a[l..r]$$$. Find the position of the maximum element in the array in no more than 40 queries.A subsegment $$$a[l..r]$$$ is all the elements $$$a_l, a_{l + 1}, ..., a_r$$$. After asking this subsegment you will be given the position of the second maximum from this subsegment in the whole array.
256 megabytes
import java.io.*; import java.util.*; import java.math.*; public class A implements Runnable { public void run() { long startTime = System.nanoTime(); int n = nextInt(); int[] f = new int[31]; f[1] = 2; f[2] = 3; for (int i = 3; i <= 24; i++) { f[i] = f[i - 1] + f[i - 2]; } int ind = -1; int from = 0, to = n; while (to - from > 1) { if (ind == -1) { ind = ask(from, to); continue; } if (to - from == 2) { if (ind == from) { from++; } else { to--; } continue; } if (to - from == 3) { int a = from, b = from + 1, c = from + 2; int res = 0; if (ind == a) { res = b + c - ask(b, c + 1); } if (ind == b) { int t = ask(a, b + 1); res = t == b ? a : c; } if (ind == c) { res = a + b - ask(a, b + 1); } from = res; to = res + 1; continue; } int x = 0; while (f[x + 1] < to - from) { x++; } x = f[x]; if (from + x > ind) { int t = ask(from, from + x); if (t == ind) { to = from + x; } else { from = from + x; ind = -1; } } else { int t = ask(to - x, to); if (t != ind) { to = to - x; ind = -1; } else { from = to - x; } } } println("! " + to); if (fileIOMode) { System.out.println((System.nanoTime() - startTime) / 1e9); } out.close(); } private int ask(int a, int b) { println("? " + (a + 1) + " " + b); return nextInt() - 1; } //----------------------------------------------------------------------------------- private static boolean fileIOMode; private static BufferedReader in; private static PrintWriter out; private static StringTokenizer tokenizer; public static void main(String[] args) throws Exception { fileIOMode = args.length > 0 && args[0].equals("!"); if (fileIOMode) { in = new BufferedReader(new FileReader("a.in")); out = new PrintWriter("a.out"); } else { in = new BufferedReader(new InputStreamReader(System.in)); out = new PrintWriter(System.out); } tokenizer = new StringTokenizer(""); new Thread(new A()).start(); } private static String nextLine() { try { return in.readLine(); } catch (IOException e) { return null; } } private static String nextToken() { while (!tokenizer.hasMoreTokens()) { tokenizer = new StringTokenizer(nextLine()); } return tokenizer.nextToken(); } private static int nextInt() { return Integer.parseInt(nextToken()); } private static long nextLong() { return Long.parseLong(nextToken()); } private static double nextDouble() { return Double.parseDouble(nextToken()); } private static BigInteger nextBigInteger() { return new BigInteger(nextToken()); } private static void print(Object o) { if (fileIOMode) { System.out.print(o); } out.print(o); } private static void println(Object o) { if (fileIOMode) { System.out.println(o); } out.println(o); out.flush(); } private static void printf(String s, Object... o) { if (fileIOMode) { System.out.printf(s, o); } out.printf(s, o); } }
Java
["5\n\n3\n\n4"]
1 second
["? 1 5\n\n? 4 5\n\n! 1"]
NoteIn the sample suppose $$$a$$$ is $$$[5, 1, 4, 2, 3]$$$. So after asking the $$$[1..5]$$$ subsegment $$$4$$$ is second to max value, and it's position is $$$3$$$. After asking the $$$[4..5]$$$ subsegment $$$2$$$ is second to max value and it's position in the whole array is $$$4$$$.Note that there are other arrays $$$a$$$ that would produce the same interaction, and the answer for them might be different. Example output is given in purpose of understanding the interaction.
Java 8
standard input
[ "binary search", "interactive" ]
b3e8fe76706ba17cb285c75459508334
The first line contains a single integer $$$n$$$ $$$(2 \leq n \leq 10^5)$$$ — the number of elements in the array.
1,600
null
standard output
PASSED
8bbae4905eddce5383da6202f274c53c
train_109.jsonl
1613658900
The only difference between the easy and the hard version is the limit to the number of queries.This is an interactive problem.There is an array $$$a$$$ of $$$n$$$ different numbers. In one query you can ask the position of the second maximum element in a subsegment $$$a[l..r]$$$. Find the position of the maximum element in the array in no more than 40 queries.A subsegment $$$a[l..r]$$$ is all the elements $$$a_l, a_{l + 1}, ..., a_r$$$. After asking this subsegment you will be given the position of the second maximum from this subsegment in the whole array.
256 megabytes
import java.math.BigInteger; import java.util.*; public class abc { static int[] arr; static int firstOcc(int n, int key) { if (n == arr.length) return -1; else { if (arr[n] == key) return n; int i = firstOcc(n + 1, key); if (i == -1) return -1; else return i; } } static int lastOcc(int n, int key) { if (n == arr.length) return -1; int i = lastOcc(n + 1, key); if (i == -1) { if (arr[n] == key) { return n; } else return -1; } else return i; } static long fastpower(long a, long n) { if (n == 0) return 1; else { long i = fastpower(a, n / 2); i *= i; if ((n & 1) == 1) i *= a; return i; } } public static void main(String[] args) { Scanner sc = new Scanner(System.in); int n = sc.nextInt(); int s=1,e=n; while(s!=e) { int midle=(s+e)/2; int a,c,b; System.out.println("? "+s+" "+e+" ");System.out.flush(); a= sc.nextInt(); if(s==e-1) { if(s==a) s++; else e--; } else if(midle>=a) { System.out.println("? "+s+" "+midle+" ");System.out.flush(); b= sc.nextInt();; if(a==b) { e=midle; } else s=midle; } else { System.out.println("? " + midle + " " + e + " ");System.out.flush(); b=sc.nextInt(); if(a!=b)e=midle; else s=midle; } } System.out.println("! "+e); System.out.flush(); } }
Java
["5\n\n3\n\n4"]
1 second
["? 1 5\n\n? 4 5\n\n! 1"]
NoteIn the sample suppose $$$a$$$ is $$$[5, 1, 4, 2, 3]$$$. So after asking the $$$[1..5]$$$ subsegment $$$4$$$ is second to max value, and it's position is $$$3$$$. After asking the $$$[4..5]$$$ subsegment $$$2$$$ is second to max value and it's position in the whole array is $$$4$$$.Note that there are other arrays $$$a$$$ that would produce the same interaction, and the answer for them might be different. Example output is given in purpose of understanding the interaction.
Java 8
standard input
[ "binary search", "interactive" ]
b3e8fe76706ba17cb285c75459508334
The first line contains a single integer $$$n$$$ $$$(2 \leq n \leq 10^5)$$$ — the number of elements in the array.
1,600
null
standard output
PASSED
a38f70bfd4d3f852f3701ae8fd7b7907
train_109.jsonl
1613658900
The only difference between the easy and the hard version is the limit to the number of queries.This is an interactive problem.There is an array $$$a$$$ of $$$n$$$ different numbers. In one query you can ask the position of the second maximum element in a subsegment $$$a[l..r]$$$. Find the position of the maximum element in the array in no more than 40 queries.A subsegment $$$a[l..r]$$$ is all the elements $$$a_l, a_{l + 1}, ..., a_r$$$. After asking this subsegment you will be given the position of the second maximum from this subsegment in the whole array.
256 megabytes
import java.io.*; import java.util.*; import java.util.function.BinaryOperator; import java.util.stream.Collectors; public class Main { private final static long mod = 1000000007; private final static int MAXN = 1000001; private static long power(long x, long y, long m) { long temp; if (y == 0) return 1; temp = power(x, y / 2, m); temp = (temp * temp) % m; if (y % 2 == 0) return temp; else return ((x % m) * temp) % m; } private static long power(long x, long y) { return power(x, y, mod); } public int solve(int[] nums) { Map<Pair<Integer,Integer>,Integer>dp=new HashMap<>(); int ans=0; for(int i=1;i<nums.length;i++){ for(int j=i+1;j<nums.length;j++) { Pair<Integer,Integer>prev=new Pair<>(nums[j]-nums[i],nums[i]); Integer v=dp.get(prev); Pair<Integer,Integer>curr=new Pair<>(nums[i],nums[j]); if(v!=null){ dp.put(curr,Math.max(dp.get(prev),v+1)); } else { dp.put(curr, 2); } ans=Math.max(ans,dp.get(curr)); } } return ans; } private static long gcd(long a, long b) { if (b == 0) return a; return gcd(b, a % b); } static int nextPowerOf2(int a) { return 1 << nextLog2(a); } static int nextLog2(int a) { return (a == 0 ? 0 : 32 - Integer.numberOfLeadingZeros(a - 1)); } private static long modInverse(long a, long m) { long m0 = m; long y = 0, x = 1; if (m == 1) return 0; while (a > 1) { long q = a / m; long t = m; m = a % m; a = t; t = y; y = x - q * y; x = t; } if (x < 0) x += m0; return x; } private static int[] getLogArr(int n) { int arr[] = new int[n + 1]; for (int i = 1; i < n + 1; i++) { arr[i] = (int) (Math.log(i) / Math.log(2) + 1e-10); } return arr; } private static int log[] = getLogArr(MAXN); private static long getLRSpt(long st[][], int L, int R, BinaryOperator<Long> binaryOperator) { int j = log[R - L + 1]; return binaryOperator.apply(st[L][j], st[R - (1 << j) + 1][j]); } private static long[][] getSparseTable(int array[], BinaryOperator<Long> binaryOperator) { int k = log[array.length + 1] + 1; long st[][] = new long[array.length + 1][k + 1]; for (int i = 0; i < array.length; i++) st[i][0] = array[i]; for (int j = 1; j <= k; j++) { for (int i = 0; i + (1 << j) <= array.length; i++) { st[i][j] = binaryOperator.apply(st[i][j - 1], st[i + (1 << (j - 1))][j - 1]); } } return st; } private static long getULDRSpt(long st[][][][], int U, int L,int D, int R, BinaryOperator<Long> binaryOperator) { int k = log[D - U + 1]; int l = log[R - L + 1]; long a= binaryOperator.apply(st[U][L][k][l], st[D - (1 << k) + 1][R - (1 << l) + 1][k][l]); long b= binaryOperator.apply(st[U][R - (1 << l) + 1][k][l], st[D - (1 << k) + 1][L][k][l]); return binaryOperator.apply(a,b); } private static long[][][][] getSparseTable2D(int arr[][], BinaryOperator<Long>bo){ int n=arr.length; int m=arr[0].length; int k=log[n+1]+2; int l=log[m+1]+2; long st[][][][]=new long[n][m][k][l]; for(int i=0;i<n;i++){ for(int j=0;j<m;j++){ st[i][j][0][0]=arr[i][j]; } } for(int x=1;x<k;x++){ for(int y=1;y<l;y++){ for(int i=0;i+(1<<x)<=n;i++){ for(int j=0;j+(1<<y)<=m;j++){ st[i][j][x][y]=bo.apply(bo.apply(st[i][j][x - 1][y-1], st[i + (1 << (x - 1))][j][x - 1][y-1]), bo.apply(st[i][j+(1 << (y - 1))][x - 1][y-1], st[i + (1 << (x - 1))][j+(1 << (y - 1))][x - 1][y-1])); } } } } return st; } static class Subset { int parent; int rank; @Override public String toString() { return "" + parent; } } static int find(Subset[] Subsets, int i) { if (Subsets[i].parent != i) Subsets[i].parent = find(Subsets, Subsets[i].parent); return Subsets[i].parent; } static void union(Subset[] Subsets, int x, int y) { int xroot = find(Subsets, x); int yroot = find(Subsets, y); if (Subsets[xroot].rank < Subsets[yroot].rank) Subsets[xroot].parent = yroot; else if (Subsets[yroot].rank < Subsets[xroot].rank) Subsets[yroot].parent = xroot; else { Subsets[xroot].parent = yroot; Subsets[yroot].rank++; } } private static int maxx(Integer... a) { return Collections.max(Arrays.asList(a)); } private static int minn(Integer... a) { return Collections.min(Arrays.asList(a)); } private static long maxx(Long... a) { return Collections.max(Arrays.asList(a)); } private static long minn(Long... a) { return Collections.min(Arrays.asList(a)); } private static class Pair<T extends Comparable<T>, U extends Comparable<U>> implements Comparable<Pair<T, U>> { T a; U b; public Pair(T a, U b) { this.a = a; this.b = b; } @Override public boolean equals(Object o) { if (this == o) return true; if (o == null || getClass() != o.getClass()) return false; Pair pair = (Pair) o; return a.equals(pair.a) && b.equals(pair.b); } @Override public int hashCode() { return Objects.hash(a, b); } @Override public String toString() { return "(" + a + "," + b + ')'; } @Override public int compareTo(Pair<T, U> o) { return (this.a.equals(o.a) ? this.b.equals(o.b) ? 0 : this.b.compareTo(o.b) : this.a.compareTo(o.a)); } } public static int upperBound(List<Integer> list, int value) { int low = 0; int high = list.size(); while (low < high) { final int mid = (low + high) / 2; if (value >= list.get(mid)) { low = mid + 1; } else { high = mid; } } return low; } private static int[] getLPSArray(String pattern) { int i, j, n = pattern.length(); int[] lps = new int[pattern.length()]; lps[0] = 0; for (i = 1, j = 0; i < n; ) { if (pattern.charAt(i) == pattern.charAt(j)) { lps[i++] = ++j; } else if (j > 0) { j = lps[j - 1]; } else { lps[i++] = 0; } } return lps; } private static List<Integer> findPattern(String text, String pattern) { List<Integer> matchedIndexes = new ArrayList<>(); if (pattern.length() == 0) { return matchedIndexes; } int[] lps = getLPSArray(pattern); int i = 0, j = 0, n = text.length(), m = pattern.length(); while (i < n) { if (text.charAt(i) == pattern.charAt(j)) { i++; j++; } if (j == m) { matchedIndexes.add(i - j); j = lps[j - 1]; } if (i < n && text.charAt(i) != pattern.charAt(j)) { if (j > 0) { j = lps[j - 1]; } else { i++; } } } return matchedIndexes; } private static long getLCM(long a, long b) { return (Math.max(a, b) / gcd(a, b)) * Math.min(a, b); } static long fac[] = new long[2000005]; static long ifac[] = new long[2000005]; private static void preCompute(int n) { fac = new long[n + 1]; ifac = new long[n + 1]; fac[0] = ifac[0] = fac[1] = ifac[1] = 1; int i; for (i = 2; i < n + 1; i++) { fac[i] = (i * fac[i - 1]) % mod; ifac[i] = (power(i, mod - 2) * ifac[i - 1]) % mod; } } private static long C(int n, int r) { if (n < 0 || r < 0) return 1; if (r > n) return 1; return (fac[n] * ((ifac[r] * ifac[n - r]) % mod)) % mod; } static long getSum(long BITree[], int index) { long sum = 0; index = index + 1; while (index > 0) { sum += BITree[index]; index -= index & (-index); } return sum; } public static void updateBIT(long BITree[], int index, long val) { index = index + 1; while (index <= BITree.length - 1) { BITree[index] += val; index += index & (-index); } } long[] constructBITree(int arr[], int m) { int n = arr.length; long BITree[] = new long[m + 1]; for (int i = 1; i <= n; i++) BITree[i] = 0; for (int i = 0; i < n; i++) updateBIT(BITree, i, arr[i]); return BITree; } private static String getBinaryString(int a[], int l, int r){ if(l>r||l>a.length-1||r>a.length-1||l<0||r<0)return ""; StringBuilder sb = new StringBuilder(); int i=l; while(i<=r&&a[i]==0)i++; for (;i<=r;i++){ sb.append(a[i]); } return sb.toString(); } private static int cmpBS(String a, String b){ if(a.length()==b.length()){ return a.compareTo(b); } else return a.length()-b.length(); } public static int[] threeEqualParts(int[] A) { int ans[]=new int[2]; ans[0]=ans[1]=-1; int lo1=0,hi1=A.length-3,mid1,curr; while (lo1<=hi1){ mid1=lo1+(hi1-lo1)/2; int lo=mid1+1,hi=A.length-2,mid; String leftS=getBinaryString(A,0,mid1); String midS=getBinaryString(A,lo, hi);; String rightS=""; while(lo<=hi){ mid=lo+(hi-lo)/2; midS=getBinaryString(A,mid1+1, mid); rightS=getBinaryString(A,mid+1,A.length-1); if(midS.equals(rightS)&&leftS.equals(midS)){ ans[0]=mid1; ans[1]=mid+1; return ans; } else if(cmpBS(rightS,midS) < 0){ hi=mid-1; } else { lo=mid+1; } //System.out.println(mid1+" "+lo+" "+hi); } if(cmpBS(leftS,midS) < 0) { hi1=mid1-1; } else { lo1=mid1+1; } } return ans; } private static int upperBound(int a[], int l, int r, int x) { if (l > r) return -1; if (l == r) { if (a[l] <= x) { return -1; } else { return a[l]; } } int m = (l + r) / 2; if (a[m] <= x) { return upperBound(a, m + 1, r, x); } else { return upperBound(a, l, m, x); } } private static void mul(long A[][], long B[][]) { int i, j, k, n = A.length; long C[][] = new long[n][n]; for (i = 0; i < n; i++) { for (j = 0; j < n; j++) { for (k = 0; k < n; k++) { C[i][j] = (C[i][j] + (A[i][k] * B[k][j]) % mod) % mod; } } } for (i = 0; i < n; i++) { for (j = 0; j < n; j++) { A[i][j] = C[i][j]; } } } private static void power(long A[][], long base[][], long n) { if (n < 2) { return; } power(A, base, n / 2); mul(A, A); if (n % 2 == 1) { mul(A, base); } } private static void print(int... a) { System.out.println(Arrays.toString(a)); } static void reverse(Integer a[], int l, int r) { while (l < r) { int t = a[l]; a[l] = a[r]; a[r] = t; l++; r--; } } private static int cntBits(int n){ int cnt=0; while(n>0){ cnt+=n%2; n/=2; } return cnt; } public void rotate(Integer[] nums, int k) { k = k % nums.length; reverse(nums, 0, nums.length - k - 1); reverse(nums, nums.length - k, nums.length - 1); reverse(nums, 0, nums.length - 1); } private static boolean isSorted(int a[]) { for (int i = 0; i < a.length - 1; i++) { if (a[i] > a[i + 1]) return false; } return true; } private static int upperBound(long csum[], long val){ int lo=0,hi=csum.length-1,mid,ans=csum.length; while(lo<=hi){ mid=lo+(hi-lo)/2; if(csum[mid]<=val){ lo=mid+1; } else { ans=mid; hi=mid-1; } } return ans; } private static int lowerBound(long csum[], long val){ int lo=0,hi=csum.length-1,mid,ans=-1; while(lo<=hi){ mid=lo+(hi-lo)/2; if(csum[mid]<val){ lo=mid+1; ans=mid; } else { hi=mid-1; } } return ans; } public int countRangeSum(int[] nums, int lower, int upper) { int i,j,k,n=nums.length,ans=0; long csum[]=new long[n]; long prev=0; for(i=0;i<n;i++){ csum[i]=prev+nums[i]; prev=csum[i]; } Arrays.sort(csum); ans=upperBound(csum, upper)-lowerBound(csum,lower)-1; for(i=0;i<n;i++){ ans+=upperBound(csum, upper+csum[i])-lowerBound(csum,lower+csum[i])-1; } return ans; } private static String reverse(String s) { if ("".equals(s)) return ""; return reverse(s.substring(1)) + s.charAt(0); } private static boolean isPrime(int n) { if (n <= 1) return false; if (n <= 3) return true; if (n % 2 == 0 || n % 3 == 0) return false; for (int i = 5; i * i <= n; i = i + 6) if (n % i == 0 || n % (i + 2) == 0) return false; return true; } private static Map<Integer, Integer> bit = new HashMap<>(); private static void update(int i, int val){ while(i<=1000000){ bit.put(i,bit.getOrDefault(i,0)+val); i+=i&-i; } } private static long get(int i){ long sum=0; while (i>0){ sum+=bit.getOrDefault(i,0); i-=i&-i; } return sum; } private static Set<Long> getDivisors(long n) { Set<Long> divisors = new HashSet<>(); for (long i = 1; i <= Math.sqrt(n); i++) { if (n % i == 0) { divisors.add(i); divisors.add(n / i); } } return divisors; } private static int getMed(List<Integer> arrList, int offset, int limit) { List<Integer> tmp=new ArrayList<>(); for(int i=0;i<limit&&i+offset<arrList.size();i++){ tmp.add(arrList.get(i+offset)); } Collections.sort(tmp); return tmp.get((tmp.size()-1)/2); } private static void trv(int a[],int l,int r, Map<Integer,Integer> map, int d){ if(r<l)return; if(r==l){ map.put(l, d); return; } int mx=0,mxi=-1; for(int i=l;i<=r;i++) { if(a[i]>mx){ mx=a[i]; mxi=i; } } map.put(mxi,d); trv(a,l,mxi-1,map,d+1); trv(a,mxi+1,r,map,d+1); } private static Map<String, Integer> kv=new HashMap<>(); private static int get2nd(int l, int r,FastReader in,FastWriter out) throws Exception { String key=String.format("%d %d",l,r); if(kv.get(key)==null){ out.println("? "+key); int v=in.nextInt(); kv.put(key,v); } return kv.get(key); } public static void main(String[] args) throws Exception { long START_TIME = System.currentTimeMillis(); try (FastReader in = new FastReader(); FastWriter out = new FastWriter()) { int n,t, i, j, m, ti, tidx, gm, l=1, r=2,k,q; //for (t = in.nextInt(), tidx = 1; tidx <= t; tidx++) { //out.print(String.format("Case #%d: ", tidx)); long x = 0, y = 0, z = 0, sum = 0, bhc = 0, ans = 0,ans1=0,d,g,curr=0; n=in.nextInt(); if(n==1){ out.println("! 1"); } else { int smi=get2nd(1,n,in,out); l=1; r=n; if(r>smi&&smi>1){ int v=get2nd(1,smi,in,out); if(v==smi){ r=smi; } else l=smi; } if(smi<r) { int l1=smi+1; int r1=r; while (l1 <= r1) { int mid = (l1 + r1) / 2; int v = get2nd(smi,mid,in,out); if (v == smi) { r = mid; r1=mid-1; } else l1 = mid+1; } } if(l<smi){ int l1=l; int r1=smi-1; while (l1 <= r1) { int mid = (l1 + r1) / 2; int v = get2nd(mid,smi,in,out); if (v == smi) { l = mid; l1 = mid+1; } else { r1=mid-1; } } } out.println("! "+(smi==l?r:l)); } } if (args.length > 0 && "ex_time".equals(args[0])) { out.print("\nTime taken: "); out.println(System.currentTimeMillis() - START_TIME); } out.commit(); } catch (Exception e) { e.printStackTrace(); } } public static class FastReader implements Closeable { private BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); private StringTokenizer st; String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (Exception e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } int[] nextIntArr(int n) { int[] arr = new int[n]; for (int i = 0; i < n; i++) { arr[i] = nextInt(); } return arr; } Integer[] nextIntegerArr(int n) { Integer[] arr = new Integer[n]; for (int i = 0; i < n; i++) { arr[i] = nextInt(); } return arr; } double[] nextDoubleArr(int n) { double[] arr = new double[n]; for (int i = 0; i < n; i++) { arr[i] = nextDouble(); } return arr; } long[] nextLongArr(int n) { long[] arr = new long[n]; for (int i = 0; i < n; i++) { arr[i] = nextLong(); } return arr; } List<Long> nextLongList(int n) { List<Long> retList = new ArrayList<>(); for (int i = 0; i < n; i++) { retList.add(nextLong()); } return retList; } String[] nextStrArr(int n) { String[] arr = new String[n]; for (int i = 0; i < n; i++) { arr[i] = next(); } return arr; } int[][] nextIntArr2(int n, int m) { int[][] arr = new int[n][m]; for (int i = 0; i < n; i++) { arr[i] = nextIntArr(m); } return arr; } long[][] nextLongArr2(int n, int m) { long[][] arr = new long[n][m]; for (int i = 0; i < n; i++) { arr[i] = nextLongArr(m); } return arr; } @Override public void close() throws IOException { br.close(); } } public static class FastWriter implements Closeable { BufferedWriter bw; StringBuilder sb = new StringBuilder(); List<String> list = new ArrayList<>(); Set<String> set = new HashSet<>(); public FastWriter() { bw = new BufferedWriter(new OutputStreamWriter(System.out)); } <T> void commit() throws IOException { bw.write(sb.toString()); bw.flush(); sb = new StringBuilder(); } public <T> void print(T obj) throws IOException { sb.append(obj.toString()); commit(); } public void println() throws IOException { print("\n"); } public <T> void println(T obj) throws IOException { print(obj.toString() + "\n"); } <T> void printArrLn(T[] arr) throws IOException { for (int i = 0; i < arr.length - 1; i++) { print(arr[i] + " "); } println(arr[arr.length - 1]); } <T> void printArr2(T[][] arr) throws IOException { for (int j = 0; j < arr.length; j++) { for (int i = 0; i < arr[j].length - 1; i++) { print(arr[j][i] + " "); } println(arr[j][arr[j].length - 1]); } } <T> void printColl(Collection<T> coll) throws IOException { List<String> stringList = coll.stream().map(e -> ""+e).collect(Collectors.toList()); println(String.format("%s",String.join(" ", stringList))); } void printCharN(char c, int n) throws IOException { for (int i = 0; i < n; i++) { print(c); } } void printIntArr2(int[][] arr) throws IOException { for (int j = 0; j < arr.length; j++) { for (int i = 0; i < arr[j].length - 1; i++) { print(arr[j][i] + " "); } println(arr[j][arr[j].length - 1]); } } @Override public void close() throws IOException { bw.close(); } } }
Java
["5\n\n3\n\n4"]
1 second
["? 1 5\n\n? 4 5\n\n! 1"]
NoteIn the sample suppose $$$a$$$ is $$$[5, 1, 4, 2, 3]$$$. So after asking the $$$[1..5]$$$ subsegment $$$4$$$ is second to max value, and it's position is $$$3$$$. After asking the $$$[4..5]$$$ subsegment $$$2$$$ is second to max value and it's position in the whole array is $$$4$$$.Note that there are other arrays $$$a$$$ that would produce the same interaction, and the answer for them might be different. Example output is given in purpose of understanding the interaction.
Java 8
standard input
[ "binary search", "interactive" ]
b3e8fe76706ba17cb285c75459508334
The first line contains a single integer $$$n$$$ $$$(2 \leq n \leq 10^5)$$$ — the number of elements in the array.
1,600
null
standard output
PASSED
ae27ae18755b92e3571742917fa6120e
train_109.jsonl
1613658900
The only difference between the easy and the hard version is the limit to the number of queries.This is an interactive problem.There is an array $$$a$$$ of $$$n$$$ different numbers. In one query you can ask the position of the second maximum element in a subsegment $$$a[l..r]$$$. Find the position of the maximum element in the array in no more than 40 queries.A subsegment $$$a[l..r]$$$ is all the elements $$$a_l, a_{l + 1}, ..., a_r$$$. After asking this subsegment you will be given the position of the second maximum from this subsegment in the whole array.
256 megabytes
import java.io.*; import java.util.*; public class A { static FastScanner fs; public static void main(String[] args) { fs=new FastScanner(); // int t = fs.nextInt(); // while (t-->0) solve(); } public static void solve() { int n = fs.nextInt(); int lo = 1; int hi = n; System.out.println("? "+lo+" "+hi); System.out.flush(); int sh = fs.nextInt(); int check = -1; if (lo!=sh) { System.out.println("? " + lo + " " + sh); System.out.flush(); check = fs.nextInt(); } if (sh!=check) { lo=sh; for (hi++; lo < hi; ) { int mid = lo + (hi - lo) / 2; if (sh!=mid) { System.out.println("? " + sh + " " + mid); System.out.flush(); int ch = fs.nextInt(); if (sh==ch) hi = mid; else lo = mid + 1; } else lo=mid+1; } System.out.println("! "+lo); } else { hi=sh; for (--lo; lo < hi; ) { int mid = lo+(hi-lo+1)/2; if (mid!=sh) { System.out.println("? " + mid + " " + sh); System.out.flush(); int ch = fs.nextInt(); if (sh == ch) lo = mid; else hi = mid - 1; } else hi=mid-1; } System.out.println("! "+lo); } } static class pair { long v, i; pair(long a, long b) { v=a; i=b; } } static void ruffleSort(int[] a) { int n=a.length;//shuffle, then sort for (int i=0; i<n; i++) { int oi=random.nextInt(n), temp=a[oi]; a[oi]=a[i]; a[i]=temp; } Arrays.sort(a); } static final Random random=new Random(); static class FastScanner { BufferedReader br=new BufferedReader(new InputStreamReader(System.in)); StringTokenizer st=new StringTokenizer(""); String next() { while (!st.hasMoreTokens()) try { st=new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } int[] readArray(int n) { int[] a=new int[n]; for (int i=0; i<n; i++) a[i]=nextInt(); return a; } long nextLong() { return Long.parseLong(next()); } } static int[] reverse(int[] a) { int n=a.length; int[] res=new int[n]; for (int i=0; i<n; i++) res[i]=a[n-1-i]; return res; } }
Java
["5\n\n3\n\n4"]
1 second
["? 1 5\n\n? 4 5\n\n! 1"]
NoteIn the sample suppose $$$a$$$ is $$$[5, 1, 4, 2, 3]$$$. So after asking the $$$[1..5]$$$ subsegment $$$4$$$ is second to max value, and it's position is $$$3$$$. After asking the $$$[4..5]$$$ subsegment $$$2$$$ is second to max value and it's position in the whole array is $$$4$$$.Note that there are other arrays $$$a$$$ that would produce the same interaction, and the answer for them might be different. Example output is given in purpose of understanding the interaction.
Java 8
standard input
[ "binary search", "interactive" ]
b3e8fe76706ba17cb285c75459508334
The first line contains a single integer $$$n$$$ $$$(2 \leq n \leq 10^5)$$$ — the number of elements in the array.
1,600
null
standard output
PASSED
7e84af4297515a3ee744ff8a03a09563
train_109.jsonl
1613658900
The only difference between the easy and the hard version is the limit to the number of queries.This is an interactive problem.There is an array $$$a$$$ of $$$n$$$ different numbers. In one query you can ask the position of the second maximum element in a subsegment $$$a[l..r]$$$. Find the position of the maximum element in the array in no more than 40 queries.A subsegment $$$a[l..r]$$$ is all the elements $$$a_l, a_{l + 1}, ..., a_r$$$. After asking this subsegment you will be given the position of the second maximum from this subsegment in the whole array.
256 megabytes
import java.io.*; import java.math.BigInteger; import java.util.*; public class TaskA { public static void main(String[] args) { InputReader in = new InputReader(System.in); PrintWriter out = new PrintWriter(System.out); Task solver = new Task(); solver.solve(in, out); out.close(); } // main solver static class Task { Scanner sc = new Scanner(System.in); public void solve(InputReader in, PrintWriter out) { int t = 1; for (int i = 0; i < t; i++){ solveOne(in, out); } } private int query(int l, int r){ System.out.println("? " + l + " " + r); System.out.flush(); int pos = sc.nextInt(); return pos; } private void solveOne(InputReader in, PrintWriter out) { int n = sc.nextInt(); int l = 1, r = n; while (l < r-1){ int mid = (l+r)>>1; int pos = query(l, r); if (pos<=mid){ int x = query(l, mid); if (x==pos){ r = mid; } else{ l = mid; } } else{ int x = query(mid, r); if (x==pos){ l = mid; } else{ r = mid; } } } if (l !=r && query(l,r)==l){ l = r; } System.out.println("! " + l); } } static class Point{ public int x,y,z, ID; public Point(int x, int y, int z, int ID){ this.x = x; this.y = y; this.z = z; this.ID = ID; } @Override public String toString() { return "[" + x + " " + y + " " + z + " " + ID + "]"; } } static class SortByX implements Comparator<Point>{ @Override public int compare(Point p1, Point p2) { return Integer.compare(p1.x, p2.x); } } static class SortByY implements Comparator<Point>{ @Override public int compare(Point p1, Point p2) { if (p1.y != p2.y) return Integer.compare(p1.y, p2.y); if (p1.z > p2.z) return -1; return 1; } } // fast input reader class; static class InputReader { BufferedReader br; StringTokenizer st; public InputReader(InputStream stream) { br = new BufferedReader(new InputStreamReader(stream)); } public String nextToken() { while (st == null || !st.hasMoreTokens()) { String line = null; try { line = br.readLine(); } catch (IOException e) { throw new RuntimeException(e); } if (line == null) { return null; } st = new StringTokenizer(line); } return st.nextToken(); } public int nextInt() { return Integer.parseInt(nextToken()); } public long nextLong(){ return Long.parseLong(nextToken()); } } }
Java
["5\n\n3\n\n4"]
1 second
["? 1 5\n\n? 4 5\n\n! 1"]
NoteIn the sample suppose $$$a$$$ is $$$[5, 1, 4, 2, 3]$$$. So after asking the $$$[1..5]$$$ subsegment $$$4$$$ is second to max value, and it's position is $$$3$$$. After asking the $$$[4..5]$$$ subsegment $$$2$$$ is second to max value and it's position in the whole array is $$$4$$$.Note that there are other arrays $$$a$$$ that would produce the same interaction, and the answer for them might be different. Example output is given in purpose of understanding the interaction.
Java 8
standard input
[ "binary search", "interactive" ]
b3e8fe76706ba17cb285c75459508334
The first line contains a single integer $$$n$$$ $$$(2 \leq n \leq 10^5)$$$ — the number of elements in the array.
1,600
null
standard output
PASSED
4326d2658ea75c942124f340323f3578
train_109.jsonl
1613658900
The only difference between the easy and the hard version is the limit to the number of queries.This is an interactive problem.There is an array $$$a$$$ of $$$n$$$ different numbers. In one query you can ask the position of the second maximum element in a subsegment $$$a[l..r]$$$. Find the position of the maximum element in the array in no more than 40 queries.A subsegment $$$a[l..r]$$$ is all the elements $$$a_l, a_{l + 1}, ..., a_r$$$. After asking this subsegment you will be given the position of the second maximum from this subsegment in the whole array.
256 megabytes
// package com.company; import java.sql.SQLOutput; import java.util.*; import java.lang.*; import java.io.*; //****Use Integer Wrapper Class for Arrays.sort()**** public class HM3 { static PrintWriter out=new PrintWriter(new OutputStreamWriter(System.out)); public static void main(String[] Args)throws Exception{ FastReader scan=new FastReader(System.in); int t=1; // t=scan.nextInt(); while(t-->0){ int n=scan.nextInt(); int l=1; int r=n; while(r-l>1){ query(l,r); int val=scan.nextInt(); int mid=(l+r)/2; if(val>=mid){ query(mid,r); int valmid=scan.nextInt(); if(val==valmid) { l=mid; }else{ r=mid-1; } }else{ query(l,mid); int valmid=scan.nextInt(); if(val==valmid) { r=mid; }else{ l=mid+1; } } } if(l==r) { out.println("! " + l); }else{ query(l,r); int val=scan.nextInt(); out.println("! "+(val==l?r:l)); } } out.flush(); out.close(); } static void query(int l,int r){ out.println("? "+l+" "+r); out.flush(); } static class FastReader { byte[] buf = new byte[2048]; int index, total; InputStream in; FastReader(InputStream is) { in = is; } int scan() throws IOException { if (index >= total) { index = 0; total = in.read(buf); if (total <= 0) { return -1; } } return buf[index++]; } String next() throws IOException { int c; for (c = scan(); c <= 32; c = scan()) ; StringBuilder sb = new StringBuilder(); for (; c > 32; c = scan()) { sb.append((char) c); } return sb.toString(); } int nextInt() throws IOException { int c, val = 0; for (c = scan(); c <= 32; c = scan()) ; boolean neg = c == '-'; if (c == '-' || c == '+') { c = scan(); } for (; c >= '0' && c <= '9'; c = scan()) { val = (val << 3) + (val << 1) + (c & 15); } return neg ? -val : val; } long nextLong() throws IOException { int c; long val = 0; for (c = scan(); c <= 32; c = scan()) ; boolean neg = c == '-'; if (c == '-' || c == '+') { c = scan(); } for (; c >= '0' && c <= '9'; c = scan()) { val = (val << 3) + (val << 1) + (c & 15); } return neg ? -val : val; } } }
Java
["5\n\n3\n\n4"]
1 second
["? 1 5\n\n? 4 5\n\n! 1"]
NoteIn the sample suppose $$$a$$$ is $$$[5, 1, 4, 2, 3]$$$. So after asking the $$$[1..5]$$$ subsegment $$$4$$$ is second to max value, and it's position is $$$3$$$. After asking the $$$[4..5]$$$ subsegment $$$2$$$ is second to max value and it's position in the whole array is $$$4$$$.Note that there are other arrays $$$a$$$ that would produce the same interaction, and the answer for them might be different. Example output is given in purpose of understanding the interaction.
Java 8
standard input
[ "binary search", "interactive" ]
b3e8fe76706ba17cb285c75459508334
The first line contains a single integer $$$n$$$ $$$(2 \leq n \leq 10^5)$$$ — the number of elements in the array.
1,600
null
standard output
PASSED
a50cd0e39d0a811f1c2c376557003568
train_109.jsonl
1613658900
The only difference between the easy and the hard version is the limit to the number of queries.This is an interactive problem.There is an array $$$a$$$ of $$$n$$$ different numbers. In one query you can ask the position of the second maximum element in a subsegment $$$a[l..r]$$$. Find the position of the maximum element in the array in no more than 40 queries.A subsegment $$$a[l..r]$$$ is all the elements $$$a_l, a_{l + 1}, ..., a_r$$$. After asking this subsegment you will be given the position of the second maximum from this subsegment in the whole array.
256 megabytes
import java.util.*; import java.io.*; public class Main { public static void main(String[] args) throws Exception { int n=sc.nextInt(); pw.println("? "+1+" "+n); pw.flush(); int v=sc.nextInt(); int x=0; if(v!=1) { pw.println("? "+1+" "+v); pw.flush(); x=sc.nextInt(); } if(x==v&&v!=1) { int low=1; int high=v-1; int mid=(low+high)/2; while(low<=high) { pw.println("? "+mid+" "+v); pw.flush(); x=sc.nextInt(); if(x==v) { low=mid+1; }else { high=mid-1; } mid=(low+high)/2; } pw.println("! "+high); }else { int low=v+1; int high=n; int mid=(low+high)/2; while(low<=high) { pw.println("? "+v+" "+mid); pw.flush(); x=sc.nextInt(); if(x==v) { high=mid-1; }else { low=mid+1; } mid=(low+high)/2; } pw.println("! "+low); } pw.close(); } static class Scanner { StringTokenizer st; BufferedReader br; public Scanner(InputStream s) { br = new BufferedReader(new InputStreamReader(s)); } public Scanner(FileReader r) { br = new BufferedReader(r); } public String next() throws IOException { while (st == null || !st.hasMoreTokens()) st = new StringTokenizer(br.readLine()); return st.nextToken(); } public int nextInt() throws IOException { return Integer.parseInt(next()); } public long nextLong() throws IOException { return Long.parseLong(next()); } public String nextLine() throws IOException { return br.readLine(); } public double nextDouble() throws IOException { String x = next(); StringBuilder sb = new StringBuilder("0"); double res = 0, f = 1; boolean dec = false, neg = false; int start = 0; if (x.charAt(0) == '-') { neg = true; start++; } for (int i = start; i < x.length(); i++) if (x.charAt(i) == '.') { res = Long.parseLong(sb.toString()); sb = new StringBuilder("0"); dec = true; } else { sb.append(x.charAt(i)); if (dec) f *= 10; } res += Long.parseLong(sb.toString()) / f; return res * (neg ? -1 : 1); } public long[] nextlongArray(int n) throws IOException { long[] a = new long[n]; for (int i = 0; i < n; i++) a[i] = nextLong(); return a; } public Long[] nextLongArray(int n) throws IOException { Long[] a = new Long[n]; for (int i = 0; i < n; i++) a[i] = nextLong(); return a; } public int[] nextIntArray(int n) throws IOException { int[] a = new int[n]; for (int i = 0; i < n; i++) a[i] = nextInt(); return a; } public Integer[] nextIntegerArray(int n) throws IOException { Integer[] a = new Integer[n]; for (int i = 0; i < n; i++) a[i] = nextInt(); return a; } public boolean ready() throws IOException { return br.ready(); } } static class pair implements Comparable<pair> { long x; long y; public pair(long x, long y) { this.x = x; this.y = y; } public String toString() { return x + " " + y; } public boolean equals(Object o) { if (o instanceof pair) { pair p = (pair) o; return p.x == x && p.y == y; } return false; } public int hashCode() { return new Double(x).hashCode() * 31 + new Double(y).hashCode(); } public int compareTo(pair other) { if (this.x == other.x) { return Long.compare(this.y, other.y); } return Long.compare(this.x, other.x); } } static class tuble implements Comparable<tuble> { int x; int y; int z; public tuble(int x, int y, int z) { this.x = x; this.y = y; this.z = z; } public String toString() { return x + " " + y + " " + z; } public int compareTo(tuble other) { if (this.x == other.x) { if (this.y == other.y) { return this.z - other.z; } return this.y - other.y; } else { return this.x - other.x; } } } static long mod = 1000000007; static Random rn = new Random(); static Scanner sc = new Scanner(System.in); static PrintWriter pw = new PrintWriter(System.out); }
Java
["5\n\n3\n\n4"]
1 second
["? 1 5\n\n? 4 5\n\n! 1"]
NoteIn the sample suppose $$$a$$$ is $$$[5, 1, 4, 2, 3]$$$. So after asking the $$$[1..5]$$$ subsegment $$$4$$$ is second to max value, and it's position is $$$3$$$. After asking the $$$[4..5]$$$ subsegment $$$2$$$ is second to max value and it's position in the whole array is $$$4$$$.Note that there are other arrays $$$a$$$ that would produce the same interaction, and the answer for them might be different. Example output is given in purpose of understanding the interaction.
Java 8
standard input
[ "binary search", "interactive" ]
b3e8fe76706ba17cb285c75459508334
The first line contains a single integer $$$n$$$ $$$(2 \leq n \leq 10^5)$$$ — the number of elements in the array.
1,600
null
standard output
PASSED
172cb4a06a9c9027f3966687d6d00b9d
train_109.jsonl
1613658900
The only difference between the easy and the hard version is the limit to the number of queries.This is an interactive problem.There is an array $$$a$$$ of $$$n$$$ different numbers. In one query you can ask the position of the second maximum element in a subsegment $$$a[l..r]$$$. Find the position of the maximum element in the array in no more than 40 queries.A subsegment $$$a[l..r]$$$ is all the elements $$$a_l, a_{l + 1}, ..., a_r$$$. After asking this subsegment you will be given the position of the second maximum from this subsegment in the whole array.
256 megabytes
import java.util.*; import javax.sound.midi.Track; import java.io.*; public class tr0 { static PrintWriter out; static StringBuilder sb; static long mod = (long) 1e9 + 7; static long inf = (long) 1e16; static int n, m; static ArrayList<Integer>[] ad; static int[][] remove, add; static int[][] memo, memo1[]; static boolean vis[]; static long[] f, inv, ncr[]; static HashMap<Integer, Integer> hm; static int[] pre, suf, Smax[], Smin[]; static int idmax, idmin; static ArrayList<Integer> av; static HashMap<Integer, Integer> mm; static boolean[] msks; static int[] lazy[], lazyCount; static int[] a, dist; static char[][] g; static int ave; static ArrayList<Integer> gl; static int[][] arr; public static void main(String[] args) throws Exception { Scanner sc = new Scanner(System.in); out = new PrintWriter(System.out); int n = sc.nextInt(); int pos = query(1, n); if (n == 2) { System.out.println("! " + (n - pos + 1)); System.out.flush(); return; } int ans = 0; if (pos != n) { int l = query(pos, n); if (l == pos) { int sign = 1; int dest = pos; for (int p = 17; p >= 0; p--) { if ((dest + sign * (1 << p)) <= n) { dest += sign * (1 << p); int q = query(pos, dest); if (q == pos) { ans = dest; sign = -1; } else { sign = 1; } } } } else { int sign = -1; ans = pos; int dest = pos; for (int p = 17; p >= 0; p--) { if ((dest + sign * (1 << p)) >= 1) { dest += sign * (1 << p); int q = query(dest, pos); if (q == pos) { ans = dest; sign = 1; } else { sign = -1; } } } } } else { int sign = -1; int dest = pos; for (int p = 17; p >= 0; p--) { if ((dest + sign * (1 << p)) >= 1) { dest += sign * (1 << p); int q = query(dest, pos); if (q == pos) { ans = dest; sign = 1; } else { sign = -1; } } } } System.out.println("! " + ans); System.out.flush(); // out.flush(); 1 2 3 } static int query(int l, int r) throws IOException { Scanner sc1 = new Scanner(System.in); System.out.println("? " + l + " " + r); System.out.flush(); return sc1.nextInt(); } static class Scanner { StringTokenizer st; BufferedReader br; public Scanner(InputStream system) { br = new BufferedReader(new InputStreamReader(system)); } public Scanner(String file) throws Exception { br = new BufferedReader(new FileReader(file)); } public String next() throws IOException { while (st == null || !st.hasMoreTokens()) st = new StringTokenizer(br.readLine()); return st.nextToken(); } public String nextLine() throws IOException { return br.readLine(); } public int nextInt() throws IOException { return Integer.parseInt(next()); } public double nextDouble() throws IOException { return Double.parseDouble(next()); } public char nextChar() throws IOException { return next().charAt(0); } public Long nextLong() throws IOException { return Long.parseLong(next()); } public int[] nextArrInt(int n) throws IOException { int[] a = new int[n]; for (int i = 0; i < n; i++) a[i] = nextInt(); return a; } public long[] nextArrLong(int n) throws IOException { long[] a = new long[n]; for (int i = 0; i < n; i++) a[i] = nextLong(); return a; } public int[] nextArrIntSorted(int n) throws IOException { int[] a = new int[n]; Integer[] a1 = new Integer[n]; for (int i = 0; i < n; i++) a1[i] = nextInt(); Arrays.sort(a1); for (int i = 0; i < n; i++) a[i] = a1[1].intValue(); return a; } public long[] nextArrLongSorted(int n) throws IOException { long[] a = new long[n]; Long[] a1 = new Long[n]; for (int i = 0; i < n; i++) a1[i] = nextLong(); Arrays.sort(a1); for (int i = 0; i < n; i++) a[i] = a1[1].longValue(); return a; } public boolean ready() throws IOException { return br.ready(); } public void waitForInput() throws InterruptedException { Thread.sleep(3000); } } }
Java
["5\n\n3\n\n4"]
1 second
["? 1 5\n\n? 4 5\n\n! 1"]
NoteIn the sample suppose $$$a$$$ is $$$[5, 1, 4, 2, 3]$$$. So after asking the $$$[1..5]$$$ subsegment $$$4$$$ is second to max value, and it's position is $$$3$$$. After asking the $$$[4..5]$$$ subsegment $$$2$$$ is second to max value and it's position in the whole array is $$$4$$$.Note that there are other arrays $$$a$$$ that would produce the same interaction, and the answer for them might be different. Example output is given in purpose of understanding the interaction.
Java 8
standard input
[ "binary search", "interactive" ]
b3e8fe76706ba17cb285c75459508334
The first line contains a single integer $$$n$$$ $$$(2 \leq n \leq 10^5)$$$ — the number of elements in the array.
1,600
null
standard output
PASSED
ae722c59bc1c5cb3780e93795d21eb93
train_109.jsonl
1613658900
The only difference between the easy and the hard version is the limit to the number of queries.This is an interactive problem.There is an array $$$a$$$ of $$$n$$$ different numbers. In one query you can ask the position of the second maximum element in a subsegment $$$a[l..r]$$$. Find the position of the maximum element in the array in no more than 40 queries.A subsegment $$$a[l..r]$$$ is all the elements $$$a_l, a_{l + 1}, ..., a_r$$$. After asking this subsegment you will be given the position of the second maximum from this subsegment in the whole array.
256 megabytes
//stan hu tao import static java.lang.Math.max; import static java.lang.Math.min; import static java.lang.Math.abs; import java.util.*; import java.io.*; import java.math.*; public class x1486C1 { public static void main(String hi[]) throws Exception { BufferedReader infile = new BufferedReader(new InputStreamReader(System.in)); StringTokenizer st = new StringTokenizer(infile.readLine()); int N = Integer.parseInt(st.nextToken()); System.out.println("? 1 "+N); System.out.flush(); int middle = Integer.parseInt(infile.readLine()); int res = 0; if(middle > 1) { System.out.println("? 1 "+middle); System.out.flush(); int dex = Integer.parseInt(infile.readLine()); if(dex == middle) { int low = 1; int high = middle-1; while(low != high) { int mid = (low+high+1)/2; System.out.println("? "+mid+" "+middle); System.out.flush(); dex = Integer.parseInt(infile.readLine()); if(dex == middle) low = mid; else high = mid-1; } res = low; } } if(res == 0 && middle < N) { //should always be true int low = middle+1; int high = N; while(low != high) { int mid = (low+high)/2; System.out.println("? "+middle+" "+mid); System.out.flush(); int dex = Integer.parseInt(infile.readLine()); if(dex == middle) high = mid; else low = mid+1; } res = low; } System.out.println("! "+res); System.out.flush(); } public static int[] readArr(int N, BufferedReader infile, StringTokenizer st) throws Exception { int[] arr = new int[N]; st = new StringTokenizer(infile.readLine()); for(int i=0; i < N; i++) arr[i] = Integer.parseInt(st.nextToken()); return arr; } }
Java
["5\n\n3\n\n4"]
1 second
["? 1 5\n\n? 4 5\n\n! 1"]
NoteIn the sample suppose $$$a$$$ is $$$[5, 1, 4, 2, 3]$$$. So after asking the $$$[1..5]$$$ subsegment $$$4$$$ is second to max value, and it's position is $$$3$$$. After asking the $$$[4..5]$$$ subsegment $$$2$$$ is second to max value and it's position in the whole array is $$$4$$$.Note that there are other arrays $$$a$$$ that would produce the same interaction, and the answer for them might be different. Example output is given in purpose of understanding the interaction.
Java 8
standard input
[ "binary search", "interactive" ]
b3e8fe76706ba17cb285c75459508334
The first line contains a single integer $$$n$$$ $$$(2 \leq n \leq 10^5)$$$ — the number of elements in the array.
1,600
null
standard output
PASSED
8635125a3e4af29dbbcbbed7bba544dc
train_109.jsonl
1613658900
The only difference between the easy and the hard version is the limit to the number of queries.This is an interactive problem.There is an array $$$a$$$ of $$$n$$$ different numbers. In one query you can ask the position of the second maximum element in a subsegment $$$a[l..r]$$$. Find the position of the maximum element in the array in no more than 40 queries.A subsegment $$$a[l..r]$$$ is all the elements $$$a_l, a_{l + 1}, ..., a_r$$$. After asking this subsegment you will be given the position of the second maximum from this subsegment in the whole array.
256 megabytes
import java.util.Scanner; public class C1486 { public static void main(String[] args) { Scanner in = new Scanner(System.in); int N = in.nextInt(); System.out.println("? 1 " + N); System.out.flush(); int second = in.nextInt(); int low = -1; int high = -1; if (second != 1) { System.out.println("? 1 " + second); System.out.flush(); int answer = in.nextInt(); if (answer == second) { low = 1; high = second-1; } } if (second != N) { System.out.println("? " + second + " " + N); System.out.flush(); int answer = in.nextInt(); if (answer == second) { low = second+1; high = N; } } while (low != high) { int mid = (low + high + ((low < second) ? 1 : 0))/2; if (mid < second) { System.out.println("? " + mid + " " + second); } else { System.out.println("? " + second + " " + mid); } System.out.flush(); int answer = in.nextInt(); if (mid < second) { if (answer == second) { low = mid; } else { high = mid-1; } } else { if (answer == second) { high = mid; } else { low = mid+1; } } } System.out.println("! " + low); System.out.flush(); } }
Java
["5\n\n3\n\n4"]
1 second
["? 1 5\n\n? 4 5\n\n! 1"]
NoteIn the sample suppose $$$a$$$ is $$$[5, 1, 4, 2, 3]$$$. So after asking the $$$[1..5]$$$ subsegment $$$4$$$ is second to max value, and it's position is $$$3$$$. After asking the $$$[4..5]$$$ subsegment $$$2$$$ is second to max value and it's position in the whole array is $$$4$$$.Note that there are other arrays $$$a$$$ that would produce the same interaction, and the answer for them might be different. Example output is given in purpose of understanding the interaction.
Java 8
standard input
[ "binary search", "interactive" ]
b3e8fe76706ba17cb285c75459508334
The first line contains a single integer $$$n$$$ $$$(2 \leq n \leq 10^5)$$$ — the number of elements in the array.
1,600
null
standard output
PASSED
e469780127ce6e69507f8096250469ca
train_109.jsonl
1613658900
The only difference between the easy and the hard version is the limit to the number of queries.This is an interactive problem.There is an array $$$a$$$ of $$$n$$$ different numbers. In one query you can ask the position of the second maximum element in a subsegment $$$a[l..r]$$$. Find the position of the maximum element in the array in no more than 40 queries.A subsegment $$$a[l..r]$$$ is all the elements $$$a_l, a_{l + 1}, ..., a_r$$$. After asking this subsegment you will be given the position of the second maximum from this subsegment in the whole array.
256 megabytes
import java.util.*; import java.io.*; public class codeforces1486C1 { static PrintWriter pw; public static void main(String[] args) throws Exception { FastScanner in = new FastScanner(); pw = new PrintWriter(System.out); int n = in.nextInt(); int low = 1; int high = n; while (low<high) { if (low+1==high) { print(low,high); int a = in.nextInt(); if (a==low) pw.println("! "+high); else pw.println("! "+low); break; } print(low,high); int a = in.nextInt(); int mid = (low+high)/2; if (a>=mid) { print(mid,high); int next = in.nextInt(); if (next==a) low = mid; else high = mid; } else { print(low,mid); int next = in.nextInt(); if (next==a) high = mid; else low = mid; } } //pw.println("! "+low); pw.close(); } static void print (int a, int b) { pw.println("? "+a+" "+b); pw.flush(); } private static class FastScanner { final private int BUFFER_SIZE = 1 << 16; private DataInputStream din; private byte[] buffer; private int bufferPointer, bytesRead; private FastScanner() throws IOException { din = new DataInputStream(System.in); buffer = new byte[BUFFER_SIZE]; bufferPointer = bytesRead = 0; } private short nextShort() throws IOException { short ret = 0; byte c = read(); while (c <= ' ') c = read(); boolean neg = (c == '-'); if (neg) c = read(); do ret = (short) (ret * 10 + c - '0'); while ((c = read()) >= '0' && c <= '9'); if (neg) return (short) -ret; return ret; } private int nextInt() throws IOException { int ret = 0; byte c = read(); while (c <= ' ') c = read(); boolean neg = (c == '-'); if (neg) c = read(); do ret = ret * 10 + c - '0'; while ((c = read()) >= '0' && c <= '9'); if (neg) return -ret; return ret; } public long nextLong() throws IOException { long ret = 0; byte c = read(); while (c <= ' ') c = read(); boolean neg = (c == '-'); if (neg) c = read(); do ret = ret * 10 + c - '0'; while ((c = read()) >= '0' && c <= '9'); if (neg) return -ret; return ret; } private char nextChar() throws IOException { byte c = read(); while (c <= ' ') c = read(); return (char) c; } private String nextString() throws IOException { StringBuilder ret = new StringBuilder(); byte c = read(); while (c <= ' ') c = read(); do { ret.append((char) c); } while ((c = read()) > ' '); return ret.toString(); } private void fillBuffer() throws IOException { bytesRead = din.read(buffer, bufferPointer = 0, BUFFER_SIZE); if (bytesRead == -1) buffer[0] = -1; } private byte read() throws IOException { if (bufferPointer == bytesRead) fillBuffer(); return buffer[bufferPointer++]; } } }
Java
["5\n\n3\n\n4"]
1 second
["? 1 5\n\n? 4 5\n\n! 1"]
NoteIn the sample suppose $$$a$$$ is $$$[5, 1, 4, 2, 3]$$$. So after asking the $$$[1..5]$$$ subsegment $$$4$$$ is second to max value, and it's position is $$$3$$$. After asking the $$$[4..5]$$$ subsegment $$$2$$$ is second to max value and it's position in the whole array is $$$4$$$.Note that there are other arrays $$$a$$$ that would produce the same interaction, and the answer for them might be different. Example output is given in purpose of understanding the interaction.
Java 8
standard input
[ "binary search", "interactive" ]
b3e8fe76706ba17cb285c75459508334
The first line contains a single integer $$$n$$$ $$$(2 \leq n \leq 10^5)$$$ — the number of elements in the array.
1,600
null
standard output
PASSED
8549e7f2daaa8aaf019e31318d589d42
train_109.jsonl
1613658900
The only difference between the easy and the hard version is the limit to the number of queries.This is an interactive problem.There is an array $$$a$$$ of $$$n$$$ different numbers. In one query you can ask the position of the second maximum element in a subsegment $$$a[l..r]$$$. Find the position of the maximum element in the array in no more than 40 queries.A subsegment $$$a[l..r]$$$ is all the elements $$$a_l, a_{l + 1}, ..., a_r$$$. After asking this subsegment you will be given the position of the second maximum from this subsegment in the whole array.
256 megabytes
import java.util.*; import java.io.*; ////*************************************************************************** /* public class E_Gardener_and_Tree implements Runnable{ public static void main(String[] args) throws Exception { new Thread(null, new E_Gardener_and_Tree(), "E_Gardener_and_Tree", 1<<28).start(); } public void run(){ WRITE YOUR CODE HERE!!!! JUST WRITE EVERYTHING HERE WHICH YOU WRITE IN MAIN!!! } } */ /////************************************************************************** public class C2_Guessing_the_Greatest_hard_version_{ public static void main(String[] args) { FastScanner s= new FastScanner(); //PrintWriter out=new PrintWriter(System.out); //end of program //out.println(answer); //out.close(); StringBuilder res = new StringBuilder(); int n=s.nextInt(); long index= query(1,n); int check=1; if(index==1){ check=1; } else if(index==n){ check=-1; } else{ long a1=query(1,index); //long a2=query(index,n); if(a1==index){ check=-1; } else{ check=1; } } if(check==1){ long start=index; long end=n; long mid=0; while(start<end){ mid=(start+end)/2; if(start+1==end){ break; } long a1=query(index,mid); if(a1==index){ end=mid; } else{ start=mid; } } System.out.println("! "+end+" \n"); System.out.println(); System.out.flush(); } else{ long start=1; long end=index; long mid=0; while(start<end){ mid=(start+end)/2; if(start+1==end){ break; } long a1=query(mid,index); if(a1==index){ start=mid; } else{ end=mid; } } System.out.println("! "+start+" \n"); System.out.println(); System.out.flush(); } } private static long query(long l, long r) { FastScanner s= new FastScanner(); System.out.println("? "+l+" "+r+" \n"); System.out.println(); System.out.flush(); long a=s.nextLong(); return a; } static class FastScanner { BufferedReader br; StringTokenizer st; public FastScanner(String s) { try { br = new BufferedReader(new FileReader(s)); } catch (FileNotFoundException e) { // TODO Auto-generated catch block e.printStackTrace(); } } public FastScanner() { br = new BufferedReader(new InputStreamReader(System.in)); } String nextToken() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { // TODO Auto-generated catch block e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(nextToken()); } long nextLong() { return Long.parseLong(nextToken()); } double nextDouble() { return Double.parseDouble(nextToken()); } } static long modpower(long x, long y, long p) { long res = 1; // Initialize result x = x % p; // Update x if it is more than or // equal to p if (x == 0) return 0; // In case x is divisible by p; while (y > 0) { // If y is odd, multiply x with result if ((y & 1) != 0) res = (res * x) % p; // y must be even now y = y >> 1; // y = y/2 x = (x * x) % p; } return res; } // SIMPLE POWER FUNCTION=> static long power(long x, long y) { long res = 1; // Initialize result while (y > 0) { // If y is odd, multiply x with result if ((y & 1) != 0) res = res * x; // y must be even now y = y >> 1; // y = y/2 x = x * x; // Change x to x^2 } return res; } }
Java
["5\n\n3\n\n4"]
1 second
["? 1 5\n\n? 4 5\n\n! 1"]
NoteIn the sample suppose $$$a$$$ is $$$[5, 1, 4, 2, 3]$$$. So after asking the $$$[1..5]$$$ subsegment $$$4$$$ is second to max value, and it's position is $$$3$$$. After asking the $$$[4..5]$$$ subsegment $$$2$$$ is second to max value and it's position in the whole array is $$$4$$$.Note that there are other arrays $$$a$$$ that would produce the same interaction, and the answer for them might be different. Example output is given in purpose of understanding the interaction.
Java 8
standard input
[ "binary search", "interactive" ]
b3e8fe76706ba17cb285c75459508334
The first line contains a single integer $$$n$$$ $$$(2 \leq n \leq 10^5)$$$ — the number of elements in the array.
1,600
null
standard output
PASSED
16c278e165609a4270663ee4c44e5e4a
train_109.jsonl
1613658900
The only difference between the easy and the hard version is the limit to the number of queries.This is an interactive problem.There is an array $$$a$$$ of $$$n$$$ different numbers. In one query you can ask the position of the second maximum element in a subsegment $$$a[l..r]$$$. Find the position of the maximum element in the array in no more than 40 queries.A subsegment $$$a[l..r]$$$ is all the elements $$$a_l, a_{l + 1}, ..., a_r$$$. After asking this subsegment you will be given the position of the second maximum from this subsegment in the whole array.
256 megabytes
import java.io.BufferedReader; import java.io.IOException; import java.io.InputStream; import java.io.InputStreamReader; import java.io.PrintWriter; import java.util.ArrayList; import java.util.Arrays; import java.util.HashMap; import java.util.List; import java.util.Map; import java.util.StringTokenizer; import java.util.TreeMap; /* This is not mine code ...I used this code for testing */ public class Main implements Runnable { int n, m; static boolean use_n_tests = false; int N = -1; long mod = 1000000007; void solve(FastScanner in, PrintWriter out, int testNumber) { n = in.nextInt(); out.println("! " + rec(0, n, -1)); } int rec(int l, int r, int p) { if (r - l <= 1) { return r; } int bigPos = p; if (p == -1) { bigPos = ask(l, r - 1); } int mid = (l + r) / 2; if (bigPos < mid) { int left = ask(l, mid - 1); if (left == bigPos) { return rec(l, mid, left); } else { return rec(mid, r, -1); } } else { int right = ask(mid, r - 1); if (right == bigPos) { return rec(mid, r, right); } else { return rec(l, mid, -1); } } } // ****************************** template code *********** int ask(int l, int r) { if (l >= r) { return -1; } System.out.printf("? %d %d\n", l + 1, r + 1); System.out.flush(); return in.nextInt() - 1; } static int stack_size = 1 << 27; class Mod { long mod; Mod(long mod) { this.mod = mod; } long add(long a, long b) { a = mod(a); b = mod(b); return (a + b) % mod; } long sub(long a, long b) { a = mod(a); b = mod(b); return (a - b + mod) % mod; } long mul(long a, long b) { a = mod(a); b = mod(b); return a * b % mod; } long div(long a, long b) { a = mod(a); b = mod(b); return (a * inv(b)) % mod; } public long inv(long r) { if (r == 1) return 1; return ((mod - mod / r) * inv(mod % r)) % mod; } private long mod(long a) { return a % mod; } } class Coeff { long mod; long[][] C; long[] fact; boolean cycleWay = false; Coeff(int n, long mod) { this.mod = mod; fact = new long[n + 1]; fact[0] = 1; for (int i = 1; i <= n; i++) { fact[i] = i; fact[i] %= mod; fact[i] *= fact[i - 1]; fact[i] %= mod; } } Coeff(int n, int m, long mod) { // n > m cycleWay = true; this.mod = mod; C = new long[n + 1][m + 1]; for (int i = 0; i <= n; i++) { for (int j = 0; j <= Math.min(i, m); j++) { if (j == 0 || j == i) { C[i][j] = 1; } else { C[i][j] = C[i - 1][j - 1] + C[i - 1][j]; C[i][j] %= mod; } } } } public long C(int n, int m) { if (cycleWay) { return C[n][m]; } return fC(n, m); } private long fC(int n, int m) { return (fact[n] * inv(fact[n - m] * fact[m] % mod)) % mod; } private long inv(long r) { if (r == 1) return 1; return ((mod - mod / r) * inv(mod % r)) % mod; } } class Pair { int first; int second; public int getFirst() { return first; } public int getSecond() { return second; } } class MultisetTree<T> { int size = 0; TreeMap<T, Integer> mp = new TreeMap<>(); void add(T x) { mp.merge(x, 1, Integer::sum); size++; } void remove(T x) { if (mp.containsKey(x)) { mp.merge(x, -1, Integer::sum); if (mp.get(x) == 0) { mp.remove(x); } size--; } } boolean contains(T x) { return mp.containsKey(x); } T greatest() { return mp.lastKey(); } T smallest() { return mp.firstKey(); } int size() { return size; } int diffSize() { return mp.size(); } } class Multiset<T> { int size = 0; Map<T, Integer> mp = new HashMap<>(); void add(T x) { mp.merge(x, 1, Integer::sum); size++; } boolean contains(T x) { return mp.containsKey(x); } void remove(T x) { if (mp.containsKey(x)) { mp.merge(x, -1, Integer::sum); if (mp.get(x) == 0) { mp.remove(x); } size--; } } int size() { return size; } int diffSize() { return mp.size(); } } static class Range { int l, r; int id; public int getL() { return l; } public int getR() { return r; } public Range(int l, int r, int id) { this.l = l; this.r = r; this.id = id; } } static class Array { static Range[] readRanges(int n, FastScanner in) { Range[] result = new Range[n]; for (int i = 0; i < n; i++) { result[i] = new Range(in.nextInt(), in.nextInt(), i); } return result; } static List<List<Integer>> intInit2D(int n) { List<List<Integer>> res = new ArrayList<>(); for (int i = 0; i < n; i++) { res.add(new ArrayList<>()); } return res; } static boolean isSorted(Integer[] a) { for (int i = 0; i < a.length - 1; i++) { if (a[i] > a[i + 1]) { return false; } } return true; } static public long sum(int[] a) { long sum = 0; for (int x : a) { sum += x; } return sum; } static public long sum(long[] a) { long sum = 0; for (long x : a) { sum += x; } return sum; } static public long sum(Integer[] a) { long sum = 0; for (int x : a) { sum += x; } return sum; } static public int min(Integer[] a) { int mn = Integer.MAX_VALUE; for (int x : a) { mn = Math.min(mn, x); } return mn; } static public int min(int[] a) { int mn = Integer.MAX_VALUE; for (int x : a) { mn = Math.min(mn, x); } return mn; } static public int max(Integer[] a) { int mx = Integer.MIN_VALUE; for (int x : a) { mx = Math.max(mx, x); } return mx; } static public int max(int[] a) { int mx = Integer.MIN_VALUE; for (int x : a) { mx = Math.max(mx, x); } return mx; } static public int[] readint(int n, FastScanner in) { int[] out = new int[n]; for (int i = 0; i < out.length; i++) { out[i] = in.nextInt(); } return out; } } class Graph { List<List<Integer>> graph; Graph(int n) { create(n); } void create(int n) { List<List<Integer>> graph = new ArrayList<>(); for (int i = 0; i < n; i++) { graph.add(new ArrayList<>()); } this.graph = graph; } void readBi(int m, FastScanner in) { for (int i = 0; i < m; i++) { int v = in.nextInt() - 1; int u = in.nextInt() - 1; graph.get(v).add(u); graph.get(u).add(v); } } } class FastScanner { BufferedReader br; StringTokenizer st; public FastScanner(InputStream io) { br = new BufferedReader(new InputStreamReader(io)); } public String line() { String result = ""; try { result = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return result; } public String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } public int nextInt() { return Integer.parseInt(next()); } public int[] nextArray(int n) { int[] res = new int[n]; for (int i = 0; i < n; i++) { res[i] = in.nextInt(); } return res; } public long[] nextArrayL(int n) { long[] res = new long[n]; for (int i = 0; i < n; i++) { res[i] = in.nextLong(); } return res; } public Long[] nextArrayL2(int n) { Long[] res = new Long[n]; for (int i = 0; i < n; i++) { res[i] = in.nextLong(); } return res; } public Integer[] nextArray2(int n) { Integer[] res = new Integer[n]; for (int i = 0; i < n; i++) { res[i] = in.nextInt(); } return res; } public long nextLong() { return Long.parseLong(next()); } } void run_t_tests() { int t = in.nextInt(); int i = 0; while (t-- > 0) { solve(in, out, i++); } } void run_one() { solve(in, out, -1); } @Override public void run() { in = new FastScanner(System.in); out = new PrintWriter(System.out); if (use_n_tests) { run_t_tests(); } else { run_one(); } out.close(); } static FastScanner in; static PrintWriter out; public static void main(String[] args) throws InterruptedException { Thread thread = new Thread(null, new Main(), "", stack_size); thread.start(); thread.join(); } }
Java
["5\n\n3\n\n4"]
1 second
["? 1 5\n\n? 4 5\n\n! 1"]
NoteIn the sample suppose $$$a$$$ is $$$[5, 1, 4, 2, 3]$$$. So after asking the $$$[1..5]$$$ subsegment $$$4$$$ is second to max value, and it's position is $$$3$$$. After asking the $$$[4..5]$$$ subsegment $$$2$$$ is second to max value and it's position in the whole array is $$$4$$$.Note that there are other arrays $$$a$$$ that would produce the same interaction, and the answer for them might be different. Example output is given in purpose of understanding the interaction.
Java 8
standard input
[ "binary search", "interactive" ]
b3e8fe76706ba17cb285c75459508334
The first line contains a single integer $$$n$$$ $$$(2 \leq n \leq 10^5)$$$ — the number of elements in the array.
1,600
null
standard output
PASSED
de8739a06f45ea132b78db2117954f64
train_109.jsonl
1613658900
The only difference between the easy and the hard version is the limit to the number of queries.This is an interactive problem.There is an array $$$a$$$ of $$$n$$$ different numbers. In one query you can ask the position of the second maximum element in a subsegment $$$a[l..r]$$$. Find the position of the maximum element in the array in no more than 40 queries.A subsegment $$$a[l..r]$$$ is all the elements $$$a_l, a_{l + 1}, ..., a_r$$$. After asking this subsegment you will be given the position of the second maximum from this subsegment in the whole array.
256 megabytes
import java.io.*; import java.text.*; import java.util.*; import java.util.function.*; /** * Provide prove of correctness before implementation. Implementation can cost a lot of time. * Anti test that prove that it's wrong. * <p> * Do not confuse i j k g indexes, upTo and length. Do extra methods!!! Write more informative names to simulation * <p> * Will program ever exceed limit? * Try all approaches with prove of correctness if task is not obvious. * If you are given formula/rule: Try to play with it. * Analytic solution/Hardcoded solution/Constructive/Greedy/DP/Math/Brute force/Symmetric data * Number theory * Game theory (optimal play) that consider local and global strategy. * Start writing the hardest code first */ public class Stage001_050_CF1486_C1_C2 { final boolean ONLINE_JUDGE = java.lang.System.getProperty("ONLINE_JUDGE") != null; final boolean ANTI_TEST_FINDER_MODE = false; final Random r = new Random(42); Interactor interactor = ONLINE_JUDGE ? new CFInteractor() : new MockInteractor(); //log2 (10^5) + 1 private int solveOne(int testCase, int n) { interactor.setUp(n); //[..........second.........first...........] int secondIndex = interactor.getSecondMaximum(1, n); int len = upperBound(0, n, delta -> { int l = Math.max(1, secondIndex - delta); int r = Math.min(secondIndex + delta, n); return secondIndex != interactor.getSecondMaximum(l, r); } ); //[ 3 2 1 secondInd 1 2 3 n - 1] // ^ ^ int l = Math.max(1, secondIndex - len) - 1; int r = Math.min(secondIndex + len, n) + 1; if (1 <= l) { if(interactor.getSecondMaximum(l, secondIndex) == secondIndex){ interactor.printMaximumIndex(l); } else { interactor.printMaximumIndex(r); } } else if(r <= n) { if(interactor.getSecondMaximum(secondIndex, r) == secondIndex){ interactor.printMaximumIndex(r); } else interactor.printMaximumIndex(l); }// else { // throw new RuntimeException("wtf"); // } return 0; } interface Interactor { void setUp(int n); void printMaximumIndex(int i); int getSecondMaximum(int l, int r); } class CFInteractor implements Interactor { public void setUp(int n) { } public void printMaximumIndex(int i) { System.out.printf("! %d\n", i); System.out.flush(); } public int getSecondMaximum(int l, int r) { System.out.printf("? %d %d\n", l, r); System.out.flush(); return nextInt(); } } class MockInteractor implements Interactor { int[] a; int n; int maxInd; int tries; //Random r = new Random(); public void setUp(int n) { tries = 0; a = new int[n + 1]; this.n = n; // for (int i = 1; i <= n; i++) { // a[i] = nextInt(); // } for (int i = 1; i <= n; i++) { a[i] = i; } for (int i = 1; i <= n; i++) { int j = 1 + r.nextInt(n); int temp = a[i]; a[i] = a[j]; a[j] = temp; } int max = Integer.MIN_VALUE; for (int i = 1; i <= n; i++) { if (a[i] > max) { max = a[i]; maxInd = i; } } System.out.println(Arrays.toString(a)); //maxInd = getSecondMaximum(1, n); } public void printMaximumIndex(int i) { if (i != maxInd) { throw new RuntimeException(); } else { System.out.printf("OK %d\n", i); } } public int getSecondMaximum(int l, int r) { if(tries + 1 > 20) { throw new RuntimeException("LIMIT"); } tries++; int max = Integer.MIN_VALUE; //int lMaxInd = -1; for (int i = l; i <= r; i++) { if (a[i] > max) { max = a[i]; // lMaxInd = i; } } int max_ = Integer.MIN_VALUE; int lMaxInd_ = -1; for (int i = l; i <= r; i++) { if (a[i] > max_ && a[i] != max) { max_ = a[i]; lMaxInd_ = i; } } return lMaxInd_; } } private int upperBound(int inclusiveLeft, int exclusiveRight, Predicate<Integer> predicate) { while (exclusiveRight - inclusiveLeft > 1) { int middle = inclusiveLeft + (exclusiveRight - inclusiveLeft) / 2; if (predicate.test(middle)) { inclusiveLeft = middle; } else { exclusiveRight = middle; } } return inclusiveLeft; } private int lowerBound(int exclusiveLeft, int inclusiveRight, Predicate<Integer> predicate) { while (inclusiveRight - exclusiveLeft > 1) { int middle = exclusiveLeft + (inclusiveRight - exclusiveLeft) / 2; if (predicate.test(middle)) { inclusiveRight = middle; } else { exclusiveLeft = middle; } } return inclusiveRight; } private int solveOneNaive(int testCase) { return 0; } private void solve() { if (ANTI_TEST_FINDER_MODE) { int t = 100_000; for (int testCase = 0; testCase < t; testCase++) { // int expected = solveOneNaive(testCase); int actual = solveOne(testCase, 10); // if (expected != actual) { // throw new AssertionRuntimeException( // this.getClass().getSimpleName(), // testCase, // expected, // actual); // } } } else { int t = 1;//nextInt(); for (int testCase = 0; testCase < t; testCase++) { int n = nextInt(); solveOne(testCase, n); } } } class AssertionRuntimeException extends RuntimeException { AssertionRuntimeException(String testName, int testCase, Object expected, Object actual, Object... input) { super("Testcase: " + testCase + "\n expected = " + expected + ",\n actual = " + actual + ",\n " + Arrays.deepToString(input)); } } private void assertThat(boolean b) { if (!b) throw new RuntimeException(); } private void assertThat(boolean b, String s) { if (!b) throw new RuntimeException(s); } private int assertThatInt(long a) { assertThat(Integer.MIN_VALUE <= a && a <= Integer.MAX_VALUE, "Integer overflow long = [" + a + "]" + " int = [" + (int) a + "]"); return (int) a; } void _______debug(String str, Object... os) { if (!ONLINE_JUDGE) { System.out.println(MessageFormat.format(str, os)); System.out.flush(); } } void _______debug(Object o) { if (!ONLINE_JUDGE) { _______debug("{0}", String.valueOf(o)); } } private int nextInt() { return System.in.readInt(); } private long nextLong() { return System.in.readLong(); } private String nextString() { return System.in.readString(); } private int[] nextIntArr(int n) { return System.in.readIntArray(n); } private long[] nextLongArr(int n) { return System.in.readLongArray(n); } public static void main(String[] args) { new Stage001_050_CF1486_C1_C2().run(); } static class System { private static FastInputStream in; private static FastPrintStream out; } private void run() { // final long startTime = java.lang.System.currentTimeMillis(); final boolean USE_IO = ONLINE_JUDGE; if (USE_IO) { System.in = new FastInputStream(java.lang.System.in); System.out = new FastPrintStream(java.lang.System.out); solve(); System.out.flush(); } else { final String nameIn = "input.txt"; final String nameOut = "output.txt"; try { System.in = new FastInputStream(new FileInputStream(nameIn)); System.out = new FastPrintStream(new PrintStream(nameOut)); solve(); System.out.flush(); } catch (FileNotFoundException e) { e.printStackTrace(); } } // final long endTime = java.lang.System.currentTimeMillis(); // _______debug("Execution time: {0}", endTime - startTime); } private static class FastPrintStream { private static final int BUF_SIZE = 8192; private final byte[] buf = new byte[BUF_SIZE]; private final OutputStream out; private int ptr = 0; private FastPrintStream() { this(java.lang.System.out); } public FastPrintStream(OutputStream os) { this.out = os; } public FastPrintStream(String path) { try { this.out = new FileOutputStream(path); } catch (FileNotFoundException e) { throw new RuntimeException("FastWriter"); } } public FastPrintStream print(byte b) { buf[ptr++] = b; if (ptr == BUF_SIZE) innerFlush(); return this; } public FastPrintStream print(char c) { return print((byte) c); } public FastPrintStream print(char[] s) { for (char c : s) { buf[ptr++] = (byte) c; if (ptr == BUF_SIZE) innerFlush(); } return this; } public FastPrintStream print(String s) { s.chars().forEach(c -> { buf[ptr++] = (byte) c; if (ptr == BUF_SIZE) innerFlush(); }); return this; } //can be optimized public FastPrintStream print0(char[] s) { if (ptr + s.length < BUF_SIZE) { for (char c : s) { buf[ptr++] = (byte) c; } } else { for (char c : s) { buf[ptr++] = (byte) c; if (ptr == BUF_SIZE) innerFlush(); } } return this; } //can be optimized public FastPrintStream print0(String s) { if (ptr + s.length() < BUF_SIZE) { for (int i = 0; i < s.length(); i++) { buf[ptr++] = (byte) s.charAt(i); } } else { for (int i = 0; i < s.length(); i++) { buf[ptr++] = (byte) s.charAt(i); if (ptr == BUF_SIZE) innerFlush(); } } return this; } private static int countDigits(int l) { if (l >= 1000000000) return 10; if (l >= 100000000) return 9; if (l >= 10000000) return 8; if (l >= 1000000) return 7; if (l >= 100000) return 6; if (l >= 10000) return 5; if (l >= 1000) return 4; if (l >= 100) return 3; if (l >= 10) return 2; return 1; } public FastPrintStream print(int x) { if (x == Integer.MIN_VALUE) { return print((long) x); } if (ptr + 12 >= BUF_SIZE) innerFlush(); if (x < 0) { print((byte) '-'); x = -x; } int d = countDigits(x); for (int i = ptr + d - 1; i >= ptr; i--) { buf[i] = (byte) ('0' + x % 10); x /= 10; } ptr += d; return this; } private static int countDigits(long l) { if (l >= 1000000000000000000L) return 19; if (l >= 100000000000000000L) return 18; if (l >= 10000000000000000L) return 17; if (l >= 1000000000000000L) return 16; if (l >= 100000000000000L) return 15; if (l >= 10000000000000L) return 14; if (l >= 1000000000000L) return 13; if (l >= 100000000000L) return 12; if (l >= 10000000000L) return 11; if (l >= 1000000000L) return 10; if (l >= 100000000L) return 9; if (l >= 10000000L) return 8; if (l >= 1000000L) return 7; if (l >= 100000L) return 6; if (l >= 10000L) return 5; if (l >= 1000L) return 4; if (l >= 100L) return 3; if (l >= 10L) return 2; return 1; } public FastPrintStream print(long x) { if (x == Long.MIN_VALUE) { return print("" + x); } if (ptr + 21 >= BUF_SIZE) innerFlush(); if (x < 0) { print((byte) '-'); x = -x; } int d = countDigits(x); for (int i = ptr + d - 1; i >= ptr; i--) { buf[i] = (byte) ('0' + x % 10); x /= 10; } ptr += d; return this; } public FastPrintStream print(double x, int precision) { if (x < 0) { print('-'); x = -x; } x += Math.pow(10, -precision) / 2; print((long) x).print("."); x -= (long) x; for (int i = 0; i < precision; i++) { x *= 10; print((char) ('0' + (int) x)); x -= (int) x; } return this; } public FastPrintStream println(char c) { return print(c).println(); } public FastPrintStream println(int x) { return print(x).println(); } public FastPrintStream println(long x) { return print(x).println(); } public FastPrintStream println(String x) { return print(x).println(); } public FastPrintStream println(Object x) { return print(x.toString()).println(); } public FastPrintStream println(double x, int precision) { return print(x, precision).println(); } public FastPrintStream println() { return print((byte) '\n'); } public FastPrintStream printf(String format, Object... args) { return print(String.format(format, args)); } private void innerFlush() { try { out.write(buf, 0, ptr); ptr = 0; } catch (IOException e) { throw new RuntimeException("innerFlush"); } } public void flush() { innerFlush(); try { out.flush(); } catch (IOException e) { throw new RuntimeException("flush"); } } } private static class FastInputStream { private boolean finished = false; private InputStream stream; private byte[] buf = new byte[1024]; private int curChar; private int numChars; private SpaceCharFilter filter; public FastInputStream(InputStream stream) { this.stream = stream; } public double[] readDoubleArray(int size) { double[] array = new double[size]; for (int i = 0; i < size; i++) { array[i] = readDouble(); } return array; } public String[] readStringArray(int size) { String[] array = new String[size]; for (int i = 0; i < size; i++) { array[i] = readString(); } return array; } public char[] readCharArray(int size) { char[] array = new char[size]; for (int i = 0; i < size; i++) { array[i] = readCharacter(); } return array; } public String readText() { StringBuilder result = new StringBuilder(); while (true) { int character = read(); if (character == '\r') { continue; } if (character == -1) { break; } result.append((char) character); } return result.toString(); } public long[] readLongArray(int size) { long[] array = new long[size]; for (int i = 0; i < size; i++) { array[i] = readLong(); } return array; } public int[] readIntArray(int size) { int[] array = new int[size]; for (int i = 0; i < size; i++) { array[i] = readInt(); } return array; } public int read() { if (numChars == -1) { throw new InputMismatchException(); } if (curChar >= numChars) { curChar = 0; try { numChars = stream.read(buf); } catch (IOException e) { throw new InputMismatchException(); } if (numChars <= 0) { return -1; } } return buf[curChar++]; } public int peek() { if (numChars == -1) { return -1; } if (curChar >= numChars) { curChar = 0; try { numChars = stream.read(buf); } catch (IOException e) { return -1; } if (numChars <= 0) { return -1; } } return buf[curChar]; } public int peekNonWhitespace() { while (isWhitespace(peek())) { read(); } return peek(); } public int readInt() { int c = read(); while (isSpaceChar(c)) { c = read(); } int sgn = 1; if (c == '-') { sgn = -1; c = read(); } int res = 0; do { if (c < '0' || c > '9') { throw new InputMismatchException(); } res *= 10; res += c - '0'; c = read(); } while (!isSpaceChar(c)); return res * sgn; } public long readLong() { int c = read(); while (isSpaceChar(c)) { c = read(); } int sgn = 1; if (c == '-') { sgn = -1; c = read(); } long res = 0; do { if (c < '0' || c > '9') { throw new InputMismatchException(); } res *= 10; res += c - '0'; c = read(); } while (!isSpaceChar(c)); return res * sgn; } public String readString() { int c = read(); while (isSpaceChar(c)) { c = read(); } StringBuilder res = new StringBuilder(); do { if (Character.isValidCodePoint(c)) { res.appendCodePoint(c); } c = read(); } while (!isSpaceChar(c)); return res.toString(); } public char[] readStringAsCharArray() { int c = read(); while (isSpaceChar(c)) { c = read(); } StringBuilder res = new StringBuilder(); do { if (Character.isValidCodePoint(c)) { res.appendCodePoint(c); } c = read(); } while (!isSpaceChar(c)); char[] resArr = new char[res.length()]; res.getChars(0, res.length(), resArr, 0); return resArr; } public boolean isSpaceChar(int c) { if (filter != null) { return filter.isSpaceChar(c); } return isWhitespace(c); } public static boolean isWhitespace(int c) { return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; } private String readLine0() { StringBuilder buf = new StringBuilder(); int c = read(); while (c != '\n' && c != -1) { if (c != '\r') { buf.appendCodePoint(c); } c = read(); } return buf.toString(); } public String readLine() { String s = readLine0(); while (s.trim().length() == 0) { s = readLine0(); } return s; } public String readLine(boolean ignoreEmptyLines) { if (ignoreEmptyLines) { return readLine(); } else { return readLine0(); } } public char readCharacter() { int c = read(); while (isSpaceChar(c)) { c = read(); } return (char) c; } public double readDouble() { int c = read(); while (isSpaceChar(c)) { c = read(); } int sgn = 1; if (c == '-') { sgn = -1; c = read(); } double res = 0; while (!isSpaceChar(c) && c != '.') { if (c == 'e' || c == 'E') { return res * Math.pow(10, readInt()); } if (c < '0' || c > '9') { throw new InputMismatchException(); } res *= 10; res += c - '0'; c = read(); } if (c == '.') { c = read(); double m = 1; while (!isSpaceChar(c)) { if (c == 'e' || c == 'E') { return res * Math.pow(10, readInt()); } if (c < '0' || c > '9') { throw new InputMismatchException(); } m /= 10; res += (c - '0') * m; c = read(); } } return res * sgn; } public boolean isExhausted() { int value; while (isSpaceChar(value = peek()) && value != -1) { read(); } return value == -1; } public String next() { return readString(); } public SpaceCharFilter getFilter() { return filter; } public void setFilter(SpaceCharFilter filter) { this.filter = filter; } public interface SpaceCharFilter { public boolean isSpaceChar(int ch); } } }
Java
["5\n\n3\n\n4"]
1 second
["? 1 5\n\n? 4 5\n\n! 1"]
NoteIn the sample suppose $$$a$$$ is $$$[5, 1, 4, 2, 3]$$$. So after asking the $$$[1..5]$$$ subsegment $$$4$$$ is second to max value, and it's position is $$$3$$$. After asking the $$$[4..5]$$$ subsegment $$$2$$$ is second to max value and it's position in the whole array is $$$4$$$.Note that there are other arrays $$$a$$$ that would produce the same interaction, and the answer for them might be different. Example output is given in purpose of understanding the interaction.
Java 17
standard input
[ "binary search", "interactive" ]
b3e8fe76706ba17cb285c75459508334
The first line contains a single integer $$$n$$$ $$$(2 \leq n \leq 10^5)$$$ — the number of elements in the array.
1,600
null
standard output
PASSED
b7beaaabb9e1e0a0f0f1d6e2b6184797
train_109.jsonl
1613658900
The only difference between the easy and the hard version is the limit to the number of queries.This is an interactive problem.There is an array $$$a$$$ of $$$n$$$ different numbers. In one query you can ask the position of the second maximum element in a subsegment $$$a[l..r]$$$. Find the position of the maximum element in the array in no more than 40 queries.A subsegment $$$a[l..r]$$$ is all the elements $$$a_l, a_{l + 1}, ..., a_r$$$. After asking this subsegment you will be given the position of the second maximum from this subsegment in the whole array.
256 megabytes
import java.io.*; import java.text.*; import java.util.*; import java.util.function.*; /** * Provide prove of correctness before implementation. Implementation can cost a lot of time. * Anti test that prove that it's wrong. * <p> * Do not confuse i j k g indexes, upTo and length. Do extra methods!!! Write more informative names to simulation * <p> * Will program ever exceed limit? * Try all approaches with prove of correctness if task is not obvious. * If you are given formula/rule: Try to play with it. * Analytic solution/Hardcoded solution/Constructive/Greedy/DP/Math/Brute force/Symmetric data * Number theory * Game theory (optimal play) that consider local and global strategy. * Start writing the hardest code first */ public class Stage001_050_CF1486_C1_C2 { final boolean ONLINE_JUDGE = java.lang.System.getProperty("ONLINE_JUDGE") != null; final boolean ANTI_TEST_FINDER_MODE = false; //final Random random = new Random(42); Interactor interactor = ONLINE_JUDGE ? new CFInteractor() : new MockInteractor(); private int solveOne(int testCase) { int n = nextInt(); interactor.setUp(n); //[..........second.........first...........] int secondIndex = interactor.getSecondMaximum(1, n); int r = lowerBound(1, n + 1, (Integer ind) -> secondIndex == interactor.getSecondMaximum(1, ind)); int l = upperBound(0, n, (Integer ind) -> secondIndex == interactor.getSecondMaximum(ind, n)); interactor.printMaximumIndex(r == secondIndex ? l : r); return 0; } interface Interactor { void setUp(int n); void printMaximumIndex(int i); int getSecondMaximum(int l, int r); } class CFInteractor implements Interactor { public void setUp(int n) { } public void printMaximumIndex(int i) { System.out.printf("! %d\n", i); System.out.flush(); } public int getSecondMaximum(int l, int r) { System.out.printf("? %d %d\n", l, r); System.out.flush(); return nextInt(); } } class MockInteractor implements Interactor { int[] a; int n; int maxInd; Random r = new Random(); public void setUp(int n) { a = new int[n + 1]; this.n = n; for (int i = 1; i <= n; i++) { a[i] = nextInt(); } for (int i = 1; i <= n; i++) { a[i] = i; } for (int i = 1; i <= n; i++) { int j = 1 + r.nextInt(n); int temp = a[i]; a[i] = a[j]; a[j] = temp; } int max = Integer.MIN_VALUE; for (int i = 1; i <= n; i++) { if (a[i] > max) { max = a[i]; maxInd = i; } } maxInd = getSecondMaximum(1, n); } public void printMaximumIndex(int i) { if(i != maxInd) { throw new RuntimeException(); } else { System.out.printf("OK %d\n", i); } } public int getSecondMaximum(int l, int r) { int max = Integer.MIN_VALUE; //int lMaxInd = -1; for (int i = l; i <= r; i++) { if (a[i] > max) { max = a[i]; // lMaxInd = i; } } int max_ = Integer.MIN_VALUE; int lMaxInd_ = -1; for (int i = l; i <= r; i++) { if (a[i] > max_ && a[i] != max) { max_ = a[i]; lMaxInd_ = i; } } return lMaxInd_; } } private int upperBound(int inclusiveLeft, int exclusiveRight, Predicate<Integer> predicate) { while (exclusiveRight - inclusiveLeft > 1) { int middle = inclusiveLeft + (exclusiveRight - inclusiveLeft) / 2; if (predicate.test(middle)) { inclusiveLeft = middle; } else { exclusiveRight = middle; } } return inclusiveLeft; } private int lowerBound(int exclusiveLeft, int inclusiveRight, Predicate<Integer> predicate) { while (inclusiveRight - exclusiveLeft > 1) { int middle = exclusiveLeft + (inclusiveRight - exclusiveLeft) / 2; if (predicate.test(middle)) { inclusiveRight = middle; } else { exclusiveLeft = middle; } } return inclusiveRight; } private int solveOneNaive(int testCase) { return 0; } private void solve() { if (ANTI_TEST_FINDER_MODE) { int t = 100_000; for (int testCase = 0; testCase < t; testCase++) { int expected = solveOneNaive(testCase); int actual = solveOne(testCase); if (expected != actual) { throw new AssertionRuntimeException( this.getClass().getSimpleName(), testCase, expected, actual); } } } else { int t = 1;//nextInt(); for (int testCase = 0; testCase < t; testCase++) { solveOne(testCase); } } } class AssertionRuntimeException extends RuntimeException { AssertionRuntimeException(String testName, int testCase, Object expected, Object actual, Object... input) { super("Testcase: " + testCase + "\n expected = " + expected + ",\n actual = " + actual + ",\n " + Arrays.deepToString(input)); } } private void assertThat(boolean b) { if (!b) throw new RuntimeException(); } private void assertThat(boolean b, String s) { if (!b) throw new RuntimeException(s); } private int assertThatInt(long a) { assertThat(Integer.MIN_VALUE <= a && a <= Integer.MAX_VALUE, "Integer overflow long = [" + a + "]" + " int = [" + (int) a + "]"); return (int) a; } void _______debug(String str, Object... os) { if (!ONLINE_JUDGE) { System.out.println(MessageFormat.format(str, os)); System.out.flush(); } } void _______debug(Object o) { if (!ONLINE_JUDGE) { _______debug("{0}", String.valueOf(o)); } } private int nextInt() { return System.in.readInt(); } private long nextLong() { return System.in.readLong(); } private String nextString() { return System.in.readString(); } private int[] nextIntArr(int n) { return System.in.readIntArray(n); } private long[] nextLongArr(int n) { return System.in.readLongArray(n); } public static void main(String[] args) { new Stage001_050_CF1486_C1_C2().run(); } static class System { private static FastInputStream in; private static FastPrintStream out; } private void run() { // final long startTime = java.lang.System.currentTimeMillis(); final boolean USE_IO = ONLINE_JUDGE; if (USE_IO) { System.in = new FastInputStream(java.lang.System.in); System.out = new FastPrintStream(java.lang.System.out); solve(); System.out.flush(); } else { final String nameIn = "input.txt"; final String nameOut = "output.txt"; try { System.in = new FastInputStream(new FileInputStream(nameIn)); System.out = new FastPrintStream(new PrintStream(nameOut)); solve(); System.out.flush(); } catch (FileNotFoundException e) { e.printStackTrace(); } } // final long endTime = java.lang.System.currentTimeMillis(); // _______debug("Execution time: {0}", endTime - startTime); } private static class FastPrintStream { private static final int BUF_SIZE = 8192; private final byte[] buf = new byte[BUF_SIZE]; private final OutputStream out; private int ptr = 0; private FastPrintStream() { this(java.lang.System.out); } public FastPrintStream(OutputStream os) { this.out = os; } public FastPrintStream(String path) { try { this.out = new FileOutputStream(path); } catch (FileNotFoundException e) { throw new RuntimeException("FastWriter"); } } public FastPrintStream print(byte b) { buf[ptr++] = b; if (ptr == BUF_SIZE) innerFlush(); return this; } public FastPrintStream print(char c) { return print((byte) c); } public FastPrintStream print(char[] s) { for (char c : s) { buf[ptr++] = (byte) c; if (ptr == BUF_SIZE) innerFlush(); } return this; } public FastPrintStream print(String s) { s.chars().forEach(c -> { buf[ptr++] = (byte) c; if (ptr == BUF_SIZE) innerFlush(); }); return this; } //can be optimized public FastPrintStream print0(char[] s) { if (ptr + s.length < BUF_SIZE) { for (char c : s) { buf[ptr++] = (byte) c; } } else { for (char c : s) { buf[ptr++] = (byte) c; if (ptr == BUF_SIZE) innerFlush(); } } return this; } //can be optimized public FastPrintStream print0(String s) { if (ptr + s.length() < BUF_SIZE) { for (int i = 0; i < s.length(); i++) { buf[ptr++] = (byte) s.charAt(i); } } else { for (int i = 0; i < s.length(); i++) { buf[ptr++] = (byte) s.charAt(i); if (ptr == BUF_SIZE) innerFlush(); } } return this; } private static int countDigits(int l) { if (l >= 1000000000) return 10; if (l >= 100000000) return 9; if (l >= 10000000) return 8; if (l >= 1000000) return 7; if (l >= 100000) return 6; if (l >= 10000) return 5; if (l >= 1000) return 4; if (l >= 100) return 3; if (l >= 10) return 2; return 1; } public FastPrintStream print(int x) { if (x == Integer.MIN_VALUE) { return print((long) x); } if (ptr + 12 >= BUF_SIZE) innerFlush(); if (x < 0) { print((byte) '-'); x = -x; } int d = countDigits(x); for (int i = ptr + d - 1; i >= ptr; i--) { buf[i] = (byte) ('0' + x % 10); x /= 10; } ptr += d; return this; } private static int countDigits(long l) { if (l >= 1000000000000000000L) return 19; if (l >= 100000000000000000L) return 18; if (l >= 10000000000000000L) return 17; if (l >= 1000000000000000L) return 16; if (l >= 100000000000000L) return 15; if (l >= 10000000000000L) return 14; if (l >= 1000000000000L) return 13; if (l >= 100000000000L) return 12; if (l >= 10000000000L) return 11; if (l >= 1000000000L) return 10; if (l >= 100000000L) return 9; if (l >= 10000000L) return 8; if (l >= 1000000L) return 7; if (l >= 100000L) return 6; if (l >= 10000L) return 5; if (l >= 1000L) return 4; if (l >= 100L) return 3; if (l >= 10L) return 2; return 1; } public FastPrintStream print(long x) { if (x == Long.MIN_VALUE) { return print("" + x); } if (ptr + 21 >= BUF_SIZE) innerFlush(); if (x < 0) { print((byte) '-'); x = -x; } int d = countDigits(x); for (int i = ptr + d - 1; i >= ptr; i--) { buf[i] = (byte) ('0' + x % 10); x /= 10; } ptr += d; return this; } public FastPrintStream print(double x, int precision) { if (x < 0) { print('-'); x = -x; } x += Math.pow(10, -precision) / 2; print((long) x).print("."); x -= (long) x; for (int i = 0; i < precision; i++) { x *= 10; print((char) ('0' + (int) x)); x -= (int) x; } return this; } public FastPrintStream println(char c) { return print(c).println(); } public FastPrintStream println(int x) { return print(x).println(); } public FastPrintStream println(long x) { return print(x).println(); } public FastPrintStream println(String x) { return print(x).println(); } public FastPrintStream println(Object x) { return print(x.toString()).println(); } public FastPrintStream println(double x, int precision) { return print(x, precision).println(); } public FastPrintStream println() { return print((byte) '\n'); } public FastPrintStream printf(String format, Object... args) { return print(String.format(format, args)); } private void innerFlush() { try { out.write(buf, 0, ptr); ptr = 0; } catch (IOException e) { throw new RuntimeException("innerFlush"); } } public void flush() { innerFlush(); try { out.flush(); } catch (IOException e) { throw new RuntimeException("flush"); } } } private static class FastInputStream { private boolean finished = false; private InputStream stream; private byte[] buf = new byte[1024]; private int curChar; private int numChars; private SpaceCharFilter filter; public FastInputStream(InputStream stream) { this.stream = stream; } public double[] readDoubleArray(int size) { double[] array = new double[size]; for (int i = 0; i < size; i++) { array[i] = readDouble(); } return array; } public String[] readStringArray(int size) { String[] array = new String[size]; for (int i = 0; i < size; i++) { array[i] = readString(); } return array; } public char[] readCharArray(int size) { char[] array = new char[size]; for (int i = 0; i < size; i++) { array[i] = readCharacter(); } return array; } public String readText() { StringBuilder result = new StringBuilder(); while (true) { int character = read(); if (character == '\r') { continue; } if (character == -1) { break; } result.append((char) character); } return result.toString(); } public long[] readLongArray(int size) { long[] array = new long[size]; for (int i = 0; i < size; i++) { array[i] = readLong(); } return array; } public int[] readIntArray(int size) { int[] array = new int[size]; for (int i = 0; i < size; i++) { array[i] = readInt(); } return array; } public int read() { if (numChars == -1) { throw new InputMismatchException(); } if (curChar >= numChars) { curChar = 0; try { numChars = stream.read(buf); } catch (IOException e) { throw new InputMismatchException(); } if (numChars <= 0) { return -1; } } return buf[curChar++]; } public int peek() { if (numChars == -1) { return -1; } if (curChar >= numChars) { curChar = 0; try { numChars = stream.read(buf); } catch (IOException e) { return -1; } if (numChars <= 0) { return -1; } } return buf[curChar]; } public int peekNonWhitespace() { while (isWhitespace(peek())) { read(); } return peek(); } public int readInt() { int c = read(); while (isSpaceChar(c)) { c = read(); } int sgn = 1; if (c == '-') { sgn = -1; c = read(); } int res = 0; do { if (c < '0' || c > '9') { throw new InputMismatchException(); } res *= 10; res += c - '0'; c = read(); } while (!isSpaceChar(c)); return res * sgn; } public long readLong() { int c = read(); while (isSpaceChar(c)) { c = read(); } int sgn = 1; if (c == '-') { sgn = -1; c = read(); } long res = 0; do { if (c < '0' || c > '9') { throw new InputMismatchException(); } res *= 10; res += c - '0'; c = read(); } while (!isSpaceChar(c)); return res * sgn; } public String readString() { int c = read(); while (isSpaceChar(c)) { c = read(); } StringBuilder res = new StringBuilder(); do { if (Character.isValidCodePoint(c)) { res.appendCodePoint(c); } c = read(); } while (!isSpaceChar(c)); return res.toString(); } public char[] readStringAsCharArray() { int c = read(); while (isSpaceChar(c)) { c = read(); } StringBuilder res = new StringBuilder(); do { if (Character.isValidCodePoint(c)) { res.appendCodePoint(c); } c = read(); } while (!isSpaceChar(c)); char[] resArr = new char[res.length()]; res.getChars(0, res.length(), resArr, 0); return resArr; } public boolean isSpaceChar(int c) { if (filter != null) { return filter.isSpaceChar(c); } return isWhitespace(c); } public static boolean isWhitespace(int c) { return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; } private String readLine0() { StringBuilder buf = new StringBuilder(); int c = read(); while (c != '\n' && c != -1) { if (c != '\r') { buf.appendCodePoint(c); } c = read(); } return buf.toString(); } public String readLine() { String s = readLine0(); while (s.trim().length() == 0) { s = readLine0(); } return s; } public String readLine(boolean ignoreEmptyLines) { if (ignoreEmptyLines) { return readLine(); } else { return readLine0(); } } public char readCharacter() { int c = read(); while (isSpaceChar(c)) { c = read(); } return (char) c; } public double readDouble() { int c = read(); while (isSpaceChar(c)) { c = read(); } int sgn = 1; if (c == '-') { sgn = -1; c = read(); } double res = 0; while (!isSpaceChar(c) && c != '.') { if (c == 'e' || c == 'E') { return res * Math.pow(10, readInt()); } if (c < '0' || c > '9') { throw new InputMismatchException(); } res *= 10; res += c - '0'; c = read(); } if (c == '.') { c = read(); double m = 1; while (!isSpaceChar(c)) { if (c == 'e' || c == 'E') { return res * Math.pow(10, readInt()); } if (c < '0' || c > '9') { throw new InputMismatchException(); } m /= 10; res += (c - '0') * m; c = read(); } } return res * sgn; } public boolean isExhausted() { int value; while (isSpaceChar(value = peek()) && value != -1) { read(); } return value == -1; } public String next() { return readString(); } public SpaceCharFilter getFilter() { return filter; } public void setFilter(SpaceCharFilter filter) { this.filter = filter; } public interface SpaceCharFilter { public boolean isSpaceChar(int ch); } } }
Java
["5\n\n3\n\n4"]
1 second
["? 1 5\n\n? 4 5\n\n! 1"]
NoteIn the sample suppose $$$a$$$ is $$$[5, 1, 4, 2, 3]$$$. So after asking the $$$[1..5]$$$ subsegment $$$4$$$ is second to max value, and it's position is $$$3$$$. After asking the $$$[4..5]$$$ subsegment $$$2$$$ is second to max value and it's position in the whole array is $$$4$$$.Note that there are other arrays $$$a$$$ that would produce the same interaction, and the answer for them might be different. Example output is given in purpose of understanding the interaction.
Java 17
standard input
[ "binary search", "interactive" ]
b3e8fe76706ba17cb285c75459508334
The first line contains a single integer $$$n$$$ $$$(2 \leq n \leq 10^5)$$$ — the number of elements in the array.
1,600
null
standard output
PASSED
a301afcef0898e8c02295ba413a018f2
train_109.jsonl
1613658900
The only difference between the easy and the hard version is the limit to the number of queries.This is an interactive problem.There is an array $$$a$$$ of $$$n$$$ different numbers. In one query you can ask the position of the second maximum element in a subsegment $$$a[l..r]$$$. Find the position of the maximum element in the array in no more than 40 queries.A subsegment $$$a[l..r]$$$ is all the elements $$$a_l, a_{l + 1}, ..., a_r$$$. After asking this subsegment you will be given the position of the second maximum from this subsegment in the whole array.
256 megabytes
import java.util.*; import java.io.*; public class GuessingTheGreatest_Hard { public static void main(String[] args) throws IOException { Soumit sc = new Soumit(); int n = sc.nextInt(); System.out.println("? 1 "+n); System.out.flush(); int smax_ind = sc.nextInt(); if(n == 2){ if(smax_ind == 1){ System.out.println("! 2"); } else{ System.out.println("! 1"); } System.exit(0); } if(smax_ind == 1){ int l = smax_ind + 1; int r = n; while(l < r){ int mid = (l + r) / 2; System.out.println("? "+smax_ind+" "+mid); System.out.flush(); int ind = sc.nextInt(); if(ind == smax_ind){ r = mid; } else{ l = mid + 1; } } System.out.println("! "+l); System.exit(0); } System.out.println("? 1 "+smax_ind); System.out.flush(); int ind = sc.nextInt(); int l, r; if(ind == smax_ind){ l = 1; r = smax_ind - 1; while(l < r){ int mid = (l + r + 1) / 2; System.out.println("? "+mid+" "+smax_ind); System.out.flush(); ind = sc.nextInt(); if(ind == smax_ind){ l = mid; } else{ r = mid - 1; } } } else{ l = smax_ind + 1; r = n; while(l < r){ int mid = (l + r) / 2; System.out.println("? "+smax_ind+" "+mid); System.out.flush(); ind = sc.nextInt(); if(ind == smax_ind){ r = mid; } else{ l = mid + 1; } } } System.out.println("! "+l); sc.close(); } static class Soumit { final private int BUFFER_SIZE = 1 << 18; final private DataInputStream din; final private byte[] buffer; private PrintWriter pw; private int bufferPointer, bytesRead; StringTokenizer st; public Soumit() { din = new DataInputStream(System.in); buffer = new byte[BUFFER_SIZE]; bufferPointer = bytesRead = 0; } public Soumit(String file_name) throws IOException { din = new DataInputStream(new FileInputStream(file_name)); buffer = new byte[BUFFER_SIZE]; bufferPointer = bytesRead = 0; } public void streamOutput(String file) throws IOException { FileWriter fw = new FileWriter(file); BufferedWriter bw = new BufferedWriter(fw); pw = new PrintWriter(bw); } public void println(String a) { pw.println(a); } public void print(String a) { pw.print(a); } public String readLine() throws IOException { byte[] buf = new byte[3000064]; // line length int cnt = 0, c; while ((c = read()) != -1) { if (c == '\n') break; buf[cnt++] = (byte) c; } return new String(buf, 0, cnt); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } public void sort(int[] arr) { ArrayList<Integer> arlist = new ArrayList<>(); for (int i : arr) arlist.add(i); Collections.sort(arlist); for (int i = 0; i < arr.length; i++) arr[i] = arlist.get(i); } public void sort(long[] arr) { ArrayList<Long> arlist = new ArrayList<>(); for (long i : arr) arlist.add(i); Collections.sort(arlist); for (int i = 0; i < arr.length; i++) arr[i] = arlist.get(i); } public int[] nextIntArray(int n) throws IOException { int[] arr = new int[n]; for (int i = 0; i < n; i++) { arr[i] = nextInt(); } return arr; } public long[] nextLongArray(int n) throws IOException { long[] arr = new long[n]; for (int i = 0; i < n; i++) { arr[i] = nextLong(); } return arr; } public double[] nextDoubleArray(int n) throws IOException { double[] arr = new double[n]; for (int i = 0; i < n; i++) { arr[i] = nextDouble(); } return arr; } public int nextInt() throws IOException { int ret = 0; byte c = read(); while (c <= ' ') c = read(); boolean neg = (c == '-'); if (neg) c = read(); do { ret = ret * 10 + c - '0'; } while ((c = read()) >= '0' && c <= '9'); if (neg) return -ret; return ret; } public long nextLong() throws IOException { long ret = 0; byte c = read(); while (c <= ' ') c = read(); boolean neg = (c == '-'); if (neg) c = read(); do { ret = ret * 10 + c - '0'; } while ((c = read()) >= '0' && c <= '9'); if (neg) return -ret; return ret; } public double nextDouble() throws IOException { double ret = 0, div = 1; byte c = read(); while (c <= ' ') c = read(); boolean neg = (c == '-'); if (neg) c = read(); do { ret = ret * 10 + c - '0'; } while ((c = read()) >= '0' && c <= '9'); if (c == '.') { while ((c = read()) >= '0' && c <= '9') { ret += (c - '0') / (div *= 10); } } if (neg) return -ret; return ret; } private void fillBuffer() throws IOException { bytesRead = din.read(buffer, bufferPointer = 0, BUFFER_SIZE); if (bytesRead == -1) buffer[0] = -1; } private byte read() throws IOException { if (bufferPointer == bytesRead) fillBuffer(); return buffer[bufferPointer++]; } public void close() throws IOException { /*if (din == null) return;*/ if (din != null) din.close(); if (pw != null) pw.close(); } } }
Java
["5\n\n3\n\n4"]
1 second
["? 1 5\n\n? 4 5\n\n! 1"]
NoteIn the sample suppose $$$a$$$ is $$$[5, 1, 4, 2, 3]$$$. So after asking the $$$[1..5]$$$ subsegment $$$4$$$ is second to max value, and it's position is $$$3$$$. After asking the $$$[4..5]$$$ subsegment $$$2$$$ is second to max value and it's position in the whole array is $$$4$$$.Note that there are other arrays $$$a$$$ that would produce the same interaction, and the answer for them might be different. Example output is given in purpose of understanding the interaction.
Java 17
standard input
[ "binary search", "interactive" ]
b3e8fe76706ba17cb285c75459508334
The first line contains a single integer $$$n$$$ $$$(2 \leq n \leq 10^5)$$$ — the number of elements in the array.
1,600
null
standard output
PASSED
4949f2a7e8657939bc09e72b0052b732
train_109.jsonl
1613658900
The only difference between the easy and the hard version is the limit to the number of queries.This is an interactive problem.There is an array $$$a$$$ of $$$n$$$ different numbers. In one query you can ask the position of the second maximum element in a subsegment $$$a[l..r]$$$. Find the position of the maximum element in the array in no more than 20 queries.A subsegment $$$a[l..r]$$$ is all the elements $$$a_l, a_{l + 1}, ..., a_r$$$. After asking this subsegment you will be given the position of the second maximum from this subsegment in the whole array.
256 megabytes
import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.io.PrintWriter; import java.util.Random; import java.util.StringTokenizer; public class TaskC { static long mod = (long) (1000000000+7); public static void main(String[] args) { // TODO Auto-generated method stub FastReader sc = new FastReader(); PrintWriter out = new PrintWriter(System.out); int test = 1; while(test-->0) { int n = sc.nextInt(); int size = 1; while(size<n) size *= 2; out.println("? "+ 1 + " " + n); out.flush(); int maxpos = sc.nextInt(); int currpos = 0; if(n==2) { out.print(maxpos== 1 ? "! "+2 : "! "+1); continue; } if(maxpos!=1) { out.println("? "+ 1 + " " + maxpos); out.flush(); currpos = sc.nextInt(); } else { currpos = -1; } if(currpos==maxpos) { int k = 0; for(int b = size;b>=1;b/=2) { if(k+b<maxpos && isAns(k+b, maxpos, maxpos, out, sc))k+=b; } while(k+1<maxpos && isAns(k+1, maxpos, maxpos, out, sc))k++; out.println("! "+k); } else { int k = maxpos; for(int b = size;b>=1;b/=2) { if(k+b<=n && !isAns(maxpos, k+b, maxpos, out, sc))k+=b; } while(k+1<=n && !isAns(maxpos, k+1, maxpos, out, sc))k++; k++; out.println("! "+k); } } out.close(); } static boolean isAns(int l, int r, int maxpos, PrintWriter out, FastReader sc) { out.println("?"+" "+(l)+" "+r); out.flush(); int t = sc.nextInt(); return t==maxpos; } static void shuffleArray(long[] arr){ int n = arr.length; Random rnd = new Random(); for(int i=0; i<n; ++i){ long tmp = arr[i]; int randomPos = i + rnd.nextInt(n-i); arr[i] = arr[randomPos]; arr[randomPos] = tmp; } } static class FastReader { StringTokenizer st; BufferedReader br; public FastReader() { br = new BufferedReader( new InputStreamReader(System.in)); } String next() { while(st==null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine() { String s = ""; while(st==null || st.hasMoreElements()) { try { s = br.readLine(); } catch (IOException e) { e.printStackTrace(); } } return s; } } }
Java
["5\n\n3\n\n4"]
1 second
["? 1 5\n\n? 4 5\n\n! 1"]
NoteIn the sample suppose $$$a$$$ is $$$[5, 1, 4, 2, 3]$$$. So after asking the $$$[1..5]$$$ subsegment $$$4$$$ is second to max value, and it's position is $$$3$$$. After asking the $$$[4..5]$$$ subsegment $$$2$$$ is second to max value and it's position in the whole array is $$$4$$$.Note that there are other arrays $$$a$$$ that would produce the same interaction, and the answer for them might be different. Example output is given in purpose of understanding the interaction.
Java 8
standard input
[ "binary search", "interactive" ]
eb660c470760117dfd0b95acc10eee3b
The first line contains a single integer $$$n$$$ $$$(2 \leq n \leq 10^5)$$$ — the number of elements in the array.
1,900
null
standard output
PASSED
bd056ccd8ccf29f530a92e7767073478
train_109.jsonl
1613658900
The only difference between the easy and the hard version is the limit to the number of queries.This is an interactive problem.There is an array $$$a$$$ of $$$n$$$ different numbers. In one query you can ask the position of the second maximum element in a subsegment $$$a[l..r]$$$. Find the position of the maximum element in the array in no more than 20 queries.A subsegment $$$a[l..r]$$$ is all the elements $$$a_l, a_{l + 1}, ..., a_r$$$. After asking this subsegment you will be given the position of the second maximum from this subsegment in the whole array.
256 megabytes
import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.util.StringTokenizer; public class GuessingTheGreatestHard { MyScanner scanner = new MyScanner(); private int solve(int n) { // if (n == 2) { // 1, 2 // int secMax = ask(0, 1); // if (secMax == 0) return 1; // else return 0; // } int start = 0, end = n - 1; int secMax = ask(start, end); boolean maxIsRight = secMax == 0 || secMax != end && ask(secMax, end) == secMax; if (maxIsRight) {// Guess Right while (start <= end) { int mid = start + (end - start) / 2; if (mid == 0 || ask(0, mid) != secMax) { start = mid + 1; } else { end = mid - 1; } } return start; } else { start = 0; end = n - 1; while (start <= end) { int mid = start + (end - start) / 2; if (mid == n - 1 || ask(mid, n - 1) != secMax) { end = mid - 1; } else { start = mid + 1; } } return end; } } // private int ask(int l, int r) { //// int[] arr = {23, 81, 16, 91, 13, 98, 64, 12, 19, 99, 8, 33, 35, 27, 29, 51, 68, 58, 86, 93, 50, 96, 17, 22, 4, 78, 76, 44, 74, 89, 24, 90, 38, 80, 85, 59, 70, 53, 49, 87, 65, 83, 69, 10, 56, 32, 11, 88, 31, 100, 79, 46, 48, 75, 7, 72, 36, 97, 21, 62, 95, 1, 92, 18, 52, 54, 66, 2, 47, 84, 15, 42, 73, 39, 26, 5, 77, 14, 6, 30, 71, 9, 55, 57, 41, 40, 60, 20, 25, 43, 45, 28, 34, 37, 3, 67, 82, 94, 61, 63}; //// int[] arr = {5,1,4,2,3}; // int[] arr = {1, 2}; // int first = -1, second = -1; // for (int i = l; i <= r; i++) { // if (first == -1 || arr[i] > arr[first]) { // second = first; // first = i; // } // else if (second == -1 || arr[i] > arr[second]) { // second = i; // } // } // return second; // } private int ask(int l, int r) { System.out.println("? " + (l + 1) + " " + (r + 1)); System.out.flush(); int ans = scanner.nextInt(); return ans - 1; } private void print(int n) { System.out.println("! " + (n + 1)); System.out.flush(); } public static void main(String[] args) { GuessingTheGreatestHard test = new GuessingTheGreatestHard(); // int t = test.scanner.nextInt(); // for (int i = 0; i < t; i++) { int n = test.scanner.nextInt(); int ans = test.solve(n); test.print(ans); // } } class MyScanner { BufferedReader br; StringTokenizer st; public MyScanner() { br = new BufferedReader(new InputStreamReader(System.in)); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } int[] nextIntArray(int len) { int[] arr = new int[len]; for (int i = 0; i < len; i++) { arr[i] = nextInt(); } return arr; } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } } }
Java
["5\n\n3\n\n4"]
1 second
["? 1 5\n\n? 4 5\n\n! 1"]
NoteIn the sample suppose $$$a$$$ is $$$[5, 1, 4, 2, 3]$$$. So after asking the $$$[1..5]$$$ subsegment $$$4$$$ is second to max value, and it's position is $$$3$$$. After asking the $$$[4..5]$$$ subsegment $$$2$$$ is second to max value and it's position in the whole array is $$$4$$$.Note that there are other arrays $$$a$$$ that would produce the same interaction, and the answer for them might be different. Example output is given in purpose of understanding the interaction.
Java 8
standard input
[ "binary search", "interactive" ]
eb660c470760117dfd0b95acc10eee3b
The first line contains a single integer $$$n$$$ $$$(2 \leq n \leq 10^5)$$$ — the number of elements in the array.
1,900
null
standard output
PASSED
140d1133b031c3b420aa33827cd7cc8e
train_109.jsonl
1613658900
The only difference between the easy and the hard version is the limit to the number of queries.This is an interactive problem.There is an array $$$a$$$ of $$$n$$$ different numbers. In one query you can ask the position of the second maximum element in a subsegment $$$a[l..r]$$$. Find the position of the maximum element in the array in no more than 20 queries.A subsegment $$$a[l..r]$$$ is all the elements $$$a_l, a_{l + 1}, ..., a_r$$$. After asking this subsegment you will be given the position of the second maximum from this subsegment in the whole array.
256 megabytes
import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.util.StringTokenizer; public class GuessingTheGreatestHard { MyScanner scanner = new MyScanner(); private int solve(int n) { if (n == 2) { int secMax = ask(0, 1); if (secMax == 0) return 1; else return 0; } int start = 0, end = n - 1; int secMax = ask(start, end); boolean maxIsRight = secMax == 0 || secMax != end && ask(secMax, end) == secMax; if (maxIsRight) {// Guess Right while (start <= end) { int mid = start + (end - start) / 2; // if (mid == 0) break; int val = ask(0, mid); // Right if (val == secMax) { end = mid - 1; } else { start = mid + 1; } } return start; } else { start = 0; end = n - 1; while (start <= end) { int mid = start + (end - start) / 2; // if (mid == n - 1) break; int val = ask(mid, n - 1); if (val == secMax) { start = mid + 1; } else { end = mid - 1; } } return end; } } // private int ask(int l, int r) { //// int[] arr = {23, 81, 16, 91, 13, 98, 64, 12, 19, 99, 8, 33, 35, 27, 29, 51, 68, 58, 86, 93, 50, 96, 17, 22, 4, 78, 76, 44, 74, 89, 24, 90, 38, 80, 85, 59, 70, 53, 49, 87, 65, 83, 69, 10, 56, 32, 11, 88, 31, 100, 79, 46, 48, 75, 7, 72, 36, 97, 21, 62, 95, 1, 92, 18, 52, 54, 66, 2, 47, 84, 15, 42, 73, 39, 26, 5, 77, 14, 6, 30, 71, 9, 55, 57, 41, 40, 60, 20, 25, 43, 45, 28, 34, 37, 3, 67, 82, 94, 61, 63}; //// int[] arr = {5,1,4,2,3}; // int[] arr = {1, 2}; // int first = -1, second = -1; // for (int i = l; i <= r; i++) { // if (first == -1 || arr[i] > arr[first]) { // second = first; // first = i; // } // else if (second == -1 || arr[i] > arr[second]) { // second = i; // } // } // return second; // } private int ask(int l, int r) { System.out.println("? " + (l + 1) + " " + (r + 1)); System.out.flush(); int ans = scanner.nextInt(); return ans - 1; } private void print(int n) { System.out.println("! " + (n + 1)); System.out.flush(); } public static void main(String[] args) { GuessingTheGreatestHard test = new GuessingTheGreatestHard(); // int t = test.scanner.nextInt(); // for (int i = 0; i < t; i++) { int n = test.scanner.nextInt(); int ans = test.solve(n); test.print(ans); // } } class MyScanner { BufferedReader br; StringTokenizer st; public MyScanner() { br = new BufferedReader(new InputStreamReader(System.in)); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } int[] nextIntArray(int len) { int[] arr = new int[len]; for (int i = 0; i < len; i++) { arr[i] = nextInt(); } return arr; } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } } }
Java
["5\n\n3\n\n4"]
1 second
["? 1 5\n\n? 4 5\n\n! 1"]
NoteIn the sample suppose $$$a$$$ is $$$[5, 1, 4, 2, 3]$$$. So after asking the $$$[1..5]$$$ subsegment $$$4$$$ is second to max value, and it's position is $$$3$$$. After asking the $$$[4..5]$$$ subsegment $$$2$$$ is second to max value and it's position in the whole array is $$$4$$$.Note that there are other arrays $$$a$$$ that would produce the same interaction, and the answer for them might be different. Example output is given in purpose of understanding the interaction.
Java 8
standard input
[ "binary search", "interactive" ]
eb660c470760117dfd0b95acc10eee3b
The first line contains a single integer $$$n$$$ $$$(2 \leq n \leq 10^5)$$$ — the number of elements in the array.
1,900
null
standard output
PASSED
f35e099391176010973c5c9bd4518183
train_109.jsonl
1613658900
The only difference between the easy and the hard version is the limit to the number of queries.This is an interactive problem.There is an array $$$a$$$ of $$$n$$$ different numbers. In one query you can ask the position of the second maximum element in a subsegment $$$a[l..r]$$$. Find the position of the maximum element in the array in no more than 20 queries.A subsegment $$$a[l..r]$$$ is all the elements $$$a_l, a_{l + 1}, ..., a_r$$$. After asking this subsegment you will be given the position of the second maximum from this subsegment in the whole array.
256 megabytes
import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.util.StringTokenizer; public class GuessingTheGreatestHard { MyScanner scanner = new MyScanner(); private int solve(int n) { if (n == 2) { int secMax = ask(0, 1); if (secMax == 0) return 1; else return 0; } int start = 0, end = n - 1; int secMax = ask(start, end); boolean maxIsRight = secMax == 0 || secMax != end && ask(secMax, end) == secMax; if (maxIsRight) { // Guess Right while (start <= end) { int mid = start + (end - start) / 2; if (mid == 0) break; int val = ask(0, mid); if (val == secMax) { end = mid - 1; } else { start = mid + 1; } } return start; } else { start = 0; end = n - 1; while (start <= end) { int mid = start + (end - start) / 2; if (mid == n - 1) break; int val = ask(mid, n - 1); if (val == secMax) { start = mid + 1; } else { end = mid - 1; } } return end; } } // private int ask(int l, int r) { //// int[] arr = {23, 81, 16, 91, 13, 98, 64, 12, 19, 99, 8, 33, 35, 27, 29, 51, 68, 58, 86, 93, 50, 96, 17, 22, 4, 78, 76, 44, 74, 89, 24, 90, 38, 80, 85, 59, 70, 53, 49, 87, 65, 83, 69, 10, 56, 32, 11, 88, 31, 100, 79, 46, 48, 75, 7, 72, 36, 97, 21, 62, 95, 1, 92, 18, 52, 54, 66, 2, 47, 84, 15, 42, 73, 39, 26, 5, 77, 14, 6, 30, 71, 9, 55, 57, 41, 40, 60, 20, 25, 43, 45, 28, 34, 37, 3, 67, 82, 94, 61, 63}; //// int[] arr = {5,1,4,2,3}; // int[] arr = {1, 2}; // int first = -1, second = -1; // for (int i = l; i <= r; i++) { // if (first == -1 || arr[i] > arr[first]) { // second = first; // first = i; // } // else if (second == -1 || arr[i] > arr[second]) { // second = i; // } // } // return second; // } private int ask(int l, int r) { System.out.println("? " + (l + 1) + " " + (r + 1)); System.out.flush(); int ans = scanner.nextInt(); return ans - 1; } private void print(int n) { System.out.println("! " + (n + 1)); System.out.flush(); } public static void main(String[] args) { GuessingTheGreatestHard test = new GuessingTheGreatestHard(); // int t = test.scanner.nextInt(); // for (int i = 0; i < t; i++) { int n = test.scanner.nextInt(); int ans = test.solve(n); test.print(ans); // } } class MyScanner { BufferedReader br; StringTokenizer st; public MyScanner() { br = new BufferedReader(new InputStreamReader(System.in)); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } int[] nextIntArray(int len) { int[] arr = new int[len]; for (int i = 0; i < len; i++) { arr[i] = nextInt(); } return arr; } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } } }
Java
["5\n\n3\n\n4"]
1 second
["? 1 5\n\n? 4 5\n\n! 1"]
NoteIn the sample suppose $$$a$$$ is $$$[5, 1, 4, 2, 3]$$$. So after asking the $$$[1..5]$$$ subsegment $$$4$$$ is second to max value, and it's position is $$$3$$$. After asking the $$$[4..5]$$$ subsegment $$$2$$$ is second to max value and it's position in the whole array is $$$4$$$.Note that there are other arrays $$$a$$$ that would produce the same interaction, and the answer for them might be different. Example output is given in purpose of understanding the interaction.
Java 8
standard input
[ "binary search", "interactive" ]
eb660c470760117dfd0b95acc10eee3b
The first line contains a single integer $$$n$$$ $$$(2 \leq n \leq 10^5)$$$ — the number of elements in the array.
1,900
null
standard output
PASSED
71306d07a6bda08c8ba8679c4838cd09
train_109.jsonl
1613658900
The only difference between the easy and the hard version is the limit to the number of queries.This is an interactive problem.There is an array $$$a$$$ of $$$n$$$ different numbers. In one query you can ask the position of the second maximum element in a subsegment $$$a[l..r]$$$. Find the position of the maximum element in the array in no more than 20 queries.A subsegment $$$a[l..r]$$$ is all the elements $$$a_l, a_{l + 1}, ..., a_r$$$. After asking this subsegment you will be given the position of the second maximum from this subsegment in the whole array.
256 megabytes
import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; public class Problem { private static BufferedReader reader; private static int ask(int l, int r) throws IOException { if (l==r) return -1; System.out.println("? "+(l+1)+" "+(r+1)); int res = Integer.parseInt(reader.readLine()); return res - 1; } public static void main(String[] args) throws IOException { reader = new BufferedReader(new InputStreamReader(System.in)); int n = Integer.parseInt(reader.readLine()); int secMax = ask(0, n-1); if (secMax==0 || ask(secMax, n-1)==secMax) { int l = secMax, r = n-1; while (l+1<r) { int mid = (l+r)/2; int x = ask(secMax, mid); if (x==secMax) r = mid; else l = mid; } System.out.println("! "+(r+1)); } else { int l = 0, r = secMax; while (l+1<r) { int mid = (l+r)/2; int x = ask(mid, secMax); if (x==secMax) l = mid; else r = mid; } System.out.println("! "+(l+1)); } } }
Java
["5\n\n3\n\n4"]
1 second
["? 1 5\n\n? 4 5\n\n! 1"]
NoteIn the sample suppose $$$a$$$ is $$$[5, 1, 4, 2, 3]$$$. So after asking the $$$[1..5]$$$ subsegment $$$4$$$ is second to max value, and it's position is $$$3$$$. After asking the $$$[4..5]$$$ subsegment $$$2$$$ is second to max value and it's position in the whole array is $$$4$$$.Note that there are other arrays $$$a$$$ that would produce the same interaction, and the answer for them might be different. Example output is given in purpose of understanding the interaction.
Java 8
standard input
[ "binary search", "interactive" ]
eb660c470760117dfd0b95acc10eee3b
The first line contains a single integer $$$n$$$ $$$(2 \leq n \leq 10^5)$$$ — the number of elements in the array.
1,900
null
standard output
PASSED
6b1e76354db42178442bed4d7db54af9
train_109.jsonl
1613658900
The only difference between the easy and the hard version is the limit to the number of queries.This is an interactive problem.There is an array $$$a$$$ of $$$n$$$ different numbers. In one query you can ask the position of the second maximum element in a subsegment $$$a[l..r]$$$. Find the position of the maximum element in the array in no more than 20 queries.A subsegment $$$a[l..r]$$$ is all the elements $$$a_l, a_{l + 1}, ..., a_r$$$. After asking this subsegment you will be given the position of the second maximum from this subsegment in the whole array.
256 megabytes
import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; public class Main { private static BufferedReader reader; private static int ask(int l, int r) throws IOException { if (l>=r) return -1; System.out.println("? " + (l+1) + " " + (r+1)); int x = Integer.parseInt(reader.readLine()); return x - 1; } public static void main(String[] args) throws IOException { reader = new BufferedReader(new InputStreamReader(System.in)); int n = Integer.parseInt(reader.readLine()); int x = ask(0, n-1); if (x==0 || ask(0, x)!=x) { //right part int l = x, r = n-1; while (l+1<r) { int mid = (l+r)/2; int y = ask(x, mid); if (y==x) r = mid; else l = mid; } System.out.println("! "+(r+1)); } else { // left part int l = 0, r = x; while (l+1<r) { int mid = (l+r)/2; int y = ask(mid, x); if (y==x) l = mid; else r = mid; } System.out.println("! "+(l+1)); } } }
Java
["5\n\n3\n\n4"]
1 second
["? 1 5\n\n? 4 5\n\n! 1"]
NoteIn the sample suppose $$$a$$$ is $$$[5, 1, 4, 2, 3]$$$. So after asking the $$$[1..5]$$$ subsegment $$$4$$$ is second to max value, and it's position is $$$3$$$. After asking the $$$[4..5]$$$ subsegment $$$2$$$ is second to max value and it's position in the whole array is $$$4$$$.Note that there are other arrays $$$a$$$ that would produce the same interaction, and the answer for them might be different. Example output is given in purpose of understanding the interaction.
Java 8
standard input
[ "binary search", "interactive" ]
eb660c470760117dfd0b95acc10eee3b
The first line contains a single integer $$$n$$$ $$$(2 \leq n \leq 10^5)$$$ — the number of elements in the array.
1,900
null
standard output
PASSED
fd6beedc231c1ea2e8a255f59cee3176
train_109.jsonl
1613658900
The only difference between the easy and the hard version is the limit to the number of queries.This is an interactive problem.There is an array $$$a$$$ of $$$n$$$ different numbers. In one query you can ask the position of the second maximum element in a subsegment $$$a[l..r]$$$. Find the position of the maximum element in the array in no more than 20 queries.A subsegment $$$a[l..r]$$$ is all the elements $$$a_l, a_{l + 1}, ..., a_r$$$. After asking this subsegment you will be given the position of the second maximum from this subsegment in the whole array.
256 megabytes
import java.io.DataInputStream; import java.io.FileInputStream; import java.io.IOException; import java.util.*; public class Main { static class point { long val, time, t3; point(long val, long time, int t3) { this.val = val; this.time = time; this.t3 = t3; } } static class Reader { final private int BUFFER_SIZE = 1 << 16; private DataInputStream din; private byte[] buffer; private int bufferPointer, bytesRead; public Reader() { din = new DataInputStream(System.in); buffer = new byte[BUFFER_SIZE]; bufferPointer = bytesRead = 0; } public Reader(String file_name) throws IOException { din = new DataInputStream( new FileInputStream(file_name)); buffer = new byte[BUFFER_SIZE]; bufferPointer = bytesRead = 0; } public String readLine() throws IOException { byte[] buf = new byte[64]; // line length int cnt = 0, c; while ((c = read()) != -1) { if (c == '\n') { if (cnt != 0) { break; } else { continue; } } buf[cnt++] = (byte)c; } return new String(buf, 0, cnt); } public int nextInt() throws IOException { int ret = 0; byte c = read(); while (c <= ' ') { c = read(); } boolean neg = (c == '-'); if (neg) c = read(); do { ret = ret * 10 + c - '0'; } while ((c = read()) >= '0' && c <= '9'); if (neg) return -ret; return ret; } public long nextLong() throws IOException { long ret = 0; byte c = read(); while (c <= ' ') c = read(); boolean neg = (c == '-'); if (neg) c = read(); do { ret = ret * 10 + c - '0'; } while ((c = read()) >= '0' && c <= '9'); if (neg) return -ret; return ret; } public double nextDouble() throws IOException { double ret = 0, div = 1; byte c = read(); while (c <= ' ') c = read(); boolean neg = (c == '-'); if (neg) c = read(); do { ret = ret * 10 + c - '0'; } while ((c = read()) >= '0' && c <= '9'); if (c == '.') { while ((c = read()) >= '0' && c <= '9') { ret += (c - '0') / (div *= 10); } } if (neg) return -ret; return ret; } private void fillBuffer() throws IOException { bytesRead = din.read(buffer, bufferPointer = 0, BUFFER_SIZE); if (bytesRead == -1) buffer[0] = -1; } private byte read() throws IOException { if (bufferPointer == bytesRead) fillBuffer(); return buffer[bufferPointer++]; } public void close() throws IOException { if (din == null) return; din.close(); } } static class comp implements Comparator<point> { public int compare(point a, point b) { if (a.val == b.val) { return Long.compare(b.time, a.time); } return Long.compare(a.val, b.val); } } static class TreeNode { int val; TreeNode left,right; TreeNode(int val){ this.val=val;left=null;right=null; } } static TreeNode maxx(int start,int end,int[] arr){ if(start>end){ return null; } int ind=0; int max=-1; for(int j=start;j<=end;j++){ if(arr[j]>max){ max=arr[j]; ind=j; } } TreeNode jj=new TreeNode(arr[ind]); jj.left=maxx(start,ind-1,arr); jj.right=maxx(ind+1,end,arr); return jj; } static void dfs(TreeNode root,int dep){ if(root==null){ return; } ans[hashMap.get(root.val)]=dep; dfs(root.left,dep+1); dfs(root.right,dep+1); } static int[] ans; static HashMap<Integer,Integer> hashMap; static class pont{ int val,index; pont(int val,int index){ this.val=val; this.index=index; } } static class compr implements Comparator<pont>{ public int compare(pont a,pont b){ return a.val-b.val; } } static class poin{ int src; long val; poin(int src,long val){ this.src=src; this.val=val; } } public static void main(String[] args) throws IOException { Scanner s = new Scanner(System.in); int n=s.nextInt(); int low=1,high=n; System.out.println("? "+low+" "+high ); System.out.println(); System.out.flush(); int secondmaxindex=s.nextInt(); if(low==secondmaxindex){ System.out.println("? "+secondmaxindex+" "+high ); System.out.println(); System.out.flush(); int secondmax2=s.nextInt(); if(secondmax2!=secondmaxindex){ high=secondmaxindex-1; low=1; int ans=low; while(low<=high){ int mid=(low)+(high-low)/2; if(mid==secondmaxindex){ break; } System.out.println("? "+mid+" "+secondmaxindex ); System.out.println(); System.out.flush(); int inpu=s.nextInt(); if(inpu==secondmaxindex){ ans=mid; low=mid+1; }else{ high=mid-1; } } System.out.println("! "+" "+ans); System.out.flush(); }else{ low=secondmaxindex+1; high=n; int ans=high; while(low<=high){ int mid=(low)+(high-low)/2; if(mid==secondmaxindex){ break; } System.out.println("? "+secondmaxindex+" "+mid); System.out.println(); System.out.flush(); int inpu=s.nextInt(); if(inpu==secondmaxindex){ ans=mid; high=mid-1; }else{ low=mid+1; } } System.out.println("! "+" "+ans); System.out.flush(); } } else{ System.out.println("? "+low+" "+secondmaxindex ); System.out.println(); System.out.flush(); int secondmax2=s.nextInt(); if(secondmax2==secondmaxindex){ high=secondmaxindex-1; low=1; int ans=low; while(low<=high){ int mid=(low)+(high-low)/2; if(mid==secondmaxindex){ break; } System.out.println("? "+mid+" "+secondmaxindex ); System.out.println(); System.out.flush(); int inpu=s.nextInt(); if(inpu==secondmaxindex){ ans=mid; low=mid+1; }else{ high=mid-1; } } System.out.println("! "+" "+ans); System.out.flush(); }else{ low=secondmaxindex+1; high=n; int ans=high; while(low<=high){ int mid=(low)+(high-low)/2; if(mid==secondmaxindex){ break; } System.out.println("? "+secondmaxindex+" "+mid); System.out.println(); System.out.flush(); int inpu=s.nextInt(); if(inpu==secondmaxindex){ ans=mid; high=mid-1; }else{ low=mid+1; } } System.out.println("! "+" "+ans); System.out.flush(); } } // int t=s.nextInt(); // int t=1; // for(int jj=0;jj<t;jj++){ // int n=s.nextInt(); // HashMap<Integer,HashMap<Integer,Integer>> has=new HashMap<>(); // int m=s.nextInt(); // int x=s.nextInt(); // int y=s.nextInt(); // long[] ti=new long[m]; // long[] ki=new long[m]; // HashMap<Integer,HashSet<Integer>> hash=new HashMap<>(); // for(int i=0;i<=n;i++){ // has.put(i,new HashMap<>()); // hash.put(i,new HashSet<>()); // } // for(int i=0;i<m;i++){ // int a=s.nextInt(); // int b=s.nextInt(); //// if(has.get(a)==null){ //// has.put(a,new HashMap<>()); //// } //// if(has.get(b)==null){ //// has.put(b,new HashMap<>()); //// } // has.get(a).put(b,i); // has.get(b).put(a,i); // ti[i]=s.nextLong(); // ki[i]=s.nextLong(); // } // // long[] vis=new long[n+1]; // Arrays.fill(vis,Long.MAX_VALUE); // vis[x]=0; // Queue<poin> qu=new LinkedList<>(); // qu.add(new poin(x,0)); // long ans=Long.MAX_VALUE; // while(!qu.isEmpty()){ // poin te=qu.poll(); // if(te.src==y){ // ans=Math.min(ans,te.val);continue; // } // for(Integer v:has.get(te.src).keySet()){ // long ll=(ki[has.get(te.src).get(v)]+(te.val%ki[has.get(te.src).get(v)]))%ki[has.get(te.src).get(v)]+ti[has.get(te.src).get(v)]; //// if(te.val>ki[has.get(te.src).get(v)]){ //// long ij=(long)Math.ceil((double)te.val/(double)ki[has.get(te.src).get(v)]); //// ll=(long)((long)ij*(long)ki[has.get(te.src).get(v)]); //// }else{ //// // long ij=(long)Math.ceil((double)ki[has.get(te.src).get(v)]/(double)te.val); //// if(te.val==0){ //// ll=0; //// }else{ //// ll=(long)((long)(long)ki[has.get(te.src).get(v)]);} //// } //// ll=(long)((long)ll+(long)ti[has.get(te.src).get(v)]); //// long ll= (long)Math.max((long)((long)te.val+(long)ti[has.get(te.src).get(v)]), (long)((long)ki[has.get(te.src).get(v)]*(long)Math.floor((double)ki[has.get(te.src).get(v)]/(double)(te.val+ti[has.get(te.src).get(v)])))); //// if( !hash.get(v).contains(te.src) ){ //// vis[v]=ll; //// hash.get(v).add(te.src); //// qu.add(new poin( v,vis[v])); //// } // if(vis[v]>=ll){ // vis[v]=ll; //// hash.get(v).add(te.src); // qu.add(new poin( v,vis[v])); // // } // } // } // if(ans==Long.MAX_VALUE){ // System.out.println(-1); // }else{ // System.out.println(ans);} // } } }
Java
["5\n\n3\n\n4"]
1 second
["? 1 5\n\n? 4 5\n\n! 1"]
NoteIn the sample suppose $$$a$$$ is $$$[5, 1, 4, 2, 3]$$$. So after asking the $$$[1..5]$$$ subsegment $$$4$$$ is second to max value, and it's position is $$$3$$$. After asking the $$$[4..5]$$$ subsegment $$$2$$$ is second to max value and it's position in the whole array is $$$4$$$.Note that there are other arrays $$$a$$$ that would produce the same interaction, and the answer for them might be different. Example output is given in purpose of understanding the interaction.
Java 8
standard input
[ "binary search", "interactive" ]
eb660c470760117dfd0b95acc10eee3b
The first line contains a single integer $$$n$$$ $$$(2 \leq n \leq 10^5)$$$ — the number of elements in the array.
1,900
null
standard output
PASSED
5197ab3c870fdc5fdda84f53e6d4e5bb
train_109.jsonl
1613658900
The only difference between the easy and the hard version is the limit to the number of queries.This is an interactive problem.There is an array $$$a$$$ of $$$n$$$ different numbers. In one query you can ask the position of the second maximum element in a subsegment $$$a[l..r]$$$. Find the position of the maximum element in the array in no more than 20 queries.A subsegment $$$a[l..r]$$$ is all the elements $$$a_l, a_{l + 1}, ..., a_r$$$. After asking this subsegment you will be given the position of the second maximum from this subsegment in the whole array.
256 megabytes
import java.io.*; import java.util.*; public class MainC { static class InputReader { public BufferedReader reader; public StringTokenizer tokenizer; public InputReader(InputStream stream) { reader = new BufferedReader(new InputStreamReader(stream), 32768); tokenizer = null; } public String next() { while (tokenizer == null || !tokenizer.hasMoreTokens()) { try { tokenizer = new StringTokenizer(reader.readLine()); } catch (IOException e) { throw new RuntimeException(e); } } return tokenizer.nextToken(); } public int nextInt() { return Integer.parseInt(next()); } public long nextLong() { return Long.parseLong(next()); } public boolean hasNext() { try { String string = reader.readLine(); if (string == null) { return false; } tokenizer = new StringTokenizer(string); return tokenizer.hasMoreTokens(); } catch (IOException e) { return false; } } } static InputReader in = new InputReader(System.in); static PrintWriter out = new PrintWriter(new OutputStreamWriter(System.out)); public static void main(String[] args) { solve(); } static int answer; static void solve() { int n = in.nextInt(); dg1(1, n); } static void dg1 (int start, int end) { int secIndex = query(start, end); if (start + 1 == end) { answer = secIndex == start ? end : start; a(answer); return; } boolean flag = false; if (secIndex == 1) { flag = true; } int temp = 0; if (!flag) temp = query(start, secIndex); int low, high, mid; if (flag || temp != secIndex) { low = secIndex; high = end; while(low + 1 < high) { mid = ((low + high)/2); if (secIndex == query(secIndex, mid)) high = mid; else low = mid; } a(high); } else { low = 1; high = secIndex; while(low + 1 < high) { mid = ((low + high)/2); if (secIndex == query(mid, secIndex)) low = mid; else high = mid; } a(low); } } static int query (int s, int e) { System.out.println("? " + s + " " + e); System.out.flush(); return in.nextInt(); } static void a (int index) { System.out.println("! " + index); } }
Java
["5\n\n3\n\n4"]
1 second
["? 1 5\n\n? 4 5\n\n! 1"]
NoteIn the sample suppose $$$a$$$ is $$$[5, 1, 4, 2, 3]$$$. So after asking the $$$[1..5]$$$ subsegment $$$4$$$ is second to max value, and it's position is $$$3$$$. After asking the $$$[4..5]$$$ subsegment $$$2$$$ is second to max value and it's position in the whole array is $$$4$$$.Note that there are other arrays $$$a$$$ that would produce the same interaction, and the answer for them might be different. Example output is given in purpose of understanding the interaction.
Java 8
standard input
[ "binary search", "interactive" ]
eb660c470760117dfd0b95acc10eee3b
The first line contains a single integer $$$n$$$ $$$(2 \leq n \leq 10^5)$$$ — the number of elements in the array.
1,900
null
standard output
PASSED
629fea3c1fe10d868b7fdc8ac191909b
train_109.jsonl
1613658900
The only difference between the easy and the hard version is the limit to the number of queries.This is an interactive problem.There is an array $$$a$$$ of $$$n$$$ different numbers. In one query you can ask the position of the second maximum element in a subsegment $$$a[l..r]$$$. Find the position of the maximum element in the array in no more than 20 queries.A subsegment $$$a[l..r]$$$ is all the elements $$$a_l, a_{l + 1}, ..., a_r$$$. After asking this subsegment you will be given the position of the second maximum from this subsegment in the whole array.
256 megabytes
/* * akshaygupta26 */ import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.util.Scanner; import java.util.Random; import java.util.Arrays; import java.util.StringTokenizer; import java.util.ArrayList; import java.util.HashMap; import java.util.HashSet; import java.util.Collections; public class D { static FastReader sc=new FastReader(); static HashMap<Integer,HashMap<Integer,Integer>> map=new HashMap<>(); public static void main(String[] args) { StringBuffer ans=new StringBuffer(); int test=1; while(test-->0) { int n=sc.nextInt(); int secondHighest =query(1,n); int res=0; int left =query(1,secondHighest); if(left == secondHighest) { int low =1; int high=secondHighest-1; res =low; while(low<=high) { int mid = (low+high)/2; int poss =query(mid,secondHighest); if(poss == secondHighest) { low=mid+1; res=mid; } else { high=mid-1; } } } else { int low=secondHighest+1; int high=n; res=low; while(low<=high) { int mid = (low+high)/2; int poss =query(secondHighest,mid); if(poss == secondHighest) { high=mid-1; res=mid; } else { low=mid+1; } } } ans.append("! "+res+"\n"); } System.out.print(ans); } static int query(int l,int r) { if(l == r) return -1; if(map.containsKey(l) && map.get(l).containsKey(r)) { return map.get(l).get(r); } System.out.println("? "+l+" "+r); int n =sc.nextInt(); System.out.flush(); if(!map.containsKey(l)) { map.put(l,new HashMap<Integer,Integer>()); } map.get(l).put(r,n); return n; } static final Random random=new Random(); static void ruffleSort(int[] a) { int n=a.length;//shuffle, then sort for (int i=0; i<n; i++) { int oi=random.nextInt(n), temp=a[oi]; a[oi]=a[i]; a[i]=temp; } Arrays.sort(a); } static void ruffleSort(long[] a) { int n=a.length;//shuffle, then sort for (int i=0; i<n; i++) { int oi=random.nextInt(n); long temp=a[oi]; a[oi]=a[i]; a[i]=temp; } Arrays.sort(a); } static class FastReader { BufferedReader br; StringTokenizer st; public FastReader() { br = new BufferedReader(new InputStreamReader(System.in)); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } } }
Java
["5\n\n3\n\n4"]
1 second
["? 1 5\n\n? 4 5\n\n! 1"]
NoteIn the sample suppose $$$a$$$ is $$$[5, 1, 4, 2, 3]$$$. So after asking the $$$[1..5]$$$ subsegment $$$4$$$ is second to max value, and it's position is $$$3$$$. After asking the $$$[4..5]$$$ subsegment $$$2$$$ is second to max value and it's position in the whole array is $$$4$$$.Note that there are other arrays $$$a$$$ that would produce the same interaction, and the answer for them might be different. Example output is given in purpose of understanding the interaction.
Java 8
standard input
[ "binary search", "interactive" ]
eb660c470760117dfd0b95acc10eee3b
The first line contains a single integer $$$n$$$ $$$(2 \leq n \leq 10^5)$$$ — the number of elements in the array.
1,900
null
standard output
PASSED
29a289fea5a6adf464d7ee9c8a32c166
train_109.jsonl
1613658900
The only difference between the easy and the hard version is the limit to the number of queries.This is an interactive problem.There is an array $$$a$$$ of $$$n$$$ different numbers. In one query you can ask the position of the second maximum element in a subsegment $$$a[l..r]$$$. Find the position of the maximum element in the array in no more than 20 queries.A subsegment $$$a[l..r]$$$ is all the elements $$$a_l, a_{l + 1}, ..., a_r$$$. After asking this subsegment you will be given the position of the second maximum from this subsegment in the whole array.
256 megabytes
import java.util.*; import java.lang.*; import java.io.*; import java.math.BigInteger; public class C { static Scanner in; public static void main(String[] args) { in = new Scanner(System.in); int n = in.nextInt(); int l=1, r= n; int s = query(l, r); if(query(1, s) == s) { l = 1; r = s-1; while(l<r) { int m = (l+r+1)/2; if(query(m, s) == s) l = m; else r = m-1; } solve(l); } else { l = s+1; r = n; while(l<r) { int m = (l+r)/2; if(query(s, m) == s) r = m; else l = m+1; } solve(l); } } static int query(int l, int r) { if(l>=r) return -1; System.out.println("? " + l + " " + r); System.out.flush(); return in.nextInt(); } static void solve(int s) { System.out.println("! " + s); System.out.flush(); } }
Java
["5\n\n3\n\n4"]
1 second
["? 1 5\n\n? 4 5\n\n! 1"]
NoteIn the sample suppose $$$a$$$ is $$$[5, 1, 4, 2, 3]$$$. So after asking the $$$[1..5]$$$ subsegment $$$4$$$ is second to max value, and it's position is $$$3$$$. After asking the $$$[4..5]$$$ subsegment $$$2$$$ is second to max value and it's position in the whole array is $$$4$$$.Note that there are other arrays $$$a$$$ that would produce the same interaction, and the answer for them might be different. Example output is given in purpose of understanding the interaction.
Java 8
standard input
[ "binary search", "interactive" ]
eb660c470760117dfd0b95acc10eee3b
The first line contains a single integer $$$n$$$ $$$(2 \leq n \leq 10^5)$$$ — the number of elements in the array.
1,900
null
standard output
PASSED
df48168e3559c79ffa9ef82794a14f3c
train_109.jsonl
1613658900
The only difference between the easy and the hard version is the limit to the number of queries.This is an interactive problem.There is an array $$$a$$$ of $$$n$$$ different numbers. In one query you can ask the position of the second maximum element in a subsegment $$$a[l..r]$$$. Find the position of the maximum element in the array in no more than 20 queries.A subsegment $$$a[l..r]$$$ is all the elements $$$a_l, a_{l + 1}, ..., a_r$$$. After asking this subsegment you will be given the position of the second maximum from this subsegment in the whole array.
256 megabytes
import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.io.PrintWriter; import java.util.*; public class Main{ static class FastScanner { BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); StringTokenizer st = new StringTokenizer(""); String next() { while (!st.hasMoreTokens()) try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } int[] nextArray(int n) { int[] a = new int[n]; for (int i = 0; i < n; i++) a[i] = nextInt(); return a; } long[] nextArray(long n) { long[] a = new long[(int) n]; for (int i = 0; i < n; i++) a[i] = nextLong(); return a; } long nextLong() { return Long.parseLong(next()); } } static class FastWriter extends PrintWriter { FastWriter(){ super(System.out); } void println(int[] array) { for(int i=0; i<array.length; i++) { print(array[i]+" "); } println(); } void println(long [] array) { for(int i=0; i<array.length; i++) { print(array[i]+" "); } println(); } } static int MOD=998244353; public static void main(String[] args) throws IOException { FastScanner in = new FastScanner(); FastWriter out = new FastWriter(); //int t=in.nextInt(); int t=1; while (t-->0){ int n=in.nextInt(); out.println("? 1 "+n); out.flush(); int pos=in.nextInt(); int pos1=n; if(pos!=1){ out.println("? 1 "+pos); out.flush(); pos1=in.nextInt(); } int i=1,j=n; if(pos==pos1){ j=pos; while (i+1<j){ int mid=(i+j)/2; out.println("? "+mid+" "+pos); out.flush(); pos1=in.nextInt(); if(pos==pos1){ i=mid; }else { j=mid; } } out.println("! "+i); out.flush(); }else { i=pos; while (i+1<j){ int mid=(i+j)/2; out.println("? "+pos+" "+mid); out.flush(); pos1=in.nextInt(); if(pos==pos1){ j=mid; }else { i=mid; } } out.println("! "+j); out.flush(); } } out.close(); } static boolean check(int[] a){ for (int i = 0; i < a.length - 1; i++) { if(a[i]!=a[i+1]){ return false; } } return true; } //Arrays.sort(a, (o1, o2) -> (o1[0] - o2[0])); static int subarray_lessthan_k(int[] A,int n,int k){ int s=0,e=0,sum=0,cnt=0; while(e<n){ sum+=A[e]; while(s<=e&&sum>k){ sum-=A[s++]; } cnt+=e-s+1; e++; } return cnt; } static int totalPrimeFactors(int n) { int cnt=0; while (n%2==0) { cnt++; n /= 2; } int num= (int) Math.sqrt(n); for (int i = 3; i <= num; i+= 2) { while (n%i == 0) { cnt++; n /= i; num=(int)Math.sqrt(n); } } if (n > 2){ cnt++; } return cnt; } static char get(int i){ return (char)(i+'a'); } static boolean distinct(int num){ HashSet<Integer> set=new HashSet<>(); int len=String.valueOf(num).length(); while (num!=0){ set.add(num%10); num/=10; } return set.size()==len; } static int maxSubArraySum(int a[],int st,int en) { int max_s = Integer.MIN_VALUE, max_e = 0,ind=0,ind1=1; for (int i = st; i <= en; i++) { max_e+= a[i]; if (max_s < max_e){ max_s = max_e; ind=ind1; } if (max_e < 0){ max_e = 0; ind1=i+1; } } if(st==0){ return max_s; } if(ind==1){ return a[0]+2*max_s; }else { return 2*max_s+maxSubArraySum(a,0,ind-1); } //return max_s; } static void segmentedSieve(ArrayList<Integer> res,int low, int high) { if(low < 2){ low = 2; } ArrayList<Integer> prime = new ArrayList<>(); simpleSieve(high, prime); boolean[] mark = new boolean[high - low + 1]; for (int i = 0; i < mark.length; i++){ mark[i] = true; } for (int i = 0; i < prime.size(); i++) { int loLim = (low / prime.get(i)) * prime.get(i); if (loLim < low){ loLim += prime.get(i); } if (loLim == prime.get(i)){ loLim += prime.get(i); } for (int j = loLim; j <= high; j += prime.get(i)) { mark[j - low] = false; } } for (int i = low; i <= high; i++) { if (mark[i - low]){ res.add(i); } } } static void simpleSieve(int limit, ArrayList<Integer> prime) { int bound = (int)Math.sqrt(limit); boolean[] mark = new boolean[bound + 1]; for (int i = 0; i <= bound; i++){ mark[i] = true; } for (int i = 2; i * i <= bound; i++) { if (mark[i]) { for (int j = i * i; j <= bound; j += i){ mark[j] = false; } } } for (int i = 2; i <= bound; i++) { if (mark[i]){ prime.add(i); } } } static int highestPowerOf2(int n) { if (n < 1){ return 0; } int res = 1; for (int i = 0; i < 8 * Integer.BYTES; i++) { int curr = 1 << i; if (curr > n){ break; } res = curr; } return res; } static int reduceFraction(int x, int y) { int d= gcd(x, y); return x/d+y/d; } static boolean subset(int[] ar,int n,int sum){ if(sum==0){ return true; } if(n<0||sum<0){ return false; } return subset(ar,n-1,sum)||subset(ar,n-1,sum-ar[n]); } static boolean isPrime(int n){ if(n<=1) return false; for(int i = 2;i<=Math.sqrt(n);i++){ if (n % i == 0) return false; } return true; } static int gcd(int a, int b) { if (b == 0) return a; return gcd(b, a % b); } static long gcd(long a, long b) { if (b == 0) return a; return gcd(b, a % b); } static long lcm(long a, long b) { return (a * b) / gcd(a, b); } static int lcm(int a, int b) { return (a * b) / gcd(a, b); } static boolean isPowerOfTwo(long n) { if(n==0){ return false; } while (n%2==0){ n/=2; } return n==1; } static boolean isPerfectSquare(int x){ if (x >= 0) { int sr = (int)Math.sqrt(x); return ((sr * sr) == x); } return false; } static int lower_bound(int[] arr, int x) { int low_limit = 0, high_limit = arr.length, mid; while (low_limit < high_limit) { mid = (low_limit + high_limit) / 2; if (arr[mid] >= x){ high_limit = mid; }else{ low_limit = mid + 1; } } return low_limit; } static int upper_bound(int[] arr, int x) { int low_limit = 0, high_limit = arr.length, mid; while (low_limit < high_limit) { mid = (low_limit + high_limit) / 2; if (arr[mid] > x){ high_limit = mid; }else{ low_limit = mid + 1; } } return low_limit; } static int binarySearch(int[] ar,int n,int num){ int low=0,high=n-1; while (low<=high){ int mid=(low+high)/2; if(ar[mid]==num){ return mid; }else if(ar[mid]>num){ high=mid-1; }else { low=mid+1; } } return -1; } static int fib(int n) { long F[][] = new long[][]{{1,1},{1,0}}; if (n == 0){ return 0; } power(F, n-1); return (int)F[0][0]; } static void multiply(long F[][], long M[][]) { long x = (F[0][0]*M[0][0])%1000000007 + (F[0][1]*M[1][0])%1000000007; long y = (F[0][0]*M[0][1])%1000000007 + (F[0][1]*M[1][1])%1000000007; long z = (F[1][0]*M[0][0])%1000000007 + (F[1][1]*M[1][0])%1000000007; long w = (F[1][0]*M[0][1])%1000000007 + (F[1][1]*M[1][1])%1000000007; F[0][0] = x%1000000007; F[0][1] = y%1000000007; F[1][0] = z%1000000007; F[1][1] = w%1000000007; } static void power(long F[][], int n) { if( n == 0 || n == 1){ return; } long M[][] = new long[][]{{1,1},{1,0}}; power(F, n/2); multiply(F, F); if (n%2 != 0){ multiply(F, M); } } }
Java
["5\n\n3\n\n4"]
1 second
["? 1 5\n\n? 4 5\n\n! 1"]
NoteIn the sample suppose $$$a$$$ is $$$[5, 1, 4, 2, 3]$$$. So after asking the $$$[1..5]$$$ subsegment $$$4$$$ is second to max value, and it's position is $$$3$$$. After asking the $$$[4..5]$$$ subsegment $$$2$$$ is second to max value and it's position in the whole array is $$$4$$$.Note that there are other arrays $$$a$$$ that would produce the same interaction, and the answer for them might be different. Example output is given in purpose of understanding the interaction.
Java 8
standard input
[ "binary search", "interactive" ]
eb660c470760117dfd0b95acc10eee3b
The first line contains a single integer $$$n$$$ $$$(2 \leq n \leq 10^5)$$$ — the number of elements in the array.
1,900
null
standard output
PASSED
9144417b05a2aa6beab4af8a2d7efdfd
train_109.jsonl
1613658900
The only difference between the easy and the hard version is the limit to the number of queries.This is an interactive problem.There is an array $$$a$$$ of $$$n$$$ different numbers. In one query you can ask the position of the second maximum element in a subsegment $$$a[l..r]$$$. Find the position of the maximum element in the array in no more than 20 queries.A subsegment $$$a[l..r]$$$ is all the elements $$$a_l, a_{l + 1}, ..., a_r$$$. After asking this subsegment you will be given the position of the second maximum from this subsegment in the whole array.
256 megabytes
import java.util.*; import java.io.*; import java.text.*; public class Main implements Runnable { FastScanner sc; PrintWriter pw; final class FastScanner { BufferedReader br; StringTokenizer st; public FastScanner() { try { br = new BufferedReader(new InputStreamReader(System.in)); st = new StringTokenizer(br.readLine()); } catch (Exception e) { e.printStackTrace(); } } public long nlo() { return Long.parseLong(next()); } public String next() { if (st.hasMoreTokens()) return st.nextToken(); try { st = new StringTokenizer(br.readLine()); } catch (Exception e) { e.printStackTrace(); } return st.nextToken(); } public int ni() { return Integer.parseInt(next()); } public String nli() { String line = ""; if (st.hasMoreTokens()) line = st.nextToken(); else try { return br.readLine(); } catch (IOException e) { e.printStackTrace(); } while (st.hasMoreTokens()) line += " " + st.nextToken(); return line; } public double nd() { return Double.parseDouble(next()); } } public static void main(String[] args) throws Exception { new Thread(null,new Main(),"codeforces",1<<28).start(); } public void run() { // sc=new FastScanner(); //pw=new PrintWriter(System.out); try{ solve(); } catch(Exception e) { ; // pw.println(e); } //pw.flush(); //pw.close(); } public long gcd(long a,long b) { return b==0L?a:gcd(b,a%b); } public long ppow(long a,long b,long mod) { if(b==0L) return 1L; long tmp=1; while(b>1L) { if((b&1L)==1L) tmp*=a; a*=a; a%=mod; tmp%=mod; b>>=1; } return (tmp*a)%mod; } public long pow(long a,long b) { if(b==0L) return 1L; long tmp=1; while(b>1L) { if((b&1L)==1) tmp*=a; a*=a; b>>=1; } return (tmp*a); } public int gcd(int x,int y) { return y==0?x:gcd(y,x%y); } ////////////////////////////////// ///////////// LOGIC /////////// //////////////////////////////// public void solve() throws Exception{ Scanner sc=new Scanner(System.in); int n=sc.nextInt(); System.out.println("? "+1+" "+n); int m=sc.nextInt(); if(m!=1&&m!=n){ System.out.println("? 1 "+m); int x=sc.nextInt(); if(x==m) System.out.println("! "+f(1,m,sc)); else System.out.println("! "+g(m,n,sc)); } else if(m==1) System.out.println("! "+g(1,n,sc)); else System.out.println("! "+f(1,n,sc)); } public int f(int s,int e,Scanner sc){ int ans=s; int val=e; e--; while(s<=e){ int m=(s+e)/2; System.out.println("? "+m+" "+val); int x=sc.nextInt(); if(x==val){ ans=m; s=m+1; } else e=m-1; } return ans; } public int g(int s,int e,Scanner sc){ int ans=s; int val=s; s++; while(s<=e){ int m=(s+e)/2; System.out.println("? "+val+" "+m); int x=sc.nextInt(); if(x==val){ ans=m; e=m-1; } else s=m+1; } return ans; } }
Java
["5\n\n3\n\n4"]
1 second
["? 1 5\n\n? 4 5\n\n! 1"]
NoteIn the sample suppose $$$a$$$ is $$$[5, 1, 4, 2, 3]$$$. So after asking the $$$[1..5]$$$ subsegment $$$4$$$ is second to max value, and it's position is $$$3$$$. After asking the $$$[4..5]$$$ subsegment $$$2$$$ is second to max value and it's position in the whole array is $$$4$$$.Note that there are other arrays $$$a$$$ that would produce the same interaction, and the answer for them might be different. Example output is given in purpose of understanding the interaction.
Java 8
standard input
[ "binary search", "interactive" ]
eb660c470760117dfd0b95acc10eee3b
The first line contains a single integer $$$n$$$ $$$(2 \leq n \leq 10^5)$$$ — the number of elements in the array.
1,900
null
standard output
PASSED
e1781b02f93ec75611af66c5d809540c
train_109.jsonl
1613658900
The only difference between the easy and the hard version is the limit to the number of queries.This is an interactive problem.There is an array $$$a$$$ of $$$n$$$ different numbers. In one query you can ask the position of the second maximum element in a subsegment $$$a[l..r]$$$. Find the position of the maximum element in the array in no more than 20 queries.A subsegment $$$a[l..r]$$$ is all the elements $$$a_l, a_{l + 1}, ..., a_r$$$. After asking this subsegment you will be given the position of the second maximum from this subsegment in the whole array.
256 megabytes
import java.util.*; import java.io.*; public class CA2 { static FastScanner sc = new FastScanner(); public static void main(String[] args) { PrintWriter out = new PrintWriter(System.out); int n = sc.nextInt(); out.println("! " + solve(n)); out.close(); } static int query(int l, int r) { if(r == l) return -1; System.out.println("? " + l + " " + r); System.out.flush(); int q = sc.nextInt(); return q; } static int solve(int n) { int smax = query(1, n); if(smax == 1 || query(1,smax) != smax) { int l = smax; int r = n; while(r-l > 1) { int m = l + (r-l)/2; if(query(smax, m) == smax) r = m; else l = m; } return r; } else { int l = 1; int r = smax; while(r-l > 1) { int m = l + (r-l)/2; if(query(m, smax) == smax) { l = m; } else { r = m; } } return l; } } static class FastScanner { BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); StringTokenizer st = new StringTokenizer(""); String next() { while (!st.hasMoreTokens()) try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } return st.nextToken(); } public String nextLine() { try { return br.readLine(); } catch (Exception e) { e.printStackTrace(); } return null; } int nextInt() { return Integer.parseInt(next()); } int[] readArray(int n) { int[] a = new int[n]; for (int i = 0; i < n; i++) a[i] = nextInt(); return a; } long nextLong() { return Long.parseLong(next()); } } }
Java
["5\n\n3\n\n4"]
1 second
["? 1 5\n\n? 4 5\n\n! 1"]
NoteIn the sample suppose $$$a$$$ is $$$[5, 1, 4, 2, 3]$$$. So after asking the $$$[1..5]$$$ subsegment $$$4$$$ is second to max value, and it's position is $$$3$$$. After asking the $$$[4..5]$$$ subsegment $$$2$$$ is second to max value and it's position in the whole array is $$$4$$$.Note that there are other arrays $$$a$$$ that would produce the same interaction, and the answer for them might be different. Example output is given in purpose of understanding the interaction.
Java 8
standard input
[ "binary search", "interactive" ]
eb660c470760117dfd0b95acc10eee3b
The first line contains a single integer $$$n$$$ $$$(2 \leq n \leq 10^5)$$$ — the number of elements in the array.
1,900
null
standard output
PASSED
2aee81ceb08f2170c96f21bdff898649
train_109.jsonl
1613658900
The only difference between the easy and the hard version is the limit to the number of queries.This is an interactive problem.There is an array $$$a$$$ of $$$n$$$ different numbers. In one query you can ask the position of the second maximum element in a subsegment $$$a[l..r]$$$. Find the position of the maximum element in the array in no more than 20 queries.A subsegment $$$a[l..r]$$$ is all the elements $$$a_l, a_{l + 1}, ..., a_r$$$. After asking this subsegment you will be given the position of the second maximum from this subsegment in the whole array.
256 megabytes
import java.util.*; import java.io.*; public class C2 { static FastScanner sc = new FastScanner(); public static void main(String[] args) { PrintWriter out = new PrintWriter(System.out); int n = sc.nextInt(); out.println("! " + solve(n)); out.close(); } static int query(int l, int r) { if(r == l) return -1; System.out.println("? " + l + " " + r); System.out.flush(); int q = sc.nextInt(); return q; } static int solve(int n) { int smax = query(1, n); if(smax == 1 || query(1,smax) != smax) { int l = smax; int r = n; while(r-l > 1) { int m = l + (r-l)/2; if(query(smax, m) == smax) r = m; else l = m; } return r; } else { int l = 1; int r = smax; while(r-l > 1) { int m = l + (r-l)/2; if(query(m, smax) == smax) { l = m; } else { r = m; } } return l; } } static class FastScanner { BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); StringTokenizer st = new StringTokenizer(""); String next() { while (!st.hasMoreTokens()) try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } return st.nextToken(); } public String nextLine() { try { return br.readLine(); } catch (Exception e) { e.printStackTrace(); } return null; } int nextInt() { return Integer.parseInt(next()); } int[] readArray(int n) { int[] a = new int[n]; for (int i = 0; i < n; i++) a[i] = nextInt(); return a; } long nextLong() { return Long.parseLong(next()); } } }
Java
["5\n\n3\n\n4"]
1 second
["? 1 5\n\n? 4 5\n\n! 1"]
NoteIn the sample suppose $$$a$$$ is $$$[5, 1, 4, 2, 3]$$$. So after asking the $$$[1..5]$$$ subsegment $$$4$$$ is second to max value, and it's position is $$$3$$$. After asking the $$$[4..5]$$$ subsegment $$$2$$$ is second to max value and it's position in the whole array is $$$4$$$.Note that there are other arrays $$$a$$$ that would produce the same interaction, and the answer for them might be different. Example output is given in purpose of understanding the interaction.
Java 8
standard input
[ "binary search", "interactive" ]
eb660c470760117dfd0b95acc10eee3b
The first line contains a single integer $$$n$$$ $$$(2 \leq n \leq 10^5)$$$ — the number of elements in the array.
1,900
null
standard output
PASSED
5f436ffe24133f7fcc9c7dc50b6582b8
train_109.jsonl
1613658900
The only difference between the easy and the hard version is the limit to the number of queries.This is an interactive problem.There is an array $$$a$$$ of $$$n$$$ different numbers. In one query you can ask the position of the second maximum element in a subsegment $$$a[l..r]$$$. Find the position of the maximum element in the array in no more than 20 queries.A subsegment $$$a[l..r]$$$ is all the elements $$$a_l, a_{l + 1}, ..., a_r$$$. After asking this subsegment you will be given the position of the second maximum from this subsegment in the whole array.
256 megabytes
import java.util.*; import java.util.concurrent.LinkedBlockingDeque; import javax.print.attribute.IntegerSyntax; import javax.sql.rowset.spi.SyncResolver; import java.io.*; import java.nio.channels.NonReadableChannelException; import java.text.DateFormatSymbols; import static java.lang.System.*; public class CpTemp{ static FastScanner fs = null; static ArrayList<Integer> al[]; static HashMap<Long,Long> hm; static long fy; static long fx; static long ix; static long iy; static long prex[]; static long prey[]; public static void main(String[] args) { fs = new FastScanner(); PrintWriter out = new PrintWriter(System.out); int t= 1; outer: while (t-- > 0) { int n = fs.nextInt(); int smax = ask(0,n-1); int g = ask(0,smax); int ans = -1; if(g != smax){ int l = smax; int r = n-1; while(l+1<r){ int mid = (l+r)/2; if(ask(smax,mid) == smax){ r = mid; }else{ l = mid; } } out.println("! "+(r+1)); }else{ int l=0; int r = smax; while(l+1<r){ int mid = (l+r+1)/2; if(ask(mid,smax) == smax){ ans = mid; l = mid; }else{ r = mid; } } out.println("! "+(l+1)); } } out.close(); } public static int ask(int st,int end){ if(st>=end) { return -1; } out.println("? "+(st+1)+" "+(end+1)); int g = fs.nextInt(); out.flush(); return g-1; } static long bit[]; // '1' index based array public static void update(long bit[],int i,int x){ for(;i<bit.length;i+=(i&(-i))){ bit[i] += x; } } public static long sum(int i){ long sum=0; for(;i>0 ;i -= (i&(-i))){ sum += bit[i]; } return sum; } static class Pair implements Comparable<Pair> { int x; int y; Pair(int x, int y) { this.x = x; this.y = y; } public int compareTo(Pair o){ return this.y-o.y; } } static class Pair1 implements Comparable<Pair1> { int x; int y; int z; Pair1(int x, int y,int z) { this.x = x; this.y = y; this.z = z; } public int compareTo(Pair1 o){ return this.z-o.z; } } static int power(int x, int y, int p) { if (y == 0) return 1; if (x == 0) return 0; int res = 1; x = x % p; while (y > 0) { if (y % 2 == 1) res = (res * x) % p; y = y >> 1; x = (x * x) % p; } return res; } static long power(long x, long y) { if (y == 0) return 1; if (x == 0) return 0; long res = 1; while (y > 0) { if (y % 2 == 1) res = (res * x); y = y >> 1; x = (x * x); } return res; } static void sort(long[] a) { ArrayList<Long> l = new ArrayList<>(); for (long i : a) l.add(i); Collections.sort(l); for (int i = 0; i < a.length; i++) a[i] = l.get(i); } static class FastScanner { BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); StringTokenizer st = new StringTokenizer(""); String next() { while (!st.hasMoreTokens()) try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } int[] readArray(int n) { int[] a = new int[n]; for (int i = 0; i < n; i++) a[i] = nextInt(); return a; } long[] readlongArray(int n){ long[] a = new long[n]; for (int i = 0; i < n; i++) a[i] = nextLong(); return a; } long nextLong() { return Long.parseLong(next()); } } static boolean prime[]; static void sieveOfEratosthenes(int n) { prime = new boolean[n + 1]; for (int i = 0; i <= n; i++) prime[i] = true; for (int p = 2; p * p <= n; p++) { // If prime[p] is not changed, then it is a // prime if (prime[p] == true) { // Update all multiples of p for (int i = p * p; i <= n; i += p) prime[i] = false; } } } public static int log2(int x) { return (int) (Math.log(x) / Math.log(2)); } public static long gcd(long a, long b) { if (b == 0) { return a; } return gcd(b, a % b); } static long nCk(int n, int k) { long res = 1; for (int i = n - k + 1; i <= n; ++i) res *= i; for (int i = 2; i <= k; ++i) res /= i; return res; } }
Java
["5\n\n3\n\n4"]
1 second
["? 1 5\n\n? 4 5\n\n! 1"]
NoteIn the sample suppose $$$a$$$ is $$$[5, 1, 4, 2, 3]$$$. So after asking the $$$[1..5]$$$ subsegment $$$4$$$ is second to max value, and it's position is $$$3$$$. After asking the $$$[4..5]$$$ subsegment $$$2$$$ is second to max value and it's position in the whole array is $$$4$$$.Note that there are other arrays $$$a$$$ that would produce the same interaction, and the answer for them might be different. Example output is given in purpose of understanding the interaction.
Java 8
standard input
[ "binary search", "interactive" ]
eb660c470760117dfd0b95acc10eee3b
The first line contains a single integer $$$n$$$ $$$(2 \leq n \leq 10^5)$$$ — the number of elements in the array.
1,900
null
standard output
PASSED
b2fb83d24a7fdd74d059b72b0747a3ea
train_109.jsonl
1613658900
The only difference between the easy and the hard version is the limit to the number of queries.This is an interactive problem.There is an array $$$a$$$ of $$$n$$$ different numbers. In one query you can ask the position of the second maximum element in a subsegment $$$a[l..r]$$$. Find the position of the maximum element in the array in no more than 20 queries.A subsegment $$$a[l..r]$$$ is all the elements $$$a_l, a_{l + 1}, ..., a_r$$$. After asking this subsegment you will be given the position of the second maximum from this subsegment in the whole array.
256 megabytes
import java.io.*; import java.util.*; public final class Solution { static PrintWriter out = new PrintWriter(System.out); static FastReader in = new FastReader(); static long mod = (long) 1e9 + 7; static Pair[] moves = new Pair[]{new Pair(-1, 0), new Pair(1, 0), new Pair(0, -1), new Pair(0, 1)}; public static void main(String[] args) { int t = 1; out: while (t-- > 0) { int n = i(); int i1 = ask(0, n - 1); int i2 = i1 > 0 ? ask(0, i1) : -1; if (i1 == i2) { int l = 0; int r = i1 - 1; while (l < r) { int m = (l + r + 1) / 2; if (ask(m, i1) == i1) { l = m; } else { r = m - 1; } } out.println("! " + (l + 1)); out.flush(); } else { int l = i1 + 1; int r = n - 1; while (l < r) { int m = (l + r) / 2; if (ask(i1, m) == i1) { r = m; } else { l = m + 1; } } out.println("! " + (l + 1)); out.flush(); } } out.flush(); } static int ask(int l, int r) { out.println("? " + (l + 1) + " " + (r + 1)); out.flush(); return i() - 1; } static boolean isPS(double number) { double sqrt = Math.sqrt(number); return ((sqrt - Math.floor(sqrt)) == 0); } static int sd(long i) { int d = 0; while (i > 0) { d += i % 10; i = i / 10; } return d; } static int[] leastPrime; static void sieveLinear(int N) { int[] primes = new int[N]; int idx = 0; leastPrime = new int[N + 1]; for (int i = 2; i <= N; i++) { if (leastPrime[i] == 0) { primes[idx++] = i; leastPrime[i] = i; } int curLP = leastPrime[i]; for (int j = 0; j < idx; j++) { int p = primes[j]; if (p > curLP || (long) p * i > N) { break; } else { leastPrime[p * i] = p; } } } } static int lower(long A[], long x) { int l = -1, r = A.length; while (r - l > 1) { int m = (l + r) / 2; if (A[m] >= x) { r = m; } else { l = m; } } return r; } static int upper(long A[], long x) { int l = -1, r = A.length; while (r - l > 1) { int m = (l + r) / 2; if (A[m] <= x) { l = m; } else { r = m; } } return l; } static void swap(int A[], int a, int b) { int t = A[a]; A[a] = A[b]; A[b] = t; } static int lowerBound(int A[], int low, int high, int x) { if (low > high) { if (x >= A[high]) { return A[high]; } } int mid = (low + high) / 2; if (A[mid] == x) { return A[mid]; } if (mid > 0 && A[mid - 1] <= x && x < A[mid]) { return A[mid - 1]; } if (x < A[mid]) { return lowerBound(A, low, mid - 1, x); } return lowerBound(A, mid + 1, high, x); } static long pow(long a, long b) { long pow = 1; long x = a; while (b != 0) { if ((b & 1) != 0) { pow = (pow * x) % mod; } x = (x * x) % mod; b /= 2; } return pow; } static boolean isPrime(long N) { if (N <= 1) { return false; } if (N <= 3) { return true; } if (N % 2 == 0 || N % 3 == 0) { return false; } for (int i = 5; i * i <= N; i = i + 6) { if (N % i == 0 || N % (i + 2) == 0) { return false; } } return true; } static void print(char A[]) { for (char c : A) { out.print(c); } out.println(); } static void print(boolean A[]) { for (boolean c : A) { out.print(c + " "); } out.println(); } static void print(int A[]) { for (int c : A) { out.print(c + " "); } out.println(); } static void print(long A[]) { for (long i : A) { out.print(i + " "); } out.println(); } static void print(List<Integer> A) { for (int a : A) { out.print(a + " "); } } static void printYes() { out.println("YES"); } static void printNo() { out.println("NO"); } static int i() { return in.nextInt(); } static long l() { return in.nextLong(); } static String s() { return in.nextLine(); } static int[] input(int N) { int A[] = new int[N]; for (int i = 0; i < N; i++) { A[i] = in.nextInt(); } return A; } static long[] inputLong(int N) { long A[] = new long[N]; for (int i = 0; i < A.length; i++) { A[i] = in.nextLong(); } return A; } static int GCD(int a, int b) { if (b == 0) { return a; } else { return GCD(b, a % b); } } static long GCD(long a, long b) { if (b == 0) { return a; } else { return GCD(b, a % b); } } } class BIT { int n; int[] tree; public BIT(int n) { this.n = n; this.tree = new int[n + 1]; } public static int lowbit(int x) { return x & (-x); } public void update(int x) { while (x <= n) { ++tree[x]; x += lowbit(x); } } public int query(int x) { int ans = 0; while (x > 0) { ans += tree[x]; x -= lowbit(x); } return ans; } public int query(int x, int y) { return query(y) - query(x - 1); } } class SegmentTree { long[] t; public SegmentTree(int n) { t = new long[n + n]; Arrays.fill(t, Long.MIN_VALUE); } public long get(int i) { return t[i + t.length / 2]; } public void add(int i, long value) { i += t.length / 2; t[i] = value; for (; i > 1; i >>= 1) { t[i >> 1] = Math.max(t[i], t[i ^ 1]); } } // max[a, b] public long max(int a, int b) { long res = Long.MIN_VALUE; for (a += t.length / 2, b += t.length / 2; a <= b; a = (a + 1) >> 1, b = (b - 1) >> 1) { if ((a & 1) != 0) { res = Math.max(res, t[a]); } if ((b & 1) == 0) { res = Math.max(res, t[b]); } } return res; } } class Pair { int i, j; Pair(int i, int j) { this.i = i; this.j = j; } } class FastReader { BufferedReader br; StringTokenizer st; public FastReader() { br = new BufferedReader(new InputStreamReader(System.in)); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } }
Java
["5\n\n3\n\n4"]
1 second
["? 1 5\n\n? 4 5\n\n! 1"]
NoteIn the sample suppose $$$a$$$ is $$$[5, 1, 4, 2, 3]$$$. So after asking the $$$[1..5]$$$ subsegment $$$4$$$ is second to max value, and it's position is $$$3$$$. After asking the $$$[4..5]$$$ subsegment $$$2$$$ is second to max value and it's position in the whole array is $$$4$$$.Note that there are other arrays $$$a$$$ that would produce the same interaction, and the answer for them might be different. Example output is given in purpose of understanding the interaction.
Java 8
standard input
[ "binary search", "interactive" ]
eb660c470760117dfd0b95acc10eee3b
The first line contains a single integer $$$n$$$ $$$(2 \leq n \leq 10^5)$$$ — the number of elements in the array.
1,900
null
standard output
PASSED
aa4f947d70c93e11fe0f2336e0c1395e
train_109.jsonl
1613658900
The only difference between the easy and the hard version is the limit to the number of queries.This is an interactive problem.There is an array $$$a$$$ of $$$n$$$ different numbers. In one query you can ask the position of the second maximum element in a subsegment $$$a[l..r]$$$. Find the position of the maximum element in the array in no more than 20 queries.A subsegment $$$a[l..r]$$$ is all the elements $$$a_l, a_{l + 1}, ..., a_r$$$. After asking this subsegment you will be given the position of the second maximum from this subsegment in the whole array.
256 megabytes
import java.io.*; import java.math.BigInteger; import java.util.*; public class Main { public static void main(String[] args) throws IOException { InputStream inputStream = System.in; OutputStream outputStream = System.out; PrintWriter out = new PrintWriter(outputStream); InputReader in = new InputReader(inputStream); // for(int i=4;i<=4;i++) { // InputStream uinputStream = new FileInputStream("timeline.in"); //String f = i+".in"; //InputStream uinputStream = new FileInputStream(f); // InputReader in = new InputReader(uinputStream); // PrintWriter out = new PrintWriter(new BufferedWriter(new FileWriter("timeline.out"))); // } Task t = new Task(); t.solve(in, out); out.close(); } static class Task{ public void solve(InputReader in, PrintWriter out) throws IOException { int c = in.nextInt(); System.out.println("? 1 "+c); System.out.flush(); int snd = in.nextInt(); if(c==2) { if(snd==1) { System.out.println("! 2"); System.out.flush(); }else { System.out.println("! 1"); System.out.flush(); } return; } int t = c; if(snd!=1) { System.out.println("? 1 "+snd); System.out.flush(); t = in.nextInt(); } if(t==snd) { int l = 1; int r = snd-1; while(l<r-1) { int mid = (l+r)/2; System.out.println("? "+mid+" "+snd); System.out.flush(); int nxt = in.nextInt(); if(nxt==snd) { l = mid; }else { r = mid; } } System.out.println("? "+r+" "+snd); System.out.flush(); int tmp = in.nextInt(); if(tmp==snd) { System.out.println("! "+r); }else { System.out.println("! "+l); } }else { int l = snd+1; int r = c; while(l<r-1) { int mid = (l+r)/2; System.out.println("? "+snd+" "+mid); System.out.flush(); int nxt = in.nextInt(); if(nxt==snd) { r = mid; }else { l = mid; } } System.out.println("? "+snd+" "+l); System.out.flush(); int tmp = in.nextInt(); if(tmp==snd) { System.out.println("! "+l); }else { System.out.println("! "+r); } } } private static int combx(int n, int k) { int comb[][] = new int[n+1][n+1]; for(int i = 0; i <=n; i ++){ comb[i][0] = comb[i][i] = 1; for(int j = 1; j < i; j++){ comb[i][j] = comb[i-1][j] + comb[i-1][j-1]; comb[i][j] %= 1000000007; } } return comb[n][k]; } class trie_node{ boolean end; int val; int lvl; trie_node zero; trie_node one; public trie_node() { zero = null; one = null; end = false; val = -1; lvl = -1; } } class trie{ trie_node root = new trie_node(); public void build(int x, int sz) { trie_node cur = root; for(int i=sz;i>=0;i--) { int v = (x&(1<<i))==0?0:1; if(v==0&&cur.zero==null) { cur.zero = new trie_node(); } if(v==1&&cur.one==null) { cur.one = new trie_node(); } cur.lvl = i; if(i==0) { cur.end = true; cur.val = x; }else { if(v==0) cur = cur.zero; else cur = cur.one; cur.val = v; cur.lvl = i; } } } int search(int num, int limit, trie_node r, int lvl) { if(r==null) return -1; if(r.end) return r.val; int f = -1; int num_val = (num&1<<lvl)==0?0:1; int limit_val = (limit&1<<lvl)==0?0:1; if(limit_val==1) { if(num_val==0) { int t = search(num,limit,r.one,lvl-1); if(t>f) return t; t = search(num,limit,r.zero,lvl-1); if(t>f) return t; }else { int t = search(num,limit,r.zero,lvl-1); if(t>f) return t; t = search(num,limit,r.one,lvl-1); if(t>f) return t; } }else { int t = search(num,limit,r.zero,lvl-1); if(t>f) return t; } return f; } } public int[] maximizeXor(int[] nums, int[][] queries) { int m = queries.length; int ret[] = new int[m]; trie t = new trie(); int sz = 5; for(int i:nums) t.build(i,sz); int p = 0; for(int x[]:queries) { if(p==1) { Dumper.print("here"); } ret[p++] = t.search(x[0], x[1], t.root, sz); } return ret; } class edge implements Comparable<edge>{ int id,f,t; int len; public edge(int a, int b, int c, int d) { f=a;t=b;len=c;id=d; } @Override public int compareTo(edge t) { if(this.len-t.len>0) return 1; else if(this.len-t.len<0) return -1; return 0; } } static class lca_naive{ int n; ArrayList<edge>[] g; int lvl[]; int pare[]; int dist[]; public lca_naive(int t, ArrayList<edge>[] x) { n=t; g=x; lvl = new int[n]; pare = new int[n]; dist = new int[n]; } void pre_process() { dfs(0,-1,g,lvl,pare,dist); } void dfs(int cur, int pre, ArrayList<edge>[] g, int lvl[], int pare[], int dist[]) { for(edge nxt_edge:g[cur]) { if(nxt_edge.t!=pre) { lvl[nxt_edge.t] = lvl[cur]+1; dist[nxt_edge.t] = dist[cur]+nxt_edge.len; pare[nxt_edge.t] = cur; dfs(nxt_edge.t,cur,g,lvl,pare,dist); } } } public int work(int p, int q) { int a = p; int b = q; while(lvl[p]<lvl[q]) q = pare[q]; while(lvl[p]>lvl[q]) p = pare[p]; while(p!=q){p = pare[p]; q = pare[q];} int c = p; return dist[a]+dist[b]-dist[c]*2; } } static class lca_binary_lifting{ int n; ArrayList<edge>[] g; int lvl[]; int pare[]; int dist[]; int table[][]; public lca_binary_lifting(int a, ArrayList<edge>[] t) { n = a; g = t; lvl = new int[n]; pare = new int[n]; dist = new int[n]; table = new int[20][n]; } void pre_process() { dfs(0,-1,g,lvl,pare,dist); for(int i=0;i<20;i++) { for(int j=0;j<n;j++) { if(i==0) table[0][j] = pare[j]; else table[i][j] = table[i-1][table[i-1][j]]; } } } void dfs(int cur, int pre, ArrayList<edge>[] g, int lvl[], int pare[], int dist[]) { for(edge nxt_edge:g[cur]) { if(nxt_edge.t!=pre) { lvl[nxt_edge.t] = lvl[cur]+1; dist[nxt_edge.t] = dist[cur]+nxt_edge.len; pare[nxt_edge.t] = cur; dfs(nxt_edge.t,cur,g,lvl,pare,dist); } } } public int work(int p, int q) { int a = p; int b = q; if(lvl[p]>lvl[q]) { int tmp = p; p=q; q=tmp; } for(int i=19;i>=0;i--) { if(lvl[table[i][q]]>=lvl[p]) q=table[i][q]; } if(p==q) return p;// return dist[a]+dist[b]-dist[p]*2; for(int i=19;i>=0;i--) { if(table[i][p]!=table[i][q]) { p = table[i][p]; q = table[i][q]; } } return table[0][p]; //return dist[a]+dist[b]-dist[table[0][p]]*2; } } static class lca_sqrt_root{ int n; ArrayList<edge>[] g; int lvl[]; int pare[]; int dist[]; int jump[]; int sz; public lca_sqrt_root(int a, ArrayList<edge>[] b) { n=a; g=b; lvl = new int[n]; pare = new int[n]; dist = new int[n]; jump = new int[n]; sz = (int) Math.sqrt(n); } void pre_process() { dfs(0,-1,g,lvl,pare,dist,jump); } void dfs(int cur, int pre, ArrayList<edge>[] g, int lvl[], int pare[], int dist[], int[] jump) { for(edge nxt_edge:g[cur]) { if(nxt_edge.t!=pre) { lvl[nxt_edge.t] = lvl[cur]+1; dist[nxt_edge.t] = dist[cur]+nxt_edge.len; pare[nxt_edge.t] = cur; if(lvl[nxt_edge.t]%sz==0) { jump[nxt_edge.t] = cur; }else { jump[nxt_edge.t] = jump[cur]; } dfs(nxt_edge.t,cur,g,lvl,pare,dist,jump); } } } int work(int p, int q) { int a = p; int b = q; if(lvl[p]>lvl[q]) { int tmp = p; p=q; q=tmp; } while(jump[p]!=jump[q]) { if(lvl[p]>lvl[q]) p = jump[p]; else q = jump[q]; } while(p!=q) { if(lvl[p]>lvl[q]) p = pare[p]; else q = pare[q]; } return dist[a]+dist[b]-dist[p]*2; } } // class edge implements Comparable<edge>{ // int f,t,len; // public edge(int a, int b, int c) { // f=a;t=b;len=c; // } // @Override // public int compareTo(edge t) { // return t.len-this.len; // } // } class pair implements Comparable<pair>{ int idx,lvl; public pair(int a, int b) { idx = a; lvl = b; } @Override public int compareTo(pair t) { return t.lvl-this.lvl; } } static class lca_RMQ{ int n; ArrayList<edge>[] g; int lvl[]; int dist[]; int tour[]; int tour_rank[]; int first_occ[]; int c; sgt s; public lca_RMQ(int a, ArrayList<edge>[] b) { n=a; g=b; c=0; lvl = new int[n]; dist = new int[n]; tour = new int[2*n]; tour_rank = new int[2*n]; first_occ = new int[n]; Arrays.fill(first_occ, -1); } void pre_process() { tour[c++] = 0; dfs(0,-1); for(int i=0;i<2*n;i++) { tour_rank[i] = lvl[tour[i]]; if(first_occ[tour[i]]==-1) first_occ[tour[i]] = i; } s = new sgt(0,2*n,tour_rank); } void dfs(int cur, int pre) { for(edge nxt_edge:g[cur]) { if(nxt_edge.t!=pre) { lvl[nxt_edge.t] = lvl[cur]+1; dist[nxt_edge.t] = dist[cur]+nxt_edge.len; tour[c++] = nxt_edge.t; dfs(nxt_edge.t,cur); tour[c++] = cur; } } } int work(int p,int q) { int a = Math.max(first_occ[p], first_occ[q]); int b = Math.min(first_occ[p], first_occ[q]); int idx = s.query_min_idx(b, a+1); //Dumper.print(a+" "+b+" "+idx); int c = tour[idx]; return dist[p]+dist[q]-dist[c]*2; } } static class sgt{ sgt lt; sgt rt; int l,r; int sum, max, min, lazy; int min_idx; public sgt(int L, int R, int arr[]) { l=L;r=R; if(l==r-1) { sum = max = min = arr[l]; lazy = 0; min_idx = l; return; } lt = new sgt(l, l+r>>1, arr); rt = new sgt(l+r>>1, r, arr); pop_up(); } void pop_up() { this.sum = lt.sum + rt.sum; this.max = Math.max(lt.max, rt.max); this.min = Math.min(lt.min, rt.min); if(lt.min<rt.min) this.min_idx = lt.min_idx; else if(lt.min>rt.min) this.min_idx = rt.min_idx; else this.min = Math.min(lt.min_idx, rt.min_idx); } void push_down() { if(this.lazy!=0) { lt.sum+=lazy; rt.sum+=lazy; lt.max+=lazy; lt.min+=lazy; rt.max+=lazy; rt.min+=lazy; lt.lazy+=this.lazy; rt.lazy+=this.lazy; this.lazy = 0; } } void change(int L, int R, int v) { if(R<=l||r<=L) return; if(L<=l&&r<=R) { this.max+=v; this.min+=v; this.sum+=v*(r-l); this.lazy+=v; return; } push_down(); lt.change(L, R, v); rt.change(L, R, v); pop_up(); } int query_max(int L, int R) { if(L<=l&&r<=R) return this.max; if(r<=L||R<=l) return Integer.MIN_VALUE; push_down(); return Math.max(lt.query_max(L, R), rt.query_max(L, R)); } int query_min(int L, int R) { if(L<=l&&r<=R) return this.min; if(r<=L||R<=l) return Integer.MAX_VALUE; push_down(); return Math.min(lt.query_min(L, R), rt.query_min(L, R)); } int query_sum(int L, int R) { if(L<=l&&r<=R) return this.sum; if(r<=L||R<=l) return 0; push_down(); return lt.query_sum(L, R) + rt.query_sum(L, R); } int query_min_idx(int L, int R) { if(L<=l&&r<=R) return this.min_idx; if(r<=L||R<=l) return Integer.MAX_VALUE; int a = lt.query_min_idx(L, R); int b = rt.query_min_idx(L, R); int aa = lt.query_min(L, R); int bb = rt.query_min(L, R); if(aa<bb) return a; else if(aa>bb) return b; return Math.min(a,b); } } List<List<Integer>> convert(int arr[][]){ int n = arr.length; List<List<Integer>> ret = new ArrayList<>(); for(int i=0;i<n;i++) { ArrayList<Integer> tmp = new ArrayList<Integer>(); for(int j=0;j<arr[i].length;j++) tmp.add(arr[i][j]); ret.add(tmp); } return ret; } public class TreeNode { int val; TreeNode left; TreeNode right; TreeNode(int x) { val = x; } } public int GCD(int a, int b) { if (b==0) return a; return GCD(b,a%b); } public long GCD(long a, long b) { if (b==0) return a; return GCD(b,a%b); } } static class ArrayUtils { static final long seed = System.nanoTime(); static final Random rand = new Random(seed); public static void sort(int[] a) { shuffle(a); Arrays.sort(a); } public static void shuffle(int[] a) { for (int i = 0; i < a.length; i++) { int j = rand.nextInt(i + 1); int t = a[i]; a[i] = a[j]; a[j] = t; } } public static void sort(long[] a) { shuffle(a); Arrays.sort(a); } public static void shuffle(long[] a) { for (int i = 0; i < a.length; i++) { int j = rand.nextInt(i + 1); long t = a[i]; a[i] = a[j]; a[j] = t; } } } static class BIT{ int arr[]; int n; public BIT(int a) { n=a; arr = new int[n]; } int sum(int p) { int s=0; while(p>0) { s+=arr[p]; p-=p&(-p); } return s; } void add(int p, int v) { while(p<n) { arr[p]+=v; p+=p&(-p); } } } static class DSU{ int[] arr; int[] sz; public DSU(int n) { arr = new int[n]; sz = new int[n]; for(int i=0;i<n;i++) arr[i] = i; Arrays.fill(sz, 1); } public int find(int a) { if(arr[a]!=a) arr[a] = find(arr[a]); return arr[a]; } public void union(int a, int b) { int x = find(a); int y = find(b); if(x==y) return; arr[y] = x; sz[x] += sz[y]; } public int size(int x) { return sz[find(x)]; } } static class MinHeap<Key> implements Iterable<Key> { private int maxN; private int n; private int[] pq; private int[] qp; private Key[] keys; private Comparator<Key> comparator; public MinHeap(int capacity){ if (capacity < 0) throw new IllegalArgumentException(); this.maxN = capacity; n=0; pq = new int[maxN+1]; qp = new int[maxN+1]; keys = (Key[]) new Object[capacity+1]; Arrays.fill(qp, -1); } public MinHeap(int capacity, Comparator<Key> c){ if (capacity < 0) throw new IllegalArgumentException(); this.maxN = capacity; n=0; pq = new int[maxN+1]; qp = new int[maxN+1]; keys = (Key[]) new Object[capacity+1]; Arrays.fill(qp, -1); comparator = c; } public boolean isEmpty() { return n==0; } public int size() { return n; } public boolean contains(int i) { if (i < 0 || i >= maxN) throw new IllegalArgumentException(); return qp[i] != -1; } public int peekIdx() { if (n == 0) throw new NoSuchElementException("Priority queue underflow"); return pq[1]; } public Key peek(){ if(isEmpty()) throw new NoSuchElementException("Priority queue underflow"); return keys[pq[1]]; } public int poll(){ if(isEmpty()) throw new NoSuchElementException("Priority queue underflow"); int min = pq[1]; exch(1,n--); down(1); assert min==pq[n+1]; qp[min] = -1; keys[min] = null; pq[n+1] = -1; return min; } public void update(int i, Key key) { if (i < 0 || i >= maxN) throw new IllegalArgumentException(); if (!contains(i)) { this.add(i, key); }else { keys[i] = key; up(qp[i]); down(qp[i]); } } private void add(int i, Key x){ if (i < 0 || i >= maxN) throw new IllegalArgumentException(); if (contains(i)) throw new IllegalArgumentException("index is already in the priority queue"); n++; qp[i] = n; pq[n] = i; keys[i] = x; up(n); } private void up(int k){ while(k>1&&less(k,k/2)){ exch(k,k/2); k/=2; } } private void down(int k){ while(2*k<=n){ int j=2*k; if(j<n&&less(j+1,j)) j++; if(less(k,j)) break; exch(k,j); k=j; } } public boolean less(int i, int j){ if (comparator == null) { return ((Comparable<Key>) keys[pq[i]]).compareTo(keys[pq[j]]) < 0; } else { return comparator.compare(keys[pq[i]], keys[pq[j]]) < 0; } } public void exch(int i, int j){ int swap = pq[i]; pq[i] = pq[j]; pq[j] = swap; qp[pq[i]] = i; qp[pq[j]] = j; } @Override public Iterator<Key> iterator() { // TODO Auto-generated method stub return null; } } private static class InputReader { private InputStream stream; private byte[] buf = new byte[1024]; private int zcurChar; private int znumChars; private SpaceCharFilter filter; public InputReader(InputStream stream) { this.stream = stream; } public int read() { if (znumChars == -1) throw new InputMismatchException(); if (zcurChar >= znumChars) { zcurChar = 0; try { znumChars = stream.read(buf); } catch (IOException e) { throw new InputMismatchException(); } if (znumChars <= 0) return -1; } return buf[zcurChar++]; } public int nextInt() { int c = read(); while (isSpaceChar(c)) c = read(); int sgn = 1; if (c == '-') { sgn = -1; c = read(); } int res = 0; do { if (c < '0' || c > '9') throw new InputMismatchException(); res *= 10; res += c - '0'; c = read(); } while (!isSpaceChar(c)); return res * sgn; } public String nextString() { int c = read(); while (isSpaceChar(c)) c = read(); StringBuilder res = new StringBuilder(); do { res.appendCodePoint(c); c = read(); } while (!isSpaceChar(c)); return res.toString(); } public double nextDouble() { int c = read(); while (isSpaceChar(c)) c = read(); int sgn = 1; if (c == '-') { sgn = -1; c = read(); } double res = 0; while (!isSpaceChar(c) && c != '.') { if (c == 'e' || c == 'E') return res * Math.pow(10, nextInt()); if (c < '0' || c > '9') throw new InputMismatchException(); res *= 10; res += c - '0'; c = read(); } if (c == '.') { c = read(); double m = 1; while (!isSpaceChar(c)) { if (c == 'e' || c == 'E') return res * Math.pow(10, nextInt()); if (c < '0' || c > '9') throw new InputMismatchException(); m /= 10; res += (c - '0') * m; c = read(); } } return res * sgn; } public long nextLong() { int c = read(); while (isSpaceChar(c)) c = read(); int sgn = 1; if (c == '-') { sgn = -1; c = read(); } long res = 0; do { if (c < '0' || c > '9') throw new InputMismatchException(); res *= 10; res += c - '0'; c = read(); } while (!isSpaceChar(c)); return res * sgn; } public boolean isSpaceChar(int c) { if (filter != null) return filter.isSpaceChar(c); return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; } public String next() { return nextString(); } public interface SpaceCharFilter { public boolean isSpaceChar(int ch); } public int[] readIntArray(int n) { int[] ret = new int[n]; for (int i = 0; i < n; i++) { ret[i] = nextInt(); } return ret; } } static class Dumper { static void print_int_arr(int[] arr) { for (int i = 0; i < arr.length; i++) { System.out.print(arr[i] + " "); } System.out.println(); System.out.println("---------------------"); } static void print_char_arr(char[] arr) { for (int i = 0; i < arr.length; i++) { System.out.print(arr[i] + " "); } System.out.println(); System.out.println("---------------------"); } static void print_double_arr(double[] arr) { for (int i = 0; i < arr.length; i++) { System.out.print(arr[i] + " "); } System.out.println(); System.out.println("---------------------"); } static void print_2d_arr(int[][] arr, int x, int y) { for (int i = 0; i < x; i++) { for (int j = 0; j < y; j++) { System.out.print(arr[i][j] + " "); } System.out.println(); } System.out.println(); System.out.println("---------------------"); } static void print_2d_arr(boolean[][] arr, int x, int y) { for (int i = 0; i < x; i++) { for (int j = 0; j < y; j++) { System.out.print(arr[i][j] + " "); } System.out.println(); } System.out.println(); System.out.println("---------------------"); } static void print(Object o) { System.out.println(o.toString()); } static void getc() { System.out.println("here"); } } }
Java
["5\n\n3\n\n4"]
1 second
["? 1 5\n\n? 4 5\n\n! 1"]
NoteIn the sample suppose $$$a$$$ is $$$[5, 1, 4, 2, 3]$$$. So after asking the $$$[1..5]$$$ subsegment $$$4$$$ is second to max value, and it's position is $$$3$$$. After asking the $$$[4..5]$$$ subsegment $$$2$$$ is second to max value and it's position in the whole array is $$$4$$$.Note that there are other arrays $$$a$$$ that would produce the same interaction, and the answer for them might be different. Example output is given in purpose of understanding the interaction.
Java 8
standard input
[ "binary search", "interactive" ]
eb660c470760117dfd0b95acc10eee3b
The first line contains a single integer $$$n$$$ $$$(2 \leq n \leq 10^5)$$$ — the number of elements in the array.
1,900
null
standard output
PASSED
1029c6291be7a8933d93d672c4f8f97a
train_109.jsonl
1613658900
The only difference between the easy and the hard version is the limit to the number of queries.This is an interactive problem.There is an array $$$a$$$ of $$$n$$$ different numbers. In one query you can ask the position of the second maximum element in a subsegment $$$a[l..r]$$$. Find the position of the maximum element in the array in no more than 20 queries.A subsegment $$$a[l..r]$$$ is all the elements $$$a_l, a_{l + 1}, ..., a_r$$$. After asking this subsegment you will be given the position of the second maximum from this subsegment in the whole array.
256 megabytes
import java.util.Scanner; public class Main { public static Scanner scammer = new Scanner(System.in); public static int querry(int left, int right, boolean rite){ if(left == right) return rite ? right + 1 : left - 1; System.out.print("? "); System.out.print(left); System.out.print(" "); System.out.println(right); System.out.flush(); return scammer.nextInt(); } public static void solve(boolean right, int smax, int n){ int p = right ? smax : 1, k = right ? n : smax, mid = (p + k) >> 1; while(p <= k){ mid = (p + k) >> 1; int outcome = right ? querry(smax, mid, true) : querry(mid, smax, false); if(outcome == smax){ if(right) k = mid - 1; else p = mid + 1; } else{ if(right) p = ++mid; else k = --mid; } } System.out.print("! "); System.out.println(mid); System.out.flush(); } public static void solve_small(int n){ int x = querry(1, n, false); System.out.printf("! %d\n", x == 1 ? 2 : 1); System.out.flush(); } public static void main(String[] args) { int n = scammer.nextInt(); int smax = querry(1, n, false); if(n < 3) { solve_small(n); return; } boolean right = false; int drugi_max = querry(1, smax, false); if(drugi_max != smax) right = true; solve(right, smax, n); } }
Java
["5\n\n3\n\n4"]
1 second
["? 1 5\n\n? 4 5\n\n! 1"]
NoteIn the sample suppose $$$a$$$ is $$$[5, 1, 4, 2, 3]$$$. So after asking the $$$[1..5]$$$ subsegment $$$4$$$ is second to max value, and it's position is $$$3$$$. After asking the $$$[4..5]$$$ subsegment $$$2$$$ is second to max value and it's position in the whole array is $$$4$$$.Note that there are other arrays $$$a$$$ that would produce the same interaction, and the answer for them might be different. Example output is given in purpose of understanding the interaction.
Java 8
standard input
[ "binary search", "interactive" ]
eb660c470760117dfd0b95acc10eee3b
The first line contains a single integer $$$n$$$ $$$(2 \leq n \leq 10^5)$$$ — the number of elements in the array.
1,900
null
standard output
PASSED
291047f22d9dc6d9d2899aa6cc70d711
train_109.jsonl
1613658900
The only difference between the easy and the hard version is the limit to the number of queries.This is an interactive problem.There is an array $$$a$$$ of $$$n$$$ different numbers. In one query you can ask the position of the second maximum element in a subsegment $$$a[l..r]$$$. Find the position of the maximum element in the array in no more than 20 queries.A subsegment $$$a[l..r]$$$ is all the elements $$$a_l, a_{l + 1}, ..., a_r$$$. After asking this subsegment you will be given the position of the second maximum from this subsegment in the whole array.
256 megabytes
import java.util.*; import java.io.*; public class C1486 { public static void main(String[] args) throws Exception { int n = i(); out.println("? 1 " + n); out.flush(); int sec = i(); int sectemp = 0; if (sec!=1) { out.println("? 1 " + sec); out.flush(); sectemp = i(); } if (sec==sectemp && sectemp!=0) { int front = 1; int end = sec-1; while (end!=front) { int mid = (int) Math.ceil((front+end)/2.0); out.println("? " + mid + " " + sec); out.flush(); int temp = i(); if (temp==sec) front = mid; else end = mid-1; } out.println("! " + front); } else { int front = sec+1; int end = n; while (end!=front) { int mid = (front+end)/2; out.println("? " + sec + " " + mid); out.flush(); int temp = i(); if (temp==sec) end = mid; else front = mid+1; } out.println("! " + front); } in.close(); out.close(); } static BufferedReader in; static StringTokenizer st = new StringTokenizer(""); static PrintWriter out = new PrintWriter(new BufferedWriter(new OutputStreamWriter(System.out))); // static PrintWriter out; /* * static { try { in = Files.newBufferedReader(Paths.get("haybales.in")); out = * new PrintWriter(new BufferedWriter(new FileWriter("haybales.out"))); } catch * (Exception e) { in = new BufferedReader(new InputStreamReader(System.in)); } * } */ static { in = new BufferedReader(new InputStreamReader(System.in)); } static void check() throws Exception { while (!st.hasMoreTokens()) st = new StringTokenizer(in.readLine()); } static String s() throws Exception { check(); return st.nextToken(); } static int i() throws Exception { return Integer.parseInt(s()); } static long l() throws Exception { return Long.parseLong(s()); } static double d() throws Exception { return Double.parseDouble(s()); } }
Java
["5\n\n3\n\n4"]
1 second
["? 1 5\n\n? 4 5\n\n! 1"]
NoteIn the sample suppose $$$a$$$ is $$$[5, 1, 4, 2, 3]$$$. So after asking the $$$[1..5]$$$ subsegment $$$4$$$ is second to max value, and it's position is $$$3$$$. After asking the $$$[4..5]$$$ subsegment $$$2$$$ is second to max value and it's position in the whole array is $$$4$$$.Note that there are other arrays $$$a$$$ that would produce the same interaction, and the answer for them might be different. Example output is given in purpose of understanding the interaction.
Java 8
standard input
[ "binary search", "interactive" ]
eb660c470760117dfd0b95acc10eee3b
The first line contains a single integer $$$n$$$ $$$(2 \leq n \leq 10^5)$$$ — the number of elements in the array.
1,900
null
standard output
PASSED
557248660c5fbc25f0d45ecf0294e64d
train_109.jsonl
1613658900
The only difference between the easy and the hard version is the limit to the number of queries.This is an interactive problem.There is an array $$$a$$$ of $$$n$$$ different numbers. In one query you can ask the position of the second maximum element in a subsegment $$$a[l..r]$$$. Find the position of the maximum element in the array in no more than 20 queries.A subsegment $$$a[l..r]$$$ is all the elements $$$a_l, a_{l + 1}, ..., a_r$$$. After asking this subsegment you will be given the position of the second maximum from this subsegment in the whole array.
256 megabytes
import java.util.Scanner; public class Main { private static Scanner cin; private static int query(long l, long r) { System.out.println("? " + l + " " + r); System.out.flush(); return cin.nextInt(); } public static void main(String[] args) { cin = new Scanner(System.in); int n = cin.nextInt(); int now = query(1, n), l, r; if (now != 1 && query(1, now) == now) { l = 1; r = now - 1; while (l < r) { int mid = (l + r) >> 1; if (query(mid + 1, now) == now) { l = mid + 1; } else { r = mid; } } } else { l = now + 1; r = n; while (l < r) { int mid = (l + r) >> 1; if (query(now, mid) == now) { r = mid; } else { l = mid + 1; } } } System.out.println("! " + l); } }
Java
["5\n\n3\n\n4"]
1 second
["? 1 5\n\n? 4 5\n\n! 1"]
NoteIn the sample suppose $$$a$$$ is $$$[5, 1, 4, 2, 3]$$$. So after asking the $$$[1..5]$$$ subsegment $$$4$$$ is second to max value, and it's position is $$$3$$$. After asking the $$$[4..5]$$$ subsegment $$$2$$$ is second to max value and it's position in the whole array is $$$4$$$.Note that there are other arrays $$$a$$$ that would produce the same interaction, and the answer for them might be different. Example output is given in purpose of understanding the interaction.
Java 8
standard input
[ "binary search", "interactive" ]
eb660c470760117dfd0b95acc10eee3b
The first line contains a single integer $$$n$$$ $$$(2 \leq n \leq 10^5)$$$ — the number of elements in the array.
1,900
null
standard output
PASSED
74b06601c2225e5368c1d52d2e42a667
train_109.jsonl
1613658900
The only difference between the easy and the hard version is the limit to the number of queries.This is an interactive problem.There is an array $$$a$$$ of $$$n$$$ different numbers. In one query you can ask the position of the second maximum element in a subsegment $$$a[l..r]$$$. Find the position of the maximum element in the array in no more than 20 queries.A subsegment $$$a[l..r]$$$ is all the elements $$$a_l, a_{l + 1}, ..., a_r$$$. After asking this subsegment you will be given the position of the second maximum from this subsegment in the whole array.
256 megabytes
import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; public class C2 { public static boolean check(int l, int r, int v, BufferedReader in) throws IOException { System.out.printf("? %d %d\n", l, r); System.out.flush(); int ans = Integer.parseInt(in.readLine()); return ans == v; } public static void main(String[] args) throws IOException { BufferedReader in = new BufferedReader(new InputStreamReader(System.in)); int n = Integer.parseInt(in.readLine()); System.out.printf("? %d %d\n", 1, n); System.out.flush(); int pos = Integer.parseInt(in.readLine()); int l, r; if(pos > 1 && check(1, pos, pos, in)){ l = 1; r = pos; while(l < r){ int mid = (l + r + 1) >> 1; if(mid < pos && check(mid, pos, pos, in)) l = mid; else r = mid - 1; } System.out.printf("! %d\n", l); System.out.flush(); } else{ l = pos; r = n; while (l < r) { int mid = (l + r) >> 1; if (pos < mid && check(pos, mid, pos, in)) r = mid; else l = mid + 1; } System.out.printf("! %d\n", l); System.out.flush(); } } }
Java
["5\n\n3\n\n4"]
1 second
["? 1 5\n\n? 4 5\n\n! 1"]
NoteIn the sample suppose $$$a$$$ is $$$[5, 1, 4, 2, 3]$$$. So after asking the $$$[1..5]$$$ subsegment $$$4$$$ is second to max value, and it's position is $$$3$$$. After asking the $$$[4..5]$$$ subsegment $$$2$$$ is second to max value and it's position in the whole array is $$$4$$$.Note that there are other arrays $$$a$$$ that would produce the same interaction, and the answer for them might be different. Example output is given in purpose of understanding the interaction.
Java 8
standard input
[ "binary search", "interactive" ]
eb660c470760117dfd0b95acc10eee3b
The first line contains a single integer $$$n$$$ $$$(2 \leq n \leq 10^5)$$$ — the number of elements in the array.
1,900
null
standard output
PASSED
89d48627528862611e01fbdfc80bbf04
train_109.jsonl
1613658900
The only difference between the easy and the hard version is the limit to the number of queries.This is an interactive problem.There is an array $$$a$$$ of $$$n$$$ different numbers. In one query you can ask the position of the second maximum element in a subsegment $$$a[l..r]$$$. Find the position of the maximum element in the array in no more than 20 queries.A subsegment $$$a[l..r]$$$ is all the elements $$$a_l, a_{l + 1}, ..., a_r$$$. After asking this subsegment you will be given the position of the second maximum from this subsegment in the whole array.
256 megabytes
import java.util.*; import java.io.*; public class GuessingTheGreatest { public static void main(String[] args) throws IOException { Scanner in = new Scanner(System.in); int N = in.nextInt(); System.out.println("? 1 " + N); System.out.flush(); int m = in.nextInt(); boolean left = false; if (m > 1) { System.out.println("? 1 " + m); System.out.flush(); if (in.nextInt() == m) { left = true; } } if (left) { System.out.println("! " + search1(in, 1, m, m)); } else { System.out.println("! " + search2(in, m, m, N)); } } public static int search1(Scanner in, int l, int r, int m) { if (l >= r) { if (l > r) { return -1; } if (l == m) { return -1; } System.out.println("? " + l + " " + m); System.out.flush(); if (in.nextInt() == m) { return l; } return -1; } int mid = (l + r + 1) / 2; if (mid == m) { return search1(in, l, mid - 1, m); } System.out.println("? " + mid + " " + m); System.out.flush(); if (in.nextInt() == m) { int n = search1(in, mid + 1, r, m); if (n != -1) { return n; } return mid; } return search1(in, l, mid - 1, m); } public static int search2(Scanner in, int m, int l, int r) { if (l >= r) { if (l > r) { return -1; } if (l == m) { return -1; } System.out.println("? " + m + " " + l); System.out.flush(); if (in.nextInt() == m) { return l; } return -1; } int mid = (l + r + 1) / 2; if (mid == m) { return search2(in, m, mid + 1, r); } System.out.println("? " + m + " " + mid); System.out.flush(); if (in.nextInt() == m) { int n = search2(in, m, l, mid - 1); if (n != -1) { return n; } return mid; } return search2(in, m, mid + 1, r); } }
Java
["5\n\n3\n\n4"]
1 second
["? 1 5\n\n? 4 5\n\n! 1"]
NoteIn the sample suppose $$$a$$$ is $$$[5, 1, 4, 2, 3]$$$. So after asking the $$$[1..5]$$$ subsegment $$$4$$$ is second to max value, and it's position is $$$3$$$. After asking the $$$[4..5]$$$ subsegment $$$2$$$ is second to max value and it's position in the whole array is $$$4$$$.Note that there are other arrays $$$a$$$ that would produce the same interaction, and the answer for them might be different. Example output is given in purpose of understanding the interaction.
Java 8
standard input
[ "binary search", "interactive" ]
eb660c470760117dfd0b95acc10eee3b
The first line contains a single integer $$$n$$$ $$$(2 \leq n \leq 10^5)$$$ — the number of elements in the array.
1,900
null
standard output
PASSED
e80579a377a7ac42348f0c1f17f2ad46
train_109.jsonl
1613658900
The only difference between the easy and the hard version is the limit to the number of queries.This is an interactive problem.There is an array $$$a$$$ of $$$n$$$ different numbers. In one query you can ask the position of the second maximum element in a subsegment $$$a[l..r]$$$. Find the position of the maximum element in the array in no more than 20 queries.A subsegment $$$a[l..r]$$$ is all the elements $$$a_l, a_{l + 1}, ..., a_r$$$. After asking this subsegment you will be given the position of the second maximum from this subsegment in the whole array.
256 megabytes
import java.io.*; import java.util.StringTokenizer; public class Solution { private static boolean TESTS = false; private final Input in; private final PrintStream out; public Solution(final Input in, final PrintStream out) { this.in = in; this.out = out; } public void solve() { for (int test = 1, tests = TESTS ? in.nextInt() : 1; test <= tests; test++) { final int n = in.nextInt(); final int max = query(1, n); final boolean left = max != 1 && query(1, max) == max; int i = -1; if (left) { int l = 1; int r = max - 1; while (l <= r) { final int m = (l + r) >>> 1; if (query(m, max) == max) { l = m + 1; i = m; } else { r = m - 1; } } } else { int l = max + 1; int r = n; while (l <= r) { final int m = (l + r) >>> 1; if (query(max, m) == max) { r = m - 1; i = m; } else { l = m + 1; } } } out.println("! " + i); out.flush(); } } private int query(final int l, final int r) { out.println("? " + l + " " + r); out.flush(); return in.nextInt(); } public static void main(final String[] args) { final Input in = new Input(); final PrintStream out = new PrintStream(new BufferedOutputStream(System.out)); try { new Solution(in, out).solve(); } finally { out.flush(); } } private static final class Input { private final BufferedReader reader = new BufferedReader(new InputStreamReader(System.in)); private StringTokenizer tokenizer = new StringTokenizer(""); public String nextString() { try { while (!tokenizer.hasMoreTokens()) { final String line = reader.readLine(); tokenizer = new StringTokenizer(line, " "); } return tokenizer.nextToken(); } catch (final IOException e) { throw new RuntimeException(e); } } public int nextInt() { return Integer.parseInt(nextString()); } public long nextLong() { return Long.parseLong(nextString()); } public double nextDouble() { return Double.parseDouble(nextString()); } public int[] nextInts(final int size) { final int[] array = new int[size]; for (int i = 0; i < size; i++) { array[i] = nextInt(); } return array; } public long[] nextLongs(final int size) { final long[] array = new long[size]; for (int i = 0; i < size; i++) { array[i] = nextLong(); } return array; } public double[] nextDoubles(final int size) { final double[] array = new double[size]; for (int i = 0; i < size; i++) { array[i] = nextDouble(); } return array; } } }
Java
["5\n\n3\n\n4"]
1 second
["? 1 5\n\n? 4 5\n\n! 1"]
NoteIn the sample suppose $$$a$$$ is $$$[5, 1, 4, 2, 3]$$$. So after asking the $$$[1..5]$$$ subsegment $$$4$$$ is second to max value, and it's position is $$$3$$$. After asking the $$$[4..5]$$$ subsegment $$$2$$$ is second to max value and it's position in the whole array is $$$4$$$.Note that there are other arrays $$$a$$$ that would produce the same interaction, and the answer for them might be different. Example output is given in purpose of understanding the interaction.
Java 8
standard input
[ "binary search", "interactive" ]
eb660c470760117dfd0b95acc10eee3b
The first line contains a single integer $$$n$$$ $$$(2 \leq n \leq 10^5)$$$ — the number of elements in the array.
1,900
null
standard output
PASSED
4d81aa830db8940966cf735db34042b8
train_109.jsonl
1613658900
The only difference between the easy and the hard version is the limit to the number of queries.This is an interactive problem.There is an array $$$a$$$ of $$$n$$$ different numbers. In one query you can ask the position of the second maximum element in a subsegment $$$a[l..r]$$$. Find the position of the maximum element in the array in no more than 20 queries.A subsegment $$$a[l..r]$$$ is all the elements $$$a_l, a_{l + 1}, ..., a_r$$$. After asking this subsegment you will be given the position of the second maximum from this subsegment in the whole array.
256 megabytes
import java.io.*; import java.lang.reflect.Type; import java.math.BigDecimal; import java.math.BigInteger; import java.math.RoundingMode; import java.text.DecimalFormat; import java.util.*; import java.util.concurrent.ArrayBlockingQueue; import java.util.concurrent.Future; import java.util.concurrent.FutureTask; import java.util.concurrent.locks.LockSupport; public class Main { static class Task { public static String roundS(double result, int scale) { String fmt = String.format("%%.%df", scale); return String.format(fmt, result); // DecimalFormat df = new DecimalFormat("0.000000"); // double result = Double.parseDouble(df.format(result)); } int rt(int x) { if (x != fa[x]) { int to = rt(fa[x]); dp[x] ^= dp[fa[x]]; fa[x] = to; return to; } return x; } void combine(int x, int y, int val) { int rt1 = rt(x); int rt2 = rt(y); if (rt1 == rt2) return; fa[rt1] = rt2; dp[rt1] = dp[x] ^ dp[y] ^ val; g--; } int fa[], dp[]; int g; static int MAXN = 10000; static Random rd = new Random(348957438574659L); static int[] ch[],val,size,rnd,cnt; static int len=0,rt=0; // return new node, the node below s static int rotate(int s,int d){ // child int x=ch[s][d^1]; // give me grandson ch[s][d^1] = ch[x][d]; // child become father ch[x][d]=s; // update size, update new son first update(s); update(x); return x; } static void update(int s){ size[s] = size[ch[s][0]] + size[ch[s][1]] + cnt[s]; } // 0 for left, 1 for right static int cmp(int x,int num) { if (val[x] == num) return -1; return num < val[x] ? 0 : 1; } static int insert(int s,int num) { if(s==0){ s=++len; val[s]=num;size[s]=1;rnd[s]=rd.nextInt();cnt[s] = 1; }else{ int d=cmp(s,num); if(d!=-1) { ch[s][d]=insert(ch[s][d],num); // father's random should be greater if(rnd[s]<rnd[ch[s][d]]) { s=rotate(s,d^1); }else { update(s); } }else{ ++cnt[s];++size[s]; } } return s; } static int del(int s,int num) { int d = cmp(s, num); if (d != -1) { ch[s][d] = del(ch[s][d], num); update(s); }else if (ch[s][0] * ch[s][1] == 0) { if(--cnt[s]==0){ s = ch[s][0] + ch[s][1]; } } else { int k = rnd[ch[s][0]] < rnd[ch[s][1]] ? 0 : 1; // k points to smaller random value,then bigger one up s = rotate(s, k); // now the node with value num become the child ch[s][k] = del(ch[s][k], num); update(s); } return s; } static int getKth(int s, int k){ int lz = size[ch[s][0]]; if(k>=lz+1&&k<=lz+cnt[s]){ return val[s]; }else if(k<=lz){ return getKth(ch[s][0], k); }else{ return getKth(ch[s][1], k-lz-cnt[s]); } } static int getRank(int s,int value){ if(s==0)return 1; if(value==val[s])return size[ch[s][0]] + 1; if(value<val[s])return getRank(ch[s][0],value); return getRank(ch[s][1],value)+size[ch[s][0]] + cnt[s]; } static int getPre(int data){ int ans= -1; int p=rt; while(p>0){ if(data>val[p]){ if(ans==-1 || val[p]>val[ans]) ans=p; p=ch[p][1]; } else p=ch[p][0]; } return ans!=-1?val[ans]:(-2147483647); } static int getNext(int data){ int ans= -1; int p=rt; while(p>0){ if(data<val[p]){ if(ans==-1 || val[p]<val[ans]) ans=p; p=ch[p][0]; } else p=ch[p][1]; } return ans!=-1?val[ans]:2147483647; } static boolean find(int s,int num){ while(s!=0){ int d=cmp(s,num); if(d==-1) return true; else s=ch[s][d]; } return false; } static int ans = -10000000; static boolean findX(int s,int num){ while(s!=0){ if(val[s]<=num){ ans = num; } int d=cmp(s,num); if(d==-1) return true; else { s = ch[s][d]; } } return false; } long gcd(long a,long b){ if(b==0) return a; return gcd(b,a%b); } void linear_sort(int arr[]){ int d = 65536; ArrayDeque bucket[] = new ArrayDeque[d]; for(int j=0;j<d;++j){ bucket[j] = new ArrayDeque(); } for(int u:arr){ bucket[u%d].offer(u); } int pos = 0; for(int j=0;j<d;++j){ while(bucket[j].size()>0) { arr[pos++] = (int)bucket[j].pollFirst(); } } for(int u:arr){ bucket[u/d].offer(u); } pos = 0; for(int j=0;j<d;++j){ while(bucket[j].size()>0) { arr[pos++] = (int)bucket[j].pollFirst(); } } } public void solve(int testNumber, InputReader in, PrintWriter out) { // int a[] = {4,3,2,45,1,2,3,4,56,7,2,1,2}; // linear_sort(a); // for(int u:a){ // out.println(u); // } int t = 1; // // outer:for(int j=0;j<t;++j){ int n = in.nextInt(); int l = 1; int r = n; out.println("? " + l + " " + r); out.flush(); int pos = in.nextInt(); boolean right = true; if(pos!=1) { out.println("? " + 1 + " " + pos); out.flush(); int pos1 = in.nextInt(); if (pos1 == pos) { // left right = false; } } int lo = 0 ;int hi = 0; if(right){ lo = pos+1; hi = r; while(lo<hi){ int mi = lo+hi>>1; out.println("? " + pos + " " + mi); out.flush(); int pp = in.nextInt(); if(pp==pos){ hi = mi; }else{ lo = mi + 1; } } }else{ lo = 1; hi = pos-1; while(lo<hi){ int mi = (lo+hi+1)>>1; out.println("? " + mi + " " + pos); out.flush(); int pp = in.nextInt(); if(pp==pos){ lo = mi; }else{ hi = mi-1; } } } out.println("! "+lo); out.flush(); } // while(true) { // int n = in.nextInt(); // // int m =in.nextInt(); // // fa = new int[n]; // dp = new int[n]; // for(int i=0;i<n;++i){ // fa[i] = i; // } // g = n; // int c = 0; // int as[] = new int[n]; // int bs[] = new int[n]; // char xs[] = new char[n]; // // int at = -1; // Set<Integer> st = new HashSet<>(); // // for (int i = 0; i < n; ++i) { // String line = in.next(); // int p = 0; // int a = 0; // while(Character.isDigit(line.charAt(p))){ // a = a*10 + (line.charAt(p)-'0'); p++; // } // char x = line.charAt(p++); // // int b = 0; // while(p<line.length()){ // b = b*10 + (line.charAt(p)-'0'); p++; // } // // as[i] = a; // xs[i] = x; // bs[i] = b; // // if(x=='='){ // int r1 = rt(a); int r2 = rt(b); // if(r1==r2){ // if(dp[a]!=dp[b]){ // c++; // at = i; // } // }else { // combine(a, b, 0); // } // }else if(x=='<'){ // int r1 = rt(a); int r2 = rt(b); // if(r1==r2){ // if(dp[a]>=dp[b]){ // c++; // at = i; // } // }else { // combine(a, b, -1); // } // }else{ // int r1 = rt(a); int r2 = rt(b); // if(r1==r2){ // if(dp[a]<=dp[b]){ // c++; // at = i; // } // }else { // combine(a, b, 1); // } // } // // // } // if(g==1||c>=2){ // out.println("Impossible"); // continue; // } // // // for(int xuan: st){ // // // // // } // // // // // // // } } static long mul(long a, long b, long p) { long res=0,base=a; while(b>0) { if((b&1L)>0) res=(res+base)%p; base=(base+base)%p; b>>=1; } return res; } static long mod_pow(long k,long n,long p){ long res = 1L; long temp = k%p; while(n!=0L){ if((n&1L)==1L){ res = mul(res,temp,p); } temp = mul(temp,temp,p); n = n>>1L; } return res%p; } public static double roundD(double result, int scale){ BigDecimal bg = new BigDecimal(result).setScale(scale, RoundingMode.UP); return bg.doubleValue(); } } private static void solve() { InputStream inputStream = System.in; // InputStream inputStream = null; // try { // inputStream = new FileInputStream(new File("D:\\chrome_download\\travel_restrictions_input.txt")); // } catch (FileNotFoundException e) { // e.printStackTrace(); // } OutputStream outputStream = System.out; // OutputStream outputStream = null; // File f = new File("D:\\chrome_download\\travel_restrictions_output.txt"); // try { // f.createNewFile(); // } catch (IOException e) { // e.printStackTrace(); // } // try { // outputStream = new FileOutputStream(f); // } catch (FileNotFoundException e) { // e.printStackTrace(); // } InputReader in = new InputReader(inputStream); PrintWriter out = new PrintWriter(outputStream); Task task = new Task(); task.solve(1, in, out); out.close(); } public static void main(String[] args) { // new Thread(null, () -> solve(), "1", (1 << 10 ) ).start(); solve(); } static class InputReader { public BufferedReader reader; public StringTokenizer tokenizer; public InputReader(InputStream stream) { reader = new BufferedReader(new InputStreamReader(stream), 32768); tokenizer = null; } public String nextLine() { String line = null; try { line = reader.readLine(); } catch (IOException e) { throw new RuntimeException(e); } return line; } public String next() { while (tokenizer == null || !tokenizer.hasMoreTokens()) { try { tokenizer = new StringTokenizer(reader.readLine()); } catch (IOException e) { throw new RuntimeException(e); } } return tokenizer.nextToken(); } public int nextInt() { return Integer.parseInt(next()); } public char nextChar() { return next().charAt(0); } public int[] nextArray(int n) { int res[] = new int[n]; for (int i = 0; i < n; ++i) { res[i] = nextInt(); } return res; } public long nextLong() { return Long.parseLong(next()); } public double nextDouble() { return Double.parseDouble(next()); } } }
Java
["5\n\n3\n\n4"]
1 second
["? 1 5\n\n? 4 5\n\n! 1"]
NoteIn the sample suppose $$$a$$$ is $$$[5, 1, 4, 2, 3]$$$. So after asking the $$$[1..5]$$$ subsegment $$$4$$$ is second to max value, and it's position is $$$3$$$. After asking the $$$[4..5]$$$ subsegment $$$2$$$ is second to max value and it's position in the whole array is $$$4$$$.Note that there are other arrays $$$a$$$ that would produce the same interaction, and the answer for them might be different. Example output is given in purpose of understanding the interaction.
Java 8
standard input
[ "binary search", "interactive" ]
eb660c470760117dfd0b95acc10eee3b
The first line contains a single integer $$$n$$$ $$$(2 \leq n \leq 10^5)$$$ — the number of elements in the array.
1,900
null
standard output
PASSED
9a5fcb9c6e651d12887f867ebdb4a11e
train_109.jsonl
1613658900
The only difference between the easy and the hard version is the limit to the number of queries.This is an interactive problem.There is an array $$$a$$$ of $$$n$$$ different numbers. In one query you can ask the position of the second maximum element in a subsegment $$$a[l..r]$$$. Find the position of the maximum element in the array in no more than 20 queries.A subsegment $$$a[l..r]$$$ is all the elements $$$a_l, a_{l + 1}, ..., a_r$$$. After asking this subsegment you will be given the position of the second maximum from this subsegment in the whole array.
256 megabytes
import java.util.*; import java.lang.*; import java.io.*; public class Main { /* HashMap<> map=new HashMap<>(); TreeMap<> map=new TreeMap<>(); map.put(p,map.getOrDefault(p,0)+1); for(Map.Entry<> mx:map.entrySet()){ int v=mx.getValue(),k=mx.getKey(); } ArrayList<Pair<Character,Integer>> l=new ArrayList<>(); ArrayList<> l=new ArrayList<>(); HashSet<> has=new HashSet<>();*/ PrintWriter out; FastReader sc; int mod=(int)(1e9+7); int maxint= Integer.MAX_VALUE; int minint= Integer.MIN_VALUE; long maxlong=Long.MAX_VALUE; long minlong=Long.MIN_VALUE; public void sol(){ int testCase=1; while(testCase-->0){ int n=ni(),l=1,r=n; boolean f=true; pl("? "+l+" "+r); out.flush(); int p=ni(),a=0; if(p!=1){ pl("? "+l+" "+p); out.flush(); a=ni(); if(a!=p){ f=false; }}else{ f=false; } if(f){ r=p; while(r-l>1){ int mid=l+(r-l)/2; pl("? "+mid+" "+p); out.flush(); a=ni(); if(a==p){ l=mid; }else{ r=mid-1; } }if(l==r){ pl("! "+l); out.flush(); }else{ pl("? "+l+" "+r); out.flush(); a=ni(); if(a==l)pl("! "+r); else pl("! "+l); out.flush(); } }else{ l=p; while(r-l>1){ int mid=l+(r-l)/2; pl("? "+p+" "+mid); out.flush(); a=ni(); if(a==p){ r=mid; }else{ l=mid+1; } }if(l==r){ pl("! "+l); out.flush(); }else{ pl("? "+l+" "+r); out.flush(); a=ni(); if(a==l)pl("! "+r); else pl("! "+l); out.flush(); } } } } public static void main(String[] args) { Main g=new Main(); g.out=new PrintWriter(System.out); g.sc=new FastReader(); g.sol(); g.out.flush(); } static class FastReader { BufferedReader br; StringTokenizer st; public FastReader() { br = new BufferedReader(new InputStreamReader(System.in)); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } } public int ni(){ return sc.nextInt(); }public long nl(){ return sc.nextLong(); }public double nd(){ return sc.nextDouble(); }public char[] rl(){ return sc.nextLine().toCharArray(); }public String rl1(){ return sc.nextLine(); } public void pl(Object s){ out.println(s); }public void ex(){ out.println(); } public void pr(Object s){ out.print(s); }public String next(){ return sc.next(); }public long abs(long x){ return Math.abs(x); } public int abs(int x){ return Math.abs(x); } public double abs(double x){ return Math.abs(x); } public long pow(long x,long y){ return (long)Math.pow(x,y); } public int pow(int x,int y){ return (int)Math.pow(x,y); } public double pow(double x,double y){ return Math.pow(x,y); }public long min(long x,long y){ return (long)Math.min(x,y); } public int min(int x,int y){ return (int)Math.min(x,y); } public double min(double x,double y){ return Math.min(x,y); }public static int gcd(int a, int b) { if (a == 0) return b; return gcd(b % a, a); }static void sort(int[] a) { ArrayList<Integer> l = new ArrayList<>(); for (int i : a) { l.add(i); } Collections.sort(l); for (int i = 0; i < a.length; i++) { a[i] = l.get(i); } }void sort(long[] a) { ArrayList<Long> l = new ArrayList<>(); for (long i : a) { l.add(i); } Collections.sort(l); for (int i = 0; i < a.length; i++) { a[i] = l.get(i); } }void sort(double[] a) { ArrayList<Double> l = new ArrayList<>(); for (double i : a) { l.add(i); } Collections.sort(l); for (int i = 0; i < a.length; i++) { a[i] = l.get(i); } }int swap(int a,int b){ return a; }long swap(long a,long b){ return a; }double swap(double a,double b){ return a; } boolean isPowerOfTwo (int x) { return x!=0 && ((x&(x-1)) == 0); }boolean isPowerOfTwo (long x) { return x!=0 && ((x&(x-1)) == 0); }public long max(long x,long y){ return (long)Math.max(x,y); } public int max(int x,int y){ return (int)Math.max(x,y); } public double max(double x,double y){ return Math.max(x,y); }long sqrt(long x){ return (long)Math.sqrt(x); }int sqrt(int x){ return (int)Math.sqrt(x); }void input(int[] ar,int n){ for(int i=0;i<n;i++)ar[i]=ni(); }void input(long[] ar,int n){ for(int i=0;i<n;i++)ar[i]=nl(); }void fill(int[] ar,int k){ Arrays.fill(ar,k); }void yes(){ pl("YES"); }void no(){ pl("NO"); } int[] sieve(int n) { boolean prime[] = new boolean[n+1]; int[] k=new int[n+1]; for(int i=0;i<=n;i++) { prime[i] = true; k[i]=i; } for(int p = 2; p <=n; p++) { if(prime[p] == true) { // sieve[p]=p; for(int i = p*2; i <= n; i += p) { prime[i] = false; // sieve[i]=p; while(k[i]%(p*p)==0){ k[i]/=(p*p); } } } }return k; }int strSmall(int[] arr, int target) { int start = 0, end = arr.length-1; int ans = -1; while (start <= end) { int mid = (start + end) / 2; if (arr[mid] >= target) { end = mid - 1; } else { ans = mid; start = mid + 1; } } return ans; } int strSmall(ArrayList<Integer> arr, int target) { int start = 0, end = arr.size()-1; int ans = -1; while (start <= end) { int mid = (start + end) / 2; if (arr.get(mid) > target) { start = mid + 1; ans=start; } else { end = mid - 1; } } return ans; } // public static class Pair implements Comparable<Pair> { // int x; // int y; // public Pair(int x, int y) { // this.x = x; // this.y = y; // } // public String toString() { // return x + "," + y; // } // public boolean equals(Object o) { // if (o instanceof Pair) { // Pair p = (Pair) o; // return p.x == x && p.y == y; // } // return false; // } // public int hashCode() { // return new Double(x).hashCode() * 31 + new Double(y).hashCode(); // } // public int compareTo(Pair other) { // if (this.x == other.x) { // return Long.compare(this.y, other.y); // } // return Long.compare(this.x, other.x); // } // } }
Java
["5\n\n3\n\n4"]
1 second
["? 1 5\n\n? 4 5\n\n! 1"]
NoteIn the sample suppose $$$a$$$ is $$$[5, 1, 4, 2, 3]$$$. So after asking the $$$[1..5]$$$ subsegment $$$4$$$ is second to max value, and it's position is $$$3$$$. After asking the $$$[4..5]$$$ subsegment $$$2$$$ is second to max value and it's position in the whole array is $$$4$$$.Note that there are other arrays $$$a$$$ that would produce the same interaction, and the answer for them might be different. Example output is given in purpose of understanding the interaction.
Java 8
standard input
[ "binary search", "interactive" ]
eb660c470760117dfd0b95acc10eee3b
The first line contains a single integer $$$n$$$ $$$(2 \leq n \leq 10^5)$$$ — the number of elements in the array.
1,900
null
standard output
PASSED
6cbd6e2ffc97a83dd117d5059707314c
train_109.jsonl
1613658900
The only difference between the easy and the hard version is the limit to the number of queries.This is an interactive problem.There is an array $$$a$$$ of $$$n$$$ different numbers. In one query you can ask the position of the second maximum element in a subsegment $$$a[l..r]$$$. Find the position of the maximum element in the array in no more than 20 queries.A subsegment $$$a[l..r]$$$ is all the elements $$$a_l, a_{l + 1}, ..., a_r$$$. After asking this subsegment you will be given the position of the second maximum from this subsegment in the whole array.
256 megabytes
import java.io.File; import java.io.FileNotFoundException; import java.util.Arrays; import java.util.HashMap; import java.util.HashSet; import java.util.Scanner; public class Main { static Scanner in = new Scanner(System.in); // static Scanner in = new Scanner( new File("javain.txt")); public static void main(String[] args) throws FileNotFoundException { if(args.length > 0){ in = new Scanner( new File("javain.txt")); } int t = 1; for(int i = 0; i < t; i++){ solve(); } } public static void solve(){ int n = in.nextInt(); int l = 1, r = n; System.out.println("? " + l + " " + r); System.out.flush(); int second = in.nextInt(); int ans; if(second != 1){ System.out.println("? " + l + " " + second); System.out.flush(); if(in.nextInt() == second){ r = second; while(l < r - 1){ int mid = (l + r) / 2; System.out.println("? " + mid + " " + second); System.out.flush(); if(in.nextInt() == second){ l = mid ; }else{ r = mid ; } } System.out.println("! " + l); return ; } } l = second; while(l < r - 1){ int mid = (l + r ) / 2; System.out.println("? " + second + " " + mid); System.out.flush(); if(in.nextInt() == second){ r = mid ; }else{ l = mid ; } } System.out.println("! " + r); } }
Java
["5\n\n3\n\n4"]
1 second
["? 1 5\n\n? 4 5\n\n! 1"]
NoteIn the sample suppose $$$a$$$ is $$$[5, 1, 4, 2, 3]$$$. So after asking the $$$[1..5]$$$ subsegment $$$4$$$ is second to max value, and it's position is $$$3$$$. After asking the $$$[4..5]$$$ subsegment $$$2$$$ is second to max value and it's position in the whole array is $$$4$$$.Note that there are other arrays $$$a$$$ that would produce the same interaction, and the answer for them might be different. Example output is given in purpose of understanding the interaction.
Java 8
standard input
[ "binary search", "interactive" ]
eb660c470760117dfd0b95acc10eee3b
The first line contains a single integer $$$n$$$ $$$(2 \leq n \leq 10^5)$$$ — the number of elements in the array.
1,900
null
standard output
PASSED
7cfc155444160d37edeff915b7a79116
train_109.jsonl
1613658900
The only difference between the easy and the hard version is the limit to the number of queries.This is an interactive problem.There is an array $$$a$$$ of $$$n$$$ different numbers. In one query you can ask the position of the second maximum element in a subsegment $$$a[l..r]$$$. Find the position of the maximum element in the array in no more than 20 queries.A subsegment $$$a[l..r]$$$ is all the elements $$$a_l, a_{l + 1}, ..., a_r$$$. After asking this subsegment you will be given the position of the second maximum from this subsegment in the whole array.
256 megabytes
import java.io.DataInputStream; import java.io.FileInputStream; import java.io.IOException; import java.io.PrintWriter; import java.util.Arrays; import java.util.Formatter; import java.util.Random; /** * Coder: SumitRaut * Date: 27-02-2021 14:23 */ public class Main { public static void main(String[] args) throws IOException { Fs = new FastReader(); out = new PrintWriter(System.out); int n = Fs.nextInt(); out.println("? " + 1 + " " + n); out.flush(); int id = Fs.nextInt(); boolean done=false; int l=1,r=n; if(id!=1) { out.println("? "+1+" "+id); out.flush(); if(Fs.nextInt()==id) { done=true; r=id-1; while(l<r) { int md=(l+r+1)>>1; out.println("? "+md+" "+id); out.flush(); int curif=Fs.nextInt(); if(curif==id) l=md; else r=md-1; } } } if(!done) { l=id+1; while(l<r) { int md=(l+r)>>1; out.println("? "+id+" "+md); out.flush(); int curif=Fs.nextInt(); if(curif==id) r=md; else l=md+1; } } out.print("! " + r); out.flush(); out.close(); } static PrintWriter out; static FastReader Fs; static final Random random = new Random(); static void ruffleSort(int[] a) { int n = a.length; for (int i = 0; i < n; ++i) { int oi = random.nextInt(n), tmp = a[oi]; a[oi] = a[i]; a[i] = tmp; } Arrays.sort(a); } static class FastReader { final private int BUFFER_SIZE = 1 << 16; private DataInputStream din; private byte[] buffer; private int bufferPointer, bytesRead; public FastReader() { din = new DataInputStream(System.in); buffer = new byte[BUFFER_SIZE]; bufferPointer = bytesRead = 0; } public FastReader(String file_name) throws IOException { din = new DataInputStream(new FileInputStream(file_name)); buffer = new byte[BUFFER_SIZE]; bufferPointer = bytesRead = 0; } public String nextLine() throws IOException { byte[] buf = new byte[64]; // 64 line length int cnt = 0, c; while ((c = read()) != -1) { if (c == '\n') { if (cnt != 0) { break; } else { continue; } } buf[cnt++] = (byte) c; } return new String(buf, 0, cnt); } public String next() throws IOException { byte[] buf = new byte[64]; // 64 line length int cnt = 0, c; while ((c = read()) != -1) { if (c == ' ' || c == '\n') { if (cnt != 0) { break; } else { continue; } } buf[cnt++] = (byte) c; } return new String(buf, 0, cnt); } public int nextInt() throws IOException { int ret = 0; byte c = read(); while (c <= ' ') c = read(); boolean neg = (c == '-'); if (neg) c = read(); do { ret = ret * 10 + c - '0'; } while ((c = read()) >= '0' && c <= '9'); if (neg) return -ret; return ret; } public long nextLong() throws IOException { long ret = 0; byte c = read(); while (c <= ' ') c = read(); boolean neg = (c == '-'); if (neg) c = read(); do { ret = ret * 10 + c - '0'; } while ((c = read()) >= '0' && c <= '9'); if (neg) return -ret; return ret; } public double nextDouble() throws IOException { double ret = 0, div = 1; byte c = read(); while (c <= ' ') c = read(); boolean neg = (c == '-'); if (neg) c = read(); do { ret = ret * 10 + c - '0'; } while ((c = read()) >= '0' && c <= '9'); if (c == '.') { while ((c = read()) >= '0' && c <= '9') { ret += (c - '0') / (div *= 10); } } if (neg) return -ret; return ret; } public int[] readArray(int n) throws IOException { int[] a = new int[n]; for (int i = 0; i < n; ++i) a[i] = nextInt(); return a; } private void fillBuffer() throws IOException { bytesRead = din.read(buffer, bufferPointer = 0, BUFFER_SIZE); if (bytesRead == -1) buffer[0] = -1; } private byte read() throws IOException { if (bufferPointer == bytesRead) fillBuffer(); return buffer[bufferPointer++]; } public void close() throws IOException { if (din == null) return; din.close(); } } }
Java
["5\n\n3\n\n4"]
1 second
["? 1 5\n\n? 4 5\n\n! 1"]
NoteIn the sample suppose $$$a$$$ is $$$[5, 1, 4, 2, 3]$$$. So after asking the $$$[1..5]$$$ subsegment $$$4$$$ is second to max value, and it's position is $$$3$$$. After asking the $$$[4..5]$$$ subsegment $$$2$$$ is second to max value and it's position in the whole array is $$$4$$$.Note that there are other arrays $$$a$$$ that would produce the same interaction, and the answer for them might be different. Example output is given in purpose of understanding the interaction.
Java 8
standard input
[ "binary search", "interactive" ]
eb660c470760117dfd0b95acc10eee3b
The first line contains a single integer $$$n$$$ $$$(2 \leq n \leq 10^5)$$$ — the number of elements in the array.
1,900
null
standard output
PASSED
b639401edafe3b2305c2543d82b8df91
train_109.jsonl
1613658900
The only difference between the easy and the hard version is the limit to the number of queries.This is an interactive problem.There is an array $$$a$$$ of $$$n$$$ different numbers. In one query you can ask the position of the second maximum element in a subsegment $$$a[l..r]$$$. Find the position of the maximum element in the array in no more than 20 queries.A subsegment $$$a[l..r]$$$ is all the elements $$$a_l, a_{l + 1}, ..., a_r$$$. After asking this subsegment you will be given the position of the second maximum from this subsegment in the whole array.
256 megabytes
import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.io.PrintWriter; import java.util.ArrayList; import java.util.Arrays; import java.util.Collections; import java.util.HashMap; import java.util.HashSet; import java.util.LinkedList; import java.util.Stack; import java.util.StringTokenizer; import static java.lang.Math.*; public class C { static FastScanner sc; static PrintWriter pw; public static void main(String[] args) { sc = new FastScanner(); pw = new PrintWriter(System.out); int T = 1; while (T-- > 0) { solve(); } pw.close(); } static HashMap<Integer, HashMap<Integer, Integer>> rangeMap = new HashMap<>(); static void solve() { int n = sc.nextInt(); int low = 1, high = n; rangeMap.clear(); if(high - low > 1) { int secondMax = getQuery(low, high); if(secondMax != high) { int secondMax2 = getQuery(secondMax, high); if(secondMax2 == secondMax) { low = secondMax + 1; } else { high = secondMax - 1; } } else { high = secondMax - 1; } while(high - low > 1) { int mid = (low + high) / 2; int ind = getQuery(min(secondMax, mid), max(secondMax, mid)); if(ind == secondMax) { if(mid > secondMax) { high = mid; } else { low = mid; } } else { if(mid > secondMax) { low = mid + 1; } else { high = mid - 1; } } } } int ans = -1; if(high == low + 1) { int notAnswer = getQuery(low, high); ans = notAnswer == low ? high : low; }else { ans = low; } System.out.println("! "+ans); } static int getQuery(int low, int high) { if(rangeMap.containsKey(low)) { if(rangeMap.get(low).containsKey(high)) { return rangeMap.get(low).get(high); } } System.out.println("? "+low+" "+high); int num = sc.nextInt(); HashMap<Integer, Integer> map = rangeMap.getOrDefault(low, new HashMap<>()); map.put(high, num); rangeMap.put(low, map); return num; } static int getMove(int low, int ind, int high) { if(ind <= low) { return 1; } int left = getQuery(low, ind); if(high <= ind) { return -1; } int right = getQuery(ind, high); if(left == ind) { return -1; } return 1; } static void sort(int[] a) { ArrayList<Integer> l = new ArrayList<>(); for (int i : a) l.add(i); Collections.sort(l); for (int i = 0; i < a.length; i++) a[i] = l.get(i); } static class FastScanner { BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); StringTokenizer st = new StringTokenizer(""); String next() { while (!st.hasMoreTokens()) try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } int[] readArray(int n) { int[] a = new int[n]; for (int i = 0; i < n; i++) a[i] = nextInt(); return a; } long nextLong() { return Long.parseLong(next()); } } }
Java
["5\n\n3\n\n4"]
1 second
["? 1 5\n\n? 4 5\n\n! 1"]
NoteIn the sample suppose $$$a$$$ is $$$[5, 1, 4, 2, 3]$$$. So after asking the $$$[1..5]$$$ subsegment $$$4$$$ is second to max value, and it's position is $$$3$$$. After asking the $$$[4..5]$$$ subsegment $$$2$$$ is second to max value and it's position in the whole array is $$$4$$$.Note that there are other arrays $$$a$$$ that would produce the same interaction, and the answer for them might be different. Example output is given in purpose of understanding the interaction.
Java 8
standard input
[ "binary search", "interactive" ]
eb660c470760117dfd0b95acc10eee3b
The first line contains a single integer $$$n$$$ $$$(2 \leq n \leq 10^5)$$$ — the number of elements in the array.
1,900
null
standard output
PASSED
847fd622269b60a5e99b73537a0a203d
train_109.jsonl
1613658900
The only difference between the easy and the hard version is the limit to the number of queries.This is an interactive problem.There is an array $$$a$$$ of $$$n$$$ different numbers. In one query you can ask the position of the second maximum element in a subsegment $$$a[l..r]$$$. Find the position of the maximum element in the array in no more than 20 queries.A subsegment $$$a[l..r]$$$ is all the elements $$$a_l, a_{l + 1}, ..., a_r$$$. After asking this subsegment you will be given the position of the second maximum from this subsegment in the whole array.
256 megabytes
import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.io.PrintWriter; import java.util.ArrayList; import java.util.Arrays; import java.util.Collections; import java.util.HashMap; import java.util.HashSet; import java.util.LinkedList; import java.util.Stack; import java.util.StringTokenizer; import static java.lang.Math.*; public class C { static FastScanner sc; static PrintWriter pw; public static void main(String[] args) { sc = new FastScanner(); pw = new PrintWriter(System.out); int T = 1; while (T-- > 0) { solve(); } pw.close(); } static HashMap<Integer, HashMap<Integer, Integer>> rangeMap = new HashMap<>(); static void solve() { int n = sc.nextInt(); int low = 1, high = n; rangeMap.clear(); boolean leftDir = false; if(high - low > 1) { int secondMax = getQuery(low, high); if(secondMax != high) { int secondMax2 = getQuery(secondMax, high); if(secondMax2 == secondMax) { low = secondMax + 1; leftDir = true; } else { high = secondMax - 1; } } else { high = secondMax - 1; } while(high - low > 1) { int mid = (low + high) / 2; int ind = getQuery(min(secondMax, mid), max(secondMax, mid)); if(ind == secondMax) { if(leftDir) { high = mid; } else { low = mid; } } else { if(leftDir) { low = mid + 1; } else { high = mid - 1; } } } } int ans = -1; if(high == low + 1) { int notAnswer = getQuery(low, high); ans = notAnswer == low ? high : low; }else { ans = low; } System.out.println("! "+ans); } static int getQuery(int low, int high) { if(rangeMap.containsKey(low)) { if(rangeMap.get(low).containsKey(high)) { return rangeMap.get(low).get(high); } } System.out.println("? "+low+" "+high); int num = sc.nextInt(); HashMap<Integer, Integer> map = rangeMap.getOrDefault(low, new HashMap<>()); map.put(high, num); rangeMap.put(low, map); return num; } static int getMove(int low, int ind, int high) { if(ind <= low) { return 1; } int left = getQuery(low, ind); if(high <= ind) { return -1; } int right = getQuery(ind, high); if(left == ind) { return -1; } return 1; } static void sort(int[] a) { ArrayList<Integer> l = new ArrayList<>(); for (int i : a) l.add(i); Collections.sort(l); for (int i = 0; i < a.length; i++) a[i] = l.get(i); } static class FastScanner { BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); StringTokenizer st = new StringTokenizer(""); String next() { while (!st.hasMoreTokens()) try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } int[] readArray(int n) { int[] a = new int[n]; for (int i = 0; i < n; i++) a[i] = nextInt(); return a; } long nextLong() { return Long.parseLong(next()); } } }
Java
["5\n\n3\n\n4"]
1 second
["? 1 5\n\n? 4 5\n\n! 1"]
NoteIn the sample suppose $$$a$$$ is $$$[5, 1, 4, 2, 3]$$$. So after asking the $$$[1..5]$$$ subsegment $$$4$$$ is second to max value, and it's position is $$$3$$$. After asking the $$$[4..5]$$$ subsegment $$$2$$$ is second to max value and it's position in the whole array is $$$4$$$.Note that there are other arrays $$$a$$$ that would produce the same interaction, and the answer for them might be different. Example output is given in purpose of understanding the interaction.
Java 8
standard input
[ "binary search", "interactive" ]
eb660c470760117dfd0b95acc10eee3b
The first line contains a single integer $$$n$$$ $$$(2 \leq n \leq 10^5)$$$ — the number of elements in the array.
1,900
null
standard output
PASSED
3a231cd6f018b7bc00596939a45e29e5
train_109.jsonl
1613658900
The only difference between the easy and the hard version is the limit to the number of queries.This is an interactive problem.There is an array $$$a$$$ of $$$n$$$ different numbers. In one query you can ask the position of the second maximum element in a subsegment $$$a[l..r]$$$. Find the position of the maximum element in the array in no more than 20 queries.A subsegment $$$a[l..r]$$$ is all the elements $$$a_l, a_{l + 1}, ..., a_r$$$. After asking this subsegment you will be given the position of the second maximum from this subsegment in the whole array.
256 megabytes
import java.util.*; import java.io.*; public class Main { static class FastReader { BufferedReader br; StringTokenizer st; public FastReader() { br = new BufferedReader(new InputStreamReader(System.in)); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } } static class Pair { int f,s; Pair(int f,int s) { this.f=f; this.s=s; } } static FastReader fs=new FastReader(); public static int query(int l,int r) { if(l>=r)return 0; System.out.println("? "+l+" "+r); return fs.nextInt(); } public static void main(String args[]) { //FastReader fs=new FastReader(); PrintWriter pw=new PrintWriter(System.out); int n=fs.nextInt(); int ind=query(1,n); if(ind==1||query(1,ind)!=ind) { int l=ind,r=n; while(r-l>1) { int mid=(l+r)/2; int in=query(ind,mid); if(in==ind) r=mid; else l=mid; } pw.println("! "+r); } else { int l=1,r=ind; while(r-l>1) { int mid=(l+r)/2; int in=query(mid,ind); if(in!=ind) r=mid; else l=mid; } pw.println("! "+l); } pw.flush(); pw.close(); } }
Java
["5\n\n3\n\n4"]
1 second
["? 1 5\n\n? 4 5\n\n! 1"]
NoteIn the sample suppose $$$a$$$ is $$$[5, 1, 4, 2, 3]$$$. So after asking the $$$[1..5]$$$ subsegment $$$4$$$ is second to max value, and it's position is $$$3$$$. After asking the $$$[4..5]$$$ subsegment $$$2$$$ is second to max value and it's position in the whole array is $$$4$$$.Note that there are other arrays $$$a$$$ that would produce the same interaction, and the answer for them might be different. Example output is given in purpose of understanding the interaction.
Java 8
standard input
[ "binary search", "interactive" ]
eb660c470760117dfd0b95acc10eee3b
The first line contains a single integer $$$n$$$ $$$(2 \leq n \leq 10^5)$$$ — the number of elements in the array.
1,900
null
standard output
PASSED
8fd1f9a28d31f37970872342a2e632a0
train_109.jsonl
1613658900
The only difference between the easy and the hard version is the limit to the number of queries.This is an interactive problem.There is an array $$$a$$$ of $$$n$$$ different numbers. In one query you can ask the position of the second maximum element in a subsegment $$$a[l..r]$$$. Find the position of the maximum element in the array in no more than 20 queries.A subsegment $$$a[l..r]$$$ is all the elements $$$a_l, a_{l + 1}, ..., a_r$$$. After asking this subsegment you will be given the position of the second maximum from this subsegment in the whole array.
256 megabytes
import java.io.*; import java.math.BigInteger; import java.util.*; import java.util.concurrent.TimeUnit; public class c1486 implements Runnable{ public static void main(String[] args) { try{ new Thread(null, new c1486(), "process", 1<<26).start(); } catch(Exception e){ System.out.println(e); } } public void run() { FastReader scan = new FastReader(); PrintWriter out = new PrintWriter(new OutputStreamWriter(System.out), true); //PrintWriter out = new PrintWriter("file.out"); Task solver = new Task(); //int t = scan.nextInt(); int t = 1; for(int i = 1; i <= t; i++) solver.solve(i, scan, out); out.close(); } static class Task { static final int oo = Integer.MAX_VALUE; static final long OO = Long.MAX_VALUE; public void solve(int testNumber, FastReader sc, PrintWriter out) { int N = sc.nextInt(); out.println("? 1 " + N); int secondMax = sc.nextInt(); boolean left = false; if(secondMax == 1) { left = false; } else if (secondMax == N) { left = true; } else { out.println("? 1 " + secondMax); int t = sc.nextInt(); if(t == secondMax) { left = true; } } int L = 0, R = (N - secondMax); if(left) { R = secondMax - 1; } while(L < R - 1) { int M = (L + R) / 2; int qM = secondMax + M; if(left) { qM = secondMax - M; } out.println("? " + Math.min(qM, secondMax) + " " + Math.max(qM, secondMax)); int t = sc.nextInt(); if(t == secondMax) { // within the range queried R = M; } else { L = M+1; } } if(L != R) { if(left) { int tL = secondMax - R; int tR = secondMax - L; L = tL; R = tR; } else { L = secondMax + L; R = secondMax + R; } out.println("? " + L + " " + R); if(sc.nextInt() == L) { out.println("! "+ R); } else { out.println("! " + L); } return; } if(left) out.println("! " + (secondMax - L)); else out.println("! " + (secondMax + L)); } } static long modInverse(long N, long MOD) { return binpow(N, MOD - 2, MOD); } static long modDivide(long a, long b, long MOD) { a %= MOD; return (binpow(b, MOD-2, MOD) * a) % MOD; } static long binpow(long a, long b, long m) { a %= m; long res = 1; while (b > 0) { if ((b & 1) == 1) res = res * a % m; a = a * a % m; b >>= 1; } return res; } static int[] reverse(int a[]) { int[] b = new int[a.length]; for (int i = 0, j = a.length; i < a.length; i++, j--) { b[j - 1] = a[i]; } return b; } static long[] reverse(long a[]) { long[] b = new long[a.length]; for (int i = 0, j = a.length; i < a.length; i++, j--) { b[j - 1] = a[i]; } return b; } static void shuffle(Object[] a) { Random get = new Random(); for (int i = 0; i < a.length; i++) { int r = get.nextInt(a.length); Object temp = a[i]; a[i] = a[r]; a[r] = temp; } } static void shuffle(int[] a) { Random get = new Random(); for (int i = 0; i < a.length; i++) { int r = get.nextInt(a.length); int temp = a[i]; a[i] = a[r]; a[r] = temp; } } static void shuffle(long[] a) { Random get = new Random(); for (int i = 0; i < a.length; i++) { int r = get.nextInt(a.length); long temp = a[i]; a[i] = a[r]; a[r] = temp; } } static class tup implements Comparable<tup>, Comparator<tup>{ int a, b; tup(int a,int b){ this.a=a; this.b=b; } public tup() { } @Override public int compareTo(tup o){ return Integer.compare(b,o.b); } @Override public int compare(tup o1, tup o2) { return Integer.compare(o1.b, o2.b); } @Override public int hashCode() { return Objects.hash(a, b); } @Override public boolean equals(Object obj) { if (this == obj) return true; if (obj == null) return false; if (getClass() != obj.getClass()) return false; tup other = (tup) obj; return a==other.a && b==other.b; } @Override public String toString() { return a + " " + b; } } static class FastReader { BufferedReader br; StringTokenizer st; public FastReader() { br = new BufferedReader(new InputStreamReader(System.in)); } public FastReader(String s) throws FileNotFoundException { br = new BufferedReader(new FileReader(new File(s))); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } int[] readArray(int size) { int[] a = new int[size]; for(int i = 0; i < size; i++) { a[i] = nextInt(); } return a; } long[] readLongArray(int size) { long[] a = new long[size]; for(int i = 0; i < size; i++) { a[i] = nextLong(); } return a; } } static void dbg(int[] arr) { System.out.println(Arrays.toString(arr)); } static void dbg(long[] arr) { System.out.println(Arrays.toString(arr)); } static void dbg(boolean[] arr) { System.out.println(Arrays.toString(arr)); } static void dbg(Object... args) { for (Object arg : args) System.out.print(arg + " "); System.out.println(); } }
Java
["5\n\n3\n\n4"]
1 second
["? 1 5\n\n? 4 5\n\n! 1"]
NoteIn the sample suppose $$$a$$$ is $$$[5, 1, 4, 2, 3]$$$. So after asking the $$$[1..5]$$$ subsegment $$$4$$$ is second to max value, and it's position is $$$3$$$. After asking the $$$[4..5]$$$ subsegment $$$2$$$ is second to max value and it's position in the whole array is $$$4$$$.Note that there are other arrays $$$a$$$ that would produce the same interaction, and the answer for them might be different. Example output is given in purpose of understanding the interaction.
Java 8
standard input
[ "binary search", "interactive" ]
eb660c470760117dfd0b95acc10eee3b
The first line contains a single integer $$$n$$$ $$$(2 \leq n \leq 10^5)$$$ — the number of elements in the array.
1,900
null
standard output
PASSED
d258806a1e45da77a550cc81fe225011
train_109.jsonl
1613658900
The only difference between the easy and the hard version is the limit to the number of queries.This is an interactive problem.There is an array $$$a$$$ of $$$n$$$ different numbers. In one query you can ask the position of the second maximum element in a subsegment $$$a[l..r]$$$. Find the position of the maximum element in the array in no more than 20 queries.A subsegment $$$a[l..r]$$$ is all the elements $$$a_l, a_{l + 1}, ..., a_r$$$. After asking this subsegment you will be given the position of the second maximum from this subsegment in the whole array.
256 megabytes
import java.io.*; import java.util.*; import java.math.*; public class C { static int ans = Integer.MAX_VALUE; static String str = ""; static int[] dp; public static void main(String[] args) throws IOException { FastScanner fs=new FastScanner(); PrintWriter out = new PrintWriter(System.out); // int T = 1; // int T=fs.nextInt(); // for (int tt=0; tt<T; tt++) { // } int n = fs.nextInt(); System.out.println("? 1 "+n); System.out.flush(); int last = fs.nextInt(); if (n==2) { if (last==1) { System.out.println("! 2"); } else { System.out.println("! 1"); } } else { int cur = 0; if (last==1) { cur = last; } else { System.out.println("? 1 "+last); System.out.flush(); cur = fs.nextInt(); } if (cur==last && cur!=1) { int left = 1, right = cur-1, ans=-1; while (left<=right) { int mid = (left+right)/2; System.out.println("? "+mid+" "+last); System.out.flush(); int res = fs.nextInt(); if (res==last) { ans=mid; left=mid+1; } else { right=mid-1; } } System.out.println("! "+ans); } else { int left = last+1, right = n, ans=-1; while (left<=right) { int mid = (left+right)/2; System.out.println("? "+last+" "+mid); System.out.flush(); int res = fs.nextInt(); if (res==last) { ans=mid; right=mid-1; } else { left=mid+1; } } System.out.println("! "+ans); } } } static final Random random=new Random(); static void ruffleSort(int[] a) { int n=a.length;//shuffle, then sort for (int i=0; i<n; i++) { int oi=random.nextInt(n), temp=a[oi]; a[oi]=a[i]; a[i]=temp; } Arrays.sort(a); } static class FastScanner { BufferedReader br=new BufferedReader(new InputStreamReader(System.in)); StringTokenizer st=new StringTokenizer(""); String next() { while (!st.hasMoreTokens()) try { st=new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } int[] readArray(int n) { int[] a=new int[n]; for (int i=0; i<n; i++) a[i]=nextInt(); return a; } long nextLong() { return Long.parseLong(next()); } } }
Java
["5\n\n3\n\n4"]
1 second
["? 1 5\n\n? 4 5\n\n! 1"]
NoteIn the sample suppose $$$a$$$ is $$$[5, 1, 4, 2, 3]$$$. So after asking the $$$[1..5]$$$ subsegment $$$4$$$ is second to max value, and it's position is $$$3$$$. After asking the $$$[4..5]$$$ subsegment $$$2$$$ is second to max value and it's position in the whole array is $$$4$$$.Note that there are other arrays $$$a$$$ that would produce the same interaction, and the answer for them might be different. Example output is given in purpose of understanding the interaction.
Java 8
standard input
[ "binary search", "interactive" ]
eb660c470760117dfd0b95acc10eee3b
The first line contains a single integer $$$n$$$ $$$(2 \leq n \leq 10^5)$$$ — the number of elements in the array.
1,900
null
standard output
PASSED
bb7ac74d626446a6d55acc85ae29cc9f
train_109.jsonl
1613658900
The only difference between the easy and the hard version is the limit to the number of queries.This is an interactive problem.There is an array $$$a$$$ of $$$n$$$ different numbers. In one query you can ask the position of the second maximum element in a subsegment $$$a[l..r]$$$. Find the position of the maximum element in the array in no more than 20 queries.A subsegment $$$a[l..r]$$$ is all the elements $$$a_l, a_{l + 1}, ..., a_r$$$. After asking this subsegment you will be given the position of the second maximum from this subsegment in the whole array.
256 megabytes
import java.io.IOException; import java.io.InputStream; import java.io.OutputStream; import java.io.PrintWriter; import java.math.BigInteger; import java.util.*; /** * @author Mubtasim Shahriar */ public class Cr703A { public static void main(String[] args) { InputStream inputStream = System.in; OutputStream outputStream = System.out; InputReader sc = new InputReader(inputStream); PrintWriter out = new PrintWriter(outputStream); Solver solver = new Solver(); // int t = sc.nextInt(); int t = 1; while (t-- != 0) { solver.solve(sc, out); } out.close(); } static class Solver { public void solve(InputReader sc, PrintWriter out) { int n = sc.nextInt(); int l = 1; int r = n; int secMaxAt = query(sc,l,r); if(l+1==r) { System.out.println("! " + (3-secMaxAt)); System.out.flush(); return; } if(secMaxAt==1) { work(1,n,sc,true); } else { int leftAt = query(sc,1,secMaxAt); if(leftAt==secMaxAt) { work(1,secMaxAt,sc,false); } else { work(secMaxAt,n,sc,true); } } } private void work(int l, int r, InputReader sc, boolean searchRight) { if(searchRight) { int beLeft = l; l++; int at = -1; while(l<=r) { int mid = (l+r)>>1; int secMax = query(sc,beLeft,mid); if(secMax==beLeft) { at = mid; r = mid-1; } else { l = mid+1; } } if(at==-1) throw new RuntimeException(); System.out.println("! " + at); System.out.flush(); } else { int beRight = r; r--; int at = -1; while(l<=r) { int mid = (l+r)>>1; int secMax = query(sc,mid,beRight); if(secMax==beRight) { at = mid; l = mid+1; } else { r = mid-1; } } if(at==-1) throw new RuntimeException(); System.out.println("! " + at); System.out.flush(); } } private void putt(HashMap<Integer, HashMap<Integer, Integer>> map, int f, int s, int val) { if(!map.containsKey(f))map.put(f,new HashMap<>()); HashMap<Integer,Integer> sec = map.get(f); if(!sec.containsKey(s)) sec.put(s,val); } private int gett(HashMap<Integer, HashMap<Integer, Integer>> map, int l, int r) { if(!map.containsKey(l)) return -1; HashMap<Integer,Integer> sec = map.get(l); if(!sec.containsKey(r)) return -1; return sec.get(r); } private int query(InputReader sc, int ql, int qr) { System.out.println("? " + ql + " " + qr); System.out.flush(); return sc.nextInt(); } } static class SegMax { int leftMost, rightMost, mid; boolean leaf; int max; int maxIdx; SegMax lchild, rchild; SegMax(int l, int r, int[] arr) { leftMost = l; rightMost = r; mid = (l + r) >> 1; leaf = l == r; if (leaf) { max = arr[l]; maxIdx = l; } else { lchild = new SegMax(l, mid, arr); rchild = new SegMax(mid + 1, r, arr); max = Math.max(lchild.max, rchild.max); } } int query(int l, int r) { if (l > rightMost || r < leftMost) return Integer.MIN_VALUE; if (l <= leftMost && rightMost <= r) return max; return Math.max(lchild.query(l, r), rchild.query(l, r)); } } static void sort(int[] arr) { Random rand = new Random(); int n = arr.length; for (int i = 0; i < n; i++) { int idx = rand.nextInt(n); if (idx == i) continue; arr[i] ^= arr[idx]; arr[idx] ^= arr[i]; arr[i] ^= arr[idx]; } Arrays.sort(arr); } static void sort(long[] arr) { Random rand = new Random(); int n = arr.length; for (int i = 0; i < n; i++) { int idx = rand.nextInt(n); if (idx == i) continue; arr[i] ^= arr[idx]; arr[idx] ^= arr[i]; arr[i] ^= arr[idx]; } Arrays.sort(arr); } static void sortDec(int[] arr) { Random rand = new Random(); int n = arr.length; for (int i = 0; i < n; i++) { int idx = rand.nextInt(n); if (idx == i) continue; arr[i] ^= arr[idx]; arr[idx] ^= arr[i]; arr[i] ^= arr[idx]; } Arrays.sort(arr); int l = 0; int r = n - 1; while (l < r) { arr[l] ^= arr[r]; arr[r] ^= arr[l]; arr[l] ^= arr[r]; l++; r--; } } static void sortDec(long[] arr) { Random rand = new Random(); int n = arr.length; for (int i = 0; i < n; i++) { int idx = rand.nextInt(n); if (idx == i) continue; arr[i] ^= arr[idx]; arr[idx] ^= arr[i]; arr[i] ^= arr[idx]; } Arrays.sort(arr); int l = 0; int r = n - 1; while (l < r) { arr[l] ^= arr[r]; arr[r] ^= arr[l]; arr[l] ^= arr[r]; l++; r--; } } static class InputReader { private boolean finished = false; private InputStream stream; private byte[] buf = new byte[1024]; private int curChar; private int numChars; private SpaceCharFilter filter; public InputReader(InputStream stream) { this.stream = stream; } public int read() { if (numChars == -1) { throw new InputMismatchException(); } if (curChar >= numChars) { curChar = 0; try { numChars = stream.read(buf); } catch (IOException e) { throw new InputMismatchException(); } if (numChars <= 0) { return -1; } } return buf[curChar++]; } public int peek() { if (numChars == -1) { return -1; } if (curChar >= numChars) { curChar = 0; try { numChars = stream.read(buf); } catch (IOException e) { return -1; } if (numChars <= 0) { return -1; } } return buf[curChar]; } public int nextInt() { int c = read(); while (isSpaceChar(c)) { c = read(); } int sgn = 1; if (c == '-') { sgn = -1; c = read(); } int res = 0; do { if (c < '0' || c > '9') { throw new InputMismatchException(); } res *= 10; res += c - '0'; c = read(); } while (!isSpaceChar(c)); return res * sgn; } public long nextLong() { int c = read(); while (isSpaceChar(c)) { c = read(); } int sgn = 1; if (c == '-') { sgn = -1; c = read(); } long res = 0; do { if (c < '0' || c > '9') { throw new InputMismatchException(); } res *= 10; res += c - '0'; c = read(); } while (!isSpaceChar(c)); return res * sgn; } public String nextString() { int c = read(); while (isSpaceChar(c)) { c = read(); } StringBuilder res = new StringBuilder(); do { if (Character.isValidCodePoint(c)) { res.appendCodePoint(c); } c = read(); } while (!isSpaceChar(c)); return res.toString(); } public boolean isSpaceChar(int c) { if (filter != null) { return filter.isSpaceChar(c); } return isWhitespace(c); } public static boolean isWhitespace(int c) { return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; } private String readLine0() { StringBuilder buf = new StringBuilder(); int c = read(); while (c != '\n' && c != -1) { if (c != '\r') { buf.appendCodePoint(c); } c = read(); } return buf.toString(); } public String readLine() { String s = readLine0(); while (s.trim().length() == 0) { s = readLine0(); } return s; } public String readLine(boolean ignoreEmptyLines) { if (ignoreEmptyLines) { return readLine(); } else { return readLine0(); } } public BigInteger readBigInteger() { try { return new BigInteger(nextString()); } catch (NumberFormatException e) { throw new InputMismatchException(); } } public char nextCharacter() { int c = read(); while (isSpaceChar(c)) { c = read(); } return (char) c; } public double nextDouble() { int c = read(); while (isSpaceChar(c)) { c = read(); } int sgn = 1; if (c == '-') { sgn = -1; c = read(); } double res = 0; while (!isSpaceChar(c) && c != '.') { if (c == 'e' || c == 'E') { return res * Math.pow(10, nextInt()); } if (c < '0' || c > '9') { throw new InputMismatchException(); } res *= 10; res += c - '0'; c = read(); } if (c == '.') { c = read(); double m = 1; while (!isSpaceChar(c)) { if (c == 'e' || c == 'E') { return res * Math.pow(10, nextInt()); } if (c < '0' || c > '9') { throw new InputMismatchException(); } m /= 10; res += (c - '0') * m; c = read(); } } return res * sgn; } public boolean isExhausted() { int value; while (isSpaceChar(value = peek()) && value != -1) { read(); } return value == -1; } public String next() { return nextString(); } public SpaceCharFilter getFilter() { return filter; } public void setFilter(SpaceCharFilter filter) { this.filter = filter; } public interface SpaceCharFilter { public boolean isSpaceChar(int ch); } public int[] nextIntArray(int n) { int[] array = new int[n]; for (int i = 0; i < n; ++i) array[i] = nextInt(); return array; } public int[] nextSortedIntArray(int n) { int array[] = nextIntArray(n); Arrays.sort(array); return array; } public int[] nextSumIntArray(int n) { int[] array = new int[n]; array[0] = nextInt(); for (int i = 1; i < n; ++i) array[i] = array[i - 1] + nextInt(); return array; } public long[] nextLongArray(int n) { long[] array = new long[n]; for (int i = 0; i < n; ++i) array[i] = nextLong(); return array; } public long[] nextSumLongArray(int n) { long[] array = new long[n]; array[0] = nextInt(); for (int i = 1; i < n; ++i) array[i] = array[i - 1] + nextInt(); return array; } public long[] nextSortedLongArray(int n) { long array[] = nextLongArray(n); Arrays.sort(array); return array; } } }
Java
["5\n\n3\n\n4"]
1 second
["? 1 5\n\n? 4 5\n\n! 1"]
NoteIn the sample suppose $$$a$$$ is $$$[5, 1, 4, 2, 3]$$$. So after asking the $$$[1..5]$$$ subsegment $$$4$$$ is second to max value, and it's position is $$$3$$$. After asking the $$$[4..5]$$$ subsegment $$$2$$$ is second to max value and it's position in the whole array is $$$4$$$.Note that there are other arrays $$$a$$$ that would produce the same interaction, and the answer for them might be different. Example output is given in purpose of understanding the interaction.
Java 8
standard input
[ "binary search", "interactive" ]
eb660c470760117dfd0b95acc10eee3b
The first line contains a single integer $$$n$$$ $$$(2 \leq n \leq 10^5)$$$ — the number of elements in the array.
1,900
null
standard output
PASSED
eeab329588d304902cff37d589216d4f
train_109.jsonl
1613658900
The only difference between the easy and the hard version is the limit to the number of queries.This is an interactive problem.There is an array $$$a$$$ of $$$n$$$ different numbers. In one query you can ask the position of the second maximum element in a subsegment $$$a[l..r]$$$. Find the position of the maximum element in the array in no more than 20 queries.A subsegment $$$a[l..r]$$$ is all the elements $$$a_l, a_{l + 1}, ..., a_r$$$. After asking this subsegment you will be given the position of the second maximum from this subsegment in the whole array.
256 megabytes
import java.util.*; import java.io.*; import java.math.*; /** * * @Har_Har_Mahadev */ public class C { private static long INF = 2000000000000000000L, M = 1000000007, MM = 998244353; private static int N = 0; public static void process() throws IOException { int n = sc.nextInt(); int smax = ask(1, n); int ans = 0; if(smax == ask(1, smax)) { int L = 1, U = smax - 1; while(L <= U){ int m = (L + U) / 2; if(ask(m,smax) == smax){ ans = m; L = m + 1; } else{ U = m - 1; } } } else { int L = smax + 1, U = n; while(L <= U){ int m = (L + U) / 2; if(ask(smax,m) == smax){ ans = m; U = m - 1; } else{ L = m + 1; } } } pp(ans); } private static void pp(int i) { println("! "+i); } private static int ask(int i, int n) throws IOException { if(i == n)return -1; pflush("? "+i+" "+n); int val = sc.nextInt(); return val; } //============================================================================= //--------------------------The End--------------------------------- //============================================================================= static FastScanner sc; static PrintWriter out; public static void main(String[] args) throws IOException { boolean oj = true; if (oj) { sc = new FastScanner(); out = new PrintWriter(System.out); } else { sc = new FastScanner(100); out = new PrintWriter("output.txt"); } int t = 1; // t = sc.nextInt(); while (t-- > 0) { process(); } out.flush(); out.close(); } static class Pair implements Comparable<Pair> { int x, y; Pair(int x, int y) { this.x = x; this.y = y; } @Override public int compareTo(Pair o) { return Integer.compare(this.x, o.x); } // @Override // public boolean equals(Object o) { // if (this == o) return true; // if (!(o instanceof Pair)) return false; // Pair key = (Pair) o; // return x == key.x && y == key.y; // } // // @Override // public int hashCode() { // int result = x; // result = 31 * result + y; // return result; // } } ///////////////////////////////////////////////////////////////////////////////////////////////////////// static void println(Object o) { out.println(o); } static void println() { out.println(); } static void print(Object o) { out.print(o); } static void pflush(Object o) { out.println(o); out.flush(); } static int ceil(int x, int y) { return (x % y == 0 ? x / y : (x / y + 1)); } static long ceil(long x, long y) { return (x % y == 0 ? x / y : (x / y + 1)); } static int max(int x, int y) { return Math.max(x, y); } static int min(int x, int y) { return Math.min(x, y); } static int abs(int x) { return Math.abs(x); } static long abs(long x) { return Math.abs(x); } static int log2(int N) { int result = (int) (Math.log(N) / Math.log(2)); return result; } static long max(long x, long y) { return Math.max(x, y); } static long min(long x, long y) { return Math.min(x, y); } public static int gcd(int a, int b) { BigInteger b1 = BigInteger.valueOf(a); BigInteger b2 = BigInteger.valueOf(b); BigInteger gcd = b1.gcd(b2); return gcd.intValue(); } public static long gcd(long a, long b) { BigInteger b1 = BigInteger.valueOf(a); BigInteger b2 = BigInteger.valueOf(b); BigInteger gcd = b1.gcd(b2); return gcd.longValue(); } public static long lcm(long a, long b) { return (a * b) / gcd(a, b); } public static int lcm(int a, int b) { return (a * b) / gcd(a, b); } public static int lower_bound(int[] arr, int x) { int low = 0, high = arr.length, mid = -1; while (low < high) { mid = (low + high) / 2; if (arr[mid] >= x) high = mid; else low = mid + 1; } return low; } public static int upper_bound(int[] arr, int x) { int low = 0, high = arr.length, mid = -1; while (low < high) { mid = (low + high) / 2; if (arr[mid] > x) high = mid; else low = mid + 1; } return low; } ///////////////////////////////////////////////////////////////////////////////////////////////////////// static class FastScanner { BufferedReader br; StringTokenizer st; FastScanner() throws FileNotFoundException { br = new BufferedReader(new InputStreamReader(System.in)); } FastScanner(int a) throws FileNotFoundException { br = new BufferedReader(new FileReader("input.txt")); } String next() throws IOException { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() throws IOException { return Integer.parseInt(next()); } long nextLong() throws IOException { return Long.parseLong(next()); } double nextDouble() throws IOException { return Double.parseDouble(next()); } String nextLine() throws IOException { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } int[] readArray(int n) throws IOException { int[] A = new int[n]; for (int i = 0; i != n; i++) { A[i] = sc.nextInt(); } return A; } long[] readArrayLong(int n) throws IOException { long[] A = new long[n]; for (int i = 0; i != n; i++) { A[i] = sc.nextLong(); } return A; } } static void ruffleSort(int[] a) { Random get = new Random(); for (int i = 0; i < a.length; i++) { int r = get.nextInt(a.length); int temp = a[i]; a[i] = a[r]; a[r] = temp; } Arrays.sort(a); } static void ruffleSort(long[] a) { Random get = new Random(); for (int i = 0; i < a.length; i++) { int r = get.nextInt(a.length); long temp = a[i]; a[i] = a[r]; a[r] = temp; } Arrays.sort(a); } }
Java
["5\n\n3\n\n4"]
1 second
["? 1 5\n\n? 4 5\n\n! 1"]
NoteIn the sample suppose $$$a$$$ is $$$[5, 1, 4, 2, 3]$$$. So after asking the $$$[1..5]$$$ subsegment $$$4$$$ is second to max value, and it's position is $$$3$$$. After asking the $$$[4..5]$$$ subsegment $$$2$$$ is second to max value and it's position in the whole array is $$$4$$$.Note that there are other arrays $$$a$$$ that would produce the same interaction, and the answer for them might be different. Example output is given in purpose of understanding the interaction.
Java 8
standard input
[ "binary search", "interactive" ]
eb660c470760117dfd0b95acc10eee3b
The first line contains a single integer $$$n$$$ $$$(2 \leq n \leq 10^5)$$$ — the number of elements in the array.
1,900
null
standard output
PASSED
b6d0c8572307c97e3f6209edda33de01
train_109.jsonl
1613658900
The only difference between the easy and the hard version is the limit to the number of queries.This is an interactive problem.There is an array $$$a$$$ of $$$n$$$ different numbers. In one query you can ask the position of the second maximum element in a subsegment $$$a[l..r]$$$. Find the position of the maximum element in the array in no more than 20 queries.A subsegment $$$a[l..r]$$$ is all the elements $$$a_l, a_{l + 1}, ..., a_r$$$. After asking this subsegment you will be given the position of the second maximum from this subsegment in the whole array.
256 megabytes
import java.io.*; import java.util.*; public class A { static FastScanner fs; public static void main(String[] args) { fs=new FastScanner(); // int t = fs.nextInt(); // while (t-->0) solve(); } public static void solve() { int n = fs.nextInt(); int lo = 1; int hi = n; System.out.println("? "+lo+" "+hi); System.out.flush(); int sh = fs.nextInt(); int check = -1; if (lo!=sh) { System.out.println("? " + lo + " " + sh); System.out.flush(); check = fs.nextInt(); } if (sh!=check) { lo=sh; for (hi++; lo < hi; ) { int mid = lo + (hi - lo) / 2; if (sh!=mid) { System.out.println("? " + sh + " " + mid); System.out.flush(); int ch = fs.nextInt(); if (sh==ch) hi = mid; else lo = mid + 1; } else lo=mid+1; } System.out.println("! "+lo); } else { hi=sh; for (--lo; lo < hi; ) { int mid = lo+(hi-lo+1)/2; if (mid!=sh) { System.out.println("? " + mid + " " + sh); System.out.flush(); int ch = fs.nextInt(); if (sh == ch) lo = mid; else hi = mid - 1; } else hi=mid-1; } System.out.println("! "+lo); } } static class pair { long v, i; pair(long a, long b) { v=a; i=b; } } static void ruffleSort(int[] a) { int n=a.length;//shuffle, then sort for (int i=0; i<n; i++) { int oi=random.nextInt(n), temp=a[oi]; a[oi]=a[i]; a[i]=temp; } Arrays.sort(a); } static final Random random=new Random(); static class FastScanner { BufferedReader br=new BufferedReader(new InputStreamReader(System.in)); StringTokenizer st=new StringTokenizer(""); String next() { while (!st.hasMoreTokens()) try { st=new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } int[] readArray(int n) { int[] a=new int[n]; for (int i=0; i<n; i++) a[i]=nextInt(); return a; } long nextLong() { return Long.parseLong(next()); } } static int[] reverse(int[] a) { int n=a.length; int[] res=new int[n]; for (int i=0; i<n; i++) res[i]=a[n-1-i]; return res; } }
Java
["5\n\n3\n\n4"]
1 second
["? 1 5\n\n? 4 5\n\n! 1"]
NoteIn the sample suppose $$$a$$$ is $$$[5, 1, 4, 2, 3]$$$. So after asking the $$$[1..5]$$$ subsegment $$$4$$$ is second to max value, and it's position is $$$3$$$. After asking the $$$[4..5]$$$ subsegment $$$2$$$ is second to max value and it's position in the whole array is $$$4$$$.Note that there are other arrays $$$a$$$ that would produce the same interaction, and the answer for them might be different. Example output is given in purpose of understanding the interaction.
Java 8
standard input
[ "binary search", "interactive" ]
eb660c470760117dfd0b95acc10eee3b
The first line contains a single integer $$$n$$$ $$$(2 \leq n \leq 10^5)$$$ — the number of elements in the array.
1,900
null
standard output
PASSED
6fc7c1b6053c2e665759c8a9d04e0b02
train_109.jsonl
1613658900
The only difference between the easy and the hard version is the limit to the number of queries.This is an interactive problem.There is an array $$$a$$$ of $$$n$$$ different numbers. In one query you can ask the position of the second maximum element in a subsegment $$$a[l..r]$$$. Find the position of the maximum element in the array in no more than 20 queries.A subsegment $$$a[l..r]$$$ is all the elements $$$a_l, a_{l + 1}, ..., a_r$$$. After asking this subsegment you will be given the position of the second maximum from this subsegment in the whole array.
256 megabytes
import java.io.BufferedInputStream; import java.io.File; import java.io.FileInputStream; import java.io.PrintWriter; public class T1698C2 { private static final T1698C2FastScanner in = new T1698C2FastScanner(); private static final PrintWriter out = new PrintWriter(System.out); public static void main(String args[]) { int n = in.nextInt(); int posSecMax = query(0, n-1); int posMax = search(0, n-1, posSecMax); answer(posMax); out.flush(); } private static int search(int leftMax, int rightMax, int posSecMax) { int offsetFromLeft = (rightMax - leftMax) / 2; int mid = leftMax + offsetFromLeft; if (rightMax - leftMax == 1) { int newPosSecMax = query(leftMax, rightMax); if (newPosSecMax == leftMax) return rightMax; else return leftMax; } else if (rightMax - leftMax == 2) { if (posSecMax >= leftMax && posSecMax <= rightMax) { //и max и secondMax среди этих трёх if (posSecMax == leftMax) { return search(leftMax + 1, rightMax, posSecMax); } else if (posSecMax == rightMax) { return search(leftMax, leftMax + 1, posSecMax); } else { int newPosSecMax = query(leftMax, leftMax + 1); if (newPosSecMax == posSecMax) { return leftMax; } else { return rightMax; } } } else if (posSecMax < leftMax) { int posSecMaxLeftHalf = query(posSecMax, leftMax); if (posSecMaxLeftHalf == posSecMax) { return leftMax; } else { return search(leftMax+1, rightMax, posSecMax); } } else { int posSecMaxRightHalf = query(rightMax, posSecMax); if (posSecMaxRightHalf == posSecMax) { return rightMax; } else { return search(leftMax, leftMax+1, posSecMax); } } } boolean isLeftHalf; if (posSecMax >= leftMax && posSecMax <= mid) { // posSecMax внутри первой половины int posNewSecMax = query(leftMax, mid); isLeftHalf = (posNewSecMax == posSecMax) ? true : false; //max внутри первой половины } else if (posSecMax >= mid + 1 && posSecMax <= rightMax) { // posSecMax внутри второй половины int posNewSecMax = query(mid+1, rightMax); isLeftHalf = (posNewSecMax == posSecMax) ? false : true; //max внутри второй половины } else if (posSecMax < leftMax) { //posSecMax находится "левее" первой половины, поэтому её и рассматриваем на наличие max int posNewSecMax = query(posSecMax, mid); isLeftHalf = (posNewSecMax == posSecMax) ? true : false; //max внутри второй половины } else { //posSecMax находится "правее" второй половины, поэтому её и рассматриваем на наличие max int posNewSecMax = query(mid + 1, posSecMax); isLeftHalf = (posNewSecMax == posSecMax) ? false : true; //max внутри второй половины } if (isLeftHalf) { return search(leftMax, mid, posSecMax); } else { return search(mid+1, rightMax, posSecMax); } } static int query(int l, int r) { out.println("? " + (l + 1) + " " + (r + 1)); out.flush(); return (in.nextInt() - 1); } static void answer(int position) { out.println("! " + (position + 1)); } } class T1698C2FastScanner { private int BS = 1 << 16; private char NC = (char) 0; private byte[] buf = new byte[BS]; private int bId = 0, size = 0; private char c = NC; private double cnt = 1; private BufferedInputStream in; public T1698C2FastScanner() { in = new BufferedInputStream(System.in, BS); } public T1698C2FastScanner(String s) { try { in = new BufferedInputStream(new FileInputStream(new File(s)), BS); } catch (Exception e) { in = new BufferedInputStream(System.in, BS); } } private char getChar() { while (bId == size) { try { size = in.read(buf); } catch (Exception e) { return NC; } if (size == -1) return NC; bId = 0; } return (char) buf[bId++]; } public int nextInt() { return (int) nextLong(); } public int[] nextInts(int N) { int[] res = new int[N]; for (int i = 0; i < N; i++) { res[i] = (int) nextLong(); } return res; } public long[] nextLongs(int N) { long[] res = new long[N]; for (int i = 0; i < N; i++) { res[i] = nextLong(); } return res; } public long nextLong() { cnt = 1; boolean neg = false; if (c == NC) c = getChar(); for (; (c < '0' || c > '9'); c = getChar()) { if (c == '-') neg = true; } long res = 0; for (; c >= '0' && c <= '9'; c = getChar()) { res = (res << 3) + (res << 1) + c - '0'; cnt *= 10; } return neg ? -res : res; } public double nextDouble() { double cur = nextLong(); return c != '.' ? cur : cur + nextLong() / cnt; } public double[] nextDoubles(int N) { double[] res = new double[N]; for (int i = 0; i < N; i++) { res[i] = nextDouble(); } return res; } public String next() { StringBuilder res = new StringBuilder(); while (c <= 32) c = getChar(); while (c > 32) { res.append(c); c = getChar(); } return res.toString(); } public String nextLine() { StringBuilder res = new StringBuilder(); while (c <= 32) c = getChar(); while (c != '\n') { res.append(c); c = getChar(); } return res.toString(); } public boolean hasNext() { if (c > 32) return true; while (true) { c = getChar(); if (c == NC) return false; else if (c > 32) return true; } } }
Java
["5\n\n3\n\n4"]
1 second
["? 1 5\n\n? 4 5\n\n! 1"]
NoteIn the sample suppose $$$a$$$ is $$$[5, 1, 4, 2, 3]$$$. So after asking the $$$[1..5]$$$ subsegment $$$4$$$ is second to max value, and it's position is $$$3$$$. After asking the $$$[4..5]$$$ subsegment $$$2$$$ is second to max value and it's position in the whole array is $$$4$$$.Note that there are other arrays $$$a$$$ that would produce the same interaction, and the answer for them might be different. Example output is given in purpose of understanding the interaction.
Java 8
standard input
[ "binary search", "interactive" ]
eb660c470760117dfd0b95acc10eee3b
The first line contains a single integer $$$n$$$ $$$(2 \leq n \leq 10^5)$$$ — the number of elements in the array.
1,900
null
standard output
PASSED
5924016a5ba4587614726868d1dcf676
train_109.jsonl
1613658900
The only difference between the easy and the hard version is the limit to the number of queries.This is an interactive problem.There is an array $$$a$$$ of $$$n$$$ different numbers. In one query you can ask the position of the second maximum element in a subsegment $$$a[l..r]$$$. Find the position of the maximum element in the array in no more than 20 queries.A subsegment $$$a[l..r]$$$ is all the elements $$$a_l, a_{l + 1}, ..., a_r$$$. After asking this subsegment you will be given the position of the second maximum from this subsegment in the whole array.
256 megabytes
import java.io.*; import java.util.*; public class guessing { //--------------------------INPUT READER--------------------------------// static class fs { public BufferedReader br; StringTokenizer st = new StringTokenizer(""); public fs() { this(System.in); } public fs(InputStream is) { br = new BufferedReader(new InputStreamReader(is)); } String next() { while (!st.hasMoreTokens()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int ni() { return Integer.parseInt(next()); } long nl() { return Long.parseLong(next()); } double nd() { return Double.parseDouble(next()); } String ns() { return next(); } int[] na(long nn) { int n = (int) nn; int[] a = new int[n]; for (int i = 0; i < n; i++) a[i] = ni(); return a; } long[] nal(long nn) { int n = (int) nn; long[] l = new long[n]; for(int i = 0; i < n; i++) l[i] = nl(); return l; } } //-----------------------------------------------------------------------// //---------------------------PRINTER-------------------------------------// static class Printer { static PrintWriter w; public Printer() {this(System.out);} public Printer(OutputStream os) { w = new PrintWriter(os, true); } public void p(int i) {w.println(i);}; public void p(long l) {w.println(l);}; public void p(double d) {w.println(d);}; public void p(String s) { w.println(s);}; public void pr(int i) {w.print(i);}; public void pr(long l) {w.print(l);}; public void pr(double d) {w.print(d);}; public void pr(String s) { w.print(s);}; public void pl() {w.println();}; public void close() {w.close();}; } //------------------------------------------------------------------------// //--------------------------VARIABLES------------------------------------// static fs sc = new fs(); static OutputStream outputStream = System.out; static Printer w = new Printer(outputStream); //-----------------------------------------------------------------------// //--------------------------ADMIN_MODE-----------------------------------// private static void ADMIN_MODE() throws IOException { if (System.getProperty("ONLINE_JUDGE") == null) { w = new Printer(new FileOutputStream("output.txt")); sc = new fs(new FileInputStream("input.txt")); } } //-----------------------------------------------------------------------// //----------------------------START--------------------------------------// public static void main(String[] args) throws IOException { // ADMIN_MODE(); //int t = sc.ni();while(t-->0) solve(); w.close(); } static void solve() throws IOException { int n = sc.ni(); w.p("? "+1+" "+n); int id = sc.ni(); if(n == 2) { w.p("! "+(1==id?2:1)); return; } int id2 = -1; if(id != 1) { w.p("? " + 1 + " " + id); id2 = sc.ni(); } int l, r; if(id == id2) { l = 1; r = id; while(l < r) { int mid = (l+r)/2; w.p("? "+mid+" "+id); int q = sc.ni(); if(q == id) { l = mid+1; } else r = mid; } w.p("! "+(l-1)); } else { l = id+1; r = n; while(l < r) { int mid = (l+r)/2; w.p("? "+id+" "+mid); int q = sc.ni(); if(q != id) { l = mid+1; } else r = mid; } w.p("! "+l); } } }
Java
["5\n\n3\n\n4"]
1 second
["? 1 5\n\n? 4 5\n\n! 1"]
NoteIn the sample suppose $$$a$$$ is $$$[5, 1, 4, 2, 3]$$$. So after asking the $$$[1..5]$$$ subsegment $$$4$$$ is second to max value, and it's position is $$$3$$$. After asking the $$$[4..5]$$$ subsegment $$$2$$$ is second to max value and it's position in the whole array is $$$4$$$.Note that there are other arrays $$$a$$$ that would produce the same interaction, and the answer for them might be different. Example output is given in purpose of understanding the interaction.
Java 8
standard input
[ "binary search", "interactive" ]
eb660c470760117dfd0b95acc10eee3b
The first line contains a single integer $$$n$$$ $$$(2 \leq n \leq 10^5)$$$ — the number of elements in the array.
1,900
null
standard output
PASSED
8fd04f4af5e93a638bdfa64f1b817170
train_109.jsonl
1613658900
The only difference between the easy and the hard version is the limit to the number of queries.This is an interactive problem.There is an array $$$a$$$ of $$$n$$$ different numbers. In one query you can ask the position of the second maximum element in a subsegment $$$a[l..r]$$$. Find the position of the maximum element in the array in no more than 20 queries.A subsegment $$$a[l..r]$$$ is all the elements $$$a_l, a_{l + 1}, ..., a_r$$$. After asking this subsegment you will be given the position of the second maximum from this subsegment in the whole array.
256 megabytes
import java.util.Scanner; public class Main { private static Scanner cin; private static int query(long l, long r) { System.out.println("? " + l + " " + r); System.out.flush(); return cin.nextInt(); } public static void main(String[] args) { cin = new Scanner(System.in); int n = cin.nextInt(); int now = query(1, n), l, r; if (now != 1 && query(1, now) == now) { l = 1; r = now - 1; while (l < r) { int mid = (l + r) >> 1; if (query(mid + 1, now) == now) { l = mid + 1; } else { r = mid; } } } else { l = now + 1; r = n; while (l < r) { int mid = (l + r) >> 1; if (query(now, mid) == now) { r = mid; } else { l = mid + 1; } } } System.out.println("! " + l); } }
Java
["5\n\n3\n\n4"]
1 second
["? 1 5\n\n? 4 5\n\n! 1"]
NoteIn the sample suppose $$$a$$$ is $$$[5, 1, 4, 2, 3]$$$. So after asking the $$$[1..5]$$$ subsegment $$$4$$$ is second to max value, and it's position is $$$3$$$. After asking the $$$[4..5]$$$ subsegment $$$2$$$ is second to max value and it's position in the whole array is $$$4$$$.Note that there are other arrays $$$a$$$ that would produce the same interaction, and the answer for them might be different. Example output is given in purpose of understanding the interaction.
Java 8
standard input
[ "binary search", "interactive" ]
eb660c470760117dfd0b95acc10eee3b
The first line contains a single integer $$$n$$$ $$$(2 \leq n \leq 10^5)$$$ — the number of elements in the array.
1,900
null
standard output
PASSED
176f8b90ad36af005506572bd67e1604
train_109.jsonl
1613658900
The only difference between the easy and the hard version is the limit to the number of queries.This is an interactive problem.There is an array $$$a$$$ of $$$n$$$ different numbers. In one query you can ask the position of the second maximum element in a subsegment $$$a[l..r]$$$. Find the position of the maximum element in the array in no more than 20 queries.A subsegment $$$a[l..r]$$$ is all the elements $$$a_l, a_{l + 1}, ..., a_r$$$. After asking this subsegment you will be given the position of the second maximum from this subsegment in the whole array.
256 megabytes
/** * BaZ :D */ import java.util.*; import java.io.*; import static java.lang.Math.*; public class Main { static MyScanner scan; static PrintWriter pw; static long MOD = 1_000_000_007; static long INF = 2_000_000_000_000_000_000L; static long inf = 2_000_000_000; public static void main(String[] args) { new Thread(null, null, "BaZ", 1 << 27) { public void run() { try { solve(); } catch (Exception e) { e.printStackTrace(); System.exit(1); } } }.start(); } static int n; static void solve() throws java.lang.Exception { //initIo(true, ""); initIo(false, ""); StringBuilder sb = new StringBuilder(); n = ni(); int p = ask(1,n); boolean left = true; if(p==1 || (p+1 <= n && ask(p, n) == p)) { left = false; } int idx = p; for(int i=16;i>=0;--i) { int new_idx = idx; if(left) { new_idx-=(1<<i); } else { new_idx+=(1<<i); } new_idx = min(n, new_idx); new_idx = max(1, new_idx); int cnt = max(new_idx,p) - min(new_idx,p) + 1; // pl("idx: "+idx+" new_idx: "+new_idx+" cnt: "+cnt); if(cnt > 1 && ask(min(new_idx, p), max(new_idx,p)) != p) { idx = new_idx; } } idx = (left ? idx - 1 : idx + 1); pl("! "+idx); pw.flush(); pw.close(); } static int ask(int l, int r) throws IOException { pl("? "+l+" "+r); pw.flush(); return ni(); } static void assert_in_range(String varName, int n, int l, int r) { if (n >=l && n<=r) return; System.out.println(varName + " is not in range. Actual: "+n+" l : "+l+" r: "+r); System.exit(1); } static void assert_in_range(String varName, long n, long l, long r) { if (n>=l && n<=r) return; System.out.println(varName + " is not in range. Actual: "+n+" l : "+l+" r: "+r); System.exit(1); } static void initIo(boolean isFileIO, String suffix) throws IOException { scan = new MyScanner(isFileIO, suffix); if(isFileIO) { pw = new PrintWriter("/Users/amandeep/Desktop/output"+suffix+".txt"); } else { pw = new PrintWriter(System.out, true); } } static int ni() throws IOException { return scan.nextInt(); } static long nl() throws IOException { return scan.nextLong(); } static double nd() throws IOException { return scan.nextDouble(); } static String ne() throws IOException { return scan.next(); } static String nel() throws IOException { return scan.nextLine(); } static void pl() { pw.println(); } static void p(Object o) { pw.print(o+" "); } static void pl(Object o) { pw.println(o); } static void psb(StringBuilder sb) { pw.print(sb); } static void pa(String arrayName, Object arr[]) { pl(arrayName+" : "); for(Object o : arr) p(o); pl(); } static void pa(String arrayName, int arr[]) { pl(arrayName+" : "); for(int o : arr) p(o); pl(); } static void pa(String arrayName, long arr[]) { pl(arrayName+" : "); for(long o : arr) p(o); pl(); } static void pa(String arrayName, double arr[]) { pl(arrayName+" : "); for(double o : arr) p(o); pl(); } static void pa(String arrayName, char arr[]) { pl(arrayName+" : "); for(char o : arr) p(o); pl(); } static void pa(String arrayName, boolean arr[]) { pl(arrayName+" : "); for(boolean o : arr) p(o); pl(); } static void pa(String listName, List list) { pl(listName+" : "); for(Object o : list) p(o); pl(); } static void pa(String arrayName, Object[][] arr) { pl(arrayName+" : "); for(int i=0;i<arr.length;++i) { for(Object o : arr[i]) p(o); pl(); } } static void pa(String arrayName, int[][] arr) { pl(arrayName+" : "); for(int i=0;i<arr.length;++i) { for(int o : arr[i]) p(o); pl(); } } static void pa(String arrayName, long[][] arr) { pl(arrayName+" : "); for(int i=0;i<arr.length;++i) { for(long o : arr[i]) p(o); pl(); } } static void pa(String arrayName, char[][] arr) { pl(arrayName+" : "); for(int i=0;i<arr.length;++i) { for(char o : arr[i]) p(o); pl(); } } static void pa(String arrayName, double[][] arr) { pl(arrayName+" : "); for(int i=0;i<arr.length;++i) { for(double o : arr[i]) p(o); pl(); } } static void pa(String arrayName, boolean[][] arr) { pl(arrayName+" : "); for(int i=0;i<arr.length;++i) { for(boolean o : arr[i]) p(o); pl(); } } static class MyScanner { BufferedReader br; StringTokenizer st; MyScanner(boolean readingFromFile, String suffix) throws IOException { if(readingFromFile) { br = new BufferedReader(new FileReader("/Users/amandeep/Desktop/input"+suffix+".txt")); } else { br = new BufferedReader(new InputStreamReader(System.in)); } } String nextLine()throws IOException { return br.readLine(); } String next() throws IOException { if(st==null || !st.hasMoreTokens()) st = new StringTokenizer(br.readLine()); return st.nextToken(); } int nextInt() throws IOException { return Integer.parseInt(next()); } long nextLong() throws IOException { return Long.parseLong(next()); } double nextDouble() throws IOException { return Double.parseDouble(next()); } } }
Java
["5\n\n3\n\n4"]
1 second
["? 1 5\n\n? 4 5\n\n! 1"]
NoteIn the sample suppose $$$a$$$ is $$$[5, 1, 4, 2, 3]$$$. So after asking the $$$[1..5]$$$ subsegment $$$4$$$ is second to max value, and it's position is $$$3$$$. After asking the $$$[4..5]$$$ subsegment $$$2$$$ is second to max value and it's position in the whole array is $$$4$$$.Note that there are other arrays $$$a$$$ that would produce the same interaction, and the answer for them might be different. Example output is given in purpose of understanding the interaction.
Java 8
standard input
[ "binary search", "interactive" ]
eb660c470760117dfd0b95acc10eee3b
The first line contains a single integer $$$n$$$ $$$(2 \leq n \leq 10^5)$$$ — the number of elements in the array.
1,900
null
standard output
PASSED
82e205f1be1f80e34d7e423e6b41fe1b
train_109.jsonl
1613658900
The only difference between the easy and the hard version is the limit to the number of queries.This is an interactive problem.There is an array $$$a$$$ of $$$n$$$ different numbers. In one query you can ask the position of the second maximum element in a subsegment $$$a[l..r]$$$. Find the position of the maximum element in the array in no more than 20 queries.A subsegment $$$a[l..r]$$$ is all the elements $$$a_l, a_{l + 1}, ..., a_r$$$. After asking this subsegment you will be given the position of the second maximum from this subsegment in the whole array.
256 megabytes
import java.io.BufferedReader; import java.io.IOException; import java.io.InputStream; import java.io.InputStreamReader; import java.io.PrintWriter; import java.util.ArrayList; import java.util.Arrays; import java.util.HashMap; import java.util.List; import java.util.Map; import java.util.StringTokenizer; import java.util.TreeMap; public class Main implements Runnable { int n, m; static boolean use_n_tests = false; int N = -1; long mod = 1000000007; void solve(FastScanner in, PrintWriter out, int testNumber) { n = in.nextInt(); out.println("! " + rec(0, n)); } int rec(int l, int r) { int bigPos = ask(l, r - 1); int bigLeft = ask(l, bigPos); int lf, rf; int ans = -1; if (bigPos == bigLeft) { lf = 0; rf = bigLeft; while (lf <= rf) { int mid = (lf + rf) / 2; if (ask(mid, bigPos) == bigLeft) { ans = mid; lf = mid + 1; } else { rf = mid - 1; } } } else { lf = bigPos; rf = r - 1; while (lf <= rf) { int mid = (lf + rf) / 2; if (ask(bigPos, mid) == bigPos) { ans = mid; rf = mid - 1; } else { lf = mid + 1; } } } return (ans + 1); } // ****************************** template code *********** int ask(int l, int r) { if (l >= r) { return -1; } System.out.printf("? %d %d\n", l + 1, r + 1); System.out.flush(); return in.nextInt() - 1; } static int stack_size = 1 << 27; class Mod { long mod; Mod(long mod) { this.mod = mod; } long add(long a, long b) { a = mod(a); b = mod(b); return (a + b) % mod; } long sub(long a, long b) { a = mod(a); b = mod(b); return (a - b + mod) % mod; } long mul(long a, long b) { a = mod(a); b = mod(b); return a * b % mod; } long div(long a, long b) { a = mod(a); b = mod(b); return (a * inv(b)) % mod; } public long inv(long r) { if (r == 1) return 1; return ((mod - mod / r) * inv(mod % r)) % mod; } private long mod(long a) { return a % mod; } } class Coeff { long mod; long[][] C; long[] fact; boolean cycleWay = false; Coeff(int n, long mod) { this.mod = mod; fact = new long[n + 1]; fact[0] = 1; for (int i = 1; i <= n; i++) { fact[i] = i; fact[i] %= mod; fact[i] *= fact[i - 1]; fact[i] %= mod; } } Coeff(int n, int m, long mod) { // n > m cycleWay = true; this.mod = mod; C = new long[n + 1][m + 1]; for (int i = 0; i <= n; i++) { for (int j = 0; j <= Math.min(i, m); j++) { if (j == 0 || j == i) { C[i][j] = 1; } else { C[i][j] = C[i - 1][j - 1] + C[i - 1][j]; C[i][j] %= mod; } } } } public long C(int n, int m) { if (cycleWay) { return C[n][m]; } return fC(n, m); } private long fC(int n, int m) { return (fact[n] * inv(fact[n - m] * fact[m] % mod)) % mod; } private long inv(long r) { if (r == 1) return 1; return ((mod - mod / r) * inv(mod % r)) % mod; } } class Pair { int first; int second; public int getFirst() { return first; } public int getSecond() { return second; } } class MultisetTree<T> { int size = 0; TreeMap<T, Integer> mp = new TreeMap<>(); void add(T x) { mp.merge(x, 1, Integer::sum); size++; } void remove(T x) { if (mp.containsKey(x)) { mp.merge(x, -1, Integer::sum); if (mp.get(x) == 0) { mp.remove(x); } size--; } } boolean contains(T x) { return mp.containsKey(x); } T greatest() { return mp.lastKey(); } T smallest() { return mp.firstKey(); } int size() { return size; } int diffSize() { return mp.size(); } } class Multiset<T> { int size = 0; Map<T, Integer> mp = new HashMap<>(); void add(T x) { mp.merge(x, 1, Integer::sum); size++; } boolean contains(T x) { return mp.containsKey(x); } void remove(T x) { if (mp.containsKey(x)) { mp.merge(x, -1, Integer::sum); if (mp.get(x) == 0) { mp.remove(x); } size--; } } int size() { return size; } int diffSize() { return mp.size(); } } static class Range { int l, r; int id; public int getL() { return l; } public int getR() { return r; } public Range(int l, int r, int id) { this.l = l; this.r = r; this.id = id; } } static class Array { static Range[] readRanges(int n, FastScanner in) { Range[] result = new Range[n]; for (int i = 0; i < n; i++) { result[i] = new Range(in.nextInt(), in.nextInt(), i); } return result; } static List<List<Integer>> intInit2D(int n) { List<List<Integer>> res = new ArrayList<>(); for (int i = 0; i < n; i++) { res.add(new ArrayList<>()); } return res; } static boolean isSorted(Integer[] a) { for (int i = 0; i < a.length - 1; i++) { if (a[i] > a[i + 1]) { return false; } } return true; } static public long sum(int[] a) { long sum = 0; for (int x : a) { sum += x; } return sum; } static public long sum(long[] a) { long sum = 0; for (long x : a) { sum += x; } return sum; } static public long sum(Integer[] a) { long sum = 0; for (int x : a) { sum += x; } return sum; } static public int min(Integer[] a) { int mn = Integer.MAX_VALUE; for (int x : a) { mn = Math.min(mn, x); } return mn; } static public int min(int[] a) { int mn = Integer.MAX_VALUE; for (int x : a) { mn = Math.min(mn, x); } return mn; } static public int max(Integer[] a) { int mx = Integer.MIN_VALUE; for (int x : a) { mx = Math.max(mx, x); } return mx; } static public int max(int[] a) { int mx = Integer.MIN_VALUE; for (int x : a) { mx = Math.max(mx, x); } return mx; } static public int[] readint(int n, FastScanner in) { int[] out = new int[n]; for (int i = 0; i < out.length; i++) { out[i] = in.nextInt(); } return out; } } class Graph { List<List<Integer>> graph; Graph(int n) { create(n); } void create(int n) { List<List<Integer>> graph = new ArrayList<>(); for (int i = 0; i < n; i++) { graph.add(new ArrayList<>()); } this.graph = graph; } void readBi(int m, FastScanner in) { for (int i = 0; i < m; i++) { int v = in.nextInt() - 1; int u = in.nextInt() - 1; graph.get(v).add(u); graph.get(u).add(v); } } } class FastScanner { BufferedReader br; StringTokenizer st; public FastScanner(InputStream io) { br = new BufferedReader(new InputStreamReader(io)); } public String line() { String result = ""; try { result = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return result; } public String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } public int nextInt() { return Integer.parseInt(next()); } public int[] nextArray(int n) { int[] res = new int[n]; for (int i = 0; i < n; i++) { res[i] = in.nextInt(); } return res; } public long[] nextArrayL(int n) { long[] res = new long[n]; for (int i = 0; i < n; i++) { res[i] = in.nextLong(); } return res; } public Long[] nextArrayL2(int n) { Long[] res = new Long[n]; for (int i = 0; i < n; i++) { res[i] = in.nextLong(); } return res; } public Integer[] nextArray2(int n) { Integer[] res = new Integer[n]; for (int i = 0; i < n; i++) { res[i] = in.nextInt(); } return res; } public long nextLong() { return Long.parseLong(next()); } } void run_t_tests() { int t = in.nextInt(); int i = 0; while (t-- > 0) { solve(in, out, i++); } } void run_one() { solve(in, out, -1); } @Override public void run() { in = new FastScanner(System.in); out = new PrintWriter(System.out); if (use_n_tests) { run_t_tests(); } else { run_one(); } out.close(); } static FastScanner in; static PrintWriter out; public static void main(String[] args) throws InterruptedException { Thread thread = new Thread(null, new Main(), "", stack_size); thread.start(); thread.join(); } }
Java
["5\n\n3\n\n4"]
1 second
["? 1 5\n\n? 4 5\n\n! 1"]
NoteIn the sample suppose $$$a$$$ is $$$[5, 1, 4, 2, 3]$$$. So after asking the $$$[1..5]$$$ subsegment $$$4$$$ is second to max value, and it's position is $$$3$$$. After asking the $$$[4..5]$$$ subsegment $$$2$$$ is second to max value and it's position in the whole array is $$$4$$$.Note that there are other arrays $$$a$$$ that would produce the same interaction, and the answer for them might be different. Example output is given in purpose of understanding the interaction.
Java 8
standard input
[ "binary search", "interactive" ]
eb660c470760117dfd0b95acc10eee3b
The first line contains a single integer $$$n$$$ $$$(2 \leq n \leq 10^5)$$$ — the number of elements in the array.
1,900
null
standard output
PASSED
f87eace5b79aa90585a41174b0b8346c
train_109.jsonl
1613658900
The only difference between the easy and the hard version is the limit to the number of queries.This is an interactive problem.There is an array $$$a$$$ of $$$n$$$ different numbers. In one query you can ask the position of the second maximum element in a subsegment $$$a[l..r]$$$. Find the position of the maximum element in the array in no more than 20 queries.A subsegment $$$a[l..r]$$$ is all the elements $$$a_l, a_{l + 1}, ..., a_r$$$. After asking this subsegment you will be given the position of the second maximum from this subsegment in the whole array.
256 megabytes
import java.io.BufferedOutputStream; import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.io.PrintWriter; // import java.math.BigInteger; import java.util.*; public class Solution { public static void main(String[] args) { int n = in.nextInt(), t = query(1, n), ind = 0; if (query(1, t) == t) { int lo = 1, hi = t-1; while (lo <= hi) { int mid = (lo + hi) >> 1; if (query(mid, t) == t) { lo = mid+1; } else { hi = mid-1; } } ind = hi; } else { int lo = t+1, hi = n; while (lo <= hi) { int mid = (lo + hi) >> 1; if (query(t, mid) == t) { hi = mid-1; } else { lo = mid+1; } } ind = lo; } out.println("! " + ind); out.flush(); } static int query(int l, int r) { if (l == r) { return 0; } out.println("? " + l + " " + r); out.flush(); return in.nextInt(); } // Handle I/O static int MOD = (int) (1e9 + 7); static FastScanner in = new FastScanner(); static PrintWriter out = new PrintWriter(new BufferedOutputStream(System.out)); static class FastScanner { BufferedReader br; StringTokenizer st; public FastScanner() { br = new BufferedReader(new InputStreamReader(System.in)); st = null; } String next() { while (st == null || !st.hasMoreTokens()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } int[] readIntArray(int size) { int[] arr = new int[size]; for (int i = 0; i < size; i++) { arr[i] = nextInt(); } return arr; } long nextLong() { return Long.parseLong(next()); } long[] readLongArray(int size) { long[] arr = new long[size]; for (int i = 0; i < size; i++) { arr[i] = nextLong(); } return arr; } double nextDouble() { return Double.parseDouble(next()); } double[] readDoubleArray(int size) { double[] arr = new double[size]; for (int i = 0; i < size; i++) { arr[i] = nextDouble(); } return arr; } } }
Java
["5\n\n3\n\n4"]
1 second
["? 1 5\n\n? 4 5\n\n! 1"]
NoteIn the sample suppose $$$a$$$ is $$$[5, 1, 4, 2, 3]$$$. So after asking the $$$[1..5]$$$ subsegment $$$4$$$ is second to max value, and it's position is $$$3$$$. After asking the $$$[4..5]$$$ subsegment $$$2$$$ is second to max value and it's position in the whole array is $$$4$$$.Note that there are other arrays $$$a$$$ that would produce the same interaction, and the answer for them might be different. Example output is given in purpose of understanding the interaction.
Java 8
standard input
[ "binary search", "interactive" ]
eb660c470760117dfd0b95acc10eee3b
The first line contains a single integer $$$n$$$ $$$(2 \leq n \leq 10^5)$$$ — the number of elements in the array.
1,900
null
standard output
PASSED
36e8b54563440960e8c20b69d67e1eb1
train_109.jsonl
1613658900
The only difference between the easy and the hard version is the limit to the number of queries.This is an interactive problem.There is an array $$$a$$$ of $$$n$$$ different numbers. In one query you can ask the position of the second maximum element in a subsegment $$$a[l..r]$$$. Find the position of the maximum element in the array in no more than 20 queries.A subsegment $$$a[l..r]$$$ is all the elements $$$a_l, a_{l + 1}, ..., a_r$$$. After asking this subsegment you will be given the position of the second maximum from this subsegment in the whole array.
256 megabytes
/******************************************************************************* * author : dante1 * created : 18/02/2021 23:12 *******************************************************************************/ import java.io.BufferedOutputStream; import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.io.PrintWriter; // import java.math.BigInteger; import java.util.*; public class c1 { public static void main(String[] args) { int n = in.nextInt(), t = query(1, n), max_idx = 0; if (t == query(1, t)) { int lo = 1, hi = t-1; while (lo <= hi) { int mid = (lo + hi) >> 1; if (t == query(mid, t)) { max_idx = mid; lo = mid+1; } else { hi = mid-1; } } } else { int lo = t+1, hi = n; while (lo <= hi) { int mid = (lo + hi) >> 1; if (t == query(t, mid)) { max_idx = mid; hi = mid-1; } else { lo = mid+1; } } } out.println("! " + max_idx); out.flush(); } static int query(int l, int r) { if (l == r) { return 0; } out.println("? " + l + " " + r); out.flush(); return in.nextInt(); } // Handle I/O static int MOD = (int) (1e9 + 7); static FastScanner in = new FastScanner(); static PrintWriter out = new PrintWriter(new BufferedOutputStream(System.out)); static class FastScanner { BufferedReader br; StringTokenizer st; public FastScanner() { br = new BufferedReader(new InputStreamReader(System.in)); st = null; } String next() { while (st == null || !st.hasMoreTokens()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } int[] readIntArray(int size) { int[] arr = new int[size]; for (int i = 0; i < size; i++) { arr[i] = nextInt(); } return arr; } long nextLong() { return Long.parseLong(next()); } long[] readLongArray(int size) { long[] arr = new long[size]; for (int i = 0; i < size; i++) { arr[i] = nextLong(); } return arr; } double nextDouble() { return Double.parseDouble(next()); } double[] readDoubleArray(int size) { double[] arr = new double[size]; for (int i = 0; i < size; i++) { arr[i] = nextDouble(); } return arr; } } }
Java
["5\n\n3\n\n4"]
1 second
["? 1 5\n\n? 4 5\n\n! 1"]
NoteIn the sample suppose $$$a$$$ is $$$[5, 1, 4, 2, 3]$$$. So after asking the $$$[1..5]$$$ subsegment $$$4$$$ is second to max value, and it's position is $$$3$$$. After asking the $$$[4..5]$$$ subsegment $$$2$$$ is second to max value and it's position in the whole array is $$$4$$$.Note that there are other arrays $$$a$$$ that would produce the same interaction, and the answer for them might be different. Example output is given in purpose of understanding the interaction.
Java 8
standard input
[ "binary search", "interactive" ]
eb660c470760117dfd0b95acc10eee3b
The first line contains a single integer $$$n$$$ $$$(2 \leq n \leq 10^5)$$$ — the number of elements in the array.
1,900
null
standard output
PASSED
5e0e787a185bdeda36c9051f87816d04
train_109.jsonl
1613658900
The only difference between the easy and the hard version is the limit to the number of queries.This is an interactive problem.There is an array $$$a$$$ of $$$n$$$ different numbers. In one query you can ask the position of the second maximum element in a subsegment $$$a[l..r]$$$. Find the position of the maximum element in the array in no more than 20 queries.A subsegment $$$a[l..r]$$$ is all the elements $$$a_l, a_{l + 1}, ..., a_r$$$. After asking this subsegment you will be given the position of the second maximum from this subsegment in the whole array.
256 megabytes
import java.io.*; import java.util.*; public class Main { static PrintWriter pw; static Scanner sc; static long ceildiv(long x, long y) { return (x+y-1)/y; } static int mod(long x, int m) { return (int)((x%m+m)%m); } static void put(HashMap<Integer, Integer> map, Integer p){if(map.containsKey(p)) map.replace(p, map.get(p)+1); else map.put(p, 1); } static void rem(TreeMap<Integer, Integer> map, Integer p){ if(map.get(p)==1) map.remove(p);else map.replace(p, map.get(p)-1); } static void printf(double x, int dig){ String s="%."+dig+"f"; pw.printf(s, x); } static int Int(boolean x){ return x?1:0; } static final int inf=(int)1e9, mod=998244353; static final long infL=inf*1l*inf; static final double eps=1e-9; public static long gcd(long x, long y) { return y==0? x: gcd(y, x%y); } public static void main(String[] args) throws Exception { sc = new Scanner(System.in); pw = new PrintWriter(System.out); // int t = sc.nextInt(); // while (t-- > 0) testcase(); pw.close(); } static int ask(int l, int r) throws IOException{ pw.println("? "+(l+1)+ " "+(r+1)); pw.flush(); return sc.nextInt()-1; } static void testcase() throws IOException { int n=sc.nextInt(); int x=ask(0, n-1), y=x==0? -1: ask(0, x); if(y==x){ int st=1, end=x-1; int ans=0; while(st<=end){ int mid=(st+end)/2; if(ask(mid, x)==x){ ans=mid; st=mid+1; }else{ end=mid-1; } } out(ans); }else{ int st=x+1, end=n-1; int ans=n-1; while(st<=end){ int mid=(st+end)/2; if(ask(x, mid)==x){ ans=mid; end=mid-1; }else{ st=mid+1; } } out(ans); } } static void out(int x){ pw.println("! "+(x+1)); } static void printArr(int[] arr) { for (int i = 0; i < arr.length; i++) pw.print(arr[i] + " "); pw.println(); } static void printArr(long[] arr) { for (int i = 0; i < arr.length; i++) pw.print(arr[i] + " "); pw.println(); } static void printArr(double[] arr) { for (int i = 0; i < arr.length; i++) pw.print(arr[i] + " "); pw.println(); } static void printArr(Integer[] arr) { for (int i = 0; i < arr.length; i++) pw.print(arr[i] + " "); pw.println(); } static void printArr(ArrayList list) { for (int i = 0; i < list.size(); i++) pw.print(list.get(i)+" "); pw.println(); } static void printArr(boolean[] arr) { StringBuilder sb=new StringBuilder(); for(boolean b: arr) sb.append(Int(b)); pw.println(sb); } static class Scanner { StringTokenizer st; BufferedReader br; public Scanner(InputStream s) { br = new BufferedReader(new InputStreamReader(s)); } public Scanner(FileReader r) { br = new BufferedReader(r); } public String next() throws IOException { while (st == null || !st.hasMoreTokens()) st = new StringTokenizer(br.readLine()); return st.nextToken(); } public int nextInt() throws IOException { return Integer.parseInt(next()); } public long nextLong() throws IOException { return Long.parseLong(next()); } public String nextLine() throws IOException { return br.readLine(); } public double nextDouble() throws IOException { return Double.parseDouble(next()); } public int[] nextDigits() throws IOException{ String s=nextLine(); int[] arr=new int[s.length()]; for(int i=0; i<arr.length; i++) arr[i]=s.charAt(i)-'0'; return arr; } public int[] nextArr(int n) throws IOException { int[] arr = new int[n]; for (int i = 0; i < arr.length; i++) arr[i] = nextInt(); return arr; } public Integer[] nextsort(int n) throws IOException{ Integer[] arr=new Integer[n]; for(int i=0; i<n; i++) arr[i]=nextInt(); return arr; } public Pair nextPair() throws IOException{ return new Pair(nextInt(), nextInt()); } public long[] nextLongArr(int n) throws IOException{ long[] arr=new long[n]; for (int i = 0; i < n; i++) arr[i]=sc.nextLong(); return arr; } public Pair[] nextPairArr(int n) throws IOException{ Pair[] arr=new Pair[n]; for(int i=0; i<n; i++) arr[i]=nextPair(); return arr; } public boolean ready() throws IOException { return br.ready(); } } static class Pair implements Comparable<Pair>{ int x; int y; public Pair(int x, int y) { this.x=x; this.y=y; } public boolean contains(int a){ return x==a || y==a; } public int hashCode() { return (this.x*1000000000+this.y); } public int compareTo(Pair p){ if(x==p.x) return y-p.y; return x-p.x; } public boolean equals(Object obj) { if (obj == null) { return false; } if (this.getClass() != obj.getClass()) { return false; } Pair p = (Pair) obj; return this.x==p.x && this.y==p.y; } public Pair clone(){ return new Pair(x, y); } public String toString(){ return this.x+" "+this.y; } public void add(Pair p){ x+=p.x; y+=p.y; } public Pair negative(){ return new Pair(-x, -y); } } static class LP implements Comparable<LP>{ long x, y; public LP(long a, long b){ x=a; y=b; } public void add(LP p){ x+=p.x; y+=p.y; } public boolean equals(LP p){ return p.x==x && y==p.y; } public String toString(){ return this.x+" "+this.y; } public int compareTo(LP p){ int a=Long.compare(x, p.x); if(a!=0) return a; return Long.compare(y, p.y); } } static class Triple implements Comparable<Triple>{ int x, y, z; public Triple(int a, int b, int c){ x=a; y=b; z=c; } public int compareTo(Triple t){ if(this.y!=t.y) return y-t.y; return x-t.x; } public String toString(){ return x+" "+y+" "+z; } } // static class MaxSegmentTree{ // int n; // long[] tree; // public MaxSegmentTree(int len, long[] arr){ // n=len; // build(0, 0, n-1, arr); // } // public void build(int i, int l, int r, long[] arr){ // if(l==r){ // tree[i]=arr[l]; // return; // } // int mid=(l+r)/2, left=2*i+1, right=2*i+2; // build(left, l, mid, arr); // build(right, mid+1, r, arr); // tree[i]=Math.max(left, right); // } // public int query(int i){ // return query(0, 0, n-1, 0, i); // } // public int query(int node, int i, int j, int l, int r){ // if(l>j || r<i) // return -1; // // } // } static class SegmentTree { int n, size[]; long[] tree; public SegmentTree(int len) { n = len; tree=new long[2*n-1]; size=new int[2*n-1]; } public void set(int i, long x){ i+=n-1; tree[i]=x; size[i]++; i=(i-1)/2; while(true){ size[i]++; tree[i]=tree[i*2+1] + tree[i*2+2]; if(i==0) break; i=(i-1)/2; } } public long query(int x){ return query(0, 0, n-1, x+1, n-1); } public long query(int node, int i, int j, int l, int r){ if(j<l || i>r) return 0; if(i>=l && j<=r) return tree[node]; int mid=(i+j)/2, left=node*2+1, right=node*2+2; return query(left, i, mid, l, r) + query(right, mid+1, j, l, r); } public int size(int idx){ return size(0, 0, n-1, idx+1, n-1); } public int size(int node, int i, int j, int l, int r){ if(i>r || j<l) return 0; if(i>=l && j<=r) return size[node]; int mid=(i+j)/2, left=node*2+1, right=node*2+2; return size(left, i, mid, l, r)+size(right, mid+1, j, l, r); } } }
Java
["5\n\n3\n\n4"]
1 second
["? 1 5\n\n? 4 5\n\n! 1"]
NoteIn the sample suppose $$$a$$$ is $$$[5, 1, 4, 2, 3]$$$. So after asking the $$$[1..5]$$$ subsegment $$$4$$$ is second to max value, and it's position is $$$3$$$. After asking the $$$[4..5]$$$ subsegment $$$2$$$ is second to max value and it's position in the whole array is $$$4$$$.Note that there are other arrays $$$a$$$ that would produce the same interaction, and the answer for them might be different. Example output is given in purpose of understanding the interaction.
Java 8
standard input
[ "binary search", "interactive" ]
eb660c470760117dfd0b95acc10eee3b
The first line contains a single integer $$$n$$$ $$$(2 \leq n \leq 10^5)$$$ — the number of elements in the array.
1,900
null
standard output
PASSED
351be300840a15eba3497af2014ad011
train_109.jsonl
1613658900
The only difference between the easy and the hard version is the limit to the number of queries.This is an interactive problem.There is an array $$$a$$$ of $$$n$$$ different numbers. In one query you can ask the position of the second maximum element in a subsegment $$$a[l..r]$$$. Find the position of the maximum element in the array in no more than 20 queries.A subsegment $$$a[l..r]$$$ is all the elements $$$a_l, a_{l + 1}, ..., a_r$$$. After asking this subsegment you will be given the position of the second maximum from this subsegment in the whole array.
256 megabytes
import java.io.*; import java.util.*; import java.lang.*; public class Main{ public static void main(String[] args) { InputStream inputStream = System.in; OutputStream outputStream = System.out; InputReader in = new InputReader(inputStream); PrintWriter out = new PrintWriter(outputStream); solve(in, out); out.close(); } static int L,R,top,bottom; static int cnt,edge; public static void solve(InputReader sc, PrintWriter pw) { // int t=sc.nextInt(); int t=1; u:while(t-->0){ int n=sc.nextInt(); if(n==1){ pw.println(1); continue u; } int l=1,r=n,m,p=1,a; boolean flag=true; p=ask(l,r,sc); if(p==1||ask(1,p,sc)!=p){ l=p; while(r-l>1){ m=(r-l)/2+l; if(ask(p,m,sc)==p) r=m; else l=m; } System.out.println("! "+r); } else{ r=p; while(r-l>1){ m=(r-l)/2+l; if(ask(m,p,sc)==p) l=m; else r=m; } System.out.println("! "+l); } } } public static int ask(int l, int r,InputReader sc){ System.out.println("? "+l+" "+r); System.out.flush(); return sc.nextInt(); } public static void sort(long []arr){ ArrayList<Long> list=new ArrayList<>(); for(int i=0;i<arr.length;i++) list.add(arr[i]); Collections.sort(list); for(int i=0;i<arr.length;i++) arr[i]=list.get(i); } public static void swap(char []chrr, int i, int j){ char temp=chrr[i]; chrr[i]=chrr[j]; chrr[j]=temp; } public static int num(int n){ int a=0; while(n>0){ a+=(n&1); n>>=1; } return a; } static class Pair{ int a, b; Pair(int a,int b){ this.a=a; this.b=b; } } // public int compareTo(Pair p){ // return (b-p.b); // } // public int hashCode(){ // int hashcode = (a+" "+b).hashCode(); // return hashcode; // } // public boolean equals(Object obj){ // if (obj instanceof Pair) { // Pair p = (Pair) obj; // return (p.a==this.a && p.b == this.b); // } // return false; // } static boolean isPrime(int n) { if (n <= 1) return false; if (n <= 3) return true; if (n % 2 == 0 || n % 3 == 0) return false; for (int i = 5; i * i <= n; i = i + 6) if (n % i == 0 || n % (i + 2) == 0) return false; return true; } static int gcd(int a, int b) { if (b == 0) return a; return a>b?gcd(b, a % b):gcd(a, b % a); } static long fast_pow(long base,long n,long M){ if(n==0) return 1; if(n==1) return base; long halfn=fast_pow(base,n/2,M); if(n%2==0) return ( halfn * halfn ) % M; else return ( ( ( halfn * halfn ) % M ) * base ) % M; } static long modInverse(long n,long M){ return fast_pow(n,M-2,M); } public static void feedArr(long []arr,InputReader sc){ for(int i=0;i<arr.length;i++) arr[i]=sc.nextLong(); } public static void feedArr(double []arr,InputReader sc){ for(int i=0;i<arr.length;i++) arr[i]=sc.nextDouble(); } public static void feedArr(int []arr,InputReader sc){ for(int i=0;i<arr.length;i++) arr[i]=sc.nextInt(); } public static void feedArr(String []arr,InputReader sc){ for(int i=0;i<arr.length;i++) arr[i]=sc.next(); } public static String printArr(int []arr){ StringBuilder sbr=new StringBuilder(); for(int i:arr) sbr.append(i+" "); return sbr.toString(); } public static String printArr(long []arr){ StringBuilder sbr=new StringBuilder(); for(long i:arr) sbr.append(i+" "); return sbr.toString(); } public static String printArr(String []arr){ StringBuilder sbr=new StringBuilder(); for(String i:arr) sbr.append(i+" "); return sbr.toString(); } public static String printArr(double []arr){ StringBuilder sbr=new StringBuilder(); for(double i:arr) sbr.append(i+" "); return sbr.toString(); } static class InputReader { public BufferedReader reader; public StringTokenizer tokenizer; public InputReader(InputStream stream) { reader = new BufferedReader(new InputStreamReader(stream), 32768); tokenizer = null; } public String next() { while (tokenizer == null || !tokenizer.hasMoreTokens()) { try { tokenizer = new StringTokenizer(reader.readLine()); } catch (IOException e) { throw new RuntimeException(e); } } return tokenizer.nextToken(); } public int nextInt() { return Integer.parseInt(next()); } public long nextLong() { return Long.parseLong(next()); } public double nextDouble() { return Double.parseDouble(next()); } } }
Java
["5\n\n3\n\n4"]
1 second
["? 1 5\n\n? 4 5\n\n! 1"]
NoteIn the sample suppose $$$a$$$ is $$$[5, 1, 4, 2, 3]$$$. So after asking the $$$[1..5]$$$ subsegment $$$4$$$ is second to max value, and it's position is $$$3$$$. After asking the $$$[4..5]$$$ subsegment $$$2$$$ is second to max value and it's position in the whole array is $$$4$$$.Note that there are other arrays $$$a$$$ that would produce the same interaction, and the answer for them might be different. Example output is given in purpose of understanding the interaction.
Java 8
standard input
[ "binary search", "interactive" ]
eb660c470760117dfd0b95acc10eee3b
The first line contains a single integer $$$n$$$ $$$(2 \leq n \leq 10^5)$$$ — the number of elements in the array.
1,900
null
standard output
PASSED
6ffab90b3b8d86dd2e2d038619a8754b
train_109.jsonl
1613658900
The only difference between the easy and the hard version is the limit to the number of queries.This is an interactive problem.There is an array $$$a$$$ of $$$n$$$ different numbers. In one query you can ask the position of the second maximum element in a subsegment $$$a[l..r]$$$. Find the position of the maximum element in the array in no more than 20 queries.A subsegment $$$a[l..r]$$$ is all the elements $$$a_l, a_{l + 1}, ..., a_r$$$. After asking this subsegment you will be given the position of the second maximum from this subsegment in the whole array.
256 megabytes
//I AM THE CREED /* //I AM THE CREED /* package codechef; // don't place package name! */ import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.util.StringTokenizer; import java.util.*; import java.awt.Point; public class Main{ static final Random random=new Random(); public static void main(String[] args) throws IOException { Scanner input=new Scanner(System.in); int n=input.nextInt(); System.out.println("? "+1+" "+n); System.out.flush(); int secondIndex=input.nextInt(); int left=1; int right=secondIndex-1; if(right>=left){ System.out.println("? "+(secondIndex-right)+" "+(secondIndex)); System.out.flush(); int index=input.nextInt(); if(secondIndex==index){ while(right!=left){ int mid=left+((right-left)/2); System.out.println("? "+(secondIndex-mid)+" "+(secondIndex)); System.out.flush(); int curr=input.nextInt(); if(curr==secondIndex){ right=mid; continue; } left=mid+1; } System.out.println("! "+(secondIndex-right)); System.out.flush(); return; } } left=1; right=n-secondIndex; while(right!=left){ int mid=left+((right-left)/2); System.out.println("? "+(secondIndex)+" "+(secondIndex+mid)); System.out.flush(); int curr=input.nextInt(); if(curr==secondIndex){ right=mid; continue; } left=mid+1; } System.out.println("! "+(secondIndex+right)); System.out.flush(); } static long pow(long num, long exp, long mod){ long ans=1; for(int i=1;i<=exp;i++){ ans=(ans*num)%mod; } return ans; } static boolean isPrime(int n) { // Check if number is less than // equal to 1 if (n <= 1) return false; // Check if number is 2 else if (n == 2) return true; // Check if n is a multiple of 2 else if (n % 2 == 0) return false; // If not, then just check the odds for (int i = 3; i <= Math.sqrt(n); i += 2) { if (n % i == 0) return false; } return true; } static int gcd(int a, int b) { if (a == 0) return b; return gcd(b % a, a); } // method to return LCM of two numbers static int lcm(int a, int b) { return (a / gcd(a, b)) * b; } public static void sort(long[][] arr) { //Sort an array (immune to quicksort TLE) Random rgen = new Random(); for (int i = 0; i < arr.length; i++) { int randomPosition = rgen.nextInt(arr.length); long[] temp = arr[i]; arr[i] = arr[randomPosition]; arr[randomPosition] = temp; } Arrays.sort(arr, new Comparator<long[]>() { @Override public int compare(long[] a, long[] b) { if (a[0] > b[0]) return 1; else if (a[0] < b[0]) return -1; else return 0; } }); } //Credits to SecondThread(https://codeforces.com/profile/SecondThread) for this tempelate. static class FastScanner { BufferedReader br=new BufferedReader(new InputStreamReader(System.in)); StringTokenizer st=new StringTokenizer(""); String next() { while (!st.hasMoreTokens()) try { st=new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } int[] readArray(int n) { int[] a=new int[n]; for (int i=0; i<n; i++) a[i]=nextInt(); return a; } long nextLong() { return Long.parseLong(next()); } } }
Java
["5\n\n3\n\n4"]
1 second
["? 1 5\n\n? 4 5\n\n! 1"]
NoteIn the sample suppose $$$a$$$ is $$$[5, 1, 4, 2, 3]$$$. So after asking the $$$[1..5]$$$ subsegment $$$4$$$ is second to max value, and it's position is $$$3$$$. After asking the $$$[4..5]$$$ subsegment $$$2$$$ is second to max value and it's position in the whole array is $$$4$$$.Note that there are other arrays $$$a$$$ that would produce the same interaction, and the answer for them might be different. Example output is given in purpose of understanding the interaction.
Java 8
standard input
[ "binary search", "interactive" ]
eb660c470760117dfd0b95acc10eee3b
The first line contains a single integer $$$n$$$ $$$(2 \leq n \leq 10^5)$$$ — the number of elements in the array.
1,900
null
standard output
PASSED
751cc5c451ef0caa353d838bc368e1b5
train_109.jsonl
1613658900
The only difference between the easy and the hard version is the limit to the number of queries.This is an interactive problem.There is an array $$$a$$$ of $$$n$$$ different numbers. In one query you can ask the position of the second maximum element in a subsegment $$$a[l..r]$$$. Find the position of the maximum element in the array in no more than 20 queries.A subsegment $$$a[l..r]$$$ is all the elements $$$a_l, a_{l + 1}, ..., a_r$$$. After asking this subsegment you will be given the position of the second maximum from this subsegment in the whole array.
256 megabytes
import java.util.*; import java.io.*; import java.math.*; public class cf { static PrintWriter pw = new PrintWriter(System.out); static Scanner sc = new Scanner(System.in); public static void main(String[] args) throws IOException, InterruptedException { int n = sc.nextInt(); pw.println("! " + bs(n)); pw.close(); } static int bs(int n) throws IOException { int ans = -1; pw.println("? 1 " + n); pw.flush(); int x = sc.nextInt() - 1; boolean f = (x != 0); if (f) { pw.println("? 1 " + (x + 1)); pw.flush(); int y = sc.nextInt() - 1; f &= (y == x); } if (f) { int start = 0, end = x - 1; while (start <= end) { int mid = (start + end) / 2; pw.println("? " + (mid + 1) + " " + (x + 1)); pw.flush(); int y = sc.nextInt() - 1; if (y == x) { ans = mid; start = mid + 1; } else { end = mid - 1; } } } else { int start = x + 1, end = n - 1; while (start <= end) { int mid = (start + end) / 2; pw.println("? " + (x + 1) + " " + (mid + 1)); pw.flush(); int y = sc.nextInt() - 1; if (y == x) { ans = mid; end = mid - 1; } else { start = mid + 1; } } } return ans + 1; } public static class pair implements Comparable<pair> { int x; int y; public pair(int x, int y) { this.x = x; this.y = y; } public String toString() { return x + " " + y; } public boolean equals(Object o) { if (o instanceof pair) { pair p = (pair) o; return p.x == x && p.y == y; } return false; } public int hashCode() { return new Double(x).hashCode() * 31 + new Double(y).hashCode(); } public int compareTo(pair other) { if (this.x == other.x) { return Long.compare(this.y, other.y); } return Long.compare(this.x, other.x); } } public static class tuble implements Comparable<tuble> { int x; int y; int z; public tuble(int x, int y, int z) { this.x = x; this.y = y; this.z = z; } public String toString() { return x + " " + y + " " + z; } public int compareTo(tuble other) { if (this.x == other.x) { if (this.y == other.y) return this.z - other.z; return this.y - other.y; } else { return this.x - other.x; } } } static class Scanner { StringTokenizer st; BufferedReader br; public Scanner(InputStream s) { br = new BufferedReader(new InputStreamReader(s)); } public Scanner(FileReader r) { br = new BufferedReader(r); } public String next() throws IOException { while (st == null || !st.hasMoreTokens()) st = new StringTokenizer(br.readLine()); return st.nextToken(); } public int nextInt() throws IOException { return Integer.parseInt(next()); } public long nextLong() throws IOException { return Long.parseLong(next()); } public String nextLine() throws IOException { return br.readLine(); } public double nextDouble() throws IOException { String x = next(); StringBuilder sb = new StringBuilder("0"); double res = 0, f = 1; boolean dec = false, neg = false; int start = 0; if (x.charAt(0) == '-') { neg = true; start++; } for (int i = start; i < x.length(); i++) if (x.charAt(i) == '.') { res = Long.parseLong(sb.toString()); sb = new StringBuilder("0"); dec = true; } else { sb.append(x.charAt(i)); if (dec) f *= 10; } res += Long.parseLong(sb.toString()) / f; return res * (neg ? -1 : 1); } public long[] nextlongArray(int n) throws IOException { long[] a = new long[n]; for (int i = 0; i < n; i++) a[i] = nextLong(); return a; } public Long[] nextLongArray(int n) throws IOException { Long[] a = new Long[n]; for (int i = 0; i < n; i++) a[i] = nextLong(); return a; } public int[] nextIntArray(int n) throws IOException { int[] a = new int[n]; for (int i = 0; i < n; i++) a[i] = nextInt(); return a; } public Integer[] nextIntegerArray(int n) throws IOException { Integer[] a = new Integer[n]; for (int i = 0; i < n; i++) a[i] = nextInt(); return a; } public boolean ready() throws IOException { return br.ready(); } } }
Java
["5\n\n3\n\n4"]
1 second
["? 1 5\n\n? 4 5\n\n! 1"]
NoteIn the sample suppose $$$a$$$ is $$$[5, 1, 4, 2, 3]$$$. So after asking the $$$[1..5]$$$ subsegment $$$4$$$ is second to max value, and it's position is $$$3$$$. After asking the $$$[4..5]$$$ subsegment $$$2$$$ is second to max value and it's position in the whole array is $$$4$$$.Note that there are other arrays $$$a$$$ that would produce the same interaction, and the answer for them might be different. Example output is given in purpose of understanding the interaction.
Java 8
standard input
[ "binary search", "interactive" ]
eb660c470760117dfd0b95acc10eee3b
The first line contains a single integer $$$n$$$ $$$(2 \leq n \leq 10^5)$$$ — the number of elements in the array.
1,900
null
standard output
PASSED
b9092b24e831e5348dabdb379c163dc0
train_109.jsonl
1613658900
The only difference between the easy and the hard version is the limit to the number of queries.This is an interactive problem.There is an array $$$a$$$ of $$$n$$$ different numbers. In one query you can ask the position of the second maximum element in a subsegment $$$a[l..r]$$$. Find the position of the maximum element in the array in no more than 20 queries.A subsegment $$$a[l..r]$$$ is all the elements $$$a_l, a_{l + 1}, ..., a_r$$$. After asking this subsegment you will be given the position of the second maximum from this subsegment in the whole array.
256 megabytes
//package R703; import java.io.*; import java.math.*; import java.util.*; public class Q3 { static int INF = (int)(1e9); static long mod = (long)(1e9)+7; static long mod2 = 998244353; static long[] segtree; static char[] curans; static long ans; static String S; static ArrayList<Integer>[] graph; static boolean[] vis; static int[] a; static int N; static long K; static long[] fact; static ArrayList<Long> pos; static ArrayList<Long> neg; static long[] max; static int[] dp; public static void main(String[] args) { //Cash out /**/ FastScanner I = new FastScanner(); //Input OutPut O = new OutPut(); //Output int N = I.nextInt(); O.pln("? " + 1 + " "+ N); int index = I.nextInt(); int lo = index; int hi = N; int ans = 0; if (index == N) { lo = 1; hi = index - 1; while (lo <= hi) { int mid = (lo + hi) / 2; O.pln("? " + mid + " " + index); int new_index = I.nextInt(); if (new_index == index) { lo = mid + 1; ans = max(ans,mid); }else { hi= mid - 1; } } }else if (index == 1){ ans = N; lo = index + 1; while (lo <= hi) { int mid = (lo + hi) / 2; O.pln("? " + index + " " + mid); int new_index = I.nextInt(); if (new_index == index) { ans = min(ans,mid); hi = mid - 1; }else { lo = mid + 1; } } }else { O.pln("? " + 1 + " "+ index); int id2 = I.nextInt(); if (id2 == index) { lo = 1; hi = index - 1; while (lo <= hi) { int mid = (lo + hi) / 2; O.pln("? " + mid + " " + index); int new_index = I.nextInt(); if (new_index == index) { ans = max(ans, mid); lo = mid + 1; }else { hi= mid - 1; } } }else { lo = index + 1; while (lo <= hi) { ans = N; int mid = (lo + hi) / 2; O.pln("? " + index + " " + mid); int new_index = I.nextInt(); if (new_index == index) { ans = min(ans, mid); hi = mid - 1; }else { lo = mid + 1; } } } } O.pln("! " + ans); } public static double[][] matrix_exp(double[][] a, long exp, long mod) { int R = a.length; int C = a[0].length; double[][] ans = new double[R][C]; boolean mult_yet = false; while (exp > 0) { if (exp % 2 == 1) { if (!mult_yet) { mult_yet = true; for (int i = 0; i < R; i++) { for (int j = 0; j < C; j++) { ans[i][j] = a[i][j]; } } }else { double[][] new_ans = mult(ans, a, mod); for (int i = 0; i < R; i++) { for (int j = 0; j < C; j++) { ans[i][j] = new_ans[i][j]; } } } } double[][] new_a = mult(a, a, mod); // a = a^2 (binary exponentiation on matrices) for (int i = 0; i < R; i++) { for (int j = 0; j < C; j++) { a[i][j] = new_a[i][j]; } } exp /= 2; } return ans; } public static double[][] mult(double[][] a, double[][] b, long mod) { int r1 = a.length; int c1 = a[0].length; int r2 = b.length; int c2 = b[0].length; //Requires: c1 = r2 double[][] ans = new double[r1][c2]; for (int r = 0; r < r1; r++) { for (int c = 0; c < c2; c++) { //Dot product of (a[r])^T and b[c] (as vectors in R^n (n = c1 = r2)) double[] col_vector = new double[r2]; double[] row_vector = new double[c1]; for (int i = 0; i < r2; i++) { col_vector[i] = b[i][c]; } for (int i = 0; i < c1; i++) { row_vector[i] = a[r][i]; } ans[r][c] = dot_product(row_vector, col_vector, mod); } } return ans; } public static double dot_product(double[] a, double[] b, long mod) { double ans = 0; int N = a.length; //Requires: a and b are both vectors in R^n for (int i = 0; i < N; i++) { ans += a[i] * b[i]; } return ans; } public static double max(double a, double b) {return Math.max(a, b);} public static double min(double a, double b) {return Math.min(a, b);} public static long min(long a, long b) {return Math.min(a,b);} public static long max(long a, long b) {return Math.max(a,b);} public static int min(int a, int b) {return Math.min(a,b);} public static int max(int a, int b) {return Math.max(a,b);} public static long abs(long x) {return Math.abs(x);} public static long abs(int x) {return Math.abs(x);} public static long ceil(long num, long den) {long ans = num/den; if (num%den!=0) ans++; return ans;} public static long GCD(long a, long b) { if (a==0||b==0) return max(a,b); return GCD(min(a,b),max(a,b)%min(a,b)); } public static long FastExp(long base, long exp, long mod) { long ans=1; while (exp>0) { if (exp%2==1) ans*=base; exp/=2; base*=base; base%=mod; ans%=mod; } return ans; } public static long ModInv(long num,long mod) {return FastExp(num,mod-2,mod);} public static int pop(long x) { //Returns number of bits within a number int cnt = 0; while (x>0) { if (x%2==1) cnt++; x/=2; } return cnt; } static class FastScanner { BufferedReader br=new BufferedReader(new InputStreamReader(System.in)); StringTokenizer st=new StringTokenizer(""); String next() { while (!st.hasMoreTokens()) try { st=new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } return st.nextToken(); } int nextInt() {return Integer.parseInt(next());} long nextLong() {return Long.parseLong(next());}; double nextDouble() {return Double.parseDouble(next());} } static class OutPut{ PrintWriter w = new PrintWriter(System.out); void pln(double x) {w.println(x);w.flush();} void pln(boolean x) {w.println(x);w.flush();} void pln(int x) {w.println(x);w.flush();} void pln(long x) {w.println(x);w.flush();} void pln(String x) {w.println(x);w.flush();} void pln(char x) {w.println(x);w.flush();} void pln(StringBuilder x) {w.println(x);w.flush();} void pln(BigInteger x) {w.println(x);w.flush();} void p(int x) {w.print(x);w.flush();} void p(long x) {w.print(x);w.flush();} void p(String x) {w.print(x);w.flush();} void p(char x) {w.print(x);w.flush();} void p(StringBuilder x) {w.print(x);w.flush();} void p(BigInteger x) {w.print(x);w.flush();} void p(double x) {w.print(x);w.flush();} void p(boolean x) {w.print(x);w.flush();} } }
Java
["5\n\n3\n\n4"]
1 second
["? 1 5\n\n? 4 5\n\n! 1"]
NoteIn the sample suppose $$$a$$$ is $$$[5, 1, 4, 2, 3]$$$. So after asking the $$$[1..5]$$$ subsegment $$$4$$$ is second to max value, and it's position is $$$3$$$. After asking the $$$[4..5]$$$ subsegment $$$2$$$ is second to max value and it's position in the whole array is $$$4$$$.Note that there are other arrays $$$a$$$ that would produce the same interaction, and the answer for them might be different. Example output is given in purpose of understanding the interaction.
Java 8
standard input
[ "binary search", "interactive" ]
eb660c470760117dfd0b95acc10eee3b
The first line contains a single integer $$$n$$$ $$$(2 \leq n \leq 10^5)$$$ — the number of elements in the array.
1,900
null
standard output
PASSED
3f3cc3be50b217b07613aa491f3e49fb
train_109.jsonl
1613658900
The only difference between the easy and the hard version is the limit to the number of queries.This is an interactive problem.There is an array $$$a$$$ of $$$n$$$ different numbers. In one query you can ask the position of the second maximum element in a subsegment $$$a[l..r]$$$. Find the position of the maximum element in the array in no more than 20 queries.A subsegment $$$a[l..r]$$$ is all the elements $$$a_l, a_{l + 1}, ..., a_r$$$. After asking this subsegment you will be given the position of the second maximum from this subsegment in the whole array.
256 megabytes
import java.io.OutputStream; import java.io.IOException; import java.io.InputStream; import java.io.PrintWriter; import java.util.StringTokenizer; import java.io.IOException; import java.io.BufferedReader; import java.io.FileReader; import java.io.InputStreamReader; import java.util.ArrayList; import java.io.InputStream; /** * Built using CHelper plug-in * Actual solution is at the top * * @author Khater */ public class HH { public static void main(String[] args) { InputStream inputStream = System.in; OutputStream outputStream = System.out; Scanner in = new Scanner(inputStream); PrintWriter out = new PrintWriter(outputStream); C1GuessingTheGreatestEasyVersion solver = new C1GuessingTheGreatestEasyVersion(); solver.solve(1, in, out); out.close(); } static class C1GuessingTheGreatestEasyVersion { int idx; public void solve(int testNumber, Scanner sc, PrintWriter pw) { int t = 1; // t = sc.nextInt(); while (t-- > 0) { int n = sc.nextInt(); idx = ask(1, n, sc, pw); int b = ask(1,idx,sc,pw); int ans =1; if(b==idx) { ans = bbs(1,idx,sc,pw); }else { ans = abs(idx,n,sc,pw); } pw.println("! "+ans); } } int abs(int l, int r, Scanner sc, PrintWriter pw) { if (l >= r-1) { if(ask(idx, l, sc, pw)!=idx) return r; else return l; } int mid = (l+r)/2; int b = ask(idx, mid, sc, pw); if(b==idx)return abs(l,mid,sc,pw); else return abs(mid+1,r,sc,pw); } int bbs(int l, int r, Scanner sc, PrintWriter pw) { if (l >= r-1) { if(ask(r, idx, sc, pw)==idx) return r; else return l; } int mid = (l+r)/2; int a = ask(mid, idx, sc, pw); if(a==idx)return bbs(mid,r,sc,pw); else return bbs(l,mid-1,sc,pw); } int ask(int l, int r, Scanner sc, PrintWriter pw) { if(l>=r) return -1; pw.println("? " + l + " " + r); pw.flush(); return sc.nextInt(); } } static class Scanner { StringTokenizer st; BufferedReader br; public Scanner(FileReader r) { br = new BufferedReader(r); } public Scanner(InputStream s) { br = new BufferedReader(new InputStreamReader(s)); } public String next() { while (st == null || !st.hasMoreTokens()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { throw new RuntimeException(e); } } return st.nextToken(); } public int nextInt() { return Integer.parseInt(next()); } } }
Java
["5\n\n3\n\n4"]
1 second
["? 1 5\n\n? 4 5\n\n! 1"]
NoteIn the sample suppose $$$a$$$ is $$$[5, 1, 4, 2, 3]$$$. So after asking the $$$[1..5]$$$ subsegment $$$4$$$ is second to max value, and it's position is $$$3$$$. After asking the $$$[4..5]$$$ subsegment $$$2$$$ is second to max value and it's position in the whole array is $$$4$$$.Note that there are other arrays $$$a$$$ that would produce the same interaction, and the answer for them might be different. Example output is given in purpose of understanding the interaction.
Java 8
standard input
[ "binary search", "interactive" ]
eb660c470760117dfd0b95acc10eee3b
The first line contains a single integer $$$n$$$ $$$(2 \leq n \leq 10^5)$$$ — the number of elements in the array.
1,900
null
standard output
PASSED
c82a851515c000f7a86e5588542588fc
train_109.jsonl
1613658900
The only difference between the easy and the hard version is the limit to the number of queries.This is an interactive problem.There is an array $$$a$$$ of $$$n$$$ different numbers. In one query you can ask the position of the second maximum element in a subsegment $$$a[l..r]$$$. Find the position of the maximum element in the array in no more than 20 queries.A subsegment $$$a[l..r]$$$ is all the elements $$$a_l, a_{l + 1}, ..., a_r$$$. After asking this subsegment you will be given the position of the second maximum from this subsegment in the whole array.
256 megabytes
import java.io.*; import java.util.*; public class C { static class FastReader { BufferedReader br; StringTokenizer st; public FastReader() { br = new BufferedReader(new InputStreamReader(System.in)); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } } static FastReader s = new FastReader(); static PrintWriter out = new PrintWriter(System.out); private static int[] rai(int n) { int[] arr = new int[n]; for (int i = 0; i < n; i++) { arr[i] = s.nextInt(); } return arr; } private static int[][] rai(int n, int m) { int[][] arr = new int[n][m]; for (int i = 0; i < n; i++) { for (int j = 0; j < m; j++) { arr[i][j] = s.nextInt(); } } return arr; } private static long[] ral(int n) { long[] arr = new long[n]; for (int i = 0; i < n; i++) { arr[i] = s.nextLong(); } return arr; } private static long[][] ral(int n, int m) { long[][] arr = new long[n][m]; for (int i = 0; i < n; i++) { for (int j = 0; j < m; j++) { arr[i][j] = s.nextLong(); } } return arr; } private static int ri() { return s.nextInt(); } private static long rl() { return s.nextLong(); } private static String rs() { return s.next(); } static long gcd(long a,long b) { if(b==0) { return a; } return gcd(b,a%b); } static boolean isPrime(int n) { //check if n is a multiple of 2 if (n % 2 == 0) return false; //if not, then just check the odds for (int i = 3; i <= Math.sqrt(n); i += 2) { if (n % i == 0) return false; } return true; } static int MOD=1000000007; static long mpow(long base,long pow) { long res=1; while(pow>0) { if(pow%2==1) { res=(res*base)%MOD; } pow>>=1; base=(base*base)%MOD; } return res; } static public int minimumSize(int[] nums, int m) { PriorityQueue<Integer> pq=new PriorityQueue<>(Collections.reverseOrder()); for(int i:nums) { pq.add(i); } System.out.println(pq); for(int i=0;i<m;i++) { int val=pq.remove(); if(val==1) { return 1; } int f=val/2; int s=val-f; pq.add(f); pq.add(s); System.out.println(pq); } return pq.remove(); } public static void main(String[] args) { // StringBuilder ans = new StringBuilder(); // int t = ri(); int t = 1; while (t-- > 0) { int n=ri(); int l=1,r=n; boolean f=false; int count=0; out.println("? 1 "+n); out.flush(); count++; int secMax=ri(); boolean before=false; if(secMax==1) { l=2; } else if(secMax==n) { r=n-1; before=true; } else { out.println("? 1 "+secMax); out.flush(); count++; int ind=ri(); if(ind==secMax) { r=secMax-1; before=true; } else { l=secMax+1; } } int res=-1; while(l<=r) { int mid=(l+r)/2; if(before) { out.println("? " + mid + " " +secMax); out.flush(); count++; int ind=ri(); if(ind==secMax) { res=mid; l=mid+1; } else { r=mid-1; } } else { out.println("? " + secMax + " " +mid); out.flush(); count++; int ind=ri(); if(ind==secMax) { res=mid; r=mid-1; } else { l=mid+1; } } } out.println("! " + res); out.flush(); // System.out.println(count); } // out.print(ans.toString()); // out.flush(); } }
Java
["5\n\n3\n\n4"]
1 second
["? 1 5\n\n? 4 5\n\n! 1"]
NoteIn the sample suppose $$$a$$$ is $$$[5, 1, 4, 2, 3]$$$. So after asking the $$$[1..5]$$$ subsegment $$$4$$$ is second to max value, and it's position is $$$3$$$. After asking the $$$[4..5]$$$ subsegment $$$2$$$ is second to max value and it's position in the whole array is $$$4$$$.Note that there are other arrays $$$a$$$ that would produce the same interaction, and the answer for them might be different. Example output is given in purpose of understanding the interaction.
Java 8
standard input
[ "binary search", "interactive" ]
eb660c470760117dfd0b95acc10eee3b
The first line contains a single integer $$$n$$$ $$$(2 \leq n \leq 10^5)$$$ — the number of elements in the array.
1,900
null
standard output
PASSED
276bad82bc3841c5b572fba0fba5d2bd
train_109.jsonl
1613658900
The only difference between the easy and the hard version is the limit to the number of queries.This is an interactive problem.There is an array $$$a$$$ of $$$n$$$ different numbers. In one query you can ask the position of the second maximum element in a subsegment $$$a[l..r]$$$. Find the position of the maximum element in the array in no more than 20 queries.A subsegment $$$a[l..r]$$$ is all the elements $$$a_l, a_{l + 1}, ..., a_r$$$. After asking this subsegment you will be given the position of the second maximum from this subsegment in the whole array.
256 megabytes
import java.io.*; import java.math.BigInteger; import java.util.*; public class TaskA { public static void main(String[] args) { InputReader in = new InputReader(System.in); PrintWriter out = new PrintWriter(System.out); Task solver = new Task(); solver.solve(in, out); out.close(); } // main solver static class Task { Scanner sc = new Scanner(System.in); public void solve(InputReader in, PrintWriter out) { int t = 1; for (int i = 0; i < t; i++){ solveOne(in, out); } } private int query(int l, int r){ System.out.println("? " + l + " " + r); System.out.flush(); int pos = sc.nextInt(); return pos; } private void solveOne(InputReader in, PrintWriter out) { int n = sc.nextInt(); int pos = query(1, n); int beg = 1, end = n; if (pos > 1){ if (query(1, pos) == pos){ end = pos; } else{ beg = pos; } } else if (pos < n){ if (query(pos, n) == pos){ beg = pos; } else{ end = pos; } } if (beg>=pos){ if (beg == pos) beg++; while (beg < end - 1){ int mid = (beg + end) / 2; int x = query(pos, mid); if (x == pos){ end = mid; } else{ beg = mid; } } if (end !=beg && query(pos, beg) != pos){ beg = end; } out.println("! " + beg); } else{ if (end == pos){ end--; } assert(end < pos); while (beg < end - 1){ int mid = (beg + end) / 2; int x = query(mid, pos); if (x == pos){ beg = mid; } else{ end = mid; } } if (end !=beg && query(end, pos) == pos){ beg = end; } out.println("! " + beg); } } } static class Point{ public int x,y,z, ID; public Point(int x, int y, int z, int ID){ this.x = x; this.y = y; this.z = z; this.ID = ID; } @Override public String toString() { return "[" + x + " " + y + " " + z + " " + ID + "]"; } } static class SortByX implements Comparator<Point>{ @Override public int compare(Point p1, Point p2) { return Integer.compare(p1.x, p2.x); } } static class SortByY implements Comparator<Point>{ @Override public int compare(Point p1, Point p2) { if (p1.y != p2.y) return Integer.compare(p1.y, p2.y); if (p1.z > p2.z) return -1; return 1; } } // fast input reader class; static class InputReader { BufferedReader br; StringTokenizer st; public InputReader(InputStream stream) { br = new BufferedReader(new InputStreamReader(stream)); } public String nextToken() { while (st == null || !st.hasMoreTokens()) { String line = null; try { line = br.readLine(); } catch (IOException e) { throw new RuntimeException(e); } if (line == null) { return null; } st = new StringTokenizer(line); } return st.nextToken(); } public int nextInt() { return Integer.parseInt(nextToken()); } public long nextLong(){ return Long.parseLong(nextToken()); } } }
Java
["5\n\n3\n\n4"]
1 second
["? 1 5\n\n? 4 5\n\n! 1"]
NoteIn the sample suppose $$$a$$$ is $$$[5, 1, 4, 2, 3]$$$. So after asking the $$$[1..5]$$$ subsegment $$$4$$$ is second to max value, and it's position is $$$3$$$. After asking the $$$[4..5]$$$ subsegment $$$2$$$ is second to max value and it's position in the whole array is $$$4$$$.Note that there are other arrays $$$a$$$ that would produce the same interaction, and the answer for them might be different. Example output is given in purpose of understanding the interaction.
Java 8
standard input
[ "binary search", "interactive" ]
eb660c470760117dfd0b95acc10eee3b
The first line contains a single integer $$$n$$$ $$$(2 \leq n \leq 10^5)$$$ — the number of elements in the array.
1,900
null
standard output
PASSED
0656dd5fa58316a027434d6e87d864df
train_109.jsonl
1613658900
The only difference between the easy and the hard version is the limit to the number of queries.This is an interactive problem.There is an array $$$a$$$ of $$$n$$$ different numbers. In one query you can ask the position of the second maximum element in a subsegment $$$a[l..r]$$$. Find the position of the maximum element in the array in no more than 20 queries.A subsegment $$$a[l..r]$$$ is all the elements $$$a_l, a_{l + 1}, ..., a_r$$$. After asking this subsegment you will be given the position of the second maximum from this subsegment in the whole array.
256 megabytes
import java.util.Scanner; public class C1486 { public static void main(String[] args) { Scanner in = new Scanner(System.in); int N = in.nextInt(); System.out.println("? 1 " + N); System.out.flush(); int second = in.nextInt(); int low = -1; int high = -1; if (second != 1) { System.out.println("? 1 " + second); System.out.flush(); int answer = in.nextInt(); if (answer == second) { low = 1; high = second-1; } } if (second != N) { System.out.println("? " + second + " " + N); System.out.flush(); int answer = in.nextInt(); if (answer == second) { low = second+1; high = N; } } while (low != high) { int mid = (low + high + ((low < second) ? 1 : 0))/2; if (mid < second) { System.out.println("? " + mid + " " + second); } else { System.out.println("? " + second + " " + mid); } System.out.flush(); int answer = in.nextInt(); if (mid < second) { if (answer == second) { low = mid; } else { high = mid-1; } } else { if (answer == second) { high = mid; } else { low = mid+1; } } } System.out.println("! " + low); System.out.flush(); } }
Java
["5\n\n3\n\n4"]
1 second
["? 1 5\n\n? 4 5\n\n! 1"]
NoteIn the sample suppose $$$a$$$ is $$$[5, 1, 4, 2, 3]$$$. So after asking the $$$[1..5]$$$ subsegment $$$4$$$ is second to max value, and it's position is $$$3$$$. After asking the $$$[4..5]$$$ subsegment $$$2$$$ is second to max value and it's position in the whole array is $$$4$$$.Note that there are other arrays $$$a$$$ that would produce the same interaction, and the answer for them might be different. Example output is given in purpose of understanding the interaction.
Java 8
standard input
[ "binary search", "interactive" ]
eb660c470760117dfd0b95acc10eee3b
The first line contains a single integer $$$n$$$ $$$(2 \leq n \leq 10^5)$$$ — the number of elements in the array.
1,900
null
standard output