exec_outcome
stringclasses
1 value
code_uid
stringlengths
32
32
file_name
stringclasses
111 values
prob_desc_created_at
stringlengths
10
10
prob_desc_description
stringlengths
63
3.8k
prob_desc_memory_limit
stringclasses
18 values
source_code
stringlengths
117
65.5k
lang_cluster
stringclasses
1 value
prob_desc_sample_inputs
stringlengths
2
802
prob_desc_time_limit
stringclasses
27 values
prob_desc_sample_outputs
stringlengths
2
796
prob_desc_notes
stringlengths
4
3k
lang
stringclasses
5 values
prob_desc_input_from
stringclasses
3 values
tags
listlengths
0
11
src_uid
stringlengths
32
32
prob_desc_input_spec
stringlengths
28
2.37k
difficulty
int64
-1
3.5k
prob_desc_output_spec
stringlengths
17
1.47k
prob_desc_output_to
stringclasses
3 values
hidden_unit_tests
stringclasses
1 value
PASSED
1e7422c562f66ce201b05278747afb5b
train_109.jsonl
1613658900
The only difference between the easy and the hard version is the limit to the number of queries.This is an interactive problem.There is an array $$$a$$$ of $$$n$$$ different numbers. In one query you can ask the position of the second maximum element in a subsegment $$$a[l..r]$$$. Find the position of the maximum element in the array in no more than 40 queries.A subsegment $$$a[l..r]$$$ is all the elements $$$a_l, a_{l + 1}, ..., a_r$$$. After asking this subsegment you will be given the position of the second maximum from this subsegment in the whole array.
256 megabytes
//@author->.....future_me......// //..............Learning.........// /*Compete against yourself*/ import java.util.*; import java.io.*; import java.lang.*; import java.math.BigInteger; public class C { // >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> Code Starts <<<<<<<<<<<<<<<<<<<<<<<<<<<<< // static FastReader sc = new FastReader(); static PrintWriter out = new PrintWriter(System.out); public static void main(String[] args) throws Exception { try { // int t = sc.nextInt(); // while (t-- > 0) C.go(); out.flush(); } catch (Exception e) { return; } } static void go() { int n=sc.nextInt(); out.println("? "+1+" "+n); out.flush(); int pos=sc.nextInt(); int l=1,r=n+1; int ll=0; int rr=0; if(n==2) { if(pos==1) { out.println("!"+" "+ 2); out.flush(); }else if (pos==2){ out.println("!"+" "+ 1); out.flush(); } return; } while(r-l>1) { int mid=(r+l)/2; int x=ask(l,r-1); if(x<mid) { int xx=ask(l,mid-1); if(xx==x) { r=mid; }else { l=mid; } }else { int xx=ask(mid,r-1); if(xx==x) { l=mid; }else { r=mid; } } } out.println("! "+l); out.flush(); } static int ask(int l ,int r) { if(l==r) { return -1; } out.println("? "+l+" "+r); out.flush(); int x=sc.nextInt(); return x; } // >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> Code Ends <<<<<<<<<<<<<<<<<<<<<<<<<<<<< // static int mod = (int) 1e9 + 7; // Returns nCr % p using Fermat's // little theorem. static long fac[]; static long ncr(int n, int r, int p) { if (n < r) return 0; // Base case if (r == 0) return 1; // Fill factorial array so that we // can find all factorial of r, n // and n-r return (fac[n] * modInverse(fac[r], p) % p * modInverse(fac[n - r], p) % p) % p; } private static long modInverse(long l, int p) { return pow(l,p-2); } static void sort(long[] a) { ArrayList<Long> aa = new ArrayList<>(); for (long i : a) { aa.add(i); } Collections.sort(aa); for (int i = 0; i < a.length; i++) a[i] = aa.get(i); } static long pow(long x, long y) { long res = 1l; while (y != 0) { if (y % 2 == 1) { res = x * res % mod; } y /= 2; x = (x * x) % mod; } return res; } //>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> Fast IO <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< // static class FastReader { BufferedReader br; StringTokenizer st; public FastReader() { br = new BufferedReader(new InputStreamReader(System.in)); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } } } //use this for double quotes inside string // " \"asdf\""
Java
["5\n\n3\n\n4"]
1 second
["? 1 5\n\n? 4 5\n\n! 1"]
NoteIn the sample suppose $$$a$$$ is $$$[5, 1, 4, 2, 3]$$$. So after asking the $$$[1..5]$$$ subsegment $$$4$$$ is second to max value, and it's position is $$$3$$$. After asking the $$$[4..5]$$$ subsegment $$$2$$$ is second to max value and it's position in the whole array is $$$4$$$.Note that there are other arrays $$$a$$$ that would produce the same interaction, and the answer for them might be different. Example output is given in purpose of understanding the interaction.
Java 11
standard input
[ "binary search", "interactive" ]
b3e8fe76706ba17cb285c75459508334
The first line contains a single integer $$$n$$$ $$$(2 \leq n \leq 10^5)$$$ — the number of elements in the array.
1,600
null
standard output
PASSED
3e84dd4897e2ce5e7fc8e854a4d8108b
train_109.jsonl
1613658900
The only difference between the easy and the hard version is the limit to the number of queries.This is an interactive problem.There is an array $$$a$$$ of $$$n$$$ different numbers. In one query you can ask the position of the second maximum element in a subsegment $$$a[l..r]$$$. Find the position of the maximum element in the array in no more than 40 queries.A subsegment $$$a[l..r]$$$ is all the elements $$$a_l, a_{l + 1}, ..., a_r$$$. After asking this subsegment you will be given the position of the second maximum from this subsegment in the whole array.
256 megabytes
import java.io.OutputStream; import java.io.IOException; import java.io.InputStream; import java.io.PrintStream; import java.io.OutputStream; import java.io.PrintWriter; import java.io.BufferedWriter; import java.io.IOException; import java.io.InputStreamReader; import java.util.StringTokenizer; import java.io.Writer; import java.io.OutputStreamWriter; import java.io.BufferedReader; import java.io.InputStream; /** * Built using CHelper plug-in * Actual solution is at the top */ public class Main { public static void main(String[] args) { InputStream inputStream = System.in; OutputStream outputStream = System.out; InputReader in = new InputReader(inputStream); OutputWriter out = new OutputWriter(outputStream); C1GuessingTheGreatestEasyVersion solver = new C1GuessingTheGreatestEasyVersion(); solver.solve(1, in, out); out.close(); } static class C1GuessingTheGreatestEasyVersion { public void solve(int testNumber, InputReader in, OutputWriter out) { int n = in.nextInt(); int ans = 1; int lo = 1; int hi = n; while (lo + 1 < hi) { int mid = (lo + hi) / 2; System.out.println("? " + lo + " " + hi); int q1 = in.nextInt(); if (q1 <= mid) { System.out.println("? " + lo + " " + mid); int q2 = in.nextInt(); if (q1 == q2) { hi = mid; } else lo = mid + 1; } else { if (mid + 1 == hi) { hi = mid; continue; } System.out.println("? " + (mid + 1) + " " + hi); int q2 = in.nextInt(); if (q2 == q1) { lo = mid + 1; } else { hi = mid; } } } if (lo == hi) { ans = lo; } else { System.out.println("? " + lo + " " + hi); int q = in.nextInt(); if (q == lo) ans = hi; else ans = lo; } System.out.println("! " + ans); } } static class OutputWriter { private final PrintWriter writer; public OutputWriter(OutputStream outputStream) { writer = new PrintWriter(new BufferedWriter(new OutputStreamWriter(outputStream))); } public OutputWriter(Writer writer) { this.writer = new PrintWriter(writer); } public void close() { writer.close(); } } static class InputReader { BufferedReader reader; StringTokenizer tokenizer; public InputReader(InputStream stream) { reader = new BufferedReader(new InputStreamReader(stream), 32768); tokenizer = null; } public String next() { while (tokenizer == null || !tokenizer.hasMoreTokens()) { try { tokenizer = new StringTokenizer(reader.readLine()); } catch (IOException e) { throw new RuntimeException(e); } } return tokenizer.nextToken(); } public int nextInt() { return Integer.parseInt(next()); } } }
Java
["5\n\n3\n\n4"]
1 second
["? 1 5\n\n? 4 5\n\n! 1"]
NoteIn the sample suppose $$$a$$$ is $$$[5, 1, 4, 2, 3]$$$. So after asking the $$$[1..5]$$$ subsegment $$$4$$$ is second to max value, and it's position is $$$3$$$. After asking the $$$[4..5]$$$ subsegment $$$2$$$ is second to max value and it's position in the whole array is $$$4$$$.Note that there are other arrays $$$a$$$ that would produce the same interaction, and the answer for them might be different. Example output is given in purpose of understanding the interaction.
Java 11
standard input
[ "binary search", "interactive" ]
b3e8fe76706ba17cb285c75459508334
The first line contains a single integer $$$n$$$ $$$(2 \leq n \leq 10^5)$$$ — the number of elements in the array.
1,600
null
standard output
PASSED
b80952d1eb47fbac8b2abcc1ba04333a
train_109.jsonl
1613658900
The only difference between the easy and the hard version is the limit to the number of queries.This is an interactive problem.There is an array $$$a$$$ of $$$n$$$ different numbers. In one query you can ask the position of the second maximum element in a subsegment $$$a[l..r]$$$. Find the position of the maximum element in the array in no more than 40 queries.A subsegment $$$a[l..r]$$$ is all the elements $$$a_l, a_{l + 1}, ..., a_r$$$. After asking this subsegment you will be given the position of the second maximum from this subsegment in the whole array.
256 megabytes
import java.util.*; import java.lang.*; import java.io.*; public class GuessTheGreatest { BufferedReader input; BufferedWriter output; StringTokenizer st; int getElem(int start, int end) throws IOException { output.write("? "+start+" "+end+"\n"); output.flush(); return Integer.parseInt(input.readLine()); } int binarySearch(int start, int end, int last) throws IOException { if(start==end){ return start; } if(last==-1) last = getElem(start, end); if(start+1==end){ if(last ==end) return start; else return end; } int mid = (start+end)/2; if(last <=mid){ int leftSecondPos = getElem(start, mid); if(leftSecondPos== last) return binarySearch(start, mid, leftSecondPos); return binarySearch(mid+1, end, -1); }else { int rightSecondPos = getElem(mid, end); if(rightSecondPos== last) return binarySearch(mid, end, rightSecondPos); return binarySearch(start, mid-1, -1); } } // My Solution void solve() throws IOException { int n = Integer.parseInt(input.readLine()); int ans = binarySearch(1, n, -1); output.write("! "+ans+"\n"); output.flush(); } // Some basic functions int min(int...i){ int min = Integer.MAX_VALUE; for (int value : i) min = Math.min(min, value); return min; } int max(int...i){ int max = Integer.MIN_VALUE; for (int value : i) max = Math.max(max, value); return max; } // Printing stuff void print(int... i) throws IOException { for (int value : i) output.write(value + " "); } void print(long... l) throws IOException { for (long value : l) output.write(value + " "); } void print(String... s) throws IOException { for (String value : s) output.write(value); } void nextLine() throws IOException { output.write("\n"); } // Taking Inputs int[][] getIntMat(int n, int m) throws IOException { int[][] mat = new int[n][m]; for (int i = 0; i < n; i++) for (int j = 0; j < m; j++) mat[i][j] = getInt(); return mat; } char[][] getCharMat(int n, int m) throws IOException { char[][] mat = new char[n][m]; for (int i = 0; i < n; i++) { String s = input.readLine(); for (int j = 0; j < m; j++) mat[i][j] = s.charAt(j); } return mat; } int getInt() throws IOException { if(st ==null || !st.hasMoreTokens()) st = new StringTokenizer(input.readLine()); return Integer.parseInt(st.nextToken()); } int[] getInts(int n) throws IOException { int[] a = new int[n]; for (int i = 0; i < n; i++) a[i] = getInt(); return a; } long getLong() throws IOException { if(st==null || !st.hasMoreTokens()) st = new StringTokenizer(input.readLine()); return Long.parseLong(st.nextToken()); } long[] getLongs(int n) throws IOException { long[] a = new long[n]; for (int i = 0; i < n; i++) a[i] = getLong(); return a; } // Checks whether the code is running on OnlineJudge or LocalSystem boolean isOnlineJudge() { if (System.getProperty("ONLINE_JUDGE") != null) return true; try { return System.getProperty("LOCAL")==null; } catch (Exception e) { return true; } } // Handling CodeExecution public static void main(String[] args) throws Exception { new GuessTheGreatest().run(); } void run() throws IOException { // Defining Input Streams if (isOnlineJudge()) { input = new BufferedReader(new InputStreamReader(System.in)); output = new BufferedWriter(new OutputStreamWriter(System.out)); } else { input = new BufferedReader(new FileReader("input.txt")); output = new BufferedWriter(new FileWriter("output.txt")); } // Running Logic solve(); output.flush(); // Run example test cases if (!isOnlineJudge()) { BufferedReader output = new BufferedReader(new FileReader("output.txt")); BufferedReader answer = new BufferedReader(new FileReader("answer.txt")); StringBuilder outFile = new StringBuilder(); StringBuilder ansFile = new StringBuilder(); String temp; while ((temp = output.readLine()) != null) outFile.append(temp.trim()); while ((temp = answer.readLine()) != null) ansFile.append(temp.trim()); if (outFile.toString().equals(ansFile.toString())) System.out.println("Test Cases Passed!!!"); else System.out.println("Failed..."); } } }
Java
["5\n\n3\n\n4"]
1 second
["? 1 5\n\n? 4 5\n\n! 1"]
NoteIn the sample suppose $$$a$$$ is $$$[5, 1, 4, 2, 3]$$$. So after asking the $$$[1..5]$$$ subsegment $$$4$$$ is second to max value, and it's position is $$$3$$$. After asking the $$$[4..5]$$$ subsegment $$$2$$$ is second to max value and it's position in the whole array is $$$4$$$.Note that there are other arrays $$$a$$$ that would produce the same interaction, and the answer for them might be different. Example output is given in purpose of understanding the interaction.
Java 11
standard input
[ "binary search", "interactive" ]
b3e8fe76706ba17cb285c75459508334
The first line contains a single integer $$$n$$$ $$$(2 \leq n \leq 10^5)$$$ — the number of elements in the array.
1,600
null
standard output
PASSED
7bce4c11301a816ff1c0a853ee3f9126
train_109.jsonl
1613658900
The only difference between the easy and the hard version is the limit to the number of queries.This is an interactive problem.There is an array $$$a$$$ of $$$n$$$ different numbers. In one query you can ask the position of the second maximum element in a subsegment $$$a[l..r]$$$. Find the position of the maximum element in the array in no more than 40 queries.A subsegment $$$a[l..r]$$$ is all the elements $$$a_l, a_{l + 1}, ..., a_r$$$. After asking this subsegment you will be given the position of the second maximum from this subsegment in the whole array.
256 megabytes
import java.util.*; import java.lang.*; import java.io.*; public class GuessTheGreatest { BufferedReader input; BufferedWriter output; StringTokenizer st; int getElem(int start, int end) throws IOException { output.write("? "+start+" "+end+"\n"); output.flush(); return Integer.parseInt(input.readLine()); } int binarySearch(int start, int end, int last) throws IOException { if(start==end) return start; int secondPos = last; if(last==-1) secondPos = getElem(start, end); if(start+1==end){ if(secondPos==end) return start; else return end; } int mid = (start+end)/2; if(secondPos<=mid){ int leftSecondPos = getElem(start, mid); if(leftSecondPos==secondPos) return binarySearch(start, mid, leftSecondPos); return binarySearch(mid+1, end, -1); }else { int rightSecondPos = getElem(mid, end); if(rightSecondPos==secondPos) return binarySearch(mid, end, rightSecondPos); return binarySearch(start, mid, -1); } } // My Solution void solve() throws IOException { int n = Integer.parseInt(input.readLine()); int ans = binarySearch(1, n, -1); output.write("! "+ans+"\n"); output.flush(); } // Some basic functions int min(int...i){ int min = Integer.MAX_VALUE; for (int value : i) min = Math.min(min, value); return min; } int max(int...i){ int max = Integer.MIN_VALUE; for (int value : i) max = Math.max(max, value); return max; } // Printing stuff void print(int... i) throws IOException { for (int value : i) output.write(value + " "); } void print(long... l) throws IOException { for (long value : l) output.write(value + " "); } void print(String... s) throws IOException { for (String value : s) output.write(value); } void nextLine() throws IOException { output.write("\n"); } // Taking Inputs int[][] getIntMat(int n, int m) throws IOException { int[][] mat = new int[n][m]; for (int i = 0; i < n; i++) for (int j = 0; j < m; j++) mat[i][j] = getInt(); return mat; } char[][] getCharMat(int n, int m) throws IOException { char[][] mat = new char[n][m]; for (int i = 0; i < n; i++) { String s = input.readLine(); for (int j = 0; j < m; j++) mat[i][j] = s.charAt(j); } return mat; } int getInt() throws IOException { if(st ==null || !st.hasMoreTokens()) st = new StringTokenizer(input.readLine()); return Integer.parseInt(st.nextToken()); } int[] getInts(int n) throws IOException { int[] a = new int[n]; for (int i = 0; i < n; i++) a[i] = getInt(); return a; } long getLong() throws IOException { if(st==null || !st.hasMoreTokens()) st = new StringTokenizer(input.readLine()); return Long.parseLong(st.nextToken()); } long[] getLongs(int n) throws IOException { long[] a = new long[n]; for (int i = 0; i < n; i++) a[i] = getLong(); return a; } // Checks whether the code is running on OnlineJudge or LocalSystem boolean isOnlineJudge() { if (System.getProperty("ONLINE_JUDGE") != null) return true; try { return System.getProperty("LOCAL")==null; } catch (Exception e) { return true; } } // Handling CodeExecution public static void main(String[] args) throws Exception { new GuessTheGreatest().run(); } void run() throws IOException { // Defining Input Streams if (isOnlineJudge()) { input = new BufferedReader(new InputStreamReader(System.in)); output = new BufferedWriter(new OutputStreamWriter(System.out)); } else { input = new BufferedReader(new FileReader("input.txt")); output = new BufferedWriter(new FileWriter("output.txt")); } // Running Logic solve(); output.flush(); // Run example test cases if (!isOnlineJudge()) { BufferedReader output = new BufferedReader(new FileReader("output.txt")); BufferedReader answer = new BufferedReader(new FileReader("answer.txt")); StringBuilder outFile = new StringBuilder(); StringBuilder ansFile = new StringBuilder(); String temp; while ((temp = output.readLine()) != null) outFile.append(temp.trim()); while ((temp = answer.readLine()) != null) ansFile.append(temp.trim()); if (outFile.toString().equals(ansFile.toString())) System.out.println("Test Cases Passed!!!"); else System.out.println("Failed..."); } } }
Java
["5\n\n3\n\n4"]
1 second
["? 1 5\n\n? 4 5\n\n! 1"]
NoteIn the sample suppose $$$a$$$ is $$$[5, 1, 4, 2, 3]$$$. So after asking the $$$[1..5]$$$ subsegment $$$4$$$ is second to max value, and it's position is $$$3$$$. After asking the $$$[4..5]$$$ subsegment $$$2$$$ is second to max value and it's position in the whole array is $$$4$$$.Note that there are other arrays $$$a$$$ that would produce the same interaction, and the answer for them might be different. Example output is given in purpose of understanding the interaction.
Java 11
standard input
[ "binary search", "interactive" ]
b3e8fe76706ba17cb285c75459508334
The first line contains a single integer $$$n$$$ $$$(2 \leq n \leq 10^5)$$$ — the number of elements in the array.
1,600
null
standard output
PASSED
8ba304a5a52617c3919a16eeb6c1128f
train_109.jsonl
1613658900
The only difference between the easy and the hard version is the limit to the number of queries.This is an interactive problem.There is an array $$$a$$$ of $$$n$$$ different numbers. In one query you can ask the position of the second maximum element in a subsegment $$$a[l..r]$$$. Find the position of the maximum element in the array in no more than 40 queries.A subsegment $$$a[l..r]$$$ is all the elements $$$a_l, a_{l + 1}, ..., a_r$$$. After asking this subsegment you will be given the position of the second maximum from this subsegment in the whole array.
256 megabytes
/*input 5 3 4 */ import java.util.*; import java.lang.*; import java.io.*; public class Main { static PrintWriter out; static int MOD = 1000000007; static FastReader scan; /*-------- I/O using short named function ---------*/ public static String ns(){return scan.next();} public static int ni(){return scan.nextInt();} public static long nl(){return scan.nextLong();} public static double nd(){return scan.nextDouble();} public static String nln(){return scan.nextLine();} public static void p(Object o){out.print(o);} public static void ps(Object o){out.print(o + " ");} public static void pn(Object o){out.println(o);} /*-------- for output of an array ---------------------*/ static void iPA(int arr []){ StringBuilder output = new StringBuilder(); for(int i=0; i<arr.length; i++)output.append(arr[i] + " ");out.println(output); } static void lPA(long arr []){ StringBuilder output = new StringBuilder(); for(int i=0; i<arr.length; i++)output.append(arr[i] + " ");out.println(output); } static void sPA(String arr []){ StringBuilder output = new StringBuilder(); for(int i=0; i<arr.length; i++)output.append(arr[i] + " ");out.println(output); } static void dPA(double arr []){ StringBuilder output = new StringBuilder(); for(int i=0; i<arr.length; i++)output.append(arr[i] + " ");out.println(output); } /*-------------- for input in an array ---------------------*/ static void iIA(int arr[]){ for(int i=0; i<arr.length; i++)arr[i] = ni(); } static void lIA(long arr[]){ for(int i=0; i<arr.length; i++)arr[i] = nl(); } static void sIA(String arr[]){ for(int i=0; i<arr.length; i++)arr[i] = ns(); } static void dIA(double arr[]){ for(int i=0; i<arr.length; i++)arr[i] = nd(); } /*------------ for taking input faster ----------------*/ static class FastReader { BufferedReader br; StringTokenizer st; public FastReader() { br = new BufferedReader(new InputStreamReader(System.in)); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } } // Method to check if x is power of 2 static boolean isPowerOfTwo (int x) { return x!=0 && ((x&(x-1)) == 0);} //Method to return lcm of two numbers static int gcd(int a, int b){return a==0?b:gcd(b % a, a); } //Method to count digit of a number static int countDigit(long n){return (int)Math.floor(Math.log10(n) + 1);} //Method for sorting static void ruffle_sort(int[] a) { //shandom_ruffle Random r=new Random(); int n=a.length; for (int i=0; i<n; i++) { int oi=r.nextInt(n); int temp=a[i]; a[i]=a[oi]; a[oi]=temp; } //sort Arrays.sort(a); } //Method for checking if a number is prime or not static boolean isPrime(int n) { if (n <= 1) return false; if (n <= 3) return true; if (n % 2 == 0 || n % 3 == 0) return false; for (int i = 5; i * i <= n; i = i + 6) if (n % i == 0 || n % (i + 2) == 0) return false; return true; } public static void main (String[] args) throws java.lang.Exception { OutputStream outputStream =System.out; out =new PrintWriter(outputStream); scan =new FastReader(); //for fast output sometimes StringBuilder sb = new StringBuilder(); int l=1, r= ni(), ans=0; while (l<r) { int mid = (l + r)/2; if(r -l ==1){ int temp2 = askQuery(l, r); if(temp2 == l) ans = r; else ans = l; break; } int smax = askQuery(l, r); if(smax>=mid){ int temp = askQuery(mid, r); if(temp == smax){ l = mid; }else{ r = mid; } }else{ int temp = askQuery(l, mid); if(temp == smax){ r = mid; }else{ l = mid; } } } pn("! " + ans); out.flush(); out.close(); } static int askQuery(int l, int r){ pn("? " + l + " " + r); out.flush(); int n = ni(); return n; } }
Java
["5\n\n3\n\n4"]
1 second
["? 1 5\n\n? 4 5\n\n! 1"]
NoteIn the sample suppose $$$a$$$ is $$$[5, 1, 4, 2, 3]$$$. So after asking the $$$[1..5]$$$ subsegment $$$4$$$ is second to max value, and it's position is $$$3$$$. After asking the $$$[4..5]$$$ subsegment $$$2$$$ is second to max value and it's position in the whole array is $$$4$$$.Note that there are other arrays $$$a$$$ that would produce the same interaction, and the answer for them might be different. Example output is given in purpose of understanding the interaction.
Java 11
standard input
[ "binary search", "interactive" ]
b3e8fe76706ba17cb285c75459508334
The first line contains a single integer $$$n$$$ $$$(2 \leq n \leq 10^5)$$$ — the number of elements in the array.
1,600
null
standard output
PASSED
58fe4feb91a4f75e6b6a5512daa4b838
train_109.jsonl
1613658900
The only difference between the easy and the hard version is the limit to the number of queries.This is an interactive problem.There is an array $$$a$$$ of $$$n$$$ different numbers. In one query you can ask the position of the second maximum element in a subsegment $$$a[l..r]$$$. Find the position of the maximum element in the array in no more than 40 queries.A subsegment $$$a[l..r]$$$ is all the elements $$$a_l, a_{l + 1}, ..., a_r$$$. After asking this subsegment you will be given the position of the second maximum from this subsegment in the whole array.
256 megabytes
/*input 5 3 4 */ import java.util.*; import java.lang.*; import java.io.*; public class Main { static PrintWriter out; static int MOD = 1000000007; static FastReader scan; /*-------- I/O using short named function ---------*/ public static String ns(){return scan.next();} public static int ni(){return scan.nextInt();} public static long nl(){return scan.nextLong();} public static double nd(){return scan.nextDouble();} public static String nln(){return scan.nextLine();} public static void p(Object o){out.print(o);} public static void ps(Object o){out.print(o + " ");} public static void pn(Object o){out.println(o);} /*-------- for output of an array ---------------------*/ static void iPA(int arr []){ StringBuilder output = new StringBuilder(); for(int i=0; i<arr.length; i++)output.append(arr[i] + " ");out.println(output); } static void lPA(long arr []){ StringBuilder output = new StringBuilder(); for(int i=0; i<arr.length; i++)output.append(arr[i] + " ");out.println(output); } static void sPA(String arr []){ StringBuilder output = new StringBuilder(); for(int i=0; i<arr.length; i++)output.append(arr[i] + " ");out.println(output); } static void dPA(double arr []){ StringBuilder output = new StringBuilder(); for(int i=0; i<arr.length; i++)output.append(arr[i] + " ");out.println(output); } /*-------------- for input in an array ---------------------*/ static void iIA(int arr[]){ for(int i=0; i<arr.length; i++)arr[i] = ni(); } static void lIA(long arr[]){ for(int i=0; i<arr.length; i++)arr[i] = nl(); } static void sIA(String arr[]){ for(int i=0; i<arr.length; i++)arr[i] = ns(); } static void dIA(double arr[]){ for(int i=0; i<arr.length; i++)arr[i] = nd(); } /*------------ for taking input faster ----------------*/ static class FastReader { BufferedReader br; StringTokenizer st; public FastReader() { br = new BufferedReader(new InputStreamReader(System.in)); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } } // Method to check if x is power of 2 static boolean isPowerOfTwo (int x) { return x!=0 && ((x&(x-1)) == 0);} //Method to return lcm of two numbers static int gcd(int a, int b){return a==0?b:gcd(b % a, a); } //Method to count digit of a number static int countDigit(long n){return (int)Math.floor(Math.log10(n) + 1);} //Method for sorting static void ruffle_sort(int[] a) { //shandom_ruffle Random r=new Random(); int n=a.length; for (int i=0; i<n; i++) { int oi=r.nextInt(n); int temp=a[i]; a[i]=a[oi]; a[oi]=temp; } //sort Arrays.sort(a); } //Method for checking if a number is prime or not static boolean isPrime(int n) { if (n <= 1) return false; if (n <= 3) return true; if (n % 2 == 0 || n % 3 == 0) return false; for (int i = 5; i * i <= n; i = i + 6) if (n % i == 0 || n % (i + 2) == 0) return false; return true; } public static void main (String[] args) throws java.lang.Exception { OutputStream outputStream =System.out; out =new PrintWriter(outputStream); scan =new FastReader(); //for fast output sometimes StringBuilder sb = new StringBuilder(); int l=1, r= ni(), ans=0; while (l<r) { int mid = (l + r)/2; if(r -l ==1){ int temp2 = askQuery(l, r); if(temp2 == l) ans = r; else ans = l; break; } int smax = askQuery(l, r); if(smax>=mid){ int temp = askQuery(mid, r); if(temp == smax){ l = mid; }else{ r = mid-1; } }else{ int temp = askQuery(l, mid); if(temp == smax){ r = mid; }else{ l = mid+1; } } } if(ans==0) pn("! " + l); else pn("! " + ans); out.flush(); out.close(); } static int askQuery(int l, int r){ pn("? " + l + " " + r); out.flush(); int n = ni(); return n; } }
Java
["5\n\n3\n\n4"]
1 second
["? 1 5\n\n? 4 5\n\n! 1"]
NoteIn the sample suppose $$$a$$$ is $$$[5, 1, 4, 2, 3]$$$. So after asking the $$$[1..5]$$$ subsegment $$$4$$$ is second to max value, and it's position is $$$3$$$. After asking the $$$[4..5]$$$ subsegment $$$2$$$ is second to max value and it's position in the whole array is $$$4$$$.Note that there are other arrays $$$a$$$ that would produce the same interaction, and the answer for them might be different. Example output is given in purpose of understanding the interaction.
Java 11
standard input
[ "binary search", "interactive" ]
b3e8fe76706ba17cb285c75459508334
The first line contains a single integer $$$n$$$ $$$(2 \leq n \leq 10^5)$$$ — the number of elements in the array.
1,600
null
standard output
PASSED
ec56b7a08b823d88278aa757164d69e5
train_109.jsonl
1613658900
The only difference between the easy and the hard version is the limit to the number of queries.This is an interactive problem.There is an array $$$a$$$ of $$$n$$$ different numbers. In one query you can ask the position of the second maximum element in a subsegment $$$a[l..r]$$$. Find the position of the maximum element in the array in no more than 40 queries.A subsegment $$$a[l..r]$$$ is all the elements $$$a_l, a_{l + 1}, ..., a_r$$$. After asking this subsegment you will be given the position of the second maximum from this subsegment in the whole array.
256 megabytes
import java.io.*; import java.util.*; import java.math.*; public class Solution{ public static void main(String[] args) { TaskA solver = new TaskA(); // int t = in.nextInt(); // for (int i = 1; i <= t ; i++) { // solver.solve(i, in, out); // } solver.solve(1, in, out); out.flush(); out.close(); } static class TaskA { public void solve(int testNumber, InputReader in, PrintWriter out) { int n= in.nextInt(); int l=1;int r=n; while(l<r) { int mid=(l+r)/2; if(mid==l) { int x=query(l,r); if(x==l) { System.out.println("! "+r);return; } else { System.out.println("! "+l);return; } } int x=query(l,r); if(x<mid) { if(mid==l+1){ l=mid; continue; } int y=query(l,mid-1); if(x==y) { r=mid-1; } else { l=mid; } } else { int y=query(mid,r); if(x==y) { l=mid; } else { r=mid; } } } } } static int query(int l,int r) { System.out.println("? "+l+" "+r); System.out.print ("\n"); int x=in.nextInt(); return x; } static boolean check(Pair[]arr,int mid,int n) { int c=0; for(int i=0;i<n;i++) { if(mid-1-arr[i].first<=c&&c<=arr[i].second) { c++; } } return c>=mid; } static long sum(int[]arr) { long s=0; for(int x:arr) { s+=x; } return s; } static long sum(long[]arr) { long s=0; for(long x:arr) { s+=x; } return s; } static int gcd(int a, int b) { if (b == 0) return a; return gcd(b, a % b); } static void sort(int[] a) { ArrayList<Integer> q = new ArrayList<>(); for (int i : a) q.add(i); Collections.sort(q); for (int i = 0; i < a.length; i++) a[i] = q.get(i); } static void sort(long[] a) { ArrayList<Long> q = new ArrayList<>(); for (long i : a) q.add(i); Collections.sort(q); for (int i = 0; i < a.length; i++) a[i] = q.get(i); } static void println(int[][]arr) { for(int i=0;i<arr.length;i++) { for(int j=0;j<arr[0].length;j++) { print(arr[i][j]+" "); } print("\n"); } } static void println(long[][]arr) { for(int i=0;i<arr.length;i++) { for(int j=0;j<arr[0].length;j++) { print(arr[i][j]+" "); } print("\n"); } } static void println(int[]arr){ for(int i=0;i<arr.length;i++) { print(arr[i]+" "); } print("\n"); } static void println(long[]arr){ for(int i=0;i<arr.length;i++) { print(arr[i]+" "); } print("\n"); } static long[]input(int n){ long[]arr=new long[n]; for(int i=0;i<n;i++) { arr[i]=in.nextInt(); } return arr; } static long[]input(){ long n= in.nextInt(); long[]arr=new long[(int)n]; for(int i=0;i<n;i++) { arr[i]=in.nextLong(); } return arr; } //////////////////////////////////////////////////////// static class Pair { long first; long second; Pair(long x, long y) { this.first = x; this.second = y; } } static void sortS(Pair arr[]) { Arrays.sort(arr, new Comparator<Pair>() { @Override public int compare(Pair p1, Pair p2) { return (int)(p1.second - p2.second); } }); } static void sortF(Pair arr[]) { Arrays.sort(arr, new Comparator<Pair>() { @Override public int compare(Pair p1, Pair p2) { return (int)(p1.first - p2.first); } }); } ///////////////////////////////////////////////////////////// static InputStream inputStream = System.in; static OutputStream outputStream = System.out; static InputReader in = new InputReader(inputStream); static PrintWriter out = new PrintWriter(outputStream); static void println(long c) { out.println(c); } static void print(long c) { out.print(c); } static void print(int c) { out.print(c); } static void println(int x) { out.println(x); } static void print(String s) { out.print(s); } static void println(String s) { out.println(s); } static void println(boolean b) { out.println(b); } static class InputReader { public BufferedReader reader; public StringTokenizer tokenizer; public InputReader(InputStream stream) { reader = new BufferedReader(new InputStreamReader(stream), 32768); tokenizer = null; } public String next() { while (tokenizer == null || !tokenizer.hasMoreTokens()) { try { tokenizer = new StringTokenizer(reader.readLine()); } catch (IOException e) { throw new RuntimeException(e); } } return tokenizer.nextToken(); } public int nextInt() { return Integer.parseInt(next()); } public long nextLong() { return Long.parseLong(next()); } } }
Java
["5\n\n3\n\n4"]
1 second
["? 1 5\n\n? 4 5\n\n! 1"]
NoteIn the sample suppose $$$a$$$ is $$$[5, 1, 4, 2, 3]$$$. So after asking the $$$[1..5]$$$ subsegment $$$4$$$ is second to max value, and it's position is $$$3$$$. After asking the $$$[4..5]$$$ subsegment $$$2$$$ is second to max value and it's position in the whole array is $$$4$$$.Note that there are other arrays $$$a$$$ that would produce the same interaction, and the answer for them might be different. Example output is given in purpose of understanding the interaction.
Java 11
standard input
[ "binary search", "interactive" ]
b3e8fe76706ba17cb285c75459508334
The first line contains a single integer $$$n$$$ $$$(2 \leq n \leq 10^5)$$$ — the number of elements in the array.
1,600
null
standard output
PASSED
fb515ec9cfe58323bf31268989b5385f
train_109.jsonl
1613658900
The only difference between the easy and the hard version is the limit to the number of queries.This is an interactive problem.There is an array $$$a$$$ of $$$n$$$ different numbers. In one query you can ask the position of the second maximum element in a subsegment $$$a[l..r]$$$. Find the position of the maximum element in the array in no more than 40 queries.A subsegment $$$a[l..r]$$$ is all the elements $$$a_l, a_{l + 1}, ..., a_r$$$. After asking this subsegment you will be given the position of the second maximum from this subsegment in the whole array.
256 megabytes
import java.io.*; import java.util.*; import java.math.*; public class Solution{ public static void main(String[] args) { TaskA solver = new TaskA(); // int t = in.nextInt(); // for (int i = 1; i <= t ; i++) { // solver.solve(i, in, out); // } solver.solve(1, in, out); out.flush(); out.close(); } static class TaskA { public void solve(int testNumber, InputReader in, PrintWriter out) { int n= in.nextInt(); int l=0;int r=n; while(r-l>1) { int m=(l+r)/2; int x=query(l,r-1); if(x<m) { if(query(l,m-1)==x) { r=m; } else { l=m; } } else { if(query(m,r-1)==x) { l=m; } else { r=m; } } } System.out.println("! "+r); System.out.print("\n"); System.out.flush(); } } static int query(int l,int r) { if(l>=r) { return -1; } System.out.println("? "+(l+1)+" "+(r+1)); System.out.print ("\n"); int x=in.nextInt()-1; return x; } static boolean check(Pair[]arr,int mid,int n) { int c=0; for(int i=0;i<n;i++) { if(mid-1-arr[i].first<=c&&c<=arr[i].second) { c++; } } return c>=mid; } static long sum(int[]arr) { long s=0; for(int x:arr) { s+=x; } return s; } static long sum(long[]arr) { long s=0; for(long x:arr) { s+=x; } return s; } static int gcd(int a, int b) { if (b == 0) return a; return gcd(b, a % b); } static void sort(int[] a) { ArrayList<Integer> q = new ArrayList<>(); for (int i : a) q.add(i); Collections.sort(q); for (int i = 0; i < a.length; i++) a[i] = q.get(i); } static void sort(long[] a) { ArrayList<Long> q = new ArrayList<>(); for (long i : a) q.add(i); Collections.sort(q); for (int i = 0; i < a.length; i++) a[i] = q.get(i); } static void println(int[][]arr) { for(int i=0;i<arr.length;i++) { for(int j=0;j<arr[0].length;j++) { print(arr[i][j]+" "); } print("\n"); } } static void println(long[][]arr) { for(int i=0;i<arr.length;i++) { for(int j=0;j<arr[0].length;j++) { print(arr[i][j]+" "); } print("\n"); } } static void println(int[]arr){ for(int i=0;i<arr.length;i++) { print(arr[i]+" "); } print("\n"); } static void println(long[]arr){ for(int i=0;i<arr.length;i++) { print(arr[i]+" "); } print("\n"); } static long[]input(int n){ long[]arr=new long[n]; for(int i=0;i<n;i++) { arr[i]=in.nextInt(); } return arr; } static long[]input(){ long n= in.nextInt(); long[]arr=new long[(int)n]; for(int i=0;i<n;i++) { arr[i]=in.nextLong(); } return arr; } //////////////////////////////////////////////////////// static class Pair { long first; long second; Pair(long x, long y) { this.first = x; this.second = y; } } static void sortS(Pair arr[]) { Arrays.sort(arr, new Comparator<Pair>() { @Override public int compare(Pair p1, Pair p2) { return (int)(p1.second - p2.second); } }); } static void sortF(Pair arr[]) { Arrays.sort(arr, new Comparator<Pair>() { @Override public int compare(Pair p1, Pair p2) { return (int)(p1.first - p2.first); } }); } ///////////////////////////////////////////////////////////// static InputStream inputStream = System.in; static OutputStream outputStream = System.out; static InputReader in = new InputReader(inputStream); static PrintWriter out = new PrintWriter(outputStream); static void println(long c) { out.println(c); } static void print(long c) { out.print(c); } static void print(int c) { out.print(c); } static void println(int x) { out.println(x); } static void print(String s) { out.print(s); } static void println(String s) { out.println(s); } static void println(boolean b) { out.println(b); } static class InputReader { public BufferedReader reader; public StringTokenizer tokenizer; public InputReader(InputStream stream) { reader = new BufferedReader(new InputStreamReader(stream), 32768); tokenizer = null; } public String next() { while (tokenizer == null || !tokenizer.hasMoreTokens()) { try { tokenizer = new StringTokenizer(reader.readLine()); } catch (IOException e) { throw new RuntimeException(e); } } return tokenizer.nextToken(); } public int nextInt() { return Integer.parseInt(next()); } public long nextLong() { return Long.parseLong(next()); } } }
Java
["5\n\n3\n\n4"]
1 second
["? 1 5\n\n? 4 5\n\n! 1"]
NoteIn the sample suppose $$$a$$$ is $$$[5, 1, 4, 2, 3]$$$. So after asking the $$$[1..5]$$$ subsegment $$$4$$$ is second to max value, and it's position is $$$3$$$. After asking the $$$[4..5]$$$ subsegment $$$2$$$ is second to max value and it's position in the whole array is $$$4$$$.Note that there are other arrays $$$a$$$ that would produce the same interaction, and the answer for them might be different. Example output is given in purpose of understanding the interaction.
Java 11
standard input
[ "binary search", "interactive" ]
b3e8fe76706ba17cb285c75459508334
The first line contains a single integer $$$n$$$ $$$(2 \leq n \leq 10^5)$$$ — the number of elements in the array.
1,600
null
standard output
PASSED
5134e3ceef40eefdbad9a761c608ed10
train_109.jsonl
1613658900
The only difference between the easy and the hard version is the limit to the number of queries.This is an interactive problem.There is an array $$$a$$$ of $$$n$$$ different numbers. In one query you can ask the position of the second maximum element in a subsegment $$$a[l..r]$$$. Find the position of the maximum element in the array in no more than 40 queries.A subsegment $$$a[l..r]$$$ is all the elements $$$a_l, a_{l + 1}, ..., a_r$$$. After asking this subsegment you will be given the position of the second maximum from this subsegment in the whole array.
256 megabytes
import java.util.*; import java.io.*; public class Main { static BufferedReader rd = new BufferedReader(new InputStreamReader(System.in)); static BufferedWriter wr = new BufferedWriter(new OutputStreamWriter(System.out)); static StringTokenizer tok; public static void main(String[] args) throws Exception { solution(); } public static void solution() throws Exception { // arr = new int[]{9,1,2,3,4,10,5,6,7,8}; // int n = arr.length; int n = Integer.parseInt(rd.readLine()); int res = sol_rec(1,n); System.out.println("! "+res); } public static int sol_rec(int left, int right) throws Exception { int Mid = sol_query(left,right); int fMid = -1, fLeft = left, fRight = Mid-1; // 첫번째로 중간값을 찾는다. if(Mid > left) fMid = sol_query(left,Mid); // 찾은 중간값이 맨 왼쪽값이 아니라면, 왼쪽값중에 최댓값이 있는지 탐색한다. while(fMid == Mid) { // 최댓값이 있는경우 왼쪽값 내부로 탐색한다. int gLeft = fLeft; fLeft = (fLeft + fRight)/2; // 이진탐색을 위하여 기준값을 절반으로 나눈다. fMid = sol_query(fLeft, Mid); // 해당 절반값에 최댓값이 존재하는지 확인한다. if(fMid != Mid) { // 절반값에 없다면 절반값 바깥쪽에 있는 것이므로 바깥쪽의 재차 절반체크를 위해 값을 조정한다. fRight = fLeft-1; fLeft = gLeft; fMid = Mid; } if(fRight == fLeft) return fLeft; else if (fRight - fLeft <= 1) return sol_res2(fLeft,fRight); // 값이 줄어들어서 특정할 수 있게되면 출력한다. } fLeft = Mid+1; fRight = right; while(true) { int gRight = fRight; fRight = (fLeft+fRight)/2; fMid = sol_query(Mid, fRight); if(fMid != Mid) { fLeft = fRight+1; fRight = gRight; fMid = Mid; } if(fRight == fLeft) return fLeft; else if(fRight - fLeft <= 1) return sol_res2(fLeft,fRight); } } public static int sol_query(int left, int right) throws Exception { System.out.println("? "+left +" "+right); System.out.flush(); return Integer.parseInt(rd.readLine()); // System.out.println(left+" "+right); // int[] copy = new int[right-left+1]; // int copc = 0; // for(int i=left-1;i<right;i++) copy[copc++] = arr[i]; // Arrays.sort(copy); // int sec = copy[copy.length-2]; // for(int i=left-1;i<right;i++) { // if( sec == arr[i]) return i+1; // } // return -1; } public static int sol_res2(int left, int right) throws Exception { int q = sol_query(left,right); return q == left ? right : left; } static int[] arr; }
Java
["5\n\n3\n\n4"]
1 second
["? 1 5\n\n? 4 5\n\n! 1"]
NoteIn the sample suppose $$$a$$$ is $$$[5, 1, 4, 2, 3]$$$. So after asking the $$$[1..5]$$$ subsegment $$$4$$$ is second to max value, and it's position is $$$3$$$. After asking the $$$[4..5]$$$ subsegment $$$2$$$ is second to max value and it's position in the whole array is $$$4$$$.Note that there are other arrays $$$a$$$ that would produce the same interaction, and the answer for them might be different. Example output is given in purpose of understanding the interaction.
Java 11
standard input
[ "binary search", "interactive" ]
b3e8fe76706ba17cb285c75459508334
The first line contains a single integer $$$n$$$ $$$(2 \leq n \leq 10^5)$$$ — the number of elements in the array.
1,600
null
standard output
PASSED
4c56b1974639a4d5450d24df748b88c7
train_109.jsonl
1613658900
The only difference between the easy and the hard version is the limit to the number of queries.This is an interactive problem.There is an array $$$a$$$ of $$$n$$$ different numbers. In one query you can ask the position of the second maximum element in a subsegment $$$a[l..r]$$$. Find the position of the maximum element in the array in no more than 40 queries.A subsegment $$$a[l..r]$$$ is all the elements $$$a_l, a_{l + 1}, ..., a_r$$$. After asking this subsegment you will be given the position of the second maximum from this subsegment in the whole array.
256 megabytes
import java.util.*; import java.io.*; public class cf { static Reader sc = new Reader(); // static Scanner sc = new Scanner(System.in); static PrintWriter out = new PrintWriter(System.out); public static void main(String[] args) { int n = sc.nextInt(); int ans = -1; int index = query(1, n); if (index == 1 || query(1, index) != index) { ans = n; // binary search int l = index, r = n; while (l < r) { int mid = l + (r - l) / 2; if (l + 1 == r) { if (l > index && query(index, l) == index) { ans = l; } else { ans = r; } break; } if (index == mid) break; if (query(index, mid) == index) { ans = mid; r = mid; } else { l = mid; } } } else { ans = 1; // binary search int l = 1, r = index; while (l < r) { int mid = l + (r - l) / 2; if (l + 1 == r) { if (r < index && query(r, index) == index) { ans = r; } else { ans = l; } break; } if (index == mid) break; if (query(mid, index) == index) { ans = mid; l = mid; } else { r = mid; } } } out.println("! " + ans); out.close(); } private static int query(int x, int y) { out.println("? " + x + " " + y); out.flush(); return sc.nextInt(); } static class Reader { BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); StringTokenizer st = new StringTokenizer(""); String next() { while (!st.hasMoreTokens()) try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } } }
Java
["5\n\n3\n\n4"]
1 second
["? 1 5\n\n? 4 5\n\n! 1"]
NoteIn the sample suppose $$$a$$$ is $$$[5, 1, 4, 2, 3]$$$. So after asking the $$$[1..5]$$$ subsegment $$$4$$$ is second to max value, and it's position is $$$3$$$. After asking the $$$[4..5]$$$ subsegment $$$2$$$ is second to max value and it's position in the whole array is $$$4$$$.Note that there are other arrays $$$a$$$ that would produce the same interaction, and the answer for them might be different. Example output is given in purpose of understanding the interaction.
Java 11
standard input
[ "binary search", "interactive" ]
b3e8fe76706ba17cb285c75459508334
The first line contains a single integer $$$n$$$ $$$(2 \leq n \leq 10^5)$$$ — the number of elements in the array.
1,600
null
standard output
PASSED
429cf79523e50fd099acfe7bb4771dec
train_109.jsonl
1613658900
The only difference between the easy and the hard version is the limit to the number of queries.This is an interactive problem.There is an array $$$a$$$ of $$$n$$$ different numbers. In one query you can ask the position of the second maximum element in a subsegment $$$a[l..r]$$$. Find the position of the maximum element in the array in no more than 40 queries.A subsegment $$$a[l..r]$$$ is all the elements $$$a_l, a_{l + 1}, ..., a_r$$$. After asking this subsegment you will be given the position of the second maximum from this subsegment in the whole array.
256 megabytes
import java.util.*; import java.io.*; public class cf { static Reader sc = new Reader(); // static Scanner sc = new Scanner(System.in); static PrintWriter out = new PrintWriter(System.out); public static void main(String[] args) { int n = sc.nextInt(); int ans = -1; int index = query(1, n); if (index == 1 || query(1, index) != index) { ans = n; // binary search int l = index, r = n; while (l <= r) { int mid = l + (r - l) / 2; if (l + 1 == r) { if (l > index && query(index, l) == index) { ans = l; } else if (query(index, r) == index) { ans = r; } break; } if (index == mid) break; if (query(index, mid) == index) { ans = mid; r = mid; } else { l = mid; } } } else { ans = 1; // binary search int l = 1, r = index; while (l <= r) { int mid = l + (r - l) / 2; if (l + 1 == r) { if (r < index && query(r, index) == index) { ans = r; } else if (query(l, index) == index) { ans = l; } break; } if (index == mid) break; if (query(mid, index) == index) { ans = mid; l = mid; } else { r = mid; } } } out.println("! " + ans); out.close(); } private static int query(int x, int y) { out.println("? " + x + " " + y); out.flush(); return sc.nextInt(); } static class Reader { BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); StringTokenizer st = new StringTokenizer(""); String next() { while (!st.hasMoreTokens()) try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } } }
Java
["5\n\n3\n\n4"]
1 second
["? 1 5\n\n? 4 5\n\n! 1"]
NoteIn the sample suppose $$$a$$$ is $$$[5, 1, 4, 2, 3]$$$. So after asking the $$$[1..5]$$$ subsegment $$$4$$$ is second to max value, and it's position is $$$3$$$. After asking the $$$[4..5]$$$ subsegment $$$2$$$ is second to max value and it's position in the whole array is $$$4$$$.Note that there are other arrays $$$a$$$ that would produce the same interaction, and the answer for them might be different. Example output is given in purpose of understanding the interaction.
Java 11
standard input
[ "binary search", "interactive" ]
b3e8fe76706ba17cb285c75459508334
The first line contains a single integer $$$n$$$ $$$(2 \leq n \leq 10^5)$$$ — the number of elements in the array.
1,600
null
standard output
PASSED
21865ac43cd3362032c5c86d51b123ac
train_109.jsonl
1613658900
The only difference between the easy and the hard version is the limit to the number of queries.This is an interactive problem.There is an array $$$a$$$ of $$$n$$$ different numbers. In one query you can ask the position of the second maximum element in a subsegment $$$a[l..r]$$$. Find the position of the maximum element in the array in no more than 40 queries.A subsegment $$$a[l..r]$$$ is all the elements $$$a_l, a_{l + 1}, ..., a_r$$$. After asking this subsegment you will be given the position of the second maximum from this subsegment in the whole array.
256 megabytes
import java.io.*; import java.util.*; public class Solution { public static void main(String args[]) throws Exception { BufferedReader Rb = new BufferedReader(new InputStreamReader(System.in)); int n = Integer.valueOf(Rb.readLine()); int l = 1; int r = n; while(true) { System.out.println("? " + l + " " + r); System.out.flush(); int pos = Integer.valueOf(Rb.readLine()); if(r - l == 1) { System.out.println("! " + (pos == l?r:l)); System.out.flush(); break; } int n_l = l, n_r = r; if(pos > (l + r)/2) {n_l = (l+r)/2;} else {n_r = (l+r)/2;} System.out.println("? " + n_l + " " + n_r); System.out.flush(); int n_pos = Integer.valueOf(Rb.readLine()); if(n_pos == pos) {l = n_l; r = n_r;} else { if(n_l == l) {l = (l + r)/2;} else {r = (l + r)/2;} } } } }
Java
["5\n\n3\n\n4"]
1 second
["? 1 5\n\n? 4 5\n\n! 1"]
NoteIn the sample suppose $$$a$$$ is $$$[5, 1, 4, 2, 3]$$$. So after asking the $$$[1..5]$$$ subsegment $$$4$$$ is second to max value, and it's position is $$$3$$$. After asking the $$$[4..5]$$$ subsegment $$$2$$$ is second to max value and it's position in the whole array is $$$4$$$.Note that there are other arrays $$$a$$$ that would produce the same interaction, and the answer for them might be different. Example output is given in purpose of understanding the interaction.
Java 11
standard input
[ "binary search", "interactive" ]
b3e8fe76706ba17cb285c75459508334
The first line contains a single integer $$$n$$$ $$$(2 \leq n \leq 10^5)$$$ — the number of elements in the array.
1,600
null
standard output
PASSED
8da0ccec0e71f495dc335ee3bbce7dc5
train_109.jsonl
1613658900
The only difference between the easy and the hard version is the limit to the number of queries.This is an interactive problem.There is an array $$$a$$$ of $$$n$$$ different numbers. In one query you can ask the position of the second maximum element in a subsegment $$$a[l..r]$$$. Find the position of the maximum element in the array in no more than 40 queries.A subsegment $$$a[l..r]$$$ is all the elements $$$a_l, a_{l + 1}, ..., a_r$$$. After asking this subsegment you will be given the position of the second maximum from this subsegment in the whole array.
256 megabytes
import java.io.BufferedWriter; import java.io.IOException; import java.io.InputStream; import java.io.OutputStream; import java.io.OutputStreamWriter; import java.io.PrintWriter; import java.io.Writer; import java.util.ArrayList; import java.util.Arrays; import java.util.Collections; import java.util.InputMismatchException; import java.util.TreeMap; import java.util.*; import java.io.*; public class Main { static StringBuilder sb; static dsu dsu; static long fact[]; static long mod = (int) (1e9); static void solve() { int n = i(); int l = 1; int r = n; while(l<r){ int mid = l+((r-l)>>1); System.out.println("? "+l+" "+r); System.out.flush(); int pos1 = i(); if(pos1<=mid){ if(l==mid) l = mid+1; else{ System.out.println("? "+l+" "+mid); System.out.flush(); int pos2 = i(); if(pos1==pos2) r = mid; else l = mid+1; } }else{ if(mid+1==r) r = mid; else{ System.out.println("? "+(mid+1)+" "+r); System.out.flush(); int pos2 = i(); if(pos1==pos2) l = mid+1; else r = mid; } } } System.out.println("! "+l); System.out.flush(); } public static void main(String[] args) { sb = new StringBuilder(); int test = 1; // test = i(); while (test-- > 0) { solve(); } System.out.println(sb); } /* * fact=new long[(int)1e6+10]; fact[0]=fact[1]=1; for(int i=2;i<fact.length;i++) * { fact[i]=((long)(i%mod)1L(long)(fact[i-1]%mod))%mod; } */ //**************NCR%P****************** static long ncr(int n, int r) { if (r > n) return (long) 0; long res = fact[n] % mod; // System.out.println(res); res = ((long) (res % mod) * (long) (p(fact[r], mod - 2) % mod)) % mod; res = ((long) (res % mod) * (long) (p(fact[n - r], mod - 2) % mod)) % mod; // System.out.println(res); return res; } static long p(long x, long y)// POWER FXN // { if (y == 0) return 1; long res = 1; while (y > 0) { if (y % 2 == 1) { res = (res * x) % mod; y--; } x = (x * x) % mod; y = y / 2; } return res; } //**************END****************** // *************Disjoint set // union*********// static class dsu { int parent[]; dsu(int n) { parent = new int[n]; for (int i = 0; i < n; i++) parent[i] = -1; } int find(int a) { if (parent[a] < 0) return a; else { int x = find(parent[a]); parent[a] = x; return x; } } void merge(int a, int b) { a = find(a); b = find(b); if (a == b) return; parent[b] = a; } } //**************PRIME FACTORIZE **********************************// static TreeMap<Integer, Integer> prime(long n) { TreeMap<Integer, Integer> h = new TreeMap<>(); long num = n; for (int i = 2; i <= Math.sqrt(num); i++) { if (n % i == 0) { int nt = 0; while (n % i == 0) { n = n / i; nt++; } h.put(i, nt); } } if (n != 1) h.put((int) n, 1); return h; } //****CLASS PAIR ************************************************ static class Pair implements Comparable<Pair> { int x; int y; Pair(int x, int y) { this.x = x; this.y = y; } public int compareTo(Pair o) { return (int) (this.y - o.y); } } //****CLASS PAIR ************************************************** static class InputReader { private InputStream stream; private byte[] buf = new byte[1024]; private int curChar; private int numChars; private SpaceCharFilter filter; public InputReader(InputStream stream) { this.stream = stream; } public int read() { if (numChars == -1) throw new InputMismatchException(); if (curChar >= numChars) { curChar = 0; try { numChars = stream.read(buf); } catch (IOException e) { throw new InputMismatchException(); } if (numChars <= 0) return -1; } return buf[curChar++]; } public int Int() { int c = read(); while (isSpaceChar(c)) c = read(); int sgn = 1; if (c == '-') { sgn = -1; c = read(); } int res = 0; do { if (c < '0' || c > '9') throw new InputMismatchException(); res *= 10; res += c - '0'; c = read(); } while (!isSpaceChar(c)); return res * sgn; } public String String() { int c = read(); while (isSpaceChar(c)) c = read(); StringBuilder res = new StringBuilder(); do { res.appendCodePoint(c); c = read(); } while (!isSpaceChar(c)); return res.toString(); } public boolean isSpaceChar(int c) { if (filter != null) return filter.isSpaceChar(c); return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; } public String next() { return String(); } public interface SpaceCharFilter { public boolean isSpaceChar(int ch); } } static class OutputWriter { private final PrintWriter writer; public OutputWriter(OutputStream outputStream) { writer = new PrintWriter(new BufferedWriter(new OutputStreamWriter(outputStream))); } public OutputWriter(Writer writer) { this.writer = new PrintWriter(writer); } public void print(Object... objects) { for (int i = 0; i < objects.length; i++) { if (i != 0) writer.print(' '); writer.print(objects[i]); } } public void printLine(Object... objects) { print(objects); writer.println(); } public void close() { writer.close(); } public void flush() { writer.flush(); } } static InputReader in = new InputReader(System.in); static OutputWriter out = new OutputWriter(System.out); public static long[] sort(long[] a2) { int n = a2.length; ArrayList<Long> l = new ArrayList<>(); for (long i : a2) l.add(i); Collections.sort(l); for (int i = 0; i < l.size(); i++) a2[i] = l.get(i); return a2; } public static int[] sort(int[] a2) { int n = a2.length; ArrayList<Integer> l = new ArrayList<>(); for (int i : a2) l.add(i); Collections.sort(l); for (int i = 0; i < l.size(); i++) a2[i] = l.get(i); return a2; } public static long pow(long x, long y) { long res = 1; while (y > 0) { if (y % 2 != 0) { res = (res * x);// % modulus; y--; } x = (x * x);// % modulus; y = y / 2; } return res; } //GCD___+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ public static long gcd(long x, long y) { if (x == 0) return y; else return gcd(y % x, x); } // ******LOWEST COMMON MULTIPLE // ********************************************* public static long lcm(long x, long y) { return (x * (y / gcd(x, y))); } //INPUT PATTERN******************************************************** public static int i() { return in.Int(); } public static long l() { String s = in.String(); return Long.parseLong(s); } public static String s() { return in.String(); } public static int[] readArrayi(int n) { int A[] = new int[n]; for (int i = 0; i < n; i++) { A[i] = i(); } return A; } public static long[] readArray(long n) { long A[] = new long[(int) n]; for (int i = 0; i < n; i++) { A[i] = l(); } return A; } }
Java
["5\n\n3\n\n4"]
1 second
["? 1 5\n\n? 4 5\n\n! 1"]
NoteIn the sample suppose $$$a$$$ is $$$[5, 1, 4, 2, 3]$$$. So after asking the $$$[1..5]$$$ subsegment $$$4$$$ is second to max value, and it's position is $$$3$$$. After asking the $$$[4..5]$$$ subsegment $$$2$$$ is second to max value and it's position in the whole array is $$$4$$$.Note that there are other arrays $$$a$$$ that would produce the same interaction, and the answer for them might be different. Example output is given in purpose of understanding the interaction.
Java 11
standard input
[ "binary search", "interactive" ]
b3e8fe76706ba17cb285c75459508334
The first line contains a single integer $$$n$$$ $$$(2 \leq n \leq 10^5)$$$ — the number of elements in the array.
1,600
null
standard output
PASSED
f439d0274e7d68a05a16c143afe41ae6
train_109.jsonl
1613658900
The only difference between the easy and the hard version is the limit to the number of queries.This is an interactive problem.There is an array $$$a$$$ of $$$n$$$ different numbers. In one query you can ask the position of the second maximum element in a subsegment $$$a[l..r]$$$. Find the position of the maximum element in the array in no more than 40 queries.A subsegment $$$a[l..r]$$$ is all the elements $$$a_l, a_{l + 1}, ..., a_r$$$. After asking this subsegment you will be given the position of the second maximum from this subsegment in the whole array.
256 megabytes
import java.io.BufferedWriter; import java.io.IOException; import java.io.InputStream; import java.io.OutputStream; import java.io.OutputStreamWriter; import java.io.PrintWriter; import java.io.Writer; import java.util.*; public class Main { static StringBuilder sb; static dsu dsu; static long fact[]; static long mod = (int) (1e9); static void solve() { int n = i(); int idx = search(1,n); System.out.println("! "+idx); System.out.flush(); } private static int search(int low,int high){ while(low<high){ int mid = low + (high-low)/2; System.out.println("? "+low+" "+high); int secondMaxIdx = i(); System.out.flush(); if(secondMaxIdx>mid){ if(mid+1==high) high = mid; else{ System.out.println("? "+(mid+1)+" "+high); int temp = i(); System.out.flush(); if(temp==secondMaxIdx) low = mid+1; else high = mid; } }else{ if(low==mid) low = mid+1; else{ System.out.println("? "+low+" "+mid); int temp = i(); System.out.flush(); if(temp==secondMaxIdx) high = mid; else low = mid+1; } } } return low; } public static void main(String[] args) { sb = new StringBuilder(); int test = 1; // test = i(); while (test-- > 0) { solve(); } System.out.println(sb); } /* * fact=new long[(int)1e6+10]; fact[0]=fact[1]=1; for(int i=2;i<fact.length;i++) * { fact[i]=((long)(i%mod)1L(long)(fact[i-1]%mod))%mod; } */ //**************NCR%P****************** static long ncr(int n, int r) { if (r > n) return (long) 0; long res = fact[n] % mod; // System.out.println(res); res = ((long) (res % mod) * (long) (p(fact[r], mod - 2) % mod)) % mod; res = ((long) (res % mod) * (long) (p(fact[n - r], mod - 2) % mod)) % mod; // System.out.println(res); return res; } static long p(long x, long y)// POWER FXN // { if (y == 0) return 1; long res = 1; while (y > 0) { if (y % 2 == 1) { res = (res * x) % mod; y--; } x = (x * x) % mod; y = y / 2; } return res; } //**************END****************** // *************Disjoint set // union*********// static class dsu { int parent[]; dsu(int n) { parent = new int[n]; for (int i = 0; i < n; i++) parent[i] = -1; } int find(int a) { if (parent[a] < 0) return a; else { int x = find(parent[a]); parent[a] = x; return x; } } void merge(int a, int b) { a = find(a); b = find(b); if (a == b) return; parent[b] = a; } } //**************PRIME FACTORIZE **********************************// static TreeMap<Integer, Integer> prime(long n) { TreeMap<Integer, Integer> h = new TreeMap<>(); long num = n; for (int i = 2; i <= Math.sqrt(num); i++) { if (n % i == 0) { int nt = 0; while (n % i == 0) { n = n / i; nt++; } h.put(i, nt); } } if (n != 1) h.put((int) n, 1); return h; } //****CLASS PAIR ************************************************ static class Pair implements Comparable<Pair> { int x; int y; Pair(int x, int y) { this.x = x; this.y = y; } public int compareTo(Pair o) { return (int) (this.y - o.y); } } //****CLASS PAIR ************************************************** static class InputReader { private InputStream stream; private byte[] buf = new byte[1024]; private int curChar; private int numChars; private SpaceCharFilter filter; public InputReader(InputStream stream) { this.stream = stream; } public int read() { if (numChars == -1) throw new InputMismatchException(); if (curChar >= numChars) { curChar = 0; try { numChars = stream.read(buf); } catch (IOException e) { throw new InputMismatchException(); } if (numChars <= 0) return -1; } return buf[curChar++]; } public int Int() { int c = read(); while (isSpaceChar(c)) c = read(); int sgn = 1; if (c == '-') { sgn = -1; c = read(); } int res = 0; do { if (c < '0' || c > '9') throw new InputMismatchException(); res *= 10; res += c - '0'; c = read(); } while (!isSpaceChar(c)); return res * sgn; } public String String() { int c = read(); while (isSpaceChar(c)) c = read(); StringBuilder res = new StringBuilder(); do { res.appendCodePoint(c); c = read(); } while (!isSpaceChar(c)); return res.toString(); } public boolean isSpaceChar(int c) { if (filter != null) return filter.isSpaceChar(c); return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; } public String next() { return String(); } public interface SpaceCharFilter { public boolean isSpaceChar(int ch); } } static class OutputWriter { private final PrintWriter writer; public OutputWriter(OutputStream outputStream) { writer = new PrintWriter(new BufferedWriter(new OutputStreamWriter(outputStream))); } public OutputWriter(Writer writer) { this.writer = new PrintWriter(writer); } public void print(Object... objects) { for (int i = 0; i < objects.length; i++) { if (i != 0) writer.print(' '); writer.print(objects[i]); } } public void printLine(Object... objects) { print(objects); writer.println(); } public void close() { writer.close(); } public void flush() { writer.flush(); } } static InputReader in = new InputReader(System.in); static OutputWriter out = new OutputWriter(System.out); public static long[] sort(long[] a2) { int n = a2.length; ArrayList<Long> l = new ArrayList<>(); for (long i : a2) l.add(i); Collections.sort(l); for (int i = 0; i < l.size(); i++) a2[i] = l.get(i); return a2; } public static int[] sort(int[] a2) { int n = a2.length; ArrayList<Integer> l = new ArrayList<>(); for (int i : a2) l.add(i); Collections.sort(l); for (int i = 0; i < l.size(); i++) a2[i] = l.get(i); return a2; } public static long pow(long x, long y) { long res = 1; while (y > 0) { if (y % 2 != 0) { res = (res * x);// % modulus; y--; } x = (x * x);// % modulus; y = y / 2; } return res; } //GCD___+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ public static long gcd(long x, long y) { if (x == 0) return y; else return gcd(y % x, x); } // ******LOWEST COMMON MULTIPLE // ********************************************* public static long lcm(long x, long y) { return (x * (y / gcd(x, y))); } //INPUT PATTERN******************************************************** public static int i() { return in.Int(); } public static long l() { String s = in.String(); return Long.parseLong(s); } public static String s() { return in.String(); } public static int[] readArrayi(int n) { int A[] = new int[n]; for (int i = 0; i < n; i++) { A[i] = i(); } return A; } public static long[] readArray(long n) { long A[] = new long[(int) n]; for (int i = 0; i < n; i++) { A[i] = l(); } return A; } }
Java
["5\n\n3\n\n4"]
1 second
["? 1 5\n\n? 4 5\n\n! 1"]
NoteIn the sample suppose $$$a$$$ is $$$[5, 1, 4, 2, 3]$$$. So after asking the $$$[1..5]$$$ subsegment $$$4$$$ is second to max value, and it's position is $$$3$$$. After asking the $$$[4..5]$$$ subsegment $$$2$$$ is second to max value and it's position in the whole array is $$$4$$$.Note that there are other arrays $$$a$$$ that would produce the same interaction, and the answer for them might be different. Example output is given in purpose of understanding the interaction.
Java 11
standard input
[ "binary search", "interactive" ]
b3e8fe76706ba17cb285c75459508334
The first line contains a single integer $$$n$$$ $$$(2 \leq n \leq 10^5)$$$ — the number of elements in the array.
1,600
null
standard output
PASSED
526d7d7a2c7c8a1a6bd17650b8d67c10
train_109.jsonl
1613658900
The only difference between the easy and the hard version is the limit to the number of queries.This is an interactive problem.There is an array $$$a$$$ of $$$n$$$ different numbers. In one query you can ask the position of the second maximum element in a subsegment $$$a[l..r]$$$. Find the position of the maximum element in the array in no more than 40 queries.A subsegment $$$a[l..r]$$$ is all the elements $$$a_l, a_{l + 1}, ..., a_r$$$. After asking this subsegment you will be given the position of the second maximum from this subsegment in the whole array.
256 megabytes
/* Rating: 1461 Date: 11-04-2022 Time: 12-38-28 Author: Kartik Papney Linkedin: https://www.linkedin.com/in/kartik-papney-4951161a6/ Leetcode: https://leetcode.com/kartikpapney/ Codechef: https://www.codechef.com/users/kartikpapney */ import java.util.*; import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; public class C_1_Guessing_the_Greatest_easy_version { public static boolean debug = false; static void debug(String st) { if(debug) p.writeln(st); } public static int ask(int left, int right) { if(left >= right) return -1; System.out.println("? " + left + " " + right); System.out.println(); int pos = sc.nextInt(); sc.nextLine(); return pos; } // 1 2 3 4 5 6 7 // public static void s() { int n = sc.nextInt(); sc.nextLine(); int left = 1; int right = n; while(left < right) { // [l, mid), [mid, r] int mid = left+(right - left)/2; int smax = ask(left, right); if(smax <= mid) { int npos = ask(left, mid); if(npos == smax) { right = mid; } else { left = mid+1; } } else { int npos = ask(mid+1, right); if(npos == smax) { left = mid+1; } else { right = mid; } } } // int smax = ask(left, right); // if(smax == left) { // } else { // System.out.println("! " + left); // } System.out.println("! " + right); } public static void main(String[] args) { int t = 1; // t = sc.nextInt(); while (t-- != 0) { s(); } p.print(); } static final Integer MOD = (int) 1e9 + 7; static final Scanner sc = new Scanner(System.in); static final Print p = new Print(); static class Functions { static void sort(int... a) { ArrayList<Integer> l = new ArrayList<>(); for (int i : a) l.add(i); Collections.sort(l); for (int i = 0; i < a.length; i++) a[i] = l.get(i); } static void sort(long... a) { ArrayList<Long> l = new ArrayList<>(); for (long i : a) l.add(i); Collections.sort(l); for (int i = 0; i < a.length; i++) a[i] = l.get(i); } static int max(int... a) { int max = Integer.MIN_VALUE; for (int val : a) max = Math.max(val, max); return max; } static int min(int... a) { int min = Integer.MAX_VALUE; for (int val : a) min = Math.min(val, min); return min; } static long min(long... a) { long min = Long.MAX_VALUE; for (long val : a) min = Math.min(val, min); return min; } static long max(long... a) { long max = Long.MIN_VALUE; for (long val : a) max = Math.max(val, max); return max; } static long sum(long... a) { long sum = 0; for (long val : a) sum += val; return sum; } static int sum(int... a) { int sum = 0; for (int val : a) sum += val; return sum; } public static long mod_add(long a, long b) { return (a % MOD + b % MOD + MOD) % MOD; } public static long pow(long a, long b) { long res = 1; while (b > 0) { if ((b & 1) != 0) res = mod_mul(res, a); a = mod_mul(a, a); b >>= 1; } return res; } public static long mod_mul(long a, long b) { long res = 0; a %= MOD; while (b > 0) { if ((b & 1) > 0) { res = mod_add(res, a); } a = (2 * a) % MOD; b >>= 1; } return res; } public static long gcd(long a, long b) { if (a == 0) return b; return gcd(b % a, a); } public static long factorial(long n) { long res = 1; for (int i = 1; i <= n; i++) { res = (i % MOD * res % MOD) % MOD; } return res; } public static int count(int[] arr, int x) { int count = 0; for (int val : arr) if (val == x) count++; return count; } public static ArrayList<Integer> generatePrimes(int n) { boolean[] primes = new boolean[n]; for (int i = 2; i < primes.length; i++) primes[i] = true; for (int i = 2; i < primes.length; i++) { if (primes[i]) { for (int j = i * i; j < primes.length; j += i) { primes[j] = false; } } } ArrayList<Integer> arr = new ArrayList<>(); for (int i = 0; i < primes.length; i++) { if (primes[i]) arr.add(i); } return arr; } } static class Print { StringBuffer strb = new StringBuffer(); public void write(Object str) { strb.append(str); } public void writes(Object str) { char c = ' '; strb.append(str).append(c); } public void writeln(Object str) { char c = '\n'; strb.append(str).append(c); } public void yes() { char c = '\n'; writeln("YES"); } public void no() { writeln("NO"); } public void writeln() { char c = '\n'; strb.append(c); } public void writes(int... arr) { for (int val : arr) { write(val); write(' '); } } public void writes(long... arr) { for (long val : arr) { write(val); write(' '); } } public void writeln(int... arr) { for (int val : arr) { writeln(val); } } public void print() { System.out.print(strb); } public void println() { System.out.println(strb); } } // static class FastReader { // BufferedReader br; // StringTokenizer st; // public FastReader() { // br = new BufferedReader(new InputStreamReader(System.in)); // } // String next() { // while (st == null || !st.hasMoreElements()) { // try { // st = new StringTokenizer(br.readLine()); // } catch (IOException e) { // e.printStackTrace(); // } // } // return st.nextToken(); // } // int nextInt() { // return Integer.parseInt(next()); // } // long nextLong() { // return Long.parseLong(next()); // } // double nextDouble() { // return Double.parseDouble(next()); // } // int[] readArray(int n) { // int[] a = new int[n]; // for (int i = 0; i < n; i++) a[i] = nextInt(); // return a; // } // long[] readLongArray(int n) { // long[] a = new long[n]; // for (int i = 0; i < n; i++) a[i] = nextLong(); // return a; // } // double[] readArrayDouble(int n) { // double[] a = new double[n]; // for (int i = 0; i < n; i++) a[i] = nextInt(); // return a; // } // String nextLine() { // String str = new String(); // try { // str = br.readLine(); // } catch (IOException e) { // e.printStackTrace(); // } // return str; // } // } }
Java
["5\n\n3\n\n4"]
1 second
["? 1 5\n\n? 4 5\n\n! 1"]
NoteIn the sample suppose $$$a$$$ is $$$[5, 1, 4, 2, 3]$$$. So after asking the $$$[1..5]$$$ subsegment $$$4$$$ is second to max value, and it's position is $$$3$$$. After asking the $$$[4..5]$$$ subsegment $$$2$$$ is second to max value and it's position in the whole array is $$$4$$$.Note that there are other arrays $$$a$$$ that would produce the same interaction, and the answer for them might be different. Example output is given in purpose of understanding the interaction.
Java 11
standard input
[ "binary search", "interactive" ]
b3e8fe76706ba17cb285c75459508334
The first line contains a single integer $$$n$$$ $$$(2 \leq n \leq 10^5)$$$ — the number of elements in the array.
1,600
null
standard output
PASSED
5d99a07d84653e735e08286412ab24d4
train_109.jsonl
1613658900
The only difference between the easy and the hard version is the limit to the number of queries.This is an interactive problem.There is an array $$$a$$$ of $$$n$$$ different numbers. In one query you can ask the position of the second maximum element in a subsegment $$$a[l..r]$$$. Find the position of the maximum element in the array in no more than 40 queries.A subsegment $$$a[l..r]$$$ is all the elements $$$a_l, a_{l + 1}, ..., a_r$$$. After asking this subsegment you will be given the position of the second maximum from this subsegment in the whole array.
256 megabytes
import java.util.*; import java.lang.*; import java.io.*; public class feb20 { // *** ++ // +=-==+ +++=- // +-:---==+ *+=----= // +-:------==+ ++=------== // =-----------=++========================= // +--:::::---:-----============-=======+++==== // +---:..:----::-===============-======+++++++++ // =---:...---:-===================---===++++++++++ // +----:...:-=======================--==+++++++++++ // +-:------====================++===---==++++===+++++ // +=-----======================+++++==---==+==-::=++**+ // +=-----================---=======++=========::.:-+***** // +==::-====================--: --:-====++=+===:..-=+***** // +=---=====================-... :=..:-=+++++++++===++***** // +=---=====+=++++++++++++++++=-:::::-====+++++++++++++*****+ // +=======++++++++++++=+++++++============++++++=======+****** // +=====+++++++++++++++++++++++++==++++==++++++=:... . .+**** // ++====++++++++++++++++++++++++++++++++++++++++-. ..-+**** // +======++++++++++++++++++++++++++++++++===+====:. ..:=++++ // +===--=====+++++++++++++++++++++++++++=========-::....::-=++* // ====--==========+++++++==+++===++++===========--:::....:=++* // ====---===++++=====++++++==+++=======-::--===-:. ....:-+++ // ==--=--====++++++++==+++++++++++======--::::...::::::-=+++ // ===----===++++++++++++++++++++============--=-==----==+++ // =--------====++++++++++++++++=====================+++++++ // =---------=======++++++++====+++=================++++++++ // -----------========+++++++++++++++=================+++++++ // =----------==========++++++++++=====================++++++++ // =====------==============+++++++===================+++==+++++ // =======------==========================================++++++ /* * created by : Nitesh Gupta * */ public static void main(String[] args) throws Exception { first(); // sec(); // third(); // four(); // fif(); // six(); } private static void first() throws Exception { BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); String[] scn = (br.readLine()).trim().split(" "); int n = Integer.parseInt(scn[0]); int sm = ask(1, n); int left = ask(1, sm); int ans = 1; if (left == sm) { int st = 1, en = sm - 1; while (st <= en) { int mid = (st + en) / 2; int pos = ask(mid, sm); if (pos == sm) { ans = mid; st = mid + 1; } else { en = mid - 1; } } } else { int st = sm + 1, en = n; while (st <= en) { int mid = (st + en) / 2; int pos = ask(sm, mid); if (pos == sm) { ans = mid; en = mid - 1; } else { st = mid + 1; } } } System.out.println("! " + ans); return; } public static int ask(int l, int r) throws Exception { if(l==r)return -1; System.out.println("? " + l + " " + r); System.out.flush(); BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); String[] scn = (br.readLine()).trim().split(" "); int n = Integer.parseInt(scn[0]); return n; } private static void sec() throws Exception { BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); String[] scn = (br.readLine()).trim().split(" "); int t = Integer.parseInt(scn[0]); StringBuilder sb = new StringBuilder(); while (t-- > 0) { scn = (br.readLine()).trim().split(" "); int n = Integer.parseInt(scn[0]); long[] arr = new long[n]; scn = (br.readLine()).trim().split(" "); for (int i = 0; i < n; i++) { arr[i] = Long.parseLong(scn[i]); } sb.append("\n"); } System.out.println(sb); return; } private static void third() throws Exception { BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); String[] scn = (br.readLine()).trim().split(" "); int t = Integer.parseInt(scn[0]); StringBuilder sb = new StringBuilder(); while (t-- > 0) { scn = (br.readLine()).trim().split(" "); int n = Integer.parseInt(scn[0]); long[] arr = new long[n]; scn = (br.readLine()).trim().split(" "); for (int i = 0; i < n; i++) { arr[i] = Long.parseLong(scn[i]); } sb.append("\n"); } System.out.println(sb); return; } private static void four() throws Exception { BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); String[] scn = (br.readLine()).trim().split(" "); int t = Integer.parseInt(scn[0]); StringBuilder sb = new StringBuilder(); while (t-- > 0) { scn = (br.readLine()).trim().split(" "); int n = Integer.parseInt(scn[0]); long[] arr = new long[n]; scn = (br.readLine()).trim().split(" "); for (int i = 0; i < n; i++) { arr[i] = Long.parseLong(scn[i]); } sb.append("\n"); } System.out.println(sb); return; } private static void fif() throws Exception { BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); String[] scn = (br.readLine()).trim().split(" "); int t = Integer.parseInt(scn[0]); StringBuilder sb = new StringBuilder(); while (t-- > 0) { scn = (br.readLine()).trim().split(" "); int n = Integer.parseInt(scn[0]); long[] arr = new long[n]; scn = (br.readLine()).trim().split(" "); for (int i = 0; i < n; i++) { arr[i] = Long.parseLong(scn[i]); } sb.append("\n"); } System.out.println(sb); return; } private static void six() throws Exception { BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); String[] scn = (br.readLine()).trim().split(" "); int t = Integer.parseInt(scn[0]); StringBuilder sb = new StringBuilder(); while (t-- > 0) { scn = (br.readLine()).trim().split(" "); int n = Integer.parseInt(scn[0]); long[] arr = new long[n]; scn = (br.readLine()).trim().split(" "); for (int i = 0; i < n; i++) { arr[i] = Long.parseLong(scn[i]); } sb.append("\n"); } System.out.println(sb); return; } public static void sort(long[] arr) { int n = arr.length; for (int i = 0; i < n; i++) { int idx = (int) Math.random() * n; long temp = arr[i]; arr[i] = arr[idx]; arr[idx] = temp; } Arrays.sort(arr); } public static void print(long[][] dp) { for (long[] a : dp) { for (long ele : a) { System.out.print(ele + " "); } System.out.println(); } } }
Java
["5\n\n3\n\n4"]
1 second
["? 1 5\n\n? 4 5\n\n! 1"]
NoteIn the sample suppose $$$a$$$ is $$$[5, 1, 4, 2, 3]$$$. So after asking the $$$[1..5]$$$ subsegment $$$4$$$ is second to max value, and it's position is $$$3$$$. After asking the $$$[4..5]$$$ subsegment $$$2$$$ is second to max value and it's position in the whole array is $$$4$$$.Note that there are other arrays $$$a$$$ that would produce the same interaction, and the answer for them might be different. Example output is given in purpose of understanding the interaction.
Java 11
standard input
[ "binary search", "interactive" ]
b3e8fe76706ba17cb285c75459508334
The first line contains a single integer $$$n$$$ $$$(2 \leq n \leq 10^5)$$$ — the number of elements in the array.
1,600
null
standard output
PASSED
c9fbffc3d82c157c7d964f381f604f95
train_109.jsonl
1613658900
The only difference between the easy and the hard version is the limit to the number of queries.This is an interactive problem.There is an array $$$a$$$ of $$$n$$$ different numbers. In one query you can ask the position of the second maximum element in a subsegment $$$a[l..r]$$$. Find the position of the maximum element in the array in no more than 40 queries.A subsegment $$$a[l..r]$$$ is all the elements $$$a_l, a_{l + 1}, ..., a_r$$$. After asking this subsegment you will be given the position of the second maximum from this subsegment in the whole array.
256 megabytes
import java.util.*; import java.util.Map.Entry; import java.math.*; public class Simple{ public static class Pair{ int x; long y; public Pair(int x,long y){ this.x = x; this.y = y; } } static int power(int x, int y, int p) { // Initialize result int res = 1; // Update x if it is more than or // equal to p x = x % p; while (y > 0) { // If y is odd, multiply x // with result if (y % 2 == 1) res = (res * x) % p; // y must be even now y = y >> 1; // y = y/2 x = (x * x) % p; } return res; } // Returns n^(-1) mod p static int modInverse(int n, int p) { return power(n, p - 2, p); } // Returns nCr % p using Fermat's // little theorem. static int nCrModPFermat(int n, int r, int p) { if (n<r) return 0; // Base case if (r == 0) return 1; // Fill factorial array so that we // can find all factorial of r, n // and n-r int[] fac = new int[n + 1]; fac[0] = 1; for (int i = 1; i <= n; i++) fac[i] = fac[i - 1] * i % p; return (fac[n] * modInverse(fac[r], p) % p * modInverse(fac[n - r], p) % p) % p; } static int nCrModp(int n, int r, int p) { if (r > n - r) r = n - r; // The array C is going to store last // row of pascal triangle at the end. // And last entry of last row is nCr int C[] = new int[r + 1]; C[0] = 1; // Top row of Pascal Triangle // One by constructs remaining rows of Pascal // Triangle from top to bottom for (int i = 1; i <= n; i++) { // Fill entries of current row using previous // row values for (int j = Math.min(i, r); j > 0; j--) // nCj = (n-1)Cj + (n-1)C(j-1); C[j] = (C[j] + C[j - 1]) % p; } return C[r]; } // public static int helper(int mat[][],int n,int m,int i,int j,int min,int max){ // if(j==m){ // return max- min; // } // if(dp[i][j]){ // return dp[] // } // int ans1 = Integer.MAX_VALUE; // int ans2 = Integer.MAX_VALUE; // //we take that element // for(int k = 0;k<n;k++){ // ans1 = Math.min(ans1,helper(mat, n, m, i+k, j+1, Math.min(min,mat[i+k][j+1]), Math.max(max,mat))); // } // //we do not take that element // return dp[i][j] = Math.min(ans1,ans2); // } public static void main(String args[]){ //System.out.println("Hello Java"); Scanner s = new Scanner(System.in); int t = 1; for(int t1 = 1;t1<=t;t1++){ int n = s.nextInt(); // System.out.println(n); long lo = 1; long hi = n; long ans = 0; while(lo<=hi){ if(hi-lo+1<=3){ long m = hi - lo+ 1; if(m==1){ ans= lo; } else if(m==2){ System.out.println("? "+lo+" "+hi); System.out.flush(); long response = s.nextLong(); if(response==hi){ ans = lo; } else{ ans = hi; } } else{ System.out.println("? "+lo+" "+hi); System.out.flush(); long response = s.nextLong(); long mid = (lo+hi)/2; if(mid==response){ System.out.println("? "+lo+" "+mid); System.out.flush(); long r1 = s.nextLong(); if(r1==response){ ans = lo; } else{ ans = hi; } } else{ if(response==hi)hi--; else{ lo++; } System.out.println("? "+lo+" "+hi); System.out.flush(); response = s.nextLong(); if(response==hi){ ans = lo; } else{ ans = hi; } } } break; } System.out.println("? "+lo+" "+hi); System.out.flush(); long response = s.nextLong(); long mid = (lo+hi)/2; if(response<=mid){ System.out.println("? "+lo+" "+mid); System.out.flush(); long r1 = s.nextLong(); if(r1==response){ hi = mid; } else{ lo = mid+1; } } else{ mid++; System.out.println("? "+mid+" "+hi); System.out.flush(); long r1 = s.nextLong(); if(r1==response){ lo = mid; } else{ hi = mid-1; } } } System.out.println("! "+ans); System.out.flush(); } } } /* 4 2 2 7 0 2 5 -2 3 5 0*x1 + 1*x2 + 2*x3 + 3*x4 */
Java
["5\n\n3\n\n4"]
1 second
["? 1 5\n\n? 4 5\n\n! 1"]
NoteIn the sample suppose $$$a$$$ is $$$[5, 1, 4, 2, 3]$$$. So after asking the $$$[1..5]$$$ subsegment $$$4$$$ is second to max value, and it's position is $$$3$$$. After asking the $$$[4..5]$$$ subsegment $$$2$$$ is second to max value and it's position in the whole array is $$$4$$$.Note that there are other arrays $$$a$$$ that would produce the same interaction, and the answer for them might be different. Example output is given in purpose of understanding the interaction.
Java 11
standard input
[ "binary search", "interactive" ]
b3e8fe76706ba17cb285c75459508334
The first line contains a single integer $$$n$$$ $$$(2 \leq n \leq 10^5)$$$ — the number of elements in the array.
1,600
null
standard output
PASSED
71a1e6d6729084134edced59f5916ca6
train_109.jsonl
1613658900
The only difference between the easy and the hard version is the limit to the number of queries.This is an interactive problem.There is an array $$$a$$$ of $$$n$$$ different numbers. In one query you can ask the position of the second maximum element in a subsegment $$$a[l..r]$$$. Find the position of the maximum element in the array in no more than 40 queries.A subsegment $$$a[l..r]$$$ is all the elements $$$a_l, a_{l + 1}, ..., a_r$$$. After asking this subsegment you will be given the position of the second maximum from this subsegment in the whole array.
256 megabytes
import java.io.*; import java.text.DecimalFormat; import java.util.Arrays; import java.util.Random; import java.util.StringTokenizer; public class Main { static long mod = (long) 1e9 + 7; static long mod1 = 998244353; public static void main(String[] args) { InputStream inputStream = System.in; OutputStream outputStream = System.out; InputReader in = new InputReader(inputStream); PrintWriter out = new PrintWriter(outputStream); int n = in.nextInt(); int l = 0; int r = n; while (r-l>1) { int mid = l + (r - l) / 2; int smax = query(l,r-1,out,in); if(smax<mid){ int m=query(l,mid-1,out,in); if(m==smax) r=mid; else l=mid; } else { int m=query(mid,r-1,out,in); if (m==smax) l=mid; else r=mid; } } out.println("! " + r); out.close(); } static int query(int l,int r,PrintWriter out,InputReader in){ if(l>=r) return -1; out.println("? "+(l+1)+" "+(r+1)); out.flush(); return in.nextInt()-1; } static final Random random = new Random(); static void ruffleSort(int[] a) { int n = a.length;//shuffle, then sort for (int i = 0; i < n; i++) { int oi = random.nextInt(n), temp = a[oi]; a[oi] = a[i]; a[i] = temp; } Arrays.sort(a); } static long gcd(long x, long y) { if (x == 0) return y; if (y == 0) return x; long r = 0, a, b; a = Math.max(x, y); b = Math.min(x, y); r = b; while (a % b != 0) { r = a % b; a = b; b = r; } return r; } static long modulo(long a, long b, long c) { long x = 1, y = a % c; while (b > 0) { if (b % 2 == 1) x = (x * y) % c; y = (y * y) % c; b = b >> 1; } return x % c; } public static void debug(Object... o) { System.err.println(Arrays.deepToString(o)); } static String printPrecision(double d) { DecimalFormat ft = new DecimalFormat("0.00000000000"); return String.valueOf(ft.format(d)); } static int countBit(long mask) { int ans = 0; while (mask != 0) { mask &= (mask - 1); ans++; } return ans; } static class InputReader { public BufferedReader reader; public StringTokenizer tokenizer; public InputReader(InputStream stream) { reader = new BufferedReader(new InputStreamReader(stream), 32768); tokenizer = null; } public String next() { while (tokenizer == null || !tokenizer.hasMoreTokens()) { try { tokenizer = new StringTokenizer(reader.readLine()); } catch (IOException e) { throw new RuntimeException(e); } } return tokenizer.nextToken(); } public int nextInt() { return Integer.parseInt(next()); } public long nextLong() { return Long.parseLong(next()); } public double nextDouble() { return Double.parseDouble(next()); } public int[] readArray(int n) { int[] arr = new int[n]; for (int i = 0; i < n; i++) arr[i] = nextInt(); return arr; } } }
Java
["5\n\n3\n\n4"]
1 second
["? 1 5\n\n? 4 5\n\n! 1"]
NoteIn the sample suppose $$$a$$$ is $$$[5, 1, 4, 2, 3]$$$. So after asking the $$$[1..5]$$$ subsegment $$$4$$$ is second to max value, and it's position is $$$3$$$. After asking the $$$[4..5]$$$ subsegment $$$2$$$ is second to max value and it's position in the whole array is $$$4$$$.Note that there are other arrays $$$a$$$ that would produce the same interaction, and the answer for them might be different. Example output is given in purpose of understanding the interaction.
Java 11
standard input
[ "binary search", "interactive" ]
b3e8fe76706ba17cb285c75459508334
The first line contains a single integer $$$n$$$ $$$(2 \leq n \leq 10^5)$$$ — the number of elements in the array.
1,600
null
standard output
PASSED
877486f50e9a763200354e03ab982d46
train_109.jsonl
1613658900
The only difference between the easy and the hard version is the limit to the number of queries.This is an interactive problem.There is an array $$$a$$$ of $$$n$$$ different numbers. In one query you can ask the position of the second maximum element in a subsegment $$$a[l..r]$$$. Find the position of the maximum element in the array in no more than 40 queries.A subsegment $$$a[l..r]$$$ is all the elements $$$a_l, a_{l + 1}, ..., a_r$$$. After asking this subsegment you will be given the position of the second maximum from this subsegment in the whole array.
256 megabytes
import java.util.*; import java.io.*; public class C { InputStream is; PrintWriter out; String INPUT = ""; boolean bool= true; void solve() throws IOException { int start= 1, last= ni(); find(start, last, -1); } private void find(int start, int last, int pass) { if(start== last) { System.out.println("! "+start); System.out.flush(); return; } else if(start+1== last) { if(pass== -1) { System.out.println("? "+start+" "+last); System.out.flush(); pass= ni(); } if(pass== start) out.println("! "+last); else out.println("! "+start); return; } int max2= pass; if(pass== -1) { System.out.println("? "+start+" "+last); System.out.flush(); max2= ni(); find(start, last, max2); return; } int mid= start+ (last- start)/2; if(max2>= start && max2<= mid)// first half { System.out.println("? "+start+" "+mid); System.out.flush(); if(ni()== max2) find(start, mid, max2); else find(mid, last, -1); } else { System.out.println("? "+mid+" "+last); System.out.flush(); if(ni()== max2) find(mid, last, max2); else find(start, mid, -1); } } void run() throws Exception { is = INPUT.isEmpty() ? System.in : new ByteArrayInputStream(INPUT.getBytes()); out = new PrintWriter(System.out); solve(); out.flush(); } public static void main(String[] args) throws Exception { new C().run(); } private byte[] inbuf = new byte[1024]; public int lenbuf = 0, ptrbuf = 0; private int readByte() { if (lenbuf == -1) throw new InputMismatchException(); if (ptrbuf >= lenbuf) { ptrbuf = 0; try { lenbuf = is.read(inbuf); } catch (IOException e) { throw new InputMismatchException(); } if (lenbuf <= 0) return -1; } return inbuf[ptrbuf++]; } private boolean isSpaceChar(int c) { return !(c >= 33 && c <= 126); } private int skip() { int b; while ((b = readByte()) != -1 && isSpaceChar(b)) ; return b; } private double nd() { return Double.parseDouble(ns()); } private char nc() { return (char) skip(); } private String ns() { int b = skip(); StringBuilder sb = new StringBuilder(); while (!(isSpaceChar(b))) { // when nextLine, (isSpaceChar(b) && b != ' ') sb.appendCodePoint(b); b = readByte(); } return sb.toString(); } private char[] ns(int n) { char[] buf = new char[n]; int b = skip(), p = 0; while (p < n && !(isSpaceChar(b))) { buf[p++] = (char) b; b = readByte(); } return n == p ? buf : Arrays.copyOf(buf, p); } private char[][] nm(int n, int m) { char[][] map = new char[n][]; for (int i = 0; i < n; i++) map[i] = ns(m); return map; } private int[] na(int n) { int[] a = new int[n]; for (int i = 0; i < n; i++) a[i] = ni(); return a; } private int ni() { int num = 0, b; boolean minus = false; while ((b = readByte()) != -1 && !((b >= '0' && b <= '9') || b == '-')) ; if (b == '-') { minus = true; b = readByte(); } while (true) { if (b >= '0' && b <= '9') { num = num * 10 + (b - '0'); } else { return minus ? -num : num; } b = readByte(); } } private long nl() { long num = 0; int b; boolean minus = false; while ((b = readByte()) != -1 && !((b >= '0' && b <= '9') || b == '-')) ; if (b == '-') { minus = true; b = readByte(); } while (true) { if (b >= '0' && b <= '9') { num = num * 10 + (b - '0'); } else { return minus ? -num : num; } b = readByte(); } } private void tr(Object... o) { if (INPUT.length() > 0) System.out.println(Arrays.deepToString(o)); } }
Java
["5\n\n3\n\n4"]
1 second
["? 1 5\n\n? 4 5\n\n! 1"]
NoteIn the sample suppose $$$a$$$ is $$$[5, 1, 4, 2, 3]$$$. So after asking the $$$[1..5]$$$ subsegment $$$4$$$ is second to max value, and it's position is $$$3$$$. After asking the $$$[4..5]$$$ subsegment $$$2$$$ is second to max value and it's position in the whole array is $$$4$$$.Note that there are other arrays $$$a$$$ that would produce the same interaction, and the answer for them might be different. Example output is given in purpose of understanding the interaction.
Java 11
standard input
[ "binary search", "interactive" ]
b3e8fe76706ba17cb285c75459508334
The first line contains a single integer $$$n$$$ $$$(2 \leq n \leq 10^5)$$$ — the number of elements in the array.
1,600
null
standard output
PASSED
836ca605ab506b43453756e6ffc0990c
train_109.jsonl
1613658900
The only difference between the easy and the hard version is the limit to the number of queries.This is an interactive problem.There is an array $$$a$$$ of $$$n$$$ different numbers. In one query you can ask the position of the second maximum element in a subsegment $$$a[l..r]$$$. Find the position of the maximum element in the array in no more than 40 queries.A subsegment $$$a[l..r]$$$ is all the elements $$$a_l, a_{l + 1}, ..., a_r$$$. After asking this subsegment you will be given the position of the second maximum from this subsegment in the whole array.
256 megabytes
import java.util.*; import java.io.*; public class C { InputStream is; PrintWriter out; String INPUT = ""; boolean bool= true; void solve() throws IOException { int start= 1, last= ni(); find(start, last, -1); } private void find(int start, int last, int pass) { if(start== last) { System.out.println("! "+start); System.out.flush(); return; } else if(start+1== last) { System.out.println("? "+start+" "+last); System.out.flush(); if(ni()== start) out.println("! "+last); else out.println("! "+start); return; } int max2= pass; if(pass== -1) { System.out.println("? "+start+" "+last); System.out.flush(); max2= ni(); } int mid= start+ (last- start)/2; if(max2>= start && max2<= mid)// first half { System.out.println("? "+start+" "+mid); System.out.flush(); if(ni()== max2) find(start, mid, max2); else find(mid, last, -1); } else { System.out.println("? "+mid+" "+last); System.out.flush(); if(ni()== max2) find(mid, last, max2); else find(start, mid, -1); } } void run() throws Exception { is = INPUT.isEmpty() ? System.in : new ByteArrayInputStream(INPUT.getBytes()); out = new PrintWriter(System.out); solve(); out.flush(); } public static void main(String[] args) throws Exception { new C().run(); } private byte[] inbuf = new byte[1024]; public int lenbuf = 0, ptrbuf = 0; private int readByte() { if (lenbuf == -1) throw new InputMismatchException(); if (ptrbuf >= lenbuf) { ptrbuf = 0; try { lenbuf = is.read(inbuf); } catch (IOException e) { throw new InputMismatchException(); } if (lenbuf <= 0) return -1; } return inbuf[ptrbuf++]; } private boolean isSpaceChar(int c) { return !(c >= 33 && c <= 126); } private int skip() { int b; while ((b = readByte()) != -1 && isSpaceChar(b)) ; return b; } private double nd() { return Double.parseDouble(ns()); } private char nc() { return (char) skip(); } private String ns() { int b = skip(); StringBuilder sb = new StringBuilder(); while (!(isSpaceChar(b))) { // when nextLine, (isSpaceChar(b) && b != ' ') sb.appendCodePoint(b); b = readByte(); } return sb.toString(); } private char[] ns(int n) { char[] buf = new char[n]; int b = skip(), p = 0; while (p < n && !(isSpaceChar(b))) { buf[p++] = (char) b; b = readByte(); } return n == p ? buf : Arrays.copyOf(buf, p); } private char[][] nm(int n, int m) { char[][] map = new char[n][]; for (int i = 0; i < n; i++) map[i] = ns(m); return map; } private int[] na(int n) { int[] a = new int[n]; for (int i = 0; i < n; i++) a[i] = ni(); return a; } private int ni() { int num = 0, b; boolean minus = false; while ((b = readByte()) != -1 && !((b >= '0' && b <= '9') || b == '-')) ; if (b == '-') { minus = true; b = readByte(); } while (true) { if (b >= '0' && b <= '9') { num = num * 10 + (b - '0'); } else { return minus ? -num : num; } b = readByte(); } } private long nl() { long num = 0; int b; boolean minus = false; while ((b = readByte()) != -1 && !((b >= '0' && b <= '9') || b == '-')) ; if (b == '-') { minus = true; b = readByte(); } while (true) { if (b >= '0' && b <= '9') { num = num * 10 + (b - '0'); } else { return minus ? -num : num; } b = readByte(); } } private void tr(Object... o) { if (INPUT.length() > 0) System.out.println(Arrays.deepToString(o)); } }
Java
["5\n\n3\n\n4"]
1 second
["? 1 5\n\n? 4 5\n\n! 1"]
NoteIn the sample suppose $$$a$$$ is $$$[5, 1, 4, 2, 3]$$$. So after asking the $$$[1..5]$$$ subsegment $$$4$$$ is second to max value, and it's position is $$$3$$$. After asking the $$$[4..5]$$$ subsegment $$$2$$$ is second to max value and it's position in the whole array is $$$4$$$.Note that there are other arrays $$$a$$$ that would produce the same interaction, and the answer for them might be different. Example output is given in purpose of understanding the interaction.
Java 11
standard input
[ "binary search", "interactive" ]
b3e8fe76706ba17cb285c75459508334
The first line contains a single integer $$$n$$$ $$$(2 \leq n \leq 10^5)$$$ — the number of elements in the array.
1,600
null
standard output
PASSED
d18a116a529777545476d718c02e1fc8
train_109.jsonl
1613658900
The only difference between the easy and the hard version is the limit to the number of queries.This is an interactive problem.There is an array $$$a$$$ of $$$n$$$ different numbers. In one query you can ask the position of the second maximum element in a subsegment $$$a[l..r]$$$. Find the position of the maximum element in the array in no more than 40 queries.A subsegment $$$a[l..r]$$$ is all the elements $$$a_l, a_{l + 1}, ..., a_r$$$. After asking this subsegment you will be given the position of the second maximum from this subsegment in the whole array.
256 megabytes
import java.util.*; import java.io.*; public class C { InputStream is; PrintWriter out; String INPUT = ""; boolean bool= true; void solve() throws IOException { int start= 1, last= ni(); find(start, last, -1); } private void find(int start, int last, int pass) { if(start== last) { System.out.println("! "+start); System.out.flush(); return; } else if(start== last-1) { System.out.println("? "+start+" "+last); System.out.flush(); if(ni()== start) out.println("! "+last); else out.println("! "+start); return; } int max2= pass; if(pass== -1) { System.out.println("? "+start+" "+last); System.out.flush(); max2= ni(); } int mid= start+ (last- start)/2; if(max2>= start && max2<= mid)// first half { System.out.println("? "+start+" "+mid); System.out.flush(); if(ni()== max2) find(start, mid, max2); else find(mid+1, last, -1); } else { if(mid+1== last) { mid-=1; System.out.println("? "+(mid+1)+" "+last); System.out.flush(); if(ni()== max2) { if(max2== mid+1) out.println("! "+last); else out.println("! "+(mid+1)); return; } else find(start, mid, -1); } else { System.out.println("? " + (mid + 1) + " " + last); System.out.flush(); if (ni() == max2) find(mid + 1, last, max2); else find(start, mid, -1); } } } void run() throws Exception { is = INPUT.isEmpty() ? System.in : new ByteArrayInputStream(INPUT.getBytes()); out = new PrintWriter(System.out); solve(); out.flush(); } public static void main(String[] args) throws Exception { new C().run(); } private byte[] inbuf = new byte[1024]; public int lenbuf = 0, ptrbuf = 0; private int readByte() { if (lenbuf == -1) throw new InputMismatchException(); if (ptrbuf >= lenbuf) { ptrbuf = 0; try { lenbuf = is.read(inbuf); } catch (IOException e) { throw new InputMismatchException(); } if (lenbuf <= 0) return -1; } return inbuf[ptrbuf++]; } private boolean isSpaceChar(int c) { return !(c >= 33 && c <= 126); } private int skip() { int b; while ((b = readByte()) != -1 && isSpaceChar(b)) ; return b; } private double nd() { return Double.parseDouble(ns()); } private char nc() { return (char) skip(); } private String ns() { int b = skip(); StringBuilder sb = new StringBuilder(); while (!(isSpaceChar(b))) { // when nextLine, (isSpaceChar(b) && b != ' ') sb.appendCodePoint(b); b = readByte(); } return sb.toString(); } private char[] ns(int n) { char[] buf = new char[n]; int b = skip(), p = 0; while (p < n && !(isSpaceChar(b))) { buf[p++] = (char) b; b = readByte(); } return n == p ? buf : Arrays.copyOf(buf, p); } private char[][] nm(int n, int m) { char[][] map = new char[n][]; for (int i = 0; i < n; i++) map[i] = ns(m); return map; } private int[] na(int n) { int[] a = new int[n]; for (int i = 0; i < n; i++) a[i] = ni(); return a; } private int ni() { int num = 0, b; boolean minus = false; while ((b = readByte()) != -1 && !((b >= '0' && b <= '9') || b == '-')) ; if (b == '-') { minus = true; b = readByte(); } while (true) { if (b >= '0' && b <= '9') { num = num * 10 + (b - '0'); } else { return minus ? -num : num; } b = readByte(); } } private long nl() { long num = 0; int b; boolean minus = false; while ((b = readByte()) != -1 && !((b >= '0' && b <= '9') || b == '-')) ; if (b == '-') { minus = true; b = readByte(); } while (true) { if (b >= '0' && b <= '9') { num = num * 10 + (b - '0'); } else { return minus ? -num : num; } b = readByte(); } } private void tr(Object... o) { if (INPUT.length() > 0) System.out.println(Arrays.deepToString(o)); } }
Java
["5\n\n3\n\n4"]
1 second
["? 1 5\n\n? 4 5\n\n! 1"]
NoteIn the sample suppose $$$a$$$ is $$$[5, 1, 4, 2, 3]$$$. So after asking the $$$[1..5]$$$ subsegment $$$4$$$ is second to max value, and it's position is $$$3$$$. After asking the $$$[4..5]$$$ subsegment $$$2$$$ is second to max value and it's position in the whole array is $$$4$$$.Note that there are other arrays $$$a$$$ that would produce the same interaction, and the answer for them might be different. Example output is given in purpose of understanding the interaction.
Java 11
standard input
[ "binary search", "interactive" ]
b3e8fe76706ba17cb285c75459508334
The first line contains a single integer $$$n$$$ $$$(2 \leq n \leq 10^5)$$$ — the number of elements in the array.
1,600
null
standard output
PASSED
7c4ab4c9c6361411c6d6c177ba0a9382
train_109.jsonl
1613658900
The only difference between the easy and the hard version is the limit to the number of queries.This is an interactive problem.There is an array $$$a$$$ of $$$n$$$ different numbers. In one query you can ask the position of the second maximum element in a subsegment $$$a[l..r]$$$. Find the position of the maximum element in the array in no more than 40 queries.A subsegment $$$a[l..r]$$$ is all the elements $$$a_l, a_{l + 1}, ..., a_r$$$. After asking this subsegment you will be given the position of the second maximum from this subsegment in the whole array.
256 megabytes
import java.io.BufferedReader; import java.io.InputStreamReader; import java.io.PrintWriter; import java.sql.Array; import java.sql.ResultSet; import java.util.Map.Entry; import java.util.*; public class d{ static long mod = 1000000007L; public static void main(String[] args) throws Exception { in = new BufferedReader(new InputStreamReader(System.in)); out = new PrintWriter(System.out); sc = new FastScanner(in); HashMap<Integer , HashMap<Integer , ArrayList<Integer>>> map = new HashMap<>(); int t =1; while(t-->0) { int n = sc.nextInt(); int lo = 1 , hi = n ; int ans = -1; System.out.println("? "+lo+" "+hi); System.out.flush(); int exp = sc.nextInt(); while(lo < hi) { int mid = (lo+hi)/2 ; if(lo == mid)break; System.out.println("? "+lo+" "+mid); System.out.flush(); int val1 = sc.nextInt(); int val2 = -1; if(mid +1 < hi) { System.out.println("? "+(mid+1)+" "+hi); System.out.flush(); val2 = sc.nextInt(); } if(val1 == exp) { hi = mid; }else if(val2 == exp){ lo = mid+1; }else { if(exp > mid) { hi = mid; exp = val1; }else { lo=mid+1; exp =val2; } } } if(lo == hi) { ans = lo; }else { System.out.println("? "+lo+" "+hi); System.out.flush(); exp = sc.nextInt(); ans = lo ; if(exp == lo )ans = hi; } System.out.println("! "+ans); } } static long power(long x, long y, long p) { long res = 1; x = x % p; while (y > 0) { if (y % 2 == 1) res = (res * x) % p; y = y >> 1; x = (x * x) % p; } return res; } static long modInverse(long n, long p) { return power(n, p - 2, p); } static long nCr(int n, int r, long p) { if (r == 0) return 1; long[] fac = new long[n + 1]; fac[0] = 1; for (int i = 1; i <= n; i++) fac[i] = fac[i - 1] * i % p; return (fac[n] * modInverse(fac[r], p) % p * modInverse(fac[n - r], p) % p) % p; } static final int MAXN = 0; static int spf[] = new int[MAXN]; static void sieve() { spf[1] = 1; for (int i=2; i<MAXN; i++) spf[i] = i; for (int i=4; i<MAXN; i+=2) spf[i] = 2; for (int i=3; i*i<MAXN; i++) { if (spf[i] == i) { for (int j=i*i; j<MAXN; j+=i) if (spf[j]==j) spf[j] = i; } } } static ArrayList<Integer> getfactor(int x) { ArrayList<Integer> ret = new ArrayList<>(); while (x != 1) { ret.add(spf[x]); x = x / spf[x]; } return ret; } public static void dfs(int cur, TreeMap<Integer, ArrayList<Integer>> map, int par, boolean[] vis) { if (vis[cur]) return; vis[cur] = true; for (int nbr : map.get(cur)) { if (par != nbr && vis[cur]) { dfs(nbr, map, cur, vis); } } } static int[] par; static int[] rank; static void build(int n) { par = new int[n + 1]; rank = new int[n + 1]; for (int i = 0; i < n; i++) par[i] = i; } static int find(int u) { if (u == par[u]) return u; int v = find(par[u]); par[u] = v; return v; } static void union(int u, int v) { u = par[u]; v = par[v]; if (rank[u] > rank[v]) { par[v] = u; } else { par[u] = v; if (rank[u] == rank[v]) { rank[v]++; } } } public static TreeMap<Integer, TreeSet<Integer>> directed(int n, int m) throws Exception { TreeMap<Integer, TreeSet<Integer>> map = new TreeMap<>(); for (int i = 0; i < n; i++) map.put(i, new TreeSet<Integer>()); for (int i = 0; i < m; i++) { int a = sc.nextInt(); int b = sc.nextInt(); map.get(b).add(a); } return map; } public static TreeMap<Integer, TreeSet<Integer>> undirected(int n, int m) throws Exception { TreeMap<Integer, TreeSet<Integer>> map = new TreeMap<>(); for (int i = 0; i < n; i++) map.put(i, new TreeSet<Integer>()); for (int i = 0; i < m; i++) { int a = sc.nextInt(); int b = sc.nextInt(); map.get(b).add(a); map.get(a).add(b); } return map; } public static long[] inputl(int n) throws Exception { long[] arr = new long[n]; for (int i = 0; i < n; i++) { arr[i] = sc.nextLong(); } return arr; } public static int[] input(int n) throws Exception { int[] arr = new int[n]; for (int i = 0; i < n; i++) { arr[i] = sc.nextInt(); } return arr; } public static int[][] input(int n, int m) throws Exception { int[][] arr = new int[n][m]; for (int i = 0; i < n; i++) { for (int j = 0; j < m; j++) { arr[i][j] = sc.nextInt(); } } return arr; } static BufferedReader in; static FastScanner sc; static PrintWriter out; static class FastScanner { BufferedReader in; StringTokenizer st; public FastScanner(BufferedReader in) { this.in = in; } public String nextToken() throws Exception { while (st == null || !st.hasMoreTokens()) { st = new StringTokenizer(in.readLine()); } return st.nextToken(); } public int nextInt() throws Exception { return Integer.parseInt(nextToken()); } public long nextLong() throws Exception { return Long.parseLong(nextToken()); } public double nextDouble() throws Exception { return Double.parseDouble(nextToken()); } } }
Java
["5\n\n3\n\n4"]
1 second
["? 1 5\n\n? 4 5\n\n! 1"]
NoteIn the sample suppose $$$a$$$ is $$$[5, 1, 4, 2, 3]$$$. So after asking the $$$[1..5]$$$ subsegment $$$4$$$ is second to max value, and it's position is $$$3$$$. After asking the $$$[4..5]$$$ subsegment $$$2$$$ is second to max value and it's position in the whole array is $$$4$$$.Note that there are other arrays $$$a$$$ that would produce the same interaction, and the answer for them might be different. Example output is given in purpose of understanding the interaction.
Java 11
standard input
[ "binary search", "interactive" ]
b3e8fe76706ba17cb285c75459508334
The first line contains a single integer $$$n$$$ $$$(2 \leq n \leq 10^5)$$$ — the number of elements in the array.
1,600
null
standard output
PASSED
54ab3e7aab737d7636a8797c4739e28d
train_109.jsonl
1613658900
The only difference between the easy and the hard version is the limit to the number of queries.This is an interactive problem.There is an array $$$a$$$ of $$$n$$$ different numbers. In one query you can ask the position of the second maximum element in a subsegment $$$a[l..r]$$$. Find the position of the maximum element in the array in no more than 40 queries.A subsegment $$$a[l..r]$$$ is all the elements $$$a_l, a_{l + 1}, ..., a_r$$$. After asking this subsegment you will be given the position of the second maximum from this subsegment in the whole array.
256 megabytes
//some updates in import stuff import static java.lang.Math.max; import static java.lang.Math.min; import static java.lang.Math.abs; import java.util.*; import java.io.*; import java.math.*; //update this bad boi too public class Main{ static int mod = (int) (Math.pow(10, 9)+7); static final int dx[] = { -1, 0, 1, 0 }, dy[] = { 0, -1, 0, 1 }; static final int[] dx8 = { -1, -1, -1, 0, 0, 1, 1, 1 }, dy8 = { -1, 0, 1, -1, 1, -1, 0, 1 }; static final int[] dx9 = { -1, -1, -1, 0, 0, 0, 1, 1, 1 }, dy9 = { -1, 0, 1, -1, 0, 1, -1, 0, 1 }; static final double eps = 1e-10; static List<Integer> primeNumbers = new ArrayList<>(); public static void main(String[] args) throws IOException{ MyScanner sc = new MyScanner(); //changes in this line of code out = new PrintWriter(new BufferedOutputStream(System.out)); // out = new PrintWriter(new BufferedWriter(new FileWriter("output.out"))); //WRITE YOUR CODE IN HERE int n = sc.nextInt(); int l = 1; int r = n; while(r-l > 1){ System.out.println("? " + l + " " + r); int index = sc.nextInt(); //we have the index of second max element int mid = l + (r-l)/2; if(index < mid){ System.out.println("? " + l + " " + mid); int get = sc.nextInt(); if(get == index){ r = mid; }else{ l = mid; } }else{ System.out.println("? " + mid + " " + r); int get = sc.nextInt(); if(get == index){ l = mid; }else{ r = mid; } } } if(l == r){ System.out.println("! " + l); }else{ System.out.println("? " + l + " " + r); int index = sc.nextInt(); if(index == l){ System.out.println("! " + r); }else{ System.out.println("! " + l); } } out.close(); } //------------------------------------------------------------------- //------------------------------------------------------------------- //------------------------------------------------------------------- //------------------------------------------------------------------- //------------------------------------------------------------------- //Updation Required //Fenwick Tree (customisable) //Segment Tree (customisable) //-----CURRENTLY PRESENT-------// //Graph //DSU //powerMODe //power //Segment Tree (work on this one) //Prime Sieve //Count Divisors //Next Permutation //Get NCR //isVowel //Sort (int) //Sort (long) //Binomial Coefficient //Pair //Triplet //lcm (int & long) //gcd (int & long) //gcd (for binomial coefficient) //swap (int & char) //reverse //Fast input and output //------------------------------------------------------------------- //------------------------------------------------------------------- //------------------------------------------------------------------- //------------------------------------------------------------------- //------------------------------------------------------------------- //GRAPH (basic structure) public static class Graph{ public int V; public ArrayList<ArrayList<Integer>> edges; //2 -> [0,1,2] (current) Graph(int V){ this.V = V; edges = new ArrayList<>(V+1); for(int i= 0; i <= V; i++){ edges.add(new ArrayList<>()); } } public void addEdge(int from , int to){ edges.get(from).add(to); } } //DSU (path and rank optimised) public static class DisjointUnionSets { int[] rank, parent; int n; public DisjointUnionSets(int n) { rank = new int[n]; parent = new int[n]; Arrays.fill(rank, 1); Arrays.fill(parent,-1); this.n = n; } public int find(int curr){ if(parent[curr] == -1) return curr; //path compression optimisation return parent[curr] = find(parent[curr]); } public void union(int a, int b){ int s1 = find(a); int s2 = find(b); if(s1 != s2){ if(rank[s1] < rank[s2]){ parent[s1] = s2; rank[s2] += rank[s1]; }else{ parent[s2] = s1; rank[s1] += rank[s2]; } } } } //with mod public static long powerMOD(long x, long y) { long res = 1L; while (y > 0) { // If y is odd, multiply x with result if ((y & 1) != 0){ x %= mod; res %= mod; res = (res * x)%mod; } // y must be even now y = y >> 1; // y = y/2 x%= mod; x = (x * x)%mod; // Change x to x^2 } return res%mod; } //without mod public static long power(long x, long y) { long res = 1L; while (y > 0) { // If y is odd, multiply x with result if ((y & 1) != 0){ res = (res * x); } // y must be even now y = y >> 1; // y = y/ x = (x * x); } return res; } public static class segmentTree{ public long[] arr; public long[] tree; public long[] lazy; segmentTree(long[] array){ int n = array.length; arr = new long[n]; for(int i= 0; i < n; i++) arr[i] = array[i]; tree = new long[4*n + 1]; lazy = new long[4*n + 1]; } public void build(int[]arr, int s, int e, int[] tree, int index){ if(s == e){ tree[index] = arr[s]; return; } //otherwise divide in two parts and fill both sides simply int mid = (s+e)/2; build(arr, s, mid, tree, 2*index); build(arr, mid+1, e, tree, 2*index+1); //who will build the current position dude tree[index] = Math.min(tree[2*index], tree[2*index+1]); } public int query(int sr, int er, int sc, int ec, int index, int[] tree){ if(lazy[index] != 0){ tree[index] += lazy[index]; if(sc != ec){ lazy[2*index+1] += lazy[index]; lazy[2*index] += lazy[index]; } lazy[index] = 0; } //no overlap if(sr > ec || sc > er) return Integer.MAX_VALUE; //found the index baby if(sr <= sc && ec <= er) return tree[index]; //finding the index on both sides hehehehhe int mid = (sc + ec)/2; int left = query(sr, er, sc, mid, 2*index, tree); int right = query(sr, er, mid+1, ec, 2*index + 1, tree); return Integer.min(left, right); } //now we will do point update implementation //it should be simple then we expected for sure public void update(int index, int indexr, int increment, int[] tree, int s, int e){ if(lazy[index] != 0){ tree[index] += lazy[index]; if(s != e){ lazy[2*index+1] = lazy[index]; lazy[2*index] = lazy[index]; } lazy[index] = 0; } //no overlap if(indexr < s || indexr > e) return; //found the required index if(s == e){ tree[index] += increment; return; } //search for the index on both sides int mid = (s+e)/2; update(2*index, indexr, increment, tree, s, mid); update(2*index+1, indexr, increment, tree, mid+1, e); //now update the current range simply tree[index] = Math.min(tree[2*index+1], tree[2*index]); } public void rangeUpdate(int[] tree , int index, int s, int e, int sr, int er, int increment){ //if not at all in the same range if(e < sr || er < s) return; //complete then also move forward if(s == e){ tree[index] += increment; return; } //otherwise move in both subparts int mid = (s+e)/2; rangeUpdate(tree, 2*index, s, mid, sr, er, increment); rangeUpdate(tree, 2*index + 1, mid+1, e, sr, er, increment); //update current range too na //i always forget this step for some reasons hehehe, idiot tree[index] = Math.min(tree[2*index], tree[2*index + 1]); } public void rangeUpdateLazy(int[] tree, int index, int s, int e, int sr, int er, int increment){ //update lazy values //resolve lazy value before going down if(lazy[index] != 0){ tree[index] += lazy[index]; if(s != e){ lazy[2*index+1] += lazy[index]; lazy[2*index] += lazy[index]; } lazy[index] = 0; } //no overlap case if(sr > e || s > er) return; //complete overlap if(sr <= s && er >= e){ tree[index] += increment; if(s != e){ lazy[2*index+1] += increment; lazy[2*index] += increment; } return; } //otherwise go on both left and right side and do your shit int mid = (s + e)/2; rangeUpdateLazy(tree, 2*index, s, mid, sr, er, increment); rangeUpdateLazy(tree, 2*index + 1, mid+1, e, sr, er, increment); tree[index] = Math.min(tree[2*index+1], tree[2*index]); return; } } //prime sieve public static void primeSieve(int n){ BitSet bitset = new BitSet(n+1); for(long i = 0; i < n ; i++){ if (i == 0 || i == 1) { bitset.set((int) i); continue; } if(bitset.get((int) i)) continue; primeNumbers.add((int)i); for(long j = i; j <= n ; j+= i) bitset.set((int)j); } } //number of divisors public static int countDivisors(long number){ if(number == 1) return 1; List<Integer> primeFactors = new ArrayList<>(); int index = 0; long curr = primeNumbers.get(index); while(curr * curr <= number){ while(number % curr == 0){ number = number/curr; primeFactors.add((int) curr); } index++; curr = primeNumbers.get(index); } if(number != 1) primeFactors.add((int) number); int current = primeFactors.get(0); int totalDivisors = 1; int currentCount = 2; for (int i = 1; i < primeFactors.size(); i++) { if (primeFactors.get(i) == current) { currentCount++; } else { totalDivisors *= currentCount; currentCount = 2; current = primeFactors.get(i); } } totalDivisors *= currentCount; return totalDivisors; } //now adding next permutation function to java hehe public static boolean next_permutation(int[] p) { for (int a = p.length - 2; a >= 0; --a) if (p[a] < p[a + 1]) for (int b = p.length - 1;; --b) if (p[b] > p[a]) { int t = p[a]; p[a] = p[b]; p[b] = t; for (++a, b = p.length - 1; a < b; ++a, --b) { t = p[a]; p[a] = p[b]; p[b] = t; } return true; } return false; } //finding the value of NCR in O(RlogN) time and O(1) space public static long getNcR(int n, int r) { long p = 1, k = 1; if (n - r < r) r = n - r; if (r != 0) { while (r > 0) { p *= n; k *= r; long m = __gcd(p, k); p /= m; k /= m; n--; r--; } } else { p = 1; } return p; } //is vowel function public static boolean isVowel(char c) { return (c=='a' || c=='A' || c=='e' || c=='E' || c=='i' || c=='I' || c=='o' || c=='O' || c=='u' || c=='U'); } //to sort the array with better method public static void sort(int[] a) { ArrayList<Integer> l=new ArrayList<>(); for (int i:a) l.add(i); Collections.sort(l); for (int i=0; i<a.length; i++) a[i]=l.get(i); } //sort long public static void sort(long[] a) { ArrayList<Long> l=new ArrayList<>(); for (long i:a) l.add(i); Collections.sort(l); for (int i=0; i<a.length; i++) a[i]=l.get(i); } //for calculating binomialCoeff public static int binomialCoeff(int n, int k) { int C[] = new int[k + 1]; // nC0 is 1 C[0] = 1; for (int i = 1; i <= n; i++) { // Compute next row of pascal // triangle using the previous row for (int j = Math.min(i, k); j > 0; j--) C[j] = C[j] + C[j - 1]; } return C[k]; } //Pair with int int public static class Pair{ public int a; public int b; Pair(int a , int b){ this.a = a; this.b = b; } @Override public String toString(){ return a + " -> " + b; } } //Triplet with int int int public static class Triplet{ public int a; public int b; public int c; Triplet(int a , int b, int c){ this.a = a; this.b = b; this.c = c; } @Override public String toString(){ return a + " -> " + b; } } //Shortcut function public static long lcm(long a , long b){ return a * (b/gcd(a,b)); } //let's make one for calculating lcm basically public static int lcm(int a , int b){ return (a * b)/gcd(a,b); } //int version for gcd public static int gcd(int a, int b){ if(b == 0) return a; return gcd(b , a%b); } //long version for gcd public static long gcd(long a, long b){ if(b == 0) return a; return gcd(b , a%b); } //for ncr calculator(ignore this code) public static long __gcd(long n1, long n2) { long gcd = 1; for (int i = 1; i <= n1 && i <= n2; ++i) { // Checks if i is factor of both integers if (n1 % i == 0 && n2 % i == 0) { gcd = i; } } return gcd; } //swapping two elements in an array public static void swap(int[] arr, int left , int right){ int temp = arr[left]; arr[left] = arr[right]; arr[right] = temp; } //for char array public static void swap(char[] arr, int left , int right){ char temp = arr[left]; arr[left] = arr[right]; arr[right] = temp; } //reversing an array public static void reverse(int[] arr){ int left = 0; int right = arr.length-1; while(left <= right){ swap(arr, left,right); left++; right--; } } //-----------PrintWriter for faster output--------------------------------- public static PrintWriter out; //-----------MyScanner class for faster input---------- public static class MyScanner { BufferedReader br; StringTokenizer st; public MyScanner() { br = new BufferedReader(new InputStreamReader(System.in)); } // public MyScanner() throws FileNotFoundException { // br = new BufferedReader(new FileReader("input.in")); // } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine(){ String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } } //-------------------------------------------------------- }
Java
["5\n\n3\n\n4"]
1 second
["? 1 5\n\n? 4 5\n\n! 1"]
NoteIn the sample suppose $$$a$$$ is $$$[5, 1, 4, 2, 3]$$$. So after asking the $$$[1..5]$$$ subsegment $$$4$$$ is second to max value, and it's position is $$$3$$$. After asking the $$$[4..5]$$$ subsegment $$$2$$$ is second to max value and it's position in the whole array is $$$4$$$.Note that there are other arrays $$$a$$$ that would produce the same interaction, and the answer for them might be different. Example output is given in purpose of understanding the interaction.
Java 11
standard input
[ "binary search", "interactive" ]
b3e8fe76706ba17cb285c75459508334
The first line contains a single integer $$$n$$$ $$$(2 \leq n \leq 10^5)$$$ — the number of elements in the array.
1,600
null
standard output
PASSED
3e1856facabb28b40252d6851212c0d5
train_109.jsonl
1613658900
The only difference between the easy and the hard version is the limit to the number of queries.This is an interactive problem.There is an array $$$a$$$ of $$$n$$$ different numbers. In one query you can ask the position of the second maximum element in a subsegment $$$a[l..r]$$$. Find the position of the maximum element in the array in no more than 40 queries.A subsegment $$$a[l..r]$$$ is all the elements $$$a_l, a_{l + 1}, ..., a_r$$$. After asking this subsegment you will be given the position of the second maximum from this subsegment in the whole array.
256 megabytes
import java.util.*; import java.io.*; public class D{ private static BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); private static BufferedWriter bw = new BufferedWriter(new OutputStreamWriter(System.out)); public static void main (String[] args) throws IOException{ int n = Integer.parseInt(br.readLine()); int l = 1, r = n; while(l!=r) { int mid = (int)Math.ceil((l+r)/2); bw.write("? " + l + " " + r + "\n"); bw.flush(); int prev = Integer.parseInt(br.readLine()); if(r-l==1) { if(prev==r) r = l; break; } if(prev<=mid) { bw.write("? " + l + " " + mid + "\n"); bw.flush(); int left = Integer.parseInt(br.readLine()); if(left == prev) { r = mid; continue; }else { l = mid; } }else { bw.write("? " + mid + " " + r + "\n"); bw.flush(); int right = Integer.parseInt(br.readLine()); if(right == prev) { l = mid; continue; }else { r = mid; } } } bw.write("! " + r + "\n"); bw.flush(); } }
Java
["5\n\n3\n\n4"]
1 second
["? 1 5\n\n? 4 5\n\n! 1"]
NoteIn the sample suppose $$$a$$$ is $$$[5, 1, 4, 2, 3]$$$. So after asking the $$$[1..5]$$$ subsegment $$$4$$$ is second to max value, and it's position is $$$3$$$. After asking the $$$[4..5]$$$ subsegment $$$2$$$ is second to max value and it's position in the whole array is $$$4$$$.Note that there are other arrays $$$a$$$ that would produce the same interaction, and the answer for them might be different. Example output is given in purpose of understanding the interaction.
Java 11
standard input
[ "binary search", "interactive" ]
b3e8fe76706ba17cb285c75459508334
The first line contains a single integer $$$n$$$ $$$(2 \leq n \leq 10^5)$$$ — the number of elements in the array.
1,600
null
standard output
PASSED
1354d93c8dafc4966aca86e883a2da4e
train_109.jsonl
1613658900
The only difference between the easy and the hard version is the limit to the number of queries.This is an interactive problem.There is an array $$$a$$$ of $$$n$$$ different numbers. In one query you can ask the position of the second maximum element in a subsegment $$$a[l..r]$$$. Find the position of the maximum element in the array in no more than 40 queries.A subsegment $$$a[l..r]$$$ is all the elements $$$a_l, a_{l + 1}, ..., a_r$$$. After asking this subsegment you will be given the position of the second maximum from this subsegment in the whole array.
256 megabytes
import static java.lang.Math.max; import static java.lang.Math.min; import static java.lang.Math.abs; import java.util.*; import java.io.*; import java.math.*; public class Template { public static void main(String[] args) throws Exception{ BufferedReader infile = new BufferedReader(new InputStreamReader(System.in)); StringTokenizer st = new StringTokenizer(infile.readLine()); int N = Integer.parseInt(st.nextToken()); System.out.println("? 1 " + N); System.out.flush(); int secondLarge = Integer.parseInt(infile.readLine()); int ans = 0; if(secondLarge > 1) { // check left then System.out.println("? 1 " + secondLarge); System.out.flush(); int index = Integer.parseInt(infile.readLine()); if(index == secondLarge) { // definitely we check left one int start = 1; int end = secondLarge-1; while(start < end) { int mid = (start+end+1)/2; System.out.println("? " + mid + " " + secondLarge); System.out.flush(); index = Integer.parseInt(infile.readLine()); if(index == secondLarge) { start = mid; } else { end = mid-1; } } ans = start; } } if(ans == 0 && secondLarge < N) { // then go for right int start = secondLarge+1; int end = N; while(start < end) { int mid = (start+end)/2; System.out.println("? " + secondLarge + " " + mid); System.out.flush(); int index = Integer.parseInt(infile.readLine()); if(index == secondLarge) { end = mid; } else { start = mid+1; } } ans = start; } System.out.println("! " + ans); System.out.flush(); } public static int[] readArr(int N, BufferedReader infile, StringTokenizer st) throws Exception { int[] arr = new int[N]; st = new StringTokenizer(infile.readLine()); for(int i=0; i < N; i++) arr[i] = Integer.parseInt(st.nextToken()); return arr; } }
Java
["5\n\n3\n\n4"]
1 second
["? 1 5\n\n? 4 5\n\n! 1"]
NoteIn the sample suppose $$$a$$$ is $$$[5, 1, 4, 2, 3]$$$. So after asking the $$$[1..5]$$$ subsegment $$$4$$$ is second to max value, and it's position is $$$3$$$. After asking the $$$[4..5]$$$ subsegment $$$2$$$ is second to max value and it's position in the whole array is $$$4$$$.Note that there are other arrays $$$a$$$ that would produce the same interaction, and the answer for them might be different. Example output is given in purpose of understanding the interaction.
Java 11
standard input
[ "binary search", "interactive" ]
b3e8fe76706ba17cb285c75459508334
The first line contains a single integer $$$n$$$ $$$(2 \leq n \leq 10^5)$$$ — the number of elements in the array.
1,600
null
standard output
PASSED
31af4d3a9c8baa22bcde938a9dbf7134
train_109.jsonl
1613658900
The only difference between the easy and the hard version is the limit to the number of queries.This is an interactive problem.There is an array $$$a$$$ of $$$n$$$ different numbers. In one query you can ask the position of the second maximum element in a subsegment $$$a[l..r]$$$. Find the position of the maximum element in the array in no more than 40 queries.A subsegment $$$a[l..r]$$$ is all the elements $$$a_l, a_{l + 1}, ..., a_r$$$. After asking this subsegment you will be given the position of the second maximum from this subsegment in the whole array.
256 megabytes
import static java.lang.Math.max; import static java.lang.Math.min; import static java.lang.Math.abs; import java.util.*; import java.io.*; import java.math.*; public class Template { public static void main(String[] args) throws Exception{ BufferedReader infile = new BufferedReader(new InputStreamReader(System.in)); StringTokenizer st = new StringTokenizer(infile.readLine()); int N = Integer.parseInt(st.nextToken()); System.out.println("? 1 " + N); System.out.flush(); int middle = Integer.parseInt(infile.readLine()); int res = 0; // check on left if(middle > 1) { System.out.println("? 1 " + middle); System.out.flush(); int index = Integer.parseInt(infile.readLine()); if(index == middle) { int start = 1; int end = middle-1; while(start != end) { int mid = (start+end+1)/2; System.out.println("? " + mid + " " + middle); System.out.flush(); index = Integer.parseInt(infile.readLine()); if(index == middle) { start = mid; } else { end = mid-1; } } res = start; } } // otherwise check on right if(res == 0 && middle < N) { int start = middle+1; int end = N; while(start != end) { int mid = (start+end)/2; System.out.println("? " + middle + " " + mid); System.out.flush(); int index = Integer.parseInt(infile.readLine()); if(index == middle) { end = mid; } else { start = mid+1; } } res = start; } System.out.println("! " + res); System.out.flush(); } public static int[] readArr(int N, BufferedReader infile, StringTokenizer st) throws Exception { int[] arr = new int[N]; st = new StringTokenizer(infile.readLine()); for(int i=0; i < N; i++) arr[i] = Integer.parseInt(st.nextToken()); return arr; } }
Java
["5\n\n3\n\n4"]
1 second
["? 1 5\n\n? 4 5\n\n! 1"]
NoteIn the sample suppose $$$a$$$ is $$$[5, 1, 4, 2, 3]$$$. So after asking the $$$[1..5]$$$ subsegment $$$4$$$ is second to max value, and it's position is $$$3$$$. After asking the $$$[4..5]$$$ subsegment $$$2$$$ is second to max value and it's position in the whole array is $$$4$$$.Note that there are other arrays $$$a$$$ that would produce the same interaction, and the answer for them might be different. Example output is given in purpose of understanding the interaction.
Java 11
standard input
[ "binary search", "interactive" ]
b3e8fe76706ba17cb285c75459508334
The first line contains a single integer $$$n$$$ $$$(2 \leq n \leq 10^5)$$$ — the number of elements in the array.
1,600
null
standard output
PASSED
10efcaab03ac836e6fb8f5c09e4e9229
train_109.jsonl
1613658900
The only difference between the easy and the hard version is the limit to the number of queries.This is an interactive problem.There is an array $$$a$$$ of $$$n$$$ different numbers. In one query you can ask the position of the second maximum element in a subsegment $$$a[l..r]$$$. Find the position of the maximum element in the array in no more than 40 queries.A subsegment $$$a[l..r]$$$ is all the elements $$$a_l, a_{l + 1}, ..., a_r$$$. After asking this subsegment you will be given the position of the second maximum from this subsegment in the whole array.
256 megabytes
/* package codechef; // don't place package name! */ import java.util.*; import java.lang.*; import java.io.*; /* Name of the class has to be "Main" only if the class is public. */ public class Codechef {static class FastReader { BufferedReader br; StringTokenizer st; public FastReader() { br = new BufferedReader(new InputStreamReader(System.in)); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } } public static void main (String[] args) throws java.lang.Exception { FastReader scan = new FastReader(); PrintWriter pw = new PrintWriter(System.out); int n = scan.nextInt(); int l=1; int r=n; while(l<r){ pw.println("? "+l+" "+r); pw.flush(); int smax = scan.nextInt(); int mid = (l+r)/2; if(smax<=mid){ if(l<mid){ pw.println("? "+l+" "+mid); pw.flush(); int check = scan.nextInt(); if(check==smax){ r = mid; } else l = mid+1; } else l = mid+1;} else{ if(mid+1<r){ pw.println("? "+(mid+1)+" "+r); pw.flush(); int check = scan.nextInt(); if(check==smax){ l = mid+1; } else r = mid;} else r = mid; } } pw.println("! "+l); pw.flush(); } }
Java
["5\n\n3\n\n4"]
1 second
["? 1 5\n\n? 4 5\n\n! 1"]
NoteIn the sample suppose $$$a$$$ is $$$[5, 1, 4, 2, 3]$$$. So after asking the $$$[1..5]$$$ subsegment $$$4$$$ is second to max value, and it's position is $$$3$$$. After asking the $$$[4..5]$$$ subsegment $$$2$$$ is second to max value and it's position in the whole array is $$$4$$$.Note that there are other arrays $$$a$$$ that would produce the same interaction, and the answer for them might be different. Example output is given in purpose of understanding the interaction.
Java 11
standard input
[ "binary search", "interactive" ]
b3e8fe76706ba17cb285c75459508334
The first line contains a single integer $$$n$$$ $$$(2 \leq n \leq 10^5)$$$ — the number of elements in the array.
1,600
null
standard output
PASSED
158bef7a0353aae1ea0a2ae376ddba0f
train_109.jsonl
1613658900
The only difference between the easy and the hard version is the limit to the number of queries.This is an interactive problem.There is an array $$$a$$$ of $$$n$$$ different numbers. In one query you can ask the position of the second maximum element in a subsegment $$$a[l..r]$$$. Find the position of the maximum element in the array in no more than 40 queries.A subsegment $$$a[l..r]$$$ is all the elements $$$a_l, a_{l + 1}, ..., a_r$$$. After asking this subsegment you will be given the position of the second maximum from this subsegment in the whole array.
256 megabytes
import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.util.ArrayList; import java.util.StringTokenizer; public class GuessingTheGreatest { static class FastScanner { BufferedReader br; StringTokenizer st; public FastScanner() { br = new BufferedReader(new InputStreamReader(System.in)); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } } public static void main(String[] args) { FastScanner f=new FastScanner(); int n=f.nextInt(); int smax=secmax(0,n-1); int l=0; int r=n-1; if(smax==0||secmax(0, smax)!=smax) { l=smax; r=n-1; while(r-l>1) { int mid=(l+r)/2; if(secmax(smax,mid)==smax) { r=mid; }else l=mid; } System.out.println("!"+" "+(r+1)); System.out.flush(); }else { l=0; r=smax; while(r-l>1) { int mid=(l+r)/2; if(secmax(mid,smax)==smax) { l=mid; }else r=mid; } System.out.println("!"+" "+(l+1)); System.out.flush(); } } static int secmax(int l,int r) { FastScanner f=new FastScanner(); if(l<r) { System.out.println("?"+" "+(l+1)+" "+(r+1)); System.out.flush(); int q=f.nextInt(); return (q-1); }else return -1; } }
Java
["5\n\n3\n\n4"]
1 second
["? 1 5\n\n? 4 5\n\n! 1"]
NoteIn the sample suppose $$$a$$$ is $$$[5, 1, 4, 2, 3]$$$. So after asking the $$$[1..5]$$$ subsegment $$$4$$$ is second to max value, and it's position is $$$3$$$. After asking the $$$[4..5]$$$ subsegment $$$2$$$ is second to max value and it's position in the whole array is $$$4$$$.Note that there are other arrays $$$a$$$ that would produce the same interaction, and the answer for them might be different. Example output is given in purpose of understanding the interaction.
Java 11
standard input
[ "binary search", "interactive" ]
b3e8fe76706ba17cb285c75459508334
The first line contains a single integer $$$n$$$ $$$(2 \leq n \leq 10^5)$$$ — the number of elements in the array.
1,600
null
standard output
PASSED
eabfbd7963ca084a020f970cec38316f
train_109.jsonl
1613658900
The only difference between the easy and the hard version is the limit to the number of queries.This is an interactive problem.There is an array $$$a$$$ of $$$n$$$ different numbers. In one query you can ask the position of the second maximum element in a subsegment $$$a[l..r]$$$. Find the position of the maximum element in the array in no more than 40 queries.A subsegment $$$a[l..r]$$$ is all the elements $$$a_l, a_{l + 1}, ..., a_r$$$. After asking this subsegment you will be given the position of the second maximum from this subsegment in the whole array.
256 megabytes
import java.util.*; import java.io.*; public class a2oj { static FastReader sc; static PrintWriter out; static int mod = 1000000007; public static void main(String[] args) throws IOException { if (System.getProperty("ONLINE_JUDGE") == null) { File f1 = new File("input.txt"); File f2 = new File("output.txt"); Reader r = new FileReader(f1); sc = new FastReader(r); out = new PrintWriter(f2); double prev = System.currentTimeMillis(); solve(); out.println("\n\nExecuted in : " + ((System.currentTimeMillis() - prev) / 1e3) + " sec"); } else { sc = new FastReader(new InputStreamReader(System.in)); out = new PrintWriter(System.out); solve(); } out.flush(); out.close(); } static void solve() { // int t = sc.nextInt(); // StringBuilder ans = new StringBuilder(""); // while (t-- > 0) { // } // out.println(ans); int n = sc.nextInt(); int l = 1, r = n; while (l + 1 < r) { int smp = query(l, r); int mid = (l + r) / 2; if (smp <= mid) { int nsmp = query(l, mid); if (nsmp == smp) { r = mid; } else { l = mid; } } else { int nsmp = query(mid, r); if (nsmp == smp) { l = mid; } else { r = mid; } } } int smp = query(l, r); printAns(smp == l ? r : l); } static int query(int l, int r) { // if (l == r) // return l; out.println("? " + l + " " + r); out.flush(); int n = sc.nextInt(); return n; } static void printAns(int ans) { out.println("! " + ans); out.flush(); System.exit(0); } public static int digitsCount(long x) { return (int) Math.floor(Math.log10(x)) + 1; } public static boolean isPowerTwo(long n) { return (n & n - 1) == 0; } static void sieve(boolean[] prime, int n) { // Sieve Of Eratosthenes for (int i = 1; i <= n; i++) { prime[i] = true; } for (int i = 2; i * i <= n; i++) { if (prime[i]) { for (int j = 2; i * j <= n; j++) { prime[i * j] = false; } } } } static void fillGraph(ArrayList<ArrayList<Integer>> adj, FastReader sc) { int n = sc.nextInt(), m = sc.nextInt(); for (int i = 0; i < n + 1; i++) { adj.add(new ArrayList<Integer>()); } for (int i = 1; i <= m; i++) { int x = sc.nextInt(), y = sc.nextInt(); adj.get(x).add(y); adj.get(y).add(x); } } static void dfs(ArrayList<ArrayList<Integer>> adj, boolean[] visited, int v, PrintWriter out) { visited[v] = true; out.print(v + " "); for (Integer i : adj.get(v)) { if (!visited[i]) dfs(adj, visited, i, out); } } static void bfs(ArrayList<ArrayList<Integer>> adj, int V, int s, PrintWriter out) { boolean[] visited = new boolean[V]; Queue<Integer> q = new LinkedList<>(); visited[s] = true; q.add(s); while (!q.isEmpty()) { s = q.poll(); out.print(s + " "); for (Integer i : adj.get(s)) { if (!visited[i]) { visited[i] = true; q.add(i); } } } } int fib(int n) { // n-th Fibonacci Number int a = 0, b = 1, c, i; if (n == 0) return a; for (i = 2; i <= n; i++) { c = a + b; a = b; b = c; } return b; } static long nCr(int n, int r) { // Combinations if (n < r) return 0; if (r > n - r) { // because nCr(n, r) == nCr(n, n - r) r = n - r; } long ans = 1L; for (int i = 0; i < r; i++) { ans *= (n - i); ans /= (i + 1); } return ans; } static long catalan(int n) { // n-th Catalan Number long c = nCr(2 * n, n); return c / (n + 1); } static class Pair implements Comparable<Pair> { // Pair Class int x; int y; public Pair(int x, int y) { this.x = x; this.y = y; } @Override public boolean equals(Object o) { if (this == o) { return true; } if (!(o instanceof Pair)) { return false; } Pair pair = (Pair) o; if (x != pair.x) { return false; } if (y != pair.y) { return false; } return true; } @Override public int hashCode() { long result = x; result = 31 * result + y; return (int) result; } @Override public int compareTo(Pair o) { return (int) (this.x - o.x); } } static class Trip<E, T, Z> { // Triplet Class E x; T y; Z z; Trip(E x, T y, Z z) { this.x = x; this.y = y; this.z = z; } public boolean equals(Trip<E, T, Z> o) { if (o instanceof Trip) { Trip<E, T, Z> t = o; return t.x == x && t.y == y && t.z == z; } return false; } public int hashCode() { return Integer.valueOf((int) x).hashCode() * 62 + Integer.valueOf((int) y).hashCode() * 31 + Integer.valueOf((int) z).hashCode(); } } static class FastReader { BufferedReader br; StringTokenizer st; public FastReader(Reader r) { br = new BufferedReader(r); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } } }
Java
["5\n\n3\n\n4"]
1 second
["? 1 5\n\n? 4 5\n\n! 1"]
NoteIn the sample suppose $$$a$$$ is $$$[5, 1, 4, 2, 3]$$$. So after asking the $$$[1..5]$$$ subsegment $$$4$$$ is second to max value, and it's position is $$$3$$$. After asking the $$$[4..5]$$$ subsegment $$$2$$$ is second to max value and it's position in the whole array is $$$4$$$.Note that there are other arrays $$$a$$$ that would produce the same interaction, and the answer for them might be different. Example output is given in purpose of understanding the interaction.
Java 11
standard input
[ "binary search", "interactive" ]
b3e8fe76706ba17cb285c75459508334
The first line contains a single integer $$$n$$$ $$$(2 \leq n \leq 10^5)$$$ — the number of elements in the array.
1,600
null
standard output
PASSED
cea18cb4f9b5073a3efcaf96d2afbb6f
train_109.jsonl
1613658900
The only difference between the easy and the hard version is the limit to the number of queries.This is an interactive problem.There is an array $$$a$$$ of $$$n$$$ different numbers. In one query you can ask the position of the second maximum element in a subsegment $$$a[l..r]$$$. Find the position of the maximum element in the array in no more than 40 queries.A subsegment $$$a[l..r]$$$ is all the elements $$$a_l, a_{l + 1}, ..., a_r$$$. After asking this subsegment you will be given the position of the second maximum from this subsegment in the whole array.
256 megabytes
import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.util.StringTokenizer; public class Solution { static Reader input; public static void main(String[] args) throws IOException { input = new Reader(); int n = input.nextInt(); int secondMax = ask(1, n), temp; int max; if(secondMax == n) { max = leftBinarySearch(1, n-1, secondMax); } else if(secondMax == 1) { max = rightBinarySearch(2, n, secondMax); } else { temp = ask(secondMax, n); if(temp != secondMax) { max = leftBinarySearch(1, secondMax-1, secondMax); } else { max = rightBinarySearch(secondMax+1, n, secondMax); } } System.out.println("! " + max); } static int leftBinarySearch(int l, int r, int secondMax) throws IOException { int temp, middle, left = l, right = r, answer = l; while(left <= right) { middle = left+right>>1; temp = ask(middle, secondMax); if(temp == secondMax) { answer = middle; left = middle+1; } else { right = middle-1; } } return answer; } static int rightBinarySearch(int l, int r, int secondMax) throws IOException { int temp, middle, left = l, right = r, answer = r; while(left <= right) { middle = left+right>>1; temp = ask(secondMax, middle); if(temp == secondMax) { answer = middle; right = middle-1; } else { left = middle+1; } } return answer; } static int ask(int l, int r) throws IOException { System.out.println("? " + l + " " + r); System.out.flush(); return input.nextInt(); } static class Reader { BufferedReader bufferedReader; StringTokenizer string; public Reader() { InputStreamReader inr = new InputStreamReader(System.in); bufferedReader = new BufferedReader(inr); } public String next() throws IOException { while(string == null || ! string.hasMoreElements()) { string = new StringTokenizer(bufferedReader.readLine()); } return string.nextToken(); } public int nextInt() throws IOException { return Integer.parseInt(next()); } public long nextLong() throws IOException { return Long.parseLong(next()); } public double nextDouble() throws IOException { return Double.parseDouble(next()); } public String nextLine() throws IOException { return bufferedReader.readLine(); } } }
Java
["5\n\n3\n\n4"]
1 second
["? 1 5\n\n? 4 5\n\n! 1"]
NoteIn the sample suppose $$$a$$$ is $$$[5, 1, 4, 2, 3]$$$. So after asking the $$$[1..5]$$$ subsegment $$$4$$$ is second to max value, and it's position is $$$3$$$. After asking the $$$[4..5]$$$ subsegment $$$2$$$ is second to max value and it's position in the whole array is $$$4$$$.Note that there are other arrays $$$a$$$ that would produce the same interaction, and the answer for them might be different. Example output is given in purpose of understanding the interaction.
Java 11
standard input
[ "binary search", "interactive" ]
b3e8fe76706ba17cb285c75459508334
The first line contains a single integer $$$n$$$ $$$(2 \leq n \leq 10^5)$$$ — the number of elements in the array.
1,600
null
standard output
PASSED
977243cfb9cbc0f340e1b1ce9f753706
train_109.jsonl
1613658900
The only difference between the easy and the hard version is the limit to the number of queries.This is an interactive problem.There is an array $$$a$$$ of $$$n$$$ different numbers. In one query you can ask the position of the second maximum element in a subsegment $$$a[l..r]$$$. Find the position of the maximum element in the array in no more than 40 queries.A subsegment $$$a[l..r]$$$ is all the elements $$$a_l, a_{l + 1}, ..., a_r$$$. After asking this subsegment you will be given the position of the second maximum from this subsegment in the whole array.
256 megabytes
import java.util.*; import java.util.concurrent.CompletableFuture; import javax.swing.text.Segment; import java.io.*; import java.math.*; import java.sql.Array; public class Main { static class Reader{ BufferedReader br; StringTokenizer st; public Reader() { br = new BufferedReader(new InputStreamReader(System.in)); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } } static long mod = (long)(1e9 + 7); static void sort(long[] arr ) { ArrayList<Long> al = new ArrayList<>(); for(long e:arr) al.add(e); Collections.sort(al); for(int i = 0 ; i<al.size(); i++) arr[i] = al.get(i); } static void sort(int[] arr ) { ArrayList<Integer> al = new ArrayList<>(); for(int e:arr) al.add(e); Collections.sort(al); for(int i = 0 ; i<al.size(); i++) arr[i] = al.get(i); } static void sort(char[] arr) { ArrayList<Character> al = new ArrayList<Character>(); for(char cc:arr) al.add(cc); Collections.sort(al); for(int i = 0 ;i<arr.length ;i++) arr[i] = al.get(i); } static void rvrs(int[] arr) { int i =0 , j = arr.length-1; while(i>=j) { int temp = arr[i]; arr[i] = arr[j]; arr[j] = temp; i++; j--; } } static void rvrs(long[] arr) { int i =0 , j = arr.length-1; while(i>=j) { long temp = arr[i]; arr[i] = arr[j]; arr[j] = temp; i++; j--; } } static long mod_mul(long a , long b ,long mod) { return ((a%mod)*(b%mod))%mod; } static long gcd(long a, long b) { if (b == 0) return a; return gcd(b, a % b); } static boolean[] prime(int num) { boolean[] bool = new boolean[num]; for (int i = 0; i< bool.length; i++) { bool[i] = true; } for (int i = 2; i< Math.sqrt(num); i++) { if(bool[i] == true) { for(int j = (i*i); j<num; j = j+i) { bool[j] = false; } } } if(num >= 0) { bool[0] = false; bool[1] = false; } return bool; } static long modInverse(long a, long m) { long g = gcd(a, m); return power(a, m - 2, m); } static long power(long x, long y, long m){ if (y == 0) return 1; long p = power(x, y / 2, m) % m; p = (int)((p * (long)p) % m); if (y % 2 == 0) return p; else return (int)((x * (long)p) % m); } static class Combinations{ private long[] z; private long[] z1; private long[] z2; public Combinations(long N , long mod) { z = new long[(int)N+1]; z1 = new long[(int)N+1]; z[0] = 1; for(int i =1 ; i<=N ; i++) z[i] = (z[i-1]*i)%mod; z2 = new long[(int)N+1]; z2[0] = z2[1] = 1; for (int i = 2; i <= N; i++) z2[i] = z2[(int)(mod % i)] * (mod - mod / i) % mod; z1[0] = z1[1] = 1; for (int i = 2; i <= N; i++) z1[i] = (z2[i] * z1[i - 1]) % mod; } long fac(long n) { return z[(int)n]; } long invrsNum(long n) { return z2[(int)n]; } long invrsFac(long n) { return invrsFac((int)n); } long ncr(long N, long R, long mod) { if(R<0 || R>N ) return 0; long ans = ((z[(int)N] * z1[(int)R]) % mod * z1[(int)(N - R)]) % mod; return ans; } } static class DisjointUnionSets { int[] rank, parent; int n; public DisjointUnionSets(int n) { rank = new int[n]; parent = new int[n]; this.n = n; makeSet(); } void makeSet() { for (int i = 0; i < n; i++) { parent[i] = i; } } int find(int x) { if (parent[x] != x) { parent[x] = find(parent[x]); } return parent[x]; } void union(int x, int y) { int xRoot = find(x), yRoot = find(y); if (xRoot == yRoot) return; if (rank[xRoot] < rank[yRoot]) parent[xRoot] = yRoot; else if (rank[yRoot] < rank[xRoot]) parent[yRoot] = xRoot; else { parent[yRoot] = xRoot; rank[xRoot] = rank[xRoot] + 1; } } } static int[] KMP(String str) { int n = str.length(); int[] kmp = new int[n]; for(int i = 1 ; i<n ; i++) { int j = kmp[i-1]; while(j>0 && str.charAt(i) != str.charAt(j)) { j = kmp[j-1]; } if(str.charAt(i) == str.charAt(j)) j++; kmp[i] = j; } return kmp; } /************************************************ Query **************************************************************************************/ /***************************************** Sparse Table ********************************************************/ static class SparseTable{ private long[][] st; SparseTable(long[] arr){ int n = arr.length; st = new long[n][25]; log = new int[n+2]; build_log(n+1); build(arr); } private void build(long[] arr) { int n = arr.length; for(int i = n-1 ; i>=0 ; i--) { for(int j = 0 ; j<25 ; j++) { int r = i + (1<<j)-1; if(r>=n) break; if(j == 0 ) st[i][j] = arr[i]; else st[i][j] = Math.min(st[i][j-1] , st[ i + ( 1 << (j-1) ) ][ j-1 ] ); } } } public long gcd(long a ,long b) { if(a == 0) return b; return gcd(b%a , a); } public long query(int l ,int r) { int w = r-l+1; int power = log[w]; return Math.min(st[l][power],st[r - (1<<power) + 1][power]); } private int[] log; void build_log(int n) { log[1] = 0; for(int i = 2 ; i<=n ; i++) { log[i] = 1 + log[i/2]; } } } /******************************************************** Segement Tree *****************************************************/ /** static class SegmentTree{ long[] tree; long[] arr; int n; SegmentTree(long[] arr){ this.n = arr.length; tree = new long[4*n+1]; this.arr = arr; buildTree(0, n-1, 1); } void buildTree(int s ,int e ,int index ) { if(s == e) { tree[index] = arr[s]; return; } int mid = (s+e)/2; buildTree( s, mid, 2*index); buildTree( mid+1, e, 2*index+1); tree[index] = Math.min(tree[2*index] , tree[2*index+1]); } long query(int si ,int ei) { return query(0 ,n-1 , si ,ei , 1 ); } private long query( int ss ,int se ,int qs , int qe,int index) { if(ss>=qs && se<=qe) return tree[index]; if(qe<ss || se<qs) return (long)(1e17); int mid = (ss + se)/2; long left = query( ss , mid , qs ,qe , 2*index); long right= query(mid + 1 , se , qs ,qe , 2*index+1); return Math.min(left, right); } public void update(int index , int val) { arr[index] = val; for(long e:arr) System.out.print(e+" "); update(index , 0 , n-1 , 1); } private void update(int id ,int si , int ei , int index) { if(id < si || id>ei) return; if(si == ei ) { tree[index] = arr[id]; return; } if(si > ei) return; int mid = (ei + si)/2; update( id, si, mid , 2*index); update( id , mid+1, ei , 2*index+1); tree[index] = Math.min(tree[2*index] ,tree[2*index+1]); } } */ /* ***************************************************************************************************************************************************/ static Reader sc = new Reader(); static StringBuilder sb = new StringBuilder(); public static void main(String args[]) throws IOException { int tc = 1; // tc = sc.nextInt(); for(int i = 1 ; i<=tc ; i++) { // sb.append("Case #" + i + ": " ); // During KickStart && HackerCup TEST_CASE(); } System.out.println(sb); // System.out.println(); } static void TEST_CASE() { int l = 1, r = sc.nextInt(), mid, x; int second_max = query(l, r); while (l < r) { mid = (l + r) / 2; if (second_max <= mid) { x = query(Math.min(l, second_max), mid); if (x == second_max) r = mid; else l = mid + 1; } else { x = query(mid + 1, Math.max(second_max, r)); if (x == second_max) l = mid + 1; else r = mid; } } System.out.printf("! %d\n", l); } static int query(int a, int b) { if(a>=b) return 0; System.out.println("? "+a+" "+b); System.out.flush(); return sc.nextInt(); } } /*******************************************************************************************************************************************************/ /** */
Java
["5\n\n3\n\n4"]
1 second
["? 1 5\n\n? 4 5\n\n! 1"]
NoteIn the sample suppose $$$a$$$ is $$$[5, 1, 4, 2, 3]$$$. So after asking the $$$[1..5]$$$ subsegment $$$4$$$ is second to max value, and it's position is $$$3$$$. After asking the $$$[4..5]$$$ subsegment $$$2$$$ is second to max value and it's position in the whole array is $$$4$$$.Note that there are other arrays $$$a$$$ that would produce the same interaction, and the answer for them might be different. Example output is given in purpose of understanding the interaction.
Java 11
standard input
[ "binary search", "interactive" ]
b3e8fe76706ba17cb285c75459508334
The first line contains a single integer $$$n$$$ $$$(2 \leq n \leq 10^5)$$$ — the number of elements in the array.
1,600
null
standard output
PASSED
c5ea1d1ffd6aff748fab8b3bfe516ed5
train_109.jsonl
1613658900
The only difference between the easy and the hard version is the limit to the number of queries.This is an interactive problem.There is an array $$$a$$$ of $$$n$$$ different numbers. In one query you can ask the position of the second maximum element in a subsegment $$$a[l..r]$$$. Find the position of the maximum element in the array in no more than 40 queries.A subsegment $$$a[l..r]$$$ is all the elements $$$a_l, a_{l + 1}, ..., a_r$$$. After asking this subsegment you will be given the position of the second maximum from this subsegment in the whole array.
256 megabytes
import java.util.*; import java.io.*; public class three { public static void main(String[] args) throws IOException, FileNotFoundException { BufferedReader in = new BufferedReader(new InputStreamReader(System.in)); //BufferedReader in = new BufferedReader(new FileReader("three")); int n = Integer.parseInt(in.readLine()); int left = 0; int right = n-1; while (left < right) { System.out.println("? " + (left+1) + " " + (1+right)); System.out.flush(); int lastmin = Integer.parseInt(in.readLine())-1; int mid = (left + right)/2; if (mid == left && mid >= lastmin) { left = mid+1; break; } if (mid >= lastmin) { System.out.println("? " + (left+1) + " " + (1+mid)); System.out.flush(); int curmin = Integer.parseInt(in.readLine())-1; if (lastmin == curmin) { right = mid; } else { left = mid + 1; } // lastmin = curmin; } else { System.out.println("? " + (mid+1) + " " + (1+right)); System.out.flush(); int curmin = Integer.parseInt(in.readLine())-1; if (lastmin == curmin) { left = mid; } else { right = mid-1; } // lastmin = curmin; } if (left < right) { if (lastmin == left) left++; if (lastmin == right) right--; } } System.out.println("! " + (left+1)); } }
Java
["5\n\n3\n\n4"]
1 second
["? 1 5\n\n? 4 5\n\n! 1"]
NoteIn the sample suppose $$$a$$$ is $$$[5, 1, 4, 2, 3]$$$. So after asking the $$$[1..5]$$$ subsegment $$$4$$$ is second to max value, and it's position is $$$3$$$. After asking the $$$[4..5]$$$ subsegment $$$2$$$ is second to max value and it's position in the whole array is $$$4$$$.Note that there are other arrays $$$a$$$ that would produce the same interaction, and the answer for them might be different. Example output is given in purpose of understanding the interaction.
Java 11
standard input
[ "binary search", "interactive" ]
b3e8fe76706ba17cb285c75459508334
The first line contains a single integer $$$n$$$ $$$(2 \leq n \leq 10^5)$$$ — the number of elements in the array.
1,600
null
standard output
PASSED
d657410fc1b2be5057f2804e1d651647
train_109.jsonl
1613658900
The only difference between the easy and the hard version is the limit to the number of queries.This is an interactive problem.There is an array $$$a$$$ of $$$n$$$ different numbers. In one query you can ask the position of the second maximum element in a subsegment $$$a[l..r]$$$. Find the position of the maximum element in the array in no more than 40 queries.A subsegment $$$a[l..r]$$$ is all the elements $$$a_l, a_{l + 1}, ..., a_r$$$. After asking this subsegment you will be given the position of the second maximum from this subsegment in the whole array.
256 megabytes
import java.io.*; import java.util.*; @SuppressWarnings("unchecked") public class GuessingtheGreatest implements Runnable { void solve() throws IOException { int l = 1, h = read.intNext(); while (h - l > 1) { int mid = (h + l) / 2; int curr = ask(l, h); if (curr < mid) { if (ask(l, mid) == curr) { h = mid; } else { l = mid; } } else { if( ask(mid, h) == curr){ l = mid; }else{ h = mid; } } } int q = ask(l, h); if( q == h ){ println("! " + l); }else{ println("! " + h); } } int ask(int l, int h) throws IOException { if (l >= h) return -1; System.out.println("? " + l + " " + h); return read.intNext(); } /************************************************************************************************************************************************/ public static void main(String[] args) throws IOException { new Thread(null, new GuessingtheGreatest(), "1").start(); } static PrintWriter out = new PrintWriter(System.out); static Reader read = new Reader(); static StringBuilder sbr = new StringBuilder(); static int mod = (int) 1e9 + 7; static int dmax = Integer.MAX_VALUE; static long lmax = Long.MAX_VALUE; static int dmin = Integer.MIN_VALUE; static long lmin = Long.MIN_VALUE; @Override public void run() { try { solve(); out.close(); } catch (IOException e) { e.printStackTrace(); System.exit(1); } } static class Reader { private byte[] buf = new byte[1024]; private int index; private InputStream in; private int total; public Reader() { in = System.in; } public int scan() throws IOException { if (total < 0) throw new InputMismatchException(); if (index >= total) { index = 0; total = in.read(buf); if (total <= 0) return -1; } return buf[index++]; } public int intNext() throws IOException { int integer = 0; int n = scan(); while (isWhiteSpace(n)) n = scan(); int neg = 1; if (n == '-') { neg = -1; n = scan(); } while (!isWhiteSpace(n)) { if (n >= '0' && n <= '9') { integer *= 10; integer += n - '0'; n = scan(); } else throw new InputMismatchException(); } return neg * integer; } public double doubleNext() throws IOException { double doub = 0; int n = scan(); while (isWhiteSpace(n)) n = scan(); int neg = 1; if (n == '-') { neg = -1; n = scan(); } while (!isWhiteSpace(n) && n != '.') { if (n >= '0' && n <= '9') { doub *= 10; doub += n - '0'; n = scan(); } else throw new InputMismatchException(); } if (n == '.') { n = scan(); double temp = 1; while (!isWhiteSpace(n)) { if (n >= '0' && n <= '9') { temp /= 10; doub += (n - '0') * temp; n = scan(); } else throw new InputMismatchException(); } } return doub * neg; } public String read() throws IOException { StringBuilder sb = new StringBuilder(); int n = scan(); while (isWhiteSpace(n)) n = scan(); while (!isWhiteSpace(n)) { sb.append((char) n); n = scan(); } return sb.toString(); } private boolean isWhiteSpace(int n) { if (n == ' ' || n == '\n' || n == '\r' || n == '\t' || n == -1) return true; return false; } } static void shuffle(int[] aa, int n) { Random rand = new Random(); for (int i = 1; i < n; i++) { int j = rand.nextInt(i + 1); int tmp = aa[i]; aa[i] = aa[j]; aa[j] = tmp; } } static void shuffle(int[][] aa, int n) { Random rand = new Random(); for (int i = 1; i < n; i++) { int j = rand.nextInt(i + 1); int first = aa[i][0]; int second = aa[i][1]; aa[i][0] = aa[j][0]; aa[i][1] = aa[j][1]; aa[j][0] = first; aa[j][1] = second; } } static final class Comparators { public static final Comparator<int[]> pairIntArr = (x, y) -> x[0] == y[0] ? compare(x[1], y[1]) : compare(x[0], y[0]); private static final int compare(final int x, final int y) { return Integer.compare(x, y); } } static void print(Object object) { out.print(object); } static void println(Object object) { out.println(object); } static int[] iArr(int len) { return new int[len]; } static long[] lArr(int len) { return new long[len]; } static long min(long a, long b) { return Math.min(a, b); } static int min(int a, int b) { return Math.min(a, b); } static long max(Long a, Long b) { return Math.max(a, b); } static int max(int a, int b) { return Math.max(a, b); } }
Java
["5\n\n3\n\n4"]
1 second
["? 1 5\n\n? 4 5\n\n! 1"]
NoteIn the sample suppose $$$a$$$ is $$$[5, 1, 4, 2, 3]$$$. So after asking the $$$[1..5]$$$ subsegment $$$4$$$ is second to max value, and it's position is $$$3$$$. After asking the $$$[4..5]$$$ subsegment $$$2$$$ is second to max value and it's position in the whole array is $$$4$$$.Note that there are other arrays $$$a$$$ that would produce the same interaction, and the answer for them might be different. Example output is given in purpose of understanding the interaction.
Java 11
standard input
[ "binary search", "interactive" ]
b3e8fe76706ba17cb285c75459508334
The first line contains a single integer $$$n$$$ $$$(2 \leq n \leq 10^5)$$$ — the number of elements in the array.
1,600
null
standard output
PASSED
f1e08dc5b9dd8cff1f239372a58c5902
train_109.jsonl
1613658900
The only difference between the easy and the hard version is the limit to the number of queries.This is an interactive problem.There is an array $$$a$$$ of $$$n$$$ different numbers. In one query you can ask the position of the second maximum element in a subsegment $$$a[l..r]$$$. Find the position of the maximum element in the array in no more than 40 queries.A subsegment $$$a[l..r]$$$ is all the elements $$$a_l, a_{l + 1}, ..., a_r$$$. After asking this subsegment you will be given the position of the second maximum from this subsegment in the whole array.
256 megabytes
import java.io.*; import java.util.*; @SuppressWarnings("unchecked") public class GuessingtheGreatest implements Runnable { void solve() throws IOException { int l = 0, h = read.intNext(); while (h - l > 1) { int mid = (h + l) / 2; int curr = ask(l, h - 1); if (curr < mid) { if (ask(l, mid - 1) == curr) { h = mid; } else { l = mid; } } else { if( ask(mid, h - 1) == curr){ l = mid; }else{ h = mid; } } } println("! " + h); } int ask(int l, int h) throws IOException { if (l >= h) return -1; System.out.println("? " + (l + 1) + " " + (h + 1)); return read.intNext() - 1; } /************************************************************************************************************************************************/ public static void main(String[] args) throws IOException { new Thread(null, new GuessingtheGreatest(), "1").start(); } static PrintWriter out = new PrintWriter(System.out); static Reader read = new Reader(); static StringBuilder sbr = new StringBuilder(); static int mod = (int) 1e9 + 7; static int dmax = Integer.MAX_VALUE; static long lmax = Long.MAX_VALUE; static int dmin = Integer.MIN_VALUE; static long lmin = Long.MIN_VALUE; @Override public void run() { try { solve(); out.close(); } catch (IOException e) { e.printStackTrace(); System.exit(1); } } static class Reader { private byte[] buf = new byte[1024]; private int index; private InputStream in; private int total; public Reader() { in = System.in; } public int scan() throws IOException { if (total < 0) throw new InputMismatchException(); if (index >= total) { index = 0; total = in.read(buf); if (total <= 0) return -1; } return buf[index++]; } public int intNext() throws IOException { int integer = 0; int n = scan(); while (isWhiteSpace(n)) n = scan(); int neg = 1; if (n == '-') { neg = -1; n = scan(); } while (!isWhiteSpace(n)) { if (n >= '0' && n <= '9') { integer *= 10; integer += n - '0'; n = scan(); } else throw new InputMismatchException(); } return neg * integer; } public double doubleNext() throws IOException { double doub = 0; int n = scan(); while (isWhiteSpace(n)) n = scan(); int neg = 1; if (n == '-') { neg = -1; n = scan(); } while (!isWhiteSpace(n) && n != '.') { if (n >= '0' && n <= '9') { doub *= 10; doub += n - '0'; n = scan(); } else throw new InputMismatchException(); } if (n == '.') { n = scan(); double temp = 1; while (!isWhiteSpace(n)) { if (n >= '0' && n <= '9') { temp /= 10; doub += (n - '0') * temp; n = scan(); } else throw new InputMismatchException(); } } return doub * neg; } public String read() throws IOException { StringBuilder sb = new StringBuilder(); int n = scan(); while (isWhiteSpace(n)) n = scan(); while (!isWhiteSpace(n)) { sb.append((char) n); n = scan(); } return sb.toString(); } private boolean isWhiteSpace(int n) { if (n == ' ' || n == '\n' || n == '\r' || n == '\t' || n == -1) return true; return false; } } static void shuffle(int[] aa, int n) { Random rand = new Random(); for (int i = 1; i < n; i++) { int j = rand.nextInt(i + 1); int tmp = aa[i]; aa[i] = aa[j]; aa[j] = tmp; } } static void shuffle(int[][] aa, int n) { Random rand = new Random(); for (int i = 1; i < n; i++) { int j = rand.nextInt(i + 1); int first = aa[i][0]; int second = aa[i][1]; aa[i][0] = aa[j][0]; aa[i][1] = aa[j][1]; aa[j][0] = first; aa[j][1] = second; } } static final class Comparators { public static final Comparator<int[]> pairIntArr = (x, y) -> x[0] == y[0] ? compare(x[1], y[1]) : compare(x[0], y[0]); private static final int compare(final int x, final int y) { return Integer.compare(x, y); } } static void print(Object object) { out.print(object); } static void println(Object object) { out.println(object); } static int[] iArr(int len) { return new int[len]; } static long[] lArr(int len) { return new long[len]; } static long min(long a, long b) { return Math.min(a, b); } static int min(int a, int b) { return Math.min(a, b); } static long max(Long a, Long b) { return Math.max(a, b); } static int max(int a, int b) { return Math.max(a, b); } }
Java
["5\n\n3\n\n4"]
1 second
["? 1 5\n\n? 4 5\n\n! 1"]
NoteIn the sample suppose $$$a$$$ is $$$[5, 1, 4, 2, 3]$$$. So after asking the $$$[1..5]$$$ subsegment $$$4$$$ is second to max value, and it's position is $$$3$$$. After asking the $$$[4..5]$$$ subsegment $$$2$$$ is second to max value and it's position in the whole array is $$$4$$$.Note that there are other arrays $$$a$$$ that would produce the same interaction, and the answer for them might be different. Example output is given in purpose of understanding the interaction.
Java 11
standard input
[ "binary search", "interactive" ]
b3e8fe76706ba17cb285c75459508334
The first line contains a single integer $$$n$$$ $$$(2 \leq n \leq 10^5)$$$ — the number of elements in the array.
1,600
null
standard output
PASSED
0bcbb9a351353af00eb8c5b5c486afec
train_109.jsonl
1613658900
The only difference between the easy and the hard version is the limit to the number of queries.This is an interactive problem.There is an array $$$a$$$ of $$$n$$$ different numbers. In one query you can ask the position of the second maximum element in a subsegment $$$a[l..r]$$$. Find the position of the maximum element in the array in no more than 40 queries.A subsegment $$$a[l..r]$$$ is all the elements $$$a_l, a_{l + 1}, ..., a_r$$$. After asking this subsegment you will be given the position of the second maximum from this subsegment in the whole array.
256 megabytes
import java.io.*; import java.util.*; public class Solution{ public static void main(String args[]){ Scanner sc = new Scanner(System.in); int n = sc.nextInt(); int l = 1; int r = n; boolean done = false; while(!done){ if(l==r-1){ System.out.println("? "+l+" "+r); int z = sc.nextInt(); int ans = z==l? r:l; System.out.println("! "+ans); System.out.flush(); done = true; break; } if(l==r){ int ans = l; System.out.println("! "+ans); System.out.flush(); done = true; break; } System.out.println("? "+l+" "+r); int x = sc.nextInt(); int mid = (r+l)/2; if(x<=mid){ System.out.println("? "+l+" "+mid); int y = sc.nextInt(); if(x==y){ r = mid; } else{ l = mid+1; } } else{ if(mid==r-1){ System.out.println("? "+(mid)+" "+r); int y = sc.nextInt(); if(x==y){ l = mid; } else{ r = mid; } } else{ System.out.println("? "+(mid+1)+" "+r); int y = sc.nextInt(); if(x==y){ l = mid+1; } else{ r = mid; } } } } } }
Java
["5\n\n3\n\n4"]
1 second
["? 1 5\n\n? 4 5\n\n! 1"]
NoteIn the sample suppose $$$a$$$ is $$$[5, 1, 4, 2, 3]$$$. So after asking the $$$[1..5]$$$ subsegment $$$4$$$ is second to max value, and it's position is $$$3$$$. After asking the $$$[4..5]$$$ subsegment $$$2$$$ is second to max value and it's position in the whole array is $$$4$$$.Note that there are other arrays $$$a$$$ that would produce the same interaction, and the answer for them might be different. Example output is given in purpose of understanding the interaction.
Java 11
standard input
[ "binary search", "interactive" ]
b3e8fe76706ba17cb285c75459508334
The first line contains a single integer $$$n$$$ $$$(2 \leq n \leq 10^5)$$$ — the number of elements in the array.
1,600
null
standard output
PASSED
257b36778e8ac509102eda7b34d2815c
train_109.jsonl
1613658900
The only difference between the easy and the hard version is the limit to the number of queries.This is an interactive problem.There is an array $$$a$$$ of $$$n$$$ different numbers. In one query you can ask the position of the second maximum element in a subsegment $$$a[l..r]$$$. Find the position of the maximum element in the array in no more than 40 queries.A subsegment $$$a[l..r]$$$ is all the elements $$$a_l, a_{l + 1}, ..., a_r$$$. After asking this subsegment you will be given the position of the second maximum from this subsegment in the whole array.
256 megabytes
import java.io.*; import java.util.*; public class guessingTheGreatest { static MyScanner sc = new MyScanner(); public static void main(String[] args) { int n = sc.nextInt(); int l = 1; int r = n; int res = -1; while(l<r) { int mid = l + (r-l)/2; int x = ask(l,r); if(r==l+1) { if(x==l) { res = r; } else { res = l; } break; } else { if(x>=mid) { int x2 = ask(mid,r); if(x2==x) { l = mid; } else { r = mid-1; } } else { int x2 = ask(l,mid); if(x2==x) { r = mid; } else { l = mid+1; } } } res = l; } System.out.println("! "+res); System.out.flush(); } static int ask(int a, int b) { System.out.println("? "+a+" "+b); System.out.flush(); int x = sc.nextInt(); return x; } public static class MyScanner { BufferedReader br; StringTokenizer st; public MyScanner() { br = new BufferedReader(new InputStreamReader(System.in)); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } } }
Java
["5\n\n3\n\n4"]
1 second
["? 1 5\n\n? 4 5\n\n! 1"]
NoteIn the sample suppose $$$a$$$ is $$$[5, 1, 4, 2, 3]$$$. So after asking the $$$[1..5]$$$ subsegment $$$4$$$ is second to max value, and it's position is $$$3$$$. After asking the $$$[4..5]$$$ subsegment $$$2$$$ is second to max value and it's position in the whole array is $$$4$$$.Note that there are other arrays $$$a$$$ that would produce the same interaction, and the answer for them might be different. Example output is given in purpose of understanding the interaction.
Java 11
standard input
[ "binary search", "interactive" ]
b3e8fe76706ba17cb285c75459508334
The first line contains a single integer $$$n$$$ $$$(2 \leq n \leq 10^5)$$$ — the number of elements in the array.
1,600
null
standard output
PASSED
58b1019cdb8e383b86a3a33bfe3b7b45
train_109.jsonl
1613658900
The only difference between the easy and the hard version is the limit to the number of queries.This is an interactive problem.There is an array $$$a$$$ of $$$n$$$ different numbers. In one query you can ask the position of the second maximum element in a subsegment $$$a[l..r]$$$. Find the position of the maximum element in the array in no more than 40 queries.A subsegment $$$a[l..r]$$$ is all the elements $$$a_l, a_{l + 1}, ..., a_r$$$. After asking this subsegment you will be given the position of the second maximum from this subsegment in the whole array.
256 megabytes
//package com.company; //Some of the methods are copied from GeeksforGeeks Website import java.util.*; import java.lang.*; import java.io.*; public class Main { //static Scanner sc=new Scanner(System.in) static Reader sc=new Reader(); // static FastReader sc=new FastReader(System.in); static long mod = (long)(1e9)+ 7; static int max_num=(int)1e5+5; static int query(int l,int r) throws java.lang.Exception { if(l>=r) return -1; out.println("? "+(l+1)+" "+(r+1)); out.flush(); int x=sc.nextInt(); return x-1; } static int solve(int n) throws java.lang.Exception { int l=0,r=n; while(l+1<r) { int m = (l + r) / 2; int smax = query(l, r - 1); if (smax < m) { if (query(l, m - 1) == smax) r = m; else l = m; } else { if (query(m, r - 1) == smax) l = m; else r = m; } } return r; } public static void main (String[] args) throws java.lang.Exception { try{ /* int n=sc.nextInt(); Collections.sort(al,Collections.reverseOrder()); long n=sc.nextLong(); String s=sc.next(); StringBuilder sb=new StringBuilder(); */ int t = 1;//sc.nextInt(); while(t-->0) { int n=sc.nextInt(); int ans=solve(n); out.println("! "+ans); } out.flush(); out.close(); } catch(Exception e) {} } /* ...SOLUTION ENDS HERE...........SOLUTION ENDS HERE... */ static void flag(boolean flag) { out.println(flag ? "YES" : "NO"); out.flush(); } /* Map<Long,Long> map=new HashMap<>(); for(int i=0;i<n;i++) { if(!map.containsKey(a[i])) map.put(a[i],1); else map.replace(a[i],map.get(a[i])+1); } Set<Map.Entry<Long,Long>> hmap=map.entrySet(); for(Map.Entry<Long,Long> data : hmap) { } */ // static class Pair // { // int x,y; // Pair(int x,int y) // { // this.x=x; // this.y=y; // } // } // Arrays.sort(p, new Comparator<Pair>() // { // @Override // public int compare(Pair o1,Pair o2) // { // if(o1.x>o2.x) return 1; // else if(o1.x==o2.x) // { // if(o1.y>o2.y) return 1; // else return -1; // } // else return -1; // }}); static void print(int a[]) { int n=a.length; for(int i=0;i<n;i++) { out.print(a[i]+" "); } out.println(); out.flush(); } static void print(long a[]) { int n=a.length; for(int i=0;i<n;i++) { out.print(a[i]+" "); } out.println(); out.flush(); } static void print_int(ArrayList<Integer> al) { int si=al.size(); for(int i=0;i<si;i++) { out.print(al.get(i)+" "); } out.println(); out.flush(); } static void print_long(ArrayList<Long> al) { int si=al.size(); for(int i=0;i<si;i++) { out.print(al.get(i)+" "); } out.println(); out.flush(); } static int LowerBound(int a[], int x) { // x is the target value or key int l=-1,r=a.length; while(l+1<r) { int m=(l+r)>>>1; if(a[m]>=x) r=m; else l=m; } return r; } static int UpperBound(int a[], int x) {// x is the key or target value int l=-1,r=a.length; while(l+1<r) { int m=(l+r)>>>1; if(a[m]<=x) l=m; else r=m; } return l+1; } static void DFS(ArrayList<Integer> graph[],boolean[] visited, int u) { visited[u]=true; int v=0; for(int i=0;i<graph[u].size();i++) { v=graph[u].get(i); if(!visited[v]) DFS(graph,visited,v); } } static boolean[] prime(int num) { boolean[] bool = new boolean[num]; for (int i = 0; i< bool.length; i++) { bool[i] = true; } for (int i = 2; i< Math.sqrt(num); i++) { if(bool[i] == true) { for(int j = (i*i); j<num; j = j+i) { bool[j] = false; } } } if(num >= 0) { bool[0] = false; bool[1] = false; } return bool; } static long nCr(long a,long b,long mod) { return (((fact[(int)a] * modInverse(fact[(int)b],mod))%mod * modInverse(fact[(int)(a - b)],mod))%mod + mod)%mod; } static long fact[]=new long[max_num]; static void fact_fill() { long fact[]=new long[max_num]; fact[0]=1l; for(int i=1;i<max_num;i++) { fact[i]=(fact[i-1]*(long)i); if(fact[i]>=mod) fact[i]%=mod; } } static long modInverse(long a, long m) { return power(a, m - 2, m); } static long power(long x, long y, long m) { if (y == 0) return 1; long p = power(x, y / 2, m) % m; p = (long)((p * (long)p) % m); if (y % 2 == 0) return p; else return (long)((x * (long)p) % m); } static long sum_array(int a[]) { int n=a.length; long sum=0; for(int i=0;i<n;i++) sum+=a[i]; return sum; } static long sum_array(long a[]) { int n=a.length; long sum=0; for(int i=0;i<n;i++) sum+=a[i]; return sum; } static void sort(int[] a) { ArrayList<Integer> l=new ArrayList<>(); for (int i:a) l.add(i); Collections.sort(l); for (int i=0; i<a.length; i++) a[i]=l.get(i); } static void sort(long[] a) { ArrayList<Long> l=new ArrayList<>(); for (long i:a) l.add(i); Collections.sort(l); for (int i=0; i<a.length; i++) a[i]=l.get(i); } static void reverse_array(int a[]) { int n=a.length; int i,t; for (i = 0; i < n / 2; i++) { t = a[i]; a[i] = a[n - i - 1]; a[n - i - 1] = t; } } static void reverse_array(long a[]) { int n=a.length; int i; long t; for (i = 0; i < n / 2; i++) { t = a[i]; a[i] = a[n - i - 1]; a[n - i - 1] = t; } } static long gcd(long a, long b) { if (a == 0) return b; return gcd(b%a, a); } static int gcd(int a, int b) { if (a == 0) return b; return gcd(b%a, a); } static class FastReader{ byte[] buf = new byte[2048]; int index, total; InputStream in; FastReader(InputStream is) { in = is; } int scan() throws IOException { if (index >= total) { index = 0; total = in.read(buf); if (total <= 0) { return -1; } } return buf[index++]; } String next() throws IOException { int c; for (c = scan(); c <= 32; c = scan()); StringBuilder sb = new StringBuilder(); for (; c > 32; c = scan()) { sb.append((char) c); } return sb.toString(); } int nextInt() throws IOException { int c, val = 0; for (c = scan(); c <= 32; c = scan()); boolean neg = c == '-'; if (c == '-' || c == '+') { c = scan(); } for (; c >= '0' && c <= '9'; c = scan()) { val = (val << 3) + (val << 1) + (c & 15); } return neg ? -val : val; } long nextLong() throws IOException { int c; long val = 0; for (c = scan(); c <= 32; c = scan()); boolean neg = c == '-'; if (c == '-' || c == '+') { c = scan(); } for (; c >= '0' && c <= '9'; c = scan()) { val = (val << 3) + (val << 1) + (c & 15); } return neg ? -val : val; } } static class Reader { final private int BUFFER_SIZE = 1 << 16; private DataInputStream din; private byte[] buffer; private int bufferPointer, bytesRead; public Reader() { din = new DataInputStream(System.in); buffer = new byte[BUFFER_SIZE]; bufferPointer = bytesRead = 0; } public Reader(String file_name) throws IOException { din = new DataInputStream(new FileInputStream(file_name)); buffer = new byte[BUFFER_SIZE]; bufferPointer = bytesRead = 0; } public String readLine() throws IOException { byte[] buf = new byte[64]; // line length int cnt = 0, c; while ((c = read()) != -1) { if (c == '\n') break; buf[cnt++] = (byte) c; } return new String(buf, 0, cnt); } public int nextInt() throws IOException { int ret = 0; byte c = read(); while (c <= ' ') c = read(); boolean neg = (c == '-'); if (neg) c = read(); do { ret = ret * 10 + c - '0'; } while ((c = read()) >= '0' && c <= '9'); if (neg) return -ret; return ret; } public long nextLong() throws IOException { long ret = 0; byte c = read(); while (c <= ' ') c = read(); boolean neg = (c == '-'); if (neg) c = read(); do { ret = ret * 10 + c - '0'; } while ((c = read()) >= '0' && c <= '9'); if (neg) return -ret; return ret; } public double nextDouble() throws IOException { double ret = 0, div = 1; byte c = read(); while (c <= ' ') c = read(); boolean neg = (c == '-'); if (neg) c = read(); do { ret = ret * 10 + c - '0'; } while ((c = read()) >= '0' && c <= '9'); if (c == '.') { while ((c = read()) >= '0' && c <= '9') { ret += (c - '0') / (div *= 10); } } if (neg) return -ret; return ret; } private void fillBuffer() throws IOException { bytesRead = din.read(buffer, bufferPointer = 0, BUFFER_SIZE); if (bytesRead == -1) buffer[0] = -1; } private byte read() throws IOException { if (bufferPointer == bytesRead) fillBuffer(); return buffer[bufferPointer++]; } public void close() throws IOException { if (din == null) return; din.close(); } } static PrintWriter out=new PrintWriter(System.out); static int int_max=Integer.MAX_VALUE; static int int_min=Integer.MIN_VALUE; static long long_max=Long.MAX_VALUE; static long long_min=Long.MIN_VALUE; } // Thank You !
Java
["5\n\n3\n\n4"]
1 second
["? 1 5\n\n? 4 5\n\n! 1"]
NoteIn the sample suppose $$$a$$$ is $$$[5, 1, 4, 2, 3]$$$. So after asking the $$$[1..5]$$$ subsegment $$$4$$$ is second to max value, and it's position is $$$3$$$. After asking the $$$[4..5]$$$ subsegment $$$2$$$ is second to max value and it's position in the whole array is $$$4$$$.Note that there are other arrays $$$a$$$ that would produce the same interaction, and the answer for them might be different. Example output is given in purpose of understanding the interaction.
Java 11
standard input
[ "binary search", "interactive" ]
b3e8fe76706ba17cb285c75459508334
The first line contains a single integer $$$n$$$ $$$(2 \leq n \leq 10^5)$$$ — the number of elements in the array.
1,600
null
standard output
PASSED
f5a449544a0ad74c3800baa427958489
train_109.jsonl
1613658900
The only difference between the easy and the hard version is the limit to the number of queries.This is an interactive problem.There is an array $$$a$$$ of $$$n$$$ different numbers. In one query you can ask the position of the second maximum element in a subsegment $$$a[l..r]$$$. Find the position of the maximum element in the array in no more than 40 queries.A subsegment $$$a[l..r]$$$ is all the elements $$$a_l, a_{l + 1}, ..., a_r$$$. After asking this subsegment you will be given the position of the second maximum from this subsegment in the whole array.
256 megabytes
import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.util.*; public class CodeForces { public static void main(String[] args) { // TODO Auto-generated method stub FastScanner fs=new FastScanner(); int n=fs.nextInt(); int pos=solve(0,n); System.out.println("! "+pos); // System.out.println("No of queery = "+count); } private static int solve(int l,int r) { while (r - l > 1) { int m = (l + r) / 2; int smax = query(l, r - 1); if (smax < m) { if (query(l, m - 1) == smax) { r = m; } else { l = m; } } else { if (query(m, r - 1) == smax) { l = m; } else { r = m; } } } return r; } private static int query(int l,int r) { if(l>=r) return -1; System.out.println("? "+(l+1)+" "+(r+1)); FastScanner fs=new FastScanner(); int pos=fs.nextInt(); return pos-1; } static void mysort(int[] a) { //ruffle int n=a.length; Random r=new Random(); for (int i=0; i<a.length; i++) { int oi=r.nextInt(n), temp=a[i]; a[i]=a[oi]; a[oi]=temp; } //then sort Arrays.sort(a); } // Use this to input code since it is faster than a Scanner static class FastScanner { BufferedReader br=new BufferedReader(new InputStreamReader(System.in)); StringTokenizer st=new StringTokenizer(""); String next() { while (!st.hasMoreTokens()) try { st=new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } int[] readArray(int n) { int[] a=new int[n]; for (int i=0; i<n; i++) a[i]=nextInt(); return a; } long nextLong() { return Long.parseLong(next()); } } }
Java
["5\n\n3\n\n4"]
1 second
["? 1 5\n\n? 4 5\n\n! 1"]
NoteIn the sample suppose $$$a$$$ is $$$[5, 1, 4, 2, 3]$$$. So after asking the $$$[1..5]$$$ subsegment $$$4$$$ is second to max value, and it's position is $$$3$$$. After asking the $$$[4..5]$$$ subsegment $$$2$$$ is second to max value and it's position in the whole array is $$$4$$$.Note that there are other arrays $$$a$$$ that would produce the same interaction, and the answer for them might be different. Example output is given in purpose of understanding the interaction.
Java 11
standard input
[ "binary search", "interactive" ]
b3e8fe76706ba17cb285c75459508334
The first line contains a single integer $$$n$$$ $$$(2 \leq n \leq 10^5)$$$ — the number of elements in the array.
1,600
null
standard output
PASSED
123279d12cf12c72f1d3672263bf63a7
train_109.jsonl
1613658900
The only difference between the easy and the hard version is the limit to the number of queries.This is an interactive problem.There is an array $$$a$$$ of $$$n$$$ different numbers. In one query you can ask the position of the second maximum element in a subsegment $$$a[l..r]$$$. Find the position of the maximum element in the array in no more than 40 queries.A subsegment $$$a[l..r]$$$ is all the elements $$$a_l, a_{l + 1}, ..., a_r$$$. After asking this subsegment you will be given the position of the second maximum from this subsegment in the whole array.
256 megabytes
import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.io.PrintWriter; import java.util.*; public class GuessingTheGreatest { public static void main(String[] args) { FastScanner fs = new FastScanner(); PrintWriter out = new PrintWriter(System.out); int n = fs.nextInt(); int left = 1, right = n; while(left + 1 < right) { int mid = (left + right) / 2; System.out.println("? " + left + " " + right); int second = fs.nextInt(); if(mid <= second) { System.out.println("? " + mid + " " + right); int midsecond = fs.nextInt(); if(midsecond == second) left = mid; else right = mid; } else { System.out.println("? " + left + " " + mid); int midsecond = fs.nextInt(); if(midsecond == second) right = mid; else left = mid; } } System.out.println("? " + left + " " + right); int v = fs.nextInt(); int myans = (v == left) ? right : left; System.out.println("! " + myans); } static void ruffleSort(int[] a) { int n = a.length; Random r = new Random(); for(int i = 0; i < a.length; ++i) { int oi = r.nextInt(n), t = a[i]; a[i] = a[oi]; a[oi] = t; } Arrays.sort(a); } static void sort(int[] a) { ArrayList<Integer> l = new ArrayList<>(); for(int i : a) l.add(i); Collections.sort(l); for(int i = 0; i < a.length; ++i) a[i] = l.get(i); } static class FastScanner { BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); StringTokenizer st = new StringTokenizer(""); String next() { while(!st.hasMoreTokens()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } int[] readArray(int n) { int[] a = new int[n]; for(int i = 0; i < n; ++i) a[i] = nextInt(); return a; } long nextLong() { return Long.parseLong(next()); } } }
Java
["5\n\n3\n\n4"]
1 second
["? 1 5\n\n? 4 5\n\n! 1"]
NoteIn the sample suppose $$$a$$$ is $$$[5, 1, 4, 2, 3]$$$. So after asking the $$$[1..5]$$$ subsegment $$$4$$$ is second to max value, and it's position is $$$3$$$. After asking the $$$[4..5]$$$ subsegment $$$2$$$ is second to max value and it's position in the whole array is $$$4$$$.Note that there are other arrays $$$a$$$ that would produce the same interaction, and the answer for them might be different. Example output is given in purpose of understanding the interaction.
Java 11
standard input
[ "binary search", "interactive" ]
b3e8fe76706ba17cb285c75459508334
The first line contains a single integer $$$n$$$ $$$(2 \leq n \leq 10^5)$$$ — the number of elements in the array.
1,600
null
standard output
PASSED
83465bf876487b0b58d89929862273b4
train_109.jsonl
1613658900
The only difference between the easy and the hard version is the limit to the number of queries.This is an interactive problem.There is an array $$$a$$$ of $$$n$$$ different numbers. In one query you can ask the position of the second maximum element in a subsegment $$$a[l..r]$$$. Find the position of the maximum element in the array in no more than 40 queries.A subsegment $$$a[l..r]$$$ is all the elements $$$a_l, a_{l + 1}, ..., a_r$$$. After asking this subsegment you will be given the position of the second maximum from this subsegment in the whole array.
256 megabytes
import java.io.BufferedReader; import java.io.FileReader; import java.io.IOException; import java.io.InputStream; import java.io.InputStreamReader; import java.util.StringTokenizer; public class C { static Scanner sc; public static void main(String[] args) throws Exception{ sc = new Scanner(System.in); int n = sc.nextInt(); int left = 1; int right = n; int oldPos = -1; boolean checked = false; while(true) { if(right-left == 1) { System.out.println("? "+left+" "+right); System.out.flush(); int pos = sc.nextInt(); if(pos!=left) { System.out.println("! "+left); System.out.flush(); } else { System.out.println("! "+right); System.out.flush(); } break; } if(right == left) { System.out.println("! "+left); System.out.flush(); break; } if(!checked) { // all the range check System.out.println("? "+left+" "+right); System.out.flush(); oldPos = sc.nextInt(); } int mid = (left+right) / 2; boolean posIsLeft = (oldPos <= mid); if(posIsLeft) { System.out.println("? "+left+" "+mid); System.out.flush(); } else { System.out.println("? "+(mid)+" "+right); System.out.flush(); } int newPos = sc.nextInt(); if(oldPos == newPos) { checked = true; // discard the other half if(posIsLeft) { right = mid; } else { left = mid; } } else { checked = false; // discard this half if(posIsLeft) { left = mid; } else { right = mid; } } } } static class Scanner{ StringTokenizer st; BufferedReader br; public Scanner(InputStream system) { br = new BufferedReader(new InputStreamReader(system)); } public Scanner(FileReader file) { br = new BufferedReader(file); } public String next() throws IOException { while(st == null || !st.hasMoreTokens()) { st = new StringTokenizer(br.readLine()); } return st.nextToken(); } public String nextLine() throws IOException { return br.readLine(); } public int nextInt()throws IOException{ return Integer.parseInt(next()); } public double nextDouble()throws IOException{ return Double.parseDouble(next()); } public char nextChar()throws IOException{ return next().charAt(0); } public long nextLong()throws IOException{ return Long.parseLong(next()); } public boolean ready() throws IOException { return br.ready(); } public void waitForInput() throws InterruptedException { Thread.sleep(5000); } } }
Java
["5\n\n3\n\n4"]
1 second
["? 1 5\n\n? 4 5\n\n! 1"]
NoteIn the sample suppose $$$a$$$ is $$$[5, 1, 4, 2, 3]$$$. So after asking the $$$[1..5]$$$ subsegment $$$4$$$ is second to max value, and it's position is $$$3$$$. After asking the $$$[4..5]$$$ subsegment $$$2$$$ is second to max value and it's position in the whole array is $$$4$$$.Note that there are other arrays $$$a$$$ that would produce the same interaction, and the answer for them might be different. Example output is given in purpose of understanding the interaction.
Java 11
standard input
[ "binary search", "interactive" ]
b3e8fe76706ba17cb285c75459508334
The first line contains a single integer $$$n$$$ $$$(2 \leq n \leq 10^5)$$$ — the number of elements in the array.
1,600
null
standard output
PASSED
58cb42e8f3fbf17ac6fb01073f753d0a
train_109.jsonl
1613658900
The only difference between the easy and the hard version is the limit to the number of queries.This is an interactive problem.There is an array $$$a$$$ of $$$n$$$ different numbers. In one query you can ask the position of the second maximum element in a subsegment $$$a[l..r]$$$. Find the position of the maximum element in the array in no more than 40 queries.A subsegment $$$a[l..r]$$$ is all the elements $$$a_l, a_{l + 1}, ..., a_r$$$. After asking this subsegment you will be given the position of the second maximum from this subsegment in the whole array.
256 megabytes
// c1 import java.util.*; // import java.lang.*; import java.io.*; // THIS TEMPLATE MADE BY AKSH BANSAL. public class Solution { static class FastReader { BufferedReader br; StringTokenizer st; public FastReader() { br = new BufferedReader(new InputStreamReader(System.in)); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } } public static void main(String[] args) throws IOException { FastReader sc = new FastReader(); PrintWriter out = new PrintWriter(System.out); // ________________________________ int n= sc.nextInt(); if(n==1){ out.println("! 1"); out.flush(); return; } int start = 1, end = n; while(start<end){ int pos = query(start, end, out, sc); int mid = start+(end-start)/2; if(start+1==end){ if(pos==start){ start = end; } break; } // checking sub section if(pos>mid){ if(mid+1==end){ end = mid; continue; } int cur = query(mid+1, end, out, sc); if(cur==pos){ start = mid+1; } else { end = mid; } } else{ int cur = query(start, mid, out, sc); if(cur==pos){ end = mid; } else { start = mid+1; } } } out.println("! "+start); out.flush(); } private static int query(int start, int end, PrintWriter out, FastReader sc) { out.println("? "+start+" "+end); out.flush(); int res= sc.nextInt(); return res; } }
Java
["5\n\n3\n\n4"]
1 second
["? 1 5\n\n? 4 5\n\n! 1"]
NoteIn the sample suppose $$$a$$$ is $$$[5, 1, 4, 2, 3]$$$. So after asking the $$$[1..5]$$$ subsegment $$$4$$$ is second to max value, and it's position is $$$3$$$. After asking the $$$[4..5]$$$ subsegment $$$2$$$ is second to max value and it's position in the whole array is $$$4$$$.Note that there are other arrays $$$a$$$ that would produce the same interaction, and the answer for them might be different. Example output is given in purpose of understanding the interaction.
Java 11
standard input
[ "binary search", "interactive" ]
b3e8fe76706ba17cb285c75459508334
The first line contains a single integer $$$n$$$ $$$(2 \leq n \leq 10^5)$$$ — the number of elements in the array.
1,600
null
standard output
PASSED
e3a42d3fa6b6bbeed09cc7052eddcd6a
train_109.jsonl
1613658900
The only difference between the easy and the hard version is the limit to the number of queries.This is an interactive problem.There is an array $$$a$$$ of $$$n$$$ different numbers. In one query you can ask the position of the second maximum element in a subsegment $$$a[l..r]$$$. Find the position of the maximum element in the array in no more than 40 queries.A subsegment $$$a[l..r]$$$ is all the elements $$$a_l, a_{l + 1}, ..., a_r$$$. After asking this subsegment you will be given the position of the second maximum from this subsegment in the whole array.
256 megabytes
import java.util.*; import java.io.*; public class Main2 { static class FastReader { BufferedReader br; StringTokenizer st; public FastReader() { br = new BufferedReader(new InputStreamReader(System.in)); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } } static FastReader sc = new FastReader(); static int n; public static void main (String[] args) { PrintWriter out = new PrintWriter(System.out); int t = 1; // t = sc.nextInt(); while(t-->0) { n = sc.nextInt(); int sm = ask(1,n); int left = ask(1,sm); int ans = -1; if(left==sm) { int l=1, h=sm-1; while(l<=h) { int mid = (l+h)/2; left = ask(mid,sm); if(left == sm) { ans = mid; l = mid+1; } else h = mid-1; } } else { int l=sm+1, h=n; while(l<=h) { int mid = (l+h)/2; left = ask(sm,mid); if(left == sm) { ans = mid; h = mid-1; } else l = mid+1; } } System.out.println("! "+ans); } out.close(); } private static int ask(int idx, int h) { if(idx>n || h>n || idx == 0 || h == 0) return -1; if(idx == h) return -1; System.out.println("? "+idx+" "+h); System.out.flush(); int ret = sc.nextInt(); return ret; } private static long pow(int i, int x) { long ans = 1; while(x>0) { if(x%2==0) { i*=i; x/=2; } else { ans*=i; x--; } } // System.out.println(ans+" ans"); return ans; } }
Java
["5\n\n3\n\n4"]
1 second
["? 1 5\n\n? 4 5\n\n! 1"]
NoteIn the sample suppose $$$a$$$ is $$$[5, 1, 4, 2, 3]$$$. So after asking the $$$[1..5]$$$ subsegment $$$4$$$ is second to max value, and it's position is $$$3$$$. After asking the $$$[4..5]$$$ subsegment $$$2$$$ is second to max value and it's position in the whole array is $$$4$$$.Note that there are other arrays $$$a$$$ that would produce the same interaction, and the answer for them might be different. Example output is given in purpose of understanding the interaction.
Java 11
standard input
[ "binary search", "interactive" ]
b3e8fe76706ba17cb285c75459508334
The first line contains a single integer $$$n$$$ $$$(2 \leq n \leq 10^5)$$$ — the number of elements in the array.
1,600
null
standard output
PASSED
8f9e043570946d44b4dc250c004e69b1
train_109.jsonl
1613658900
The only difference between the easy and the hard version is the limit to the number of queries.This is an interactive problem.There is an array $$$a$$$ of $$$n$$$ different numbers. In one query you can ask the position of the second maximum element in a subsegment $$$a[l..r]$$$. Find the position of the maximum element in the array in no more than 40 queries.A subsegment $$$a[l..r]$$$ is all the elements $$$a_l, a_{l + 1}, ..., a_r$$$. After asking this subsegment you will be given the position of the second maximum from this subsegment in the whole array.
256 megabytes
import java.io.*; import java.util.*; import java.util.ArrayList; import java.util.Arrays.*; import static java.util.Collections.*; import static java.lang.Math.*; import static java.util.Arrays.*; public class cf { static final int SCAN_LINE_LENGTH = 100002; private static final boolean thread = false; @SuppressWarnings("all") static final boolean HAS_TEST_CASES = (1 == 0) ? true : false; static int n, a[], e[][], vis[], m, b[]; @SuppressWarnings("all") private static Vector<Integer> adj[], v = new Vector<>(); @SuppressWarnings("unchecked") static void solve() throws Exception { n = ni(); int l = 1, r = n, m; pni("? " + l + " " + r); m = ni(); while (r - l > 1) { int mid = (l + r) / 2; if (m <= mid) { pni("? " + l + " " + (mid)); int i = ni(); if (i == m) { r = mid; } else { l = mid + 1; if (r - l >= 1) { pni("? " + l + " " + r); m = ni(); } } } else { pni("? " + mid + " " + (r)); int i = ni(); if (i != m) { r = mid - 1; if (r - l >= 1) { pni("? " + l + " " + r); m = ni(); } } else l = mid; } } l = (m == l) ? r : l; pni("! " + l); } public static void main(final String[] args) throws Exception { if (!thread) { final int testcases = HAS_TEST_CASES ? ni() : 1; for (int i = 1; i <= testcases; i++) { // pni(i + " t"); // out.print("Case #" + (i + 1) + ": "); try { solve(); } catch (final Exception e) { // pni("idk Exception"); // e.printStackTrace(System.err); // System.exit(0); pni(i); throw e; } } out.flush(); } r.close(); out.close(); } @SuppressWarnings("all") private static final int MOD = (int) (1e9 + 7), MOD_FFT = 998244353; private static final Reader r = new Reader(); private static final PrintWriter out = new PrintWriter(new BufferedOutputStream(System.out)); public static long[] enumPows(int a, int n, int mod) { a %= mod; long[] pows = new long[n + 1]; pows[0] = 1; for (int i = 1; i <= n; i++) pows[i] = pows[i - 1] * a % mod; return pows; } @SuppressWarnings("all") private static boolean eq(long a, long b) { return Long.compare(a, b) == 0; } @SuppressWarnings("all") private static ArrayList<Integer> seive(int n) { ArrayList<Integer> p = new ArrayList<>(); int[] f = new int[n + 1]; for (int i = 2; i <= n; i++) { if (f[i] == 1) continue; for (int j = i * i; j <= n && j < f.length; j += i) { f[j] = 1; } } for (int i = 2; i < f.length; i++) { if (f[i] == 0) p.add(i); } return p; } @SuppressWarnings("all") private static void s(int[] a) { Integer[] t = new Integer[a.length]; for (int i = 0; i < t.length; i++) { t[i] = a[i]; } sort(t); for (int i = 0; i < t.length; i++) { a[i] = t[i]; } } int pow(int a, int b, int m) { int ans = 1; while (b != 0) { if ((b & 1) != 0) ans = (ans * a) % m; b /= 2; a = (a * a) % m; } return ans; } int modinv(int k) { return pow(k, MOD - 2, MOD); } @SuppressWarnings("all") private static void swap(final int i, final int j) { final int temp = a[i]; a[i] = a[j]; a[j] = temp; } @SuppressWarnings("all") private static boolean isMulOverflow(final long A, final long B) { if (A == 0 || B == 0) return false; final long result = A * B; if (A == result / B) return true; return false; } @SuppressWarnings("all") private static int gcd(final int a, final int b) { if (b == 0) return a; return gcd(b, a % b); } @SuppressWarnings("all") private static long gcd(final long a, final long b) { if (b == 0) return a; return gcd(b, a % b); } @SuppressWarnings("all") private static class Pair<T, E> implements Comparable<Pair<T, E>> { T fir; E snd; Pair() { } Pair(final T x, final E y) { this.fir = x; this.snd = y; } // @Override // @SuppressWarnings("unchecked") // public int compareTo(final Pair<T, E> o) { // final int c = ((Comparable<T>) fir).compareTo(o.fir); // return c != 0 ? c : ((Comparable<E>) snd).compareTo(o.snd); // } @Override @SuppressWarnings("unchecked") public int compareTo(final Pair<T, E> o) { final int c = ((Comparable<T>) fir).compareTo(o.fir); return c; } } @SuppressWarnings("all") private static class pi implements Comparable<pi> { int fir, snd; pi() { } pi(final int a, final int b) { fir = a; snd = b; } public int compareTo(final pi o) { return fir == o.fir ? snd - o.snd : fir - o.fir; } @Override public int hashCode() { final int prime = 31; int result = 1; result = prime * result + fir; result = prime * result + snd; return result; } @Override public boolean equals(Object obj) { if (this == obj) return true; if (obj == null) return false; if (getClass() != obj.getClass()) return false; pi other = (pi) obj; if (fir != other.fir) return false; if (snd != other.snd) return false; return true; } } @SuppressWarnings("all") private static <T> void checkV(final Vector<T> adj[], final int i) { adj[i] = adj[i] == null ? new Vector<>() : adj[i]; } @SuppressWarnings("all") private static int[] na(final int n) throws Exception { final int[] a = new int[n]; for (int i = 0; i < n; i++) { a[i] = ni(); } return a; } @SuppressWarnings("all") private static int[] na1(final int n) throws Exception { final int[] a = new int[n + 1]; for (int i = 1; i < a.length; i++) { a[i] = ni(); } return a; } @SuppressWarnings("all") private static String n() throws IOException { return r.readToken(); } @SuppressWarnings("all") private static char[] ns() throws IOException { return r.readToken().toCharArray(); } @SuppressWarnings("all") private static String nln() throws IOException { return r.readLine(); } private static int ni() throws IOException { return r.nextInt(); } @SuppressWarnings("all") private static long nl() throws IOException { return r.nextLong(); } @SuppressWarnings("all") private static double nd() throws IOException { return r.nextDouble(); } @SuppressWarnings("all") private static void p(final Object o) { out.print(o); } @SuppressWarnings("all") private static void pn(final Object o) { out.println(o); } @SuppressWarnings("all") private static void pn() { out.println(""); } @SuppressWarnings("all") private static void pi(final Object o) { out.print(o); out.flush(); } @SuppressWarnings("all") private static void pni() { out.println(""); out.flush(); } private static void pni(final Object o) { out.println(o); out.flush(); } private static class Reader { private final int BUFFER_SIZE = 1 << 17; private final DataInputStream din; private final byte[] buffer; private int bufferPointer, bytesRead; // private StringTokenizer st; public Reader() { din = new DataInputStream(System.in); buffer = new byte[BUFFER_SIZE]; bufferPointer = bytesRead = 0; } @SuppressWarnings("all") public Reader(final String file_name) throws IOException { din = new DataInputStream(new FileInputStream(file_name)); buffer = new byte[BUFFER_SIZE]; bufferPointer = bytesRead = 0; } final byte[] buf = new byte[SCAN_LINE_LENGTH]; public String readLine() throws IOException { int cnt = 0; int c; o: while ((c = read()) != -1) { if (c == '\n') if (cnt == 0) continue o; else break; buf[cnt++] = (byte) c; } return new String(buf, 0, cnt); } public String readToken() throws IOException { int cnt = 0; int c; o: while ((c = read()) != -1) { if (!(c >= 33 && c <= 126)) if (cnt == 0) continue o; else break; buf[cnt++] = (byte) c; } return new String(buf, 0, cnt); } public int nextInt() throws IOException { int ret = 0; byte c = read(); while (c <= ' ') c = read(); final boolean neg = (c == '-'); if (neg) c = read(); do { ret = ret * 10 + c - '0'; } while ((c = read()) >= '0' && c <= '9'); if (neg) return -ret; return ret; } public long nextLong() throws IOException { long ret = 0; byte c = read(); while (c <= ' ') c = read(); final boolean neg = (c == '-'); if (neg) c = read(); do { ret = ret * 10 + c - '0'; } while ((c = read()) >= '0' && c <= '9'); if (neg) return -ret; return ret; } public double nextDouble() throws IOException { double ret = 0, div = 1; byte c = read(); while (c <= ' ') c = read(); final boolean neg = (c == '-'); if (neg) c = read(); do { ret = ret * 10 + c - '0'; } while ((c = read()) >= '0' && c <= '9'); if (c == '.') { while ((c = read()) >= '0' && c <= '9') { ret += (c - '0') / (div *= 10); } } if (neg) return -ret; return ret; } private void fillBuffer() throws IOException { bytesRead = din.read(buffer, bufferPointer = 0, BUFFER_SIZE); if (bytesRead == -1) buffer[0] = -1; } private byte read() throws IOException { if (bufferPointer == bytesRead) fillBuffer(); return buffer[bufferPointer++]; } public void close() throws IOException { if (din == null) return; din.close(); } } // static { // if (thread) // new Thread(null, new Runnable() { // @Override // public void run() { // try { // final int testcases = HAS_TEST_CASES ? ni() : 1; // for (int i = 1; i <= testcases; i++) { // // out.print("Case #" + (i + 1) + ": "); // try { // solve(); // } catch (final ArrayIndexOutOfBoundsException e) { // e.printStackTrace(System.err); // System.exit(-1); // } catch (final Exception e) { // pni("idk Exception in solve"); // e.printStackTrace(System.err); // System.exit(-1); // } // } // out.flush(); // } catch (final Throwable t) { // t.printStackTrace(System.err); // System.exit(-1); // } // } // }, "rec", (1L << 28)).start(); // } @SuppressWarnings({ "all", }) private static <T> T deepCopy(final T old) { try { return (T) deepCopyObject(old); } catch (final IOException | ClassNotFoundException e) { e.printStackTrace(System.err); System.exit(-1); } return null; } private static Object deepCopyObject(final Object oldObj) throws IOException, ClassNotFoundException { ObjectOutputStream oos = null; ObjectInputStream ois = null; try { final ByteArrayOutputStream bos = new ByteArrayOutputStream(); // A oos = new ObjectOutputStream(bos); // B // serialize and pass the object oos.writeObject(oldObj); // C oos.flush(); // D final ByteArrayInputStream bin = new ByteArrayInputStream(bos.toByteArray()); // E ois = new ObjectInputStream(bin); // F // return the new object return ois.readObject(); // G } catch (final ClassNotFoundException e) { pni("Exception in ObjectCloner = " + e); throw (e); } finally { oos.close(); ois.close(); } } }
Java
["5\n\n3\n\n4"]
1 second
["? 1 5\n\n? 4 5\n\n! 1"]
NoteIn the sample suppose $$$a$$$ is $$$[5, 1, 4, 2, 3]$$$. So after asking the $$$[1..5]$$$ subsegment $$$4$$$ is second to max value, and it's position is $$$3$$$. After asking the $$$[4..5]$$$ subsegment $$$2$$$ is second to max value and it's position in the whole array is $$$4$$$.Note that there are other arrays $$$a$$$ that would produce the same interaction, and the answer for them might be different. Example output is given in purpose of understanding the interaction.
Java 11
standard input
[ "binary search", "interactive" ]
b3e8fe76706ba17cb285c75459508334
The first line contains a single integer $$$n$$$ $$$(2 \leq n \leq 10^5)$$$ — the number of elements in the array.
1,600
null
standard output
PASSED
0a01858506634f19e7b4cfab0e8ece23
train_109.jsonl
1613658900
The only difference between the easy and the hard version is the limit to the number of queries.This is an interactive problem.There is an array $$$a$$$ of $$$n$$$ different numbers. In one query you can ask the position of the second maximum element in a subsegment $$$a[l..r]$$$. Find the position of the maximum element in the array in no more than 40 queries.A subsegment $$$a[l..r]$$$ is all the elements $$$a_l, a_{l + 1}, ..., a_r$$$. After asking this subsegment you will be given the position of the second maximum from this subsegment in the whole array.
256 megabytes
// package com.company; import java.util.*; import java.io.*; import java.lang.*; public class Main{ /* ** || ॐ श्री गणेशाय नमः || ** @𝙖𝙪𝙩𝙝𝙤𝙧 𝙅𝙞𝙜𝙖𝙧_𝙉𝙖𝙞𝙣𝙪𝙟𝙞 ** 𝙎𝙑𝙉𝙄𝙏-𝙎𝙐𝙍𝘼𝙏 */ public static void main(String args[]){ InputReader in=new InputReader(System.in); TASK solver = new TASK(); int t=1; // t = in.nextInt(); for(int i=1;i<=t;i++) { solver.solve(in,i); } } static class TASK { static int mod = 1000000000+7; void solve(InputReader in, int testNumber) { int n = in.nextInt(); int l=1,r=n; Map<String,Integer> map = new HashMap<>(); while (l<r) { int mid = (l+r)/2; int smaxid; if(map.containsKey(l+" "+r)) { smaxid=map.get(l+" "+r); } else { System.out.println("? " + l + " " + r); smaxid=in.nextInt(); map.put(l+" "+r,smaxid); } if(smaxid<=mid) { if(l==mid) { l=mid+1; continue; } int l1; if(map.containsKey(l+" "+mid)) { l1=map.get(l+" "+mid); } else { System.out.println("? " + l + " " + mid); l1=in.nextInt(); map.put(l+" "+mid,l1); } if(l1==smaxid ) { r=mid; } else { l=mid+1; } } else { if(mid+1==r) { r=mid; continue; } int l1; if(map.containsKey((mid+1)+" "+r)) { l1=map.get((mid+1)+" "+r); } else { System.out.println("? " + (mid+1)+ " " + r); l1=in.nextInt(); map.put((mid+1)+" "+r,l1); } if(l1==smaxid&& (mid+1)!=r) { l=mid+1; } else { r=mid; } } } System.out.println("! "+l); System.out.flush(); } } static class pair{ long x; int y; pair(long x,int y) { this.x = x; this.y = y; } } static class Maths { static long gcd(long a, long b) { if (a == 0) return b; return gcd(b % a, a); } public static long lcm(long a, long b) { return (a * b) / gcd(a, b); } public static long factorial(int n) { long fact = 1; for (int i = 1; i <= n; i++) { fact *= i; } return fact; } } static class InputReader { private InputStream stream; private byte[] buf = new byte[1024]; private int curChar; private int numChars; private SpaceCharFilter filter; public InputReader(InputStream stream) { this.stream = stream; } public int read() { if (numChars == -1) throw new InputMismatchException(); if (curChar >= numChars) { curChar = 0; try { numChars = stream.read(buf); } catch (IOException e) { throw new InputMismatchException(); } if (numChars <= 0) return -1; } return buf[curChar++]; } public String nextLine() { BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } public int nextInt() { int c = read(); while (isSpaceChar(c)) c = read(); int sgn = 1; if (c == '-') { sgn = -1; c = read(); } int res = 0; do { if (c < '0' || c > '9') throw new InputMismatchException(); res *= 10; res += c - '0'; c = read(); } while (!isSpaceChar(c)); return res * sgn; } public long nextLong() { int c = read(); while (isSpaceChar(c)) c = read(); int sgn = 1; if (c == '-') { sgn = -1; c = read(); } long res = 0; do { if (c < '0' || c > '9') throw new InputMismatchException(); res *= 10; res += c - '0'; c = read(); } while (!isSpaceChar(c)); return res * sgn; } public double nextDouble() { int c = read(); while (isSpaceChar(c)) c = read(); int sgn = 1; if (c == '-') { sgn = -1; c = read(); } double res = 0; while (!isSpaceChar(c) && c != '.') { if (c == 'e' || c == 'E') return res * Math.pow(10, nextInt()); if (c < '0' || c > '9') throw new InputMismatchException(); res *= 10; res += c - '0'; c = read(); } if (c == '.') { c = read(); double m = 1; while (!isSpaceChar(c)) { if (c == 'e' || c == 'E') return res * Math.pow(10, nextInt()); if (c < '0' || c > '9') throw new InputMismatchException(); m /= 10; res += (c - '0') * m; c = read(); } } return res * sgn; } public String readString() { int c = read(); while (isSpaceChar(c)) c = read(); StringBuilder res = new StringBuilder(); do { res.appendCodePoint(c); c = read(); } while (!isSpaceChar(c)); return res.toString(); } public boolean isSpaceChar(int c) { if (filter != null) return filter.isSpaceChar(c); return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; } public String next() { return readString(); } public interface SpaceCharFilter { public boolean isSpaceChar(int ch); } } }
Java
["5\n\n3\n\n4"]
1 second
["? 1 5\n\n? 4 5\n\n! 1"]
NoteIn the sample suppose $$$a$$$ is $$$[5, 1, 4, 2, 3]$$$. So after asking the $$$[1..5]$$$ subsegment $$$4$$$ is second to max value, and it's position is $$$3$$$. After asking the $$$[4..5]$$$ subsegment $$$2$$$ is second to max value and it's position in the whole array is $$$4$$$.Note that there are other arrays $$$a$$$ that would produce the same interaction, and the answer for them might be different. Example output is given in purpose of understanding the interaction.
Java 11
standard input
[ "binary search", "interactive" ]
b3e8fe76706ba17cb285c75459508334
The first line contains a single integer $$$n$$$ $$$(2 \leq n \leq 10^5)$$$ — the number of elements in the array.
1,600
null
standard output
PASSED
68e2f34001e5f4ef6dc16787bad89bac
train_109.jsonl
1613658900
The only difference between the easy and the hard version is the limit to the number of queries.This is an interactive problem.There is an array $$$a$$$ of $$$n$$$ different numbers. In one query you can ask the position of the second maximum element in a subsegment $$$a[l..r]$$$. Find the position of the maximum element in the array in no more than 40 queries.A subsegment $$$a[l..r]$$$ is all the elements $$$a_l, a_{l + 1}, ..., a_r$$$. After asking this subsegment you will be given the position of the second maximum from this subsegment in the whole array.
256 megabytes
import java.io.BufferedReader; import java.io.FileReader; import java.io.IOException; import java.io.InputStreamReader; import java.util.StringTokenizer; import java.util.Arrays; import java.util.Random; import java.io.FileWriter; import java.io.PrintWriter; /* Solution Created: 17:48:47 18/02/2021 Custom Competitive programming helper. */ public class Main { static int qBound; public static void solve() { qBound = 0; int n = in.nextInt(); int l = 1, r = n; while(r-l>1){ int md = (r+l)/2; int v2 = ask(l, r); if(v2>=md) { int v = ask(md,r); if(v==v2) l = md; else r = md; } else{ int v = ask(l,md); if(v==v2) r = md; else l = md; } } if(l==r) found(l); else{ if(ask(l, r)==l) found(r); else found(l); } } static int ask(int l, int r){ if(++qBound>40) throw new RuntimeException(); out.println("? "+l+" "+r); out.flush(); return in.nextInt(); } static void found(int i){ out.println("! "+i); out.flush(); } public static void main(String[] args) { in = new Reader(); out = new Writer(); int t = 1; while(t-->0) solve(); out.exit(); } static Reader in; static Writer out; static class Reader { static BufferedReader br; static StringTokenizer st; public Reader() { this.br = new BufferedReader(new InputStreamReader(System.in)); } public Reader(String f){ try { this.br = new BufferedReader(new FileReader(f)); } catch (IOException e) { e.printStackTrace(); } } public int[] na(int n) { int[] a = new int[n]; for (int i = 0; i < n; i++) a[i] = nextInt(); return a; } public double[] nd(int n) { double[] a = new double[n]; for (int i = 0; i < n; i++) a[i] = nextDouble(); return a; } public long[] nl(int n) { long[] a = new long[n]; for (int i = 0; i < n; i++) a[i] = nextLong(); return a; } public char[] nca() { return next().toCharArray(); } public String[] ns(int n) { String[] a = new String[n]; for (int i = 0; i < n; i++) a[i] = next(); return a; } public int nextInt() { ensureNext(); return Integer.parseInt(st.nextToken()); } public double nextDouble() { ensureNext(); return Double.parseDouble(st.nextToken()); } public Long nextLong() { ensureNext(); return Long.parseLong(st.nextToken()); } public String next() { ensureNext(); return st.nextToken(); } public String nextLine() { try { return br.readLine(); } catch (Exception e) { e.printStackTrace(); return null; } } private void ensureNext() { if (st == null || !st.hasMoreTokens()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } } } static class Util{ private static Random random = new Random(); static long[] fact; public static void initFactorial(int n, long mod) { fact = new long[n+1]; fact[0] = 1; for (int i = 1; i < n+1; i++) fact[i] = (fact[i - 1] * i) % mod; } public static long modInverse(long a, long MOD) { long[] gcdE = gcdExtended(a, MOD); if (gcdE[0] != 1) return -1; // Inverted doesn't exist long x = gcdE[1]; return (x % MOD + MOD) % MOD; } public static long[] gcdExtended(long p, long q) { if (q == 0) return new long[] { p, 1, 0 }; long[] vals = gcdExtended(q, p % q); long tmp = vals[2]; vals[2] = vals[1] - (p / q) * vals[2]; vals[1] = tmp; return vals; } public static long nCr(int n, int r, long MOD) { if (r == 0) return 1; return (fact[n] * modInverse(fact[r], MOD) % MOD * modInverse(fact[n - r], MOD) % MOD) % MOD; } public static long nCr(int n, int r) { return (fact[n]/fact[r])/fact[n-r]; } public static long nPr(int n, int r, long MOD) { if (r == 0) return 1; return (fact[n] * modInverse(fact[n - r], MOD) % MOD) % MOD; } public static long nPr(int n, int r) { return fact[n]/fact[n-r]; } public static boolean isPrime(int n) { if (n <= 1) return false; if (n <= 3) return true; if (n % 2 == 0 || n % 3 == 0) return false; for (int i = 5; i * i <= n; i = i + 6) if (n % i == 0 || n % (i + 2) == 0) return false; return true; } public static boolean[] getSieve(int n) { boolean[] isPrime = new boolean[n+1]; for (int i = 2; i <= n; i++) isPrime[i] = true; for (int i = 2; i*i <= n; i++) if (isPrime[i]) for (int j = i; i*j <= n; j++) isPrime[i*j] = false; return isPrime; } public static int gcd(int a, int b) { int tmp = 0; while(b != 0) { tmp = b; b = a%b; a = tmp; } return a; } public static long gcd(long a, long b) { long tmp = 0; while(b != 0) { tmp = b; b = a%b; a = tmp; } return a; } public static int random(int min, int max) { return random.nextInt(max-min+1)+min; } public static void dbg(Object... o) { System.out.println(Arrays.deepToString(o)); } public static void reverse(int[] s, int l , int r) { for(int i = l; i<=(l+r)/2; i++) { int tmp = s[i]; s[i] = s[r+l-i]; s[r+l-i] = tmp; } } public static void reverse(int[] s) { reverse(s, 0, s.length-1); } public static void reverse(long[] s, int l , int r) { for(int i = l; i<=(l+r)/2; i++) { long tmp = s[i]; s[i] = s[r+l-i]; s[r+l-i] = tmp; } } public static void reverse(long[] s) { reverse(s, 0, s.length-1); } public static void reverse(float[] s, int l , int r) { for(int i = l; i<=(l+r)/2; i++) { float tmp = s[i]; s[i] = s[r+l-i]; s[r+l-i] = tmp; } } public static void reverse(float[] s) { reverse(s, 0, s.length-1); } public static void reverse(double[] s, int l , int r) { for(int i = l; i<=(l+r)/2; i++) { double tmp = s[i]; s[i] = s[r+l-i]; s[r+l-i] = tmp; } } public static void reverse(double[] s) { reverse(s, 0, s.length-1); } public static void reverse(char[] s, int l , int r) { for(int i = l; i<=(l+r)/2; i++) { char tmp = s[i]; s[i] = s[r+l-i]; s[r+l-i] = tmp; } } public static void reverse(char[] s) { reverse(s, 0, s.length-1); } public static <T> void reverse(T[] s, int l , int r) { for(int i = l; i<=(l+r)/2; i++) { T tmp = s[i]; s[i] = s[r+l-i]; s[r+l-i] = tmp; } } public static <T> void reverse(T[] s) { reverse(s, 0, s.length-1); } public static void shuffle(int[] s) { for (int i = 0; i < s.length; ++i) { int j = random.nextInt(i + 1); int t = s[i]; s[i] = s[j]; s[j] = t; } } public static void shuffle(long[] s) { for (int i = 0; i < s.length; ++i) { int j = random.nextInt(i + 1); long t = s[i]; s[i] = s[j]; s[j] = t; } } public static void shuffle(float[] s) { for (int i = 0; i < s.length; ++i) { int j = random.nextInt(i + 1); float t = s[i]; s[i] = s[j]; s[j] = t; } } public static void shuffle(double[] s) { for (int i = 0; i < s.length; ++i) { int j = random.nextInt(i + 1); double t = s[i]; s[i] = s[j]; s[j] = t; } } public static void shuffle(char[] s) { for (int i = 0; i < s.length; ++i) { int j = random.nextInt(i + 1); char t = s[i]; s[i] = s[j]; s[j] = t; } } public static <T> void shuffle(T[] s) { for (int i = 0; i < s.length; ++i) { int j = random.nextInt(i + 1); T t = s[i]; s[i] = s[j]; s[j] = t; } } public static void sortArray(int[] a) { shuffle(a); Arrays.sort(a); } public static void sortArray(long[] a) { shuffle(a); Arrays.sort(a); } public static void sortArray(float[] a) { shuffle(a); Arrays.sort(a); } public static void sortArray(double[] a) { shuffle(a); Arrays.sort(a); } public static void sortArray(char[] a) { shuffle(a); Arrays.sort(a); } public static <T extends Comparable<T>> void sortArray(T[] a) { Arrays.sort(a); } } static class Writer { private PrintWriter pw; public Writer(){ pw = new PrintWriter(System.out); } public Writer(String f){ try { pw = new PrintWriter(new FileWriter(f)); } catch (IOException e) { e.printStackTrace(); } } public void printArray(int[] a) { for(int i = 0; i<a.length; i++) print(a[i]+" "); } public void printlnArray(int[] a) { for(int i = 0; i<a.length; i++) print(a[i]+" "); pw.println(); } public void printArray(long[] a) { for(int i = 0; i<a.length; i++) print(a[i]+" "); } public void printlnArray(long[] a) { for(int i = 0; i<a.length; i++) print(a[i]+" "); pw.println(); } public void print(Object o) { pw.print(o.toString()); } public void println(Object o) { pw.println(o.toString()); } public void println() { pw.println(); } public void flush() { pw.flush(); } public void exit() { pw.close(); } } }
Java
["5\n\n3\n\n4"]
1 second
["? 1 5\n\n? 4 5\n\n! 1"]
NoteIn the sample suppose $$$a$$$ is $$$[5, 1, 4, 2, 3]$$$. So after asking the $$$[1..5]$$$ subsegment $$$4$$$ is second to max value, and it's position is $$$3$$$. After asking the $$$[4..5]$$$ subsegment $$$2$$$ is second to max value and it's position in the whole array is $$$4$$$.Note that there are other arrays $$$a$$$ that would produce the same interaction, and the answer for them might be different. Example output is given in purpose of understanding the interaction.
Java 11
standard input
[ "binary search", "interactive" ]
b3e8fe76706ba17cb285c75459508334
The first line contains a single integer $$$n$$$ $$$(2 \leq n \leq 10^5)$$$ — the number of elements in the array.
1,600
null
standard output
PASSED
51a9bf7ac9a3da0e74ef3f228c0a7e46
train_109.jsonl
1613658900
The only difference between the easy and the hard version is the limit to the number of queries.This is an interactive problem.There is an array $$$a$$$ of $$$n$$$ different numbers. In one query you can ask the position of the second maximum element in a subsegment $$$a[l..r]$$$. Find the position of the maximum element in the array in no more than 40 queries.A subsegment $$$a[l..r]$$$ is all the elements $$$a_l, a_{l + 1}, ..., a_r$$$. After asking this subsegment you will be given the position of the second maximum from this subsegment in the whole array.
256 megabytes
import java.io.BufferedReader; import java.io.InputStreamReader; import java.util.*; public class C7003 { static BufferedReader br; static long mod = 1000000000 + 7; static HashSet<Integer> p = new HashSet<>(); public static void main(String[] args) throws Exception { br = new BufferedReader(new InputStreamReader(System.in)); int tc = 1; // tc = cinI(); while (tc-- > 0) { int n =cinI(); // int l=1; int r =n; // System.out.println("? "+l+" "+r); // int x =cinI(); // int mid = (l+r)/2; // System.out.println("? "+mid+" "+r); // int y =cinI(); int ans = d2c(1,n); System.out.println("! "+ans); System.out.flush(); } } public static int d2c(int l,int r)throws Exception{ if(r-l==1){ System.out.println("? "+l +" "+r); int sum=l+r; int z = cinI(); return sum-z; } System.out.println("? "+l+" "+r); System.out.flush(); int x =cinI(); int mid =(l+r)/2; if(x>=mid) { System.out.println("? " + mid + " " + r); System.out.flush(); int y = cinI(); if(x==y){ return d2c(mid,r); } else { return d2c(l,mid); } } else{ System.out.println("? "+l+" "+mid); System.out.flush(); int y = cinI(); if(x==y){ return d2c(l,mid); } else { return d2c(mid,r); } } // int y = cinI(); } private static int dfs(TreeMap<Integer, HashSet<Integer>> graph, boolean[] vis, Integer key, Stack<Integer> st) { if (st.size() == 0) { return 0; } int par = st.pop(); HashSet<Integer> child = graph.get(par); vis[par] = true; int nodes = 1; for (int c : child) { if (vis[c] == false) { st.add(c); nodes += dfs(graph, vis, c, st); } } return nodes; } public static boolean isSorted(int[] arr) { for (int i = 0; i < arr.length - 1; i++) { if (arr[i] > arr[i + 1]) { return false; } } return true; } private static long gcd(long a, long b) { if (a == 0) return b; if (b == 0) return a; // base case if (a == b) return a; // a is greater if (a > b) return gcd(a % b, b); return gcd(a, b % a); } public static long min(long a, long b) { return Math.min(a, b); } public static int min(int a, int b) { return Math.min(a, b); } public static void sieve() { int[] pf = new int[100000000 + 1]; //0 prime //1 not prime pf[0] = 1; pf[1] = 1; for (int j = 2; j <= 10000; j++) { if (pf[j] == 0) { p.add(j); for (int k = j * j; k < pf.length; k += j) { pf[k] = 1; } } } } public static int[] readArray(int n, int x, int z) throws Exception { int[] arr = new int[n]; String[] ar = cinA(); for (int i = x; i < n + x; i++) { arr[i] = getI(ar[i - x]); } return arr; } public static long[] readArray(int n, int x) throws Exception { long[] arr = new long[n]; String[] ar = cinA(); for (int i = x; i < n + x; i++) { arr[i] = getL(ar[i - x]); } return arr; } public static void arrinit(String[] a, long[] b) throws Exception { for (int i = 0; i < a.length; i++) { b[i] = Long.parseLong(a[i]); } } public static HashSet<Integer>[] Graph(int n, int edge, int directed) throws Exception { HashSet<Integer>[] tree = new HashSet[n]; for (int j = 0; j < edge; j++) { String[] uv = cinA(); int u = getI(uv[0]); int v = getI(uv[1]); if (directed == 0) { tree[v].add(u); } tree[u].add(v); } return tree; } public static void arrinit(String[] a, int[] b) throws Exception { for (int i = 0; i < a.length; i++) { b[i] = Integer.parseInt(a[i]); } } static double findRoots(int a, int b, int c) { // If a is 0, then equation is not //quadratic, but linear int d = b * b - 4 * a * c; double sqrt_val = Math.sqrt(Math.abs(d)); // System.out.println("Roots are real and different \n"); return Math.max((double) (-b + sqrt_val) / (2 * a), (double) (-b - sqrt_val) / (2 * a)); } public static String cin() throws Exception { return br.readLine(); } public static String[] cinA() throws Exception { return br.readLine().split(" "); } public static String[] cinA(int x) throws Exception { return br.readLine().split(""); } public static String ToString(Long x) { return Long.toBinaryString(x); } public static void cout(String s) { System.out.println(s); } public static Integer cinI() throws Exception { return Integer.parseInt(br.readLine()); } public static int getI(String s) throws Exception { return Integer.parseInt(s); } public static long getL(String s) throws Exception { return Long.parseLong(s); } public static long max(long a, long b) { return Math.max(a, b); } public static int max(int a, int b) { return Math.max(a, b); } public static void coutI(int x) { System.out.println(String.valueOf(x)); } public static void coutI(long x) { System.out.println(String.valueOf(x)); } public static Long cinL() throws Exception { return Long.parseLong(br.readLine()); } public static void arrInit(String[] arr, int[] arr1) throws Exception { for (int i = 0; i < arr.length; i++) { arr1[i] = getI(arr[i]); } } }
Java
["5\n\n3\n\n4"]
1 second
["? 1 5\n\n? 4 5\n\n! 1"]
NoteIn the sample suppose $$$a$$$ is $$$[5, 1, 4, 2, 3]$$$. So after asking the $$$[1..5]$$$ subsegment $$$4$$$ is second to max value, and it's position is $$$3$$$. After asking the $$$[4..5]$$$ subsegment $$$2$$$ is second to max value and it's position in the whole array is $$$4$$$.Note that there are other arrays $$$a$$$ that would produce the same interaction, and the answer for them might be different. Example output is given in purpose of understanding the interaction.
Java 11
standard input
[ "binary search", "interactive" ]
b3e8fe76706ba17cb285c75459508334
The first line contains a single integer $$$n$$$ $$$(2 \leq n \leq 10^5)$$$ — the number of elements in the array.
1,600
null
standard output
PASSED
490153050b4a0fcf5497658c6fa965a4
train_109.jsonl
1613658900
The only difference between the easy and the hard version is the limit to the number of queries.This is an interactive problem.There is an array $$$a$$$ of $$$n$$$ different numbers. In one query you can ask the position of the second maximum element in a subsegment $$$a[l..r]$$$. Find the position of the maximum element in the array in no more than 40 queries.A subsegment $$$a[l..r]$$$ is all the elements $$$a_l, a_{l + 1}, ..., a_r$$$. After asking this subsegment you will be given the position of the second maximum from this subsegment in the whole array.
256 megabytes
import java.io.BufferedReader; import java.io.BufferedWriter; import java.io.IOException; import java.io.InputStreamReader; import java.io.OutputStreamWriter; import java.util.*; public class weird_algrithm { static BufferedWriter output = new BufferedWriter( new OutputStreamWriter(System.out)); static BufferedReader sc = new BufferedReader(new InputStreamReader(System.in)); static int mod = 1000000007; static String toReturn = ""; static int steps = Integer.MAX_VALUE; static int maxlen = 1000005; /*MATHEMATICS FUNCTIONS START HERE MATHS MATHS MATHS MATHS*/ static long gcd(long a, long b) { if(b == 0) return a; else return gcd(b, a % b); } static long powerMod(long x, long y, int mod) { if(y == 0) return 1; long temp = powerMod(x, y / 2, mod); temp = ((temp % mod) * (temp % mod)) % mod; if(y % 2 == 0) return temp; else return ((x % mod) * (temp % mod)) % mod; } static long modInverse(long n, int p) { return powerMod(n, p - 2, p); } static long nCr(int n, int r, int mod, long [] fact, long [] ifact) { return ((fact[n] % mod) * ((ifact[r] * ifact[n - r]) % mod)) % mod; } static boolean isPrime(long a) { if(a == 1) return false; else if(a == 2 || a == 3 || a== 5) return true; else if(a % 2 == 0 || a % 3 == 0) return false; for(int i = 5; i * i <= a; i = i + 6) { if(a % i == 0 || a % (i + 2) == 0) return false; } return true; } static int [] seive(int a) { int [] toReturn = new int [a + 1]; for(int i = 0; i < a; i++) toReturn[i] = 1; toReturn[0] = 0; toReturn[1] = 0; toReturn[2] = 1; for(int i = 2; i * i <= a; i++) { if(toReturn[i] == 0) continue; for(int j = 2 * i; j <= a; j += i) toReturn[j] = 0; } return toReturn; } static long [] fact(int a) { long [] arr = new long[a + 1]; arr[0] = 1; for(int i = 1; i < a + 1; i++) { arr[i] = (arr[i - 1] * i) % mod; } return arr; } static ArrayList<Long> divisors(long n) { ArrayList<Long> arr = new ArrayList<Long>(); for(long i = 2; i * i <= n; i++) { if(n % i == 0) { while(n % i == 0) { n /= i; } arr.add(i); } } if(n > 1) arr.add(n); return arr; } static int euler(int n) { int ans = n; for(int i = 2; i * i <= n; i++) { if(n % i == 0) { while(n % i == 0) { n /= i; } ans -= ans / i; } } if(n > 1) ans -= ans / n; return ans; } static long extendedEuclid(long a, long b, long [] arr) { if(b == 0) { arr[0] = 1; arr[1] = 0; return a; } long [] arr1 = new long[2]; long d = extendedEuclid(b, a % b, arr1); arr[0] = arr1[1]; arr[1] = arr1[0] - arr1[1] * (a / b); return d; } /*MATHS MATHS MATHS MATHS MATHEMATICS FUNCTIONS END HERE */ /*SWAP FUNCTION START HERE SWAP SWAP SWAP SWAP */ static void swap(int i, int j, long[] arr) { long temp = arr[i]; arr[i] = arr[j]; arr[j] = temp; } static void swap(int i, int j, int[] arr) { int temp = arr[i]; arr[i] = arr[j]; arr[j] = temp; } static void swap(int i, int j, String [] arr) { String temp = arr[i]; arr[i] = arr[j]; arr[j] = temp; } static void swap(int i, int j, char [] arr) { char temp = arr[i]; arr[i] = arr[j]; arr[j] = temp; } /*SWAP SWAP SWAP SWAP SWAP FUNCTION END HERE*/ /*BINARY SEARCH METHODS START HERE * BINARY SEARCH * BINARY SEARCH * BINARY SEARCH * BINARY SEARCH */ static boolean BinaryCheck(long test, long [] arr, long health) { for(int i = 0; i <= arr.length - 1; i++) { if(i == arr.length - 1) health -= test; else if(arr[i + 1] - arr[i] > test) { health = health - test; }else { health = health - (arr[i + 1] - arr[i]); } if(health <= 0) return true; } return false; } static long binarySearchModified(long start1, long n, ArrayList<Integer> arr, int val) { long start = start1, end = n, ans = -1; while(start <= end) { long mid = (start + end) / 2; if(arr.get((int)mid) >= val) { if(arr.get((int)mid) == val && mid + 1 < arr.size() && arr.get((int)mid + 1) == val) { start = mid + 1; }else if(arr.get((int)mid) == val) { return mid; }else end = mid - 1; }else { start = mid + 1; } } //System.out.println(); return start; } static int upper(int start, int end, ArrayList<Integer> pairs, long val) { while(start < end) { int mid = (start + end) / 2; if(pairs.get(mid) <= val) start = mid + 1; else end = mid; } return start; } static int lower(int start, int end, ArrayList<Long> arr, long val) { while(start < end) { int mid = (start + end) / 2; if(arr.get(mid) >= val) end = mid; else start = mid + 1; } return start; } /*BINARY SEARCH * BINARY SEARCH * BINARY SEARCH * BINARY SEARCH * BINARY SEARCH BINARY SEARCH METHODS END HERE*/ /*RECURSIVE FUNCTION START HERE * RECURSIVE * RECURSIVE * RECURSIVE * RECURSIVE */ static int recurse(int x, int y, int n, int steps1, Integer [][] dp) { if(x > n || y > n) return 0; if(dp[x][y] != null) { return dp[x][y]; } else if(x == n || y == n) { return steps1; } return dp[x][y] = Math.max(recurse(x + y, y, n, steps1 + 1, dp), recurse(x, x + y, n, steps1 + 1, dp)); } /*RECURSIVE * RECURSIVE * RECURSIVE * RECURSIVE * RECURSIVE RECURSIVE FUNCTION END HERE*/ /*GRAPH FUNCTIONS START HERE * GRAPH * GRAPH * GRAPH * GRAPH * */ static class edge{ int from, to; long weight; public edge(int x, int y, long weight2) { this.from = x; this.to = y; this.weight = weight2; } } static class sort implements Comparator<TreeNode>{ @Override public int compare(TreeNode a, TreeNode b) { // TODO Auto-generated method stub return 0; } } static void addEdge(ArrayList<ArrayList<edge>> graph, int from, int to, long weight) { edge temp = new edge(from, to, weight); edge temp1 = new edge(to, from, weight); graph.get(from).add(temp); //graph.get(to).add(temp1); } static int ans = 0; static void topoSort(ArrayList<ArrayList<Integer>> graph, int vertex, boolean [] visited, ArrayList<Integer> toReturn) { if(visited[vertex]) return; visited[vertex] = true; for(int i = 0; i < graph.get(vertex).size(); i++) { if(!visited[graph.get(vertex).get(i)]) topoSort(graph, graph.get(vertex).get(i), visited, toReturn); } toReturn.add(vertex); } static boolean isCyclicDirected(ArrayList<ArrayList<Integer>> graph, int vertex, boolean [] visited, boolean [] reStack) { if(reStack[vertex]) return true; if(visited[vertex]) return false; reStack[vertex] = true; visited[vertex] = true; for(int i = 0; i < graph.get(vertex).size(); i++) { if(isCyclicDirected(graph, graph.get(vertex).get(i), visited, reStack)) return true; } reStack[vertex] = false; return false; } static int e = 0; static long mst(PriorityQueue<edge> pq, int nodes) { long weight = 0; int [] size = new int[nodes + 1]; Arrays.fill(size, 1); while(!pq.isEmpty()) { edge temp = pq.poll(); int x = parent(parent, temp.to); int y = parent(parent, temp.from); if(x != y) { //System.out.println(temp.weight); union(x, y, rank, parent, size); weight += temp.weight; e++; } } return weight; } static void floyd(long [][] dist) { // to find min distance between two nodes for(int k = 0; k < dist.length; k++) { for(int i = 0; i < dist.length; i++) { for(int j = 0; j < dist.length; j++) { if(dist[i][j] > dist[i][k] + dist[k][j]) { dist[i][j] = dist[i][k] + dist[k][j]; } } } } } static void dijkstra(ArrayList<ArrayList<edge>> graph, long [] dist, int src) { for(int i = 0; i < dist.length; i++) dist[i] = Long.MAX_VALUE / 2; dist[src] = 0; boolean visited[] = new boolean[dist.length]; PriorityQueue<pair> pq = new PriorityQueue<>(); pq.add(new pair(src, 0)); while(!pq.isEmpty()) { pair temp = pq.poll(); int index = (int)temp.a; for(int i = 0; i < graph.get(index).size(); i++) { if(dist[graph.get(index).get(i).to] > dist[index] + graph.get(index).get(i).weight) { dist[graph.get(index).get(i).to] = dist[index] + graph.get(index).get(i).weight; pq.add(new pair(graph.get(index).get(i).to, graph.get(index).get(i).weight)); } } } } static int parent1 = -1; static boolean ford(ArrayList<ArrayList<edge>> graph1, ArrayList<edge> graph, long [] dist, int src, int [] parent) { for(int i = 0; i < dist.length; i++) dist[i] = Long.MIN_VALUE / 2; dist[src] = 0; boolean hasNeg = false; for(int i = 0; i < dist.length - 1; i++) { for(int j = 0; j < graph.size(); j++) { int from = graph.get(j).from; int to = graph.get(j).to; long weight = graph.get(j).weight; if(dist[to] < dist[from] + weight) { dist[to] = dist[from] + weight; parent[to] = from; } } } for(int i = 0; i < graph.size(); i++) { int from = graph.get(i).from; int to = graph.get(i).to; long weight = graph.get(i).weight; if(dist[to] < dist[from] + weight) { parent1 = from; hasNeg = true; /* * dfs(graph1, parent1, new boolean[dist.length], dist.length - 1); * //System.out.println(ans); dfs(graph1, 0, new boolean[dist.length], parent1); */ //System.out.println(ans); if(ans == 2) break; else ans = 0; } } return hasNeg; } /*GRAPH FUNCTIONS END HERE * GRAPH * GRAPH * GRAPH * GRAPH */ /*disjoint Set START HERE * disjoint Set * disjoint Set * disjoint Set * disjoint Set */ static int [] rank; static int [] parent; static int parent(int [] parent, int x) { if(parent[x] == x) return x; else return parent[x] = parent(parent, parent[x]); } static boolean union(int x, int y, int [] rank, int [] parent, int [] setSize) { if(parent(parent, x) == parent(parent, y)) { return true; } if (rank[x] > rank[y]) { parent[y] = x; setSize[x] += setSize[y]; } else { parent[x] = y; setSize[y] += setSize[x]; if (rank[x] == rank[y]) rank[y]++; } return false; } /*disjoint Set END HERE * disjoint Set * disjoint Set * disjoint Set * disjoint Set */ /*INPUT START HERE * INPUT * INPUT * INPUT * INPUT * INPUT */ static int nextInt() throws NumberFormatException, IOException { return Integer.parseInt(sc.readLine()); } static long nextLong() throws NumberFormatException, IOException { return Long.parseLong(sc.readLine()); } static long [] inputLongArr() throws NumberFormatException, IOException{ String [] s = sc.readLine().split(" "); long [] toReturn = new long[s.length]; for(int i = 0; i < s.length; i++) { toReturn[i] = Long.parseLong(s[i]); } return toReturn; } static int max = 0; static int [] inputIntArr() throws NumberFormatException, IOException{ String [] s = sc.readLine().split(" "); //System.out.println(s.length); int [] toReturn = new int[s.length]; for(int i = 0; i < s.length; i++) { toReturn[i] = Integer.parseInt(s[i]); } return toReturn; } /*INPUT * INPUT * INPUT * INPUT * INPUT * INPUT END HERE */ static long [] preCompute(int level) { long [] toReturn = new long[level]; toReturn[0] = 1; toReturn[1] = 16; for(int i = 2; i < level; i++) { toReturn[i] = ((toReturn[i - 1] % mod) * (toReturn[i - 1] % mod)) % mod; } return toReturn; } static class pair{ long a; long b; long d; public pair(long in, long y) { this.a = in; this.b = y; this.d = 0; } } static int [] nextGreaterBack(char [] s) { Stack<Integer> stack = new Stack<>(); int [] toReturn = new int[s.length]; for(int i = 0; i < s.length; i++) { if(!stack.isEmpty() && s[stack.peek()] >= s[i]) { stack.pop(); } if(stack.isEmpty()) { stack.push(i); toReturn[i] = -1; }else { toReturn[i] = stack.peek(); stack.push(i); } } return toReturn; } static int [] nextGreaterFront(char [] s) { Stack<Integer> stack = new Stack<>(); int [] toReturn = new int[s.length]; for(int i = s.length - 1; i >= 0; i--) { if(!stack.isEmpty() && s[stack.peek()] >= s[i]) { stack.pop(); } if(stack.isEmpty()) { stack.push(i); toReturn[i] = -1; }else { toReturn[i] = stack.peek(); stack.push(i); } } return toReturn; } static int [] lps(String s) { int [] lps = new int[s.length()]; lps[0] = 0; int j = 0; for(int i = 1; i < lps.length; i++) { j = lps[i - 1]; while(j > 0 && s.charAt(i) != s.charAt(j)) j = lps[j - 1]; if(s.charAt(i) == s.charAt(j)) { lps[i] = j + 1; } } return lps; } static int [][] vectors = {{1, 0}, {0, 1}, {-1, 0}, {0, -1}}; static String dir = "DRUL"; static boolean check(int i, int j, boolean [][] visited) { if(i >= visited.length || j >= visited[0].length) return false; if(i < 0 || j < 0) return false; return true; } static void selectionSort(long arr[], long [] arr1, ArrayList<ArrayList<Integer>> ans) { int n = arr.length; for (int i = 0; i < n-1; i++) { int min_idx = i; for (int j = i+1; j < n; j++) if (arr[j] < arr[min_idx]) min_idx = j; else if(arr[j] == arr[min_idx]) { if(arr1[j] < arr1[min_idx]) min_idx = j; } if(i == min_idx) { continue; } ArrayList<Integer> p = new ArrayList<Integer>(); p.add(min_idx + 1); p.add(i + 1); ans.add(new ArrayList<Integer>(p)); swap(i, min_idx, arr); swap(i, min_idx, arr1); } } static int saved = Integer.MAX_VALUE; static String ans1 = ""; public static boolean isValid(int x, int y, String [] mat) { if(x >= mat.length || x < 0) return false; if(y >= mat[0].length() || y < 0) return false; return true; } public static void recurse3(ArrayList<Character> arr, int index, String s, int max, ArrayList<String> toReturn) { if(s.length() == max) { toReturn.add(s); return; } if(index == arr.size()) return; recurse3(arr, index + 1, s + arr.get(index), max, toReturn); recurse3(arr, index + 1, s, max, toReturn); } /* if(arr[i] > q) return Math.max(f(i + 1, q - 1) + 1, f(i + 1, q); else return f(i + 1, q) + 1 */ static void dfsDP(ArrayList<ArrayList<Integer>> graph, int src, int [] dp1, int [] dp2, int parent) { int sum1 = 0; int sum2 = 0; for(int x : graph.get(src)) { if(x == parent) continue; dfsDP(graph, x, dp1, dp2, src); sum1 += Math.min(dp1[x], dp2[x]); sum2 += dp1[x]; } dp1[src] = 1 + sum1; dp2[src] = sum2; System.out.println(src + " " + dp1[src] + " " + dp2[src]); } static int balanced = 0; static void dfs(ArrayList<ArrayList<ArrayList<Long>>> graph, long src, int [] dist, long sum1, long sum2, long parent, ArrayList<Long> arr, int index) { index = 0;//binarySearch(index, arr.size() - 1, arr, sum1); if(index < arr.size() && arr.get(index) <= sum1) { dist[(int)src] = index + 1; } else dist[(int)src] = index; for(ArrayList<Long> x : graph.get((int)src)) { if(x.get(0) == parent) continue; if(arr.size() != 0) arr.add(arr.get(arr.size() - 1) + x.get(2)); else arr.add(x.get(2)); dfs(graph, x.get(0), dist, sum1 + x.get(1), sum2, src, arr, index); arr.remove(arr.size() - 1); } } static int compare(String s1, String s2) { Queue<Character> q1 = new LinkedList<>(); Queue<Character> q2 = new LinkedList<Character>(); for(int i = 0; i < s1.length(); i++) { q1.add(s1.charAt(i)); q2.add(s2.charAt(i)); } int k = 0; while(k < s1.length()) { if(q1.equals(q2)) { break; } q2.add(q2.poll()); k++; } return k; } static long pro = 0; public static int len(ArrayList<ArrayList<Integer>> graph, int src, boolean [] visited ) { visited[src] = true; int max = 0; for(int x : graph.get(src)) { if(!visited[x]) { visited[x] = true; int len = len(graph, x, visited) + 1; //System.out.println(len); pro = Math.max(max * (len - 1), pro); max = Math.max(len, max); } } return max; } public static void recurse(int l, int [] ans) { if(l < 0) return; int r = (int)Math.sqrt(l * 2); int s = r * r; r = s - l; recurse(r - 1, ans); while(r <= l) { ans[r] = l; ans[l] = r; r++; l--; } } static boolean isSmaller(String str1, String str2) { // Calculate lengths of both string int n1 = str1.length(), n2 = str2.length(); if (n1 < n2) return true; if (n2 < n1) return false; for (int i = 0; i < n1; i++) if (str1.charAt(i) < str2.charAt(i)) return true; else if (str1.charAt(i) > str2.charAt(i)) return false; return false; } // Function for find difference of larger numbers static String findDiff(String str1, String str2) { // Before proceeding further, make sure str1 // is not smaller if (isSmaller(str1, str2)) { String t = str1; str1 = str2; str2 = t; } // Take an empty string for storing result String str = ""; // Calculate length of both string int n1 = str1.length(), n2 = str2.length(); // Reverse both of strings str1 = new StringBuilder(str1).reverse().toString(); str2 = new StringBuilder(str2).reverse().toString(); int carry = 0; // Run loop till small string length // and subtract digit of str1 to str2 for (int i = 0; i < n2; i++) { // Do school mathematics, compute difference of // current digits int sub = ((int)(str1.charAt(i) - '0') - (int)(str2.charAt(i) - '0') - carry); // If subtraction is less than zero // we add then we add 10 into sub and // take carry as 1 for calculating next step if (sub < 0) { sub = sub + 10; carry = 1; } else carry = 0; str += (char)(sub + '0'); } // subtract remaining digits of larger number for (int i = n2; i < n1; i++) { int sub = ((int)(str1.charAt(i) - '0') - carry); // if the sub value is -ve, then make it // positive if (sub < 0) { sub = sub + 10; carry = 1; } else carry = 0; str += (char)(sub + '0'); } // reverse resultant string return new StringBuilder(str).reverse().toString(); } public static boolean check(String s, int k, int mid) { int [] hash = new int[256]; for(int i = 0; i < s.length(); i++) { hash[s.charAt(i)]++; } int len = 0; int count = 0; for(int i = 0; i < hash.length; i++) { if(hash[i] % 2 != 0 && len % 2 != 0) { if(hash[i] > len) len = hash[i]; if(len >= mid) { count++; len = len - mid; } continue; } if(hash[i] % 2 == 0 && len % 2 != 0) { if(len + hash[i] >= mid) { count++; len = len + hash[i] - mid; } continue; } if(len % 2 == 0 && hash[i] % 2 != 0) { if(len + hash[i] >= mid) { len = len + hash[i] - mid; count++; continue; } if(len == 0) { len += hash[i]; if(len >= mid) { count++; len = len - mid; } continue; } } if(hash[i] % 2 == 0 && len % 2 == 0) { len += hash[i]; if(len >= mid) { count++; len = len - mid; } continue; } if(hash[i] >= mid) { count++; } } if(count >= k) return true; return false; } /* 4, 8, 15, 16, 23, 42 */ static interactor test; static int query(int x, int y) throws NumberFormatException, IOException { System.out.println("? " + x + " " + y); int to = nextInt(); return to; } static void solve() throws IOException { int min = 1; int max1 = 100000; int n = nextInt(); //test = new interactor(n); int start = 1; int end = n; int sec = 0; for(int i = 0; i < 20; i++) { if(start >= end) break; sec = query(start, end); int mid = (start + end) / 2; if(sec >= mid) { int q = query(mid, end); if(q == sec) start = mid; else end = mid - 1; }else { int q = query(start, mid); if(q == sec) { end = mid; }else start = mid + 1; } } /* int max = 0; int index = 0; for(int i = 0; i < test.arr.length; i++) { //System.out.print(test.arr[i] + " "); if(max < test.arr[i]) { max = test.arr[i]; index = i + 1; } } */ if(sec != start) { output.write("! " + start + "\n"); }else { output.write("! " + end + "\n"); } } public static void main(String[] args) throws IOException { // TODO Auto-generated method stub //int t = Integer.parseInt(sc.readLine()); for(int i = 0; i < t; i++) solve(); output.flush(); } } /* a + b = x, b + c = y, a + b + c = z; */ class interactor{ int [] arr; int min = 1; int max = 100000; public interactor(int n) { arr = new int [n]; HashSet<Integer> set = new HashSet<Integer>(); for(int i = 0; i < arr.length; i++) { int val = (int)(Math.random()*(max-min+1)+min); while(set.contains(val)) val = (int)(Math.random()*(max-min+1)+min); set.add(val); arr[i] = val; } } public int interact(int start, int end) { if(start == end) return arr[start - 1]; PriorityQueue<ArrayList<Integer>> pq = new PriorityQueue<>((a, b) -> { return b.get(0) - a.get(0); }); for(int i = start - 1; i < end; i++) { ArrayList<Integer> arr = new ArrayList<Integer>(); arr.add(this.arr[i]); arr.add(i + 1); pq.add(arr); } if(pq.size() == 1) return pq.poll().get(1); pq.poll(); return pq.poll().get(1); } } class TreeNode { long a; long b; public TreeNode(long x, long y) { this.a = x; this.b = y; } public String toString() { return a + " " + b; } } /* 1 10 6 10 7 9 11 99 45 20 88 31 */
Java
["5\n\n3\n\n4"]
1 second
["? 1 5\n\n? 4 5\n\n! 1"]
NoteIn the sample suppose $$$a$$$ is $$$[5, 1, 4, 2, 3]$$$. So after asking the $$$[1..5]$$$ subsegment $$$4$$$ is second to max value, and it's position is $$$3$$$. After asking the $$$[4..5]$$$ subsegment $$$2$$$ is second to max value and it's position in the whole array is $$$4$$$.Note that there are other arrays $$$a$$$ that would produce the same interaction, and the answer for them might be different. Example output is given in purpose of understanding the interaction.
Java 11
standard input
[ "binary search", "interactive" ]
b3e8fe76706ba17cb285c75459508334
The first line contains a single integer $$$n$$$ $$$(2 \leq n \leq 10^5)$$$ — the number of elements in the array.
1,600
null
standard output
PASSED
6261f11d5937c51a9020ac5608b1a11e
train_109.jsonl
1613658900
The only difference between the easy and the hard version is the limit to the number of queries.This is an interactive problem.There is an array $$$a$$$ of $$$n$$$ different numbers. In one query you can ask the position of the second maximum element in a subsegment $$$a[l..r]$$$. Find the position of the maximum element in the array in no more than 40 queries.A subsegment $$$a[l..r]$$$ is all the elements $$$a_l, a_{l + 1}, ..., a_r$$$. After asking this subsegment you will be given the position of the second maximum from this subsegment in the whole array.
256 megabytes
import java.io.*; import java.util.*; public class Interactive_2 { public static void main(String[] args) { FastReader sc = new FastReader(); StringBuilder sb = new StringBuilder(); int t = 1; out:while(t-- >0) { int n = sc.nextInt(); int l = 1; int r = n; System.out.println("? "+l+" "+r); System.out.flush(); int second_max = sc.nextInt(); int x,y; while(l<r) { int mid = l + (r-l)/2; if(r-l==1) { if (second_max==l) { l=r; } else r = l; continue; } System.out.println("? "+l+" "+mid); System.out.flush(); x = sc.nextInt(); if(mid+1==r) { y=-1; } else { System.out.println("? "+(mid+1)+" "+r); System.out.flush(); y = sc.nextInt(); } if(x==second_max) { r = mid; } else if(y==second_max) { l = mid+1; } else { if(second_max>mid) { r = mid; second_max = x; } else { l = mid+1; second_max = y; } } } System.out.println("! "+l); } // System.out.println(sb); } static class FastReader { BufferedReader br; StringTokenizer st; public FastReader() { br = new BufferedReader(new InputStreamReader(System.in)); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } int[] readArray(int n) { int[] a = new int[n]; for (int i = 0; i < n; i++) a[i] = nextInt(); return a; } String nextLine() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } } }
Java
["5\n\n3\n\n4"]
1 second
["? 1 5\n\n? 4 5\n\n! 1"]
NoteIn the sample suppose $$$a$$$ is $$$[5, 1, 4, 2, 3]$$$. So after asking the $$$[1..5]$$$ subsegment $$$4$$$ is second to max value, and it's position is $$$3$$$. After asking the $$$[4..5]$$$ subsegment $$$2$$$ is second to max value and it's position in the whole array is $$$4$$$.Note that there are other arrays $$$a$$$ that would produce the same interaction, and the answer for them might be different. Example output is given in purpose of understanding the interaction.
Java 11
standard input
[ "binary search", "interactive" ]
b3e8fe76706ba17cb285c75459508334
The first line contains a single integer $$$n$$$ $$$(2 \leq n \leq 10^5)$$$ — the number of elements in the array.
1,600
null
standard output
PASSED
2704a32f83f0d0d3ac2dce47d59198b5
train_109.jsonl
1613658900
The only difference between the easy and the hard version is the limit to the number of queries.This is an interactive problem.There is an array $$$a$$$ of $$$n$$$ different numbers. In one query you can ask the position of the second maximum element in a subsegment $$$a[l..r]$$$. Find the position of the maximum element in the array in no more than 40 queries.A subsegment $$$a[l..r]$$$ is all the elements $$$a_l, a_{l + 1}, ..., a_r$$$. After asking this subsegment you will be given the position of the second maximum from this subsegment in the whole array.
256 megabytes
import java.io.*; public class Main { public static int[] a = new int[]{0, 4, 3, 2, 1, 5}; public static void main(String[] args) throws Exception{ BufferedReader in = new BufferedReader(new InputStreamReader(System.in)); int testCase = Integer.parseInt(in.readLine().trim()); int l = 1; int r = testCase; int result = 0; while (l < r) { int smax = seclarge(in, l, r); if (l + 1 == r) { result = smax == l ? r : l; System.out.println("! " + result); System.out.flush(); return; } int m = l + (r - l)/2; if (smax <= m) { int smax2 = seclarge(in, l, m); if (smax2 == smax) { r = m; } else { l = m + 1; } } else { int smax2 = seclarge(in, m, r); if (smax2 == smax) { l = m; } else { r = m - 1; } } } System.out.println("! " + l); System.out.flush(); } public static int seclarge(BufferedReader in, int l, int r) throws Exception{ System.out.println("? " + l + " " + r); System.out.flush(); int sec = Integer.parseInt(in.readLine().trim()); return sec; } }
Java
["5\n\n3\n\n4"]
1 second
["? 1 5\n\n? 4 5\n\n! 1"]
NoteIn the sample suppose $$$a$$$ is $$$[5, 1, 4, 2, 3]$$$. So after asking the $$$[1..5]$$$ subsegment $$$4$$$ is second to max value, and it's position is $$$3$$$. After asking the $$$[4..5]$$$ subsegment $$$2$$$ is second to max value and it's position in the whole array is $$$4$$$.Note that there are other arrays $$$a$$$ that would produce the same interaction, and the answer for them might be different. Example output is given in purpose of understanding the interaction.
Java 11
standard input
[ "binary search", "interactive" ]
b3e8fe76706ba17cb285c75459508334
The first line contains a single integer $$$n$$$ $$$(2 \leq n \leq 10^5)$$$ — the number of elements in the array.
1,600
null
standard output
PASSED
cd18a627b2b6054b671690f1f82fbd0b
train_109.jsonl
1613658900
The only difference between the easy and the hard version is the limit to the number of queries.This is an interactive problem.There is an array $$$a$$$ of $$$n$$$ different numbers. In one query you can ask the position of the second maximum element in a subsegment $$$a[l..r]$$$. Find the position of the maximum element in the array in no more than 40 queries.A subsegment $$$a[l..r]$$$ is all the elements $$$a_l, a_{l + 1}, ..., a_r$$$. After asking this subsegment you will be given the position of the second maximum from this subsegment in the whole array.
256 megabytes
import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.util.*; public class Main { static class DisjointUnionSets { int[] rank, parent; int n; // Constructor public DisjointUnionSets(int n) { rank = new int[n]; parent = new int[n]; this.n = n; makeSet(); } // Creates n sets with single item in each void makeSet() { for (int i = 0; i < n; i++) { // Initially, all elements are in // their own set. parent[i] = i; } } // Returns representative of x's set int find(int x) { // Finds the representative of the set // that x is an element of if (parent[x] != x) { // if x is not the parent of itself // Then x is not the representative of // his set, parent[x] = find(parent[x]); // so we recursively call Find on its parent // and move i's node directly under the // representative of this set } return parent[x]; } // Unites the set that includes x and the set // that includes x void union(int x, int y) { // Find representatives of two sets int xRoot = find(x), yRoot = find(y); // Elements are in the same set, no need // to unite anything. if (xRoot == yRoot) return; // If x's rank is less than y's rank if (rank[xRoot] < rank[yRoot]) // Then move x under y so that depth // of tree remains less parent[xRoot] = yRoot; // Else if y's rank is less than x's rank else if (rank[yRoot] < rank[xRoot]) // Then move y under x so that depth of // tree remains less parent[yRoot] = xRoot; else // if ranks are the same { // Then move y under x (doesn't matter // which one goes where) parent[yRoot] = xRoot; // And increment the result tree's // rank by 1 rank[xRoot] = rank[xRoot] + 1; } } } static class MyScanner { BufferedReader br; StringTokenizer st; public MyScanner() { br = new BufferedReader(new InputStreamReader(System.in)); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine(){ String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } } static class HashMultiSet<T> implements Iterable<T> { private final HashMap<T,Integer> map; private int size; public HashMultiSet(){map=new HashMap<>(); size=0;} public void clear(){map.clear(); size=0;} public int size(){return size;} public int setSize(){return map.size();} public boolean contains(T a){return map.containsKey(a);} public boolean isEmpty(){return size==0;} public Integer get(T a){return map.getOrDefault(a,0);} public void add(T a, int count) { int cur=get(a);map.put(a,cur+count); size+=count; if(cur+count==0) map.remove(a); } public void addOne(T a){add(a,1);} public void remove(T a, int count){add(a,Math.max(-get(a),-count));} public void removeOne(T a){remove(a,1);} public void removeAll(T a){remove(a,Integer.MAX_VALUE-10);} public Iterator<T> iterator() { return new Iterator<>() { private final Iterator<T> iter = map.keySet().iterator(); private int count = 0; private T curElement; public boolean hasNext(){return iter.hasNext()||count>0;} public T next() { if(count==0) { curElement=iter.next(); count=get(curElement); } count--; return curElement; } }; } } private static long abs(long x){ if(x < 0) x*=-1l;return x; } private static int abs(int x){ if(x < 0) x*=-1;return x; } // public static int get(HashMap<Integer, Deque<Integer> > a, int key ){ // return a.get(key).getLast(); // } // public static void removeLast (HashMap<Integer,Deque<Integer> > a, int key){ // if(a.containsKey(key)){ // a.get(key).removeLast(); // if(a.get(key).size() == 0) a.remove(key); // } // } // public static void add(HashMap<Integer,Deque<Integer>> a, int key, int val){ // if(a.containsKey(key)){ // a.get(key).addLast(val); // }else{ // Deque<Integer> b = new LinkedList<>(); // b.addLast(val); // a.put(key,b); // } // } private static int askRange(int l ,int r){ if(l == r) return l; MyScanner sc = new MyScanner(); System.out.println("? "+l+" "+r); System.out.flush(); return sc.nextInt(); } private static int bin(int l ,int r,int oo){ if(l == r){ return l; } if(r-l == 1){ // int v = askRange(l,r); return (oo==l)? r:l; } if(r-l == 2){ int k = askRange(l,l+1); int p = askRange(l+1,r); if(k == oo) return bin(l,l+1,k); if(p == oo) return bin(l+1,r,p); if(oo == l) return r; else return l; } int mid = (l+r)/2; int mide = oo; int right = askRange(mid+1,r); int left = askRange(l,mid); if(mide == left ) return bin(l,mid,left); else if(mide == right){ return bin(mid+1,r,right); }else if(mide >= mid+1 && mide <=r){ return bin(l,mid,left); }else { return bin(mid+1,r,right); } } public static void main(String[] args) { MyScanner sc = new MyScanner(); int n = sc.nextInt(); int v = askRange(1,n); System.out.println("! "+bin(1,n,v)); } }
Java
["5\n\n3\n\n4"]
1 second
["? 1 5\n\n? 4 5\n\n! 1"]
NoteIn the sample suppose $$$a$$$ is $$$[5, 1, 4, 2, 3]$$$. So after asking the $$$[1..5]$$$ subsegment $$$4$$$ is second to max value, and it's position is $$$3$$$. After asking the $$$[4..5]$$$ subsegment $$$2$$$ is second to max value and it's position in the whole array is $$$4$$$.Note that there are other arrays $$$a$$$ that would produce the same interaction, and the answer for them might be different. Example output is given in purpose of understanding the interaction.
Java 11
standard input
[ "binary search", "interactive" ]
b3e8fe76706ba17cb285c75459508334
The first line contains a single integer $$$n$$$ $$$(2 \leq n \leq 10^5)$$$ — the number of elements in the array.
1,600
null
standard output
PASSED
36574ef3b5614f4ebf609382b24aa7ca
train_109.jsonl
1613658900
The only difference between the easy and the hard version is the limit to the number of queries.This is an interactive problem.There is an array $$$a$$$ of $$$n$$$ different numbers. In one query you can ask the position of the second maximum element in a subsegment $$$a[l..r]$$$. Find the position of the maximum element in the array in no more than 40 queries.A subsegment $$$a[l..r]$$$ is all the elements $$$a_l, a_{l + 1}, ..., a_r$$$. After asking this subsegment you will be given the position of the second maximum from this subsegment in the whole array.
256 megabytes
import java.io.*; import java.util.Arrays; public class codeforces { static int ask(int l,int r)throws IOException { if(l==r) { return -1; } BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); int out1; System.out.println("? "+l+" "+r); System.out.flush(); out1=Integer.parseInt(br.readLine()); return out1; } public static void main(String[] args)throws IOException { BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); int n=Integer.parseInt(br.readLine()); int l=1; int r=n; int pos=ask(1,n); if(ask(1,pos)==pos) { l=1; r=pos; while(l<r) { int mid=(l+r+1)/2; if(ask(mid,n)==pos) { l=mid; } else { r=mid-1; } } System.out.println("! "+l); } else { l=pos; r=n; while(l<r) { int mid=(l+r)/2; if(ask(pos,mid)==pos) { r=mid; } else { l=mid+1; } } System.out.println("! "+l); } } }
Java
["5\n\n3\n\n4"]
1 second
["? 1 5\n\n? 4 5\n\n! 1"]
NoteIn the sample suppose $$$a$$$ is $$$[5, 1, 4, 2, 3]$$$. So after asking the $$$[1..5]$$$ subsegment $$$4$$$ is second to max value, and it's position is $$$3$$$. After asking the $$$[4..5]$$$ subsegment $$$2$$$ is second to max value and it's position in the whole array is $$$4$$$.Note that there are other arrays $$$a$$$ that would produce the same interaction, and the answer for them might be different. Example output is given in purpose of understanding the interaction.
Java 11
standard input
[ "binary search", "interactive" ]
b3e8fe76706ba17cb285c75459508334
The first line contains a single integer $$$n$$$ $$$(2 \leq n \leq 10^5)$$$ — the number of elements in the array.
1,600
null
standard output
PASSED
6322dbe0be783fe777930e789b34a294
train_109.jsonl
1613658900
The only difference between the easy and the hard version is the limit to the number of queries.This is an interactive problem.There is an array $$$a$$$ of $$$n$$$ different numbers. In one query you can ask the position of the second maximum element in a subsegment $$$a[l..r]$$$. Find the position of the maximum element in the array in no more than 40 queries.A subsegment $$$a[l..r]$$$ is all the elements $$$a_l, a_{l + 1}, ..., a_r$$$. After asking this subsegment you will be given the position of the second maximum from this subsegment in the whole array.
256 megabytes
import java.util.*; import java.lang.*; import java.io.*; import java.math.BigInteger; public class Main { static class FastReader{ BufferedReader br; StringTokenizer st; public FastReader(){ br = new BufferedReader(new InputStreamReader(System.in)); } String next(){ while(st == null || !st.hasMoreElements()){ try{ st = new StringTokenizer(br.readLine()); } catch (IOException e){ e.printStackTrace(); } } return st.nextToken(); } int nextInt(){ return Integer.parseInt(next()); } long nextLong(){ return Long.parseLong(next()); } double nextDouble(){ return Double.parseDouble(next()); } String nextLine(){ String str = ""; try{ str = br.readLine(); } catch (Exception e){ e.printStackTrace(); } return str; } int[] ra(int n){ int[] a = new int[n]; for(int i = 0; i < n; i++){ a[i] = nextInt(); } return a; } long[] rla(int n){ long[] a = new long[n]; for(int i = 0; i < n; i++){ a[i] = nextLong(); } return a; } double[] rda(int n){ double[] a = new double[n]; for(int i = 0; i < n; i++){ a[i] = nextDouble(); } return a; } } static int modPower(int x, int y, int mod){ int res = 1; x %= mod; if(x==0) return 0; while(y>0){ if(y%2==1){ res = (res*x)%mod; } y = y>>1; x = (x*x)%mod; } return res; } static class pair<T1, T2>{ T1 first; T2 second; pair(T1 first, T2 second){ this.first = first; this.second = second; } } static int gcd(int a, int b){ if(b == 0) return a; return gcd(b, a%b); } static long sum(long n){ long s=0; while(n>0){ s+=n%10; n/=10; } return s; } static void query(int l,int r){ System.out.println("? "+l+" "+r); } public static void main (String[] args) throws java.lang.Exception { FastReader in = new FastReader(); int n = in.nextInt(); int l=1,r=n; while((r-l)>1){ int mid=(l+r)/2; query(l,r); int x=in.nextInt(); if(x<=mid){ query(l,mid); int y=in.nextInt(); if(x==y){ r=mid; } else { l=mid; } } else { query(mid,r); int y=in.nextInt(); if(x==y){ l=mid; } else { r=mid; } } } query(l,r); int x=in.nextInt(); if(x==l){ l=r; } System.out.println("! "+l); } }
Java
["5\n\n3\n\n4"]
1 second
["? 1 5\n\n? 4 5\n\n! 1"]
NoteIn the sample suppose $$$a$$$ is $$$[5, 1, 4, 2, 3]$$$. So after asking the $$$[1..5]$$$ subsegment $$$4$$$ is second to max value, and it's position is $$$3$$$. After asking the $$$[4..5]$$$ subsegment $$$2$$$ is second to max value and it's position in the whole array is $$$4$$$.Note that there are other arrays $$$a$$$ that would produce the same interaction, and the answer for them might be different. Example output is given in purpose of understanding the interaction.
Java 11
standard input
[ "binary search", "interactive" ]
b3e8fe76706ba17cb285c75459508334
The first line contains a single integer $$$n$$$ $$$(2 \leq n \leq 10^5)$$$ — the number of elements in the array.
1,600
null
standard output
PASSED
b5382150606ff3bffbcd4ab3e2bc8aee
train_109.jsonl
1613658900
The only difference between the easy and the hard version is the limit to the number of queries.This is an interactive problem.There is an array $$$a$$$ of $$$n$$$ different numbers. In one query you can ask the position of the second maximum element in a subsegment $$$a[l..r]$$$. Find the position of the maximum element in the array in no more than 40 queries.A subsegment $$$a[l..r]$$$ is all the elements $$$a_l, a_{l + 1}, ..., a_r$$$. After asking this subsegment you will be given the position of the second maximum from this subsegment in the whole array.
256 megabytes
//package credit; import java.io.*; import java.util.*; import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.util.StringTokenizer; public class Main{ static boolean v[]; static int ans[]; int size[]; static int count=0; static int dsu=0; static int c=0; static int e9=1000000007; int min=Integer.MAX_VALUE; int max=Integer.MIN_VALUE; long max1=Long.MIN_VALUE; long min1=Long.MAX_VALUE; boolean aBoolean=true; boolean y=false; long m=0; static boolean t1=false; static class FastReader { BufferedReader br; StringTokenizer st; public FastReader() { br = new BufferedReader(new InputStreamReader(System.in)); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } } int parent[]; int rank[]; int n=0; ArrayList<ArrayList<Integer>> arrayLists; boolean v1[]; static boolean t2=false; boolean r=false; int fib[]; int fib1[]; int ind[]; int min3=Integer.MAX_VALUE; public static void main(String[] args) throws IOException { Main g = new Main(); g.go(); } public void go() throws IOException { FastReader scanner = new FastReader(); // Scanner scanner = new Scanner(System.in); // BufferedReader bufferedReader=new BufferedReader(new InputStreamReader(System.in)); // String s; PrintWriter printWriter = new PrintWriter(System.out); int t =1; for (int i = 0; i < t; i++) { int n=scanner.nextInt(); int s=1; int e=n; int u=0; int ans=0; u = sm(s, e); if(u==sm(s,u)){ s=1; e=u-1; while(s<=e){ int m=(s+e)/2; if(sm(m,u)==u){ ans=m; s=m+1; }else{ e=m-1; } } }else{ s=u+1; e=n; while(s<=e){ int m=(s+e)/2; if(sm(u,m)==u){ ans=m; e=m-1; }else{ s=m+1; } } } printWriter.println("! "+(ans)); } printWriter.flush(); } public int sm(int l,int r){ FastReader scanner =new FastReader(); if(l==r){ return -1; } System.out.println("? "+(l)+" "+(r)); int h=scanner.nextInt(); System.out.flush(); return h; } static final int mod=1_000_000_007; public long mul(long a, long b) { return a*b; } public long fact(int x) { long ans=1; for (int i=2; i<=x; i++) ans=mul(ans, i); return ans; } public long fastPow(long base, long exp) { if (exp==0) return 1; long half=fastPow(base, exp/2); if (exp%2==0) return mul(half, half); return mul(half, mul(half, base)); } public long modInv(long x) { return fastPow(x, mod-2); } public long nCk(int n, int k) { return mul(fact(n), mul(modInv(fact(k)), modInv(fact(n-k)))); } // public void sieve(int n){ // fib=new int[n+1]; // fib[1]=-1; // fib[0]=-1; // for (int i =2; i*i<=n; i++) { // if(fib[i]==0) // for (int j =i*i; j <=n; j+=i){ // fib[j]=-1; //// System.out.println("l"); // } // } // } public void parent(int n){ for (int i = 0; i < n; i++) { parent[i]=i; rank[i]=1; size[i]=1; } } public void union(int i,int j){ int root1=find(i); int root2=find(j); // if(root1 != root2) { // parent[root2] = root1; //// sz[a] += sz[b]; // } if(root1==root2){ return; } if(rank[root1]>rank[root2]){ parent[root2]=root1; size[root1]+=size[root2]; } else if(rank[root1]<rank[root2]){ parent[root1]=root2; size[root2]+=size[root1]; } else{ parent[root2]=root1; rank[root1]+=1; size[root1]+=size[root2]; } } public int find(int p){ if(parent[p]!=p){ parent[p]=find(parent[p]); } return parent[p]; // if(parent[p]==-1){ // return -1; // } // else if(parent[p]==p){ // return p; // } // else { // parent[p]=find(parent[p]); // return parent[p]; // } } public double dist(double x1,double y1,double x2,double y2){ double e=(x2-x1)*(x2-x1)+(y2-y1)*(y2-y1); double e1=Math.sqrt(e); return e1; } public void make(int p){ parent[p]=p; rank[p]=1; } Random rand = new Random(); public void sort(int[] a, int n) { for (int i = 0; i < n; i++) { int j = rand.nextInt(i + 1); int tmp = a[i]; a[i] = a[j]; a[j] = tmp; } Arrays.sort(a, 0, n); } public long gcd(long a,long b){ if(b==0){ return a; } return gcd(b,a%b); } public void dfs(ArrayList<Integer> arrayLists1){ for (int i = 0; i < arrayLists1.size(); i++) { if(v1[arrayLists1.get(i)]==false){ System.out.println(arrayLists1.get(i)); v1[arrayLists1.get(i)]=true; count++; dfs(arrayLists.get(arrayLists1.get(i))); } } } private void dfs2(ArrayList<Integer>[]arrayList,int j,int count){ ans[j]=count; for(int i:arrayList[j]){ if(ans[i]==-1){ dfs2(arrayList,i,count); } } } private void dfs3(ArrayList<Integer>[] arrayList, int j) { v[j]=true; count++; for(int i:arrayList[j]){ if(v[i]==false) { dfs3(arrayList, i); } } } public double fact(double h){ double sum=1; while(h>=1){ sum=(sum%e9)*(h%e9); h--; } return sum%e9; } public long primef(double r){ long c=0; long ans=1; while(r%2==0){ c++; r=r/2; } if(c>0){ ans*=2; } c=0; // System.out.println(ans+" "+r); for (int i = 3; i <=Math.sqrt(r) ;i+=2) { while(r%i==0){ // System.out.println(i); c++; r=r/i; } if(c>0){ ans*=i; } c=0; } if(r>2){ ans*=r; } return ans; } public long divisor(double r){ long c=0; for (int i = 1; i <=Math.sqrt(r); i++) { if(r%i==0){ if(r/i==i){ c++; } else{ c+=2; } } } return c; } } class Pair{ int x; int y; double z; public Pair(int x,int y){ this.x=x; this.y=y; } @Override public int hashCode() { int hash =37; return this.x * hash + this.y; } @Override public boolean equals(Object o1){ if(o1==null||o1.getClass()!=this.getClass()){ return false; } Pair o=(Pair)o1; if(o.x==this.x&&o.y==this.y){ return true; } return false; } } class Sorting implements Comparator<Pair> { public int compare(Pair p1,Pair p2){ // if(p1.x==p2.x){ // return -1*Double.compare(p1.y,p2.y); // } // else { return Double.compare(p1.x, p2.x); // } } }
Java
["5\n\n3\n\n4"]
1 second
["? 1 5\n\n? 4 5\n\n! 1"]
NoteIn the sample suppose $$$a$$$ is $$$[5, 1, 4, 2, 3]$$$. So after asking the $$$[1..5]$$$ subsegment $$$4$$$ is second to max value, and it's position is $$$3$$$. After asking the $$$[4..5]$$$ subsegment $$$2$$$ is second to max value and it's position in the whole array is $$$4$$$.Note that there are other arrays $$$a$$$ that would produce the same interaction, and the answer for them might be different. Example output is given in purpose of understanding the interaction.
Java 11
standard input
[ "binary search", "interactive" ]
b3e8fe76706ba17cb285c75459508334
The first line contains a single integer $$$n$$$ $$$(2 \leq n \leq 10^5)$$$ — the number of elements in the array.
1,600
null
standard output
PASSED
a74e6155d8b2672e50346dedd632db04
train_109.jsonl
1613658900
The only difference between the easy and the hard version is the limit to the number of queries.This is an interactive problem.There is an array $$$a$$$ of $$$n$$$ different numbers. In one query you can ask the position of the second maximum element in a subsegment $$$a[l..r]$$$. Find the position of the maximum element in the array in no more than 40 queries.A subsegment $$$a[l..r]$$$ is all the elements $$$a_l, a_{l + 1}, ..., a_r$$$. After asking this subsegment you will be given the position of the second maximum from this subsegment in the whole array.
256 megabytes
import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.io.PrintWriter; import java.util.ArrayList; import java.util.Arrays; import java.util.HashMap; import java.util.StringTokenizer; public class problemC { static class Solution { HashMap<Point, Integer> map = new HashMap<>(); int query(int l, int r) { Point p = new Point(l, r); if (map.containsKey(p)) return map.get(p); System.out.println("? " + l + " " + r); System.out.flush(); int ans = fs.nextInt(); map.put(p, ans); return ans; } void solve() { int n = fs.nextInt(); int second = query(1, n); int left = second == 1 ? -1 : query(1, second); if (left == second) { // search left. int ans = -1; for (int low=1, high=second-1; low <= high; ) { int mid = (low+high)/2; int got = query(mid, second); if (got == second) { // contains max. ans = Math.max(ans, mid); low = mid + 1; } else { // does not contain max. high = mid - 1; } } print(ans); return; } else { // search right. int ans = n+1; for (int low=second+1, high=n; low <= high ; ) { int mid = (low+high)/2; int got = query(second, mid); if (got == second) { // contains max. high = mid - 1; ans = Math.min(ans, mid); } else { // does not contain max. low = mid + 1; } } print(ans); return; } } void print(int ans) { System.out.println("! " + ans); System.out.flush(); } } static class Point implements Comparable<Point> { int x, y; Point(int x, int y) {this.x = x; this.y = y;} @Override public int compareTo(Point other) { if (this.x == other.x) return Integer.compare(this.y, other.y); return Integer.compare(this.x, other.x); } @Override public boolean equals(Object o) { if (!(o instanceof Point)) return false; Point other = (Point)o; return this.x == other.x && this.y == other.y; } @Override public int hashCode() { return Arrays.hashCode(new int[]{this.x , this.y}); } } public static void main(String[] args) throws Exception { Solution solution = new Solution(); solution.solve(); } static void debug(Object... O) { System.err.println("DEBUG: " + Arrays.deepToString(O)); } private static FastScanner fs = new FastScanner(); static class FastScanner { // Thanks SecondThread. BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); StringTokenizer st = new StringTokenizer(""); String next() { while (!st.hasMoreTokens()) try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } int[] readArray(int n) { int[] a = new int[n]; for (int i = 0; i < n; i++) a[i] = nextInt(); return a; } long[] readLongArray(int n) { long[] a = new long[n]; for (int i = 0; i < n; i++) a[i] = nextLong(); return a; } ArrayList<Integer> readArrayList(int n) { ArrayList<Integer> a = new ArrayList<>(n); for (int i = 0 ; i < n; i ++ ) a.add(fs.nextInt()); return a; } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextString() { return next(); } } }
Java
["5\n\n3\n\n4"]
1 second
["? 1 5\n\n? 4 5\n\n! 1"]
NoteIn the sample suppose $$$a$$$ is $$$[5, 1, 4, 2, 3]$$$. So after asking the $$$[1..5]$$$ subsegment $$$4$$$ is second to max value, and it's position is $$$3$$$. After asking the $$$[4..5]$$$ subsegment $$$2$$$ is second to max value and it's position in the whole array is $$$4$$$.Note that there are other arrays $$$a$$$ that would produce the same interaction, and the answer for them might be different. Example output is given in purpose of understanding the interaction.
Java 11
standard input
[ "binary search", "interactive" ]
b3e8fe76706ba17cb285c75459508334
The first line contains a single integer $$$n$$$ $$$(2 \leq n \leq 10^5)$$$ — the number of elements in the array.
1,600
null
standard output
PASSED
970748862630f55b3c83e31d56da1479
train_109.jsonl
1613658900
The only difference between the easy and the hard version is the limit to the number of queries.This is an interactive problem.There is an array $$$a$$$ of $$$n$$$ different numbers. In one query you can ask the position of the second maximum element in a subsegment $$$a[l..r]$$$. Find the position of the maximum element in the array in no more than 40 queries.A subsegment $$$a[l..r]$$$ is all the elements $$$a_l, a_{l + 1}, ..., a_r$$$. After asking this subsegment you will be given the position of the second maximum from this subsegment in the whole array.
256 megabytes
import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.io.PrintWriter; import java.util.ArrayList; import java.util.Arrays; import java.util.HashMap; import java.util.StringTokenizer; public class problemC { static class Solution { HashMap<Integer, Integer>[] maps; int query (int l, int r) { if (maps[l].containsKey(r)) return maps[l].get(r); System.out.println("? " + l + " " +r); System.out.flush(); int ans = fs.nextInt(); maps[l].put(r, ans); return ans; } int s, e; void solve(int n) { maps = new HashMap[n+1]; for (int i = 1; i <= n ; i ++ ) maps[i] = new HashMap<>(); for (s = 1, e = n ; e-s > 1 ; ) { int second = query(s,e); // for sure s != e. if (second == s) { halfRight(second, e); continue; } int left = query(s, second); if (left == second) { // firstHalf. halfLeft(s, second); } else { // secondHalf. halfRight(second, e); } } int ans = 0; if (e == s) ans = s; else { int mid = query(s, e); ans = mid == s ? e : s; } System.out.println("! " +ans); System.out.flush(); } void halfLeft(int l, int h) { if (h-l <= 1) { s = l; e = h; return; } int mid = (l+h)/2; int got = query(mid, h); if (got == h) { s = mid; e = h-1; return; } else { s = l; e = mid-1; return; } } void halfRight(int l, int h) { if (h-l <= 1) { s = l; e = h; return; } int mid = (l+h)/2; int got = query(l ,mid); debug(got, l, mid); if (got == l) { e = mid; s = l+1; return; } else { s = mid+1; e = h; } } } public static void main(String[] args) throws Exception { int T = 1; Solution solution = new Solution(); int n = fs.nextInt(); solution.solve(n); } static void debug(Object... O) { System.err.println("DEBUG: " + Arrays.deepToString(O)); } private static FastScanner fs = new FastScanner(); static class FastScanner { // Thanks SecondThread. BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); StringTokenizer st = new StringTokenizer(""); String next() { while (!st.hasMoreTokens()) try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } int[] readArray(int n) { int[] a = new int[n]; for (int i = 0; i < n; i++) a[i] = nextInt(); return a; } long[] readLongArray(int n) { long[] a = new long[n]; for (int i = 0; i < n; i++) a[i] = nextLong(); return a; } ArrayList<Integer> readArrayList(int n) { ArrayList<Integer> a = new ArrayList<>(n); for (int i = 0 ; i < n; i ++ ) a.add(fs.nextInt()); return a; } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextString() { return next(); } } }
Java
["5\n\n3\n\n4"]
1 second
["? 1 5\n\n? 4 5\n\n! 1"]
NoteIn the sample suppose $$$a$$$ is $$$[5, 1, 4, 2, 3]$$$. So after asking the $$$[1..5]$$$ subsegment $$$4$$$ is second to max value, and it's position is $$$3$$$. After asking the $$$[4..5]$$$ subsegment $$$2$$$ is second to max value and it's position in the whole array is $$$4$$$.Note that there are other arrays $$$a$$$ that would produce the same interaction, and the answer for them might be different. Example output is given in purpose of understanding the interaction.
Java 11
standard input
[ "binary search", "interactive" ]
b3e8fe76706ba17cb285c75459508334
The first line contains a single integer $$$n$$$ $$$(2 \leq n \leq 10^5)$$$ — the number of elements in the array.
1,600
null
standard output
PASSED
e7100cca39f876b8a3e446dc41443b4a
train_109.jsonl
1613658900
The only difference between the easy and the hard version is the limit to the number of queries.This is an interactive problem.There is an array $$$a$$$ of $$$n$$$ different numbers. In one query you can ask the position of the second maximum element in a subsegment $$$a[l..r]$$$. Find the position of the maximum element in the array in no more than 40 queries.A subsegment $$$a[l..r]$$$ is all the elements $$$a_l, a_{l + 1}, ..., a_r$$$. After asking this subsegment you will be given the position of the second maximum from this subsegment in the whole array.
256 megabytes
import java.util.*; import java.io.*; public class File { public static class FastScanner { BufferedReader br; StringTokenizer st; public FastScanner() { br = new BufferedReader(new InputStreamReader(System.in)); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } } public static void main(String[] args) { FastScanner sc = new FastScanner(); PrintWriter out = new PrintWriter(new BufferedOutputStream(System.out)); int n=sc.nextInt(); int l=0,r=n; while(r-l>1) { int m=(l+r)/2; int sm=ask(l,r-1); if(sm<m) { if(ask(l,m-1)==sm) { r=m; } else l=m; } else { if(ask(m,r-1)==sm) { l=m; } else { r=m; } } } System.out.println("! "+r); out.close(); } static int ask(int l, int r) { FastScanner sc = new FastScanner(); if (l >= r) return -1; System.out.println("? "+(l+1)+" "+(r+1)); int ans=sc.nextInt(); return ans - 1; } }
Java
["5\n\n3\n\n4"]
1 second
["? 1 5\n\n? 4 5\n\n! 1"]
NoteIn the sample suppose $$$a$$$ is $$$[5, 1, 4, 2, 3]$$$. So after asking the $$$[1..5]$$$ subsegment $$$4$$$ is second to max value, and it's position is $$$3$$$. After asking the $$$[4..5]$$$ subsegment $$$2$$$ is second to max value and it's position in the whole array is $$$4$$$.Note that there are other arrays $$$a$$$ that would produce the same interaction, and the answer for them might be different. Example output is given in purpose of understanding the interaction.
Java 11
standard input
[ "binary search", "interactive" ]
b3e8fe76706ba17cb285c75459508334
The first line contains a single integer $$$n$$$ $$$(2 \leq n \leq 10^5)$$$ — the number of elements in the array.
1,600
null
standard output
PASSED
1cf35e5e9960d351ea1166faef99681e
train_109.jsonl
1613658900
The only difference between the easy and the hard version is the limit to the number of queries.This is an interactive problem.There is an array $$$a$$$ of $$$n$$$ different numbers. In one query you can ask the position of the second maximum element in a subsegment $$$a[l..r]$$$. Find the position of the maximum element in the array in no more than 40 queries.A subsegment $$$a[l..r]$$$ is all the elements $$$a_l, a_{l + 1}, ..., a_r$$$. After asking this subsegment you will be given the position of the second maximum from this subsegment in the whole array.
256 megabytes
import java.util.ArrayList; import java.util.Arrays; import java.util.Collection; import java.util.Collections; import java.util.PriorityQueue; import java.util.Scanner; public class B { static Scanner sc = new Scanner(System.in); public static void main(String[] args) { int tt = 1; // tt = sc.nextInt(); while (tt-- > 0) { solve(); } } static int ans; private static void solve() { int n=sc.nextInt(); int low = 1, high = n, m; callprint("? " + low + " " + high); m = sc.nextInt(); while (high - low > 1) { int mid = (low + high) / 2; if (m <= mid) { callprint("? " + low + " " + (mid)); int i =sc.nextInt(); // private static int recur(int a, int b) { // if(a==0) // return 0; // int an1=Integer.MAX_VALUE; // if(b!=1) // an1=recur(a/b,b); // b++; // int an2= recur(a,b); // return Math.min((an1==Integer.MAX_VALUE)?an1:(an1+1),(an2==Integer.MAX_VALUE)?an2:(an2+2)); // } if (i == m) { high = mid; } else { low = mid + 1; if (high - low >= 1) { callprint("? " + low + " " + high); m = sc.nextInt(); } } // private static int recur(int a, int b) { // if(a==0) // return 0; // int an1=Integer.MAX_VALUE; // if(b!=1) // an1=recur(a/b,b); // b++; // int an2= recur(a,b); // return Math.min((an1==Integer.MAX_VALUE)?an1:(an1+1),(an2==Integer.MAX_VALUE)?an2:(an2+2)); // } } else { callprint("? " + mid + " " + (high)); int i = sc.nextInt(); if (i != m) { high = mid - 1; if (high - low >= 1) { callprint("? " + low + " " + high); m = sc.nextInt(); } // private static int recur(int a, int b) { // if(a==0) // return 0; // int an1=Integer.MAX_VALUE; // if(b!=1) // an1=recur(a/b,b); // b++; // int an2= recur(a,b); // return Math.min((an1==Integer.MAX_VALUE)?an1:(an1+1),(an2==Integer.MAX_VALUE)?an2:(an2+2)); // } } else low = mid; } } low = (m == low) ? high : low; callprint("! " + low); } private static void callprint(String string) { System.out.println(string); //System.out.flush(); } // private static int recur(int a, int b) { // if(a==0) // return 0; // int an1=Integer.MAX_VALUE; // if(b!=1) // an1=recur(a/b,b); // b++; // int an2= recur(a,b); // return Math.min((an1==Integer.MAX_VALUE)?an1:(an1+1),(an2==Integer.MAX_VALUE)?an2:(an2+2)); // } }
Java
["5\n\n3\n\n4"]
1 second
["? 1 5\n\n? 4 5\n\n! 1"]
NoteIn the sample suppose $$$a$$$ is $$$[5, 1, 4, 2, 3]$$$. So after asking the $$$[1..5]$$$ subsegment $$$4$$$ is second to max value, and it's position is $$$3$$$. After asking the $$$[4..5]$$$ subsegment $$$2$$$ is second to max value and it's position in the whole array is $$$4$$$.Note that there are other arrays $$$a$$$ that would produce the same interaction, and the answer for them might be different. Example output is given in purpose of understanding the interaction.
Java 11
standard input
[ "binary search", "interactive" ]
b3e8fe76706ba17cb285c75459508334
The first line contains a single integer $$$n$$$ $$$(2 \leq n \leq 10^5)$$$ — the number of elements in the array.
1,600
null
standard output
PASSED
319841f4e975b48d4296837aaac4be91
train_109.jsonl
1613658900
The only difference between the easy and the hard version is the limit to the number of queries.This is an interactive problem.There is an array $$$a$$$ of $$$n$$$ different numbers. In one query you can ask the position of the second maximum element in a subsegment $$$a[l..r]$$$. Find the position of the maximum element in the array in no more than 40 queries.A subsegment $$$a[l..r]$$$ is all the elements $$$a_l, a_{l + 1}, ..., a_r$$$. After asking this subsegment you will be given the position of the second maximum from this subsegment in the whole array.
256 megabytes
import java.io.*; import java.util.*; import static java.lang.Math.*; public class CP { static int MAX = Integer.MAX_VALUE,MIN = Integer.MIN_VALUE,MOD = (int)1e9+7; static long MAXL = (long)1e18,MINL = -(long)1e18; static void solve() { // 0 0 1 // x // l x // x r int n = fs.nInt(); int l = 1, r = n; while ( l < r ){ int ind = rangeQuery(l,r); int mid = (l+r)/2; if( ind <= mid ){ if( rangeQuery(l,mid) == ind ) r = mid; else l = mid+1; }else{ if( rangeQuery(mid+1,r) == ind ) l = mid + 1; else r = mid; } } out.println("! "+l); } static class Triplet<T,U,V>{ T a; U b; V c; Triplet(T a,U b,V c){ this.a = a; this.b = b; this.c = c; } } static class Pair<A, B>{ A fst; B snd; Pair(A fst,B snd){ this.fst = fst; this.snd = snd; } } static boolean multipleTestCase = false ;static FastScanner fs;static PrintWriter out; public static void main(String[] args) { try{ fs = new FastScanner(); out = new PrintWriter(System.out); int tc = (multipleTestCase)?fs.nInt():1; while (tc-->0)solve(); out.flush(); out.close(); }catch (Exception e){ e.printStackTrace(); } } static class FastScanner extends PrintWriter { private InputStream stream; private byte[] buf = new byte[1<<16]; private int curChar, numChars; // standard input public FastScanner() { this(System.in,System.out); } public FastScanner(InputStream i, OutputStream o) { super(o); stream = i; } // file input public FastScanner(String i, String o) throws IOException { super(new FileWriter(o)); stream = new FileInputStream(i); } // throws InputMismatchException() if previously detected end of file private int nextByte() { if (numChars == -1) throw new InputMismatchException(); if (curChar >= numChars) { curChar = 0; try { numChars = stream.read(buf); } catch (IOException e) { throw new InputMismatchException(); } if (numChars == -1) return -1; // end of file } return buf[curChar++]; } // to read in entire lines, replace c <= ' ' // with a function that checks whether c is a line break public String next() { int c; do { c = nextByte(); } while (c <= ' '); StringBuilder res = new StringBuilder(); do { res.appendCodePoint(c); c = nextByte(); } while (c > ' '); return res.toString(); } public int nInt() { // nextLong() would be implemented similarly int c; do { c = nextByte(); } while (c <= ' '); int sgn = 1; if (c == '-') { sgn = -1; c = nextByte(); } int res = 0; do { if (c < '0' || c > '9') throw new InputMismatchException(); res = 10*res+c-'0'; c = nextByte(); } while (c > ' '); return res * sgn; } public long nLong(){return Long.parseLong(next());} public double nextDouble() { return Double.parseDouble(next()); } } public static void sort(int[] arr){ ArrayList<Integer> ls = new ArrayList<Integer>(); for(int x: arr) ls.add(x); Collections.sort(ls); for(int i=0; i < arr.length; i++) arr[i] = ls.get(i); } public static void sort(long[] arr){ ArrayList<Long> ls = new ArrayList<>(); for(long x: arr) ls.add(x); Collections.sort(ls); for(int i=0; i < arr.length; i++) arr[i] = ls.get(i); } public static void sortR(int[] arr){ ArrayList<Integer> ls = new ArrayList<>(); for(int x: arr) ls.add(x); Collections.sort(ls,Collections.reverseOrder()); for(int i=0; i < arr.length; i++) arr[i] = ls.get(i); } public static void sortR(long[] arr){ ArrayList<Long> ls = new ArrayList<>(); for(long x: arr) ls.add(x); Collections.sort(ls,Collections.reverseOrder()); for(int i=0; i < arr.length; i++) arr[i] = ls.get(i); } public static int rangeQuery(int l,int r){ if( l == r )return -1; out.println("? "+l+" "+r); out.flush(); int x = fs.nInt(); return x; } }
Java
["5\n\n3\n\n4"]
1 second
["? 1 5\n\n? 4 5\n\n! 1"]
NoteIn the sample suppose $$$a$$$ is $$$[5, 1, 4, 2, 3]$$$. So after asking the $$$[1..5]$$$ subsegment $$$4$$$ is second to max value, and it's position is $$$3$$$. After asking the $$$[4..5]$$$ subsegment $$$2$$$ is second to max value and it's position in the whole array is $$$4$$$.Note that there are other arrays $$$a$$$ that would produce the same interaction, and the answer for them might be different. Example output is given in purpose of understanding the interaction.
Java 11
standard input
[ "binary search", "interactive" ]
b3e8fe76706ba17cb285c75459508334
The first line contains a single integer $$$n$$$ $$$(2 \leq n \leq 10^5)$$$ — the number of elements in the array.
1,600
null
standard output
PASSED
5044422ad3746d63117fd029638bb4f5
train_109.jsonl
1613658900
The only difference between the easy and the hard version is the limit to the number of queries.This is an interactive problem.There is an array $$$a$$$ of $$$n$$$ different numbers. In one query you can ask the position of the second maximum element in a subsegment $$$a[l..r]$$$. Find the position of the maximum element in the array in no more than 40 queries.A subsegment $$$a[l..r]$$$ is all the elements $$$a_l, a_{l + 1}, ..., a_r$$$. After asking this subsegment you will be given the position of the second maximum from this subsegment in the whole array.
256 megabytes
// have faith in yourself!!!!! /* Naive mistakes in java : --> Arrays.sort(primitive) is O(n^2) --> Never use '=' to compare to Integer data types, instead use 'equals()' --> -4 % 3 = -1, actually it should be 2, so add '+n' to modulo result */ import java.io.*; import java.util.*; public class CodeForces { public static void main(String[] args) throws IOException { openIO(); int testCase = 1; // testCase = sc. nextInt(); for (int i = 1; i <= testCase; i++) solve(i); closeIO(); } /*-------------------------------------------EDITING CODE STARTS HERE-------------------------------------------*/ public static void solve(int tCase) throws IOException { int n = sc.nextInt(); int l = 1; int r = n; while (l<r){ if(r==l+1){ int secInd = getQuery(l,r); l = secInd==l?r:l; break; } int mid = (l+r)/2; int secInd = getQuery(l,r); if(secInd <= mid){ int t = getQuery(l,mid); if(t==secInd){ r = mid; }else l = mid+1; }else { int t = getQuery(mid,r); if(t == secInd){ l = mid; }else r = mid-1; } } System.out.println("! "+l); System.out.flush(); } private static int getQuery(int l, int r) throws IOException{ System.out.println("? "+l+" "+r); System.out.flush(); return sc.nextInt(); } /*-------------------------------------------EDITING CODE ENDS HERE-------------------------------------------*/ public static int mod = (int) 1e9 + 7; // public static int mod = 998244353; public static int inf_int = (int) 2e9; public static long inf_long = (long) 2e18; public static void _sort(int[] arr, boolean isAscending) { int n = arr.length; List<Integer> list = new ArrayList<>(); for (int ele : arr) list.add(ele); Collections.sort(list); if (!isAscending) Collections.reverse(list); for (int i = 0; i < n; i++) arr[i] = list.get(i); } public static void _sort(long[] arr, boolean isAscending) { int n = arr.length; List<Long> list = new ArrayList<>(); for (long ele : arr) list.add(ele); Collections.sort(list); if (!isAscending) Collections.reverse(list); for (int i = 0; i < n; i++) arr[i] = list.get(i); } // time : O(1), space : O(1) public static int _digitCount(long num,int base){ // this will give the # of digits needed for a number num in format : base return (int)(1 + Math.log(num)/Math.log(base)); } // time : O(n), space: O(n) public static long _fact(int n){ // simple factorial calculator long ans = 1; for(int i=2;i<=n;i++) ans = ans * i % mod; return ans; } // time for pre-computation of factorial and inverse-factorial table : O(nlog(mod)) public static long[] factorial , inverseFact; public static void _ncr_precompute(int n){ factorial = new long[n+1]; inverseFact = new long[n+1]; factorial[0] = inverseFact[0] = 1; for (int i = 1; i <=n; i++) { factorial[i] = (factorial[i - 1] * i) % mod; inverseFact[i] = _power(factorial[i], mod - 2); } } // time of factorial calculation after pre-computation is O(1) public static int _ncr(int n,int r){ if(r > n)return 0; return (int)(factorial[n] * inverseFact[r] % mod * inverseFact[n - r] % mod); } public static int _npr(int n,int r){ if(r > n)return 0; return (int)(factorial[n] * inverseFact[n - r] % mod); } // euclidean algorithm time O(max (loga ,logb)) public static long _gcd(long a, long b) { if (a == 0) return b; return _gcd(b % a, a); } // lcm(a,b) * gcd(a,b) = a * b public static long _lcm(long a, long b) { return (a / _gcd(a, b)) * b; } // binary exponentiation time O(logn) public static long _power(long x, long n) { long ans = 1; while (n > 0) { if ((n & 1) == 1) { ans *= x; ans %= mod; n--; } else { x *= x; x %= mod; n >>= 1; } } return ans; } //sieve or first divisor time : O(mx * log ( log (mx) ) ) public static int[] _seive(int mx){ int[] firstDivisor = new int[mx+1]; for(int i=0;i<=mx;i++)firstDivisor[i] = i; for(int i=2;i*i<=mx;i++) if(firstDivisor[i] == i) for(int j = i*i;j<=mx;j+=i) firstDivisor[j] = i; return firstDivisor; } // check if x is a prime # of not. time : O( n ^ 1/2 ) private static boolean _isPrime(long x){ for(long i=2;i*i<=x;i++) if(x%i==0)return false; return true; } static class Pair<K, V>{ K ff; V ss; public Pair(K ff, V ss) { this.ff = ff; this.ss = ss; } @Override public boolean equals(Object o) { if (this == o) return true; if (o == null || this.getClass() != o.getClass()) return false; Pair<?, ?> pair = (Pair<?, ?>) o; return ff.equals(pair.ff) && ss.equals(pair.ss); } @Override public int hashCode() { return Objects.hash(ff, ss); } } static FastestReader sc; static PrintWriter out; private static void openIO() throws IOException { sc = new FastestReader(); out = new PrintWriter(System.out); } /*-------------------------------------------FAST INPUT STARTS HERE---------------------------------------------*/ public static void closeIO() throws IOException { out.flush(); out.close(); sc.close(); } private static final class FastestReader { private static final int BUFFER_SIZE = 1 << 16; private final DataInputStream din; private final byte[] buffer; private int bufferPointer, bytesRead; public FastestReader() { din = new DataInputStream(System.in); buffer = new byte[BUFFER_SIZE]; bufferPointer = bytesRead = 0; } public FastestReader(String file_name) throws IOException { din = new DataInputStream(new FileInputStream(file_name)); buffer = new byte[BUFFER_SIZE]; bufferPointer = bytesRead = 0; } private static boolean isSpaceChar(int c) { return !(c >= 33 && c <= 126); } private int skip() throws IOException { int b; //noinspection StatementWithEmptyBody while ((b = read()) != -1 && isSpaceChar(b)) { } return b; } public String next() throws IOException { int b = skip(); final StringBuilder sb = new StringBuilder(); while (!isSpaceChar(b)) { // when nextLine, (isSpaceChar(b) && b != ' ') sb.appendCodePoint(b); b = read(); } return sb.toString(); } public int nextInt() throws IOException { int ret = 0; byte c = read(); while (c <= ' ') { c = read(); } final boolean neg = c == '-'; if (neg) { c = read(); } do { ret = ret * 10 + c - '0'; } while ((c = read()) >= '0' && c <= '9'); if (neg) { return -ret; } return ret; } public long nextLong() throws IOException { long ret = 0; byte c = read(); while (c <= ' ') { c = read(); } final boolean neg = c == '-'; if (neg) { c = read(); } do { ret = ret * 10 + c - '0'; } while ((c = read()) >= '0' && c <= '9'); if (neg) { return -ret; } return ret; } public double nextDouble() throws IOException { double ret = 0, div = 1; byte c = read(); while (c <= ' ') { c = read(); } final boolean neg = c == '-'; if (neg) { c = read(); } do { ret = ret * 10 + c - '0'; } while ((c = read()) >= '0' && c <= '9'); if (c == '.') { while ((c = read()) >= '0' && c <= '9') { ret += (c - '0') / (div *= 10); } } if (neg) { return -ret; } return ret; } private void fillBuffer() throws IOException { bytesRead = din.read(buffer, bufferPointer = 0, BUFFER_SIZE); if (bytesRead == -1) { buffer[0] = -1; } } private byte read() throws IOException { if (bufferPointer == bytesRead) { fillBuffer(); } return buffer[bufferPointer++]; } public void close() throws IOException { din.close(); } } /*---------------------------------------------FAST INPUT ENDS HERE ---------------------------------------------*/ }
Java
["5\n\n3\n\n4"]
1 second
["? 1 5\n\n? 4 5\n\n! 1"]
NoteIn the sample suppose $$$a$$$ is $$$[5, 1, 4, 2, 3]$$$. So after asking the $$$[1..5]$$$ subsegment $$$4$$$ is second to max value, and it's position is $$$3$$$. After asking the $$$[4..5]$$$ subsegment $$$2$$$ is second to max value and it's position in the whole array is $$$4$$$.Note that there are other arrays $$$a$$$ that would produce the same interaction, and the answer for them might be different. Example output is given in purpose of understanding the interaction.
Java 11
standard input
[ "binary search", "interactive" ]
b3e8fe76706ba17cb285c75459508334
The first line contains a single integer $$$n$$$ $$$(2 \leq n \leq 10^5)$$$ — the number of elements in the array.
1,600
null
standard output
PASSED
8e9c556f9e053f3d0ecbf997e86615bc
train_109.jsonl
1613658900
The only difference between the easy and the hard version is the limit to the number of queries.This is an interactive problem.There is an array $$$a$$$ of $$$n$$$ different numbers. In one query you can ask the position of the second maximum element in a subsegment $$$a[l..r]$$$. Find the position of the maximum element in the array in no more than 40 queries.A subsegment $$$a[l..r]$$$ is all the elements $$$a_l, a_{l + 1}, ..., a_r$$$. After asking this subsegment you will be given the position of the second maximum from this subsegment in the whole array.
256 megabytes
import java.io.*; import java.util.*; public class Main { public static void main(String[] args) throws IOException { Scanner scn = new Scanner(System.in); // Always print a trailing "\n" and close the OutputWriter as shown at the end of your output // example: int n=scn.nextInt(); int l=1;int r=n; System.out.print("? "+l+" "+r+"\n");System.out.flush(); int id=scn.nextInt(); while(r-l>1){ int m=(l+r)/2; System.out.print("? "+l+" "+m+"\n");System.out.flush(); int id1=scn.nextInt(); System.out.print("? "+m+" "+r+"\n");System.out.flush(); int id2=scn.nextInt(); if(id<=m){ if(id==id1){ r=m; } else{ l=m;id=id2; } } else if(id>=m){ if(id==id2){ l=m; } else{ r=m;id=id1; } } } if(id==r){ System.out.print("! "+l+"");System.out.flush(); } else{ System.out.print("! "+r+"");System.out.flush(); } } // fast input static class Scanner { public BufferedReader reader; public StringTokenizer tokenizer; public Scanner(InputStream stream) { reader = new BufferedReader(new InputStreamReader(stream)); tokenizer = null; } public String next() { while (tokenizer == null || !tokenizer.hasMoreTokens()) { try { String line = reader.readLine(); if (line == null) return null; tokenizer = new StringTokenizer(line); } catch (Exception e) { throw(new RuntimeException()); } } return tokenizer.nextToken(); } public int nextInt() { return Integer.parseInt(next()); } public long nextLong() { return Long.parseLong(next()); } public double nextDouble() { return Double.parseDouble(next()); } } // fast output static class OutputWriter { BufferedWriter writer; public OutputWriter(OutputStream stream) { writer = new BufferedWriter(new OutputStreamWriter(stream)); } public void print(int i) throws IOException { writer.write(i); } public void print(String s) throws IOException { writer.write(s); } public void print(char[] c) throws IOException { writer.write(c); } public void close() throws IOException { writer.close(); } } }
Java
["5\n\n3\n\n4"]
1 second
["? 1 5\n\n? 4 5\n\n! 1"]
NoteIn the sample suppose $$$a$$$ is $$$[5, 1, 4, 2, 3]$$$. So after asking the $$$[1..5]$$$ subsegment $$$4$$$ is second to max value, and it's position is $$$3$$$. After asking the $$$[4..5]$$$ subsegment $$$2$$$ is second to max value and it's position in the whole array is $$$4$$$.Note that there are other arrays $$$a$$$ that would produce the same interaction, and the answer for them might be different. Example output is given in purpose of understanding the interaction.
Java 11
standard input
[ "binary search", "interactive" ]
b3e8fe76706ba17cb285c75459508334
The first line contains a single integer $$$n$$$ $$$(2 \leq n \leq 10^5)$$$ — the number of elements in the array.
1,600
null
standard output
PASSED
7764bba2707b30fecbf8112af53b6a14
train_109.jsonl
1613658900
The only difference between the easy and the hard version is the limit to the number of queries.This is an interactive problem.There is an array $$$a$$$ of $$$n$$$ different numbers. In one query you can ask the position of the second maximum element in a subsegment $$$a[l..r]$$$. Find the position of the maximum element in the array in no more than 40 queries.A subsegment $$$a[l..r]$$$ is all the elements $$$a_l, a_{l + 1}, ..., a_r$$$. After asking this subsegment you will be given the position of the second maximum from this subsegment in the whole array.
256 megabytes
//https://vjudge.net/contest/438472#problem/D //D - Guess easy version import java.util.*; import java.io.*; public class PBH_401_D{ static BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); static PrintWriter pw = new PrintWriter(new OutputStreamWriter(System.out)); static int ask(int l, int h) throws Exception{ if(l==h) return -1; pw.print("? "+l+" "+h+"\n"); pw.flush(); return Integer.parseInt(br.readLine()); } public static void main(String[] args) throws Exception{ int n = Integer.parseInt(br.readLine()); int l = 1, h = n; while(h+1-l>1){ int sm = ask(l, h); int mid = (l+h+1)/2; if(sm<mid){ if(ask(l, mid-1)==sm) h = mid-1; else l = mid; } else{ if(ask(mid, h)==sm) l = mid; else h = mid-1; } } pw.print("! "+l); pw.flush(); pw.close(); } }
Java
["5\n\n3\n\n4"]
1 second
["? 1 5\n\n? 4 5\n\n! 1"]
NoteIn the sample suppose $$$a$$$ is $$$[5, 1, 4, 2, 3]$$$. So after asking the $$$[1..5]$$$ subsegment $$$4$$$ is second to max value, and it's position is $$$3$$$. After asking the $$$[4..5]$$$ subsegment $$$2$$$ is second to max value and it's position in the whole array is $$$4$$$.Note that there are other arrays $$$a$$$ that would produce the same interaction, and the answer for them might be different. Example output is given in purpose of understanding the interaction.
Java 11
standard input
[ "binary search", "interactive" ]
b3e8fe76706ba17cb285c75459508334
The first line contains a single integer $$$n$$$ $$$(2 \leq n \leq 10^5)$$$ — the number of elements in the array.
1,600
null
standard output
PASSED
46d53bb8dce07d9d5cd0303ed012b403
train_109.jsonl
1613658900
The only difference between the easy and the hard version is the limit to the number of queries.This is an interactive problem.There is an array $$$a$$$ of $$$n$$$ different numbers. In one query you can ask the position of the second maximum element in a subsegment $$$a[l..r]$$$. Find the position of the maximum element in the array in no more than 40 queries.A subsegment $$$a[l..r]$$$ is all the elements $$$a_l, a_{l + 1}, ..., a_r$$$. After asking this subsegment you will be given the position of the second maximum from this subsegment in the whole array.
256 megabytes
//https://vjudge.net/contest/438472#problem/D //D - Guess easy version import java.util.*; import java.io.*; public class PBH_401_D{ static BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); static PrintWriter pw = new PrintWriter(new OutputStreamWriter(System.out)); static int ask(int l, int h) throws Exception{ if(l==h) return -1; pw.print("? "+l+" "+h+"\n"); pw.flush(); return Integer.parseInt(br.readLine()); } public static void main(String[] args) throws Exception{ int n = Integer.parseInt(br.readLine()); int l = 1, h = n+1; while(h-l>1){ int sm = ask(l, h-1); int mid = (l+h)/2; if(sm<mid){ if(ask(l, mid-1)==sm) h = mid; else l = mid; } else{ if(ask(mid, h-1)==sm) l = mid; else h = mid; } } pw.print("! "+l); pw.flush(); pw.close(); } }
Java
["5\n\n3\n\n4"]
1 second
["? 1 5\n\n? 4 5\n\n! 1"]
NoteIn the sample suppose $$$a$$$ is $$$[5, 1, 4, 2, 3]$$$. So after asking the $$$[1..5]$$$ subsegment $$$4$$$ is second to max value, and it's position is $$$3$$$. After asking the $$$[4..5]$$$ subsegment $$$2$$$ is second to max value and it's position in the whole array is $$$4$$$.Note that there are other arrays $$$a$$$ that would produce the same interaction, and the answer for them might be different. Example output is given in purpose of understanding the interaction.
Java 11
standard input
[ "binary search", "interactive" ]
b3e8fe76706ba17cb285c75459508334
The first line contains a single integer $$$n$$$ $$$(2 \leq n \leq 10^5)$$$ — the number of elements in the array.
1,600
null
standard output
PASSED
5b3869b4a0984240ea81be27e17dd3eb
train_109.jsonl
1613658900
The only difference between the easy and the hard version is the limit to the number of queries.This is an interactive problem.There is an array $$$a$$$ of $$$n$$$ different numbers. In one query you can ask the position of the second maximum element in a subsegment $$$a[l..r]$$$. Find the position of the maximum element in the array in no more than 40 queries.A subsegment $$$a[l..r]$$$ is all the elements $$$a_l, a_{l + 1}, ..., a_r$$$. After asking this subsegment you will be given the position of the second maximum from this subsegment in the whole array.
256 megabytes
import java.util.*; import java.io.*; import java.lang.*; public class cf719 { public static int query(int l,int r) throws Exception{ if(l>=r)return -1; InputStreamReader ip=new InputStreamReader(System.in); BufferedReader br = new BufferedReader(ip); System.out.println("? "+(l+1)+" "+(r+1)); int ans=Integer.parseInt(br.readLine()); return ans-1; } //For HardVersion the resulting number of queries is 2+⌈𝑙𝑜𝑔(base2)10^5⌉=19. //For EasyVersion the resulting number of queries is 2⋅⌈𝑙𝑜𝑔2105⌉=34. public static void HardVersion() throws Exception{ InputStreamReader ip=new InputStreamReader(System.in); BufferedReader br = new BufferedReader(ip); int n =Integer.parseInt(br.readLine()); // String[] strs=(br.readLine()).trim().split(" "); int l=0,r=n; //so that segment divide equally by mid [l,mid) [mid,r) int smax=query(l, r-1); //segment max int ans=0; if(smax==0 || query(0, smax)!=smax){ l=smax; r=n-1; //Max lie in right segment while((r-l)>1){ int mid=l+(r-l)/2; if(query(smax,mid)==smax){ r=mid; }else{ l=mid; } } System.out.println("! "+(r+1)); //+r+" " }else{ l=0; r=smax; //Max lie in left segment while((r-l)>1){ int mid=l+(r-l)/2; if(query(mid,smax)==smax){ l=mid; }else{ r=mid; } } System.out.println("! "+(l+1)); } } public static void EasyVersion() throws Exception{ InputStreamReader ip=new InputStreamReader(System.in); BufferedReader br = new BufferedReader(ip); int n =Integer.parseInt(br.readLine()); // String[] strs=(br.readLine()).trim().split(" "); int l=0,r=n; //so that segment divide equally by mid [l,mid) [mid,r) int ans=0; while((r-l)>1){ // query possible for segment of size >1 int mid=l+(r-l)/2; int smax=query(l, r-1); //segment max if(smax<mid){ if(query(l, mid-1)==smax){ r=mid; }else{ l=mid; } }else{ if(query(mid, r-1)==smax){ l=mid; }else{ r=mid; } } // System.out.println(l+" "+r); } System.out.println("! "+r); //+r+" " } //******************************************************************************************************************** */ public static void main(String[] args) throws Exception{ HardVersion(); } public static void solve3() throws Exception{ InputStreamReader ip=new InputStreamReader(System.in); BufferedReader br = new BufferedReader(ip); int t = Integer.parseInt(br.readLine()); StringBuilder asb=new StringBuilder(); while(t-->0){ int n =Integer.parseInt(br.readLine()); String[] strs=(br.readLine()).trim().split(" "); // int n=Integer.parseInt(strs[0]),k=Integer.parseInt(strs[1]),r=Integer.parseInt(strs[2]),s=Integer.parseInt(strs[3]); // String str=(br.readLine()).trim(); //Rearrange Given Expression- a𝑗−a𝑖=𝑗−𝑖 => aj-j == ai-i int[] arr=new int[n]; HashMap<Integer,Integer> hm=new HashMap<>(); for(int i=0;i<n;i++){ arr[i]=Integer.parseInt(strs[i]); hm.put((arr[i]-i), hm.getOrDefault((arr[i]-i), 0)+1); } long ans=0; for(int key:hm.keySet()){ long ct=hm.get(key); ans+=(ct*(ct-1))/2; } // System.out.println(ans+" ct "+ct); System.out.println(ans); } } //******************************************************************************************************************** */ public static long modInverse1(long a, long m){ // int g = gcd(a, m); // if(g!=1) {System.out.println("Inverse Doesnot Exist");} return binexp(a, m - 2, m); } public static long binexp(long a, long b, long m){ if (b == 0)return 1; long res = binexp(a, b / 2, m); if (b % 2 == 1) return (( (res*res)%m )*a) % m; else return (res*res)%m; } //binexp public static long binexp(long a,long b){ if(b==0)return 1; long res=binexp(a, b/2); if(b%2==1){ return (((res*res))*a); }else return (res*res); } //Comparator Interface public static class comp implements Comparator<int[]>{ public int compare(int[] a,int[] b){ return a[0]-b[0]; } } //gcd using Euclid's Division Algorithm public static long gcd(long a,long b){ if(b==0)return a; else return gcd(b, a%b); } //check prime in root(n) public static int isprime(int n){ for(int i=2;i<=Math.sqrt(n);i++){ if(n%i==0)return i; } return -1; //means n is prime } //SOE static int[] sieve; public static void SOE(int n){ sieve=new int[n+1]; // System.out.println("All prime number from 1 to n:-"); for(int x=2;x<=n;x++){ if(sieve[x]!=0){ //Not prime number continue; } // System.out.print(x+" "); for(int u=2*x;u<=n;u+=x){ sieve[u]=x; } } //If sieve[i]=0 means 'i' is primr else 'i' is not prime } //sort public static void sort(long[] arr) { int n = arr.length; for (int i = 0; i < n; i++) { int idx = (int) Math.random() * n; long temp = arr[i]; arr[i] = arr[idx]; arr[idx] = temp; //swap } Arrays.sort(arr); } public static void sort(int[] arr) { int n = arr.length; for (int i = 0; i < n; i++) { int idx = (int) Math.random() * n; int temp = arr[i]; arr[i] = arr[idx]; arr[idx] = temp; //swap } Arrays.sort(arr); } //1d print public static void print(int[] dp) { for (int val : dp) { System.out.print(val + " "); } System.out.println(); } public static void print(long[] dp) {//Method Overloading for (long val : dp) { System.out.print(val + " "); } System.out.println(); } //2d print public static void print(long[][] dp) {//Method Overloading for (long[] a : dp) { for (long val : a) { System.out.print(val + " "); } System.out.println(); } } public static void print(int[][] dp) { for (int[] a : dp) { for (int val : a) { System.out.print(val + " "); } System.out.println(); } } }
Java
["5\n\n3\n\n4"]
1 second
["? 1 5\n\n? 4 5\n\n! 1"]
NoteIn the sample suppose $$$a$$$ is $$$[5, 1, 4, 2, 3]$$$. So after asking the $$$[1..5]$$$ subsegment $$$4$$$ is second to max value, and it's position is $$$3$$$. After asking the $$$[4..5]$$$ subsegment $$$2$$$ is second to max value and it's position in the whole array is $$$4$$$.Note that there are other arrays $$$a$$$ that would produce the same interaction, and the answer for them might be different. Example output is given in purpose of understanding the interaction.
Java 11
standard input
[ "binary search", "interactive" ]
b3e8fe76706ba17cb285c75459508334
The first line contains a single integer $$$n$$$ $$$(2 \leq n \leq 10^5)$$$ — the number of elements in the array.
1,600
null
standard output
PASSED
4ad90bee19c239b36821c06aa0b2f755
train_109.jsonl
1613658900
The only difference between the easy and the hard version is the limit to the number of queries.This is an interactive problem.There is an array $$$a$$$ of $$$n$$$ different numbers. In one query you can ask the position of the second maximum element in a subsegment $$$a[l..r]$$$. Find the position of the maximum element in the array in no more than 40 queries.A subsegment $$$a[l..r]$$$ is all the elements $$$a_l, a_{l + 1}, ..., a_r$$$. After asking this subsegment you will be given the position of the second maximum from this subsegment in the whole array.
256 megabytes
import java.util.*; import java.io.*; import java.lang.*; public class cf719 { public static void solve1() throws Exception{ InputStreamReader ip=new InputStreamReader(System.in); BufferedReader br = new BufferedReader(ip); // int t = Integer.parseInt(br.readLine()); StringBuilder asb=new StringBuilder(); boolean fg=true; while(fg){ int n =Integer.parseInt(br.readLine()); String[] strs=(br.readLine()).trim().split(" "); // int n=Integer.parseInt(strs[0]),k=Integer.parseInt(strs[1]),r=Integer.parseInt(strs[2]),s=Integer.parseInt(strs[3]); // String str=(br.readLine()).trim(); if(strs.length==2){ System.out.println(strs[0]+" "+strs[1]); fg=false; break; }else{ int lo=10 ,hi=60; if(strs[0].equals(">=")){ }else if(strs[0].equals("<")){ lo++; } } } } public static int query(int l,int r) throws Exception{ if(l>=r)return -1; InputStreamReader ip=new InputStreamReader(System.in); BufferedReader br = new BufferedReader(ip); System.out.println("? "+(l+1)+" "+(r+1)); int ans=Integer.parseInt(br.readLine()); return ans-1; } public static void solve() throws Exception{ InputStreamReader ip=new InputStreamReader(System.in); BufferedReader br = new BufferedReader(ip); int n =Integer.parseInt(br.readLine()); // String[] strs=(br.readLine()).trim().split(" "); int l=0,r=n; //so that segment divide equally by mid [l,mid) [mid,r) int ans=0; while((r-l)>1){ // query possible for segment of size >1 int mid=l+(r-l)/2; // if(l==mid){ // last segment of size 2 This condition is mandatory otherwise loop goes in infinite loop // if(query(l, r)==l){ ans=r;} // else{ ans=l; } break; // } int smax=query(l, r-1); //segment max if(smax<mid){ if(query(l, mid-1)==smax){ r=mid; }else{ l=mid; } }else{ if(query(mid, r-1)==smax){ l=mid; }else{ r=mid; } } // System.out.println(l+" "+r); } System.out.println("! "+r); //+r+" " } //******************************************************************************************************************** */ public static void main(String[] args) throws Exception{ solve(); } public static void solve3() throws Exception{ InputStreamReader ip=new InputStreamReader(System.in); BufferedReader br = new BufferedReader(ip); int t = Integer.parseInt(br.readLine()); StringBuilder asb=new StringBuilder(); while(t-->0){ int n =Integer.parseInt(br.readLine()); String[] strs=(br.readLine()).trim().split(" "); // int n=Integer.parseInt(strs[0]),k=Integer.parseInt(strs[1]),r=Integer.parseInt(strs[2]),s=Integer.parseInt(strs[3]); // String str=(br.readLine()).trim(); //Rearrange Given Expression- a𝑗−a𝑖=𝑗−𝑖 => aj-j == ai-i int[] arr=new int[n]; HashMap<Integer,Integer> hm=new HashMap<>(); for(int i=0;i<n;i++){ arr[i]=Integer.parseInt(strs[i]); hm.put((arr[i]-i), hm.getOrDefault((arr[i]-i), 0)+1); } long ans=0; for(int key:hm.keySet()){ long ct=hm.get(key); ans+=(ct*(ct-1))/2; } // System.out.println(ans+" ct "+ct); System.out.println(ans); } } //******************************************************************************************************************** */ public static long modInverse1(long a, long m){ // int g = gcd(a, m); // if(g!=1) {System.out.println("Inverse Doesnot Exist");} return binexp(a, m - 2, m); } public static long binexp(long a, long b, long m){ if (b == 0)return 1; long res = binexp(a, b / 2, m); if (b % 2 == 1) return (( (res*res)%m )*a) % m; else return (res*res)%m; } //binexp public static long binexp(long a,long b){ if(b==0)return 1; long res=binexp(a, b/2); if(b%2==1){ return (((res*res))*a); }else return (res*res); } //Comparator Interface public static class comp implements Comparator<int[]>{ public int compare(int[] a,int[] b){ return a[0]-b[0]; } } //gcd using Euclid's Division Algorithm public static long gcd(long a,long b){ if(b==0)return a; else return gcd(b, a%b); } //check prime in root(n) public static int isprime(int n){ for(int i=2;i<=Math.sqrt(n);i++){ if(n%i==0)return i; } return -1; //means n is prime } //SOE static int[] sieve; public static void SOE(int n){ sieve=new int[n+1]; // System.out.println("All prime number from 1 to n:-"); for(int x=2;x<=n;x++){ if(sieve[x]!=0){ //Not prime number continue; } // System.out.print(x+" "); for(int u=2*x;u<=n;u+=x){ sieve[u]=x; } } //If sieve[i]=0 means 'i' is primr else 'i' is not prime } //sort public static void sort(long[] arr) { int n = arr.length; for (int i = 0; i < n; i++) { int idx = (int) Math.random() * n; long temp = arr[i]; arr[i] = arr[idx]; arr[idx] = temp; //swap } Arrays.sort(arr); } public static void sort(int[] arr) { int n = arr.length; for (int i = 0; i < n; i++) { int idx = (int) Math.random() * n; int temp = arr[i]; arr[i] = arr[idx]; arr[idx] = temp; //swap } Arrays.sort(arr); } //1d print public static void print(int[] dp) { for (int val : dp) { System.out.print(val + " "); } System.out.println(); } public static void print(long[] dp) {//Method Overloading for (long val : dp) { System.out.print(val + " "); } System.out.println(); } //2d print public static void print(long[][] dp) {//Method Overloading for (long[] a : dp) { for (long val : a) { System.out.print(val + " "); } System.out.println(); } } public static void print(int[][] dp) { for (int[] a : dp) { for (int val : a) { System.out.print(val + " "); } System.out.println(); } } }
Java
["5\n\n3\n\n4"]
1 second
["? 1 5\n\n? 4 5\n\n! 1"]
NoteIn the sample suppose $$$a$$$ is $$$[5, 1, 4, 2, 3]$$$. So after asking the $$$[1..5]$$$ subsegment $$$4$$$ is second to max value, and it's position is $$$3$$$. After asking the $$$[4..5]$$$ subsegment $$$2$$$ is second to max value and it's position in the whole array is $$$4$$$.Note that there are other arrays $$$a$$$ that would produce the same interaction, and the answer for them might be different. Example output is given in purpose of understanding the interaction.
Java 11
standard input
[ "binary search", "interactive" ]
b3e8fe76706ba17cb285c75459508334
The first line contains a single integer $$$n$$$ $$$(2 \leq n \leq 10^5)$$$ — the number of elements in the array.
1,600
null
standard output
PASSED
7f6335a79fb9fab06982598e08a3c8d6
train_109.jsonl
1613658900
The only difference between the easy and the hard version is the limit to the number of queries.This is an interactive problem.There is an array $$$a$$$ of $$$n$$$ different numbers. In one query you can ask the position of the second maximum element in a subsegment $$$a[l..r]$$$. Find the position of the maximum element in the array in no more than 40 queries.A subsegment $$$a[l..r]$$$ is all the elements $$$a_l, a_{l + 1}, ..., a_r$$$. After asking this subsegment you will be given the position of the second maximum from this subsegment in the whole array.
256 megabytes
import java.io.*; import java.util.Arrays; public class codeforces { static int ask(int l,int r)throws IOException { if(l==r) { return -1; } BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); int out1; System.out.println("? "+l+" "+r); System.out.flush(); out1=Integer.parseInt(br.readLine()); return out1; } public static void main(String[] args)throws IOException { BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); int n=Integer.parseInt(br.readLine()); int l=1; int r=n; int pos=ask(1,n); if(ask(1,pos)==pos) { l=1; r=pos; while(l<r) { int mid=(l+r+1)/2; if(ask(mid,n)==pos) { l=mid; } else { r=mid-1; } } System.out.println("! "+l); } else { l=pos; r=n; while(l<r) { int mid=(l+r)/2; if(ask(pos,mid)==pos) { r=mid; } else { l=mid+1; } } System.out.println("! "+l); } } }
Java
["5\n\n3\n\n4"]
1 second
["? 1 5\n\n? 4 5\n\n! 1"]
NoteIn the sample suppose $$$a$$$ is $$$[5, 1, 4, 2, 3]$$$. So after asking the $$$[1..5]$$$ subsegment $$$4$$$ is second to max value, and it's position is $$$3$$$. After asking the $$$[4..5]$$$ subsegment $$$2$$$ is second to max value and it's position in the whole array is $$$4$$$.Note that there are other arrays $$$a$$$ that would produce the same interaction, and the answer for them might be different. Example output is given in purpose of understanding the interaction.
Java 11
standard input
[ "binary search", "interactive" ]
b3e8fe76706ba17cb285c75459508334
The first line contains a single integer $$$n$$$ $$$(2 \leq n \leq 10^5)$$$ — the number of elements in the array.
1,600
null
standard output
PASSED
890342832c629e5562d5f90637afad19
train_109.jsonl
1613658900
The only difference between the easy and the hard version is the limit to the number of queries.This is an interactive problem.There is an array $$$a$$$ of $$$n$$$ different numbers. In one query you can ask the position of the second maximum element in a subsegment $$$a[l..r]$$$. Find the position of the maximum element in the array in no more than 40 queries.A subsegment $$$a[l..r]$$$ is all the elements $$$a_l, a_{l + 1}, ..., a_r$$$. After asking this subsegment you will be given the position of the second maximum from this subsegment in the whole array.
256 megabytes
// import java.util.Vector; import java.util.*; import java.lang.Math; import java.util.concurrent.TimeUnit; import java.util.stream.Collectors; import javax.management.Query; import java.io.*; import java.math.BigInteger; public class Main { static int mod = 1000000007; static class Edge { int to; long time, k; public Edge(int to, long time, long k) { this.to = to; this.time = time; this.k = k; } } static class Pair implements Comparator<Pair> { long x; long y; // Constructor public Pair(long x, long y) { this.x = x; this.y = y; } public Pair() { } @Override public int compare(Main.Pair o1, Main.Pair o2) { if (o1.y < o2.y) return -1; if (o1.y > o2.y) return 1; if (o1.y == o2.y) { if (o1.x <= o2.x) { return -1; } else { return 1; } } return 0; } } static class FastReader { BufferedReader br; StringTokenizer st; public FastReader() { br = new BufferedReader(new InputStreamReader(System.in)); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } int[] intArr(int n) { int res[] = new int[n]; for (int i = 0; i < n; i++) res[i] = nextInt(); return res; } long[] longArr(int n) { long res[] = new long[n]; for (int i = 0; i < n; i++) res[i] = nextLong(); return res; } } static FastReader f = new FastReader(); static BufferedWriter w = new BufferedWriter(new OutputStreamWriter(System.out)); static boolean isPrime(long n) { if (n <= 1) return false; if (n <= 3) return true; if (n % 2 == 0 || n % 3 == 0) return false; for (long i = 5; i * i <= n; i = i + 6) if (n % i == 0 || n % (i + 2) == 0) return false; return true; } static int LowerBound(int a[], int x) { // smallest index having value >= x int l = -1, r = a.length; while (l + 1 < r) { int m = (l + r) >>> 1; if (a[m] >= x) r = m; else l = m; } return r; } static int UpperBound(int a[], int x) {// biggest index having value <= x int l = -1, r = a.length; while (l + 1 < r) { int m = (l + r) >>> 1; if (a[m] <= x) l = m; else r = m; } return l + 1; } static long gcd(long a, long b) { if (a == 0) return b; return gcd(b % a, a); } static long lcm(long a, long b) { return (a * b) / gcd(a, b); } static long power(long x, long y, long p) { long res = 1; x = x % p; while (y > 0) { if (y % 2 == 1) res = (res * x) % p; y = y >> 1; // y = y/2 x = (x * x) % p; } return res; } static long power(long x, long y) { long res = 1; while (y > 0) { if (y % 2 == 1) res = (res * x); y >>= 1; x = (x * x); } return res; } static int power(int x, int y) { int res = 1; while (y > 0) { if (y % 2 == 1) res = (res * x); y >>= 1; x = (x * x); } return res; } static int ceil(int x, int y) { return (x % y == 0 ? x / y : (x / y + 1)); } static long ceil(long x, long y) { return (x % y == 0 ? x / y : (x / y + 1)); } /* * ===========Modular Operations================== */ static long modInverse(long n, long p) { return power(n, p - 2, p); } static long modAdd(long a, long b) { return (a % mod + b % mod) % mod; } static long modMul(long a, long b) { return ((a % mod) * (b % mod)) % mod; } static long nCrModPFermat(int n, int r) { long p = 1000000007; if (r == 0) return 1; long[] fac = new long[n + 1]; fac[0] = 1; for (int i = 1; i <= n; i++) fac[i] = fac[i - 1] * i % p; return (fac[n] * modInverse(fac[r], p) % p * modInverse(fac[n - r], p) % p) % p; } /* * =============================================== */ List<Integer> removeDup(ArrayList<Integer> list) { List<Integer> newList = list.stream().distinct().collect(Collectors.toList()); return newList; } static void ruffleSort(long[] a) { int n = a.length; Random r = new Random(); for (int i = 0; i < a.length; i++) { int oi = r.nextInt(n); long temp = a[i]; a[i] = a[oi]; a[oi] = temp; } Arrays.sort(a); } static void ruffleSort(int[] a) { int n = a.length; Random r = new Random(); for (int i = 0; i < a.length; i++) { int oi = r.nextInt(n); int temp = a[i]; a[i] = a[oi]; a[oi] = temp; } Arrays.sort(a); } /* * ===========Dynamic prog Recur Section=========== */ static int DP[][]; static ArrayList<ArrayList<Integer>> g; static int count = 0; static ArrayList<Long> bitMask(ArrayList<Long> ar, int n) { ArrayList<Long> ans = new ArrayList<>(); for (int mask = 0; mask <= Math.pow(2, n) - 1; mask++) { long sum = 0; for (int i = 0; i < n; i++) { if (((1 << i) & mask) > 0) { sum += ar.get(i); } } ans.add(sum); } return ans; } /* * ====================================Main================================= */ public static void main(String args[]) throws Exception { File file = new File("D:\\VS Code\\Java\\Output.txt"); // FileWriter fw = new FileWriter("D:\\VS Code\\Java\\Output.txt"); Random rand = new Random(); int t = 1; // t = f.nextInt(); while (t-- != 0) { int n = f.nextInt(); int high = n, low = 1, mid = 0,flag=0; while (high > low) { int q=ask(low,high); if(high-low==1){ print(q==low?high:low); flag=1; break; } mid=(high+low)/2; if(q<=mid){ int x=ask(low,mid); if(x==q){ high=mid; }else{ low=mid; } }else{ int x=ask(mid,high); if(x==q){ low=mid; }else{ high=mid; } } } if(flag==0)print(low); } w.flush(); } static int ask(int l, int r) throws IOException { w.write("? "+l+" "+r+"\n"); w.flush(); int q=f.nextInt(); return q; } static void print(int p) throws IOException{ w.write("! "+p+"\n"); w.flush(); } } // 5 1 4 2 3 // 3 5 2 7 5 6 9 // 1 2 3 4 5 6 7
Java
["5\n\n3\n\n4"]
1 second
["? 1 5\n\n? 4 5\n\n! 1"]
NoteIn the sample suppose $$$a$$$ is $$$[5, 1, 4, 2, 3]$$$. So after asking the $$$[1..5]$$$ subsegment $$$4$$$ is second to max value, and it's position is $$$3$$$. After asking the $$$[4..5]$$$ subsegment $$$2$$$ is second to max value and it's position in the whole array is $$$4$$$.Note that there are other arrays $$$a$$$ that would produce the same interaction, and the answer for them might be different. Example output is given in purpose of understanding the interaction.
Java 11
standard input
[ "binary search", "interactive" ]
b3e8fe76706ba17cb285c75459508334
The first line contains a single integer $$$n$$$ $$$(2 \leq n \leq 10^5)$$$ — the number of elements in the array.
1,600
null
standard output
PASSED
457f24a91094c0fc9aeb0b4bf8fc907d
train_109.jsonl
1613658900
The only difference between the easy and the hard version is the limit to the number of queries.This is an interactive problem.There is an array $$$a$$$ of $$$n$$$ different numbers. In one query you can ask the position of the second maximum element in a subsegment $$$a[l..r]$$$. Find the position of the maximum element in the array in no more than 40 queries.A subsegment $$$a[l..r]$$$ is all the elements $$$a_l, a_{l + 1}, ..., a_r$$$. After asking this subsegment you will be given the position of the second maximum from this subsegment in the whole array.
256 megabytes
// import java.util.Vector; import java.util.*; import java.lang.Math; import java.util.concurrent.TimeUnit; import java.util.stream.Collectors; import javax.management.Query; import java.io.*; import java.math.BigInteger; public class Main { static int mod = 1000000007; static class Edge { int to; long time, k; public Edge(int to, long time, long k) { this.to = to; this.time = time; this.k = k; } } static class Pair implements Comparator<Pair> { long x; long y; // Constructor public Pair(long x, long y) { this.x = x; this.y = y; } public Pair() { } @Override public int compare(Main.Pair o1, Main.Pair o2) { if (o1.y < o2.y) return -1; if (o1.y > o2.y) return 1; if (o1.y == o2.y) { if (o1.x <= o2.x) { return -1; } else { return 1; } } return 0; } } static class FastReader { BufferedReader br; StringTokenizer st; public FastReader() { br = new BufferedReader(new InputStreamReader(System.in)); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } int[] intArr(int n) { int res[] = new int[n]; for (int i = 0; i < n; i++) res[i] = nextInt(); return res; } long[] longArr(int n) { long res[] = new long[n]; for (int i = 0; i < n; i++) res[i] = nextLong(); return res; } } static FastReader f = new FastReader(); static BufferedWriter w = new BufferedWriter(new OutputStreamWriter(System.out)); static boolean isPrime(long n) { if (n <= 1) return false; if (n <= 3) return true; if (n % 2 == 0 || n % 3 == 0) return false; for (long i = 5; i * i <= n; i = i + 6) if (n % i == 0 || n % (i + 2) == 0) return false; return true; } static int LowerBound(int a[], int x) { // smallest index having value >= x int l = -1, r = a.length; while (l + 1 < r) { int m = (l + r) >>> 1; if (a[m] >= x) r = m; else l = m; } return r; } static int UpperBound(int a[], int x) {// biggest index having value <= x int l = -1, r = a.length; while (l + 1 < r) { int m = (l + r) >>> 1; if (a[m] <= x) l = m; else r = m; } return l + 1; } static long gcd(long a, long b) { if (a == 0) return b; return gcd(b % a, a); } static long lcm(long a, long b) { return (a * b) / gcd(a, b); } static long power(long x, long y, long p) { long res = 1; x = x % p; while (y > 0) { if (y % 2 == 1) res = (res * x) % p; y = y >> 1; // y = y/2 x = (x * x) % p; } return res; } static long power(long x, long y) { long res = 1; while (y > 0) { if (y % 2 == 1) res = (res * x); y >>= 1; x = (x * x); } return res; } static int power(int x, int y) { int res = 1; while (y > 0) { if (y % 2 == 1) res = (res * x); y >>= 1; x = (x * x); } return res; } static int ceil(int x, int y) { return (x % y == 0 ? x / y : (x / y + 1)); } static long ceil(long x, long y) { return (x % y == 0 ? x / y : (x / y + 1)); } /* * ===========Modular Operations================== */ static long modInverse(long n, long p) { return power(n, p - 2, p); } static long modAdd(long a, long b) { return (a % mod + b % mod) % mod; } static long modMul(long a, long b) { return ((a % mod) * (b % mod)) % mod; } static long nCrModPFermat(int n, int r) { long p = 1000000007; if (r == 0) return 1; long[] fac = new long[n + 1]; fac[0] = 1; for (int i = 1; i <= n; i++) fac[i] = fac[i - 1] * i % p; return (fac[n] * modInverse(fac[r], p) % p * modInverse(fac[n - r], p) % p) % p; } /* * =============================================== */ List<Integer> removeDup(ArrayList<Integer> list) { List<Integer> newList = list.stream().distinct().collect(Collectors.toList()); return newList; } static void ruffleSort(long[] a) { int n = a.length; Random r = new Random(); for (int i = 0; i < a.length; i++) { int oi = r.nextInt(n); long temp = a[i]; a[i] = a[oi]; a[oi] = temp; } Arrays.sort(a); } static void ruffleSort(int[] a) { int n = a.length; Random r = new Random(); for (int i = 0; i < a.length; i++) { int oi = r.nextInt(n); int temp = a[i]; a[i] = a[oi]; a[oi] = temp; } Arrays.sort(a); } /* * ===========Dynamic prog Recur Section=========== */ static int DP[][]; static ArrayList<ArrayList<Integer>> g; static int count = 0; static ArrayList<Long> bitMask(ArrayList<Long> ar, int n) { ArrayList<Long> ans = new ArrayList<>(); for (int mask = 0; mask <= Math.pow(2, n) - 1; mask++) { long sum = 0; for (int i = 0; i < n; i++) { if (((1 << i) & mask) > 0) { sum += ar.get(i); } } ans.add(sum); } return ans; } /* * ====================================Main================================= */ public static void main(String args[]) throws Exception { File file = new File("D:\\VS Code\\Java\\Output.txt"); // FileWriter fw = new FileWriter("D:\\VS Code\\Java\\Output.txt"); Random rand = new Random(); int t = 1; // t = f.nextInt(); while (t-- != 0) { int n = f.nextInt(); int high = n, low = 1, mid = 0,flag=0; while (high > low) { int q=ask(low,high); if(high-low==1){ print(q==low?high:low); flag=1; break; } mid=(high+low)/2; if(q<=mid){ int x=ask(low,mid); if(x==q){ high=mid; }else{ low=mid+1; } }else{ int x=ask(mid,high); if(x==q){ low=mid; }else{ high=mid-1; } } } if(flag==0)print(low); } w.flush(); } static int ask(int l, int r) throws IOException { w.write("? "+l+" "+r+"\n"); w.flush(); int q=f.nextInt(); return q; } static void print(int p) throws IOException{ w.write("! "+p+"\n"); w.flush(); } } // 5 1 4 2 3 // 3 5 2 7 5 6 9 // 1 2 3 4 5 6 7
Java
["5\n\n3\n\n4"]
1 second
["? 1 5\n\n? 4 5\n\n! 1"]
NoteIn the sample suppose $$$a$$$ is $$$[5, 1, 4, 2, 3]$$$. So after asking the $$$[1..5]$$$ subsegment $$$4$$$ is second to max value, and it's position is $$$3$$$. After asking the $$$[4..5]$$$ subsegment $$$2$$$ is second to max value and it's position in the whole array is $$$4$$$.Note that there are other arrays $$$a$$$ that would produce the same interaction, and the answer for them might be different. Example output is given in purpose of understanding the interaction.
Java 11
standard input
[ "binary search", "interactive" ]
b3e8fe76706ba17cb285c75459508334
The first line contains a single integer $$$n$$$ $$$(2 \leq n \leq 10^5)$$$ — the number of elements in the array.
1,600
null
standard output
PASSED
f19b754dd0e105fb2706f697642760fe
train_109.jsonl
1613658900
The only difference between the easy and the hard version is the limit to the number of queries.This is an interactive problem.There is an array $$$a$$$ of $$$n$$$ different numbers. In one query you can ask the position of the second maximum element in a subsegment $$$a[l..r]$$$. Find the position of the maximum element in the array in no more than 40 queries.A subsegment $$$a[l..r]$$$ is all the elements $$$a_l, a_{l + 1}, ..., a_r$$$. After asking this subsegment you will be given the position of the second maximum from this subsegment in the whole array.
256 megabytes
// import java.util.Vector; import java.util.*; import java.lang.Math; import java.util.concurrent.TimeUnit; import java.util.stream.Collectors; import javax.management.Query; import java.io.*; import java.math.BigInteger; public class Main { static int mod = 1000000007; static class Edge { int to; long time, k; public Edge(int to, long time, long k) { this.to = to; this.time = time; this.k = k; } } static class Pair implements Comparator<Pair> { long x; long y; // Constructor public Pair(long x, long y) { this.x = x; this.y = y; } public Pair() { } @Override public int compare(Main.Pair o1, Main.Pair o2) { if (o1.y < o2.y) return -1; if (o1.y > o2.y) return 1; if (o1.y == o2.y) { if (o1.x <= o2.x) { return -1; } else { return 1; } } return 0; } } static class FastReader { BufferedReader br; StringTokenizer st; public FastReader() { br = new BufferedReader(new InputStreamReader(System.in)); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } int[] intArr(int n) { int res[] = new int[n]; for (int i = 0; i < n; i++) res[i] = nextInt(); return res; } long[] longArr(int n) { long res[] = new long[n]; for (int i = 0; i < n; i++) res[i] = nextLong(); return res; } } static FastReader f = new FastReader(); static BufferedWriter w = new BufferedWriter(new OutputStreamWriter(System.out)); static boolean isPrime(long n) { if (n <= 1) return false; if (n <= 3) return true; if (n % 2 == 0 || n % 3 == 0) return false; for (long i = 5; i * i <= n; i = i + 6) if (n % i == 0 || n % (i + 2) == 0) return false; return true; } static int LowerBound(int a[], int x) { // smallest index having value >= x int l = -1, r = a.length; while (l + 1 < r) { int m = (l + r) >>> 1; if (a[m] >= x) r = m; else l = m; } return r; } static int UpperBound(int a[], int x) {// biggest index having value <= x int l = -1, r = a.length; while (l + 1 < r) { int m = (l + r) >>> 1; if (a[m] <= x) l = m; else r = m; } return l + 1; } static long gcd(long a, long b) { if (a == 0) return b; return gcd(b % a, a); } static long lcm(long a, long b) { return (a * b) / gcd(a, b); } static long power(long x, long y, long p) { long res = 1; x = x % p; while (y > 0) { if (y % 2 == 1) res = (res * x) % p; y = y >> 1; // y = y/2 x = (x * x) % p; } return res; } static long power(long x, long y) { long res = 1; while (y > 0) { if (y % 2 == 1) res = (res * x); y >>= 1; x = (x * x); } return res; } static int power(int x, int y) { int res = 1; while (y > 0) { if (y % 2 == 1) res = (res * x); y >>= 1; x = (x * x); } return res; } static int ceil(int x, int y) { return (x % y == 0 ? x / y : (x / y + 1)); } static long ceil(long x, long y) { return (x % y == 0 ? x / y : (x / y + 1)); } /* * ===========Modular Operations================== */ static long modInverse(long n, long p) { return power(n, p - 2, p); } static long modAdd(long a, long b) { return (a % mod + b % mod) % mod; } static long modMul(long a, long b) { return ((a % mod) * (b % mod)) % mod; } static long nCrModPFermat(int n, int r) { long p = 1000000007; if (r == 0) return 1; long[] fac = new long[n + 1]; fac[0] = 1; for (int i = 1; i <= n; i++) fac[i] = fac[i - 1] * i % p; return (fac[n] * modInverse(fac[r], p) % p * modInverse(fac[n - r], p) % p) % p; } /* * =============================================== */ List<Integer> removeDup(ArrayList<Integer> list) { List<Integer> newList = list.stream().distinct().collect(Collectors.toList()); return newList; } static void ruffleSort(long[] a) { int n = a.length; Random r = new Random(); for (int i = 0; i < a.length; i++) { int oi = r.nextInt(n); long temp = a[i]; a[i] = a[oi]; a[oi] = temp; } Arrays.sort(a); } static void ruffleSort(int[] a) { int n = a.length; Random r = new Random(); for (int i = 0; i < a.length; i++) { int oi = r.nextInt(n); int temp = a[i]; a[i] = a[oi]; a[oi] = temp; } Arrays.sort(a); } /* * ===========Dynamic prog Recur Section=========== */ static int DP[][]; static ArrayList<ArrayList<Integer>> g; static int count = 0; static ArrayList<Long> bitMask(ArrayList<Long> ar, int n) { ArrayList<Long> ans = new ArrayList<>(); for (int mask = 0; mask <= Math.pow(2, n) - 1; mask++) { long sum = 0; for (int i = 0; i < n; i++) { if (((1 << i) & mask) > 0) { sum += ar.get(i); } } ans.add(sum); } return ans; } /* * ====================================Main================================= */ public static void main(String args[]) throws Exception { File file = new File("D:\\VS Code\\Java\\Output.txt"); // FileWriter fw = new FileWriter("D:\\VS Code\\Java\\Output.txt"); Random rand = new Random(); int t = 1; // t = f.nextInt(); while (t-- != 0) { int n = f.nextInt(); int high = n, low = 1, mid = 0,flag=0; while (high > low) { int q=ask(low,high); if(high-low==1){ print(q==low?high:low); flag=1; break; } mid=(high+low)/2; if(q<=mid){ int x=ask(low,mid); if(x==q){ high=mid; }else{ low=mid+1; } }else{ int x=ask(mid,high); if(x==q){ low=mid; }else{ high=mid-1; } } } if(flag==0)print(high); } w.flush(); } static int ask(int l, int r) throws IOException { w.write("? "+l+" "+r+"\n"); w.flush(); int q=f.nextInt(); return q; } static void print(int p) throws IOException{ w.write("! "+p+"\n"); w.flush(); } } // 5 1 4 2 3 // 3 5 2 7 5 6 9 // 1 2 3 4 5 6 7
Java
["5\n\n3\n\n4"]
1 second
["? 1 5\n\n? 4 5\n\n! 1"]
NoteIn the sample suppose $$$a$$$ is $$$[5, 1, 4, 2, 3]$$$. So after asking the $$$[1..5]$$$ subsegment $$$4$$$ is second to max value, and it's position is $$$3$$$. After asking the $$$[4..5]$$$ subsegment $$$2$$$ is second to max value and it's position in the whole array is $$$4$$$.Note that there are other arrays $$$a$$$ that would produce the same interaction, and the answer for them might be different. Example output is given in purpose of understanding the interaction.
Java 11
standard input
[ "binary search", "interactive" ]
b3e8fe76706ba17cb285c75459508334
The first line contains a single integer $$$n$$$ $$$(2 \leq n \leq 10^5)$$$ — the number of elements in the array.
1,600
null
standard output
PASSED
3d4ae3776103111c5ddb68fb8b5adfcd
train_109.jsonl
1613658900
The only difference between the easy and the hard version is the limit to the number of queries.This is an interactive problem.There is an array $$$a$$$ of $$$n$$$ different numbers. In one query you can ask the position of the second maximum element in a subsegment $$$a[l..r]$$$. Find the position of the maximum element in the array in no more than 40 queries.A subsegment $$$a[l..r]$$$ is all the elements $$$a_l, a_{l + 1}, ..., a_r$$$. After asking this subsegment you will be given the position of the second maximum from this subsegment in the whole array.
256 megabytes
import java.util.*; import java.lang.*; import java.io.*; import java.awt.*; public class Main { static Scanner scn = new Scanner(System.in) ; public static int query(int l , int r) { System.out.println("? " + l +" " + r ) ; int q = scn.nextInt() ; return q ; } public static int getLeft(int l , int k) { int r = k-1 ;int ans = k-1 ; while(l <= r) { int mid = (l+r)/2 ; int q = query(mid, k) ; if(q == k) { l =mid+1 ; ans = mid ; } else{ r=mid-1 ; } } return ans ; } public static int getRight(int k , int r) { int l = k+1 ;int ans = k+1 ; while( l <= r ) { int mid = ( l+r)/2 ; int q = query(k , mid ) ; if(q== k) { r=mid-1 ; ans = mid ; } else{ l =mid+1 ; } } return ans ; } public static void solve() { int n = scn.nextInt() ; int q = query(1,n) ; if(n ==2) { System.out.println("! " + (3-q)) ; } else{ int ans = 0 ; if(q ==1) { ans = getRight(1,n) ; } else if(q== n) { ans = getLeft(1,n) ; } else{ int temp = query(1,q) ; if(temp == q) { ans = getLeft(1,q) ; } else{ ans = getRight(q,n) ; } } System.out.println("! " + (ans)) ; } } public static void main (String[] args) throws java.lang.Exception { solve() ; } }
Java
["5\n\n3\n\n4"]
1 second
["? 1 5\n\n? 4 5\n\n! 1"]
NoteIn the sample suppose $$$a$$$ is $$$[5, 1, 4, 2, 3]$$$. So after asking the $$$[1..5]$$$ subsegment $$$4$$$ is second to max value, and it's position is $$$3$$$. After asking the $$$[4..5]$$$ subsegment $$$2$$$ is second to max value and it's position in the whole array is $$$4$$$.Note that there are other arrays $$$a$$$ that would produce the same interaction, and the answer for them might be different. Example output is given in purpose of understanding the interaction.
Java 11
standard input
[ "binary search", "interactive" ]
b3e8fe76706ba17cb285c75459508334
The first line contains a single integer $$$n$$$ $$$(2 \leq n \leq 10^5)$$$ — the number of elements in the array.
1,600
null
standard output
PASSED
543d9aedfeef533138d31aa5e940d736
train_109.jsonl
1613658900
The only difference between the easy and the hard version is the limit to the number of queries.This is an interactive problem.There is an array $$$a$$$ of $$$n$$$ different numbers. In one query you can ask the position of the second maximum element in a subsegment $$$a[l..r]$$$. Find the position of the maximum element in the array in no more than 40 queries.A subsegment $$$a[l..r]$$$ is all the elements $$$a_l, a_{l + 1}, ..., a_r$$$. After asking this subsegment you will be given the position of the second maximum from this subsegment in the whole array.
256 megabytes
import java.io.*; import java.util.*; public class Main { private static final boolean N_CASE = false; private int query(int l, int r) { out.println(String.format("? %d %d", l, r)); out.flush(); return sc.nextInt(); } private void answer(int value) { out.println(String.format("! %d", value)); out.flush(); } private void solve() { int n = sc.nextInt(); int secIdx = query(1, n); int l, r; if (secIdx != n && query(secIdx, n) == secIdx) { l = secIdx + 1; r = n; if (l == r) { answer(l); return; } while (l + 1 < r) { int mid = (l + r) / 2; if (query(secIdx, mid) == secIdx) { r = mid; } else { l = mid + 1; } } if (l == r) { answer(l); return; } answer(query(l, r) == l ? r : l); } else { l = 1; r = secIdx - 1; if (l == r) { answer(l); return; } while (l + 1 < r) { int mid = (l + r) / 2; if (query(mid, secIdx) == secIdx) { l = mid; } else { r = mid - 1; } } if (l == r) { answer(l); return; } answer(query(l, r) == l ? r : l); } } private void run() { int T = N_CASE ? sc.nextInt() : 1; for (int t = 0; t < T; ++t) { solve(); } } private static MyWriter out; private static MyScanner sc; private static CommonUtils cu; public static void main(String[] args) { out = new MyWriter(new BufferedOutputStream(System.out)); sc = new MyScanner(); new Main().run(); out.close(); } } class CommonUtils { private <T> List<List<T>> createGraph(int n) { List<List<T>> g = new ArrayList<>(); for (int i = 0; i < n; ++i) { g.add(new ArrayList<>()); } return g; } private void fill(int[][] a, int value) { for (int[] row : a) { fill(row, value); } } private void fill(int[] a, int value) { Arrays.fill(a, value); } } class MyScanner { private BufferedReader br; private StringTokenizer st; public MyScanner() { br = new BufferedReader(new InputStreamReader(System.in)); } public String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } public int nextInt() { return Integer.parseInt(next()); } public long nextLong() { return Long.parseLong(next()); } public double nextDouble() { return Double.parseDouble(next()); } public int[] nextIntArray(int n) { int[] a = new int[n]; for (int i = 0; i < n; i++) { a[i] = nextInt(); } return a; } public int[][] nextIntArray(int n, int m) { int[][] a = new int[n][m]; for (int i = 0; i < n; i++) { for (int j = 0; j < m; j++) { a[i][j] = nextInt(); } } return a; } public long[] nextLongArray(int n) { long[] a = new long[n]; for (int i = 0; i < n; i++) { a[i] = nextLong(); } return a; } public long[][] nextLongArray(int n, int m) { long[][] a = new long[n][m]; for (int i = 0; i < n; i++) { for (int j = 0; j < m; j++) { a[i][j] = nextLong(); } } return a; } public List<Integer> nextList(int n) { List<Integer> list = new ArrayList<>(); for (int i = 0; i < n; i++) { list.add(nextInt()); } return list; } public List<Long> nextLongList(int n) { List<Long> list = new ArrayList<>(); for (int i = 0; i < n; i++) { list.add(nextLong()); } return list; } public char[] nextCharArray(int n) { return next().toCharArray(); } public char[][] nextCharArray(int n, int m) { char[][] c = new char[n][m]; for (int i = 0; i < n; i++) { String s = next(); for (int j = 0; j < m; j++) { c[i][j] = s.charAt(j); } } return c; } } class MyWriter extends PrintWriter { public MyWriter(OutputStream outputStream) { super(outputStream); } public void printArray(int[] a) { for (int i = 0; i < a.length; ++i) { print(a[i]); print(i == a.length - 1 ? '\n' : ' '); } } public void printArray(long[] a) { for (int i = 0; i < a.length; ++i) { print(a[i]); print(i == a.length - 1 ? '\n' : ' '); } } public void println(int[] a) { for (int v : a) { println(v); } } public void print(List<Integer> list) { for (int i = 0; i < list.size(); ++i) { print(list.get(i)); print(i == list.size() - 1 ? '\n' : ' '); } } public void println(List<Integer> list) { list.forEach(this::println); } }
Java
["5\n\n3\n\n4"]
1 second
["? 1 5\n\n? 4 5\n\n! 1"]
NoteIn the sample suppose $$$a$$$ is $$$[5, 1, 4, 2, 3]$$$. So after asking the $$$[1..5]$$$ subsegment $$$4$$$ is second to max value, and it's position is $$$3$$$. After asking the $$$[4..5]$$$ subsegment $$$2$$$ is second to max value and it's position in the whole array is $$$4$$$.Note that there are other arrays $$$a$$$ that would produce the same interaction, and the answer for them might be different. Example output is given in purpose of understanding the interaction.
Java 11
standard input
[ "binary search", "interactive" ]
b3e8fe76706ba17cb285c75459508334
The first line contains a single integer $$$n$$$ $$$(2 \leq n \leq 10^5)$$$ — the number of elements in the array.
1,600
null
standard output
PASSED
0a438db99b2463c5704c21f58219ac52
train_109.jsonl
1613658900
The only difference between the easy and the hard version is the limit to the number of queries.This is an interactive problem.There is an array $$$a$$$ of $$$n$$$ different numbers. In one query you can ask the position of the second maximum element in a subsegment $$$a[l..r]$$$. Find the position of the maximum element in the array in no more than 40 queries.A subsegment $$$a[l..r]$$$ is all the elements $$$a_l, a_{l + 1}, ..., a_r$$$. After asking this subsegment you will be given the position of the second maximum from this subsegment in the whole array.
256 megabytes
import java.util.*; public class Cf { public static void main(String [] args){ Scanner sc=new Scanner(System.in); int n=sc.nextInt();int a=1;int b=n; System.out.println("? "+a+" "+b ); System.out.flush(); int t=sc.nextInt(); int q=0; if(t==1){} else{ System.out.println("? "+a+" "+t); System.out.flush(); q=sc.nextInt(); } int ans=0;int l=0;int r=0; if(q==t){ l=1;r=t; while(l<=r){ if(l==r){ans=l;break;} if(r==l+1){ if(r==t){ans=l;break;} System.out.println("? "+r+" "+t); System.out.flush(); int check=sc.nextInt(); if(check==t){ans=r;break;} ans=l;break; } int m=(l+r)/2; System.out.println("? "+m+" "+t); System.out.flush(); int res=sc.nextInt(); if(res==t){l=m;} else{ r=m-1; } } } else{ l=t;r=n; while(r>=l){ if(l==r){ans=l;break;} if(r==l+1){ if(l==t){ans=r;break;} System.out.println("? "+t+" "+l); System.out.flush(); int check=sc.nextInt(); if(check==t){ans=l;break;} ans=r;break; } int m=(l+r)/2; System.out.println("? "+t+" "+m); System.out.flush(); int res=sc.nextInt(); if(res==t){r=m;} else{ l=m+1; } } } System.out.println("! "+ans); } }
Java
["5\n\n3\n\n4"]
1 second
["? 1 5\n\n? 4 5\n\n! 1"]
NoteIn the sample suppose $$$a$$$ is $$$[5, 1, 4, 2, 3]$$$. So after asking the $$$[1..5]$$$ subsegment $$$4$$$ is second to max value, and it's position is $$$3$$$. After asking the $$$[4..5]$$$ subsegment $$$2$$$ is second to max value and it's position in the whole array is $$$4$$$.Note that there are other arrays $$$a$$$ that would produce the same interaction, and the answer for them might be different. Example output is given in purpose of understanding the interaction.
Java 11
standard input
[ "binary search", "interactive" ]
b3e8fe76706ba17cb285c75459508334
The first line contains a single integer $$$n$$$ $$$(2 \leq n \leq 10^5)$$$ — the number of elements in the array.
1,600
null
standard output
PASSED
4af7808947c1128d921c81cd683bf114
train_109.jsonl
1613658900
The only difference between the easy and the hard version is the limit to the number of queries.This is an interactive problem.There is an array $$$a$$$ of $$$n$$$ different numbers. In one query you can ask the position of the second maximum element in a subsegment $$$a[l..r]$$$. Find the position of the maximum element in the array in no more than 40 queries.A subsegment $$$a[l..r]$$$ is all the elements $$$a_l, a_{l + 1}, ..., a_r$$$. After asking this subsegment you will be given the position of the second maximum from this subsegment in the whole array.
256 megabytes
import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.io.PrintWriter; import java.util.StringTokenizer; public class C { void solve() throws IOException { int n = nextInt(); int begin = 1; int end = n; /* 5 1 3 4 2 1 2 3 4 5 2 1 3 5 1 4 2 3 5 4 3 2 1 */ writer.println("? " + begin + " " + end); writer.flush(); int secMax = nextInt(); boolean beginChanging = true; if (secMax == 1) { begin = 2; end = n; beginChanging = false; } else if (secMax == n) { begin = 1; end = secMax - 1; } else { writer.println("? " + 1 + " " + secMax); writer.flush(); int leftSecMax = nextInt(); if (leftSecMax == secMax) { begin = 1; end = secMax - 1; } else { beginChanging = false; begin = secMax + 1; end = n; } } if (beginChanging) { int lastGood = 0; while (begin <= end) { int mid = begin + (end - begin) / 2; writer.println("? " + mid + " " + secMax); writer.flush(); int newSecMax = nextInt(); if (secMax == newSecMax) { lastGood = mid; begin = mid + 1; } else { end = mid - 1; } } writer.println("! " + lastGood); } else { int lastGood = 0; while (begin <= end) { int mid = begin + (end - begin) / 2; writer.println("? " + secMax + " " + mid); writer.flush(); int newSecMax = nextInt(); if (newSecMax == secMax) { lastGood = mid; end = mid - 1; } else { begin = mid + 1; } } writer.println("! " + lastGood); } } String nextToken() throws IOException { while (tokenizer == null || !tokenizer.hasMoreTokens()) { tokenizer = new StringTokenizer(reader.readLine()); } return tokenizer.nextToken(); } int nextInt() throws IOException { return Integer.parseInt(nextToken()); } StringTokenizer tokenizer; PrintWriter writer; BufferedReader reader; public void run() { try { writer = new PrintWriter(System.out); reader = new BufferedReader(new InputStreamReader(System.in)); solve(); reader.close(); writer.close(); } catch (Exception e) { e.printStackTrace(); } } public static void main(String[] args) { new C().run(); } }
Java
["5\n\n3\n\n4"]
1 second
["? 1 5\n\n? 4 5\n\n! 1"]
NoteIn the sample suppose $$$a$$$ is $$$[5, 1, 4, 2, 3]$$$. So after asking the $$$[1..5]$$$ subsegment $$$4$$$ is second to max value, and it's position is $$$3$$$. After asking the $$$[4..5]$$$ subsegment $$$2$$$ is second to max value and it's position in the whole array is $$$4$$$.Note that there are other arrays $$$a$$$ that would produce the same interaction, and the answer for them might be different. Example output is given in purpose of understanding the interaction.
Java 11
standard input
[ "binary search", "interactive" ]
b3e8fe76706ba17cb285c75459508334
The first line contains a single integer $$$n$$$ $$$(2 \leq n \leq 10^5)$$$ — the number of elements in the array.
1,600
null
standard output
PASSED
b026d3e59aaa11d66d0a6bec26c71694
train_109.jsonl
1613658900
The only difference between the easy and the hard version is the limit to the number of queries.This is an interactive problem.There is an array $$$a$$$ of $$$n$$$ different numbers. In one query you can ask the position of the second maximum element in a subsegment $$$a[l..r]$$$. Find the position of the maximum element in the array in no more than 40 queries.A subsegment $$$a[l..r]$$$ is all the elements $$$a_l, a_{l + 1}, ..., a_r$$$. After asking this subsegment you will be given the position of the second maximum from this subsegment in the whole array.
256 megabytes
import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.io.PrintWriter; import java.util.StringTokenizer; public class C { void solve() throws IOException { int n = nextInt(); int begin = 1; int end = n; /* 5 1 3 4 2 1 2 3 4 5 2 1 3 5 1 4 2 3 5 4 3 2 1 */ int prev = -1; while (begin < end) { int secMax = 0; if (prev == -1) { writer.println("? " + begin + " " + end); writer.flush(); secMax = nextInt(); } else { secMax = prev; } if (end - begin == 1) { if (secMax == begin) { writer.println("! " + end); writer.flush(); return; } else { writer.println("! " + begin); writer.flush(); return; } } int mid = begin + (end - begin) / 2; // if (secMax > mid && rightSecMax != secMax) { // end = mid; // prev = leftSecMax; // } else if (secMax < mid && leftSecMax != secMax) { // begin = mid; // prev = rightSecMax; // } else if (secMax == leftSecMax) { // end = mid; // prev = leftSecMax; // } else { // begin = mid; // prev = rightSecMax; // } if (secMax >= mid) { writer.println("? " + mid + " " + end); writer.flush(); int rightSecMax = nextInt(); if (rightSecMax == secMax) { begin = mid; prev = rightSecMax; } else { // writer.println("? " + begin + " " + (mid - 1)); // writer.flush(); // int leftSecMax = nextInt(); end = mid - 1; prev = -1; // prev = leftSecMax; } } else { writer.println("? " + begin + " " + mid); writer.flush(); int leftSecMax = nextInt(); if (leftSecMax == secMax) { end = mid; prev = leftSecMax; } else { // writer.println("? " + (mid + 1) + " " + end); // writer.flush(); // int rightSecMax = nextInt(); begin = mid + 1; prev = -1; // prev = rightSecMax; } } } writer.println("! " + begin); } String nextToken() throws IOException { while (tokenizer == null || !tokenizer.hasMoreTokens()) { tokenizer = new StringTokenizer(reader.readLine()); } return tokenizer.nextToken(); } int nextInt() throws IOException { return Integer.parseInt(nextToken()); } StringTokenizer tokenizer; PrintWriter writer; BufferedReader reader; public void run() { try { writer = new PrintWriter(System.out); reader = new BufferedReader(new InputStreamReader(System.in)); solve(); reader.close(); writer.close(); } catch (Exception e) { e.printStackTrace(); } } public static void main(String[] args) { new C().run(); } }
Java
["5\n\n3\n\n4"]
1 second
["? 1 5\n\n? 4 5\n\n! 1"]
NoteIn the sample suppose $$$a$$$ is $$$[5, 1, 4, 2, 3]$$$. So after asking the $$$[1..5]$$$ subsegment $$$4$$$ is second to max value, and it's position is $$$3$$$. After asking the $$$[4..5]$$$ subsegment $$$2$$$ is second to max value and it's position in the whole array is $$$4$$$.Note that there are other arrays $$$a$$$ that would produce the same interaction, and the answer for them might be different. Example output is given in purpose of understanding the interaction.
Java 11
standard input
[ "binary search", "interactive" ]
b3e8fe76706ba17cb285c75459508334
The first line contains a single integer $$$n$$$ $$$(2 \leq n \leq 10^5)$$$ — the number of elements in the array.
1,600
null
standard output
PASSED
0df2ed14973adf60fd32104c227913f6
train_109.jsonl
1613658900
The only difference between the easy and the hard version is the limit to the number of queries.This is an interactive problem.There is an array $$$a$$$ of $$$n$$$ different numbers. In one query you can ask the position of the second maximum element in a subsegment $$$a[l..r]$$$. Find the position of the maximum element in the array in no more than 40 queries.A subsegment $$$a[l..r]$$$ is all the elements $$$a_l, a_{l + 1}, ..., a_r$$$. After asking this subsegment you will be given the position of the second maximum from this subsegment in the whole array.
256 megabytes
import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.io.PrintWriter; import java.util.StringTokenizer; public class C { void solve() throws IOException { int n = nextInt(); int begin = 1; int end = n; /* 5 1 3 4 2 1 2 3 4 5 2 1 3 5 1 4 2 3 5 4 3 2 1 */ int prev = -1; while (begin < end) { int secMax = 0; if (prev == -1) { writer.println("? " + begin + " " + end); writer.flush(); secMax = nextInt(); } else { secMax = prev; } if (end - begin == 1) { if (secMax == begin) { writer.println("! " + end); writer.flush(); return; } else { writer.println("! " + begin); writer.flush(); return; } } int mid = begin + (end - begin) / 2; // if (secMax > mid && rightSecMax != secMax) { // end = mid; // prev = leftSecMax; // } else if (secMax < mid && leftSecMax != secMax) { // begin = mid; // prev = rightSecMax; // } else if (secMax == leftSecMax) { // end = mid; // prev = leftSecMax; // } else { // begin = mid; // prev = rightSecMax; // } if (secMax >= mid) { writer.println("? " + mid + " " + end); writer.flush(); int rightSecMax = nextInt(); if (rightSecMax == secMax) { begin = mid; prev = rightSecMax; } else { writer.println("? " + begin + " " + mid); writer.flush(); int leftSecMax = nextInt(); end = mid; prev = leftSecMax; } } else { writer.println("? " + begin + " " + mid); writer.flush(); int leftSecMax = nextInt(); if (leftSecMax == secMax) { end = mid; prev = leftSecMax; } else { writer.println("? " + mid + " " + end); writer.flush(); int rightSecMax = nextInt(); begin = mid; prev = rightSecMax; } } } writer.println("! " + begin); } String nextToken() throws IOException { while (tokenizer == null || !tokenizer.hasMoreTokens()) { tokenizer = new StringTokenizer(reader.readLine()); } return tokenizer.nextToken(); } int nextInt() throws IOException { return Integer.parseInt(nextToken()); } StringTokenizer tokenizer; PrintWriter writer; BufferedReader reader; public void run() { try { writer = new PrintWriter(System.out); reader = new BufferedReader(new InputStreamReader(System.in)); solve(); reader.close(); writer.close(); } catch (Exception e) { e.printStackTrace(); } } public static void main(String[] args) { new C().run(); } }
Java
["5\n\n3\n\n4"]
1 second
["? 1 5\n\n? 4 5\n\n! 1"]
NoteIn the sample suppose $$$a$$$ is $$$[5, 1, 4, 2, 3]$$$. So after asking the $$$[1..5]$$$ subsegment $$$4$$$ is second to max value, and it's position is $$$3$$$. After asking the $$$[4..5]$$$ subsegment $$$2$$$ is second to max value and it's position in the whole array is $$$4$$$.Note that there are other arrays $$$a$$$ that would produce the same interaction, and the answer for them might be different. Example output is given in purpose of understanding the interaction.
Java 11
standard input
[ "binary search", "interactive" ]
b3e8fe76706ba17cb285c75459508334
The first line contains a single integer $$$n$$$ $$$(2 \leq n \leq 10^5)$$$ — the number of elements in the array.
1,600
null
standard output
PASSED
f071225b287d7ddccfa7bdf206de4d90
train_109.jsonl
1613658900
The only difference between the easy and the hard version is the limit to the number of queries.This is an interactive problem.There is an array $$$a$$$ of $$$n$$$ different numbers. In one query you can ask the position of the second maximum element in a subsegment $$$a[l..r]$$$. Find the position of the maximum element in the array in no more than 40 queries.A subsegment $$$a[l..r]$$$ is all the elements $$$a_l, a_{l + 1}, ..., a_r$$$. After asking this subsegment you will be given the position of the second maximum from this subsegment in the whole array.
256 megabytes
import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.io.PrintWriter; import java.util.StringTokenizer; public class C { void solve() throws IOException { int n = nextInt(); int begin = 1; int end = n; /* 5 1 3 4 2 1 2 3 4 5 2 1 3 5 1 4 2 3 */ int prev = -1; while (begin < end) { int secMax = 0; if (prev == -1) { writer.println("? " + begin + " " + end); writer.flush(); secMax = nextInt(); } else { secMax = prev; } if (end - begin == 1) { if (secMax == begin) { writer.println("! " + end); writer.flush(); return; } else { writer.println("! " + begin); writer.flush(); return; } } int mid = begin + (end - begin) / 2; writer.println("? " + begin + " " + mid); writer.flush(); int leftSecMax = nextInt(); writer.println("? " + mid + " " + end); writer.flush(); int rightSecMax = nextInt(); if (secMax > mid && rightSecMax != secMax) { end = mid; prev = leftSecMax; } else if (secMax < mid && leftSecMax != secMax) { begin = mid; prev = rightSecMax; } else if (secMax == leftSecMax) { end = mid; prev = leftSecMax; } else { begin = mid; prev = rightSecMax; } } writer.println("! " + begin); } String nextToken() throws IOException { while (tokenizer == null || !tokenizer.hasMoreTokens()) { tokenizer = new StringTokenizer(reader.readLine()); } return tokenizer.nextToken(); } int nextInt() throws IOException { return Integer.parseInt(nextToken()); } StringTokenizer tokenizer; PrintWriter writer; BufferedReader reader; public void run() { try { writer = new PrintWriter(System.out); reader = new BufferedReader(new InputStreamReader(System.in)); solve(); reader.close(); writer.close(); } catch (Exception e) { e.printStackTrace(); } } public static void main(String[] args) { new C().run(); } }
Java
["5\n\n3\n\n4"]
1 second
["? 1 5\n\n? 4 5\n\n! 1"]
NoteIn the sample suppose $$$a$$$ is $$$[5, 1, 4, 2, 3]$$$. So after asking the $$$[1..5]$$$ subsegment $$$4$$$ is second to max value, and it's position is $$$3$$$. After asking the $$$[4..5]$$$ subsegment $$$2$$$ is second to max value and it's position in the whole array is $$$4$$$.Note that there are other arrays $$$a$$$ that would produce the same interaction, and the answer for them might be different. Example output is given in purpose of understanding the interaction.
Java 11
standard input
[ "binary search", "interactive" ]
b3e8fe76706ba17cb285c75459508334
The first line contains a single integer $$$n$$$ $$$(2 \leq n \leq 10^5)$$$ — the number of elements in the array.
1,600
null
standard output
PASSED
4bf95191da8f8fddf42f2b0a388c698b
train_109.jsonl
1613658900
The only difference between the easy and the hard version is the limit to the number of queries.This is an interactive problem.There is an array $$$a$$$ of $$$n$$$ different numbers. In one query you can ask the position of the second maximum element in a subsegment $$$a[l..r]$$$. Find the position of the maximum element in the array in no more than 40 queries.A subsegment $$$a[l..r]$$$ is all the elements $$$a_l, a_{l + 1}, ..., a_r$$$. After asking this subsegment you will be given the position of the second maximum from this subsegment in the whole array.
256 megabytes
//Implemented By Aman Kotiyal Date:-19-Feb-2021 Time:-1:07:15 am import java.io.*; import java.util.*; public class ques1 { public static void main(String[] args)throws Exception{ new ques1().run();} long mod=1000000000+7; void solve() throws Exception { int n=ni(); int l=1,r=n; out.println("? "+l+" "+r); out.flush(); int ind=ni(); int sec = ind; int cnt=1; if(sec!=1&&sec!=n) { out.println("? "+l+" "+sec); out.flush(); ind=ni(); if(ind==sec) // left side r=sec; else// right side l=sec; cnt++; } int ans=1; if(sec==n-1) ans=n; while(l<=r) { int mid=(l+r)/2; if(sec<mid) { cnt++; out.println("? "+sec+" "+mid); out.flush(); ind=ni(); if(ind==sec) { r=mid-1; ans=mid; } else { l=mid+1; ans=mid+1; } } else if(sec>mid) { cnt++; out.println("? "+mid+" "+sec); out.flush(); ind=ni(); if(ind==sec) { l=mid+1; ans=mid; } else { r=mid-1; ans=mid-1; } } else { if(l+1==r) { out.println("? "+l+" "+r); out.flush(); ind=ni(); if(sec==ind) { if(sec==l) ans=r; if(sec==r) ans=l; } break; } break; } } out.println("! "+ans); out.flush(); } /*FAST INPUT OUTPUT & METHODS BELOW*/ private byte[] buf=new byte[1024]; private int index; private InputStream in; private int total; private SpaceCharFilter filter; PrintWriter out; int min(int... ar){int min=Integer.MAX_VALUE;for(int i:ar)min=Math.min(min, i);return min;} long min(long... ar){long min=Long.MAX_VALUE;for(long i:ar)min=Math.min(min, i);return min;} int max(int... ar) {int max=Integer.MIN_VALUE;for(int i:ar)max=Math.max(max, i);return max;} long max(long... ar) {long max=Long.MIN_VALUE;for(long i:ar)max=Math.max(max, i);return max;} void reverse(int a[]){for(int i=0;i<a.length>>1;i++){int tem=a[i];a[i]=a[a.length-1-i];a[a.length-1-i]=tem;}} void reverse(long a[]){for(int i=0;i<a.length>>1;i++){long tem=a[i];a[i]=a[a.length-1-i];a[a.length-1-i]=tem;}} String reverse(String s){StringBuilder sb=new StringBuilder(s);sb.reverse();return sb.toString();} void shuffle(int a[]) { ArrayList<Integer> al = new ArrayList<>(); for(int i=0;i<a.length;i++) al.add(a[i]); Collections.sort(al); for(int i=0;i<a.length;i++) a[i]=al.get(i); } long lcm(long a,long b) { return (a*b)/(gcd(a,b)); } int gcd(int a, int b) { if (a == 0) return b; return gcd(b%a, a); } long gcd(long a, long b) { if (a == 0) return b; return gcd(b%a, a); } /* for (1/a)%mod = ( a^(mod-2) )%mod ----> use expo to calc -->(a^(mod-2)) */ long expo(long p,long q) /* (p^q)%mod */ { long z = 1; while (q>0) { if (q%2 == 1) { z = (z * p)%mod; } p = (p*p)%mod; q >>= 1; } return z; } void run()throws Exception { in=System.in; out = new PrintWriter(System.out); solve(); out.flush(); } private int scan()throws IOException { if(total<0) throw new InputMismatchException(); if(index>=total) { index=0; total=in.read(buf); if(total<=0) return -1; } return buf[index++]; } private int ni() throws IOException { int c = scan(); while (isSpaceChar(c)) c = scan(); int sgn = 1; if (c == '-') { sgn = -1; c = scan(); } int res = 0; do { if (c < '0' || c > '9') throw new InputMismatchException(); res *= 10; res += c - '0'; c = scan(); } while (!isSpaceChar(c)); return res * sgn; } private long nl() throws IOException { long num = 0; int b; boolean minus = false; while ((b = scan()) != -1 && !((b >= '0' && b <= '9') || b == '-')) ; if (b == '-') { minus = true; b = scan(); } while (true) { if (b >= '0' && b <= '9') { num = num * 10 + (b - '0'); } else { return minus ? -num : num; } b = scan(); } } private double nd() throws IOException{ return Double.parseDouble(ns()); } private String ns() throws IOException { int c = scan(); while (isSpaceChar(c)) c = scan(); StringBuilder res = new StringBuilder(); do { if (Character.isValidCodePoint(c)) res.appendCodePoint(c); c = scan(); } while (!isSpaceChar(c)); return res.toString(); } private String nss() throws IOException { BufferedReader br=new BufferedReader(new InputStreamReader(System.in)); return br.readLine(); } private char nc() throws IOException { int c = scan(); while (isSpaceChar(c)) c = scan(); return (char) c; } private boolean isWhiteSpace(int n) { if(n==' '||n=='\n'||n=='\r'||n=='\t'||n==-1) return true; return false; } private boolean isSpaceChar(int c) { if (filter != null) return filter.isSpaceChar(c); return isWhiteSpace(c); } private interface SpaceCharFilter { public boolean isSpaceChar(int ch); } }
Java
["5\n\n3\n\n4"]
1 second
["? 1 5\n\n? 4 5\n\n! 1"]
NoteIn the sample suppose $$$a$$$ is $$$[5, 1, 4, 2, 3]$$$. So after asking the $$$[1..5]$$$ subsegment $$$4$$$ is second to max value, and it's position is $$$3$$$. After asking the $$$[4..5]$$$ subsegment $$$2$$$ is second to max value and it's position in the whole array is $$$4$$$.Note that there are other arrays $$$a$$$ that would produce the same interaction, and the answer for them might be different. Example output is given in purpose of understanding the interaction.
Java 11
standard input
[ "binary search", "interactive" ]
b3e8fe76706ba17cb285c75459508334
The first line contains a single integer $$$n$$$ $$$(2 \leq n \leq 10^5)$$$ — the number of elements in the array.
1,600
null
standard output
PASSED
a67e31603595d4420ba7e8d96c884e24
train_109.jsonl
1613658900
The only difference between the easy and the hard version is the limit to the number of queries.This is an interactive problem.There is an array $$$a$$$ of $$$n$$$ different numbers. In one query you can ask the position of the second maximum element in a subsegment $$$a[l..r]$$$. Find the position of the maximum element in the array in no more than 40 queries.A subsegment $$$a[l..r]$$$ is all the elements $$$a_l, a_{l + 1}, ..., a_r$$$. After asking this subsegment you will be given the position of the second maximum from this subsegment in the whole array.
256 megabytes
/** * Created by Himanshu **/ import java.util.*; import java.io.*; import java.math.*; public class C1486 { static Reader s = new Reader(); public static void main(String[] args) throws IOException { int n = s.i(); if (n == 1) { System.out.println("! "+1); System.out.flush(); return; } int start = 1, end = n; while (start <= end) { if (start == end) { System.out.println("! " + start); System.out.flush(); return; } if (end-start == 1) { int x = query(start,end); if (x == start) System.out.println("! " + end); else System.out.println("! " + start); System.out.flush(); break; } int x = query(start,end); int mid = (start+end)/2; if (x > mid) { if (mid+1 == end) { int y = query(mid,end); if (x == y) { System.out.println("! "+mid); } else { System.out.println("! "+start); } System.out.flush(); break; } int y = query(mid+1,end); if (x == y) start = mid+1; else end = mid; } else { int y = query(start,mid); if (x == y) { if (x == mid) end = mid-1; else end = mid; } else start = mid+1; } // if (x > start && x < end) { // int y = query(start,x); // if (x == y) end = x-1; // else start = x+1; // } else if (x == start) { // start = x+1; // } else end = x-1; } } private static int query(int l , int r) { System.out.println("? " + l + " " + r); System.out.flush(); return s.i(); } public static void shuffle(long[] arr) { int n = arr.length; Random rand = new Random(); for (int i = 0; i < n; i++) { long temp = arr[i]; int randomPos = i + rand.nextInt(n - i); arr[i] = arr[randomPos]; arr[randomPos] = temp; } } private static int gcd(int a, int b) { if(b == 0) return a; return gcd(b,a%b); } public static long nCr(long[] fact, long[] inv, int n, int r, long mod) { if (n < r) return 0; return ((fact[n] * inv[n - r]) % mod * inv[r]) % mod; } private static void factorials(long[] fact, long[] inv, long mod, int n) { fact[0] = 1; inv[0] = 1; for (int i = 1; i <= n; ++i) { fact[i] = (fact[i - 1] * i) % mod; inv[i] = power(fact[i], mod - 2, mod); } } private static long power(long a, long n, long p) { long result = 1; while (n > 0) { if (n % 2 == 0) { a = (a * a) % p; n /= 2; } else { result = (result * a) % p; n--; } } return result; } private static long power(long a, long n) { long result = 1; while (n > 0) { if (n % 2 == 0) { a = (a * a); n /= 2; } else { result = (result * a); n--; } } return result; } private static long query(long[] tree, int in, int start, int end, int l, int r) { if (start >= l && r >= end) return tree[in]; if (end < l || start > r) return 0; int mid = (start + end) / 2; long x = query(tree, 2 * in, start, mid, l, r); long y = query(tree, 2 * in + 1, mid + 1, end, l, r); return x + y; } private static void update(int[] arr, long[] tree, int in, int start, int end, int idx, int val) { if (start == end) { tree[in] = val; arr[idx] = val; return; } int mid = (start + end) / 2; if (idx > mid) update(arr, tree, 2 * in + 1, mid + 1, end, idx, val); else update(arr, tree, 2 * in, start, mid, idx, val); tree[in] = tree[2 * in] + tree[2 * in + 1]; } private static void build(int[] arr, long[] tree, int in, int start, int end) { if (start == end) { tree[in] = arr[start]; return; } int mid = (start + end) / 2; build(arr, tree, 2 * in, start, mid); build(arr, tree, 2 * in + 1, mid + 1, end); tree[in] = (tree[2 * in + 1] + tree[2 * in]); } static class Reader { private InputStream mIs; private byte[] buf = new byte[1024]; private int curChar, numChars; public Reader() { this(System.in); } public Reader(InputStream is) { mIs = is; } public int read() { if (numChars == -1) throw new InputMismatchException(); if (curChar >= numChars) { curChar = 0; try { numChars = mIs.read(buf); } catch (IOException e) { throw new InputMismatchException(); } if (numChars <= 0) return -1; } return buf[curChar++]; } public String nextLine() { int c = read(); while (isSpaceChar(c)) c = read(); StringBuilder res = new StringBuilder(); do { res.appendCodePoint(c); c = read(); } while (!isEndOfLine(c)); return res.toString(); } public String s() { int c = read(); while (isSpaceChar(c)) c = read(); StringBuilder res = new StringBuilder(); do { res.appendCodePoint(c); c = read(); } while (!isSpaceChar(c)); return res.toString(); } public long l() { int c = read(); while (isSpaceChar(c)) c = read(); int sgn = 1; if (c == '-') { sgn = -1; c = read(); } long res = 0; do { if (c < '0' || c > '9') throw new InputMismatchException(); res *= 10; res += c - '0'; c = read(); } while (!isSpaceChar(c)); return res * sgn; } public int i() { int c = read(); while (isSpaceChar(c)) c = read(); int sgn = 1; if (c == '-') { sgn = -1; c = read(); } int res = 0; do { if (c < '0' || c > '9') throw new InputMismatchException(); res *= 10; res += c - '0'; c = read(); } while (!isSpaceChar(c)); return res * sgn; } public double d() throws IOException { return Double.parseDouble(s()); } public boolean isSpaceChar(int c) { return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; } public boolean isEndOfLine(int c) { return c == '\n' || c == '\r' || c == -1; } public int[] arr(int n) { int[] ret = new int[n]; for (int i = 0; i < n; i++) { ret[i] = i(); } return ret; } public long[] arrLong(int n) { long[] ret = new long[n]; for (int i = 0; i < n; i++) { ret[i] = l(); } return ret; } } // static class pairLong implements Comparator<pairLong> { // long first, second; // // pairLong() { // } // // pairLong(long first, long second) { // this.first = first; // this.second = second; // } // // @Override // public int compare(pairLong p1, pairLong p2) { // if (p1.first == p2.first) { // if(p1.second > p2.second) return 1; // else return -1; // } // if(p1.first > p2.first) return 1; // else return -1; // } // } // static class pair implements Comparator<pair> { // int first, second; // // pair() { // } // // pair(int first, int second) { // this.first = first; // this.second = second; // } // // @Override // public int compare(pair p1, pair p2) { // if (p1.first == p2.first) return p1.second - p2.second; // return p1.first - p2.first; // } // } }
Java
["5\n\n3\n\n4"]
1 second
["? 1 5\n\n? 4 5\n\n! 1"]
NoteIn the sample suppose $$$a$$$ is $$$[5, 1, 4, 2, 3]$$$. So after asking the $$$[1..5]$$$ subsegment $$$4$$$ is second to max value, and it's position is $$$3$$$. After asking the $$$[4..5]$$$ subsegment $$$2$$$ is second to max value and it's position in the whole array is $$$4$$$.Note that there are other arrays $$$a$$$ that would produce the same interaction, and the answer for them might be different. Example output is given in purpose of understanding the interaction.
Java 11
standard input
[ "binary search", "interactive" ]
b3e8fe76706ba17cb285c75459508334
The first line contains a single integer $$$n$$$ $$$(2 \leq n \leq 10^5)$$$ — the number of elements in the array.
1,600
null
standard output
PASSED
10eb22f5347214256f5fee203f7431e3
train_109.jsonl
1613658900
The only difference between the easy and the hard version is the limit to the number of queries.This is an interactive problem.There is an array $$$a$$$ of $$$n$$$ different numbers. In one query you can ask the position of the second maximum element in a subsegment $$$a[l..r]$$$. Find the position of the maximum element in the array in no more than 40 queries.A subsegment $$$a[l..r]$$$ is all the elements $$$a_l, a_{l + 1}, ..., a_r$$$. After asking this subsegment you will be given the position of the second maximum from this subsegment in the whole array.
256 megabytes
import java.io.*; import java.util.*; public class TEST { static class Reader { final private int BUFFER_SIZE = 1 << 16; Scanner scan = new Scanner(new BufferedReader(new InputStreamReader(System.in))); private DataInputStream din; private byte[] buffer; private int bufferPointer, bytesRead; public Reader() { din = new DataInputStream(System.in); buffer = new byte[BUFFER_SIZE]; bufferPointer = bytesRead = 0; } public Reader(String file_name) throws IOException { din = new DataInputStream(new FileInputStream(file_name)); buffer = new byte[BUFFER_SIZE]; bufferPointer = bytesRead = 0; } public String nextString() throws IOException { String str00 = scan.next(); return str00; } public String readLine() throws IOException { byte[] buf = new byte[64]; int cnt = 0, c; while ((c = read()) != -1) { if (c == '\n') break; buf[cnt++] = (byte) c; } return new String(buf, 0, cnt); } String next() throws IOException { int c; for (c = read(); c <= 32; c = read()); StringBuilder sb = new StringBuilder(); for (; c > 32; c = read()) { sb.append((char) c); } return sb.toString(); } public int nextInt() throws IOException { int ret = 0; byte c = read(); while (c <= ' ') c = read(); boolean neg = (c == '-'); if (neg) c = read(); do { ret = ret * 10 + c - '0'; } while ((c = read()) >= '0' && c <= '9'); if (neg) return -ret; return ret; } public long nextLong() throws IOException { long ret = 0; byte c = read(); while (c <= ' ') c = read(); boolean neg = (c == '-'); if (neg) c = read(); do { ret = ret * 10 + c - '0'; } while ((c = read()) >= '0' && c <= '9'); if (neg) return -ret; return ret; } public double nextDouble() throws IOException { double ret = 0, div = 1; byte c = read(); while (c <= ' ') c = read(); boolean neg = (c == '-'); if (neg) c = read(); do { ret = ret * 10 + c - '0'; } while ((c = read()) >= '0' && c <= '9'); if (c == '.') { while ((c = read()) >= '0' && c <= '9') { ret += (c - '0') / (div *= 10); } } if (neg) return -ret; return ret; } private void fillBuffer() throws IOException { bytesRead = din.read(buffer, bufferPointer = 0, BUFFER_SIZE); if (bytesRead == -1) buffer[0] = -1; } private byte read() throws IOException { if (bufferPointer == bytesRead) fillBuffer(); return buffer[bufferPointer++]; } public void close() throws IOException { if (din == null) return; din.close(); } public int[] nextArray(int n) throws IOException { int[] a=new int[n]; for (int i=0;i<n;i++) { a[i]=nextInt(); } return a; } public long[] nextArrayl(int n) throws IOException { long[] a = new long[n]; for (int i=0;i<n;i++) { a[i]=nextLong(); } return a; } } public static void sort(long a[]) { int n=a.length; Long d[]=new Long[n]; for(int i=0;i<n;i++) { d[i]=a[i]; } Arrays.sort(d); for(int i=0;i<n;i++) { a[i]=d[i]; } } public static void sort(int a[]) { int n=a.length; Integer d[]=new Integer[n]; for(int i=0;i<n;i++) { d[i]=a[i]; } Arrays.sort(d); for(int i=0;i<n;i++) { a[i]=d[i]; } } public static void main(String args[])throws IOException { Reader re=new Reader(); int n=re.nextInt(); int l=1,r=n; while(l<r-1) { System.out.println("? "+l+" "+r); System.out.flush(); int p=re.nextInt(); int m=(l+r)/2; int i,j; if(p>=l && p<=m) { System.out.println("? "+l+" "+m); System.out.flush(); i=re.nextInt(); if(p==i) { r=m; } else { l=m; } } else { System.out.println("? "+m+" "+r); System.out.flush(); i=re.nextInt(); if(p==i) { l=m; } else { r=m; } } } System.out.println("? "+l+" "+r); System.out.flush(); int i=re.nextInt(); int ans=l^r^i; System.out.println("! "+ans); } }
Java
["5\n\n3\n\n4"]
1 second
["? 1 5\n\n? 4 5\n\n! 1"]
NoteIn the sample suppose $$$a$$$ is $$$[5, 1, 4, 2, 3]$$$. So after asking the $$$[1..5]$$$ subsegment $$$4$$$ is second to max value, and it's position is $$$3$$$. After asking the $$$[4..5]$$$ subsegment $$$2$$$ is second to max value and it's position in the whole array is $$$4$$$.Note that there are other arrays $$$a$$$ that would produce the same interaction, and the answer for them might be different. Example output is given in purpose of understanding the interaction.
Java 11
standard input
[ "binary search", "interactive" ]
b3e8fe76706ba17cb285c75459508334
The first line contains a single integer $$$n$$$ $$$(2 \leq n \leq 10^5)$$$ — the number of elements in the array.
1,600
null
standard output
PASSED
fcc1c6d13ff236fcf2eb0522c83554d6
train_109.jsonl
1613658900
The only difference between the easy and the hard version is the limit to the number of queries.This is an interactive problem.There is an array $$$a$$$ of $$$n$$$ different numbers. In one query you can ask the position of the second maximum element in a subsegment $$$a[l..r]$$$. Find the position of the maximum element in the array in no more than 40 queries.A subsegment $$$a[l..r]$$$ is all the elements $$$a_l, a_{l + 1}, ..., a_r$$$. After asking this subsegment you will be given the position of the second maximum from this subsegment in the whole array.
256 megabytes
import java.io.*; import java.lang.Math; import java.util.*; import javax.management.ValueExp; public final class Codechef { static BufferedReader br = new BufferedReader( new InputStreamReader(System.in) ); static BufferedWriter bw = new BufferedWriter( new OutputStreamWriter(System.out) ); static StringTokenizer st; static int mod = 1000000007; /*write your constructor and global variables here*/ static class sortCond implements Comparator<Pair<Integer, Integer>> { @Override public int compare(Pair<Integer, Integer> p1, Pair<Integer, Integer> p2) { if (p1.a <= p2.a) { return -1; } else { return 1; } } } static class sortCond1 implements Comparator<Integer> { @Override public int compare(Integer p1, Integer p2) { if (p1 <= p2) { return 1; } else { return -1; } } } static class Rec { int a; int b; long c; Rec(int a, int b, long c) { this.a = a; this.b = b; this.c = c; } } static class Pair<f, s> { f a; s b; Pair(f a, s b) { this.a = a; this.b = b; } } interface modOperations { int mod(int a, int b, int mod); } static int findBinaryExponentian(int a, int pow, int mod) { if (pow == 1) { return a; } else if (pow == 0) { return 1; } else { int retVal = findBinaryExponentian(a, (int) pow / 2, mod); int val = (pow % 2 == 0) ? 1 : a; return modMul.mod(modMul.mod(retVal, retVal, mod), val, mod); } } static int findPow(int a, int b, int mod) { if (b == 1) { return a % mod; } else if (b == 0) { return 1; } else { int res = findPow(a, (int) b / 2, mod); return modMul.mod(res, modMul.mod(res, (b % 2 == 1 ? a : 1), mod), mod); } } static int bleft(int ele, int[] arr) { int l = 0; int h = arr.length - 1; int ans = -1; while (l <= h) { int mid = l + (int) (h - l) / 2; int val = arr[mid]; if (ele > val) { l = mid + 1; } else if (ele < val) { h = mid - 1; } else { ans = mid; h = mid - 1; } } return ans; } static int gcd(int a, int b) { int div = b; int rem = a % b; while (rem != 0) { int temp = rem; rem = div % rem; div = temp; } return div; } static long[] log(long no, long n) { long i = 1; int cnt = 0; long sum = 0l; long arr[] = new long[2]; while (i < no) { sum += i; cnt++; if (sum == n) { arr[0] = 1l * cnt; arr[1] = sum; break; } i *= 2l; } if (arr[0] == 0) { arr[0] = cnt; arr[1] = sum; } return arr; } static modOperations modAdd = (int a, int b, int mod) -> { return (a % mod + b % mod) % mod; }; static modOperations modSub = (int a, int b, int mod) -> { return (int) ((1l * a % mod - 1l * b % mod + 1l * mod) % mod); }; static modOperations modMul = (int a, int b, int mod) -> { return (int) ((1l * (a % mod) * 1l * (b % mod)) % (1l * mod)); }; static modOperations modDiv = (int a, int b, int mod) -> { return modMul.mod(a, findBinaryExponentian(b, mod - 1, mod), mod); }; static HashSet<Integer> primeList(int MAXI) { int[] prime = new int[MAXI + 1]; HashSet<Integer> obj = new HashSet<>(); for (int i = 2; i <= (int) Math.sqrt(MAXI) + 1; i++) { if (prime[i] == 0) { obj.add(i); for (int j = i * i; j <= MAXI; j += i) { prime[j] = 1; } } } for (int i = (int) Math.sqrt(MAXI) + 1; i <= MAXI; i++) { if (prime[i] == 0) { obj.add(i); } } return obj; } static int[] factorialList(int MAXI, int mod) { int[] factorial = new int[MAXI + 1]; factorial[0] = factorial[1] = 1; factorial[2] = 2; for (int i = 3; i < MAXI + 1; i++) { factorial[i] = modMul.mod(factorial[i - 1], i, mod); } return factorial; } static void put(HashMap<Integer, Integer> cnt, int key) { if (cnt.containsKey(key)) { cnt.replace(key, cnt.get(key) + 1); } else { cnt.put(key, 1); } } static long arrSum(ArrayList<Long> arr) { long tot = 0; for (int i = 0; i < arr.size(); i++) { tot += arr.get(i); } return tot; } static int ord(char b) { return (int) b - (int) 'a'; } static int optimSearch(int[] cnt, int lower_bound, int pow, int n) { int l = lower_bound + 1; int h = n; int ans = 0; while (l <= h) { int mid = l + (h - l) / 2; if (cnt[mid] - cnt[lower_bound] == pow) { return mid; } else if (cnt[mid] - cnt[lower_bound] < pow) { ans = mid; l = mid + 1; } else { h = mid - 1; } } return ans; } static Pair<Long, Integer> ret_ans(ArrayList<Integer> ans) { int size = ans.size(); int mini = 1000000000 + 1; long tit = 0l; for (int i = 0; i < size; i++) { tit += 1l * ans.get(i); mini = Math.min(mini, ans.get(i)); } return new Pair<>(tit - mini, mini); } static int factorList( HashMap<Integer, Integer> maps, int no, int maxK, int req ) { int i = 1; while (i * i <= no) { if (no % i == 0) { if (i != no / i) { put(maps, no / i); } put(maps, i); if (maps.get(i) == req) { maxK = Math.max(maxK, i); } if (maps.get(no / i) == req) { maxK = Math.max(maxK, no / i); } } i++; } return maxK; } static ArrayList<Integer> getKeys(HashMap<Integer, Integer> maps) { ArrayList<Integer> vals = new ArrayList<>(); for (Map.Entry<Integer, Integer> map : maps.entrySet()) { vals.add(map.getKey()); } return vals; } static ArrayList<Integer> getValues(HashMap<Integer, Integer> maps) { ArrayList<Integer> vals = new ArrayList<>(); for (Map.Entry<Integer, Integer> map : maps.entrySet()) { vals.add(map.getValue()); } return vals; } static int getMax(ArrayList<Integer> arr) { int max = arr.get(0); for (int i = 1; i < arr.size(); i++) { if (arr.get(i) > max) { max = arr.get(i); } } return max; } static int getMin(ArrayList<Integer> arr) { int max = arr.get(0); for (int i = 1; i < arr.size(); i++) { if (arr.get(i) < max) { max = arr.get(i); } } return max; } static void bitRep(int n, int no) throws IOException { int curr = (int) Math.pow(2, n - 1); for (int i = n - 1; i >= 0; i--) { if ((curr & no) != 0) { bw.write("1"); } else { bw.write("0"); } curr /= 2; } bw.write("\n"); } static ArrayList<Integer> retPow(int MAXI) { long curr = 1l; ArrayList<Integer> arr = new ArrayList<>(); for (int i = 1; i <= MAXI; i++) { curr *= 2l; curr = curr % mod; arr.add((int) curr); } return arr; } static String is(int no) { return Integer.toString(no); } static String ls(long no) { return Long.toString(no); } static int pi(String s) { return Integer.parseInt(s); } static long pl(String s) { return Long.parseLong(s); } /*write your methods and classes here*/ public static void main(String[] args) throws IOException { int n = pi(br.readLine()); int l = 1; int h = n; while (l < h) { bw.write("? " + is(l) + " " + is(h) + "\n"); bw.flush(); int temp = -1; int pos = pi(br.readLine()); if (h - l == 1) { if (pos == l) { l++; } else { h--; } continue; } int mid = l + (h - l) / 2; if (pos <= mid) { if (l == mid) { l = mid + 1; } else { bw.write("? " + is(l) + " " + is(mid) + "\n"); bw.flush(); temp = pi(br.readLine()); if (pos == temp) { h = mid; } else { l = mid + 1; } } } else { if (h == mid + 1) { h = mid; } else { bw.write("? " + is(mid + 1) + " " + is(h) + "\n"); bw.flush(); temp = pi(br.readLine()); if (pos == temp) { l = mid + 1; } else { h = mid; } } } } bw.write("! " + is(l) + "\n"); bw.flush(); } }
Java
["5\n\n3\n\n4"]
1 second
["? 1 5\n\n? 4 5\n\n! 1"]
NoteIn the sample suppose $$$a$$$ is $$$[5, 1, 4, 2, 3]$$$. So after asking the $$$[1..5]$$$ subsegment $$$4$$$ is second to max value, and it's position is $$$3$$$. After asking the $$$[4..5]$$$ subsegment $$$2$$$ is second to max value and it's position in the whole array is $$$4$$$.Note that there are other arrays $$$a$$$ that would produce the same interaction, and the answer for them might be different. Example output is given in purpose of understanding the interaction.
Java 11
standard input
[ "binary search", "interactive" ]
b3e8fe76706ba17cb285c75459508334
The first line contains a single integer $$$n$$$ $$$(2 \leq n \leq 10^5)$$$ — the number of elements in the array.
1,600
null
standard output
PASSED
6bd552f59353f620afd8f3ac9d1aaeda
train_109.jsonl
1613658900
The only difference between the easy and the hard version is the limit to the number of queries.This is an interactive problem.There is an array $$$a$$$ of $$$n$$$ different numbers. In one query you can ask the position of the second maximum element in a subsegment $$$a[l..r]$$$. Find the position of the maximum element in the array in no more than 40 queries.A subsegment $$$a[l..r]$$$ is all the elements $$$a_l, a_{l + 1}, ..., a_r$$$. After asking this subsegment you will be given the position of the second maximum from this subsegment in the whole array.
256 megabytes
import java.io.*; import java.util.*; public class GuessingTheGreatest { static FastScanner fs; static FastWriter fw; static boolean checkOnlineJudge = System.getProperty("ONLINE_JUDGE") == null; private static final int iMax = (int) (1e9), iMin = (int) (-1e9); private static final long lMax = (int) (1e15), lMin = (int) (-1e15); private static final int mod = (int) (1e9 + 7); public static void main(String[] args) throws IOException { fs = new FastScanner(); fw = new FastWriter(); int t = 1; //t = fs.nextInt(); while (t-- > 0) { solve(); } fw.out.close(); } private static void solve() { int l = 1, r = fs.nextInt(); while (r - l > 1) { int mid = l + ((r - l) / 2); int idx = ask(l, r); if (idx >= l && idx <= mid) { int temp = ask(l, mid); if (temp == idx) { r = mid; } else { l = mid; } } else { int temp = ask(mid, r); if (temp == idx) { l = mid; } else { r = mid; } } } int idx = ask(l, r); if (idx == l) { fw.out.println("! " + r); } else { fw.out.println("! " + l); } } private static int ask(int l, int r) { fw.out.println("? " + l + " " + r); fw.out.flush(); return fs.nextInt(); } private static class UnionFind { private final int[] parent; UnionFind(int n) { parent = new int[n]; for (int i = 0; i < n; i++) parent[i] = i; } private int getParent(int i) { if (parent[i] == i) return i; return parent[i] = getParent(parent[i]); } private void unify(int i, int j) { int p1 = getParent(i); int p2 = getParent(j); if (p1 != p2) parent[p1] = p2; } } private static int gcd(int a, int b) { return (b == 0 ? a : gcd(b, a % b)); } private static long pow(long a, long b) { long result = 1; while (b > 0) { if ((b & 1L) == 1) { result = (result * a) % mod; } a = (a * a) % mod; b >>= 1; } return result; } private static int ceilDiv(int a, int b) { return ((a + b - 1) / b); } private static List<Integer> primes(int n) { boolean[] primeArr = new boolean[n + 5]; Arrays.fill(primeArr, true); for (int i = 2; (i * i) <= n; i++) { if (primeArr[i]) { for (int j = i * i; j <= n; j += i) { primeArr[j] = false; } } } List<Integer> primeList = new ArrayList<>(); for (int i = 2; i <= n; i++) { if (primeArr[i]) primeList.add(i); } return primeList; } private static class Pair<U, V> { private final U first; private final V second; @Override public boolean equals(Object o) { if (this == o) return true; if (o == null || getClass() != o.getClass()) return false; Pair<?, ?> pair = (Pair<?, ?>) o; return first.equals(pair.first) && second.equals(pair.second); } @Override public int hashCode() { return Objects.hash(first, second); } @Override public String toString() { return "(" + first + ", " + second + ")"; } private Pair(U ff, V ss) { this.first = ff; this.second = ss; } } private static <T> void randomizeArr(T[] arr, int n) { Random r = new Random(); for (int i = (n - 1); i > 0; i--) { int j = r.nextInt(i + 1); swap(arr, i, j); } } private static Integer[] readIntArray(int n) { Integer[] arr = new Integer[n]; for (int i = 0; i < n; i++) arr[i] = fs.nextInt(); return arr; } private static List<Integer> readIntList(int n) { List<Integer> list = new ArrayList<>(); for (int i = 0; i < n; i++) list.add(fs.nextInt()); return list; } private static <T> void swap(T[] arr, int i, int j) { T temp = arr[i]; arr[i] = arr[j]; arr[j] = temp; } private static <T> void displayArr(T[] arr) { for (T x : arr) fw.out.print(x + " "); fw.out.println(); } private static <T> void displayList(List<T> list) { for (T x : list) fw.out.print(x + " "); fw.out.println(); } private static class FastScanner { BufferedReader br; StringTokenizer st; FastScanner() throws IOException { if (checkOnlineJudge) this.br = new BufferedReader(new FileReader("src/input.txt")); else this.br = new BufferedReader(new InputStreamReader(System.in)); this.st = new StringTokenizer(""); } public String next() { while (!st.hasMoreTokens()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException err) { err.printStackTrace(); } } return st.nextToken(); } public String nextLine() { if (st.hasMoreTokens()) { return st.nextToken("").trim(); } try { return br.readLine().trim(); } catch (IOException err) { err.printStackTrace(); } return ""; } public int nextInt() { return Integer.parseInt(next()); } public long nextLong() { return Long.parseLong(next()); } public double nextDouble() { return Double.parseDouble(next()); } } private static class FastWriter { PrintWriter out; FastWriter() throws IOException { if (checkOnlineJudge) out = new PrintWriter(new FileWriter("src/output.txt")); else out = new PrintWriter(System.out); } } }
Java
["5\n\n3\n\n4"]
1 second
["? 1 5\n\n? 4 5\n\n! 1"]
NoteIn the sample suppose $$$a$$$ is $$$[5, 1, 4, 2, 3]$$$. So after asking the $$$[1..5]$$$ subsegment $$$4$$$ is second to max value, and it's position is $$$3$$$. After asking the $$$[4..5]$$$ subsegment $$$2$$$ is second to max value and it's position in the whole array is $$$4$$$.Note that there are other arrays $$$a$$$ that would produce the same interaction, and the answer for them might be different. Example output is given in purpose of understanding the interaction.
Java 11
standard input
[ "binary search", "interactive" ]
b3e8fe76706ba17cb285c75459508334
The first line contains a single integer $$$n$$$ $$$(2 \leq n \leq 10^5)$$$ — the number of elements in the array.
1,600
null
standard output
PASSED
5c4d9ddb4bb0aca696d2d1bfc0e408ed
train_109.jsonl
1613658900
The only difference between the easy and the hard version is the limit to the number of queries.This is an interactive problem.There is an array $$$a$$$ of $$$n$$$ different numbers. In one query you can ask the position of the second maximum element in a subsegment $$$a[l..r]$$$. Find the position of the maximum element in the array in no more than 40 queries.A subsegment $$$a[l..r]$$$ is all the elements $$$a_l, a_{l + 1}, ..., a_r$$$. After asking this subsegment you will be given the position of the second maximum from this subsegment in the whole array.
256 megabytes
import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.util.StringTokenizer; import static java.lang.System.in; import static java.lang.System.out; public class Main { public static void main(String[] args){ FastReader fr=new FastReader(); int tc=1; while(tc-->0){ int n=fr.nextInt(); int sm=query(1,n,fr); if(sm!=1 && query(1,sm,fr)==sm){ int l=1,r=sm-1; while(l<=r){ int mid=(l+r)/2; if(query(mid,sm,fr)==sm){ l=mid+1; }else{ r=mid-1; } } out.println("! "+r); }else{ int l=sm+1,r=n; while(l<=r){ int mid=(l+r)/2; if(query(sm,mid,fr)==sm){ r=mid-1; }else{ l=mid+1; } } out.println("! "+l); } out.flush(); } } static int query(int l,int r,FastReader fr){ out.println("? "+l+" "+r); out.flush(); return fr.nextInt(); } static class FastReader{ BufferedReader br; StringTokenizer st; public FastReader() { br = new BufferedReader(new InputStreamReader(in)); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } byte nextByte(){ return Byte.parseByte(next()); } Float nextFloat(){ return Float.parseFloat(next()); } long nextLong(){ return Long.parseLong(next()); } double nextDouble(){ return Double.parseDouble(next()); } short nextShort(){ return Short.parseShort(next()); } Boolean nextbol(){ return Boolean.parseBoolean(next()); } String nextLine(){ String str = ""; try{ str = br.readLine(); } catch (IOException e){ e.printStackTrace(); } return str; } } }
Java
["5\n\n3\n\n4"]
1 second
["? 1 5\n\n? 4 5\n\n! 1"]
NoteIn the sample suppose $$$a$$$ is $$$[5, 1, 4, 2, 3]$$$. So after asking the $$$[1..5]$$$ subsegment $$$4$$$ is second to max value, and it's position is $$$3$$$. After asking the $$$[4..5]$$$ subsegment $$$2$$$ is second to max value and it's position in the whole array is $$$4$$$.Note that there are other arrays $$$a$$$ that would produce the same interaction, and the answer for them might be different. Example output is given in purpose of understanding the interaction.
Java 11
standard input
[ "binary search", "interactive" ]
b3e8fe76706ba17cb285c75459508334
The first line contains a single integer $$$n$$$ $$$(2 \leq n \leq 10^5)$$$ — the number of elements in the array.
1,600
null
standard output
PASSED
7c013589617b3754a45bc31b942911c0
train_109.jsonl
1613658900
The only difference between the easy and the hard version is the limit to the number of queries.This is an interactive problem.There is an array $$$a$$$ of $$$n$$$ different numbers. In one query you can ask the position of the second maximum element in a subsegment $$$a[l..r]$$$. Find the position of the maximum element in the array in no more than 40 queries.A subsegment $$$a[l..r]$$$ is all the elements $$$a_l, a_{l + 1}, ..., a_r$$$. After asking this subsegment you will be given the position of the second maximum from this subsegment in the whole array.
256 megabytes
import java.io.*; import java.util.*; public class tank { //static StringBuilder IO = new StringBuilder(); //static final Scanner scan = new Scanner(System.in); static final FastScanner fs = new FastScanner(); public static void main(String[] args) { // int t = fs.nextInt(); // while(t-->0){ // SLV(); // } SLV(); //System.out.println(IO); } static void SLV(){ int n = fs.nextInt(); int smax = ask(1, n); System.out.println("! " + fn(1, n, smax)); } static int fn(int l ,int r, int smax){ int mid = (l + r)/2; if(r == l) return l; if(l == r - 1){ if(smax == l) return r; else return l; } if(smax <= mid){ int tmp = ask(l , mid); if(tmp == smax) return fn(l, mid, tmp); else return fn(mid + 1, r, ask(mid+1, r)); }else{ if(mid == r - 1) return fn(l, mid, ask(l, mid)); int tmp = ask(mid + 1, r); if(tmp == smax) return fn(mid + 1, r, tmp); else return fn(l, mid, ask(l, mid)); } } static int ask(int l, int r){ if(l == r) return l; System.out.println("? " + l + " " + r); int num = fs.nextInt(); System.out.flush(); return num; } static class FastScanner { BufferedReader br=new BufferedReader(new InputStreamReader(System.in)); StringTokenizer st=new StringTokenizer(""); String next() { while (!st.hasMoreTokens()) try { st=new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } int[] readArray(int n) { int[] a=new int[n]; for (int i=0; i<n; i++) a[i]=nextInt(); return a; } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } } }
Java
["5\n\n3\n\n4"]
1 second
["? 1 5\n\n? 4 5\n\n! 1"]
NoteIn the sample suppose $$$a$$$ is $$$[5, 1, 4, 2, 3]$$$. So after asking the $$$[1..5]$$$ subsegment $$$4$$$ is second to max value, and it's position is $$$3$$$. After asking the $$$[4..5]$$$ subsegment $$$2$$$ is second to max value and it's position in the whole array is $$$4$$$.Note that there are other arrays $$$a$$$ that would produce the same interaction, and the answer for them might be different. Example output is given in purpose of understanding the interaction.
Java 11
standard input
[ "binary search", "interactive" ]
b3e8fe76706ba17cb285c75459508334
The first line contains a single integer $$$n$$$ $$$(2 \leq n \leq 10^5)$$$ — the number of elements in the array.
1,600
null
standard output
PASSED
6e65de34611d6ddbd96fa0d07dd0842e
train_109.jsonl
1613658900
The only difference between the easy and the hard version is the limit to the number of queries.This is an interactive problem.There is an array $$$a$$$ of $$$n$$$ different numbers. In one query you can ask the position of the second maximum element in a subsegment $$$a[l..r]$$$. Find the position of the maximum element in the array in no more than 40 queries.A subsegment $$$a[l..r]$$$ is all the elements $$$a_l, a_{l + 1}, ..., a_r$$$. After asking this subsegment you will be given the position of the second maximum from this subsegment in the whole array.
256 megabytes
import java.util.Scanner; public class Main { public static void main(String[] args) { Scanner sc = new Scanner(System.in); int n = sc.nextInt(); int l = 1, r = n; System.out.flush(); while (l < r) { int m = (l + r) / 2; System.out.println("?" + " " + l + " " + r); int x = sc.nextInt(); if (r - l == 1) { if (x == l) { System.out.println("! " + r); return; } else { System.out.println("! " + l); return; } } if (r - l == 2) { if (x <= m) { System.out.println("?" + " " + l + " " + (l + 1)); int temp = sc.nextInt(); if (temp == x) { if (l == x) { System.out.println("! " + (l + 1)); return; } else { System.out.println("! " + l); return; } } else { System.out.println("! " + r); return; } } else { r = l + 1; continue; } } if (x <= m) { System.out.println("?" + " " + l + " " + m); int temp = sc.nextInt(); if (temp == x) { r = m; } else { l = m + 1; } continue; } else { System.out.println("?" + " " + (m + 1) + " " + r); int temp = sc.nextInt(); if (temp == x) { l = m + 1; } else { r = m; } continue; } } } }
Java
["5\n\n3\n\n4"]
1 second
["? 1 5\n\n? 4 5\n\n! 1"]
NoteIn the sample suppose $$$a$$$ is $$$[5, 1, 4, 2, 3]$$$. So after asking the $$$[1..5]$$$ subsegment $$$4$$$ is second to max value, and it's position is $$$3$$$. After asking the $$$[4..5]$$$ subsegment $$$2$$$ is second to max value and it's position in the whole array is $$$4$$$.Note that there are other arrays $$$a$$$ that would produce the same interaction, and the answer for them might be different. Example output is given in purpose of understanding the interaction.
Java 11
standard input
[ "binary search", "interactive" ]
b3e8fe76706ba17cb285c75459508334
The first line contains a single integer $$$n$$$ $$$(2 \leq n \leq 10^5)$$$ — the number of elements in the array.
1,600
null
standard output
PASSED
66fbc3e220dc86f602eba576b0997b95
train_109.jsonl
1613658900
The only difference between the easy and the hard version is the limit to the number of queries.This is an interactive problem.There is an array $$$a$$$ of $$$n$$$ different numbers. In one query you can ask the position of the second maximum element in a subsegment $$$a[l..r]$$$. Find the position of the maximum element in the array in no more than 40 queries.A subsegment $$$a[l..r]$$$ is all the elements $$$a_l, a_{l + 1}, ..., a_r$$$. After asking this subsegment you will be given the position of the second maximum from this subsegment in the whole array.
256 megabytes
import java.io.OutputStream; import java.io.IOException; import java.io.InputStream; import java.io.PrintWriter; import java.io.PrintStream; import java.util.StringTokenizer; import java.io.IOException; import java.io.BufferedReader; import java.io.InputStreamReader; import java.io.InputStream; /** * Built using CHelper plug-in * Actual solution is at the top * * @author Jaynil */ public class Main { public static void main(String[] args) { InputStream inputStream = System.in; OutputStream outputStream = System.out; InputReader in = new InputReader(inputStream); PrintWriter out = new PrintWriter(outputStream); C1GuessingTheGreatestEasyVersion solver = new C1GuessingTheGreatestEasyVersion(); solver.solve(1, in, out); out.close(); } static class C1GuessingTheGreatestEasyVersion { public void solve(int testNumber, InputReader in, PrintWriter out) { int n = in.nextInt(); int l = 1; int r = n; while (l < r) { int m = (l + r) / 2; System.out.println("?" + " " + l + " " + r); int pos = in.nextInt(); if (r - l == 1) { if (pos == l) { System.out.println("! " + r); return; } else { System.out.println("! " + l); return; } } if (r - l == 2) { if (pos <= m) { System.out.println("?" + " " + l + " " + (l + 1)); int temp = in.nextInt(); if (temp == pos) { if (l == pos) { System.out.println("! " + (l + 1)); return; } else { System.out.println("! " + l); return; } } else { System.out.println("! " + r); return; } } else { r = l + 1; continue; } } if (pos <= m) { System.out.println("?" + " " + l + " " + m); int temp = in.nextInt(); if (temp == pos) { r = m; } else { l = m + 1; } continue; } else { System.out.println("?" + " " + (m + 1) + " " + r); int temp = in.nextInt(); if (temp == pos) { l = m + 1; } else { r = m; } continue; } } } } static class InputReader { public BufferedReader reader; public StringTokenizer tokenizer; public InputReader(InputStream stream) { reader = new BufferedReader(new InputStreamReader(stream), 32768); tokenizer = null; } public String next() { while (tokenizer == null || !tokenizer.hasMoreTokens()) { try { tokenizer = new StringTokenizer(reader.readLine()); } catch (IOException e) { throw new RuntimeException(e); } } return tokenizer.nextToken(); } public int nextInt() { return Integer.parseInt(next()); } } }
Java
["5\n\n3\n\n4"]
1 second
["? 1 5\n\n? 4 5\n\n! 1"]
NoteIn the sample suppose $$$a$$$ is $$$[5, 1, 4, 2, 3]$$$. So after asking the $$$[1..5]$$$ subsegment $$$4$$$ is second to max value, and it's position is $$$3$$$. After asking the $$$[4..5]$$$ subsegment $$$2$$$ is second to max value and it's position in the whole array is $$$4$$$.Note that there are other arrays $$$a$$$ that would produce the same interaction, and the answer for them might be different. Example output is given in purpose of understanding the interaction.
Java 11
standard input
[ "binary search", "interactive" ]
b3e8fe76706ba17cb285c75459508334
The first line contains a single integer $$$n$$$ $$$(2 \leq n \leq 10^5)$$$ — the number of elements in the array.
1,600
null
standard output
PASSED
d1281fa97679ec49a7a1ce53c457d150
train_109.jsonl
1613658900
The only difference between the easy and the hard version is the limit to the number of queries.This is an interactive problem.There is an array $$$a$$$ of $$$n$$$ different numbers. In one query you can ask the position of the second maximum element in a subsegment $$$a[l..r]$$$. Find the position of the maximum element in the array in no more than 40 queries.A subsegment $$$a[l..r]$$$ is all the elements $$$a_l, a_{l + 1}, ..., a_r$$$. After asking this subsegment you will be given the position of the second maximum from this subsegment in the whole array.
256 megabytes
import java.io.*; import java.util.*; import java.math.*; public class Main { static void bs(int start,int end,int ind) { if((end-start)==1) { if(start==ind) { System.out.println("! "+(end+1)); } else { System.out.println("! "+(start+1)); } return; } FastScanner f = new FastScanner(); int mid=(start+end)/2; if(ind<=mid) { System.out.println("? "+(start+1)+" "+(mid+1)); int place=f.nextInt()-1; if(place==ind) { bs(start,mid,place); } else { System.out.println("? "+(mid+1)+" "+(end+1)); place=f.nextInt()-1; bs(mid,end,place); } } else { System.out.println("? "+(mid+1)+" "+(end+1)); int place=f.nextInt()-1; if(place==ind) { bs(mid,end,place); } else { System.out.println("? "+(start+1)+" "+(mid+1)); place=f.nextInt()-1; bs(start,mid,place); } } } public static void main(String[] args) throws IOException { FastScanner f = new FastScanner(); int t=1; // t=f.nextInt(); PrintWriter out=new PrintWriter(System.out); int mod=1000000007; while(t>0) { t--; int n=f.nextInt(); System.out.println("? "+1+" "+(n)); int ind=f.nextInt()-1; bs(0,n-1,ind); } out.close(); } static void sort(int [] a) { ArrayList<Integer> q = new ArrayList<>(); for (int i: a) q.add(i); Collections.sort(q); for (int i = 0; i < a.length; i++) a[i] = q.get(i); } static class FastScanner { BufferedReader br=new BufferedReader(new InputStreamReader(System.in)); StringTokenizer st=new StringTokenizer(""); String next() { while (!st.hasMoreTokens()) try { st=new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } int[] readArray(int n) { int[] a=new int[n]; for (int i=0; i<n; i++) a[i]=nextInt(); return a; } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } long[] readLongArray(int n) { long[] a=new long[n]; for (int i=0; i<n; i++) a[i]=nextLong(); return a; } } }
Java
["5\n\n3\n\n4"]
1 second
["? 1 5\n\n? 4 5\n\n! 1"]
NoteIn the sample suppose $$$a$$$ is $$$[5, 1, 4, 2, 3]$$$. So after asking the $$$[1..5]$$$ subsegment $$$4$$$ is second to max value, and it's position is $$$3$$$. After asking the $$$[4..5]$$$ subsegment $$$2$$$ is second to max value and it's position in the whole array is $$$4$$$.Note that there are other arrays $$$a$$$ that would produce the same interaction, and the answer for them might be different. Example output is given in purpose of understanding the interaction.
Java 11
standard input
[ "binary search", "interactive" ]
b3e8fe76706ba17cb285c75459508334
The first line contains a single integer $$$n$$$ $$$(2 \leq n \leq 10^5)$$$ — the number of elements in the array.
1,600
null
standard output
PASSED
4e3250dcc0b2bd8e565d66347c29bbf5
train_109.jsonl
1613658900
The only difference between the easy and the hard version is the limit to the number of queries.This is an interactive problem.There is an array $$$a$$$ of $$$n$$$ different numbers. In one query you can ask the position of the second maximum element in a subsegment $$$a[l..r]$$$. Find the position of the maximum element in the array in no more than 40 queries.A subsegment $$$a[l..r]$$$ is all the elements $$$a_l, a_{l + 1}, ..., a_r$$$. After asking this subsegment you will be given the position of the second maximum from this subsegment in the whole array.
256 megabytes
import java.io.*; import java.util.StringTokenizer; import static java.lang.System.out; public class C1_GuessingTheGreatest_EasyVersion { private static final BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); private static StringTokenizer st; private static int readInt() throws IOException { while (st == null || !st.hasMoreTokens()) st = new StringTokenizer(br.readLine()); return Integer.parseInt(st.nextToken()); } public static void main(String[] args) throws IOException { int n = readInt(); int low = 1; int high = n; while (low + 1 < high) { int secondMaxPos = query(low, high); int mid = low + high >> 1; if (secondMaxPos <= mid) { int newSecondMaxPos = query(low, mid); if (newSecondMaxPos == secondMaxPos) { high = mid; } else { low = mid; } } else { int newSecondMaxPos = query(mid, high); if (newSecondMaxPos == secondMaxPos) { low = mid; } else { high = mid; } } } // low + 1 == high int secondMaxPos = query(low, high); answer(secondMaxPos == low ? high : low); } private static int query(int l, int r) throws IOException { out.println("? " + l + " " + r); out.flush(); return readInt(); } private static void answer(int a) { out.println("! " + a); out.flush(); } }
Java
["5\n\n3\n\n4"]
1 second
["? 1 5\n\n? 4 5\n\n! 1"]
NoteIn the sample suppose $$$a$$$ is $$$[5, 1, 4, 2, 3]$$$. So after asking the $$$[1..5]$$$ subsegment $$$4$$$ is second to max value, and it's position is $$$3$$$. After asking the $$$[4..5]$$$ subsegment $$$2$$$ is second to max value and it's position in the whole array is $$$4$$$.Note that there are other arrays $$$a$$$ that would produce the same interaction, and the answer for them might be different. Example output is given in purpose of understanding the interaction.
Java 11
standard input
[ "binary search", "interactive" ]
b3e8fe76706ba17cb285c75459508334
The first line contains a single integer $$$n$$$ $$$(2 \leq n \leq 10^5)$$$ — the number of elements in the array.
1,600
null
standard output
PASSED
2cd9c3ffe664765faeae3f7bf761d8d9
train_109.jsonl
1613658900
The only difference between the easy and the hard version is the limit to the number of queries.This is an interactive problem.There is an array $$$a$$$ of $$$n$$$ different numbers. In one query you can ask the position of the second maximum element in a subsegment $$$a[l..r]$$$. Find the position of the maximum element in the array in no more than 40 queries.A subsegment $$$a[l..r]$$$ is all the elements $$$a_l, a_{l + 1}, ..., a_r$$$. After asking this subsegment you will be given the position of the second maximum from this subsegment in the whole array.
256 megabytes
import java.io.*; import java.util.StringTokenizer; import static java.lang.System.getSecurityManager; import static java.lang.System.out; public class C1_ { private static final BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); private static StringTokenizer st; private static int readInt() throws IOException { while (st == null || !st.hasMoreTokens()) st = new StringTokenizer(br.readLine()); return Integer.parseInt(st.nextToken()); } public static void main(String[] args) throws IOException { int n = readInt(); int low = 1; int high = n; while (low + 1 < high) { int secondMaxPos = query(low, high); int mid = Math.max(low + high >> 1, low + 1); if (secondMaxPos <= mid) { int newSecondMaxPos = query(low, mid); if (newSecondMaxPos == secondMaxPos) { high = mid; } else { low = mid + 1; } } else { mid = Math.min(low + high >> 1, high - 1); int newSecondMaxPos = query(mid, high); if (newSecondMaxPos == secondMaxPos) { low = mid; } else { high = mid - 1; } } } if (low == high) { answer(low); } else { // low + 1 == high int secondMaxPos = query(low, high); answer(secondMaxPos == low ? high : low); } } private static int query(int l, int r) throws IOException { out.println("? " + l + " " + r); out.flush(); return readInt(); } private static void answer(int a) { out.println("! " + a); out.flush(); } }
Java
["5\n\n3\n\n4"]
1 second
["? 1 5\n\n? 4 5\n\n! 1"]
NoteIn the sample suppose $$$a$$$ is $$$[5, 1, 4, 2, 3]$$$. So after asking the $$$[1..5]$$$ subsegment $$$4$$$ is second to max value, and it's position is $$$3$$$. After asking the $$$[4..5]$$$ subsegment $$$2$$$ is second to max value and it's position in the whole array is $$$4$$$.Note that there are other arrays $$$a$$$ that would produce the same interaction, and the answer for them might be different. Example output is given in purpose of understanding the interaction.
Java 11
standard input
[ "binary search", "interactive" ]
b3e8fe76706ba17cb285c75459508334
The first line contains a single integer $$$n$$$ $$$(2 \leq n \leq 10^5)$$$ — the number of elements in the array.
1,600
null
standard output
PASSED
81f6bbef5cc365f10db114db13cc5ae7
train_109.jsonl
1613658900
The only difference between the easy and the hard version is the limit to the number of queries.This is an interactive problem.There is an array $$$a$$$ of $$$n$$$ different numbers. In one query you can ask the position of the second maximum element in a subsegment $$$a[l..r]$$$. Find the position of the maximum element in the array in no more than 40 queries.A subsegment $$$a[l..r]$$$ is all the elements $$$a_l, a_{l + 1}, ..., a_r$$$. After asking this subsegment you will be given the position of the second maximum from this subsegment in the whole array.
256 megabytes
import java.util.*; import java.io.*; /** * Created on: Feb 18, 2021 * Questions: https://codeforces.com/contest/1486/problem/C1# */ public class GuessingTheGreatest { public static void main(String[] args) { Scanner sc = new Scanner(new BufferedReader(new InputStreamReader(System.in))); int s = 1, e = sc.nextInt(), ans = -1; while (s < e) { int idx = query(sc, s, e); if (e - s + 1 <= 2) { // If there are only two numbers between start and end. if (idx == s) ans = s + 1; else ans = s; break; } int mid = (s + e) / 2; if (idx <= mid) { // If the second highest is on the left side, then make a call from start to mid // If the call still returns the same idx then the highest is on the left side. int idx2 = query(sc, s, mid); if (idx2 == idx) e = mid; else s = mid; } else { // If the call still returns the same idx then the highest is on the right side. int idx2 = query(sc, mid, e); if (idx2 == idx) s = mid; else e = mid; } } System.out.println("! " + ans); } private static int query(Scanner sc, int s, int e) { if (s == e) return s; System.out.println("? " + s + " " + e); System.out.flush(); return sc.nextInt(); } }
Java
["5\n\n3\n\n4"]
1 second
["? 1 5\n\n? 4 5\n\n! 1"]
NoteIn the sample suppose $$$a$$$ is $$$[5, 1, 4, 2, 3]$$$. So after asking the $$$[1..5]$$$ subsegment $$$4$$$ is second to max value, and it's position is $$$3$$$. After asking the $$$[4..5]$$$ subsegment $$$2$$$ is second to max value and it's position in the whole array is $$$4$$$.Note that there are other arrays $$$a$$$ that would produce the same interaction, and the answer for them might be different. Example output is given in purpose of understanding the interaction.
Java 11
standard input
[ "binary search", "interactive" ]
b3e8fe76706ba17cb285c75459508334
The first line contains a single integer $$$n$$$ $$$(2 \leq n \leq 10^5)$$$ — the number of elements in the array.
1,600
null
standard output
PASSED
2511f865eb4873ada3db6ef1515cb3c1
train_109.jsonl
1613658900
The only difference between the easy and the hard version is the limit to the number of queries.This is an interactive problem.There is an array $$$a$$$ of $$$n$$$ different numbers. In one query you can ask the position of the second maximum element in a subsegment $$$a[l..r]$$$. Find the position of the maximum element in the array in no more than 40 queries.A subsegment $$$a[l..r]$$$ is all the elements $$$a_l, a_{l + 1}, ..., a_r$$$. After asking this subsegment you will be given the position of the second maximum from this subsegment in the whole array.
256 megabytes
import java.io.*; import java.util.*; import java.lang.*; public class C { public static PrintWriter out = new PrintWriter(new BufferedOutputStream(System.out)); static long MOD = (long) (1e9 + 7); //static int MOD = 998244353; static long MOD2 = MOD * MOD; static FastReader sc = new FastReader(); static int pInf = Integer.MAX_VALUE; static int nInf = Integer.MIN_VALUE; public static void main(String[] args) { int test = 1; //test = sc.nextInt(); for (int i = 1; i <= test; i++){ //out.print("Case #"+i+": "); solve(); } out.flush(); out.close(); } static long oo = (long) (1e16); static void solve(){ int n = sc.nextInt(); int l = 1; int r = n; int ele = query(1,n); int lele = -1; int rele = -1; if(ele>l){ lele = query(l,ele); } if(r>ele){ rele = query(ele,r); } if(lele==ele){ r = ele; l--; while(r-l>1){ int m = l+(r-l)/2; int idx = query(m,ele); if(idx==ele){ l = m; }else{ r = m; } } out.println("! "+l); out.flush(); }else if(rele==ele){ l = ele; r++; while(r-l>1){ int m = l+(r-l)/2; int idx = query(ele,m); if(idx==ele){ r = m; }else{ l = m; } } out.println("! "+r); out.flush(); } } static int query(int l,int r){ out.println("? "+l+" "+r); out.flush(); return sc.nextInt(); } static long nC2(long n) { return add((n * (n + 1)) / 2, 0); } public static long mul(long a, long b) { return ((a % MOD) * (b % MOD)) % MOD; } public static long add(long a, long b) { return ((a % MOD) + (b % MOD)) % MOD; } public static long c2(long n) { if ((n & 1) == 0) { return mul(n / 2, n - 1); } else { return mul(n, (n - 1) / 2); } } //Pair Class static class Pair implements Comparable<Pair> { int x; int y; public Pair(int x, int y) { this.x = x; this.y = y; } @Override public int compareTo(Pair o) { if ((this.x == o.x)) { return (this.y - o.y); } return (this.x - o.x); } } //Shuffle Sort static final Random random = new Random(); static void ruffleSort(int[] a) { int n = a.length;//shuffle, then sort for (int i = 0; i < n; i++) { int oi = random.nextInt(n), temp = a[oi]; a[oi] = a[i]; a[i] = temp; } Arrays.sort(a); } //Brian Kernighans Algorithm static long countSetBits(long n) { if (n == 0) return 0; return 1 + countSetBits(n & (n - 1)); } //Euclidean Algorithm static long gcd(long A, long B) { if (B == 0) return A; return gcd(B, A % B); } //Modular Exponentiation static long fastExpo(long x, long n) { if (n == 0) return 1; if ((n & 1) == 0) return fastExpo((x * x) % MOD, n / 2) % MOD; return ((x % MOD) * fastExpo((x * x) % MOD, (n - 1) / 2)) % MOD; } //AKS Algorithm static boolean isPrime(long n) { if (n <= 1) return false; if (n <= 3) return true; if (n % 2 == 0 || n % 3 == 0) return false; for (int i = 5; i <= Math.sqrt(n); i += 6) if (n % i == 0 || n % (i + 2) == 0) return false; return true; } public static long modinv(long x) { return modpow(x, MOD - 2); } public static long modpow(long a, long b) { if (b == 0) { return 1; } long x = modpow(a, b / 2); x = (x * x) % MOD; if (b % 2 == 1) { return (x * a) % MOD; } return x; } public static class FastReader { BufferedReader br; StringTokenizer st; //it reads the data about the specified point and divide the data about it ,it is quite fast //than using direct public FastReader() { br = new BufferedReader(new InputStreamReader(System.in)); } String next() { while (st == null || !st.hasMoreTokens()) { try { st = new StringTokenizer(br.readLine()); } catch (Exception r) { r.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next());//converts string to integer } double nextDouble() { return Double.parseDouble(next()); } long nextLong() { return Long.parseLong(next()); } String nextLine() { String str = ""; try { str = br.readLine(); } catch (Exception r) { r.printStackTrace(); } return str; } } }
Java
["5\n\n3\n\n4"]
1 second
["? 1 5\n\n? 4 5\n\n! 1"]
NoteIn the sample suppose $$$a$$$ is $$$[5, 1, 4, 2, 3]$$$. So after asking the $$$[1..5]$$$ subsegment $$$4$$$ is second to max value, and it's position is $$$3$$$. After asking the $$$[4..5]$$$ subsegment $$$2$$$ is second to max value and it's position in the whole array is $$$4$$$.Note that there are other arrays $$$a$$$ that would produce the same interaction, and the answer for them might be different. Example output is given in purpose of understanding the interaction.
Java 11
standard input
[ "binary search", "interactive" ]
b3e8fe76706ba17cb285c75459508334
The first line contains a single integer $$$n$$$ $$$(2 \leq n \leq 10^5)$$$ — the number of elements in the array.
1,600
null
standard output
PASSED
acf99f9385d2befceb338deaad1f6b54
train_109.jsonl
1613658900
The only difference between the easy and the hard version is the limit to the number of queries.This is an interactive problem.There is an array $$$a$$$ of $$$n$$$ different numbers. In one query you can ask the position of the second maximum element in a subsegment $$$a[l..r]$$$. Find the position of the maximum element in the array in no more than 40 queries.A subsegment $$$a[l..r]$$$ is all the elements $$$a_l, a_{l + 1}, ..., a_r$$$. After asking this subsegment you will be given the position of the second maximum from this subsegment in the whole array.
256 megabytes
import java.util.*; import java.io.*; import java.math.*; import java.awt.geom.*; import static java.lang.Math.*; public class Solution implements Runnable { long mod1 = (long) 1e9 + 7; int mod2 = 998244353; public void solve() throws Exception { int n=sc.nextInt(); int start=1; int end=n; boolean flag=false; while(start<end) { if(end-start==1) { int take=query(start,end); if(start==take) { print(end); } else { print(start); } flag=true; break; } int mid=(start+end)/2; int get = query(start,end); if(get<=mid) { int get1 = query(start,mid); if(get==get1) { end=mid; } else { start=mid+1; } } else { int get1 = query(mid,end); if(get==get1) { start=mid; } else { end=mid-1; } } } if(!flag) print(start); } public void print(int x) { System.out.println("! "+x); System.out.flush(); } public int query(int l,int r) throws Exception{ System.out.print("? "+l+" "+r); System.out.println(); System.out.flush(); int x=sc.nextInt(); return x; } static long gcd(long a, long b) { if (a == 0) return b; return gcd(b % a, a); } static void sort(int[] a) { ArrayList<Integer> l = new ArrayList<>(); for (int i : a) l.add(i); Collections.sort(l); for (int i = 0; i < a.length; i++) a[i] = l.get(i); } static long ncr(int n, int r, long p) { if (r > n) return 0l; if (r > n - r) r = n - r; long C[] = new long[r + 1]; C[0] = 1; for (int i = 1; i <= n; i++) { for (int j = Math.min(i, r); j > 0; j--) C[j] = (C[j] + C[j - 1]) % p; } return C[r] % p; } void sieveOfEratosthenes(boolean prime[], int size) { for (int i = 0; i < size; i++) prime[i] = true; for (int p = 2; p * p < size; p++) { if (prime[p] == true) { for (int i = p * p; i < size; i += p) prime[i] = false; } } } static int LowerBound(int a[], int x) { // smallest index having value >= x int l = -1, r = a.length; while (l + 1 < r) { int m = (l + r) >>> 1; if (a[m] >= x) r = m; else l = m; } return r; } static int UpperBound(int a[], int x) {// biggest index having value <= x int l = -1, r = a.length; while (l + 1 < r) { int m = (l + r) >>> 1; if (a[m] <= x) l = m; else r = m; } return l + 1; } public long power(long x, long y, long p) { long res = 1; // out.println(x+" "+y); x = x % p; if (x == 0) return 0; while (y > 0) { if ((y & 1) == 1) res = (res * x) % p; y = y >> 1; x = (x * x) % p; } return res; } static Throwable uncaught; BufferedReader in; FastScanner sc; PrintWriter out; @Override public void run() { try { in = new BufferedReader(new InputStreamReader(System.in)); out = new PrintWriter(System.out); sc = new FastScanner(in); solve(); } catch (Throwable uncaught) { Solution.uncaught = uncaught; } finally { out.close(); } } public static void main(String[] args) throws Throwable { Thread thread = new Thread(null, new Solution(), "", (1 << 26)); thread.start(); thread.join(); if (Solution.uncaught != null) { throw Solution.uncaught; } } } class FastScanner { BufferedReader in; StringTokenizer st; public FastScanner(BufferedReader in) { this.in = in; } public String nextToken() throws Exception { while (st == null || !st.hasMoreTokens()) { st = new StringTokenizer(in.readLine()); } return st.nextToken(); } public int nextInt() throws Exception { return Integer.parseInt(nextToken()); } public int[] readArray(int n) throws Exception { int[] a = new int[n]; for (int i = 0; i < n; i++) a[i] = nextInt(); return a; } public long nextLong() throws Exception { return Long.parseLong(nextToken()); } public double nextDouble() throws Exception { return Double.parseDouble(nextToken()); } }
Java
["5\n\n3\n\n4"]
1 second
["? 1 5\n\n? 4 5\n\n! 1"]
NoteIn the sample suppose $$$a$$$ is $$$[5, 1, 4, 2, 3]$$$. So after asking the $$$[1..5]$$$ subsegment $$$4$$$ is second to max value, and it's position is $$$3$$$. After asking the $$$[4..5]$$$ subsegment $$$2$$$ is second to max value and it's position in the whole array is $$$4$$$.Note that there are other arrays $$$a$$$ that would produce the same interaction, and the answer for them might be different. Example output is given in purpose of understanding the interaction.
Java 11
standard input
[ "binary search", "interactive" ]
b3e8fe76706ba17cb285c75459508334
The first line contains a single integer $$$n$$$ $$$(2 \leq n \leq 10^5)$$$ — the number of elements in the array.
1,600
null
standard output
PASSED
a8c033b227dfe5e46a26cb5346b28f9f
train_109.jsonl
1613658900
The only difference between the easy and the hard version is the limit to the number of queries.This is an interactive problem.There is an array $$$a$$$ of $$$n$$$ different numbers. In one query you can ask the position of the second maximum element in a subsegment $$$a[l..r]$$$. Find the position of the maximum element in the array in no more than 40 queries.A subsegment $$$a[l..r]$$$ is all the elements $$$a_l, a_{l + 1}, ..., a_r$$$. After asking this subsegment you will be given the position of the second maximum from this subsegment in the whole array.
256 megabytes
/* * To change this license header, choose License Headers in Project Properties. * To change this template file, choose Tools | Templates * and open the template in the editor. */ import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.io.PrintWriter; import java.util.StringTokenizer; /** * * @author is2ac */ public class C_CF { public static void main(String[] args) { FastScanner57 fs = new FastScanner57(); PrintWriter pw = new PrintWriter(System.out); for (int tc = 0; tc < 1; tc++) { int n = fs.ni(); System.out.flush(); int m = recur(1,n,fs); System.out.println("! " + m); } pw.close(); } public static int recur(int l, int r, FastScanner57 fs) { if (l==r) return l; if (l+1==r) { System.out.println("? " + l + " " + r); System.out.flush(); int p = fs.ni(); if (l==p) return r; return l; } System.out.println("? " + l + " " + r); System.out.flush(); int s = fs.ni(); int m = (l + r)/2; if (s<=m) { System.out.println("? " + l + " " + m); System.out.flush(); int lq = fs.ni(); if (lq==s) { return recur(l,m,fs); } else { return recur(m+1,r,fs); } } else { if (m+1==r) { return recur(l,m,fs); } System.out.println("? " + (m+1) + " " + r); System.out.flush(); int rq = fs.ni(); if (rq==s) { return recur(m+1,r,fs); } else { return recur(l,m,fs); } } } } class FastScanner57 { BufferedReader br; StringTokenizer st; public FastScanner57() { br = new BufferedReader(new InputStreamReader(System.in), 32768); st = null; } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int ni() { return Integer.parseInt(next()); } int[] intArray(int N) { int[] ret = new int[N]; for (int i = 0; i < N; i++) { ret[i] = ni(); } return ret; } long nl() { return Long.parseLong(next()); } long[] longArray(int N) { long[] ret = new long[N]; for (int i = 0; i < N; i++) { ret[i] = nl(); } return ret; } double nd() { return Double.parseDouble(next()); } String nextLine() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } }
Java
["5\n\n3\n\n4"]
1 second
["? 1 5\n\n? 4 5\n\n! 1"]
NoteIn the sample suppose $$$a$$$ is $$$[5, 1, 4, 2, 3]$$$. So after asking the $$$[1..5]$$$ subsegment $$$4$$$ is second to max value, and it's position is $$$3$$$. After asking the $$$[4..5]$$$ subsegment $$$2$$$ is second to max value and it's position in the whole array is $$$4$$$.Note that there are other arrays $$$a$$$ that would produce the same interaction, and the answer for them might be different. Example output is given in purpose of understanding the interaction.
Java 11
standard input
[ "binary search", "interactive" ]
b3e8fe76706ba17cb285c75459508334
The first line contains a single integer $$$n$$$ $$$(2 \leq n \leq 10^5)$$$ — the number of elements in the array.
1,600
null
standard output
PASSED
af094ef0e30373ed7419a9940cabd4e3
train_109.jsonl
1613658900
The only difference between the easy and the hard version is the limit to the number of queries.This is an interactive problem.There is an array $$$a$$$ of $$$n$$$ different numbers. In one query you can ask the position of the second maximum element in a subsegment $$$a[l..r]$$$. Find the position of the maximum element in the array in no more than 40 queries.A subsegment $$$a[l..r]$$$ is all the elements $$$a_l, a_{l + 1}, ..., a_r$$$. After asking this subsegment you will be given the position of the second maximum from this subsegment in the whole array.
256 megabytes
import java.util.*; import java.lang.*; import java.io.*; public class Main { public static void main (String[] args) throws java.lang.Exception { Scanner sc=new Scanner(System.in); // BufferedReader br=new BufferedReader(new InputStreamReader(System.in)); int t=1; /// t=sc.nextInt(); //int t=Integer.parseInt(br.readLine()); while(--t>=0){ int n=sc.nextInt(); int l=1; int r=n; int ans=1; while(l<=r){ System.out.println("? "+l+" "+(r)); System.out.flush(); int f=sc.nextInt(); if((r-l)<=1){ if(f==l){ ans=l+1; break; } else{ ans=l; break; } } int mid=(l+r)/2; if(f<=mid){ System.out.println("? "+(l)+" "+(mid)); System.out.flush(); int fh=sc.nextInt(); if(fh==f) r=mid; else l=mid; } else{ System.out.println("? "+(mid)+" "+(r)); System.out.flush(); int sh=sc.nextInt(); if(sh==f) l=mid; else r=mid; } } System.out.println("! "+ans); System.out.flush(); } } }
Java
["5\n\n3\n\n4"]
1 second
["? 1 5\n\n? 4 5\n\n! 1"]
NoteIn the sample suppose $$$a$$$ is $$$[5, 1, 4, 2, 3]$$$. So after asking the $$$[1..5]$$$ subsegment $$$4$$$ is second to max value, and it's position is $$$3$$$. After asking the $$$[4..5]$$$ subsegment $$$2$$$ is second to max value and it's position in the whole array is $$$4$$$.Note that there are other arrays $$$a$$$ that would produce the same interaction, and the answer for them might be different. Example output is given in purpose of understanding the interaction.
Java 11
standard input
[ "binary search", "interactive" ]
b3e8fe76706ba17cb285c75459508334
The first line contains a single integer $$$n$$$ $$$(2 \leq n \leq 10^5)$$$ — the number of elements in the array.
1,600
null
standard output
PASSED
9a9db21379c0a1dee69a93af7ccdc87a
train_109.jsonl
1613658900
The only difference between the easy and the hard version is the limit to the number of queries.This is an interactive problem.There is an array $$$a$$$ of $$$n$$$ different numbers. In one query you can ask the position of the second maximum element in a subsegment $$$a[l..r]$$$. Find the position of the maximum element in the array in no more than 40 queries.A subsegment $$$a[l..r]$$$ is all the elements $$$a_l, a_{l + 1}, ..., a_r$$$. After asking this subsegment you will be given the position of the second maximum from this subsegment in the whole array.
256 megabytes
import java.util.*; import java.io.*; public class C1 { public static class FastIO { BufferedReader br; BufferedWriter bw, be; StringTokenizer st; public FastIO() { br = new BufferedReader(new InputStreamReader(System.in)); bw = new BufferedWriter(new OutputStreamWriter(System.out)); be = new BufferedWriter(new OutputStreamWriter(System.err)); st = new StringTokenizer(""); } private void read() throws IOException { st = new StringTokenizer(br.readLine()); } public String ns() throws IOException { while(!st.hasMoreTokens()) read(); return st.nextToken(); } public int ni() throws IOException { return Integer.parseInt(ns()); } public long nl() throws IOException { return Long.parseLong(ns()); } public float nf() throws IOException { return Float.parseFloat(ns()); } public double nd() throws IOException { return Double.parseDouble(ns()); } public char nc() throws IOException { return ns().charAt(0); } public int[] nia(int n) throws IOException { int[] a = new int[n]; for(int i = 0; i < n; i++) a[i] = ni(); return a; } public long[] nla(int n) throws IOException { long[] a = new long[n]; for(int i = 0; i < n; i++) a[i] = nl(); return a; } public char[] nca() throws IOException { return f.ns().toCharArray(); } public void out(String s) throws IOException { bw.write(s); bw.flush(); } public void flush() throws IOException { bw.flush(); be.flush(); } public void err(String s) throws IOException { be.write(s); be.flush(); } } static class Pair { int a, b; Pair(int x, int y) { a = x; b = y; } public int hashCode() { return a^b; } public boolean equals(Object obj) { Pair that = (Pair)obj; return a == that.a && b == that.b; } } static FastIO f; static HashMap<Pair, Integer> h; public static void main(String args[]) throws IOException { f = new FastIO(); int n, ans; h = new HashMap<>(); n = f.ni(); if(n == 1) { f.out("! 1\n"); return; } f.out("? 1 " + n + "\n"); ans = getMax(1, n, f.ni()); f.out("! " + ans + "\n"); } public static int getMax(int l, int r, int sm) throws IOException { if(r == l+1) return (sm == l) ? r : l; if(r == l+2) { int a = getMax(l, l+1, getSMax(l, l+1)), b = getMax(l+1, r, getSMax(l+1, r)); return (a == b || b == sm) ? a : b; } int mid = l + (r-l)/2; int sm1 = getSMax(l, mid), sm2 = getSMax(mid+1, r); if(sm1 == sm) return getMax(l, mid, sm1); else if(sm2 == sm || sm <= mid) return getMax(mid+1, r, sm2); else return getMax(l, mid, sm1); } public static int getSMax(int l, int r) throws IOException { Pair p = new Pair(l, r); if(h.containsKey(p)) return h.get(p); f.out("? " + l + " " + r + "\n"); int ans = f.ni(); h.put(p, ans); return ans; } }
Java
["5\n\n3\n\n4"]
1 second
["? 1 5\n\n? 4 5\n\n! 1"]
NoteIn the sample suppose $$$a$$$ is $$$[5, 1, 4, 2, 3]$$$. So after asking the $$$[1..5]$$$ subsegment $$$4$$$ is second to max value, and it's position is $$$3$$$. After asking the $$$[4..5]$$$ subsegment $$$2$$$ is second to max value and it's position in the whole array is $$$4$$$.Note that there are other arrays $$$a$$$ that would produce the same interaction, and the answer for them might be different. Example output is given in purpose of understanding the interaction.
Java 11
standard input
[ "binary search", "interactive" ]
b3e8fe76706ba17cb285c75459508334
The first line contains a single integer $$$n$$$ $$$(2 \leq n \leq 10^5)$$$ — the number of elements in the array.
1,600
null
standard output
PASSED
ca5041c3c98361cb166798c609001ab4
train_109.jsonl
1613658900
The only difference between the easy and the hard version is the limit to the number of queries.This is an interactive problem.There is an array $$$a$$$ of $$$n$$$ different numbers. In one query you can ask the position of the second maximum element in a subsegment $$$a[l..r]$$$. Find the position of the maximum element in the array in no more than 40 queries.A subsegment $$$a[l..r]$$$ is all the elements $$$a_l, a_{l + 1}, ..., a_r$$$. After asking this subsegment you will be given the position of the second maximum from this subsegment in the whole array.
256 megabytes
import java.io.*; import java.util.*; import java.math.*; public class Solution{ public static void main(String[] args) { TaskA solver = new TaskA(); // int t = in.nextInt(); // for (int i = 1; i <= t ; i++) { // solver.solve(i, in, out); // } solver.solve(1, in, out); out.flush(); out.close(); } static class TaskA { public void solve(int testNumber, InputReader in, PrintWriter out) { int n= in.nextInt(); int l=0;int r=n; while(r-l>1) { int m=(l+r)/2; int x=query(l,r-1); if(x<m) { if(query(l,m-1)==x) { r=m; } else { l=m; } } else { if(query(m,r-1)==x) { l=m; } else { r=m; } } } System.out.println("! "+r); System.out.print("\n"); System.out.flush(); } } static int query(int l,int r) { if(l>=r) { return -1; } System.out.println("? "+(l+1)+" "+(r+1)); System.out.print ("\n"); int x=in.nextInt()-1; return x; } static boolean check(Pair[]arr,int mid,int n) { int c=0; for(int i=0;i<n;i++) { if(mid-1-arr[i].first<=c&&c<=arr[i].second) { c++; } } return c>=mid; } static long sum(int[]arr) { long s=0; for(int x:arr) { s+=x; } return s; } static long sum(long[]arr) { long s=0; for(long x:arr) { s+=x; } return s; } static int gcd(int a, int b) { if (b == 0) return a; return gcd(b, a % b); } static void sort(int[] a) { ArrayList<Integer> q = new ArrayList<>(); for (int i : a) q.add(i); Collections.sort(q); for (int i = 0; i < a.length; i++) a[i] = q.get(i); } static void sort(long[] a) { ArrayList<Long> q = new ArrayList<>(); for (long i : a) q.add(i); Collections.sort(q); for (int i = 0; i < a.length; i++) a[i] = q.get(i); } static void println(int[][]arr) { for(int i=0;i<arr.length;i++) { for(int j=0;j<arr[0].length;j++) { print(arr[i][j]+" "); } print("\n"); } } static void println(long[][]arr) { for(int i=0;i<arr.length;i++) { for(int j=0;j<arr[0].length;j++) { print(arr[i][j]+" "); } print("\n"); } } static void println(int[]arr){ for(int i=0;i<arr.length;i++) { print(arr[i]+" "); } print("\n"); } static void println(long[]arr){ for(int i=0;i<arr.length;i++) { print(arr[i]+" "); } print("\n"); } static long[]input(int n){ long[]arr=new long[n]; for(int i=0;i<n;i++) { arr[i]=in.nextInt(); } return arr; } static long[]input(){ long n= in.nextInt(); long[]arr=new long[(int)n]; for(int i=0;i<n;i++) { arr[i]=in.nextLong(); } return arr; } //////////////////////////////////////////////////////// static class Pair { long first; long second; Pair(long x, long y) { this.first = x; this.second = y; } } static void sortS(Pair arr[]) { Arrays.sort(arr, new Comparator<Pair>() { @Override public int compare(Pair p1, Pair p2) { return (int)(p1.second - p2.second); } }); } static void sortF(Pair arr[]) { Arrays.sort(arr, new Comparator<Pair>() { @Override public int compare(Pair p1, Pair p2) { return (int)(p1.first - p2.first); } }); } ///////////////////////////////////////////////////////////// static InputStream inputStream = System.in; static OutputStream outputStream = System.out; static InputReader in = new InputReader(inputStream); static PrintWriter out = new PrintWriter(outputStream); static void println(long c) { out.println(c); } static void print(long c) { out.print(c); } static void print(int c) { out.print(c); } static void println(int x) { out.println(x); } static void print(String s) { out.print(s); } static void println(String s) { out.println(s); } static void println(boolean b) { out.println(b); } static class InputReader { public BufferedReader reader; public StringTokenizer tokenizer; public InputReader(InputStream stream) { reader = new BufferedReader(new InputStreamReader(stream), 32768); tokenizer = null; } public String next() { while (tokenizer == null || !tokenizer.hasMoreTokens()) { try { tokenizer = new StringTokenizer(reader.readLine()); } catch (IOException e) { throw new RuntimeException(e); } } return tokenizer.nextToken(); } public int nextInt() { return Integer.parseInt(next()); } public long nextLong() { return Long.parseLong(next()); } } }
Java
["5\n\n3\n\n4"]
1 second
["? 1 5\n\n? 4 5\n\n! 1"]
NoteIn the sample suppose $$$a$$$ is $$$[5, 1, 4, 2, 3]$$$. So after asking the $$$[1..5]$$$ subsegment $$$4$$$ is second to max value, and it's position is $$$3$$$. After asking the $$$[4..5]$$$ subsegment $$$2$$$ is second to max value and it's position in the whole array is $$$4$$$.Note that there are other arrays $$$a$$$ that would produce the same interaction, and the answer for them might be different. Example output is given in purpose of understanding the interaction.
Java 11
standard input
[ "binary search", "interactive" ]
b3e8fe76706ba17cb285c75459508334
The first line contains a single integer $$$n$$$ $$$(2 \leq n \leq 10^5)$$$ — the number of elements in the array.
1,600
null
standard output
PASSED
8a8cd461b2ac8b70932ffac7cac5b41f
train_109.jsonl
1613658900
The only difference between the easy and the hard version is the limit to the number of queries.This is an interactive problem.There is an array $$$a$$$ of $$$n$$$ different numbers. In one query you can ask the position of the second maximum element in a subsegment $$$a[l..r]$$$. Find the position of the maximum element in the array in no more than 40 queries.A subsegment $$$a[l..r]$$$ is all the elements $$$a_l, a_{l + 1}, ..., a_r$$$. After asking this subsegment you will be given the position of the second maximum from this subsegment in the whole array.
256 megabytes
import java.util.*; import java.lang.*; import java.io.*; public class Main { void solve() { int n = in.nextInt(); int low = 1; int high = n; int secondLast = query(1, n); if (secondLast == 1) { low = 2; } else if (secondLast == n) { high = n - 1; } else { int onLeft = query(1, secondLast); if (onLeft == secondLast) { high = secondLast - 1; } else { low = secondLast + 1; } } int res = 0; while (low <= high) { int mid = (low + high) / 2; int l = secondLast; int r = mid; if (mid < secondLast) { l = mid; r = secondLast; } int val = query(l, r); if (val != secondLast) { if (r == secondLast) { high = mid - 1; } else { low = mid + 1; } } else { res = mid; if (r == secondLast) { low = mid + 1; } else { high = mid - 1; } } } System.out.println("! " + res); } int query(int l, int r) { System.out.println("? " + l + " " + r); int val = in.nextInt(); System.out.flush(); return val; } public static void main (String[] args) { // It happens - Syed Mizbahuddin Main sol = new Main(); int t = 1; // t = in.nextInt(); while (t-- != 0) { sol.solve(); } System.out.print(out); } <T> void println(T[] s) { if (err == null)return; err.println(Arrays.toString(s)); } <T> void println(T s) { if (err == null)return; err.println(s); } void println(int s) { if (err == null)return; err.println(s); } void println(int[] a) { if (err == null)return; println(Arrays.toString(a)); } int[] array(int n) { int[] a = new int[n]; for (int i = 0; i < n; i++) { a[i] = in.nextInt(); } return a; } int[] array1(int n) { int[] a = new int[n + 1]; for (int i = 1; i <= n; i++) { a[i] = in.nextInt(); } return a; } int max(int[] a) { int max = a[0]; for (int i = 0; i < a.length; i++)max = Math.max(max, a[i]); return max; } int min(int[] a) { int min = a[0]; for (int i = 0; i < a.length; i++)min = Math.min(min, a[i]); return min; } int count(int[] a, int x) { int count = 0; for (int i = 0; i < a.length; i++)if (x == a[i])count++; return count; } void printArray(int[] a) { for (int ele : a)out.append(ele + " "); out.append("\n"); } static { try { // System.setIn(new FileInputStream("input.txt")); // System.setOut(new PrintStream(new FileOutputStream("output.txt"))); // err = new PrintStream(new FileOutputStream("error.txt")); } catch (Exception e) {} } static FastReader in; static StringBuilder out; static PrintStream err; static String yes , no , endl; final int MAX; final int MIN; int mod ; Main() { in = new FastReader(); out = new StringBuilder(); MAX = Integer.MAX_VALUE; MIN = Integer.MIN_VALUE; mod = (int)1e9 + 7; yes = "YES\n"; no = "NO\n"; endl = "\n"; } class FastReader { BufferedReader br; StringTokenizer st; public FastReader() { br = new BufferedReader( new InputStreamReader(System.in)); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } } class Pair implements Comparable<Pair> { int first , second; Pair(int first, int second) { this.first = first; this.second = second; } public int compareTo(Pair b) { return this.first - b.first; } public String toString() { String s = "{ " + Integer.toString(first) + " , " + Integer.toString(second) + " }"; return s; } } }
Java
["5\n\n3\n\n4"]
1 second
["? 1 5\n\n? 4 5\n\n! 1"]
NoteIn the sample suppose $$$a$$$ is $$$[5, 1, 4, 2, 3]$$$. So after asking the $$$[1..5]$$$ subsegment $$$4$$$ is second to max value, and it's position is $$$3$$$. After asking the $$$[4..5]$$$ subsegment $$$2$$$ is second to max value and it's position in the whole array is $$$4$$$.Note that there are other arrays $$$a$$$ that would produce the same interaction, and the answer for them might be different. Example output is given in purpose of understanding the interaction.
Java 11
standard input
[ "binary search", "interactive" ]
b3e8fe76706ba17cb285c75459508334
The first line contains a single integer $$$n$$$ $$$(2 \leq n \leq 10^5)$$$ — the number of elements in the array.
1,600
null
standard output
PASSED
87c7461aa6ece7a15c38465d84cfc30b
train_109.jsonl
1613658900
The only difference between the easy and the hard version is the limit to the number of queries.This is an interactive problem.There is an array $$$a$$$ of $$$n$$$ different numbers. In one query you can ask the position of the second maximum element in a subsegment $$$a[l..r]$$$. Find the position of the maximum element in the array in no more than 40 queries.A subsegment $$$a[l..r]$$$ is all the elements $$$a_l, a_{l + 1}, ..., a_r$$$. After asking this subsegment you will be given the position of the second maximum from this subsegment in the whole array.
256 megabytes
/* _oo0oo_ o8888888o 88" . "88 (| -_- |) 0\ = /0 ___/`---'\___ .' \\| |// '. / \\||| : |||// \ / _||||| -:- |||||- \ | | \\\ - /// | | | \_| ''\---/'' |_/ | \ .-\__ '-' ___/-. / ___'. .' /--.--\ `. .'___ ."" '< `.___\_<|>_/___.' >' "". | | : `- \`.;`\ _ /`;.`/ - ` : | | \ \ `_. \_ __\ /__ _/ .-` / / =====`-.____`.___ \_____/___.-`___.-'===== `=---=' */ import java.util.*; import java.math.*; import java.io.*; import java.lang.Math.*; public class KickStart2020 { static class FastReader { BufferedReader br; StringTokenizer st; public FastReader() { br = new BufferedReader(new InputStreamReader(System.in)); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } float nextFloat() { return Float.parseFloat(next()); } String nextLine() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } } static long gcd(long a, long b) { if (b == 0) return a; return gcd(b, a % b); } static long lcm(long a, long b) { return a / gcd(a, b) * b; } public static class Pair implements Comparable<Pair> { public long index; public long value; public Pair(long index, long value) { this.index = index; this.value = value; } @Override public int compareTo(Pair other) { // multiplied to -1 as the author need descending sort order if(other.index < this.index) return 1; if(other.index > this.index) return -1; if(other.value < this.value) return -1; if(other.value > this.value) return 1; else return 0; } @Override public String toString() { return this.index + " " + this.value; } } static boolean isPrime(long d) { if (d == 1) return false; for (int i = 2; i <= (long) Math.sqrt(d); i++) { if (d % i == 0) return false; } return true; } static void decimalTob(int n, int k, Stack<Integer> ss) { int x = n % k; int y = n / k; ss.push(x); if(y > 0) { decimalTob(y, k, ss); } } static long powermod(long x, long y, long mod) { long ans = 1; x = x % mod; if (x == 0) return 0; int i = 1; while (y > 0) { if ((y & 1) != 0) ans = (ans * x) % mod; y = y >> 1; x = (x * x) % mod; } return ans; } static int findPos(int l, int r, FastReader sc) { if(l == r) return l; if(r - l == 1) { System.out.println("? " + l + " " + r); System.out.flush(); int temp = sc.nextInt(); if(l == temp) return r; else return l; } int mid = (l + r) / 2; System.out.println("? " + l + " " + r); System.out.flush(); int pos = sc.nextInt(); if(pos >= mid) { System.out.println("? " + mid + " " + r); System.out.flush(); int ans = sc.nextInt(); if(ans == pos) return findPos(mid, r, sc); else return findPos(l, mid, sc); } else {System.out.println("? " + l + " " + mid); System.out.flush(); int ans = sc.nextInt(); if(ans == pos) return findPos(l, mid, sc); else return findPos(mid, r, sc);} } public static void main(String[] args) throws Exception { FastReader sc = new FastReader(); PrintWriter out = new PrintWriter(System.out); int t = 1; outerloop: while(t-- > 0) { int n = sc.nextInt(); out.println("! " + findPos(1, n, sc)); } out.close(); } }
Java
["5\n\n3\n\n4"]
1 second
["? 1 5\n\n? 4 5\n\n! 1"]
NoteIn the sample suppose $$$a$$$ is $$$[5, 1, 4, 2, 3]$$$. So after asking the $$$[1..5]$$$ subsegment $$$4$$$ is second to max value, and it's position is $$$3$$$. After asking the $$$[4..5]$$$ subsegment $$$2$$$ is second to max value and it's position in the whole array is $$$4$$$.Note that there are other arrays $$$a$$$ that would produce the same interaction, and the answer for them might be different. Example output is given in purpose of understanding the interaction.
Java 11
standard input
[ "binary search", "interactive" ]
b3e8fe76706ba17cb285c75459508334
The first line contains a single integer $$$n$$$ $$$(2 \leq n \leq 10^5)$$$ — the number of elements in the array.
1,600
null
standard output
PASSED
1c12dbc9aa1273f43355b716ec58b7e8
train_109.jsonl
1613658900
The only difference between the easy and the hard version is the limit to the number of queries.This is an interactive problem.There is an array $$$a$$$ of $$$n$$$ different numbers. In one query you can ask the position of the second maximum element in a subsegment $$$a[l..r]$$$. Find the position of the maximum element in the array in no more than 40 queries.A subsegment $$$a[l..r]$$$ is all the elements $$$a_l, a_{l + 1}, ..., a_r$$$. After asking this subsegment you will be given the position of the second maximum from this subsegment in the whole array.
256 megabytes
import java.util.*; import java.util.Map.Entry; import java.lang.*; import java.io.*; import java.math.BigInteger; public class CF { private static FS sc = new FS(); private static class FS { BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); StringTokenizer st = new StringTokenizer(""); String next() { while (!st.hasMoreTokens()) try { st=new StringTokenizer(br.readLine()); } catch (IOException e) {} return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } } private static class extra { static int[] intArr(int size) { int[] a = new int[size]; for(int i = 0; i < size; i++) a[i] = sc.nextInt(); return a; } static long[] longArr(int size) { long[] a = new long[size]; for(int i = 0; i < size; i++) a[i] = sc.nextLong(); return a; } static long intSum(int[] a) { long sum = 0; for(int i = 0; i < a.length; i++) { sum += a[i]; } return sum; } static long longSum(long[] a) { long sum = 0; for(int i = 0; i < a.length; i++) { sum += a[i]; } return sum; } static LinkedList[] graphD(int vertices, int edges) { LinkedList<Integer>[] temp = new LinkedList[vertices+1]; for(int i = 0; i <= vertices; i++) temp[i] = new LinkedList<>(); for(int i = 0; i < edges; i++) { int x = sc.nextInt(); int y = sc.nextInt(); temp[x].add(y); } return temp; } static LinkedList[] graphUD(int vertices, int edges) { LinkedList<Integer>[] temp = new LinkedList[vertices+1]; for(int i = 0; i <= vertices; i++) temp[i] = new LinkedList<>(); for(int i = 0; i < edges; i++) { int x = sc.nextInt(); int y = sc.nextInt(); temp[x].add(y); temp[y].add(x); } return temp; } static void printG(LinkedList[] temp) { for(LinkedList<Integer> aa:temp) System.out.println(aa); } static long cal(long val, long pow) { if(pow == 0) return 1; long res = cal(val, pow/2); // long ret = (res*res)%mod; // if(pow%2 == 0) return ret; // return (val*ret)%mod; long ret = res*res; if(pow%2 == 0) return ret; return val*ret; } static long gcd(long a, long b) { return b == 0 ? a:gcd(b, a%b); } } static int mod = (int) 1e9 + 9; // static int mod = (int) 998244353; static int max = (int) 1e6, sq = 316; static LinkedList<Integer>[] temp; // static int[] par, rank; public static void main(String[] args) { // int t = sc.nextInt(); int t = 1; StringBuilder ret = new StringBuilder(); while(t-- > 0) { int n = sc.nextInt(); int l = 0, r = n; while (r - l > 1) { int m = (l + r) / 2; int smax = ask(l, r - 1); if (smax < m) { if (ask(l, m - 1) == smax) { r = m; } else { l = m; } } else { if (ask(m, r - 1) == smax) { l = m; } else { r = m; } } } System.out.println("! " + r); } System.out.println(ret); } static int ask(int l, int r) { if (l >= r) return -1; System.out.println("? " + (l + 1) + " " + (r + 1)); int ans = sc.nextInt(); return ans - 1; } }
Java
["5\n\n3\n\n4"]
1 second
["? 1 5\n\n? 4 5\n\n! 1"]
NoteIn the sample suppose $$$a$$$ is $$$[5, 1, 4, 2, 3]$$$. So after asking the $$$[1..5]$$$ subsegment $$$4$$$ is second to max value, and it's position is $$$3$$$. After asking the $$$[4..5]$$$ subsegment $$$2$$$ is second to max value and it's position in the whole array is $$$4$$$.Note that there are other arrays $$$a$$$ that would produce the same interaction, and the answer for them might be different. Example output is given in purpose of understanding the interaction.
Java 11
standard input
[ "binary search", "interactive" ]
b3e8fe76706ba17cb285c75459508334
The first line contains a single integer $$$n$$$ $$$(2 \leq n \leq 10^5)$$$ — the number of elements in the array.
1,600
null
standard output
PASSED
e661a48ab6f27949a3f2e16aab3f3af2
train_109.jsonl
1613658900
The only difference between the easy and the hard version is the limit to the number of queries.This is an interactive problem.There is an array $$$a$$$ of $$$n$$$ different numbers. In one query you can ask the position of the second maximum element in a subsegment $$$a[l..r]$$$. Find the position of the maximum element in the array in no more than 40 queries.A subsegment $$$a[l..r]$$$ is all the elements $$$a_l, a_{l + 1}, ..., a_r$$$. After asking this subsegment you will be given the position of the second maximum from this subsegment in the whole array.
256 megabytes
import java.io.BufferedReader; import java.io.BufferedWriter; import java.io.IOException; import java.io.InputStreamReader; import java.io.OutputStreamWriter; import java.util.Arrays; import java.util.HashMap; import java.util.StringTokenizer; public class Hello1 { static FastReader s = new FastReader(); public static int ask(int l, int r) { System.out.println("? " + (l + 1) + " " + (r + 1)); System.out.flush(); return (s.nextInt() - 1); } public static int result(int n, int l, int r) { //System.out.pintln(n); if(r - l == 0) return r; if(r - l == 1) { int second = ask(l, r); if(second == l) return r; else return l; } int second = ask(l, r); int ans = -1; int mid = (l + r) / 2; if(second <= mid) { int sec = ask(l, mid); if(sec == second) { ans = result(n, l, mid); return ans; } else { ans = result(n, mid + 1, r); return ans; } } else { int sec = ask(mid, r); if(sec == second) { ans = result(n, mid, r); return ans; } else { ans = result(n, l, mid - 1); return ans; } } } public static void main(String[] args) throws IOException{ // BufferedWriter output = new BufferedWriter( // new OutputStreamWriter(System.out)); long t = 1;//s.nextInt(); for(int i = 0; i < t; i++) { int n = s.nextInt(); int ans = result(n, 0, n - 1); System.out.println("! " + (ans + 1)); System.out.flush(); } //output.flush(); } } class FastReader { BufferedReader br; StringTokenizer st; public FastReader() { br = new BufferedReader(new InputStreamReader(System.in)); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } public int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; }}
Java
["5\n\n3\n\n4"]
1 second
["? 1 5\n\n? 4 5\n\n! 1"]
NoteIn the sample suppose $$$a$$$ is $$$[5, 1, 4, 2, 3]$$$. So after asking the $$$[1..5]$$$ subsegment $$$4$$$ is second to max value, and it's position is $$$3$$$. After asking the $$$[4..5]$$$ subsegment $$$2$$$ is second to max value and it's position in the whole array is $$$4$$$.Note that there are other arrays $$$a$$$ that would produce the same interaction, and the answer for them might be different. Example output is given in purpose of understanding the interaction.
Java 11
standard input
[ "binary search", "interactive" ]
b3e8fe76706ba17cb285c75459508334
The first line contains a single integer $$$n$$$ $$$(2 \leq n \leq 10^5)$$$ — the number of elements in the array.
1,600
null
standard output
PASSED
bdb29715a04c7f3c5f3bfcfc2abf405d
train_109.jsonl
1613658900
The only difference between the easy and the hard version is the limit to the number of queries.This is an interactive problem.There is an array $$$a$$$ of $$$n$$$ different numbers. In one query you can ask the position of the second maximum element in a subsegment $$$a[l..r]$$$. Find the position of the maximum element in the array in no more than 40 queries.A subsegment $$$a[l..r]$$$ is all the elements $$$a_l, a_{l + 1}, ..., a_r$$$. After asking this subsegment you will be given the position of the second maximum from this subsegment in the whole array.
256 megabytes
import java.io.DataInputStream; import java.io.IOException; import java.io.OutputStreamWriter; import java.io.PrintWriter; import java.util.Arrays; import java.util.Map; import java.util.TreeMap; public class Main { private static void run() throws IOException { int n = in.nextInt(); // TreeMap<Double, Integer> map = new TreeMap<>(); // for (int i = 1; i <= n; i++) { // map.put(Math.random(), i); // } // a = new int[n]; // int index = 0; // for (Map.Entry<Double, Integer> now : map.entrySet()) { // a[index++] = now.getValue(); // } // print_array(a); // System.err.flush(); query_with_second(1, n, query(1, n)); } private static void query_with_second(int left, int right, int current_second) throws IOException { if (current_second < left || current_second > right) { current_second = query(left, right); } if (left + 1 == right) { if (current_second == right) { out.printf("! %d \n", left); // check(left); } else { out.printf("! %d \n", right); // check(right); } return; } int mid = (left + right) >> 1; boolean is_left = current_second <= mid ? query(left, mid) == current_second : query(mid, right) != current_second; if (is_left) { query_with_second(left, mid, current_second); } else { query_with_second(mid, right, current_second); } } static int[] a; static int count = 0; private static void check(int ans) { int[] tmp = new int[a.length]; System.arraycopy(a, 0, tmp, 0, a.length); Arrays.sort(tmp); System.err.println(tmp[a.length - 1] + " " + a[ans - 1] + " " + (tmp[a.length - 1] == a[ans - 1])); System.err.println("count: " + count); System.err.flush(); } private static int query(int left, int right) throws IOException { out.printf("? %d %d\n", left, right); out.flush(); return in.nextInt(); // count++; // // int[] tmp = new int[right - left + 1]; // for (int i = 0; i < right - left + 1; i++) { // tmp[i] = a[left + i - 1]; // } // Arrays.sort(tmp); // for (int i = left; i <= right; i++) { // if (a[i - 1] == tmp[right - left - 1]) { // System.err.println("input: " + i); // System.err.flush(); // return i; // } // } // System.err.println("input: "); // System.err.flush(); // return -1; } public static void main(String[] args) throws IOException { in = new Reader(); out = new PrintWriter(new OutputStreamWriter(System.out)); // int t = in.nextInt(); // for (int i = 0; i < t; i++) { // } run(); out.flush(); in.close(); out.close(); } private static int gcd(int a, int b) { if (a == 0 || b == 0) return 0; while (b != 0) { int tmp; tmp = a % b; a = b; b = tmp; } return a; } static final long mod = 1000000007; static long pow_mod(long a, long b) { long result = 1; while (b != 0) { if ((b & 1) != 0) result = (result * a) % mod; a = (a * a) % mod; b >>= 1; } return result; } private static long multiplied_mod(long... longs) { long ans = 1; for (long now : longs) { ans = (ans * now) % mod; } return ans; } @SuppressWarnings("FieldCanBeLocal") private static Reader in; private static PrintWriter out; private static void print_array(int[] array) { for (int now : array) { System.err.print(now); System.err.print(' '); } System.err.println(); } private static void print_array(long[] array) { for (long now : array) { out.print(now); out.print(' '); } out.println(); } static class Reader { private static final int BUFFER_SIZE = 1 << 16; private final DataInputStream din; private final byte[] buffer; private int bufferPointer, bytesRead; Reader() { din = new DataInputStream(System.in); buffer = new byte[BUFFER_SIZE]; bufferPointer = bytesRead = 0; } public String readLine() throws IOException { final byte[] buf = new byte[1024]; // line length int cnt = 0, c; while ((c = read()) != -1) { if (c == '\n') { break; } buf[cnt++] = (byte) c; } return new String(buf, 0, cnt); } public int nextSign() throws IOException { byte c = read(); while ('+' != c && '-' != c) { c = read(); } return '+' == c ? 0 : 1; } private static boolean isSpaceChar(int c) { return !(c >= 33 && c <= 126); } public int skip() throws IOException { int b; // noinspection ALL while ((b = read()) != -1 && isSpaceChar(b)) { ; } return b; } public char nc() throws IOException { return (char) skip(); } public String next() throws IOException { int b = skip(); final StringBuilder sb = new StringBuilder(); while (!isSpaceChar(b)) { // when nextLine, (isSpaceChar(b) && b != ' ') sb.appendCodePoint(b); b = read(); } return sb.toString(); } public int nextInt() throws IOException { int ret = 0; byte c = read(); while (c <= ' ') { c = read(); } final boolean neg = c == '-'; if (neg) { c = read(); } do { ret = ret * 10 + c - '0'; } while ((c = read()) >= '0' && c <= '9'); if (neg) { return -ret; } return ret; } public long nextLong() throws IOException { long ret = 0; byte c = read(); while (c <= ' ') { c = read(); } final boolean neg = c == '-'; if (neg) { c = read(); } do { ret = ret * 10 + c - '0'; } while ((c = read()) >= '0' && c <= '9'); if (neg) { return -ret; } return ret; } public double nextDouble() throws IOException { double ret = 0, div = 1; byte c = read(); while (c <= ' ') { c = read(); } final boolean neg = c == '-'; if (neg) { c = read(); } do { ret = ret * 10 + c - '0'; } while ((c = read()) >= '0' && c <= '9'); if (c == '.') { while ((c = read()) >= '0' && c <= '9') { ret += (c - '0') / (div *= 10); } } if (neg) { return -ret; } return ret; } private void fillBuffer() throws IOException { bytesRead = din.read(buffer, bufferPointer = 0, BUFFER_SIZE); if (bytesRead == -1) { buffer[0] = -1; } } private byte read() throws IOException { if (bufferPointer == bytesRead) { fillBuffer(); } return buffer[bufferPointer++]; } public void close() throws IOException { din.close(); } } }
Java
["5\n\n3\n\n4"]
1 second
["? 1 5\n\n? 4 5\n\n! 1"]
NoteIn the sample suppose $$$a$$$ is $$$[5, 1, 4, 2, 3]$$$. So after asking the $$$[1..5]$$$ subsegment $$$4$$$ is second to max value, and it's position is $$$3$$$. After asking the $$$[4..5]$$$ subsegment $$$2$$$ is second to max value and it's position in the whole array is $$$4$$$.Note that there are other arrays $$$a$$$ that would produce the same interaction, and the answer for them might be different. Example output is given in purpose of understanding the interaction.
Java 11
standard input
[ "binary search", "interactive" ]
b3e8fe76706ba17cb285c75459508334
The first line contains a single integer $$$n$$$ $$$(2 \leq n \leq 10^5)$$$ — the number of elements in the array.
1,600
null
standard output
PASSED
d3c677a5d14d1a7f442e035b0fce868c
train_109.jsonl
1613658900
The only difference between the easy and the hard version is the limit to the number of queries.This is an interactive problem.There is an array $$$a$$$ of $$$n$$$ different numbers. In one query you can ask the position of the second maximum element in a subsegment $$$a[l..r]$$$. Find the position of the maximum element in the array in no more than 40 queries.A subsegment $$$a[l..r]$$$ is all the elements $$$a_l, a_{l + 1}, ..., a_r$$$. After asking this subsegment you will be given the position of the second maximum from this subsegment in the whole array.
256 megabytes
/* package codechef; // don't place package name! */ import java.util.*; import java.lang.*; import java.io.*; import static java.lang.Math.*; /* Name of the class has to be "Main" only if the class is public. */ // class Codechef public class C1GuessingtheGreatest { static InputReader in = new InputReader(System.in); public static int query(int l, int r) throws java.lang.Exception { StringBuilder sb = new StringBuilder(15); sb.append("? "); sb.append(l); sb.append(" "); sb.append(r); System.out.println(sb); System.out.flush(); return in.nextInt(); } public static void main(String[] args) throws java.lang.Exception { int n = in.nextInt(); int l = 1; int r = n; int ans=-1; while(l<r){ int mid = (l+r)/2; int smax = ans; if(ans==-1){ smax = query(l,r); } if(l+1==r){ if(l==smax){ l=r; break; }else{ r=l; break; } } if(smax<=mid){ int lsmax = query(l, mid); if(lsmax == smax){ r=mid; ans = lsmax; }else{ l=mid+1; ans=-1; } }else{ if(mid+1==r){ r=mid; ans=-1; continue; } int rsmax = query(mid+1, r); if(rsmax == smax){ l = mid+1; ans=rsmax; }else{ r=mid; ans=-1; } } } System.out.println("! " + l); System.out.flush(); // in.close(); } private static class InputReader implements AutoCloseable { /** * The default size of the InputReader's buffer is 2<sup>16</sup>. */ private static final int DEFAULT_BUFFER_SIZE = 1 << 16; /** * The default stream for the InputReader is standard input. */ private static final InputStream DEFAULT_STREAM = System.in; /** * The maximum number of accurate decimal digits the method * {@link #nextDoubleFast() nextDoubleFast()} can read. Currently this value is * set to 21 because it is the maximum number of digits a double precision float * can have at the moment. */ private static final int MAX_DECIMAL_PRECISION = 21; // 'c' is used to refer to the current character in the stream private int c; // Variables associated with the byte buffer. private final byte[] buf; private final int bufferSize; private int bufIndex; private int numBytesRead; private final InputStream stream; // End Of File (EOF) character private static final byte EOF = -1; // New line character: '\n' private static final byte NEW_LINE = 10; // Space character: ' ' private static final byte SPACE = 32; // Dash character: '-' private static final byte DASH = 45; // Dot character: '.' private static final byte DOT = 46; // A reusable character buffer when reading string data. private char[] charBuffer; // Primitive data type lookup tables used for optimizations private static final byte[] bytes = new byte[58]; private static final int[] ints = new int[58]; private static final char[] chars = new char[128]; static { char ch = ' '; int value = 0; byte _byte = 0; for (int i = 48; i < 58; i++) bytes[i] = _byte++; for (int i = 48; i < 58; i++) ints[i] = value++; for (int i = 32; i < 128; i++) chars[i] = ch++; } // Primitive double lookup table used for optimizations. private static final double[][] doubles = { { 0.0d, 0.00d, 0.000d, 0.0000d, 0.00000d, 0.000000d, 0.0000000d, 0.00000000d, 0.000000000d, 0.0000000000d, 0.00000000000d, 0.000000000000d, 0.0000000000000d, 0.00000000000000d, 0.000000000000000d, 0.0000000000000000d, 0.00000000000000000d, 0.000000000000000000d, 0.0000000000000000000d, 0.00000000000000000000d, 0.000000000000000000000d }, { 0.1d, 0.01d, 0.001d, 0.0001d, 0.00001d, 0.000001d, 0.0000001d, 0.00000001d, 0.000000001d, 0.0000000001d, 0.00000000001d, 0.000000000001d, 0.0000000000001d, 0.00000000000001d, 0.000000000000001d, 0.0000000000000001d, 0.00000000000000001d, 0.000000000000000001d, 0.0000000000000000001d, 0.00000000000000000001d, 0.000000000000000000001d }, { 0.2d, 0.02d, 0.002d, 0.0002d, 0.00002d, 0.000002d, 0.0000002d, 0.00000002d, 0.000000002d, 0.0000000002d, 0.00000000002d, 0.000000000002d, 0.0000000000002d, 0.00000000000002d, 0.000000000000002d, 0.0000000000000002d, 0.00000000000000002d, 0.000000000000000002d, 0.0000000000000000002d, 0.00000000000000000002d, 0.000000000000000000002d }, { 0.3d, 0.03d, 0.003d, 0.0003d, 0.00003d, 0.000003d, 0.0000003d, 0.00000003d, 0.000000003d, 0.0000000003d, 0.00000000003d, 0.000000000003d, 0.0000000000003d, 0.00000000000003d, 0.000000000000003d, 0.0000000000000003d, 0.00000000000000003d, 0.000000000000000003d, 0.0000000000000000003d, 0.00000000000000000003d, 0.000000000000000000003d }, { 0.4d, 0.04d, 0.004d, 0.0004d, 0.00004d, 0.000004d, 0.0000004d, 0.00000004d, 0.000000004d, 0.0000000004d, 0.00000000004d, 0.000000000004d, 0.0000000000004d, 0.00000000000004d, 0.000000000000004d, 0.0000000000000004d, 0.00000000000000004d, 0.000000000000000004d, 0.0000000000000000004d, 0.00000000000000000004d, 0.000000000000000000004d }, { 0.5d, 0.05d, 0.005d, 0.0005d, 0.00005d, 0.000005d, 0.0000005d, 0.00000005d, 0.000000005d, 0.0000000005d, 0.00000000005d, 0.000000000005d, 0.0000000000005d, 0.00000000000005d, 0.000000000000005d, 0.0000000000000005d, 0.00000000000000005d, 0.000000000000000005d, 0.0000000000000000005d, 0.00000000000000000005d, 0.000000000000000000005d }, { 0.6d, 0.06d, 0.006d, 0.0006d, 0.00006d, 0.000006d, 0.0000006d, 0.00000006d, 0.000000006d, 0.0000000006d, 0.00000000006d, 0.000000000006d, 0.0000000000006d, 0.00000000000006d, 0.000000000000006d, 0.0000000000000006d, 0.00000000000000006d, 0.000000000000000006d, 0.0000000000000000006d, 0.00000000000000000006d, 0.000000000000000000006d }, { 0.7d, 0.07d, 0.007d, 0.0007d, 0.00007d, 0.000007d, 0.0000007d, 0.00000007d, 0.000000007d, 0.0000000007d, 0.00000000007d, 0.000000000007d, 0.0000000000007d, 0.00000000000007d, 0.000000000000007d, 0.0000000000000007d, 0.00000000000000007d, 0.000000000000000007d, 0.0000000000000000007d, 0.00000000000000000007d, 0.000000000000000000007d }, { 0.8d, 0.08d, 0.008d, 0.0008d, 0.00008d, 0.000008d, 0.0000008d, 0.00000008d, 0.000000008d, 0.0000000008d, 0.00000000008d, 0.000000000008d, 0.0000000000008d, 0.00000000000008d, 0.000000000000008d, 0.0000000000000008d, 0.00000000000000008d, 0.000000000000000008d, 0.0000000000000000008d, 0.00000000000000000008d, 0.000000000000000000008d }, { 0.9d, 0.09d, 0.009d, 0.0009d, 0.00009d, 0.000009d, 0.0000009d, 0.00000009d, 0.000000009d, 0.0000000009d, 0.00000000009d, 0.000000000009d, 0.0000000000009d, 0.00000000000009d, 0.000000000000009d, 0.0000000000000009d, 0.00000000000000009d, 0.000000000000000009d, 0.0000000000000000009d, 0.00000000000000000009d, 0.000000000000000000009d } }; /** * Create an InputReader that reads from standard input. */ public InputReader() { this(DEFAULT_STREAM, DEFAULT_BUFFER_SIZE); } /** * Create an InputReader that reads from standard input. * * @param bufferSize The buffer size for this input reader. */ public InputReader(int bufferSize) { this(DEFAULT_STREAM, bufferSize); } /** * Create an InputReader that reads from standard input. * * @param stream Takes an InputStream as a parameter to read from. */ public InputReader(InputStream stream) { this(stream, DEFAULT_BUFFER_SIZE); } /** * Create an InputReader that reads from standard input. * * @param stream Takes an {@link java.io.InputStream#InputStream() * InputStream} as a parameter to read from. * @param bufferSize The size of the buffer to use. */ public InputReader(InputStream stream, int bufferSize) { if (stream == null || bufferSize <= 0) throw new IllegalArgumentException(); buf = new byte[bufferSize]; charBuffer = new char[128]; this.bufferSize = bufferSize; this.stream = stream; } /** * Reads a single character from the input stream. * * @return Returns the byte value of the next character in the buffer and EOF at * the end of the stream. * @throws IOException throws exception if there is no more data to read */ private byte read() throws IOException { if (numBytesRead == EOF) throw new IOException(); if (bufIndex >= numBytesRead) { bufIndex = 0; numBytesRead = stream.read(buf); if (numBytesRead == EOF) return EOF; } return buf[bufIndex++]; } /** * Read values from the input stream until you reach a character with a higher * ASCII value than 'token'. * * @param token The token is a value which we use to stop reading junk out of * the stream. * @return Returns 0 if a value greater than the token was reached or -1 if the * end of the stream was reached. * @throws IOException Throws exception at end of stream. */ private int readJunk(int token) throws IOException { if (numBytesRead == EOF) return EOF; // Seek to the first valid position index do { while (bufIndex < numBytesRead) { if (buf[bufIndex] > token) return 0; bufIndex++; } // reload buffer numBytesRead = stream.read(buf); if (numBytesRead == EOF) return EOF; bufIndex = 0; } while (true); } /** * Reads a single byte from the input stream. * * @return The next byte in the input stream * @throws IOException Throws exception at end of stream. */ public byte nextByte() throws IOException { return (byte) nextInt(); } /** * Reads a 32 bit signed integer from input stream. * * @return The next integer value in the stream. * @throws IOException Throws exception at end of stream. */ public int nextInt() throws IOException { if (readJunk(DASH - 1) == EOF) throw new IOException(); int sgn = 1, res = 0; c = buf[bufIndex]; if (c == DASH) { sgn = -1; bufIndex++; } do { while (bufIndex < numBytesRead) { if (buf[bufIndex] > SPACE) { res = (res << 3) + (res << 1); res += ints[buf[bufIndex++]]; } else { bufIndex++; return res * sgn; } } // Reload buffer numBytesRead = stream.read(buf); if (numBytesRead == EOF) return res * sgn; bufIndex = 0; } while (true); } /** * Reads a 64 bit signed long from input stream. * * @return The next long value in the stream. * @throws IOException Throws exception at end of stream. */ public long nextLong() throws IOException { if (readJunk(DASH - 1) == EOF) throw new IOException(); int sgn = 1; long res = 0L; c = buf[bufIndex]; if (c == DASH) { sgn = -1; bufIndex++; } do { while (bufIndex < numBytesRead) { if (buf[bufIndex] > SPACE) { res = (res << 3) + (res << 1); res += ints[buf[bufIndex++]]; } else { bufIndex++; return res * sgn; } } // Reload buffer numBytesRead = stream.read(buf); if (numBytesRead == EOF) return res * sgn; bufIndex = 0; } while (true); } /** * Doubles the size of the internal char buffer for strings */ private void doubleCharBufferSize() { char[] newBuffer = new char[charBuffer.length << 1]; for (int i = 0; i < charBuffer.length; i++) newBuffer[i] = charBuffer[i]; charBuffer = newBuffer; } /** * Reads a line from the input stream. * * @return Returns a line from the input stream in the form a String not * including the new line character. Returns <code>null</code> when * there are no more lines. * @throws IOException Throws IOException when something terrible happens. */ public String nextLine() throws IOException { try { c = read(); } catch (IOException e) { return null; } if (c == NEW_LINE) return ""; // Empty line if (c == EOF) return null; // EOF int i = 0; charBuffer[i++] = (char) c; do { while (bufIndex < numBytesRead) { if (buf[bufIndex] != NEW_LINE) { if (i == charBuffer.length) doubleCharBufferSize(); charBuffer[i++] = (char) buf[bufIndex++]; } else { bufIndex++; return new String(charBuffer, 0, i); } } // Reload buffer numBytesRead = stream.read(buf); if (numBytesRead == EOF) return new String(charBuffer, 0, i); bufIndex = 0; } while (true); } // Reads a string of characters from the input stream. // The delimiter separating a string of characters is set to be: // any ASCII value <= 32 meaning any spaces, new lines, EOF, tabs... public String nextString() throws IOException { if (numBytesRead == EOF) return null; if (readJunk(SPACE) == EOF) return null; for (int i = 0;;) { while (bufIndex < numBytesRead) { if (buf[bufIndex] > SPACE) { if (i == charBuffer.length) doubleCharBufferSize(); charBuffer[i++] = (char) buf[bufIndex++]; } else { bufIndex++; return new String(charBuffer, 0, i); } } // Reload buffer numBytesRead = stream.read(buf); if (numBytesRead == EOF) return new String(charBuffer, 0, i); bufIndex = 0; } } // Returns an exact value a double value from the input stream. public double nextDouble() throws IOException { String doubleVal = nextString(); if (doubleVal == null) throw new IOException(); return Double.valueOf(doubleVal); } // Very quickly reads a double value from the input stream (~3x faster than // nextDouble()). However, // this method may provide a slightly less accurate reading than .nextDouble() // if there are a lot // of digits (~16+). In particular, it will only read double values with at most // 21 digits after // the decimal point and the reading my be as inaccurate as ~5*10^-16 from the // true value. public double nextDoubleFast() throws IOException { c = read(); int sgn = 1; while (c <= SPACE) c = read(); // while c is either: ' ', '\n', EOF if (c == DASH) { sgn = -1; c = read(); } double res = 0.0; // while c is not: ' ', '\n', '.' or -1 while (c > DOT) { res *= 10.0; res += ints[c]; c = read(); } if (c == DOT) { int i = 0; c = read(); // while c is digit and we are less than the maximum decimal precision while (c > SPACE && i < MAX_DECIMAL_PRECISION) { res += doubles[ints[c]][i++]; c = read(); } } return res * sgn; } // Read an array of n byte values public byte[] nextByteArray(int n) throws IOException { byte[] ar = new byte[n]; for (int i = 0; i < n; i++) ar[i] = nextByte(); return ar; } // Read an integer array of size n public int[] nextIntArray(int n) throws IOException { int[] ar = new int[n]; for (int i = 0; i < n; i++) ar[i] = nextInt(); return ar; } // Read a long array of size n public long[] nextLongArray(int n) throws IOException { long[] ar = new long[n]; for (int i = 0; i < n; i++) ar[i] = nextLong(); return ar; } // read an of doubles of size n public double[] nextDoubleArray(int n) throws IOException { double[] ar = new double[n]; for (int i = 0; i < n; i++) ar[i] = nextDouble(); return ar; } // Quickly read an array of doubles public double[] nextDoubleArrayFast(int n) throws IOException { double[] ar = new double[n]; for (int i = 0; i < n; i++) ar[i] = nextDoubleFast(); return ar; } // Read a string array of size n public String[] nextStringArray(int n) throws IOException { String[] ar = new String[n]; for (int i = 0; i < n; i++) { String str = nextString(); if (str == null) throw new IOException(); ar[i] = str; } return ar; } // Read a 1-based byte array of size n+1 public byte[] nextByteArray1(int n) throws IOException { byte[] ar = new byte[n + 1]; for (int i = 1; i <= n; i++) ar[i] = nextByte(); return ar; } // Read a 1-based integer array of size n+1 public int[] nextIntArray1(int n) throws IOException { int[] ar = new int[n + 1]; for (int i = 1; i <= n; i++) ar[i] = nextInt(); return ar; } // Read a 1-based long array of size n+1 public long[] nextLongArray1(int n) throws IOException { long[] ar = new long[n + 1]; for (int i = 1; i <= n; i++) ar[i] = nextLong(); return ar; } // Read a 1-based double array of size n+1 public double[] nextDoubleArray1(int n) throws IOException { double[] ar = new double[n + 1]; for (int i = 1; i <= n; i++) ar[i] = nextDouble(); return ar; } // Quickly read a 1-based double array of size n+1 public double[] nextDoubleArrayFast1(int n) throws IOException { double[] ar = new double[n + 1]; for (int i = 1; i <= n; i++) ar[i] = nextDoubleFast(); return ar; } // Read a 1-based string array of size n+1 public String[] nextStringArray1(int n) throws IOException { String[] ar = new String[n + 1]; for (int i = 1; i <= n; i++) ar[i] = nextString(); return ar; } // Read a two dimensional matrix of bytes of size rows x cols public byte[][] nextByteMatrix(int rows, int cols) throws IOException { byte[][] matrix = new byte[rows][cols]; for (int i = 0; i < rows; i++) for (int j = 0; j < cols; j++) matrix[i][j] = nextByte(); return matrix; } // Read a two dimensional matrix of ints of size rows x cols public int[][] nextIntMatrix(int rows, int cols) throws IOException { int[][] matrix = new int[rows][cols]; for (int i = 0; i < rows; i++) for (int j = 0; j < cols; j++) matrix[i][j] = nextInt(); return matrix; } // Read a two dimensional matrix of longs of size rows x cols public long[][] nextLongMatrix(int rows, int cols) throws IOException { long[][] matrix = new long[rows][cols]; for (int i = 0; i < rows; i++) for (int j = 0; j < cols; j++) matrix[i][j] = nextLong(); return matrix; } // Read a two dimensional matrix of doubles of size rows x cols public double[][] nextDoubleMatrix(int rows, int cols) throws IOException { double[][] matrix = new double[rows][cols]; for (int i = 0; i < rows; i++) for (int j = 0; j < cols; j++) matrix[i][j] = nextDouble(); return matrix; } // Quickly read a two dimensional matrix of doubles of size rows x cols public double[][] nextDoubleMatrixFast(int rows, int cols) throws IOException { double[][] matrix = new double[rows][cols]; for (int i = 0; i < rows; i++) for (int j = 0; j < cols; j++) matrix[i][j] = nextDoubleFast(); return matrix; } // Read a two dimensional matrix of Strings of size rows x cols public String[][] nextStringMatrix(int rows, int cols) throws IOException { String[][] matrix = new String[rows][cols]; for (int i = 0; i < rows; i++) for (int j = 0; j < cols; j++) matrix[i][j] = nextString(); return matrix; } // Read a 1-based two dimensional matrix of bytes of size rows x cols public byte[][] nextByteMatrix1(int rows, int cols) throws IOException { byte[][] matrix = new byte[rows + 1][cols + 1]; for (int i = 1; i <= rows; i++) for (int j = 1; j <= cols; j++) matrix[i][j] = nextByte(); return matrix; } // Read a 1-based two dimensional matrix of ints of size rows x cols public int[][] nextIntMatrix1(int rows, int cols) throws IOException { int[][] matrix = new int[rows + 1][cols + 1]; for (int i = 1; i <= rows; i++) for (int j = 1; j <= cols; j++) matrix[i][j] = nextInt(); return matrix; } // Read a 1-based two dimensional matrix of longs of size rows x cols public long[][] nextLongMatrix1(int rows, int cols) throws IOException { long[][] matrix = new long[rows + 1][cols + 1]; for (int i = 1; i <= rows; i++) for (int j = 1; j <= cols; j++) matrix[i][j] = nextLong(); return matrix; } // Read a 1-based two dimensional matrix of doubles of size rows x cols public double[][] nextDoubleMatrix1(int rows, int cols) throws IOException { double[][] matrix = new double[rows + 1][cols + 1]; for (int i = 1; i <= rows; i++) for (int j = 1; j <= cols; j++) matrix[i][j] = nextDouble(); return matrix; } // Quickly read a 1-based two dimensional matrix of doubles of size rows x cols public double[][] nextDoubleMatrixFast1(int rows, int cols) throws IOException { double[][] matrix = new double[rows + 1][cols + 1]; for (int i = 1; i <= rows; i++) for (int j = 1; j <= cols; j++) matrix[i][j] = nextDoubleFast(); return matrix; } // Read a 1-based two dimensional matrix of Strings of size rows x cols public String[][] nextStringMatrix1(int rows, int cols) throws IOException { String[][] matrix = new String[rows + 1][cols + 1]; for (int i = 1; i <= rows; i++) for (int j = 1; j <= cols; j++) matrix[i][j] = nextString(); return matrix; } // Closes the input stream public void close() throws IOException { stream.close(); } } }
Java
["5\n\n3\n\n4"]
1 second
["? 1 5\n\n? 4 5\n\n! 1"]
NoteIn the sample suppose $$$a$$$ is $$$[5, 1, 4, 2, 3]$$$. So after asking the $$$[1..5]$$$ subsegment $$$4$$$ is second to max value, and it's position is $$$3$$$. After asking the $$$[4..5]$$$ subsegment $$$2$$$ is second to max value and it's position in the whole array is $$$4$$$.Note that there are other arrays $$$a$$$ that would produce the same interaction, and the answer for them might be different. Example output is given in purpose of understanding the interaction.
Java 11
standard input
[ "binary search", "interactive" ]
b3e8fe76706ba17cb285c75459508334
The first line contains a single integer $$$n$$$ $$$(2 \leq n \leq 10^5)$$$ — the number of elements in the array.
1,600
null
standard output