url
stringclasses
147 values
commit
stringclasses
147 values
file_path
stringlengths
7
101
full_name
stringlengths
1
94
start
stringlengths
6
10
end
stringlengths
6
11
tactic
stringlengths
1
11.2k
state_before
stringlengths
3
2.09M
state_after
stringlengths
6
2.09M
input
stringlengths
73
2.09M
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Program/PEG.lean
InterpretationPrefix
[264, 1]
[285, 20]
apply PrefixAppend
case star_repetition V_N V_T : Type R : V_N β†’ PE V_N V_T e✝ : PE V_N V_T xs_1✝ xs_2✝ ys✝ : List V_T n1✝ n2✝ : β„• a✝¹ : Interpretation V_N V_T R (e✝, xs_1✝ ++ xs_2✝ ++ ys✝) (n1✝, some xs_1✝) a✝ : Interpretation V_N V_T R (e✝.star, xs_2✝ ++ ys✝) (n2✝, some xs_2✝) ih : βˆ€ m < n1✝ + n2✝ + 1, βˆ€ (e : PE V_N V_T), Interpretation V_N V_T R (e, xs_1✝ ++ xs_2✝ ++ ys✝) (m, some (xs_1✝ ++ xs_2✝)) β†’ (xs_1✝ ++ xs_2✝).IsPrefix (xs_1✝ ++ xs_2✝ ++ ys✝) ⊒ (xs_1✝ ++ xs_2✝).IsPrefix (xs_1✝ ++ xs_2✝ ++ ys✝)
no goals
Please generate a tactic in lean4 to solve the state. STATE: case star_repetition V_N V_T : Type R : V_N β†’ PE V_N V_T e✝ : PE V_N V_T xs_1✝ xs_2✝ ys✝ : List V_T n1✝ n2✝ : β„• a✝¹ : Interpretation V_N V_T R (e✝, xs_1✝ ++ xs_2✝ ++ ys✝) (n1✝, some xs_1✝) a✝ : Interpretation V_N V_T R (e✝.star, xs_2✝ ++ ys✝) (n2✝, some xs_2✝) ih : βˆ€ m < n1✝ + n2✝ + 1, βˆ€ (e : PE V_N V_T), Interpretation V_N V_T R (e, xs_1✝ ++ xs_2✝ ++ ys✝) (m, some (xs_1✝ ++ xs_2✝)) β†’ (xs_1✝ ++ xs_2✝).IsPrefix (xs_1✝ ++ xs_2✝ ++ ys✝) ⊒ (xs_1✝ ++ xs_2✝).IsPrefix (xs_1✝ ++ xs_2✝ ++ ys✝) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Program/PEG.lean
InterpretationPrefix
[264, 1]
[285, 20]
specialize ih n _ (R A)
V_N V_T : Type R : V_N β†’ PE V_N V_T xs ys : List V_T A : V_N n : β„• ih : βˆ€ m < n + 1, βˆ€ (e : PE V_N V_T), Interpretation V_N V_T R (e, xs) (m, some ys) β†’ ys.IsPrefix xs ih_1 : Interpretation V_N V_T R (R A, xs) (n, some ys) ⊒ ys.IsPrefix xs
V_N V_T : Type R : V_N β†’ PE V_N V_T xs ys : List V_T A : V_N n : β„• ih : βˆ€ m < n + 1, βˆ€ (e : PE V_N V_T), Interpretation V_N V_T R (e, xs) (m, some ys) β†’ ys.IsPrefix xs ih_1 : Interpretation V_N V_T R (R A, xs) (n, some ys) ⊒ n < n + 1 V_N V_T : Type R : V_N β†’ PE V_N V_T xs ys : List V_T A : V_N n : β„• ih_1 : Interpretation V_N V_T R (R A, xs) (n, some ys) ih : Interpretation V_N V_T R (R A, xs) (n, some ys) β†’ ys.IsPrefix xs ⊒ ys.IsPrefix xs
Please generate a tactic in lean4 to solve the state. STATE: V_N V_T : Type R : V_N β†’ PE V_N V_T xs ys : List V_T A : V_N n : β„• ih : βˆ€ m < n + 1, βˆ€ (e : PE V_N V_T), Interpretation V_N V_T R (e, xs) (m, some ys) β†’ ys.IsPrefix xs ih_1 : Interpretation V_N V_T R (R A, xs) (n, some ys) ⊒ ys.IsPrefix xs TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Program/PEG.lean
InterpretationPrefix
[264, 1]
[285, 20]
omega
V_N V_T : Type R : V_N β†’ PE V_N V_T xs ys : List V_T A : V_N n : β„• ih : βˆ€ m < n + 1, βˆ€ (e : PE V_N V_T), Interpretation V_N V_T R (e, xs) (m, some ys) β†’ ys.IsPrefix xs ih_1 : Interpretation V_N V_T R (R A, xs) (n, some ys) ⊒ n < n + 1
no goals
Please generate a tactic in lean4 to solve the state. STATE: V_N V_T : Type R : V_N β†’ PE V_N V_T xs ys : List V_T A : V_N n : β„• ih : βˆ€ m < n + 1, βˆ€ (e : PE V_N V_T), Interpretation V_N V_T R (e, xs) (m, some ys) β†’ ys.IsPrefix xs ih_1 : Interpretation V_N V_T R (R A, xs) (n, some ys) ⊒ n < n + 1 TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Program/PEG.lean
InterpretationPrefix
[264, 1]
[285, 20]
exact ih ih_1
V_N V_T : Type R : V_N β†’ PE V_N V_T xs ys : List V_T A : V_N n : β„• ih_1 : Interpretation V_N V_T R (R A, xs) (n, some ys) ih : Interpretation V_N V_T R (R A, xs) (n, some ys) β†’ ys.IsPrefix xs ⊒ ys.IsPrefix xs
no goals
Please generate a tactic in lean4 to solve the state. STATE: V_N V_T : Type R : V_N β†’ PE V_N V_T xs ys : List V_T A : V_N n : β„• ih_1 : Interpretation V_N V_T R (R A, xs) (n, some ys) ih : Interpretation V_N V_T R (R A, xs) (n, some ys) β†’ ys.IsPrefix xs ⊒ ys.IsPrefix xs TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Program/PEG.lean
InterpretationPrefix
[264, 1]
[285, 20]
specialize ih n2 _ e2
V_N V_T : Type R : V_N β†’ PE V_N V_T xs ys : List V_T e1 e2 : PE V_N V_T n1 n2 : β„• ih_1 : Interpretation V_N V_T R (e1, xs) (n1, none) ih : βˆ€ m < n1 + n2 + 1, βˆ€ (e : PE V_N V_T), Interpretation V_N V_T R (e, xs) (m, some ys) β†’ ys.IsPrefix xs ih_2 : Interpretation V_N V_T R (e2, xs) (n2, some ys) ⊒ ys.IsPrefix xs
V_N V_T : Type R : V_N β†’ PE V_N V_T xs ys : List V_T e1 e2 : PE V_N V_T n1 n2 : β„• ih_1 : Interpretation V_N V_T R (e1, xs) (n1, none) ih : βˆ€ m < n1 + n2 + 1, βˆ€ (e : PE V_N V_T), Interpretation V_N V_T R (e, xs) (m, some ys) β†’ ys.IsPrefix xs ih_2 : Interpretation V_N V_T R (e2, xs) (n2, some ys) ⊒ n2 < n1 + n2 + 1 V_N V_T : Type R : V_N β†’ PE V_N V_T xs ys : List V_T e1 e2 : PE V_N V_T n1 n2 : β„• ih_1 : Interpretation V_N V_T R (e1, xs) (n1, none) ih_2 : Interpretation V_N V_T R (e2, xs) (n2, some ys) ih : Interpretation V_N V_T R (e2, xs) (n2, some ys) β†’ ys.IsPrefix xs ⊒ ys.IsPrefix xs
Please generate a tactic in lean4 to solve the state. STATE: V_N V_T : Type R : V_N β†’ PE V_N V_T xs ys : List V_T e1 e2 : PE V_N V_T n1 n2 : β„• ih_1 : Interpretation V_N V_T R (e1, xs) (n1, none) ih : βˆ€ m < n1 + n2 + 1, βˆ€ (e : PE V_N V_T), Interpretation V_N V_T R (e, xs) (m, some ys) β†’ ys.IsPrefix xs ih_2 : Interpretation V_N V_T R (e2, xs) (n2, some ys) ⊒ ys.IsPrefix xs TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Program/PEG.lean
InterpretationPrefix
[264, 1]
[285, 20]
omega
V_N V_T : Type R : V_N β†’ PE V_N V_T xs ys : List V_T e1 e2 : PE V_N V_T n1 n2 : β„• ih_1 : Interpretation V_N V_T R (e1, xs) (n1, none) ih : βˆ€ m < n1 + n2 + 1, βˆ€ (e : PE V_N V_T), Interpretation V_N V_T R (e, xs) (m, some ys) β†’ ys.IsPrefix xs ih_2 : Interpretation V_N V_T R (e2, xs) (n2, some ys) ⊒ n2 < n1 + n2 + 1
no goals
Please generate a tactic in lean4 to solve the state. STATE: V_N V_T : Type R : V_N β†’ PE V_N V_T xs ys : List V_T e1 e2 : PE V_N V_T n1 n2 : β„• ih_1 : Interpretation V_N V_T R (e1, xs) (n1, none) ih : βˆ€ m < n1 + n2 + 1, βˆ€ (e : PE V_N V_T), Interpretation V_N V_T R (e, xs) (m, some ys) β†’ ys.IsPrefix xs ih_2 : Interpretation V_N V_T R (e2, xs) (n2, some ys) ⊒ n2 < n1 + n2 + 1 TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Program/PEG.lean
InterpretationPrefix
[264, 1]
[285, 20]
exact ih ih_2
V_N V_T : Type R : V_N β†’ PE V_N V_T xs ys : List V_T e1 e2 : PE V_N V_T n1 n2 : β„• ih_1 : Interpretation V_N V_T R (e1, xs) (n1, none) ih_2 : Interpretation V_N V_T R (e2, xs) (n2, some ys) ih : Interpretation V_N V_T R (e2, xs) (n2, some ys) β†’ ys.IsPrefix xs ⊒ ys.IsPrefix xs
no goals
Please generate a tactic in lean4 to solve the state. STATE: V_N V_T : Type R : V_N β†’ PE V_N V_T xs ys : List V_T e1 e2 : PE V_N V_T n1 n2 : β„• ih_1 : Interpretation V_N V_T R (e1, xs) (n1, none) ih_2 : Interpretation V_N V_T R (e2, xs) (n2, some ys) ih : Interpretation V_N V_T R (e2, xs) (n2, some ys) β†’ ys.IsPrefix xs ⊒ ys.IsPrefix xs TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Prop/All/Rec/Sub.lean
FOL.NV.Sub.Prop.All.Rec.sub_no_predVar
[47, 1]
[91, 20]
induction F
F : Formula Ο„ : PredName β†’ PredName h1 : F.predVarSet = βˆ… ⊒ sub Ο„ F = F
case pred_const_ Ο„ : PredName β†’ PredName a✝¹ : PredName a✝ : List VarName h1 : (pred_const_ a✝¹ a✝).predVarSet = βˆ… ⊒ sub Ο„ (pred_const_ a✝¹ a✝) = pred_const_ a✝¹ a✝ case pred_var_ Ο„ : PredName β†’ PredName a✝¹ : PredName a✝ : List VarName h1 : (pred_var_ a✝¹ a✝).predVarSet = βˆ… ⊒ sub Ο„ (pred_var_ a✝¹ a✝) = pred_var_ a✝¹ a✝ case eq_ Ο„ : PredName β†’ PredName a✝¹ a✝ : VarName h1 : (eq_ a✝¹ a✝).predVarSet = βˆ… ⊒ sub Ο„ (eq_ a✝¹ a✝) = eq_ a✝¹ a✝ case true_ Ο„ : PredName β†’ PredName h1 : true_.predVarSet = βˆ… ⊒ sub Ο„ true_ = true_ case false_ Ο„ : PredName β†’ PredName h1 : false_.predVarSet = βˆ… ⊒ sub Ο„ false_ = false_ case not_ Ο„ : PredName β†’ PredName a✝ : Formula a_ih✝ : a✝.predVarSet = βˆ… β†’ sub Ο„ a✝ = a✝ h1 : a✝.not_.predVarSet = βˆ… ⊒ sub Ο„ a✝.not_ = a✝.not_ case imp_ Ο„ : PredName β†’ PredName a✝¹ a✝ : Formula a_ih✝¹ : a✝¹.predVarSet = βˆ… β†’ sub Ο„ a✝¹ = a✝¹ a_ih✝ : a✝.predVarSet = βˆ… β†’ sub Ο„ a✝ = a✝ h1 : (a✝¹.imp_ a✝).predVarSet = βˆ… ⊒ sub Ο„ (a✝¹.imp_ a✝) = a✝¹.imp_ a✝ case and_ Ο„ : PredName β†’ PredName a✝¹ a✝ : Formula a_ih✝¹ : a✝¹.predVarSet = βˆ… β†’ sub Ο„ a✝¹ = a✝¹ a_ih✝ : a✝.predVarSet = βˆ… β†’ sub Ο„ a✝ = a✝ h1 : (a✝¹.and_ a✝).predVarSet = βˆ… ⊒ sub Ο„ (a✝¹.and_ a✝) = a✝¹.and_ a✝ case or_ Ο„ : PredName β†’ PredName a✝¹ a✝ : Formula a_ih✝¹ : a✝¹.predVarSet = βˆ… β†’ sub Ο„ a✝¹ = a✝¹ a_ih✝ : a✝.predVarSet = βˆ… β†’ sub Ο„ a✝ = a✝ h1 : (a✝¹.or_ a✝).predVarSet = βˆ… ⊒ sub Ο„ (a✝¹.or_ a✝) = a✝¹.or_ a✝ case iff_ Ο„ : PredName β†’ PredName a✝¹ a✝ : Formula a_ih✝¹ : a✝¹.predVarSet = βˆ… β†’ sub Ο„ a✝¹ = a✝¹ a_ih✝ : a✝.predVarSet = βˆ… β†’ sub Ο„ a✝ = a✝ h1 : (a✝¹.iff_ a✝).predVarSet = βˆ… ⊒ sub Ο„ (a✝¹.iff_ a✝) = a✝¹.iff_ a✝ case forall_ Ο„ : PredName β†’ PredName a✝¹ : VarName a✝ : Formula a_ih✝ : a✝.predVarSet = βˆ… β†’ sub Ο„ a✝ = a✝ h1 : (forall_ a✝¹ a✝).predVarSet = βˆ… ⊒ sub Ο„ (forall_ a✝¹ a✝) = forall_ a✝¹ a✝ case exists_ Ο„ : PredName β†’ PredName a✝¹ : VarName a✝ : Formula a_ih✝ : a✝.predVarSet = βˆ… β†’ sub Ο„ a✝ = a✝ h1 : (exists_ a✝¹ a✝).predVarSet = βˆ… ⊒ sub Ο„ (exists_ a✝¹ a✝) = exists_ a✝¹ a✝ case def_ Ο„ : PredName β†’ PredName a✝¹ : DefName a✝ : List VarName h1 : (def_ a✝¹ a✝).predVarSet = βˆ… ⊒ sub Ο„ (def_ a✝¹ a✝) = def_ a✝¹ a✝
Please generate a tactic in lean4 to solve the state. STATE: F : Formula Ο„ : PredName β†’ PredName h1 : F.predVarSet = βˆ… ⊒ sub Ο„ F = F TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Prop/All/Rec/Sub.lean
FOL.NV.Sub.Prop.All.Rec.sub_no_predVar
[47, 1]
[91, 20]
case pred_const_ X xs => simp only [sub]
Ο„ : PredName β†’ PredName X : PredName xs : List VarName h1 : (pred_const_ X xs).predVarSet = βˆ… ⊒ sub Ο„ (pred_const_ X xs) = pred_const_ X xs
no goals
Please generate a tactic in lean4 to solve the state. STATE: Ο„ : PredName β†’ PredName X : PredName xs : List VarName h1 : (pred_const_ X xs).predVarSet = βˆ… ⊒ sub Ο„ (pred_const_ X xs) = pred_const_ X xs TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Prop/All/Rec/Sub.lean
FOL.NV.Sub.Prop.All.Rec.sub_no_predVar
[47, 1]
[91, 20]
case pred_var_ X xs => simp only [predVarSet] at h1 simp at h1
Ο„ : PredName β†’ PredName X : PredName xs : List VarName h1 : (pred_var_ X xs).predVarSet = βˆ… ⊒ sub Ο„ (pred_var_ X xs) = pred_var_ X xs
no goals
Please generate a tactic in lean4 to solve the state. STATE: Ο„ : PredName β†’ PredName X : PredName xs : List VarName h1 : (pred_var_ X xs).predVarSet = βˆ… ⊒ sub Ο„ (pred_var_ X xs) = pred_var_ X xs TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Prop/All/Rec/Sub.lean
FOL.NV.Sub.Prop.All.Rec.sub_no_predVar
[47, 1]
[91, 20]
case eq_ x y => simp only [sub]
Ο„ : PredName β†’ PredName x y : VarName h1 : (eq_ x y).predVarSet = βˆ… ⊒ sub Ο„ (eq_ x y) = eq_ x y
no goals
Please generate a tactic in lean4 to solve the state. STATE: Ο„ : PredName β†’ PredName x y : VarName h1 : (eq_ x y).predVarSet = βˆ… ⊒ sub Ο„ (eq_ x y) = eq_ x y TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Prop/All/Rec/Sub.lean
FOL.NV.Sub.Prop.All.Rec.sub_no_predVar
[47, 1]
[91, 20]
case true_ | false_ => simp only [sub]
Ο„ : PredName β†’ PredName h1 : false_.predVarSet = βˆ… ⊒ sub Ο„ false_ = false_
no goals
Please generate a tactic in lean4 to solve the state. STATE: Ο„ : PredName β†’ PredName h1 : false_.predVarSet = βˆ… ⊒ sub Ο„ false_ = false_ TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Prop/All/Rec/Sub.lean
FOL.NV.Sub.Prop.All.Rec.sub_no_predVar
[47, 1]
[91, 20]
case not_ phi phi_ih => simp only [predVarSet] at h1 simp only [sub] congr! exact phi_ih h1
Ο„ : PredName β†’ PredName phi : Formula phi_ih : phi.predVarSet = βˆ… β†’ sub Ο„ phi = phi h1 : phi.not_.predVarSet = βˆ… ⊒ sub Ο„ phi.not_ = phi.not_
no goals
Please generate a tactic in lean4 to solve the state. STATE: Ο„ : PredName β†’ PredName phi : Formula phi_ih : phi.predVarSet = βˆ… β†’ sub Ο„ phi = phi h1 : phi.not_.predVarSet = βˆ… ⊒ sub Ο„ phi.not_ = phi.not_ TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Prop/All/Rec/Sub.lean
FOL.NV.Sub.Prop.All.Rec.sub_no_predVar
[47, 1]
[91, 20]
case forall_ x phi phi_ih | exists_ x phi phi_ih => simp only [predVarSet] at h1 simp only [sub] congr! exact phi_ih h1
Ο„ : PredName β†’ PredName x : VarName phi : Formula phi_ih : phi.predVarSet = βˆ… β†’ sub Ο„ phi = phi h1 : (exists_ x phi).predVarSet = βˆ… ⊒ sub Ο„ (exists_ x phi) = exists_ x phi
no goals
Please generate a tactic in lean4 to solve the state. STATE: Ο„ : PredName β†’ PredName x : VarName phi : Formula phi_ih : phi.predVarSet = βˆ… β†’ sub Ο„ phi = phi h1 : (exists_ x phi).predVarSet = βˆ… ⊒ sub Ο„ (exists_ x phi) = exists_ x phi TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Prop/All/Rec/Sub.lean
FOL.NV.Sub.Prop.All.Rec.sub_no_predVar
[47, 1]
[91, 20]
case def_ X xs => simp only [sub]
Ο„ : PredName β†’ PredName X : DefName xs : List VarName h1 : (def_ X xs).predVarSet = βˆ… ⊒ sub Ο„ (def_ X xs) = def_ X xs
no goals
Please generate a tactic in lean4 to solve the state. STATE: Ο„ : PredName β†’ PredName X : DefName xs : List VarName h1 : (def_ X xs).predVarSet = βˆ… ⊒ sub Ο„ (def_ X xs) = def_ X xs TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Prop/All/Rec/Sub.lean
FOL.NV.Sub.Prop.All.Rec.sub_no_predVar
[47, 1]
[91, 20]
simp only [sub]
Ο„ : PredName β†’ PredName X : PredName xs : List VarName h1 : (pred_const_ X xs).predVarSet = βˆ… ⊒ sub Ο„ (pred_const_ X xs) = pred_const_ X xs
no goals
Please generate a tactic in lean4 to solve the state. STATE: Ο„ : PredName β†’ PredName X : PredName xs : List VarName h1 : (pred_const_ X xs).predVarSet = βˆ… ⊒ sub Ο„ (pred_const_ X xs) = pred_const_ X xs TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Prop/All/Rec/Sub.lean
FOL.NV.Sub.Prop.All.Rec.sub_no_predVar
[47, 1]
[91, 20]
simp only [predVarSet] at h1
Ο„ : PredName β†’ PredName X : PredName xs : List VarName h1 : (pred_var_ X xs).predVarSet = βˆ… ⊒ sub Ο„ (pred_var_ X xs) = pred_var_ X xs
Ο„ : PredName β†’ PredName X : PredName xs : List VarName h1 : {(X, xs.length)} = βˆ… ⊒ sub Ο„ (pred_var_ X xs) = pred_var_ X xs
Please generate a tactic in lean4 to solve the state. STATE: Ο„ : PredName β†’ PredName X : PredName xs : List VarName h1 : (pred_var_ X xs).predVarSet = βˆ… ⊒ sub Ο„ (pred_var_ X xs) = pred_var_ X xs TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Prop/All/Rec/Sub.lean
FOL.NV.Sub.Prop.All.Rec.sub_no_predVar
[47, 1]
[91, 20]
simp at h1
Ο„ : PredName β†’ PredName X : PredName xs : List VarName h1 : {(X, xs.length)} = βˆ… ⊒ sub Ο„ (pred_var_ X xs) = pred_var_ X xs
no goals
Please generate a tactic in lean4 to solve the state. STATE: Ο„ : PredName β†’ PredName X : PredName xs : List VarName h1 : {(X, xs.length)} = βˆ… ⊒ sub Ο„ (pred_var_ X xs) = pred_var_ X xs TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Prop/All/Rec/Sub.lean
FOL.NV.Sub.Prop.All.Rec.sub_no_predVar
[47, 1]
[91, 20]
simp only [sub]
Ο„ : PredName β†’ PredName x y : VarName h1 : (eq_ x y).predVarSet = βˆ… ⊒ sub Ο„ (eq_ x y) = eq_ x y
no goals
Please generate a tactic in lean4 to solve the state. STATE: Ο„ : PredName β†’ PredName x y : VarName h1 : (eq_ x y).predVarSet = βˆ… ⊒ sub Ο„ (eq_ x y) = eq_ x y TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Prop/All/Rec/Sub.lean
FOL.NV.Sub.Prop.All.Rec.sub_no_predVar
[47, 1]
[91, 20]
simp only [sub]
Ο„ : PredName β†’ PredName h1 : false_.predVarSet = βˆ… ⊒ sub Ο„ false_ = false_
no goals
Please generate a tactic in lean4 to solve the state. STATE: Ο„ : PredName β†’ PredName h1 : false_.predVarSet = βˆ… ⊒ sub Ο„ false_ = false_ TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Prop/All/Rec/Sub.lean
FOL.NV.Sub.Prop.All.Rec.sub_no_predVar
[47, 1]
[91, 20]
simp only [predVarSet] at h1
Ο„ : PredName β†’ PredName phi : Formula phi_ih : phi.predVarSet = βˆ… β†’ sub Ο„ phi = phi h1 : phi.not_.predVarSet = βˆ… ⊒ sub Ο„ phi.not_ = phi.not_
Ο„ : PredName β†’ PredName phi : Formula phi_ih : phi.predVarSet = βˆ… β†’ sub Ο„ phi = phi h1 : phi.predVarSet = βˆ… ⊒ sub Ο„ phi.not_ = phi.not_
Please generate a tactic in lean4 to solve the state. STATE: Ο„ : PredName β†’ PredName phi : Formula phi_ih : phi.predVarSet = βˆ… β†’ sub Ο„ phi = phi h1 : phi.not_.predVarSet = βˆ… ⊒ sub Ο„ phi.not_ = phi.not_ TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Prop/All/Rec/Sub.lean
FOL.NV.Sub.Prop.All.Rec.sub_no_predVar
[47, 1]
[91, 20]
simp only [sub]
Ο„ : PredName β†’ PredName phi : Formula phi_ih : phi.predVarSet = βˆ… β†’ sub Ο„ phi = phi h1 : phi.predVarSet = βˆ… ⊒ sub Ο„ phi.not_ = phi.not_
Ο„ : PredName β†’ PredName phi : Formula phi_ih : phi.predVarSet = βˆ… β†’ sub Ο„ phi = phi h1 : phi.predVarSet = βˆ… ⊒ (sub Ο„ phi).not_ = phi.not_
Please generate a tactic in lean4 to solve the state. STATE: Ο„ : PredName β†’ PredName phi : Formula phi_ih : phi.predVarSet = βˆ… β†’ sub Ο„ phi = phi h1 : phi.predVarSet = βˆ… ⊒ sub Ο„ phi.not_ = phi.not_ TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Prop/All/Rec/Sub.lean
FOL.NV.Sub.Prop.All.Rec.sub_no_predVar
[47, 1]
[91, 20]
congr!
Ο„ : PredName β†’ PredName phi : Formula phi_ih : phi.predVarSet = βˆ… β†’ sub Ο„ phi = phi h1 : phi.predVarSet = βˆ… ⊒ (sub Ο„ phi).not_ = phi.not_
case h.e'_1 Ο„ : PredName β†’ PredName phi : Formula phi_ih : phi.predVarSet = βˆ… β†’ sub Ο„ phi = phi h1 : phi.predVarSet = βˆ… ⊒ sub Ο„ phi = phi
Please generate a tactic in lean4 to solve the state. STATE: Ο„ : PredName β†’ PredName phi : Formula phi_ih : phi.predVarSet = βˆ… β†’ sub Ο„ phi = phi h1 : phi.predVarSet = βˆ… ⊒ (sub Ο„ phi).not_ = phi.not_ TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Prop/All/Rec/Sub.lean
FOL.NV.Sub.Prop.All.Rec.sub_no_predVar
[47, 1]
[91, 20]
exact phi_ih h1
case h.e'_1 Ο„ : PredName β†’ PredName phi : Formula phi_ih : phi.predVarSet = βˆ… β†’ sub Ο„ phi = phi h1 : phi.predVarSet = βˆ… ⊒ sub Ο„ phi = phi
no goals
Please generate a tactic in lean4 to solve the state. STATE: case h.e'_1 Ο„ : PredName β†’ PredName phi : Formula phi_ih : phi.predVarSet = βˆ… β†’ sub Ο„ phi = phi h1 : phi.predVarSet = βˆ… ⊒ sub Ο„ phi = phi TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Prop/All/Rec/Sub.lean
FOL.NV.Sub.Prop.All.Rec.sub_no_predVar
[47, 1]
[91, 20]
simp only [predVarSet] at h1
Ο„ : PredName β†’ PredName phi psi : Formula phi_ih : phi.predVarSet = βˆ… β†’ sub Ο„ phi = phi psi_ih : psi.predVarSet = βˆ… β†’ sub Ο„ psi = psi h1 : (phi.iff_ psi).predVarSet = βˆ… ⊒ sub Ο„ (phi.iff_ psi) = phi.iff_ psi
Ο„ : PredName β†’ PredName phi psi : Formula phi_ih : phi.predVarSet = βˆ… β†’ sub Ο„ phi = phi psi_ih : psi.predVarSet = βˆ… β†’ sub Ο„ psi = psi h1 : phi.predVarSet βˆͺ psi.predVarSet = βˆ… ⊒ sub Ο„ (phi.iff_ psi) = phi.iff_ psi
Please generate a tactic in lean4 to solve the state. STATE: Ο„ : PredName β†’ PredName phi psi : Formula phi_ih : phi.predVarSet = βˆ… β†’ sub Ο„ phi = phi psi_ih : psi.predVarSet = βˆ… β†’ sub Ο„ psi = psi h1 : (phi.iff_ psi).predVarSet = βˆ… ⊒ sub Ο„ (phi.iff_ psi) = phi.iff_ psi TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Prop/All/Rec/Sub.lean
FOL.NV.Sub.Prop.All.Rec.sub_no_predVar
[47, 1]
[91, 20]
simp only [Finset.union_eq_empty] at h1
Ο„ : PredName β†’ PredName phi psi : Formula phi_ih : phi.predVarSet = βˆ… β†’ sub Ο„ phi = phi psi_ih : psi.predVarSet = βˆ… β†’ sub Ο„ psi = psi h1 : phi.predVarSet βˆͺ psi.predVarSet = βˆ… ⊒ sub Ο„ (phi.iff_ psi) = phi.iff_ psi
Ο„ : PredName β†’ PredName phi psi : Formula phi_ih : phi.predVarSet = βˆ… β†’ sub Ο„ phi = phi psi_ih : psi.predVarSet = βˆ… β†’ sub Ο„ psi = psi h1 : phi.predVarSet = βˆ… ∧ psi.predVarSet = βˆ… ⊒ sub Ο„ (phi.iff_ psi) = phi.iff_ psi
Please generate a tactic in lean4 to solve the state. STATE: Ο„ : PredName β†’ PredName phi psi : Formula phi_ih : phi.predVarSet = βˆ… β†’ sub Ο„ phi = phi psi_ih : psi.predVarSet = βˆ… β†’ sub Ο„ psi = psi h1 : phi.predVarSet βˆͺ psi.predVarSet = βˆ… ⊒ sub Ο„ (phi.iff_ psi) = phi.iff_ psi TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Prop/All/Rec/Sub.lean
FOL.NV.Sub.Prop.All.Rec.sub_no_predVar
[47, 1]
[91, 20]
cases h1
Ο„ : PredName β†’ PredName phi psi : Formula phi_ih : phi.predVarSet = βˆ… β†’ sub Ο„ phi = phi psi_ih : psi.predVarSet = βˆ… β†’ sub Ο„ psi = psi h1 : phi.predVarSet = βˆ… ∧ psi.predVarSet = βˆ… ⊒ sub Ο„ (phi.iff_ psi) = phi.iff_ psi
case intro Ο„ : PredName β†’ PredName phi psi : Formula phi_ih : phi.predVarSet = βˆ… β†’ sub Ο„ phi = phi psi_ih : psi.predVarSet = βˆ… β†’ sub Ο„ psi = psi left✝ : phi.predVarSet = βˆ… right✝ : psi.predVarSet = βˆ… ⊒ sub Ο„ (phi.iff_ psi) = phi.iff_ psi
Please generate a tactic in lean4 to solve the state. STATE: Ο„ : PredName β†’ PredName phi psi : Formula phi_ih : phi.predVarSet = βˆ… β†’ sub Ο„ phi = phi psi_ih : psi.predVarSet = βˆ… β†’ sub Ο„ psi = psi h1 : phi.predVarSet = βˆ… ∧ psi.predVarSet = βˆ… ⊒ sub Ο„ (phi.iff_ psi) = phi.iff_ psi TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Prop/All/Rec/Sub.lean
FOL.NV.Sub.Prop.All.Rec.sub_no_predVar
[47, 1]
[91, 20]
simp only [sub]
Ο„ : PredName β†’ PredName phi psi : Formula phi_ih : phi.predVarSet = βˆ… β†’ sub Ο„ phi = phi psi_ih : psi.predVarSet = βˆ… β†’ sub Ο„ psi = psi h1_left : phi.predVarSet = βˆ… h1_right : psi.predVarSet = βˆ… ⊒ sub Ο„ (phi.iff_ psi) = phi.iff_ psi
Ο„ : PredName β†’ PredName phi psi : Formula phi_ih : phi.predVarSet = βˆ… β†’ sub Ο„ phi = phi psi_ih : psi.predVarSet = βˆ… β†’ sub Ο„ psi = psi h1_left : phi.predVarSet = βˆ… h1_right : psi.predVarSet = βˆ… ⊒ (sub Ο„ phi).iff_ (sub Ο„ psi) = phi.iff_ psi
Please generate a tactic in lean4 to solve the state. STATE: Ο„ : PredName β†’ PredName phi psi : Formula phi_ih : phi.predVarSet = βˆ… β†’ sub Ο„ phi = phi psi_ih : psi.predVarSet = βˆ… β†’ sub Ο„ psi = psi h1_left : phi.predVarSet = βˆ… h1_right : psi.predVarSet = βˆ… ⊒ sub Ο„ (phi.iff_ psi) = phi.iff_ psi TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Prop/All/Rec/Sub.lean
FOL.NV.Sub.Prop.All.Rec.sub_no_predVar
[47, 1]
[91, 20]
congr!
Ο„ : PredName β†’ PredName phi psi : Formula phi_ih : phi.predVarSet = βˆ… β†’ sub Ο„ phi = phi psi_ih : psi.predVarSet = βˆ… β†’ sub Ο„ psi = psi h1_left : phi.predVarSet = βˆ… h1_right : psi.predVarSet = βˆ… ⊒ (sub Ο„ phi).iff_ (sub Ο„ psi) = phi.iff_ psi
case h.e'_1 Ο„ : PredName β†’ PredName phi psi : Formula phi_ih : phi.predVarSet = βˆ… β†’ sub Ο„ phi = phi psi_ih : psi.predVarSet = βˆ… β†’ sub Ο„ psi = psi h1_left : phi.predVarSet = βˆ… h1_right : psi.predVarSet = βˆ… ⊒ sub Ο„ phi = phi case h.e'_2 Ο„ : PredName β†’ PredName phi psi : Formula phi_ih : phi.predVarSet = βˆ… β†’ sub Ο„ phi = phi psi_ih : psi.predVarSet = βˆ… β†’ sub Ο„ psi = psi h1_left : phi.predVarSet = βˆ… h1_right : psi.predVarSet = βˆ… ⊒ sub Ο„ psi = psi
Please generate a tactic in lean4 to solve the state. STATE: Ο„ : PredName β†’ PredName phi psi : Formula phi_ih : phi.predVarSet = βˆ… β†’ sub Ο„ phi = phi psi_ih : psi.predVarSet = βˆ… β†’ sub Ο„ psi = psi h1_left : phi.predVarSet = βˆ… h1_right : psi.predVarSet = βˆ… ⊒ (sub Ο„ phi).iff_ (sub Ο„ psi) = phi.iff_ psi TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Prop/All/Rec/Sub.lean
FOL.NV.Sub.Prop.All.Rec.sub_no_predVar
[47, 1]
[91, 20]
exact phi_ih h1_left
case h.e'_1 Ο„ : PredName β†’ PredName phi psi : Formula phi_ih : phi.predVarSet = βˆ… β†’ sub Ο„ phi = phi psi_ih : psi.predVarSet = βˆ… β†’ sub Ο„ psi = psi h1_left : phi.predVarSet = βˆ… h1_right : psi.predVarSet = βˆ… ⊒ sub Ο„ phi = phi
no goals
Please generate a tactic in lean4 to solve the state. STATE: case h.e'_1 Ο„ : PredName β†’ PredName phi psi : Formula phi_ih : phi.predVarSet = βˆ… β†’ sub Ο„ phi = phi psi_ih : psi.predVarSet = βˆ… β†’ sub Ο„ psi = psi h1_left : phi.predVarSet = βˆ… h1_right : psi.predVarSet = βˆ… ⊒ sub Ο„ phi = phi TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Prop/All/Rec/Sub.lean
FOL.NV.Sub.Prop.All.Rec.sub_no_predVar
[47, 1]
[91, 20]
exact psi_ih h1_right
case h.e'_2 Ο„ : PredName β†’ PredName phi psi : Formula phi_ih : phi.predVarSet = βˆ… β†’ sub Ο„ phi = phi psi_ih : psi.predVarSet = βˆ… β†’ sub Ο„ psi = psi h1_left : phi.predVarSet = βˆ… h1_right : psi.predVarSet = βˆ… ⊒ sub Ο„ psi = psi
no goals
Please generate a tactic in lean4 to solve the state. STATE: case h.e'_2 Ο„ : PredName β†’ PredName phi psi : Formula phi_ih : phi.predVarSet = βˆ… β†’ sub Ο„ phi = phi psi_ih : psi.predVarSet = βˆ… β†’ sub Ο„ psi = psi h1_left : phi.predVarSet = βˆ… h1_right : psi.predVarSet = βˆ… ⊒ sub Ο„ psi = psi TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Prop/All/Rec/Sub.lean
FOL.NV.Sub.Prop.All.Rec.sub_no_predVar
[47, 1]
[91, 20]
simp only [predVarSet] at h1
Ο„ : PredName β†’ PredName x : VarName phi : Formula phi_ih : phi.predVarSet = βˆ… β†’ sub Ο„ phi = phi h1 : (exists_ x phi).predVarSet = βˆ… ⊒ sub Ο„ (exists_ x phi) = exists_ x phi
Ο„ : PredName β†’ PredName x : VarName phi : Formula phi_ih : phi.predVarSet = βˆ… β†’ sub Ο„ phi = phi h1 : phi.predVarSet = βˆ… ⊒ sub Ο„ (exists_ x phi) = exists_ x phi
Please generate a tactic in lean4 to solve the state. STATE: Ο„ : PredName β†’ PredName x : VarName phi : Formula phi_ih : phi.predVarSet = βˆ… β†’ sub Ο„ phi = phi h1 : (exists_ x phi).predVarSet = βˆ… ⊒ sub Ο„ (exists_ x phi) = exists_ x phi TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Prop/All/Rec/Sub.lean
FOL.NV.Sub.Prop.All.Rec.sub_no_predVar
[47, 1]
[91, 20]
simp only [sub]
Ο„ : PredName β†’ PredName x : VarName phi : Formula phi_ih : phi.predVarSet = βˆ… β†’ sub Ο„ phi = phi h1 : phi.predVarSet = βˆ… ⊒ sub Ο„ (exists_ x phi) = exists_ x phi
Ο„ : PredName β†’ PredName x : VarName phi : Formula phi_ih : phi.predVarSet = βˆ… β†’ sub Ο„ phi = phi h1 : phi.predVarSet = βˆ… ⊒ exists_ x (sub Ο„ phi) = exists_ x phi
Please generate a tactic in lean4 to solve the state. STATE: Ο„ : PredName β†’ PredName x : VarName phi : Formula phi_ih : phi.predVarSet = βˆ… β†’ sub Ο„ phi = phi h1 : phi.predVarSet = βˆ… ⊒ sub Ο„ (exists_ x phi) = exists_ x phi TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Prop/All/Rec/Sub.lean
FOL.NV.Sub.Prop.All.Rec.sub_no_predVar
[47, 1]
[91, 20]
congr!
Ο„ : PredName β†’ PredName x : VarName phi : Formula phi_ih : phi.predVarSet = βˆ… β†’ sub Ο„ phi = phi h1 : phi.predVarSet = βˆ… ⊒ exists_ x (sub Ο„ phi) = exists_ x phi
case h.e'_2 Ο„ : PredName β†’ PredName x : VarName phi : Formula phi_ih : phi.predVarSet = βˆ… β†’ sub Ο„ phi = phi h1 : phi.predVarSet = βˆ… ⊒ sub Ο„ phi = phi
Please generate a tactic in lean4 to solve the state. STATE: Ο„ : PredName β†’ PredName x : VarName phi : Formula phi_ih : phi.predVarSet = βˆ… β†’ sub Ο„ phi = phi h1 : phi.predVarSet = βˆ… ⊒ exists_ x (sub Ο„ phi) = exists_ x phi TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Prop/All/Rec/Sub.lean
FOL.NV.Sub.Prop.All.Rec.sub_no_predVar
[47, 1]
[91, 20]
exact phi_ih h1
case h.e'_2 Ο„ : PredName β†’ PredName x : VarName phi : Formula phi_ih : phi.predVarSet = βˆ… β†’ sub Ο„ phi = phi h1 : phi.predVarSet = βˆ… ⊒ sub Ο„ phi = phi
no goals
Please generate a tactic in lean4 to solve the state. STATE: case h.e'_2 Ο„ : PredName β†’ PredName x : VarName phi : Formula phi_ih : phi.predVarSet = βˆ… β†’ sub Ο„ phi = phi h1 : phi.predVarSet = βˆ… ⊒ sub Ο„ phi = phi TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Prop/All/Rec/Sub.lean
FOL.NV.Sub.Prop.All.Rec.sub_no_predVar
[47, 1]
[91, 20]
simp only [sub]
Ο„ : PredName β†’ PredName X : DefName xs : List VarName h1 : (def_ X xs).predVarSet = βˆ… ⊒ sub Ο„ (def_ X xs) = def_ X xs
no goals
Please generate a tactic in lean4 to solve the state. STATE: Ο„ : PredName β†’ PredName X : DefName xs : List VarName h1 : (def_ X xs).predVarSet = βˆ… ⊒ sub Ο„ (def_ X xs) = def_ X xs TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Prop/All/Rec/Sub.lean
FOL.NV.Sub.Prop.All.Rec.substitution_theorem
[94, 1]
[182, 15]
induction E generalizing F V
D : Type I : Interpretation D V : VarAssignment D E : Env Ο„ : PredName β†’ PredName F : Formula ⊒ Holds D I V E (sub Ο„ F) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V E (pred_var_ (Ο„ P) []) else I.pred_var_ P ds } V E F
case nil D : Type I : Interpretation D Ο„ : PredName β†’ PredName V : VarAssignment D F : Formula ⊒ Holds D I V [] (sub Ο„ F) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V [] (pred_var_ (Ο„ P) []) else I.pred_var_ P ds } V [] F case cons D : Type I : Interpretation D Ο„ : PredName β†’ PredName head✝ : Definition tail✝ : List Definition tail_ih✝ : βˆ€ (V : VarAssignment D) (F : Formula), Holds D I V tail✝ (sub Ο„ F) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V tail✝ (pred_var_ (Ο„ P) []) else I.pred_var_ P ds } V tail✝ F V : VarAssignment D F : Formula ⊒ Holds D I V (head✝ :: tail✝) (sub Ο„ F) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V (head✝ :: tail✝) (pred_var_ (Ο„ P) []) else I.pred_var_ P ds } V (head✝ :: tail✝) F
Please generate a tactic in lean4 to solve the state. STATE: D : Type I : Interpretation D V : VarAssignment D E : Env Ο„ : PredName β†’ PredName F : Formula ⊒ Holds D I V E (sub Ο„ F) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V E (pred_var_ (Ο„ P) []) else I.pred_var_ P ds } V E F TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Prop/All/Rec/Sub.lean
FOL.NV.Sub.Prop.All.Rec.substitution_theorem
[94, 1]
[182, 15]
case nil.def_ X xs => simp only [sub] simp only [Holds]
D : Type I : Interpretation D Ο„ : PredName β†’ PredName X : DefName xs : List VarName V : VarAssignment D ⊒ Holds D I V [] (sub Ο„ (def_ X xs)) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V [] (pred_var_ (Ο„ P) []) else I.pred_var_ P ds } V [] (def_ X xs)
no goals
Please generate a tactic in lean4 to solve the state. STATE: D : Type I : Interpretation D Ο„ : PredName β†’ PredName X : DefName xs : List VarName V : VarAssignment D ⊒ Holds D I V [] (sub Ο„ (def_ X xs)) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V [] (pred_var_ (Ο„ P) []) else I.pred_var_ P ds } V [] (def_ X xs) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Prop/All/Rec/Sub.lean
FOL.NV.Sub.Prop.All.Rec.substitution_theorem
[94, 1]
[182, 15]
case cons.def_ hd tl ih X xs => simp only [Holds] at ih simp at ih simp only [sub] simp only [Holds] split_ifs case _ c1 => specialize ih (Function.updateListITE V hd.args (List.map V xs)) hd.q simp only [sub_no_predVar hd.q Ο„ hd.h2] at ih apply ih case _ c1 => specialize ih V (def_ X xs) simp only [sub] at ih exact ih
D : Type I : Interpretation D Ο„ : PredName β†’ PredName hd : Definition tl : List Definition ih : βˆ€ (V : VarAssignment D) (F : Formula), Holds D I V tl (sub Ο„ F) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V tl (pred_var_ (Ο„ P) []) else I.pred_var_ P ds } V tl F X : DefName xs : List VarName V : VarAssignment D ⊒ Holds D I V (hd :: tl) (sub Ο„ (def_ X xs)) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V (hd :: tl) (pred_var_ (Ο„ P) []) else I.pred_var_ P ds } V (hd :: tl) (def_ X xs)
no goals
Please generate a tactic in lean4 to solve the state. STATE: D : Type I : Interpretation D Ο„ : PredName β†’ PredName hd : Definition tl : List Definition ih : βˆ€ (V : VarAssignment D) (F : Formula), Holds D I V tl (sub Ο„ F) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V tl (pred_var_ (Ο„ P) []) else I.pred_var_ P ds } V tl F X : DefName xs : List VarName V : VarAssignment D ⊒ Holds D I V (hd :: tl) (sub Ο„ (def_ X xs)) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V (hd :: tl) (pred_var_ (Ο„ P) []) else I.pred_var_ P ds } V (hd :: tl) (def_ X xs) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Prop/All/Rec/Sub.lean
FOL.NV.Sub.Prop.All.Rec.substitution_theorem
[94, 1]
[182, 15]
induction F generalizing V
case cons D : Type I : Interpretation D Ο„ : PredName β†’ PredName head✝ : Definition tail✝ : List Definition tail_ih✝ : βˆ€ (V : VarAssignment D) (F : Formula), Holds D I V tail✝ (sub Ο„ F) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V tail✝ (pred_var_ (Ο„ P) []) else I.pred_var_ P ds } V tail✝ F V : VarAssignment D F : Formula ⊒ Holds D I V (head✝ :: tail✝) (sub Ο„ F) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V (head✝ :: tail✝) (pred_var_ (Ο„ P) []) else I.pred_var_ P ds } V (head✝ :: tail✝) F
case cons.pred_const_ D : Type I : Interpretation D Ο„ : PredName β†’ PredName head✝ : Definition tail✝ : List Definition tail_ih✝ : βˆ€ (V : VarAssignment D) (F : Formula), Holds D I V tail✝ (sub Ο„ F) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V tail✝ (pred_var_ (Ο„ P) []) else I.pred_var_ P ds } V tail✝ F a✝¹ : PredName a✝ : List VarName V : VarAssignment D ⊒ Holds D I V (head✝ :: tail✝) (sub Ο„ (pred_const_ a✝¹ a✝)) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V (head✝ :: tail✝) (pred_var_ (Ο„ P) []) else I.pred_var_ P ds } V (head✝ :: tail✝) (pred_const_ a✝¹ a✝) case cons.pred_var_ D : Type I : Interpretation D Ο„ : PredName β†’ PredName head✝ : Definition tail✝ : List Definition tail_ih✝ : βˆ€ (V : VarAssignment D) (F : Formula), Holds D I V tail✝ (sub Ο„ F) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V tail✝ (pred_var_ (Ο„ P) []) else I.pred_var_ P ds } V tail✝ F a✝¹ : PredName a✝ : List VarName V : VarAssignment D ⊒ Holds D I V (head✝ :: tail✝) (sub Ο„ (pred_var_ a✝¹ a✝)) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V (head✝ :: tail✝) (pred_var_ (Ο„ P) []) else I.pred_var_ P ds } V (head✝ :: tail✝) (pred_var_ a✝¹ a✝) case cons.eq_ D : Type I : Interpretation D Ο„ : PredName β†’ PredName head✝ : Definition tail✝ : List Definition tail_ih✝ : βˆ€ (V : VarAssignment D) (F : Formula), Holds D I V tail✝ (sub Ο„ F) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V tail✝ (pred_var_ (Ο„ P) []) else I.pred_var_ P ds } V tail✝ F a✝¹ a✝ : VarName V : VarAssignment D ⊒ Holds D I V (head✝ :: tail✝) (sub Ο„ (eq_ a✝¹ a✝)) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V (head✝ :: tail✝) (pred_var_ (Ο„ P) []) else I.pred_var_ P ds } V (head✝ :: tail✝) (eq_ a✝¹ a✝) case cons.true_ D : Type I : Interpretation D Ο„ : PredName β†’ PredName head✝ : Definition tail✝ : List Definition tail_ih✝ : βˆ€ (V : VarAssignment D) (F : Formula), Holds D I V tail✝ (sub Ο„ F) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V tail✝ (pred_var_ (Ο„ P) []) else I.pred_var_ P ds } V tail✝ F V : VarAssignment D ⊒ Holds D I V (head✝ :: tail✝) (sub Ο„ true_) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V (head✝ :: tail✝) (pred_var_ (Ο„ P) []) else I.pred_var_ P ds } V (head✝ :: tail✝) true_ case cons.false_ D : Type I : Interpretation D Ο„ : PredName β†’ PredName head✝ : Definition tail✝ : List Definition tail_ih✝ : βˆ€ (V : VarAssignment D) (F : Formula), Holds D I V tail✝ (sub Ο„ F) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V tail✝ (pred_var_ (Ο„ P) []) else I.pred_var_ P ds } V tail✝ F V : VarAssignment D ⊒ Holds D I V (head✝ :: tail✝) (sub Ο„ false_) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V (head✝ :: tail✝) (pred_var_ (Ο„ P) []) else I.pred_var_ P ds } V (head✝ :: tail✝) false_ case cons.not_ D : Type I : Interpretation D Ο„ : PredName β†’ PredName head✝ : Definition tail✝ : List Definition tail_ih✝ : βˆ€ (V : VarAssignment D) (F : Formula), Holds D I V tail✝ (sub Ο„ F) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V tail✝ (pred_var_ (Ο„ P) []) else I.pred_var_ P ds } V tail✝ F a✝ : Formula a_ih✝ : βˆ€ (V : VarAssignment D), Holds D I V (head✝ :: tail✝) (sub Ο„ a✝) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V (head✝ :: tail✝) (pred_var_ (Ο„ P) []) else I.pred_var_ P ds } V (head✝ :: tail✝) a✝ V : VarAssignment D ⊒ Holds D I V (head✝ :: tail✝) (sub Ο„ a✝.not_) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V (head✝ :: tail✝) (pred_var_ (Ο„ P) []) else I.pred_var_ P ds } V (head✝ :: tail✝) a✝.not_ case cons.imp_ D : Type I : Interpretation D Ο„ : PredName β†’ PredName head✝ : Definition tail✝ : List Definition tail_ih✝ : βˆ€ (V : VarAssignment D) (F : Formula), Holds D I V tail✝ (sub Ο„ F) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V tail✝ (pred_var_ (Ο„ P) []) else I.pred_var_ P ds } V tail✝ F a✝¹ a✝ : Formula a_ih✝¹ : βˆ€ (V : VarAssignment D), Holds D I V (head✝ :: tail✝) (sub Ο„ a✝¹) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V (head✝ :: tail✝) (pred_var_ (Ο„ P) []) else I.pred_var_ P ds } V (head✝ :: tail✝) a✝¹ a_ih✝ : βˆ€ (V : VarAssignment D), Holds D I V (head✝ :: tail✝) (sub Ο„ a✝) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V (head✝ :: tail✝) (pred_var_ (Ο„ P) []) else I.pred_var_ P ds } V (head✝ :: tail✝) a✝ V : VarAssignment D ⊒ Holds D I V (head✝ :: tail✝) (sub Ο„ (a✝¹.imp_ a✝)) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V (head✝ :: tail✝) (pred_var_ (Ο„ P) []) else I.pred_var_ P ds } V (head✝ :: tail✝) (a✝¹.imp_ a✝) case cons.and_ D : Type I : Interpretation D Ο„ : PredName β†’ PredName head✝ : Definition tail✝ : List Definition tail_ih✝ : βˆ€ (V : VarAssignment D) (F : Formula), Holds D I V tail✝ (sub Ο„ F) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V tail✝ (pred_var_ (Ο„ P) []) else I.pred_var_ P ds } V tail✝ F a✝¹ a✝ : Formula a_ih✝¹ : βˆ€ (V : VarAssignment D), Holds D I V (head✝ :: tail✝) (sub Ο„ a✝¹) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V (head✝ :: tail✝) (pred_var_ (Ο„ P) []) else I.pred_var_ P ds } V (head✝ :: tail✝) a✝¹ a_ih✝ : βˆ€ (V : VarAssignment D), Holds D I V (head✝ :: tail✝) (sub Ο„ a✝) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V (head✝ :: tail✝) (pred_var_ (Ο„ P) []) else I.pred_var_ P ds } V (head✝ :: tail✝) a✝ V : VarAssignment D ⊒ Holds D I V (head✝ :: tail✝) (sub Ο„ (a✝¹.and_ a✝)) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V (head✝ :: tail✝) (pred_var_ (Ο„ P) []) else I.pred_var_ P ds } V (head✝ :: tail✝) (a✝¹.and_ a✝) case cons.or_ D : Type I : Interpretation D Ο„ : PredName β†’ PredName head✝ : Definition tail✝ : List Definition tail_ih✝ : βˆ€ (V : VarAssignment D) (F : Formula), Holds D I V tail✝ (sub Ο„ F) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V tail✝ (pred_var_ (Ο„ P) []) else I.pred_var_ P ds } V tail✝ F a✝¹ a✝ : Formula a_ih✝¹ : βˆ€ (V : VarAssignment D), Holds D I V (head✝ :: tail✝) (sub Ο„ a✝¹) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V (head✝ :: tail✝) (pred_var_ (Ο„ P) []) else I.pred_var_ P ds } V (head✝ :: tail✝) a✝¹ a_ih✝ : βˆ€ (V : VarAssignment D), Holds D I V (head✝ :: tail✝) (sub Ο„ a✝) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V (head✝ :: tail✝) (pred_var_ (Ο„ P) []) else I.pred_var_ P ds } V (head✝ :: tail✝) a✝ V : VarAssignment D ⊒ Holds D I V (head✝ :: tail✝) (sub Ο„ (a✝¹.or_ a✝)) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V (head✝ :: tail✝) (pred_var_ (Ο„ P) []) else I.pred_var_ P ds } V (head✝ :: tail✝) (a✝¹.or_ a✝) case cons.iff_ D : Type I : Interpretation D Ο„ : PredName β†’ PredName head✝ : Definition tail✝ : List Definition tail_ih✝ : βˆ€ (V : VarAssignment D) (F : Formula), Holds D I V tail✝ (sub Ο„ F) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V tail✝ (pred_var_ (Ο„ P) []) else I.pred_var_ P ds } V tail✝ F a✝¹ a✝ : Formula a_ih✝¹ : βˆ€ (V : VarAssignment D), Holds D I V (head✝ :: tail✝) (sub Ο„ a✝¹) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V (head✝ :: tail✝) (pred_var_ (Ο„ P) []) else I.pred_var_ P ds } V (head✝ :: tail✝) a✝¹ a_ih✝ : βˆ€ (V : VarAssignment D), Holds D I V (head✝ :: tail✝) (sub Ο„ a✝) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V (head✝ :: tail✝) (pred_var_ (Ο„ P) []) else I.pred_var_ P ds } V (head✝ :: tail✝) a✝ V : VarAssignment D ⊒ Holds D I V (head✝ :: tail✝) (sub Ο„ (a✝¹.iff_ a✝)) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V (head✝ :: tail✝) (pred_var_ (Ο„ P) []) else I.pred_var_ P ds } V (head✝ :: tail✝) (a✝¹.iff_ a✝) case cons.forall_ D : Type I : Interpretation D Ο„ : PredName β†’ PredName head✝ : Definition tail✝ : List Definition tail_ih✝ : βˆ€ (V : VarAssignment D) (F : Formula), Holds D I V tail✝ (sub Ο„ F) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V tail✝ (pred_var_ (Ο„ P) []) else I.pred_var_ P ds } V tail✝ F a✝¹ : VarName a✝ : Formula a_ih✝ : βˆ€ (V : VarAssignment D), Holds D I V (head✝ :: tail✝) (sub Ο„ a✝) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V (head✝ :: tail✝) (pred_var_ (Ο„ P) []) else I.pred_var_ P ds } V (head✝ :: tail✝) a✝ V : VarAssignment D ⊒ Holds D I V (head✝ :: tail✝) (sub Ο„ (forall_ a✝¹ a✝)) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V (head✝ :: tail✝) (pred_var_ (Ο„ P) []) else I.pred_var_ P ds } V (head✝ :: tail✝) (forall_ a✝¹ a✝) case cons.exists_ D : Type I : Interpretation D Ο„ : PredName β†’ PredName head✝ : Definition tail✝ : List Definition tail_ih✝ : βˆ€ (V : VarAssignment D) (F : Formula), Holds D I V tail✝ (sub Ο„ F) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V tail✝ (pred_var_ (Ο„ P) []) else I.pred_var_ P ds } V tail✝ F a✝¹ : VarName a✝ : Formula a_ih✝ : βˆ€ (V : VarAssignment D), Holds D I V (head✝ :: tail✝) (sub Ο„ a✝) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V (head✝ :: tail✝) (pred_var_ (Ο„ P) []) else I.pred_var_ P ds } V (head✝ :: tail✝) a✝ V : VarAssignment D ⊒ Holds D I V (head✝ :: tail✝) (sub Ο„ (exists_ a✝¹ a✝)) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V (head✝ :: tail✝) (pred_var_ (Ο„ P) []) else I.pred_var_ P ds } V (head✝ :: tail✝) (exists_ a✝¹ a✝) case cons.def_ D : Type I : Interpretation D Ο„ : PredName β†’ PredName head✝ : Definition tail✝ : List Definition tail_ih✝ : βˆ€ (V : VarAssignment D) (F : Formula), Holds D I V tail✝ (sub Ο„ F) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V tail✝ (pred_var_ (Ο„ P) []) else I.pred_var_ P ds } V tail✝ F a✝¹ : DefName a✝ : List VarName V : VarAssignment D ⊒ Holds D I V (head✝ :: tail✝) (sub Ο„ (def_ a✝¹ a✝)) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V (head✝ :: tail✝) (pred_var_ (Ο„ P) []) else I.pred_var_ P ds } V (head✝ :: tail✝) (def_ a✝¹ a✝)
Please generate a tactic in lean4 to solve the state. STATE: case cons D : Type I : Interpretation D Ο„ : PredName β†’ PredName head✝ : Definition tail✝ : List Definition tail_ih✝ : βˆ€ (V : VarAssignment D) (F : Formula), Holds D I V tail✝ (sub Ο„ F) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V tail✝ (pred_var_ (Ο„ P) []) else I.pred_var_ P ds } V tail✝ F V : VarAssignment D F : Formula ⊒ Holds D I V (head✝ :: tail✝) (sub Ο„ F) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V (head✝ :: tail✝) (pred_var_ (Ο„ P) []) else I.pred_var_ P ds } V (head✝ :: tail✝) F TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Prop/All/Rec/Sub.lean
FOL.NV.Sub.Prop.All.Rec.substitution_theorem
[94, 1]
[182, 15]
case pred_const_ X xs => simp only [sub] simp only [Holds]
D : Type I : Interpretation D Ο„ : PredName β†’ PredName head✝ : Definition tail✝ : List Definition tail_ih✝ : βˆ€ (V : VarAssignment D) (F : Formula), Holds D I V tail✝ (sub Ο„ F) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V tail✝ (pred_var_ (Ο„ P) []) else I.pred_var_ P ds } V tail✝ F X : PredName xs : List VarName V : VarAssignment D ⊒ Holds D I V (head✝ :: tail✝) (sub Ο„ (pred_const_ X xs)) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V (head✝ :: tail✝) (pred_var_ (Ο„ P) []) else I.pred_var_ P ds } V (head✝ :: tail✝) (pred_const_ X xs)
no goals
Please generate a tactic in lean4 to solve the state. STATE: D : Type I : Interpretation D Ο„ : PredName β†’ PredName head✝ : Definition tail✝ : List Definition tail_ih✝ : βˆ€ (V : VarAssignment D) (F : Formula), Holds D I V tail✝ (sub Ο„ F) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V tail✝ (pred_var_ (Ο„ P) []) else I.pred_var_ P ds } V tail✝ F X : PredName xs : List VarName V : VarAssignment D ⊒ Holds D I V (head✝ :: tail✝) (sub Ο„ (pred_const_ X xs)) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V (head✝ :: tail✝) (pred_var_ (Ο„ P) []) else I.pred_var_ P ds } V (head✝ :: tail✝) (pred_const_ X xs) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Prop/All/Rec/Sub.lean
FOL.NV.Sub.Prop.All.Rec.substitution_theorem
[94, 1]
[182, 15]
case pred_var_ X xs => simp only [sub] split_ifs case pos c1 => simp only [Holds] simp simp only [if_pos c1] case neg c1 => simp only [Holds] simp simp only [if_neg c1]
D : Type I : Interpretation D Ο„ : PredName β†’ PredName head✝ : Definition tail✝ : List Definition tail_ih✝ : βˆ€ (V : VarAssignment D) (F : Formula), Holds D I V tail✝ (sub Ο„ F) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V tail✝ (pred_var_ (Ο„ P) []) else I.pred_var_ P ds } V tail✝ F X : PredName xs : List VarName V : VarAssignment D ⊒ Holds D I V (head✝ :: tail✝) (sub Ο„ (pred_var_ X xs)) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V (head✝ :: tail✝) (pred_var_ (Ο„ P) []) else I.pred_var_ P ds } V (head✝ :: tail✝) (pred_var_ X xs)
no goals
Please generate a tactic in lean4 to solve the state. STATE: D : Type I : Interpretation D Ο„ : PredName β†’ PredName head✝ : Definition tail✝ : List Definition tail_ih✝ : βˆ€ (V : VarAssignment D) (F : Formula), Holds D I V tail✝ (sub Ο„ F) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V tail✝ (pred_var_ (Ο„ P) []) else I.pred_var_ P ds } V tail✝ F X : PredName xs : List VarName V : VarAssignment D ⊒ Holds D I V (head✝ :: tail✝) (sub Ο„ (pred_var_ X xs)) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V (head✝ :: tail✝) (pred_var_ (Ο„ P) []) else I.pred_var_ P ds } V (head✝ :: tail✝) (pred_var_ X xs) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Prop/All/Rec/Sub.lean
FOL.NV.Sub.Prop.All.Rec.substitution_theorem
[94, 1]
[182, 15]
case eq_ x y => simp only [sub] simp only [Holds]
D : Type I : Interpretation D Ο„ : PredName β†’ PredName head✝ : Definition tail✝ : List Definition tail_ih✝ : βˆ€ (V : VarAssignment D) (F : Formula), Holds D I V tail✝ (sub Ο„ F) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V tail✝ (pred_var_ (Ο„ P) []) else I.pred_var_ P ds } V tail✝ F x y : VarName V : VarAssignment D ⊒ Holds D I V (head✝ :: tail✝) (sub Ο„ (eq_ x y)) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V (head✝ :: tail✝) (pred_var_ (Ο„ P) []) else I.pred_var_ P ds } V (head✝ :: tail✝) (eq_ x y)
no goals
Please generate a tactic in lean4 to solve the state. STATE: D : Type I : Interpretation D Ο„ : PredName β†’ PredName head✝ : Definition tail✝ : List Definition tail_ih✝ : βˆ€ (V : VarAssignment D) (F : Formula), Holds D I V tail✝ (sub Ο„ F) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V tail✝ (pred_var_ (Ο„ P) []) else I.pred_var_ P ds } V tail✝ F x y : VarName V : VarAssignment D ⊒ Holds D I V (head✝ :: tail✝) (sub Ο„ (eq_ x y)) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V (head✝ :: tail✝) (pred_var_ (Ο„ P) []) else I.pred_var_ P ds } V (head✝ :: tail✝) (eq_ x y) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Prop/All/Rec/Sub.lean
FOL.NV.Sub.Prop.All.Rec.substitution_theorem
[94, 1]
[182, 15]
case true_ | false_ => simp only [sub] simp only [Holds]
D : Type I : Interpretation D Ο„ : PredName β†’ PredName head✝ : Definition tail✝ : List Definition tail_ih✝ : βˆ€ (V : VarAssignment D) (F : Formula), Holds D I V tail✝ (sub Ο„ F) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V tail✝ (pred_var_ (Ο„ P) []) else I.pred_var_ P ds } V tail✝ F V : VarAssignment D ⊒ Holds D I V (head✝ :: tail✝) (sub Ο„ false_) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V (head✝ :: tail✝) (pred_var_ (Ο„ P) []) else I.pred_var_ P ds } V (head✝ :: tail✝) false_
no goals
Please generate a tactic in lean4 to solve the state. STATE: D : Type I : Interpretation D Ο„ : PredName β†’ PredName head✝ : Definition tail✝ : List Definition tail_ih✝ : βˆ€ (V : VarAssignment D) (F : Formula), Holds D I V tail✝ (sub Ο„ F) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V tail✝ (pred_var_ (Ο„ P) []) else I.pred_var_ P ds } V tail✝ F V : VarAssignment D ⊒ Holds D I V (head✝ :: tail✝) (sub Ο„ false_) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V (head✝ :: tail✝) (pred_var_ (Ο„ P) []) else I.pred_var_ P ds } V (head✝ :: tail✝) false_ TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Prop/All/Rec/Sub.lean
FOL.NV.Sub.Prop.All.Rec.substitution_theorem
[94, 1]
[182, 15]
case not_ phi phi_ih => simp only [Holds] at phi_ih simp only [sub] simp only [Holds] congr! 1 apply phi_ih
D : Type I : Interpretation D Ο„ : PredName β†’ PredName head✝ : Definition tail✝ : List Definition tail_ih✝ : βˆ€ (V : VarAssignment D) (F : Formula), Holds D I V tail✝ (sub Ο„ F) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V tail✝ (pred_var_ (Ο„ P) []) else I.pred_var_ P ds } V tail✝ F phi : Formula phi_ih : βˆ€ (V : VarAssignment D), Holds D I V (head✝ :: tail✝) (sub Ο„ phi) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V (head✝ :: tail✝) (pred_var_ (Ο„ P) []) else I.pred_var_ P ds } V (head✝ :: tail✝) phi V : VarAssignment D ⊒ Holds D I V (head✝ :: tail✝) (sub Ο„ phi.not_) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V (head✝ :: tail✝) (pred_var_ (Ο„ P) []) else I.pred_var_ P ds } V (head✝ :: tail✝) phi.not_
no goals
Please generate a tactic in lean4 to solve the state. STATE: D : Type I : Interpretation D Ο„ : PredName β†’ PredName head✝ : Definition tail✝ : List Definition tail_ih✝ : βˆ€ (V : VarAssignment D) (F : Formula), Holds D I V tail✝ (sub Ο„ F) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V tail✝ (pred_var_ (Ο„ P) []) else I.pred_var_ P ds } V tail✝ F phi : Formula phi_ih : βˆ€ (V : VarAssignment D), Holds D I V (head✝ :: tail✝) (sub Ο„ phi) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V (head✝ :: tail✝) (pred_var_ (Ο„ P) []) else I.pred_var_ P ds } V (head✝ :: tail✝) phi V : VarAssignment D ⊒ Holds D I V (head✝ :: tail✝) (sub Ο„ phi.not_) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V (head✝ :: tail✝) (pred_var_ (Ο„ P) []) else I.pred_var_ P ds } V (head✝ :: tail✝) phi.not_ TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Prop/All/Rec/Sub.lean
FOL.NV.Sub.Prop.All.Rec.substitution_theorem
[94, 1]
[182, 15]
case forall_ x phi phi_ih | exists_ x phi phi_ih => simp only [Holds] at phi_ih simp only [sub] simp only [Holds] first | apply forall_congr' | apply exists_congr intros d apply phi_ih
D : Type I : Interpretation D Ο„ : PredName β†’ PredName head✝ : Definition tail✝ : List Definition tail_ih✝ : βˆ€ (V : VarAssignment D) (F : Formula), Holds D I V tail✝ (sub Ο„ F) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V tail✝ (pred_var_ (Ο„ P) []) else I.pred_var_ P ds } V tail✝ F x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D), Holds D I V (head✝ :: tail✝) (sub Ο„ phi) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V (head✝ :: tail✝) (pred_var_ (Ο„ P) []) else I.pred_var_ P ds } V (head✝ :: tail✝) phi V : VarAssignment D ⊒ Holds D I V (head✝ :: tail✝) (sub Ο„ (exists_ x phi)) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V (head✝ :: tail✝) (pred_var_ (Ο„ P) []) else I.pred_var_ P ds } V (head✝ :: tail✝) (exists_ x phi)
no goals
Please generate a tactic in lean4 to solve the state. STATE: D : Type I : Interpretation D Ο„ : PredName β†’ PredName head✝ : Definition tail✝ : List Definition tail_ih✝ : βˆ€ (V : VarAssignment D) (F : Formula), Holds D I V tail✝ (sub Ο„ F) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V tail✝ (pred_var_ (Ο„ P) []) else I.pred_var_ P ds } V tail✝ F x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D), Holds D I V (head✝ :: tail✝) (sub Ο„ phi) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V (head✝ :: tail✝) (pred_var_ (Ο„ P) []) else I.pred_var_ P ds } V (head✝ :: tail✝) phi V : VarAssignment D ⊒ Holds D I V (head✝ :: tail✝) (sub Ο„ (exists_ x phi)) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V (head✝ :: tail✝) (pred_var_ (Ο„ P) []) else I.pred_var_ P ds } V (head✝ :: tail✝) (exists_ x phi) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Prop/All/Rec/Sub.lean
FOL.NV.Sub.Prop.All.Rec.substitution_theorem
[94, 1]
[182, 15]
simp only [sub]
D : Type I : Interpretation D Ο„ : PredName β†’ PredName head✝ : Definition tail✝ : List Definition tail_ih✝ : βˆ€ (V : VarAssignment D) (F : Formula), Holds D I V tail✝ (sub Ο„ F) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V tail✝ (pred_var_ (Ο„ P) []) else I.pred_var_ P ds } V tail✝ F X : PredName xs : List VarName V : VarAssignment D ⊒ Holds D I V (head✝ :: tail✝) (sub Ο„ (pred_const_ X xs)) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V (head✝ :: tail✝) (pred_var_ (Ο„ P) []) else I.pred_var_ P ds } V (head✝ :: tail✝) (pred_const_ X xs)
D : Type I : Interpretation D Ο„ : PredName β†’ PredName head✝ : Definition tail✝ : List Definition tail_ih✝ : βˆ€ (V : VarAssignment D) (F : Formula), Holds D I V tail✝ (sub Ο„ F) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V tail✝ (pred_var_ (Ο„ P) []) else I.pred_var_ P ds } V tail✝ F X : PredName xs : List VarName V : VarAssignment D ⊒ Holds D I V (head✝ :: tail✝) (pred_const_ X xs) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V (head✝ :: tail✝) (pred_var_ (Ο„ P) []) else I.pred_var_ P ds } V (head✝ :: tail✝) (pred_const_ X xs)
Please generate a tactic in lean4 to solve the state. STATE: D : Type I : Interpretation D Ο„ : PredName β†’ PredName head✝ : Definition tail✝ : List Definition tail_ih✝ : βˆ€ (V : VarAssignment D) (F : Formula), Holds D I V tail✝ (sub Ο„ F) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V tail✝ (pred_var_ (Ο„ P) []) else I.pred_var_ P ds } V tail✝ F X : PredName xs : List VarName V : VarAssignment D ⊒ Holds D I V (head✝ :: tail✝) (sub Ο„ (pred_const_ X xs)) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V (head✝ :: tail✝) (pred_var_ (Ο„ P) []) else I.pred_var_ P ds } V (head✝ :: tail✝) (pred_const_ X xs) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Prop/All/Rec/Sub.lean
FOL.NV.Sub.Prop.All.Rec.substitution_theorem
[94, 1]
[182, 15]
simp only [Holds]
D : Type I : Interpretation D Ο„ : PredName β†’ PredName head✝ : Definition tail✝ : List Definition tail_ih✝ : βˆ€ (V : VarAssignment D) (F : Formula), Holds D I V tail✝ (sub Ο„ F) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V tail✝ (pred_var_ (Ο„ P) []) else I.pred_var_ P ds } V tail✝ F X : PredName xs : List VarName V : VarAssignment D ⊒ Holds D I V (head✝ :: tail✝) (pred_const_ X xs) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V (head✝ :: tail✝) (pred_var_ (Ο„ P) []) else I.pred_var_ P ds } V (head✝ :: tail✝) (pred_const_ X xs)
no goals
Please generate a tactic in lean4 to solve the state. STATE: D : Type I : Interpretation D Ο„ : PredName β†’ PredName head✝ : Definition tail✝ : List Definition tail_ih✝ : βˆ€ (V : VarAssignment D) (F : Formula), Holds D I V tail✝ (sub Ο„ F) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V tail✝ (pred_var_ (Ο„ P) []) else I.pred_var_ P ds } V tail✝ F X : PredName xs : List VarName V : VarAssignment D ⊒ Holds D I V (head✝ :: tail✝) (pred_const_ X xs) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V (head✝ :: tail✝) (pred_var_ (Ο„ P) []) else I.pred_var_ P ds } V (head✝ :: tail✝) (pred_const_ X xs) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Prop/All/Rec/Sub.lean
FOL.NV.Sub.Prop.All.Rec.substitution_theorem
[94, 1]
[182, 15]
simp only [sub]
D : Type I : Interpretation D Ο„ : PredName β†’ PredName head✝ : Definition tail✝ : List Definition tail_ih✝ : βˆ€ (V : VarAssignment D) (F : Formula), Holds D I V tail✝ (sub Ο„ F) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V tail✝ (pred_var_ (Ο„ P) []) else I.pred_var_ P ds } V tail✝ F X : PredName xs : List VarName V : VarAssignment D ⊒ Holds D I V (head✝ :: tail✝) (sub Ο„ (pred_var_ X xs)) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V (head✝ :: tail✝) (pred_var_ (Ο„ P) []) else I.pred_var_ P ds } V (head✝ :: tail✝) (pred_var_ X xs)
D : Type I : Interpretation D Ο„ : PredName β†’ PredName head✝ : Definition tail✝ : List Definition tail_ih✝ : βˆ€ (V : VarAssignment D) (F : Formula), Holds D I V tail✝ (sub Ο„ F) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V tail✝ (pred_var_ (Ο„ P) []) else I.pred_var_ P ds } V tail✝ F X : PredName xs : List VarName V : VarAssignment D ⊒ Holds D I V (head✝ :: tail✝) (if xs = [] then pred_var_ (Ο„ X) [] else pred_var_ X xs) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V (head✝ :: tail✝) (pred_var_ (Ο„ P) []) else I.pred_var_ P ds } V (head✝ :: tail✝) (pred_var_ X xs)
Please generate a tactic in lean4 to solve the state. STATE: D : Type I : Interpretation D Ο„ : PredName β†’ PredName head✝ : Definition tail✝ : List Definition tail_ih✝ : βˆ€ (V : VarAssignment D) (F : Formula), Holds D I V tail✝ (sub Ο„ F) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V tail✝ (pred_var_ (Ο„ P) []) else I.pred_var_ P ds } V tail✝ F X : PredName xs : List VarName V : VarAssignment D ⊒ Holds D I V (head✝ :: tail✝) (sub Ο„ (pred_var_ X xs)) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V (head✝ :: tail✝) (pred_var_ (Ο„ P) []) else I.pred_var_ P ds } V (head✝ :: tail✝) (pred_var_ X xs) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Prop/All/Rec/Sub.lean
FOL.NV.Sub.Prop.All.Rec.substitution_theorem
[94, 1]
[182, 15]
split_ifs
D : Type I : Interpretation D Ο„ : PredName β†’ PredName head✝ : Definition tail✝ : List Definition tail_ih✝ : βˆ€ (V : VarAssignment D) (F : Formula), Holds D I V tail✝ (sub Ο„ F) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V tail✝ (pred_var_ (Ο„ P) []) else I.pred_var_ P ds } V tail✝ F X : PredName xs : List VarName V : VarAssignment D ⊒ Holds D I V (head✝ :: tail✝) (if xs = [] then pred_var_ (Ο„ X) [] else pred_var_ X xs) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V (head✝ :: tail✝) (pred_var_ (Ο„ P) []) else I.pred_var_ P ds } V (head✝ :: tail✝) (pred_var_ X xs)
case pos D : Type I : Interpretation D Ο„ : PredName β†’ PredName head✝ : Definition tail✝ : List Definition tail_ih✝ : βˆ€ (V : VarAssignment D) (F : Formula), Holds D I V tail✝ (sub Ο„ F) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V tail✝ (pred_var_ (Ο„ P) []) else I.pred_var_ P ds } V tail✝ F X : PredName xs : List VarName V : VarAssignment D h✝ : xs = [] ⊒ Holds D I V (head✝ :: tail✝) (pred_var_ (Ο„ X) []) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V (head✝ :: tail✝) (pred_var_ (Ο„ P) []) else I.pred_var_ P ds } V (head✝ :: tail✝) (pred_var_ X xs) case neg D : Type I : Interpretation D Ο„ : PredName β†’ PredName head✝ : Definition tail✝ : List Definition tail_ih✝ : βˆ€ (V : VarAssignment D) (F : Formula), Holds D I V tail✝ (sub Ο„ F) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V tail✝ (pred_var_ (Ο„ P) []) else I.pred_var_ P ds } V tail✝ F X : PredName xs : List VarName V : VarAssignment D h✝ : Β¬xs = [] ⊒ Holds D I V (head✝ :: tail✝) (pred_var_ X xs) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V (head✝ :: tail✝) (pred_var_ (Ο„ P) []) else I.pred_var_ P ds } V (head✝ :: tail✝) (pred_var_ X xs)
Please generate a tactic in lean4 to solve the state. STATE: D : Type I : Interpretation D Ο„ : PredName β†’ PredName head✝ : Definition tail✝ : List Definition tail_ih✝ : βˆ€ (V : VarAssignment D) (F : Formula), Holds D I V tail✝ (sub Ο„ F) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V tail✝ (pred_var_ (Ο„ P) []) else I.pred_var_ P ds } V tail✝ F X : PredName xs : List VarName V : VarAssignment D ⊒ Holds D I V (head✝ :: tail✝) (if xs = [] then pred_var_ (Ο„ X) [] else pred_var_ X xs) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V (head✝ :: tail✝) (pred_var_ (Ο„ P) []) else I.pred_var_ P ds } V (head✝ :: tail✝) (pred_var_ X xs) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Prop/All/Rec/Sub.lean
FOL.NV.Sub.Prop.All.Rec.substitution_theorem
[94, 1]
[182, 15]
case pos c1 => simp only [Holds] simp simp only [if_pos c1]
D : Type I : Interpretation D Ο„ : PredName β†’ PredName head✝ : Definition tail✝ : List Definition tail_ih✝ : βˆ€ (V : VarAssignment D) (F : Formula), Holds D I V tail✝ (sub Ο„ F) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V tail✝ (pred_var_ (Ο„ P) []) else I.pred_var_ P ds } V tail✝ F X : PredName xs : List VarName V : VarAssignment D c1 : xs = [] ⊒ Holds D I V (head✝ :: tail✝) (pred_var_ (Ο„ X) []) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V (head✝ :: tail✝) (pred_var_ (Ο„ P) []) else I.pred_var_ P ds } V (head✝ :: tail✝) (pred_var_ X xs)
no goals
Please generate a tactic in lean4 to solve the state. STATE: D : Type I : Interpretation D Ο„ : PredName β†’ PredName head✝ : Definition tail✝ : List Definition tail_ih✝ : βˆ€ (V : VarAssignment D) (F : Formula), Holds D I V tail✝ (sub Ο„ F) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V tail✝ (pred_var_ (Ο„ P) []) else I.pred_var_ P ds } V tail✝ F X : PredName xs : List VarName V : VarAssignment D c1 : xs = [] ⊒ Holds D I V (head✝ :: tail✝) (pred_var_ (Ο„ X) []) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V (head✝ :: tail✝) (pred_var_ (Ο„ P) []) else I.pred_var_ P ds } V (head✝ :: tail✝) (pred_var_ X xs) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Prop/All/Rec/Sub.lean
FOL.NV.Sub.Prop.All.Rec.substitution_theorem
[94, 1]
[182, 15]
case neg c1 => simp only [Holds] simp simp only [if_neg c1]
D : Type I : Interpretation D Ο„ : PredName β†’ PredName head✝ : Definition tail✝ : List Definition tail_ih✝ : βˆ€ (V : VarAssignment D) (F : Formula), Holds D I V tail✝ (sub Ο„ F) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V tail✝ (pred_var_ (Ο„ P) []) else I.pred_var_ P ds } V tail✝ F X : PredName xs : List VarName V : VarAssignment D c1 : Β¬xs = [] ⊒ Holds D I V (head✝ :: tail✝) (pred_var_ X xs) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V (head✝ :: tail✝) (pred_var_ (Ο„ P) []) else I.pred_var_ P ds } V (head✝ :: tail✝) (pred_var_ X xs)
no goals
Please generate a tactic in lean4 to solve the state. STATE: D : Type I : Interpretation D Ο„ : PredName β†’ PredName head✝ : Definition tail✝ : List Definition tail_ih✝ : βˆ€ (V : VarAssignment D) (F : Formula), Holds D I V tail✝ (sub Ο„ F) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V tail✝ (pred_var_ (Ο„ P) []) else I.pred_var_ P ds } V tail✝ F X : PredName xs : List VarName V : VarAssignment D c1 : Β¬xs = [] ⊒ Holds D I V (head✝ :: tail✝) (pred_var_ X xs) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V (head✝ :: tail✝) (pred_var_ (Ο„ P) []) else I.pred_var_ P ds } V (head✝ :: tail✝) (pred_var_ X xs) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Prop/All/Rec/Sub.lean
FOL.NV.Sub.Prop.All.Rec.substitution_theorem
[94, 1]
[182, 15]
simp only [Holds]
D : Type I : Interpretation D Ο„ : PredName β†’ PredName head✝ : Definition tail✝ : List Definition tail_ih✝ : βˆ€ (V : VarAssignment D) (F : Formula), Holds D I V tail✝ (sub Ο„ F) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V tail✝ (pred_var_ (Ο„ P) []) else I.pred_var_ P ds } V tail✝ F X : PredName xs : List VarName V : VarAssignment D c1 : xs = [] ⊒ Holds D I V (head✝ :: tail✝) (pred_var_ (Ο„ X) []) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V (head✝ :: tail✝) (pred_var_ (Ο„ P) []) else I.pred_var_ P ds } V (head✝ :: tail✝) (pred_var_ X xs)
D : Type I : Interpretation D Ο„ : PredName β†’ PredName head✝ : Definition tail✝ : List Definition tail_ih✝ : βˆ€ (V : VarAssignment D) (F : Formula), Holds D I V tail✝ (sub Ο„ F) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V tail✝ (pred_var_ (Ο„ P) []) else I.pred_var_ P ds } V tail✝ F X : PredName xs : List VarName V : VarAssignment D c1 : xs = [] ⊒ I.pred_var_ (Ο„ X) (List.map V []) ↔ if List.map V xs = [] then I.pred_var_ (Ο„ X) (List.map V []) else I.pred_var_ X (List.map V xs)
Please generate a tactic in lean4 to solve the state. STATE: D : Type I : Interpretation D Ο„ : PredName β†’ PredName head✝ : Definition tail✝ : List Definition tail_ih✝ : βˆ€ (V : VarAssignment D) (F : Formula), Holds D I V tail✝ (sub Ο„ F) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V tail✝ (pred_var_ (Ο„ P) []) else I.pred_var_ P ds } V tail✝ F X : PredName xs : List VarName V : VarAssignment D c1 : xs = [] ⊒ Holds D I V (head✝ :: tail✝) (pred_var_ (Ο„ X) []) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V (head✝ :: tail✝) (pred_var_ (Ο„ P) []) else I.pred_var_ P ds } V (head✝ :: tail✝) (pred_var_ X xs) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Prop/All/Rec/Sub.lean
FOL.NV.Sub.Prop.All.Rec.substitution_theorem
[94, 1]
[182, 15]
simp
D : Type I : Interpretation D Ο„ : PredName β†’ PredName head✝ : Definition tail✝ : List Definition tail_ih✝ : βˆ€ (V : VarAssignment D) (F : Formula), Holds D I V tail✝ (sub Ο„ F) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V tail✝ (pred_var_ (Ο„ P) []) else I.pred_var_ P ds } V tail✝ F X : PredName xs : List VarName V : VarAssignment D c1 : xs = [] ⊒ I.pred_var_ (Ο„ X) (List.map V []) ↔ if List.map V xs = [] then I.pred_var_ (Ο„ X) (List.map V []) else I.pred_var_ X (List.map V xs)
D : Type I : Interpretation D Ο„ : PredName β†’ PredName head✝ : Definition tail✝ : List Definition tail_ih✝ : βˆ€ (V : VarAssignment D) (F : Formula), Holds D I V tail✝ (sub Ο„ F) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V tail✝ (pred_var_ (Ο„ P) []) else I.pred_var_ P ds } V tail✝ F X : PredName xs : List VarName V : VarAssignment D c1 : xs = [] ⊒ I.pred_var_ (Ο„ X) [] ↔ if xs = [] then I.pred_var_ (Ο„ X) [] else I.pred_var_ X (List.map V xs)
Please generate a tactic in lean4 to solve the state. STATE: D : Type I : Interpretation D Ο„ : PredName β†’ PredName head✝ : Definition tail✝ : List Definition tail_ih✝ : βˆ€ (V : VarAssignment D) (F : Formula), Holds D I V tail✝ (sub Ο„ F) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V tail✝ (pred_var_ (Ο„ P) []) else I.pred_var_ P ds } V tail✝ F X : PredName xs : List VarName V : VarAssignment D c1 : xs = [] ⊒ I.pred_var_ (Ο„ X) (List.map V []) ↔ if List.map V xs = [] then I.pred_var_ (Ο„ X) (List.map V []) else I.pred_var_ X (List.map V xs) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Prop/All/Rec/Sub.lean
FOL.NV.Sub.Prop.All.Rec.substitution_theorem
[94, 1]
[182, 15]
simp only [if_pos c1]
D : Type I : Interpretation D Ο„ : PredName β†’ PredName head✝ : Definition tail✝ : List Definition tail_ih✝ : βˆ€ (V : VarAssignment D) (F : Formula), Holds D I V tail✝ (sub Ο„ F) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V tail✝ (pred_var_ (Ο„ P) []) else I.pred_var_ P ds } V tail✝ F X : PredName xs : List VarName V : VarAssignment D c1 : xs = [] ⊒ I.pred_var_ (Ο„ X) [] ↔ if xs = [] then I.pred_var_ (Ο„ X) [] else I.pred_var_ X (List.map V xs)
no goals
Please generate a tactic in lean4 to solve the state. STATE: D : Type I : Interpretation D Ο„ : PredName β†’ PredName head✝ : Definition tail✝ : List Definition tail_ih✝ : βˆ€ (V : VarAssignment D) (F : Formula), Holds D I V tail✝ (sub Ο„ F) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V tail✝ (pred_var_ (Ο„ P) []) else I.pred_var_ P ds } V tail✝ F X : PredName xs : List VarName V : VarAssignment D c1 : xs = [] ⊒ I.pred_var_ (Ο„ X) [] ↔ if xs = [] then I.pred_var_ (Ο„ X) [] else I.pred_var_ X (List.map V xs) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Prop/All/Rec/Sub.lean
FOL.NV.Sub.Prop.All.Rec.substitution_theorem
[94, 1]
[182, 15]
simp only [Holds]
D : Type I : Interpretation D Ο„ : PredName β†’ PredName head✝ : Definition tail✝ : List Definition tail_ih✝ : βˆ€ (V : VarAssignment D) (F : Formula), Holds D I V tail✝ (sub Ο„ F) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V tail✝ (pred_var_ (Ο„ P) []) else I.pred_var_ P ds } V tail✝ F X : PredName xs : List VarName V : VarAssignment D c1 : Β¬xs = [] ⊒ Holds D I V (head✝ :: tail✝) (pred_var_ X xs) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V (head✝ :: tail✝) (pred_var_ (Ο„ P) []) else I.pred_var_ P ds } V (head✝ :: tail✝) (pred_var_ X xs)
D : Type I : Interpretation D Ο„ : PredName β†’ PredName head✝ : Definition tail✝ : List Definition tail_ih✝ : βˆ€ (V : VarAssignment D) (F : Formula), Holds D I V tail✝ (sub Ο„ F) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V tail✝ (pred_var_ (Ο„ P) []) else I.pred_var_ P ds } V tail✝ F X : PredName xs : List VarName V : VarAssignment D c1 : Β¬xs = [] ⊒ I.pred_var_ X (List.map V xs) ↔ if List.map V xs = [] then I.pred_var_ (Ο„ X) (List.map V []) else I.pred_var_ X (List.map V xs)
Please generate a tactic in lean4 to solve the state. STATE: D : Type I : Interpretation D Ο„ : PredName β†’ PredName head✝ : Definition tail✝ : List Definition tail_ih✝ : βˆ€ (V : VarAssignment D) (F : Formula), Holds D I V tail✝ (sub Ο„ F) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V tail✝ (pred_var_ (Ο„ P) []) else I.pred_var_ P ds } V tail✝ F X : PredName xs : List VarName V : VarAssignment D c1 : Β¬xs = [] ⊒ Holds D I V (head✝ :: tail✝) (pred_var_ X xs) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V (head✝ :: tail✝) (pred_var_ (Ο„ P) []) else I.pred_var_ P ds } V (head✝ :: tail✝) (pred_var_ X xs) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Prop/All/Rec/Sub.lean
FOL.NV.Sub.Prop.All.Rec.substitution_theorem
[94, 1]
[182, 15]
simp
D : Type I : Interpretation D Ο„ : PredName β†’ PredName head✝ : Definition tail✝ : List Definition tail_ih✝ : βˆ€ (V : VarAssignment D) (F : Formula), Holds D I V tail✝ (sub Ο„ F) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V tail✝ (pred_var_ (Ο„ P) []) else I.pred_var_ P ds } V tail✝ F X : PredName xs : List VarName V : VarAssignment D c1 : Β¬xs = [] ⊒ I.pred_var_ X (List.map V xs) ↔ if List.map V xs = [] then I.pred_var_ (Ο„ X) (List.map V []) else I.pred_var_ X (List.map V xs)
D : Type I : Interpretation D Ο„ : PredName β†’ PredName head✝ : Definition tail✝ : List Definition tail_ih✝ : βˆ€ (V : VarAssignment D) (F : Formula), Holds D I V tail✝ (sub Ο„ F) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V tail✝ (pred_var_ (Ο„ P) []) else I.pred_var_ P ds } V tail✝ F X : PredName xs : List VarName V : VarAssignment D c1 : Β¬xs = [] ⊒ I.pred_var_ X (List.map V xs) ↔ if xs = [] then I.pred_var_ (Ο„ X) [] else I.pred_var_ X (List.map V xs)
Please generate a tactic in lean4 to solve the state. STATE: D : Type I : Interpretation D Ο„ : PredName β†’ PredName head✝ : Definition tail✝ : List Definition tail_ih✝ : βˆ€ (V : VarAssignment D) (F : Formula), Holds D I V tail✝ (sub Ο„ F) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V tail✝ (pred_var_ (Ο„ P) []) else I.pred_var_ P ds } V tail✝ F X : PredName xs : List VarName V : VarAssignment D c1 : Β¬xs = [] ⊒ I.pred_var_ X (List.map V xs) ↔ if List.map V xs = [] then I.pred_var_ (Ο„ X) (List.map V []) else I.pred_var_ X (List.map V xs) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Prop/All/Rec/Sub.lean
FOL.NV.Sub.Prop.All.Rec.substitution_theorem
[94, 1]
[182, 15]
simp only [if_neg c1]
D : Type I : Interpretation D Ο„ : PredName β†’ PredName head✝ : Definition tail✝ : List Definition tail_ih✝ : βˆ€ (V : VarAssignment D) (F : Formula), Holds D I V tail✝ (sub Ο„ F) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V tail✝ (pred_var_ (Ο„ P) []) else I.pred_var_ P ds } V tail✝ F X : PredName xs : List VarName V : VarAssignment D c1 : Β¬xs = [] ⊒ I.pred_var_ X (List.map V xs) ↔ if xs = [] then I.pred_var_ (Ο„ X) [] else I.pred_var_ X (List.map V xs)
no goals
Please generate a tactic in lean4 to solve the state. STATE: D : Type I : Interpretation D Ο„ : PredName β†’ PredName head✝ : Definition tail✝ : List Definition tail_ih✝ : βˆ€ (V : VarAssignment D) (F : Formula), Holds D I V tail✝ (sub Ο„ F) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V tail✝ (pred_var_ (Ο„ P) []) else I.pred_var_ P ds } V tail✝ F X : PredName xs : List VarName V : VarAssignment D c1 : Β¬xs = [] ⊒ I.pred_var_ X (List.map V xs) ↔ if xs = [] then I.pred_var_ (Ο„ X) [] else I.pred_var_ X (List.map V xs) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Prop/All/Rec/Sub.lean
FOL.NV.Sub.Prop.All.Rec.substitution_theorem
[94, 1]
[182, 15]
simp only [sub]
D : Type I : Interpretation D Ο„ : PredName β†’ PredName head✝ : Definition tail✝ : List Definition tail_ih✝ : βˆ€ (V : VarAssignment D) (F : Formula), Holds D I V tail✝ (sub Ο„ F) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V tail✝ (pred_var_ (Ο„ P) []) else I.pred_var_ P ds } V tail✝ F x y : VarName V : VarAssignment D ⊒ Holds D I V (head✝ :: tail✝) (sub Ο„ (eq_ x y)) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V (head✝ :: tail✝) (pred_var_ (Ο„ P) []) else I.pred_var_ P ds } V (head✝ :: tail✝) (eq_ x y)
D : Type I : Interpretation D Ο„ : PredName β†’ PredName head✝ : Definition tail✝ : List Definition tail_ih✝ : βˆ€ (V : VarAssignment D) (F : Formula), Holds D I V tail✝ (sub Ο„ F) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V tail✝ (pred_var_ (Ο„ P) []) else I.pred_var_ P ds } V tail✝ F x y : VarName V : VarAssignment D ⊒ Holds D I V (head✝ :: tail✝) (eq_ x y) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V (head✝ :: tail✝) (pred_var_ (Ο„ P) []) else I.pred_var_ P ds } V (head✝ :: tail✝) (eq_ x y)
Please generate a tactic in lean4 to solve the state. STATE: D : Type I : Interpretation D Ο„ : PredName β†’ PredName head✝ : Definition tail✝ : List Definition tail_ih✝ : βˆ€ (V : VarAssignment D) (F : Formula), Holds D I V tail✝ (sub Ο„ F) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V tail✝ (pred_var_ (Ο„ P) []) else I.pred_var_ P ds } V tail✝ F x y : VarName V : VarAssignment D ⊒ Holds D I V (head✝ :: tail✝) (sub Ο„ (eq_ x y)) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V (head✝ :: tail✝) (pred_var_ (Ο„ P) []) else I.pred_var_ P ds } V (head✝ :: tail✝) (eq_ x y) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Prop/All/Rec/Sub.lean
FOL.NV.Sub.Prop.All.Rec.substitution_theorem
[94, 1]
[182, 15]
simp only [Holds]
D : Type I : Interpretation D Ο„ : PredName β†’ PredName head✝ : Definition tail✝ : List Definition tail_ih✝ : βˆ€ (V : VarAssignment D) (F : Formula), Holds D I V tail✝ (sub Ο„ F) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V tail✝ (pred_var_ (Ο„ P) []) else I.pred_var_ P ds } V tail✝ F x y : VarName V : VarAssignment D ⊒ Holds D I V (head✝ :: tail✝) (eq_ x y) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V (head✝ :: tail✝) (pred_var_ (Ο„ P) []) else I.pred_var_ P ds } V (head✝ :: tail✝) (eq_ x y)
no goals
Please generate a tactic in lean4 to solve the state. STATE: D : Type I : Interpretation D Ο„ : PredName β†’ PredName head✝ : Definition tail✝ : List Definition tail_ih✝ : βˆ€ (V : VarAssignment D) (F : Formula), Holds D I V tail✝ (sub Ο„ F) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V tail✝ (pred_var_ (Ο„ P) []) else I.pred_var_ P ds } V tail✝ F x y : VarName V : VarAssignment D ⊒ Holds D I V (head✝ :: tail✝) (eq_ x y) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V (head✝ :: tail✝) (pred_var_ (Ο„ P) []) else I.pred_var_ P ds } V (head✝ :: tail✝) (eq_ x y) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Prop/All/Rec/Sub.lean
FOL.NV.Sub.Prop.All.Rec.substitution_theorem
[94, 1]
[182, 15]
simp only [sub]
D : Type I : Interpretation D Ο„ : PredName β†’ PredName head✝ : Definition tail✝ : List Definition tail_ih✝ : βˆ€ (V : VarAssignment D) (F : Formula), Holds D I V tail✝ (sub Ο„ F) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V tail✝ (pred_var_ (Ο„ P) []) else I.pred_var_ P ds } V tail✝ F V : VarAssignment D ⊒ Holds D I V (head✝ :: tail✝) (sub Ο„ false_) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V (head✝ :: tail✝) (pred_var_ (Ο„ P) []) else I.pred_var_ P ds } V (head✝ :: tail✝) false_
D : Type I : Interpretation D Ο„ : PredName β†’ PredName head✝ : Definition tail✝ : List Definition tail_ih✝ : βˆ€ (V : VarAssignment D) (F : Formula), Holds D I V tail✝ (sub Ο„ F) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V tail✝ (pred_var_ (Ο„ P) []) else I.pred_var_ P ds } V tail✝ F V : VarAssignment D ⊒ Holds D I V (head✝ :: tail✝) false_ ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V (head✝ :: tail✝) (pred_var_ (Ο„ P) []) else I.pred_var_ P ds } V (head✝ :: tail✝) false_
Please generate a tactic in lean4 to solve the state. STATE: D : Type I : Interpretation D Ο„ : PredName β†’ PredName head✝ : Definition tail✝ : List Definition tail_ih✝ : βˆ€ (V : VarAssignment D) (F : Formula), Holds D I V tail✝ (sub Ο„ F) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V tail✝ (pred_var_ (Ο„ P) []) else I.pred_var_ P ds } V tail✝ F V : VarAssignment D ⊒ Holds D I V (head✝ :: tail✝) (sub Ο„ false_) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V (head✝ :: tail✝) (pred_var_ (Ο„ P) []) else I.pred_var_ P ds } V (head✝ :: tail✝) false_ TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Prop/All/Rec/Sub.lean
FOL.NV.Sub.Prop.All.Rec.substitution_theorem
[94, 1]
[182, 15]
simp only [Holds]
D : Type I : Interpretation D Ο„ : PredName β†’ PredName head✝ : Definition tail✝ : List Definition tail_ih✝ : βˆ€ (V : VarAssignment D) (F : Formula), Holds D I V tail✝ (sub Ο„ F) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V tail✝ (pred_var_ (Ο„ P) []) else I.pred_var_ P ds } V tail✝ F V : VarAssignment D ⊒ Holds D I V (head✝ :: tail✝) false_ ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V (head✝ :: tail✝) (pred_var_ (Ο„ P) []) else I.pred_var_ P ds } V (head✝ :: tail✝) false_
no goals
Please generate a tactic in lean4 to solve the state. STATE: D : Type I : Interpretation D Ο„ : PredName β†’ PredName head✝ : Definition tail✝ : List Definition tail_ih✝ : βˆ€ (V : VarAssignment D) (F : Formula), Holds D I V tail✝ (sub Ο„ F) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V tail✝ (pred_var_ (Ο„ P) []) else I.pred_var_ P ds } V tail✝ F V : VarAssignment D ⊒ Holds D I V (head✝ :: tail✝) false_ ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V (head✝ :: tail✝) (pred_var_ (Ο„ P) []) else I.pred_var_ P ds } V (head✝ :: tail✝) false_ TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Prop/All/Rec/Sub.lean
FOL.NV.Sub.Prop.All.Rec.substitution_theorem
[94, 1]
[182, 15]
simp only [Holds] at phi_ih
D : Type I : Interpretation D Ο„ : PredName β†’ PredName head✝ : Definition tail✝ : List Definition tail_ih✝ : βˆ€ (V : VarAssignment D) (F : Formula), Holds D I V tail✝ (sub Ο„ F) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V tail✝ (pred_var_ (Ο„ P) []) else I.pred_var_ P ds } V tail✝ F phi : Formula phi_ih : βˆ€ (V : VarAssignment D), Holds D I V (head✝ :: tail✝) (sub Ο„ phi) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V (head✝ :: tail✝) (pred_var_ (Ο„ P) []) else I.pred_var_ P ds } V (head✝ :: tail✝) phi V : VarAssignment D ⊒ Holds D I V (head✝ :: tail✝) (sub Ο„ phi.not_) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V (head✝ :: tail✝) (pred_var_ (Ο„ P) []) else I.pred_var_ P ds } V (head✝ :: tail✝) phi.not_
D : Type I : Interpretation D Ο„ : PredName β†’ PredName head✝ : Definition tail✝ : List Definition tail_ih✝ : βˆ€ (V : VarAssignment D) (F : Formula), Holds D I V tail✝ (sub Ο„ F) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V tail✝ (pred_var_ (Ο„ P) []) else I.pred_var_ P ds } V tail✝ F phi : Formula V : VarAssignment D phi_ih : βˆ€ (V : VarAssignment D), Holds D I V (head✝ :: tail✝) (sub Ο„ phi) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then I.pred_var_ (Ο„ P) (List.map V []) else I.pred_var_ P ds } V (head✝ :: tail✝) phi ⊒ Holds D I V (head✝ :: tail✝) (sub Ο„ phi.not_) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V (head✝ :: tail✝) (pred_var_ (Ο„ P) []) else I.pred_var_ P ds } V (head✝ :: tail✝) phi.not_
Please generate a tactic in lean4 to solve the state. STATE: D : Type I : Interpretation D Ο„ : PredName β†’ PredName head✝ : Definition tail✝ : List Definition tail_ih✝ : βˆ€ (V : VarAssignment D) (F : Formula), Holds D I V tail✝ (sub Ο„ F) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V tail✝ (pred_var_ (Ο„ P) []) else I.pred_var_ P ds } V tail✝ F phi : Formula phi_ih : βˆ€ (V : VarAssignment D), Holds D I V (head✝ :: tail✝) (sub Ο„ phi) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V (head✝ :: tail✝) (pred_var_ (Ο„ P) []) else I.pred_var_ P ds } V (head✝ :: tail✝) phi V : VarAssignment D ⊒ Holds D I V (head✝ :: tail✝) (sub Ο„ phi.not_) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V (head✝ :: tail✝) (pred_var_ (Ο„ P) []) else I.pred_var_ P ds } V (head✝ :: tail✝) phi.not_ TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Prop/All/Rec/Sub.lean
FOL.NV.Sub.Prop.All.Rec.substitution_theorem
[94, 1]
[182, 15]
simp only [sub]
D : Type I : Interpretation D Ο„ : PredName β†’ PredName head✝ : Definition tail✝ : List Definition tail_ih✝ : βˆ€ (V : VarAssignment D) (F : Formula), Holds D I V tail✝ (sub Ο„ F) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V tail✝ (pred_var_ (Ο„ P) []) else I.pred_var_ P ds } V tail✝ F phi : Formula V : VarAssignment D phi_ih : βˆ€ (V : VarAssignment D), Holds D I V (head✝ :: tail✝) (sub Ο„ phi) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then I.pred_var_ (Ο„ P) (List.map V []) else I.pred_var_ P ds } V (head✝ :: tail✝) phi ⊒ Holds D I V (head✝ :: tail✝) (sub Ο„ phi.not_) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V (head✝ :: tail✝) (pred_var_ (Ο„ P) []) else I.pred_var_ P ds } V (head✝ :: tail✝) phi.not_
D : Type I : Interpretation D Ο„ : PredName β†’ PredName head✝ : Definition tail✝ : List Definition tail_ih✝ : βˆ€ (V : VarAssignment D) (F : Formula), Holds D I V tail✝ (sub Ο„ F) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V tail✝ (pred_var_ (Ο„ P) []) else I.pred_var_ P ds } V tail✝ F phi : Formula V : VarAssignment D phi_ih : βˆ€ (V : VarAssignment D), Holds D I V (head✝ :: tail✝) (sub Ο„ phi) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then I.pred_var_ (Ο„ P) (List.map V []) else I.pred_var_ P ds } V (head✝ :: tail✝) phi ⊒ Holds D I V (head✝ :: tail✝) (sub Ο„ phi).not_ ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V (head✝ :: tail✝) (pred_var_ (Ο„ P) []) else I.pred_var_ P ds } V (head✝ :: tail✝) phi.not_
Please generate a tactic in lean4 to solve the state. STATE: D : Type I : Interpretation D Ο„ : PredName β†’ PredName head✝ : Definition tail✝ : List Definition tail_ih✝ : βˆ€ (V : VarAssignment D) (F : Formula), Holds D I V tail✝ (sub Ο„ F) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V tail✝ (pred_var_ (Ο„ P) []) else I.pred_var_ P ds } V tail✝ F phi : Formula V : VarAssignment D phi_ih : βˆ€ (V : VarAssignment D), Holds D I V (head✝ :: tail✝) (sub Ο„ phi) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then I.pred_var_ (Ο„ P) (List.map V []) else I.pred_var_ P ds } V (head✝ :: tail✝) phi ⊒ Holds D I V (head✝ :: tail✝) (sub Ο„ phi.not_) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V (head✝ :: tail✝) (pred_var_ (Ο„ P) []) else I.pred_var_ P ds } V (head✝ :: tail✝) phi.not_ TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Prop/All/Rec/Sub.lean
FOL.NV.Sub.Prop.All.Rec.substitution_theorem
[94, 1]
[182, 15]
simp only [Holds]
D : Type I : Interpretation D Ο„ : PredName β†’ PredName head✝ : Definition tail✝ : List Definition tail_ih✝ : βˆ€ (V : VarAssignment D) (F : Formula), Holds D I V tail✝ (sub Ο„ F) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V tail✝ (pred_var_ (Ο„ P) []) else I.pred_var_ P ds } V tail✝ F phi : Formula V : VarAssignment D phi_ih : βˆ€ (V : VarAssignment D), Holds D I V (head✝ :: tail✝) (sub Ο„ phi) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then I.pred_var_ (Ο„ P) (List.map V []) else I.pred_var_ P ds } V (head✝ :: tail✝) phi ⊒ Holds D I V (head✝ :: tail✝) (sub Ο„ phi).not_ ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V (head✝ :: tail✝) (pred_var_ (Ο„ P) []) else I.pred_var_ P ds } V (head✝ :: tail✝) phi.not_
D : Type I : Interpretation D Ο„ : PredName β†’ PredName head✝ : Definition tail✝ : List Definition tail_ih✝ : βˆ€ (V : VarAssignment D) (F : Formula), Holds D I V tail✝ (sub Ο„ F) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V tail✝ (pred_var_ (Ο„ P) []) else I.pred_var_ P ds } V tail✝ F phi : Formula V : VarAssignment D phi_ih : βˆ€ (V : VarAssignment D), Holds D I V (head✝ :: tail✝) (sub Ο„ phi) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then I.pred_var_ (Ο„ P) (List.map V []) else I.pred_var_ P ds } V (head✝ :: tail✝) phi ⊒ Β¬Holds D I V (head✝ :: tail✝) (sub Ο„ phi) ↔ Β¬Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then I.pred_var_ (Ο„ P) (List.map V []) else I.pred_var_ P ds } V (head✝ :: tail✝) phi
Please generate a tactic in lean4 to solve the state. STATE: D : Type I : Interpretation D Ο„ : PredName β†’ PredName head✝ : Definition tail✝ : List Definition tail_ih✝ : βˆ€ (V : VarAssignment D) (F : Formula), Holds D I V tail✝ (sub Ο„ F) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V tail✝ (pred_var_ (Ο„ P) []) else I.pred_var_ P ds } V tail✝ F phi : Formula V : VarAssignment D phi_ih : βˆ€ (V : VarAssignment D), Holds D I V (head✝ :: tail✝) (sub Ο„ phi) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then I.pred_var_ (Ο„ P) (List.map V []) else I.pred_var_ P ds } V (head✝ :: tail✝) phi ⊒ Holds D I V (head✝ :: tail✝) (sub Ο„ phi).not_ ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V (head✝ :: tail✝) (pred_var_ (Ο„ P) []) else I.pred_var_ P ds } V (head✝ :: tail✝) phi.not_ TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Prop/All/Rec/Sub.lean
FOL.NV.Sub.Prop.All.Rec.substitution_theorem
[94, 1]
[182, 15]
congr! 1
D : Type I : Interpretation D Ο„ : PredName β†’ PredName head✝ : Definition tail✝ : List Definition tail_ih✝ : βˆ€ (V : VarAssignment D) (F : Formula), Holds D I V tail✝ (sub Ο„ F) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V tail✝ (pred_var_ (Ο„ P) []) else I.pred_var_ P ds } V tail✝ F phi : Formula V : VarAssignment D phi_ih : βˆ€ (V : VarAssignment D), Holds D I V (head✝ :: tail✝) (sub Ο„ phi) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then I.pred_var_ (Ο„ P) (List.map V []) else I.pred_var_ P ds } V (head✝ :: tail✝) phi ⊒ Β¬Holds D I V (head✝ :: tail✝) (sub Ο„ phi) ↔ Β¬Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then I.pred_var_ (Ο„ P) (List.map V []) else I.pred_var_ P ds } V (head✝ :: tail✝) phi
case a.h.e'_1.a D : Type I : Interpretation D Ο„ : PredName β†’ PredName head✝ : Definition tail✝ : List Definition tail_ih✝ : βˆ€ (V : VarAssignment D) (F : Formula), Holds D I V tail✝ (sub Ο„ F) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V tail✝ (pred_var_ (Ο„ P) []) else I.pred_var_ P ds } V tail✝ F phi : Formula V : VarAssignment D phi_ih : βˆ€ (V : VarAssignment D), Holds D I V (head✝ :: tail✝) (sub Ο„ phi) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then I.pred_var_ (Ο„ P) (List.map V []) else I.pred_var_ P ds } V (head✝ :: tail✝) phi ⊒ Holds D I V (head✝ :: tail✝) (sub Ο„ phi) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then I.pred_var_ (Ο„ P) (List.map V []) else I.pred_var_ P ds } V (head✝ :: tail✝) phi
Please generate a tactic in lean4 to solve the state. STATE: D : Type I : Interpretation D Ο„ : PredName β†’ PredName head✝ : Definition tail✝ : List Definition tail_ih✝ : βˆ€ (V : VarAssignment D) (F : Formula), Holds D I V tail✝ (sub Ο„ F) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V tail✝ (pred_var_ (Ο„ P) []) else I.pred_var_ P ds } V tail✝ F phi : Formula V : VarAssignment D phi_ih : βˆ€ (V : VarAssignment D), Holds D I V (head✝ :: tail✝) (sub Ο„ phi) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then I.pred_var_ (Ο„ P) (List.map V []) else I.pred_var_ P ds } V (head✝ :: tail✝) phi ⊒ Β¬Holds D I V (head✝ :: tail✝) (sub Ο„ phi) ↔ Β¬Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then I.pred_var_ (Ο„ P) (List.map V []) else I.pred_var_ P ds } V (head✝ :: tail✝) phi TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Prop/All/Rec/Sub.lean
FOL.NV.Sub.Prop.All.Rec.substitution_theorem
[94, 1]
[182, 15]
apply phi_ih
case a.h.e'_1.a D : Type I : Interpretation D Ο„ : PredName β†’ PredName head✝ : Definition tail✝ : List Definition tail_ih✝ : βˆ€ (V : VarAssignment D) (F : Formula), Holds D I V tail✝ (sub Ο„ F) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V tail✝ (pred_var_ (Ο„ P) []) else I.pred_var_ P ds } V tail✝ F phi : Formula V : VarAssignment D phi_ih : βˆ€ (V : VarAssignment D), Holds D I V (head✝ :: tail✝) (sub Ο„ phi) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then I.pred_var_ (Ο„ P) (List.map V []) else I.pred_var_ P ds } V (head✝ :: tail✝) phi ⊒ Holds D I V (head✝ :: tail✝) (sub Ο„ phi) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then I.pred_var_ (Ο„ P) (List.map V []) else I.pred_var_ P ds } V (head✝ :: tail✝) phi
no goals
Please generate a tactic in lean4 to solve the state. STATE: case a.h.e'_1.a D : Type I : Interpretation D Ο„ : PredName β†’ PredName head✝ : Definition tail✝ : List Definition tail_ih✝ : βˆ€ (V : VarAssignment D) (F : Formula), Holds D I V tail✝ (sub Ο„ F) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V tail✝ (pred_var_ (Ο„ P) []) else I.pred_var_ P ds } V tail✝ F phi : Formula V : VarAssignment D phi_ih : βˆ€ (V : VarAssignment D), Holds D I V (head✝ :: tail✝) (sub Ο„ phi) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then I.pred_var_ (Ο„ P) (List.map V []) else I.pred_var_ P ds } V (head✝ :: tail✝) phi ⊒ Holds D I V (head✝ :: tail✝) (sub Ο„ phi) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then I.pred_var_ (Ο„ P) (List.map V []) else I.pred_var_ P ds } V (head✝ :: tail✝) phi TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Prop/All/Rec/Sub.lean
FOL.NV.Sub.Prop.All.Rec.substitution_theorem
[94, 1]
[182, 15]
simp only [Holds] at phi_ih
D : Type I : Interpretation D Ο„ : PredName β†’ PredName head✝ : Definition tail✝ : List Definition tail_ih✝ : βˆ€ (V : VarAssignment D) (F : Formula), Holds D I V tail✝ (sub Ο„ F) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V tail✝ (pred_var_ (Ο„ P) []) else I.pred_var_ P ds } V tail✝ F phi psi : Formula phi_ih : βˆ€ (V : VarAssignment D), Holds D I V (head✝ :: tail✝) (sub Ο„ phi) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V (head✝ :: tail✝) (pred_var_ (Ο„ P) []) else I.pred_var_ P ds } V (head✝ :: tail✝) phi psi_ih : βˆ€ (V : VarAssignment D), Holds D I V (head✝ :: tail✝) (sub Ο„ psi) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V (head✝ :: tail✝) (pred_var_ (Ο„ P) []) else I.pred_var_ P ds } V (head✝ :: tail✝) psi V : VarAssignment D ⊒ Holds D I V (head✝ :: tail✝) (sub Ο„ (phi.iff_ psi)) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V (head✝ :: tail✝) (pred_var_ (Ο„ P) []) else I.pred_var_ P ds } V (head✝ :: tail✝) (phi.iff_ psi)
D : Type I : Interpretation D Ο„ : PredName β†’ PredName head✝ : Definition tail✝ : List Definition tail_ih✝ : βˆ€ (V : VarAssignment D) (F : Formula), Holds D I V tail✝ (sub Ο„ F) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V tail✝ (pred_var_ (Ο„ P) []) else I.pred_var_ P ds } V tail✝ F phi psi : Formula psi_ih : βˆ€ (V : VarAssignment D), Holds D I V (head✝ :: tail✝) (sub Ο„ psi) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V (head✝ :: tail✝) (pred_var_ (Ο„ P) []) else I.pred_var_ P ds } V (head✝ :: tail✝) psi V : VarAssignment D phi_ih : βˆ€ (V : VarAssignment D), Holds D I V (head✝ :: tail✝) (sub Ο„ phi) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then I.pred_var_ (Ο„ P) (List.map V []) else I.pred_var_ P ds } V (head✝ :: tail✝) phi ⊒ Holds D I V (head✝ :: tail✝) (sub Ο„ (phi.iff_ psi)) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V (head✝ :: tail✝) (pred_var_ (Ο„ P) []) else I.pred_var_ P ds } V (head✝ :: tail✝) (phi.iff_ psi)
Please generate a tactic in lean4 to solve the state. STATE: D : Type I : Interpretation D Ο„ : PredName β†’ PredName head✝ : Definition tail✝ : List Definition tail_ih✝ : βˆ€ (V : VarAssignment D) (F : Formula), Holds D I V tail✝ (sub Ο„ F) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V tail✝ (pred_var_ (Ο„ P) []) else I.pred_var_ P ds } V tail✝ F phi psi : Formula phi_ih : βˆ€ (V : VarAssignment D), Holds D I V (head✝ :: tail✝) (sub Ο„ phi) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V (head✝ :: tail✝) (pred_var_ (Ο„ P) []) else I.pred_var_ P ds } V (head✝ :: tail✝) phi psi_ih : βˆ€ (V : VarAssignment D), Holds D I V (head✝ :: tail✝) (sub Ο„ psi) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V (head✝ :: tail✝) (pred_var_ (Ο„ P) []) else I.pred_var_ P ds } V (head✝ :: tail✝) psi V : VarAssignment D ⊒ Holds D I V (head✝ :: tail✝) (sub Ο„ (phi.iff_ psi)) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V (head✝ :: tail✝) (pred_var_ (Ο„ P) []) else I.pred_var_ P ds } V (head✝ :: tail✝) (phi.iff_ psi) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Prop/All/Rec/Sub.lean
FOL.NV.Sub.Prop.All.Rec.substitution_theorem
[94, 1]
[182, 15]
simp only [Holds] at psi_ih
D : Type I : Interpretation D Ο„ : PredName β†’ PredName head✝ : Definition tail✝ : List Definition tail_ih✝ : βˆ€ (V : VarAssignment D) (F : Formula), Holds D I V tail✝ (sub Ο„ F) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V tail✝ (pred_var_ (Ο„ P) []) else I.pred_var_ P ds } V tail✝ F phi psi : Formula psi_ih : βˆ€ (V : VarAssignment D), Holds D I V (head✝ :: tail✝) (sub Ο„ psi) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V (head✝ :: tail✝) (pred_var_ (Ο„ P) []) else I.pred_var_ P ds } V (head✝ :: tail✝) psi V : VarAssignment D phi_ih : βˆ€ (V : VarAssignment D), Holds D I V (head✝ :: tail✝) (sub Ο„ phi) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then I.pred_var_ (Ο„ P) (List.map V []) else I.pred_var_ P ds } V (head✝ :: tail✝) phi ⊒ Holds D I V (head✝ :: tail✝) (sub Ο„ (phi.iff_ psi)) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V (head✝ :: tail✝) (pred_var_ (Ο„ P) []) else I.pred_var_ P ds } V (head✝ :: tail✝) (phi.iff_ psi)
D : Type I : Interpretation D Ο„ : PredName β†’ PredName head✝ : Definition tail✝ : List Definition tail_ih✝ : βˆ€ (V : VarAssignment D) (F : Formula), Holds D I V tail✝ (sub Ο„ F) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V tail✝ (pred_var_ (Ο„ P) []) else I.pred_var_ P ds } V tail✝ F phi psi : Formula V : VarAssignment D phi_ih : βˆ€ (V : VarAssignment D), Holds D I V (head✝ :: tail✝) (sub Ο„ phi) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then I.pred_var_ (Ο„ P) (List.map V []) else I.pred_var_ P ds } V (head✝ :: tail✝) phi psi_ih : βˆ€ (V : VarAssignment D), Holds D I V (head✝ :: tail✝) (sub Ο„ psi) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then I.pred_var_ (Ο„ P) (List.map V []) else I.pred_var_ P ds } V (head✝ :: tail✝) psi ⊒ Holds D I V (head✝ :: tail✝) (sub Ο„ (phi.iff_ psi)) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V (head✝ :: tail✝) (pred_var_ (Ο„ P) []) else I.pred_var_ P ds } V (head✝ :: tail✝) (phi.iff_ psi)
Please generate a tactic in lean4 to solve the state. STATE: D : Type I : Interpretation D Ο„ : PredName β†’ PredName head✝ : Definition tail✝ : List Definition tail_ih✝ : βˆ€ (V : VarAssignment D) (F : Formula), Holds D I V tail✝ (sub Ο„ F) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V tail✝ (pred_var_ (Ο„ P) []) else I.pred_var_ P ds } V tail✝ F phi psi : Formula psi_ih : βˆ€ (V : VarAssignment D), Holds D I V (head✝ :: tail✝) (sub Ο„ psi) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V (head✝ :: tail✝) (pred_var_ (Ο„ P) []) else I.pred_var_ P ds } V (head✝ :: tail✝) psi V : VarAssignment D phi_ih : βˆ€ (V : VarAssignment D), Holds D I V (head✝ :: tail✝) (sub Ο„ phi) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then I.pred_var_ (Ο„ P) (List.map V []) else I.pred_var_ P ds } V (head✝ :: tail✝) phi ⊒ Holds D I V (head✝ :: tail✝) (sub Ο„ (phi.iff_ psi)) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V (head✝ :: tail✝) (pred_var_ (Ο„ P) []) else I.pred_var_ P ds } V (head✝ :: tail✝) (phi.iff_ psi) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Prop/All/Rec/Sub.lean
FOL.NV.Sub.Prop.All.Rec.substitution_theorem
[94, 1]
[182, 15]
simp only [sub]
D : Type I : Interpretation D Ο„ : PredName β†’ PredName head✝ : Definition tail✝ : List Definition tail_ih✝ : βˆ€ (V : VarAssignment D) (F : Formula), Holds D I V tail✝ (sub Ο„ F) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V tail✝ (pred_var_ (Ο„ P) []) else I.pred_var_ P ds } V tail✝ F phi psi : Formula V : VarAssignment D phi_ih : βˆ€ (V : VarAssignment D), Holds D I V (head✝ :: tail✝) (sub Ο„ phi) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then I.pred_var_ (Ο„ P) (List.map V []) else I.pred_var_ P ds } V (head✝ :: tail✝) phi psi_ih : βˆ€ (V : VarAssignment D), Holds D I V (head✝ :: tail✝) (sub Ο„ psi) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then I.pred_var_ (Ο„ P) (List.map V []) else I.pred_var_ P ds } V (head✝ :: tail✝) psi ⊒ Holds D I V (head✝ :: tail✝) (sub Ο„ (phi.iff_ psi)) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V (head✝ :: tail✝) (pred_var_ (Ο„ P) []) else I.pred_var_ P ds } V (head✝ :: tail✝) (phi.iff_ psi)
D : Type I : Interpretation D Ο„ : PredName β†’ PredName head✝ : Definition tail✝ : List Definition tail_ih✝ : βˆ€ (V : VarAssignment D) (F : Formula), Holds D I V tail✝ (sub Ο„ F) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V tail✝ (pred_var_ (Ο„ P) []) else I.pred_var_ P ds } V tail✝ F phi psi : Formula V : VarAssignment D phi_ih : βˆ€ (V : VarAssignment D), Holds D I V (head✝ :: tail✝) (sub Ο„ phi) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then I.pred_var_ (Ο„ P) (List.map V []) else I.pred_var_ P ds } V (head✝ :: tail✝) phi psi_ih : βˆ€ (V : VarAssignment D), Holds D I V (head✝ :: tail✝) (sub Ο„ psi) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then I.pred_var_ (Ο„ P) (List.map V []) else I.pred_var_ P ds } V (head✝ :: tail✝) psi ⊒ Holds D I V (head✝ :: tail✝) ((sub Ο„ phi).iff_ (sub Ο„ psi)) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V (head✝ :: tail✝) (pred_var_ (Ο„ P) []) else I.pred_var_ P ds } V (head✝ :: tail✝) (phi.iff_ psi)
Please generate a tactic in lean4 to solve the state. STATE: D : Type I : Interpretation D Ο„ : PredName β†’ PredName head✝ : Definition tail✝ : List Definition tail_ih✝ : βˆ€ (V : VarAssignment D) (F : Formula), Holds D I V tail✝ (sub Ο„ F) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V tail✝ (pred_var_ (Ο„ P) []) else I.pred_var_ P ds } V tail✝ F phi psi : Formula V : VarAssignment D phi_ih : βˆ€ (V : VarAssignment D), Holds D I V (head✝ :: tail✝) (sub Ο„ phi) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then I.pred_var_ (Ο„ P) (List.map V []) else I.pred_var_ P ds } V (head✝ :: tail✝) phi psi_ih : βˆ€ (V : VarAssignment D), Holds D I V (head✝ :: tail✝) (sub Ο„ psi) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then I.pred_var_ (Ο„ P) (List.map V []) else I.pred_var_ P ds } V (head✝ :: tail✝) psi ⊒ Holds D I V (head✝ :: tail✝) (sub Ο„ (phi.iff_ psi)) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V (head✝ :: tail✝) (pred_var_ (Ο„ P) []) else I.pred_var_ P ds } V (head✝ :: tail✝) (phi.iff_ psi) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Prop/All/Rec/Sub.lean
FOL.NV.Sub.Prop.All.Rec.substitution_theorem
[94, 1]
[182, 15]
simp only [Holds]
D : Type I : Interpretation D Ο„ : PredName β†’ PredName head✝ : Definition tail✝ : List Definition tail_ih✝ : βˆ€ (V : VarAssignment D) (F : Formula), Holds D I V tail✝ (sub Ο„ F) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V tail✝ (pred_var_ (Ο„ P) []) else I.pred_var_ P ds } V tail✝ F phi psi : Formula V : VarAssignment D phi_ih : βˆ€ (V : VarAssignment D), Holds D I V (head✝ :: tail✝) (sub Ο„ phi) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then I.pred_var_ (Ο„ P) (List.map V []) else I.pred_var_ P ds } V (head✝ :: tail✝) phi psi_ih : βˆ€ (V : VarAssignment D), Holds D I V (head✝ :: tail✝) (sub Ο„ psi) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then I.pred_var_ (Ο„ P) (List.map V []) else I.pred_var_ P ds } V (head✝ :: tail✝) psi ⊒ Holds D I V (head✝ :: tail✝) ((sub Ο„ phi).iff_ (sub Ο„ psi)) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V (head✝ :: tail✝) (pred_var_ (Ο„ P) []) else I.pred_var_ P ds } V (head✝ :: tail✝) (phi.iff_ psi)
D : Type I : Interpretation D Ο„ : PredName β†’ PredName head✝ : Definition tail✝ : List Definition tail_ih✝ : βˆ€ (V : VarAssignment D) (F : Formula), Holds D I V tail✝ (sub Ο„ F) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V tail✝ (pred_var_ (Ο„ P) []) else I.pred_var_ P ds } V tail✝ F phi psi : Formula V : VarAssignment D phi_ih : βˆ€ (V : VarAssignment D), Holds D I V (head✝ :: tail✝) (sub Ο„ phi) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then I.pred_var_ (Ο„ P) (List.map V []) else I.pred_var_ P ds } V (head✝ :: tail✝) phi psi_ih : βˆ€ (V : VarAssignment D), Holds D I V (head✝ :: tail✝) (sub Ο„ psi) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then I.pred_var_ (Ο„ P) (List.map V []) else I.pred_var_ P ds } V (head✝ :: tail✝) psi ⊒ (Holds D I V (head✝ :: tail✝) (sub Ο„ phi) ↔ Holds D I V (head✝ :: tail✝) (sub Ο„ psi)) ↔ (Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then I.pred_var_ (Ο„ P) (List.map V []) else I.pred_var_ P ds } V (head✝ :: tail✝) phi ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then I.pred_var_ (Ο„ P) (List.map V []) else I.pred_var_ P ds } V (head✝ :: tail✝) psi)
Please generate a tactic in lean4 to solve the state. STATE: D : Type I : Interpretation D Ο„ : PredName β†’ PredName head✝ : Definition tail✝ : List Definition tail_ih✝ : βˆ€ (V : VarAssignment D) (F : Formula), Holds D I V tail✝ (sub Ο„ F) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V tail✝ (pred_var_ (Ο„ P) []) else I.pred_var_ P ds } V tail✝ F phi psi : Formula V : VarAssignment D phi_ih : βˆ€ (V : VarAssignment D), Holds D I V (head✝ :: tail✝) (sub Ο„ phi) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then I.pred_var_ (Ο„ P) (List.map V []) else I.pred_var_ P ds } V (head✝ :: tail✝) phi psi_ih : βˆ€ (V : VarAssignment D), Holds D I V (head✝ :: tail✝) (sub Ο„ psi) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then I.pred_var_ (Ο„ P) (List.map V []) else I.pred_var_ P ds } V (head✝ :: tail✝) psi ⊒ Holds D I V (head✝ :: tail✝) ((sub Ο„ phi).iff_ (sub Ο„ psi)) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V (head✝ :: tail✝) (pred_var_ (Ο„ P) []) else I.pred_var_ P ds } V (head✝ :: tail✝) (phi.iff_ psi) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Prop/All/Rec/Sub.lean
FOL.NV.Sub.Prop.All.Rec.substitution_theorem
[94, 1]
[182, 15]
congr! 1
D : Type I : Interpretation D Ο„ : PredName β†’ PredName head✝ : Definition tail✝ : List Definition tail_ih✝ : βˆ€ (V : VarAssignment D) (F : Formula), Holds D I V tail✝ (sub Ο„ F) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V tail✝ (pred_var_ (Ο„ P) []) else I.pred_var_ P ds } V tail✝ F phi psi : Formula V : VarAssignment D phi_ih : βˆ€ (V : VarAssignment D), Holds D I V (head✝ :: tail✝) (sub Ο„ phi) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then I.pred_var_ (Ο„ P) (List.map V []) else I.pred_var_ P ds } V (head✝ :: tail✝) phi psi_ih : βˆ€ (V : VarAssignment D), Holds D I V (head✝ :: tail✝) (sub Ο„ psi) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then I.pred_var_ (Ο„ P) (List.map V []) else I.pred_var_ P ds } V (head✝ :: tail✝) psi ⊒ (Holds D I V (head✝ :: tail✝) (sub Ο„ phi) ↔ Holds D I V (head✝ :: tail✝) (sub Ο„ psi)) ↔ (Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then I.pred_var_ (Ο„ P) (List.map V []) else I.pred_var_ P ds } V (head✝ :: tail✝) phi ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then I.pred_var_ (Ο„ P) (List.map V []) else I.pred_var_ P ds } V (head✝ :: tail✝) psi)
case a.h.e'_1.a D : Type I : Interpretation D Ο„ : PredName β†’ PredName head✝ : Definition tail✝ : List Definition tail_ih✝ : βˆ€ (V : VarAssignment D) (F : Formula), Holds D I V tail✝ (sub Ο„ F) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V tail✝ (pred_var_ (Ο„ P) []) else I.pred_var_ P ds } V tail✝ F phi psi : Formula V : VarAssignment D phi_ih : βˆ€ (V : VarAssignment D), Holds D I V (head✝ :: tail✝) (sub Ο„ phi) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then I.pred_var_ (Ο„ P) (List.map V []) else I.pred_var_ P ds } V (head✝ :: tail✝) phi psi_ih : βˆ€ (V : VarAssignment D), Holds D I V (head✝ :: tail✝) (sub Ο„ psi) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then I.pred_var_ (Ο„ P) (List.map V []) else I.pred_var_ P ds } V (head✝ :: tail✝) psi ⊒ Holds D I V (head✝ :: tail✝) (sub Ο„ phi) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then I.pred_var_ (Ο„ P) (List.map V []) else I.pred_var_ P ds } V (head✝ :: tail✝) phi case a.h.e'_2.a D : Type I : Interpretation D Ο„ : PredName β†’ PredName head✝ : Definition tail✝ : List Definition tail_ih✝ : βˆ€ (V : VarAssignment D) (F : Formula), Holds D I V tail✝ (sub Ο„ F) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V tail✝ (pred_var_ (Ο„ P) []) else I.pred_var_ P ds } V tail✝ F phi psi : Formula V : VarAssignment D phi_ih : βˆ€ (V : VarAssignment D), Holds D I V (head✝ :: tail✝) (sub Ο„ phi) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then I.pred_var_ (Ο„ P) (List.map V []) else I.pred_var_ P ds } V (head✝ :: tail✝) phi psi_ih : βˆ€ (V : VarAssignment D), Holds D I V (head✝ :: tail✝) (sub Ο„ psi) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then I.pred_var_ (Ο„ P) (List.map V []) else I.pred_var_ P ds } V (head✝ :: tail✝) psi ⊒ Holds D I V (head✝ :: tail✝) (sub Ο„ psi) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then I.pred_var_ (Ο„ P) (List.map V []) else I.pred_var_ P ds } V (head✝ :: tail✝) psi
Please generate a tactic in lean4 to solve the state. STATE: D : Type I : Interpretation D Ο„ : PredName β†’ PredName head✝ : Definition tail✝ : List Definition tail_ih✝ : βˆ€ (V : VarAssignment D) (F : Formula), Holds D I V tail✝ (sub Ο„ F) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V tail✝ (pred_var_ (Ο„ P) []) else I.pred_var_ P ds } V tail✝ F phi psi : Formula V : VarAssignment D phi_ih : βˆ€ (V : VarAssignment D), Holds D I V (head✝ :: tail✝) (sub Ο„ phi) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then I.pred_var_ (Ο„ P) (List.map V []) else I.pred_var_ P ds } V (head✝ :: tail✝) phi psi_ih : βˆ€ (V : VarAssignment D), Holds D I V (head✝ :: tail✝) (sub Ο„ psi) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then I.pred_var_ (Ο„ P) (List.map V []) else I.pred_var_ P ds } V (head✝ :: tail✝) psi ⊒ (Holds D I V (head✝ :: tail✝) (sub Ο„ phi) ↔ Holds D I V (head✝ :: tail✝) (sub Ο„ psi)) ↔ (Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then I.pred_var_ (Ο„ P) (List.map V []) else I.pred_var_ P ds } V (head✝ :: tail✝) phi ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then I.pred_var_ (Ο„ P) (List.map V []) else I.pred_var_ P ds } V (head✝ :: tail✝) psi) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Prop/All/Rec/Sub.lean
FOL.NV.Sub.Prop.All.Rec.substitution_theorem
[94, 1]
[182, 15]
apply phi_ih
case a.h.e'_1.a D : Type I : Interpretation D Ο„ : PredName β†’ PredName head✝ : Definition tail✝ : List Definition tail_ih✝ : βˆ€ (V : VarAssignment D) (F : Formula), Holds D I V tail✝ (sub Ο„ F) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V tail✝ (pred_var_ (Ο„ P) []) else I.pred_var_ P ds } V tail✝ F phi psi : Formula V : VarAssignment D phi_ih : βˆ€ (V : VarAssignment D), Holds D I V (head✝ :: tail✝) (sub Ο„ phi) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then I.pred_var_ (Ο„ P) (List.map V []) else I.pred_var_ P ds } V (head✝ :: tail✝) phi psi_ih : βˆ€ (V : VarAssignment D), Holds D I V (head✝ :: tail✝) (sub Ο„ psi) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then I.pred_var_ (Ο„ P) (List.map V []) else I.pred_var_ P ds } V (head✝ :: tail✝) psi ⊒ Holds D I V (head✝ :: tail✝) (sub Ο„ phi) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then I.pred_var_ (Ο„ P) (List.map V []) else I.pred_var_ P ds } V (head✝ :: tail✝) phi
no goals
Please generate a tactic in lean4 to solve the state. STATE: case a.h.e'_1.a D : Type I : Interpretation D Ο„ : PredName β†’ PredName head✝ : Definition tail✝ : List Definition tail_ih✝ : βˆ€ (V : VarAssignment D) (F : Formula), Holds D I V tail✝ (sub Ο„ F) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V tail✝ (pred_var_ (Ο„ P) []) else I.pred_var_ P ds } V tail✝ F phi psi : Formula V : VarAssignment D phi_ih : βˆ€ (V : VarAssignment D), Holds D I V (head✝ :: tail✝) (sub Ο„ phi) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then I.pred_var_ (Ο„ P) (List.map V []) else I.pred_var_ P ds } V (head✝ :: tail✝) phi psi_ih : βˆ€ (V : VarAssignment D), Holds D I V (head✝ :: tail✝) (sub Ο„ psi) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then I.pred_var_ (Ο„ P) (List.map V []) else I.pred_var_ P ds } V (head✝ :: tail✝) psi ⊒ Holds D I V (head✝ :: tail✝) (sub Ο„ phi) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then I.pred_var_ (Ο„ P) (List.map V []) else I.pred_var_ P ds } V (head✝ :: tail✝) phi TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Prop/All/Rec/Sub.lean
FOL.NV.Sub.Prop.All.Rec.substitution_theorem
[94, 1]
[182, 15]
apply psi_ih
case a.h.e'_2.a D : Type I : Interpretation D Ο„ : PredName β†’ PredName head✝ : Definition tail✝ : List Definition tail_ih✝ : βˆ€ (V : VarAssignment D) (F : Formula), Holds D I V tail✝ (sub Ο„ F) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V tail✝ (pred_var_ (Ο„ P) []) else I.pred_var_ P ds } V tail✝ F phi psi : Formula V : VarAssignment D phi_ih : βˆ€ (V : VarAssignment D), Holds D I V (head✝ :: tail✝) (sub Ο„ phi) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then I.pred_var_ (Ο„ P) (List.map V []) else I.pred_var_ P ds } V (head✝ :: tail✝) phi psi_ih : βˆ€ (V : VarAssignment D), Holds D I V (head✝ :: tail✝) (sub Ο„ psi) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then I.pred_var_ (Ο„ P) (List.map V []) else I.pred_var_ P ds } V (head✝ :: tail✝) psi ⊒ Holds D I V (head✝ :: tail✝) (sub Ο„ psi) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then I.pred_var_ (Ο„ P) (List.map V []) else I.pred_var_ P ds } V (head✝ :: tail✝) psi
no goals
Please generate a tactic in lean4 to solve the state. STATE: case a.h.e'_2.a D : Type I : Interpretation D Ο„ : PredName β†’ PredName head✝ : Definition tail✝ : List Definition tail_ih✝ : βˆ€ (V : VarAssignment D) (F : Formula), Holds D I V tail✝ (sub Ο„ F) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V tail✝ (pred_var_ (Ο„ P) []) else I.pred_var_ P ds } V tail✝ F phi psi : Formula V : VarAssignment D phi_ih : βˆ€ (V : VarAssignment D), Holds D I V (head✝ :: tail✝) (sub Ο„ phi) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then I.pred_var_ (Ο„ P) (List.map V []) else I.pred_var_ P ds } V (head✝ :: tail✝) phi psi_ih : βˆ€ (V : VarAssignment D), Holds D I V (head✝ :: tail✝) (sub Ο„ psi) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then I.pred_var_ (Ο„ P) (List.map V []) else I.pred_var_ P ds } V (head✝ :: tail✝) psi ⊒ Holds D I V (head✝ :: tail✝) (sub Ο„ psi) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then I.pred_var_ (Ο„ P) (List.map V []) else I.pred_var_ P ds } V (head✝ :: tail✝) psi TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Prop/All/Rec/Sub.lean
FOL.NV.Sub.Prop.All.Rec.substitution_theorem
[94, 1]
[182, 15]
simp only [Holds] at phi_ih
D : Type I : Interpretation D Ο„ : PredName β†’ PredName head✝ : Definition tail✝ : List Definition tail_ih✝ : βˆ€ (V : VarAssignment D) (F : Formula), Holds D I V tail✝ (sub Ο„ F) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V tail✝ (pred_var_ (Ο„ P) []) else I.pred_var_ P ds } V tail✝ F x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D), Holds D I V (head✝ :: tail✝) (sub Ο„ phi) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V (head✝ :: tail✝) (pred_var_ (Ο„ P) []) else I.pred_var_ P ds } V (head✝ :: tail✝) phi V : VarAssignment D ⊒ Holds D I V (head✝ :: tail✝) (sub Ο„ (exists_ x phi)) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V (head✝ :: tail✝) (pred_var_ (Ο„ P) []) else I.pred_var_ P ds } V (head✝ :: tail✝) (exists_ x phi)
D : Type I : Interpretation D Ο„ : PredName β†’ PredName head✝ : Definition tail✝ : List Definition tail_ih✝ : βˆ€ (V : VarAssignment D) (F : Formula), Holds D I V tail✝ (sub Ο„ F) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V tail✝ (pred_var_ (Ο„ P) []) else I.pred_var_ P ds } V tail✝ F x : VarName phi : Formula V : VarAssignment D phi_ih : βˆ€ (V : VarAssignment D), Holds D I V (head✝ :: tail✝) (sub Ο„ phi) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then I.pred_var_ (Ο„ P) (List.map V []) else I.pred_var_ P ds } V (head✝ :: tail✝) phi ⊒ Holds D I V (head✝ :: tail✝) (sub Ο„ (exists_ x phi)) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V (head✝ :: tail✝) (pred_var_ (Ο„ P) []) else I.pred_var_ P ds } V (head✝ :: tail✝) (exists_ x phi)
Please generate a tactic in lean4 to solve the state. STATE: D : Type I : Interpretation D Ο„ : PredName β†’ PredName head✝ : Definition tail✝ : List Definition tail_ih✝ : βˆ€ (V : VarAssignment D) (F : Formula), Holds D I V tail✝ (sub Ο„ F) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V tail✝ (pred_var_ (Ο„ P) []) else I.pred_var_ P ds } V tail✝ F x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D), Holds D I V (head✝ :: tail✝) (sub Ο„ phi) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V (head✝ :: tail✝) (pred_var_ (Ο„ P) []) else I.pred_var_ P ds } V (head✝ :: tail✝) phi V : VarAssignment D ⊒ Holds D I V (head✝ :: tail✝) (sub Ο„ (exists_ x phi)) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V (head✝ :: tail✝) (pred_var_ (Ο„ P) []) else I.pred_var_ P ds } V (head✝ :: tail✝) (exists_ x phi) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Prop/All/Rec/Sub.lean
FOL.NV.Sub.Prop.All.Rec.substitution_theorem
[94, 1]
[182, 15]
simp only [sub]
D : Type I : Interpretation D Ο„ : PredName β†’ PredName head✝ : Definition tail✝ : List Definition tail_ih✝ : βˆ€ (V : VarAssignment D) (F : Formula), Holds D I V tail✝ (sub Ο„ F) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V tail✝ (pred_var_ (Ο„ P) []) else I.pred_var_ P ds } V tail✝ F x : VarName phi : Formula V : VarAssignment D phi_ih : βˆ€ (V : VarAssignment D), Holds D I V (head✝ :: tail✝) (sub Ο„ phi) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then I.pred_var_ (Ο„ P) (List.map V []) else I.pred_var_ P ds } V (head✝ :: tail✝) phi ⊒ Holds D I V (head✝ :: tail✝) (sub Ο„ (exists_ x phi)) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V (head✝ :: tail✝) (pred_var_ (Ο„ P) []) else I.pred_var_ P ds } V (head✝ :: tail✝) (exists_ x phi)
D : Type I : Interpretation D Ο„ : PredName β†’ PredName head✝ : Definition tail✝ : List Definition tail_ih✝ : βˆ€ (V : VarAssignment D) (F : Formula), Holds D I V tail✝ (sub Ο„ F) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V tail✝ (pred_var_ (Ο„ P) []) else I.pred_var_ P ds } V tail✝ F x : VarName phi : Formula V : VarAssignment D phi_ih : βˆ€ (V : VarAssignment D), Holds D I V (head✝ :: tail✝) (sub Ο„ phi) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then I.pred_var_ (Ο„ P) (List.map V []) else I.pred_var_ P ds } V (head✝ :: tail✝) phi ⊒ Holds D I V (head✝ :: tail✝) (exists_ x (sub Ο„ phi)) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V (head✝ :: tail✝) (pred_var_ (Ο„ P) []) else I.pred_var_ P ds } V (head✝ :: tail✝) (exists_ x phi)
Please generate a tactic in lean4 to solve the state. STATE: D : Type I : Interpretation D Ο„ : PredName β†’ PredName head✝ : Definition tail✝ : List Definition tail_ih✝ : βˆ€ (V : VarAssignment D) (F : Formula), Holds D I V tail✝ (sub Ο„ F) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V tail✝ (pred_var_ (Ο„ P) []) else I.pred_var_ P ds } V tail✝ F x : VarName phi : Formula V : VarAssignment D phi_ih : βˆ€ (V : VarAssignment D), Holds D I V (head✝ :: tail✝) (sub Ο„ phi) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then I.pred_var_ (Ο„ P) (List.map V []) else I.pred_var_ P ds } V (head✝ :: tail✝) phi ⊒ Holds D I V (head✝ :: tail✝) (sub Ο„ (exists_ x phi)) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V (head✝ :: tail✝) (pred_var_ (Ο„ P) []) else I.pred_var_ P ds } V (head✝ :: tail✝) (exists_ x phi) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Prop/All/Rec/Sub.lean
FOL.NV.Sub.Prop.All.Rec.substitution_theorem
[94, 1]
[182, 15]
simp only [Holds]
D : Type I : Interpretation D Ο„ : PredName β†’ PredName head✝ : Definition tail✝ : List Definition tail_ih✝ : βˆ€ (V : VarAssignment D) (F : Formula), Holds D I V tail✝ (sub Ο„ F) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V tail✝ (pred_var_ (Ο„ P) []) else I.pred_var_ P ds } V tail✝ F x : VarName phi : Formula V : VarAssignment D phi_ih : βˆ€ (V : VarAssignment D), Holds D I V (head✝ :: tail✝) (sub Ο„ phi) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then I.pred_var_ (Ο„ P) (List.map V []) else I.pred_var_ P ds } V (head✝ :: tail✝) phi ⊒ Holds D I V (head✝ :: tail✝) (exists_ x (sub Ο„ phi)) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V (head✝ :: tail✝) (pred_var_ (Ο„ P) []) else I.pred_var_ P ds } V (head✝ :: tail✝) (exists_ x phi)
D : Type I : Interpretation D Ο„ : PredName β†’ PredName head✝ : Definition tail✝ : List Definition tail_ih✝ : βˆ€ (V : VarAssignment D) (F : Formula), Holds D I V tail✝ (sub Ο„ F) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V tail✝ (pred_var_ (Ο„ P) []) else I.pred_var_ P ds } V tail✝ F x : VarName phi : Formula V : VarAssignment D phi_ih : βˆ€ (V : VarAssignment D), Holds D I V (head✝ :: tail✝) (sub Ο„ phi) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then I.pred_var_ (Ο„ P) (List.map V []) else I.pred_var_ P ds } V (head✝ :: tail✝) phi ⊒ (βˆƒ d, Holds D I (Function.updateITE V x d) (head✝ :: tail✝) (sub Ο„ phi)) ↔ βˆƒ d, Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then I.pred_var_ (Ο„ P) (List.map V []) else I.pred_var_ P ds } (Function.updateITE V x d) (head✝ :: tail✝) phi
Please generate a tactic in lean4 to solve the state. STATE: D : Type I : Interpretation D Ο„ : PredName β†’ PredName head✝ : Definition tail✝ : List Definition tail_ih✝ : βˆ€ (V : VarAssignment D) (F : Formula), Holds D I V tail✝ (sub Ο„ F) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V tail✝ (pred_var_ (Ο„ P) []) else I.pred_var_ P ds } V tail✝ F x : VarName phi : Formula V : VarAssignment D phi_ih : βˆ€ (V : VarAssignment D), Holds D I V (head✝ :: tail✝) (sub Ο„ phi) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then I.pred_var_ (Ο„ P) (List.map V []) else I.pred_var_ P ds } V (head✝ :: tail✝) phi ⊒ Holds D I V (head✝ :: tail✝) (exists_ x (sub Ο„ phi)) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V (head✝ :: tail✝) (pred_var_ (Ο„ P) []) else I.pred_var_ P ds } V (head✝ :: tail✝) (exists_ x phi) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Prop/All/Rec/Sub.lean
FOL.NV.Sub.Prop.All.Rec.substitution_theorem
[94, 1]
[182, 15]
first | apply forall_congr' | apply exists_congr
D : Type I : Interpretation D Ο„ : PredName β†’ PredName head✝ : Definition tail✝ : List Definition tail_ih✝ : βˆ€ (V : VarAssignment D) (F : Formula), Holds D I V tail✝ (sub Ο„ F) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V tail✝ (pred_var_ (Ο„ P) []) else I.pred_var_ P ds } V tail✝ F x : VarName phi : Formula V : VarAssignment D phi_ih : βˆ€ (V : VarAssignment D), Holds D I V (head✝ :: tail✝) (sub Ο„ phi) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then I.pred_var_ (Ο„ P) (List.map V []) else I.pred_var_ P ds } V (head✝ :: tail✝) phi ⊒ (βˆƒ d, Holds D I (Function.updateITE V x d) (head✝ :: tail✝) (sub Ο„ phi)) ↔ βˆƒ d, Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then I.pred_var_ (Ο„ P) (List.map V []) else I.pred_var_ P ds } (Function.updateITE V x d) (head✝ :: tail✝) phi
case h D : Type I : Interpretation D Ο„ : PredName β†’ PredName head✝ : Definition tail✝ : List Definition tail_ih✝ : βˆ€ (V : VarAssignment D) (F : Formula), Holds D I V tail✝ (sub Ο„ F) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V tail✝ (pred_var_ (Ο„ P) []) else I.pred_var_ P ds } V tail✝ F x : VarName phi : Formula V : VarAssignment D phi_ih : βˆ€ (V : VarAssignment D), Holds D I V (head✝ :: tail✝) (sub Ο„ phi) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then I.pred_var_ (Ο„ P) (List.map V []) else I.pred_var_ P ds } V (head✝ :: tail✝) phi ⊒ βˆ€ (a : D), Holds D I (Function.updateITE V x a) (head✝ :: tail✝) (sub Ο„ phi) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then I.pred_var_ (Ο„ P) (List.map V []) else I.pred_var_ P ds } (Function.updateITE V x a) (head✝ :: tail✝) phi
Please generate a tactic in lean4 to solve the state. STATE: D : Type I : Interpretation D Ο„ : PredName β†’ PredName head✝ : Definition tail✝ : List Definition tail_ih✝ : βˆ€ (V : VarAssignment D) (F : Formula), Holds D I V tail✝ (sub Ο„ F) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V tail✝ (pred_var_ (Ο„ P) []) else I.pred_var_ P ds } V tail✝ F x : VarName phi : Formula V : VarAssignment D phi_ih : βˆ€ (V : VarAssignment D), Holds D I V (head✝ :: tail✝) (sub Ο„ phi) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then I.pred_var_ (Ο„ P) (List.map V []) else I.pred_var_ P ds } V (head✝ :: tail✝) phi ⊒ (βˆƒ d, Holds D I (Function.updateITE V x d) (head✝ :: tail✝) (sub Ο„ phi)) ↔ βˆƒ d, Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then I.pred_var_ (Ο„ P) (List.map V []) else I.pred_var_ P ds } (Function.updateITE V x d) (head✝ :: tail✝) phi TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Prop/All/Rec/Sub.lean
FOL.NV.Sub.Prop.All.Rec.substitution_theorem
[94, 1]
[182, 15]
intros d
case h D : Type I : Interpretation D Ο„ : PredName β†’ PredName head✝ : Definition tail✝ : List Definition tail_ih✝ : βˆ€ (V : VarAssignment D) (F : Formula), Holds D I V tail✝ (sub Ο„ F) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V tail✝ (pred_var_ (Ο„ P) []) else I.pred_var_ P ds } V tail✝ F x : VarName phi : Formula V : VarAssignment D phi_ih : βˆ€ (V : VarAssignment D), Holds D I V (head✝ :: tail✝) (sub Ο„ phi) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then I.pred_var_ (Ο„ P) (List.map V []) else I.pred_var_ P ds } V (head✝ :: tail✝) phi ⊒ βˆ€ (a : D), Holds D I (Function.updateITE V x a) (head✝ :: tail✝) (sub Ο„ phi) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then I.pred_var_ (Ο„ P) (List.map V []) else I.pred_var_ P ds } (Function.updateITE V x a) (head✝ :: tail✝) phi
case h D : Type I : Interpretation D Ο„ : PredName β†’ PredName head✝ : Definition tail✝ : List Definition tail_ih✝ : βˆ€ (V : VarAssignment D) (F : Formula), Holds D I V tail✝ (sub Ο„ F) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V tail✝ (pred_var_ (Ο„ P) []) else I.pred_var_ P ds } V tail✝ F x : VarName phi : Formula V : VarAssignment D phi_ih : βˆ€ (V : VarAssignment D), Holds D I V (head✝ :: tail✝) (sub Ο„ phi) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then I.pred_var_ (Ο„ P) (List.map V []) else I.pred_var_ P ds } V (head✝ :: tail✝) phi d : D ⊒ Holds D I (Function.updateITE V x d) (head✝ :: tail✝) (sub Ο„ phi) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then I.pred_var_ (Ο„ P) (List.map V []) else I.pred_var_ P ds } (Function.updateITE V x d) (head✝ :: tail✝) phi
Please generate a tactic in lean4 to solve the state. STATE: case h D : Type I : Interpretation D Ο„ : PredName β†’ PredName head✝ : Definition tail✝ : List Definition tail_ih✝ : βˆ€ (V : VarAssignment D) (F : Formula), Holds D I V tail✝ (sub Ο„ F) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V tail✝ (pred_var_ (Ο„ P) []) else I.pred_var_ P ds } V tail✝ F x : VarName phi : Formula V : VarAssignment D phi_ih : βˆ€ (V : VarAssignment D), Holds D I V (head✝ :: tail✝) (sub Ο„ phi) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then I.pred_var_ (Ο„ P) (List.map V []) else I.pred_var_ P ds } V (head✝ :: tail✝) phi ⊒ βˆ€ (a : D), Holds D I (Function.updateITE V x a) (head✝ :: tail✝) (sub Ο„ phi) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then I.pred_var_ (Ο„ P) (List.map V []) else I.pred_var_ P ds } (Function.updateITE V x a) (head✝ :: tail✝) phi TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Prop/All/Rec/Sub.lean
FOL.NV.Sub.Prop.All.Rec.substitution_theorem
[94, 1]
[182, 15]
apply phi_ih
case h D : Type I : Interpretation D Ο„ : PredName β†’ PredName head✝ : Definition tail✝ : List Definition tail_ih✝ : βˆ€ (V : VarAssignment D) (F : Formula), Holds D I V tail✝ (sub Ο„ F) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V tail✝ (pred_var_ (Ο„ P) []) else I.pred_var_ P ds } V tail✝ F x : VarName phi : Formula V : VarAssignment D phi_ih : βˆ€ (V : VarAssignment D), Holds D I V (head✝ :: tail✝) (sub Ο„ phi) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then I.pred_var_ (Ο„ P) (List.map V []) else I.pred_var_ P ds } V (head✝ :: tail✝) phi d : D ⊒ Holds D I (Function.updateITE V x d) (head✝ :: tail✝) (sub Ο„ phi) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then I.pred_var_ (Ο„ P) (List.map V []) else I.pred_var_ P ds } (Function.updateITE V x d) (head✝ :: tail✝) phi
no goals
Please generate a tactic in lean4 to solve the state. STATE: case h D : Type I : Interpretation D Ο„ : PredName β†’ PredName head✝ : Definition tail✝ : List Definition tail_ih✝ : βˆ€ (V : VarAssignment D) (F : Formula), Holds D I V tail✝ (sub Ο„ F) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V tail✝ (pred_var_ (Ο„ P) []) else I.pred_var_ P ds } V tail✝ F x : VarName phi : Formula V : VarAssignment D phi_ih : βˆ€ (V : VarAssignment D), Holds D I V (head✝ :: tail✝) (sub Ο„ phi) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then I.pred_var_ (Ο„ P) (List.map V []) else I.pred_var_ P ds } V (head✝ :: tail✝) phi d : D ⊒ Holds D I (Function.updateITE V x d) (head✝ :: tail✝) (sub Ο„ phi) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then I.pred_var_ (Ο„ P) (List.map V []) else I.pred_var_ P ds } (Function.updateITE V x d) (head✝ :: tail✝) phi TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Prop/All/Rec/Sub.lean
FOL.NV.Sub.Prop.All.Rec.substitution_theorem
[94, 1]
[182, 15]
apply forall_congr'
D : Type I : Interpretation D Ο„ : PredName β†’ PredName head✝ : Definition tail✝ : List Definition tail_ih✝ : βˆ€ (V : VarAssignment D) (F : Formula), Holds D I V tail✝ (sub Ο„ F) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V tail✝ (pred_var_ (Ο„ P) []) else I.pred_var_ P ds } V tail✝ F x : VarName phi : Formula V : VarAssignment D phi_ih : βˆ€ (V : VarAssignment D), Holds D I V (head✝ :: tail✝) (sub Ο„ phi) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then I.pred_var_ (Ο„ P) (List.map V []) else I.pred_var_ P ds } V (head✝ :: tail✝) phi ⊒ (βˆ€ (d : D), Holds D I (Function.updateITE V x d) (head✝ :: tail✝) (sub Ο„ phi)) ↔ βˆ€ (d : D), Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then I.pred_var_ (Ο„ P) (List.map V []) else I.pred_var_ P ds } (Function.updateITE V x d) (head✝ :: tail✝) phi
case h D : Type I : Interpretation D Ο„ : PredName β†’ PredName head✝ : Definition tail✝ : List Definition tail_ih✝ : βˆ€ (V : VarAssignment D) (F : Formula), Holds D I V tail✝ (sub Ο„ F) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V tail✝ (pred_var_ (Ο„ P) []) else I.pred_var_ P ds } V tail✝ F x : VarName phi : Formula V : VarAssignment D phi_ih : βˆ€ (V : VarAssignment D), Holds D I V (head✝ :: tail✝) (sub Ο„ phi) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then I.pred_var_ (Ο„ P) (List.map V []) else I.pred_var_ P ds } V (head✝ :: tail✝) phi ⊒ βˆ€ (a : D), Holds D I (Function.updateITE V x a) (head✝ :: tail✝) (sub Ο„ phi) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then I.pred_var_ (Ο„ P) (List.map V []) else I.pred_var_ P ds } (Function.updateITE V x a) (head✝ :: tail✝) phi
Please generate a tactic in lean4 to solve the state. STATE: D : Type I : Interpretation D Ο„ : PredName β†’ PredName head✝ : Definition tail✝ : List Definition tail_ih✝ : βˆ€ (V : VarAssignment D) (F : Formula), Holds D I V tail✝ (sub Ο„ F) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V tail✝ (pred_var_ (Ο„ P) []) else I.pred_var_ P ds } V tail✝ F x : VarName phi : Formula V : VarAssignment D phi_ih : βˆ€ (V : VarAssignment D), Holds D I V (head✝ :: tail✝) (sub Ο„ phi) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then I.pred_var_ (Ο„ P) (List.map V []) else I.pred_var_ P ds } V (head✝ :: tail✝) phi ⊒ (βˆ€ (d : D), Holds D I (Function.updateITE V x d) (head✝ :: tail✝) (sub Ο„ phi)) ↔ βˆ€ (d : D), Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then I.pred_var_ (Ο„ P) (List.map V []) else I.pred_var_ P ds } (Function.updateITE V x d) (head✝ :: tail✝) phi TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Prop/All/Rec/Sub.lean
FOL.NV.Sub.Prop.All.Rec.substitution_theorem
[94, 1]
[182, 15]
apply exists_congr
D : Type I : Interpretation D Ο„ : PredName β†’ PredName head✝ : Definition tail✝ : List Definition tail_ih✝ : βˆ€ (V : VarAssignment D) (F : Formula), Holds D I V tail✝ (sub Ο„ F) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V tail✝ (pred_var_ (Ο„ P) []) else I.pred_var_ P ds } V tail✝ F x : VarName phi : Formula V : VarAssignment D phi_ih : βˆ€ (V : VarAssignment D), Holds D I V (head✝ :: tail✝) (sub Ο„ phi) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then I.pred_var_ (Ο„ P) (List.map V []) else I.pred_var_ P ds } V (head✝ :: tail✝) phi ⊒ (βˆƒ d, Holds D I (Function.updateITE V x d) (head✝ :: tail✝) (sub Ο„ phi)) ↔ βˆƒ d, Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then I.pred_var_ (Ο„ P) (List.map V []) else I.pred_var_ P ds } (Function.updateITE V x d) (head✝ :: tail✝) phi
case h D : Type I : Interpretation D Ο„ : PredName β†’ PredName head✝ : Definition tail✝ : List Definition tail_ih✝ : βˆ€ (V : VarAssignment D) (F : Formula), Holds D I V tail✝ (sub Ο„ F) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V tail✝ (pred_var_ (Ο„ P) []) else I.pred_var_ P ds } V tail✝ F x : VarName phi : Formula V : VarAssignment D phi_ih : βˆ€ (V : VarAssignment D), Holds D I V (head✝ :: tail✝) (sub Ο„ phi) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then I.pred_var_ (Ο„ P) (List.map V []) else I.pred_var_ P ds } V (head✝ :: tail✝) phi ⊒ βˆ€ (a : D), Holds D I (Function.updateITE V x a) (head✝ :: tail✝) (sub Ο„ phi) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then I.pred_var_ (Ο„ P) (List.map V []) else I.pred_var_ P ds } (Function.updateITE V x a) (head✝ :: tail✝) phi
Please generate a tactic in lean4 to solve the state. STATE: D : Type I : Interpretation D Ο„ : PredName β†’ PredName head✝ : Definition tail✝ : List Definition tail_ih✝ : βˆ€ (V : VarAssignment D) (F : Formula), Holds D I V tail✝ (sub Ο„ F) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V tail✝ (pred_var_ (Ο„ P) []) else I.pred_var_ P ds } V tail✝ F x : VarName phi : Formula V : VarAssignment D phi_ih : βˆ€ (V : VarAssignment D), Holds D I V (head✝ :: tail✝) (sub Ο„ phi) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then I.pred_var_ (Ο„ P) (List.map V []) else I.pred_var_ P ds } V (head✝ :: tail✝) phi ⊒ (βˆƒ d, Holds D I (Function.updateITE V x d) (head✝ :: tail✝) (sub Ο„ phi)) ↔ βˆƒ d, Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then I.pred_var_ (Ο„ P) (List.map V []) else I.pred_var_ P ds } (Function.updateITE V x d) (head✝ :: tail✝) phi TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Prop/All/Rec/Sub.lean
FOL.NV.Sub.Prop.All.Rec.substitution_theorem
[94, 1]
[182, 15]
simp only [sub]
D : Type I : Interpretation D Ο„ : PredName β†’ PredName X : DefName xs : List VarName V : VarAssignment D ⊒ Holds D I V [] (sub Ο„ (def_ X xs)) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V [] (pred_var_ (Ο„ P) []) else I.pred_var_ P ds } V [] (def_ X xs)
D : Type I : Interpretation D Ο„ : PredName β†’ PredName X : DefName xs : List VarName V : VarAssignment D ⊒ Holds D I V [] (def_ X xs) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V [] (pred_var_ (Ο„ P) []) else I.pred_var_ P ds } V [] (def_ X xs)
Please generate a tactic in lean4 to solve the state. STATE: D : Type I : Interpretation D Ο„ : PredName β†’ PredName X : DefName xs : List VarName V : VarAssignment D ⊒ Holds D I V [] (sub Ο„ (def_ X xs)) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V [] (pred_var_ (Ο„ P) []) else I.pred_var_ P ds } V [] (def_ X xs) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Prop/All/Rec/Sub.lean
FOL.NV.Sub.Prop.All.Rec.substitution_theorem
[94, 1]
[182, 15]
simp only [Holds]
D : Type I : Interpretation D Ο„ : PredName β†’ PredName X : DefName xs : List VarName V : VarAssignment D ⊒ Holds D I V [] (def_ X xs) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V [] (pred_var_ (Ο„ P) []) else I.pred_var_ P ds } V [] (def_ X xs)
no goals
Please generate a tactic in lean4 to solve the state. STATE: D : Type I : Interpretation D Ο„ : PredName β†’ PredName X : DefName xs : List VarName V : VarAssignment D ⊒ Holds D I V [] (def_ X xs) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V [] (pred_var_ (Ο„ P) []) else I.pred_var_ P ds } V [] (def_ X xs) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Prop/All/Rec/Sub.lean
FOL.NV.Sub.Prop.All.Rec.substitution_theorem
[94, 1]
[182, 15]
simp only [Holds] at ih
D : Type I : Interpretation D Ο„ : PredName β†’ PredName hd : Definition tl : List Definition ih : βˆ€ (V : VarAssignment D) (F : Formula), Holds D I V tl (sub Ο„ F) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V tl (pred_var_ (Ο„ P) []) else I.pred_var_ P ds } V tl F X : DefName xs : List VarName V : VarAssignment D ⊒ Holds D I V (hd :: tl) (sub Ο„ (def_ X xs)) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V (hd :: tl) (pred_var_ (Ο„ P) []) else I.pred_var_ P ds } V (hd :: tl) (def_ X xs)
D : Type I : Interpretation D Ο„ : PredName β†’ PredName hd : Definition tl : List Definition X : DefName xs : List VarName V : VarAssignment D ih : βˆ€ (V : VarAssignment D) (F : Formula), Holds D I V tl (sub Ο„ F) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then I.pred_var_ (Ο„ P) (List.map V []) else I.pred_var_ P ds } V tl F ⊒ Holds D I V (hd :: tl) (sub Ο„ (def_ X xs)) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V (hd :: tl) (pred_var_ (Ο„ P) []) else I.pred_var_ P ds } V (hd :: tl) (def_ X xs)
Please generate a tactic in lean4 to solve the state. STATE: D : Type I : Interpretation D Ο„ : PredName β†’ PredName hd : Definition tl : List Definition ih : βˆ€ (V : VarAssignment D) (F : Formula), Holds D I V tl (sub Ο„ F) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V tl (pred_var_ (Ο„ P) []) else I.pred_var_ P ds } V tl F X : DefName xs : List VarName V : VarAssignment D ⊒ Holds D I V (hd :: tl) (sub Ο„ (def_ X xs)) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V (hd :: tl) (pred_var_ (Ο„ P) []) else I.pred_var_ P ds } V (hd :: tl) (def_ X xs) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Prop/All/Rec/Sub.lean
FOL.NV.Sub.Prop.All.Rec.substitution_theorem
[94, 1]
[182, 15]
simp at ih
D : Type I : Interpretation D Ο„ : PredName β†’ PredName hd : Definition tl : List Definition X : DefName xs : List VarName V : VarAssignment D ih : βˆ€ (V : VarAssignment D) (F : Formula), Holds D I V tl (sub Ο„ F) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then I.pred_var_ (Ο„ P) (List.map V []) else I.pred_var_ P ds } V tl F ⊒ Holds D I V (hd :: tl) (sub Ο„ (def_ X xs)) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V (hd :: tl) (pred_var_ (Ο„ P) []) else I.pred_var_ P ds } V (hd :: tl) (def_ X xs)
D : Type I : Interpretation D Ο„ : PredName β†’ PredName hd : Definition tl : List Definition X : DefName xs : List VarName V : VarAssignment D ih : βˆ€ (V : VarAssignment D) (F : Formula), Holds D I V tl (sub Ο„ F) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then I.pred_var_ (Ο„ P) [] else I.pred_var_ P ds } V tl F ⊒ Holds D I V (hd :: tl) (sub Ο„ (def_ X xs)) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V (hd :: tl) (pred_var_ (Ο„ P) []) else I.pred_var_ P ds } V (hd :: tl) (def_ X xs)
Please generate a tactic in lean4 to solve the state. STATE: D : Type I : Interpretation D Ο„ : PredName β†’ PredName hd : Definition tl : List Definition X : DefName xs : List VarName V : VarAssignment D ih : βˆ€ (V : VarAssignment D) (F : Formula), Holds D I V tl (sub Ο„ F) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then I.pred_var_ (Ο„ P) (List.map V []) else I.pred_var_ P ds } V tl F ⊒ Holds D I V (hd :: tl) (sub Ο„ (def_ X xs)) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V (hd :: tl) (pred_var_ (Ο„ P) []) else I.pred_var_ P ds } V (hd :: tl) (def_ X xs) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Prop/All/Rec/Sub.lean
FOL.NV.Sub.Prop.All.Rec.substitution_theorem
[94, 1]
[182, 15]
simp only [sub]
D : Type I : Interpretation D Ο„ : PredName β†’ PredName hd : Definition tl : List Definition X : DefName xs : List VarName V : VarAssignment D ih : βˆ€ (V : VarAssignment D) (F : Formula), Holds D I V tl (sub Ο„ F) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then I.pred_var_ (Ο„ P) [] else I.pred_var_ P ds } V tl F ⊒ Holds D I V (hd :: tl) (sub Ο„ (def_ X xs)) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V (hd :: tl) (pred_var_ (Ο„ P) []) else I.pred_var_ P ds } V (hd :: tl) (def_ X xs)
D : Type I : Interpretation D Ο„ : PredName β†’ PredName hd : Definition tl : List Definition X : DefName xs : List VarName V : VarAssignment D ih : βˆ€ (V : VarAssignment D) (F : Formula), Holds D I V tl (sub Ο„ F) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then I.pred_var_ (Ο„ P) [] else I.pred_var_ P ds } V tl F ⊒ Holds D I V (hd :: tl) (def_ X xs) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V (hd :: tl) (pred_var_ (Ο„ P) []) else I.pred_var_ P ds } V (hd :: tl) (def_ X xs)
Please generate a tactic in lean4 to solve the state. STATE: D : Type I : Interpretation D Ο„ : PredName β†’ PredName hd : Definition tl : List Definition X : DefName xs : List VarName V : VarAssignment D ih : βˆ€ (V : VarAssignment D) (F : Formula), Holds D I V tl (sub Ο„ F) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then I.pred_var_ (Ο„ P) [] else I.pred_var_ P ds } V tl F ⊒ Holds D I V (hd :: tl) (sub Ο„ (def_ X xs)) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V (hd :: tl) (pred_var_ (Ο„ P) []) else I.pred_var_ P ds } V (hd :: tl) (def_ X xs) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Prop/All/Rec/Sub.lean
FOL.NV.Sub.Prop.All.Rec.substitution_theorem
[94, 1]
[182, 15]
simp only [Holds]
D : Type I : Interpretation D Ο„ : PredName β†’ PredName hd : Definition tl : List Definition X : DefName xs : List VarName V : VarAssignment D ih : βˆ€ (V : VarAssignment D) (F : Formula), Holds D I V tl (sub Ο„ F) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then I.pred_var_ (Ο„ P) [] else I.pred_var_ P ds } V tl F ⊒ Holds D I V (hd :: tl) (def_ X xs) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V (hd :: tl) (pred_var_ (Ο„ P) []) else I.pred_var_ P ds } V (hd :: tl) (def_ X xs)
D : Type I : Interpretation D Ο„ : PredName β†’ PredName hd : Definition tl : List Definition X : DefName xs : List VarName V : VarAssignment D ih : βˆ€ (V : VarAssignment D) (F : Formula), Holds D I V tl (sub Ο„ F) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then I.pred_var_ (Ο„ P) [] else I.pred_var_ P ds } V tl F ⊒ (if X = hd.name ∧ xs.length = hd.args.length then Holds D I (Function.updateListITE V hd.args (List.map V xs)) tl hd.q else Holds D I V tl (def_ X xs)) ↔ if X = hd.name ∧ xs.length = hd.args.length then Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then I.pred_var_ (Ο„ P) (List.map V []) else I.pred_var_ P ds } (Function.updateListITE V hd.args (List.map V xs)) tl hd.q else Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then I.pred_var_ (Ο„ P) (List.map V []) else I.pred_var_ P ds } V tl (def_ X xs)
Please generate a tactic in lean4 to solve the state. STATE: D : Type I : Interpretation D Ο„ : PredName β†’ PredName hd : Definition tl : List Definition X : DefName xs : List VarName V : VarAssignment D ih : βˆ€ (V : VarAssignment D) (F : Formula), Holds D I V tl (sub Ο„ F) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then I.pred_var_ (Ο„ P) [] else I.pred_var_ P ds } V tl F ⊒ Holds D I V (hd :: tl) (def_ X xs) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V (hd :: tl) (pred_var_ (Ο„ P) []) else I.pred_var_ P ds } V (hd :: tl) (def_ X xs) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Prop/All/Rec/Sub.lean
FOL.NV.Sub.Prop.All.Rec.substitution_theorem
[94, 1]
[182, 15]
split_ifs
D : Type I : Interpretation D Ο„ : PredName β†’ PredName hd : Definition tl : List Definition X : DefName xs : List VarName V : VarAssignment D ih : βˆ€ (V : VarAssignment D) (F : Formula), Holds D I V tl (sub Ο„ F) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then I.pred_var_ (Ο„ P) [] else I.pred_var_ P ds } V tl F ⊒ (if X = hd.name ∧ xs.length = hd.args.length then Holds D I (Function.updateListITE V hd.args (List.map V xs)) tl hd.q else Holds D I V tl (def_ X xs)) ↔ if X = hd.name ∧ xs.length = hd.args.length then Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then I.pred_var_ (Ο„ P) (List.map V []) else I.pred_var_ P ds } (Function.updateListITE V hd.args (List.map V xs)) tl hd.q else Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then I.pred_var_ (Ο„ P) (List.map V []) else I.pred_var_ P ds } V tl (def_ X xs)
case pos D : Type I : Interpretation D Ο„ : PredName β†’ PredName hd : Definition tl : List Definition X : DefName xs : List VarName V : VarAssignment D ih : βˆ€ (V : VarAssignment D) (F : Formula), Holds D I V tl (sub Ο„ F) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then I.pred_var_ (Ο„ P) [] else I.pred_var_ P ds } V tl F h✝ : X = hd.name ∧ xs.length = hd.args.length ⊒ Holds D I (Function.updateListITE V hd.args (List.map V xs)) tl hd.q ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then I.pred_var_ (Ο„ P) (List.map V []) else I.pred_var_ P ds } (Function.updateListITE V hd.args (List.map V xs)) tl hd.q case neg D : Type I : Interpretation D Ο„ : PredName β†’ PredName hd : Definition tl : List Definition X : DefName xs : List VarName V : VarAssignment D ih : βˆ€ (V : VarAssignment D) (F : Formula), Holds D I V tl (sub Ο„ F) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then I.pred_var_ (Ο„ P) [] else I.pred_var_ P ds } V tl F h✝ : Β¬(X = hd.name ∧ xs.length = hd.args.length) ⊒ Holds D I V tl (def_ X xs) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then I.pred_var_ (Ο„ P) (List.map V []) else I.pred_var_ P ds } V tl (def_ X xs)
Please generate a tactic in lean4 to solve the state. STATE: D : Type I : Interpretation D Ο„ : PredName β†’ PredName hd : Definition tl : List Definition X : DefName xs : List VarName V : VarAssignment D ih : βˆ€ (V : VarAssignment D) (F : Formula), Holds D I V tl (sub Ο„ F) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then I.pred_var_ (Ο„ P) [] else I.pred_var_ P ds } V tl F ⊒ (if X = hd.name ∧ xs.length = hd.args.length then Holds D I (Function.updateListITE V hd.args (List.map V xs)) tl hd.q else Holds D I V tl (def_ X xs)) ↔ if X = hd.name ∧ xs.length = hd.args.length then Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then I.pred_var_ (Ο„ P) (List.map V []) else I.pred_var_ P ds } (Function.updateListITE V hd.args (List.map V xs)) tl hd.q else Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then I.pred_var_ (Ο„ P) (List.map V []) else I.pred_var_ P ds } V tl (def_ X xs) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Prop/All/Rec/Sub.lean
FOL.NV.Sub.Prop.All.Rec.substitution_theorem
[94, 1]
[182, 15]
case _ c1 => specialize ih (Function.updateListITE V hd.args (List.map V xs)) hd.q simp only [sub_no_predVar hd.q Ο„ hd.h2] at ih apply ih
D : Type I : Interpretation D Ο„ : PredName β†’ PredName hd : Definition tl : List Definition X : DefName xs : List VarName V : VarAssignment D ih : βˆ€ (V : VarAssignment D) (F : Formula), Holds D I V tl (sub Ο„ F) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then I.pred_var_ (Ο„ P) [] else I.pred_var_ P ds } V tl F c1 : X = hd.name ∧ xs.length = hd.args.length ⊒ Holds D I (Function.updateListITE V hd.args (List.map V xs)) tl hd.q ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then I.pred_var_ (Ο„ P) (List.map V []) else I.pred_var_ P ds } (Function.updateListITE V hd.args (List.map V xs)) tl hd.q
no goals
Please generate a tactic in lean4 to solve the state. STATE: D : Type I : Interpretation D Ο„ : PredName β†’ PredName hd : Definition tl : List Definition X : DefName xs : List VarName V : VarAssignment D ih : βˆ€ (V : VarAssignment D) (F : Formula), Holds D I V tl (sub Ο„ F) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then I.pred_var_ (Ο„ P) [] else I.pred_var_ P ds } V tl F c1 : X = hd.name ∧ xs.length = hd.args.length ⊒ Holds D I (Function.updateListITE V hd.args (List.map V xs)) tl hd.q ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then I.pred_var_ (Ο„ P) (List.map V []) else I.pred_var_ P ds } (Function.updateListITE V hd.args (List.map V xs)) tl hd.q TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Prop/All/Rec/Sub.lean
FOL.NV.Sub.Prop.All.Rec.substitution_theorem
[94, 1]
[182, 15]
case _ c1 => specialize ih V (def_ X xs) simp only [sub] at ih exact ih
D : Type I : Interpretation D Ο„ : PredName β†’ PredName hd : Definition tl : List Definition X : DefName xs : List VarName V : VarAssignment D ih : βˆ€ (V : VarAssignment D) (F : Formula), Holds D I V tl (sub Ο„ F) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then I.pred_var_ (Ο„ P) [] else I.pred_var_ P ds } V tl F c1 : Β¬(X = hd.name ∧ xs.length = hd.args.length) ⊒ Holds D I V tl (def_ X xs) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then I.pred_var_ (Ο„ P) (List.map V []) else I.pred_var_ P ds } V tl (def_ X xs)
no goals
Please generate a tactic in lean4 to solve the state. STATE: D : Type I : Interpretation D Ο„ : PredName β†’ PredName hd : Definition tl : List Definition X : DefName xs : List VarName V : VarAssignment D ih : βˆ€ (V : VarAssignment D) (F : Formula), Holds D I V tl (sub Ο„ F) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then I.pred_var_ (Ο„ P) [] else I.pred_var_ P ds } V tl F c1 : Β¬(X = hd.name ∧ xs.length = hd.args.length) ⊒ Holds D I V tl (def_ X xs) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then I.pred_var_ (Ο„ P) (List.map V []) else I.pred_var_ P ds } V tl (def_ X xs) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Prop/All/Rec/Sub.lean
FOL.NV.Sub.Prop.All.Rec.substitution_theorem
[94, 1]
[182, 15]
specialize ih (Function.updateListITE V hd.args (List.map V xs)) hd.q
D : Type I : Interpretation D Ο„ : PredName β†’ PredName hd : Definition tl : List Definition X : DefName xs : List VarName V : VarAssignment D ih : βˆ€ (V : VarAssignment D) (F : Formula), Holds D I V tl (sub Ο„ F) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then I.pred_var_ (Ο„ P) [] else I.pred_var_ P ds } V tl F c1 : X = hd.name ∧ xs.length = hd.args.length ⊒ Holds D I (Function.updateListITE V hd.args (List.map V xs)) tl hd.q ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then I.pred_var_ (Ο„ P) (List.map V []) else I.pred_var_ P ds } (Function.updateListITE V hd.args (List.map V xs)) tl hd.q
D : Type I : Interpretation D Ο„ : PredName β†’ PredName hd : Definition tl : List Definition X : DefName xs : List VarName V : VarAssignment D c1 : X = hd.name ∧ xs.length = hd.args.length ih : Holds D I (Function.updateListITE V hd.args (List.map V xs)) tl (sub Ο„ hd.q) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then I.pred_var_ (Ο„ P) [] else I.pred_var_ P ds } (Function.updateListITE V hd.args (List.map V xs)) tl hd.q ⊒ Holds D I (Function.updateListITE V hd.args (List.map V xs)) tl hd.q ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then I.pred_var_ (Ο„ P) (List.map V []) else I.pred_var_ P ds } (Function.updateListITE V hd.args (List.map V xs)) tl hd.q
Please generate a tactic in lean4 to solve the state. STATE: D : Type I : Interpretation D Ο„ : PredName β†’ PredName hd : Definition tl : List Definition X : DefName xs : List VarName V : VarAssignment D ih : βˆ€ (V : VarAssignment D) (F : Formula), Holds D I V tl (sub Ο„ F) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then I.pred_var_ (Ο„ P) [] else I.pred_var_ P ds } V tl F c1 : X = hd.name ∧ xs.length = hd.args.length ⊒ Holds D I (Function.updateListITE V hd.args (List.map V xs)) tl hd.q ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then I.pred_var_ (Ο„ P) (List.map V []) else I.pred_var_ P ds } (Function.updateListITE V hd.args (List.map V xs)) tl hd.q TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Prop/All/Rec/Sub.lean
FOL.NV.Sub.Prop.All.Rec.substitution_theorem
[94, 1]
[182, 15]
simp only [sub_no_predVar hd.q Ο„ hd.h2] at ih
D : Type I : Interpretation D Ο„ : PredName β†’ PredName hd : Definition tl : List Definition X : DefName xs : List VarName V : VarAssignment D c1 : X = hd.name ∧ xs.length = hd.args.length ih : Holds D I (Function.updateListITE V hd.args (List.map V xs)) tl (sub Ο„ hd.q) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then I.pred_var_ (Ο„ P) [] else I.pred_var_ P ds } (Function.updateListITE V hd.args (List.map V xs)) tl hd.q ⊒ Holds D I (Function.updateListITE V hd.args (List.map V xs)) tl hd.q ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then I.pred_var_ (Ο„ P) (List.map V []) else I.pred_var_ P ds } (Function.updateListITE V hd.args (List.map V xs)) tl hd.q
D : Type I : Interpretation D Ο„ : PredName β†’ PredName hd : Definition tl : List Definition X : DefName xs : List VarName V : VarAssignment D c1 : X = hd.name ∧ xs.length = hd.args.length ih : Holds D I (Function.updateListITE V hd.args (List.map V xs)) tl hd.q ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then I.pred_var_ (Ο„ P) [] else I.pred_var_ P ds } (Function.updateListITE V hd.args (List.map V xs)) tl hd.q ⊒ Holds D I (Function.updateListITE V hd.args (List.map V xs)) tl hd.q ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then I.pred_var_ (Ο„ P) (List.map V []) else I.pred_var_ P ds } (Function.updateListITE V hd.args (List.map V xs)) tl hd.q
Please generate a tactic in lean4 to solve the state. STATE: D : Type I : Interpretation D Ο„ : PredName β†’ PredName hd : Definition tl : List Definition X : DefName xs : List VarName V : VarAssignment D c1 : X = hd.name ∧ xs.length = hd.args.length ih : Holds D I (Function.updateListITE V hd.args (List.map V xs)) tl (sub Ο„ hd.q) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then I.pred_var_ (Ο„ P) [] else I.pred_var_ P ds } (Function.updateListITE V hd.args (List.map V xs)) tl hd.q ⊒ Holds D I (Function.updateListITE V hd.args (List.map V xs)) tl hd.q ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then I.pred_var_ (Ο„ P) (List.map V []) else I.pred_var_ P ds } (Function.updateListITE V hd.args (List.map V xs)) tl hd.q TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Prop/All/Rec/Sub.lean
FOL.NV.Sub.Prop.All.Rec.substitution_theorem
[94, 1]
[182, 15]
apply ih
D : Type I : Interpretation D Ο„ : PredName β†’ PredName hd : Definition tl : List Definition X : DefName xs : List VarName V : VarAssignment D c1 : X = hd.name ∧ xs.length = hd.args.length ih : Holds D I (Function.updateListITE V hd.args (List.map V xs)) tl hd.q ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then I.pred_var_ (Ο„ P) [] else I.pred_var_ P ds } (Function.updateListITE V hd.args (List.map V xs)) tl hd.q ⊒ Holds D I (Function.updateListITE V hd.args (List.map V xs)) tl hd.q ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then I.pred_var_ (Ο„ P) (List.map V []) else I.pred_var_ P ds } (Function.updateListITE V hd.args (List.map V xs)) tl hd.q
no goals
Please generate a tactic in lean4 to solve the state. STATE: D : Type I : Interpretation D Ο„ : PredName β†’ PredName hd : Definition tl : List Definition X : DefName xs : List VarName V : VarAssignment D c1 : X = hd.name ∧ xs.length = hd.args.length ih : Holds D I (Function.updateListITE V hd.args (List.map V xs)) tl hd.q ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then I.pred_var_ (Ο„ P) [] else I.pred_var_ P ds } (Function.updateListITE V hd.args (List.map V xs)) tl hd.q ⊒ Holds D I (Function.updateListITE V hd.args (List.map V xs)) tl hd.q ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then I.pred_var_ (Ο„ P) (List.map V []) else I.pred_var_ P ds } (Function.updateListITE V hd.args (List.map V xs)) tl hd.q TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Prop/All/Rec/Sub.lean
FOL.NV.Sub.Prop.All.Rec.substitution_theorem
[94, 1]
[182, 15]
specialize ih V (def_ X xs)
D : Type I : Interpretation D Ο„ : PredName β†’ PredName hd : Definition tl : List Definition X : DefName xs : List VarName V : VarAssignment D ih : βˆ€ (V : VarAssignment D) (F : Formula), Holds D I V tl (sub Ο„ F) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then I.pred_var_ (Ο„ P) [] else I.pred_var_ P ds } V tl F c1 : Β¬(X = hd.name ∧ xs.length = hd.args.length) ⊒ Holds D I V tl (def_ X xs) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then I.pred_var_ (Ο„ P) (List.map V []) else I.pred_var_ P ds } V tl (def_ X xs)
D : Type I : Interpretation D Ο„ : PredName β†’ PredName hd : Definition tl : List Definition X : DefName xs : List VarName V : VarAssignment D c1 : Β¬(X = hd.name ∧ xs.length = hd.args.length) ih : Holds D I V tl (sub Ο„ (def_ X xs)) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then I.pred_var_ (Ο„ P) [] else I.pred_var_ P ds } V tl (def_ X xs) ⊒ Holds D I V tl (def_ X xs) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then I.pred_var_ (Ο„ P) (List.map V []) else I.pred_var_ P ds } V tl (def_ X xs)
Please generate a tactic in lean4 to solve the state. STATE: D : Type I : Interpretation D Ο„ : PredName β†’ PredName hd : Definition tl : List Definition X : DefName xs : List VarName V : VarAssignment D ih : βˆ€ (V : VarAssignment D) (F : Formula), Holds D I V tl (sub Ο„ F) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then I.pred_var_ (Ο„ P) [] else I.pred_var_ P ds } V tl F c1 : Β¬(X = hd.name ∧ xs.length = hd.args.length) ⊒ Holds D I V tl (def_ X xs) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then I.pred_var_ (Ο„ P) (List.map V []) else I.pred_var_ P ds } V tl (def_ X xs) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Prop/All/Rec/Sub.lean
FOL.NV.Sub.Prop.All.Rec.substitution_theorem
[94, 1]
[182, 15]
simp only [sub] at ih
D : Type I : Interpretation D Ο„ : PredName β†’ PredName hd : Definition tl : List Definition X : DefName xs : List VarName V : VarAssignment D c1 : Β¬(X = hd.name ∧ xs.length = hd.args.length) ih : Holds D I V tl (sub Ο„ (def_ X xs)) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then I.pred_var_ (Ο„ P) [] else I.pred_var_ P ds } V tl (def_ X xs) ⊒ Holds D I V tl (def_ X xs) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then I.pred_var_ (Ο„ P) (List.map V []) else I.pred_var_ P ds } V tl (def_ X xs)
D : Type I : Interpretation D Ο„ : PredName β†’ PredName hd : Definition tl : List Definition X : DefName xs : List VarName V : VarAssignment D c1 : Β¬(X = hd.name ∧ xs.length = hd.args.length) ih : Holds D I V tl (def_ X xs) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then I.pred_var_ (Ο„ P) [] else I.pred_var_ P ds } V tl (def_ X xs) ⊒ Holds D I V tl (def_ X xs) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then I.pred_var_ (Ο„ P) (List.map V []) else I.pred_var_ P ds } V tl (def_ X xs)
Please generate a tactic in lean4 to solve the state. STATE: D : Type I : Interpretation D Ο„ : PredName β†’ PredName hd : Definition tl : List Definition X : DefName xs : List VarName V : VarAssignment D c1 : Β¬(X = hd.name ∧ xs.length = hd.args.length) ih : Holds D I V tl (sub Ο„ (def_ X xs)) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then I.pred_var_ (Ο„ P) [] else I.pred_var_ P ds } V tl (def_ X xs) ⊒ Holds D I V tl (def_ X xs) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then I.pred_var_ (Ο„ P) (List.map V []) else I.pred_var_ P ds } V tl (def_ X xs) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Prop/All/Rec/Sub.lean
FOL.NV.Sub.Prop.All.Rec.substitution_theorem
[94, 1]
[182, 15]
exact ih
D : Type I : Interpretation D Ο„ : PredName β†’ PredName hd : Definition tl : List Definition X : DefName xs : List VarName V : VarAssignment D c1 : Β¬(X = hd.name ∧ xs.length = hd.args.length) ih : Holds D I V tl (def_ X xs) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then I.pred_var_ (Ο„ P) [] else I.pred_var_ P ds } V tl (def_ X xs) ⊒ Holds D I V tl (def_ X xs) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then I.pred_var_ (Ο„ P) (List.map V []) else I.pred_var_ P ds } V tl (def_ X xs)
no goals
Please generate a tactic in lean4 to solve the state. STATE: D : Type I : Interpretation D Ο„ : PredName β†’ PredName hd : Definition tl : List Definition X : DefName xs : List VarName V : VarAssignment D c1 : Β¬(X = hd.name ∧ xs.length = hd.args.length) ih : Holds D I V tl (def_ X xs) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then I.pred_var_ (Ο„ P) [] else I.pred_var_ P ds } V tl (def_ X xs) ⊒ Holds D I V tl (def_ X xs) ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then I.pred_var_ (Ο„ P) (List.map V []) else I.pred_var_ P ds } V tl (def_ X xs) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Prop/All/Rec/Sub.lean
FOL.NV.Sub.Prop.All.Rec.substitution_is_valid
[185, 1]
[196, 11]
simp only [IsValid] at h1
F : Formula Ο„ : PredName β†’ PredName h1 : F.IsValid ⊒ (sub Ο„ F).IsValid
F : Formula Ο„ : PredName β†’ PredName h1 : βˆ€ (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), Holds D I V E F ⊒ (sub Ο„ F).IsValid
Please generate a tactic in lean4 to solve the state. STATE: F : Formula Ο„ : PredName β†’ PredName h1 : F.IsValid ⊒ (sub Ο„ F).IsValid TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Prop/All/Rec/Sub.lean
FOL.NV.Sub.Prop.All.Rec.substitution_is_valid
[185, 1]
[196, 11]
simp only [IsValid]
F : Formula Ο„ : PredName β†’ PredName h1 : βˆ€ (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), Holds D I V E F ⊒ (sub Ο„ F).IsValid
F : Formula Ο„ : PredName β†’ PredName h1 : βˆ€ (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), Holds D I V E F ⊒ βˆ€ (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), Holds D I V E (sub Ο„ F)
Please generate a tactic in lean4 to solve the state. STATE: F : Formula Ο„ : PredName β†’ PredName h1 : βˆ€ (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), Holds D I V E F ⊒ (sub Ο„ F).IsValid TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Prop/All/Rec/Sub.lean
FOL.NV.Sub.Prop.All.Rec.substitution_is_valid
[185, 1]
[196, 11]
intro D I V E
F : Formula Ο„ : PredName β†’ PredName h1 : βˆ€ (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), Holds D I V E F ⊒ βˆ€ (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), Holds D I V E (sub Ο„ F)
F : Formula Ο„ : PredName β†’ PredName h1 : βˆ€ (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), Holds D I V E F D : Type I : Interpretation D V : VarAssignment D E : Env ⊒ Holds D I V E (sub Ο„ F)
Please generate a tactic in lean4 to solve the state. STATE: F : Formula Ο„ : PredName β†’ PredName h1 : βˆ€ (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), Holds D I V E F ⊒ βˆ€ (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), Holds D I V E (sub Ο„ F) TACTIC: