url
stringclasses
147 values
commit
stringclasses
147 values
file_path
stringlengths
7
101
full_name
stringlengths
1
94
start
stringlengths
6
10
end
stringlengths
6
11
tactic
stringlengths
1
11.2k
state_before
stringlengths
3
2.09M
state_after
stringlengths
6
2.09M
input
stringlengths
73
2.09M
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/One/Rec/Sub.lean
FOL.NV.Sub.Pred.One.Rec.substitution_theorem_aux
[188, 1]
[334, 13]
simp only [admitsAux] at h1
D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula head✝ : Definition tail✝ : List Definition tail_ih✝ : βˆ€ (V : VarAssignment D) (F : Formula) (binders : Finset VarName), admitsAux P zs H binders F β†’ (βˆ€ x βˆ‰ binders, V x = V' x) β†’ let E_ref := tail✝; Holds D (I' D I V' E_ref P zs H) V E_ref F ↔ Holds D I V E_ref (replace P zs H F) E_ref : Env := head✝ :: tail✝ phi psi : Formula phi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux P zs H binders phi β†’ (βˆ€ x βˆ‰ binders, V x = V' x) β†’ (Holds D (I' D I V' E_ref P zs H) V E_ref phi ↔ Holds D I V E_ref (replace P zs H phi)) psi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux P zs H binders psi β†’ (βˆ€ x βˆ‰ binders, V x = V' x) β†’ (Holds D (I' D I V' E_ref P zs H) V E_ref psi ↔ Holds D I V E_ref (replace P zs H psi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux P zs H binders (phi.iff_ psi) h2 : βˆ€ x βˆ‰ binders, V x = V' x ⊒ Holds D (I' D I V' E_ref P zs H) V E_ref (phi.iff_ psi) ↔ Holds D I V E_ref (replace P zs H (phi.iff_ psi))
D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula head✝ : Definition tail✝ : List Definition tail_ih✝ : βˆ€ (V : VarAssignment D) (F : Formula) (binders : Finset VarName), admitsAux P zs H binders F β†’ (βˆ€ x βˆ‰ binders, V x = V' x) β†’ let E_ref := tail✝; Holds D (I' D I V' E_ref P zs H) V E_ref F ↔ Holds D I V E_ref (replace P zs H F) E_ref : Env := head✝ :: tail✝ phi psi : Formula phi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux P zs H binders phi β†’ (βˆ€ x βˆ‰ binders, V x = V' x) β†’ (Holds D (I' D I V' E_ref P zs H) V E_ref phi ↔ Holds D I V E_ref (replace P zs H phi)) psi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux P zs H binders psi β†’ (βˆ€ x βˆ‰ binders, V x = V' x) β†’ (Holds D (I' D I V' E_ref P zs H) V E_ref psi ↔ Holds D I V E_ref (replace P zs H psi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux P zs H binders phi ∧ admitsAux P zs H binders psi h2 : βˆ€ x βˆ‰ binders, V x = V' x ⊒ Holds D (I' D I V' E_ref P zs H) V E_ref (phi.iff_ psi) ↔ Holds D I V E_ref (replace P zs H (phi.iff_ psi))
Please generate a tactic in lean4 to solve the state. STATE: D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula head✝ : Definition tail✝ : List Definition tail_ih✝ : βˆ€ (V : VarAssignment D) (F : Formula) (binders : Finset VarName), admitsAux P zs H binders F β†’ (βˆ€ x βˆ‰ binders, V x = V' x) β†’ let E_ref := tail✝; Holds D (I' D I V' E_ref P zs H) V E_ref F ↔ Holds D I V E_ref (replace P zs H F) E_ref : Env := head✝ :: tail✝ phi psi : Formula phi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux P zs H binders phi β†’ (βˆ€ x βˆ‰ binders, V x = V' x) β†’ (Holds D (I' D I V' E_ref P zs H) V E_ref phi ↔ Holds D I V E_ref (replace P zs H phi)) psi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux P zs H binders psi β†’ (βˆ€ x βˆ‰ binders, V x = V' x) β†’ (Holds D (I' D I V' E_ref P zs H) V E_ref psi ↔ Holds D I V E_ref (replace P zs H psi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux P zs H binders (phi.iff_ psi) h2 : βˆ€ x βˆ‰ binders, V x = V' x ⊒ Holds D (I' D I V' E_ref P zs H) V E_ref (phi.iff_ psi) ↔ Holds D I V E_ref (replace P zs H (phi.iff_ psi)) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/One/Rec/Sub.lean
FOL.NV.Sub.Pred.One.Rec.substitution_theorem_aux
[188, 1]
[334, 13]
simp only [replace]
D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula head✝ : Definition tail✝ : List Definition tail_ih✝ : βˆ€ (V : VarAssignment D) (F : Formula) (binders : Finset VarName), admitsAux P zs H binders F β†’ (βˆ€ x βˆ‰ binders, V x = V' x) β†’ let E_ref := tail✝; Holds D (I' D I V' E_ref P zs H) V E_ref F ↔ Holds D I V E_ref (replace P zs H F) E_ref : Env := head✝ :: tail✝ phi psi : Formula phi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux P zs H binders phi β†’ (βˆ€ x βˆ‰ binders, V x = V' x) β†’ (Holds D (I' D I V' E_ref P zs H) V E_ref phi ↔ Holds D I V E_ref (replace P zs H phi)) psi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux P zs H binders psi β†’ (βˆ€ x βˆ‰ binders, V x = V' x) β†’ (Holds D (I' D I V' E_ref P zs H) V E_ref psi ↔ Holds D I V E_ref (replace P zs H psi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux P zs H binders phi ∧ admitsAux P zs H binders psi h2 : βˆ€ x βˆ‰ binders, V x = V' x ⊒ Holds D (I' D I V' E_ref P zs H) V E_ref (phi.iff_ psi) ↔ Holds D I V E_ref (replace P zs H (phi.iff_ psi))
D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula head✝ : Definition tail✝ : List Definition tail_ih✝ : βˆ€ (V : VarAssignment D) (F : Formula) (binders : Finset VarName), admitsAux P zs H binders F β†’ (βˆ€ x βˆ‰ binders, V x = V' x) β†’ let E_ref := tail✝; Holds D (I' D I V' E_ref P zs H) V E_ref F ↔ Holds D I V E_ref (replace P zs H F) E_ref : Env := head✝ :: tail✝ phi psi : Formula phi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux P zs H binders phi β†’ (βˆ€ x βˆ‰ binders, V x = V' x) β†’ (Holds D (I' D I V' E_ref P zs H) V E_ref phi ↔ Holds D I V E_ref (replace P zs H phi)) psi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux P zs H binders psi β†’ (βˆ€ x βˆ‰ binders, V x = V' x) β†’ (Holds D (I' D I V' E_ref P zs H) V E_ref psi ↔ Holds D I V E_ref (replace P zs H psi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux P zs H binders phi ∧ admitsAux P zs H binders psi h2 : βˆ€ x βˆ‰ binders, V x = V' x ⊒ Holds D (I' D I V' E_ref P zs H) V E_ref (phi.iff_ psi) ↔ Holds D I V E_ref ((replace P zs H phi).iff_ (replace P zs H psi))
Please generate a tactic in lean4 to solve the state. STATE: D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula head✝ : Definition tail✝ : List Definition tail_ih✝ : βˆ€ (V : VarAssignment D) (F : Formula) (binders : Finset VarName), admitsAux P zs H binders F β†’ (βˆ€ x βˆ‰ binders, V x = V' x) β†’ let E_ref := tail✝; Holds D (I' D I V' E_ref P zs H) V E_ref F ↔ Holds D I V E_ref (replace P zs H F) E_ref : Env := head✝ :: tail✝ phi psi : Formula phi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux P zs H binders phi β†’ (βˆ€ x βˆ‰ binders, V x = V' x) β†’ (Holds D (I' D I V' E_ref P zs H) V E_ref phi ↔ Holds D I V E_ref (replace P zs H phi)) psi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux P zs H binders psi β†’ (βˆ€ x βˆ‰ binders, V x = V' x) β†’ (Holds D (I' D I V' E_ref P zs H) V E_ref psi ↔ Holds D I V E_ref (replace P zs H psi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux P zs H binders phi ∧ admitsAux P zs H binders psi h2 : βˆ€ x βˆ‰ binders, V x = V' x ⊒ Holds D (I' D I V' E_ref P zs H) V E_ref (phi.iff_ psi) ↔ Holds D I V E_ref (replace P zs H (phi.iff_ psi)) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/One/Rec/Sub.lean
FOL.NV.Sub.Pred.One.Rec.substitution_theorem_aux
[188, 1]
[334, 13]
simp only [Holds]
D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula head✝ : Definition tail✝ : List Definition tail_ih✝ : βˆ€ (V : VarAssignment D) (F : Formula) (binders : Finset VarName), admitsAux P zs H binders F β†’ (βˆ€ x βˆ‰ binders, V x = V' x) β†’ let E_ref := tail✝; Holds D (I' D I V' E_ref P zs H) V E_ref F ↔ Holds D I V E_ref (replace P zs H F) E_ref : Env := head✝ :: tail✝ phi psi : Formula phi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux P zs H binders phi β†’ (βˆ€ x βˆ‰ binders, V x = V' x) β†’ (Holds D (I' D I V' E_ref P zs H) V E_ref phi ↔ Holds D I V E_ref (replace P zs H phi)) psi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux P zs H binders psi β†’ (βˆ€ x βˆ‰ binders, V x = V' x) β†’ (Holds D (I' D I V' E_ref P zs H) V E_ref psi ↔ Holds D I V E_ref (replace P zs H psi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux P zs H binders phi ∧ admitsAux P zs H binders psi h2 : βˆ€ x βˆ‰ binders, V x = V' x ⊒ Holds D (I' D I V' E_ref P zs H) V E_ref (phi.iff_ psi) ↔ Holds D I V E_ref ((replace P zs H phi).iff_ (replace P zs H psi))
D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula head✝ : Definition tail✝ : List Definition tail_ih✝ : βˆ€ (V : VarAssignment D) (F : Formula) (binders : Finset VarName), admitsAux P zs H binders F β†’ (βˆ€ x βˆ‰ binders, V x = V' x) β†’ let E_ref := tail✝; Holds D (I' D I V' E_ref P zs H) V E_ref F ↔ Holds D I V E_ref (replace P zs H F) E_ref : Env := head✝ :: tail✝ phi psi : Formula phi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux P zs H binders phi β†’ (βˆ€ x βˆ‰ binders, V x = V' x) β†’ (Holds D (I' D I V' E_ref P zs H) V E_ref phi ↔ Holds D I V E_ref (replace P zs H phi)) psi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux P zs H binders psi β†’ (βˆ€ x βˆ‰ binders, V x = V' x) β†’ (Holds D (I' D I V' E_ref P zs H) V E_ref psi ↔ Holds D I V E_ref (replace P zs H psi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux P zs H binders phi ∧ admitsAux P zs H binders psi h2 : βˆ€ x βˆ‰ binders, V x = V' x ⊒ (Holds D (I' D I V' E_ref P zs H) V E_ref phi ↔ Holds D (I' D I V' E_ref P zs H) V E_ref psi) ↔ (Holds D I V E_ref (replace P zs H phi) ↔ Holds D I V E_ref (replace P zs H psi))
Please generate a tactic in lean4 to solve the state. STATE: D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula head✝ : Definition tail✝ : List Definition tail_ih✝ : βˆ€ (V : VarAssignment D) (F : Formula) (binders : Finset VarName), admitsAux P zs H binders F β†’ (βˆ€ x βˆ‰ binders, V x = V' x) β†’ let E_ref := tail✝; Holds D (I' D I V' E_ref P zs H) V E_ref F ↔ Holds D I V E_ref (replace P zs H F) E_ref : Env := head✝ :: tail✝ phi psi : Formula phi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux P zs H binders phi β†’ (βˆ€ x βˆ‰ binders, V x = V' x) β†’ (Holds D (I' D I V' E_ref P zs H) V E_ref phi ↔ Holds D I V E_ref (replace P zs H phi)) psi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux P zs H binders psi β†’ (βˆ€ x βˆ‰ binders, V x = V' x) β†’ (Holds D (I' D I V' E_ref P zs H) V E_ref psi ↔ Holds D I V E_ref (replace P zs H psi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux P zs H binders phi ∧ admitsAux P zs H binders psi h2 : βˆ€ x βˆ‰ binders, V x = V' x ⊒ Holds D (I' D I V' E_ref P zs H) V E_ref (phi.iff_ psi) ↔ Holds D I V E_ref ((replace P zs H phi).iff_ (replace P zs H psi)) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/One/Rec/Sub.lean
FOL.NV.Sub.Pred.One.Rec.substitution_theorem_aux
[188, 1]
[334, 13]
cases h1
D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula head✝ : Definition tail✝ : List Definition tail_ih✝ : βˆ€ (V : VarAssignment D) (F : Formula) (binders : Finset VarName), admitsAux P zs H binders F β†’ (βˆ€ x βˆ‰ binders, V x = V' x) β†’ let E_ref := tail✝; Holds D (I' D I V' E_ref P zs H) V E_ref F ↔ Holds D I V E_ref (replace P zs H F) E_ref : Env := head✝ :: tail✝ phi psi : Formula phi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux P zs H binders phi β†’ (βˆ€ x βˆ‰ binders, V x = V' x) β†’ (Holds D (I' D I V' E_ref P zs H) V E_ref phi ↔ Holds D I V E_ref (replace P zs H phi)) psi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux P zs H binders psi β†’ (βˆ€ x βˆ‰ binders, V x = V' x) β†’ (Holds D (I' D I V' E_ref P zs H) V E_ref psi ↔ Holds D I V E_ref (replace P zs H psi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux P zs H binders phi ∧ admitsAux P zs H binders psi h2 : βˆ€ x βˆ‰ binders, V x = V' x ⊒ (Holds D (I' D I V' E_ref P zs H) V E_ref phi ↔ Holds D (I' D I V' E_ref P zs H) V E_ref psi) ↔ (Holds D I V E_ref (replace P zs H phi) ↔ Holds D I V E_ref (replace P zs H psi))
case intro D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula head✝ : Definition tail✝ : List Definition tail_ih✝ : βˆ€ (V : VarAssignment D) (F : Formula) (binders : Finset VarName), admitsAux P zs H binders F β†’ (βˆ€ x βˆ‰ binders, V x = V' x) β†’ let E_ref := tail✝; Holds D (I' D I V' E_ref P zs H) V E_ref F ↔ Holds D I V E_ref (replace P zs H F) E_ref : Env := head✝ :: tail✝ phi psi : Formula phi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux P zs H binders phi β†’ (βˆ€ x βˆ‰ binders, V x = V' x) β†’ (Holds D (I' D I V' E_ref P zs H) V E_ref phi ↔ Holds D I V E_ref (replace P zs H phi)) psi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux P zs H binders psi β†’ (βˆ€ x βˆ‰ binders, V x = V' x) β†’ (Holds D (I' D I V' E_ref P zs H) V E_ref psi ↔ Holds D I V E_ref (replace P zs H psi)) V : VarAssignment D binders : Finset VarName h2 : βˆ€ x βˆ‰ binders, V x = V' x left✝ : admitsAux P zs H binders phi right✝ : admitsAux P zs H binders psi ⊒ (Holds D (I' D I V' E_ref P zs H) V E_ref phi ↔ Holds D (I' D I V' E_ref P zs H) V E_ref psi) ↔ (Holds D I V E_ref (replace P zs H phi) ↔ Holds D I V E_ref (replace P zs H psi))
Please generate a tactic in lean4 to solve the state. STATE: D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula head✝ : Definition tail✝ : List Definition tail_ih✝ : βˆ€ (V : VarAssignment D) (F : Formula) (binders : Finset VarName), admitsAux P zs H binders F β†’ (βˆ€ x βˆ‰ binders, V x = V' x) β†’ let E_ref := tail✝; Holds D (I' D I V' E_ref P zs H) V E_ref F ↔ Holds D I V E_ref (replace P zs H F) E_ref : Env := head✝ :: tail✝ phi psi : Formula phi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux P zs H binders phi β†’ (βˆ€ x βˆ‰ binders, V x = V' x) β†’ (Holds D (I' D I V' E_ref P zs H) V E_ref phi ↔ Holds D I V E_ref (replace P zs H phi)) psi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux P zs H binders psi β†’ (βˆ€ x βˆ‰ binders, V x = V' x) β†’ (Holds D (I' D I V' E_ref P zs H) V E_ref psi ↔ Holds D I V E_ref (replace P zs H psi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux P zs H binders phi ∧ admitsAux P zs H binders psi h2 : βˆ€ x βˆ‰ binders, V x = V' x ⊒ (Holds D (I' D I V' E_ref P zs H) V E_ref phi ↔ Holds D (I' D I V' E_ref P zs H) V E_ref psi) ↔ (Holds D I V E_ref (replace P zs H phi) ↔ Holds D I V E_ref (replace P zs H psi)) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/One/Rec/Sub.lean
FOL.NV.Sub.Pred.One.Rec.substitution_theorem_aux
[188, 1]
[334, 13]
congr! 1
D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula head✝ : Definition tail✝ : List Definition tail_ih✝ : βˆ€ (V : VarAssignment D) (F : Formula) (binders : Finset VarName), admitsAux P zs H binders F β†’ (βˆ€ x βˆ‰ binders, V x = V' x) β†’ let E_ref := tail✝; Holds D (I' D I V' E_ref P zs H) V E_ref F ↔ Holds D I V E_ref (replace P zs H F) E_ref : Env := head✝ :: tail✝ phi psi : Formula phi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux P zs H binders phi β†’ (βˆ€ x βˆ‰ binders, V x = V' x) β†’ (Holds D (I' D I V' E_ref P zs H) V E_ref phi ↔ Holds D I V E_ref (replace P zs H phi)) psi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux P zs H binders psi β†’ (βˆ€ x βˆ‰ binders, V x = V' x) β†’ (Holds D (I' D I V' E_ref P zs H) V E_ref psi ↔ Holds D I V E_ref (replace P zs H psi)) V : VarAssignment D binders : Finset VarName h2 : βˆ€ x βˆ‰ binders, V x = V' x h1_left : admitsAux P zs H binders phi h1_right : admitsAux P zs H binders psi ⊒ (Holds D (I' D I V' E_ref P zs H) V E_ref phi ↔ Holds D (I' D I V' E_ref P zs H) V E_ref psi) ↔ (Holds D I V E_ref (replace P zs H phi) ↔ Holds D I V E_ref (replace P zs H psi))
case a.h.e'_1.a D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula head✝ : Definition tail✝ : List Definition tail_ih✝ : βˆ€ (V : VarAssignment D) (F : Formula) (binders : Finset VarName), admitsAux P zs H binders F β†’ (βˆ€ x βˆ‰ binders, V x = V' x) β†’ let E_ref := tail✝; Holds D (I' D I V' E_ref P zs H) V E_ref F ↔ Holds D I V E_ref (replace P zs H F) E_ref : Env := head✝ :: tail✝ phi psi : Formula phi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux P zs H binders phi β†’ (βˆ€ x βˆ‰ binders, V x = V' x) β†’ (Holds D (I' D I V' E_ref P zs H) V E_ref phi ↔ Holds D I V E_ref (replace P zs H phi)) psi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux P zs H binders psi β†’ (βˆ€ x βˆ‰ binders, V x = V' x) β†’ (Holds D (I' D I V' E_ref P zs H) V E_ref psi ↔ Holds D I V E_ref (replace P zs H psi)) V : VarAssignment D binders : Finset VarName h2 : βˆ€ x βˆ‰ binders, V x = V' x h1_left : admitsAux P zs H binders phi h1_right : admitsAux P zs H binders psi ⊒ Holds D (I' D I V' E_ref P zs H) V E_ref phi ↔ Holds D I V E_ref (replace P zs H phi) case a.h.e'_2.a D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula head✝ : Definition tail✝ : List Definition tail_ih✝ : βˆ€ (V : VarAssignment D) (F : Formula) (binders : Finset VarName), admitsAux P zs H binders F β†’ (βˆ€ x βˆ‰ binders, V x = V' x) β†’ let E_ref := tail✝; Holds D (I' D I V' E_ref P zs H) V E_ref F ↔ Holds D I V E_ref (replace P zs H F) E_ref : Env := head✝ :: tail✝ phi psi : Formula phi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux P zs H binders phi β†’ (βˆ€ x βˆ‰ binders, V x = V' x) β†’ (Holds D (I' D I V' E_ref P zs H) V E_ref phi ↔ Holds D I V E_ref (replace P zs H phi)) psi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux P zs H binders psi β†’ (βˆ€ x βˆ‰ binders, V x = V' x) β†’ (Holds D (I' D I V' E_ref P zs H) V E_ref psi ↔ Holds D I V E_ref (replace P zs H psi)) V : VarAssignment D binders : Finset VarName h2 : βˆ€ x βˆ‰ binders, V x = V' x h1_left : admitsAux P zs H binders phi h1_right : admitsAux P zs H binders psi ⊒ Holds D (I' D I V' E_ref P zs H) V E_ref psi ↔ Holds D I V E_ref (replace P zs H psi)
Please generate a tactic in lean4 to solve the state. STATE: D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula head✝ : Definition tail✝ : List Definition tail_ih✝ : βˆ€ (V : VarAssignment D) (F : Formula) (binders : Finset VarName), admitsAux P zs H binders F β†’ (βˆ€ x βˆ‰ binders, V x = V' x) β†’ let E_ref := tail✝; Holds D (I' D I V' E_ref P zs H) V E_ref F ↔ Holds D I V E_ref (replace P zs H F) E_ref : Env := head✝ :: tail✝ phi psi : Formula phi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux P zs H binders phi β†’ (βˆ€ x βˆ‰ binders, V x = V' x) β†’ (Holds D (I' D I V' E_ref P zs H) V E_ref phi ↔ Holds D I V E_ref (replace P zs H phi)) psi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux P zs H binders psi β†’ (βˆ€ x βˆ‰ binders, V x = V' x) β†’ (Holds D (I' D I V' E_ref P zs H) V E_ref psi ↔ Holds D I V E_ref (replace P zs H psi)) V : VarAssignment D binders : Finset VarName h2 : βˆ€ x βˆ‰ binders, V x = V' x h1_left : admitsAux P zs H binders phi h1_right : admitsAux P zs H binders psi ⊒ (Holds D (I' D I V' E_ref P zs H) V E_ref phi ↔ Holds D (I' D I V' E_ref P zs H) V E_ref psi) ↔ (Holds D I V E_ref (replace P zs H phi) ↔ Holds D I V E_ref (replace P zs H psi)) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/One/Rec/Sub.lean
FOL.NV.Sub.Pred.One.Rec.substitution_theorem_aux
[188, 1]
[334, 13]
exact phi_ih V binders h1_left h2
case a.h.e'_1.a D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula head✝ : Definition tail✝ : List Definition tail_ih✝ : βˆ€ (V : VarAssignment D) (F : Formula) (binders : Finset VarName), admitsAux P zs H binders F β†’ (βˆ€ x βˆ‰ binders, V x = V' x) β†’ let E_ref := tail✝; Holds D (I' D I V' E_ref P zs H) V E_ref F ↔ Holds D I V E_ref (replace P zs H F) E_ref : Env := head✝ :: tail✝ phi psi : Formula phi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux P zs H binders phi β†’ (βˆ€ x βˆ‰ binders, V x = V' x) β†’ (Holds D (I' D I V' E_ref P zs H) V E_ref phi ↔ Holds D I V E_ref (replace P zs H phi)) psi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux P zs H binders psi β†’ (βˆ€ x βˆ‰ binders, V x = V' x) β†’ (Holds D (I' D I V' E_ref P zs H) V E_ref psi ↔ Holds D I V E_ref (replace P zs H psi)) V : VarAssignment D binders : Finset VarName h2 : βˆ€ x βˆ‰ binders, V x = V' x h1_left : admitsAux P zs H binders phi h1_right : admitsAux P zs H binders psi ⊒ Holds D (I' D I V' E_ref P zs H) V E_ref phi ↔ Holds D I V E_ref (replace P zs H phi)
no goals
Please generate a tactic in lean4 to solve the state. STATE: case a.h.e'_1.a D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula head✝ : Definition tail✝ : List Definition tail_ih✝ : βˆ€ (V : VarAssignment D) (F : Formula) (binders : Finset VarName), admitsAux P zs H binders F β†’ (βˆ€ x βˆ‰ binders, V x = V' x) β†’ let E_ref := tail✝; Holds D (I' D I V' E_ref P zs H) V E_ref F ↔ Holds D I V E_ref (replace P zs H F) E_ref : Env := head✝ :: tail✝ phi psi : Formula phi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux P zs H binders phi β†’ (βˆ€ x βˆ‰ binders, V x = V' x) β†’ (Holds D (I' D I V' E_ref P zs H) V E_ref phi ↔ Holds D I V E_ref (replace P zs H phi)) psi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux P zs H binders psi β†’ (βˆ€ x βˆ‰ binders, V x = V' x) β†’ (Holds D (I' D I V' E_ref P zs H) V E_ref psi ↔ Holds D I V E_ref (replace P zs H psi)) V : VarAssignment D binders : Finset VarName h2 : βˆ€ x βˆ‰ binders, V x = V' x h1_left : admitsAux P zs H binders phi h1_right : admitsAux P zs H binders psi ⊒ Holds D (I' D I V' E_ref P zs H) V E_ref phi ↔ Holds D I V E_ref (replace P zs H phi) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/One/Rec/Sub.lean
FOL.NV.Sub.Pred.One.Rec.substitution_theorem_aux
[188, 1]
[334, 13]
exact psi_ih V binders h1_right h2
case a.h.e'_2.a D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula head✝ : Definition tail✝ : List Definition tail_ih✝ : βˆ€ (V : VarAssignment D) (F : Formula) (binders : Finset VarName), admitsAux P zs H binders F β†’ (βˆ€ x βˆ‰ binders, V x = V' x) β†’ let E_ref := tail✝; Holds D (I' D I V' E_ref P zs H) V E_ref F ↔ Holds D I V E_ref (replace P zs H F) E_ref : Env := head✝ :: tail✝ phi psi : Formula phi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux P zs H binders phi β†’ (βˆ€ x βˆ‰ binders, V x = V' x) β†’ (Holds D (I' D I V' E_ref P zs H) V E_ref phi ↔ Holds D I V E_ref (replace P zs H phi)) psi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux P zs H binders psi β†’ (βˆ€ x βˆ‰ binders, V x = V' x) β†’ (Holds D (I' D I V' E_ref P zs H) V E_ref psi ↔ Holds D I V E_ref (replace P zs H psi)) V : VarAssignment D binders : Finset VarName h2 : βˆ€ x βˆ‰ binders, V x = V' x h1_left : admitsAux P zs H binders phi h1_right : admitsAux P zs H binders psi ⊒ Holds D (I' D I V' E_ref P zs H) V E_ref psi ↔ Holds D I V E_ref (replace P zs H psi)
no goals
Please generate a tactic in lean4 to solve the state. STATE: case a.h.e'_2.a D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula head✝ : Definition tail✝ : List Definition tail_ih✝ : βˆ€ (V : VarAssignment D) (F : Formula) (binders : Finset VarName), admitsAux P zs H binders F β†’ (βˆ€ x βˆ‰ binders, V x = V' x) β†’ let E_ref := tail✝; Holds D (I' D I V' E_ref P zs H) V E_ref F ↔ Holds D I V E_ref (replace P zs H F) E_ref : Env := head✝ :: tail✝ phi psi : Formula phi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux P zs H binders phi β†’ (βˆ€ x βˆ‰ binders, V x = V' x) β†’ (Holds D (I' D I V' E_ref P zs H) V E_ref phi ↔ Holds D I V E_ref (replace P zs H phi)) psi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux P zs H binders psi β†’ (βˆ€ x βˆ‰ binders, V x = V' x) β†’ (Holds D (I' D I V' E_ref P zs H) V E_ref psi ↔ Holds D I V E_ref (replace P zs H psi)) V : VarAssignment D binders : Finset VarName h2 : βˆ€ x βˆ‰ binders, V x = V' x h1_left : admitsAux P zs H binders phi h1_right : admitsAux P zs H binders psi ⊒ Holds D (I' D I V' E_ref P zs H) V E_ref psi ↔ Holds D I V E_ref (replace P zs H psi) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/One/Rec/Sub.lean
FOL.NV.Sub.Pred.One.Rec.substitution_theorem_aux
[188, 1]
[334, 13]
simp only [admitsAux] at h1
D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula head✝ : Definition tail✝ : List Definition tail_ih✝ : βˆ€ (V : VarAssignment D) (F : Formula) (binders : Finset VarName), admitsAux P zs H binders F β†’ (βˆ€ x βˆ‰ binders, V x = V' x) β†’ let E_ref := tail✝; Holds D (I' D I V' E_ref P zs H) V E_ref F ↔ Holds D I V E_ref (replace P zs H F) E_ref : Env := head✝ :: tail✝ x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux P zs H binders phi β†’ (βˆ€ x βˆ‰ binders, V x = V' x) β†’ (Holds D (I' D I V' E_ref P zs H) V E_ref phi ↔ Holds D I V E_ref (replace P zs H phi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux P zs H binders (exists_ x phi) h2 : βˆ€ x βˆ‰ binders, V x = V' x ⊒ Holds D (I' D I V' E_ref P zs H) V E_ref (exists_ x phi) ↔ Holds D I V E_ref (replace P zs H (exists_ x phi))
D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula head✝ : Definition tail✝ : List Definition tail_ih✝ : βˆ€ (V : VarAssignment D) (F : Formula) (binders : Finset VarName), admitsAux P zs H binders F β†’ (βˆ€ x βˆ‰ binders, V x = V' x) β†’ let E_ref := tail✝; Holds D (I' D I V' E_ref P zs H) V E_ref F ↔ Holds D I V E_ref (replace P zs H F) E_ref : Env := head✝ :: tail✝ x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux P zs H binders phi β†’ (βˆ€ x βˆ‰ binders, V x = V' x) β†’ (Holds D (I' D I V' E_ref P zs H) V E_ref phi ↔ Holds D I V E_ref (replace P zs H phi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux P zs H (binders βˆͺ {x}) phi h2 : βˆ€ x βˆ‰ binders, V x = V' x ⊒ Holds D (I' D I V' E_ref P zs H) V E_ref (exists_ x phi) ↔ Holds D I V E_ref (replace P zs H (exists_ x phi))
Please generate a tactic in lean4 to solve the state. STATE: D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula head✝ : Definition tail✝ : List Definition tail_ih✝ : βˆ€ (V : VarAssignment D) (F : Formula) (binders : Finset VarName), admitsAux P zs H binders F β†’ (βˆ€ x βˆ‰ binders, V x = V' x) β†’ let E_ref := tail✝; Holds D (I' D I V' E_ref P zs H) V E_ref F ↔ Holds D I V E_ref (replace P zs H F) E_ref : Env := head✝ :: tail✝ x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux P zs H binders phi β†’ (βˆ€ x βˆ‰ binders, V x = V' x) β†’ (Holds D (I' D I V' E_ref P zs H) V E_ref phi ↔ Holds D I V E_ref (replace P zs H phi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux P zs H binders (exists_ x phi) h2 : βˆ€ x βˆ‰ binders, V x = V' x ⊒ Holds D (I' D I V' E_ref P zs H) V E_ref (exists_ x phi) ↔ Holds D I V E_ref (replace P zs H (exists_ x phi)) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/One/Rec/Sub.lean
FOL.NV.Sub.Pred.One.Rec.substitution_theorem_aux
[188, 1]
[334, 13]
simp only [replace]
D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula head✝ : Definition tail✝ : List Definition tail_ih✝ : βˆ€ (V : VarAssignment D) (F : Formula) (binders : Finset VarName), admitsAux P zs H binders F β†’ (βˆ€ x βˆ‰ binders, V x = V' x) β†’ let E_ref := tail✝; Holds D (I' D I V' E_ref P zs H) V E_ref F ↔ Holds D I V E_ref (replace P zs H F) E_ref : Env := head✝ :: tail✝ x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux P zs H binders phi β†’ (βˆ€ x βˆ‰ binders, V x = V' x) β†’ (Holds D (I' D I V' E_ref P zs H) V E_ref phi ↔ Holds D I V E_ref (replace P zs H phi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux P zs H (binders βˆͺ {x}) phi h2 : βˆ€ x βˆ‰ binders, V x = V' x ⊒ Holds D (I' D I V' E_ref P zs H) V E_ref (exists_ x phi) ↔ Holds D I V E_ref (replace P zs H (exists_ x phi))
D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula head✝ : Definition tail✝ : List Definition tail_ih✝ : βˆ€ (V : VarAssignment D) (F : Formula) (binders : Finset VarName), admitsAux P zs H binders F β†’ (βˆ€ x βˆ‰ binders, V x = V' x) β†’ let E_ref := tail✝; Holds D (I' D I V' E_ref P zs H) V E_ref F ↔ Holds D I V E_ref (replace P zs H F) E_ref : Env := head✝ :: tail✝ x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux P zs H binders phi β†’ (βˆ€ x βˆ‰ binders, V x = V' x) β†’ (Holds D (I' D I V' E_ref P zs H) V E_ref phi ↔ Holds D I V E_ref (replace P zs H phi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux P zs H (binders βˆͺ {x}) phi h2 : βˆ€ x βˆ‰ binders, V x = V' x ⊒ Holds D (I' D I V' E_ref P zs H) V E_ref (exists_ x phi) ↔ Holds D I V E_ref (exists_ x (replace P zs H phi))
Please generate a tactic in lean4 to solve the state. STATE: D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula head✝ : Definition tail✝ : List Definition tail_ih✝ : βˆ€ (V : VarAssignment D) (F : Formula) (binders : Finset VarName), admitsAux P zs H binders F β†’ (βˆ€ x βˆ‰ binders, V x = V' x) β†’ let E_ref := tail✝; Holds D (I' D I V' E_ref P zs H) V E_ref F ↔ Holds D I V E_ref (replace P zs H F) E_ref : Env := head✝ :: tail✝ x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux P zs H binders phi β†’ (βˆ€ x βˆ‰ binders, V x = V' x) β†’ (Holds D (I' D I V' E_ref P zs H) V E_ref phi ↔ Holds D I V E_ref (replace P zs H phi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux P zs H (binders βˆͺ {x}) phi h2 : βˆ€ x βˆ‰ binders, V x = V' x ⊒ Holds D (I' D I V' E_ref P zs H) V E_ref (exists_ x phi) ↔ Holds D I V E_ref (replace P zs H (exists_ x phi)) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/One/Rec/Sub.lean
FOL.NV.Sub.Pred.One.Rec.substitution_theorem_aux
[188, 1]
[334, 13]
simp only [Holds]
D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula head✝ : Definition tail✝ : List Definition tail_ih✝ : βˆ€ (V : VarAssignment D) (F : Formula) (binders : Finset VarName), admitsAux P zs H binders F β†’ (βˆ€ x βˆ‰ binders, V x = V' x) β†’ let E_ref := tail✝; Holds D (I' D I V' E_ref P zs H) V E_ref F ↔ Holds D I V E_ref (replace P zs H F) E_ref : Env := head✝ :: tail✝ x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux P zs H binders phi β†’ (βˆ€ x βˆ‰ binders, V x = V' x) β†’ (Holds D (I' D I V' E_ref P zs H) V E_ref phi ↔ Holds D I V E_ref (replace P zs H phi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux P zs H (binders βˆͺ {x}) phi h2 : βˆ€ x βˆ‰ binders, V x = V' x ⊒ Holds D (I' D I V' E_ref P zs H) V E_ref (exists_ x phi) ↔ Holds D I V E_ref (exists_ x (replace P zs H phi))
D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula head✝ : Definition tail✝ : List Definition tail_ih✝ : βˆ€ (V : VarAssignment D) (F : Formula) (binders : Finset VarName), admitsAux P zs H binders F β†’ (βˆ€ x βˆ‰ binders, V x = V' x) β†’ let E_ref := tail✝; Holds D (I' D I V' E_ref P zs H) V E_ref F ↔ Holds D I V E_ref (replace P zs H F) E_ref : Env := head✝ :: tail✝ x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux P zs H binders phi β†’ (βˆ€ x βˆ‰ binders, V x = V' x) β†’ (Holds D (I' D I V' E_ref P zs H) V E_ref phi ↔ Holds D I V E_ref (replace P zs H phi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux P zs H (binders βˆͺ {x}) phi h2 : βˆ€ x βˆ‰ binders, V x = V' x ⊒ (βˆƒ d, Holds D (I' D I V' E_ref P zs H) (Function.updateITE V x d) E_ref phi) ↔ βˆƒ d, Holds D I (Function.updateITE V x d) E_ref (replace P zs H phi)
Please generate a tactic in lean4 to solve the state. STATE: D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula head✝ : Definition tail✝ : List Definition tail_ih✝ : βˆ€ (V : VarAssignment D) (F : Formula) (binders : Finset VarName), admitsAux P zs H binders F β†’ (βˆ€ x βˆ‰ binders, V x = V' x) β†’ let E_ref := tail✝; Holds D (I' D I V' E_ref P zs H) V E_ref F ↔ Holds D I V E_ref (replace P zs H F) E_ref : Env := head✝ :: tail✝ x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux P zs H binders phi β†’ (βˆ€ x βˆ‰ binders, V x = V' x) β†’ (Holds D (I' D I V' E_ref P zs H) V E_ref phi ↔ Holds D I V E_ref (replace P zs H phi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux P zs H (binders βˆͺ {x}) phi h2 : βˆ€ x βˆ‰ binders, V x = V' x ⊒ Holds D (I' D I V' E_ref P zs H) V E_ref (exists_ x phi) ↔ Holds D I V E_ref (exists_ x (replace P zs H phi)) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/One/Rec/Sub.lean
FOL.NV.Sub.Pred.One.Rec.substitution_theorem_aux
[188, 1]
[334, 13]
first | apply forall_congr' | apply exists_congr
D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula head✝ : Definition tail✝ : List Definition tail_ih✝ : βˆ€ (V : VarAssignment D) (F : Formula) (binders : Finset VarName), admitsAux P zs H binders F β†’ (βˆ€ x βˆ‰ binders, V x = V' x) β†’ let E_ref := tail✝; Holds D (I' D I V' E_ref P zs H) V E_ref F ↔ Holds D I V E_ref (replace P zs H F) E_ref : Env := head✝ :: tail✝ x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux P zs H binders phi β†’ (βˆ€ x βˆ‰ binders, V x = V' x) β†’ (Holds D (I' D I V' E_ref P zs H) V E_ref phi ↔ Holds D I V E_ref (replace P zs H phi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux P zs H (binders βˆͺ {x}) phi h2 : βˆ€ x βˆ‰ binders, V x = V' x ⊒ (βˆƒ d, Holds D (I' D I V' E_ref P zs H) (Function.updateITE V x d) E_ref phi) ↔ βˆƒ d, Holds D I (Function.updateITE V x d) E_ref (replace P zs H phi)
case h D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula head✝ : Definition tail✝ : List Definition tail_ih✝ : βˆ€ (V : VarAssignment D) (F : Formula) (binders : Finset VarName), admitsAux P zs H binders F β†’ (βˆ€ x βˆ‰ binders, V x = V' x) β†’ let E_ref := tail✝; Holds D (I' D I V' E_ref P zs H) V E_ref F ↔ Holds D I V E_ref (replace P zs H F) E_ref : Env := head✝ :: tail✝ x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux P zs H binders phi β†’ (βˆ€ x βˆ‰ binders, V x = V' x) β†’ (Holds D (I' D I V' E_ref P zs H) V E_ref phi ↔ Holds D I V E_ref (replace P zs H phi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux P zs H (binders βˆͺ {x}) phi h2 : βˆ€ x βˆ‰ binders, V x = V' x ⊒ βˆ€ (a : D), Holds D (I' D I V' E_ref P zs H) (Function.updateITE V x a) E_ref phi ↔ Holds D I (Function.updateITE V x a) E_ref (replace P zs H phi)
Please generate a tactic in lean4 to solve the state. STATE: D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula head✝ : Definition tail✝ : List Definition tail_ih✝ : βˆ€ (V : VarAssignment D) (F : Formula) (binders : Finset VarName), admitsAux P zs H binders F β†’ (βˆ€ x βˆ‰ binders, V x = V' x) β†’ let E_ref := tail✝; Holds D (I' D I V' E_ref P zs H) V E_ref F ↔ Holds D I V E_ref (replace P zs H F) E_ref : Env := head✝ :: tail✝ x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux P zs H binders phi β†’ (βˆ€ x βˆ‰ binders, V x = V' x) β†’ (Holds D (I' D I V' E_ref P zs H) V E_ref phi ↔ Holds D I V E_ref (replace P zs H phi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux P zs H (binders βˆͺ {x}) phi h2 : βˆ€ x βˆ‰ binders, V x = V' x ⊒ (βˆƒ d, Holds D (I' D I V' E_ref P zs H) (Function.updateITE V x d) E_ref phi) ↔ βˆƒ d, Holds D I (Function.updateITE V x d) E_ref (replace P zs H phi) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/One/Rec/Sub.lean
FOL.NV.Sub.Pred.One.Rec.substitution_theorem_aux
[188, 1]
[334, 13]
intro d
case h D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula head✝ : Definition tail✝ : List Definition tail_ih✝ : βˆ€ (V : VarAssignment D) (F : Formula) (binders : Finset VarName), admitsAux P zs H binders F β†’ (βˆ€ x βˆ‰ binders, V x = V' x) β†’ let E_ref := tail✝; Holds D (I' D I V' E_ref P zs H) V E_ref F ↔ Holds D I V E_ref (replace P zs H F) E_ref : Env := head✝ :: tail✝ x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux P zs H binders phi β†’ (βˆ€ x βˆ‰ binders, V x = V' x) β†’ (Holds D (I' D I V' E_ref P zs H) V E_ref phi ↔ Holds D I V E_ref (replace P zs H phi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux P zs H (binders βˆͺ {x}) phi h2 : βˆ€ x βˆ‰ binders, V x = V' x ⊒ βˆ€ (a : D), Holds D (I' D I V' E_ref P zs H) (Function.updateITE V x a) E_ref phi ↔ Holds D I (Function.updateITE V x a) E_ref (replace P zs H phi)
case h D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula head✝ : Definition tail✝ : List Definition tail_ih✝ : βˆ€ (V : VarAssignment D) (F : Formula) (binders : Finset VarName), admitsAux P zs H binders F β†’ (βˆ€ x βˆ‰ binders, V x = V' x) β†’ let E_ref := tail✝; Holds D (I' D I V' E_ref P zs H) V E_ref F ↔ Holds D I V E_ref (replace P zs H F) E_ref : Env := head✝ :: tail✝ x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux P zs H binders phi β†’ (βˆ€ x βˆ‰ binders, V x = V' x) β†’ (Holds D (I' D I V' E_ref P zs H) V E_ref phi ↔ Holds D I V E_ref (replace P zs H phi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux P zs H (binders βˆͺ {x}) phi h2 : βˆ€ x βˆ‰ binders, V x = V' x d : D ⊒ Holds D (I' D I V' E_ref P zs H) (Function.updateITE V x d) E_ref phi ↔ Holds D I (Function.updateITE V x d) E_ref (replace P zs H phi)
Please generate a tactic in lean4 to solve the state. STATE: case h D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula head✝ : Definition tail✝ : List Definition tail_ih✝ : βˆ€ (V : VarAssignment D) (F : Formula) (binders : Finset VarName), admitsAux P zs H binders F β†’ (βˆ€ x βˆ‰ binders, V x = V' x) β†’ let E_ref := tail✝; Holds D (I' D I V' E_ref P zs H) V E_ref F ↔ Holds D I V E_ref (replace P zs H F) E_ref : Env := head✝ :: tail✝ x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux P zs H binders phi β†’ (βˆ€ x βˆ‰ binders, V x = V' x) β†’ (Holds D (I' D I V' E_ref P zs H) V E_ref phi ↔ Holds D I V E_ref (replace P zs H phi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux P zs H (binders βˆͺ {x}) phi h2 : βˆ€ x βˆ‰ binders, V x = V' x ⊒ βˆ€ (a : D), Holds D (I' D I V' E_ref P zs H) (Function.updateITE V x a) E_ref phi ↔ Holds D I (Function.updateITE V x a) E_ref (replace P zs H phi) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/One/Rec/Sub.lean
FOL.NV.Sub.Pred.One.Rec.substitution_theorem_aux
[188, 1]
[334, 13]
apply phi_ih (Function.updateITE V x d) (binders βˆͺ {x}) h1
case h D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula head✝ : Definition tail✝ : List Definition tail_ih✝ : βˆ€ (V : VarAssignment D) (F : Formula) (binders : Finset VarName), admitsAux P zs H binders F β†’ (βˆ€ x βˆ‰ binders, V x = V' x) β†’ let E_ref := tail✝; Holds D (I' D I V' E_ref P zs H) V E_ref F ↔ Holds D I V E_ref (replace P zs H F) E_ref : Env := head✝ :: tail✝ x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux P zs H binders phi β†’ (βˆ€ x βˆ‰ binders, V x = V' x) β†’ (Holds D (I' D I V' E_ref P zs H) V E_ref phi ↔ Holds D I V E_ref (replace P zs H phi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux P zs H (binders βˆͺ {x}) phi h2 : βˆ€ x βˆ‰ binders, V x = V' x d : D ⊒ Holds D (I' D I V' E_ref P zs H) (Function.updateITE V x d) E_ref phi ↔ Holds D I (Function.updateITE V x d) E_ref (replace P zs H phi)
case h D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula head✝ : Definition tail✝ : List Definition tail_ih✝ : βˆ€ (V : VarAssignment D) (F : Formula) (binders : Finset VarName), admitsAux P zs H binders F β†’ (βˆ€ x βˆ‰ binders, V x = V' x) β†’ let E_ref := tail✝; Holds D (I' D I V' E_ref P zs H) V E_ref F ↔ Holds D I V E_ref (replace P zs H F) E_ref : Env := head✝ :: tail✝ x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux P zs H binders phi β†’ (βˆ€ x βˆ‰ binders, V x = V' x) β†’ (Holds D (I' D I V' E_ref P zs H) V E_ref phi ↔ Holds D I V E_ref (replace P zs H phi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux P zs H (binders βˆͺ {x}) phi h2 : βˆ€ x βˆ‰ binders, V x = V' x d : D ⊒ βˆ€ x_1 βˆ‰ binders βˆͺ {x}, Function.updateITE V x d x_1 = V' x_1
Please generate a tactic in lean4 to solve the state. STATE: case h D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula head✝ : Definition tail✝ : List Definition tail_ih✝ : βˆ€ (V : VarAssignment D) (F : Formula) (binders : Finset VarName), admitsAux P zs H binders F β†’ (βˆ€ x βˆ‰ binders, V x = V' x) β†’ let E_ref := tail✝; Holds D (I' D I V' E_ref P zs H) V E_ref F ↔ Holds D I V E_ref (replace P zs H F) E_ref : Env := head✝ :: tail✝ x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux P zs H binders phi β†’ (βˆ€ x βˆ‰ binders, V x = V' x) β†’ (Holds D (I' D I V' E_ref P zs H) V E_ref phi ↔ Holds D I V E_ref (replace P zs H phi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux P zs H (binders βˆͺ {x}) phi h2 : βˆ€ x βˆ‰ binders, V x = V' x d : D ⊒ Holds D (I' D I V' E_ref P zs H) (Function.updateITE V x d) E_ref phi ↔ Holds D I (Function.updateITE V x d) E_ref (replace P zs H phi) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/One/Rec/Sub.lean
FOL.NV.Sub.Pred.One.Rec.substitution_theorem_aux
[188, 1]
[334, 13]
intro v a1
case h D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula head✝ : Definition tail✝ : List Definition tail_ih✝ : βˆ€ (V : VarAssignment D) (F : Formula) (binders : Finset VarName), admitsAux P zs H binders F β†’ (βˆ€ x βˆ‰ binders, V x = V' x) β†’ let E_ref := tail✝; Holds D (I' D I V' E_ref P zs H) V E_ref F ↔ Holds D I V E_ref (replace P zs H F) E_ref : Env := head✝ :: tail✝ x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux P zs H binders phi β†’ (βˆ€ x βˆ‰ binders, V x = V' x) β†’ (Holds D (I' D I V' E_ref P zs H) V E_ref phi ↔ Holds D I V E_ref (replace P zs H phi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux P zs H (binders βˆͺ {x}) phi h2 : βˆ€ x βˆ‰ binders, V x = V' x d : D ⊒ βˆ€ x_1 βˆ‰ binders βˆͺ {x}, Function.updateITE V x d x_1 = V' x_1
case h D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula head✝ : Definition tail✝ : List Definition tail_ih✝ : βˆ€ (V : VarAssignment D) (F : Formula) (binders : Finset VarName), admitsAux P zs H binders F β†’ (βˆ€ x βˆ‰ binders, V x = V' x) β†’ let E_ref := tail✝; Holds D (I' D I V' E_ref P zs H) V E_ref F ↔ Holds D I V E_ref (replace P zs H F) E_ref : Env := head✝ :: tail✝ x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux P zs H binders phi β†’ (βˆ€ x βˆ‰ binders, V x = V' x) β†’ (Holds D (I' D I V' E_ref P zs H) V E_ref phi ↔ Holds D I V E_ref (replace P zs H phi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux P zs H (binders βˆͺ {x}) phi h2 : βˆ€ x βˆ‰ binders, V x = V' x d : D v : VarName a1 : v βˆ‰ binders βˆͺ {x} ⊒ Function.updateITE V x d v = V' v
Please generate a tactic in lean4 to solve the state. STATE: case h D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula head✝ : Definition tail✝ : List Definition tail_ih✝ : βˆ€ (V : VarAssignment D) (F : Formula) (binders : Finset VarName), admitsAux P zs H binders F β†’ (βˆ€ x βˆ‰ binders, V x = V' x) β†’ let E_ref := tail✝; Holds D (I' D I V' E_ref P zs H) V E_ref F ↔ Holds D I V E_ref (replace P zs H F) E_ref : Env := head✝ :: tail✝ x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux P zs H binders phi β†’ (βˆ€ x βˆ‰ binders, V x = V' x) β†’ (Holds D (I' D I V' E_ref P zs H) V E_ref phi ↔ Holds D I V E_ref (replace P zs H phi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux P zs H (binders βˆͺ {x}) phi h2 : βˆ€ x βˆ‰ binders, V x = V' x d : D ⊒ βˆ€ x_1 βˆ‰ binders βˆͺ {x}, Function.updateITE V x d x_1 = V' x_1 TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/One/Rec/Sub.lean
FOL.NV.Sub.Pred.One.Rec.substitution_theorem_aux
[188, 1]
[334, 13]
simp only [Function.updateITE]
case h D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula head✝ : Definition tail✝ : List Definition tail_ih✝ : βˆ€ (V : VarAssignment D) (F : Formula) (binders : Finset VarName), admitsAux P zs H binders F β†’ (βˆ€ x βˆ‰ binders, V x = V' x) β†’ let E_ref := tail✝; Holds D (I' D I V' E_ref P zs H) V E_ref F ↔ Holds D I V E_ref (replace P zs H F) E_ref : Env := head✝ :: tail✝ x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux P zs H binders phi β†’ (βˆ€ x βˆ‰ binders, V x = V' x) β†’ (Holds D (I' D I V' E_ref P zs H) V E_ref phi ↔ Holds D I V E_ref (replace P zs H phi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux P zs H (binders βˆͺ {x}) phi h2 : βˆ€ x βˆ‰ binders, V x = V' x d : D v : VarName a1 : v βˆ‰ binders βˆͺ {x} ⊒ Function.updateITE V x d v = V' v
case h D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula head✝ : Definition tail✝ : List Definition tail_ih✝ : βˆ€ (V : VarAssignment D) (F : Formula) (binders : Finset VarName), admitsAux P zs H binders F β†’ (βˆ€ x βˆ‰ binders, V x = V' x) β†’ let E_ref := tail✝; Holds D (I' D I V' E_ref P zs H) V E_ref F ↔ Holds D I V E_ref (replace P zs H F) E_ref : Env := head✝ :: tail✝ x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux P zs H binders phi β†’ (βˆ€ x βˆ‰ binders, V x = V' x) β†’ (Holds D (I' D I V' E_ref P zs H) V E_ref phi ↔ Holds D I V E_ref (replace P zs H phi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux P zs H (binders βˆͺ {x}) phi h2 : βˆ€ x βˆ‰ binders, V x = V' x d : D v : VarName a1 : v βˆ‰ binders βˆͺ {x} ⊒ (if v = x then d else V v) = V' v
Please generate a tactic in lean4 to solve the state. STATE: case h D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula head✝ : Definition tail✝ : List Definition tail_ih✝ : βˆ€ (V : VarAssignment D) (F : Formula) (binders : Finset VarName), admitsAux P zs H binders F β†’ (βˆ€ x βˆ‰ binders, V x = V' x) β†’ let E_ref := tail✝; Holds D (I' D I V' E_ref P zs H) V E_ref F ↔ Holds D I V E_ref (replace P zs H F) E_ref : Env := head✝ :: tail✝ x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux P zs H binders phi β†’ (βˆ€ x βˆ‰ binders, V x = V' x) β†’ (Holds D (I' D I V' E_ref P zs H) V E_ref phi ↔ Holds D I V E_ref (replace P zs H phi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux P zs H (binders βˆͺ {x}) phi h2 : βˆ€ x βˆ‰ binders, V x = V' x d : D v : VarName a1 : v βˆ‰ binders βˆͺ {x} ⊒ Function.updateITE V x d v = V' v TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/One/Rec/Sub.lean
FOL.NV.Sub.Pred.One.Rec.substitution_theorem_aux
[188, 1]
[334, 13]
simp at a1
case h D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula head✝ : Definition tail✝ : List Definition tail_ih✝ : βˆ€ (V : VarAssignment D) (F : Formula) (binders : Finset VarName), admitsAux P zs H binders F β†’ (βˆ€ x βˆ‰ binders, V x = V' x) β†’ let E_ref := tail✝; Holds D (I' D I V' E_ref P zs H) V E_ref F ↔ Holds D I V E_ref (replace P zs H F) E_ref : Env := head✝ :: tail✝ x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux P zs H binders phi β†’ (βˆ€ x βˆ‰ binders, V x = V' x) β†’ (Holds D (I' D I V' E_ref P zs H) V E_ref phi ↔ Holds D I V E_ref (replace P zs H phi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux P zs H (binders βˆͺ {x}) phi h2 : βˆ€ x βˆ‰ binders, V x = V' x d : D v : VarName a1 : v βˆ‰ binders βˆͺ {x} ⊒ (if v = x then d else V v) = V' v
case h D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula head✝ : Definition tail✝ : List Definition tail_ih✝ : βˆ€ (V : VarAssignment D) (F : Formula) (binders : Finset VarName), admitsAux P zs H binders F β†’ (βˆ€ x βˆ‰ binders, V x = V' x) β†’ let E_ref := tail✝; Holds D (I' D I V' E_ref P zs H) V E_ref F ↔ Holds D I V E_ref (replace P zs H F) E_ref : Env := head✝ :: tail✝ x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux P zs H binders phi β†’ (βˆ€ x βˆ‰ binders, V x = V' x) β†’ (Holds D (I' D I V' E_ref P zs H) V E_ref phi ↔ Holds D I V E_ref (replace P zs H phi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux P zs H (binders βˆͺ {x}) phi h2 : βˆ€ x βˆ‰ binders, V x = V' x d : D v : VarName a1 : v βˆ‰ binders ∧ Β¬v = x ⊒ (if v = x then d else V v) = V' v
Please generate a tactic in lean4 to solve the state. STATE: case h D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula head✝ : Definition tail✝ : List Definition tail_ih✝ : βˆ€ (V : VarAssignment D) (F : Formula) (binders : Finset VarName), admitsAux P zs H binders F β†’ (βˆ€ x βˆ‰ binders, V x = V' x) β†’ let E_ref := tail✝; Holds D (I' D I V' E_ref P zs H) V E_ref F ↔ Holds D I V E_ref (replace P zs H F) E_ref : Env := head✝ :: tail✝ x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux P zs H binders phi β†’ (βˆ€ x βˆ‰ binders, V x = V' x) β†’ (Holds D (I' D I V' E_ref P zs H) V E_ref phi ↔ Holds D I V E_ref (replace P zs H phi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux P zs H (binders βˆͺ {x}) phi h2 : βˆ€ x βˆ‰ binders, V x = V' x d : D v : VarName a1 : v βˆ‰ binders βˆͺ {x} ⊒ (if v = x then d else V v) = V' v TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/One/Rec/Sub.lean
FOL.NV.Sub.Pred.One.Rec.substitution_theorem_aux
[188, 1]
[334, 13]
push_neg at a1
case h D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula head✝ : Definition tail✝ : List Definition tail_ih✝ : βˆ€ (V : VarAssignment D) (F : Formula) (binders : Finset VarName), admitsAux P zs H binders F β†’ (βˆ€ x βˆ‰ binders, V x = V' x) β†’ let E_ref := tail✝; Holds D (I' D I V' E_ref P zs H) V E_ref F ↔ Holds D I V E_ref (replace P zs H F) E_ref : Env := head✝ :: tail✝ x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux P zs H binders phi β†’ (βˆ€ x βˆ‰ binders, V x = V' x) β†’ (Holds D (I' D I V' E_ref P zs H) V E_ref phi ↔ Holds D I V E_ref (replace P zs H phi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux P zs H (binders βˆͺ {x}) phi h2 : βˆ€ x βˆ‰ binders, V x = V' x d : D v : VarName a1 : v βˆ‰ binders ∧ Β¬v = x ⊒ (if v = x then d else V v) = V' v
case h D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula head✝ : Definition tail✝ : List Definition tail_ih✝ : βˆ€ (V : VarAssignment D) (F : Formula) (binders : Finset VarName), admitsAux P zs H binders F β†’ (βˆ€ x βˆ‰ binders, V x = V' x) β†’ let E_ref := tail✝; Holds D (I' D I V' E_ref P zs H) V E_ref F ↔ Holds D I V E_ref (replace P zs H F) E_ref : Env := head✝ :: tail✝ x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux P zs H binders phi β†’ (βˆ€ x βˆ‰ binders, V x = V' x) β†’ (Holds D (I' D I V' E_ref P zs H) V E_ref phi ↔ Holds D I V E_ref (replace P zs H phi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux P zs H (binders βˆͺ {x}) phi h2 : βˆ€ x βˆ‰ binders, V x = V' x d : D v : VarName a1 : v βˆ‰ binders ∧ v β‰  x ⊒ (if v = x then d else V v) = V' v
Please generate a tactic in lean4 to solve the state. STATE: case h D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula head✝ : Definition tail✝ : List Definition tail_ih✝ : βˆ€ (V : VarAssignment D) (F : Formula) (binders : Finset VarName), admitsAux P zs H binders F β†’ (βˆ€ x βˆ‰ binders, V x = V' x) β†’ let E_ref := tail✝; Holds D (I' D I V' E_ref P zs H) V E_ref F ↔ Holds D I V E_ref (replace P zs H F) E_ref : Env := head✝ :: tail✝ x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux P zs H binders phi β†’ (βˆ€ x βˆ‰ binders, V x = V' x) β†’ (Holds D (I' D I V' E_ref P zs H) V E_ref phi ↔ Holds D I V E_ref (replace P zs H phi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux P zs H (binders βˆͺ {x}) phi h2 : βˆ€ x βˆ‰ binders, V x = V' x d : D v : VarName a1 : v βˆ‰ binders ∧ Β¬v = x ⊒ (if v = x then d else V v) = V' v TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/One/Rec/Sub.lean
FOL.NV.Sub.Pred.One.Rec.substitution_theorem_aux
[188, 1]
[334, 13]
cases a1
case h D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula head✝ : Definition tail✝ : List Definition tail_ih✝ : βˆ€ (V : VarAssignment D) (F : Formula) (binders : Finset VarName), admitsAux P zs H binders F β†’ (βˆ€ x βˆ‰ binders, V x = V' x) β†’ let E_ref := tail✝; Holds D (I' D I V' E_ref P zs H) V E_ref F ↔ Holds D I V E_ref (replace P zs H F) E_ref : Env := head✝ :: tail✝ x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux P zs H binders phi β†’ (βˆ€ x βˆ‰ binders, V x = V' x) β†’ (Holds D (I' D I V' E_ref P zs H) V E_ref phi ↔ Holds D I V E_ref (replace P zs H phi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux P zs H (binders βˆͺ {x}) phi h2 : βˆ€ x βˆ‰ binders, V x = V' x d : D v : VarName a1 : v βˆ‰ binders ∧ v β‰  x ⊒ (if v = x then d else V v) = V' v
case h.intro D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula head✝ : Definition tail✝ : List Definition tail_ih✝ : βˆ€ (V : VarAssignment D) (F : Formula) (binders : Finset VarName), admitsAux P zs H binders F β†’ (βˆ€ x βˆ‰ binders, V x = V' x) β†’ let E_ref := tail✝; Holds D (I' D I V' E_ref P zs H) V E_ref F ↔ Holds D I V E_ref (replace P zs H F) E_ref : Env := head✝ :: tail✝ x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux P zs H binders phi β†’ (βˆ€ x βˆ‰ binders, V x = V' x) β†’ (Holds D (I' D I V' E_ref P zs H) V E_ref phi ↔ Holds D I V E_ref (replace P zs H phi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux P zs H (binders βˆͺ {x}) phi h2 : βˆ€ x βˆ‰ binders, V x = V' x d : D v : VarName left✝ : v βˆ‰ binders right✝ : v β‰  x ⊒ (if v = x then d else V v) = V' v
Please generate a tactic in lean4 to solve the state. STATE: case h D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula head✝ : Definition tail✝ : List Definition tail_ih✝ : βˆ€ (V : VarAssignment D) (F : Formula) (binders : Finset VarName), admitsAux P zs H binders F β†’ (βˆ€ x βˆ‰ binders, V x = V' x) β†’ let E_ref := tail✝; Holds D (I' D I V' E_ref P zs H) V E_ref F ↔ Holds D I V E_ref (replace P zs H F) E_ref : Env := head✝ :: tail✝ x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux P zs H binders phi β†’ (βˆ€ x βˆ‰ binders, V x = V' x) β†’ (Holds D (I' D I V' E_ref P zs H) V E_ref phi ↔ Holds D I V E_ref (replace P zs H phi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux P zs H (binders βˆͺ {x}) phi h2 : βˆ€ x βˆ‰ binders, V x = V' x d : D v : VarName a1 : v βˆ‰ binders ∧ v β‰  x ⊒ (if v = x then d else V v) = V' v TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/One/Rec/Sub.lean
FOL.NV.Sub.Pred.One.Rec.substitution_theorem_aux
[188, 1]
[334, 13]
case h.intro a1_left a1_right => simp only [if_neg a1_right] exact h2 v a1_left
D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula head✝ : Definition tail✝ : List Definition tail_ih✝ : βˆ€ (V : VarAssignment D) (F : Formula) (binders : Finset VarName), admitsAux P zs H binders F β†’ (βˆ€ x βˆ‰ binders, V x = V' x) β†’ let E_ref := tail✝; Holds D (I' D I V' E_ref P zs H) V E_ref F ↔ Holds D I V E_ref (replace P zs H F) E_ref : Env := head✝ :: tail✝ x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux P zs H binders phi β†’ (βˆ€ x βˆ‰ binders, V x = V' x) β†’ (Holds D (I' D I V' E_ref P zs H) V E_ref phi ↔ Holds D I V E_ref (replace P zs H phi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux P zs H (binders βˆͺ {x}) phi h2 : βˆ€ x βˆ‰ binders, V x = V' x d : D v : VarName a1_left : v βˆ‰ binders a1_right : v β‰  x ⊒ (if v = x then d else V v) = V' v
no goals
Please generate a tactic in lean4 to solve the state. STATE: D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula head✝ : Definition tail✝ : List Definition tail_ih✝ : βˆ€ (V : VarAssignment D) (F : Formula) (binders : Finset VarName), admitsAux P zs H binders F β†’ (βˆ€ x βˆ‰ binders, V x = V' x) β†’ let E_ref := tail✝; Holds D (I' D I V' E_ref P zs H) V E_ref F ↔ Holds D I V E_ref (replace P zs H F) E_ref : Env := head✝ :: tail✝ x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux P zs H binders phi β†’ (βˆ€ x βˆ‰ binders, V x = V' x) β†’ (Holds D (I' D I V' E_ref P zs H) V E_ref phi ↔ Holds D I V E_ref (replace P zs H phi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux P zs H (binders βˆͺ {x}) phi h2 : βˆ€ x βˆ‰ binders, V x = V' x d : D v : VarName a1_left : v βˆ‰ binders a1_right : v β‰  x ⊒ (if v = x then d else V v) = V' v TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/One/Rec/Sub.lean
FOL.NV.Sub.Pred.One.Rec.substitution_theorem_aux
[188, 1]
[334, 13]
apply forall_congr'
D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula head✝ : Definition tail✝ : List Definition tail_ih✝ : βˆ€ (V : VarAssignment D) (F : Formula) (binders : Finset VarName), admitsAux P zs H binders F β†’ (βˆ€ x βˆ‰ binders, V x = V' x) β†’ let E_ref := tail✝; Holds D (I' D I V' E_ref P zs H) V E_ref F ↔ Holds D I V E_ref (replace P zs H F) E_ref : Env := head✝ :: tail✝ x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux P zs H binders phi β†’ (βˆ€ x βˆ‰ binders, V x = V' x) β†’ (Holds D (I' D I V' E_ref P zs H) V E_ref phi ↔ Holds D I V E_ref (replace P zs H phi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux P zs H (binders βˆͺ {x}) phi h2 : βˆ€ x βˆ‰ binders, V x = V' x ⊒ (βˆ€ (d : D), Holds D (I' D I V' E_ref P zs H) (Function.updateITE V x d) E_ref phi) ↔ βˆ€ (d : D), Holds D I (Function.updateITE V x d) E_ref (replace P zs H phi)
case h D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula head✝ : Definition tail✝ : List Definition tail_ih✝ : βˆ€ (V : VarAssignment D) (F : Formula) (binders : Finset VarName), admitsAux P zs H binders F β†’ (βˆ€ x βˆ‰ binders, V x = V' x) β†’ let E_ref := tail✝; Holds D (I' D I V' E_ref P zs H) V E_ref F ↔ Holds D I V E_ref (replace P zs H F) E_ref : Env := head✝ :: tail✝ x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux P zs H binders phi β†’ (βˆ€ x βˆ‰ binders, V x = V' x) β†’ (Holds D (I' D I V' E_ref P zs H) V E_ref phi ↔ Holds D I V E_ref (replace P zs H phi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux P zs H (binders βˆͺ {x}) phi h2 : βˆ€ x βˆ‰ binders, V x = V' x ⊒ βˆ€ (a : D), Holds D (I' D I V' E_ref P zs H) (Function.updateITE V x a) E_ref phi ↔ Holds D I (Function.updateITE V x a) E_ref (replace P zs H phi)
Please generate a tactic in lean4 to solve the state. STATE: D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula head✝ : Definition tail✝ : List Definition tail_ih✝ : βˆ€ (V : VarAssignment D) (F : Formula) (binders : Finset VarName), admitsAux P zs H binders F β†’ (βˆ€ x βˆ‰ binders, V x = V' x) β†’ let E_ref := tail✝; Holds D (I' D I V' E_ref P zs H) V E_ref F ↔ Holds D I V E_ref (replace P zs H F) E_ref : Env := head✝ :: tail✝ x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux P zs H binders phi β†’ (βˆ€ x βˆ‰ binders, V x = V' x) β†’ (Holds D (I' D I V' E_ref P zs H) V E_ref phi ↔ Holds D I V E_ref (replace P zs H phi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux P zs H (binders βˆͺ {x}) phi h2 : βˆ€ x βˆ‰ binders, V x = V' x ⊒ (βˆ€ (d : D), Holds D (I' D I V' E_ref P zs H) (Function.updateITE V x d) E_ref phi) ↔ βˆ€ (d : D), Holds D I (Function.updateITE V x d) E_ref (replace P zs H phi) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/One/Rec/Sub.lean
FOL.NV.Sub.Pred.One.Rec.substitution_theorem_aux
[188, 1]
[334, 13]
apply exists_congr
D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula head✝ : Definition tail✝ : List Definition tail_ih✝ : βˆ€ (V : VarAssignment D) (F : Formula) (binders : Finset VarName), admitsAux P zs H binders F β†’ (βˆ€ x βˆ‰ binders, V x = V' x) β†’ let E_ref := tail✝; Holds D (I' D I V' E_ref P zs H) V E_ref F ↔ Holds D I V E_ref (replace P zs H F) E_ref : Env := head✝ :: tail✝ x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux P zs H binders phi β†’ (βˆ€ x βˆ‰ binders, V x = V' x) β†’ (Holds D (I' D I V' E_ref P zs H) V E_ref phi ↔ Holds D I V E_ref (replace P zs H phi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux P zs H (binders βˆͺ {x}) phi h2 : βˆ€ x βˆ‰ binders, V x = V' x ⊒ (βˆƒ d, Holds D (I' D I V' E_ref P zs H) (Function.updateITE V x d) E_ref phi) ↔ βˆƒ d, Holds D I (Function.updateITE V x d) E_ref (replace P zs H phi)
case h D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula head✝ : Definition tail✝ : List Definition tail_ih✝ : βˆ€ (V : VarAssignment D) (F : Formula) (binders : Finset VarName), admitsAux P zs H binders F β†’ (βˆ€ x βˆ‰ binders, V x = V' x) β†’ let E_ref := tail✝; Holds D (I' D I V' E_ref P zs H) V E_ref F ↔ Holds D I V E_ref (replace P zs H F) E_ref : Env := head✝ :: tail✝ x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux P zs H binders phi β†’ (βˆ€ x βˆ‰ binders, V x = V' x) β†’ (Holds D (I' D I V' E_ref P zs H) V E_ref phi ↔ Holds D I V E_ref (replace P zs H phi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux P zs H (binders βˆͺ {x}) phi h2 : βˆ€ x βˆ‰ binders, V x = V' x ⊒ βˆ€ (a : D), Holds D (I' D I V' E_ref P zs H) (Function.updateITE V x a) E_ref phi ↔ Holds D I (Function.updateITE V x a) E_ref (replace P zs H phi)
Please generate a tactic in lean4 to solve the state. STATE: D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula head✝ : Definition tail✝ : List Definition tail_ih✝ : βˆ€ (V : VarAssignment D) (F : Formula) (binders : Finset VarName), admitsAux P zs H binders F β†’ (βˆ€ x βˆ‰ binders, V x = V' x) β†’ let E_ref := tail✝; Holds D (I' D I V' E_ref P zs H) V E_ref F ↔ Holds D I V E_ref (replace P zs H F) E_ref : Env := head✝ :: tail✝ x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux P zs H binders phi β†’ (βˆ€ x βˆ‰ binders, V x = V' x) β†’ (Holds D (I' D I V' E_ref P zs H) V E_ref phi ↔ Holds D I V E_ref (replace P zs H phi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux P zs H (binders βˆͺ {x}) phi h2 : βˆ€ x βˆ‰ binders, V x = V' x ⊒ (βˆƒ d, Holds D (I' D I V' E_ref P zs H) (Function.updateITE V x d) E_ref phi) ↔ βˆƒ d, Holds D I (Function.updateITE V x d) E_ref (replace P zs H phi) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/One/Rec/Sub.lean
FOL.NV.Sub.Pred.One.Rec.substitution_theorem_aux
[188, 1]
[334, 13]
simp only [if_neg a1_right]
D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula head✝ : Definition tail✝ : List Definition tail_ih✝ : βˆ€ (V : VarAssignment D) (F : Formula) (binders : Finset VarName), admitsAux P zs H binders F β†’ (βˆ€ x βˆ‰ binders, V x = V' x) β†’ let E_ref := tail✝; Holds D (I' D I V' E_ref P zs H) V E_ref F ↔ Holds D I V E_ref (replace P zs H F) E_ref : Env := head✝ :: tail✝ x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux P zs H binders phi β†’ (βˆ€ x βˆ‰ binders, V x = V' x) β†’ (Holds D (I' D I V' E_ref P zs H) V E_ref phi ↔ Holds D I V E_ref (replace P zs H phi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux P zs H (binders βˆͺ {x}) phi h2 : βˆ€ x βˆ‰ binders, V x = V' x d : D v : VarName a1_left : v βˆ‰ binders a1_right : v β‰  x ⊒ (if v = x then d else V v) = V' v
D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula head✝ : Definition tail✝ : List Definition tail_ih✝ : βˆ€ (V : VarAssignment D) (F : Formula) (binders : Finset VarName), admitsAux P zs H binders F β†’ (βˆ€ x βˆ‰ binders, V x = V' x) β†’ let E_ref := tail✝; Holds D (I' D I V' E_ref P zs H) V E_ref F ↔ Holds D I V E_ref (replace P zs H F) E_ref : Env := head✝ :: tail✝ x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux P zs H binders phi β†’ (βˆ€ x βˆ‰ binders, V x = V' x) β†’ (Holds D (I' D I V' E_ref P zs H) V E_ref phi ↔ Holds D I V E_ref (replace P zs H phi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux P zs H (binders βˆͺ {x}) phi h2 : βˆ€ x βˆ‰ binders, V x = V' x d : D v : VarName a1_left : v βˆ‰ binders a1_right : v β‰  x ⊒ V v = V' v
Please generate a tactic in lean4 to solve the state. STATE: D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula head✝ : Definition tail✝ : List Definition tail_ih✝ : βˆ€ (V : VarAssignment D) (F : Formula) (binders : Finset VarName), admitsAux P zs H binders F β†’ (βˆ€ x βˆ‰ binders, V x = V' x) β†’ let E_ref := tail✝; Holds D (I' D I V' E_ref P zs H) V E_ref F ↔ Holds D I V E_ref (replace P zs H F) E_ref : Env := head✝ :: tail✝ x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux P zs H binders phi β†’ (βˆ€ x βˆ‰ binders, V x = V' x) β†’ (Holds D (I' D I V' E_ref P zs H) V E_ref phi ↔ Holds D I V E_ref (replace P zs H phi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux P zs H (binders βˆͺ {x}) phi h2 : βˆ€ x βˆ‰ binders, V x = V' x d : D v : VarName a1_left : v βˆ‰ binders a1_right : v β‰  x ⊒ (if v = x then d else V v) = V' v TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/One/Rec/Sub.lean
FOL.NV.Sub.Pred.One.Rec.substitution_theorem_aux
[188, 1]
[334, 13]
exact h2 v a1_left
D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula head✝ : Definition tail✝ : List Definition tail_ih✝ : βˆ€ (V : VarAssignment D) (F : Formula) (binders : Finset VarName), admitsAux P zs H binders F β†’ (βˆ€ x βˆ‰ binders, V x = V' x) β†’ let E_ref := tail✝; Holds D (I' D I V' E_ref P zs H) V E_ref F ↔ Holds D I V E_ref (replace P zs H F) E_ref : Env := head✝ :: tail✝ x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux P zs H binders phi β†’ (βˆ€ x βˆ‰ binders, V x = V' x) β†’ (Holds D (I' D I V' E_ref P zs H) V E_ref phi ↔ Holds D I V E_ref (replace P zs H phi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux P zs H (binders βˆͺ {x}) phi h2 : βˆ€ x βˆ‰ binders, V x = V' x d : D v : VarName a1_left : v βˆ‰ binders a1_right : v β‰  x ⊒ V v = V' v
no goals
Please generate a tactic in lean4 to solve the state. STATE: D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula head✝ : Definition tail✝ : List Definition tail_ih✝ : βˆ€ (V : VarAssignment D) (F : Formula) (binders : Finset VarName), admitsAux P zs H binders F β†’ (βˆ€ x βˆ‰ binders, V x = V' x) β†’ let E_ref := tail✝; Holds D (I' D I V' E_ref P zs H) V E_ref F ↔ Holds D I V E_ref (replace P zs H F) E_ref : Env := head✝ :: tail✝ x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux P zs H binders phi β†’ (βˆ€ x βˆ‰ binders, V x = V' x) β†’ (Holds D (I' D I V' E_ref P zs H) V E_ref phi ↔ Holds D I V E_ref (replace P zs H phi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux P zs H (binders βˆͺ {x}) phi h2 : βˆ€ x βˆ‰ binders, V x = V' x d : D v : VarName a1_left : v βˆ‰ binders a1_right : v β‰  x ⊒ V v = V' v TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/One/Rec/Sub.lean
FOL.NV.Sub.Pred.One.Rec.substitution_theorem_aux
[188, 1]
[334, 13]
simp only [replace]
D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula E_ref : Env := [] X : DefName xs : List VarName V : VarAssignment D binders : Finset VarName h1 : admitsAux P zs H binders (def_ X xs) h2 : βˆ€ x βˆ‰ binders, V x = V' x ⊒ Holds D (I' D I V' E_ref P zs H) V E_ref (def_ X xs) ↔ Holds D I V E_ref (replace P zs H (def_ X xs))
D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula E_ref : Env := [] X : DefName xs : List VarName V : VarAssignment D binders : Finset VarName h1 : admitsAux P zs H binders (def_ X xs) h2 : βˆ€ x βˆ‰ binders, V x = V' x ⊒ Holds D (I' D I V' E_ref P zs H) V E_ref (def_ X xs) ↔ Holds D I V E_ref (def_ X xs)
Please generate a tactic in lean4 to solve the state. STATE: D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula E_ref : Env := [] X : DefName xs : List VarName V : VarAssignment D binders : Finset VarName h1 : admitsAux P zs H binders (def_ X xs) h2 : βˆ€ x βˆ‰ binders, V x = V' x ⊒ Holds D (I' D I V' E_ref P zs H) V E_ref (def_ X xs) ↔ Holds D I V E_ref (replace P zs H (def_ X xs)) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/One/Rec/Sub.lean
FOL.NV.Sub.Pred.One.Rec.substitution_theorem_aux
[188, 1]
[334, 13]
simp only [E_ref]
D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula E_ref : Env := [] X : DefName xs : List VarName V : VarAssignment D binders : Finset VarName h1 : admitsAux P zs H binders (def_ X xs) h2 : βˆ€ x βˆ‰ binders, V x = V' x ⊒ Holds D (I' D I V' E_ref P zs H) V E_ref (def_ X xs) ↔ Holds D I V E_ref (def_ X xs)
D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula E_ref : Env := [] X : DefName xs : List VarName V : VarAssignment D binders : Finset VarName h1 : admitsAux P zs H binders (def_ X xs) h2 : βˆ€ x βˆ‰ binders, V x = V' x ⊒ Holds D (I' D I V' [] P zs H) V [] (def_ X xs) ↔ Holds D I V [] (def_ X xs)
Please generate a tactic in lean4 to solve the state. STATE: D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula E_ref : Env := [] X : DefName xs : List VarName V : VarAssignment D binders : Finset VarName h1 : admitsAux P zs H binders (def_ X xs) h2 : βˆ€ x βˆ‰ binders, V x = V' x ⊒ Holds D (I' D I V' E_ref P zs H) V E_ref (def_ X xs) ↔ Holds D I V E_ref (def_ X xs) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/One/Rec/Sub.lean
FOL.NV.Sub.Pred.One.Rec.substitution_theorem_aux
[188, 1]
[334, 13]
simp only [Holds]
D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula E_ref : Env := [] X : DefName xs : List VarName V : VarAssignment D binders : Finset VarName h1 : admitsAux P zs H binders (def_ X xs) h2 : βˆ€ x βˆ‰ binders, V x = V' x ⊒ Holds D (I' D I V' [] P zs H) V [] (def_ X xs) ↔ Holds D I V [] (def_ X xs)
no goals
Please generate a tactic in lean4 to solve the state. STATE: D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula E_ref : Env := [] X : DefName xs : List VarName V : VarAssignment D binders : Finset VarName h1 : admitsAux P zs H binders (def_ X xs) h2 : βˆ€ x βˆ‰ binders, V x = V' x ⊒ Holds D (I' D I V' [] P zs H) V [] (def_ X xs) ↔ Holds D I V [] (def_ X xs) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/One/Rec/Sub.lean
FOL.NV.Sub.Pred.One.Rec.substitution_theorem_aux
[188, 1]
[334, 13]
simp only [replace]
D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula hd : Definition tl : List Definition ih : βˆ€ (V : VarAssignment D) (F : Formula) (binders : Finset VarName), admitsAux P zs H binders F β†’ (βˆ€ x βˆ‰ binders, V x = V' x) β†’ let E_ref := tl; Holds D (I' D I V' E_ref P zs H) V E_ref F ↔ Holds D I V E_ref (replace P zs H F) E_ref : Env := hd :: tl X : DefName xs : List VarName V : VarAssignment D binders : Finset VarName h1 : admitsAux P zs H binders (def_ X xs) h2 : βˆ€ x βˆ‰ binders, V x = V' x ⊒ Holds D (I' D I V' E_ref P zs H) V E_ref (def_ X xs) ↔ Holds D I V E_ref (replace P zs H (def_ X xs))
D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula hd : Definition tl : List Definition ih : βˆ€ (V : VarAssignment D) (F : Formula) (binders : Finset VarName), admitsAux P zs H binders F β†’ (βˆ€ x βˆ‰ binders, V x = V' x) β†’ let E_ref := tl; Holds D (I' D I V' E_ref P zs H) V E_ref F ↔ Holds D I V E_ref (replace P zs H F) E_ref : Env := hd :: tl X : DefName xs : List VarName V : VarAssignment D binders : Finset VarName h1 : admitsAux P zs H binders (def_ X xs) h2 : βˆ€ x βˆ‰ binders, V x = V' x ⊒ Holds D (I' D I V' E_ref P zs H) V E_ref (def_ X xs) ↔ Holds D I V E_ref (def_ X xs)
Please generate a tactic in lean4 to solve the state. STATE: D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula hd : Definition tl : List Definition ih : βˆ€ (V : VarAssignment D) (F : Formula) (binders : Finset VarName), admitsAux P zs H binders F β†’ (βˆ€ x βˆ‰ binders, V x = V' x) β†’ let E_ref := tl; Holds D (I' D I V' E_ref P zs H) V E_ref F ↔ Holds D I V E_ref (replace P zs H F) E_ref : Env := hd :: tl X : DefName xs : List VarName V : VarAssignment D binders : Finset VarName h1 : admitsAux P zs H binders (def_ X xs) h2 : βˆ€ x βˆ‰ binders, V x = V' x ⊒ Holds D (I' D I V' E_ref P zs H) V E_ref (def_ X xs) ↔ Holds D I V E_ref (replace P zs H (def_ X xs)) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/One/Rec/Sub.lean
FOL.NV.Sub.Pred.One.Rec.substitution_theorem_aux
[188, 1]
[334, 13]
simp only [E_ref]
D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula hd : Definition tl : List Definition ih : βˆ€ (V : VarAssignment D) (F : Formula) (binders : Finset VarName), admitsAux P zs H binders F β†’ (βˆ€ x βˆ‰ binders, V x = V' x) β†’ let E_ref := tl; Holds D (I' D I V' E_ref P zs H) V E_ref F ↔ Holds D I V E_ref (replace P zs H F) E_ref : Env := hd :: tl X : DefName xs : List VarName V : VarAssignment D binders : Finset VarName h1 : admitsAux P zs H binders (def_ X xs) h2 : βˆ€ x βˆ‰ binders, V x = V' x ⊒ Holds D (I' D I V' E_ref P zs H) V E_ref (def_ X xs) ↔ Holds D I V E_ref (def_ X xs)
D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula hd : Definition tl : List Definition ih : βˆ€ (V : VarAssignment D) (F : Formula) (binders : Finset VarName), admitsAux P zs H binders F β†’ (βˆ€ x βˆ‰ binders, V x = V' x) β†’ let E_ref := tl; Holds D (I' D I V' E_ref P zs H) V E_ref F ↔ Holds D I V E_ref (replace P zs H F) E_ref : Env := hd :: tl X : DefName xs : List VarName V : VarAssignment D binders : Finset VarName h1 : admitsAux P zs H binders (def_ X xs) h2 : βˆ€ x βˆ‰ binders, V x = V' x ⊒ Holds D (I' D I V' (hd :: tl) P zs H) V (hd :: tl) (def_ X xs) ↔ Holds D I V (hd :: tl) (def_ X xs)
Please generate a tactic in lean4 to solve the state. STATE: D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula hd : Definition tl : List Definition ih : βˆ€ (V : VarAssignment D) (F : Formula) (binders : Finset VarName), admitsAux P zs H binders F β†’ (βˆ€ x βˆ‰ binders, V x = V' x) β†’ let E_ref := tl; Holds D (I' D I V' E_ref P zs H) V E_ref F ↔ Holds D I V E_ref (replace P zs H F) E_ref : Env := hd :: tl X : DefName xs : List VarName V : VarAssignment D binders : Finset VarName h1 : admitsAux P zs H binders (def_ X xs) h2 : βˆ€ x βˆ‰ binders, V x = V' x ⊒ Holds D (I' D I V' E_ref P zs H) V E_ref (def_ X xs) ↔ Holds D I V E_ref (def_ X xs) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/One/Rec/Sub.lean
FOL.NV.Sub.Pred.One.Rec.substitution_theorem_aux
[188, 1]
[334, 13]
simp only [Holds]
D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula hd : Definition tl : List Definition ih : βˆ€ (V : VarAssignment D) (F : Formula) (binders : Finset VarName), admitsAux P zs H binders F β†’ (βˆ€ x βˆ‰ binders, V x = V' x) β†’ let E_ref := tl; Holds D (I' D I V' E_ref P zs H) V E_ref F ↔ Holds D I V E_ref (replace P zs H F) E_ref : Env := hd :: tl X : DefName xs : List VarName V : VarAssignment D binders : Finset VarName h1 : admitsAux P zs H binders (def_ X xs) h2 : βˆ€ x βˆ‰ binders, V x = V' x ⊒ Holds D (I' D I V' (hd :: tl) P zs H) V (hd :: tl) (def_ X xs) ↔ Holds D I V (hd :: tl) (def_ X xs)
D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula hd : Definition tl : List Definition ih : βˆ€ (V : VarAssignment D) (F : Formula) (binders : Finset VarName), admitsAux P zs H binders F β†’ (βˆ€ x βˆ‰ binders, V x = V' x) β†’ let E_ref := tl; Holds D (I' D I V' E_ref P zs H) V E_ref F ↔ Holds D I V E_ref (replace P zs H F) E_ref : Env := hd :: tl X : DefName xs : List VarName V : VarAssignment D binders : Finset VarName h1 : admitsAux P zs H binders (def_ X xs) h2 : βˆ€ x βˆ‰ binders, V x = V' x ⊒ (if X = hd.name ∧ xs.length = hd.args.length then Holds D (I' D I V' (hd :: tl) P zs H) (Function.updateListITE V hd.args (List.map V xs)) tl hd.q else Holds D (I' D I V' (hd :: tl) P zs H) V tl (def_ X xs)) ↔ if X = hd.name ∧ xs.length = hd.args.length then Holds D I (Function.updateListITE V hd.args (List.map V xs)) tl hd.q else Holds D I V tl (def_ X xs)
Please generate a tactic in lean4 to solve the state. STATE: D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula hd : Definition tl : List Definition ih : βˆ€ (V : VarAssignment D) (F : Formula) (binders : Finset VarName), admitsAux P zs H binders F β†’ (βˆ€ x βˆ‰ binders, V x = V' x) β†’ let E_ref := tl; Holds D (I' D I V' E_ref P zs H) V E_ref F ↔ Holds D I V E_ref (replace P zs H F) E_ref : Env := hd :: tl X : DefName xs : List VarName V : VarAssignment D binders : Finset VarName h1 : admitsAux P zs H binders (def_ X xs) h2 : βˆ€ x βˆ‰ binders, V x = V' x ⊒ Holds D (I' D I V' (hd :: tl) P zs H) V (hd :: tl) (def_ X xs) ↔ Holds D I V (hd :: tl) (def_ X xs) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/One/Rec/Sub.lean
FOL.NV.Sub.Pred.One.Rec.substitution_theorem_aux
[188, 1]
[334, 13]
split_ifs
D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula hd : Definition tl : List Definition ih : βˆ€ (V : VarAssignment D) (F : Formula) (binders : Finset VarName), admitsAux P zs H binders F β†’ (βˆ€ x βˆ‰ binders, V x = V' x) β†’ let E_ref := tl; Holds D (I' D I V' E_ref P zs H) V E_ref F ↔ Holds D I V E_ref (replace P zs H F) E_ref : Env := hd :: tl X : DefName xs : List VarName V : VarAssignment D binders : Finset VarName h1 : admitsAux P zs H binders (def_ X xs) h2 : βˆ€ x βˆ‰ binders, V x = V' x ⊒ (if X = hd.name ∧ xs.length = hd.args.length then Holds D (I' D I V' (hd :: tl) P zs H) (Function.updateListITE V hd.args (List.map V xs)) tl hd.q else Holds D (I' D I V' (hd :: tl) P zs H) V tl (def_ X xs)) ↔ if X = hd.name ∧ xs.length = hd.args.length then Holds D I (Function.updateListITE V hd.args (List.map V xs)) tl hd.q else Holds D I V tl (def_ X xs)
case pos D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula hd : Definition tl : List Definition ih : βˆ€ (V : VarAssignment D) (F : Formula) (binders : Finset VarName), admitsAux P zs H binders F β†’ (βˆ€ x βˆ‰ binders, V x = V' x) β†’ let E_ref := tl; Holds D (I' D I V' E_ref P zs H) V E_ref F ↔ Holds D I V E_ref (replace P zs H F) E_ref : Env := hd :: tl X : DefName xs : List VarName V : VarAssignment D binders : Finset VarName h1 : admitsAux P zs H binders (def_ X xs) h2 : βˆ€ x βˆ‰ binders, V x = V' x h✝ : X = hd.name ∧ xs.length = hd.args.length ⊒ Holds D (I' D I V' (hd :: tl) P zs H) (Function.updateListITE V hd.args (List.map V xs)) tl hd.q ↔ Holds D I (Function.updateListITE V hd.args (List.map V xs)) tl hd.q case neg D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula hd : Definition tl : List Definition ih : βˆ€ (V : VarAssignment D) (F : Formula) (binders : Finset VarName), admitsAux P zs H binders F β†’ (βˆ€ x βˆ‰ binders, V x = V' x) β†’ let E_ref := tl; Holds D (I' D I V' E_ref P zs H) V E_ref F ↔ Holds D I V E_ref (replace P zs H F) E_ref : Env := hd :: tl X : DefName xs : List VarName V : VarAssignment D binders : Finset VarName h1 : admitsAux P zs H binders (def_ X xs) h2 : βˆ€ x βˆ‰ binders, V x = V' x h✝ : Β¬(X = hd.name ∧ xs.length = hd.args.length) ⊒ Holds D (I' D I V' (hd :: tl) P zs H) V tl (def_ X xs) ↔ Holds D I V tl (def_ X xs)
Please generate a tactic in lean4 to solve the state. STATE: D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula hd : Definition tl : List Definition ih : βˆ€ (V : VarAssignment D) (F : Formula) (binders : Finset VarName), admitsAux P zs H binders F β†’ (βˆ€ x βˆ‰ binders, V x = V' x) β†’ let E_ref := tl; Holds D (I' D I V' E_ref P zs H) V E_ref F ↔ Holds D I V E_ref (replace P zs H F) E_ref : Env := hd :: tl X : DefName xs : List VarName V : VarAssignment D binders : Finset VarName h1 : admitsAux P zs H binders (def_ X xs) h2 : βˆ€ x βˆ‰ binders, V x = V' x ⊒ (if X = hd.name ∧ xs.length = hd.args.length then Holds D (I' D I V' (hd :: tl) P zs H) (Function.updateListITE V hd.args (List.map V xs)) tl hd.q else Holds D (I' D I V' (hd :: tl) P zs H) V tl (def_ X xs)) ↔ if X = hd.name ∧ xs.length = hd.args.length then Holds D I (Function.updateListITE V hd.args (List.map V xs)) tl hd.q else Holds D I V tl (def_ X xs) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/One/Rec/Sub.lean
FOL.NV.Sub.Pred.One.Rec.substitution_theorem_aux
[188, 1]
[334, 13]
specialize ih (Function.updateListITE V hd.args (List.map V xs)) hd.q
D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula hd : Definition tl : List Definition ih : βˆ€ (V : VarAssignment D) (F : Formula) (binders : Finset VarName), admitsAux P zs H binders F β†’ (βˆ€ x βˆ‰ binders, V x = V' x) β†’ let E_ref := tl; Holds D (I' D I V' E_ref P zs H) V E_ref F ↔ Holds D I V E_ref (replace P zs H F) E_ref : Env := hd :: tl X : DefName xs : List VarName V : VarAssignment D binders : Finset VarName h1 : admitsAux P zs H binders (def_ X xs) h2 : βˆ€ x βˆ‰ binders, V x = V' x c1 : X = hd.name ∧ xs.length = hd.args.length ⊒ Holds D (I' D I V' (hd :: tl) P zs H) (Function.updateListITE V hd.args (List.map V xs)) tl hd.q ↔ Holds D I (Function.updateListITE V hd.args (List.map V xs)) tl hd.q
D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula hd : Definition tl : List Definition E_ref : Env := hd :: tl X : DefName xs : List VarName V : VarAssignment D binders : Finset VarName h1 : admitsAux P zs H binders (def_ X xs) h2 : βˆ€ x βˆ‰ binders, V x = V' x c1 : X = hd.name ∧ xs.length = hd.args.length ih : βˆ€ (binders : Finset VarName), admitsAux P zs H binders hd.q β†’ (βˆ€ x βˆ‰ binders, Function.updateListITE V hd.args (List.map V xs) x = V' x) β†’ let E_ref := tl; Holds D (I' D I V' E_ref P zs H) (Function.updateListITE V hd.args (List.map V xs)) E_ref hd.q ↔ Holds D I (Function.updateListITE V hd.args (List.map V xs)) E_ref (replace P zs H hd.q) ⊒ Holds D (I' D I V' (hd :: tl) P zs H) (Function.updateListITE V hd.args (List.map V xs)) tl hd.q ↔ Holds D I (Function.updateListITE V hd.args (List.map V xs)) tl hd.q
Please generate a tactic in lean4 to solve the state. STATE: D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula hd : Definition tl : List Definition ih : βˆ€ (V : VarAssignment D) (F : Formula) (binders : Finset VarName), admitsAux P zs H binders F β†’ (βˆ€ x βˆ‰ binders, V x = V' x) β†’ let E_ref := tl; Holds D (I' D I V' E_ref P zs H) V E_ref F ↔ Holds D I V E_ref (replace P zs H F) E_ref : Env := hd :: tl X : DefName xs : List VarName V : VarAssignment D binders : Finset VarName h1 : admitsAux P zs H binders (def_ X xs) h2 : βˆ€ x βˆ‰ binders, V x = V' x c1 : X = hd.name ∧ xs.length = hd.args.length ⊒ Holds D (I' D I V' (hd :: tl) P zs H) (Function.updateListITE V hd.args (List.map V xs)) tl hd.q ↔ Holds D I (Function.updateListITE V hd.args (List.map V xs)) tl hd.q TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/One/Rec/Sub.lean
FOL.NV.Sub.Pred.One.Rec.substitution_theorem_aux
[188, 1]
[334, 13]
simp only [replace_no_predVar P zs H hd.q hd.h2] at ih
D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula hd : Definition tl : List Definition E_ref : Env := hd :: tl X : DefName xs : List VarName V : VarAssignment D binders : Finset VarName h1 : admitsAux P zs H binders (def_ X xs) h2 : βˆ€ x βˆ‰ binders, V x = V' x c1 : X = hd.name ∧ xs.length = hd.args.length ih : βˆ€ (binders : Finset VarName), admitsAux P zs H binders hd.q β†’ (βˆ€ x βˆ‰ binders, Function.updateListITE V hd.args (List.map V xs) x = V' x) β†’ let E_ref := tl; Holds D (I' D I V' E_ref P zs H) (Function.updateListITE V hd.args (List.map V xs)) E_ref hd.q ↔ Holds D I (Function.updateListITE V hd.args (List.map V xs)) E_ref (replace P zs H hd.q) ⊒ Holds D (I' D I V' (hd :: tl) P zs H) (Function.updateListITE V hd.args (List.map V xs)) tl hd.q ↔ Holds D I (Function.updateListITE V hd.args (List.map V xs)) tl hd.q
D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula hd : Definition tl : List Definition E_ref : Env := hd :: tl X : DefName xs : List VarName V : VarAssignment D binders : Finset VarName h1 : admitsAux P zs H binders (def_ X xs) h2 : βˆ€ x βˆ‰ binders, V x = V' x c1 : X = hd.name ∧ xs.length = hd.args.length ih : βˆ€ (binders : Finset VarName), admitsAux P zs H binders hd.q β†’ (βˆ€ x βˆ‰ binders, Function.updateListITE V hd.args (List.map V xs) x = V' x) β†’ (Holds D (I' D I V' tl P zs H) (Function.updateListITE V hd.args (List.map V xs)) tl hd.q ↔ Holds D I (Function.updateListITE V hd.args (List.map V xs)) tl hd.q) ⊒ Holds D (I' D I V' (hd :: tl) P zs H) (Function.updateListITE V hd.args (List.map V xs)) tl hd.q ↔ Holds D I (Function.updateListITE V hd.args (List.map V xs)) tl hd.q
Please generate a tactic in lean4 to solve the state. STATE: D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula hd : Definition tl : List Definition E_ref : Env := hd :: tl X : DefName xs : List VarName V : VarAssignment D binders : Finset VarName h1 : admitsAux P zs H binders (def_ X xs) h2 : βˆ€ x βˆ‰ binders, V x = V' x c1 : X = hd.name ∧ xs.length = hd.args.length ih : βˆ€ (binders : Finset VarName), admitsAux P zs H binders hd.q β†’ (βˆ€ x βˆ‰ binders, Function.updateListITE V hd.args (List.map V xs) x = V' x) β†’ let E_ref := tl; Holds D (I' D I V' E_ref P zs H) (Function.updateListITE V hd.args (List.map V xs)) E_ref hd.q ↔ Holds D I (Function.updateListITE V hd.args (List.map V xs)) E_ref (replace P zs H hd.q) ⊒ Holds D (I' D I V' (hd :: tl) P zs H) (Function.updateListITE V hd.args (List.map V xs)) tl hd.q ↔ Holds D I (Function.updateListITE V hd.args (List.map V xs)) tl hd.q TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/One/Rec/Sub.lean
FOL.NV.Sub.Pred.One.Rec.substitution_theorem_aux
[188, 1]
[334, 13]
apply Holds_coincide_PredVar
D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula hd : Definition tl : List Definition E_ref : Env := hd :: tl X : DefName xs : List VarName V : VarAssignment D binders : Finset VarName h1 : admitsAux P zs H binders (def_ X xs) h2 : βˆ€ x βˆ‰ binders, V x = V' x c1 : X = hd.name ∧ xs.length = hd.args.length ih : βˆ€ (binders : Finset VarName), admitsAux P zs H binders hd.q β†’ (βˆ€ x βˆ‰ binders, Function.updateListITE V hd.args (List.map V xs) x = V' x) β†’ (Holds D (I' D I V' tl P zs H) (Function.updateListITE V hd.args (List.map V xs)) tl hd.q ↔ Holds D I (Function.updateListITE V hd.args (List.map V xs)) tl hd.q) ⊒ Holds D (I' D I V' (hd :: tl) P zs H) (Function.updateListITE V hd.args (List.map V xs)) tl hd.q ↔ Holds D I (Function.updateListITE V hd.args (List.map V xs)) tl hd.q
case h1 D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula hd : Definition tl : List Definition E_ref : Env := hd :: tl X : DefName xs : List VarName V : VarAssignment D binders : Finset VarName h1 : admitsAux P zs H binders (def_ X xs) h2 : βˆ€ x βˆ‰ binders, V x = V' x c1 : X = hd.name ∧ xs.length = hd.args.length ih : βˆ€ (binders : Finset VarName), admitsAux P zs H binders hd.q β†’ (βˆ€ x βˆ‰ binders, Function.updateListITE V hd.args (List.map V xs) x = V' x) β†’ (Holds D (I' D I V' tl P zs H) (Function.updateListITE V hd.args (List.map V xs)) tl hd.q ↔ Holds D I (Function.updateListITE V hd.args (List.map V xs)) tl hd.q) ⊒ (I' D I V' (hd :: tl) P zs H).pred_const_ = I.pred_const_ case h2 D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula hd : Definition tl : List Definition E_ref : Env := hd :: tl X : DefName xs : List VarName V : VarAssignment D binders : Finset VarName h1 : admitsAux P zs H binders (def_ X xs) h2 : βˆ€ x βˆ‰ binders, V x = V' x c1 : X = hd.name ∧ xs.length = hd.args.length ih : βˆ€ (binders : Finset VarName), admitsAux P zs H binders hd.q β†’ (βˆ€ x βˆ‰ binders, Function.updateListITE V hd.args (List.map V xs) x = V' x) β†’ (Holds D (I' D I V' tl P zs H) (Function.updateListITE V hd.args (List.map V xs)) tl hd.q ↔ Holds D I (Function.updateListITE V hd.args (List.map V xs)) tl hd.q) ⊒ βˆ€ (P_1 : PredName) (ds : List D), predVarOccursIn P_1 ds.length hd.q β†’ ((I' D I V' (hd :: tl) P zs H).pred_var_ P_1 ds ↔ I.pred_var_ P_1 ds)
Please generate a tactic in lean4 to solve the state. STATE: D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula hd : Definition tl : List Definition E_ref : Env := hd :: tl X : DefName xs : List VarName V : VarAssignment D binders : Finset VarName h1 : admitsAux P zs H binders (def_ X xs) h2 : βˆ€ x βˆ‰ binders, V x = V' x c1 : X = hd.name ∧ xs.length = hd.args.length ih : βˆ€ (binders : Finset VarName), admitsAux P zs H binders hd.q β†’ (βˆ€ x βˆ‰ binders, Function.updateListITE V hd.args (List.map V xs) x = V' x) β†’ (Holds D (I' D I V' tl P zs H) (Function.updateListITE V hd.args (List.map V xs)) tl hd.q ↔ Holds D I (Function.updateListITE V hd.args (List.map V xs)) tl hd.q) ⊒ Holds D (I' D I V' (hd :: tl) P zs H) (Function.updateListITE V hd.args (List.map V xs)) tl hd.q ↔ Holds D I (Function.updateListITE V hd.args (List.map V xs)) tl hd.q TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/One/Rec/Sub.lean
FOL.NV.Sub.Pred.One.Rec.substitution_theorem_aux
[188, 1]
[334, 13]
simp only [I']
case h1 D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula hd : Definition tl : List Definition E_ref : Env := hd :: tl X : DefName xs : List VarName V : VarAssignment D binders : Finset VarName h1 : admitsAux P zs H binders (def_ X xs) h2 : βˆ€ x βˆ‰ binders, V x = V' x c1 : X = hd.name ∧ xs.length = hd.args.length ih : βˆ€ (binders : Finset VarName), admitsAux P zs H binders hd.q β†’ (βˆ€ x βˆ‰ binders, Function.updateListITE V hd.args (List.map V xs) x = V' x) β†’ (Holds D (I' D I V' tl P zs H) (Function.updateListITE V hd.args (List.map V xs)) tl hd.q ↔ Holds D I (Function.updateListITE V hd.args (List.map V xs)) tl hd.q) ⊒ (I' D I V' (hd :: tl) P zs H).pred_const_ = I.pred_const_
case h1 D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula hd : Definition tl : List Definition E_ref : Env := hd :: tl X : DefName xs : List VarName V : VarAssignment D binders : Finset VarName h1 : admitsAux P zs H binders (def_ X xs) h2 : βˆ€ x βˆ‰ binders, V x = V' x c1 : X = hd.name ∧ xs.length = hd.args.length ih : βˆ€ (binders : Finset VarName), admitsAux P zs H binders hd.q β†’ (βˆ€ x βˆ‰ binders, Function.updateListITE V hd.args (List.map V xs) x = V' x) β†’ (Holds D (I' D I V' tl P zs H) (Function.updateListITE V hd.args (List.map V xs)) tl hd.q ↔ Holds D I (Function.updateListITE V hd.args (List.map V xs)) tl hd.q) ⊒ (Interpretation.usingPred D I fun Q ds => if Q = P ∧ ds.length = zs.length then Holds D I (Function.updateListITE V' zs ds) (hd :: tl) H else I.pred_var_ Q ds).pred_const_ = I.pred_const_
Please generate a tactic in lean4 to solve the state. STATE: case h1 D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula hd : Definition tl : List Definition E_ref : Env := hd :: tl X : DefName xs : List VarName V : VarAssignment D binders : Finset VarName h1 : admitsAux P zs H binders (def_ X xs) h2 : βˆ€ x βˆ‰ binders, V x = V' x c1 : X = hd.name ∧ xs.length = hd.args.length ih : βˆ€ (binders : Finset VarName), admitsAux P zs H binders hd.q β†’ (βˆ€ x βˆ‰ binders, Function.updateListITE V hd.args (List.map V xs) x = V' x) β†’ (Holds D (I' D I V' tl P zs H) (Function.updateListITE V hd.args (List.map V xs)) tl hd.q ↔ Holds D I (Function.updateListITE V hd.args (List.map V xs)) tl hd.q) ⊒ (I' D I V' (hd :: tl) P zs H).pred_const_ = I.pred_const_ TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/One/Rec/Sub.lean
FOL.NV.Sub.Pred.One.Rec.substitution_theorem_aux
[188, 1]
[334, 13]
simp only [Interpretation.usingPred]
case h1 D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula hd : Definition tl : List Definition E_ref : Env := hd :: tl X : DefName xs : List VarName V : VarAssignment D binders : Finset VarName h1 : admitsAux P zs H binders (def_ X xs) h2 : βˆ€ x βˆ‰ binders, V x = V' x c1 : X = hd.name ∧ xs.length = hd.args.length ih : βˆ€ (binders : Finset VarName), admitsAux P zs H binders hd.q β†’ (βˆ€ x βˆ‰ binders, Function.updateListITE V hd.args (List.map V xs) x = V' x) β†’ (Holds D (I' D I V' tl P zs H) (Function.updateListITE V hd.args (List.map V xs)) tl hd.q ↔ Holds D I (Function.updateListITE V hd.args (List.map V xs)) tl hd.q) ⊒ (Interpretation.usingPred D I fun Q ds => if Q = P ∧ ds.length = zs.length then Holds D I (Function.updateListITE V' zs ds) (hd :: tl) H else I.pred_var_ Q ds).pred_const_ = I.pred_const_
no goals
Please generate a tactic in lean4 to solve the state. STATE: case h1 D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula hd : Definition tl : List Definition E_ref : Env := hd :: tl X : DefName xs : List VarName V : VarAssignment D binders : Finset VarName h1 : admitsAux P zs H binders (def_ X xs) h2 : βˆ€ x βˆ‰ binders, V x = V' x c1 : X = hd.name ∧ xs.length = hd.args.length ih : βˆ€ (binders : Finset VarName), admitsAux P zs H binders hd.q β†’ (βˆ€ x βˆ‰ binders, Function.updateListITE V hd.args (List.map V xs) x = V' x) β†’ (Holds D (I' D I V' tl P zs H) (Function.updateListITE V hd.args (List.map V xs)) tl hd.q ↔ Holds D I (Function.updateListITE V hd.args (List.map V xs)) tl hd.q) ⊒ (Interpretation.usingPred D I fun Q ds => if Q = P ∧ ds.length = zs.length then Holds D I (Function.updateListITE V' zs ds) (hd :: tl) H else I.pred_var_ Q ds).pred_const_ = I.pred_const_ TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/One/Rec/Sub.lean
FOL.NV.Sub.Pred.One.Rec.substitution_theorem_aux
[188, 1]
[334, 13]
simp only [predVarOccursIn_iff_mem_predVarSet]
case h2 D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula hd : Definition tl : List Definition E_ref : Env := hd :: tl X : DefName xs : List VarName V : VarAssignment D binders : Finset VarName h1 : admitsAux P zs H binders (def_ X xs) h2 : βˆ€ x βˆ‰ binders, V x = V' x c1 : X = hd.name ∧ xs.length = hd.args.length ih : βˆ€ (binders : Finset VarName), admitsAux P zs H binders hd.q β†’ (βˆ€ x βˆ‰ binders, Function.updateListITE V hd.args (List.map V xs) x = V' x) β†’ (Holds D (I' D I V' tl P zs H) (Function.updateListITE V hd.args (List.map V xs)) tl hd.q ↔ Holds D I (Function.updateListITE V hd.args (List.map V xs)) tl hd.q) ⊒ βˆ€ (P_1 : PredName) (ds : List D), predVarOccursIn P_1 ds.length hd.q β†’ ((I' D I V' (hd :: tl) P zs H).pred_var_ P_1 ds ↔ I.pred_var_ P_1 ds)
case h2 D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula hd : Definition tl : List Definition E_ref : Env := hd :: tl X : DefName xs : List VarName V : VarAssignment D binders : Finset VarName h1 : admitsAux P zs H binders (def_ X xs) h2 : βˆ€ x βˆ‰ binders, V x = V' x c1 : X = hd.name ∧ xs.length = hd.args.length ih : βˆ€ (binders : Finset VarName), admitsAux P zs H binders hd.q β†’ (βˆ€ x βˆ‰ binders, Function.updateListITE V hd.args (List.map V xs) x = V' x) β†’ (Holds D (I' D I V' tl P zs H) (Function.updateListITE V hd.args (List.map V xs)) tl hd.q ↔ Holds D I (Function.updateListITE V hd.args (List.map V xs)) tl hd.q) ⊒ βˆ€ (P_1 : PredName) (ds : List D), (P_1, ds.length) ∈ hd.q.predVarSet β†’ ((I' D I V' (hd :: tl) P zs H).pred_var_ P_1 ds ↔ I.pred_var_ P_1 ds)
Please generate a tactic in lean4 to solve the state. STATE: case h2 D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula hd : Definition tl : List Definition E_ref : Env := hd :: tl X : DefName xs : List VarName V : VarAssignment D binders : Finset VarName h1 : admitsAux P zs H binders (def_ X xs) h2 : βˆ€ x βˆ‰ binders, V x = V' x c1 : X = hd.name ∧ xs.length = hd.args.length ih : βˆ€ (binders : Finset VarName), admitsAux P zs H binders hd.q β†’ (βˆ€ x βˆ‰ binders, Function.updateListITE V hd.args (List.map V xs) x = V' x) β†’ (Holds D (I' D I V' tl P zs H) (Function.updateListITE V hd.args (List.map V xs)) tl hd.q ↔ Holds D I (Function.updateListITE V hd.args (List.map V xs)) tl hd.q) ⊒ βˆ€ (P_1 : PredName) (ds : List D), predVarOccursIn P_1 ds.length hd.q β†’ ((I' D I V' (hd :: tl) P zs H).pred_var_ P_1 ds ↔ I.pred_var_ P_1 ds) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/One/Rec/Sub.lean
FOL.NV.Sub.Pred.One.Rec.substitution_theorem_aux
[188, 1]
[334, 13]
simp only [hd.h2]
case h2 D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula hd : Definition tl : List Definition E_ref : Env := hd :: tl X : DefName xs : List VarName V : VarAssignment D binders : Finset VarName h1 : admitsAux P zs H binders (def_ X xs) h2 : βˆ€ x βˆ‰ binders, V x = V' x c1 : X = hd.name ∧ xs.length = hd.args.length ih : βˆ€ (binders : Finset VarName), admitsAux P zs H binders hd.q β†’ (βˆ€ x βˆ‰ binders, Function.updateListITE V hd.args (List.map V xs) x = V' x) β†’ (Holds D (I' D I V' tl P zs H) (Function.updateListITE V hd.args (List.map V xs)) tl hd.q ↔ Holds D I (Function.updateListITE V hd.args (List.map V xs)) tl hd.q) ⊒ βˆ€ (P_1 : PredName) (ds : List D), (P_1, ds.length) ∈ hd.q.predVarSet β†’ ((I' D I V' (hd :: tl) P zs H).pred_var_ P_1 ds ↔ I.pred_var_ P_1 ds)
case h2 D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula hd : Definition tl : List Definition E_ref : Env := hd :: tl X : DefName xs : List VarName V : VarAssignment D binders : Finset VarName h1 : admitsAux P zs H binders (def_ X xs) h2 : βˆ€ x βˆ‰ binders, V x = V' x c1 : X = hd.name ∧ xs.length = hd.args.length ih : βˆ€ (binders : Finset VarName), admitsAux P zs H binders hd.q β†’ (βˆ€ x βˆ‰ binders, Function.updateListITE V hd.args (List.map V xs) x = V' x) β†’ (Holds D (I' D I V' tl P zs H) (Function.updateListITE V hd.args (List.map V xs)) tl hd.q ↔ Holds D I (Function.updateListITE V hd.args (List.map V xs)) tl hd.q) ⊒ βˆ€ (P_1 : PredName) (ds : List D), (P_1, ds.length) ∈ βˆ… β†’ ((I' D I V' (hd :: tl) P zs H).pred_var_ P_1 ds ↔ I.pred_var_ P_1 ds)
Please generate a tactic in lean4 to solve the state. STATE: case h2 D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula hd : Definition tl : List Definition E_ref : Env := hd :: tl X : DefName xs : List VarName V : VarAssignment D binders : Finset VarName h1 : admitsAux P zs H binders (def_ X xs) h2 : βˆ€ x βˆ‰ binders, V x = V' x c1 : X = hd.name ∧ xs.length = hd.args.length ih : βˆ€ (binders : Finset VarName), admitsAux P zs H binders hd.q β†’ (βˆ€ x βˆ‰ binders, Function.updateListITE V hd.args (List.map V xs) x = V' x) β†’ (Holds D (I' D I V' tl P zs H) (Function.updateListITE V hd.args (List.map V xs)) tl hd.q ↔ Holds D I (Function.updateListITE V hd.args (List.map V xs)) tl hd.q) ⊒ βˆ€ (P_1 : PredName) (ds : List D), (P_1, ds.length) ∈ hd.q.predVarSet β†’ ((I' D I V' (hd :: tl) P zs H).pred_var_ P_1 ds ↔ I.pred_var_ P_1 ds) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/One/Rec/Sub.lean
FOL.NV.Sub.Pred.One.Rec.substitution_theorem_aux
[188, 1]
[334, 13]
simp
case h2 D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula hd : Definition tl : List Definition E_ref : Env := hd :: tl X : DefName xs : List VarName V : VarAssignment D binders : Finset VarName h1 : admitsAux P zs H binders (def_ X xs) h2 : βˆ€ x βˆ‰ binders, V x = V' x c1 : X = hd.name ∧ xs.length = hd.args.length ih : βˆ€ (binders : Finset VarName), admitsAux P zs H binders hd.q β†’ (βˆ€ x βˆ‰ binders, Function.updateListITE V hd.args (List.map V xs) x = V' x) β†’ (Holds D (I' D I V' tl P zs H) (Function.updateListITE V hd.args (List.map V xs)) tl hd.q ↔ Holds D I (Function.updateListITE V hd.args (List.map V xs)) tl hd.q) ⊒ βˆ€ (P_1 : PredName) (ds : List D), (P_1, ds.length) ∈ βˆ… β†’ ((I' D I V' (hd :: tl) P zs H).pred_var_ P_1 ds ↔ I.pred_var_ P_1 ds)
no goals
Please generate a tactic in lean4 to solve the state. STATE: case h2 D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula hd : Definition tl : List Definition E_ref : Env := hd :: tl X : DefName xs : List VarName V : VarAssignment D binders : Finset VarName h1 : admitsAux P zs H binders (def_ X xs) h2 : βˆ€ x βˆ‰ binders, V x = V' x c1 : X = hd.name ∧ xs.length = hd.args.length ih : βˆ€ (binders : Finset VarName), admitsAux P zs H binders hd.q β†’ (βˆ€ x βˆ‰ binders, Function.updateListITE V hd.args (List.map V xs) x = V' x) β†’ (Holds D (I' D I V' tl P zs H) (Function.updateListITE V hd.args (List.map V xs)) tl hd.q ↔ Holds D I (Function.updateListITE V hd.args (List.map V xs)) tl hd.q) ⊒ βˆ€ (P_1 : PredName) (ds : List D), (P_1, ds.length) ∈ βˆ… β†’ ((I' D I V' (hd :: tl) P zs H).pred_var_ P_1 ds ↔ I.pred_var_ P_1 ds) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/One/Rec/Sub.lean
FOL.NV.Sub.Pred.One.Rec.substitution_theorem_aux
[188, 1]
[334, 13]
apply Holds_coincide_PredVar
D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula hd : Definition tl : List Definition ih : βˆ€ (V : VarAssignment D) (F : Formula) (binders : Finset VarName), admitsAux P zs H binders F β†’ (βˆ€ x βˆ‰ binders, V x = V' x) β†’ let E_ref := tl; Holds D (I' D I V' E_ref P zs H) V E_ref F ↔ Holds D I V E_ref (replace P zs H F) E_ref : Env := hd :: tl X : DefName xs : List VarName V : VarAssignment D binders : Finset VarName h1 : admitsAux P zs H binders (def_ X xs) h2 : βˆ€ x βˆ‰ binders, V x = V' x c1 : Β¬(X = hd.name ∧ xs.length = hd.args.length) ⊒ Holds D (I' D I V' (hd :: tl) P zs H) V tl (def_ X xs) ↔ Holds D I V tl (def_ X xs)
case h1 D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula hd : Definition tl : List Definition ih : βˆ€ (V : VarAssignment D) (F : Formula) (binders : Finset VarName), admitsAux P zs H binders F β†’ (βˆ€ x βˆ‰ binders, V x = V' x) β†’ let E_ref := tl; Holds D (I' D I V' E_ref P zs H) V E_ref F ↔ Holds D I V E_ref (replace P zs H F) E_ref : Env := hd :: tl X : DefName xs : List VarName V : VarAssignment D binders : Finset VarName h1 : admitsAux P zs H binders (def_ X xs) h2 : βˆ€ x βˆ‰ binders, V x = V' x c1 : Β¬(X = hd.name ∧ xs.length = hd.args.length) ⊒ (I' D I V' (hd :: tl) P zs H).pred_const_ = I.pred_const_ case h2 D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula hd : Definition tl : List Definition ih : βˆ€ (V : VarAssignment D) (F : Formula) (binders : Finset VarName), admitsAux P zs H binders F β†’ (βˆ€ x βˆ‰ binders, V x = V' x) β†’ let E_ref := tl; Holds D (I' D I V' E_ref P zs H) V E_ref F ↔ Holds D I V E_ref (replace P zs H F) E_ref : Env := hd :: tl X : DefName xs : List VarName V : VarAssignment D binders : Finset VarName h1 : admitsAux P zs H binders (def_ X xs) h2 : βˆ€ x βˆ‰ binders, V x = V' x c1 : Β¬(X = hd.name ∧ xs.length = hd.args.length) ⊒ βˆ€ (P_1 : PredName) (ds : List D), predVarOccursIn P_1 ds.length (def_ X xs) β†’ ((I' D I V' (hd :: tl) P zs H).pred_var_ P_1 ds ↔ I.pred_var_ P_1 ds)
Please generate a tactic in lean4 to solve the state. STATE: D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula hd : Definition tl : List Definition ih : βˆ€ (V : VarAssignment D) (F : Formula) (binders : Finset VarName), admitsAux P zs H binders F β†’ (βˆ€ x βˆ‰ binders, V x = V' x) β†’ let E_ref := tl; Holds D (I' D I V' E_ref P zs H) V E_ref F ↔ Holds D I V E_ref (replace P zs H F) E_ref : Env := hd :: tl X : DefName xs : List VarName V : VarAssignment D binders : Finset VarName h1 : admitsAux P zs H binders (def_ X xs) h2 : βˆ€ x βˆ‰ binders, V x = V' x c1 : Β¬(X = hd.name ∧ xs.length = hd.args.length) ⊒ Holds D (I' D I V' (hd :: tl) P zs H) V tl (def_ X xs) ↔ Holds D I V tl (def_ X xs) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/One/Rec/Sub.lean
FOL.NV.Sub.Pred.One.Rec.substitution_theorem_aux
[188, 1]
[334, 13]
simp only [I']
case h1 D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula hd : Definition tl : List Definition ih : βˆ€ (V : VarAssignment D) (F : Formula) (binders : Finset VarName), admitsAux P zs H binders F β†’ (βˆ€ x βˆ‰ binders, V x = V' x) β†’ let E_ref := tl; Holds D (I' D I V' E_ref P zs H) V E_ref F ↔ Holds D I V E_ref (replace P zs H F) E_ref : Env := hd :: tl X : DefName xs : List VarName V : VarAssignment D binders : Finset VarName h1 : admitsAux P zs H binders (def_ X xs) h2 : βˆ€ x βˆ‰ binders, V x = V' x c1 : Β¬(X = hd.name ∧ xs.length = hd.args.length) ⊒ (I' D I V' (hd :: tl) P zs H).pred_const_ = I.pred_const_
case h1 D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula hd : Definition tl : List Definition ih : βˆ€ (V : VarAssignment D) (F : Formula) (binders : Finset VarName), admitsAux P zs H binders F β†’ (βˆ€ x βˆ‰ binders, V x = V' x) β†’ let E_ref := tl; Holds D (I' D I V' E_ref P zs H) V E_ref F ↔ Holds D I V E_ref (replace P zs H F) E_ref : Env := hd :: tl X : DefName xs : List VarName V : VarAssignment D binders : Finset VarName h1 : admitsAux P zs H binders (def_ X xs) h2 : βˆ€ x βˆ‰ binders, V x = V' x c1 : Β¬(X = hd.name ∧ xs.length = hd.args.length) ⊒ (Interpretation.usingPred D I fun Q ds => if Q = P ∧ ds.length = zs.length then Holds D I (Function.updateListITE V' zs ds) (hd :: tl) H else I.pred_var_ Q ds).pred_const_ = I.pred_const_
Please generate a tactic in lean4 to solve the state. STATE: case h1 D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula hd : Definition tl : List Definition ih : βˆ€ (V : VarAssignment D) (F : Formula) (binders : Finset VarName), admitsAux P zs H binders F β†’ (βˆ€ x βˆ‰ binders, V x = V' x) β†’ let E_ref := tl; Holds D (I' D I V' E_ref P zs H) V E_ref F ↔ Holds D I V E_ref (replace P zs H F) E_ref : Env := hd :: tl X : DefName xs : List VarName V : VarAssignment D binders : Finset VarName h1 : admitsAux P zs H binders (def_ X xs) h2 : βˆ€ x βˆ‰ binders, V x = V' x c1 : Β¬(X = hd.name ∧ xs.length = hd.args.length) ⊒ (I' D I V' (hd :: tl) P zs H).pred_const_ = I.pred_const_ TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/One/Rec/Sub.lean
FOL.NV.Sub.Pred.One.Rec.substitution_theorem_aux
[188, 1]
[334, 13]
simp only [Interpretation.usingPred]
case h1 D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula hd : Definition tl : List Definition ih : βˆ€ (V : VarAssignment D) (F : Formula) (binders : Finset VarName), admitsAux P zs H binders F β†’ (βˆ€ x βˆ‰ binders, V x = V' x) β†’ let E_ref := tl; Holds D (I' D I V' E_ref P zs H) V E_ref F ↔ Holds D I V E_ref (replace P zs H F) E_ref : Env := hd :: tl X : DefName xs : List VarName V : VarAssignment D binders : Finset VarName h1 : admitsAux P zs H binders (def_ X xs) h2 : βˆ€ x βˆ‰ binders, V x = V' x c1 : Β¬(X = hd.name ∧ xs.length = hd.args.length) ⊒ (Interpretation.usingPred D I fun Q ds => if Q = P ∧ ds.length = zs.length then Holds D I (Function.updateListITE V' zs ds) (hd :: tl) H else I.pred_var_ Q ds).pred_const_ = I.pred_const_
no goals
Please generate a tactic in lean4 to solve the state. STATE: case h1 D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula hd : Definition tl : List Definition ih : βˆ€ (V : VarAssignment D) (F : Formula) (binders : Finset VarName), admitsAux P zs H binders F β†’ (βˆ€ x βˆ‰ binders, V x = V' x) β†’ let E_ref := tl; Holds D (I' D I V' E_ref P zs H) V E_ref F ↔ Holds D I V E_ref (replace P zs H F) E_ref : Env := hd :: tl X : DefName xs : List VarName V : VarAssignment D binders : Finset VarName h1 : admitsAux P zs H binders (def_ X xs) h2 : βˆ€ x βˆ‰ binders, V x = V' x c1 : Β¬(X = hd.name ∧ xs.length = hd.args.length) ⊒ (Interpretation.usingPred D I fun Q ds => if Q = P ∧ ds.length = zs.length then Holds D I (Function.updateListITE V' zs ds) (hd :: tl) H else I.pred_var_ Q ds).pred_const_ = I.pred_const_ TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/One/Rec/Sub.lean
FOL.NV.Sub.Pred.One.Rec.substitution_theorem_aux
[188, 1]
[334, 13]
simp only [predVarOccursIn]
case h2 D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula hd : Definition tl : List Definition ih : βˆ€ (V : VarAssignment D) (F : Formula) (binders : Finset VarName), admitsAux P zs H binders F β†’ (βˆ€ x βˆ‰ binders, V x = V' x) β†’ let E_ref := tl; Holds D (I' D I V' E_ref P zs H) V E_ref F ↔ Holds D I V E_ref (replace P zs H F) E_ref : Env := hd :: tl X : DefName xs : List VarName V : VarAssignment D binders : Finset VarName h1 : admitsAux P zs H binders (def_ X xs) h2 : βˆ€ x βˆ‰ binders, V x = V' x c1 : Β¬(X = hd.name ∧ xs.length = hd.args.length) ⊒ βˆ€ (P_1 : PredName) (ds : List D), predVarOccursIn P_1 ds.length (def_ X xs) β†’ ((I' D I V' (hd :: tl) P zs H).pred_var_ P_1 ds ↔ I.pred_var_ P_1 ds)
case h2 D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula hd : Definition tl : List Definition ih : βˆ€ (V : VarAssignment D) (F : Formula) (binders : Finset VarName), admitsAux P zs H binders F β†’ (βˆ€ x βˆ‰ binders, V x = V' x) β†’ let E_ref := tl; Holds D (I' D I V' E_ref P zs H) V E_ref F ↔ Holds D I V E_ref (replace P zs H F) E_ref : Env := hd :: tl X : DefName xs : List VarName V : VarAssignment D binders : Finset VarName h1 : admitsAux P zs H binders (def_ X xs) h2 : βˆ€ x βˆ‰ binders, V x = V' x c1 : Β¬(X = hd.name ∧ xs.length = hd.args.length) ⊒ βˆ€ (P_1 : PredName) (ds : List D), False β†’ ((I' D I V' (hd :: tl) P zs H).pred_var_ P_1 ds ↔ I.pred_var_ P_1 ds)
Please generate a tactic in lean4 to solve the state. STATE: case h2 D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula hd : Definition tl : List Definition ih : βˆ€ (V : VarAssignment D) (F : Formula) (binders : Finset VarName), admitsAux P zs H binders F β†’ (βˆ€ x βˆ‰ binders, V x = V' x) β†’ let E_ref := tl; Holds D (I' D I V' E_ref P zs H) V E_ref F ↔ Holds D I V E_ref (replace P zs H F) E_ref : Env := hd :: tl X : DefName xs : List VarName V : VarAssignment D binders : Finset VarName h1 : admitsAux P zs H binders (def_ X xs) h2 : βˆ€ x βˆ‰ binders, V x = V' x c1 : Β¬(X = hd.name ∧ xs.length = hd.args.length) ⊒ βˆ€ (P_1 : PredName) (ds : List D), predVarOccursIn P_1 ds.length (def_ X xs) β†’ ((I' D I V' (hd :: tl) P zs H).pred_var_ P_1 ds ↔ I.pred_var_ P_1 ds) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/One/Rec/Sub.lean
FOL.NV.Sub.Pred.One.Rec.substitution_theorem_aux
[188, 1]
[334, 13]
simp
case h2 D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula hd : Definition tl : List Definition ih : βˆ€ (V : VarAssignment D) (F : Formula) (binders : Finset VarName), admitsAux P zs H binders F β†’ (βˆ€ x βˆ‰ binders, V x = V' x) β†’ let E_ref := tl; Holds D (I' D I V' E_ref P zs H) V E_ref F ↔ Holds D I V E_ref (replace P zs H F) E_ref : Env := hd :: tl X : DefName xs : List VarName V : VarAssignment D binders : Finset VarName h1 : admitsAux P zs H binders (def_ X xs) h2 : βˆ€ x βˆ‰ binders, V x = V' x c1 : Β¬(X = hd.name ∧ xs.length = hd.args.length) ⊒ βˆ€ (P_1 : PredName) (ds : List D), False β†’ ((I' D I V' (hd :: tl) P zs H).pred_var_ P_1 ds ↔ I.pred_var_ P_1 ds)
no goals
Please generate a tactic in lean4 to solve the state. STATE: case h2 D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula hd : Definition tl : List Definition ih : βˆ€ (V : VarAssignment D) (F : Formula) (binders : Finset VarName), admitsAux P zs H binders F β†’ (βˆ€ x βˆ‰ binders, V x = V' x) β†’ let E_ref := tl; Holds D (I' D I V' E_ref P zs H) V E_ref F ↔ Holds D I V E_ref (replace P zs H F) E_ref : Env := hd :: tl X : DefName xs : List VarName V : VarAssignment D binders : Finset VarName h1 : admitsAux P zs H binders (def_ X xs) h2 : βˆ€ x βˆ‰ binders, V x = V' x c1 : Β¬(X = hd.name ∧ xs.length = hd.args.length) ⊒ βˆ€ (P_1 : PredName) (ds : List D), False β†’ ((I' D I V' (hd :: tl) P zs H).pred_var_ P_1 ds ↔ I.pred_var_ P_1 ds) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/One/Rec/Sub.lean
FOL.NV.Sub.Pred.One.Rec.substitution_theorem
[337, 1]
[352, 9]
apply substitution_theorem_aux D I V V E F P zs H βˆ…
D : Type I : Interpretation D V : VarAssignment D E : Env F : Formula P : PredName zs : List VarName H : Formula h1 : admits P zs H F ⊒ Holds D (I' D I V E P zs H) V E F ↔ Holds D I V E (replace P zs H F)
case h1 D : Type I : Interpretation D V : VarAssignment D E : Env F : Formula P : PredName zs : List VarName H : Formula h1 : admits P zs H F ⊒ admitsAux P zs H βˆ… F case h2 D : Type I : Interpretation D V : VarAssignment D E : Env F : Formula P : PredName zs : List VarName H : Formula h1 : admits P zs H F ⊒ βˆ€ x βˆ‰ βˆ…, V x = V x
Please generate a tactic in lean4 to solve the state. STATE: D : Type I : Interpretation D V : VarAssignment D E : Env F : Formula P : PredName zs : List VarName H : Formula h1 : admits P zs H F ⊒ Holds D (I' D I V E P zs H) V E F ↔ Holds D I V E (replace P zs H F) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/One/Rec/Sub.lean
FOL.NV.Sub.Pred.One.Rec.substitution_theorem
[337, 1]
[352, 9]
exact h1
case h1 D : Type I : Interpretation D V : VarAssignment D E : Env F : Formula P : PredName zs : List VarName H : Formula h1 : admits P zs H F ⊒ admitsAux P zs H βˆ… F
no goals
Please generate a tactic in lean4 to solve the state. STATE: case h1 D : Type I : Interpretation D V : VarAssignment D E : Env F : Formula P : PredName zs : List VarName H : Formula h1 : admits P zs H F ⊒ admitsAux P zs H βˆ… F TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/One/Rec/Sub.lean
FOL.NV.Sub.Pred.One.Rec.substitution_theorem
[337, 1]
[352, 9]
simp
case h2 D : Type I : Interpretation D V : VarAssignment D E : Env F : Formula P : PredName zs : List VarName H : Formula h1 : admits P zs H F ⊒ βˆ€ x βˆ‰ βˆ…, V x = V x
no goals
Please generate a tactic in lean4 to solve the state. STATE: case h2 D : Type I : Interpretation D V : VarAssignment D E : Env F : Formula P : PredName zs : List VarName H : Formula h1 : admits P zs H F ⊒ βˆ€ x βˆ‰ βˆ…, V x = V x TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/One/Rec/Sub.lean
FOL.NV.Sub.Pred.One.Rec.substitution_is_valid
[355, 1]
[369, 11]
simp only [IsValid] at h2
F : Formula P : PredName zs : List VarName H : Formula h1 : admits P zs H F h2 : F.IsValid ⊒ (replace P zs H F).IsValid
F : Formula P : PredName zs : List VarName H : Formula h1 : admits P zs H F h2 : βˆ€ (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), Holds D I V E F ⊒ (replace P zs H F).IsValid
Please generate a tactic in lean4 to solve the state. STATE: F : Formula P : PredName zs : List VarName H : Formula h1 : admits P zs H F h2 : F.IsValid ⊒ (replace P zs H F).IsValid TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/One/Rec/Sub.lean
FOL.NV.Sub.Pred.One.Rec.substitution_is_valid
[355, 1]
[369, 11]
simp only [IsValid]
F : Formula P : PredName zs : List VarName H : Formula h1 : admits P zs H F h2 : βˆ€ (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), Holds D I V E F ⊒ (replace P zs H F).IsValid
F : Formula P : PredName zs : List VarName H : Formula h1 : admits P zs H F h2 : βˆ€ (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), Holds D I V E F ⊒ βˆ€ (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), Holds D I V E (replace P zs H F)
Please generate a tactic in lean4 to solve the state. STATE: F : Formula P : PredName zs : List VarName H : Formula h1 : admits P zs H F h2 : βˆ€ (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), Holds D I V E F ⊒ (replace P zs H F).IsValid TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/One/Rec/Sub.lean
FOL.NV.Sub.Pred.One.Rec.substitution_is_valid
[355, 1]
[369, 11]
intro D I V E
F : Formula P : PredName zs : List VarName H : Formula h1 : admits P zs H F h2 : βˆ€ (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), Holds D I V E F ⊒ βˆ€ (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), Holds D I V E (replace P zs H F)
F : Formula P : PredName zs : List VarName H : Formula h1 : admits P zs H F h2 : βˆ€ (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), Holds D I V E F D : Type I : Interpretation D V : VarAssignment D E : Env ⊒ Holds D I V E (replace P zs H F)
Please generate a tactic in lean4 to solve the state. STATE: F : Formula P : PredName zs : List VarName H : Formula h1 : admits P zs H F h2 : βˆ€ (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), Holds D I V E F ⊒ βˆ€ (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), Holds D I V E (replace P zs H F) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/One/Rec/Sub.lean
FOL.NV.Sub.Pred.One.Rec.substitution_is_valid
[355, 1]
[369, 11]
simp only [← substitution_theorem D I V E F P zs H h1]
F : Formula P : PredName zs : List VarName H : Formula h1 : admits P zs H F h2 : βˆ€ (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), Holds D I V E F D : Type I : Interpretation D V : VarAssignment D E : Env ⊒ Holds D I V E (replace P zs H F)
F : Formula P : PredName zs : List VarName H : Formula h1 : admits P zs H F h2 : βˆ€ (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), Holds D I V E F D : Type I : Interpretation D V : VarAssignment D E : Env ⊒ Holds D (I' D I V E P zs H) V E F
Please generate a tactic in lean4 to solve the state. STATE: F : Formula P : PredName zs : List VarName H : Formula h1 : admits P zs H F h2 : βˆ€ (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), Holds D I V E F D : Type I : Interpretation D V : VarAssignment D E : Env ⊒ Holds D I V E (replace P zs H F) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/One/Rec/Sub.lean
FOL.NV.Sub.Pred.One.Rec.substitution_is_valid
[355, 1]
[369, 11]
apply h2
F : Formula P : PredName zs : List VarName H : Formula h1 : admits P zs H F h2 : βˆ€ (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), Holds D I V E F D : Type I : Interpretation D V : VarAssignment D E : Env ⊒ Holds D (I' D I V E P zs H) V E F
no goals
Please generate a tactic in lean4 to solve the state. STATE: F : Formula P : PredName zs : List VarName H : Formula h1 : admits P zs H F h2 : βˆ€ (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), Holds D I V E F D : Type I : Interpretation D V : VarAssignment D E : Env ⊒ Holds D (I' D I V E P zs H) V E F TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/LN/Binders.lean
LN.occursIn_iff_mem_varSet
[186, 1]
[208, 17]
induction F
v : Var F : Formula ⊒ occursIn v F ↔ v ∈ F.varSet
case pred_ v : Var a✝¹ : String a✝ : List Var ⊒ occursIn v (pred_ a✝¹ a✝) ↔ v ∈ (pred_ a✝¹ a✝).varSet case not_ v : Var a✝ : Formula a_ih✝ : occursIn v a✝ ↔ v ∈ a✝.varSet ⊒ occursIn v a✝.not_ ↔ v ∈ a✝.not_.varSet case imp_ v : Var a✝¹ a✝ : Formula a_ih✝¹ : occursIn v a✝¹ ↔ v ∈ a✝¹.varSet a_ih✝ : occursIn v a✝ ↔ v ∈ a✝.varSet ⊒ occursIn v (a✝¹.imp_ a✝) ↔ v ∈ (a✝¹.imp_ a✝).varSet case forall_ v : Var a✝¹ : String a✝ : Formula a_ih✝ : occursIn v a✝ ↔ v ∈ a✝.varSet ⊒ occursIn v (forall_ a✝¹ a✝) ↔ v ∈ (forall_ a✝¹ a✝).varSet
Please generate a tactic in lean4 to solve the state. STATE: v : Var F : Formula ⊒ occursIn v F ↔ v ∈ F.varSet TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/LN/Binders.lean
LN.occursIn_iff_mem_varSet
[186, 1]
[208, 17]
case pred_ X vs => simp only [occursIn] simp only [varSet] simp
v : Var X : String vs : List Var ⊒ occursIn v (pred_ X vs) ↔ v ∈ (pred_ X vs).varSet
no goals
Please generate a tactic in lean4 to solve the state. STATE: v : Var X : String vs : List Var ⊒ occursIn v (pred_ X vs) ↔ v ∈ (pred_ X vs).varSet TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/LN/Binders.lean
LN.occursIn_iff_mem_varSet
[186, 1]
[208, 17]
case not_ phi phi_ih => simp only [occursIn] simp only [varSet] exact phi_ih
v : Var phi : Formula phi_ih : occursIn v phi ↔ v ∈ phi.varSet ⊒ occursIn v phi.not_ ↔ v ∈ phi.not_.varSet
no goals
Please generate a tactic in lean4 to solve the state. STATE: v : Var phi : Formula phi_ih : occursIn v phi ↔ v ∈ phi.varSet ⊒ occursIn v phi.not_ ↔ v ∈ phi.not_.varSet TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/LN/Binders.lean
LN.occursIn_iff_mem_varSet
[186, 1]
[208, 17]
case imp_ phi psi phi_ih psi_ih => simp only [occursIn] simp only [varSet] simp congr!
v : Var phi psi : Formula phi_ih : occursIn v phi ↔ v ∈ phi.varSet psi_ih : occursIn v psi ↔ v ∈ psi.varSet ⊒ occursIn v (phi.imp_ psi) ↔ v ∈ (phi.imp_ psi).varSet
no goals
Please generate a tactic in lean4 to solve the state. STATE: v : Var phi psi : Formula phi_ih : occursIn v phi ↔ v ∈ phi.varSet psi_ih : occursIn v psi ↔ v ∈ psi.varSet ⊒ occursIn v (phi.imp_ psi) ↔ v ∈ (phi.imp_ psi).varSet TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/LN/Binders.lean
LN.occursIn_iff_mem_varSet
[186, 1]
[208, 17]
case forall_ _ phi phi_ih => simp only [occursIn] simp only [varSet] exact phi_ih
v : Var a✝ : String phi : Formula phi_ih : occursIn v phi ↔ v ∈ phi.varSet ⊒ occursIn v (forall_ a✝ phi) ↔ v ∈ (forall_ a✝ phi).varSet
no goals
Please generate a tactic in lean4 to solve the state. STATE: v : Var a✝ : String phi : Formula phi_ih : occursIn v phi ↔ v ∈ phi.varSet ⊒ occursIn v (forall_ a✝ phi) ↔ v ∈ (forall_ a✝ phi).varSet TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/LN/Binders.lean
LN.occursIn_iff_mem_varSet
[186, 1]
[208, 17]
simp only [occursIn]
v : Var X : String vs : List Var ⊒ occursIn v (pred_ X vs) ↔ v ∈ (pred_ X vs).varSet
v : Var X : String vs : List Var ⊒ v ∈ vs ↔ v ∈ (pred_ X vs).varSet
Please generate a tactic in lean4 to solve the state. STATE: v : Var X : String vs : List Var ⊒ occursIn v (pred_ X vs) ↔ v ∈ (pred_ X vs).varSet TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/LN/Binders.lean
LN.occursIn_iff_mem_varSet
[186, 1]
[208, 17]
simp only [varSet]
v : Var X : String vs : List Var ⊒ v ∈ vs ↔ v ∈ (pred_ X vs).varSet
v : Var X : String vs : List Var ⊒ v ∈ vs ↔ v ∈ vs.toFinset
Please generate a tactic in lean4 to solve the state. STATE: v : Var X : String vs : List Var ⊒ v ∈ vs ↔ v ∈ (pred_ X vs).varSet TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/LN/Binders.lean
LN.occursIn_iff_mem_varSet
[186, 1]
[208, 17]
simp
v : Var X : String vs : List Var ⊒ v ∈ vs ↔ v ∈ vs.toFinset
no goals
Please generate a tactic in lean4 to solve the state. STATE: v : Var X : String vs : List Var ⊒ v ∈ vs ↔ v ∈ vs.toFinset TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/LN/Binders.lean
LN.occursIn_iff_mem_varSet
[186, 1]
[208, 17]
simp only [occursIn]
v : Var phi : Formula phi_ih : occursIn v phi ↔ v ∈ phi.varSet ⊒ occursIn v phi.not_ ↔ v ∈ phi.not_.varSet
v : Var phi : Formula phi_ih : occursIn v phi ↔ v ∈ phi.varSet ⊒ occursIn v phi ↔ v ∈ phi.not_.varSet
Please generate a tactic in lean4 to solve the state. STATE: v : Var phi : Formula phi_ih : occursIn v phi ↔ v ∈ phi.varSet ⊒ occursIn v phi.not_ ↔ v ∈ phi.not_.varSet TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/LN/Binders.lean
LN.occursIn_iff_mem_varSet
[186, 1]
[208, 17]
simp only [varSet]
v : Var phi : Formula phi_ih : occursIn v phi ↔ v ∈ phi.varSet ⊒ occursIn v phi ↔ v ∈ phi.not_.varSet
v : Var phi : Formula phi_ih : occursIn v phi ↔ v ∈ phi.varSet ⊒ occursIn v phi ↔ v ∈ phi.varSet
Please generate a tactic in lean4 to solve the state. STATE: v : Var phi : Formula phi_ih : occursIn v phi ↔ v ∈ phi.varSet ⊒ occursIn v phi ↔ v ∈ phi.not_.varSet TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/LN/Binders.lean
LN.occursIn_iff_mem_varSet
[186, 1]
[208, 17]
exact phi_ih
v : Var phi : Formula phi_ih : occursIn v phi ↔ v ∈ phi.varSet ⊒ occursIn v phi ↔ v ∈ phi.varSet
no goals
Please generate a tactic in lean4 to solve the state. STATE: v : Var phi : Formula phi_ih : occursIn v phi ↔ v ∈ phi.varSet ⊒ occursIn v phi ↔ v ∈ phi.varSet TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/LN/Binders.lean
LN.occursIn_iff_mem_varSet
[186, 1]
[208, 17]
simp only [occursIn]
v : Var phi psi : Formula phi_ih : occursIn v phi ↔ v ∈ phi.varSet psi_ih : occursIn v psi ↔ v ∈ psi.varSet ⊒ occursIn v (phi.imp_ psi) ↔ v ∈ (phi.imp_ psi).varSet
v : Var phi psi : Formula phi_ih : occursIn v phi ↔ v ∈ phi.varSet psi_ih : occursIn v psi ↔ v ∈ psi.varSet ⊒ occursIn v phi ∨ occursIn v psi ↔ v ∈ (phi.imp_ psi).varSet
Please generate a tactic in lean4 to solve the state. STATE: v : Var phi psi : Formula phi_ih : occursIn v phi ↔ v ∈ phi.varSet psi_ih : occursIn v psi ↔ v ∈ psi.varSet ⊒ occursIn v (phi.imp_ psi) ↔ v ∈ (phi.imp_ psi).varSet TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/LN/Binders.lean
LN.occursIn_iff_mem_varSet
[186, 1]
[208, 17]
simp only [varSet]
v : Var phi psi : Formula phi_ih : occursIn v phi ↔ v ∈ phi.varSet psi_ih : occursIn v psi ↔ v ∈ psi.varSet ⊒ occursIn v phi ∨ occursIn v psi ↔ v ∈ (phi.imp_ psi).varSet
v : Var phi psi : Formula phi_ih : occursIn v phi ↔ v ∈ phi.varSet psi_ih : occursIn v psi ↔ v ∈ psi.varSet ⊒ occursIn v phi ∨ occursIn v psi ↔ v ∈ phi.varSet βˆͺ psi.varSet
Please generate a tactic in lean4 to solve the state. STATE: v : Var phi psi : Formula phi_ih : occursIn v phi ↔ v ∈ phi.varSet psi_ih : occursIn v psi ↔ v ∈ psi.varSet ⊒ occursIn v phi ∨ occursIn v psi ↔ v ∈ (phi.imp_ psi).varSet TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/LN/Binders.lean
LN.occursIn_iff_mem_varSet
[186, 1]
[208, 17]
simp
v : Var phi psi : Formula phi_ih : occursIn v phi ↔ v ∈ phi.varSet psi_ih : occursIn v psi ↔ v ∈ psi.varSet ⊒ occursIn v phi ∨ occursIn v psi ↔ v ∈ phi.varSet βˆͺ psi.varSet
v : Var phi psi : Formula phi_ih : occursIn v phi ↔ v ∈ phi.varSet psi_ih : occursIn v psi ↔ v ∈ psi.varSet ⊒ occursIn v phi ∨ occursIn v psi ↔ v ∈ phi.varSet ∨ v ∈ psi.varSet
Please generate a tactic in lean4 to solve the state. STATE: v : Var phi psi : Formula phi_ih : occursIn v phi ↔ v ∈ phi.varSet psi_ih : occursIn v psi ↔ v ∈ psi.varSet ⊒ occursIn v phi ∨ occursIn v psi ↔ v ∈ phi.varSet βˆͺ psi.varSet TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/LN/Binders.lean
LN.occursIn_iff_mem_varSet
[186, 1]
[208, 17]
congr!
v : Var phi psi : Formula phi_ih : occursIn v phi ↔ v ∈ phi.varSet psi_ih : occursIn v psi ↔ v ∈ psi.varSet ⊒ occursIn v phi ∨ occursIn v psi ↔ v ∈ phi.varSet ∨ v ∈ psi.varSet
no goals
Please generate a tactic in lean4 to solve the state. STATE: v : Var phi psi : Formula phi_ih : occursIn v phi ↔ v ∈ phi.varSet psi_ih : occursIn v psi ↔ v ∈ psi.varSet ⊒ occursIn v phi ∨ occursIn v psi ↔ v ∈ phi.varSet ∨ v ∈ psi.varSet TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/LN/Binders.lean
LN.occursIn_iff_mem_varSet
[186, 1]
[208, 17]
simp only [occursIn]
v : Var a✝ : String phi : Formula phi_ih : occursIn v phi ↔ v ∈ phi.varSet ⊒ occursIn v (forall_ a✝ phi) ↔ v ∈ (forall_ a✝ phi).varSet
v : Var a✝ : String phi : Formula phi_ih : occursIn v phi ↔ v ∈ phi.varSet ⊒ occursIn v phi ↔ v ∈ (forall_ a✝ phi).varSet
Please generate a tactic in lean4 to solve the state. STATE: v : Var a✝ : String phi : Formula phi_ih : occursIn v phi ↔ v ∈ phi.varSet ⊒ occursIn v (forall_ a✝ phi) ↔ v ∈ (forall_ a✝ phi).varSet TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/LN/Binders.lean
LN.occursIn_iff_mem_varSet
[186, 1]
[208, 17]
simp only [varSet]
v : Var a✝ : String phi : Formula phi_ih : occursIn v phi ↔ v ∈ phi.varSet ⊒ occursIn v phi ↔ v ∈ (forall_ a✝ phi).varSet
v : Var a✝ : String phi : Formula phi_ih : occursIn v phi ↔ v ∈ phi.varSet ⊒ occursIn v phi ↔ v ∈ phi.varSet
Please generate a tactic in lean4 to solve the state. STATE: v : Var a✝ : String phi : Formula phi_ih : occursIn v phi ↔ v ∈ phi.varSet ⊒ occursIn v phi ↔ v ∈ (forall_ a✝ phi).varSet TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/LN/Binders.lean
LN.occursIn_iff_mem_varSet
[186, 1]
[208, 17]
exact phi_ih
v : Var a✝ : String phi : Formula phi_ih : occursIn v phi ↔ v ∈ phi.varSet ⊒ occursIn v phi ↔ v ∈ phi.varSet
no goals
Please generate a tactic in lean4 to solve the state. STATE: v : Var a✝ : String phi : Formula phi_ih : occursIn v phi ↔ v ∈ phi.varSet ⊒ occursIn v phi ↔ v ∈ phi.varSet TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/LN/Binders.lean
LN.isFreeIn_iff_mem_freeVarSet
[211, 1]
[264, 17]
induction F
v : Var F : Formula ⊒ occursIn v F ∧ v.isFree ↔ v ∈ F.freeVarSet
case pred_ v : Var a✝¹ : String a✝ : List Var ⊒ occursIn v (pred_ a✝¹ a✝) ∧ v.isFree ↔ v ∈ (pred_ a✝¹ a✝).freeVarSet case not_ v : Var a✝ : Formula a_ih✝ : occursIn v a✝ ∧ v.isFree ↔ v ∈ a✝.freeVarSet ⊒ occursIn v a✝.not_ ∧ v.isFree ↔ v ∈ a✝.not_.freeVarSet case imp_ v : Var a✝¹ a✝ : Formula a_ih✝¹ : occursIn v a✝¹ ∧ v.isFree ↔ v ∈ a✝¹.freeVarSet a_ih✝ : occursIn v a✝ ∧ v.isFree ↔ v ∈ a✝.freeVarSet ⊒ occursIn v (a✝¹.imp_ a✝) ∧ v.isFree ↔ v ∈ (a✝¹.imp_ a✝).freeVarSet case forall_ v : Var a✝¹ : String a✝ : Formula a_ih✝ : occursIn v a✝ ∧ v.isFree ↔ v ∈ a✝.freeVarSet ⊒ occursIn v (forall_ a✝¹ a✝) ∧ v.isFree ↔ v ∈ (forall_ a✝¹ a✝).freeVarSet
Please generate a tactic in lean4 to solve the state. STATE: v : Var F : Formula ⊒ occursIn v F ∧ v.isFree ↔ v ∈ F.freeVarSet TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/LN/Binders.lean
LN.isFreeIn_iff_mem_freeVarSet
[211, 1]
[264, 17]
case not_ phi phi_ih => simp only [Formula.freeVarSet] simp only [occursIn] exact phi_ih
v : Var phi : Formula phi_ih : occursIn v phi ∧ v.isFree ↔ v ∈ phi.freeVarSet ⊒ occursIn v phi.not_ ∧ v.isFree ↔ v ∈ phi.not_.freeVarSet
no goals
Please generate a tactic in lean4 to solve the state. STATE: v : Var phi : Formula phi_ih : occursIn v phi ∧ v.isFree ↔ v ∈ phi.freeVarSet ⊒ occursIn v phi.not_ ∧ v.isFree ↔ v ∈ phi.not_.freeVarSet TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/LN/Binders.lean
LN.isFreeIn_iff_mem_freeVarSet
[211, 1]
[264, 17]
case imp_ phi psi phi_ih psi_ih => simp only [Formula.freeVarSet] simp only [occursIn] simp tauto
v : Var phi psi : Formula phi_ih : occursIn v phi ∧ v.isFree ↔ v ∈ phi.freeVarSet psi_ih : occursIn v psi ∧ v.isFree ↔ v ∈ psi.freeVarSet ⊒ occursIn v (phi.imp_ psi) ∧ v.isFree ↔ v ∈ (phi.imp_ psi).freeVarSet
no goals
Please generate a tactic in lean4 to solve the state. STATE: v : Var phi psi : Formula phi_ih : occursIn v phi ∧ v.isFree ↔ v ∈ phi.freeVarSet psi_ih : occursIn v psi ∧ v.isFree ↔ v ∈ psi.freeVarSet ⊒ occursIn v (phi.imp_ psi) ∧ v.isFree ↔ v ∈ (phi.imp_ psi).freeVarSet TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/LN/Binders.lean
LN.isFreeIn_iff_mem_freeVarSet
[211, 1]
[264, 17]
case forall_ _ phi phi_ih => simp only [Formula.freeVarSet] simp only [occursIn] exact phi_ih
v : Var a✝ : String phi : Formula phi_ih : occursIn v phi ∧ v.isFree ↔ v ∈ phi.freeVarSet ⊒ occursIn v (forall_ a✝ phi) ∧ v.isFree ↔ v ∈ (forall_ a✝ phi).freeVarSet
no goals
Please generate a tactic in lean4 to solve the state. STATE: v : Var a✝ : String phi : Formula phi_ih : occursIn v phi ∧ v.isFree ↔ v ∈ phi.freeVarSet ⊒ occursIn v (forall_ a✝ phi) ∧ v.isFree ↔ v ∈ (forall_ a✝ phi).freeVarSet TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/LN/Binders.lean
LN.isFreeIn_iff_mem_freeVarSet
[211, 1]
[264, 17]
simp only [Formula.freeVarSet]
v : Var X : String vs : List Var ⊒ occursIn v (pred_ X vs) ∧ v.isFree ↔ v ∈ (pred_ X vs).freeVarSet
v : Var X : String vs : List Var ⊒ occursIn v (pred_ X vs) ∧ v.isFree ↔ v ∈ vs.toFinset.biUnion Var.freeVarSet
Please generate a tactic in lean4 to solve the state. STATE: v : Var X : String vs : List Var ⊒ occursIn v (pred_ X vs) ∧ v.isFree ↔ v ∈ (pred_ X vs).freeVarSet TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/LN/Binders.lean
LN.isFreeIn_iff_mem_freeVarSet
[211, 1]
[264, 17]
simp only [occursIn]
v : Var X : String vs : List Var ⊒ occursIn v (pred_ X vs) ∧ v.isFree ↔ v ∈ vs.toFinset.biUnion Var.freeVarSet
v : Var X : String vs : List Var ⊒ v ∈ vs ∧ v.isFree ↔ v ∈ vs.toFinset.biUnion Var.freeVarSet
Please generate a tactic in lean4 to solve the state. STATE: v : Var X : String vs : List Var ⊒ occursIn v (pred_ X vs) ∧ v.isFree ↔ v ∈ vs.toFinset.biUnion Var.freeVarSet TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/LN/Binders.lean
LN.isFreeIn_iff_mem_freeVarSet
[211, 1]
[264, 17]
simp
v : Var X : String vs : List Var ⊒ v ∈ vs ∧ v.isFree ↔ v ∈ vs.toFinset.biUnion Var.freeVarSet
v : Var X : String vs : List Var ⊒ v ∈ vs ∧ v.isFree ↔ βˆƒ a ∈ vs, v ∈ a.freeVarSet
Please generate a tactic in lean4 to solve the state. STATE: v : Var X : String vs : List Var ⊒ v ∈ vs ∧ v.isFree ↔ v ∈ vs.toFinset.biUnion Var.freeVarSet TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/LN/Binders.lean
LN.isFreeIn_iff_mem_freeVarSet
[211, 1]
[264, 17]
constructor
v : Var X : String vs : List Var ⊒ v ∈ vs ∧ v.isFree ↔ βˆƒ a ∈ vs, v ∈ a.freeVarSet
case mp v : Var X : String vs : List Var ⊒ v ∈ vs ∧ v.isFree β†’ βˆƒ a ∈ vs, v ∈ a.freeVarSet case mpr v : Var X : String vs : List Var ⊒ (βˆƒ a ∈ vs, v ∈ a.freeVarSet) β†’ v ∈ vs ∧ v.isFree
Please generate a tactic in lean4 to solve the state. STATE: v : Var X : String vs : List Var ⊒ v ∈ vs ∧ v.isFree ↔ βˆƒ a ∈ vs, v ∈ a.freeVarSet TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/LN/Binders.lean
LN.isFreeIn_iff_mem_freeVarSet
[211, 1]
[264, 17]
intro a1
case mp v : Var X : String vs : List Var ⊒ v ∈ vs ∧ v.isFree β†’ βˆƒ a ∈ vs, v ∈ a.freeVarSet
case mp v : Var X : String vs : List Var a1 : v ∈ vs ∧ v.isFree ⊒ βˆƒ a ∈ vs, v ∈ a.freeVarSet
Please generate a tactic in lean4 to solve the state. STATE: case mp v : Var X : String vs : List Var ⊒ v ∈ vs ∧ v.isFree β†’ βˆƒ a ∈ vs, v ∈ a.freeVarSet TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/LN/Binders.lean
LN.isFreeIn_iff_mem_freeVarSet
[211, 1]
[264, 17]
apply Exists.intro v
case mp v : Var X : String vs : List Var a1 : v ∈ vs ∧ v.isFree ⊒ βˆƒ a ∈ vs, v ∈ a.freeVarSet
case mp v : Var X : String vs : List Var a1 : v ∈ vs ∧ v.isFree ⊒ v ∈ vs ∧ v ∈ v.freeVarSet
Please generate a tactic in lean4 to solve the state. STATE: case mp v : Var X : String vs : List Var a1 : v ∈ vs ∧ v.isFree ⊒ βˆƒ a ∈ vs, v ∈ a.freeVarSet TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/LN/Binders.lean
LN.isFreeIn_iff_mem_freeVarSet
[211, 1]
[264, 17]
cases v
case mp v : Var X : String vs : List Var a1 : v ∈ vs ∧ v.isFree ⊒ v ∈ vs ∧ v ∈ v.freeVarSet
case mp.free_ X : String vs : List Var a✝ : String a1 : free_ a✝ ∈ vs ∧ (free_ a✝).isFree ⊒ free_ a✝ ∈ vs ∧ free_ a✝ ∈ (free_ a✝).freeVarSet case mp.bound_ X : String vs : List Var a✝ : β„• a1 : bound_ a✝ ∈ vs ∧ (bound_ a✝).isFree ⊒ bound_ a✝ ∈ vs ∧ bound_ a✝ ∈ (bound_ a✝).freeVarSet
Please generate a tactic in lean4 to solve the state. STATE: case mp v : Var X : String vs : List Var a1 : v ∈ vs ∧ v.isFree ⊒ v ∈ vs ∧ v ∈ v.freeVarSet TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/LN/Binders.lean
LN.isFreeIn_iff_mem_freeVarSet
[211, 1]
[264, 17]
case _ x => simp only [Var.freeVarSet] simp cases a1 case _ a1_left a1_right => exact a1_left
X : String vs : List Var x : String a1 : free_ x ∈ vs ∧ (free_ x).isFree ⊒ free_ x ∈ vs ∧ free_ x ∈ (free_ x).freeVarSet
no goals
Please generate a tactic in lean4 to solve the state. STATE: X : String vs : List Var x : String a1 : free_ x ∈ vs ∧ (free_ x).isFree ⊒ free_ x ∈ vs ∧ free_ x ∈ (free_ x).freeVarSet TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/LN/Binders.lean
LN.isFreeIn_iff_mem_freeVarSet
[211, 1]
[264, 17]
case _ i => simp only [isFree] at a1 cases a1 case _ a1_left a1_right => contradiction
X : String vs : List Var i : β„• a1 : bound_ i ∈ vs ∧ (bound_ i).isFree ⊒ bound_ i ∈ vs ∧ bound_ i ∈ (bound_ i).freeVarSet
no goals
Please generate a tactic in lean4 to solve the state. STATE: X : String vs : List Var i : β„• a1 : bound_ i ∈ vs ∧ (bound_ i).isFree ⊒ bound_ i ∈ vs ∧ bound_ i ∈ (bound_ i).freeVarSet TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/LN/Binders.lean
LN.isFreeIn_iff_mem_freeVarSet
[211, 1]
[264, 17]
simp only [Var.freeVarSet]
X : String vs : List Var x : String a1 : free_ x ∈ vs ∧ (free_ x).isFree ⊒ free_ x ∈ vs ∧ free_ x ∈ (free_ x).freeVarSet
X : String vs : List Var x : String a1 : free_ x ∈ vs ∧ (free_ x).isFree ⊒ free_ x ∈ vs ∧ free_ x ∈ {free_ x}
Please generate a tactic in lean4 to solve the state. STATE: X : String vs : List Var x : String a1 : free_ x ∈ vs ∧ (free_ x).isFree ⊒ free_ x ∈ vs ∧ free_ x ∈ (free_ x).freeVarSet TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/LN/Binders.lean
LN.isFreeIn_iff_mem_freeVarSet
[211, 1]
[264, 17]
simp
X : String vs : List Var x : String a1 : free_ x ∈ vs ∧ (free_ x).isFree ⊒ free_ x ∈ vs ∧ free_ x ∈ {free_ x}
X : String vs : List Var x : String a1 : free_ x ∈ vs ∧ (free_ x).isFree ⊒ free_ x ∈ vs
Please generate a tactic in lean4 to solve the state. STATE: X : String vs : List Var x : String a1 : free_ x ∈ vs ∧ (free_ x).isFree ⊒ free_ x ∈ vs ∧ free_ x ∈ {free_ x} TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/LN/Binders.lean
LN.isFreeIn_iff_mem_freeVarSet
[211, 1]
[264, 17]
cases a1
X : String vs : List Var x : String a1 : free_ x ∈ vs ∧ (free_ x).isFree ⊒ free_ x ∈ vs
case intro X : String vs : List Var x : String left✝ : free_ x ∈ vs right✝ : (free_ x).isFree ⊒ free_ x ∈ vs
Please generate a tactic in lean4 to solve the state. STATE: X : String vs : List Var x : String a1 : free_ x ∈ vs ∧ (free_ x).isFree ⊒ free_ x ∈ vs TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/LN/Binders.lean
LN.isFreeIn_iff_mem_freeVarSet
[211, 1]
[264, 17]
case _ a1_left a1_right => exact a1_left
X : String vs : List Var x : String a1_left : free_ x ∈ vs a1_right : (free_ x).isFree ⊒ free_ x ∈ vs
no goals
Please generate a tactic in lean4 to solve the state. STATE: X : String vs : List Var x : String a1_left : free_ x ∈ vs a1_right : (free_ x).isFree ⊒ free_ x ∈ vs TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/LN/Binders.lean
LN.isFreeIn_iff_mem_freeVarSet
[211, 1]
[264, 17]
exact a1_left
X : String vs : List Var x : String a1_left : free_ x ∈ vs a1_right : (free_ x).isFree ⊒ free_ x ∈ vs
no goals
Please generate a tactic in lean4 to solve the state. STATE: X : String vs : List Var x : String a1_left : free_ x ∈ vs a1_right : (free_ x).isFree ⊒ free_ x ∈ vs TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/LN/Binders.lean
LN.isFreeIn_iff_mem_freeVarSet
[211, 1]
[264, 17]
simp only [isFree] at a1
X : String vs : List Var i : β„• a1 : bound_ i ∈ vs ∧ (bound_ i).isFree ⊒ bound_ i ∈ vs ∧ bound_ i ∈ (bound_ i).freeVarSet
X : String vs : List Var i : β„• a1 : bound_ i ∈ vs ∧ False ⊒ bound_ i ∈ vs ∧ bound_ i ∈ (bound_ i).freeVarSet
Please generate a tactic in lean4 to solve the state. STATE: X : String vs : List Var i : β„• a1 : bound_ i ∈ vs ∧ (bound_ i).isFree ⊒ bound_ i ∈ vs ∧ bound_ i ∈ (bound_ i).freeVarSet TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/LN/Binders.lean
LN.isFreeIn_iff_mem_freeVarSet
[211, 1]
[264, 17]
cases a1
X : String vs : List Var i : β„• a1 : bound_ i ∈ vs ∧ False ⊒ bound_ i ∈ vs ∧ bound_ i ∈ (bound_ i).freeVarSet
case intro X : String vs : List Var i : β„• left✝ : bound_ i ∈ vs right✝ : False ⊒ bound_ i ∈ vs ∧ bound_ i ∈ (bound_ i).freeVarSet
Please generate a tactic in lean4 to solve the state. STATE: X : String vs : List Var i : β„• a1 : bound_ i ∈ vs ∧ False ⊒ bound_ i ∈ vs ∧ bound_ i ∈ (bound_ i).freeVarSet TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/LN/Binders.lean
LN.isFreeIn_iff_mem_freeVarSet
[211, 1]
[264, 17]
case _ a1_left a1_right => contradiction
X : String vs : List Var i : β„• a1_left : bound_ i ∈ vs a1_right : False ⊒ bound_ i ∈ vs ∧ bound_ i ∈ (bound_ i).freeVarSet
no goals
Please generate a tactic in lean4 to solve the state. STATE: X : String vs : List Var i : β„• a1_left : bound_ i ∈ vs a1_right : False ⊒ bound_ i ∈ vs ∧ bound_ i ∈ (bound_ i).freeVarSet TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/LN/Binders.lean
LN.isFreeIn_iff_mem_freeVarSet
[211, 1]
[264, 17]
contradiction
X : String vs : List Var i : β„• a1_left : bound_ i ∈ vs a1_right : False ⊒ bound_ i ∈ vs ∧ bound_ i ∈ (bound_ i).freeVarSet
no goals
Please generate a tactic in lean4 to solve the state. STATE: X : String vs : List Var i : β„• a1_left : bound_ i ∈ vs a1_right : False ⊒ bound_ i ∈ vs ∧ bound_ i ∈ (bound_ i).freeVarSet TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/LN/Binders.lean
LN.isFreeIn_iff_mem_freeVarSet
[211, 1]
[264, 17]
intro a1
case mpr v : Var X : String vs : List Var ⊒ (βˆƒ a ∈ vs, v ∈ a.freeVarSet) β†’ v ∈ vs ∧ v.isFree
case mpr v : Var X : String vs : List Var a1 : βˆƒ a ∈ vs, v ∈ a.freeVarSet ⊒ v ∈ vs ∧ v.isFree
Please generate a tactic in lean4 to solve the state. STATE: case mpr v : Var X : String vs : List Var ⊒ (βˆƒ a ∈ vs, v ∈ a.freeVarSet) β†’ v ∈ vs ∧ v.isFree TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/LN/Binders.lean
LN.isFreeIn_iff_mem_freeVarSet
[211, 1]
[264, 17]
apply Exists.elim a1
case mpr v : Var X : String vs : List Var a1 : βˆƒ a ∈ vs, v ∈ a.freeVarSet ⊒ v ∈ vs ∧ v.isFree
case mpr v : Var X : String vs : List Var a1 : βˆƒ a ∈ vs, v ∈ a.freeVarSet ⊒ βˆ€ (a : Var), a ∈ vs ∧ v ∈ a.freeVarSet β†’ v ∈ vs ∧ v.isFree
Please generate a tactic in lean4 to solve the state. STATE: case mpr v : Var X : String vs : List Var a1 : βˆƒ a ∈ vs, v ∈ a.freeVarSet ⊒ v ∈ vs ∧ v.isFree TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/LN/Binders.lean
LN.isFreeIn_iff_mem_freeVarSet
[211, 1]
[264, 17]
intro u a2
case mpr v : Var X : String vs : List Var a1 : βˆƒ a ∈ vs, v ∈ a.freeVarSet ⊒ βˆ€ (a : Var), a ∈ vs ∧ v ∈ a.freeVarSet β†’ v ∈ vs ∧ v.isFree
case mpr v : Var X : String vs : List Var a1 : βˆƒ a ∈ vs, v ∈ a.freeVarSet u : Var a2 : u ∈ vs ∧ v ∈ u.freeVarSet ⊒ v ∈ vs ∧ v.isFree
Please generate a tactic in lean4 to solve the state. STATE: case mpr v : Var X : String vs : List Var a1 : βˆƒ a ∈ vs, v ∈ a.freeVarSet ⊒ βˆ€ (a : Var), a ∈ vs ∧ v ∈ a.freeVarSet β†’ v ∈ vs ∧ v.isFree TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/LN/Binders.lean
LN.isFreeIn_iff_mem_freeVarSet
[211, 1]
[264, 17]
cases u
case mpr v : Var X : String vs : List Var a1 : βˆƒ a ∈ vs, v ∈ a.freeVarSet u : Var a2 : u ∈ vs ∧ v ∈ u.freeVarSet ⊒ v ∈ vs ∧ v.isFree
case mpr.free_ v : Var X : String vs : List Var a1 : βˆƒ a ∈ vs, v ∈ a.freeVarSet a✝ : String a2 : free_ a✝ ∈ vs ∧ v ∈ (free_ a✝).freeVarSet ⊒ v ∈ vs ∧ v.isFree case mpr.bound_ v : Var X : String vs : List Var a1 : βˆƒ a ∈ vs, v ∈ a.freeVarSet a✝ : β„• a2 : bound_ a✝ ∈ vs ∧ v ∈ (bound_ a✝).freeVarSet ⊒ v ∈ vs ∧ v.isFree
Please generate a tactic in lean4 to solve the state. STATE: case mpr v : Var X : String vs : List Var a1 : βˆƒ a ∈ vs, v ∈ a.freeVarSet u : Var a2 : u ∈ vs ∧ v ∈ u.freeVarSet ⊒ v ∈ vs ∧ v.isFree TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/LN/Binders.lean
LN.isFreeIn_iff_mem_freeVarSet
[211, 1]
[264, 17]
case _ x => simp only [Var.freeVarSet] at a2 simp at a2 cases a2 case _ a2_left a2_right => subst a2_right simp only [isFree] simp exact a2_left
v : Var X : String vs : List Var a1 : βˆƒ a ∈ vs, v ∈ a.freeVarSet x : String a2 : free_ x ∈ vs ∧ v ∈ (free_ x).freeVarSet ⊒ v ∈ vs ∧ v.isFree
no goals
Please generate a tactic in lean4 to solve the state. STATE: v : Var X : String vs : List Var a1 : βˆƒ a ∈ vs, v ∈ a.freeVarSet x : String a2 : free_ x ∈ vs ∧ v ∈ (free_ x).freeVarSet ⊒ v ∈ vs ∧ v.isFree TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/LN/Binders.lean
LN.isFreeIn_iff_mem_freeVarSet
[211, 1]
[264, 17]
case _ i => simp only [Var.freeVarSet] at a2 simp at a2
v : Var X : String vs : List Var a1 : βˆƒ a ∈ vs, v ∈ a.freeVarSet i : β„• a2 : bound_ i ∈ vs ∧ v ∈ (bound_ i).freeVarSet ⊒ v ∈ vs ∧ v.isFree
no goals
Please generate a tactic in lean4 to solve the state. STATE: v : Var X : String vs : List Var a1 : βˆƒ a ∈ vs, v ∈ a.freeVarSet i : β„• a2 : bound_ i ∈ vs ∧ v ∈ (bound_ i).freeVarSet ⊒ v ∈ vs ∧ v.isFree TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/LN/Binders.lean
LN.isFreeIn_iff_mem_freeVarSet
[211, 1]
[264, 17]
simp only [Var.freeVarSet] at a2
v : Var X : String vs : List Var a1 : βˆƒ a ∈ vs, v ∈ a.freeVarSet x : String a2 : free_ x ∈ vs ∧ v ∈ (free_ x).freeVarSet ⊒ v ∈ vs ∧ v.isFree
v : Var X : String vs : List Var a1 : βˆƒ a ∈ vs, v ∈ a.freeVarSet x : String a2 : free_ x ∈ vs ∧ v ∈ {free_ x} ⊒ v ∈ vs ∧ v.isFree
Please generate a tactic in lean4 to solve the state. STATE: v : Var X : String vs : List Var a1 : βˆƒ a ∈ vs, v ∈ a.freeVarSet x : String a2 : free_ x ∈ vs ∧ v ∈ (free_ x).freeVarSet ⊒ v ∈ vs ∧ v.isFree TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/LN/Binders.lean
LN.isFreeIn_iff_mem_freeVarSet
[211, 1]
[264, 17]
simp at a2
v : Var X : String vs : List Var a1 : βˆƒ a ∈ vs, v ∈ a.freeVarSet x : String a2 : free_ x ∈ vs ∧ v ∈ {free_ x} ⊒ v ∈ vs ∧ v.isFree
v : Var X : String vs : List Var a1 : βˆƒ a ∈ vs, v ∈ a.freeVarSet x : String a2 : free_ x ∈ vs ∧ v = free_ x ⊒ v ∈ vs ∧ v.isFree
Please generate a tactic in lean4 to solve the state. STATE: v : Var X : String vs : List Var a1 : βˆƒ a ∈ vs, v ∈ a.freeVarSet x : String a2 : free_ x ∈ vs ∧ v ∈ {free_ x} ⊒ v ∈ vs ∧ v.isFree TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/LN/Binders.lean
LN.isFreeIn_iff_mem_freeVarSet
[211, 1]
[264, 17]
cases a2
v : Var X : String vs : List Var a1 : βˆƒ a ∈ vs, v ∈ a.freeVarSet x : String a2 : free_ x ∈ vs ∧ v = free_ x ⊒ v ∈ vs ∧ v.isFree
case intro v : Var X : String vs : List Var a1 : βˆƒ a ∈ vs, v ∈ a.freeVarSet x : String left✝ : free_ x ∈ vs right✝ : v = free_ x ⊒ v ∈ vs ∧ v.isFree
Please generate a tactic in lean4 to solve the state. STATE: v : Var X : String vs : List Var a1 : βˆƒ a ∈ vs, v ∈ a.freeVarSet x : String a2 : free_ x ∈ vs ∧ v = free_ x ⊒ v ∈ vs ∧ v.isFree TACTIC: