url
stringclasses 147
values | commit
stringclasses 147
values | file_path
stringlengths 7
101
| full_name
stringlengths 1
94
| start
stringlengths 6
10
| end
stringlengths 6
11
| tactic
stringlengths 1
11.2k
| state_before
stringlengths 3
2.09M
| state_after
stringlengths 6
2.09M
| input
stringlengths 73
2.09M
|
|---|---|---|---|---|---|---|---|---|---|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Pred/One/Rec/Sub.lean
|
FOL.NV.Sub.Pred.One.Rec.substitution_theorem_aux
|
[188, 1]
|
[334, 13]
|
simp only [admitsAux] at h1
|
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tailβ;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := headβ :: tailβ
phi psi : Formula
phi_ih :
β (V : VarAssignment D) (binders : Finset VarName),
admitsAux P zs H binders phi β
(β x β binders, V x = V' x) β
(Holds D (I' D I V' E_ref P zs H) V E_ref phi β Holds D I V E_ref (replace P zs H phi))
psi_ih :
β (V : VarAssignment D) (binders : Finset VarName),
admitsAux P zs H binders psi β
(β x β binders, V x = V' x) β
(Holds D (I' D I V' E_ref P zs H) V E_ref psi β Holds D I V E_ref (replace P zs H psi))
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux P zs H binders (phi.iff_ psi)
h2 : β x β binders, V x = V' x
β’ Holds D (I' D I V' E_ref P zs H) V E_ref (phi.iff_ psi) β Holds D I V E_ref (replace P zs H (phi.iff_ psi))
|
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tailβ;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := headβ :: tailβ
phi psi : Formula
phi_ih :
β (V : VarAssignment D) (binders : Finset VarName),
admitsAux P zs H binders phi β
(β x β binders, V x = V' x) β
(Holds D (I' D I V' E_ref P zs H) V E_ref phi β Holds D I V E_ref (replace P zs H phi))
psi_ih :
β (V : VarAssignment D) (binders : Finset VarName),
admitsAux P zs H binders psi β
(β x β binders, V x = V' x) β
(Holds D (I' D I V' E_ref P zs H) V E_ref psi β Holds D I V E_ref (replace P zs H psi))
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux P zs H binders phi β§ admitsAux P zs H binders psi
h2 : β x β binders, V x = V' x
β’ Holds D (I' D I V' E_ref P zs H) V E_ref (phi.iff_ psi) β Holds D I V E_ref (replace P zs H (phi.iff_ psi))
|
Please generate a tactic in lean4 to solve the state.
STATE:
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tailβ;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := headβ :: tailβ
phi psi : Formula
phi_ih :
β (V : VarAssignment D) (binders : Finset VarName),
admitsAux P zs H binders phi β
(β x β binders, V x = V' x) β
(Holds D (I' D I V' E_ref P zs H) V E_ref phi β Holds D I V E_ref (replace P zs H phi))
psi_ih :
β (V : VarAssignment D) (binders : Finset VarName),
admitsAux P zs H binders psi β
(β x β binders, V x = V' x) β
(Holds D (I' D I V' E_ref P zs H) V E_ref psi β Holds D I V E_ref (replace P zs H psi))
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux P zs H binders (phi.iff_ psi)
h2 : β x β binders, V x = V' x
β’ Holds D (I' D I V' E_ref P zs H) V E_ref (phi.iff_ psi) β Holds D I V E_ref (replace P zs H (phi.iff_ psi))
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Pred/One/Rec/Sub.lean
|
FOL.NV.Sub.Pred.One.Rec.substitution_theorem_aux
|
[188, 1]
|
[334, 13]
|
simp only [replace]
|
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tailβ;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := headβ :: tailβ
phi psi : Formula
phi_ih :
β (V : VarAssignment D) (binders : Finset VarName),
admitsAux P zs H binders phi β
(β x β binders, V x = V' x) β
(Holds D (I' D I V' E_ref P zs H) V E_ref phi β Holds D I V E_ref (replace P zs H phi))
psi_ih :
β (V : VarAssignment D) (binders : Finset VarName),
admitsAux P zs H binders psi β
(β x β binders, V x = V' x) β
(Holds D (I' D I V' E_ref P zs H) V E_ref psi β Holds D I V E_ref (replace P zs H psi))
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux P zs H binders phi β§ admitsAux P zs H binders psi
h2 : β x β binders, V x = V' x
β’ Holds D (I' D I V' E_ref P zs H) V E_ref (phi.iff_ psi) β Holds D I V E_ref (replace P zs H (phi.iff_ psi))
|
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tailβ;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := headβ :: tailβ
phi psi : Formula
phi_ih :
β (V : VarAssignment D) (binders : Finset VarName),
admitsAux P zs H binders phi β
(β x β binders, V x = V' x) β
(Holds D (I' D I V' E_ref P zs H) V E_ref phi β Holds D I V E_ref (replace P zs H phi))
psi_ih :
β (V : VarAssignment D) (binders : Finset VarName),
admitsAux P zs H binders psi β
(β x β binders, V x = V' x) β
(Holds D (I' D I V' E_ref P zs H) V E_ref psi β Holds D I V E_ref (replace P zs H psi))
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux P zs H binders phi β§ admitsAux P zs H binders psi
h2 : β x β binders, V x = V' x
β’ Holds D (I' D I V' E_ref P zs H) V E_ref (phi.iff_ psi) β
Holds D I V E_ref ((replace P zs H phi).iff_ (replace P zs H psi))
|
Please generate a tactic in lean4 to solve the state.
STATE:
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tailβ;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := headβ :: tailβ
phi psi : Formula
phi_ih :
β (V : VarAssignment D) (binders : Finset VarName),
admitsAux P zs H binders phi β
(β x β binders, V x = V' x) β
(Holds D (I' D I V' E_ref P zs H) V E_ref phi β Holds D I V E_ref (replace P zs H phi))
psi_ih :
β (V : VarAssignment D) (binders : Finset VarName),
admitsAux P zs H binders psi β
(β x β binders, V x = V' x) β
(Holds D (I' D I V' E_ref P zs H) V E_ref psi β Holds D I V E_ref (replace P zs H psi))
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux P zs H binders phi β§ admitsAux P zs H binders psi
h2 : β x β binders, V x = V' x
β’ Holds D (I' D I V' E_ref P zs H) V E_ref (phi.iff_ psi) β Holds D I V E_ref (replace P zs H (phi.iff_ psi))
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Pred/One/Rec/Sub.lean
|
FOL.NV.Sub.Pred.One.Rec.substitution_theorem_aux
|
[188, 1]
|
[334, 13]
|
simp only [Holds]
|
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tailβ;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := headβ :: tailβ
phi psi : Formula
phi_ih :
β (V : VarAssignment D) (binders : Finset VarName),
admitsAux P zs H binders phi β
(β x β binders, V x = V' x) β
(Holds D (I' D I V' E_ref P zs H) V E_ref phi β Holds D I V E_ref (replace P zs H phi))
psi_ih :
β (V : VarAssignment D) (binders : Finset VarName),
admitsAux P zs H binders psi β
(β x β binders, V x = V' x) β
(Holds D (I' D I V' E_ref P zs H) V E_ref psi β Holds D I V E_ref (replace P zs H psi))
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux P zs H binders phi β§ admitsAux P zs H binders psi
h2 : β x β binders, V x = V' x
β’ Holds D (I' D I V' E_ref P zs H) V E_ref (phi.iff_ psi) β
Holds D I V E_ref ((replace P zs H phi).iff_ (replace P zs H psi))
|
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tailβ;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := headβ :: tailβ
phi psi : Formula
phi_ih :
β (V : VarAssignment D) (binders : Finset VarName),
admitsAux P zs H binders phi β
(β x β binders, V x = V' x) β
(Holds D (I' D I V' E_ref P zs H) V E_ref phi β Holds D I V E_ref (replace P zs H phi))
psi_ih :
β (V : VarAssignment D) (binders : Finset VarName),
admitsAux P zs H binders psi β
(β x β binders, V x = V' x) β
(Holds D (I' D I V' E_ref P zs H) V E_ref psi β Holds D I V E_ref (replace P zs H psi))
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux P zs H binders phi β§ admitsAux P zs H binders psi
h2 : β x β binders, V x = V' x
β’ (Holds D (I' D I V' E_ref P zs H) V E_ref phi β Holds D (I' D I V' E_ref P zs H) V E_ref psi) β
(Holds D I V E_ref (replace P zs H phi) β Holds D I V E_ref (replace P zs H psi))
|
Please generate a tactic in lean4 to solve the state.
STATE:
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tailβ;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := headβ :: tailβ
phi psi : Formula
phi_ih :
β (V : VarAssignment D) (binders : Finset VarName),
admitsAux P zs H binders phi β
(β x β binders, V x = V' x) β
(Holds D (I' D I V' E_ref P zs H) V E_ref phi β Holds D I V E_ref (replace P zs H phi))
psi_ih :
β (V : VarAssignment D) (binders : Finset VarName),
admitsAux P zs H binders psi β
(β x β binders, V x = V' x) β
(Holds D (I' D I V' E_ref P zs H) V E_ref psi β Holds D I V E_ref (replace P zs H psi))
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux P zs H binders phi β§ admitsAux P zs H binders psi
h2 : β x β binders, V x = V' x
β’ Holds D (I' D I V' E_ref P zs H) V E_ref (phi.iff_ psi) β
Holds D I V E_ref ((replace P zs H phi).iff_ (replace P zs H psi))
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Pred/One/Rec/Sub.lean
|
FOL.NV.Sub.Pred.One.Rec.substitution_theorem_aux
|
[188, 1]
|
[334, 13]
|
cases h1
|
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tailβ;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := headβ :: tailβ
phi psi : Formula
phi_ih :
β (V : VarAssignment D) (binders : Finset VarName),
admitsAux P zs H binders phi β
(β x β binders, V x = V' x) β
(Holds D (I' D I V' E_ref P zs H) V E_ref phi β Holds D I V E_ref (replace P zs H phi))
psi_ih :
β (V : VarAssignment D) (binders : Finset VarName),
admitsAux P zs H binders psi β
(β x β binders, V x = V' x) β
(Holds D (I' D I V' E_ref P zs H) V E_ref psi β Holds D I V E_ref (replace P zs H psi))
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux P zs H binders phi β§ admitsAux P zs H binders psi
h2 : β x β binders, V x = V' x
β’ (Holds D (I' D I V' E_ref P zs H) V E_ref phi β Holds D (I' D I V' E_ref P zs H) V E_ref psi) β
(Holds D I V E_ref (replace P zs H phi) β Holds D I V E_ref (replace P zs H psi))
|
case intro
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tailβ;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := headβ :: tailβ
phi psi : Formula
phi_ih :
β (V : VarAssignment D) (binders : Finset VarName),
admitsAux P zs H binders phi β
(β x β binders, V x = V' x) β
(Holds D (I' D I V' E_ref P zs H) V E_ref phi β Holds D I V E_ref (replace P zs H phi))
psi_ih :
β (V : VarAssignment D) (binders : Finset VarName),
admitsAux P zs H binders psi β
(β x β binders, V x = V' x) β
(Holds D (I' D I V' E_ref P zs H) V E_ref psi β Holds D I V E_ref (replace P zs H psi))
V : VarAssignment D
binders : Finset VarName
h2 : β x β binders, V x = V' x
leftβ : admitsAux P zs H binders phi
rightβ : admitsAux P zs H binders psi
β’ (Holds D (I' D I V' E_ref P zs H) V E_ref phi β Holds D (I' D I V' E_ref P zs H) V E_ref psi) β
(Holds D I V E_ref (replace P zs H phi) β Holds D I V E_ref (replace P zs H psi))
|
Please generate a tactic in lean4 to solve the state.
STATE:
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tailβ;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := headβ :: tailβ
phi psi : Formula
phi_ih :
β (V : VarAssignment D) (binders : Finset VarName),
admitsAux P zs H binders phi β
(β x β binders, V x = V' x) β
(Holds D (I' D I V' E_ref P zs H) V E_ref phi β Holds D I V E_ref (replace P zs H phi))
psi_ih :
β (V : VarAssignment D) (binders : Finset VarName),
admitsAux P zs H binders psi β
(β x β binders, V x = V' x) β
(Holds D (I' D I V' E_ref P zs H) V E_ref psi β Holds D I V E_ref (replace P zs H psi))
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux P zs H binders phi β§ admitsAux P zs H binders psi
h2 : β x β binders, V x = V' x
β’ (Holds D (I' D I V' E_ref P zs H) V E_ref phi β Holds D (I' D I V' E_ref P zs H) V E_ref psi) β
(Holds D I V E_ref (replace P zs H phi) β Holds D I V E_ref (replace P zs H psi))
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Pred/One/Rec/Sub.lean
|
FOL.NV.Sub.Pred.One.Rec.substitution_theorem_aux
|
[188, 1]
|
[334, 13]
|
congr! 1
|
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tailβ;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := headβ :: tailβ
phi psi : Formula
phi_ih :
β (V : VarAssignment D) (binders : Finset VarName),
admitsAux P zs H binders phi β
(β x β binders, V x = V' x) β
(Holds D (I' D I V' E_ref P zs H) V E_ref phi β Holds D I V E_ref (replace P zs H phi))
psi_ih :
β (V : VarAssignment D) (binders : Finset VarName),
admitsAux P zs H binders psi β
(β x β binders, V x = V' x) β
(Holds D (I' D I V' E_ref P zs H) V E_ref psi β Holds D I V E_ref (replace P zs H psi))
V : VarAssignment D
binders : Finset VarName
h2 : β x β binders, V x = V' x
h1_left : admitsAux P zs H binders phi
h1_right : admitsAux P zs H binders psi
β’ (Holds D (I' D I V' E_ref P zs H) V E_ref phi β Holds D (I' D I V' E_ref P zs H) V E_ref psi) β
(Holds D I V E_ref (replace P zs H phi) β Holds D I V E_ref (replace P zs H psi))
|
case a.h.e'_1.a
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tailβ;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := headβ :: tailβ
phi psi : Formula
phi_ih :
β (V : VarAssignment D) (binders : Finset VarName),
admitsAux P zs H binders phi β
(β x β binders, V x = V' x) β
(Holds D (I' D I V' E_ref P zs H) V E_ref phi β Holds D I V E_ref (replace P zs H phi))
psi_ih :
β (V : VarAssignment D) (binders : Finset VarName),
admitsAux P zs H binders psi β
(β x β binders, V x = V' x) β
(Holds D (I' D I V' E_ref P zs H) V E_ref psi β Holds D I V E_ref (replace P zs H psi))
V : VarAssignment D
binders : Finset VarName
h2 : β x β binders, V x = V' x
h1_left : admitsAux P zs H binders phi
h1_right : admitsAux P zs H binders psi
β’ Holds D (I' D I V' E_ref P zs H) V E_ref phi β Holds D I V E_ref (replace P zs H phi)
case a.h.e'_2.a
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tailβ;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := headβ :: tailβ
phi psi : Formula
phi_ih :
β (V : VarAssignment D) (binders : Finset VarName),
admitsAux P zs H binders phi β
(β x β binders, V x = V' x) β
(Holds D (I' D I V' E_ref P zs H) V E_ref phi β Holds D I V E_ref (replace P zs H phi))
psi_ih :
β (V : VarAssignment D) (binders : Finset VarName),
admitsAux P zs H binders psi β
(β x β binders, V x = V' x) β
(Holds D (I' D I V' E_ref P zs H) V E_ref psi β Holds D I V E_ref (replace P zs H psi))
V : VarAssignment D
binders : Finset VarName
h2 : β x β binders, V x = V' x
h1_left : admitsAux P zs H binders phi
h1_right : admitsAux P zs H binders psi
β’ Holds D (I' D I V' E_ref P zs H) V E_ref psi β Holds D I V E_ref (replace P zs H psi)
|
Please generate a tactic in lean4 to solve the state.
STATE:
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tailβ;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := headβ :: tailβ
phi psi : Formula
phi_ih :
β (V : VarAssignment D) (binders : Finset VarName),
admitsAux P zs H binders phi β
(β x β binders, V x = V' x) β
(Holds D (I' D I V' E_ref P zs H) V E_ref phi β Holds D I V E_ref (replace P zs H phi))
psi_ih :
β (V : VarAssignment D) (binders : Finset VarName),
admitsAux P zs H binders psi β
(β x β binders, V x = V' x) β
(Holds D (I' D I V' E_ref P zs H) V E_ref psi β Holds D I V E_ref (replace P zs H psi))
V : VarAssignment D
binders : Finset VarName
h2 : β x β binders, V x = V' x
h1_left : admitsAux P zs H binders phi
h1_right : admitsAux P zs H binders psi
β’ (Holds D (I' D I V' E_ref P zs H) V E_ref phi β Holds D (I' D I V' E_ref P zs H) V E_ref psi) β
(Holds D I V E_ref (replace P zs H phi) β Holds D I V E_ref (replace P zs H psi))
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Pred/One/Rec/Sub.lean
|
FOL.NV.Sub.Pred.One.Rec.substitution_theorem_aux
|
[188, 1]
|
[334, 13]
|
exact phi_ih V binders h1_left h2
|
case a.h.e'_1.a
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tailβ;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := headβ :: tailβ
phi psi : Formula
phi_ih :
β (V : VarAssignment D) (binders : Finset VarName),
admitsAux P zs H binders phi β
(β x β binders, V x = V' x) β
(Holds D (I' D I V' E_ref P zs H) V E_ref phi β Holds D I V E_ref (replace P zs H phi))
psi_ih :
β (V : VarAssignment D) (binders : Finset VarName),
admitsAux P zs H binders psi β
(β x β binders, V x = V' x) β
(Holds D (I' D I V' E_ref P zs H) V E_ref psi β Holds D I V E_ref (replace P zs H psi))
V : VarAssignment D
binders : Finset VarName
h2 : β x β binders, V x = V' x
h1_left : admitsAux P zs H binders phi
h1_right : admitsAux P zs H binders psi
β’ Holds D (I' D I V' E_ref P zs H) V E_ref phi β Holds D I V E_ref (replace P zs H phi)
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
case a.h.e'_1.a
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tailβ;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := headβ :: tailβ
phi psi : Formula
phi_ih :
β (V : VarAssignment D) (binders : Finset VarName),
admitsAux P zs H binders phi β
(β x β binders, V x = V' x) β
(Holds D (I' D I V' E_ref P zs H) V E_ref phi β Holds D I V E_ref (replace P zs H phi))
psi_ih :
β (V : VarAssignment D) (binders : Finset VarName),
admitsAux P zs H binders psi β
(β x β binders, V x = V' x) β
(Holds D (I' D I V' E_ref P zs H) V E_ref psi β Holds D I V E_ref (replace P zs H psi))
V : VarAssignment D
binders : Finset VarName
h2 : β x β binders, V x = V' x
h1_left : admitsAux P zs H binders phi
h1_right : admitsAux P zs H binders psi
β’ Holds D (I' D I V' E_ref P zs H) V E_ref phi β Holds D I V E_ref (replace P zs H phi)
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Pred/One/Rec/Sub.lean
|
FOL.NV.Sub.Pred.One.Rec.substitution_theorem_aux
|
[188, 1]
|
[334, 13]
|
exact psi_ih V binders h1_right h2
|
case a.h.e'_2.a
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tailβ;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := headβ :: tailβ
phi psi : Formula
phi_ih :
β (V : VarAssignment D) (binders : Finset VarName),
admitsAux P zs H binders phi β
(β x β binders, V x = V' x) β
(Holds D (I' D I V' E_ref P zs H) V E_ref phi β Holds D I V E_ref (replace P zs H phi))
psi_ih :
β (V : VarAssignment D) (binders : Finset VarName),
admitsAux P zs H binders psi β
(β x β binders, V x = V' x) β
(Holds D (I' D I V' E_ref P zs H) V E_ref psi β Holds D I V E_ref (replace P zs H psi))
V : VarAssignment D
binders : Finset VarName
h2 : β x β binders, V x = V' x
h1_left : admitsAux P zs H binders phi
h1_right : admitsAux P zs H binders psi
β’ Holds D (I' D I V' E_ref P zs H) V E_ref psi β Holds D I V E_ref (replace P zs H psi)
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
case a.h.e'_2.a
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tailβ;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := headβ :: tailβ
phi psi : Formula
phi_ih :
β (V : VarAssignment D) (binders : Finset VarName),
admitsAux P zs H binders phi β
(β x β binders, V x = V' x) β
(Holds D (I' D I V' E_ref P zs H) V E_ref phi β Holds D I V E_ref (replace P zs H phi))
psi_ih :
β (V : VarAssignment D) (binders : Finset VarName),
admitsAux P zs H binders psi β
(β x β binders, V x = V' x) β
(Holds D (I' D I V' E_ref P zs H) V E_ref psi β Holds D I V E_ref (replace P zs H psi))
V : VarAssignment D
binders : Finset VarName
h2 : β x β binders, V x = V' x
h1_left : admitsAux P zs H binders phi
h1_right : admitsAux P zs H binders psi
β’ Holds D (I' D I V' E_ref P zs H) V E_ref psi β Holds D I V E_ref (replace P zs H psi)
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Pred/One/Rec/Sub.lean
|
FOL.NV.Sub.Pred.One.Rec.substitution_theorem_aux
|
[188, 1]
|
[334, 13]
|
simp only [admitsAux] at h1
|
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tailβ;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := headβ :: tailβ
x : VarName
phi : Formula
phi_ih :
β (V : VarAssignment D) (binders : Finset VarName),
admitsAux P zs H binders phi β
(β x β binders, V x = V' x) β
(Holds D (I' D I V' E_ref P zs H) V E_ref phi β Holds D I V E_ref (replace P zs H phi))
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux P zs H binders (exists_ x phi)
h2 : β x β binders, V x = V' x
β’ Holds D (I' D I V' E_ref P zs H) V E_ref (exists_ x phi) β Holds D I V E_ref (replace P zs H (exists_ x phi))
|
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tailβ;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := headβ :: tailβ
x : VarName
phi : Formula
phi_ih :
β (V : VarAssignment D) (binders : Finset VarName),
admitsAux P zs H binders phi β
(β x β binders, V x = V' x) β
(Holds D (I' D I V' E_ref P zs H) V E_ref phi β Holds D I V E_ref (replace P zs H phi))
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux P zs H (binders βͺ {x}) phi
h2 : β x β binders, V x = V' x
β’ Holds D (I' D I V' E_ref P zs H) V E_ref (exists_ x phi) β Holds D I V E_ref (replace P zs H (exists_ x phi))
|
Please generate a tactic in lean4 to solve the state.
STATE:
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tailβ;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := headβ :: tailβ
x : VarName
phi : Formula
phi_ih :
β (V : VarAssignment D) (binders : Finset VarName),
admitsAux P zs H binders phi β
(β x β binders, V x = V' x) β
(Holds D (I' D I V' E_ref P zs H) V E_ref phi β Holds D I V E_ref (replace P zs H phi))
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux P zs H binders (exists_ x phi)
h2 : β x β binders, V x = V' x
β’ Holds D (I' D I V' E_ref P zs H) V E_ref (exists_ x phi) β Holds D I V E_ref (replace P zs H (exists_ x phi))
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Pred/One/Rec/Sub.lean
|
FOL.NV.Sub.Pred.One.Rec.substitution_theorem_aux
|
[188, 1]
|
[334, 13]
|
simp only [replace]
|
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tailβ;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := headβ :: tailβ
x : VarName
phi : Formula
phi_ih :
β (V : VarAssignment D) (binders : Finset VarName),
admitsAux P zs H binders phi β
(β x β binders, V x = V' x) β
(Holds D (I' D I V' E_ref P zs H) V E_ref phi β Holds D I V E_ref (replace P zs H phi))
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux P zs H (binders βͺ {x}) phi
h2 : β x β binders, V x = V' x
β’ Holds D (I' D I V' E_ref P zs H) V E_ref (exists_ x phi) β Holds D I V E_ref (replace P zs H (exists_ x phi))
|
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tailβ;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := headβ :: tailβ
x : VarName
phi : Formula
phi_ih :
β (V : VarAssignment D) (binders : Finset VarName),
admitsAux P zs H binders phi β
(β x β binders, V x = V' x) β
(Holds D (I' D I V' E_ref P zs H) V E_ref phi β Holds D I V E_ref (replace P zs H phi))
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux P zs H (binders βͺ {x}) phi
h2 : β x β binders, V x = V' x
β’ Holds D (I' D I V' E_ref P zs H) V E_ref (exists_ x phi) β Holds D I V E_ref (exists_ x (replace P zs H phi))
|
Please generate a tactic in lean4 to solve the state.
STATE:
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tailβ;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := headβ :: tailβ
x : VarName
phi : Formula
phi_ih :
β (V : VarAssignment D) (binders : Finset VarName),
admitsAux P zs H binders phi β
(β x β binders, V x = V' x) β
(Holds D (I' D I V' E_ref P zs H) V E_ref phi β Holds D I V E_ref (replace P zs H phi))
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux P zs H (binders βͺ {x}) phi
h2 : β x β binders, V x = V' x
β’ Holds D (I' D I V' E_ref P zs H) V E_ref (exists_ x phi) β Holds D I V E_ref (replace P zs H (exists_ x phi))
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Pred/One/Rec/Sub.lean
|
FOL.NV.Sub.Pred.One.Rec.substitution_theorem_aux
|
[188, 1]
|
[334, 13]
|
simp only [Holds]
|
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tailβ;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := headβ :: tailβ
x : VarName
phi : Formula
phi_ih :
β (V : VarAssignment D) (binders : Finset VarName),
admitsAux P zs H binders phi β
(β x β binders, V x = V' x) β
(Holds D (I' D I V' E_ref P zs H) V E_ref phi β Holds D I V E_ref (replace P zs H phi))
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux P zs H (binders βͺ {x}) phi
h2 : β x β binders, V x = V' x
β’ Holds D (I' D I V' E_ref P zs H) V E_ref (exists_ x phi) β Holds D I V E_ref (exists_ x (replace P zs H phi))
|
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tailβ;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := headβ :: tailβ
x : VarName
phi : Formula
phi_ih :
β (V : VarAssignment D) (binders : Finset VarName),
admitsAux P zs H binders phi β
(β x β binders, V x = V' x) β
(Holds D (I' D I V' E_ref P zs H) V E_ref phi β Holds D I V E_ref (replace P zs H phi))
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux P zs H (binders βͺ {x}) phi
h2 : β x β binders, V x = V' x
β’ (β d, Holds D (I' D I V' E_ref P zs H) (Function.updateITE V x d) E_ref phi) β
β d, Holds D I (Function.updateITE V x d) E_ref (replace P zs H phi)
|
Please generate a tactic in lean4 to solve the state.
STATE:
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tailβ;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := headβ :: tailβ
x : VarName
phi : Formula
phi_ih :
β (V : VarAssignment D) (binders : Finset VarName),
admitsAux P zs H binders phi β
(β x β binders, V x = V' x) β
(Holds D (I' D I V' E_ref P zs H) V E_ref phi β Holds D I V E_ref (replace P zs H phi))
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux P zs H (binders βͺ {x}) phi
h2 : β x β binders, V x = V' x
β’ Holds D (I' D I V' E_ref P zs H) V E_ref (exists_ x phi) β Holds D I V E_ref (exists_ x (replace P zs H phi))
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Pred/One/Rec/Sub.lean
|
FOL.NV.Sub.Pred.One.Rec.substitution_theorem_aux
|
[188, 1]
|
[334, 13]
|
first | apply forall_congr' | apply exists_congr
|
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tailβ;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := headβ :: tailβ
x : VarName
phi : Formula
phi_ih :
β (V : VarAssignment D) (binders : Finset VarName),
admitsAux P zs H binders phi β
(β x β binders, V x = V' x) β
(Holds D (I' D I V' E_ref P zs H) V E_ref phi β Holds D I V E_ref (replace P zs H phi))
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux P zs H (binders βͺ {x}) phi
h2 : β x β binders, V x = V' x
β’ (β d, Holds D (I' D I V' E_ref P zs H) (Function.updateITE V x d) E_ref phi) β
β d, Holds D I (Function.updateITE V x d) E_ref (replace P zs H phi)
|
case h
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tailβ;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := headβ :: tailβ
x : VarName
phi : Formula
phi_ih :
β (V : VarAssignment D) (binders : Finset VarName),
admitsAux P zs H binders phi β
(β x β binders, V x = V' x) β
(Holds D (I' D I V' E_ref P zs H) V E_ref phi β Holds D I V E_ref (replace P zs H phi))
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux P zs H (binders βͺ {x}) phi
h2 : β x β binders, V x = V' x
β’ β (a : D),
Holds D (I' D I V' E_ref P zs H) (Function.updateITE V x a) E_ref phi β
Holds D I (Function.updateITE V x a) E_ref (replace P zs H phi)
|
Please generate a tactic in lean4 to solve the state.
STATE:
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tailβ;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := headβ :: tailβ
x : VarName
phi : Formula
phi_ih :
β (V : VarAssignment D) (binders : Finset VarName),
admitsAux P zs H binders phi β
(β x β binders, V x = V' x) β
(Holds D (I' D I V' E_ref P zs H) V E_ref phi β Holds D I V E_ref (replace P zs H phi))
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux P zs H (binders βͺ {x}) phi
h2 : β x β binders, V x = V' x
β’ (β d, Holds D (I' D I V' E_ref P zs H) (Function.updateITE V x d) E_ref phi) β
β d, Holds D I (Function.updateITE V x d) E_ref (replace P zs H phi)
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Pred/One/Rec/Sub.lean
|
FOL.NV.Sub.Pred.One.Rec.substitution_theorem_aux
|
[188, 1]
|
[334, 13]
|
intro d
|
case h
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tailβ;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := headβ :: tailβ
x : VarName
phi : Formula
phi_ih :
β (V : VarAssignment D) (binders : Finset VarName),
admitsAux P zs H binders phi β
(β x β binders, V x = V' x) β
(Holds D (I' D I V' E_ref P zs H) V E_ref phi β Holds D I V E_ref (replace P zs H phi))
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux P zs H (binders βͺ {x}) phi
h2 : β x β binders, V x = V' x
β’ β (a : D),
Holds D (I' D I V' E_ref P zs H) (Function.updateITE V x a) E_ref phi β
Holds D I (Function.updateITE V x a) E_ref (replace P zs H phi)
|
case h
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tailβ;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := headβ :: tailβ
x : VarName
phi : Formula
phi_ih :
β (V : VarAssignment D) (binders : Finset VarName),
admitsAux P zs H binders phi β
(β x β binders, V x = V' x) β
(Holds D (I' D I V' E_ref P zs H) V E_ref phi β Holds D I V E_ref (replace P zs H phi))
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux P zs H (binders βͺ {x}) phi
h2 : β x β binders, V x = V' x
d : D
β’ Holds D (I' D I V' E_ref P zs H) (Function.updateITE V x d) E_ref phi β
Holds D I (Function.updateITE V x d) E_ref (replace P zs H phi)
|
Please generate a tactic in lean4 to solve the state.
STATE:
case h
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tailβ;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := headβ :: tailβ
x : VarName
phi : Formula
phi_ih :
β (V : VarAssignment D) (binders : Finset VarName),
admitsAux P zs H binders phi β
(β x β binders, V x = V' x) β
(Holds D (I' D I V' E_ref P zs H) V E_ref phi β Holds D I V E_ref (replace P zs H phi))
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux P zs H (binders βͺ {x}) phi
h2 : β x β binders, V x = V' x
β’ β (a : D),
Holds D (I' D I V' E_ref P zs H) (Function.updateITE V x a) E_ref phi β
Holds D I (Function.updateITE V x a) E_ref (replace P zs H phi)
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Pred/One/Rec/Sub.lean
|
FOL.NV.Sub.Pred.One.Rec.substitution_theorem_aux
|
[188, 1]
|
[334, 13]
|
apply phi_ih (Function.updateITE V x d) (binders βͺ {x}) h1
|
case h
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tailβ;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := headβ :: tailβ
x : VarName
phi : Formula
phi_ih :
β (V : VarAssignment D) (binders : Finset VarName),
admitsAux P zs H binders phi β
(β x β binders, V x = V' x) β
(Holds D (I' D I V' E_ref P zs H) V E_ref phi β Holds D I V E_ref (replace P zs H phi))
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux P zs H (binders βͺ {x}) phi
h2 : β x β binders, V x = V' x
d : D
β’ Holds D (I' D I V' E_ref P zs H) (Function.updateITE V x d) E_ref phi β
Holds D I (Function.updateITE V x d) E_ref (replace P zs H phi)
|
case h
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tailβ;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := headβ :: tailβ
x : VarName
phi : Formula
phi_ih :
β (V : VarAssignment D) (binders : Finset VarName),
admitsAux P zs H binders phi β
(β x β binders, V x = V' x) β
(Holds D (I' D I V' E_ref P zs H) V E_ref phi β Holds D I V E_ref (replace P zs H phi))
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux P zs H (binders βͺ {x}) phi
h2 : β x β binders, V x = V' x
d : D
β’ β x_1 β binders βͺ {x}, Function.updateITE V x d x_1 = V' x_1
|
Please generate a tactic in lean4 to solve the state.
STATE:
case h
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tailβ;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := headβ :: tailβ
x : VarName
phi : Formula
phi_ih :
β (V : VarAssignment D) (binders : Finset VarName),
admitsAux P zs H binders phi β
(β x β binders, V x = V' x) β
(Holds D (I' D I V' E_ref P zs H) V E_ref phi β Holds D I V E_ref (replace P zs H phi))
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux P zs H (binders βͺ {x}) phi
h2 : β x β binders, V x = V' x
d : D
β’ Holds D (I' D I V' E_ref P zs H) (Function.updateITE V x d) E_ref phi β
Holds D I (Function.updateITE V x d) E_ref (replace P zs H phi)
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Pred/One/Rec/Sub.lean
|
FOL.NV.Sub.Pred.One.Rec.substitution_theorem_aux
|
[188, 1]
|
[334, 13]
|
intro v a1
|
case h
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tailβ;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := headβ :: tailβ
x : VarName
phi : Formula
phi_ih :
β (V : VarAssignment D) (binders : Finset VarName),
admitsAux P zs H binders phi β
(β x β binders, V x = V' x) β
(Holds D (I' D I V' E_ref P zs H) V E_ref phi β Holds D I V E_ref (replace P zs H phi))
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux P zs H (binders βͺ {x}) phi
h2 : β x β binders, V x = V' x
d : D
β’ β x_1 β binders βͺ {x}, Function.updateITE V x d x_1 = V' x_1
|
case h
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tailβ;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := headβ :: tailβ
x : VarName
phi : Formula
phi_ih :
β (V : VarAssignment D) (binders : Finset VarName),
admitsAux P zs H binders phi β
(β x β binders, V x = V' x) β
(Holds D (I' D I V' E_ref P zs H) V E_ref phi β Holds D I V E_ref (replace P zs H phi))
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux P zs H (binders βͺ {x}) phi
h2 : β x β binders, V x = V' x
d : D
v : VarName
a1 : v β binders βͺ {x}
β’ Function.updateITE V x d v = V' v
|
Please generate a tactic in lean4 to solve the state.
STATE:
case h
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tailβ;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := headβ :: tailβ
x : VarName
phi : Formula
phi_ih :
β (V : VarAssignment D) (binders : Finset VarName),
admitsAux P zs H binders phi β
(β x β binders, V x = V' x) β
(Holds D (I' D I V' E_ref P zs H) V E_ref phi β Holds D I V E_ref (replace P zs H phi))
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux P zs H (binders βͺ {x}) phi
h2 : β x β binders, V x = V' x
d : D
β’ β x_1 β binders βͺ {x}, Function.updateITE V x d x_1 = V' x_1
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Pred/One/Rec/Sub.lean
|
FOL.NV.Sub.Pred.One.Rec.substitution_theorem_aux
|
[188, 1]
|
[334, 13]
|
simp only [Function.updateITE]
|
case h
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tailβ;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := headβ :: tailβ
x : VarName
phi : Formula
phi_ih :
β (V : VarAssignment D) (binders : Finset VarName),
admitsAux P zs H binders phi β
(β x β binders, V x = V' x) β
(Holds D (I' D I V' E_ref P zs H) V E_ref phi β Holds D I V E_ref (replace P zs H phi))
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux P zs H (binders βͺ {x}) phi
h2 : β x β binders, V x = V' x
d : D
v : VarName
a1 : v β binders βͺ {x}
β’ Function.updateITE V x d v = V' v
|
case h
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tailβ;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := headβ :: tailβ
x : VarName
phi : Formula
phi_ih :
β (V : VarAssignment D) (binders : Finset VarName),
admitsAux P zs H binders phi β
(β x β binders, V x = V' x) β
(Holds D (I' D I V' E_ref P zs H) V E_ref phi β Holds D I V E_ref (replace P zs H phi))
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux P zs H (binders βͺ {x}) phi
h2 : β x β binders, V x = V' x
d : D
v : VarName
a1 : v β binders βͺ {x}
β’ (if v = x then d else V v) = V' v
|
Please generate a tactic in lean4 to solve the state.
STATE:
case h
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tailβ;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := headβ :: tailβ
x : VarName
phi : Formula
phi_ih :
β (V : VarAssignment D) (binders : Finset VarName),
admitsAux P zs H binders phi β
(β x β binders, V x = V' x) β
(Holds D (I' D I V' E_ref P zs H) V E_ref phi β Holds D I V E_ref (replace P zs H phi))
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux P zs H (binders βͺ {x}) phi
h2 : β x β binders, V x = V' x
d : D
v : VarName
a1 : v β binders βͺ {x}
β’ Function.updateITE V x d v = V' v
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Pred/One/Rec/Sub.lean
|
FOL.NV.Sub.Pred.One.Rec.substitution_theorem_aux
|
[188, 1]
|
[334, 13]
|
simp at a1
|
case h
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tailβ;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := headβ :: tailβ
x : VarName
phi : Formula
phi_ih :
β (V : VarAssignment D) (binders : Finset VarName),
admitsAux P zs H binders phi β
(β x β binders, V x = V' x) β
(Holds D (I' D I V' E_ref P zs H) V E_ref phi β Holds D I V E_ref (replace P zs H phi))
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux P zs H (binders βͺ {x}) phi
h2 : β x β binders, V x = V' x
d : D
v : VarName
a1 : v β binders βͺ {x}
β’ (if v = x then d else V v) = V' v
|
case h
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tailβ;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := headβ :: tailβ
x : VarName
phi : Formula
phi_ih :
β (V : VarAssignment D) (binders : Finset VarName),
admitsAux P zs H binders phi β
(β x β binders, V x = V' x) β
(Holds D (I' D I V' E_ref P zs H) V E_ref phi β Holds D I V E_ref (replace P zs H phi))
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux P zs H (binders βͺ {x}) phi
h2 : β x β binders, V x = V' x
d : D
v : VarName
a1 : v β binders β§ Β¬v = x
β’ (if v = x then d else V v) = V' v
|
Please generate a tactic in lean4 to solve the state.
STATE:
case h
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tailβ;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := headβ :: tailβ
x : VarName
phi : Formula
phi_ih :
β (V : VarAssignment D) (binders : Finset VarName),
admitsAux P zs H binders phi β
(β x β binders, V x = V' x) β
(Holds D (I' D I V' E_ref P zs H) V E_ref phi β Holds D I V E_ref (replace P zs H phi))
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux P zs H (binders βͺ {x}) phi
h2 : β x β binders, V x = V' x
d : D
v : VarName
a1 : v β binders βͺ {x}
β’ (if v = x then d else V v) = V' v
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Pred/One/Rec/Sub.lean
|
FOL.NV.Sub.Pred.One.Rec.substitution_theorem_aux
|
[188, 1]
|
[334, 13]
|
push_neg at a1
|
case h
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tailβ;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := headβ :: tailβ
x : VarName
phi : Formula
phi_ih :
β (V : VarAssignment D) (binders : Finset VarName),
admitsAux P zs H binders phi β
(β x β binders, V x = V' x) β
(Holds D (I' D I V' E_ref P zs H) V E_ref phi β Holds D I V E_ref (replace P zs H phi))
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux P zs H (binders βͺ {x}) phi
h2 : β x β binders, V x = V' x
d : D
v : VarName
a1 : v β binders β§ Β¬v = x
β’ (if v = x then d else V v) = V' v
|
case h
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tailβ;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := headβ :: tailβ
x : VarName
phi : Formula
phi_ih :
β (V : VarAssignment D) (binders : Finset VarName),
admitsAux P zs H binders phi β
(β x β binders, V x = V' x) β
(Holds D (I' D I V' E_ref P zs H) V E_ref phi β Holds D I V E_ref (replace P zs H phi))
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux P zs H (binders βͺ {x}) phi
h2 : β x β binders, V x = V' x
d : D
v : VarName
a1 : v β binders β§ v β x
β’ (if v = x then d else V v) = V' v
|
Please generate a tactic in lean4 to solve the state.
STATE:
case h
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tailβ;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := headβ :: tailβ
x : VarName
phi : Formula
phi_ih :
β (V : VarAssignment D) (binders : Finset VarName),
admitsAux P zs H binders phi β
(β x β binders, V x = V' x) β
(Holds D (I' D I V' E_ref P zs H) V E_ref phi β Holds D I V E_ref (replace P zs H phi))
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux P zs H (binders βͺ {x}) phi
h2 : β x β binders, V x = V' x
d : D
v : VarName
a1 : v β binders β§ Β¬v = x
β’ (if v = x then d else V v) = V' v
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Pred/One/Rec/Sub.lean
|
FOL.NV.Sub.Pred.One.Rec.substitution_theorem_aux
|
[188, 1]
|
[334, 13]
|
cases a1
|
case h
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tailβ;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := headβ :: tailβ
x : VarName
phi : Formula
phi_ih :
β (V : VarAssignment D) (binders : Finset VarName),
admitsAux P zs H binders phi β
(β x β binders, V x = V' x) β
(Holds D (I' D I V' E_ref P zs H) V E_ref phi β Holds D I V E_ref (replace P zs H phi))
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux P zs H (binders βͺ {x}) phi
h2 : β x β binders, V x = V' x
d : D
v : VarName
a1 : v β binders β§ v β x
β’ (if v = x then d else V v) = V' v
|
case h.intro
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tailβ;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := headβ :: tailβ
x : VarName
phi : Formula
phi_ih :
β (V : VarAssignment D) (binders : Finset VarName),
admitsAux P zs H binders phi β
(β x β binders, V x = V' x) β
(Holds D (I' D I V' E_ref P zs H) V E_ref phi β Holds D I V E_ref (replace P zs H phi))
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux P zs H (binders βͺ {x}) phi
h2 : β x β binders, V x = V' x
d : D
v : VarName
leftβ : v β binders
rightβ : v β x
β’ (if v = x then d else V v) = V' v
|
Please generate a tactic in lean4 to solve the state.
STATE:
case h
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tailβ;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := headβ :: tailβ
x : VarName
phi : Formula
phi_ih :
β (V : VarAssignment D) (binders : Finset VarName),
admitsAux P zs H binders phi β
(β x β binders, V x = V' x) β
(Holds D (I' D I V' E_ref P zs H) V E_ref phi β Holds D I V E_ref (replace P zs H phi))
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux P zs H (binders βͺ {x}) phi
h2 : β x β binders, V x = V' x
d : D
v : VarName
a1 : v β binders β§ v β x
β’ (if v = x then d else V v) = V' v
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Pred/One/Rec/Sub.lean
|
FOL.NV.Sub.Pred.One.Rec.substitution_theorem_aux
|
[188, 1]
|
[334, 13]
|
case h.intro a1_left a1_right =>
simp only [if_neg a1_right]
exact h2 v a1_left
|
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tailβ;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := headβ :: tailβ
x : VarName
phi : Formula
phi_ih :
β (V : VarAssignment D) (binders : Finset VarName),
admitsAux P zs H binders phi β
(β x β binders, V x = V' x) β
(Holds D (I' D I V' E_ref P zs H) V E_ref phi β Holds D I V E_ref (replace P zs H phi))
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux P zs H (binders βͺ {x}) phi
h2 : β x β binders, V x = V' x
d : D
v : VarName
a1_left : v β binders
a1_right : v β x
β’ (if v = x then d else V v) = V' v
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tailβ;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := headβ :: tailβ
x : VarName
phi : Formula
phi_ih :
β (V : VarAssignment D) (binders : Finset VarName),
admitsAux P zs H binders phi β
(β x β binders, V x = V' x) β
(Holds D (I' D I V' E_ref P zs H) V E_ref phi β Holds D I V E_ref (replace P zs H phi))
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux P zs H (binders βͺ {x}) phi
h2 : β x β binders, V x = V' x
d : D
v : VarName
a1_left : v β binders
a1_right : v β x
β’ (if v = x then d else V v) = V' v
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Pred/One/Rec/Sub.lean
|
FOL.NV.Sub.Pred.One.Rec.substitution_theorem_aux
|
[188, 1]
|
[334, 13]
|
apply forall_congr'
|
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tailβ;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := headβ :: tailβ
x : VarName
phi : Formula
phi_ih :
β (V : VarAssignment D) (binders : Finset VarName),
admitsAux P zs H binders phi β
(β x β binders, V x = V' x) β
(Holds D (I' D I V' E_ref P zs H) V E_ref phi β Holds D I V E_ref (replace P zs H phi))
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux P zs H (binders βͺ {x}) phi
h2 : β x β binders, V x = V' x
β’ (β (d : D), Holds D (I' D I V' E_ref P zs H) (Function.updateITE V x d) E_ref phi) β
β (d : D), Holds D I (Function.updateITE V x d) E_ref (replace P zs H phi)
|
case h
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tailβ;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := headβ :: tailβ
x : VarName
phi : Formula
phi_ih :
β (V : VarAssignment D) (binders : Finset VarName),
admitsAux P zs H binders phi β
(β x β binders, V x = V' x) β
(Holds D (I' D I V' E_ref P zs H) V E_ref phi β Holds D I V E_ref (replace P zs H phi))
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux P zs H (binders βͺ {x}) phi
h2 : β x β binders, V x = V' x
β’ β (a : D),
Holds D (I' D I V' E_ref P zs H) (Function.updateITE V x a) E_ref phi β
Holds D I (Function.updateITE V x a) E_ref (replace P zs H phi)
|
Please generate a tactic in lean4 to solve the state.
STATE:
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tailβ;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := headβ :: tailβ
x : VarName
phi : Formula
phi_ih :
β (V : VarAssignment D) (binders : Finset VarName),
admitsAux P zs H binders phi β
(β x β binders, V x = V' x) β
(Holds D (I' D I V' E_ref P zs H) V E_ref phi β Holds D I V E_ref (replace P zs H phi))
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux P zs H (binders βͺ {x}) phi
h2 : β x β binders, V x = V' x
β’ (β (d : D), Holds D (I' D I V' E_ref P zs H) (Function.updateITE V x d) E_ref phi) β
β (d : D), Holds D I (Function.updateITE V x d) E_ref (replace P zs H phi)
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Pred/One/Rec/Sub.lean
|
FOL.NV.Sub.Pred.One.Rec.substitution_theorem_aux
|
[188, 1]
|
[334, 13]
|
apply exists_congr
|
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tailβ;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := headβ :: tailβ
x : VarName
phi : Formula
phi_ih :
β (V : VarAssignment D) (binders : Finset VarName),
admitsAux P zs H binders phi β
(β x β binders, V x = V' x) β
(Holds D (I' D I V' E_ref P zs H) V E_ref phi β Holds D I V E_ref (replace P zs H phi))
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux P zs H (binders βͺ {x}) phi
h2 : β x β binders, V x = V' x
β’ (β d, Holds D (I' D I V' E_ref P zs H) (Function.updateITE V x d) E_ref phi) β
β d, Holds D I (Function.updateITE V x d) E_ref (replace P zs H phi)
|
case h
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tailβ;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := headβ :: tailβ
x : VarName
phi : Formula
phi_ih :
β (V : VarAssignment D) (binders : Finset VarName),
admitsAux P zs H binders phi β
(β x β binders, V x = V' x) β
(Holds D (I' D I V' E_ref P zs H) V E_ref phi β Holds D I V E_ref (replace P zs H phi))
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux P zs H (binders βͺ {x}) phi
h2 : β x β binders, V x = V' x
β’ β (a : D),
Holds D (I' D I V' E_ref P zs H) (Function.updateITE V x a) E_ref phi β
Holds D I (Function.updateITE V x a) E_ref (replace P zs H phi)
|
Please generate a tactic in lean4 to solve the state.
STATE:
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tailβ;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := headβ :: tailβ
x : VarName
phi : Formula
phi_ih :
β (V : VarAssignment D) (binders : Finset VarName),
admitsAux P zs H binders phi β
(β x β binders, V x = V' x) β
(Holds D (I' D I V' E_ref P zs H) V E_ref phi β Holds D I V E_ref (replace P zs H phi))
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux P zs H (binders βͺ {x}) phi
h2 : β x β binders, V x = V' x
β’ (β d, Holds D (I' D I V' E_ref P zs H) (Function.updateITE V x d) E_ref phi) β
β d, Holds D I (Function.updateITE V x d) E_ref (replace P zs H phi)
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Pred/One/Rec/Sub.lean
|
FOL.NV.Sub.Pred.One.Rec.substitution_theorem_aux
|
[188, 1]
|
[334, 13]
|
simp only [if_neg a1_right]
|
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tailβ;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := headβ :: tailβ
x : VarName
phi : Formula
phi_ih :
β (V : VarAssignment D) (binders : Finset VarName),
admitsAux P zs H binders phi β
(β x β binders, V x = V' x) β
(Holds D (I' D I V' E_ref P zs H) V E_ref phi β Holds D I V E_ref (replace P zs H phi))
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux P zs H (binders βͺ {x}) phi
h2 : β x β binders, V x = V' x
d : D
v : VarName
a1_left : v β binders
a1_right : v β x
β’ (if v = x then d else V v) = V' v
|
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tailβ;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := headβ :: tailβ
x : VarName
phi : Formula
phi_ih :
β (V : VarAssignment D) (binders : Finset VarName),
admitsAux P zs H binders phi β
(β x β binders, V x = V' x) β
(Holds D (I' D I V' E_ref P zs H) V E_ref phi β Holds D I V E_ref (replace P zs H phi))
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux P zs H (binders βͺ {x}) phi
h2 : β x β binders, V x = V' x
d : D
v : VarName
a1_left : v β binders
a1_right : v β x
β’ V v = V' v
|
Please generate a tactic in lean4 to solve the state.
STATE:
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tailβ;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := headβ :: tailβ
x : VarName
phi : Formula
phi_ih :
β (V : VarAssignment D) (binders : Finset VarName),
admitsAux P zs H binders phi β
(β x β binders, V x = V' x) β
(Holds D (I' D I V' E_ref P zs H) V E_ref phi β Holds D I V E_ref (replace P zs H phi))
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux P zs H (binders βͺ {x}) phi
h2 : β x β binders, V x = V' x
d : D
v : VarName
a1_left : v β binders
a1_right : v β x
β’ (if v = x then d else V v) = V' v
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Pred/One/Rec/Sub.lean
|
FOL.NV.Sub.Pred.One.Rec.substitution_theorem_aux
|
[188, 1]
|
[334, 13]
|
exact h2 v a1_left
|
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tailβ;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := headβ :: tailβ
x : VarName
phi : Formula
phi_ih :
β (V : VarAssignment D) (binders : Finset VarName),
admitsAux P zs H binders phi β
(β x β binders, V x = V' x) β
(Holds D (I' D I V' E_ref P zs H) V E_ref phi β Holds D I V E_ref (replace P zs H phi))
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux P zs H (binders βͺ {x}) phi
h2 : β x β binders, V x = V' x
d : D
v : VarName
a1_left : v β binders
a1_right : v β x
β’ V v = V' v
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tailβ;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := headβ :: tailβ
x : VarName
phi : Formula
phi_ih :
β (V : VarAssignment D) (binders : Finset VarName),
admitsAux P zs H binders phi β
(β x β binders, V x = V' x) β
(Holds D (I' D I V' E_ref P zs H) V E_ref phi β Holds D I V E_ref (replace P zs H phi))
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux P zs H (binders βͺ {x}) phi
h2 : β x β binders, V x = V' x
d : D
v : VarName
a1_left : v β binders
a1_right : v β x
β’ V v = V' v
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Pred/One/Rec/Sub.lean
|
FOL.NV.Sub.Pred.One.Rec.substitution_theorem_aux
|
[188, 1]
|
[334, 13]
|
simp only [replace]
|
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
E_ref : Env := []
X : DefName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux P zs H binders (def_ X xs)
h2 : β x β binders, V x = V' x
β’ Holds D (I' D I V' E_ref P zs H) V E_ref (def_ X xs) β Holds D I V E_ref (replace P zs H (def_ X xs))
|
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
E_ref : Env := []
X : DefName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux P zs H binders (def_ X xs)
h2 : β x β binders, V x = V' x
β’ Holds D (I' D I V' E_ref P zs H) V E_ref (def_ X xs) β Holds D I V E_ref (def_ X xs)
|
Please generate a tactic in lean4 to solve the state.
STATE:
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
E_ref : Env := []
X : DefName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux P zs H binders (def_ X xs)
h2 : β x β binders, V x = V' x
β’ Holds D (I' D I V' E_ref P zs H) V E_ref (def_ X xs) β Holds D I V E_ref (replace P zs H (def_ X xs))
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Pred/One/Rec/Sub.lean
|
FOL.NV.Sub.Pred.One.Rec.substitution_theorem_aux
|
[188, 1]
|
[334, 13]
|
simp only [E_ref]
|
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
E_ref : Env := []
X : DefName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux P zs H binders (def_ X xs)
h2 : β x β binders, V x = V' x
β’ Holds D (I' D I V' E_ref P zs H) V E_ref (def_ X xs) β Holds D I V E_ref (def_ X xs)
|
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
E_ref : Env := []
X : DefName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux P zs H binders (def_ X xs)
h2 : β x β binders, V x = V' x
β’ Holds D (I' D I V' [] P zs H) V [] (def_ X xs) β Holds D I V [] (def_ X xs)
|
Please generate a tactic in lean4 to solve the state.
STATE:
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
E_ref : Env := []
X : DefName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux P zs H binders (def_ X xs)
h2 : β x β binders, V x = V' x
β’ Holds D (I' D I V' E_ref P zs H) V E_ref (def_ X xs) β Holds D I V E_ref (def_ X xs)
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Pred/One/Rec/Sub.lean
|
FOL.NV.Sub.Pred.One.Rec.substitution_theorem_aux
|
[188, 1]
|
[334, 13]
|
simp only [Holds]
|
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
E_ref : Env := []
X : DefName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux P zs H binders (def_ X xs)
h2 : β x β binders, V x = V' x
β’ Holds D (I' D I V' [] P zs H) V [] (def_ X xs) β Holds D I V [] (def_ X xs)
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
E_ref : Env := []
X : DefName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux P zs H binders (def_ X xs)
h2 : β x β binders, V x = V' x
β’ Holds D (I' D I V' [] P zs H) V [] (def_ X xs) β Holds D I V [] (def_ X xs)
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Pred/One/Rec/Sub.lean
|
FOL.NV.Sub.Pred.One.Rec.substitution_theorem_aux
|
[188, 1]
|
[334, 13]
|
simp only [replace]
|
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
hd : Definition
tl : List Definition
ih :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tl;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := hd :: tl
X : DefName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux P zs H binders (def_ X xs)
h2 : β x β binders, V x = V' x
β’ Holds D (I' D I V' E_ref P zs H) V E_ref (def_ X xs) β Holds D I V E_ref (replace P zs H (def_ X xs))
|
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
hd : Definition
tl : List Definition
ih :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tl;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := hd :: tl
X : DefName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux P zs H binders (def_ X xs)
h2 : β x β binders, V x = V' x
β’ Holds D (I' D I V' E_ref P zs H) V E_ref (def_ X xs) β Holds D I V E_ref (def_ X xs)
|
Please generate a tactic in lean4 to solve the state.
STATE:
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
hd : Definition
tl : List Definition
ih :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tl;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := hd :: tl
X : DefName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux P zs H binders (def_ X xs)
h2 : β x β binders, V x = V' x
β’ Holds D (I' D I V' E_ref P zs H) V E_ref (def_ X xs) β Holds D I V E_ref (replace P zs H (def_ X xs))
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Pred/One/Rec/Sub.lean
|
FOL.NV.Sub.Pred.One.Rec.substitution_theorem_aux
|
[188, 1]
|
[334, 13]
|
simp only [E_ref]
|
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
hd : Definition
tl : List Definition
ih :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tl;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := hd :: tl
X : DefName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux P zs H binders (def_ X xs)
h2 : β x β binders, V x = V' x
β’ Holds D (I' D I V' E_ref P zs H) V E_ref (def_ X xs) β Holds D I V E_ref (def_ X xs)
|
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
hd : Definition
tl : List Definition
ih :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tl;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := hd :: tl
X : DefName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux P zs H binders (def_ X xs)
h2 : β x β binders, V x = V' x
β’ Holds D (I' D I V' (hd :: tl) P zs H) V (hd :: tl) (def_ X xs) β Holds D I V (hd :: tl) (def_ X xs)
|
Please generate a tactic in lean4 to solve the state.
STATE:
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
hd : Definition
tl : List Definition
ih :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tl;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := hd :: tl
X : DefName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux P zs H binders (def_ X xs)
h2 : β x β binders, V x = V' x
β’ Holds D (I' D I V' E_ref P zs H) V E_ref (def_ X xs) β Holds D I V E_ref (def_ X xs)
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Pred/One/Rec/Sub.lean
|
FOL.NV.Sub.Pred.One.Rec.substitution_theorem_aux
|
[188, 1]
|
[334, 13]
|
simp only [Holds]
|
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
hd : Definition
tl : List Definition
ih :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tl;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := hd :: tl
X : DefName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux P zs H binders (def_ X xs)
h2 : β x β binders, V x = V' x
β’ Holds D (I' D I V' (hd :: tl) P zs H) V (hd :: tl) (def_ X xs) β Holds D I V (hd :: tl) (def_ X xs)
|
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
hd : Definition
tl : List Definition
ih :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tl;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := hd :: tl
X : DefName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux P zs H binders (def_ X xs)
h2 : β x β binders, V x = V' x
β’ (if X = hd.name β§ xs.length = hd.args.length then
Holds D (I' D I V' (hd :: tl) P zs H) (Function.updateListITE V hd.args (List.map V xs)) tl hd.q
else Holds D (I' D I V' (hd :: tl) P zs H) V tl (def_ X xs)) β
if X = hd.name β§ xs.length = hd.args.length then
Holds D I (Function.updateListITE V hd.args (List.map V xs)) tl hd.q
else Holds D I V tl (def_ X xs)
|
Please generate a tactic in lean4 to solve the state.
STATE:
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
hd : Definition
tl : List Definition
ih :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tl;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := hd :: tl
X : DefName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux P zs H binders (def_ X xs)
h2 : β x β binders, V x = V' x
β’ Holds D (I' D I V' (hd :: tl) P zs H) V (hd :: tl) (def_ X xs) β Holds D I V (hd :: tl) (def_ X xs)
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Pred/One/Rec/Sub.lean
|
FOL.NV.Sub.Pred.One.Rec.substitution_theorem_aux
|
[188, 1]
|
[334, 13]
|
split_ifs
|
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
hd : Definition
tl : List Definition
ih :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tl;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := hd :: tl
X : DefName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux P zs H binders (def_ X xs)
h2 : β x β binders, V x = V' x
β’ (if X = hd.name β§ xs.length = hd.args.length then
Holds D (I' D I V' (hd :: tl) P zs H) (Function.updateListITE V hd.args (List.map V xs)) tl hd.q
else Holds D (I' D I V' (hd :: tl) P zs H) V tl (def_ X xs)) β
if X = hd.name β§ xs.length = hd.args.length then
Holds D I (Function.updateListITE V hd.args (List.map V xs)) tl hd.q
else Holds D I V tl (def_ X xs)
|
case pos
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
hd : Definition
tl : List Definition
ih :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tl;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := hd :: tl
X : DefName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux P zs H binders (def_ X xs)
h2 : β x β binders, V x = V' x
hβ : X = hd.name β§ xs.length = hd.args.length
β’ Holds D (I' D I V' (hd :: tl) P zs H) (Function.updateListITE V hd.args (List.map V xs)) tl hd.q β
Holds D I (Function.updateListITE V hd.args (List.map V xs)) tl hd.q
case neg
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
hd : Definition
tl : List Definition
ih :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tl;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := hd :: tl
X : DefName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux P zs H binders (def_ X xs)
h2 : β x β binders, V x = V' x
hβ : Β¬(X = hd.name β§ xs.length = hd.args.length)
β’ Holds D (I' D I V' (hd :: tl) P zs H) V tl (def_ X xs) β Holds D I V tl (def_ X xs)
|
Please generate a tactic in lean4 to solve the state.
STATE:
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
hd : Definition
tl : List Definition
ih :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tl;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := hd :: tl
X : DefName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux P zs H binders (def_ X xs)
h2 : β x β binders, V x = V' x
β’ (if X = hd.name β§ xs.length = hd.args.length then
Holds D (I' D I V' (hd :: tl) P zs H) (Function.updateListITE V hd.args (List.map V xs)) tl hd.q
else Holds D (I' D I V' (hd :: tl) P zs H) V tl (def_ X xs)) β
if X = hd.name β§ xs.length = hd.args.length then
Holds D I (Function.updateListITE V hd.args (List.map V xs)) tl hd.q
else Holds D I V tl (def_ X xs)
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Pred/One/Rec/Sub.lean
|
FOL.NV.Sub.Pred.One.Rec.substitution_theorem_aux
|
[188, 1]
|
[334, 13]
|
specialize ih (Function.updateListITE V hd.args (List.map V xs)) hd.q
|
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
hd : Definition
tl : List Definition
ih :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tl;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := hd :: tl
X : DefName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux P zs H binders (def_ X xs)
h2 : β x β binders, V x = V' x
c1 : X = hd.name β§ xs.length = hd.args.length
β’ Holds D (I' D I V' (hd :: tl) P zs H) (Function.updateListITE V hd.args (List.map V xs)) tl hd.q β
Holds D I (Function.updateListITE V hd.args (List.map V xs)) tl hd.q
|
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
hd : Definition
tl : List Definition
E_ref : Env := hd :: tl
X : DefName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux P zs H binders (def_ X xs)
h2 : β x β binders, V x = V' x
c1 : X = hd.name β§ xs.length = hd.args.length
ih :
β (binders : Finset VarName),
admitsAux P zs H binders hd.q β
(β x β binders, Function.updateListITE V hd.args (List.map V xs) x = V' x) β
let E_ref := tl;
Holds D (I' D I V' E_ref P zs H) (Function.updateListITE V hd.args (List.map V xs)) E_ref hd.q β
Holds D I (Function.updateListITE V hd.args (List.map V xs)) E_ref (replace P zs H hd.q)
β’ Holds D (I' D I V' (hd :: tl) P zs H) (Function.updateListITE V hd.args (List.map V xs)) tl hd.q β
Holds D I (Function.updateListITE V hd.args (List.map V xs)) tl hd.q
|
Please generate a tactic in lean4 to solve the state.
STATE:
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
hd : Definition
tl : List Definition
ih :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tl;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := hd :: tl
X : DefName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux P zs H binders (def_ X xs)
h2 : β x β binders, V x = V' x
c1 : X = hd.name β§ xs.length = hd.args.length
β’ Holds D (I' D I V' (hd :: tl) P zs H) (Function.updateListITE V hd.args (List.map V xs)) tl hd.q β
Holds D I (Function.updateListITE V hd.args (List.map V xs)) tl hd.q
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Pred/One/Rec/Sub.lean
|
FOL.NV.Sub.Pred.One.Rec.substitution_theorem_aux
|
[188, 1]
|
[334, 13]
|
simp only [replace_no_predVar P zs H hd.q hd.h2] at ih
|
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
hd : Definition
tl : List Definition
E_ref : Env := hd :: tl
X : DefName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux P zs H binders (def_ X xs)
h2 : β x β binders, V x = V' x
c1 : X = hd.name β§ xs.length = hd.args.length
ih :
β (binders : Finset VarName),
admitsAux P zs H binders hd.q β
(β x β binders, Function.updateListITE V hd.args (List.map V xs) x = V' x) β
let E_ref := tl;
Holds D (I' D I V' E_ref P zs H) (Function.updateListITE V hd.args (List.map V xs)) E_ref hd.q β
Holds D I (Function.updateListITE V hd.args (List.map V xs)) E_ref (replace P zs H hd.q)
β’ Holds D (I' D I V' (hd :: tl) P zs H) (Function.updateListITE V hd.args (List.map V xs)) tl hd.q β
Holds D I (Function.updateListITE V hd.args (List.map V xs)) tl hd.q
|
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
hd : Definition
tl : List Definition
E_ref : Env := hd :: tl
X : DefName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux P zs H binders (def_ X xs)
h2 : β x β binders, V x = V' x
c1 : X = hd.name β§ xs.length = hd.args.length
ih :
β (binders : Finset VarName),
admitsAux P zs H binders hd.q β
(β x β binders, Function.updateListITE V hd.args (List.map V xs) x = V' x) β
(Holds D (I' D I V' tl P zs H) (Function.updateListITE V hd.args (List.map V xs)) tl hd.q β
Holds D I (Function.updateListITE V hd.args (List.map V xs)) tl hd.q)
β’ Holds D (I' D I V' (hd :: tl) P zs H) (Function.updateListITE V hd.args (List.map V xs)) tl hd.q β
Holds D I (Function.updateListITE V hd.args (List.map V xs)) tl hd.q
|
Please generate a tactic in lean4 to solve the state.
STATE:
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
hd : Definition
tl : List Definition
E_ref : Env := hd :: tl
X : DefName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux P zs H binders (def_ X xs)
h2 : β x β binders, V x = V' x
c1 : X = hd.name β§ xs.length = hd.args.length
ih :
β (binders : Finset VarName),
admitsAux P zs H binders hd.q β
(β x β binders, Function.updateListITE V hd.args (List.map V xs) x = V' x) β
let E_ref := tl;
Holds D (I' D I V' E_ref P zs H) (Function.updateListITE V hd.args (List.map V xs)) E_ref hd.q β
Holds D I (Function.updateListITE V hd.args (List.map V xs)) E_ref (replace P zs H hd.q)
β’ Holds D (I' D I V' (hd :: tl) P zs H) (Function.updateListITE V hd.args (List.map V xs)) tl hd.q β
Holds D I (Function.updateListITE V hd.args (List.map V xs)) tl hd.q
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Pred/One/Rec/Sub.lean
|
FOL.NV.Sub.Pred.One.Rec.substitution_theorem_aux
|
[188, 1]
|
[334, 13]
|
apply Holds_coincide_PredVar
|
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
hd : Definition
tl : List Definition
E_ref : Env := hd :: tl
X : DefName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux P zs H binders (def_ X xs)
h2 : β x β binders, V x = V' x
c1 : X = hd.name β§ xs.length = hd.args.length
ih :
β (binders : Finset VarName),
admitsAux P zs H binders hd.q β
(β x β binders, Function.updateListITE V hd.args (List.map V xs) x = V' x) β
(Holds D (I' D I V' tl P zs H) (Function.updateListITE V hd.args (List.map V xs)) tl hd.q β
Holds D I (Function.updateListITE V hd.args (List.map V xs)) tl hd.q)
β’ Holds D (I' D I V' (hd :: tl) P zs H) (Function.updateListITE V hd.args (List.map V xs)) tl hd.q β
Holds D I (Function.updateListITE V hd.args (List.map V xs)) tl hd.q
|
case h1
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
hd : Definition
tl : List Definition
E_ref : Env := hd :: tl
X : DefName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux P zs H binders (def_ X xs)
h2 : β x β binders, V x = V' x
c1 : X = hd.name β§ xs.length = hd.args.length
ih :
β (binders : Finset VarName),
admitsAux P zs H binders hd.q β
(β x β binders, Function.updateListITE V hd.args (List.map V xs) x = V' x) β
(Holds D (I' D I V' tl P zs H) (Function.updateListITE V hd.args (List.map V xs)) tl hd.q β
Holds D I (Function.updateListITE V hd.args (List.map V xs)) tl hd.q)
β’ (I' D I V' (hd :: tl) P zs H).pred_const_ = I.pred_const_
case h2
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
hd : Definition
tl : List Definition
E_ref : Env := hd :: tl
X : DefName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux P zs H binders (def_ X xs)
h2 : β x β binders, V x = V' x
c1 : X = hd.name β§ xs.length = hd.args.length
ih :
β (binders : Finset VarName),
admitsAux P zs H binders hd.q β
(β x β binders, Function.updateListITE V hd.args (List.map V xs) x = V' x) β
(Holds D (I' D I V' tl P zs H) (Function.updateListITE V hd.args (List.map V xs)) tl hd.q β
Holds D I (Function.updateListITE V hd.args (List.map V xs)) tl hd.q)
β’ β (P_1 : PredName) (ds : List D),
predVarOccursIn P_1 ds.length hd.q β ((I' D I V' (hd :: tl) P zs H).pred_var_ P_1 ds β I.pred_var_ P_1 ds)
|
Please generate a tactic in lean4 to solve the state.
STATE:
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
hd : Definition
tl : List Definition
E_ref : Env := hd :: tl
X : DefName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux P zs H binders (def_ X xs)
h2 : β x β binders, V x = V' x
c1 : X = hd.name β§ xs.length = hd.args.length
ih :
β (binders : Finset VarName),
admitsAux P zs H binders hd.q β
(β x β binders, Function.updateListITE V hd.args (List.map V xs) x = V' x) β
(Holds D (I' D I V' tl P zs H) (Function.updateListITE V hd.args (List.map V xs)) tl hd.q β
Holds D I (Function.updateListITE V hd.args (List.map V xs)) tl hd.q)
β’ Holds D (I' D I V' (hd :: tl) P zs H) (Function.updateListITE V hd.args (List.map V xs)) tl hd.q β
Holds D I (Function.updateListITE V hd.args (List.map V xs)) tl hd.q
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Pred/One/Rec/Sub.lean
|
FOL.NV.Sub.Pred.One.Rec.substitution_theorem_aux
|
[188, 1]
|
[334, 13]
|
simp only [I']
|
case h1
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
hd : Definition
tl : List Definition
E_ref : Env := hd :: tl
X : DefName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux P zs H binders (def_ X xs)
h2 : β x β binders, V x = V' x
c1 : X = hd.name β§ xs.length = hd.args.length
ih :
β (binders : Finset VarName),
admitsAux P zs H binders hd.q β
(β x β binders, Function.updateListITE V hd.args (List.map V xs) x = V' x) β
(Holds D (I' D I V' tl P zs H) (Function.updateListITE V hd.args (List.map V xs)) tl hd.q β
Holds D I (Function.updateListITE V hd.args (List.map V xs)) tl hd.q)
β’ (I' D I V' (hd :: tl) P zs H).pred_const_ = I.pred_const_
|
case h1
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
hd : Definition
tl : List Definition
E_ref : Env := hd :: tl
X : DefName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux P zs H binders (def_ X xs)
h2 : β x β binders, V x = V' x
c1 : X = hd.name β§ xs.length = hd.args.length
ih :
β (binders : Finset VarName),
admitsAux P zs H binders hd.q β
(β x β binders, Function.updateListITE V hd.args (List.map V xs) x = V' x) β
(Holds D (I' D I V' tl P zs H) (Function.updateListITE V hd.args (List.map V xs)) tl hd.q β
Holds D I (Function.updateListITE V hd.args (List.map V xs)) tl hd.q)
β’ (Interpretation.usingPred D I fun Q ds =>
if Q = P β§ ds.length = zs.length then Holds D I (Function.updateListITE V' zs ds) (hd :: tl) H
else I.pred_var_ Q ds).pred_const_ =
I.pred_const_
|
Please generate a tactic in lean4 to solve the state.
STATE:
case h1
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
hd : Definition
tl : List Definition
E_ref : Env := hd :: tl
X : DefName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux P zs H binders (def_ X xs)
h2 : β x β binders, V x = V' x
c1 : X = hd.name β§ xs.length = hd.args.length
ih :
β (binders : Finset VarName),
admitsAux P zs H binders hd.q β
(β x β binders, Function.updateListITE V hd.args (List.map V xs) x = V' x) β
(Holds D (I' D I V' tl P zs H) (Function.updateListITE V hd.args (List.map V xs)) tl hd.q β
Holds D I (Function.updateListITE V hd.args (List.map V xs)) tl hd.q)
β’ (I' D I V' (hd :: tl) P zs H).pred_const_ = I.pred_const_
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Pred/One/Rec/Sub.lean
|
FOL.NV.Sub.Pred.One.Rec.substitution_theorem_aux
|
[188, 1]
|
[334, 13]
|
simp only [Interpretation.usingPred]
|
case h1
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
hd : Definition
tl : List Definition
E_ref : Env := hd :: tl
X : DefName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux P zs H binders (def_ X xs)
h2 : β x β binders, V x = V' x
c1 : X = hd.name β§ xs.length = hd.args.length
ih :
β (binders : Finset VarName),
admitsAux P zs H binders hd.q β
(β x β binders, Function.updateListITE V hd.args (List.map V xs) x = V' x) β
(Holds D (I' D I V' tl P zs H) (Function.updateListITE V hd.args (List.map V xs)) tl hd.q β
Holds D I (Function.updateListITE V hd.args (List.map V xs)) tl hd.q)
β’ (Interpretation.usingPred D I fun Q ds =>
if Q = P β§ ds.length = zs.length then Holds D I (Function.updateListITE V' zs ds) (hd :: tl) H
else I.pred_var_ Q ds).pred_const_ =
I.pred_const_
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
case h1
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
hd : Definition
tl : List Definition
E_ref : Env := hd :: tl
X : DefName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux P zs H binders (def_ X xs)
h2 : β x β binders, V x = V' x
c1 : X = hd.name β§ xs.length = hd.args.length
ih :
β (binders : Finset VarName),
admitsAux P zs H binders hd.q β
(β x β binders, Function.updateListITE V hd.args (List.map V xs) x = V' x) β
(Holds D (I' D I V' tl P zs H) (Function.updateListITE V hd.args (List.map V xs)) tl hd.q β
Holds D I (Function.updateListITE V hd.args (List.map V xs)) tl hd.q)
β’ (Interpretation.usingPred D I fun Q ds =>
if Q = P β§ ds.length = zs.length then Holds D I (Function.updateListITE V' zs ds) (hd :: tl) H
else I.pred_var_ Q ds).pred_const_ =
I.pred_const_
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Pred/One/Rec/Sub.lean
|
FOL.NV.Sub.Pred.One.Rec.substitution_theorem_aux
|
[188, 1]
|
[334, 13]
|
simp only [predVarOccursIn_iff_mem_predVarSet]
|
case h2
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
hd : Definition
tl : List Definition
E_ref : Env := hd :: tl
X : DefName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux P zs H binders (def_ X xs)
h2 : β x β binders, V x = V' x
c1 : X = hd.name β§ xs.length = hd.args.length
ih :
β (binders : Finset VarName),
admitsAux P zs H binders hd.q β
(β x β binders, Function.updateListITE V hd.args (List.map V xs) x = V' x) β
(Holds D (I' D I V' tl P zs H) (Function.updateListITE V hd.args (List.map V xs)) tl hd.q β
Holds D I (Function.updateListITE V hd.args (List.map V xs)) tl hd.q)
β’ β (P_1 : PredName) (ds : List D),
predVarOccursIn P_1 ds.length hd.q β ((I' D I V' (hd :: tl) P zs H).pred_var_ P_1 ds β I.pred_var_ P_1 ds)
|
case h2
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
hd : Definition
tl : List Definition
E_ref : Env := hd :: tl
X : DefName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux P zs H binders (def_ X xs)
h2 : β x β binders, V x = V' x
c1 : X = hd.name β§ xs.length = hd.args.length
ih :
β (binders : Finset VarName),
admitsAux P zs H binders hd.q β
(β x β binders, Function.updateListITE V hd.args (List.map V xs) x = V' x) β
(Holds D (I' D I V' tl P zs H) (Function.updateListITE V hd.args (List.map V xs)) tl hd.q β
Holds D I (Function.updateListITE V hd.args (List.map V xs)) tl hd.q)
β’ β (P_1 : PredName) (ds : List D),
(P_1, ds.length) β hd.q.predVarSet β ((I' D I V' (hd :: tl) P zs H).pred_var_ P_1 ds β I.pred_var_ P_1 ds)
|
Please generate a tactic in lean4 to solve the state.
STATE:
case h2
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
hd : Definition
tl : List Definition
E_ref : Env := hd :: tl
X : DefName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux P zs H binders (def_ X xs)
h2 : β x β binders, V x = V' x
c1 : X = hd.name β§ xs.length = hd.args.length
ih :
β (binders : Finset VarName),
admitsAux P zs H binders hd.q β
(β x β binders, Function.updateListITE V hd.args (List.map V xs) x = V' x) β
(Holds D (I' D I V' tl P zs H) (Function.updateListITE V hd.args (List.map V xs)) tl hd.q β
Holds D I (Function.updateListITE V hd.args (List.map V xs)) tl hd.q)
β’ β (P_1 : PredName) (ds : List D),
predVarOccursIn P_1 ds.length hd.q β ((I' D I V' (hd :: tl) P zs H).pred_var_ P_1 ds β I.pred_var_ P_1 ds)
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Pred/One/Rec/Sub.lean
|
FOL.NV.Sub.Pred.One.Rec.substitution_theorem_aux
|
[188, 1]
|
[334, 13]
|
simp only [hd.h2]
|
case h2
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
hd : Definition
tl : List Definition
E_ref : Env := hd :: tl
X : DefName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux P zs H binders (def_ X xs)
h2 : β x β binders, V x = V' x
c1 : X = hd.name β§ xs.length = hd.args.length
ih :
β (binders : Finset VarName),
admitsAux P zs H binders hd.q β
(β x β binders, Function.updateListITE V hd.args (List.map V xs) x = V' x) β
(Holds D (I' D I V' tl P zs H) (Function.updateListITE V hd.args (List.map V xs)) tl hd.q β
Holds D I (Function.updateListITE V hd.args (List.map V xs)) tl hd.q)
β’ β (P_1 : PredName) (ds : List D),
(P_1, ds.length) β hd.q.predVarSet β ((I' D I V' (hd :: tl) P zs H).pred_var_ P_1 ds β I.pred_var_ P_1 ds)
|
case h2
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
hd : Definition
tl : List Definition
E_ref : Env := hd :: tl
X : DefName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux P zs H binders (def_ X xs)
h2 : β x β binders, V x = V' x
c1 : X = hd.name β§ xs.length = hd.args.length
ih :
β (binders : Finset VarName),
admitsAux P zs H binders hd.q β
(β x β binders, Function.updateListITE V hd.args (List.map V xs) x = V' x) β
(Holds D (I' D I V' tl P zs H) (Function.updateListITE V hd.args (List.map V xs)) tl hd.q β
Holds D I (Function.updateListITE V hd.args (List.map V xs)) tl hd.q)
β’ β (P_1 : PredName) (ds : List D),
(P_1, ds.length) β β
β ((I' D I V' (hd :: tl) P zs H).pred_var_ P_1 ds β I.pred_var_ P_1 ds)
|
Please generate a tactic in lean4 to solve the state.
STATE:
case h2
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
hd : Definition
tl : List Definition
E_ref : Env := hd :: tl
X : DefName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux P zs H binders (def_ X xs)
h2 : β x β binders, V x = V' x
c1 : X = hd.name β§ xs.length = hd.args.length
ih :
β (binders : Finset VarName),
admitsAux P zs H binders hd.q β
(β x β binders, Function.updateListITE V hd.args (List.map V xs) x = V' x) β
(Holds D (I' D I V' tl P zs H) (Function.updateListITE V hd.args (List.map V xs)) tl hd.q β
Holds D I (Function.updateListITE V hd.args (List.map V xs)) tl hd.q)
β’ β (P_1 : PredName) (ds : List D),
(P_1, ds.length) β hd.q.predVarSet β ((I' D I V' (hd :: tl) P zs H).pred_var_ P_1 ds β I.pred_var_ P_1 ds)
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Pred/One/Rec/Sub.lean
|
FOL.NV.Sub.Pred.One.Rec.substitution_theorem_aux
|
[188, 1]
|
[334, 13]
|
simp
|
case h2
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
hd : Definition
tl : List Definition
E_ref : Env := hd :: tl
X : DefName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux P zs H binders (def_ X xs)
h2 : β x β binders, V x = V' x
c1 : X = hd.name β§ xs.length = hd.args.length
ih :
β (binders : Finset VarName),
admitsAux P zs H binders hd.q β
(β x β binders, Function.updateListITE V hd.args (List.map V xs) x = V' x) β
(Holds D (I' D I V' tl P zs H) (Function.updateListITE V hd.args (List.map V xs)) tl hd.q β
Holds D I (Function.updateListITE V hd.args (List.map V xs)) tl hd.q)
β’ β (P_1 : PredName) (ds : List D),
(P_1, ds.length) β β
β ((I' D I V' (hd :: tl) P zs H).pred_var_ P_1 ds β I.pred_var_ P_1 ds)
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
case h2
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
hd : Definition
tl : List Definition
E_ref : Env := hd :: tl
X : DefName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux P zs H binders (def_ X xs)
h2 : β x β binders, V x = V' x
c1 : X = hd.name β§ xs.length = hd.args.length
ih :
β (binders : Finset VarName),
admitsAux P zs H binders hd.q β
(β x β binders, Function.updateListITE V hd.args (List.map V xs) x = V' x) β
(Holds D (I' D I V' tl P zs H) (Function.updateListITE V hd.args (List.map V xs)) tl hd.q β
Holds D I (Function.updateListITE V hd.args (List.map V xs)) tl hd.q)
β’ β (P_1 : PredName) (ds : List D),
(P_1, ds.length) β β
β ((I' D I V' (hd :: tl) P zs H).pred_var_ P_1 ds β I.pred_var_ P_1 ds)
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Pred/One/Rec/Sub.lean
|
FOL.NV.Sub.Pred.One.Rec.substitution_theorem_aux
|
[188, 1]
|
[334, 13]
|
apply Holds_coincide_PredVar
|
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
hd : Definition
tl : List Definition
ih :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tl;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := hd :: tl
X : DefName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux P zs H binders (def_ X xs)
h2 : β x β binders, V x = V' x
c1 : Β¬(X = hd.name β§ xs.length = hd.args.length)
β’ Holds D (I' D I V' (hd :: tl) P zs H) V tl (def_ X xs) β Holds D I V tl (def_ X xs)
|
case h1
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
hd : Definition
tl : List Definition
ih :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tl;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := hd :: tl
X : DefName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux P zs H binders (def_ X xs)
h2 : β x β binders, V x = V' x
c1 : Β¬(X = hd.name β§ xs.length = hd.args.length)
β’ (I' D I V' (hd :: tl) P zs H).pred_const_ = I.pred_const_
case h2
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
hd : Definition
tl : List Definition
ih :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tl;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := hd :: tl
X : DefName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux P zs H binders (def_ X xs)
h2 : β x β binders, V x = V' x
c1 : Β¬(X = hd.name β§ xs.length = hd.args.length)
β’ β (P_1 : PredName) (ds : List D),
predVarOccursIn P_1 ds.length (def_ X xs) β ((I' D I V' (hd :: tl) P zs H).pred_var_ P_1 ds β I.pred_var_ P_1 ds)
|
Please generate a tactic in lean4 to solve the state.
STATE:
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
hd : Definition
tl : List Definition
ih :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tl;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := hd :: tl
X : DefName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux P zs H binders (def_ X xs)
h2 : β x β binders, V x = V' x
c1 : Β¬(X = hd.name β§ xs.length = hd.args.length)
β’ Holds D (I' D I V' (hd :: tl) P zs H) V tl (def_ X xs) β Holds D I V tl (def_ X xs)
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Pred/One/Rec/Sub.lean
|
FOL.NV.Sub.Pred.One.Rec.substitution_theorem_aux
|
[188, 1]
|
[334, 13]
|
simp only [I']
|
case h1
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
hd : Definition
tl : List Definition
ih :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tl;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := hd :: tl
X : DefName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux P zs H binders (def_ X xs)
h2 : β x β binders, V x = V' x
c1 : Β¬(X = hd.name β§ xs.length = hd.args.length)
β’ (I' D I V' (hd :: tl) P zs H).pred_const_ = I.pred_const_
|
case h1
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
hd : Definition
tl : List Definition
ih :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tl;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := hd :: tl
X : DefName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux P zs H binders (def_ X xs)
h2 : β x β binders, V x = V' x
c1 : Β¬(X = hd.name β§ xs.length = hd.args.length)
β’ (Interpretation.usingPred D I fun Q ds =>
if Q = P β§ ds.length = zs.length then Holds D I (Function.updateListITE V' zs ds) (hd :: tl) H
else I.pred_var_ Q ds).pred_const_ =
I.pred_const_
|
Please generate a tactic in lean4 to solve the state.
STATE:
case h1
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
hd : Definition
tl : List Definition
ih :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tl;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := hd :: tl
X : DefName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux P zs H binders (def_ X xs)
h2 : β x β binders, V x = V' x
c1 : Β¬(X = hd.name β§ xs.length = hd.args.length)
β’ (I' D I V' (hd :: tl) P zs H).pred_const_ = I.pred_const_
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Pred/One/Rec/Sub.lean
|
FOL.NV.Sub.Pred.One.Rec.substitution_theorem_aux
|
[188, 1]
|
[334, 13]
|
simp only [Interpretation.usingPred]
|
case h1
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
hd : Definition
tl : List Definition
ih :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tl;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := hd :: tl
X : DefName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux P zs H binders (def_ X xs)
h2 : β x β binders, V x = V' x
c1 : Β¬(X = hd.name β§ xs.length = hd.args.length)
β’ (Interpretation.usingPred D I fun Q ds =>
if Q = P β§ ds.length = zs.length then Holds D I (Function.updateListITE V' zs ds) (hd :: tl) H
else I.pred_var_ Q ds).pred_const_ =
I.pred_const_
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
case h1
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
hd : Definition
tl : List Definition
ih :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tl;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := hd :: tl
X : DefName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux P zs H binders (def_ X xs)
h2 : β x β binders, V x = V' x
c1 : Β¬(X = hd.name β§ xs.length = hd.args.length)
β’ (Interpretation.usingPred D I fun Q ds =>
if Q = P β§ ds.length = zs.length then Holds D I (Function.updateListITE V' zs ds) (hd :: tl) H
else I.pred_var_ Q ds).pred_const_ =
I.pred_const_
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Pred/One/Rec/Sub.lean
|
FOL.NV.Sub.Pred.One.Rec.substitution_theorem_aux
|
[188, 1]
|
[334, 13]
|
simp only [predVarOccursIn]
|
case h2
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
hd : Definition
tl : List Definition
ih :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tl;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := hd :: tl
X : DefName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux P zs H binders (def_ X xs)
h2 : β x β binders, V x = V' x
c1 : Β¬(X = hd.name β§ xs.length = hd.args.length)
β’ β (P_1 : PredName) (ds : List D),
predVarOccursIn P_1 ds.length (def_ X xs) β ((I' D I V' (hd :: tl) P zs H).pred_var_ P_1 ds β I.pred_var_ P_1 ds)
|
case h2
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
hd : Definition
tl : List Definition
ih :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tl;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := hd :: tl
X : DefName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux P zs H binders (def_ X xs)
h2 : β x β binders, V x = V' x
c1 : Β¬(X = hd.name β§ xs.length = hd.args.length)
β’ β (P_1 : PredName) (ds : List D), False β ((I' D I V' (hd :: tl) P zs H).pred_var_ P_1 ds β I.pred_var_ P_1 ds)
|
Please generate a tactic in lean4 to solve the state.
STATE:
case h2
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
hd : Definition
tl : List Definition
ih :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tl;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := hd :: tl
X : DefName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux P zs H binders (def_ X xs)
h2 : β x β binders, V x = V' x
c1 : Β¬(X = hd.name β§ xs.length = hd.args.length)
β’ β (P_1 : PredName) (ds : List D),
predVarOccursIn P_1 ds.length (def_ X xs) β ((I' D I V' (hd :: tl) P zs H).pred_var_ P_1 ds β I.pred_var_ P_1 ds)
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Pred/One/Rec/Sub.lean
|
FOL.NV.Sub.Pred.One.Rec.substitution_theorem_aux
|
[188, 1]
|
[334, 13]
|
simp
|
case h2
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
hd : Definition
tl : List Definition
ih :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tl;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := hd :: tl
X : DefName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux P zs H binders (def_ X xs)
h2 : β x β binders, V x = V' x
c1 : Β¬(X = hd.name β§ xs.length = hd.args.length)
β’ β (P_1 : PredName) (ds : List D), False β ((I' D I V' (hd :: tl) P zs H).pred_var_ P_1 ds β I.pred_var_ P_1 ds)
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
case h2
D : Type
I : Interpretation D
V' : VarAssignment D
P : PredName
zs : List VarName
H : Formula
hd : Definition
tl : List Definition
ih :
β (V : VarAssignment D) (F : Formula) (binders : Finset VarName),
admitsAux P zs H binders F β
(β x β binders, V x = V' x) β
let E_ref := tl;
Holds D (I' D I V' E_ref P zs H) V E_ref F β Holds D I V E_ref (replace P zs H F)
E_ref : Env := hd :: tl
X : DefName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux P zs H binders (def_ X xs)
h2 : β x β binders, V x = V' x
c1 : Β¬(X = hd.name β§ xs.length = hd.args.length)
β’ β (P_1 : PredName) (ds : List D), False β ((I' D I V' (hd :: tl) P zs H).pred_var_ P_1 ds β I.pred_var_ P_1 ds)
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Pred/One/Rec/Sub.lean
|
FOL.NV.Sub.Pred.One.Rec.substitution_theorem
|
[337, 1]
|
[352, 9]
|
apply substitution_theorem_aux D I V V E F P zs H β
|
D : Type
I : Interpretation D
V : VarAssignment D
E : Env
F : Formula
P : PredName
zs : List VarName
H : Formula
h1 : admits P zs H F
β’ Holds D (I' D I V E P zs H) V E F β Holds D I V E (replace P zs H F)
|
case h1
D : Type
I : Interpretation D
V : VarAssignment D
E : Env
F : Formula
P : PredName
zs : List VarName
H : Formula
h1 : admits P zs H F
β’ admitsAux P zs H β
F
case h2
D : Type
I : Interpretation D
V : VarAssignment D
E : Env
F : Formula
P : PredName
zs : List VarName
H : Formula
h1 : admits P zs H F
β’ β x β β
, V x = V x
|
Please generate a tactic in lean4 to solve the state.
STATE:
D : Type
I : Interpretation D
V : VarAssignment D
E : Env
F : Formula
P : PredName
zs : List VarName
H : Formula
h1 : admits P zs H F
β’ Holds D (I' D I V E P zs H) V E F β Holds D I V E (replace P zs H F)
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Pred/One/Rec/Sub.lean
|
FOL.NV.Sub.Pred.One.Rec.substitution_theorem
|
[337, 1]
|
[352, 9]
|
exact h1
|
case h1
D : Type
I : Interpretation D
V : VarAssignment D
E : Env
F : Formula
P : PredName
zs : List VarName
H : Formula
h1 : admits P zs H F
β’ admitsAux P zs H β
F
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
case h1
D : Type
I : Interpretation D
V : VarAssignment D
E : Env
F : Formula
P : PredName
zs : List VarName
H : Formula
h1 : admits P zs H F
β’ admitsAux P zs H β
F
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Pred/One/Rec/Sub.lean
|
FOL.NV.Sub.Pred.One.Rec.substitution_theorem
|
[337, 1]
|
[352, 9]
|
simp
|
case h2
D : Type
I : Interpretation D
V : VarAssignment D
E : Env
F : Formula
P : PredName
zs : List VarName
H : Formula
h1 : admits P zs H F
β’ β x β β
, V x = V x
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
case h2
D : Type
I : Interpretation D
V : VarAssignment D
E : Env
F : Formula
P : PredName
zs : List VarName
H : Formula
h1 : admits P zs H F
β’ β x β β
, V x = V x
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Pred/One/Rec/Sub.lean
|
FOL.NV.Sub.Pred.One.Rec.substitution_is_valid
|
[355, 1]
|
[369, 11]
|
simp only [IsValid] at h2
|
F : Formula
P : PredName
zs : List VarName
H : Formula
h1 : admits P zs H F
h2 : F.IsValid
β’ (replace P zs H F).IsValid
|
F : Formula
P : PredName
zs : List VarName
H : Formula
h1 : admits P zs H F
h2 : β (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), Holds D I V E F
β’ (replace P zs H F).IsValid
|
Please generate a tactic in lean4 to solve the state.
STATE:
F : Formula
P : PredName
zs : List VarName
H : Formula
h1 : admits P zs H F
h2 : F.IsValid
β’ (replace P zs H F).IsValid
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Pred/One/Rec/Sub.lean
|
FOL.NV.Sub.Pred.One.Rec.substitution_is_valid
|
[355, 1]
|
[369, 11]
|
simp only [IsValid]
|
F : Formula
P : PredName
zs : List VarName
H : Formula
h1 : admits P zs H F
h2 : β (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), Holds D I V E F
β’ (replace P zs H F).IsValid
|
F : Formula
P : PredName
zs : List VarName
H : Formula
h1 : admits P zs H F
h2 : β (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), Holds D I V E F
β’ β (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), Holds D I V E (replace P zs H F)
|
Please generate a tactic in lean4 to solve the state.
STATE:
F : Formula
P : PredName
zs : List VarName
H : Formula
h1 : admits P zs H F
h2 : β (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), Holds D I V E F
β’ (replace P zs H F).IsValid
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Pred/One/Rec/Sub.lean
|
FOL.NV.Sub.Pred.One.Rec.substitution_is_valid
|
[355, 1]
|
[369, 11]
|
intro D I V E
|
F : Formula
P : PredName
zs : List VarName
H : Formula
h1 : admits P zs H F
h2 : β (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), Holds D I V E F
β’ β (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), Holds D I V E (replace P zs H F)
|
F : Formula
P : PredName
zs : List VarName
H : Formula
h1 : admits P zs H F
h2 : β (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), Holds D I V E F
D : Type
I : Interpretation D
V : VarAssignment D
E : Env
β’ Holds D I V E (replace P zs H F)
|
Please generate a tactic in lean4 to solve the state.
STATE:
F : Formula
P : PredName
zs : List VarName
H : Formula
h1 : admits P zs H F
h2 : β (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), Holds D I V E F
β’ β (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), Holds D I V E (replace P zs H F)
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Pred/One/Rec/Sub.lean
|
FOL.NV.Sub.Pred.One.Rec.substitution_is_valid
|
[355, 1]
|
[369, 11]
|
simp only [β substitution_theorem D I V E F P zs H h1]
|
F : Formula
P : PredName
zs : List VarName
H : Formula
h1 : admits P zs H F
h2 : β (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), Holds D I V E F
D : Type
I : Interpretation D
V : VarAssignment D
E : Env
β’ Holds D I V E (replace P zs H F)
|
F : Formula
P : PredName
zs : List VarName
H : Formula
h1 : admits P zs H F
h2 : β (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), Holds D I V E F
D : Type
I : Interpretation D
V : VarAssignment D
E : Env
β’ Holds D (I' D I V E P zs H) V E F
|
Please generate a tactic in lean4 to solve the state.
STATE:
F : Formula
P : PredName
zs : List VarName
H : Formula
h1 : admits P zs H F
h2 : β (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), Holds D I V E F
D : Type
I : Interpretation D
V : VarAssignment D
E : Env
β’ Holds D I V E (replace P zs H F)
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Pred/One/Rec/Sub.lean
|
FOL.NV.Sub.Pred.One.Rec.substitution_is_valid
|
[355, 1]
|
[369, 11]
|
apply h2
|
F : Formula
P : PredName
zs : List VarName
H : Formula
h1 : admits P zs H F
h2 : β (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), Holds D I V E F
D : Type
I : Interpretation D
V : VarAssignment D
E : Env
β’ Holds D (I' D I V E P zs H) V E F
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
F : Formula
P : PredName
zs : List VarName
H : Formula
h1 : admits P zs H F
h2 : β (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), Holds D I V E F
D : Type
I : Interpretation D
V : VarAssignment D
E : Env
β’ Holds D (I' D I V E P zs H) V E F
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/LN/Binders.lean
|
LN.occursIn_iff_mem_varSet
|
[186, 1]
|
[208, 17]
|
induction F
|
v : Var
F : Formula
β’ occursIn v F β v β F.varSet
|
case pred_
v : Var
aβΒΉ : String
aβ : List Var
β’ occursIn v (pred_ aβΒΉ aβ) β v β (pred_ aβΒΉ aβ).varSet
case not_
v : Var
aβ : Formula
a_ihβ : occursIn v aβ β v β aβ.varSet
β’ occursIn v aβ.not_ β v β aβ.not_.varSet
case imp_
v : Var
aβΒΉ aβ : Formula
a_ihβΒΉ : occursIn v aβΒΉ β v β aβΒΉ.varSet
a_ihβ : occursIn v aβ β v β aβ.varSet
β’ occursIn v (aβΒΉ.imp_ aβ) β v β (aβΒΉ.imp_ aβ).varSet
case forall_
v : Var
aβΒΉ : String
aβ : Formula
a_ihβ : occursIn v aβ β v β aβ.varSet
β’ occursIn v (forall_ aβΒΉ aβ) β v β (forall_ aβΒΉ aβ).varSet
|
Please generate a tactic in lean4 to solve the state.
STATE:
v : Var
F : Formula
β’ occursIn v F β v β F.varSet
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/LN/Binders.lean
|
LN.occursIn_iff_mem_varSet
|
[186, 1]
|
[208, 17]
|
case pred_ X vs =>
simp only [occursIn]
simp only [varSet]
simp
|
v : Var
X : String
vs : List Var
β’ occursIn v (pred_ X vs) β v β (pred_ X vs).varSet
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
v : Var
X : String
vs : List Var
β’ occursIn v (pred_ X vs) β v β (pred_ X vs).varSet
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/LN/Binders.lean
|
LN.occursIn_iff_mem_varSet
|
[186, 1]
|
[208, 17]
|
case not_ phi phi_ih =>
simp only [occursIn]
simp only [varSet]
exact phi_ih
|
v : Var
phi : Formula
phi_ih : occursIn v phi β v β phi.varSet
β’ occursIn v phi.not_ β v β phi.not_.varSet
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
v : Var
phi : Formula
phi_ih : occursIn v phi β v β phi.varSet
β’ occursIn v phi.not_ β v β phi.not_.varSet
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/LN/Binders.lean
|
LN.occursIn_iff_mem_varSet
|
[186, 1]
|
[208, 17]
|
case imp_ phi psi phi_ih psi_ih =>
simp only [occursIn]
simp only [varSet]
simp
congr!
|
v : Var
phi psi : Formula
phi_ih : occursIn v phi β v β phi.varSet
psi_ih : occursIn v psi β v β psi.varSet
β’ occursIn v (phi.imp_ psi) β v β (phi.imp_ psi).varSet
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
v : Var
phi psi : Formula
phi_ih : occursIn v phi β v β phi.varSet
psi_ih : occursIn v psi β v β psi.varSet
β’ occursIn v (phi.imp_ psi) β v β (phi.imp_ psi).varSet
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/LN/Binders.lean
|
LN.occursIn_iff_mem_varSet
|
[186, 1]
|
[208, 17]
|
case forall_ _ phi phi_ih =>
simp only [occursIn]
simp only [varSet]
exact phi_ih
|
v : Var
aβ : String
phi : Formula
phi_ih : occursIn v phi β v β phi.varSet
β’ occursIn v (forall_ aβ phi) β v β (forall_ aβ phi).varSet
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
v : Var
aβ : String
phi : Formula
phi_ih : occursIn v phi β v β phi.varSet
β’ occursIn v (forall_ aβ phi) β v β (forall_ aβ phi).varSet
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/LN/Binders.lean
|
LN.occursIn_iff_mem_varSet
|
[186, 1]
|
[208, 17]
|
simp only [occursIn]
|
v : Var
X : String
vs : List Var
β’ occursIn v (pred_ X vs) β v β (pred_ X vs).varSet
|
v : Var
X : String
vs : List Var
β’ v β vs β v β (pred_ X vs).varSet
|
Please generate a tactic in lean4 to solve the state.
STATE:
v : Var
X : String
vs : List Var
β’ occursIn v (pred_ X vs) β v β (pred_ X vs).varSet
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/LN/Binders.lean
|
LN.occursIn_iff_mem_varSet
|
[186, 1]
|
[208, 17]
|
simp only [varSet]
|
v : Var
X : String
vs : List Var
β’ v β vs β v β (pred_ X vs).varSet
|
v : Var
X : String
vs : List Var
β’ v β vs β v β vs.toFinset
|
Please generate a tactic in lean4 to solve the state.
STATE:
v : Var
X : String
vs : List Var
β’ v β vs β v β (pred_ X vs).varSet
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/LN/Binders.lean
|
LN.occursIn_iff_mem_varSet
|
[186, 1]
|
[208, 17]
|
simp
|
v : Var
X : String
vs : List Var
β’ v β vs β v β vs.toFinset
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
v : Var
X : String
vs : List Var
β’ v β vs β v β vs.toFinset
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/LN/Binders.lean
|
LN.occursIn_iff_mem_varSet
|
[186, 1]
|
[208, 17]
|
simp only [occursIn]
|
v : Var
phi : Formula
phi_ih : occursIn v phi β v β phi.varSet
β’ occursIn v phi.not_ β v β phi.not_.varSet
|
v : Var
phi : Formula
phi_ih : occursIn v phi β v β phi.varSet
β’ occursIn v phi β v β phi.not_.varSet
|
Please generate a tactic in lean4 to solve the state.
STATE:
v : Var
phi : Formula
phi_ih : occursIn v phi β v β phi.varSet
β’ occursIn v phi.not_ β v β phi.not_.varSet
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/LN/Binders.lean
|
LN.occursIn_iff_mem_varSet
|
[186, 1]
|
[208, 17]
|
simp only [varSet]
|
v : Var
phi : Formula
phi_ih : occursIn v phi β v β phi.varSet
β’ occursIn v phi β v β phi.not_.varSet
|
v : Var
phi : Formula
phi_ih : occursIn v phi β v β phi.varSet
β’ occursIn v phi β v β phi.varSet
|
Please generate a tactic in lean4 to solve the state.
STATE:
v : Var
phi : Formula
phi_ih : occursIn v phi β v β phi.varSet
β’ occursIn v phi β v β phi.not_.varSet
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/LN/Binders.lean
|
LN.occursIn_iff_mem_varSet
|
[186, 1]
|
[208, 17]
|
exact phi_ih
|
v : Var
phi : Formula
phi_ih : occursIn v phi β v β phi.varSet
β’ occursIn v phi β v β phi.varSet
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
v : Var
phi : Formula
phi_ih : occursIn v phi β v β phi.varSet
β’ occursIn v phi β v β phi.varSet
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/LN/Binders.lean
|
LN.occursIn_iff_mem_varSet
|
[186, 1]
|
[208, 17]
|
simp only [occursIn]
|
v : Var
phi psi : Formula
phi_ih : occursIn v phi β v β phi.varSet
psi_ih : occursIn v psi β v β psi.varSet
β’ occursIn v (phi.imp_ psi) β v β (phi.imp_ psi).varSet
|
v : Var
phi psi : Formula
phi_ih : occursIn v phi β v β phi.varSet
psi_ih : occursIn v psi β v β psi.varSet
β’ occursIn v phi β¨ occursIn v psi β v β (phi.imp_ psi).varSet
|
Please generate a tactic in lean4 to solve the state.
STATE:
v : Var
phi psi : Formula
phi_ih : occursIn v phi β v β phi.varSet
psi_ih : occursIn v psi β v β psi.varSet
β’ occursIn v (phi.imp_ psi) β v β (phi.imp_ psi).varSet
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/LN/Binders.lean
|
LN.occursIn_iff_mem_varSet
|
[186, 1]
|
[208, 17]
|
simp only [varSet]
|
v : Var
phi psi : Formula
phi_ih : occursIn v phi β v β phi.varSet
psi_ih : occursIn v psi β v β psi.varSet
β’ occursIn v phi β¨ occursIn v psi β v β (phi.imp_ psi).varSet
|
v : Var
phi psi : Formula
phi_ih : occursIn v phi β v β phi.varSet
psi_ih : occursIn v psi β v β psi.varSet
β’ occursIn v phi β¨ occursIn v psi β v β phi.varSet βͺ psi.varSet
|
Please generate a tactic in lean4 to solve the state.
STATE:
v : Var
phi psi : Formula
phi_ih : occursIn v phi β v β phi.varSet
psi_ih : occursIn v psi β v β psi.varSet
β’ occursIn v phi β¨ occursIn v psi β v β (phi.imp_ psi).varSet
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/LN/Binders.lean
|
LN.occursIn_iff_mem_varSet
|
[186, 1]
|
[208, 17]
|
simp
|
v : Var
phi psi : Formula
phi_ih : occursIn v phi β v β phi.varSet
psi_ih : occursIn v psi β v β psi.varSet
β’ occursIn v phi β¨ occursIn v psi β v β phi.varSet βͺ psi.varSet
|
v : Var
phi psi : Formula
phi_ih : occursIn v phi β v β phi.varSet
psi_ih : occursIn v psi β v β psi.varSet
β’ occursIn v phi β¨ occursIn v psi β v β phi.varSet β¨ v β psi.varSet
|
Please generate a tactic in lean4 to solve the state.
STATE:
v : Var
phi psi : Formula
phi_ih : occursIn v phi β v β phi.varSet
psi_ih : occursIn v psi β v β psi.varSet
β’ occursIn v phi β¨ occursIn v psi β v β phi.varSet βͺ psi.varSet
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/LN/Binders.lean
|
LN.occursIn_iff_mem_varSet
|
[186, 1]
|
[208, 17]
|
congr!
|
v : Var
phi psi : Formula
phi_ih : occursIn v phi β v β phi.varSet
psi_ih : occursIn v psi β v β psi.varSet
β’ occursIn v phi β¨ occursIn v psi β v β phi.varSet β¨ v β psi.varSet
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
v : Var
phi psi : Formula
phi_ih : occursIn v phi β v β phi.varSet
psi_ih : occursIn v psi β v β psi.varSet
β’ occursIn v phi β¨ occursIn v psi β v β phi.varSet β¨ v β psi.varSet
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/LN/Binders.lean
|
LN.occursIn_iff_mem_varSet
|
[186, 1]
|
[208, 17]
|
simp only [occursIn]
|
v : Var
aβ : String
phi : Formula
phi_ih : occursIn v phi β v β phi.varSet
β’ occursIn v (forall_ aβ phi) β v β (forall_ aβ phi).varSet
|
v : Var
aβ : String
phi : Formula
phi_ih : occursIn v phi β v β phi.varSet
β’ occursIn v phi β v β (forall_ aβ phi).varSet
|
Please generate a tactic in lean4 to solve the state.
STATE:
v : Var
aβ : String
phi : Formula
phi_ih : occursIn v phi β v β phi.varSet
β’ occursIn v (forall_ aβ phi) β v β (forall_ aβ phi).varSet
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/LN/Binders.lean
|
LN.occursIn_iff_mem_varSet
|
[186, 1]
|
[208, 17]
|
simp only [varSet]
|
v : Var
aβ : String
phi : Formula
phi_ih : occursIn v phi β v β phi.varSet
β’ occursIn v phi β v β (forall_ aβ phi).varSet
|
v : Var
aβ : String
phi : Formula
phi_ih : occursIn v phi β v β phi.varSet
β’ occursIn v phi β v β phi.varSet
|
Please generate a tactic in lean4 to solve the state.
STATE:
v : Var
aβ : String
phi : Formula
phi_ih : occursIn v phi β v β phi.varSet
β’ occursIn v phi β v β (forall_ aβ phi).varSet
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/LN/Binders.lean
|
LN.occursIn_iff_mem_varSet
|
[186, 1]
|
[208, 17]
|
exact phi_ih
|
v : Var
aβ : String
phi : Formula
phi_ih : occursIn v phi β v β phi.varSet
β’ occursIn v phi β v β phi.varSet
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
v : Var
aβ : String
phi : Formula
phi_ih : occursIn v phi β v β phi.varSet
β’ occursIn v phi β v β phi.varSet
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/LN/Binders.lean
|
LN.isFreeIn_iff_mem_freeVarSet
|
[211, 1]
|
[264, 17]
|
induction F
|
v : Var
F : Formula
β’ occursIn v F β§ v.isFree β v β F.freeVarSet
|
case pred_
v : Var
aβΒΉ : String
aβ : List Var
β’ occursIn v (pred_ aβΒΉ aβ) β§ v.isFree β v β (pred_ aβΒΉ aβ).freeVarSet
case not_
v : Var
aβ : Formula
a_ihβ : occursIn v aβ β§ v.isFree β v β aβ.freeVarSet
β’ occursIn v aβ.not_ β§ v.isFree β v β aβ.not_.freeVarSet
case imp_
v : Var
aβΒΉ aβ : Formula
a_ihβΒΉ : occursIn v aβΒΉ β§ v.isFree β v β aβΒΉ.freeVarSet
a_ihβ : occursIn v aβ β§ v.isFree β v β aβ.freeVarSet
β’ occursIn v (aβΒΉ.imp_ aβ) β§ v.isFree β v β (aβΒΉ.imp_ aβ).freeVarSet
case forall_
v : Var
aβΒΉ : String
aβ : Formula
a_ihβ : occursIn v aβ β§ v.isFree β v β aβ.freeVarSet
β’ occursIn v (forall_ aβΒΉ aβ) β§ v.isFree β v β (forall_ aβΒΉ aβ).freeVarSet
|
Please generate a tactic in lean4 to solve the state.
STATE:
v : Var
F : Formula
β’ occursIn v F β§ v.isFree β v β F.freeVarSet
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/LN/Binders.lean
|
LN.isFreeIn_iff_mem_freeVarSet
|
[211, 1]
|
[264, 17]
|
case not_ phi phi_ih =>
simp only [Formula.freeVarSet]
simp only [occursIn]
exact phi_ih
|
v : Var
phi : Formula
phi_ih : occursIn v phi β§ v.isFree β v β phi.freeVarSet
β’ occursIn v phi.not_ β§ v.isFree β v β phi.not_.freeVarSet
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
v : Var
phi : Formula
phi_ih : occursIn v phi β§ v.isFree β v β phi.freeVarSet
β’ occursIn v phi.not_ β§ v.isFree β v β phi.not_.freeVarSet
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/LN/Binders.lean
|
LN.isFreeIn_iff_mem_freeVarSet
|
[211, 1]
|
[264, 17]
|
case imp_ phi psi phi_ih psi_ih =>
simp only [Formula.freeVarSet]
simp only [occursIn]
simp
tauto
|
v : Var
phi psi : Formula
phi_ih : occursIn v phi β§ v.isFree β v β phi.freeVarSet
psi_ih : occursIn v psi β§ v.isFree β v β psi.freeVarSet
β’ occursIn v (phi.imp_ psi) β§ v.isFree β v β (phi.imp_ psi).freeVarSet
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
v : Var
phi psi : Formula
phi_ih : occursIn v phi β§ v.isFree β v β phi.freeVarSet
psi_ih : occursIn v psi β§ v.isFree β v β psi.freeVarSet
β’ occursIn v (phi.imp_ psi) β§ v.isFree β v β (phi.imp_ psi).freeVarSet
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/LN/Binders.lean
|
LN.isFreeIn_iff_mem_freeVarSet
|
[211, 1]
|
[264, 17]
|
case forall_ _ phi phi_ih =>
simp only [Formula.freeVarSet]
simp only [occursIn]
exact phi_ih
|
v : Var
aβ : String
phi : Formula
phi_ih : occursIn v phi β§ v.isFree β v β phi.freeVarSet
β’ occursIn v (forall_ aβ phi) β§ v.isFree β v β (forall_ aβ phi).freeVarSet
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
v : Var
aβ : String
phi : Formula
phi_ih : occursIn v phi β§ v.isFree β v β phi.freeVarSet
β’ occursIn v (forall_ aβ phi) β§ v.isFree β v β (forall_ aβ phi).freeVarSet
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/LN/Binders.lean
|
LN.isFreeIn_iff_mem_freeVarSet
|
[211, 1]
|
[264, 17]
|
simp only [Formula.freeVarSet]
|
v : Var
X : String
vs : List Var
β’ occursIn v (pred_ X vs) β§ v.isFree β v β (pred_ X vs).freeVarSet
|
v : Var
X : String
vs : List Var
β’ occursIn v (pred_ X vs) β§ v.isFree β v β vs.toFinset.biUnion Var.freeVarSet
|
Please generate a tactic in lean4 to solve the state.
STATE:
v : Var
X : String
vs : List Var
β’ occursIn v (pred_ X vs) β§ v.isFree β v β (pred_ X vs).freeVarSet
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/LN/Binders.lean
|
LN.isFreeIn_iff_mem_freeVarSet
|
[211, 1]
|
[264, 17]
|
simp only [occursIn]
|
v : Var
X : String
vs : List Var
β’ occursIn v (pred_ X vs) β§ v.isFree β v β vs.toFinset.biUnion Var.freeVarSet
|
v : Var
X : String
vs : List Var
β’ v β vs β§ v.isFree β v β vs.toFinset.biUnion Var.freeVarSet
|
Please generate a tactic in lean4 to solve the state.
STATE:
v : Var
X : String
vs : List Var
β’ occursIn v (pred_ X vs) β§ v.isFree β v β vs.toFinset.biUnion Var.freeVarSet
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/LN/Binders.lean
|
LN.isFreeIn_iff_mem_freeVarSet
|
[211, 1]
|
[264, 17]
|
simp
|
v : Var
X : String
vs : List Var
β’ v β vs β§ v.isFree β v β vs.toFinset.biUnion Var.freeVarSet
|
v : Var
X : String
vs : List Var
β’ v β vs β§ v.isFree β β a β vs, v β a.freeVarSet
|
Please generate a tactic in lean4 to solve the state.
STATE:
v : Var
X : String
vs : List Var
β’ v β vs β§ v.isFree β v β vs.toFinset.biUnion Var.freeVarSet
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/LN/Binders.lean
|
LN.isFreeIn_iff_mem_freeVarSet
|
[211, 1]
|
[264, 17]
|
constructor
|
v : Var
X : String
vs : List Var
β’ v β vs β§ v.isFree β β a β vs, v β a.freeVarSet
|
case mp
v : Var
X : String
vs : List Var
β’ v β vs β§ v.isFree β β a β vs, v β a.freeVarSet
case mpr
v : Var
X : String
vs : List Var
β’ (β a β vs, v β a.freeVarSet) β v β vs β§ v.isFree
|
Please generate a tactic in lean4 to solve the state.
STATE:
v : Var
X : String
vs : List Var
β’ v β vs β§ v.isFree β β a β vs, v β a.freeVarSet
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/LN/Binders.lean
|
LN.isFreeIn_iff_mem_freeVarSet
|
[211, 1]
|
[264, 17]
|
intro a1
|
case mp
v : Var
X : String
vs : List Var
β’ v β vs β§ v.isFree β β a β vs, v β a.freeVarSet
|
case mp
v : Var
X : String
vs : List Var
a1 : v β vs β§ v.isFree
β’ β a β vs, v β a.freeVarSet
|
Please generate a tactic in lean4 to solve the state.
STATE:
case mp
v : Var
X : String
vs : List Var
β’ v β vs β§ v.isFree β β a β vs, v β a.freeVarSet
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/LN/Binders.lean
|
LN.isFreeIn_iff_mem_freeVarSet
|
[211, 1]
|
[264, 17]
|
apply Exists.intro v
|
case mp
v : Var
X : String
vs : List Var
a1 : v β vs β§ v.isFree
β’ β a β vs, v β a.freeVarSet
|
case mp
v : Var
X : String
vs : List Var
a1 : v β vs β§ v.isFree
β’ v β vs β§ v β v.freeVarSet
|
Please generate a tactic in lean4 to solve the state.
STATE:
case mp
v : Var
X : String
vs : List Var
a1 : v β vs β§ v.isFree
β’ β a β vs, v β a.freeVarSet
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/LN/Binders.lean
|
LN.isFreeIn_iff_mem_freeVarSet
|
[211, 1]
|
[264, 17]
|
cases v
|
case mp
v : Var
X : String
vs : List Var
a1 : v β vs β§ v.isFree
β’ v β vs β§ v β v.freeVarSet
|
case mp.free_
X : String
vs : List Var
aβ : String
a1 : free_ aβ β vs β§ (free_ aβ).isFree
β’ free_ aβ β vs β§ free_ aβ β (free_ aβ).freeVarSet
case mp.bound_
X : String
vs : List Var
aβ : β
a1 : bound_ aβ β vs β§ (bound_ aβ).isFree
β’ bound_ aβ β vs β§ bound_ aβ β (bound_ aβ).freeVarSet
|
Please generate a tactic in lean4 to solve the state.
STATE:
case mp
v : Var
X : String
vs : List Var
a1 : v β vs β§ v.isFree
β’ v β vs β§ v β v.freeVarSet
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/LN/Binders.lean
|
LN.isFreeIn_iff_mem_freeVarSet
|
[211, 1]
|
[264, 17]
|
case _ x =>
simp only [Var.freeVarSet]
simp
cases a1
case _ a1_left a1_right =>
exact a1_left
|
X : String
vs : List Var
x : String
a1 : free_ x β vs β§ (free_ x).isFree
β’ free_ x β vs β§ free_ x β (free_ x).freeVarSet
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
X : String
vs : List Var
x : String
a1 : free_ x β vs β§ (free_ x).isFree
β’ free_ x β vs β§ free_ x β (free_ x).freeVarSet
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/LN/Binders.lean
|
LN.isFreeIn_iff_mem_freeVarSet
|
[211, 1]
|
[264, 17]
|
case _ i =>
simp only [isFree] at a1
cases a1
case _ a1_left a1_right =>
contradiction
|
X : String
vs : List Var
i : β
a1 : bound_ i β vs β§ (bound_ i).isFree
β’ bound_ i β vs β§ bound_ i β (bound_ i).freeVarSet
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
X : String
vs : List Var
i : β
a1 : bound_ i β vs β§ (bound_ i).isFree
β’ bound_ i β vs β§ bound_ i β (bound_ i).freeVarSet
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/LN/Binders.lean
|
LN.isFreeIn_iff_mem_freeVarSet
|
[211, 1]
|
[264, 17]
|
simp only [Var.freeVarSet]
|
X : String
vs : List Var
x : String
a1 : free_ x β vs β§ (free_ x).isFree
β’ free_ x β vs β§ free_ x β (free_ x).freeVarSet
|
X : String
vs : List Var
x : String
a1 : free_ x β vs β§ (free_ x).isFree
β’ free_ x β vs β§ free_ x β {free_ x}
|
Please generate a tactic in lean4 to solve the state.
STATE:
X : String
vs : List Var
x : String
a1 : free_ x β vs β§ (free_ x).isFree
β’ free_ x β vs β§ free_ x β (free_ x).freeVarSet
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/LN/Binders.lean
|
LN.isFreeIn_iff_mem_freeVarSet
|
[211, 1]
|
[264, 17]
|
simp
|
X : String
vs : List Var
x : String
a1 : free_ x β vs β§ (free_ x).isFree
β’ free_ x β vs β§ free_ x β {free_ x}
|
X : String
vs : List Var
x : String
a1 : free_ x β vs β§ (free_ x).isFree
β’ free_ x β vs
|
Please generate a tactic in lean4 to solve the state.
STATE:
X : String
vs : List Var
x : String
a1 : free_ x β vs β§ (free_ x).isFree
β’ free_ x β vs β§ free_ x β {free_ x}
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/LN/Binders.lean
|
LN.isFreeIn_iff_mem_freeVarSet
|
[211, 1]
|
[264, 17]
|
cases a1
|
X : String
vs : List Var
x : String
a1 : free_ x β vs β§ (free_ x).isFree
β’ free_ x β vs
|
case intro
X : String
vs : List Var
x : String
leftβ : free_ x β vs
rightβ : (free_ x).isFree
β’ free_ x β vs
|
Please generate a tactic in lean4 to solve the state.
STATE:
X : String
vs : List Var
x : String
a1 : free_ x β vs β§ (free_ x).isFree
β’ free_ x β vs
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/LN/Binders.lean
|
LN.isFreeIn_iff_mem_freeVarSet
|
[211, 1]
|
[264, 17]
|
case _ a1_left a1_right =>
exact a1_left
|
X : String
vs : List Var
x : String
a1_left : free_ x β vs
a1_right : (free_ x).isFree
β’ free_ x β vs
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
X : String
vs : List Var
x : String
a1_left : free_ x β vs
a1_right : (free_ x).isFree
β’ free_ x β vs
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/LN/Binders.lean
|
LN.isFreeIn_iff_mem_freeVarSet
|
[211, 1]
|
[264, 17]
|
exact a1_left
|
X : String
vs : List Var
x : String
a1_left : free_ x β vs
a1_right : (free_ x).isFree
β’ free_ x β vs
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
X : String
vs : List Var
x : String
a1_left : free_ x β vs
a1_right : (free_ x).isFree
β’ free_ x β vs
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/LN/Binders.lean
|
LN.isFreeIn_iff_mem_freeVarSet
|
[211, 1]
|
[264, 17]
|
simp only [isFree] at a1
|
X : String
vs : List Var
i : β
a1 : bound_ i β vs β§ (bound_ i).isFree
β’ bound_ i β vs β§ bound_ i β (bound_ i).freeVarSet
|
X : String
vs : List Var
i : β
a1 : bound_ i β vs β§ False
β’ bound_ i β vs β§ bound_ i β (bound_ i).freeVarSet
|
Please generate a tactic in lean4 to solve the state.
STATE:
X : String
vs : List Var
i : β
a1 : bound_ i β vs β§ (bound_ i).isFree
β’ bound_ i β vs β§ bound_ i β (bound_ i).freeVarSet
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/LN/Binders.lean
|
LN.isFreeIn_iff_mem_freeVarSet
|
[211, 1]
|
[264, 17]
|
cases a1
|
X : String
vs : List Var
i : β
a1 : bound_ i β vs β§ False
β’ bound_ i β vs β§ bound_ i β (bound_ i).freeVarSet
|
case intro
X : String
vs : List Var
i : β
leftβ : bound_ i β vs
rightβ : False
β’ bound_ i β vs β§ bound_ i β (bound_ i).freeVarSet
|
Please generate a tactic in lean4 to solve the state.
STATE:
X : String
vs : List Var
i : β
a1 : bound_ i β vs β§ False
β’ bound_ i β vs β§ bound_ i β (bound_ i).freeVarSet
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/LN/Binders.lean
|
LN.isFreeIn_iff_mem_freeVarSet
|
[211, 1]
|
[264, 17]
|
case _ a1_left a1_right =>
contradiction
|
X : String
vs : List Var
i : β
a1_left : bound_ i β vs
a1_right : False
β’ bound_ i β vs β§ bound_ i β (bound_ i).freeVarSet
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
X : String
vs : List Var
i : β
a1_left : bound_ i β vs
a1_right : False
β’ bound_ i β vs β§ bound_ i β (bound_ i).freeVarSet
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/LN/Binders.lean
|
LN.isFreeIn_iff_mem_freeVarSet
|
[211, 1]
|
[264, 17]
|
contradiction
|
X : String
vs : List Var
i : β
a1_left : bound_ i β vs
a1_right : False
β’ bound_ i β vs β§ bound_ i β (bound_ i).freeVarSet
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
X : String
vs : List Var
i : β
a1_left : bound_ i β vs
a1_right : False
β’ bound_ i β vs β§ bound_ i β (bound_ i).freeVarSet
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/LN/Binders.lean
|
LN.isFreeIn_iff_mem_freeVarSet
|
[211, 1]
|
[264, 17]
|
intro a1
|
case mpr
v : Var
X : String
vs : List Var
β’ (β a β vs, v β a.freeVarSet) β v β vs β§ v.isFree
|
case mpr
v : Var
X : String
vs : List Var
a1 : β a β vs, v β a.freeVarSet
β’ v β vs β§ v.isFree
|
Please generate a tactic in lean4 to solve the state.
STATE:
case mpr
v : Var
X : String
vs : List Var
β’ (β a β vs, v β a.freeVarSet) β v β vs β§ v.isFree
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/LN/Binders.lean
|
LN.isFreeIn_iff_mem_freeVarSet
|
[211, 1]
|
[264, 17]
|
apply Exists.elim a1
|
case mpr
v : Var
X : String
vs : List Var
a1 : β a β vs, v β a.freeVarSet
β’ v β vs β§ v.isFree
|
case mpr
v : Var
X : String
vs : List Var
a1 : β a β vs, v β a.freeVarSet
β’ β (a : Var), a β vs β§ v β a.freeVarSet β v β vs β§ v.isFree
|
Please generate a tactic in lean4 to solve the state.
STATE:
case mpr
v : Var
X : String
vs : List Var
a1 : β a β vs, v β a.freeVarSet
β’ v β vs β§ v.isFree
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/LN/Binders.lean
|
LN.isFreeIn_iff_mem_freeVarSet
|
[211, 1]
|
[264, 17]
|
intro u a2
|
case mpr
v : Var
X : String
vs : List Var
a1 : β a β vs, v β a.freeVarSet
β’ β (a : Var), a β vs β§ v β a.freeVarSet β v β vs β§ v.isFree
|
case mpr
v : Var
X : String
vs : List Var
a1 : β a β vs, v β a.freeVarSet
u : Var
a2 : u β vs β§ v β u.freeVarSet
β’ v β vs β§ v.isFree
|
Please generate a tactic in lean4 to solve the state.
STATE:
case mpr
v : Var
X : String
vs : List Var
a1 : β a β vs, v β a.freeVarSet
β’ β (a : Var), a β vs β§ v β a.freeVarSet β v β vs β§ v.isFree
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/LN/Binders.lean
|
LN.isFreeIn_iff_mem_freeVarSet
|
[211, 1]
|
[264, 17]
|
cases u
|
case mpr
v : Var
X : String
vs : List Var
a1 : β a β vs, v β a.freeVarSet
u : Var
a2 : u β vs β§ v β u.freeVarSet
β’ v β vs β§ v.isFree
|
case mpr.free_
v : Var
X : String
vs : List Var
a1 : β a β vs, v β a.freeVarSet
aβ : String
a2 : free_ aβ β vs β§ v β (free_ aβ).freeVarSet
β’ v β vs β§ v.isFree
case mpr.bound_
v : Var
X : String
vs : List Var
a1 : β a β vs, v β a.freeVarSet
aβ : β
a2 : bound_ aβ β vs β§ v β (bound_ aβ).freeVarSet
β’ v β vs β§ v.isFree
|
Please generate a tactic in lean4 to solve the state.
STATE:
case mpr
v : Var
X : String
vs : List Var
a1 : β a β vs, v β a.freeVarSet
u : Var
a2 : u β vs β§ v β u.freeVarSet
β’ v β vs β§ v.isFree
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/LN/Binders.lean
|
LN.isFreeIn_iff_mem_freeVarSet
|
[211, 1]
|
[264, 17]
|
case _ x =>
simp only [Var.freeVarSet] at a2
simp at a2
cases a2
case _ a2_left a2_right =>
subst a2_right
simp only [isFree]
simp
exact a2_left
|
v : Var
X : String
vs : List Var
a1 : β a β vs, v β a.freeVarSet
x : String
a2 : free_ x β vs β§ v β (free_ x).freeVarSet
β’ v β vs β§ v.isFree
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
v : Var
X : String
vs : List Var
a1 : β a β vs, v β a.freeVarSet
x : String
a2 : free_ x β vs β§ v β (free_ x).freeVarSet
β’ v β vs β§ v.isFree
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/LN/Binders.lean
|
LN.isFreeIn_iff_mem_freeVarSet
|
[211, 1]
|
[264, 17]
|
case _ i =>
simp only [Var.freeVarSet] at a2
simp at a2
|
v : Var
X : String
vs : List Var
a1 : β a β vs, v β a.freeVarSet
i : β
a2 : bound_ i β vs β§ v β (bound_ i).freeVarSet
β’ v β vs β§ v.isFree
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
v : Var
X : String
vs : List Var
a1 : β a β vs, v β a.freeVarSet
i : β
a2 : bound_ i β vs β§ v β (bound_ i).freeVarSet
β’ v β vs β§ v.isFree
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/LN/Binders.lean
|
LN.isFreeIn_iff_mem_freeVarSet
|
[211, 1]
|
[264, 17]
|
simp only [Var.freeVarSet] at a2
|
v : Var
X : String
vs : List Var
a1 : β a β vs, v β a.freeVarSet
x : String
a2 : free_ x β vs β§ v β (free_ x).freeVarSet
β’ v β vs β§ v.isFree
|
v : Var
X : String
vs : List Var
a1 : β a β vs, v β a.freeVarSet
x : String
a2 : free_ x β vs β§ v β {free_ x}
β’ v β vs β§ v.isFree
|
Please generate a tactic in lean4 to solve the state.
STATE:
v : Var
X : String
vs : List Var
a1 : β a β vs, v β a.freeVarSet
x : String
a2 : free_ x β vs β§ v β (free_ x).freeVarSet
β’ v β vs β§ v.isFree
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/LN/Binders.lean
|
LN.isFreeIn_iff_mem_freeVarSet
|
[211, 1]
|
[264, 17]
|
simp at a2
|
v : Var
X : String
vs : List Var
a1 : β a β vs, v β a.freeVarSet
x : String
a2 : free_ x β vs β§ v β {free_ x}
β’ v β vs β§ v.isFree
|
v : Var
X : String
vs : List Var
a1 : β a β vs, v β a.freeVarSet
x : String
a2 : free_ x β vs β§ v = free_ x
β’ v β vs β§ v.isFree
|
Please generate a tactic in lean4 to solve the state.
STATE:
v : Var
X : String
vs : List Var
a1 : β a β vs, v β a.freeVarSet
x : String
a2 : free_ x β vs β§ v β {free_ x}
β’ v β vs β§ v.isFree
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/LN/Binders.lean
|
LN.isFreeIn_iff_mem_freeVarSet
|
[211, 1]
|
[264, 17]
|
cases a2
|
v : Var
X : String
vs : List Var
a1 : β a β vs, v β a.freeVarSet
x : String
a2 : free_ x β vs β§ v = free_ x
β’ v β vs β§ v.isFree
|
case intro
v : Var
X : String
vs : List Var
a1 : β a β vs, v β a.freeVarSet
x : String
leftβ : free_ x β vs
rightβ : v = free_ x
β’ v β vs β§ v.isFree
|
Please generate a tactic in lean4 to solve the state.
STATE:
v : Var
X : String
vs : List Var
a1 : β a β vs, v β a.freeVarSet
x : String
a2 : free_ x β vs β§ v = free_ x
β’ v β vs β§ v.isFree
TACTIC:
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.